UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO DEPARTAMENTO DE ESTRUTURAS

UM ESTUDO SOBRE LIGAÇÕES DO TIPO YT DE BARRAS AFASTADAS DE SEÇÕES TUBULARES CIRCULARES LAMINADAS DE AÇO

Eng ^a : ROSILENE DE FÁTIMA VIEIRA

Campinas 2007

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO DEPARTAMENTO DE ESTRUTURAS

UM ESTUDO SOBRE LIGAÇÕES DO TIPO YT DE BARRAS AFASTADAS DE SEÇÕES TUBULARES CIRCULARES LAMINADAS DE AÇO

Eng ^a : ROSILENE DE FÁTIMA VIEIRA

Orientador: Prof. Dr. JOÃO ALBERTO VENEGAS REQUENA

Co-orientadora: Profa. Dra. ARLENE MARIA SARMANHO FREITAS

Tese de Doutorado apresentada à Comissão de pós-graduação da Faculdade de Engenharia Civil, Arquitetura e Urbanismo da Universidade Estadual de Campinas, como parte dos requisitos para obtenção do título de Doutor em Engenharia Civil, na área de concentração de Estruturas.

Campinas 2007

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

V673e	Vieira, Rosilene de Fátima Um estudo sobre ligações do tipo YT de barras afastadas de seções tubulares circulares laminadas de aço / Rosilene de Fátima VieiraCampinas, SP: [s.n.], 2007.
	Orientadores: João Alberto Venegas Requena, Arlene Maria Sarmanho Freitas Tese (Doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo.
	 Aço - Estruturas. 2. Aço tubular – Estruturas. 3. Ligações metálicas. 4. Treliças (Construção civil). 5. Método dos elementos finitos. 6. Estudos experimentais. I. Requena, João Alberto Venegas. II. Freitas, Arlene Maria Sarmanho. III. Universidade Estadual de Campinas. Faculdade de Engenharia Civil, Arquitetura e Urbanismo. IV. Título.

Título em Inglês: A study of gap YT joints circular hollow steeel sections Palavras-chave em Inglês: Structural steel, Tubular connection, Plane truss, Experimental analysis, Numerical modeling Área de concentração: Estruturas Titulação: Doutora em Engenharia Civil Banca examinadora: Ana E. P. G. A. Jacintho, Francisco Antonio Menezes, Francisco Romero Gesualdo, Renato Bertolino Junior e Nilson Tadeu Mascia Data da defesa: 26/02/2007 Programa de Pós-Graduação: Engenharia Civil

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

UM ESTUDO SOBRE LIGAÇÕES DO TIPO YT DE BARRAS AFASTADAS DE SEÇÕES TUBULARES CIRCULARES LAMINADAS DE AÇO

Eng ^a: ROSILENE DE FÁTIMA VIEIRA

Tese de Doutorado aprovada pela Banca Examinadora, constituída por:

Prof. Dr. João Alberto Venegas Reguena

Presidente e Orientador/Unicamp

na salle Profa. Dra. Ana E. P. G. A. Jacintho

Unicamp

Hubunfuner

Prof. Dr. Francisco Antonio Menezes

Unicamp

Prof. Dr. Francisco Romero Gesualdo

UFU

Prof. Dr. Renato Bertolino Jun

UNESP

Prof. Dr. Nilson Tadeu Mascia Unicamp

Campinas, 26 de fevereiro de 2007

Dedicado ao meu marido Eduardo e meu filho Eduardo Henrique.

Agradecimentos

Ao Prof. Dr. Requena e Profa. Dra. Arlene pela dedicação e orientação no desenvolvimento deste trabalho.

Ao Prof. Dr. Francisco, meu supervisor de capacitação docente na Unicamp, pelo carinho, atenção e dedicação durante todo o trabalho.

A V&M do Brasil, em nome do Eng. Afonso Henrique, pelo apoio à pesquisa.

Aos funcionários Ademir, Luciano, Marcelo, Marçal e Rodolfo do Laboratório de Estruturas e Materiais da Faculdade de Engenharia Civil da Unicamp.

Ao funcionário José Luis, do Laboratório de Propriedades Mecânicas da Faculdade de Engenharia Mecânica da Unicamp.

À minha amiga Daniela pelo apoio e carinho.

À instituição Unicamp.

Resumo

Este trabalho apresenta os resultados de uma análise teórica, experimental e numérica, de uma ligação YT utilizada em estruturas metálicas planas, tendo como ponto de partida a verificação do comportamento global da ligação. Será avaliada uma ligação de treliça do tipo YT com diferentes afastamentos entre as barras "gap". As barras que compõem a ligação, aqui apresentada, possuem seções transversais tubulares circulares, vazadas de parede fina, soldadas entre si. O modo de colapso da ligação foi devido à plastificação da parede do banzo (uma diagonal tracionando a parede do banzo e o montante comprimindo). Um efeito de abaulamento da seção transversal do banzo na região do afastamento foi observado. O dimensionamento da ligação segue o Método dos Estados Limites, no qual as resistências de cálculo são verificadas. As barras envolvidas nesta ligação também sofrem a influência de momentos fletores. O estudo foi realizado através de uma análise comparativa entre uma solução analítica fornecida por normas técnicas internacionais, uma análise experimental e uma modelagem numérica utilizando-se o programa Ansys. A modelagem numérica, tendo como referência a análise experimental, foi realizada utilizando os elementos SHELL181 e SHELL63, com 4 nós por elemento. Foram realizadas análises paramétricas com variação do afastamento, "gap", entre os eixos do montante e da diagonal, observando-se que a resistência da ligação cresce com a redução do "gap". A finalidade deste estudo foi o entendimento do comportamento desta ligação, possibilitando assim, a disseminação desta concepção estrutural ainda pouco explorada no Brasil para viabilizar a execução de projetos otimizados.

Palavras Chaves: Estruturas de aço, ligações tubulares, treliça plana, análise experimental, modelagem numérica.

Abstract

This work presents the theoretical, experimental and numerical analyses using of a YT joint used in plane trusses steel, having as the beginning point the verification of the global behavior of the connection. A connection of truss of YT type with gap members was evaluated. The members that compose the connection, presented here, have circular tubular cross sections welded among themselves. The failure mode of the connection was due to the plastic failure of the chord face (one web member pushing its face whereas the brace is pulling it out). An cambered effect of the chord cross section on the gap region was noted. The connection design follows the Limit State Design, in which the calculated resistance is verified. The involved members in this connection are also subjected the influence from add bendings. The study was developed by through a comparative analysis considering an analytical solution supplied by international technical codes, an experimental analysis and a numerical modeling using with Ansys software. In the numerical study, the 4-node SHELL181 and SHELL63 element was used to model the connection. The purpose of this study is to understand this connection mechanical behavior, thus contributing to possible the dissemination of this structural conception still not explored so much in Brazil yet and to to be feasible the execution of optimized projects.

Key Words: Structural Steel, tubular connection, plane truss, experimental analysis, numerical modeling.

SUMÁRIO

CAPÍTULO I

INTRODUÇÃO

1.1 CONSIDERAÇÕES GERAIS	01
1.1.1 Tipos de Ligações Soldadas	04
1.1.2 Modos de Colapso das Ligações	05
1.2 ESTADO DA ARTE	07
1.3 PROPOSTA DE TRABALHO	32
1.3.1 Justificativas	33
1.3.2 Objetivos	33

CAPÍTULO II

FUNDAMENTOS TEÓRICOS

2.1 INTRODUÇÃO	35
2.2 CONFIGURAÇÕES DAS LIGAÇÕES	37
2.3 EXCENTRICIDADE DAS LIGAÇÕES	39
2.4 LIGAÇÕES T, Y, X, K e N	41

2.5 RESISTÊNCIA DAS LIGAÇÕES SOLDADAS

CAPÍTULO III

EXEMPLOS DE DIMENSIONAMENTO	
3.1 INTRODUÇÃO	59
3.2 DIMENSIONAMENTO DE UMA LIGAÇÃO DO TIPO T DE SEÇÕES	
TUBULARES CIRCULARES	60
3.2.1 Características Físicas e Geométricas	60
3.2.2 Limites de Validade	61
3.2.3 Cálculo dos Parâmetros da Ligação T	63
3.2.4 Verificação quanto ao Colapso por Plastificação da Parede	
do Banzo (Modo A)	63
3.2.5 Verificação quanto ao Colapso por Corte por Puncionamento	
da Parede do Banzo (Modo B)	64
3.2.6 Resistência da Ligação T	64
3.2.7 Comparação dos Resultados da Ligação Tubular Circular do	
Tipo T com o Programa do PACKER – HSS – Connex	65
3.3 DIMENSIONAMENTO DE UMA LIGAÇÃO DO TIPO YT DE SEÇÕES	
TUBULARES CIRCULARES DESPREZANDO O EFEITO DO	
MOMENTO FLETOR	69
3.3.1 Características Físicas e Geométricas	69
3.3.2 Limites de Validade	71
3.3.3 Cálculo dos Parâmetros da Ligação YT	73
3.3.4 Verificação quanto ao Colapso por Plastificação da Parede do	
Banzo (Modo A)	74
3.3.4.1 Montante comprimido	74
3.3.4.2 Diagonal tracionada	75
3.3.5 Verificação quanto ao Colapso por Corte por Puncionamento	
da Parede do Banzo (Modo B)	75
3.3.5.1 Montante comprimido	75

3.3.5.2 Diagonal tracionada	75
3.3.6 Resistência da Ligação YT	76
3.3.6.1 Montante comprimido	76
3.3.6.2 Diagonal tracionada	76
3.3.7 Comparação dos Resultados da Ligação Tubular Circular do	
Tipo YT com o Programa do PACKER – HSS – Connex	77
3.4 DIMENSIONAMENTO DE UMA LIGAÇÃO DO TIPO YT DE SEÇÕES	
TUBULARES CIRCULARES CONSIDERANDO O EFEITO DO	
MOMENTO FLETOR	81
3.4.1 Características Físicas e Geométricas	81
3.4.2 Limites de Validade	84
3.4.3 Cálculo dos Parâmetros da Ligação YT	86
3.4.4 Verificação quanto ao Colapso por Plastificação da Parede do	
Banzo (Modo A)	87
3.4.4.1 Montante comprimido	87
3.4.4.2 Diagonal tracionada	88
3.4.5 Verificação quanto ao Colapso por Corte por Puncionamento	
da Parede do Banzo (Modo B)	88
3.4.5.1 Montante comprimido	88
3.4.5.2 Diagonal tracionada	88
3.4.6 Resistência da Ligação YT	89
3.4.6.1 Montante comprimido	89
3.4.6.2 Diagonal tracionada	89
3.4.7 Comparação dos Resultados da Ligação Tubular Circular do	
Tipo YT com o Programa do PACKER – HSS – Connex	90

CAPÍTULO IV

PROGRAMA EXPERIMENTAL

4.1 CONSIDERAÇÕES GERAIS	95
4.2 ENSAIO DE TRAÇÃO	96

4.2.1 Corpos-de-prova para Ensaio de Tração	97
4.2.2 Ensaio de Tração	98
4.2.3 Resultados do Ensaio de Tração	99
4.3 ENSAIO DE COMPRESSÃO (POISSON)	101
4.3.1 Corpos-de-prova para Ensaio de Compressão	102
4.3.2 Ensaio de Compressão	102
4.3.3 Resultados do Ensaio de Compressão	104
4.4 PROTÓTIPOS DE LIGAÇÃO YT	105
4.4.1 Protótipos	106
4.4.2 Montagem dos Ensaios	108
4.4.3 Rótula	111
4.5 PRÉ-ENSAIO	112
4.5.1 Resultados e Conclusões do Pré-ensaio	113
4.6 INSTRUMENTAÇÃO PARA OS ENSAIO I, II E III	116
4.6.1 Extensômetros (EERs)	117
4.6.2 Transdutores de Deslocamentos (TDs)	118
4.7 METODOLOGIA PARA OS ENSAIO I, II E III	121
4.8 ENSAIO I	122
4.9 ENSAIO II	125
4.10 ENSAIO III	130
4.11 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	
DOS ENSAIOS I, II E III	133
4.11.1 Análise das Deformações nos EERs nos Ensaios I, II e III	134
4.11.2 Análise dos Deslocamentos nos TDs nos Ensaios I, II e III	145
4.12 DEFORMAÇÕES PLÁSTICAS NOS EXTENSÔMETROS PARA	
OS ENSAIOS I, II E III	155
4.13 CONCLUSÕES DOS ENSAIOS I, II E III	157

CAPÍTULO V

MODELAGEM NUMÉRICA

5.1 CONSIDERAÇÕES GERAIS	159
5.2 GERAÇÃO DO MODELO NUMÉRICO	160
5.3 CONDIÇÕES DE CONTORNO	163
5.4 DIAGRAMAS DE TENSÃO-DEFORMAÇÃO BILINEAR E	
MULTILINEAR	165
5.5 MODELOS NUMÉRICOS "ANSYS BILINEAR" E "ANSYS	
MULTILINEAR"	169
5.5.1 Modelo Ansys Bilinear – "Ansys Bilinear"	170
5.5.2 Modelo Ansys Multilinear – "Ansys Multilinear"	171
5.6 COMPARAÇÕES ENTRE AS DEFORMAÇÕES NOS ENSAIOS	
EXPERIMENTAIS E NOS MODELOS NUMÉRICOS	174
5.6.1 Comparações entre as deformações no banzo	176
5.6.2 Comparações entre as deformações no montante	182
5.6.3 Comparações entre as deformações na diagonal	185
5.7 ROSETAS	190
5.7.1 Roseta 1	191
5.7.1.1 Resultados da roseta 1	191
5.7.2 Roseta 2	196
5.7.2.1 Resultados da roseta 2	197
5.8 SOLICITAÇÃO DE ESCOAMENTO	200
5.8.1 Solicitação de escoamento no modelo numérico no ponto	
representativo da roseta1	201
5.8.2 Solicitação de escoamento para os modelos numéricos	202
5.9 ABAULAMENTO DO BANZO	203
5.10 ANÁLISE DOS RESULTADOS	204

CAPÍTULO VI

MODELAGEM NUMÉRICA – INFLUÊNCIA DO AFASTAMENTO	"GAP"
6.1 CONSIDERAÇÕES GERAIS	205
6.2 VALORES DO AFASTAMENTO "GAP"	206

6.3 RESULTADOS DA INFLUÊNCIA DOS AFASTAMENTOS	207
6.3.1 Tensão principal "σ ₁ "	208
6.3.2 Abaulamento do banzo	213
6.3.3 Modos de colapso	217
6.4 SOLICITAÇÃO DE DIMENSIONAMENTO VERSUS SOLICITAÇÃO	
DE ESCOAMENTO OBTIDA NUMERICAMENTE PELO ANSYS	223
6.5 ANÁLISES DOS RESULTADOS	226

CAPÍTULO VII

CONSIDERAÇÕES FINAIS

7.1 CONSIDERAÇÕES GERAIS	227
7.2 ANÁLISE TEÓRICA	228
7.3 ANÁLISE EXPERIMENTAL	229
7.4 ANÁLISE NUMÉRICA	231
7.5 ANÁLISE PARAMÉTRICA	232
7.6 TRABALHOS FUTUROS	233

REFERÊNCIAS

ANEXOS

ANEXOS 1 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO ENSAIO DE TRAÇÃO PARA A DETERMINAÇÃO DO DIAGRAMA DE TENSÃO-DEFORMAÇÃO DAS SEÇÕES TUBULARES

247

235

ANEXO 2 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO	
ENSAIO DE COMPRESSÃO PARA A DETERMINAÇÃO	
DO COEFICIENTE DE POISSON DAS SEÇÕES TUBULARES	295
ANEXO 3 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO	
ENSAIO I DO PROTÓTIPO DA LIGAÇÃO YT DE SEÇÕES	
TUBULARES CIRCULARES	303
ANEXO 4 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO	
ENSAIO II DO PROTÓTIPO DA LIGAÇÃO YT DE SEÇÕES	
TUBULARES CIRCULARES	308
ANEXO 5 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO	
ENSAIO III DO PROTÓTIPO DA LIGAÇÃO YT DE SEÇÕES	
TUBULARES CIRCULARES	332
ANEXO 6 – DIAGRAMA TENSÃO- DEFORMAÇÃO	339
ANEXO 7 – ROSETAS	342

Lista de Figuras

Figura 1.1 - Tipos de ligações soldadas	04
Figura 1.2 - Disposição das diagonais em ligações soldadas	04
Figura 1.3 - Modos de colapso para ligações K em seção tubular quadrada	
ou retangular	06
Figura 1.4 - Ligação de treliça de seções tubulares retangulares	11
Figura 1.5 - Definição de ligações sobrepostas	20
Figura 2.1 - Configurações das ligações	38
Figura 2.2 - Terminologia padrão usada para ligações K afastadas e	
Sobrepostas	39
Figura 2.3 - Corte do banzo na região do afastamento – Área A _v	56
Figura 2.4 - Interpretação física da largura efetiva	58
Figura 3.1 - Esquema da Ligação T	60
Figura 3.2 - Entrada de dados no HSS – connex da ligação T	67
Figura 3.3 - Resultados no HSS – connex da ligação T	67
Figura 3.4 - Resultados no HSS – connex da ligação T	68
Figura 3.5 - Resultados no HSS – connex da ligação T	68
Figura 3.6 - Esquema da ligação YT de banzo circular	69
Figura 3.7 - Entrada de dados no HSS – connex da ligação YT	79

Figura 3.8 - Resultados no HSS – connex da ligação YT	79
Figura 3.9 - Resultados no HSS – connex da ligação YT	80
Figura 3.10 - Resultados no HSS – connex da ligação YT	80
Figura 3.11 - Resultados no HSS – connex da ligação YT	81
Figura 3.12 - Esquema da ligação YT de banzo circular.	83
Figura 3.13 - Entrada de dados no HSS – connex da ligação YT	91
Figura 3.14 - Resultados no HSS – connex da ligação YT	91
Figura 3.15 - Resultados no HSS – connex da ligação YT	93
Figura 3.16 - Resultados no HSS – connex da ligação YT	93
Figura 4.1 – Corpo-de-prova para ensaio de tração	97
Figura 4.2 – Máquina de ensaio para ensaio de tração e do	
clip gage utilizado nos ensaios	98
Figura 4.3 – Diagrama tensão-deformação cp1a e cp1b - \phi73mm (VMB250)	100
Figura 4.4 – Diagrama tensão-deformação cp2a e cp2b - \phi114,3mm (VMB250)	100
Figura 4.5 – Diagrama tensão-deformação cp1a, cp1b, cp2a e cp2b (VMB250)	101
Figura 4.6 – Corpos-de-prova para ensaio de compressão	102
Figura 4.7 – Montagem do ensaio de compressão para o corpo-de-prova CP1	103
Figura 4.8 – Corpos-de-prova deformados após ensaio de compressão	104
Figura 4.9a – Protótipo da ligação YT	106
Figura 4.9b – Corte A-A do protótipo da ligação YT	107
Figura 4.9c – Corte B-B do protótipo da ligação YT	107
Figura 4.10 – Protótipos da ligação YT estocados no pátio da V&M do Brasil	108
Figura 4.11 – Diagrama de linha da ligação YT	109
Figura 4.12 – Vista geral do protótipo da ligação YT posicionado no	
pórtico de ensaio	110
Figura 4.13 – Detalhe rótula côncava	111
Figura 4.14 – Rótula côncava colocada no topo do montante	111
Figura 4.15 – Posicionamento dos TDs no protótipo de ligação YT	
no pré-ensaio	112
Figura 4.16 – Posicionamento dos TDs no pórtico de ensaio no pré-ensaio	113

Figura 4.17 – Modo de colapso por plastificação da parede	
do banzo no pré-ensaio – Modo A	114
Figura 4.18 – Abaulamento do banzo no nó da ligação YT	
no pré-ensaio – Modo F	115
Figura 4.19 – Nervuras soldadas na chapa de extremidade da	
diagonal para os ENSAIO I, II e III	116
Figura 4.20 – Localização dos extensômetros no protótipo da ligação YT	118
Figura 4.21 – Localização dos TDs no protótipo da ligação YT	119
Figura 4.22 – Vista geral da instrumentação do protótipo da ligação YT	120
Figura 4.23 – Detalhe da instrumentação do protótipo da ligação YT	121
Figura 4.24 – Início da fissuração da solda	123
Figura 4.25 – Modo de colapso por plastificação da parede do	
banzo no ENSAIO I - Modo A	124
Figura 4.26 – Reforço da solda	125
Figura 4.27 – Vigas de contenção lateral	126
Figura 4.28 – Deformação global do protótipo da ligação YT	127
Figura 4.29 – Abaulamento do banzo	127
Figura 4.30 – Modo de colapso por plastificação da parede do	
banzo no ENSAIO II - Modo A	128
Figura 4.31 – Início da fissuração da solda	129
Figura 4.32 – Modo de colapso por plastificação da parede do	
banzo no ENSAIO III - Modo A	130
Figura 4.33 – Deformação global do protótipo	131
Figura 4.34 – Abaulamento do banzo	131
Figura 4.35 – Fissuração da solda ao final do ensaio	132
Figura 4.36 – Ciclos de carregamento e descarregamento para EER1 no	
ENSAIO II	133
Figura 4.37 – Análise das tensões no protótipo da ligação YT	134
Figura 4.38 – Deformações para EER9, EER10, EER11 e EER12 no ENSAIO I	135
Figura 4.39 – Deformações para EER9, EER10, EER11 e EER12 no ENSAIO II	136
Figura 4.40 – Deformações para EER9, EER10, EER11 e EER12 no ENSAIO III	136

Figura 4.41 – Deformações para EER13, EER14, EER15 e EER16 no ENSAIO I	137
Figura 4.42 – Deformações para EER13, EER14, EER15 e EER16 no ENSAIO II	138
Figura 4.43 – Deformações para EER13, EER14, EER15 e EER16 no ENSAIO III	138
Figura 4.44 – Deformações para EER1 e EER3 nos ENSAIO I, II e III	139
Figura 4.45 – Deformações para EER2 e EER4 nos ENSAIO I, II e III	140
Figura 4.46 – Deformações para EER5 e EER7 nos ENSAIO I, II e III	141
Figura 4.47 – Deformações para EER6 e EER8 nos ENSAIO I, II e III	142
Figura 4.48 – Deformações para EER23 e EER24 no ENSAIO III	143
Figura 4.49 – Deformações para roseta 1 no ENSAIO III	144
Figura 4.50 – Deformações para roseta 2 no ENSAIO III	144
Figura 4.51 – Posicionamento e sentido dos deslocamentos dos TDs	
nos ENSAIO I, II e III	145
Figura 4.52 – Deslocamentos para os TD1 e TD2 nos ENSAIO I, II e III	146
Figura 4.53 – Deslocamentos para os TD3 e TD4 nos ENSAIO I, II e III	147
Figura 4.54 – Deslocamentos para os TD5 e TD6 nos ENSAIO I, II e III	148
Figura 4.55 – Deslocamentos para os TD7 e TD8 nos ENSAIO I, II e III	149
Figura 4.56 – Deslocamentos para os TD9 e TD13 nos ENSAIO I, II e III	150
Figura 4.57 – Deslocamentos para os TD10, TD11 e TD12 nos ENSAIO I, II e III	150
Figura 4.58 – Deslocamentos para os TD14 e TD15 nos ENSAIO I, II e III	151
Figura 4.59 – Deslocamentos para os TD16 e TD17 nos ENSAIO I, II e III	152
Figura 4.60 – Deslocamentos para os TD18 e TD19 nos ENSAIO I, II e III	153
Figura 4.61 – Deslocamentos para os TD20 e TD21 nos ENSAIO I, II e III	154
Figura 4.62 – Abaulamento do banzo medido nos ENSAIO I e II	155
Figura 5.1 - Modelo de elementos finitos com SHELL181 para as seções tubulares	
e SHELL63 para as chapas de extremidades	161
Figura 5.2 - Geração do modelo numérico	162
Figura 5.3 - Malha gerada na intersecção da ligação YT	163
Figura 5.4 - Restrições de apoio utilizadas para os modelos numéricos	164
Figura 5.5 - Restrições de apoio utilizadas para chapas de fixação do	
banzo em "x"	165

Figura 5.6 - Diagramas de tensão-deformação experimental, bilinear e multilinear	
para o corpo-de-prova cp1b	168
Figura 5.7 - Diagramas de tensão-deformação experimental, bilinear e multilinear	
para o corpo-de-prova cp2b	168
Figura 5.8 - Tensões principais " σ_1 " para o modelo "Ansys Bilinear"	170
Figura 5.9 - Tensões principais " σ_1 " para o modelo "Ansys Multilinear"	171
Figura 5.10 – Deformada para o modelo "Ansys Multilinear" vista frontal	172
Figura 5.11 – Deformada para o modelo "Ansys Multilinear" em detalhe	173
Figura 5.12 – Deformada para o modelo "Ansys Multilinear" vista inferior	174
Figura 5.13 – Deformações no banzo da ligação YT extensômetro EER1	177
Figura 5.14 – Deformações no banzo da ligação YT extensômetro EER2	177
Figura 5.15 – Deformações no banzo da ligação YT extensômetro EER3	177
Figura 5.16 – Deformações no banzo da ligação YT extensômetro EER4	178
Figura 5.17 – Deformações no banzo da ligação YT extensômetro EER5	179
Figura 5.18 – Deformações no banzo da ligação YT extensômetro EER6	180
Figura 5.19 – Deformações no banzo da ligação YT extensômetro EER7	180
Figura 5.20 – Deformações no banzo da ligação YT extensômetro EER8	181
Figura 5.21 – Deformações no montante da ligação YT extensômetro EER9	182
Figura 5.22 – Deformações no montante da ligação YT extensômetro EER10	183
Figura 5.23 – Deformações no montante da ligação YT extensômetro EER11	183
Figura 5.24 – Deformações no montante da ligação YT extensômetro EER12	184
Figura 5.25 – Deformações no montante da ligação YT extensômetro EER23	184
Figura 5.26 – Deformações na diagonal da ligação YT extensômetro EER13	186
Figura 5.27 – Deformações na diagonal da ligação YT extensômetro EER14	187
Figura 5.28 – Deformações na diagonal da ligação YT extensômetro EER15	188
Figura 5.29 – Deformações na diagonal da ligação YT extensômetro EER16	189
Figura 5.30 – Deformações na diagonal da ligação YT extensômetro EER24	190
Figura 5.31 – Roseta 1 de 45º utilizada no protótipo YT	191
Figura 5.32 – Tensão principal " σ_1 " na roseta 1 e a correspondente nos modelos	
numéricos	195

Figura 5.33 – Tensão principal " σ_2 " na roseta 1 e a correspondente nos modelos	
numéricos	196
Figura 5.34 – Roseta 2 de 45º utilizada no protótipo YT	197
Figura 5.35 – Tensão principal " σ_1 " na roseta 2 e a correspondente nos modelos	
numéricos	199
Figura 5.36 – Tensão principal " σ_2 " na roseta 2 e a correspondente nos modelos	
numéricos	200
Figura 5.37 – Abaulamento do banzo	203
Figura 6.1 – Tensão principal " σ_1 " para modelo "GAP10,33"	208
Figura 6.2 – Tensão principal " σ_1 " para modelo "GAP30"	209
Figura 6.3 – Tensão principal "σ1" para modelo "GAP50"	209
Figura 6.4 – Tensão principal " σ_1 " para modelo "GAP70"	210
Figura 6.5 – Tensão principal " σ_1 " para modelo "GAP90"	210
Figura 6.6 – Tensão principal " σ_1 " para modelo "GAP110"	211
Figura 6.7 – Tensão principal " σ_1 " para novos modelos numéricos	
no ponto de escoamento	212
Figura 6.8 – Abaulamento do banzo para o modelo "GAP10,33"	213
Figura 6.9 – Abaulamento do banzo para o modelo "GAP30"	214
Figura 6.10 – Abaulamento do banzo para o modelo "GAP50"	214
Figura 6.11 – Abaulamento do banzo para o modelo "GAP70"	215
Figura 6.12 – Abaulamento do banzo para o modelo "GAP90"	215
Figura 6.13 – Abaulamento do banzo para o modelo "GAP110"	216
Figura 6.14 – Abaulamento do banzo representado pelo ponto	
de máximo deslocamento no eixo Z na região abaixo do montante	217
Figura 6.15 – Colapso por plastificação da parede do banzo no modelo "GAP30"	218
Figura 6.16 – Abaulamento do banzo no modelo "GAP30"	218
Figura 6.17 – Colapso por plastificação da parede do banzo no modelo "GAP50"	219
Figura 6.18 – Abaulamento do banzo no modelo "GAP50"	219
Figura 6.19 – Colapso por plastificação da parede do banzo no modelo "GAP70"	220
Figura 6.20 – Abaulamento do banzo no modelo "GAP70"	220
Figura 6.21 – Colapso por plastificação da parede do banzo no modelo "GAP90"	221

Figura 6.22 – Abaulamento do banzo no modelo "GAP90"	221
Figura 6.23 – Colapso por plastificação da parede do banzo no modelo "GAP110"	222
Figura 6.24 – Abaulamento do banzo no modelo "GAP110"	222
Figura 6.25 – Solicitação de dimensionamento e solicitação	
de escoamento	224
Figura A.1 – Diagrama tensão-deformação convencional e real para material	
Dúctil	340
Figura A.2 – Roseta de angulação qualquer	342
Figura A.3 – Roseta 1 de 45 ⁰ utilizada no protótipo YT	344

Lista de Tabelas

Tabela 2.1 - Resistência das ligações soldadas de seções tubulares circulares	46
Tabela 2.1a - Limites de validade das ligações soldadas de seções tubulares	
circulares	47
Tabela 2.1b - Coeficiente de redução para avaliar a eficiência da resistência da	
ligação para barra comprimida	49
Tabela 2.2 - Resistência das ligações soldadas de banzo de seções tubulares	
quadradas e montantes e diagonais de seções tubulares quadradas	
ou circulares	50
Tabela 2.2a - Limites de validade das ligações soldadas de banzo de seções	
tubulares quadradas e montantes e diagonais de seções tubulares	
quadradas ou circulares	51
Tabela 2.3 - Resistência das ligações soldadas de banzo de seções tubulares	
retangulares e montantes e diagonais de seções tubulares	
quadradas ou circulares	53
Tabela 2.3a - Limites de validade das ligações soldadas de banzo de seções	
tubulares retangulares e montantes e diagonais de seções	
tubulares quadradas ou circulares	54
Tabela 3.1 – Comparação entre resultados manuais e do HSS – connex	66

Tabela 3.2 - Comparação entre resultados manuais e do HSS – connex	78
Tabela 3.3 - Comparação entre resultados manuais e do HSS – connex	92
Tabela 4.1 – Dados fornecidos através do diagrama tensão-deformação	
obtidos no ensaio de tração	99
Tabela 4.2 – Comprimento, espessura, solicitação última e o coeficiente de	
Poisson obtidos no ensaio de compressão	105
Tabela 4.3 – Posicionamento dos extensômetros nas barras do protótipo	117
Tabela 4.4 – Deformação correspondente a tensão de escoamento	156
Tabela 4.5 – Solicitação última nos ENSAIO I, II e III	157
Tabela 5.1 - Dados para representar o diagrama de tensão-deformação	
multilinear no programa ANSYS	167
Tabela 5.2 - Dados para representar o diagrama de tensão-deformação	
no programa ANSYS	169
Tabela 5.3 – Tensão de escoamento obtida no ensaio de tração	192
Tabela 5.4 – Cálculo das tensões principais para roseta 1	193
Tabela 5.5 – Cálculo das tensões principais para roseta 2	198
Tabela 5.6 – Percentual de erro da solicitação de escoamento para o ponto	
representado pela roseta 1 e os modelos numéricos do ANSYS	201
Tabela 5.7 – Solicitação de escoamento no ponto representado pela roseta 1	
nos ENSAIO I, II e III	202
Tabela 5.8 – Solicitação de escoamento para os modelos numéricos do ANSYS	203
Tabela 6.1 – Valores de "gap" para os novos modelos	207
Tabela 6.2 – Solicitação de escoamento para os novos modelos	213
Tabela 6.3 – Solicitação de dimensionamento, solicitação de escoamento e	
percentual de diferença entre elas, considerando a presença	
do momento fletor no cálculo	225
Tabela 6.4 – Solicitação de dimensionamento, solicitação de escoamento e	
percentual de diferença entre elas, sem considerar a presença	
do momento fletor no cálculo	225
Tabela Cp1a – Dados experimentais do ensaio de tração para seção tubular	
circular de diâmetro 73 mm e #5,16 mm	247

Tabela Cp1b – Dados experimentais do ensaio de tração para seção tubular	
circular de diâmetro 73 mm e #5,16 mm	259
Tabela Cp2a – Dados experimentais do ensaio de tração para seção tubular	
circular de diâmetro 114,3 mm e #6,02 mm	271
Tabela Cp2b – Dados experimentais do ensaio de tração para seção tubular	
circular de diâmetro 114,3 mm e #6,02 mm	283
Tabela CP1 – Dados experimentais do ensaio de compressão para seção	
tubular circular de diâmetro 73 mm e #5,16 mm	295
Tabela CP2 – Dados experimentais do ensaio de compressão para seção	
tubular circular de diâmetro 73 mm e #5,16 mm	297
Tabela CP3 – Dados experimentais do ensaio de compressão para seção	
tubular circular de diâmetro 114,3 mm e #6,02 mm	299
Tabela CP4 – Dados experimentais do ensaio de compressão para seção	
tubular circular de diâmetro 114,3 mm e #6,02 mm	301
Tabela A3.1 – Tabela dos resultados das leituras dos extensômetros	
no ENSAIO I	303
Tabela A3.2 – Tabela dos resultados das leituras dos transdutores	
de deslocamentos (TDs) no ENSAIO I	305
Tabela A3.3 – Tabela dos resultados das leituras dos transdutores	
de deslocamentos digitais (TDs) no ENSAIO I	306
Tabela A4.1 – Tabela dos resultados das leituras dos extensômetros	
no ENSAIO II	308
Tabela A4.2 – Tabela dos resultados das leituras dos transdutores	
de deslocamentos (TDs) no ENSAIO II	321
Tabela A4.3 – Tabela dos resultados das leituras dos transdutores	
de deslocamentos digitais (TDs) no ENSAIO II	323
Tabela A5.1 – Tabela dos resultados das leituras dos extensômetros	
no ENSAIO III	332
Tabela A5.2 – Tabela dos resultados das leituras dos transdutores	
de deslocamentos (TDs) no ENSAIO III	335

Tabela A5.3 – Tabela dos resultados das leituras dos transdutores de deslocamentos digitais (TDs) no ENSAIO III

CAPÍTULO I

INTRODUÇÃO

1.1 CONSIDERAÇÕES GERAIS

Hoje, um dos motivos do avanço no uso de edificações em estruturas metálicas é a vantagem econômica do processo industrial de fabricação destas estruturas. Dentro deste contexto, vale destacar o crescente aumento em todo o mundo do uso das seções tubulares, principalmente em estruturas nas quais estes perfis ficam aparentes, dando elegância e um visual mais moderno.

Através dos anos, o uso de seções tubulares tem se expandido significativamente. Inicialmente, são vistas com elegância pelos arquitetos e engenheiros projetistas, usadas para dar estética a estruturas aparentes devido ao aspecto de arrojo e modernidade. Posteriormente, com o advento das seções tubulares estruturais passou-se a ter maior uso em obras de maior vulto, pois possibilitam soluções leves e econômicas, face à sua elevada resistência e baixo peso próprio. Daí para frente, cada vez mais as seções tubulares estruturais são requisitadas para aplicação em estruturas, como resultado da versatilidade de seu uso, que traz vantagens distintas aos projetistas. A forma geométrica tubular destes perfis permite

maior capacidade resistente para forças axiais e transversais, torção e efeitos combinados de maneira econômica. Estas estruturas podem abranger maiores vãos livres, reduzindo assim o número de pilares. Permitem também o planejamento das obras e rigor nos orçamentos devido ao sistema de montagem industrial de alta precisão, reduzindo os prazos de construção e custo de manutenção e gerenciamento do canteiro de obras, evitando o desperdício de material e capital. Seções tubulares estruturais possuem menor área de superfície do que os perfis abertos, o que significa menor área de pintura. Também são de fácil limpeza e manutenção, em comparação com os perfis abertos por não apresentarem saliências e sobressaltos. Estes perfis também podem compor estruturas mistas (como por exemplo, os pilares mistos: tubos preenchidos com concreto), ganhando muito em produtividade e resistência. Estruturas mistas reduzem o peso total da edificação, o que torna possível fundações mais econômicas.

Hoje, as seções tubulares estruturais mais comumente encontradas no mercado possuem seções transversais quadradas (SHS-Square Hollow Section), retangulares (RHS-Rectangular Hollow Section) ou circulares (CHS-Circular Hollow Section) e são constituídas por aco de elevada resistência, na faixa de 350MPa. No Brasil, um dos fabricantes que se pode citar é a VALLOUREC & MANNESMANN TUBES - V&M do BRASIL S.A. (ex-Mannesmann S.A.), fundada em 1953, a pedido do Governo Brasileiro, para atender à demanda de tubos de aço sem costura por parte da emergente indústria petrolífera nacional. Esta empresa diversificou sua atuação, ao longo da sua história, em produtos que servem também às indústrias automobilísticas, química, mecânica e naval. Atualmente, agregou à sua produção uma nova linha de produtos voltada para construção civil que são os tubos estruturais, com largo emprego nos países desenvolvidos. A usina siderúrgica da V&M do BRASIL fica localizada em Belo Horizonte-MG onde é feita a conversão do próprio minério de ferro e carvão vegetal em ferro gusa e aço de elevado grau de pureza. As barras de aço maciças são então laminadas a quente e transformadas em tubos sem costura com diâmetros variando de 26,7mm a 355,6mm e espessuras de parede de 2,3mm a 38,0mm. Hoje a V&M do BRASIL também produz os tubos estruturais de seções quadradas e

retangulares. Os tubos sem costura perfilados retangulares têm dimensões de 60x40mm até 360x210mm e espessuras de parede de 3,6mm até 12,7mm; e os quadrados são de 50x50mm até 290x290mm com espessuras de 3,6mm até 12,7mm.

Obras de grande impacto visual vêm à mente quando se pensa no uso de estruturas com seções tubulares estruturais como terminais de aeroportos, shoppings, agências de bancos, agências de carros, centro de convenções, parques aquáticos, ginásios de esportes, entre outras. Estas seções têm sido fonte de inspiração para arquitetos e projetistas pela possibilidade de criar obras de grande vulto onde as seções tubulares estruturais podem fazer parte do cenário da obra. Outros exemplos do uso de seções tubulares estruturais são as torres de transmissões, pavilhões, edifícios industriais, torres de telecomunicações, pontes, estacionamentos, escolas, fachadas, mezaninos em lojas, escadas, outdoors, passarelas de pedestre, hospitais entre tantas outras aplicações que dependem tão somente da criatividade do arquiteto ou projetista.

Um dos fatores determinantes no custo é a otimização da fabricação através da padronização das ligações tubulares. É necessário, portanto, buscar minimizar custos de cortes, preparação das extremidades dos tubos e soldagem, adequando-as às exigências de projeto. Para que isto seja possível, foram desenvolvidos equipamentos de corte automático capazes de realizar corte com grande precisão e alta produtividade, efetuando quaisquer tipos de cortes ou chanfros projetados. O uso de tais equipamentos representa significativa redução de custo de fabricação das estruturas tubulares com alto padrão de qualidade.

Nesta era de preservação ambiental, a total reciclabilidade do aço vem contribuir para a preservação da natureza, já tão desgastada pelo abuso excessivo e freqüente dos homens. A V&M do BRASIL vem contribuir para a preservação ambiental através do plantio e cultivo de suas florestas de eucaliptos, as quais fornecem o carvão vegetal para usina siderúrgica, bem como contribui para a redução do efeito estufa, através da fixação do gás carbônico da atmosfera pelas árvores em crescimento, liberando simultaneamente oxigênio. Isto confere um diferencial ecológico aos produtos V&M.

1.1.1 Tipos de Ligações Soldadas

Especialmente no caso de estruturas treliçadas, as ligações soldadas mais usuais recebem o nome de K, T, YT e KT, conforme o desenho da ligação assemelharse a essas letras como mostra a Figura 1.1.

Figura 1.1 - Tipos de ligações soldadas.

A ligação K representa a intersecção entre o banzo e duas diagonais inclinadas, T representa a intersecção entre o banzo e um montante, e assim por diante. Existem outros tipos de ligações soldadas como, por exemplo, a ligação X, L, Y, KK, TT entre outras. Existem três possibilidades básicas de disposição das diagonais para as ligações K, YT, KT que são: normais, afastadas (gap) ou sobrepostas (overlap), como mostra a Figura 1.2.

Figura 1.2 - Disposição das diagonais em ligações soldadas.

1.1.2 Modos de Colapso das Ligações

Inúmeras pesquisas experimentais sobre ligações soldadas de seções tubulares estruturais têm sido realizadas para mostrar quais são os diferentes modos de colapso que podem existir dependendo do tipo da ligação, condições de solicitação e vários outros parâmetros geométricos. Existem várias formulações para descrever os modos de colapso das ligações, algumas foram derivadas de estudos teóricos, enquanto outras foram baseadas apenas na experiência de uma forma empírica. Os modos de colapso são mostrados na Figura 1.3 para ligações K de treliça em seção tubular quadrada e retangular, de acordo com PACKER e HANDERSON (1997). São eles:

- Modo A Colapso por plastificação da parede do banzo (uma diagonal empurra a parede do banzo enquanto a outra diagonal puxa);
- Modo B Corte por puncionamento da parede do banzo pela diagonal (de tração ou de compressão);
- Modo C Corte da diagonal tracionada ou corte da solda de ligação da diagonal tracionada;
- Modo D Flambagem local da diagonal comprimida;
- Modo E Colapso por cisalhamento do banzo na região do afastamento;
- Modo F Flambagem local das paredes verticais do banzo abaixo do montante comprimido;
- Modo G Flambagem local da parede do banzo embaixo da menor inclinação da diagonal tracionada;

Figura 1.3 - Modos de colapso para ligações K em seção tubular quadrada ou retangular.

Fonte: PACKER e HANDERSON, 1997, p.70.

1.2 ESTADO DA ARTE

Segundo PACKER (1983), as seções tubulares estruturais foram primeiramente produzidas em 1952, por "Stewarts e Lloyds", que agora faz parte da "British Steel Corporation". Desde então elas têm-se tornado cada vez mais populares devido à sua forma estrutural e principalmente devido à sua qualidade estética e eficiência estrutural. Estes perfis primeiramente foram difundidos na Europa, Japão e Canadá devido ao seu desenvolvimento tecnológico e suporte de marketing; posteriormente, de forma mais lenta, nos Estados Unidos. A aplicação mais comum das seções tubulares estruturais era em treliças. As seções tubulares retangulares eram preferidas às seções tubulares circulares, devido a dificuldades de encaixe das seções circulares na intersecção das barras. Para evitar essas dificuldades utilizavam-se ligações afastadas de seções tubulares através de cortes retos.

As publicações referentes as seções tubulares estruturais são algo recente. Eventos científicos específicos datam da segunda metade da década de 70. A partir desta época, um significativo material bibliográfico na forma de artigos científicos passou a ser publicado em anais de congressos científicos. PACKER e HANDERSON (1997) apresentaram um princípio desta história. Segundo eles, depois do advento de seções tubulares estruturais na Inglaterra, estudos experimentais e teóricos foram desenvolvidos na Universidade de Sheffield, com seções soldadas quadradas e circulares, trazendo o primeiro guia de recomendações de projeto de Eastwood e Wood em 1970. Estas recomendações foram rapidamente implementadas no Canadá e publicadas por Stelco em 1971, no primeiro manual para seções tubulares estruturais do mundo. As fórmulas para o cálculo da resistência das ligações de Eastwood e Wood foram também incluídas no "Canadian Institute of Steel Construction's Limit States Design Steel Manual" - CISC em 1977, mas não apareceram em suas publicações futuras. Uma quantidade grande de trabalho de pesquisa em seções tubulares estruturais ocorreu internacionalmente durante a década de 70, particularmente no que diz respeito ao comportamento da ligação e sua resistência estática. Muitos destes estudos foram coordenados pelo "Comité International pour le Développement et l

Étude de la Construction Tubulaire" - CIDECT, que são um grupo de fabricantes de seções tubulares estruturais com o objetivo de desenvolver coletivamente o mercado de tubos. A secretaria técnica do CIDECT é localizada atualmente em Paris, na França.

A partir da década de 90 tem-se uma freqüência maior destas publicações em congressos científicos. Publicação em forma de livros pode se citar o livro "Steel Structure" de McGUIRE (1968), onde em seu capítulo de número seis, ele trata das ligações tubulares; o livro "Hollow structural section connections and trusses" de PACKER e HANDERSON (1997), que apresentam tabelas de dimensionamento para vários tipos de ligações; e o livro "Mechanics and design of tubular structural" de JÁRMAI e FARKAS (1998), onde cada capítulo foi assinado por um conjunto diferente de autores.

Tentar-se-á recontar os passos desta história sobre as ligações tubulares mesmo que com algumas lacunas, não devido à falta de vontade, mas sim pela dificuldade de encontrar um material mais seqüencial. Acredita-se ser de suma importância porque reflete o espírito pesquisador de muitos autores que dedicaram suas vidas à evolução das técnicas de cálculo de sua resistência.

Várias formulações foram recomendadas nesta época para o cálculo da resistência última de alguns tipos de ligações. YURA, ZETTLEMOYER e EDWARDS (1980) analisaram uma base de dados de 137 ensaios experimentais de resistência última de ligações tubulares simples T, Y, DT e K para desenvolverem uma nova formulação. Para esses ensaios foram consideradas as forças axiais de tração e compressão no plano e fora do plano de flexão da ligação. A solicitação de colapso era tomado como o menor entre a solicitação de ruptura ou a solicitação que provoca deformações excessivas. As novas equações encontradas são mais consistentes, dão resultados menos dispersos e possuem um formato relativamente mais simples.

Nesta época um estudo de vários documentos de projetos de pesquisa foi arquivado pelo Departamento de Energia UK, com ênfase particular na resistência estática das ligações. Este estudo conclui que não há duas publicações de documentos de projetos que façam recomendações idênticas para o cálculo da resistência estática e que há inconsistências graves, particularmente quanto ao nível de segurança. BILLINGTON, LALANI e TEBBETT (1982) apresentaram uma derivação de novas formulações, nas quais descrevem o estado limite último de ligações tubulares. Estas formulações foram baseadas em uma análise estatística de 200 resultados de ensaios estáticos. Foram consideradas margens apropriadas de segurança e foram apresentadas comparações diretas com formulações de projeto existentes, o que mostra, em certo número de casos, que as formulações existentes superestimam a resistência das ligações tubulares. O limite de validade de aplicação destas formulações foi comparado à configurações de ligações típicas, o que conduz à identificação das áreas onde futuras pesquisas do estado limite último deveriam ser direcionadas.

PACKER, DAVIES e COUTIE (1980 e 1982) analisaram ensaios estáticos em ligações soldadas de treliças com seção tubular retangular do tipo K, na qual se tem uma diagonal tracionada e outra comprimida soldadas à face do banzo. Este tipo de ligação usualmente resulta em um modo de colapso de corte por puncionamento da parede do banzo (Modo B), ver Figura 2.3, mas também outros modos de colapso podem ser associados a este. Eles apresentaram uma análise teórica e empírica para verificar a resistência última de ligações afastadas de treliças com seção tubular retangular do tipo K. A resistência última da ligação foi determinada através da observação de um conjunto de modos de colapso, os quais foram estudados pelo método da linha deslocada adaptado para grandes deformações. Sua teoria foi testada por comparação com resultados experimentais de 124 variedades de ensaios de ligações isoladas realizadas nos Países Baixos, Holanda e Grã-Bretanha onde foram variados os parâmetros da ligação. Continuando esses estudos, PACKER e DAVIES (1982) estudaram a resistência última de ligações sobrepostas de treliças com seção tubular retangular do tipo K. Neste caso, o modo de colapso mais comum observado foi a flambagem local da barra comprimida (Modo D). Novamente os resultados de 26 variedades de ensaios de ligações isoladas e em treliças, nas quais foram variados os parâmetros da ligação, vindos de três países diferentes foram usados para validar com

sucesso seu método da linha deslocada. Este método também pode ser utilizado para ligações de barras sobrepostas de seções tubulares circulares. Este método da linha deslocada foi baseado no trabalho virtual interno e no trabalho externo e apresenta uma formulação de difícil entendimento.

PACKER (1983) revisou os recentes desenvolvimentos nas propostas de projeto para ligações K, de seções tubulares retangulares, em treliças planas para força estático tendo uma diagonal tracionada e outra comprimida soldadas à face do banzo, com afastamentos pequenos ou sobrepostas. A revisão dos métodos de cálculo vale a pena ser recontada porque mostra o início de uma formulação que ainda hoje é utilizada. Nesta época o atual "Handbook of Steel Construction" (Canadian Institute of Steel Construction 1980) não oferecia uma formulação específica para o cálculo de ligações de seções tubulares estruturais. Ele se referia a um manual para ligações de tubos manufaturados (Stelco 1981) que fornecia um método de cálculo simplificado, baseado em trabalhos de pesquisa realizados na Universidade de Sheffield, sobre a direção de Eastwood e Wood (apud PACKER, 1983) em 1970, que já tinham sido incluídos anteriormente no "Canadian Institute of Steel Construction's Limit States Design Steel Manual" - CISC em 1977, como já foi citado anteriormente. Estas equações são empíricas, ou seja, baseadas apenas na experiência, e fornecem um valor baixo para resistência última da ligação, a qual poderia ser expressa como a força de compressão na diagonal, chamada de "N_{1u}" O valor de "N_{1u}" era fornecido para três razões da soma largura das diagonais pelo dobro da largura do banzo.

Para
$$\frac{b_1 + b_2}{2 \cdot b_0} \le 0,5$$
 $N_{1u} = \frac{2 \cdot t_0 \cdot F_{y0}}{sen\theta_1}$ (1.1)
Para
$$0.5 \le \frac{b_1 + b_2}{2 \cdot b_0} \le 0.875$$
 $N_{1u} = 2 \cdot t_0 \cdot F_{y0} \frac{[1 + 3.1 \cdot (\frac{b_1 + b_2 - b_0}{b_0})]}{\text{sen}\theta_1}$ (1.2)

Para
$$0.875 \le \frac{b_1 + b_2}{2 \cdot b_0} \le 1.0$$
 $N_{1u} = \frac{6.7 \cdot t_0 \cdot F_{y_0}}{\text{sen}\theta_1}$ (1.3)

Os parâmetros envolvidos nas equações (1.1) a (1.3) são mostrados na Figura 1.4 e " F_{y0} " é a tensão de escoamento. As equações (1.1), (1.2) e (1.3) não são dimensionalmente balanceadas e são utilizadas nas seguintes unidades imperiais: para a resistência " N_{1u} " é "kips", para "t₀" é "inches" (pés) e para " F_{y0} " é "ksi".

Figura 1.4 - Ligação de treliça de seções tubulares retangulares.

Depois da publicação de Eastwood e Wood (apud PACKER, 1983) em 1970, uma grande quantidade de pesquisa experimental foi realizada, principalmente na Europa, sob patrocínio do CIDECT. A Universidade de Tecnologia de Delft investigou centenas de ligações soldadas isoladas de seções tubulares: circulares com retangulares e retangulares com retangulares. Os resultados desta investigação foram organizados por Wardenier e Stark (apud PACKER, 1983) e os resultados finais publicados em 1978. Para complementar este programa de ensaios foram fabricadas treliças com estes perfis em Corby, na Inglaterra e foram ensaiadas na Universidade de Pisa, na Itália e uma série idêntica de ligações isoladas foram ensaiadas em Corby, cujos resultados foram publicados na "British Steel Corporation" em 1977. Com base nestes resultados e nos da Universidade de Tecnologia de Delft, em 1978, Wardenier e Stark (apud PACKER, 1983) proporam as seguintes equações para estimar a resistência última de ligações afastadas para barras de seções tubulares quadradas e retangulares, mostrada pela equação (1.4):

$$N_{1u} = F_{y0} \cdot t_0^2 \cdot (\frac{b_0}{t_0})^{0.5} \cdot (0.4 + 8.5 \cdot \beta) \cdot (\frac{1 + \text{sen}\theta_1}{2 \cdot \text{sen}\theta_1}) \cdot \mu \cdot f(\frac{h_0}{b_0})$$
(1.4)

E para diagonais de seção tubulares circulares a equação (1.5):

$$N_{1u} = F_{y0} \cdot t_0^2 \cdot (\frac{b_0}{t_0})^{0.5} \cdot (1,3+5,6\cdot\beta) \cdot (\frac{1+\sin\theta_1}{2\cdot\sin\theta_1}) \cdot \mu \cdot f(\frac{h_0}{b_0})$$
(1.5)

As equações (1.4) e (1.5) são muito parecidas. O valor de " β " é dado por " $\beta = \frac{(b_1 + b_2)}{2 \cdot b_0}$ " para seções tubulares retangulares e " $\beta = \frac{(d_1 + d_2)}{2 \cdot b_0}$ " para seções tubulares circulares.

