

EDWIN ANTONIO ARANDA SALDAÑA

METODOLOGIA EFICIENTE PARA ANÁLISE DE REDES COMPLEXAS DE ABASTECIMENTO DE ÁGUA

CAMPINAS 2014

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

EDWIN ANTONIO ARANDA SALDAÑA

METODOLOGIA EFICIENTE PARA ANÁLISE DE REDES COMPLEXAS DE ABASTECIMENTO DE ÁGUA

Orientador: Prof. Dr. PAULO VATAVUK

Tese de Doutorado apresentada a Faculdade de Engenharia Civil, Arquitetura e Urbanismo da Unicamp, para obtenção do título de Doutor em Engenharia Civil, na área de Recursos Hídricos, Energéticos e Ambientais.

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO EDWIN ANTONIO ARANDA SALDAÑA E ORIENTADO PELO PROF. DR. PAULO VATAVUK.

ASSINATURA DO ORIENTADOR

CAMPINAS 2014 Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Elizangela Aparecida dos Santos Souza - CRB 8/8098

Ar14m	Aranda Saldaña, Edwin Antonio, 1974- Metodologia eficiente para análise de redes complexas de abastecimento de água / Edwin Antonio Aranda Saldaña. – Campinas, SP : [s.n.], 2014.
	Orientador: Paulo Vatavuk. Tese (doutorado) – Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo.
	 Abastecimento de água. Modelos matemáticos. Métodos de simulação. Programação (Computadores). Simulação (Computadores). Vatavuk, Paulo,1960 Universidade Estadual de Campinas. Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Título.

Informações para Biblioteca Digital

Título em outro idioma: Efficient method for analysis of complex networks of water supply Palavras-chave em inglês: hydraulic networks Mathematical models Simulation methods Programming (Computers) Simulation (Computers) Área de concentração: Recursos Hídricos, Energéticos e Ambientais Titulação: Doutor em Engenharia Civil Banca examinadora: Paulo Vatavuk [Orientador] José Gilberto Dalfré Filho José Geraldo Pena de Andrade Marco Aurelio Holanda de Castro Podalyro Amaral de Souza Data de defesa: 30-05-2014 Programa de Pós-Graduação: Engenharia Civil

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

METODOLOGIA EFICIENTE PARA ANÁLISE DE REDES COMPLEXAS DE ABASTECIMENTO DE ÁGUA

Edwin Antonio Aranda Saldaña

Tese de Doutorado aprovada pela Banca Examinadora, constituída por:

Prof. Dr. Paulo Vatavuk Presidente e Orientador/UNICAMP

Prof. Dr. José Gilberto Dalfré Filho UNICAMP

Prof. Dr. José Geraldo Pena de Andrade UNICAMP

Prof. Dr. Marco Aurelio Holanda de Castro

Prof. Dr. Podayro/Amaral de Souza USP

Campinas, 30 de Maio de 2014.

RESUMO

Este trabalho apresenta o desenvolvimento de um modelo computacional, baseado no Método da Teoria Linear Modificado (MTLM) proposto por WOOD (1981) e a implementação do algoritmo do Gradiente proposto por TODINI e PILATI (1988). Além disso, apresentam-se comparações entre ambos para a análise de redes de abastecimento de água de grande porte. De acordo com a proposta deste trabalho, para criar um modelo baseado no MTLM tornou-se indispensável a definição prévia de um algoritmo para a seleção automática de circuitos. Para essa finalidade, adotou-se o algoritmo de Breadth First Search (BFS), baseado na teoria dos grafos e utilizado satisfatoriamente na seleção automática dos circuitos nas redes hidráulicas. A formulação adotada na implementação dos modelos estabelece as equações de continuidade nos nós e as equações de conservação de carga nas malhas em termos da vazão para cada elemento do sistema, apresentando um conjunto de equações não lineares que relacionam vazão com perda de carga. Uma vez linearizado o sistema de equações, o uso da biblioteca numérica de programação e otimização (KLU) na resolução de sistemas lineares mostrou-se eficiente para ambos os métodos analisados neste trabalho. A validade e a consistência dos resultados fornecidos pelo modelo proposto foram confirmadas através de sua comparação com o software Epanet 2.0. Os resultados obtidos através de simulações com a finalidade de comparar os resultados obtidos pelo MTLM e pelo método que utiliza o algoritmo do gradiente mostraram a eficiência de processamento e do tempo computacional de ambos os métodos. As comparações foram feitas utilizando redes de até 1000 tubos, fornecendo resultados inéditos, pois os trabalhos encontrados, conforme a revisão bibliográfica, utilizaram redes pequenas com número de tubos em torno de 10% do tamanho das redes estudadas neste trabalho.

Palavras chave: Abastecimento de água, Regime permanente, Método da teoria linear.

ABSTRACT

This thesis presents for the first time the development of two computational models, one model is based on the Modified linear theory method (MTLM) that was initially proposed by WOOD in 1981 and the other model is based on the implementation of the Gradient algorithm that was early proposed by TODINI and PILATI in 1987. In addition, this thesis presents comparisons between both methods for the analysis of large pipe networks. In order to develop a model based on the MTLM method was first necessary to define an algorithm for the automatic selection of circuits. For this reason, the algorithm of Breadth First Search (BFS) was used which is based on the theory of graphs. This algorithm was successfully used for the automatic selection of circuits in hydraulic pipe networks. The methods adopted for the implementation of these models used continuity equations in the junctions as well as equations of conservation of energy in the loops in terms of flow for each element of the system that resulted in a set of non-linear equations, relating flow with head lose. Once the systems of equations were linearized, the use of the KLU library for the solution of linear systems showed promising results for both methods investigated in this thesis. The validity and consistency of the results obtained herein by the proposed models were also confirmed through comparisons with results obtained by the software Epanet version 2.0. The results obtained through simulations with the goal to compare with results obtained in this thesis with the MTLM method and the method that uses a gradient algorithm showed satisfactory results with an efficient processing and computational time by both methods. The comparisons were performed with up to 1000 tubes, gathering new and robust data when compared to available literature that used only a small network with a number of tubes of less than 10%.

Key Words: Water distribution system, Steady flow, Linear theory method.

1 INTRODUÇÃO	1
1.1 Considerações Iniciais	1
1.2 Objetivos do Trabalho	2
2 REVISÃO BIBLIOGRÁFICA	3
2.1 Introdução	3
2.2 Formulação do problema	4
2.2.1 Equações de conservação de massa nos nós	5
2.2.2 Equações de conservação de carga para as malhas	5
2.2.3 Equações de conservação de carga para os elementos	5
2.2.4 Formulações do sistema de equações	6
2.3 Modelos para análise de redes hidráulicas	8
2.4 Algoritmo do Gradiente (Equações para tubulações)	13
2.4.1 Método do gradiente na solução original	14
2.4.2 Método do gradiente no software EPANET	17
2.5 Método da teoria linear modificado (Método de Newton)	20
2.6 Formulação para a seleção Automática de Circuitos	25
2.7 Trabalhos anteriores relacionados á comparação de métodos tradicionais para análise de	••••
sistemas hidráulicos	25
3 MATERIAIS E MÉTODOS	35
3.1 Algoritmos utilizados para seleção automática de circuitos	37
3.2 Conceitos básicos sobre grafos	37
3.3 Determinação do caminho mais curto	42
3.4 Formulação do método da Teoria Linear Modificado neste trabalho (MTLM)	45
3.4.1 Aplicação do método MTLM	46
3.5 Critério de convergência utilizado neste trabalho	50
3.6 Testes preliminares realizados para resolver sistemas lineares	50
3.7 Sistemas de equações lineares esparsas	53
3.8 Definição da rotina para a resolução de sistemas lineares	54
3.9 Descrição de Hardware e Software utilizados	54

SUMÁRIO

3.10 Validação e teste do modelo desenvolvido neste trabalho	55
4 ESTUDO DE CASOS	63
4.1 Estudo de caso 01	63
4.2 Estudo de caso 02	66
4.3 Estudo de caso 03	69
4.4 Estudo de caso 04	
4.5 Estudo de caso 05	
4.6 Metodologia utilizada neste trabalho	
5 CONCLUSÕES	
6 REFERÊNCIAS BIBLIOGRÁFICAS	
APÊNDICE	
ANEXO	

DEDICATÓRIA

Aos meus pais, Antonio e Olga Teresa, por terem acreditado em mim. Aos meus irmãos Marleny e José, obrigado pela força.

AGRADECIMENTOS

Ao Prof. Dr. Paulo Vatavuk pela valiosa orientação, imprescindível para a realização desta tese, além de contribuir para a minha formação como pesquisador, e pela grande amizade em todos esses anos,

Ao Prof. Dr. Edevar Luvizotto Junior pela amizade e apoio constante durante minha permanência no Brasil, e pela disposição durante o andamento da pesquisa,

Aos senhores membros da banca examinadora, pelo aceite e relevantes contribuições a este trabalho,

A Familia Marins Peixoto Siloto pelo carinho e incentivo,

Aos amigos e colegas da Fec-Unicamp, Elias Nicolas, Luiz Fernando, Fernando Coelho, Italo Montalvão, Roger Larico pelo apoio incondicional,

Aos demais amigos e colegas,

À Faculdade de Engenharia Civil, representada por seu corpo docente e técnicoadministrativos pelo apoio e condições necessárias para o melhor desenvolvimento desta importante etapa da minha vida acadêmica,

A Deus ... pela força espiritual sempre presente.

LISTA DE FIGURAS

Figura 2.1 - Iterações obtidas com o método de Newton Raphson e com o método das	
estimativas descendentes para estimativas iniciais: "boas" (A), "pobres" (B) (Adaptado	
de CARVALHO et al., 2010)	13
Figura 2.2 – Rede Hidráulica (Adaptado de EPP e FOWLER (1970))	26
Figura 2.3 – A: Rede Hidráulica Teste1, B: Extração de circuitos com identificação dos	
vértices para o Teste1, C: Extração de circuitos com identificação de tubos de conexão	
para cada circuito no Teste1 (Adaptado de KAILASH (2007))	29
Figura 3.1 - Diagrama de fluxo de dados para a metodologia proposta neste trabalho	36
Figura 3.2 - Procedimentos necessários para a construção de um modelo hidráulico	
utilizando o MTLM	37
Figura 3.3 - Exemplo – Esquema topológico	38
Figura 3.4 – Fluxograma do modelo desenvolvido neste trabalho para analise de regime	
permanente utilizando o MTLM	48
Figura 3.5 - Fluxograma do modelo para analise de regime permanente utilizando o	
Algoritmo do Gradiente	49
Figura 3.6 - Comparação de métodos numéricos para resolução de sistemas lineares	52
Figura 3.7 - Exemplo – Forma esquemática da matriz esparsa A obtida utilizando	
MTLM (Adaptado de MENOTTI, 2008)	54
Figura 3.8 - Rede Simples para o exemplo A	56
Figura 3.9 - Rede Hidráulica para o exemplo B (Adaptado de SALGADO et al. (1988)).	57
Figura 3.10 - Rede Hidráulica para o exemplo C (Adaptado de WOOD e CHARLES	

(1972))	58
Figura - 3.11 Tempos de montagem das equações nos exemplos A, B, C utilizando o	
método do gradiente na formulação por matrizes	61
Figura - 4.1 Rede Hidráulica para o caso 01	64
Figura - 4.2 Variação de δk para o caso 01	64
Figura - 4.3 Variação de Vazão nos Tubos: (A) 1, (B) 5, (C) 15 para o caso 01	65
Figura - 4.4 Rede Hidráulica para o caso 02	66
Figura - 4.5 Variação de δk para o caso 02	67
Figura - 4.6 Variação de Vazão nos Tubos: (A) 1, (B) 5, (C) 15 para o caso 02	67
Figura - 4.7 Rede Hidráulica para o caso 03	69
Figura - 4.8 Variação de δk para o caso 03	69
Figura - 4.9 Variação de Vazão nos Tubos: (A) 65, (B) 125, (C) 250 para o caso 03.	70
Figura - 4.10 Rede Hidráulica para o caso 04	71
Figura - 4.11 Variação de δk para o caso 04	72
Figura - 4.12 Variação de Vazão nos Tubos : (A) 100, (B) 350, (C) 635 para o caso 04.	72
Figura - 4.13 Rede Hidráulica para o caso 05	73
Figura - 4.14 Variação de δk para o caso 05	74
Figura - 4.15 Variação de Vazão nos Tubos: (A) 70, (B) 150, (C) 950 para o caso 05	74
Figura - 4.16 Análise de dados não nulos	77
Figura - 4.17 Tempo de montagem do sistema linear	78
Figura - 4.18 Tempo de solução do sistema	79
Figura - 4.19 Gráfico dilog para análise comparativo de tamanho (ordem) da matriz com	
o tempo para ambos os métodos	80

Figura - 4.20 Gráfico dilog para análise comparativo de dados não nulos com o tempo	
para ambos os métodos	81
Figura A.1 Exemplo – Rede hidráulica utilizada para aplicação do algoritmo do	
gradiente	141

LISTA DE TABELAS

Tabela 2.1 – Resumo de métodos para resolução de sistemas de equações não lineares	22
Tabela 2.2 – Algoritmo do menor caminho (entre nó 4 e nó 7) para seleção de circuito natural I (Adaptado de EPP e FOWLER (1970))	28
Tabela 2.3 – Comparação de tempo de processamento para 3 métodos	30
Tabela 2.4 – Comparação de tempo de processamento para 3 métodos	31
Tabela 2.5 – Comparação de tempo de processamento para 3 métodos	32
Tabela 2.6 – Comparativo de eficiência dos 4 métodos	32
Tabela 2.7 – Comparação de tempo de processamento para 3 métodos	33
Tabela 3.1 construtor de grafos	39
Tabela 3.2 Exemplo- Representação de um sistema hidráulico de agua em estruturas chamadas grafos G(V,A)	40
Tabela 3.3 Código do algoritmo para seleção automática de circuitos (<i>loops</i>) para redes hidráulicas	41
Tabela 3.4 Código do algoritmo do caminho mais curto para redes hidráulicas utilizando BFS	44
Tabela 3.5 Exemplo- Representação de circuitos obtidos com BFS	45
Tabela 3.6 Exemplo – Rede de exemplo	46
Tabela 3.7 Exemplo - Representação do sistema hidráulico	53
Tabela 3.8 Dados dos tubos caso 01	56
Tabela 3.8.1 Dados do reservatório	56

Tabela 3.8.2 Dados dos nós	56
Tabela 3.8.3 Vazões iniciais	56
Tabela 3.9 Dados dos tubos caso 02	57
Tabela 3.9.1 Dados do reservatório	57
Tabela 3.9.2 Dados dos nós	57
Tabela 3.9.3 Vazões iniciais	57
Tabela 3.10 Dados dos tubos caso 03	58
Tabela 3.10.1 Dados do reservatório	58
Tabela 3.10.2 Dados dos nós	58
Tabela 3.10.3 Vazões iniciais	58
Tabela 3.10.4 – Resultados do calculo hidráulico para o Exemplo A	59
Tabela 3.10.5 – Resultados do calculo hidráulico para o Exemplo B	59
Tabela 3.10.6 – Resultados do calculo hidráulico para o Exemplo C	60
Tabela 4.1 Resultados dos testes comparativos para os métodos gradiente e MTLM, nos estudos de caso 03, 04 e 05	76
Tabela 4.2 Faixa de variação do percentual de elementos não nulos nos casos 03, 04 e 05	77
Tabela 4.3 Comparação do tempo total obtidos com os dois métodos nos casos 03, 04 e 05	77
Tabela 4.4 Avaliação do tempo de montagem do sistema comparado com o tempo total de cada iteração obtidos com os dois métodos nos casos 03, 04 e 05	79

LISTA DE SIGLAS

BFS- Breadth-First Search

EPANET - Environmental Protection Agency Network

KLU - routines for solving sparse linear systems of equations looking LU factorization method

MTLM – Método da Teoria Linear Modificado

SCADA - Supervisory Control and Data Acquisition

LISTA DE SÍMBOLOS

A _d	matriz adjacência.
<i>A</i> ₁₂	matriz de incidência.
<i>A</i> ₂₁	matriz transposta de A_{12} .
A_{10}	matriz de conexão dos nós com carga fixa.
A_{11}	matriz diagonal com coeficientes de energia.
D	diâmetro do tubo.
d_{E}	resíduos das equações de continuidade.
d_{q}	resíduos das equações de carga.
Ε	número de elementos da rede.
E(G)	subconjunto de arestas.
e	identificador do elemento ou tubo.
F	vetor.
F _i	número de nós com carga fixa
f	fator de atrito da fórmula universal de perda de carga.
f(qi)	lei de variação de carga para cada tubo i.
$f_e(Q_e)$	função que expressa a variação de carga nos tubos.
G	grafo definido.
G _k	matriz Jacobiana associada às funções f.
8	aceleração da gravidade.
H_0	nó com carga hidráulica fixa ou conhecida.
H_k	carga estimada previamente.
H_{k+1}	carga numa iteração posterior.
H _r	carga do reservatório.
h_e	variação de carga entre dois nós extremos.
h_a	carga no nó de montante.

h_b	carga no nó de jusante.
h_i	carga no nó.
J	número de nos de junção.
${\pmb J}_f$	matriz jacobiana.
j	identificador do nó.
K_i	coeficiente de perda de carga.
L	comprimento do tubo.
Μ	matriz de conexão.
M^{T}	transposta da matriz de conexão.
m	coeficiente de perda de carga localizada.
N_{d}	matriz diagonal do expoente do termo de perda de carga.
N_{p}	número de tubos.
NC	número de tubos que convergem ao nó.
n _v	expoente da vazão.
ng	grau de um nó.
nn	número de nós com carga incógnita.
np	número de tubos com incógnita vazão.
nt	número total de tubulações.
р	pressão no nó.
p_{ij}	inverso da derivada da perda de carga no tubo.
q _{ext}	demandas ou fornecimento de fluxo para a rede nos nós.
Q_{in}	vazões entrando nos nós.
Q_{out}	vazões saindo nos nós.
Q_k	vazões estimadas previamente.
Q_{k+1}	vazões numa iteração posterior.
Qi	vazão no tubo.
ΔQ	Correção de vazão.

S	seção do tubo.
t	tempo.
и	velocidade media do fluxo de água.
V(G)	subconjunto de vértices.
y _{ij}	fator de correção de vazão.
ΔE	quantidade total de energia num circuito.
ΔQ	correção de vazão em cada malha.
δk	critério convergência.
ΨG	função de incidência.

1 INTRODUÇÃO

1.1 Considerações Iniciais

A simulação mediante a construção de um modelo computacional é eficiente como uma das alternativas para encontrar uma solução para análises de redes de distribuição de água. Utilizando técnicas matemáticas e métodos de resolução por meio de computadores, é possível reproduzir o comportamento de qualquer tipo de topologia real, ou seja, um estudo de sistemas reais através da aplicação de modelos.

Uma vez que nem sempre é possível construir ou criar um modelo físico de estudo, seja pelos custos envolvidos ou pelos riscos que a experiência poderia resultar, além de outros fatores, tem-se na simulação computacional uma alternativa viável para prever o comportamento, ou seja, prever os efeitos produzidos por alterações no sistema ou nos métodos empregados.

Para encontrar a solução em redes de distribuição de água em regime permanente é preciso inicialmente descrever a formulação das equações matemáticas. Boa parte das aplicações pode ser modelada matematicamente através de equações de conservação de massa nos nós e equações de conservação de carga para os circuitos. A não linearidade do sistema encontrado e a complexidade topológica faz com que, na maioria dos casos, não seja possível obter uma solução analítica, sendo então necessário o emprego de métodos iterativos para resolução do problema.

Nesse contexto, justifica-se o desenvolvimento e a adaptação de um modelo hidráulico baseado no Método da Teoria Linear Modificado (MTLM), na busca de técnicas mais eficazes para os sistemas de distribuição de água, que se justifica pela sua importância na literatura (SALGADO, R.; TODINI, E. e O'CONNELL, P. E., 1987; ELLIS, D. J. e SIMPSON, A. R., 1996; BRKIC, D., 2011), assim garante-se uma modelagem mais adequada, servindo também, como valiosa ferramenta de suporte para as tomadas de decisão de profissionais de engenharia especialistas e não especialistas em modelação hidráulica e técnicas de programação para controle e operação de sistemas hidráulicos.

Para uma melhor compreensão das informações, este trabalho foi estruturado nos seguintes capítulos: I Introdução; II Revisão Bibliográfica, contendo os principais trabalhos estudados sobre modelagem hidráulica; III Materiais e Métodos, que apresenta a descrição dos fundamentos teóricos dos modelos desenvolvidos, utilizados e validados; IV Estudos de Casos, que apresenta os exemplos empregados para avaliar a eficiência do MTLM; V Considerações Finais, apresentando os resultados, conclusões e discussões referentes a aplicação da metodologia a 5 estudos de caso e VI referências bibliográficas que permitem identificar as publicações consultadas e citadas.

1.2 Objetivos do Trabalho

✓ Objetivo Principal

O objetivo principal deste trabalho é investigar o comportamento e eficiência do MTLM na resolução de sistemas de abastecimento de água de grande porte.

✓ Objetivos Específicos

Complementarmente, como objetivos específicos:

Realizar-se um estudo comparativo entre modelos para análise de regime permanente em redes hidráulicas (gradiente e MTLM).

Desenvolver-se um modelo eficiente para análise de sistemas hidráulicos. Contribuindo para ampliação do conhecimento de modelos aplicados a estudos de regime permanente.

Realizar-se um estudo do comportamento e da convergência do MTLM para análise de redes hidráulicas em comparação com o algoritmo do gradiente, que é o algoritmo mais utilizado e citado pela comunidade especializada neste ramo de estudo.

2 REVISÃO BIBLIOGRÁFICA

2.1 Introdução

Neste capítulo apresenta-se uma revisão bibliográfica dos métodos utilizados até o momento para análise de fluxo e pressão de sistemas hidráulicos de abastecimento de água, assim como, também, apresentam-se as diversas possibilidades para a implementação dos mesmos utilizando algoritmos de programação computacionais. Ademais se fornece uma compilação dos resultados de outros trabalhos que utilizam diversos métodos de programação computacional para a resolução dos sistemas hidráulicos em regime permanente.

Para atingir os objetivos descritos no capítulo 1 da introdução desta pesquisa é realizada a seguir uma revisão bibliográfica apresentando os artigos relevantes ao assunto estudado, em ordem cronológica e organizada em quatro campos de estudos: a) o conhecimento e formulação dos métodos numéricos para resolver sistemas lineares colocados na forma da matriz jacobiana: $J_F(x_1, ..., x_n)$; b) o conhecimento e a evolução histórica dos diversos modelos hidráulicos significativos para análise de redes de distribuição de água, incluindo desde métodos iterativos simples até organizações matriciais para resolução numérica dos sistemas de equações não lineares; c) o conhecimento de algoritmos para a seleção automática de circuitos baseadas na teoria dos grafos para a seleção automática dos circuitos; d) o conhecimento de matrizes dispersas, uma vez que o sistema de equações resultante possui uma grande quantidade de elementos com valores iguais a zero, o que permite a redução de memória requerida, resultando na melhora da eficiência no tempo de processamento em computadores.

Os artigos científicos de SOUZA, 1994; LUVIZOTTO JR et al., 1995; LINDELL, 2006, KAILASH 2007, além de fornecerem informações de natureza qualitativa e quantitativa sobre a pesquisa, serão também comparados com os resultados obtidos neste trabalho com o intuito de validá-lo.

2.2 Formulação do problema

A ideia central é a formulação do sistema de equações para a solução computacional do problema de análise de escoamento em redes de abastecimento. Esta formulação das equações é importante, pois serve como base para a solução dos modelos que serão abordados nesta pesquisa. Este metodo de formulação de equações para a solução de modelos foi utilizada satisfatoriamente por vários pesquisadores, como descritos em LUVIZOTTO JR et al. (1995) e SOUZA (1994). Neste trabalho, o metodo para a elaboração de um modelo de análise de escoamento em redes a condutos forçados é dividida em duas etapas:

✓ Etapa 1: Formulação do problema usando um sistema de equações

O número de variáveis de estado necessário para descrever o estado da rede hidráulica para que se deseja obter a solução nos modelos de análise é dado pela pressão ou carga nos nós, somado ao número de vazões dos elementos. As equações que utilizam essas variáveis estão baseadas em: conservação de massa nos nós, conservação de carga para os circuitos ou para os elementos.

Esse conjunto de equações características relacionando às variáveis de estado para cada elemento da rede, tais como as equações não lineares que relacionam vazão com perda de carga (diferença entre as cargas hidráulicas no nó inicial e final do trecho) num trecho da rede, ou qualquer outro elemento são denominadas equações dos circuitos.

✓ Etapa 2: Solução do sistema hidráulico

O método de solução de um sistema hidráulico utiliza um modelo computacional com um procedimento numérico para equações não lineares descritas na etapa 1. Para este tipo de equações temos, no entanto, a possibilidade de encontrar soluções usando métodos iterativos.

2.2.1 Equações de conservação de massa nos nós

As equações nodais de conservação de massa exprimem a igualdade da soma das vazões entrando (Q_{in}) e da soma das vazões saindo (Q_{out}) juntamente com as demandas ou fornecimento para a rede (q_{ext}) para cada nó.

$$\sum Q_{in} - \sum Q_{out} = q_{ext} \tag{2.1}$$

2.2.2 Equações de conservação de carga para as malhas

Essas equações estabelecem que a quantidade total de carga num sistema isolado de elementos que compõem um circuito fechado (ΔE) permanece constante, estabelecendo que a soma total das perdas de carga nos trechos que compõem um circuito, contabilizadas num mesmo sentido de rotação em torno de um circuito deve ser nulo.

$$\sum_{i} K_i Q_i |Q_i| = 0 \tag{2.2}$$

No qual, K_i é o coeficiente de perda de carga e Q_i é a vazão no trecho.

2.2.3 Equações de conservação de carga para os elementos

Estas equações expressam a variação de carga (h_e) entre os nós extremos $(H_i \ e \ H_j)$ associados de um elemento (e), expressa na seguinte equação:

$$h_e = H_i - H_i = f_e(Q_e)$$
(2.3)

No qual, *H* é a carga, (*i*) e (j) representam os índices dos nós inicial e final do elemento (e), respectivamente. A função $f_e(Q_e)$ expressa a variação de energia produzida entre os nós extremos do elemento (e), como função da vazão que circula por ele (Q_e).

2.2.4 Formulações do sistema de equações

Segundo WOOD (1972), SOUZA (1994), e LUVIZOTTO JR et al. (1995), as equações (2.2 e 2.3) de conservação de carga são do tipo não linear, não existindo uma solução geral para o problema. Para este tipo de equações temos, no entanto, a possibilidade de encontrar soluções usando métodos iterativos. Um método iterativo é um procedimento que gera uma sequência de soluções aproximadas que se aproximam da raiz, conforme as iterações são executadas. Desta forma, obtém-se uma sucessão que converge para a solução do problema.

Os grupos de equações que regem o regime permanente permitem obter um sistema de equações em relação às variáveis que se deseja determinar por meio de diversas formulações. Os métodos para resolver o sistema hidráulico podem ser classificados como:

- ✓ Formulação por componentes ou elementos: consiste em escrever as equações de continuidade nos nós e as equações de conservação de carga nas malhas em termos da vazão para cada componente do sistema. As cargas nos nós de junção são obtidas posteriormente à solução do sistema de equações, sobressaindo entre suas principais características:
 - A vazão através dos elementos é a incógnita do sistema de equações,
 - Compreende a solução de sistemas com elementos reais,
 - Torna-se necessário a determinação de circuitos (*loops*) e elementos fictícios se a topologia não estiver formada por malhas,
 - Obtém-se as vazões numa iteração seguinte (Q_{k+1}) de forma direta pela solução do sistema de equações, as cargas nos nós (h_i) são obtidas de forma explícita após a obtenção das vazões (Q_{k+1}).
- ✓ <u>Formulação por nós</u>: Consiste em escrever as equações de continuidade em termos das cargas hidráulicas (h_i). Sobressaindo entre suas principais características:
 - As incógnitas no sistema de equações são as cargas nos nós (h_i),

- Envolve a solução de sistemas com elementos reais,
- Compreende a solução de um sistema de nós de junção (número de equações igual ao número de nós),
- Não necessita do artifício de malhas "loops" e elementos fictícios,
- As cargas nos nós (h_i) são obtidas pela solução do sistema de equações.
- As vazões (Q_{k+1}) são obtidas pelos elementos posteriormente de forma explícita.
- Formulação por malhas ou circuitos (*loops*): Consiste em escrever as equações de conservação de carga nas malhas em termos de correção de vazão (ΔQ) em cada malha. As vazões (Q_{k+1}) são obtidas aplicando essas correções aos valores iniciais. As cargas (h_i) são obtidas na sequência. Entre suas principais características:
 - É baseada nos termos das incógnitas de correção de vazão (ΔQ) pelas malhas "loops",
 - Compreende a solução de um sistema de malhas reais e fictícias (número de equações igual ao número de malhas),
 - Precisa de seleção de circuitos,
 - São obtidas de forma direta as correções de vazões (ΔQ) para as malhas (loops). As vazões (Q_{k+1}) pelos elementos e as cargas (h_i) nos nós são obtidas num passo posterior (explicito).
- ✓ <u>Formulação híbrida</u>: É uma formulação com características de convergência aperfeiçoada. Consiste em escrever simultaneamente as equações de continuidade nos nós e de carga pelos elementos, em termos das variáveis incógnitas cargas e vazões. Cargas (h_i) e vazões Q_{k+1} podem ser obtidas simultaneamente pela resolução do sistema obtido. Destacando entre suas principais características:
 - É baseada nos termos das vazões pelos elementos e das cargas nos nós,
 - Compreende a solução de um sistema de equações (E+J) de elementos (E) mais nós de junção(J),

- Não necessita de malhas "loops" e elementos fictícios,
- Obtém de forma direta as cargas nos nós (h_i) e vazões Q_{k+1} pelos elementos.

Todas essas formulações resultam em sistemas de equações que fazem parte da descrição matemática do problema de análise de escoamento em redes a condutos forçados e as equações obtidas são não lineares e normalmente resolvidas pelos métodos numéricos específicos para estes sistemas (métodos diretos, métodos iterativos).

2.3 Modelos para análise de redes hidráulicas

A topologia de um sistema de distribuição de água é definida por qualquer arranjo de elementos como tubos, válvulas, bombas, reservatórios que tem como propósito garantir confiabilidade de atendimento das demandas. A análise em regime permanente de sistemas de distribuição de água é um problema de grande importância na engenharia, onde as grandezas associadas ao escoamento não variam no tempo (LUVIZOTTO JR et al., 1995; SOUZA, 1994).

Diversos modelos matemáticos têm sido desenvolvidos para a análise de sistemas de distribuição de água nas condições de equilíbrio hidráulico e descritos a seguir:

O primeiro método para a solução de redes (correções de vazão operadas individualmente para cada malha) é o método descrito por CROSS (1936), simples e aliado ao fato de poder ser utilizado manualmente e é, provavelmente, aquele que maior divulgação teve até o momento. A técnica proposta é um processo iterativo que envolve a aplicação sucessiva de correções ótimas para as vazões em cada malha ou para as cargas em cada nó. Neste método, uma distribuição de vazão inicial é estimada, satisfazendo a equação da continuidade do nó, sendo repetidamente corrigida pela correção de Hardy-Cross até as equações de circuito serem satisfeitas dentro de certo limite. O método original esteve limitado à análise de sistemas de distribuição de água malhadas, considerando apenas tubos sem outros elementos (válvulas, bombas, reservatórios), podendo ser resumido da seguinte forma:
- Determinação de um conjunto inicial de vazões nas tubulações, definidas de forma a que se verifique o princípio de continuidade nos diferentes nós do sistema;
- Cálculo individual da parcela de correção de vazão para o conjunto de tubos que formam uma malha, de tal forma que seja satisfeita a equação da conservação da carga para essa malha; a aplicação desta parcela de correção não destrói a continuidade nos nós inicialmente estabelecida;
- Utilização das soluções melhoradas em cada iteração, pois se repete o passo anterior, até que a parcela média de correção esteja dentro de uma tolerância pré-estabelecida.

CROSS (1936) observou problemas de convergência (lenta e deficiente) quando utilizou o método de correção de cargas nos nós atribuído à dificuldade de obter boas estimativas iniciais. A técnica de correção de vazão para uma malha é calculada a partir da respectiva equação da conservação da carga e destina-se a corrigir a vazão inicialmente arbitrada, de tal forma que aquela equação seja satisfeita. A partir disso, foram propostas variantes que aceleram a convergência da correção.

O método de Cross foi adaptado por Hoag e Weinberg em 1957 para uso em computadores digitais, aplicando-se o método, porém, para a rede de distribuição de água, da cidade de Palo Alto no estado da Califórnia. Este método mostrou-se mais eficiente e menos custoso quando se comparado aos métodos existentes na época.

Conforme relata LINDELL (2006) em 1958 duas empresas de engenharia consultiva, Rader & Associates, em Miami, e Brown & Caldwell, em San Francisco, foram pioneiros na utilização de computador para analisar redes de distribuição de água. A Corporation for Worth, do Texas, se tornou uma das primeiras empresas a vender uma análise de redes de distribuição de água, assim como programas de computadores, para seus clientes.

Com o intuito de melhorar os problemas de convergência frequentemente encontrados nos diversos métodos, nos quais as correções são computadas independentemente, foram propostos algoritmos de correção simultânea da variável desconhecida nas malhas (MARTIN e PETERS, 1963; SHAMIR e HOWARD,1968; EPP e FOWLER,1970).

MARTIN e PETERS (1963) apresentaram um algoritmo de solução simultânea de correção de vazão nas malhas para determinar as cargas desconhecidas nos nós. Os sistemas de equações são linearizados utilizando a serie de Taylor e destaca-se o emprego do método iterativo de Newton-Raphson na resolução do sistema, sob determinadas condições e apresenta vantagens sobre os métodos anteriores em razão da sua precisão e convergência mais rápida.

SHAMIR e HOWARD (1968) demonstraram que o método de Hardy Cross também pode ser utilizado para analisar sistemas que consideram elementos (bombas, válvulas e reservatórios), e também mostrou como o mesmo pode ser utilizado para analisar algumas outras incógnitas como cargas, demandas, e perdas nas tubulações.

EPP e FOWLER (1970) determinaram simultaneamente as correções de vazão para todas as malhas do sistema, ou seja, efetuaram a resolução direta do sistema de equações correspondentes à conservação da carga em cada malha. Incluíram um método automático para a estimativa das vazões iniciais que assegura a convergência e introduz um algoritmo para numeração automática dos circuitos com o objetivo de produzir uma matriz simétrica e diagonal mínima, com consequente redução de memória necessária, podendo ser resumido da seguinte forma:

- Determinação de um conjunto inicial de vazões nas tubulações, definidos de forma a que se verifique o princípio da continuidade nos diferentes nós do sistema;
- Cálculo simultâneo da parcela de correção de vazão para cada malha, de forma que sejam satisfeitas as equações de conservação da carga sem que seja destruído o balanço do principio da continuidade inicialmente estabelecido;
- Repete-se o passo anterior, até que a parcela média de correção esteja dentro de uma tolerância pré-definida.

WOOD e CHARLES (1972) introduziram uma nova formulação para analisar o problema de redes (o método linear), proposto para minimizar o erro iterativo e a convergência associada à solução das equações não-lineares de carga, nos quais a conservação nodal da massa e da carga para cada circuito são resolvidas simultaneamente para obter diretamente a vazão em cada tubulação.

Tal como acontece com o método de "solução em simultâneo", a determinação dos graus nodais associados requer a aplicação de uma rotina de perda de carga secundária. No entanto, em virtude da combinação de conservação da massa e da conservação de equações de carga, o balanço do fluxo inicial dos nós não é mais necessário.

Este método tinha como vantagem a facilidade de implementação nas linguagens de programação da época e a capacidade adicional de determinar rapidamente outros parâmetros desconhecidos além de vazões. São relatados na literatura desenvolvimentos posteriores do algoritmo em programas comerciais, realizando modificações significativas no método inicial (i.e. WOODNET, KYPIPE, PIPE2000). O método da linearização trouxe vantagens adicionais sobre os outros métodos de Hardy Cross e Newton Raphson, devido principalmente ao fato do método prescindir de uma inicialização externa.

