UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL

ANÁLISE TEÓRICA DE VIGAS DE SEÇÃO T EM MADEIRA-CONCRETO COM LIGAÇÃO SEMI-RÍGIDA POR PREGOS

MARCELO TACITANO

Campinas, 2000

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL

ANÁLISE TEÓRICA DE VIGAS DE SEÇÃO T EM MADEIRA-CONCRETO COM LIGAÇÃO SEMI-RÍGIDA POR PREGOS

MARCELO TACITANO

UNICAMP 3IBLIOTECA CENTRA SECÃO CIRCULANT

Orientador : Prof.º Dr. Mauro Augusto Demarzo

Atesto que esta é a versão definitiva da dissertação/tese. Prof. Dr. 4318 Matrícula:

000 1956 6

Dissertação de Mestrado apresentada à Faculdade de Engenharia Civil da Universidade Estadual de Campinas, como parte dos requisitos, para a obtenção do título de Mestre em Engenharia Civil, área de concentração: Estruturas.

Campinas, 2000

ONICAMP

ii

CM-00153359-0

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

Tacitano, Marcelo Análise teórica de vigas de seção T em madeiraconcreto com ligação semi-rígida por pregos / Marcelo Tacitano.--Campinas, SP: [s.n.], 2000.
Orientador: Mauro Augusto Demarzo Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil.
1. Construção mista. 2. Madeira. 3. Concreto. 4. Materiais compostos. 5. Engenharia de estruturas. 6. Vigas - Juntas. I. Demarzo, Mauro Augusto. II. Universidade Estadual de Campinas. Faculdade de Engenharia Civil. III. Título.

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL

ANÁLISE TEÓRICA DE VIGAS DE SEÇÃO T EM MADEIRA-CONCRETO COM LIGAÇÃO SEMI-RÍGIDA POR PREGOS

MARCELO TACITANO

Dissertação de Mestrado aprovada pela Banca Examinadora, constituída por:

Prof.º Dr. Mauro Augusto Demarzo

Presidente e Orientador Faculdade de Engenharia Civil da UNICAMP

Prof.º Dr. Carlito Calil Júnior Escola de Engenharia de São Carlos da USP

UNICAMP 3IBLIOTECA CENTR/ SEÇÃO CIRCULANT

Prof.º Dr. Nilson Tadeu Mascia

Faculdade de Engenharia Civil da UNICAMP

Campinas, 11 de fevereiro de 2000

Dedicatória

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT

À minha namorada Alessandra e aos meus pais Miguel e Nanci

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT

Agradecimentos

Meus sinceros agradecimentos a todos aqueles que, direta ou indiretamente, contribuíram para a realização deste trabalho e, em especial:

Ao Prof.º Dr. Mauro Augusto Demarzo, pela orientação cuidadosa e dedicada e pela amizade e apoio no transcorrer deste trabalho.

Aos Prof.⁹⁸ Dr. Renato Soliani e Dr. Mário Cavichia pelo auxílio e colaboração na manipulação do software *Mathematica*.

Aos professores, funcionários e colegas da Escola Politécnica da Universidade de São Paulo e da Faculdade de Engenharia Civil da Universidade Estadual de Campinas, pelos ensinamentos transmitidos e gratificante convivência.

À CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, pela concessão de bolsa de estudos e auxílio financeiro à pesquisa.

Ao amigo Júlio Soriano pela imensurável cooperação e auxílio junto ao tema da pesquisa, além da inigualável amizade e caráter demonstrados.

À minha querida namorada Alessandra pela paciência, compreensão, auxílio e carinho que me dedicou durante todo o tempo.

E aos meus pais Miguel e Nanci pelo incentivo, colaboração, dedicação e amor sem limites.

Epígrafe

"Toda vitória e todo o progresso humano, repousa na força interior"

Montessori

SUMÁRIO

Folha de aprovação	iii
Dedicatória	iv
Agradecimentos	v
Epígrafe	vi
Sumário	vii
Lista de figuras	xii
Lista de tabelas	xvi
Lista de símbolos	xvii
Resumo	xxiii
Abstract	xxiv
1 INTRODUÇÃO	1
1.1 Viabilidade de vigas mistas	1
1.2 Vantagens no comportamento das estruturas madeira-concreto	3
1.2.1 Vibrações	3
1.2.2 Isolamento acústico	3
1.2.3 Resistência ao fogo	4
1.2.4 Durabilidade	4
1.3 Custo	4
1.4 Utilizações	5
1.4.1 Vigas	5
1.4.2 Lajes	5
1.4.3 Vigas parede	6
1.5 Tipos de conexão	7

1.6.1 Parâmetros dos materiais e módulo de deslizamento 11 1.6.2 Estado último 11 1.6.3 Fluência 11 1.6.4 Retração do concreto 11 1.6.4 Retração do concreto 11 1.7 Algumas estruturas mistas de madeira-concreto já construidas 12 2 OBJETIVOS 22 2.1 Parte teórica 22 2.2 Parte experimental 22 2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1 Conectores 20 3.2.1 A feótos e se parâmetros geométricos 20 3.2.1 J Eoria de vigas mistas submetidas à flexão 30 3.2.1 4 Casos limites 44 3.2.1.4 Casos limites 44 3.2.1 Al Seção totalmente composta 44 3.2.2 Conexão semi-rigida 44 3.2.2.1 Objetivos 44 3.2.2.4 As tensões 54 3.2.2.4 A stensões 54 3.2.2.4 A tensões nos extremos 55	1.6 Performance mecânica	10
1.6.2 Estado último 11 1.6.3 Fluência 11 1.6.4 Retração do concreto 11 1.7 Algumas estruturas mistas de madeira-concreto já construidas 11 2 OBJETIVOS 22 2.1 Parte teórica 22 2.2 Parte experimental 22 2.3 Análise dos resultados 23 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 23 3.1 Introdução 23 3.2 Métodos baseados em equações de equilíbrio 23 3.2.1 Método exato 23 3.2.1 Concetores 20 3.2.1 J Concetores 20 3.2.1 J Eoria de vigas mistas submetidas à flexão 33 3.2.1.4 Casos limites 44 3.2.1.4 Seção não composta 44 3.2.1.4 Seção não composta 44 3.2.2.1 Objetivos 44 3.2.2.2 Conexão semi-rigida 47 3.2.2.4 A stensões 54 3.2.2.4.1 Tensões nos centros de gravidade 55 3.2.2.4.2 Tensões nos extremos 53 3.2.2.5 Dedução da curvatura 54 3.2.6 Comparação com PFEIL e DIN 1052/69 64	1.6.1 Parâmetros dos materiais e módulo de deslizamento	10
1.6.3 Fluência 1 1.6.4 Retração do concreto 1 1.7 Algumas estruturas mistas de madeira-concreto já construídas 1 2 OBJETIVOS 2 2.1 Parte teórica 2 2.2 Parte experimental 2 2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilibrio 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1.1 Conectores 2 3.2.1.2 Hipóteses e parâmetros geométricos 2 3.2.1.4 Casos limites 4 3.2.1.4 Seção não composta 4 3.2.1.4 Seção totalmente composta 4 3.2.2.1 Objetivos 4 3.2.2.2 Conexão semi-rigida 4 3.2.2.4 As tensões 5 3.2.2.4.3 Tensões nos centros de gravidade 5 3.2.2.5 Dedução da curvatura 5 3.2.2.6 Comparação com PFEIL e DIN 1052/69 6	1.6.2 Estado último	12
1.6.4 Retração do concreto 11 1.7 Algumas estruturas mistas de madeira-concreto já construídas 12 2 OBJETIVOS 22 2.1 Parte teórica 22 2.2 Parte experimental 22 2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 23 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1.1 Conectores 20 3.2.1.2 Hipóteses e parâmetros geométricos 20 3.2.1.3 Teoria de vigas mistas submetidas à flexão 30 3.2.1.4 Casos limites 44 3.2.1.4.1 Seção não composta 44 3.2.1 A2 Seção totalmente composta 44 3.2.2 Conexão semi-rigida 44 3.2.2.1 Objetivos 44 3.2.2.4 As tensões 54 3.2.2.4 As tensões 54 3.2.2.4.3 Tensões nos centros de gravidade 55 3.2.2.4.3 Tensões nos centros de gravidade 55 3.2.2.5 Dedução da curvatura 59 3.2.2.6 Comparação com PFEIL e DIN 1052/69 66	1.6.3 Fluência	12
1.7 Algumas estruturas mistas de madeira-concreto já construidas 1 2 OBJETIVOS 2 2.1 Parte teórica 2 2.2 Parte experimental 2 2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1.3 Teoria de vigas mistas submétidas à flexão 3 3.2.1.4 Casos limites 4 3.2.1.4 Casos limites 4 3.2.1.4 Seção não composta 4 3.2.1 Al Seção totalmente composta 4 3.2.2 Onexão semi-rigida 4 3.2.2.4 As tensões 5 3.2.2.4 As tensões 5 3.2.2.4.3 Tensões nos centros de gravidade 5 3.2.2.4.3 Tensões de cisalhamento 5 3.2.2.5 Dedução da curvatura 5 3.2.2.6 Comparação com PFEIL e DIN 1052/69 6	1.6.4 Retração do concreto	13
2 OBJETIVOS 2 2.1 Parte teórica 2 2.2 Parte experimental 2 2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1.1 Conectores 2 3.2.1.2 Hipóteses e parâmetros geométricos 2 3.2.1.3 Teoria de vigas mistas submetidas à flexão 3 3.2.1.4 Casos limites 4 3.2.1.4.1 Seção não composta 4 3.2.1.4.2 Seção totalmente composta 4 3.2.2.1 Objetivos 4 3.2.2.2 Conexão semi-rigida 4 3.2.2.4.3 tensões 5 3.2.2.4.1 Tensões nos centros de gravidade 5 3.2.2.4.2 Tensões nos extremos 5 3.2.2.5 Dedução da curvatura 5 3.2.2.6 Comparação com PFEIL e DIN 1052/69 6	1.7 Algumas estruturas mistas de madeira-concreto já construídas	14
2.1 Parte teórica 2 2.2 Parte experimental 2 2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1.1 Conectores 2 3.2.1.2 Hipóteses e parâmetros geométricos 2 3.2.1.3 Teoria de vigas mistas submetidas à flexão 3 3.2.1.4 Casos limites 4 3.2.1.4 Seção não composta 4 3.2.1.4 Seção totalmente composta 4 3.2.1 Al Seção semi-rigida 4 3.2.2 Conexão semi-rigida 4 3.2.2.4 As tensões 5 3.2.2.4.1 Tensões nos centros de gravidade 5 3.2.2.4.2 Tensões nos extremos 5 3.2.2.4.3 Tensões de cisalhamento 5 3.2.4.6 Comparação com PFEIL e DIN 1052/69 6	2 OBJETIVOS	22
2.2 Parte experimental 2 2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1.1 Conectores 2 3.2.1.2 Hipóteses e parâmetros geométricos 2 3.2.1.3 Teoria de vigas mistas submetidas à flexão 3 3.2.1.4 Casos limites 4 3.2.1.4 Seção não composta 4 3.2.1.4 Seção nos composta 4 3.2.1.4 Seção não composta 4 3.2.1.4.2 Seção totalmente composta 4 3.2.2.1 Objetivos 4 3.2.2 Conexão semi-rigida 4 3.2.2.4 S tensões 54 3.2.2.4.1 Tensões nos centros de gravidade 52 3.2.2.4.2 Tensões nos extremos 53 3.2.2.4.3 Tensões de cisalhamento 55 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	2.1 Parte teórica	22
2.3 Análise dos resultados 2 3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2 Método exato 2 3.2.1 Método exato 2 3.2.1 Conectores 2 3.2.1.2 Hipóteses e parâmetros geométricos 2 3.2.1.3 Teoria de vigas mistas submetidas à flexão 3 3.2.1.4 Casos limites 4 3.2.1.4.1 Seção não composta 4 3.2.2 Método aproximado 4 3.2.2.1 Objetivos 4 3.2.2.2 Conexão semi-rigida 4 3.2.2.4 S tensões 5 3.2.2.4.1 Tensões nos centros de gravidade 5 3.2.2.4.2 Tensões nos extremos 5 3.2.2.5 Dedução da curvatura 55 3.2.2.6 Comparação com PFEIL e DIN 1052/69 6	2.2 Parte experimental	22
3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE 2 3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1.1 Conectores 20 3.2.1.2 Hipóteses e parâmetros geométricos 20 3.2.1.3 Teoria de vigas mistas submetidas à flexão 30 3.2.1.4 Casos limites 4 3.2.1.4.1 Seção não composta 44 3.2.1.4.2 Seção totalmente composta 44 3.2.2 Método aproximado 44 3.2.2.1 Objetivos 44 3.2.2.1 Objetivos 44 3.2.2.2 Conexão semi-rigida 44 3.2.2.3 As deformações 44 3.2.2.4 As tensões 54 3.2.2.4.1 Tensões nos centros de gravidade 55 3.2.2.4.2 Tensões nos extremos 56 3.2.2.5 Dedução da curvatura 59 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	2.3 Análise dos resultados	23
3.1 Introdução 2 3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1.2 Hipóteses e parâmetros geométricos 2 3.2.1.3 Teoria de vigas mistas submetidas à flexão 3 3.2.1.4 Casos limites 4 3.2.1.4 Casos limites 4 3.2.1.4.1 Seção não composta 4 3.2.1.4.2 Seção totalmente composta 4 3.2.2 Método aproximado 4 3.2.2.1 Objetivos 4 3.2.2.2 Conexão semi-rigida 4 3.2.2.3 As deformações 4 3.2.2.4 As tensões 5 3.2.2.4.1 Tensões nos centros de gravidade 5 3.2.2.4.2 Tensões nos extremos 5 3.2.2.5 Dedução da curvatura 5 3.2.2.6 Comparação com PFEIL e DIN 1052/69 6	3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE	24
3.2 Métodos baseados em equações de equilíbrio 2 3.2.1 Método exato 2 3.2.1 Método exato 2 3.2.1.1 Conectores 20 3.2.1.2 Hipóteses e parâmetros geométricos 20 3.2.1.3 Teoria de vigas mistas submetidas à flexão 30 3.2.1.4 Casos limites 44 3.2.1.4.1 Seção não composta 44 3.2.1.4.2 Seção totalmente composta 44 3.2.2 Método aproximado 44 3.2.2.1 Objetivos 44 3.2.2.2 Conexão semi-rígida 44 3.2.2.4 As tensões 54 3.2.2.4.1 Tensões nos centros de gravidade 55 3.2.2.4.2 Tensões nos extremos 56 3.2.2.5 Dedução da curvatura 56 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	3.1 Introdução	24
3.2.1 Método exato 2 3.2.1.1 Conectores 20 3.2.1.2 Hipóteses e parâmetros geométricos 20 3.2.1.3 Teoria de vigas mistas submetidas à flexão 30 3.2.1.4 Casos limites 40 3.2.1.4 Casos limites 44 3.2.1.4 Seção não composta 44 3.2.1.4.1 Seção não composta 44 3.2.1.4.2 Seção totalmente composta 44 3.2.2 Método aproximado 47 3.2.2.1 Objetivos 47 3.2.2.2 Conexão semi-rigida 47 3.2.2.3 As deformações 49 3.2.2.4 As tensões 56 3.2.2.4.1 Tensões nos centros de gravidade 56 3.2.2.4.2 Tensões nos extremos 56 3.2.2.5 Dedução da curvatura 56 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	3.2 Métodos baseados em equações de equilíbrio	25
3.2.1.1 Conectores263.2.1.2 Hipóteses e parâmetros geométricos263.2.1.3 Teoria de vigas mistas submetidas à flexão363.2.1.4 Casos limites443.2.1.4.1 Seção não composta443.2.1.4.2 Seção totalmente composta443.2.2 Método aproximado473.2.2.1 Objetivos443.2.2.2 Conexão semi-rígida473.2.2.3 As deformações443.2.2.4.1 Tensões nos centros de gravidade553.2.2.4.2 Tensões nos extremos563.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.1 Método exato	25
3.2.1.2 Hipóteses e parâmetros geométricos203.2.1.3 Teoria de vigas mistas submetidas à flexão303.2.1.4 Casos limites403.2.1.4.1 Seção não composta403.2.1.4.2 Seção totalmente composta403.2.2 Método aproximado413.2.2 Método aproximado413.2.2.1 Objetivos413.2.2.2 Conexão semi-rígida413.2.2.3 As deformações423.2.2.4 As tensões523.2.2.4.2 Tensões nos centros de gravidade523.2.2.4.3 Tensões de cisalhamento523.2.2.5 Dedução da curvatura523.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.1.1 Conectores	26
3.2.1.3 Teoria de vigas mistas submetidas à flexão 30 3.2.1.4 Casos limites 44 3.2.1.4.1 Seção não composta 44 3.2.1.4.1 Seção totalmente composta 44 3.2.1.4.2 Seção totalmente composta 44 3.2.2 Método aproximado 47 3.2.2.1 Objetivos 47 3.2.2.2 Conexão semi-rígida 47 3.2.2.3 As deformações 49 3.2.2.4 As tensões 54 3.2.2.4.1 Tensões nos centros de gravidade 55 3.2.2.4.2 Tensões nos extremos 56 3.2.2.4.3 Tensões de cisalhamento 59 3.2.2.5 Dedução da curvatura 59 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	3.2.1.2 Hipóteses e parâmetros geométricos	26
3.2.1.4 Casos limites443.2.1.4.1 Seção não composta443.2.1.4.2 Seção totalmente composta443.2.2 Método aproximado473.2.2 Método aproximado473.2.2.1 Objetivos443.2.2.2 Conexão semi-rigida473.2.2.3 As deformações463.2.2.4 As tensões543.2.2.4.1 Tensões nos centros de gravidade553.2.2.4.2 Tensões nos extremos563.2.2.4.3 Tensões de cisalhamento563.2.2.5 Dedução da curvatura563.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.1.3 Teoria de vigas mistas submetidas à flexão	30
3.2.1.4.1 Seção não composta443.2.1.4.2 Seção totalmente composta413.2.2 Método aproximado413.2.2 Método aproximado413.2.2.1 Objetivos413.2.2.2 Conexão semi-rígida413.2.2.3 As deformações443.2.2.4 As tensões543.2.2.4 As tensões nos centros de gravidade543.2.2.4.1 Tensões nos centros de gravidade553.2.2.4.2 Tensões nos extremos583.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.1.4 Casos limites	44
3.2.1.4.2 Seção totalmente composta443.2.2 Método aproximado473.2.2.1 Objetivos473.2.2.2 Conexão semi-rígida473.2.2.3 As deformações493.2.2.4 As tensões543.2.2.4.1 Tensões nos centros de gravidade553.2.2.4.2 Tensões nos extremos583.2.2.4.3 Tensões de cisalhamento593.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.1.4.1 Seção não composta	44
3.2.2 Método aproximado473.2.2.1 Objetivos473.2.2.2 Conexão semi-rigida473.2.2.3 As deformações493.2.2.4 As tensões543.2.2.4.1 Tensões nos centros de gravidade553.2.2.4.2 Tensões nos extremos583.2.2.4.3 Tensões de cisalhamento593.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.1.4.2 Seção totalmente composta	45
3.2.2.1 Objetivos4'3.2.2.2 Conexão semi-rigida4'3.2.2.3 As deformações4'3.2.2.3 As deformações4'3.2.2.4 As tensões5'3.2.2.4.1 Tensões nos centros de gravidade5'3.2.2.4.2 Tensões nos extremos5'3.2.2.4.3 Tensões de cisalhamento5'3.2.2.5 Dedução da curvatura5'3.2.2.6 Comparação com PFEIL e DIN 1052/696'	3.2.2 Método aproximado	47
3.2.2.2 Conexão semi-rígida 47 3.2.2.3 As deformações 49 3.2.2.4 As tensões 54 3.2.2.4.1 Tensões nos centros de gravidade 54 3.2.2.4.2 Tensões nos extremos 58 3.2.2.4.3 Tensões de cisalhamento 59 3.2.2.5 Dedução da curvatura 59 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	3.2.2.1 Objetivos	47
3.2.2.3 As deformações493.2.2.4 As tensões543.2.2.4.1 Tensões nos centros de gravidade543.2.2.4.2 Tensões nos extremos583.2.2.4.3 Tensões de cisalhamento593.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.2.2 Conexão semi-rigida	47
3.2.2.4 As tensões543.2.2.4.1 Tensões nos centros de gravidade543.2.2.4.2 Tensões nos extremos583.2.2.4.3 Tensões de cisalhamento593.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.2.3 As deformações	49
3.2.2.4.1 Tensões nos centros de gravidade533.2.2.4.2 Tensões nos extremos583.2.2.4.3 Tensões de cisalhamento593.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.2.4 As tensões	54
3.2.2.4.2 Tensões nos extremos583.2.2.4.3 Tensões de cisalhamento593.2.2.5 Dedução da curvatura593.2.2.6 Comparação com PFEIL e DIN 1052/6964	3.2.2.4.1 Tensões nos centros de gravidade	55
3.2.2.4.3 Tensões de cisalhamento 59 3.2.2.5 Dedução da curvatura 59 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	3.2.2.4.2 Tensões nos extremos	58
3.2.2.5 Dedução da curvatura 59 3.2.2.6 Comparação com PFEIL e DIN 1052/69 64	3.2.2.4.3 Tensões de cisalhamento	59
3.2.2.6 Comparação com PFEIL e DIN 1052/69	3.2.2.5 Dedução da curvatura	59
	3.2.2.6 Comparação com PFEIL e DIN 1052/69	64

3.3 Método baseado nos princípios de energia	70
3.3.1 Introdução	70
3.3.2 Outras pesquisas	70
3.3.3 Teoria geral	71
3.3.3.1 Principais hipóteses	71
3.3.3.2 Derivação da energia total	72
3.3.3.3 Energia de deformação axial e de flexão	72
3.3.3.4 Energia de deformação devido ao deslizamento entre as camadas	75
3.3.3.5 Energia de deformação devido ao carregamento externo aplicado	78
3.3.3.6 Energia potencial total	79
3.3.3.7 Equações de Euler-Lagrange	79
3.4 Módulo de deslizamento K da conexão	80
3.5 Capacidade de resistência dos materiais	92
3.5.1 Segundo NBR 7190/97 (Projeto de estruturas de madeira)	92
3.5.2 Segundo CECCOTTI (Step 2 - Eurocode)	96
3.5.3 Deformações limites para as construções correntes e com materiais frágeis não	
estruturais segundo a NBR 7190/97	99
3.5.3.1 Construções correntes	99
3.5.3.2 Construções com materiais frágeis	100
3.5.4 Obtenção experimental dos parâmetros de resistência e rigidez	100
3.5.5 Considerações sobre a deformação lenta nas estruturas mistas madeira-concreto	101
3.5.5.1 Comportamento higroscópico	101
3.5.5.2 Fluência nas uniões pregadas de madeira	105
3.6 Comentários	109
4 METODOLOGIA	110
4.1 Análise teórica	110
4.2 Análise experimental	113
4.2.1 Caracterização dos materiais	113
4.2.2 Geometria das estruturas	114
4.2.3 Viga de seção mista	115

4.2.4 Metodologia	115
4.2.5 Determinação do K	116
4.2.6 Método experimental	117
4.3 Esforços solicitantes	118
4.3.1 Carga uniformemente distribuída	118
4.3.2 Duas cargas aplicadas nos terços do vão	118
5 RESULTADOS OBTIDOS	122
5.1 Método exato - observação	122
5.2 Resultados experimentais e teóricos	128
5.3 Condições de contorno	128
5.3.1 Carregamento uniforme	128
5.3.2 Carga aplicada nos terços do vão	129
5.4 Derivadas da linha elástica - Método Exato	132
5.4.1 Carregamento uniforme	132
5.4.2 Carregamento aplicado nos terços do vão	133
5.5 Resultados experimentais da bibliografia e teóricos deste trabalho	134
6 CONCLUSÕES	136
6.1 Introdução	136
6.2 Quadro comparativo entre o Método Exato e Método Aproximado	138
6.3 Conclusões finais	140
7 SUGESTÕES PARA TRABALHOS FUTUROS	142
7.1 Enrijecedores de apoio	142
7.2 Pregos de alta resistência	142
7.3 Fendilhamento	142
7.4 Protótipo	143
7.5 Sistemas hiperestáticos	143
7.6 Dimensionamento de lajes	144
7.7 Recomendações para projeto e construção	144
7.8 Custos	145
ANEXOS	146

ANEXO A: MÉTODO DA SEÇÃO TRANSFORMADA	147
ANEXO B: EQUIVALÊNCIA ENTRE OS MÉTODOS DE KREUZINGER E PFEIL	158
ANEXO C: CENTRO DE GRAVIDADE E RIGIDEZ DA SEÇÃO COMPOSTA	165
ANEXO D: EQUIVALÊNCIA DAS EQUAÇÕES DA LINHA ELÁSTICA NAS	
FORMAS EXPONENCIAL E TRIGONOMÉTRICA	172
ANEXO E: FUNÇÕES HIPERBÓLICAS	177
REFERÊNCIAS BIBLIOGRÁFICAS	179
BIBLIOGRAFIA RECOMENDADA	184
APÊNDICE	191

LISTA DE FIGURAS

- Figura 1.1 Peso próprio do piso g versus vão l para uma carga de serviço q de 2,5 kN/m², no caso de seção: (a) toda em madeira; (b) em madeira-concreto;
 (c) toda em concreto
- Figura 1.2 Exemplo de um projeto resistente a terremotos em um piso de madeira existente em uma construção de alvenaria da Europa Central. (a) viga principal; (b) viga secundária; (c) ladrilhos; (d) laje de concreto; (e) malha de aço; (f) conectores metálicos colados com resina epóxi à madeira; (g) estribos de aço conectando a camada de concreto com a alvenaria; (h) cinta de amarração de concreto envolvendo o piso
- Figura 1.3 Exemplos de diferentes sistemas de conexão para estruturas de madeiraconcreto. (a1) pregos; (a2) barras de aço para concreto armado, coladas; (a3/4) parafusos; (b1/2) conectores, anéis metálicos e chapas dentadas, respectivamente; (b3) tubos metálicos; (b4) chapas com dentes estampados (gang-nail); (c1) entalhes arredondados na madeira e conectores prevenindo a separação; (c2) entalhes quadrados e conectores; (c3) entalhes cônicos e barras de aço para concreto protendido; (c4) pranchas pregadas transversalmente e chapas dispostas em fendas nas pranchas; (d1) treliça metálica colada à madeira; (d2) chapa metálica colada à madeira
- Figura 1.4 Relações básicas de uma viga de madeira-concreto com conectores semirígidos. (a) seções transversais não se mantêm planas; (b) as camada de concreto e madeira estão submetidas a flexão enquanto que os conectores estão submetidos a cisalhamento; (c) as deformações possuem a mesma inclinação porque as partes da seção mantêm a mesma curvatura ¹, o diagrama

2

6

7

de tensões é o resultado das tensões de flexo-compressão e flexo-tração	9
Figura 1.5 Esquema de um possível arranjo de ensaio para a determinação do diagrama	
carga x deslizamento de um sistema de conexão	11
Figura 1.6 Estruturas mistas em Oregon. Na figura (a) infraestrutura consiste em estacas	
de madeira tratadas com creosoto e proteção de suas cabeças; a	
superestrutura consiste de um sistema de vigas de madeira tratadas com	
creosoto conectadas com a mesa de concreto armado, já na figura (b) a	
infraestrutura é de concreto armado	15
Figura 1.7 Vistas das estruturas mistas antes da concretagem. Na figura (a) os	
conectores são anéis metálicos e na figura (b) um sistema de pregos e	
entalhes na madeira	16
Figura 1.8 Piso monitorado de um laboratório de química de um colégio na Itália	
constituído de vigas mistas madeira-concreto	17
Figura 1.9 Viga mista madeira concreto (antes da concretagem)	18
Figura 1.10 Viga mista madeira concreto (após a concretagem)	19
Figura 1.11 Elementos de madeira e conectores de anés metálicos em uma laje de	
madeira concreto em uma escola em Triesenberg (Finlândia)	19
Figura 1.12 Fotos	21
Figura 3.1 Módulos de deslizamento da curva carga x deslizamento para conectores	
resistentes ao cisalhamento em estruturas compostas	28
Figura 3.2 Parâmetros geométricos de uma viga mista madeira-concreto	29
Figura 3.3 Carregamento genérico atuando em uma viga composta	29
Figura 3.4 Elemento diferencial em uma viga mista sujeito a um carregamento transversal	
uniformemente distribuído	30
Figura 3.5 Elemento diferencial de uma viga na condição deformada (as ações	
desenhadas em traço cheio e tracejado referem-se as duas subseções e à seção	
inteira, respectivamente)	31
Figura 3.6 Elementos de madeira e esforços neles atuantes	41
Figura 3.7 Deslocamento e força de cisalhamento entre as partes	48
Figura 3.8 Detalhes da viga e equilíbrio de um elemento infinitesimal	

Sistema, seção transversal, deformação e elemento dx	49
Figura 3.9 Deformações	50
Figura 3.10 Distribuição de carregamento senoidal	52
Figura 3.11 Distribuição de tensões	54
Figura 3.12 Distribuição de carregamento senoidal e sua resultante em uma viga bi-	
apoiada	59
Figura 3.13 Trecho inicial da viga de comprimento a, cuja resultante da distribuição de	
carregamento R está aplicada no CG da distribuição	60
Figura 3.14 Viga composta de peças de madeira maciça	66
Figura 3.15 a) seção segundo PFEIL b) seção segundo KREUZINGER	68
Figura 3.16 Configuração indeformada e deformada de uma camada de uma viga	73
Figura 3.17 Relação deslocamento - deslizamento	76
Figura 3.18: Parâmetros da curva força x deslizamento de Foschi e Bonac	77
Figura 3.19 Rigidez efetiva x módulo de deslizamento	82
Figura 3.20 Notação usada para a conexão entre dois membros	85
Figura 3.21 Comparação entre os resultados experimentais e teóricos obtidos por	
FOSCHI e BONAC e os resultados teóricos de WILKINSON e LARSEN	91
Figura 3.22 Verificação das deformações limites	99
Figura 3.23 Teste de longa duração	101
Figura 3.24 Teste de umidade de longa duração na madeira (média de 4 pontos)	102
Figura 3.25 Retração e alongamento normal às fibras durante o teste de longa duração.	102
(Medido em 3 pontos: A1, B1 e C1)	
Figura 3.26 Deslocamentos verticais no meio do vão (U1 = viga 1; U2 = viga 2) durante	103
o teste de longa duração	
Figura 3.27 Deslizamentos junto aos apoios da viga madeira-concreto. ($V1 =$	
extremidade esquerda; V2 = extremidade direita; VM = média dos	
deslizamentos das extremidades da viga 1)	104
Figura 3.28 Classificação das ações	105
Figura 3.29 Classe de carregamento	106
Figura 4.1 Formas da linha elástica para composição total, parcial e nula	111

Figura 4.2 Detalhamento da viga	115
Figura 4.3 Corpo de prova	11 7
Figura 4.4 Módulo K	117
Figura 4.5 Esquema estático e pontos instrumentados no meio da viga	117
Figura 4.6 Fotos	120
Figura 5.1 Equações de linha elástica e deslocamento vertical	127
Figura 6.1 Diagrama de tensões[MPa] e deslocamentos verticais [mm] para um	
carregamento de $2P = 30 \text{ kN}$	137
Figura A.1 Viga de dois materiais.	150
Figura A.2 Exemplo de homogeneização de uma viga mista madeira-concreto,	152
considerando a madeira como material de referência.	
Figura A.3 Exemplo de aplicação do MST.	156

LISTA DE TABELAS

Tabela 3.1 Expressões para o cálculo das tensões no CG da seção de concreto (mesa)	
segundo: PFEIL (adaptado) e KREUZINGER	68
Tabela 3.2 Expressões para os parâmetros da equação (3.135)	86
Tabela 4.1 Propriedades físicas e geométricas	115
Tabela 4.2 $\frac{P}{4}$ v	117
Tabela 5.1 Método Exato - K=13000 N/mm e s=6 cm	123
Tabela 5.2 Método Aproximado - K=13000 N/mm e s=6 cm	124
Tabela 5.3 Método Exato - K=4000 N/mm e s=6 cm	125
Tabela 5.4 Método Aproximado - K=4000 N/mm e s=6 cm	126
Tabela 5.5 Deslocamentos verticais	135
Tabela 5.6 Tensões Normais	135
Tabela 5.7 Deslocamentos verticais - 2P=30 kN	135
Tabela 6.1 Quadro comparativo Método Exato x Método Aproximado (erro relativo	
percentual das tensões, fluxos e deslocamentos verticais)	139
Tabela 6.2 Resumo comparativo entre Método Exato x Método Aproximado	140
Tabela E.1 Definições, identidades e derivadas das funções hiperbólicas	178

LISTA DE SÍMBOLOS

LETRAS ROMANAS MINÚSCULAS

- a_1 = distância entre o CG do elemento 1 ao CG da seção infinitamente rígida;
- a_2 = distância entre o CG do elemento 2 ao CG da seção infinitamente rígida;
- a_c = distância entre o CG do concreto e LN_w;
- aw = distância entre o CG da madeira e LNw;
- b_w = largura da seção de madeira;
- d = diâmetro do prego;

d_{ef} = diâmetro efetivo medido nos pregos a serem usados;

 f_{ck} = resistência característica à compressão no concreto;

 f_{yd} = resistência de cálculo ao escoamento do pino metálico;

 f_{vk} = resistência característica ao escoamento do pino metálico;

 $f_{we0,k}$ = resistência característica à compressão paralela às fibras;

 $f_{we0,d}$ = resistência de cálculo de embutimento paralela às fibras;

 f_u = resistência à tração do aço;

h = altura total da viga;

- h_c = altura da mesa de concreto;
- h_w = altura da alma de madeira;
- k = módulo de fundação elástica;

k_{mod} = coeficiente de modificação da madeira;

 $k_{mod,1}$ = coeficiente que leva em conta a classe de carregamento e o tipo de material empregado (Tabela 10 da norma); $k_{mod,2}$ = coeficiente que leva em conta a classe de umidade e o tipo de material empregado (Tabela 11 da norma);

 $k_{mod,3}$ = coeficiente que leva em conta se a madeira é de primeira ou segunda categoria;

 ℓ_c = comprimento do elemento de concreto;

 Δe_{c} = variação no comprimento do elemento de concreto;

 ℓ_w = comprimento do elemento de madeira;

 $\Delta \ell_{w}$ = variação no comprimento do elemento de madeira;

p = carregamento genérico aplicado à viga;

q = carregamento uniformemente distribuído na viga;

r = distância entre o CG do concreto e o CG da madeira;

 $r_{e} e r_{w}$ = meia altura dos elementos de concreto e madeira, respectivamente (Figura 3.2);

s = espaçamento entre os conectores;

t = espessura convencional da madeira (no caso de vigas de seção T, corresponde à espessura da mesa);

u = deslizamento relativo na interface dos materiais e deslocamento axial do CG da camada;

 u_c = deslocamento horizontal do CG do elemento de concreto;

uw = deslocamento horizontal do CG do elemento de madeira;

 u_{c0} = deslocamento horizontal do CG do elemento de concreto na extremidade da viga biapoiada;

 u_{w0} = deslocamento horizontal do CG do elemento de madeira na extremidade da viga biapoiada;

v = linha elástica da viga;

 v_0 = deslocamento vertical no meio do vão;

 v_{sp} = solução particular da equação 3.29;

w = deslocamento transversal do CG da camada;

x = coordenada horizontal;

y = distância entre o CG do elemento considerado até a fibra na qual se deseja determinar a tensão;

 \overline{y}_{c} e \overline{y}_{w} = distâncias da fibra mais superior da seção composta até o CG do material correspondente (Figura A.2).

z = metade da altura da camada;

LETRAS ROMANAS MAIÚSCULAS

 A_1 = área da seção transversal do elemento 1;

 $A_2 =$ área da seção transversal do elemento 2;

A_c = área da seção transversal do elemento de concreto;

A_w = área da seção transversal do elemento de madeira;

 A_w^* = área da seção transversal do elemento menor;

 $E^* e I^*_{\infty}$ = módulo de elasticidade e momento de inércia genéricos, respectivamente;

EI = produto de rigidez do prego;

 $E_c = m$ ódulo de deformação longitudinal do concreto;

 $E_w = módulo de elasticidade da madeira;$

 $E_cI_c = rigidez$ à flexão da mesa em relação ao seu próprio eixo baricêntrico;

 $E_w I_w = rigidez$ à flexão da alma em relação ao seu próprio eixo baricêntrico;

(EI)_{ef} = rigidez efetiva da seção transversal da viga mista;

 $(EI)_0$ = rigidez da viga mista quando não existe conexão entre os dois materiais ou seu efeito é nulo;

 $(EI)_{\infty}$ = rigidez completa quando a viga mista possui interação total não existindo deslizamento relativo entre as partes;

F = força no prego;

 F_s = esforço de cisalhamento no conector;

 I_r = momento de inércia da seção composta (ou momento de inércia reduzido da seção bruta);

I_c = momento de inércia do concreto em relação ao seu próprio eixo baricêntrico;

 I_w = momento de inércia da madeira em relação ao seu próprio eixo baricêntrico;

 \bar{I}_c e \bar{I}_w = momento de inércia do elemento de concreto ou de madeira, respectivamente, em relação ao CG da seção transversal total, ou seja, I_c e I_w mais o transporte para o CG da seção original;

K = módulo de deslizamento da ligação;

 $\overline{\mathbf{K}}$ = módulo de deslizamento equivalente da ligação;

K_{ser} = módulo de deslizamento utilizado nos ELU_{ti};

K_{ult} = módulo de deslizamento utilizado nos ELU;

L = comprimento;

M = momento fletor que atua na seção mista;

 M_c = momento fletor no concreto;

 M_w = momento fletor na madeira;

 M_0 = momento fletor no meio do vão (ver expressão (3.102));

 M_{yd} = momento que provoca o escoamento do conector devido à flexão;

 N_{c} = esforço normal no concreto;

 N_w = esforço normal na madeira;

 N_{w}^{*} = esforço normal resultante das tensões que atuam no elemento menor;

P = carregamento;

 P_0 = ordenada do ponto que a assíntota tracejada na Figura 3.18 intercepta o eixo de F;

 P_1 = inclinação para grandes deslizamentos;

 \mathbf{P}_{i}^{0} = carga axial aplicada no CG da camada i em x = 0;

 $P_i^{L_e}$ = carga axial aplicada no CG da camada i em x = L_e ;

 R_d = resistência da conexão com 1 pino;

 S_w^* = momento estático da área A_w^* em relação ao CG da seção de madeira;

- U = energia de deformação total na viga mista;
- U_B = Energia de deformação axial e de flexão de cada camada;
- $U_{\rm C}$ = Energia de deformação associada com o deslizamento do conector;

U_L = Energia potencial proveniente do carregamento externo aplicado;

V = esforço cortante que atua na seção mista;

 V_c = esforço cortante no concreto;

 V_w = esforço cortante na madeira;

LETRAS GREGAS MINÚSCULAS

- α^2 = parâmetro do Método Exato definido pela expressão 3.24;
- β = parâmetro do Método Exato definido pela expressão 3.25;
- γ_{o} = coeficiente de minoração da resistência do concreto;
- γ_s = coeficiente de minoração do aço;
- γ_{wc} = coeficiente de minoração das propriedades da madeira;
- $\delta = \Delta = deslizamento;$
- ε_{c} = deformação no CG do elemento de concreto;
- ε_{w} = deformação no CG do elemento de madeira;
- ϵ_{xx} = expressão de Lagrange para deformação-deslocamento nas coordenadas xx;
- ϕ = fluxo de cisalhamento na interface (correspondente a definição de $\overline{\phi}_s$ na seção 3.2.1);
- ϕ_{c} = coeficiente de fluência do concreto;
- ϕ_w = coeficiente de fluência da madeira;
- $\overline{\phi}_s$ = fluxo de cisalhamento que surge na interface dos materiais;
- $\lambda = parâmetro do método de WILKINSON, expressão 3.134;$
- $\rho_{\rm t}$ = valor característico da densidade equivalente, em kgf/m³;
- ρ_{y_1} = valor característico da densidade da madeira 1, em kgf/m³;
- ρ_{k2} = valor característico da densidade da madeira 2, em kgf/m³;
- σ_{c} = tensão normal no concreto;
- σ_w = tensão normal na madeira;

 $\sigma_{c,CG}$ = tensão normal no CG da seção de concreto;

 $\sigma_{w,CG}$ = tensão normal no CG da seção de madeira;

 $\sigma_{c,1}$ = tensão normal que se adicionada algebricamente ao $\sigma_{c,CG}$ resulta na tensão normal da fibra superior da seção de concreto;

 $\sigma_{c,2}$ = tensão normal que se adicionada algebricamente ao $\sigma_{c,CG}$ resulta na tensão normal da fibra inferior da seção de concreto;

 $\sigma_{w,1}$ = tensão normal que se adicionada algebricamente ao $\sigma_{w,CG}$ resulta na tensão normal da fibra superior da seção de madeira;

 $\sigma_{w,2}$ = tensão normal que se adicionada algebricamente ao $\sigma_{w,CG}$ resulta na tensão normal da fibra inferior da seção de madeira;

 τ_{c} = tensão de cisalhamento na seção de concreto;

 τ_w = tensão de cisalhamento na seção de madeira;

 v_1 = deslocamento paralelo a dimensão longitudinal da viga;

 v_2 = deslocamento transversal à viga;

RESUMO

Além da conhecida união entre o concreto e o aço, formando o concreto armado, outros materiais podem ser unidos para se obter estruturas mistas com boa performance de resistência e rigidez. Cada material pode ser disposto na região em que os tipos de solicitações às quais ele esteja submetido seja aquela que tenha mais capacidade para absorver, isto é, fazendo com que trabalhe em sua melhor região de serviço. A união aqui estudada é entre a madeira e o concreto. Tal união justifica-se porque a madeira possui uma resistência relativamente alta à tração. O resultado deste estudo são vigas mistas de madeira-concreto que já são utilizadas em estruturas de pontes, construções industriais e esportivas, além de reformas em estruturas antigas de pisos de madeira. As vigas mistas consideradas são solidarizadas através de pregos, que proporcionam uma conexão parcial, também chamada de ligação semi-rígida, em que a seção de concreto e madeira sofre um deslizamento relativo. Uma extensa abordagem é feita sobre a determinação da rigidez deste tipo de ligação. Os estudos comprovam que a determinação da rigidez da conexão, que deve ser feita através de ensaios de ligação, é extremamente controvertida e ainda pouco confiável. No entanto, mostra-se é conhecido que a rigidez da viga não é muito afetada pela variação da rigidez da ligação. As metodologias apresentadas neste trabalho envolvem princípios de estática, compatibilidade de deslocamentos e conservação de energia, com a hipótese de resposta elástica dos materiais. Por fim é feita uma comparação de dois dos métodos apresentados para o dimensionamento das vigas mistas - Método Exato e Método Aproximado - entre si e com valores experimentais da bibliografia. Os resultados revelam que o Método Aproximado, que tem uma metodologia de cálculo mais simples e pode ser utilizado satisfatoriamente, sem perda de precisão, nos problemas de engenharia.

ABSTRACT

Besides the well known joint between concrete and iron creating reinforced concrete, other kinds of material can be composed to get mixed structures, with good performance of both strength and stiffness. Each material may be disposed on a region where the kinds of actions, which is submitted, is that one with more capacity to absorb, that is to say, to do that it works in its best service region. The composition studied here is made with both timber and concrete materials. This composition is justified because the timber holds a very high strength in relation to tension. The result of this idea is timber-concrete composed beams that are already used in bridge structures, industrial and sportive buildings, or in reconstruction of old wooden floors structures. The mixed beams in study are solidified through nails, that supply a partial joint, also named semirigid connection, where the timber-concrete cross section is subjected to a interlayer slip. An broad study is done about the determination of this stiffness joint type. The studies have checked that the determination of connection stiffness, which should be made through joint speciments test, is extremely discussed and still few reliable. However, it is know the beam stiffness is not very affected by the variation of stiffness joint. The methodologies shown in this paper wrap statics basic, displacement compatibilities and energy conservation, with perfectly elastic assumption. Finally, it is done a comparation of the two methods shown to measure the mixed beams -Exact Method and Aproximate Method - between themselves, and with bibliography experimental values. The results show the Aproximate Method has a methodologies of calculations simpler, and can be fairly used and without loss of accuracy in engineering problems.

1 INTRODUÇÃO

1.1 Viabilidade das vigas mistas

O termo misto traz em seu bojo uma dupla informação: a presença de dois ou mais materiais, e a intensidade de ligação existente entre ambos. Assim, portanto, é possível falar-se em composição nula (ausência de conectores), composição total (conexão infinitamente rígida, isto é, não havendo deslizamento, como por exemplo uma ligação colada), e composição parcial (as infinitas situações que existem entre os dois extremos anteriores e que ocorrem quando se utiliza uma ligação semi-rígida, como pregos, por exemplo).

Por que em alguns países as estruturas mistas de madeira-concreto são tão populares? O uso ocorre porque a união conveniente entre o concreto - transmitindo os esforços de compressão - e a madeira - transmitindo os esforços de tração - permite utilizar as melhores propriedades destes dois materiais. De fato, o concreto é utilizado preponderantemente à compressão, onde possui melhor performance em termos de resistência e rigidez, sendo a madeira utilizada principalmente à tração, embora sua resistência a compressão também seja elevada, de forma que o concreto tracionado, que representa elevado peso morto em estruturas tradicionais de concreto armado, é praticamente eliminado. Portanto, é possível obter uma seção estruturalmente eficiente, rígida e leve ao mesmo tempo. A Figura 1.1 apresenta, para três tipos diferentes de seção sob carregamento de serviço fixado em 2,5 kN/m², o seu peso próprio em função do vão.

Figura 1.1 Peso próprio do piso g versus vão l para uma carga de serviço q de 2,5 kN/m², no caso de seção: (a) toda em madeira; (b) em madeira-concreto; (c) toda em concreto. FONTE: CECCOTTI, 1995, p.1.

A princípio, pode parecer muito difícil obter uma boa união entre esses dois materiais, pois suas propriedades fisicas e higrotérmicas são bastante diferentes. Porém, por outro lado, nenhum colapso ou problemas na utilização foram detectados em vinte anos de uso deste tipo de estrutura, RILEM (1992).

Quanto à madeira, utilizada desde a pré-história para os mais variados fins, começou a sofrer, em época recente, a concorrência de materiais mais duráveis; por isso, passou para plano secundário, principalmente na construção civil e naval. Constatou-se porém que, pela leveza, facilidade de corte e de manuseio, bem como pela beleza e extrema durabilidade - sobretudo quando submetida a modernos processos de tratamento e secagem - a madeira apresenta grande viabilidade para muitos fins.

Deve-se destacar também, como lembra SORIANO (1999), que a escassez das espécies de madeiras nativas tem contribuído para o desenvolvimento de pesquisas e a aplicação de algumas espécies de madeiras de reflorestamento, como por exemplo, o pinus e o eucalipto. Além disso, busca-se constantemente meios de aplicações racionalizadas desse material através de seções em madeira laminada colada (MLC) e outras formas de seções mistas.

Outro aspecto importante, a nível nacional a ser citado sobre a madeira, refere-se à aprovação da norma NBR 7190/97 (Projeto de estruturas de madeira). Esta norma adota para a madeira, como já havia ocorrido para o aço e o concreto, os conceitos de estados limites, tornando-a um material estrutural, em termos de cálculo, compatível e competitivo com os outros.

1.2 Vantagens no comportamento das estruturas madeira-concreto

As estruturas de madeira-concreto podem apresentar desempenho superior em alguns aspectos, segundo CECCOTTI (1995), que serão a seguir apresentados, comparadas àquelas estruturas executadas totalmente em madeira ou concreto.

1.2.1 Vibrações

As vibrações que em geral ocorrem nos pisos de madeira, quando ele é solicitado por cargas dinâmicas, como por exemplo o simples caminhar de pessoas, são bastante minoradas no caso de estruturas compostas, o que implica em maior facilidade para serem satisfeitos os estados limites de utilização (condições de serviço).

1.2.2 Isolamento acústico

O isolamento ao som é também melhorado. Por um lado, para os sons transmitidos pelo ar, o isolamento é mais eficiente com respeito a uma estrutura toda em madeira, devido ao incremento de massa da estrutura. Por outro lado, para ruídos produzidos por impactos, o isolamento é mais eficiente comparando-se às estruturas totalmente em concreto, devido a maior umidade contida na estrutura composta.

1.2.3 Resistência ao fogo

A mesa de concreto constitui-se em uma eficiente barreira à propagação do fogo aumentando sua resistência contra o mesmo em comparação com uma viga totalmente de madeira. Além disso, a parte das vigas de madeira que compõe a alma das vigas mistas são mais resistentes ao fogo quando comparadas com as correspondentes vigas fabricadas de aço ou pré-fabricadas de concreto protendido.

1.2.4 Durabilidade

Devido a disposição da mesa de concreto sobre a viga de madeira, as estruturas mistas possuem durabilidade elevada pela proteção às intempéries que a capa de concreto proporciona.

1.3 Custo

Quanto ao custo, as estruturas mistas de madeira-concreto são competitivas se comparadas com àquelas inteiramente de concreto, pois não é somente o custo por metro quadrado que deve ser considerado, uma vez que outros fatores contribuem para a redução dos custos no restante da estrutura, bem como na sua construção, a saber:

- maior rapidez na construção;
- menor quantidade de formas para o concreto, pois os elementos de madeira diminuem esta necessidade;
- redução das fundações devido ao menor peso próprio da estrutura.

Por todas essas razões, as estruturas mistas de madeira e concreto são populares em alguns países, tanto no caso de reparo de antigas estruturas de madeira (por exemplo, em pisos de antigas residências de alvenaria) quanto no caso de novas construções. Esta técnica é também utilizada em pontes, principalmente na América e na região do Pacífico, CECCOTTI (1995).

1.4 Utilizações

1.4.1 Vigas

A técnica de construção de vigas de seção T em que a mesa é constituída de concreto e a alma de madeira, será a única analisada neste trabalho, embora as peças possam ser utilizadas compondo também lajes e vigas paredes. Seu uso como vigas T ocorre em pontes, forros de residências e outras estruturas afins.

1.4.2 Lajes

Outra larga utilização desta técnica é na construção de lajes de pisos. A rigidez em seu plano torna-se tão elevada que pode ser considerada infinita mantendo sua forma sob carregamento e consequentemente a forma de toda a estrutura. Isso é muito importante em países com instabilidades geológicas para a segurança global da estrutura no caso de terremotos, pois permite levar em consideração os sismos em procedimentos de cálculo baseados nesta hipótese. A Figura 1.2 mostra uma laje de madeira-concreto, executada em uma edificação de alvenaria, onde tanto as vigas de madeira quanto a laje de concreto estão conectadas às paredes de alvenaria.

Figura 1.2 Exemplo de um projeto resistente a terremotos em um piso de madeira existente em uma construção de alvenaria da Europa Central. (a) viga principal; (b) viga secundária;
(c) ladrilhos; (d) laje de concreto; (e) malha de aço; (f) conectores metálicos colados com resina epóxi à madeira; (g) estribos de aço conectando a camada de concreto com a alvenaria; (h) cinta de amarração de concreto envolvendo o piso.
FONTE: CECCOTTI, 1995, p.2.

1.4.3 Vigas parede

Outra utilização, porém menos freqüente, é a de paredes mistas em madeira-concreto, onde a camada de concreto fornece resistência de amarração e a madeira contribui na resistência à flexão fora do plano, além de aumentar a rigidez contra flambagem.

1.5 Tipos de conexão

Na Figura 1.3 são mostrados os sistemas de conexão mais comumente utilizados.

Figura 1.3 Exemplos de diferentes sistemas de conexão para estruturas de madeira-concreto. (a1) pregos; (a2) barras de aço para concreto armado, coladas; (a3/4) parafusos; (b1/2) conectores, anéis metálicos e chapas dentadas, respectivamente; (b3) tubos metálicos; (b4) chapas com dentes estampados (gang-nail); (c1) entalhes arredondados na madeira e conectores prevenindo a separação; (c2) entalhes quadrados e conectores; (c3) entalhes cônicos e barras de aço para concreto protendido; (c4) pranchas pregadas transversalmente e chapas dispostas em fendas nas pranchas; (d1) treliça metálica colada à madeira; (d2) chapa metálica colada à madeira.