A função " μ " é somente um fator de redução da resistência última para o banzo comprimido, tomada igual a 1,0 para o banzo tracionado. Wardenier e Stark (apud PACKER, 1983) em 1978 definiram para banzo comprimido a equação (1.6) para o cálculo de " μ ":

$$\mu = 1,3 - \frac{0,4}{\beta} \cdot \left| \frac{\mathsf{F}_0}{\mathsf{F}_{y0}} \right| \qquad (\text{mas não maior que 1,0}) \tag{1.6}$$

Onde " F_0 " é a máxima tensão axial no banzo e " F_{v0} " é a tensão de escoamento.

A função " $f(\frac{h_0}{b_0})$ " foi aplicada para permitir a redução da resistência quando a altura do banzo, " h_0 ", for menor que a largura " b_0 ", porque os resultados experimentais da Universidade de Tecnologia de Delft mostram uma redução da resistência da ligação que nestes casos pode ser maior que 30%. Essa função é dada pelas equações (1.7) e (1.8):

$$f(\frac{h_0}{b_0}) = 1,0$$
 para $\frac{h_0}{b_0} \ge 1,0$ (1.7)

$$f(\frac{h_0}{b_0}) = (\frac{h_0}{b_0})^{0.5}$$
 para $0.5 \le \frac{h_0}{b_0} \le 1.0$ (1.8)

Para afastamentos maiores que " $0,2 \cdot b_0$ " foi sugerido que além das equações (1.4) e (1.5) fosse verificada também a equação (1.9) que fornece a resistência última para colapso por cisalhamento do banzo (Modo E), ver Figura 1.3:

$$N_{1u} = \frac{2 \cdot F_{y0} \cdot t_0 \cdot (h_0 + 2 \cdot t_0)}{\sqrt{3} \cdot \operatorname{sen}\theta_1}$$
(1.9)

Wardenier e Stark (apud PACKER, 1983) também sentiram que era necessário verificar o corte por puncionamento (Modo B), mas nenhuma equação foi sugerida por eles. Entretanto as equações (1.4), (1.5) e (1.9) apresentaram uma boa correlação entre a resistência última proposta e a resistência última fornecida pelos resultados dos ensaios da Universidade de Tecnologia de Delft, mas foi encontrada substancial discrepância em relação aos resultados da Universidade de Pisa e Corby. Em 1981, para melhorar essa correlação com os resultados experimentais, Coutie e Davies (apud PACKER, 1983) sugeriram as cinco seguintes modificações:

i) Uma função adicional para levar em conta a alta esbeltez do banzo, dado pela equação (1.10):

$$f(\frac{b_0}{t_0}) = 1 + \frac{1,25}{3} \cdot 10^{-3} \cdot \left(\frac{b_0}{t_0} - 30\right) \cdot (90^\circ - \theta_1 - \theta_2) \quad \text{(mas não maior que 1,0)}$$
(1.10)

ii) Para diagonais de seções tubulares retangulares foi sugerido que nas equações (1.4) e (1.5) fosse substituída " β " por " β^* ", onde " β^* " é dado pela equação (1.11):

$$\beta^* = \frac{\left[b_1 + b_2 + \xi(h_1 + h_2)\right]}{4 \cdot b_0} \tag{1.11}$$

Em 1981 Coutie e Davie (apud PACKER, 1983) usaram os valores de " ξ " sugerido por Packer (apud PACKER, 1983) em 1978, dado pelas equações (1.12) e (1.13):

$$\xi = 1,0$$
 para $b_1 \ge b_2$ ou $b_1 + h_1 \ge b_2 + h_2$ (1.12)

$$\xi = 0,7$$
 para $b_1 < b_2$ ou $b_1 + h_1 < b_2 + h_2$ ou $b_1 < h_1$, $b_2 < h_2$ (1.13)

iii) Para diagonais de seções tubulares circulares, Coutie e Davies (apud PACKER, 1983) em 1981 também optaram pelo sugerido por Packer (apud PACKER, 1983) em 1978, que sugeriu que " β " fosse substituído " β '" que é dado pela equação (1.14):

$$\beta' = \frac{\pi}{4} \cdot \left(\frac{d_1 + d_2}{2 \cdot b_0}\right)$$
(1.14)

iv) Um fator especial de redução da resistência última foi desenvolvido para fazer também a verificação para colapso por cisalhamento do banzo (Modo E), dado pela equação (1.15):

$$\mu_{s} = \frac{1.4 - \left| \frac{F_{0}}{F_{y0}} \right|}{1 - \frac{(h_{0} + 2 \cdot t_{0}) \cdot \cot \theta_{2}}{(h_{0} + b_{0})}}$$
(1.15)

v) A função "f(θ)" nas equações (1.4) e (1.5) foi simplificada; passando a ser dada pela equação (1.16):

$$f(\theta) = \frac{0.85}{\operatorname{sen}\theta_1} \tag{1.16}$$

Depois destas cinco modificações, Coutie e Davies (apud PACKER, 1983) em 1981 forneceram a nova formulação para o cálculo da resistência última de ligações afastadas com seções tubulares retangulares dada pela equação (1.17):

$$N_{1u} = 9,2 \cdot \frac{F_{y0}}{\operatorname{sen}\theta_1} \cdot t_0^2 \cdot (\frac{b_0}{t_0})^{0,5} \cdot \beta^* \cdot \mu \cdot f\left(\frac{b_0}{t_0}\right)$$
(1.17)

Onde " $f\left(\frac{b_0}{t_0}\right)$ " foi dado pela equação (1.10). Para se utilizar seções tubulares circulares " β^* " deverá ser substituído " β '" dado pela equação (1.14). A equação (1.17) também poderá ser utilizada para a verificação quanto a colapso por cisalhamento do banzo (Modo E), desde que " μ " seja substituído por " μ_s " dado pela equação (1.15).

Em 1981, Wardenier e Davies (apud PACKER, 1983) revisando os comentários e proposições de diferentes grupos de pesquisa, proporam outro método, mais complicado, para cálculo da resistência última de ligações afastadas de seções tubulares retangulares e circulares, o qual foi determinado através do modo de colapso. O modo de colapso mais comum para ligações afastadas envolve o colapso da parede do banzo (Modo A, Figura 1.3). Para este caso foi definida a equação (1.18) para o cálculo da resistência última:

$$N_{1u} = 7,7 \cdot \frac{F_{y0}}{\operatorname{sen}\theta_1} \cdot t_0^2 \cdot \left(\frac{b_0}{t_0}\right)^{0,5} \cdot \beta^{**} \cdot \mu$$
(1.18)

Onde " β^{**} " é dado pela equação (1.11) com " $\xi = 1,0$ ". Para banzo tracionado " $\mu=1,0$ " e para banzo comprimido " μ " é dado pela equação (1.6). Para verificação da resistência última para colapso por cisalhamento do banzo (Modo E), Wardenier e Davies (apud PACKER, 1983) em 1981 sugeriram a equação (1.19):

$$N_{1u} = \frac{F_{y0} \cdot A_Q}{\sqrt{3} \cdot \text{sen}\theta_1}$$
(1.19)

Onde A_Q é a área de cisalhamento efetiva do banzo assumida como " $A_Q = 2 \cdot h_0 \cdot t_0 + a \cdot b_0 \cdot t_0$ ", com "a=0" para diagonais de seção tubulares circulares e " $a = (1 + \frac{4 \cdot g^2}{3 \cdot t_0^2})^{-0.5}$ " para diagonais de seções tubulares retangulares.

Outro modo de colapso foi considerado por Wardenier e Davies (apud PACKER, 1983) em 1981 envolvendo o corte das barras quando estas apresentavam espessuras muito baixas. Por isso, uma verificação da largura efetiva das barras foi sugerida e é dada pela equação (1.20):

$$N_{iu} = F_{vi} \cdot t_i \cdot (2 \cdot h_i - 4 \cdot t_i + b_i + b_{e0})$$
(1.20)

Wardenier e David (apud PACKER, 1983) em 1981 definiram um último modo de colapso denominado corte por puncionamento da parede do banzo pela diagonal (Modo B), onde a resistência última é dada pela equação (1.21):

$$N_{iu} = \frac{F_{y0} \cdot t_0}{\sqrt{3} \cdot \text{sen}\theta_i} \cdot \left[\frac{2 \cdot h_i}{\text{sen}\theta_i} + b_i + b_{e0p} \right]$$
(1.21)

Assim, para ligações afastadas de seções tubulares retangulares, a resistência última de acordo com Wardenier e Davies (apud PACKER, 1983) deveria ser o menor dos valores calculados pelas equações (1.18), (1.19), (1.20) e (1.21).

Para diagonais de seções tubulares circulares os termos b₁ e h₁ nestas equações devem ser substituídos por " $\left(\frac{\pi}{4}\right) \cdot d_1$ " e "b₂" e "h₂" por " $\left(\frac{\pi}{4}\right) \cdot d_2$ ".

A revisão mostrada até agora trata de ligações afastadas, a qual tem recebido muito mais atenção nas pesquisas do que as ligações sobrepostas porque as sobrepostas têm-se mostrado experimentalmente mais resistente que as ligações afastadas. O fato é que as recomendações iniciais sobre ligações de seções tubulares retangulares apresentadas por Eastwood e Wood (apud PACKER, 1983), em 1970, não sugeriram nenhuma equação para predizer a resistência última das ligações sobrepostas. Em 1981, Giddings (apud PACKER, 1983) desenvolveu a equação (1.22), empírica, para o cálculo da resistência última de ligações sobrepostas:

$$N_{iu} = C^* \cdot F_{yi} \cdot A_i$$
(1.22)

A definição da taxa de sobreposição é dada pela equação (1.23) e é mostrada pela Figura 1.5:

Sobreposição =
$$\frac{q}{p} \cdot 100\%$$
 (1.23)

Para sobreposição de " $\frac{q}{p} \ge 0.8$ ":

$$C^* = 20 \cdot \left(\frac{t_1}{b_1}\right)$$
 para diagonal comprimida;

$$C^* = 30 \cdot \left(\frac{t_2}{b_2}\right)$$
 para diagonal tracionada;

Enquanto que para sobreposição " $\frac{q}{p} < 0.8$ ":

$$C^*$$
= menor valor de: $20 \cdot \left(\frac{t_1}{b_1}\right) e \ 20 \cdot \left(\frac{t_0}{b_0}\right)$

para diagonal comprimida;

 C^* = menor valor de: $30 \cdot \left(\frac{t_2}{b_2}\right) e \ 30 \cdot \left(\frac{t_0}{b_0}\right)$

para diagonal tracionada;

Figura 1.5 – Definição de ligações sobrepostas.

Wardenier e Davies (apud PACKER, 1983) em 1981 também mostraram uma formulação para cálculo da resistência última de ligações sobrepostas. Esta formulação foi baseada unicamente no conceito de largura efetiva e é apresentada pelas equações (1.24) e (1.25):

$$N_{iu} = F_{vi} \cdot t_i \cdot [2 \cdot h_i - 4 \cdot t_i + b_i + b_{e(0v)}]$$
 para 100% de sobreposição; (1.24)

$$N_{iu} = F_{yi} \cdot t_i \cdot [2 \cdot h_i - 4 \cdot t_i + b_{e0} + b_{e(0v)}] \qquad \text{para 30-100\% de sobreposição;}$$
(1.25)

Os parâmetros " b_{e0} ", " b_{e0p} " e " $b_{e(0v)}$ " são relacionados à largura efetiva.

Para diagonais de seções circulares, os termos "b_i" e "h_i" nas equações (1.24) e (1.25) devem ser substituídos por " $\left(\frac{\pi}{4}\right) \cdot d_i$ ".

As equações aqui mostradas para o cálculo da resistência de ligações afastadas e sobrepostas foram apresentadas em 1981 ao "International Institute of Welding (IIW)" por Wardenier e Davies (apud PACKER, 1983), onde suas utilizações ficaram limitadas a um limite de validade particular.

Este foi o princípio de uma história sobre as formulações que envolvem as ligações de seções tubulares estruturais e algumas são válidas até os dias de hoje. Depois, muitas outras pesquisas foram feitas e algumas serão recontadas aqui, mas o princípio delas não deve ser esquecido, pois mostra a persistência de um grupo de pesquisadores que muito fez para o desenvolvimento desse estudo, que contribuiu para o avanço da utilização destas seções no mundo inteiro. A esses pesquisadores muitos

outros se juntaram e todos juntos ou em separado deram seqüência aos estudos que continua a ser realizado até os dias de hoje.

KUROBANE, MAKINO e OCHI (1984) fizeram uma tentativa para encontrar expressões matemáticas simples que expliquem a resistência de ligações de seções tubulares circulares sobre força axial nas diagonais, com base em um grande número de resultados de ensaios experimentais obtidos de 747 corpos-de-prova. Análises de regressão múltipla foram realizadas a partir da base de dados, montada cuidadosamente através dos ensaios para obter a melhor equação para determinar a resistência da ligação.

PACKER (1986) revisou as complexas formulações de projeto de consenso internacional para resistência estática de ligações soldadas de treliças de seções tubulares estruturais e produziu formalmente "recomendações de apoio" compatíveis com as recomendações canadenses já existentes, que deveriam ser implementadas no Canadá. Estas "recomendações de apoio" foram propostas a partir do desenvolvimento de exemplos de projetos de treliças planas com perfis de seções tubulares retangulares. As "recomendações de apoio" foram discutidas por extenso e colocadas em forma de gráfico para formar um manual de projeto. Foi proposto também um fluxograma para um programa de computador iterativo para automação dos projetos de treliças. Ficou-se demonstrado que o critério da resistência da ligação freqüentemente controla a seleção das barras.

Nesta época, a flambagem local em diagonais comprimidas (Modo D) era um dos reconhecidos modos de colapso que ainda deveriam ser estudados em ligações de treliça do tipo K de seções tubulares circulares, por isso KUROBANE et al. (1986) realizaram uma série de ensaios para examinar o comportamento de flambagem local na diagonal. Os resultados de ensaios demonstraram que a flambagem local nas diagonais são influenciadas não somente pela espessura da parede das diagonais, mas também pela rigidez da ligação. Eles forneceram equações simples, com base nestes ensaios, para predizer a capacidade de resistência e deformação da ligação. Mostraram também que a deformação da ligação pode ter efeito benéfico na flexibilidade global da

treliça quando a razão diâmetro/espessura das diagonais está dentro dos limites destes ensaios.

FRATER e PACKER (1992a) validaram, através de dois ensaios experimentais de treliças em grande escala, que uma distribuição de força obtida através da análise elástica da treliça com os membros ligados por pinos simples foi suficiente para dar bons resultados na predição de forças nas diagonais e banzos. No caso do deslocamento vertical da treliça, a contribuição da flexibilidade da ligação, tem sido levado em conta através da utilização do método do trabalho virtual, o que levou a excelentes resultados.

FRATER e PACKER (1992b) revisaram as fórmulas codificadas para projeto de solda de filete individuais em aço, feito por solda a arco elétrico e apresentam recomendações de projetos, pertinentes aos filetes de solda, em ligação de treliça de seções tubulares retangulares, bem diferentes das proporções atuais de solda. Para validar estas recomendações FRATER e PACKER (1992c) realizaram 29 ensaios de ligações isoladas e duas treliças em grande escala com seções tubulares retangulares.

FILIPKOWSKI E KRYSZTOFORSKI (1993) estudaram dois tipos de treliças planas de seções tubulares retangulares. Na primeira treliça as diagonais foram soldadas diretamente na face do banzo; na segunda treliça a intersecção da ligação foi reforçada por algum tipo de chapa interna no banzo. Os autores concluem que os ensaios das treliças mostram que a primeira treliça foi pouco durável por causa da grande deformação plástica que ocorre na intersecção da ligação e que essa treliça não deveria ser recomendável e indica a utilização da segunda. Pelo contrário, a primeira treliça é recomendável e a deformação plástica que ocorre na intersecção da ligação mostra a necessidade de controle de deformações dentro de limites aceitáveis. Construtivamente a segunda treliça é inviável. Limites de deformações foram tratados por KOSTESKI, PACKER e PUTHLI (2002), para seções tubulares retangulares formados a frio.

PACKER e CASSIDY (1995) realizaram um estudo experimental, sobre o comprimento efetivo do perímetro de solda, em volta das barras na intersecção, para ligações T e X de seções estruturais tubulares retangulares, carregados axialmente. Por meio de 16 ensaios de ligações em grande escala foram feitas recomendações sobre o comprimento efetivo de solda para resultar em projetos de solda com um nível adequado de segurança. Foram propostas também revisões para algumas recomendações já existentes.

As ligações T e X tiveram em 1996 uma especial atenção por parte de DAVIES e CROCKETT (1996), YU e WARDENIER (1996a) e YU e WARDENIER (1996b). DAVIES e CROCKETT (1996) utilizaram o Método dos Elementos Finitos calibrado por resultados experimentais de ensaios e uma base de dados, para se obter diagramas de interações para cálculo da resistência de ligações de seções tubulares retangulares e circulares, do tipo T e DT (ligação em cruz), sob força axial estática tridimensional nas diagonais. Neste trabalho foram dadas sugestões para o uso de um fator de modificação para ser utilizado juntamente com as recomendações de projeto para cálculo da resistência de ligações planas. YU e WARDENIER (1996a), através de um estudo analítico e numérico, estudaram a capacidade última para força axial e a capacidade última de momento fletor de ligações do tipo X de seções tubulares retangulares. YU e WARDENIER (1996b), em continuação do estudo anterior, fizeram uma investigação numérica sobre a influência do momento fletor na solicitação última de ligações do tipo X e T de seções tubulares retangulares. Em 2000 a ligação do tipo X de seções tubulares circulares ganhou o reforço de KOLTSAKIS e THOMOPOULOS (2000) que investigaram seu comportamento através de uma modelagem em elementos finitos. Para formação do X, uma diagonal é continua, enquanto a outra é dividida em duas partes. Na intersecção da ligação X, chapas são soldadas na diagonal contínua para unir a diagonal que foi dividida. Sua principal conclusão foi que a rigidez da diagonal dividida foi significativamente menor do que a da diagonal contínua. Na diagonal dividida não pode haver nenhuma tensão sempre que este tipo de ligação é usado. Desse modo, se alguma tensão for aplicada na sua extremidade ela será acumulada na intersecção.

As ligações tridimensionais, como as do tipo KK de seções tubulares circulares, foram destacadas por LEE e WILMSHURST (1996) que apresentaram um estudo paramétrico para determinação da resistência última destas ligações. Para isto o banco de dados formado por dados de elementos finitos juntamente com dados experimentais e dados numéricos foram utilizados para fazer uma análise de regressão múltipla para determinação da resistência última.

Em 1996, na tentativa de tornar mais popular o uso de seções tubulares estruturais, BENT (1996) publicou, na "International Conference on Tubular Structures", regras de projetos para tornar mais competitiva sua utilização, já que elas são freqüentemente menos econômicas quando comparadas às estruturas convencionais.

Ligações sobrepostas são geralmente consideradas como tendo resistência mais alta do que as ligações afastadas de seções tubulares idênticas, porque nas ligações sobrepostas existe eficiência maior na transferência de forças entre as barras. Infelizmente poucas pesquisas têm sido realizadas sobre tais ligações e os poucos dados experimentais das quais as orientações de projetos correntes foram derivadas também têm sido rejeitados. DEXTER, LEE e KIRKWOOD (1996) apresentaram o primeiro estágio de um estudo paramétrico de elementos finitos sobre a resistência de ligações sobrepostas do tipo K sobre força axial. Os modelos numéricos foram validados e calibrados com resultados experimentais. Foram investigados os vários fatores que afetam a relação entre a resistência e o tamanho da sobreposição, tais como as condições de contorno, soldas escondidas, hierarquia de solicitação e modos de colapso. Os resultados deste trabalho formam a base para um futuro estudo paramétrico de ligações sobrepostas.

KUROBANE e OCHI (1997) compararam as recomendações internacionais de projetos da "American Welding Society (AWS)" com as recomendações do "International Institute of Welding (IIW)", para ligações de seções tubulares circulares devido a diferenças existentes entre as duas. Esta comparação incluiu análises da precisão das formulações propostas, análises da influência do tamanho das ligações e propriedades do material, análise do colapso prematuro devido a flambagem local das diagonais e

ruptura na base da ligação, análise da aplicabilidade para ligações multiplanar focando o comportamento último e também a análise da aplicabilidade em projetos de ligações K sob força axial nas diagonais. Uma importante conclusão foi que as recomendações da AWS levam a um projeto de cálculo para ligações K e KK relativamente inseguro; portanto, foram feitas sugestões para melhorar a credibilidade destas recomendações.

MORITA et al. (1997) para obter equações mais simples para ligações tubulares circulares desenvolveram uma nova fórmula para capacidade última de ligações do tipo K para força axial, através do método de análise de regressão múltipla utilizando uma base de dados de Makino et al. (apud MORITA et al., 1997) em 1996. Embora haja vários modos de colapso para ligações K, para este estudo foi considerada a fórmula para capacidade última de ligações que falha somente por deformação local da parede do banzo (Modo A). Essa fórmula para capacidade última para ligações K, T e TT. A precisão para essa nova fórmula para capacidade última foi ligeiramente mais baixa que as equações para ligações isoladas de KUROBANE et al. (1984) e Paul et al. (apud MORITA et al., 1997) em 1993, mas é mais simples do que as formulações existentes.

SAIDANI (1998) investigou o efeito da excentricidade em ligações de seções tubulares retangulares no comportamento local e global de vigas treliçadas. Através do ensaio de três vigas treliçadas, com projeto idêntico e constituído de diferentes excentricidades nas ligações, ele mostra que a excentricidade da ligação pode ter efeitos significativos na distribuição da força axial nas diagonais.

WILKINSON e HANCOCK (1998) realizaram um programa de ensaios em ligações isoladas e em três pórticos, tipo portal, para avaliar sua capacidade para o comportamento plástico. Primeiramente, uma série de ensaio de flexão examinou os limites de esbeltez para seções tubulares retangulares de chapa delgadas, o que mostrou que os limites de esbeltez correntes não são conservativos e apresentou um conjunto alternativo. Foram realizados também três ensaios em grande escala de pórticos com o objetivo de avaliar sua capacidade para o comportamento plástico em

seções tubulares retangulares formadas a frio. O comportamento do ensaio mostrou estar em acordo com a análise estrutural proposta.

DALE (1998) afirmou que pesquisas em projetos de ligações têm conduzido ao estudo de ligações inovativas; algumas descritas em seu trabalho como as ligações tubulares circulares de extremidades achatadas e as ligações tubulares circulares com luva preenchida com argamassa expansiva. A luva envolve o banzo na região da intersecção da ligação, as diagonais são soldadas à luva, e a intersecção do banzo foi preenchida por uma argamassa expansiva, o que aumenta a resistência da ligação.

A análise pelo método da linha deslocada tem sido utilizada vitoriosamente para estimar a resistência de diferentes ligações de seções tubulares retangulares devido ao deslocamento da face da ligação da barra principal. A influência da força axial na barra principal foi usualmente considerada por um fator de redução. CAO, PACKER e YANG (1998) analisaram dois modelos de linha deslocada usados por ligações de seções tubulares retangulares e apresentam um novo modelo de linha deslocada, o qual leva em conta a força axial na barra principal desenvolvido para calcular a resistência dessas ligações.

A partir da década de 90 começam a aparecer as primeiras análises através do Método dos Elementos Finitos provando ser tão fiel quanto os ensaios experimentais.

DEXTER e LEE (1999a, 1999b) relataram os resultados de um estudo extensivo pelo Método dos Elementos Finitos dentro do comportamento estático, para força axial de ligações tubulares K. A ênfase do estudo foi sobre os efeitos dos parâmetros geométricos e da sobreposição no comportamento das ligações sobrepostas. Os estudos revelam uma nova visão sobre o comportamento de ligações K sobrepostas submetidas a força axial, através da variação dos parâmetros geométricos. Certamente, segundo os autores, as ligações sobrepostas são 100% eficientes, com estas ligações alcançando o modo de colapso pelo amassamento da diagonal (Modo D). Foram evidentes também, neste estudo, outros modos de colapso e, em particular, efeitos combinados. A avaliação das características força-deformação para o ponto máximo da

força, para algumas geometrias de ligações sobrepostas cai nitidamente, refletindo o súbito colapso da ligação, o qual foi motivo de estudo no passado. As ligações K com sobreposição de diagonais mostram um efeito benéfico na resistência das ligações. Para as ligações com diagonais de parede relativamente espessa a resistência das ligações sobrepostas pode ser até 4,5 vezes maior que as correspondentes ligações afastadas. As recomendações existentes para a avaliação do desempenho, particularmente das ligações sobrepostas, eram insuficientes; assim sendo, os efeitos iterativos da variação dos parâmetros geométricos não eram completamente desvendados para se generalizar resultados com um nível aceitável de confiança. Portanto, uma nova equação de resistência foi desenvolvida para ligações sobrepostas e mostra a capacidade do estudo numérico tão preciso quanto aquelas das bases de dados experimentais.

LEE (1999) afirmou que o uso do Método dos Elementos Finitos, para análise de ligações tubulares em plataformas de petróleo, ganhou maior popularidade tanto na prática dos engenheiros, como nos ambientes de pesquisa, sendo resultado da ampla disponibilidade de poderosos softwares e com a queda rápida do custo computacional. Este estudo revê as técnicas de modelagem usadas na análise pelo Método dos Elementos Finitos de ligações tubulares para se obter informações sobre as resistências e as tensões. Foram fornecidas orientações para discretização de modelo, escolha do elemento, entrada da curva do material, modelagem da solda, interpretação do resultado e limitações do uso da técnica numérica. Vários pacotes de softwares comerciais, incluindo PATRAN, FEMGEN, ANSYS e ABAQUS/PRE têm a capacidade de gerar malhas com intersecções complexas de barras de seções tubulares. Dexter, em sua tese de doutorado sobre "Efeitos da sobreposição no comportamento e resistência de ligações de seções tubulares circulares de aço" realizou uma avaliação do PATRAN, FEMGEN e ANSYS. Concluiu-se que, dos três, o ANSYS era relativamente mais flexível e fácil de usar, enquanto que o PATRAN e FEMGEN envolveram alguns procedimentos aparentemente excessivos e complexos. Embora o PATRAN tenha oferecido mais flexibilidade na opção de malha, ele requer uma exigência excessiva de quantidade de memória, a qual era três vezes aquela requerida

pelo ANSYS. Hoje o ANSYS mostra-se ainda mais flexível, de fácil utilização, com procedimentos simples para criação da modelagem da ligação e geração da malha; apresenta a possibilidade de fazer uma análise não linear com entrada do diagrama tensão-deformação do material; a ação pode ser realizada de forma incremental e, o mais importante, roda em qualquer microcomputador portátil de médio porte.

ZHAO (2000) com base nos resultados de ensaios experimentais em ligações T soldadas de seções tubulares retangulares formadas a frio, estudou os limites de deformações e a resistência última. Foi investigado o modo de colapso do banzo na mesa e na alma. A resistência última ao colapso do banzo assim sugerido foi comparada com as existentes formulações de projeto e pode-se concluir que os cantos das seções tubulares retangulares formados a frio deveriam ser considerados na análise para determinar a resistência à flambagem da alma e a resistência da mesa do banzo.

GAZZOLA, LEE e DEXTER (2000), utilizaram-se de um estudo prévio sobre ligações tubulares do tipo K axialmente comprimida pelo Método dos Elementos Finitos, conseguiram determinar a ampliação dos limites de validades da equação de estimativa da resistência. Este trabalho inclui a ampliação do limite de validade do ângulo θ , entre a diagonal e o banzo, investigando o efeito entre a tensão de escoamento e resistência à tensão última, e também entre a tensão de escoamento da diagonal e do banzo, explorando a influência da solicitação reversa, e quantificando a redução na resistência causada pela falta da solda em locais onde não se tem acesso para soldagem. O resultado final desses estudos foi uma nova e ampliada equação de capacidade de resistência a força axial para ensaios de ligações tubulares sobrepostas do tipo K. A precisão da equação proposta foi determinada pela comparação com um banco de dados experimentais. A aplicabilidade da equação proposta para projetos práticos foi determinada investigando sensibilidades nas resistências para variação na curva do material, para banzos diferentes, para diferentes condições de contorno e para ligações com desiguais inclinações das diagonais. A equação proposta foi demonstrada ser precisa e conservativa; portanto, foi recomendada para o uso na prática.

A solda normalmente é desconsiderada na modelagem numérica devido ao trabalho de sua modelagem, definição de suas propriedades e principalmente na complicação de criar sua malha. LIE, LEE e WONG (2000) descreveram um método sistemático de modelagem para o cordão de solda de ligações tubulares Y.

FUNG, SOH, GHO e QIN (2001) apresentaram suas conclusões de uma escala completa de ensaios experimentais de ligações de seções tubulares circulares, do tipo YT, completamente sobrepostas para colapso sob compressão axial no montante. Foi mostrado de forma completa o protótipo de ensaio com todas as dimensões, esquema de montagem no pórtico de ensaio, os diagramas tensão-deformação para cada uma das seções (banzo, diagonal e montante), obtidos através de ensaio de dois corpos-deprova para cada seção, retirados das sobras de perfis, posicionamento dos transdutores de deslocamentos, procedimento de ensaio e modelagem numérica. O modo de colapso verificado foi devido à plastificação da face da diagonal. O início do comportamento não linear ocorreu a 72% da solicitação última. No estudo numérico foi utilizado um elemento de casca espessa de oito nós para modelar a ligação realizada no programa de computador MARC, através de uma análise não linear, utilizando um processo iterativo. Não foi utilizado nenhum elemento para modelagem da solda, mas na região da solda eram utilizados, para aqueles elementos, materiais com propriedade de deformação endurecida. A comparação da curva de força-deslocamento do topo do montante obtida pela análise numérica com a curva dos resultados experimentais mostrou uma concordância satisfatória, com menos de 5% para as solicitações últimas e o correspondente deslocamento axial do montante. FUNG, SOH e GHO (2001) complementaram as investigações experimentais mostradas anteriormente através do Método dos Elementos Finitos, que foi verificado ser confiável, seguro e preciso, realizaram um detalhado estudo paramétrico para acelerar as investigações do comportamento da solicitação última das ligações completamente sobrepostas. Foi investigado também o efeito da medida do afastamento (gap) no comportamento das ligações tubulares afastadas. Foram levantados critérios para determinar a mínima solicitação de colapso. Os parâmetros geométricos do banzo foram definidos para se

ter um insignificante impacto no comportamento da ligação. A resistência da ligação afastada cresce quando o afastamento vai sendo reduzido.

KIM (2001) apresentou uma análise numérica aliada a um estudo experimental para investigar o comportamento e a resistência de ligações tubulares circulares com placa de união (as diagonais são parafusadas na placa e a placa foi soldada ao banzo) sujeita à força axial.

A formulação analítica baseada na teoria da linha deslocada necessita ser validada por uma racional determinação da solicitação de escoamento de resultados experimentais. Tal validação foi complicada pela dificuldade de se encontrar uma determinação precisa da solicitação de escoamento na literatura existente. KOSTESKI, PACKER e PUTHLI (2002) apresentaram a determinação solicitação de escoamento ou da solicitação no estado limite último através do Método dos Elementos Finitos baseados na rigidez para ligações que não apresentam de outro modo sua definição clara.

Em 2006, GHO, GAO e YANG (2006a) dando continuidade ao trabalho publicado por FUNG, SOH, GHO e QIN (2001) e FUNG, SOH e GHO (2001) apresentaram um estudo experimental para uma ligação de seções tubulares circulares completamente sobrepostas com força axial no plano e fora do plano de flexão para determinar o estado de tensões e deformações próximo da solda. Os resultados experimentais foram comparados a modelos de elementos finitos e apresentaram boa convergência. Ainda em 2006, GHO, YANG e GAO (2006b) continuaram seus estudos sobre a mesma ligação para força axial de compressão no topo do montante e apresentam os resultados de uma modelagem numérica, após terem analisados 1296 modelos de elementos finitos, calibrados pelo modelo experimental, para analisar os mecanismos de colapso para essa ligação. Os resultados paramétricos mostram que pode ocorrer colapso por plastificação da parede da diagonal, escoamento do montante, flambagem local do montante e colapso dependendo dos parâmetros geométricos da ligação.

No Brasil, a Universidade Federal de Ouro Preto desenvolve vários estudos sobre o comportamento de ligações tubulares, placas de base e estruturas tubulares. Pode-se citar entre eles o trabalho de MENDANHA (2006) que apresentou um estudo de ligações soldadas dos tipos K e KT com barras afastadas, formadas por perfis tubulares de aço estrutural, sem costura, de seção transversal retangular no banzo e circular para as diagonais e montantes.

Através destes autores foi possível planejar o desenvolvimento deste trabalho tomando como referência algumas experiências citadas por eles. Dentre eles o que mais contribuiu foi a publicação do FUNG, SOH, GHO e QIN (2001) e FUNG, SOH e GHO (2001) que forneceram um caminho para o desenvolvimento deste trabalho: criação do procedimento de ensaio utilizado, posicionamento dos transdutores, utilização dos ensaios de tração para obter os diagramas tensões-deformações, montagem do protótipo no pórtico de ensaio, dicas de modelagem numérica, entre outras.

1.3 PROPOSTA DO TRABALHO

A primeira etapa do estudo objetivou conhecer o comportamento de ligações soldadas de seções tubulares estruturais. Mostrar-se-á as tabelas utilizadas para o dimensionamento de seções tubulares quadradas, retangulares e circulares sugerida pelo CIDECT (1992) e por PACKER e HANDERSON (1997). Foi definido um protótipo de uma ligação soldada, do tipo YT, de seções tubulares circulares dimensionadas dentro dos limites de validade proposto nestas tabelas.

A segunda etapa do estudo aborda o ensaio deste protótipo. Foram fabricados quatro protótipos da ligação YT. O primeiro ensaio, chamado de pré-ensaio, teve como objetivo analisar a estabilidade do pórtico de ensaio e alguns ajustes necessários à realização dos demais ensaios. Os demais ensaios dos protótipos foram chamados de ENSAIO I, ENSAIO II e ENSAIO III.

A terceira etapa do estudo contempla a modelagem numérica via ANSYS, utilizando para seções tubulares circulares o elemento SHELL181 e para chapas de fixação das extremidades o elemento SHELL63, ambos com quatro nós por elemento.

Na quarta etapa foram criados novos modelos numéricos com variação da medida do afastamento entre montante e diagonal (gap), para avaliar qual a influência do "gap" no comportamento da ligação YT.

1.3.1 Justificativas

Todo esse aumento no uso de seções tubulares estruturais associados à economia das concepções pré-fabricadas tem destacado a necessidade de métodos de cálculo que definam suas ligações, o que ainda dificulta seu dimensionamento, pois no Brasil não há uma norma específica para ligações em seções tubulares estruturais. Os esforços nas barras podem ser determinados por um programa comercial de cálculo, mas o dimensionamento das ligações, que é um fator determinante na escolha das seções, deve ser feito recorrendo-se a normas norte-americanas ou européias.

Devido ao grande crescimento do uso de seções tubulares estruturais nos últimos anos, tornou-se muito importante o estudo das ligações soldadas e parafusadas, pois a resistência das ligações freqüentemente determina a escolha dos perfis tubulares nestas estruturas.

1.3.2 Objetivos

Com os mesmos objetivos de todos aqueles que se empenharam e continuam se empenhando, na busca pelo conhecimento das ligações tubulares estruturais, na ânsia

de que seu uso se torne cada vez mais popular, a proposta deste trabalho visa o entendimento de seu comportamento mecânico.

O objetivo principal deste trabalho é desenvolver uma avaliação teórica, experimental e numérica (através do software ANSYS 9.0) de uma ligação soldada de barras de seções tubulares circulares de aço, do tipo YT, utilizada em treliças planas visando o entendimento do comportamento desta ligação.

A investigação teórica através de prescrições de norma busca o entendimento das formulações existentes.

A análise experimental visa obter dados para a calibração de um modelo numérico que será utilizado em análises paramétricas para o entendimento do comportamento mecânico dessa ligação.

As análises paramétricas fornecerão dados para avaliar a influência da medida do afastamento entre a diagonal e o montante (gap) na resistência da ligação.

Enfim, este estudo tem a pretensão de fazer algumas recomendações que possam ser úteis para difundir o uso de seções tubulares estruturais no Brasil, bem como contribuir para o desenvolvimento desta linha de pesquisa sobre ligações tubulares auxiliando trabalhos futuros.

CAPÍTULO II

FUNDAMENTOS TEÓRICOS

2.1 INTRODUÇÃO

Este capítulo apresenta um estudo teórico sobre as ligações de seções tubulares quadradas, retangulares e circulares. A abordagem foi realizada de acordo com EUROCODE 3, PACKER e HENDERSON (1997), CIDECT (1992) e RAUTARUUKKI (1998).

Várias formulações existem para determinação da resistência para os modos de colapso de uma ligação que variam conforme os tipos de A a G (estados limites), descritos no capítulo I. Algumas delas são de origem teórica outras são empíricas. O critério geral utilizado para projeto de ligações é baseado na limitação da resistência última onde seus limites de validades tem sido aqueles em que a ação especificada não exceda o estado limite último relativo a deformação. AISC Hollow Structural Sections – Connections Manual - (1997) traz uma formulação da LRFD (1993) onde as tabelas apresentadas mostram a resistência de projeto da ligação para seções tubulares circulares, retangulares e quadradas para alguns modos de colapso para ligações do tipo K, T, Y ou X. As fórmulas apresentadas para esta formulação são totalmente

diferentes do EUROCODE 3, PACKER e HENDERSON (1997), CIDECT (1992) ou RAUTARUUKKI (1998).

O EUROCODE 3 (1993) para estrutura de aço (European Committee for Standardization), adotado por toda Europa Ocidental, promove uma padronização internacional do uso de seções tubulares. O anexo K, do EUROCODE 3, mostra três tabelas de dimensionamento de ligações tubulares referentes ao cálculo da resistência para ligações soldadas do tipo T, Y, X, K e N afastadas ou sobrepostas para alguns tipos de colapso. A primeira se refere às ligações soldadas entre seções tubulares circulares. A segunda é para ligações soldadas entre montantes e diagonais de seções tubulares circulares ou quadrados e banzos de seções tubulares quadradas. A terceira se refere a ligações entre banzo de seção I ou H e montantes e diagonais de seções tubulares. No EUROCODE 3 não é feito nenhuma menção sobre ligações onde o banzo seja de seção tubulares retangulares.

A formulação para o cálculo da resistência, para ligações de seções soldadas tubulares circulares, quadradas e retangulares, de diferentes tipos e modos de colapso de A a G, apresentada por PACKER e HENDERSON (1997) e pelo CIDECT (1992) são idênticas. Existem apenas pequenas diferenças quanto aos limites de validade, mas o CIDECT (1992) é um pouco mais claro porque traz os limites de validade para cada tipo de seção do banzo da ligação. PACKER e HENDERSON (1997) apresentam também o dimensionamento para ligações com banzo em perfil de seção l.

A formulação das três tabelas do EUROCODE 3 são quase idênticas as apresentadas por PACKER e HENDERSON (1997) e pelo CIDECT (1992), sua única diferença é a multiplicação das fórmulas para o cálculo da resistência última pelo coeficiente $\left[\frac{1,1}{\gamma_{Mj}}\right]$, onde γ_{Mj} é um coeficiente de segurança.

O RAUTARUUKKI (1998) também apresenta uma formulação para o cálculo da resistência, para ligações de seções soldadas tubulares circulares, quadradas e

retangulares, de diferentes tipos e modos de colapso de A a G muito parecida com a mostrada pelo EUROCODE 3, PACKER e HENDERSON (1997) e pelo CIDECT (1992) mas existe algumas diferenças em suas fórmulas e limites de validade. Além disto, no caso de RAUTARUUKKI (1998) as fórmulas para o cálculo da resistência são multiplicadas pelo coeficiente igual a $\left[\frac{1,1}{\gamma_{Mj} \cdot \gamma_{M0}}\right]$, onde γ_{Mj} e γ_{M0} são coeficientes de segurança. Ele traz também tabelas de dimensionamentos para alguns tipos de

No presente trabalho apresentar-se-á principalmente as tabelas para dimensionamento das ligações tubulares do CIDECT (1992), mas PACKER e HENDERSON (1997) também foram comentados.

ligações com placas de reforços, ligações onde o banzo é feito em perfil de seção I.

As comparações entre as normas de dimensionamento esta sendo realizada por um trabalho de doutorado em desenvolvimento, na Unicamp.

2.2 CONFIGURAÇÕES DAS LIGAÇÕES

As ligações podem ter vários tipos de configurações dependendo da disposição das diagonais como mostrado na Figura 2.1.

Figura 2.1 - Configurações das ligações. Fonte: Packer, 1997, p .47.

Na Figura 2.1a tem-se a ligação afastada sem excentricidade, ou seja, o ponto de união da linha de eixo das diagonais se encontra na linha de eixo do banzo. A Figura 2.1b apresenta uma ligação afastada, onde o ponto de união das linhas de eixo das diagonais se encontram abaixo da linha de eixo do banzo, isto se chama de excentricidade positiva (e>0). Estas ligações têm a vantagem de se ter diagonais em corte reto se o banzo for de seção quadrada ou retangular, e também a vantagem de um encaixe perfeito. A Figura 2.1c mostra uma ligação parcialmente sobreposta onde ponto de união das linhas de eixo das diagonais se encontram acima da linha de eixo do banzo, a isso se dá o nome de excentricidade negativa (e<0). Na Figura 2.1d tem-se uma ligação completamente sobreposta com excentricidade negativa.

O custo das ligações pode variar dependendo do tipo da configuração. Ligações do tipo afastadas são mais econômicas do que as parcialmente sobrepostas, porque estas necessitam de duplo corte, e ainda são encarecidas devido à dificuldade de

ajuste dos encaixes dos cortes na intersecção da ligação, aumentando o tempo de fabricação.

2.3 EXCENTRICIDADE DAS LIGAÇÕES

A Figura 2.2 mostra a terminologia padrão usada para ligações K afastadas e sobrepostas para perfis de seções tubulares estruturais.

Figura 2.2 - Terminologia padrão usada para ligações K afastadas e sobrepostas.

O parâmetro de sobreposição "q", no CIDECT, aparece como afastamento negativo "-g".

A excentricidade "e", o afastamento denominado de "g" (gap) e a sobreposição denominada de "p" estão interligadas e são dadas pelas equações (2.1), (2.2) e (2.3).

g ou
$$q = \frac{e + \frac{h_0 \text{ ou } d_0}{2}}{\frac{\operatorname{sen}\theta_1 \cdot \operatorname{sen}\theta_2}{\operatorname{sen}(\theta_1 + \theta_2)}} - \left(\frac{h_1 \text{ ou } d_1}{2 \cdot \operatorname{sen}\theta_1} + \frac{h_2 \text{ ou } d_2}{2 \cdot \operatorname{sen}\theta_2}\right)$$
 (2.1)

Para ligações afastadas:

$$\mathbf{e} = \frac{\operatorname{sen}\theta_1 \cdot \operatorname{sen}\theta_2}{\operatorname{sen}(\theta_1 + \theta_2)} \cdot \left(\frac{\mathbf{h}_1 \text{ ou } \mathbf{d}_1}{2 \cdot \operatorname{sen}\theta_1} + \frac{\mathbf{h}_2 \text{ ou } \mathbf{d}_2}{2 \cdot \operatorname{sen}\theta_2} + \mathbf{g}\right) - \frac{\mathbf{h}_0 \text{ ou } \mathbf{d}_0}{2}$$
(2.2)

Para ligações sobrepostas:

$$\mathbf{e} = \frac{\mathbf{sen}\theta_1 \cdot \mathbf{sen}\theta_2}{\mathbf{sen}(\theta_1 + \theta_2)} \cdot \left(\frac{\mathbf{h}_1 \text{ ou } \mathbf{d}_1}{2 \cdot \mathbf{sen}\theta_1} + \frac{\mathbf{h}_2 \text{ ou } \mathbf{d}_2}{2 \cdot \mathbf{sen}\theta_2} - \mathbf{q}\right) - \frac{\mathbf{h}_0 \text{ ou } \mathbf{d}_0}{2}$$
(2.3)

A excentricidade permitida, segundo PACKER e HANDERSON (1997), para projetar uma ligação é dado pela equação (2.4), a qual apresenta limites permitidos entre os quais se podem desprezar os efeitos dos momentos na ligação. Se esses limites de excentricidade forem excedidos, o momento gerado pela excentricidade deve ter um efeito prejudicial na resistência da ligação e deve ser distribuído entre as barras. Se os momentos são distribuídos para as barras, a capacidade da ligação para cada barra deve ser verificada para interação entre força axial e momento fletor.

$$-0,55 \le \left(\frac{e}{d_0} \operatorname{ou} \frac{e}{h_0}\right) \le 0,25$$
(2.4)

2.4 LIGAÇÕES T, Y, X, K e N

Geralmente uma ligação do tipo K ou N tem uma diagonal ou montante comprimido e a outra diagonal ou montante tracionado que são soldados no banzo. A classificação com K ou N é incerta e leva em consideração a componente da força normal de uma das diagonais sendo balanceada pela similar componente da força normal da outra diagonal.

A ligação T é um caso particular da ligação Y, assim como, uma ligação N pode ser considerada um caso geral da ligação K. A diferença básica entre as ligações T, Y e K, N é que a componente da força normal no banzo nas ligações T e Y é resistida pela cortante e flexão no banzo, enquanto as ligações K e N a componente da força normal de uma diagonal é balanceada principalmente pela componente similar da outra diagonal. Quando uma componente da força normal de uma diagonal de um lado do banzo é balanceada pela componente da força normal da diagonal do outro lado do banzo, sem interferência do próprio banzo, caracteriza uma ligação X.

2.5 RESISTÊNCIA DAS LIGAÇÕES SOLDADAS

O critério geral para o projeto das ligações é o da resistência última, mas as recomendações apresentadas e seus limites de validação são tal que o estado limite de deformações não seja excedido para a ação especificada. Para a definição da resistência da ligação, em alguns casos, pode ser usado um ou mais modos de colapso.

O Modo C, corte da diagonal tracionada, e Modo D, flambagem local da diagonal comprimida, podem ser tratados como colapso da largura efetiva da diagonal ou da distribuição desigual da ação, e são tratados da mesma maneira visto que a resistência da ligação, em ambos os casos, é determinada pela seção transversal efetiva da diagonal crítica, com algumas paredes das diagonais podendo ser apenas parcialmente efetiva.

O Modo A, Modo B, Modo C e Modo E são mais freqüentes nas ligações afastadas. O Modo A, colapso por plastificação da parede do banzo, é mais comum em ligações afastadas com pequeno a médio valor de β , ver equação (2.6).

Para banzo de seções tubulares retangulares de ligações do tipo T, Y e X, valores de β entre 0,85 $\leq \beta \leq (1-1/\gamma)$ o Modo B, corte por puncionamento da parede do banzo pela diagonal, é mais freqüente, onde γ é dado pela equação (2.5). Ou também o Modo C, corte da diagonal tracionada, apesar de que isto só ocorre para diagonais com paredes relativamente finas. Para ligações afastadas com $\beta \approx 1$ é observado o Modo E, colapso por cisalhamento do banzo na região do afastamento.

O Modo D, flambagem local da diagonal comprimida, é mais comum em ligações sobrepostas. O Modo F e Modo G, flambagem local da parede do banzo, ocorre eventualmente em ligações de banzo de seções tubulares quadradas ou retangulares com altas relações de b_0/t_0 ou h_0/t_0 . O Modo G de colapso é evitado respeitando-se os limites permitidos para os parâmetros geométricos da ligação.

Para ligações K e N com seções tubulares circulares, o modo de colapso predominante é semelhante ao Modo A, plastificação da parede do banzo, segundo Kurobane et al. 1980 (apud PACKER e HENDERSON 1997). Embora, seja possível ocorrer flambagem local prematura na diagonal comprimida caracterizado pelo Modo D.

As constantes que aparecem nas equações de resistência são derivadas de extensivos dados experimentais. Outros termos expressam parâmetros da resistência última tais como: γ a esbeltez da parede do banzo, a qual afeta consideravelmente a soma do efeito de membrana na pós flambagem que pode ser gerada no banzo, onde γ é dado pela equação (2.5); os termos f(n') ou f(n), os quais descrevem a influência da tensão longitudinal de compressão do banzo; e β , na equação (2.6), expressa a relação entre diagonais e banzos.

O termo f(n') é utilizado para ligações de seções tubulares de banzos circulares e f(n) para ligações de seções tubulares de banzos quadrados ou retangulares. Eles são similares, exceto que, para o cálculo do termo f(n') não se inclui forças longitudinais introduzidas no banzo pela diagonal da ligação, somente a pré-tensão no banzo é usada no cálculo.

A Tabela 2.1 mostra que funções contínuas abrangem o intervalo entre ligações de seções tubulares circulares K e N afastadas, representada pelo parâmetro "g" na formulação. Já para as Tabelas 2.2 e 2.3 a resistência das ligações de seções tubulares quadradas e retangulares K e N afastadas é independente do tamanho do afastamento (gap), pois não aparece nenhum parâmetro "g" na formulação.

As recomendações de projeto para os estados limites são apresentadas neste trabalho em formato de tabelas com base no CIDECT (1992): para ligações soldadas de banzo de seções tubulares circulares na Tabela 2.1, seções tubulares quadrados na Tabela 2.2 e seções tubulares retangulares na Tabela 2.3.

As Tabelas 2.1a, 2.2a e 2.3a mostram os limites de validades para as respectivas Tabelas 2.1, 2.2 e 2.3. A Tabela 2.1 é formada por expressões contínuas

que fornecem o aumento da resistência para um intervalo completo entre configurações afastadas e sobrepostas. As Tabelas 2.2 e 2.3 apresentam um intervalo de resistência baseado na concepção de largura efetiva para ligações sobrepostas quadradas e retangulares, começando com 25% sobreposição, a qual é a mínima para assegurar uma configuração sobreposta. Os símbolos utilizados nas tabelas são:

- A_i é a área da seção transversal da barra i (i=0, 1, 2, 3);
- M_0 é o momento fletor no banzo;
- Ni* é a resistência de projeto da ligação expressa como a força axial resistente da barra i;
- N_i força axial na barra i (i=0, 1, 2, 3);
- No é a resultante das forças no banzo;
- N_{op} é a força de pré-tensão no banzo;
- W₀ é o módulo resistente elástico do banzo;
- f_{yi} é a tensão limite de escoamento ou resistência ao escoamento do aço da barra i
 (i=0, 1, 2, 3);
- f_{ui} é a tensão limite de ruptura a tração da barra i (i=0, 1, 2, 3);
- f_k,f_{kn} são tensões de flambagem;
- f_{op} é a pré-tensão no banzo;

 S_p é a taxa de sobreposição para ligações sobrepostas $S_p = \frac{g}{p} \cdot 100\%$ ou

$$S_{p} = \frac{q}{p} \cdot 100\%;$$

E é o módulo de elasticidade transversal;

- KL é o comprimento de flambagem;
- r é o raio de giração;
- V Força cortante aplicada;

$$\gamma = \frac{\mathsf{d}_0}{2 \cdot \mathsf{t}_0} \quad \text{ou} \quad \frac{\mathsf{b}_0}{2 \cdot \mathsf{t}_0} \tag{2.5}$$

$$\beta = \frac{d_1}{d_0}, \ \frac{d_1}{b_0}, \ \frac{b_i}{b_0}$$
para T, Y e X (2.6a)

$$\beta = \frac{d_1 + d_2}{2 \cdot d_0}, \ \frac{d_1 + d_2}{2 \cdot b_0}, \ \frac{b_1 + b_2 + h_1 + h_2}{4 \cdot b_0} \qquad \text{para K e N}$$
(2.6b)

Tabela 2.1 - Resistência das ligações soldadas de seções tubulares circulares.
Continuação da Tabela 2.1.

Tabela 2.1a – Limites de validade das ligações soldadas de seções tubulares circulares.

Limites de validade para ligação do tipo T e Y									
0,2 \leq β \leq 1,0	$\frac{d_0}{t_0} \le 50$	$\gamma \leq 25$	$\frac{d_1}{t_1} \le 50$	$f_{yi} \leq 355 N/mm^2$	$30^{\circ} \le \theta_i \le 90$				
	Limi	tes de valie	dade para ligação c	lo tipo X					
0,2 \leq β \leq 1,0	$\frac{d_0}{t_0} \leq 40$	$\gamma \leq 20$	$\frac{d_{_1}}{t_{_1}} \leq 50$	$f_{yi} \leq 355 N/mm^2$	$30^{\circ} \le \theta_i \le 90$				
Limites de	e validade	para ligaç	ão do tipo K e N co	m afastamento	(i=0,1,2)				
$0,2 \le \frac{d_i}{d_0} \le 1,0$	$\frac{d_i}{t_i} \leq 50$	$\gamma \leq 25$	$-0,55 \le \frac{e}{d_0} \le 0,25$ $g \ge t_1 + t_2$	$f_{yi} \leq 355 N/mm^2$	$30^{\circ} \le \theta_i \le 90$				
Limites	de valida	de para lig	ação do tipo K e N	sobrepostas (i=	0,1,2)				
$0,2 \le \frac{d_i}{d_0} \le 1,0$	$\frac{d_i}{t_i} \leq 50$	$\gamma \leq 25$	$-0,55 \le \frac{e}{d_0} \le 0,25$ Sp>25%	$f_{yi} \leq 355 N/mm^2$	$30^{\circ} \le \theta_i \le 90^{\circ}$				

Notas para a Tabela 2.1 e 2.1a:

(a) Na expressão f (n') = 1,0 + 0,3 · n' - 0,3 · n'² para banzo comprimido segundo PACKER e HENDERSON (1997) ela tem que ser menor ou igual a 1,0, ou seja: f (n') = 1,0 + 0,3 · n' - 0,3 · n'² ≤ 1. Eles também estabelecem que $\frac{t_i}{t_i} \le 1,0$.

