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Abstract

This thesis describes investigations towards the use of computational models for
rhythm in the context of human-machine interactions. I propose a model for semi-
automatic musical transcription, a model for automatic musical transcription and
two interfaces for musical expression, all of them based in concepts related to rhythm.
This novel study highlights the importance of using domain-specific knowledge in
music information retrieval systems, as it allows not only more accurate systems
to be built, but also the development of new ways of musically interacting with
computers.
Key-words: Artificial Intelligence. Digital Signal Processing. Electronic Music.
Automatic Transcription of Music.

Resumo

Esta tese descreve investigações sobre a aplicação de modelos computacionais para
o ritmo na interatividade homem-computador. São propostos um modelo para tran-
scrição musical semi-automática, um modelo para transcrição automática e duas in-
terfaces para expressão musical, todos baseados em conceitos ligados a ritmo. Este
estudo, inédito, evidencia a importância do uso de conhecimentos especialistas em
sistemas de recuperação de informações musicais, uma vez que são possibilitados não
somente sistemas mais eficazes como também novas maneiras de interagir musical-
mente com o computador.
Palavras-chave: Inteligência Artificial. Processamento Digital de Sinais. Música
Eletrônica. Transcrição Automática de Música.
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Chapter 1

Introduction

Automatic music transcription (AMT) is a task that consists of detecting what musical notes

must be played to describe a particular audio signal. It is assumed that a musical piece may be

described by a set of notes, which can be played, leading to the realization of the piece.

Different description marks must be used for the adequate description of pieces in different

styles. Traditional musical notes, for example, are a remarkable tool for this purpose, but are

unable to describe many kinds of expression marks, such as micro-timing and contemporary

techniques like digital audio processing. It is unlikely that a musical piece can be entirely

described by any set of pre-defined parameters, because the musician’s interpretation at the

time of playing may contain subtle variations, causing great change in the overall feeling of the

piece.

Most work in AMT focuses on finding musical notes, which are described by their onset

and their pitch, ignoring expression marks such as dynamics or changes in timbre. Note pitches

and onsets are useful information for documentation and for the development of content-based

search and interaction tools. Nevertheless, state-of-the-art transcription systems still cannot

reach near-100% accuracy even in this simple case [1].

Aiming at these applications, recent efforts on AMT have relied on innovative algorithms

derived from Digital Signal Processing (DSP) and Machine Learning (ML), as will be discussed

in detail in Chapter 2. These algorithms are able to learn decision rules from a training dataset.

However, after a thorough review of the state of the art of transcription algorithms, it was ob-

served that the long-term temporal organization of musical notes is, to a great extent, neglected.

This organization is clearly present in many important musical genres. For example, in

several contemporary songs it is possible to find a similar verse-verse-chorus-verse-chorus-chorus

form. In general, information about one of these sections may be used to obtain objective clues

about the most likely contents of the other sections.

The instrumental parts within Western popular music, particularly in the song form, are

even more remarkable cases. It is common to find musical structures such as verse, bridge and

1



1.1. Forecasting musical notes 2

chorus, in which the same sequence of musical notes are explicitly repeated. Hence, the notes

in a verse of a song are useful clues about the notes in the following verse and so on.

Another important aspect in the temporal organization of musical notes concerns beat and

tempo. Musical events, especially in contemporary Western popular music, tend to be organized

in a hierarchical and periodic fashion. This gives a feeling of pulse, which makes it possible to

clap hands to the beat of a piece or to dance to a tune without knowing it beforehand.

The aforementioned characteristics imply that some clues about the musical notes within

a piece may be obtained from the overall organization of the piece. It may be possible, for

example, to forecast continuations for musical pieces, based solely on the previous notes. It is

also possible to expect that musical notes are organized as to generate a feeling of pulse, which

means some note onsets times are more likely than others.

The use of this kind of explicit rhythmic knowledge is novel in the context of musical tran-

scription. This work consists of developing models that quantify how much a given excerpt may

be explained by a particular hypothesis, and applying such models in the context of musical

transcription. The following sections will present a brief description of them.

1.1 Forecasting musical notes

As discussed before, in some musical genres, the explicit repetition of sections is a common

composition strategy. In such genres, like contemporary Western popular music, it is very likely

that two sections of the same type (for example, two verses) will be played using the exact same

notes. This characteristic may be exploited to produce an algorithm capable of forecasting

musical notes.

The algorithm, thoroughly described in Chapter 3, is based on the idea that, if two (or more)

sections of a piece are played likewise, then it is not necessary to re-write them all. Instead, it

is possible to generate a set of notes that will be played each time this type of section is used.

This allows forecasting notes each time a particular musical section is repeated.

Since there is no prior information about the beginning or ending of each musical section,

it was necessary to employ an automatic algorithm for finding it. The algorithm proposed in

this thesis implicitly finds musical organizations in many levels. Then, a musical note that is

considered more adequate to continue a sequence is yielded.

The forecasting algorithm is shown to correctly predict the majority of the musical notes

in a piece, particularly, as experiments show, when the bass in popular music is considered.

Therefore, the algorithm may be applied on an interactive transcription tool, in which the

user provides some notes and the system forecasts continuations. When applied to musical

genres that rely on the explicit repetition of musical notes, such as Western popular music, this

demands less effort from the user than if an automatic transcription system was applied and

had its outcomes manually corrected.



1.2. Finding periodicity in musical note onsets 3

The disadvantage of using such an algorithm is that user interaction is necessary, even if

an imperfect transcription suffices. When dealing with search in big databases, for example,

it is better to have imperfect descriptions for all elements in the database than having exact

transcriptions for just a few elements. Because of that, another model was developed, aiming

at the problem of completely automatic transcription of music.

1.2 Finding periodicity in musical note onsets

If a particular piece causes a feeling of pulse, it is reasonable to assume that note onsets

will be temporally organized in a more or less periodic fashion. This is correlated to the feeling

of pulse that some pieces, especially those composed specifically for dancing, trigger in human

listeners. A literature review has shown that this characteristic, although present in many

musical genres such as Classical or Popular, has been neglected in the context of automatic

transcription.

The proposed solution also approaches a technical problem that is present in many state-

of-the-art transcription systems: the user has to set a sensitivity parameter that controls the

tradeoff between false positives and false negatives yielded by the system. This parameter is

either set manually or trained from a labeled database, often leading to sub-optimal choices,

due to differences in timbre that appear when different instruments (e.g., two distinct pianos)

are used.

The proposed solution [2] consists of choosing the sensitivity parameter that maximizes the

periodicity of the yielded note sequence. This approach is shown to retrieve solutions that are

more robust to timbre changes than if a pre-defined (fixed) threshold was used. Also, it is an

unsupervised method, hence no training dataset is necessary.

1.3 Interfaces for Musical Expression

During the development of this thesis, it became clear that AMT is one among many forms of

content-based human-computer interaction that can be provided by modelling musical rhythm.

This kind of algorithm may also be used in live performances, providing new interfaces for

musical expression. Two algorithms for this purpose were developed and are discussed in detail

in Chapter 5.

The first algorithm [3] is capable of repeating loops in control data. This kind of data, derived

from faders, knobs, accelerometers and other sensors, is often used for the control of digital effects

or other electronic parameters. The proposed algorithm extends motion loops, allowing more

complex control-based variations to be performed live and expanding the possibilities of musical

creation.
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The second algorithm [4] is capable of quickly learning rhythms tapped in a digital interface

and continuing it indefinitely. The algorithm forecasts repetitive sequences, using a process sim-

ilar to that aimed at interactive transcription, and feeds back the predicted outcomes, creating

a loop. This allowed building a drum sequencing device that does not require a visual interface,

thus providing musicians with an interface for drum sequencing that is closer to the physical

act of playing drums.

1.4 Objectives

This section exposes the objectives of this thesis. They will be discussed again in Chapter

6.

1. To develop models for aspects of rhythm that are present in some specific musical genres;

2. To apply these models to computer-assisted musical transcription;

3. To explore applications for these models other than automatic transcription of music.

1.5 Contributions

This thesis presents many contributions to the state of the art of automatic music transcrip-

tion, as well as to the field of interfaces for musical expression. However, none of the problems

presented here is entirely solved: chapter 6 is entirely dedicated to discussions over the unsolved

problems and perspectives for future work.

For the reader’s convenience, the main contributions of this thesis are summarized in Table

1.1. Each of these contributions is discussed in depth in a specific chapter.
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Contribution Chapter Description

Survey on Automatic Music
Transcription

2 A representative survey on the state of the art of
AMT is presented. It is shown that using long-
term characteristics has improved the results in
transcription.

Interactive transcription of
music

3 A method for interactive transcription of music
is presented.

Using periodicity for improv-
ing AMT

4 The concept of periodic organization of musical
events is directly applied to improve the robust-
ness of musical transcription algorithms.

Interfaces for Musical Ex-
pression

5 Derived from the previously discussed contexts,
new interfaces for musical expression are pro-
posed, allowing novel interactions in musical
performance.

Discussions 6 Discussion on what was learned from this thesis
and what are the perspectives for future work.

Table 1.1: Summary of the contributions of this thesis.
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Chapter 2

Automatic Music Transcription

This chapter brings a review of state-of-the-art methods for Automatic Music Transcription.

It was planned to put the following chapters in a proper perspective. Most of this content was

published in a review paper [1].

This chapter begins by describing basic concepts on psycho-acoustics, discussing how physical

models and objective measures can be related to auditory sensations. Section 2.1 also concerns

conventions used for depicting musical information in the context of automatic transcription.

Section 2.2 shows the latest techniques used for automatic music transcription. The section

describes how digital signal processing (DSP) and machine learning (ML) techniques have been

used for the purpose of automatic transcription, with emphasis not only on technical descrip-

tions, but also on the inspiration behind these techniques.

Section 2.3 discusses how automatic music transcription systems are evaluated. This is an

important methodological issue that allows the objective comparison of different proposals for

AMT.

In Section 2.4, an analysis of the results reported in the literature show that considering

other musically relevant features has provided a greater performance improvement than the use

of different algorithms. This fact is an evidence that the basic assumption of this work is valid,

justifying its investigation.

Section 2.5 concludes the chapter with a brief summary of the main discussions.

2.1 Signals, sensations and notation

An audio signal is a stimulus that can trigger auditory sensations in human beings. In

general, an audio signal is assumed to be a variation in the air pressure x(t) with frequency

components in the hearing range, that is, 20 Hz to 20 kHz [5]. The characteristics of this sound

pressure variation may be controlled by a musician, either using his own voice and body or

interacting with musical instruments using proper gestures. When the sound pressure variation

7



2.1. Signals, sensations and notation 8

is a harmonic signal, that is, x(t) is the sum of M sinusoidal components whose frequencies

are multiples mF of a fundamental frequency (F0) F , and phases φm and amplitudes Am are

arbitrary, as in

x(t) =
M
∑

m=1

Am cos(2πmFt+ φm), (2.1)

it triggers an auditory sensation called pitch [6], which allows classifying sounds in a scale that

goes from bass to treble [5].

In Western culture, music is traditionally played using a discrete set of pre-defined pitches [6].

Each one of these elements is called a musical note. Although there are different techniques

for tuning notes, it is generally accepted, for automatic transcription purposes, that F0 values

are drawn from an equal-tempered scale, defined by steps (or semitones) corresponding to a

frequency ratio of 12
√
2. For historical reasons, notes were called A, A# (or Bb)1, B, C, C# (or

Db), D, D# (or Eb), E, F, F# (or Gb), G and G# (or Ab), in a total of twelve different tones,

comprising one octave. In that notation, it is possible to refer to the octave of a specific note

using a number, e.g., A4 is note A in the fourth octave. The fundamental frequency assigned

to the note A3 is half the one related to A4 and so on. Conventionally, the note A4 is tuned so

that its fundamental frequency is 440 Hz, and this allows the definition of the F0s for all other

notes by applying the 12
√
2 ratio.

In order to execute a musical piece, the musician generally follows instructions to play

a particular sequence of musical notes. These instructions may be taught by oral tradition,

but written notations were developed across history. Different forms of musical notation have

arisen, each one being more adequate to specific forms of playing, understanding and composing

music [7].

In Western culture, a common form of notation is the score, an example of which is shown

in Figure 2.1. In this notation, each note to be played is represented by a symbol (a vertical

line and a notehead) in a staff with five lines. Details on the symbol describing each note are

used to represent its duration, that is, for how long the note should be played, and the vertical

positioning of each notehead describes which note should be played. There are many other

characteristics of music that may be written in a musical score, but a complete description is

beyond the scope of this thesis.

K �
�
�

4
4

8

�� �
��

�

Figure 2.1: Example of traditional Western musical score.

It is important to notice that the score notation presents relative timing, that is, note

1A# is read as “A sharp” and Bb is read as “B flat”.
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durations are represented not as absolute values (in seconds), but as a ratio of a reference. This

allows a particular piece to be played faster or slower, according to the interpretation of the

musician. Less freedom is given to the interpreter by using a notation that is more accurate

in time, for example a piano-roll. In this notation, each note event is represented by its onset

and offset (that is, the exact time when the note should start and stop playing), and its pitch.