ISAACS e MILLS (1980) apresentam um novo algoritmo utilizando o método linear que requer estimativas iniciais dos valores absolutos das vazões em cada tubo para cálculo simultâneo das cargas. Recomendam que sejam utilizados como estimativas iniciais iguais a 1,0 m³/s para todos os tubos na obtenção da solução. Outra estimativa inicial de velocidade sugerida é de 1,0 m/s, já que as redes são geralmente projetadas para velocidades próximas desse valor.

WOOD e RAYES (1981) avaliaram cinco métodos para análise em regime permanente de redes hidráulicas para vários sistemas de redes e situações diferentes, dentre eles três métodos (método de ajuste único do trecho, método de ajuste simultâneo dos trechos e método linear) para correção de vazão nas malhas (escritas em termos dos fluxos desconhecidos nos trechos) e dois métodos (método de ajuste único do nó e método de ajuste simultâneo dos nós) utilizaram as equações dos nós (escritas em termos da carga em cada nó do sistema de trechos). Os autores concluíram, que os métodos baseados em equações de vazão nas malhas têm características de convergência superiores, os métodos baseados em equações dos nós são menos confiáveis, os métodos de ajuste individuais devem ser utilizados com precaução, o método linear modificado provou ser muito confiável e com características superiores de convergência atingindo a solução correta em todas as situações. De forma geral, para a maioria dos algoritmos iterativos, quanto melhor a estimativa dos valores iniciais, melhor a convergência.

NIELSEN (1989) mostrou que o método da teoria linear original pode apresentar problemas de oscilação durante o processo de solução e propôs uma formulação híbrida (baseado no método linear e o método de Newton-Raphson). O primeiro é utilizado para a inicialização do processo iterativo e a obtenção das estimativas iniciais das variáveis e o segundo é utilizado para obtenção mais rápida da solução.

O Método de Newton Raphson foi utilizado como ferramenta para se obter sucesso na iteração linear de resolução de sistemas. Contudo, sabe-se que um ponto fraco desse método é a necessidade de uma aproximação inicial precisa para garantir a sua convergência já que não existe um critério geral de convergência. Neste sentido, também se destaca atualmente o emprego de outros métodos conhecidos tais como o método das estimativas descendentes, mostrados na Figura 2.1. Nestas Figuras 2.1 A-B houve convergência em ambas as situações, usando o método das estimativas descendentes, conforme apresentado por CARVALHO et al. (2010).

Entretanto, a sua eficiência fica comprometida em decorrência da grande quantidade de iterações necessárias, independente da proximidade da estimativa inicial para a solução do problema.

Figura 2.1: Iterações obtidas com o método de Newton Raphson e com o método das estimativas descendentes para estimativas iniciais: "boas" (A), "pobres" (B) (Adaptado de CARVALHO et al., 2010).

2.4 Algoritmo do Gradiente (Equações para tubulações)

A estratégia adotada para as equações nos tubos consiste em resolver as incógnitas de cargas (h_i) e vazões (Q_i), simultaneamente. Embora a formulação empregada conduza, em geral, a um maior número de equações que as demais formulações para serem resolvidas, o algoritmo do gradiente desenvolvido por TODINI e PILATI (1988) têm-se mostrado como um método de

solução bastante robusto e de rápida convergência, na medida em que este método é utilizado no programa EPANET (ROSSMAN, 2000).

Para formar as equações nos tubos a conservação da carga é determinada para cada componente do sistema na rede hidráulica em termos de cargas nodais.

A equação do tubo é escrita como na equação 2.4:

$$h_a - h_b = K_i Q^n \tag{2.4}$$

Onde $h_a e h_b$ são as cargas nodais a montante e jusante do componente e K_i o coeficiente de perda de carga. Essa equação é combinada com a equação de continuidade para formar: número de junções (J) + número de tubos (N_p) sendo igual ao número de incógnitas (cargas nodais e vazões nos tubos).

2.4.1 Método do gradiente na solução original

Dispondo-se de:

 $N_p = N$ úmero total de elementos da rede;

J = Número total de nós da rede;

 F_i = Número total de nós com cargas fixas.

Embora as equações de continuidade sejam do tipo linear as equações de fluxo são do tipo não linear. Por isso, o método iterativo conhecido como algoritmo do gradiente é utilizado. A vazão é linearizada utilizando a vazão estimada previamente (Q_k) para os tubos.

$$K_i Q_k^{n-1} Q_{k+1} - (h_a - h_b) = 0$$
(2.5)

Considerando h_0 como nó de carga fixa e h_i cargas nodais incógnitas. Na forma matricial, as equações linearizadas são:

$$A_{12}h_i + A_{11}Q_i + A_{10}h_0 = 0 (2.6)$$

$$A_{21}Q_i - q_{\text{ext}} = 0 \tag{2.7}$$

No qual a equação (2.6) é linearizada para cada componente da rede e a equação (2.7) é a equação de continuidade. Na notação adotada a matriz A_{21}^{T} é a transposta da matriz A_{12} .

$$A_{12} = A_{21}^{T} (2.8)$$

Os elementos da matriz incidência A_{12} (composta por 0 e 1) que identifica a conexão dos nós livres cuja dimensão é: N_px(J-F) são escritos na forma:

	(1	se a vazão no tubo chega ao nó
$A_{12} = -$	0	se o tubo não esta conectado ao nó
	-1	se a vazão no tubo sai do nó

Por sua vez a matriz A_{10} identifica a matriz de conexão dos nós com carga fixa cuja dimensão é: (N_pxF). A lei de formação dessa matriz é semelhante a da matriz A_{12} . A matriz A_{11} identifica a matriz diagonal com coeficientes de carga cuja dimensão é:(N_pxN_p).

$$A_{11} = \begin{bmatrix} K_1 |Q_1|^{n-1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & K_{np} |Q_{np}|^{n-1} \end{bmatrix}$$

Diferenciando as equações (2.6) e (2.7) em relação à carga e vazão, obtemos o sistema:

$$\begin{bmatrix} N_d A_{11} & A_{12} \\ A_{21} & 0 \end{bmatrix} \cdot \begin{bmatrix} dQ \\ dH \end{bmatrix} = \begin{bmatrix} dE \\ dq \end{bmatrix}$$

Com base em uma estimativa inicial, as equações de continuidade (2.1) e conservação de carga (2.2) dificilmente resultaram nos vetores nulos esperados, mas sim em valores residuais dE e dq, sendo avaliado na solução $Q_k e H_k$.

$$dE = A_{11}Q_k + A_{12}H_k + A_{10}H_0$$
(2.9)

$$dq = A_{21}Q_k - q \tag{2.10}$$

 N_d *i*dentifica a matriz diagonal com os exponentes das equações do tubo (n_v).

$$N_d = \begin{bmatrix} \begin{pmatrix} n_v & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & n_v \end{pmatrix} \end{bmatrix}$$

Uma vez resolvido o sistema, Q_k e H_k são atualizados :

$$Q_{k+1} = Q_k + dQ \tag{2.11}$$

$$\mathbf{H}_{\mathbf{k+1}} = \mathbf{H}_{\mathbf{k}} + \mathbf{d}\mathbf{h} \tag{2.12}$$

A convergência é verificada avaliando dE e dq, e iterações adicionais são complementadas se for necessário. TODINI e PILATI (1988) aplicaram procedimentos eficientes para determinar as vazões (Q_{k+1}) e as cargas (h_{k+1}) . Obtidas pelas equações:

$$H_{k+1} = -(A_{21}N_d^{-1}A_{11}^{-1}A_{12})^{-1} \{A_{12}N_d^{-1}(Q_kA_{11}^{-1}A_{10}H_0)\}$$
(2.13)

Uma vez obtida a solução para determinação do vetor cargas (H_{k+1}) podemos determinar Q_{k+1} :

$$Q_{k+1} = (1 - N_d^{-1})Q_k - N_d^{-1}A_{11}^{-1}(A_{12}H_{k+1} + A_{10}H_0)$$
(2.14)

Note-se que N_d e A_{11} são matrizes estritamente diagonal dominantes e, por tanto, o custo computacional para inverter essas matrizes é desprezível.

2.4.2 Método do gradiente no software EPANET

O algoritmo do gradiente encontra-se apresentado de uma maneira simplificada o modo como as vazões (Q_{k+1}) nos trechos são atualizadas após uma nova solução das cargas piezométricas (H_{k+1}) nos nós ter sido encontrada, durante o processo iterativo como descrito no manual do usuário do programa EPANET.

Para uma rede hidráulica, com características físicas das tubulações e restrições tais como nn (nós), H_o (nós com cota piezométrica fixa), q_{ext} (demandas), e uma lei de variação de carga para cada tubo (i), expressas por f(q_i).

$$H_a - H_b = h_e = k_i Q_i^{n_v}$$

$$(2.15)$$

Onde:

 h_e = perda de carga total K_i = termo de perda de carga Q_i = vazão n_v = exponente da vazão

O método do Gradiente arbitra uma primeira distribuição de vazões (Q_k) nas tubulações as mesmas que não tem necessariamente que satisfazer as equações de continuidade nos nós. Em cada iteração do método, novas cotas piezométricas (H) são obtidas resolvendo a seguinte matriz:

$$AH = F \tag{2.16}$$

Onde:

J = matriz Jacobiana de (nn x nn)

- H = vetor de incógnitas em termos de cota piezométrica (nn x 1)
- F = vetor dos termos do lado direito da equação (nn x 1)

 p_{ij} = inverso da derivada da perda de carga total no trecho entre os nos i e j em relação à vazão (Q_k) .

Os elementos da diagonal da matriz Jacobiana são:

$$J_{ij} = \sum_j p_{ij} \tag{2.17}$$

Os elementos não nulos fora da diagonal são:

$$J_{ij} = -p_{ij} \tag{2.18}$$

Onde:

$$p_{ij} = \frac{1}{n_v k_i |Q_i|^{n_{\nu-1}} + 2m|Q_i|} \tag{2.19}$$

Onde n_v é o expoente da vazão (Q_i), k_i o termo de perda de carga, *m* o coeficiente de perda de carga localizada. Considerando as perdas pela Fórmula Universal ($n_v=2$) e desprezando as perdas localizadas:

$$p_{ij} = \frac{1}{2k_i |Q_i|} \tag{2.20}$$

Cada termo do lado direito da equação (2.16) é composto por uma parcela referente ao balanço de vazão no nó, à qual é adicionado um fator de correção de vazão:

$$F = \left(\sum_{j} Q_{i} - q_{ext}\right) + \sum_{j} y_{ij} + \sum_{f} p_{f} H_{o}$$

$$(2.21)$$

Sendo o último termo aplicável a qualquer trecho que ligue um nó (i) a um nó (f) de carga fixa e o fator de correção de vazão, y_{ij} , é dado pela seguinte expressão para tubulações:

$$y_{ij} = p_{ij}(k_i |Q_i|^{n_v} + m|Q_i|^2) sgn(Q_i)$$
(2.22)

Considerando novamente as perdas pela Fórmula Universal (n=2) e desprezando as perdas localizadas:

$$y_{ij} = \frac{1}{2k_i |Q_i|} (k_i |Q_i|^2) sgn(Q_i) = \frac{Q_i}{2}$$
(2.23)

A equação (2.21) resulta em:

$$F_{i} = \left(\sum_{j} Q_{i} - q_{ext}\right) + \sum_{j} \frac{1}{2k_{i}|Q_{i}|} (k_{i}|Q_{i}|^{2}) sgn(Q_{i}) + \sum_{j} \frac{1}{2k_{i}|Q_{i}|} H_{j} sgn(Q_{i})$$
(2.24)

Fazendo G = $2k_i |Q_i|$. Após terem sido calculadas as cargas no sistema (2.16) as novas vazões podem ser obtidos de acordo com a seguinte equação:

$$Q_{k+1} := Q_k - (y_{ij} - p_{ij}(h_a - h_b))$$
(2.25)

A equação (2.25) é análoga à equação (2.14), uma vez substituído os valores de p_{ij} e y_{ij}:

$$Q_{k+1} := Q_k - \frac{1}{G_{ij}} [A_{11}] Q_i sgn(Q_i) + \frac{1}{G_{ij}} (h_a - h_b)$$
(2.26)

Se a soma de todas as variações de vazão (em valor absoluto) relativamente a vazão total em todos os trechos for superior a tolerância especificada, as equações (2.16) e (2.26) serão resolvidas novamente. Observa-se que a nova vazão obtida a partir da equação (2.26) satisfaz o principio da continuidade da vazão nos nós, após a primeira iteração.

ROSSMAN (2000) apresentou a primeira versão do software Epanet para análise hidráulica de sistemas de abastecimento desenvolvido pela Environmental Protection Agency (EPA, USA) liderado por Lewis Rossman. Provavelmente é o modelo de análise mais utilizado pelos investigadores e comunidade de engenharia, de distribuição gratuita, com uma interface gráfica em Windows, que oferece ao usuário um software de código aberto com uma interface amigável. O método utilizado para análise hidráulica é o método do gradiente de TODINI e PILATI (1988) com o objetivo de melhorar a eficiência de convergência e de uso da memória computacional.

2.5 Método da teoria linear modificado (Método de Newton)

WOOD e CHARLES (1973) apresentaram um algoritmo baseado na técnica do gradiente com base em séries de Taylor, sendo posteriormente implementado no *software* Kypipe (KYPIPE, 1995). Tal algoritmo foi apresentado por WOOD e RAYES (1981), modificando a teoria linear original proposta por WOOD e CHARLES (1972) para um método de Newton com características de convergência superior quando comparado ao método original. O software KYPIPE conforme mencionado é baseado nesta metodologia e aborda a solução do regime permanente, utilizando esquemas de linearização eficientes para lidar com termos não lineares.

A equação da carga para circuitos é escrita em termos da vazão atual (Q_k) no caso um circuito genérico contendo nt tubulações

$$f(Q_k) = \sum_{i}^{nt} k_i Q_k^{n_v} \tag{2.27}$$

A linearização é obtida com base nos dois primeiros termos da expansão da serie de Taylor

$$f(Q_{k+1}) = f(Q_k) + \frac{df}{dQ}\Big|_{Q_k} (Q_{k+1} - Q_k) = f(Q_k) + G_k(Q_{k+1} - Q_k)$$
(2.28)

No qual G_k é a matriz Jacobiana associada às funções f. Considerando $f(Q_{k+1})$ como nulo então é possível se obter um sistema linear da forma Ax=B.

$$0 = f(Q_k) + G_k(Q_{k+1} - Q_k)$$
(2.29)

$$G_k Q_{k+1} = G_k Q_k + f(Q_k)$$
 (2.30)

As vazões obtidas (Q_{k+1}) são determinadas quando a tolerância estabelecida é atingida; caso contrário será realizado uma nova iteração e uma nova vazão (Q_{k+1}) será obtida.

Segundo GUTIERREZ (2011), nos últimos anos, o desenvolvimento de métodos hidráulicos, apesar de compartilhar a mesma base de algoritmo de cálculo (gradiente hidráulico), exibe uma marcada diferenciação especialmente em conceitos de interface, processos de consulta multicritério, operações de análise espacial, possibilidades gráficas, integração com sistemas de informação geográfica. Atualmente algumas tendências que estão ganhando popularidade são:

- Intercâmbio de dados com sistemas eletrônicos (gadgets) e outros programas de gestão;
- Uso de avançadas técnicas de inteligência artificial (algoritmos genéticos) para processos de calibração hidráulica automatizada e otimização energética;
- Integração com SCADA (sistemas de controle e aquisição de dados) e análise de qualidade multi-parâmetro;
- Integração com a análise de transientes hidráulicos.

Na Tabela 2.1 estão indicados os principais modelos matemáticos desenvolvidos para análise de sistemas de distribuição de agua:

Tabela 2.1 – Resumo de métodos para resolução de sistemas de equações não lineares.

(continua)

Métodos	Observações/características principais
HARDY CROSS (1936)	 Formulação por malhas ou circuitos. Formulação por nós. Taxa de convergência muito baixa e perda de eficiência numérica. Comportamento instável em sistemas complexos. Altamente dependente da escolha dos circuitos (balanço de carga). Dificuldade para acrescentar dispositivos na rede.
NEWTON RHAPSON SHAMIR E HOWARD (1968)	 Formulação por componentes ou elementos. Método iterativo. Faz uso do termo de primeira ordem de uma expansão de Taylor. Método de aproximações sucessivas com a deficiência de precisar valores iniciais próximos da solução para uma convergência rápida. Formulação por componentes ou elementos. Formulação por nós. Método iterativo.

Métodos Observações/características principais Requer seleção de circuitos. Calcula simultaneamente as vazões nos tubos ou as cargas nos nós. convergência solução é • А da grandemente afetada pela precisão da estimativa inicial e estimativas grosseiras podem levar a uma situação Teoria Linear WOOD e CHARLES (1972) onde a solução não converge (WOOD e CHARLES, 1972; SOUZA, 1994). A convergência é melhorada quando • média das vazões de duas iterações sucessivas são usadas, isto para uma fonte com carga constante (reservatório). Formulação • por componentes ou elementos. • Requer seleção de circuitos. Teoria Linear Modificada Requer considerável armazenamento de • WOOD(1980) ISAACS e MILLS (1980) memoria. Apresenta características de • convergência superior método ao original (WOOD, 1980; LUVIZOTTO JR, 2004).

Tabela 2.1 – Resumo de métodos para resolução de sistemas de equações não lineares.

(continuação)

23

Tabela 2.1 – Resumo de métodos para resolução de sistemas de equações não lineares.

(conclusão)

Métodos	Observações/características principais
Teoria Linear Modificada WOOD(1980) ISAACS e MILLS (1980)	 A linearização proposta é obtida com base nos dois primeiros termos da expansão da série de Taylor. Alta taxa de convergência final (não requer boas estimativas iniciais).
NIELSEN (1989)	 Formulação Híbrida (Incorpora vantagens de dois métodos). O método da teoria linear é empregado nas primeiras iterações para obtenção de uma boa estimativa inicial. O método de Newton-Raphson é empregado para a obtenção da convergência final.
Método do gradiente TODINI e PILATI (1988)	 Formulação Híbrida. União de técnicas de minimização numérica com o método de Newton Rhapson (EPANET user's manual, 2000; WATERCAD user's guide, 2002).

2.6 Formulação para a seleção automática de circuitos

Os métodos que empregam formulação por elementos ou componentes e os métodos que usam formulação por malhas ou circuitos necessitam que seja feita a escolha dos circuitos (incluído o método da teoria linear modificado), que será abordada neste item.

Desde que os computadores tornaram-se disponíveis muitos pesquisadores desenvolveram algoritmos para solucionar com sucesso os problemas em redes de abastecimento de água (MARTIN e PETERS, 1963; SHAMIR e HOWARD 1968). Porém, esse sucesso tem sido limitado quando encontramos redes complexas, o que se reflete na lenta convergência para solução das mesmas, a memoria de computador requerida aumenta significativamente, sendo que para resolver n equações será necessário armazenar e operar com uma matriz de n x n coeficientes. Na busca de eficiência no uso da memoria do computador encontramos na literatura somente três métodos para a seleção automática de circuitos: EPP e FOWLER (1970), NIELSEN (1989) e KAILASH (2007) baseados em metodologias conhecidas da ciência de computação e da análise numérica como a teoria dos grafos conexos.

EPP e FOWLER (1970) apresenta um método eficiente para numeração automática de circuitos que produzem uma matriz simétrica em banda, com a consequente redução do uso de memória no computador tendo como sua principal característica um algoritmo para seleção automática de circuitos da rede composto por um número mínimo de trechos nas redes com o objetivo de minimizar as equações a serem resolvidas. Por definição, um nó é de grau *ng*, quando tem ng tubos conectados a ele. É fácil determinar os tubos que não pertencem aos circuitos, começando em um nó de grau 1, e trabalhando com os nós de grau 2, até que um nó de grau maior que 2 seja alcançado.

Figura 2.2 – Rede Hidráulica (Adaptado de EPP e FOWLER (1970)).

Temporariamente removendo os tubos 1 e 2 da rede mostrada na Figura 2.2, nota-se que o nó 1 agora é de grau 2. Definindo-se os nós de grau 2 como os nós chaves, então, para definir um circuito, qualquer nó chave é selecionado (por exemplo o nó 1). Os dois nós conectados por tubos ao nó chave são então conhecidos. O menor caminho entre esses dois nós que não passa através do nó chave é então determinado. Desta maneira, o conjunto de circuitos naturais de uma rede é encontrado.

No algoritmo, é necessário se obter o menor caminho entre dois nós da rede. O menor caminho entre dois nós N1 e N2 é uma série de N tubos conectados tais que qualquer outra série de tubos interligando os dois nós contém no mínimo N tubos. Três listas L1, L2, L3 são utilizadas na técnica para determinar o menor caminho. A seguir são apresentados esses procedimentos (passos 1-16) para determinar o menor caminho, como descrito anteriormente por SOUZA e CHAUDHRY (2001).

- Passo 1: Entrar com o nó terminal N1 na primeira posição da lista L1. Colocar o valor de um ponteiro P1 igual a 1.
- Passo 2: Chamar K = L1 (P1), ou seja K tem o valor do conteúdo da lista L1 da posição P1.

Passo 3: Escolher um nó que está conectado ao nó K mas que não foi ainda escolhido.

Fazer J igual ao número deste nó.

Passo 4: Se o nó J já está na lista L1, ir para o passo 8.

Passo 5: Entrar com o número do nó, isto é J na próxima posição disponível de L1.

Passo 6: Entrar com o valor de K na J-ésima posição da lista L2.

Passo 7: Entrar com o número do tubo que interliga os nós K e J na J-ésima posição da lista L3.

Passo 8: Se o valor de J é igual a N2 (isto é, J é o outro nó terminal), ir para o passo 11.

Passo 9: Se há nós conectados ao nó K mas que ainda não foram escolhidos, ir para o passo 3.

Passo 10: Incrementar o ponteiro P1 de 1 e ir para o passo 2.

Passo 11: Colocar o valor de um ponteiro P2 igual a 1.

Passo 12: Fazer K = N2.

- Passo 13: Se K = N1, ou seja o nó inicial, então parar, porque todos os tubos do caminho mínimo foram achados.
- Passo 14: Chamar TUBO [P2] = L3 [K], ou seja, L3 [K] é o P2 ésimo interliga os nós N1 e N2.

Passo 15: Fazer K = L2 [K].

Passo 16: Incrementar P2 de 1 e ir para o passo 13.

No exemplo envolvendo o algoritmo descrito anteriormente, achou-se o menor caminho entre os nós 4 e 7 da Figura 2.2, sem contar com os tubos 3 e 5 (esses tubos foram removidos da rede). A ordem na qual cada lista foi preenchida está mostrada à direita de cada célula na Tabela 2.2.

L2 L3 L1 <u>7</u>

Tabela 2.2 – Algoritmo do menor caminho (entre nó 4 e nó 7) para seleção de circuito natural I (Adaptado de EPP e FOWLER (1970)).

Observa-se mediante os resultados obtidos na Tabela 2.2 a seleção do menor caminho para obtenção do circuito I, como um grande aporte para aperfeiçoar a eficiência na solução hidráulica de uma rede de abastecimento na hora de se obter uma convergência rápida: menor número de iterações, tempo e memoria computacional, principalmente quando a esparsidade da matriz resultante do sistema de equações seja explorada (segundo SOUZA, 1994, o número mínimo de trechos seria o critério ótimo para a seleção automática de circuitos naturais que resulta numa esparsidade máxima).

Uma versão do uso da teoria dos grafos conhecida como *Nested Breadth First Search* (NBFS), para seleção automática de circuitos foi proposta para analisar sistemas de distribuição de água mediante o método de formulação por malhas Hardy Cross (KAILASH, 2007). Nesta proposta ocorre armazenamento e organização de dados no computador de modo que possam ser utilizados de maneira eficiente, ou seja, a rede em estudo é convertida em estruturas de dados G(V, A) onde V representa um conjunto não vazio de objetos denominados vértices e A, um conjunto de pares não ordenados de V, chamados arestas. A seguir, é descrito o algoritmo proposto para se determinar o critério de seleção e extração de circuitos para a topologia descrita na Figura 2.3-A:

Paso 1: 1º procedimento BFS (*BFScycledetection*) - Determinar o vértice raiz (inicial) de busca (n1):

Passo 2: 2° procedimento BFS (*BFScycleextraction*(nó1, nó2)) - Obter o circuito com ajuda do vértice raiz (nó1). A seguir, escolhe-se um dos vértices vizinhos como segundo nó (nó2). Começando pelo nó1, o nó2 é procurado e se a busca for satisfatória uma lista de vértices é criada para formar o circuito (Figura 2.3 - B). A conexão entre os vértices é estabelecida para completar o ciclo (Figura 2.3 - C). Todos os vértices devem ser visitados ao finalizar o procedimento. Os vértices serão marcados pela função *Cycled-edge-tag* como: não visitados, visitados ou processados.

Passo 3: Para finalizar o algoritmo, definidos os circuitos a serem atendidos pelas malhas, calculam-se as vazões a serem distribuídas em cada uma delas e concentra-se cada vazão em pontos estratégicos (nós) de cada malha, conforme metodologia de Hardy Cross.

Figura 2.3 – A: Rede Hidráulica Teste1, B: Extração de circuitos com identificação dos vértices para o Teste1, C: Extração de circuitos com identificação de tubos de conexão para cada circuito no Teste1 (Adaptado de KAILASH (2007)).

2.7 Trabalhos anteriores relacionados à comparação de métodos tradicionais para análise de sistemas hidráulicos.

Muitos algoritmos têm sido propostos para resolver a não linearidade das equações de continuidade em cada nó e a equação de energia em cada circuito, utilizados como fontes do conhecimento técnico já dedicavam atenção aos métodos de análise de sistemas hidráulicos que envolvem desde simples métodos numéricos iterativos, até complexas organizações matriciais para uma adequada obtenção de cargas e vazões. Estudos anteriores focados na comparação de métodos tradicionais complementarão o critério de escolha na busca de um método eficiente.

SALGADO et al (1987) comparou 3 métodos, apresentando que o método do gradiente se mostrou eficiente para todas as situações testadas e relatando algumas dificuldades no caso dos métodos baseados na teoria linear como: a escolha do método para resolução do sistema de equações (matriz não simétrica e esparsa), o tamanho dos sistemas a serem resolvidos serem maiores (número de tubos) e a dependência da seleção de circuitos no sistema. Para estudar a eficiência dos métodos de resolução, selecionou-se diversas redes com diferentes características (Tabela 2.3). Todos os tempos foram obtidos utilizando um computador IBM-PC (Amstrad PC1512, com processador 8087).

Método	Formulação	Topologia	tempo (s)	No.lter
MTLM	elementos		69,53	16
LM	malhas	66 Tubos, 41 nós	788,51	17
Gradiente	nós	Velocidades < 0,2m/s	29,77	16
Método	Formulação	Topologia	tempo (s)	No.lter
MTLM	elementos		91,67	12
LM	malhas	74 Tubos, 48 nós	961,69	13
Gradiente	nós	6 Bombas	34	10

Tabela 2.3 – Comparação de tempo de processamento para 3 métodos (continua)

Tabela 2.3 – Comparação de tempo de processamento para 3 métodos (continuação)

Método	Formulação	Topologia	tempo (s)	No.lter
MTLM	elementos		100,13	13
LM	malhas	74 Tubos, 48 nós	1109,82	15
Gradiente	nós	Demanda alta	39,16	12
Método	Formulação	Topologia	tempo (s)	No.lter
MTLM	elementos		154,94	21
LM	malhas	74 Tubos, 48 nós	1551,76	21
Gradiente	nós	2 válvulas (fechamento)	57,28	19

ELLIS e SIMPSON (1996) apresentaram 3 métodos, mostrando que nos procedimentos encontrados para análise de sistemas de distribuição de agua recomenda-se que o Método da Teoria Linear aplicado em conjunto com o método de Newton-Raphson fornece ótimos resultados para o análise de sistemas hidráulicos(Tabela 2.4).

Tabela 2.4 - Comparação de tempo de processamento para 3 métodos

Método	Formulação	Topologia	No.Iter
MTL	elementos		6
Newton	elementos	4 Tubos, 4 nós	6
MTL-Newton	hibrida		6

SOUZA e CHAUDRY (2000) apresentam uma comparação entre os métodos de resolução de sistemas lineares aplicados na análise de redes de distribuição de água e analisa a eficiência destes métodos no comportamento da convergência. A formulação proposta analisa métodos diretos ou exatos (método da eliminação de Gauss e método de Cholesky) e indiretos ou iterativos (método dos gradientes conjugados) (Tabela 2.5).

Método	Método	Topologia	tempo (s)	tempo(s)	No.lter	
Resolução Sistema Linear				iter		
eliminação gaussiana			14,99	1,25	12	
gradientes conjugados	MTL	27 Tubos, 21 nós	16,43	1,37	12	
Choleski		Solução	13,67	1,14	12	
Método	Mótodo	Topologia	tompo (c)	tempo(s)	No.lter	
Resolução Sistema Linear	Metodo	Topologia	tempo (s)	lter		
eliminação gaussiana			10,05	1,26	8	
gradientes conjugados	NewtonR	27 Tubos, 21 nós	10,60	1,33	8	
Choleski		Solução	9,12	1,14	8	
Método	Mátada	Tanalagia	tampa (c)	tempo(s)	Noltor	
Resolução Sistema Linear	Metodo	TOPOlogia	tempo (s)	lter	No.Iter	
eliminação gaussiana	MTL -		5,00	1,25	4	
gradientes conjugados	NewtonR	27 Tubos, 21 nós	5,44	1,36	4	
Choleski		Solução	4,56	1,14	4	

Tabela 2.5 - Comparação de tempo de processamento para 3 métodos

TODINI (2006) comparou 4 métodos, a partir de 100 soluções iniciais randomizados para análise de redes de distribuição de água e analisa a eficiência destes métodos no comportamento da convergência(Tabela 2.6).

Tabela 2.6 – Comparativo de eficiência dos 4 métodos.

Método	Formulação	Topologia	No.Iter
MTLM	elementos		06-08
LM	malhas	7 Tubos 4 pós	06-08
Gradiente	nós	7 10003, 4 1105	06-08
Newton	nós		15-110

BRKIC DEJAN (2011), comparou 2 métodos, para análise de redes de distribuição de água e analisa a eficiência destes métodos no comportamento da convergência quando aplicados a sistemas para transporte de gas (Tabela 2.7).

Método	Formulação	Topologia	No.lter
Hardy Cross	nós		7
		8 Tubos, 6 nós	
MTLM	malhas	vazão no Tubo3	3

Tabela 2.7 - Comparação de tempo de processamento para 3 métodos

Baseado nos trabalhos comparativos anteriores que demonstraram os métodos baseados na MTLM apresentaram uma boa eficiência para análise de redes de distribuição de água como uma alternativa eficiente na abordagem deste tipo de problemas, servindo de motivação para realizar um estudo comparativo em relação a um dos principais métodos (gradiente) para redes complexas.

No capítulo 3, Materiais e Métodos, será apresentado maior detalhamento do procedimento de montagem e resolução de sistemas de equações, utilizando MTLM para resolver o problema hidráulico, além do procedimento de validação do algoritmo proposto neste trabalho.

3 MATERIAIS E MÉTODOS

A análise em regime permanente nos sistemas de distribuição de água é de grande importância. Assim, é oportuna a investigação da técnica MTLM comparando-a com o método do gradiente para redes de grande porte. Este modelo será uma ferramenta de uso imediato eficiente pelos profissionais envolvidos no controle e operação de redes hidráulica.

No presente trabalho abordamos as comparações entre os principais métodos (gradiente e teoria linear modificada) para análise hidráulica. Devido à importância destes métodos, esses foram apresentados no capítulo anterior. Para a escolha da melhor solução, ou da solução eficiente, foram impostos critérios que satisfizessem determinadas condições e as comparações foram feitas em relação à facilidade e flexibilidade de uso, número de iterações, tempo e memória computacional necessários para a convergência do problema e a montagem das equações que são apresentadas neste capítulo. A nova abordagem proposta para a solução em regime permanente compreende o estudo e a convergência do problema com o emprego das seguintes ferramentas, teoria dos grafos e conceito de esparsidade.

Desta forma, desenvolveu-se um modelo efetivo que reduz o tempo de processamento na memória computacional requerida e os problemas de convergência para a solução final de uma rede hidráulica.

Os casos escolhidos neste capítulo correspondem a sistemas hidráulicos a condutos forçados de tamanhos representativos, testados e avaliados. Isto é, iremos comparar seu desempenho e efetividade com relação ao algoritmo do gradiente.

As dificuldades encontradas no método utilizado neste trabalho para resolver um problema hidráulico eficiente podem ser definidas em três grupos:

 Escolha e implementação do método para determinação dos circuitos (*loops*) na rede hidráulica;

- Formulação do sistema de equações que governam o escoamento de fluidos numa instalação hidráulica. Sob as hipóteses do modelo em regime permanente estas equações podem ser expressas através das equações de conservação de massa, equação (2.1), e conservação de carga, equação (2.2);
- Escolha do método para resolver o sistema de equações encontrado.

A sugestão para o diagrama de fluxo de dados é mostrado no fluxograma da Figura 3.1.

Figura 3.1 Diagrama de fluxo de dados para o método proposto neste trabalho.

A proposta neste trabalho para a construção de um modelo hidráulico efetivo e eficiente inclui a implementação de procedimentos necessários como mostra o fluxograma da Figura 3.2.

Figura 3.2 Procedimentos necessários para a construção de um modelo hidráulico utilizando o MTLM.

3.1 Algoritmos utilizados para seleção automática de circuitos

Primeiro, as equações são escritas para os nós e os tubos. Estas equações são normalmente do tipo não linear devido à perda de carga que depende da vazão elevada ao quadrado. No caso do MTLM é imprescindível dispor de um algoritmo de seleção automática de circuitos para montar as equações de conservação de carga. O método utilizado neste trabalho é baseado numa implementação clássica do algoritmo genérico de busca, no qual o conjunto de vértices é administrado como uma fila (*queue*) e cada iteração escolhe o vértice que foi marcado há mais tempo. O resultado desse algoritmo é conhecido como busca em largura (*breadth first search* = BFS).

3.2 Conceitos básicos sobre grafos

Sistemas hidráulicos podem ser convenientemente descritos por meio de um diagrama que estuda a relação entre os vértices (nós), arestas (tubulações) e uma função de incidência (Equação 3.1). Antes de apresentarmos o problema propriamente dito, faz-se necessário resgatar alguns conceitos da Teoria dos Grafos baseados nos trabalhos escritos por (BONDY J.A. E

MURTY U.S.R., 2002; ROSSETI, 2003; NASCIMENTO, 2007). Seguem algumas definições importantes:

$$G = (V(G), E(G), \psi_G)$$
(3.1)

Onde:

G = é um grafo definido como sendo um conjunto não vazio de tripla ordenada composto de subconjuntos de vértices V(G), arestas E(G) e uma função de incidência ψ_G que associa para cada aresta do grafo um par não ordenado de vértices de G (necessariamente distintos para o caso do problema hidráulico).

A seguir o exemplo ilustrado na Figura 3.3, serve para elucidar a definição de grafos.

Figura 3.3 Exemplo – Esquema topológico.

De acordo com a definição, consideramos no caso de uma rede hidráulica:

- Um grafo não pode ter duas arestas diferentes com o mesmo par de pontas (ou seja, não pode ter arestas paralelas).
- Também não pode ter uma aresta com pontas coincidentes (ou seja, não pode ter "laços").

 Por definição o grafo utilizado em sistemas hidráulicos é do tipo simples (por não ter laços nem arestas paralelas).

Muitas vezes e por conveniência adotamos no modelo desenvolvido neste trabalho um nome (G) para o grafo como um todo.

O grafo característico de um sistema hidráulico pode ser definido pela matriz de adjacência que representa um grafo não direcionado, simples e sem pesos nas arestas. Para isso, basta que as entradas a_{ij} da matriz de adjacência contenham 1 se os vértices *u* e *v* são adjacentes e 0 caso contrário.

Na Tabela 3.1 é apresentada uma forma de inicializar dados em computador de forma organizada (construtor de objetos). Ele contêm elementos que definem a estrutura (atributos) e métodos de inicialização, que seriam o início da implementação proposta neste trabalho para o código do programa num sistema hidráulico estruturado em grafos.