(b) Para Tabela 2.1, a eficiência da ligação para barra comprimida, $\frac{N_1^*}{A_1 \cdot f_{y1}}$, deve ser limitada para alguns valores dados a seguir, ver Tabela 2.1b, por causa da possibilidade de flambagem local prematura da barra comprimida.

(c) A fórmula do coeficiente de redução da eficiência da ligação pode ser expressa pela equação 2.7:

$$coef. \ de \ redução \le 0,22 \cdot \left(\frac{E}{f_{y1}} \cdot \frac{t_1}{d_1}\right)^{0,5} \le 1,0 \tag{2.7}$$

Considerando que a flambagem da barra acima da limitação mencionada freqüentemente não será critica.

Tabela 2.1b - Coeficiente de redução para avaliar a eficiência da resistência da ligação para barra comprimida.

Não é neces redução qu	Co	eficiente d	e redução	da eficiên	cia da liga	ção	
Tensão de escoamento f	Limites de $\frac{d_1}{d_1}$	f _{y1}					
,	t ₁		30	35	40	45	50
$f_y = 235 \text{ N/mm}^2;$	$\frac{d_1}{t_1} \leq 43$	235	1,0	1,0	1,0	0,98	0,93
$f_y = 275 \text{ N/mm}^2;$	$\frac{d_1}{t_1} \leq 37$	275	1,0	1,0	0,96	0,88	0,86
$f_y = 355 \text{ N/mm}^2$	$\frac{d_1}{t_1} \le 28$	355	0,98	0,88	0,85	0,78	0,76

Fonte: CIDECT, 1992a, p.29.

Tabela 2.2 - Resistência das ligações soldadas de banzo de seções tubulares quadradas e montantes e diagonais de seções tubulares quadradas ou circulares.

Continuação da Tabela 2.2.

	Parâmetros	
Banzo tracionado $n \ge 0$: f (n) = 1 Banzo comprimido n < 0:	$n = \frac{f_0}{f_{y0}} = \frac{N_0}{A_0 \cdot f_{y0}} + \frac{M_0}{W_0 \cdot f_{y0}}$	
$f(n) = 1,3 + \frac{0,4}{\beta} \cdot n \le 1$	$b_{e} = \frac{10}{b_{0}/t_{0}} \cdot \frac{f_{y0} \cdot t_{0}}{f_{yi} \cdot t_{i}} \cdot b_{i} \le b_{i}$	$b_{e(S_p)} = \frac{10}{b_j / t_j} \cdot \frac{f_{yj} \cdot t_j}{f_{yi} \cdot t_i} \cdot b_i \le b_i$

Tabela 2.2a – Limites de validade das ligações soldadas de banzo de seções tubulares quadradas e montantes e diagonais de seções tubulares quadradas ou circulares.

	Limites de validade (i=1 ou 2 barra sobrepondo; j=barra sobreposta)										
Tipo de	b./ba	b _i ∕t _i ^{(∈}	e)	ha/ta	$(b_i+b_2)/(2b_i)^{(e)}$	Afastadas/					
ligação	01/00	compressão	tração	50/10	b _i /b _j t _i /t _j	sobrepostas					
T,Y,X	0,25≤β≤0,85 (a)	< 125 E		$10 \le b_0 / t_0 \le 35$							
KeN	$\geq 0,1+0,01b_0/t_0$	$\int f_{y1}$		15≤b₀/t₀≤35	b _i ≥0,77(b _i +b ₂)/2	$0,5(1-\beta) \leq g/b_0 \leq 1,5(1-\beta)$					
afastada	β≥0,35	≤ 0,35	≤ 35	(a)	(a)	$g \ge t_i + t_2$					
K e N sobreposta	≥ 0,25	$\leq 1,1\sqrt{\frac{E}{f_{y1}}}$		$b_0/t_0 \leq 40$	$\begin{array}{l} b_i / b_j \geq 0,75 \\ t_i / t_j \leq 1,0 \end{array}$	$25\% \le S_p \le 100\%$					
montantes e diagonais circulares	$0,4{\leq}d_i/b_0{\leq}0,8$	$\frac{d_i}{t_i} \le 1.5 \sqrt{\frac{E}{f_{y1}}}$	$\frac{d_2}{t_2} \le 50$	Iguais as especificadas acima para d _i =b _i							
Excentrici- dade K e N	$-0,55 \le \frac{e}{h_0} \le 0,25$										

Notas para Tabela 2.2 e 2.2a:

(a) Fora destes limites de validade outro critério de colapso pode governar; isto é, corte por puncionamento, largura efetiva, colapso da parede lateral, cisalhamento do banzo ou flambagem local. Se estes limites particulares são transgredidos a ligação

pode ainda ser checada como tendo banzo retangular usando-se a Tabela 2.3, que fornece outros limites de validade.

(b)
$$f_{yi}, f_{yj} \le 355 \text{ MPa}$$
; $f_{yi}(\text{ou } f_{yj})/f_{ui} \le 0.8$;

(c) Se g/b₀ é maior que $1,5 \cdot (1-\beta)$ e (t_1+t_2) a ligação deve ser tratada como T ou Y;

(d) O cálculo da largura efetiva necessita somente ser realizado para o montante ou diagonal que estiver sobrepondo. Entretanto, a eficiência, ou seja, resistência da ligação dividida pela capacidade total de escoamento da montante ou diagonal sobreposta $\left(\frac{N_i^*}{A_i \cdot f_{yi}}\right)$, não pode ser maior que a do montante ou da diagonal que estiver sobrepondo;

(e) PACKER e HENDERSON (1997) diferem quanto a certos limites de validade apresentado no CIDECT:

- Para as ligações do tipo T, Y, X e K, N afastadas a relação b_i/t_i para barras comprimidas deve ser dada pela CAN/CSA-S16.1-94-Class2 cuja definição para seções retangulares classe 2 é $\frac{b}{t} \le \frac{525}{\sqrt{f_y}}$ e $\frac{b}{t} \le 35$; e para ligações do tipo K, N sobrepostas e para montantes e diagonais circulares é dada pela CSA-S16.1-94-Class1 cuja definição para seções retangulares classe 1 é $\frac{b}{t}$ ou $\frac{d}{t} \le \frac{420}{\sqrt{f_t}}$;

- Para a relação b_1/b_2 , para ligações K, N afastadas, estabelece que o menor $b_i \ge 0.63$ do maior b_i ;

- Para ligações K, N afastadas vale que $0.5(1-\beta) \le g/b_0$ e que $g \ge t_1+t_2$;

retangulares ou circulares.					
Tipo de ligação	Resistência da ligação sujeitas a forças axiais nas				
	barras i (i = 1 ou 2)				
	Modo A: plastificação da parede do banzo				
	$p \leq 0.00$				
	$N_{1}^{*} = \frac{f_{y0} \cdot f_{0}^{*}}{\sqrt{(1-\beta)}} \left(\frac{2 \cdot \eta}{1-\beta} + 4 \cdot \sqrt{(1-\beta)} \right) \cdot f(\eta)$				
h	$(1-\beta) \operatorname{sen}_1(\operatorname{sen}_1)$				
	Modo F: Colapso da parede lateral do banzo				
	$\beta = 1,0$ $\beta = 1,0$ para X com $\theta_1 > 90^{\circ}$				
\mathbf{t}_1	$ \int_{\mathbf{N}^*} f_k \cdot \mathbf{t}_0 \left(2 \cdot \mathbf{h}_1 + 10 + \mathbf{h}_1 \right) = \int_{\mathbf{N}^*} f_{\mathbf{v}0} \cdot \left(2 \cdot \mathbf{h}_0 \cdot \mathbf{t}_0 \right)^{(a)} $				
	$N_1 = \frac{1}{\operatorname{sen}\theta_1} \cdot \left(\frac{1}{\operatorname{sen}\theta_1} + 10 \cdot t_0\right) = N_1 = \frac{1}{\sqrt{3} \cdot \operatorname{sen}\theta_1}$				
	0.85 < β < 10				
	Usar interpolação linear entre plastificação da parede do banzo				
< 0 <-> h₀ + j +	β =0,85 e colapso da parede lateral do banzo com β =1,0.				
	Modo C ou D: largura efetiva				
	$\beta > 0.85$				
N	$N_{1}^{*} = f_{y1} \cdot t_{1} \cdot (2 \cdot h_{1} - 4 \cdot t_{1} + 2 \cdot b_{e})$				
	Modo B: corte por puncionamento da parede do banzo				
	$0,85 \le \beta \le (1-1/\gamma)$				
	$f_{v0} \cdot t_0 (2 \cdot h_1 + 0 \cdot h_1)$				
	$N_1 = \frac{1}{\sqrt{3} \cdot \text{sen}\theta_1} \cdot \left(\frac{1}{\text{sen}\theta_1} + 2 \cdot D_{\text{ep}}\right)$				
	Modo A: plastificação da parede do banzo				
	$h_{1}^{*} = 0 \left(\frac{f_{y0} \cdot t_{0}^{2}}{b_{1} + b_{2} + h_{1} + h_{2}} \right) = \frac{f_{y0} \cdot t_{0}^{2}}{b_{1} + b_{2} + h_{1} + h_{2}}$				
	$\mathbf{N}_{i} = 8,9 \cdot \frac{\gamma \cdot \mathbf{v}_{i}}{\operatorname{sen}\theta_{i}} \cdot \left(\frac{1}{4 \cdot b_{0}}\right) \cdot \sqrt{\gamma} \cdot \mathbf{I}(\mathbf{n})$				
K e N afastadas	Modo E:cisalhamento do banzo na região do afastamento				
N_1 b_1 b_2 h_1	$f_{v0} \cdot A_v$				
t_1	$N_i = \frac{1}{\sqrt{3} \cdot \text{sen}\theta_i}$ I ambem:				
f g f t_2	$\left \right\rangle^{*}$				
	$N_{0(afastamento)} \leq (A_0 - A_V) \cdot f_{y0} + A_V \cdot f_{y0} \cdot \sqrt{1 - (V/V_p)}$				
	Modo C ou D: largura efetiva				
	$N_{i}^{*} = f_{yi} \cdot t_{i} \cdot \left(2 \cdot h_{i} - 4 \cdot t_{i} + b_{i} + b_{e}\right)$				
	Modo B: corte por puncionamento da parede do banzo				
יוסי ו	$\beta \leq (1-1/\gamma)$				
	$f_{y0} \cdot t_0 (2 \cdot h_i + b + b)$				
	$\left(\frac{\nabla_{i}}{\sqrt{3}} \cdot \operatorname{sen}\theta_{i} \right) \left(\frac{\nabla_{i}}{\operatorname{sen}\theta_{i}} + \nabla_{i} + \nabla_{ep} \right)$				
K e N sobrepostas	Similar a banzo de seção tubular quadrada (Tabela 2.2)				
Para montantas a diagonaia	Multiplicar as formulas por $\pi/4$ e substituir b ₁ ,b ₂ e h ₁ ,h ₂				
rara montantes e diagonais circulares	por d ₁ ,d ₂ . (Cheque também, escoamento do banzo na				
010010105	região do afastamento se $h_0/b_0 < 1,0$) ^(a) .				

Tabela	2.3	-	Resistência	das	ligações	soldadas	de	banzo	de	seções	tubulares
			retangulares	s e m	ontantes	e diagonai	s de	e seções	s tuk	oulares o	luadradas,
			retangulares	s ou c	circulares.						

Continuação da Tabela 2.3.

	Parâmetros	
Tração:	Banzo tracionado $n \ge 0$:	1
f _k =f _{y0}	f(n) = 1,0	$\alpha = \frac{1}{4 \cdot q^2}$
Comprozoão ^(b) :	Banzo comprimido n < 0:	$V_{p} = \frac{1}{\sqrt{3}} \sqrt{3} \qquad \qquad \sqrt{1 + \frac{3}{3 \cdot t_{0}^{2}}}$
$f_{k}=f_{kn}$ para T e Y	$f(n) = 1,3 + \frac{0,4}{2} \cdot n \le 1$	VO 1 0
$f_k=0,8\cdot sen \theta_1 \cdot f_{kn}$ para X	β	$\eta = \frac{h_i}{h_i}$ $\gamma = \frac{b_0}{2 t_i}$
F_{kn} =Tensão de flambagem usando uma esbeltez de coluna (índice de esbeltez λ =KL/r) de:	$n = \frac{f_0}{f_{y0}} = \frac{N_0}{A_0 \cdot f_{y0}} + \frac{M_0}{W_0 \cdot f_{y0}}$	P/ montantes e diagonais quadradas e retangulares: $A_V=(2\cdot h_0+\alpha\cdot b_0)\cdot t_0$
$\lambda = 3,46 \left(\frac{h_0}{t_0} - 2\right) \sqrt{\frac{1}{\text{sen}\theta_1}}$		P/ montantes e diagonais circulares: $A_V=2\cdot h_0\cdot t_0$
$b_{e} = \frac{10}{b_{0}/t_{0}} \cdot \frac{f_{y0} \cdot t_{0}}{f_{yi} \cdot t_{i}} \cdot b_{i} \le b_{i}$	$b_{ep} = \frac{10}{b_0/t_0} \cdot b_i \le b_i$	$b_{e(S_p)} = \frac{10}{b_j/t_j} \cdot \frac{f_{yj} \cdot t_j}{f_{yi} \cdot t_i} \cdot b_i \le b_i$

Tabela 2.3a – Limites de validade ligações soldadas de banzo de seções tubulares retangulares e montantes e diagonais de seções tubulares quadradas, retangulares ou circulares.

	Limites de validade (i=1 ou 2 barra sobrepondo; j=barra sobreposta)										
Tipo de	b _i /b ₀	b_i/t_i h_i/t_i	d _i /t _i	hi/bi	b ₀ /t ₀	Afastadas/Sobrepostas					
ligação	h _i /b ₀	Compressão	Tração		h_0/t_0	b _i /bj t _i /tj					
T,Y,X	≥0,25	< 125 E			≤ 35						
K e N afastada	≥0,1+0,01b₀/t₀ β≥0,35	$\leq 1,25 \sqrt{f_{y1}}$ $\leq 0,35$	$ \mathbf{f}_{y1} \leq 0.35 $		$0,5 \le h_i/b_i \le 2$	≤ 35	$\begin{array}{l} 0,5(1\text{-}\beta) {\leq} g/b_0 {\leq} 1,5(1\text{-}\beta)^{(c)} \\ g \geq t_i {+} t_2 \end{array}$				
K e N sobreposta	≥ 0,25	\leq 1,1 $\sqrt{\frac{E}{f_{y1}}}$			≤ 4 0	$\begin{array}{c} 25\% \leq S_{p} \leq 100\% \\ b_{i}/bj \geq 0.75 \qquad t_{i}/tj \leq 1.0 \end{array}$					
montantes e diagonais circulares	$0,4{\leq}d_i/b_0{\leq}0,8$	\leq 1,5 $\sqrt{\frac{E}{f_{y1}}}$	≤ 50	Iguais as especificadas acima para d _i =b _i							
Excentrici- dade K e N			- 0,5	$55 \le \overline{\frac{e}{h_0}} \le 0,25$							

Notas para Tabela 2.3 e 2.3a:

(a) Essas recomendações são de PACKER e HENDERSON (1997);

(b) Para o cálculo de F_{kn} = Tensão de flambagem, PACKER e HENDERSON (1997), apresentam a equação (2.8) da CAN/CSA-S16.1-94:

$$\mathsf{F}_{\mathsf{kn}} = \frac{\mathsf{C}_{\mathsf{r}}}{\boldsymbol{\phi} \cdot \mathsf{A}} \tag{2.8}$$

Onde "C_r" é derivado de resistência compressiva, " ϕ " é fator de resistência e "A" é a área.

(c) Se g/b₀ é maior que $1,5 \cdot (1-\beta)$ e (t_1+t_2) a ligação deve ser tratada como T ou Y;

$$(d) \ f_{yi}, f_{yj} \leq 355 \ MPa; \qquad \quad f_{yi}(ou \ f_{yj})/f_{ui} \leq 0,8;$$

(d) PACKER e HENDERSON (1997) diferem quanto a certos limites de validade apresentado no CIDECT:

- Para as ligações do tipo T, Y, X e K, N afastadas a relação b_i/t_i para barras comprimidas deve ser dada pela CAN/CSA-S16.1-94-Class2 cuja definição para seções retangulares classe 2 é $\frac{b}{t} \le \frac{525}{\sqrt{f_y}}$ e $\frac{b}{t} \le 35$; para ligações do tipo K, N sobrepostas e para montantes e diagonais circulares é dada pela CSA-S16.1-94-Class1 cuja definição para seções retangulares classe 1 é $\frac{b}{t}$ ou $\frac{d}{t} \le \frac{420}{\sqrt{f_y}}$;

- Para ligações K, N afastadas vale que $0.5(1-\beta) \le g/b_0$ e que $g \ge t_1+t_2$;

A Tabela 2.2 é restrita para ligações de seções tubulares quadradas e usa parâmetros geométricos mais limitados, ela é derivada da Tabela 2.3 que é mais geral. Como conseqüência tem-se que ligações de seções tubulares quadradas necessitam apenas ser checadas para colapso Modo A, plastificação da parede do banzo e colapso da largura efetiva, Modo C ou Modo D, enquanto que ligações de seções tubulares retangulares devem ser checadas também para Modo B, corte por puncionamento da parede do banzo, Modo E, cisalhamento do banzo na região do afastamento e Modo F, colapso da parede lateral do banzo.

Na Tabela 2.3 o Modo E, colapso por cisalhamento do banzo na região do afastamento, das ligações K e N envolve a divisão da seção transversal do banzo em duas porções. A primeira porção é a área A_v formada pela parede lateral do banzo mais uma parte da parede horizontal, como mostra a Figura 2.3, a qual pode suportar força cortante e força axial. A segunda porção é a área que sobra, A₀-A_v, a qual é efetiva para força axial, mas não de força cortante.

Fig.2.3 Corte do banzo na região do afastamento - Área A_V. Fonte: CIDECT, 1992b, p. 28.

A Tabela 2.1 apresenta equações de resistência, para ligações de seções tubulares circulares T, Y e X, baseada principalmente em formulações empíricas. As Tabelas 2.2 e 2.3, para $\beta \le 0.85$ são baseados no método da linha deslocada para a face do banzo de seções tubulares quadradas ou retangulares, por ser relativamente mais flexível.

Nas ligações de seções tubulares quadradas e retangulares T, Y e X, para $\beta=1$, ou seja, largura completa $b_1=b_0$, a flexibilidade não é mais um problema, e a resistência é baseada na capacidade de tração para diagonais tracionados ou instabilidade de compressão da parede lateral do banzo para diagonais comprimidos.

Para todas as ligações de seções tubulares retangulares T, Y e X com $\beta \ge 0.85$, alta relação entre largura das barras pela largura do banzo, são também checadas para modo de colapso da largura efetiva (Modo C ou D) e para corte por puncionamento da parede do banzo (Modo B).

Acima do limite $\beta = (1 - 1/\gamma)$ é checado o corte por puncionamento da parede do banzo (Modo B), e é determinado por possibilidades físicas de tal colapso ocorrer.

Fig.2.4 Interpretação física da largura efetiva. Fonte: CIDECT, 1992b, p. 29.

A Figura 2.4 mostra a interpretação física da largura efetiva das expressões que aparecem na Tabela 2.2 e 2.3.

As expressões com termos da largura efetiva b_e e b_{ep} na Tabela 2.3 são na verdade derivadas de placas para ligações de seções tubulares retangulares, e os coeficientes nas expressões tem sido escolhido para fornecer adequados valores de resistências para ligações para estados limites de projetos.

CAPÍTULO III

EXEMPLOS DE DIMENSIONAMENTO

3.1 INTRODUÇÃO

Neste capítulo são apresentados três exemplos de dimensionamento de ligações tubulares: do tipo T com seções tubulares circulares e do tipo YT com seções tubulares circulares, desprezando o efeito do momento fletor no cálculo e sem desprezá-lo, utilizando as tabelas para dimensionamento apresentada no capítulo II. Este capítulo ilustra o uso das tabelas para seções tubulares nacionais da V&M do Brasil. O programa de computador desenvolvido pelo PACKER – HSS connex – para o cálculo de ligações de seções tubulares com força predominantemente estática, que verifica se uma ligação é satisfatória ou não, foi utilizado para comparação dos resultados. Vale ressaltar que este programa respeita rigidamente os limites de validade citados no capítulo II e caso algum limite seja transgredido o programa emite uma mensagem de erro, com menção desse limite, e não calcula a resistência da ligação. O dimensionamento foi realizado buscando um aproveitamento de 100% para o montante comprimido nos três exemplos apresentados.

3.2 DIMENSIONAMENTO DE UMA LIGAÇÃO DO TIPO T DE SEÇÕES TUBULARES CIRCULARES

O dimensionamento da ligação T, mostrada na Figura 3.1, será realizado utilizando a Tabela 2.1, para cálculo da resistência das ligações soldadas de seções tubulares circulares.

3.2.1 Características Físicas e Geométricas

Figura 3.1 - Esquema da ligação T.

Tubo VMB 250: $f_y=250 \text{ MPa} (\text{N/mm}^2) = 0.25 \text{ kN/mm}^2 (\text{GPa});$

Banzo circular: \u03c6114,3 mm #6,02 mm;

$$W_{0} = \frac{\pi \cdot (D^{4} - d^{4})}{32 \cdot D} = \frac{\pi \cdot (114, 3^{4} - 102, 26^{4})}{32 \cdot 114, 3} = 52.677, 50653 \text{ mm}^{3};$$

 $M_0=M_{op}=12,90 \text{ kN} \cdot m=12.900,00 \text{ kN} \cdot mm;$

Montante circular: $\phi73$ mm #5,16 mm;

$$W_1 = 17,4 \text{ cm}^3 = 17.400,00 \text{ mm}^3;$$

3.2.2 Limites de Validade

$$0,2 \le \beta = \frac{d_1}{d_0} = \frac{73,0}{114,3} = 0,6386701662 \le 1,0$$
 OK!

$$\frac{d_0}{t_0} = \frac{114.3}{6.02} = 18,98671096 \le 50$$
 OK!

$$\frac{d_1}{t_1} = \frac{73.0}{5.16} = 14.14728682 \le 50 \qquad \qquad \text{OK!}$$

$$f_{y1} \le 355 MPa$$

$$30^{\circ} \le \theta_1 = 90^{\circ} \le 90^{\circ}$$
 OK!

$$\gamma = \frac{d_0}{2 \cdot t_0} = \frac{114,3}{2 \cdot 6,02} = 9,493355482 \le 25$$
 OK!

Eficiência da ligação:

$$\frac{d_1}{t_1} = \frac{73,0}{5,16} = 14,14728682 \le 40,75 \qquad \text{para} \qquad f_y = 250 \text{ MPa (interpolado);}$$

OK!

Portanto não é necessária a redução da eficiência da ligação.

3.2.3 Cálculo dos Parâmetros da Ligação T

Para o cálculo da tensão no banzo, $f_{\text{op}},$ o mais crítico é adotar tensão de compressão.

$$n' = \frac{f_{0p}}{f_{y0}} = \frac{N_{0p}}{A_0 \cdot f_{y0}} + \frac{M_0}{W_0 \cdot f_{y0}} = -\frac{12.900,00}{52677,50653 \cdot 0,25} = -0,9795452253 ;$$

$$\begin{split} &f\left(n'\right) = 1,\!0+0,\!3\cdot n'-0,\!3\cdot n'^2 = 1,\!0+0,\!3\cdot (-0,\!9795452253) - 0,\!3\cdot (-0,\!9795452253^2) = \\ &= 0,\!4182837779 \leq 1; \end{split}$$

3.2.4 Verificação quanto ao Colapso por Plastificação da Parede do Banzo (Modo A)

$$N_{1}^{\star} = \frac{f_{y0} \cdot t_{0}^{2}}{\operatorname{sen}\theta_{1}} \left(2,8 + 14,2 \cdot \beta^{2} \right) \cdot \gamma^{0,2} \cdot f(n');$$

$$N_{1}^{*} = \frac{0,25 \cdot 6,02^{2}}{\text{sen90}} \left(2,8 + 14,2 \cdot 0,6386701662^{2}\right) \cdot 9,493355482^{0,2} \cdot 0,4182837779 = 51,07295989 \text{ kN};$$

3.2.5 Verificação quanto ao Colapso por Corte por Puncionamento da Parede do Banzo (Modo B)

$$N_{i}^{*} = \frac{f_{y0} \cdot t_{0} \cdot \pi \cdot d_{i}}{\sqrt{3}} \cdot \left(\frac{1 + \text{sen}\theta_{i}}{2 \cdot \text{sen}^{2}\theta_{i}}\right);$$

$$N_{1}^{*} = \frac{0,25 \cdot 6,02 \cdot \pi \cdot 73,0}{\sqrt{3}} \cdot \left(\frac{1 + \text{sen90}}{2 \cdot \text{sen}^{2}90}\right) = 199,2730672 \text{ kN};$$

3.2.6 Resistência da Ligação T

A resistência da ligação é o menor dos valores dos itens 3.2.4 e 3.2.5.

Portanto para montante comprimido é de:

 $N_{1}^{*} = 51,07295989 \text{ kN};$

$$N_1^* = 51,07295989 \text{ kN} > N_1 = 50 \text{ kN}$$
 OK!

Aproveitamento:

$$\frac{N_1}{N_1^*} = \frac{50}{51,07295989} = 0,9789916251 < 1$$
 OK!

Portanto a ligação é satisfatória!

3.2.7 Comparação dos Resultados da Ligação Tubular Circular do Tipo T com o Programa do PACKER - HSS – Connex

A Tabela 3.1 mostra a comparação ente os resultados do cálculo manual e do programa HSS – connex e a correlação entre as nomenclaturas utilizadas.

A Figura 3.2 mostra a forma de entrada de dados no programa HSS – connex.

A Figura 3.3 mostra os dados de entrada da ligação T. A Figura 3.4 e Figura 3.5 mostram os resultados do dimensionamento pelo programa HSS - connex.

	Devêmetres de lizeaño	Ciala	Cálculo	HSS -
	Parametros da ligação	Sigia	Manual	connex
	Diâmetro do banzo	d ₀	114,30 mm	114,30 mm
	Espessura do banzo	t ₀	6,02 mm	6,02 mm
0	Tensão de escoamento do banzo	f _y	250,00 MPa	250,00 MPa
ANZO	Força axial no banzo	No	0,00 kN	0,00 kN
B/	Força axial no banzo	N _{op}	0,00 kN	0,00 kN
	Momento no banzo no plano da ligação	M _o =M _{ip.o}	12,90 kNm	12,90 kNm
	Momento no banzo no plano da ligação	M _{op} =M _{ip.op}	12,90 kNm	12,90 kNm
	Diâmetro do montante	d ₁	73,00 mm	73,00 mm
	Espessura do montante	t ₁	5,16 mm	5,16 mm
	Ângulo entre montante e o banzo	θ_1	90,00 graus	90,00 graus
NTE NTE	Tensão de escoamento do montante	fy	250,00 MPa	250,00 MPa
ITA	Força axial no montante	N ₁	-50,00 kN	-50,00 kN
MON	Momento no montante no plano da	M _{ip} .1	0,00 kNm	0,00 kNm
	ligação	.4	,	,
	Momento no montante fora do plano da	M _{op} .1	0.00 kNm	0.00 kNm
	ligação	υp	,	,
	Relação entre diâmetros	β	0,64	0,64
	Relação entre diâmetro e espessura	γ	9,49	9,49
	Área do banzo	Δ	2.047,83	2.047,83
SOS			mm ²	mm ²
TAD	n =tensão/f _y (compressão)	n	-0,98	-0,98
Ins.	Função de pré-tensão no banzo	f(n)	0,42	0,42
BE	Resistência a plastificação do banzo	N1Rd(PI)=N ₁ *	51,07 kN	51,07 kN
	Resistência a corte por puncionamento	N1Bd(Pu)-N.*	199 27 kN	199 27 kN
	do banzo		100, 27 KIN	
	Aproveitamento da ligação	N1/N ₁ *	0,98	0,98

Tabela 3.1 – Comparação entre resultados manuais e do HSS – connex.

Figura 3.2 – Entrada de dados no HSS - connex da ligação T.

Ecomputed result					×
Y-connection results					_
Input data :					
Chord dimensions :					
Shape type : ASTM Circular HSS					
External diameter of chord	d 0	=	114.30	mm	
Thickness of chord member	t0	=	6.02	mm	
Steel characteristics :					
Yield strength of chord member	fy.0	=	250.00	Мра	
Chord loading :	-				
Axial force in chord member	No	=	0.00	kМ	
Axial force in chord member	Нор	=	0.00	kМ	
In-plane moment in chord	Mip.o	=	12.90	kNm	
In-plane moment in chord	Mip.op	=	12.90	kNm	
Brace 1 dimensions :					
Shape type : ASTM Circular HSS					
External diameter of brace 1	d1	=	73.00	MM	
Thickness of brace 1	t1	=	5.16	MM	
Angle between brace 1 and chord	Theta.1	=	90.00	Deg	
Car	icel				

Figura 3.3 - Resultados no HSS - connex da ligação T.

Computed result					×
Angle between brace 1 and chord Steel characteristics :	Theta.1	=	90.00	Deg	1
Yield strength Brace 1 loading :	fy	=	250.00	Мра	
Axial force in brace member 1	N1	=	-50.00	kN	
In-plane moment in brace 1	Mip.1	=	0.00	kNm	
Out-of-plane moment in brace 1	Mop.1	=	0.00	kNm	
Results report:					
Width or diameter ratio Beta	Beta	=	0.64		
Half width to thickness ratio	Gamma	=	9.49		
Area of chord member	A.0	=	2047.83	mm2	
Class of section	Class	=	1.00		
Plastic section modulus of chord	Wp1.0	=	70.65	cm3	
n`= Sigma.0.p/fy0 (for CHS chord)	n	=	-0.98		
Function of chord prestress	f(n`)	=	0.42		
Axial force in brace member 1	N1	=	-50.00	kN	
Tension capacity of brace member 1	N1.t	=	274.93	kМ	
Resistance in punching shear	N1Rd(Pu)	=	199.27	kН	-
	91				

Figura 3.4 – Resultados no HSS - connex da ligação T.

In Computed result				×
Resistance in punching shear Resistance in chord plastification In-plane moment in brace 1 Resistance in punching shear Resistance in chord plastification Moment capacity of brace member 1 Out-of-plane moment in brace 1 Resistance in punching shear Resistance in chord plastification Interaction check	N1Rd(Pu) N1Rd(P1) Mip.1 Mip.1Rd(Pu) Mip.1Rd(P1) Mc.1 Mop.1 Mop.1Rd(Pu) Mop.1Rd(P1) 0.98	 199.27 51.07 0.00 4.63 2.64 5.95 0.00 4.63 1.55	kN kNm kNm kNm kNm kNm kNm	•
Connection sufficient	ð			-

Figura 3.5 – Resultados no HSS - connex da ligação T.

3.3 DIMENSIONAMENTO DE UMA LIGAÇÃO DO TIPO YT DE SEÇÕES TUBULARES CIRCULARES DESPREZANDO O EFEITO DO MOMENTO FLETOR

3.3.1. Características Físicas e Geométricas

A Figura 3.6 mostra o esquema de forças da ligação YT de seções tubulares circulares. Os momentos fletores foram desprezados.

Figura 3.6 - Esquema da ligação YT de banzo circular.

Tubo VMB 250: $f_y=250 \text{ MPa} (\text{N/mm}^2) = 0,25 \text{ kN/mm}^2$;

Banzo circular: \phi114,3 mm #6,02 mm;

$$\begin{split} &\mathsf{A}_0 = 2.047,83 \ \text{mm}^2; \\ &\mathsf{W}_0 = \frac{\pi \cdot \left(\!D^4 - d^4\right)}{32 \cdot D} \!= \frac{\pi \cdot \left(\!114,\!3^4 - 102,\!26^4\right)}{32 \cdot 114,\!3} \!= \!52.677,\!50653 \text{mm}^3; \\ &\mathsf{N}_0 \!= -70,\!39 \ \text{kN} \ (\text{Compressão}); \\ &\mathsf{N}_{0p} \!= 65,\!75 \ \text{kN} \ (\text{Tração}); \end{split}$$

Montante circular: ϕ 73,0 mm #5,16 mm;

$$\begin{split} &\mathsf{A}_1 = 1.099,73 \ \text{mm}^2; \\ &\mathsf{W}_1 = \frac{\pi \cdot \left(\mathsf{D}^4 - \mathsf{d}^4\right)}{32 \cdot \mathsf{D}} = \frac{\pi \cdot \left(73, 0^4 - 62, 68^4\right)}{32 \cdot 73} = 17.433, 29725 \ \text{mm}^3; \\ &\mathsf{N}_1 = -137 \ \text{kN} \ (\text{Compressão}); \\ &\theta_1 = 90^\circ; \end{split}$$

Diagonal circular: ϕ 73,0 mm #5,16 mm;

$$A_2=1.099,73 \text{ mm}^2$$
;
 $W_2 = 17.433,29725 \text{ mm}^3$;
 $N_2=176,67 \text{ kN} (\text{Tração})$;
 $\theta_2=39,4090^\circ$;

3.3.2 Limites de Validade

O afastamento "g" foi adotado em função da geometria dos tubos e disposição construtiva.

 $g_{(adotado)}=10,33$ mm;

 $g \ge t_1 + t_2 = 5,16 + 5,16 = 10,32mm$ OK!

Para ligações afastadas a excentricidade "e" é dada pela equação (2.3):

$$\mathbf{e} = \frac{\mathbf{sen}\theta_1 \cdot \mathbf{sen}\theta_2}{\mathbf{sen}(\theta_1 + \theta_2)} \cdot \left(\frac{\mathbf{h}_1 \text{ ou } \mathbf{d}_1}{2 \cdot \mathbf{sen}\theta_1} + \frac{\mathbf{h}_2 \text{ ou } \mathbf{d}_2}{2 \cdot \mathbf{sen}\theta_2} + \mathbf{g}\right) - \frac{\mathbf{h}_0 \text{ ou } \mathbf{d}_0}{2};$$

$$e = \frac{\text{sen90} \cdot \text{sen39,4090}}{\text{sen(90+39,4090)}} \cdot \left(\frac{73,0}{2 \cdot \text{sen90}} + \frac{73,0}{2 \cdot \text{sen39,4090}} + 10,33\right) - \frac{114,3}{2} = 28,56992142 \text{mm};$$

A excentricidade "e" deve estar entre os limites dados pela equação (2.1):

$$-0,55 \le \left(\frac{e}{d_0} = \frac{28,56992142}{114,3} = 0,249955568\right) \le 0,25 \qquad \text{OK!}$$

Os demais limites de validade são:

$$0,2 \le \frac{d_1}{d_0} = \frac{73,0}{114,3} = 0,6386701662 \le 1,0$$
 OK!

$$\frac{d_0}{t_0} = \frac{114.3}{6.02} = 18,98671096 \le 50$$
 OK!

$$\frac{d_1}{t_1} = \frac{73,0}{5,16} = 14,14728682 \le 50 \qquad \qquad \text{OK!}$$

 $f_{y1} \leq 355 \, MPa$

 $30^{\rm o} \leq \theta_1 = 90^{\rm o} \leq 90^{\rm o}$

OK!

OK!

72

$$30^{\circ} \le \theta_2 = 39,4090^{\circ} \le 90^{\circ}$$
 OK

$$\gamma = \frac{d_0}{2 \cdot t_0} = \frac{114,3}{2 \cdot 6,02} = 9,493355482 \le 25 \qquad \text{OK!}$$

Eficiência da ligação:

$$\frac{d_1}{t_1} = \frac{73,0}{5,16} = 14,14728682 \le 40,75 \qquad \text{para} \qquad f_y = 250 \text{ MPa (interpolado);}$$

Portanto não é necessária a redução da eficiência da ligação.

3.3.3 Cálculo dos Parâmetros da Ligação YT

$$\beta = \frac{\mathsf{d}_1 + \mathsf{d}_2}{2 \cdot \mathsf{d}_0} = \frac{73,0 + 73,0}{2 \cdot 114,3} = 0,6386701662 ;$$

$$g' = \frac{g}{t_0} = \frac{10,33}{6,02} = 1,715946844;$$

Para o cálculo da tensão no banzo, f_{op} , o mais crítico é adotar tensão de compressão.

$$n' = \frac{f_{0p}}{f_{y0}} = \frac{N_{0p}}{A_0 \cdot f_{y0}} + \frac{M_{f0}}{W_0 \cdot f_{y0}} = \frac{-70,39}{2047,83 \cdot 0,25} = -0,1374918817;$$

$$\begin{split} &f\left(n'\right) = 1,\!0+0,\!3\cdot n'-0,\!3\cdot n'^2 = 1,\!0+0,\!3\cdot (-0,\!1374918817) - 0,\!3\cdot (-0,\!1374918817^2) = \\ &= 0,\!9530812302 \leq 1; \end{split}$$

$$f(\gamma, g') = \gamma^{0,2} \cdot \left(1 + \frac{0,024 \cdot \gamma^{1,2}}{1 + \exp^{(0,5 \cdot g' - 1,33)}} \right) = 9,493355482^{0,2} \cdot \left(1 + \frac{0,024 \cdot 9,493355482^{1,2}}{1 + \exp^{(0,5 \cdot 1.715946844 - 1,33)}} \right) = 1,913707803;$$

3.3.4 Verificação quanto ao Colapso por Plastificação da Parede do Banzo (Modo A)

3.3.4.1 Montante comprimido:

$$N_{1}^{*} = \frac{f_{y0} \cdot t_{0}^{2}}{sen\theta_{1}} \left(1,8 + 10,2 \cdot \frac{d_{1}}{d_{0}} \right) \cdot f(\gamma,g') \cdot f(n') = \frac{0,25 \cdot 6,02^{2}}{sen90} \left(1,8 + 10,2 \cdot \frac{73,0}{114,3} \right) \cdot 1,913707803 \cdot 0,9530812302 = 137,3951221 \text{ kN};$$

3.3.4.2 Diagonal tracionada:

$$N_{2}^{\star} = N_{1}^{\star} \cdot \left(\frac{\text{sen}\theta_{1}}{\text{sen}\theta_{2}}\right) = 137,395122 \cdot \left(\frac{\text{sen}90}{\text{sen}39,4090}\right) = 216,4207512 \text{ kN};$$

3.3.5 Verificação quanto ao Colapso por Corte por Puncionamento da Parede do Banzo (Modo B)

$$N_{i}^{\star} = \frac{f_{y0} \cdot t_{0} \cdot \pi \cdot d_{i}}{\sqrt{3}} \cdot \left(\frac{1 + \text{sen}\theta_{i}}{2 \cdot \text{sen}^{2}\theta_{i}}\right);$$

3.3.5.1 Montante comprimido:

$$N_{1}^{*} = \frac{0,25 \cdot 6,02 \cdot \pi \cdot 73,0}{\sqrt{3}} \cdot \left(\frac{1 + \text{sen90}}{2 \cdot \text{sen}^{2}90}\right) = 199,2730672 \text{ kN};$$

3.3.5.2 Diagonal tracionada:

$$N_{2}^{*} = \frac{0,25 \cdot 6,02 \cdot \pi \cdot 73,0}{\sqrt{3}} \cdot \left(\frac{1 + \text{sen39,4090}}{2 \cdot \text{sen}^{2} 39,4090}\right) = 404,1589439 \text{ kN};$$

3.3.6 Resistência da Ligação YT

A resistência da ligação é o menor dos valores de 3.3.4 e 3.3.5.

3.3.6.1 Montante comprimido:

 $N_1^* = 137,3951221 \, kN$;

$$N_1^* = 137,3951221 \text{ kN} > N_1 = 137 \text{ kN}$$
 OK!

Aproveitamento:

$$\frac{N_1}{N_1^*} = \frac{137}{137,3951221} = 0,9971241912 < 1 \qquad OK!$$

3.3.6.2 Diagonal tracionada:

 $N_2^* = 216,4207512 \text{ kN};$

 $N_{2}^{*} = 216,4207512 \text{ kN} > N_{2} = 176,67 \text{ kN};$

Aproveitamento:

$$\frac{N_2}{N_2^*} = \frac{176,67}{216,4207512} = 0,8163265261 < 1 \qquad OK!$$

Portanto a ligação é satisfatória!

3.3.7 Comparação dos Resultados da Ligação Tubular Circular do Tipo YT com o Programa do PACKER - HSS – Connex

A Tabela 3.2 mostra a comparação ente os resultados do cálculo manual e do programa HSS – connex e a correlação entre as nomenclaturas utilizadas.

A Figura 3.7 mostra a forma de entrada de dados no programa HSS – connex.

A Figura 3.8 mostra os dados de entrada da ligação YT. A Figura 3.9, a Figura 3.11 mostram os resultados do dimensionamento pelo programa HSS - connex.

	Parâmetros da ligação	Siala	Cálculo	HSS -	
	r arametros da ligação	Siyia	Manual	connex	
0	Diâmetro do banzo	d ₀	114,30 mm	114,30 mm	
	Espessura do banzo	to	6,02 mm	6,02 mm	
	Tensão de escoamento do banzo	f _y	250,00 MPa	250,00 MPa	
	Excentricidade da ligação	е	28,57 mm	28,57 mm	
Z	Medida do afastamento	gap	10,33 mm	10,33 mm	
BA	Força axial no banzo	No	-70,39 kN	-70,39 kN	
	Força axial no banzo	N _{op}	65,75 kN	65,75 kN	
	Momento no banzo no plano da ligação	M _o =M _{ip.o}	0,0 kNm	0,0 kNm	
	Momento no banzo no plano da ligação	M _{op} =M _{ip.op}	0,0 kNm	0,0 kNm	
	Diâmetro do montante	d ₁	73,00 mm	73,00 mm	
Ш	Espessura do montante	t ₁	5,16 mm	5,16 mm	
Z	Ângulo entre montante e o banzo	θ_1	90,00 graus	90,00 graus	
TA	Tensão de escoamento do montante	f _v	250,00 MPa	250,00 MPa	
N	Forca axial no montante	N ₁	-137,00 kN	-137,00 kN	
M	Momento no montante fora do plano da	M _{op} .1	0,00 kNm	0,00 kNm	
	Diâmetro da diagonal	da	73.00 mm	73.00 mm	
	Espessura da diagonal	t ₂	5 16 mm	5 16 mm	
AI	Ângulo entre diagonal e o banzo	<u> </u>	39 409 graus	39.41 graus	
ð	Tensão de escoamento da diagonal	6 <u>2</u> f	250.00 MP2	250 00 MP2	
d D	Force axial na diagonal	N _o	176 67 kN	176 67 kN	
10	Momento na diagonal fora do plano da	M _{op} .2	0,00 kNm	0,00 kNm	
	Relação entre diâmetros	ß	0.64	0.64	
	Relação entre diâmetro e espessura	۲ ۷	9 49	9 4 9	
	Área do banzo	1	2 047 83	2 047 83	
		A	mm ²	mm ²	
	Módulo resistente elástico do banzo	W ₀	52.667,5 mm ³	-	
SC	n =tensão/f _v (compressão)	n	-0,14	-0,14	
B	Função de pré-tensão no banzo	f(n)	0,95	0,95	
ULTA	Resistência a plastificação do banzo (Modo A)	N1Rd(PI)=N ₁ *	137,40 kN	137,40 kN	
RESI	Resistência a corte por puncionamento do banzo (Modo B)	$N1Rd(Pu)=N_1^*$	199,27 kN	199,27 kN	
	Aproveitamento do montante	N_1/N_1^*	1,0	1,0	
	Resistência a plastificação do banzo (Modo A)	N2Rd(PI)=N ₂ *	216,42 kN	216,42 kN	
	Resistência a corte por puncionamento do banzo (Modo B)	$N2Rd(Pu)=N_2^*$	404,16 kN	404,15	
	Aproveitamento da diagonal	N_2/N_2^*	0,82	0,82	

Tabela 3.2 – Comparação entre resultados manuais e do HSS – connex.

Figura 3.7 – Entrada de dados no HSS – connex YT.

🧱 Computed result				×		
				_		
K-connection results						
Input data :						
Choud dimonsions						
GHOFU UIMENSIONS .						
Support of chord	d 0	_	446 90	mm		
Thicknoss of chord member	10 +0	_	114.00	mm		
Stool characterictics -	LU	-	0.02	1414		
Viold strongth of shord member	£11 B	_	9E0 00	Mon		
Noding accontricity for connection	Fy.0	_	220.00	niha		
Con between the bracing members	Con	_	40.07	MM mm		
Chord loading :	uah	-	10.33	1404		
Axial force in chord member	No	=	-70.39	kN		
Axial force in chord member	Nop	=	65.75	kN		
In-plane moment in chord	Mip.o	=	0.00	kNm		
In-plane moment in chord	Mip.op	=	0.00	kNm		
Brace 1 dimensions :						
Shape type : ASTM Circular HSS						
External diameter of brace 1	d1	=	73.00	MM		
Cancel						

Figura 3.8 - Resultados no HSS - connex da ligação YT.

E Computed result					×
Eutowerl dispeter of brace 1	44	_	79 88	-	
External ulameter of brace i	UT	-	73.00		
Inickness of brace 1		=	5.10	MM	
Steel characteristics :	Ineta.1	=	90.00	veg	
Yield strenath	fu	=	250.00	Мра	
Brace 1 loading :	. 9				
Axial force in brace member 1	N1	=	-137.00	kN	
Out-of-plane moment in brace 1	Mop.1	=	0.00	kNm	
Brace 2 dimensions :	•				
Shape type : ASTM Circular HSS					
External diameter of brace 2	d2	=	73.00	mm	
Thickness of brace 2	t2	=	5.16	MM	
Angle between brace 2 and chord	Theta.2	=	39.41	Deg	
Steel characteristics :				-	
Yield strength of brace 2	fy.2	=	250.00	Mpa	
Brace 2 loading :	-			•	
Axial force in brace member 2	N2	=	176.67	kN	
Out-of-plane moment in brace 2	Mop.2	=	0.00	kNm	
Results report:					

Figura 3.9 - Resultados no HSS - connex da ligação YT.

Ē	Computed result					×
	Results report:					_
	Width or diameter ratio Beta	Beta	=	0.64		
	Half width to thickness ratio	Gamma	=	9.49		
	Area of chord member	A.0	=	2047.83	mm2	
	Class of section	Class	=	1.00		
	Plastic section modulus of chord	Wp1.0	=	70.65	cm3	
	n`= Sigma.0.p/fy0 (for CHS chord)	n	=	-0.14		
	Function of chord prestress	f(n`)	=	0.95		
	Gap divided by chord thickness	g`	=	1.72		
	Function of Gamma and g`	f(Gamma,g`)	=	1.91		
	For brace 1 : Axial force in brace member 1	N1	=	-137.00	kN	
	Posistance in pupphing show	NI.L	_	400 07	KN	
	Resistance in chard plactification	NIKU(PU)	_	199.27	KN LM	
	Aut-of-plane memort in brace 1	Mon 1	_	107.40 A AA	KN LNm	
	Resistance in nunching chear	Mon 1Rd(Pu)	_	5.00 J. 63	L/Nm	
	Resistance in chord plastification	Mon 1Rd(P1)	=	3 53	k Nm	
	inconstante in there preservice the	10p1110(11)		0.00		-
Cancel						

Figura 3.10 – Resultados no HSS - connex da ligação YT.

E Computed result					×	
Resistance in chord plastif Moment capacity of brace me	ication Mop.1Rd(Pl) mber 1 Mc.1	=	3.53 5.95	kNm kNm	-	
Interaction check 1	1.00) <	1			
For brace 2 : Axial force in brace member Tension capacity of brace m Resistance in punching shea Resistance in chord plastif Out-of-plane moment in brac Resistance in punching shea Resistance in chord plastif Moment capacity of brace me Interaction check 2 Connection sufficient	2 N2 ember 2 N2.t r N2Rd(Pu) ication N2Rd(P1) e 2 Mop.2 r Mop.2Rd(Pu) ication Mop.2Rd(P1) mber 2 Mc.2 0.82		176.67 274.93 404.15 216.42 0.00 10.44 5.55 5.95	KN KN KNM KNM KNM		
Lancel						

Figura 3.11 – Resultados no HSS - connex da ligação YT.

3.4 DIMENSIONAMENTO DE UMA LIGAÇÃO DO TIPO YT DE SEÇÕES TUBULARES CIRCULARES CONSIDERANDO O EFEITO DO MOMENTO FLETOR

3.4.1 Características Físicas e Geométricas

A Figura 3.12 mostra o esquema de forças da ligação YT de seções tubulares circulares.

Tubo VMB 250: $f_y=250 \text{ MPa} (\text{N/mm}^2) = 0.25 \text{ kN/mm}^2$;

Banzo circular: \u03c6114,3 mm #6,02 mm;

$$A_0=2.047,83 \text{ mm}^2$$
;

$$W_{0} = \frac{\pi \cdot (D^{4} - d^{4})}{32 \cdot D} = \frac{\pi \cdot (114, 3^{4} - 102, 26^{4})}{32 \cdot 114, 3} = 52.677, 50653 \text{ mm}^{3};$$

N₀= - 70,39 kN (Compressão);

N_{0p}= 65,75 kN (Tração);

Montante circular: $\phi73,0$ mm #5,16 mm;

$$\begin{split} &\mathsf{A}_1 = 1.099,73 \ \text{mm}^2; \\ &\mathsf{W}_1 = \frac{\pi \cdot \left(\!D^4 - d^4\right)}{32 \cdot D} \!= \frac{\pi \cdot \left(\!73,\!0^4 - 62,\!68^4\right)}{32 \cdot 73} \!= \!17.433,\!29725 \text{mm}^3; \\ &\mathsf{N}_1 \!= \! -\!137 \ \text{kN} \ (\text{Compressão}); \\ &\theta_1 \!= \!90^\circ; \end{split}$$

Diagonal circular: ϕ 73,0 mm #5,16 mm;

A₂=1.099,73 mm²;
W₂=17,4 cm³ = 17.433,29725 mm³;
N₂=176,67 kN (Tração);
$$\theta_2$$
=39,4090°;

Figura 3.12 - Esquema da ligação YT de banzo circular.

3.4.2 Limites de Validade

O afastamento "g":

 $g_{(adotado)}$ =10,33 mm;

$$g \ge t_1 + t_2 = 5,16 + 5,16 = 10,32mm$$
 OK!

Para ligações afastadas a excentricidade "e" é dada pela equação (2.3):

$$\mathbf{e} = \frac{\mathbf{sen}\theta_1 \cdot \mathbf{sen}\theta_2}{\mathbf{sen}(\theta_1 + \theta_2)} \cdot \left(\frac{\mathbf{h}_1 \text{ ou } \mathbf{d}_1}{2 \cdot \mathbf{sen}\theta_1} + \frac{\mathbf{h}_2 \text{ ou } \mathbf{d}_2}{2 \cdot \mathbf{sen}\theta_2} + \mathbf{g}\right) - \frac{\mathbf{h}_0 \text{ ou } \mathbf{d}_0}{2};$$

$$e = \frac{\text{sen90} \cdot \text{sen39,4090}}{\text{sen(90+39,4090)}} \cdot \left(\frac{73,0}{2 \cdot \text{sen90}} + \frac{73,0}{2 \cdot \text{sen39,4090}} + 10,33\right) - \frac{114,3}{2} = 28,56992142 \text{mm};$$

A excentricidade "e" deve estar entre os limites dados pela equação (2.1):

$$-0,55 \le \left(\frac{e}{d_0} = \frac{28,56992142}{114,3} = 0,249955568\right) \le 0,25$$
 OK!

Os demais limites de validade são:

$$0,2 \le \frac{d_1}{d_0} = \frac{73,0}{114,3} = 0,6386701662 \le 1,0$$
 OK!

$$\frac{d_0}{t_0} = \frac{114,3}{6,02} = 18,98671096 \le 50$$
 OK!

$$\frac{d_1}{t_1} = \frac{73,0}{5,16} = 14,14728682 \le 50$$
 OK!

$$f_{y1} \le 355 \text{ MPa}$$
 OK!

$$30^{\circ} \le \theta_1 = 90^{\circ} \le 90^{\circ} \qquad \qquad \text{OK!}$$

$$30^{\circ} \le \theta_2 = 39,4090^{\circ} \le 90^{\circ}$$
 OK!

$$\gamma = \frac{d_0}{2 \cdot t_0} = \frac{114.3}{2 \cdot 6.02} = 9,493355482 \le 25$$
 OK!

