

NATÁLIA CEDRAN BERGAMINI

PROTÓTIPO DE BIOFILTRO PERCOLADOR COM USO DE MEIO SUPORTE SINTÉTICO

CAMPINAS 2014

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

NATÁLIA CEDRAN BERGAMINI

PROTÓTIPO DE BIOFILTRO PERCOLADOR COM USO DE MEIO SUPORTE SINTÉTICO

Dissertação de Mestrado apresentada à Faculdade de Engenharia Civil, Arquitetura e Urbanismo da Universidade Estadual de Campinas, para obtenção do título de Mestra em Engenharia Civil, na área de Saneamento e Ambiente.

Orientador: Prof. Dr. Carlos Gomes da Nave Mendes

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA NATÁLIA CEDRAN BERGAMINI E ORIENTADA PELO PROF. DR. CARLOS GOMES DA NAVE MENDES.

ASSINATURA DO ORIENTADOR

CAMPINAS 2014

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Rose Meire da Silva - CRB 8/5974

B452p

Bergamini, Natália Cedran, 1984-

Protótipo de biofiltro percolador com uso de meio suporte sintético / Natália Cedran Bergamini. – Campinas, SP: [s.n.], 2014.

Orientador: Carlos Gomes da Nave Mendes. Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo.

 Tratamento de esgoto.
 Esgotos sanitários.
 Águas residuais - Estações de tratamento.
 Mendes, Carlos Gomes da Nave, 1958-.
 Universidade Estadual de Campinas.
 Faculdade de Engenharia Civil, Arquitetura e Urbanismo.
 Título.

Informações para Biblioteca Digital

Título em outro idioma: Prototype of biofilter percolator with synthetic support

Palavras-chave em inglês:

Wasterwater Sanitary sewers

Wastewater - Treatment plants

Área de concentração: Saneamento e Ambiente

Titulação: Mestra em Engenharia Civil

Banca examinadora:

Carlos Gomes da Nave Mendes [Orientador]

Edson Aparecido Abdul Nour Servio Tulio Alves Cassini Data de defesa: 29-08-2014

Programa de Pós-Graduação: Engenharia Civil

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

PROTÓTIPO DE BIOFILTRO PERCOLADOR COM USO DE MEIO SUPORTE SINTÉTICO

Natalia Cedran Bergamini

Dissertação de Mestrado aprovada pela Banca Examinadora, constituída por:

Prof. Dr. Carlos Gomes da Nave Mendes Presidente e Orientador/UNICAMP

Prof. Dr. Edson Aparecido Abdul Nour UNICAMP

Prof. Dr Sérvio Tulio Alves Cassini

Campinas, 29 de Agosto de 2014.

RESUMO

BERGAMINI, N. C. **Protótipo de biofiltro percolador com uso de meio suporte sintético.** 2014. 209 p. Dissertação. (Mestrado em Engenharia Civil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, 2014.

Este trabalho consistiu em inovação tecnológica antes nunca testada desde a concepção, projeto, construção e operação de um biofiltro percolador de tratamento de esgoto sanitário em escala piloto. O reator foi desenvolvido nas instalações do Laboratório de Protótipos da Faculdade de Engenharia Civil da UNICAMP, cidade de Campinas, estado de São Paulo, é constituído de pré-filtro fabricado com a manta acrílica resinada, 3 reatores biológicos percoladores dispostos em séries, revestidos de não tecido sintético e filtro secundário confeccionado do mesmo material do pré-filtro. A vazão real média de alimentação do sistema era de 12,8 L h-1, tendo sido operado em regime hidráulico com tempo de detenção hidráulico variável de 82 a 100 minutos. A inovação baseou-se no uso de não tecido sintético com tripla função: a) proporcionar o fluxo do substrato sob ação da gravidade; b) promover a troca gasosa entre o meio líquido e a atmosfera; e c) constituir-se como meio suporte da biomassa, além de verificar as condições operacionais e tipos de mantas para viabilizar o tratamento de esgoto na remoção de matéria carbonácea sem a necessidade de aeração artificial. Neste estudo, foi analisada a remoção de sólidos suspensos (SS), turbidez, oxigênio dissolvido. DQO e DBO5. Os resultados médios de remoção de DQO e de DBO nas diferentes fases operacionais variaram de 75 a 86% e de 80 a 86%, respectivamente. As concentrações médias de DQO no efluente final variaram de 81 a 179 mg/L. enquanto as concentrações médias de DBO estiveram entre 47 a 97 mg/L. As médias globais de SST no efluente final foram mantidas em 49 mg/L. Com remoção de turbidez de 92,8%. O sistema PF/FBP (Pré-filtro/Filtro Biológico Percolador) pode se tornar uma alternativa muito promissora para o tratamento de esgoto sanitário de pequenas instalações do Brasil, uma vez que o sistema manifestou baixos tempo de detenção hidráulica e eficiência na remoção de DQO, DBO₅ e sólidos suspensos, resultando em uma instalação compacta e de baixos custos. Além disso, o consumo de energia e os custos operacionais são mínimos.

Palavras-chaves: Tratamento de esgoto sanitário, Filtro biológico percolador, não tecido sintético, Estação de tratamento de esgoto compacta.

ABSTRACT

BERGAMINI, N. C. **Prototype of biofilter percolator with synthetic support.** 2014. 209 p. Dissertação. (Mestrado em Engenharia Civil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, 2014.

This work consisted in technological innovation never before tested from conception, design, construction and operation of a trickling biofilter wastewater treatment in pilot scale. The reactor was developed on the premises of the Laboratory Prototypes of the Faculty of Civil Engineering, UNICAMP, Campinas, São Paulo, is constituted of prefilter manufactured with resin-coated acrylic blanket, three biological trickling reactors arranged in series, coated and synthetic nonwoven secondary filter made of the same material pre-filter. The average real power flow of the system was 12,8 L h⁻¹, having been operated hydraulic system with variable hydraulic detention time of 82-100 minutes. The innovation is based on the use of non-synthetic fabric with three functions: a) providing the flow of the substrate under the action of gravity; b) promote gas exchange between the liquid medium and the atmosphere; c) to establish itself as a means of support biomass and to check the operating conditions and types of blankets to enable wastewater treatment for the removal of carbonaceous matter without the need for artificial aeration. In this study, we analyzed the removal of suspended solids (SS), turbidity, dissolved oxygen, COD and BOD₅. The average results of COD removal and BOD in the different operational phases ranged 75-86% and 80 to 86%, respectively. The average concentrations of COD in the final effluent ranged 81-179 mg/L, while the average concentrations of BOD were between 47-97 mg/L. Global average of TSS in the final effluent were maintained on 49 mg/L. To remove turbidity of 92.8%. The PF / BTF (Pre-filter / Biological trickling filter) system can become a very promising alternative for treating sewage from small installations from Brazil, once the system showed low hydraulic retention time and removal efficiency of COD, BOD₅ and suspended solids, resulting in a compact installation and low costs. Furthermore, the energy consumption and operating costs are minimal.

Keywords: Wastewater treatment, trickling filter, non-woven synthetic, Compact sewage treatment plant.

SUMÁRIO

1	INTRODUÇÃO	1
2	OBJETIVOS	5
2.1	OBJETIVO GERAL	5
2.2	OBJETIVOS ESPECÍFICOS	5
3	REVISÃO BIBLIOGRÁFICA	7
3.1	TRATAMENTO DE EFLUENTE	7
3.2	TRATAMENTO BIOLÓGICO	8
3.2.1	Processos aeróbios	8
3.3	CONVERSÃO DA MATÉRIA CARBONACEA	9
3.3.1	Conversão aeróbia1	1
3.3.2	2 Conversão anaeróbia1	1
3.4	CONVERSÃO DA MATÉRIA NITROGENADA1	3
3.4.1	Fatores interferentes no processo de nitrificação em biofilmes1	4
3.5	BIOFILTRO AERÓBIO SUBMERSO (BAS)1	7
3.6	FILTRO BIOLÓGICO PERCOLADOR (FBP)1	9
3.6.1	Aspectos gerais de funcionamento1	9
3.6.2	2 Materiais de enchimento utilizados em FBPs2	2
3.6.3	Sistema de drenagem e ventilação dos FBP's2	7
3.6.4	Biofilme2	9
3.7	CLASSIFICAÇÃO E PARÂMETROS DOS FBP3	8
3.7.1	Filtro Biológico Percolador de Baixa Taxa4	0

3.7.2	7.2 Filtro Biológico Percolador de Taxa Intermediária	
3.7.3	B Filtro Biológico Percolador de Alta Taxa	43
3.7.4	Eficiência dos FBPs na remoção de matéria orgânica e N-amoniacal	45
3.7.5	Produção de lodo	47
3.8	PARÂMETROS DE PROJETO	49
3.8.1	Taxa de Aplicação Superficial (TAS)	49
3.8.2	2 Cargas Orgânicas Volumétricas (COV)	50
3.8.3	Recirculação do efluente final	53
3.9	ESTUDOS HIDRODINÂMICOS DE REATORES	54
3.9.1	Uso de traçadores em estudo hidrodinâmicos	54
3.9.2	2 Curva C – resposta à injeção tipo pulso	58
3.10	NÃO TECIDO SINTÉTICO	63
4	MATERIAL E MÉTODOS	69
4.1	ORIGEM DO AFLUENTE E ABASTECIMENTO DO RESERVATÓRIO	69
4.2	CONFIGURAÇÕES GEOMÉTRICAS DO PROTÓTIPO	72
4.3	ASPECTOS CONSTRUTIVOS	80
4.4	VAZÃO DE ENTRADA E INÍCIO DE OPERAÇÃO DO SISTEMA DE TRATAMENTO	92
4.5	CÁLCULO DA TAXA DE APLICAÇÃO HIDRÁULICA	93
4.6	CÁLCULO DA TAXA DE APLICAÇÃO ORGÂNICA	94
4.7	ESTUDO HIDRODINÂMICO DO REATOR BIOLÓGICO PERCOLADOR	95
4.7.1	Preparação da Curva de Calibração	96
4.8	COLETA DAS AMOSTRAS	106
4.9	FASES OPERACIONAIS	108

4.10	ANÁLISES LABORATORIAIS	.109
4.11	Análise dos Dados	.110
5	RESULTADOS E DISCUSSÃO	.111
5.1	RESULTADOS DE DQO AO LONGO DO PERÍODO OPERACIONAL	.114
5.2	RESULTADOS DE DBO AO LONGO DO PERÍODO OPERACIONAL	.120
5.3	RESULTADOS DE SÓLIDOS SUSPENSOS	.126
5.3.1	Sólidos Suspensos Totais (SST)	.127
5.3.2	2 Sólidos Suspensos Voláteis (SSV)	.134
5.3.3	Sólidos Suspensos Fixos (SSF)	.140
5.4	DISTRIBUIÇÃO DOS RESULTADOS DE DQO, DBO E SST	.145
5.4.1	Distribuição dos resultados de DQO	.145
5.4.2	2 Distribuição dos resultados de DBO	.147
5.4.3	B Distribuição dos resultados de SST	.150
5.5	RESULTADOS DE TEMPERATURA E OXIGÊNIO DISSOLVIDO	.152
5.6	RESULTADOS DE TURBIDEZ	.157
6	CONCLUSÃO	.163
7	RECOMENDAÇÕES	.165
8	REFERÊNCIAS	.167
9	ANEXOS	.179
9.1	RESULTADOS DE DQO	.179
9.2	RESULTADOS DE DBO	.181
9.3	RESULTADOS DE SÓLIDOS SUSPENSOS	.182
9.4	RESULTADOS DE OXIGÊNIO DISSOLVIDO	.186

9.5	RESULTADOS DE TEMPERATURA MÉDIA DIÁRIA	.188
9.6	RESULTADOS DE TURBIDEZ	.190
9.7	RESULTADOS DE MASSA DE LODO GERADA	.192
9.8	RESULTADOS DE TAXA DE APLICAÇÃO HIDRÁULICA	.194
9.9	RESULTADOS DE TAXA DE APLICAÇÃO ORGÂNICA	.195

DEDICATÓRIA

Dedico este trabalho primeiramente a Deus, por ser essencial em minha vida, autor de meu destino, meu guia, socorro presente na hora da angústia, a minha família, minha mãe Terezinha Cedran dos Santos, meu pai Valter Bergamini, minha irmã Janaína Cedran Bergamini de Oliveira, ao pequeno Lorenzo Bergamini de Oliveira e minha querida avó Grinaura dos Santos Cedran.

AGRADECIMENTOS

Se você está lendo esta página é porque eu consegui. E não foi fácil chegar até aqui. Do processo seletivo, passando pela aprovação, nas noites mal dormidas no ônibus, da correria até a conclusão do mestrado, foi um longo caminho percorrido. Nada foi fácil, nem tampouco tranquilo. "A sola do pé conhece toda sujeira da estrada" (Provérbio africano).

Quero agradecer a todos aqueles que sempre confiaram em mim, desde sempre.

"E aprendi que se depende sempre, de tanta, muita diferente gente. Toda pessoa sempre é as marcas das lições diárias de outras tantas pessoas. É tão bonito quando a gente entende. Que a gente é tanta gente. Onde quer que a gente vá. É tão bonito quando a gente sente que nunca está sozinho. Por mais que pense estar..." (Caminhos do coração – Gonzaguinha).

Ao professor e orientador Dr. Carlos Gomes da Nave Mendes pela ajuda, amizade, confiança e por não ter permitido que eu interrompesse o processo.

Aos professores e funcionários e colegas do Curso de Pós-graduação em Saneamento e Ambiente, da Faculdade de Engenharia Civil da UNICAMP, em especial a Lígia, Fernando e Enelton pela orientação e ajuda no Laboratório de Saneamento.

Aos meus pais por me terem dado tudo que tenho hoje, educação, valores, princípios, carinho e muito amor. Á minha mãe, amor incondicional, você que me gerou, me alfabetizou, ensinando-me a fazer contas, viu como aprendi direitinho? (risos), ao meu pai que mesmo não entendendo muito sobre mestrado, doutorado me apoiou durante esse período, dizendo: "Qualquer coisa que você precisar, pode ligar pro pai viu". A minha irmã que mesmo distante sempre esteve ao meu lado, me orientando, oferecendo palavras de conforto e dizendo que um dia eu seria uma mestra. Ao meu cunhado Pablo por me dar a alegria de ser tia, nos presenteando com o nosso pequeno

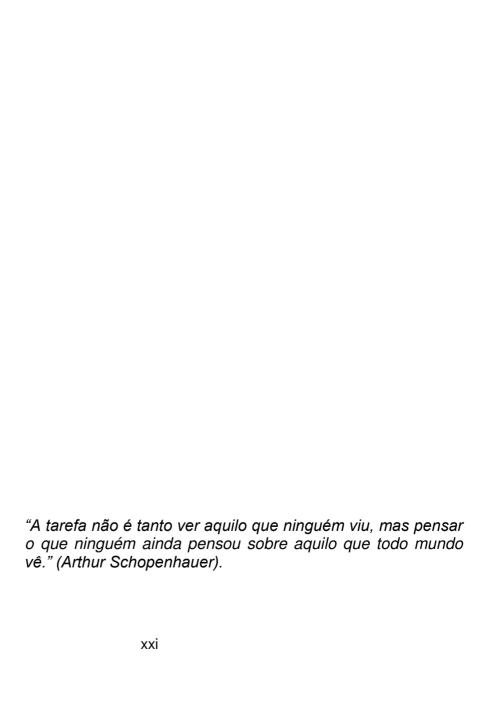
Lorenzo, que encheu de amor nossas vidas. A minha vó Grinaura por acreditar em mim, ter orgulho, dizendo o quanto eu era capaz de alcançar meus objetivos. A tia Noeli pelas palhaçadas, risadas, almoços, companheirismo de sempre e apoio em todos os momentos da minha vida. Obrigada por entenderem a minha ausência, por estarem sempre ao meu lado, mesmo que distante, por me darem força para continuar durante esses anos. Vocês são tudo que tenho de mais valor, meu alicerce, minha base, obrigada por tudo. Amo vocês.

A toda minha família Cedran e Bergamini, meus primos, primas, tios, tias, agregados, somos guerreiros e lutamos sempre.

Aos irmãos que Deus colocou em minha vida e escolhi para conviver: as meninas da pensão e da república, que sempre foram divertidas, pacientes, animadas durante todo tempo, principalmente nos momentos mais difíceis: Karla, Lívia, Laiana, Paula, Carol Brintrup, Carol Vevet, Rita, Jade, Ivett, Gisele, Marcela e Julia. Obrigada por toda parceria de sempre, por todos os momentos em que vivemos como uma família.

Agradeço em especial a minha querida amiga Mônica que sempre esteve ao meu lado, ouvindo minhas lamúrias, oferecendo seu ombro amigo, me convidando para almoçar, me ajudando a normatizar e enfim terminar a dissertação.

Agradeço a Elen por toda ajuda, calma e tranquilidade que sempre me passou, estando ao meu lado, me apoiando e acreditando em mim.


Aos meus amigos Matheus e Ana por terem participado do processo em vários momentos difíceis, apoiando e ajudando como uma verdadeira equipe.

Agradeço também a CAPES pela bolsa concedida para o desenvolvimento deste estudo.

Por fim, não menos importante agradeço a Deus por me dar sabedoria, iluminando meus caminhos para que eu conseguisse concluir essa etapa da minha vida.

Com vocês, queridos divido a alegria dessa experiência.

"Quando não souberes para onde ir, olha pra trás e sabe pelo menos de onde vens". (Provérbio africano).

LISTA DE FIGURAS

FIGURA 3.1 – CONVERSÃO BIOLÓGICA DA MATÉRIA ORGÂNICA NO SISTEMA AERÓBIO DE TRATAMENTO DE ESGOTO9
FIGURA 3.2 – SEQUÊNCIA METABÓLICA E MICRORGANISMOS ENVOLVIDOS NA DIGESTÃO ANAERÓBIA13
FIGURA 3.3 – PRINCIPAIS COMPONENTES DE UM FILTRO BIOLÓGICO PERCOLADOR E PRINCÍPIO DE FUNCIONAMENTO241
FIGURA 3.4 – TIPOS DE MEIOS SUPORTES EM FBP24
FIGURA 3.5 – CIRCULAÇÃO DE AR NO INTERIOR DO FBP28
FIGURA 3.6 – ESQUEMA DO FLUXO DE AR NO INTERIOR DO FBP29
FIGURA 3.7 – MECANISMOS E PROCESSOS ENVOLVIDOS COM C TRANSPORTE E DEGRADAÇÃO DO SUBSTRATO EM BIOFILMES32
FIGURA 3.8 – REPRESENTAÇÃO ESQUEMÁTICA DE UM BIOFILME33
FIGURA 3.9 – PRINCIPAIS COMPONENTES DE MATRIZES DE ORIGEM BIOLÓGICA E BIOMASSA ADERIDA A UM MEIO SUPORTE33
FIGURA 3.10 – GRÁFICO COM O DESENVOLVIMENTO DA BIOMASSA NA MATRIZ BIOLÓGICA36
FIGURA 3.11 – FLUXOGRAMA FILTRO BIOLÓGICO PERCOLADOR DE BAIXA CARGA42
FIGURA 3.12 – COMBINAÇÕES DE SISTEMAS DE FILTROS BIOLÓGICOS DE ALTA TAXA44
FIGURA 3.13 – EXEMPLOS DE FLUXOS57
FIGURA 3.14 – TIPO DE FLUXO PARA CADA APLICAÇÃO DE TRAÇADOR57
FIGURA 3.15 – REPRESENTAÇÃO DA CURVA C59
FIGURA 3.16 – EXEMPLOS DE NÃO TECIDO SINTÉTICO63
FIGURA 4.1 – CAIXA DE PASSAGEM DO AFLUENTE BRUTO DA UNICAMP 70
FIGURA 4.2 – TANQUE DE RECEPÇÃO71

FIGURA 4.3 – RESERVATÓRIO DE ALIMENTAÇÃO	71
FIGURA 4.4 – VÁLVULA DE NÍVEL	72
FIGURA 4.5 – CANALETA COM NÍVEL AJUSTÁVEL	73
FIGURA 4.6 – REATOR DE CANALETAS MODELO 1	74
FIGURA 4.7 – SISTEMA DE ALIMENTAÇÃO	75
FIGURA 4.8 – SISTEMA DE ALIMENTAÇÃO INSTALADO NO REATOR	75
FIGURA 4.9 – REATOR BIOLÓGICO MODELO 2	76
FIGURA 4.10 – PRÉ-FILTRO INSTALADO NO TOPO DO SISTEMA TRATAMENTO	
FIGURA 4.11 – REATOR BIOLÓGICO COM CAMA SUSPENSA	78
FIGURA 4.12 – REATOR MODELO 3.	79
FIGURA 4.13 – OPERAÇÃO DO SISTEMA MODELO 3	80
FIGURA 4.14 – FLUXOGRAMA DE INSTALAÇÃO E PONTOS AMOSTRAGEM	
FIGURA 4.15 – ESQUEMA DA INSTALAÇÃO DO SISTEMA DE TRATAMENTO	83
FIGURA 4.16 – TANQUE DE EQUALIZAÇÃO COM NÍVEL AJUSTÁVEL	84
FIGURA 4.17 – BOMBA DIAFRAGMÁTICA	84
FIGURA 4.18 – PRÉ-FILTRO DE MANTA ACRÍLICA RESINADA	85
FIGURA 4.19 – RAMPA DE TELA GALVANIZADA.	86
FIGURA 4.20 – DISPOSIÇÃO DAS RAMPAS COM O REVESTIMENTO DE N TECIDO SINTÉTICO	IÃO 87
FIGURA 4.21 – REVESTIMENTO DE NÃO TECIDO SINTÉTICO E MAN ACRÍLICA RESINADA	NTA 87
FIGURA 4.22 – REATORES	88
FIGURA 4.23 – REATORES SUSPENSOS NOS RESPECTIVOS ESTÁGIOS	89

FIGURA 4.24 – MODELO ESQUEMÁTICO DO REATOR89
FIGURA 4.25 – FLUXO DE ESCOAMENTO NO INTERIOR DO REATOR90
FIGURA 4.26 – SISTEMA DE TRATAMENTO DE TRATORES AERÓBIOS91
FIGURA 4.27 – VISUALIZAÇÃO, EM ERLENMEYER DE VIDRO DAS AMOSTRAS DE ESGOTO BRUTO, SAÍDA DO PF E DOS REATORES (23/04/13)92
FIGURA 4.28 – CURVA DE CALIBRAÇÃO DO TRAÇADOR (NACL COMERCIAL): CONCENTRAÇÃO (MG/L) VS. CONDUTIVIDADE (MS/CM)97
FIGURA 4.29 – REPRESENTAÇÃO GRÁFICA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ÁGUA (19/04/13)98
FIGURA 4.30 – REPRESENTAÇÃO GRÁFICA DA CURVA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ESGOTO (24/05/13)99
FIGURA 4.31 — REPRESENTAÇÃO GRÁFICA DA CURVA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ESGOTO (24/06/13)99
FIGURA 4.32 – REPRESENTAÇÃO GRÁFICA DA CURVA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ESGOTO (24/07/13)100
FIGURA 4.33 – REPRESENTAÇÃO GRÁFICA DA CURVA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ESGOTO (23/08/13)100
FIGURA 4.34 – REPRESENTAÇÃO GRÁFICA DA CURVA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ESGOTO (25/09/13)101
FIGURA 4.35 – REPRESENTAÇÃO GRÁFICA DA CURVA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ESGOTO (24/10/13)101
FIGURA 4.36 – REPRESENTAÇÃO GRÁFICA DA CURVA DA CONDUTIVIDADE EM FUNÇÃO DO TEMPO EM ESGOTO (26/11/13)102
FIGURA 5.1 – VARIAÇÃO DA CONCENTRAÇÃO DE DQO DURANTE A FASE
FIGURA 5.2 – VARIAÇÃO DA CONCENTRAÇÃO DE DQO DURANTE A FASE
FIGURA 5.3 – VARIAÇÃO DA CONCENTRAÇÃO DE DQO AO LONGO DO PERÍODO OPERACIONAL

FIGURA 5.4 – RESULTADOS BOX-WHISKER PARA CONCENTRAÇÃO DE DQO NOS 5 ESTÁGIOS DE TRATAMENTO DA FASE II117
FIGURA 5.5 – RESULTADOS BOX-WHISKER PARA CONCENTRAÇÃO DE DQO NOS 6 ESTÁGIOS DE TRATAMENTO DA FASE III117
FIGURA 5.6 – RESULTADOS BOX-WHISKER PARA CONCENTRAÇÃO DE DQO GLOBAL DE TODOS OS ESTÁGIOS DE TRATAMENTO118
FIGURA 5.7 – VARIAÇÃO DA CONCENTRAÇÃO DE DBO DURANTE A FASE
FIGURA 5.8 – VARIAÇÃO DA CONCENTRAÇÃO DE DBO DURANTE A FASE
FIGURA 5.9 – VARIAÇÃO DA CONCENTRAÇÃO DE DBO AO LONGO DO PERÍODO OPERACIONAL122
FIGURA 5.10 – RESULTADOS BOX-WHISKER PARA CONCENTRAÇÃO DE DBO DA FASE II123
FIGURA 5.11 – RESULTADOS BOX-WHISKER PARA CONCENTRAÇÃO DE DBO DA FASE III124
FIGURA 5.12 – RESULTADOS BOX-WHISKER PARA CONCENTRAÇÃO DE DBO GLOBAL DE TODOS OS ESTÁGIOS DE TRATAMENTO124
FIGURA 5.13 – REMOÇÃO DE DBO126
FIGURA 5.14 – VARIAÇÃO DA CONCENTRAÇÃO DE SST DURANTE A FASE
FIGURA 5.15 – VARIAÇÃO DA CONCENTRAÇÃO DE SST DURANTE A FASE
FIGURA 5.16 – VARIAÇÃO DA CONCENTRAÇÃO DE SST AO LONGO DO PERÍODO OPERACIONAL128
FIGURA 5.17 – RESULTADOS BOX-WISKER PATA A CONCENTRAÇÃO DE SST NA FASE II128
FIGURA 5.18 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SST NA FASE III130

FIGURA 5.19 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SST AO LONGO DO PERÍODO OPERACIONAL
FIGURA 5.20 – VARIAÇÃO DA CONCENTRAÇÃO DE SSV DURANTE A FASE II135
FIGURA 5.21 – VARIAÇÃO DA CONCENTRAÇÃO DE SSV DURANTE A FASE III
FIGURA 5.22 – VARIAÇÃO DA CONCENTRAÇÃO DE SSV DURANTE AS FASES OPERACIONAIS
FIGURA 5.23 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SSV NA FASE II
FIGURA 5.24 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SSV NA FASE III
FIGURA 5.25 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SSV DURANTE AS FASES OPERACIONAIS138
FIGURA 5.26 – VARIAÇÃO DA CONCENTRAÇÃO DE SSF DURANTE A FASE
FIGURA 5.27 – VARIAÇÃO DA CONCENTRAÇÃO DE SSF DURANTE A FASE
FIGURA 5.28 – VARIAÇÃO DA CONCENTRAÇÃO DE SSF DURANTE AS FASES OPERACIONAIS142
FIGURA 5.29 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SSF DURANTE A FASE II
FIGURA 5.30 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SSF DURANTE A FASE III
FIGURA 5.31 – RESULTADOS BOX-WHISKER PARA A CONCENTRAÇÃO DE SSF DURANTE AS FASES OPERACIONAIS
FIGURA 5.32 – PERCENTAGEM DE REMOÇÃO DAS ETAPAS DE TRATAMENTO EM RELAÇÃO À CONCENTRAÇÃO DE DQO DO ESGOTO BRUTO NA FASE III
FIGURA 5.33 – FREQUÊNCIA DE DISTRIBUIÇÃO DOS RESULTADOS DE DBO NA FASE III

FIGURA 5.34 – FREQUÊNCIA DE DISTRIBUIÇÃO DOS RESULTADOS DE DBC DURANTE TODO O TRATAMENTO148
FIGURA 5.35 – CONCENTRAÇÃO DE SST EM TODOS OS ESTÁGIOS DE TRATAMENTO NA FASE III151
FIGURA 5.36 – RESULTADOS BOX-WHISKER PARA OS VALORES DE TEMPERATURA AO LONGO DAS FASES OPERACIONAIS153
FIGURA 5.37 – VARIAÇÃO MENSAL DAS TEMPERATURAS MÉDIAS154
FIGURA 5.38 – RESULTADOS BOX-WHISKER PARA OS VALORES DE CONCENTRAÇÃO DE OXIGÊNIO DISSOLVIDOS AO LONGO DAS FASES OPERACIONAIS
FIGURA 5.39 – TURBIDEZ EM TODOS OS ESTÁGIOS DE TRATAMENTO NA FASE II158
FIGURA 5.40 – RESULTADOS BOX-WHISKER PARA OS VALORES DE TURBIDEZ AO LONGO DAS FASES II E III160

LISTA DE TABELAS

TABELA 3.1 – FATORES INTERFERENTES NO PROCESSO DE NITRIFICAÇÃO EM BIOFILMES
TABELA 3.2 – VANTAGENS E DESVANTAGENS DO FBP22
TABELA 3.3 – CARACTERÍSTICAS FÍSICAS DOS MEIOS SUPORTES25
TABELA 3.4 – SÍNTESE DE FATORES QUE AFETAM A FORMAÇÃO E O ESTABELECIMENTO DE BIOFILMES
TABELA 3.5 - MICRORGANISMOS E MACRORGANISMOS INVERTEBRADOS COMUMENTE ENCONTRADOS EM FILTROS BIOLÓGICOS PERCOLADORES. 38
TABELA 3.6 – CARACTERÍSTICAS OPERACIONAIS DOS TIPOS DE FBP39
TABELA 3.7 – CARACTERÍSTICAS DE DIFERENTES PERFIS DE FBP40
TABELA 3.8 – CARACTERÍSTICAS OPERACIONAIS DOS FBPS46
TABELA 3.9 – CARGAS TIPICAMENTE APLICADAS EM FBPS PARA REMOÇÃO DE MATÉRIA ORGÂNICA E NH4+-N52
TABELA 3.10 – CARGAS ORGÂNICAS APLICADAS EM FBPS PREENCHIDOS COM PEDRAS E POSSÍVEIS EFICIÊNCIAS E CONCENTRAÇÕES EFLUENTES DE N-AMONIACAL
TABELA 3.11 – CARACTERÍSTICAS DO NÃO TECIDO SINTÉTICO GEOFORT GEOTÊXTIL66
TABELA 3.12 – CARACTERÍSTICAS DO NÃO TECIDO SINTÉTICO GEONIL – GAMA GX67
TABELA 3.13 – CARACTERÍSTICAS DO NÃO TECIDO SINTÉTICO GEOFOCO 68
TABELA 4.1 – VARIAÇÃO DA TAXA DE APLICAÇÃO HIDRÁULICA94
TABELA 4.2 – VARIAÇÃO DA TAXA DE APLICAÇÃO ORGÂNICA95
TABELA 4.3 – PADRÕES DE SOLUÇÕES DO TRAÇADOR PARA A CURVA DE CALIBRAÇÃO97

TABELA 4.4 – RESUMO REATORES					
TABELA 4.5 – RESUMO DA V	ARIÂNCIA	NOS F	REATORES		104
TABELA 4.6 – RESUMO DA D	ISPERSÃC) AXIAI	L NOS REATC	RES	105
TABELA 4.7 – RESUMO DO N	IÚMERO D	ISPER	SÃO AXIAL N	OS REATORES	3106
TABELA 4.8 – RESUMO DAS	FASES E C) PERÍ	ODO		108
TABELA 4.9 – VARIÁVEIS A AMOSTRAGEM					
TABELA 5.1 – RESUMO DO					
TABELA 5.2 – RESUMO DO PERÍODO OPERACIONAL					
TABELA 5.3 – RESUMO DA ETAPA OPERACIONAL DE U TERMOS DE DQO E DBO	JM ESTÁG	IO DE	TRATAMENT	O PARA OUTF	RO EM
TABELA 5.4 – RESUMO DA ETAPA OPERACIONAL DE U TERMOS SST	JM ESTÁG	IO DE	TRATAMENT	O PARA OUTF	RO EM
TABELA 5.5 – COMPARAÇÃ DQO E O ATENDIMENTO AC PAULO	PADRÃO	DE LA	NÇAMENTO I	DO ESTADO D	E SÃO
TABELA 5.6 – COMPARAÇÃ DBO, FASE III E O ATENDIME	O ENTRE ENTO AO P	A FRI ADRÃ	EQUÊNCIA DI O DE 60 MGD	E DISTRIBUIÇÂ BO/L	ÃO DE 149
TABELA 5.7 – COMPARAÇÃ DBO, FASE III E O ATENDIME	O ENTRE ENTO AO P	A FRI ADRÃ	EQUÊNCIA DI O DE 80%	E DISTRIBUIÇÂ	ÃO DE 149
TABELA 5.8 – COMPARAÇÃ DBO DURANTE O TRATA REMOÇÃO DE 80%	MENTO E	O A	TENDIMENTO) AO PADRÃ	O DE
TABELA 5.9 – COMPARAÇÃ SST E O ATENDIMENTO AO PAULO	PADRÃO	DE LA	NÇAMENTO [DO ESTADO DI	E SÃO

TABELA 5.10 – RESUMO DOS RESULTADOS MÁXIMOS, MÍNIMOS E MÉDIOS DE TEMPERATURA OBTIDOS PARA CADA ETAPA OPERACIONAL DE UN ESTÁGIO DE TRATAMENTO153
TABELA 5.11 – RESUMO DOS RESULTADOS MÁXIMOS, MÍNIMOS E MÉDIOS DE TEMPERATURA MENSAL NA CIDADE DE CAMPINAS155
TABELA 5.12 – RESULTADOS MENSAIS DA TEMPERATURA AMBIENTE EN CAMPINAS E NOS ESTÁGIOS DE TRATAMENTO155
TABELA 5.13 – RESUMO MÉDIO DO AUMENTO DE OD OBTIDO PARA CADA ETAPA OPERACIONAL DE TRATAMENTO157
TABELA 5.14 – RESUMO DAS EFICIÊNCIAS MÉDIAS OBTIDAS PARA CADA ETAPA OPERACIONAL DE UM ESTÁGIO DE TRATAMENTO PARA OUTRO EM TERMOS TURBIDEZ161

LISTA DE SIGLAS

ABNT – Associação Brasileira de Normas Técnicas

B - Esgoto Bruto

BAS - Biofiltro Aerado Submerso

CAISM – Centro de Assistência Integral à Saúde da Mulher

CECOM – Centro Integrado de Pesquisas na Infância e Centro de Saúde da Comunidade

CONAMA - Conselho Nacional do Meio Ambiente

COV – Carga Orgânica Volumétrica

DSA – Departamento de Saneamento e Ambiente

DBO – Demanda Bioquímica de Oxigênio

DHS - Downflow Hanging Sponge

DQO - Demanda Química de Oxigênio

DP – Decantador primário

DTR - Distribuição do Tempo de Retenção

EPS – Substância Polimérica Extracelular

ETE – Estação de Tratamento de Esgoto

FBP - Filtro Biológico Percolador

FEC – Faculdade de Engenharia Civil

IBGE – Instituto Brasileiro de Geografia e Estatística

LABPRO – Laboratório de Protótipos Aplicados ao Tratamento de Águas e Efluentes

LABSAN – Laboratório de Saneamento

N – Nitrogênio

NBR - Norma Brasileira

N-NH₃ – Nitrogênio Amoniacal

NTK - Nitrogênio Total Kjeldahl

NTU - Nephelometric Turbity Unit

OD – Oxigênio Dissolvido

pH - Potencial Hidrogeniônico

PF – Pré-filtro

PNSB – Pesquisa Nacional do Saneamento Básico

PVC - Policoloreto de vinila

Q – Vazão de Alimentação

R – Recirculação

R1 - Reator 1

R2 - Reator 2

R3 – Reator 3

SF - Filtro Secundário

SMP - Produto Microbiano Solúvel

SSF – Sólidos em Suspensão Fixos

SST – Sólidos em Suspensão Totais

SSV - Sólidos em Suspensão Voláteis

STF – Sólidos Totais Fixos

STV - Sólidos Totais Voláteis

ST - Sólidos Totais

SV - Sólidos Voláteis

TAS – Taxa de Aplicação Superficial

TAO – Taxa de Aplicação Orgânica

TDH – Tempo de Detenção Hidráulica

UASB - Upflow Anaerobic Sludge Blanket

UT – Unidade de Turbidez

1 INTRODUÇÃO

O crescimento populacional de forma desordenada causa inúmeras complicações, uma delas é a grande geração de resíduos líquidos (esgoto) que quando dispostos de forma inadequada afeta o meio ambiente e toda a sociedade.

Segundo o último relatório da Pesquisa Nacional de Saneamento Básico (PNSB) do ano 2011, obtida pelo Instituto Brasileiro de Geografia e Estatística (IBGE), a coleta de esgoto ao longo do território nacional atinge, 55,2% dos distritos brasileiros. Quase 45% dos domicílios brasileiros não estão sequer conectados à rede coletora de esgotos. Para piorar a situação, em boa parte dos casos em que o esgoto é coletado, não há tratamento. Segundo dados do próprio governo federal, apenas 28% de todo o esgoto produzido no Brasil recebem algum tipo de tratamento, apenas 1.513 dos 5.564 municípios brasileiros. Do restante são aproximadamente 15 bilhões de litros de esgoto sem tratamento despejados a cada dia nos corpos d'água.

De acordo com os inúmeros problemas relacionados com os resíduos líquidos, a partir da legislação federal (RESOLUÇÃO CONAMA nº 357, de 17 de abril de 2005) que informa sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento e sua recente atualização (Resolução nº 430, de 13 de maio de 2011), bem como o (Decreto Estadual nº 54.487, de 26 de junho de 2009), sobre os padrões de lançamento de efluentes, os órgãos de controle ambiental tem apresentado uma maior preocupação sobre o controle dos níveis de nutrientes nos mananciais superficiais, principalmente quando relacionados ao abastecimento urbano. Diante da problemática surge necessidade de se utilizar póstratamentos (físicos, químicos e/ou biológicos) para mitigar este problema.

Desta forma cresce a necessidade de se desenvolver alternativas para o tratamento de esgoto e de desenvolvimento de pesquisas que tratem das questões do tratamento aeróbio dos efluentes, como uma forma de otimizar e sistematizar os parâmetros de dimensionamento de reatores biológicos, visando uma maior difusão

dessa tecnologia de forma mais simplificada e a adequação do efluente tratado aos requisitos da legislação ambiental vigente.

Nesse sentido, várias pesquisas estão sendo desenvolvidas com o uso de filtros biológicos percoladores no tratamento de efluentes.

Os filtros biológicos percoladores apesar do seu grande potencial e elenco de vantagens, têm sido pouco utilizado em nosso país. Talvez um dos principais motivos para isso seja a pouca difusão da tecnologia em nosso meio. Sendo assim é de grande importância que se aumente e se dissemine o nível de conhecimento sobre esse sistema, como forma de viabilização de sua maior utilização.

Os filtros biológicos percoladores são sistemas de tratamento de esgoto que podem encontrar uma elevada aplicabilidade no Brasil, tendo em vista, principalmente as suas vantagens econômicas associadas à facilidade operacional. Sendo assim é a tecnologia que mais se assemelha com o protótipo de reatores com uso de não tecido sintético desenvolvido, já que a principal função neste caso é a remoção de poluentes suspensos na água, principalmente substâncias de origem orgânica.

As pesquisas relacionadas ao emprego de não tecido sintético foram iniciadas na década de oitenta. As vantagens decorrentes do uso desse material são evidenciadas em trabalhos publicados por diversos pesquisadores, como, alta porosidade, maior volume de vazios, alta superfície de contato, pequena perda de carga, aumento da carreira do filtro, destacando-se inúmeras possibilidades de uso como meio suporte para formação de biomassa.

Este trabalho teve como objetivo avaliar um sistema aeróbio no tratamento de esgoto, em escala de protótipo, composto por Pré-filtro/Reatores biológicos/Filtro secundário, com intuito de garantir a remoção de compostos orgânicos (matéria carbonácea e nitrogenada) de acordo com a configuração geométrica mais adequada há atingir esses objetivos, utilizando como meio suporte não tecido sintético.

Baseado nesta linha de pensamento, o Departamento de Saneamento e Ambiente da UNICAMP, busca firmar-se como uma referência no estudo de processos simplificados e de baixo custo de tratamento de esgotos, resguardando as fontes de água, de boa qualidade, para uso nobre, contribuindo para a resolução da problemática do tratamento de esgotos e da escassez de água.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Esta pesquisa tem como objetivo verificar o desempenho de um reator biológico (aeróbio) percolador no tratamento de esgoto sanitário.

2.2 OBJETIVOS ESPECÍFICOS

- Construir e implementar um sistema biológico percolador em escala piloto;
- Avaliar o potencial de uso de um novo material sintético como meio suporte para sustentar a biomassa gerada no reator biológico;
- Monitorar o desempenho do reator biológico aeróbio percolador no tratamento de esgoto sanitário; e,
- Avaliar a possibilidade de remoção de matéria carbonácea no sistema proposto.

3 REVISÃO BIBLIOGRÁFICA

3.1 TRATAMENTO DE EFLUENTE

O lançamento de efluentes in natura nos corpos hídricos resulta além de vários problemas socioambientais, impactos ambientais significativos. Tem-se como exemplos de impactos a eutrofização, a disseminação de doenças de veiculação hídrica, agravamento do problema de escassez de água de boa qualidade e desequilíbrio ecológico (NUVOLARI, 2003).

O esgoto precisa ser coletado, tratado e ter um destino final adequado. Desta forma, não existe um sistema de tratamento padrão a ser utilizado. Vários fatores influenciam na escolha das opções tecnológicas, tais como: disponibilidade de área, qualidade desejada para o efluente tratado, da legislação referente ao local, entre outros aspectos.

Frente a esta situação, diversas legislações, como a Resolução CONAMA nº 357/05 que informa sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento a sua atualização (Resolução CONAMA nº 430/11), estabeleceram os padrões de lançamento de efluentes, os órgãos de controle ambiental tem apresentado uma maior preocupação sobre o controle mais apurado dos níveis de nutrientes nos mananciais superficiais, principalmente quando relacionados ao abastecimento. Diante dos fatos, preconizam a necessidade de utilizar pós-tratamentos (físicos, químicos e/ou biológicos) antes do seu descarte no meio ambiente (BRASIL, 2005; BRASIL, 2011).

Nas estações de tratamento de esgoto (ETE), um dos principais papéis do pós-tratamento é o de completar a remoção da matéria orgânica, como os nutrientes (N e P) e principalmente organismos patogênicos (GASI, 1988).

O tratamento de esgoto realizado nas ETE podem abranger vários níveis de tratamento como: tratamento preliminar (remoção de sólidos grosseiros), primário, secundário (tratamento biológico para remoção de matéria orgânica) e terciário

(remoção de compostos específicos). No Brasil as ETE em operação atingem normalmente até o tratamento secundário.

O tratamento biológico é uma das etapas de maior importância para o tratamento de esgoto, pois é nele que ocorre a maior remoção da carga poluidora (matéria orgânica), transformação de substâncias complexas em outras mais simples. Esta conversão é conhecida como estabilização da matéria orgânica. Logo é importante ter conhecimento e compreensão sobre seu funcionamento para que a tomada de decisão seja a mais adequada e coerente na escolha do tipo e forma do tratamento biológico.

3.2 TRATAMENTO BIOLÓGICO

Esses processos que têm a função de promover a degradação biológica de compostos carbonáceos, transformando os carboidratos, óleos e graxas e proteínas a compostos mais simples, como: CO₂, H₂O, NH₃, H₂S, dependendo do tipo de processo predominante. Pode ser obtido através da ação dos microrganismos aeróbios, anaeróbios presente nos esgotos, ou pela associação de ambos (CAMPOS, 1999).

As diferenças entre os processos anaeróbio e aeróbio não se limitam apenas a ausência ou presença de oxigênio, mas sim entre outros fatores como: produtos de metabolismo, microrganismos envolvidos, requerimentos nutricionais e resistência à compostos tóxicos (MENDONÇA 1987; VON SPERLING, 1996).