Criação das matrizes Adjacência e	Implementação C++
Incidência	
1: Para construir uma matriz de adjacência da classe grafo é informado o tamanho do objeto	Graph::Graph(int size) { int i, j; if (size (2) n = 2;
(nós), criando-se assim uma matriz A que vai armazenar dados de uma ordem (nxn),	in (size < 2) in = 2, else n = size; A = new int*[n]; for (i = 0; i < n; ++i)
inicializando seus dados com valores iguais a zero.	A[i] = new int[n]; for (i = 0; i < n; ++i) for (i = 0; i < n; ++i)
2: Para construir uma matriz de incidência da	A[i][j] = 0;
classe grafo são informados os dados (nós e tubos)	Graph::Graph(const int nodes,const int pipes){ int i, j;
criando-se assim uma matriz I que vai armazenar	I = new int*[nodes];
dados de uma ordem (nxt), inicializando seus dados com valores iguais a zero.	<pre>for (i = 0; i <= nodes; i++) { I[i] = new int[pipes]; for (j = 0; j <=pipes; j++) I[i][j] = 0;}</pre>

Tabela 3.1 construtor de grafos.

Na Tabela 3.2, temos um exemplo de um sistema hidráulico e sua representação em forma de grafos com três circuitos "loops", seis vértices (nós) e oito arestas (tubos). A matriz de adjacência é útil na seleção de circuito automático. Cada elemento, a_{ij}, dessa matriz é igual a 1 se o vértice i está ligado ao vértice j e 0 em caso contrário. A matriz de incidência como outra das formas de representar um grafo é útil na construção da matriz Jacobiana, A_{ij} cada elemento desta matriz é 1 se o vértice i está ligado à extremidade de j e 0 em caso contrário. O pseudocódigo para o algoritmo de seleção automática do circuito é dado na Tabela 3.3. O algoritmo aplicado num sistema hidráulico apresentado na Figura 3.3 apresenta três circuitos que são fornecidos na Tabela 3.5.

V = {1, 2, 3, 4,5,6}											
Grafo G(V,A)	A={{2,1},{	6,2}	,{3,1	1},{	[4,2	},{5	5,2}	,{5,6	5},{4,	3},{5,4	}}
	1	2	3		4	5		6	7	8	
	/ 1	0	1		0	0		0	0	0 \	
Matriz de incidência	(-1)	1	0		1	1		0	0	0	
Mauriz de merdenera	0	0	-1		0	0		0	1	0	
		0	0	-	-1	0		0	-1	0	
		0	0		0		L	-1 1	0	-1/1	
	× 0	-1	0		0	0		T	0	1 ′	
	$\begin{pmatrix} 1 \\ \cdot \\$		se a	ı va	zão	no	tub	o ch	iega a	o nó j	
	$A_{12} = \begin{cases} 0 \\ 0 \end{cases}$	5	se o	tub	o i i	não	est	a co	necta	do ao i	1Ó j
	(-1		se a	vaz	zão	no t	ubo) i sa	ai do r	1Ó Ĵ	
			1	2	3	4	5	6			
			/0	1	1	0	0	0\			
			1	0	0	1	0	1			
Matriz de adiacência			1	0	0	1	0	0			
			0	1	1	0	1	0			
			$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	1	0	1	0	1	/		
			<u>\</u> 0	1	0	0	1	0/			
	$\int 1$	S	se exi	iste	con	exã	o en	tre o	o nó i e	e o nó j	
	$n_d = 0$	se	não e	exis	te c	onex	ĸão	entr	e o nó	i e o no	δj

Tabela 3.2 Exemplo- Representação de um sistema hidráulico de agua em estruturas chamadas grafos G(V,A).

O algoritmo utilizando a busca em largura *breadth first search* (BFS) permite-nos converter sistemas hidráulicos de água em estruturas chamadas grafos G(V,A) (KAILASH, 2007). De acordo com SOUZA, R. S. e CHAUDHRY, F. H. (2001) o critério ótimo para a seleção automática de circuitos de uma rede são aqueles que são compostos por um número mínimo de circuitos resolvendo o problema do caminho mais curto de origem única. Resultando num sistema de equações com esparsidade máxima por causa da dependência da natureza local e de conectividade, ou seja, da dependência da geometria da rede.

Tabela 3.3 Código do algoritmo para seleção automática de circuitos (loops) para redeshidráulicas.

Algoritmo seleção de circuitos	Implementação C++					
1: Inicializa eliminando os nós com grau	g.eliminaG1();					
	g.Calc_grau();					
menor a 2	for(int it=0;it <nn;it++){< td=""></nn;it++){<>					
	Index2 = 0;					
	if $(g.Grau[it] == 1)$ {					
2: Calcula o grau para cada nó	Index2 = 1;					
	break;} }					
	} while (Index $2 == 1$);					
3: Define um nó de grau 2 como nó chave.	Index3=0;					
	for(int it=0;it <nn;it++){< td=""></nn;it++){<>					
	if $(g.Grau[it] == 2)$ {					
1: Os dois nós conectados por tubos ao nó	Index3=1;					
4. Os dors nos concetados por tubos ao no	nloops = nloops + 1;					
chave são então conhecidos (ou seja, origem e	posloop = 1;					
	loops.setVal(nloops,posloop,it+1);					
destino).	N11 = 0; $N22 = 0;$					
	for(int it1=0;it1 <g.n;it1++){< td=""></g.n;it1++){<>					
	if $((g.A[it][it1] == 1)\&\&(N11 == 0))$ {					
5: A seguir se determina o caminho mais curto	N11 = it1;					
antre N11 (arizona) a N22(destina) utilizanda	g.deleteEdge(it,N11);					
entre NTT (origent) e N22(destino) utilizando	g.deleteEdge(N11,it);					
o algoritmo BFS.	posloop = 2;					
6	loops.setVal(nloops,posloop,N11+1);					
	}					
	if $((g.A[it][it1] == 1) \&\& (N11 != 0))$ {					
	N22 = it1;					
	g.deleteEdge(it,N22);					
	g.deleteEdge(N22,it); break;} }					
	break; } }					

3.3 Determinação do caminho mais curto

Para solucionar o problema do caminho mais curto em grafos para redes hidráulicas os algoritmos testados e implementados neste trabalho respectivamente foram dois:

Inicialmente foi utilizado o Algoritmo de Dijkstra como algoritmo de seleção de circuitos, que apresenta as principais características:

- Soluciona o problema do caminho mais curto para um grafo G(V, A). Faz a seleção dos circuitos, porém o tempo computacional empregado mostrou-se superior quando comparado ao algoritmo BFS. Isto pode ser explicado pelo fato deste algoritmo construir os melhores caminhos dos vértices alcançáveis pelo vértice raíz, determinando todos os melhores caminhos intermediários.
- Tornando-lhe mais desfavorável para o caso de seleção de circuitos "loops" em redes hidráulicas.

Em busca de um procedimento mais eficiente para a seleção de circuitos, a seguir foi implementado o Algoritmo BFS, utilizado para realizar uma busca num grafo e estrutura do tipo árvore (os dados estão dispostos de forma hierárquica). Ou seja, para o caso do problema hidráulico, no entanto, interessa apenas o inter-relacionamento dos vértices e não se definem funções, ou se pode considerar que elas são constantes. Diz-se então que o grafo é um grafo ponderado (suas arestas possuem valores iguais a 1).

A seguir, apresentamos algumas das principais vantagens de se usar o BFS:

• O algoritmo realiza uma busca num grafo G passando por todas as arestas e vértices que pertencem ao grafo G. A partir do vértice raíz são explorados todos os vértices vizinhos. Então, para cada um desses vértices mais próximos, exploramos os seus vértices vizinhos inexplorados e assim por diante, até encontrar o alvo da busca.

• O algoritmo garante que nenhum vértice ou aresta será visitado mais de uma vez e, para isso, utiliza uma estrutura de dados fila para garantir a ordem de chegada dos vértices. Segundo BONDY J.A. e MURTY U.S.R. (2002) este algoritmo é recomendado como o procedimento ótimo para problemas que envolvem grafos ponderados que seria o caso do problema hidráulico e mostrando-se como o mais eficiente para seleção dos circuitos. Por conseguinte, este foi o algoritmo escolhido para seleção automática de circuitos neste trabalho.

• As visitas aos vértices são realizadas através da ordem de chegada na estrutura fila e um vértice que já foi marcado não pode retornar a esta estrutura.

No entanto, durante o uso do algoritmo BFS, pôde-se verificar uma desvantagem para situações de redes de grande porte, ou seja, possuindo grande número de elementos (tubulações). Nestes casos observou-se um maior tempo de processamento durante a criação da matriz incidência e adjacência respectivamente, conforme poderá ser visto no capítulo 5 Estudos de caso.

Após análises das vantagens e desvantagens apresentadas, o algoritmo BFS foi escolhido para ser utilizado nesta pesquisa, mostrando-se mais eficiente no momento de selecionar circuitos numa rede hidráulica, quando comparado com o algoritmo Dijkstra, que por ser um algoritmo cíclico, que demanda maior tempo de processamento. A Tabela 3.4 apresenta uma descrição deste algoritmo e a Tabela 3.5 apresenta um exemplo da sua aplicação.

Tabela 3.4 Código do algoritmo do caminho mais curto para redes hidráulicas utilizando BFS.

Algoritmo do caminho mais curto BFS	Implementação C++
	void Graph::minPath(int start, int target)
1: iniciam-se os valores: (<i>start . target</i>)	{
	Queue Q;
	Int I, p, q;
2: temos que usar o conjunto Q, cujos vértices ainda não	struct aux { int current prev: }
contém o custo do menor caminho [v] (vetor de custos	aux $*X = \text{new aux}[n+1];$
do start stá sodo y)	int $*Y = new int[n+1];$
de siuri ale cada v).	<pre>bool *visited = new bool[n+1];</pre>
	for $(i = 1; i \le n; ++i)$
3: O primeiro nó (<i>start</i>), passa a ser escolhido para ser o	visited[1] = false; O add(ctort);
nó inicial do algoritmo. Na solução atual é feita uma	Q.aud(start);
no micial do algoritmo. Na solução atual e feita uma	found = false
busca pela sua vizinhança considerando-se o custo das	p = q = 0;
possíveis conexões, dentre as quais será escolhida a	X[0].current = start;
melhor delas que no caso do problema da árvore	X[0].prev = 0;
	while (!Q.isEmpty() && !found) {
geradora mínima é a conexão de menor custo. A	Int $k = Q$.get(); for $(i = 1, i, j \in \mathbb{R})$ by the found $(i = 1, i)$
conexão escolhida e o nó que está ligado a ela passarão a	if (isConnected(k, i) && !visited[i]) {
fazer parte da nova solução atual, que agora vai conter o	Q.add(i);
nó inicial, a conexão e o nó escolhido.	++q;
	X[q].current = 1;
	A[q].prev = p; visited[i] = true:
4: Com a nova configuração, é feita uma nova busca	if $(i == target)$ found = true: }
dentre as vizinhanças nas possíveis arestas que poderão	++p;}
ligar os nós que fazem parte da solução atual aos nós	$\mathbf{p} = 0;$
ligar os nos que lazem parte da solução atuar aos nos	while (q) {
vizinhos que ainda não fazem parte da solução.	Y[p] = X[q].current;
	q = X[q].prev;
5: Novamente é identificado o nó de menor custo e este	Y[n] = X[0] current:
	for $(q = 0; q \le p/2; ++q)$ {
nó, juntamente com sua respectiva aresta farão parte da	int temp = $Y[q];$
nova configuração.	Y[q] = Y[p-q];
	$Y[p-q] = temp; \}$
	nnosloop=p;
b: O processo de pesquisa de vizinhança e adição de	noloop = new int $[p+1];$ for (int i = 0; i < p; i +)
tubulações (arestas) e nós se repetirá até que todos os	rot(mt J = 0, J = p, J++) noloon[i] = 0:
nós do grafo facam parte da solução.	for $(a = 0; a \le p; ++a)$
	noloop[q]=Y[q];}
Tabela 3.5 Exemplo- Representação de circuitos obtidos com BFS

3.4 Formulação do método da Teoria Linear Modificado neste trabalho (MTLM)

O método da teoria linear modificado é utilizado neste trabalho como uma proposta eficiente para avaliar sistemas hidráulicos com o objetivo de obter-se um ganho no tempo de resolução e no número de iterações para a solução do problema hidráulico. A linearização é obtida com base nos dois primeiros termos da expansão da serie de Taylor, para funções com mais de uma variável. A seguir é apresentada a implementação do algoritmo MTLM neste trabalho, tendo uma estrutura baseada nas formulações propostas por WOOD e RAYES (1981) que foi vista no subitem 2.5 da Revisão Bibliográfica:

$$F(x^{i+1}) = F(x^{i}) + J(x^{i})(x^{i+1} - x^{i})$$
(3.4)

No qual J é a matriz Jacobiana associada às funções F. Considerando $F(x^{i+1})$ como nulas então é possível se obter um sistema linear da forma Ax=B.

$$J(x^{i})x^{i+1} = J(x^{i})x^{i} - F(x^{i})$$
(3.5)

No qual temos que a matriz A e o vetor solução B são respetivamente:

$$A = J(x^{i})$$
(3.6)

$$\mathsf{B} = \mathsf{J}(\mathsf{x}^{i})\mathsf{x}^{i} - \mathsf{F}(\mathsf{x}^{i}) \tag{3.7}$$

Sendo calculados a partir de valores obtidos em iterações anteriores (vetor x^i).

3.4.1 Aplicação do método MTLM

Apresentamos a linearização realizada no presente trabalho mediante o uso do método MTLM para a rede cuja topologia é apresentada na Tabela 3.6 contendo dois circuitos e utilizando a formulação por elementos em termos de vazão para cada elemento.

Sistema Real	Estim	ativas Iniciais
100 m	Tubo	Q (m ³ /s)
	1	0,45
	2	0,40
	3	0,05
2 $\frac{1}{\sqrt{3}}$ $\frac{3}{4}$	4	0,10
X 2X	5	0,10
$3 \xrightarrow{5} 4$		

Tabela 3.6 Rede de exemplo

As equações de conservação de massa nos nós, considerando que o nó 1 apresenta carga fixa:

nó 2: $F_1 = Q_1 + Q_3 + Q_4$ (3.8)

nó 3:
$$F_2 = Q_2 + Q_3 + Q_5$$
 (3.9)

nó 4: $F_3 = Q_4 + Q_5$ (3.10)

As equações de conservação de carga para os circuitos são as seguintes:

circuito 1:
$$F_4 = R_1 |Q_1| Q_1 + R_2 |Q_2| Q_2 + R_3 |Q_3| Q_3$$
 (3.11)

circuito 2:
$$F_5 = R_3 |Q_3| Q_3 + R_4 |Q_4| Q_4 + R_5 |Q_5| Q_5$$
 (3.12)

A matriz Jacobiana será composta por:

	Γ^{dF_1}	dF ₁	dF ₁	dF ₁	dF ₁ 7
	dQ1	dQ ₂	dQ ₃	dQ_4	dQ ₅
	dF ₂				
	dQ ₁	dQ ₂	dQ ₃	dQ ₄	dQ ₅
т	dF ₃				
J =	dQ1	dQ ₂	dQ ₃	dQ ₄	dQ ₅
	dF ₄	dF4	dF ₄	dF ₄	dF ₄
	dQ_1	dQ ₂	dQ ₃	dQ ₄	dQ ₅
	dF ₅				
	dQ_1	dQ ₂	dQ ₃	dQ ₄	dQ5

Finalmente o sistema linear (Ax = B) a ser resolvido para a iteração (i+1), será expresso por:

$$\mathbf{A} = [\mathbf{J}]^{\mathbf{i}} \tag{3.14}$$

$$B = [J]^{i}[Q]^{i} - [F]^{i}$$
(3.15)

$$\mathbf{x} = [\mathbf{Q}]^{\mathbf{i}+1} \tag{3.16}$$

A partir disso, pode-se utilizar um ou mais métodos numéricos adequados para a resolução do sistema. Todo o processo de cálculo sistematizado do MTLM pode ser sintetizado no fluxograma da Figura 3.4. A proposta deste trabalho é avaliar a eficiência deste método em comparação com o algoritmo do gradiente. Para fazer estas comparações foram implementados dois programas de computador. O primeiro utilizando o MTLM conforme descrito acima e o segundo utilizando o algoritmo do gradiente descrito no item 2.4 da Revisão Bibliográfica, implementado com base no fluxograma da Figura 3.5.

Figura 3.4 – Fluxograma do modelo desenvolvido neste trabalho para análise de regime permanente utilizando o MTLM

Figura 3.5 – Fluxograma do modelo para análise de regime permanente utilizando o Algoritmo do Gradiente

Finalmente, os dois métodos apresentados nas Figuras 3.4 e 3.5 devem apresentar os mesmos resultados finais de cargas para os nós (H_{k+1}) e vazões para os tubos (Q_{k+1}) e, assim, será possível avaliar a eficiência da proposta neste trabalho na obtenção da convergência final e no custo computacional (tempo).

3.5 Critério de convergência utilizado neste trabalho

Dentre as várias possibilidades para avaliação da convergência da solução dos métodos numéricos em problemas de hidráulica, é utilizado neste trabalho um critério baseado nas vazões que ocorrem nas tubulações entre duas iterações sucessivas (δk). Este critério estabelece que a convergência foi obtida, quando a soma das variações relativas das vazões entre estas iterações for menor que a tolerância.

$$\delta \mathbf{k} = \sum_{i=1}^{nt} \frac{|\mathbf{Q}_{k+1} - \mathbf{Q}_k|}{\sum_{i=1}^{nt} |\mathbf{Q}_{k+1}|} \le \text{tolerância}$$
(3.17)

Onde Q_{k+1} é a vazão resultante obtida no tubo i para a iteração atual, Q_k é vazão no tubo i obtida na iteração anterior e nt é número de tubos na instalação. A tolerância admitida neste trabalho é 0.1%. Este é o mesmo critério de convergência utilizado pelo EPANET.

3.6 Testes preliminares realizados para resolver sistemas lineares

Foram feitos testes com o objetivo de selecionar o método de resolução dos sistemas lineares a ser utilizado no restante do trabalho. Foram avaliados 8 métodos de resolução de sistemas implementados no ambiente PZ, que é um código aberto livre orientado a objetos descrito em DEVLOO (1997).

A estrutura do PZ apresenta o módulo matricial e implementa diversos formatos de armazenamento de matrizes. As classes matriciais tem como característica a implementação de transformações lineares. Nesse módulo também são definidas classes que determinam o processo de solução de um sistema linear (método direto ou iterativo, com ou sem pré-condicionamento). As classes para "solvers" são baseadas na classe TPZSolver, que pode ser subdividida em dois tipos básicos: diretos e iterativos (SOUZA e CHAUDHRY, 2000; BITENCOURT e FEIJOO, 1997). A seguir, eles são classificados.

Métodos Diretos: Decomposição (LU), Fatoração (LDLT), - Fatoração Cholesky.

Métodos Iterativos: CG com pré-condicionamento Jacobi, Gradiente Conjugado (CG), Gauss-Seidel variante (SOR), Sobre-Relaxação Simétrico (SSOR), Resíduo mínimo generalizado (GMRES), Gradiente biconjugado (BICG).

Métodos diretos calculam a solução de um problema em um número finito de passos. Em contraste aos métodos diretos, métodos iterativos não terminam em um determinado número de passos. Atribuído um valor inicial, métodos iterativos realizam sucessivas aproximações que convergem para a solução exata em seu limite. Um teste de convergência é especificado para decidir quando uma solução suficientemente precisa foi encontrada. Mesmo usando uma precisão infinita, estes métodos (geralmente) não chegariam à solução em um número finito de passos (GILAT, 2008).

Para avaliar os métodos, eles foram utilizados na resolução de sistemas lineares em matrizes com características simétricas e positivo definidas. A Figura 3.6: (A): mostra uma comparação envolvendo somente os resultados dos métodos iterativos. Nota-se que o desempenho dos métodos é semelhante, com exceção do SSOR, que chega a ser cinco vezes mais lento que os outros. O desempenho semelhante dos outros métodos pode ser explicado pelo fato de que todos são variações do método do gradiente conjugado, a Figura 3.6: (B) exemplifica os resultados obtidos nos diversos testes feitos. São indicados os tempos computacionais em milisegundos obtidos na resolução de sistemas de equações de ordem 500. Nota-se, no teste, que os métodos diretos tiveram um desempenho muito inferior ao dos métodos iterativos, chegando a ser mais de duas ordens de magnitude mais lentos que os métodos iterativos.

A partir dos resultados obtidos para sistemas lineares definidas como sendo do tipo simétrico e positivo, podemos concluir que qualquer comparação de desempenho depende da eficiência da implementação da biblioteca. Caso seja utilizada outra biblioteca podem-se esperar resultados diferentes. O *software* EPANET utiliza o método de Cholesky para resolver os sistemas lineares, que foi um dos métodos com pior desempenho.

Deve-se levar em conta, entretanto, que os sistemas de equações, no caso de redes de tubulações são esparsos, isto é, contém uma grande quantidade de elementos nulos. De acordo com ROSSMAN (2000), o método de Cholesky implementado no EPANET aproveita a presença de elementos nulos para diminuir muito o número de iterações realizadas.

Este tipo de otimização não está disponível na biblioteca utilizada nestes testes iniciais. Portanto acredita-se que o desempenho do método CG tenha um desempenho superior ao método implementado no EPANET, mas isto irá depender de uma implementação eficiente do método.

Figura 3.6 Comparação de métodos numéricos para resolução de sistemas lineares

Na Figura 3.6, o método CG e BICG se mostraram melhor em relação à eficiência. No entanto, estes métodos são conhecidos por se comportar melhor para soluções de sistemas de equações simétricas e positivo definidas, não se aplicando para os tipos de sistemas obtidos a partir do uso do MTLM. Por tanto, neste trabalho foi utilizada a biblioteca KLU para resolução de sistemas lineares.

3.7 Sistemas de equações lineares esparsas

No caso de redes de tubulações temos sistemas esparsos nos quais a maioria das posições é preenchida por zeros. Para resolver sistemas esparsos economizamos um espaço significativo de memória somente se os termos diferentes de zero ficarem armazenados.

Uma maneira eficiente de armazenar estruturas com tamanho variável é com o emprego de alocação encadeada, utilizando listas. Normalmente utilizada na literatura essa representação para armazenar as matrizes esparsas.

Da mesma maneira, o mesmo procedimento é usado para armazenar cada linha da matriz. No caso do exemplo que está aqui sendo considerado, os dados dos tubos e as estimativas iniciais de fluxo indicadas na Tabela 3.7 são utilizadas para obtenção da matriz A (Matriz esparsa).

Sistema Real	Matriz obtida utilizando MTLM				
100 m $2 2 4$ $3 5 4$	$= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1,38 \\ 0 \end{bmatrix}$	0 1 0 18,56 0	J 1 1 0 33,57 46,24	1 0 1 0 40,8	0 1 1 0 62,28
0 0	- 0	0	10,21	10,0	02,203

Tabela 3.7 Exemplo - Representação do sistema hidráulico

A representação da matriz J pode ser vista na Figura 3.7. Com essa representação, uma matriz esparsa m x n com t elementos diferentes de zero consumirá (m + n + t) células, que ocupam vários bytes na memória; no entanto, o total de memória usado será menor do que as m x n posições necessárias para representar a matriz toda, desde que t seja suficientemente pequeno.

Figura 3.7 Exemplo – Forma esquemática da matriz J obtida utilizando MTLM (Adaptado de MENOTTI, 2008).

3.8 Definição da rotina para a resolução de sistemas lineares

Para completar o modelo proposto, foi escolhida a biblioteca KLU voltada à computação numérica de alto desempenho como descrito em DAVIS e NATARAJAN (2009). Sendo que para a formulação de circuitos hidráulicos temos que resolver sistemas de equações do tipo não simétricas e esparsas para o caso do MTLM. Este método numérico mostrou-se apropriado para a resolução deste tipo de problema. Aplicam-se permutações com pivô parcial entre colunas da matriz de tal forma a reduzi-la a uma matriz triangular superior, como é descrito em DAVIS e NATARAJAN (2009).

3.9 Descrição de Hardware e Software utilizados

Os dois programas desenvolvidos neste trabalho, baseados no MTLM e no algoritmo do gradiente respectivamente, foram compilados com as mesmas ferramentas de software e

avaliados no mesmo ambiente computacional. Os componentes físicos utilizados neste trabalho foram um computador com processador Intel core (i3) cpu 2.10 GHz utilizando Windows 7 Home Premium, service pack1. Com base no fluxograma apresentado na Figura 3.4, a linguagem de programação utilizada foi C++ na plataforma M S Visual Studio 2010.

Estudos anteriores (HAGER e WELLEIN, 2010), já demonstraram que entre os procedimentos recomendados para medir o tempo de execução de um código em C/C++ válido para sistema operativo Windows é utilizada a rotina (gettimeofday() ou GetSystemTimeAsFileTime()). A implementação é descrita da seguinte forma:

1 #include <sys/time.h>
2 void get_walltime_(double* wcTime) {
3 struct timeval tp;
4 gettimeofday(&tp, NULL);
5 *wcTime = (double)(tp.tv_sec + tp.tv_usec/1000000.0); }
6 void get_walltime(double* wcTime) {
7 get_walltime_(wcTime); }

3.10 Validação e teste do modelo desenvolvido neste trabalho

Nesta etapa, a partir dos testes computacionais feitos com o auxílio do modelo desenvolvido neste trabalho analisa-se a convergência do método da teoria linear modificado e gradiente, para resolver o problema de redes hidráulicas para determinação de carga (H_{k+1}) nos nós e vazão (Q_{k+1}) nos tubos. Para validar a proposta, usamos sistemas de pequenas dimensões apresentados nos exemplos das Figuras 3.8, 3.9 e 3.10.

	TABE	LA 3,8	B - DADOS	DOS T	UBOS
Tubo	NÓ1	NÓ2	f	L (m)	D (m)
1	2	1	0,017089	600	0,30
2	6	2	0,020666	500	0,20
3	3	1	0,017153	400	0,30
4	4	2	0,026375	400	0,20
5	5	2	0,021042	550	0,20
6	5	6	0,024125	400	0,20
7	4	3	0,017894	600	0,30
8	5	4	0,021049	500	0,20

TABELA 3.8.1 - DADOS DO RESERVATÓRIO							
Nó Nível							
Reservatório	constante (m)						
1	100,0						

TABELA 3.8.2 - DADOS DOS NÓS								
NÓ	Cota (m)	Demanda (m ³ /s)						
1	0,00	0,00						
2	0,00	0,05						
3	0,00	0,03						
4	0,00	0,04						
5	0,00	0,02						
6	0,00	0,02						

TABELA 3.8	.3 - Vazões iniciais
Tubo	Vazão (l/s)
1	90,0
2	25,0
3	70,0
4	5,0
5	10,0
6	5,0
7	40,0
8	50,0

Figura 3.9 Rede Hidráulica para o exemplo B (Adaptado de SALGADO et al. (1987)).

TABELA 3.9 - DADOS DOS TUBOS						
Tubo	NÓ1	NÓ2	f	L (m)	D (m)	
1	1	2	0,014464	270	0,450	
2	1	5	0,014903	150	0,375	
3	2	6	0,016736	150	0,225	
4	5	6	0,015033	270	0,375	
5	2	3	0,015007	90	0,375	
6	3	4	0,016744	120	0,225	
7	4	8	0,015600	150	0,375	
8	3	7	0,016777	150	0,225	
9	8	7	0,016204	120	0,450	
10	7	10	0,017334	180	0,225	
11	6	10	0,017172	210	0,225	
12	5	9	0,015515	180	0,375	
13	9	10	0,016970	360	0,225	

TABELA 3.9.3	3 - Vazões iniciais
Tubo	Vazão (l/s)
1	100,0
2	100,0
3	100,0
4	100,0
5	100,0
6	100,0
7	100,0
8	100,0
9	100,0
10	100,0
11	100,0
12	100,0
13	100,0

	TABELA 3.9.1 - DADOS DO RESERVATÓRIO							
	Res	Nó servatór 1	Nível io constante (m) 100,0					
_	т	ABELA 3	.9.2 - DADOS DOS NÓS					
	NÓ							
	NO	Cota (m)	Demanda (m ³ /s)					
	NO	Cota (m) 0,00	Demanda (m ³ /s) 0,000					
	1 2	Cota (m) 0,00 0,00	Demanda (m ³ /s) 0,000 0,000					
	1 2 3	Cota (m) 0,00 0,00 0,00	Demanda (m ³ /s) 0,000 0,000 0,185					
	1 2 3 4	Cota (m) 0,00 0,00 0,00 0,00	Demanda (m ³ /s) 0,000 0,000 0,185 0,000					
	1 2 3 4 5	Cota (m) 0,00 0,00 0,00 0,00 0,00	Demanda (m ³ /s) 0,000 0,000 0,185 0,000 0,000					
	1 2 3 4 5 6	Cota (m) 0,00 0,00 0,00 0,00 0,00 0,00	Demanda (m ³ /s) 0,000 0,000 0,185 0,000 0,000 0,740					
	1 2 3 4 5 6 7	Cota (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00	Demanda (m ³ /s) 0,000 0,000 0,185 0,000 0,000 0,740 0,000					
	1 2 3 4 5 6 7 8	Cota (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00	Demanda (m ³ /s) 0,000 0,000 0,185 0,000 0,000 0,740 0,000 0,370					
	1 2 3 4 5 6 7 8 9	Cota (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Demanda (m ³ /s) 0,000 0,000 0,185 0,000 0,000 0,740 0,000 0,370 0,111					

Figura 3.10 Rede Hidráulica para o exemplo C (Adaptado de WOOD e CHARLES (1972)).

TABEL	A 3.1	0 - DA	DOS DOS	TUBOS		TA	BELA 3.10).2 - Vazões iniciais
Tubo	NÓ1	NÓ2	f	L (m)	D (m)		Tubo	Vazão (l/s)
1	1	2	0,0176	457,2	0,305		1	100,0
2	2	3	0,0185	304,8	0,203		2 3	100,0
3	3	4	0,0203	365,8	0,203		5	100,0
4	4	5	0,0219	609,6	0,203		7 8	100,0
5	6	5	0,0226	853,4	0,203		9 10	100,0 100,0
6	7	6	0,0209	335,3	0,203		11 12	100,0 100,0
7	8	7	0,0205	304,8	0,203		13 14	100,0 100,0
8	9	8	0,0219	762,0	0,203		15 16	100,0 100,0
9	1	9	0,0182	243,8	0,203		17	100,0
10	9	10	0,0400	396,2	0,152		19	100,0
11	10	11	0,0212	304,8	0,152			
12	11	12	0,0227	335,3	0,254		TABELA 3.	.10.3 - DADOS DOS NÓS
13	12	5	0,0207	304,8	0,254	NÓ	Cota	Demanda
14	10	8	0,0235	548,6	0,152		(m)	(m ³ /s)
15	2	10	0,0204	335,3	0,152	1	0,00	0,0000 0,0000
16	11	7	0,0274	548 , 6	0,152	3 4	0,00 0,00	0,0000 0,0315
17	3	11	0,0195	365,9	0,254	5 6	0,00 0,00	-0,0345 0,0252
18	12	6	0,0246	548,6	0,152	7 8	0,00 0,00	0,0000 0,0000
19	4	12	0,0240	396,2	0,152	9 10	0,00	0,0379 0,0000 0,0443
						• 12	0,00	0,0442

Varias topologias de sistemas hidráulicos foram analisadas para o modelo proposto, sendo apresentadas as simulações que foram realizadas para avaliar a confiabilidade dos algoritmos implementados neste trabalho. Em todas as simulações foram comparados os resultados obtidos pelo MTLM, Gradiente e epanet apresentando os mesmos resultados, validando a confiabilidade da metodologia proposta no trabalho.

Os resultados das cargas nos nós e vazões nas tubulações obtidos através das simulações nos exemplos A, B e C, são obtidos com a condição de convergência dada pela equação 3.17, com uma tolerância menor de 0.1%.

Tubo	Carga Montante(m)	Carga Jusante(m)	Vazão (L/s)
1	97,71	100,00	-81,04
2	97,15	97,71	-14,48
3	98,55	100,00	-78 <i>,</i> 96
4	97,67	97,71	-3,83
5	97,22	97,71	-12,72
6	97,22	97,15	5,52
7	97,67	98,55	-48,96
8	97,22	97,67	-12,79

Tabela 3.10.4 - Resultados do cálculo hidráulico para o Exemplo A

Tabela 3.10.5 – Resultados do cálculo hidráulico para o Exemplo B

	Carga	Carga	
Tubo	Montante(m)	Jusante(m)	Vazão (L/s)
1	100,00	85,87	898,50
2	100,00	80,80	877,50
3	85,87	63,98	246,57
4	80,80	63,98	609,60
5	85,87	79,46	651,93
6	79,46	62,59	242,00
7	62,59	61,06	242,00
8	79,46	61,20	224,00
9	61,06	61,20	128,00
10	61,20	57,00	96,93
11	63,98	57,00	116,17
12	80,80	78,57	267,90
13	78,57	57,00	156,90

	Carga	Carga	
Tubo	Montante(m)	Jusante(m)	Vazão(L/s)
1	100,00	99,21	55 <i>,</i> 95
2	99,21	97,00	40,31
3	97,00	96,51	16,63
4	96,51	96,84	10,22
5	96,51	96,84	8,580
6	96,78	96,51	12,68
7	97,12	96,78	15,07
8	97,50	97,12	9,75
9	100,00	97,50	48,35
10	97,50	97,49	0,70
11	97,49	96,69	11,02
12	96,69	96,72	7,11
13	96,72	96,84	15,69
14	97,49	97,12	5,32
15	99,21	97,49	15,64
16	96,69	96,51	2,39
17	97,00	96,69	23,69
18	96,72	96,51	3,94
19	96,51	96,72	4,65

Tabela 3.10.6 – Resultados do cálculo hidráulico para o Exemplo C

Os resultados obtidos nas Tabelas 3.10.4, 3.10.5 e 3.10.6 para as simulações dos exemplos A, B, C foram também verificados utilizando o *software* EPANET. A avaliação da eficiência (medida do tempo de resolução e do tempo de montagem dos sistemas de equações) do modelo proposto será realizada no capítulo 4 Estudos de Caso.

Testes Preliminares Gradiente

Exemplos: A - B - C

Figura 3.11 Tempos de montagem das equações nos exemplos A, B, C utilizando o método do gradiente na formulação por matrizes.

Com o objetivo de obter um parâmetro comparativo em relação ao tempo de processamento foi realizada uma implementação do algoritmo de gradiente baseado na formulação original (por matrizes) conforme apresentado no subitem 2.4.1. No entanto, observou-se que tal procedimento não obteve resultados eficientes (tempo e memoria computacional) para o presente trabalho quando obtidos os tempos de montagem das equações para os exemplos A, B, C, conforme apresentada na Figura 3.11. Desta forma, adotou-se uma nova implementação baseada na formulação proposta no manual do EPANET, conforme foi apresentado no subitem 2.4.2. Este resultado demonstra como os tempos computacionais dependem muito de uma implementação eficiente das rotinas de cálculo. Neste trabalho otimizou-se os programas até que, tanto no método do gradiente como no MTLM, os tempos de cálculo dos coeficientes e da montagem das matrizes fossem uma pequena fração dos tempos de resolução dos sistemas de equações. Estes tempos de montagem das matrizes foram da ordem de 10% do tempo de resolução dos sistemas de equações tanto no método gradiente como no MTLM (ver Capítulo 4). Desta forma, o desempenho de ambos os métodos foi influenciado quase que exclusivamente pelos tempos de resolução dos sistemas de equações lineares ou seja o desempenho independe da implementação das outras etapas de cálculo.

4 ESTUDO DE CASOS

Interessante para ilustrar o potencial do modelo desenvolvido nesse trabalho, são apresentados cinco estudos de caso que envolvem topologias de diferentes sistemas hidráulicos. Em todas as simulações foram comparadas os resultados obtidos pelo método da teoria linear modificado (MTLM) com os obtidos pelo método que utiliza o algoritmo do gradiente em relação à eficiência de processamento e custo computacional (tempo). Para todos os casos foi considerada uma estimativa inicial de vazão igual a 0,1 m³/s.

Inicialmente, foi desenvolvido o estudo de duas redes de pequena complexidade (casos 01 e 02) para verificar o desempenho do modelo proposto nessas situações. Na sequência, realizaram-se testes comparativos em redes de grande complexidade (casos 03, 04 e 05) ainda mostrando o comportamento e a eficiência dos métodos implementados. Por fim, analisaram-se esses resultados com a técnica de linearização aplicada a funções exponenciais e logarítmicas, através de escalas dilog. Os estudos de casos encontram-se na seguinte sequência: 4.1 Estudo de caso 01 – rede hidráulica composta por 23 nós e 38 tubos; 4.2 Estudo de caso 02 – rede hidráulica composta por 127 nós e 259 tubos; 4.4 Estudo de caso 04 – rede hidráulica composta por 340 nós e 636 tubos; 4.5 Estudo de caso 05 – rede hidráulica composta por 544 nós e 1038 tubos.