Eficiência da ligação:

$$\frac{d_1}{t_1} = \frac{73,0}{5,16} = 14,14728682 \le 40,75 \qquad \text{para} \qquad f_y = 250 \text{ MPa (interpolado);}$$

Portanto não é necessária a redução da eficiência da ligação.

3.4.3 Cálculo dos Parâmetros da Ligação YT

$$\beta = \frac{d_1 + d_2}{2 \cdot d_0} = \frac{73,0 + 73,0}{2 \cdot 114,3} = 0,6386701662 ;$$

 $g' = \frac{g}{t_0} = \frac{10,33}{6,02} = 1,715946844$;

Para o cálculo da tensão no banzo, f_{op} , o mais crítico é adotar tensão de compressão.

$$n' = \frac{f_{_{0p}}}{f_{_{y0}}} = \frac{N_{_{0p}}}{A_{_0} \cdot f_{_{y0}}} + \frac{M_{_{f0}}}{W_{_0} \cdot f_{_{y0}}} = \frac{-62,17}{2047,83 \cdot 0,25} - \frac{3380}{52.677,50653 \cdot 0,25} = -0,3780918972;$$

$$\begin{split} &f\left(n'\right) = 1,\!0+0,\!3\cdot n'-0,\!3\cdot n'^2 = 1,\!0+0,\!3\cdot (-0,\!3780918972) - 0,\!3\cdot (-0,\!3780918972^2) = \\ &= 0,\!843686386 \leq 1; \end{split}$$

$$f(\gamma, g') = \gamma^{0,2} \cdot \left(1 + \frac{0,024 \cdot \gamma^{1,2}}{1 + \exp^{(0,5 \cdot g' - 1,33)}}\right) = 9,493355482^{0,2} \cdot \left(1 + \frac{0,024 \cdot 9,493355482^{1,2}}{1 + \exp^{(0,5 \cdot 1,715946844 - 1,33)}}\right) = 1,913707803;$$

3.4.4 Verificação quanto ao Colapso por Plastificação da Parede do Banzo (Modo A)

3.4.4.1 Montante comprimido:

$$N_{1}^{\star} = \frac{f_{y_{0}} \cdot t_{0}^{2}}{sen\theta_{1}} \left(1,8 + 10,2 \cdot \frac{d_{1}}{d_{0}} \right) \cdot f(\gamma,g') \cdot f(n') = \frac{0,25 \cdot 6,02^{2}}{sen90} \left(1,8 + 10,2 \cdot \frac{73,0}{114,3} \right) \cdot 1,913707803 \cdot 0,843686386 = 121,6248839 \text{ kN};$$

3.4.4.2 Diagonal tracionada:

$$N_{2}^{*} = N_{1}^{*} \cdot \left(\frac{\text{sen}\theta_{1}}{\text{sen}\theta_{2}}\right) = 121,6248839 \cdot \left(\frac{\text{sen}90}{\text{sen}39,4090}\right) = 191,5799363 \text{ kN};$$

3.4.5 Verificação quanto ao Colapso por Corte por Puncionamento da Parede do Banzo (Modo B)

$$\mathsf{N}_{\mathsf{i}}^{*} = \frac{\mathsf{f}_{\mathsf{y0}} \cdot \mathsf{t}_{\mathsf{0}} \cdot \pi \cdot \mathsf{d}_{\mathsf{i}}}{\sqrt{3}} \cdot \left(\frac{1 + \mathsf{sen}\theta_{\mathsf{i}}}{2 \cdot \mathsf{sen}^{2}\theta_{\mathsf{i}}}\right) \mathsf{f}_{\mathsf{i}}$$

3.4.5.1 Montante comprimido:

$$N_{1}^{\star} = \frac{0,25 \cdot 6,02 \cdot \pi \cdot 73,0}{\sqrt{3}} \cdot \left(\frac{1 + \text{sen90}}{2 \cdot \text{sen}^{2}90}\right) = 199,2730672 \text{ kN};$$

3.4.5.2 Diagonal tracionada:

$$N_{2}^{*} = \frac{0,25 \cdot 6,02 \cdot \pi \cdot 73,0}{\sqrt{3}} \cdot \left(\frac{1 + \text{sen39,4090}}{2 \cdot \text{sen}^{2} 39,4090}\right) = 404,1589439 \text{ kN};$$

3.4.6 Resistência da Ligação YT

A resistência da ligação é o menor dos valores de 3.3.4 e 3.3.5.

3.4.6.1 Montante comprimido:

 $N_1^* = 137,3951221 \, kN$;

 $N_1^* = 137,3951221 \text{ kN} > N_1 = 137 \text{ kN}$ OK!

Aproveitamento:

$$\frac{N_1}{N_1^*} = \frac{137}{137,3951221} = 0,9971241912 < 1 \qquad \text{OK!}$$

3.4.6.2 Diagonal tracionada:

 $N_2^* = 216,4207512 \text{ kN};$

 $N_{2}^{*} = 216,4207512 \text{ kN} > N_{2} = 176,67 \text{ kN};$

Aproveitamento:

$$\frac{N_2}{N_2^*} = \frac{176,67}{216,4207512} = 0,8163265261 < 1 \qquad OK!$$

Portanto a ligação é satisfatória!

3.4.7 Comparação dos Resultados da Ligação Tubular Circular do Tipo YT com o Programa do PACKER - HSS – Connex

A Tabela 3.3 mostra a comparação ente os resultados do cálculo manual e do programa HSS – connex e a correlação entre as nomenclaturas utilizadas.

A Figura 3.13 mostra os dados de entrada da ligação YT. A Figura 3.14 a Figura 3.16 mostram os resultados do dimensionamento pelo HSS – connex.

Computed result				×		
K-connection results				_		
Input data :						
Chord dimensions :						
Shape type : ASTM Circular HSS						
External diameter of chord	d Ø	=	114.30	MM		
Thickness of chord member	tØ	=	6.02	mm		
Steel characteristics :						
Yield strength of chord member	fy.0	=	250.00	Mpa		
Noding eccentricity for connection	e	=	28.57	mm		
Gap between the bracing members	Gap	=	10.33	mm		
Chord loading :						
Axial force in chord member	No	=	-62.17	kN		
Axial force in chord member	Nop	=	58.08	kN		
In-plane moment in chord	Mip.o	=	3.40	kNm		
In-plane moment in chord	Mip.op	=	7.30	kNm		
Brace 1 dimensions :						
Shape type : ASTM Circular HSS						
External diameter of brace 1	d1	=	73.00	mm		
				-		

Figura 3.13 – Entrada de dados no HSS - connex da ligação YT.

📰 Computed result					×
22H refure • ATTA fircular HSS					
External diameter of brace 1	d1	=	73.00	mm	
Thickness of brace 1	t1	=	5.16	mm	
Angle between brace 1 and chord	Theta.1	=	90.00	Dea	
Steel characteristics :					
Yield strength	fu	=	250.00	Мра	
Brace 1 loading :	.,				
Axial force in brace member 1	N1	=	-121.00	kN	
Out-of-plane moment in brace 1	Mop.1	=	0.00	kNm	
Brace 2 dimensions :					
Shape type : ASTM Circular HSS					
External diameter of brace 2	d2	=	73.00	MM	
Thickness of brace 2	t2	=	5.16	MM	
Angle between brace 2 and chord	Theta.2	=	39.41	Deg	
Steel characteristics :				2	
Yield strength of brace 2	fy.2	=	250.00	Мра	
Brace 2 loading :	-				
Axial force in brace member 2	N2	=	156.04	kN	
Out-of-plane moment in brace 2	Mop.2	=	0.00	kNm	
					-
Car	ncel				

Figura 3.14 – Resultados no HSS - connex da ligação YT.

	Parâmetros da ligação	Siala	Cálculo	HSS -
	r arametros da ligação	Siyia	Manual	connex
	Diâmetro do banzo	d ₀	114,30 mm	114,30 mm
	Espessura do banzo	to	6,02 mm	6,02 mm
	Tensão de escoamento do banzo	f _y	250,00 MPa	250,00 MPa
O N	Excentricidade da ligação	е	28,57 mm	28,57 mm
Z	Medida do afastamento	gap	10,33 mm	10,33 mm
BA	Força axial no banzo	No	-62,17 kN	-62,17 kN
	Força axial no banzo	N _{op}	58,08 kN	58.08 kN
	Momento no banzo no plano da ligação	M _o =M _{ip.o}	3,38 kNm	3,4 kNm
	Momento no banzo no plano da ligação	M _{op} =M _{ip.op}	7,35 kNm	7,3 kNm
	Diâmetro do montante	d ₁	73,00 mm	73,00 mm
щ	Espessura do montante	t ₁	5,16 mm	5,16 mm
Z	Ângulo entre montante e o banzo	θ_1	90,00 graus	90,00 graus
TA	Tensão de escoamento do montante	f _v	250,00 MPa	250,00 MPa
NO	Força axial no montante	N ₁	-121,00 kN	-121,00 kN
M	Momento no montante fora do plano da	M _{op} .1	0,00 kNm	0,00 kNm
	Diâmetro da diagonal	da	73 00 mm	73 00 mm
	Espessura da diagonal	t ₂	5 16 mm	5 16 mm
A	Ângulo entre diagonal e o banzo	<u> </u>	39 409 graus	39 41 graus
ō	Tensão de escoamento da diagonal	<u> </u>	250.00 MPa	250.00 MPa
A D	Forca axial na diagonal	No	156 04 kN	156 04 kN
D	Momento na diagonal fora do plano da ligação	M _{op} .2	0,00 kNm	0,00 kNm
	Relação entre diâmetros	β	0.64	0.64
	Relação entre diâmetro e espessura	γ	9,49	9,49
	Área do banzo		2.047.83	2.047.83
		A	mm ²	mm ²
	Módulo resistente elástico do banzo	W ₀	52.667,5 mm ³	-
SC	n =tensão/f _v (compressão)	n	-0,38	-0,38
B	Função de pré-tensão no banzo	f(n)	0,84	0,84
ULTA	Resistência a plastificação do banzo (Modo A)	N1Rd(PI)=N ₁ *	121,63 kN	121,51 kN
RESI	Resistência a corte por puncionamento do banzo (Modo B)	$N1Rd(Pu)=N_1^*$	199,27 kN	199,27 kN
	Aproveitamento do montante	N_1/N_1^*	1,0	1,0
	Resistência a plastificação do banzo (Modo A)	N2Rd(PI)=N ₂ *	191,58 kN	191,39 kN
	Resistência a corte por puncionamento do banzo (Modo B)	N2Rd(Pu)=N ₂ *	404,16 kN	404,15 kN
	Aproveitamento da diagonal	N_2/N_2^*	0,82	0,82

Tabela 3.3 – Comparação entre resultados manuais e do HSS – connex.

Computed result					×	
Results report:					_	
Width or diameter ratio Beta	Beta	=	0.64			
Half width to thickness ratio	Gamma	=	9.49			
Area of chord member	A.0	=	2047.83	mm2		
Class of section	Class	=	1.00			
Plastic section modulus of chord	Wp1.0	=	70.65	cm3		
n`= Sigma.0.p/fy0 (for CHS chord)	n`	=	-0.38			
Function of chord prestress	f(n`)	=	0.84			
Gap divided by chord thickness	g`	=	1.72			
Function of Gamma and g`	f(Gamma,g`)	=	1.91			
For brace 1 :						
Axial force in brace member 1	N1	=	-121.00	kN		
Tension capacity of brace member 1	N1.t	=	274.93	kN		
Resistance in punching shear	N1Rd(Pu)	=	199.27	kN		
Resistance in chord plastification	N1Rd(P1)	=	121.51	kN		
Out-of-plane moment in brace 1	Mop.1	=	0.00	kNm		
Resistance in punching shear	Mop.1Rd(Pu)	=	4.63	kNm		
Resistance in chord plastification	Mop.1Rd(P1)	=	3.12	kNm		
					-	
Cancel						

Figura 3.15 – Resultados no HSS - connex da ligação YT.

🗮 Computed result	×					
Resistance in chord plastification Mop.1Rd(Pl) =3.12Moment capacity of brace member 1Mc.1=S.95Interaction check 11.00 < 1	kNm 🔺 KNm					
For brace 2 : Axial force in brace member 2 N2 = 156.04 Tension capacity of brace member 2 N2.t = 274.93 Resistance in punching shear N2Rd(Pu) = 404.15 Resistance in chord plastification N2Rd(Pl) = 191.39 Out-of-plane moment in brace 2 Mop.2 = 0.00 Resistance in punching shear Mop.2Rd(Pu) = 10.44 Resistance in chord plastification Mop.2Rd(Pl) = 4.91 Moment capacity of brace member 2 Mc.2 = 5.95	kN kN kN kN kNm kNm kNm kNm					
Interaction check 2 0.82 < 1 Connection sufficient						

Figura 3.16 – Resultados no HSS - connex da ligação YT.

CAPÍTULO IV

PROGRAMA EXPERIMENTAL

4.1 CONSIDERAÇÕES GERAIS

Com base nas ligações dimensionadas no capítulo III foi definida a ligação do tipo YT, de seções tubulares circulares, para ser testada em escala real no laboratório. Esta definição teve por motivação o fato de ser uma ligação comumente utilizada em treliças planas e seu esquema estrutural ser de fácil implementação em laboratório onde tem se o montante comprimido e a diagonal tracionda.

Foram fabricados quatro protótipos de ligação YT de mesmas dimensões, com perfis de padrão VMB250, definidos no capítulo III, com dimensões baseadas no pórtico de ensaio.

O primeiro ensaio, chamado de pré-ensaio, foi para avaliação das condições de segurança do pórtico e da metodologia de ensaio. Foi utilizada uma instrumentação visando averiguar se havia grandes deslocamentos no protótipo ou no pórtico. Este ensaio teve caráter exploratório para validação do procedimento experimental.

Para o ensaio do segundo, terceiro e quarto protótipo foi definida uma instrumentação visando obter deslocamentos e deformação no protótipo. Estes ensaios foram chamados de ENSAIO I, ENSAIO II e ENSAIO III.

Para o estudo desta ligação foi necessária a determinação das propriedades mecânicas do material utilizado nos protótipos. O diagrama tensão-deformação foi obtido através de ensaios de tração de corpos-de-prova retirados do mesmo lote de fabricação dos tubos que compõe os protótipos. O coeficiente de Poisson foi obtido do ensaio de compressão em tubos de seção circular curtos também do mesmo lote.

Esta fase do trabalho foi dividida em várias etapas. Na primeira etapa foram realizados os ensaios de tração no Laboratório de Propriedades Mecânicas, no Departamento de Engenharia de Materiais, na Faculdade de Engenharia Mecânica da Unicamp (FEM), estes ensaios resultaram nos diagramas de tensão-deformação. Na segunda etapa foram realizados os ensaios de compressão no Laboratório de Estruturas e Materias, na Faculdade de Engenharia Civil da Unicamp (FEC), em tubos de seção circular curtos, onde se obteve o coeficiente de Poisson. Os dados foram utilizados na análise numérica.

Na terceira etapa foram realizados os quatros ensaios dos protótipos YT, também realizados no Laboratório de Estruturas da FEC, começando com o pré-ensaio, em seguida os ENSAIO I, ENSAIO II e ENSAIO III.

4.2 ENSAIO DE TRAÇÃO

Para o ensaio de tração, foram confeccionados dois corpos-de-prova de cada um dos tubos utilizados na fabricação dos protótipos. Foram fabricados apenas dois corpos-de-prova por falta de material do mesmo lote. A Norma ASTM – "Standart test methods for tension testing of metallic materials" determina três corpos-de-prova. A máquina de ensaio é servo-hidráulica utilizada para ensaios mecânicos modelo 810

TestStar II, fabricante MTS (material testing system), capacidade 100kN. O clip-gage (extensômetro) utilizado foi do modelo 632.24C-50, fabricante MTS.

4.2.1 Corpos-de-prova para Ensaio de Tração

O corpo-de-prova seguindo as dimensões previstas pela ASTM é mostrado na Figura 4.1.

Figura 4.1 – Corpo-de-prova para ensaio de tração. (Dimensões em mm).

Os corpos-de-prova para os perfis de seção circular com diâmetro de 73mm são chamados de cp1a e cp1b, e para o diâmetro de 114,3 mm são chamados de cp2a e cp2b.

4.2.2 Ensaio de Tração

A Figura 4.2 mostra a máquina de ensaio de tração durante a realização do ensaio, bem como o clip gage que controla a deformação no corpo-de-prova.

Figura 4.2 – Máquina de ensaio para ensaio de tração e do clip gage utilizado nos ensaios.

4.2.3 Resultados do Ensaio de Tração

A Tabela 4.1 mostra a deformação específica limite de proporcionalidade " ϵ ", tensão limite de proporcionalidade " σ_{lp} ", tensão de escoamento " σ_e ", tensão limite de resistência " σ_r " e módulo de elasticidade longitudinal "E" para os corpos-de-prova ensaiados. A tensão limite de proporcionalidade " σ_{lp} " será admitida como aquela que corresponde a deformação de aproximadamente 0,0012. O ANEXO 6 mostra o diagrama tensão-deformação convencional e real para material dúctil.

Tabela 4.1 – Dados fornecidos através do diagrama tensão-deformação obtidos no ensaio de tração.

Corpos-de-Prova	3	σιρ	σ _e	σr	E
	×10 ⁻⁶	GPa	GPa	GPa	GPa
cp1a -	1199	0,2593	0,3145	0,4803	216,2228
cp1b -	1165	0,2203	0,3260	0,4869	189,1146
cp2a -	1062	0,3232	0,3322	0,4651	304,4615
cp2b -	1165	0,2649	0,3226	0,4736	227,3908

A Figura 4.3 apresenta os diagramas tensão-deformação para os corpos-deprova cp1a e cp1b e a Figura 4.4 para cp2a e cp2b. As tabelas com os dados experimentais para os quatros corpos-de-prova são apresentadas no ANEXO 1.

Figura 4.3 – Diagrama tensão-deformação cp1a e cp1b - ϕ 73mm (VMB250).

Na realidade os diagramas de tensão-deformação para o aço, que possui um comportamento bem definido, são muito semelhantes. A Figura 4.5 mostra os diagramas dos quatro corpos-de-prova num mesmo gráfico para comprovar esta semelhança, mesmo utilizando tubos de seções diferentes.

Figura 4.5 – Diagrama tensão-deformação cp1a, cp1b, cp2a e cp2b (VMB250).

4.3 ENSAIO DE COMPRESSÃO (POISSON)

Para o ensaio de compressão, foram cortados dois corpos-de-prova de cada um dos tubos utilizados na fabricação dos protótipos. A prensa utilizada para o ensaio de compressão axial, marca "Soiltest", tem capacidade de carga de 1200kN.

4.3.1 Corpos-de-prova para Ensaio de Compressão

Os corpos-de-prova têm comprimento de aproximadamente 200mm e são mostrado na Figura 4.6. Para medição das deformações lineares longitudinais e transversais foram colados extensômetros nestas direções, na metade do comprimento do tubo.

Figura 4.6 – Corpos-de-prova para ensaio de compressão.

4.3.2 Ensaio de Compressão

A Figura 4.7 mostra a montagem do ensaio para o corpo-de-prova CP1 de seção tubular de ϕ 73mm. A mesma montagem foi utilizada para todos os corpos-de-prova. A Figura 4.8 mostra os quatro corpos-de-prova após o ensaio de compressão. As tabelas com os dados experimentais para os quatros corpos-de-prova são apresentadas no ANEXO 2.

Figura 4.7 – Montagem do ensaio de compressão para o corpo-de-prova CP1.

Figura 4.8 – Corpos-de-prova deformados após ensaio de compressão.

4.3.3 Resultados do Ensaio de Compressão

A Tabela 4.2 mostra o comprimento, "L", a espessura, "t", solicitação última e o coeficiente de Poisson para os corpos-de-prova ensaiados.

Tabela 4.2 – Comprimento, espessura, solicitação última e o coeficiente de Poisson obtidos no ensaio de compressão.

Corpos-de-prova	L	t	Solicitação última	Coeficiente de Poisson	
	mm	mm	kN	(adimensional)	
CP1 -	201,0	5,6	600	0,300	
CP2 -	200,8	5,5	599	0,307678	
CP3 -	200,3	6,6	1006	0,342412	
CP4 -	200,5	6,2	1014	0,29962	

Para a determinação do coeficiente de Poisson, desprezou-se o valor de 0,342412 do corpo-de-prova CP3. Fez-se a média dos três valores restantes que resulta no valor de 0,30, que é o valor convencional para o aço.

4.4 PROTÓTIPOS DE LIGAÇÃO YT

Ficou definida a ligação YT, como objeto de estudo, pela facilidade de representá-la em laboratório. Suas dimensões foram definidas pelo tamanho do pórtico de ensaio. Os perfis tubulares foram escolhidos respeitando as recomendações e limites de validades do CIDECT. Foram fabricados quatro protótipos com tubos laminados sem costura cedidos pela V&M do Brasil.

O primeiro ensaio realizado, chamado de pré-ensaio, teve caráter investigativo para avaliar a segurança do pórtico de ensaio. Sua instrumentação foi apenas com transdutores de deslocamento colocados em alguns pontos da ligação YT e no pórtico de ensaio.

O segundo e terceiro ensaios realizados, chamados de ENSAIO I e ENSAIO II, teve o mesmo tipo de instrumentação, ver Figura 4.20, mas no ENSAIO II foram realizados ciclos de carregamento e descarregamento e foram utilizadas vigas de contenção lateral para o topo do montante.

O quarto ensaio realizado, chamado de ENSAIO III, além da instrumentação inicial proposta para o ENSAIO I e ENSAIO II foram acrescentadas duas rosetas de deformação e mais dois extensômetros.

4.4.1 Protótipos

As dimensões nominais dos protótipos ensaiados da ligação YT são mostradas nas Figuras 4.9a, 4.9b e 4.9c.

Figura 4.9a – Protótipo da ligação YT (unidade mm).

Figura 4.9b – Corte A-A do protótipo da ligação YT (unidade mm).

Figura 4.9c – Corte B-B do protótipo da ligação YT (unidade mm).

A Figura 4.10 mostra os protótipos da ligação YT estocados antes dos ensaios.

Figura 4.10 – Protótipos da ligação YT estocados no pátio da V&M do Brasil.

4.4.2 Montagem dos Ensaios

A Figura 4.11 mostra um esquema estrutural na forma de diagrama de linha do protótipo da ligação YT, onde um atuador hidráulico aplica uma força de compressão no montante.

Figura 4.11 - Diagrama de linha da ligação YT.

A Figura 4.12 mostra uma vista frontal da montagem dos ensaios com o pórtico de ensaio tridimensional onde foram realizados os ensaios dos protótipos da ligação YT. O pórtico tem aproximadamente cinco metros de altura por aproximadamente três metros de largura. Para a aplicação da força de compressão no montante da ligação YT foi desenvolvido um sistema de apoio para o atuador hidráulico, fixado na viga superior do pórtico de ensaio.

Figura 4.12 – Vista geral do protótipo da ligação YT posicionado no pórtico de ensaio (unidade mm).

Através do montante é aplicada uma força axial de compressão nos protótipos que é transmitido através de uma rótula côncava posicionada em sua extremidade, ver Figuras 4.13 e 4.14. Essa rótula de forma côncava permite que a força seja aplicada verticalmente e centrada.

Figura 4.13 – Detalhe rótula côncava.

Figura 4.14 – Rótula côncava colocada no topo do montante.

4.5 PRÉ-ENSAIO

Para avaliação das condições de segurança do pórtico de ensaio e planejamento da metodologia de ensaio para o protótipo da ligação YT foi realizado um pré-ensaio. No pré-ensaio foram utilizados cinco transdutores de deslocamento, aqui chamados de TDs, e não foram utilizados extensômetros. O primeiro TD foi posicionado na face inferior, na metade do banzo, para medir o deslocamento vertical da ligação. O segundo foi posicionado na face superior do montante para medir o deslocamento fora do plano da ligação, como mostra a Figura 4.15.

Figura 4.15 – Posicionamento dos TDs no protótipo de ligação YT no pré-ensaio.

Os outros três TDs foram posicionados no pórtico de ensaio para avaliar a sua deslocabilidade, sendo posicionados nas regiões de apoios do protótipo com o pórtico de ensaio, conforme mostra a Figura 4.16.

Figura 4.16 – Posicionamento dos TDs no pórtico de ensaio no pré-ensaio.

4.5.1 Resultados e Conclusões do Pré-ensaio

O deslocamento registrado fora do plano da ligação, no topo do montante, foi de 0,8 mm e o deslocamento vertical do banzo foi de 10,2 mm. Verificou-se que os TDs posicionados no pórtico de ensaio apresentaram deslocamentos desprezíveis, caracterizando a eficiência do mesmo para os próximos ensaios.

A solicitação última suportada pelo protótipo foi de 270kN.

Para ligações YT com seções tubulares circulares, o modo de colapso predominante deve ser semelhante ao Modo A (ver Figura 1.3 no capítulo I), plastificação da parede do banzo, com formação do "S".

As Figuras 4.17 e 4.18 mostram os mecanismos de colapso ocorridos no préensaio do protótipo da ligação YT. A Figura 4.17 mostra o modo de colapso, Modo A, com nítida formação do "S", e destacado em linha preta, sendo também observado o abaulamento do banzo, Modo F (ver Figura 1.3 no capítulo I), mostrado pela Figura 4.18.

Figura 4.17 – Modo de colapso por plastificação da parede do banzo no pré-ensaio – Modo A.

Figura 4.18 – Abaulamento do banzo no nó da ligação YT no pré-ensaio – Modo F.

No pré-ensaio a chapa de extremidade da diagonal, tracionada, apresentou visível curvatura, por isso foram projetadas nervuras, mostrada na Figura 4.19, para serem soldadas nos protótipos para os ENSAIO I, ENSAIO II e ENSAIO III.

Figura 4.19 – Nervuras soldadas na chapa de extremidade da diagonal para o ENSAIO I, II e III.

4.6 INSTRUMENTAÇÃO PARA OS ENSAIO I, II E III

Para o ENSAIO I e II foram utilizados 16 extensômetros elétricos de resistência (EER1 ao EER16) do tipo KFG-5-120-C1-11, para aço, de 5mm de comprimento. Estes EERs foram colados no protótipo em lugares pré-definidos para medir a deformação longitudinal, com base no trabalho de FUNG et al (2001). Para o ENSAIO III, além dos 16 extensômetros, foram acrescentadas duas rosetas e mais dois extensômetros. A roseta 2 composta pelos extensômetros EER17, EER18 e EER19 e a roseta 1 composta pelos extensômetros EER20, EER21 e EER22. Os dois extensômetros chamados de EER23 e EER24 foram colocados na base do montante e na base da diagonal, respectivamente.

Para os ENSAIOS I, II e III foram posicionados no protótipo da ligação YT 19 transdutores de deslocamento (TD1 ao TD19) de leituras manuais e dois de leituras digitais (TD20 e TD21) para medir os deslocamentos durante a realização do ensaio.

4.6.1 Extensômetros (EERs)

Os extensômetros foram colados em intervalos de 90° no meio de cada barra, conforme mostra a Figura 4.20. As leituras foram gravadas em intervalos regulares pelo sistema de aquisição de dados. Para facilitar a análise dos dados a Tabela 4.3 indica os extensômetros e suas posições em relação a barra do protótipo onde estão localizados, bem como em quais ensaios foram utilizados.

Localização	Extensômetro	Ensaio
Banzo – Lado esquerdo	EER1, EER2, EER3 e EER4	I, II e III
Banzo – Lado direito	EER5, EER6, EER7 e EER8	I, II e III
Montante	EER9, EER10, EER11 e	I, II e III
	EER12	
Diagonal	EER13, EER14, EER15 e	I, II e III
	EER16	
Banzo – Centro inferior	EER17, EER18 e EER19	
Banzo – Centro eixo do montante com banzo	EER20, EER21 e EER22	
Base do montante	EER23	
Base da diagonal	EER24	

Tabela 4.3 – Posicionamentos dos extensômetros nas barras do protótipo.

Figura 4.20 – Localização dos extensômetros no protótipo da ligação YT.

4.6.2 Transdutores de Deslocamentos (TDs)

A Figura 4.21 mostra o posicionamento dos TDs no protótipo de ligação YT.

Figura 4.21 – Localização dos TDs no protótipo da ligação YT.

Do TD1 ao TD6 são usados para determinar os deslocamentos nas chapas de extremidades das barras para avaliar a real condição de apoio das chapas. Os TD7 e TD8 são posicionados para determinar o deslocamento do montante, bem como a rotação da ligação. Os TD9 ao TD13 são colocados para determinar o deslocamento vertical do banzo. Os TD14 e DT15 são usados para avaliar o deslocamento da diagonal. TD16 e TD17 são posicionados para medir o deslocamento fora do plano da

ligação. O TD18 e TD19 posicionados inclinados a 45°, no banzo e na diagonal, respectivamente, são posicionados para capturar o comportamento local do nó da ligação YT. Os TD20 e TD21 digitais são usados para medir o deslocamento vertical do topo do montante. As leituras dos TDs manuais foram realizadas pelos técnicos do laboratório em intervalos regulares.

As Figuras 4.22 e 4.23 mostram a instrumentação com as barras de sustentação dos transdutores de deslocamento, as fiações dos extensômetros, a célula de carga no protótipo da ligação YT posicionada no pórtico de ensaio.

Figura 4.22 – Vista geral da instrumentação do protótipo da ligação YT.

Figura 4.23 – Detalhe da instrumentação do protótipo da ligação YT.

4.7 METODOLOGIA PARA OS ENSAIO I, II E III

A metodologia de ensaio aplicada no ENSAIO I e III foi definido em três estágios, como mostrado a seguir:

Estágio I - Antes de começar a realização do ensaio, o protótipo foi submetido a um ciclo de 10 carregamentos, de aproximadamente 20% da solicitação de colapso estimada para a ligação, para minimizar o atrito e verificar o torque dos parafusos. Com base no pré-ensaio essa solicitação foi estimada em 50kN. Este nível de solicitação esta dentro do limite elástico do material. A força foi aplicada em pequenos incrementos e depois foi feito o descarregamento.

Estágio II - Durante o ensaio a velocidade do atuador de carga foi mantida a mais lenta e constante possível tanto para o caso de carregamento quanto para o

descarregamento. O passo de carga foi previamente definido dependendo da fase suposta para cada carregamento. A cada passo de carga, ao atingir a solicitação prédefinida, esperavam-se estabilizar os ponteiros dos dezenove transdutores e em seguida era realizada a leitura dos mesmos.

Estágio III – Carregava-se até ser atingido o estado último, onde o protótipo não oferecia mais resistência, depois até que ele chegasse a ruptura. Então o protótipo era descarregado.

Para o ENSAIO II, no **Estágio II**, inicialmente foram realizados ciclos de carregamento e descarregamento procurando observar o início de escoamento do protótipo. Ao perceber que houve escoamento o protótipo foi carregado até a ruptura.

Para o ENSAIO I e II através de um paquímetro foi realizada a leitura do deslocamento lateral do banzo, abaulamento, no nó da ligação.

4.8 ENSAIO I

No ENSAIO I, atingido o **Estágio III**, após a solicitação atingir 240kN ouviu-se um estalo da ruptura da solda. Em seguida mais força foi aplicada levando a abertura cada vez maior da solda. Nesta fase não foram realizadas mais leituras. O protótipo foi descarregado. A ruptura da solda não estava prevista e ocorreu após um extensômetro já ter acusado escoamento do material, portanto o protótipo já estava na fase plástica. A Figura 4.24 mostra o início da fissuração da solda.

Figura 4.24 – Início da fissuração da solda.

A Figura 4.25 mostra as deformações ocorridas ao final do ensaio onde a solda da diagonal aparece rompida. Deve-se ressaltar que a ruptura da solda se deu depois da formação do mecanismo de colapso "S", o qual caracteriza colapso por plastificação da parede do banzo - Modo A, e também ocorreu o abaulamento do banzo, Modo F.

Figura 4.25 – Modo de colapso por plastificação da parede do banzo no ENSAIO I -Modo A.

Foi observado que o TD16, que controlava o deslocamento fora do plano da ligação, apresentou um deslocamento de 12,12 mm. Por esse motivo para o ENSAIO II foram projetadas vigas de contenção lateral para o topo do montante.

Devido a ruptura precoce da solda para o ENSAIO II e III foi realizado o reforço da solda.

No ENSAIO I foi realizada a leitura do abaulamento do banzo no nó da ligação.

A observação do ensaio como um todo pode ser avaliado como representativo do comportamento de uma ligação de treliça, onde o montante comprimido provoca tração visível na diagonal. Os resultados dos extensômetros para o ENSAIO I são apresentados na Tabela A3.1 e os resultados dos TDs na Tabela A3.2, do ANEXO 3.

Os resultados dos transdutores 20 e 21 de leituras digitais são apresentados na Tabela A3.3, do ANEXO 3.

4.9 ENSAIO II

No ENSAIO II a solda no nó da ligação YT foi reforçada para que ela não sofresse ruptura, como ocorreu no ENSAIO I, ver Figura 4.26.

Figura 4.26 – Reforço da solda.

Na tentativa de conter o deslocamento fora do plano da estrutura, apresentado no ENSAIO I, foram posicionadas vigas de contenção lateral na altura do topo do montante, ver Figura 4.27. Neste ensaio o protótipo foi carregado e descarregado várias vezes na tentativa de observar o início da fase plástica.

Figura 4.27 – Vigas de contenção lateral.

A Figura 4.28 mostra as deformações ocorridas no final do ENSAIO II. Neste ensaio também foi realizada a leitura do abaulamento do banzo no nó da ligação, mostrado na Figura 4.29, Modo F de colapso.

Figura 4.28 – Deformação global do protótipo da ligação YT.

Figura 4.29 – Abaulamento do banzo.

Neste ENSAIO II, a formação do mecanismo de colapso "S" foi também bastante evidente, caracterizando o modo de colapso Modo A, mostrado na Figura 4.30. A solda apresentou uma leve fissura ao final do ensaio, ver Figura 4.31.

Figura 4.30 – Modo de colapso por plastificação da parede do banzo no ENSAIO II -Modo A.

Figura 4.31 – Início da fissuração da solda.

A solicitação última para este ensaio foi de 358,6 kN. Neste passo de carga começou abrir uma pequena fissura na região da solda, então foi feito o descarregamento do protótipo.

Os resultados dos extensômetros para o ENSAIO II são apresentados na Tabela A4.1 e os resultados dos TDs na Tabela A4.2, do ANEXO 4.

Os resultados dos transdutores 20 e 21 de leituras digitais são apresentados na Tabela A4.3, do ANEXO 4.

4.10 ENSAIO III

Neste ENSAIO III a solda no nó da ligação YT também foi reforçada para que ela não sofresse ruptura. Para o ENSAIO III foram acrescentados duas rosetas e os extensômetros EER23 e EER24, para avaliar a deformação no nó do protótipo da ligação YT. Não foram utilizadas as vigas de contenção lateral, pelo mau funcionamento no ensaio anterior, nem realizado ciclos de carregamento e descarregamento.

As Figuras 4.32 e 4.33 mostram as deformações ocorridas, formação do mecanismo de colapso "S", caracterizando colapso Modo A, e uma vista global da deformação ocorrida no protótipo.

Neste ensaio o abaulamento do banzo no nó é mostrado na Figura 4.34, colapso Modo F, mas não foram realizadas as leituras deste abaulamento.

Figura 4.32 – Modo de colapso por plastificação da parede do banzo no ENSAIO III -Modo A.

Figura 4.33 – Deformação global do protótipo.

Figura 4.34 – Abaulamento do banzo.

A solicitação última para o ENSAIO III foi de 316,4 kN. Atingida a solicitação última continuou-se com aplicação da força provocando a abertura da solda, como mostra a Figura 4.35.

Figura 4.35 – Fissuração da solda ao final do ensaio.

Os resultados dos extensômetros para o ENSAIO III são apresentados na Tabela A5.1 e os resultados dos TDs na Tabela A5.2, do ANEXO 5.

Os resultados dos transdutores 20 e 21 de leituras digitais são apresentados na Tabela A5.3, do ANEXO 5.

4.11 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS DOS ENSAIOS I, II E III

Os resultados dos ensaios, tanto para os extensômetros quanto para os transdutores de deslocamentos foram analisados por região.

Para o ENSAIO II, os ciclos de carregamento e descarregamento apresentaram pequenas deformações iniciais em cada ciclo. Este fato pode ser mostrado através, por exemplo, do extensômetro EER1 na Figura 4.36, que mostra suas deformações. Por isso, para o ENSAIO II, foram apresentados apenas os resultados para o último ciclo. Como foram apresentados apenas o último ciclo, as leituras inicias para o ENSAIO II apresentaram nos gráficos deformações iniciais não nulas.

4.11.1 Análise das Deformações nos EERs nos Ensaios I, II e III

A célula de carga aplica uma força de compressão no montante que provoca tensões normais no próprio montante e na diagonal. No montante a tensão é de compressão e na diagonal a tensão é de tração. Para o banzo a tensão é linearmente distribuída na parede, gerando além da força normal, a flexão. A flexão traciona o banzo nas fibras inferiores e comprime as fibras superiores, conforme mostra a Figura 4.37. Estes comportamentos são também mostrados pelas deformações obtidas nos extensômetros.

Figura 4.37 – Análise das tensões no protótipo da ligação YT.

Os extensômetros EER9, EER10, EER11 e EER12, localizados no montante, apresentaram tensões de compressão semelhantes, caracterizando compressão

uniforme na fase inicial do carregamento. As Figuras 4.38, 4.39 e 4.40 mostram graficamente as deformações obtidas para estes extensômetros nos ENSAIO I, ENSAIO II e ENSAIO III, respectivamente.

Figura 4.38 – Deformações para EER9, EER10, EER11 e EER12 no ENSAIO I.

Figura 4.39 – Deformações para EER9, EER10, EER11 e EER12 no ENSAIO II.

Figura 4.40 – Deformações para EER9, EER10, EER11 e EER12 no ENSAIO III.

O extensômetro EER12, nos três ensaios, mostra a rotação da ligação na formação do "S". Este fato foi mostrado pela mudança de comportamento no EER12 passando de comprimido a tracionado, a menos do ENSAIO I que continuou comprimido.

Os extensômetros EER13, EER14, EER15 e EER16, da diagonal, apresentaram tensões de tração semelhantes, caracterizando tração uniforme na fase inicial do carregamento. As Figuras 4.41, 4.42 e 4.43 mostram graficamente as deformações obtidas para estes extensômetros nos ENSAIO I, ENSAIO II e ENSAIO III, respectivamente.

Figura 4.41 – Deformações para EER13, EER14, EER15 e EER16 no ENSAIO I.

Figura 4.42 - Deformações para EER13, EER14, EER15 e EER16 no ENSAIO II.

Figura 4.43 - Deformações para EER13, EER14, EER15 e EER16 no ENSAIO III.

No banzo primeiramente analisar-se-à as deformações nos extensômetros EER1, EER2, EER3 e EER4. Os extensômetros EER1 e EER3 apresentam comportamento semelhantes por serem diametralmente opostos e posicionados na região limite de inflexão. A Figura 4.44 mostra as deformações obtidas por estes extensômetros nos ENSAIO I, ENSAIO II e ENSAIO III.

Figura 4.44– Deformações para EER1 e EER3 nos ENSAIO I, II e III.

Para o extensômetro EER 2, que foi posicionado nas fibras superiores do banzo, ocorre tração linearmente e compressão pelo efeito de flexão, enquanto para o extensômetro EER4, posicionado nas fibras inferiores, sofrem tração linear mais a tração do efeito de flexão. A Figura 4.45 mostra que o extensômetro EER2 apresenta deformações de compressão, mostrando que o efeito da flexão de compressão foi dominante, enquanto para o extensômetro EER4 mostra a somatória dos efeitos de

tração. Portanto, em módulo EER4 apresenta quase o dobro da deformação apresentado pelo EER2.

Figura 4.45 – Deformações para EER2 e EER4 nos ENSAIO I, II e III.

Os extensômetros EER5 e EER7 do banzo apresentaram comportamento semelhantes por serem diametralmente opostos e posicionados na região limite de inflexão. A Figura 4.46 mostra as deformações obtidas por estes extensômetros nos ENSAIO I, II e III.

Por volta de 250 kN há uma inversão no sentido das deformações devido a formação do mecanismo em "S".

Figura 4.46 – Deformações para EER5 e EER7 nos ENSAIO I, II e III.

Para o extensômetro EER 6, que foi posicionado nas fibras superiores do banzo, ocorre compressão linearmente mais compressão pelo efeito de flexão, enquanto para o extensômetro EER8, posicionado nas fibras inferiores, sofrem compressão linear e tração do efeito de flexão. A Figura 4.47 mostra que o extensômetro EER6 apresenta a somatória dos efeitos de compressão linear e de flexão, enquanto para o extensômetro EER8 tem-se que um efeito quase anula o outro, mas predomina o efeito da compressão linear.

Figura 4.47 – Deformações para EER6 e EER8 nos ENSAIO I, II e III.

Para os extensômetros EER23 do montante comprimido e EER24 da diagonal tracionada, os resultados são mostrados pela Figura 4.48.

Figura 4.48 – Deformações para EER23 e EER24 no ENSAIO III.

As deformações das rosetas 1 e roseta 2 são mostradas pela Figura 4.49 e Figura 4.50.

Figura 4.49 – Deformações para roseta 1 no ENSAIO III.

Figura 4.50 – Deformações para roseta 2 no ENSAIO III.

A roseta 1 apresentou todos os extensômetro tracionados. Esta região onde esta posicionada a roseta 1 apresentou as maiores concentrações de tensões. As deformações, na roseta 2, para o extensômetro EER 18 a 45⁰ são nulas, quando isto ocorre quer dizer que não há deformação por cisalhamento, portanto o estado de deformação pode ser representado pelas deformações principais. As análises de tensões nas rosetas serão apresentadas no capítulo V.

4.11.2 Análise dos Deslocamentos nos TDs nos Ensaios I, II e III

A posição dos transdutores de deslocamentos, TDs, é mostrada na Figura 4.51. O sentido das setas mostram a direção dos deslocamentos dos TDs.

Figura 4.51 - Posicionamento e sentido dos deslocamentos dos TDs nos ENSAIO I, II e

III.

A Figura 4.52 mostra as leituras para os TD1 e TD2 para chapa de extremidade do banzo nos ENSAIO I, II e III.

Figura 4.52 – Deslocamentos para os TD1 e TD2 nos ENSAIO I, II e III.

A Figura 4.53 mostra as leituras para os TD3 e TD4 para chapa de extremidade do banzo nos ENSAIO I, II e III.

Figura 4.53 – Deslocamentos para os TD3 e TD4 nos ENSAIO I, II e III.

A Figura 4.54 mostra as leituras para os TD5 e TD6 para chapa de extremidade da diagonal nos ENSAIO I, II e III. O TD6 deslocou mais que o TD5, pois esta posicionado na parte superior da chapa de extremidade.

Figura 4.54 – Deslocamentos para os TD5 e TD6 nos ENSAIO I, II e III.

Do TD1 ao TD6, posicionados nas chapas de extremidade do protótipo, os deslocamentos não chegam a 0,8 mm, portanto não há deslocamento considerável.

A Figura 4.55 mostra os deslocamentos de TD7 e TD8 no montante da ligação, os deslocamentos não atingem 0,6 mm, portanto também não há deslocamento considerável.

Figura 4.55 – Deslocamentos para os TD7 e TD8 nos ENSAIO I, II e III.

A Figura 4.56 e Figura 4.57 mostram o movimento descendente do banzo dado pelos TD9, TD13, TD10, TD11 e TD12. Para os TD9 e TD13 os deslocamentos não atingem 6 mm. Para os TD10, TD11 e TD12 os deslocamentos são muito semelhantes nos três ensaios e chegam a atingir 11 mm.

Figura 4.56 – Deslocamentos para os TD9 e TD13 nos ENSAIO I, II e III.

Figura 4.57 – Deslocamentos para os TD10, TD11 e TD12 nos ENSAIO I, II e III.

A Figura 4.58 mostra o deslocamento descendente da diagonal dado pelos TD14 e TD15. O TD14 desloca bem mais que o TD15 em função da sua proximidade do nó acompanhando a rotação da ligação.

Figura 4.58 – Deslocamentos para os TD14 e TD15 nos ENSAIO I, II e III.

Os TD16 e TD17, mostrados na Figura 4.59, mostra o deslocamento fora do plano da ligação. Devido ao TD16, no ENSAIO I, apresentar um deslocamento de 12,12 mm fora do plano da ligação foram projetadas vigas de contenção lateral para o topo do montante para serem utilizadas no ENSAIO II. No ENSAIO II e ENSAIO III o deslocamento para o TD16 não chegou a 0,5 mm. Por isso, o TD16 no ENSAIO I teve suas leituras desprezadas, visto que ele deslocou-se do ponto que foi posicionado.

Figura 4.59 – Deslocamentos para os TD16 e TD17 nos ENSAIO I, II e III.

Os TD18 e TD19 inclinados colocados no banzo e na diagonal, respectivamente, são mostrados pela Figura 4.60. Seus deslocamentos não atingiram 10 mm.

Figura 4.60 – Deslocamentos para os TD18 e TD19 nos ENSAIO I, II e III.

Os TD20 e TD21, digitais, nos três ensaios mostram deslocamento descendente semelhantes do montante, como mostra a Figura 4.61.

Figura 4.61 – Deslocamentos para os TD20 e TD21 nos ENSAIO I, II e III.

A Figura 4.62 mostra as medições realizadas por paquímetro e que caracterizam o abaulamento do banzo medido no ENSAIO I e ENSAIO II. As leituras foram realizadas com paquímetro no meio dos transdutores na região do nó da ligação. Devido a dificuldade das leituras seus valores não apresentaram uma boa continuidade.

Figura 4.62 – Abaulamento do banzo medido nos ENSAIO I e II.

4.12 DEFORMAÇÕES PLÁSTICAS NOS EXTENSÔMETROS PARA OS ENSAIOS I, II E III

A deformação correspondente a tensão de escoamento, σ_e , chamada aqui de deformação de escoamento, $\epsilon_{e,}$ pode ser prevista através da Tabela 4.4, fornecida através do diagrama tensão-deformação obtida no ensaio de tração.

	σ_{e}	ε _e	ε _e	ε _e	
Corpo-de-prova	GPa	Adimonsional	Microstrain $(x10^{-6})$	Microstrain(x10 ⁻⁶)	
		Adimensional		média	
cp1a - ϕ 73mm	0,3145	0,001561	1561	1777	
cp1b -	0,3260	0,001992	1992		
Cp2a -	0,3322	0,001544	1544	1647	
Cp2a -	0,3226	0,001751	1751		

Tabela 4.4 – Deformação correspondente a tensão de escoamento.

Assim, quando a deformação em um extensômetro atingir a deformação de escoamento, ε_{e} este extensômetro passará a apresentar deformações plásticas.

Então, quando a deformação nos extensômetros do banzo atingir o valor de 1647(microstrain) e no montante e diagonal o valor de 1777(microstrain) eles passarão a apresentar deformações plásticas.

No ENSAIO I, como houve ruptura da solda e, portanto, as leituras das deformações nos extensômetros foram suspensas, apenas o extensômetro EER13 da diagonal tinha apresentado deformações plásticas.

No ENSAIO II os extensômetros EER13, EER14, EER15 e EER16 da diagonal e EER9, EER10, EER11 e EER12 do montante apresentaram deformações plásticas.

No ENSAIO III os extensômetros EER13, EER14, EER15, EER16 e EER24 da diagonal e EER9, EER10, EER11 e EER23 do montante apresentaram deformações plásticas. Para roseta 1 todos os extensômetros EER20, EER21 e EER22 apresentaram deformações plásticas. Na roseta 2 apenas o extensômetros EER19 apresentou deformações plásticas.

4.13 CONCLUSÕES DOS ENSAIOS I, II E III

Os resultados apresentados pelos extensômetros em cada um dos ENSAIOS I, II e III são semelhantes, são representativos do estado de tensão esperado para cada região e, portanto mostram que os ensaios foram equivalentes.

Os resultados da solicitação última para cada um dos ensaios são mostrados na Tabela 4.5.

Ensaios	Solicitação Última (kN)
ENSAIO I	240,0
ENSAIO II	358,6
ENSAIO III	316,4

Tabela 4.5 – Solicitação última nos ENSAIOS I, II e III.

Vale observar que os ciclos de carregamento e descarregamento realizados no ensaio II não atingiram deformações plásticas consideráveis, portanto eles não alteraram os resultados para o ENSAIO II, ver Figura 4.36.

As deformações plásticas ocorreram principalmente na diagonal e na região do nó da ligação onde estava posicionada a roseta 1.

Os modos de colapso observado foram colapso por plastificação da parede do banzo, Modo A, e abaulamento do banzo, Modo F.

Resumindo, o comportamento destes três ensaios tem-se que o ENSAIO I teve por solicitação última o valor de 240kN, mas lembrando que houve ruptura da solda que interrompeu o ensaio, o ENSAIO II teve por solicitação última o valor de 358,6kN, mas lembrando que a existência de uma viga de contenção lateral, pode ter gerado um aumento de resistência da ligação e por fim o ENSAIO III que teve por solicitação última o valor de 316,4 kN, sem que fosse detectado algum tipo de falha na solda ou ganho de resistência.

CAPÍTULO V

MODELAGEM NUMÉRICA

5.1 CONSIDERAÇÕES GERAIS

Para a modelagem numérica foi utilizado o software ANSYS 9.0. Segundo LEE (1999), Dexter em sua tese de doutorado sobre "Efeitos da sobreposição no comportamento e resistência de ligações de seções tubulares circulares de aço" realizou uma avaliação sobre os softwares PATRAN, FEMGEN e ANSYS. Concluiu-se que, dos três, o ANSYS era relativamente o mais flexível e fácil de usar, enquanto que o PATRAN e FEMGEN envolveram alguns procedimentos aparentemente excessivos e complexos. Embora o PATRAN oferecesse mais flexibilidade na opção de malha, ele requer também uma grande quantidade de memória, a qual era três vezes aquela requerida pelo ANSYS.

Hoje o ANSYS se mostra ainda mais flexível, de mais fácil utilização, com procedimentos relativamente simples para criação do modelo da ligação e geração da malha. Apresenta também a possibilidade de realizar análises com não linearidade física e geométrica. Pode ser utilizado controle do carregamento e necessita basicamente de micro computador portátil de médio porte.

Foram gerados dois modelos numéricos no ANSYS, um chamado de "Ansys Bilinear" e outro chamado de "Ansys Multilinear", dependendo do diagrama de tensãodeformação utilizado. Os resultados destes modelos foram comparados com os resultados dos ensaios experimentais.

5.2 GERAÇÃO DO MODELO NUMÉRICO

A modelagem numérica via ANSYS 9.0 foi realizada utilizando-se o elemento SHELL181 para as seções tubulares e SHELL63 para as chapas de fixação, ver Figura 5.1. Tanto SHELL181 quanto SHELL63 possuem quatro nós por elemento, seis graus de liberdade UX, UY, UZ, ROTX, ROTY e ROTZ e são tridimensionais. O SHELL 181 tem como característica especial a plasticidade enquanto o SHELL63 é elástico.

As constantes reais no ANSYS informam ao programa as espessuras dos tubos utilizados. Foi levado em conta o efeito da não linearidade física e geométrica nas análises. Para a não linearidade física os diagramas de tensão-deformação foram obtidos através de ensaio de tração, mostrados no capítulo IV. Esses diagramas foram incorporados no ANSYS através do modelo "Ansys Bilinear" com material do tipo Bilinear Isotropic Hardening (BISO), onde se fornecem as propriedades como módulo de elasticidade, coeficiente de poisson, tensão de escoamento e módulo de elasticidade tangente; e um modelo "Ansys Multilinear" com material do tipo Multilinear Isotropic Hardening (MISO), onde se fornecem as propriedades como módulo de elasticidade, coeficiente de poisson de tensão e de deformação para plotagem do diagrama.

As condições de contorno foram simuladas no ANSYS através de restrições ao deslocamento. A força foi aplicada de forma incremental, isto é através de passos de carga de unitários em kN.

Figura 5.1 – Modelo de elementos finitos com SHELL181 para as seções tubulares e SHELL63 para as chapas de extremidades.

A geração do modelo numérico, para viabilizar as análises comparativas com os resultados experimentais, foi condicionada as posições dos extensômetros. Foram gerados primeiro os keypoints, assim chamados os pontos no ANSYS, onde as coordenadas coincidiriam com a posição dos extensômetros, ver Figura 4.19 no capítulo IV. Através deles gerou-se os círculos das seções tubulares, unindo-se os círculos com linhas e depois gerando as áreas e formando-se os tubos, como mostra a Figura 5.2.

Figura 5.2 – Geração do modelo numérico.