For the purposes of inter-device communication using the MIDI (Musical Instrument Digital

Interface) protocol, the pitch of each note is described by an integer [8] (called MIDI number)

calculated by:

p = 69 + 12 log2
F

440
, (2.2)

where p depicts a hypothetical sorting of piano notes in which A4 corresponds to 69, A#4 to

70 and so on, and F is the corresponding fundamental frequency, in Hz.

Due to the extensive use of MIDI devices in the context of electronic music, the piano-roll

notation is often referred to as MIDI notation. The piano-roll related to a particular piece

may be visualized in a Cartesian plane, where the y-axis represents the pitch p and the x-axis

represents time. This representation may be seen in Figure 2.2.

Figure 2.2: Example of a piano-roll and the related acoustic signal, which was synthesized from
the score in Figure 2.1.

All kinds of notations have their own advantages and drawbacks. For example, although the

piano-roll notation reveals the exact duration intended for each note, it is not as easily readable

or interpretable by a human being as the traditional score.

In order to obtain the transcription of a particular piece, it is necessary to define the symbols

that best describe the piece considering the desired notation. When the transcription process is

performed by a device without human interference, it is called automatic transcription. Tran-

scription of music is only possible because auditory sensations related to different musical notes

are distinguishable. To build an automatic transcriber, it is necessary to understand the rela-

tionship between these sensations and particular signal models, as well as the conditions under

which these models work.
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2.1.1 Pitch

The harmonic model in Expression 2.1 is known to be overly simplistic, as audio synthesis

derived directly from it is easily recognized as artificial. Nonetheless, it remais a useful tool in

many audio-related applications. There are several methods to detect the fundamental frequency

(and, therefore, the pitch) of a harmonic signal. If only one note is played at each time instant

(i.e., the audio signal is said to be monophonic), the application of the model in Expression 2.1

is straightforward. When J notes are played concurrently, the resulting signal may be described

as a sum of signals derived from Expression 2.1:

y(t) =
J
∑

j=1

Mj
∑

m=1

Am,j cos(2πmFjt+ φm,j), (2.3)

where Fj is the fundamental frequency of the j-th note and φm,j and Am,j are the phases and

amplitudes of its m-th partial.

The sensation that arises from hearing this signal is that of a sum of sounds with different

pitches. This is what happens when more than one note of a piano, for example, is played at

the same time.

Expressions 2.1 and 2.3 can only be used in stationary excerpts, that is, while musical

notes are sustained. When transient behavior is found, e.g., during note onsets, different signal

characteristics are found and, therefore, different techniques are necessary to detect them, as it

will be discussed later.

2.1.2 Onsets

Onsets of new musical notes may be detected by a change on the stationary behavior of the

signal. A complete tutorial on the detection of onsets was written by Bello [9]. Note onsets may

be detected using typical characteristics of starting notes, which are:

1. Increase in the signal power, for notes with sharp attacks, like a plucked string, and

2. Change in the spectral content (that is, the frequency distribution of the signal power),

for soft attacks, which can be achieved, for example, in wind or bowed instruments.

These assumptions may be used as an inspiration to build DSP algorithms for finding onsets.

Similarly to the pitch, the onset models give continuous values. Therefore, techniques for finding

discrete events among these continuous signals must be applied.

Due to this demand, the structure of most AMT systems comprises two parts, as shown in

Figure 2.3. First, a DSP algorithm calculates objective features of the audio signal related to

models of auditory phenomena. After that, a machine learning algorithm uses these features to

make binary decisions about what notes are present in the signal.
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Figure 2.3: Flowchart for a generic AMT system.

After inspecting the literature, it was found that the most recent advances in digital signal

processing have been derived from concepts and techniques related to machine learning. They

will be discussed in the next section.

2.2 Techniques for Automatic Music Transcription

The final goal of an automatic music transcriber is to obtain a proper description of the

musical notes that have been played to generate the signal received as input. This corresponds

to inferring the pitch, the onset and the offset of each note. The harmonic model in Expression

2.1 implies that it is necessary to detect what are the frequency partials of a frame of audio in

order to infer the pitches of the active notes in that frame.

The simplest technique to detect partials is based on peak-picking and thresholding in the

frequency domain, which corresponds to selecting all local maxima whose absolute values are

above a pre-defined threshold [10–14]. A slightly more complex approach involves low-pass fil-

tering the DFT of the analyzed signal so that spurious peaks are eliminated [15]. Another simple

operation that may be performed is to apply a parameter estimation algorithm. Hainsworth [16]

uses the method proposed by MacLeod [17], which works by obtaining parameters according to

a maximum likelihood criterion. In the system proposed by Moorer [18], sub-harmonic spurious

components are eliminated by discarding fundamental tone candidates that do not present even

harmonics.

Once the parameters (magnitude and frequency) of the existing partials are found, it is
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necessary to group them in order to find musical notes. Piszczalski [19] simply assumes that

only a single note sounds at each time frame, without any other noise. This is not true in the

general case, but can be representative of some specific and pertinent case, like those engendered

by a solo flute or voice. Sterian [11] proposes using multiple time frames, grouping partials that

do not change in magnitude or frequency by more than a pre-defined threshold. The result

of this grouping process is a set of tracks, which are grouped using the harmonicity criterion.

Tanaka [12] uses a rule-based system that groups partials considering that they start and end

in similar instants, their amplitudes change slowly and they are harmonically related. Lao [13]

and Triki [14] add a rule according to which all partials of the same series must have a similar

amplitude. Hainsworth [16] separates the tasks of finding notes and classifying them, so that

an algorithm based on framewise energy variation finds note onsets and, afterwards, notes are

classified according to the found partials. Similar approaches were also used by Rao and Rao [20]

and Uchida and Wada [21]. Finally, Dressler [22] used a chain of pitch formation rules to detect

the predominant pitch in an existing mixture.

The process of peak-picking and thresholding is interesting because it filters a great amount

of noise and yields few data points. This allows the extraction of information with rule-based

systems that rely on psycho-acoustic principles. On the other hand, when a greater number of

musical notes are present, this process is compromised by two phenomena. First, peaks related

to partials of different notes will merge, which means that peak-picking becomes more likely to

fail. Second, since there may exist a great difference between the loudness of the mixed notes,

finding a suitable threshold level will tend to be a harder task.

When the coefficients of a particular frame are interpreted as a vector, the problem of

characterizing events in that frame may be considered as a pattern classification problem [23],

and many techniques, specifically designed for solving classification problems, may be used.

A pattern classification technique is an algorithm that receives as input a set of characteristics

o and yields a label s(o) as output. This label characterizes the class to which the object –

in this case, the frame – belongs, based on the feature vector o. The transcription systems

discussed up to this point may be considered as rule-based pattern classification systems, which

are designed taking into account specialist knowledge. The techniques that will be discussed in

the following, however, also gather information from a training dataset.

Artificial Neural Networks (ANNs) are broadly used classifiers. Among the existing ANN

architectures, it is safe to consider the Multi-Layer Perceptron (MLP) as most emblematic

representative [24]. This ANN architecture calculates the function:

y = A







f(B

[

x

1

]

)

1






, (2.4)
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where the matrices A and B, obtained by supervised training, contain weight parameters, x is

an input vector, y is an output vector and f(.) is a sigmoidal function [24], like tanh(.).

The mathematical model in Expression 2.4 is capable of universal approximation [24], i.e., it

is mathematically capable of modelling any function. Obtaining the parameters that yield the

approximation of a particular function depends on a supervised learning algorithm, generally

using a gradient descent approach that iteratively minimizes the approximation error for a given

dataset, but often leads to local minima [23], which may harm the system performance.

It is important to notice that, in the domain of a transform that presents the characteristics

discussed in Section 2.1.1, the magnitude of a particular coefficient may indicate the existence

of a frequency component, its non-existence or a state of doubt about its existence. A possible

mathematical model for these states is a sigmoidal function f(x). For x → ±∞, the function

assumes negative or positive saturation values, which represent either existence or non-existence,

and for intermediate values the sigmoid function presents a smooth transition, which represents

an increasing value for the hypothesis of existence of the component. MLP networks were used

in [25–29], in which one complete network is designed to detect if a particular note is active or

inactive – therefore, there are as many networks as possible notes to detect. By using multiple

networks, the dimension of the input is considerably reduced, which decreases the susceptibility

of the network to converging to local minima and having sub-optimal performance.

In order to avoid local minima, recent works have favoured the use of Support Vector Ma-

chines (SVM). SVM is a machine learning technique that does not minimize an approximation

error considering a dataset, but maximizes the decision margin between clusters to be classified.

The training step is unimodal and performed in a single pass (that is, it is not necessary to

iterate several times over data, as it is the case for MLP networks). SVM variations were used

in [30–38] to classify musical notes and chords using short time spectral representations, and

in [38,39] to classify the timbre of already labeled musical notes.

Recently, deep-belief Networks (DBNs) were applied to the problem of transcription by Nam

et al. [40]. These networks can be briefly explained as multi-layer structures in which each layer

is trained independently. DBNs have shown to yield better results than SVMs in the databases

used by the authors.

Neural networks tend to produce a black box machine, that is, the final transformation

obtained may not correspond to the way a specialist would reason over the problem. A more

semantically meaningful approach to obtain detection functions is to use probabilistic tech-

niques, which also play an important role in music transcription. Among those techniques, it

is important to discuss the Bayesian classifier [23]. This decision technique relates a vector of

observations o to the strength of the hypothesis that the observed object belongs to the class

sj, using two factors. The first is the probability that o is generated by using a known model

of the class behavior, which gives P (o|sj). The second is the prior probability of the class sj.
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Using Bayes’ Theorem, the probability of finding the class sj given the observation vector o is:

P (sj|o) =
P (o|sj)P (sj)

P (o)
. (2.5)

Since P (o) is equal for all candidate classes sj, the decision algorithm may discard it and

simply choose the class given by argmaxj P (o|sj)P (sj).

Expression 2.5 produces a decision system with theoretical minimum probability of error

(MPE), which means that Bayesian decision systems may, ideally, reach the best possible classi-

fication performance, given the input data. However, both P (o|sj) and P (sj) are unknown and

must be estimated, which relates the performance of the classification systems to the quality of

the estimation [23]. Bayesian decision systems were used in [41–45].

When dealing with framewise classification of musical signals, it must be noted that there

is a strong correlation between the classes of adjacent frames, because there is a good chance

that no new note events happened between these frames. This means that the prior probability

of observing a specific class depends on the previous decision. This premise is used in Hidden

Markov Model (HMM) structures [46]. HMMs are discrete-time systems in which the q-th state

depends on the state in the instant q − 1, that is, P (sj,q) = P (sj,q|sj,q−1), which is a property

ignored by the Bayesian decision process. Each state may be interpreted as a classification

decision, and, with a carefully chosen topology, states will represent the desired musical events.

HMMs were used in [30,47–51], with different topologies and data sets.

Linear algebra can also provide a sound theoretical framework of such kind. In this case, a

very common model for the detection of musical notes is:

X = BA, (2.6)

where B and A are non-negative and B has as many columns as the number of notes that are

going to be detected.

In this model, each column xq of X must contain a short time description of the input

signal, in a vector representation that does not change significantly if the pitch itself does not

change – for example, the absolute value of the DFT that description. The representation xq

is factorized as a combination aq of the basis vectors stored as columns of the B matrix, hence

xq ≈ Baq. Therefore, ad,q is the strength of activation of the d-th basis vector during time frame

q. Also, the model inherently has a non-negativity constraint, which holds at least for A, since

it does not make any sense to have a note “subtracted” from the mixture. The representation

used in this model is, in general, some kind of spectrogram, hence the values of X and B are

also non-negative. Therefore, finding the factors B and A is often referred to as “Non-Negative

Matrix Factorization” (NMF) [52].

Since the factorization model in Expression 2.6 is inexact, an approximation must be calcu-



2.2. Techniques for Automatic Music Transcription 15

lated. This depends on the choice of a suitable error measure. The first one that has been used

in AMT was the Euclidean distance, that is, the error ǫ is given by:

ǫ = ‖X −BA‖. (2.7)

Smaragdis [52] used an iterative gradient-based approach to obtain both B and A from a

spectrogram X. Although it is a non-supervised learning technique, experiments show that B

usually converges to basis vectors corresponding to notes andA converges to their corresponding

activation weights. Aditionally, Smaragdis [52] observed that note events that are never found

separately (notes that are always in a chord) are not recognized by the system (only the corre-

sponding chords are recognized), and, at the same time, some spurious events are recognized,

which represents a significant drawback of the factorization system. Later, Bertin [53] showed

that NMF yields better results than a Singular Value Decomposition (SVD). Sophea [54] and

Vincent [55] proposed using of prior knowledge on the pitches, both restricting the values on the

base matrixB so that only values corresponding to the fundamental frequency and the overtones

would be allowed to be different than zero. In parallel, Grindlay [56] used instrument-specific

data to obtain the basis matrix B, hence it would not have to be updated while searching for

the values of A.