A rigidez do sistema de conexão pode ser assumida de acordo com uma determinada classificação. Por exemplo na Figura 1.3, elementos conectados por pregos, parafusos ou conectores em forma de cavilha (a) são menos rígidos do que elementos conectados por conectores de superficie (b) e menos rígidos ainda do que elementos onde alguns entalhes são feitos na própria madeira (c). As conexões mais rígidas são aquelas onde a total união entre o concreto e madeira é obtida (d). Para os casos a, b e c a ligação semi-rígida da estrutura mista faz com que as seções transversais não se mantenham planas após as deformações, como apresentado na Figura 1.4; no entanto cada um dos materiais mantém suas seções planas. Somente as seções com o sistema de conexão do tipo d, no qual as ligações coladas também se incluem, permanecem planas após as deformações.

Figura 1.4 Relações básicas de uma viga de madeira-concreto com conectores semi-rígidos. (a) seções transversais não se mantêm planas; (b) as camada de concreto e madeira estão submetidas a flexão enquanto que os conectores estão submetidos a cisalhamento; (c) as deformações possuem a mesma inclinação porque as partes da seção mantêm a mesma curvatura ¹, o diagrama de tensões é o resultado das tensões de flexo-compressão e flexo-tração.

FONTE: CECCOTTI, 1995, p.5.

$$\mathbf{v}^{"} = \mathbf{v}_{c}^{"} = \mathbf{v}_{w}^{"} = -\frac{\mathbf{M}_{c}}{\mathbf{E}_{c}\mathbf{I}_{c}} = -\frac{\mathbf{M}_{t}}{\mathbf{E}_{t}\mathbf{I}_{t}}$$
$$\varepsilon = \frac{1}{r}\mathbf{y} = -\mathbf{v}^{"}\mathbf{y}$$

Como para uma dada seção, o termo $\vec{v}(x)$ é constante e igual na madeira e concreto, pode-se concluir que as inclinações dos diagramas de deformações nos dois materiais serão iguais. Obs.: O índice c refere-se ao concreto e t (ou w), à madeira.

Como ordem de grandeza, é possível dizer que os valores da rigidez efetiva à flexão $(EI)_{ef}$ pode ser da ordem de 50% com os conectores do tipo *a* (Figura 1.3) e chega a 100% com os do tipo *d*, quando comparadas com a rigidez de uma seção correspondente rígida e idealmente conectada (composição total).

Os cálculos de projeto para o caso *d* podem ser facilmente executados, uma vez que não existe escorregamento relativo na interface, através do "Método da Seção Transformada" (Anexo A), aonde a seção de concreto é transformada em uma seção de madeira mantendo a linha neutra na mesma posição da seção original, porém aumentada em sua largura real pelo fator $\frac{E_c}{E_m}$.

1.6 Performance mecânica

1.6.1 Parâmetros dos materiais e módulo de deslizamento

No concreto, os parâmetros necessários para o dimensionamento são a resistência característica à compressão f_{ck} , o módulo de deformação longitudinal E_c e o seu respectivo coeficiente de fluência ϕ_c .

Os parâmetros necessários da madeira são a resistência à compressão paralela às fibras característica $f_{we0,k}$, o módulo de elasticidade paralelo às fibras E_{w0} e o respectivo coeficiente de fluência ϕ_{w} .

Mas é de suma importância conhecer as características mecânicas da ligação, principalmente quanto à rigidez, isto é, o módulo de deslizamento K do conector. Isto porque a rigidez da ligação determina a distribuição de tensões ao longo do elemento estrutural composto. Também deve ser conhecida a capacidade de resistência da conexão para uma seção de corte. O módulo de deslizamento pode ser obtido através de ensaios padronizados, como por exemplo, de acordo com as normas EN 26891 ou ISO 6891, como aquele mostrado esquematicamente na Figura 1.5, discutível pela assimetria que apresenta. A propósito, para eliminar a influência do número de conectores nos resultados dos testes, segundo, BLASS (1995), o número de conectores no corpo de prova não deve exceder de dois.

Figura 1.5 Esquema de um possível arranjo de ensaio para a determinação do diagrama carga x deslizamento de um sistema de conexão. FONTE: CECCOTTI, 1995,p.5.

No cálculo dos esforços internos, e conseqüente distribuição de tensões no estado limite último, os valores médios das rigidezes dos materiais e do módulo de deslizamento devem ser utilizados. Isto ocorre porque no Eurocode 5 somente os valores médios dos módulos de deslizamento são dados e os valores característicos não são avaliados, CECCOTTI (1995). Portanto, somente os valores médios dos módulos de elasticidade podem ser utilizados; de fato, se aparecerem ao mesmo tempo, o valor característico do módulo de elasticidade e o valor médio do
módulo de deslizamento, os valores calculados podem resultar em tensões que caiam do lado da insegurança, CECCOTTI (1995).

Outra razão para o Eurocode utilizar valores médios é que no Eurocode 2 somente é especificado o valor nominal do módulo de deformação longitudinal do concreto, que é assumido como um valor médio. No caso das verificações de resistência, devem ser levados em conta os valores característicos.

1.6.2 Estado último

Uma análise elástica é também permitida em estados últimos segundo CECCOTTI (1995). Isto significa que não somente a madeira é considerada linearmente elástica, mas também conectores e concreto, que possuem na realidade um pronunciado comportamento plástico. Isto é permitido e está do lado da segurança, considerando-se um "nominal" módulo de deformação longitudinal *secante* do concreto (Eurocode 2 e 4) e um "equivalente" módulo de deslizamento *secante* para os conectores. Para uma análise global, isto é, para o cálculo das ações internas globais, força normal e momento fletor, na mesa de concreto e na alma de madeira, o concreto é considerado sem fissurações. Isto significa que o valor integral do momento de inércia da mesa de concreto I_c deve ser considerado. Por outro lado, para a verificação da seção transversal, o concreto será considerado como não tendo resistência à tração. Para o concreto em compressão faz-se a verificação assumindo como limite superior de resistência o valor limite de tensão de plastificação à compressão (de acordo com o Eurocode 2). No lado da tração, se for o caso de uma região que possa fissurar, barras de aço devem ser utilizadas.

1.6.3 Fluência

Com relação a longo prazo, referências podem ser feitas à fluência do concreto, da madeira e dos conectores utilizando-se de seus respectivos coeficientes de fluência como fatores convencionais de redução. No entanto, para o conector, somente o coeficiente para a madeira

pode ser utilizado, considerando que a maior parte da deformação da conexão ocorrerá na madeira. É evidente que o método que reduz o módulo de elasticidade da madeira e de deformação longitudinal do concreto é apenas um método convencional para levar em conta a deformação devida ao tempo, e de fato o valor real desses módulos não sofrem redução ao longo do tempo. Este método tende a superestimar as deformações reais no estágio final, quando os efeitos de deformação lenta cessarem, ao contrário do caso de se utilizar um método passo a passo por exemplo. Portanto, desta maneira se estaria a favor da segurança do ponto de vista de projeto.

1.6.4 Retração do concreto

Forças localizadas podem surgir quando as duas partes estão sujeitas a variações dimensionais, por exemplo, por efeito da retração do concreto. Neste particular, a redução no comprimento da mesa de concreto irá favorecer os conectores porque o fenômeno tenderia a reduzir sua deformação, como se pode observar na Figura 1.4(a). Por outro lado, a retração poderá aumentar as deflexões da barra, embora isto possa ser minimizado com a utilização de contra-flechas. Mas, a maior parte da retração ocorrerá enquanto a estrutura encontra-se ainda escorada e as usuais fissurações, na região de tração da mesa de concreto, irão reduzir drasticamente a importância do fenômeno.

Mais interessante é o caso das variações de temperatura no concreto (a camada de concreto é mais afetada pelas variações de temperatura do que pela variação de umidade ambiente) e as variações de umidade na madeira. O nível de tensões que pode ser estimado por um simples cálculo elástico, utilizando-se de uma convencional redução no módulo de elasticidade da madeira e de deformação longitudinal do concreto, terá somente uma relevante influência para conexões rígidas e elementos mais longos.

1.7 Algumas estruturas mistas de madeira-concreto já construídas

Nesta seção são apresentados trabalhos de alguns autores que construíram vigas mistas de madeira-concreto em laboratórios e até mesmo estruturas reais que já estão em pleno uso. O objetivo neste momento não é apresentar com detalhes as análises que os autores fizeram, mas mostrar, principalmente através de figuras, que as estruturas mistas de madeira-concreto já são uma realidade e podem compor sistemas estruturais eficientes do ponto de vista de resistência e rigidez, além de uma estética bastante agradável.

É interessante citar também quão antigo são as pesquisas e tentativas de se projetar estruturas mistas de madeira-concreto. McCULLOUGH (1943) baseando-se nos estudos de RICHART e WILLIAMS (1943) desenvolveu um estudo para determinar a viabilidade de construção de pontes rodoviárias de pequenos vãos em detrimento de usar pontes totalmente de madeira não tratada, que a princípio mostrava-se com baixo custo, mas frágil do ponto de vista de resistência ao fogo, do custo de manutenção e de sua curta vida útil, e também no outro extremo que consistia na construção de viadutos de concreto armado que apresentava uma vida útil maior, um baixo custo de manutenção e uma beleza estética agradável, porém com um custo inicial elevado, principalmente em certas condições e localidades de difícil acesso.

Diante deste desafio o autor programa um ensaio de vigas mistas com 5 tipos de conectores de cisalhamento. Os sistemas de conexão que apresentam melhores resultados são os de anéis metálicos e os que combinam pregos com entalhes na madeira, sendo este último o mais adequado em termos de custo inicial e solidarização dos dois materiais.

Assim, baseado nos resultados destes testes, projetos de pontes e viadutos de estruturas mistas madeira-concreto, desenvolvidos no Deparatamento de Estradas de Rodagem do Oregon, Estados Unidos, 180 estruturas, totalizando 20.000 ft (6.096 m), foram construídas. As Figuras 1.6 e 1.7 mostram vistas gerais e detalhes das construções. Desta forma, uma adequada combinação entre madeira e concreto torna possível projetar e construir pontes e viadutos com satisfatória resistência mecânica e pouca agressão das intempéries (já que a camada de concreto

funciona como uma proteção contra as chuvas e o fogo para a madeira) e também a um custo compatível e menor do que aquele das estruturas de concreto armado.

Cabe ressaltar que nesta época (década de 40) as conclusões foram tiradas apenas de ensaios experimentais sendo que o autor não apresenta nenhuma modelagem numérica ou equacionamento do problema.

(a) (b)

Figura 1.6 Estruturas mistas em Oregon. Na figura (a) a infraestrutura consiste em estacas de madeira tratadas com creosoto e proteção de suas cabeças; a superestrutura consiste de um sistema de vigas de madeira tratadas com creosoto conectadas com a mesa de concreto armado, já na figura (b) a infraestrutura é de concreto armado. FONTE: McCULLOUGH, 1943, p.449.

Figura 1.7 Vistas das estruturas mistas antes da concretagem. Na figura (a) os conectores são anéis metálicos e na figura (b) um sistema de pregos e entalhes na madeira. FONTE: McCULLOUGH, 1943, p.449.

Como será detalhado mais à frente nesta dissertação, CAPRETTI e CECCOTTI (1996) monitoram um teste de longa duração (5 anos) em vigas mistas de madeira-concreto que compõem o teto de um laboratório de Química de uma escola na Itália (Figura 1.8).

Figura 1.8 Piso monitorado, de um laboratório de Química de um colégio da Itália, constituído de vigas mistas madeira-concreto.

FONTE: CAPRETTI e CECCOTTI, 1996, p.448.

O meio ambiente no Golfo Pérsico representa um dos mais hostis do globo para as estruturas de concreto armado. Não são só as grandes variações de temperatura e umidade mas também a grande quantidade de sais agressivos. Sob estas condições violentas, as estruturas de concreto armado, mesmo aquelas construídas com concretos de alta durabilidade não chegam a estar adequadas dentro de sua vida útil normal. A corrosão das armaduras, o ataque químico na pasta de cimento e as reações químicas com os agregados causam a rápida deterioração das estruturas de concreto armado. Devido a estes efeitos, fissuras e desgastes tornam-se visíveis após poucos anos de vida da estrutura. É particularmente por esta razão que projetistas e construtores vêm adotando o uso de estruturas de madeira-concreto na maioria dos edifícios residenciais e comerciais na região do Golfo Pérsico. Os pisos construídos com estas estruturas apresentam poucos problemas de durabilidade e não necessitam de mão de obra especializada.

AHMADI e SAKA (1993) desenvolvem um sistema de conexão entre o concreto e a madeira através de pregos de alta resistência capazes de promover um trabalho conjunto das partes, aumentando a capacidade resistente da estrutura mista, que anteriormente não possuia ligação entre os elementos. A Figura 1.9 mostra uma viga com alma dupla sendo preparada para a concretagem de sua mesa e a Figura 1.10, as vigas já prontas.

Figura 1.9 Viga mista madeira concreto (antes da concretagem). FONTE: AHMADI e SAKA, 1993, p.3118.

Figura 1.10 Viga mista madeira concreto (após a concretagem). FONTE: AHMADI e SAKA, 1993, p.3119.

NATTERER, HAMM e FAVRE (1996) citam a laje de uma escola na Finlândia (Figura 1.11) composta por uma estrutura mista de madeira-concreto em que a conexão é baseada em entalhes na madeira e conectores metálicos de alta resistência.

Figura 1.11 Elementos de madeira e conectores de anés metálicos em uma laje de madeira concreto em uma escola em Triesenberg (Finlândia). FONTE: NATTERER, HAMM e FAVRE, 1996, p.434.

JUNHO (1997) e MAGALHÃES (1997) estudaram o comportamento de corpos de prova de cisalhamento e vigas de seção T em madeira-concreto. Entre os objetivos das pesquisas está a aplicação deste método construtivo em reformas de obras tombadas pelo Patrimônio Histórico no estado de Minas Gerais. Como as obras históricas foram quase que totalmente construídas de madeira, e os pisos destes monumentos se encontram deteriorados pelo tempo, a sua reforma se faz necessária o mais rápido possível. A parte estrutural do piso (as vigas de sustentação ou barrotes) se encontra em ótimas condições estruturais, entretanto a laje de madeira (tábuas) necessita de reformas. Assim, uma proposta de reforma para estes pisos é a substituição destas tábuas de madeira que se encontram deterioradas por uma laje de concreto armado. Os autores propõem esta reforma em duas partes: a primeira sendo realizada através da retirada das tábuas do piso, e a segunda, com a realização da concretagem de uma laje diretamente sobre as peças de madeira.

No Laboratório de Estruturas e Materiais de Construção (LEMC - UNICAMP), SORIANO et. al. (1998) estudaram o comportamento de uma viga mista madeira-concreto em que os conectores utilizados eram pregos comuns. Um melhor detalhamento dos resultados obtidos por estes autores será apresentado nos Capítulo 4,5 e 6 quando far-se-á uma comparação entre os resultados teóricos obtidos nesta dissertação com aqueles experimentais. As Figuras 1.12 e 4.6 mostram alguns detalhes das fases de montagem, concretagem e ensaio da viga mista no laboratório.

 a) preparação da mesa da viga, optando-se por colocá-la de cabeça para baixo para facilitar a concretagem;

b) vista superior da viga mostrando a físsura que ocorreu, após a ruptura, ao longo da linha de pregos.

2 OBJETIVOS

2.1 Parte Teórica

A análise de vigas mistas que será desenvolvida neste trabalho diz respeito à determinação das tensões normais e de cisalhamento, bem como dos deslocamentos verticais ao longo da viga. Os métodos de análise escolhidos são baseados em equações de equilíbrio e compatibilidade de deslocamentos (Método Exato e Método Aproximado) e em princípios de energia. Nas seções 3.2 e 3.3 serão descritos com detalhes estes métodos de cálculo. Vibrações, instabilidade e demais assuntos ligados à teoria de estruturas não serão tratados nessa dissertação. No capítulo de Metodologia serão aplicados os Métodos Exato e Aproximado em vigas biapoiadas com carregamento constante ao longo da viga e com cargas aplicadas nos terços do vão.

2.2 Parte Experimental

A análise experimental baseia-se nos estudos de SORIANO et. al. (1998) que consistiu dos seguintes ensaios:

- ensaio de caracterização do concreto. Para a madeira foram tomados valores médios tabelados. Sem dúvida, este procedimento possui vários inconvenientes dada a variabilidade destes parâmetros, mesmo considerando uma mesma espécie de madeira, mas por tratar-se de um estudo preliminar esta conduta justifica-se;
- ensaios de ligação (determinação do módulo de deslizamento K);
- ensaio de flexão de viga bi-apoiada de seção T com cargas aplicadas nos terços do vão.

2.3 Análise dos Resultados

Esta dissertação não objetiva uma análise experimental criteriosa onde diversos corpos de prova seriam elaborados para poder-se chegar a conclusões confiáveis estatisticamente. Aliás, pela complexidade e quantidade de ensaios necessários, o estudo das ligações e de flexão de vigas poderiam fazer parte de trabalhos distintos.

O principal resultado que se busca é a comparação entre os Métodos Exato e Aproximado para quantificar a divergência existente entre ambos, que se espera, a princípio, ser relativamente pequena.

3 MÉTODOS DE ANÁLISE DE VIGAS COMPOSTAS - ESTADO DA ARTE

3.1 Introdução

Segundo SANTANA (1997), composição parcial foi o termo utilizado por NEWMARK, SEISS e VIEST (1951) para se referir à influência da deformação da ligação no comportamento da viga mista. Quando uma viga mista tem uma ligação colada, a composição é total, pois a ligação é rígida e transmite perfeitamente os esforços entre os elementos. Quando não existe ligação, a composição é nula, pois não há transmissão de esforços entre os elementos, e cada elemento trabalha independente dos outros. Já no caso de composição parcial tem-se uma situação intermediária.

Em outras palavras, como explica SORIANO (1999), o monolitismo da seção, através de um sistema de ligação rígido entre os materiais, garante que seja válida a hipótese de Bernoulli -Navier para toda a seção, havendo sobre a mesma apenas uma linha neutra. Já para seções com 2 materiais, onde a ligação for semi-rígida, caracterizada pelo deslizamento na interface de conexão, apresentar-se-á 2 linhas neutras e, proporcionalmente à rigidez da conexão, haverá uma redução do momento de inércia efetivo se comparado a uma seção suposta rigidamente ligada.

A análise teórica baseada em equações de equilíbrio é feita segundo o Método Exato que possibilita a determinação, de forma precisa, das tensões e deslocamentos, e através do Método Aproximado, que incorpora simplificações que trazem facilidades nos procedimentos de cálculo e projeto. Já, a análise teórica baseada nos princípios de energia procura determinar os deslocamentos transversais através da minimização da energia potencial total da viga.

Mais adiante neste capítulo é abordado um dos mais importantes parâmetros envolvidos em cálculo de estruturas mistas, o módulo de deslizamento da conexão, o qual determina a rigidez do sistema composto.

Cabe dizer que existem outras formas de análise de vigas mistas, como por exemplo, modelando-as através do Método dos Elementos Finitos com os conectores idealizados como molas, por exemplo, ou usando programas comerciais tais como o SAP, FRANC ou ANSYS. No entanto, este tipo de estudo não será abordado neste trabalho.

3.2 Métodos baseados em equações de equilíbrio

3.2.1 Método exato

Estruturas mistas vêm ganhando interesse em construções de edificios, onde são utilizadas como elementos de pisos ou paredes e também em construções de pontes. Estes tipos de estruturas mistas são construídas a partir de dois ou mais componentes constituídos do mesmo material ou não. Cada componente é disposto em uma posição aonde suas características são mais aproveitáveis e ligado ao adjacente por meio de conectores que resistem aos esforços de cisalhamento.

Definem-se estruturas mistas como sendo constituídas de mais de um elemento estrutural conectados entre si de forma a comporem uma estrutura única. A relação entre os elementos depende fortemente do tipo de conexão utilizado. Conectores rígidos usualmente desenvolvem uma ligação completa entre os elementos. Desta forma, os princípios convencionais de análise de flexão em vigas podem ser diretamente utilizados através do "Método da Seção Transformada" (Anexo A). Por outro lado, conectores semi-rígidos, isto é, que fornecem uma ligação semi-rígida, geralmente permitem apenas uma interação parcial entre os elementos; assim sendo, os procedimentos de análise devem levar em consideração o deslizamento existente entre os elementos.

3.2.1.1 Conectores

A função dos conectores é transferir os esforços de cisalhamento (fluxo de cisalhamento) que surgem na interface entre os elementos de modo a desenvolver ação composta (função mais importante) e prevenir a separação transversal dos elementos (função secundária). Conectores rígidos que fornecem uma interação total entre os elementos incluem barras de aço delgadas e adesivos rígidos; conectores semi-rígidos que provém interação parcial entre os elementos incluem cavilhas, pregos, parafusos, barras de aço para concreto armado e chapas de aço. No caso de elementos interligados através de conectores mecânicos, assume-se que as forças de deslizamento são distribuídas uniformemente ao longo do comprimento da viga de modo a simplificar a análise. Usualmente, somente a parte linear do diagrama carga x deslizamento é considerada nos procedimentos de análise, isto é, a teoria é baseada em um módulo de deslizamento constante.

3.2.1.2 Hipóteses e Parâmetros Geométricos

As hipóteses básicas para uma estrutura unidimensional (por exemplo, uma viga) parcialmente composta, segundo GIRHAMMAR e GOPU (1991 e 1993), CECCOTTI (1995), KREUZINGER (1995), GUTKOWSKI e CHEN (1996) e STEVANOVIC (1996), são as seguintes:

- os deslocamentos devidos à flexão são pequenos e portanto a teoria de pequenos deslocamentos é válida;
- 2. deslocamentos devidos a deformações por cisalhamento em cada elemento são desprezadas;
- 3. a hipótese de Bernoulli-Navier de seções planas permanecerem planas após as deformações não é válida para a seção como um todo, porém ainda é válida individualmente para a seção de madeira e a seção de concreto. Não há separação transversal dos materiais quando a estrutura é carregada, de forma que a curvatura de cada elemento é a mesma;

- 4. todos os materiais possuem relações constitutivas elástico-linear;
- 5. a relação carga x deslizamento do conector é elástica linear (representada pelo módulo de deslizamento K [FL⁻¹] ou módulo de deslizamento equivalente K [FL⁻²]), seção 3.4. Os conectores são uniformemente espaçados e assume-se que os mesmos produzem força de deslizamento uniformemente distribuída ou tensões de cisalhamento entre camadas uniformes. Para os cálculos nos estados limites de utilização pode-se utilizar o módulo de deslizamento *tangente*, no entanto nos estados limites últimos, embora o comportamento da ligação deixe de ser linear, é possível considerar um módulo de deslizamento *secante* (Figura 3.1);
- 6. simplificações construtivas.

Embora algumas hipóteses sejam questionáveis - como por exemplo a 2, que foi investigada por SANTANA (1997) e verificada a falta de validade em certos casos e a 5 que não representa fielmente o comportamento da conexão que não é linear como se vê na Figura 3.1 - os vários autores que as utilizam afirmam que, em geral, os resultados obtidos são satisfatórios.

Figura 3.1 Módulos de deslizamento da curva carga x deslizamento para conectores resistentes ao cisalhamento em estruturas compostas. FONTE: RILEM, 1992, v. 6, p.44.

Os parâmetros geométricos que definem uma típica seção transversal de uma viga T mista madeira-concreto são mostrados na Figura 3.2. A viga é sujeita apenas a um carregamento transversal qualquer de intensidade q que pode variar ao longo de seu eixo (Figura 3.3). As condições de contorno da viga (tipo de vinculações) não são especificadas, de forma que podem ser quaisquer.

Figura 3.2 Parâmetros geométricos de uma viga mista madeira-concreto. FONTE: GIRHAMMAR e GOPU, 1991, p.41.

Figura 3.3 Carregamento genérico atuando em uma viga composta. FONTE: RILEM, 1992, v. 6, p.44.

3.2.1.3 Teoria de Vigas Mistas Submetidas à Flexão

Considere-se os diagramas de corpo livre de um elemento diferencial dx representados nas Figuras 3.4 (condição indeformada) e 3.5 (condição deformada) na viga mista sujeita ao carregamento transversal q de acordo com GIRHAMMAR e GOPU (1991 e 1993).

Figura 3.4 Elemento diferencial em uma viga mista sujeito a um carregamento transversal uniformemente distribuído.

FONTE: GIRHAMMAR e GOPU, 1993, p.1267.

Figura 3.5 Elemento diferencial de uma viga na condição deformada (as ações desenhadas em traço cheio e tracejado referem-se as duas subseções e à seção inteira, respectivamente).

FONTE: GIRHAMMAR e GOPU, 1991, p. 41.

Do equilíbrio do elemento, tem-se as seguintes equações conhecidas da Resistência dos Materiais:

- $\mathbf{V}' = -\mathbf{q} \tag{3.1}$
- $\mathbf{M}' = \mathbf{V} \tag{3.2}$
- $M'' = -q \tag{3.3}$

onde:

q = carregamento genérico que atua na viga;

V = esforço cortante que atua na seção mista;

M = momento fletor que atua na seção mista.

Considerando a equivalência entre as ações internas e externas da Figura 3.4 do lado esquerdo dos diagramas de corpo livre, obtém-se:

$$0 = N_c + N_w \tag{3.4}$$

$$\mathbf{V} = \mathbf{V}_{c} + \mathbf{V}_{w} \tag{3.5}$$

$$\mathbf{M} = \mathbf{M}_{c} + \mathbf{M}_{w} - \mathbf{N}_{c}\mathbf{r} \tag{3.6}$$

onde:

r = distância entre o CG do concreto e o CG da madeira.

 V_c = esforço cortante no concreto;

 V_w = esforço cortante na madeira;

- N_c = esforço normal no concreto;
- N_w = esforço normal na madeira;
- M_c = momento fletor no concreto;

 M_w = momento fletor na madeira.

Da hipótese adotada para o conector, obtém-se o módulo de deslizamento e módulo de deslizamento equivalente:

$$K = \frac{F_s}{u}$$
(3.7)

$$\overline{K} = \frac{K}{s} = \frac{\overline{\phi}_s}{u}$$
(3.8)

onde:

K = módulo de deslizamento da ligação;

 \overline{K} = módulo de deslizamento equivalente da ligação;

u = deslizamento relativo na interface dos materiais;

 $F_s = esforço no conector;$

s = espaçamento entre os conectores;

 $\overline{\phi}_s$ = fluxo de cisalhamento que surge na interface dos materiais.

Do equilíbrio de forças horizontais dos elementos de madeira e concreto tem-se:

$$\mathbf{N}_{s}^{\prime} = -\overline{\mathbf{\Phi}}_{s} = -\overline{\mathbf{K}}\mathbf{u} \tag{3.9}$$

$$N'_{w} = \overline{\phi}_{s}$$
(3.10)

Somando-se os momentos em torno dos pontos b e d da Figura 3.4 para o elemento de concreto e de madeira, obtém-se respectivamente:

$$\mathbf{V}_{c} = \mathbf{M}_{c}^{'} + \bar{\mathbf{\phi}}_{s} \mathbf{r}_{c} \tag{3.11}$$

$$\mathbf{V}_{\mathbf{w}} = \mathbf{M}_{\mathbf{w}} + \boldsymbol{\phi}_{\mathbf{s}} \mathbf{r}_{\mathbf{w}} \tag{3.12}$$

onde:

,

 $r_c e r_w$ = meia altura dos elementos de concreto e madeira, respectivamente (Figura 3.2).

Assumindo que a curvatura dos componentes concreto e madeira é a mesma, e também desprezando os efeitos de deformações por cisalhamento e encurtamento do eixo da barra, tem-se:

$$\mathbf{v}'' = \mathbf{v}_{c}'' = \mathbf{v}_{w}'' = -\frac{M_{c}}{E_{c}I_{c}} = -\frac{M_{w}}{E_{w}I_{w}}$$
 (3.13)

onde:

v = linha elástica da viga;

E_c = módulo de deformação longitudinal do concreto;

 $E_w = m \acute{o} du lo de elasticidade da madeira;$

I_c = momento de inércia do concreto em relação ao seu próprio eixo baricêntrico;

 I_w = momento de inércia da madeira em relação ao seu próprio eixo baricêntrico;

 E_cI_c = rigidez à flexão da mesa em relação ao seu próprio eixo baricêntrico;

 $E_w I_w =$ rigidez à flexão da alma em relação ao seu próprio eixo baricêntrico.

Combinando as equações (3.6) e (3.13) obtêm-se:

$$M_{c} = M - M_{w} + N_{c}r$$

$$M_{c} = M - \frac{E_{w}I_{w}}{E_{c}I_{c}}M_{c} + N_{c}r$$

$$(E_{c}I_{c})M_{c} = (E_{c}I_{c})M - (E_{w}I_{w})M_{c} + (E_{c}I_{c})N_{c}r$$

$$(E_{c}I_{c} + E_{w}I_{w})M_{c} = (E_{c}I_{c})M + (E_{c}I_{c})N_{c}r$$

$$M_{c} = \frac{E_{c}I_{c}}{(EI)}_{0} \left(M + N_{c}r\right)$$
(3.14)

e, analogamente:

$$M_{w} = \frac{E_{w}I_{w}}{(EI)_{0}} (M + N_{c}r)$$
(3.15)

sendo:

$$(EI)_{\theta} = E_{c}I_{c} + E_{w}I_{w}$$
(3.16)

que é a rigidez à flexão para a seção não composta (como se não houvesse conexão).

A compatibilidade de deslocamentos na interface entre os dois elementos da Figura 3.5, leva a um deslizamento entre as partes dado por:

$$\mathbf{u} = \mathbf{u}_{\mathbf{w}} - \mathbf{u}_{\mathbf{c}} + \mathbf{v'r} \tag{3.17}$$

onde:

 u_c = deslocamento horizontal do CG do elemento de concreto;

Diferenciando ambos os lados da equação (3.17) com relação a x obtém-se as deformações:

$$\varepsilon = \varepsilon_w - \varepsilon_c + v'' r \tag{3.18}$$

Para a equação (3.18), os valores de ε_c e ε_w são obtidos das expressões:

$$\varepsilon_{w} = \frac{\Delta \ell_{w}}{\ell_{w}} = \frac{N_{w}}{E_{w}A_{w}}$$
(3.19)

$$\varepsilon_{c} = \frac{\Delta \ell_{c}}{\ell_{c}} = \frac{N_{c}}{E_{c}A_{c}}$$
(3.20)

onde:

- ε_{c} = deformação no CG do elemento de concreto;
- ε_w = deformação no CG do elemento de madeira;
- A_c = área da seção transversal do elemento de concreto;
- $A_w =$ área da seção transversal do elemento de madeira;
- \mathcal{M}_{c} = variação no comprimento do elemento de concreto;
- ℓ_{c} = comprimento do elemento de concreto;

 $\ell_{\rm w}$ = comprimento do elemento de madeira.

Isolando u na equação (3.9) e diferenciando-a com relação a x obtém-se:

$$\varepsilon = -\frac{N_c^*}{\overline{K}}$$
(3.21)

Das equações (3.13) e (3.14) tem-se que:

$$\mathbf{v}'' = -\frac{\left(\mathbf{M} + \mathbf{N}_{c}\mathbf{r}\right)}{\left(\mathbf{EI}\right)_{0}}$$
(3.22)

Substituindo as equações (3.19), (3.20), (3.21) e (3.22) na equação (3.18), chega-se a:

$$-\frac{\mathbf{N}_{c}^{"}}{\overline{\mathbf{K}}} = \frac{\mathbf{N}_{w}}{\mathbf{E}_{w}\mathbf{A}_{w}} - \frac{\mathbf{N}_{c}}{\mathbf{E}_{c}\mathbf{A}_{c}} - \frac{\left(\mathbf{M} + \mathbf{N}_{c}\mathbf{r}\right)}{\left(\mathbf{EI}\right)_{0}}\mathbf{r}$$

rearranjando:

$$\mathbf{N}_{c}^{*} - \overline{\mathbf{K}} \left(\frac{1}{\mathbf{E}_{c} \mathbf{A}_{c}} + \frac{1}{\mathbf{E}_{w} \mathbf{A}_{w}} + \frac{\mathbf{r}^{2}}{(\mathbf{EI})_{0}} \right) \mathbf{N}_{c} = \frac{\overline{\mathbf{K}}\mathbf{r}}{(\mathbf{EI})_{0}} \mathbf{M}$$

ou:

$$N_{c}'' - \alpha^{2}N_{c} = \beta M \tag{3.23}$$

onde:

$$\alpha^{2} = \overline{K} \left(\frac{1}{E_{c}A_{c}} + \frac{1}{E_{w}A_{w}} + \frac{r^{2}}{(EI)_{0}} \right)$$
(3.24)

$$\beta = \frac{\overline{\mathrm{Kr}}}{(\mathrm{EI})_{0}}$$
(3.25)

Diferenciando-se duas vezes a equação (3.22) com relação a x, tem-se:

$$v^{m} = -\frac{M'}{(EI)_0} - \frac{N_c^{*}}{(EI)_0}r$$

$$v^{m} = -\frac{M'}{(EI)_0} - \frac{r}{(EI)_0}(\alpha^2 N_c + \beta M)$$

$$v^{m} = -\frac{M'}{(EI)_0} - \frac{N_c r}{(EI)_0}\alpha^2 - \frac{\beta r}{(EI)_0}M$$

Isolando N_c na equação (3.22) e substituindo-o na expressão acima, tem-se:

$$v^{m} = -\frac{M'}{(EI)_0} + \alpha^2 v' + \frac{M}{(EI)_0} \alpha^2 - \frac{\beta r}{(EI)_0} M$$

$$v^{m} - \alpha^2 v^{"} = -\frac{M^{"}}{(EI)_0} + (\alpha^2 - \beta r) \frac{M}{(EI)_0}$$
 (3.26)

A rigidez à flexão para a seção totalmente composta é dada por (ver Anexo C):

$$\left(\mathrm{EI}\right)_{\infty} = \left(\mathrm{EI}\right)_{0} + \frac{\mathrm{E_{c}A_{c}E_{w}A_{w}}}{\mathrm{E_{c}A_{c}} + \mathrm{E_{w}A_{w}}}r^{2}$$
(3.27)

que também pode ser escrita em função de α^2 e β (ver Anexo C):

$$(EI)_{\infty} = \frac{(EI)_o}{1 - \frac{\beta r}{\alpha^2}}$$
(3.28)

Desta forma a última parcela do termo da direita da equação(3.26) torna-se:

$$\left(\alpha^{2} - \beta r\right)\frac{M}{\left(EI\right)_{0}} = \left(\alpha^{2} - \beta r\right)\frac{M}{\left(EI\right)_{\infty}\left(1 - \frac{\beta r}{\alpha^{2}}\right)} = \left(\alpha^{2} - \beta r\right)\frac{M}{\left(EI\right)_{\infty}\frac{\left(\alpha^{2} - \beta r\right)}{\alpha^{2}}} = \alpha^{2}\frac{M}{\left(EI\right)_{\infty}}$$

Portanto, obtém-se a equação diferencial que governa o fenômeno em termos da função deslocamento v:

$$v^{""} - \alpha^2 v^{"} = -\frac{M^{"}}{(EI)_0} + \alpha^2 \frac{M}{(EI)_{\infty}}$$
 (3.29)

cuja solução geral, aplicando-se a transformação de Laplace, é:

$$v = a_1 \operatorname{senh}(\alpha x) + a_2 \cosh(\alpha x) + a_3 x + a_4 + v_{sp}$$
 (3.30)

e a solução particular fica dada por:

$$v_{sp} = \int_0^x \left\{ \operatorname{senh}[\alpha(x-s)] - (x-s) \right\} \left\{ \frac{M(s)}{(EI)_{\infty}} - \frac{M''(s)}{\alpha^2(EI)_0} \right\} ds$$
(3.31)

Conhecida a solução v para um dado conjunto de condições de contorno, as ações internas para toda a seção e para a seção de cada elemento podem ser obtidas a partir das equações (3.4), (3.5), (3.6), (3.9) e (3.22):

$$\mathbf{M} = \frac{(\mathbf{EI})_{\infty}}{\alpha^2} \mathbf{v}^{\mathbf{m}} - (\mathbf{EI})_{\infty} \mathbf{v}^{\mathbf{n}} - \frac{(\mathbf{EI})_{\infty}}{\alpha^2 (\mathbf{EI})_0} \mathbf{q}$$
(3.32)

$$V = \frac{(EI)_{\infty}}{\alpha^{2}} v^{m} - (EI)_{\infty} v^{m} - \frac{(EI)_{\infty}}{\alpha^{2} (EI)_{0}} q^{2}$$
(3.33)

$$N_{c} = -\frac{M + (EI)_{o}v''}{r}$$
(3.34)

$$N_{w} = \frac{M + (EI)_{o}v''}{r}$$
(3.35)

$$\overline{\phi}_{s} = \frac{M' + (EI)_{o}v''}{r} = \frac{V + (EI)_{o}v''}{r}$$
(3.36)

$$\mathbf{M}_{c} = -\mathbf{E}_{c}\mathbf{I}_{c}\mathbf{v}^{''} \tag{3.37}$$

$$\mathbf{M}_{w} = -\mathbf{E}_{w}\mathbf{I}_{w}\mathbf{v}^{''} \tag{3.38}$$

$$\mathbf{V}_{c} = \mathbf{M}_{c}' + \overline{\mathbf{\phi}}_{s} \mathbf{r}_{c} \tag{3.11}$$

$$V_{w} = M'_{w} + \overline{\phi}_{s} r_{w}$$
(3.12)

• Fluxo de cisalhamento na interface madeira-concreto

O fluxo de cisalhamento $\overline{\phi}_s$ expresso na equação (3.36) também pode ser obtido diretamente da resolução de uma equação diferencial dada no procedimento a seguir.

Sejam as expressões, (3.23) e (3.9):

$$N_{c}'' - \alpha^{2}N_{c} = \beta M \tag{3.23}$$

$$N'_{o} = -\overline{\phi}_{s} \tag{3.9}$$

Diferenciando-se a equação (3.23) uma vez em relação a x e a equação (3.9) duas vezes em relação a x e substituindo naquele anterior obtém-se:

$$N_{c}^{'''} - \alpha^{2} N_{c}^{'} = \beta M'$$

$$- \overline{\phi}_{s}^{''} - \alpha^{2} (- \overline{\phi}_{s}) = \beta M'$$

$$\overline{\phi}_{s}^{''} - \alpha^{2} \overline{\phi}_{s} = -\beta V \qquad (3.39)$$

cuja solução determina o fluxo de cisalhamento na interface em qualquer seção da viga.

• Tensões normais e de cisalhamento

Conhecidos os esforços dados nas expressões (3.11)-(3.12) e (3.32)-(3.38) é possível determinar as tensões normais e de cisalhamento que atuam na seção mista, considerando cada elemento (madeira e concreto) como sendo uma viga isolada sujeita aos esforços citados.

Assim, as tensões normais na madeira e no concreto, considerando-os trabalhando separadamente, são dadas por:

$$\sigma_{c}(\mathbf{x}, \mathbf{y}) = \frac{M_{c}(\mathbf{x})}{I_{c}}\mathbf{y} + \frac{N_{c}(\mathbf{x})}{A_{c}}$$
(3.40)

$$\sigma_{w}(x,y) = \frac{M_{w}(x)}{I_{w}}y + \frac{N_{w}(x)}{A_{w}}$$
(3.41)

onde:

y = distância entre o CG do elemento considerado até a fibra na qual se deseja determinar a tensão.

Para as tensões de cisalhamento seja a Figura 3.6:

Figura 3.6 Elementos de madeira e esforços neles atuantes.

é possível escrever:

$$N_{w}^{*} = \int_{A_{w}^{*}} \sigma_{w}(x, y) dA_{w}^{*}$$
(3.42)

onde:

 $N_w^* = esforço normal resultante das tensões que atuam no elemento menor;$ $<math>A_w^* = área da seção transversal do elemento menor.$

$$N_{w}^{*} = \int_{A_{w}^{*}} \left(\frac{M_{w}}{I_{w}} y + \frac{N_{w}}{A_{w}} \right) dA_{w}^{*}$$

$$N_{w}^{*} = \int_{A_{w}^{*}} \frac{M_{w}}{I_{w}} y \, dA_{w}^{*} + \int_{A_{w}^{*}} \frac{N_{w}}{A_{w}} \, dA_{w}^{*}$$

$$N_{w}^{*} = \frac{M_{w}}{I_{w}} \int_{A_{w}^{*}} y \, dA_{w}^{*} + \frac{N_{w}}{A_{w}} \int_{A_{w}^{*}} dA_{w}^{*}$$

$$N_{w}^{*} = \frac{M_{w}}{I_{w}} S_{w}^{*} + \frac{N_{w}}{A_{w}} A_{w}^{*}$$
(3.43)

onde:

 S_w^* = momento estático da área A_w^* em relação ao CG da seção de madeira.

diferenciando a equação (3.43) em relação a x, e utilizando as expressões (3.10) e (3.12) obtémse,

$$\frac{dN_{w}^{*}}{dx} = \left(V_{w} - \overline{\phi}_{s}r_{w}\right)\frac{S_{w}^{*}}{I_{w}} + \frac{dN_{w}}{dx}\frac{A_{w}^{*}}{A_{w}}$$

$$\frac{dN_{w}^{*}}{dx} = \frac{V_{w}S_{w}^{*}}{I_{w}} + \frac{\overline{\phi}_{s}A_{w}^{*}}{A_{w}} - \frac{\overline{\phi}_{s}S_{w}^{*}}{I_{w}}r_{w}$$
(3.44)

Do equilíbrio do elemento representado na Figura 3.6, na direção horizontal tem-se,

$$\sum N = 0 = N_w^* + dN_w^* - \tau_w dx b_w - N_w^*$$

$$\tau_w dx b_w = dN_w^*$$

$$\tau_w b_w = \frac{dN_w^*}{dx}$$

(3.45)

onde:

 τ_w = tensão de cisalhamento na seção de madeira; b_w = largura da seção de madeira;

substituindo (3.44) em (3.45) chega-se a:

$$\tau_{w}b_{w} = \frac{V_{w}S_{w}^{*}}{I_{w}} + \frac{\overline{\phi}_{s}A_{w}^{*}}{A_{w}} - \frac{\overline{\phi}_{s}S_{w}^{*}}{I_{w}}r_{w}$$

$$\tau_{w}b_{w} = \phi_{w} = \frac{V_{w}S_{w}^{*}}{I_{w}} + \overline{\phi}_{s}\left(\frac{A_{w}^{*}}{A_{w}} - \frac{S_{w}^{*}}{I_{w}}r_{w}\right)$$
(3.46)

cuja representação gráfica pode ser vista, a menos das pequenas diferenças do outro método, na Figura 3.11(d) e suas 1^a e 2^a parcelas nas Figuras 3.11(b) e 3.11(c). E finalmente tem-se,

$$\tau_{w}(x,y) = \frac{V_{w}S_{w}^{*}}{b_{w}I_{w}} + \frac{\overline{\phi}_{s}}{b_{w}}\left(\frac{A_{w}^{*}}{A_{w}} - \frac{S_{w}^{*}}{I_{w}}r_{w}\right)$$
(3.47)

que possibilita determinar as tensões de cisalhamento em qualquer ponto da seção de madeira.

Analogamente, uma expressão para o cálculo das tensões de cisalhamento na seção de concreto pode ser obtida:

$$\tau_{c}(\mathbf{x},\mathbf{y}) = \frac{\mathbf{V}_{c}\mathbf{S}_{c}^{*}}{\mathbf{b}_{c}\mathbf{I}_{c}} + \frac{\overline{\mathbf{b}}_{s}}{\mathbf{b}_{c}} \left(1 - \frac{\mathbf{A}_{c}^{*}}{\mathbf{A}_{c}} - \frac{\mathbf{S}_{c}^{*}}{\mathbf{I}_{c}}\mathbf{r}_{c}\right)$$
(3.48)

3.2.1.4 Casos Limites

3.2.1.4.1 Seção não composta

Este caso ocorre quando $\overline{\phi}_s = 0$ ou K = 0. As ações internas podem ser obtidas das equações (3.11), (3.12) e (3.34) - (3.38) reconhecendo-se que $v'' = -\frac{M}{(EI)_0}$:

$$N_{c,0} = 0$$
 (3.49)

$$N_{w,0} = 0$$
 (3.50)

$$\overline{\mathbf{\phi}}_s = 0 \tag{3.51}$$

$$M_{c,0} = \frac{E_c I_c}{(EI)_0} M$$
(3.52)

$$\mathbf{M}_{\mathbf{w},\mathbf{0}} = \frac{\mathbf{E}_{\mathbf{w}}\mathbf{I}_{\mathbf{w}}}{(\mathbf{EI})_{0}}\mathbf{M}$$
(3.53)

$$V_{c,0} = \frac{E_c I_c}{(EI)_0} V$$
(3.54)

$$\mathbf{V}_{\mathbf{w},\mathbf{0}} = \frac{\mathbf{E}_{\mathbf{w}}\mathbf{I}_{\mathbf{w}}}{(\mathbf{EI})_{\mathbf{0}}}\mathbf{V}$$
(3.55)

onde o segundo índice 0 refere-se à solução para a seção não composta.

3.2.1.4.2 Seção totalmente composta

Este caso ocorre quando u = 0 ou K $\rightarrow \infty$. As ações internas podem ser obtidas das equações (3.11), (3.12) e (3.34) - (3.38) reconhecendo-se que v["] = $-\frac{M}{(EI)_{\infty}}$:

$$N_{c,\infty} = -\left(1 - \frac{(EI)_{0}}{(EI)_{\infty}}\right) \frac{M}{r}$$
(3.56)

$$N_{w,\infty} = \left(1 - \frac{(EI)_0}{(EI)_\infty}\right) \frac{M}{r}$$
(3.57)

$$\overline{\phi}_{s,\infty} = \frac{V - M' \frac{(EI)_{o}}{(EI)_{\infty}}}{r} = \left(1 - \frac{(EI)_{o}}{(EI)_{\infty}}\right) \frac{V}{r} = \frac{E_{c}A_{c}}{(EI)_{\infty}} y_{cg,\infty} V$$
(3.58)

$$M_{c,\infty} = \frac{E_c I_c}{(EI)_{\infty}} M$$
(3.59)

$$M_{w,\infty} = \frac{E_w I_w}{(EI)_{\infty}} M$$
(3.60)

$$\mathbf{V}_{c,\infty} = \left[\frac{\mathbf{E}_{c}\mathbf{I}_{c}}{(\mathbf{EI})_{\infty}} + \left(1 - \frac{(\mathbf{EI})_{0}}{(\mathbf{EI})_{\infty}}\right)\frac{\mathbf{r}_{c}}{\mathbf{r}}\right]\mathbf{V}$$
(3.61)

$$V_{w,\infty} = \left[\frac{E_w I_w}{(EI)_{\infty}} + \left(1 - \frac{(EI)_0}{(EI)_{\infty}}\right) \frac{r_w}{r}\right] V$$
(3.62)

onde o segundo índice ∞ refere-se a solução para a seção totalmente composta.

3.2.2 Método Aproximado

3.2.2.1 Objetivos

Explicar o cálculo e o projeto de vigas mistas madeira-concreto fornecendo soluções analíticas aproximadas. Cabe ressaltar que as hipóteses básicas assumidas no Método Aproximado são as mesmas do Método Exato apresentadas na seção 3.2.1.2.

3.2.2.2 Conexão semi-rígida

A conexão de inúmeras seções transversais é feita por conectores metálicos como pregos, cavilhas, anéis metálicos ou chapas pregadas (ligações coladas são consideradas como conexões rígidas). Cada ligação é solicitada por forças de cisalhamento que causam um deslizamento. A relação entre a força F_s que haje na interface e o deslizamento entre as partes da seção transversal u é dada pelo módulo de deslizamento K.

Para o cálculo, e de maneira a desenvolver equações de aplicação, é necessário distribuir os conectores continuamente ao longo da viga. O efeito disto é um contínuo esforço de cisalhamento atuante, isto é, um fluxo de cisalhamento ϕ (Figura 3.7).

Figura 3.7 Deslizamento e força de cisalhamento entre as partes. FONTE: KREUZINGER, 1995, p.2.

De (3.7) e (3.8) e lembrando que:

$$\phi = \frac{F_s}{s} \tag{3.63}$$

onde:

 ϕ = fluxo de cisalhamento na interface (correspondente a definição de $\overline{\phi}_s$ na seção 3.2.1); F_s = esforço de cisalhamento no conector; s = espaçamento entre conectores.

chega-se a:

$$\phi = Ku \tag{3.64}$$

onde os parâmetros \overline{K} e *u* são os mesmos definidos anteriormente.

Se a distância entre os conectores é considerável ou se os conectores são concentrados em muito poucos pontos, o modelo de cálculo de conexão contínua deixa de ser válido, e um diferente modelo mecânico é requerido.

3.2.2.3 As deformações

As Figuras 3.8 e 3.9 mostram as ações e os deslocamentos que ocorrem, onde:

- u_c e u_w são os deslocamentos longitudinais dos CG das seções transversais do concreto e da madeira, respectivamente;
- v é o deslocamento vertical;
- u é o deslizamento relativo entre as partes da seção transversal.

Figura 3.8 Detalhes da viga e equilíbrio de um elemento infinitesimal. Sistema, seção transversal, deformação e elemento dx. FONTE: KREUZINGER, 1995, p.3.

Como já visto neste capítulo, no item 3.2.1.3, expressão (3.17), o valor total do deslizamento relativo em um ponto qualquer pode ser obtido por:

$$\mathbf{u} = \mathbf{u}_{\mathbf{w}} - \mathbf{u}_{\mathbf{s}} + \mathbf{v} \mathbf{a} \tag{3.17}$$

observando que a medida a adotada por KREUZINGER (1995) é idêntica a r, e equivalem à distância entre o CG do concreto e o CG da madeira.

Figura 3.9 Deformações.

FONTE: KREUZINGER, 1995, p.3.

,

Os princípios elásticos da teoria de flexão levam a:

$$N_{c} = E_{c}A_{c}u_{c}$$
 (3.65 a,b) (3.65 a,b)

$$M_{c} = -E_{c}I_{c}v^{"}$$
 $M_{w} = -E_{w}I_{w}v^{"}$ (3.66 a,b)

$$V_{c} = -E_{c}I_{c}v^{"'}$$
 $V_{w} = -E_{w}I_{w}v^{"'}$ (3.67 a,b)

$$\phi = \overline{K}u = \overline{K}(u_{w} - u_{c} + v'a)$$
(3.68)

Do equilíbrio dos dois elementos da Figura 3.8 nas direções x e z, tem-se:

$$N'_{c} + \phi = 0$$
 $-N'_{w} + \phi = 0$ (3.69 a,b)

$$M'_{c} = V_{c} - \phi r_{c}$$
 $M'_{w} = V_{w} - \phi r_{w}$ (3.70 a,b)

$$V_{c}' + V_{w}' = -p = V'$$
 (3.71)

sendo p um carregamento genérico aplicado à viga.

Somando as equações (3.70 a) e (3.70 b), levando-se em consideração a equação (3.71) e diferenciando outra vez com relação a x, tem-se:

$$M_{c}^{"} + M_{w}^{"} + \phi' a + p = 0$$
 (3.72)

Se as forças internas e momentos são substituídos usando os princípios elásticos, o seguinte sistema de equações diferenciais resulta:

$$\mathbf{E}_{c}\mathbf{A}_{c}\mathbf{u}_{c}^{"}+\overline{\mathbf{K}}\left(\mathbf{u}_{w}-\mathbf{u}_{c}+\mathbf{v}^{'}\mathbf{a}\right)=0$$
(3.73)

$$\mathbf{E}_{\mathbf{w}}\mathbf{A}_{\mathbf{w}}\mathbf{u}_{\mathbf{w}}^{"}-\overline{\mathbf{K}}\left(\mathbf{u}_{\mathbf{w}}-\mathbf{u}_{c}+\mathbf{v}\mathbf{a}\right)=0$$
(3.74)

$$\left(\mathbf{E}_{c}\mathbf{I}_{c}+\mathbf{E}_{w}\mathbf{I}_{w}\right)\mathbf{v}^{m}-\overline{\mathbf{K}}\left(\mathbf{u}_{w}^{'}-\mathbf{u}_{c}^{'}+\mathbf{v}^{'}a\right)\mathbf{a}=\mathbf{p}$$
(3.75)

Desta forma as três equações de equilíbrio (3.69 a), (3.69 b) e (3.72) são formuladas em termos dos três deslocamentos u_c, u_w e v.