A malha pode ser gerada com elementos triangulares ou quadriláteros, de forma livre ou mapeada se a área for de forma regular. No modelo numérico optou-se por elementos quadriláteros e em algumas áreas a malha foi gerada de forma livre e noutras de forma mapeada. Na área de maior concentração de tensões utilizou-se do recurso de subdividir a linha em vários pedaços e depois gerar a malha com elementos quadriláteros de forma livre, como mostra a Figura 5.3. Para o modelo numérico mostrado foram utilizados 6883 elementos.

Figura 5.3 – Malha gerada na intersecção da ligação YT.

5.3 CONDIÇÕES DE CONTORNO

Foram gerados vários modelos para definição das condições de contorno. Dois serão citados aqui. O primeiro com restrição de todos os graus de liberdade dos nós localizados nas extremidades das barras e o segundo modelando-se as chapas de extremidades restringindo todos os graus de liberdade apenas nos quatro cantos da chapa. Optou-se pelo segundo modelo com as chapas de extremidades nas barras porque apresentou melhores resultados, facilita a aplicação das restrições de apoio

simulando a posição dos parafusos na chapa, e também porque aproxima da situação real do ensaio experimental.

As chapas de fixação, na posição dos parafusos, recebem restrição ao deslocamento e a rotação em X, Y e Z nos quatros cantos, conforme mostra Figura 5.4. Para a chapa de fixação do banzo, do lado direito, foram restringidos os nós em "x", sentido do eixo do banzo, visto o impedimento ao deslocamento nesta direção pelo pórtico de ensaio, ver Figura 5.5.

Figura 5.4 – Restrições de apoio utilizadas para os modelos numéricos.

Figura 5.5 - Restrições de apoio utilizadas para chapas de fixação do banzo em "x".

5.4 DIAGRAMAS DE TENSÃO-DEFORMAÇÃO BILINEAR E MULTILINEAR

No capítulo IV, foram mostrados os resultados experimentais para determinação dos diagramas tensão-deformação para cada uma das seções utilizadas, obtidas no ensaio de tração, para caracterização do material dos protótipos. Destes resultados foram escolhidos 26 pontos, para representar cada uma das seções, como mostra a Tabela 5.1. Estes pontos são capazes de representar o diagrama de tensão-deformação das seções, e serão utilizados no modelo numérico "Ansys Multilinear".

Lembrando-se que cp1a e cp1b representam o montante e a diagonal com diâmetro de 73mm e que cp2a e cp2b representa o banzo com diâmetro de 114,3mm.

Como os resultados do diagrama tensão-deformação possuem pequenas variações de resultados entre os corpos-de-prova, para um mesmo material, e para avaliar a influência desta variação nos resultados foram analisados cada diagrama individualmente, sendo gerado quatro modelos numéricos. Os modelos foram denominados: modelo 1 utilizando os diagramas tensão-deformação dos corpos-deprova cp1a e cp2b, modelo 2 com cp1b e cp2b, modelo 3 com cp1b e cp2a e modelo 4 com cp1a e cp2a. Para cada um destes modelos foi determinada a força máxima de convergência da ligação no ANSYS, definida como sendo a força máxima que o ANSYS conseguiu atingir na análise antes que algum nó apresentasse grandes deslocamentos ou que a análise não conseguisse convergência, e optou-se por trabalhar com aquele que apresentou uma força máxima maior, no caso, o modelo 2 com cp1b e cp2b. Definido o modelo 2 como o modelo de trabalho, definiu-se um diagrama tensão-deformação bilinear a partir do diagrama tensão-deformação multilinear para fazer uma comparação entre um modelo numérico utilizando diagramas de tensão-deformação bilinear e outro modelo numérico utilizando diagramas de tensão-deformação multilinear. As Figuras 5.6 e 5.7 mostram para o modelo 2 os diagramas tensão-deformação representados pelos 26 pontos que serão utilizados no modelo numérico "Ansys Multilinear" e pelas retas que representaram o diagrama tensão-deformação utilizadas no modelo "Ansys Bilinear".

166

	cp1a(ϕ 73mm)		cp1b(\partial 73mm)		cp2a(\phi114,3mm)			cp2b(\phi114,3mm)				
Pontos	3	σ	Е	3	σ	Е	3	σ	Е	3	σ	Е
	Adimensional	GPa	GPa	Adimensional	GPa	GPa	Adimensional	GPa	GPa	Adimensional	GPa	GPa
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0,0011994	0,25934	216,2248	0,001165	0,22031	189,1146	0,0010616	0,32321	304,4615	0,001165	0,2649	227,3908
2	0,0015613	0,31451	201,4411	0,0013373	0,24958	186,6298	0,001544	0,33219	215,1438	0,0014234	0,31285	219,7906
3	0,016828	0,32082	19,06465	0,0015613	0,27689	177,3458	0,0260634	0,34068	13,07117	0,0017508	0,32257	184,2415
4	0,018568	0,32251	17,36913	0,0017853	0,29975	167,899	0,027976	0,34627	12,37754	0,023651	0,33273	14,06833
5	0,019791	0,32724	16,53479	0,001992	0,32604	163,6747	0,0307846	0,35683	11,59106	0,026081	0,34245	13,13025
6	0,022273	0,33895	15,21798	0,0022849	0,3311	144,9079	0,0346098	0,36517	10,55104	0,028562	0,3501	12,25754
7	0,023686	0,34593	14,60483	0,017672	0,3324	18,80942	0,0383316	0,37641	9,819794	0,031181	0,3607	11,56794
8	0,026598	0,35505	13,34875	0,021394	0,34219	15,99467	0,0408646	0,38117	9,327633	0,034834	0,37027	10,62956
9	0,029372	0,36495	12,4251	0,023668	0,35058	14,8124	0,0432941	0,38672	8,932296	0,037418	0,38073	10,17505
10	0,032938	0,37576	11,4081	0,026442	0,36218	13,69715	0,0481704	0,39638	8,228797	0,043173	0,39133	9,06423
11	0,034868	0,38229	10,96392	0,029286	0,3713	12,67841	0,0520301	0,40512	7,786278	0,047722	0,40085	8,39969
12	0,036505	0,38815	10,63279	0,032646	0,38115	11,67524	0,0557347	0,41042	7,36384	0,052478	0,41042	7,820801
13	0,038935	0,39389	10,1166	0,036229	0,39585	10,92633	0,0620928	0,4167	6,710976	0,059905	0,42068	7,022452
14	0,041364	0,39907	9,647761	0,038728	0,40007	10,33025	0,0672965	0,42279	6,282486	0,068554	0,43103	6,287452
15	0,043777	0,4047	9,24458	0,043656	0,41183	9,433526	0,071139	0,42672	5,998342	0,0786	0,44115	5,612595
16	0,049928	0,4163	8,338007	0,048567	0,42287	8,706941	0,0750159	0,43015	5,734138	0,0874737	0,44546	5,092552
17	0,054821	0,42418	7,737546	0,055838	0,43131	7,72431	0,0789617	0,43589	5,520318	0,093987	0,45077	4,796089
18	0,062145	0,43375	6,979644	0,061989	0,44038	7,104164	0,0881457	0,44065	4,999161	0,1006035	0,45302	4,50305
19	0,070846	0,44569	6,290969	0,068227	0,4504	6,601492	0,0948312	0,4463	4,706243	0,11285	0,46019	4,077891
20	0,079341	0,45289	5,708146	0,080736	0,46188	5,720868	0,1070134	0,45165	4,220486	0,12118	0,46171	3,810117
21	0,090713	0,461	5,081962	0,096589	0,47179	4,884511	0,114009	0,45538	3,994232	0,13124	0,465	3,543127
22	0,10264	0,46663	4,546278	0,1074614	0,47472	4,417572	0,1283278	0,45857	3,573418	0,14001	0,46647	3,331691
23	0,11504	0,47001	4,085622	0,1159	0,48035	4,144521	0,1342207	0,46014	3,428229	0,15042	0,46932	3,120064
24	0,1321	0,47406	3,588645	0,1316533	0,48221	3,662694	0,1492114	0,46313	3,103872	0,1611	0,4701	2,918063
25	0,14674743	0,47823	3,258833	0,14347	0,48564	3,384959	0,1727486	0,46431	2,687785	0,17035	0,47025	2,760493
26	0,18203598	0,48025	2,638227	0,18417	0,48688	2,643644	0,1908064	0,4651	2,43753	0,18148	0,47364	2,609874

Tabela 5.1 – Dados para representar o diagrama de tensão-deformação multilinear no programa ANSYS.

Figura 5.6 – Diagramas de tensão-deformação experimental, bilinear e multilinear para o corpo-de-prova cp1b (\phi73mm).

cp2b

Figura 5.7 – Diagramas de tensão-deformação experimental, bilinear e multilinear para o corpo-de-prova cp2b (\overline{114,3mm}).

A Tabela 5.2 mostra para os corpos-de-prova cp1b e cp2b os dados para representar o tipo de material no modelo numérico. Onde " σ_e " representa a tensão limite de escoamento, " σ_r " a tensão limite de resistência, "E" o módulo de elasticidade e "E_t" o módulo de elasticidade tangente.

O diagrama tensão-deformação bilinear é formado por duas retas. A primeira da origem até o pico de tensão mais alto deste trecho " σ " e a segunda deste ponto até a tensão limite de resistência " σ_r " do material.

Tabela 5.2 - Dados para representar o diagrama de tensão-deformação no programa ANSYS.

Corpo-de-	σe	σ	σ r	E	Et
Prova	GPa	GPa	GPa	GPa	GPa
cp1b(_{\$} 73mm)	0,3260	0,3311	0,4869	189,1146	0,8565
cp2b(\$114,3mm)	0,3226	0,3226	0,4736	227,3908	0,8406

5.5 MODELOS NUMÉRICOS "ANSYS BILINEAR" E "ANSYS MULTILINEAR"

Diversos modelos numéricos foram gerados, com malhas mais e menos refinadas, condições de contorno variadas, incrementos de carga diferentes, nervuras na chapa de extremidade da diagonal, de modo a aproximar os resultados das análises experimentais com os das análises numéricas.

Serão apresentados aqui os dois modelos numéricos considerados mais significativos: "Ansys Bilinear" e "Ansys Multilinear" com 6883 elementos.

5.5.1 Modelo Ansys Bilinear - "Ansys Bilinear"

O modelo chamado de "Ansys Bilinear" é aquele que leva em consideração a não linearidade física através do material do tipo Bilinear Isotropic Hardening (BISO), o qual fornecem ao programa as propriedades como módulo de elasticidade, coeficiente de poisson, tensão de escoamento e módulo de elasticidade tangente. A Figura 5.8 mostra as tensões principais " σ_1 " para o modelo "Ansys Bilinear".

Figura 5.8 – Tensões principais " σ_1 " para o modelo "Ansys Bilinear".

5.5.2 Modelo Ansys Multilinear – "Ansys Multilinear"

O modelo chamado de "AnsysMultilinear" é aquele que leva em consideração a não linearidade física através do material do tipo Multilinear Isotropic Hardening (MISO), o qual fornecem ao programa as propriedades como módulo de elasticidade, coeficiente de Poisson e os pontos de tensão e deformação para plotagem do diagrama. A Figura 5.9 mostra as tensões principais " σ_1 " para o modelo "Ansys Multilinear".

Figura 5.9 – Tensões principais " σ_1 " para o modelo "Ansys Multilinear".

O modelo "Ansys Multilinear" produz melhores resultados que o modelo "Ansys Bilinear" em relação às deformações plásticas. A deformada para este modelo "Ansys Multilinear" é mostrada pelas Figuras 5.10, 5.11 e 5.12.

Figura 5.10 – Deformada para o modelo "Ansys Multilinear" vista frontal.

Figura 5.11 – Deformada para o modelo "Ansys Multilinear" em detalhe.

Figura 5.12 – Deformada para o modelo "Ansys Multilinear" vista inferior.

5.6 COMPARAÇÕES ENTRE AS DEFORMAÇÕES NOS ENSAIOS EXPERIMENTAIS E NOS MODELOS NUMÉRICOS

A comparação entre os ensaios experimentais e os modelos numéricos foi baseada nos resultados das deformações obtidas pelos extensômetros e as deformações obtidas nas análises numéricas via ANSYS para o modelo "Ansys Bilinear" e modelo "Ansys Multilinear". No caso das rosetas, tem-se as comparações entre as tensões principais. Tanto as análises dos ensaios experimentais como as análises numéricas identificaram que a região mais crítica da ligação é localizada no nó da

mesma onde se têm as maiores tensões, ver Figuras 5.8 e 5.9. O modo de colapso encontrado para os três ensaios foi o colapso por plastificação da parede do banzo, MODO A, com nítida formação do mecanismo em "S", ver capítulo IV, Figura 4.30.

Para os montantes e diagonais têm-se estado linear de tensões, portanto a deformação lida nos extensômetros pode ser obtida nos modelos numéricos através das deformações principais " ε_1 " ou " ε_3 ", caso seja de tração ou de compressão, respectivamente.

Para os pontos correspondentes aos extensômetros do banzo ocorre estado plano de tensão com a presença do momento fletor. Neste caso as deformações nestes pontos pode ser comparada no modelo numérico com as deformações obtidas na direção x, " ε_x ". Estes pontos do banzo são influenciados pelas restrições de apoio das chapas de extremidade do banzo, este fato foi observado pela mudança nos resultados quando as restrições de apoio destas chapas nos modelos numéricos eram alteradas, principalmente na chapa de extremidade do banzo abaixo da diagonal.

As deformações plásticas são obtidas no Ansys listando seu histórico em cada ponto correspondente ao ponto de posicionamento dos extensômetros.

Para o modelo "Ansys Bilinear" de todos os pontos analisados correspondentes aos extensômetros (sem comparar os extensômetros da roseta), só aparecem deformações plásticas no ponto correspondente ao extensômetro EER24 da diagonal.

Para o modelo "Ansys Multilinear" as deformações plásticas aparecem no ponto correspondente ao extensômetro EER23 do montante e em todos os pontos correspondentes aos extensômetros da diagonal: EER13, EER14, EER15, EER16 e EER24 (sem comparar os extensômetros da roseta). Este modelo possui os mesmos pontos de deformações plásticas que ocorreram nos ensaios experimentais, excetuando os extensômetros EER9, EER10 e EER11 do montante.

175

Como as deformações plásticas para o modelo "Ansys Multilinear" são muito pequenas, os dois modelos "Ansys Bilinear" e "Ansys Multilinear" apresentaram resultados muito semelhantes.

A seguir serão mostrados os resultados experimentais das deformações obtidas nos ENSAIO I, ENSAIO II, ENSAIO III e as obtidas nos modelos numéricos para cada um dos extensômetros individualmente. Vale lembrar que, para o ENSAIO II, foram apresentados apenas as leituras do último ciclo de solicitação, por isso nos gráficos as deformações iniciais são não nulas para esse ensaio.

5.6.1 Comparações entre as deformações no banzo

As Figuras de 5.13 a 5.20 mostram as deformações ocorridas no banzo para os pontos correspondentes aos extensômetros de EER1 a EER8. Estes pontos não apresentaram deformações plásticas.

Figura 5.13 – Deformações no banzo da ligação YT extensômetro EER1.

Figura 5.14 – Deformações no banzo da ligação YT extensômetro EER2.

Figura 5.15 – Deformações no banzo da ligação YT extensômetro EER3.

Figura 5.16 – Deformações no banzo da ligação YT extensômetro EER4.

A comparação de resultados dos pontos correspondentes aos extensômetros do banzo EER1, EER2, EER3 e EER4 apresentaram boa convergência.

Figura 5.17 – Deformações no banzo da ligação YT extensômetro EER5.

Figura 5.18 – Deformações no banzo da ligação YT extensômetro EER6.

Figura 5.19 – Deformações no banzo da ligação YT extensômetro EER7.

Figura 5.20 – Deformações no banzo da ligação YT extensômetro EER8.

A comparação de resultados dos pontos correspondentes aos extensômetros do banzo EER5 e EER7 apresentaram boa convergência. Nos pontos correspondentes aos extensômetros EER6 e EER8 não apresentaram boa convergência visto que a influência das restrições de apoio da chapa de extremidade não deu bom resultado.

Nestes pontos correspondentes aos extensômetros de EER1 a EER8 há uma grande influência das restrições de apoio das chapas de extremidade do banzo nas deformações, este fato foi comprovado pela variação das restrições nos modelos numéricos. Esta influência explica a divergência de alguns dos resultados.

A inversão no comportamento das deformações mostra a formação do mecanismo de colapso em "S".

5.6.2 Comparações entre as deformações no montante

Para o montante apenas o ponto correspondente ao extensômetro EER23, no modelo "Ansys Multilinear", apresentou deformações plásticas, mostrada através da listagem do seu histórico.

As Figuras de 5.21 a 5.25 apresentam os resultados das comparações entre as deformações para o montante.

Figura 5.21 – Deformações no montante da ligação YT extensômetro EER9.

Figura 5.22 – Deformações no montante da ligação YT extensômetro EER10.

Figura 5.23 – Deformações no montante da ligação YT extensômetro EER11.

Figura 5.24 – Deformações no montante da ligação YT extensômetro EER12.

Figura 5.25 – Deformações no montante da ligação YT extensômetro EER23.

Para o montante, totalmente comprimido, a comparação dos resultados dos pontos correspondentes aos extensômetros EER9, EER10, EER11, EER12 e EER23 apresentaram boa concordância de resultados com os modelos numéricos.

5.6.3 Comparações entre as deformações na diagonal

Para a diagonal, totalmente tracionada, tanto nos ensaios experimentais quanto no modelo "Ansys Multilinear" todos os pontos correspondentes aos extensômetros apresentaram deformações plásticas. No modelo "Ansys Bilinear" apenas no ponto correspondente ao extensômetro EER24.

As Figuras de 5.26 a 5.30 apresentam os resultados das comparações entre as deformações para a diagonal.

Figura 5.26 – Deformações na diagonal da ligação YT extensômetro EER13.

Figura 5.27 – Deformações na diagonal da ligação YT extensômetro EER14.

Figura 5.28 – Deformações na diagonal da ligação YT extensômetro EER15.

Figura 5.29 – Deformações na diagonal da ligação YT extensômetro EER16.

Figura 5.30 – Deformações na diagonal da ligação YT extensômetro EER24.

Para a diagonal tracionada, a comparação dos resultados correspondentes aos extensômetros EER13, EER14, EER15, EER16 e EER24 apresentaram boa concordância de resultados com os modelos numéricos.

5.7 ROSETAS

Nos protótipos de ligação YT foram utilizadas duas rosetas de 45. A roseta 1 definida pelos extensômetros EER20, EER21 e EER22. e a roseta 2 definida pelos estensômetros EER17, EER18 e EER19. No ANEXO 7 é mostrada a formulação para o
cálculo das tensões principais a partir das deformações fornecidas pelos extensômetros na roseta e também um exemplo de cálculo da mesma.

5.7.1 Roseta 1

A Figura 5.31 mostra um esquema para roseta 1.

Figura 5.31 – Roseta 1 de 45º utilizada no protótipo YT.

5.7.1.1 Resultados da roseta 1

A tensão de escoamento " σ_e ", para cada uma das seções tubulares, pode ser obtida fazendo a média das tensões fornecidas pelo ensaio de tração. Assim para diagonal e montante a tensão de escoamento média é de " σ_e =0,32 GPa" e para o banzo " σ_e =0,33 GPa", como mostra a Tabela 5.3.

Corpo-de-prova	σ_{e}	$\sigma_{e(média)}$		
	GPa	GPa		
cp1a -	0,3145	0.32		
cp1b -	0,3260	0,02		
Cp2a -	0,3322	0.33		
Cp2a -	0,3226	0,00		

Tabela 5.3 – Tensão de escoamento obtida no ensaio de tração.

A Tabela 5.4 mostra o resultado do cálculo das tensões principais " σ_1 " e " σ_2 " para roseta 1. A roseta 1 esta posicionada no banzo, portanto, sua tensão de escoamento é " σ_e =0,33 GPa". Foi realizada uma interpolação linear para descobrir qual a força que corresponde a essa tensão e chegou-se no valor de 157,57 kN.

ENSAIO III		Ea=Ex	Eb=Ey	Ec	ү ху	σχ	σγ	τ Χ Υ	σméd	R	σ1	σ2		
Força(kN)	EER22	EER20	EER21	Adimen.	Adimen.	Adimen.	Adimen.	GPa	GPa	GPa	GPa	GPa	GPa	GPa
0	-0,47618	-0,47617	0,47543	0,000000	0,000000	0,000000	-0,000002	- 0,0002	-0,0002	-0,0002	- 0,0002	0,0002	0,00	- 0,00
49,6	177,17	230,52	71,321	0,000177	0,000231	0,000071	0,000265	0,0616	0,0709	0,02318	0,0662	0,0236	0,09	0,04
50	178,6	231,95	72,272	0,000179	0,000232	0,000072	0,000266	0,062	0,0713	0,02326	0,0667	0,0237	0,09	0,04
75,2	279,12	358,22	137,42	0,000279	0,000358	0,000137	0,000363	0,0966	0,1104	0,0317	0,1035	0,0325	0,14	0,07
75	280,08	361,08	139,32	0,000280	0,000361	0,000139	0,000363	0,0971	0,1112	0,03171	0,1041	0,0325	0,14	0,07
100,2	383,96	493,1	210,19	0,000384	0,000493	0,000210	0,000457	0,1329	0,152	0,03994	0,1425	0,0411	0,18	0,10
99,6	385,39	495	213,51	0,000385	0,000495	0,000214	0,000453	0,1334	0,1526	0,03965	0,143	0,0408	0,18	0,10
125	488,82	634,21	281,06	0,000489	0,000634	0,000281	0,000561	0,1697	0,1951	0,04906	0,1824	0,0507	0,23	0,13
124,8	489,77	641,84	282,49	0,000490	0,000642	0,000282	0,000567	0,1705	0,1971	0,04956	0,1838	0,0513	0,24	0,13
149,8	607,53	881,27	401,43	0,000608	0,000881	0,000401	0,000686	0,2179	0,2658	0,05999	0,2418	0,0646	0,31	0,18
151	614,68	897,01	406,19	0,000615	0,000897	0,000406	0,000699	0,2208	0,2702	0,06116	0,2455	0,066	0,31	0,18
157,27													0,33	
160,4	668,08	978,6	453,3	0,000668	0,000979	0,000453	0,000740	0,2403	0,2946	0,06473	0,2675	0,0702	0,34	0,2

Tabela 5.4 – Cálculo das tensões principais para roseta 1.

Onde:

Ea=Eb=Ec	Deformações normais nas direções a, b e c;
Ex=Ey	Deformações normais nas direções x e y;
γху	Deformação por cisalhamento;
$\sigma_x e \sigma_y$	Tensões nas direções x e y;
τ_{XY}	Tensão de cisalhamento;
$\sigma_{m\acute{e}d}$	Tensão média do círculo de Mohr;
R	Raio do círculo de Mohr;
$\sigma_1 e \sigma_2$	Tensões principais;

As Figuras 5.32 e 5.33 mostram graficamente as tensões principais " σ_1 " e " σ_2 " fornecidas pela roseta 1 e as correspondentes nos modelos numéricos.

Figura 5.32 – Tensão principal "σ₁" na roseta 1 e a correspondente nos modelos numéricos.

Figura 5.33 – Tensão principal "σ₂" na roseta 1 e a correspondente nos modelos numéricos.

As tensão principais " σ_1 " e " σ_2 " dos modelos numéricos "Ansys Bilinear" e o "Ansys Multilinear" apresentaram boa convergência em relação ao comportamento das mesmas na roseta 1, do ENSAIO III.

5.7.2 Roseta 2

A Figura 5.34 mostra o esquema da roseta 2. Esta roseta foi posicionada embaixo do banzo. Por questão de geometria da seção tubular foi colocado um dos seus extensômetros numa outra direção, tendo em vista o material ser considerado isotrópico.

Figura 5.34 – Roseta 2 de 45° utilizada no protótipo YT.

5.7.2.1 Resultados da roseta 2

A Tabela 5.5 mostra o resultados do cálculo das tensões principais " σ_1 " e " σ_2 " para roseta 2 e as correspondentes nos modelos numéricos. A roseta 2 esta posicionada na face inferior do banzo e as tensões principais calculadas " σ_1 " e " σ_2 " não atingem a tensão de escoamento " σ_e ".

	ENS	AIO III		Ea=Ex	Eb=Ey	Ec	ү ху	σχ	σγ	τΧΥ	σ méd	R	σ1	σ2
Força														
(kN)	EER19	EER17	EER18					GPa	GPa	GPa	GPa	GPa	GPa	GPa
0	0.5	-1.9	-0.5	0.000000	-0.000002	0.000000	0.000000	-2E-05	-0.0004	-4E-05	-0.0002	0.0002	-0	-0
49.6	190.4	-202.6	8.1	0.000190	-0.000203	0.000008	-0.000028	0.0324	-0.0363	-0.0025	-0.002	0.0345	0.03	-0.04
50	191.9	-205.0	7.6	0.000192	-0.000205	0.000008	-0.000028	0.0326	-0.0368	-0.0025	-0.0021	0.0348	0.03	-0.04
75.2	292.3	-308.4	14.8	0.000292	-0.000308	0.000015	-0.000046	0.0499	-0.0551	-0.004	-0.0026	0.0527	0.05	-0.06
75	295.2	-308.8	14.8	0.000295	-0.000309	0.000015	-0.000043	0.0506	-0.055	-0.0038	-0.0022	0.053	0.05	-0.06
100.2	398.5	-413.6	22.4	0.000399	-0.000414	0.000022	-0.000060	0.0686	-0.0735	-0.0052	-0.0025	0.0712	0.07	-0.07
99.6	402.8	-414.6	24.3	0.000403	-0.000415	0.000024	-0.000060	0.0696	-0.0734	-0.0053	-0.0019	0.0717	0.07	-0.07
125	506.2	-520.3	30.5	0.000506	-0.000520	0.000031	-0.000075	0.0875	-0.0921	-0.0066	-0.0023	0.09	0.09	-0.09
124.8	511.5	-521.3	32.9	0.000511	-0.000521	0.000033	-0.000076	0.0887	-0.0919	-0.0066	-0.0016	0.0906	0.09	-0.09
149.8	615.8	-628.9	44.3	0.000616	-0.000629	0.000044	-0.000102	0.1067	-0.111	-0.0089	-0.0021	0.1092	0.11	-0.11
151	625.3	-634.1	46.2	0.000625	-0.000634	0.000046	-0.000101	0.1087	-0.1116	-0.0089	-0.0014	0.1105	0.11	-0.11
160.4	663.0	-675.1	47.7	0.000663	-0.000675	0.000048	-0.000107	0.1151	-0.119	-0.0094	-0.002	0.1174	0.12	-0.12
160.4	669.2	-679.9	50.1	0.000669	-0.000680	0.000050	-0.000111	0.1163	-0.1197	-0.0097	-0.0017	0.1184	0.12	-0.12
170	711.6	-727.0	54.4	0.000712	-0.000727	0.000054	-0.000124	0.1233	-0.1283	-0.0109	-0.0025	0.1263	0.12	-0.13
170.2	717.3	-731.3	55.8	0.000717	-0.000731	0.000056	-0.000125	0.1244	-0.129	-0.011	-0.0023	0.1272	0.12	-0.13
174.8	737.4	-753.2	57.7	0.000737	-0.000753	0.000058	-0.000131	0.1278	-0.1329	-0.0115	-0.0026	0.1309	0.13	-0.13
175	741.6	-756.5	60.1	0.000742	-0.000756	0.000060	-0.000135	0.1286	-0.1334	-0.0118	-0.0024	0.1316	0.13	-0.13
180.4	763.1	-779.3	60.6	0.000763	-0.000779	0.000061	-0.000137	0.1323	-0.1375	-0.012	-0.0026	0.1354	0.13	-0.14
180.6	770.3	-787.0	64.8	0.000770	-0.000787	0.000065	-0.000146	0.1335	-0.1389	-0.0128	-0.0027	0.1368	0.13	-0.14
190.2	810.3	-838.8	63.9	0.000810	-0.000839	0.000064	-0.000156	0.1396	-0.1489	-0.0137	-0.0046	0.1449	0.14	-0.15
200.4	861.3	-895.5	66.7	0.000861	-0.000895	0.000067	-0.000168	0.1481	-0.1592	-0.0147	-0.0055	0.1543	0.15	-0.16
200.2	869.9	-909.3	66.3	0.000870	-0.000909	0.000066	-0.000172	0.1492	-0.162	-0.015	-0.0064	0.1563	0.15	-0.16
205.4	889.9	-932.6	66.3	0.000890	-0.000933	0.000066	-0.000175	0.1525	-0.1663	-0.0153	-0.0069	0.1601	0.15	-0.17
205.2	896.6	-943.5	64.4	0.000897	-0.000944	0.000064	-0.000176	0.1533	-0.1686	-0.0154	-0.0076	0.1617	0.15	-0.17
210.2	918.1	-970.2	63.9	0.000918	-0.000970	0.000064	-0.000180	0.1567	-0.1736	-0.0157	-0.0085	0.1659	0.16	-0.17
210.4	927.1	-984.9	63.9	0.000927	-0.000985	0.000064	-0.000186	0.1578	-0.1766	-0.0162	-0.0094	0.168	0.16	-0.18
210.6	930.0	-989.7	63.4	0.000930	-0.000990	0.000063	-0.000187	0.1582	-0.1776	-0.0163	-0.0097	0.1687	0.16	-0.18
215.6	955.7	-1028.6	60.6	0.000956	-0.001029	0.000061	-0.000194	0.1617	-0.1854	-0.017	-0.0118	0.1744	0.16	-0.19
220.2	978.2	-1059.1	59.6	0.000978	-0.001059	0.000060	-0.000200	0.165	-0.1913	-0.0175	-0.0131	0.179	0.17	-0.19
219.8	985.8	-1071.0	57.7	0.000986	-0.001071	0.000058	-0.000201	0.166	-0.1937	-0.0175	-0.0138	0.1807	0.17	-0.19
225	1011 0	-1104 7	56.3	0.001011	-0.001105	0.000056	-0.000206	0.1698	-0.2003	-0.018	-0.0152	0.1859	0.17	-0.2
228	1021.0	-1140.9	45.8	0.001021	-0.001141	0.000046	-0.000211	0.1696	-0.2085	-0.0185	-0.0195	0.19	0.17	-0.21

Tabela 5.5 – Cálculo das tensões principais para roseta 2.

As deformações para o extensômetro EER18 são praticamente nulas, mostrado na Figura 4.50 no capítulo IV, quando isto ocorre o estado de deformação é representado pelas deformações principais, por isso as tensões de cisalhamento apresentaram resultado muito pequenos, praticamente nulos.

As Figuras 5.35 e 5.36 mostram graficamente as tensões principais " σ_1 " e " σ_2 " dado pela roseta 2 e as correspondentes nos modelos numéricos.

Figura 5.35 – Tensão principal "σ₁" na roseta 2 e a correspondente nos modelos numéricos.

Figura 5.36 – Tensão principal "σ₂" na roseta 2 e a correspondente nos modelos numéricos.

Há uma discrepância de resultados entre as tensões principais " σ_1 " e " σ_2 " dos modelos numéricos e o modelo experimental para a roseta 2. A roseta 2 tem uma importância menor visto que suas tensões principais não atingiram a tensão de escoamento. Pode ter havido algum tipo de problema na colagem desta roseta.

5.8 SOLICITAÇÃO DE ESCOAMENTO

A solicitação de escoamento da ligação YT é aquela que provoca o início do escoamento de algum ponto da mesma.

A solicitação de escoamento da roseta 1 no protótipo pode não ser a solicitação de escoamento da ligação YT, pois pode haver um outro ponto onde já tenha ocorrido o escoamento, mas é muito próxima visto que os modelos numéricos indicam esta região como tendo a maior concentração de tensões.

Na modelagem numérica pode-se obter a solicitação de escoamento no ponto representativo da roseta1 e também a solicitação de escoamento real dos modelos numéricos, que pode ser equiparado a solicitação de escoamento da ligação YT.

5.8.1 Solicitação de escoamento no modelo numérico no ponto representativo da roseta1

A Tabela 5.6 mostra o cálculo do percentual de erro da solicitação de escoamento obtida nos modelos numéricos no ponto representativo da roseta 1, em relação ao modelo experimental.

	Solicitação de escoamento(kN)	Erro
ENSAIO III	157,27	
"Ansys Bilinear"	161	2,27%
"Ansys Multilinear"	162	3,01

Tabela	5.6	-	Percentual	de	erro	da	solicitação	de	escoamento	para	0	ponto
		r	epresentado	pela	a rose ⁻	ta1 e	e os modelos	s nur	méricos do AN	ISYS.		

O percentual de erro para solicitação de escoamento, no ponto representativo da roseta 1, entre modelos experimentais e modelos numéricos é em torno de 3%, portanto

os modelos numéricos e experimentais apresentaram uma boa convergência entre os resultados.

Através do ENSAIO III pode-se fazer uma correlação entre os resultados para obter valores para solicitação de escoamento, no ponto representado pela roseta 1, para cada um dos ensaios. Toma-se o extensômetro EER15 da diagonal, por exemplo, para solicitação de escoamento na roseta1 igual a 157,27 kN obteve-se a deformação de escoamento correspondente, no ENSAIO III, de 804,02 microstrain. Com o valor desta deformação procurou-se encontrar nos ENSAIO I e II a solicitação correspondente a essa deformação para o mesmo extensômetro. Os valores encontrados para solicitação de escoamento para cada um dos ensaios são fornecidos na Tabela 5.7.

Tabela 5.7 – Solicitação de escoamento no ponto representado pela roseta 1 nos ENSAIO I, II e III.

	Solicitação de escoamento no ponto roseta1 (kN)
ENSAIO I	156,20
ENSAIO II	159,85
ENSAIO III	157,27

5.8.2 Solicitação de escoamento para os modelos numéricos

A solicitação de escoamento nos modelos numéricos foi encontrada listando o histórico da solicitação no ANSYS para todos os nós na região crítica do banzo, abaixo do montante e procurando qual deles atingiu a tensão de escoamento " σ_e =0,33 GPa" primeiro. Os resultados são mostrados pela Tabela 5.8.

	Solicitação de escoamento(kN)
"Ansys Bilinear"	160
"Ansys Multilinear"	161

Tabela 5.8 – Solicitação de escoamento para os modelos numéricos do ANSYS.

5.9 ABAULAMENTO DO BANZO

As medições realizadas por paquímetro e que caracterizam o abaulamento do banzo medidos no ENSAIO I e II foram comparadas com os deslocamentos nesta direção no modelo numérico "Ansys Multilinear" e é mostrado na Figura 5.37.

Figura 5.37 – Abaulamento do banzo.

O abaulamento do banzo no modelo numérico "Ansys Multilinear" apresentou boa convergência em relação ao comportamento do mesmo nos ENSAIO I e II.

5.10 ANÁLISE DOS RESULTADOS

Os resultados apresentados pelos modelos numéricos apresentaram boa convergência quando comparado com o modelo experimental.

O percentual de erro entre a solicitação de escoamento no ponto representado pela roseta 1 entre modelos numéricos e modelo experimental é em torno de 3%.

A correlação realizada entre os ensaios a partir do ENSAIO III apresentou boa convergência com relação a solicitação de escoamento no ponto representado pela roseta1.

Quanto ao abaulamento do banzo a Figura 5.37 mostra uma tendência não linear no deslocamento.

A inversão no comportamento das deformações mostra a formação do mecanismo de colapso em "S".

A solicitação de escoamento para ligação YT, fornecida pelas análises numéricas é de 161 kN, para o modelo "Ansys Multilinear", a solicitação de dimensionamento da ligação YT dada pelas normas técnicas internacionais é de 137kN, desprezando a contribuição do momento fletor no cálculo da ligação. Portanto a solicitação de escoamento fornecida pela modelagem numérica está 17,52% acima da solicitação de dimensionamento, o que mostra que a formulação apresentada no CIDECT é segura para os perfis nacionais analisados.

204

CAPÍTULO VI

MODELAGEM NUMÉRICA – INFLUÊNCIA DO AFASTAMENTO "GAP"

6.1 CONSIDERAÇÕES GERAIS

Novos modelos numéricos foram gerados para estudar o comportamento da ligação YT. Nestes novos modelos foi variado apenas a medida do afastamento entre montante e diagonal (gap), para avaliar sua influência na resistência da ligação. A motivação para este estudo foi devido ao fato de que para o dimensionamento da ligação YT, de seções tubulares circulares, mostrado no capítulo III, observou-se que o "gap" influência no cálculo de N1* (resistência a plastificação do banzo), na verificação quanto ao colapso por plastificação da parede do banzo, Modo A, que governa o dimensionamento. Mas não interfere na verificação quanto ao colapso por corte por puncionamento da parede do banzo, Modo B.

Segundo PACKER E HANDERSON (1997), a relação e/d_0 deve estar entre os limites dado pela equação (2.1) no capítulo II, a qual apresenta limites permitidos entre os quais se podem desprezar os efeitos dos momentos na ligação.

205

Se esses limites de excentricidades forem excedidos, o momento gerado pela excentricidade deve ter um efeito prejudicial na resistência da ligação e deve ser distribuído entre as barras. Se os momentos são distribuídos para as barras, a capacidade da ligação deve ser checada para interação entre força axial e momento fletor, mostrado no dimensionamento da ligação no capítulo III.

Para "gap" maiores que g=10,33mm (que é o menor valor válido, $g \ge t_1 + t_2$), utilizados nos protótipos, a relação e/d₀ ultrapassa o limite de 0,25.

Assim, neste capítulo serão estudados os limites de variação de e/d_0 de 0,25 a 0,97, utilizados nas análises dos novos modelos.

As análises tiveram como objetivo estudar para "gap" maiores que "g=10,33 mm" o que acontece com a resistência da ligação YT, mesmo sabendo que os limites de validade não estão previstos em norma.

6.2 VALORES DO AFASTAMENTO "GAP"

A Tabela 6.1 mostra os valores de "gap" estudados, a excentricidade "e" e a relação $e/d_{0.}$

Valores do "gap" (mm)	e (mm)	e/d ₀
gap=10,33 (GAP10,33)	28,57	0,25
gap =30 (GAP30)	44,73	0,39
gap=50 (GAP50)	61,17	0,54
gap=70 (GAP70)	77,60	0,68
gap=90 (GAP90)	94,03	0,82
gap=110 (GAP110)	110,47	0,97

Tabela 6.1 – Valores de "gap" para os novos modelos.

Para cada um destes valores de "gap" foi gerado um modelo numérico no ANSYS. Os modelos foram chamados de modelo "GAP30", "GAP50", "GAP70", "GAP90" e "GAP110" de acordo com valores de "gap". O modelo "GAP10,33" é o modelo "Ansys Multilinear" do capítulo V.

6.3 RESULTADOS DA INFLUÊNCIA DOS AFASTAMENTOS

Os novos modelos numéricos gerados seguem o mesmo padrão dos modelos do capítulo V, mesmo tipo de malha e condições de contorno. Portanto eles foram gerados utilizando-se o elemento SHELL181 para as seções tubulares e SHELL63 para as chapas de fixação. A não linearidade física foi levada em conta através do material do tipo Multilinear Isotropic Hardening (MISO). A força foi aplicada no topo do montante em incrementos unitários.

6.3.1 Tensão principal " σ_1 "

As tensões principais " σ_1 " para os novos modelos são apresentadas nas Figuras de 6.1 a 6.6. O ponto de maior tensão localizado no banzo, na região crítica do nó da ligação, fica abaixo do montante, acima da linha de eixo do banzo, para todos os modelos. Esse ponto de tensão máxima não necessariamente corresponde ao ponto de escoamento do modelo numérico.

Figura 6.1 – Tensão principal "σ₁" para modelo "GAP10,33".

Figura 6.2 – Tensão principal " σ_1 " para modelo "GAP30".

Figura 6.3 – Tensão principal " σ_1 " para modelo "GAP50".

Figura 6.4 – Tensão principal " σ_1 " para modelo "GAP70".

Figura 6.5 – Tensão principal " σ_1 " para modelo "GAP90".

Figura 6.6 – Tensão principal " σ_1 " para modelo "GAP110".

Os modelos para "gap" maiores induzem a uma distribuição de tensões influenciada pelo afastamento entre montante e diagonal, que alivia as tensões na região do banzo abaixo do montante. Este fato pode ser observado na Figura 6.7.

Para cada um dos modelos foi determinada a solicitação de escoamento. Esta solicitação foi encontrada listando o histórico da solicitação dos nós na região crítica do banzo abaixo do montante, e procurando qual deles atingiu a tensão de escoamento de " $\sigma_e=0,33$ GPa" primeiro. O ponto de escoamento dos modelos se concentrava nos pontos acima da linha de eixo do banzo e abaixo do montante. A Figura 6.7 mostra a tensão principal " σ_1 " para cada um dos modelos no ponto de escoamento.

Figura 6.7 – Tensão principal "σ₁" para novos modelos numéricos no ponto de escoamento.

A Tabela 6.2 mostra a solicitação de escoamento para cada um dos novos modelos. Conforme o "gap" vai sendo aumentado a resistência da ligação cai representada pela queda da solicitação de escoamento da ligação. Ou seja, a resistência da ligação afastada diminui quando o afastamento "gap" vai sendo aumentado, isto é, menor a força suportada pelo topo do montante. As ligações afastadas têm uma menor eficiência na transferência da força entre as barras, quanto mais afastada, maior "gap", menor a eficiência na transferência da força. Quanto maior o "gap" maior é a excentricidade positiva.

Valores do "gap" (mm)	Solicitação de Escoamento (kN)
gap=10,33 (GAP10,33)	161
gap =30 (GAP30)	131
gap=50 (GAP50)	121
gap=70 (GAP70)	115
gap=90 (GAP90)	109
gap=110 (GAP110)	104

Tabela 6.2 – Solicitação de escoamento para os novos modelos.

6.3.2 Abaulamento do banzo

A Figura de 6.8 a 6.13 mostra o abaulamento do banzo abaixo do montante, representado pelo deslocamento no eixo Z, para os novos modelos numéricos.

Figura 6.8 – Abaulamento do banzo para o modelo "GAP10,33".

Figura 6.9 – Abaulamento do banzo para o modelo "GAP30".

Figura 6.10 - Abaulamento do banzo para o modelo "GAP50".

Figura 6.13 – Abaulamento do banzo para o modelo "GAP110".

Note que o deslocamento positivo em Z, que representa o abaulamento, diminui na região abaixo do montante conforme se aumenta o valor do "gap", mas o deslocamento negativo em Z aumenta na região abaixo da diagonal, provocando um emagrecimento do banzo nesta região.

O abaulamento do banzo foi representado pelo ponto de máximo deslocamento no eixo Z na região abaixo do montante, mostrado na Figura 6.14. Os deslocamentos que representam o abaulamento do banzo e o valor da força aplicada diminuem conforme se aumenta o valor do "gap".

Figura 6.14 – Abaulamento do banzo representado pelo ponto de máximo deslocamento no eixo Z na região abaixo do montante.

6.3.3 Modos de colapso

Os modos de colapso predominante para cada um dos modelos novos são mostrados nas Figuras de 6.15 a 6.24, caracterizando os mecanismos de colapso por plastificação da parede do banzo, Modo A, e abaulamento do banzo, Modo F.

Figura 6.15 – Colapso por plastificação da parede do banzo no modelo "GAP30".

Figura 6.16 - Abaulamento do banzo no modelo "GAP30".

Figura 6.18 – Abaulamento do banzo no modelo "GAP50".

Figura 6.19 – Colapso por plastificação da parede do banzo no modelo "GAP70".

Figura 6.20 - Abaulamento do banzo no modelo "GAP70".

Figura 6.22 - Abaulamento do banzo no modelo "GAP90".

Figura 6.23 - Colapso por plastificação da parede do banzo no modelo "GAP110".

Figura 6.24 – Abaulamento do banzo no modelo "GAP110".

A variação do "gap" não muda o mecanismo de colapso para a ligação permanecendo os mesmos mecanismos de colapso por plastificação da parede do banzo, Modo A, e abaulamento do banzo, Modo F, que foram encontrados no modelo GAP10,33, que representa o protótipo.

6.4 SOLICITAÇÃO DE DIMENSIONAMENTO VERSUS SOLICITAÇÃO DE ESCOAMENTO OBTIDA NUMERICAMENTE PELO ANSYS

O dimensionamento da ligação YT, realizado no capítulo III, defini uma solicitação de dimensionamento no topo do montante de 137 kN para o protótipo, para 100% de aproveitamento do montante e 82% para diagonal, sem considerar no cálculo a presença do momento fletor. E também foi realizado o cálculo considerando a presença do momento fletor, assim, a solicitação de dimensionamento no topo do montante cai para 121 kN obtendo a mesma porcentagem de aproveitamento.

Vale a pena lembrar que o modo de colapso, Modo A, definiu o dimensionamento e é influenciado pela variação do "gap". Foram igualmente calculadas as solicitações de dimensionamento para cada um dos modelos novos e estes valores foram comparados com as solicitações de escoamento fornecidas pelo ANSYS dos mesmos. A solicitação de dimensionamento foi obtida para dois casos: considerando a presença do momento fletor e sem considera - lá. Os resultados são mostrados pela Figura 6.25.

223

Figura 6.25 – Solicitação de dimensionamento e solicitação de escoamento.

O gráfico da Figura 6.25 mostra que a presença do momento fletor influi diretamente na solicitação de dimensionamento da ligação, mas esta influência não se altera significativamente conforme o aumento do "gap". Isto pode ser explicado porque o aumento no momento fletor provocado pelo aumento do valor do "gap", produz um aumento do momento na face tracionada do banzo, e no dimensionamento utilizam-se os esforços da face comprimida do banzo, conforme mostrado no capítulo III.

A Tabela 6.3 mostra o valor da solicitação de dimensionamento, da solicitação de escoamento e qual o percentual de diferença entre elas, considerando a presença do momento fletor no cálculo.

Tabela 6.3 – Solicitação de dimensionamento, solicitação de escoamento e percentual de diferença entre elas, considerando a presença do momento fletor no cálculo.

	Solicitação de	Solicitação de	
Valor do "gap"	dimensionamento(kN)	escoamento(kN)	% de diferença
	Com momento fletor	ANSYS	
GAP 10,33	121	161	33,06%
GAP 30	114	131	14,91%
GAP50	112	121	8,04%
GAP70	113	115	1,77%
GAP90	111	109	-1,80%
GAP110	108	104	-3,70%

A Tabela 6.4 mostra o valor da solicitação de dimensionamento, da solicitação de escoamento e qual o percentual de diferença entre elas, sem considerar a presença do momento fletor no cálculo.

Tabela 6.4 – Solicitação de dimensionamento, solicitação de escoamento e percentual de diferença entre elas, sem considerar a presença do momento fletor no cálculo.

	Solicitação de	Solicitação de	
Valor de gap	dimensionamento(kN)	escoamento(kN)	% de diferença
	Sem momento fletor	ANSYS	
GAP10,33	137	161	17,52%

Quando a relação e/d₀ é menor ou igual o limite de 0,25 o momento fletor pode ser desprezado no dimensionamento da ligação. Neste caso apenas para o modelo GAP=10,33, utilizado na modelagem do protótipo de ligação YT, poderia ser realizado o dimensionamento sem considerar a presença do momento fletor. Desta forma a solicitação de escoamento dada pela modelagem numérica via ANSYS esta 17,52% acima da solicitação de dimensionamento fornecida pelas normas técnicas internacionais CIDECT.

6.5 ANÁLISES DOS RESULTADOS

Entre g=10,33 mm e g=110 mm, que esta fora do limite de validade da relação e/d_0 , o percentual de diferença entre a solicitação de dimensionamento e a solicitação de escoamento vai abaixando conforme cresce o valor do "gap".

Para o "gap" até g=70 mm, considerando ou não a presença do momento fletor, a solicitação de escoamento do modelo numérico esta acima da solicitação de dimensionamento; para "gap" maiores que g=70 mm a solicitação de dimensionamento esta acima da solicitação de escoamento prevista pela modelagem numérica, portanto contra a segurança.

Para a ligação YT estudada, para "gap" maiores que g=10,33 mm, o percentual de diferença entre a solicitação de dimensionamento e a solicitação de escoamento está diminuindo conforme cresce o valor do "gap", portanto a formulação existente deve ser revista. Ligações YT com outros tipos de perfis devem ser estudadas para avaliar se o comportamento é equivalente.
CAPÍTULO VII

CONSIDERAÇÕES FINAIS

7.1 CONSIDERAÇÕES GERAIS

Nos últimos anos tem se tornado mais freqüente o uso de estruturas tubulares metálicas em função da produção deste tipo de perfil no Brasil. Paralelamente, estudos científicos relacionados ao tema têm também se intensificados.

O trabalho objetivou o estudo do comportamento de um tipo de ligação tubular com perfis nacionais, utilizando normas internacionais, na intenção de comprovar que essas normas podem se adequar com segurança também a esses perfis.

O tipo de ligação YT, definido como objeto de estudo, é bastante comum em treliças planas, que possuem ampla utilização no Brasil.

Foram fabricados quatro modelos de ligação YT com seções tubulares circulares e dimensões iguais para serem testados em laboratório.

As análises experimentais orientaram o desenvolvimento da modelagem numérica, fazendo a calibração de dois modelos: "Ansys Bilinear" e "Ansys Multilinear".

Através da modelagem numérica calibrada, pode-se partir para a realização de um estudo paramétrico, com o objetivo de conhecer cada vez mais o comportamento das ligações tubulares. As análises paramétricas são mais fáceis de serem realizadas e menos onerosas que os ensaios experimentais e demandam um menor tempo de execução. Para os estudos paramétricos foi variada a distância entre a diagonal e o montante, chamado de "gap", mantendo constantes os outros parâmetros.

Resumindo, o principal objetivo desse trabalho foi avaliar o comportamento de uma ligação YT. Esta avaliação envolveu uma análise teórica, uma análise experimental e uma análise numérica através do software ANSYS 9.0. A análise teórica envolveu normas internacionais, como CIDECT. A análise experimental foi realizada através de quatro ensaios em protótipos iguais de ligação YT com barras de seções tubulares circulares. Estes ensaios tiveram uma importância fundamental para calibração do modelo numérico. Calibrado o modelo numérico foram gerados novos modelos com variação do "gap".

7.2 ANÁLISE TEÓRICA

Na análise teórica consideram-se várias formulações existentes que descrevem os modos de colapso das ligações. As mais semelhantes entre si são as formulações do EUROCODE 3, PACKER e HENDERSON (1997), CIDECT (1992) e RAUTARUUKKI (1998). Entre elas o CIDECT foi considerado mais fácil e compacto para utilização no dimensionamento do protótipo da ligação YT, mostrado no capítulo III.

Essas formulações, como conclusão deste trabalho, são validas para os tubos nacionais utilizados.

No dimensionamento das ligações, como sugestão deste trabalho, deve-se levar sempre em consideração o efeito do momento fletor no cálculo, ou seja, o

dimensionamento destas estruturas tubulares deve ser realizado considerando-a como sendo um pórtico e não como uma treliça.

7.3 ANÁLISE EXPERIMENTAL

Os ensaios de tração e de compressão determinaram as propriedades mecânicas do material utilizado nos protótipos. Essas propriedades deram suporte para as análises numéricas.

Definida a ligação YT, como objeto de estudo, foram fabricados quatro protótipos com tubos laminados sem costura cedidos pela V&M do Brasil.

A utilização do pórtico de ensaio se mostrou eficiente e possibilitou a montagem do ensaio com o protótipo posicionado na vertical, com peso próprio na mesma direção da força aplicada, conforme é uso comum em treliças planas.

O posicionamento do atuador hidráulico através de uma estrutura suporte sustentada pela viga superior do pórtico de ensaio se mostrou adequada.

A aplicação da força através de uma rótula provou ser bastante eficiente na centralização da força, pois o deslocamento nesta região mostrada pelos transdutores de deslocamento foi muito pequeno.

Os extensômetros e as rosetas tiveram 100% de aproveitamento nos três ensaios, sem que nenhum deles apresentasse perda de sinal ou se descolasse do protótipo.

Dos dezenove transdutores de deslocamento, apesar da dificuldade de posicionamento, principalmente na região do nó da ligação, apenas um deles, o TD16, se deslocou do ponto em que fora posicionado.

As vigas de contenção lateral, restringindo o deslocamento do topo do montante para fora do plano da ligação, no ENSAIO II, provaram não ter eficiência, assim como os ciclos de carregamento e descarregamento.

O primeiro ensaio realizado, chamado de pré-ensaio, teve caráter investigativo para avaliar a segurança do pórtico de ensaio e a metodologia de ensaio para o protótipo da ligação YT. O segundo, terceiro e o quarto ensaios foram chamados de ENSAIO I, ENSAIO II e ENSAIO III. Foi observado que o ENSAIO I teve por solicitação última o valor de 240kN, mas lembrando que houve ruptura da solda que interrompeu o ensaio, o ENSAIO II teve por solicitação última o valor de 240kN, mas lembrando que houve ruptura da solda que interrompeu o ensaio, o ENSAIO II teve por solicitação última o valor de 358,6 kN, mas lembrando que a existência de uma viga de contenção lateral, pode ter gerado um aumento de resistência da ligação e por fim o ENSAIO III que teve por solicitação última o valor de 316,4 kN, sem que fosse detectado algum tipo de falha na solda ou ganho de resistência.