4.1 Estudo de caso 01

O primeiro caso estudado foi uma rede malhada hipotética com 23 nós e 38 tubos, com diâmetros e comprimentos diferentes e submetida a demandas de consumo fixo conforme apresentado no Apêndice A. A topologia da rede hidráulica é mostrada na Figura 4.1.

Figura 4.1 Rede Hidráulica para o caso 01

A Figura 4.2 ilustra o comportamento do parâmetro de convergência (δk) quando comparado à tolerância estabelecida para solução do problema nas iterações. Este comportamento é obtido tanto para o MTLM e o gradiente.

Figura 4.2 Variação de **δk** para o caso 01

Observando os resultados obtidos com os dois métodos verificou-se, com surpresa, que as vazões calculadas após cada iteração são as mesmas. Este resultado não está relatado na literatura consultada. Atribuímos este fato a ambos utilizarem uma expansão em série de Taylor para linearizar o termo da perda de carga. Como consequência acredita-se que os dois métodos estão resolvendo as mesmas equações linearizadas arranjadas de forma diferente. Como

utilizamos o mesmo parâmetro de convergência (δk) com os dois métodos conforme foi definido na Equação 3.17, consequentemente, além das vazões serem iguais, o número de iterações é exatamente o mesmo nos dois métodos, o que já havia sido observado por Todini (2006).

Como as vazões obtidas são as mesmas durante o processo iterativo com os dois métodos, apresentamos aqui uma série de resultados validos para os dois métodos estudados neste trabalho.

A Figura 4.3 apresenta o comportamento das vazões obtidas nos tubos 1, 5 e 15 pelos dois métodos para cada iteração, respectivamente, casos (A), (B) e (C).

Vazão x Iteração

(continua)

Figura 4.3 Variação de Vazão nos Tubos: (A) 1, (B) 5, (C) 15 para o caso 01.

(continuação)

Figura 4.3 Variação de Vazão nos Tubos: (A) 1, (B) 5, (C) 15 para o caso 01.

4.2 Estudo de caso 02

O segundo caso estudado foi uma rede hidráulica hipotética com 40 nós e 73 tubos de diâmetros e comprimentos diferentes e demandas de consumo fixo, conforme apresentado no apêndice A. A topologia da rede hidráulica é mostrada na Figura 4.4.

Figura 4.4 Rede Hidráulica para o caso 02

A Figura 4.5 ilustra o comportamento do parâmetro de convergência, δk, quando comparado à tolerância estabelecida para solução do problema nas iterações.

Figura 4.5 Variação de 8k para o caso 02

A Figura 4.6 apresenta o comportamento das vazões obtidas nos tubos 1, 5 e 15 pelos dos métodos para cada iteração, respectivamente, casos (A), (B) e (C).

Vazão x Iteração

(continua)

Figura 4.6 Variação de Vazão nos Tubos: (A) 1, (B) 5, (C) 15 para o caso 02.

(continuação)

Figura 4.6 Variação de Vazão nos Tubos: (A) 1, (B) 5, (C) 15 para o caso 02.

4.3 Estudo de caso 03

O terceiro caso estudado foi uma rede hidráulica hipotética com 127 nós e 259 tubos. com diâmetros e comprimentos diferentes e demandas de consumo fixo, conforme apresentado no apêndice A. A topologia da rede hidráulica é mostrada na Figura 4.7.

Figura 4.7 Rede Hidráulica para o caso 03

A Figura 4.8 ilustra o comportamento do parâmetro de convergência, δk, quando comparado à tolerância estabelecida para solução do problema nas iterações.

Figura 4.8 Variação de **ok** para o caso 03

A Figura 4.9 apresenta o comportamento das vazões obtidas nos tubos 65, 125 e 250 pelos dos métodos para cada iteração.

Figura 4.9 Variação de Vazão nos Tubos: (A) 65, (B) 125, (C) 250 para o caso 03.

4.4 Estudo de caso 04

O quarto caso estudado foi uma rede hidráulica hipotética com 340 nós e 636 tubos, com diâmetros e comprimentos diferentes e demandas de consumo fixo, conforme apresentado no apêndice A. A topologia da rede hidráulica é mostrada na Figura 4.10.

Figura 4.10 Rede Hidráulica para o caso 04

A Figura 4.11 ilustra o comportamento do parâmetro de convergência, δk, quando comparado à tolerância estabelecida para solução do problema nas iterações.

Figura 4.11 Variação de **δk** para o caso 04

A Figura 4.12 apresenta o comportamento das vazões obtidas nos tubos 100, 350 e 635 (escolhidos de forma aleatória) pelos dos métodos para cada iteração.

Vazão x Iteração

Figura 4.12 Variação de Vazão nos Tubos : 100, 350, 635 para o caso 04.

4.5 Estudo de caso 05

O quinto caso estudado foi uma rede hidráulica hipotética com 544 nós e 1038 tubos. Com diâmetros e comprimentos diferentes e submetida a demandas de consumo fixo conforme apresentado no apêndice A. A topologia da rede hidráulica é mostrada na Figura 4.13.

Figura 4.13 Rede Hidráulica para o caso 05

A Figura 4.14 ilustra o comportamento do parâmetro de convergência, δk, quando comparado à tolerância estabelecida para solução do problema nas iterações.

Figura 4.14 Variação de **δk** para o caso 05

A Figura 4.15 apresenta o comportamento das vazões obtidas nos tubos 70, 150 e 950 pelos dos métodos para cada iteração.

Vazão x Iteração

Figura 4.15 Variação de Vazão nos Tubos: 70, 150, 950 para o caso 05.

Com base nos cinco estudos de casos apresentados, pôde-se notar que os mesmos convergiram em poucas iterações conforme esperado.

Note ainda que a variação do parâmetro de convergência, δk , observada nas Figuras (4.2, 4.5, 4.8, 4.11, 4.14) foi próxima do resultado esperado após a quarta iteração em todos os casos próximo da precisão de tolerância utilizada (0,1%). Isto se deve ao fato de que antes da primeira iteração as vazões não atendem o principio da continuidade. Logo após a primeira iteração o sistema já atinge a continuidade nos nós, de acordo com a formulação dos métodos utilizados. Em geral, para ambos os métodos estudados neste trabalho, quanto melhor a estimativa das vazões iniciais melhor a convergência.

Observou-se também que para uma estimativa inicial de qualquer valor para as vazões, obteve-se o mesmo número de iterações em todos os casos.

4.6 Metodologia utilizada neste trabalho

A partir de testes computacionais feitos com o auxílio do modelo desenvolvido neste trabalho foram analisados o número de iterações, o tempo total e o tempo médio por iteração e comparados aos tempos de processamento empregados em cada modelo para estudar a eficiência na solução de sistemas hidráulicos, foi considerando para os tempos: a seleção de circuitos (no caso do MTLM), para montagem dos sistemas de equações e para o emprego do algoritmo utilizado para solução do sistema linear (KLU). Os resultados mostrados na Tabela 4.1, apresentam os 03 estudos de caso que proporcionaram dados mais significativos. Na tabela também está indicado o número de elementos não nulos no sistema de equações. Observou-se que o número total de elementos para um problema hidráulico qualquer no MTLM gerou uma matriz da ordem igual ao número de tubos (nt), enquanto o método de gradiente gerou uma matriz menor, da ordem igual ao número de nós (nn).

Estudos de Caso	Caso (03	Caso 04		Caso 05	
Nós	149		340		544	
Tubos	259		636		1038	
Método	Gradiente	MTLM	Gradiente	MTLM	Gradiente	MTLM
N° Elementos da matriz	22201	67081	115600	404496	295936	1077444
Nº Elementos não nulos	662,00	960	1607	2458	2615	4054
Nº Iterações	8	8	9	9	8	8
Tempo médio para cada Iteração (ms)	5,00	19,00	38,00	125,00	101,00	353,00
Tempo para						
Seleção de circuitos- BFS (ms)		26,00		253,02		980,06
Tempo para						
Montagem do sistema Ax=B (ms)	2,67	4,67	4,17	16,67	7,00	40,17
Tempo para						
Solução do sistema-klu (ms)	5,00	16,33	27,17	108,67	79,67	285,85
Tempo total para resolução (ms)	39,00	153,01	240,01	1223,07	611,04	3433,20

Tabela 4.1 Resultados dos testes comparativos para os métodos gradiente e MTLM, nos estudos de caso 03, 04 e 05.

A seguir serão apresentadas comparações para os 05 estudos de caso em relação a quantidade de dados não nulos, tempo de montagem do sistema de equações, e tempo de resolução do sistema.

Na Figura 4.16 temos a faixa de variação do percentual de elementos não nulos nos casos 03, 04 e 05. Nota-se que conforme o número de tubos aumenta, o percentual de elementos não nulos diminui. Por isso para redes de grande porte é importante utilizar uma biblioteca que explora a esparsidade do sistema (SOUZA, 1994).

Figura 4.16 Análise de dados não nulos x estudos de caso.

Tabela 4.2 Faixa de variação do percentual de elementos não nulos nos casos 03, 04 e 05.

Metodologia	Gradiente			MTLM		
Estudos de Caso	Caso 03	Caso 04	Caso 05	Caso 03	Caso 04	Caso 05
N° Total de Elementos	22201	115600	295936	67081	404496	1077444
N° Elementos não nulos	662	1607	2615	960	2458	4054
Percentagem de não nulos	2,98%	1,4%	0,9%	1,4%	0,6%	0,4%

Na Tabela 4.2 se observa uma vantagem do algoritmo de gradiente com 0,38% até 1,40% de elementos não nulos, enquanto que o método linear modificado apresenta de 0,9% até 3% de elementos não nulos. O KLU explora esse tipo de estrutura e também armazena e processa apenas os valores significativos (DAVIS e NATARAJAN, 2009).

Estudos de Caso	Caso 03		Caso 04		Caso 05	
Métodos	Gradiente	MTLM	Gradiente	MTLM	Gradiente	MTLM
Tempo total(ms)	39	153,01	240,01	1223,07	611,04	3433,2
Tempo seleção circuitos(ms)	0	26,00	0	253,02	0	980,06
Tempo Total s/seleção(ms)	39	127,01	240,01	970,05	611,04	2453,14
Gradiente/MTLM (%)	30%		24%		25%	

Na tabela 4.3 temos uma comparação do tempo total obtidos com os dois métodos. Foram desconsiderados os tempos de seleção dos circuitos no MTLM. No desenvolvimento do programa não foi feita uma otimização da seleção de loops. Estima-se que este tempo poderia ser melhorado, mas não se sabe até que ponto. Por isso este tempo foi desconsiderado na análise da eficiência dos métodos. Nota-se que os tempos de execução do método gradiente variam entre 25% e 30% dos tempos do MTLM para o mesmo problema. Aparentemente o método para medida dos tempos tem uma resolução de até 2 ms, pois os tempos medidos são sempre iguais ou maiores que 2 ms. Acredita-se então que os tempos medidos para os casos 1 e 2 são menores que a resolução e então o erro envolvido nestas medições é muito grande. Portanto, os valores obtidos não são confiáveis e não foram considerados nas comparações dos métodos em estudo.

O tempo empregado na montagem do sistema de equações no método da teoria linear modificado é maior quando comparado com o método do gradiente, conforme apresentado na Figura 4.17. Isto se deve ao fato de que o número de elementos a ser calculado é maior no MTLM.

Figura 4.17 Tempo de montagem do sistema linear.

Nos dois primeiros casos analisados na Figura 4.17, não houve diferenças significativas quando comparados o tempo de processamento empregado para cada modelo, considerando os

tempos para a montagem dos sistemas de equações e emprego do algoritmo utilizado na solução dos mesmos (KLU).

Na Figura 4.18, é apresentado o tempo empregado na solução pelo KLU tanto para o método Gradiente e MTLM.

Figura 4.18 Tempo de solução do sistema

Tabela 4.4 Avaliação do tempo de montagem do sistema comparado com o tempo total decada iteração obtidos com os dois métodos nos casos 03, 04 e 05.

Estudos de Caso	Casc	03	Caso 04		Casc	Caso 05	
Métodos	Gradiente	MTLM	Gradiente	MTLM	Gradiente	MTLM	
Montagem - Tm	2,67	4,67	4,17	16,67	7	40,17	
Solução - Ts	5	16,33	27,17	108,67	79,67	285,85	
Tm/(Tm+Ts)(%)	34,8%	22,2%	13,3%	13,3%	8%	12,3%	

Na tabela 4.4 temos uma avaliação do tempo de montagem do sistema (Tm) comparado com o tempo total de cada iteração (Ts). Pode-se observar que este tempo na maioria dos casos é menor que 15% do tempo total com exceção do caso 3 em que os tempos estão próximos de 2 ms (valor obtido não confiável). Verifica-se que o tempo de montagem é pequeno comparativamente

ao tempo de resolução então o melhor desempenho do método gradiente pode ser atribuído ao menor tempo para resolução dos sistemas de equações.

Com base nos três estudos de casos que apresentaram dados mais significativos (casos 3, 4 e 5), o tempo que mais influenciou nos resultados foi o tempo da resolução dos sistemas de equações. Foi feito um estudo para avaliar quais parâmetros tem maior influência nesse tempo. Primeiro, foi feita uma correlação com o número de elementos não nulos da matriz; o resultado pode ser observado na Figura 4.19, onde se observam duas retas distintas para os dois métodos. Notou-se que o desempenho do método linear é mais lento que o método do gradiente, que pode ser explicado pelo fato de apresentar maior quantidade de valores não nulos.

Assim, na Figura 4.19 é apresentada a correlação entre o número de dados não nulos (variável independente $-x_1$) com sua respectiva distribuição de tempo de processamento (variável dependente -y) para cada método. Para o caso da teoria linear, a equação encontrada que descreve a regressão foi: $y = 2E-05x_1^{1,9906}$.

Já para o caso da teoria do gradiente obteve-se a seguinte equação: $y = 1E-05x_1^{2,0023}$.

Do mesmo modo, na Figura 4.20 foi encontrada uma reta única para os dois métodos e então verificou-se que nessas comparações o tempo se relaciona mais ao tamanho total da matriz, para ambas as metodologias.

Para o caso da Figura 4.20, os resultados obtidos, comparando o número total de dados (ordem da matriz) a ser processado para cada caso, observou-se uma vantagem do algoritmo gradiente, observando-se que no caso do gradiente a ordem é igual ao número de nós do problema enquanto que no método linear a ordem consiste no número de tubos, possuindo, portanto uma matriz de ordem maior.

Figura 4.20 Gráfico para análise comparativo de tamanho (ordem) da matriz com o tempo para ambos os métodos.

Como a matriz obtida pelo MTLM é maior isto justifica os maiores tempos computacionais encontrados em todas as comparações com o método do gradiente. A matriz obtida pelo método gradiente é menor porque a ordem da matriz é igual ao número de nós. Enquanto que no MTLM a ordem da matriz é igual ao número de tubos. Estes resultados conferem com o observado por TODINI (2006).

5 CONCLUSÕES

Neste trabalho realizaram-se simulações para redes de grande porte com a finalidade de comparar os resultados obtidos pelo Método da Teoria Linear Modificado (MTLM) e pelo método que utiliza o algoritmo do Gradiente. Tal comparação foi realizada para analisar a eficiência de processamento e custo computacional (tempo) entre ambos os métodos. As comparações foram feitas utilizando redes de até 1000 tubos, fornecendo resultados inéditos, pois os trabalhos encontrados utilizaram redes pequenas com número de tubos inferior a 50.

Verificou-se que as vazões calculadas após cada iteração foram exatamente as mesmas. Conclui-se que este fato se deve ao uso, por ambos os métodos, da expansão em série de Taylor para linearizar o termo da perda de carga. Então os dois métodos estariam resolvendo as mesmas equações linearizadas arranjadas de forma diferente. Destaca-se que este resultado não está relatado na literatura consultada e desta maneira entende-se como sendo uma contribuição importante deste trabalho.

Nos algoritmos propostos, a principal restrição quanto aplicação dos mesmos, é o tempo de computação necessário para solução do problema hidráulico. Apesar de ambos os métodos solucionar o problema com eficiência, o critério eficiente para uso do MTLM encontra-se nas redes com menor numero de trechos (caso 1, 2 e 3 dos estudos de caso) se a rede possuir muitos trechos (caso 3, 4 e 5 dos estudos de caso) observou-se que o gradiente se mostrou mas eficiente.

Observou-se, também, uma importante vantagem do algoritmo proposto para a seleção de circuitos naturais, que utiliza a busca em largura *breadth first search* (BFS), permitindo converter sistemas hidráulicos de água em estruturas chamadas grafos e administrar os dados de forma eficiente, além de fornecer um sistema resultante esparso. Cabe lembrar que a exploração da esparsidade do sistema resultante permite analisar redes de maiores dimensões, e um exemplo disto, são os estudos de problemas de otimização, onde a rede é analisada inúmeras vezes.

Os tempos medidos para resolução dos sistemas de equações através da biblioteca KLU se mostraram diretamente proporcionais ao número de elementos da matriz, tanto nos teste com o

método gradiente quanto nos testes com o MTLM.

A geometria da rede e a esparsidade do sistema (dados não nulos) se apresentaram como boas variáveis de comparação e análise de desempenho do modelo implementado para redes de grande porte. Além disso, verificou-se que o tamanho, a simetria e a esparsidade do sistema resultante têm um grande impacto no tempo computacional requerido para solucionar o problema hidráulico.

A aplicação da biblioteca KLU na resolução de sistemas lineares foi utilizada para ambos os métodos analisados neste trabalho, embora se saiba que o recomendado é escolher um método mais adequado para cada caso ou situação particular, tendo em vista que não foi identificado nenhum estudo teórico que estabelecesse um método geral.

Com base na literatura consultada, não foram identificados trabalhos que abordassem estudos de eficiência de métodos para <u>análise em redes de grande porte</u>. Acredita-se, portanto, que a originalidade desta pesquisa reside nesta informação, entendendo a importância deste tipo de estudo para generalização dos conceitos existentes para essas situações.)

Embora esse estudo tenha se concentrado em redes de grande porte, durante a etapa de validação do algoritmo proposto foram analisadas também situações de redes de pequenas dimensões, constatando-se, nesses casos, uma eficiência similar em ambos os métodos utilizados.

Os resultados obtidos das simulações indicaram que o método do gradiente apresentou as seguintes características: (i) matriz simétrica, (ii) ordem da matriz igual ao número de nós. Já o MTLM apresentou as seguintes características: (i) seleção de circuitos, (ii) matriz não simétrica, (iii) ordem da matriz igual ao número de tubulações.

Nos estudos de caso verificou-se que o número de nós variou entre 52% e 60% em relação ao número de tubos. Como o tempo de resolução do sistema varia com o número total de elementos isto explica a melhor eficiência do método gradiente comparado com o MTLM para os casos 3, 4 e 5 dos estudos de caso.

Como desdobramentos deste trabalho, sugere-se:

- Podem ser feitas comparações dos métodos para resolução dos sistemas lineares feitas no capítulo "Materiais e Métodos" foram limitadas a matrizes do tipo não esparsa e simétrica. Sugere-se comparar métodos específicos para matrizes do tipo não simétrico e esparso para aplicar o MTLM na expectativa de torna-lo, mas eficiente.
- Também pode-se testar o método gradiente com uma rotina de solução dos sistemas de equações feita para matrizes simétricas. Sugere-se a utilização da rotina CHOLMOD que faz parte do mesmo pacote que o KLU e está sendo considerada como alternativa no software Epanet.
- Finalmente, pode-se incorporar elementos não tubos como bombas, válvulas etc. e fazer comparações analisando-se o desempenho dos métodos.

6 REFERÊNCIAS BIBLIOGRÁFICAS

BHAVE, PRAMOD R. Analysis of flow in water distribution networks, Analysis of Flow in Water Distribution Networks, Technomic Publishing, 1991.

BITTENCOURT, M. L. e FEIJÓO, R. A. Non-nested multigrid methods in finite element linear structural analysis, In Virtual Proceedings of the 8th Copper Mountain Conference on Multigrid Methods, http://www.mgnet.org., 1997.

BONDY, ADRIAN J. e MURTY, U. S. R. Graph Theory with Applications, 2002.

BOULOS, P. F. e WOOD, D. J. Eplicit Calculation of Pipe Network Parameters, ASCE J. Hydraulic Division, Vol. 116(HY11), pp. 1329-1344, 1990.

BRKIC, D. Iterative Methods for Looped Network Pipeline Calculation, Water resources management, Vol. 25, n. 12, pp. 2951-2987, 2011.

CARVALHO, A. O.; CHRISTOFORO, A. L.; CARVALHO, S. S. e BRANDÃO, L. C. Aplicação do Método de Newton-Raphson e do Método das Estimativa Descendentes na Resolução de Sistemas de Equações Não-Lineares, I Ermac, I Encontro Regional de Matemática Computacional e Aplicada, São João del Rei, MG. Anais, pp. 269-270, 2010.

CROSS, H. Analysis of Flow in Networks of Conduits or Conductors, Bulletin No. 286, University of Illinois Urbana, Illinois, 1936.

DAVIS, TIMOTHY A. e NATARAJAN, EKA P. User Guide for KLU and BTF, Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL, USA, 2009.

DEVLOO, P. R. B. An Object Oriented Environment for Scientific Programming: PZ, Computer Methods in Applied and Engineering, Vol. 150, pp. 133-153, 1997.

ELLIS, D. J. e SIMPSON, A. R. Convergence of Iterative Solvers for the Simulation of a Water Distribution Pipe Network, Research Report R138, Department of Civil and Environmental Engineering, University of Adelaide, 1996.

EPP, R. e FOWLER, A. G. Efficient code for Steady-State Flows in Networks." ASCE J. Hydraulic Division, Vol. 96(HY1), pp. 43–56, 1970.

GILAT, A. Matlab: An Introduction with Applications, Vol. 3, New York:: Wiley, 2008.

GUTIERREZ, J. Historia de los Métodos de Análisis y Modelos Computacionales para Análisis de Redes de Distribución a Presión, Resumen y Recopilación Bibliográfica, 2011.

HAGER, G. e WELLEIN, G. Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Inc., Boca Raton, FL, USA, 2010.

HALLIWELL, A. ROY, e SABAH A. AL-NASSRI Discussion of Efficient Code for Steady State Flows in Networks, ASCE J. Hydraulic Division, Vol. 96(HY12), pp. 2615-2617, 1970.

ISAACS, L. T.; MILLS, K. G. Linear Theory Method for Pipe Network Analysis, ASCE J. Hydraulic Division, Vol. 106(HY7), pp. 1191-1201, 1980.

JESPERSON, K. A Brief History of Drinking Water Distribution, On tap magazine: 18-46, 2001.

KAILASH, J. Automatic minimal loop extraction and initialization for water pipe network analysis, International Journal of Simulation, Systems, Science and Technology, Vol. 9 No. 2, pp. 8-19, 2007.

LEMIEUX, P. F. Efficient Algorithm for Distribution System, ASCE J. Hydraulic Division, Vol. 98(HY11), pp. 1911-1920, 1972.

LINDELL E. ORMSBEE 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA, August 27-30, 2006.

LUVIZOTTO JR. E. Controle operacional de redes de abastecimento de água auxiliado por computador, Tese de Doutorado, Escola Politécnica da USP, 143 p., 1995.

LUVIZOTTO JR. E. Minuta de livro, Manuscrito não publicado, 2012.

LUVIZOTTO, JR. E.; CAVICHIA, M. C.; VATAVUK, P. e ANDRADE, J. G. P. Non-Matrix Gradient Method For the Simulation Of Water Distribution Networks, Journal of Water Resources Planning and Management, Vol. 139(4), pp.433–439, 2013.

MARTIN, D. W. e PETERS, G., The application of Newton's Method to Network Analysis by Digital Computer, Journal of the Institute of Water Engineers, Vol. 17, pp. 115-129, 1963.

MAYS L. W. Water Distribution System Handbook, Ed. McGraw Hill, New York. 2000.

MENOTTI, D. Algoritmos e Estruturas de Dados, Universidade Federal de Ouro Preto, UFOP, Instituto de Ciências Exatas e Biológicas – ICEB, 2008.

NASCIMENTO, M. C. V. Uma Heurística GRASP para o Problema de Dimensionamento de Lotes com Múltiplas Plantas. 82 f. Dissertação (Mestrado em Ciências de Computação e Matemática Computacional), Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2007.

NIELSEN, H. B. Methods for Analyzing Pipe Networks, ASCE J. Hydraulic Division, Vol. 115(HY2), pp. 139-157, 1989.

ORMSBEE, L. E. e WOOD, D. J. Hydraulic Design Algorithms for Pipe Networks, ASCE J. Hydraulic Division, Vol. 112(HY12), pp. 1195-1207, 1986.

ORMSBEE, LINDELL E. The history of water distribution network analysis: the computer age. 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA, 2006.

ROSSETI, ISABEL C. M. Estratégias Sequenciais e Paralelas de GRASP com Reconexão por Caminhos para o Problema de Síntese de Redes a 2-caminhos. 121f. Tese (Doutorado em Informática), Departamento de Informática do Centro Técnico Científico, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2003.

ROSSMAN, L. A. Epanet 2.0 User's Manual, Drinking Water Research Division, National Risk Management Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, Ohio, 2000.

SALGADO, R.; TODINI, E. e O'CONNELL, P. E. Comparison of the Gradient Method with some of Traditional Methods for the Analysis of Water Supply Distribution Networks, International Conference on Computer Applications for Water Supply and Distribution, Leicester, UK., 1987.

SARBU, I. Nodal Analysis Models of Looped Water Distribution Networks, Journal of Engineering & Applied Sciences, Vol. 6, n. 8, 2011.

SHAMIR, U. e HOWARD, C. D. D. Water Distribution Systems Analysis, ASCE J. Hydraulic Division, Vol. 94(HY1), pp. 219-234, 1968.

SOUZA, R. S. Aspectos Computacionais da Análise de Redes de Distribuição de Água com Componentes Hidráulicos em Regime Permanente, São Carlos, Dissertação de Mestrado. Escola de Engenharia de São Carlos, Universidade de São Paulo, 1994.

SOUZA, R. S. e CHAUDHRY, F. H. Investigação de Métodos de Seleção Automática de Circuitos Usando a Teoria Dos Grafos Para a Análise de Redes Hidráulicas, XXI Congresso Brasileiro de Engenharia Sanitária e Ambiental, João Pessoa, PB. Anais, 2001.

SOUZA, R. S. e CHAUDHRY, F. H. Métodos de Resolução de Sistemas Lineares Aplicados na Análise de Redes de Distribuição de Água, I Simpósio de Recursos Hídricos do Centro-Oeste, Brasília-DF, Anais, Porto Alegre, RS, Associação Brasileira de Recursos Hídricos, Vol. 1, 2000.

TODINI, E. On the convergence properties of the different pipe network algorithms, 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA, August 27–30, 2006.

TODINI, E. e PILATI, S. A gradient algorithm for the analysis of pipe networks, Computer applications in water supply, vol. 1, (System analysis and simulation), editado por Coubeck, K.B., and Orr, C.H., John Willey & Sons, pp. 1-20, 1988.

WaterCAD for Windows: Version 5 User's Guide, Heastad Methods, Inc., Waterbury, Connecticut, 2002.

WOOD, D. J. e CHARLES, C. O. A. Hydraulic Network analysis using linear theory, ASCE J. Hydraulic Division, Vol. 98(HY7), pp. 1157-1170, 1972.

WOOD, D. J. e CHARLES, C. O. A. Hydraulic Network analysis using linear theory, Closure, ASCE J. Hydraulic Division, Vol. 99(HY11), pp. 2129, 1973.

WOOD, D. J. e RAYES, A. G. Reliability of Algorithms for Pipe Network Analysis, ASCE J. Hydraulic Division, Vol. 107(HY10), pp. 1145-1161, 1981.

WOOD, DON Kypipe Reference Manual, Civil Engineering Software Center, University of Kentucky, Lexington, KY, 1995.

APÊNDICE

Para simular os cinco estudos de casos apresentados nesta tese, a seguir, apresenta-se o conjunto detalhado de dados de entrada: que contêm informações iniciais para cada um deles relativos à: vazão inicial $(0,1 \text{ m}^3/\text{s})$, carga no reservatório de nível constante (100 m), consumo nos nós, coeficiente de fator de atrito, relação completa de tubulações do sistema (nó de montante, nó de jusante, diâmetro e comprimento) e dados de saída que contem as vazões obtidas após a simulação.

Tubo	NÓ1	NÓ2	L (m)	D(m)	f	Qobtida(l/s)	NÓ	Demanda (m ³ /s)
1	1	2	457,2	0,305	0,016456	160,258	1	0
2	2	3	304,8	0,203	0,017516	121,37	2	0
3	3	4	365,8	0,203	0,018261	58,4832	3	0
4	4	5	609,6	0,203	0,019666	31,1707	4	0,0315
5	6	5	853,4	0,203	0,019842	27,0172	5	-0,0345
6	7	6	335,3	0,203	0,018353	55,8385	6	0,0252
7	8	7	304,8	0,203	0,018125	66,2075	7	0
8	9	8	762	0,203	0,018566	47,9938	8	0
9	1	9	243,8	0,203	0,017579	108,042	9	0,0379
10	9	10	396,2	0,152	0,020239	22,1481	10	0
11	10	11	304,8	0,152	0,019185	42,8225	11	0,0315
12	11	12	335,3	0,254	0,01754	84,5783	12	0
13	12	5	304,8	0,254	0,01762	84,0122	13	0,0252
14	10	8	548,6	0,152	0,02053	18,2137	14	0
15	2	10	335,3	0,152	0,019264	38,8881	15	0,0442
16	11	7	548,6	0,152	0,021823	-10,369	16	0
17	3	11	365,9	0,254	0,017839	62,8868	17	0,0315
18	12	6	548,6	0,152	0,000001	-3,6213	18	0
19	4	12	396,2	0,152	0,024119	-4,18742	19	0
20	19	23	457,2	0,305	0,019311	23,0183	20	0,0379
21	16	19	304,8	0,203	0,019342	32,9066	21	0
22	13	16	365,8	0,203	0,01915	25,9679	22	0,0379
23	5	13	609,6	0,203	0,018997	41,2103	23	0
24	5	15	853,4	0,203	0,019132	41,8016		
25	15	18	335,3	0,203	0,018804	13,3469		
26	18	21	304,8	0,203	0,000001	23,6991		
27	22	21	762	0,203	0,027253	-14,8939		

Estudo de caso 01

28

23

22

243,8

23,0183

0,203 0,022249

29	20	22	396,2	0,152	0,023855	-0,01221
30	17	20	304,8	0,152	0,020922	19,1943
31	14	17	335,3	0,254	0,018152	67,9852
32	5	14	304,8	0,254	0,017315	93,6881
33	20	21	548,6	0,152	0,025491	-8,80523
34	19	20	335,3	0,152	0,025019	9,88827
35	17	18	548,6	0,152	0,021519	10,3522
36	16	17	365,9	0,254	0,019721	-6,93873
37	14	15	548,6	0,152	0,023232	15,7454
38	13	14	396,2	0,152	0,027334	-9,95752

Tubo	NÓ1	NÓ2	L (m)	D(m)	f	Qobtida(l/s)	NÓ	Demanda (m ³ /s)
1	1	2	457,2	0,305	0,026	238,891	1	0
2	2	3	304,8	0,203	0,026	174,966	2	0
3	3	4	365,8	0,203	0,026	83,4843	3	0
4	4	5	609,6	0,203	0,026	45,1488	4	0,0315
5	6	5	853,4	0,203	0,026	13,8955	5	-0,0345
6	7	6	335,3	0,203	0,026	47,2953	6	0,0252
7	8	7	304,8	0,203	0,026	85,1263	7	0
8	9	8	762	0,203	0,026	92,5987	8	0
9	1	9	243,8	0,203	0,026	167,909	9	0,0379
10	9	10	396,2	0,152	0,026	37,4103	10	0
11	10	11	304,8	0,152	0,026	58,9987	11	0
12	11	12	335,3	0,254	0,026	122,089	12	0
13	12	5	304,8	0,254	0,026	108,22	13	0,0315
14	10	8	548,6	0,152	0,026	42,3368	14	0
15	2	10	335,3	0,152	0,026	63,9252	15	0,0252
16	11	7	548,6	0,152	0,026	28,3913	16	0
17	3	11	365,9	0,254	0,026	91,4815	17	0
18	12	6	548,6	0,152	0,026	20,7045	18	0
19	4	12	396,2	0,152	0,026	6,83548	19	0
20	19	23	457,2	0,305	0,026	43,7856	20	0
21	16	19	304,8	0,203	0,026	50,8373	21	0
22	13	16	365,8	0,203	0,026	30,0936	22	0,05
23	5	13	609,6	0,203	0,026	48,1536	23	0
24	5	15	853,4	0,203	0,026	47,9545	24	0
25	15	18	335,3	0,203	0,026	61,9459	25	0
26	18	21	304,8	0,203	0,026	-11,3085	26	0
27	22	21	762	0,203	0,026	11,2095	27	0
28	23	22	243,8	0,203	0,026	43,7856	28	0

29	20	22	396,2	0,152	0,026	17,4239	29	0,05
30	17	20	304,8	0,152	0,026	26,5071	30	0,06
31	14	17	335,3	0,254	0,026	73,0855	31	0
32	5	14	304,8	0,254	0,026	105,656	32	0
33	20	21	548,6	0,152	0,026	16,1348	33	0
34	19	20	335,3	0,152	0,026	7,05167	34	0
35	17	18	548,6	0,152	0,026	25,8347	35	0
36	16	17	365,9	0,254	0,026	-20,7438	36	0
37	14	15	548,6	0,152	0,026	19,1305	37	0
38	13	14	396,2	0,152	0,026	-13,4399	38	0,06
39	8	24	853,4	0,203	0,026	49,8092	39	0,07
40	24	25	335,3	0,203	0,026	35,5717	40	0
41	25	7	304,8	0,203	0,026	-33,0427	41	0
42	25	26	762	0,203	0,026	25,7713	42	0
43	7	26	762	0,203	0,026	33,1796	43	0
44	26	27	243,8	0,203	0,026	73,5127	44	0
45	6	27	396,2	0,152	0,026	28,9044	45	0
46	27	15	304,8	0,152	0,026	23,594	46	0
47	27	28	335,3	0,254	0,026	81,2719	47	0,07
48	15	28	304,8	0,254	0,026	3,53317		
49	28	29	548,6	0,152	0,026	28,8149		
50	18	29	335,3	0,152	0,026	21,3589		
51	29	30	548,6	0,152	0,026	5,51722		
52	18	30	365,9	0,254	0,026	77,7301		
53	30	31	548,6	0,152	0,026	-8,29712		
54	21	31	548,6	0,152	0,026	16,0358		
55	24	32	365,9	0,254	0,026	14,2375		
56	32	33	548,6	0,152	0,026	14,2375		
57	25	33	396,2	0,152	0,026	6,55808		
58	33	34	853,4	0,203	0,026	20,7956		
59	25	34	335,3	0,203	0,026	36,285		
60	26	34	304,8	0,203	0,026	-14,5618		
61	34	35	762	0,203	0,026	42,5189		
62	27	35	762	0,203	0,026	-2,44881		
63	35	36	243,8	0,203	0,026	40,07		
64	36	28	396,2	0,152	0,026	14,1126		
65	36	37	304,8	0,152	0,026	25,9574		
66	28	37	335,3	0,254	0,026	70,1028		
67	37	38	304,8	0,254	0,026	96,0602		
68	29	38	548,6	0,152	0,026	-14,3641		
69	38	39	335 <i>,</i> 3	0,152	0,026	21,6961		
70	29	39	548,6	0,152	0,026	9,0207		

71	30	39	365,9	0,254	0,026	31,5445
72	39	40	548,6	0,152	0,026	-7,73872
73	31	40	548,6	0,152	0,026	7,73872