Bertin [57] converted the usual NMF approach to a probabilistic framework, in which the

values of the spectrogram and the factor matrices are interpreted as probabilities. This was

useful to connect the factorization results to a hypothesis of temporal smoothness, that is,

the expectancy of notes lasting for long time intervals was incorporated to the system. This

probabilistic framework is called “Bayesian Non-Negative Matrix Factorization” and was later

used in experiments for automatic transcription of polyphonic music [58]. A similar technique,

namely Probabilistic Latent Component Analysis (PLCA), was used by Han to solve the problem

of transcription [59]. Although the calculations performed in the Bayesian approach can be

modelled as matrix factorization problems, the use of a probabilistic framework may allow not

only a more meaningful interpretation of both the results and the hypothesis over which the

system is built on, but also the use of an important set of tools and algorithms, as seen above.

Under the hypothesis that the base matrix B is informed a priori, it is possible to interpret

the factorization of each column of X, in Expression 2.7, as an independent problem, that is:

min
aq

ǫq = ‖xq −Baq‖ (2.8)

with the constraint that aq,d ≥ 0, ∀d, thus obtaining the corresponding weight vector aq.

The hypothesis of time independency between columns allows the construction of causal

algorithms for transcription, which is a pre-requisite for real-time applications. A gradient-based

rule may be used, but an algorithm specifically designed to solve the problem in Expression 2.8
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was proposed by Hanson and Lawson [60]. It was used in the context of AMT by Niedermayer

[61], Mauch and Dixon [62] and Tavares et al. [63].

Bertin [64] observed that the Euclidean distance may not be the best error measure for the

approximation of Expression 2.6, using the Itakura-Saito divergence instead, defined as:

ǫI(x|y) =
x

y
− log

x

y
− 1. (2.9)

Bertin [64] argues that this divergence could be more suitable for transcription because it is

invariant to a linear gain (that is, ǫ(x|y) = ǫ(λx|λy)).
However, the Itakura-Saito distance is not convex, in contrast to the Euclidean distance.

For this reason, Bertin proposes using the β-divergence, given by:

ǫβ(x|y) =



















xβ+(β−1)yβ−βxyβ−1

β(β−1)
, β ∈ ℜ\{0, 1}

x− log x
y
+ (x− y), β = 1

x
y
− log x

y
− 1, β = 0.

(2.10)

Since the β-divergence is convex for β ∈ [1, 2], Bertin [64] proposes minimizing the cost

function for β = 1 and then gradually reducing it until it converges to zero, in which case the

β-divergence is equivalent to the Itakura-Saito divergence. The β-divergence was also used by

Dessein et al. [65], simply assuming β = 0.5.

The factorization problem in Expression 2.6 is akin to a source separation problem, in which

a number of sources is mixed into different channels. In this case, the sources are the individual

notes, each with its own activation level, and the mixture is the final spectrogram. Obtaining

the factorization BA, under this assumption, is equivalent to solving a Blind Source Separation

problem. This interpretation was used by Abdallah [66] and, later, by Boulanger-Lewandowsky

et al. [67], to build a transcription system based on the assumptions that the activation of

the notes is independent and the activation matrix is sparse, that is, few notes are active at

each frame. A similar idea was used by Vincent [68], who also incorporated the idea of time

dependency for notes and applied the system to recordings instead of the synthesized harpsichord

samples used by Abdallah [66]. The fact that few notes can be played at the same time was

exploited by Tavares et al. [63], who applied computer vision techniques to detect which notes

can be played in a vibraphone given the position of the mallets, restricting the search space and

reducing false positives. Lee et al. [69] incorporated sparseness in the factorization process by

minimizing the l1 norm, shown in Expression 2.11, in the factorization process:

l1(x|y) =
N
∑

n=1

‖xn − yn‖. (2.11)
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Benetos and Dixon [70] observed that, in the Constant-Q Transform (CQT) domain, tem-

plates assigned to different notes can be obtained by shifting other templates in the frequency

domain. Later, Kirchoff et al. [71] improved this approach, allowing the use of more than one

spectral template per note. The property of shift-invariance was indirectly used by Argenti

et al. [72], who used 2D (time-frequency) templates for musical notes, hence considering the

spectral changes that happen during the execution of a musical note.

Although factorization methods have shown to be effective, they are computationally ex-

pensive and may become prohibitive for large, real-time problems. An approximate solution,

however, may be obtained by using the Matching Pursuit algorithm proposed by Mallat and

Zhang [73]. This algorithm consists of iteratively selecting, within the dictionary B, the vector

whose inner product with the input vector is the greatest. The base function is subtracted

from the input so that it becomes maximally uncorrelated to that base function, and then the

algorithm proceeds by analyzing the remainder of that subtraction. The Matching Pursuit tech-

nique, which may be seen as a “greedy” heuristic to minimize Expression 2.8, may converge to

a local minimum, and it will tend to give results that differ from the ones yielded by NNLSQ

algorithm when the basis functions are more correlated. It was used for the task of transcription

by Derrien [74]. A mixed algorithm developed by O’Hanlon et al. [75] uses a greedy approach

to select the notes that are the most efficient to model a mixture, but applies NNLSQ, with a

sparsity constraint, to improve the estimation of their ratios.

The decision algorithms described above are those that, historically, have been more fre-

quently used in AMT, but it is also important to mention other relevant techniques. Knowledge-

based blackboard systems, like the one proposed by Martin [10], are algorithms that successively

incorporate information from multiple, independent agents. Each agent is responsible for dealing

with a particular situation, and its output may generate a situation that will be dealt with by

other agent. After multiple iterations with all agents, the system yields the final transcription.

Reis [76] uses a genetic algorithm, which generates random musical piece candidates, estimates

their spectrum and uses the Euclidean distance from the estimated spectrum to the true spectra

to evaluate their fitness. Different candidates are combined, changed, replicated and rejected

using evolutionary strategies, and after some iterations the desired transcription is obtained.

Later, Reis et al. [77] incorporated variance on the spectral envelope and a dynamic noise level

analysis, significantly outperforming the previous approach [76].

All these proposals, although using considerably different techniques, are based on similar

premises, which were discussed in Section 2.1. In the last decades, the scientific community has

agreed on some evaluation methods that can be used to measure which techniques work best.

Section 2.3 brings a discussion on this subject.

The information presented in this section is condensed in Tables 2.1 and 2.2. These tables

list, respectively, techniques based on peak-picking and vector classification.
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Peak detection
References Technique
[10], [11], [12], [13], [14] Peak-picking and thresholding
[15] Peak-picking and thresholding, low-pass filter in

frequency domain eliminates spurious notes
[16] Peak-picking, maximum likelihood criterion [17]

is used
[18] Peak-picking, specialist rule system filters peak

hypothesis

Peak grouping
References Technique
[19] Partial grouping with monophonic assumption
[11] Assumes that partial amplitudes and frequen-

cies do not change significantly across frames
[12] Partials of same notes begin and end in similar

instants
[13], [14] All partials of the same series should have sim-

ilar amplitudes
[16], [20], [21] Notes are classified after onset/offset is detected
[22] Chain of pitch formation rules highlight pre-

dominant pitch

Table 2.1: Reference table for peak-picking based classification techniques.

2.3 Evaluation

Evaluating an AMT system means detecting how well it performs, and, furthermore, col-

lecting evidence about which techniques work best for a given database. The first AMT sys-

tems [18, 19] were evaluated by visual comparison between ground-truth with automatically

obtained scores. This practice remained for some time, but, with the growth of the research

field, it became necessary to develop objective performance measurements that could not only

be automatically calculated over large databases, but also be exploited to compare different

transcribers.

The most frequently used measures are Recall, Precision and F-Measure. They derive from

information retrieval [80] and are used in the Music Information Retrieval Exchange (MIREX)

[81]. They are defined in Expressions 2.12, 2.13 and 2.14, respectively.

Recall =
# of correctly transcribed notes

# of notes in ground-truth
. (2.12)

Precision =
# of correctly transcribed notes

# of notes in automatic transcription
. (2.13)

F-Measure = 2
Recall× Precision

Recall + Precision
. (2.14)
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References Technique

[25], [26], [27],
[28], [29]

Multi-Layer Perceptron

[30], [31], [32],
[33], [34], [35],
[36], [37], [38]

Support Vector Machines

[52], [53], [54],
[55], [57], [78],
[56], [64], [58],
[37], [79], [58],
[65]

Non-Negative Matrix Factorization

[40] Deep-belief Networks
[59] Probabilistic Latent Variable Analysis
[66], [67], [68],
[69]

Non-Negative Matrix Factorization with sparsity constrain

[70], [71], [72] Shift-invariant factorization
[61] Non-Negative Least Mean Squares
[41], [42], [43],
[44], [45]

Bayesian decision system

[47], [48], [30],
[49], [50], [51]

Hidden Markov Models

[10] Blackboard system
[74], [75] Matching pursuit
[76], [77] Genetic algorithm

Table 2.2: Reference table for vector-based pattern classification techniques.

There is an inherent tradeoff between Recall and Precision. If the sensitivity is too high,

many notes will be yielded, the probability of correctly transcribing notes in the ground-truth

will be higher, hence Recall will tend to grow. The increased sensitivity tends to lead the system

to yield more false positives, which will cause the Precision to decrease. Conversely, a lower

sensitivity parameter tends to lead to higher Precision, with the drawback of lowering the Recall.

The F-Measure accounts for this tradeoff, representing the harmonic mean between Recall and

Precision.

These measurements, however, depend on a definition of correctness for a transcribed note.

Most modern AMT systems focus on converting audio to a MIDI-like representation in which

notes are described by their onsets, offsets and pitches. This allows transcribing tempo fluctu-

ations as played by the musician, but requires a manual annotation of evaluation datasets.

For a yielded note to be considered correct, it is frequently required that its pitch be within

half a semitone from the pitch of the corresponding note in the ground-truth. This is justified

because deviations of less than half semitone lead to the correct pitch by simple rounding.

The requirements regarding time, however, are harder to define, as there are many aspects to

consider.
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The human perception is an important one. An onset difference starts to be noticed above

about 10 ms [82]. Onset deviations of more than 20 ms tend to compromise the listening

experience, but are still acceptable for database search purposes. A deviation over 100 ms is

harmful to most applications.

It is also necessary to consider the feasibility aspect. In most pitch-tracking systems, the

length of the analysis window is between 12 ms and 43 ms. In live applications, this length

is the minimum delay between playing a note and obtaining an associated response from the

system. In offline scenarios, it becomes a timing error, as it is impossible to know at which

point, within a window, a given event occurred.

Last, there is a practical aspect to be considered. It is hard to manually annotate onsets in

an audio file below a precision of around some tenths of milliseconds. This aspect was partially

solved by using either MIDI synthesizers, MIDI-controlled instruments or by recording musicians

that were playing against a MIDI recording.

All of these aspects become even more important when offsets are considered. They are

harder to identify (both manually and automatically), and the auditory relevance of their devi-

ations is harder to define numerically. For this reason, many AMT systems ignore offsets and

only work with onsets.

Once the timing tolerances are defined, Recall, Precision and F-Measure may be immediately

calculated. Although they allow a quick comparison between methods, they reveal little about

the nature of the errors. Furthermore, the impact of the tolerances in the final outcome is not

measured, which may generate misleading results.

To account for that, another approach consists on evaluating the transcription in short

frames, of around 10 ms [81]. For each frame, the number of active notes in the ground-truth

and in the automatic transcription are counted, as well as the number of correctly transcribed

notes. These numbers are summed, allowing to calculate Recall, Precision and F-Measure. In

this case, the measures do not depend on a subjective choice of timing, and notes are simply

considered proportionally to its duration.

Both the notewise and the framewise evaluation methods, however, do not provide informa-

tion about the characteristics of the algorithm failures. Tavares et al. [83] developed a method

that yields histograms for time and pitch deviations. This method highlights information that

may be useful, such as detecting the typical time delay, the number of pitch errors for each pitch

class and so on. On the other hand, it is unable to provide a unique performance measure.

Daniel and Emiya [84] observed that Recall, Precision and F-Measure do not necessarily re-

flect the perceptual accuracy of a transcription. In reality, different types of errors are perceived

differently, for example, timing deviations are less perceptible than pitch deviations. To account

for that, Fonseca and Ferreira [85] proposed a perceptually-motivated evaluation method based

on applying different evaluation processes to the decaying and sustained parts of a note. This

method has shown to be perceptually more accurate than the usual measures.
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The standardization of performance measures comprises an important step towards the com-

parison of AMT systems. However, performance comparison also requires executing different

methods over the same dataset. Henceforth, significant effort has been made to provide adequate

datasets aiming at future research.

An important step towards test standardization was taken by Goto et al. [86], who developed

the Real World Computing (RWC) database. It comprises audio and MIDI files for 115 popular

music songs, 50 classical pieces and 50 jazz pieces. All of them were recorded especially for

the database. This database was used by Ryynanen and Klapuri [49, 50, 87, 88], Benetos and

Dixon [70], Raczynski et al. [89], Simselki and Cemgil [90] and Argenti et al. [72]. However,

each one of these works used a different subset of the RWC database.

Aiming at evaluating transcriptions of piano solos, Poliner and Elis [32] used a dataset con-

sisting of 92 pieces downloaded from the Classical Piano MIDI Page (http://www.piano-midi.

de/) and rendered using standard software (Apple Itunes). A similar dataset was used by

Costantini et al. [34], who not only used the same database construction method, but also

published an explicit list of all MIDI files used in the process. Nam et al. [40] also used this

database, and performed additional tests on it with previous methods [29, 49]. The evaluation

performed on this database was carried out using frame-level note detection. Table 2.3 shows

the average accuracy (F-Measure) achieved by each method, as well as a brief description of the

employed techniques.