Vale observar que os ciclos de carregamento e descarregamento realizados no ensaio II não atingiram deformações plásticas consideráveis, portanto eles não alteraram os resultados para o ENSAIO II.

As deformações plásticas ocorreram principalmente na diagonal e na região do nó da ligação, onde estava posicionada a roseta 1.

Deve-se tomar um cuidado muito especial com relação à solda na fabricação de estruturas tubulares, pois esta pode ser um ponto de fragilidade na estrutura caso seja mal dimensionada.

A correlação realizada entre os ensaios a partir do ENSAIO III apresentou boa convergência, com relação a solicitação de escoamento no ponto representado pela roseta1.

Os resultados apresentados pelos extensômetros em cada um dos ENSAIOS I, II e III são semelhantes, e são representativos do estado de tensão esperado para cada

região. Portanto, mostram que os ensaios foram equivalentes e representativos de uma ligação de treliça plana com ligações tubulares do tipo YT.

7.4 ANÁLISE NUMÉRICA

Os resultados apresentados pelos modelos numéricos apresentaram boa convergência quando comparado com o modelo experimental.

O percentual de erro entre a solicitação de escoamento, no ponto representado pela roseta 1, entre modelos numéricos e modelo experimental foi em torno de 3%.

O abaulamento do banzo mostra uma tendência não linear no deslocamento.

As condições de contorno, na modelagem numérica, influenciaram bastante nas deformações, principalmente no banzo. Esta influência foi observada quando se alterava as restrições nas extremidades das barras da ligação e obtinha uma mudança significativa das deformações lidas em alguns pontos do banzo. A modelagem das chapas de extremidade das barras foi a melhor opção encontrada.

O modelo "Ansys Multilinear" conseguiu atingir deformações plásticas muito semelhantes ao modelo experimental, melhor do que o modelo "Ansys Bilinear", mas como essas deformações são muito pequenas o comportamento para os dois modelos analisados foi muito semelhante.

Os resultados dos modelos numéricos "Ansys Bilinear" e "Ansys Multilinear" apresentaram boa convergência quando comparados aos resultados do modelo experimental.

A região mais crítica da ligação YT foi encontrada no nó da ligação abaixo do montante.

A solicitação de escoamento para ligação YT, fornecida pelas análises numéricas foi de 161 kN, para o modelo "Ansys Multilinear", a solicitação de dimensionamento da ligação YT dada pelas normas técnicas internacionais é de 137kN. Portanto a solicitação de escoamento fornecida pela modelagem numérica esta 17,52% acima da solicitação de dimensionamento, o que mostra que a formulação apresentada no CIDECT é segura, para os perfis nacionais analisados.

7.5 ANÁLISE PARAMÉTRICA

A variação do "gap" não muda o mecanismo de colapso para a ligação permanecendo os mesmos mecanismos de colapso por plastificação da parede do banzo, Modo A, e abaulamento do banzo, Modo F.

A presença do momento fletor influi diretamente na solicitação de dimensionamento da ligação, mas esta influência não se altera significativamente conforme o aumento do "gap".

Para o "gap" até g=70 mm, considerando ou não a presença do momento fletor, a solicitação de escoamento do modelo numérico está acima da solicitação de dimensionamento; para "gap" maiores que g=70 mm a solicitação de dimensionamento esta acima da solicitação de escoamento prevista pela modelagem numérica, portanto contra a segurança.

Para a ligação YT estudada, para "gap" maiores que g=10,33 mm, o percentual de diferença entre a solicitação de dimensionamento e a solicitação de escoamento esta abaixando conforme cresce o valor do "gap", portanto a formulação existente deve ser revista. Ligações YT com outros tipos de perfis devem ser estudadas para avaliar se o comportamento é equivalente.

7.6 TRABALHOS FUTUROS

É importante, como sugestão para trabalhos futuros, a realizações de outros estudos paramétricos para essa mesma ligação YT, variando-se os diâmetros e espessuras dos perfis, inclinação da diagonal, utilizando o mesmo tipo de modelagem numérica. Após essa etapa alguns modelos poderiam ser escolhidos para serem testados em laboratório. Assim, validado novamente a modelagem numérica, poderia se verificar a veracidade dos limites de validade existentes e se necessário propor mudanças nas formulações existentes ou propor uma nova formulação para o dimensionamento de seções tubulares circulares.

Outra sugestão seria a avaliação de uma ligação em um ensaio de uma treliça plana em escala real.

REFERÊNCIAS

AMERICAN INSTITUTE OF STEEL CONSTRUCTION - AISC, INC, Load and resistance factor design. 2000.

AMERICAN SOCIETY FOR TESTING AND MATERIALS - ASTM – Standart test methods for tension testing of metallic materials, 1995.

ANSYS. Inc. theory reference, version 9.0, 2004.

BENT, R.M. Design rules key to competitive tubular structures. In: INTERNATIONAL CONFERENCE ON TUBULAR STRUCTURES, May, 1996a, Vancouver, Canada - American Welding Society, p 19-31.

BILLINGTON, C.J., LALANI, M., TEBBETT, I.E. Background to new formulae for the ultimate limit state of tubular joints. In: 14TH ANNUAL OFFSHORE TECHNOLOGY CONFERENCE, 14, 1982, Houston, Texas, USA. **Anais...** OTC 4189, p. 261-280.

CAO, J. J., PACKER, J. A., YANG, G.J. Yield line analysis of RHS connections with axial loads. Journal of Constructional Steel Research, Australia, v. 48, p. 1-25, 1998.

COUTIE, M., G., DAVIES, G. The strength of welded gap joints with RHS members. In: INTERNATIONAL CONFERENCE ON JOINTS IN STRUCTURAL STEELWORK. Preprint pp. 4.80-4.98, 1981 apud PACKER J. A. Developments in the design of welded HSS truss joints with RHS chords. **Canadian Journal of Civil Engineering**, v. 10, n. 1, p. 92-103, 1983.

DALE, K. Innovative tubular connections. Disponível em: <http://www.curtin.edu.au/curtin/centre/amecrc/papers/ame98/kdale.html>. Acesso em: 10 janeiro 2003.

DAVIES, G., CROCKETT, P. The strength of welded T-DT joints in rectangular and circular hollow section under variable axial loads. **Journal of Constructional Steel Research**, Great Britain, v. 37, n. 1, p. 1-131, 1996.

DEXTER, E.M., LEE, M. M. K. Static strength of axially loaded tubular K-joint. I:Behaviour. **Journal of Structural Engineering**, New York, v. 125, n. 2, p. 194-201, Feb. 1999a.

DEXTER, E.M., LEE, M. M. K. Static strength of axially loaded tubular K-joint. II:Ultimate capacity. **Journal of Structural Engineering**, New York, v. 125, n. 2, p. 202-210, Feb. 1999b.

DEXTER, E.M., LEE, M. M. K., KIRKWOOD, M.G. Overlapped K-joints in circular hollow sections under axial loading (An investigation of the factors affecting the static strength using numerical modeling). **Journal of Offshore Mechanics and Arctic Engineering**, OMAE. New York, ASME: The American Society of Mechanical Engineers, v. 118, p. 53-61, Feb. 1996.

EASTWOOD, W., WOOD, A., A. Welded joints in tubular structures involving rectangular sections. **Proceedings**, CONFERENCE ON JOINTS IN STRUCTURES. Session A, Paper2, Sheffield, England, 1970a apud PACKER, J. A. HENDERSON, J. E. **Hollow structural section connections and trusses:** a design guide. 2nd ed. Ontario: Canadian Institute of Steel Construction, 1997. 446 p.

EASTWOOD, W., WOOD, A., A. Welded joints in tubular structures involving rectangular sections. **Proceedings**, CONFERENCE ON JOINTS IN STRUCTURES. Session A, Paper2, Sheffield, England, 1970a apud PACKER J. A. Developments in the design of welded HSS truss joints with RHS chords. **Canadian Journal of Civil Engineering**, v. 10, n. 1, p. 92-103, 1983.

EASTWOOD, W., WOOD, A., A. Recent research on joints in tubular structures. **Proceedings**, CANADIAN STRUCTURAL ENGINEERING CONFERENCE. Toronto, Ontario, 1970b apud PACKER, J. A. HENDERSON, J. E. **Hollow structural section connections and trusses:** a design guide. 2nd ed. Ontario: Canadian Institute of Steel Construction, 1997. 446 p.

EUROCODE 3. **Design of steel structures**. Part1.1: General rules and rules for buildings, Annex K. Env 1993-1-1. 1992.

FILIPKOWSKI, J., KRYSZTOFORSKI, A. An experimental study of plane tubular trusses with two different welded joints. **Space Structures 4**, Thomas Telford, London, v. 2, p. 1879-1884, 1993.

FRATER, G. S., PACKER, J. A. Modelling of hollow structural section trusses. **Canadian Journal of Civil Engineering**, v. 19, n. 6, p. 947-959, 1992a.

FRATER, G. S., PACKER, J. A. Weldment design for RHS truss connections I: Applications. **Journal of Structural Engineering**, New York, v. 118, n. 10, p. 2784-2803, Oct. 1992b.

FRATER, G. S., PACKER, J. A. Weldment design for RHS truss connections II: Experimentation. **Journal of Structural Engineering**, New York, v. 118, n. 10, p. 2804-2820, Oct. 1992c.

FUNG, T. C., SOH, C. K., GHO, W. M., QIN, F. Ultimate capacity of completely overlapped tubular joints - I. An experimental investigation. **Journal of Constructional Steel Research**, Singapore, v. 57, n. 8, p. 855-880, Aug. 2001.

FUNG, T. C., SOH, C. K., GHO, W. M. Ultimate capacity of completely overlapped tubular joints - II. Behavioural study. **Journal of Constructional Steel Research**, Singapore, v. 57, n. 8, p. 881-906, Aug. 2001.

GAZZOLA, F., LEE, M. M. K., DEXTER, E. M. Design equation for overlap tubular Kjoints under axial loading. **Journal of Structural Engineering**, New York, v. 126, n. 7, p. 798-808, Jul. 2000.

GHO, W. M., GAO, F., YANG, Y. Strain and stress concentration of completely overlapped tubular CHS joints under basis loadings. **Journal of Constructional Steel Research**, Singapore, v. 62, p. 656-674, 2006a.

GHO, W. M., YANG, Y., GAO, F. Failure mechanisms of tubular CHS joints with complete overlap of braces. Journal of Constructional Steel Research, Singapore, v. 44, p. 655-666, 2006b.

HIBBELER, R.C. Resistência dos materiais. Prentice Hall, São Paulo, 2004.

HSS_CONNEX. A computer program for the design of hollow structural section (HSS) connections under predominantly static loading. 1999. Version 1.02. www.steeltubeinstitute.org

JÁRMAI, K., FARKAS, J. **Mechanics and design of tubular structures**. Springer Wien New York, 1998.

KIM, W.B. Ultimate strength of tube-gusset plate connections considering eccentricity. **Engineering Structures**, Great Britain, v. 23, p. 1418-1426, 2001.

KOLTSAKIS, E., THOMOPOULOS, K. Validation of a CHS connection used in X-bracing diagonals. **Journal of Constructional Steel Research**, v. 56, p. 225-235, 2000.

KOSTESKI, N., PACKER, J.A., PUTHLI, R.S. A finite element method based yield load determination procedure for hollow structural section connections. **Journal of Constructional Steel Research**, Singapore, v. xx, p. xxx-xxx, 2002(Article in press).

KUROBANE, Y., MAKINO, Y., OCHI, K. Ultimate resistence of unstiffened tubular joints. **Journal of Structural Engineering**, New York, v. 110, n. 2, p. 385-400, Feb. 1984.

KUROBANE, Y., OCHI, K. AWS vs international design rules for circular tubular K-connections. **Engineering Structures**, Great Britain, v. 19, n. 3, p. 259-266, 1997.

KUROBANE, Y., OGAWA, K., OCHI, K., MAKINO, Y. Local buckling of braces in tubular K-joints. **Thin-Walled Structures**, England, n. 4, p. 23-40, 1986.

LEE, M.M.K. Strength, stress and fracture analyses of offshore tubular joints using finite elements. **Journal of Constructional Steel Research**, Singapore, v. 51, p. 265-286, 1999.

LEE, M.M.K., WILMSHURST, S.R. Strength of multiplanar tubular kk-joints under antisymmetrical axial loading. In: INTERNATIONAL SYMPOSIUM ON TUBULAR STRUCTURES, 7, 1996. **Anais...** Tubular Structures VII. Rotterdam: A. A. Balkema, 1996. p. 149-156.

LIE, S.T., LEE, C.K., WONG, S.M. Modelling and mesh generation of weld profile in tubular Y-joint. Journal of Constructional Steel Research, v. 57, p. 547-567, 2001.

MAKINO, Y., KUROBANE, Y., OCHI, K., VAN DER VEGTE, G.J., WILMSHURST, S.R. Database of test and numerical análisis results for unstiffened tubular joints. In: IIW Doc. XV-E-96-220, Miskolc, Hungary, 1996 apud MORITA, M., YAMADA, Y., MAKINO, Y., WILMSHURST, S.R., KUROBANE, Y., LEE, M.M.K. A new ultimate capacity formula for unstiffened CHS T-, TT- and K-joints under axial brace loads. In: INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, 7, 1997, Honolulu, USA. **Anais...** May 25-30, p. 13-20.

MENDANHA, F.O. Análise de ligações de perfis tubulares em aço do tipo K e KT. 2006. 112 f. Dissertação (Mestrado) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto.

McGUIRE, W. **Steel structures**. London: Prentice-hall International, Inc., 1968. cap. 6 - Connections - Part II - Connection design, p. 1018-1025.

MORITA, M., YAMADA, Y., MAKINO, Y., WILMSHURST, S.R., KUROBANE, Y., LEE, M.M.K. A new ultimate capacity formula for unstiffened CHS T-, TT- and K-joints under axial brace loads. In: INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, 7, 1997, Honolulu, USA. **Anais...** May 25-30, p. 13-20.

PACKER, J. A., CASSIDY, C. E. Effective weld length for HSS T, Y, and X connections. **Journal of Structural Engineering**, New York, v. 121, n. 10, p. 1402-1408, Oct. 1995.

PACKER, J., A. A theoretical analysis of welded steel joints in rectangular hollow sections. 1978 thesis, University of Nottingham, Nottingham, England apud PACKER J.
A. Developments in the design of welded HSS truss joints with RHS chords. Canadian Journal of Civil Engineering, v. 10, n. 1, p. 92-103, 1983.

PACKER J. A. Design examples for HSS trusses. **Canadian Journal of Civil Engineering**, v. 13, n. 4, p. 460-473, 1986.

PACKER J. A. Developments in the design of welded HSS truss joints with RHS chords. **Canadian Journal of Civil Engineering**, v. 10, n. 1, p. 92-103, 1983.

PACKER J. A., DAVIES, G. Ultimate strength of overlapped joints in RHS trusses. In: THE INSTITUTION OF CIVIL ENGINEERS. Part 2 - Research and theory. **Proceedings...** 1982, vol. 73, June, p. 329-350.

PACKER J. A., DAVIES G., COUTIE M.G. Yield strength of gapped joints in RHS trusses. In: THE INSTITUTION OF CIVIL ENGINEERS. Part 2 - Research and theory. **Proceedings...** 1980, vol. 69, Dec., p. 995-1013.

PACKER J. A., DAVIES G., COUTIE M.G. Ultimate strength of gapped joints in RHS trusses. **Journal of the Structural Division**, ASCE, v. 108, n. ST2, p. 411-431, Feb. 1982.

PACKER, J. A. HENDERSON, J. E. **Hollow structural section connections and trusses:** a design guide. 2nd ed. Ontario: Canadian Institute of Steel Construction, 1997. 446 p.

PACKER, J. A., WARDENIER, J., KUROBANE, Y., DUTTA, D., YEOMANS, N.: Design guide for rectangular hollow section (RHS) joints under predominantly static loading - CIDECT. Verlag TÜV Rheinland Gmbtt, 1992.

PAUL, J.C., MAKINO, Y., KUROBANE, Y. Ultimate resistence of tubular double T-joints under axial brace loading. **Journal of constructional steel research**, vol. 24, No.3, pp. 205-228, 1993 apud MORITA, M., YAMADA, Y., MAKINO, Y., WILMSHURST, S.R., KUROBANE, Y., LEE, M.M.K. A new ultimate capacity formula for unstiffened CHS T-, TT- and K-joints under axial brace loads. In: INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, 7, 1997, Honolulu, USA. **Anais...** May 25-30, p. 13-20.

RAUTARUUKKI OYJ, H. V. **Design handbook for rautaruukki structural hollow sections**. Hämeenlinna, Finland: Otava, 1998. 351 p.

SAIDANI, M. The effect of joint eccentricity on the distribution of forces in RHS lattice girders. **Journal of Constructional Steel Research**, Australia, v. 47, p. 211-221, 1998.

VALLOUREC & MANNESMANN TUBES. Catálogo de informações técnicas: Tubos estruturais de seção circular (MSH). Belo Horizonte-MG.

VALLOUREC & MANNESMANN TUBES. Catálogo de informações técnicas: Tubos estruturais de seções quadradas e retangulares. Belo Horizonte-MG.

WARDENIER, J., DAVIES, G. The strength of predominantly statically loaded joints with a square or rectangular hollow section chord. In: INTERNATIONAL INSTITUTE OF WELDING ANNUAL ASSEMBLY, Oporto, Doc. XV-492-81, 1981 apud PACKER J. A. Developments in the design of welded HSS truss joints with RHS chords. **Canadian Journal of Civil Engineering**, v. 10, n. 1, p. 92-103, 1983.

WARDENIER, J., KUROBANE,Y., PACKER, J. A., DUTTA, D., YEOMANS, N. **Design** guide for circular hollow section (CHS) joints under predominantly static loading -CIDECT. Verlag TÜV Rheinland Gmbtt, 1991.

WARDENIER, J., STARK, J., W., B. **The static strength of welded lattice girder joints in structural hollow sections**: Parts 1-10 - CIDECT Final Report 5Q/78/4, Delft University of Technology, Delft, Netherlands, 1978 apud PACKER J. A. Developments in the design of welded HSS truss joints with RHS chords. **Canadian Journal of Civil Engineering**, v. 10, n. 1, p. 92-103, 1983.

WARDENIER, J., DAVIES, G., e INTERNATIONAL INSTITUTE OF WELDING. **Design recommendations for hollow section joints – predominantly statically loaded**. Intenational Institute of welding of welding Annual Assembly, Oporto, XV-491-81 revised, 1981 apud PACKER J. A. Developments in the design of welded HSS truss joints with RHS chords. **Canadian Journal of Civil Engineering**, v. 10, n. 1, p. 92-103, 1983. WILKINSON, T., HANCOCK, G.J. Plastic design of cold-formed rectangular hollow sections. In: 5TH PACIFIC STRUCTURAL STEEL CONFERENCE, 5, 1998, Seoul, Korea. **Anais...** Techno Press, 1998. p. 49-54.

YU, Y., WARDENIER, J. Analytical and numerical investigations on the static strength of full width rectangular hollow section X-joints under different load cases. In: INTERNATIONAL SYMPOSIUM ON TUBULAR STRUCTURES, 7, 1996a. **Anais...** Tubular Structures VII. Rotterdam: A. A. Balkema, 1996. p. 197-204.

YU, Y., WARDENIER, J. Influence of chord bending moments on the ultimate load capacity of X-joints in rectangular hollow sections. In: INTERNATIONAL SYMPOSIUM ON TUBULAR STRUCTURES, 7, 1996b. **Anais...** Tubular Structures VII. Rotterdam: A. A. Balkema, 1996. p. 205-212.

YURA, J.A., ZETTLEMOYER, N., EDWARDS, I.F. Ultimate capacity equations for tubular joints. . In: 12TH ANNUAL OFFSHORE TECHNOLOGY CONFERENCE, 12, 1980, Houston, Texas, USA. **Anais...** OTC 3690, p. 113-126.

ZHAO, X. L. Verification of the deformation limit for T-joints in cold-formed RHS sections. In: INTERNATIONAL SYMPOSIUM ON TUBULAR STRUCTURES, 7, 1996, Miskolc, Hungary. **Anais...** Tubular Structures VII. Rotterdam: A. A. Balkema, 1996, p. 213-220.

ZHAO, X. L. Deformation limit and ultimate strength of welded T-joints in cold-formed RHS sections. **Journal of Constructional Steel Research**, Australia, v. 53, n. 2, p. 149-165, Feb. 2000.

ANEXOS

ANEXO 1 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO ENSAIO DE TRAÇÃO PARA A DETERMINAÇÃO DO DIAGRAMA TENSÃO-DEFORMAÇÃO DAS SEÇÕES TUBULARES.

DRP Process								
Data			tracao			Time:	299,57578	
		EXTENSOMET			EXTENSOMET			
Time	FORCA	RO	Time	FORCA	RO	Deformação	Tensão	Módulo
Sec	Ν	%	Sec	N	%	sem unidade	(kN/mm2)	E(kN/mm2)
0,63359994	672,8855	0,001049209	1,1335999	1227,597	0,004495356	1,0492E-05	0,021989722	2095,837724
1,6335999	1789,1993	0,01138765	2,1335998	2371,4741	0,02172609	0,00011388	0,058470565	513,4559401
2,6335998	2912,4038	0,040679898	3,1337998	3463,6697	0,045849115	0,0004068	0,095176595	233,9646839
3,6337998	4008,0452	0,056187559	4,1337996	4517,9663	0,061356779	0,00056188	0,130981869	233,1154291
4,6337996	5041,6689	0,071695223	5,1335998	5534,3633	0,080310583	0,00071695	0,164760422	229,8066938
5,6337996	6058,0659	0,085479811	6,1337996	6547,3145	0,095818244	0,0008548	0,19797601	231,6055774
6,6337996	7022,7813	0,10443362	7,1337996	7477,5757	0,11477205	0,00104434	0,229502657	219,7593618
7,6337996	7935,8159	0,11994126	8,1337996	8394,0557	0,12855664	0,00119941	0,259340389	216,2228318
8,6337996	8852,2959	0,13372585	9,1335993	9227,8457	0,14751044	0,00133726	0,289290716	216,3311848
9,6337996	9624,0684	0,15612581	10,1338	9737,7676	0,19058728	0,00156126	0,314512039	201,447819
10,6338	9438,0156	0,23021799	11,1338	9334,6543	0,2612333	0,00230218	0,308431882	133,9738403
11,6338	9348,4355	0,28191018	12,1338	9338,0986	0,30775627	0,0028191	0,305504428	108,3694204
12,6338	9400,1162	0,32498702	13,1338	9424,2344	0,35600236	0,00324987	0,30719334	94,52480283
13,6338	9475,916	0,38012537	14,1338	9493,1426	0,40769452	0,00380125	0,309670458	81,46534853
14,6338	9544,8232	0,43181756	15,1338	9548,2695	0,45421749	0,00431818	0,311922327	72,23474812
15,6338	9568,9424	0,48350978	16,133799	9586,168	0,512802	0,0048351	0,312710536	64,67512114
16,633799	9620,623	0,54726344	17,133799	9675,75	0,57655567	0,00547263	0,314399444	57,44937839
L				L	L			

Tabela Cp1a – Dados experimentais do ensaio de tração para seção tubular circular de diâmentro 73mm e # 5,16mm.

17,633799	9661,9678	0,6041249	18,133799	9699,8672	0,62480175	0,00604125	0,315750582	52,26577843
18,633799	9748,1035	0,66615552	19,133799	9734,3213	0,69200158	0,00666156	0,318565474	47,82148677
19,633799	9775,666	0,72301692	20,133799	9789,4482	0,76953995	0,00723017	0,319466209	44,18516363
20,633799	9758,4395	0,80400151	21,133799	9786,0029	0,83501679	0,00804002	0,318903252	39,66450904
21,633799	9761,8848	0,87120134	22,133799	9782,5576	0,90566278	0,00871201	0,319015843	36,61792384
22,633799	9782,5576	0,94184726	23,133799	9834,2383	0,97458571	0,00941847	0,319691425	33,94302223
23,633799	9792,8936	1,0159395	24,133799	9865,2471	1,050401	0,0101594	0,320029203	31,50081305
24,633799	9844,5752	1,0814162	25,133799	9813,5664	1,121047	0,01081416	0,321718144	29,74970634
25,633799	9820,4561	1,1589546	26,133799	9823,9023	1,1951391	0,01158955	0,320929938	27,69132957
26,633799	9879,0293	1,2296005	27,133799	9889,3652	1,2675081	0,01229601	0,322844095	26,25601525
27,633799	9879,0293	1,3123082	28,133799	9858,3564	1,3416004	0,01312308	0,322844095	24,60124038
28,633799	9823,9023	1,3829541	29,133799	9827,3477	1,4208617	0,01382954	0,321042559	23,21425988
29,633799	9892,8105	1,4604925	30,133799	9879,0293	1,5001231	0,01460493	0,323294461	22,13598911
30,633799	9885,9199	1,5294154	31,133799	9865,2471	1,5724922	0,01529415	0,323069278	21,12371026
31,633799	9817,0117	1,6035075	32,133797	9823,9023	1,6465843	0,01603508	0,320817376	20,0072264
32,633797	9817,0117	1,6827688	33,133797	9841,1289	1,7155073	0,01682769	0,320817376	19,06485168
33,633797	9841,1289	1,7499685	34,133797	9796,3389	1,782707	0,01749969	0,32160552	18,37778906
34,633797	9803,2295	1,8102762	35,133797	9858,3564	1,8326762	0,01810276	0,320366977	17,69713247
35,633797	9868,6924	1,8567992	36,133797	9851,4648	1,879199	0,01856799	0,322506288	17,36893723
36,633797	9844,5752	1,8929838	37,133797	9913,4824	1,9136606	0,01892984	0,321718144	16,99529303
37,633797	9913,4824	1,9222759	38,133797	9899,7012	1,9360605	0,01922276	0,323970013	16,85346069
38,633797	9985,8369	1,9515682	39,133797	9965,1641	1,9653528	0,01951568	0,326334539	16,72165693
39,633797	10013,4	1,9791374	40,133797	10065,082	1,9929219	0,01979137	0,327235294	16,53423831
40,633797	10102,98	2,0118759	41,133797	10147,771	2,0342758	0,02011876	0,330162745	16,41069139
41,633797	10154,662	2,0532296	42,133797	10161,553	2,0739064	0,0205323	0,331851699	16,16242525
42,633797	10202,898	2,0945833	43,133797	10220,124	2,1152604	0,02094583	0,333428039	15,91858577

43,633797	10258,024	2,1393833	44,133797	10285,587	2,1669524	0,02139383	0,335229542	15,66944748
44,633797	10316,596	2,1876292	45,133797	10361,387	2,2065833	0,02187629	0,33714366	15,41137137
45,633797	10371,724	2,2272601	46,133797	10430,295	2,2531061	0,0222726	0,338945229	15,21803532
46,633797	10426,85	2,2772291	47,133797	10450,968	2,299629	0,02277229	0,340746732	14,96321701
47,633797	10506,094	2,325475	48,133797	10564,666	2,3495982	0,02325475	0,343336405	14,76414088
48,633797	10585,339	2,368552	49,133797	10571,557	2,3892291	0,02368552	0,345926111	14,60496164
49,633797	10602,565	2,4167979	50,133797	10650,802	2,4409211	0,02416798	0,346489052	14,33669949
50,633797	10637,021	2,4581518	51,133797	10681,811	2,4874439	0,02458152	0,347615065	14,1413181
51,633797	10702,482	2,508121	52,133797	10736,937	2,5374131	0,02508121	0,349754314	13,94487402
52,633797	10795,509	2,55809	53,133797	10805,846	2,5839362	0,0255809	0,352794412	13,79132133
53,633797	10805,846	2,6115053	54,133797	10878,198	2,6356285	0,02611505	0,353132222	13,52217138
54,633797	10864,417	2,6597514	55,133797	10912,653	2,6838744	0,02659751	0,355046307	13,3488531
55,633797	10902,316	2,7079973	56,133797	10960,889	2,723505	0,02707997	0,356284837	13,15676484
56,633797	10991,897	2,7493513	57,133797	11019,461	2,7734742	0,02749351	0,35921232	13,06534819
57,633797	11036,688	2,792428	58,133797	11074,587	2,8182743	0,02792428	0,360676078	12,91621766
58,633797	11084,924	2,8389511	59,133797	11081,479	2,861351	0,02838951	0,362252418	12,76007953
59,633797	11129,714	2,885474	60,133797	11167,613	2,9130433	0,02885474	0,363716144	12,60507438
60,633797	11167,613	2,9371662	61,133797	11177,95	2,95612	0,02937166	0,364954673	12,42540082
61,633797	11212,403	2,981966	62,133797	11267,53	2,9991968	0,02981966	0,366418399	12,28781276
62,633797	11284,758	3,025043	63,133797	11277,866	3,0422738	0,03025043	0,368782941	12,19099832
63,633797	11291,647	3,0663967	64,133797	11370,893	3,092243	0,03066397	0,369008072	12,03393129
64,633797	11322,656	3,1129198	65,133797	11367,447	3,1335967	0,0311292	0,370021438	11,88663575
65,633797	11398,456	3,161166	66,133797	11395,011	3,1835656	0,03161166	0,372498562	11,78358119
66,633797	11436,355	3,2059655	67,133797	11463,919	3,2300887	0,03205966	0,373737092	11,65755188
67,633797	11460,473	3,2490425	68,133797	11467,364	3,2748885	0,03249043	0,374525261	11,5272503
68,633797	11498,373	3,2938426	69,133797	11498,373	3,3179653	0,03293843	0,375763824	11,4080686

69,633797	11553,499	3,3455346	70,133797	11581,063	3,3696578	0,03345535	0,377565327	11,28565004
70,633797	11584,508	3,3834422	71,133797	11629,298	3,4179037	0,03383442	0,378578693	11,18915798
71,633797	11649,971	3,4437497	72,133797	11632,744	3,4661498	0,0344375	0,380718007	11,05533328
72,633797	11698,207	3,4868267	73,133797	11732,661	3,5092266	0,03486827	0,382294346	10,96396177
73,633797	11691,315	3,5385189	74,133797	11749,889	3,5609186	0,03538519	0,382069118	10,79743046
74,633797	11742,997	3,5815954	75,133797	11801,569	3,6074419	0,03581595	0,383758072	10,71472428
75,633797	11877,368	3,6505187	76,133797	11922,158	3,7108262	0,03650519	0,388149281	10,63271587
76,633797	12018,63	3,7728567	77,133797	12008,294	3,8314414	0,03772857	0,392765686	10,41029961
77,633797	12053,084	3,893472	78,133797	12084,093	3,9572258	0,03893472	0,393891634	10,11671932
78,633797	12146,11	4,01581	79,133797	12242,582	4,0795641	0,0401581	0,396931699	9,884225084
79,633797	12211,573	4,1364255	80,133797	12235,691	4,196733	0,04136426	0,399071013	9,647726354
80,633797	12283,927	4,2587633	81,133797	12328,717	4,3190713	0,04258763	0,401435523	9,426105529
81,633797	12383,845	4,3776555	82,133797	12414,854	4,4396863	0,04377656	0,404700817	9,244693124
82,633797	12487,206	4,5034399	83,133797	12528,551	4,558578	0,0450344	0,408078627	9,061487141
83,633797	12507,879	4,6206088	84,133797	12545,778	4,6843629	0,04620609	0,408754216	8,846328122
84,633797	12659,478	4,7429471	85,133797	12614,687	4,8049779	0,04742947	0,413708431	8,722602691
85,633797	12652,586	4,8652854	86,133797	12687,04	4,9273162	0,04865285	0,413483203	8,498642292
86,633797	12738,722	4,9927931	87,133995	12749,058	5,049654	0,04992793	0,416298105	8,33798029
87,633797	12793,848	5,1168542	88,133797	12883,429	5,1806078	0,05116854	0,418099608	8,17102836
88,633995	12873,093	5,230577	89,133797	12893,766	5,2926078	0,05230577	0,420689314	8,042885397
89,633995	12945,446	5,3580842	90,133995	13000,573	5,4252844	0,05358084	0,423053791	7,895616699
90,633995	12979,9	5,4821453	91,133995	13079,817	5,5441766	0,05482145	0,424179739	7,737477125
91,633797	13069,48	5,6027608	92,133995	13093,6	5,6596222	0,05602761	0,42710719	7,623155883
92,633995	13138,39	5,7250991	93,133995	13145,28	5,7854066	0,05725099	0,42935915	7,499593332
93,633797	13107,381	5,842268	94,133995	13165,953	5,9077449	0,05842268	0,428345784	7,331840722
94,633995	13217,634	5,9646058	95,133995	13269,314	6,031806	0,05964606	0,431948824	7,241867074

95,633995	13234,861	6,092114	96,133995	13289,987	6,1524215	0,06092114	0,432511797	7,099535521
96,633797	13272,761	6,2144518	97,133995	13376,123	6,2764826	0,06214452	0,433750359	6,9797043
97,633995	13358,896	6,3350673	98,133995	13389,905	6,3988209	0,06335067	0,436565229	6,891248476
98,633995	13372,678	6,4574056	99,133995	13383,014	6,5211596	0,06457406	0,437015621	6,767665654
99,633995	13445,031	6,5814667	100,134	13441,586	6,6452208	0,06581467	0,439380098	6,676020985
100,634	13458,813	6,7141438	101,134	13531,167	6,7727275	0,06714144	0,43983049	6,550805334
101,634	13534,611	6,8364816	102,134	13524,275	6,8985119	0,06836482	0,442307549	6,469812616
102,634	13558,73	6,9570966	103,134	13593,185	7,0225739	0,06957097	0,443095752	6,368975122
103,634	13637,975	7,0846047	104,134	13582,848	7,1397424	0,07084605	0,445685458	6,290900853
104,634	13610,411	7,2069421	105,134	13679,319	7,2638035	0,07206942	0,444784673	6,171614355
105,634	13689,655	7,3223882	106,134	13644,865	7,3809729	0,07322388	0,447374346	6,109678075
106,634	13731,001	7,4464493	107,134	13693,101	7,5084801	0,07446449	0,448725523	6,026033413
107,634	13686,21	7,5653419	108,134	13706,883	7,6273727	0,07565342	0,447261765	5,911983498
108,634	13786,127	7,6859565	109,134	13737,892	7,7428188	0,07685957	0,450527026	5,861691074
109,634	13744,782	7,8048491	110,134	13793,019	7,8686032	0,07804849	0,449175882	5,755087339
110,634	13858,48	7,9340796	111,134	13868,817	7,9943867	0,0793408	0,452891503	5,708179475
111,634	13848,145	8,059864	112,134	13913,607	8,1201715	0,08059864	0,452553758	5,614905638
112,634	13865,372	8,1822014	113,134	13896,381	8,2459555	0,08182201	0,453116732	5,537834012
113,634	13920,498	8,3079863	114,134	13903,271	8,3682938	0,08307986	0,454918235	5,475673874
114,634	13961,844	8,4303246	115,134	13930,835	8,4940786	0,08430325	0,456269412	5,412240138
115,634	13992,853	8,5612783	116,134	13965,288	8,6233091	0,08561278	0,457282778	5,341290889
116,634	13979,07	8,6887856	117,134	14016,97	8,7525396	0,08688786	0,456832353	5,257723852
117,634	14058,314	8,8180161	118,134	14027,306	8,8731546	0,08818016	0,459422026	5,210038414
118,634	14058,314	8,938632	119,134	14041,088	9,0110006	0,08938632	0,459422026	5,139735321
119,634	14106,55	9,0713081	120,134	14072,097	9,1350613	0,09071308	0,460998366	5,081939241
120,634	14137,559	9,2005377	121,134	14089,323	9,2608461	0,09200538	0,462011732	5,021573163

121,634	14141,005	9,3314915	122,134	14116,887	9,4021378	0,09331492	0,462124346	4,952309568
122,634	14116,887	9,4607229	123,134	14103,105	9,529645	0,09460723	0,461336176	4,876331136
123,634	14137,559	9,5968447	124,134	14185,795	9,6640453	0,09596845	0,462011732	4,814204527
124,634	14206,468	9,7277985	125,134	14247,813	9,7984447	0,09727799	0,46426366	4,77254602
125,634	14203,022	9,8621988	126,134	14237,477	9,9293985	0,09862199	0,464151046	4,706364728
126,634	14227,141	9,9931526	127,134	14247,813	10,062075	0,09993153	0,464939248	4,65257829
127,634	14299,494	10,134444	128,13399	14234,03	10,198197	0,10134444	0,467303725	4,611044528
128,63399	14278,821	10,263675	129,13399	14289,158	10,330874	0,10263675	0,466628137	4,546404063
129,63399	14265,039	10,398074	130,13399	14268,485	10,465274	0,10398074	0,466177745	4,483308593
130,63399	14299,494	10,54109	131,13399	14261,594	10,603121	0,1054109	0,467303725	4,433163226
131,63399	14364,957	10,673766	132,13399	14361,512	10,740966	0,10673766	0,469443039	4,398101281
132,63399	14296,048	10,809889	133,13399	14337,393	10,877089	0,10809889	0,467191111	4,321886294
133,63399	14323,611	10,940843	134,13399	14340,839	11,014935	0,10940843	0,468091863	4,278389359
134,63399	14347,729	11,089027	135,13399	14406,302	11,159673	0,11089027	0,468880033	4,228324385
135,63399	14371,847	11,226872	136,13399	14420,083	11,297519	0,11226872	0,469668203	4,183428854
136,63399	14371,847	11,366442	137,13399	14382,184	11,437088	0,11366442	0,469668203	4,132059994
137,63399	14382,184	11,504288	138,13399	14406,302	11,574934	0,11504288	0,470006013	4,085485456
138,63399	14395,966	11,643856	139,13399	14454,537	11,716226	0,11643856	0,470456405	4,040383231
139,63399	14464,873	11,786872	140,13399	14433,864	11,855795	0,11786872	0,472708268	4,010464082
140,63399	14482,101	11,92644	141,13399	14468,319	12,000533	0,1192644	0,473271275	3,968252676
141,63399	14499,328	12,06601	142,13399	14495,882	12,138379	0,1206601	0,473834248	3,927016871
142,63399	14475,21	12,209024	143,13399	14461,428	12,281394	0,12209024	0,473046078	3,874560968
143,63399	14468,319	12,350317	144,13399	14478,655	12,41924	0,12350317	0,472820882	3,828410901
144,63399	14485,546	12,491609	145,13399	14461,428	12,560532	0,12491609	0,473383856	3,789614742
145,63399	14478,655	12,636348	146,13399	14506,219	12,706992	0,12636348	0,47315866	3,744425685
146,63399	14509,664	12,781085	147,13399	14495,882	12,856899	0,12781085	0,474172026	3,709951277

147,63399	14499,328	12,924101	148,13399	14554,454	12,996469	0,12924101	0,473834248	3,66628401
148,63399	14530,336	13,067115	149,13399	14526,891	13,141208	0,13067115	0,474847582	3,633912931
149,63399	14506,219	13,21013	150,13399	14544,118	13,287668	0,1321013	0,474059444	3,588605445
150,63399	14547,563	13,358315	151,13399	14544,118	13,430684	0,13358315	0,475410556	3,558911102
151,63399	14520	13,503053	152,13399	14554,454	13,575421	0,13503053	0,474509804	3,514092731
152,63399	14540,672	13,649514	153,13399	14561,345	13,725328	0,13649514	0,475185359	3,481335376
153,63399	14554,454	13,789083	154,13399	14578,572	13,870067	0,13789083	0,475635752	3,449364629
154,63399	14561,345	13,942435	155,13399	14595,8	14,016529	0,13942435	0,475860948	3,41304046
155,63399	14599,244	14,09062	156,13399	14568,236	14,159544	0,1409062	0,477099477	3,385936723
156,63399	14557,899	14,231914	157,13399	14630,253	14,304282	0,14231914	0,475748333	3,342827489
157,63399	14626,809	14,376651	158,13399	14585,463	14,447297	0,14376651	0,478000294	3,324837573
158,63399	14592,354	14,528281	159,13399	14571,681	14,597204	0,14528281	0,476874314	3,282386359
159,63399	14633,698	14,674743	160,13399	14609,581	14,747112	0,14674743	0,478225425	3,25883339
160,63399	14633,698	14,816034	161,13399	14623,362	14,897019	0,14816034	0,478225425	3,227755989
161,63399	14599,244	14,967666	162,13399	14678,488	15,052095	0,14967666	0,477099477	3,18753423
162,63399	14668,152	15,11585	163,13399	14647,48	15,193388	0,1511585	0,479351373	3,171183708
163,63399	14613,026	15,264033	164,13399	14623,362	15,339849	0,15264033	0,477549869	3,128595629
164,63399	14647,48	15,419111	165,13399	14668,152	15,494925	0,15419111	0,478675817	3,104432006
165,63399	14661,262	15,569018	166,13399	14647,48	15,646556	0,15569018	0,479126209	3,077433716
166,63399	14626,809	15,722372	167,13399	14675,044	15,799911	0,15722372	0,478000294	3,040255593
167,63399	14644,035	15,870555	168,13399	14675,044	15,95154	0,15870555	0,478563235	3,015415877
168,63399	14692,271	16,027355	169,13399	14699,161	16,106617	0,16027355	0,480139575	2,995750548
169,63399	14678,488	16,18071	170,13399	14637,145	16,251354	0,1618071	0,47968915	2,964574177
170,63399	14675,044	16,330616	171,13399	14699,161	16,4116	0,16330616	0,479576601	2,93667184
171,63399	14671,599	16,485693	172,13399	14650,926	16,564953	0,16485693	0,47946402	2,908364359
172,63399	14654,371	16,635601	173,13399	14712,943	16,714861	0,16635601	0,478901013	2,878771937

173,63399	14650,926	16,788954	174,13419	14681,935	16,866491	0,16788954	0,478788431	2,851806202
174,63399	14737,062	16,9492	175,13399	14699,161	17,023291	0,169492	0,481603333	2,841451711
175,63419	14657,816	17,10083	176,13419	14716,389	17,17837	0,1710083	0,479013595	2,801113132
176,63419	14681,935	17,254183	177,13399	14668,152	17,33172	0,17254183	0,479801797	2,780785375
177,63399	14699,161	17,40926	178,13419	14657,816	17,486799	0,1740926	0,480364739	2,759248461
178,63419	14709,497	17,566059	179,13399	14737,062	17,647045	0,17566059	0,480702516	2,736541625
179,63419	14712,943	17,724583	180,13419	14661,262	17,80212	0,17724583	0,480815131	2,712702074
180,63419	14750,843	17,87966	181,13419	14723,279	17,960644	0,1787966	0,482053693	2,696101004
181,63419	14664,707	18,038183	182,13419	14657,816	18,117443	0,18038183	0,479238791	2,656801912
182,63419	14695,716	18,203598	183,13419	14664,707	18,274244	0,18203598	0,480252157	2,638226558
183,63419	14685,38	18,360395	184,13419	14699,161	18,441381	0,18360395	0,479914379	2,613856505
184,63419	14654,371	18,518919	185,13419	14712,943	18,60335	0,18518919	0,478901013	2,586009546
185,63419	14675,044	18,684334	186,13419	14685,38	18,763596	0,18684334	0,479576601	2,566731045
186,63419	14719,834	18,848026	187,13419	14668,152	18,925564	0,18848026	0,481040327	2,552205344
187,63419	14675,044	19,00655	188,13419	14668,152	19,089256	0,1900655	0,479576601	2,523217529
188,63419	14716,389	19,173687	189,13419	14664,707	19,249502	0,19173687	0,480927745	2,508269511
189,63419	14678,488	19,32704	190,13419	14709,497	19,411472	0,1932704	0,47968915	2,481958698
190,63419	14688,825	19,499348	191,13419	14685,38	19,580332	0,19499348	0,480026961	2,461759033
191,63419	14706,053	19,66304	192,13419	14726,725	19,747471	0,1966304	0,480589967	2,444128514
192,63419	14675,044	19,826731	193,13419	14712,943	19,914608	0,19826731	0,479576601	2,418838493
193,63419	14692,271	19,995592	194,13419	14716,389	20,074856	0,19995592	0,480139575	2,401227106
194,63419	14664,707	20,155838	195,13419	14664,707	20,240271	0,20155838	0,479238791	2,377667408
195,63419	14695,716	20,326424	196,13419	14661,262	20,412577	0,20326424	0,480252157	2,362698706
196,63419	14647,48	20,488392	197,13419	14719,834	20,577991	0,20488392	0,478675817	2,336326916
197,63419	14650,926	20,664146	198,13419	14654,371	20,743408	0,20664146	0,478788431	2,317000816
198,63419	14695,716	20,831284	199,13419	14661,262	20,912268	0,20831284	0,480252157	2,305437134

199,63419	14706,053	21,001869	200,13419	14637,145	21,086298	0,21001869	0,480589967	2,288319993
200,63419	14712,943	21,172453	201,13419	14709,497	21,258606	0,21172453	0,480815131	2,270946738
201,63419	14726,725	21,341314	202,13419	14647,48	21,422298	0,21341314	0,481265523	2,255088524
202,63419	14650,926	21,510176	203,13419	14702,607	21,599775	0,21510176	0,478788431	2,225869427
203,63419	14681,935	21,682482	204,13419	14647,48	21,76519	0,21682482	0,479801797	2,212854586
204,63419	14654,371	21,859959	205,13419	14619,917	21,944389	0,21859959	0,478901013	2,190768121
205,63419	14637,145	22,02882	206,13419	14630,253	22,120142	0,2202882	0,478338072	2,171419404
206,63419	14637,145	22,206297	207,13419	14688,825	22,289003	0,22206297	0,478338072	2,154065002
207,63419	14685,38	22,380327	208,13419	14630,253	22,466482	0,22380327	0,479914379	2,144358208
208,63419	14661,262	22,552633	209,13419	14609,581	22,637066	0,22552633	0,479126209	2,12448014
209,63419	14644,035	22,737003	210,13419	14637,145	22,817987	0,22737003	0,478563235	2,104777113
210,63419	14616,472	22,907587	211,13419	14626,809	22,99374	0,22907587	0,477662484	2,085171536
211,63419	14637,145	23,08334	212,13419	14616,472	23,174664	0,2308334	0,478338072	2,072222096
212,63419	14609,581	23,25737	213,13419	14592,354	23,353863	0,2325737	0,477437288	2,052842981
213,63419	14671,599	23,445187	214,13419	14630,253	23,53134	0,23445187	0,47946402	2,04504242
214,63419	14661,262	23,620939	215,13419	14582,018	23,707094	0,23620939	0,479126209	2,028396116
215,63419	14668,152	23,80014	216,13419	14592,354	23,889738	0,2380014	0,479351373	2,01406955
216,63419	14619,917	23,982784	217,13419	14654,371	24,074108	0,23982784	0,477775065	1,992158481
217,63419	14654,371	24,163708	218,13419	14616,472	24,25503	0,24163708	0,478901013	1,981902004
218,63419	14630,253	24,346354	219,13419	14582,018	24,437677	0,24346354	0,478112843	1,963796481
219,63419	14619,917	24,528999	220,13419	14561,345	24,620321	0,24528999	0,477775065	1,947796832
220,63419	14609,581	24,716814	221,13419	14551,009	24,811583	0,24716814	0,477437288	1,931629568
221,63419	14568,236	24,908075	222,13419	14619,917	24,999399	0,24908075	0,476086144	1,911372693
222,63419	14613,026	25,088997	223,13419	14557,899	25,182041	0,25088997	0,477549869	1,903423518
223,63419	14602,689	25,273365	224,13419	14557,899	25,368134	0,25273365	0,477212059	1,888201507
224,63419	14616,472	25,46118	225,13419	14609,581	25,550779	0,2546118	0,477662484	1,876042209

226,63419 14523,445 25,833366 227,13419 14575,127 25,929857 0,25833366 0,474622386 227,63419 14502,773 26,026348 228,13419 14554,454 26,117672 0,26026348 0,47394683 228,63419 14571,681 26,215887 229,13419 14523,445 26,30204 0,26215887 0,476198725	1,837245621 1,821027023 1,816450939 1,802442271
227,63419 14502,773 26,026348 228,13419 14554,454 26,117672 0,26026348 0,47394683 228,63419 14571,681 26,215887 229,13419 14523,445 26,30204 0,26215887 0,476198725	1,821027023 1,816450939 1 802442271
228,63419 14571,681 26,215887 229,13419 14523,445 26,30204 0,26215887 0,476198725	1,816450939
	1 802442271
229,63419 14564,791 26,407146 230,13419 14485,546 26,501919 0,26407146 0,475973562	1,002112271
230,63419 14526,891 26,593239 231,13419 14516,555 26,689734 0,26593239 0,474735	1,785171787
231,63419 14485,546 26,784502 232,13419 14478,655 26,877546 0,26784502 0,473383856	1,767379719
232,63419 14468,319 26,974037 233,13419 14488,992 27,06881 0,26974037 0,472820882	1,752874004
233,63419 14509,664 27,172194 234,13419 14509,664 27,270407 0,27172194 0,474172026	1,74506345
234,63419 14488,992 27,361731 235,13419 14454,537 27,463392 0,27361731 0,473496471	1,73050627
235,63419 14468,319 27,561609 236,13419 14499,328 27,659822 0,27561609 0,472820882	1,71550537
236,63419 14444,201 27,759762 237,13419 14447,646 27,861423 0,27759762 0,472032712	1,700420603
237,63419 14444,201 27,952745 238,13419 14454,537 28,045792 0,27952745 0,472032712	1,688681067
238,63419 14402,855 28,149176 239,13419 14389,074 28,242222 0,28149176 0,470681536	1,67209703
239,63419 14451,092 28,345606 240,13419 14395,966 28,445543 0,28345606 0,472257908	1,666070955
240,63419 14361,512 28,538588 241,13419 14378,738 28,636805 0,28538588 0,469330458	1,644546876
241,63419 14392,52 28,738466 242,13419 14347,729 28,838406 0,28738466 0,470343791	1,636634992
242,63419 14344,284 28,940063 243,13419 14368,401 29,040003 0,28940063 0,468767451	1,619787251
243,63419 14375,293 29,143387 244,13419 14316,721 29,243326 0,29143387 0,469780817	1,611963692
244,63419 14371,847 29,343266 245,13419 14285,712 29,439756 0,29343266 0,469668203	1,600599615
245,63419 14271,931 29,54314 246,13419 14309,83 29,637909 0,2954314 0,466402974	1,578718355
246,63419 14292,603 29,737848 247,13419 14258,149 29,83951 0,29737848 0,467078529	1,570653429
247,63419 14258,149 29,936001 248,13419 14247,813 30,039385 0,29936001 0,465952582	1,556495745
248,63419 14192,687 30,139324 249,13419 14213,358 30,247879 0,30139324 0,463813301	1,53889749
249,63419 14220,249 30,346094 250,13419 14192,687 30,446032 0,30346094 0,46471402	1,531380018
250,63419 14130,669 30,545971 251,13419 14154,786 30,645908 0,30545971 0,461786569	1,511775706

251,63419	14141,005	30,744123	252,13419	14116,887	30,850954	0,30744123	0,462124346	1,503130684
252,63419	14037,643	30,945723	253,13419	14020,415	31,049107	0,30945723	0,458746503	1,482422961
253,63419	14020,415	31,152493	254,13419	14020,415	31,255878	0,31152493	0,458183497	1,470776341
254,63419	13968,733	31,359262	255,13419	13954,952	31,459198	0,31359262	0,456494542	1,455692875
255,63419	13985,961	31,562582	256,13419	13896,381	31,662521	0,31562582	0,457057549	1,448099363
256,63419	13927,389	31,760738	257,13419	13913,607	31,865845	0,31760738	0,455143431	1,433037958
257,63419	13892,935	31,965784	258,13419	13796,463	32,070892	0,31965784	0,454017484	1,420323317
258,63419	13820,581	32,167381	259,13419	13755,118	32,272488	0,32167381	0,451652974	1,404071329
259,63437	13779,236	32,374149	260,13437	13706,883	32,474091	0,32374149	0,45030183	1,390930245
260,63419	13682,765	32,574028	261,13437	13686,21	32,679134	0,32574028	0,447149183	1,372716887
261,63437	13658,646	32,780796	262,13437	13593,185	32,882458	0,32780796	0,44636098	1,361653879
262,63437	13603,521	32,984119	263,13437	13534,611	33,085777	0,32984119	0,44455951	1,347798648
263,63437	13544,948	33,189167	264,13437	13513,939	33,290825	0,33189167	0,442645359	1,333704336
264,63437	13503,603	33,39938	265,13437	13438,141	33,494148	0,3339938	0,441294216	1,321264693
265,63437	13458,813	33,604427	266,13437	13345,114	33,702641	0,33604427	0,43983049	1,308846868
266,63437	13383,014	33,807751	267,13437	13331,332	33,909412	0,33807751	0,437353399	1,293648308
267,63437	13224,524	34,005901	268,13437	13221,08	34,112732	0,34005901	0,432173987	1,270879389
268,63437	13231,416	34,216114	269,13437	13152,171	34,317776	0,34216114	0,432399216	1,263729761
269,63437	13100,489	34,417717	270,13437	13100,489	34,521099	0,34417717	0,428120556	1,243895856
270,63437	13028,137	34,622761	271,13437	13004,019	34,726147	0,34622761	0,425756111	1,229700055
271,63437	12969,564	34,827808	272,13437	12952,337	34,932915	0,34827808	0,423841961	1,216964217
272,63437	12876,538	35,04147	273,13437	12848,976	35,139683	0,3504147	0,420801895	1,200868272
273,63437	12769,73	35,241344	274,13437	12762,839	35,34473	0,35241344	0,417311438	1,184153016
274,63437	12680,15	35,442947	275,13437	12669,813	35,551498	0,35442947	0,414383987	1,169157821
275,63437	12604,35	35,656605	276,13437	12607,796	35,756542	0,35656605	0,411906863	1,155204941
276,63437	12504,434	35,856483	277,13437	12487,206	35,96159	0,35856483	0,408641634	1,139658996

Test Control		5	Stopped			Time:	299,82098	
298,63437	14,811597	41,060165	299,13437	14,811597	41,161823	0,41060165	0,000484039	0,001178853
297,63437	4,475358	40,862011	298,13437	7,9207711	40,967121	0,40862011	0,000146254	0,000357921
296,63437	14,811597	40,667301	297,13437	7,9207711	40,765518	0,40667301	0,000484039	0,001190242
295,63437	7,9207711	40,458813	296,13437	1,029945	40,560474	0,40458813	0,000258849	0,000639783
294,63437	9854,9111	39,659306	295,13437	11,366184	40,365765	0,39659306	0,322055918	0,812056364
293,63437	10175,334	39,430138	294,13437	10009,954	39,542137	0,39430138	0,332527255	0,843332719
292,63437	10378,613	39,213028	293,13437	10323,487	39,321583	0,39213028	0,339170359	0,864943048
291,63437	10606,012	38,995922	292,13437	10530,212	39,104473	0,38995922	0,346601699	0,888815244
290,63437	10792,063	38,785706	291,13437	10681,811	38,890816	0,38785706	0,352681797	0,909308696
289,63437	10919,543	38,577213	290,13437	10829,963	38,680599	0,38577213	0,35684781	0,925022268
288,63437	11074,587	38,358387	289,13437	11009,125	38,468662	0,38358387	0,361914608	0,943508411
287,63437	11236,521	38,14817	288,13437	11160,723	38,255001	0,3814817	0,367206569	0,962579774
286,63437	11377,784	37,943127	287,13437	11281,312	38,049953	0,37943127	0,371823007	0,979948243
285,63437	11543,163	37,731186	286,13437	11426,02	37,836292	0,37731186	0,377227549	0,999776548
284,63437	11625,854	37,522694	285,13437	11570,727	37,629524	0,37522694	0,379929869	1,01253356
283,63437	11742,997	37,310757	284,13437	11708,543	37,415863	0,37310757	0,383758072	1,028545392
282,63437	11911,822	37,105709	283,13437	11787,787	37,209095	0,37105709	0,389275229	1,04909794
281,63437	11980,731	36,898941	282,13437	11942,831	37,002327	0,36898941	0,391527157	1,061079658
280,63437	12077,202	36,690449	281,13437	12066,866	36,795559	0,36690449	0,394679804	1,075701755
279,63437	12197,792	36,478512	280,13437	12159,892	36,587067	0,36478512	0,398620654	1,092754698
278,63437	12297,709	36,275188	279,13437	12280,481	36,37685	0,36275188	0,401885915	1,107880999
277,63437	12394,181	36,070145	278,13437	12411,407	36,166637	0,36070145	0,405038595	1,122919231

DRP Process Data			tracao			Time:	290,60779	
Time	FORCA	EXTENSOMETRO	Time	FORCA	EXTENSOMETRO	Deformação	Tensão	Módulo
Sec	Ν	%	Sec	Ν	%	sem unidade	(kN/mm2)	(kN/mm2)
0,6344	531,1086	0,006218	1,1346	1097,879	0,020003	6,22E-05	0,01735649	279,1137277
1,6344	1669,818	0,026895	2,1344	2152,176	0,037234	0,00026895	0,054569203	202,8948563
2,6346	2718,946	0,051018	3,1346	3208,195	0,057911	0,00051018	0,088854438	174,1617513
3,6346	3750,847	0,061357	4,1346	4310,727	0,075141	0,00061357	0,122576696	199,7769408
4,6346	4734,512	. 0,078588	5,1346	5278,888	0,090649	0,00078588	0,154722621	196,879386
5,6346	5764,691	0,099264	6,1346	6288,394	0,109603	0,00099264	0,188388592	189,7846646
6,6346	6741,465	0,116495	7,1346	7177,31	0,12511	0,00116495	0,220309324	189,1146372
7,6346	7637,273	0,133726	8,1346	8002,487	0,140618	0,00133726	0,249584082	186,6386205
8,6346	8472,786	0,156126	9,1346	8806,99	0,168187	0,00156126	0,276888435	177,3495584
9,6346	9172,205	0,178526	10,1346	9577,041	0,190587	0,00178526	0,299745265	167,9002877
10,6346	9976,708	0,199203	11,1346	10283,35	0,212987	0,00199203	0,326036209	163,6706102
11,6346	10131,75	0,228495	12,1346	9763,093	0,257787	0,00228495	0,331103007	144,9060817
12,6346	9799,27	0,273295	13,1346	9759,648	0,302587	0,00273295	0,320237565	117,1765868
13,6346	9766,539	0,32671	14,1346	9819,942	0,357725	0,0032671	0,319167944	97,69148979
14,6346	9859,565	0,383572	15,1346	9818,219	0,414587	0,00383572	0,32220799	84,0020587
15,6346	9885,405	0,445602	16,1346	9828,556	0,485233	0,00445602	0,323052461	72,49795828
16,6346	9888,851	0,521417	17,1346	9859,565	0,554156	0,00521417	0,323165052	61,97819671
17,6346	9873,347	0,586894	18,1346	9902,633	0,617909	0,00586894	0,322658389	54,97727127
18,6346	9926,75	0,664432	19,1346	9890,573	0,700617	0,00664433	0,324403595	48,82416339
19,6346	9921,582	. 0,735078	20,1346	9968,095	0,776432	0,00735079	0,324234706	44,10885748
20,6346	9933,642	. 0,807448	21,1346	9892,296	0,847078	0,00807448	0,32462881	40,20432169
21,6346	9899,188	0,886709	22,1346	9930,196	0,928063	0,00886709	0,323502859	36,48354425

Tabela Cp1b – Dados experimentais do ensaio de tração para seção tubular circular de diâmentro 73mm e # 5,16mm.