3.2.1 Processos aeróbios

Segundo Chernicharo (2000), os microrganismos responsáveis pela decomposição se alimentam da matéria orgânica e convertem de 40 a 50% dessa matéria em gás carbônico, água e material celular. Uma importante parcela desta

matéria orgânica (de 50 a 60%) é transformada em biomassa microbiana, produzindo lodo excedente do sistema. O material orgânico não convertido em gás carbônico ou em biomassa sai no efluente como material não degradado (5 a 10%). De acordo com a figura abaixo podemos visualizar tal situação:

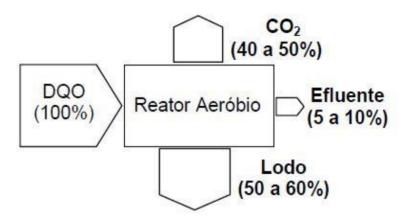


Figura 3.1 – Conversão biológica da matéria orgânica no sistema aeróbio de tratamento de esgoto.

Fonte: Adaptado CHERNICHARO, 2000.

A deterioração aeróbia dos poluentes (inorgânicos e orgânicos) exige que a reação aconteça em presença de oxigênio dissolvido e outras condições ambientais essenciais ao processo de modificação e transformação de substância poluente em substância inerte, como, por exemplo: temperatura, pH, tempo de detenção, carga orgânica e outros parâmetros (VON SPERLING, 1996).

No âmbito dos tratamentos biológicos para esgotos domésticos, os processos aeróbios são os mais empregados (VON SPERLING, 1996).

3.3 CONVERSÃO DA MATÉRIA CARBONACEA

Os processos responsáveis pela remoção da matéria carbonácea e nitrogenada em esgotos são aqueles que utilizam os microrganismos como principais agentes transformadores. Estes microrganismos, principalmente as bactérias, se

beneficiam dos compostos presentes no esgoto para obterem suas fontes de carbono, nutrientes e energia. Desta forma, eles garantem o seu metabolismo e reprodução por meio de reações de oxidação dos substratos orgânicos e inorgânicos presentes nos efluentes, bem como pela utilização do carbono orgânico e do dióxido de carbono (VON SPERLING, 1996).

Nos efluentes de origem doméstica, a matéria orgânica é a principal fonte de carbono para os microrganismos, sendo constituída basicamente por proteínas, carboidratos, gordura e óleos e em menor quantidade por uréia, surfactantes entre outros.

Segundo com Von Sperling (1996) a matéria orgânica carbonácea pode ser dividida quanto sua capacidade de biodegradar em:

- Matéria orgânica inerte: Não sofre mudanças ao passar por um sistema de tratamento;
- Matéria orgânica biodegradável: Sofre alterações (decompõem-se) quando passa por um sistema de tratamento.

A matéria orgânica biodegradável ainda é dividida em duas categorias:

- Rapidamente biodegradável: Normalmente apresenta-se na forma solúvel, constituída de moléculas relativamente simples que facilmente podem ser permeadas pela parede celular bacteriana, consumidas pelas endoenzimas;
- Lentamente biodegradáveis: São encontradas na forma particulada (em suspensão) em estruturas moleculares maiores. Consistem em moléculas relativamente complexas, que não são utilizadas diretamente pelas bactérias. Para que essa ação ocorra, é necessária a conversão dessa matéria particulada em matéria solúvel, através da atuação das exoenzimas. Por fim este mecanismo de conversão, denominado hidrólise, não envolve utilização de energia, mas resulta numa demora no consumo da matéria orgânica.

3.3.1 Conversão aeróbia

De acordo com Horan (1991) os principais agentes responsáveis pela estabilização aeróbia da matéria carbonácea contida nos esgotos são os organismos decompositores, representados em sua maioria por bactérias heterotróficas aeróbias e facultativas. Segundo Van Haandel e Lettinga (1994) a equação da respiração aeróbia pode ser expressa na forma genérica:

$$C_xH_yO_z + \frac{1}{4}(4x + y - 2z)O_2 \rightarrow x CO_2 + \frac{y}{2}H_2O + Energia$$
 (1)

Ou na forma geral:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + H_2O + Energia$$
 (2)

Desta forma a equação (1) representa a oxidação da matéria orgânica, onde é possível quantificar o consumo de oxigênio, bem como, a produção de gás carbônico resultante do processo de oxidação, na qual a matéria orgânica (redutor) é oxidada pelo oxigênio molecular (oxidante).

3.3.2 Conversão anaeróbia

Segundo Van Haandel e Lettinga (1994) pode-se representar, de forma genérica, a conversão anaeróbia da matéria carbonácea de acordo com a equação a seguir:

$$C_xH_yO_z + (4x - y - 2z)/4 H_2O \rightarrow (4x - y + 2z)/8 CO_2 + (4x + y - 2z)/8 CH_4 + Energia$$
(3)

A conversão da matéria carbonácea processa-se, simplificadamente, da seguinte forma:

$$C_6H_{12}O_6 \rightarrow 3CH_4 + 3CO_2 + Energia$$
 (4)

A equação (3) representa apenas os produtos finais compostos pelas ações intermediarias da fermentação. O processo fermentativo se diferencia pelo fato de não haver a presença de um oxidante específico (oxigênio) e a não exclusividade da oxidação, apesar do carbono do CO₂ apresentar em seu mais elevado estado de oxidação, o oposto ocorre com o carbono de CH₄ onde encontra-se em seu estado mais reduzido, desta forma a ação se resulta em um rearranjo dos elétrons na molécula a qual foi fermentada, de tal modo que se formam no mínimo dois produtos. Na maioria das vezes são necessárias várias reações sequenciais antes que se formem produtos estabilizados.

A liberação de energia proveniente do processo de fermentação é inferior a formada no processo de respiração aeróbia.

De acordo com Chernicharo (1997) esse processo de conversão anaeróbia desenvolve-se em quatro estágios conforme Figura 3.2: Hidrólise, Acidogênese, Acetogênese e Metanogênese.

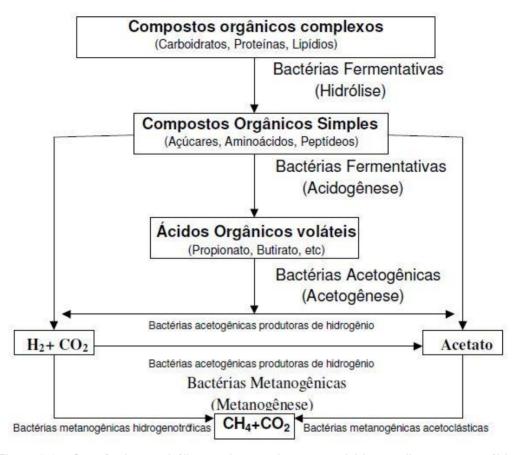


Figura 3.2 – Sequência metabólica e microrganismos envolvidos na digestão anaeróbia.

Fonte: CHERNICHARO, 1997.

3.4 CONVERSÃO DA MATÉRIA NITROGENADA

Outro importante processo de oxidação no tratamento dos esgotos é o referente às formas nitrogenadas. A amônia é transformada em nitritos e estes em nitrato, no fenômeno denominado nitrificação (HORAN, 1991).

Os microrganismos envolvidos neste processo são autótrofos e quimiossintetizantes (ou quimioautótrofos), para os quais o gás carbônico é a principal fonte de carbono e a energia é obtida através da oxidação de um substrato inorgânico, como a amônia, a formas mineralizadas.

A transformação da amônia em nitritos é efetivada através de bactérias, como as do gênero *Nitrosomonas*, sendo expressa pela seguinte reação química:

$$2NH_4^+ + 3O_2 \rightarrow 2NO_2^- + 4H^+ + 2H_2O$$
 (5)

A oxidação dos nitritos a nitratos dá-se principalmente pela atuação de bactérias, como as do gênero *Nitrobacter*, de acordo com a equação (6):

$$2NO_2^- + O_2 \rightarrow 2NO_3^-$$
 (6)

A reação global da nitrificação é a soma das equações 5 e 6:

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$$
 (7)

Nas reações 5 e 6, bem como, na reação global da nitrificação 7, observa-se que há consumo de oxigênio livre, geralmente referido como demanda nitrogenada, liberação de H+, consumindo a alcalinidade do meio e possivelmente reduzindo o pH.

3.4.1 Fatores interferentes no processo de nitrificação em biofilmes

A Tabela 3.1 apresenta parâmetros que influenciam a nitrificação em sistemas biológicos de tratamento de efluentes com o uso de biofilmes.

Tabela 3.1 – Fatores interferentes no processo de nitrificação em biofilmes.

Fator Interveniente	Implicações recorrentes				
Concentração de OD (interior do reator)	- Micro-organismos nitrificantes são aeróbios, com elevada afinidade por oxigênio. Caso as				
	concentrações de O2 não atendam aos requisitos da biomassa heterotrófica e nitrificante a taxa de				
Requisitos de O2 (fase gasosa)	remoção de amônia decresce em função da competição por O2, predominantemente capturado pela				
Nitrificação: > 1,8 mgO2/L.	biomassa heterotrófica nas porções externas do biofilme.				
Ocorrência de acúmulo de nitrito: < 0,5 mgO2/L.	- A baixa disponibilidade de OD exerce maior impacto sobre o crescimento de oxidadoras de NO21				
	podendo resultar em acúmulo de nitrito no sistema.				
Temperatura	- O metabolismo microbiano e a taxa de remoção de amônia podem diminuir em ambientes com				
	temperaturas abaixo de 10 ºC. Para filtros biológicos percoladores, com temperaturas do ar variando				
Temperatura ótima para nitrificação: 28-36℃	de 10°C para 20°C a taxa de nitrificação pode aumentar por um fator de 1,5.				
(cultura pura).	- Os efeitos da temperatura podem variar em função da taxa de remoção de amônia: sistemas com				
Taxas de crescimento específico (µ) variam em	elevadas taxas de nitrificação são mais afetados pela temperatura do que sistemas onde a taxa de				
função da temperatura. A avaliação experimental	nitrificação tende a ser menor. As ocorrências de fatores simultâneos como disponibilidade de				
dos efeitos da temperatura na nitrificação é	oxigênio predadores e cargas orgânicas podem dificultar a avaliação do efeito da temperatura em				
dificultada, em virtude da ocorrência simultânea	sistemas de tratamento de esgotos.				
de outros fatores intervenientes.					
Concentrações de matéria orgânica	- Para elevadas concentrações de matéria orgânica a nitrificação diminui, pois a biomassa				
	heterotrófica compete com sucesso por oxigênio e espaço, reduzindo a fração volumétrica de				
DBO total > 20 mg/L (ou 30mgDQOsolúvel/L):	nitrificantes no biofilme.				
Menores taxas de nitrificação em FBP.	- Matéria orgânica solúvel: intensifica o crescimento de micro-organismos heterotróficos elevando				
DBO solúvel < 12 mg/L: Favorável para	espessura da matriz biológica, o que dificulta a transferência de substratos (O2 e NH4+-N) para				
ocorrência de nitrificação em FBPs.	porções internas do biofilme.				
	- Matéria orgânica particulada: uma vez adsorvida na superfície do biofilme pode proporcionar				
	resistência à transferência de massa. Posteriormente, a hidrólise do componente particulado resulta				
	em fonte adicional de substrato para a biomassa heterotrófica.				
Relação DBO:NTK	- Maiores relações DBO:NTK favorecem a predominância da biomassa heterotrófica no biofilme em				
	virtude da maior taxa de crescimento específico e elevação da síntese heterotrófica. A síntese da				
DBO:NTK = 25:	biomassa heterotrófica diminui a concentração de NH ₄ +-N no meio.				
Pouca disponibilidade de NH4+-N para	- A predominância de micro-organismos heterotróficos dificulta a transferência de substrato (N-				
nitrificação.	amoniacal e O ₂) não permitindo a coexistência de micro-organismos nitrificantes e heterotróficos no				
DBO:NTK = 5-10:	biofilme para elevadas relações DBO:NTK.				
Pode ser favorável ao processo de nitrificação.					
pH e alcalinidade	- pH: a taxa de nitrificação decai substancialmente para valores abaixo de 7,0. Baixos valores de pH				
	podem ocasionar a formação de HNO2 (inibidor da etapa de nitritação) e indicam o aumento da				
pH ótimo para nitrificação: em biofilmes: 7,0-8,5.	concentração de íons de hidrogênio H ⁺ (aumento do consumo de CaCO ₃) e baixa alcalinidade				
Alcalinidade residual mínima para nitrificação em	residual.				
sistemas com biofilmes: > 45 mg/L (observado)	- Alcalinidade: escassez de alcalinidade carbonato no sistema impede a síntese de micro-organismos				
50 mg/L (recomendado).	nitrificantes por déficit de carbono inorgânico. Adicionalmente, a manutenção do pH em faixas				
	adequadas para ocorrência de nitrificação pode ser comprometida.				
Compostos orgânicos e inorgânicos	- Nitrificantes são sensíveis a vários compostos orgânicos e inorgânicos. A elevada concentração de				
	sulfetos pode ser especialmente importante para sistemas com biofilmes pós-reatores anaeróbios.				
Sulfetos: 0,5 mg/L	- Concentrações de N-amoniacal acima de 20 mg/L podem inibir a atividade de oxidadores de nitrito.				
N-amoniacal: 20mg/L					

Fonte: BARNES & BLISS, 1983; PARKER,1995; USEPA,1993; WEF, 1992; RITTMANN & MCCARTY, 2001 e TCHOBANOGLOUS *et al.*, 2003.

Predadores macro-invertebrados também são responsáveis pelo consumo do biofilme, provocando a perda de frações volumétricas da matriz microbiana. Adicionalmente, larvas de insetos como *Psychodidae* e outros invertebrados são caracterizados por consumir porções do biofilme por fagocitose assim como podem

ser responsáveis por promover a desagregação do biofilme (ANDERSON *et al.*, 2008; PARKER *et al.*, 1995).

Em FBPs, a presença de macrofauna está associada ao umedecimento efetivo do material de enchimento, uma vez que o aparecimento de macrorganismos parece ter início em regiões não umedecidas na superfície do meio suporte (PARKER *et al.*, 1995). Anderson *et al.* (2008) encontraram espécies da classe *Oligochaeta* em FBPs, onde após a eliminação de tais microrganismos foi observado um incremento nas taxas de nitrificação.

Considerando a faixa de valores de pH considerados ideais para a ocorrência de nitrificação (7,0 a 8,5) observa-se que os resultados frequentemente se referem a testes realizados com culturas puras ou em sistemas de tratamento de biomassa dispersa, como lodos ativados. A variação das taxas de nitrificação em função do pH em sistemas de biomassa aderida pode ter um comportamento distinto, por sua vez, pouco reportado na literatura. Adicionalmente, foi observado que as faixas ideais de pH para a nitrificação são sensivelmente divergentes. Tal fato pode estar associado ao delineamento experimental utilizado em cada uma das pesquisas (BARNES & BLISS, 1983). Diante de incertezas associadas, recomenda-se que as condições operacionais permitam um pH acima de 7,0 no volume reacional, tendo em vista a redução de taxas de nitrificação com pH < 7,0.

Biestenfeld *et al.* (2003) observaram que para uma faixa de pH posicionada entre 7,0 e 7,5 as taxas de nitrificação em biofilmes não tiveram uma boa relação com pH. Indicam ainda uma maior influência da alcalinidade carbonato (CaCO3) sob as taxas de nitrificação. Dessa forma, a presença de alcalinidade em concentrações adequadas permitiria o atendimento aos requisitos de carbono inorgânico por parte de bactérias nitrificantes, bem como a neutralização de íons de hidrogênio gerados na nitritação. Os autores afirmam ainda que para concentrações de alcalinidade residual (efluente do reator) acima de 45 mg de CaCO3.L-1 a alcalinidade parece não ser um fator limitante.

Em temperaturas acima de 20°C os impactos na nitrificação estão mais associados a fatores como concentrações de substratos limitantes como, por exemplo, o NH₄+-N e O₂, cargas orgânicas, taxas de aplicação superficial e umedecimento efetivo do meio suporte (WEF,1992).

Como descritos na Tabela 3.1, os efeitos da temperatura são mais nitidamente observados em sistemas com maiores taxas de nitrificação. Dessa maneira, em FBPs onde a remoção de N-amoniacal e matéria orgânica ocorre de forma simultânea os efeitos da temperatura podem ter ainda menor importância frente a outros fatores interferentes.

3.5 BIOFILTRO AERÓBIO SUBMERSO (BAS)

O princípio de tratamento do biofiltro aerado de leito submerso é semelhante ao dos filtros anaeróbios, ou seja, é uma tecnologia para tratamento de efluentes que utiliza microrganismos de crescimento aderido no qual o fluxo passa, no sentido ascendente ou descendente, através do biofilme e do lodo retido em um leito fixo de material inerte (DOMINGUES, 2005). O lançamento do efluente é feito através de dispositivos de distribuição, fixos ou móveis, e a coleta ocorre por sistema de drenagem no fundo do filtro, permitindo uma condição de escoamento contínuo (CAMPOS, 1994). A diferença entre os sistemas está na introdução de oxigênio, através de aeradores e difusores de ar, gerando assim um ambiente ideal para desenvolvimento de microrganismos aeróbios.

De acordo com Aisse *et al.* (2001) a grande vantagem do biofiltro aerado submerso em comparação aos lodos ativados está na eliminação da necessidade de recirculação, dos distúrbios de *bulking* e menor produção de lodo. Já quando comparados aos filtros biológicos percoladores convencionais, a vantagem está na erosão gerada no biofilme pelas bolhas de ar, reduzindo assim a colmatação dos vazios do meio suporte e o risco de entupimentos muito comum nos FBPs. A

turbulência gerada pela aeração também assegura o bom contato entre o substrato e os microrganismos.

Gonçalves et al. (2001) apresentam os biofiltros aerados como uma tecnologia madura, entre as vantagens apresentadas por esse sistema está a compacidade, o aspecto modular, a possibilidade de se conceber ETE cobertas e desodorizadas, baixo impacto ambiental, resistência às baixas temperaturas do esgoto, rápida entrada em regime e resistência aos choques de cargas. Os BAS podem ser utilizados como polimento de um sistema anaeróbio de tratamento de esgotos, ou como a unidade principal de tratamento.

Segundo Gonçalves *et al.* (2001) o consumo médio de oxigênio em BAS operando em tratamento de nível secundário tem sido da ordem de 0,5 kg O₂/kg DBO_{aplicada}, garantindo a concentração mínima de 1,5 mg O₂/L, essencial para atividade dos microrganismos aeróbios.

De acordo com Von Sperling (1997) para que ocorra nitrificação recomendase que os níveis de OD se mantenham acima de 2,0 mg/L.

Metcalf & Eddy (1991) citam os filtros biológicos como unidades capazes de remover 40 a 90 % da DQO, operando com cargas orgânicas volumétricas entre 0,4 e 10 kg DQO/m³.d.

Sendo já reconhecido com um sistema eficiente quando se deseja a conversão de matéria carbonácea, nos últimos anos os estudos com os BAS voltaram-se para os processos de conversão de matéria nitrogenada (BOLLER *et al.*,1997 e VILLAVERDE *et al.*, 2000).

3.6 FILTRO BIOLÓGICO PERCOLADOR (FBP)

3.6.1 Aspectos gerais de funcionamento

Os filtros biológicos percoladores (FBP) são a modalidade mais antiga de reatores com biofilmes. A metodologia se baseia na aplicação ininterrupta e constante dos efluentes por meio de distribuidores hidráulicos no topo do reator, que flui pelo meio suporte tal como pedra, plástico ou espuma em direção aos drenos de fundo (METCALF & EDDY, 1991).

Os distribuidores rotativos são movidos pela própria carga hidráulica do efluente ou podem ser motorizados. Em sistemas com distribuidores motorizados, a variação da rotação dos distribuidores é uma das estratégias de operação empregadas para o controle do biofilme e eliminação de larvas de insetos em FBPs (PARKER *et al.*,1995; ALBERTSON, 1995). No entanto, em FBPs com distribuição não motorizada outras técnicas podem ser empregadas para controle do biofilme e umedecimento do meio suporte, como o incremento de taxas de aplicação superficiais por períodos reduzidos de tempo.

De acordo com Chernicharo *et al.* (2005) uma das maiores vantagens dos FBPs é à não necessidade de sistema de aeração. De forma geral as concentrações necessárias de oxigênio para reações aeróbias podem ser atendidas a partir da circulação natural do ar pelo interior do filtro, e a transferência de oxigênio para o biofilme ocorre por difusão molecular.

Uma das grandes vantagens dos FBPs refere-se à não necessidade de sistema de aeração. Em geral, os requisitos de oxigênio para reações aeróbias podem ser atendidos a partir da circulação natural e convectiva do ar pelo interior do reator, e a transferência de oxigênio para o biofilme ocorre por difusão molecular. A baixa flexibilidade operacional do FBP dificulta a remoção de N-amoniacal no sistema, em que grandes volumes reacionais são necessários para taxas de nitrificação adequadas. Tal aspecto resulta em elevados custos de implantação, comparáveis a sistemas de lodos ativados, quando utilizados para o pós-tratamento

de efluentes de reatores UASB (CHERNICHARO *et al.*, 2005). Funciona em fluxo contínuo e sem o afogamento da unidade. São sistemas aeróbios, permanentemente sujeitos à aeração, que naturalmente circula nos espaços vazios da camada suporte, disponibilizando o oxigênio necessário para as atividades vitais dos microrganismos, responsáveis pela conversão de constituintes presentes em águas residuárias.

Após a aplicação, o efluente percola pelo material suporte permitindo o crescimento de microrganismos na superfície do material de enchimento, resultando na formação de uma matriz biológica ativa, que contém fungos, bactérias facultativas, aeróbias e anaeróbias, algas e protozoários, denominado biofilme com espessura máxima de 2 a 3 mm (METCALF & EDDY, 1991). Os componentes orgânicos e inorgânicos (carboidratos, lipídeos, amônia, entre outros) difundem-se no biofilme, sendo convertidos pelos microrganismos na matriz de origem biológica.

Em seguida, a biomassa excedente é desalojada de forma contínua ou periódica. Como explicitado anteriormente, o efeito de desprendimento do biofilme ocorre devido a uma conjugação de fatores como por meio da modificação de substâncias coloidais e dissolvidas, em sólidos estáveis, tensão de cisalhamento causada pela velocidade de escoamento do liquido entre os vazios do meio suporte, grau de estabilização dos sólidos, ausência de oxigênio para os microrganismos aeróbios mais próximos ao meio suporte, crescimento da espessura do biofilme e geração de zonas inativas (MELO, 2003).

O material desprendido é removido em unidade de decantação secundária, obtendo-se assim, um efluente final clarificado com redução das concentrações de matéria orgânica e sólidos em suspensão comparadas ao início do tratamento (VON SPERLING, 1996). O uso de decantador secundário também se faz necessário em FBP de alta taxa, uma vez que a produção de sólidos nesses sistemas tende a ser mais elevada.

A estratégia de funcionamento de sistemas com biofilme é a de promover a separação entre a biomassa presente no reator (elevado tempo de detenção de

sólidos) e o efluente tratado (RITTMANN e McCARTY, 2001). A maior parcela de microrganismos que se desenvolve sobre o material suporte, permanece no reator, o que diretamente resulta na produção de efluentes de boa qualidade.

O tratamento de esgotos por filtração biológica convencional normalmente demanda uma unidade de desinfecção para eliminação de microrganismos causadores de doenças. O filtro biológico percolador geralmente consegue minimizar a concentração de coliformes em apenas 1 a 2 unidades logarítmicas, o que não atende as exigências da legislação ambiental, dependendo do grau de diluição no corpo receptor (JORDÃO & PESSOA 1995).

Diversos estudos foram e ainda são realizados, de forma a viabilizar a desinfecção de efluentes de filtro biológico, com unidades de radiação ultravioleta, cloração, lagoas de maturação ou ainda ozonização.

A Figura 3.3 mostra o esquema de funcionamento de um Filtro Biológico Percolador. Podem ser divididos em três partes principais: dispositivos de distribuição, camada suporte e sistema de drenagem.

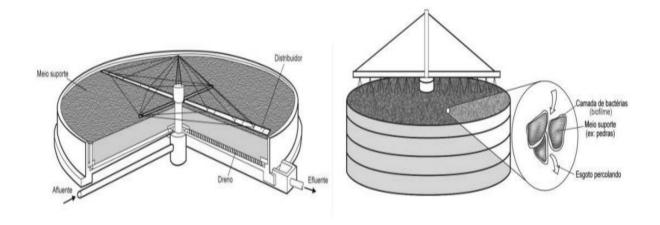


Figura 3.3 – Principais componentes de um filtro biológico percolador e princípio de funcionamento. Fonte: adaptado CHERNICHARO, 2001 e VON SPERLING, 1996.

O dispositivo de distribuição (braços distribuidores rotativos) possibilitam a aplicação uniforme da carga hidráulica de esgotos sobre a superfície do reator

biológico, garantindo o sucessivo crescimento e desprendimento do biofilme e a otimização do processo de filtração biológica aeróbia.

A Tabela 3.2 apresenta as vantagens e desvantagens de se utilizar o sistema de filtração biológica com filtro percolador.

Tabela 3.2 – Vantagens e desvantagens do FBP.

Vantagens	Desvantagens		
Satisfatória eficiência na remoção de DBO	Relativamente sensível a descargas tóxicas		
Baixo consumo de energia	Necessidade de tratamento e disposição final do lodo		
Requisitos de áreas relativamente baixos	Relativa dependência da temperatura do ar		
Equipamentos mecânicos simples	Elevada perda de carga no sistema		
Baixo custo operacional	Possível surgimento de moscas, especialmente nos filtros de baixa taxa		
Simplicidade operacional	Possível surgimento de odores por falhas na distribuição do efluente percolador		
Boa resistência às sobrecargas de vazão	Possíveis problemas com entupimento dos espaços vazios do meio suporte		

Fonte: Adaptado MESEGUER et al. 1998; MIGLINO, 1978 e VON SPERLING, 1995.

3.6.2 Materiais de enchimento utilizados em FBPs

O meio suporte é de fundamental importância para o desempenho do processo já que tem como uma de suas finalidades, servir de apoio para a formação do biofilme, além disso, tem a função de impedir que os sólidos em suspensão sejam carregados para fora do reator, atuando como uma barreira física. Segundo Jordão & Pessoa (1995), existem diversos tipos de materiais que podem ser empregados, tais como: pedra britada, escória de alto-forno, materiais sintéticos de plástico de várias formas e tamanhos.

Estudos realizados por Kassab et al. (2011) tem apontado que o uso de materiais baseados em espumas de poliuretano nos FBPs pode ser bem

promissores já que a porosidade do material pode possibilitar um aumento do tempo de detenção hidráulica nos reatores.

3.6.2.1 Materiais utilizados

Algumas características do material devem ser levadas em consideração como: peso específico, superfície específica e índice de vazios. O peso específico do meio suporte refere-se principalmente à questão estrutural do filtro biológico. A superfície específica do meio suporte está relacionada com a área de contato entre o líquido e o biofilme formado. O índice de vazios influência a circulação dos esgotos e do ar, por entre a camada suporte, para que não haja o afogamento do leito, mantendo assim o ambiente nas condições aeróbias ideais ao equilíbrio da cultura biológica.

Segundo Harrison & Daigger (1987) o desempenho de FBPs dependerá em grande parte das combinações adequadas entre o material utilizado como meio suporte, taxa de aplicação superficial (TAS) e carga orgânica volumétrica (COV).

A Figura 3.4 mostra os diferentes tipos de materiais de meio suporte mais usualmente utilizados.

Figura 3.4 – Tipos de meios suportes em FBP.

Fonte: SANTOS, 2005.

Como podemos ver na Figura 3.4 o Policoloreto de vinila (PVC) é o material de referência na fabricação de módulos plásticos sintéticos. Os anéis, e esferas em meio plástico, com dimensões variadas são aleatoriamente lançados no interior do reator e perfazem um meio suporte "aleatório". Já os blocos são estruturalmente encaixados e sobrepostos uns aos outros e podem ser classificados como do tipo fluxo cruzado (*cross flow*) ou vertical.

Segundo Jordão & Pessoa (1996), dentre os materiais utilizados como camada suporte, os plásticos vêm gradativamente sendo mais empregados. Atendem às propriedades físicas requeridas pelo processo e admitem com menor

área superficial, a aplicação de cargas orgânicas mais elevadas. Cerca de 30 vezes mais leves do que os meios em pedras, permitem unidades de filtração maiores. Outra vantagem de utilização está associada ao seu peso especifico (32-96 kg/m³) permitindo volumes reacionais de maiores alturas de 4 a 12 m (GONÇALVES *et al.*, 2001 e USEPA, 1974).

A Tabela 3.3, adaptada ilustra algumas características físicas de cada meio suporte.

Tabela 3.3 – Características físicas dos meios suportes.

Material	Tamanho nominal (cm)	Peso específico (kg/m³)	Superfície específica (m²/m³)	Índice de vazios (%)	Referência: adaptado de
Agregado leve de lodo	2,5 a 5,0	680*	1	58	ALEM SOBRINHO (1983)
Cerâmica	3,8 x 3,8	654	115	68,2	BENEFIELD & RANDALL (1987)
Escória de alto forno	5,0 a 7,6	1090	66	49	BENEFIELD & RANDALL (1987)
Escória de alto forno	5,0 a 12,7	801 a 1200	46 a 69	40 a 60	METCALF & EDDY (1991)
Escória de alto forno	5,0 a 7,6	1110	100	53,5	PINTO (1995)
Pedra	2,5 a 7,6	1440	62	46	WEF (1992)
Pedra convencional	5,0 a 10,0	1350	50 a 70	50	JORDÃO & PESSOA (1995)
Plástico	60 x 60 x 120	32 a 96	82 a 115	94 a 97	USEPA (1974)
Anéis de plásticos	2,5	88	220	-	LEKANG & KLEPPE (2000)
Grama artificial	45 x 140	138	284	-	LEKANG & KLEPPE (2000)
Serragem de couro	1,27	177	-	-	BIDONE Et al. (1999)

^{*} Depois de empilhado no filtro e "molhado".

Para os filtros com fluxo descendente, a superfície específica do meio suporte desempenha papel mais significativo. Young (1990) recomenda que o meio suporte ocupe entre 50 a 70% do volume dos filtros e que sua superfície específica seja superior a $100 \text{ m}^2/\text{m}^3$.

A extensão da superfície recoberta pelo biofilme em 1m³ de filtro varia de acordo com a granulometria do meio suporte. Segundo Imhoff & Imhoff (1996) as menores granulações deveram ser mais eficientes, pois, em 1 m³ de filtro, haverá maior superfície recoberta.

A pedra convencional de 5 a 10 cm, por exemplo, possui uma área de superfície média de até 70 m²/m³, ao passo que a pedra britada de 2,5 cm tem 62 m²/m³, que comprova que em 1 m³ de pedras de 3 cm de diâmetro médio deveria ser capaz de tratar o dobro da vazão de esgoto que pode ser tratado por 1 m³ de pedras de 6 cm. Contudo, sucede que cada interstício individual entre as pedras de 3 cm vale só um oitavo do volume de cada interstício entre as pedras de 6 cm, devendo-se reconhecer que, a partir de determinado tamanho dos fragmentos, há um limite, abaixo do qual não é mais possível haver espaço para a camada biológica bem como a passagem de ar e esgoto.

Através de experiências práticas realizadas por Imhoff & Imhoff (1996), verificou-se que, com pedras de granulação menor, consegue-se uma eficiência pouco mais elevada, no máximo de 50%. Sendo assim, pode-se recomendar a granulometria média adotada nos Estados Unidos, de diâmetro entre 5 e 8 cm.

Materiais sintéticos, por exemplo, plásticos oferecem índices de vazios de 94 a 97% e superfície especifica entre 82 a 220 m²/m³, enquanto pedra britada possui índice de vazios de 46 a 50% e superfície específica média de 60 m²/m³ contra aproximadamente 100 m²/m³ e 53,5% de índice de vazios e superfície especifica da escória de alto forno de acordo com Pinto (1995).

Harremões (1983) ressalta que o material plástico apresenta duas grandes vantagens além do índice de vazios e a superfície especifica, eles permitem maior acúmulo de sólidos biológicos e minimizam a formação de zonas mortas.

O material baseado em espumas de poliuretano denominado *Downflow Hanging Sponge* (DHS) foi essencialmente desenvolvido para o uso em FBPs pósreatores UASB. De acordo com Machdar *et al.* (1997), uma das vantagens de

utilização de espumas de poliuretano como meio suporte é a possibilidade de retenção intersticial de biomassa (20 a 25 gST.L⁻¹), maior idade do lodo (maior que 100 dias) e um maior TDH (em torno de 2,5 h).

Os fatores anteriormente mencionados são favoráveis ao desenvolvimento de microrganismos nitrificantes, dada a sua baixa taxa de crescimento (µ). A difusão de oxigênio na espuma parece ocorrer de forma mais pronunciada, comparado ao biofilme estabelecido sobre matrizes impermeáveis (aderência superficial da biomassa). Em um biofilme que cresce sobre material impermeável, as concentrações de oxigênio dissolvido acima de 1,0 mg O₂.L⁻¹ são observadas até 50-200 µm. Em espumas de poliuretano, tal concentração pode ser observada em profundidades de até 5 mm. Tal aspecto possivelmente está relacionado ao notável desempenho do sistema para remoção de matéria orgânica e N-amoniacal. As remoções de DBO, DQO e N-amoniacal no sistema UASB/FBP *Downflow Hanging Sponge* variam em torno de 80 a 97% (DBO total), 81 a 84% (DQO total) e 61 a 80% (N-amoniacal) (MACHDAR *et al.*, 2000).

3.6.3 Sistema de drenagem e ventilação dos FBP's

O sistema de drenagem consiste em um conjunto de calhas localizado na parte inferior do FBP, utilizado para garantir a coleta do liquido escoado através da camada suporte e dos sólidos desprendidos, possibilita a passagem de ar atmosférico e a transferência do oxigênio para o interior do filtro.

Existem vários materiais empregados nos sistemas de drenagem, podendose destacar os blocos ou calhas de concreto, cerâmica, plásticos, dentre outros. Esses materiais são dispostos por toda área do fundo do filtro proporcionando condições de escoamento do percolado, conduzindo-o a descarga do efluente (PESSOA & JORDÃO, 1982). Tanto a camada suporte quanto o sistema de drenagem exercem influência sobre a ventilação interna do filtro, ventilação essa necessária para garantir as condições aeróbias ideais para todo o processo biológico. A ventilação natural ocorre por gravidade dentro do filtro. A direção do fluxo de ar poderá ser de baixo para cima ou de cima para baixo dependendo da densidade do ar no interior do filtro, que por sua vez depende do gradiente de temperatura entre o esgoto e o ar ambiente. De acordo com Metcalf & Eddy (1991) normalmente há um diferencial de temperatura e um processo de calor acontece dentro da camada suporte.

Experiências citadas por Imhoff & Imhoff (1986), *apud* Nascimento (2001), indicam que as correntes de ar existentes dentro do filtro têm fluxo variável devido à diferença de temperaturas entre o esgoto e o ar ambiente. De acordo com o experimento indicam que uma diferença de temperatura de 6 ºC entre o esgoto e o ar provoca uma corrente de ar com fluxo descendente de 0,3 m³/m² por minuto, com uma taxa de aplicação de 18 m/h. A ventilação descendente cessa e inicia-se a ascendente quando essa diferença for interior a 2 ºC. As Figuras 3.5 e 3.6 mostram como ocorre a circulação de ar no interior de um FBP.

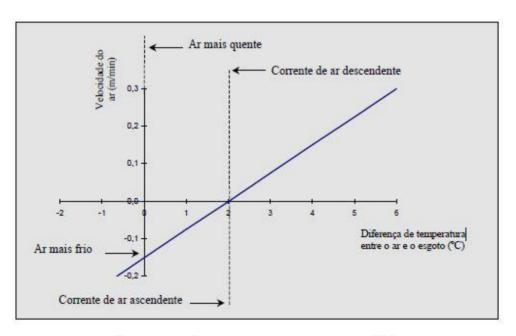


Figura 3.5 – Circulação de ar no interior do FBP.

Fonte: Adaptado IMHOFF & IMHOFF, 1986.

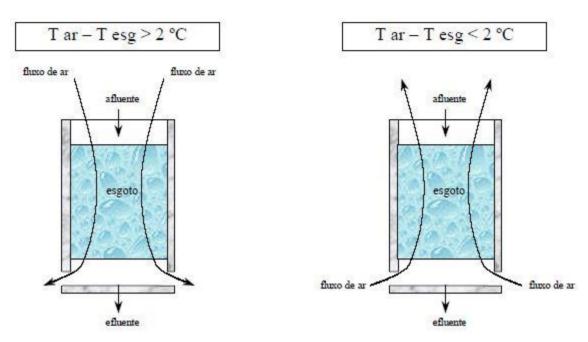


Figura 3.6 – Esquema do fluxo de ar no interior do FBP.

Fonte: Adaptado IMHOFF & IMHOFF, 1986.

3.6.4 Biofilme

3.6.4.1 Aspectos gerais

A formação do biofilme em superfícies segue três etapas básicas: adsorção, adesão e aderência (estabilização celular na superfície), onde os mecanismos de fixação e estabelecimento do biofilme dependem da comunidade microbiana, das atividades metabólicas e do tipo de superfície disponível para o desenvolvimento da colonização. Portanto, os fatores físicos, químicos e biológicos afetam a composição das matrizes biológicas a partir do comportamento hidrodinâmico no meio, do fluxo, da concentração e tipo de substrato e pela estrutura fisiológica das células (WIJEYEKOON et al., 2004).

Durante a primeira fase do processo de concepção das matrizes heterogêneas sob a superfície do material, os microrganismos ali presentes se reproduzem e produzem substâncias poliméricas extracelulares (EPS) compostas por carboidratos, proteínas, lipídeos, ácidos nucleicos e ácidos húmicos formando uma matriz gelatinosa heterogêneo denominado biofilme (LESSARD, 2003).

O biofilme é composto por cerca de 90% de água e os 10% restantes correspondem à percentagem de massa, onde as EPS representam cerca de 50-85% do total (MELO, 2003).

A decomposição do material celular de algas, bactérias presentes no efluente, juntamente com substâncias exopoliméricas presentes na superfície de microrganismos, são capazes de formar uma cadeia polimérica que permite a estabilização da adesão celular. O desenvolvimento inicial do biofilme se dá através das superfícies irregulares, porosas ou providas de interstícios no material utilizado como meio suporte. Uma maior área superficial de aderência parece estimular a produção de exopolímeros, desencadeando um aumento da excreção de polissacarídeos por parte dos microrganismos (VANDEVIVERE E KIRCHMAN, 1993).

Na sequência, pequenas partículas abióticas são incorporadas às matrizes heterogêneas, por adsorção. Entretanto cabe observar que a associação de componentes particulados ao biofilme não é um processo dominante, e em geral os mecanismos de desprendimento tendem a ser predominantes (WANNER, 1985).

Concomitantemente, ocorre o crescimento e sucessão de microrganismos aderidos no material, desenvolvendo-se sucessivamente a matriz que dá origem ao biofilme. Como resultado, o biofilme passa a ser composto por aglomerados contendo células, polímeros extracelulares entre microrganismos, canais e poros preenchidos por líquidos (MELO, 2003). Investigações sobre a estrutura do biofilme indicam que tais matrizes consistem em aglomerados de microrganismos e vazios intersticiais preenchidos por EPS (LEWANDOWISKY, 2004).

Os canais preferenciais em um biofilme podem iniciar-se na superfície da matriz e terminar na superfície do material de aderência, principalmente em estágios iniciais de desenvolvimento da matriz biológica. Nesse sentido, o desenvolvimento do biofilme pode ser conduzido não somente pelo crescimento dos microrganismos promovido pelo processo de difusão de substratos, mas por processos de advecção pelos canais e poros formados (MELO, 2003).

3.6.4.2 Formação do biofilme

Os estágios fundamentais de formação do biofilme podem ser descritos da seguinte forma (ANDERSSON *et al.*, 2008; MELO, 2003 e WIJEYEKOON, *et al.*, 2004, *apud* ALMEIDA, 2012):

1º estágio (deposição): Formação de uma película de pequena espessura constituída de moléculas orgânicas e íons que não recobrem toda a superfície de contato. Todos os microrganismos presentes na matriz se desenvolvem em condições semelhantes, em termos de disponibilidade de substrato. Nesse estágio a rugosidade da superfície é um fator de grande importância e contribui positivamente para a formação do biofilme. Atuam preponderantemente as ações eletrostáticas e de hidrofobicidade entre os microrganismos e a superfície sólida.

2º estágio (metabólico e de adsorção): Adsorção aleatória de microrganismos, matéria orgânica e partículas abióticas na matriz primária. Nessa etapa, os substratos (doadores e aceptores de elétrons) ainda são disponibilizados de forma constante entre os microrganismos. Tendo em vista os processos de transformação ocorridos pelo metabolismo dos microrganismos, a comunidade microbiana se altera em abundância e diversidade.

3º estágio (metabólico e de desprendimento): Os microrganismos se desenvolvem de forma adaptada às condições estabelecidas pelo meio onde estão

presentes e o biofilme é conduzido ao equilíbrio dinâmico aparente. A transferência de massa ocorre por difusão molecular e adveção do líquido pelos canais formados no biofilme. A produção celular e de EPS é continuada, com a geração de produtos do metabolismo microbiano. Os produtos microbianos solúveis (SMPs) são consumidos e/ou liberados no líquido. Com o equilíbrio dinâmico estabelecido, o incremento na espessura do biofilme resultante do crescimento de microrganismos, da produção de EPS e adsorção de partículas são balanceados pelo decaimento endógeno e desprendimento de frações mais representativas da matriz. O processo de desprendimento da biomassa pode ocorrer em uma matriz biológica por *erosão*, que é a perda de biomassa ocasionada pela tensão de cisalhamento ocasionada pelo efeito hidrodinâmico do meio líquido na superfície do biofilme, ou pela perda de fração significativa da matriz biológica através da ruptura da integridade estrutural, fenômeno chamado de *'sloughing'*. A Figura 3.7 exemplifica os mecanismos dos três estágios de formação do biofilme.

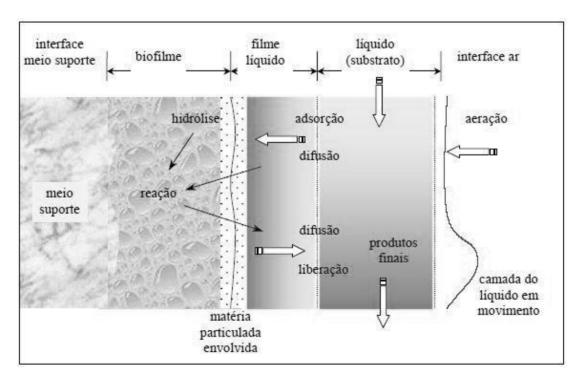


Figura 3.7 – Mecanismos e processos envolvidos com o transporte e degradação do substrato em biofilmes.

Fonte: GONÇALVES et al., 2001.

De acordo com Melo (2003) *apud* Almeida (2012): uma das hipóteses para a ocorrência do '*sloughing*' *são as* a condições anaeróbias nas regiões mais profundas do biofilme, presença de larvas e macrorganismos e formação de zonas inertes. Nesta situação, a ação de macrofauna sobre o biofilme é especificamente denominada '*grazing*'. Em biofilmes onde ocorrem o consórcio de bactérias nitrificantes e desnitrificantes os gases resultantes da redução do NO₂- podem promover a ruptura de parte da matriz microbiana em função de bolhas geradas no interior do biofilme. Os fenômenos de desprendimento da biomassa são fatores de extrema importância para a formação estrutural do biofilme, já que esses processos fazem parte do balanço primário frente ao crescimento microbiano.

Na Figura 3.8 é apresentado o modelo de arranjo de um biofilme, geração de subprodutos decorrentes das reações bioquímicas do processo de filtração biológica aeróbia e oxigênio nas diversas camadas do mesmo.