References Accuracy Technique

[32] 70% SVM
[34] 85% SVM with memory
[40] 79% DBN
[49] 46% HMM and specialist signal processing
[29] 39% MLP networks

Table 2.3: Performance comparison for methods using the Poliner-Ellis database.

Using synthesized data may lead to scenarios devoid of aspects such as room reverberation

and instrument resonances. The MAPS (standing for MIDI Aligned Piano Sounds) dataset [91]

provides high-quality recordings of a Yamaha Disklavier, that is, an automatic piano. It contains

31 GB of recordings with corresponding ground-truths, and may be freely downloaded. It was

used by Dessein et al. [65], Nam et al. [40] and O’Hanlon et al. [75]. Table 2.4 shows the

F-Measure (both notewise and framewise) reported in each work.

2.4 Discussion

This review shows that there are two main approaches to solve the problem of transcription.

The first one is to program sub-systems that apply specialist knowledge aiming to detect psy-
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References Results Technique
Notewise Framewise

[65] 71.5% 65.5% NMF with beta-divergence
[40] - 74.4% DBN
[29] - 63.6% MLP networks
[75] 78.2% 76.3% Sparse NMF decomposition

Table 2.4: Performance comparison for methods using the MAPS database. Unreported results
are identified with a dash.

choacoustic clues that may lead to the correct transcription, and then combine the results into

the desired transcription. If the signal behavior that triggers a particular sensation is known and

properly modeled, then its use will imply in good results. However, that assumption holds only

partially, both because of errors resulting from inexact mathematical modelling and because of

errors due to the operation of some algorithms in ill-conditioned situations. Also, as noted by

Hainsworth [92], it must be considered that music transcription, when performed by human be-

ings, demands a high level of training and specialization, hence psychoacoustic models obtained

by analysis of non-expert subjects may be ignoring some aspects that are important to build an

automatic transcriber. This leads to the second approach to AMT, which consists of defining

a machine learning process that automatically estimates key parameters from a data corpus,

as it is the case for NMF or SVM-based methods. These will present all training problems

that are typical of machine learning processes, that is, the need for a great amount of data for

training, the fact that parameters are not likely to be easily interpretable and the impossibility

of theoretically granting that the results are not subject to particularities of a given database.

Machine learning algorithms, however, have been shown to lead to a good performance, not

rarely outperforming systems built from specialist knowledge.

As can be seen in Tables 2.3 and 2.4, the best transcription results have been obtained

when machine learning algorithms are mixed with specialist knowledge. The use of memory for

SVMs [34] and sparsity for the NMF [75] lead these systems to outperform previous ones. This

indicates a promising direction for future AMT research.

2.5 Conclusion

This chapter has presented an overview on automatic transcription of music. It presents

historical remarks on how techniques have evolved in the last twenty years, and the concepts

and inspirations behind the most commonly used techniques. The specific transcription tasks

that are dealt with by most AMT systems were also discussed.

It was noted that techniques that consider long-term characteristics of the signals tend to

outperform the others – HMM outperforms MLP, SVN works best if a memory unit is used, and
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sparsity constraints have improved the results when NMF is used. This suggests that future

work in AMT should focus on the development of machine learning techniques that exploit long-

term characteristics that are often found in music, such as sparseness in time and frequency and

a tendency for continuity in spectral representations. The next chapters will discuss how to

apply this idea in practice.



Chapter 3

Interactive Transcription of Music

In many musical genres, there is a visible use of explicit repetitions of notes. In the context

of contemporary Western popular music, this allows piece analysis using concepts such as“verse”

and“chorus”. This chapter presents a technique that exploits this characteristic to deliver a fast

way to transcribe polyphonic music using computer assistance.

In the proposed workflow, the user is required to input the first notes of a piece. After

that, the system predicts another note, being manually corrected, if necessary. As a result, an

accurate documental transcription is obtained.

The inspirations behind this system are discussed in Section 3.1. After that, the theoretical

basis for several design decisions of this system are presented in Section 3.2. Section 3.3 discusses

the proposed method in detail, presenting the forecasting algorithm.

The accuracy of the proposed method is evaluated in Section 3.4. It is shown that, for some

genres, the proposed method provides an accurate transcription with less human effort than if

an automatic system were used.

Section 3.6 concludes the chapter by presenting a brief summary of the discussed topics.

3.1 Context

Over the last years, increasing attention has been given to tools capable of detecting, without

human interference, the musical notes present in an acoustic recording. These tools are called

automatic music transcribers, and have been used for many purposes, such as query-by-content

database search algorithms [93], tutoring devices [94,95], and for providing scores for documen-

tation and analysis purposes [88,96]. These last two applications – documentation and analysis

– require a great accuracy on the part of the automated system, which cannot yet be provided

by most state-of-the-art systems. Hence, it is necessary to perform manual corrections to the

transcription yielded by the automatic systems.

Aiming at these applications, a different workflow for obtaining documental transcriptions is

24
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proposed: the user provides a few notes in the beginning of the score and an algorithm predicts

what is the most likely continuation. Then, the user either corrects or accepts the predicted

continuation and the algorithm yields another note candidate. These iterations happen until

the transcription is completed. This workflow is different from the usual one, in which the

user receives a candidate note sequence and then performs corrections on it. Experimental

results show that the effort required from the user when employing the proposed transcription

workflow, namely Interactive Computer-Assisted Music Transcription (ICAMT), is significantly

lower than the effort required when using the traditional approach.

The forecasting algorithm relies on the detection of structure repetitions in the notes provided

by the user, an approach based on the modus operandi of the universal compression algorithm

proposed by Lempel and Ziv [97]. It does not require a training stage based on a corpus, as

all information is obtained from the particular piece being transcribed. Also, it does not have

great memory or processor requirements, hence it can be implemented even in mobile devices.

As will be seen later, the algorithm is, in general, capable of predicting correctly a significant

amount of notes in popular music databases, outperforming state-of-the-art automatic transcrip-

tion systems in the sense that the user is required to provide less notes than if the usual workflow

– automatic transcription preceding corrections – is used. It is also shown that, for this purpose,

the proposed algorithm performs better than an existing note forecasting algorithm [98].

3.2 Theoretical basis

Musical pieces, for the purpose of transcription, may be interpreted as sets of discrete events,

or symbols, each one related to a particular musical gesture – for example, one possible event

is “play note C for one beat of the song, starting after the preceding note ends”. This set

of events is generally crafted by a human being (unless an algorithmic composition process is

used), hence it is, in a certain sense, unpredictable. On the other hand, musical pieces tend to be

based on guidelines, which are a result of both formal learning (such as studies on harmony and

counterpoint) and intuition derived from experience (such as listening to other compositions and

copying structures that sound better than others). These guidelines (both formal and intuitive)

direct the composition process of a musical piece so that certain structures tend to be more

likely to occur than others. In fact, as widely discussed by Howell et al. [99], music is essentially

a social activity; therefore, it demands rules and structure. This means that, in a certain sense,

specific parts of a musical piece may be predicted based on other parts.

The relationship between the existence of an underlying structure of a sequence of symbols

and the predictability of that sequence was studied by Shannon [100]. In his work, he used

Markov chains to forecast characters of texts in English, obtaining significant results. Shannon

[100] states that this gives support to the notion that part of the characters in a text are freely

chosen, while the remainder is bounded to the structure of the language. In another important
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contribution, Solomonoff [101,102] studied the predictability of generic symbol strings from the

perspective of their known statistical properties.

Later, Ziv and Lempel [97] observed that, while Markov chains model a probabilistic output,

it is possible to develop a deterministic algorithm that predicts sequences of symbols, hence

allowing compression of strings without loss of information. Their algorithm iteractively builds

a codebook of sequences of bits that are always followed by the same bit in the string, as if

it were a variable-order Markov chain where all transition probabilities are either zero or one.

Ziv [103] showed that the compression capacity of the algorithm, for long strings, converges to

Shannon’s limit [104].

The codes obtained by Ziv and Lempel’s algorithm [97] allow building models which are

more flexible than classical Markov chains, due to their variable length. Cleary and Witten [105]

developed an algorithm that combines both the ability of acquiring previous knowledge of the

Markov chains and the variation of the code length by allowing strings to be partially (instead

of fully) matched to an n-order Markov hypothesis. This gives rise to a new problem, which is

that of defining what are the differences that will be allowed to exist between previously learned

sequences and what should be modelled as new sequences.

In the context of music, Cleary and Witten’s algorithm was used by Conklin and Witten

[106,107], who explored the idea of partial string matching to predict the scores for the soprano

voice of Bach’s chorales. Such prediction scheme, called Prediction by Partial Matching (PPM),

combines both information from a learned corpus and from previous events of the piece to

predict. Later work by Witter et al. [108] compares the performance of Conklin’s algorithm to

the performance of human beings in the same chorale prediction problem.

Ron et al. [109] observed that the number of nodes in Markov chains grows exponentially as

its order increases, even when using partial string matching. Ron proposed a prediction algo-

rithm in which low-order strings are used as basis for variable-order predictions, that is, symbols

are used to predict, simultaneously, a certain number of future symbols. The algorithm, called

Probabilistic Suffix Automata (PSA), preserves low complexity even when a high number of

simultaneous predictions are used. Trivino and Moralez-Bueno [110] applied the PSA to the

problem of forecasting music, and observed that, although it is impossible to predict in a deter-

ministic fashion the events in a certain musical piece, it is possible to determine a probability

distribution related to the next symbol of that same sequence. Trivino and Moralez-Bueno [110]

used the same musical corpus as Conklin and Witten [106] to perform experiments.

Assayag et al. [98] use an idea similar to Conklin’s [106] to build codebooks from exist-

ing data. After that, the next note of a given sequence is predicted using the most common

continuation found in the codebook for that given excerpt. Differently from Conklin’s [106],

Witten’s [108] and Trivino and Moralez-Bueno’s [110] works, the system proposed by Assayag

et al. was developed aiming to produce a plausible continuation for a certain piece, and not

necessarily the continuation that was found in the original score.
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For the same purpose, Pearce and Wiggins [111], proposed to use the PPM algorithm and

a finite alphabet of rhythms and pitches to generate music. Later, the generated pieces were

mixed with ones composed by human beings, and an audience was asked to identify which pieces

were generated by computer and which were not.

Maxwell et al. [112] included the explicit development of tree structures that link similar sec-

tions of the song in order to improve the quality of the predictions. Furthermore, the evaluation

was qualitative and based on the description of the generated pieces.

A common aspect of all these music prediction methods is that they are bounded to the use

of a finite alphabet of rhythmic symbols. Moreover, except for the method proposed by Assayag

et al., such alphabet is defined a priori as a combination of symbols from the traditional score

notation. The hypothesis that there is a small number of rhythmic structures does not hold

in general for Western music. Musical events, in live performances, often present a continuous

variation on their onsets and offsets, due to either intentional stylistic marks like interpretation

of a score and swing or inherent variations due to the execution of musical gestures.

Aiming at the generation of an accurate score, this chapter presents a novel method for

forecasting the continuation of musical performances. The method uses an idea similar to

those proposed by Lempel and Ziv [97] and Assayag et al. [98], that is, searching for matching

sub-sequences within the data and deducing a similar continuation. The matching algorithm,

however, incorporates explicit musical knowledge, hence increasing the amount of the inherent

structure of the music language that is modelled. As stated by Shannon [100], this is expected

to increase the accuracy of the system in the prediction task.

The proposed method models the composer’s decisions regarding the continuation of songs,

which is different from modelling the expectation that is created in the listener when a certain

sequence of notes is presented. Models for the listener’s expectancy are broadly discussed by

Huron [113] and Namour [114].

3.3 Proposed Method

As previously stated, the note forecasting method proposed in this chapter is based on the

assumption that note sequences will be repeated within a particular piece. This means that a

sequence of notes that is found twice within an excerpt is likely to be continued the same way.

The assumption of repetition, as will be seen later, holds for many popular songs.

Before searching for repetitions, it is necessary to represent the musical piece in a convenient

form. In this work, a musical note is defined by three numbers: onset, which is the time (in

seconds) after the beginning of the execution of the piece in which the note will be played;

offset, which is the time (in seconds) after the beginning of the execution of the piece in which

the note will be damped, for example by releasing the key in a piano; and pitch, which is an

integer that indicates to what key, in a piano keyboard, the note is related to. The whole
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piece is represented as an array of notes, which are sorted in ascending onset order. Notes with

the same onset are sorted according to their pitch. This representation defines three arrays:

s = [s1, s2, ..., sN ], e = [e1, e2, ..., eN ] and p = [p1, p2, ..., pN ], where sn contains the onset of the

n-th note, en contains its offset, and pn contains its pitch. All of these arrays have size N , which

is the number of notes in the piece or excerpt being represented.