22,6346	9952,591	0,962524	23,1346	9887,128	1,002155	0,00962524	0,325248065	33,79115578
23,6346	9921,582	1,038339	24,1346	9871,624	1,07797	0,01038339	0,324234706	31,22627398
24,6346	9850,951	1,12277	25,1346	9864,732	1,162401	0,0112277	0,32192651	28,67252252
25,6346	9814,774	1,202032	26,1346	9790,656	1,241662	0,01202032	0,320744261	26,68351549
26,6346	9790,656	1,281293	27,1346	9819,942	1,320923	0,01281293	0,319956088	24,97134833
27,6346	9907,801	1,360554	28,1346	9792,379	1,400185	0,01360554	0,32378434	23,79797437
28,6346	9883,683	1,441539	29,1346	9866,455	1,465662	0,01441539	0,322996163	22,40634701
29,6346	9842,338	1,508739	30,1346	9859,565	1,541477	0,01508739	0,321645029	21,31880571
30,6346	9899,188	1,584554	31,1346	9914,691	1,615569	0,01584554	0,323502859	20,41602502
31,6346	9947,423	1,658646	32,1346	9980,154	1,687938	0,01658646	0,32507918	19,59907407
32,6346	10033,56	1,715507	33,1346	10114,52	1,741353	0,01715507	0,327894052	19,11353291
33,6346	10171,37	1,767199	34,1346	10197,22	1,789599	0,01767199	0,332397843	18,80930036
34,6346	10112,8	1,805107	35,1346	10062,85	1,818892	0,01805107	0,330483758	18,30826417
35,6346	10047,34	1,832676	36,1346	10009,44	1,85163	0,01832676	0,328344444	17,91611876
36,6346	10012,89	1,861969	37,1346	10045,62	1,872307	0,01861969	0,327218464	17,57379161
37,6346	10119,69	1,891261	38,1346	10066,29	1,901599	0,01891261	0,330708922	17,48616354
38,6346	10140,37	1,920553	39,1346	10152,43	1,939507	0,01920553	0,331384477	17,25463849
39,6346	10157,59	1,949845	40,1346	10154,15	1,96363	0,01949845	0,331947484	17,02430022
40,6346	10207,55	1,977414	41,1346	10257,51	1,994645	0,01977414	0,333580098	16,86950975
41,6346	10269,57	2,010153	42,1346	10307,47	2,03083	0,02010153	0,335606797	16,69558639
42,6346	10309,19	2,049784	43,1346	10364,32	2,068737	0,02049784	0,336901634	16,43596185
43,6346	10374,65	2,09286	44,1346	10436,67	2,113537	0,0209286	0,33904098	16,19988666
44,6346	10471,13	2,139383	45,1346	10514,19	2,161783	0,02139383	0,34219366	15,99496734
45,6346	10503,86	2,184183	46,1346	10512,47	2,206583	0,02184183	0,343263268	15,71586503
46,6346	10529,7	2,228983	47,1346	10602,05	2,253106	0,02228983	0,344107745	15,43788178
47,6346	10615,83	2,27206	48,1346	10658,9	2,296183	0,0227206	0,346922614	15,26907871

T								
48,6346	10660,62	2,31686	49,1346	10674,41	2,340983	0,0231686	0,348386405	15,03700916
49,6346	10727,81	2,366829	50,1346	10741,59	2,394398	0,02366829	0,350581993	14,81230829
50,6346	10772,6	2,415075	51,1346	10776,05	2,434029	0,02415075	0,352045752	14,57701053
51,6346	10812,22	2,463321	52,1346	10848,4	2,483998	0,02463321	0,353340588	14,34407405
52,6346	10915,58	2,509844	53,1346	10882,85	2,527075	0,02509844	0,356718431	14,21277247
53,6346	10919,03	2,554644	54,1346	10946,59	2,573598	0,02554644	0,356831013	13,96793553
54,6346	11008,61	2,60289	55,1346	11037,9	2,621844	0,0260289	0,359758464	13,82150087
55,6346	11082,69	2,644244	56,1346	11101,64	2,664921	0,02644244	0,362179314	13,69689616
56,6346	11094,75	2,689044	57,1346	11125,75	2,71489	0,02689044	0,362573366	13,48335665
57,6346	11201,55	2,735567	58,1346	11144,7	2,75969	0,02735567	0,366063856	13,38164665
58,6346	11198,11	2,78209	59,1346	11284,24	2,806213	0,0278209	0,365951209	13,15382495
59,6346	11289,41	2,828613	60,1346	11272,19	2,854459	0,02828613	0,368934967	13,04296556
60,6346	11277,35	2,880305	61,1346	11277,35	2,900982	0,02880305	0,368540948	12,79520653
61,6346	11361,77	2,928551	62,1346	11428,95	2,949228	0,02928551	0,37129951	12,67860959
62,6346	11368,66	2,976797	63,1346	11403,11	2,997474	0,02976797	0,371524673	12,48068598
63,6346	11466,85	3,028489	64,1346	11411,72	3,047443	0,03028489	0,37473366	12,37361759
64,6346	11475,46	3,069843	65,1346	11577,1	3,099135	0,03069843	0,375015131	12,2161021
65,6346	11563,32	3,124981	66,1346	11568,49	3,142212	0,03124981	0,377886307	12,09243458
66,6346	11546,09	3,168058	67,1346	11585,72	3,193904	0,03168058	0,377323333	11,91023995
67,6346	11602,94	3,218027	68,1346	11606,39	3,243873	0,03218027	0,379181144	11,78303031
68,6346	11663,24	3,26455	69,1346	11664,96	3,28695	0,0326455	0,381151569	11,67546968
69,6346	11659,79	3,312796	70,1346	11733,87	3,340365	0,03312796	0,381038987	11,5020356
70,6346	11749,37	3,357596	71,1346	11814,84	3,383442	0,03357596	0,383966438	11,43575491
71,6346	11752,82	3,407565	72,1346	11835,51	3,428242	0,03407565	0,384079052	11,2713636
72,6346	11838,95	3,457534	73,1346	11840,68	3,478211	0,03457534	0,386893922	11,18987949
73,6346	11907,86	3,500611	74,1346	11914,75	3,52818	0,03500611	0,389145817	11,11651034
L								

74,6346	11923,37	3,547134	75,1346	11964,71	3,574704	0,03547134	0,389652484	10,98499351
75,6346	12112,86	3,62295	76,1346	12085,3	3,68498	0,0362295	0,395845229	10,92604845
76,6346	12135,26	3,743564	77,1346	12233,45	3,809041	0,03743564	0,396577124	10,59357024
77,6346	12242,07	3,872795	78,1346	12240,35	3,931379	0,03872795	0,400067549	10,3302018
78,6346	12381,61	4,005472	79,1346	12326,48	4,06061	0,04005472	0,40462768	10,10187339
79,6346	12479,8	4,120918	80,1348	12409,17	4,181225	0,04120918	0,407836634	9,896742759
80,6346	12460,85	4,23981	81,1348	12500,47	4,294948	0,0423981	0,407217386	9,604615151
81,6346	12602,11	4,365594	82,1348	12595,22	4,425901	0,04365594	0,411833758	9,433625014
82,6348	12619,34	4,489656	83,1348	12758,88	4,546517	0,04489656	0,412396732	9,185487217
83,6348	12738,21	4,608547	84,1348	12765,77	4,668855	0,04608547	0,416281275	9,032809179
84,6348	12764,05	4,725717	85,1348	12817,45	4,79464	0,04725717	0,417125752	8,826719563
85,6348	12939,76	4,85667	86,1348	12955,27	4,911809	0,0485667	0,422868105	8,706955862
86,6348	12953,55	4,972116	87,1348	13037,96	5,042762	0,04972116	0,423318497	8,513849973
87,6348	13019,01	5,091008	88,1348	13099,98	5,154762	0,05091008	0,42545781	8,357045118
88,6348	13022,45	5,216792	89,1348	13122,37	5,280546	0,05216792	0,425570359	8,157702115
89,6348	13079,3	5,3443	90,1348	13134,43	5,395992	0,053443	0,427428203	7,997833554
90,6348	13127,54	5,466638	91,1348	13263,63	5,523499	0,05466638	0,429004542	7,847685079
91,6348	13198,17	5,583807	92,1348	13272,25	5,642392	0,05583807	0,431312745	7,724349088
92,6348	13325,65	5,707868	93,1348	13294,64	5,773345	0,05707868	0,435478758	7,629446766
93,6348	13348,05	5,831929	94,1348	13346,32	5,899129	0,05831929	0,436210621	7,479696786
94,6348	13391,11	5,955991	95,1348	13389,39	6,014575	0,05955991	0,437618072	7,347527667
95,6348	13435,9	6,07316	96,1348	13454,85	6,136913	0,0607316	0,439081797	7,229874054
96,6348	13475,53	6,198944	97,1348	13499,64	6,264422	0,06198944	0,440376634	7,104058802
97,6348	13511,7	6,328176	98,1348	13635,74	6,393652	0,06328176	0,441558889	6,97766503
98,6348	13585,78	6,452237	99,1348	13577,17	6,514267	0,06452237	0,443979706	6,881020126
99,6348	13673,64	6,586636	100,1348	13670,19	6,646944	0,06586636	0,446850882	6,784204798
100,6348	13670,19	6,708974	101,1348	13659,85	6,762389	0,06708974	0,446738268	6,658816107
----------	----------	----------	----------	----------	----------	------------	-------------	-------------
101,6348	13782,17	6,822697	102,1348	13783,89	6,883005	0,06822697	0,450397614	6,601459821
102,6348	13780,44	6,945035	103,1348	13759,77	7,00362	0,06945035	0,450341307	6,484363393
103,6348	13773,55	7,062204	104,1348	13799,4	7,129404	0,07062204	0,450116144	6,373592696
104,6348	13857,97	7,189712	105,1348	13816,62	7,255189	0,07189712	0,452874739	6,298927392
105,6348	13856,24	7,31205	106,1348	13861,41	7,375804	0,0731205	0,452818431	6,192769983
106,6348	13950,99	7,44128	107,1348	13968,22	7,506757	0,0744128	0,455914771	6,126832302
107,6348	13925,15	7,570511	108,1348	14004,4	7,627373	0,07570511	0,455070294	6,011090613
108,6348	13938,93	7,691126	109,1348	13985,45	7,756603	0,07691126	0,455520719	5,922678957
109,6348	14049,19	7,818634	110,1348	14002,67	7,885833	0,07818634	0,459123758	5,872173856
110,6348	14023,35	7,946141	111,1348	14068,14	8,015063	0,07946141	0,458279281	5,767318621
111,6348	14133,6	8,073649	112,1348	14099,15	8,142571	0,08073649	0,461882353	5,720862791
112,6348	14078,47	8,204602	113,1348	14087,09	8,268355	0,08204602	0,460080817	5,607594442
113,6348	14114,65	8,337279	114,1348	14185,28	8,402756	0,08337279	0,461263039	5,532536726
114,6348	14155,99	8,464786	115,1348	14202,51	8,526816	0,08464786	0,462614183	5,465161256
115,6348	14168,05	8,59057	116,1348	14249,02	8,662939	0,0859057	0,463008301	5,389727097
116,6348	14276,58	8,730139	117,1348	14269,69	8,790447	0,08730139	0,466555033	5,344188029
117,6348	14267,97	8,861093	118,1348	14319,65	8,92657	0,08861093	0,466273529	5,262032014
118,6348	14264,53	8,99377	119,1348	14274,86	9,057524	0,0899377	0,466160948	5,183154211
119,6348	14276,58	9,121278	120,1348	14316,21	9,183308	0,09121278	0,466555033	5,115018344
120,6348	14316,21	9,2574	121,1348	14290,37	9,333215	0,092574	0,467849869	5,053793608
121,6348	14366,17	9,393522	122,1348	14404,06	9,462445	0,09393522	0,469482516	4,99793902
122,6348	14371,33	9,531368	123,1348	14410,96	9,595122	0,09531368	0,469651405	4,927428995
123,6348	14436,8	9,658876	124,1348	14386,84	9,731245	0,09658876	0,471790719	4,884530037
124,6348	14431,63	9,794998	125,1348	14404,06	9,863921	0,09794998	0,471621797	4,814924799
125,6348	14407,51	9,931121	126,1348	14410,96	9,998322	0,09931121	0,47083366	4,740992128

126,6348	14440,24	10,0638	127,1348	14457,47	10,13444	0,10063798	0,471903301	4,689117376
127,6348	14464,36	10,19992	128,1348	14445,41	10,26712	0,10199921	0,472691471	4,634265997
128,6348	14533,27	10,3326	129,1348	14553,94	10,40497	0,10332598	0,474943366	4,596553219
129,6348	14548,77	10,47389	130,1348	14521,21	10,54454	0,10473889	0,475450033	4,539383916
130,6348	14507,43	10,61346	131,1348	14578,06	10,67894	0,10613459	0,474098889	4,466959253
131,6348	14526,38	10,74614	132,1348	14605,62	10,82195	0,10746135	0,474718203	4,417571551
132,6348	14622,85	10,88915	133,1348	14615,96	10,96152	0,10889151	0,47787085	4,388504206
133,6348	14640,08	11,03217	134,1348	14646,97	11,10281	0,11032166	0,478433824	4,336717047
134,6348	14619,4	11,17001	135,1348	14641,8	11,24583	0,11170012	0,477758268	4,277150893
135,6348	14602,18	11,30441	136,1348	14645,24	11,37678	0,11304411	0,477195294	4,221319396
136,6348	14641,8	11,44743	137,1348	14612,51	11,5129	0,11447426	0,478490131	4,179892761
137,6348	14698,65	11,59044	138,1348	14717,6	11,65764	0,11590442	0,480347941	4,144345325
138,6348	14628,02	11,73001	139,1348	14719,32	11,80238	0,1173001	0,478039771	4,075356894
139,6348	14693,48	11,87475	140,1348	14640,08	11,94367	0,11874748	0,480179052	4,043698883
140,6348	14748,61	12,01259	141,1348	14646,97	12,08496	0,12012594	0,481980556	4,012293727
141,6348	14669,36	12,15216	142,1348	14693,48	12,22798	0,12152164	0,479390882	3,944901355
142,6348	14758,94	12,2969	143,1348	14677,98	12,37099	0,12296901	0,482318333	3,922275485
143,6348	14743,44	12,44336	144,1348	14736,55	12,51229	0,12443362	0,481811699	3,872037954
144,6348	14758,94	12,58638	145,1348	14698,65	12,65358	0,12586378	0,482318333	3,83206617
145,6348	14726,21	12,7225	146,1348	14805,46	12,79487	0,127225	0,481248725	3,782658483
146,6348	14734,82	12,86379	147,1348	14814,07	12,93788	0,12863792	0,481530196	3,743298991
147,6348	14829,57	13,01715	148,1348	14798,56	13,09296	0,13017146	0,484626536	3,722986098
148,6348	14755,5	13,16533	149,1348	14803,73	13,2377	0,1316533	0,482205752	3,662693997
149,6348	14812,35	13,31352	150,1348	14831,3	13,38416	0,13313515	0,484063595	3,635881244
150,6348	14824,4	13,45825	151,1348	14762,39	13,53407	0,13458252	0,484457647	3,599707057
151,6348	14793,4	13,60299	152,1348	14791,67	13,68053	0,13602992	0,483444314	3,553955731

152,6348	14781,34	13,75634	153,1348	14882,98	13,82871	0,13756344	0,483050229	3,511472443
153,6348	14783,06	13,89764	154,1348	14795,12	13,97001	0,13897636	0,483106569	3,476178025
154,6348	14802,01	14,05099	155,1348	14841,63	14,1268	0,14050991	0,483725817	3,442645554
155,6348	14815,79	14,19917	156,1348	14820,96	14,27671	0,14199174	0,484176176	3,409889734
156,6348	14860,58	14,34736	157,1348	14912,26	14,43524	0,14347359	0,485639902	3,384873146
157,6348	14826,13	14,49382	158,1348	14836,46	14,56791	0,1449382	0,484513954	3,342900314
158,6348	14822,68	14,6489	159,1348	14913,99	14,72471	0,14648897	0,484401405	3,306743199
159,6348	14836,46	14,80053	160,1348	14841,63	14,8729	0,14800527	0,484851765	3,275908788
160,6348	14901,93	14,94871	161,1348	14834,74	15,0228	0,14948711	0,486991046	3,257746074
161,6348	14838,19	15,10723	162,1348	14881,25	15,1796	0,15107234	0,484908072	3,209774019
162,6348	14915,71	15,25542	163,135	14901,93	15,33468	0,15255419	0,487441471	3,195202115
163,635	14915,71	15,41222	164,135	14882,98	15,48631	0,15412218	0,487441471	3,162695146
164,6348	14896,76	15,56557	165,1348	14858,86	15,64483	0,15565572	0,486822157	3,12755713
165,6348	14941,55	15,71548	166,135	14936,38	15,79991	0,15715479	0,488285915	3,107038068
166,635	14936,38	15,87056	167,135	14870,92	15,94809	0,15870555	0,488117026	3,075614093
167,6348	14941,55	16,0308	168,135	14895,04	16,10317	0,160308	0,488285915	3,045923566
168,635	14944,99	16,18588	169,135	14869,2	16,26514	0,16185879	0,488398497	3,017435734
169,635	14882,98	16,34268	170,135	14898,48	16,41849	0,16342678	0,486371797	2,97608383
170,635	14927,77	16,49603	171,135	14936,38	16,57874	0,16496031	0,487835523	2,957290289
171,635	14962,22	16,65628	172,135	14886,42	16,73554	0,16656277	0,488961471	2,935598817
172,635	14876,09	16,80619	173,135	14896,76	16,89234	0,16806185	0,486146601	2,892664821
173,635	14905,37	16,96988	174,135	14891,59	17,05258	0,16969877	0,48710366	2,870401831
174,635	14957,05	17,13185	175,135	14976	17,21283	0,17131845	0,488792582	2,853122835
175,635	14891,59	17,28865	176,135	14896,76	17,36963	0,17288645	0,486653268	2,814872235
176,635	14901,93	17,45061	177,135	14953,61	17,52988	0,17450613	0,486991046	2,790681598
177,635	14977,73	17,61086	178,135	14900,2	17,68495	0,17610861	0,48946817	2,779354002

178,635	14879,53	17,76594	179,135	14924,32	17,85037	0,17765936	0,486259183	2,737031041
179,635	14946,72	17,9348	180,135	14901,93	18,01923	0,17934797	0,488454804	2,723503388
180,635	14895,04	18,10021	181,135	14898,48	18,17431	0,18100212	0,486765882	2,689282768
181,635	14905,37	18,25701	182,135	14965,67	18,34661	0,18257011	0,48710366	2,668036187
182,635	14898,48	18,41726	183,135	14913,99	18,50514	0,18417257	0,486878464	2,643599229
183,635	14939,83	18,58612	184,135	14915,71	18,67227	0,18586119	0,488229608	2,626850758
184,635	14922,6	18,75153	185,135	14913,99	18,82907	0,18751534	0,487666634	2,600675945
185,635	14955,33	18,91695	186,135	14981,17	19,00483	0,1891695	0,488736307	2,583589359
186,635	14888,15	19,08237	187,135	14903,65	19,1668	0,19082365	0,486540686	2,549687559
187,635	14922,6	19,24606	188,135	14908,82	19,33049	0,19246056	0,487666634	2,533852307
188,635	14984,62	19,42009	189,135	14882,98	19,49418	0,19420086	0,489693333	2,521581693
189,635	14989,78	19,5855	190,135	14936,38	19,66649	0,19585501	0,489862222	2,501147263
190,635	14926,05	19,75092	191,135	14991,51	19,8388	0,19750917	0,487779248	2,469653679
191,635	14950,16	19,91806	192,135	14870,92	20,00766	0,19918055	0,488567386	2,452887019
192,635	14888,15	20,09036	193,135	14993,23	20,17307	0,20090363	0,486540686	2,421761549
193,635	14889,87	20,26095	194,135	14900,2	20,34538	0,20260946	0,486596993	2,40164992
194,635	14910,54	20,42464	195,135	14941,55	20,51769	0,20424639	0,487272549	2,385709481
195,635	14951,89	20,60039	196,135	14901,93	20,68655	0,20600393	0,488623693	2,371914423
196,635	14974,28	20,7727	197,135	14901,93	20,85368	0,20772699	0,489355556	2,355762992
197,635	14977,73	20,94328	198,135	14905,37	21,02944	0,20943283	0,48946817	2,337112906
198,635	14888,15	21,11559	199,135	14920,88	21,20347	0,21115591	0,486540686	2,30417745
199,635	14895,04	21,2879	200,135	14960,5	21,38095	0,21287897	0,486765882	2,286585107
200,635	14882,98	21,4671	201,135	14913,99	21,55497	0,21467098	0,486371797	2,265661606
201,635	14882,98	21,64113	202,135	14895,04	21,73073	0,21641129	0,486371797	2,247441884
202,635	14901,93	21,82033	203,135	14958,78	21,90821	0,21820328	0,486991046	2,231822756
203,635	14915,71	21,99091	204,135	14972,56	22,08396	0,21990911	0,487441471	2,216558789

204,635	14862,31	22,17011	205,135	14857,14	22,26316	0,22170113	0,485696242	2,190770258
205,635	14865,75	22,35448	206,135	14869,2	22,44064	0,22354481	0,485808791	2,173205412
206,635	14898,48	22,53713	207,135	14907,1	22,62156	0,22537127	0,486878464	2,160339532
207,635	14879,53	22,71288	208,135	14855,41	22,8042	0,22712879	0,486259183	2,140896286
208,635	14867,47	22,89208	209,135	14853,69	22,98685	0,22892078	0,485865131	2,12241602
209,635	14865,75	23,07473	210,135	14924,32	23,17122	0,23074726	0,485808791	2,105371872
210,635	14898,48	23,25909	211,135	14834,74	23,35214	0,23259094	0,486878464	2,093282155
211,635	14915,71	23,44519	212,135	14838,19	23,53306	0,23445187	0,487441471	2,079068384
212,635	14877,81	23,62611	213,135	14870,92	23,7226	0,23626108	0,486202908	2,057905214
213,635	14843,35	23,81392	214,135	14829,57	23,90697	0,23813923	0,485076928	2,03694674
214,635	14881,25	24,00174	215,135	14820,96	24,08962	0,2400174	0,48631549	2,026167645
215,635	14907,1	24,19128	216,135	14803,73	24,28432	0,24191277	0,487159967	2,013783594
216,635	14881,25	24,37392	217,135	14826,13	24,46697	0,24373922	0,48631549	1,995228713
217,635	14855,41	24,56863	218,135	14802,01	24,65651	0,2456863	0,485471013	1,975979178
218,635	14834,74	24,75128	219,135	14805,46	24,85294	0,24751276	0,484795425	1,958668413
219,635	14867,47	24,94598	220,135	14776,17	25,03903	0,24945984	0,485865131	1,947668734
220,635	14779,61	25,13552	221,135	14774,45	25,23201	0,25135521	0,482993922	1,921559221
221,635	14786,51	25,33195	222,135	14831,3	25,42672	0,25331951	0,483219118	1,907547972
222,635	14739,99	25,52149	223,135	14767,56	25,61453	0,25521488	0,481699085	1,887425549
223,635	14795,12	25,71447	224,135	14826,13	25,81786	0,25714472	0,483500588	1,880266444
224,635	14748,61	25,90918	225,135	14796,84	26,00739	0,2590918	0,481980556	1,860269432
225,635	14752,05	26,10733	226,135	14705,54	26,2021	0,26107332	0,482093203	1,846581652
226,635	14734,82	26,2986	227,135	14726,21	26,40026	0,26298595	0,481530196	1,831011109
227,635	14743,44	26,50192	228,135	14672,81	26,60013	0,26501919	0,481811699	1,818025704
228,635	14750,33	26,69835	229,135	14698,65	26,79312	0,26698349	0,482036863	1,805493151
229,635	14657,3	26,8965	230,135	14726,21	26,99644	0,26896502	0,478996797	1,780888821

230,635	14646,97	27,08949	231,135	14648,69	27,19459	0,27089487	0,47865902	1,766954906
231,635	14633,19	27,29108	232,135	14614,24	27,3893	0,27291084	0,47820866	1,752252348
232,635	14612,51	27,49269	233,135	14667,64	27,59263	0,27492685	0,477533072	1,736945925
233,635	14598,73	27,69428	234,135	14631,46	27,79767	0,27694283	0,47708268	1,722675686
234,635	14562,55	27,89761	235,135	14600,45	27,99755	0,27897606	0,475900458	1,705882783
235,635	14533,27	28,09921	236,135	14593,56	28,20948	0,28099207	0,474943366	1,690237614
236,635	14517,76	28,30598	237,135	14483,31	28,40591	0,28305975	0,474436699	1,676100892
237,635	14507,43	28,50585	238,135	14488,48	28,61268	0,2850585	0,474098889	1,663163487
238,635	14488,48	28,71262	239,135	14478,14	28,816	0,2871262	0,473479641	1,649029732
239,635	14476,42	28,91077	240,135	14393,73	29,01244	0,28910774	0,473085556	1,6363642
240,635	14452,3	29,1141	241,135	14371,33	29,20887	0,29114096	0,472297386	1,622229265
241,635	14379,95	29,31742	242,135	14347,22	29,41391	0,29317419	0,469932876	1,60291353
242,635	14285,2	29,51557	243,135	14278,31	29,61896	0,29515572	0,466836503	1,581661718
243,635	14335,16	29,72234	244,135	14266,25	29,82745	0,29722343	0,46846915	1,576151484
244,635	14224,9	29,92566	245,135	14280,03	30,02905	0,29925663	0,464866111	1,553402881
245,635	14249,02	30,12554	246,1352	14238,69	30,24099	0,30125542	0,465654281	1,545712542
246,6352	14124,99	30,33231	247,135	14112,93	30,43569	0,3033231	0,461600817	1,521812275
247,635	14073,31	30,5408	248,135	14114,65	30,63902	0,305408	0,459911928	1,50589352
248,6352	14023,35	30,73551	249,1352	14061,25	30,85268	0,30735508	0,458279281	1,49104183
249,6352	13990,62	30,94917	250,135	13947,55	31,05256	0,30949169	0,457209641	1,477292138
250,6352	13932,04	31,15594	251,135	13937,21	31,25588	0,31155939	0,455295523	1,461344249
251,6352	13856,24	31,36099	252,1352	13835,57	31,46437	0,31360985	0,452818431	1,443890973
252,6352	13790,78	31,56603	253,1352	13808,01	31,66597	0,31566031	0,450679118	1,427734509
253,635	13808,01	31,77624	254,135	13751,16	31,87791	0,31776243	0,451242092	1,420061181
254,6352	13658,13	31,98129	255,135	13727,04	32,0864	0,31981291	0,446344216	1,395641645
255,6352	13642,63	32,18634	256,1352	13561,66	32,28455	0,32186337	0,445837516	1,385176314

256,6352	13635,74	32,39311	257,1352	13501,37	32,4896	0,32393105	0,44561232	1,375639415
57,63519	13461,74	32,59298	258,1352	13473,8	32,69464	0,32592983	0,439926275	1,349757629
258,6352	13387,67	32,80492	259,1352	13353,21	32,90314	0,3280492	0,43750549	1,333658153
259,6352	13372,16	33,00135	260,1352	13367	33,1168	0,3300135	0,436998791	1,324184589
260,6352	13260,19	33,21157	261,1352	13246,41	33,31839	0,33211567	0,433339477	1,304784797
261,6352	13156,83	33,42522	262,1352	13220,56	33,52344	0,33425224	0,429961601	1,286338728
262,6352	13127,54	33,632	263,1352	13031,07	33,73021	0,33631996	0,429004542	1,275584543
263,6352	13089,64	33,83187	264,1352	12960,44	33,93698	0,33831871	0,427766013	1,264387693
264,6352	12924,26	34,04553	265,1352	12860,52	34,14547	0,34045532	0,422361405	1,240578074
265,6352	12853,63	34,25403	266,1352	12862,24	34,35569	0,34254025	0,420053203	1,226288597
266,6352	12812,28	34,46252	267,1352	12712,37	34,56245	0,34462517	0,418702059	1,214949154
267,6352	12702,03	34,66929	268,1352	12660,69	34,7744	0,34669285	0,41509902	1,197310587
268,6352	12505,64	34,88122	269,1352	12484,97	34,98461	0,34881222	0,408681111	1,17163645
269,6352	12493,58	35,09144	270,1352	12421,23	35,19827	0,35091438	0,408287026	1,163494714
270,6352	12385,05	35,29993	271,1352	12297,19	35,41193	0,35299931	0,404740294	1,146575312
271,6352	12252,4	35,51187	272,1352	12150,77	35,61697	0,35511868	0,400405359	1,127525478
272,6352	12073,24	35,71691	273,1352	12033,62	35,81513	0,35716911	0,394550392	1,104659897
273,6352	12011,23	35,92885	274,1352	11926,81	36,02707	0,35928852	0,392523693	1,092502741
274,6352	11947,49	36,13734	275,1352	11770,05	36,24245	0,36137344	0,390440686	1,08043548
275,6352	11721,81	36,34239	276,1352	11721,81	36,45439	0,36342388	0,383065719	1,054046638
276,6352	11571,94	36,5595	277,1352	11565,04	36,66116	0,36559498	0,37816781	1,034390052
277,6352	11461,68	36,76799	278,1352	11373,82	36,87482	0,36767986	0,374564771	1,018725288
278,6352	11365,21	36,97648	279,1352	11310,08	37,08503	0,36976482	0,371412124	1,004455005
279,6352	11165,38	37,1867	280,1352	11172,27	37,29697	0,37186695	0,364881569	0,981215375
280,6352	11051,68	37,40208	281,1352	10991,38	37,50891	0,37402081	0,361165948	0,965630623
281,6352	10844,95	37,61057	282,1352	10776,05	37,72085	0,37610569	0,354410196	0,942315433

282,6352	10738,15	37,83113	283,1352	10602,05	37,93451	0,37831127	0,350919771	0,92759534
283,6352	10507,3	38,03445	284,1352	10493,52	38,15162	0,38034447	0,343375915	0,902802439
284,6352	10410,83	38,25156	285,1352	10286,8	38,36183	0,38251556	0,340223203	0,889436243
285,6352	10207,55	38,47039	286,1352	7427,103	38,77537	0,38470387	0,333580098	0,867108766
286,6352	72,86864	39,36983	287,1352	174,5083	39,45943	0,39369827	0,002381328	0,006048612
287,6352	71,14594	39,55764	288,1352	16,01933	39,66275	0,39557644	0,002325031	0,005877576
288,6352	10,85121	39,7558	289,1352	12,57392	39,85918	0,39755798	0,000354615	0,000891983
289,6352	17,74204	39,95912	290,1352	10,85121	40,06078	0,39959122	0,000579805	0,001450996
Test Control			Stopped			Time:	290,77637	

DRP Process								
Data			tracao			Time:	292,33978	
		EXTENSOMET			EXTENSOMET			
Time	FORCA	RO	Time	FORCA	RO	Deformação	Tensão	Módulo
Sec	N	%	Sec	Ν	%	sem unidade	(kN/mm2)	(kN/mm2)
0,6336	708,5474	0,006218429	1,1336	1304,604	-0,000673864	6,21843E-05	0,020186534	324,6243356
1,6338	1848,979	-0,000673864	2,1336	2486,38	-0,000673864	-6,73864E-06	0,052677464	-7817,221766
2,6338	3065,21	0,006218429	3,1338	3580,299	0,007941503	6,21843E-05	0,08732792	1404,340508
3,6336	4176,356	0,009664577	4,1338	4729,344	0,009664577	9,66458E-05	0,118984487	1231,140208
4,6338	5261,661	0,020003017	5,1338	5847,381	0,02172609	0,00020003	0,14990486	749,4112533
5,6338	6381,419	0,030341458	6,1338	6851,718	0,033787604	0,000303415	0,181806821	599,2026504
6,6338	7392,648	0,045849115	7,1338	7881,897	0,054464485	0,000458491	0,210616764	459,3693107
7,6338	8443,5	0,057910636	8,1338	8994,767	0,06997215	0,000579106	0,240555556	415,3909751
8,6338	9435,778	0,073418297	9,1338	9978,432	0,080310583	0,000734183	0,268825593	366,1561267
9,6338	10469,4	0,085479811	10,1338	10936,26	0,095818244	0,000854798	0,298273561	348,9403612
10,6338	11344,54	0,10615669	11,1338	11749,37	0,11304898	0,001061567	0,323206211	304,4614624
11,6338	11659,79	0,15440273	12,1338	11242,9	0,23194104	0,001544027	0,332187835	215,1437573
12,6338	11105,08	0,28191018	13,1338	11049,95	0,32498702	0,002819102	0,316384103	112,2286902
13,6338	11010,33	0,36461771	14,1338	11044,79	0,40769452	0,003646177	0,313684672	86,03111252
14,6338	11003,44	0,44387907	15,1338	10977,6	0,48695588	0,004438791	0,313488348	70,62471938
15,6338	10950,04	0,52830964	16,1338	11032,73	0,56794035	0,005283096	0,311966895	59,05000987
16,6338	10967,27	0,61101717	17,1338	11012,06	0,65409404	0,006110172	0,312457692	51,13730148
17,6338	10956,93	0,69027859	18,1338	10953,48	0,73163229	0,006902786	0,312163219	45,22278742
18,6338	11017,22	0,771263	19,1338	10960,37	0,81089371	0,00771263	0,313881026	40,69701589
19,6338	10968,99	0,85224754	20,1338	10975,88	0,89360124	0,008522475	0,312506752	36,66854259

Tabela Cp2a – Dados experimentais do ensaio de tração para seção tubular circular de diâmetro 114,3mm e # 6,02mm.

20,6338	10996,55	0,93323201	21,1338	10913,86	0,97286266	0,00933232	0,313292051	33,57064995
21,6338	10991,38	1,0159395	22,1338	10960,37	1,0538471	0,010159395	0,313144815	30,82317548
22,6338	10962,1	1,0917548	23,1338	10979,32	1,1331085	0,010917548	0,312310484	28,60628452
23,6338	11006,89	1,1744622	24,1338	11018,95	1,2140929	0,011744622	0,313586553	26,7004381
24,6338	11031,01	1,2537236	25,1338	10975,88	1,2985235	0,012537236	0,314273647	25,0672195
25,6338	11022,39	1,331262	26,1338	11041,34	1,3708926	0,01331262	0,314028262	23,5887648
26,6338	11017,22	1,4070771	27,1338	10979,32	1,4398155	0,014070771	0,313881026	22,30730822
27,6338	10994,83	1,4708309	28,1338	11065,46	1,5018462	0,014708309	0,313242963	21,29700722
28,6338	10989,66	1,5259691	29,1338	10960,37	1,5604306	0,015259691	0,313095726	20,51782874
29,6338	10975,88	1,5966151	30,1338	10915,58	1,6224612	0,015966151	0,312703105	19,58537818
30,6338	10977,6	1,6534765	31,1338	10896,63	1,687938	0,016534765	0,312752165	18,91482372
31,6338	10939,7	1,7120609	32,1338	11024,11	1,7465225	0,017120609	0,311672422	18,20451724
32,6338	11022,39	1,7723686	33,1338	10998,27	1,7964916	0,017723686	0,314028262	17,71799964
33,6338	10993,11	1,830953	34,1338	11034,45	1,8499069	0,01830953	0,313193875	17,10551143
34,6338	11051,68	1,8671377	35,1338	11067,18	1,8878145	0,018671377	0,314862621	16,86338512
35,6338	11065,46	1,9084914	36,1338	11017,22	1,9257221	0,019084914	0,315255242	16,51855713
36,6338	11142,98	1,9395066	37,1338	11137,81	1,9584606	0,019395066	0,317463818	16,36827725
37,6338	11101,64	1,9791374	38,1338	11173,99	1,9946451	0,019791374	0,316285926	15,98099889
38,6338	11163,65	2,0049834	39,1338	11198,11	2,0222142	0,020049834	0,318052792	15,86311348
39,6338	11142,98	2,0325527	40,1338	11125,75	2,042891	0,020325527	0,317463818	15,61897104
40,6338	11142,98	2,0480604	41,1338	11167,1	2,0635679	0,020480604	0,317463818	15,50070582
41,6338	11160,21	2,0756295	42,1338	11168,82	2,0894141	0,020756295	0,317954644	15,31846815
42,6338	11237,73	2,1014757	43,1338	11217,06	2,111814	0,021014757	0,320163248	15,23516298
43,6338	11239,45	2,1255987	44,1338	11279,07	2,1359372	0,021255987	0,320212308	15,06457017
44,6338	11299,75	2,1600602	45,1338	11378,99	2,1703985	0,021600602	0,321930114	14,90375657
45,6338	11375,55	2,1876292	46,1338	11392,77	2,2083061	0,021876292	0,324089658	14,81465223

46,6338	11434,12	2,2255368	47,1338	11427,23	2,2513831	0,022255368	0,325758348	14,63729324
47,6338	11451,35	2,2668905	48,1338	11539,2	2,2910137	0,022668905	0,326249174	14,3919247
48,6338	11516,81	2,3082445	49,1338	11592,61	2,3289213	0,023082445	0,328114217	14,21488133
49,6338	11596,05	2,3461521	50,1338	11615	2,3668289	0,023461521	0,33037188	14,08143489
50,6338	11621,89	2,3823366	51,1338	11690,8	2,4047365	0,023823366	0,331108063	13,89845846
51,6338	11735,59	2,4271367	52,1338	11737,31	2,4495363	0,024271367	0,33434735	13,77538193
52,6338	11789	2,4719365	53,1338	11807,95	2,4943364	0,024719365	0,335868832	13,58727588
53,6338	11813,11	2,5150132	54,1338	11871,69	2,5391364	0,025150132	0,336555954	13,38187626
54,6338	11890,64	2,5615363	55,1338	11900,97	2,5839362	0,025615363	0,338764558	13,22505398
55,6338	11957,82	2,6063361	56,1338	11962,99	2,628736	0,026063361	0,340678661	13,07117148
56,6338	11992,28	2,6528592	57,1338	12012,95	2,6769822	0,026528592	0,341660256	12,87894421
57,6338	12026,73	2,7011054	58,1338	12102,53	2,7269514	0,027011054	0,342641852	12,68524552
58,6338	12100,81	2,7493513	59,1338	12176,61	2,7734742	0,027493513	0,344752308	12,53940548
59,6338	12154,21	2,7975974	60,1338	12173,16	2,8234434	0,027975974	0,346273789	12,37754186
60,6338	12226,56	2,8458433	61,1338	12255,85	2,8734126	0,028458433	0,348335128	12,24013733
61,6338	12295,47	2,9009817	62,1338	12267,91	2,9164894	0,029009817	0,350298319	12,07516473
62,6338	12362,66	2,9423354	63,1338	12309,25	2,9647355	0,029423354	0,35221245	11,97050649
63,6338	12350,6	2,9836891	64,1338	12369,55	3,0043662	0,029836891	0,351868917	11,79308251
64,6338	12448,79	3,0319352	65,1338	12407,45	3,0595045	0,030319352	0,354666439	11,69769191
65,6338	12524,59	3,0784581	66,1338	12474,63	3,1008582	0,030784581	0,356825983	11,59106187
66,6338	12534,93	3,1301506	67,1338	12586,61	3,1525505	0,031301506	0,357120456	11,40905028
67,6338	12588,33	3,1783965	68,1338	12583,16	3,1973505	0,031783965	0,358641909	11,28373722
68,6338	12609	3,2231965	69,1338	12603,84	3,2473197	0,032231965	0,359230883	11,14517477
69,6338	12610,73	3,2697194	70,1338	12717,54	3,2955654	0,032697194	0,35928	10,98809886
70,6338	12686,53	3,3179653	71,1338	12702,03	3,3386426	0,033179653	0,361439487	10,89340769
71,6338	12739,93	3,3679345	72,1338	12796,78	3,3937805	0,033679345	0,362960969	10,77696044

72,6338	12824,34	3,4144578	73,1338	12772,66	3,4385805	0,034144578	0,365365897	10,7005539
73,6338	12817,45	3,4609807	74,1338	12891,53	3,4885497	0,034609807	0,365169544	10,55104249
74,6338	12889,81	3,5126729	75,1338	12946,65	3,5367959	0,035126729	0,367230912	10,45445796
75,6338	13068,97	3,5884881	76,1338	13124,09	3,6487956	0,035884881	0,372335242	10,37582491
76,6338	13084,47	3,7125492	77,1338	13213,68	3,7780259	0,037125492	0,372776952	10,04099694
77,6338	13211,95	3,8331645	78,1338	13329,1	3,9003642	0,038331645	0,37640886	9,819794074
78,6338	13346,32	3,9572258	79,1338	13423,85	4,0209794	0,039572258	0,380237094	9,608678232
79,6338	13379,05	4,0864563	80,1338	13444,52	4,145041	0,040864563	0,38116963	9,32763259
80,6338	13503,09	4,2070713	81,1338	13544,43	4,2673788	0,042070713	0,38470339	9,144208949
81,6338	13573,72	4,3294096	82,1338	13630,57	4,3914399	0,043294096	0,38671567	8,932295746
82,6338	13739,1	4,4517479	83,1338	13706,37	4,5086088	0,044517479	0,39142735	8,792666593
83,6338	13730,49	4,5706401	84,1338	13787,34	4,6309471	0,045706401	0,391181937	8,558581047
84,634	13907,93	4,696424	85,134	13899,31	4,7584548	0,04696424	0,396237179	8,436997586
85,634	13913,09	4,8170395	86,134	13980,28	4,8842392	0,048170395	0,396384416	8,228797292
86,634	14006,12	4,9445467	87,134	14023,35	5,0065775	0,049445467	0,399034729	8,070198414
87,6338	14142,21	5,0703311	88,134	14173,22	5,1375308	0,050703311	0,402912051	7,94646431
88,634	14219,74	5,2030077	89,134	14155,99	5,2650385	0,052030077	0,405120655	7,786278219
89,634	14202,51	5,3287921	90,134	14295,53	5,3890996	0,053287921	0,404629858	7,593275361
90,634	14249,02	5,4407916	91,134	14274,86	5,5079918	0,054407916	0,405955014	7,461322618
91,634	14405,79	5,5734682	92,134	14400,62	5,6372223	0,055734682	0,410421282	7,363840024
92,634	14392,01	5,6992526	93,134	14426,46	5,7595606	0,056992526	0,410028632	7,194428134
93,634	14459,19	5,8250375	94,134	14534,99	5,8905139	0,058250375	0,411942764	7,071933246
94,634	14491,92	5,9542675	95,134	14626,29	6,0214677	0,059542675	0,412875299	6,93410733
95,634	14603,9	6,0817752	96,134	14576,34	6,1455288	0,060817752	0,41606547	6,841184628
96,634	14626,29	6,2092829	97,134	14667,64	6,2747598	0,062092829	0,416703504	6,710976307
97,634	14714,15	6,3402362	98,134	14727,93	6,4039903	0,063402362	0,419206581	6,611844858

98,634	14721,04	6,4729133	99,134	14760,67	6,5332208	0,064729133	0,419402934	6,4793535
99,634	14758,94	6,6021438	100,134	14841,63	6,6641741	0,066021438	0,42048265	6,368880508
100,634	14839,91	6,7296515	101,134	14939,83	6,798574	0,067296515	0,422789402	6,282485827
101,634	14907,1	6,8623276	102,134	14963,94	6,9295273	0,068623276	0,424703561	6,188914112
102,634	14943,27	6,9898353	103,134	15012,18	7,057035	0,069898353	0,425734217	6,090761774
103,634	14977,73	7,1138964	104,134	15034,57	7,1776505	0,071138964	0,42671584	5,998342068
104,634	15096,59	7,2482958	105,134	15091,42	7,3103266	0,072482958	0,430102336	5,933840837
105,634	15136,21	7,3740807	106,134	15137,94	7,4378343	0,073740807	0,431231168	5,847931229
106,634	15098,32	7,5015883	107,134	15093,15	7,5670648	0,075015883	0,430151425	5,734137989
107,634	15187,9	7,6342645	108,134	15193,06	7,7014651	0,076342645	0,43270359	5,667914568
108,634	15201,68	7,7652183	109,134	15224,07	7,8272486	0,077652183	0,433096239	5,577386528
109,634	15299,87	7,8961716	110,134	15236,13	7,9582024	0,078961716	0,435893761	5,520317728
110,634	15306,76	8,0288486	111,134	15239,58	8,0874329	0,080288486	0,436090114	5,431539884
111,634	15334,33	8,1598024	112,134	15322,27	8,2183867	0,081598024	0,436875385	5,353994658
112,634	15379,12	8,2890329	113,134	15358,44	8,3545094	0,082890329	0,438151453	5,285917649
113,634	15375,67	8,4165401	114,134	15370,5	8,4854631	0,084165401	0,438053305	5,204671987
114,634	15408,4	8,5509396	115,134	15446,3	8,616416	0,085509396	0,438985812	5,133772807
115,634	15413,57	8,6836157	116,134	15451,47	8,7508163	0,086836157	0,439133048	5,05702997
116,634	15466,98	8,8145695	117,134	15539,33	8,8834925	0,088145695	0,440654558	4,999161427
117,634	15558,28	8,9541397	118,134	15584,12	9,0161695	0,089541397	0,443255783	4,950288898
118,634	15546,22	9,0850925	119,134	15504,87	9,1471233	0,090850925	0,442912222	4,87515369
119,634	15541,05	9,2177687	120,134	15577,23	9,283246	0,092177687	0,442764986	4,803385723
120,634	15551,39	9,3452768	121,134	15620,3	9,4107533	0,093452768	0,443059459	4,740998776
121,634	15665,09	9,4831219	122,134	15613,4	9,5485992	0,094831219	0,446298746	4,706242851
122,634	15592,73	9,6123524	123,134	15687,48	9,679553	0,096123524	0,44423735	4,621525844
123,634	15649,58	9,7484751	124,134	15696,1	9,8105068	0,097484751	0,445857009	4,573607708