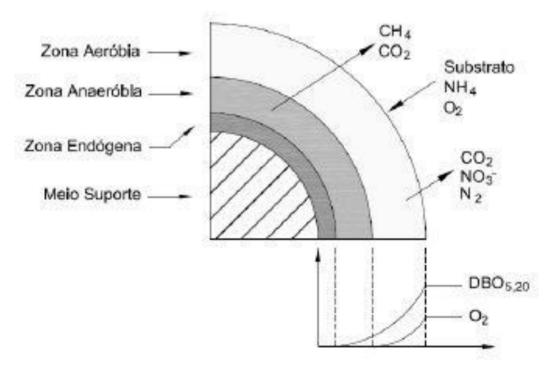


Figura 3.8 – Representação esquemática de um biofilme.

Fonte: Adaptado LOW & CHASE, 1999.

A Figura 3.9 mostra de forma esquemática os principais componentes de um biofilme. A Figura 3.10 exemplifica a formação de um biofilme multiespécies considerando o comportamento da biomassa heterotrófica, biomassa inerte e bactérias nitrificantes nos três diferentes estágios.

Após a aderência inicial, as células crescem e se espalham como uma única camada sobre a superfície, formando micro colônias. Durante a formação destas, as células sofrem alterações de desenvolvimento que dão origem à morfologia de polímeros extracelulares. Uma vez que a camada inicial do biofilme se forma, a difusão complexa do biofilme "maduro". Dentre essas mudanças está à produção da matriz molecular que se torna o mecanismo predominante pelo qual o substrato e o oxigênio são transportados para o interior das células (ANDERSSON *et al.*, 2008; WIJEYEKOON *et al.*, 2004).

O oxigênio é o fator decisivo no estabelecimento das camadas de biofilme. A formação de novas células promove o aumento da biomassa, prejudicando a passagem de oxigênio até as demais camadas internas, desta forma o processo de oxidação passa então a realizar-se anaerobiamente.

Nas camadas mais externas, onde a oxidação é aeróbia, há geração de gás carbônico (CO₂) como subproduto, o qual permanece em solução, se desprende para a atmosfera. Já em condições anóxicas, propicia a redução de nitratos (VON SPERLING, 1996).

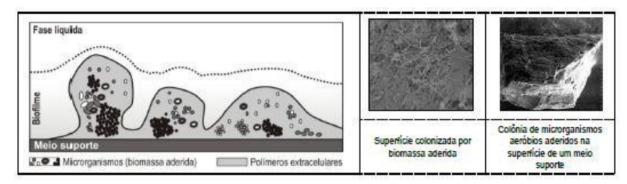


Figura 3.9 – Principais componentes de matrizes de origem biológica e Biomassa aderida a um meio suporte.

Fonte: Adaptado WANNER et al., 2006 e MELO, 2003.

Para que possa ser feito o dimensionamento ideal do reator, é de suma importância a conhecer as limitações de transferência de massa, que interferem na velocidade global das reações nesses sistemas heterogêneos. Vários autores têm citado como a estrutura física do biofilme muda de acordo com a hidrodinâmica e composição do líquido externo (WIJEYEKOON *et al.*, 2004; LEWANDOWSKI *et al.*, 2004; NOGUEIRA *et al.*, 2002), e por conseguinte, como a difusão interna é afetada por variáveis externas tais como, regime do fluxo, natureza e concentração dos substratos, velocidade do fluido (STEWART, 2003; MELO, 2005).

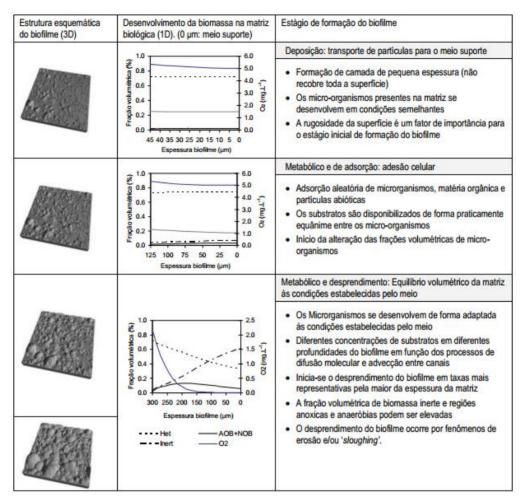


Figura 3.10 – Gráfico com o desenvolvimento da biomassa na matriz biológica considerando biomassa heterotrófica (Het), micro-organismos nitrificantes (AOB+NOB) e biomassa inerte (Inert). AOB: 'Ammonia Oxidizing Bacteria'; NOB: 'Nitrite Oxidizing Bacteria'.

Fonte: Adaptado WANNER et al., 2006.

Dentre os fatores participantes da formação e das condições de estabilidade do biofilme alguns assumem importância destacada. A seguir a Tabela 3.4 apresenta importantes fatores associados ao desenvolvimento de biofilmes.

Tabela 3.4 – Síntese de fatores que afetam a formação e o estabelecimento de biofilmes.

Fator Interveniente	Característica	Aspectos recorrentes
Espécie e fisiologia microbiana	Biológica	 Alguns micro-organismos produzem polímeros extracelulares em maiores taxas, facilitando a aderência a superfícies sólidas. Compatibilidade hidrofílica ou hidrofóbica do micro-organismo com a superfície sólida.
Rugosidade da superfície sólida	Física	 Atua na formação primária do biofilme por dificultar o arraste de partículas e micro-organismos. Maior área superficial de aderência parece estimular a produção de exopolímeros, desencadeando um aumento da excreção de polissacarídeos por parte dos microrganismos.
Condições hidrodinâmicas (velocidades e turbulências)	Física	 Velocidades elevadas: Retarda a formação primária do biofilme por tensões tangenciais. Após o estabelecimento do biofilme, elevadas velocidades e turbulências estimulam o crescimento de biomassa em virtude do aumento do fluxo de substrato. Gera biofilmes mais lisos, menos espessos, mais densos e com maior porosidade. Velocidades baixas: Sob elevadas concentrações o biofilme torna-se espesso induzindo ao aparecimento de zonas inativas pela dificuldade de transferência de massa. Tal fato favorece o destacamento de parte do biofilme ('sloughing').
Constituintes presentes, pH e temperatura do líquido em contato com o biofilme	Química	 Os componentes solúveis selecionam os micro-organismos no biofilme. A concentração do substrato pode influenciar na estrutura do biofilme. Maiores concentrações de matéria orgânica tendem a elevar a espessura do biofilme e resultar em biofilmes mais densos. Menores cargas orgânicas tendem a resultar em biofilmes com maior porosidade. O pH do líquido altera a ação eletrostática entre os micro-organismos e a superfície de contato. Pode controlar o desenvolvimento de espécies predominantes como fungos e bactérias. A temperatura altera a atividade metabólica dos micro-organismos, influenciando as taxas de crescimento da biomassa ativa. Nos processos de hidrólise, a temperatura também é um fator limitante.

Fonte: Adaptado WIJEYEKOON *et al.*, 2004; MELO, 2003; MELO, 2005 e VAN LOODSDRECHT *et al.*, 1995.

3.6.4.3 Comunidade microbiana

A comunidade microbiana presente em biofilmes utilizados no tratamento de esgotos incluem microrganismos como archaeas, bactérias aeróbias e facultativas, fungos, algas e protozoários. Os macroinvertebrados como larvas de insetos são frequentes em filtros biológicos percoladores, e, via de regra, são responsáveis pelo

decréscimo da taxa de nitrificação neste sistema (PARKER *et al.* 1995, *apud* ALMEIDA, 2012).

A Tabela 3.5 apresenta os microrganismos e macrorganismos encontrados em sistemas com biofilmes.

Tabela 3.5 – Microrganismos e macrorganismos invertebrados comumente encontrados em filtros biológicos percoladores.

Grupos	Gêneros predominantes
Bactérias heterotróficas	
Oxidadoras de matéria orgânica	Achromobacter, Flavobacterirum, Pseudomonas, Alcaligenes,
	Sphaerotilus, Thiotrix
Oxidadoras de sulfeto¹	Beggiatoa
Bactérias autotróficas	
Oxidadoras de amônia	Nitrossomonas, Nitrosoccocus, Nitrosospira, Nitrosovibrio,
	Nitrosolobulus
Oxidadoras de nitrito	Nitrobacter , Nitrospira*, Nitrospina, Nitrococcus, Nitrocystis
Fungos	Fuzasium, Penicillum, Geotrichum, Sporatichum, Ascoidea,
	Trichosporon
Algas e cianobactérias	Phormicium, Chlorella, Ulothrix, Euglena, Chlorella, Anacystis,
	Oscillatoria, Stigeoclonium
Protozoários ²	Vorticella, Opercularia, Epistylis, Carchesium, Chilodonella
Rotíferos e Nematodos em geral.	Rotíferos e Nematodos em geral. Artrópodes: Psycoda, Sylvicola
Artrópodes: Psycoda, Sylvicola	

¹ Microrganismo freqüentemente encontrado em filtros biológicos percoladores aplicados ao póstratamento de efluentes de reatores UASB.

Fonte: Adaptado IWAI E KITAO, 1994; TCHOBANOUGLOUS *et al.*,2003 e LESSARD & LE BIHAN, 2003.

3.7 CLASSIFICAÇÃO E PARÂMETROS DOS FBP

Os parâmetros de dimensionamento de um filtro biológico percolador são a carga hidráulica, definida a partir de uma determinada vazão, aplicada na área da seção superficial do filtro e a carga orgânica volumétrica definida a partir da carga orgânica aplicada em todo o volume do meio suporte.

² Amplamente encontrados em reatores com biofilme. Protozoários ciliados são mais abundantes em filtros biológicos percoladores. Influenciam negativamente na nitrificação (predação de microorganismos por fagocitose: processo onde partículas sólidas são englobadas e logo após digeridas por predadores unicelulares).

De acordo com Metcalf & Eddy (2003) esta classificação era normalmente dividida em cinco classes principais: baixa taxa, taxa intermediária, alta taxa, taxa super alta e grosseiro (METCALF & EDDY, 1991).

Filtros de taxa super alta eram relacionados aos meios suporte plásticos e à taxas de aplicação hoje em dia consideradas muito elevadas, de até 240 m³/m².d (JORDÃO & PESSOA, 1995). Filtros grosseiros, nos quais também se aplicava taxas super altas, antecediam o tratamento secundário dos esgotos altamente concentrados. Segundo CHERNICHARO (coord.) *et al.* (2001), o filtro grosseiro perdeu sua aplicação com o desenvolvimento dos reatores UASB.

A classificação mais atual apresenta somente três classes, denominadas baixa, intermediária e alta taxa, sendo a última classe ainda dividida em função dos meios suportes utilizados: plástico ou pedra (METCALF & EDDY, 2003).

A Tabela 3.6 mostra as características típicas dos diferentes tipos de filtros biológicos percoladores e a Tabela 3.7 mostra fluxogramas típicos de FBPs.

Tabela 3.6 – Características operacionais dos tipos de FBP.

Condições Operacionais	Baixa Taxa	Taxa	Alta	Taxa
		Intermediaria		
Meio Suporte	Pedra	Pedra	Escórias	Plástico
Taxa de Aplicação	1,0 a 4,0	4,0 a 10,0	10,0 a 40,0	10,0 a 75,0
Superficial (m³/m².d)				
Taxa de Aplicação	0,1 a 0,3	0,2 a 0,5	0,4 a 2,5	0,5 a 3,0
Orgânica (kg DBO/m³.d)				
Moscas	Muitas	Algumas	Poucas	Poucas
Arraste de Biofilme	Intermitente	Variável	Continuo	Continuo
Profundidade (m)	1,5 a 2,5	1,5 a 2,5	0,9 a 3,0	3,0 a 12,2
Remoção de DBO (%)	80 a 90	50 a 80	50 a 90	60 a 90
Nitrificação	Bem nitrificado	Parcialmente	Baixa	Limitada
		nitrificado	nitrificação	

Fonte: Adaptado de CHERNICHARO, 2001; JORDÃO & PESSOA, 1996 e METCALF & EDDY, 2003.

FBP de baixa taxa

Tratamento preliminar

Decantador primário ou fosas afepica

Filtro biológico

Decantador secundário

Corpo receptor

Fase sólida

Fase sólida

Fase sólida

Fase sólida

Fase sólida

Fase sólida

Tratamento preliminar

Decantador primário

Filtro biológico

Decantador secundário

Corpo receptor

Fase sólida

Tabela 3.7 – Características de diferentes perfis de FBP.

Fonte: Adaptado VON SPERLING, 2005.

De acordo com Metcalf & Eddy (1991), os filtros que possuem como meio suporte o plastico possuem uma superficie de contato 1,8 vezes maior por unidade de volume que as pedras ou escórias. Assim, submetidos a cargas orgânicas mais elevadas, podem alcançar o mesmo grau de nitrificação. Por exemplo, para 75 a 85% de nitrificação, são recomendadas as cargas de 0,09 a 0,16 kgDBO/m³.d e 0,19 a 0,30 kgDBO/m³.d para, respectivamente, os meios suporte em pedra e em plástico (JORDÃO & PESSOA, 1996).

3.7.1 Filtro Biológico Percolador de Baixa Taxa

Os filtros biológicos são denominados de baixa taxa simplesmente para conceito, pois esta denominação se refere à taxa de aplicação hidráulica, que fica entre 1 a 4 m³/m² dia.

Segundo Von Sperling (1995), dentre as divisões da filtração biológica percoladora os filtros de baixa taxa são os responsáveis pela maior eficiência de remoção de DBO. Nesses sistemas a quantidade aplicada de DBO é menor, sendo assim, ocorre uma menor disponibilidade de alimento, o que resulta em uma estabilização parcial do lodo do reator, já que ocorrerá o auto-consumo da matéria orgânica celular. A eficiência de remoção de carga orgânica nos filtros biológicos percoladores de baixa taxa é comparável à remoção promovida no sistema de lodos ativados convencional, entre 80 a 90%. Apesar de exigir área superficial maior e de apresentar menor capacidade de ajuste às variações do afluente, quando confrontadas ambas as tecnologias, o filtro biológico, pode ser considerado mais simples, além de apresentar baixo consumo energético. Possibilita a nitrificação caso a população nitrificante esteja estabilizada, bem como, se as condições do clima e das características do esgoto forem favoráveis.

O efeito de arraste das partes de sólidos é muito fraco. Os sólidos formados ficam aderentes ao meio suporte em sua maior parte e são constantemente recobertos por novas camadas dos mesmos sólidos. Algumas películas são arrancadas das camadas superiores, mas ficam presas nas camadas inferiores. Desta maneira, fica retido no interior do filtro o lodo orgânico, que aí deve ser estabilizado, tomando parte no consumo de oxigênio (IMHOFF & IMHOFF, 1996).

Devido às baixas taxas aplicadas não se faz necessário à recirculação do efluente para diluição de carga orgânica, porém esta prática pode ser imprescindível em algumas horas do dia, quando a vazão afluente é reduzida, isso com o objetivo de assegurar o constante umedecimento do biofilme prevenindo as rupturas.

A Figura 3.11 apresenta o fluxograma típico do sistema de filtros biológicos percoladores de baixa taxa, onde normalmente não ocorre a recirculação do efluente.

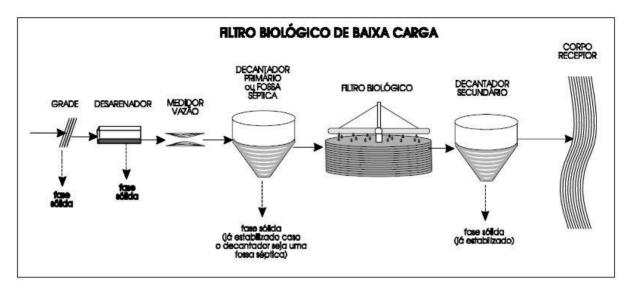


Figura 3.11 – Fluxograma filtro biológico percolador de baixa carga.

Fonte: VON SPERLING, 1995.

Segundo Chernicharo (2001) a modalidade de baixa taxa, quando comparada ao sistema de alta taxa, requer uma maior área superficial, devido à aplicação de menor carga hidráulica. A aplicação de baixa carga hidráulica permite o largo desenvolvimento e a intensa proliferação de moscas (*Psycoda*) na superfície do meio suporte. Odor também pode ocorrer em função de condições sépticas decorrentes da elevada permanência e do não desprendimento do biofilme aderido ao meio suporte.

3.7.2 Filtro Biológico Percolador de Taxa Intermediária

Os filtros de taxa intermediária são projetados com carga hidráulica superior aos filtros de baixa taxa, entre 4 a 10 m³/m² dia. Considerando que o aumento da carga aplicada possa resultar em menor eficiência de remoção, de 50 a 80%, é indicada a recirculação do esgoto tratado. Isso, para manter uniforme a vazão afluente, criando novas oportunidades de estabilização, aumentando o tempo de contato e melhorando a eficiência do sistema. O efluente produzido nesta modalidade de filtração biológica é parcialmente nitrificado e apesar da maior carga

hidráulica aplicada em relação ao de baixa taxa, pode esta modalidade, ainda propiciar o desenvolvimento de moscas como descrito na Tabela 3.5 (CHERNICHARO, 2001; JORDÃO & PESSOA, 1996 e METCALF & EDDY, 2003).

3.7.3 Filtro Biológico Percolador de Alta Taxa

Os FBPs de alta taxa utilizam geralmente materiais plásticos ou leitos de pedra como meio suporte. Segundo as informações apresentadas na Tabela 3.5, os FBPs de alta carga preenchidos com leito de pedra recebem taxa de aplicação orgânica de 0,4 a 2,5 kgDBO/m³.d, quando são utilizadas taxa de aplicação superficial entre 10 e 40 m³/m².d. Quando materiais plásticos são utilizados a taxa de aplicação orgânica de 0,5 a 3,0 kgDBO/m³.d e a taxa de aplicação superficial entre 10 e 75 m³/m².d (CHERNICHARO, 2001; JORDÃO & PESSOA, 1996 e METCALF & EDDY, 2003). As taxas de nitrificação não são elevadas em FBPs de alta taxa. Mesmo com o aumento de taxas de nitrificação com o uso da recirculação do efluente final, a elevação da taxa de aplicação orgânica tende a reduzir o desempenho de FBPs para a remoção de amônia, conforme mencionado na Tabela 3.1.

Em FBPs de alta taxa, a transferência de oxigênio para o biofilme passa a ser um importante fator no processo de nitrificação. Em condições de maior disponibilidade de componentes orgânicos, a espessura do biofilme se eleva pelo crescimento de heterótrofos, influenciando na disponibilidade de oxigênio para nitrificantes. Assim sendo a taxa de aplicação orgânica é um importante fator na nitrificação em sistemas com biofilmes (STENQUIST, 1974).

O efluente produzido nesta modalidade de filtração biológica não é nitrificado e em função da elevada carga hidráulica, os sólidos ainda não estabilizados desprendem-se do meio suporte. A alta carga hidráulica é responsável pelo não desenvolvimento de moscas (METCALF & EDDY, 1991).

Neste caso, a recirculação em razões elevadas é usualmente praticada. Segundo Metcalf & Eddy (1991), a recirculação do efluente do filtro para o próprio filtro permite o retorno de organismos viáveis, tendo-se assim observado o aumento da eficiência do processo de tratamento. A Figura 3.12 apresenta algumas combinações e configurações de sistemas de filtros biológicos de alta taxa.

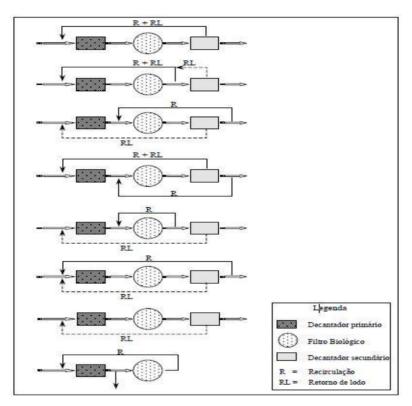


Figura 3.12 – Combinações de sistemas de filtros biológicos de alta taxa.

Fonte: VON SPERLING, 1995.

Os FBPs podem ainda serem utilizados em série, a fim de se melhorar a eficiência ou de tratar esgotos com concentrações mais elevadas (IMHOFF & IMHOFF, 1986 e JORDÃO & PESSOA, 1995).

Entretanto os filtros biológicos percoladores de alta taxa, quando utilizado de leito de pedras, devido à carga orgânica elevada ocorre o entupimento dos espaços vazios, isso devido ao crescimento excessivo do biofilme. Nestas condições podem ocorrer inundações e falhas do sistema.

3.7.4 Eficiência dos FBPs na remoção de matéria orgânica e N-amoniacal

Os FBPs de uma maneira em geral, apresentam bons resultados na remoção de matéria orgânica e nitrogênio amoniacal. O presente item tem como função apresentar as características, faixas de operação, concentrações de afluentes e efluentes de FBPs utilizados no primeiro estágio do tratamento secundário de ETEs em escala plena. O objetivo foi avaliar as faixas operacionais utilizadas para os FBPs e os comportamentos associados a estas faixas para a remoção de NH₄+-N e DBO em um mesmo volume de operação. Cabe ainda lembrar que a recirculação do efluente foi praticada em alguns sistemas.

Em termos de remoção de microrganismos patogênicos nos FBP, a eficiência segue a ordem de 0 a 2 para bactérias e helmintos e de 0 a 1 para vírus e protozoários em unidades logarítmicas (VON SPERLING, 1995).

A Tabela 3.8 sistematiza as características operacionais e os respectivos desempenhos dos FBPs pós-decantadores primários.

Tabela 3.8 – Características operacionais dos FBPs.

	Condi	Condições operacionais	5		Carac	terísticas do filtro percolador	Características do filtro biológico percolador	Concentrações afluentes	rações tes	Concentraç [eficiência de	Concentrações efluentes eficiência de remoção - %]	Taxa de rer amor	Faxa de remoção de N- amoniacal	
Vazão	3	000	TAS	Temp.	altura	Volume	Meio suporte	080	N.Y.	DBOs	NTHN	Superficial	Volumetrica	Referencia
m3.d-1	kgDBO.m-3.d-1	gDBO.m-2.d-1	m3.m-2.d-1	ပ္	ш	m ₃	m².m³	mg.L-1	mg.L-1	mg.L-1	mg.L-1	gN.m-2.d	kgN.m-3.d	
12,39	1,18-1,78	26,30	12,5	15-19	2,10	2,1	Escória (40)	200-300	53,1	174 [30]	52,1 [2]		•	Bruce & Merkens (1970)
1324,9	0,19	1,91 7,3 17-21	7,3	17-21	8,5	1556,0	1556,0 Plástico (96,3) 127,0 17,4	127,0	17,4	10,0 [92]	[96] 2'0	0,15	10,0	USEPA (1991)
7684,4	0,12	1,17	23,0	17-20	5,2	1678,8	Plástico (96,3)	62,0	14,0	7,5 [88]	1,7 [88]	95'0	90'0	USEPA (1991)
31116,0	1,19	12,21	42,7	17-19	8,6	7113,2	Plastico (96,3)	122,0	13,1	50,0 [59]	10,0 [24]	0,14	10,0	USEPA (1991)
7116,6	0,18	2,69	2,0	23-28	2,9	4139,0	Escória (50)	101,0	20,0	7,4 [93]	2,6 [87]	09'0	0,03	USEPA (1991)
2082,0	2082,0 0,09 0,78	8,70	22,7	17-18	8'6	896,4	Plastico (109,4)	40,4	8.8	10,6 [54]	1,1[87]	0,16	0,02	USEPA (1991)
	0,09-0,20	7,2-7,0	7.23	17.30			×	40-130	8-20	7-10 [88-93]	0,7-2,6 [87-96]	0,15-0,60	0,01-0,06	Faixa de operação e concentrações*

De acordo com a tabela acima os sistemas que operaram com COVs entre 0,09 e 0,20 kgDBO.m⁻³.d⁻¹ (0,7-2,7 g DBO.m⁻².d⁻¹) foram capazes de efetuar reduções substanciais de concentrações de amônia, com eficiências de remoção de NH₄+-N em torno de 85 e 95%. As taxas volumétricas de nitrificação estiveram em torno de 0,01 a 0,06 gN.m⁻³.d⁻¹.

Tais valores são significativamente divergentes do observado por Daigger *et al.* (1994); *apud* Almeida (2012), em que sistemas operando com COV entre 0,20-0,40 kgDBO.m⁻³.d⁻¹ obtiveram taxas volumétricas de nitrificação entre 0,5-1,0 kg N.m⁻³.d⁻¹. Nos FBPs onde a remoção de N-amoniacal foi maior que 80% as TAS estiveram entre 5,3 e 23,3 m³.gDBO.m⁻².d⁻¹. Nos sistemas com COV's em torno de 1,0 kgDBO.m⁻³.d⁻¹ a remoção de amônia por nitrificação não ocorreu.

3.7.5 Produção de lodo

Em geral a produção de lodo nas ETEs que utilizam o sistema UASB / FBP realizam a pratica de recircular o lodo secundário, proveniente dos decantadores secundários, para o reator UASB. Isto se deve ao fato de que lodos secundários provenientes de processos aeróbios possuem uma grande quantidade de matéria orgânica biodegradável, na forma de sólidos suspensos voláteis, que devem ser digeridos (estabilizados) e adensados antes de seu descarte final (NASCIMENTO et al., 2001).

O lodo produzido em reatores anaeróbios não requer tratamento para a estabilização antes do desaguamento. Este fato, aliado a redução do volume de lodo produzido, que se situa na faixa de 1/6 da produção de lodo em sistema aeróbios, torna o tratamento e destino de lodo em sistema de tratamento anaeróbio muito mais simples do que em sistemas de tratamento aeróbio (AISSE et al., 1999).

Na etapa biológica do tratamento de esgotos, parte da DQO removida é convertida em biomassa, que vem a formar o lodo biológico. A produção de lodo

secundário (biológico) deve ser estimada tendo por base os coeficientes cinéticos e estequiométricos do processo biológico adotado, o lodo é composto de: sólidos biológicos e sólidos inertes do esgoto bruto (VON SPERLING & GONÇALVES, 2001).

A estimativa da produção de lodo em filtros biológicos percoladores pode ser feita por meio da seguinte equação:

$$P_{lodo} = Y \times DQO_{remov}$$
 (8)

Na qual:

Plodo: produção de lodo no FBP (kgSST/d).

Y: coeficiente de produção de lodo no FBP (kgSST/kgDQOremovida).

DQO_{remov}: massa de DBO removida no FBP (kgDQO/d).

A produção de lodo num reator UASB normalmente está na faixa de 0,07 a 0,39 KgST/KgDQO_{removida} de 0,05 a 0,28 KgST/KgDQO_{aplicada} e de 0,03 a 0,21 KgSV/KgDQO_{aplicada}, dependendo da composição do esgoto bem como das condições operacionais do reator (VERONEZ, 2001)

Os valores de Y observados nos sistemas de tratamento biológico com biofilme, trabalhando com alta taxa, sem nitrificação, apresentam uma produção de lodo na faixa de 0,8 a 1,0 kg SS/kgDBO removida e com relação SSV/SS = 0,75 a 0,85. Esta estimativa de produção de lodo tem-se mostrado adequada para o tratamento de efluentes de reatores UASB em FBP. Os sólidos suspensos do efluente do FBP são normalmente removidos em decantadores secundários convencionais (VERONEZ, 2001).

A avaliação da produção volumétrica de lodo pode ser feita a partir da seguinte equação:

$$V_{lodo} = P_{lodo} / \sqrt{x} C$$
 (9)

na qual:

V_{lodo}: produção volumétrica de lodo (m³/d).

Plodo: produção de lodo no FBP (kgSST/d).

√: densidade do lodo (usualmente da ordem de 1000 a 1040 kg/m³).

C: concentração do lodo removido do decantador secundário (usualmente na faixa de 1 a 2%)

O lodo de esgoto pode ser submetido a diferentes tipos de adensamento. estabilização, condicionamento e desidratação antes de sua disposição final. A estabilização é utilizada para a redução de massa de lodo, redução de microrganismos patogênicos e controle de odores, enquanto que o adensamento, o condicionamento, a desidratação e a secagem, para a remoção de água e redução de volume de lodo (VERONEZ, 2001).

3.8 PARÂMETROS DE PROJETO

Nesse item serão abordados fatores que afetam diretamente o processo de nitrificação, os parâmetros de dimensionamento de um filtro biológico percolador: as taxas de aplicação superficiais (TAS), cargas orgânicas volumétricas (COV) e recirculação do efluente final.

3.8.1 Taxa de Aplicação Superficial (TAS)

A taxa de aplicação hidráulica superficial refere-se à quantidade de esgotos aplicados diariamente ao filtro, por unidade de área do meio suporte.

$$Q_s = Q/A$$
 (10)

Qs: taxa de aplicação hidráulica superficial (m³/m².d).

Q: vazão afluente (m³/d).

A: área da superfície livre do meio suporte (m²).

Para FBPs de alta taxa, a carga hidráulica é essencial para que ocorra o efeito de lavagem, necessário para este tipo de filtro.

Algumas das descobertas realizadas por pesquisas no âmbito do PROSAB, com FBPs de alta taxa utilizados para o pós-tratamento de efluentes de reatores UASB, tem-se observado que os FBP são capazes de produzir efluentes que atendem aos padrões de lançamento estabelecidos pelos órgãos ambientais, em termos de concentração de DBO e sólidos suspensos, quando os mesmos são operados com TAS máximas da ordem de 20 a 30 m³/m² dia.

Caso a TAS seja aumentada somente em função do incremento da vazão afluente (sem recirculação do efluente final) as remoções de N-amoniacal e de matéria orgânica podem reduzir-se já que a relação DBO:NTK também é reduzida não somente em função do consequente incremento da COV aplicada, mas pelos menores tempos de detenção hidráulica, diminuindo o tempo de contato entre o substrato e a biomassa (TCHOBANOGLOUS *et al.*, 2003; *apud* ALMEIDA, 2012). O incremento nas taxas de reação para conversão da matéria orgânica, em qualquer ponto do FBP, não é suficiente para compensar o decréscimo do tempo de residência do líquido no reator. As perdas de biomassa por aumento das tensões de cisalhamento no biofilme também podem figurar como um fator, em termos da redução da fração volumétrica de nitrificantes no reator (GRADY & LIM,1980).

3.8.2 Cargas Orgânicas Volumétricas (COV)

A carga orgânica volumétrica refere-se à quantidade de matéria orgânica aplicada diariamente ao filtro biológico, por unidade de volume do meio suporte.

$$C_v = \underline{Q_{med} \times S_a} \qquad (11)$$

C_v: carga orgânica volumétrica (kgDBO/m³.d).

Qméd: vazão média afluente (m³/d).

Sa: concentração de DBO do esgoto afluente (kgDBO/m³).

V: volume ocupado pelo meio suporte (m³).

As pesquisas realizadas no âmbito do PROSAB têm indicado que os FBP são capazes de produzir efluentes que atendem aos padrões de lançamento estabelecidos pelos órgãos ambientais, em termos de concentração de DBO, quando os mesmos são operados com cargas orgânicas volumétricas máximas da ordem de 0,5 a 1,0 kgDBO/m³.d.

Em FBPs com remoção combinada de matéria orgânica e nitrogênio amoniacal a COV influência na nitrificação, como citado em itens anteriores. Para uma eficiência de 90% na remoção de NH₄+-N a COV aplicada deve ser aproximadamente de 0,08 kgDBO.m⁻³.d⁻¹. Em sistemas com COV aplicadas de 0,22 kgDBO.m⁻³.d⁻¹ a eficiência esperada é de 50%. Tal fato evidencia a necessidade de utilização de FBPs de baixa taxa para a remoção combinada de matéria orgânica e N-amoniacal (TCHOBANOGLOUS *et al.*, 2003; *apud* ALMEIDA, 2012).

A partir do estudo mencionado e outras experiências USEPA (1993) conclui-se que FBPs preenchidos com meios suportes de maior área superficial específica podem receber maiores COVs, caso a recirculação seja adotada (a recirculação atua no molhamento efetivo de um meio suporte).

Resguardadas as condições adequadas em termos de pH, temperatura e aeração, as baixas COVs, situadas entre 0,10-0,40 kg DBO.m⁻³.d⁻¹ podem estimular o desenvolvimento de micro-organismos nitrificantes em sistemas com biofilme (LE BIHAN & LESSARD, 2003; *apud* ALMEIDA, 2012).

Tchobanoglous *et al.* (2003) propõem faixas típicas de cargas orgânicas e de NTK aplicadas para sistemas de remoção combinada de matéria orgânica e N-amoniacal de acordo com a Tabela 3.9. Os valores apresentados na tabela referem-se a experiências com FBPs tratando efluentes de decantadores primários.

Tabela 3.9 – Cargas tipicamente aplicadas em FBPs para remoção de matéria orgânica e NH₄₊-N.

Carga	orgânica aplicada		sperada para o efluente Inal
Unidade	Faixa típica	Unidade	Faixa típica
kgDBO.m ⁻³ .d ⁻¹	0,1-0,3	mgDBO.L ⁻¹	<10
gNTK.m ⁻² .d ⁻¹	0,2-1,0	mg NH₄N.L ⁻¹	<3

Fonte: Adaptado de TCHOBANOGLOUS et al., 2003.

USEPA (1993) apud Almeida (2012) apresenta eficiências de remoção de nitrogênio amoniacal baseado nos resultados de vários sistemas que empregam FBPs preenchidos com leitos de pedras em escala plena e piloto, atuando com e sem recirculação do efluente final. A Tabela 3.10 mostra algumas eficiências de remoção e concentrações médias esperadas de NH₄+-N em função da COV aplicada no sistema.

Tabela 3.10 – Cargas orgânicas aplicadas em FBPs preenchidos com pedras e possíveis eficiências e concentrações efluentes de N-amoniacal.

Eficiência mínima esperada* (%)	COV (Kg DBO m ⁻³ .d ⁻¹)	Concentração efluente NH₄⁺-N (mg N.L ⁻¹)	Cumprimento a um padrão de lançamento de 20 mgN.L ⁻¹
0	0,80	40,0	Fora do padrão
16	0,40	21,0	Fora do padrão
20	0,37	20,0	Dentro do padrão
32	0,30	17,0	Dentro do padrão
49	0,20	12,7	Dentro do padrão
90	0,08	4,0	Dentro do padrão

Fonte: USEPA, 1993.

Considerando as estimativas reportadas por USEPA (1993), observa-se que para as COVs situadas em torno de 0,40 kgDBO.m⁻³.d⁻¹ a remoção de NH₄+-N pode não ocorrer de forma satisfatória, considerando um padrão de lançamento de 20mgN.L⁻¹. No entanto, ressalta-se que tais estimativas basearam-se em eficiências mínimas esperadas, havendo, portanto, a possibilidade de melhores desempenhos, uma vez que a região delimitada pelas curvas de máxima e mínima eficiência possui considerável amplitude.

3.8.3 Recirculação do efluente final

A recirculação do efluente final tem sido percebida como uma importante estratégia para melhoria de desempenho na remoção de NH₄+-N em FBPs. As finalidades associadas à recirculação são (TCHOBANOGLOUS, *et al.*, 2003; VON SPERLING, 2005; *apud* ALMEIDA, 2012):

- Aumentar o tempo de detenção do líquido no sistema;
- Garantir o maior aproveitamento da área superficial do meio suporte;
- Possibilitar um novo contato entre componentes solúveis e a biomassa;
- Efetuar a diluição do esgoto a ser tratado, reduzindo as relações DBO/OD no afluente:
- Induzir a remoção do excesso de biomassa por condições hidrodinâmicas mais intensas.

O último item citado acima (condições hidrodinâmicas) está associado à resistência à transferência de massa no biofilme, e parece possuir essencial relação com o aumento do fluxo de NH₄+-N pela matriz microbiana (BOLTZ *et al.*, 2011).

3.9 ESTUDOS HIDRODINÂMICOS DE REATORES

O estudo hidrodinâmico das unidades de tratamento permite verificar a existência e quantificar os volumes de zonas mortas e curto-circuito dentro dos reatores. Através desses valores é possível obter as curvas de distribuição do Tempo de Detenção Hidráulico (TDH), isto é conhecer a fração de efluente que permanece na unidade de tratamento, para cada tempo de detenção.

O estudo hidrodinâmico tem fundamental importância na avaliação do desempenho dos reatores biológicos, principalmente no que tange a otimização de sua geometria, já que permite um maior conhecimento dos mecanismos hidráulicos, pode detectar falhas operacionais. Uma das aplicações mais importantes refere-se ao uso das curvas de distribuição do TDH no aprimoramento do projeto de unidade de tratamento, de maneira a diminuir as zonas mortas, curto-circuito e fluxo preferencial proporcionando assim um maior aproveitamento do volume útil do reator (CARVALHO et al., 2008).

O comportamento hidrodinâmico pode ser analisado a partir de estudos utilizando traçadores. Estes estudos consistem em obter informações sobre a distribuição do tempo de residência do fluido que está escoando através da técnica experimental de estímulo-resposta (BOLLE *et al.*, 1986; LEVENSPIEL, 2000).

3.9.1 Uso de traçadores em estudo hidrodinâmicos

Traçadores são substâncias, cuja presença no líquido pode ser detectada com precisão e cujas características permanecem inalteradas na unidade de tratamento, durante a realização dos ensaios em que são utilizadas.

Desta forma uma determinada substância pode ser um excelente traçador para uma unidade de tratamento e inadequado para outras. Assim, cuidados especiais devem ser tomados na escolha do traçador para estudos hidrodinâmicos de unidades

de tratamento biológico ou físico-químico, pois fenômenos tais como, adsorção no lodo ou no meio suporte, e reações químicas ou bioquímicas envolvendo o traçador, não podem ocorrer durante o ensaio.

Em geral, o traçador ideal possui as seguintes propriedades:

- É facilmente miscível no líquido e não altera significativamente, as características do escoamento do fluido na unidade, nem suas propriedades, tais como, densidade, viscosidade, temperatura, etc;
- Não afeta a velocidade das reações químicas que ocorrem na unidade, nem provoca inibição ou toxicidade na biomassa presente em unidades de tratamento biológico, não alterando a velocidade ou as taxas das reações bioquímicas;
- Em reatores heterogêneos e multifásicos, como é a maioria dos reatores biológicos, o traçador não se transfere de uma fase para outra durante o ensaio;

A escolha do traçador apropriado não é tarefa fácil, principalmente para unidade de tratamento biológico, sendo, a adsorção pela biomassa, um dos problemas sérios a ser enfrentado durante o ensaio. Em reatores de leito fixo, a difusão do traçador no leito poderá alterar as respostas do reator, modificando as curvas de Distribuição do Tempo de Retenção (DTR), (LEVENSPIEL, 2000).

Experimentos de laboratório demonstram que problemas com a DTR surgem a partir do traçador empregado ao invés da técnica do traçador de traçagem. Sendo assim, os traçadores adaptados aos reatores biológicos devem ser estudados e, de acordo com suas condições operacionais, estes devem obedecer aos seguintes critérios:

- Evite o fenômeno da cauda na curva DTR;
- Nenhuma absorbância em biomassa (isto significa também nenhuma biodegradabilidade a curto prazo);

- Nenhuma adsorsão em bolhas de gás, tais como: CO₂, O₂, CH₄ ou N₂;
- Estabilidade sob condições de processo (pH e redox);
- Estabilidade com o tempo;
- Solubilidade em água/água residuária;
- Uma faixa de concentração com uma resposta linear e boa sensibilidade.

3.9.1.1 Método estímulo-resposta

O método de estímulo-resposta consiste em adicionar quantidade conhecida de traçador no ponto de entrada de vazão afluente do reator, e medir a concentração do traçador no efluente do reator em intervalos de tempo conhecidos, obtendo-se a denominada curva C, que relaciona a concentração de traçador com o tempo (LEVENSPIEL, 2000).

Vários tipos de experimentos podem ser empregados, tais como aleatório, pulso, degrau, dentre outros. A técnica de estímulo-resposta tipo pulso é mais utilizada devido à simplicidade e facilidade na interpretação dos resultados.

Obtidas as condições de escoamento permanente, o traçador pode ser injetado de duas maneiras mais usuais:

- na forma instantânea (pulso), que consiste em adicionar-se pequeno volume da solução de traçador, em intervalo de tempo muito curto, na entrada da unidade, passando-se a medir sua concentração na saída;
- na forma contínua, que consiste em alimentar a unidade durante período de tempo pelo menos três vezes maior que o TDH, com afluente contendo concentração conhecida do traçador, medindo-se sua concentração na saída a partir do início do teste.

A Figura 3.13 representam os diferentes regimes hidráulicos e a Figura 3.14 suas respectivas respostas a aplicação do traçador.

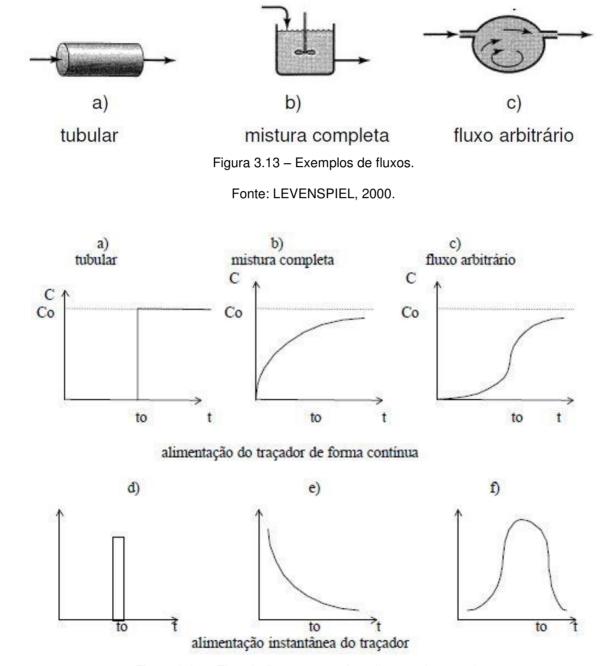


Figura 3.14 – Tipo de fluxo para cada aplicação de traçador.

Fonte: Adaptado LEVENSPIEL, 2000.

A determinação do melhor regime hidráulico que explica o comportamento de um reator depende das condições de fluxo e do padrão de mistura que ocorrem no seu interior. Os reatores podem ter fluxo intermitente ou fluxo contínuo. Dentre os reatores de fluxo contínuo destacam se os regimes de fluxo em pistão, mistura completa, fluxo disperso e associações de células em série e/ou em paralelo sendo os dois primeiros, idealizações teóricas (LEVENSPIEL, 2000).

O escoamento pistonado ideal é aquele em que as moléculas do fluido atravessam o equipamento com a mesma velocidade, movendo-se de maneira ordenada não havendo mistura por dispersão axial. Já o escoamento de mistura completa caracteriza-se por apresentar composição homogênea, proporcionada pela agitação dos fluidos, obtendo-se a concentração na saída do reator igualada à concentração do interior do tanque.

Na prática, os regimes de escoamento pistonado e mistura completa dificilmente ocorrem, visto que são idealizações perfeitas de comportamento cinético e hidráulico. Os modelos não ideais incorporam desvios da idealidade ocasionados por fenômenos de escoamento que podem ocorrer no interior dos equipamentos e são úteis para representar escoamentos em reatores reais. Os modelos dependem de quão próximo o escoamento esteja do escoamento pistonado, do escoamento de mistura perfeita, ou em algum outro escoamento entre esses dois modos (LEVENSPIEL, 2000).

3.9.2 Curva C – resposta à injeção tipo pulso

Se na entrada do reator for aplicada uma injeção tipo pulso, como ilustrado na Figura 3.15, a resposta do sistema a este sinal é denominada curva C.

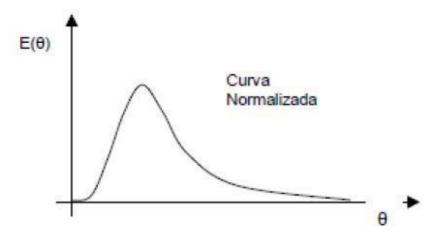


Figura 3.15 – Representação da curva C.

Fonte: SASSAKI, 2005.

Pode-se também avaliar a segurança dos traçadores através do comportamento das curvas DTR (graus de dispersão), obtidas do estudo destes (técnicas estímulo-resposta), determinando-se o tempo de residência médio (t), a variância (σ_2) e a quantidade de traçador detectada (C_{om}).