The algorithm relies on the values M , which marks the end of a subsequence, K, which is

the length of the subsequence and N , which is the length of the whole symbol sequence. Thus,

it will search, within the N existing notes, the longest subsequence [M − K + 1..M ] whose

notes are equivalent to those in the final subsequence [N −K + 1..N ]. After the subsequence

[M−K+1..M ] is found, it is reasonable to assume that the continuation of the excerpt (that is,

note N +1) will be equivalent to the continuation of the subsequence (note M +1). A sequence

of notes is equivalent to another if the k-th notes of both subsequences are equivalent for all k.

The criteria for considering two notes equivalent depends on particular assumptions about the

musical rules employed in the process.

The first assumption is that the final subsequence of the existing excerpt is being generated

as an explicit repetition of another subsequence. In this case, two notes m and n are considered

equivalent if they can be considered as a simple shift in time of each other, that is:

1. Their pitch is the same, that is, pm = pn,

2. Their duration is the same, within an allowed deviation, that is, ‖(en−sn)−(em−sm)‖ < α,

and

3. The interval between their onset and the onset of the previous note is the same, within

an allowed deviation, that is, ‖(sn − sn−1)− (sm − sm−1)‖ < β.

While rules one and two ensure that the notes are similar as symbols without context, rule

three implies that the note is related to the previous one. This implicitly defines the strict

repetitive structure of the subsequence. These rules are written in the form of the pseudo-code

shown in Figure 3.1.

function Explicit(n,m, s, e,p, α, β)
if (pn = pm) and

(‖(en − sn)− (em − sm)‖ < α) and
(‖(sn − sn−1)− (sm − sm−1)‖ < β) then

return True
else

return False

Figure 3.1: Explicit(n,m, s, e,p, α, β) detects if two notes are equivalent, considering the hy-
pothesis of an explicit repetition.
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The tolerance values α and β compensate for a possible deviation inherent to the inputs.

They should be set to values high enough so that most natural timing deviations will be shorter

than both of them, but not as high as the length of most notes. Values between 100 ms and

200 ms for both α and β have shown to work well in most cases, and α = β = 100 ms was used

for experiments.

The second assumption that can be made is that the final sequence of the existing excerpt

is a transposition of another subsequence. This means that, although the pitches are not the

same, the pitch variations should be equal. Hence, rules two and three related to the explicit

repetition hypothesis still hold, but rule one must be changed to: pm − pm−1 = pn − pn−1. The

rules for detecting a transposed note equivalency are shown as a pseudo-code in Figure 3.2.

function Transposed(n,m, s, e,p, α, β)
if (pn − pn−1 = pm − pm−1) and

(‖(en − sn)− (em − sm)‖ < α) and
(‖(sn − sn−1)− (sm − sm−1)‖ < β) then

return True
else

return False

Figure 3.2: Transposed(n,m, s, e,p, α, β) detects if two notes are equivalente, considering the
hypothesis of a transposition.

The proposed algorithm for detection of transposed sequences considers chromatic trans-

positions, but it is possible to perform diatonic, modal or even other kinds of transpositions.

Modelling each one of them would add complexity to the system, because the scale used for

transposition would have to be detected. Hence, such models were not implemented.

If a long subsequence of explicit repetitions is found, it will also be explainable as a special

transposed subsequence where the transposition is zero. However, using both rules may lead

to ambiguous cases. In such cases, an explicit repetition of size X is found to yield a different

continuation than a transposed repetition of size X. We found that using the simpler (explicit

repetition) model yielded good results.

The third and last assumption that will be considered is that the final sequence of the

existing excerpt is a transposition of another subsequence, played at a different tempo. In this

case, all notes are played equally faster or slower, with a constant ratio γ between the durations

of the compared notes of the subsequences, that is, γ = (e[N ] − s[N ])/(e[M ] − s[M ]). In this

case, rule two must be substituted by ‖(e[n]− s[n])− γ(e[m]− s[m])‖ < αγ and rule three must

be substituted by ‖(s[n]− s[n− 1])− γ(s[m]− s[m− 1])‖ < βγ. This set of rules is written as

a pseudo-code in Figure 3.3.

Again, this new assumption is more general than the previous one. For the same reason

stated before, the simpler, more specific rules must be preferred over this one.

Using the similarity rules defined above, as well as the premise of choosing the simpler
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function Diftempo(n,m, s, e,p, α, β) γ ← e[N ]− s[N ])/(e[M ]− s[M ]
if ((pn − pn−1) == (pm − pm−1)) and

(‖(en − sn)− γ(em − sm)‖ < γα) and
(‖(sn − sn−1)− γ(sm − sm−1)‖ < γβ) then

return True
else

return False

Figure 3.3: Diftempo(n,m, s, e,p, α, β, γ) detects note equivalencies based on the assumption
of a transposed repetition played at a different tempo.

assumption prior to the more complicated ones, it is possible to develop a search algorithm

capable of detecting the longest subsequence equivalent to the last subsequence of an excerpt.

The algorithm progressively considers every note M , M < N , as a candidate ending for a given

subsequence. A counter k, starting at zero, is increased while notes M − k and N − k are

equivalent, considering the simplest rule (exact repetition). If at least one valid subsequence is

found, the algorithm stops and returns the value of M for which the value of k was the greatest.

If no equivalent subsequences are found, the same search is performed using the second simplest

rule (transposition) and, again, if no equivalent subsequences are found, then the third rule is

used.

Next, the algorithm must yield a note, namely, note N + 1. Given that it was found that

the longest subsequence equivalent to the one at the end of the excerpt ends in note M̂ , it is

reasonable to assume that note N + 1 is equivalent to note M̂ + 1. Hence, each one of the

different assumptions for subsequence search will give a different continuation, as follows:

• an exact repetition implies that pN+1 = pM̂+1, sN+1 = sM̂+1 − sM̂ + sN and eN+1 =

eM̂+1 − sM̂+1 + sN+1,

• a transposed repetition implies that pN+1 = pM̂+1−pM̂ +pN , sN+1 = sM̂+1− sM̂ + sN and

eN+1 = eM̂+1 − sM̂+1 + sN+1, and

• a transposed repetition with tempo variation implies that pN+1 = pM̂+1−pM̂+pN , sN+1 =

γ(sM̂+1 − sM̂ + sN) and eN+1 = γ(eM̂+1 − sM̂+1 + sN+1), where γ is calculated as shown

in Figure 3.3.

There is a chance that none of the assumptions for finding repetitions will apply to the given

array of notes. This is inevitable at some points – an excerpt containing only one note will never

have any detectable repetitions, for example – so it is important to deal with it. In this case,

the algorithm will yield a guess that is simply a copy of the last note, shifted in time so that it

onsets at the original note’s offset. This is based on the heuristic assumption that, unless there

is some evidence showing otherwise, the most likely continuation for a note is the note itself.
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The whole forecasting procedure is shown as a pseudo-code in Figure 3.4. There are three

loops, each performing a linear search for a repetition ending at candidate notes M . The counter

k shows the length for which the note subsequence is equivalent to the subsequence ending in

note N . The final value of k for each candidate subsequence is stored in the d array. If no

suitable repetitions are found within a loop, the algorithm proceeds to the next attempt, which

will be built upon a more general similarity rule. If a repetition is found, then note N + 1 is

yielded.

There are more elegant and efficient ways to implement the algorithm shown in Figure 3.4,

but the chosen form facilitates its visualization and interpretation.

In the next section, the accuracy of the algorithm is demonstrated experimentally, including

a comparison with another note forecasting algorithm and with two systems for automatic music

transcription.

3.4 Experiments and Results

This section shows three experiments. The first one aims at demonstrating the importance

of each one of the repetition assumptions (explicit, transposed and with a tempo variation)

in the forecasting process. The second one shows that the proposed algorithm outperforms

a previous approach [98] when the number of correctly estimated notes is considered. The

third experiment compares the proposed forecasting algorithm to two different state-of-the-art

automatic transcription algorithms [65, 88], over two different databases, showing under what

conditions the forecasting approach is valid for semi-automatic transcription.

The statistical analysis of the experiments is done by means of Fisher’s randomization test,

as recommended by Smucker et al. [115]. This is a non-parametric test that evaluates the

probability P that randomly using either of the two compared systems to perform each test

would give better results than intentionally choosing the one with better average results. When

this probability is too low (e. g., P < 0.05), that affirmation, called null hypothesis, is rejected

and both systems can be said to yield significantly different results. The tests are performed

with 1901 permutations, which means that P is calculated with an error of 10% [115].

3.4.1 Forecasting

The experiments described in this section aim to show the basic behavior of the forecasting

algorithm, that is, how well it is capable of forecasting symbols. Exploring different composition

styles, three different datasets (Beatles, Bass and Piano) were considered.

The Beatles dataset was built by downloading, from the MIDI Database [116], all files

from the Beatles collection, and considering each MIDI track (hence, each instrumental line)

separately. Drum tracks were manually excluded, resulting in a total of 722 different tracks.
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1: procedure Forecast(N, s, e,p, α, β)
2: d← array of N zeroes
3: for M = N − 1 to 2 do ⊲ Search for exact repetitions
4: k ← 0
5: while M − k > 0 and Explicit(M − k,N − k, s, e, p, α, β) do
6: k ← k + 1

7: dM ← k
8: M ←M − 1

9: if Max(D) > 0 then ⊲ If found
10: M̂ ← argmaxD
11: pN+1 = p

M̂+1,
12: sN+1 = s

M̂+1 − sm + sN
13: eN+1 = e

M̂+1 − s
M̂+1 + sN+1

14: return ⊲ Stop condition

15: for M = N − 1 to 2 do ⊲ Search for transposed repetitions
16: k ← 0
17: while M − k > 0 and Transposed(M − k,N − k, s, e, p, α, β) do
18: k ← k + 1

19: dM ← k
20: M ←M − 1

21: if Max(D) > 0 then ⊲ If found
22: M̂ ← argmaxD
23: pN+1 ← p

M̂+1 − p
M̂

+ pN
24: sN+1 ← s

M̂+1 − s
M̂

+ sN
25: eN+1 ← e

M̂+1 − s
M̂+1 + sN+1

26: return ⊲ Stop condition

27: for M = N − 1 to 2 do ⊲ Search for tempo variations
28: k ← 0
29: γ ← (eN − sN )/(eM − sM )
30: while M − k > 0 and Diftempo(M − k,N − k, s, e, p, α, β, γ) do
31: k ← k + 1

32: dM ← k
33: M ←M − 1

34: if Max(D) > 0 then ⊲ If found
35: M̂ ← argmaxd
36: pN+1 ← p

M̂+1 − p
M̂

+ pN ,
37: sN+1 ← γ(s

M̂+1 − s
M̂

+ sN )
38: eN+1 ← γ(e

M̂+1 − s
M̂+1 + sN+1)

39: return ⊲ Stop condition

40: pN+1 ← pN
41: sN+1 ← eN
42: eN+1 ← eN − sN + sN+1

Figure 3.4: Pseudo-code for note forecasting.

This set was used as being representative of contemporary Western Popular music.

The Bass dataset was built by extracting the MIDI tracks corresponding to the bass lines

in the RWC-POP database [86]. This is a special case for note forecasting, because bass lines
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in Western Popular music are typically repetitive, which means the forecasting algorithm is

supposed to work better. The RWC-POP database was used instead of the MIDI Database

because it also includes acoustic recordings related to the MIDI files, which contain voice and

other aspects that are typically found in popular music, hence a comparative test considering a

state-of-the-art bass line transcriber designed for this musical genre [88] may be performed, as

it will be discussed in Section 3.4.3. This dataset consists of 68 tracks.

Finally, the Piano dataset was built using the files used by Poliner and Elis [32] in the

evaluation of their music transcriber. This dataset was selected as representative of classical

piano music. Due to style differences between classical piano and popular genres, it was expected

that the algorithm will present a worse performance in this case.

In these experiments, the values for maximum inter-onset-intervals (IOI) and maximum

duration deviations (α and β in Section 3.3) were both set to 100 ms, but the forecasting

system was found not to be very sensitive to these parameters, as long as they lie within a

reasonable range.

The forecasting experiment was performed by providing the algorithm with the N first notes

of a track. The yielded result is considered correct if, when compared to the (N + 1)-th note

from the track, there is no pitch difference and the IOI and duration deviations are respectively

smaller than α and β. This deviation means that the predicted note can be inserted into the

score and the prediction process can continue autonomously. The experiment is repeated for

each track, with N varying from 1 to the number of notes in the track minus one. The ratio

of notes correctly predicted for each track is stored, and the mean and standard deviation of

the performances for each dataset is reported. This evaluation process does not consider the

number of notes in each track; each track is statistically interpreted as a random sample of a

musical idea.

It can be expected that the forecasting algorithm will work better when more evident rep-

etitions can be found. To evaluate this behavior, each track was divided into four segments

of equal duration. The forecasting experiment for each track was first performed considering

only the initial segment, in an experiment labeled Q1. Then, the two first segments were used,

for experiment Q2, then the three first segments (experiment Q3 ) and, finally, the whole track

(experiment Q4 ).

The results for these experiments are shown in Figure 3.5. It can be seen that the per-

formance for both popular music datasets (Beatles and Bass) presents a similar behavior: the

forecasting accuracy increases significantly with time. The performance for the Piano dataset,

on the other hand, remains constant for the whole track.

The error bars in Figure 3.5 show the standard deviation of the results within each dataset.