Para vigas simplesmente apoiadas, com uma distribuição de carregamento senoidal como mostrado na Figura 3.10, uma simples solução analítica pode ser dada, devido a forma das deformações nas direções dos eixos corresponderem à funções senoidais ou cossenoidais. Embora

a derivação seja baseada em uma distribuição de carregamento senoidal, a solução simplificada é também aplicável a maioria de outras distribuições de carregamento segundo KREUZINGER (1995).

Figura 3.10 Distribuição de carregamento senoidal.

Assim tem-se:

$$p = p_0 \, \operatorname{sen}\!\left(\frac{\pi}{\ell} \, \mathrm{x}\right) \tag{3.76}$$

$$u_{c} = u_{c0} \cos\left(\frac{\pi}{\ell}x\right)$$
 $u_{w} = u_{w0} \cos\left(\frac{\pi}{\ell}x\right)$ $v = v_{0} \sin\left(\frac{\pi}{\ell}x\right)$ (3.77 a,b,c)

onde u_{c0} e u_{w0} são os deslocamentos horizontais dos CG's do concreto e da madeira, respectivamente nos extremos da viga e v_0 é o deslocamento vertical máximo, e que ocorre na seção central da viga.

Estes termos quando substituídos nas equações (3.73), (3.74) e (3.75) geram um sistema de equações para as constantes u_{c0} , u_{w0} e v_0 :

$$\begin{bmatrix} -\frac{\pi^{2}}{\ell^{2}} \mathbf{E}_{c} \mathbf{A}_{c} - \overline{\mathbf{K}} & \overline{\mathbf{K}} & \overline{\mathbf{K}} \frac{\pi}{\ell} \mathbf{a} \\ \overline{\mathbf{K}} & -\frac{\pi^{2}}{\ell^{2}} \mathbf{E}_{c} \mathbf{A}_{c} - \overline{\mathbf{K}} & -\overline{\mathbf{K}} \frac{\pi}{\ell} \mathbf{a} \\ \overline{\mathbf{K}} & \frac{\pi}{\ell} \mathbf{a} & -\overline{\mathbf{K}} \frac{\pi}{\ell} \mathbf{a} & \frac{\pi^{4}}{\ell^{4}} \left(\mathbf{E}_{c} \mathbf{I}_{c} + \mathbf{E}_{w} \mathbf{I}_{w} \right) - \overline{\mathbf{K}} \frac{\pi^{2}}{\ell^{2}} \mathbf{a}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{c0} \\ \mathbf{u}_{w0} \\ \mathbf{v}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ -\mathbf{p}_{0} \end{bmatrix}$$
(3.78)

cuja solução é dada por:

$$u_{c0} = v_0 \frac{\pi}{\ell} \frac{a \gamma_c E_w A_w}{\gamma_c E_c A_c + E_w A_w}$$
(3.79)

$$u_{w0} = -v_0 \frac{\pi}{\ell} \frac{a\gamma_c E_c A_c}{\gamma_c E_c A_c + E_w A_w}$$
(3.80)

$$v_{0} = p_{0} \frac{\ell^{4}}{\pi^{4}} \frac{1}{E_{c}I_{c} + E_{w}I_{w} + \frac{E_{c}A_{c}\gamma_{c}a^{2}}{1 + \gamma_{c}\frac{E_{c}A_{c}}{E_{w}A_{w}}}} = p_{0} \frac{\ell^{4}}{\pi^{4}} \frac{1}{E_{c}I_{c} + E_{w}I_{w} + \frac{\gamma_{c}E_{c}A_{c}E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a^{2}}$$

$$v_{0} = p_{0} \frac{\ell^{4}}{\pi^{4}} \frac{1}{(EI)_{ef}}$$
(3.81)

sendo:

$$(EI)_{ef} = E_c I_c + E_w I_w + \frac{E_c A_c \gamma_c a^2}{1 + \gamma_c \frac{E_c A_c}{E_w A_w}} = E_c I_c + E_w I_w + \frac{\gamma_c E_c A_c E_w A_w}{\gamma_c E_c A_c + E_w A_w} a^2$$
(3.82)

$$\gamma_{c} = \frac{1}{1+k} \tag{3.83}$$

$$k = \frac{\pi^2}{\ell^2} \frac{E_c A_c}{\overline{K}}$$
(3.84)

Com esses deslocamentos, aplicando-se os princípios da elasticidade, as tensões podem ser calculadas.

3.2.2.4 As tensões

A seguir as expressões para o cálculo das tensões nos CG's das seções transversais, bem como em suas extremidades são apresentadas (Figura 3.11).

Figura 3.11 Distribuição de tensões. FONTE: KREUZINGER, 1995, p.4.

3.2.2.4.1 Tensões nos centros de gravidade

A seguir, as expressões para o cálculo das tensões nos CG das seções transversais são apresentadas para o meio do vão, isto é, $x = \frac{\ell}{2}$. Sabendo-se que:

$$M_0 = p_0 \frac{\ell^2}{\pi^2}$$
(3.85)

$$v_{0} = p_{0} \frac{\ell^{4}}{\pi^{4}} \frac{1}{(EI)_{ef}}$$
(3.81)

$$\mathbf{a}_{c} = \frac{\mathbf{E}_{w} \mathbf{A}_{w}}{\gamma_{c} \mathbf{E}_{c} \mathbf{A}_{c} + \mathbf{E}_{w} \mathbf{A}_{w}} \mathbf{a}$$
(3.86)

$$\mathbf{a}_{\mathbf{w}} = \frac{\gamma_{c} \mathbf{E}_{c} \mathbf{A}_{c}}{\gamma_{c} \mathbf{E}_{c} \mathbf{A}_{c} + \mathbf{E}_{\mathbf{w}} \mathbf{A}_{\mathbf{w}}} \mathbf{a}$$
(3.87)

onde:

 M_0 = momento fletor no meio do vão (ver expressão (3.102)); v_0 = deslocamento vertical no meio do vão. a_c = distância entre o CG do concreto e LN_w. a_w = distância entre o CG da madeira e LN_w.

a_c e a_w são mostrados na Figura 3.11 (a) e deduzidos a seguir.

Determinação de a_c e a_w

$$\sigma = \frac{M}{I}y + \frac{N}{A}$$

$$\sigma_{w,LN} = 0 = -\frac{E_w I_w v''}{I_w} (-a_w) + \frac{E_w A_w u'_w}{A_w}$$

$$\sigma_{w,LN} = 0 = -\frac{E_w I_w \left(-v_0 \frac{\pi^2}{\ell^2} \operatorname{sen} \frac{\pi}{\ell}\right)}{I_w} (-a_w) + \frac{E_w A_w \left(-u_{w0} \frac{\pi}{\ell} \operatorname{sen} \frac{\pi}{\ell}\right)}{A_w}$$

$$0 = -E_w \left(-v_0 \frac{\pi^2}{\ell^2}\right) (-a_w) - E_w u_{w0} \frac{\pi}{\ell}$$

$$0 = E_w \left(-v_0 \frac{\pi^2}{\ell^2}\right) (-a_w) + E_w \left(-v_0 \frac{\pi}{\ell} \frac{a\gamma_c E_c A_c}{\gamma_c E_c A_c + E_w A_w}\right) \frac{\pi}{\ell}$$

$$a_w = \frac{\gamma_c E_c A_c}{\gamma_c E_c A_c + E_w A_w} a , \text{ que resulta na expressão (3.87).}$$

Sendo que,

$$\mathbf{a} = \mathbf{a}_{c} + \mathbf{a}_{w} \tag{3.88}$$

Resulta,

$$a_{c} = \frac{E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a$$
, que resulta na expressão (3.86).

Voltando ao cálculo das tensões, para o concreto, tem-se que:

$$\sigma_{c,CG} = E_c \varepsilon_{c,CG}$$
(3.89)

Para $x = \frac{\ell}{2}$,

$$\sigma_{c,CG} = E_{c} u_{c}^{\prime} \left(\frac{\ell}{2} \right) = E_{c} u_{c0} \frac{\pi}{\ell} \left[- \operatorname{sen} \left(\frac{\pi}{\ell} \frac{\ell}{2} \right) \right]$$

$$= -E_{c}u_{c0}\frac{\pi}{\ell}$$

$$= -E_{c}\left(v_{0}\frac{\pi}{\ell}\frac{\gamma_{c}E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a\right)\frac{\pi}{\ell}$$

$$= -E_{c}\left(p_{0}\frac{\ell^{4}}{\pi^{4}}\frac{1}{(EI)_{ef}}\right)\left(\frac{\pi^{2}}{\ell^{2}}\frac{\gamma_{c}E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a\right)$$

$$= -E_{c}\left(\frac{M_{0}}{(EI)_{ef}}\right)\left(\frac{\gamma_{c}E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a\right)$$

Da equação (3.86) tem-se:

$$\mathbf{a} = \frac{\gamma_{c} \mathbf{E}_{c} \mathbf{A}_{c} + \mathbf{E}_{w} \mathbf{A}_{w}}{\mathbf{E}_{w} \mathbf{A}_{w}} \mathbf{a}_{c}$$
(3.90)

obtendo-se, finalmente:

$$\sigma_{c,CG} = -E_{c} \left(\frac{M_{o}}{(EI)_{ef}} \right) \left(\frac{\gamma_{c} E_{w} A_{w}}{\gamma_{c} E_{c} A_{c} + E_{w} A_{w}} \right) \left(\frac{\gamma_{c} E_{c} A_{c} + E_{w} A_{w}}{E_{w} A_{w}} \right) a_{c}$$

$$\sigma_{c,CG} = -\frac{\gamma_c E_c M_0 a_c}{(EI)_{ef}}$$
(3.91)

E para a madeira, tem-se que:

$$\sigma_{\mathbf{w},\mathrm{CG}} = \mathbf{E}_{\mathbf{w}} \boldsymbol{\varepsilon}_{\mathbf{w},\mathrm{CG}} \tag{3.92}$$

Para $x = \frac{\ell}{2}$,

$$\sigma_{w,CG} = E_{c}u'_{w}\left(\frac{\ell}{2}\right) = E_{w}u_{w0}\frac{\pi}{\ell}\left[-\operatorname{sen}\left(\frac{\pi}{\ell}\frac{\ell}{2}\right)\right]$$
$$= -E_{w}u_{w0}\frac{\pi}{\ell}$$
$$= -E_{w}\left(-v_{0}\frac{\pi}{\ell}\frac{\gamma_{c}E_{c}A_{c}}{\gamma_{c}E_{c}A_{c}+E_{w}A_{w}}a\right)\frac{\pi}{\ell}$$
$$= -E_{w}\left(-p_{0}\frac{\ell^{4}}{\pi^{4}}\frac{1}{(EI)_{ef}}\right)\left(\frac{\pi^{2}}{\ell^{2}}\frac{\gamma_{c}E_{c}A_{c}}{\gamma_{c}E_{c}A_{c}+E_{w}A_{w}}a\right)$$

isolando a na expressão (3.87):

$$= E_{w} \left(\frac{M_{o}}{(EI)_{ef}} \right) \left(\frac{\gamma_{c} E_{c} A_{c}}{\gamma_{c} E_{c} A_{c} + E_{w} A_{w}} \right) \left(\frac{\gamma_{c} E_{c} A_{c} + E_{w} A_{w}}{\gamma_{c} E_{c} A_{c}} a_{w} \right)$$

$$\sigma_{w,CG} = \frac{E_w M_0 a_w}{(EI)_{ef}}$$
(3.93)

3.2.2.4.2 Tensões nos extremos

No concreto:

$$\sigma_{c,1} = -\frac{1}{2} \frac{E_c M_0}{(EI)_{ef}} h_c \qquad \sigma_{c,2} = \frac{1}{2} \frac{E_c M_0}{(EI)_{ef}} h_c \qquad (3.94 \text{ a,b})$$

Na madeira:

$$\sigma_{w,1} = -\frac{1}{2} \frac{E_w M_0}{(EI)_{ef}} h_w \qquad \sigma_{w,2} = \frac{1}{2} \frac{E_w M_0}{(EI)_{ef}} h_w \qquad (3.95 \text{ a,b})$$

Embora as deduções tenham ocorrido para a seção do meio do vão, as expressões para o cálculo de tensões podem ser estendidas a outras seções ao longo do comprimento da viga composta, bastando substituir nessas expressões M_0 por M(x).

3.2.2.4.3 Tensões de cisalhamento

O fluxo de cisalhamento ao longo do comprimento da viga mista, segundo CECCOTTI (1995), pode ser calculado pela expressão:

$$\phi = \frac{\gamma_{\circ} V E_{\circ} A_{\circ} a_{\circ}}{(EI)_{ef}}$$

3.2.2.5 Dedução da curvatura

Considere o carregamento senoidal aplicado em uma viga mista como mostrado na Figura 3.12:

Figura 3.12 Distribuição de carregamento senoidal e sua resultante em uma viga bi-apoiada.

Tem-se que a resultante da distribuição de carregamento Rt é dada por:

$$R_{t} = \int_{0}^{\ell} p_{0} \operatorname{sen} \frac{\pi}{\ell} x \, dx = -p_{0} \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x \Big|_{0}^{\ell} = -p_{0} \frac{\ell}{\pi} (-1-1) = 2p_{0} \frac{\ell}{\pi}$$
(3.96)
$$R_{t} = \int_{0}^{\ell} p_{0} \operatorname{sen} \frac{\pi}{\ell} x \, dx = -p_{0} \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x \Big|_{0}^{\ell} = -p_{0} \frac{\ell}{\pi} (-1-1) = 2p_{0} \frac{\ell}{\pi}$$
(3.96)
$$R_{t} = \int_{0}^{\ell} p_{0} \operatorname{sen} \frac{\pi}{\ell} x \, dx = -p_{0} \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x \Big|_{0}^{\ell} = -p_{0} \frac{\ell}{\pi} (-1-1) = 2p_{0} \frac{\ell}{\pi}$$
(3.96)
$$R_{t} = \int_{0}^{\ell} p_{0} \operatorname{sen} \frac{\pi}{\ell} x \, dx = -p_{0} \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x \Big|_{0}^{\ell} = -p_{0} \frac{\ell}{\pi} (-1-1) = 2p_{0} \frac{\ell}{\pi}$$
(3.96)

Figura 3.13 Trecho inicial da viga de comprimento *a*, cuja resultante da distribuição de carregamento R está aplicada no CG da distribuição.

Seja R a resultante da distribuição de carregamento no trecho inicial de viga *a*, como mostra a Figura 3.13.

$$\mathbf{R} = \int_{0}^{a} \mathbf{p}_{0} \operatorname{sen} \frac{\pi}{\ell} \mathbf{x} \, \mathrm{d}\mathbf{x} = -\mathbf{p}_{0} \frac{\ell}{\pi} \cos \frac{\pi}{\ell} \mathbf{x} \Big|_{0}^{a} = -\mathbf{p}_{0} \frac{\ell}{\pi} \left(\cos \frac{\pi}{\ell} \mathbf{a} - 1 \right) = \mathbf{p}_{0} \left(-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} \mathbf{a} + \frac{\ell}{\pi} \right)$$
(3.97)

Lembrando que: $\int fg' = fg - \int f'g$, o momento em torno de A que a distribuição de carregamento provoca é:

$$\mathbf{M}_{A} = \int_{0}^{a} \mathbf{p}_{0} \mathbf{x} \operatorname{sen} \frac{\pi}{\ell} \mathbf{x} \, \mathrm{d} \mathbf{x} = \mathbf{p}_{0} \left[\left(-\mathbf{x} \frac{\ell}{\pi} \cos \frac{\pi}{\ell} \mathbf{x} \right)_{0}^{a} + \left(\frac{\ell^{2}}{\pi^{2}} \operatorname{sen} \frac{\pi}{\ell} \mathbf{x} \right)_{0}^{a} \right]$$

$$M_{A} = p_{0} \left[-a \frac{\ell}{\pi} \cos \frac{\pi}{\ell} a + \frac{\ell^{2}}{\pi^{2}} \sin \frac{\pi}{\ell} a \right]$$
(3.98)

Para que R seja equivalente a distribuição senoidal no trecho a é necessário que:

$$\mathbf{R}\,\mathbf{b} = \mathbf{M}_{\mathbf{A}} \tag{3.99}$$

Assim,

$$R b = p_{0} \left[-a \frac{\ell}{\pi} \cos \frac{\pi}{\ell} a + \frac{\ell^{2}}{\pi^{2}} \sin \frac{\pi}{\ell} a \right]$$

$$p_{0} \left[-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} a + \frac{\ell}{\pi} \right] b = p_{0} \left[-a \frac{\ell}{\pi} \cos \frac{\pi}{\ell} a + \frac{\ell^{2}}{\pi^{2}} \sin \frac{\pi}{\ell} a \right]$$

$$b = \frac{-a \frac{\ell}{\pi} \cos \frac{\pi}{\ell} a + \frac{\ell^{2}}{\pi^{2}} \sin \frac{\pi}{\ell} a}{-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} a + \frac{\ell}{\pi}}$$
(3.100)

Assim, pode-se calcular M(a):

$$M(a) = p_0 \frac{\ell}{\pi} a - R(a - b)$$
 (3.101)

Tomando-se *a*, agora, como um valor *x* qualquer, tem-se:

$$M(x) = p_0 \frac{\ell}{\pi} x - \left[x - \frac{-x \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + \frac{\ell^2}{\pi^2} \sin \frac{\pi}{\ell} x}{-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + \frac{\ell}{\pi}} \right] p_0 \left[-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + \frac{\ell}{\pi} \right]$$

$$M(x) = p_0 \frac{\ell}{\pi} x - \left[\frac{x \left(-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + \frac{\ell}{\pi} \right) - \left(-x \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + \frac{\ell^2}{\pi^2} \sin \frac{\pi}{\ell} x \right)}{-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + \frac{\ell}{\pi}} \right] p_0 \left[-\frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + \frac{\ell}{\pi} \right]$$
$$M(x) = p_0 \frac{\ell}{\pi} x - \left[-x \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x + x \frac{\ell}{\pi} + x \frac{\ell}{\pi} \cos \frac{\pi}{\ell} x - \frac{\ell^2}{\pi^2} \sin \frac{\pi}{\ell} x \right] p_0$$
$$M(x) = p_0 \frac{\ell}{\pi} x - p_0 \frac{\ell}{\pi} x + p_0 \frac{\ell^2}{\pi^2} \sin \frac{\pi}{\ell} x$$

$$M(x) = p_0 \frac{\ell^2}{\pi^2} \sin \frac{\pi}{\ell} x$$
 (3.102)

De GIRHAMMAR e GOPU (1991 e 1993) tem-se a expressão (3.22) de equilíbrio, válida para o Método Exato e Aproximado:

$$v'' = -\frac{(M + N_c a)}{(EI)_0}$$
 (3.22)

$$v'' = -\frac{(M + E_c A_c u_c a)}{(EI)_0}$$
 (3.103)

Admitindo, agora, a aproximação $u_c = u_{c0} \cos \frac{\pi}{\ell} x$ (expressão 3.77 a), tem-se que:

$$u'_{c} = -u_{c0} \frac{\pi}{\ell} \operatorname{sen} \frac{\pi}{\ell} x$$
(3.104)

onde u_{c0} foi obtido na expressão (3.79).

Assim,

$$\mathbf{v}''(\mathbf{x}) = -\frac{\left[\mathbf{M}(\mathbf{x}) + \mathbf{E}_{c}\mathbf{A}_{c}\left(-\operatorname{sen}\frac{\pi}{\ell}\mathbf{x}\right)\mathbf{u}_{c0}\frac{\pi}{\ell}\mathbf{a}\right]}{(\mathrm{EI})_{0}}$$

omitindo x, isto é, v''(x) = v'' e M(x) = M, vem:

$$\mathbf{v}^{"} = -\frac{\left\{\mathbf{M} - \mathbf{E}_{c}\mathbf{A}_{c}\,\operatorname{sen}\frac{\pi}{\ell}\,\mathbf{x}\left[\mathbf{v}_{o}\,\frac{\pi^{2}}{\ell^{2}}\left(\frac{\gamma_{c}\mathbf{E}_{w}\mathbf{A}_{w}}{\gamma_{c}\mathbf{E}_{c}\mathbf{A}_{c} + \mathbf{E}_{w}\mathbf{A}_{w}}\right)\right]\mathbf{a}^{2}\right\}}{(\mathbf{EI})_{0}}$$
$$\mathbf{v}^{"} = -\frac{\left\{\mathbf{M} - \mathbf{E}_{c}\mathbf{A}_{c}\,\operatorname{sen}\frac{\pi}{\ell}\,\mathbf{x}\left[\left(\mathbf{p}_{0}\,\frac{\ell^{4}}{\pi^{4}}\,\frac{1}{(\mathbf{EI})_{ef}}\right)\frac{\pi^{2}}{\ell^{2}}\left(\frac{\gamma_{c}\mathbf{E}_{w}\mathbf{A}_{w}}{\gamma_{c}\mathbf{E}_{c}\mathbf{A}_{c} + \mathbf{E}_{w}\mathbf{A}_{w}}\right)\right]\mathbf{a}^{2}\right\}}{(\mathbf{EI})_{0}}$$
$$\mathbf{v}^{"} = -\frac{\left\{\mathbf{M} - \mathbf{E}_{c}\mathbf{A}_{c}\mathbf{p}_{o}\,\frac{\ell^{2}}{\pi^{2}}\,\operatorname{sen}\frac{\pi}{\ell}\,\mathbf{x}\left[\frac{1}{(\mathbf{EI})_{ef}}\left(\frac{\gamma_{c}\mathbf{E}_{w}\mathbf{A}_{w}}{\gamma_{c}\mathbf{E}_{c}\mathbf{A}_{c} + \mathbf{E}_{w}\mathbf{A}_{w}}\right)\right]\mathbf{a}^{2}\right\}}{(\mathbf{EI})_{0}}$$

lembrando-se da expressão (3.102), vem:

$$\mathbf{v}'' = -\frac{\mathbf{M}}{(\mathbf{EI})_{0}} \left(1 - \frac{\mathbf{E}_{c}\mathbf{A}_{c}}{(\mathbf{EI})_{ef}} \frac{\gamma_{c}\mathbf{E}_{w}\mathbf{A}_{w}}{\gamma_{c}\mathbf{E}_{c}\mathbf{A}_{c} + \mathbf{E}_{w}\mathbf{A}_{w}} \mathbf{a}^{2} \right)$$

Simplificando, chega-se a:

$$v'' = -\frac{M}{(EI)_0} \frac{(EI)_0}{(EI)_{ef}}$$

E portanto,

$$v''(x) = -\frac{M(x)}{(EI)_{ef}}$$
 (3.105)

Isto significa que, admitindo-se uma distribuição senoidal de carregamento, se chega a uma equação diferencial para a linha elástica muito mais simples que a desenvolvida por GIRHAMMAR e GOPU (1991 e 1993), expressão (3.29).

Esta equação, agora desenvolvida (3.105), é a já bem conhecida da Teoria de Flexão, onde substitui-se o EI da viga homogênea por (EI)_{ef} no caso de vigas mistas. A solução desta equação é muito mais simples do que a expressão (3.29), além de encontrar-se resolvida, para vários casos de carregamentos em livros de Resistência dos Materiais. Além disso, esta expressão simplificada também pode ser facilmente utilizada para a obtenção indireta do valor real experimental do módulo de deslizamento K da ligação como apresentado por CAPRETTI e CECCOTTI (1996).

KREUZINGER (1995) lembra ainda que para sistemas mais complicados, tais como vigas ou pilares com variação de seção transversal ao longo do eixo longitudinal, é necessário utilizar-se de soluções numéricas oferecidas por programas de computador. Para tanto, os membros devem ser modelados como barras e os conectores como barras ou como molas.

3.2.2.6 Comparação com Walter Pfeil e DIN 1052/69

PFEIL (1994) seguindo o proposto pela norma alemã DIN 1052/69 analisa vigas de seção T compostas por 2 elementos de madeira, idênticos em termos de suas propriedades de resistência e rigidez, ligados por conexões mecânicas deformáveis. A linha neutra n-n devido à flexibilidade dos conectores não coincide com o eixo x-x que passa pelo CG da seção totalmente composta (CG_{∞}) , esta última obtida pelo Método da Seção Transformada (Anexo A) com ausência de deslizamento entre as partes, como se observa na Figura 3.14.

Nota-se que as dimensões $a_1 e a_2$ de PFEIL (1994) não possuem os mesmos valores de $a_c e a_w$ dados por KREUZINGER (1995), pois este admite que $a_c e a_w$ representam a distância entre o

CG da área i (CG_i) até a LN₂, enquanto que para PFEIL (1994) e DIN 1052/69, $a_1 e a_2 são as$ distâncias entre o CG de cada elemento CG_i e o CG da Seção Transformada CG_{∞} (Figura 3.15).

Porém, as expressões para o cálculo de tensões e deslocamentos de ambos autores levam aos mesmos resultados, já que após algumas manipulações algébricas pode-se demostrar analiticamente que são idênticas.

PFEIL (1994) apresenta as expressões para o caso de seção composta formada por um único tipo de material (madeira).

Considere-se, por exemplo, a expressão para a tensão no CG da mesa:

$$\sigma_1 = \frac{M}{I_r} \frac{a_1}{1+k}$$
(3.106)

Sendo:

$$\mathbf{a}_1 = \left(\frac{\mathbf{A}_2}{\mathbf{A}_1 + \mathbf{A}_2}\right) \mathbf{a} \tag{3.107}$$

onde:

 a_1 = distância entre o CG do elemento 1 ao CG da seção infinitamente rígida;

 a_2 = distância entre o CG do elemento 2 ao CG da seção infinitamente rígida;

 A_1 = área da seção transversal do elemento 1;

 A_2 = área da seção transversal do elemento 2;

 $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2.$

Figura 3.14 Viga composta de peças de madeira maciça. FONTE: PFEIL, 1994, p. 190.

$$I_{r} = \sum I_{i} + \frac{1}{1+k} \sum A_{i} a_{i}^{2}$$
(3.108)

sendo:

I_r = momento de inércia da seção composta (ou momento de inércia reduzido da seção bruta).

$$\gamma_1 = \frac{1}{1+k} \tag{3.109}$$

$$k = \frac{\pi^2 E}{\ell^2 \overline{K}} \frac{A_1 A_2}{A_1 + A_2}$$
(3.110)

onde:

$$\overline{\mathbf{K}} = \frac{\mathbf{K}}{\mathbf{s}} \tag{3.8}$$

já foi visto na equação (3.8) e K foi dado pela equação (3.7).

No entanto, as expressões anteriormente apresentadas, para serem aplicadas ao estudo de vigas mistas madeira-concreto devem ser convenientemente adaptadas, como apresentado por SORIANO et. al. (1998). Assim, a tensão normal que atua no CG da seção de concreto é dada por:

$$\sigma_1 = \frac{M}{(EI)_r} \frac{E_1 a_1}{1+k}$$
(3.111)

sendo a_1 , neste caso, aquele mostrado na Figura 3.15 (a), e calculado por:

$$\mathbf{a}_{1} = \left(\frac{\mathbf{E}_{2}\mathbf{A}_{2}}{\mathbf{E}_{1}\mathbf{A}_{1} + \mathbf{E}_{2}\mathbf{A}_{2}}\right)\mathbf{a}$$
(3.112)

Os demais parâmetros devem ser modificados para:

$$\mathbf{a}_{2} = \left(\frac{\mathbf{E}_{1}\mathbf{A}_{1}}{\mathbf{E}_{1}\mathbf{A}_{1} + \mathbf{E}_{2}\mathbf{A}_{2}}\right)\mathbf{a}$$
(3.113)

$$(EI)_{r} = \sum E_{i}I_{i} + \frac{1}{1+k}\sum E_{i}A_{i}a_{i}^{2}$$
(3.114)

$$k = \frac{\pi^2}{\ell^2 \overline{K}} \frac{E_1 A_1 E_2 A_2}{E_1 A_1 + E_2 A_2}$$
(3.115)

onde $\gamma_1 e \ \overline{K}$ são os vistos nas equações (3.109) e (3.8), respectivamente.

Figura 3.15 a) seção segundo PFEIL

b) seção segundo KREUZINGER

A Tabela 3.1 apresenta as expressões para o cálculo das tensões (no caso as tensões no CG da mesa) segundo os dois autores.

Tabela 3.1 - Expressões para o cálculo das tensões no CG da seção de concreto (mesa) segundo: PFEIL (adaptado) e KREUZINGER.

PFEIL (adaptado)	KREUZINGER
$\sigma_1 = \frac{M}{(EI)_r} \frac{E_1 a_1}{1+k}$	$\sigma_{c,CG} = -\frac{\gamma_c E_c M_0 a_c}{(EI)_{ef}}$
$\mathbf{a}_1 = \left(\frac{\mathbf{E}_2 \mathbf{A}_2}{\mathbf{E}_1 \mathbf{A}_1 + \mathbf{E}_2 \mathbf{A}_2}\right) \mathbf{a}$	$a_{c} = \frac{E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a$
$(\text{EI})_{r} = \sum E_{i}I_{i} + \frac{1}{1+k}\sum E_{i}A_{i}a_{i}^{2}$	$(EI)_{ef} = E_c I_c + E_w I_w + \frac{\gamma_c E_c A_c E_w A_w}{\gamma_c E_c A_c + E_w A_w} a^2$
$\gamma = \frac{1}{1+k}$	$\gamma_{\rm c} = \frac{1}{1+k}$
$k = \frac{\pi^{2}E}{\ell^{2}\overline{K}} \frac{E_{1}A_{1}E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}$	$k = \frac{\pi^2}{\ell^2} \frac{E_c A_c}{\overline{K}}$

Pode ser demonstrado que as duas expressões da primeira linha da Tabela 3.1 são equivalentes mesmo sabendo que os valores de $a_1 e a_c$, e $\gamma_1 = \frac{1}{1+k} e \gamma_o$ são diferentes para cada autor. Pode-se demonstrar que (EI)_r = (EI)_{ef} e que $\frac{a_1}{1+k} = \gamma_1 a_1$ de PFEIL (1994) é equivalente a $\gamma_o a_o$ de KREUZINGER (1995). Essas demonstrações estão apresentadas no Anexo B.

3.3 Método baseado nos princípios de energia

3.3.1 Introdução

Em várias aplicações, de estruturas mistas conectadas através de pregos, o comportamento não é perfeitamente rígido. Esta conexão parcial (semi-rígida) é que torna as estruturas mistas difíceis de serem analisadas. Além disso, para "elevados" níveis de deslizamento, os conectores deixam de apresentar um comportamento elástico linear, como afirmam vários autores, entre eles, SANTANA (1997) em seu estudo sobre vigas mistas de madeira e compensado.

Uma teoria de análise não linear de vigas de duas camadas é apresentada. Ambos os efeitos, de deslocamentos pequenos e relação não linear dos conectores, são incluídos.

3.3.2 Outras pesquisas

O comportamento entre as camadas, isto é, as partes da viga mista com deslizamento relativo, consiste em um velho problema cujas soluções iniciais foram apresentadas por GRANHOLM (1949), PLESHKOV (1952) e NEWMARK et al. (1951), segundo citam WHEAT e CALIXTO (1994).

Embora os desenvolvimentos tenham ocorrido separadamente, todos esses autores bem como GIRHAMMAR e GOPU (1991 e 1993) e CECCOTTI (1995) baseiam-se em deslocamentos infinitesimais, espaçamento constante entre os conectores ao longo do comprimento da viga e comportamento elástico linear da conexão, como visto na seção 3.2. Nesta seção porém, a análise engloba uma relação mais realística proposta por WHEAT e CALIXTO (1994), onde os conectores possuem comportamento elástico não linear de acordo com os

diagramas obtidos por FOSCHI e BONAC (1977). No entanto, o concreto e a madeira são considerados como tendo comportamento elástico linear.

3.3.3 Teoria geral

3.3.3.1 Principais hipóteses

As seguintes hipóteses são adotadas para o desenvolvimento:

- A viga, os carregamentos aplicados e as deformações encontram-se em um mesmo plano; o plano onde atuam os carregamentos é um plano de simetria da viga;
- O elemento (viga) é assumido como sendo uma barra, isto é, o comprimento do elemento é muito maior do que suas dimensões laterais;
- Os deslocamentos transversais são pequenos, enquanto que os longitudinais são infinitesimais;
- Somente as deformações normais paralelas ao eixo do elemento são consideradas, e em cada camada são constantes ao longo da altura devido aos esforços axiais e variam linearmente ao longo da altura devido à flexão;
- 5. Em qualquer ponto ao longo do comprimento do elemento, cada camada desloca-se igualmente na vertical, ou seja, não há separação entre as camadas;
- Os materiais são considerados como sendo linearmente elásticos, com exceção dos conectores, que podem ser considerados elásticos não lineares;
- A geometria e propriedades elásticas de cada camada (material) são constantes ao longo do comprimento do elemento; no entanto, podem diferir entre as camadas;
- 8. Os conectores entre as camadas são considerados continuamente dispostos ao longo do comprimento da viga, isto é, conectores deformáveis e discretos são assumidos proximamente espaçados com respeito ao comprimento da viga que podem ser considerados, analiticamente, como sendo uma conexão contínua;

9. Não é considerado o atrito entre as camadas. A interação entre as camadas provém unicamente das características de carga x deslizamento do conector.

3.3.3.2 Derivação da energia total

Uma aproximação variacional é utilizada para derivar as equações diferenciais para a viga mista. Assume-se que a contribuição para a energia potencial total advenha de três parcelas:

- Energia de deformação axial e de flexão de cada camada (UB);
- Energia de deformação associada com o deslizamento do conector (U_c);
- Energia potencial proveniente do carregamento externo aplicado (UL).

Assim tem-se,

$$U = U_{\rm B} + U_{\rm C} + U_{\rm L} \tag{3.116}$$

3.3.3.3 Energia de deformação axial e de flexão

A viga é considerada tendo um vão L e possuindo duas camadas, cada qual constituindo-se de um material diferente, isto é, com propriedades de resistência e rigidez diferentes (no presente caso em madeira e concreto). A derivação inicia assumindo-se que as deformações normais longitudinais em cada camada resiste aos carregamentos aplicados externamente. Para obter as contribuições das deformações normais longitudinais de ambos deslocamentos, transversais e longitudinais, a expressão de Lagrange para deformação-deslocamento é utilizada,

$$\varepsilon_{xx} = \frac{\partial \upsilon_1}{\partial x} + \frac{1}{2} \left[\left(\frac{\partial \upsilon_1}{\partial x} \right)^2 + \left(\frac{\partial \upsilon_2}{\partial x} \right)^2 \right]$$
(3.117)

onde:

 v_1 = deslocamento paralelo a dimensão longitudinal da viga;

 v_2 = deslocamento transversal à viga;

Para elementos de barra (como as vigas), estas deformações podem ser calculadas considerando-se a configuração indeformada e deformada de um ponto de uma camada da viga, a qual pode ser esquematizada como na Figura 3.16. A partir da figura os deslocamentos podem ser dados por:

$$\upsilon_1 = \mathbf{u} - \mathbf{z} \, \mathrm{sen} \, \boldsymbol{\theta} \tag{3.118}$$

$$\upsilon_2 = \mathbf{w} + \mathbf{z}\cos\theta \tag{3.119}$$

onde:

onde:

- u = deslocamento axial do CG da camada;
- w = deslocamento transversal do CG da camada;
- z = metade da altura da camada.

Substituindo-se as expressões dos deslocamentos $\upsilon_1 e \upsilon_2$ (equações (3.118) e (3.119)) na relação deformação-deslocamento (3.117), a seguinte equação é obtida:

$$\varepsilon_{xx} = u' + \frac{1}{2} (u')^{2} + \frac{1}{2} (w')^{2} + \frac{z^{2}}{2} (w'')^{2} \frac{1}{(1 + w'^{2})^{2}} - (1 + u') \left[zw'' \frac{1}{(1 + w'^{2})} \cos(\operatorname{arc} tg w') \right] - zw'w'' \frac{1}{(1 + w'^{2})} \sin(\operatorname{arc} tg w')$$
(3.121)

Esta expressão define completamente a relação deformação-deslocamento e é independente da magnitude das deformações e deslocamentos.

Porém, alguns pesquisadores, KAMIYA (1987 e 1988); WHEAT et al. (1986); WOLF (1989 e 1991), notaram que os sistemas estruturais em geral alcançam a resistência última antes que a rotação na extremidade da viga chegue a 10 graus. Esta observação, além de estudos paramétricos efetuados, permitem que a equação anterior seja simplificada para:

$$\varepsilon_{xx} = u' + \frac{1}{2}w'^2 - zw''$$
 (3.122)

A expressão para a energia de deformação dos materiais que compõem a seção transversal é dada por:

$$U_{\rm B} = \sum_{i=1}^{2} \int_{V_i} \frac{E_i}{2} (\epsilon_{\rm xx})^2 \, \mathrm{d}V_i$$
(3.123)

Substituindo-se a expressão (3.122) na expressão (3.123), obtém-se, para camadas de seção retangulares:

$$U_{\rm B} = \sum_{i=1}^{2} \frac{E_{i}A_{i}}{2} \int_{L_{\rm e}} \left[u_{i}^{'2} + \frac{1}{4} (w')^{4} + u_{i}^{'} (w')^{2} \right] dx + \sum_{i=1}^{2} \frac{E_{i}I_{i}}{2} \int_{L_{\rm e}} (w'')^{2} dx \qquad (3.124)$$

que é a energia de deformação total das duas camadas devido as deformações axiais e por flexão. Nesta expressão, L_e é o comprimento da barra.

3.3.3.4 Energia de deformação devido ao deslizamento entre as camadas

O deslizamento entre as camadas em qualquer ponto ao longo da viga é causado pela deformação do conector, assim como pela deformação da madeira resultante das tensões de contato entre a madeira e o conector. No presente caso existe também o contato conector-concreto, que aqui não será considerado, ou seja, será desprezado. Em geral, essas tensões de contato fazem com que a madeira se torne inelástica, o que viola a hipótese 6. Porém, assumindo-se que o carregamento é monotônico e que não haja descarregamento elástico na madeira ou nos conectores, pode-se assumir comportamento elástico sem se introduzir erros significativos na energia potencial.

Considerando Δ como sendo o deslizamento entre as camadas (Figura 3.17), tem-se:

$$\Delta = u_2 - u_1 - \frac{1}{2} (h_1 + h_2) w'$$
(3.125)

Obs.: O sinal negativo diante do $\frac{1}{2}$ é oposto ao da equação (3.17). Isto porque foram admitidas configurações deformadas distintas.

Figura 3.17 Relação deslocamento - deslizamento. FONTE: WHEAT e CALIXTO, 1994, p.1914.

De acordo com a hipótese 8, assume-se que os conectores estejam proximamente espaçados com relação ao comprimento da viga e desta forma possam ser idealizados como sendo uma conexão contínua contra o cisalhamento. Se o número de conectores por linha é igual a n e se o espaçamento entre as linhas for s, a força por unidade de comprimento p (fluxo de cisalhamento) é igual a:

$$p = \frac{nF}{s}$$
(3.126)

Então a energia total devido a deformação dos conectores é dada por:

$$U_{\rm C} = \int_{\rm L_e} \frac{\rm nF}{\rm s} \Delta \,\rm dx \tag{3.127}$$

Para a equação constitutiva entre a força e o deslizamento, os autores utilizaram aquela proposta por FOSCHI e BONAC (1977), cuja obtenção é empírica e está representada na Figura 3.18.

Figura 3.18: Parâmetros da curva força x deslizamento de Foschi e Bonac. FONTE: WHEAT e CALIXTO, 1994, p.1914.

A expressão é dada por:

$$\mathbf{F} = \left(\mathbf{P}_{o} + \mathbf{P}_{i}\delta\right)\left[1 - \exp\left(-\frac{\mathbf{k}\delta}{\mathbf{P}_{0}}\right)\right]$$
(3.128)

onde:

F = força no prego;

k = K = inclinação inicial ou módulo de deslizamento tangente;

 P_1 = inclinação para grandes deslizamentos;

 P_0 = ordenada do ponto que a assíntota tracejada na Figura 3.18 intercepta o eixo de F; $\delta = \Delta$ = deslizamento.

Substituindo-se a força nos conectores, expressão (3.128), na expressão de U_c (3.127), tem-se finalmente:

$$U_{\rm C} = \int_{L_{\rm c}} \frac{n\Delta}{s} \left(P_{\rm 0} + P_{\rm 1}\Delta \right) \left[1 - \exp\left(-\frac{k\Delta}{P_{\rm 0}}\right) \right] dx \qquad (3.129)$$

3.3.3.5 Energia de deformação devido ao carregamento externo aplicado

Esta componente é igual ao trabalho negativo devido às forças externas aplicadas durante a deformação da viga. Se o membro for sujeito a um carregamento uniformemente distribuído q e a forças aplicadas em cada CG de cada camada, para cada uma das extremidades, isto é, em x = 0e $x = L_e$, a expressão para a energia de deformação associada com o carregamento aplicado é:

$$U_{L} = -\int_{L_{e}} qw \, dx - \sum_{i=1}^{2} P_{i}^{0} u_{i}(0) - \sum_{i=1}^{2} P_{i}^{L_{e}} u_{i}(L_{e})$$
(3.130)

onde:

q = carregamento uniformemente distribuído na viga; P_i^0 = carga axial aplicada no CG da camada i em x = 0; $P_i^{L_e}$ = carga axial aplicada no CG da camada i em x = L_e.

3.3.3.6 Energia potencial total

A expressão para o cálculo da energia potencial total U da viga, pode agora ser escrita como a soma das equações (3.124), (3.129) e (3.130):

$$U = \sum_{i=1}^{2} \frac{E_{i}A_{i}}{2} \int_{L_{e}} \left[u_{i}^{'2} + \frac{1}{4} (w')^{4} + u_{i}^{'} (w')^{2} \right] dx + \sum_{i=1}^{2} \frac{E_{i}I_{i}}{2} \int_{L_{e}} (w'')^{2} dx + \int_{L_{e}} \frac{n\Delta}{s} (P_{0} + P_{1}\Delta) \left[1 - \exp\left(-\frac{k\Delta}{P_{0}}\right) \right] dx - \int_{L_{e}} qw \, dx - \sum_{i=1}^{2} P_{i}^{0} u_{i}(0) - \sum_{i=1}^{2} P_{i}^{L_{e}} u_{i}(L_{e})$$
(3.131)

3.3.3.7 Equações de Euler-Lagrange

As equações de Euler-Lagrange (equações de equilíbrio para o sistema) são obtidas igualando-se o variacional de U a zero:

$$\partial \mathbf{U} = \mathbf{0} \tag{3.132}$$

As expressões obtidas são extensas e podem ser vistas no artigo de WHEAT e CALIXTO (1994).

Embora uma solução analítica para o sistema de equações tenha sido obtida, seu uso foi abandonado pelos autores, em detrimento de uma solução numérica que possa ser aplicada mais facilmente. O método numérico utilizado foi o "shooting methods", uma técnica para resolver problemas lineares e não lineares de valores de contorno para dois pontos. Os valores então obtidos foram comparados com seus resultados experimentais, indicando uma boa aderência.

3.4 Módulo de Deslizamento da Conexão

O deslizamento entre a madeira e o concreto, mecanicamente conectados, pode ser levado em consideração em modelos estruturais, segundo vários autores e normas - GIRHAMMAR e GOPU (1991 e 1993), STEVANOVIC (1996), CAPRETTI e CECCOTTI (1996), CECCOTTI(1995), GUTKONSKI e CHEN (1996), McCHUTEON (1986), NEWMARK, SIESS e VIEST (1951), LHUEDE (1988), ISO 6891/83, DIN 1052/69 - por meio do módulo de deslizamento da conexão (expressão (3.7)):

$$K = \frac{F_s}{u}$$
(3.7)

onde:

 $F_s =$ força de cisalhamento no conector;

u = deslizamento entre a madeira e o concreto.

NEWMARK, SIESS e VIEST (1951) investigam vigas mistas com interação incompleta (onde existe o deslizamento), estudando principalmente vigas mistas de perfis metálicos de seção I e mesas de concreto. Assim como existe um deslizamento relativo entre as partes, o módulo de deslizamento - o único parâmetro que não é derivado das dimensões das vigas ou das propriedades de seus materiais - deve ser determinado a partir de ensaios de cisalhamento em corpos de prova. Os autores afirmam que a teoria de vigas mistas com interação parcial (conexão semi-rígida) não se limita ao tipo de estrutura analisada. Acreditam que a teoria possa ser usada para qualquer tipo de composição de estruturas com dois materiais conectados mecanicamente desde que as hipóteses básicas sejam satisfeitas. O artigo desses pesquisadores é bastante extenso e é citado por vários outros autores contemporâneos que desenvolveram expressões mais claras e melhor adaptadas às estruturas madeira-concreto, porém ainda baseados nestes mesmos conceitos e hipóteses básicos.

Como afirmam GUTKONSKI e CHEN (1996), muitos autores examinaram o deslizamento relativo entre elementos conectados mecanicamente e derivaram vários métodos de

ensaio para medirem o módulo de deslizamento, bem como expressões empíricas para sua determinação. O módulo de deslizamento é definido como a inclinação da curva carga x deslizamento para um ensaio de cisalhamento em escala real de um corpo de prova contendo os materiais conectados. A relação é não linear, mas é freqüentemente assumida, por simplificação, como sendo linear.

CAPRETTI e CECCOTTI (1996) analisam os efeitos causados às vigas de seção duplo T cujas almas são de madeira e as mesas de chapa de aço corrugado e concreto, em ensaios de curta e longa duração (cinco anos). Nos ensaios de longa duração, uma das vigas compõe parte da estrutura de uma escola secundária, Figura 1.8, enquanto a outra é uma viga de ensaio colocada ao ar livre. Os autores concluem que a variação sazonal da umidade ocasiona flutuações sazonais nas deflexões e nos deslizamentos monitorados, tanto na estrutura real como no ensaio. Além desses ensaios, também foi executado um ensaio de curta duração. É interessante notar que os módulos de deslizamento obtidos para os testes de curta e longa duração foram *calculados indiretamente* a partir de deslocamentos verticais medidos no meio do vão para um determinado carregamento (1,25 vez a carga de serviço de projeto para o ensaio de curta duração e 0,25 vez a carga de serviço de projeto para o sensaios de longa duração). Desta forma, com os deslocamentos verticais medidos, é possível através das expressões (3.105), (3.82), (3.83), (3.84) e (3.8), através do cálculo inverso, obter-se os módulos de deslizamento para os dois casos.

CAPRETTI e CECCOTTI (1996) assim como GUTKONSKI e CHEN (1996) mostram algo bastante notado na bibliografia pertinente, que consiste na pequena variação do produto de rigidez efetivo (EI)_{ef} para grandes alterações no módulo de deslizamento K, o que pode justificar um rigor não tão elevado na determinação experimental deste último parâmetro. Qualitativamente, isto pode ser visto na Figura 3.19. Este fato é de grande importância, como descreve SORIANO (1999), por existirem divergências entre as indicações para a determinação do módulo de deslizamento do corpo de prova. Essas divergências, conforme apresentado nesta seção, vão desde a forma do exemplar, duração e seqüência de carregamento, até a relação de número de conectores a serem utilizados por corpo de prova.

Figura 3.19 Rigidez efetiva x módulo de deslizamento.

A norma ISO 6891/83 (equivalente a européia EN 26891), para a determinação da resistência e da deformação da conexão (deslizamento), prescreve princípios gerais característicos de junções conectadas mecanicamente, entre eles a determinação do módulo de deslizamento K da conexão.

A norma é bastante clara com relação ao procedimento de carregamento e medida dos deslizamentos, bem como da precisão dos equipamentos necessários. No entanto, as dimensões dos corpos de prova não são explicitamente apresentadas (é dito que as formas e as dimensões dos corpos de prova serão detalhadas para diferentes tipos de conectores em separado em futuras normas). Apenas é recomendado que as dimensões e formas sejam as mais realísticas possíveis para obter-se as informações mais próximas da realidade.

Deve-se ressaltar também que a norma ISO 6891/83 é destinada a estruturas de madeira e não madeira-concreto, o que pode trazer algumas imperfeições. No entanto, na ausência de uma norma específica para projetos de estruturas mistas madeira-concreto, a utilização desta ISO, para estruturas mistas, foi feita por CECCOTTI (1995).

WILKINSON (1971 e 1972) descreve outra maneira interessante de se obter o módulo de deslizamento K da conexão baseado nos estudos de WINKLER (1867) e KUENZI (1955). Em

seus estudos, o autor considera o prego (conector) como sendo uma viga em contato com fundação elástica, sendo esta a madeira. São utilizados princípios básicos da Mecânica dos Solos e derivadas expressões exatas e aproximadas em função das dimensões a e b (penetrações do conector na madeira - Figura 3.20), bem como do parâmetro λ .

A equação diferencial da linha elástica do prego em contato com a fundação elástica é dada por:

$$EI\frac{d^4 v}{dx^4} = -kv$$
(3.133)

onde:

EI = produto de rigidez do prego;
v = deflexão do prego no ponto x (sendo o eixo x axial ao prego);
k = módulo de fundação elástica.

A solução desta equação (3.133), bem como as expressões para o cálculo de deflexões, momentos fletores e forças cortantes, envolvem o parâmetro:

$$\lambda = \sqrt[4]{\frac{k}{4EI}}$$
(3.134)

Assim, como primeira aproximação para conexões pregadas, têm-se:

$$\delta = \mathbf{P} \left[2 \left(L_1 + L_2 \right) - \frac{\left(J_1 - J_2 \right)^2}{\left(K_1 + K_2 \right)} \right]$$
(3.135)

onde:
δ = deslizamento da conexão; P = carregamento.

e os fatores L₁, L₂, J₁, J₂, K₁ e K₂ são combinações de funções trigonométricas e hiperbólicas dos parâmetros $\lambda_1 a$ e $\lambda_2 b$, em que *a* e *b* representam o quanto o prego penetra na madeira mais próxima e mais distante de sua cabeça, respectivamente, como mostrado na Figura 3.20 e λ_i segundo o definido em (3.134) para cada uma das camadas i. Desta forma, o termo entre colchetes da equação (3.135), representa o inverso do módulo de deslizamento. As expressões exatas, bem como aproximadas para os fatores anteriormente citados são apresentados na Tabela 3.2. O uso destas expressões aproximadas resultam em três equações classificadas segundo os valores de $\lambda_1 a$ e $\lambda_2 b$:

1)
$$\lambda_1 a = \lambda_2 b > 2$$
 (3.136)

2)
$$\lambda_1 a < 2 e \lambda_2 b > 2$$
 (3.137)

$$3) \lambda_1 a e \lambda_2 b < 2 \tag{3.138}$$

Figura 3.20 Notação usada para a conexão entre dois membros. FONTE: WILKINSON,1972,p.2007.

Parâmetros da	Expressões exatas	Expressões aproximadas			
(1)	(2)	$\begin{array}{c} \lambda_1 a : e \cdot \lambda_1 b > 2\\ (3) \end{array}$	$\begin{array}{c} \lambda_1 a \in \lambda_2 b < 2 \\ (4) \end{array}$		
L	$\frac{\lambda_1}{k_1} \left[\frac{\sinh \lambda_1 a \cosh \lambda_1 a - \sin \lambda_1 a \cos \lambda_1 a}{\sinh^3 \lambda_1 a - \sin^3 \lambda_1 a} \right]$	$\frac{\lambda_1}{k_1} \qquad \frac{2}{k_1 a}$			
L,	$\frac{\lambda_2}{k_3} \left[\frac{\sinh \lambda_2 b \cosh \lambda_2 b - \sin \lambda_2 b \cos \lambda_2 b}{\sinh^3 \lambda_2 b - \sin^3 \lambda_2 b} \right]$	$\frac{\lambda_2}{k_2}$	$\frac{2}{k_2 b}$		
J_1	$\frac{\lambda_1^3}{k_1} \left[\frac{\sinh^2 \lambda_1 a + \sin^2 \lambda_1 a}{\sinh^2 \lambda_1 a - \sin^2 \lambda_1 a} \right]$	$\frac{\lambda_1^2}{k_1}$	$\frac{3}{k_1a^3}$		
J_2	$\frac{\lambda_3^2}{k_3} \begin{bmatrix} \frac{\sinh^2 \lambda_3 b}{\lambda_3 b} + \sin^2 \lambda_3 b \\ \sinh^2 \lambda_3 b - \sin^2 \lambda_3 b \end{bmatrix}$	$\frac{\lambda_1^2}{k_1}$	$\frac{3}{k_2 b^2}$		
K	$\frac{\lambda_1^3}{k_1} \left[\frac{\sinh \lambda_1 a \cosh \lambda_1 a + \sin \lambda_1 a \cos \lambda_1 a}{\sinh^3 \lambda_1 a - \sin^3 \lambda_1 a} \right]$	$\frac{\lambda_1^3}{k_1}$	$\frac{3}{k_1a^3}$		
K,	$\frac{\lambda_1^3}{k_2} \left[\frac{\sinh \lambda_2 b \cosh \lambda_2 b + \sin \lambda_2 b \cos \lambda_2 b}{\sinh^3 \lambda_2 b - \sin^2 \lambda_2 b} \right]$	$\frac{\lambda_{1}^{3}}{k_{2}}$	$\frac{3}{k_2 b^3}$		

Tabela 3.2 Expressões para os parâmetros da equação (3.135).