O método do traçador consiste na introdução de uma certa quantidade desta substância na corrente principal do fluido. Pode-se obter, dessa forma, a curva que registra a distribuição das idades dos elementos que deixam o reator, chamado de curva C, através das determinações das concentrações do traçador em diversas amostras coletadas sequencialmente. De posse do gráfico concentração-tempo (curva C), pode-se estimar a área sob a curva, denotada por Q, determinando assim a idade de saída de cada amostra através da equação (12).

$$E = \frac{C}{Q}$$
 (12)

Onde *C* representa a concentração de cada amostra. A área sob a curva pode ser estimada pela equação (13).

$$Q = \int_{0}^{\infty} C(t).dt \tag{13}$$

Porém, caso se disponha de poucos pontos, pode-se empregar a simplificação mostrada pela equação (14).

$$Q = \sum_{i=1}^{n} C_i(t) . \Delta t_i$$
(14)

O tempo médio de residência do fluido é calculado pela equação (15).

$$\bar{t} = \frac{\int_0^\infty t \cdot C(t) dt}{\int_0^\infty C(t) dt}$$
(15)

Para o caso de se dispor de poucos valores experimentais, pode-se empregar a equação (16).

$$\bar{t} = \frac{\sum_{i=1}^{n} t_i \cdot C_i(t) \cdot \Delta t_i}{\sum_{i=1}^{n} C_i(t) \cdot \Delta t_i}$$
(16)

Introduz-se neste ponto o conceito de variância (σ^2) representando o efeito de dispersão da distribuição. Trata-se de um parâmetro estatístico, que pode ser calculado pela equação (17).

$$\sigma^{2} = \frac{\sum_{i=1}^{n} t_{i}^{2} \cdot C_{i}(t) \cdot \Delta t_{i}}{\sum_{i=1}^{n} C_{i}(t) \cdot \Delta t_{i}} - \bar{t}^{2}$$
(17)

De uma maneira geral, se o valor da variância (σ^2) é grande, tem-se uma grande dispersão, e o desvio da idealidade é grande. Por outro lado, se o valor for pequeno, tem-se pouca dispersão e pequeno desvio da idealidade.

O fenômeno de dispersão é descrito matematicamente pela seguinte equação diferencial:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial X^2}$$
 (18)

Onde D é o coeficiente longitudinal ou axial de dispersão, que caracteriza o grau de mistura durante o escoamento. Na forma adimensional, pode-se ter:

$$\frac{\partial C}{\partial \theta} = \left(\frac{D}{uL}\right) \frac{\partial^2 C}{\partial x^2} - \frac{\partial C}{\partial t}$$
(19)

Onde *D/uL* representa o número de dispersão axial, que também pode medir a extensão da dispersão. Se *D/uL* tende a zero, a dispersão é desprezível, caracterizando um regime de escoamento tubular, e se *D/uL* tende a valores muito grandes, a dispersão é grande, portanto escoamento em mistura.

Se um impulso ideal é fornecido a um fluido que está escoando, observar-se-á uma modificação nesse impulso devido à dispersão. Para dispersões de pequenas intensidades, a curva *C* obtida é razoavelmente simétrica e o número de dispersão axial pode ser estimado pela equação (20).

$$\sigma_{\theta}^{2} = \frac{\sigma^{2}}{\frac{1}{t}} = 2\left(\frac{D}{uL}\right) \tag{20}$$

Por outro lado, se as dispersões são de grande intensidade, ocorrendo em recipiente fechado, a curva *C* pode ser obtida por métodos numéricos e o número de dispersão axial pode ser estimado pela equação (21).

$$\sigma_{\theta}^{2} = \frac{\sigma^{2}}{\overline{t}^{2}} = 2\left(\frac{D}{uL}\right) - 2\left(\frac{D}{uL}\right)^{2} \left(1 - e^{-uL/D}\right) \tag{21}$$

Para dispersão de grande intensidade verificada em experimentos realizados em recipientes abertos, a curva C é afetada pelas condições no ponto de injeção através de dois mecanismos:

- Registra-se o traçador à proporção que ele passa pelo ponto de medida;
- Coleta-se o traçador numa sucessão de recipientes e determina-se sua quantidade em cada um deles.

Nesse caso, o número de dispersão axial pode ser estimado pela equação 22.

$$\sigma_{\theta}^{2} = \frac{\sigma^{2}}{\overline{t}^{2}} = 2\left(\frac{D}{uL}\right) + 8\left(\frac{D}{uL}\right)^{2} \tag{22}$$

Levenspiel (2000) explana que o fluido escoa de forma uniforme através do reator no modelo de dispersão, ou seja, não há mistura ou difusão ao longo do caminho de escoamento. Esse tipo de escoamento pode ser subdivido em dispersão de pequena intensidade e grande intensidade, indicado pelo parâmetro D/μL.

Ainda de acordo com Levenspiel (2000) o número de dispersão indica o grau de mistura e quando este tende ao infinito (D/ μ L -> ∞) indica que o fluxo tende a um sistema perfeitamente misturado; e quando o número de dispersão tende a zero (D/ μ L -> 0), tem-se um sistema ideal de fluxo em pistão. Nos modelos de dispersão tem-se:

dispersão de pequena intensidade quando (0 < D/ μ L < 0,002); intermediária quando (0,002 ≤ D/ μ L < 0,025); e de grande intensidade quando (0,025 ≤ D/ μ L < 0,2).

3.10 NÃO TECIDO SINTÉTICO

Por muito tempo as únicas formas utilizadas para a obtenção de tecidos eram por tecelagem ou malharia (REWALD, 1999 *apud* ARANTES, 2010). Uma nova classe de estrutura têxtil foi desenvolvida nos últimos tempos, sendo conhecida por têxteis não tecidos (FERRAZ, 2001), hoje renomeados como não tecido sintético.

De acordo com Muñoz (2005) diferente do que era proposto nos tecidos sintéticos, os não tecidos possuem estrutura plana, flexível e porosa, são fabricados diretamente em estruturas têxteis, constituídos por fibras cortadas ou filamentos contínuos ou por polímeros que, distribuídos aleatoriamente, são interligados por processos mecânicos (fricção), térmicos (coesão por calor ou pressão) ou químicos (adesão através do uso de resinas). A Figura 3.13 apresenta a imagem de duas estruturas de não tecido sintético diferenciados pelo processo de fabricação.

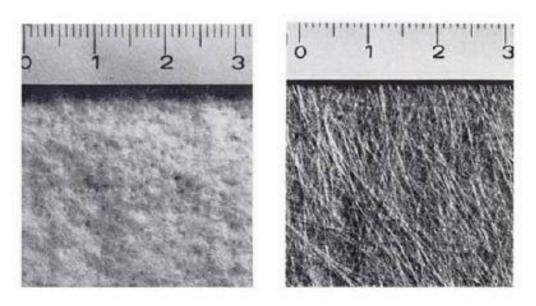


Figura 3.16 – Exemplos de não tecido sintético.

Fonte: VAN SANTVOORT, 1994.

As propriedades dos não tecido sintéticos como massa específica, superfície específica, porosidade e condutividade hidráulica são resultados das condições de produção dos mesmos, como número e diâmetros das agulhas e frequência com que estas incidem durante o processo de fabricação (FERRAZ, 2001).

Segundo Ferraz (2001) diversas matérias primas podem ser utilizadas na fabricação dos não tecido sintéticos como: fibras ou filamentos naturais, artificiais ou sintéticos, com diâmetros e títulos, seções e comprimentos bastante variados. Paterniani (1991) afirma que os não tecidos sintéticos possuem inúmeras finalidades no sistema de filtração de água e esgoto. Para que as mesmas sejam utilizadas recomendam-se estudos específicos utilizando combinações de não tecidos sintéticos com diferentes características, principalmente, carga hidráulica, porosidade, espessura e superfície específica com o intuito de aperfeiçoar o processo.

Particularmente em relação ao processo de filtração, os geotêxtis não tecidos sintéticos apresentam uma propriedade que não se observa em geotêxtis tecidos. Como o grupo de não tecido sintético é produzido a partir do agrupamento de fibras ou filamentos em múltiplas direções, a retenção das partículas em suspensão na água não ocorre apenas devido ao contato com a superfície da malha, pois também envolve a retenção de materiais ao longo da espessura da manta. Assim, as três direções (3D) desses geotêxtis (comprimento, largura e espessura) promovem a retenção de partículas, enquanto que esse processo fica restrito a duas direções (2D) em geotêxtis tecidos (comprimento e largura).

Para utilização em sistemas de filtração o mais indicado são não tecidos sintéticos geralmente fabricados com fibras de polipropileno, poliamida e poliéster, possuem alta porosidade (cerca de 80 a 90%) comparada a outros meios filtrantes, como por exemplo, a areia com 45% de porosidade, bem como, alta superfície específica que proporcionam pequena perda de carga, com consequente elevação da duração da carreira de filtração, além de maior volume de vazios para retenção de

impurezas, sem deixar de citar a maior durabilidade desses materiais a possível degradação no meio filtrante (PATERNIANI, 1991).

O uso de não tecidos sintéticos combinados a um sistema de filtração com baixa carga hidráulica foi intensamente pesquisado por (PATERNIANI, 1991). Esse estudo permitiu chegar às seguintes conclusões:

- O uso de não tecidos sintéticos na filtração lenta aumenta de um até três vezes a duração de carreira do filtro;
- Não tecidos sintéticos com menor superfície específica conduz a carreira de filtração mais longa, embora não previnam a penetração de impurezas no meio filtrante;
- Já os não tecidos sintéticos com maior superfície específica evita a ocorrência de penetração de impurezas na areia, mas proporciona fatores de diminuição na duração da carreira de filtração;
- Verificou-se que após três anos de uso consecutivo, as mantas não apresentaram qualquer sinal de desgaste ou deterioração, demonstrando grande resistência e durabilidade para uso na filtração lenta.
- A operação de limpeza do filtro é bem mais simples com o uso de não tecidos sintéticos, se for evitada a entrada de impurezas no restante no meio filtrante.

Em pesquisas utilizando não tecidos sintéticos, Paterniani (1991) pode concluir que o emprego desse material possibilita aumentos de 1,1 a 3,6 vezes na duração das carreiras de filtração. Além disso, a limpeza mostrou-se ser bem mais simples com o uso de não tecidos sintéticos, quando foi evitada a penetração de impurezas na areia.

As tabelas 3.11, 3.12 e 3.13 apresentam as principais características dos não tecidos sintéticos que podem ser utilizados de acordo com as especificações de cada fabricante.

Tabela 3.11 – Características do não tecido sintético GEOFORT Geotêxtil.

Propriectacles	R	Especificações Técnicas											
Resistència à Tração em Faixa Larga en Resistència ao Rasgo de ASTMD 4451 2 1 N		Propriedades	Norma	ā		GF8/150	GF9/180	GF10/200	GF14/250	GF16/300	GF21/400	GF26/500	GF31/600
Resistència à Tração ABNT NBR 12824 4% >70 >						8	6	10	14	16	21	56	31
Resistência ao Rasgo ASTM D 44513 In Mode Funcionamento - CBR ASTM D 4451 In Mode Fusionamento - CBR ASTM D 4451 In Mode Fusionamento - CBR In M		Resistência à Tração				>70	>70	>70	>70	>70	>70	>70	>70
Resistência ao Resgo ASTM D4533 R. >70 </th <th>SADI</th> <td>em Faixa Larga</td> <td></td> <td></td> <td></td> <td>7</td> <td>80</td> <td>6</td> <td>12</td> <td>14</td> <td>19</td> <td>23</td> <td>27</td>	SADI	em Faixa Larga				7	80	6	12	14	19	23	27
Resistência ao Rasgo ASTM D 4533 T 160 200 240 260 300 340 540 570 Resistência ao Raszoidal Trapezoidal Puncionamento - CBR ABNT NBR 13359 kN 1,70 1,30 1,55 1,80 2,35 2,60 3,60 4,90 Permeabilidade Normal ASTM D 4491 s² 2,35 2,1 1,85 1,77 1,48 1,31 1,02 6,87 Permeabilidade Normal ASTM D 4491 cm/s 0,4 <th>иÂЭ</th> <td></td> <td></td> <td></td> <td></td> <td>>70</td> <td>>70</td> <td>>70</td> <td>>70</td> <td>>70</td> <td>>70</td> <td>>70</td> <td>>70</td>	иÂЭ					>70	>70	>70	>70	>70	>70	>70	>70
Trapezoidal ASTIN D 4301 L N 170 220 260 350 420 620 800 Resistência Puncionamento - CBR ABNT NBR 13359 kN 1,20 1,30 1,55 1,80 2,35 2,60 3,60 4,90 Permissividade ASTM D 4491 cm/s 0,4	aM.	Resistência ao Rasgo			160	200	240	260	300	340	540	720	770
Resistência Pundonamento - CBR ABNT NBR 13359 kN 1,20 1,30 1,55 1,85 1,78 2,35 2,60 3,60 4,90 Permissividade ASTM D 4491 cm/s 0,4 <th></th> <td>Trapezoidal</td> <td></td> <td></td> <td>170</td> <td>220</td> <td>260</td> <td>280</td> <td>350</td> <td>420</td> <td>620</td> <td>800</td> <td>086</td>		Trapezoidal			170	220	260	280	350	420	620	800	086
Permissividade ASTM D 4491 s¹ 2,35 2,1 1,85 1,77 1,48 1,31 1,02 0,87 0,87 0,4 0,		Resistência Puncionamento - CBR	ABNT NBR 13359	₹		1,30	1,55	1,80	2,35	2,60	3,60	4,90	00'9
Permeabilidade Normal ASTM D 4491 cn/s 0,4	SA	Permissividade	ASTM D 4491	S		2,1	1,85	1,77	1,48	1,31	1,02	0,87	0,74
Transmissividade ASTM D 4716 m²/s 6,00E-06 8,00E-06 1,10E-05 1,20E-05 1,50E-05 1,80E-05 1,80E-05 1,0E-05 1,0E-05 1,0E-05 1,80E-05 1,80E-05 1,0E-05 1,	NLIC	Permeabilidade Normal	ASTM D 4491	cm,		0,4	0,4	0,4	6,4	6,4	0,4	0,4	0,4
Abertura de Filtração (095) AFNOR G 38017 µm 160 150 140 130 120 110 80 70 Retenção de Asfalto Task Force 25#8 I/m² 1,3 1,5 1,8 2 m m m 100 m 100 m 100 m 100% Poliéster - 260°C / 100% Polipropileno - 165°C 100 100 100 100	ÀЯО	Transmissividade	ASTM D 4716	m²/		2,00E-06	8,00E-06	90-300'6	1,10E-05	1,20E-05	1,50E-05	1,80E-05	2,10E-05
Retenção de Asfalto Task Force 25#8 I/m² 1,3 1,5 1 Comprimento Bobina* m Largura Bobina* m Matéria Prima Ponto de Fusão	IH	Abertura de Filtração (095)	AFNOR G 38017	ш		150	140	130	120	110	80	70	09
Comprimento Bobina* m Largura Bobina* m Matéria Prima Ponto de Fusão		Retenção de Asfalto	Task Force 25#8	l/m		1,5	1,8	2					
Largura Bobina* Matéria Prima Ponto de Fusão	S	Comprimento Bobi	ina*	Ε					100				
Matéria Prima Ponto de Fusão	/DIS	Largura Bobina ³	*	E					2,15 E 4,30				
	Ħ	Matéria Prima						100% Poliés	ster ou 100%	6 Polipropiler	Ot.		
		Ponto de Fusão	0				100%	Poliéster - 26	50°C / 100%	Polipropilent	o - 165°C		

(Fabricante OBER S/A).

Tabela 3.12 - Características do não tecido sintético GEONIL - GAMA GX.

GEONIL® - GAMA GX	9 -	AM	AG	×					Ge	ofēxi	ž	io-Te	ecido	Agu	ullhac	do 11	%00	Polip	ropii	leno	Alt	a Ter	Geotēxtii Não-Tecido Agulhado 100% Polipropileno. Alta Tenacidade com Tratamento Anti-UV.	ade	Com	Trat	аше	nto A	Anti-L	Š			
PETEX 8.4 Apartele 08, 201-409 Cartain - POETUGAL Fig. 450, 345, 701 (10 - Fax -351 343 701 (135 e-rent epsisteographs.com	PETEX Spartadi Tel: +35	IPETEX, S.A. Apartado 68, 2071-909 Ca 1741 - 351 343 701 100 - e-miti geomogelex, com	100 Cart.	2x - 351 2	108A	8							V	۳.	Ē.,,	1029 05	Produtes de Construção 1029 06	085								in .	Sistema de Gestão da Qualidade ISO 9001-2006 certificado por	Se Gestilo da O ISO 9001,2008 certificado por	2008 2008 pper	epepili epepili	0	(O)	
CARACTERISTICAS MECÂNICAS		MOSSAA	BOYCON	GIZXI	=	G14.XI	¥	G 1502	R	GWX	2	G-18 X1	-	G 18 XZ	200	G 20 X1	9	G 2002	62	623.XS	625 XI	1 × 1	G 30 X1		G 335 X1	5=5	1X 0 €	Ü	G 43 X1	9	G 45 X1	G 30 X1	EX.
RESULTINGS A TRACIÇÃO	2	0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	mea	7,0	9.8	10 00	99	31.0	-20	0.0	0.51	10.0	13.0	0.01	-3.0 13	13,0 -4,0	999	- 3.0	14.0	-4.0	8,4	-4.0	10	0.4	20.0	4.0 22.0	-4.5	22.0	- 5.0	24,0	- 50	20.0	- 5.0
REBUTÉNCIA A TRACÇÃO	Gwp	NP EN IDO 10319	mya	11.8	-3.0	13,0	- 3.0	13,5	-25	13.8	-3.0	10.5	-4.0 tt	50. 40.	-40 21	21,5 -4.0	88.8	- 3.0	22.0	-4.0	×,	-4.5	20,0	64	31.0	-4.5 39.0	4.5	37,0	- 5.0	41,0	86	9	- 5.0
BETENSÃO NA CARBA MAXIMA	9	Nº EN 130	9	100	ş	100	024	8	120	100	52	001	027	100 ±2	100 100	20 170	99	170	8	170	100	924	100	100	100	110	0 170	001	1730	110	120	10	87
EXTENSÃO NA CARDA MADINA	80	NP EN (30	*	08	됞	22	621	22	621	9	2	70	120	70 12	270 70	0 820	75	62	8	624	8	024	2	R	70 1	07 021	62	8	q	R	8	R	83
PUNÇOAVENTO ESTATICO (ENSAND CBR)		New EN (30)	z	1300	-300	1700	8	1800	-130	1800	-300	2000	27	2200 +	-00 3200	00 400	00 2500	9	2500	ş	2900	ş	3200	86	3900	400 +300	90 -900	000+	909	9009	909	0099	800
REDICTIONS A PERFURAÇÃO DINÁMICA (DONE DROP TEOT)		13433	f	23	60 60 +	11	6. 2.	9	4 10,6	77	10 10 +	22	+ 2,8	9	22 73+	4.	55	+ 6,3	10	* 3,6	2	0) 6) 8	E	+ 2.8	10	0 +	ņ	-	+2.8	4	41.5	(100)	60 61 +
охратовя ва внака		EN 13719	******			2.				- 93		*			- 10	W.			2030	- 303	2030	Ŗ	2000	203	2030 -2	-203 8960	908 - 909	9990	908 - 800	8960	988-	4571 - B#571	1724
CARACTERISTICAS HERALLICAS NERMA UNDIOC	LICAS	AMBICIN	SONCHAI	GEX	×	G 14 X1	×	G 1502	CZ.	G 16 XI		G 18 X1	*	G-18 X2	100	G 20 Xt	244	G 2002	62	6.23 XS	B 25 X1	5.X1	G 30 X1	-	G 35 X1		G 40 X1	9	G-43.X1	8	GAEXI	6.50 Xt	1X4
PERMEABLICACE		NP BN 120	SIT!	117.0	4.	110,5	97 17	20.5	ħ.	20	6.7.	1,001	1.4.	102.5	-6.4 104	0,11 - 11,0	8,78	- 30.1	48.8	-33.4	e) 90	-25	9 00	10 07	7.70	-6,9 76,7	7 - 13.6	4.4	1,50	57.6	9.0	56,3	er er
	12000			0.76	90'0-	0.76	90.0	0.15	100	3.82	96,0	16.0	0.09	0.80	-0.10 0.91	-0.09	00 0.19	-0,02	4.97	95,0-	0.87	0,10	0.07	0.10	0.97	-0.10 1.45	40.15	3.57	40,36	1,45	-0.15	2.08	-0.21
SECONMENTO NO SEU FLAND SERVING Nº SN 103	1,010522	Si Na	1	80.0	10,01	0.08	10.01	0.08	10.0	1,14	11.0	00.0	-0.01	0.22	-0.02 0.00	10'0- 60	01.00	10'0-	1,59	97.76	0.15	10'0	0,15	0 100	0.16	-0.01 0,24	20,03	1,70	40.17	200	-0.02	£	50,03
iggi	28	12851		6,86	CONTRACT OF THE PARTY OF	9.86	69'0	_		-	-	\rightarrow	-	_		_	-	_			200	-	-	-	_	COLUMN 1					1,62	21,40	
	01/0028			0,77	90'0	0.77	900	0,83	800	9,22	8 9	190	8.0	181	-0.10 0.94	90'0- \$6	90 9012	0.07	12,20	F 13	1,06	0,11	907	11.0	90'F	1,07	-0.17	7, 13,50	138	1,67	0,17	2,74	·0.27
DIVENSÃO DA ABENTURA		NP SN 100 12956	£	12	4.0	98	# 10 #	8	9.	08	97	75	0.4	9	±10 80	0 ±	90	2	80	p;#	22	g.#	8	01#	8	±10 B0	0.0	18	9	8	92	8	9
CARACTERÍSTICAS FÍSICAS		SCYCHA VINSON	SONGWAY	6 12 X1	*	G 14 X1	ž.	G 1502	Q	515.X1	2	G 18 X1		G 18 X2	-	6 20 X1		6 2002	62	6.23.X1	EZSXI	5 X1	G 30 X1		G 35 X1		E 48 X1	Ġ	G-43 X1	9	G-45 XI	E 30 X1	×
SKANASEN		M 85 100	and dis-	th.	152	140	\$10%	150	*40.*	105	1,512	180	1,000	180 ±15%	1000	200 =15%	574 200	1574	238	#15%	250	*10%	300 #1	±15% a	350	±15% 400	2012 00	43.5	10%	450	#15%	200	±15%
ESPESSORA (2	2112	NP 69 (30 9662-1	REGIO	1,95 - 2,45	2.40	2,00-2,50	2.50	1,10 - 1,40	-	1,92 - 2,88	-	2.20-2.70		2,20 - 2,70	11100	2,40 - 2,90	5.50	1,30 - 1,80	54	2,40 - 3.60	2,50 - 3.00	3.00	2,80 - 3,20	121.24	2,70 - 3,30	111.74	2.90 - 3.50	-	3.28 - 4.92	3,20	3,20 - 3,80	3,30 - 3,90	3.90
CONFRIMENTO *		(Diametric)	ď	100		100	0	900	0	100		100		100		100		100	#	901	11	001	75		12		90	9927	8		99	90	_
, vaneuvri		(Diametric)	E	4.0		4,0	6	4.0	-	4.	50	4.0		4.0		6.		4.0	4	4.0	4.0	0	4.0		4.0		4.0	SK -0 77	4.0	4	4.0	4.0	
P\$80 00 ROLO			9	4	77024	8		8		8		t;		22	_	8		90		3	*	100	8		8		80		13		8	100	
UTILIZAÇÕES PREȘISTAS	- Colonia	A.S							Filtração		Separação. D	. Drenagem e Reforça	+ Refor	20									Fibraç	Jo. 3ep	aração. I	Filisção, Separação, Drenagem, Reforça e Protecção	r. Retorp	o e Prote	okto				
* Values de produção stantarió. A sedifix, é strativel productir com dine	, sedds.	e statistel pro	1000 III 0000	16 1	cherentes	des cheenes our house	HOR.																	MOTA	Para info	MOTA. Para informação mais defendada, consular a Picha.	th defadant	a. consula	ra-Hota.T	ecnica mé	méividaki de cada produko	10001100	
DURABLIDADE (*)		9 E					ő.ť	aração e ser cob	estimadi esto atè	24 hoe	minim o	o, 25 an	os em s	olos nat	turais or to de re	forço e	pH < 9 a	Duração estimada de, no mêmino, 28 anos em solos naturais com 4 < pH < 9 e temperaturas do solo < 28ºC; A ser coberto até 24 horas após aplicação para a função de reforço e em duas semanas para outras funções	aturas d	olos di dutras	funções	. 5											
ASSISTENCIA MONDAROLDOICA		NP EN 12225	*							2	sencia.	Resistência Residual	4						*	ND:	100%	960	CND		100%			o:	REVISÃO		02/2	02/2011	
явзатемска смежубо		N 484 10								8	sencia.	Resistência Residual	- 4						2	100	100	100%	CND		55%			- CE	DATA		27-08	27-06-2011	
0-210																						1		1		1				l	l	l	0

(Fabricante IPETEX).

Tabela 3.13 – Características do não tecido sintético GEOFOCO.

PRODUTO			GTR7	GT R 8	GT R 9	GT R 10	GT R 14	GT R 16	GT R 21	GT R 26	GT R 31
	Sentido Transversal		07 kN/m	08 kN/m	09 kN/m	10 kN/m	14 kN/m	16 kN/m	21 kN/m	26 kN/m	31 kN/m
Resistencia a Tração	100	ACRLT TARA	>70%	% 02 ^	> 70 %	> 10 %	> 70 %	>70 %	> 20 %	> 10 %	> 10 %
Faixa Larga	Sentido	MDINI 12027	06 kN/m	07 kN/m	08 kN/m	m/N× 60	12 kN/m	14 kN/m	19 kN/m	23 kN/m	27 kN/m
(2)	Longitudinal		>70 %	>70 %	>70 %	>70 %	>70 %	> 20 %	>70 %	> 70 %	> 70 %
Resistência ao	Sentido Transversal	ACTIVIDATES	160 N	200 N	240 N	260 N	300 N	340 N	540 N	720 N	N 077
Rasgo Trapezoidal	Longitudinal	ASIM D 4555	170 N	220 N	260 N	280 N	350 N	420 N	620 N	N 008	N 086
Resistência ao Puncionamento	Força	ABNT NBR 13359	1,20 kN	1,30 KN	1,55 kN	1,80 kN	2,35 kN	2,60 kN	3,60 KN	4,90 kN	6,00 KN
Permissividade		ASTM D 4491	2,35 s ⁻¹	2,10 s-1	1,85 5-1	1,77 s1	1,48 s ⁻¹	1,315.1	1,02 s ⁻¹	0,87 s ⁻¹	0,74 s ⁻¹
Permeabilidade Normal		ASTM D 4491	0,40 cm/s	0,40 cm/s	0,40 cm/s	0,40 cm/s	0,40 cm/s	0,40 cm/s	0,40 cm/s	0,40 cm/s	0,40 cm/s
Transmissividade	50	ASTM D 4716	6,00 E-06 m ² /s	7,00 E-06 m²/s	8,00 E-06 m²/s	9,00 E-06 m²/s	1,10 E-05 m ² /s	1,20 E-05 m ² /s	1,50 E-05 m²/s	1,80 E-05 m ² /s	2,10 E-05 m²/s
Abertura de Filtração		AFNOR G 38017	160,0 µш	150,0 µm	140,0 µm	130,0 µm	120,0 µm	110,0 µш	80,0 µm	70,0 µm	шп 0′09
Comprimento Bobina				100 m e	100 m e 200 m		100	100 m		E00 m	
Largura Bobina Matéria Prima Ponto de Fusão						2,15 m e	2,15 m e 4,30 m / 2,30 m e 4,60 m 100% Poliéster 260°C	e 4,60 m			

(Fabricante GEOFOCO).

4 MATERIAL E MÉTODOS

O desenvolvimento experimental desse projeto foi realizado no Laboratório de Protótipos Aplicados ao Tratamento de Águas e Efluentes (LABPRO), local onde se encontra o sistema de reatores, já as análises físico-químicas e microbiológicas foram realizadas no Laboratório de Saneamento (LABSAN), ambos pertencentes ao Departamento de Saneamento e Ambiente (DSA) da Faculdade de Engenharia Civil, Arquitetura e Urbanismo (FEC) da UNICAMP. Localizados na Cidade Universitária Zeferino Vaz, no bairro de Barão Geraldo, cidade de Campinas, estado de São Paulo.

4.1 ORIGEM DO AFLUENTE E ABASTECIMENTO DO RESERVATÓRIO

De acordo com o trabalho realizado por Tonetti (2008), o esgoto bruto utilizado nesta pesquisa, é gerado em uma região da UNICAMP na qual circulam aproximadamente 10 mil pessoas por dia e estão situados: Hospital das Clínicas, Creche da Área de Saúde, Escola Estadual "Físico Sérgio Pereira Porto", Almoxarifado Central, Centro de Engenharia Biomédica, Bancos, Centro de Assistência Integral à Saúde da Mulher (CAISM), Gastrocentro, Hemocentro, Ambulatório de Primeiro Atendimento, Centro Integrado de Pesquisas na Infância e Centro de Saúde da Comunidade (CECOM).

A partir da caixa de passagem dos esgotos brutos foi feito o recalque por meio de bomba submersa em vazão superior a necessária para a operação do sistema, até o tanque de recepção (capacidade de 500 L), o tanque por sua vez era interligado ao tanque de passagem (capacidade de 200 L). O esgoto foi recalcado por outra bomba submersa para o reservatório (capacidade de 1000 L) que alimentou o sistema de reatores. Em seguida por diferença de pressão o esgoto adentrou no sistema criado através de uma válvula de nível que ficou aberta 24 horas por dia direcionando o esgoto a tanque de equalização com capacidade aproximada de 200 L, provido de extravasor

para manutenção do nível de água constante e alinhamento do mesmo à caixa de origem.

Durante o período de estudo a alimentação do sistema foi realizada com o esgoto descrito anteriormente, sendo que o principal fator que definiu a escolha foi a pequena distância do laboratório onde se encontrava o aparato experimental e a caixa de passagem do esgoto bruto. As Figuras 4.1 a 4.4 representam as imagens do percurso percorrido pelo afluente até a entrada do sistema.

Figura 4.1 – Caixa de passagem do afluente bruto da UNICAMP.

Figura 4.2 – Tanque de recepção.

Figura 4.3 – Reservatório de alimentação.

Figura 4.4 – Válvula de nível.

4.2 CONFIGURAÇÕES GEOMÉTRICAS DO PROTÓTIPO

Foi dado início as operações de construção do protótipo proposto caracterizado por Fase I no período de 08/out/2012 a 21/abr/2013. É importante que se mencione que os critérios de projeto dos reatores biológicos percoladores são, ainda, empíricos, o que torna o projeto das unidades de tratamento aparentemente simples. No entanto, a simplicidade do projeto não decorre da simplicidade dos processos, pelo contrário, os processos são muito complexos e o sucesso depende do fornecimento de condições ambientais, nos reatores, que permitam o estabelecimento de mecanismos de controle.

Durante o período da Fase I foram testados três modelos anteriores ao proposto nessa pesquisa. O primeiro modelo foi construído de acordo com o pré-projeto apresentado no plano de qualificação.

O sistema constituía-se de 3 dispositivos básicos, canaleta superior de entrada do afluente e ajuste do nível de água para alimentação do meio suporte da biomassa por capilaridade (conforme Figura 4.5), ou, como segunda alternativa, para alimentação por transbordamento, proporcionado pela sobre elevação do vertedor do extravasor previsto.

Figura 4.5 – Canaleta com nível ajustável.

Meio suporte para formação da biomassa constituído na manta não sintética, tipo geotêxtil (acrílica resinada de poliéster 100 g/m², densidade de 20 kg/m³, espessura de 5 mm), com dimensões de 0,3 m na horizontal e 3,5 m na vertical disposto em ziguezague e canaleta inferior de coleta dos esgotos filtrados e tratados biologicamente, que após o sistema seria encaminhado para descarte voltando para a caixa de passagem. A Figura 4.6 representa o primeiro modelo de reator testado.

Figura 4.6 - Reator de canaletas modelo 1.

O sistema foi testado inicialmente com água, o qual operou perfeitamente dentro dos padrões esperados, após os testes com água foi operado com o afluente bruto já descrito anteriormente. Como a proposta era que a alimentação do não tecido sintético (meio suporte) fosse feita através do sifonamento causado propositadamente na canaleta superior e ação da capilaridade, o mesmo quando iniciado o tratamento com esgoto apresentou deficiência na vazão a ser tratada pelo acumulo excessivo de sólidos no não tecido sintético nos primeiros 10 cm, o que comprometeu a ação da capilaridade na alimentação do reator, tornando essa configuração inviável.

Logo em seguida foi testado uma nova configuração do reator (Figuras 4.8 e 4.9) partindo do experimento anterior. Como o problema principal do modelo anterior era a alimentação do não tecido sintético por capilaridade foi proposto uma alimentação forçada através de um dispositivo construído de tubo de PVC \emptyset = 12,7 mm com 350 mm

de comprimento. Foram feitos furos de \emptyset = 6 mm por toda a área ao longo dos 250 mm de comprimento útil do tubo. No meio foi inserido uma mangueira de silicone de \emptyset = 1/32", foi feito um furo na canaleta superior para fixar a mangueira que iria alimentar o sistema. Em seguida o tubo foi revestido com manta acrílica resinada de poliéster, gramatura de 100 g/m², densidade de 20 kg/m³, espessura de 5 mm, deixando 2,3 m pendente para que o efluente percole pela manta acrílica (Figura 4.7) .

Figura 4.7 – Sistema de alimentação.

Figura 4.8 – Sistema de alimentação instalado no reator.

Figura 4.9 – Reator biológico modelo 2.

O modelo 2 foi colocado para funcionar, entretanto mesmo com essas alterações forçando a passagem do esgoto bruto para o não tecido sintético, ocorreram vários problemas como entupimento diário da mangueira de silicone, vazamentos, instabilidade operacional dentre outros. Desta forma foi descartado esse modelo.

Após os resultados frustrantes com os dois primeiros modelos, foi proposta a alteração das configurações geométricas do reator que era o uso de uma única peça de não tecido sintético, desta forma, foi criado o modelo 3.

O sistema constituía de um pré-filtro (Figura 4.10) similar ao utilizado no sistema atual (tubo de PVC \emptyset = 12,7 mm com 350 mm de comprimento. Foram feitos furos de \emptyset = 6 mm por toda a área ao longo dos 250 mm de comprimento útil do tubo. Revestido de manta acrílica de poliéster expandido de 10 mm de espessura, dando voltas em torno do tubo de PVC amarrado com abraçadeiras plásticas. O mesmo foi feito para o revestimento externo com dimensões de 100 x 27 cm de manta acrílica resinada de poliéster, deixando 30 cm pendente para que o efluente percole pela manta acrílica).

Figura 4.10 – Pré-filtro instalado no topo do sistema de tratamento.

Foi testada a instalação com 3 reatores fabricados de caixa plástica transparente, com uma cama feita de isopor e palitos de bambu, usados para sustentar o recheio do reator (manta acrílica de poliéster expandido revestido com manta acrílica resinada de poliéster) como ilustra a imagem a seguir (Figura 4.11).

Foi feito um corte longitudinal no centro da bandeja para que o não tecido sintético transpasse para o próximo estágio alimentando o reator subsequente.

Quanto foi proposto esse modelo de reator, foi determinado que a cama suspensa fosse usada para garantir que a manta inferior não ficasse em contato direto com o esgoto que percolasse pelo reator, proporcionando as mesmas características em todo o reator.

Figura 4.11 – Reator biológico com cama suspensa.

As Figura 4.12 e 4.13 representam o modelo 3 testado com o efluente em operação.

Entretanto após alguns dias de operação começaram a aparecer vários problemas decorrentes da configuração geométrica do sistema. O primeiro grande problema foi a colmatação do centro do não tecido sintético devido a alimentação ser feita através de um corte no meio da bandeja. Isso proporcionou um fluxo preferencial longitudinal no reator, fazendo com que o esgoto não percorresse o restante no meio suporte, reduzindo o TDH nos reatores, e em outras situações permanecendo por tempos muito variáveis. Outro problema encontrado foi à formação de zonas mortas e "lagoas" no interior da bandeja, bem como, onde o efluente era captado de um estágio para o outro. Devido à formação dessas "lagoas" nos reatores, os mesmos trabalhavam

com uma taxa de aplicação hidráulica muito baixa, em torno de $0,38~\text{m}^3/\text{m}^2.\text{d},$ não atendendo ao que era proposto.

Figura 4.12 – Reator modelo 3.

Figura 4.13 – Operação do sistema modelo 3.

Após todos esses testes chegamos a configuração do modelo 4 que será descrito no tópico seguinte 4.3.

4.3 ASPECTOS CONSTRUTIVOS

A instalação piloto foi montada nas dependências do LABPRO, da Faculdade de Engenharia Civil, Arquitetura e Urbanismo – Unicamp, onde passa a rede de esgotos mencionada anteriormente.

A Figura 4.14 apresenta o fluxograma da instalação do protótipo do reator biológico e os pontos de coleta da fase liquida.

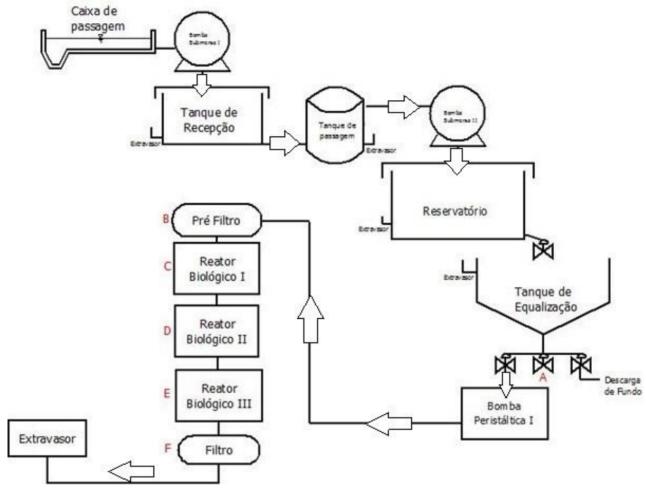


Figura 4.14 – Fluxograma de instalação e pontos de amostragem.

No projeto que foi desenvolvido o não tecido sintético foi empregado no tratamento de efluentes, ocupando a função inicial de meio suporte, permitindo a formação do biofilme; de filtro, retendo parte dos sólidos suspensos presentes no esgoto bruto.

Devido à grande variedade de composição e tipos de não tecido sintéticos existentes no mercado, acredita-se ser possível através de investigações experimentais, estabelecer parâmetros que determinem as características que um não tecido sintético deve possuir a fim de ser utilizada com sucesso no experimento para viabilizar o tratamento de esgotos na remoção da matéria carbonácea.

Para a montagem do aparato experimental, foram utilizadas caixas plásticas (marca: Ordene) com 30,7 x 42,5 x 30,5 cm (altura x comprimento x largura) as quais constituíram os estágios do reator biológico, caixa plástica branca de polietileno de alta densidade (marca: Pisani) com 21 x 50 x 36 cm (altura x comprimento x largura), tubo de PVC (marca: Tigre Aqua therm) de \emptyset = 15 mm, tela galvanizada (marca: Tamoyo) com malha de 5 mm x 5mm que foi empregada na fabricação das rampas de sustentação que serviram de apoio para o não tecido sintético, manta acrílica resinada de poliéster (marca: Pegorari – modelo R1, cor branca) empregada como recheio do reator, superfície externa do pré-filtro e filtro secundário, manta acrílica de poliéster expandido (marca: Ecofiber) com 10 mm de espessura e gramatura 100 g/m² usada como recheio do pré-filtro localizado no topo do reator, não tecido sintético (marca: Ober S/A – modelo GF8/150) estrutura do reator biológico, mangueira de silicone (marca: Elastim) de Ø= 12,7 mm (diâmetro comercial ½"), mangueira flexível PVC cristal (marca: Olicar Indústria e Comércio Ltda) de Ø= 26 mm (diâmetro comercial 1"), bomba diafragmática (marca: EMEC - modelo: CMS POLIMERI+D+PTFE) para alimentar o sistema, timer (marca: Brasfort), prateleira com armação metálica com 31 x 27 cm de base com lances montáveis, escada de alumínio, mão francesa em aço, conexões em PVC, torneiras, abraçadeiras metálicas e plásticas de acordo com as Figuras 4.16 a 4.23. Na Figura 4.15 é apresentada a configuração da instalação experimental.

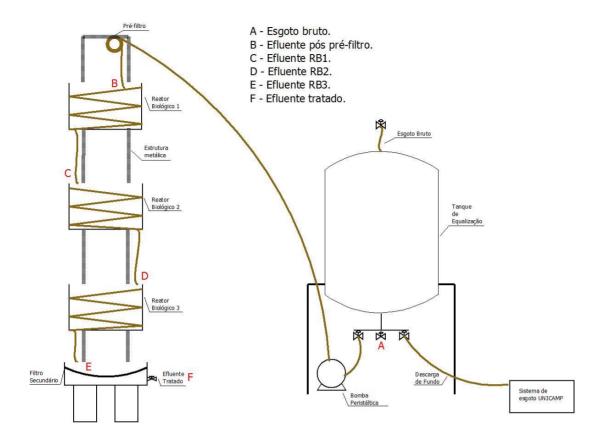


Figura 4.15 – Esquema da instalação do sistema de tratamento.

A entrada do esgoto para o sistema de reatores em estudo foi feita por meio de bomba diafragmática (Figura 4.17) com vazão máxima de 40 l/h, com pressão de trabalho de 50 KPa, frequência de 50 a 60 Hz, que recalcou o esgoto bruto localizado no tanque de equalização de acordo com a Figura 4.16, proporcionado por mangueira flexível e carga hidráulica ajustável, de forma que fosse imposta uma vazão de entrada, cerca de 50% superior à necessária para a alimentação do reator biológico, ou seja, aproximadamente 20 l/h.

Figura 4.16 – Tanque de equalização com nível ajustável.

Figura 4.17 – Bomba diafragmática.

Foi determinada a realização de duas descargas de fundo por semana, no tanque de equalização, já que a válvula que liberava o esgoto bruto fica localizada na

parte inferior do tanque, essas descargas foram feitas as terças-feiras e quintas-feiras, dias anteriores à realização das coletas das amostras.

Para minimizar os problemas de acúmulo de sólidos e entupimentos na entrada do primeiro estágio do reator biológico foi inserido um pré-filtro fabricado com a manta acrílica resinada revestida internamente com manta acrílica fabricada em poliéster.

Para a confecção do Pré-filtro (PF) foi utilizado tubo de PVC Ø= 12,7 mm com 350 mm de comprimento. Foram feitos furos de Ø= 6 mm de forma alternada por toda a área ao longo dos 250 mm de comprimento útil do tubo. Em seguida foi revestido com manta acrílica de poliéster expandido de 10 mm de espessura com dimensões de 100 x 27 cm, dando voltas em torno do tubo de PVC amarrado com abraçadeiras plásticas. O mesmo foi feito para o revestimento externo com dimensões de 100 x 27 cm de manta acrílica resinada de poliéster (gramatura de 100 g/m², densidade de 20 kg/m³, espessura de 5 mm), deixando 30 cm pendente para que o substrato afluente percole pela manta acrílica. Uma extremidade foi ligada a mangueira de silicone que alimentou o sistema e o outro lado foi vedado com um cap (Figura 4.18).

Figura 4.18 – Pré-filtro de manta acrílica resinada.

A concepção desse novo reator biológico é extremamente simples, sendo constituído de dispositivos idênticos em cada um dos estágios. Na construção dos reatores, foram utilizadas caixas plásticas com dimensões de 30,7 x 42,5 x 30,5 cm, (altura x comprimento x largura) com corte longitudinal na base de 10 mm por onde ocorre a passagem do efluente de um estágio para o outro. Foram feitos furos na lateral da caixa de forma vertical para inserir os tubos que serviram de sustentação das rampas de tela galvanizada com área de 114 cm² e inclinação de 7,11º (Figura 4.19). Essa inclinação foi usada unicamente para garantir a presença de 5 rampas dentro do reator dispostas em ziguezague conforte disposto na Figura 4.20.

Figura 4.19 – Rampa de tela galvanizada.