Tubo	NÓ1	NÓ2	L (m)	D(m)	f	Qobtida(l/s)	NÓ	Demanda (m ³ /s)
1	1	2	457,2	0,305	0,026	280,787	1	0
2	1	3	304,8	0,203	0,026	196,013	2	0
3	3	4	365,8	0,203	0,026	96,3328	3	0
4	2	4	609,6	0,203	0,026	130,598	4	0,0315
5	3	5	853,4	0,203	0,026	99,6797	5	-0,0345
6	5	6	335,3	0,203	0,026	29,6912	6	0,0252
7	4	6	304,8	0,203	0,026	132,862	7	0
8	5	7	762	0,203	0,026	104,489	8	0
9	7	8	243,8	0,203	0,026	47,3	9	0,0379
10	6	8	396,2	0,152	0,026	71,3483	10	0
11	7	9	304,8	0,152	0,026	57,1885	11	0
12	9	10	335,3	0,254	0,026	-64,801	12	0
13	8	10	304,8	0,254	0,026	180,3	13	0,0315
14	9	11	548,6	0,152	0,026	84,0895	14	0
15	11	12	335,3	0,152	0,026	-49,4569	15	0,0252
16	10	12	548,6	0,152	0,026	75,9806	16	0
17	11	13	365,9	0,254	0,026	133,546	17	0
18	13	14	548,6	0,152	0,026	-3,93004	18	0
19	12	14	396,2	0,152	0,026	57,5558	19	0
20	13	15	457,2	0,305	0,026	105,976	20	0
21	15	16	304,8	0,203	0,026	16,3783	21	0
22	14	16	365,8	0,203	0,026	46,4258	22	0,05
23	15	17	609,6	0,203	0,026	64,3982	23	0
24	17	18	853,4	0,203	0,026	-10,4824	24	0
25	16	18	335,3	0,203	0,026	83,7632	25	0
26	17	19	304,8	0,203	0,026	74,8806	26	0
27	19	20	762	0,203	0,026	33,1507	27	0
28	18	20	243,8	0,203	0,026	104,065	28	0
29	19	21	396,2	0,152	0,026	41,7299	29	0,05
30	21	22	304,8	0,152	0,026	-22,6268	30	0,06
31	20	22	335,3	0,254	0,026	114,404	31	0
32	21	23	304,8	0,254	0,026	64,3568	32	0
33	23	24	548,6	0,152	0,026	11,2906	33	0
34	22	24	335,3	0,152	0,026	31,031	34	0
35	23	25	548,6	0,152	0,026	53,0662	35	0

36	25	26	365,9	0,254	0,026	5,00114	36	0
37	24	26	548,6	0,152	0,026	51,8635	37	0
38	25	27	396,2	0,152	0,026	48,065	38	0,06
39	27	28	853,4	0,203	0,026	-34,4235	39	0,07
40	26	28	335,3	0,203	0,026	92,5938	40	0
41	27	29	304,8	0,203	0,026	82,4885	41	0
42	29	30	762	0,203	0,026	-26,6127	42	0
43	28	30	333	0,203	0,026	87,4316	43	0
44	29	31	243,8	0,203	0,026	59,1012	44	0
45	31	32	396,2	0,152	0,026	-20,6068	45	0
46	30	32	304,8	0,152	0,026	22,8546	46	0
47	31	33	335,3	0,254	0,026	79,708	47	0,07
48	33	34	304,8	0,254	0,026	53,0049	48	0
49	32	34	548,6	0,152	0,026	26,9162	49	0
50	33	35	335,3	0,152	0,026	26,7031	50	0
51	35	36	548,6	0,152	0,026	3,24509	51	0
52	34	36	365,9	0,254	0,026	79,8724	52	0
53	35	37	548,6	0,152	0,026	23,458	53	0
54	37	38	548,6	0,152	0,026	-4,95375	54	0
55	36	38	365,9	0,254	0,026	100,326	55	0
56	37	39	548,6	0,152	0,026	28,4118	56	0
57	39	40	396,2	0,152	0,026	-23,9006	57	0
58	38	40	853,4	0,203	0,026	33,8379	58	0
59	39	41	335,3	0,203	0,026	-17,6876	59	0
60	41	42	304,8	0,203	0,026	-27,609	60	0
61	40	42	762	0,203	0,026	28,6247	61	0
62	41	43	762	0,203	0,026	9,92135	62	0
63	43	44	243,8	0,203	0,026	1,9378	63	0
64	42	44	396,2	0,152	0,026	13,5322	64	0
65	43	45	304,8	0,152	0,026	7,98355	65	0
66	45	46	335,3	0,254	0,026	-12,1442	66	0
67	44	46	304,8	0,254	0,026	25,6721	67	0
68	45	47	548,6	0,152	0,026	20,1278	68	0
69	47	48	335,3	0,152	0,026	-20,9837	69	0
70	46	48	548,6	0,152	0,026	11,9553	70	0
71	47	49	365,9	0,254	0,026	-28,8886	71	0
72	49	50	548,6	0,152	0,026	-14,9472	72	0
73	48	50	548,6	0,152	0,026	1,72606	73	0
74	49	51	548,6	0,152	0,026	-13,9413	74	0
75	51	52	548,6	0,152	0,026	-4,42341	75	0
76	50	52	548,6	0,152	0,026	3,0809	76	0
77	51	53	365,9	0,254	0,026	-9,51794	77	0

78	53	54	548,6	0,152	0,026	-3,77017	78	0
79	52	54	396,2	0,152	0,026	0,996437	79	0
80	53	55	853,4	0,203	0,026	-5,74776	80	0
81	55	56	335,3	0,203	0,026	-3,66343	81	0
82	54	56	304,8	0,203	0,026	1,19929	82	0
83	55	57	762	0,203	0,026	-2,08433	83	0
84	57	58	762	0,203	0,026	-1,29335	84	0
85	56	58	243,8	0,203	0,026	-0,555792	85	0
86	57	59	396,2	0,152	0,026	-0,790985	86	0
87	59	60	304,8	0,152	0,026	-0,0710736	87	0
88	58	60	335,3	0,254	0,026	-0,231865	88	0
89	59	61	304,8	0,254	0,026	-0,719912	89	0
90	61	62	548,6	0,152	0,026	-0,425243	90	0
91	60	62	335,3	0,152	0,026	-0,040416	91	0
92	61	63	548,6	0,152	0,026	-0,294669	92	0
93	63	64	365,9	0,254	0,026	-0,0921185	93	0
94	62	64	548,6	0,152	0,026	0,2095	94	0
95	63	65	457,2	0,305	0,026	-0,202551	95	0
96	65	66	304,8	0,203	0,026	-0,330352	96	0
97	64	66	365,8	0,203	0,026	-0,218313	97	0
98	65	67	609,6	0,203	0,026	0,127802	98	0
99	67	68	853,4	0,203	0,026	0,127802	99	0
100	66	68	335,3	0,203	0,026	-0,0582038	100	0
101	2	69	304,8	0,203	0,026	150,189	101	0
102	69	70	762	0,203	0,026	76,6457	102	0
103	4	70	243,8	0,203	0,026	62,5695	103	0
104	70	71	396,2	0,152	0,026	77,3355	104	0
105	6	71	304,8	0,152	0,026	66,0044	105	0
106	71	72	335,3	0,254	0,026	152,71	106	0
107	8	72	304,8	0,254	0,026	-61,6515	107	0
108	72	73	548,6	0,152	0,026	50,0268	108	0
109	10	73	335,3	0,152	0,026	39,5182	109	0
110	73	74	548,6	0,152	0,026	69,0599	110	0
111	12	74	365,9	0,254	0,026	-31,0321	111	0
112	74	75	548,6	0,152	0,026	49,791	112	0
113	14	75	396,2	0,152	0,026	7,19996	113	0
114	75	76	457,2	0,305	0,026	97,4655	114	0
115	16	76	304,8	0,203	0,026	-20,9592	115	0
116	76	77	365,8	0,203	0,026	72,236	116	0
117	18	77	609,6	0,203	0,026	-30,7841	117	0
118	77	78	853,4	0,203	0,026	63,0489	118	0
119	20	78	335,3	0,203	0,026	22,8119	119	0

120	78	79	304,8	0,203	0,026	66,415	120	0
121	22	79	762	0,203	0,026	10,7459	121	0
122	79	80	243,8	0,203	0,026	68,0965	122	0
123	24	80	396,2	0,152	0,026	-9,54186	123	0
124	80	81	304,8	0,152	0,026	69,6556	124	0
125	26	81	335,3	0,254	0,026	-35,7292	125	0
126	81	82	304,8	0,254	0,026	101,235	126	0
127	28	82	548,6	0,152	0,026	-29,2613	127	0
128	82	83	335,3	0,152	0,026	48,9211	128	0
129	30	83	548,6	0,152	0,026	-22,0357	129	0
130	83	84	365,9	0,254	0,026	57,1606	130	0
131	32	84	548,6	0,152	0,026	-24,6685	131	0
132	84	85	396,2	0,152	0,026	42,9624	132	0
133	34	85	853,4	0,203	0,026	0,0487423	133	0
134	85	86	335,3	0,203	0,026	44,7307	134	0
135	36	86	304,8	0,203	0,026	-17,2086	135	0
136	86	87	762	0,203	0,026	41,1919	136	0
137	38	87	762	0,203	0,026	1,53436	137	0
138	87	88	243,8	0,203	0,026	39,8672	138	0
139	40	88	396,2	0,152	0,026	-18,6874	139	0
140	88	89	304,8	0,152	0,026	30,3782	140	0
141	42	89	335,3	0,254	0,026	-12,5165	141	0
142	89	90	304,8	0,254	0,026	28,8609	142	0
143	44	90	548,6	0,152	0,026	-10,2021	143	0
144	90	91	335,3	0,152	0,026	14,8431	144	0
145	46	91	548,6	0,152	0,026	1,57252	145	0
146	91	92	365,9	0,254	0,026	22,0109	146	0
147	48	92	548,6	0,152	0,026	-10,7544	147	0
148	92	93	548,6	0,152	0,026	10,2486	148	0
149	50	93	365,9	0,254	0,026	-16,3021	149	0
150	93	94	548,6	0,152	0,026	4,37551		
151	52	94	396,2	0,152	0,026	-2,33895		
152	94	95	853,4	0,203	0,026	2,55752		
153	54	95	335,3	0,203	0,026	-3,97303		
154	95	96	304,8	0,203	0,026	3,11752		
155	56	96	762	0,203	0,026	-1,90834		
156	96	97	762	0,203	0,026	1,64431		
157	58	97	243,8	0,203	0,026	-1,61727		
158	97	98	396,2	0,152	0,026	0,576423		
159	60	98	304,8	0,152	0,026	-0,262522		
160	98	99	335,3	0,254	0,026	0,29258		
161	62	99	304,8	0,254	0,026	-0,675159		

162	99	100	548,6	0,152	0,026	0,218929
163	64	100	335,3	0,152	0,026	0,335695
164	100	101	548,6	0,152	0,026	0,290896
165	66	101	365,9	0,254	0,026	-0,490461
166	101	102	548,6	0,152	0,026	0,0741011
167	68	102	548,6	0,152	0,026	0,0695978
168	69	103	548,6	0,152	0,026	73,5436
169	103	104	548,6	0,152	0,026	18,4645
170	70	104	548,6	0,152	0,026	61,8797
171	104	105	365,9	0,254	0,026	88,6678
172	71	105	548,6	0,152	0,026	-9,37009
173	105	106	396,2	0,152	0,026	49,897
174	72	106	853,4	0,203	0,026	41,0317
175	106	107	335,3	0,203	0,026	116,164
176	73	107	304,8	0,203	0,026	20,4851
177	107	108	762	0,203	0,026	119,509
178	74	108	762	0,203	0,026	-11,7633
179	108	109	243,8	0,203	0,026	113,241
180	75	109	396,2	0,152	0,026	-40,4745
181	109	110	304,8	0,152	0,026	50,6854
182	76	110	335,3	0,254	0,026	4,27037
183	110	111	304,8	0,254	0,026	90,809
184	77	111	548,6	0,152	0,026	-21,5971
185	111	112	335,3	0,152	0,026	61,3444
186	78	112	548,6	0,152	0,026	19,4458
187	112	113	365,9	0,254	0,026	74,0701
188	79	113	548,6	0,152	0,026	9,06441
189	113	114	457,2	0,305	0,026	122,865
190	80	114	304,8	0,203	0,026	-11,1009
191	114	115	365,8	0,203	0,026	98,6393
192	81	115	609,6	0,203	0,026	-67,3084
193	115	116	853,4	0,203	0,026	68,1064
194	82	116	335,3	0,203	0,026	23,0524
195	116	117	304,8	0,203	0,026	91,1588
196	83	117	762	0,203	0,026	-30,2752
197	117	118	243,8	0,203	0,026	60,8836
198	84	118	396,2	0,152	0,026	-10,4703
199	118	119	304,8	0,152	0,026	50,4134
200	85	119	335,3	0,254	0,026	-1,71958
201	119	120	304,8	0,254	0,026	48,6938
202	86	120	548,6	0,152	0,026	-13,6697
203	120	121	335,3	0,152	0,026	35,024

204	87	121	548,6	0,152	0,026	2,85906
205	121	122	365,9	0,254	0,026	37,8831
206	88	122	548,6	0,152	0,026	-9,19841
207	122	123	396,2	0,152	0,026	28,6847
208	89	123	457,2	0,305	0,026	-10,9992
209	123	124	304,8	0,203	0,026	17,6855
210	90	124	365,8	0,203	0,026	3,81578
211	124	125	609,6	0,203	0,026	21,5013
212	91	125	853,4	0,203	0,026	-5,59534
213	125	126	335,3	0,203	0,026	15,906
214	92	126	304,8	0,203	0,026	1,00794
215	126	127	762	0,203	0,026	16,9139
216	93	127	243,8	0,203	0,026	-10,429
217	127	128	396,2	0,152	0,026	6,48493
218	94	128	304,8	0,152	0,026	-0,520954
219	128	129	335,3	0,254	0,026	5,96398
220	95	129	304,8	0,254	0,026	-4,53303
221	129	130	548,6	0,152	0,026	1,43095
222	96	130	335,3	0,152	0,026	-0,435141
223	130	131	548,6	0,152	0,026	0,995809
224	97	131	365,9	0,254	0,026	-0,549381
225	131	132	548,6	0,152	0,026	0,446427
226	98	132	396,2	0,152	0,026	0,0213209
227	132	133	853,4	0,203	0,026	0,467748
228	99	133	335,3	0,203	0,026	-0,601508
229	133	134	304,8	0,203	0,026	-0,13376
230	100	134	762	0,203	0,026	0,263727
231	134	135	762	0,203	0,026	0,129967
232	101	135	243,8	0,203	0,026	-0,273666
233	135	136	396,2	0,152	0,026	-0,143699
234	102	136	304,8	0,152	0,026	0,143699
235	103	137	335,3	0,254	0,026	55,0791
236	137	138	304,8	0,254	0,026	55,0791
237	104	138	548,6	0,152	0,026	-8,32362
238	138	139	335,3	0,152	0,026	46,7555
239	105	139	548,6	0,152	0,026	29,4007
240	139	140	365,9	0,254	0,026	76,1562
241	106	140	548,6	0,152	0,026	-25,2349
242	140	141	548,6	0,152	0,026	50,9213
243	107	141	365,9	0,254	0,026	17,1398
244	141	142	548,6	0,152	0,026	68,0611
245	108	142	396,2	0,152	0,026	-5,49488

246	142	143	853,4	0,203	0,026	62,5662
247	109	143	335,3	0,203	0,026	22,0807
248	143	144	304,8	0,203	0,026	84,6469
249	110	144	762	0,203	0,026	-35,8533
250	144	145	762	0,203	0,026	48,7936
251	111	145	243,8	0,203	0,026	7,86756
252	145	146	396,2	0,152	0,026	56,6611
253	112	146	304,8	0,152	0,026	6,72019
254	146	147	335,3	0,254	0,026	63,3813
255	113	147	304,8	0,254	0,026	-39,7309
256	147	148	548,6	0,152	0,026	23,6505
257	114	148	335,3	0,152	0,026	13,1251
258	148	149	548,6	0,152	0,026	36,7755
259	115	149	365,9	0,254	0,026	-36,7755

Tubo	NÓ1	NÓ2	L (m)	D(m)	f	Qobtida(l/s)	NÓ	Demanda (m ³ /s)
1	1	2	457,2	0,305	0,026	283,529	1	0
2	1	3	304,8	0,203	0,026	193,271	2	0
3	3	4	365,8	0,203	0,026	97,9045	3	0
4	2	4	609,6	0,203	0,026	128,662	4	0,0315
5	3	5	853,4	0,203	0,026	95,3663	5	-0,0345
6	5	6	335,3	0,203	0,026	34,339	6	0,0252
7	4	6	304,8	0,203	0,026	123,522	7	0
8	5	7	762	0,203	0,026	95,5273	8	0
9	7	8	243,8	0,203	0,026	51,1957	9	0,0379
10	6	8	396,2	0,152	0,026	65,3874	10	0
11	7	9	304,8	0,152	0,026	44,3316	11	0
12	9	10	335,3	0,254	0,026	-45,2579	12	0
13	8	10	304,8	0,254	0,026	130,098	13	0,0315
14	9	11	548,6	0,152	0,026	51,6895	14	0
15	11	12	335,3	0,152	0,026	-28,8253	15	0,0252
16	10	12	548,6	0,152	0,026	47,5399	16	0
17	11	13	365,9	0,254	0,026	80,5147	17	0
18	13	14	548,6	0,152	0,026	-6,13654	18	0
19	12	14	396,2	0,152	0,026	33,3241	19	0
20	13	15	457,2	0,305	0,026	55,1513	20	0
21	15	16	304,8	0,203	0,026	-2,55103	21	0
22	14	16	365,8	0,203	0,026	27,0383	22	0,05
23	15	17	609,6	0,203	0,026	32,5023	23	0
24	17	18	853,4	0,203	0,026	-6,13809	24	0
25	16	18	335,3	0,203	0,026	42,7859	25	0
26	17	19	304,8	0,203	0,026	38,6404	26	0

27	19	20	762	0,203	0,026	17,1574	27	0
28	18	20	243,8	0,203	0,026	54,0242	28	0
29	19	21	396,2	0,152	0,026	21,483	29	0,05
30	21	22	304,8	0,152	0,026	-9,02372	30	0,06
31	20	22	335,3	0,254	0,026	63,9512	31	0
32	21	23	304,8	0,254	0,026	30,5067	32	0
33	23	24	548,6	0,152	0,026	5,19548	33	0
34	22	24	335,3	0,152	0,026	13,5319	34	0
35	23	25	548,6	0,152	0,026	25,3113	35	0
36	25	26	365,9	0,254	0,026	-1,08815	36	0
37	24	26	548,6	0,152	0,026	24,7711	37	0
38	25	27	396,2	0,152	0,026	26,3994	38	0,06
39	27	28	853,4	0,203	0,026	-19,1524	39	0,07
40	26	28	335,3	0,203	0,026	50,6528	40	0
41	27	29	304,8	0,203	0,026	45,5518	41	0
42	29	30	762	0,203	0,026	-11,3224	42	0
43	28	30	333	0,203	0,026	50,4575	43	0
44	29	31	243,8	0,203	0,026	6,87425	44	0
45	31	32	396,2	0,152	0,026	-8,21805	45	0
46	30	32	304,8	0,152	0,026	-1,86012	46	0
47	31	33	335,3	0,254	0,026	15,0923	47	0,07
48	33	34	304,8	0,254	0,026	5,41493	48	0
49	32	34	548,6	0,152	0,026	7,79161	49	0
50	33	35	335,3	0,152	0,026	9,67737	50	0
51	35	36	548,6	0,152	0,026	-2,31479	51	0
52	34	36	365,9	0,254	0,026	31,4506	52	0
53	35	37	548,6	0,152	0,026	11,9922	53	0
54	37	38	548,6	0,152	0,026	-3,91034	54	0
55	36	38	365,9	0,254	0,026	51,1421	55	0
56	37	39	548,6	0,152	0,026	15,9025	56	0
57	39	40	396,2	0,152	0,026	-18,9554	57	0
58	38	40	853,4	0,203	0,026	4,87128	58	0
59	39	41	335,3	0,203	0,026	-35,1421	59	0
60	41	42	304,8	0,203	0,026	-25,2859	60	0
61	40	42	762	0,203	0,026	-2,32618	61	0
62	41	43	762	0,203	0,026	-9,85623	62	0
63	43	44	243,8	0,203	0,026	-10,6964	63	0
64	42	44	396,2	0,152	0,026	7,43133	64	0
65	43	45	304,8	0,152	0,026	0,840184	65	0
66	45	46	335,3	0,254	0,026	-14,9595	66	0
67	44	46	304,8	0,254	0,026	6,60897	67	0
68	45	47	548,6	0,152	0,026	15,7997	68	0

69	47	48	335,3	0,152	0,026	-20,5274	69	0
70	46	48	548,6	0,152	0,026	1,60837	70	0
71	47	49	365,9	0,254	0,026	-33,6728	71	0
72	49	50	548,6	0,152	0,026	-16,6569	72	0
73	48	50	548,6	0,152	0,026	-8,8288	73	0
74	49	51	548,6	0,152	0,026	-17,016	74	0
75	51	52	548,6	0,152	0,026	-3,95711	75	0
76	50	52	548,6	0,152	0,026	-5,26796	76	0
77	51	53	365,9	0,254	0,026	-13,0589	77	0
78	53	54	548,6	0,152	0,026	-4,91781	78	0
79	52	54	396,2	0,152	0,026	-4,888	79	0
80	53	55	853,4	0,203	0,026	-8,14106	80	0
81	55	56	335,3	0,203	0,026	-4,20901	81	0
82	54	56	304,8	0,203	0,026	-4,48426	82	0
83	55	57	762	0,203	0,026	-3,93206	83	0
84	57	58	762	0,203	0,026	-2,01715	84	0
85	56	58	243,8	0,203	0,026	-6,05616	85	0
86	57	59	396,2	0,152	0,026	-1,9149	86	0
87	59	60	304,8	0,152	0,026	0,81669	87	0
88	58	60	335,3	0,254	0,026	-4,49432	88	0
89	59	61	304,8	0,254	0,026	-2,73159	89	0
90	61	62	548,6	0,152	0,026	-1,14654	90	0
91	60	62	335,3	0,152	0,026	-1,8104	91	0
92	61	63	548,6	0,152	0,026	-1,58506	92	0
93	63	64	365,9	0,254	0,026	-0,531945	93	0
94	62	64	548,6	0,152	0,026	-1,09643	94	0
95	63	65	457,2	0,305	0,026	-1,05311	95	0
96	65	66	304,8	0,203	0,026	-0,715525	96	0
97	64	66	365,8	0,203	0,026	-0,764906	97	0
98	65	67	609,6	0,203	0,026	-0,337586	98	0
99	67	68	853,4	0,203	0,026	-0,337586	99	0
100	66	68	335,3	0,203	0,026	-0,139542	100	0
101	2	69	304,8	0,203	0,026	154,868	101	0
102	69	70	762	0,203	0,026	72,7129	102	0
103	4	70	243,8	0,203	0,026	71,5444	103	0
104	70	71	396,2	0,152	0,026	74,182	104	0
105	6	71	304,8	0,152	0,026	67,2733	105	0
106	71	72	335,3	0,254	0,026	109,804	106	0
107	8	72	304,8	0,254	0,026	-13,5147	107	0
108	72	73	548,6	0,152	0,026	39,747	108	0
109	10	73	335,3	0,152	0,026	37,3	109	0
110	73	74	548,6	0,152	0,026	37,4001	110	0

111	12	74	365,9	0,254	0,026	-14,6095	111	0
112	74	75	548,6	0,152	0,026	28,5122	112	0
113	14	75	396,2	0,152	0,026	0,149304	113	0
114	75	76	457,2	0,305	0,026	52,6173	114	0
115	16	76	304,8	0,203	0,026	-18,2987	115	0
116	76	77	365,8	0,203	0,026	38,1291	116	0
117	18	77	609,6	0,203	0,026	-17,3764	117	0
118	77	78	853,4	0,203	0,026	32,711	118	0
119	20	78	335,3	0,203	0,026	7,23039	119	0
120	78	79	304,8	0,203	0,026	34,9913	120	0
121	22	79	762	0,203	0,026	-8,60438	121	0
122	79	80	243,8	0,203	0,026	32,391	122	0
123	24	80	396,2	0,152	0,026	-6,04373	123	0
124	80	81	304,8	0,152	0,026	33,0224	124	0
125	26	81	335,3	0,254	0,026	-26,9699	125	0
126	81	82	304,8	0,254	0,026	32,0603	126	0
127	28	82	548,6	0,152	0,026	-18,9571	127	0
128	82	83	335,3	0,152	0,026	24,3342	128	0
129	30	83	548,6	0,152	0,026	-19,0048	129	0
130	83	84	365,9	0,254	0,026	27,9301	130	0
131	32	84	548,6	0,152	0,026	-17,8698	131	0
132	84	85	396,2	0,152	0,026	18,9072	132	0
133	34	85	853,4	0,203	0,026	-18,244	133	0
134	85	86	335,3	0,203	0,026	27,5479	134	0
135	36	86	304,8	0,203	0,026	-22,0063	135	0
136	86	87	762	0,203	0,026	17,0904	136	0
137	38	87	762	0,203	0,026	-17,6395	137	0
138	87	88	243,8	0,203	0,026	10,0504	138	0
139	40	88	396,2	0,152	0,026	-11,7579	139	0
140	88	89	304,8	0,152	0,026	8,53493	140	0
141	42	89	335,3	0,254	0,026	-35,0434	141	0
142	89	90	304,8	0,254	0,026	-0,511895	142	0
143	44	90	548,6	0,152	0,026	-9,87405	143	0
144	90	91	335,3	0,152	0,026	0,540759	144	0
145	46	91	548,6	0,152	0,026	-9,95894	145	0
146	91	92	365,9	0,254	0,026	-0,949845	146	0
147	48	92	548,6	0,152	0,026	-10,0903	147	0
148	92	93	548,6	0,152	0,026	1,71555	148	0
149	50	93	365,9	0,254	0,026	-20,2177	149	0
150	93	94	548,6	0,152	0,026	-4,51812	150	0
151	52	94	396,2	0,152	0,026	-4,33707	151	0
152	94	95	853,4	0,203	0,026	-4,59908	152	0

153	54	95	335,3	0,203	0,026	-5,32155	153	0
154	95	96	304,8	0,203	0,026	-2,51817	154	0
155	56	96	762	0,203	0,026	-2,6371	155	0
156	96	97	762	0,203	0,026	-2,97998	156	0
157	58	97	243,8	0,203	0,026	-3,579	157	0
158	97	98	396,2	0,152	0,026	-1,46255	158	0
159	60	98	304,8	0,152	0,026	-1,86723	159	0
160	98	99	335,3	0,254	0,026	-2,13401	160	0
161	62	99	304,8	0,254	0,026	-1,86051	161	0
162	99	100	548,6	0,152	0,026	-1,04185	162	0
163	64	100	335,3	0,152	0,026	-0,863467	163	0
164	100	101	548,6	0,152	0,026	-0,972937	164	0
165	66	101	365,9	0,254	0,026	-1,34089	165	0
166	101	102	548,6	0,152	0,026	-0,384474	166	0
167	68	102	548,6	0,152	0,026	-0,477128	167	0
168	69	103	548,6	0,152	0,026	82,1546	168	0
169	103	104	548,6	0,152	0,026	-10,505	169	0
170	70	104	548,6	0,152	0,026	70,0753	170	0
171	104	105	365,9	0,254	0,026	35,7734	171	0
172	71	105	548,6	0,152	0,026	31,6512	172	0
173	105	106	396,2	0,152	0,026	31,886	173	0
174	72	106	853,4	0,203	0,026	56,5425	174	0
175	106	107	335,3	0,203	0,026	65,3764	175	0
176	73	107	304,8	0,203	0,026	39,6468	176	0
177	107	108	762	0,203	0,026	60,1431	177	0
178	74	108	762	0,203	0,026	-5,7215	178	0
179	108	109	243,8	0,203	0,026	62,5465	179	0
180	75	109	396,2	0,152	0,026	-23,9558	180	0
181	109	110	304,8	0,152	0,026	29,5366	181	0
182	76	110	335,3	0,254	0,026	-3,81051	182	0
183	110	111	304,8	0,254	0,026	44,8685	183	0
184	77	111	548,6	0,152	0,026	-11,9583	184	0
185	111	112	335,3	0,152	0,026	30,2497	185	0
186	78	112	548,6	0,152	0,026	4,9501	186	0
187	112	113	365,9	0,254	0,026	44,102	187	0
188	79	113	548,6	0,152	0,026	-6,00409	188	0
189	113	114	457,2	0,305	0,026	73,9131	189	0
190	80	114	304,8	0,203	0,026	-6,67514	190	0
191	114	115	365,8	0,203	0,026	52,6354	191	0
192	81	115	609,6	0,203	0,026	-26,0078	192	0
193	115	116	853,4	0,203	0,026	23,5226	193	0
194	82	116	335,3	0,203	0,026	-11,2311	194	0

116	117	304,8	0,203	0,026	40,3668	195	0
83	117	762	0,203	0,026	-22,6006	196	0
117	118	243,8	0,203	0,026	37,9185	197	0
84	118	396,2	0,152	0,026	-8,84691	198	0
118	119	304,8	0,152	0,026	22,481	199	0
85	119	335,3	0,254	0,026	-26,8847	200	0
119	120	304,8	0,254	0,026	15,0784	201	0
86	120	548,6	0,152	0,026	-11,5488	202	0
120	121	335,3	0,152	0,026	13,8069	203	0
87	121	548,6	0,152	0,026	-10,5995	204	0
121	122	365,9	0,254	0,026	18,7554	205	0
88	122	548,6	0,152	0,026	-10,2425	206	0
122	123	396,2	0,152	0,026	13,3165	207	0
89	123	457,2	0,305	0,026	-25,9966	208	0
123	124	304,8	0,203	0,026	-3,31173	209	0
90	124	365,8	0,203	0,026	-10,9267	210	0
124	125	609,6	0,203	0,026	-5,29776	211	0
91	125	853,4	0,203	0,026	-8,46834	212	0
125	126	335,3	0,203	0,026	5,85614	213	0
92	126	304,8	0,203	0,026	-12,7557	214	0
126	127	762	0,203	0,026	3,39393	215	0
93	127	243,8	0,203	0,026	-13,984	216	0
127	128	396,2	0,152	0,026	-3,72549	217	0
94	128	304,8	0,152	0,026	-4,2561	218	0
128	129	335,3	0,254	0,026	-0,591826	219	0
95	129	304,8	0,254	0,026	-7,40245	220	0
129	130	548,6	0,152	0,026	-1,18029	221	0
96	130	335,3	0,152	0,026	-2,1753	222	0
130	131	548,6	0,152	0,026	-1,16915	223	0
97	131	365,9	0,254	0,026	-5,09642	224	0
131	132	548,6	0,152	0,026	-1,11754	225	0
98	132	396,2	0,152	0,026	-1,19578	226	0
132	133	853,4	0,203	0,026	-1,09183	227	0
99	133	335,3	0,203	0,026	-2,95267	228	0
133	134	304,8	0,203	0,026	-0,932589	229	0
100	134	762	0,203	0,026	-0,932381	230	0
134	135	762	0,203	0,026	-0,822036	231	0
101	135	243,8	0,203	0,026	-1,92935	232	0
135	136	396,2	0,152	0,026	-0,474495	233	0
102	136	304,8	0,152	0,026	-0,861602	234	0
103	137	335,3	0,254	0,026	92,6595	235	0
137	138	304,8	0,254	0,026	35,3292	236	0
	 116 83 117 84 118 85 119 86 120 87 121 88 122 89 123 90 124 91 125 92 126 93 127 94 125 94 125 95 129 96 130 97 131 98 129 96 130 97 131 98 127 99 131 98 127 99 133 100 134 135 128 129 126 126 127 126 127 126 127 126 127<!--</td--><td>1116117831171171188411811811985119119120861201201218712112112288122122123891231231249012412412591125125126921261261279312712712894128128129951291301319713113113298132133134100134134135135136102136103137137138</td><td>116117304,883117762117118243,884118396,2118119304,885119335,3119120304,886120548,6120121335,387121548,6121122365,988122548,6122123396,289123457,2123124304,890124365,8124125609,691125853,4125126335,392126304,812612776293127243,8127128396,294128304,8128129335,395129304,8129130548,697131365,9131132548,697131365,9131132548,698132396,2132133335,3133134304,8100134762134135762101135243,8135136396,2102136304,8103137335,3133134304,8105136304,8105136304,8105136304,8<td>116117304,80,203831177620,203117118243,80,20384118396,20,152118119304,80,15285119335,30,25486120548,60,152120121335,30,15287121548,60,152121122365,90,25488122548,60,152121122396,20,15289123457,20,305123124304,80,20390124365,80,20391125853,40,20392126304,80,203931277620,20393127243,80,203125128304,80,15294128304,80,15295129304,80,15296130335,30,254130131548,60,15297131365,90,254131132548,60,15298132396,20,15298132396,20,203133134304,80,2031341357620,203135136396,20,152136136304,80,203137138304,80,203133134304,80,2</td><td>116117304,80,2030,026831177620,2030,026117118243,80,2030,02684118396,20,1520,026118119304,80,1520,02685119335,30,2540,02686120548,60,1520,026120121335,30,1520,02687121548,60,1520,02688122548,60,1520,02688122548,60,1520,02689123457,20,3050,02690124365,80,2030,02691125853,40,2030,02692126304,80,2030,02693127243,80,2030,02693127243,80,2030,02694128304,80,1520,02695129304,80,1520,02694128304,80,1520,02695129304,80,1520,02696130335,30,1520,02697131365,90,2540,02698132396,20,1520,02698132396,20,1520,02698132396,20,1520,0269913335,30,2540,0269913335,3<td>116117304,80,2030,02640,3668831177620,2030,02637,918584118396,20,1520,026-28,84691118119304,80,1520,026-24,81185119335,30,2540,026-26,8847119120304,80,2540,02615,078486120548,60,1520,026-11,5488120121335,30,1520,02613,806987121548,60,1520,02613,816588122548,60,1520,02613,316589123457,20,3050,026-25,9966123124304,80,2030,026-3,3117390124365,80,2030,026-5,2977691125853,40,2030,026-12,75571261277620,2030,026-13,984127128396,20,1520,026-13,984127128396,20,1520,026-14,27571261277620,2030,026-3,312393127243,80,2030,026-1,984127128396,20,1520,026-1,1691594128304,80,1520,026-1,1691595129304,80,1520,026-1,1691596130335,3<t< td=""><td>116117304,80,2030,02640,3668195831177620,2030,026-22,6006196117118243,80,2030,02637,918519784118396,20,1520,026-8,84691198118119304,80,1520,026-26,8847200119120304,80,2540,02615,078420186120548,60,1520,02611,5488202120121335,30,1520,02613,806920387121548,60,1520,02613,806920387121548,60,1520,02613,316520788122548,60,1520,02613,316520789123457,20,3050,026-25,9966208123124304,80,2030,026-3,3117320990124365,80,2030,026-5,2977621191125853,40,2030,026-10,2677214125126335,30,2030,026-3,7254921794128304,80,2030,026-4,2561218127128396,20,1520,026-4,256121812812935,30,2540,026-7,704245220129130548,60,1520,026-1,16915<!--</td--></td></t<></td></td></td>	1116117831171171188411811811985119119120861201201218712112112288122122123891231231249012412412591125125126921261261279312712712894128128129951291301319713113113298132133134100134134135135136102136103137137138	116117304,883117762117118243,884118396,2118119304,885119335,3119120304,886120548,6120121335,387121548,6121122365,988122548,6122123396,289123457,2123124304,890124365,8124125609,691125853,4125126335,392126304,812612776293127243,8127128396,294128304,8128129335,395129304,8129130548,697131365,9131132548,697131365,9131132548,698132396,2132133335,3133134304,8100134762134135762101135243,8135136396,2102136304,8103137335,3133134304,8105136304,8105136304,8105136304,8 <td>116117304,80,203831177620,203117118243,80,20384118396,20,152118119304,80,15285119335,30,25486120548,60,152120121335,30,15287121548,60,152121122365,90,25488122548,60,152121122396,20,15289123457,20,305123124304,80,20390124365,80,20391125853,40,20392126304,80,203931277620,20393127243,80,203125128304,80,15294128304,80,15295129304,80,15296130335,30,254130131548,60,15297131365,90,254131132548,60,15298132396,20,15298132396,20,203133134304,80,2031341357620,203135136396,20,152136136304,80,203137138304,80,203133134304,80,2</td> <td>116117304,80,2030,026831177620,2030,026117118243,80,2030,02684118396,20,1520,026118119304,80,1520,02685119335,30,2540,02686120548,60,1520,026120121335,30,1520,02687121548,60,1520,02688122548,60,1520,02688122548,60,1520,02689123457,20,3050,02690124365,80,2030,02691125853,40,2030,02692126304,80,2030,02693127243,80,2030,02693127243,80,2030,02694128304,80,1520,02695129304,80,1520,02694128304,80,1520,02695129304,80,1520,02696130335,30,1520,02697131365,90,2540,02698132396,20,1520,02698132396,20,1520,02698132396,20,1520,0269913335,30,2540,0269913335,3<td>116117304,80,2030,02640,3668831177620,2030,02637,918584118396,20,1520,026-28,84691118119304,80,1520,026-24,81185119335,30,2540,026-26,8847119120304,80,2540,02615,078486120548,60,1520,026-11,5488120121335,30,1520,02613,806987121548,60,1520,02613,816588122548,60,1520,02613,316589123457,20,3050,026-25,9966123124304,80,2030,026-3,3117390124365,80,2030,026-5,2977691125853,40,2030,026-12,75571261277620,2030,026-13,984127128396,20,1520,026-13,984127128396,20,1520,026-14,27571261277620,2030,026-3,312393127243,80,2030,026-1,984127128396,20,1520,026-1,1691594128304,80,1520,026-1,1691595129304,80,1520,026-1,1691596130335,3<t< td=""><td>116117304,80,2030,02640,3668195831177620,2030,026-22,6006196117118243,80,2030,02637,918519784118396,20,1520,026-8,84691198118119304,80,1520,026-26,8847200119120304,80,2540,02615,078420186120548,60,1520,02611,5488202120121335,30,1520,02613,806920387121548,60,1520,02613,806920387121548,60,1520,02613,316520788122548,60,1520,02613,316520789123457,20,3050,026-25,9966208123124304,80,2030,026-3,3117320990124365,80,2030,026-5,2977621191125853,40,2030,026-10,2677214125126335,30,2030,026-3,7254921794128304,80,2030,026-4,2561218127128396,20,1520,026-4,256121812812935,30,2540,026-7,704245220129130548,60,1520,026-1,16915<!--</td--></td></t<></td></td>	116117304,80,203831177620,203117118243,80,20384118396,20,152118119304,80,15285119335,30,25486120548,60,152120121335,30,15287121548,60,152121122365,90,25488122548,60,152121122396,20,15289123457,20,305123124304,80,20390124365,80,20391125853,40,20392126304,80,203931277620,20393127243,80,203125128304,80,15294128304,80,15295129304,80,15296130335,30,254130131548,60,15297131365,90,254131132548,60,15298132396,20,15298132396,20,203133134304,80,2031341357620,203135136396,20,152136136304,80,203137138304,80,203133134304,80,2	116117304,80,2030,026831177620,2030,026117118243,80,2030,02684118396,20,1520,026118119304,80,1520,02685119335,30,2540,02686120548,60,1520,026120121335,30,1520,02687121548,60,1520,02688122548,60,1520,02688122548,60,1520,02689123457,20,3050,02690124365,80,2030,02691125853,40,2030,02692126304,80,2030,02693127243,80,2030,02693127243,80,2030,02694128304,80,1520,02695129304,80,1520,02694128304,80,1520,02695129304,80,1520,02696130335,30,1520,02697131365,90,2540,02698132396,20,1520,02698132396,20,1520,02698132396,20,1520,0269913335,30,2540,0269913335,3 <td>116117304,80,2030,02640,3668831177620,2030,02637,918584118396,20,1520,026-28,84691118119304,80,1520,026-24,81185119335,30,2540,026-26,8847119120304,80,2540,02615,078486120548,60,1520,026-11,5488120121335,30,1520,02613,806987121548,60,1520,02613,816588122548,60,1520,02613,316589123457,20,3050,026-25,9966123124304,80,2030,026-3,3117390124365,80,2030,026-5,2977691125853,40,2030,026-12,75571261277620,2030,026-13,984127128396,20,1520,026-13,984127128396,20,1520,026-14,27571261277620,2030,026-3,312393127243,80,2030,026-1,984127128396,20,1520,026-1,1691594128304,80,1520,026-1,1691595129304,80,1520,026-1,1691596130335,3<t< td=""><td>116117304,80,2030,02640,3668195831177620,2030,026-22,6006196117118243,80,2030,02637,918519784118396,20,1520,026-8,84691198118119304,80,1520,026-26,8847200119120304,80,2540,02615,078420186120548,60,1520,02611,5488202120121335,30,1520,02613,806920387121548,60,1520,02613,806920387121548,60,1520,02613,316520788122548,60,1520,02613,316520789123457,20,3050,026-25,9966208123124304,80,2030,026-3,3117320990124365,80,2030,026-5,2977621191125853,40,2030,026-10,2677214125126335,30,2030,026-3,7254921794128304,80,2030,026-4,2561218127128396,20,1520,026-4,256121812812935,30,2540,026-7,704245220129130548,60,1520,026-1,16915<!--</td--></td></t<></td>	116117304,80,2030,02640,3668831177620,2030,02637,918584118396,20,1520,026-28,84691118119304,80,1520,026-24,81185119335,30,2540,026-26,8847119120304,80,2540,02615,078486120548,60,1520,026-11,5488120121335,30,1520,02613,806987121548,60,1520,02613,816588122548,60,1520,02613,316589123457,20,3050,026-25,9966123124304,80,2030,026-3,3117390124365,80,2030,026-5,2977691125853,40,2030,026-12,75571261277620,2030,026-13,984127128396,20,1520,026-13,984127128396,20,1520,026-14,27571261277620,2030,026-3,312393127243,80,2030,026-1,984127128396,20,1520,026-1,1691594128304,80,1520,026-1,1691595129304,80,1520,026-1,1691596130335,3 <t< td=""><td>116117304,80,2030,02640,3668195831177620,2030,026-22,6006196117118243,80,2030,02637,918519784118396,20,1520,026-8,84691198118119304,80,1520,026-26,8847200119120304,80,2540,02615,078420186120548,60,1520,02611,5488202120121335,30,1520,02613,806920387121548,60,1520,02613,806920387121548,60,1520,02613,316520788122548,60,1520,02613,316520789123457,20,3050,026-25,9966208123124304,80,2030,026-3,3117320990124365,80,2030,026-5,2977621191125853,40,2030,026-10,2677214125126335,30,2030,026-3,7254921794128304,80,2030,026-4,2561218127128396,20,1520,026-4,256121812812935,30,2540,026-7,704245220129130548,60,1520,026-1,16915<!--</td--></td></t<>	116117304,80,2030,02640,3668195831177620,2030,026-22,6006196117118243,80,2030,02637,918519784118396,20,1520,026-8,84691198118119304,80,1520,026-26,8847200119120304,80,2540,02615,078420186120548,60,1520,02611,5488202120121335,30,1520,02613,806920387121548,60,1520,02613,806920387121548,60,1520,02613,316520788122548,60,1520,02613,316520789123457,20,3050,026-25,9966208123124304,80,2030,026-3,3117320990124365,80,2030,026-5,2977621191125853,40,2030,026-10,2677214125126335,30,2030,026-3,7254921794128304,80,2030,026-4,2561218127128396,20,1520,026-4,256121812812935,30,2540,026-7,704245220129130548,60,1520,026-1,16915 </td