FONTE: WILKINSON, 1972, p.2008.

As expressões do módulo de deslizamento resultantes para cada caso são extensas e podem ser observadas no trabalho do autor. Todas elas envolvem o parâmetro k_0 (constante de capacidade elástica), que pode ser relacionado com o módulo de fundação:

$$\mathbf{k} = \mathbf{k}_0 \mathbf{d} \tag{3.139}$$

onde:

d = diâmetro do prego.

Assim, conhecida a constante de capacidade elástica do problema, é possível determinar o módulo de deslizamento da conexão, a equação da linha elástica, bem como outros parâmetros, como tensões etc.

WILKINSON nesses mesmos trabalhos, indica que a constante de capacidade elástica é uma propriedade relacionada unicamente com a espécie da madeira envolvida, atuando como uma fundação elástica. O autor vai mais longe e diz que k₀ apenas depende linearmente do peso específico da madeira. Além disso, é necessário verificar, se existe a pré furação da madeira ou não, e se o carregamento atua paralela ou perpendicularmente às fibras. Porém, segundo ALMEIDA (1990) não se deve considerar que esta resistência (resistência ao embutimento) seja proporcional à densidade da madeira para espécies brasileiras.

As hipóteses que WILKINSON considera permitem que se tenham duas madeiras conectadas com diferentes densidades, resultando em duas constantes de capacidade elástica:

$$k_{01} = \frac{k_1}{d}$$
 $k_{02} = \frac{k_2}{d}$ (3.140 a,b)

Nos ensaios de WILKINSON (1971), observou-se que o limite de linearidade no diagrama carga x deslizamento foi da ordem de 0,011 in (0,28 mm). Embora a análise deste autor seja destinada a estruturas inteiramente em madeira e, mais do que isso, para essências estrangeiras, SANTANA (1997) propõe que k₀ seja obtido indiretamente a partir de k. O módulo de fundação k pode ser considerado como sendo a tangente à origem do diagrama carga linear x deslizamento de um ensaio de embutimento como o da norma NBR 7190/97. Assim, pode-se determinar uma resistência ao embutimento para a madeira e outra para o concreto.

GUTKONSKI e CHEN (1996) comparando a influência do tipo de prego e da resistência do concreto em relação ao módulo de deslizamento, verificaram que a resistência do concreto possui grande influência no módulo de deslizamento, e que o tipo de prego possui grande influência com relação à carga última. Assim, quando o deslizamento inicia, a maior deformação ocorre na região de interação entre concreto, madeira e pregos, mas a falha é no prego. Isso foi verificado já que depois dos testes, os pregos foram removidos de modo a observar a deformação do conector. Na maioria das vezes os pregos somente deformaram-se próximos à interface entre madeira e concreto. As partes do prego próximas à sua cabeça e ponta permaneceram retas. McCUTCHEON (1986) estuda vigas mistas madeira-compensado-OSB (OSB: sigla utilizada para Oriented Strandboard) admitindo comportamento linear dos materiais, bem como da conexão (pregos), isto é, com um módulo de deslizamento constante. Os resultados dos testes indicam que a teoria leva a uma boa estimativa da rigidez da viga, considerando-se a grande variabilidade dos materiais envolvidos. Os deslizamentos obtidos não coincidiram com os previstos tão bem como a rigidez, porém isto já era esperado. A teoria assume uma relação linear para carga x deslizamento, enquanto que a relação, na realidade, é não linear. Segundo McCUTCHEON (1986) isto não possui um grande efeito na rigidez de vigas de seção T ou I, onde o principal elemento é a alma, mas é crítico com relação a determinação do deslizamento.

AHMADI e SAKA (1993) analisam pisos de madeira-concreto que são largamente utilizados na região do Golfo Pérsico devido a alta resistência dessas estruturas ao calor e a agressividade do meio ambiente da área. Quando nenhum conector é utilizado, as vigas de madeira e a laje de concreto trabalham independentemente. Os autores sugerem o uso de pregos de alta resistência a um custo relativamente baixo para funcionarem como conectores ao cisalhamento, de forma a fazer com que a estrutura resista aos esforços como uma seção composta. Investigações experimentais mostraram que é possível obter uma conexão totalmente rígida (sem deslizamentos) através de pregos específicos. A estrutura composta foi então submetida a ensaios estáticos para carregamentos de curta duração, de carregamento cíclico e de carregamento de longa duração. Observou-se que em termos de resistência e de utilização o comportamento da estrutura está dentro dos limites de várias normas. Esta relação também foi verificada através de análise por elementos finitos. Os resultados teóricos e experimentais obtidos mostram claramente que é possível obter um sistema mais rígido, maiores vãos e uma significativa redução no número de vigas de madeira, enquanto que em nada a estrutura perde com relação a sua capacidade de resistir ao calor e à agressividade do meio ambiente. Em seus ensaios não houve diferenças significativas na resistência dos pregos que penetravam na madeira, 11d (11 vezes o diâmetro do prego) ou 15d, de forma que os autores concluem que para o prego desenvolver completamente toda a sua capacidade de resistência é necessário e suficiente que a penetração na madeira seja de pelo menos 11d. Este resultado é próximo àqueles dados pelas normas NBR 7190/97 e DIN 1052/69 que dizem que o prego deve penetrar na madeira mais distante de sua cabeça, no mínimo, 12d.

AHMADI e SAKA (1993), McCHUTEON (1986), NEWMARK, SIESS e VIEST (1951) e GUTKONSKI e CHEN (1996) entre outros determinaram em seus ensaios os módulos de deslizamento nos pontos cujos deslizamentos são iguais a 0,015 in (0,38 mm)- K15 e 0,040 in (1.02 mm) - K40. O valor K15 em geral é utilizado como o módulo de deslizamento de serviço da conexão, enquanto K40 como o módulo de deslizamento último. Segundo McCHUTEON (1986), a carga que resulta em um deslizamento de 0,015 in (0,38 mm) é escolhida para definir a rigidez da conexão porque o nível aproximado de deslizamentos em vigas T e I de seus ensaios acusaram essa ordem de deslizamentos em condições de serviço. Já AHMADI e SAKA (1993) utilizam K15 pois seus gráficos revelam que quando o deslizamento atinge 0,015 in (0,38 mm) a proporcionalidade (linearidade) do diagrama carga x deslizamento desaparece. Cabe ressaltar que pela forma típica do diagrama carga x deslizamento os correspondentes módulos de deslizamentos são maiores para menores deslizamentos e assim, K15 é maior que K40 (ver Figura 3.1). Já, LHUEDE (1988) determina os parâmetros de rigidez e resistência de uma ligação pregada para um nível de deslizamento superior a 0,015 in (0,38 mm). Segundo ele, para esse pequeno deslizamento o nível de variabilidade nos ensaios do respectivo carregamento é muito alto. Alternativamente, ALMEIDA (1987) propõe que o ensaio de ligação seja feito com carregamentos monotônicos, porém mantida a carga constante durante um certo intervalo de tempo. Assim quando, mantido um carregamento constante, aparecer um deslizamento de 0,02 mm (carga de 1°. limite) atingi-se o limite de elasticidade da ligação e para este ponto determinase o módulo de deslizamento de utilização. E para aquela carga que provoca um deslizamento de 0,10 mm (carga de 2°. limite) atingi-se o limite de fim de deslizamento controlado e para este caso calcula-se o módulo de deslizamento último.

Também é possível determinar a resistência da ligação, bem como seu módulo de deslizamento pelo que está exposto no anexo C da NBR 7190/97, para o caso da determinação direta destes parâmetros através de ensaio de ligações com pinos ou cavilhas. A norma brasileira de estruturas de madeira é bastante precisa com relação às dimensões dos corpos de prova, procedimentos de carregamento, instrumentação e medição. Porém, nada se sabe sobre a sua utilização para estruturas de madeira-concreto.

O EUROCODE apresenta as seguintes expressões empíricas que estimam os valores do módulo de deslizamento de serviço (Estados Limites de Utilização):

• Para conexões entre madeira-madeira (ou derivados).

$$K_{ser} = \frac{\rho_k^{1.5} d}{20} \text{ segundo EUROCODE 5}$$
(3.141)

onde:

 ρ_k = valor característico da densidade da madeira, em kg/m³;

d = diâmetro do prego, em mm.

A expressão foi utilizada, por exemplo, em FERREIRA e ALMEIDA (1997).

Para os casos em que os materiais conectados possuírem densidades diferentes, deve-se considerar uma densidade característica equivalente dada por:

$$\rho_k = \sqrt{\rho_{k1} \rho_{k2}}$$

onde:

 ρ_k = valor característico da densidade equivalente, em kg/m³;

 ρ_{k1} = valor característico da densidade da madeira 1, em kg/m³;

 ρ_{k2} = valor característico da densidade da madeira 2, em kg/m³;

• Para conexões entre aço-concreto ou madeira-concreto.

$$K_{ser} = 0,125 d E_{0,w,meam}$$
 segundo EUROCODE 4 (3.142)
onde:

 $E_{0,w,meam}$ = módulo de elasticidade da madeira médio.

A expressão foi utilizada, por exemplo, em CECCOTTI (1995).

Em ambos os casos anteriores pode-se os EUROCODE's estimam o valor de K_{ult} (utilizado nos Estados Limites Últimos) através de:

$$K_{\rm ult} = \frac{2}{3} K_{\rm ser} \tag{3.143}$$

A maioria das pesquisas feitas sobre as características de carga x deslizamento de uma conexão refere-se a ligações pregadas. Assim, alguns autores assumem que o prego e a madeira comportam-se como fundação elástica (WILKINSON (1971 e 1972)). Assumindo elasticidade no comportamento do prego e da madeira que está a sua volta apenas, obtém-se respostas lineares, segundo experimentos, para pequenos deslizamentos. De fato, a madeira em contato com o prego falha devido ao embutimento, enquanto que o aço que constitui o prego pode escoar gerando uma relação não linear de carga x deslizamento. Desta forma, FOSCHI e BONAC (1977) tratam o problema de interação madeira-prego como elasto-plástico. As relações carga x deslizamento obtidas por estes autores são comparadas com os valores de rigidezes obtidos por WILKINSON (1971 e 1972), válidas para pequenos deslizamentos, e de capacidade última obtidos por LARSEN (1973), válida apenas para determinação da carga última. Além disso, uma análise por elementos finitos foi realizada pelos autores. Foram obtidos resultados satisfatórios, em cada faixa de validade, entre os métodos como se vê na Figura 3.21.

Figura 3.21 Comparação entre os resultados experimentais e teóricos obtidos por FOSCHI e BONAC e os resultados teóricos de WILKINSON e LARSEN. FONTE: FOSCHI e BONAC,1977,p.121.

Portanto, para análise de vigas mistas madeira-concreto devem ser efetuados ensaios de ligações para determinação do módulo de deslizamento da conexão, parâmetro de relevante importância nos equacionamentos dos Métodos Exato e Aproximado. Para tanto, existem alguns procedimentos apresentados nesta seção, destacando-se o da ISO 6891/83, o da NBR 7190/97, o de ALMEIDA (1987) e de WILKINSON (1971 e 1972).

Da observação dos valores experimentais obtidos dos trabalhos apresentados nesta seção, pode-se concluir que a ordem de grandeza do módulo de deslizamento nas vigas de madeiraconcreto conectados através de pregos é algo em torno de 2.000 a 20.000 N/mm.

3.5 Capacidade de Resistência dos Materiais

Nas seções 3.2.1 e 3.2.2 são apresentados métodos de cálculo que permitem determinar para vigas mistas de seção T, cuja alma é de madeira e a mesa de concreto, as tensões normais e de cisalhamento que atuam nos dois materiais, fluxo de cisalhamento na interface e linha elástica da viga.

A seguir são apresentadas expressões dos limites de capacidade de resistência dos materiais, bem como dos limites de deslocamentos permissíveis. Tal estudo servirá como um balizamento para o pré-dimensionamento (determinação das dimensões da seção, espaçamento e diâmetro dos conectores etc.) das vigas mistas.

3.5.1 Segundo NBR 7190/97 (Projeto de Estruturas de Madeira)

Os procedimentos a seguir destinam-se ao dimensionamento de ligações pregadas entre peças de madeira.

A norma NBR 7190/97 define a resistência característica paralela às fibras da madeira $(f_{wc0,k})$, bem como seu módulo de elasticidade à compressão paralela às fibras médio $(E_{wc0,m})$ de

acordo com a classe de resistência da madeira na umidade padrão de referência U = 12% (Tabelas 8 e 9 da norma).

O valor de cálculo fwe0,d é obtido a partir do valor característico fwe0,k, pela expressão

$$\mathbf{f}_{wc0,d} = \mathbf{k}_{mod} \frac{\mathbf{f}_{wc0,k}}{\gamma_{wc}}$$
(3.144)

com

$$k_{mod} = k_{mod,1} k_{mod,2} k_{mod,3}$$
(3.145)

onde:

 γ_{wc} = coeficiente de minoração das propriedades da madeira;

 k_{mod} = coeficiente de modificação;

- k_{mod,1} = coeficiente que leva em conta a classe de carregamento e o tipo de material
 empregado (Tabela 10 da norma);
- k_{mod,2} = coeficiente que leva em conta a classe de umidade e o tipo de material empregado
 (Tabela 11 da norma);

 $k_{mod,3}$ = coeficiente que leva em conta se a madeira é de primeira ou segunda categoria.

Nas verificações de segurança que dependem da rigidez da madeira, o módulo de elasticidade paralelamente às fibras deve ser tomado com o valor efetivo:

$$E_{wc0,ef} = k_{mod,1} k_{mod,2} k_{mod,3} E_{wc0,m}$$
(3.146)

Os esforços resistentes à solicitação de compressão de pinos embutidos em orificios da madeira são determinados por ensaio específico de embutimento, realizado segundo método aproximado, exposto no Anexo B da norma. Na falta da determinação experimental específica, admitem-se as relações aproximadas expressas por

$$f_{we0,k} = f_{wc0,k}$$
 $f_{we0,d} = f_{wc0,d}$ (3.147 a,b)

Em ligações pregadas será obrigatoriamente feita a pré-furação da madeira, com diâmetro d_0 não maior que o diâmetro d_{ef} do prego, com valores usuais:

$$d_0 = 0.98d_{ef} \quad (\text{ dicotiledôneas}) \tag{3.148}$$

$$\mathbf{d}_{0} = 0,85\mathbf{d}_{ef} \quad (\text{ coniferas}) \tag{3.149}$$

onde:

 d_{ef} = diâmetro efetivo medido nos pregos a serem usados.

A penetração da ponta do prego na peça de madeira mais distante de sua cabeça deve ser de pelo menos 12d.

O valor da resistência de um pino metálico (prego ou parafuso) correspondente a uma única seção de corte é determinado em função do valor do parâmetro

$$\beta = \frac{t}{d} \tag{3.150}$$

onde:

- t = espessura convencional da madeira (no caso de vigas de seção T, corresponde à espessura da mesa);
- d = diâmetro do prego.

Estabelecendo como valor limite

$$\beta_{lim} = 1.25 \sqrt{\frac{f_{yd}}{f_{we0,d}}}$$
 (3.151)

e

$$f_{yd} = \frac{f_{yk}}{\gamma_s}$$
(3.152)

 $f_{yk} = 600 \text{ MPa}$ (valor mínimo para pregos) (3.153)

$$\gamma_s = 1,1 \tag{3.154}$$

sendo:

 f_{yk} = resistência característica ao escoamento do pino metálico;

 f_{yd} = resistência de cálculo ao escoamento do pino metálico;

 γ_s = coeficiente de minoração do aço;

 $f_{we0,d}$ = resistência de cálculo de embutimento.

O valor de cálculo $R_{vd,1}$ da resistência de um pino, correspondente a uma única seção de corte, é dada pelas expressões seguintes:

I - Embutimento da madeira (conexão de "grande" rigidez)

$$\beta \le \beta_{\lim} \tag{3.155}$$

$$R_{vd,1} = 0,40 \frac{t^2}{\beta} f_{wed}$$
(3.156)

II - Flexão do pino (conexão de "pequena" rigidez)

$$\beta > \beta_{\lim} \tag{3.157}$$

$$R_{vd,1} = 0,625 \frac{d^2}{\beta_{lim}} f_{yd}$$
(3.158)

onde:

$$\beta = \beta_{\lim} \tag{3.159}$$

3.5.2 Segundo CECCOTTI (STEP 2 - Eurocode)

CECCOTTI (1995) apresenta o dimensionamento de uma viga mista de seção T, cuja mesa é de concreto e a alma de madeira, baseando-se nas expressões dos EUROCODEs 2, 4 e 5. Os dois materiais, neste exemplo, são conectados por meio de barras de aço para concreto armado como os tipos (a2) mostrados na Figura 1.3.

As propriedades de resistência e rigidez dos materiais são obtidas a partir dos EUROCODES 2, 4 e 5. Como já foi dito anteriormente, para o módulo de elasticidade da madeira, de deformação longitudinal do concreto e para o módulo de deslizamento da conexão, os valores médios são utilizados no projeto, embora um estado limite seja considerado.

CECCOTTI (1995) afirma que de acordo com resultados de testes válidos, quando a deformação no concreto pode ser considerada negligenciável - isto é, no caso de $f_{ck,cubo} \ge 30 \text{ N} / \text{mm}^2$ ($f_{ck,cubo} = f_{ck} \ge 21,3 \text{ N} / \text{mm}^2$) - e a altura que o conector penetra no concreto sendo maior que 3d, pode-se admitir como válidas as expressões empíricas (3.142) e (3.143).

Quanto à conexão, a falha pode ocorrer nos seguintes pontos:

• concreto (compressão localizada)

$$\mathbf{R}_{d} = 0,23d^{2}\sqrt{\mathbf{f}_{ck}\frac{\mathbf{E}_{c}}{\gamma_{c}}}$$
(3.160)

onde:

d = diâmetro do conector;

 f_{ck} = resistência característica (cilindro) do concreto;

 γ_{c} = coeficiente de minoração da resistência do concreto;

E_c = valor nominal do módulo de deformação longitudinal do concreto.

• conector

$$\mathbf{R}_{d} = 0.8 \mathbf{f}_{u} \frac{\pi \mathrm{d}^{2}}{4 \gamma_{s}} \tag{3.161}$$

onde:

 f_u = resistência à tração do aço;

 γ_s = coeficiente de minoração da resistência do aço.

• madeira (compressão localizada - embutimento)

$$R_{d} = 0.5 \sqrt{2M_{yd} f_{we,d} d}$$
(3.162)

onde:

M_{vd} = momento que provoca o escoamento do conector devido à flexão.

O autor considera reduções nos módulos de elasticidade da madeira e de deformação longitudinal do concreto devido à fluência. Dessa forma, parâmetros que são funções desses valores também sofrem alterações, como por exemplo o módulo de deslizamento por ele adotado (expressão empírica (3.142)). É possível verificar através de seus cálculos e expressões que no material que possui maior coeficiente de fluência (no caso o concreto) as tensões normais nele atuantes diminuirão, enquanto que o de menor coeficiente de fluência (no caso a madeira) aumentará o nível de tensões normais com o tempo. Assim, as maiores tensões normais no concreto ocorrem no estágio inicial, enquanto que na madeira o caso crítico se dá após toda a deformação lenta. No caso das tensões tangenciais, elas são maiores no estágio inicial. CECCOTTI (1995), para simplificar os cálculos e a favor da segurança, admite todo o esforço de cisalhamento como sendo absorvido pela alma de madeira.

A nova norma de madeiras, NBR 7190/97, também considera o coeficiente de fluência ϕ da madeira, o qual varia de acordo com as classes de carregamento e de umidade consideradas, conforme é mostrado na Tabela 15 da norma.

3.5.3 Deformações limites para as construções correntes e com materiais frágeis não estruturais segundo a NBR 7190/97

3.5.3.1 Construções Correntes

A norma prevê que deve ser verificada a segurança em relação ao estado limite de deformações excessivas que possam afetar a utilização normal da construção ou seu aspecto estético, considerando apenas as combinações de ações de longa duração, levando-se em conta a rigidez efetiva definida pelo módulo $E_{c0,ef}$.

A flecha efetiva u_{ef} , determinada pela soma das parcelas devidas à carga permanente u_G e à carga acidental u_Q , não pode superar 1/200 dos vãos, nem 1/100 do comprimento dos balanços correspondentes.

As flechas devidas às ações permanentes podem ser parcialmente compensadas por contraflechas u₀ dadas na construção. Neste caso, na verificação da segurança as flechas devidas às ações permanentes podem ser reduzidas de u₀, mas não se considerando reduções superiores à $\frac{2}{3}u_{G}$, como mostrado na Figura 3.22.

Figura 3.22 Verificação das deformações limites. Fonte: NBR 7190/97,p.109.

3.5.3.2 Construções com materiais frágeis

Nas construções em que haja materiais frágeis ligados à estrutura, como forros, pisos e divisórias, cuja fissuração não possa ser evitada por meio de disposições construtivas adequadas, a verificação da segurança em relação aos estados limites de deformações procura evitar danos a esses materiais não estruturais.

Nestes casos, as combinações de ações a considerar são as especificadas em 4.8.2 ou 4.8.3 da norma, conforme o rigor da segurança pretendida.

As flechas totais, incluindo o efeito da fluência, devidas às combinações de ações consideradas, não devem superar 1/350 dos vãos, nem 1/175 do comprimento dos balanços correspondentes. As flechas devidas apenas às ações variáveis da combinação considerada não devem superar 1/300 dos vãos ou 1/150 do comprimento dos balanços correspondentes, nem o valor absoluto de 15 milímetros.

3.5.4 Obtenção experimental dos parâmetros de resistência e rigidez

Os parâmetros de resistência e rigidez indicados anteriormente podem ser obtidos diretamente através de ensaios padronizados, cujos procedimentos envolvem tamanho de lote, quantidade de corpos de prova, velocidade de carregamento, etc. Estas especificações podem ser obtidas nas seguintes normas brasileiras:

• madeira

NBR 7190/97 Projeto de estruturas de madeira.

• concreto

NBR 5739/94 Concreto - Ensaio de compressão de corpos de prova cilíndricos - Método de Ensaio.

NBR 8522/84 Concreto - Determinação do módulo de deformação estática e diagrama tensão-deformação - Método de Ensaio.

3.5.5 Considerações sobre a deformação lenta nas estruturas mistas madeira-concreto

3.5.5.1 Comportamento higroscópico

Com relação a análises de longa duração pode-se citar os trabalhos de CAPRETTI e CECCOTTI (1996) que planejaram um ensaio que durou 5 anos, de 1991 a 1996, de vigas de alma dupla de madeira laminada colada com mesa de aço corrugado e concreto. As vigas são mostradas nas Figuras 3.23 e 1.8.

Figura 3.23 Teste de longa duração. FONTE: CAPRETTI e CECCOTTI, 1996, p.445.

Os resultados obtidos das medidas de deslocamentos e deformações nos meios dos vãos, deslizamentos nas extremidades das vigas, bem como da umidade das vigas de madeira permitiram obter algumas conclusões das quais as mais importantes são citadas a seguir.

a diminuição da umidade na viga de madeira implica em seu encurtamento fazendo com que os deslocamentos verticais diminuam e os deslizamentos aumentem. Por outro lado, o aumento da umidade na viga de madeira faz com que ela se alongue aumentando os deslocamentos verticais e diminuindo os deslizamentos. Tais fenômenos foram comprovados através da investigação que durou 5 anos, como pode ser observado nos diagramas das Figuras 3.24, 3.25, 3.26 e 3.27. Nestas figuras, *Sp* significa Spring - Primavera.

Figura 3.24 Teste de umidade de longa duração na madeira (média de 4 pontos). FONTE: CAPRETTI e CECCOTTI, 1996, p.445.

Figura 3.25 Retração e alongamento normal as fibras durante o teste de longa duração. (medidas de 3 pontos: A1, B1 e C1). FONTE: CAPRETTI e CECCOTTI, 1996, p.446.

Figura 3.26 Deslocamentos verticais no meio do vão (U1 = viga 1; U2 = viga 2) durante o teste de longa duração. FONTE: CAPRETTI e CECCOTTI, 1996, p.446.

Figura 3.27 Deslizamentos junto aos apoios da viga madeira-concreto. (V1 = extremidade esquerda; V2 = extremidade direita; VM = média dos deslizamentos das extremidades da viga 1). FONTE: CAPRETTI e CECCOTTI, 1996, p.447.

 o coeficiente de fluência proposto no EUROCODE 5 não é adequado para as estruturas de madeira-concreto, pois os resultados experimentais mostraram-se bastante divergentes do valor apresentado nesta norma. Segundo os autores este fato pode ser explicado devido ao EUROCODE 5 ser uma norma de estruturas de madeira e no caso estar sendo usado para estruturas mistas.

3.5.5.2 Fluência nas uniões pregadas de madeira

Segundo ALMEIDA (1990), a determinação do comportamento mecânico das estruturas é feita usualmente por meio de ensaios de curta duração. O tempo de duração dos ensaios rápidos está compreendido entre 3 e 5 minutos. Nos ensaios rápidos não são considerados os efeitos decorrentes do tempo de duração do carregamento na estrutura, que são importantes na consideração das condições de serviço. Para isso, é necessária a aplicação de carregamentos de longa duração. Estes ensaios são conhecidos como ensaios de deformação lenta, ou ainda ensaios de fluência.

Para desenvolver o estudo das cargas de longa duração é preciso fazer algumas considerações sobre a classificação das cargas em relação ao tempo. O EUROCODE 5 classifica a duração das ações em quatro categorias conforme a Figura 3.28 e a NBR 7190/97 em cinco categorias conforme a Figura 3.29.

Classe das Ações	Classe de duração
-Permanente ou de longa duração	10 anos
-Média duração	6 meses
-Curta duração	1 semana
-Instantânea	

Figura 3.28 Classificação das ações.

FONTE: EUROCODE 5

Classe de carregamento	Ação variável principal da combinação				
	Duração acumulada	Ordem de grandeza da duração acumulada da ação característica			
Permanente	Permanente	vida útil da construção			
Longa duração	Longa duração	mais de 6 meses			
Média duração	Média duração	1 semana a 6 meses			
Curta duração	Curta duração	menos de 1 semana			
Duração instantânea	Duração instantânea	muito curta			

Figura 3.29 Classe de carregamento (Tabela 1 da NBR 7190/97).

FONTE: NBR 7190, 1997, p.24.

Pelo fato da madeira ser um material higroscópico, as suas propriedades de rigidez e resistência são afetadas ao longo do tempo pela variação das condições ambientais, como foi mostrado na seção anterior. Assim, os efeitos estruturais causados pela duração do carregamento dependem da umidade inicial da madeira e das condições ambientais mantidas durante o ensaio.

Os valores básicos de resistência estabelecidos pelo EUROCODE 5 e NBR 7190/97 devem ser modificados por meio de coeficientes de modificação k_{mod} determinados em função do tempo de duração do carregamento e da classe de umidade ambiente.

Em sua análise, ALMEIDA (1990) desenvolve uma máquina de ensaio que mantém o carregamento constante ao longo do tempo através de um sistema de alavancas em que o carregamento é mantido sem ajuda de qualquer sistema de retro-alimentação eletro-mecânico.

Para o projeto dos corpos de prova usou-se o critério de que a carga atuante fosse menor que a carga de primeiro limite, isto é, a carga que define o limite de elasticidade da união segundo os critérios de ALMEIDA (1987 e 1990) conforme explicado na Seção 3.4. 106

Além das deformações, foram registradas diariamente as condições ambientais de temperatura e umidade relativa do ar. Os sensores de temperatura e umidade foram colocados próximos ao conjunto de corpos de prova para detectar com maior precisão as condições ambientais.

Dos ensaios, verificou-se elevadas taxas de fluência ocorridas nas primeiras 24 horas de carregamento o que corresponde ao fenômeno de fluência rápida. A fluência rápida é também verificada em outros materiais como o concreto. Observou-se também que após o descarregamento dos ensaios de fluência, os quais duraram 128 dias, houve uma recuperação elástica imediata.

Sem dúvida, tais fenômenos semelhantes de fluência ocorrem também no concreto. Modelos que levam em consideração a deformação no concreto estão presentes nas normas pertinentes ao material.

Dessa forma a análise da fluência nas uniões pregadas de madeira-concreto é bastante complexa e a necessidade de uma investigação sistemática com base em um extenso planejamento de ensaios parece ser a maneira mais racional para compreensão do fenômeno, visto que um estudo teórico deste assunto, além de demasiadamente complicado, não produziria bons resultados.

CECCOTTI (1995) apresenta como exemplo um cálculo de uma viga mista madeiraconcreto com conectores tipo a2 (Figura 1.3). Nos cálculos o autor utiliza as expressões do Método Aproximado segundo o EUROCODE 5.

Além do cálculo para as condições iniciais é determinado também as tensões e deslocamentos verticais para o estágio final, isto é, quando toda a fluência no concreto e na madeira tiver ocorrido. Para representar este fenômeno, os módulo de elasticidade da madeira e o módulo de deformação longitudinal do concreto são modificados pelas expressões:

$$E_{c,fluencia} = E_c \left(\frac{\% g}{1 + \phi_{c,g}} + \frac{\% q}{1 + \phi_{c,q}} \right)$$
(3.163)

onde:

- E_{c,fluencia} = módulo de deformação longitudinal do concreto levando-se em consideração a fluência;
- E_c = módulo de deformação longitudinal do concreto não levando-se em consideração a fluência;
- %g = porcentagem do carregamento permanente com relação ao total;

%q = porcentagem do carregamento variável com relação ao total;

 $\phi_{c,g}$ = coeficiente de fluência do concreto para carga permanente;

 $\phi_{c,q}$ = coeficiente de fluência do concreto para carga variável.

$$E_{w.fluencis} = E_w \left(\frac{\%g}{1 + \phi_{w,g}} + \frac{\%q}{1 + \phi_{w,q}} \right)$$
(3.164)

onde:

 $E_{w,fluencia} = módulo de elasticidade da madeira levando-se em consideração a fluência;$ $<math>E_w = módulo de elasticidade da madeira não levando-se em consideração a fluência;$ % g = porcentagem do carregamento permanente com relação ao total;% q = porcentagem do carregamento variável com relação ao total; $<math>\phi_{w,g} = coeficiente de fluência da madeira para carga permanente;$ $<math>\phi_{w,q} = coeficiente de fluência da madeira para carga variável.$

Com o tempo devido ao alto coeficiente de fluência do concreto com relação a madeira, as tensões tendem a migrar do concreto para a madeira. Desta forma, ao longo do tempo, as tensões no concreto diminuem enquanto que na madeira, aumentam.

Com relação aos conectores, como o concreto apresenta maior coeficiente de fluência, as tensões que nele atuam diminuirão com o tempo. Conseqüentemente, o fluxo de cisalhamento na interface concreto e madeira também. Sendo assim, os conectores devem ser dimensionados para o estágio inicial de carregamento, ou seja, sem consideração de fluência. A fluência do metal que constitui o conector não é considerada pelo autor.

3.6 Comentários

Na seção 3.4 foram apresentados os métodos para determinação do Módulo de Deslizamento K da conexão que mede a rigidez da ligação entre a madeira e o concreto, além de ser parâmetro fundamental para o dimensionamento das vigas mistas em todas as metodologias de cálculo apresentadas neste trabalho.

Pelas divergências que se apresentam para a obtenção desta propriedade da ligação, não restam dúvidas de que muito estudo ainda é necessário. Pode-se chegar a um método de ensaio, em que dimensões, carregamentos, materiais e o que mais for necessário estejam todos padronizados a ponto de que, entre outras vantagens, ser possível a comparação dos resultados obtidos, algo muito dificil de ser feito no estágio atual. Hoje, os procedimentos para determinação do Módulo de Deslizamento são distintos e algumas vezes até opostos, como no caso da quantidade de conectores. Alguns autores afirmam que a quantidade de pregos não deve ultrapassar de dois, enquanto outros dizem que deve ser tantos quanto necessários para representar o mais fielmente possível a viga mista real.

O objetivo aqui não é fazer uma análise minuciosa de cada metodologia de ensaio. No entanto, pode-se observar que os estudos de ALMEIDA (1987), WILKINSON (1971 e 1972), além das normas ISO 6891/83 e NBR 7190/97 representam os trabalhos mais consistentes na busca de uma metodologia única e representativa do comportamento das ligações de vigas mistas madeira-concreto.

Verificou-se também, como importante conclusão, a pequena variação do produto de rigidez efetivo para consideráveis alterações no Módulo de Deslizamento, fato mostrado na Figura 3.19. Isto parece contrariar o que foi dito anteriormente sobre os procedimentos para obtenção da rigidez da ligação. Entretanto, pode ser justificado, pois as diferenças entre os Módulos de Deslizamento determinados pelos diversos ensaios são muito grandes. Se a diferença fosse pequena, chegar-se-ia a valores de rigidez efetiva praticamente iguais.

4 Metodologia

4.1 Análise teórica

Serão analisadas as soluções obtidas a partir dos Métodos Exato e Aproximado.

No caso do *Método Exato*, é necessária a obtenção da equação da linha elástica da viga parcialmente composta, que é a solução da equação diferencial da viga (3.29). Assim, é possível obter os esforços solicitantes em cada elemento (expressões (3.11), (3.12) e (3.32)-(3.38)), bem como as tensões que neles (madeira e concreto) atuam (expressões (3.40), (3.41), (3.47) e (3.48)). Para a resolução da equação diferencial da viga, optou-se por utilizar-se do software *Mathematica¹*, sendo que as condições de contorno variam de acordo com o carregamento.

No caso do *Método Aproximado*, a solução da equação diferencial (3.105) da viga é obtida mais facilmente. Para os casos correntes de carregamento, a solução é encontrada nos livros de Resistência dos Materiais, bastando apenas substituir, neste caso, EI por (EI)_{ef}. Os esforços e tensões atuantes na viga parcialmente composta podem ser obtidos a partir das expressões apresentadas na seção 3.2.2.

Além da determinação da linha elástica através dos métodos acima apresentados de uma viga bi-apoiada parcialmente composta sob carregamentos correntes, é interessante o estudo comparativo do comportamento da linha elástica nos casos de composição nula (ausência de conectores) e composição total (conexão infinitamente rígida). Gráficos como os da Figura 4.1 podem ser obtidos para diversos carregamentos.

¹

Mathematica® é um software registrado e licenciado pela Wolfram Research, http://www.wolfram.com

Figura 4.1 Formas da linha elástica para composição total, parcial e nula.

Serão considerados dois casos de carregamento. O primeiro constitui-se de uma carga uniformemente distribuída e o segundo com duas cargas concentradas aplicadas nos terços do vão, sendo esta última configuração, idêntica à utilizada em laboratório por SORIANO et al (1998).

Para esta dissertação escolheu-se uma simulação numérica em que se adota para cada caso os seguintes parâmetros:

- K = 6500 N/mm e s = 3 cm;
- K = 6500 N/mm e s = 6 cm;
- K = 6500 N/mm e s = 9 cm;
- K = 13000 N/mm e s = 3 cm;
- K = 13000 N/mm e s = 6 cm;

- K = 13000 N/mm e s = 9 cm;
- K = 26000 N/mm e s = 3 cm;
- K = 26000 N/mm e s = 6 cm;
- K = 26000 N/mm e s = 9 cm.

sendo que para toda a simulação os parâmetros a seguir apresentados foram mantidos com os valores constantes:

- $h_c = 4$ cm;
- $h_w = 16$ cm;
- $b_c = 30 \text{ cm};$
- $b_w = 6 \text{ cm};$
- $\ell = 200$ cm;
- E_c = 35419 MPa;
- $E_w = 11970 \text{ MPa};$
- $A_c = 120 \text{ cm}^2$;
- $A_w = 96 \text{ cm}^2$;
- $I_c = 160 \text{ cm}^4$;
- $I_w = 2048 \text{ cm}^4$.

Para considerar os casos extremos $K \rightarrow 0$ (ou $\overline{\phi}_s = 0$) e $K \rightarrow \infty$ (ou u = 0) adotou-se nos cálculos os valores K = 65 N/mm e s = 6 cm e K= 2600000 N/mm e s = 6 cm, respectivamente, para que não houvesse problemas de aproximação numérica no processamento do software. A análise experimental aqui apresentada, que será mais adiante confrontada com resultados teóricos obtidos a partir dos modelos propostos nesta dissertação, baseia-se no trabalho de SORIANO et. al. (1998).

4.2.1 Caracterização dos materiais

Os materiais utilizados na investigação experimental de vigas mistas são descritos a seguir.

• Concreto:

produzido com cimento CP V ARI, traço 1:2:3, em massa, e fator água/cimento (a/c = 0,60). Resistência e módulo de deformação longitudinal, conforme NBR 6118/82, indicados na Tabela 4.1;

$$E_{c} = 6600 \sqrt{f_{cj}}$$
 (MPa) (4.1)

• Madeira:

peroba-rosa (6 cm x 16 cm), pertencente à Classe C40 das dicotiledôneas, segundo NBR 7190/97. Conforme indicações de MAINIERI e CHIMELO (1989), a resistência à compressão paralela às fibras e módulo de deformação longitudinal para a presente madeira, admitindo-se umidade de 15%, é apresentada na Tabela 4.1 (Observação: os autores não ensaiaram os corpos de prova de madeira);

• Pregos:

comprimento de 126,5 mm, e diâmetro de 6,58 mm GERDAU (24x60);

- Armadura Construtiva:
 - φ 5mm Aço CA 60 B.

4.2.2 Geometria da estrutura

A Figura 4.2 apresenta o esquema da viga ensaiada, com dimensões adotadas, tendo-se observado principalmente a limitação do pórtico de ensaio disponível, seção comercial da madeira e espaçamentos dos pregos, este último conforme os critérios apresentados abaixo:

• NBR 7190/97

A norma brasileira, no item 7.6.1 alínea (a), diz que entre o centro de dois pregos situados em uma mesma linha paralela à direção das fibras o espaçamento mínimo recomendado é de 6d (3,95cm). No mesmo item, a alínea (e) prescreve que do centro de qualquer pino à borda lateral da peça, medido perpendicularmente às fibras, quando o esforço transmitido for paralelo às fibras, a distância mínima recomendada é 1,5d (0,99 cm). Tem-se que no item 7.3.4 a penetração da ponta do prego na peça de madeira mais distante de sua cabeça deve ser pelo menos 12d (7,90cm).

• DIN 1052/73

Tratando-se da norma alemã, na tabela 15 item 11.3.13, tem-se que as distâncias mínimas entre os pregos na direção paralela às fibras é de $5d_n$ (3,29 cm), enquanto que entre os pregos e a borda de madeira é $3d_n$ (1,97 cm). No item 11.3.4 afirma-se que para se ter o completo desenvolvimento do esforço no prego é necessário que a ponta do prego penetre na madeira mais distante de sua cabeça pelo menos $12d_n$ (7,90 cm) no caso de uniões com corte simples.

Assim sendo, as distâncias entre pregos (6 cm), entre pregos e bordas (3 cm) e penetração na madeira mais distante (8,65 cm), adotadas na viga em estudo, atendem ambas as normas. A

disposição dos pregos no elemento de madeira que constitui a viga composta, pode ser vista na Figura 4.6a.

Figura 4.2 - Detalhamento da viga

4.2.3 Viga de seção mista

f	E₅	A _c	Ic	f _w	Ew	A _w	I _w	n _c	ÿ	I_{∞}
(MPa)	(MPa)	(cm ²)	(cm ⁴)	(MPa)	(MPa)	(cm ²)	(cm ⁴)		(cm)	(cm ⁴)
28,8	35419	120	160	55,5	11970	96	2048	2,96	4,13	10079

TABELA 4.1 - Propriedades físicas e geométricas

4.2.4 Metodologia

O ensaio da viga realizado no Laboratório de Estruturas e Materiais de Construção (LEMC-UNICAMP), num pórtico de capacidade de 400 kN, ocorreu em estágios de carregamento de 2 e 5 kN, cujo esquema de aplicação das cargas pode ser visto na Figura 4.5 e Figura 4.6c. Foram monitorados 18 pontos e medidos seus deslocamentos com TENSOTAST, tendo como base de medida 50 mm. Os deslocamentos verticais no meio do vão foram mensurados com relógio comparador de precisão de centésimo de milímetro. O último estágio de carregamento monitorado foi de 55 kN e a ruptura da viga deu-se com 73 kN.

4.2.5 Determinação do módulo de deslizamento

O módulo de deslizamento K, entre a madeira e o concreto, é definido segundo expressão (3.7), seção 3.4:

$$K = \frac{F}{v}$$
(3.7)

A determinação do parâmetro K, fez-se através de ensaios experimentais de dois corpos de prova, conforme Figura 4.3 e Figura 4.6b.

Assumiu-se como módulo de deslizamento K da conexão somente o valor da tangente a origem do diagrama carga x deslizamento como apresentado na Figura 4.4. A rigor, a obtenção deste valor deveria seguir algum dos modelos apresentados na seção 3.4 (Módulo de deslizamento da conexão), no entanto, devido aos propósitos preliminares da pesquisa, tal procedimento não foi adotado pelos autores. O valor assim obtido deveria ser utilizado apenas no cálculo nos Estados Limites de Utilização, como K_{ser}. A partir de um certo nível de carregamento o comportamento da conexão deixa de ser linear, devendo-se neste caso tomar um outro módulo de deslizamento (K_{ult}) cujo valor fosse menor que o anterior, o qual seria utilizado para o cálculo nos Estados Limites Últimos. No entanto, tal procedimento não foi muito comprometedor, pois GUTKOWSKI e CHEN (1996) e CAPRETTI e CECCOTTI (1996) afirmam que a rigidez da viga é diretamente proporcional a K, porém pouco sensível a sua variação, Figura 3.19, além disso um estudo mais aprofundado neste aspecto fugiria dos propósitos da investigação preliminar. Desta forma, esperase que a rigidez da viga para níveis de carregamento próximo à ruptura, segundo a DIN 1052/73, esteja um pouco superestimada.

Na Tabela 4.2, encontram-se os valores médios de deslizamento medidos através de TENSOTAST com base de medida igual a 50 mm, para as respectivas cargas aplicadas em estágios, à cada corpo de prova em seu centro de gravidade. Os autores obtiveram o valor de 13000 N/mm para o Módulo de Deslizamento.

Figura 4.3 - Corpo de prova

4.2.6 Método experimental

As tensões normais de compressão e de tração no concreto e na madeira foram calculadas nos pontos M8, A1 e A2 indicados na Figura 4.5, e Figura 4.6d, considerando-se um diagrama tensão x deformação linear com inclinação igual ao módulo de deformação longitudinal de cada material, dados na Tabela 4.1.

Os resultados obtidos para o módulo de deslizamento da conexão podem também ser comparados com as expressões empíricas dadas nos EUROCODES, equações (3.142) e (3.143).

4.3 Esforços solicitantes

4.3.1 Viga bi-apoiada com carga uniformemente distribuída

$$M(x) = \frac{q\ell}{2}x - \frac{q}{2}x^{2}$$
$$M'(x) = \frac{q\ell}{2} - qx$$
$$M''(x) = -q$$

$$V(x) = \frac{q\ell}{2} - qx$$

4.3.2 Viga bi-apoiada com duas cargas aplicadas nos terços do vão

•
$$0 \le x \le \frac{\ell}{3}$$

 $M(x) = Px$
 $M'(x) = P$

M''(x) = 0

V(x) = P

•
$$\ell/3 \le x \le 2\ell/3$$

$$M(x) = \frac{P\ell}{3}$$

$$M'(x) = M''(x) = 0$$

V(x) = 0

a) disposição dos pregos fixados na madeira antes da concretagem da mesa

b) corpo de prova de ligação sendo ensaiado para determinação do módulo de deslizamento

Figura 4.6 a) e b)

c) viga mista sendo ensaiada no LEMC/Unicamp - esquema de carregamento

d) seção central da viga mista onde houve a ruptura

Figura 4.6 c) e d)

5 Resultados Obtidos

Serão apresentados a seguir os valores encontrados para as tensões normais, fluxo de cisalhamento e deslocamentos verticais no meio do vão para o carregamento com duas cargas aplicadas nos terços do vão, tomando-se para K o valor de 13000 N/mm e s, 6 cm, utilizando-se dos Métodos Exato (Tabela 5.1) e Aproximado (Tabela 5.2). Estes valores são referenciais, pois podem ser comparados com os obtidos pela análise experimental de SORIANO et. al. (1998). Os demais resultados obtidos a partir das combinações de K e s descritas na seção 4.1 são apresentadas no Apêndice.

Nota-se que se K for alterado para 4000 N/mm (Tabelas 5.3 e5.4) os valores teóricos dos deslocamentos verticais aproximam-se bastante dos valores medidos na experimentação, o mesmo não acontecendo tão bem para as tensões normais. Isto vai ao encontro do que foi mencionado na seção 4.2.5 sobre os possíveis erros na determinação experimental do módulo de deslizamento.

5.1 Método Exato - Observação

As soluções obtidas para a equação da linha elástica a partir do software *Mathematica* podem ser rearranjadas de modo a apresentarem a mesma forma daquelas mostradas no trabalho de SANTANA (1997), como apresentadas na Figura 5.1.(Ver dedução nos Anexos D e E). Assim, conclui-se que aquelas expressões não são válidas apenas para os casos onde a seção transversal é duplamente simétrica, mas também para seções uma vez simétrica, com eixo de simetria paralelo ao carregamento como no caso das vigas T. Tendo em vista que a forma das equações apresentada por SANTANA (1997) é mais simples e equivalente as deste trabalho, adotar-se-á esta apresentação daqui por diante.

Tabela 5.1 Método Exato - K = 13000 N/mm e s = 6 cm

	VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS Método Exato												
Parâme	tros geom. da seção	Parâmetros o	de elasticidade	Conexão									
h _e =	4 [cm]	<u>ا</u>	35419 [MPa]	K =	13000 [N / mm]								
h _w =	16 [cm]	E _w =	11970 [MPa]	2000 - 2010 2000 - 2010 2010	6 [cm]								
$b_c =$	30 [cm]												
b _₩ =	6 [cm]												
$\ell =$	200 [cm]	r =	10 [cm]										
		(EI) ₀ =	30181600,00 [MPa cm⁴]										
		(EI) ₀₀ =	120637609,07 [MPa cm⁴]										
$A_{c} =$	120 [cm ²]			K =	216,67 [N / mm ²]								
A _w =	96 [cm ²]	$\alpha^2 =$	0,000957404 [cm ⁻²]										
I _c =	160 [cm⁴]	α =	0,030941942 [cm ⁻¹]										
$I_w =$	2048 [cm ⁴]	β =	7,17877E-05										

Carga 2xP	M _{máximo}	v"(ℓ/2) ≈	v‴(0) ≈	Nc	N _w	M _c	M _w	Tensão Norm. Concr.(σ _c)		$\operatorname{ncr.}(\sigma_{c})$	Tensão Norm. Mad. (σ_w)		id. (σ _w)	Fluxo de	V _{máxima}
ANIMATIN'S		ing an an an Administrative strategies of the second second second second						1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000416830	-0,0000005920	-20752,72	20752,72	236,22	1021,84	-2,95	-1,73	2,95	-3,99	2,16	3,99	0,32	1,895
20	6667	-0,0000833661	-0,0000011841	-41505,44	41505,44	472,44	2043,68	-5,91	-3,46	5,91	-7,98	4,32	7,98	0,64	3,790
30	10000	-0,0001250491	-0,0000017761	-62258,17	62258,17	708,66	3065,52	-8,86	-5,19	8,86	-11,97	6,49	11,97	0,96	5,685
40	13333	-0,0001667322	-0,0000023682	-83010,89	83010,89	944,88	4087,37	-11,81	-6,92	11,81	-15,97	8,65	15,97	1,29	7,580
50	16667	-0,0002084152	-0,0000029602	-103763,61	103763,61	1181,10	5109,21	-14,76	-8,65	14,76	-19,96	10,81	19,96	1,61	9,475
60	20000	-0,0002500983	-0,0000035523	-124516,33	124516,33	1417,32	6131,05	-17,72	-10,38	17,72	-23,95	12,97	23,95	1,93	11,370
70	23333	~0,0002917813	-0,0000041443	-145269,06	145269,06	1653,54	7152,89	-20,67	-12,11	20,67	-27,94	15,13	27,94	2,25	13,265
80	26667	-0,0003334644	-0,0000047364	-166021,78	166021,78	1889,76	8174,73	-23,62	-13,84	23,62	-31,93	17,29	31,93	2,57	15,160
90	30000	-0,0003751474	-0,0000053284	-186774,50	186774,50	2125,98	9196,57	-26,57	-15,56	26,57	-35,92	19,46	35,92	2,89	17,056
100	33333	~0,0004168305	-0,0000059204	-207527,22	207527,22	2362,20	10218,42	-29,53	-17,29	29,53	-39,92	21,62	39,92	3,21	18,951

	VIGA BI-APOIADA COM 2 CARGAS APLICADAS NOS TERÇOS DO VÃO												
					Método Aproximado								
Parâmetro	s geométricos da seção	Parâmet	ros de elasticidade	Conexão									
h	á E nom T	2 -	SEATO MADAI	ie مع	40000 TN / mm 1								
n _c –	4 [0111]	⊑ ₆ ∽	SS418 [INFA]	n -	ISONA FIA LUUU Ì								
h _w =	16 [cm]	E _w =	11970 [MPa]	c) II	6 [cm]								
b _c =	30 [cm]												
b _w =	6 [cm]												
1 =	200 [cm]												
A _c =	120 [cm ²]			K =	216,67 [N / mm ²]								
A _w =	96 [cm ²]			k =	4,84 [adim.]								
í _c =	160 [cm ⁴]			γ _c =	0,17 [adim.]								
I _w =	2048 [cm ⁴]												
a =	10 [cm]												
a _c =	6,12 [cm]												
a _w =	3,88 [cm]												

Tabela 5.2 Método Aproximado - K = 13000 N/mm e s = 6 cm

$$(EI)_{ef} = 74738719,34 [MPa * cm4]$$

Carga 2xP	M _{máximo}	Tensão N	orm. Con	$cr.(\sigma_c)$) Tensão Norm. Mad. (σ _w)			Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[kN * m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-3,16	-1,66	3,16	-4,27	2,07	4,27	0,30	1,900
20	6667	-6,32	-3,31	6,32	-8,54	4,14	8,54	0,60	3,799
30	10000	-9,48	-4,97	9,48	-12,81	6,21	12,81	0,89	5,699
40	13333	-12,64	-6,62	12,64	-17,08	8,28	17,08	1,19	7,598
50	16667	-15,80	-8,28	15,80	-21,35	10,35	21,35	1,49	9,498
60	20000	-18,96	-9,94	18,96	-25,63	12,42	25,63	1,79	11,398
70	23333	-22,12	-11,59	22,12	-29,90	14,49	29,90	2,09	13,297
80	26667	-25,27	-13,25	25,27	-34,17	16,56	34,17	2,38	15,197
90	30000	-28,43	-14,90	28,43	-38,44	18,63	38,44	2,68	17,097
100	33333	-31,59	-16,56	31,59	-42,71	20,70	42,71	2,98	18,996

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VAOS Método Exato															
Parâmei	tros geo	m. da seção	Parâmetros d	e elasticidade			Conexão								
h _c =	4	(cm)	£,=	35419	(MPaj		K =	4000	[N/m	m]					
}1 _w ≈	16	[cm]	E,, =	11970	[MPa]		5 B	6	[cm]						
b _e ∝	38	{ cm }													
b _w =	6	[cm]													
ć =	200	[cm]	r =	10	[cm]										
			(EI) ₀ =	30181600,00	[MPa cm ⁴]										
			(El) _{no} =	120637609 07	IMPa cm ⁴										
<u>م</u> _	100	1 am ² 1	([Ĩ.	CE 67	f M (nor	m ² 1					
A _c =	120		2	-	?.		n -	00,07	[147.111	11]					
A _w =	96	[cm ⁻]	α-=	0,000294586	[cm_]										
l _c =	160	[cm⁴]	α=	0,017163501	[cm ⁻¹]										
_w =	2048	[cm ⁴]	β =	2,20885E-05											
Carga 2xP	M _{minanto}	√"(ℓ/2) =	√ ⁿ (0) =	N _c	N _w	Mc	M _w	Tensão	Nam. Ca	ncr.(σ_c)	Tensão	Norm. Ma	id. (σ _w)	Fluxo de	V _{ntàxima}
			1					1	CG	2	1	CG	2	Cis.(ϕ_{rrax})	
[KN]	[m * M]	[cm']	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN/cm]	[mm]
10	3333	-0,0000631826	-0,0000009197	-14263,82	14263,82	358,06	1548,89	-4,48	-1,19	4,48	-6,05	1,49	6,05	0,22	2,781
20	6667	-0,0001263652	-0,0000018394	-28527,63	28527,63	716,12	3097,79	~8,95	-2,38	8,95	-12,10	2,97	12,10	0,44	5,562
30	10000	-0,0001895478	-0,0000027592	-42791,45	42791,45	1074,17	4646,68	-13,43	-3,57	13,43	-18,15	4,46	18.15	0,67	8,343
40	13333	-0,0002527304	-0,0000036789	-57055,26	57055,26	1432,23	6195,57	-17,90	-4,75	17,90	-24,20	5,94	24,20	0,89	11,125
50	16667	-0,0003159130	-0,0000045986	-71319,08	71319,08	1790,29	7744,47	-22,38	-5,94	22,38	-30,25	7,43	30,25	1,11	13,906
60	20000	0.0002700056	0.0000066102	95597 90	05507.00	2440.25	0702.20	20.00	7 4 2	1 20 00	20.20	0.04	20.20	1 22	10 007

2148,35

2506,41

2864,47 3222,52

9293,36

10842,25

12391,15

15488,93

13940,04 -40,28

-7,13

-8,32

-9,51

-10,70

-11,89

-26,85

-31.33

-35,81

-44,76

26,85

31,33

35,81

40,28

44,76

-36,30

-42,35

-48,40

-54,45

-60,50

8,91

10,40

11,89

13,37

14,86

36,30

42,35

48,40

54,45

60,50

1,33

1,56

1,78

2,00

2,22

16,687

19,468

22,249

25,030

27.812

60

70

80

90 100 20000

23333

26667

-0,0003790956

-0,0004422782

-0,0005054607

30000 -0,0005686433 -0,0000082775

33333 -0,0006318259 -0,0000091972

-0,0000055183

-0,0000064380

-0,0000073578

-85582,89

-99846,71

-114110,53

-128374,34

-142638,16

85582,89

99846,71

114110,53

128374,34

142638,16 3580,58

Tabela 5.3 Método Exato - K = 4000 N/mm e s = 6 cm

Tabela 5.4 Método Aproximado - K = 4000 N/mm e s = 6 cm

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS Método Exato

Parâmeti	ros geom. da seção	Parâmetros	de elasticidade	Conexão	
h _c =	4 [cm]	E =	35419 [MPa]	κ =	4000 [N / mm]
h _w =	16 [cm]	E,, =	11970 [MPa]	and there are another	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
$\ell =$	200 [cm]	r =	10 [cm]		
		(EI) ₀ =	30181600,00 [MPa cm⁴]		
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]		
$A_c =$	120 [cm²]			K =	66,67 [N / mm²]
A _w =	96 [cm²]	$\alpha^2 =$	0,000294586 [cm ⁻²]		
I _c =	160 [cm⁴]	α =	0,017163501 [cm ⁻¹]		
I _w =	2048 [cm ⁴]	β =	2,20885E-05		

Carga 2xP	M _{máximo}	∨ '(ℓ/2) =	V'''(0) =	N _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ _c)		Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxime}	
								1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN/cm]	[mm]
10	3333	-0,0000631826	-0,0000009197	-14263,82	14263,82	358,06	1548,89	-4,48	-1,19	4,48	-6,05	1,49	6,05	0,22	2,781
20	6667	-0,0001263652	-0,0000018394	-28527,63	28527,63	716,12	3097,79	-8,95	-2,38	8,95	-12,10	2,97	12,10	0,44	5,562
30	10000	-0,0001895478	-0,0000027592	-42791,45	42791,45	1074,17	4646,68	-13,43	-3,57	13,43	-18,15	4,46	18,15	0,67	8,343
40	13333	-0,0002527304	-0,0000036789	-57055,26	57055,26	1432,23	6195,57	-17,90	-4,75	17,90	-24,20	5,94	24,20	0,89	11,125
50	16667	-0,0003159130	-0,0000045986	-71319,08	71319,08	1790,29	7744,47	-22,38	~5,94	22,38	-30,25	7,43	30,25	1,11	13,906
60	20000	-0,0003790956	-0,0000055183	-85582,89	85582,89	2148,35	9293,36	-26,85	-7,13	26,85	-36,30	8,91	36,30	1,33	16,687
70	23333	-0,0004422782	-0,0000064380	-99846,71	99846,71	2506,41	10842,25	-31,33	~8,32	31,33	-42,35	10,40	42,35	1,56	19,468
80	26667	-0,0005054607	-0,0000073578	-114110,53	114110,53	2864,47	12391,15	-35,81	-9,51	35,81	-48,40	11,89	48,40	1,78	22,249
90	30000	-0,0005686433	-0,0000082775	-128374,34	128374,34	3222,52	13940,04	-40,28	-10,70	40,28	-54,45	13,37	54,45	2,00	25,030
100	33333	-0,0006318259	-0,0000091972	-142638,16	142638,16	3580,58	15488,93	-44,76	-11,89	44,76	-60,50	14,86	60,50	2,22	27,812

126

Obs: Neste trabalho, para o caso de cargas aplicadas nos terços do vão, adotou-se a nomenclatura y=y(x) para o

trecho
$$a \le x \le \frac{L}{2}$$
, fixando-se o valor de a em $\frac{L}{3}$.