Figura 4.20 – Disposição das rampas com o revestimento de não tecido sintético.

O revestimento do reator foi feito com recorte de 57 x 40 cm de não tecido sintético (GF8/150 com permeabilidade normal de 0,4 cm/s, abertura de filtração 150 μ m) dobrada ao meio com recheio de manta acrílica resinada de poliéster de 28 x 39 cm de acordo com a Figura 4.21.

Figura 4.21 – Revestimento de não tecido sintético e manta acrílica resinada.

As rampas foram cobertas pelo revestimento de não tecido sintético (Geofort – GF8/150, descrita na Tabela 3.11) e manta acrílica. A rampa inferior localizada no fundo da caixa foi produzida com tamanho maior para que parte do não tecido sintético (30 x 40 cm) ficasse para fora da caixa plástica sendo responsável pela alimentação do próximo estágio como disposto nas Figuras 4.22 e 4.23.

Figura 4.22 - Reatores.

Figura 4.23 – Reatores suspensos nos respectivos estágios.

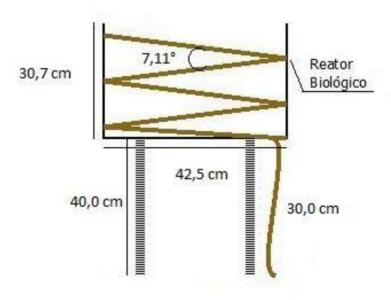


Figura 4.24 – Modelo esquemático do reator

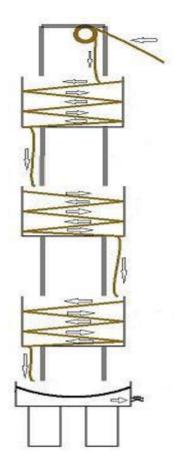


Figura 4.25 – Fluxo de escoamento no interior do reator

Após a montagem dos reatores, realizou-se o teste de estanqueidade e em seguida os ajustes necessários a fim de verificar possíveis vazamentos provenientes do encaixe das conexões e estrutura do reator.

As amostras de efluentes foram coletadas nos pontos enumerados de 1 (esgoto bruto), 2 (efluente do pré-filtro), 3, 4 e 5 (efluente dos reatores).

Após o último estágio do reator biológico, determinando como sendo a terceira etapa de tratamento, a passagem do efluente por um novo filtro, denominado de secundário, produzido de não tecido sintético idêntico ao descrito como filtro primário, seguindo para descarte na caixa de passagem dos esgotos brutos. A inclusão do filtro secundário foi necessário após meses de analises decorrente do desprendimento do

biofilme existente no meio suporte em condições de regime estável e permanente, como poderá ser visto nos resultados apresentados.

Na Figura 4.26 é mostrada a instalação experimental do estudo em funcionamento no LABPRO.

1- afluente bruto; 2 - efluente pré-filtro; 3 - efluente reator 1; 4 - efluente reator 2; 5 - efluente reator 3; A - tanque de equalização; B - bomba peristáltica – alimentação; C - pré-filtro; D - reator estágio 1; E - reator estágio 2; F - reator estágio 3; G - efluente tratado.

Figura 4.26 – Sistema de tratamento de tratores aeróbios.

Na Figura 4.27 está indicado um exemplo visual do esgoto bruto que abastece o sistema, além dos efluentes de saída do pré-filtro e dos reatores em fase de amadurecimento do biofilme.

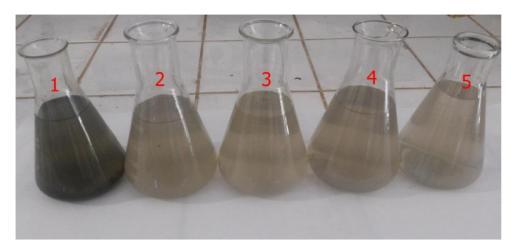


Figura 4.27 – Visualização, em erlenmeyer de vidro das amostras de esgoto bruto, saída do PF e dos reatores (23/04/13).

4.4 VAZÃO DE ENTRADA E INÍCIO DE OPERAÇÃO DO SISTEMA DE TRATAMENTO

O sistema foi ligado dia 22 de abril de 2013 às 09 horas e 45 minutos no LABPRO. O protótipo foi abastecido inicialmente com vazão de esgoto sanitário bruto Q com valor de 16,0 L h⁻¹, vazão determinada por nós, corrigida diariamente no estágio do PF para ser mantida de forma constante de acordo com o aumento da carga hidráulica interna, como função da perda de carga por colmatação do não tecido sintético.

A vazão foi escolhida com a intenção de ser tratado um volume que representasse a quantidade de esgoto gerada por uma família de 4 pessoas.

Para que a bomba diafragmática não tivesse sua capacidade de funcionamento prejudicada, a mesma foi ligada a um timer com 5 ciclos de 12 minutos, onde a cada hora ela passada um ciclo desligada, tendo vazão real média 12,8 L h⁻¹, que variavam

de 0,30 a 0,31 m³/d. Esta vazão foi recalcada para o PF e seguiam, por gravidade, para os estágios dos reatores biológicos e destes ao filtro secundário.

Para o monitoramento da etapa de partida do sistema, foram avaliadas as seguintes variáveis: pH, oxigênio dissolvido (OD), temperatura, e demanda química de oxigênio (DQO), demanda biológica de oxigênio (DBO) e série de sólidos. A metodologia e a frequência das análises estão apresentadas no item 4.10.

Foi realizada a medição do OD para quantificar o oxigênio dissolvido, e as possíveis trocas gasosas entre o meio liquido e atmosférico. Já que se faz necessário pelo menos 2,0 mgO₂ L⁻¹, essencial para garantir o desenvolvimento da biomassa nitrificante nos reatores (EPA, 1993).

A determinação dos sólidos voláteis foi importante na avaliação da remoção de matéria orgânica, aliada à DQO.

Foi determinada a concentração de sólidos suspensos fixos, indicativo da qualidade do material inerte retido no sistema, importante na avaliação da formação de lodo nos três reatores ao longo do tempo de operação do sistema.

4.5 CÁLCULO DA TAXA DE APLICAÇÃO HIDRÁULICA

A taxa de aplicação hidráulica pode ser obtida através da equação (10) onde Q_s = Q/A,

Q_s: taxa de aplicação hidráulica superficial (m³/m².d).

Q: vazão afluente (m³/d).

A: área da superfície livre do meio suporte (m²).

A área do reator é equivalente a (0,305 x 0,425m). Onde:

 $Q_{méd} = 12,93 \text{ L/h ou } 0,31 \text{ m}^3/d.$

$$A = 0.305 \times 0.425 = 0.129 \text{ m}^2$$
.

$$Q_s = 2,38 \text{ m}^3/\text{m}^2.\text{d}.$$

A Tabela 4.1 representa a variação da Taxa de Aplicação Hidráulica imposta durante as fases de tratamento com valor máximo, mínimo e médio, respectivamente, da vazão de entrada ao sistema.

 Taxa de Aplicação Hidráulica

 Q (m³.d-¹)
 qs (m³/m².d)

 Máx
 0,324
 2,5

 Mín
 0,3
 2,31

0,310

Tabela 4.1 – Variação da taxa de aplicação hidráulica.

4.6 CÁLCULO DA TAXA DE APLICAÇÃO ORGÂNICA

Méd

A Taxa de Aplicação Orgânica ou Cargas Orgânicas Volumétricas (COV) do sistema é obtida através da equação (11) onde:

2,38

$$C_v = \underline{Q_{med} \times S_a}$$

C_v: carga orgânica volumétrica (kgDBO/m³.d).

Q_{méd}: vazão média afluente (m³/d).

Sa: concentração de DBO do esgoto afluente (kgDBO/m³).

V: volume ocupado pelo meio suporte (m³).

O volume do reator é equivalente a (0,307 x 0,305 x 0,425m), como são 3 reatores em série, o volume será:

V: 0,119 m³.

Sendo assim o valor da taxa de aplicação orgânica:

 $Q_{méd}$: 0,310 m³/d.

Sa: 0,385 kgDBO/m³.

C_v: 1 kgDBO/m³.d.

Tabela 4.2 – Variação da taxa de aplicação orgânica.

Taxa de Aplicação Orgânica			
Q (L/h)		DBO (kg/m³)	Cv (kgDBO/m³.d)
Máx	13,5	0,825	2,130
Mín	12,5	0,272	0,702
Méd	12,89	0,385	1,001

Analisando as taxas de aplicação hidráulica e orgânica empregadas no estudo, de acordo com a classificação da Tabela 3.6, o protótipo de reator biológico percolador se enquadra como de baixa taxa quando referente a TAS, e de alta taxa quando comparado a TAO.

4.7 ESTUDO HIDRODINÂMICO DO REATOR BIOLÓGICO PERCOLADOR

Todo o sistema de tratamento foi testado inicialmente com água potável para demostrar sua capacidade de funcionamento em cada etapa do tratamento proposto.

Como o sistema de tratamento proposto se difere dos tratamentos mais conhecidos, foi necessário que se descobrisse o tempo médio de detenção hidráulica

(TDH) nos reatores, que representa o tempo médio de permanência das moléculas de efluente na unidade de tratamento (reatores), alimentada continuamente.

Para isso foi feito o uso de traçador. A substância química escolhida foi o cloreto de sódio (NaCl), devido a algumas características como: facilmente miscível, não provoca inibição ou toxicidade na biomassa presente em unidades de tratamento biológico, não alterando a velocidade ou as taxas das reações bioquímicas, cuja presença no líquido foi detectada com precisão e cujas características permaneceram inalteradas (densidade, viscosidade, temperatura) na unidade de tratamento (reator), durante a realização dos ensaios.

O ensaio com traçador é do tipo estímulo-resposta, isto é, foi adicionada quantidade conhecida de NaCl no líquido afluente (água potável), o traçador quando injetado participa do fluxo normal dentro do reator, sendo arrastado até a saída. Após a injeção do traçador iniciaram-se as coletas de amostras em béqueres, que prosseguiram sequencialmente, de minuto em minuto, até que o traçador deixasse completamente o sistema em questão. Desde o início do ensaio mediu-se continuamente a condutividade (µS/cm) na saída do terceiro reator.

4.7.1 Preparação da Curva de Calibração

Para a confecção da curva de calibração, preparou-se uma solução de Cloreto de Sódio Comercial de concentração 3000 mg/L, superior à concentração esperada de saída do traçador em ambos os sistemas. A partir da solução de concentração 3000 mg/L preparada, foram feitas seis diluições com o objetivo de preparar as soluções padrões da curva de calibração do traçador. As soluções diluídas foram levadas a um condutivimetro, onde foram lidas as respectivas condutividades. Para calibrar o equipamento, foi utilizada uma solução padrão de cloreto de potássio 1412 μS/cm. A Tabela 4.3 mostra as concentrações dos padrões utilizados e as condutividades obtidas para cada solução.

Tabela 4.3 – Padrões de soluções do traçador para a curva de calibração.

NaCl Comercial (mg/L)	Condutividade (µS/cm)
3000	5810
2500	4910
2000	3920
1500	2800
1000	2000
500	1034
250	574

Fonte: Dantas, 2000.

Os dados da Tabela 4.3 foram usados para a construção do gráfico de Concentração (mg/L) vs. Condutividade (μ S/cm). A partir da distribuição dos pontos no gráfico, procurou-se determinar a equação de regressão linear (y = a + bx) pelo ajuste de curvas com o auxílio do método dos mínimos quadrados, obtendo-se a relação mostrada pela equação (23).

$$C = -31.45 + 0.52120*Cond$$
 (23)

Onde *C* está para a concentração das soluções e *Cond* está para a condutividade correspondente.

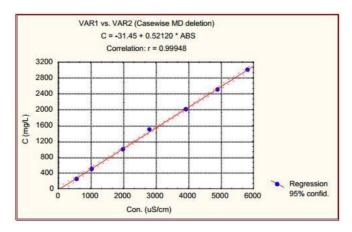


Figura 4.28 – Curva de calibração do traçador (NaCl comercial): Concentração (mg/L) vs. Condutividade (µS/cm).

Fonte: DANTAS, 2000.

Para efeito de visualização dos valores obtidos no teste de traçador foram feitas as curvas de Condutividade (µS/cm) vs. Tempo (min). A Figura 4.28 representa a condutividade do traçador em relação ao tempo no teste realizado inicialmente com água.

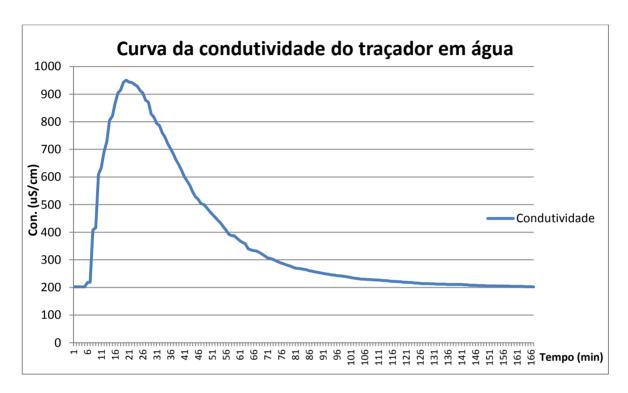


Figura 4.29 – Representação gráfica da condutividade em função do tempo em água (19/04/13).

Foi determinado que a cada mês de funcionamento do sistema seria feito um novo teste de traçador a fim de acompanhar as variações do TDH, podendo assim entender melhor o sistema em estudo. Para efeito de visualização das feições das curvas obtidas, os dados das tabelas foram plotados, gerando os gráficos abaixo. As Figuras 4.30 a 4.36 representam a condutividade em relação ao tempo gasto pelo afluente em cada mês de operação.

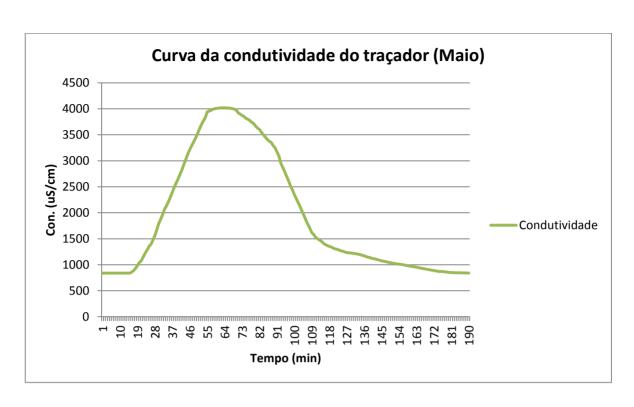


Figura 4.30 – Representação gráfica da curva da condutividade em função do tempo em esgoto (24/05/13).

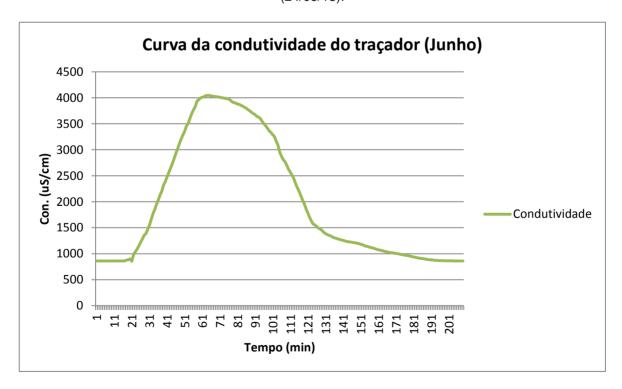


Figura 4.31 – Representação gráfica da curva da condutividade em função do tempo em esgoto (24/06/13).

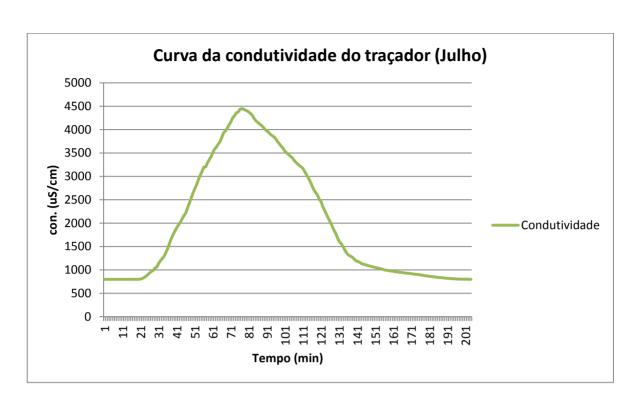


Figura 4.32 – Representação gráfica da curva da condutividade em função do tempo em esgoto (24/07/13).

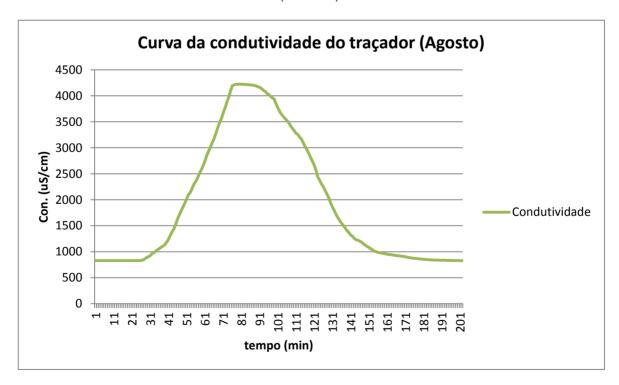


Figura 4.33 – Representação gráfica da curva da condutividade em função do tempo em esgoto (23/08/13).

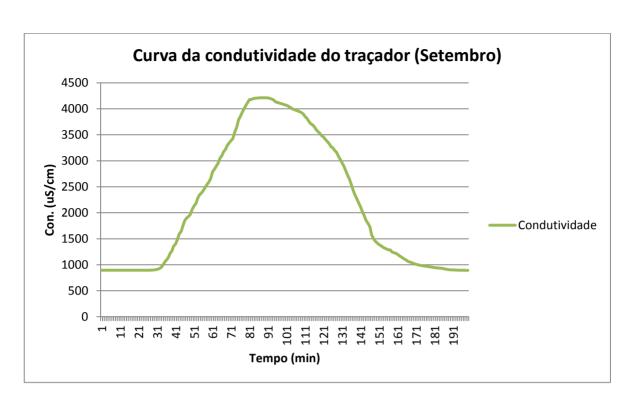


Figura 4.34 – Representação gráfica da curva da condutividade em função do tempo em esgoto (25/09/13).

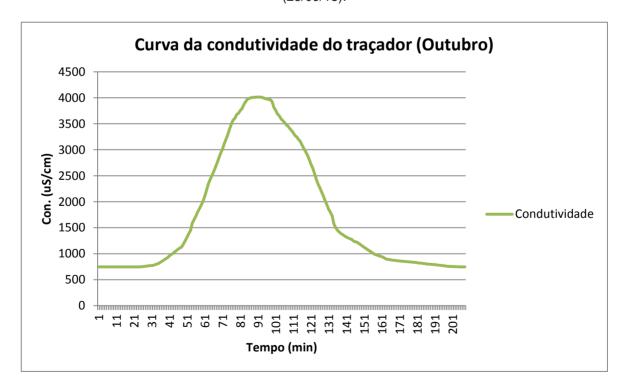


Figura 4.35 – Representação gráfica da curva da condutividade em função do tempo em esgoto (24/10/13).

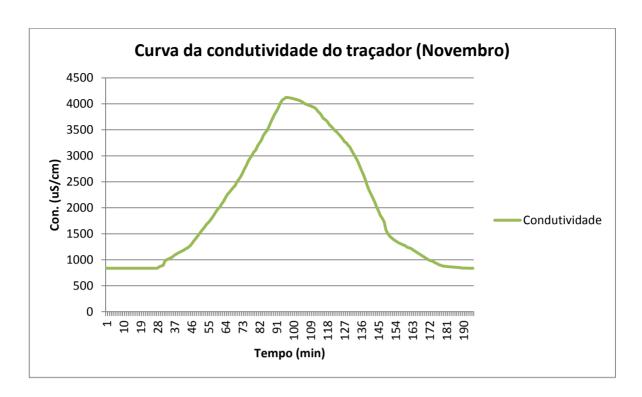


Figura 4.36 – Representação gráfica da curva da condutividade em função do tempo em esgoto (26/11/13).

Os dados foram obtidos para as amostras coletadas na saída do terceiro reator (R3), proporcionando o TDH dos três reatores em conjunto. Os valores de concentração foram calculados através da equação (16). O tempo de residência médio (*t*) pode ser estimado com o auxílio da equação a seguir.

$$\bar{t} = \frac{\sum_{i=1}^{n} t_i \cdot C_i(t) \cdot \Delta t_i}{\sum_{i=1}^{n} C_i(t) \cdot \Delta t_i}$$
(16)

Onde t_i é o tempo de coleta da amostra i, $C_i(t)$ é a concentração do traçador na amostra i, e Δt_i vale sempre 1 minuto, para todo i. Como Δt_i é constante, pode-se ter:

$$\bar{t} = \frac{\sum_{i=1}^{n} t_{i} \cdot C_{i}(t) \cdot \Delta t_{i}}{\sum_{i=1}^{n} C_{i}(t) \cdot \Delta t_{i}} \quad \therefore \quad \bar{t} = \frac{\Delta t_{i} \sum_{i=1}^{n} t_{i} \cdot C_{i}(t)}{\Delta t_{i} \sum_{i=1}^{n} C_{i}(t)} \quad \therefore \quad \bar{t} = \frac{\sum_{i=1}^{n} t_{i} \cdot C_{i}(t)}{\sum_{i=1}^{n} C_{i}(t)}$$
(23)

Utilizando os dados obtidos do TDH ao longo dos meses com o auxilio da equação (23), tem-se:

Tabela 4.4 – Resumo tempo de detenção hidráulica nos reatores.

Mês	$\bar{t} = \frac{\sum_{i=1}^{n} t_i \cdot C_i(t) \cdot \Delta t_i}{\sum_{i=1}^{n} C_i(t) \cdot \Delta t_i}$	Tempo de Residência (<i>t</i>)
Abril*	t = (3911798)/(62449)min	t = 62,6 min
Maio	t = (30568504)/(369116)min	t = 82,8 min
Junho	t = (38186416)/(417889)min	t = 91,3 min
Julho	t = (38084464)/(410686)min	t = 92,7 min
Agosto	t = (37526117)/(392143)min	t = 95,6 min
Setembro	t = (42741222)/(434610)min	t = 98,3 min
Outubro	t = (36373911)/(363722)min	t = 100,0 min
Novembro	t = (40057072)/(397010)min	t = 100,8 min

^{*} Teste com traçador realizado com água (fase de testes).

O cálculo da variância σ^2 pode ser estimada através da equação (17).

$$\sigma^{2} = \frac{\sum_{i=1}^{n} t_{i}^{2} \cdot C_{i}(t) \cdot \Delta t_{i}}{\sum_{i=1}^{n} C_{i}(t) \cdot \Delta t_{i}} - t^{-2}$$
(17)

Como Δt_i é constante, pode-se ter:

$$\sigma^{2} = \frac{\Delta t_{i} \sum_{i=1}^{n} t_{i}^{2} \cdot C_{i}(t)}{\Delta t_{i} \sum_{i=1}^{n} C_{i}(t)} - \bar{t}^{2} \quad \therefore \quad \sigma^{2} = \frac{\sum_{i=1}^{n} t_{i}^{2} \cdot C_{i}(t)}{\sum_{i=1}^{n} C_{i}(t)} - \bar{t}^{2}$$
(24)

Utilizando os dados obtidos do TDH ao longo dos meses com o auxilio da equação (15), tem-se:

Tabela 4.5 – Resumo da variância nos reatores.

Mês	$\sigma^{2} = \frac{\sum_{i=1}^{n} t_{i}^{2} \cdot C_{i}(t) \cdot \Delta t_{i}}{\sum_{i=1}^{n} C_{i}(t) \cdot \Delta t_{i}} - \bar{t}^{2}$	Variância (σ²)
Abril*	$\sigma^2 = (5981,94 - 62,6^2)$ min ²	$\sigma^2 = 2058,18 \text{ min}^2$
Maio	$\sigma^2 = (8705,54 - 82,6^2) \text{min}^2$	$\sigma^2 = 1847,14 \text{ min}^2$
Junho	$\sigma^2 = (10550,65 - 91,3^2) \text{min}^2$	σ^2 = 2200,47 min ²
Julho	$\sigma^2 = (10500,38 - 92,7^2) \text{min}^2$	$\sigma^2 = 1900,82 \text{ min}^2$
Agosto	$\sigma^2 = (11005,31 - 95,6^2) \text{min}^2$	$\sigma^2 = 1847,78 \text{ min}^2$
Setembro	$\sigma^2 = (11485,94 - 98,3^2) \text{min}^2$	$\sigma^2 = 1814,43 \text{ min}^2$
Outubro	$\sigma^2 = (11932, 19 - 100^2) \text{min}^2$	$\sigma^2 = 1931,25 \text{ min}^2$
Novembro	$\sigma^2 = (11936,63 - 100,8^2) \text{min}^2$	$\sigma^2 = 1756,45 \text{ min}^2$

^{*} Teste com traçador realizado com água (fase de testes).

Com os valores de variância é possível determinar o número de dispersão axial, que caracteriza o grau de mistura durante o escoamento. Pela analise das curvas dos reatores biológicos percoladores, percebe-se a formação de uma cauda, indicando uma

grande dispersão. Dessa forma, o número de dispersão axial dos reatores pode ser calculado com o auxilio das equações (25) e (22) para recipientes abertos.

$$N = \frac{D}{u.L}$$

$$\sigma_{\theta}^{2} = \frac{\sigma^{2}}{\frac{1}{t^{2}}} = 2\left(\frac{D}{uL}\right) + 8\left(\frac{D}{uL}\right)^{2}$$
(22)

Tabela 4.6 – Resumo da dispersão axial nos reatores.

	2	
Mês	$\sigma_{\theta}^2 = \frac{\sigma^2}{\frac{1}{t^2}}$	Variância (σ²)
Abril*	$\sigma^2 = (2058, 18/62, 6^2)$	$\sigma^2 = 0.52$
Maio	$\sigma^2 = (1847, 14/82, 6^2)$	$\sigma^2 = 0.27$
Junho	$\sigma^2 = (2200,47/91,3^2)$	$\sigma^2 = 0.26$
Julho	$\sigma^2 = (1900,82/92,7^2)$	$\sigma^2 = 0.22$
Agosto	$\sigma^2 = (1847, 78/95, 6^2)$	$\sigma^2 = 0.20$
Setembro	$\sigma^2 = (1814,43/98,3^2)$	$\sigma^2 = 0.18$
Outubro	$\sigma^2 = (1931,25/100^2)$	$\sigma^2 = 0.19$
Novembro	$\sigma^2 = (1756,45/100,8^2)$	$\sigma^2 = 0.17$

^{*} Teste com traçador realizado com água (fase de testes).

Fazendo D/uL = x e substituindo o valor de σ_{θ}^2 calculado para todas as etapas de análise dos reatores ao longo dos meses na equação, tem-se:

Tabela 4.7 – Resumo do número dispersão axial nos reatores.

Mês	Número de dispersão axial (N)
Abril*	N = 0,15
Maio	N = 0,09
Junho	N = 0,09
Julho	N = 0,08
Agosto	N = 0,07
Setembro	N = 0,07
Outubro	N = 0,07
Novembro	N = 0,06

^{*} Teste com traçador realizado com água (fase de testes).

Como o valor do número de dispersão axial em todos os meses foi muito menor que 0,2, pode-se concluir que o escoamento em todos os momentos do tratamento foi de dispersão de intensidade moderada já que os valores são intermediários a $(0,025 \le D/ \mu L < 0,2)$, com sistema de fluxo em pistão. Sendo assim, os reatores testados possuem fluxo pistonado, o esgoto apresenta a mesma qualidade através de qualquer seção transversal perpendicular ao eixo do reator.

O efeito da cauda provavelmente ocorreu devido aos fenômenos de difusão em zonas mortas do reator, adsorção do traçador na biomassa do reator ou curto circuito hidráulico (Levenspiel, 2000).

4.8 COLETA DAS AMOSTRAS

As amostras foram coletadas duas vezes na semana de forma pontual as segundas e quartas-feiras, entretanto ao longo das análises verificou-se que as segundas-feiras o esgoto bruto apresentava qualidade muito diferente devido

principalmente à diminuição do fluxo de pessoas em todos os prédios da região durante o final de semana, com valores de carga orgânica duas a três vezes maiores. Supõe-se que isso se deva as limpezas realizadas nas áreas médicas no final de semana e início de semana. Desta forma, visando condições mais estáveis de entrada e saída do sistema, optamos por alterar a coleta das amostras para a realização das análises físicas e químicas para as quartas e sextas-feiras. Essa alteração ocorreu no dia 22 de maio de 2013, trinta dias após o início das operações.

As coletas foram feitas através da inserção de um recipiente de plástico (bandeja) colocado abaixo do gotejamento do não tecido sintético de cada etapa do reator. Por precaução as coletas foram realizadas na ordem ascendente para não comprometer nenhuma amostra dos estágios analisados por desprendimento de biomassa durante a manipulação.

O esgoto foi transportado por meio de garrafas plásticas a partir do ponto de coleta até o LABSAN onde foram feitas as análises físico-químicas. O horário das coletas foi sempre entre 08:00 e 09:00 horas a fim de manter uma regularidade nas características do esgoto ao longo do estudo.

As coletas foram realizadas em cinco pontos de amostragem inicialmente:

- 1º **Ponto:** afluente ao sistema esgoto sanitário coletado na saída da bomba de alimentação do sistema, instalada próximo ao tanque de equalização (Figura 4.15, indicado com o número 1 na figura).
- **2º Ponto:** efluente pré-filtro na saída do pré-filtro, localizado na parte superior do sistema de reatores (Figura 4.15, indicado com o número 2 na figura).
- **3º Ponto:** efluente reator 1 na saída do primeiro reator (Figura 4.15, indicado com o número 3 na figura).
- **4º Ponto:** efluente reator 2 − na saída do segundo reator (Figura 4.15, indicado com o número 4 na figura).

5º Ponto: efluente reator 3 − na saída do terceiro reator (Figura 4.15, indicado com o número 5 na figura).

6º Ponto: efluente tratado – saída do filtro secundário.

No dia 04 de outubro de 2013, 164 dias após o início das operações, foi inserido o 6º Ponto de coleta com a inserção do filtro secundário (SF) na saída do terceiro reator (5º Ponto), dividindo a parte de coleta e análise do experimento em duas etapas (Fase II e Fase III).

A inserção do 6º ponto de coleta foi determinado devido ao problema de desprendimento da biomassa (lodo) ao longo do tempo de operação dos reatores, comprometendo a qualidade do efluente final.

A caracterização do esgoto afluente foi realizada durante todas as etapas do estudo, sempre em paralelo com as análises de avaliação do sistema, seguindo os mesmos parâmetros e métodos apresentados no item 4.10.

4.9 FASES OPERACIONAIS

A pesquisa foi realizada ao longo de um período de 15 meses, dividida em etapa de construção do protótipo fase I e duas fases operacionais caracterizadas de Fase II e Fase III, sendo as principais características operacionais de cada fase apresentadas na Tabela 4.8.

Tabela 4.8 – Resumo das fases e o período.

FASE	PERÍODO OPERACIONAL	DIAS OPERACIONAIS	TOTAL DE DIAS
ı	08/out/2012 a 21/abr/2013	01 a 196	196
II	22/abr/2013 a 08/out/2013	197 a 365	168
III	09/out/2013 a 07/dez/2013	366 a 426	60

Durante o experimento foi feita uma única troca do PF por outro similar. Isso devido à colmatação e entupimento do PF ao longo dos dias de operação, pelo excesso de matéria orgânica proveniente do esgoto bruto, sendo assim, o PF reteve uma grande quantidade de sólidos em suspensão. A troca foi realizada no dia 02 de outubro de 2013, após 162 dias de operação com carga orgânica volumétrica média de 1 kgDBO/m³ e taxa de aplicação média de 2,38 m³/m².d. Os demais estágios de tratamento não foram substituídos, os reatores (R1, R2 e R3), bem como, o SF nunca tiveram nenhuma substituição do meio suporte (não tecido sintético) ao logo das fases experimentais.

4.10 ANÁLISES LABORATORIAIS

A instalação piloto foi submetida à operação ininterrupta com monitoramento e ações corretivas diárias, pelo período necessário para a obtenção dos resultados e conclusões almejados. Na Tabela 4.9 estão apresentados os métodos analíticos utilizados na determinação de cada variável utilizada durante toda a etapa experimental.

Tabela 4.9 – Variáveis a serem avaliadas nos diversos pontos de amostragem.

VARIÁVEL	METODOLOGIA	PONTOS DE	FREQUÊNCIA		
		AMOSTRAGEM			
Temperatura	-	1, 2, 3, 4 e 5	2 x por semana		
Turbidez	Nefelométrica	1, 2, 3, 4 e 5	2 x por semana		
	turbidímetro)				
Oxigênio Dissolvido	SM20 4500 – O – G	1, 2, 3, 4 e 5	2 x por semana		
DBO ₅	SM20 5210 B	1 e 5	1 x por semana		
DQO	SM20 5520 D	1, 2, 3, 4 e 5	2 x por semana		
pH	SM20 4500 H+ B	1, 2, 3, 4 e 5	1 x por semana		
Sólidos Totais	SM20 2540 B	1, 2, 3, 4 e 5	1 x por semana		
Sólidos Totais Fixos	SM20 2540 E	1, 2, 3, 4 e 5	1 x por semana		
Sólidos Totais Voláteis	SM20 2540 E	1, 2, 3, 4 e 5	1 x por semana		
Sólidos Suspensos Totais	SM20 2540 D	1, 2, 3, 4 e 5	1 x por semana		
Sólidos Suspensos Fixos	SM20 2540 E	1, 2, 3, 4 e 5	1 x por semana		
Sólidos Suspensos	SM20 2540 E	1, 2, 3, 4 e 5	1 x por semana		
Voláteis					

¹⁻ afluente bruto; 2 - efluente pré-filtro; 3 - efluente reator 1; 4 - efluente reator 2; 5 - efluente reator 3.

As metodologias para cada parâmetro estão descritas no *Standard Methods for the Examination of Water and Wastewater 20th* (APHA, et. al., 1998).

4.11 ANÁLISE DOS DADOS

Após a tabulação dos dados obtidos foi realizada a análise dos resultados por meio da utilização de gráficos, incluindo o tipo Box-plot; de análise estatística (média, desvio padrão e método da comparação de médias) de forma a verificar e avaliar de modo sistemático o comportamento das diversas variáveis monitoradas ao longo de todas as fases de operação do sistema de tratamento.

5 RESULTADOS E DISCUSSÃO

O resumo dos resultados médios obtidos em cada fase operacional da planta piloto, bem como o valor máximo e mínimo obtido através de cada análise, é mostrado na Tabela 5.1, fases II e III, já que na fase I foi feita a construção do protótipo como explicado anteriormente. Os resultados diários dos parâmetros monitorados são apresentados nos anexos. A Tabela 5.2 mostra os valores das eficiências médias obtidas para cada fase operacional, em termos de remoção de DQO e DBO.

A Fase II representa o tratamento em 4 etapas (pré-filtro, reator 1, reator 2 e reator 3), já na Fase III foi inserida uma nova etapa de tratamento (pré-filtro, reator 1, reator 2, reator 3 e filtro secundário).

Tabela 5.1 – Resumo dos parâmetros físico-químicos durante as fases.

			F	ASE		FASE III						
Parâm	netros	В	PF	R1	R2	R3	В	PF	R1	R2	R3	SF
DQO	média	708	428	324	247	179	581	291	219	164	124	81
(mg/L)	máximo	1069	809	623	536	468	732	547	342	254	159	109
	mínimo	347	239	93	29	15	318	164	99	89	79	40
DBO	média	401	-	-	-	97	343	-	-	-	72	47
(mg/L)	máximo	825	-	-	-	212	385	-	-	-	93	60
	mínimo	272	-	-	-	12	284	-	-	-	52	34
Turbidez	média	326	154	76	44	26	224	74	41	25	13	7,3
(UT)	máximo	800	750	340	230	110	300	110	70	45	17	13
	mínimo	130	38	14	6,2	4,4	150	45	15	12	9,3	2,4
OD	média	0,47	0,62	0,59	0,89	1,1	0,41	0,51	0,5	0,6	0,76	1
(mg/L)	máximo	1,61	2,02	3,01	4,39	5,09	0,65	0,66	0,6	0,77	0,96	1,39
	mínimo	0,22	0,21	0,24	0,28	0,41	0,26	0,39	0,26	0,49	0,64	0,72
рН	média	6,2	-	-	-	6,3	6,3	-	-	-	6,4	6,4
	máximo	7,3	-	-	-	7,5	7,2	-	-	-	7,5	7,6
	mínimo	5,6	-	-	-	5,5	5,7	-	-	-	5,4	5,6
ST	média	2887	5630	6156	3612	2494	12308	8200	9081	5002	9080	2700
(mg/L-1)	máximo	21860	20290	62414	12860	11750	30220	20980	19233	9288	10660	5250
	mínimo	620	340	375	375	350	640	520	717	414	8070	510
STF	média	329	294	305	316	320	804	804	673	394	462	146
(mg/L-1)	máximo	460	620	460	580	650	1800	3180	2050	733	1180	360
	mínimo	60	100	160	57	140	100	120	200	160	140	40
STV	média	2559	5336	5852	3297	2174	11504	7396	8408	4608	8618	2554
(mg/L-1)	máximo	21760	20090	62100	12550	11500	29840	20700	18750	8800	10520	5210
	mínimo	320	160	100	87	90	540	340	317	114	7340	410
SST	média	433	122	87	66	49	352	593	60	34	30	20
(mg/L-1)	máximo	1388	256	231	186	168	573	2574	80	46	34	28
	mínimo	106	51	32	11	7	112	80	30	19	22	10
SSF	média	67	15	7	6	4	61	14	5	4	3	2
(mg/L-1)	máximo	233	44	22	14	19	95	21	12	6	5	4
	mínimo	17	2	3	1	0,1	5	8	2	1	1	1
SSV	média	366	108	79	60	45	291	579	55	30	26	18
(mg/L-1)	máximo	1155	219	210	172	159	482	2565	71	43	30	25
	mínimo	62	44	29	9	6	51	65	26	18	21	9

Onde: B = Esgoto Bruto, PF = Pré-filtro, R1 = Reator 1, R2 = Reator 2, R3 = Reator 3, SF = Filtro Secundário.

Tabela 5.2 – Resumo dos parâmetros físico-químicos durante o período operacional.

GLOBAL											
Parâm	etros	В	PF	R1	R2	R3	SF				
DQO	média	673	390	293	224	164	81				
(mg/L)	máximo	1069	890	623	536	468	109				
	mínimo	318	164	93	29	15	40				
DBO	média	384	-	-	-	90	47				
(mg/L)	máximo	825	-	-	-	212	60				
	mínimo	272	-	-	-	12	34				
N-NH3	média	62	-	-	-	55	53				
(mg/L)	máximo	96	-	-	-	73	59				
	mínimo	44	-	-	-	31	44				
Turbidez	média	299	133	67	39	22	7,3				
(UT)	máximo	800	750	340	230	110	13				
	mínimo	130	38	14	6,2	4,4	2,4				
OD	média	0,45	0,59	0,57	0,81	1,01	1,00				
(mg/L)	máximo	1,61	2,02	3,01	4,39	5,09	1,39				
	mínimo	0,22	0,21	0,24	0,28	0,41	0,72				
SST	média	417	217	81	60	45	20				
(mg/L-1)	máximo	1388	2574	231	186	168	28				
	mínimo	106	51	30	11	7	10				
SSF	média	66	15	7	6	4	4				
(mg/L-1)	máximo	233	44	22	14	19	4				
	mínimo	5	2	2	1	0	1				
SSV	média	363	103	75	55	42	17				
(mg/L-1)	máximo	1155	219	210	172	159	25				
	mínimo	62	44	26	9	6	9				

Onde: B = Esgoto Bruto, PF = Pré-filtro, R1 = Reator 1, R2 = Reator 2, R3 = Reator 3, SF = Filtro Secundário.

Tabela 5.3 – Resumo das eficiências médias obtidas para cada etapa operacional de um estágio de tratamento para outro em termos de DQO e DBO.

			FAS	SE II			FASE III			
Parâmetros		PF	R1	R2	R3	PF	R1	R2	R3	SF
Eficiência	Média	40	24	24	28	50	25	25	24	35
DQO (%)	Global		75				86			
Eficiência	Média	-	-	-	-	-	-	-	79	35
DBO (%)	Global	80				86				

Onde: PF = Pré-filtro, R1 = Reator 1, R2 = Reator 2, R3 = Reator 3, SF = Filtro Secundário.

5.1 RESULTADOS DE DQO AO LONGO DO PERÍODO OPERACIONAL

A Tabela 5.2 mostra a variação da concentração de DQO total ao longo das fases operacionais. Observa-se que há uma grande variação da DQO do esgoto afluente (Bruto), com valor mínimo de 318 mgDQO/L e máximo de 1069 mgDQO/L.

Observa-se nas Figuras 5.1 a 5.2 que tanto o pré-filtro quanto os reatores biológicos percoladores foram capazes de amortecer grande parte da variação da concentração de DQO afluente, como também uniformizar com variações mais suaves as concentrações do efluente durante as fases II e III.

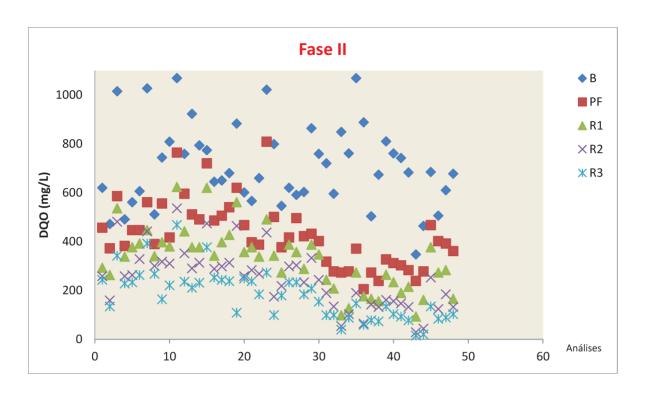


Figura 5.1 – Variação da concentração de DQO durante a Fase II.

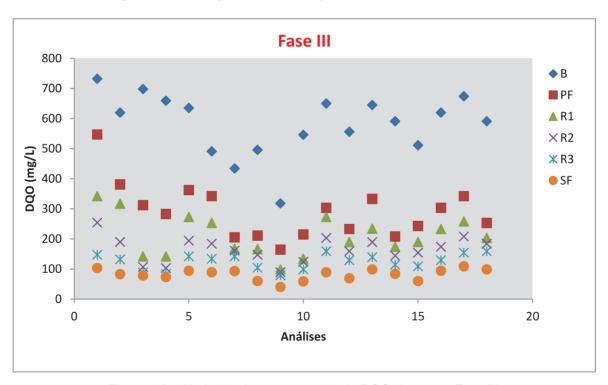


Figura 5.2 – Variação da concentração de DQO durante a Fase III.

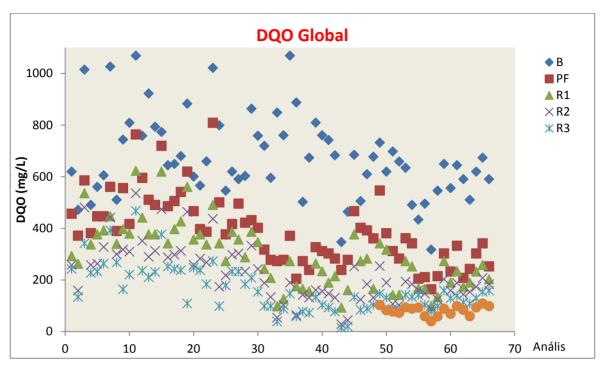


Figura 5.3 – Variação da concentração de DQO ao longo do período operacional.

O conjunto dos resultados de DQO, afluente bruto (B), efluentes do pré-filtro (PF), reatores biológicos percoladores (R1, R2 e R3) e filtro secundário (SF) obtidos durante as fases operacionais II e III e global, são representados pelas Figuras 5.4 a 5.6, respectivamente. Observa-se, pela Figura 5.4 e Tabela 5.1 que as concentrações de DQO do esgoto afluente ao Pré-filtro, nas diversas fases operacionais, tiveram valores mínimos compreendidos entre 318 a 347 mgDQO/L, enquanto as concentrações máximas variaram de 732 a 1069 mgDQO/L. As concentrações médias estiveram compreendidas entre 581 a 708 mgDQO/L.