For the Bass dataset, the standard deviation presents a decreasing trend when more data is

analyzed. Since the analyzed bass lines are, as discussed before, repetitive, this result means

that the forecasting system is working. For the Piano dataset, the standard deviation remains
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the user was estimated as:

Operations = (1− F-Measure)× Total number of notes, (3.2)

The proposed approach, called Interactive Computer-Assisted Music Transcription (ICAMT),

relies on the interaction between a human user and a prediction system. In this case, the user

provides some information – the first notes of a sequence – and the prediction system uses it to

yield a possible continuation. The continuation will be manually accepted or rejected. If it is

accepted, the system yields a new prediction, and if it is rejected the user will be requested to

input the correct note. This means that the user will have to modify all notes that the system

is unable to forecast correctly, that is:

Operations = (1− Correct notes

Total number of notes
)× Total number of notes. (3.3)

The following experiments show that employing ICAMT may, in some cases, require less

manual labor than using state-of-the-art AMT systems. In the experiments, both the AMT

systems and the forecasting system described in Section 3.4.1 were executed over a database.

The experiments compare the F-measure associated with the AMT system with the forecast

accuracy related to the ICAMT system, with the aim of detecting which will require a less

pronounced correcting effort from the user. For this purpose, the tests with ICAMT used a

simulated computer environment in which the human user was considered to give correct notes

up to a particular point in each piece.

Two different cases were analyzed. The first one is the transcription of the bass line in

popular music, based on the system proposed by Ryynanen and Klapuri [88]. The second one

is the transcription of the piano in classical music, based on the system proposed by Dessein

et al. [65]. The database, the evaluation criteria and the results related to each experiment are

described below.

Bass line in popular music

The transcription of the bass line in popular music is defined by Ryynanen and Klapuri [88]

as detecting the onset and pitch of notes played by a bass, double bass or electric bass in the

context of popular pieces. For the purposes of this experiment, the authors own implementation

of the original system was executed over 45 second excerpts from the RWC-POP database [86].

A MIDI score was manually synchronized to each audio file in order to obtain a reliable ground

truth. Pieces that did not have a bass line or that could not be synchronized due to tempo

differences were not used. A total of 68 pieces were considered. Since the method proposed by

Ryynanen and Klapuri [88] relies on training over a dataset, it was executed using a two-fold

cross validation scheme.
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In the Ryynanen and Klapuri’s system, a note is considered correct if its pitch matches that

of the ground truth and if its onset is within a 150 ms range from the onset in the ground

truth [88].

When executing the forecasting system, however, a note can only be considered correct if

its pitch matches that of the ground truth and if its onset and offset are within a 100 ms range

of the onset and offset in the ground truth. The offset evaluation is needed because a correct

offset is one of the requirements for forecasting without further user corrections, as discussed

before.

The forecasting system tends to improve its performance when longer pieces are analyzed, as

the chance of finding repetitions increase accordingly. Therefore, the ICAMT system was also

tested with the full length ground-truth annotations for the analyzed pieces. This behaviour is

not observed in AMT systems, which tend to keep a stable performance throughout the whole

piece. This allows the use of excerpts, instead of whole pieces, for the evaluation of AMT

systems, causing the testing process to be faster without harming the results.

The mean and variance of the results (F-Measure or forecast accuracy) are shown in Table

3.2. The reported P-values were calculated using Fisher’s randomization test comparing the

mean (µ) and the standard deviation to mean ratio (σ/µ) of the results yielded by AMT and

ICAMT. A P-value lower than 0.05 indicates a significant difference.

Table 3.2: Experiment results (%) for the popular music bass line transcription.
Experiment Mean (µ) σ/µ

AMT (excerpts) 48.83 38.33
ICAMT (excerpts) 52.58 (P=0.35) 41.80 (P=0.54)

ICAMT (full) 72.76 (P=0.00) 21.43 (P=0.00)

When the excerpts are used, the performance of the ICAMT is similar to the performance

of the AMT. However, when the full length annotations are considered, the ICAMT performs

significantly better than the AMT.

Also, the ICAMT system presents a significantly lower standard deviation to mean ratio

when considering full pieces. This means that the performance for a particular piece tends to

be closer to the average performance, which is a desirable characteristic in information retrieval

systems.

The observed result is due to the specific characteristics of bass lines in popular music. They

are known to be repetitive, which allows the forecasting algorithm to work well. As it will be

seen, results are different when considering classical music.
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Piano in classical music

For the following experiments, the automatic transcriber proposed by Dessein [65] was imple-

mented. The system relies on supervised training using sound samples of each note of a piano,

which were obtained from the IOWA musical instrument samples database. The pieces used in

this experiment were the ones in the test dataset described by Poliner and Elis [32]. They were

downloaded from the MIDI Database [116] and rendered using the same note samples used for

training the AMT system, which emulates a best-case scenario.

Two different evaluations for the AMT system were performed. In the first one, a note is

considered correct if its onset is within 50 ms of the onset of a note in the ground truth and

its pitch is equal to the pitch in the ground truth. In the second evaluation, it is also required

that a note have a duration within 20% of the duration of the ground truth note in order to

be considered correct. These criteria were used in the 2010 edition of the Music Information

Retrieval Exchange (MIREX 2010) [81].

The criteria for considering a note in the ICAMT test, however, were kept the same (no

tolerance for pitch deviations, 100 ms tolerance for IOIs and durations) for the same reasons

stated before.

Again, the mean and variance of the results are calculated and shown in Table 3.3. The

reported P-values were calculated using Fisher’s randomization test, comparing the mean (µ)

and the standard deviation to mean ratio (σ/µ) of the AMT and ICAMT results.

Table 3.3: Experiment results (%) for the classical piano music transcription.
Experiment Mean (µ) σ/µ

AMT (onset only) 76.32 (P=0.0) 13.16 (P=0.003)
AMT (onset+offset) 32.36 (P=0.42) 71.87 (P=0.08)

ICAMT 28.61 48.88

It can be seen that the AMT system is significantly more effective on detecting onsets than

the ICAMT. However, when offsets are considered, no significant difference between the systems

is observed.

The results for the bass in Popular music are visibly different from those in Classical music.

In the first case, more explicit note repetitions were used, but the analyzed signals tend to

present a great amount of different timbres and digital effects. Therefore, working directly with

incomplete symbolic representation of the pieces may be more effective than trying to analyze

signals. In the case of classical music, the musical ideas tend to be richer, but the only timbre

present is the piano that will be transcribed. Hence, the information derived from the signal

gives a more accurate information on musical notes than the symbolic information itself. This

leads to the conclusion that ICAMT will perform better than AMT in musical pieces where
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the note progressions are more predictable (the symbolic representation is simpler) and more

timbres are present (the signal is more complex).

3.5 Discussion

Experimental results show that semi-automatic transcription, that is, providing some notes

to a forecast algorithm and iteratively correcting the outcomes, demands less effort from the

user than correcting the results of an automatic music transcriber, when considering Western

popular music. For the case of the piano in Classical music, no significant difference was observed

when using the automatic and the semi-automatic approaches. This shows the importance of

the semi-automatic transcription for obtaining a documental register of pieces, and points to

the relevance of future work on developing a human-computer interface to explore it.

Since ICAMT does not depend on the existence of an acoustic signal, it can be used in an

assisted music composition software. For this application, the user inserts musical notes in the

system and the forecasting algorithm suggests continuations, which aim to save effort from the

user on inserting subsequent notes. Again, by using a mobile interface, a better user experience

can be delivered.

3.6 Conclusion

A method for forecasting note event continuations of musical pieces, based on the com-

pression algorithm proposed by Ziv and Lempel [97], was presented. The proposed algorithm

was shown to incorporate information along the piece, and to outperform another note event

forecasting method.

When a documental transcription is the target, the interactive transcription algorithm is

shown to outperform automatic algorithms. In the context of classical piano music, however,

it is not as effective. This happens because of style differences between contemporary popular

music and classical pieces, which employ different composition techniques.

Regardless of the analyzed piece, the presented algorithm cannot be used in an entirely

automatic context. Although the algorithm can still be used for documentation and musical

composition purposes, its application on content retrieval for big databases is limited. Entirely

automatic algorithms, incorporating the same concept – repetition – will be discussed in the

next chapter.



Chapter 4

Polyphonic piano pitch tracking with explicit

models for periodicity

As it was discussed in Chapter 2, a common approach for the detection of simultaneous

musical notes in an acoustic recording involves defining a function that yields activation levels

for each candidate musical note over time. These levels tend to be high when the note is active

and low when it is not. Therefore, by applying a simple thresholding decision process, it is

possible to decide whether each note is active or not at a given time.

Thresholding is a one-dimensional classification that consists of assigning an element to

either group 1 if its value is higher than a threshold α or to group 0 otherwise. This method

is used to separate significant source activities from noise, such as thresholding the output of a

detector to avoid false positives.

However, there has not been, so far, a systematic discussion on how to find a suitable value

for this threshold. In general, it is set manually or using supervised training. Using a fixed

threshold ensures that the decision system can be executed in real time, but, at the same time,

it may yield sub-optimal results.

This chapter discusses an unsupervised method for finding an optimal threshold for note

detection. The proposed method, which has already been published [2], assumes that a piece of

music probably presents some degree of pulse, thus the detected events should be organized as

to resemble time-wise periodicities. Therefore, the desired threshold should make the detected

events maximally periodic.

The performed experiments use as baseline the state-of-the-art note tracking algorithm pro-

posed by Dessein et al. [65]. The method uses a pre-defined set of basis vectors B, each

consisting of a prototype spectrogram of a different note, to obtain an activation matrix A from

a spectrogram X. This is achieved by minimizing the divergence:

ǫβ(X|BA), (4.1)
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where ǫβ is defined in Expression 2.10 and β = 0.5. Using a simple thresholding approach,

active and inactive notes are found in A.

This chapter is organized as follows. In Section 4.1, the proposed method for finding optimal

thresholds is discussed. The experimental setup, the results and other discussions are shown in

Section 4.3. Conclusive remarks are stated in Section 4.4.

4.1 Proposed method

Periodic signals are those that may be described by the expression x(t) = x(t−τ), where τ is

the fundamental period of x(t). In many applications, however, signals have only an approximate

periodic behavior, due to either noise or natural dynamics of the system. For this reason, it is

important to discuss the concept of periodicity level.

The concept of periodicity level is employed by many methods for fundamental frequency

estimation in audio. Two emblematic cases are the Yin method [118], which consists of esti-

mating a value of τ that minimizes ‖x(t)− x(t− τ)‖2, and the multiple fundamental frequency

estimation method developed by Klapuri [119], which consists of calculating the weighted sum

of Discrete Fourier Transform coefficients to detect which fundamental frequency candidates

are more prominent. In both cases, a definition for the periodicity level is built based on either

time-domain or frequency-domain properties of the analyzed signals.

The method discussed in this section aims at finding the threshold α that, when applied to the

activation matrix A, yields a binary detection matrix D that presents the greatest periodicity.

The periodicity of D is related to the timewise organization of the detected events, and the

exact nature of such events may be ignored for this purpose. To represent these structures, the

vector cj =
∑

∀i di,j is calculated, and cj is the number of active events in the j-th signal frame.

True positives are expected to be organized in a more periodic structure than false positives,

because wrong notes are more likely to have random onset times. The periodicity level is closely

related to how much of the signal can be described using a Fourier series. It is calculated using

the spectrum of c, as follows.

The spectral representation γ of c is calculated by subtracting the mean value of c to avoid

the DC component, multiplying it by a Hanning window to reduce spectral leakage, and then

calculating its DFT. Both magnitude and power representations for γ were tested in order to

determine which is more representative. The prominence of the Fourier series that can describe

the spectrum is given by its Harmonic Sum Spectrum (HSS, γH), calculated as follows:

1. γH ← γ,

2. w ← 2,

3. u[k]← maxk∈[wk,(w+1)k] γ[k],
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4. γH ← γH + u,

5. w ← w + 1,

6. If w < 9, go back to step 3. Else end.

The maximum value of the HSS corresponds to the prominence of the strongest Fourier

series that can be used to describe c. Thus, the ratio

y = maxγH/(
∑

∀j

γj) (4.2)

represents the periodicity level of c, that is, an objective measure of how periodic is c. It is

necessary to define a search algorithm for the threshold α, as it impacts directly in y.

Calculating the periodicity y is an O(Q logQ)-complexity operation, which is considerably

faster than calculating the activation matrix A, an O(Q3) operation. For this reason, the search

for α may be conducted using exhaustive search, in a range in which the optimal threshold is

likely to be found. In this work, the search was carried out between the mean and the maximum

values of A.

Experiments showing how the proposed method behaves in real applications will be described

in the next section.

4.2 Experiments and Results

As stated before, the experiments performed in this section were based on the automatic

piano transcriber proposed by Dessein et al. [65]. This transcriber calculates the linear ap-

proximation X ≈ BA by first obtaining the prototype vectors B using supervised training

with pre-recorded samples, and then calculating A minimizing the beta-divergence between the

measured spectrogram X and the approximation BA. The exact details of this method are

not essential here, as could be employed any other approach that uses the activation matrix as

an intermediate step.