237	104	138	548,6	0,152	0,026	23,797	237	0
238	138	139	335,3	0,152	0,026	35,3139	238	0
239	105	139	548,6	0,152	0,026	35,5386	239	0
240	139	140	365,9	0,254	0,026	7,23985	240	0
241	106	140	548,6	0,152	0,026	23,0521	241	0
242	140	141	548,6	0,152	0,026	13,6578	242	0
243	107	141	365,9	0,254	0,026	44,8801	243	0
244	141	142	548,6	0,152	0,026	32,1208	244	0
245	108	142	396,2	0,152	0,026	-8,1249	245	0
246	142	143	853,4	0,203	0,026	35,7774	246	0
247	109	143	335,3	0,203	0,026	9,05411	247	0
248	143	144	304,8	0,203	0,026	51,9653	248	0
249	110	144	762	0,203	0,026	-19,1425	249	0
250	144	145	762	0,203	0,026	25,1252	250	0
251	111	145	243,8	0,203	0,026	2,66059	251	0
252	145	146	396,2	0,152	0,026	26,6908	252	0
253	112	146	304,8	0,152	0,026	-8,90224	253	0
254	146	147	335,3	0,254	0,026	43,5334	254	0
255	113	147	304,8	0,254	0,026	-35,8151	255	0
256	147	148	548,6	0,152	0,026	18,0273	256	0
257	114	148	335,3	0,152	0,026	14,6025	257	0
258	148	149	548,6	0,152	0,026	17,4631	258	0
259	115	149	365,9	0,254	0,026	3,10506	259	0
260	149	150	457,2	0,305	0,026	62,1686	260	0
261	116	150	304,8	0,203	0,026	-28,0753	261	0
262	150	151	365,8	0,203	0,026	36,5753	262	0
263	117	151	609,6	0,203	0,026	-20,1522	263	0
264	151	152	853,4	0,203	0,026	26,7939	264	0
265	118	152	335,3	0,203	0,026	6,59054	265	0
266	152	153	304,8	0,203	0,026	33,9212	266	0
267	119	153	762	0,203	0,026	-19,4821	267	0
268	153	154	243,8	0,203	0,026	23,4451	268	0
269	120	154	396,2	0,152	0,026	-10,2774	269	0
270	154	155	304,8	0,152	0,026	18,072	270	0
271	121	155	335,3	0,254	0,026	-15,548	271	0
272	155	156	304,8	0,254	0,026	12,1262	272	0
273	122	156	548,6	0,152	0,026	-4,80362	273	0
274	156	157	335,3	0,152	0,026	10,183	274	0
275	123	157	548,6	0,152	0,026	-9,36833	275	0
276	157	158	365,9	0,254	0,026	11,1781	276	0
277	124	158	548,6	0,152	0,026	-8,94068	277	0
278	158	159	396,2	0,152	0,026	9,31993	278	0

279	125	159	457,2	0,305	0,026	-19,6222	279	0
280	159	160	304,8	0,203	0,026	-3,74165	280	0
281	126	160	365,8	0,203	0,026	-10,2935	281	0
282	160	161	609,6	0,203	0,026	3,46552	282	0
283	127	161	853,4	0,203	0,026	-6,8646	283	0
284	161	162	335,3	0,203	0,026	0,784811	284	0
285	128	162	304,8	0,203	0,026	-7,38976	285	0
286	162	163	762	0,203	0,026	2,63414	286	0
287	129	163	243,8	0,203	0,026	-6,81399	287	0
288	163	164	396,2	0,152	0,026	1,06491	288	0
289	130	164	304,8	0,152	0,026	-2,18644	289	0
290	164	165	335,3	0,254	0,026	1,97941	290	0
291	131	165	304,8	0,254	0,026	-5,14803	291	0
292	165	166	548,6	0,152	0,026	-1,01495	292	0
293	132	166	335,3	0,152	0,026	-1,22148	293	0
294	166	167	548,6	0,152	0,026	0,00999932	294	0
295	133	167	365,9	0,254	0,026	-3,11191	295	0
296	167	168	548,6	0,152	0,026	-0,635671	296	0
297	134	168	396,2	0,152	0,026	-1,04293	297	0
298	168	169	853,4	0,203	0,026	-0,698759	298	0
299	135	169	335,3	0,203	0,026	-2,27689	299	0
300	169	170	304,8	0,203	0,026	-0,0845449	300	0
301	136	170	762	0,203	0,026	-1,3361	301	0
302	137	171	762	0,203	0,026	57,3304	302	0
303	171	172	243,8	0,203	0,026	31,4036	303	0
304	138	172	396,2	0,152	0,026	23,8123	304	0
305	172	173	304,8	0,152	0,026	31,2478	305	0
306	139	173	335,3	0,254	0,026	63,6126	306	0
307	173	174	304,8	0,254	0,026	45,8324	307	0
308	140	174	548,6	0,152	0,026	16,6341	308	0
309	174	175	335,3	0,152	0,026	31,5327	309	0
310	141	175	548,6	0,152	0,026	26,4172	310	0
311	175	176	365,9	0,254	0,026	61,7327	311	0
312	142	176	548,6	0,152	0,026	-11,7816	312	0
313	176	177	548,6	0,152	0,026	24,5938	313	0
314	143	177	365,9	0,254	0,026	-7,13375	314	0
315	177	178	548,6	0,152	0,026	19,9629	315	0
316	144	178	396,2	0,152	0,026	7,69764	316	0
317	178	179	853,4	0,203	0,026	21,1484	317	0
318	145	179	335,3	0,203	0,026	1,09499	318	0
319	179	180	304,8	0,203	0,026	47,709	319	0
320	146	180	762	0,203	0,026	-25,7448	320	0

321	180	181	762	0,203	0,026	30,0118	321	0
322	147	181	243,8	0,203	0,026	-10,309	322	0
323	181	182	396,2	0,152	0,026	25,3445	323	0
324	148	182	304,8	0,152	0,026	15,1667	324	0
325	182	183	335,3	0,254	0,026	46,9431	325	0
326	149	183	304,8	0,254	0,026	-41,6005	326	0
327	183	184	548,6	0,152	0,026	13,0017	327	0
328	150	184	335,3	0,152	0,026	-2,48189	328	0
329	184	185	548,6	0,152	0,026	14,4292	329	0
330	151	185	365,9	0,254	0,026	-10,3709	330	0
331	185	186	548,6	0,152	0,026	16,3728	331	0
332	152	186	548,6	0,152	0,026	-0,536746	332	0
333	186	187	548,6	0,152	0,026	8,34547	333	0
334	153	187	548,6	0,152	0,026	-9,00598	334	0
335	187	188	548,6	0,152	0,026	11,7205	335	0
336	154	188	365,9	0,254	0,026	-4,90419	336	0
337	188	189	548,6	0,152	0,026	10,7748	337	0
338	155	189	396,2	0,152	0,026	-9,60226	338	0
339	189	190	853,4	0,203	0,026	13,9923	339	0
340	156	190	335,3	0,203	0,026	-2,86037	340	0
341	190	191	304,8	0,203	0,026	15,005		
342	157	191	762	0,203	0,026	-10,3634		
343	191	192	762	0,203	0,026	10,5316		
344	158	192	243,8	0,203	0,026	-7,08252		
345	192	193	396,2	0,152	0,026	7,8111		
346	159	193	304,8	0,152	0,026	-6,56065		
347	193	194	335,3	0,254	0,026	13,8704		
348	160	194	304,8	0,254	0,026	-17,5006		
349	194	195	548,6	0,152	0,026	2,34548		
350	161	195	335,3	0,152	0,026	-4,18389		
351	195	196	548,6	0,152	0,026	2,53342		
352	162	196	365,9	0,254	0,026	-9,23909		
353	196	197	548,6	0,152	0,026	2,43576		
354	163	197	457,2	0,305	0,026	-5,24477		
355	197	198	304,8	0,203	0,026	0,328212		
356	164	198	365 <i>,</i> 8	0,203	0,026	-3,10094		
357	198	199	609,6	0,203	0,026	-0,150589		
358	165	199	853 <i>,</i> 4	0,203	0,026	-2,15367		
359	199	200	335,3	0,203	0,026	0,265101		
360	166	200	304,8	0,203	0,026	-2,24643		
361	200	201	762	0,203	0,026	0,202545		
362	167	201	243,8	0,203	0,026	-2,46624		

363	201	202	396,2	0,152	0,026	-0,648392
364	168	202	304,8	0,152	0,026	-0,979845
365	202	203	335,3	0,254	0,026	-0,140084
366	169	203	304,8	0,254	0,026	-2,89111
367	203	204	548,6	0,152	0,026	-0,937537
368	170	204	335,3	0,152	0,026	-1,42064
369	171	205	548,6	0,152	0,026	25,9267
370	205	206	365,9	0,254	0,026	10,3006
371	172	206	548,6	0,152	0,026	23,9682
372	206	207	396,2	0,152	0,026	6,40264
373	173	207	457,2	0,305	0,026	49,0279
374	207	208	304,8	0,203	0,026	36,911
375	174	208	365,8	0,203	0,026	30,9339
376	208	209	609,6	0,203	0,026	41,5863
377	175	209	853,4	0,203	0,026	-3,78279
378	209	210	335,3	0,203	0,026	44,463
379	176	210	304,8	0,203	0,026	25,3573
380	210	211	762	0,203	0,026	39,8871
381	177	211	243,8	0,203	0,026	-2,50288
382	211	212	396,2	0,152	0,026	24,1939
383	178	212	304,8	0,152	0,026	6,51215
384	212	213	335,3	0,254	0,026	48,9826
385	179	213	304,8	0,254	0,026	-25,4655
386	213	214	548,6	0,152	0,026	16,903
387	180	214	335,3	0,152	0,026	-8,0477
388	214	215	548,6	0,152	0,026	18,2322
389	181	215	365,9	0,254	0,026	-5,64174
390	215	216	548,6	0,152	0,026	20,8724
391	182	216	396,2	0,152	0,026	-6,43189
392	216	217	853,4	0,203	0,026	18,4627
393	183	217	335,3	0,203	0,026	-7,65905
394	217	218	304,8	0,203	0,026	36,3186
395	184	218	762	0,203	0,026	-3,9094
396	218	219	762	0,203	0,026	24,5689
397	185	219	243,8	0,203	0,026	-12,3145
398	219	220	396,2	0,152	0,026	20,888
399	186	220	304,8	0,152	0,026	7,49053
400	220	221	335,3	0,254	0,026	26,0937
401	187	221	304,8	0,254	0,026	-12,381
402	221	222	548,6	0,152	0,026	11,59
403	188	222	335,3	0,152	0,026	-3,9585
404	222	223	548,6	0,152	0,026	10,8287

405	189	223	365,9	0,254	0,026	-12,8197
406	223	224	548,6	0,152	0,026	8,06807
407	190	224	548,6	0,152	0,026	-3,87311
408	224	225	365,9	0,254	0,026	13,8019
409	191	225	548,6	0,152	0,026	-5,89004
410	225	226	396,2	0,152	0,026	9,41271
411	192	226	853,4	0,203	0,026	-4,36198
412	226	227	335,3	0,203	0,026	14,4902
413	193	227	304,8	0,203	0,026	-12,62
414	227	228	762	0,203	0,026	7,45655
415	194	228	762	0,203	0,026	-5,9757
416	228	229	243,8	0,203	0,026	5,67766
417	195	229	396,2	0,152	0,026	-4,37183
418	229	230	304,8	0,152	0,026	5,41676
419	196	230	335,3	0,254	0,026	-9,14144
420	230	231	304,8	0,254	0,026	0,496594
421	197	231	548,6	0,152	0,026	-3,13722
422	231	232	335,3	0,152	0,026	2,20838
423	198	232	548,6	0,152	0,026	-2,62214
424	232	233	365,9	0,254	0,026	2,28915
425	199	233	548,6	0,152	0,026	-2,56936
426	233	234	548,6	0,152	0,026	1,35727
427	200	234	548,6	0,152	0,026	-2,18388
428	234	235	548,6	0,152	0,026	1,47127
429	201	235	548,6	0,152	0,026	-1,6153
430	235	236	365,9	0,254	0,026	1,34862
431	202	236	548,6	0,152	0,026	-1,48815
432	236	237	396,2	0,152	0,026	0,919424
433	203	237	853,4	0,203	0,026	-2,09365
434	237	238	335,3	0,203	0,026	0,0723293
435	204	238	304,8	0,203	0,026	-2,35818
436	205	239	762	0,203	0,026	15,6261
437	239	240	762	0,203	0,026	4,56985
438	206	240	243,8	0,203	0,026	27,8661
439	240	241	396,2	0,152	0,026	13,8702
440	207	241	304,8	0,152	0,026	18,5196
441	241	242	335,3	0,254	0,026	19,0403
442	208	242	304,8	0,254	0,026	26,2586
443	242	243	548,6	0,152	0,026	19,8946
444	209	243	335,3	0,152	0,026	-6,65948
445	243	244	548,6	0,152	0,026	18,9039
446	210	244	365,9	0,254	0,026	29,9332

447	244	245	548,6	0,152	0,026	21,8795
448	211	245	457,2	0,305	0,026	13,1904
449	245	246	304,8	0,203	0,026	52,8941
450	212	246	365,8	0,203	0,026	-18,2765
451	246	247	609,6	0,203	0,026	26,3058
452	213	247	853,4	0,203	0,026	6,61403
453	247	248	335,3	0,203	0,026	42,366
454	214	248	304,8	0,203	0,026	-9,37689
455	248	249	762	0,203	0,026	32,0942
456	215	249	243,8	0,203	0,026	-8,28193
457	249	250	396,2	0,152	0,026	24,5096
458	216	250	304,8	0,152	0,026	-4,02222
459	250	251	335,3	0,254	0,026	47,5452
460	217	251	304,8	0,254	0,026	-25,5149
461	251	252	548,6	0,152	0,026	15,4212
462	218	252	335,3	0,152	0,026	7,84028
463	252	253	548,6	0,152	0,026	12,488
464	219	253	365,9	0,254	0,026	-8,63356
465	253	254	548,6	0,152	0,026	17,9635
466	220	254	396,2	0,152	0,026	2,2848
467	254	255	457,2	0,305	0,026	33,5029
468	221	255	304,8	0,203	0,026	2,12264
469	255	256	365,8	0,203	0,026	28,899
470	222	256	609,6	0,203	0,026	-3,1972
471	256	257	853,4	0,203	0,026	16,9653
472	223	257	335,3	0,203	0,026	-10,059
473	257	258	304,8	0,203	0,026	19,4516
474	224	258	762	0,203	0,026	-9,6069
475	258	259	243,8	0,203	0,026	19,1345
476	225	259	396,2	0,152	0,026	-1,50089
477	259	260	304,8	0,152	0,026	10,5154
478	226	260	335,3	0,254	0,026	-9,43944
479	260	261	304,8	0,254	0,026	8,63041
480	227	261	548,6	0,152	0,026	-5,58635
481	261	262	335,3	0,152	0,026	7,20983
482	228	262	548,6	0,152	0,026	-4,19681
483	262	263	365,9	0,254	0,026	8,93373
484	229	263	548,6	0,152	0,026	-4,11094
485	263	264	396,2	0,152	0,026	6,07777
486	230	264	853,4	0,203	0,026	-4,22127
487	264	265	335,3	0,203	0,026	4,90428
488	231	265	304,8	0,203	0,026	-4,849

489	265	266	762	0,203	0,026	3,34921
490	232	266	762	0,203	0,026	-2,70291
491	266	267	243,8	0,203	0,026	2,62393
492	233	267	396,2	0,152	0,026	-1,63748
493	267	268	304,8	0,152	0,026	2,52094
494	234	268	335,3	0,254	0,026	-2,29788
495	268	269	304,8	0,254	0,026	2,12994
496	235	269	548,6	0,152	0,026	-1,49265
497	269	270	335,3	0,152	0,026	1,39634
498	236	270	548,6	0,152	0,026	-1,05895
499	270	271	365,9	0,254	0,026	1,86583
500	237	271	548,6	0,152	0,026	-1,24656
501	271	272	548,6	0,152	0,026	1,13406
502	238	272	365,9	0,254	0,026	-2,28585
503	239	273	548,6	0,152	0,026	11,0563
504	273	274	396,2	0,152	0,026	3,86467
505	240	274	853,4	0,203	0,026	18,5658
506	274	275	335,3	0,203	0,026	15,829
507	241	275	304,8	0,203	0,026	13,3495
508	275	276	762	0,203	0,026	25,0221
509	242	276	762	0,203	0,026	25,4042
510	276	277	243,8	0,203	0,026	39,3068
511	243	277	396,2	0,152	0,026	-5,66877
512	277	278	304,8	0,152	0,026	27,3189
513	244	278	335,3	0,254	0,026	26,9575
514	278	279	304,8	0,254	0,026	54,5594
515	245	279	548,6	0,152	0,026	-17,8242
516	279	280	335,3	0,152	0,026	35,0918
517	246	280	548,6	0,152	0,026	8,31179
518	280	281	365,9	0,254	0,026	46,2745
519	247	281	457,2	0,305	0,026	-9,44621
520	281	282	304,8	0,203	0,026	44,6422
521	248	282	365,8	0,203	0,026	0,894956
522	282	283	609,6	0,203	0,026	35,8662
523	249	283	853,4	0,203	0,026	-0,69735
524	283	284	335,3	0,203	0,026	48,4932
525	250	284	304,8	0,203	0,026	-27,0578
526	284	285	762	0,203	0,026	25,1231
527	251	285	243,8	0,203	0,026	6,60903
528	285	286	396,2	0,152	0,026	20,3041
529	252	286	304,8	0,152	0,026	10,7735
530	286	287	335,3	0,254	0,026	42,0595

531	253	287	304,8	0,254	0,026	-14,109
532	287	288	548,6	0,152	0,026	14,9599
533	254	288	335,3	0,152	0,026	-13,2546
534	288	289	548,6	0,152	0,026	11,7665
535	255	289	365,9	0,254	0,026	6,72653
536	289	290	548,6	0,152	0,026	13,56
537	256	290	396,2	0,152	0,026	8,73655
538	290	291	457,2	0,305	0,026	34,0339
539	257	291	304,8	0,203	0,026	-12,5453
540	291	292	365,8	0,203	0,026	17,3951
541	258	292	609,6	0,203	0,026	-9,28985
542	292	293	853,4	0,203	0,026	13,6437
543	259	293	335,3	0,203	0,026	7,11825
544	293	294	304,8	0,203	0,026	16,4737
545	260	294	762	0,203	0,026	-7,55448
546	294	295	243,8	0,203	0,026	9,42953
547	261	295	396,2	0,152	0,026	-4,16577
548	295	296	304,8	0,152	0,026	8,7625
549	262	296	335,3	0,254	0,026	-5,92071
550	296	297	304,8	0,254	0,026	9,87463
551	263	297	548,6	0,152	0,026	-1,25498
552	297	298	335,3	0,152	0,026	5,56975
553	264	298	548,6	0,152	0,026	-3,04778
554	298	299	365,9	0,254	0,026	6,09073
555	265	299	548,6	0,152	0,026	-3,29393
556	299	300	396,2	0,152	0,026	4,25657
557	266	300	853,4	0,203	0,026	-1,97762
558	300	301	335,3	0,203	0,026	3,58049
559	267	301	304,8	0,203	0,026	-1,53448
560	301	302	762	0,203	0,026	3,18755
561	268	302	333	0,203	0,026	-1,90688
562	302	303	243,8	0,203	0,026	1,78721
563	269	303	396,2	0,152	0,026	-0,759055
564	303	304	304,8	0,152	0,026	1,6214
565	270	304	335,3	0,254	0,026	-1,52844
566	304	305	304,8	0,254	0,026	0,986809
567	271	305	548,6	0,152	0,026	-0,514795
568	305	306	335,3	0,152	0,026	0,578164
569	272	306	548,6	0,152	0,026	-1,15179
570	273	307	365,9	0,254	0,026	7,19159
571	307	308	548,6	0,152	0,026	7,19159
572	274	308	548,6	0,152	0,026	6,60149

573	308	309	365,9	0,254	0,026	13,7931
574	275	309	548,6	0,152	0,026	4,15632
575	309	310	396,2	0,152	0,026	17,9494
576	276	310	853,4	0,203	0,026	11,1196
577	310	311	335,3	0,203	0,026	29,069
578	277	311	304,8	0,203	0,026	6,31918
579	311	312	762	0,203	0,026	35,3881
580	278	312	762	0,203	0,026	-0,282967
581	312	313	243,8	0,203	0,026	35,1052
582	279	313	396,2	0,152	0,026	1,64335
583	313	314	304,8	0,152	0,026	36,7485
584	280	314	335,3	0,254	0,026	-2,87089
585	314	315	304,8	0,254	0,026	33,8776
586	281	315	548,6	0,152	0,026	-7,81391
587	315	316	335,3	0,152	0,026	26,0637
588	282	316	548,6	0,152	0,026	9,67099
589	316	317	365,9	0,254	0,026	35,7347
590	283	317	548,6	0,152	0,026	-13,3244
591	317	318	548,6	0,152	0,026	22,4103
592	284	318	548,6	0,152	0,026	-3,68768
593	318	319	548,6	0,152	0,026	18,7226
594	285	319	548,6	0,152	0,026	11,428
595	319	320	365,9	0,254	0,026	30,1506
596	286	320	548,6	0,152	0,026	-10,9819
597	320	321	396,2	0,152	0,026	19,1687
598	287	321	853,4	0,203	0,026	12,9906
599	321	322	335,3	0,203	0,026	32,1593
600	288	322	304,8	0,203	0,026	-10,0612
601	322	323	762	0,203	0,026	22,0981
602	289	323	762	0,203	0,026	4,93296
603	323	324	243,8	0,203	0,026	27,0311
604	290	324	396,2	0,152	0,026	-11,7373
605	324	325	304,8	0,152	0,026	15,2938
606	291	325	335,3	0,254	0,026	4,09345
607	325	326	304,8	0,254	0,026	19,3872
608	292	326	548,6	0,152	0,026	-5,53849
609	326	327	335,3	0,152	0,026	13,8488
610	293	327	548,6	0,152	0,026	4,28828
611	327	328	365,9	0,254	0,026	18,137
612	294	328	548,6	0,152	0,026	-0,510334
613	328	329	457,2	0,305	0,026	17,6267
614	295	329	304,8	0,203	0,026	-3,49874

615	329	330	365,8	0,203	0,026	14,128
616	296	330	609,6	0,203	0,026	-7,03283
617	330	331	853,4	0,203	0,026	7,09513
618	297	331	335,3	0,203	0,026	3,0499
619	331	332	304,8	0,203	0,026	10,145
620	298	332	762	0,203	0,026	-3,56876
621	332	333	243,8	0,203	0,026	6,57628
622	299	333	396,2	0,152	0,026	-1,45978
623	333	334	304,8	0,152	0,026	5,1165
624	300	334	335,3	0,254	0,026	-1,30154
625	334	335	304,8	0,254	0,026	3,81495
626	301	335	548,6	0,152	0,026	-1,14154
627	335	336	335,3	0,152	0,026	2,67341
628	302	336	548,6	0,152	0,026	-0,50654
629	336	337	365,9	0,254	0,026	2,16687
630	303	337	548,6	0,152	0,026	-0,593246
631	337	338	396,2	0,152	0,026	1,57362
632	304	338	457,2	0,305	0,026	-0,893853
633	338	339	304,8	0,203	0,026	0,679771
634	305	339	365,8	0,203	0,026	-0,10615
635	339	340	609,6	0,203	0,026	0,573621
636	306	340	853,4	0,203	0,026	-0,573621

Tubo	NÓ1	NÓ2	L (m)	D(m)	f	Qobtida(l/s)	NÓ	Demanda (m ³ /s)
1	1	2	457,2	0,305	0,026	567,671	1	0
2	1	3	304,8	0,203	0,026	385,929	2	0
3	3	4	365,8	0,203	0,026	190,241	3	0
4	2	4	609,6	0,203	0,026	254,206	4	0,0315
5	3	5	853,4	0,203	0,026	195,687	5	-0,0345
6	5	6	335,3	0,203	0,026	40,1456	6	0,0252
7	4	6	304,8	0,203	0,026	256,037	7	0
8	5	7	762	0,203	0,026	190,042	8	0
9	7	8	243,8	0,203	0,026	106,721	9	0,0379
10	6	8	396,2	0,152	0,026	132,955	10	0
11	7	9	304,8	0,152	0,026	83,3211	11	0
12	9	10	335,3	0,254	0,026	-57,232	12	0
13	8	10	304,8	0,254	0,026	242,732	13	0,0315
14	9	11	548,6	0,152	0,026	102,653	14	0
15	11	12	335,3	0,152	0,026	-40,9667	15	0,0252
16	10	12	548,6	0,152	0,026	98,3136	16	0
17	11	13	365,9	0,254	0,026	143,62	17	0
18	13	14	548,6	0,152	0,026	6,24709	18	0

19	12	14	396,2	0,152	0,026	54,1873	19	0
20	13	15	457,2	0,305	0,026	105,873	20	0
21	15	16	304,8	0,203	0,026	26,8642	21	0
22	14	16	365,8	0,203	0,026	46,7172	22	0,05
23	15	17	609,6	0,203	0,026	53,8084	23	0
24	17	18	853,4	0,203	0,026	-5,48242	24	0
25	16	18	335,3	0,203	0,026	67,3158	25	0
26	17	19	304,8	0,203	0,026	59,2909	26	0
27	19	20	762	0,203	0,026	27,2425	27	0
28	18	20	243,8	0,203	0,026	82,5821	28	0
29	19	21	396,2	0,152	0,026	32,0483	29	0,05
30	21	22	304,8	0,152	0,026	-13,689	30	0,06
31	20	22	335,3	0,254	0,026	91,7708	31	0
32	21	23	304,8	0,254	0,026	45,7373	32	0
33	23	24	548,6	0,152	0,026	10,0423	33	0
34	22	24	335,3	0,152	0,026	21,9381	34	0
35	23	25	548,6	0,152	0,026	35,6951	35	0
36	25	26	365,9	0,254	0,026	2,05224	36	0
37	24	26	548,6	0,152	0,026	34,2565	37	0
38	25	27	396,2	0,152	0,026	33,6428	38	0,06
39	27	28	853,4	0,203	0,026	-24,4941	39	0,07
40	26	28	335,3	0,203	0,026	64,4502	40	0
41	27	29	304,8	0,203	0,026	58,1369	41	0
42	29	30	762	0,203	0,026	-16,7956	42	0
43	28	30	333	0,203	0,026	63,1326	43	0
44	29	31	243,8	0,203	0,026	24,9325	44	0
45	31	32	396,2	0,152	0,026	-13,1535	45	0
46	30	32	304,8	0,152	0,026	7,62342	46	0
47	31	33	335,3	0,254	0,026	38,086	47	0,07
48	33	34	304,8	0,254	0,026	21,8252	48	0
49	32	34	548,6	0,152	0,026	14,6048	49	0
50	33	35	335,3	0,152	0,026	16,2608	50	0
51	35	36	548,6	0,152	0,026	-0,525075	51	0
52	34	36	365,9	0,254	0,026	52,4884	52	0
53	35	37	548,6	0,152	0,026	16,7859	53	0
54	37	38	548,6	0,152	0,026	-3,99216	54	0
55	36	38	365,9	0,254	0,026	72,102	55	0
56	37	39	548,6	0,152	0,026	20,778	56	0
57	39	40	396,2	0,152	0,026	-20,1183	57	0
58	38	40	853,4	0,203	0,026	20,599	58	0
59	39	41	335,3	0,203	0,026	-29,1037	59	0
60	41	42	304,8	0,203	0,026	-27,5496	60	0
61	40	42	762	0,203	0,026	14,7591	61	0
-----	----	----	-------	-------	-------	------------------	-----	---
62	41	43	762	0,203	0,026	-1,55411	62	0
63	43	44	243,8	0,203	0,026	-6,64334	63	0
64	42	44	396,2	0,152	0,026	11,3991	64	0
65	43	45	304,8	0,152	0,026	5,08922	65	0
66	45	46	335,3	0,254	0,026	-13,8068	66	0
67	44	46	304,8	0,254	0,026	15,3637	67	0
68	45	47	548,6	0,152	0,026	18,896	68	0
69	47	48	335,3	0,152	0,026	-21,6033	69	0
70	46	48	548,6	0,152	0,026	8,98653	70	0
71	47	49	365,9	0,254	0,026	-29,5007	71	0
72	49	50	548,6	0,152	0,026	-15,5689	72	0
73	48	50	548,6	0,152	0,026	-1,30111	73	0
74	49	51	548,6	0,152	0,026	-13,9319	74	0
75	51	52	548,6	0,152	0,026	-5,4581	75	0
76	50	52	548,6	0,152	0,026	4,30138	76	0
77	51	53	365,9	0,254	0,026	-8,47375	77	0
78	53	54	548,6	0,152	0,026	-4,30791	78	0
79	52	54	396,2	0,152	0,026	3,23499	79	0
80	53	55	853,4	0,203	0,026	-4,16585	80	0
81	55	56	335,3	0,203	0,026	-5,46912	81	0
82	54	56	304,8	0,203	0,026	7,77326	82	0
83	55	57	762	0,203	0,026	1,30328	83	0
84	57	58	762	0,203	0,026	-1,27306	84	0
85	56	58	243,8	0,203	0,026	6,43275	85	0
86	57	59	396,2	0,152	0,026	2,57634	86	0
87	59	60	304,8	0,152	0,026	-1,99483	87	0
88	58	60	335,3	0,254	0,026	8,14964	88	0
89	59	61	304,8	0,254	0,026	4,57117	89	0
90	61	62	548,6	0,152	0,026	1,70495	90	0
91	60	62	335,3	0,152	0,026	3,13419	91	0
92	61	63	548,6	0,152	0,026	2,86621	92	0
93	63	64	365,9	0,254	0,026	0,116359	93	0
94	62	64	548,6	0,152	0,026	2,30462	94	0
95	63	65	457,2	0,305	0,026	2,74985	95	0
96	65	66	304,8	0,203	0,026	1,88102	96	0
97	64	66	365,8	0,203	0,026	2,04559	97	0
98	65	67	609,6	0,203	0,026	0,868831	98	0
99	67	68	853,4	0,203	0,026	0,868831	99	0
100	66	68	335,3	0,203	0,026	0,271718	100	0
101	2	69	304,8	0,203	0,026	313 <i>,</i> 465	101	0
102	69	70	762	0,203	0,026	142,372	102	0