Apesar do efluente do pré-filtro ter apresentado um valor máximo de 809 mgDQO/L na Fase II, observa-se pela Tabela 5.1 que ao longo do período operacional as concentrações médias variaram entre 291 a 428 mgDQO/L.

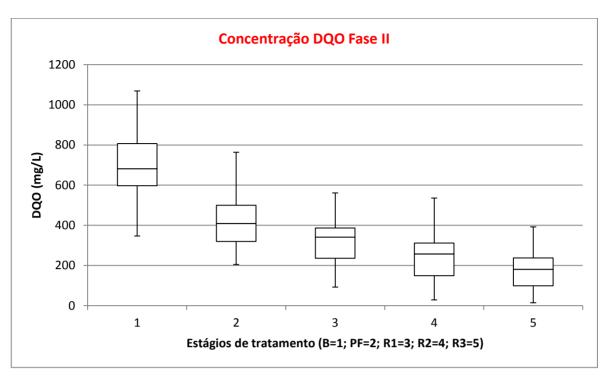


Figura 5.4 – Resultados Box-Whisker para concentração de DQO nos 5 estágios de tratamento da Fase II.

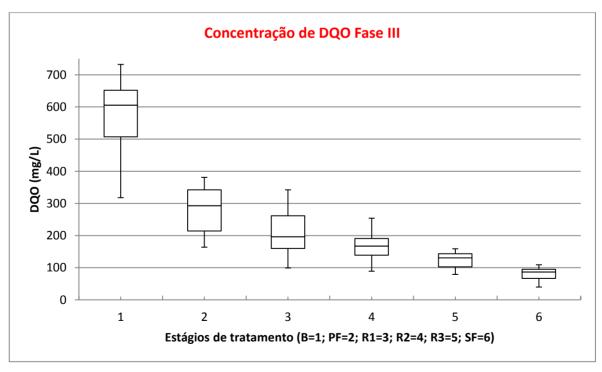


Figura 5.5 – Resultados Box-Whisker para concentração de DQO nos 6 estágios de tratamento da Fase

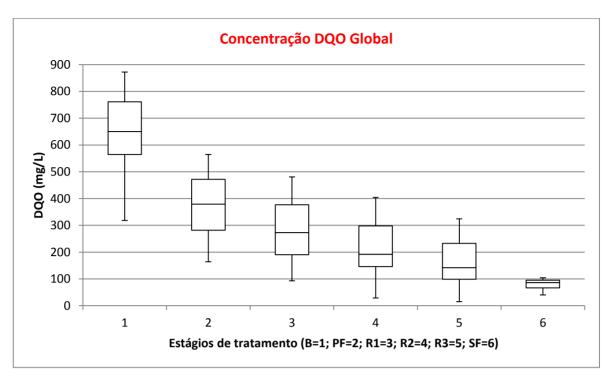


Figura 5.6 – Resultados Box-Whisker para concentração de DQO global de todos os estágios de tratamento.

Pode se dizer em relação ao efluente do reator biológico percolador (R1) ou Estágio 3, que apresentou um valor máximo global de 623 mgDQO/L, apresentou concentrações médias global variando entre 219 e 324 mgDQO/L ao longo das etapas do processo de tratamento.

O mesmo ocorreu no Estágio 4 ou (R2) na fase II apresentando um valor máximo 536 mgDQO/L e concentrações médias variando entre 164 e 247 mgDQO/L. No estágio 5 ou R3 foi obtido como valor máximo 468 mgDQO/L na fase II e concentrações médias de 124 a 179 mgDQO/L. Já no estágio 6 ou SF o valor máximo obtido foi de 109 mgDQO/L, e valor médio 81 mgDQO/L, já que essa etapa só ocorreu na Fase III de operação. Sendo assim, observa-se que ocorreu maior dispersão dos resultados durante a Fase II, provavelmente devido a um ou mais dos seguintes fatores: i) biofilme ainda em formação; ii) baixos tempos de detenção hidráulica; e iii) pequena área para percolação.

Embora o desempenho dos reatores biológicos percoladores durante a Fase II (partida do sistema) possam ser considerados bom, a alta concentração de DQO do esgoto bruto e pré-filtro afluente aos reatores contribuiu para uma redução da eficiência global em relação à Fase III.

Durante a Fase II, o pré-filtro foi capaz de produzir um efluente com concentração média de 428 mgDQO/L, enquanto a concentração média do efluente final na saída do terceiro reator (R3) foi de 179 mgDQO/L. A eficiência global de remoção foi de 75%.

Observa-se pela Tabela 5.2 que, na Fase III, a concentração média de DQO no pré-filtro foi de 291 mgDQO/L, cerca de aproximadamente 32% menor que na Fase II. Embora a eficiência da Fase II seja elevada em termos de remoção de DQO total global, acima de 70%, foi observado que na Fase III os sistemas reatores (1, 2 e 3) mais o filtro secundário promoveram uma remoção complementar de matéria carbonácea, elevando a eficiência global do sistema para valores a cima de 80% durante o período operacional. Essas eficiências de remoção foram obtidas apesar das grandes variações da concentração de DQO no esgoto bruto.

As maiores eficiências de remoção de matéria orgânica e os efluentes de melhor qualidade foram obtidos na Fase III, quando o sistema estava operando com taxas de aplicação hidráulica que variavam de 2,31 a 2,40 m³/m².d (FBP baixa taxa), e cargas orgânicas volumétricas variando entre 0,86 e 0,92 kgDBO/m³ (FBP alta taxa), o que mostrou que o sistema proposto apresenta características únicas quando comparado ao sistema convencional de FBP.

Outro fator importante foi a inserção do filtro secundário onde foi capaz de produzir um efluente final de ótima qualidade com concentrações de DQO variando de 40 a 109 mgDQO/L (ver Tabela 5.1).

As menores eficiências e piores qualidades do esgoto tratado foram observadas durante a Fase II, no 120º e 134º dias de operação quando os reatores foram expostos

a taxas de aplicação hidráulica mais altas variando de (2,38 a 2,54 m³/m².d) que o padrão operacional estipulado em 2,37 m³/m².d e cargas orgânicas volumétricas variando entre 1,15 e 1,39 kgDBO/m³.d. Mesmo durante esse período os reatores foram capazes de produzir um efluente final com concentrações ainda relativamente baixas de DQO (média de 128 mgDQO/L).

5.2 RESULTADOS DE DBO AO LONGO DO PERÍODO OPERACIONAL

As Tabelas 5.1 e 5.2 mostram a variação das concentrações de DBO total ao longo das fases operacionais. Nota-se, assim como foi observado para DQO, que também há uma grande variação da DBO do esgoto bruto, com valor de concentração média de 401 mgDBO/L. A Figura 5.7 representa os valores de DBO durante a Fase II de operação. Observa-se pelas curvas características obtidas do esgoto bruto e do efluentes pós Reator 3, como as unidades de tratamento conseguem minimizar o efeito da variação das concentrações do esgoto afluente à planta. Pode-se observar também, as baixas concentrações de DBO no efluente final, com concentrações médias em torno de 97 mgDBO/L.

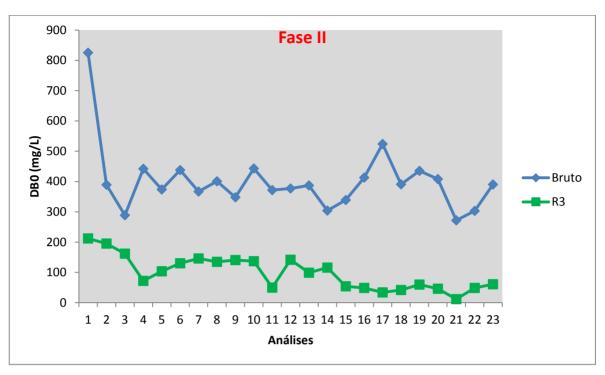


Figura 5.7 – Variação da concentração de DBO durante a Fase II.

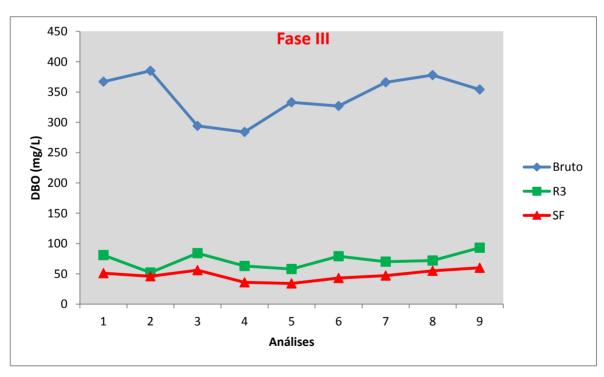


Figura 5.8 – Variação da concentração de DBO durante a Fase III.

Os resultados de DBO na Fase operacional III podem ser observados na Figura 5.8. Observa-se pelas curvas características que os valores de DBO pós-reator 3 obtiveram resultados bem abaixo dos valores de DBO do esgoto bruto, que obteve como média 343 mgDBO/L. Também pode ser visto que com a inserção do SF (filtro secundário) na saída do efluente (R3), as baixas concentrações de DBO na saída do R3 tiveram um valor médio de 72 mgDBO/L e no efluente final, com concentrações médias em torno de 47 mgDBO/L.

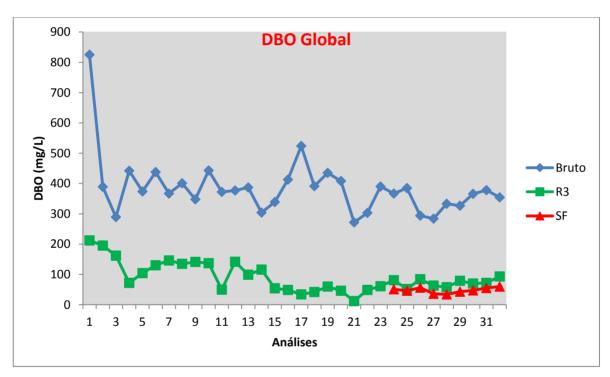


Figura 5.9 – Variação da concentração de DBO ao longo do período operacional.

A Figura 5.9 representa a junção das duas fases operacionais do sistema. O esgoto bruto apresentou concentração média 384 mgDBO/L. Pode-se observar o momento que é inserido o filtro secundário (SF) como fase operacional. A média obtidas para o reator 3 foi de 90 mgDBO/L e no efluente final (SF), concentrações médias em torno de 47 mgDBO/L. Pode-se verificar na Fase II a média do reator 3 é superior a

Fase III, isso se dá devido altos valores obtidos no início do tratamento antes da estabilização dos reatores.

Os resultados de DBO afluente e efluente do reator 3 e filtro secundário durante as fases operacionais, são representados pelas Figuras 5.10 a 5.12, respectivamente.

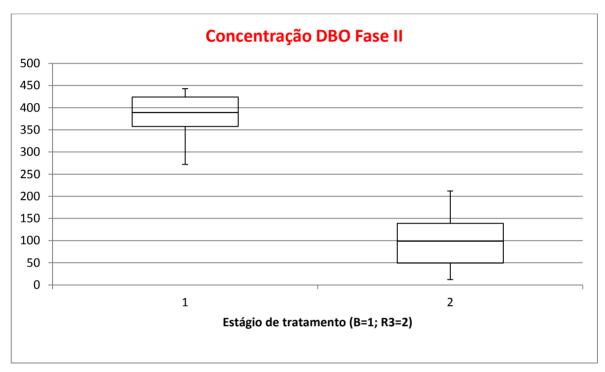


Figura 5.10 – Resultados Box-Whisker para concentração de DBO da Fase II.

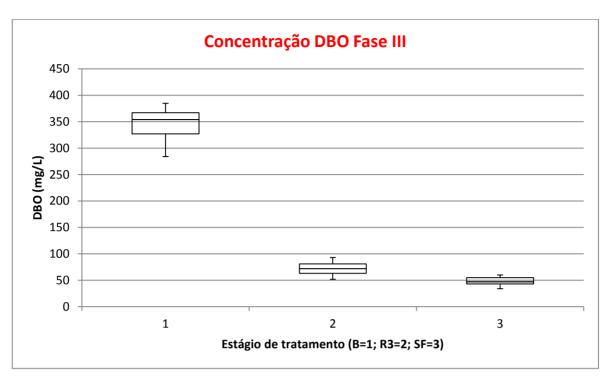


Figura 5.11 - Resultados Box-Whisker para concentração de DBO da Fase III.

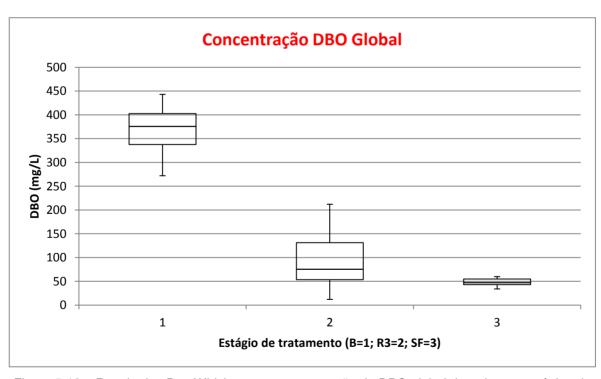


Figura 5.12 – Resultados Box-Whisker para concentração de DBO global de todos os estágios de tratamento.

Observa-se pela Figura 5.10 e Tabela 5.1, que as concentrações de DBO na Fase II do esgoto bruto variam entre 272 mgDBO/L e 825 mgDBO/L. Tal variação no reator 3 foi de 12 mgDBO/L, a 212 mgDBO/L. Os reatores operaram com taxa de aplicação hidráulica de 2,39 m³/m².d e carga orgânica volumétrica, em torno de 1,01 kgDBO/m³.

Na Fase III (Figura 5.11) é possível visualizar pequenas variações ao longo do tratamento dos valores de DBO no filtro secundário (SF). A saída do filtro secundário foi o ponto com maior eficiência de remoção de matéria orgânica.

Há que se relatar que nessa fase os reatores foram expostos à mesma taxa de aplicação hidráulica e carga orgânica volumétrica. A diferença principal entre as Fases II e III foi que durante o período as temperaturas do esgoto foram mais elevadas, com valores médios máximos próximos dos 22 ºC.

Apesar de o sistema proposto ter apresentado eficiência de remoção de DBO acima de 70% em todas as fases, mesmo com as variações na Fase II das taxas de aplicação hidráulica (2,33 a 2,49 m³/m².d) e cargas orgânicas volumétricas mais altas (0,7 a 2,13 kgDBO/m³), o FBP/SF foi capaz de produzir um efluente final com concentrações de 90 mgDBO/L no reator 3 e 47 mgDBO/L no filtro secundário. Assim atingiu eficiência global de 80% para a Fase II e 86% para a Fase III. A Figura 5.13 representa visualmente a remoção de DBO no reator 3 e filtro secundário em relação ao esgoto bruto.

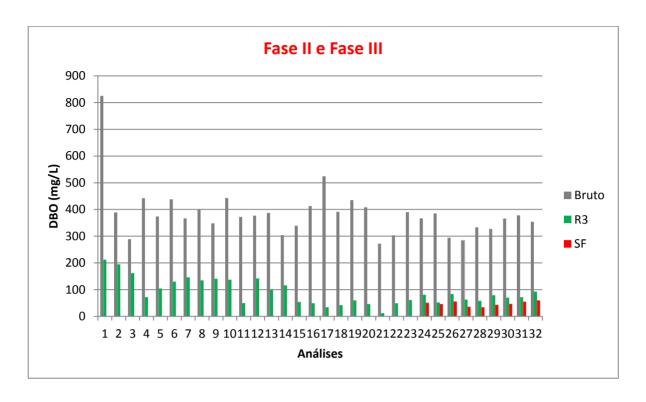


Figura 5.13 – Remoção de DBO.

5.3 RESULTADOS DE SÓLIDOS SUSPENSOS

Deve-se salientar que a determinação das frações de sólidos é recomendada para águas fortemente poluídas e esgotos. Os sólidos suspensos agem de maneira indireta sobre a vida aquática, impedem a penetração da luz, induzem o aquecimento da água o que, consequentemente diminui a quantidade de oxigênio dissolvido no meio.

Para obter um melhor detalhamento dos parâmetros foram determinados os Sólidos Suspensos Voláteis e Fixos. Os sólidos suspensos compreendem a porção dos sólidos totais que fica retida em um filtro que propicia a retenção de partículas de diâmetro maior ou igual a 1,2 µm. São determinados com relação à natureza (fixos ou minerais e voláteis ou orgânicos).

5.3.1 Sólidos Suspensos Totais (SST)

A Figura 5.16 representa a variação da concentração de SST ao longo do período experimental, e as Figuras 5.14 e 5.15 os resultados nas Fases II e III. Esses resultados seguem o mesmo comportamento verificado para DQO e DBO, com grandes variações no efluente bruto e um significativo amortecimento dos picos nos efluentes pós pré-filtro e reatores biológicos.

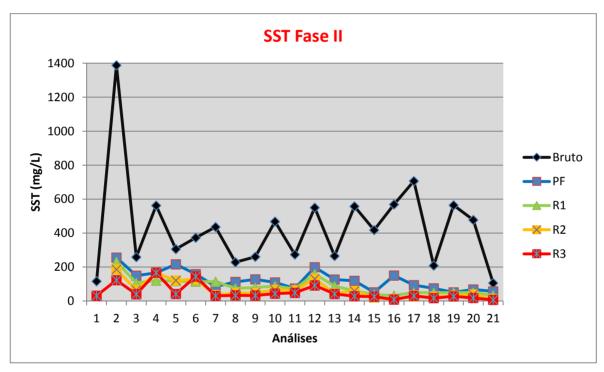


Figura 5.14 – Variação da concentração de SST durante a Fase II.

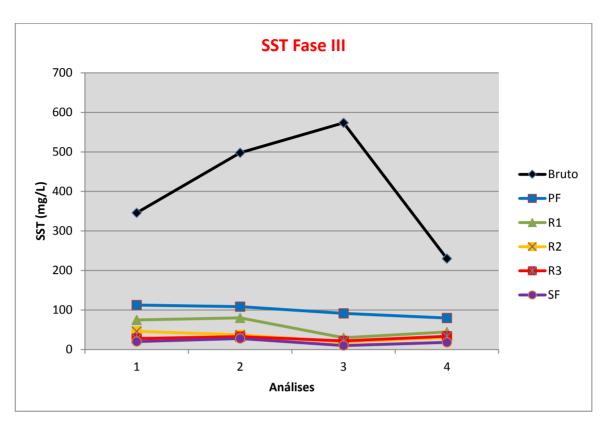


Figura 5.15 – Variação da concentração de SST durante a Fase III.

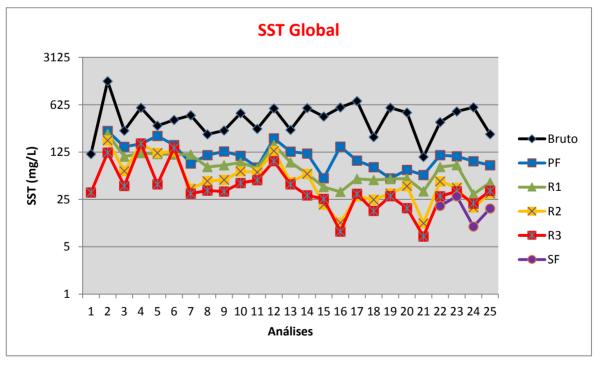


Figura 5.16 – Variação da concentração de SST ao longo do período operacional.

As Figuras 5.17 a 5.19 mostram a variação dos valores de SST esgoto bruto, pré-filtro, reatores e filtro secundário, nas fases operacionais II e III e ao longo das fases.

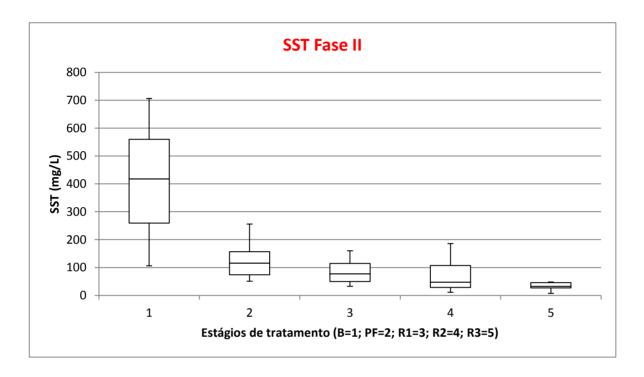


Figura 5.17 – Resultados Box-Whisker para a concentração de SST na Fase II.

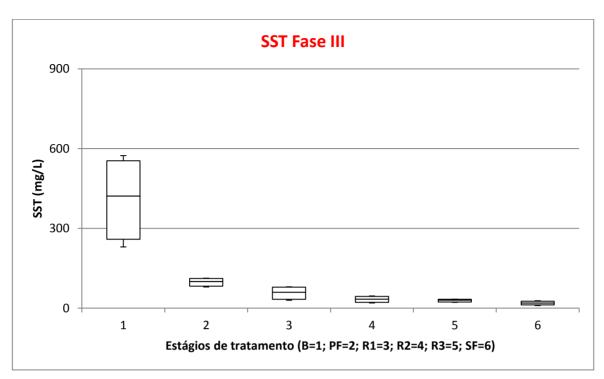


Figura 5.18 – Resultados Box-Whisker para a concentração de SST na Fase III.

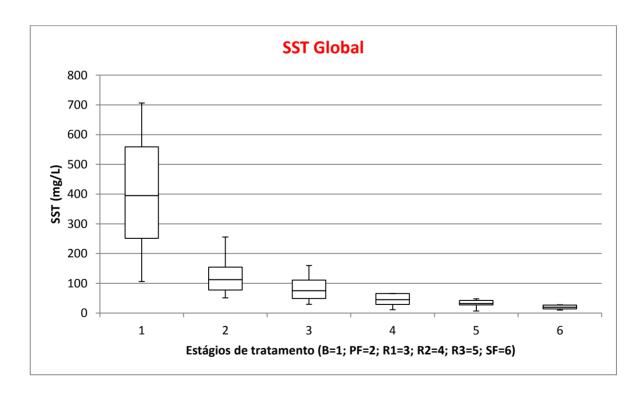


Figura 5.19 – Resultados Box-Whisker para a concentração de SST ao longo do período operacional.

Observa-se, pelas Tabelas 5.1 e 5.2, que as concentrações de SST no esgoto bruto, ao longo do período experimental, com variações de Fase II e Fase III, tiveram valores mínimos correspondidos entre 106 e 112 mgSST/L, respectivamente, enquanto as concentrações máximas variaram entre 1388 e 573 mgSST/L. Já as concentrações médias variaram entre 433 e 352 mgSST/L, e média global 417 mgSST/L, essa concentração média é relativamente baixa por ser proveniente de esgoto bruto, isso deve ter ocorrido possivelmente devido a sedimentação de sólidos no interior do tanque de equalização, de onde era feita a amostragem do esgoto bruto.

No 190º dia de operação ocorreu um pico no valor dos SST do pré-filtro, isso devido ao sistema ter parado por mais de 24 horas, este fato ocorreu pelo rompimento da mangueira que alimenta o sistema de reatores, sido operado com taxa de aplicação hidráulica de 0,58 m³/m².d e carga orgânica volumétrica, que ficou em torno de 3,9 kgDBO/m³, bem como, pelo desprendimento de um pedaço de biomassa, no processo de cisalhamento, este dado foi descartado já que foi um resultado totalmente anômalo.

O efluente proveniente do pré-filtro apresentou variações medianas das concentrações de SST, em relação as fases, atingindo valores máximos na Fase II de 256 e 113 mgSST/L na Fase III, valores mínimos de 50 e 80 mgSST/L para essas respectivas fases. Já em termos de concentrações médias de SST no efluente do pré-filtro estas estiveram compreendidas entre 122 e 100 mgSST/L, com média global de 118 mgSST/L (ver Tabelas 5.1 e 5.2).

Como pode ser observado pelas Tabelas 5.1 e 5.2, e Figuras 5.17 a 5.19 que as concentrações de SST no efluente do primeiro reator (R1), tiveram grandes variações nas duas etapas experimentais, apresentando inicialmente na Fase II valores máximos maiores comparados à etapa seguinte, concentrações máximas variaram entre 231 e 80 mgSST/L. Isso pode ser atribuído às condições operacionais impostas como tempo de detenção hidráulica ao longo das fases (tópico 4.7 Estudo Hidrodinâmico do reator biológico percolador). Já as concentrações mínimas de SST ficaram correspondidas entre 32 e 30 mgSST/L respectivamente, enquanto as

concentrações médias variaram entre 87 e 60 mgSST/L, com média global entre as fases de 81 mgSST/L.

Observa-se, que as concentrações de SST no segundo reator (R2), tiveram valores mínimos correspondidos entre 11 e 19 mgSST/L, enquanto as concentrações máximas variaram entre 186 e 46 mgSST/L. Já as concentrações médias variaram entre 66 e 34 mgSST/L, e média global 60 mgSST/L.

De acordo com as Tabelas 5.1 e 5.2, e Figuras 5.17 a 5.19 que as concentrações de SST no efluente do terceiro reator (R3), durante o período experimental, tiveram valores mínimos na Fase II e III correspondidos entre 7 e 22 mgSST/L respectivamente, as concentrações máximas variaram entre 168 e 34 mgSST/L. Já as concentrações médias variaram entre 49 e 30 mgSST/L, e média global 45 mgSST/L.

Já as concentrações de SST no efluente final do filtro secundário (SF), como pode ser visto na Figura 5.19 e Tabela 5.1, durante a Fase III de operação, apresentou valor mínimo de 10 mgSST/L, máxima de 28 mgSST/L e médio de 20 mgSST/L, manifestando-se em conformidade com a maioria dos restritivos padrões internacionais de lançamento.

Desconsiderando os valores de concentração de SST obtidos no 190º dia de operação, onde o sistema apresentou grande variação devido ao rompimento da mangueira que alimenta o sistema de filtros e reatores por mais de 24 horas, comprometendo a amostra em questão, bem como, os valores de eficiência média ao longo de todo o experimento, apresenta-se na Tabela 5.4 o resumo dos resultados de eficiências de remoção de SST.

Tabela 5.4 – Resumo das eficiências médias obtidas para cada etapa operacional de um estágio de tratamento para outro em termos SST.

			FAS	SE II			FASE III				
Parâm	PF	R1	R2	R3	PF	R1	R2	R3	SF		
Eficiência	Média	71	28	24	25	76	41	42	12	34	
SST (%)		8	8		95						

Onde: PF = Pré-filtro, R1 = Reator 1, R2 = Reator 2, R3 = Reator 3, SF = Filtro Secundário.

Do mesmo modo que o observado para DQO e DBO, também em relação aos sólidos suspensos totais durante as fases operacionais e estágios de tratamento ocorreu uma diminuição das concentrações de SST. A eficiência de remoção na Fase II levando em consideração os valores médios foi de 88,6%, e na Fase III com a presença do filtro secundário de 95,3% e sem o filtro secundário de 92,9%. Em termos globais, a eficiência média foi de 95,5%.

Cumpre ainda destacar o excelente desempenho do sistema proposto durante as Fases II e III, que embora tenha sido submetido a tempos de detenção hidráulica muitos baixos, variando de 82 a 100 minutos, foi capaz de produzir um efluente final que apresentou concentrações médias de sólidos suspensos de 118, 82, 61, 46 e 19 mgSST/L, PF, R1, R2, R3 e SF respectivamente, comprovando a eficiência na remoção de SST.

Tal fato, certamente é decorrente da concepção proposta ao sistema, seus materiais de suporte e fixação da biomassa e forma de escoamento imposto à fase líquida em tratamento que, obrigatoriamente em seu percurso pelos reatores, sofria, além das reações bioquímicas de degradação da matéria orgânica e consequente geração de novos sólidos (biomassa), retenção de sólidos por filtração, no caso, física, imposta pela matriz do não tecido sintético e a percolação pelo mesmo até a saída do último estágio de tratamento.

Como mencionado anteriormente a produção de lodo gerado no sistema, de acordo com as Tabelas 5.6, 5.12 e 5.19, Tópico 3.7.5 e anexos 9.1 a 9.3, a estimativa da massa de lodo no FBP.

Sendo a massa de DQO removida, é, calculada como:

Onde:

MDQO_{removida}: massa de DQO removida (KgDQO/dia).

DQO_{entrada}: concentração de DQO no afluente ao reator (Kg/m³).

DQO_{saída}: concentração de DQO no efluente ao reator (Kg/m³).

Q: vazão de esgoto aplicada (m³/dia).

A massa de lodo foi calculada mediante conhecimento da vazão aplicada e do teor de sólidos suspensos no efluente do sistema de tratamento.

Dessa forma, o valor médio da massa de DQO removida foi de 0,03 KgDQO/dia para o R1, 0,021 KgDQO/dia para o R2, 0,019 KgDQO/dia para o R3, dispostos na tabela em anexo.

5.3.2 Sólidos Suspensos Voláteis (SSV)

A Figura 5.41 representa a variação da concentração de SSV ao longo do período experimental, já as Figuras 5.20 e 5.21 representam os valores dos resultados nas Fases II e III respectivamente. Como visto anteriormente com os SST, as concentrações de SSV apresentam o mesmo padrão, com grandes variações no

efluente bruto e amortização dos picos nos efluentes pós pré-filtro e reatores biológicos percoladores.

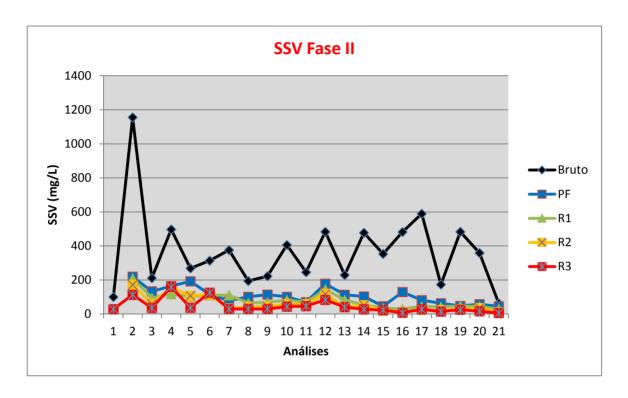


Figura 5.20 – Variação da concentração de SSV durante a Fase II.

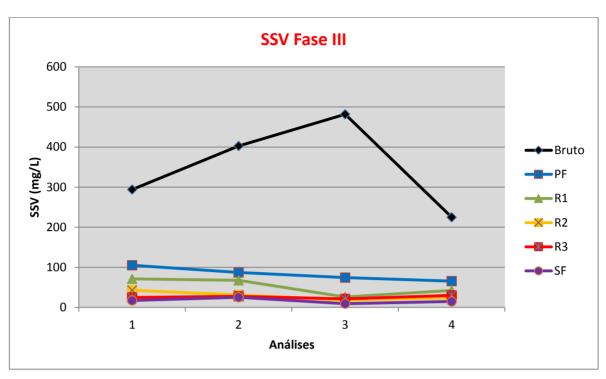


Figura 5.21 – Variação da concentração de SSV durante a Fase III.

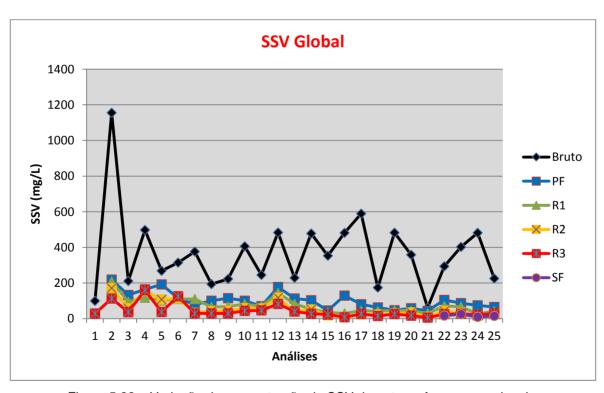


Figura 5.22 – Variação da concentração de SSV durante as fases operacionais.

As Figuras 5.23 a 5.25 mostram a variação dos valores de SSV esgoto bruto, pré-filtro, reatores (R1, R2 e R3) e filtro secundário, nas fases operacionais II e III e ao longo das fases operacionais.

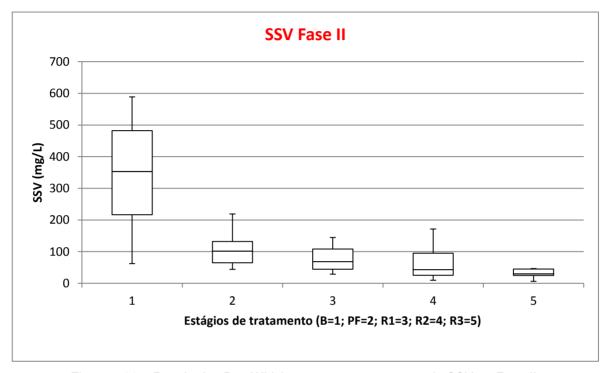


Figura 5.23 – Resultados Box-Whisker para a concentração de SSV na Fase II.

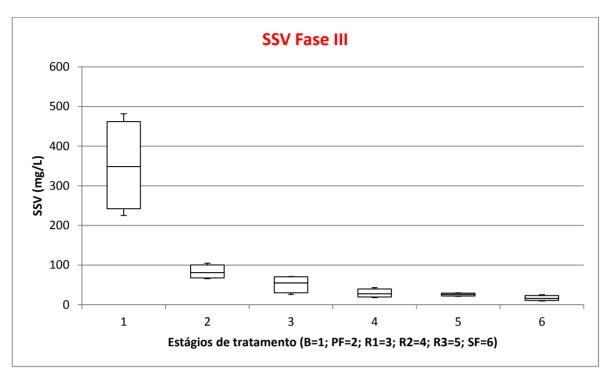


Figura 5.24 – Resultados Box-Whisker para a concentração de SSV na Fase III.

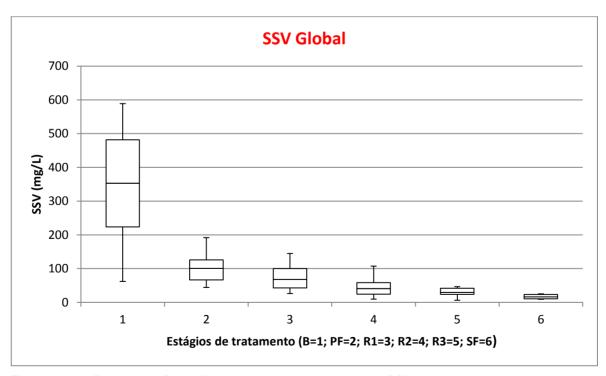


Figura 5.25 – Resultados Box-Whisker para a concentração de SSV durante as fases operacionais.

Observa-se, pelas Tabelas 5.1 e 5.2, e as Figuras 5.23 a 5.25 que os valores das concentrações de SSV no esgoto bruto, ao longo do período experimental, apresentaram variações da Fase II para a Fase III como descrito a seguir. Os valores mínimos obtidos para concentração de SSV foram correspondidos entre 62 e 225 mgSSV/L, respectivamente, enquanto as concentrações máximas variaram entre 1155 e 482 mgSSV/L. Já as concentrações médias variaram entre 366 e 351 mgSSV/L, e média global 463 mgSSV/L, essa concentração média global pode ser considerada relativamente baixa por ser derivado do afluente bruto.

Como pode ser observado nas Figuras 5.23 a 5.25 a etapa do Pré-filtro apresentou variações moderadas das concentrações de SSV entre as etapas, atingindo valores máximos de 219 e 105 mgSSV/L nas Fases II e III respectivamente, concentrações mínimas de 44 e 65 mgSSV/L para essas respectivas fases. Com relação às concentrações médias de SSV no efluente do pré-filtro estas estiveram compreendidas entre 108 e 83 mgSSV/L, com valor de média global de 103 mgSSV/L, esses valores de concentrações de SSV podem ser observados nas Tabelas 5.1 e 5.2.

Observa-se pelas Tabelas 5.1 e 5.2, e Figuras 5.23 a 5.25 que as concentrações de SSV no efluente do primeiro reator (R1), apresentou diminuição entre as duas etapas experimentais, nota-se inicialmente na Fase II valores máximos maiores comparados à etapa seguinte, as concentrações máximas variaram entre 219 e 83 mgSSV/L. Isso pode ser atribuído às condições operacionais impostas como tempo de detenção hidráulica ao longo das fases (tópico 5.2 Estudo Hidrodinâmico do reator biológico percolador). Nota-se que as concentrações mínimas de SSV ficaram entre 29 e 26 mgSSV/L respectivamente, enquanto as concentrações médias variaram entre 79 e 52 mgSSV/L, com média global entre as fases de 75 mgSSV/L.

Referindo-se as concentrações de SSV no segundo reator (R2), obtiveram valores mínimos de concentração entre 09 e 18 mgSSV/L para as fases II e III respectivamente, com relação as concentrações máximas variaram entre 172 e 43 mgSSV/L. Já as concentrações médias variaram entre 60 e 29 mgSSV/L, com média global 55 mgSSV/L.

Com relação às concentrações de SSV no efluente proveniente do terceiro reator (R3), durante o período experimental, tiveram valores mínimos na Fase II e III correspondidos entre 6 e 21 mgSSV/L respectivamente, as concentrações máximas variaram entre 159 e 30 mgSSV/L. Já as concentrações médias variaram entre 45 e 26 mgSSV/L, com média global 45 mgSSV/L.

Seguindo as mesmas observações feitas para as concentrações de SSV das etapas anteriores no efluente final do filtro secundário (SF), como pode ser visto na Figura 5.24 e Tabela 5.1, durante a operação da Fase III, foi obtido valor mínimo de 9 mgSSV/L, com concentração máxima de 25 mgSSV/L e concentração média de 17 mgSSV/L, observa-se que os valores encontra-se em conformidade com a maioria dos restritivos padrões internacionais de lançamento de efluentes em corpos d'água, com redução média global de SSV em 95%.

5.3.3 Sólidos Suspensos Fixos (SSF)

A Figura 5.28 representa a variação da concentração de SSF ao longo do período experimental, já as Figuras 5.26 e 5.27 os resultados das concentrações obtidos nas Fases II e III. Esses resultados seguem o mesmo padrão verificado para SST e SSV, com concentrações mais acentuadas no efluente bruto e uma expressiva diminuição das concentrações nas etapas de tratamento subsequentes.

Os valores das concentrações de SSF podem ser obtidos através dos valores encontrados de SST e SSV. Os SSF representam a parcela de componentes minerais, não incineráveis, inertes dos sólidos em suspensão.

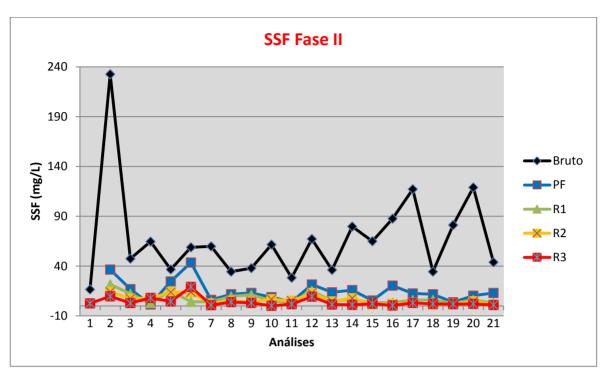


Figura 5.26 – Variação da concentração de SSF durante a Fase II.

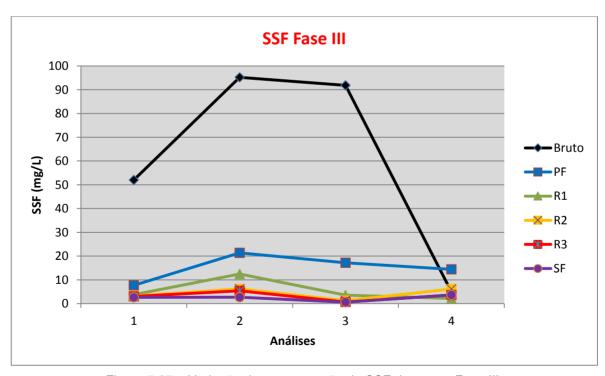


Figura 5.27 – Variação da concentração de SSF durante a Fase III.

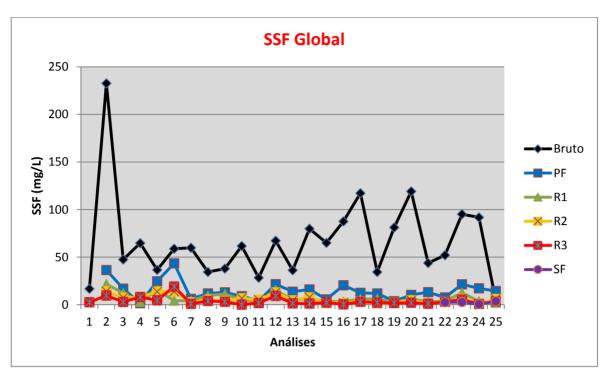


Figura 5.28 – Variação da concentração de SSF durante as fases operacionais.

Como se observa nas Figuras 5.29 a 5.31 representam os valores medianos, e a distribuição das concentrações de SSF.

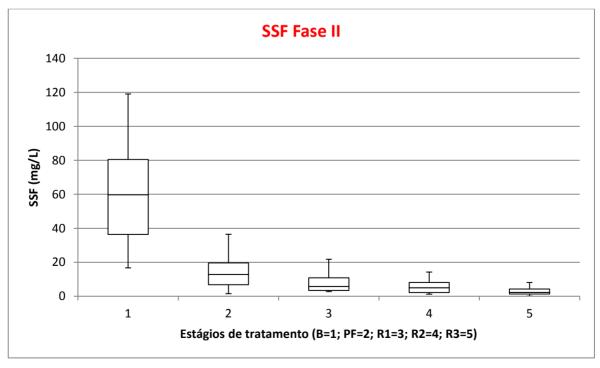


Figura 5.29 – Resultados Box-Whisker para a concentração de SSF durante a Fase II.

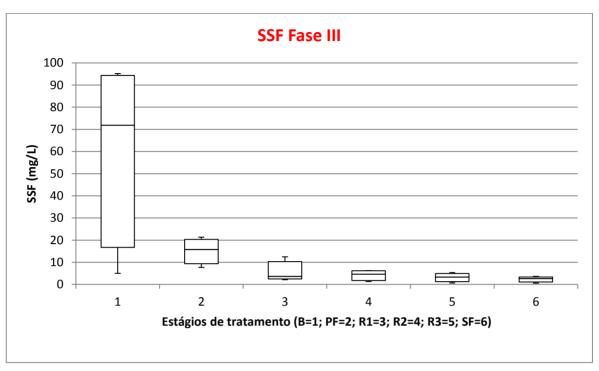


Figura 5.30 – Resultados Box-Whisker para a concentração de SSF durante a Fase III.

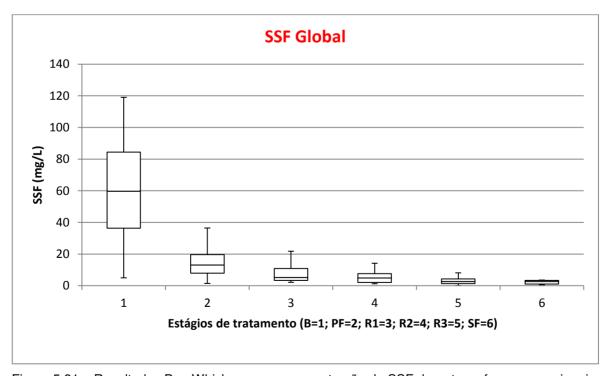


Figura 5.31 – Resultados Box-Whisker para a concentração de SSF durante as fases operacionais.

De acordo com as Tabelas 5.1 e 5.2, e as Figuras 5.29 a 5.31 representa a distribuição dos valores das concentrações de SSF no esgoto bruto, ao longo do período experimental. Os valores mínimos obtidos para concentração de SSF foram correspondidos entre 17 e 5 mgSSF/L, nas Fases II e III respectivamente, enquanto as concentrações máximas variaram entre 233 e 95 mgSSF/L. Já as concentrações médias variaram entre 67 e 61 mgSSF/L, e média global em torno de 66 mgSSV/L.