Figura 5.1 Equações de linha elástica e deslocamento vertical FONTE: SANTANA,1997,p.40. Ainda cabe esclarecer que a geometria da seção transversal da peça não afeta a formulação da equação diferencial propriamente dita, uma vez que a distinção entre seções se faz através dos parâmetros que as compõem, como o α no trabalho de SANTANA (1997) que estuda seções caixão, expressão (5.1).

$$\alpha^{2} = 2 \overline{K} \left(\frac{1}{E_{f}A_{f}} + \frac{2 \overline{y}_{f}^{2}}{(EI)_{0}} \right)$$
(5.1)

A expressão (5.1) é um pouco distinta daquela apresentada para α^2 nesta dissertação, expressão (3.24), devido a dupla simetria existente na seção caixão. Entretanto se fizermos com que $2\bar{y}_f = r$, e $\epsilon_w = \frac{N_w}{E_w A_w} = 0$, e substituirmos na expressão (3.24), justificar-se-á o não aparecimento deste último termo na expressão (5.1).

5.2 Resultados experimentais e teóricos

As Tabelas 5.5, 5.6 e 5.7 apresentam os resultados experimentais de SORIANO et. al. (1998), obtidos através da aplicação direta da lei de HOOKE, sabendo-se que tais resultados referem-se à seção localizada no meio do vão da viga.

5.3 Condições de contorno - Método Exato

Nesta seção apresentam-se as condições de contorno para os dois casos de carregamento em questão visando a obtenção da solução da equação diferencial da viga pelo Método Exato - expressão 3.29.

5.3.1 Carregamento uniforme

- 1) v(0) = 0 condição fixada (geométrica)
- 2) v''(0) = 0 condição natural

De 3.22 tem-se

$$v''(0) = -\frac{(M(0) + N_{o}(0)r)}{(EI)_{o}} = -\frac{(0 + E_{o}A_{o}\frac{\Delta \ell_{o}(0)}{\ell_{o}})}{(EI)_{o}} = -\frac{(0 + E_{o}A_{o}\frac{0}{\ell_{o}})}{(EI)_{o}} = 0$$

3) $v(\ell) = 0$ condição fixada (geométrica)

4) $v''(\ell) = 0$ condição natural

De 3.22 tem-se

$$\mathbf{v}''(0) = -\frac{\left(\mathbf{M}(\boldsymbol{\ell}) + \mathbf{N}_{c}(\boldsymbol{\ell})\mathbf{r}\right)}{\left(\mathbf{EI}\right)_{0}} = -\frac{\left(0 + \mathbf{E}_{c}\mathbf{A}_{c}\frac{\Delta \boldsymbol{\ell}_{c}(\boldsymbol{\ell})}{\boldsymbol{\ell}_{c}}\right)}{\left(\mathbf{EI}\right)_{0}} = -\frac{\left(0 + \mathbf{E}_{c}\mathbf{A}_{c}\frac{0}{\boldsymbol{\ell}_{c}}\right)}{\left(\mathbf{EI}\right)_{0}} = 0$$

5.3.2 Carga aplicada nos terços dos vãos

1) v(0) = 0 condição fixada (geométrica)

2) v''(0) = 0 condição natural

De 3.22 tem-se

$$\mathbf{v}''(0) = -\frac{\left(\mathbf{M}(0) + \mathbf{N}_{c}(0)\mathbf{r}\right)}{\left(\mathbf{EI}\right)_{0}} = -\frac{\left(0 + \mathbf{E}_{c}\mathbf{A}_{c}\frac{\boldsymbol{\Delta}\boldsymbol{\ell}_{c}(0)}{\boldsymbol{\ell}_{c}}\right)}{\left(\mathbf{EI}\right)_{0}} = -\frac{\left(0 + \mathbf{E}_{c}\mathbf{A}_{c}\frac{0}{\boldsymbol{\ell}_{c}}\right)}{\left(\mathbf{EI}\right)_{0}} = 0$$

3) $y'\left(\frac{\ell}{2}\right) = 0$ condição fixada (geométrica - simetria)

4) $y'''\left(\frac{\ell}{2}\right) = 0$ condição natural

$$y''\left(\frac{\ell}{2}\right) = \frac{\overline{\phi}_{s}\left(\frac{\ell}{2}\right)r - V\left(\frac{\ell}{2}\right)}{(EI)_{0}} = \frac{-\overline{K}u\left(\frac{\ell}{2}\right)r - V\left(\frac{\ell}{2}\right)}{(EI)_{0}} = \frac{-\overline{K}0r - 0}{(EI)_{0}} = 0$$

5)
$$v^{-}\left(\frac{\ell}{3}\right) + \frac{P}{(EI)_0} = y^{-}\left(\frac{\ell}{3}\right)$$
 condição natural

De 3.22 tem-se

$$\overline{\phi}_{s}^{\text{esquerds}}\left(\frac{\ell}{3}\right) = \frac{V^{\text{esquerds}}\left(\frac{\ell}{3}\right) + (\text{EI})_{0}v^{\text{'''}}\left(\frac{\ell}{3}\right)}{r}$$

$$\overline{\phi}_{s}^{\text{direits}}\left(\frac{\ell}{3}\right) = \frac{V^{\text{direits}}\left(\frac{\ell}{3}\right) + (\text{EI})_{0} \text{ y}^{-}\left(\frac{\ell}{3}\right)}{r}$$

Pela continuidade
$$u^{esquerds}\left(\frac{\ell}{3}\right) = u^{direits}\left(\frac{\ell}{3}\right)$$
 tal que $\overline{\phi}_{s}^{esquerds}\left(\frac{\ell}{3}\right) = \overline{\phi}_{s}^{direits}\left(\frac{\ell}{3}\right)$, assim

$$\frac{\mathbf{V}^{\text{esquerds}}\left(\frac{\ell}{3}\right) + (\text{EI})_{0}\mathbf{v}^{"'}\left(\frac{\ell}{3}\right)}{r} = \frac{\mathbf{V}^{\text{direits}}\left(\frac{\ell}{3}\right) + (\text{EI})_{0}\mathbf{y}^{"'}\left(\frac{\ell}{3}\right)}{r}$$

$$\frac{P + (EI)_0 v'''\left(\frac{\ell}{3}\right)}{r} = \frac{0 + (EI)_0 y'''\left(\frac{\ell}{3}\right)}{r}$$
$$v'''\left(\frac{\ell}{3}\right) + \frac{P}{(EI)_0} = y'''\left(\frac{\ell}{3}\right)$$

6)
$$v''\left(\frac{\ell}{3}\right) = y''\left(\frac{\ell}{3}\right)$$
 condição natural
 $N_{\circ}'(x) = \overline{\phi}_{\circ}(x) = -\overline{K}u(x)$

u = u(x) é continua

$$\therefore \overline{\phi}_{s} e N'_{c}(x) s$$
ão contínuas

$$N_{c}(x) = -\overline{K}\int u(x)dx + constante$$

$$\therefore$$
 N_c(x) é contínua em [0, ℓ]

De 3.22 tem-se

$$\mathbf{v}''\left(\frac{\ell}{3}\right) = -\frac{\left(\mathbf{M}^{\text{esquerdo}}\left(\frac{\ell}{3}\right) + \mathbf{N}_{c}^{\text{esquerdo}}\left(\frac{\ell}{3}\right)\mathbf{r}\right)}{(\text{EI})_{0}}$$

$$y''\left(\frac{\ell}{3}\right) = -\frac{\left(M^{\text{directio}}\left(\frac{\ell}{3}\right) + N_{c}^{\text{directio}}\left(\frac{\ell}{3}\right)r\right)}{(\text{EI})_{0}}$$

Sendo
$$M^{direito}\left(\frac{\ell}{3}\right) = M^{esquerdo}\left(\frac{\ell}{3}\right) e N_{c}^{direito}\left(\frac{\ell}{3}\right) = N_{c}^{esquerdo}\left(\frac{\ell}{3}\right) tem-se$$

$$\mathbf{v}''\left(\frac{\ell}{3}\right) = \mathbf{y}''\left(\frac{\ell}{3}\right)$$

7)
$$v\left(\frac{\ell}{3}\right) = y\left(\frac{\ell}{3}\right)$$

condição natural

8)
$$v'\left(\frac{\ell}{3}\right) = y'\left(\frac{\ell}{3}\right)$$
 condição natural

5.4 Derivadas da Linha Elástica - Método Exato

Para o cálculo de alguns parâmetros apresentados nas Tabelas 5.1, 5.2, 5.3, 5.4 e Apêndice faz-se necessário após obter a equação da linha elástica da viga determinar suas derivadas. A seguir são apresentadas as derivadas (1^a a 4^a) da linha elástica para os dois carregamentos em estudo.

5.4.1 Carregamento uniforme

$$\mathbf{v}(\mathbf{x}) = \frac{q}{24(\mathrm{EI})_{\infty}} \left(\mathbf{x}^4 - 2\mathbf{x}^3\boldsymbol{\ell} + \mathbf{x}\boldsymbol{\ell}^3\right) + \frac{q}{\alpha^4(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\infty}}{(\mathrm{EI})_0} - 1\right) \left[\cosh(\alpha \mathbf{x}) - \mathrm{tgh}\left(\frac{\alpha\boldsymbol{\ell}}{2}\right) \mathrm{senh}(\alpha \mathbf{x}) - \frac{1}{2}\alpha^2 \mathbf{x}^2 + \frac{1}{2}\alpha^2 \mathbf{x}\boldsymbol{\ell} - 1\right]$$

$$\mathbf{v}'(\mathbf{x}) = \frac{q}{24(\mathrm{EI})_{\infty}} \left(4\mathbf{x}^3 - 6\mathbf{x}^2\boldsymbol{\ell} + \boldsymbol{\ell}^3 \right) + \frac{q}{\alpha^4(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\infty}}{(\mathrm{EI})_0} - 1 \right) \left[\alpha \operatorname{senh}(\alpha \mathbf{x}) - \alpha \operatorname{tgh}\left(\frac{\alpha \boldsymbol{\ell}}{2} \right) \cosh(\alpha \mathbf{x}) - \alpha^2 \mathbf{x} + \frac{1}{2} \alpha^2 \boldsymbol{\ell} \right]$$

$$\mathbf{v}''(\mathbf{x}) = \frac{q}{24(\mathrm{EI})_{\infty}} \left(\mathbf{I} 2\mathbf{x}^2 - \mathbf{I} 2\mathbf{x} \mathbf{\ell} \right) + \frac{q}{\alpha^4(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\infty}}{(\mathrm{EI})_0} - \mathbf{I} \right) \left[\alpha^2 \cosh(\alpha \mathbf{x}) - \alpha^2 \mathrm{tgh}\left(\frac{\alpha \mathbf{\ell}}{2} \right) \mathrm{senh}(\alpha \mathbf{x}) - \alpha^2 \right]$$

$$\mathbf{v}^{'''}(\mathbf{x}) = \frac{q}{24(\mathrm{EI})_{\infty}} (24\mathbf{x} - 12\ell) + \frac{q}{\alpha^4(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\infty}}{(\mathrm{EI})_0} - 1\right) \left[\alpha^3 \operatorname{senh}(\alpha \mathbf{x}) - \alpha^3 \operatorname{tgh}\left(\frac{\alpha\ell}{2}\right) \cosh(\alpha \mathbf{x})\right]$$

$$\mathbf{v}^{\text{m}}(\mathbf{x}) = \frac{\mathbf{q}}{(\mathrm{EI})_{\infty}} + \frac{\mathbf{q}}{\alpha^{4}(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\infty}}{(\mathrm{EI})_{0}} - \mathbf{I}\right) \left[\alpha^{4}\cosh(\alpha \mathbf{x}) - \alpha^{4} \mathrm{tgh}\left(\frac{\alpha \ell}{2}\right) \mathrm{senh}(\alpha \mathbf{x})\right]$$

Expressões necessárias para cálculo de $\varphi_{\text{max}},\,N_{\text{c}},\,N_{\text{w}},\,M_{\text{c}}$ e M_{w}

$$\mathbf{v}^{''}(0) = -\frac{q\boldsymbol{\ell}}{2(\mathrm{EI})_{\infty}} + \frac{q}{\alpha^{4}(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\alpha}}{(\mathrm{EI})_{0}} - 1\right) \left[-\alpha^{3} \mathrm{tgh}\left(\frac{\alpha\boldsymbol{\ell}}{2}\right) \right]$$
$$\mathbf{v}^{''}\left(\frac{\boldsymbol{\ell}}{2}\right) = -\frac{q\boldsymbol{\ell}^{2}}{8(\mathrm{EI})_{\infty}} + \frac{q}{\alpha^{4}(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\infty}}{(\mathrm{EI})_{0}} - 1\right) \alpha^{2} \left[\cosh\left(\frac{\alpha\boldsymbol{\ell}}{2}\right) - \mathrm{tgh}\left(\frac{\alpha\boldsymbol{\ell}}{2}\right) \mathrm{senh}\left(\frac{\alpha\boldsymbol{\ell}}{2}\right) - 1\right]$$

5.4.2 Carregamento aplicado nos terços do vão

• 1⁰ trecho

$$v(x) = \frac{P\ell^{2}}{9(EI)_{\infty}} x - \frac{P}{6(EI)_{\infty}} x^{3} + \frac{P}{\alpha^{3}(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[\alpha x - \operatorname{senh}(\alpha x) \cosh\left(\frac{\alpha \ell}{3}\right) + \operatorname{senh}(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$v'(x) = \frac{P\ell^{2}}{9(EI)_{\infty}} - \frac{P}{2(EI)_{\infty}} x^{2} + \frac{P}{\alpha^{3}(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[\alpha - \alpha \cosh(\alpha x) \cosh\left(\frac{\alpha \ell}{3}\right) + \alpha \cosh(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$v''(x) = -\frac{P}{(EI)_{\infty}} x + \frac{P}{\alpha^{3}(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[-\alpha^{2} \operatorname{senh}(\alpha x) \cosh\left(\frac{\alpha \ell}{3}\right) + \alpha^{2} \operatorname{senh}(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$v'''(x) = -\frac{P}{(EI)_{\infty}} + \frac{P}{\alpha^{3}(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[-\alpha^{2} \operatorname{senh}(\alpha x) \cosh\left(\frac{\alpha \ell}{3}\right) + \alpha^{3} \cosh(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$\mathbf{v}^{\prime\prime\prime\prime}(\mathbf{x}) = +\frac{\mathbf{P}}{\alpha^{3}(\mathbf{EI})_{\infty}} \left(\frac{(\mathbf{EI})_{\infty}}{(\mathbf{EI})_{0}} - \mathbf{I}\right) \left[-\alpha^{4}\operatorname{senh}(\alpha \mathbf{x})\operatorname{cosh}\left(\frac{\alpha \ell}{3}\right) + \alpha^{4}\operatorname{senh}(\alpha \mathbf{x})\operatorname{senh}\left(\frac{\alpha \ell}{3}\right)\operatorname{tgh}\left(\frac{\alpha \ell}{2}\right)\right]$$

Expressão necessária para cálculo de ϕ_{max} .

$$\mathbf{v}^{"}(0) = -\frac{\mathbf{P}}{(\mathbf{EI})_{\infty}} + \frac{\mathbf{P}}{\alpha^{3}(\mathbf{EI})_{\infty}} \left(\frac{(\mathbf{EI})_{\infty}}{(\mathbf{EI})_{0}} - \mathbf{I}\right) \left[-\alpha^{3} \cosh\left(\frac{\alpha \ell}{3}\right) + \alpha^{3} \sinh\left(\frac{\alpha \ell}{3}\right) tgh\left(\frac{\alpha \ell}{2}\right)\right]$$

• $2^{\underline{0}}$ trecho

$$\mathbf{y}(\mathbf{x}) = -\frac{\mathbf{P}\boldsymbol{\ell}^3}{\mathbf{162(\mathrm{EI})}_{\infty}} + \frac{\mathbf{P}\boldsymbol{\ell}^2}{\mathbf{6}(\mathrm{EI})_{\infty}} \mathbf{x} - \frac{\mathbf{P}\boldsymbol{\ell}}{\mathbf{6}(\mathrm{EI})_{\infty}} \mathbf{x}^2 + \frac{\mathbf{P}}{\alpha^3(\mathrm{EI})_{\infty}} \left(\frac{(\mathrm{EI})_{\infty}}{(\mathrm{EI})_0} - 1\right) \left[\frac{\alpha \boldsymbol{\ell}}{3} - \cosh(\alpha \mathbf{x})\cosh\left(\frac{\alpha \boldsymbol{\ell}}{3}\right) + \operatorname{senh}(\alpha \mathbf{x})\operatorname{senh}\left(\frac{\alpha \boldsymbol{\ell}}{3}\right) \operatorname{tgh}\left(\frac{\alpha \boldsymbol{\ell}}{2}\right)\right]$$

$$y'(x) = \frac{P\ell^2}{6(EI)_{\infty}} - \frac{P\ell}{3(EI)_{\infty}} x + \frac{P}{\alpha^3(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[-\alpha \operatorname{senh}(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) + \alpha \cosh(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$y''(x) = -\frac{P\ell}{3(EI)_{\infty}} + \frac{P}{\alpha^3(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[-\alpha^2 \cosh(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) + \alpha^2 \operatorname{senh}(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$y'''(x) = \frac{P}{\alpha^3(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[-\alpha^3 \operatorname{senh}(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) + \alpha^3 \cosh(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$r(x) = \frac{P}{\alpha^3(EI)_{\infty}} \left(\frac{(EI)_{\infty}}{(EI)_{0}} - 1\right) \left[-\alpha^3 \operatorname{senh}(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) + \alpha^3 \cosh(\alpha x) \operatorname{senh}\left(\frac{\alpha \ell}{3}\right) \operatorname{tgh}\left(\frac{\alpha \ell}{2}\right) \right]$$

$$y^{m}(x) = \frac{1}{\alpha^{3}(EI)_{\infty}} \left(\frac{(2-y)_{\infty}}{(EI)_{0}} - I \right) \left[-\alpha^{4} \cosh(\alpha x) \operatorname{senh}\left(\frac{3\omega}{3}\right) + \alpha^{4} \operatorname{senh}(\alpha x) \operatorname{senh}\left(\frac{3\omega}{3}\right) \operatorname{tgh}\left(\frac{3\omega}{2}\right) \right]$$

Expressão necessária para cálculo de Ne, Nw, Me e Mw.

$$\mathbf{y}^{-}\left(\frac{\boldsymbol{\ell}}{2}\right) = -\frac{\mathbf{P}\boldsymbol{\ell}}{\mathbf{3}(\mathbf{EI})_{\infty}} - \frac{\mathbf{P}}{\alpha(\mathbf{EI})_{\infty}} \left(\frac{(\mathbf{EI})_{\infty}}{(\mathbf{EI})_{0}} - 1\right) \frac{\operatorname{senh}\left(\frac{\alpha\boldsymbol{\ell}}{3}\right)}{\cosh\left(\frac{\alpha\boldsymbol{\ell}}{2}\right)}$$

5.5 Resultados experimentais da bibliografia e teóricos deste trabalho

As Tabelas 5.5 e 5.6 apresentam a comparação entre os resultados teóricos e experimentais obtidos segundo DIN 1052/73, NBR 7190/97 e aplicação direta da lei de HOOKE do trabalho de SORIANO et. al. (1998), sabendo-se que tais resultados referem-se à seção localizada no meio do vão da viga. A Tabela 5.7 contém, para o carregamento de 2xP = 30 kN, os deslocamentos verticais obtidos a partir dos Métodos Exato e Aproximado.

Carga	deslocamentos verticais (mm)								
2xP (kN)	DIN 1052/73	NBR7190/97	REAL						
10	1,905	1,239	2,670						
20	3,811	2,477	5,990						
30	5,716	3,716	8,150						
40	7,622	4,955	11,820						
50	9,527	6,194	16,080						

TABELA 5.5 - Deslocamentos verticais

TABELA 5.6 - Tensões normais

Carga	tensões normais (MPa)												
		ponto A l			ponto A2		ponto M8						
2xP(kN)	DIN 1052	NBR 7190	REAL	DIN 1052	NBR 7190	REAL	DIN 1052	NBR 7190	REAL				
10	5,128	4,724	9,337	-1,030	0,721	-2,633	-1,663	-2,195	-3,542				
20	10,257	9,448	15,322	-2,060	1,441	-2,155	-3,326	-4,390	-3,542				
30	15,385	14,172	21,067	-3,090	2,162	-1,436	-4,989	-6,585	-5,667				
40	20,513	18,896	27,770	-4,119	2,882	-5,746	-6,653	-8,779	-7,084				
50	25,642	23,620	35,671	-5,149	3,603	-9,337	-8,316	-10,974	-9,209				

*Nesta tabela, as expressões para o cálculo dos deslocamentos verticais e tensões normais, segundo a DIN 1052/73, foram adaptadas para as posições exatas dos pontos A1, A2 e M8.

TABELA 5.7 - Deslocamentos	verticais	- 2P	= 30	kN
----------------------------	-----------	------	------	----

Carga		deslocamentos verticais (mm)												
2P (kN)		K = 13000 N/mm s = 6 cm $K = 4000 N/mm s = 6 cm$												
	DIN 1052	NBR 7190	REAL	Mét. Ex.	Mét Aprox.	Mét. Ex.	Mét Aprox.							
30	5,716	3,716	5,699	8,343	8,354									

6 Conclusões

6.1 Introdução

A Figura 6.1 apresenta uma comparação bastante interessante de diagramas de tensões segundo as fontes consultadas e a deste trabalho. Inicialmente aparece o diagrama segundo a DIN 1052/73, em seguida o da norma brasileira atual, NBR 7190/97, e o obtido experimentalmente por SORIANO et. al. (1998). Na seqüência tem-se os diagramas de tensões segundo os Métodos Aproximado e Exato, num total de 7 diagramas. Além disso, são mostrados, também, os deslocamentos verticais da seção no meio do vão da viga, com duas cargas concentradas nos terços do vão, de 15 kN cada uma.

As conclusões comparativas aparecem escritas na própria Figura 6.1. Por exemplo, para a viga analisada em laboratório SORIANO et. al. (1998) chegaram a um valor do Módulo de Deslizamento (que mede a rigidez da ligação), utilizando um espaçamento entre os pregos de s = 6 cm, de 13 kN/mm. Comparativamente, através tanto do Método Exato quanto do Método Aproximado, analisados neste trabalho, chega-se às mesmas tensões obtidas no laboratório ao utilizar-se K = 4000 N/mm, mantendo-se s = 6 cm. Isso sugere que a determinação do valor K = 13000 N/mm feita em laboratório pode ter imperfeições visto que o ensaio não seguiu nenhuma das metodologias existentes, citadas neste trabalho na seção 3.4.

Figura 6.1 Diagrama de Tensões [MPa] e Deslocamentos Verticais [mm] para um carregamento de 2P = 30 kN

137

6.2 Quadro comparativo entre o Método Exato e Método Aproximado

Na Tabela 6.1 são apresentados os erros relativos porcentuais obtidos para tensões nos pontos (1) face superior, (CG) centro de gravidade e (2) face inferior no concreto e na madeira.

A mesma tabela apresenta os erros relativos porcentuais do fluxo de cisalhamento ($\phi_{máx}$) que ocorre na interface entre a madeira e o concreto nas extremidades da viga, bem como o deslocamento vertical máximo ($v_{máx}$) que ocorre no meio do vão da viga.

A parte média superior da tabela se refere ao carregamento distribuído, enquanto o restante, ao carregamento de 2 cargas concentradas nos terços do vão.

O erro porcentual foi determinado utilizando-se a expressão 6.1.

$$\varepsilon = \frac{\xi_{a prox} - \xi_{exato}}{\xi_{exato}} 100\%$$
(6.1)

onde ξ representa o parâmetro analisado, que pode assumir os valores de σ_c , σ_w , $\phi_{máx}$, $v_{máx}$.

Para o caso do carregamento distribuído, utilizou-se q = 300 N/cm. Já, no caso de cargas concentradas, utilizou-se um valor P = 25 kN aplicado em cada terço do vão da viga bi-apoiada, dando, portanto, um carregamento total de 2P = 50 kN. O valor utilizado para comparar os medidos em laboratório 2P = 30 kN, foi alterado neste momento porque 50 kN é o valor médio na faixa de simulação numérica ($10 \text{ kN} \le 2P \le 100 \text{ kN}$).

				σ_{c} [%]		(5 _w [%]		φ _{máx}	V _{máx}	
CHARLES				1	cg	2	1	cg	2	[%]	[%]
	uuu,	s=3 cm	K =216,67 N/mm ²	1,21	-1,84	8,67	7,61	-1,79	1,28	16,77	0,34
orme	500 N	s=6 cm	K =108,33 N/mm ²	1,10	-2,22	4,88	4,55	-2,26	1,11	18,40	0,28
lo unifi	K=6	s=9 cm	\overline{K} =72,22 N/mm ²	0,95	-2,22	3,30	3,22	-2,36	0,98	19,81	0,22
gament	//mm	s=3 cm	K =433,33 N/mm ²	1,00	-1,43	14,29	11,55	-1,33	1,15	14,37	0,35
/ carre	3000 N	s=6 cm	\bar{K} =216,67 N/mm ²	1,21	-1,84	8,66	7,61	-1,79	1,28	16,99	0,34
oiada c	K=1	s=9 cm	K=144,44 N/mm ²	1,15	-2,03	6,09	5,76	-2,09	1,24	18,25	0,32
ga bi-ap	//mm	s=3 cm	K =866,67 N/mm ²	0,79	-0,90	24,03	15,47	-0,90	0,84	11,64	0,29
Vigi	6000 N	s=6 cm	\overline{K} =433,33 N/mm ²	1,00	- 1,43	14,29	11,55	-1,33	1,15	14,37	0,35
	K=2	s=9 cm	K=288,89 N/mm ²	1,11	-1,75	10,81	9,31	-1,60	1,29	16,67	0,37
	uuu/	s=3 cm	K=216,67 N/mm ²	2,86	-4,28	23,08	20,21	4,26	3,02	-7,45	0,24
ڋo	K=6500 N/	s=6 cm	K =108,33 N/mm ²	4,23	-4,58	10,64	10,01	-4,56	2,41	-7,46	0,17
v ob soq		s=9 cm	K =72,22 N/mm ²	1,86	-4,70	7,05	6,67	4,68	1,97	-7,83	0,13
nos ter(//mm	s=3 cm	\overline{K} =433,33 N/mm ²	2,99	-3,75	26,48	42,59	-3,76	3,28	-6,21	0,28
cadas 1	3000 N	s=6 cm	K=216,67 N/mm ²	2,86	-4,28	23,08	20,21	4,26	3,02	-7,45	0,24
as apli	K=1	s=9 cm	K =144,44 N/mm ²	2,54	-4,45	14,58	13,32	-4,38	2,76	-7,53	0,19
2 carg	l/mm/	s=3 cm	K=866,67 N/mm ²	2,69	-3,07	196,70	85,79	-3,09	2,92	-4,35	0,29
iada c/	6000 N	s=6 cm	\bar{K} =433,33 N/mm ²	2,93	-3,75	26,48	42,59	-3,76	3,28	-6,21	0,28
bi-apo	K=2	s=9 cm	K=288,89 N/mm ²	3,01	-4,07	32,34	27,22	-4,05	3,21	-7,10	0,26
Viga	K *0	s=6 cm	K → 0	0,05	-4,76	0,10	0,10	-3,85	0,06	0,00	0,004
	2 PQ	s=6 cm	k⇒α	0,10	0,10	-6,45	33,33	-0,15	0,11	0,00	0,017

Tabela 6.1Quadro Comparativo do Método Exato x Método Aproximado(erro relativo porcentual das tensões, fluxos e deslocamentos verticais)

Referências:

Sepren - Securito x 100%

 $\label{eq:2P=50kn} \begin{array}{l} 2P=\!\!50\;k\!N\,\dots\,\,\,\, Viga \; bi-apoiada\; c/\; 2\; cargas aplicadas\; nos\; terços dos vãos \\ \xi_i\,\dots\,\,\,\, Parâmetro que pode assumir os valores de <math display="inline">\sigma_{o}\;\sigma_{w}\;\phi_{min}\;e\;v_{min} \\ \end{array}$

Concluindo, a Tabela 6.1 apresenta um quadro comparativo entre os dois métodos principais para solução de problemas de vigas mistas madeira-concreto vistos nesta dissertação: Método Exato e Método Aproximado. Busca-se, portanto, ao final deste estudo verificar o quanto os resultados divergem entre si, pois a princípio, se os resultados do Método Aproximado não fugirem demasiadamente daqueles apresentados pelo Método Exato, pode-se dizer que aquele método é razoável para ser utilizado em engenharia, e isto é o que se pretende, pois seu procedimento de cálculo é mais simples. De fato, pode-se comprovar, a partir da citada tabela, que ambos os métodos produzem resultados similares.

6.3 Conclusões finais

A Tabela 6.2 mostra um resumo comparativo entre o Método Exato e Aproximado obtido a partir da Tabela 6.1.

Erro Relativo Médio	Carreg. Distribuído	Carreg. Concentr. Aplicado
$\overline{\epsilon}_{\sigma_{c(i)}}$	1,06%	2,89%
$\overline{\epsilon}_{\sigma_{c(CG)}}$	-1,74%	-4,10%
$\overline{\epsilon}_{\sigma_{c(2)}}$	10,45%	35,52%
$\overline{\epsilon}_{\sigma_{w(1)}}$	8,51%	25,75%
$\overline{\epsilon}_{\sigma_{w(CG)}}$	-1,72%	-4,09%
$\overline{\epsilon}_{\sigma_{w(2)}}$	1,15%	2,87%
$\overline{f \epsilon}_{\overline{\phi}_s}$	16,36%	6,84%
$\overline{\epsilon}_{v_{max}}$	0,32%	0,23%

Tabela 6.2 - Resumo comparativo entre o Método Exato e Aproximado

Em média as tensões normais, tanto no concreto quanto na madeira, na seção no meio do vão da viga, apresentam um erro relativo entre o Método Exato e Aproximado que varia entre 1% a 5% (em valor absoluto) excetuando-se os pontos junto à interface - (2) no concreto e (1) na madeira - em que os valores sobem para 8% a até 35% de diferença. Isto é devido aos pequenos valores (em módulo) que as tensões, em ambos materiais, assumem nestes pontos. Com valores baixos, pequenas diferenças acarretam grandes divergências porcentuais, o que não ocorre nos CG e pontos extremos da seção transversal. Para os deslocamentos verticais, o erro relativo é muito pequeno e se situa entre 0,2 a 0,3%. Já, no caso do fluxo, o erro relativo entre os dois métodos apresenta valores porcentuais mais significativos no caso da carga distribuída, 16,36%, enquanto que para o carregamento concentrado aplicado é de 6,84%.

Este trabalho cumpre assim seu objetivo de analisar o tratamento matemático de vigas mistas de madeira-concreto, servindo como uma excelente referência para aqueles que desejarem dedicar-se ao assunto, pois contam com o estado da arte explicado de forma ampla, direta e detalhada. O trabalho para os pesquisadores será relativamente árduo até chegar-se a uma norma sobre *Projetos de Estruturas Mistas Madeira-Concreto* (hoje não existe sequer uma norma estrangeira sobre o assunto). Porém, pode-se notar por esta dissertação, bem como pelos artigos que ajudaram a compô-la, que as estruturas de madeira-concreto podem, em um futuro próximo, surpreender a construção civil com sua performance e qualidade comparável (e por que não dizer superior) a outros materiais ou combinações de materiais disponíveis hoje na indústria da construção civil.

Finalmente, é bom salientar que quando foram expostas as formulações dos modelos de cálculo que tratam das estruturas mistas, este trabalho apresentou as peculiaridades inerentes às vigas em madeira-concreto. Entretanto, tais modelos, em linhas gerais, podem também servir a outras estruturas mistas, isto é, àquelas cujos materiais que as compõem não sejam exatamente a madeira e o concreto, mas outras combinações com 2 ou 3 materiais, ampliando assim a aplicabilidade dos conceitos desenvolvidos nesta dissertação.

7 Sugestões para trabalhos futuros

7.1 Enrijecedores de apoio

Os maiores deslizamentos ocorrem junto aos apoios das vigas entre as peças de madeira e concreto. Isto é prejudicial para a estrutura, pois nessa região há o caminhamento das tensões da viga para o apoio. Sugere-se um estudo sobre a utilização de enrijecedores, por exemplo cantoneiras de aço, que minimizem os deslocamentos nesses locais, porém respeitando as normas de afastamentos e distâncias mínimas especificadas para as peças de madeira. Os enrijecedores também devem ser utilizados nas regiões onde há aplicação de cargas concentradas.

7.2 Pregos de alta resistência

Estes tipos de pregos, como afirma ALMEIDA (1987) são fabricados com aço carbono e possuem acabamento zincado. Sua utilização em vigas de madeira-concreto poderia prover um melhor desempenho à ligação, pois sua resistência ao escoamento é muito superior a do prego comum ($f_v = 600 \text{ MPa}$), sendo da ordem de $f_v = 1900 \text{ MPa}$.

7.3 Fendilhamento

As fissurações longitudinais podem ocorrer na madeira e no concreto. Este problema de fendilhamento ocorre porque as tensões de compressão localizada, que os conectores exercem

sobre a madeira e o concreto (efeito de pino), provocam o aparecimento de um estado triplo de tensões. As tensões de tração normais ao sentido longitudinal da viga são as principais responsáveis pelo aparecimento do fendilhamento. Assim, o problema do fendilhamento é bastante importante sobretudo na madeira que possui resistência à tração normal às fibras desprezível. Também o espaçamento entre os conectores é muito importante, pois pinos muito próximos podem facilitar o surgimento do fendilhamento. A disposição dos pregos ao longo do comprimento da viga deve ser feita preferencialmente em "zigue-zague", o que evita o aparecimento do fendilhamento.

Estudo deste assunto é um tanto complexo visto que as tensões que surgem ao redor dos conectores são de difícil determinação. Desta forma, um estudo experimental seria o mais indicado, como aliás foram levantados os espaçamentos mínimos da NBR 7190/97.

7.4 Protótipo

A semelhança do que ocorreu em ALMEIDA (1990), o auxílio financeiro da iniciativa privada pode ser muito bem vindo na investigação do comportamento das estruturas mistas madeira-concreto. Sem dúvidas que, no futuro, nos trabalhos de pesquisa, a construção de uma estrutura em tamanho real (por exemplo, um protótipo de uma ponte rodoviária em área rural), com base em patrocínio privado, permitiria uma melhor confiança nos procedimentos propostos para o dimensionamento dessas estruturas mistas.

7.5 Sistemas hiperestáticos

Na totalidade da bibliografia consultada para a confecção desta dissertação, os autores estudaram as vigas mistas madeira-concreto em arranjos isostáticos de viga bi-apoiada. Este arranjo pode ser comum se a estrutura a ser construída for uma laje, por exemplo, pensada como trabalhando em uma só direção porém, grande parte das vigas que compõem o reticulado

estrutural propriamente dito são vigas contínuas que junto aos apoios intermediários costumam apresentar tração na mesa superior. Trata-se, portanto, de prever um sistema capaz de absorver estes esforços que se invertem próximos aos apoios, ocasionando tração nas mesas de concreto e compressão nas almas de madeira.

7.6 Dimensionamento de lajes

Em geral, as lajes de madeira-concreto são dimensionadas como se trabalhassem em uma só direção, pois as próprias vigas que compõem as lajes são construídas desta maneira. Seria interessante investigar a possibilidade de compor um reticulado de vigas de madeira ortogonais entre si, para que o sistema como um todo pudesse ter uma rigidez maior, trabalhando e sendo dimensionado como grelha.

7.7 Recomendações para projeto e construção

Não deve ser utilizada madeira úmida. Se não for possível, usar madeira sem a medula ou ter certeza que as fissuras não afetarão as linhas de conectores. Deixar as escoras no local por mais tempo do que o necessário para todos os elementos de concreto.

Usar protetores contra corrosão dos conectores à base de zinco ou aço inoxidável.

Armar o concreto, principalmente se espessas mesas de concreto forem projetadas, de modo a evitar perda de rigidez devido à fissuração do concreto na região de tração.

Quando do lançamento da estrutura, proteger a madeira contra a umidade, por exemplo usando protetores plásticos ou utilizando concretos com aditivos de modo a reduzir o fator água/cimento (que também permite menor retração do concreto). Isto não é crucial para a madeira, porém, para a aparência de sua parte superior. Prestar atenção, não utilizando, madeiras que não permitam o endurecimento do concreto, como aquelas que contenham sacaroses e impeçam a pega do concreto.

Com o aumento dos vãos, preferir conexões leves de modo a minimizar eventuais ações localizadas, e quando possível, como CECCOTTI (1995), preferir uma estrutura onde a mesa de concreto é principalmente importante para reduzir as flechas e não os valores das tensões na viga inteiramente de madeira.

7.8 Custos

É extremamente pertinente realizar um estudo comparativo entre as estruturas mistas de madeira-concreto com outras de diferentes tipos de materiais. Por exemplo, poder-se-ia analisar pontes rodoviárias construídas em madeira-concreto, madeira serrada, madeira laminada colada, madeira protendida, aço, aço-concreto, concreto armado, concreto protendido etc, comparando os custos e determinando quais são as vantagens técnicas e econômicas em função de seu vão.

ANEXOS

ANEXO A

ø

A.1 Método da seção transformada

O Método da seção transformada (MST) pode ser aplicado a uma viga mista desde que a ligação entre os diferentes materiais seja perfeitamente rígida, isto é, que não ocorra escorregamento relativo na interface entre os materiais. Este tipo de conexão, pode por exemplo, ser uma cola e pode ser representado pelo módulo de deslizamento da ligação tendendo a infinito $(K \rightarrow \infty)$.

No MST os materiais que compõem a seção da viga trabalham, por hipótese, no regime elástico linear, onde para a flexão normal simples a posição da L.N., em uma seção genérica, não varia a com a solicitação.

Neste método converte-se a seção real da viga, para efeito de cálculo, em outra equivalente composta por apenas um material, escolhido como referência. A seção resultante é denominada seção transformada, seção equivalente ou ainda seção homogeneizada.

Para que a seção transformada seja equivalente à seção real segundo TIMOSHENKO e GERE (1960), é necessário que ocorra simultaneamente, em ambas as seções:

- a linha neutra esteja na mesma posição;
- a capacidade de resistir ao momento fletor de serviço seja a mesma.

A seguir será discutido o MST, segundo POPOV (1978), para o caso de uma viga mista de dois materiais cuja seção transversal é mostrada na Figura A.1 (a), sendo que o material externo 1 possui módulo de elasticidade E_1 e o material interno 2 possui módulo de elasticidade E_2 . Quando a viga é submetida à flexão, a premissa básica de deformação usada na Teoria de Flexão (as seções transversais planas permanecem planas) continua válida. Assim sendo, as deformações variam linearmente a partir da linha neutra, isto é, $\varepsilon = \varepsilon(y)$ com $\varepsilon(y = 0) = 0$ e o diagrama não apresenta descontinuidade (não ocorre deslizamento), como mostra a Figura A.1 (b). Para o caso elástico linear, a tensão é proporcional à deformação ($\sigma = E\epsilon$), e a distribuição de tensão, admitindo $E_1 > E_2$, é a mostrada na Figura A.1 (c). Na interface de contato nota-se uma descontinuidade no diagrama de tensões. Embora a deformação em ambos os materiais, nas superficies de contato, seja a mesma, desenvolve-se uma tensão maior no material de maior módulo de elasticidade. Estas informações são suficientes para, admitindo uma distribuição de deformação, resolver qualquer problema de viga mista, utilizando uma solução por tentativas e erros, que determina, assim, uma linha neutra provisória, e sua correspondente distribuição de tensões. Este procedimento deve prosseguir até que a força resultante do lado das tensões de compressão seja numericamente igual à força resultante do lado das tensões de tração. Porém, utilizando o MST, simplifica-se drasticamente a análise de vigas mistas. Para tanto, basta aplicar na seção transversal, as equações de equilíbrio:

$$\sum \mathbf{F}_{\mathbf{x}} = \mathbf{0} \tag{A.1}$$

$$\sum M_z = M_{\text{Resistence}}$$
(A.2)

Figura A.1 Viga de dois materiais. FONTE: POPOV, 1978, p. 193.

Segundo POPOV (1978), a transformação de uma seção é conseguida alterando-se as dimensões de uma seção transversal paralela à linha neutra na relação dos módulos de elasticidade dos materiais. Por exemplo, se a seção equivalente é desejada no material 1, as dimensões correspondentes no material 1 não são alteradas. As dimensões horizontais do material 2 são alteradas pela relação n, onde $n = E_2 / E_1$, Figura A.1 (d). Por outro lado, se a seção

transformada é a do material 2, a dimensão horizontal do outro material é alterada pela relação $n_1=E_1/E_2$, Figura A.1 (e). A relação n_1 é inversa a n_2 .

A legitimidade das seções transformadas é vista comparando as forças que atuam nas seções originais e nas equivalentes. A força correspondente a uma deformação ε_x , que atua em uma área elementar dzdy, na Figura A.1 (a), é $\varepsilon_x E_1$ dzdy. O mesmo elemento de área na Figura A.1 (e) é n₁dzdy. A força que age nele é $\varepsilon_x E_2$ n₁dzdy . Entretanto, pela definição de n₁, $E_1 = n_1 E_2$. Assim, as forças em ambos os elementos são as mesmas, e ambos, em virtude de sua localização, contribuem igualmente para o momento resistente.

Em uma viga com área transformada, as deformações e tensões variam linearmente a partir da linha neutra (Figura A.1 (b) e (f)). As tensões calculadas da maneira usual são corretas para o material do qual a seção transformada é feita. Para o outro material, a tensão calculada deve ser multiplicada pela relação n ou n_1 da área transformada para a real. Por exemplo, a força que age sobre n₁dzdy, na Figura A.1 (e), atua sobre dzdy do material real, e portanto a tensão deve ser multiplicada por n_1 .

Admitindo, a partir de agora, que o material adotado como referência seja a madeira, Figura A.2, a razão modular n_c , para o concreto, é expressa por:

$$n_{c} = \frac{E_{c}}{E_{w}}$$
(A.3)

Determina-se a posição da linha neutra a partir da fibra mais superior da seção através da expressão:

$$\overline{\mathbf{y}} = \frac{\mathbf{A}_{\mathbf{w}} \overline{\mathbf{y}}_{\mathbf{w}} + \mathbf{n}_{\mathbf{c}} \mathbf{A}_{\mathbf{c}} \overline{\mathbf{y}}_{\mathbf{c}}}{\mathbf{A}_{\mathbf{w}} + \mathbf{n}_{\mathbf{c}} \mathbf{A}_{\mathbf{c}}} \tag{A.4}$$

onde:

A_c e A_w = áreas das seções transversais de concreto e madeira, respectivamente;

 \overline{y}_{\circ} e \overline{y}_{w} = distâncias da fibra mais superior da seção composta até o CG do material correspondente (Figura A.2).

Figura A.2 Exemplo de homogeneização de uma viga mista madeira-concreto, considerando a madeira como material de referência.

O produto de inércia de uma seção infinitamente rígida é apresentado por JOHN e CHILVER (1961), segundo expressão:

$$(EI)_{\infty} = E^* I_{\infty}^* = E_c \overline{I}_c + E_w \overline{I}_w$$
(A.5)

notação:

- E^* e I^*_{∞} = módulo de elasticidade e momento de inércia genéricos, respectivamente;
- \overline{I}_{o} e \overline{I}_{w} = momento de inércia do elemento de concreto ou de madeira, respectivamente, em relação ao CG da seção transversal total, ou seja, I_{o} e I_{w} mais o transporte para o CG da seção original;
- I_c e I_w = momento de inércia do elemento de concreto e de madeira em relação ao seu próprio CG, respectivamente.

Cabe ressaltar que a rigidez à flexão obtida através da expressão (A.5) é equivalente a rigidez para a seção totalmente composta dada nas expressões (3.27) e (3.28) e cujas deduções encontram-se no Anexo C.

Sendo o material de referência a madeira, tem-se que:

$$(EI)_{\infty} = E_{w}I_{\infty}$$
(A.6)

substituindo em (A.5) :

$$E_{w}I_{\infty} = E_{c}\overline{I}_{c} + E_{w}\overline{I}_{w}$$

$$I_{\infty} = \overline{I}_{w} + n_{c}\overline{I}_{c}$$
(A.7)

Também em JOHN e CHILVER (1961), tem-se:

- área da seção equivalente
- $A = A_w + n_c A_c \tag{A.8}$
- momento estático da seção equivalente
- $S = S_w + n_c S_c \tag{A.9}$
- tensões normais na madeira

$$\sigma_{\rm w} = \frac{M}{I_{\infty}} y \tag{A.10}$$

• tensões normais no concreto

$$\sigma_{\circ} = n_{\circ} \frac{M}{I_{\infty}} y \tag{A.11}$$

É interessante observar que ao aplicar na seção transversal a expressão (A.1), obtém-se as expressões (A.4), (A.8) e (A.9), e aplicando na seção transversal a expressão (A.2), obtém-se as expressões (A.7) e (A.10).

Da Figura A.1 (c), na fibra da interface entre os dois materiais tem-se:

$$\sigma_{\rm w} = \varepsilon_{\rm e} E_{\rm w} \tag{A.12}$$

$$\sigma_{c} = \varepsilon_{e} E_{c} \tag{A.13}$$

portanto,

$$\frac{\sigma_{\rm w}}{E_{\rm w}} = \frac{\sigma_{\rm c}}{E_{\rm c}} \tag{A.14}$$

considerando a expressão (A.3), tem-se:

$$\frac{\sigma_{w}}{E_{c}} = \frac{\sigma_{c}}{E_{c}}$$

e portanto é obtida:

$$\sigma_{c} = n_{c}\sigma_{w} \tag{A.15}$$

relação que também pode ser derivada das expressões (A.10) e (A.11).

A.2 Exemplo de aplicação do Método da Seção Transformada

Dados:

• carregamento e geometria (viga bi-apoiada - seção T - carregamento uniforme)

\$

$$p_{d} = 5 \frac{kN}{m} = 5 \frac{kgf}{cm}$$

 $\ell = 4,00 \text{ m}$

• madeira

$$f_{cod} = 16 \text{ MPa}$$

 $E_w = 10920 \text{ MPa}$

• concreto

$$f_{cd} = 14 \text{ MPa}$$

 $E_c = 27780 \text{ MPa}$

A seção transversal da viga (real e transformada), bem como os diagramas de deformações e tensões são apresentados na Figura A.3.