103	4	70	243,8	0,203	0,026	156,91	103	0
104	70	71	396,2	0,152	0,026	151,528	104	0
105	6	71	304,8	0,152	0,026	138,028	105	0
106	71	72	335,3	0,254	0,026	215,626	106	0
107	8	72	304,8	0,254	0,026	-3,0568	107	0
108	72	73	548,6	0,152	0,026	84,6086	108	0
109	10	73	335,3	0,152	0,026	87,1865	109	0
110	73	74	548,6	0,152	0,026	70,8526	110	0
111	12	74	365,9	0,254	0,026	3,15958	111	0
112	74	75	548,6	0,152	0,026	47,4969	112	0
113	14	75	396,2	0,152	0,026	13,7172	113	0
114	75	76	457,2	0,305	0,026	90,915	114	0
115	16	76	304,8	0,203	0,026	6,26568	115	0
116	76	77	365,8	0,203	0,026	58,339	116	0
117	18	77	609,6	0,203	0,026	-20,7488	117	0
118	77	78	853,4	0,203	0,026	48,8249	118	0
119	20	78	335,3	0,203	0,026	18,0539	119	0
120	78	79	304,8	0,203	0,026	52,5045	120	0
121	22	79	762	0,203	0,026	6,14364	121	0
122	79	80	243,8	0,203	0,026	51,5613	122	0
123	24	80	396,2	0,152	0,026	-2,27606	123	0
124	80	81	304,8	0,152	0,026	45,2993	124	0
125	26	81	335,3	0,254	0,026	-28,1415	125	0
126	81	82	304,8	0,254	0,026	47,8267	126	0
127	28	82	548,6	0,152	0,026	-23,1765	127	0
128	82	83	335,3	0,152	0,026	32,6981	128	0
129	30	83	548,6	0,152	0,026	-21,2863	129	0
130	83	84	365,9	0,254	0,026	39,5299	130	0
131	32	84	548,6	0,152	0,026	-20,1349	131	0
132	84	85	396,2	0,152	0,026	26,9439	132	0
133	34	85	853,4	0,203	0,026	-16,0584	133	0
134	85	86	335,3	0,203	0,026	35,6087	134	0
135	36	86	304,8	0,203	0,026	-20,1386	135	0
136	86	87	762	0,203	0,026	28,6396	136	0
137	38	87	762	0,203	0,026	-12,4891	137	0
138	87	88	243,8	0,203	0,026	23,7721	138	0
139	40	88	396,2	0,152	0,026	-14,2785	139	0
140	88	89	304,8	0,152	0,026	18,5414	140	0
141	42	89	335,3	0,254	0,026	-24,1896	141	0
142	89	90	304,8	0,254	0,026	14,3347	142	0
143	44	90	548,6	0,152	0,026	-10,6079	143	0
144	90	91	335,3	0,152	0,026	10,5008	144	0

145	46	91	548,6	0,152	0,026	-7,42961	145	0
146	91	92	365,9	0,254	0,026	12,434	146	0
147	48	92	548,6	0,152	0,026	-11,3156	147	0
148	92	93	548,6	0,152	0,026	10,1689	148	0
149	50	93	365,9	0,254	0,026	-21,1714	149	0
150	93	94	548,6	0,152	0,026	5,24565	150	0
151	52	94	396,2	0,152	0,026	-4,39171	151	0
152	94	95	853,4	0,203	0,026	5,28553	152	0
153	54	95	335,3	0,203	0,026	-8,84618	153	0
154	95	96	304,8	0,203	0,026	10,1929	154	0
155	56	96	762	0,203	0,026	-4,12862	155	0
156	96	97	762	0,203	0,026	5,23692	156	0
157	58	97	243,8	0,203	0,026	-2,98995	157	0
158	97	98	396,2	0,152	0,026	3,55347	158	0
159	60	98	304,8	0,152	0,026	3,02062	159	0
160	98	99	335,3	0,254	0,026	5,07567	160	0
161	62	99	304,8	0,254	0,026	2,53453	161	0
162	99	100	548,6	0,152	0,026	2,25903	162	0
163	64	100	335,3	0,152	0,026	0,375384	163	0
164	100	101	548,6	0,152	0,026	1,13276	164	0
165	66	101	365,9	0,254	0,026	3,6549	165	0
166	101	102	548,6	0,152	0,026	0,792659	166	0
167	68	102	548,6	0,152	0,026	1,14055	167	0
168	69	103	548,6	0,152	0,026	171,094	168	0
169	103	104	548,6	0,152	0,026	-28,5512	169	0
170	70	104	548,6	0,152	0,026	147,754	170	0
171	104	105	365,9	0,254	0,026	65,0338	171	0
172	71	105	548,6	0,152	0,026	73,93	172	0
173	105	106	396,2	0,152	0,026	61,2587	173	0
174	72	106	853,4	0,203	0,026	127,96	174	0
175	106	107	335,3	0,203	0,026	131,727	175	0
176	73	107	304,8	0,203	0,026	100,943	176	0
177	107	108	762	0,203	0,026	109,468	177	0
178	74	108	762	0,203	0,026	26,5153	178	0
179	108	109	243,8	0,203	0,026	115,239	179	0
180	75	109	396,2	0,152	0,026	-29,7009	180	0
181	109	110	304,8	0,152	0,026	40,6839	181	0
182	76	110	335,3	0,254	0,026	38,8417	182	0
183	110	111	304,8	0,254	0,026	88,9205	183	0
184	77	111	548,6	0,152	0,026	-11,2347	184	0
185	111	112	335,3	0,152	0,026	44,4141	185	0
186	78	112	548,6	0,152	0,026	14,3743	186	0

187	112	113	365,9	0,254	0,026	63,1441	187	0
188	79	113	548,6	0,152	0,026	7,08687	188	0
189	113	114	457,2	0,305	0,026	94,7355	189	0
190	80	114	304,8	0,203	0,026	3,98586	190	0
191	114	115	365,8	0,203	0,026	75,3923	191	0
192	81	115	609,6	0,203	0,026	-30,6689	192	0
193	115	116	853,4	0,203	0,026	30,2128	193	0
194	82	116	335,3	0,203	0,026	-8,0479	194	0
195	116	117	304,8	0,203	0,026	55,6045	195	0
196	83	117	762	0,203	0,026	-28,1181	196	0
197	117	118	243,8	0,203	0,026	53,3138	197	0
198	84	118	396,2	0,152	0,026	-7,54887	198	0
199	118	119	304,8	0,152	0,026	31,0828	199	0
200	85	119	335,3	0,254	0,026	-24,7233	200	0
201	119	120	304,8	0,254	0,026	29,7097	201	0
202	86	120	548,6	0,152	0,026	-13,1695	202	0
203	120	121	335,3	0,152	0,026	25,049	203	0
204	87	121	548,6	0,152	0,026	-7,62161	204	0
205	121	122	365,9	0,254	0,026	26,274	205	0
206	88	122	548,6	0,152	0,026	-9,04778	206	0
207	122	123	396,2	0,152	0,026	19,0699	207	0
208	89	123	457,2	0,305	0,026	-19,9829	208	0
209	123	124	304,8	0,203	0,026	9,49553	209	0
210	90	124	365,8	0,203	0,026	-6,77396	210	0
211	124	125	609,6	0,203	0,026	12,7475	211	0
212	91	125	853,4	0,203	0,026	-9,36289	212	0
213	125	126	335,3	0,203	0,026	14,2714	213	0
214	92	126	304,8	0,203	0,026	-9,05051	214	0
215	126	127	762	0,203	0,026	16,2668	215	0
216	93	127	243,8	0,203	0,026	-16,2481	216	0
217	127	128	396,2	0,152	0,026	7,82491	217	0
218	94	128	304,8	0,152	0,026	-4,43159	218	0
219	128	129	335,3	0,254	0,026	16,6947	219	0
220	95	129	304,8	0,254	0,026	-13,7535	220	0
221	129	130	548,6	0,152	0,026	4,69787	221	0
222	96	130	335,3	0,152	0,026	0,827348	222	0
223	130	131	548,6	0,152	0,026	2,90865	223	0
224	97	131	365,9	0,254	0,026	-1,30649	224	0
225	131	132	548,6	0,152	0,026	3,2906	225	0
226	98	132	396,2	0,152	0,026	1,49843	226	0
227	132	133	853,4	0,203	0,026	3,18158	227	0
228	99	133	335,3	0,203	0,026	5,35117	228	0

229	133	134	304,8	0,203	0,026	3,62657	229	0
230	100	134	762	0,203	0,026	1,50165	230	0
231	134	135	762	0,203	0,026	2,59794	231	0
232	101	135	243,8	0,203	0,026	3,995	232	0
233	135	136	396,2	0,152	0,026	1,19731	233	0
234	102	136	304,8	0,152	0,026	1,93321	234	0
235	103	137	335,3	0,254	0,026	199,645	235	0
236	137	138	304,8	0,254	0,026	76,5063	236	0
237	104	138	548,6	0,152	0,026	54,1694	237	0
238	138	139	335,3	0,152	0,026	73,7049	238	0
239	105	139	548,6	0,152	0,026	77,7051	239	0
240	139	140	365,9	0,254	0,026	-21,0228	240	0
241	106	140	548,6	0,152	0,026	57,4918	241	0
242	140	141	548,6	0,152	0,026	-5,67797	242	0
243	107	141	365,9	0,254	0,026	123,202	243	0
244	141	142	548,6	0,152	0,026	58,7482	244	0
245	108	142	396,2	0,152	0,026	20,7446	245	0
246	142	143	853,4	0,203	0,026	61,1181	246	0
247	109	143	335,3	0,203	0,026	44,8538	247	0
248	143	144	304,8	0,203	0,026	67,813	248	0
249	110	144	762	0,203	0,026	-9,39491	249	0
250	144	145	762	0,203	0,026	38,3891	250	0
251	111	145	243,8	0,203	0,026	33,2717	251	0
252	145	146	396,2	0,152	0,026	38,6585	252	0
253	112	146	304,8	0,152	0,026	-4,35567	253	0
254	146	147	335,3	0,254	0,026	63,4817	254	0
255	113	147	304,8	0,254	0,026	-24,5045	255	0
256	147	148	548,6	0,152	0,026	24,2522	256	0
257	114	148	335,3	0,152	0,026	23,3291	257	0
258	148	149	548,6	0,152	0,026	23,8782	258	0
259	115	149	365,9	0,254	0,026	14,5105	259	0
260	149	150	457,2	0,305	0,026	83,168	260	0
261	116	150	304,8	0,203	0,026	-33,4395	261	0
262	150	151	365,8	0,203	0,026	48,9526	262	0
263	117	151	609,6	0,203	0,026	-25,8275	263	0
264	151	152	853,4	0,203	0,026	37,0567	264	0
265	118	152	335,3	0,203	0,026	14,6821	265	0
266	152	153	304,8	0,203	0,026	50,0467	266	0
267	119	153	762	0,203	0,026	-23,3502	267	0
268	153	154	243,8	0,203	0,026	39,5483	268	0
269	120	154	396,2	0,152	0,026	-8,50878	269	0
270	154	155	304,8	0,152	0,026	27,888	270	0

271	121	155	335,3	0,254	0,026	-8,84665	271	0
272	155	156	304,8	0,254	0,026	28,8978	272	0
273	122	156	548,6	0,152	0,026	-1,84368	273	0
274	156	157	335,3	0,152	0,026	16,063	274	0
275	123	157	548,6	0,152	0,026	-10,4085	275	0
276	157	158	365,9	0,254	0,026	19,5722	276	0
277	124	158	548,6	0,152	0,026	-10,0259	277	0
278	158	159	396,2	0,152	0,026	13,9221	278	0
279	125	159	457,2	0,305	0,026	-10,8868	279	0
280	159	160	304,8	0,203	0,026	10,042	280	0
281	126	160	365,8	0,203	0,026	-11,0459	281	0
282	160	161	609,6	0,203	0,026	17,8513	282	0
283	127	161	853,4	0,203	0,026	-7,80617	283	0
284	161	162	335,3	0,203	0,026	17,3683	284	0
285	128	162	304,8	0,203	0,026	-13,3014	285	0
286	162	163	762	0,203	0,026	10,4773	286	0
287	129	163	243,8	0,203	0,026	-1,75669	287	0
288	163	164	396,2	0,152	0,026	6,02272	288	0
289	130	164	304,8	0,152	0,026	2,61657	289	0
290	164	165	335,3	0,254	0,026	9,83269	290	0
291	131	165	304,8	0,254	0,026	-1,68845	291	0
292	165	166	548,6	0,152	0,026	3,5396	292	0
293	132	166	335,3	0,152	0,026	1,60745	293	0
294	166	167	548,6	0,152	0,026	1,83296	294	0
295	133	167	365,9	0,254	0,026	4,90618	295	0
296	167	168	548,6	0,152	0,026	2,26089	296	0
297	134	168	396,2	0,152	0,026	2,53028	297	0
298	168	169	853,4	0,203	0,026	2,19859	298	0
299	135	169	335,3	0,203	0,026	5,39563	299	0
300	169	170	304,8	0,203	0,026	0,623693	300	0
301	136	170	762	0,203	0,026	3,13052	301	0
302	137	171	333	0,203	0,026	123,139	302	0
303	171	172	243,8	0,203	0,026	63,9176	303	0
304	138	172	396,2	0,152	0,026	56,9707	304	0
305	172	173	304,8	0,152	0,026	65,3243	305	0
306	139	173	335,3	0,254	0,026	172,433	306	0
307	173	174	304,8	0,254	0,026	91,7691	307	0
308	140	174	548,6	0,152	0,026	42,147	308	0
309	174	175	335,3	0,152	0,026	51,8946	309	0
310	141	175	548,6	0,152	0,026	58,7757	310	0
311	175	176	365,9	0,254	0,026	80,8266	311	0
312	142	176	548,6	0,152	0,026	18,3746	312	0

313	176	177	548,6	0,152	0,026	33,2348	313	0
314	143	177	365,9	0,254	0,026	38,1588	314	0
315	177	178	548,6	0,152	0,026	28,575	315	0
316	144	178	396,2	0,152	0,026	20,029	316	0
317	178	179	853,4	0,203	0,026	30,8627	317	0
318	145	179	335,3	0,203	0,026	33,0023	318	0
319	179	180	304,8	0,203	0,026	70,1934	319	0
320	146	180	762	0,203	0,026	-29,1788	320	0
321	180	181	762	0,203	0,026	38,7168	321	0
322	147	181	243,8	0,203	0,026	14,7249	322	0
323	181	182	396,2	0,152	0,026	34,8602	323	0
324	148	182	304,8	0,152	0,026	23,7031	324	0
325	182	183	335,3	0,254	0,026	60,6457	325	0
326	149	183	304,8	0,254	0,026	-44,7793	326	0
327	183	184	548,6	0,152	0,026	16,2196	327	0
328	150	184	335,3	0,152	0,026	0,775896	328	0
329	184	185	548,6	0,152	0,026	19,1252	329	0
330	151	185	365,9	0,254	0,026	-13,9315	330	0
331	185	186	548,6	0,152	0,026	22,7061	331	0
332	152	186	548,6	0,152	0,026	1,6921	332	0
333	186	187	548,6	0,152	0,026	12,6292	333	0
334	153	187	548,6	0,152	0,026	-12,8518	334	0
335	187	188	548,6	0,152	0,026	18,1459	335	0
336	154	188	365,9	0,254	0,026	3,15148	336	0
337	188	189	548,6	0,152	0,026	19,0115	337	0
338	155	189	396,2	0,152	0,026	-9,85647	338	0
339	189	190	853,4	0,203	0,026	18,3398	339	0
340	156	190	335,3	0,203	0,026	10,9911	340	0
341	190	191	304,8	0,203	0,026	24,2655	341	0
342	157	191	762	0,203	0,026	-13,9177	342	0
343	191	192	762	0,203	0,026	15,7338	343	0
344	158	192	243,8	0,203	0,026	-4,37587	344	0
345	192	193	396,2	0,152	0,026	12,6028	345	0
346	159	193	304,8	0,152	0,026	-7,00666	346	0
347	193	194	335,3	0,254	0,026	23,2262	347	0
348	160	194	304,8	0,254	0,026	-18,8553	348	0
349	194	195	548,6	0,152	0,026	8,10706	349	0
350	161	195	335,3	0,152	0,026	-7,32317	350	0
351	195	196	548,6	0,152	0,026	8,6063	351	0
352	162	196	365,9	0,254	0,026	-6,41035	352	0
353	196	197	548,6	0,152	0,026	6,17872	353	0
354	163	197	457,2	0,305	0,026	2,69787	354	0

355	197	198	304,8	0,203	0,026	14,0427	355	0
356	164	198	365,8	0,203	0,026	-1,1934	356	0
357	198	199	609,6	0,203	0,026	6,91923	357	0
358	165	199	853,4	0,203	0,026	4,60464	358	0
359	199	200	335,3	0,203	0,026	6,56615	359	0
360	166	200	304,8	0,203	0,026	3,31409	360	0
361	200	201	762	0,203	0,026	3,50714	361	0
362	167	201	243,8	0,203	0,026	4,47825	362	0
363	201	202	396,2	0,152	0,026	3,05686	363	0
364	168	202	304,8	0,152	0,026	2,59258	364	0
365	202	203	335,3	0,254	0,026	1,51169	365	0
366	169	203	304,8	0,254	0,026	6,97052	366	0
367	203	204	548,6	0,152	0,026	2,56777	367	0
368	170	204	335,3	0,152	0,026	3,75421	368	0
369	171	205	548,6	0,152	0,026	59,221	369	0
370	205	206	365,9	0,254	0,026	12,1468	370	0
371	172	206	548,6	0,152	0,026	55,564	371	0
372	206	207	396,2	0,152	0,026	-15,3635	372	0
373	173	207	457,2	0,305	0,026	145,988	373	0
374	207	208	304,8	0,203	0,026	81,5134	374	0
375	174	208	365,8	0,203	0,026	82,0214	375	0
376	208	209	609,6	0,203	0,026	59,19	376	0
377	175	209	853,4	0,203	0,026	29,8437	377	0
378	209	210	335,3	0,203	0,026	63,3521	378	0
379	176	210	304,8	0,203	0,026	65,9664	379	0
380	210	211	762	0,203	0,026	47,1665	380	0
381	177	211	243,8	0,203	0,026	42,8186	381	0
382	211	212	396,2	0,152	0,026	33,2749	382	0
383	178	212	304,8	0,152	0,026	17,7413	383	0
384	212	213	335,3	0,254	0,026	60,5827	384	0
385	179	213	304,8	0,254	0,026	-6,32841	385	0
386	213	214	548,6	0,152	0,026	25,4801	386	0
387	180	214	335,3	0,152	0,026	2,2978	387	0
388	214	215	548,6	0,152	0,026	22,4609	388	0
389	181	215	365,9	0,254	0,026	18,5814	389	0
390	215	216	548,6	0,152	0,026	29,2719	390	0
391	182	216	396,2	0,152	0,026	-2,0823	391	0
392	216	217	853,4	0,203	0,026	21,9018	392	0
393	183	217	335,3	0,203	0,026	-0,353226	393	0
394	217	218	304,8	0,203	0,026	44,7279	394	0
395	184	218	762	0,203	0,026	-2,12976	395	0
396	218	219	762	0,203	0,026	32,0199	396	0

397	185	219	243,8	0,203	0,026	-17,5124	397	0
398	219	220	396,2	0,152	0,026	29,4084	398	0
399	186	220	304,8	0,152	0,026	11,769	399	0
400	220	221	335,3	0,254	0,026	38,1182	400	0
401	187	221	304,8	0,254	0,026	-18,3685	401	0
402	221	222	548,6	0,152	0,026	18,624	402	0
403	188	222	335,3	0,152	0,026	2,28579	403	0
404	222	223	548,6	0,152	0,026	18,813	404	0
405	189	223	365,9	0,254	0,026	-9,18474	405	0
406	223	224	548,6	0,152	0,026	12,3743	406	0
407	190	224	548,6	0,152	0,026	5,06539	407	0
408	224	225	365,9	0,254	0,026	20,887	408	0
409	191	225	548,6	0,152	0,026	-5,38595	409	0
410	225	226	396,2	0,152	0,026	12,3061	410	0
411	192	226	853,4	0,203	0,026	-1,24485	411	0
412	226	227	335,3	0,203	0,026	22,7772	412	0
413	193	227	304,8	0,203	0,026	-17,6301	413	0
414	227	228	762	0,203	0,026	13,7029	414	0
415	194	228	762	0,203	0,026	-3,7361	415	0
416	228	229	243,8	0,203	0,026	15,7954	416	0
417	195	229	396,2	0,152	0,026	-7,82241	417	0
418	229	230	304,8	0,152	0,026	14,5435	418	0
419	196	230	335,3	0,254	0,026	-3,98277	419	0
420	230	231	304,8	0,254	0,026	16,9374	420	0
421	197	231	548,6	0,152	0,026	-5,16609	421	0
422	231	232	335,3	0,152	0,026	11,9746	422	0
423	198	232	548,6	0,152	0,026	5,93005	423	0
424	232	233	365,9	0,254	0,026	6,14736	424	0
425	199	233	548,6	0,152	0,026	4,95771	425	0
426	233	234	548,6	0,152	0,026	4,71585	426	0
427	200	234	548,6	0,152	0,026	6,3731	427	0
428	234	235	548,6	0,152	0,026	-3,53653	428	0
429	201	235	548,6	0,152	0,026	4,92853	429	0
430	235	236	365,9	0,254	0,026	-2,89218	430	0
431	202	236	548,6	0,152	0,026	4,13776	431	0
432	236	237	396,2	0,152	0,026	-2,4311	432	0
433	203	237	853,4	0,203	0,026	5,91444	433	0
434	237	238	335,3	0,203	0,026	-2,62443	434	0
435	204	238	304,8	0,203	0,026	6,32198	435	0
436	205	239	762	0,203	0,026	47,0742	436	0
437	239	240	762	0,203	0,026	3,89685	437	0
438	206	240	243,8	0,203	0,026	83,0743	438	0

439	240	241	396,2	0,152	0,026	24,8987	439	0
440	207	241	304,8	0,152	0,026	49,1112	440	0
441	241	242	335,3	0,254	0,026	-12,1521	441	0
442	208	242	304,8	0,254	0,026	104,345	442	0
443	242	243	548,6	0,152	0,026	29,2426	443	0
444	209	243	335,3	0,152	0,026	25,6816	444	0
445	243	244	548,6	0,152	0,026	22,7968	445	0
446	210	244	365,9	0,254	0,026	82,152	446	0
447	244	245	548,6	0,152	0,026	21,5458	447	0
448	211	245	457,2	0,305	0,026	56,7102	448	0
449	245	246	304,8	0,203	0,026	73,315	449	0
450	212	246	365,8	0,203	0,026	-9,56641	450	0
451	246	247	609,6	0,203	0,026	43,2695	451	0
452	213	247	853,4	0,203	0,026	28,7742	452	0
453	247	248	335,3	0,203	0,026	49,3117	453	0
454	214	248	304,8	0,203	0,026	5,31706	454	0
455	248	249	762	0,203	0,026	39,7013	455	0
456	215	249	243,8	0,203	0,026	11,7704	456	0
457	249	250	396,2	0,152	0,026	34,4656	457	0
458	216	250	304,8	0,152	0,026	5,28775	458	0
459	250	251	335,3	0,254	0,026	54,0803	459	0
460	217	251	304,8	0,254	0,026	-23,1793	460	0
461	251	252	548,6	0,152	0,026	18,7859	461	0
462	218	252	335,3	0,152	0,026	10,5782	462	0
463	252	253	548,6	0,152	0,026	15,982	463	0
464	219	253	365,9	0,254	0,026	-14,9008	464	0
465	253	254	548,6	0,152	0,026	25,352	465	0
466	220	254	396,2	0,152	0,026	3,05914	466	0
467	254	255	457,2	0,305	0,026	49,0196	467	0
468	221	255	304,8	0,203	0,026	1,12581	468	0
469	255	256	365,8	0,203	0,026	47,0787	469	0
470	222	256	609,6	0,203	0,026	2,09678	470	0
471	256	257	853,4	0,203	0,026	30,9931	471	0
472	223	257	335,3	0,203	0,026	-2,74609	472	0
473	257	258	304,8	0,203	0,026	33,9051	473	0
474	224	258	762	0,203	0,026	-3,44727	474	0
475	258	259	243,8	0,203	0,026	17,9198	475	0
476	225	259	396,2	0,152	0,026	3,19491	476	0
477	259	260	304,8	0,152	0,026	13,1147	477	0
478	226	260	335,3	0,254	0,026	-11,716	478	0
479	260	261	304,8	0,254	0,026	13,5841	479	0
480	227	261	548,6	0,152	0,026	-8,55576	480	0

481	261	262	335,3	0,152	0,026	12,8304	481	0
482	228	262	548,6	0,152	0,026	-5,82855	482	0
483	262	263	365,9	0,254	0,026	18,1686	483	0
484	229	263	548,6	0,152	0,026	-6,57052	484	0
485	263	264	396,2	0,152	0,026	14,2085	485	0
486	230	264	853,4	0,203	0,026	-6,37668	486	0
487	264	265	335,3	0,203	0,026	13,7291	487	0
488	231	265	304,8	0,203	0,026	-0,203339	488	0
489	265	266	762	0,203	0,026	20,1577	489	0
490	232	266	762	0,203	0,026	11,7573	490	0
491	266	267	243,8	0,203	0,026	-11,4761	491	0
492	233	267	396,2	0,152	0,026	6,38923	492	0
493	267	268	304,8	0,152	0,026	2,23857	493	0
494	234	268	335,3	0,254	0,026	14,6255	494	0
495	268	269	304,8	0,254	0,026	-9,66204	495	0
496	235	269	548,6	0,152	0,026	4,28418	496	0
497	269	270	335,3	0,152	0,026	-2,93419	497	0
498	236	270	548,6	0,152	0,026	3,67667	498	0
499	270	271	365,9	0,254	0,026	19,5592	499	0
500	237	271	548,6	0,152	0,026	6,10777	500	0
501	271	272	548,6	0,152	0,026	-6,13115	501	0
502	238	272	365,9	0,254	0,026	3,69755	502	0
503	239	273	548,6	0,152	0,026	43,1773	503	0
504	273	274	396,2	0,152	0,026	-24,9238	504	0
505	240	274	853,4	0,203	0,026	62,0724	505	0
506	274	275	335,3	0,203	0,026	7,37972	506	0
507	241	275	304,8	0,203	0,026	86,162	507	0
508	275	276	762	0,203	0,026	31,1766	508	0
509	242	276	762	0,203	0,026	62,9501	509	0
510	276	277	243,8	0,203	0,026	54,0078	510	0
511	243	277	396,2	0,152	0,026	32,1275	511	0
512	277	278	304,8	0,152	0,026	13,4517	512	0
513	244	278	335,3	0,254	0,026	83,403	513	0
514	278	279	304,8	0,254	0,026	61,7063	514	0
515	245	279	548,6	0,152	0,026	4,94099	515	0
516	279	280	335,3	0,152	0,026	42,3823	516	0
517	246	280	548,6	0,152	0,026	20,4791	517	0
518	280	281	365,9	0,254	0,026	40,3901	518	0
519	247	281	457,2	0,305	0,026	22,732	519	0
520	281	282	304,8	0,203	0,026	53,3024	520	0
521	248	282	365,8	0,203	0,026	14,9274	521	0
522	282	283	609,6	0,203	0,026	47,3435	522	0

523	249	283	853,4	0,203	0,026	17,0062	523	0
524	283	284	335,3	0,203	0,026	70,9999	524	0
525	250	284	304,8	0,203	0,026	-14,327	525	0
526	284	285	762	0,203	0,026	23,4243	526	0
527	251	285	243,8	0,203	0,026	12,115	527	0
528	285	286	396,2	0,152	0,026	24,6002	528	0
529	252	286	304,8	0,152	0,026	13,3822	529	0
530	286	287	335,3	0,254	0,026	52,8083	530	0
531	253	287	304,8	0,254	0,026	-24,2708	531	0
532	287	288	548,6	0,152	0,026	20,2055	532	0
533	254	288	335,3	0,152	0,026	-20,6084	533	0
534	288	289	548,6	0,152	0,026	17,9338	534	0
535	255	289	365,9	0,254	0,026	3,06668	535	0
536	289	290	548,6	0,152	0,026	24,2098	536	0
537	256	290	396,2	0,152	0,026	18,1824	537	0
538	290	291	457,2	0,305	0,026	65,1513	538	0
539	257	291	304,8	0,203	0,026	-5,6581	539	0
540	291	292	365,8	0,203	0,026	35,3059	540	0
541	258	292	609,6	0,203	0,026	12 <i>,</i> 538	541	0
542	292	293	853,4	0,203	0,026	2,14254	542	0
543	259	293	335,3	0,203	0,026	7,99998	543	0
544	293	294	304,8	0,203	0,026	17,0046	544	0
545	260	294	762	0,203	0,026	-12,1854		
546	294	295	243,8	0,203	0,026	10,9092		
547	261	295	396,2	0,152	0,026	-7,80205		
548	295	296	304,8	0,152	0,026	15,8016		
549	262	296	335,3	0,254	0,026	-11,1667		
550	296	297	304,8	0,254	0,026	19,3304		
551	263	297	548,6	0,152	0,026	-2,61045		
552	297	298	335,3	0,152	0,026	13,8851		
553	264	298	548,6	0,152	0,026	-5,89723		
554	298	299	365,9	0,254	0,026	18,7049		
555	265	299	548,6	0,152	0,026	-6,63194		
556	299	300	396,2	0,152	0,026	17,7909		
557	266	300	853,4	0,203	0,026	11,8911		
558	300	301	335,3	0,203	0,026	14,6848		
559	267	301	304,8	0,203	0,026	27,1746		
560	301	302	762	0,203	0,026	-16,9151		
561	268	302	333	0,203	0,026	1,32609		
562	302	303	243,8	0,203	0,026	-9,03374		
563	269	303	396,2	0,152	0,026	-2,44367		
564	303	304	304,8	0,152	0,026	-5,62151		

565	270	304	335,3	0,254	0,026	-18,8167
566	304	305	304,8	0,254	0,026	-4,94726
567	271	305	548,6	0,152	0,026	-6,10192
568	305	306	335,3	0,152	0,026	-3,20126
569	272	306	548,6	0,152	0,026	-2,43359
570	273	307	365,9	0,254	0,026	68,1012
571	307	308	548,6	0,152	0,026	14,1478
572	274	308	548,6	0,152	0,026	29,7688
573	308	309	365,9	0,254	0,026	38,1014
574	275	309	548,6	0,152	0,026	30,8651
575	309	310	396,2	0,152	0,026	-7,94675
576	276	310	853,4	0,203	0,026	40,1188
577	310	311	335,3	0,203	0,026	8,59899
578	277	311	304,8	0,203	0,026	47,4836
579	311	312	762	0,203	0,026	25,319
580	278	312	762	0,203	0,026	35,1484
581	312	313	243,8	0,203	0,026	41,9084
582	279	313	396,2	0,152	0,026	24,2649
583	313	314	304,8	0,152	0,026	35,4018
584	280	314	335,3	0,254	0,026	22,4713
585	314	315	304,8	0,254	0,026	60,5338
586	281	315	548,6	0,152	0,026	9,81969
587	315	316	335,3	0,152	0,026	34,1153
588	282	316	548,6	0,152	0,026	20,8863
589	316	317	365,9	0,254	0,026	45,4513
590	283	317	548,6	0,152	0,026	-6,65015
591	317	318	548,6	0,152	0,026	22,1082
592	284	318	548,6	0,152	0,026	-16,7514
593	318	319	548,6	0,152	0,026	24,0759
594	285	319	548,6	0,152	0,026	10,9391
595	319	320	365,9	0,254	0,026	43,6632
596	286	320	548,6	0,152	0,026	-14,8259
597	320	321	396,2	0,152	0,026	22,8183
598	287	321	853,4	0,203	0,026	8,33204
599	321	322	335,3	0,203	0,026	48,5358
600	288	322	304,8	0,203	0,026	-18,3368
601	322	323	762	0,203	0,026	33,2866
602	289	323	762	0,203	0,026	-3,20932
603	323	324	243,8	0,203	0,026	45,3798
604	290	324	396,2	0,152	0,026	-22,7591
605	324	325	304,8	0,152	0,026	28,5093
606	291	325	335,3	0,254	0,026	-25,8127

607	325	326	304,8	0,254	0,026	22,9335
608	292	326	548,6	0,152	0,026	-14,2986
609	326	327	335,3	0,152	0,026	16,1313
610	293	327	548,6	0,152	0,026	-6,86205
611	327	328	365,9	0,254	0,026	30,5624
612	294	328	548,6	0,152	0,026	-6,09002
613	328	329	457,2	0,305	0,026	33,3318
614	295	329	304,8	0,203	0,026	-12,6945
615	329	330	365,8	0,203	0,026	25,6584
616	296	330	609,6	0,203	0,026	-14,6955
617	330	331	853,4	0,203	0,026	14,1752
618	297	331	335,3	0,203	0,026	2,83483
619	331	332	304,8	0,203	0,026	24,5994
620	298	332	762	0,203	0,026	-10,7171
621	332	333	243,8	0,203	0,026	17,4487
622	299	333	396,2	0,152	0,026	-5,71792
623	333	334	304,8	0,152	0,026	16,8211
624	300	334	335,3	0,254	0,026	-45,0028
625	334	335	304,8	0,254	0,026	0,277271
626	301	335	548,6	0,152	0,026	-11,2256
627	335	336	335,3	0,152	0,026	-4,14368
628	302	336	548,6	0,152	0,026	-6,55525
629	336	337	365,9	0,254	0,026	1,68086
630	303	337	548,6	0,152	0,026	-5,8559
631	337	338	396,2	0,152	0,026	3,1136
632	304	338	457,2	0,305	0,026	-19,4909
633	338	339	304,8	0,203	0,026	-2,73299
634	305	339	365,8	0,203	0,026	-7,84792
635	339	340	609,6	0,203	0,026	-5,60597
636	306	340	853,4	0,203	0,026	-5,63485
637	307	341	457,2	0,305	0,026	53,9534
638	341	342	304,8	0,203	0,026	31,6377
639	308	342	365,8	0,203	0,026	5,81525
640	342	343	609,6	0,203	0,026	18,1863
641	309	343	853,4	0,203	0,026	6,91324
642	343	344	335,3	0,203	0,026	8,152
643	310	344	304,8	0,203	0,026	23,5731
644	344	345	762	0,203	0,026	10,6329
645	311	345	243,8	0,203	0,026	30,7636
646	345	346	396,2	0,152	0,026	20,4473
647	312	346	304,8	0,152	0,026	18,559
648	346	347	335,3	0,254	0,026	26,4075