Nos gráficos de Box-Whisker (Figuras 5.29 a 5.31) durante as etapas o Pré-filtro apresentou variações das concentrações de SSF entre as etapas, atingindo valores máximos de 44 e 21 mgSSF/L respectivamente, com concentrações mínimas de 2 e 8 mgSSF/L. Já as concentrações médias de SSF no efluente do Pré-filtro estas estiveram compreendidas entre 15 e 14 mgSSF/L, com valor de média global de 15 mgSSF/L, esses valores de concentrações de SSF podem ser observados nas Tabelas 5.1 e 5.2 como citado anteriormente.

Já as concentrações de SSF no efluente do primeiro reator (R1), apresentou pequena variação entre as etapas experimentais, nota-se que as concentrações máximas variaram entre 22 e 12 mgSSF/L. As concentrações mínimas ficaram entre 3 e 2 mgSSF/L respectivamente, enquanto as concentrações médias variaram entre 7 e 5 mgSSF/L, com média global entre as fases de 7 mgSSV/L.

Como pode ser visto na Tabela 5.1 e 5.2 os valores de SSF dos reatores (R1, R2 e R3) apresentaram pouca variação, mantendo valores de concentração muito próximos. Os gráficos de Box-Whisker referindo-se as concentrações de SSF no segundo reator (R2), obtiveram valores mínimos de concentração de 1 mgSSF/L para as fases II e III, com relação as concentrações máximas variaram entre 14 e 5 mgSSF/L. Já as concentrações médias variaram entre 6 e 4 mgSSF/L, com média global de 6 mgSSF/L.

Observa-se que às concentrações de SSF no efluente do terceiro reator (R3), durante o período experimental, tiveram valores mínimos na Fase II e III correspondidos entre 0,1 e 1 mgSSF/L respectivamente, as concentrações máximas variaram entre 19

e 5 mgSSF/L. Com relação as concentrações médias variaram entre 4 e 3 mgSSF/L, com média global 4 mgSSF/L.

Seguindo as mesmas observações feitas para as concentrações de SSF das etapas anteriores no efluente final do filtro secundário (SF), como pode ser visto na Figura 5.30 e Tabela 5.1, durante a operação da Fase III, foi obtido valor mínimo de concentração de SSF de 1 mgSSF/L, com concentração máxima de 4 mgSSF/L e concentração média de 2 mgSSF/L. Observa-se que comparados os valores de SSF médios globais, considerando as duas etapas de operação dos reatores, encontrados no esgoto bruto a saída do sistema de tratamento, os valores percebe-se uma redução de 97% dos SSF retidos nos reatores ao longo do sistema de tratamento.

5.4 DISTRIBUIÇÃO DOS RESULTADOS DE DQO, DBO E SST

Com base na análise dos efeitos das taxas de aplicação hidráulica superficial e cargas orgânicas volumétricas no desemprenho dos reatores biológicos, observasse que as maiores eficiências de remoção de DQO e DBO e consequentemente as menores concentrações em termos de DQO. DBO e SST no efluente final foram obtidos durante a Fase III. Sendo assim será analisado neste item como ocorreu à distribuição dos resultados ao longo dessa fase, quando os reatores biológicos percoladores foram operados com cargas orgânicas volumétricas inferiores a 2,5 kgDBO/m³.d e taxas de aplicação hidráulica superficial inferior a 2,5 m³/m².d.

5.4.1 Distribuição dos resultados de DQO

A Figura 5.32 apresenta a percentagem de remoção das etapas de tratamento em relação à concentração de DQO do esgoto bruto, obtidos para os efluentes do préfiltro (PF), dos reatores (R1, R2 e R3) e filtro secundário (SF) indicando como ocorreu a distribuição dos dados ao longo da Fase III. É interessante ressaltar que durante estas

fases o sistema PF/Reatores/SF foi capaz de atender o padrão de lançamento de efluentes em corpos d'água receptores do Estado de São Paulo disposto através do Decreto Estadual nº 54.487, de 26 de junho de 2009, com remoção mínima de 60% dos resultados de DQO do efluente bruto.

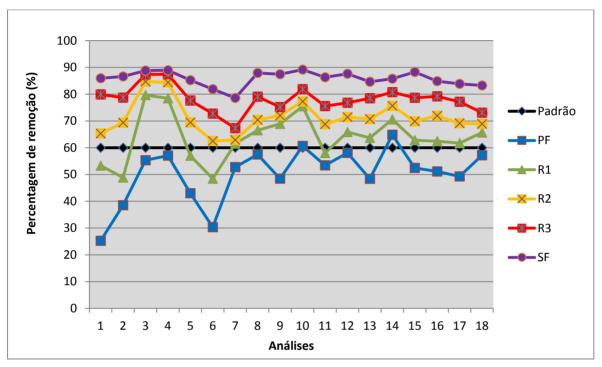


Figura 5.32 – Percentagem de remoção das etapas de tratamento em relação à concentração de DQO do esgoto bruto na Fase III.

A Tabela 5.5 faz uma comparação entre a frequência de distribuição de concentração de DQO durante a Fase III. Considerando-se os padrões de lançamento em corpos d'água na esfera federal (CONAMA 357/05) e do Estado de São Paulo (Lei 997/76 – art.18), regulamentado pelo Decreto Estadual nº 54.487, de 26 de junho de 2009 e Resolução nº 430, de 13 maio de 2011.

Tabela 5.5 – Comparação entre a frequência de distribuição de DQO e o atendimento ao padrão de lançamento do Estado de São Paulo.

DQO Efluente	Dados dentro	Dados fora	Padrão de
	do padrão	do padrão	lançamento
Pré-Filtro (PF)	11%	89%	> 60% DQO total
Reator 1 (R1)	72%	28%	> 60% DQO total
Reator 2 (R2)	100%	0%	> 60% DQO total
Reator 3 (R3)	100%	0%	> 60% DQO total
Filtro Secundário (SF)	100%	0%	> 60% DQO total

A análise de frequência de distribuição demonstra que o sistema combinado PF/Reatores/SF atingiu excelentes valores de remoção de DQO total, e que a partir do estágio de tratamento reator 2 (R2) todos os valores de DQO obtidos estiveram dentro do exigido por legislação de 11% para 100%.

5.4.2 Distribuição dos resultados de DBO

A Figura 5.33 Apresenta a frequência de distribuição dos resultados obtidos para a concentração de DBO efluente a planta piloto, indicando como ocorreu a distribuição dos dados ao logo das fases que obtiveram as menores concentrações do DBO no efluente final R3 e SF (Fase III).

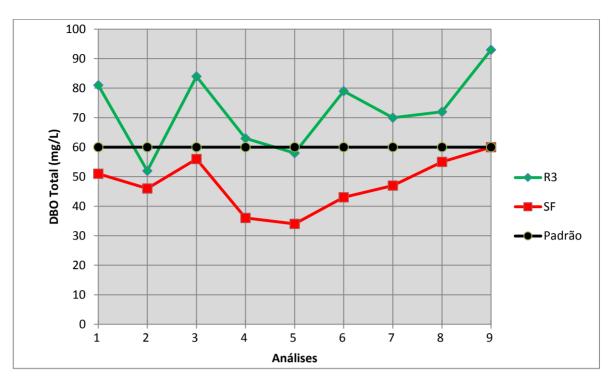


Figura 5.33 – Frequência de distribuição dos resultados de DBO na Fase III.

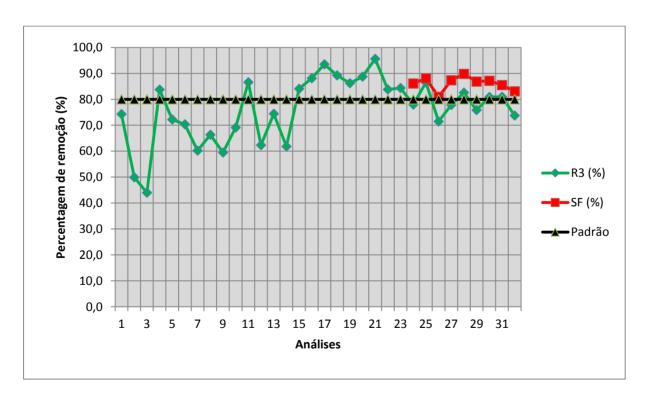


Figura 5.34 – Frequência de distribuição dos resultados de DBO durante todo o tratamento.

As Tabelas 5.6 a 5.8 fazem uma comparação entre a frequência de distribuição de concentração de DBO durante a Fase III e durante as duas fases de tratamento, de acordo com o atendimento ao padrão de lançamento do estado de São Paulo, através do Decreto Estadual nº 54.487, de 26 de junho de 2009, que determinam o limite de lançamento é de 60 mgDBO/L, e/ou remoção de pelo menos 80% para a variável, o que pode ser visto pela representação das Figuras 5.52 e 5.53.

Tabela 5.6 – Comparação entre a frequência de distribuição de DBO, Fase III e o atendimento ao padrão de 60 mgDBO/L.

DBO Efluente	Dados dentro	Dados fora	Padrão de
	do padrão	do padrão	lançamento
Reator 3 (R3)	22%	78%	< 60 mg/L DBO total
Filtro Secundário (SF)	100%	0%	< 60 mg/L DBO total

Tabela 5.7 – Comparação entre a frequência de distribuição de DBO, Fase III e o atendimento ao padrão de 80%.

DBO Efluente	Dados dentro	Dados fora	Padrão de
	do padrão	do padrão	lançamento
Reator 3 (R3)	44%	66%	80% DBO total
Filtro Secundário (SF)	100%	0%	80% DBO total

Tabela 5.8 – Comparação entre a frequência de distribuição de DBO durante o tratamento e o atendimento ao padrão de remoção de 80%.

DBO Efluente	Dados dentro do padrão	Dados fora do padrão	Padrão de Iançamento
Reator 3 (R3)	50%	50%	80% DBO total
Filtro Secundário (SF)	100%	0%	80% DBO total

Do mesmo modo como foi observado para DQO, a análise de frequência de distribuição demonstra que a planta piloto atingiu excelentes níveis de remoção de DBO, e que o pós-tratamento contribuiu significativamente para uma melhoria na qualidade do efluente final, elevando o nível de atendimento ao padrão de lançamento estabelecido pelo Decreto Estadual nº 54.487 de 22% no R3 para 100%, quando comparados a remoção de 60 mgDBO/L dos resultados de concentração de DBO obtidos no Filtro Secundário durante a Fase III. Com relação ao padrão de remoção de 80% de DBO total, os índices foram de 44% no R3 para 100% no SF durante a Fase III que mostra a eficiência do uso do Filtro Secundário quando referente a remoção de DBO total.

5.4.3 Distribuição dos resultados de SST

A Figura 5.35 apresenta a concentração de SST em todos os estágios de tratamento na Fase III do sistema PF/Reatores/SF indicando que durante o tratamento o estágio do PF apresentou valores de concentrações de SST superior a 60 mgSST/L determinado pela legislação vigente (Decreto Estadual nº 54.487). Observa-se que os valores de concentração dos SST do reator 1 (R1) apresentou concentração de SST de 50% dentro da faixa esperada, os estágios dos reatores (R2 e R3) e filtro secundário (SF) obtiveram concentrações menores que 60mgSST/L, comprovando a eficiência no uso do Filtro Secundário e os estágios dos reatores na remoção da concentração de sólidos suspensos totais.

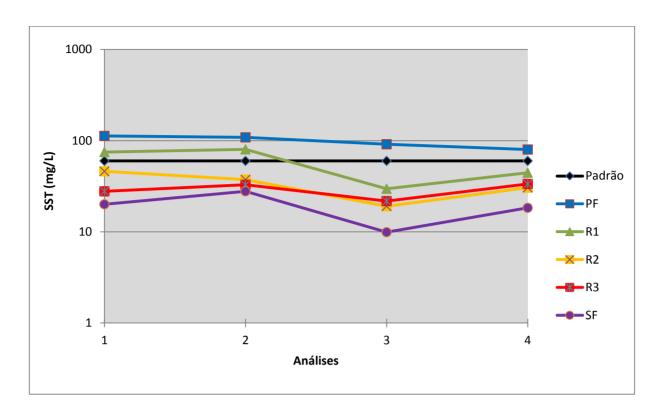


Figura 5.35 – Concentração de SST em todos os estágios de tratamento na Fase III.

A Tabela 5.9 faz uma comparação entre a frequência de distribuição de concentração de SST durante a Fase III e o atendimento ao padrão de lançamento do estado de São Paulo, estabelecido pelo Decreto Estadual nº 54.487, de 26 de junho de 2009. A Fase III foi escolhida para demonstrar que o uso do SF foi de extrema importância para a obtenção desses resultados.

Tabela 5.9 – Comparação entre a frequência de distribuição de SST e o atendimento ao padrão de lançamento do Estado de São Paulo.

SST Efluente	Dados dentro	Dados fora	Padrão de
	do padrão	do padrão	lançamento
Pré-Filtro (PF)	0%	100%	> 60% SST total
Reator 1 (R1)	50%	50%	> 60% SST total
Reator 2 (R2)	100%	0%	> 60% SST total
Reator 3 (R3)	100%	0%	> 60% SST total
Filtro Secundário (SF)	100%	0%	> 60% SST total

Como foi observado para DQO e DBO, a análise de frequência de distribuição demonstra que o sistema de tratamento atingiu ótimos níveis de remoção de SST, e que o pós-tratamento contribuiu significativamente para uma melhoria na qualidade do efluente final, elevando o nível de atendimento ao padrão de lançamento estabelecido pelo Decreto Estadual nº 54.487 de 50% no Reator 1 para 100% nos Reator 2 e 3 e Filtro Secundário durante a Fase III de tratamento, o que mais uma vez mostra a eficiência do uso dos Reatores e Filtro Secundário quando referente a remoção de SST.

5.5 RESULTADOS DE TEMPERATURA E OXIGÊNIO DISSOLVIDO

Observa-se que a Figura 5.36 mostra, resumidamente, como ocorreu a variação das temperaturas do esgoto bruto, pré-filtro, reatores 1, 2 e 3 e filtro secundário ao longo das fases experimentais. Pode-se observar, pelo gráfico de Box-Wisker, as medianas, os valores extremos de máximos e mínimos, os valores entre 25% e 75% dos resultados obtidos e como ocorre a dispersão dos resultados. Há que se destacar que as medidas de temperatura durante as fases II e III foram realizadas no Laboratório de Saneamento (LABSAN) após a coleta que ocorreram rotineiramente no período das

09:30 às 10:30 horas, durante os duas de coleta de amostra com frequência de 2 vezes por semana.

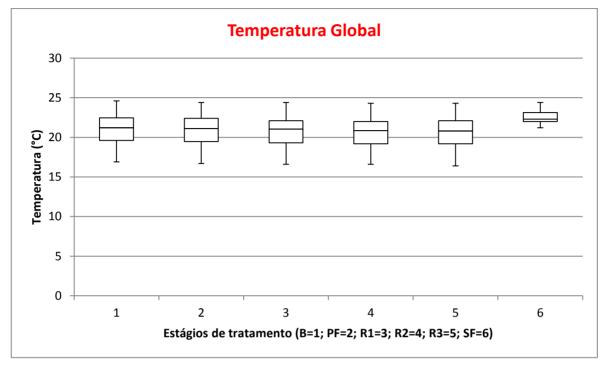


Figura 5.36 – Resultados Box-Whisker para os valores de temperatura ao longo das fases operacionais.

A Tabela 5.10 apresenta os resultados máximos, mínimos e médios de temperatura obtidos durante as fases experimentais e a Figura 5.37 mostra a variação mensal das temperaturas ao longo do período das análises.

Tabela 5.10 – Resumo dos resultados máximos, mínimos e médios de temperatura obtidos para cada etapa operacional de um estágio de tratamento.

		FASE II				FASE III						
Parâm	netros	В	PF	R1	R2	R3	В	PF	R1	R2	R3	SF
Temp.	média	20,49	20,34	20,2	20,12	20,05	23,12	22,97	22,8	22,7	22,6	22,52
(°C)	máximo	23,5	23,4	23,1	23,1	23	24,6	24,4	24,4	24,3	24,3	24,4
	mínimo	16,9	16,7	16,6	16,6	16,4	21,7	21,6	21,4	21,3	21,4	21,2

Onde: PF = Pré-filtro, R1 = Reator 1, R2 = Reator 2, R3 = Reator 3, SF = Filtro Secundário.

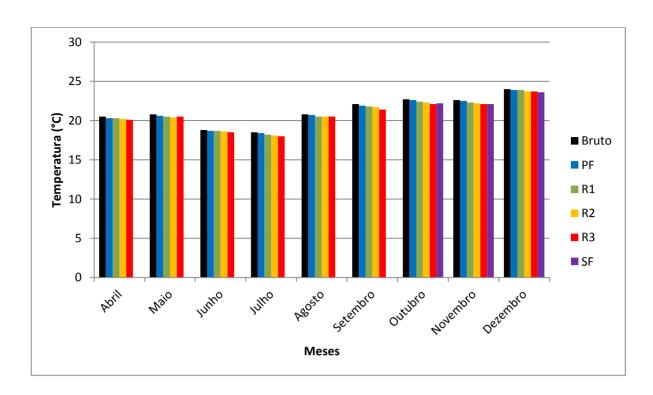


Figura 5.37 – Variação mensal das temperaturas médias.

Observa-se que as temperaturas médias são decrescentes de acordo com a mudança das etapas de tratamento, esse fator pode estar relacionado ao fato dos reatores serem abertos e o efluente percolar pelo não tecido sintético na base dos reatores permitindo assim ventilação natural, ocorrendo, consequentemente, perdas de calor no interior dos reatores e também no pré-filtro e filtro secundário.

Tabela 5.11 – Resumo dos resultados máximos, mínimos e médios de temperatura mensal na cidade de Campinas.

Dados Mensais no período de 23/04/2013 até 06/12/2013 CAMPINAS - SP							
Mês	Dias	Temperatura Máxima	Temperatura Média	Temperatura Mínima			
Abril	8	21,8	21,1	20,6			
Maio	31	23,8	20,2	14,8			
Junho	30	21,8	19,5	15,7			
Julho	31	21,4	17,7	9,5			
Agosto	31	23,5	19,0	9,6			
Setembro	30	27,9	21,6	16,3			
Outubro	31	27,7	22,4	18,5			
Novembro	30	28,6	23,8	17,3			
Dezembro	6	28,0	26,4	25,2			

Fonte: CIIAGRO - Centro integrado de informações agrometeorológicas.

Como era de se esperar, as variações da temperatura ambiente e do esgoto acompanharam as estações do ano, com valores mais elevados durante os meses de verão e valores menores durante os meses de inverno (Tabelas 5.11 e 5.12).

Tabela 5.12 – Resultados mensais da temperatura ambiente em Campinas e nos estágios de tratamento.

Mês	Temperatura Ambiente (°C)	Bruto (°C)	PF (°C)	R1 (°C)	R2 (°C)	R3 (°C)	SF (°C)
Abril	21,1	20,5	20,3	20,3	20,2	20,1	
Maio	20,2	20,8	20,6	20,5	20,4	20,5	
Junho	19,5	18,8	18,7	18,7	18,6	18,5	
Julho	17,7	18,5	18,4	18,2	18,1	18	
Agosto	19	20,8	20,7	20,5	20,5	20,5	
Setembro	21,6	22,1	21,9	21,8	21,7	21,4	
Outubro	22,4	22,7	22,6	22,4	22,3	22,1	22,2
Novembro	23,8	22,6	22,5	22,3	22,2	22,1	22,1
Dezembro	26,4	24	23,9	23,9	23,7	23,7	23,6

Em termos de oxigênio dissolvido em todas as etapas de tratamento durante as Fases II e III apresenta os resultados de acordo com a Tabela 5.1 e Figura 5.38.

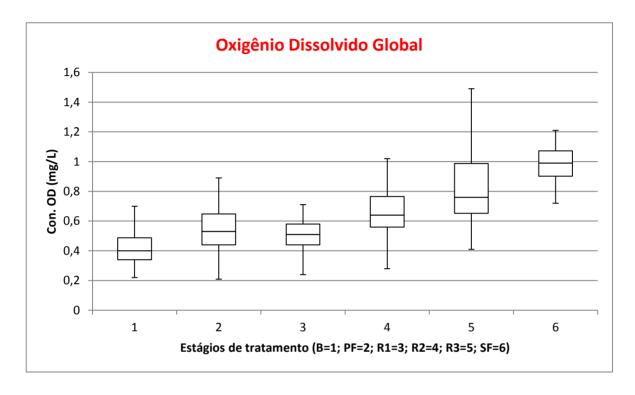


Figura 5.38 – Resultados Box-Whisker para os valores de concentração de oxigênio dissolvidos ao longo das fases operacionais.

Os resultados médios durante as duas fases variaram entre 0,59 mg/L e 1 mg/L nos reatores. Foi registrada a concentração média de OD no pré-filtro um pouco maior que no estágio (R1), isso se deve ao processo inicial de queda do efluente pelo (PF) proporcionando valores maiores. Nota-se pela Figura 5.38 e Tabela 5.8 que ocorreu uma grande dispersão dos resultados, com valores mínimos dos reatores (R1, R2 e R3) e filtro secundário de 0,24 mg/L, 0,28 mg/L, 0,41 mg/L e 0,72 mg/L, e valores máximos de 3,01 mg/L, 4,39 mg/L, 5,09 mg/L e 1,39 mg/L respectivamente. Observa-se que a cada estágio de tratamento a concentração de OD foi aumentando gradativamente, entretanto os valores encontrados não são valores expressivos de concentração.

Tabela 5.13 – Resumo médio do aumento de OD obtido para cada etapa operacional de tratamento.

			Oxigênio Dissolvido						
Parâme	tro	PF	R1	R2	R3	SF			
Aumento de	Média	29,4	29,4 - 3,6 43,1 24						
OD (%)	Global		122						

Observa-se na Tabela 5.13 que as médias de concentração de oxigênio dissolvido apresentaram durante quase todas as fases aumento da concentração de OD ao longo das etapas operacionais do sistema, com pequenas baixas que na condição operacional global não apresentam valores significativos.

Comparando a concentração de OD do esgoto bruto ao final do sistema de tratamento, observa-se que a concentração de OD apresentou um aumento da concentração de oxigênio, entretanto as concentrações ainda podem ser consideradas baixas.

Pode-se observar que o efluente dos reatores mante uma concentração média final de oxigênio dissolvido, contribuindo significativamente para a melhoria da qualidade do efluente.

5.6 RESULTADOS DE TURBIDEZ

A turbidez indica a obstrução da passagem da luz através da água e pode ser alterada pela presença de partículas em suspensão. O tamanho das partículas em suspensão varia desde grosseiro ao coloide, dependendo do grau de turbulência. A presença destas partículas provoca a dispersão e a absorção da luz, deixando a água com aparência nebulosa, esteticamente indesejável e potencialmente perigosa. A turbidez é a expressão desta propriedade óptica e é indicada em termos de unidades de turbidez (NTU – Nephelometric Turbity Unit).

A Figura 5.39 representa a turbidez durante a Fase II do tratamento antes da utilização do filtro secundário (SF). Como pode ser observado pela legenda e o gráfico da figura os valores de turbidez de uma maneira geral sofreram redução de um estágio de tratamento para o outro.

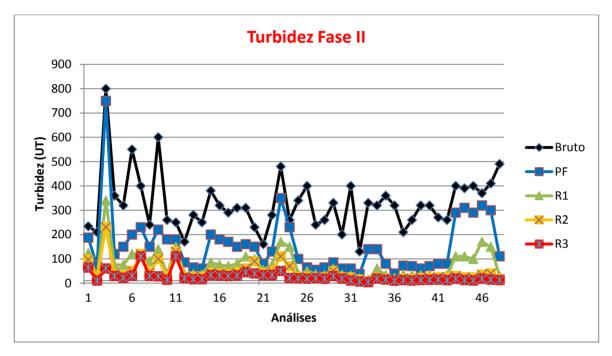


Figura 5.39 – Turbidez em todos os estágios de tratamento na Fase II.

Observa-se pela Figura 5.39 e Tabela 5.1, que os valores de turbidez na Fase II do afluente bruto (B), teve valor mínimo compreendido em 130 UT, enquanto a máxima foi 800 UT, com média durante a fase de 326 UT.

Apesar do efluente do 2º estágio de tratamento o pré-filtro ter apresentado valor máximo de turbidez de 750 UT, observa-se que ao longo do período operacional (Fase II) a concentração média foi de 154 UT e valor mínimo de 38 UT, apresentando uma eficiência de remoção de turbidez do esgoto bruto para o pré-filtro de 52%, de acordo com a Tabela 5.1.

Pode-se dizer que os três estágios de reatores (R1, R2 e R3) obtiveram uma eficiência de aproximadamente 83% de redução de turbidez do pré-filtro. Observa-se

que o Reator (R1) apresentou valores de turbidez máxima em torno de 340 UT, valor mínimo de 14 UT e média para a fase de 76 UT. Já o Reator (R2) apresentou valor máximo de 230 UT, mínimo de 6,2 UT, com média de 44 UT. Durante a Fase II, o Reator 3 (R3) obteve valor mínimo de 4,4 UT, máxima de 110 UT, com média operacional de 26 UT.

Observa-se pela Tabela 5.1 A maior eficiência de remoção de turbidez foi obtida durante a Fase III, com eficiência global maior que 96% quando comparada a Fase II com eficiência de 91,9%. Observaram-se valores máximos de turbidez do esgoto bruto na Fase III de 300 UT, mínimo de 150 UT, com média de 224 UT.

De acordo com a Figura 5.40 e Tabela 5.14 a redução de turbidez do afluente bruto para o pré-filtro foi de 66%, cerca de 14% mais eficiente que a mesma etapa na fase anterior, obtendo-se máxima de 110 UT, mínima de 45 UT e valor médio de 74 UT. O mesmo ocorreu no Estágio 3 ou (R1) onde a máxima foi de 70 UT, mínimo de 15 UT e média de 41 UT. No estágio 4 ou (R2) apresentou valor máximo de 45 UT, valor mínimo de 12 UT e média de turbidez de 25 UT. No estágio 5 ou R3 foi obtido como valor máximo 17 UT, mínimo de 9,3 UT e médias de 13 UT. Já no último estágio (SF) o valor máximo obtido foi de 13 UT, mínimo de 2,4 UT e valor médio de 7,3 UT, já que essa etapa só ocorreu na Fase III de operação.

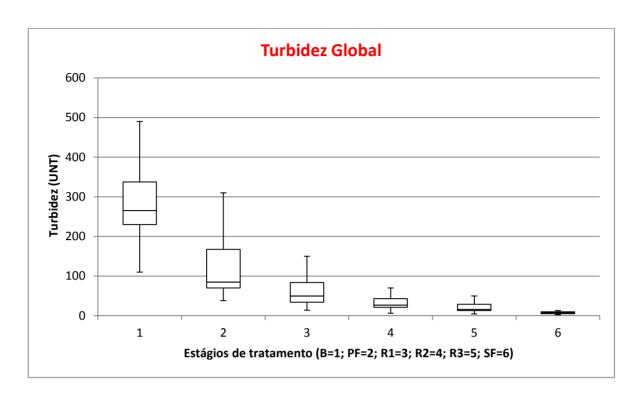


Figura 5.40 - Resultados Box-Whisker para os valores de turbidez ao longo das fases II e III.

De forma geral o conjunto de resultados de turbidez, afluente bruto (B), efluentes do pré-filtro (PF), reatores biológicos percoladores (R1, R2 e R3) e filtro secundários (SF) obtidos durante as duas fases operacionais podem ser vistos na Figura 5.40 e Tabela 5.14. Os valores médios de turbidez para o afluente bruto foram de 299 UT, com redução de 55% no segundo estágio o PF que manifestou valor médio de 133 UT. Com relação aos valores médios de turbidez dos reatores os mesmos apresentaram valores de 67, 39 e 22 UT respectivamente. Já o efluente de saída do SF teve valor médio de 7,3 UT, removendo 66% da turbidez encontrada no estágio R3.

Tabela 5.14 – Resumo das eficiências médias obtidas para cada etapa operacional de um estágio de tratamento para outro em termos turbidez.

		FASE II				FASE III				
Parâmo	PF	R1	R2	R3	PF	R1	R2	R3	SF	
Eficiência	Média	52	50	42	40	66	44	39	48	43
Turbidez	Global		91,9			96,7				
(%)	Global		92,8							

Onde: PF = Pré-filtro, R1 = Reator 1, R2 = Reator 2, R3 = Reator 3, SF = Filtro Secundário.

Desta forma a configuração PF/Reatores/SF apresenta excelentes resultados ao longo do período operacional do sistema de tratamento com eficiência de remoção de 92,8% de turbidez do afluente bruto atendendo a Resolução nº 357 do CONAMA que impõe limites de turbidez de 40 UNT para águas doces classe 1 e de 100 UNT para as classes 2 e 3.

6 CONCLUSÃO

Os resultados obtidos nesta pesquisa demonstram que os reatores biológicos percoladores em parceria com o pré-filtro e filtro secundário podem promover a remoção de DQO e DBO de esgotos sanitários em 86%.

Foram obtidos resultados muito bons durante as duas fases de tratamento, durante a Fase III os reatores apresentaram melhores resultados devido ao amadurecimento dos reatores, quando foram operados com taxas de aplicação hidráulica de 2,31 a 2,5 m³/m².d e cargas orgânicas volumétricas que variaram de 0,7 a 2,13 kgDQO/m³.d. Para essas condições operacionais, o sistema PF/Reatores/SF foi capaz de produzir um efluente final de boa qualidade, com concentrações médias de DQO, DBO e de SS em torno de 81 mgDQO/L, 47 mgDBO/L e 20 mgSST/L respectivamente. Atendendo o padrão de lançamento estabelecido pela legislação ambiental do Estado de São Paulo em 100% dos resultados de DQO, DBO e de SST.

A nova configuração do sistema de tratamento com o uso do Filtro Secundário (SF), além de ter baixo custo, propiciou a geração de um efluente final bastante clarificado, com baixíssimos teores de sólidos suspensos, com eficiência superior a 97%.

Referente à remoção de turbidez, durante as fases operacionais de tratamento o efluente final obteve remoção da concentração de turbidez em 97,5%, apresentando excelentes resultados.

Durante todo o processo de tratamento foi realizada uma troca do pré-filtro e não foi realizada nenhuma troca de material (meio suporte) dos reatores, garantindo a eficiência do não tecido sintético como meio de sustentação da biomassa.

7 RECOMENDAÇÕES

Com o objetivo de se obter maiores informações e orientar futuras pesquisas com o sistema combinado constituído de PF/Reatores/SF, recomenda-se:

- Analisar diferentes camadas de meio suporte;
- Desenvolver estrutura fechada para reduzir respingos de efluente, oferecendo aeração natural;
- Desenvolver estudos comparativos entre o sistema PF/Reatores/SF com sistema de filtros na saída de cada reator biológico, focalizando os aspectos técnicos e econômicos;
- Realizar análises microbiológicas do biofilme, com o objetivo de verificar quais os microrganismos estão presentes e envolvidos com a decomposição da matéria orgânica e nitrificação da amônia;
- Analisar aplicação de um maior tempo de detenção hidráulico com a finalidade de propiciar condições favoráveis à ocorrência da nitrificação;
- Verificar a proliferação excessiva de moscas, que ocorre, notadamente, quando os reatores são operados de forma intermitente e/ou com baixas taxas de aplicação hidráulica superficial.
- Testar condições mais apropriadas ao aumento da taxa de transferência de OD ao meio suporte da biomassa.

8 REFERÊNCIAS

ABNT – Associação Brasileira de Normas Técnicas. **Normas Técnicas**. Disponível em http://www.abnt.org.br/>. Acesso em 24 de abril de 2014.

ALBERTSON, O. E. Excess biofilm control by distributor-speed modulation. Journal of environmental engeneering. v. 121, nº4, 330-335, 1995.

ALBERTSON, O. E.; ECKENFELDER, W. W. Analysis of process factors affecting plastic media trickling filter performance. Proceeding of the Second International Conference on Fixed-film Biological Processes, Washington, D.C. apud WEF, Water Environment Federation. Wastewater treatment plant design. 1ª Ed. Alexandria: IWA publishing, 2003.

ALEM SOBRINHO, P. Fundamentos teóricos dos reatores biológicos e suas aplicações no tratamento de águas residuárias. IN: IV CURSO INTERNACIONAL SOBRE CONTROLE DA POLUIÇÃO DAS ÁGUAS. São Paulo: CETESB, 1998.

____. Tratamento de Esgotos Domésticos Através de Filtros Biológicos de Alta Taxa. Comparação Experimental de Meios-Suportes de Biomassa. São Paulo: Revista DAE, SABESP. Ano XLIV nº 135, p. 58-78, 1983.

ALMEIDA, P. G. S. de. Remoção de matéria orgânica e nitrogênio em filtros biológicos percoladores aplicados ao pós-tratamento de efluentes de reatores UASB. 204 f. Tese (Doutorado na área de Saneamento). Escola de Engenharia da UFMG, Belo Horizonte, 2012.

ALVES, C. V. P.; CHERNICHARO, C. A. L.; VON SPERLING, M.; FRADE, E. C. Sistema Integrado Para Tratamento Biológico e Desinfecção de Esgotos Sanitários: Uma Alternativa Para Atendimento a Pequenas Populações. Belo Horizonte: DESA, 2002. Disponível em: http://www.semasa.sp.gov.br/Documentos/Publicar_Internet/trabalhos/trabalho_108.pd foliant production of publicar internet/trabalhos/trabalhos/trabalho_108.pd

ANDERSSON, S.; RAJARAO, G. K.; LAND, C. J.; DALHAMMAR, G. **Biofilm formation and interactions of bacterial strains found in wastewater treatment systems.** FEMS Microbiology Letter v. 283, p. 83-90, 2008.

APHA/WEF/AWWA, Standard Methods for the Examination of Water and Waste Water. 20th edition. Washington, DC: Published by the American Public Health Association, the American Water Works Association and the Water Environment Federation, 1998.

ARANTES, C. C. Utilização de coagulantes naturais à base de sementes de *Moringa oleifera* e tanino como auxiliares da filtração em mantas não tecidas.

(Dissertação em Saneamento e Ambiente). Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Campinas, 2010.

ARAÚJO, M. M. Reator combinado anaeróbio-aeróbio de leito fixo para remoção de matéria orgânica e nitrogênio de água residuária de indústria produtora de lisina, 2006. 160 p. Tese (Doutorado na área de Hidráulica e Saneamento). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2006.

AISSE, M. M., et al. **Tratamento e destino final do lodo gerado em reatores anaeóbios.** In: CAMPOS, José Roberto (Coord.). Tratamento de esgotos sanitários por processo anaeróbio e disposição controlada no solo. Rio de Janeiro: ABES, 1999. (Projeto PROSAB). cap. 11, p. 271 – 299.

AISSE, M. M.; LOBATO, M. B.; BONA, A. A.; BARBOSA, L. P.; ALÉM SOBRINHO, P.A. Avaliação do sistema reator UASB e biofiltro aerado submerso para o tratamento de esgoto sanitário. *In:*CONGRESSO BRASILEIRO DE ENG. SANITÁRIA E AMBIENTAL, 21., 2001, João Pessoa. Anais. Rio de Janeiro: ABES, 2001. p. 8. II052.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. NBR 9648: **Estudo de Concepção de sistemas de esgoto sanitário**: Procedimento. Rio de Janeiro, ABNT, 1986.

BARNES. D.; BLISS. P.J. **Biological Control of nitrogen in wastewater treatment.** London: E&F.N. Spon Ltd, 1983.

BENEFIELD, L. D. & RANDALL, C. W. Biological process design for wastewater treatment. p. 391 a 456, 1987.

BIESTERFELD, S.; FARMER, G.; RUSSEL, P.; FIGUEROA, L. **Effect of alkalinity type and concentration on nitrifying biofilm activity.** Water Environmental Research. v. 75, n. 24, p. 196-204, 2003.

BIESTERFELD, S.; FARMER, G.; FIGUEROA, L; PARKER, D.; RUSSEL, P. **Quantification of potential in carbonaceous trickling filters.** Water Research. v. 37, p. 4011-4017, 2003.

BIDONE, F. R. A.; SOUZA, L. P.; POVINELLI, J. Serragens de Couro Curtido Tipo Wet Blue Utilizados como Meio Suporte em Filtro Biológicos Destinados ao Tratamento de Esgotos Sanitários. In: 20º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Rio de Janeiro: ABES, p. 982-991, 1999.

BOLLE, W. I. et. al. Modeling the liquid-flow in the up-flow anaerobic sludge blanket reactors. Biotechnology and Bioengineering, v. 28, p. 1615-1620, 1986.

- BOLTZ, J. P.; MORGENROTH, E.; BROCKMANN, D.; BOTT, C.; GELLNER, W. J.; Sistematic evaluation of biofilm models for engineering practice: components and critical assumptions. Water Science and Technology, v. 64, nº4, p 930-944, 2011.
- BRASIL, MINISTÉRIO DO MEIO AMBIENTE. Resolução CONAMA nº 357/05. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Acesso em: 24 de agosto de 2013.
- _____. Resolução CONAMA nº 430/11. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Acesso em: 24 de agosto de 2013.
- CAMPOS, J. R. Tratamento de Esgotos Sanitários por processo Anaeróbio e Disposição Controlada no Solo. Rio de janeiro. ABES. Projeto PROSAB, 443p, 1999.
- CARVALHO, K. Q. *et. al.* **Avaliação hidrodinâmica de reator UASB submetido à variação cíclica de vazão.** Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 13, n. 2, p. 226-235, 2008.
- CASTRO, F. M. S. **Estudo do Comportamento Hidrodinâmico de uma Nova Proposta de Configuração Interna para Reator UASB.** Dissertação (Mestrado em Recursos Hídricos e Saneamento Ambiental) UFRGS, Porto Alegre, 2010.
- CHERNICHARO, C. A. L. Cap. 1: **Aplicabilidade da Tecnologia Anaeróbia para o Tratamento de Esgotos Domésticos**. p.12 In: Pós-tratamento de Efluentes de Reatores Anaeróbios Coletânea de Artigos Técnicos volume I. Belo Horizonte Projeto PROSAB, 220p, 2000.
- _____. Princípios do tratamento biológico de águas residuárias: Reatores Anaeróbios. São Paulo, v.5: Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, 246p, 1997.
- _____. **Pós-tratamento de efluentes de reatores anaeróbios.** Belo Horizonte: PROSAB, 2001. 2 v.
- CHERNICHARO, C. A. L.; VON SPERLING, M.; MONTEIRO, T. A. S. **Evaluation of post-treatment alternatives for effluents from the UASB reactors of Onça Sewage Treatment Plant** (Belo Horizonte-Brazil). In: VIII TALLER Y SIMPOSIO LATINO AMERICANO SOBRE DIGESTION ANAEROBIA, Punta del Este, Uruguay: IWA, 2005.
- CRESPO, P. G. **Sistema de esgotos.** Belo Horizonte: Instituto de Filosofia e Teologia de Goiás, 1997.
- COSTERTON, J. W., LEWANDOWSKI, Z.; CALDWELL, D. E.; KORBER, D. R.; LAPPIN-SCOTT, H. M. **Microbial biofilms.** Annual Reviews in Microbiology, v. 49, p. 711-745, 1995.

- CRUZ, L. M. O. Tratamento de esgoto sanitário em reator anaeróbio preenchido por casca de coco verde (cocos nucifera) combinado com filtro de areia. 160f. Dissertação (Mestrado em Saneamento e Ambiente) Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade de Campinas, Campinas, 2009.
- DAIGGER, G.T.; HEINEMANN, T.A.; LAND, G.; WATSON, R.S. **Pratical experience** with combined carbon oxidation and nitrification in plastic media trickling filters. Water Science and Technology. v. 29, nº10-11, p189-196, 1994.
- DANTAS, M. A. R.; MELO, H. N. S.; ANDRADE NETO, C. O. **Aplicação de traçadores em filtro anaeróbios para avaliação das características hidrodinâmicas.** 27º Congresso Interamericano de Engenharia sanitária e Ambiental. AIDIS, Porto Alegre, 2000.
- DOMINGUES, L. M. Sistema combinado Filtro anaeróbio Biofiltro Aerado Submerso: Avaliação da partida e nitrificação de Esgoto Sanitário. 166f. Dissertação (Mestrado em Saneamento e Ambiente) Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade de Campinas, Campinas, 2005.
- FERRAZ, C. F. Influência da redução da espessura da camada suporte na eficiência da filtração lenta com uso de mantas sintéticas não tecidas para águas de abastecimento. 199 f. Dissertação (Mestrado em Saneamento e Ambiente). Faculdade de Engenharia Civil, Universidade Estadual de Campinas, Campinas, 2001.
- FOCO, M. L. R; Filtro anaeróbio seguido de biofiltro aerado submerso: produção de biomassa, conversão de matéria orgânica e de nitrogênio, 2010. 109 p. Dissertação (Mestrado em Saneamento e Ambiente). Faculdade de Engenharia Civil, Urbanismo e Arquitetura, Universidade de Estadual de Campinas, Campinas, 2010.
- GARBOSSA, L. H. P. Avaliação de sistemas anaeróbio aeróbio com biomassa imobilizada para remoção de matéria carbonácea e nitrogênio de esgoto sanitário e uso do biogás na desnitrificação. 2006. Tese (Doutorado em Hidráulica e Saneamento) Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2006. Disponível em: http://www.teses.usp.br/teses/disponiveis/18/18138/tde-23112006-214314/. Acesso em: 30 de maio de 2012.
- GASI, T. M. T. **Opções para tratamento de esgotos de pequenas comunidades.** São Paulo: CETESB, 1988.
- GRADY, C. P. L. J.; LIM, H. C. **Biological Wastewater Treatment: Theory and Applications.** New York: Marcel Dekker Inc, 1980. 964 p.
- GONÇALVES, R. F. et al. In: CHERNICHARO (coordenador). **Pós Tratamento de Efluentes de Reatores Anaeróbios.** Programa de Pesquisas em Saneamento Básico. 1ª Ed. Belo Horizonte: PROSAB 2, Cap 4, 2001. p. 171-271.

- _____. Influência da Carga Orgânica na Produção de Biomassa em Filtro Biológicos Percoladores Tratando Efluentes de UASB. In: Anais 22º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Joinvile: ABES, II-324, 2003.
- HARREMÖES, P. Criteria for nitrification in fixed film reactors Water Sci. & Technol., vol. 14, p. 167 187, 1983.
- HARRISON, R.J.; DAIGGER, G.T. **A comparison of trickling filter media.** Journal of Water Pollution Control Federation. v.59, nº7, 679-685, 1987.
- HORAN, N. J. Biological Wastewater Treatment Sytems: Theory and Operatin. 310p. 1991. John Wiley & Sons Ltd. West Sussex PO 19 1UD, Engalnd.
- IMHOFF, K.; IMHOFF, K. R.; HESS, M. L. **Manual de tratamento de águas residuárias.** São Paulo: Edgard Blücher, 301 p,1996.
- IWAI, S..; KITAO, T. Wastewater treatment with microbial films. Technomic publishing Co, Lacaster, EUA, 184p., 1994.
- JORDÃO, E. P.; PESSOA, C. A. **Tratamento de Esgotos Domésticos.** 3ª Ed. Rio de Janeiro: Associação Brasileira de Engenharia Sanitária, 1995.
- _____. **Tratamento de Esgotos Domésticos.** 4ª Ed. Rio de Janeiro: Associação Brasileira de Engenharia Sanitária, 1996.
- KASSAB, G.; HALALSHEH, M.; KLAPWIJK, A.; FAYYAD, M.; VAN LIER, J.B. **Sequential anaerobic–aerobic treatment for domestic wastewater.** A review. *Bioresource Technology*, v. 101, n. 10, p. 3299-3310, 2010.
- LAGUNAS, F. G; LIS, M. J. **Tratamento de efluentes na industria têxtil algodoeira.** Revista Química Têxtil. São Paulo, v. 21, n. 50, p. 6 15, março 1998. Acesso em: 20 de junho de 2012.
- LAZAROVA, V. & MANEM, J. Advances in biofilm aerobic reactors ensuring effective biofilm activity control. Water Science and Technolog v. 29, n. 10-11, p. 319-327, 1994.
- LESSARD, P.; LE BIHAN, Y. **Fixed film process.** In: MARA, D.; HORAN, N. The handbook of water and wastewater microbiology. Elsevier, 2003.
- LEKANG, O. & KLEPPE, H. Efficiency of nitrification in trickling filters using different filter media. Departament of Agricultural Engineering. University of Agriculture, Norway, vol 21. p. 181-199, 2000.
- LEVENSPIEL, O. **Engenharia das Reações Químicas-Cálculo de Reatores.** 3ª Ed. São Paulo: Edgard Blucher, 2000.