Figura A.3 Exemplo de aplicação do MST.

$$n_{\circ} = \frac{E_{\circ}}{E_{w}} = \frac{27780}{10920} = 2,54$$

$$\overline{y} = \frac{A_{w}\overline{y}_{w} + n_{c}A_{c}\overline{y}_{c}}{A_{w} + n_{c}A_{c}} = \frac{(10*16)12 + 2,54(40*4)2}{(10*16) + 2,54(40*4)} = 4,82 \text{ cm}$$

$$I_{\infty} = \overline{I}_{w} + n_{c}\overline{I}_{c} = \left[\frac{10*16^{3}}{12} + (10*16)7,18^{2}\right] + 2,54\left[\frac{40*4^{3}}{12} + (40*4)2,82^{2}\right] = 15435 \text{ cm}^{4}$$

$$M_{d} = \frac{p_{d}l^{2}}{8} = \frac{5*400^{2}}{8} = 100000 \text{ kgf cm} = 1000 \text{ kgf m}$$

$$\sigma_{w} = \frac{M_{d}}{I_{\infty}} 15,18 = \frac{100000}{15435} 15,18 = 98,35 \text{ kgf/}_{cm^{2}} = 9,84 \text{ MPa}$$

$$\therefore \sigma_{w} = 9,84 \text{ MPa} < f_{cod} = f_{tod} = 16 \text{ MPa}$$

$$\sigma_{c} = n \frac{M_{d}}{I_{\infty}} 4,82 = 2,54 \frac{100000}{15435} 4,82 = 79,32 \frac{\text{kgf}}{\text{cm}^{2}} = 7,93 \text{ MPa}$$

$$\therefore \sigma_{c} = 7,93 \text{ MPa} < f_{cd} = 14 \text{ MPa}$$

$$\mathbf{v}_{\max} = \frac{5p_d \ell^4}{384 E_w I_\infty} = \frac{5*5*400^4}{384*109200*15435} = 0,99 \text{ cm} \cong \frac{\ell}{400} < \frac{\ell}{200}$$

.

ANEXO B

B.1 Equivalência entre PFEIL e KREUZINGER

Será demonstrada a equivalência entre as expressões (3.91) e (3.111) que determinam as tensões normais que atuam no CG da seção de concreto segundo KREUZINGER e PFEIL, respectivamente.

$$\sigma_{c,CG} = -\frac{\gamma_c E_c M_0 a_c}{(EI)_{ef}}$$
(3.91)

$$\sigma_{1} = \frac{M}{(EI)_{r}} \frac{E_{1}a_{1}}{1+k} = \frac{M}{(EI)_{r}} E_{1}\gamma_{1}a_{1}$$
(3.111)

O sinal negativo na expressão (3.91) mostra apenas que a tensão é de compressão, enquanto que a (3.111) é dada em valor absoluto. M e M_0 são equivalentes, diferindo-se apenas na notação. Assim será demostrado a equivalência entre (EI)_{ef} e (EI)_r e posteriormente entre os produtos $a_c \gamma_c a_1 \gamma_1$.

Cabe ressaltar que os índices 1 e c referem-se ao concreto e 2 e w a madeira.

B.2 Prova de que (EI)_{ef} de KREUZINGER é equivalente a (EI)_r de PFEIL.

De KREUZINGER, tem-se a expressão (3.82):

$$(EI)_{ef} = E_c I_c + E_w I_w + \frac{E_c A_c \gamma_c}{1 + \gamma_c \frac{E_c A_c}{E_w A_w}} a^2$$
(3.82)

Definindo-se,

$$A = \frac{E_{c}A_{c}\gamma_{c}}{1 + \gamma_{c}\frac{E_{c}A_{c}}{E_{w}A_{w}}}$$
(B.1)

De PFEIL, tem-se a expressão (3.114):

$$(EI)_{r} = E_{1}I_{1} + E_{2}I_{2} + \frac{1}{1+k} \left[E_{1}A_{1}a_{1}^{2} + E_{2}A_{2}a_{2}^{2} \right]$$
(3.114)

$$(EI)_{r} = E_{1}I_{1} + E_{2}I_{2} + \frac{1}{1 + \frac{\pi^{2}}{\ell^{2}\overline{K}}\frac{E_{1}A_{1}E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}} \left[E_{1}A_{1} \left(\frac{E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}a\right)^{2} + E_{2}A_{2} \left(\frac{E_{1}A_{1}}{E_{1}A_{1} + E_{2}A_{2}}a\right)^{2} \right]$$
$$(EI)_{r} = E_{1}I_{1} + E_{2}I_{2} + \frac{1}{1 + \frac{\pi^{2}}{\ell^{2}\overline{K}}\frac{E_{1}A_{1}E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}} \left[\frac{E_{1}A_{1}E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}} \right] a^{2}$$
(B.2)

chamando:

$$\chi = \frac{E_1 A_1 E_2 A_2}{E_1 A_1 + E_2 A_2} \tag{B.3}$$

substituindo-se (B.3) em (B.2), a expressão resulta:

$$(EI)_{r} = E_{1}I_{1} + E_{2}I_{2} + \frac{1}{1 + \frac{\pi^{2}}{\ell^{2}\overline{K}}\chi} [\chi]a^{2}$$

(EI)_r = E₁I₁ + E₂I₂ +
$$\frac{1}{\frac{1}{\chi} + \frac{\pi^2}{\ell^2 \overline{K}}}a^2$$

$$(EI)_{r} = E_{1}I_{1} + E_{2}I_{2} + \frac{1}{\frac{1}{\frac{E_{1}A_{1}E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}}} + \frac{\pi^{2}}{\ell^{2}\overline{K}}a^{2}$$
(B.4)

Definindo-se,

$$B = \frac{1}{\frac{1}{\frac{E_1 A_1 E_2 A_2}{E_1 A_1 + E_2 A_2}} + \frac{\pi^2}{\ell^2 \overline{K}}}$$
(B.5)

Agora, basta mostrar a equivalência entre A e B das expressões (B.1) e (B.5), repectivamente:

$$A = \frac{E_{c}A_{c}\gamma_{c}}{1 + \gamma_{c}\frac{E_{c}A_{c}}{E_{w}A_{w}}}$$
(B.1)

$$A = \frac{1}{\frac{1}{\gamma_{c}E_{c}A_{c}} + \frac{1}{E_{w}A_{w}}}$$

$$A = \frac{1}{\frac{1}{\frac{1}{1 + \frac{\pi^2}{\ell^2} \frac{E_c A_c}{\overline{K}}} E_c A_c} + \frac{1}{E_w A_w}}$$

$$A = \frac{1}{\frac{1 + \frac{\pi^2}{\ell^2} \frac{E_c A_c}{\overline{K}}}{E_c A_c} + \frac{1}{E_w A_w}}$$

$$A = \frac{1}{\frac{1}{E_{c}A_{c}} + \frac{1}{E_{w}A_{w}} + \frac{\pi^{2}}{\ell^{2}\overline{K}}}}$$

$$A = \frac{1}{\frac{E_{c}A_{c} + E_{w}A_{w}}{E_{c}A_{c}E_{w}A_{w}} + \frac{\pi^{2}}{\ell^{2}\overline{K}}}}$$
(B.6)

$$B = \frac{1}{\frac{1}{\frac{E_{1}A_{1}E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}} + \frac{\pi^{2}}{\ell^{2}\overline{K}}}$$
(B.5)

$$B = \frac{1}{\frac{E_1 A_1 + E_2 A_2}{E_1 A_1 E_2 A_2} + \frac{\pi^2}{\ell^2 \overline{K}}}$$
(B.7)

e portanto A (B.6) é equivalente a B (B.7).

.

B.3 Prova de que $a_c \gamma_c$ de KREUZINGER é equivalente a $a_1 \gamma_1$ de PFEIL.

De KREUZINGER tem-se:

$$a_{\circ}\gamma_{\circ} = \frac{E_{w}A_{w}a}{\left(\gamma_{\circ}E_{\circ}A_{\circ} + E_{w}A_{w}\right)\left(1 + \frac{\pi^{2}E_{\circ}A_{\circ}}{\ell^{2}\overline{K}}\right)}$$
(B.8)

$$a_{c}\gamma_{c} = \frac{E_{w}A_{w}a}{\gamma_{c}E_{c}A_{c} + \gamma_{c}\frac{\pi^{2}}{\ell^{2}\overline{K}}(E_{c}A_{c})^{2} + E_{w}A_{w} + \frac{\pi^{2}}{\ell^{2}\overline{K}}E_{c}A_{c}E_{w}A_{w}}$$

$$a_{c}\gamma_{c} = \frac{E_{w}A_{w}a}{\frac{E_{c}A_{c}}{1 + \frac{\pi^{2}}{\ell^{2}}\frac{E_{c}A_{c}}{\overline{K}}} + \frac{\frac{\pi^{2}}{\ell^{2}\overline{K}}(E_{c}A_{c})^{2}}{1 + \frac{\pi^{2}}{\ell^{2}}\frac{E_{c}A_{c}}{\overline{K}}} + E_{w}A_{w} + \frac{\pi^{2}}{\ell^{2}\overline{K}}E_{c}A_{c}E_{w}A_{w}}$$

$$a_{c}\gamma_{c} = \frac{E_{w}A_{w}a}{E_{c}A_{c}\left(\frac{1}{1+\frac{\pi^{2}}{\ell^{2}}\frac{E_{c}A_{c}}{\overline{K}}}+\frac{\frac{\pi^{2}}{\ell^{2}\overline{K}}E_{c}A_{c}}{1+\frac{\pi^{2}}{\ell^{2}}\frac{E_{c}A_{c}}{\overline{K}}}\right)+E_{w}A_{w}+\frac{\pi^{2}}{\ell^{2}\overline{K}}E_{c}A_{c}E_{w}A_{w}}$$

$$a_{c}\gamma_{c} = \frac{E_{w}A_{w}a}{E_{c}A_{c}\left(\frac{1+\frac{\pi^{2}}{\ell^{2}\overline{K}}E_{c}A_{c}}{1+\frac{\pi^{2}}{\ell^{2}}\frac{E_{c}A_{c}}{\overline{K}}}\right) + E_{w}A_{w} + \frac{\pi^{2}}{\ell^{2}\overline{K}}E_{c}A_{c}E_{w}A_{w}}$$

$$a_{c}\gamma_{c} = \frac{E_{w}A_{w}a}{E_{c}A_{c} + E_{w}A_{w} + \frac{\pi^{2}}{\ell^{2}\overline{K}}E_{c}A_{c}E_{w}A_{w}}$$
(B.9)

De PFEIL tem-se:

$$a_{1}\gamma_{1} = \frac{E_{2}A_{2}a}{\left(E_{1}A_{1} + E_{2}A_{2}\right)\left(1 + \frac{\pi^{2}}{\ell^{2}\overline{K}}\frac{E_{1}A_{1}E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}\right)}$$
(B.10)

$$a_{1}\gamma_{1} = \frac{E_{2}A_{2}a}{E_{1}A_{1} + \frac{\pi^{2}}{\ell^{2}\overline{K}}(E_{1}A_{1})^{2}\frac{E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}} + E_{2}A_{2} + \frac{\pi^{2}}{\ell^{2}\overline{K}}\frac{E_{1}A_{1}}{E_{1}A_{1} + E_{2}A_{2}}(E_{2}A_{2})^{2}}$$

$$a_{1}\gamma_{1} = \frac{E_{2}A_{2}a}{E_{1}A_{1} + \frac{\pi^{2}E_{1}A_{1}E_{2}A_{2}}{\ell^{2}\overline{K}}(E_{1}A_{1} + E_{2}A_{2})}(E_{1}A_{1} + E_{2}A_{2}) + E_{2}A_{2}}$$

$$(B.11)$$

e portanto $a_c \gamma_c$ (B.9) é equivalente a $a_1 \gamma_1$ (B.11).

Assim, está demostrada a equivalência entre as expressões (3.91) e (3.111). Já a equivalência entre as expressões para o calculo das tensões normais em outros pontos ao longo da altura da seção transversal podem ser verificadas analogamente, e não serão aqui apresentadas.

ANEXO C

C.1 Formas em que se pode expressar (EI)ef

Da solução da equação (3.78) resulta, entre outras, a expressão (3.81) a qual possui o parâmetro (EI)_{ef}, (3.82). As expressões para o cálculo de tensões, deslocamentos, etc. contêm esta rigidez à flexão efetiva. As formas apresentadas para esta rigidez na seção 3.2.2.3 são:

$$(EI)_{ef} = E_{c}I_{c} + E_{w}I_{w} + \frac{E_{c}A_{c}\gamma_{c}a^{2}}{1+\gamma_{c}\frac{E_{c}A_{c}}{E_{w}A_{w}}} = E_{c}I_{c} + E_{w}I_{w} + \frac{\gamma_{c}E_{c}A_{c}E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a^{2}$$
(3.82)

Existe também outra forma de se escrever a rigidez à flexão efetiva,

$$(EI)_{ef} = E_c I_c + E_w I_w + \gamma_c E_c A_c a_c^2 + E_w A_w a_w^2$$
(C.1)

para verificar a equivalência entre essas duas expressões, apresenta-se o desenvolvimento da equação C.1:

$$(\mathrm{EI})_{ef} = \mathrm{E}_{c}\mathrm{I}_{c} + \mathrm{E}_{w}\mathrm{I}_{w} + \gamma_{c}\mathrm{E}_{c}\mathrm{A}_{c}\mathrm{a}_{c}^{2} + \mathrm{E}_{w}\mathrm{A}_{w}\mathrm{a}_{w}^{2}$$

substituindo as equações (3.86) e (3.87) no lugar de ac e aw, respectivamente, vem:

$$(EI)_{ef} = E_c I_c + E_w I_w + \frac{\gamma_c E_c A_c E_w^2 A_w^2}{\left(\gamma_c E_c A_c + E_w A_w\right)^2} a^2 + \frac{\gamma_c^2 E_c^2 A_c^2 E_w A_w}{\left(\gamma_c E_c A_c + E_w A_w\right)^2} a^2$$

$$(EI)_{ef} = E_{c}I_{c} + E_{w}I_{w} + \frac{\gamma_{c}E_{c}A_{c}E_{w}A_{w}(\gamma_{c}E_{c}A_{c} + E_{w}A_{w})}{(\gamma_{c}E_{c}A_{c} + E_{w}A_{w})^{2}}a^{2}$$

$$(EI)_{ef} = E_{c}I_{c} + E_{w}I_{w} + \frac{\gamma_{c}E_{c}A_{c}E_{w}A_{w}}{\gamma_{c}E_{c}A_{c} + E_{w}A_{w}}a^{2} \qquad c.q.d., \text{ pois é igual a (3.82)}.$$

C.2 Centro de gravidade da seção homogênea

A seguir são apresentadas formas alternativas de se obter o centro de gravidade da seção totalmente composta (conexão infinitamente rígida).

• segundo o Método da Seção Transformada

$$S_{\infty} = S_{w} + \frac{E_{c}}{E_{w}}S_{c}$$
(A.9)

$$A_{\infty} = A_{w} + \frac{E_{c}}{E_{w}}A_{c}$$
(A.8)

$$y_{CG,\infty} = \frac{S_{\infty}}{A_{\infty}}$$
(C.2)

$$y_{CG,\infty} = \frac{A_w r + \frac{E_c}{E_w} A_c * 0}{A_w + \frac{E_c}{E_w} A_c}$$

$$y_{CG,\infty} = \frac{A_{w}r}{\frac{E_{w}A_{w} + E_{c}A_{c}}{E_{w}}}$$

$$y_{CG,\infty} = \frac{E_w A_w}{E_c A_c + E_w A_w} r$$
(C.3)

onde $y_{CG,\infty}$ é mostrado na Figura A.2.

• segundo GIRHAMMAR e GOPU (1991 e 1993)

Os autores definem,

$$y_{CG,\infty} = \frac{\left(1 - \frac{\gamma}{\alpha^2}\right)}{1 - \frac{\beta r}{\alpha^2}}r$$
(C.4)

sendo:

$$\gamma = \overline{K} \left(\frac{1}{E_{w}A_{w}} + \frac{r^{2}}{(EI)_{0}} \right)$$
(C.5)

e α^2 e β definidos em (3.24) e (3.25), respectivamente, têm-se:

$$y_{CG,\infty} = \frac{\frac{\overline{K}}{\underline{E_cA_c}}r}{\frac{\overline{K}}{\underline{E_cA_c}} + \frac{\overline{K}}{\overline{E_wA_w}}}$$

$$y_{CG,\infty} = \frac{\frac{r}{E_{o}A_{o}}}{\frac{E_{o}A_{o} + E_{w}A_{w}}{E_{o}A_{o}E_{w}A_{w}}}$$

$$y_{CG,\infty} = \frac{E_w A_w}{E_e A_e + E_w A_w} r$$

resultando na expressão (C.3).

C.3 Rigidez à flexão

As definições da rigidez à flexão da viga totalmente composta $(EI)_{\infty}$, apresentadas nas expressões (3.27) e (3.28), são deduzidas a seguir.

• segundo o Método da Seção Transformada

Sendo a expressão (A.5):

$$(EI)_{\infty} = E_{c}\bar{I}_{c} + E_{w}\bar{I}_{w}$$
(A.5)

Pode-se escrever,

$$(EI)_{\infty} = (EI)_{0} + E_{c}A_{o}y_{CG,\infty}^{2} + E_{w}A_{w}\left(r - y_{CG,\infty}\right)^{2}$$
(C.6)

fazendo $E = E_w$, a equação (C.6) torna-se:

$$\mathbf{I}_{\infty} = \mathbf{I}_{0} + \frac{\mathbf{E}_{\circ}}{\mathbf{E}_{w}} \mathbf{A}_{\circ} \mathbf{y}_{CG,\infty}^{2} + \mathbf{A}_{w} \left(\mathbf{r} - \mathbf{y}_{CG,\infty} \right)^{2}$$

assim,

$$I_{\infty} = I_{0} + \frac{E_{c}}{E_{w}}A_{c} \frac{E_{w}^{2}A_{w}^{2}r^{2}}{\left(E_{c}A_{c} + E_{w}A_{w}\right)^{2}} + A_{w}r^{2} - 2A_{w}r\frac{E_{w}A_{w}r}{E_{c}A_{c} + E_{w}A_{w}} + A_{w}\frac{E_{w}^{2}A_{w}^{2}r^{2}}{\left(E_{c}A_{c} + E_{w}A_{w}\right)^{2}}$$

$$I_{\infty} = I_{o} + A_{w}r^{2} - 2\frac{E_{w}A_{w}^{2}r^{2}}{E_{c}A_{c} + E_{w}A_{w}} + \frac{E_{c}A_{c}(E_{w}^{2}A_{w}^{2}r^{2}) + E_{w}A_{w}(E_{w}^{2}A_{w}^{2}r^{2})}{E_{w}(E_{c}A_{c} + E_{w}A_{w})^{2}}$$

$$I_{\infty} = I_{o} + A_{w}r^{2} - 2\frac{E_{w}A_{w}^{2}r^{2}}{E_{c}A_{c} + E_{w}A_{w}} + \frac{(E_{w}^{2}A_{w}^{2}r^{2})(E_{c}A_{c} + E_{w}A_{w})}{E_{w}(E_{c}A_{c} + E_{w}A_{w})^{2}}$$

$$I_{\infty} = I_{0} + \frac{E_{w}A_{w}(E_{c}A_{c} + E_{w}A_{w})r^{2} - 2E_{w}^{2}A_{w}^{2}r^{2} + E_{w}^{2}A_{w}^{2}r^{2}}{E_{w}(E_{c}A_{c} + E_{w}A_{w})}$$

$$I_{\infty} = I_{0} + \frac{E_{w}A_{w}E_{c}A_{c}r^{2} + E_{w}^{2}A_{w}^{2}r^{2} - E_{w}^{2}A_{w}^{2}r^{2}}{E_{w}(E_{c}A_{c} + E_{w}A_{w})}$$

$$I_{\infty} = I_0 + \frac{E_c A_c E_w A_w}{E_w (E_c A_c + E_w A_w)} r^2$$

$$(EI)_{\infty} = (EI)_{0} + \frac{E_{c}A_{c}E_{w}A_{w}}{E_{c}A_{c} + E_{w}A_{w}}r^{2}$$
(3.27)

resultando enfim na expressão (3.27).

• segundo GIRHAMMAR e GOPU (1991 e 1993)

Seja a expressão (3.28),

$$(EI)_{\infty} = \frac{(EI)_{\infty}}{1 - \frac{\beta r}{\alpha^2}}$$
(3.28)

substituindo-se os parâmetros α^2 e β definidos em (3.24) e (3.25), respectivamente, obtêm-se:

$$(EI)_{\infty} = \frac{(EI)_{0}}{\alpha^{2}} = \frac{(EI)_{0}}{\overline{K}\left(\frac{1}{E_{0}A_{0}} + \frac{1}{E_{w}A_{w}}\right) + \frac{\overline{K}r^{2}}{(EI)_{0}} - \frac{\overline{K}r^{2}}{(EI)_{0}}}{\overline{K}\left(\frac{1}{E_{0}A_{0}} + \frac{1}{E_{w}A_{w}}\right) + \frac{\overline{K}r^{2}}{(EI)_{0}}}$$

$$(EI)_{\infty} = \frac{(EI)_{o} \left[\left(\frac{1}{E_{c}A_{c}} + \frac{1}{E_{w}A_{w}} \right) + \frac{r^{2}}{(EI)_{o}} \right]}{\frac{1}{E_{c}A_{c}} + \frac{1}{E_{w}A_{w}}}$$

$$(EI)_{\infty} = (EI)_{0} + \frac{E_{c}A_{c}E_{w}A_{w}}{E_{c}A_{c} + E_{w}A_{w}}r^{2}$$

resultando na expressão (3.27).

ANEXO D

D.1 Carregamento uniforme

D.1.1 Linha elástica na forma exponencial

$$v(x) = -\frac{\left((EI)_{0} - (EI)_{\infty}\right)e^{\alpha x}q}{\alpha^{4}(EI)_{0}(EI)_{\infty}(1 + e^{\alpha x})} - \frac{\left((EI)_{0} - (EI)_{\infty}\right)e^{\alpha x - \alpha x}q}{\alpha^{4}(EI)_{0}(EI)_{\infty}(1 + e^{\alpha x})} - \frac{-(EI)_{0}q + (EI)_{\infty}q}{\alpha^{4}(EI)_{0}(EI)_{\infty}} + \frac{\ell\left(-12(EI)_{0}q + 12(EI)_{\infty}q + \alpha^{2}(EI)_{0}\ell^{2}q\right)x}{24\alpha^{2}(EI)_{0}(EI)_{\infty}} + \frac{\left((EI)_{0} - (EI)_{\infty}\right)qx^{2}}{2\alpha^{2}(EI)_{0}(EI)_{\infty}} - \frac{\ell qx^{2}}{12(EI)_{\infty}} + \frac{qx^{4}}{24(EI)_{\infty}}$$
(D.1)

D.1.2 Linha elástica na forma trigonométrica

$$v(x) = \frac{q}{24(EI)_{\infty}} \left[\frac{24((EI)_{0} - (EI)_{\infty})}{\alpha^{4}(EI)_{0}} + \frac{\ell(12(EI)_{\infty} + (EI)_{0}(-12 + \alpha^{2}\ell^{2}))x}{\alpha^{2}(EI)_{0}} + \frac{12((EI)_{0} - (EI)_{\infty})x^{2}}{\alpha^{2}(EI)_{0}} - 2\ell x^{3} + x^{4} - \frac{24((EI)_{0} - (EI)_{\infty})(\cosh(\alpha(\ell - x)) + \sinh(\alpha(\ell - x)))}{\alpha^{4}(EI)_{0}(1 + \cosh(\alpha\ell) + \sinh(\alpha\ell))} + \frac{24((EI)_{0} - (EI)_{\infty})(\cosh(\alpha x) + \sinh(\alpha x))}{\alpha^{4}(EI)_{0}(1 + \cosh(\alpha\ell) + \sinh(\alpha\ell))} \right]$$
(D.2)

D.1.2.1 Valor máximo da linha elástica

$$v\left(\frac{\ell}{2}\right) = \frac{q}{24(EI)_{\infty}} \left[\frac{24\left((EI)_{0} - (EI)_{\infty}\right)}{\alpha^{4}(EI)_{0}} + \frac{3\left((EI)_{0} - (EI)_{\infty}\right)\ell^{2}}{\alpha^{2}(EI)_{0}} + \frac{3\ell^{4}}{16} + \frac{\ell^{2}\left(12(EI)_{\infty} + (EI)_{0}\left(-12 + \alpha^{2}\ell^{2}\right)\right)}{2\alpha^{2}(EI)_{0}} - \frac{48\left((EI)_{0} - (EI)_{\infty}\right)\left(\cosh\left(\frac{\alpha\ell}{2}\right) + \operatorname{senh}\left(\frac{\alpha\ell}{2}\right)\right)}{\alpha^{4}(EI)_{0}\left(I + \cosh(\alpha\ell) + \operatorname{senh}(\alpha\ell)\right)}\right]$$
(D.3)

D.2.1 Linha elástica na forma exponencial

$$V(x) = \frac{P\left[-9(EI)_{\infty}\left(e^{\frac{1}{3}\alpha(\ell-3x)}\left(-1+e^{2\alpha x}\right)-2\alpha\left(1-e^{\frac{\alpha \ell}{3}}+e^{\frac{2\alpha \ell}{3}}\right)x\right)+(EI)_{0}\left(9e^{\frac{1}{3}\alpha(\ell-3x)}\left(-1+e^{2\alpha x}\right)-18(EI)_{0}(EI)_{\infty}\alpha^{3}\left(1-e^{\frac{\alpha \ell}{3}}+e^{\frac{2\alpha \ell}{3}}\right)\right)\right]}{18(EI)_{0}(EI)_{\infty}\alpha^{3}\left(1-e^{\frac{\alpha \ell}{3}}+e^{\frac{2\alpha \ell}{3}}\right)x\left(2\ell^{2}-3x^{2}\right)\right]}$$

$$\frac{-18\alpha\left(1-e^{\frac{\alpha \ell}{3}}+e^{\frac{2\alpha \ell}{3}}\right)x+\alpha^{3}\left(1-e^{\frac{\alpha \ell}{3}}+e^{\frac{2\alpha \ell}{3}}\right)x\left(2\ell^{2}-3x^{2}\right)\right)}{18(EI)_{0}(EI)_{\infty}\alpha^{3}\left(1-e^{\frac{\alpha \ell}{3}}+e^{\frac{2\alpha \ell}{3}}\right)}$$
(7.4)

1)	•	4)
				-

$$y(x) = \frac{P\left[27(EI)_{\infty}\left(-3e^{-\frac{1}{3}\alpha(\ell+3x)}\left(-1+e^{\frac{\alpha\ell}{3}}\right)\left(e^{\alpha\ell}+e^{2\alpha x}\right)+2\alpha\left(1-e^{\frac{\alpha\ell}{3}}+e^{\frac{2\alpha\ell}{3}}\right)\ell\right)-(EI)_{0}}{162(EI)_{0}(EI)_{\infty}\alpha^{3}\left(1-e^{\frac{\alpha\ell}{3}}+e^{\frac{2\alpha\ell}{3}}\right)}$$
$$\frac{\left(-81e^{-\frac{1}{3}\alpha(\ell+3x)}\left(-1+e^{\frac{\alpha\ell}{3}}\right)\left(e^{\alpha\ell}+e^{2\alpha x}\right)+54\alpha\left(1-e^{\frac{\alpha\ell}{3}}+e^{\frac{2\alpha\ell}{3}}\right)\ell+\alpha^{3}\left(1-e^{\frac{\alpha\ell}{3}}+e^{\frac{2\alpha\ell}{3}}\right)\ell\left(\ell^{2}-27\ell x+27x^{2}\right)\right)\right]}{162(EI)_{0}(EI)_{\infty}\alpha^{3}\left(1-e^{\frac{\alpha\ell}{3}}+e^{\frac{2\alpha\ell}{3}}\right)}$$

(D.5)

D.2.2 Linha elástica na forma trigonométrica

$$\mathbf{v}(\mathbf{x}) = \frac{\mathbf{P}\left[-9(\mathrm{EI})_{\infty}\left(-2\alpha x \left(-1+2\cosh\left(\frac{\alpha \ell}{3}\right)\right)\left(\cosh\left(\frac{\alpha \ell}{3}\right)+\sinh\left(\frac{\alpha \ell}{3}\right)\right)+\right.}{\mathbf{18}(\mathrm{EI})_{0}(\mathrm{EI})_{\infty}\alpha^{3}\left(-1+2\cosh\left(\frac{\alpha \ell}{3}\right)\right)\left(\cosh\left(\frac{\alpha \ell}{3}\right)+\sinh\left(\frac{\alpha \ell}{3}\right)\right)} + \left(\cosh\left(\frac{1}{3}\alpha(\ell-3\mathbf{x})\right)+\sinh\left(\frac{1}{3}\alpha(\ell-3\mathbf{x})\right)\right)\left(-1+\cosh(2\alpha\mathbf{x})+\sinh(2\alpha\mathbf{x})\right)\right)+}{\mathbf{18}(\mathrm{EI})_{0}(\mathrm{EI})_{\infty}\alpha^{3}\left(-1+2\cosh\left(\frac{\alpha \ell}{3}\right)\right)\left(\cosh\left(\frac{\alpha \ell}{3}\right)+\sinh\left(\frac{\alpha \ell}{3}\right)\right)+\alpha^{3}\mathbf{x}(2\ell^{2}-3\mathbf{x}^{2})\right)} + \left(\mathrm{EI})_{0}\left(-18\alpha\mathbf{x}\left(-1+2\cosh\left(\frac{\alpha \ell}{3}\right)\right)\left(\cosh\left(\frac{\alpha \ell}{3}\right)+\sinh\left(\frac{\alpha \ell}{3}\right)\right)+\alpha^{3}\mathbf{x}(2\ell^{2}-3\mathbf{x}^{2})\right)}{\mathbf{18}(\mathrm{EI})_{0}(\mathrm{EI})_{\infty}\alpha^{3}\left(-1+2\cosh\left(\frac{\alpha \ell}{3}\right)\right)\left(\cosh\left(\frac{\alpha \ell}{3}\right)+\sinh\left(\frac{\alpha \ell}{3}\right)\right)} + 9\left(\cosh\left(\frac{1}{3}\alpha(\ell-3\mathbf{x})\right)+\sinh\left(\frac{1}{3}\alpha(\ell-3\mathbf{x})\right)\right)\right)\right)} \right] \\ \left.\frac{\left(-1+2\cosh\left(\frac{\alpha \ell}{3}\right)\right)\left(\cosh\left(\frac{\alpha \ell}{3}\right)+\sinh\left(\frac{\alpha \ell}{3}\right)\right)+9\left(\cosh\left(\frac{1}{3}\alpha(\ell-3\mathbf{x})\right)+\sinh\left(\frac{1}{3}\alpha(\ell-3\mathbf{x})\right)\right)\right)\right)}{\mathbf{18}(\mathrm{EI})_{0}(\mathrm{EI})_{\infty}\alpha^{3}\left(-1+2\cosh\left(\frac{\alpha \ell}{3}\right)\right)\left(\cosh\left(\frac{\alpha \ell}{3}\right)+\sinh\left(\frac{\alpha \ell}{3}\right)\right)\right)}$$
(D.6)

$$y(x) = \frac{P\left[54(EI)_{0}\alpha \mathcal{U} - 54(EI)_{\infty}\alpha \mathcal{U} + (EI)_{0}\alpha^{3}\ell^{3} - 27(EI)_{0}\alpha^{3}\ell^{3}x + 27(EI)_{0}\alpha^{3}\ell^{3}x^{2} - 162(EI)_{0}(EI)_{\infty}\alpha^{3}\left(-1 + 2\cosh\left(\frac{\alpha\ell}{3}\right)\right)\right)}{162(EI)_{\infty}\left(-1 + 2\cosh\left(\frac{\alpha\ell}{3}\right)\right)}$$
$$-2\alpha\ell\left(-54(EI)_{\infty} + (EI)_{0}\left(54 + \alpha^{2}\ell^{2} - 27\alpha^{2}\ell x + 27\alpha^{2}x^{2}\right)\right)\cosh\left(\frac{\alpha\ell}{3}\right) - 162(EI)_{0}(EI)_{\infty}\alpha^{3}\left(-1 + 2\cosh\left(\frac{\alpha\ell}{3}\right)\right)$$
$$-162\left((EI)_{0} - (EI)_{\infty}\right)\operatorname{senh}\left(\frac{1}{3}\alpha(\ell - 3x)\right) + 162(EI)_{0}\operatorname{senh}\left(\frac{2\alpha\ell}{3} - \alpha x\right) - 162(EI)_{\infty}\operatorname{senh}\left(\frac{2\alpha\ell}{3} - \alpha x\right)$$
$$-162(EI)_{0}(EI)_{\infty}\alpha^{3}\left(-1 + 2\cosh\left(\frac{\alpha\ell}{3}\right)\right)$$

D.2.2.1 Valor máximo da linha elástica

$$y\left(\frac{\ell}{2}\right) = \frac{P\left[\alpha\ell\left(216(\text{EI})_{0} - 216(\text{EI})_{\infty} - 23(\text{EI})_{0}\alpha^{2}\ell^{2}\right)\right) + 2\alpha\ell\left(216(\text{EI})_{\infty} + (\text{EI})_{0}\left(-216 + 23\alpha^{2}\ell^{2}\right)\right)}{648(\text{EI})_{0}(\text{EI})_{\infty}\alpha^{3}\left(-1 + 2\cosh\left(\frac{\alpha\ell}{3}\right)\right)}$$
$$\frac{\cosh\left(\frac{\alpha\ell}{3}\right) + 1296\left((\text{EI})_{0} - (\text{EI})_{\infty}\right)\operatorname{senh}\left(\frac{\alpha\ell}{6}\right)\right]}{648(\text{EI})_{0}(\text{EI})_{\infty}\alpha^{3}\left(-1 + 2\cosh\left(\frac{\alpha\ell}{3}\right)\right)}$$

(D.8)

ANEXO E

E.1 Principais relações das funções hiperbólicas

A Tabela E.1 apresenta as principais definições, identidades e derivadas das funções hiperbólicas. A Figura E.1 representa os gráficos de senh e cosh.

Tabela E. 1 Definições, identidades e derivadas d	Tabela	E .1	Definições,	identidades	e	derivadas	das
---	--------	-------------	-------------	-------------	---	-----------	-----

0 $y = \cosh x$

Figura E.1 Gráficos de senh e cosh.

 $\operatorname{sen} \mathbf{h}' x = \cos \mathbf{h} x.$ $\cos h' x = \operatorname{sen} h x.$ $\operatorname{tg} \mathbf{h}' x = \operatorname{sec} \mathbf{h}^2 x.$ $\operatorname{cotg} \mathbf{h}' x = -\operatorname{cosec} \mathbf{h}^2 x.$ $\operatorname{sec} \mathbf{h}' x = \operatorname{sec} \mathbf{h} x \operatorname{tg} \mathbf{h} x.$ $\operatorname{cosec} \mathbf{h}' x = -\operatorname{cosec} \mathbf{h} x \operatorname{cotg} \mathbf{h} x.$

Fonte: MOISE, 1970, p.197.

REFERÊNCIAS BIBLIOGRÁFICAS

- [01] AHMADI, B. H., SAKA, M. P. Behavior of composite timber-concrete floors. Journal of Structural Engineering, New York, v.119, n.10, p. 3111-3130, Nov. 1993.
- [02] ALMEIDA, P. A. O. Uniões pregadas de madeira. São Paulo: EPUSP, USP, 1987.
 Dissertação (Mestrado) Escola Politécnica da Universidade de São Paulo, 1987, 141p.
- [03] ALMEIDA, P. A. O. Estruturas de grande porte de madeira composta. São Paulo: EPUSP, USP, 1990. Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo, 1990, 280p.
- [04] ALMEIDA, P. A. O., FERREIRA, C. A. T. Determinação da rigidez efetiva das vigas de madeira composta. São Paulo: Escola Politécnica da USP, 1997. 18p. (Boletim Técnico nº 9722).
- [05] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-7190: Projeto de estruturas de madeira. Rio de Janeiro, 1996. 247p.
- [06] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-6118:
 Projeto de estruturas de concreto armado. Rio de Janeiro, 1982. 76p.
- [07] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos - Método de ensaio. Rio de Janeiro, 1994.

- [08] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-8522: Concreto - Determinação do módulo de deformação estática e diagrama tensãodeformação - Método de ensaio. Rio de Janeiro, 1984.
- [09] BLASS, H. J. Multiple fastener joints. In: Timber Engineering STEP 1. BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [10] CAPRETTI, S., CECCOTTI, A. Service behaviour of timber-concrete composite beams: a 5-year monitoring and testing experience In: INTERNATIONAL WOOD ENGINEERING CONFERENCE, [s.n.], 1996, New Orleans. Proceedings... New Orleans: editora: Omnipress, Madison, WI, 1996. p.3-443-3-449.
- [11] CECCOTI, A. Timber-concrete composite structures. In: Timber Engineering STEP 1.BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [12] DEUTSCHE INSTITUTE FUR NORMUNG, Bilbao. DIN 1052/69: Hoja 1 -Conctrucciones de madera: cálculo e ejecución. Bilbao, 1973. 42 p. (Versão em espanhol. Original em Alemão)
- [13] EUROPEAN COMMITTEE FOR STANDARDIZATION, Brussels. EUROCODE 5 -Design of timber structures - part 1.1: general rules and rules for buildings. Brussels, 1993. 110p.
- [14] GIRHAMMAR, U. A., GOPU, K. A. Composite beam-columns with interlayer slip exact analysis. Journal of Structural Engineering, New York, v.119, n.4, p. 1265-1282, Apr. 1993.
- [15] GIRHAMMAR, U. A., GOPU, K. A. Analysis of P-Δ effect in composite concrete/timber beam-columns. Proceedings of the Institution of Civil Engineers, UK, v. 91, part 2, p. 39-54, Mar. 1991.

- [16] GUTKOWSKI, R. M., CHEN, T.M. Test and analysis of mixed concrete-wood beams. In: INTERNATIONAL WOOD ENGINEERING CONFERENCE, [s.n.], 1996, New Orleans. Proceedings... New Orleans: editora: Omnipress, Madison, WI, 1996. p.3-436-3-442.
- [17] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, Switzerland. ISO 6891: Timber structures Joints made with mechanical fasteners General principles for the determination of strenght and deformation characteristics. Switzerland, 1983.
 6p.
- [18] JOHN, C., CHILVER, A. H. Strength of materials and structures. London: Edward Arnold, second edition, 404p., 1961.
- [19] JUNHO DE SOUZA, A. Análise experimental do comportamento de conectores entre madeira e concreto em corpos de prova de cisalhamento: efeitos da variação do tipo de conector. Belo Horizonte: EE, UFMG, 1997. Dissertação (Mestrado) -Escola de Engenharia, Universidade Federal de Minas Gerais, 1997, 124p.
- [20] KREUZINGER, H. Mechanically jointed beams and columns. In: Timber Engineering -STEP 1. BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [21] LHUEDE, E. P. Nail loads for plywood / solid wood connections. In: 1988 INTERNATIONAL CONFERENCE ON TIMBER ENGINEERING, 1998, Seattle. Proceedings... Seattle: FPRS, 1998, vol.1, p.3-10.
- [22] MAGALHÃES, L. N. Vigas compostas madeira/concreto. Belo Horizonte: EE, UFMG, 1997. Dissertação (Mestrado) - Escola de Engenharia, Universidade Federal de Minas Gerais, 1997, 122p.

- [23] MAINIERI, C., CHIMELO, J. P. Fichas de características das madeiras brasileiras. São Paulo: Instituto de Pesquisas Tecnológicas (IPT-Div. de Madeiras). 1989. p. 335-336.
- [24] McCULLOUGH, C. B. Oregon tests on composite (timber-concrete) beams. Journal of the American Concrete Institute, Detroit, v.14, n.5, p. 429-440, Apr. 1943.
- [25] McCUTCHEON, W. I. Stiffness of framing members with partial composite action. Journal of Structural Engineering, New York, v.112, n.7, p. 1623-1637, Jul. 1986.
- [26] MOISE, E. E. Cálculo um curso universitário. São Paulo: Edgard Blücher Ltda e EDUSP, p.197, 1970.
- [27] NEWMARK, N. M., SIESS, C. P., VIEST, I. M. Tests and analysis of composite beams with incomplete interaction. Proceedings of Society for Experimental Stress Analysis, local?, v.9, n.1, p. 75-92, 1951.
- [28] PFEIL, W. Estruturas de madeira. Rio de Janeiro: Livros Técnicos e Científicos Editora, 252p., 1994.
- [29] POPOV, E. P. Introdução à mecânica dos sólidos. São Paulo: Edgard Blucher Ltda, 521p., 1913.
- [30] RICHART, F. E., WILLIAMS, C. B. Tests of composite timber-concrete beams. Journal of the American Concrete Institute, Detroit, v.14, n.4, p. 253-276, Feb. 1943.
- [31] RACHER, P. Mechanical timber joints General. In: Timber Engineering STEP 1. BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.

- [32] RILEM TC 111 CST Behavior of timber-concrete composite load-bearing structures. Proceedings of ACMAR- Ravenna International Symposium. Department of Civil Engineering, University of Florence, Italy, 1992.
- [33] SANTANA, C. L. O., Vigas de madeira de seção composta com alma em chapa de compensado. Campinas: FEC, UNICAMP, 1997. Dissertação (Mestrado) -Faculdade de Engenharia Civil, Universidade Estadual de Campinas, 1997. 201p.
- [34] SORIANO, J. Estruturas mistas em concreto e madeira. Campinas: FEAGRI, UNICAMP, 1999. Exame de Qualificação (Doutorado) - Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, 1999. 89p.
- [35] SORIANO, J., DINTEN, C. M., TACITANO, M., PINTO JR., N. O., MASCIA, N. T. Análise teórico-experimental de uma viga de seção "T" em concreto-madeira. In: ENCONTRO BRASILEIRO EM MADEIRAS E ESTRUTURAS DE MADEIRA, 6, 1998, Florianópolis. Anais... Florianópolis: UFSC, 1998, v.4, p.283-294.
- [36] TIMOSHENKO, S. P., GERE, J. E. Mecânica dos sólidos, Rio de Janeiro: Livros Técnicos e Científicos Editora, vol. 1, 256p., 1960.
- [37] WHEAT, D. L., CALIXTO, J. M. Nonlinear analysis of two layered wood members with interlayer slip. Journal of Structural Engineering, New York, v.120, n.6, p. 1909-1929, Jun. 1993.
- [38] WILKINSON, T. L. Theoretical lateral resistence of nailed joints. Journal of Structural Division, Proceedings of the ASCE. New York, v.97, n. ST5, p. 1381-1398, May 1971.
- [39] WILKINSON, T. L. Analysis of nailed joints with dissimilar menbers. Journal of Structural Division, Proceedings of the ASCE. New York, v.98, n. ST9, p. 2005-2013, Sep. 1972.

BIBLIOGRAFIA RECOMENDADA

- [01] AHMADI, B. H., SAKA, M. P. Behavior of composite timber-concrete floors. Journal of Structural Engineering, New York, v.119, n.10, p. 3111-3130, Nov. 1993.
- [02] ALMEIDA, P. A. O. Uniões pregadas de madeira. São Paulo: EPUSP, USP, 1987. Dissertação (Mestrado) - Escola Politécnica da Universidade de São Paulo, 1987, 141p.
- [03] ALMEIDA, P. A. O. Estruturas de grande porte de madeira composta. São Paulo: EPUSP, USP, 1990. Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo, 1990, 280p.
- [04] ALMEIDA, P. A. O., FERREIRA, C. A. T. Determinação da rigidez efetiva das vigas de madeira composta. São Paulo: Escola Politécnica da USP, 1997. 18p. (Boletim Técnico nº 9722).
- [05] ARANTES, E. M., CHAUD, E. Deformações normais e deslocamentos na flexão em vigas de madeira maciça pregada de seção T. In: ENCONTRO REGIONAL EM MADEIRAS E ESTRUTURAS DE MADEIRA, 1, 1993, São Paulo. Anais... São Paulo: Coordenadoria de eventos da EPUSP, 1993, v.2, p. 9-20.
- [06] ARAÚJO, D. L., EL DEBS, M. K. Cisalhamento na interface entre concreto pré-moldado e concreto moldado no local em vigas submetidas à flexão: comparação de valores teóricos e experimentais. In: JORNADAS SUL-AMERICANAS DE ENGENHARIA ESTRUTURAL, 28, 1997, São Carlos. Anais... Estruturas e Fundações. São Carlos: EESC-USP/ASEE, 1997. v.2. p. 487-496.

- [07] ASSOC AÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR 7190: Calculo e execução de estruturas de madeira, Rio de Janeiro, 1982. 22p.
- [08] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-7190: Projeto de estruturas de madeira. Rio de Janeiro, 1996. 247p.
- [09] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-6118:
 Projeto de estruturas de concreto armado. Rio de Janeiro, 1982. 76p.
- [10] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos - Método de ensaio. Rio de Janeiro, 1994.
- [11] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-8522: Concreto - Determinação do módulo de deformação estática e diagrama tensãodeformação - Método de ensaio. Rio de Janeiro, 1984.
- [12] BATISTA, A. M., Um estudo sobre as vigas de seção mista em chapa de aço dobrada e em madeira serrada. Campinas: FEC, UNICAMP, 1996. Dissertação (Mestrado) -Faculdade de Engenharia Civil, Universidade Estadual de Campinas, 1996. 207p.
- [13] BLASS, H. J. Multiple fastener joints. In: Timber Engineering STEP 1. BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [14] CAPRETTI, S., CECCOTTI, A. Service behaviour of timber-concrete composite beams: a 5-year monitoring and testing experience In: INTERNATIONAL WOOD ENGINEERING CONFERENCE, [s.n.], 1996, New Orleans. Proceedings... New Orleans: editora: Omnipress, Madison, WI, 1996. p.3-443-3-449.

- [15] CECCOTI, A. Timber-concrete composite structures. In: Timber Engineering STEP 1.
 BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [16] DEUTSCHE INSTITUTE FUR NORMUNG, Bilbao. DIN 1052/69: Hoja 1 -Conctrucciones de madera: cálculo e ejecución. Bilbao, 1973. 42 p. (Versão em espanhol. Original em Alemão)
- [17] EUROPEAN COMMITTEE FOR STANDARDIZATION, Brussels. EUROCODE 5 -Design of timber structures - part 1.1: general rules and rules for buildings. Brussels, 1993. 110p.
- [18] GIRHAMMAR, U. A., ANDERSON, H. Effect of loading rate of nailed timber joint capacity. Journal of Structural Engineering, New York, v.114, n.11, p. 2439-2456, Nov. 1992.
- [19] GIRHAMMAR, U. A., GOPU, K. A. Composite beam-columns with interlayer slip exact analysis. Journal of Structural Engineering, New York, v.119, n.4, p. 1265-1282, Apr. 1993.
- [20] GIRHAMMAR, U. A., GOPU, K. A. Analysis of P-∆ effect in composite concrete/timber beam-columns. Proceedings of the Institution of Civil Engineers, UK, v. 91, part 2, p. 39-54, Mar. 1991.
- [21] GUTKOWSKI, R. M., CHEN, T.M. Test and analysis of mixed concrete-wood beams. In: INTERNATIONAL WOOD ENGINEERING CONFERENCE, [s.n.], 1996, New Orleans. Proceedings... New Orleans: editora: Omnipress, Madison, WI, 1996. p.3-436-3-442.
- [22] HA, K. H. Stiffness matrix for exact solution of sandwich beam and frame systems. Journal of Structural Engineering, New York, v.119, n.4, p. 1150-1167, Apr. 1993.

- [23] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, Switzerland. ISO 6891: Timber structures Joints made with mechanical fasteners General principles for the determination of strenght and deformation characteristics. Switzerland, 1983.
 6p.
- [24] JOHN, C., CHILVER, A. H. Strength of materials and structures. London: Edward Arnold, second edition, 404p., 1961.
- [25] JUNHO DE SOUZA, A. Análise experimental do comportamento de conectores entre madeira e concreto em corpos de prova de cisalhamento: efeitos da variação do tipo de conector. Belo Horizonte: EE, UFMG, 1997. Dissertação (Mestrado) -Escola de Engenharia, Universidade Federal de Minas Gerais, 1997, 124p.
- [26] KREUZINGER, H. Mechanically jointed beams and columns. In: Timber Engineering -STEP 1. BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [27] LHUEDE, E. P. Nail loads for plywood / solid wood connections. In: 1988 INTERNATIONAL CONFERENCE ON TIMBER ENGINEERING, 1998, Seattle. Proceedings... Seattle: FPRS, 1998, vol.1, p.3-10.
- [28] LI, T. Q., CHOO, B.S., NETHERCOT, D. A. Connection element method for the analysis of semi-rigid frames. Journal of Constructional Steel Reseach, Nottinghan, v.32, n.2, p. 143-171, Feb. 1995.
- [29] MAGALHÃES, L. N. Vigas compostas madeira/concreto. Belo Horizonte: EE, UFMG, 1997. Dissertação (Mestrado) - Escola de Engenharia, Universidade Federal de Minas Gerais, 1997, 122p.
- [30] MAINIERI, C., CHIMELO, J. P. Fichas de características das madeiras brasileiras. São Paulo: Instituto de Pesquisas Tecnológicas (IPT-Div. de Madeiras). 1989. p. 335-336.

- [31] McCULLOUGH, C. B. Oregon tests on composite (timber-comcrete) beams. Journal of the American Concrete Institute. Detroit, v. 14, n.5, p.429-440, Apr. 1943.
- [32] McCUTCHEON, W. I. Stiffness of framing members with partial composite action. Journal of Structural Engineering, New York, v.112, n.7, p. 1623-1637, Jul. 1986.
- [33] MOISE, E. E. Cálculo um curso universitário. São Paulo: Edgard Blücher Ltda e EDUSP, p.197, 1970.
- [34] NATTERER, J., HAMM, J., FAVRE, P. A. Composite wood-concrete floors for multi-story buildings. In: INTERNATIONAL WOOD ENGINEERING CONFERENCE, [s.n.], 1996, New Orleans. Proceedings... New Orleans: editora: Omnipress, Madison, WI, 1996. p.3-431-3-435.
- [35] NEWMARK, N. M., SIESS, C. P., VIEST, I. M. Tests and analysis of composite beams with incomplete interaction. Proceedings of Society for Experimental Stress Analysis, local?, v.9, n.1, p. 75-92, 1951.
- [36] PELLICANE, P. J. Mechanical behavior of nailed joints with various side members materials. Journal of Testing and Evaluation, New York, v.19, n.2, p. 97-106, Mar. 1991.
- [37] PFEIL, W. Estruturas de madeira. Rio de Janeiro: Livros Técnicos e Científicos Editora, 252p., 1994.
- [38] PINCUS, G. Behavior of wood-concrete composite beams. Journal of Structural Division, Proceedings of the ASCE. New York, v.96, n. ST10, p. 2009-2019, Oct. 1970.
- [39] POPOV, E. P. Introdução à mecânica dos sólidos. São Paulo: Edgard Blucher Ltda, 521p., 1913.

- [40] RACHER, P. Mechanical timber joints General. In: Timber Engineering STEP 1. BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [41] RICHART, F. E., WILLIAMS, C. B. Tests of composite timber-concrete beams. Journal of the American Concrete Institute. Detroit, v. 14, n.14, p.253-276, Feb. 1943.
- [42] RILEM TC 111 CST Behavior of timber-concrete composite load-bearing structures. Proceedings of ACMAR- Ravenna International Symposium. Department of Civil Engineering, University of Florence, Italy, 1992.
- [43] SANTANA, C. L. O., Vigas de madeira de seção composta com alma em chapa de compensado. Campinas: FEC, UNICAMP, 1997. Dissertação (Mestrado) -Faculdade de Engenharia Civil, Universidade Estadual de Campinas, 1997. 201p.
- [44] SMITH, I., WHALE, L.R.J., HILSON, B.O. Na integrate approach to modelling load-slip behavior of timber jointes with dowel type fasteners. In: 1988 INTERNATIONAL CONFERENCE ON TIMBER ENGINEERING, 1998, Seattle. Proceedings... Seattle: FPRS, 1998, vol.2, p.285-290.
- [45] SOLLI, K. H. Glued thin-webbed beams. In: Timber Engineering STEP 1. BLASS, H. J., AUNE, P., CHOO, B. S. et al., Almere: Centrum Hout, 1995.
- [46] SORIANO, J. Estruturas mistas em concreto e madeira. Campinas: FEAGRI, UNICAMP, 1999. Exame de Qualificação (Doutorado) - Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, 1999. 89p.
- [47] SORIANO, J., DINTEN, C. M., TACITANO, M., PINTO JR., N. O., MASCIA, N. T. Análise teórico-experimental de uma viga de seção "T" em concreto-madeira. In: ENCONTRO BRASILEIRO EM MADEIRAS E ESTRUTURAS DE MADEIRA, 6, 1998, Florianópolis. Anais... Florianópolis: UFSC, 1998, v.4, p.283-294.