649	313	347	304,8	0,254	0,026	30,7715
650	347	348	548,6	0,152	0,026	25,5269
651	314	348	335,3	0,152	0,026	-2,6606
652	348	349	548,6	0,152	0,026	15,0927
653	315	349	365,9	0,254	0,026	36,2382
654	349	350	548,6	0,152	0,026	26,6456
655	316	350	396,2	0,152	0,026	9,55021
656	350	351	457,2	0,305	0,026	54,5772
657	317	351	304,8	0,203	0,026	16,693
658	351	352	365,8	0,203	0,026	47,9407
659	318	352	609,6	0,203	0,026	-18,7191
660	352	353	853,4	0,203	0,026	42,4747
661	319	353	335,3	0,203	0,026	-8,6482
662	353	354	304,8	0,203	0,026	30,3167
663	320	354	762	0,203	0,026	6,01898
664	354	355	243,8	0,203	0,026	37,3483
665	321	355	396,2	0,152	0,026	-17,3854
666	355	356	304,8	0,152	0,026	31,6546
667	322	356	335,3	0,254	0,026	-3,08756
668	356	357	304,8	0,254	0,026	54,8975
669	323	357	548,6	0,152	0,026	-15,3025
670	357	358	335,3	0,152	0,026	26,0541
671	324	358	548,6	0,152	0,026	-5,88867
672	358	359	365,9	0,254	0,026	38,7157
673	325	359	548,6	0,152	0,026	-20,2369
674	359	360	396,2	0,152	0,026	23,8667
675	326	360	853,4	0,203	0,026	-7,49642
676	360	361	335,3	0,203	0,026	28,922
677	327	361	304,8	0,203	0,026	-21,2931
678	361	362	762	0,203	0,026	17,1262
679	328	362	333	0,203	0,026	-8,85944
680	362	363	243,8	0,203	0,026	14,327
681	329	363	396,2	0,152	0,026	-5,02102
682	363	364	304,8	0,152	0,026	14,7601
683	330	364	335,3	0,254	0,026	-3,21234
684	364	365	304,8	0,254	0,026	19,6439
685	331	365	548,6	0,152	0,026	-7,58941
686	365	366	335,3	0,152	0,026	14,2443
687	332	366	548,6	0,152	0,026	-3,56631
688	366	367	365,9	0,254	0,026	19,0893
689	333	367	548,6	0,152	0,026	-5,09033
690	367	368	548,6	0,152	0,026	11,9021

691	334	368	365,9	0,254	0,026	-28,4589
692	368	369	548,6	0,152	0,026	2,83193
693	335	369	396,2	0,152	0,026	-6,80462
694	369	370	853,4	0,203	0,026	1,56726
695	336	370	335,3	0,203	0,026	-12,3798
696	370	371	304,8	0,203	0,026	6,07375
697	337	371	762	0,203	0,026	-7,28864
698	371	372	762	0,203	0,026	3,86997
699	338	372	243,8	0,203	0,026	-13,6443
700	372	373	396,2	0,152	0,026	2,56377
701	339	373	304,8	0,152	0,026	-4,97494
702	373	374	335,3	0,254	0,026	1,76134
703	340	374	304,8	0,254	0,026	-11,2408
704	341	375	548,6	0,152	0,026	22,3157
705	375	376	335,3	0,152	0,026	2,59233
706	342	376	548,6	0,152	0,026	19,2667
707	376	377	365,9	0,254	0,026	7,00419
708	343	377	548,6	0,152	0,026	16,9475
709	377	378	548,6	0,152	0,026	12,9314
710	344	378	548,6	0,152	0,026	21,0922
711	378	379	548,6	0,152	0,026	5,5632
712	345	379	548,6	0,152	0,026	20,9492
713	379	380	365,9	0,254	0,026	20,6421
714	346	380	548,6	0,152	0,026	12,5988
715	380	381	396,2	0,152	0,026	18,2595
716	347	381	853,4	0,203	0,026	31,6521
717	381	382	335,3	0,203	0,026	45,1092
718	348	382	304,8	0,203	0,026	7,77361
719	382	383	762	0,203	0,026	35,8046
720	349	383	762	0,203	0,026	24,6853
721	383	384	243,8	0,203	0,026	50,5017
722	350	384	396,2	0,152	0,026	-18,3814
723	384	385	304,8	0,152	0,026	24,9498
724	351	385	335,3	0,254	0,026	23,3295
725	385	386	304,8	0,254	0,026	61,1646
726	352	386	548,6	0,152	0,026	-13,2531
727	386	387	335,3	0,152	0,026	37,2594
728	353	387	548,6	0,152	0,026	3,50971
729	387	388	365,9	0,254	0,026	45,6876
730	354	388	548,6	0,152	0,026	-1,0126
731	388	389	457,2	0,305	0,026	70,9734
732	355	389	304,8	0,203	0,026	-11,6917

733	389	390	365,8	0,203	0,026	50,0592
734	356	390	609,6	0,203	0,026	-26,3304
735	390	391	853,4	0,203	0,026	30,3026
736	357	391	335,3	0,203	0,026	13,5409
737	391	392	304,8	0,203	0,026	45,9428
738	358	392	762	0,203	0,026	-18,5503
739	392	393	243,8	0,203	0,026	40,1076
740	359	393	396,2	0,152	0,026	-5,38784
741	393	394	304,8	0,152	0,026	27,6562
742	360	394	335,3	0,254	0,026	-12,5517
743	394	395	304,8	0,254	0,026	29,6632
744	361	395	548,6	0,152	0,026	-9,49741
745	395	396	335,3	0,152	0,026	15,6326
746	362	396	548,6	0,152	0,026	-6,0602
747	396	397	365,9	0,254	0,026	23,5747
748	363	397	548,6	0,152	0,026	-5,45417
749	397	398	396,2	0,152	0,026	14,369
750	364	398	457,2	0,305	0,026	-8,09612
751	398	399	304,8	0,203	0,026	11,5288
752	365	399	365,8	0,203	0,026	-2,18983
753	399	400	609,6	0,203	0,026	19,4427
754	366	400	853,4	0,203	0,026	-8,4113
755	400	401	335,3	0,203	0,026	17,7119
756	367	401	304,8	0,203	0,026	2,09689
757	401	402	762	0,203	0,026	17,6435
758	368	402	243,8	0,203	0,026	-19,3888
759	402	403	396,2	0,152	0,026	6,47602
760	369	403	304,8	0,152	0,026	-5,53994
761	403	404	335,3	0,254	0,026	11,1129
762	370	404	304,8	0,254	0,026	-16,8863
763	404	405	548,6	0,152	0,026	1,08656
764	371	405	335,3	0,152	0,026	-5,08487
765	405	406	548,6	0,152	0,026	3,59263
766	372	406	365,9	0,254	0,026	-12,3381
767	406	407	548,6	0,152	0,026	-0,0029902
768	373	407	396,2	0,152	0,026	-4,1725
769	407	408	853,4	0,203	0,026	-0,887518
770	374	408	335,3	0,203	0,026	-9,47948
771	375	409	304,8	0,203	0,026	19,7233
772	409	410	762	0,203	0,026	8,8106
773	376	410	762	0,203	0,026	14,8549
774	410	411	243,8	0,203	0,026	13,1476

775	377	411	396,2	0,152	0,026	11,0203
776	411	412	304,8	0,152	0,026	14,5429
777	378	412	335,3	0,254	0,026	28,4604
778	412	413	304,8	0,254	0,026	25,3567
779	379	413	548,6	0,152	0,026	5,87024
780	413	414	335,3	0,152	0,026	18,6153
781	380	414	548,6	0,152	0,026	14,9815
782	414	415	365,9	0,254	0,026	27,7464
783	381	415	548,6	0,152	0,026	4,80233
784	415	416	548,6	0,152	0,026	16,8696
785	382	416	365,9	0,254	0,026	17,0782
786	416	417	548,6	0,152	0,026	21,8224
787	383	417	396,2	0,152	0,026	9,98825
788	417	418	853,4	0,203	0,026	23,495
789	384	418	335,3	0,203	0,026	7,1705
790	418	419	304,8	0,203	0,026	46,6174
791	385	419	762	0,203	0,026	-12,8854
792	419	420	762	0,203	0,026	26,2732
793	386	420	243,8	0,203	0,026	10,6522
794	420	421	396,2	0,152	0,026	33,7613
795	387	421	304,8	0,152	0,026	-4,91856
796	421	422	335,3	0,254	0,026	43,9968
797	388	422	304,8	0,254	0,026	-26,2984
798	422	423	548,6	0,152	0,026	14,5095
799	389	423	335,3	0,152	0,026	9,22246
800	423	424	548,6	0,152	0,026	18,414
801	390	424	365,9	0,254	0,026	-6,57383
802	424	425	548,6	0,152	0,026	18,2757
803	391	425	548,6	0,152	0,026	-2,09931
804	425	426	548,6	0,152	0,026	10,8971
805	392	426	548,6	0,152	0,026	-12,7151
806	426	427	548,6	0,152	0,026	18,2341
807	393	427	365,9	0,254	0,026	7,0636
808	427	428	548,6	0,152	0,026	16,4112
809	394	428	396,2	0,152	0,026	-14,5587
810	428	429	853,4	0,203	0,026	22,992
811	395	429	335,3	0,203	0,026	4,53317
812	429	430	304,8	0,203	0,026	25,0886
813	396	430	762	0,203	0,026	-14,0023
814	430	431	762	0,203	0,026	16,9583
815	397	431	243,8	0,203	0,026	3,7515
816	431	432	396,2	0,152	0,026	13,5343

817	398	432	304,8	0,152	0,026	-5,25591
818	432	433	335,3	0,254	0,026	24,596
819	399	433	304,8	0,254	0,026	-10,1037
820	433	434	548,6	0,152	0,026	8,71621
821	400	434	335,3	0,152	0,026	-6,6805
822	434	435	548,6	0,152	0,026	8,52102
823	401	435	365,9	0,254	0,026	2,16527
824	435	436	548,6	0,152	0,026	9,98989
825	402	436	457,2	0,305	0,026	-8,22129
826	436	437	304,8	0,203	0,026	10,9807
827	403	437	365,8	0,203	0,026	-10,1768
828	437	438	609,6	0,203	0,026	4,29216
829	404	438	853,4	0,203	0,026	-6,85994
830	438	439	335,3	0,203	0,026	8,69453
831	405	439	304,8	0,203	0,026	-7,59093
832	439	440	762	0,203	0,026	6,17102
833	406	440	243,8	0,203	0,026	-8,74252
834	440	441	396,2	0,152	0,026	1,7562
835	407	441	304,8	0,152	0,026	-3,28797
836	441	442	335,3	0,254	0,026	4,54144
837	408	442	304,8	0,254	0,026	-10,367
838	409	443	548,6	0,152	0,026	10,9127
839	443	444	335,3	0,152	0,026	5,26078
840	410	444	548,6	0,152	0,026	10,5179
841	444	445	365,9	0,254	0,026	1,35742
842	411	445	548,6	0,152	0,026	9,62495
843	445	446	396,2	0,152	0,026	6,74374
844	412	446	457,2	0,305	0,026	17,6465
845	446	447	304,8	0,203	0,026	18,4264
846	413	447	365,8	0,203	0,026	12,6117
847	447	448	609,6	0,203	0,026	27,6096
848	414	448	853,4	0,203	0,026	5,85037
849	448	449	335,3	0,203	0,026	20,2558
850	415	449	304,8	0,203	0,026	15,6791
851	449	450	762	0,203	0,026	28,6219
852	416	450	243,8	0,203	0,026	12,1254
853	450	451	396,2	0,152	0,026	26,2926
854	417	451	304,8	0,152	0,026	8,31566
855	451	452	335,3	0,254	0,026	57,0827
856	418	452	304,8	0,254	0,026	-15,9518
857	452	453	548,6	0,152	0,026	18,1392
858	419	453	335,3	0,152	0,026	7,45879

859	453	454	548,6	0,152	0,026	13,8627
860	420	454	365,9	0,254	0,026	3,16412
861	454	455	548,6	0,152	0,026	25,6285
862	421	455	396,2	0,152	0,026	-15,154
863	455	456	853,4	0,203	0,026	26,5512
864	422	456	335,3	0,203	0,026	3,18894
865	456	457	304,8	0,203	0,026	40,8588
866	423	457	762	0,203	0,026	5,3179
867	457	458	762	0,203	0,026	31,5542
868	424	458	243,8	0,203	0,026	-6,43555
869	458	459	396,2	0,152	0,026	22,1341
870	425	459	304,8	0,152	0,026	5,27929
871	459	460	335,3	0,254	0,026	42,8483
872	426	460	304,8	0,254	0,026	-20,0521
873	460	461	548,6	0,152	0,026	19,9473
874	427	461	335,3	0,152	0,026	8,88652
875	461	462	548,6	0,152	0,026	14,0779
876	428	462	365,9	0,254	0,026	-21,1395
877	462	463	548,6	0,152	0,026	14,9117
878	429	463	548,6	0,152	0,026	2,43663
879	463	464	365,9	0,254	0,026	28,6077
880	430	464	548,6	0,152	0,026	-5,87205
881	464	465	396,2	0,152	0,026	14,2838
882	431	465	853,4	0,203	0,026	7,17549
883	465	466	335,3	0,203	0,026	23,3784
884	432	466	304,8	0,203	0,026	-16,3175
885	466	467	762	0,203	0,026	15,0548
886	433	467	762	0,203	0,026	5,77606
887	467	468	243,8	0,203	0,026	18,2254
888	434	468	396,2	0,152	0,026	-6,48531
889	468	469	304,8	0,152	0,026	13,6129
890	435	469	335,3	0,254	0,026	0,6964
891	469	470	304,8	0,254	0,026	18,7215
892	436	470	548,6	0,152	0,026	-9,21213
893	470	471	335,3	0,152	0,026	12,0287
894	437	471	548,6	0,152	0,026	-3,48825
895	471	472	365,9	0,254	0,026	16,3807
896	438	472	457,2	0,305	0,026	-11,2623
897	472	473	304,8	0,203	0,026	8,78597
898	439	473	365,8	0,203	0,026	-5,06742
899	473	474	609,6	0,203	0,026	6,06553
900	440	474	853,4	0,203	0,026	-4,32771

901	474	475	335,3	0,203	0,026	5,43307
902	441	475	304,8	0,203	0,026	-6,07321
903	475	476	762	0,203	0,026	2,61456
904	442	476	243,8	0,203	0,026	-5,82556
905	443	477	396,2	0,152	0,026	5,65196
906	477	478	304,8	0,152	0,026	2,54544
907	444	478	335 <i>,</i> 3	0,254	0,026	14,4212
908	478	479	304,8	0,254	0,026	13,9564
909	445	479	548,6	0,152	0,026	4,23864
910	479	480	335,3	0,152	0,026	9,08505
911	446	480	548,6	0,152	0,026	5,96392
912	480	481	365,9	0,254	0,026	20,054
913	447	481	548,6	0,152	0,026	3,42845
914	481	482	396,2	0,152	0,026	16,3083
915	448	482	457,2	0,305	0,026	13,2042
916	482	483	304,8	0,203	0,026	21,9403
917	449	483	365,8	0,203	0,026	7,31296
918	483	484	609,6	0,203	0,026	35,8388
919	450	484	853,4	0,203	0,026	14,4546
920	484	485	335,3	0,203	0,026	49,7968
921	451	485	304,8	0,203	0,026	-22,4744
922	485	486	762	0,203	0,026	28,9601
923	452	486	243,8	0,203	0,026	22,9917
924	486	487	396,2	0,152	0,026	22,0224
925	453	487	304,8	0,152	0,026	11,7353
926	487	488	335,3	0,254	0,026	48,9746
927	454	488	304,8	0,254	0,026	-8,60172
928	488	489	548,6	0,152	0,026	22 <i>,</i> 4055
929	455	489	335,3	0,152	0,026	-16,0767
930	489	490	548,6	0,152	0,026	20,2423
931	456	490	365,9	0,254	0,026	-11,1186
932	490	491	548,6	0,152	0,026	19,4693
933	457	491	396,2	0,152	0,026	14,6225
934	491	492	853,4	0,203	0,026	21,6971
935	458	492	335,3	0,203	0,026	2,98451
936	492	493	304,8	0,203	0,026	45,8295
937	459	493	762	0,203	0,026	-15,4349
938	493	494	333	0,203	0,026	33,9689
939	460	494	243,8	0,203	0,026	2,8489
940	494	495	396,2	0,152	0,026	26,782
941	461	495	304,8	0,152	0,026	14,7559
942	495	496	335 <i>,</i> 3	0,254	0,026	34,7457

943	462	496	304,8	0,254	0,026	-21,9733
944	496	497	548,6	0,152	0,026	12,8633
945	463	497	335,3	0,152	0,026	-11,2594
946	497	498	548,6	0,152	0,026	11,0919
947	464	498	365,9	0,254	0,026	8,45188
948	498	499	548,6	0,152	0,026	11,8325
949	465	499	548,6	0,152	0,026	-1,91916
950	499	500	365,9	0,254	0,026	18,9609
951	466	500	548,6	0,152	0,026	-7,99394
952	500	501	396,2	0,152	0,026	13,947
953	467	501	853,4	0,203	0,026	2,60552
954	501	502	335,3	0,203	0,026	14,8685
955	468	502	304,8	0,203	0,026	-1,8728
956	502	503	762	0,203	0,026	17,2299
957	469	503	762	0,203	0,026	-4,4122
958	503	504	243,8	0,203	0,026	12,6448
959	470	504	396,2	0,152	0,026	-2,51931
960	504	505	304,8	0,152	0,026	12,7368
961	471	505	335,3	0,254	0,026	-7,84029
962	505	506	304,8	0,254	0,026	8,6196
963	472	506	548,6	0,152	0,026	-3,66758
964	506	507	335,3	0,152	0,026	5,43239
965	473	507	548,6	0,152	0,026	-2,34698
966	507	508	365,9	0,254	0,026	5,36616
967	474	508	548,6	0,152	0,026	-3,69524
968	508	509	548,6	0,152	0,026	2,70346
969	475	509	548,6	0,152	0,026	-3,2547
970	509	510	548,6	0,152	0,026	1,5882
971	476	510	548,6	0,152	0,026	-3,21101
972	477	511	365,9	0,254	0,026	3,10653
973	511	512	548,6	0,152	0,026	3,10653
974	478	512	396,2	0,152	0,026	3,01032
975	512	513	853,4	0,203	0,026	6,11685
976	479	513	335,3	0,203	0,026	9,10994
977	513	514	304,8	0,203	0,026	15,2268
978	480	514	762	0,203	0,026	-5,005
979	514	515	762	0,203	0,026	10,2218
980	481	515	243,8	0,203	0,026	7,17412
981	515	516	396,2	0,152	0,026	17,3959
982	482	516	304,8	0,152	0,026	7,57224
983	516	517	335,3	0,254	0,026	24,9682
984	483	517	304,8	0,254	0,026	-6,58558

985	517	518	548,6	0,152	0,026	18,3826
986	484	518	335,3	0,152	0,026	0,49663
987	518	519	548,6	0,152	0,026	18,8792
988	485	519	365,9	0,254	0,026	-1,63776
989	519	520	548,6	0,152	0,026	17,2415
990	486	520	457,2	0,305	0,026	29,9294
991	520	521	304,8	0,203	0,026	47,1709
992	487	521	365,8	0,203	0,026	-15,2169
993	521	522	609,6	0,203	0,026	31,954
994	488	522	853,4	0,203	0,026	17,9673
995	522	523	335,3	0,203	0,026	49,9213
996	489	523	304,8	0,203	0,026	-13,9134
997	523	524	762	0,203	0,026	36,0079
998	490	524	243,8	0,203	0,026	-10,3457
999	524	525	396,2	0,152	0,026	25,6622
1000	491	525	304,8	0,152	0,026	12,3947
1001	525	526	335,3	0,254	0,026	38,0569
1002	492	526	304,8	0,254	0,026	-21,1479
1003	526	527	548,6	0,152	0,026	16,9091
1004	493	527	335,3	0,152	0,026	-3,57434
1005	527	528	548,6	0,152	0,026	13,3347
1006	494	528	365,9	0,254	0,026	10,0358
1007	528	529	548,6	0,152	0,026	23,3705
1008	495	529	396,2	0,152	0,026	6,79222
1009	529	530	457,2	0,305	0,026	30,1628
1010	496	530	304,8	0,203	0,026	-0,09084
1011	530	531	365,8	0,203	0,026	30,0719
1012	497	531	609,6	0,203	0,026	-9,48799
1013	531	532	853,4	0,203	0,026	20,5839
1014	498	532	335,3	0,203	0,026	7,71126
1015	532	533	304,8	0,203	0,026	28,2952
1016	499	533	762	0,203	0,026	-9,04757
1017	533	534	243,8	0,203	0,026	19,2476
1018	500	534	396,2	0,152	0,026	-2,98004
1019	534	535	304,8	0,152	0,026	16,2676
1020	501	535	335,3	0,254	0,026	1,68406
1021	535	536	304,8	0,254	0,026	17,9516
1022	502	536	548,6	0,152	0,026	-4,23415
1023	536	537	335,3	0,152	0,026	13,7175
1024	503	537	548,6	0,152	0,026	0,17283
1025	537	538	365,9	0,254	0,026	13,8903
1026	504	538	548,6	0,152	0,026	-2,6113

1027	538	539	396,2	0,152	0,026	11,279
1028	505	539	853,4	0,203	0,026	-3,7231
1029	539	540	335,3	0,203	0,026	7,55591
1030	506	540	304,8	0,203	0,026	-0,48037
1031	540	541	762	0,203	0,026	7,07554
1032	507	541	762	0,203	0,026	-2,28075
1033	541	542	243,8	0,203	0,026	4,79479
1034	508	542	396,2	0,152	0,026	-1,03255
1035	542	543	304,8	0,152	0,026	3,76224
1036	509	543	335,3	0,254	0,026	-2,13944
1037	543	544	304,8	0,254	0,026	1,6228
1038	510	544	548,6	0,152	0,026	-1,6228

ANEXO

Para elucidar o algoritmo do método do gradiente utilizada na implementação neste trabalho. Ela foi descrita por LUVIZOTTO JR. (2012) é desenvolvida a seguir para a rede hidráulica na Figura A.1:

Figura A.1 Exemplo – Rede hidráulica utilizada para aplicação do algoritmo do gradiente

É escrito com base nas equações de carga associadas aos elementos, nas equações de carga E_1 , e, nas equações de continuidade dos nós, equações E_2 . Para a rede hidráulica com um reservatório, quatro nós e cinco elementos tubos, pode-se escrever:

A.1 Equações de energia - E₁

Considerando o nó 1 como nó de carga fixa H_1^* , as equações de carga para os elementos (conservação de carga nos elementos) podem ser escritas como:

$$H_1^* - H_2 = R_1 Q_1^2 \rightarrow R_1 Q_1^2 - H_1^* + H_2 = 0$$
 (A.1)

$$H_2 - H_3 = R_2 Q_2^2 \rightarrow R_3 Q_3^2 - H_2 + H_3 = 0$$
 (A.2)

$$H_2 - H_4 = R_4 Q_4^2 \rightarrow R_4 Q_4^2 - H_2 + H_4 = 0$$
 (A.3)

$$H_4 - H_3 = R_5 Q_5^2 \rightarrow R_5 Q_5^2 - H_4 - H_3 = 0$$
 (A.4)

$$H_1^* - H_3 = R_2 Q_2^2 \rightarrow R_2 Q_2^2 - H_1^* + H_3 = 0$$
 (A.5)

Dispõe-se de E equações de carga (E_1) , com Q_i pelos elementos incógnitas (i = 1,..., E), e H_j (j = 1,..., N - F) cargas nodais incógnitas, onde:

- E = Número total de elemento da rede;
- N = Número total de nós da rede;
- F = Número total de nós com cargas fixas.

As equações anteriores podem ser escritas na forma matricial:

$$\begin{cases} R_{1}Q_{1} & 0 & 0 & 0 & 0 \\ 0 & R_{2}Q_{2} & 0 & 0 & 0 \\ 0 & 0 & R_{3}Q_{3} & 0 & 0 \\ 0 & 0 & 0 & R_{4}Q_{4} & 0 \\ 0 & 0 & 0 & 0 & R_{5}Q_{5} \end{cases} \begin{cases} Q_{1} \\ Q_{2} \\ Q_{3} \\ Q_{4} \\ Q_{5} \end{cases} + \begin{cases} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{cases} \begin{cases} H_{2} \\ H_{3} \\ H_{4} \end{cases} + \begin{cases} -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{cases} \begin{cases} H_{1}^{*} \\ H_{1}^{*} \\ = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$$
(A.6)

Matriz diagonal com coeficientes de carga (dimensão: ExE)

$$C_{11} = \begin{cases} R_1 Q_1 & 0 & 0 & 0 & 0 \\ 0 & R_2 Q_2 & 0 & 0 & 0 \\ 0 & 0 & R_3 Q_3 & 0 & 0 \\ 0 & 0 & 0 & R_4 Q_4 & 0 \\ 0 & 0 & 0 & 0 & R_5 Q_5 \end{cases}$$
(A.7)

Matriz de conexão dos nós livres (dimensão: Ex(J-F))

$$C_{12} = \begin{cases} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{cases}$$
(A.8)

Os elementos da matriz C_{12} são escritos na forma:

$$C_{12}(\mathbf{i},\mathbf{j}) = \begin{cases} 1 & \text{se a vazão no tubo i chega ao nó j} \\ 0 & \text{se o tubo i e o nó j não estão conectados} \\ -1 & \text{se a vazão no tubo i sai do nó j} \end{cases}$$

Matriz de conexão dos nós fixos (dimensão: ExF)

$$C_{10} = \begin{cases} -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{cases}$$

(A.9)

Os elementos da matriz C_{10} são escritos na forma:

$$C_{10}(\mathbf{i},\mathbf{j}) = \begin{cases} 1 & \text{se a vazão no tubo i chega ao nó j} \\ 0 & \text{se o tubo i e o nó j não estão conectados} \\ -1 & \text{se a vazão no tubo i sai do nó j} \end{cases}$$

$$\{C_{11}\}\{Q\} + \{C_{12}\}\{H\} + \{C_{10}\}\{H^*\} = 0 \implies \text{Equações } E_1$$
 (A.10)

A.2 Equações de continuidade - E₂

Escrevendo as equações de continuidade (N - F) para os nós que não possuam cargas fixas, obtém-se:

(Nó 2)
$$Q_1 - Q_3 - Q_4 - D_2 = 0$$
 (A.11)

(Nó 3)
$$Q_2 + Q_3 + Q_5 - D_3 = 0$$
 (A.12)

(Nó 4)
$$Q_4 - Q_5 - D_4 = 0$$
 (A.13)

As equações anteriores podem ser escritas na forma matricial:

$$\begin{cases} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{cases} \begin{cases} Q_2 \\ Q_3 \\ Q_4 \\ Q_5 \end{cases} + \begin{cases} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{cases} \begin{cases} D_2 \\ D_3 \\ D_4 \end{cases} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$
(A.14)

Transposta da matriz de conexão (dimensão: $Ex(J - F) = C_{12}^T$)

$$C_{21} = \begin{cases} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{cases}$$
(A.15)

Matriz sinal das demandas (dimensão: (J - F)x(J - F))

$$C_{20} = \begin{cases} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{cases}$$
(A.16)

Os elementos da matriz C₂₀ são escritos na forma:

$$C_{20}(\mathbf{i},\mathbf{j}) = \begin{cases} 1 & \text{se a vazão no tubo i chega ao nó j} \\ 0 & \text{se o tubo i e o nó j não estão conectados} \\ -1 & \text{se a vazão no tubo i sai do nó j} \end{cases}$$

$$\{C_{21}\}\{Q\} + \{C_{20}\}\{D\} = \{0\} \implies \text{Equações } E_2$$
 (A.17)

Com base em uma estimativa inicial, as equações E_1 e E_2 dificilmente resultaram nos vetores nulos esperados, mas sim em valores residuais. O método gradiente se baseia num processo iterativo que busca minimizar estes resíduos. Assim, para uma iteração K, os resíduos são avaliados com:

$$E_{1}^{K} = \{C_{11}\}^{K} \{Q\}^{K} + \{C_{12}\} \{H\}^{K} + \{C_{10}\} \{H^{*}\}$$
(A.18)

$$E_2^K = \{C_{21}\}\{Q\}^K + \{C_{20}\}\{D\}$$
(A.19)

Onde, o resíduo para a iteração (K+1), pode ser avaliado (em buscar a minimização) através da aproximação pelo gradiente:

$$E_{1}^{K+1} = E_{1}^{K} + \left(\frac{\partial E_{1}}{\partial Q}\right)^{K} dQ + \left(\frac{\partial E_{1}}{\partial H}\right)^{K} dH$$
(A.20)
$$E_{2}^{K+1} = E_{2}^{K} + \left(\frac{\partial E_{2}}{\partial Q}\right)^{K} dQ + \left(\frac{\partial E_{2}}{\partial H}\right)^{K} dH$$
(A.21)

Desta forma a proposição do método é encontrar através das correções de vazão e de carga o mínimo dos resíduos, ou seja, $E^{K+1} = 0$. As derivadas parciais das equações anteriores podem ser avaliadas como:

$$\frac{\partial E_1}{\partial Q} = \{2R|Q|\} = \{G\} \qquad (A.22) \qquad \qquad \frac{\partial E_1}{\partial H} = \{C_{12}\} \qquad (A.24)$$

$$\frac{\partial E_2}{\partial Q} = \{C_{21}\} \qquad (A.23) \qquad \frac{\partial E_2}{\partial H} = 0 \qquad (A.25)$$
Onde:
$$\{G\} = \begin{cases} 2R_1 |Q_1| & 0 & 0 & 0 & 0 \\ 0 & 2R_2 |Q_2| & 0 & 0 & 0 \\ 0 & 0 & 2R_3 |Q_3| & 0 & 0 \\ 0 & 0 & 0 & 2R_4 |Q_4| & 0 \\ 0 & 0 & 0 & 0 & 2R_5 |Q_5| \end{cases} \qquad (A.26)$$

logo, as equações (A.20) e (A.21) resultam em:

$$E_{1}^{K+1} = \{C_{11}\}^{K} \{Q\}^{K} + \{C_{12}\} \{H\}^{K} + \{C_{10}\} \{H^{*}\} + \{G\} dQ + \{C_{12}\} dH$$
(A.27)

$$E_{2}^{K+1} = \{C_{21}\}^{K} \{Q\}^{K} + \{C_{20}\} \{D\} + \{C_{21}\} dQ$$
(A.28)

Aproximando os diferenciais, pode-se escrever:

$$dQ = \{Q\}^{K+1} - \{Q\}^{K}$$
(A.29)

$$dH = \{H\}^{K+1} - \{H\}^{K}$$
(A.30)

Substituindo (A.29) e (A.30) em (A.27), tem-se respectivamente, as equações (A.31) e (A.32):

$$E_{1}^{K+1} = \{C_{11}\}^{K} \{Q\}^{K} + \{C_{12}\} \{H\}^{K} + \{C_{10}\} \{H^{*}\} + \{G\} \{Q\}^{K+1} - \{Q\}^{K}\} + \{C_{12}\} \{H\}^{K+1} - \{H\}^{K}\}$$

$$E_{1}^{K+1} = \{C_{11}\}^{K} \{Q\}^{K} + \{C_{10}\} \{H^{*}\} + \{G\} \{Q\}^{K+1} - \{G\} \{Q\}^{K} + \{C_{12}\} \{H\}^{K+1}$$
(A.32)

De forma análoga, substituindo (A.29) em (A.28):

$$E_{2}^{K+1} = \{C_{21}\}^{K} \{Q\}^{K} + \{C_{20}\} \{D\} + \{C_{21}\} (\{Q\}^{K+1} - \{Q\}^{K})$$
(A.33)

$$E_{2}^{K+1} = \{C_{20}\}\{D\} + \{C_{21}\}\{Q\}^{K+1}$$
(A.34)

Admitindo atingindo o objetivo ($E_2^{K+1} = 0$), então:

$$\{C_{21}\}\{Q\}^{K+1} = -\{C_{20}\}\{D\}$$
(A.35)

Admitindo atingido o objetivo também para E_1^{K+1} , $(E_1^{K+1} = 0)$, então multiplicando (A.32) por $\{G\}^{-1}$:

$$\{G\}^{-1}\{C_{11}\}^{K}\{Q\}^{K} + \{G\}^{-1}\{C_{10}\}\{H^{*}\} + \{Q\}^{K+1} - \{Q\}^{K} + \{G\}^{-1}\{C_{12}\}\{H\}^{K+1} = 0$$
(A.36)

Este resultado multiplicado pela matriz $\{C_{21}\}$, permite escrever a equação (A.37) abaixo:

$$\{C_{21}\}\{G\}^{-1}\{C_{11}\}^{K}\{Q\}^{K} + \{C_{21}\}\{G\}^{-1}\{C_{10}\}\{H^{*}\} + \{C_{21}\}\{Q\}^{K+1} - \{C_{21}\}\{Q\}^{K} + \{C_{21}\}\{G\}^{-1}\{C_{12}\}\{H\}^{K+1} = 0$$

Substituindo o valor encontrado em (A.34) na equação anterior e rearranjando os termos, obtém-se a equação (A.38) abaixo:

$$\{C_{21}\}\{G\}^{-1}\{C_{12}\}\{H\}^{K+1} = \{C_{21}\}\{Q\}^{K} - \{\underline{C_{21}}\}\{Q\}^{K+1} - \{C_{21}\}\{G\}^{-1}\{C_{11}\}^{K}\{Q\}^{K} - \{C_{21}\}\{G\}^{-1}\{C_{10}\}\{H^{*}\} - \{C_{20}\}\{D\}$$

$$\{C_{21}\}\{G\}^{-1}\{C_{12}\}\{H\}^{K+1} = \{\underbrace{C_{21}}\{Q\}^{K} + \{\underbrace{C_{20}}\{D\} - \{C_{21}\}\{G\}^{-1}\{C_{11}\}^{K}\{Q\}^{K} - \{\underbrace{C_{21}}\{G\}^{-1}\{C_{10}\}\{H^{*}\}(A.37)\} = E_{2}^{K}$$

$$\{C_{21}\}\{G\}^{-1}\{C_{12}\}\{H\}^{K+1} = E_2^K - \{C_{21}\}\{G\}^{-1}\{C_{11}\}^K\{Q\}^K - \{C_{21}\}\{G\}^{-1}\{C_{10}\}\{H^*\}$$
(A.38)

Chamando o produto de matrizes, que multiplica as cargas incógnitas do primeiro termo de $\{J\}$:

$$\{J\} = \{C_{21}\}\{G\}^{-1}\{C_{12}\}$$
(A.39)

E o vetor resultante do segundo membro da equação de $\{R\}$:

$$\{R\} = E_2^K - \{C_{21}\}\{G\}^{-1}\{C_{11}\}^K\{Q\}^K - \{C_{21}\}\{G\}^{-1}\{C_{10}\}\{H^*\}$$
(A.40)

Pode-se escrever o sistema de equações que permite determinar as incógnitas cargas na iteração K+1 de forma simplificada:

$$JH^{K+1} = R \tag{A.41}$$

Onde a matriz J se associa à matriz Jacobiana e pode ser escrita como:

$$J_{ij} = \begin{cases} i = j \Longrightarrow J_{ij} = \sum_{K \in i} \frac{1}{G_{iK}} \\ i \neq j \Longrightarrow J_{ij} = -\frac{1}{G_{ij}} \end{cases}$$
(A.42)

Para o exemplo apresentado na Figua A.1que se vem analisando:

$$\begin{pmatrix} 1/G_1 & 0 & -1/G_3 & -1/G_4 & 0 \\ 0 & 1/G_2 & 1/G_3 & 0 & 1/G_5 \\ 0 & 0 & 0 & 1/G_4 & -1/G_5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix} =$$

$$\begin{cases} ({}^{1}/_{G_{1}} + {}^{1}/_{G_{3}}) & {}^{1}/_{G_{4}} & ({}^{1}/_{G_{4}} - {}^{1}/_{G_{3}}) \\ ({}^{-1}/_{G_{2}} - {}^{1}/_{G_{3}}) & ({}^{1}/_{G_{2}} + {}^{1}/_{G_{5}}) & {}^{1}/_{G_{3}} \\ - {}^{1}/_{G_{4}} & ({}^{-1}/_{G_{4}} - {}^{1}/_{G_{5}}) & {}^{-1}/_{G_{4}} \end{cases}$$
(A.43)

Os elementos do vetor R, podem ser escritos como:

$$R_{i} = \left(\sum_{K \in i} Q_{K} - D_{i}\right) + \sum_{K \in i} \frac{1}{G_{K}} R_{K} Q_{K} |Q_{K}| + \sum_{j \in i} \frac{H_{j}^{*}}{G_{K}} \operatorname{sgn}(Q_{K})$$
(A.44)

Uma vez obtida a solução para o sistema de equações dada por (A.41), para a determinação do vetor de cargas, pode-se obter as vazões através:

$$\{Q\}^{K+1} = \{Q\}^{K} - \{G\}^{-1}\{C_{11}\}^{K}\{Q\}^{K} - \{G\}^{-1}\{C_{10}\}\{H^{*}\} - \{G\}^{-1}\{C_{12}\}\{H\}^{K+1} = 0$$
(A.45)

Que pode ser escrita de forma explicita como:

$$Q_{ij}^{K+1} = Q_{ij}^{K} - \left[\frac{1}{G_{ij}} \left[C_{11}\right]_{ij} Q_{ij}^{K} sinal(Q_{ij}^{K})\right] - \frac{1}{G_{ij}} \left(H_{i}^{K+1} - H_{j}^{K+1}\right)$$
(A.46)