The database used in the following experiments consisted of 24 pieces for piano solo used for

testing purposes by Polliner and Ellis [120]. This database is broadly used and freely available

for download [116]. The samples for obtaining B were downloaded from the Iowa University

Musical Instrument Samples database [121]. Audio files were rendered from the MIDI files

using the Iowa University samples and were labeled as the IOWA dataset. These audio files

were later processed by adding a digital chorus effect, generating the CHORUS set, which aims

at simulating an analysis over a different timbre.

In all experiments, the performance measurements, as adopted in MIREX, were calculated

as follows. A note is considered correct if its pitch matches (has the same MIDI number) and
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without the need for ground truth or manual setup, and is flexible towards different databases,

which are desirable characteristics for music transcription applications.

4.3 Discussion

The presented method was tested using the note tracker proposed by Dessein et al. [65],

chosen because of its simplicity. Nevertheless, it is applicable to any note tracking algorithm

that uses an activation matrix A, where ai,j has high values if the i-th note is active in the j-th

frame and low values otherwise. This is a common step in many note tracking algorithms, which

means that the periodicity-based threshold optimization is highly applicable in future research.

The obtained results indicate that the periodicity of detected events can be used as a feature

in the context of blind source separation (BSS) for audio signals, the same way sparsity con-

straints are commonly used. The task, then, would consist of detecting a base B that minimizes

some divergence d(X|BA) while also maximizing the periodicity of A. This is left as an idea

for future work.

4.4 Conclusion

This chapter discussed an algorithm for determining the detection threshold of note-tracking

systems. The presented method uses an important aspect of music, the periodicity of events, to

search for an optimal threshold by means of unsupervised learning.

By using the proposed method, it is possible to run transcription algorithms over different

databases, without requiring a training corpus for each one of them. As it has been shown, the

unsupervised training outperforms the approach in which a database is used for training and

another one is used for testing. This shows that periodicity is an important feature to consider

in note-tracking algorithms.

The discussion held in chapters 3 and 4 considers how models for rhythm can be used for the

detection of events in existing audio files. These same concepts, however, can be used for music

production, if similar algorithms are delivered in the form of musical interfaces. This possibility,

and its implications, will be discussed in the next chapter.



Chapter 5

Interfaces for Musical Expression Using Explicit

Models for Repetitions

By incorporating domain-specific models into music transcription algorithms, more accurate

hypotheses about the contents of a piece may be derived from the observation of the symbolic

context. This means that musical events tend to be correlated to other nearby events. This

characteristic was exploited in Chapter 3 for the purpose of transcribing musical notes, and this

chapter will discuss applications of the same idea in the context of musical production.

The domain-specific knowledge that was applied in these algorithms came from direct inter-

action with music composers. This interaction allowed defining meaningful characteristics of the

compositional process employed by the artist. In the two interfaces described in this chapter,

the concept of repetitions is used in order to expand the range of possible ways the musician

could make music.

Unlike the case of automatic transcription, the development of new musical interfaces was

not evaluated using a ground truth. Instead, it was necessary to define how the newly developed

tools could provide a novel way for musical expression. Also, the limitations of each tool were

qualitatively analyzed and their practical effects were considered.

This chapter is organized as follows. In Section 5.1, an algorithm that allows repeating

control data is described. Section 5.2 describes a drum sequencer that can be controlled by the

natural playing of drums. Section 5.3 brings some discussions, and the chapter is concluded in

Section 5.4.

5.1 Repeating control data

In the context of electronic music, it is common to use effect parameters as part of the

musical composition. For example, a musician may choose to increase and decrease the amount

of digital reverberation to create variations on the feeling of distance within a piece. These
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parameters, known as control data, may be either generated automatically, by an algorithm, or

acquired from sensors, such as faders, potentiometers, light-dependent resistors, accelerometers

or other electronic devices.

One problem that arises when using this approach is that the continuous variation of effect

parameters demands considerable attention from the musician, harming the on-stage construc-

tion of a complex sonority. However, if control data can be predicted, then the musician may

focus his attention on other aspects of the piece. This is the purpose of the tool, which has

already been published [3], described in this chapter.

The tool is an implementation of a method capable of forecasting the continuation of a

given control data array x[n], where x[n] is the value of the n-th reading of a particular sensor.

The forecasting algorithm does not require any training on previous templates, which means

that the musician has freedom to improvise and generate creative soundscapes and define the

appropriate gestures while performing. The key idea is that the control data will be continued,

extending repetitive variations.

When forecasting, the system provides data which aims to be equivalent to the control

data that would be yielded if the musician continued interacting with the sensors. Thus, the

performer may continue playing other parts of the piece while still getting the soundscape

variations derived from that interaction.

The forecasting method is based on evaluating what time lag, in samples, is most likely to

be the fundamental period of the control data. This means that, although the motion may be

freely composed and improvised, only repetitive motions can be predicted by the system. The

method begins by estimating the autocorrelation of the last N input samples, which is defined

as:

rx[k] =
2

N

N
2
−1

∑

n=0

x[n]x[n− k]. (5.1)

An autocorrelation signal presents peaks at positions k that correspond to the time lags to

which x[n] is most self-similar. However, there are some other peaks, especially at the zero

time lag k = 0 that must be filtered out. In order to do that, a signal r′x[k] is calculated by

upsampling rx[k] by a factor of two and subtracting it from the original signal, that is:

r′x[k] = rx[k]− rx[left⌊k/2⌋]. (5.2)

The value j = argmax r′x[k] is obtained by a simple linear search. The forecasting, then,

proceeds by yielding an estimate x̂[N + 1] = x[N − j + 1]. The quality of the estimate may

be evaluated by the ratio rx[j]/rx[0], which will present values closer to 1 when the signal is

significantly periodic.

It is important to note that the calculation of Expression 5.1 depends on storing the last N

data samples obtained from the sensor in an internal buffer. The size of that buffer must be
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chosen so that N samples can be used to store at least two repetitions of the control data. At

the same time, the time required for the algorithm to detected any periodicity is proportional to

the square of the size of the buffer. In preliminary experiments, it was found that a good rule of

thumb is configuring the buffer size to 3 times the duration of the longest expected interaction,

which will give a considerable margin for timing variations.

5.1.1 Implementation issues and usability

The proposed forecasting method was implemented as a patch for the Max/MSP digital

music processing environment [122], so that it could be used together with other tools for

musical creation. The forecasting system works in three different modes: learning, predicting

and bypass. The learning mode should be manually triggered when a new control sequence is to

be acquired. While in this mode, the internal buffer is updated and the forecasting algorithm is

executed at each new sample. Since learning mode assumes that the sequence is not yet learned,

the system does not yield predicted data.

When the prediction mode is triggered, the system starts yielding forecasts, adding them to

the internal buffer as if they were received as inputs. While in this mode, the system does not

re-execute the forecasting algorithm, sticking with a single value for j during the whole process.

The operation of bypass mode is to simply bypass input data to the output, while ignoring

any operations regarding processing. Hence, if the prediction mode is triggered while the system

is in bypass mode, the system will recall the last learned pattern. When operating in the bypass

mode, the system preserves the internal buffer, hence it may be used again by triggering the

prediction mode.

5.1.2 Experiments and performances

The internal operation of the system is visualized in Figure 5.1, which shows the input (by-

passed) data from an one-dimensional sensor and the predicted data. The figure was generated

while acquiring manually-driven data from the sensor . In the first five seconds, the system is in

bypass mode, and the prediction system has received any samples yet. When the learning mode

is triggered, the predicted data quickly synchronizes with the repetitive sensor data received

as input. When the prediction mode is triggered, the forecasting system continues the learned

gesture and ignores the sensor data.

After implementation, the proposed system was used in the piece Mane Havn (mounhoun):

An Exploration of Gestural Language for Pitched Percussion, by Shawn Trail, Thor Kell and

Gabrielle Odowichuk. This piece uses a vibraphone augmented with a hand motion sensor

(namely, a Microsoft Kinect device) to control audio effect parameters. The proposed technique

allows creating an improvised soundscape comprising both the sound from the vibraphone and

the effect parameter modifications.
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Figure 5.1: Visualization of different modes of operation for the sample forecasting system.

Also, it was used as part of a hyperinstrument called Wiikembe1. It is a small device which

may be tilted to change its timbre or to control other transformations. By using the proposed

technique, several layers of tilting motion may be employed at the same time.

The next section describes a drum looper that was built using a different theoretical ground,

but serving a similar purpose.

5.2 Drum sequencer

In electronic music, it is often useful to build loops from discrete events, such as playing

notes or triggering digital effects. This process generally requires using a visual interface, as

well as pre-defining tempo and time quantization. This section describes a digital musical

interface capable of looping events without using visual interfaces or explicit knowledge about

tempo or time quantization. The interface [4] was built based on a prediction algorithm that

detects repetitive patterns over time, allowing the construction of rhythmic layers in real-time

performances. It has been used in musical performances, where it showed to be adequate in

contexts that allow improvisation.

A technique that can be used to create meaningful repetitions for musical events consists

of applying carefully arranged delay lines and feedback so that an audio sample is played in a

pattern defined by the musician, as in RhythmDelay [123] or SDelay [124]. Using this technique,

a musician can build audio loops on-the-fly, without the need for a grid interface. However, when

using delay lines it is hard to change events (for example, changing all kick drums for cymbals)

or to modify the musical tempo without affecting the timbres.

1http://webhome.csc.uvic.ca/~trl77/wiikembe.html
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This section describes an interface that allows looping general event sequences that are played

by the musician, without predefining or quantizing tempo. The instrument may be played using

any interface that generates discrete events, from high-end MIDI drum interfaces to low-cost

game controllers. It relies on a technique similar to the one presented in Section 5.1, with the

difference that it works with discrete symbols, rather than continuous data.

The event looping process is based on an algorithm that is similar to the one for note

forecasting described in Chapter 3, in the following manner. As the musician plays a sequence

of events, a continuation for that is predicted. When the user triggers the automation, the

system starts yielding the predicted continuations and feeding them back into itself, creating an

event sequence that corresponds to continuing the pattern played previously by the musician,

without any explicit inputs regarding tempo or time-quantization.

The proposed system, similar to the one described in Section 3.3, assumes that events repeat

within a particular piece or excerpt. This assumption allows simple, intuitive interactions with

the system, as the process of designing a new loop becomes similar to that of showing a rhythmic

pattern to a human being. Hence, the musician can have great control over the outcomes of the

system, as if the usual grid interface was being used.

In the context of this work, each musical event n is represented by its onset sn, that is, the

time it happens, and its label ln, which identifies the event. Using labels, events may be related

to any description of discrete musical gestures desired by the musician, such as “play cymbal”,

“strongly play cymbal”, “play random drum” or “activate reverb effect”. As will be shown, the

flexibility of the event label allows many creative uses of the system.

The system receives event-related messages through any device that yields discrete messages

(such as MIDI instruments, OSC controllers or HID devices). The label and onset of the events

are stored in an internal buffer of arbitrary size. The information in the internal buffer is used

to predict the following event, as described below.

The forecasting algorithm is based on the assumption that the musician is playing a loop,

a condition that has to be intentionally caused. When the user desires, the predictions may be

used as inputs to the forecast system, creating a feedback loop and allowing the continuation

of the event sequence. Preliminary tests showed that adding a reset functionality, which clears

the internal buffer, made it easier to switch between different beats.

In the context of the prediction algorithm, two events n and m are considered equivalent if

their label is the same (ln = lm) and their inter-onset intervals (IOIs), that is, the difference

between their onset and the previous onsets, are within an allowed deviation (‖sn−sn−1−(sm−
sm−1)‖ ≤ α). The algorithm, shown in Figure 5.2, aims at searching, within the last N recorded

events, the longest subsequence [M −K + 1 ... M ] whose events are equivalent to those in the

subsequence [N −K+1 ...N ]. After the subsequence [M −K+1 ...M ] is found, it is reasonable

to assume that the continuation of the recorded excerpt (that is, event N +1) will be equivalent

to that of the subsequence (event M + 1).
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1: procedure Forecast(N, s, l, α)
2: d← array of N zeroes
3: for M = N − 1 to 2 do ⊲ Search for repetitions
4: k ← 0
5: while M −k > 0 and lN−k = lM−k and |(sN−k− sN−k−1)− (sM−k− sM−k−1)| < α do

6: k ← k + 1

7: dM ← k
⊲ Check if a subsequence was found

8: if Max(D) > 0 then ⊲ If found
9: M̂ ← argmaxD
10: else

11: M̂ ← N
⊲ Yield events

12: sN+1 = sM̂+1 − sm + sN
13: lN+1 = lM̂+1

14: return

Figure 5.2: Pseudo-code for event forecasting.

Figure 5.3 shows an example of a possible execution of the forecasting algorithm. The left

column shows the internal buffer after the user has yielded a series of events, arbitrarily labeled

“hit drum” and “switch reverb”. After triggering event E9, the forecasting system detects that,

if the buffer is delayed by three events, events E9 and E6, as well as the previous five events,

are equivalent, which is a higher number of equivalent events than if any other delay was used.

In this example, event E7 is chosen as the most plausible continuation for the delayed

sequence, generating the estimated E10 and is used to build the event to be yielded. If event

E10 is used by the system as an input, the next event to be yielded would be a “hit drum”, then

a “switch reverb”, then a “hit drum” again, creating a cycle of repetitions. Hence, feedback may

be used to create event loops in real time.