- [48] SOUZA, A. J., MAGALHÃES, L. N., CHAUD, E. Análise do comportamento de conectores rígidos e semi-rígidos na ligação madeira-concreto. In: JORNADAS SUL-AMERICANAS DE ENGENHARIA ESTRUTURAL, 28, 1997, São Carlos. Anais... Mecânica do Materiais. São Carlos: EESC-USP/ASEE, 1997. v.5. p. 1851-1859.
- [49] STEVANOVIC, B. Elastically coupled timber-concrete beams. In: INTERNATIONAL WOOD ENGINEERING CONFERENCE, [s.n.], 1996, New Orleans. Proceedings... New Orleans: editora: Omnipress, Madison, WI, 1996. p.3-425-3-430.
- [50] TIMOSHENKO, S. P., GERE, J. E. Mecânica dos sólidos, Rio de Janeiro: Livros Técnicos e Científicos Editora, vol. 1, 256p., 1960.
- [51] WHEAT, D. L., CALIXTO, J. M. Nonlinear analysis of two layered wood members with interlayer slip. Journal of Structural Engineering, New York, v.120, n.6, p. 1909-1929, Jun. 1993.
- [52] WILKINSON, T. L. Theoretical lateral resistence of nailed joints. Journal of Structural Division, Proceedings of the ASCE. New York, v.97, n. ST5, p. 1381-1398, May 1971.
- [53] WILKINSON, T. L. Analysis of nailed joints with dissimilar menbers. Journal of Structural Division, Proceedings of the ASCE. New York, v.98, n. ST9, p. 2005-2013, Sep. 1972.

APÊNDICE
• MÉTODO APROXIMADO

Carregamento uniforme

s = 3 cm;
s = 6 cm;
s = 9 cm;
s = 3 cm;
s = 6 cm;
s = 9 cm;
s = 3 cm;
s = 6 cm;
s = 9 cm.

• Carregamento aplicado

K = 6500 kN/mm	s = 3 cm;
K = 6500 kN/mm	s = 6 cm;
K = 6500 kN/mm	s = 9 cm;
K = 13000 kN/mm	s = 3 cm;
K = 13000 kN/mm	s = 6 cm;
K = 13000 kN/mm	s = 9 cm;
K = 26000 kN/mm	s = 3 cm;
K = 26000 kN/mm	s = 6 cm;
K = 26000 kN/mm	s = 9 cm;
$K \rightarrow 0$	s = 6 cm;
$K \rightarrow \infty$	s = 6 cm.

• MÉTODO EXATO

• Carregamento uniforme

K = 6500 kN/mm	s = 3 cm;
K = 6500 kN/mm	s = 6 cm;
K = 6500 kN/mm	s = 9 cm;
K = 13000 kN/mm	s = 3 cm;
K = 13000 kN/mm	s = 6 cm;
K = 13000 kN/mm	s = 9 cm;
K = 26000 kN/mm	s = 3 cm;
K = 26000 kN/mm	s = 6 cm;
K = 26000 kN/mm	s = 9 cm.

• Carregamento aplicado

K = 6500 kN/mm	s = 3 cm;
K = 6500 kN/mm	s = 6 cm;
K = 6500 kN/mm	s = 9 cm;
K = 13000 kN/mm	s = 3 cm;
K = 13000 kN/mm	s = 6 cm;
K = 13000 kN/mm	s = 9 cm;
K = 26000 kN/mm	s = 3 cm;
K = 26000 kN/mm	s = 6 cm;
K = 26000 kN/mm	s = 9 cm;
$K \rightarrow 0$	s = 6 cm;
$K \rightarrow \infty$	s = 6 cm.

	Método Aproximado				
Parâmet	tros geométricos da seção	Parâmet	ros de elasticidade	Conexão	
h _c =	4 [cm]	E _c =	35419 [MPa]	K =	6500 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	3 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
€ =	200 [cm]				
A _c =	120 [cm ²]			K =	216,67 [N / mm ²]
A _w =	96 [cm ²]			k =	4,84 [adimens.]
۱ _c =	160 [cm ⁴]			γ _c =	0,17 [adimens.]
I _w =	2048 [cm ⁴]				
a =	10 [cm]				
a _c =	6,12 [cm]				
a _w =	3,88 [cm]				

(El)_{ef} = 74738719,34 [MPa cm⁴]

Carga q	M _{máximo}	Tensão Norm. Concr.(σ_c)			Tensão Norm. Mad. (σ_w)		Fluxo de	V _{máxima}	
		1	CG	2	1	CG	2	$Cis.(\phi_{máx})$	
[N / cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-2,37	-1,24	2,37	-3,20	1,55	3,20	0,30	1,394
100	5000	-4,74	-2,48	4,74	-6,41	3,11	6,41	0,60	2,787
150	7500	-7,11	-3,73	7,11	-9,61	4,66	9,61	0,89	4,181
200	10000	-9,48	-4,97	9,48	-12,81	6,21	12,81	1,19	5,575
250	12500	-11,85	-6,21	11,85	-16,02	7,76	16,02	1,49	6,969
300	15000	-14,22	-7,45	14,22	-19,22	9,32	19,22	1,79	8,362
350	17500	<u>-16,59</u>	-8,69	16,59	-22,42	10,87	22,42	2,09	9,756
400	20000	-18,96	-9,94	18,96	-25,63	12,42	25,63	2,38	11,150
450	22500	-21,33	-11,18	21,33	-28,83	13,97	28,83	2,68	12,544
500	25000	-23,70	-12,42	23,70	-32,03	15,53	32,03	2,98	13,937
550	27500	-26,06	-13,66	26,06	-35,23	17,08	35,23	3,28	15,331
600	30000	-28,43	-14,90	28,43	-38,44	18,63	38,44	3,58	16,725

C.Unif. K=6500 s=6

VIGA BI-APOIADA COM CARREGAMENTO UNIFORME Método Aproximado

Parâmetros geométricos da seção Parâmetros de elasticidade Conexão

h _c =	4 [cm]	E _c =	35419 [MPa]	K =	6500 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
į =	200 [cm]				
A _c =	120 [cm ²]			.	108,33 [N / mm ²]
A _w =	96 [cm ²]			k =	9,68 [adimens.]
I _c =	160 [cm ⁴]			γ _c =	0,09 [adimens.]
I _w =	2048 [cm ⁴]				
a =	10 [cm]				
a _c =	7,43 [cm]				
a _w =	2,57 [cm]				

$$(EI)_{ef} = 59740194,71 [MPa cm4]$$

Carga q	M _{máximo}	Tensão Norm. Concr.(Norm. Concr. (σ_c) Tensão Norm. Mad. (σ_w)		l.(σ _w)	Fluxo de	V _{máxima}	
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[N/cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-2,96	-1,03	2,96	-4,01	1,29	4,01	0,25	1,744
100	5000	-5,93	-2,06	5,93	-8,01	2,58	8,01	0,49	3,487
150	7500	-8,89	-3,09	8,89	-12,02	3,87	12,02	0,74	5,231
200	10000	-11,86	-4,12	11,86	-16,03	5,15	16,03	0,99	6,975
250	12500	-14,82	-5,15	14,82	-20,04	6,44	20,04	1,24	8,718
300	15000	-17,79	-6,18	17,79	-24,04	7,73	24,04	1,48	10,462
350	17500	-20,75	-7,22	20,75	-28,05	9,02	28,05	1,73	12,206
400	20000	-23,72	-8,25	23,72	-32,06	10,31	32,06	1,98	13,949
450	22500	-26,68	-9,28	26,68	-36,07	11,60	36,07	2,23	15,693
500	25000	-29,64	-10,31	29,64	-40,07	12,89	40,07	2,47	17,437
550	27500	-32,61	-11,34	32,61	-44,08	14,17	44,08	2,72	19,180
600	30000	-35,57	-12,37	35,57	-48,09	15,46	48,09	2,97	20,924

	VIGA BI-APOIADA COM	Método Aproximado			
Parâmet	tros geométricos da seção	Parâmet	ros de elasticidade	Conexão	
h _c =	4 [cm]	E, =	35419 [MPa]	K =	6500 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	9 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
£ =	200 [cm]				
A _c =	120 [cm ²]			.	72,22 [N / mm ²]
A _w =	96 [cm ²]			k =	14,52 [adimens.]
I _c =	160 [cm⁴]			γ _c =	0,06 [adimens.]
۱ _w =	2048 [cm ⁴]				
a =	10 [cm]				
a _c =	8,08 [cm]				

(EI) _{ef} =	52296142,71	[MPa	cm⁴]
(L)ef -	52250142,71	tinu a	our 1

a_w =

1,92 [cm]

Carga q	M _{máximo}	Tensão N	Tensão Norm. Concr.(σ_c)			Tensão Norm. Mad. (σ_w)		Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[N/cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-3,39	-0,88	3,39	-4,58	1,10	4,58	0,21	1,992
100	5000	-6,77	-1,76	6,77	-9,16	2,20	9,16	0,42	3,984
150	7500	-10,16	-2,64	10,16	-13,73	3,30	13,73	0,63	5,976
200	10000	-13,55	-3,52	13,55	-18,31	4,40	18,31	0,85	7,967
250	12500	-16,93	-4,40	16,93	-22,89	5,51	22,89	1,06	9,959
300	15000	-20,32	-5,29	20,32	-27,47	6,61	27,47	1,27	11,951
350	17500	-23,70	-6,17	23,70	-32,04	7,71	32,04	1,48	13,943
400	20000	-27,09	-7,05	27,09	-36,62	8,81	36,62	1,69	15,935
450	22500	-30,48	-7,93	30,48	-41,20	9,91	41,20	1,90	17,927
500	25000	-33,86	-8,81	33,86	-45,78	11,01	45,78	2,11	19,919
550	27500	-37,25	-9,69	37,25	-50,36	12,11	50,36	2,33	21,910
600	30000	-40,64	-10,57	40,64	-54,93	13,21	54,93	2,54	23,902

١	Método Aproximado				
Parâmetro	s geométricos da seção	Parâmet	ros de elasticidade	Conexão	
h _e =	4 [cm]	E., =	35419 [MPa]	K =	13000 [N/mm]
h _w =	16 [cm]	E _{vi} =	11970 [MPa]	s =	3 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
£ =	200 [cm]				
A. =	120 [cm ²]			<u>к</u> =	433.33 [N / mm ²]
A =	96 [cm ²]			k =	2,42 [adimens.]
l_ =	160 [cm ⁴]			$\gamma_{c} =$	0,29 [adimens.]
I _w =	2048 [cm ⁴]			10	
a =	10 [cm]				
a _c =	4,80 [cm]				
a _w =	5,20 [cm]				

$$(EI)_{ef} = 89886300,4 [MPa cm4]$$

Carga q	M _{máximo}	Tensão N	orm. Con	cr.(σ _c)	Tensão I	Norm. Mac	I.(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[N/cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-1,97	-1,38	1,97	-2,66	1,73	2,66	0,33	1,159
100	5000	-3,94	-2,77	3,94	-5,33	3,46	5,33	0,66	2,318
150	7500	-5,91	-4,15	5,91	-7,99	5,19	7,99	1,00	3,477
200	10000	-7,88	-5,54	7,88	-10,65	6,92	10,65	1,33	4,635
250	12500	-9,85	-6,92	9,85	-13,32	8,65	13,32	1,66	5,794
300	15000	-11,82	-8,30	11,82	-15,98	10,38	15,98	1,99	6,953
350	17500	-13,79	-9,69	13,79	-18,64	12,11	18,64	2,32	8,112
400	20000	-15,76	-11,07	15,76	-21,31	13,84	21,31	2,66	9,271
450	22500	-17,73	-12,45	17,73	-23,97	15,57	23,97	2,99	10,430
500	25000	-19,70	-13,84	19,70	-26,63	17,30	26,63	3,32	11,589
550	27500	-21,67	-15,22	21,67	-29,30	19,03	29,30	3,65	12,748
600	30000	-23,64	-16,61	23,64	-31,96	20,76	31,96	3,99	13,906

VI	Método Aproximado				
Parâmetros					
h _e =	4 [cm]	E _c =	35419 [MPa]	K =	13000 [N / mm]

$h_w = 16 [cm] E_w = 11970$) [MPa] s = 6 [cm]
b _c = 30 [cm]	
b _w = 6 [cm]	
<i>ε</i> = 200 [cm]	
$A_{c} = 120 [cm^{2}]$	\overline{K} = 216,67 [N/mm ²]
$A_{w} = 96 [cm^{2}]$	k = 4,84 [adim.]
$I_{c} = 160 [cm^{4}]$	$\gamma_{c} = 0,17 \text{ [adim.]}$
$l_{w} = 2048 [cm^{4}]$	
a = 10 [cm]	
a _c = 6,12 [cm]	
a _w = 3,88 [cm]	

.

Carga q	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão I	Norm. Mac	1.(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[N/cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-2,37	-1,24	2,37	-3,20	1,55	3,20	0,30	1,394
100	5000	-4,74	-2,48	4,74	-6,41	3,11	6,41	0,60	2,787
150	7500	-7,11	-3,73	7,11	-9,61	4,66	9,61	0,89	4,181
200	10000	-9,48	-4,97	9,48	-12,81	6,21	12,81	1,19	5,575
250	12500	-11,85	-6,21	11,85	-16,02	7,76	16,02	1,49	6,969
300	15000	-14,22	-7,45	14,22	-19,22	9,32	19,22	1,79	8,362
350	17500	-16,59	-8,69	16,59	-22,42	10,87	22,42	2,09	9,756
400	20000	-18,96	-9,94	18,96	-25,63	12,42	25,63	2,38	11,150
450	22500	-21,33	-11,18	21,33	-28,83	13,97	28,83	2,68	12,544
500	25000	-23,70	-12,42	23,70	-32,03	15,53	32,03	2,98	13,937
550	27500	-26,06	-13,66	26,06	-35,23	17,08	35,23	3,28	15,331
600	30000	-28,43	-14,90	28,43	-38,44	18,63	38,44	3,58	16,725

	VIGA BI-APOIADA COM CARREGAMENTO UNIFORME Método Aproximado											
Parâmet	ros geométricos da seção	Parâmet	ros de elasticidade	Conexão								
h _c =	4 [cm]	E _c =	35419 [MPa]	К =	13000 [N / mm]							
h _w =	16 [cm]	E _w =	11970 [MPa]	S =	9 [cm]							
b _c =	30 [cm]											
b _w =	6 [cm]											
6 =	200 [cm]											
A _c =	120 [cm ²]			K =	144,44 [N / mm ²]							
A _w =	96 [cm ²]			k =	7,26 [adim.]							
I _c =	160 [cm ⁴]			γ _c =	0,12 [adim.]							
I _w =	2048 [cm ⁴]											
a =	10 [cm]											
a _c =	6,91 [cm]											
a _w =	3,09 [cm]											

(EI)_{ef} = 65721858,88 [Mpa cm⁴]

Carga q	M _{máximo}	Tensão N	orm. Con	cr.(σ _c)	Tensão I	Norm. Mac	Ι. (σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	$Cis.(\phi_{máx})$	
[N / cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-2,69	-1,13	2,69	-3,64	1,41	3,64	0,27	1,585
100	5000	-5,39	-2,25	5,39	-7,29	2,82	7,29	0,54	3,170
150	7500	-8,08	-3,38	8,08	-10,93	4,22	10,93	0,81	4,755
200	10000	-10,78	-4,51	10,78	-14,57	5,63	14,57	1,08	6,340
250	12500	-13,47	-5,63	13,47	-18,21	7,04	18,21	1,35	7,925
300	15000	-16,17	-6,76	16,17	-21,86	8,45	21,86	1,62	9,510
350	17500	-18,86	-7,89	18,86	-25,50	9,86	25,50	1,89	11,095
400	20000	-21,56	-9 .01	21,56	-29,14	11,27	29,14	2,16	12,680
450	22500	-24,2 5	-10.14	24,25	-32,78	12,67	32,78	2,43	14,265
500	25000	-26 ,95	-11,27	26,95	-36,43	14,08	36,43	2,70	15,850
550	27500	-29,64	-12,39	29,64	-40,07	15,49	40,07	2,97	17,435
600	30000	-32,34	-13,52	32,34	-43,71	16,90	43,71	3,24	19,020

	VIGA BI-APOIADA COM	CARREG		RME	Método Aproximado
Parâme	tros geométricos da seção	Parâmetr	os de elasticidade		
h _c =	4 [cm]	E _c =	35419 [MPa]	Κ =	26000 [N/mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	3 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
6 =	200 [cm]				
$A_c =$	120 [cm ²]			K =	866,67 [N / mm ²]
A _w =	96 [cm ²]			k =	1,21 [adim.]
$I_c =$	160 [cm ⁴]			γ _c =	0,45 [adim.]
I _w =	2048 [cm ⁴]				
a =	10 [cm]				
a _c =	3,74 [cm]				
a _w =	6,26 [cm]				

$$(EI)_{ef} = 102113185 [Mpa cm4]$$

Carga q	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão	Norm. Mac	i.(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[N/cm]	[N*m]	[MPa]	[[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-1,73	-1,47	1,73	-2,34	1,83	2,34	0,35	1,020
100	5000	-3,47	-2,94	3,47	-4,69	3,67	4,69	0,70	2,040
150	7500	-5,20	-4,40	5,20	-7,03	5,50	7,03	1,06	3,060
200	10000	-6,94	-5,87	6,94	-9,38	7,34	9,38	1,41	4,080
250	12500	-8,67	-7,34	8,67	-11,72	9,17	11,72	1,76	5,101
300	15000	-10,41	-8,81	10,41	-14,07	11,01	14,07	2,11	6,121
350	17500	-12,14	-10,27	12,14	-16,41	12,84	16,41	2,47	7,141
400	20000	-13,87	-11,74	13,87	-18,76	14,68	18,76	2,82	8,161
450	22500	-15,61	-13,21	15,61	-21,10	16,51	21,10	3,17	9,181
500	25000	-17,34	-14,68	17,34	-23,44	18,34	23,44	3,52	10,201
550	27500	-19,08	-16,14	19,08	-25,79	20,18	25,79	3,87	11,221
600	30000	-20,81	-17,61	20,81	-28,13	22,01	28,13	4,23	12,241

	VIGA BI-APOIADA COM	CARREG	AMENTO UNIFOR	RME	Método Aproximado
Parâmet	ros geométricos da seção	Parâmetr	os de elasticidade	Conexão	
h _c =	4 [cm]	E _c =	35419 [MPa]	K =	26000 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
ε =	200 [cm]				
4	$400.1 \text{ sm}^2 1$			ĨZ –	422.22 [N/ mm^2]
A _c =	120 [cm ⁻]			K =	433,33 [N / mm]
A _w =	96 [cm ⁻]			к =	2,42 [adim.]
$I_c =$	160 [cm⁴]			γ _c =	0,29 [adim.]
I _w =	2048 [cm ⁴]				
a =	10 [cm]				
a _c =	4,80 [cm]				
a _w =	5,20 [cm]				

(El)_{ef} = 89886300,4 [Mpa cm⁴]

and the second									
Carga q	M _{máximo}	Tensão N	Tensão Norm. Concr.(σ_c)		Tensão I	Tensão Norm. Mad. (σ_w)			V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[N/cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-1,97	-1,38	1,97	-2,66	1,73	2,66	0,33	1,159
100	5000	-3,94	-2,77	3,94	-5,33	3,46	5,33	0,66	2,318
150	7500	-5,91	-4,15	5,91	-7,99	5,19	7,99	1,00	3,477
200	10000	-7,88	-5,54	7,88	-10,65	6,92	10,65	1,33	4,635
250	12500	-9,85	-6,92	9,85	-13,32	8,65	13,32	1,66	5,794
300	15000	-11,82	-8,30	11,82	-15,98	10,38	15,98	1,99	6,953
350	17500	-13,79	-9,69	13,79	-18,64	12,11	18,64	2,32	8,112
400	20000	-15,76	-11,07	15,76	-21,31	13,84	21,31	2,66	9,271
450	22500	-17,73	-12,45	17,73	-23,97	15,57	23,97	2,99	10,430
500	25000	-19,70	-13,84	19,70	-26,63	17,30	26,63	3,32	11,589
550	27500	-21,67	-15,22	21,67	-29,30	19,03	29,30	3,65	12,748
600	30000	-23,64	-16,61	23,64	-31,96	20,76	31,96	3,99	13,906

	VIGA BI-APOIADA COM	CARREG	AMENTO UNIFOR	ME	Método Aproximado
Parâmet	ros geométricos da seção	Parâmetr	os de elasticidade	Conexão	
h _c =	4 [cm]	E _c =	35419 [MPa]	K =	26000 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	9 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
6 =	200 [cm]				
A _c =	120 [cm ²]			K =	288,89 [N / mm ²]
A _w =	96 [cm ²]			k =	3,63 [adim.]
I _c =	160 [cm⁴]			γ _c =	0,22 [adim.]
I _w =	2048 [cm ⁴]				
~ -	10 [om]				
a =	10 [CIII] 5 56 [cm]				
a _c -	0,00 [UII]				
a _w =	4,44 [CM]				

$$(EI)_{ef} = 81212158,79 [Mpa cm4]$$

Carga q	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão	Norm. Mac	d.(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[N/cm]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-2,18	-1,31	2,18	-2,95	1,64	2,95	0,31	1,283
100	5000	-4,36	-2,62	4,36	-5,90	3,27	5,90	0,63	2,565
150	7500	-6,54	-3,93	6,54	-8,84	4,91	8,84	0,94	3,848
200	10000	-8,72	-5,24	8,72	-11,79	6,55	11,79	1,26	5,131
250	12500	-10,90	-6,55	10,90	-14,74	8,18	14,74	1,57	6,413
300	15000	-13,08	-7,85	13,08	-17,69	9,82	17,69	1,89	7,696
350	17500	-15,26	-9,16	15,26	-20,63	11,45	20,63	2,20	8,979
400	20000	-17,45	-10,47	17,45	-23,58	13,09	23,58	2,51	10,261
450	22500	-19,63	-11,78	19,63	-26,53	14,73	26,53	2,83	11,544
500	25000	-21,81	-13,09	21,81	-29,48	16,36	29,48	3,14	12,826
550	27500	-23,99	-14,40	23,99	-32,43	18,00	32,43	3,46	14,109
600	30000	-26,17	-15,71	26.17	-35.37	19.64	35.37	3.77	15.392

Método Aproximado

Parâmetros geométricos da seção Parâmetros de elasticidade Conexão

$h_{c} = h_{w} = b_{c} = b_{w} = c = c$	4 [cm] 16 [cm] 30 [cm] 6 [cm] 200 [cm]	E _c = E _w =	35419 [MPa] 11970 [MPa]	K = s =	6500 [N / mm] 3 [cm]
$A_{c} =$ $A_{w} =$ $I_{c} =$ $I_{w} =$	120 [cm ²] 96 [cm ²] 160 [cm ⁴] 2048 [cm ⁴]			κ = k = γ _c =	216,67 [N / mm ²] 4,84 [adim.] 0,17 [adim.]
a = a _c = a _w =	10[cm] 6,12[cm] 3,88[cm]				

$$(EI)_{ef} = 74738719,34 [MPa * cm4]$$

Carga 2xP	M _{máximo}	Tensão N	orm. Con	cr.(σ_c)	Tensão No	orm. Mad.	(σ_{w})	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-3,16	-1,66	3,16	-4,27	2,07	4,27	0,30	1,900
20	6667	-6,32	-3,31	6,32	-8,54	4,14	8,54	0,60	3,799
30	10000	-9,48	-4,97	9,48	-12,81	6,21	12,81	0,89	5,699
40	13333	-12,64	-6,62	12,64	-17,08	8,28	17,08	1,19	7,598
50	16667	-15,80	-8,28	15,80	-21,35	10,35	21,35	1,49	9,498
60	20000	-18,96	-9,94	18,96	-25,63	12,42	25,63	1,79	11,398
70	23333	-22,12	-11,59	22,12	-29,90	14,49	29,90	2,09	13,297
80	26667	-25,27	-13,25	25,27	-34,17	16,56	34,17	2,38	15,197
90	30000	-28,43	-14,90	28,43	-38,44	18,63	38,44	2,68	17,097
100	33333	-31,59	-16,56	31,59	-42,71	20,70	42,71	2,98	18,996

Método Aproximado Parâmetros geométricos da seção Parâmetros de elasticidade Conexão $h_c =$ 4 [cm] $E_{c} = 35419 [MPa]$ K = 6500 [N/mm] h., = 16 [cm] E_w = 11970 [MPa] s = 6 [cm] 30 [cm] b_c = 6 [cm] b_w = 200 [cm] $\ell =$ 120 [cm²] 108,33 [N / mm²] K = $A_c =$ 96 [cm²] 9,68 [adim.] k = A_w = 160 [cm⁴] 0,09 [adim.] I_c = γ_c = 2048 [cm⁴] I_w = 10 [cm] a = a_c = 7,43 [cm] a_w = 2,57 [cm]

$$(EI)_{ef} = 59740194,71 [MPa * cm4]$$

Carga 2xP	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão No	orm. Mad.	(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	$Cis.(\phi_{máx})$	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-3,95	-1,37	3,95	-5,34	1,72	5,34	0,25	2,377
20	6667	-7,91	-2,75	7,91	-10,69	3,44	10,69	0,49	4,753
30	10000	-11,86	-4,12	11,86	-16,03	5,15	16,03	0,74	7,130
40	13333	-15,81	-5,50	15,81	-21,37	6,87	21,37	0,99	9,506
50	16667	-19,76	-6,87	19,76	-26,72	8,59	26,72	1,24	11,883
60	20000	-23,72	-8,25	23,72	-32,06	10,31	32,06	1,48	14,259
70	23333	-27,67	-9,62	27,67	-37,40	12,03	37,40	1,73	16,636
80	26667	-31,62	-11,00	31,62	-42,75	13,74	42,75	1,98	19,012
90	30000	-35,57	-12,37	35,57	-48,09	15,46	48,09	2,23	21,389
100	33333	-39,53	-13,74	39,53	-53,43	17,18	53,43	2,47	23,765

			~
VICA DI ADOIADA	0014 0 000000	ADD ICADAC NO	C TEDCOC DO VAO
	CUM Z CARGAS	APLICADAS NU	A LERUUA DU VAU

					Método Aproximado
Parâmetr	os geométricos da seção	Parâmet	ros de elasticidade	Conexão	
h _c =	4 [cm]	E_ =	35419 [MPa]	K =	6500 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	9 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
ε =	200 [cm]				
$A_{c} =$ $A_{w} =$ $I_{c} =$ $I_{w} =$	120 [cm ²] 96 [cm ²] 160 [cm ⁴] 2048 [cm ⁴]			κ = k = γ _c =	72,22 [N / mm ²] 14,52 [adim.] 0,06 [adim.]
a = a _c =	10 [cm] 8,08 [cm]				
a _w =	1,92 [cm]				

(El)_{ef} = 52296142,71 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão No	orm. Mad.	(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-4,52	-1,17	4,52	-6,10	1,47	6,10	0,21	2,715
20	6667	-9,03	-2,35	9,03	-12,21	2,94	12,21	0,42	5,430
30	10000	-13,55	-3,52	13,55	-18,31	4,40	18,31	0,63	8,144
40	13333	-18,06	-4,70	18,06	-24,41	5,87	24,41	0,85	10,859
50	16667	-22,58	-5,87	22,58	-30,52	7,34	30,52	1,06	13,574
60	20000	-27,09	-7,05	27,09	-36,62	8,81	36,62	1,27	16,289
70	23333	-31,61	-8,22	31,61	-42,73	10,28	42,73	1,48	19,004
80	26667	-36,12	-9,40	36,12	-48,83	11,75	48,83	1,69	21,719
90	30000	-40,64	-10,57	40,64	-54,93	13,21	54,93	1,90	24,433
100	33333	-45,15	-11,75	45,15	-61,04	14,68	61,04	2,11	27,148

Método Aproximado Parâmetros geométricos da seção Parâmetros de elasticidade Conexão 4 [cm] E_c = 35419 [MPa] K = 13000 [N / mm] h_c = 16 [cm] E_w = 11970 [MPa] 3 [cm] h., = s = b_c = 30 [cm] 6 [cm] b_w = 200 [cm] ć = 120 [cm²] 433,33 [N / mm²] <u></u>K = A_c = 96 [cm²] 2,42 [adim.] k = $A_w =$ 160 [cm⁴] I_c = γ_c = 0,29 [adim.] 2048 [cm⁴] ۱_w = a = 10 [cm] a_c = 4,80 [cm] 5,20 [cm] a_w =

(EI)_{ef} = 89886300,4 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão No	Tensão Norm. Mad. (σ_w)			V _{máxima}
		1	CG	2	1	CG	2	$Cis.(\phi_{máx})$	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-2,63	-1,85	2,63	-3,55	2,31	3,55	0,33	1,579
20	6667	-5,25	-3,69	5,25	-7,10	4,61	7,10	0,66	3,159
30	10000	-7,88	-5,54	7,88	-10,65	6,92	10,65	1,00	4,738
40	13333	-10,51	-7,38	10,51	-14,20	9,23	14,20	1,33	6,318
50	16667	-13,13	-9,23	13,13	-17,76	11,53	17,76	1,66	7,897
60	20000	-15,76	-11,07	15,76	-21,31	13,84	21,31	1,99	9,477
70	23333	-18,39	-12,92	18,39	-24,86	16,14	24,86	2,32	11,056
80	26667	-21,02	-14,76	21,02	-28,41	18,45	28,41	2,66	12,636
90	30000	-23,64	-16,61	23,64	-31,96	20,76	31,96	2,99	14,215
100	33333	-26,27	-18,45	26,27	-35,51	23,06	35,51	3,32	15,795

C. Apl. K=13000 s=6

VIGA BI-APOIADA COM 2 CARGAS APLICADAS NOS TERÇOS DO VÃO

				Método Aproximado
Parâmetros geométricos da seção	Parâmet	tros de elasticidade	Conexão	
h _e = 4 [cm]		35419 [MPa]	K =	13000 [N / mm]
h _w = 16 [cm]	E _w =	11970 [MPa]	s =	6 [cm]
b _c = 30 [cm]				
b _w = 6 [cm]				
<i>t</i> = 200 [cm]				
$A_{c} = 120 [cm^{2}]$			K =	216,67 [N / mm ²]
$A_{w} = 96 [cm^{2}]$			k =	4,84 [adim.]
I _c = 160 [cm ⁴]			γ _c =	0,17 [adim.]
I _w = 2048 [cm ⁴]				
a = 10 [cm]				
a _c = 6,12 [cm]				
a _w = 3,88 [cm]				

(El)_{ef} = 74738719,34 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão No	orm. Mad.	(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-3,16	-1,66	3,16	-4,27	2,07	4,27	0,30	1,900
20	6667	-6,32	-3,31	6,32	-8,54	4,14	8,54	0,60	3,799
30	10000	-9,48	-4,97	9,48	-12,81	6,21	12,81	0,89	5,699
40	13333	-12,64	-6,62	12,64	-17,08	8,28	17,08	1,19	7,598
50	16667	-15,80	-8,28	15,80	-21,35	10,35	21,35	1,49	9,498
60	20000	-18,96	-9,94	18,96	-25,63	12,42	25,63	1,79	11,398
70	23333	-22,12	-11,59	22,12	-29,90	14,49	29,90	2,09	13,297
80	26667	-25,27	-13,25	25,27	-34,17	16,56	34,17	2,38	15,197
90	30000	-28,43	-14,90	28,43	-38,44	18,63	38,44	2,68	17,097
100	33333	-31,59	-16,56	31,59	-42,71	20,70	42,71	2,98	18,996

Método Aproximado Parâmetros geométricos da seção Parâmetros de elasticidade Conexão E_c = 35419 [MPa] 13000 [N / mm] $h_{c} =$ 4 [cm] K = h_w = 16 [cm] E_w = 11970 [MPa] s = 9 [cm] b_c = 30 [cm] 6 [cm] b_w = 200 [cm] $\ell =$ 120 [cm²] \overline{K} = 144,44 [N/mm²] A_c = 96 [cm²] 7,26 [adim.] k = A_w = 160 [cm⁴] ا_د = 0,12 [adim.] γ_c = 2048 [cm⁴] l_w = a = 10 [cm] 6,91 [cm] a_c = 3,09 [cm] a_w =

(EI)_{ef} = 65721858,88 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão No	orm. Mad.	(σ _w)	Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-3,59	-1,50	3,59	-4,86	1,88	4,86	0,27	2,160
20	6667	-7,19	-3,00	7,19	-9,71	3,76	9,71	0,54	4,320
30	10000	-10,78	-4,51	10,78	-14,57	5,63	14,57	0,81	6,481
40	13333	-14,37	-6,01	14,37	-19,43	7,51	19,43	1,08	8,641
50	16667	-17,96	-7,51	17,96	-24,28	9,39	24,28	1,35	10,801
60	20000	-21,56	-9,01	21,56	-29,14	11,27	29,14	1,62	12,961
70	23333	-25,15	-10,51	25,15	-34,00	13,14	34,00	1,89	15,122
80	26667	-28,74	-12,02	28,74	-38,85	15,02	38,85	2,16	17,282
90	30000	-32,34	-13,52	32,34	-43,71	16,90	43,71	2,43	19,442
100	33333	-35,93	-15,02	35,93	-48,57	18,78	48,57	2,70	21,602

					Método Aproximado
Parâmet	ros geométricos da seção	Parâme	tros de elasticidade	Conexão	
h _e =	4 [cm]	E _c =	35419 [MPa]	K =	26000 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s ==	3 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
<i>l</i> =	200 [cm]				
A _c =	120 [cm ²]			K =	866,67 [N / mm ²]
A _w =	96 [cm ²]			k =	1,21 [adim.]
I _c =	160 [cm⁴]			$\gamma_{c} =$	0,45 [adim.]
۱ _w =	2048 [cm ⁴]				
a =	10 [cm]				
a _c =	3,74 [cm]				
a _w =	6,26 [cm]				

(El)_{ef} = 102113185 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	Tensão Norm. Concr.(σ_c) Tensão Norm. Mad. (σ_w)				Fluxo de	V _{máxima}	
		1	CG	2	1	CG	2	$Cis.(\phi_{max})$	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-2,31	-1,96	2,31	-3,13	2,45	3,13	0,35	1,390
20	6667	-4,62	-3,91	4,62	-6,25	4,89	6,25	0,70	2,781
30	10000	-6,94	-5,87	6,94	-9,38	7,34	9,38	1,06	4,171
40	13333	-9,25	-7,83	9,25	-12,50	9,78	12,50	1,41	5,561
50	16667	-11,56	-9,78	11,56	-15,63	12,23	15,63	1,76	6,952
60	20000	-13,87	-11,74	13,87	-18,76	14,68	18,76	2,11	8,342
70	23333	-16,19	-13,70	16,19	-21,88	17,12	21,88	2,47	9,733
80	26667	-18,50	-15,65	18,50	-25,01	19,57	25,01	2,82	11,123
90	30000	-20,81	-17,61	20,81	-28,13	22,01	28,13	3,17	12,513
100	33333	-23,12	-19,57	23,12	-31,26	24,46	31,26	3,52	13,904

Método Aproximado Parâmetros geométricos da seção Parâmetros de elasticidade Conexão h_c = 4 [cm] $E_{c} = 35419 [MPa]$ K = 26000 [N/mm] 16 [cm] E_w = 11970 [MPa] 6 [cm] h.,, = s = b_c = 30 [cm] 6 [cm] b_w = 200 [cm] $\ell =$ 120 [cm²] 433,33 [N / mm²] A_c = **K** = 96 [cm²] 2,42 [adim.] k = A_w = 160 [cm⁴] ۱_c = γ_c = 0,29 [adim.] 2048 [cm⁴] I_w = 10 [cm] a = a_c = 4,80 [cm] a_w = 5,20 [cm]

(EI)_{ef} = 89886300,4 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	cr.(σ _c)	Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-2,63	-1,85	2,63	-3,55	2,31	3,55	0,33	1,579
20	6667	-5,25	-3,69	5,25	-7,10	4,61	7,10	0,66	3,159
30	10000	-7,88	-5,54	7,88	-10,65	6,92	10,65	1,00	4,738
40	13333	-10,51	-7,38	10,51	-14,20	9,23	14,20	1,33	6,318
50	16667	-13,13	-9,23	13,13	-17,76	11,53	17,76	1,66	7,897
60	20000	-15,76	-11,07	15,76	-21,31	13,84	21,31	1,99	9,477
70	23333	-18,39	-12,92	18,39	-24,86	16,14	24,86	2,32	11,056
80	26667	-21,02	-14,76	21,02	-28,41	18,45	28,41	2,66	12,636
90	30000	-23,64	-16,61	23,64	-31,96	20,76	31,96	2,99	14,215
100	33333	-26,27	-18,45	26,27	-35,51	23,06	35,51	3,32	15,795

VIGA BI-APOIADA COM 2 CARGAS APLICADAS NOS TERÇOS DO VÃO										
Darâmai	tran anomátricon do conão	Parâmo	troc do plasticidado	Conovão	Netodo Aproximado					
Falaille	nos geomenicos da seção	Falanie		Collexau						
h _c =	4 [cm]	E _c =	35419 [MPa]	K =	26000 [N/mm]					
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	9 [cm]					
b _c =	30 [cm]									
b _w =	6 [cm]									
ε =	200 [cm]									
A _c =	120 [cm ²]			K =	288,89 [N / mm ²]					
A _w =	96 [cm ²]			k =	3,63 [adim.]					
1 _c =	160 [cm⁴]			$\gamma_{c} =$	0,22 [adim.]					
۱ _w =	2048 [cm ⁴]									
a =	10 [cm]									
a _c =	5,56 [cm]									
a _w =	4,44 [cm]									

(EI)_{ef} = 81212158,79 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	cr.(σ_c)) Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.(ϕ_{max}))
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-2,91	-1,75	2,91	-3,93	2,18	3,93	0,31	1,748
20	6667	-5,82	-3,49	5,82	-7,86	4,36	7,86	0,63	3,496
30	10000	-8,72	-5,24	8,72	-11,79	6,55	11,79	0,94	5,245
40	13333	-11,63	-6,98	11,63	-15,72	8,73	15,72	1,26	6,993
50	16667	-14,54	-8,73	14,54	-19,65	10,91	19,65	1,57	8,741
60	20000	-17,45	-10,47	17,45	-23,58	13,09	23,58	1,89	10,489
70	23333	-20,35	-12,22	20,35	-27,51	15,27	27,51	2,20	12,237
80	26667	-23,26	-13,96	23,26	-31,44	17,45	31,44	2,51	13,986
90	30000	-26,17	-15,71	26,17	-35,37	19,64	35,37	2,83	15,734
100	33333	-29,08	-17,45	29,08	-39,30	21,82	39,30	3,14	17,482

C. Apl. K=65 s=6

VIGA BI-APOIADA COM 2 CARGAS APLICADAS NOS TERÇOS DO VÃO

					Método Aproximado
Parâmetros	geométricos da seção	Parâmet	ros de elasticidade	Conexão	
7	4 5 0.00 3		00440 1240-1	11	AP IN / man 7
n _c =	4 [cm]	$E_0 =$	35419 [MPa]	N =	l uuu / vi] co
h _w =	16 [cm]	E _w =	11970 [MPa]	5	6 [cm]
b _o =	30 [cm]				
b _w =	6 [cm]				
ć =	200 [cm]				
A _c =	120 [cm ²]			K =	1,08 [N / mm²]
A _w =	96 [cm ²]			k =	968,04 [adim.]
I _c =	160 [cm ⁴]			γ _c =	0,00 [adim.]
I _w =	2048 [cm ⁴]				
a =	10 [cm]				
a _c =	9,96 [cm]				
a _w =	0,04 [cm]				

(El)_{ef} = 30618537,64 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	cr.(σ_c)	Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	$Cis.(\phi_{máx})$	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-7,71	-0,04	7,71	-10,43	0,05	10,43	0,01	4,637
20	6667	-15,42	-0,08	15,42	-20,85	0,10	20,85	0,01	9,274
30	10000	-23,14	-0,12	23,14	-31,28	0,15	31,28	0,02	13,911
40	13333	-30,85	-0,16	30,85	-41,70	0,20	41,70	0,03	18,548
50	16667	-38,56	-0,20	38,56	-52,13	0,25	52,13	0,04	23,185
60	20000	-46,27	-0,24	46,27	-62,55	0,30	62,55	0,04	27,821
70	23333	-53,98	-0,28	53,98	-72,98	0,35	72,98	0,05	32,458
80	26667	-61,70	-0,32	61,70	-83,40	0,40	83,40	0,06	37,095
90	30000	-69,41	-0,36	69,41	-93,83	0,45	93,83	0,06	41,732
100	33333	-77,12	-0,40	77,12	-104,25	0,50	104,25	0,07	46,369

C. Apl. K=2600000 s=6

VIGA BI-APOIADA COM 2 CARGAS APLICADAS NOS TERÇOS DO VÃO

					Método Aproximado
Parâmetro	os geométricos da seção	Parâme	tros de elasticidade	Conexão	
h _e =	4 [cm]	E _c =	35419 [MPa]	K =	2600000 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	s =	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
ć =	200 [cm]				
A _c =	120 [cm ²]			- K =	43333,33 [N / mm ²]
A _w =	96 [cm ²]			k =	0,02 [adim.]
I _c =	160 [cm ⁴]			γc =	0,98 [adim.]
I _w =	2048 [cm ⁴]				
a =	10 [cm]				
a –	2 17 [cm]				
a _c –					
a _w =	7,83 [cm]				

(El)_{ef} = 120174096,6 [MPa * cm⁴]

Carga 2xP	M _{máximo}	Tensão N	orm. Con	$\operatorname{cr.}(\sigma_{c})$	Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}
		1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-1,96	-2,08	1,96	-2,66	2,60	2,66	0,37	1,181
20	6667	-3,93	-4,16	3,93	-5,31	5,20	5,31	0,75	2,363
30	10000	-5,89	-6,24	5,89	-7,97	7,80	7,97	1,12	3,544
40	13333	-7,86	-8,32	7,86	-10,62	10,40	10,62	1,50	4,726
50	16667	-9,82	-10,40	9,82	-13,28	13,00	13,28	1,87	5,907
60	20000	-11,79	-12,48	11,79	-15,94	15,60	15,94	2,25	7,088
70	23333	-13,75	-14,56	13,75	-18,59	18,20	18,59	2,62	8,270
80	26667	-15,72	-16,64	15,72	-21,25	20,80	21,25	3,00	9,451
90	30000	-17,68	-18,72	17,68	-23,91	23,40	23,91	3,37	10,633
100	33333	-19,65	-20,80	19,65	-26,56	26,00	26,56	3,74	11,814

Exato	Método	VIGA BI-APOIADA COM CARREGAMENTO UNIFORME						
0	Conexão	te elasticidade	Parâmetros geom. da seção					
6500 [N / mm]	κ =	35419 [MPa]	les en	4 [cm]	h _c =			
3 [cm]	5 -	11970 [MPa]	E _w =	16 [cm]	h _w =			
				30 [cm]	b _c =			
				6 [cm]	b _w =			
		10 [cm]	r =	200 [cm]	$\ell =$			
		30181600,00 [MPa cm ⁴]	(EI) ₀ =					
		120637609,07 [MPa cm ⁴]	(EI) ₀₀ =					
216,67 [N / mm ²]	K =			120 [cm ²]	$A_c =$			
		0,000957404 [cm ⁻²]	$\alpha^2 =$	96 [cm ²]	A _w =			
		0,030941942 [cm ⁻¹]	α =	160 [cm ⁴]	$I_{c} =$			
		7,17877E-05	β =	2048 [cm ⁴]	I _w =			

Carga q	M _{máximo}	v"(<i>t</i> /2) =	v'''(0) =	N _c	N _w	M _c	Mw	Tensão Norm. Concr.(σ_c)		$\operatorname{hcr.}(\sigma_{c})$	Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000325243	-0,0000008143	-15183,66	15183,66	184,32	797,32	-2,30	-1,27	2,30	-3,11	1,58	3,11	0,25	1,389
100	5000	-0,0000650485	-0,0000016285	-30367,32	30367,32	368,63	1594,64	-4,61	-2,53	4,61	-6,23	3,16	6,23	0,51	2,778
150	7500	-0,0000975728	-0,0000024428	-45550,98	45550,98	552,95	2391,95	-6,91	-3,80	6,91	-9,34	4,74	9,34	0,76	4,167
200	10000	-0,0001300970	-0,0000032571	-60734,64	60734,64	737,26	3189,27	-9,22	-5,06	9,22	-12,46	6,33	12,46	1,02	5,556
250	12500	-0,0001626213	-0,0000040714	-75918,30	75918,30	921,58	3986,59	-11,52	-6,33	11,52	-15,57	7,91	15,57	1,27	6,945
300	15000	-0,0001951455	-0,0000048856	-91101,96	91101,96	1105,90	4783,91	-13,82	-7,59	13,82	-18,69	9,49	18,69	1,53	8,334
350	17500	-0,0002276698	-0,0000056999	-106285,62	106285,62	1290,21	5581,22	-16,13	-8,86	16,13	-21,80	11,07	21,80	1,78	9,722
400	20000	-0,0002601940	-0,0000065142	-121469,28	121469,28	1474,53	6378,54	-18,43	-10,12	18,43	-24,92	12,65	24,92	2,03	11,111
450	22500	-0,0002927183	-0,0000073285	-136652,94	136652,94	1658,85	7175,86	-20,74	-11,39	20,74	-28,03	14,23	28,03	2,29	12,500
500	25000	-0,0003252425	-0,0000081427	-151836,60	151836,60	1843,16	7973,18	-23,04	-12,65	23,04	-31,15	15,82	31,15	2,54	13,889
550	27500	-0,0003577668	-0,0000089570	-167020,26	167020,26	2027,48	8770,50	-25,34	-13,92	25,34	-34,26	17,40	34,26	2,80	15,278
600	30000	-0,0003902910	-0,0000097713	-182203,92	182203,92	2211,79	9567,81	-27,65	-15,18	27,65	-37,37	18,98	37,37	3,05	16,667

C. Unif. K=6500 s=6

VIGA BI-APOIADA COM CARREGAMENTO UNIFORME

Parâmetros geom. da seção Parâmetros de elasticidade $h_c =$ 4 [cm] $E_c =$ 35419 [MPa] $h_w =$ 16 [cm] E_{vv} = 11970 [MPa] b_c = 30 [cm] 6 [cm] b_w = $\ell =$ 200 [cm] 10 [cm] r = 30181600,00 [MPa cm⁴] (EI)₀ = 120637609,07 [MPa cm⁴] (EI)₀₀ = $120 [cm^2]$ $A_c =$ $\alpha^2 =$ A_w = 96 [cm²] 0,000478702 [cm⁻²] 0,021879257 [cm⁻¹] 160 [cm⁴] I_c = α= 2048 [cm⁴] 3,58938E-05 I_w = β =

~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	nr	NOV20
	111	IC ACIU
-		

K	withte withte	6500	herows	N	ļ	mm	1
S	1093 6.943	6	luences	cn	n]	

 \overline{K} = 108,33 [N/mm²]

Carga q	M _{máximo}	v''(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Cor	ncr.(σ _c)	Tensão	Norm. Ma	d. (σ _w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(ψ _{máx})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000409240	-0,0000009681	-12648,47	12648,47	231,92	1003,24	-2,90	-1,05	2,90	-3,92	1,32	3,92	0,21	1,739
100	5000	-0,0000818481	-0,0000019362	-25296,94	25296,94	463,84	2006,47	-5,80	-2,11	5,80	-7,84	2,64	7,84	0,42	3,478
150	7500	-0,0001227721	-0,0000029043	-37945,40	37945,40	695,75	3009,71	-8,70	-3,16	8,70	-11,76	3,95	11,76	0,62	5,217
200	10000	-0,0001636962	-0,0000038724	-50593,87	50593,87	927,67	4012,94	-11,60	-4,22	11,60	-15,68	5,27	15,68	0,83	6,956
250	12500	-0,0002046202	-0,0000048405	-63242,34	63242,34	1159,59	5016,18	-14,49	-5,27	14,49	-19,59	6,59	19,59	1,04	8,695
300	15000	-0,0002455443	-0,0000058086	-75890,81	75890,81	1391,51	6019,41	-17,39	-6,32	17,39	-23,51	7,91	23,51	1,25	10,433
350	17500	-0,0002864683	-0,0000067767	-88539,27	88539,27	1623,43	7022,65	-20,29	-7,38	20,29	-27,43	9,22	27,43	1,45	12,172
400	20000	-0,0003273924	-0,0000077448	-101187,74	101187,74	1855,35	8025,88	-23,19	-8,43	23,19	-31,35	10,54	31,35	1,66	13,911
450	22500	-0,0003683164	-0,0000087129	-113836,21	113836,21	2087,26	9029,12	-26,09	-9,49	26,09	-35,27	11,86	35,27	1,87	15,650
500	25000	-0,0004092405	-0,0000096810	-126484,68	126484,68	2319,18	10032,35	-28,99	-10,54	28,99	-39,19	13,18	39,19	2,08	17,389
550	27500	-0,0004501645	-0,0000106491	-139133,15	139133,15	2551,10	11035,59	-31,89	-11,59	31,89	-43,11	14,49	43,11	2,29	19,128
600	30000	-0,0004910886	-0,0000116172	-151781,61	151781,61	2783,02	12038,82	-34,79	-12,65	34,79	-47,03	15,81	47,03	2,49	20,867

Parâmetros geom. da seção Parâmetros de elasticidade

Método Exato

Conexão

K =	6500 [N / mm]
5 🛤	9 [cm]

h _c =	4 [cm]		35419 [MPa]
h _w =	16 [cm]	E., =	11970 [MPa]
b _c =	30 [cm]		
b _w =	6 [cm]		
$\ell =$	200 [cm]	r =	10 [cm]
		(EI) ₀ =	30181600,00 [MPa cm ⁴]
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]
A _c =	120 [cm ²]		
A _w =	96 [cm ²]	$\alpha^2 =$	0,000319135 [cm ⁻²]
I _c =	160 [cm ⁴]	α =	0,017864339[cm ⁻¹]
$I_w =$	2048 [cm ⁴]	$\beta =$	2,39292E-05

K =	72,22	[N	$/ \mathrm{mm}^2$]
N -	12,22	LIN	/ 111111	

Carga q	M _{máximo}	v''(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Co	ncr.(σ_c)	Tensão	Norm. Ma	id. (σ _w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000469589	-0,0000010718	-10827,04	10827,04	266,12	1151,18	-3,33	-0,90	3,33	-4,50	1,13	4,50	0,18	1,988
100	5000	-0,0000939179	-0,0000021436	-21654,08	21654,08	532,24	2302,36	-6,65	-1,80	6,65	-8,99	2,26	8,99	0,35	3,975
150	7500	-0,0001408768	-0,0000032155	-32481,12	32481,12	798,35	3453,53	-9,98	-2,71	9,98	-13,49	3,38	13,49	0,53	5,963
200	10000	-0,0001878358	-0,0000042873	-43308,15	43308,15	1064,47	4604,71	-13,31	-3,61	13,31	-17,99	4,51	17,99	0,71	7,950
250	12500	-0,0002347947	-0,0000053591	-54135,19	54135,19	1330,59	5755,89	-16,63	-4,51	16,63	-22,48	5,64	22,48	0,88	9,938
300	15000	-0,0002817537	-0,0000064309	-64962,23	64962,23	1596,71	6907,07	-19,96	-5,41	19,96	-26,98	6,77	26,98	1,06	11,925
350	17500	-0,0003287126	-0,0000075028	-75789,27	75789,27	1862,83	8058,25	-23,29	-6,32	23,29	-31,48	7,89	31,48	1,24	13,913
400	20000	-0,0003756716	-0,0000085746	-86616,31	86616,31	2128,95	9209,42	-26,61	-7,22	26,61	-35,97	9,02	35,97	1,41	15,900
450	22500	-0,0004226305	-0,0000096464	-97443,35	97443,35	2395,06	10360,60	-29,94	-8,12	29,94	-40,47	10,15	40,47	1,59	17,888
500	25000	-0,0004695895	-0,0000107182	-108270,39	108270,39	2661,18	11511,78	-33,26	-9,02	33,26	-44,97	11,28	44,97	1,77	19,875
550	27500	-0,0005165484	-0,0000117901	-119097,42	119097,42	2927,30	12662,96	-36,59	-9,92	36,59	-49,46	12,41	49,46	1,94	21,863
600	30000	-0,0005635074	-0,0000128619	-129924,46	129924,46	3193,42	13814,13	-39,92	-10,83	39,92	-53,96	13,53	53,96	2,12	23,850