- LEWANDOWSKI, Z.; BEYENAL, H.; STOOKEY, D. Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Science and Technology. v. 49, n. 11-12, p 359-364, 2004.
- LONG, D. A. Chapter 10 Anaerobic Sludge Digestion. **Biological treatment processes Handbook of environmental engineering**; vol. 3. 498p. Wang, Lawrence K. Pereira, Normam C. 1986. The HUMANA Press Inc. Crescent Manor. P. O. Box 2148. Clifton, NJ 0715.
- LOW, E. W. & CHASE, H. A. Reducing production of excess biomass during wastewater treatment. Water Research. V. 33, n. 5, p. 1119-1132, 1999.
- MACHDAR, I.; SEKIGUCHI, Y.; SUMINO, H; HARADA, H. A novel and cost-effective sewage treatment system consisting of UASB pre-treatment and aerobic port-treatment units for developing countries. *Water Science and Tecnology*, v. 36, nº 12, p. 189-197, 1997.
- MACHDAR, I.; HARADA, H; OHASHI, A.; SEKIGUCHI, Y.; OKUI, H.; UEKI, K.. Combination of UASB reactor and curtains type DHS (downflow hanging sponge) reactor as a cost effective sewage treatment system for developing countries. *Water Science and Tecnology*, v. 42, nº 3-4, p. 83-88, 2000.
- MAGRI, M. E. Aplicação de Biofiltros Aerados Submersos com meio suportes distintos no pós-tratamento de efluente de reator anaeróbio. Trabalho de Conclusão de Curso. 2006. 76 p. Universidade Federal de Santa Catarina, Florianópolis, 2006.
- MENDONÇA, S. R. **Fundamentos do Tratamento Biológico Aeróbio.** In: Tópicos Avançados em Sistemas de Esgotos Sanitários. Rio de Janeiro: Associação Brasileira de Engenharia Sanitária e Ambiental, 1987.
- MELO, L. F. Biofilm physical structure, internal diffusivity and tortuosity. Water Science and Technology. v. 52, n.7, p. 77-84, 2005.
- _____. Biofilm formation and its hole in fixed film process. In: MARA, D.; HORAN, N. The handbook of water and wastewater microbiology. Elsevier, 819 p, 2003.
- MESEGUER, C.; CABEZA, R.; COLL, M.; CRESPI, M. **O** filtro percolador biológico. Revista Têxtil, São Paulo, n. 51, p. 20 26, junho 1998. Acesso em: 20 de junho de 2012.
- METCALF & EDDY, Inc. Wastewater Engineering: Treatment, Disposal and Reuse. 3rd ed. New Delhi, McGraw-Hill, 1991.
- _____. Wastewater Engineering: Treatment, Disposal, Reuse. 4th ed. New York: McGraw-Hill, 2003.

- MIGLINO, L. C. P. **Dimensionamento de filtros de alta capacidade.** São Paulo: Revista DAE, SABESP. nº 115. p. 83-86, 1978.
- MOTA, S.; VON SPERLING, M. **Nutrientes de esgoto sanitário: utilização e remoção.** Rio de Janeiro: PROSAB/FINEP, v. 1, 430 p, 2009.
- MUÑOZ, C. S. **Desempenho de geotêxtis na filtração de solos internamente instáveis**. 119 f. Dissertação (Mestrado em Engenharia de Infra-Estrutura Aeronáutica) Instituto Tecnológico de Aeronáutica, São Jose dos Campos, 2005.
- NASCIMENTO, M. C. P.; CHERNICHARO, C. A. L.; GARCIA, P. B. S. **Avaliação de Filtros Biológicos Aeróbios com Pós-Tratamento de Efluentes de Reatores UASB.** In: SILUBESA, IX, Porto Seguro BA, 2000. Anais. Rio de Janeiro: ABES, 2000. p. 1089-97. Acesso em: 30 de junho de 2012.
- NASCIMENTO, M. C. P. Filtro Biológico Percolador de Pequena Altura de Meio Suporte Aplicado ao Pós-Tratamento de Efluente de Reator UASB. Tese de M. Sc. Escola de Engenharia da Universidade Federal de Minas Gerais. Belo Horizonte: UFMG, 124p, 2001.
- NOGUEIRA, R.; MELO, L. F.; PURKHOLD, U.; WUERTZ, S.; WAGNER, M. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Research. v. 36, p. 469-481, 2002.
- NUVOLARI, A. Esgoto sanitário: coleta, transporte, tratamento e reuso agrícola. Edgard Blucher: São Paulo, 2003.
- PARKER, D.; LUTZ, M.; BENSGT, A.; ASPERGREN. **Effect of operating variables on nitrification rates in trickling filters.** Water Environment Research. v. 67, nº7, 1111-1118, 1995.
- PERES, C. S; ABRAHÃO, A. J. Características e sistema de tratamento de águas residuais das indústrias têxteis Uma primeira abordagem. Revista Química Têxtil, São Paulo, v. 21, n. 52, p. 22 39, setembro 1998. Acesso em: 22 de junho de 2012.
- PESSÔA, C. A.; JORDÃO, E. P. **Tratamento de esgotos domésticos.** 2ª Ed Rio de Janeiro: ABES, v.1. 1982.
- _____. **Tratamento de esgotos domésticos.** 3ª Ed Rio de Janeiro: ABES, 720p. 1995.
- PESSOA, C. A.; VILLELA, C. H de C. **Filtros Biológicos Aeróbios** (Manual de Curso). ABES. Abril 1992.

- PINTO, J. D. S. Tratamento de esgotos sanitários através de filtro anaeróbio de fluxo ascendente utilizando escória de alto forno como meio suporte. Dissertação de mestrado. Escola de Engenharia de Universidade Federal de Minas, 1995.
- PNSB, **Pesquisa Nacional de Saneamento Básico 2008**. Ministério do Planejamento, Orçamento e Gestão, Instituto Brasileiro de Geografia e Estatística IBGE. 219 pág. Rio de Janeiro, 2010.
- _____. Pesquisa Nacional de Saneamento Básico. Disponível em: < http://www.ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=1691 &id pagina=1>. Acesso em: 29 de maio de 2012.
- PORTO, M. T. R. Estudo de um Filtro Biológico Percolador Utilizado para o Pós-Tratamento de Efluentes de um Reator UASB, com Ênfase da Altura do Meio Suporte sobre a Estabilidade do Sistema. Tese de M. Sc. Escola de Engenharia da Universidade Federal de Minas Gerais. Belo Horizonte: UFMG, 2002. 129p. Acesso em: 12 de junho de 2012.
- RITTMANN, B.; McCARTY, P. Environmental Biotechnology: Principles and Applications. New York: McGraw-hill International Editions, 754 p, 2001.
- ROCHA, A. P. Desempenho de filtro biológico na depuração e desodorização de emissões de sulfeto de hidrogênio. 2007. Dissertação (Mestrado em Hidráulica e Saneamento) Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007. Disponível em: http://www.teses.usp.br/teses/disponiveis/18/18138/tde-18062007-111513/. Acesso em: 30 de maio de 2012.
- RODRÍGUEZ V. J. A. Filtro biológico aeróbio-anóxico para remoção de nitrogênio de efluentes de reatores UASB. 2006. Tese (Doutorado em Hidráulica e Saneamento) Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2006. Disponível em: http://www.teses.usp.br/teses/disponiveis/18/18138/tde-28032007-104838/. Acesso em: 30 de maio de 2012.
- SANTOS, A. B; SANTAELLA, S. T. Remoção de DQO de água residuária. Engenharia Sanitária e Ambiental. Rio de Janeiro, v. 7, n. 3, p. 151 155, out/dez 2002.
- SANTOS, A. S. P. **Avaliação de desempenho de um filtro biológico percolado em diferentes meio suporte plásticos.** 81 p. Dissertação (Mestrado em Ciência em Engenharia Civil) Universidade Federal do Rio de Janeiro, Rio de Janeiro 2005.
- SILVA, G. M.; FRASSON, R.; GONÇALVES, R. F. Influência da Carga Orgânica na Produção de Biomassa em Filtros Biológicos Percoladores Tratando Efluentes de UASB. In: Anais 22º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Joinvile: ABES, II-324, 2003.
- SILVA, H. S. **Princípios de tratamento de efluentes líquidos.** Revista Química Têxtil, São Paulo, n. 39, p. 56 65, junho 1995. Acesso em: 20 de junho de 2012.

- STENQUIST, R. J. Carbon oxidation-nitrification in synthetic media trickling filters. Journal WPCF, v. 46, nº5, p.2327, 1974.
- STEWART, P. S. **Diffusion in biofilms.** Journal of Bacteriology. v. 185, n. 5, p. 1485-1491, 2003.
- TCHOBANOGLOUS, G.; BURTON, F.; STENSEL, H. Wastewater engineering: treatment, and reuse. 4 th. Ed. New York: McGraw-Hill, 2003.
- TONETTI, A. L. **Tratamento de esgotos pelo sistema combinado filtro anaeróbio e filtros de areia.** 2008. Campinas, 204 p. Tese (Doutorado em Engenharia Civil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas.
- U. S. ENVIROMENTAL PROTECTION AGENCY. **Process Design Manual for Upgrading Existing Wastewater Treatment Plants.** p. 4.1 a 4.50, 1974.
- Assessment of single-stage trickling filter nitrification. Washington D.C., 105 p, 1991.
 Manual: Nitrogen Control. Washington D.C., 311 p, 1993.
 Wastewater Technology Fact Sheet: Trickling Filters. Washington D.C., 7 p, 2000.
- VANDEVIVERE, P.; KIRSHMAN, D.L. Attachment stimulates exopolysaccharide synthesis by bacterium. Applied and environmental technology.v.59, 3280-3286, 1993.
- VAN HAANDEL, A.C.; LETTINGA, G. **Tratamento Anaeróbio de esgotos. Um manual para Regiões de Clima Quente**. Universidade Federal da Paraíba, Campinas Grande, 232p, 1994.
- VAN LOOSDRECHT, M.C.M.; EIKELBOOM, D.; GJALTEMA, A.; MULDER, A.; TIJHUIS, L.; HEIJNEN, J.J. **Biofilm structures**. Water Science and Technology. v.32, p.35-43, 1995.
- VAN SANTVOORT, G. P. T. M. (Coord.). **Geotextiles and geomembranes in civil engineering**. Rotterdam; Brookfield: A.A. Balkema, 595 p., 1994. Disponível em: http://books.google.com/books?id=HqbBHWh7L88C>. Acesso em: 28 setembro de 2012.
- VERMA, M.; BRAR, S. K.; BLAIS, J. F.; TYAGI, R. D.; SURAMPALLI, R. Y. **Aerobic biofiltration processes advances in wastewater treatment.** Journal of Hazardous, Toxic and Radioactive Waste. v. 10, n. 4, p. 264-276, 2006.

VERRIER, D.; MORTIER, B.; DUBOURGUIER, H. C.; ALBAGNAC, G. **Adhesion of anaerobic bacteria to inert supports and development of methanogenic biofilms**. In: 5th International Symposium on Anaerobic Digestion. London, 1988.

VILLAVERDE, S.; GARCÍA, P. A.; FDZ-POLANCO, F. Influence of pH over nitrifying biofilm activity in submerged biofilters. Water Research. v. 31, n. 5, p. 1180-1186, 1997.

_____. Influence of the suspended and attached biomass on the nitrification in a two submerged biofilters in series system. Water Science and Technology. v. 41, n. 4-5, p.169-176, 2000.

VON SPERLING, M. Introdução à qualidade das águas e ao tratamento de esgotos. 3ª ed. Belo Horizonte, Departamento de Engenharia Sanitária e Ambiental – UFMG, Capítulo 2, v. 1, 6ª reimpressão, 2011.

_____. **Princípio básicos do tratamento de esgotos**. Belo Horizonte:Departamento de Engenharia Sanitária e Ambiental – UFMG, v. 1, 246p, 1995.

____. **Princípio básicos do tratamento de esgotos**. Belo Horizonte:Departamento de Engenharia Sanitária e Ambiental – UFMG, v. 2, 211p, 1996.

VON SPERLING, M. e ANDREOLI, C. V. – Introdução, Capítulo 1 – in ANDREOLI, C. V. – Lodo de esgotos: tratamento e disposição final. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, Companhia de Saneamento do Paraná, 2001. 484p. (Princípios do tratamento biológico de águas residuárias; 6) 1-16p.

VON SPERLING, M. e GONÇALVES, R. F. – Capítulo 2 – in ANDREOLI, C. V.– Lodo de esgotos: características e produção. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, Companhia de Saneamento do Paraná, 2001. 484p. (Princípios do tratamento biológico de águas residuárias; 6) 17-68p.

WANNER, O.; GUJER, W. **A multispecies biofilm model**. Biotechnology and Bioengineering. v.28, p. 314-328, 1985.

WANNER, O.; EBERL, H.J.; MORGENROTH, E.; NOGUERA, D.R; PICIOREANU, C.; RITTMANN, B.E.; VAN LOOSDRECHT, M. C. M. **Mathematical Modelling of Biofilms.** IWA Publishing, London, UK. 2006.

WEF. **Design of municipal wasterwater treatment plants.** Manual of Practice. Vol. 1, n° 8, p. 677 a 733, 1992.

WIJEYEKOON, S.; MINO, T.; SATOH, H.; MATSUO, T. **Effects of substrate loading rate on biofilm structure.** Water Research. v. 38, p. 2479-2488, 2004.

YOUNG, J.C. and McCARTY, P.L. **The Anaerobic filter for waste treatment**. J. Water Pollution Crontol Federation, 41 p. 1990.

ZHANG, T.C.; BISHOP, P.L. **Density, porosity and pore structure of biofilms**. Water Research. 28, 2267-2277, 1994.

http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pnsb2008/PNSB_2 008.pdf>. Acesso em: 20 de maio de 2012.

http://www.ciiagro.sp.gov.br/ciiagroonline/Quadros/QTmedPeriodo.asp. Acesso em: 12 de maio de 2014.

9 ANEXOS

9.1 RESULTADOS DE DQO

DQO	(mg/L)					
Dia	В	PF	R1	R2	R3	SF
1	620	457	293	258	243	
4	472	372	263	159	134	
7	1015	586	536	481	342	
11	491	382	338	258	228	
14	561	447	377	263	233	
16	606	447	392	328	263	
21	1027	561	447	442	392	
23	511	390	340	300	268	
28	744	556	397	318	164	
30	809	417	380	310	221	
35	1069	764	623	536	468	
37	759	596	442	352	236	
44	923	511	377	290	211	
46	794	491	377	313	231	
51	774	720	620	474	377	
53	645	486	342	288	253	
58	650	506	397	298	243	
60	680	541	427	313	238	
65	883	620	561	464	109	
67	601	467	357	258	248	
72	566	397	377	283	238	
74	660	387	338	268	184	
78	1022	809	491	437	273	
80	799	501	342	174	99	
85	546	377	273	218	179	
87	620	417	387	298	233	
92	591	496	357	303	233	
94	603	422	288	233	184	
99	864	432	387	333	208	
101	759	402	347	243	154	
106	720	318	243	189	99	
108	596	278	208	134	99	

113	849	273	98	54	39	
115	761	278	127	103	88	
120*	1069	371	273	190	147	
122	888	205	176	64	59	
127	503	273	166	142	78	
129	674	239	156	132	73	
134*	810	327	264	161	134	
136	761	312	234	156	103	
141	742	303	190	147	93	
143	683	283	215	132	78	
148	347	239	93	29	15	
150	464	278	161	44	20	
155	685	467	377	253	134	
157	506	402	273	124	84	
162	610	392	283	184	89	
164	678	361	166	132	103	
169	732	547	342	254	147	103
171	620	381	317	190	132	83
176	698	312	142	107	88	78
178	659	283	142	103	83	73
183	635	362	273	194	142	94
185	491	342	253	184	134	89
192	496	211	166	147	104	60
197	318	164	99	89	79	40
199	546	215	134	124	99	59
204	650	303	273	203	159	89
206	556	233	190	159	129	69
211	645	333	234	189	139	99
213	591	208	174	144	114	84
218	511	243	190	154	109	60
220	620	303	233	174	129	94
225	674	342	258	208	154	109
227	591	253	203	184	159	99

9.2 RESULTADOS DE DBO

DBO ((mg/L)		
Dia	Bruto	R3	SF
7	825	212	
16	389	195	
23	289	162	
30	442	72	
37	374	104	
46	438	130	
53	367	146	
60	401	135	
67	348	141	
74	443	137	
80	372	50	
87	377	142	
94	387	99	
99	304	116	
108	339	54	
115	413	49	
122	524	34	
129	391	42	
136	435	60	
143	408	46	
150	272	12	
157	303	49	
164	390	61	
171	367	81	51
178	385	52	46
185	294	84	56
192	284	63	36
199	333	58	34
206	327	79	43
213	366	70	47
220	378	72	55
227	354	93	60

9.3 RESULTADOS DE SÓLIDOS SUSPENSOS

	Dia de		Massa 1	Massa 2	Massa 3	Volume	SST	SSF	SSV
Dia	operação	Ponto	(mg)	(mg)	(mg)	(L)	(mg/L-1)	(mg/L-1)	(mg/L-1)
	1	Bruto	12,328	12,335	12,329	0,06	117	17	100
	1	PF	-	-	-	-	-	-	-
23/abr	1	B1	-	-	-	-	-	-	-
	1	B2	-	-	-	-	-	-	-
	1	B3	12,505	12,517	12,506	0,38	32	3	29
	7	Bruto	12,32675	12,36839	12,33373	0,03	1388	233	1155
	7	PF	12,50144	12,51167	12,5029	0,04	256	36	219
29/abr	7	B1	11,58895	11,60052	11,59004	0,05	231	22	210
	7	B2	9,27729	9,28751	9,27807	0,055	186	14	172
	7	B3	9,27139	9,28364	9,27236	0,1	122	10	113
	14	Bruto	9,27235	9,28785	9,2752	0,06	258	48	211
	14	PF	9,27884	9,28931	9,28002	0,07	150	17	133
06/mai	14	B1	11,58977	11,59941	11,59087	0,09	107	12	95
	14	B2	12,50288	12,51143	12,50384	0,13	66	7	58
	14	B3	12,32684	12,33435	12,32741	0,19	40	3	37
	21	Bruto	12,07265	12,08951	12,07459	0,03	562	65	497
	21	PF	12,27047	12,28042	12,27056	0,06	166	2	164
13/mai	21	B1	12,37288	12,38131	12,37309	0,07	120	3	117
	21	B2	12,24559	12,25713	12,24616	0,07	165	8	157
	21	B3	12,12924	12,14097	12,12981	0,07	168	8	159
	28	Bruto	11,09063	11,10438	11,09228	0,045	306	37	269
	28	PF	10,20147	10,21229	10,2027	0,05	216	25	192
20/mai	28	B1	12,38545	12,39482	12,38668	0,08	117	15	102
	28	B2	12,37808	12,38898	12,37932	0,09	121	14	107
	28	B3	12,32951	12,33662	12,33029	0,17	42	5	37
	35	Bruto	9,25539	9,27403	9,25833	0,05	373	59	314
	35	PF	12,26649	12,28078	12,27041	0,09	159	44	115
27/mai	35	B1	12,50476	12,51509	12,50514	0,09	115	4	111
	35	B2	12,24444	12,26228	12,24638	0,14	127	14	114
	35	B3	9,5524	9,5654	9,55412	0,09	144	19	125
	44	Bruto	12,33039	12,34782	12,33278	0,04	436	60	376
	44	PF	13,13573	13,14422	13,13634	0,1	85	6	79
05/jun	44	B1	12,38574	12,39371	12,38637	0,16	115	4	111
	44	B2	12,37778	12,38459	12,37825	0,19	36	2	33
	44	В3	11,93465	11,94073	11,93482	0,2	30	1	30
	51	Bruto	12,33361	12,35189	12,33636	0,08	228	34	194

	51	PF	13,13507	13,14519	13,13613	0,09	112	12	101
12/jun	51	B1	12,38716	12,39544	12,38823	0,11	75	10	66
	51	B2	12,37715	12,38646	12,37819	0,2	47	5	41
	51	В3	11,93278	11,93954	11,93357	0,2	34	4	30
	58	Bruto	12,33364	12,35188	12,3363	0,07	261	38	223
	58	PF	13,135	13,1452	13,13604	0,08	128	13	115
19/jun	58	B1	12,38701	12,39539	12,38819	0,105	80	11	69
	58	B2	12,37732	12,38654	12,37808	0,19	49	4	45
	58	В3	11,93277	11,93965	11,93342	0,21	33	3	30
	65	Bruto	9,25579	9,27918	9,25887	0,05	468	62	406
	65	PF	12,37434	12,38532	12,37523	0,1	110	9	101
26/jun	65	B1	9,97615	9,98668	9,9768	0,12	88	5	82
	65	B2	12,34526	12,3563	12,34641	0,17	65	7	58
	65	В3	9,89729	9,9047	9,89731	0,17	44	0	43
	72	Bruto	12,33038	12,34408	12,3318	0,05	274	28	246
	72	PF	13,13807	13,14619	13,13851	0,11	74	4	70
03/jul	72	B1	12,38484	12,39492	12,38531	0,14	72	3	69
	72	B2	12,37835	12,38838	12,37919	0,16	63	5	57
	72	В3	11,93642	11,94556	11,93675	0,19	48	2	46
	78	Bruto	9,39221	9,41973	9,39557	0,05	550	67	483
	78	PF	11,74735	11,75733	11,74843	0,05	200	22	178
10/jul	78	B1	12,25085	12,26366	12,25208	0,08	160	15	145
	78	B2	12,2842	12,29465	12,28524	0,08	131	13	118
	78	B3	12,54367	12,5538	12,5447	0,11	92	9	83
	85	Bruto	9,55332	9,56923	9,55549	0,06	265	36	229
	85	PF	12,37336	12,38479	12,37459	0,09	127	14	113
17/jul	85	B1	10,20236	10,2138	10,203	0,13	88	5	83
	85	B2	12,3451	12,35368	12,34597	0,19	45	5	41
	85	B3	9,2538	9,263	9,25411	0,22	42	1	40
	99	Bruto	9,5538	9,58168	9,55779	0,05	558	80	478
	99	PF	12,37481	12,38671	12,37641	0,1	119	16	103
31/jul	99	B1	12,34407	12,35183	12,34491	0,13	60	6	53
	99	B2	10,20075	10,21148	10,20215	0,18	60	8	52
	99	B3	9,25641	9,26387	9,25673	0,26	29	1	27
	106	Bruto	12,281	12,30608	12,2849	0,06	418	65	353
	106	PF	11,87963	11,88732	11,88046	0,15	51	6	46
07/ago	106	B1	13,13381	13,14105	13,13446	0,19	38	3	35
	106	B2	11,54573	11,55159	11,54624	0,28	21	2	19
	106	B3	12,54654	12,55368	12,54716	0,28	25	2	23
	113	Bruto	12,27955	12,30801	12,28393	0,05	569	88	482

	113	PF	11,87911	11,89411	11,88116	0,1	150	20	130
14/ago	113	B1	13,13434	13,14371	13,13527	0,29	32	3	29
	113	B2	11,54643	11,55127	11,54722	0,427	11	2	9
	113	В3	12,54462	12,54964	12,5449	0,6	8	0	8
	120	Bruto	12,93005	12,9583	12,93474	0,04	706	117	589
	120	PF	9,38904	9,39839	9,3903	0,1	93	13	81
21/ago	120	B1	12,0728	12,08187	12,07388	0,18	50	6	44
	120	B2	11,09219	11,10052	11,09322	0,3	28	3	24
	120	В3	9,25514	9,2669	9,25634	0,388	30	3	27
	127	Bruto	9,55306	9,56764	9,55547	0,07	208	34	174
	127	PF	9,39889	9,41013	9,40066	0,15	75	12	63
28/ago	127	B1	11,74367	11,75579	11,74522	0,25	48	6	42
	127	B2	11,54617	11,55433	11,54664	0,33	25	1	23
	127	В3	9,89088	9,90172	9,89228	0,64	17	2	15
	134	Bruto	9,55558	9,58377	9,55964	0,05	564	81	483
	134	PF	9,39935	9,40856	9,40002	0,18	51	4	47
04/set	134	B1	11,74484	11,75481	11,74538	0,2	50	3	47
	134	B2	11,54665	11,55706	11,54733	0,34	31	2	29
	134	В3	9,88881	9,89858	9,88943	0,35	28	2	26
	141	Bruto	9,25414	9,27324	9,2589	0,04	477	119	358
	141	PF	12,16621	12,17713	12,16787	0,16	68	10	58
11/set	141	B1	11,93011	11,94025	11,93134	0,2	51	6	45
	141	B2	11,87848	11,89108	11,87998	0,32	39	5	35
	141	В3	12,41307	12,42571	12,41448	0,68	19	2	17
	148	Bruto	9,26139	9,27411	9,26665	0,12	106	44	62
	148	PF	12,1731	12,18227	12,1752	0,16	57	13	44
18/set	148	B1	11,93803	11,94822	11,93896	0,31	33	3	30
	148	B2	11,88611	11,89388	11,88699	0,7	11	1	10
	148	В3	12,4187	12,42508	12,4196	0,9	7	1	6
	164	Bruto	9,26227	9,28303	9,26539	0,06	346	52	294
	164	PF	12,17342	12,18355	12,17411	0,09	113	8	105
04/out	164	B1	11,93767	11,95043	11,93831	0,17	75	4	71
	164	B2	11,88651	11,89756	11,88729	0,24	46	3	43
	164	B3	12,41914	12,43081	12,42042	0,42	28	3	25
	164	SF	9,89517	9,90318	9,89623	0,4	20	3	17
	169	Bruto	11,93644	11,96631	11,94215	0,06	498	95	403
	169	PF	12,54854	12,56373	12,55153	0,14	109	21	87
09/out	169	B1	11,55004	11,56206	11,55191	0,15	80	12	68
	169	B2	12,51044	12,52276	12,51249	0,33	37	6	31
	169	В3	12,32839	12,34088	12,33043	0,38	33	5	28

	169	SF	9,23433	9,24991	9,23583	0,56	28	3	25
	176	Bruto	11,93756	11,96623	11,94215	0,05	573	92	482
	176	PF	12,54895	12,56268	12,55153	0,15	92	17	74
16/out	176	B1	11,55048	11,56237	11,55191	0,4	30	4	26
	176	B2	12,51183	12,52158	12,51249	0,51	19	1	18
	176	В3	12,33008	12,34158	12,33043	0,53	22	1	21
	176	SF	9,89683	9,90475	9,89729	0,8	10	1	9
	190	Bruto	11,93717	11,94726	11,9427	0,09	112	61	51
	190	PF	12,54887	12,96077	12,55037	0,16	2574	9	2565
30/out	190	B1	11,55131	11,56211	11,55167	0,15	72	2	70
	190	B2	12,51119	12,52491	12,51274	0,38	36	4	32
	190	В3	12,33006	12,34447	12,3314	0,45	32	3	29
	190	SF	9,8972	9,91085	9,8979	0,53	26	1	24
	197	Bruto	11,93865	11,95475	11,939	0,07	230	5	225
	197	PF	12,54848	12,56045	12,55064	0,15	80	14	65
06/nov	197	B1	11,55232	11,56121	11,55275	0,2	44	2	42
	197	B2	12,51147	12,51972	12,51312	0,27	31	6	24
	197	В3	12,33072	12,34246	12,332	0,35	34	4	30
	197	SF	9,89743	9,90623	9,89917	0,48	18	4	15

9.4 RESULTADOS DE OXIGÊNIO DISSOLVIDO

OD	(mg/L)					
Dia	Bruto	PF	R1	R2	R3	SF
1	0,7	0,53	0,29	0,28	0,43	
4	0,38	0,21	0,24	0,28	0,47	
7	0,28	0,37	0,34	0,45	0,49	
11	1,39	1,03	0,63	1,83	3,42	
14	0,53	0,81	1,49	1,7	2,04	
16	1,61	1,83	0,87	3,19	2,51	
21	0,41	1,16	1,05	1,28	0,77	
23	0,6	0,26	0,31	0,47	0,41	
28	1,07	0,31	0,35	1,78	3,47	
30	0,45	0,65	0,58	0,61	1,58	
35	0,41	0,5	0,46	0,64	1,72	
37	0,43	0,82	0,43	2,32	1,03	
44	0,34	0,31	0,49	0,81	1,71	
46	0,65	0,48	0,56	0,89	1,85	
51	0,39	0,51	0,44	0,71	1,53	
53	0,34	0,45	0,51	0,65	0,99	
58	0,3	0,43	0,58	0,67	1,05	
60	0,34	0,39	0,49	0,88	1,12	
65	0,56	0,63	0,5	0,9	0,89	
67	0,49	0,56	0,6	0,72	0,61	
72	0,49	0,41	0,52	0,6	0,43	
74	0,48	0,41	0,44	0,51	0,71	
78	0,47	0,43	0,56	0,41	0,48	
80	0,35	0,45	0,53	0,59	0,67	
85	0,46	0,49	0,53	0,56	0,59	
87	0,35	0,72	0,91	0,99	1,3	
92	0,62	0,78	0,89	1,02	0,98	
94	0,65	2,02	3,01	4,39	5,09	
99	0,38	0,51	0,48	0,64	0,72	
101	0,63	0,75	0,7	0,81	0,88	
106	0,41	0,63	0,48	0,83	1,02	
108	0,43	0,51	0,5	0,71	0,77	
113	0,39	0,65	0,6	0,67	0,82	
115	0,27	0,59	0,61	0,63	0,74	
120	0,35	0,6	0,64	0,59	0,66	

122	0,43	0,82	0,43	0,71	0,93	
127	0,22	0,39	0,45	0,49	0,65	
129	0,38	0,6	0,71	1,3	1,49	
134	0,28	0,57	0,48	0,5	0,66	
136	0,31	0,37	0,28	0,45	0,56	
141	0,26	0,65	0,48	0,52	0,47	
143	0,34	0,43	0,44	0,65	0,81	
148	0,47	0,55	0,51	0,67	0,7	
150	0,28	0,53	0,39	0,38	0,53	
155	0,28	0,65	0,33	0,37	0,51	
157	0,35	0,68	0,49	0,61	0,72	
162	0,46	0,89	0,43	0,66	0,67	
164	0,36	0,52	0,59	0,72	0,62	
169	0,39	0,46	0,51	0,65	0,89	1,21
171	0,34	0,44	0,37	0,53	0,83	1,02
176	0,31	0,49	0,44	0,54	0,71	1,04
178	0,34	0,57	0,58	0,61	0,65	0,99
183	0,56	0,44	0,52	0,64	0,67	1,05
185	0,49	0,51	0,56	0,59	0,88	1,12
190	0,42	0,58	0,6	0,63	0,9	0,89
192	0,48	0,49	0,51	0,49	0,64	1,39
197	0,27	0,48	0,53	0,63	0,72	0,91
199	0,31	0,53	0,26	0,56	0,82	0,94
204	0,26	0,39	0,45	0,58	0,75	0,99
206	0,31	0,53	0,48	0,6	0,67	0,89
211	0,34	0,66	0,57	0,59	0,7	0,72
213	0,43	0,61	0,54	0,59	0,87	1,13
218	0,65	0,43	0,41	0,51	0,65	0,98
220	0,38	0,39	0,59	0,75	0,96	1,08
225	0,63	0,64	0,56	0,77	0,81	0,9
227	0,47	0,61	0,58	0,65	0,67	0,83

9.5 RESULTADOS DE TEMPERATURA MÉDIA DIÁRIA

Temp (°C)						
Dia	Bruto	PF	R1	R2	R3	SF
1	20,3	20,1	20,1	20	20,2	
4	20,4	20,4	20,2	19,9	19,8	
7	20,8	20,6	20,6	20,7	20,3	
11	20,8	20,5	20,5	20,4	20,1	
14	20,7	20,5	20,4	20,6	21,6	
16	19	18,6	18,4	18,4	18,8	
21	20,4	20,1	20,2	20,4	20,1	
23	21,4	21,7	21,6	21,3	21,4	
28	21,7	21,5	21,4	21,3	21,1	
30	21,3	21,1	21,1	21	21	
35	21,2	21	20,8	20,6	20,3	
37	20,8	20,6	20,5	20,4	20,4	
44	20,1	20	19,8	19,8	19,8	
46	18,9	18,4	18,7	18,7	18,7	
51	18,8	18,8	18,7	18,6	18,6	
53	18,6	18,5	18,5	18,4	18,4	
58	19	18,8	18,7	18,7	18,6	
60	18,5	18,5	18,3	18,3	18,1	
65	18,2	18,4	18,3	18,2	18,1	
67	18,8	18,7	18,6	18,6	18,4	
72	18	17,9	17,7	17,6	17,5	
74	17,5	17,4	17,3	17,3	17,2	
78	18	18,1	17,8	17,6	17,4	
80	16,9	16,7	16,6	16,6	16,4	
85	18,7	18,5	18,6	18,4	18,4	
87	19,1	19,2	19	18,8	18,8	
92	19,6	19,5	19,3	19,1	19,1	
94	19,2	18,8	18,4	18,4	18,3	
99	20,1	19,8	19,6	19,5	19,3	
101	19,6	19,4	19,3	19,2	19,2	
106	20,8	20,5	20,5	20,6	20,5	
108	20,2	20,1	20	19,8	19,8	
113	20,6	20,4	20,2	20,2	20,3	
115	21,1	20,8	20,6	20,5	20,5	
120	21,2	21,1	21,1	20,8	20,8	

122	20,7	20,8	20,6	20,6	20,7	
127	21,9	21,7	21,4	21,4	21,2	
129	21,7	21,5	21,4	21,4	21,5	
134	22,3	22,1	22	21,8	21,6	
136	22	21,9	21,8	21,7	21,4	
141	22,4	22,3	22,1	21,8	22,5	
143	21,9	21,8	21,6	21,5	21,5	
148	22,6	22,4	22,1	22	22,1	
150	21,8	21,6	21,6	21,4	21,5	
155	22,3	22,1	22,1	22	19,9	
157	21,9	21,6	21,6	21,5	21,3	
162	21,2	21,1	21	20,9	20,8	
164	22,4	22,5	22,3	22,3	22,2	
169	22,7	22,4	22	21,9	21,8	21,7
171	23,2	23	22,8	22,7	22,5	22,3
176	23,4	23,1	22,9	22,9	22,6	22,5
178	23,5	23,4	23,1	22,8	22,4	22,3
183	22,8	22,5	22,4	22,3	22,3	22,1
185	22,4	22,2	22	22	22,1	22
190	23,3	23,2	23,1	23,1	23	23,1
192	22,3	22,1	21,8	21,9	21,8	21,7
197	22,8	22,7	22,5	22,4	22,4	22,5
199	21,7	21,6	21,4	21,3	21,4	21,2
204	22,6	22,4	22,2	22	22,1	22,1
206	23,1	23	22,8	22,7	22,5	22,3
211	22,8	22,6	22,5	22,4	22,1	22
213	23,4	23,5	23,3	23,2	23	23,1
218	23,9	23,9	23,7	23,7	23,6	23,5
220	23,7	23,8	23,6	23,5	23,4	23,2
225	24	23,8	23,9	23,6	23,5	23,5
227	24,6	24,4	24,4	24,3	24,3	24,4

9.6 RESULTADOS DE TURBIDEZ

Turdio	dez (UT)					
Dia	Bruto	PF	R1	R2	R3	SF
1	234	187	124	97	64	
4	210	70	25	25	11	
7	800	750	340	230	60	
11	360	120	75	35	30	
14	320	150	75	32	22	
16	550	200	120	50	31	
21	400	230	120	120	110	
23	240	150	90	45	30	
28	600	220	140	100	28	
30	260	180	37	25	14	
35	250	180	150	130	110	
37	170	85	37	26	20	
44	281	65	37	27	16	
46	250	60	36	27	16	
51	380	200	85	44	33	
53	320	180	75	40	31	
58	290	170	70	38	29	
60	310	150	80	45	32	
65	310	160	110	60	45	
67	230	150	100	90	40	
72	160	80	55	40	33	
74	280	130	75	50	33	
78	480	350	170	110	50	
80	260	230	150	70	21	
85	340	100	37	25	20	
87	400	65	50	26	19	
92	240	55	38	21	20	
94	260	65	34	21	18	
99	330	85	60	50	29	
101	200	60	36	23	19	
106	400	60	32	23	11	
108	130	38	20	15	6,5	
113	330	140	14	6,2	4,4	
115	320	140	60	22	19	
120	360	80	33	19	15	

122	320	40	22	11	10	
127	210	72	35	18	13	
129	260	70	33	18	11	
134	320	60	34	21	13	
136	320	70	33	22	14	
141	270	80	28	24	15	
143	260	80	33	25	12	
148	400	290	110	30	18	
150	390	310	110	24	13	
155	400	290	100	23	11	
157	370	320	170	35	18	
162	410	300	150	40	15	
164	490	110	30	17	13	
169	260	85	32	20	16	11
171	230	80	23	17	14	13
176	240	70	17	14	12	11
178	220	70	15	13	12	10
183	240	80	45	12	10	9,2
185	230	50	60	30	11	8,6
192	190	45	34	23	13	10
197	150	50	23	12	9,3	4,2
199	180	60	50	45	15	3,8
204	190	65	45	32	16	3,1
206	230	80	55	40	17	8
211	220	70	50	33	14	6,1
213	190	77	38	30	14	4,9
218	300	100	55	27	12	7,8
220	280	100	60	34	13	5,6
225	250	110	70	32	12	5,3
227	220	80	40	19	10	2,4

9.7 RESULTADOS DE MASSA DE LODO GERADA

Q (m ³ /d)	R1 (kgDQO/d)	R2 (kgDQO/d)	R3 (kgDQO/d)
0,3072	0,050	0,011	0,005
0,3072	0,033	0,032	0,008
0,3096	0,015	0,017	0,043
0,3120	0,014	0,025	0,009
0,3096	0,022	0,035	0,009
0,3048	0,017	0,020	0,020
0,3072	0,035	0,002	0,015
0,3096	0,015	0,012	0,010
0,3024	0,048	0,024	0,047
0,3072	0,011	0,022	0,027
0,3096	0,044	0,027	0,021
0,3072	0,047	0,028	0,036
0,3072	0,041	0,027	0,024
0,3096	0,035	0,020	0,025
0,3120	0,031	0,046	0,030
0,3072	0,044	0,017	0,011
0,3168	0,035	0,031	0,017
0,3120	0,036	0,036	0,023
0,3144	0,019	0,030	0,112
0,3096	0,034	0,031	0,003
0,3072	0,006	0,029	0,014
0,3072	0,015	0,022	0,026
0,3072	0,098	0,017	0,050
0,3120	0,050	0,052	0,023
0,3240	0,034	0,018	0,013
0,3096	0,009	0,028	0,020
0,3072	0,043	0,017	0,022
0,3192	0,043	0,018	0,016
0,3120	0,014	0,017	0,039
0,3072	0,017	0,032	0,027
0,3000	0,023	0,016	0,027
0,3096	0,022	0,023	0,011
0,3072	0,054	0,014	0,005
0,3072	0,046	0,007	0,005
0,3096	0,030	0,026	0,013
0,312	0,009	0,035	0,002
0,3096	0,033	0,007	0,020

	0,006	0,002	0,002	min
	0,098	0,052	0,112	max
0,3094	0,030	0,021	0,019	med
0,3024	0,015	0,006	0,008	
0,3096	0,026	0,015	0,017	
0,3096	0,022	0,018	0,014	
0,3	0,016	0,011	0,014	
0,3072	0,010	0,009	0,009	
0,312	0,031	0,014	0,016	
0,3192	0,014	0,010	0,010	
0,3072	0,009	0,022	0,014	
0,3096	0,025	0,003	0,008	
0,324	0,021	0,003	0,003	
0,312	0,014	0,006	0,013	
0,3072	0,012	0,002	0,006	
0,3072	0,027	0,021	0,015	
0,3072	0,027	0,024	0,016	
0,3096	0,044	0,012	0,006	
0,3144	0,053	0,011	0,006	
0,312	0,020	0,040	0,018	
0,3168	0,065	0,028	0,034	
0,3072	0,060	0,010	0,009	
0,312	0,034	0,031	0,030	
0,3096	0,040	0,046	0,012	
0,3072	0,028	0,038	0,037	
0,3072	0,036	0,036	0,007	
0,3096	0,045	0,020	0,004	
0,3072	0,021	0,025	0,017	
0,3024	0,034	0,013	0,016	
0,3096	0,024	0,024	0,016	
0,3072	0,019	0,032	0,008	
0,3048	0,025	0,007	0,018	

9.8 RESULTADOS DE TAXA DE APLICAÇÃO HIDRÁULICA

Dia	Qméd	Q (m ³ .d ⁻¹)	qs (m³/m².d)	
7	12,8	0,3072	2,370	
16	12,8	0,3072	2,370	
23	12,9	0,3096	2,388	
30	13	0,312	2,407	
37	12,9	0,3096	2,388	
46	12,7	0,3048	2,351	
53	12,8	0,3072	2,370	
60	12,9	0,3096	2,388	
67	12,6	0,3024	2,333	
74	12,8	0,3072	2,370	
80	12,9	0,3096	2,388	
87	12,8	0,3072	2,370	
94	12,8	0,3072	2,370	
99	12,9	0,3096	2,388	
108	13	0,312	2,407	
115	12,8	0,3072	2,370	
122	13,2	0,3168	2,444	
129	13	0,312	2,407	
136	13,1	0,3144	2,425	
143	12,9	0,3096	2,388	
150	12,8	0,3072	2,370	
157	12,8	0,3072	2,370	
164	12,8	0,3072	2,370	
171	13	0,312	2,407	
178	13,5	0,324	2,500	
185	12,9	0,3096	2,388	
192	12,8	0,3072	2,370	
199	13,3	0,3192	2,462	
206	13	0,312	2,407	
213	12,8	0,3072	2,370	
220	12,5	0,3	2,314	
227	12,9	0,3096	2,388	

9.9 RESULTADOS DE TAXA DE APLICAÇÃO ORGÂNICA

al! a	DBO	DBO	0	O (**** al)	Cv
dia	Bruto	(kg/m³)	Qméd(L/h)	Q (m ³ .d)	(kgDBO/m³.d)
7	825	0,825	12,8	0,3072	2,13
16	389	0,389	12,8	0,3072	1,00
23	289	0,289	12,9	0,3096	0,75
30	442	0,442	13	0,312	1,16
37	374	0,374	12,9	0,3096	0,97
46	438	0,438	12,7	0,3048	1,12
53	367	0,367	12,8	0,3072	0,95
60	401	0,401	12,9	0,3096	1,04
67	348	0,348	12,6	0,3024	0,88
74	443	0,443	12,8	0,3072	1,14
80	372	0,372	12,9	0,3096	0,97
87	377	0,377	12,8	0,3072	0,97
94	387	0,387	12,8	0,3072	1,00
99	304	0,304	12,9	0,3096	0,79
108	339	0,339	13	0,312	0,89
115	413	0,413	12,8	0,3072	1,07
122	524	0,524	13,2	0,3168	1,39
129	391	0,391	13	0,312	1,03
136	435	0,435	13,1	0,3144	1,15
143	408	0,408	12,9	0,3096	1,06
150	272	0,272	12,8	0,3072	0,70
157	303	0,303	12,8	0,3072	0,78
164	390	0,39	12,8	0,3072	1,01
171	367	0,367	13	0,312	0,96
178	385	0,385	13,5	0,324	1,05
185	294	0,294	12,9	0,3096	0,76
192	284	0,284	12,8	0,3072	0,73
199	333	0,333	13,3	0,3192	0,89
206	327	0,327	13	0,312	0,86
213	366	0,366	12,8	0,3072	0,94
220	378	0,378	12,5	0,3	0,95
227	354	0,354	12,9	0,3096	0,92