5.2.1 Implementation issues

The proposed instrument was implemented as a patch for PureData [125]. This allows users

to employ their favorite interfaces and sound designs, as well as their own compositional ideas.

It is an open-source project, which means that the algorithm may be easily ported to other

contexts.

The patch works in two modes: observation, or manual, and prediction, or automatic.

In the observation mode, the system receives inputs from the user and tries to predict the next

event that will be received. When the prediction mode is triggered, the system receives its own

predictions, instead of user-generated events, as inputs.

Additional functionality may be easily implemented by the user, but not as part of the system

itself. Several predictor instances in parallel, for example, may be used to achieve polyrhythms.



5.2. Drum sequencer 52

HIT DRUM

HIT DRUM

SWITCH 
REVERB

HIT DRUM

HIT DRUM

SWITCH 
REVERB

HIT DRUM

HIT DRUM

SWITCH 
REVERB

HIT DRUM

HIT DRUM

SWITCH 
REVERB

HIT DRUM

HIT DRUM

SWITCH 
REVERB

HIT DRUM

E9

E6 E9 with delay

E7 E10 with delay
Equal to E7

E10

Tim
e

Dela
y (

3 e
ve

nts
)

Forecast

Internal buffer Delayed events

6 events are
equivalent

Figure 5.3: Example of a possible execution of the forecasting algorithm.

Also, the actions related to an event must be defined by the user: playing a drum sample or

switching the configurations of an effect, for example.

5.2.2 Experimental performances

The experiments in this section aim at highlighting interesting features and also drawbacks

of the proposed system, gathering information on how it can be helpful to musicians and how

it may be improved. For this purpose, the system was used in a solo and an accompanied

performance. The recorded audio material can be found at http://www.dca.fee.unicamp.br/

~tavares/Looper/index.html.

The first performance – solo – aimed at showing the main capabilities of the system. The

piece was intentionally composed so that a drum sequence and an effect switch were indepen-

dently looped, allowing another layer of percussion to be freely played. Spectrograms are used

to show the most important parts.

The second performance – duo – had the goal of showing that the drum loops could be

quickly arranged and played in an arbitrary tempo. The piece was an improvisation in which

digital effects were manually played while drums were looped using the proposed system. The

piece was analyzed based on the impressions of musicians and on auditory characteristics of the

recording.
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layer or triggering other digital effects.

In the audio recording, it was noticeable that the feeling of steadiness, often present when

using drum machines, was only present in few passages. Hence the proposed instrument allows

using steady beats, but not as a requirement of the instrument.

5.3 Discussion

This section discusses characteristics of the proposed musical interfaces, highlighting the

main differences regarding the previous techniques (drum sequencers and manual loopers).

A feature that must be considered is that neither of the proposed systems pre-define a

physical interface for usage or a sound design. These parts of the interaction must be designed

by the user, which allows for great flexibility, but also requires a certain level of expertise. A

possible way to solve this is by developing pre-set configurations for common use cases, but it

must be considered that customizing interfaces and sound designs is frequently an important

part of modern musical composition processes.

Both proposed systems allow a quick development of loops, and do not require a visual

interface or any pre-definition of tempo, beat or gesture vocabulary. Also, the same physical

interface that is used to develop the loops can be used to build a layer of freely improvised

variations. This means that the system is potentially more useful in contexts that include

flexibility and improvisation.

Both systems have presented great musical potential in improvised performances. They re-

inforce the paradigm of using multiple layers of sonic transformations to build a piece. However,

their applications to offline musical composition are limited, as there is no interface allowing

the user to review the current content of the buffer.

An important feature of both interfaces is that they do not require learning a new vocabulary

for interaction. Instead, they were built using as basis gestures that are already employed

by several musicians. Hence, they represent a small change to the musician techniques when

compared to other approaches.

5.4 Conclusion

This chapter presented two novel musical interfaces that are based on aspects of rhythm that

are present in particular musical conceptions. The first interface aims at repeating continuous

data acquired from a sensor, and the second one can be used to loop discrete events. Both

interfaces were developed concerning needs of specific artists, but employ concepts that are

general enough to be used in many different contexts.

This chapter concludes the technical exposition of this thesis. Further discussions on the
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implications of the results shown until this point will be held in the next chapter.



Chapter 6

Final Discussion

During the development of the entire work described in this thesis, there was a need for

extensive theoretical studies and interactions with artists and other engineers. Together with

the experimental results, they represented a great source of inspiration, as will be discussed

in this chapter. Each topic is contained within a separate section, for the sake of textual

organization.

6.1 About the objectives

The objectives of this work, as stated in Chapter 1, will be discussed in this section.

1. To develop models for aspects of rhythm that are present in some specific

musical genres: this was the main subject of the whole text of the thesis. It was found

that each situation and application demanded a different model, which would highlight

particular aspects of rhythm.

2. To apply these models to computer-assisted musical transcription: two propos-

als for computer assisted transcription of music were presented, one interactive and one

automatic. The performance of the proposed models was discussed.

3. To explore applications for these models other than automatic transcription

of music: models for particular aspects of the musical creation were implemented as a

way to provide novel interfaces for artistic expression. For this purpose, a new model was

developed and a previously used one was applied.

In view of those facts, the objectives of this work can be considered to have been accom-

plished. The following discussion regards topics that relate to this thesis as a whole.
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6.2 The use of domain-specific knowledge in AMT

This thesis is based on a project written in the beginning of the doctorate, in 2010. It was

highly based on the Bayes Theorem, which can be stated as:

P (sj|o) =
P (o|sj)P (sj)

P (o)
. (6.1)

In one of the many possible interpretations, this expression means that the probability of a

symbol (or, in the case of automatic transcription, a note) j being found, given an observation

o, is evaluated considering both a model of how o is generated when the note is active and a

prior model of the behaviour of the note. In this interpretation, P (o|sj) may be enhanced in the

solution by improving the employed digital signal processing algorithm, while P (sj) depends

on a model that indicates the context in which the note is expected to onset. The results in

Chapter 3 show that models for the production of note onsets may be applied in some contexts,

but the same solution is unlikely to hold for different musical genres. It is important to note

that, in spite of the Bayesian inspiration, the solutions provided in this thesis are not Bayesian.

On the other hand, there are aspects of musical signals that are hard to model. This, in

addition to the low availability of annotated musical data, except for contemporary Western

popular and Classical music, indicate that the simple use of general-purpose classification algo-

rithms, such as Support Vector Machines, is likely to be insufficient for good results in many

applications. Hence, it is necessary to apply domain-specific knowledge in MIR-related tasks,

despite the limitations that will appear.

In the decade of 2000, there was a huge scientific effort towards the development of novel DSP

tools for music transcription. However, as shown in Chapter 2, the most significant improve-

ments came from a more meaningful application of old algorithms. Once again, this indicates

that music-related knowledge should be applied on MIR tasks.

In 2013, at the Sound and Music Computing conference, Prof. Xavier Serra1 gave a keynote

speech in which the need for domain-specific knowledge was highlighted. Besides the problems

discussed above, he mentioned that a meaningful description to a musical piece is different from

culture to culture. Hence, some anthropological studies would be necessary if a system aiming

at a different musical genre (or cultural origin) is addressed.

This gives support to the meaningfulness of the hypothesis made in 2010. Although all

possibilities regarding this idea were not explored, since that would demand too much time,

important steps were taken. The presented work is the first one that focuses exclusively on

long-term musical characteristics, like rhythm, and may be used as basis for further development.

1Universitat Pompeo Fabra, Barcelona, Spain. Prof. Xavier Serra currently works on several research projects
on music information retrieval.
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6.3 Computational models for rhythm

Rhythm, as a whole, involves many different aspects, many of them of high complexity.

Therefore, this thesis does not claim to have modelled rhythm as a whole, but to have presented

a series of models for rhythmic aspects that can be employed in useful tools for music information

retrieval and musical production.

The models presented here are based on the idea of repetition. Rhythm may also be based

on other concepts, like progressions and dialogues (as in some kinds of African drumming). If

these cultural manifestations are analyzed, it will be necessary to develop specific models for

them, considering the elements that compose the mindset of a musician playing that specific

genre.

For the convenience of the reader, the models discussed in this thesis are compared in tabular

form in Table 6.1.

Method Strengths Weaknesses

Note forecasting using
search for longest common
subsequence (Chapter 3 and
Section 5.2)

Capable of forecasting great
part of the notes in con-
temporary Western popular
music and provides an intu-
itive method for sequencing
events in electronic music.

Sensitive to errors and can-
not work with anything but
explicit repetitions.

Evaluating periodicity of on-
sets (Chapter 4)

Is an unsupervised method,
but provides results that are
similar to the ones obtained
with training, and has a
greater generalization capa-
bility.

Is not completely correlated
to the F-Measure, and may
give misleading results.

Finding periodicity in sen-
sor data using autocorrela-
tion (Section 5.1)

Useful tool for performance
in electronic or electroacous-
tic music.

Repetitive sensor data is not
always meaningful to the
performance, which reduces
its applications.

Table 6.1: Comparison between the models presented in this thesis.

6.4 The proximity between MIR and musical interfaces

One of the purposes of MIR algorithms is to provide users with a more intuitive way to

interact with audio information. Employing MIR, users can, for example, sing a melody instead

of typing the name of a song they wish to find. This involves knowledge about the user demands

and the actual possibilities that can be implemented.

When musical interfaces are considered, algorithms may be used to model gestures that are

already native to the musician’s performance. As it was shown in this thesis, the reasoning
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behind these algorithms may be very close to the domain-specific knowledge applied to MIR

algorithms. Hence, both applications are, in terms of back-end algorithms, very similar.

A very important difference, however, regards the evaluation methods. While music tran-

scription and other MIR-related algorithms can be adequately evaluated by objective measure-

ments, the evaluation of musical interfaces is inherently subjective and must focus on the new

musical possibilities given to the user. In the latter case, the interaction with the potential users

of the system is of great importance.

6.5 Perspectives for future research

During the previous chapters, some possibilities for future work were identified. These

possibilities will be discussed here, with the goal of inspiring future research in the field.

There is a weakness in the algorithm discussed in Chapter 3. It is not robust to input errors,

which may compromise its use. In the future, it would be interesting to solve this issue, which

would directly impact the system for drum sequencing described in Chapter 5.

Another problem with the forecasting algorithm is that its measure for hypothesis strength

is not a continuous function of any variable, thus it is not differentiable. This prevents it to

be easily coupled with digital signal processing algorithms. The lack of a derivative, together

with the vulnerability to errors, made necessary the development of another model for use in

automatic transcription in Chapter 4.

The periodicity-based measure described in Chapter 4 could be used as a parameter for

tasks other than automatic transcription. For example, a Blind Source Separation (BSS) system

could use the assumption of periodicity in events as another function to maximize, the same

way constraints like sparsity are being used. This may result in BSS systems that work better

with musical data.

All systems described above lack the ability of detecting dynamics, that is, if a note is

played softer or louder. These expression marks are often ignored in the context of automatic

transcription. Nevertheless, they are important for documental, educational and musicological

purposes, hence a possibility for future research is to address this specific issue.

Both interfaces described in Section 5 can be improved with the development of standalone

programs that apply them directly. This would allow their use by musicians that are unfamiliar

to the Max/MSP or PureData environments. Also, it could be interesting to add functionalities

like “save” and “load”, which would allow users to save interesting states of the system and then

load them when convenient.



Chapter 7

Conclusion

This thesis has presented a series of investigations towards the use of rhythm-related math-

ematical models in the context of Automatic Music Transcription (AMT). The models were

inspired in the idea that musical events tend to be periodically organized. They were initially

proposed as means for the improvement of Music Information Retrieval (MIR) tools, but also

proved useful for the development of novel interfaces for musical expression.

Previous results found in the literature had shown that using domain-specific knowledge

in MIR tasks usually leads to higher performance improvements than applying more modern

machine learning techniques. Also, no explicit models for rhythm had been used. Therefore,

developing such models was a promising research option.

Two distinct models for music transcription were built. The first one assumes that sequences

of musical notes are likely to be found multiple times within the same piece, and was used in

the context of semi-automatic music transcription. The second one relies on the assumption

that note onsets are periodically organized within a piece, and was applied on the improvement

of an automatic transcription system.

Also, two models were developed under similar assumptions, and were applied on interfaces

for musical expression. The first model finds repeating loops of sensor-acquired data to forecast

it, allowing the live construction of multiple layers of digital effect variations. The second model

finds patterns in discrete event loops, which allows sequencing loops without requiring a visual

interface for such.

Although all developed models rely on similar assumptions, their applications are diverse.

This shows that different, useful models can be obtained from ideas related to rhythm. Also,

it was found that domain-specific models that improve music transcription can be adapted to

work in the context of musical creation.

The developments achieved during this work indicate that future work should focus on devel-

oping domain-specific models for MIR, instead of relying solely on machine learning approaches.

Domain-specific models tend to work better than general-purpose solutions when applied within
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its field. Also, the development of domain-specific models is more likely to inspire solutions in

correlated fields, based on similar assumptions.
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