Parâmetr	os geom. da seção	Parâmetros o	le elasticidade
h _c =	4 [cm]	Energy and	35419 [MPa]
h _w =	16 [cm]	E.,, =	11970 [MPa]
b _c =	30 [cm]		
b _w =	6 [cm]		
$\ell =$	200 [cm]	r =	10 [cm]
		(EI) ₀ =	30181600,00 [MPa cm ⁴]
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]
$A_c =$	120 [cm ²]		
A _w =	96 [cm ²]	$\alpha^2 =$	0,001914808 [cm ⁻²]
$I_{c} =$	160 [cm ⁴]	$\alpha =$	0,043758514 [cm ⁻¹]
$I_{w} =$	2048 [cm ⁴]	β =	0,000143575

Método Exato

Conexão

K :	: 1	3000	ľ	N	I	mm	lectors!
5	NA NA	3	land and	cn	n]	

 \overline{K} = 433,33 [N / mm²]

Carga q	M _{máximo}	v"(t/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Co	ncr.(σ _c)	Tensão	Norm. Ma	d. (σ _w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000270473	-0,0000006982	-16836,70	16836,70	153,28	663,05	-1,92	-1,40	1,92	-2,59	1,75	2,59	0,29	1,155
100	5000	-0,0000540945	-0,0000013965	-33673,41	33673,41	306,56	1326,10	-3,83	-2,81	3,83	-5,18	3,51	5,18	0,58	2,310
150	7500	-0,0000811418	-0,0000020947	-50510,11	50510,11	459,83	1989,16	-5,75	-4,21	5,75	-7,77	5,26	7,77	0,87	3,464
200	10000	-0,0001081891	-0,0000027930	-67346,81	67346,81	613,11	2652,21	-7,66	-5,61	7,66	-10,36	7,02	10,36	1,16	4,619
250	12500	-0,0001352363	-0,0000034912	-84183,51	84183,51	766,39	3315,26	-9,58	-7,02	9,58	-12,95	8,77	12,95	1,45	5,774
300	15000	-0,0001622836	-0,0000041895	-101020,22	101020,22	919,67	3978,31	-11,50	-8,42	11,50	-15,54	10,52	15,54	1,74	6,929
350	17500	-0,0001893308	-0,0000048877	-117856,92	117856,92	1072,95	4641,36	-13,41	-9,82	13,41	-18,13	12,28	18,13	2,02	8,084
400	20000	-0,0002163781	-0,0000055860	-134693,62	134693,62	1226,22	5304,41	-15,33	-11,22	15,33	-20,72	14,03	20,72	2,31	9,238
450	22500	-0,0002434254	-0,0000062842	-151530,33	151530,33	1379,50	5967,47	-17,24	-12,63	17,24	-23,31	15,78	23,31	2,60	10,393
500	25000	-0,0002704726	-0,0000069824	-168367,03	168367,03	1532,78	6630,52	-19,16	-14,03	19,16	-25,90	17,54	25,90	2,89	11,548
550	27500	-0,0002975199	-0,0000076807	-185203,73	185203,73	1686,06	7293,57	-21,08	-15,43	21,08	-28,49	19,29	28,49	3,18	12,703
600	30000	-0,0003245672	-0,0000083789	-202040,44	202040,44	1839,34	7956,62	-22,99	-16,84	22,99	-31,08	21,05	31,08	3,47	13,858

Parâmetros geom. da seção Parâmetros de elasticidade

Método Exato

Co	nexão
~ ~	110/10/0

13000 [N / mm]	K =	35419 [MPa]	forme C Access	4 [cm]	h _c =
6 [cm]	5 =	11970 [MPa]	tona man	16 [cm]	h _w =
				30 [cm]	b _c =
				6 [cm]	b _w =
		10 [cm]	r =	200 [cm]	<i>č</i> ==
		30181600,00 [MPa cm ⁴]	(EI) ₀ =		
		120637609,07 [MPa cm ⁴]	(EI) ₀₀ =		
216,67 [N / mm ²]	K =			120 [cm ²]	A _c =
		0,000957404 [cm ⁻²]	$\alpha^2 =$	96 [cm ²]	A _w =
		0,030941942 [cm ⁻¹]	$\alpha =$	160 [cm ⁴]	I _c =
		7,17877E-05	β =	2048 [cm ⁴]	l _w =

Carga q	M _{máximo}	v"(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Col	nor.(σ_c)	Tensão	Norm. Ma	d. (ơ _w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000325243	-0,0000008143	-15183,66	15183,66	184,32	797,32	-2,30	-1,27	2,30	-3,11	1,58	3,11	0,25	1,389
100	5000	-0,0000650485	-0,0000016285	-30367,32	30367,32	368,63	1594,64	-4,61	-2,53	4,61	-6,23	3,16	6,23	0,51	2,778
150	7500	-0,0000975728	-0,0000024428	-45550,98	45550,98	552,95	2391,95	-6,91	-3,80	6,91	-9,34	4,74	9,34	0,76	4,167
200	10000	-0,0001300970	-0,0000032571	-60734,64	60734,64	737,26	3189,27	-9,22	-5,06	9,22	-12,46	6,33	12,46	1,02	5,556
250	12500	-0,0001626213	-0,0000040714	-75918,30	75918,30	921,58	3986,59	-11,52	-6,33	11,52	-15,57	7,91	15,57	1,27	6,945
300	15000	-0,0001951455	-0,0000048856	-91101,96	91101,96	1105,90	4783,91	-13,82	-7,59	13,82	-18,69	9,49	18,69	1,53	8,334
350	17500	-0,0002276698	-0,0000056999	-106285,62	106285,62	1290,21	5581,22	-16,13	-8,86	16,13	-21,80	11,07	21,80	1,78	9,722
400	20000	-0,0002601940	-0,0000065142	-121469,28	121469,28	1474,53	6378,54	-18,43	-10,12	18,43	-24,92	12,65	24,92	2,03	11,111
450	22500	-0,0002927183	-0,0000073285	-136652,94	136652,94	1658,85	7175,86	-20,74	-11,39	20,74	-28,03	14,23	28,03	2,29	12,500
500	25000	-0,0003252425	-0,0000081427	-151836,60	151836,60	1843,16	7973,18	-23,04	-12,65	23,04	-31,15	15,82	31,15	2,54	13,889
550	27500	-0,0003577668	-0,0000089570	-167020,26	167020,26	2027,48	8770,50	-25,34	-13,92	25,34	-34,26	17,40	34,26	2,80	15,278
600	30000	-0,0003902910	-0,0000097713	-182203,92	182203,92	2211,79	9567,81	-27,65	-15,18	27,65	-37,37	18,98	37,37	3,05	16,667

Método Exato Conexão

Parâmet	ros geom. da seção	Parâmetros	de elasticidade	Conexão			
h _c =	4 [cm]	E. =	35419 [MPa]	K =	13000 [N / mm]		
h _w =	16 [cm]	E.,, =	11970 [MPa]	5 m	9 [cm]		
b _c =	30 [cm]						
b _w =	6 [cm]						
$\ell =$	200 [cm]	r =	10 [cm]				
		(EI) ₀ =	30181600,00 [MPa cm ⁴]				
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]				
A _c =	120 [cm ²]			K =	144,44 [N / mm ²]		
A _w =	96 [cm ²]	$\alpha^2 =$	0,000638269 [cm ⁻²]				
I _c =	160 [cm ⁴]	$\alpha =$	0,02526399 [cm ⁻¹]				
$I_w =$	2048 [cm ⁴]	β =	4,78584E-05				

Carga q	M _{máximo}	v"(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ		ncr.(σ_c)) Tensão Norm. Mad. (σ _w)		id. (σ_w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000370928	-0,0000008999	-13804,79	13804,79	210,21	909,31	-2,63	-1,15	2,63	-3,55	1,44	3,55	0,23	1,580
100	5000	-0,0000741856	-0,0000017998	-27609,59	27609,59	420,41	1818,63	-5,26	-2,30	5,26	-7,10	2,88	7,10	0,46	3,160
150	7500	-0,0001112784	-0,0000026997	-41414,38	41414,38	630,62	2727,94	-7,88	-3,45	7,88	-10,66	4,31	10,66	0,69	4,740
200	10000	-0,0001483713	-0,0000035996	-55219,18	55219,18	840,83	3637,26	-10,51	-4,60	10,51	-14,21	5,75	14,21	0,91	6,320
250	12500	-0,0001854641	-0,0000044995	-69023,97	69023,97	1051,03	4546,57	-13,14	-5,75	13,14	-17,76	7,19	17,76	1,14	7,900
300	15000	-0,0002225569	-0,0000053994	-82828,77	82828,77	1261,24	5455,88	-15,77	-6,90	15,77	-21,31	8,63	21,31	1,37	9,480
350	17500	-0,0002596497	-0,0000062993	-96633,56	96633,56	1471,45	6365,20	-18,39	-8,05	18,39	-24,86	10,07	24,86	1,60	11,061
400	20000	-0,0002967425	-0,0000071992	-110438,36	110438,36	1681,65	7274,51	-21,02	-9,20	21,02	-28,42	11,50	28,42	1,83	12,641
450	22500	-0,0003338353	-0,0000080991	-124243,15	124243,15	1891,86	8183,83	-23,65	-10,35	23,65	-31,97	12,94	31,97	2,06	14,221
500	25000	-0,0003709282	-0,0000089990	-138047,95	138047,95	2102,06	9093,14	-26,28	-11,50	26,28	-35,52	14,38	35,52	2,28	15,801
550	27500	-0,0004080210	-0,0000098989	-151852,74	151852,74	2312,27	10002,45	-28,90	-12,65	28,90	-39,07	15,82	39,07	2,51	17,381
600	30000	-0,0004451138	-0,0000107988	-165657,53	165657,53	2522,48	10911,77	-31,53	-13,80	31,53	-42,62	17,26	42,62	2,74	18,961

Parâmet	ros geom. da seção	Parâmetros c	C	
h _c =	4 [cm]		35419 [MPa]	
h _w =	16 [cm]	E _w =	11970 [MPa]	
b _c =	30 [cm]			
$b_w =$	6 [cm]			
$\ell =$	200 [cm]	r =	10 [cm]	
		(EI) ₀ =	30181600,00 [MPa cm ⁴]	
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]	
A _c =	120 [cm ²]			
A _w =	96 [cm ²]	$\alpha^2 =$	0,003829615[cm ⁻²]	
I _c =	160 [cm ⁴]	$\alpha =$	0,061883884 [cm ⁻¹]	
$I_{w} =$	2048 [cm ⁴]	$\beta =$	0,000287151	

Método Exato

Conexão

Κ	yield: alter	26000	formeric	N /	mm	2
S	67835 62765	3	facential	cm]	

 \overline{K} = 866,67 [N / mm²]

Carga q	M _{máximo}	v''(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Coi	ncr.(σ _c)	Tensão	Norm. Ma	d. (σ _w)	Fluxo de	V _{máxima}
_								1	CG	2	1	CG	2	Cis.(ψ _{máx})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000239535	-0,0000006152	-17770,45	17770,45	135,75	587,21	-1,70	-1,48	1,70	-2,29	1,85	2,29	0,31	1,017
100	5000	-0,0000479070	-0,0000012304	-35540,90	35540,90	271,49	1174,42	-3,39	-2,96	3,39	-4,59	3,70	4,59	0,63	2,034
150	7500	-0,0000718605	-0,0000018456	-53311,35	53311,35	407,24	1761,63	-5,09	-4,44	5,09	-6,88	5,55	6,88	0,94	3,052
200	10000	-0,0000958140	-0,0000024608	-71081,80	71081,80	542,98	2348,84	-6,79	-5,92	6,79	-9,18	7,40	9,18	1,26	4,069
250	12500	-0,0001197675	-0,0000030759	-88852,25	88852,25	678,73	2936,05	-8,48	-7,40	8,48	-11,47	9,26	11,47	1,57	5,086
300	15000	-0,0001437210	-0,0000036911	-106622,70	106622,70	814,47	3523,26	-10,18	-8,89	10,18	-13,76	11,11	13,76	1,89	6,103
350	17500	-0,0001676745	-0,0000043063	-124393,15	124393,15	950,22	4110,47	-11,88	-10,37	11,88	-16,06	12,96	16,06	2,20	7,120
400	20000	-0,0001916280	-0,0000049215	-142163,60	142163,60	1085,96	4697,68	-13,57	-11,85	13,57	-18,35	14,81	18,35	2,51	8,138
450	22500	-0,0002155815	-0,0000055367	-159934,04	159934,04	1221,71	5284,89	-15,27	-13,33	15,27	-20,64	16,66	20,64	2,83	9,155
500	25000	-0,0002395350	-0,0000061519	-177704,49	177704,49	1357,45	5872,10	-16,97	-14,81	16,97	-22,94	18,51	22,94	3,14	10,172
550	27500	-0,0002634885	-0,0000067671	-195474,94	195474,94	1493,20	6459,31	-18,67	-16,29	18,67	-25,23	20,36	25,23	3,46	11,189
600	30000	-0,0002874420	-0,0000073823	-213245,39	213245,39	1628,95	7046,52	-20,36	-17,77	20,36	-27,53	22,21	27,53	3,77	12,207

C. Unif. K=26000 s=6

VIGA BI-APOIADA COM CARREGAMENTO UNIFORME

Parâmet	ros geom.da seção	Parâmetros d	e elasticidade
h _c =	4 [cm]	in C m	35419 [MPa]
h _w =	16 [cm]	E _w =	11970 [MPa]
b _c =	30 [cm]		
b _w =	6 [cm]		
$\ell =$	200 [cm]	r =	10 [cm]
		(EI) ₀ =	30181600,00 [MPa cm ⁴]
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]
A _c =	120 [cm ²]		
A _w =	96 [cm ²]	$\alpha^2 =$	0,001914808 [cm ⁻²]
$I_{c} =$	160 [cm ⁴]	α =	0,043758514 [cm ⁻¹]
I _w =	2048[cm ⁴]	$\beta =$	0,000143575

Método Exato

Conexão

K	sinkus 2008a	26000	homes	N /	mm	Same S
S	arites Arites	6	hannad	cm	(means)	

 \overline{K} = 433,33 [N/mm²]

Carga q	M _{máximo}	v''(<i>t</i> /2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Coi	ncr.(σ_c)	Tensão	Norm. Ma	id.(σ _w)	Fluxo de	V _{máxíma}
								1	CG	2	1	CG	2	Cís.(ψ _{máx})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000270473	-0,0000006982	-16836,70	16836,70	153,28	663,05	-1,92	-1,40	1,92	-2,59	1,75	2,59	0,29	1,155
100	5000	-0,0000540945	-0,0000013965	-33673,41	33673,41	306,56	1326,10	-3,83	-2,81	3,83	-5,18	3,51	5,18	0,58	2,310
150	7500	-0,0000811418	-0,0000020947	-50510,11	50510,11	459,83	1989,16	-5,75	-4,21	5,75	-7,77	5,26	7,77	0,87	3,464
200	10000	-0,0001081891	-0,0000027930	-67346,81	67346,81	613,11	2652,21	-7,66	-5,61	7,66	-10,36	7,02	10,36	1,16	4,619
250	12500	-0,0001352363	-0,0000034912	-84183,51	84183,51	766,39	3315,26	-9,58	-7,02	9,58	-12,95	8,77	12,95	1,45	5,774
300	15000	-0,0001622836	-0,0000041895	-101020,22	101020,22	919,67	3978,31	-11,50	-8,42	11,50	-15,54	10,52	15,54	1,74	6,929
350	17500	-0,0001893308	-0,0000048877	-117856,92	117856,92	1072,95	4641,36	-13,41	-9,82	13,41	-18,13	12,28	18,13	2,02	8,084
400	20000	-0,0002163781	-0,0000055860	-134693,62	134693,62	1226,22	5304,41	-15,33	-11,22	15,33	-20,72	14,03	20,72	2,31	9,238
450	22500	-0,0002434254	-0,0000062842	-151530,33	151530,33	1379,50	5967,47	-17,24	-12,63	17,24	-23,31	15,78	23,31	2,60	10,393
500	25000	-0,0002704726	-0,0000069824	-168367,03	168367,03	1532,78	6630,52	-19,16	-14,03	19,16	-25,90	17,54	25,90	2,89	11,548
550	27500	-0,0002975199	-0,0000076807	-185203,73	185203,73	1686,06	7293,57	-21,08	-15,43	21,08	-28,49	19,29	28,49	3,18	12,703
600	30000	-0,0003245672	-0,0000083789	-202040,44	202040,44	1839,34	7956,62	-22,99	-16,84	22,99	-31,08	21,05	31,08	3,47	13,858

Parâmet	ros geom. da seção	Parâmetros d	le elasticidade	
h _c =	4 [cm]	Series Series	35419	[MPa]
h _w =	16 [cm]	From Boost	11970	[MPa]
b _c =	30 [cm]			
b _w =	6 [cm]			
$\ell =$	200 [cm]	r =	10	[cm]
		(EI) ₀ =	30181600,00	[MPa cm ⁴]
		(EI) ₀₀ =	120637609,07	[MPa cm ⁴]
$A_c =$	120 [cm ²]			
A _w =	96 [cm ²]	$\alpha^2 =$	0,001276538	[cm ⁻²]
$I_{c} =$	160 [cm ⁴]	α =	0,035728677	[cm ⁻¹]
$I_{w} =$	2048 [cm ⁴]	β =	9,57169E-05	

Método Exato

Conexão

K	a-480 a-480	26000	hand	Ν/	mm	Roser
S	esnos Reflet	9	lased	cm		

 \overline{K} = 288,89 [N / mm²]

Carga q	M _{máximo}	v"(č/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Col	ncr.(σ _c)	Tensão	Norm. Ma	id.(σ _w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[N/cm]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
50	2500	-0,0000299081	-0,0000007616	-15973,27	15973,27	169,49	733,18	-2,12	-1,33	2,12	-2,86	1,66	2,86	0,27	1,278
100	5000	-0,0000598161	-0,0000015232	-31946,54	31946,54	338,98	1466,37	-4,24	-2,66	4,24	-5,73	3,33	5,73	0,54	2,556
150	7500	-0,0000897242	-0,0000022848	-47919,80	47919,80	508,47	2199,55	-6,36	-3,99	6,36	-8,59	4,99	8,59	0,81	3,834
200	10000	-0,0001196323	-0,0000030463	-63893,07	63893,07	677,96	2932,73	-8,47	-5,32	8,47	-11,46	6,66	11,46	1,08	5,112
250	12500	-0,0001495403	-0,0000038079	-79866,34	79866,34	847,45	3665,92	-10,59	-6,66	10,59	-14,32	8,32	14,32	1,35	6,390
300	15000	-0,0001794484	-0,0000045695	-95839,61	95839,61	1016,94	4399,10	-12,71	-7,99	12,71	-17,18	9,98	17,18	1,62	7,668
350	17500	-0,0002093565	-0,0000053311	-111812,87	111812,87	1186,43	5132,28	-14,83	-9,32	14,83	-20,05	11,65	20,05	1,89	8,946
400	20000	-0,0002392645	-0,0000060927	-127786,14	127786,14	1355,92	5865,46	-16,95	-10,65	16,95	-22,91	13,31	22,91	2,16	10,224
450	22500	-0,0002691726	-0,0000068543	-143759,41	143759,41	1525,41	6598,65	-19,07	-11,98	19,07	-25,78	14,97	25,78	2,43	11,503
500	25000	-0,0002990806	-0,0000076159	-159732,68	159732,68	1694,90	7331,83	-21,19	-13,31	21,19	-28,64	16,64	28,64	2,70	12,781
550	27500	-0,0003289887	-0,0000083774	-175705,94	175705,94	1864,39	8065,01	-23,30	-14,64	23,30	-31,50	18,30	31,50	2,97	14,059
600	30000	-0,0003588968	-0,0000091390	-191679,21	191679,21	2033,88	8798,20	-25,42	-15,97	25,42	-34,37	19,97	34,37	3,24	15,337

C. Apl. K=6500 s=3

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS Método Exato

Parâmet	ros geom. da seção	Parâmetros	de elasticidade	Conexão)
h _c =	4 [cm]	have see	35419 [MPa]	K =	6500 [N / mm]
h _w =	16 [cm]	E., =	11970 [MPa]	50 mm	3 [cm]
b _c =	30 [cm]				
b,,, =	6 [cm]				
$\ell =$	200 [cm]	r =	10 [cm]		
		(EI) ₀ =	30181600,00 [MPa cm ⁴]		
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]		
$A_{c} =$	120 [cm ²]			K =	216,67 [N / mm ²]
A _w =	96 [cm ²]	$\alpha^2 =$	0,000957404 [cm ⁻²]		
I _c =	160 [cm ⁴]	$\alpha =$	0,030941942 [cm ⁻¹]		
$I_w =$	2048 [cm ⁴]	$\beta =$	7,17877E-05		

Carga 2xP	M _{máximo}	v''(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Co	ncr.(σ _c)	Tensão	Norm. Ma	id. (σ _w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000416830	-0,0000005920	-20752,72	20752,72	236,22	1021,84	-2,95	-1,73	2,95	-3,99	2,16	3,99	0,32	1,895
20	6667	-0,0000833661	-0,0000011841	-41505,44	41505,44	472,44	2043,68	-5,91	-3,46	5,91	-7,98	4,32	7,98	0,64	3,790
30	10000	-0,0001250491	-0,0000017761	-62258,17	62258,17	708,66	3065,52	-8,86	-5,19	8,86	-11,97	6,49	11,97	0,96	5,685
40	13333	-0,0001667322	-0,0000023682	-83010,89	83010,89	944,88	4087,37	-11,81	-6,92	11,81	-15,97	8,65	15,97	1,29	7,580
50	16667	-0,0002084152	-0,0000029602	-103763,61	103763,61	1181,10	5109,21	-14,76	-8,65	14,76	-19,96	10,81	19,96	1,61	9,475
60	20000	-0,0002500983	-0,0000035523	-124516,33	124516,33	1417,32	6131,05	-17,72	-10,38	17,72	-23,95	12,97	23,95	1,93	11,370
70	23333	-0,0002917813	-0,0000041443	-145269,06	145269,06	1653,54	7152,89	-20,67	-12,11	20,67	-27,94	15,13	27,94	2,25	13,265
80	26667	-0,0003334644	-0,0000047364	-166021,78	166021,78	1889,76	8174,73	-23,62	-13,84	23,62	-31,93	17,29	31,93	2,57	15,160
90	30000	-0,0003751474	-0,0000053284	-186774,50	186774,50	2125,98	9196,57	-26,57	-15,56	26,57	-35,92	19,46	35,92	2,89	17,056
100	33333	-0,0004168305	-0,0000059204	-207527,22	207527,22	2362,20	10218,42	-29,53	-17,29	29,53	-39,92	21,62	39,92	3,21	18,951

Método Exato

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS

Parâmet	tros geom. da seção	Parâmetros	de elasticidade	Conexão	1
h _c =	4 [cm]	the man	35419 [MPa]	K =	6500 [N/mm]
h _w =	16 [cm]	from the second	11970 [MPa]	500 X113	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
$\ell =$	200 [cm]	r =	10 [cm]		
		(EI) ₀ =	30181600,00 [MPa cm ⁴]		
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]		
A _c =	120 [cm ²]			K =	108,33 [N / mm ²]
A _w =	96 [cm ²]	$\alpha^2 =$	0,000478702 [cm ⁻²]		
I _c =	160 [cm ⁴]	α =	0,021879257 [cm ⁻¹]		
$I_w =$	2048 [cm ⁴]	$\beta =$	3,58938E-05		

Carga 2xP	M _{máximo}	v"(ℓ/2) =	v'''(0) =	N _c	Nw	M _c	M _w	Tensão Norm. Concr.(σ _c)		ncr.(σ_c)	Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000532074	-0,0000007661	-17274,49	17274,49	301,53	1304,36	-3,77	-1,44	3,77	-5,10	1,80	5,10	0,27	2,373
20	6667	-0,0001064148	-0,0000015322	-34548,98	34548,98	603,06	2608,71	-7,54	-2,88	7,54	-10,19	3,60	10,19	0,54	4,745
30	10000	-0,0001596222	-0,0000022983	-51823,47	51823,47	904,59	3913,07	-11,31	-4,32	11,31	-15,29	5,40	15,29	0,81	7,118
40	13333	-0,0002128296	-0,0000030644	-69097,96	69097,96	1206,11	5217,42	-15,08	-5,76	15,08	-20,38	7,20	20,38	1,08	9,490
50	16667	-0,0002660370	-0,0000038305	-86372,45	86372,45	1507,64	6521,78	-18,85	-7,20	18,85	-25,48	9,00	25,48	1,34	11,863
60	20000	-0,0003192444	-0,0000045966	-103646,94	103646,94	1809,17	7826,14	-22,61	-8,64	22,61	-30,57	10,80	30,57	1,61	14,235
70	23333	-0,0003724518	-0,0000053627	-120921,43	120921,43	2110,70	9130,49	-26,38	-10,08	26,38	-35,67	12,60	35,67	1,88	16,608
80	26667	-0,0004256592	-0,0000061288	-138195,92	138195,92	2412,23	10434,85	-30,15	-11,52	30,15	-40,76	14,40	40,76	2,15	18,980
90	30000	-0,0004788666	-0,0000068949	-155470,41	155470,41	2713,76	11739,20	-33,92	-12,96	33,92	-45,86	16,19	45,86	2,42	21,353
100	33333	-0,0005320739	-0,0000076610	-172744,90	172744,90	3015,28	13043,56	-37,69	-14,40	37,69	-50,95	17,99	50,95	2,69	23,725

BIBLIOTECA CENTRAL SECÃO CIRCULANT

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS Método Exato

Parâmet	ros geom. da seção	Parâmetros	de elasticidade	Conexão				
h _c =	4 [cm]	E. **	35419 [MPa]	K =	6500 [N / mm]			
h _w =	16 [cm]	form VV men	11970 [MPa]	5 =	9 [cm]			
b _c =	30 [cm]							
b _w =	6 [cm]							
$\ell =$	200 [cm]	r =	10 [cm]					
		(EI) ₀ =	30181600,00 [MPa cm ⁴]					
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]					
A _c =	120 [cm ²]			K =	72,22 [N / mm ²]			
A _w =	96 [cm ²]	$\alpha^2 =$	0,000319135 [cm ⁻²]					
I _c =	160 [cm ⁴]	$\alpha =$	0,017864339 [cm ⁻¹]					
$I_w =$	2048 [cm ⁴]	$\beta =$	2,39292E-05					

Carga 2xP	M _{máximo}	v''(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ_c)		ncr.(σ_c)	,) Tensão Norm. Mad. (σ _w)			Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000614737	-0,0000008933	-14779,60	14779,60	348,37	1507,00	-4,35	-1,23	4,35	-5,89	1,54	5,89	0,23	2,711
20	6667	-0,0001229473	-0,0000017866	-29559,20	29559,20	696,75	3014,00	-8,71	-2,46	8,71	-11,77	3,08	11,77	0,46	5,423
30	10000	-0,0001844210	-0,0000026799	-44338,81	44338,81	1045,12	4521,00	-13,06	-3,69	13,06	-17,66	4,62	17,66	0,69	8,134
40	13333	-0,0002458946	-0,0000035732	-59118,41	59118,41	1393,49	6028,00	-17,42	-4,93	17,42	-23,55	6,16	23,55	0,92	10,845
50	16667	-0,0003073683	-0,0000044665	-73898,01	73898,01	1741,87	7535,00	-21,77	-6,16	21,77	-29,43	7,70	29,43	1,15	13,557
60	20000	-0,0003688419	-0,0000053598	-88677,61	88677,61	2090,24	9042,00	-26,13	-7,39	26,13	-35,32	9,24	35,32	1,38	16,268
70	23333	-0,0004303156	-0,0000062531	-103457,21	103457,21	2438,62	10549,00	-30,48	-8,62	30,48	-41,21	10,78	41,21	1,61	18,979
80	26667	-0,0004917892	-0,0000071464	-118236,82	118236,82	2786,99	12056,00	-34,84	-9,85	34,84	-47,09	12,32	47,09	1,84	21,690
90	30000	-0,0005532629	-0,0000080397	-133016,42	133016,42	3135,36	13563,00	-39,19	-11,08	39,19	-52,98	13,86	52,98	2,07	24,402
100	33333	-0,0006147365	-0,0000089330	-147796,02	147796,02	3483,74	15069,99	-43,55	-12,32	43,55	-58,87	15,40	58,87	2,30	27,113

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS

Método Exato

Parâmet	ros geom. da seção	Parâmetros	de elasticidade	Conexão				
h _c =	4 [cm]	Source and	35419 [MPa]	K =	13000 [N/mm]			
h _w =	16 [cm]		11970 [MPa]	the set	3 [cm]			
$b_c =$	30 [cm]							
b _w =	6 [cm]							
$\ell =$	200 [cm]	r =	10 [cm]					
		(EI) ₀ =	30181600,00 [MPa cm ⁴]					
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]					
A _c =	120 [cm ²]			K =	433,33 [N / mm ²]			
A _w =	96 [cm ²]	$\alpha^2 =$	0,001914808 [cm ⁻²]					
I _c =	160 [cm ⁴]	α =	0,043758514 [cm ⁻¹]					
I _w =	2048 [cm ⁴]	$\beta =$	0,000143575					

Carga 2xP	M _{máximo}	v"(ℓ/2) =	v'''(0) =	Ν _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ_c)		ncr.(σ_c)	Tensão Norm. Mad. (σ _w)			Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000342122	-0,0000004853	-23007,53	23007,53	193,88	838,70	-2,42	-1,92	2,42	-3,28	2,40	3,28	0,35	1,575
20	6667	-0,0000684245	-0,0000009705	-46015,07	46015,07	387,76	1677,40	-4,85	-3,83	4,85	-6,55	4,79	6,55	0,71	3,150
30	10000	-0,0001026367	-0,0000014558	-69022,60	69022,60	581,65	2516,09	-7,27	-5,75	7,27	-9,83	7,19	9,83	1,06	4,725
40	13333	-0,0001368489	-0,0000019411	-92030,14	92030,14	775,53	3354,79	-9,69	-7,67	9,69	-13,10	9,59	13,10	1,41	6,300
50	16667	-0,0001710612	-0,0000024263	-115037,67	115037,67	969,41	4193,49	-12,12	-9,59	12,12	-16,38	11,98	16,38	1,77	7,875
60	20000	-0,0002052734	-0,0000029116	-138045,21	138045,21	1163,29	5032,19	-14,54	-11,50	14,54	-19,66	14,38	19,66	2,12	9,450
70	23333	-0,0002394856	-0,0000033969	-161052,74	161052,74	1357,17	5870,88	-16,96	-13,42	16,96	-22,93	16,78	22,93	2,47	11,025
80	26667	-0,0002736979	-0,0000038821	-184060,27	184060,27	1551,06	6709,58	-19,39	-15,34	19,39	-26,21	19,17	26,21	2,83	12,600
90	30000	-0,0003079101	-0,0000043674	-207067,81	207067,81	1744,94	7548,28	-21,81	-17,26	21,81	-29,49	21,57	29,49	3,18	14,175
100	33333	-0,0003421223	-0,0000048527	-230075,34	230075,34	1938,82	8386,98	-24,24	-19,17	24,24	-32,76	23,97	32,76	3,54	15,750

C. Apl. K=13000 s=6

	VIGA BI-APOIADA (COM CARREG	SAMENTO APLICADO NOS TER	RÇOS DOS VÃ	OS Método Exato
Parâme	etros geom. da seção	Parâmetros	de elasticidade	Conexão)
h _c =	4 [cm]	form the second	35419 [MPa]	K =	13000 [N / mm]
h _w =	16 [cm]	E ==	11970 [MPa]	s =	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
$\ell =$	200 [cm]	r =	10 [cm]		
		(EI) ₀ =	30181600,00 [MPa cm ⁴]		
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]		
A _c =	120 [cm ²]			K =	216,67 [N / mm ²]
A _w =	96 [cm ²]	$\alpha^2 =$	0,000957404 [cm ⁻²]		
I _c =	160 [cm ⁴]	α =	0,030941942[cm ⁻¹]		
I _w =	2048 [cm ⁴]	β =	7,17877E-05		

Carga 2xP	M _{máximo}	v"(ℓ/2) =	v'''(0) =	Nc	N _w	M _c	M _w	Tensão Norm. Concr.(σ _c)		ncr.(σ_c)	Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000416830	-0,0000005920	-20752,72	20752,72	236,22	1021,84	-2,95	-1,73	2,95	-3,99	2,16	3,99	0,32	1,895
20	6667	-0,0000833661	-0,0000011841	-41505,44	41505,44	472,44	2043,68	-5,91	-3,46	5,91	-7,98	4,32	7,98	0,64	3,790
30	10000	-0,0001250491	-0,0000017761	-62258,17	62258,17	708,66	3065,52	-8,86	-5,19	8,86	-11,97	6,49	11,97	0,96	5,685
40	13333	-0,0001667322	-0,0000023682	-83010,89	83010,89	944,88	4087,37	-11,81	-6,92	11,81	-15,97	8,65	15,97	1,29	7,580
50	16667	-0,0002084152	-0,0000029602	-103763,61	103763,61	1181,10	5109,21	-14,76	-8,65	14,76	-19,96	10,81	19,96	1,61	9,475
60	20000	-0,0002500983	-0,0000035523	-124516,33	124516,33	1417,32	6131,05	-17,72	-10,38	17,72	-23,95	12,97	23,95	1,93	11,370
70	23333	-0,0002917813	-0,0000041443	-145269,06	145269,06	1653,54	7152,89	-20,67	-12,11	20,67	-27,94	15,13	27,94	2,25	13,265
80	26667	-0,0003334644	-0,0000047364	-166021,78	166021,78	1889,76	8174,73	-23,62	-13,84	23,62	-31,93	17,29	31,93	2,57	15,160
90	30000	-0,0003751474	-0,0000053284	-186774,50	186774,50	2125,98	9196,57	-26,57	-15,56	26,57	-35,92	19,46	35,92	2,89	17,056
100	33333	-0,0004168305	-0,0000059204	-207527,22	207527,22	2362,20	10218,42	-29,53	-17,29	29,53	-39,92	21,62	39,92	3,21	18,951
Método Exato

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS

Parâmetros geom. da seção Parâmetros de elasticidade Conexão $h_{c} =$ 4 [cm] E. = 35419 [MPa] 13000 [N/mm] K = h.,, = 16 [cm] E., = 11970 [MPa] 9 [cm] 5 m $b_c =$ 30 [cm] b_w = 6 [cm] 10 [cm] 200 [cm] $\ell =$ r = (EI)₀ = 30181600,00 [MPa cm⁴] 120637609,07 [MPa cm⁴] (EI)₀₀ = \overline{K} = 144,44 [N/mm²] 120 [cm^2] A_c = $\alpha^2 =$ 0,000638269 [cm⁻²] A_w = 96 [cm²] 160 [cm⁴] 0,02526399 [cm⁻¹] I_c = α= 2048 [cm⁴] I_w = β = 4,78584E-05

Carga 2xP	M _{máximo}	v"(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ_c)		Tensão	Norm. Ma	Fluxo de	V _{máxima}		
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000479526	-0,000006860	-18860,47	18860,47	271,75	1175,54	-3,40	-1,57	3,40	-4,59	1,96	4,59	0,29	2,156
20	6667	-0,0000959052	-0,0000013721	-37720,93	37720,93	543,50	2351,07	-6,79	-3,14	6,79	-9,18	3,93	9,18	0,59	4,312
30	10000	-0,0001438579	-0,0000020581	-56581,40	56581,40	815,25	3526,61	-10,19	-4,72	10,19	-13,78	5,89	13,78	0,88	6,468
40	13333	-0,0001918105	-0,0000027441	-75441,86	75441,86	1087,00	4702,15	-13,59	-6,29	13,59	-18,37	7,86	18,37	1,17	8,624
50	16667	-0,0002397631	-0,0000034302	-94302,33	94302,33	1358,75	5877,69	-16,98	-7,86	16,98	-22,96	9,82	22,96	1,46	10,780
60	20000	-0,0002877157	-0,0000041162	-113162,80	113162,80	1630,50	7053,22	-20,38	-9,43	20,38	-27,55	11,79	27,55	1,76	12,936
70	23333	-0,0003356683	-0,0000048022	-132023,26	132023,26	1902,25	8228,76	-23,78	-11,00	23,78	-32,14	13,75	32,14	2,05	15,091
80	26667	-0,0003836209	-0,0000054883	-150883,73	150883,73	2174,00	9404,30	-27,17	-12,57	27,17	-36,74	15,72	36,74	2,34	17,247
90	30000	-0,0004315736	-0,0000061743	-169744,20	169744,20	2445,74	10579,84	-30,57	-14,15	30,57	-41,33	17,68	41,33	2,64	19,403
100	33333	-0,0004795262	-0,0000068603	-188604,66	188604,66	2717,49	11755,37	-33,97	-15,72	33,97	-45,92	19,65	45,92	2,93	21,559

,	VIGA BI-APOIADA C	COM CARREG	SAMENTO APLICADO NOS TER	ÇOS DOS VÃ	OS Método Exato
Parâmet	ros geom. da seção	Parâmetros	de elasticidade	Conexão)
h _c =	4 [cm]	E ₀ =	35419 [MPa]	K =	26000 [N / mm]
h _w =	16 [cm]	Free W	11970 [MPa]	and all a second	3 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
$\ell =$	200 [cm]	r =	10 [cm]		
		(EI) ₀ =	30181600,00 [MPa cm ⁴]		
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]		
A _c =	120 [cm ²]			K =	866,67 [N / mm ²]
A _w =	96 [cm ²]	$\alpha^2 =$	0,003829615 [cm ⁻²]		
I _c =	160 [cm ⁴]	$\alpha =$	0,061883884 [cm ⁻¹]		
$I_w =$	2048 [cm ⁴]	β =	0,000287151		

Carga 2xP	M _{máximo}	v''(c/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ_c)		Tensão Norm. Mad. (σ _w)			Fluxo de	V _{máxima}	
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000301815	-0,0000004349	-24224,08	24224,08	171,04	739,89	-2,14	-2,02	2,14	-2,89	2,52	2,89	0,37	1,386
20	6667	-0,0000603630	-0,0000008697	-48448,16	48448,16	342,08	1479,77	-4,28	-4,04	4,28	-5,78	5,05	5,78	0,74	2,773
30	10000	-0,0000905444	-0,0000013046	-72672,24	72672,24	513,12	2219,66	-6,41	-6,06	6,41	-8,67	7,57	8,67	1,11	4,159
40	13333	-0,0001207259	-0,0000017394	-96896,32	96896,32	684,16	2959,54	-8,55	-8,07	8,55	-11,56	10,09	11,56	1,48	5,546
50	16667	-0,0001509074	-0,0000021743	-121120,39	121120,39	855,20	3699,43	-10,69	-10,09	10,69	-14,45	12,62	14,45	1,84	6,932
60	20000	-0,0001810889	-0,0000026091	-145344,47	145344,47	1026,24	4439,31	-12,83	-12,11	12,83	-17,34	15,14	17,34	2,21	8,319
70	23333	-0,0002112704	-0,0000030440	-169568,55	169568,55	1197,28	5179,20	-14,97	-14,13	14,97	-20,23	17,66	20,23	2,58	9,705
80	26667	-0,0002414519	-0,0000034788	-193792,63	193792,63	1368,32	5919,09	-17,10	-16,15	17,10	-23,12	20,19	23,12	2,95	11,092
90	30000	-0,0002716333	-0,0000039137	-218016,71	218016,71	1539,36	6658,97	-19,24	-18,17	19,24	-26,01	22,71	26,01	3,32	12,478
100	33333	-0,0003018148	-0,0000043485	-242240,79	242240,79	1710,40	7398,86	-21,38	-20,19	21,38	-28,90	25,23	28,90	3,69	13,865

Método Exato

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS

Parâmet	ros geom. da seção	Parâmetros	de elasticidade	Conexão	C
h _c =	4 [cm]	press Annual annual Annual C	35419 [MPa]	K =	26000 [N / mm]
h.,, =	16 [cm]	For M	11970 [MPa]	5 ==	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
$\ell =$	200 [cm]	r =	10 [cm]		
		(EI) ₀ =	30181600,00 [MPa cm ⁴]		
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]		
A _c =	120 [cm ²]			K =	433,33 [N / mm ²]
A _w =	96 [cm ²]	$\alpha^2 =$	0,001914808 [cm ⁻²]		
I _c =	160 [cm ⁴]	α =	0,043758514 [cm ⁻¹]		
I _w =	2048 [cm ⁴]	$\beta =$	0,000143575		

Carga 2xP	M _{máximo}	v"(t/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ_c)		Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}	
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000342122	-0,0000004853	-23007,53	23007,53	193,88	838,70	-2,42	-1,92	2,42	-3,28	2,40	3,28	0,35	1,575
20	6667	-0,0000684245	-0,0000009705	-46015,07	46015,07	387,76	1677,40	-4,85	-3,83	4,85	-6,55	4,79	6,55	0,71	3,150
30	10000	-0,0001026367	-0,0000014558	-69022,60	69022,60	581,65	2516,09	-7,27	-5,75	7,27	-9,83	7,19	9,83	1,06	4,725
40	13333	-0,0001368489	-0,0000019411	-92030,14	92030,14	775,53	3354,79	-9,69	-7,67	9,69	-13,10	9,59	13,10	1,41	6,300
50	16667	-0,0001710612	-0,0000024263	-115037,67	115037,67	969,41	4193,49	-12,12	-9,59	12,12	-16,38	11,98	16,38	1,77	7,875
60	20000	-0,0002052734	-0,0000029116	-138045,21	138045,21	1163,29	5032,19	-14,54	-11,50	14,54	-19,66	14,38	19,66	2,12	9,450
70	23333	-0,0002394856	-0,0000033969	-161052,74	161052,74	1357,17	5870,88	-16,96	-13,42	16,96	-22,93	16,78	22,93	2,47	11,025
80	26667	-0,0002736979	-0,0000038821	-184060,27	184060,27	1551,06	6709,58	-19,39	-15,34	19,39	-26,21	19,17	26,21	2,83	12,600
90	30000	-0,0003079101	-0,0000043674	-207067,81	207067,81	1744,94	7548,28	-21,81	-17,26	21,81	-29,49	21,57	29,49	3,18	14,175
100	33333	-0,0003421223	-0,0000048527	-230075,34	230075,34	1938,82	8386,98	-24,24	-19,17	24,24	-32,76	23,97	32,76	3,54	15,750

C. Apl. K=26000 s=9

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS Método Exato

Parâmetros geom. da seção		Parâmetros	de elasticidade	Conexão			
h _c =	4 [cm]	for the	35419 [MPa]	K =	26000 [N / mm]		
h _w =	16 [cm]	former former former former	11970 [MPa]	5 ==	9 [cm]		
$b_c =$	30 [cm]						
b _w =	6 [cm]						
$\ell =$	200 [cm]	r =	10 [cm]				
		(EI) ₀ =	30181600,00 [MPa cm ⁴]				
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]				
A _c =	120 [cm ²]			K =	288,89 [N / mm ²]		
A _w =	96 [cm ²]	$\alpha^2 =$	0,001276538 [cm ⁻²]				
I _c =	160 [cm ⁴]	α =	0,035728677 [cm ⁻¹]				
I _w =	2048 [cm ⁴]	$\beta =$	9,57169E-05				

Carga 2xP	M _{máximo}	v''(ℓ/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão	Norm. Coi	ncr.(σ_c)	Tensão	Norm. Ma	id. (σ _w)	Fluxo de	V _{máxima}
								1	CG	2	1	CG	2	Cis.(φ _{máx})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000380993	-0,0000005397	-21834,37	21834,37	215,91	933,99	-2,70	-1,82	2,70	-3,65	2,27	3,65	0,34	1,744
20	6667	-0,0000761985	-0,0000010794	-43668,73	43668,73	431,82	1867,97	-5,40	-3,64	5,40	-7,30	4,55	7,30	0,67	3,487
30	10000	-0,0001142978	-0,0000016191	-65503,10	65503,10	647,73	2801,96	-8,10	-5,46	8,10	-10,95	6,82	10,95	1,01	5,231
40	13333	-0,0001523970	-0,0000021588	-87337,47	87337,47	863,64	3735,95	-10,80	-7,28	10,80	-14,59	9,10	14,59	1,35	6,974
50	16667	-0,0001904963	-0,0000026985	-109171,83	109171,83	1079,55	4669,93	-13,49	-9,10	13,49	-18,24	11,37	18,24	1,69	8,718
60	20000	-0,0002285956	-0,0000032383	-131006,20	131006,20	1295,46	5603,92	-16,19	-10,92	16,19	-21,89	13,65	21,89	2,02	10,462
70	23333	-0,0002666948	-0,0000037780	-152840,57	152840,57	1511,37	6537,91	-18,89	-12,74	18,89	-25,54	15,92	25,54	2,36	12,205
80	26667	-0,0003047941	-0,0000043177	-174674,94	174674,94	1727,28	7471,89	-21,59	-14,56	21,59	-29,19	18,20	29,19	2,70	13,949
90	30000	-0,0003428933	-0,0000048574	-196509,30	196509,30	1943,19	8405,88	-24,29	-16,38	24,29	-32,84	20,47	32,84	3,03	15,692
100	33333	-0,0003809926	-0,0000053971	-218343,67	218343,67	2159,10	9339,87	-26,99	-18,20	26,99	-36,48	22,74	36,48	3,37	17,436

ч.

C. Apl. K=65 s=6

	VIGA BI-APOIADA (GAMENTO APLICADO NOS TE	ERÇOS DOS VÃOS	6 Método Exato
Parâmet	ros geom. da seção	Parâmetros	de elasticidade	Conexão	
h _c =	4 [cm]	here and	35419 [MPa]	K =	65 [N / mm]
h _w =	16 [cm]	E _w =	11970 [MPa]	and and a second	6 [cm]
b _c =	30 [cm]				
b _w =	6 [cm]				
$\ell =$	200 [cm]	r =	10 [cm]		
		$(EI)_0 =$	30181600,00 [MPa cm⁴]		
		(EI) ₀₀ =	120637609,07 [MPa cm⁴]		
$A_c =$	120 [cm ²]			K =	1,08 [N / mm²]
A _w =	96 [cm ²]	$\alpha^2 =$	4,78702E-06 [cm ⁻²]		
$I_c =$	160 [cm ⁴]	α =	0,002187926 [cm ⁻¹]		
I _w =	2048 [cm ⁴]	$\beta =$	3,58938E-07		

Carga 2xP	M _{máximo}	v"(c/2) =	v'''(0) =	Nc	N _w	M _c	M _w	Tensão Norm, Concr.(σ _c)		Tensão	Norm. Ma	Fluxo de	V _{máxima}		
								1	CG	2	1	CG	2	Cis.($\phi_{máx}$)	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0001087863	-0,0000016307	-499,89	499,89	616,50	2666,85	-7,71	-0,04	7,71	-10,42	0,05	10,42	0,01	4,637
20	6667	-0,0002175726	-0,0000032614	-999,77	999,77	1232,99	5333,70	-15,41	-0,08	15,41	-20,83	0,10	20,83	0,02	9,274
30	10000	-0,0003263589	-0,0000048921	-1499,66	1499,66	1849,49	8000,54	-23,12	-0,12	23,12	-31,25	0,16	31,25	0,02	13,910
40	13333	-0,0004351452	-0,0000065229	-1999,55	1999,55	2465,99	10667,39	-30,82	-0,17	30,82	-41,67	0,21	41,67	0,03	18,547
50	16667	-0,0005439315	-0,0000081536	-2499,44	2499,44	3082,48	13334,24	-38,53	-0,21	38,53	-52,09	0,26	52,09	0,04	23,184
60	20000	-0,0006527178	-0,0000097843	-2999,32	2999,32	3698,98	16001,09	-46,24	-0,25	46,24	-62,50	0,31	62,50	0,05	27,821
70	23333	-0,0007615041	-0,0000114150	-3499,21	3499,21	4315,47	18667,94	-53,94	-0,29	53,94	-72,92	0,36	72,92	0,05	32,457
80	26667	-0,0008702904	-0,0000130457	-3999,10	3999,10	4931,97	21334,79	-61,65	-0,33	61,65	-83,34	0,42	83,34	0,06	37,094
90	30000	-0,0009790767	-0,0000146764	-4498,98	4498,98	5548,47	24001,63	-69,36	-0,37	69,36	-93,76	0,47	93,76	0,07	41,731
100	33333	-0,0010878630	-0,0000163072	-4998,87	4998,87	6164,96	26668,48	-77,06	-0,42	77,06	-104,17	0,52	104,17	0,08	46,368

1.

C. Apl. K=2600000 s=6

VIGA BI-APOIADA COM CARREGAMENTO APLICADO NOS TERÇOS DOS VÃOS

Método Exato

Parâmetros geom. da seção		Parâmetros	de elasticidade	Conexão			
h _c =	4 [cm]	E _c =	35419 [MPa]	K =	2600000 [N / mm]		
$h_w =$	16 [cm]	E _w =	11970 [MPa]	s =	6 [cm]		
b _c =	30 [cm]						
b _w =	6 [cm]						
$\ell =$	200 [cm]	r =	10 [cm]				
		(EI) ₀ =	30181600,00 [MPa cm⁴]				
		(EI) ₀₀ =	120637609,07 [MPa cm ⁴]				
A _c =	120 [cm ²]			K =	43333,33 [N / mm ²]		
A _w =	96 [cm²]	$\alpha^2 =$	0,191480758 [cm ⁻²]				
I _c =	160 [cm⁴]	α =	0,437585143 [cm ⁻¹]				
I _w =	2048 [cm ⁴]	β =	0,014357534				

Carga 2xP	M _{máximo}	v''(t/2) =	v'''(0) =	N _c	N _w	M _c	M _w	Tensão Norm. Concr.(σ _c)		Tensão Norm. Mad. (σ_w)			Fluxo de	V _{máxima}	
								1	CG	2	1	CG	2	Cis.(ϕ_{max})	
[kN]	[N*m]	[cm ⁻¹]	[cm ⁻²]	[N]	[N]	[MPa cm ³]	[MPa cm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[kN / cm]	[mm]
10	3333	-0,0000276310	-0,0000004145	-24993,87	24993,87	156,59	677,36	-1,96	-2,08	1,96	-2,65	2,60	2,65	0,37	1,181
20	6667	-0,0000552619	-0,0000008289	-49987,73	49987,73	313,17	1354,72	-3,91	-4,17	3,91	-5,29	5,21	5,29	0,75	2,362
30	10000	-0,0000828929	-0,0000012434	-74981,60	74981,60	469,76	2032,08	-5,87	-6,25	5,87	-7,94	7,81	7,94	1,12	3,544
40	13333	-0,0001105239	-0,0000016579	-99975,46	99975,46	626,34	2709,44	-7,83	-8,33	7,83	-10,58	10,41	10,58	1,50	4,725
50	16667	-0,0001381548	-0,0000020723	-124969,33	124969,33	782,93	3386,80	-9,79	-10,41	9,79	-13,23	13,02	13,23	1,87	5,906
60	20000	-0,0001657858	-0,0000024868	-149963,20	149963,20	939,51	4064,17	-11,74	-12,50	11,74	-15,88	15,62	15,88	2,25	7,087
70	23333	-0,0001934168	-0,0000029013	-174957,06	174957,06	1096,10	4741,53	-13,70	-14,58	13,70	-18,52	18,22	18,52	2,62	8,268
80	26667	-0,0002210477	-0,0000033157	-199950,93	199950,93	1252,69	5418,89	-15,66	-16,66	15,66	-21,17	20,83	21,17	3,00	9,450
90	30000	-0,0002486787	-0,0000037302	-224944,80	224944,80	1409,27	6096,25	-17,62	-18,75	17,62	-23,81	23,43	23,81	3,37	10,631
100	33333	-0,0002763096	-0,0000041446	-249938,66	249938,66	1565,86	6773,61	-19,57	-20,83	19,57	-26,46	26,04	26,46	3,75	11,812