124,634	15761,56	9,8845987	125,134	15728,83	9,9466286	0,098845987	0,449047208	4,54289771
125,634	15723,66	10,017275	126,134	15687,48	10,084476	0,10017275	0,447967436	4,471949067
126,634	15771,89	10,153399	127,134	15708,15	10,220598	0,10153399	0,449341709	4,425529908
127,634	15716,77	10,286075	128,134	15790,84	10,358444	0,10286075	0,44777114	4,35317786
128,634	15739,16	10,420475	129,134	15821,85	10,496289	0,10420475	0,448409145	4,303154562
129,634	15782,23	10,565212	130,134	15763,28	10,62552	0,10565212	0,449636154	4,25581762
130,634	15852,86	10,701336	131,134	15799,46	10,766812	0,10701336	0,451648433	4,220486424
131,634	15821,85	10,839181	132,134	15816,68	10,908104	0,10839181	0,450765014	4,158663041
132,634	15909,71	10,97875	133,134	15895,93	11,04595	0,1097875	0,453268091	4,128594705
133,634	15851,14	11,111426	134,134	15902,82	11,183796	0,11111426	0,451599373	4,064279177
134,634	15880,42	11,257888	135,134	15916,6	11,326811	0,11257888	0,452433732	4,01881536
135,634	15983,79	11,400904	136,134	15921,77	11,462934	0,11400904	0,455378519	3,994231672
136,634	15995,85	11,538749	137,134	15902,82	11,609395	0,11538749	0,45572208	3,949492963
137,634	15939	11,674871	138,134	16016,52	11,750688	0,11674871	0,454102422	3,889571214
138,634	15951,06	11,82478	139,134	16037,19	11,891979	0,1182478	0,454446011	3,843166735
139,634	15968,28	11,964348	140,134	16013,07	12,033272	0,11964348	0,454936809	3,802437117
140,634	16021,69	12,109086	141,134	16076,81	12,183179	0,12109086	0,456458319	3,769552211
141,634	16047,53	12,253824	142,134	16092,32	12,322747	0,12253824	0,457194444	3,731034854
142,634	16004,46	12,39167	143,134	16011,35	12,469209	0,1239167	0,455967436	3,679628621
143,634	16014,8	12,543302	144,134	16038,91	12,617393	0,12543302	0,456261966	3,637494862
144,634	16025,13	12,684593	145,134	16026,85	12,756962	0,12684593	0,456556439	3,599299077
145,634	16095,76	12,832777	146,134	16066,48	12,9017	0,12832777	0,458568746	3,573417869
146,634	16144	12,980962	147,134	16116,44	13,053331	0,12980962	0,459942934	3,54321147
147,634	16111,27	13,120531	148,134	16154,34	13,194622	0,13120531	0,459010484	3,498413931
148,634	16142,27	13,275607	149,134	16171,56	13,349699	0,13275607	0,459893846	3,464202022
149,634	16150,89	13,422068	150,134	16112,99	13,496161	0,13422068	0,460139288	3,428229448

150,634	16185,34	13,570252	151,134	16175,01	13,640899	0,13570252	0,461120883	3,398027415
151,634	16180,17	13,721884	152,134	16212,91	13,792528	0,13721884	0,460973618	3,359404716
152,634	16137,11	13,863175	153,134	16199,13	13,947605	0,13863175	0,459746638	3,316315622
153,634	16219,8	14,013083	154,134	16219,8	14,094067	0,14013083	0,462102479	3,297650336
154,634	16150,89	14,166436	155,134	16228,41	14,237082	0,14166436	0,460139288	3,248094918
155,634	16218,08	14,309451	156,134	16168,12	14,388712	0,14309451	0,462053419	3,229008708
156,634	16211,18	14,462805	157,134	16166,39	14,540343	0,14462805	0,461857094	3,193412993
157,634	16190,51	14,616158	158,134	16264,59	14,700589	0,14616158	0,461268148	3,155878228
158,634	16233,58	14,767789	159,134	16252,53	14,848774	0,14767789	0,4624951	3,131782962
159,634	16255,97	14,921143	160,134	16245,64	14,995234	0,14921143	0,463133162	3,103871884
160,634	16259,42	15,077942	161,134	16207,74	15,150311	0,15077942	0,463231311	3,072244943
161,634	16307,66	15,231296	162,134	16207,74	15,303664	0,15231296	0,464605556	3,050335018
162,634	16230,13	15,382927	163,134	16235,3	15,457018	0,15382927	0,462396952	3,005910069
163,634	16231,86	15,539725	164,134	16300,76	15,618986	0,15539725	0,462446011	2,975895721
164,634	16214,63	15,689632	165,134	16299,04	15,768895	0,15689632	0,461955214	2,944334282
165,634	16250,81	15,844709	166,1342	16243,92	15,925694	0,15844709	0,462985897	2,922022092
166,6342	16252,53	16,004955	167,134	16268,03	16,082495	0,16004955	0,463035014	2,893072891
167,6342	16330,05	16,163477	168,1342	16336,94	16,244463	0,16163477	0,46524359	2,878363299
168,6342	16316,27	16,320278	169,1342	16323,16	16,401262	0,16320278	0,464850969	2,848303005
169,6342	16350,72	16,482246	170,1342	16317,99	16,556339	0,16482246	0,465832593	2,826268899
170,6342	16354,17	16,644217	171,1342	16342,11	16,714861	0,16644217	0,465930712	2,799354949
171,6342	16349	16,797569	172,1342	16285,26	16,876831	0,16797569	0,465783447	2,772921768
172,6342	16349	16,952646	173,1342	16273,2	17,035353	0,16952646	0,465783447	2,747556029
173,6342	16314,55	17,112892	174,1342	16330,05	17,195599	0,17112892	0,464801909	2,716092107
174,6342	16297,32	17,27486	175,1342	16366,23	17,359291	0,1727486	0,464311083	2,687784923
175,6342	16317,99	17,435106	176,1342	16362,78	17,517815	0,17435106	0,464900028	2,666459432

176,6342	16314,55	17,598797	177,1342	16300,76	17,678061	0,17598797	0,464801909	2,641100462
177,6342	16362,78	17,760767	178,1342	16383,45	17,840029	0,17760767	0,466176097	2,624752055
178,6342	16311,1	17,921013	179,1342	16385,18	18,010612	0,17921013	0,464703704	2,593066049
179,6342	16367,95	18,089874	180,1342	16383,45	18,170858	0,18089874	0,466323362	2,577814317
180,6342	16345,56	18,253567	181,1342	16321,44	18,332827	0,18253567	0,465685328	2,551201788
181,6342	16307,66	18,415535	182,1342	16323,16	18,496519	0,18415535	0,464605556	2,522900125
182,6342	16373,12	18,584396	183,1342	16352,45	18,66538	0,18584396	0,46647057	2,510012
183,6342	16323,16	18,74292	184,1342	16354,17	18,830795	0,1874292	0,465047293	2,481189129
184,6342	16400,68	18,911781	185,1342	16378,29	19,001381	0,18911781	0,46725584	2,470713046
185,6342	16324,88	19,080641	186,1342	16362,78	19,163349	0,19080641	0,465096382	2,437530174
186,6342	16385,18	19,252949	187,1342	16383,45	19,335657	0,19252949	0,466814188	2,424637327
187,6342	16343,83	19,413195	188,1342	16397,24	19,504519	0,19413195	0,465636239	2,398555412
188,6342	16333,5	19,587225	189,1342	16317,99	19,671656	0,19587225	0,465341766	2,37574116
189,6342	16321,44	19,754362	190,1342	16319,71	19,83707	0,19754362	0,464998177	2,353901263
190,6342	16359,34	19,924946	191,1342	16323,16	20,011101	0,19924946	0,466077977	2,339168082
191,6342	16338,66	20,093807	192,1342	16352,45	20,17824	0,20093807	0,465488974	2,316579304
192,6342	16397,24	20,271286	193,1342	16398,96	20,35227	0,20271286	0,467157721	2,304529278
193,6342	16326,6	20,447039	194,1342	16338,66	20,533192	0,20447039	0,465145413	2,274879082
194,6342	16350,72	20,617622	195,1342	16343,83	20,7055	0,20617622	0,465832593	2,259390499
195,6342	16347,28	20,791653	196,1342	16392,07	20,881252	0,20791653	0,465734359	2,240006405
196,6342	16309,38	20,967407	197,1342	16393,79	21,055283	0,20967407	0,464654644	2,216080624
197,6342	16323,16	21,141438	198,1342	16323,16	21,225866	0,21141438	0,465047293	2,199695657
198,6342	16380,01	21,31719	199,1342	16321,44	21,403345	0,2131719	0,466666923	2,189157779
199,6342	. 16311,1	21,494667	200,1342	16328,33	21,587713	0,21494667	0,464703704	2,161948839
200,6342	16330,05	21,670422	201,1342	16350,72	21,760019	0,21670422	0,46524359	2,146905998
201,6342	16343,83	21,849621	202,1342	16300,76	21,937498	0,21849621	0,465636239	2,131095269

202,6342	16309,38	22,021927	203,1342	16324,88	22,114973	0,22021927	0,464654644	2,109963601
203,6342	16349	22,20285	204,1342	16383,45	22,297619	0,2220285	0,465783447	2,097854317
204,6342	16364,5	22,388941	205,1342	16366,23	22,483711	0,22388941	0,466225185	2,082390521
205,6342	16295,6	22,56642	206,1342	16316,27	22,664635	0,2256642	0,464261966	2,057313326
206,6342	16299,04	22,750788	207,1342	16269,76	22,847281	0,22750788	0,464360171	2,041072911
207,6342	16374,84	22,935158	208,1342	16276,65	23,023033	0,22935158	0,466519658	2,034080856
208,6342	16314,55	23,117802	209,1342	16264,59	23,212572	0,23117802	0,464801909	2,010580023
209,6342	16319,71	23,307341	210,1342	16269,76	23,393494	0,23307341	0,464949117	1,994861262
210,6342	16319,71	23,489986	211,1342	16276,65	23,584755	0,23489986	0,464949117	1,979350336
211,6342	16254,25	23,672632	212,1342	16273,2	23,774294	0,23672632	0,463084103	1,956200318
212,6342	16300,76	23,863894	213,1342	16235,3	23,956938	0,23863894	0,464409231	1,946074814
213,6342	16249,08	24,046539	214,1342	16250,81	24,144754	0,24046539	0,462936838	1,925170344
214,6342	16240,47	24,239523	215,1342	16228,41	24,332569	0,24239523	0,462691425	1,908830568
215,6342	16271,48	24,429062	216,1342	16254,25	24,522106	0,24429062	0,4635749	1,897636922
216,6342	16243,92	24,618599	217,1342	16209,46	24,715092	0,24618599	0,46278963	1,879837393
217,6342	16199,13	24,813307	218,1342	16257,7	24,908075	0,24813307	0,461513533	1,85994367
218,6342	16293,87	25,004566	219,1342	16223,24	25,097612	0,25004566	0,464212906	1,85651255
219,6342	16199,13	25,195829	220,1342	16273,2	25,29232	0,25195829	0,461513533	1,831706084
220,6342	16247,36	25,39226	221,1342	16171,56	25,487026	0,2539226	0,462887749	1,822948211
221,6342	16226,69	25,586966	222,1342	16230,13	25,681734	0,25586966	0,462298803	1,806774603
222,6342	16245,64	25,776503	223,1342	16188,79	25,876442	0,25776503	0,462838689	1,795583712
223,6342	16180,17	25,974655	224,1342	16159,5	26,078039	0,25974655	0,460973618	1,774705451
224,6342	16135,38	26,176256	225,1342	16211,18	26,274469	0,26176256	0,45969755	1,75616234
225,6342	16130,22	26,362349	226,1342	16119,88	26,465733	0,26362349	0,459550342	1,743207109
226,6342	16144	26,569117	227,1342	16125,05	26,665607	0,26569117	0,459942934	1,731118631
227,6342	16126,77	26,763824	228,1342	16149,17	26,867208	0,26763824	0,459452137	1,716690921

228,6342	16071,64	26,967148	229,1342	16078,54	27,061916	0,26967148	0,457881595	1,697923694
229,6342	16121,6	27,163578	230,1342	16049,25	27,26524	0,27163578	0,459304929	1,690885232
230,6342	16071,64	27,365175	231,1342	16092,32	27,46167	0,27365175	0,457881595	1,673227361
231,6342	16061,31	27,566776	232,1342	16037,19	27,664993	0,27566776	0,457587123	1,659922519
232,6342	15980,34	27,764929	233,1342	15988,95	27,86659	0,27764929	0,45528037	1,639767818
233,6342	15945,89	27,96653	234,1342	15945,89	28,064743	0,2796653	0,454298775	1,624437408
234,6342	16002,74	28,173298	235,1342	15951,06	28,271515	0,28173298	0,455918376	1,618264131
235,6342	15928,66	28,37145	236,1342	15978,62	28,473112	0,2837145	0,453807949	1,599523284
236,6342	15866,64	28,573051	237,1342	15902,82	28,678158	0,28573051	0,452041083	1,582053952
237,6342	15858,03	28,774649	238,1342	15880,42	28,872866	0,28774649	0,45179567	1,570117048
238,6342	15799,46	28,972805	239,1342	15859,75	29,081358	0,28972805	0,45012698	1,55361892
239,6342	15835,63	29,186464	240,1342	15744,33	29,276064	0,29186464	0,451157635	1,545776958
240,6342	15768,45	29,384619	241,1342	15801,18	29,481112	0,29384619	0,449243533	1,52883906
241,6342	15746,05	29,586218	242,1342	15716,77	29,68788	0,29586218	0,448605499	1,516265102
242,6342	15663,36	29,791264	243,1342	15702,98	29,889481	0,29791264	0,44624963	1,497921101
243,6342	15656,47	29,989416	244,1342	15565,17	30,091078	0,29989416	0,446053362	1,487369283
244,6342	15565,17	30,196188	245,1342	15592,73	30,301294	0,30196188	0,44345208	1,468569741
245,6342	15518,66	30,401234	246,1342	15473,86	30,497725	0,30401234	0,442126952	1,454305939
246,6344	15506,6	30,604553	247,1342	15501,43	30,704493	0,30604553	0,44178339	1,443521787
247,6344	15401,51	30,804432	248,1344	15353,28	30,906094	0,30804432	0,438789487	1,424436221
248,6342	15353,28	31,0112	249,1342	15379,12	31,112862	0,310112	0,437415242	1,410507308
249,6344	15265,42	31,20763	250,1344	15248,19	31,317907	0,3120763	0,434912165	1,393608439
250,6344	15277,48	31,424738	251,1342	15184,45	31,517784	0,31424738	0,435255755	1,385073616
251,6344	15206,85	31,621168	252,1344	15160,33	31,72283	0,31621168	0,433243476	1,37010586
252,6344	15112,1	31,826214	253,1344	15062,14	31,927876	0,31826214	0,430544074	1,352797018
253,6344	15091,42	32,034706	254,1344	15010,46	32,138088	0,32034706	0,4299551	1,342154037

254,6344	14965,67	32,236305	255,1344	14931,21	32,337967	0,32236305	0,426372279	1,32264625
255,6344	14884,7	32,443073	256,1344	14912,26	32,54818	0,32443073	0,424065527	1,307106534
256,6344	14834,74	32,651566	257,1344	14836,46	32,749783	0,32651566	0,422642165	1,294400903
257,6344	. 14731,38	32,853165	258,1344	14750,33	32,96172	0,32853165	0,419697407	1,277494596
258,6344	14652,13	33,061657	259,1344	14619,4	33,166763	0,33061657	0,417439715	1,262609781
259,6344	14562,55	33,261536	260,1344	14603,9	33,368366	0,33261536	0,414887578	1,247349426
260,6344	14533,27	33,471748	261,1344	14479,86	33,576855	0,33471748	0,414053191	1,237022909
261,6344	14457,47	33,681961	262,1344	14373,06	33,783623	0,33681961	0,411893675	1,222891016
262,6344	. 14323,1	33,890457	263,1344	14259,36	33,992119	0,33890457	0,40806547	1,204071902
263,6344	14283,48	34,095501	264,1344	14192,17	34,198887	0,34095501	0,40693661	1,193519959
264,6344	. 14124,99	34,2971	265,1344	14095,7	34,405655	0,342971	0,402421225	1,173338927
265,6344	. 14119,82	34,514206	266,1344	14002,67	34,614147	0,34514206	0,402273989	1,165531632
266,6344	13930,32	34,714085	267,1344	13926,87	34,819191	0,34714085	0,396875185	1,143268461
267,6344	13861,41	34,926022	268,1344	13816,62	35,027683	0,34926022	0,394912023	1,130709998
268,6344	. 13701,2	35,131069	269,1344	13651,24	35,236176	0,35131069	0,390347578	1,111117849
269,6344	13649,52	35,341286	270,1344	13539,27	35,448112	0,35341286	0,388875185	1,100342487
270,6344	13508,26	35,551498	271,1344	13394,56	35,65316	0,35551498	0,384850627	1,082515923
271,6344	13420,4	35,759991	272,1344	13317,04	35,866821	0,35759991	0,382347521	1,069204747
272,6344	13218,84	35,968483	273,1344	13222,29	36,075314	0,35968483	0,376605214	1,04704225
273,6344	13146,49	36,18042	274,1344	13058,63	36,282082	0,3618042	0,374543818	1,035211359
274,6344	13008,67	36,385464	275,1344	12960,44	36,499187	0,36385464	0,370617436	1,018586532
275,6344	12814,01	36,599129	276,1344	12788,17	36,702511	0,36599129	0,365071396	0,997486569
276,6344	12738,21	36,811066	277,1344	12636,57	36,921341	0,36811066	0,36291188	0,985877128
277,6344	12562,49	37,021278	278,1344	12440,18	37,128109	0,37021278	0,357905726	0,966756811
278,6344	12429,84	37,233219	279,1344	12310,98	37,34005	0,37233219	0,354126581	0,951103855
279,6344	. 12212,78	37,445156	280,1344	12185,22	37,557156	0,37445156	0,347942507	0,929205655

280,6344	12040,51	37,655373	281,1344	11914,75	37,769096	0,37655373	0,343034501	0,910984208
281,6344	11890,64	37,875923	282,1344	11761,43	37,975864	0,37875923	0,338764558	0,894406081
282,6344	11651,18	38,082691	283,1344	11485,8	38,199863	0,38082691	0,33194245	0,871636015
283,6344	16,01933	38,87014	284,1344	16,01933	38,978691	0,3887014	0,000456391	0,001174143
284,6344	17,74204	39,075184	285,1344	17,74204	39,175121	0,39075184	0,000505471	0,001293586
285,6344	10,85121	39,281952	286,1344	12,57392	39,369827	0,39281952	0,000309151	0,000787006
286,6344	5,683092	39,471489	287,1344	10,85121	39,578323	0,39471489	0,000161911	0,000410199
287,6344	16,01933	39,679981	288,1344	19,46475	39,779919	0,39679981	0,000456391	0,00115018
288,6344	10,85121	39,88158	289,1344	16,01933	39,981522	0,3988158	0,000309151	0,000775173
289,6344	16,01933	40,07629	290,1344	17,74204	40,183121	0,4007629	0,000456391	0,001138806
290,6344	19,46475	40,281334	291,1344	17,74204	40,377827	0,40281334	0,000554551	0,001376695
291,6344	16,01933	40,488106	292,1344	16,01933	40,586319	0,40488106	0,000456391	0,001127223
Test Control			Stopped			Time:	292,50839	

		tracao			Time:	289,67697	
	EXTENSOMET			EXTENSOMET			
FORCA	RO	Time	FORCA	RO	Deformação	Tensão	Módulo
N	%	Sec	Ν	%	sem unidade	(kN/mm2)	(kN/mm2)
818,8006	0,007941503	1,155	1416,58	0,018279944	7,9415E-05	0,0233277	293,743541
1950,619	0,025172235	2,1552	2555,289	0,035510678	0,00025172	0,0555732	220,771744
3077,269	0,037233751	3,1552	3742,233	0,045849115	0,00037234	0,0876715	235,462363
4253,877	0,057910636	4,1552	4746,571	0,063079856	0,00057911	0,1211931	209,276025
5327,123	0,068249069	5,1552	5790,532	0,076864444	0,00068249	0,1517699	222,376493
6348,688	0,082033657	6,1552	6849,996	0,085479811	0,00082034	0,1808743	220,487918
7392,648	0,095818244	7,155	7823,325	0,099264391	0,00095818	0,2106168	219,808624
8364,255	0,10443362	8,155199	8808,714	0,10960283	0,00104434	0,2382979	228,181174
9297,962	0,11649512	9,155	9723,471	0,12338741	0,00116495	0,2648992	227,390812
10188,6	0,137172	10,1552	10693,35	0,14406431	0,00137172	0,2902736	211,612837
10981,05	0,14234123	11,155	11260,13	0,15095659	0,00142341	0,3128503	219,788983
11322,14	0,17507961	12,1552	11156,76	0,20954108	0,0017508	0,3225682	184,240859
11124,03	0,24744871	13,1552	11022,39	0,2801871	0,00247449	0,316924	128,076627
10982,77	0,31637165	14,1552	11034,45	0,34566391	0,00316372	0,3128994	98,9024781
11001,72	0,37151	15,1552	11010,33	0,39907917	0,0037151	0,3134393	84,3690119
10965,54	0,42492524	16,1552	10922,48	0,45249444	0,00424925	0,3124086	73,5208396
10948,31	0,47834051	17,1552	10963,82	0,50590968	0,00478341	0,3119178	65,2083132
10941,43	0,52830964	18,1552	10998,27	0,55587882	0,0052831	0,3117215	59,0035628
11010,33	0,58000189	19,1552	11037,9	0,61618638	0,00580002	0,3136847	54,083388
10987,94	0,64547867	20,1552	10924,2	0,67821705	0,00645479	0,3130466	48,4983707
	FORCA N 818,8006 1950,619 3077,269 4253,877 5327,123 6348,688 7392,648 8364,255 9297,962 10188,6 10981,05 11322,14 11124,03 10982,77 11001,72 10965,54 10948,31 10948,31 10941,43 11010,33 10987,94	EXTENSOMET FORCA RO N % 818,8006 0,007941503 1950,619 0,025172235 3077,269 0,037233751 4253,877 0,057910636 5327,123 0,068249069 6348,688 0,082033657 7392,648 0,095818244 8364,255 0,10443362 9297,962 0,11649512 10188,6 0,137172 10981,05 0,14234123 11322,14 0,17507961 11124,03 0,24744871 10982,77 0,31637165 11001,72 0,37151 10965,54 0,42492524 10948,31 0,47834051 10941,43 0,52830964 11010,33 0,58000189 10987,94 0,64547867	EXTENSOMET Time FORCA RO Time N % Sec 818,8006 0,007941503 1,155 1950,619 0,025172235 2,1552 3077,269 0,037233751 3,1552 4253,877 0,057910636 4,1552 5327,123 0,068249069 5,1552 6348,688 0,095818244 7,155 8364,255 0,10443362 8,155199 9297,962 0,11649512 9,155 10188,6 0,137172 10,1552 10981,05 0,14234123 11,155 11322,14 0,17507961 12,1552 11982,77 0,31637165 14,1552 10982,77 0,31637165 14,1552 10965,54 0,42492524 16,1552 10948,31 0,47834051 17,1552 10941,43 0,52830964 18,1552 10941,43 0,52830964 18,1552 10987,94 0,64547867 20,1552	Itracao EXTENSOMET RO Time FORCA N % Sec N 818,8006 0,007941503 1,155 1416,58 1950,619 0,025172235 2,1552 2555,289 3077,269 0,037233751 3,1552 3742,233 4253,877 0,057910636 4,1552 4746,571 5327,123 0,068249069 5,1552 5790,532 6348,688 0,082033657 6,1552 6849,996 7392,648 0,095818244 7,155 7823,325 8364,255 0,10443362 8,155199 8808,714 9297,962 0,11649512 9,155 9723,471 10188,6 0,137172 10,1552 10693,35 10981,05 0,14234123 11,155 11260,13 11322,14 0,17507961 12,1552 1102,39 10982,77 0,31637165 14,1552 10924,34 10982,77 0,31637165 14,1552 10922,48 10948,31 <t< td=""><td>tracao EXTENSOMET EXTENSOMET FORCA RO Time FORCA RO N % Sec N % 818,8006 0,007941503 1,155 1416,58 0,018279944 1950,619 0,025172235 2,1552 2555,289 0,035510678 3077,269 0,037233751 3,1552 3742,233 0,045849115 4253,877 0,057910636 4,1552 4746,571 0,063079856 5327,123 0,068249069 5,1552 5790,532 0,076864444 6348,688 0,082033657 6,1552 6849,996 0,085479811 7392,648 0,095818244 7,155 7823,325 0,099264391 8364,255 0,10443362 8,155199 8808,714 0,10960283 9297,962 0,11649512 9,155 9723,471 0,12338741 10188,6 0,137172 10,1552 10693,35 0,14406431 10981,05 0,14234123 11,155 11260,13 0,15095659 11124,03<!--</td--><td>tracao Time: FORCA RO Time FORCA RO Deformação N % Sec N % sem unidade 818,8006 0,007941503 1,155 1416,58 0,018279944 7,9415E-05 1950,619 0,025172235 2,1552 2555,289 0,035510678 0,00025172 3077,269 0,037233751 3,1552 3742,233 0,045849115 0,00037234 4253,877 0,057910636 4,1552 4746,571 0,063079856 0,00057911 5327,123 0,068249069 5,1552 5790,532 0,076864444 0,00082034 7392,648 0,095818244 7,155 7823,325 0,099264391 0,00095818 8364,255 0,10443362 8,155199 8808,714 0,10960283 0,001164951 10188,6 0,137172 10,1552 10693,35 0,14406431 0,0017508 101981,05 0,14234123 11,155 11260,13 0,15095659 0,00142341 110981,05 0,1423412</td><td>Image: Image: Z89,67697 FORCA RO Time FORCA RO Tensão N % Sec N % sem unidade (kN/mm2) 818,8006 0,007941503 1,155 1416,58 0,018279944 7,9415E-05 0,0233277 1950,619 0,025172235 2,1552 2555,289 0,035510678 0,000025172 0,0555732 3077,269 0,037233751 3,1552 3742,233 0,045849115 0,00037234 0,0876715 4253,877 0,057910636 4,1552 4746,571 0,063079856 0,00057911 0,1211931 5327,123 0,068249069 5,1552 5790,532 0,076864444 0,0008249 0,1517699 6348,688 0,082033657 6,1552 6849,996 0,085479811 0,00095818 0,21061688 8364,255 0,10443362 8,155199 8808,714 0,10960283 0,0014434 0,2382979 9297,962 0,11649512 9,155 9723,471 0,12338741 0,00116495</td></td></t<>	tracao EXTENSOMET EXTENSOMET FORCA RO Time FORCA RO N % Sec N % 818,8006 0,007941503 1,155 1416,58 0,018279944 1950,619 0,025172235 2,1552 2555,289 0,035510678 3077,269 0,037233751 3,1552 3742,233 0,045849115 4253,877 0,057910636 4,1552 4746,571 0,063079856 5327,123 0,068249069 5,1552 5790,532 0,076864444 6348,688 0,082033657 6,1552 6849,996 0,085479811 7392,648 0,095818244 7,155 7823,325 0,099264391 8364,255 0,10443362 8,155199 8808,714 0,10960283 9297,962 0,11649512 9,155 9723,471 0,12338741 10188,6 0,137172 10,1552 10693,35 0,14406431 10981,05 0,14234123 11,155 11260,13 0,15095659 11124,03 </td <td>tracao Time: FORCA RO Time FORCA RO Deformação N % Sec N % sem unidade 818,8006 0,007941503 1,155 1416,58 0,018279944 7,9415E-05 1950,619 0,025172235 2,1552 2555,289 0,035510678 0,00025172 3077,269 0,037233751 3,1552 3742,233 0,045849115 0,00037234 4253,877 0,057910636 4,1552 4746,571 0,063079856 0,00057911 5327,123 0,068249069 5,1552 5790,532 0,076864444 0,00082034 7392,648 0,095818244 7,155 7823,325 0,099264391 0,00095818 8364,255 0,10443362 8,155199 8808,714 0,10960283 0,001164951 10188,6 0,137172 10,1552 10693,35 0,14406431 0,0017508 101981,05 0,14234123 11,155 11260,13 0,15095659 0,00142341 110981,05 0,1423412</td> <td>Image: Image: Z89,67697 FORCA RO Time FORCA RO Tensão N % Sec N % sem unidade (kN/mm2) 818,8006 0,007941503 1,155 1416,58 0,018279944 7,9415E-05 0,0233277 1950,619 0,025172235 2,1552 2555,289 0,035510678 0,000025172 0,0555732 3077,269 0,037233751 3,1552 3742,233 0,045849115 0,00037234 0,0876715 4253,877 0,057910636 4,1552 4746,571 0,063079856 0,00057911 0,1211931 5327,123 0,068249069 5,1552 5790,532 0,076864444 0,0008249 0,1517699 6348,688 0,082033657 6,1552 6849,996 0,085479811 0,00095818 0,21061688 8364,255 0,10443362 8,155199 8808,714 0,10960283 0,0014434 0,2382979 9297,962 0,11649512 9,155 9723,471 0,12338741 0,00116495</td>	tracao Time: FORCA RO Time FORCA RO Deformação N % Sec N % sem unidade 818,8006 0,007941503 1,155 1416,58 0,018279944 7,9415E-05 1950,619 0,025172235 2,1552 2555,289 0,035510678 0,00025172 3077,269 0,037233751 3,1552 3742,233 0,045849115 0,00037234 4253,877 0,057910636 4,1552 4746,571 0,063079856 0,00057911 5327,123 0,068249069 5,1552 5790,532 0,076864444 0,00082034 7392,648 0,095818244 7,155 7823,325 0,099264391 0,00095818 8364,255 0,10443362 8,155199 8808,714 0,10960283 0,001164951 10188,6 0,137172 10,1552 10693,35 0,14406431 0,0017508 101981,05 0,14234123 11,155 11260,13 0,15095659 0,00142341 110981,05 0,1423412	Image: Image: Z89,67697 FORCA RO Time FORCA RO Tensão N % Sec N % sem unidade (kN/mm2) 818,8006 0,007941503 1,155 1416,58 0,018279944 7,9415E-05 0,0233277 1950,619 0,025172235 2,1552 2555,289 0,035510678 0,000025172 0,0555732 3077,269 0,037233751 3,1552 3742,233 0,045849115 0,00037234 0,0876715 4253,877 0,057910636 4,1552 4746,571 0,063079856 0,00057911 0,1211931 5327,123 0,068249069 5,1552 5790,532 0,076864444 0,0008249 0,1517699 6348,688 0,082033657 6,1552 6849,996 0,085479811 0,00095818 0,21061688 8364,255 0,10443362 8,155199 8808,714 0,10960283 0,0014434 0,2382979 9297,962 0,11649512 9,155 9723,471 0,12338741 0,00116495

Tabela Cp2b – Dados experimentais do ensaio de tração para seção tubular circular de diâmetro 114,3mm e # 6,02mm.

20,6552	10962,1	0,71095544	21,1552	10958,65	0,74886304	0,00710955	0,3123105	43,9282783
21,6552	10956,93	0,78504759	22,1552	10901,8	0,81950915	0,00785048	0,3121632	39,7636046
22,6552	10915,58	0,8591398	23,1552	10965,54	0,89877045	0,0085914	0,3109853	36,197287
23,6552	10936,26	0,93495506	24,1552	10986,22	0,97113955	0,00934955	0,3115743	33,3250535
24,6552	10993,11	1,0124934	25,1552	11048,23	1,0469548	0,01012493	0,3131939	30,93293
25,6552	11024,11	1,0745239	26,1552	11012,06	1,1124316	0,01074524	0,3140773	29,2294403
26,6552	11027,56	1,1434469	27,1552	11048,23	1,1813545	0,01143447	0,3141755	27,4761774
27,6552	11093,02	1,2175391	28,1552	11168,82	1,2485543	0,01217539	0,3160405	25,9573194
28,6552	11156,76	1,2795697	29,1552	11230,84	1,3123082	0,0127957	0,3178565	24,8408873
29,6552	11230,84	1,3433235	30,1552	11242,9	1,3846772	0,01343324	0,3199669	23,819052
30,6552	11279,07	1,4088002	31,1552	11223,95	1,4484309	0,014088	0,3213411	22,8095609
31,6552	11189,49	1,4828924	32,1552	11217,06	1,5173538	0,01482892	0,318789	21,4977838
32,6552	11191,22	1,5587076	33,1552	11205	1,6035075	0,01558708	0,3188381	20,4552856
33,6552	11182,6	1,6362458	34,1552	11211,89	1,6741536	0,01636246	0,3185927	19,4709547
34,6552	11189,49	1,7137841	35,1552	11285,97	1,7516917	0,01713784	0,318789	18,6014681
35,6552	11239,45	1,7913225	36,1552	11285,97	1,8326762	0,01791323	0,3202123	17,8757487
36,6552	11301,47	1,8705838	37,1552	11253,23	1,9067683	0,01870584	0,3219792	17,2127655
37,6552	11318,7	1,9446759	38,1552	11261,85	1,9774143	0,01944676	0,32247	16,5821976
38,6552	11365,21	2,0135989	39,1552	11329,03	2,042891	0,02013599	0,3237952	16,0804212
39,6552	11418,61	2,0739064	40,1552	11387,61	2,0980296	0,02073906	0,3253166	15,6861775
40,6552	11432,4	2,1290448	41,1552	11456,51	2,1548908	0,02129045	0,3257093	15,2983764
41,6552	11458,24	2,179014	42,1552	11323,87	2,1979678	0,02179014	0,3264455	14,9813388
42,6552	11289,41	2,2238138	43,1552	11313,53	2,2427676	0,02223814	0,3216356	14,4632438
43,6552	11268,74	2,2651677	44,1552	11229,12	2,273783	0,02265168	0,3210467	14,1731964
44,6552	11370,38	2,2944598	45,1552	11397,94	2,3065214	0,0229446	0,3239424	14,1184614
45,6552	11411,72	2,318583	46,1552	11487,52	2,3220291	0,02318583	0,3251203	14,0223711

46,6552	11544,37	2,3392599	47,1552	11528,87	2,3530443	0,0233926	0,3288995	14,0599806
47,6552	11678,74	2,3651059	48,1552	11646,01	2,3892291	0,02365106	0,3327277	14,0681943
48,6552	11685,63	2,3995674	49,1552	11701,14	2,4185212	0,02399567	0,332924	13,8743361
49,6552	11714,92	2,4409211	50,1552	11782,11	2,463321	0,02440921	0,3337584	13,6734602
50,6552	11838,95	2,480552	51,1552	11801,06	2,4995055	0,02480552	0,3372921	13,5974629
51,6552	11866,52	2,5219057	52,1552	11918,2	2,5460284	0,02521906	0,3380774	13,4056335
52,6552	11913,03	2,5667055	53,1552	11956,1	2,5873823	0,02566706	0,3394026	13,2232765
53,6552	12019,84	2,6080592	54,1552	11995,72	2,627013	0,02608059	0,3424455	13,130282
54,6552	12012,95	2,6528592	55,1552	12049,13	2,6683669	0,02652859	0,3422492	12,9011457
55,6552	12066,35	2,6855977	56,1552	12167,99	2,7114437	0,02685598	0,3437707	12,800529
56,6552	12154,21	2,7303975	57,1552	12226,56	2,7493513	0,02730398	0,3462738	12,682175
57,6552	12223,12	2,7751973	58,1552	12259,3	2,790705	0,02775197	0,348237	12,5481882
58,6552	12238,62	2,8113818	59,1552	12285,14	2,8337817	0,02811382	0,3486787	12,4023965
59,6552	12288,58	2,8561819	60,1552	12305,81	2,8803048	0,02856182	0,350102	12,2576935
60,6552	12354,04	2,8958123	61,1552	12360,94	2,9182124	0,02895812	0,3519671	12,1543467
61,6552	12436,73	2,9371662	62,1552	12405,73	2,9612892	0,02937166	0,3543229	12,0634262
62,6552	12455,68	2,9836891	63,1552	12484,97	3,0043662	0,02983689	0,3548628	11,8934239
63,6552	12553,88	3,0302122	64,1552	12510,81	3,0457199	0,03030212	0,3576603	11,8031451
64,6552	12583,16	3,075012	65,1552	12624,51	3,093966	0,03075012	0,3584947	11,6583178
65,6552	12660,69	3,118089	66,1552	12664,13	3,1404886	0,03118089	0,3607033	11,5680888
66,6552	12636,57	3,1628888	67,1552	12686,53	3,1818428	0,03162889	0,3600162	11,3825106
67,6552	12712,37	3,2042425	68,1552	12727,87	3,2266424	0,03204243	0,3621757	11,3030044
68,6552	12750,27	3,2490425	69,1552	12851,91	3,2783349	0,03249043	0,3632554	11,1803844
69,6552	12853,63	3,2972884	70,1552	12812,28	3,3196886	0,03297288	0,3662002	11,1061025
70,6552	12872,58	3,3455346	71,1552	12874,3	3,3627653	0,03345535	0,3667401	10,9620789
71,6552	12913,92	3,3868883	72,1552	12958,71	3,4127345	0,03386888	0,367918	10,8630106

73,6552 12996,61 3,4833806 74,1552 13010,4 3,5057807 0,03483381 0,3702739 74,6552 13013,84 3,5212882 75,1552 13215,4 3,5591958 0,03521288 0,3707647 75,6552 13239,52 3,6212263 76,1552 13208,51 3,6815338 0,03621226 0,3771942 76,6552 13363,55 3,7418416 77,1552 13332,54 3,7987027 0,03741842 0,3807279 77,6552 13379,05 3,8624568 78,1552 13403,17 3,9141488 0.03862457 0.3811696	10,6297278 10,5292339 10,4161996 10,17488 9,86857975 9,65490652
74,6552 13013,84 3,5212882 75,1552 13215,4 3,5591958 0,03521288 0,3707647 75,6552 13239,52 3,6212263 76,1552 13208,51 3,6815338 0,03621226 0,3771942 76,6552 13363,55 3,7418416 77,1552 13332,54 3,7987027 0,03741842 0,3807279 77,6552 13379,05 3,8624568 78,1552 13403,17 3,9141488 0.03862457 0.3811696	10,5292339 10,4161996 10,17488 9,86857975 9,65490652
75,6552 13239,52 3,6212263 76,1552 13208,51 3,6815338 0,03621226 0,3771942 76,6552 13363,55 3,7418416 77,1552 13332,54 3,7987027 0,03741842 0,3807279 77,6552 13379,05 3,8624568 78,1552 13403,17 3,9141488 0.03862457 0.3811696	10,4161996 10,17488 9,86857975 9,65490652
76,6552 13363,55 3,7418416 77,1552 13332,54 3,7987027 0,03741842 0,3807279 77,6552 13379,05 3,8624568 78,1552 13403,17 3,9141488 0.03862457 0,3811696	10,17488 9,86857975 9,65490652
77.6552 13379.05 3.8624568 78.1552 13403.17 3.9141488 0.03862457 0.3811696	9,86857975 9,65490652
	9,65490652
78,6552 13451,41 3,9692872 79,1552 13596,12 4,0295949 0,03969287 0,383231	,
79,6552 13535,82 4,084733 80,1552 13623,68 4,1415944 0,04084733 0,3856359	9,44090831
80,6552 13651,24 4,2001786 81,1552 13683,97 4,2553172 0,04200179 0,3889242	9,25970731
81,6552 13735,65 4,317348 82,1552 13752,88 4,3690405 0,04317348 0,3913292	9,06411005
82,6552 13892,42 4,4310708 83,1552 13883,81 4,4844861 0,04431071 0,3957955	8,93227592
83,6552 13899,31 4,5430708 84,1552 13982 4,5982089 0,04543071 0,3959918	8,71639057
84,6552 13969,94 4,6585164 85,1554 14016,46 4,7153778 0,04658516 0,398004	8,54357936
85,6554 14069,86 4,7722392 86,1554 14076,75 4,83427 0,04772239 0,4008507	8,3996352
86,6554 14218,01 4,8980236 87,1554 14200,79 4,9514394 0,04898024 0,4050716	8,27010239
87,6554 14209,4 5,0065775 88,1554 14274,86 5,0686083 0,05006578 0,4048262	8,08588609
88,6554 14300,7 5,1254697 89,1554 14324,82 5,1943927 0,0512547 0,4074274	7,94907455
89,6554 14405,79 5,2478075 90,1554 14452,3 5,308115 0,05247808 0,4104213	7,82081435
90,6552 14495,37 5,368423 91,1554 14466,08 5,4338999 0,05368423 0,4129734	7,69263986
91,6554 14505,7 5,489038 92,1554 14509,15 5,5545149 0,05489038 0,4132679	7,5289681
92,6554 14531,55 5,6148219 93,1554 14643,52 5,6768532 0,05614822 0,4140041	7,37341519
93,6554 14590,12 5,7388835 94,1554 14631,46 5,8026376 0,05738884 0,4156728	7,24309564
94,6554 14690,03 5,8663912 95,1554 14684,87 5,9284215 0,05866391 0,4185195	7,13418988
95,6554 14765,83 5,9904523 96,1554 14779,61 6,0473137 0,05990452 0,420679	7,02249149
96,6554 14741,72 6,1127906 97,1554 14877,81 6,1765442 0,06112791 0,4199919	6,87070616
97,6554 14822,68 6,2334056 98,1554 14908,82 6,2954369 0,06233406 0,4222987	6,77476628

98,6554	14948,44	6,3609133	99,1554	14941,55	6,419498	0,06360913	0,4258815	6,69528781
99,6554	14962,22	6,4832516	100,1554	14993,23	6,5504513	0,06483252	0,4262741	6,57500478
100,6554	14955,33	6,6055894	101,1554	15027,69	6,6745129	0,06605589	0,4260778	6,45026175
101,6554	15012,18	6,7262049	102,1554	15112,1	6,7934046	0,06726205	0,4276974	6,35867391
102,6554	15129,32	6,8554358	103,1554	15110,37	6,9174662	0,06855436	0,4310349	6,28749046
103,6554	15193,06	6,9812193	104,1554	15120,71	7,0449734	0,06981219	0,4328508	6,20021774
104,6554	15230,96	7,1087275	105,1554	15213,74	7,1707578	0,07108728	0,4339306	6,10419514
105,6554	15205,12	7,2276192	106,1554	15275,75	7,2930965	0,07227619	0,4331944	5,99359728
106,6554	15280,92	7,3637419	107,1554	15265,42	7,4223266	0,07363742	0,4353539	5,91212877
107,6554	15291,26	7,487803	108,1554	15355	7,548111	0,07487803	0,4356484	5,81810681
108,6554	15323,99	7,6084185	109,1554	15413,57	7,6687264	0,07608419	0,4365809	5,73812957
109,6554	15420,46	7,7307568	110,1554	15386,01	7,7910643	0,07730757	0,4393294	5,68287665
110,6554	15484,2	7,8599873	111,1554	15406,68	7,9254642	0,07859987	0,4411453	5,61254504
111,6554	15482,48	7,9840484	112,1554	15510,04	8,0460796	0,07984048	0,4410963	5,52471936
112,6554	15453,19	8,1046638	113,1554	15482,48	8,1787558	0,08104664	0,4402619	5,43220411
113,6554	15561,72	8,2390642	114,1554	15577,23	8,3010941	0,08239064	0,4433539	5,38112
114,6554	15623,74	8,3665705	115,1554	15563,45	8,4268789	0,08366571	0,4451208	5,32023005
115,6554	15570,34	8,4906321	116,1554	15622,02	8,5543861	0,08490632	0,4435993	5,22457352
116,6554	15613,4	8,6198626	117,1554	15663,36	8,685339	0,08619863	0,4448263	5,16048046
117,6554	15635,8	8,7473698	118,1554	15673,7	8,8145695	0,0874737	0,4454644	5,09255236
118,6554	15673,7	8,8731546	119,1554	15689,2	8,938632	0,08873155	0,4465441	5,03252959
119,6554	15685,76	9,0092773	120,1554	15752,94	9,0695848	0,09009277	0,4468877	4,96030567
120,6554	15766,73	9,1350613	121,1554	15751,22	9,2005377	0,09135061	0,4491945	4,91725735
121,6554	15747,78	9,2625685	122,1554	15837,36	9,3314915	0,09262569	0,4486546	4,84373809
122,6554	15821,85	9,3986912	123,1554	15882,15	9,4641685	0,09398691	0,450765	4,79604026
123,6554	15859,75	9,5279226	124,1554	15895,93	9,5968447	0,09527923	0,4518448	4,74232218

124,6554	15849,42	9,6554298	125,1554	15878,7	9,7277985	0,0965543	0,4515503	4,67664614
125,6554	15914,88	9,7949982	126,1554	15883,87	9,8587523	0,09794998	0,4534153	4,62904963
126,6554	15902,82	9,9242296	127,1554	15935,55	9,989706	0,0992423	0,4530717	4,56530891
127,6554	. 15901,1	10,060352	128,1554	15983,79	10,127552	0,10060352	0,4530227	4,50305026
128,6554	15990,68	10,189583	129,1554	15951,06	10,260228	0,10189583	0,4555748	4,47098614
129,6554	15951,06	10,327428	130,1554	15971,73	10,392905	0,10327428	0,454446	4,40037937
130,6554	15994,12	10,466997	131,1554	16016,52	10,523859	0,10466997	0,455673	4,35342622
131,6554	16009,63	10,594504	132,1554	16047,53	10,661704	0,10594504	0,4561147	4,30520108
132,6554	. 16087,15	10,73235	133,1554	16097,48	10,802997	0,1073235	0,4583233	4,27048414
133,6554	16100,93	10,87192	134,1554	16121,6	10,944288	0,1087192	0,458716	4,21927272
134,6554	16140,55	11,006319	135,1554	16111,27	11,080411	0,11006319	0,4598448	4,17800733
135,6554	. 16071,64	11,147611	136,1554	16135,38	11,214811	0,11147611	0,4578816	4,10744145
136,6554	16152,61	11,285458	137,1554	16112,99	11,352657	0,11285458	0,4601883	4,07771062
137,6554	16204,29	11,423304	138,1554	16216,35	11,492226	0,11423304	0,4616607	4,04139416
138,6554	. 16197,4	11,566319	139,1554	16223,24	11,635242	0,11566319	0,4614644	3,98972582
139,6554	16221,52	11,702441	140,1554	16180,17	11,773088	0,11702441	0,4621516	3,94918946
140,6554	16190,51	11,840287	141,1554	16249,08	11,912656	0,11840287	0,4612681	3,89575141
141,6554	. 16274,92	11,983302	142,1554	16249,08	12,055671	0,11983302	0,463673	3,869326
142,6554	16206,02	12,117702	143,1554	16199,13	12,198687	0,12117702	0,4617098	3,81020947
143,6554	16278,37	12,265886	144,1554	16209,46	12,338255	0,12265886	0,4637712	3,78098431
144,6554	16268,03	12,41407	145,1554	16231,86	12,48127	0,1241407	0,4634767	3,73347899
145,6554	16302,49	12,551916	146,1554	16297,32	12,622562	0,12551916	0,4644583	3,70029795
146,6554	16290,43	12,691484	147,1554	16350,72	12,769023	0,12691484	0,4641148	3,65689905
147,6554	16286,98	12,837947	148,1554	16295,6	12,910316	0,12837947	0,4640166	3,61441399
148,6554	16316,27	12,980962	149,1554	16331,77	13,051607	0,12980962	0,464851	3,58102095
149,6554	16321,44	13,123976	150,1554	16314,55	13,198069	0,13123976	0,4649982	3,54311968

150,6554	16317,99	13,270438	151,1554	16369,67	13,347977	0,13270438	0,4649	3,50327569
151,6554	16345,56	13,413453	152,1554	16340,39	13,489267	0,13413453	0,4656853	3,47177813
152,6554	16404,13	13,561637	153,1554	16350,72	13,632283	0,13561637	0,467354	3,44614773
153,6554	16385,18	13,706376	154,1554	16357,61	13,778745	0,13706376	0,4668142	3,40581776
154,6554	16433,41	13,856283	155,1554	16433,41	13,930375	0,13856283	0,4681884	3,37888867
155,6554	. 16373,12	14,001021	156,1554	16447,2	14,07339	0,14001021	0,4664706	3,33168967
156,6554	16460,98	14,147482	157,1554	16402,4	14,226744	0,14147482	0,4689737	3,31489168
157,6554	16404,13	14,292219	158,1554	16479,93	14,36976	0,14292219	0,467354	3,26998939
158,6554	16412,74	14,442128	159,1554	16417,91	14,51622	0,14442128	0,4675994	3,23774606
159,6554	16455,81	14,595481	160,1554	16479,93	14,669574	0,14595481	0,4688265	3,21213441
160,6554	16476,48	14,745389	161,1554	16457,53	14,814312	0,14745389	0,4694154	3,18347237
161,6554	16457,53	14,893573	162,1554	16454,08	14,969388	0,14893573	0,4688755	3,14817356
162,6554	16473,03	15,041757	163,1554	16500,6	15,124464	0,15041757	0,4693172	3,12009547
163,6554	16502,32	15,196834	164,1556	16516,1	15,272649	0,15196834	0,4701516	3,09374681
164,6556	16455,81	15,343295	165,1554	16448,92	15,422556	0,15343295	0,4688265	3,05557879
165,6556	16529,89	15,496649	166,1556	16478,2	15,572463	0,15496649	0,4709369	3,03895955
166,6556	16448,92	15,644833	167,1556	16488,54	15,720648	0,15644833	0,4686301	2,99543078
167,6556	16559,17	15,799911	168,1556	16528,16	15,879171	0,15799911	0,4717712	2,98591065
168,6556	16574,67	15,95154	169,1556	16564,34	16,034246	0,1595154	0,4722129	2,96029684
169,6556	16500,6	16,110064	170,1556	16571,23	16,187601	0,16110064	0,4701026	2,91806764
170,6556	16505,77	16,263416	171,1556	16509,21	16,337509	0,16263416	0,4702497	2,89145739
171,6556	16581,57	16,416769	172,1556	16507,49	16,490862	0,16416769	0,4724093	2,87760209
172,6556	16524,72	16,571848	173,1556	16578,12	16,649385	0,16571848	0,4707896	2,84089983
173,6556	16591,9	16,728645	174,1556	16578,12	16,804462	0,16728645	0,4727038	2,82571458
174,6556	16516,1	16,882	175,1556	16572,95	16,962984	0,16882	0,4705442	2,78725398
175,6556	16505,77	17,035353	176,1556	16562,62	17,118061	0,17035353	0,4702497	2,7604344

176,6556	16567,78	17,197321	177,1556	16559,17	17,276585	0,17197321	0,4720166	2,74471012
177,6556	16522,99	17,355844	178,1556	16571,23	17,43166	0,17355844	0,4707405	2,71228822
178,6556	16528,16	17,509199	179,1556	16543,66	17,590183	0,17509199	0,4708878	2,68937378
179,6556	16590,18	17,665998	180,1556	16595,35	17,74526	0,17665998	0,4726547	2,67550523
180,6556	16581,57	17,829689	181,1556	16541,94	17,903782	0,17829689	0,4724093	2,6495655
181,6556	16617,74	17,988213	182,1556	16581,57	18,069197	0,17988213	0,4734399	2,63194539
182,6556	16624,63	18,148458	183,1556	16550,56	18,225996	0,18148458	0,4736363	2,60978794
183,6556	16557,45	18,303535	184,1556	16578,12	18,38452	0,18303535	0,4717221	2,57721875
184,6556	16543,66	18,462057	185,1556	16603,96	18,544765	0,18462057	0,4713295	2,55296286
185,6556	16564,34	18,622303	186,1556	16595,35	18,701565	0,18622303	0,4719185	2,53415736
186,6556	16614,3	18,782549	187,1556	16631,52	18,868704	0,18782549	0,4733418	2,52011479
187,6556	16554	18,946241	188,1556	16593,63	19,030672	0,18946241	0,471624	2,48927473
188,6556	16554	19,108212	189,1556	16578,12	19,189194	0,19108212	0,471624	2,46817436
189,6556	16628,08	19,27018	190,1556	16543,66	19,35461	0,1927018	0,4737344	2,45838086
190,6556	16535,05	19,435595	191,1556	16552,28	19,521748	0,19435595	0,4710841	2,42382121
191,6556	16547,11	19,604456	192,1556	16548,83	19,683718	0,19604456	0,4714277	2,40469648
192,6556	16548,83	19,769871	193,1556	16593,63	19,854301	0,19769871	0,4714768	2,38482463
193,6556	16624,63	19,935286	194,1556	16566,06	20,014547	0,19935286	0,4736363	2,37586894
194,6556	16578,12	20,102425	195,1556	16571,23	20,188578	0,20102425	0,4723111	2,34952292
195,6556	16562,62	20,271286	196,1556	16603,96	20,357439	0,20271286	0,4718694	2,32777255
196,6556	16595,35	20,443592	197,1556	16548,83	20,517685	0,20443592	0,4728019	2,31271432
197,6556	16548,83	20,600393	198,1556	16550,56	20,688269	0,20600393	0,4714768	2,28867844
198,6556	16585,01	20,774424	199,1556	16559,17	20,858852	0,20774424	0,4725074	2,27446695
199,6556	16588,46	20,948452	200,1556	16567,78	21,03116	0,20948452	0,4726056	2,25604047
200,6556	16610,85	21,115591	201,1556	16598,79	21,200022	0,21115591	0,4732436	2,24120484
201,6556	16567,78	21,284452	202,1556	16634,97	21,368883	0,21284452	0,4720166	2,21765921

202,6556	16612,57	21,460205	203,1556	16595,35	21,544636	0,21460205	0,4732927	2,20544355
203,6556	16552,28	21,629066	204,1556	16536,78	21,713497	0,21629066	0,4715749	2,18028324
204,6556	16547,11	21,801374	205,1556	16554	21,88925	0,21801374	0,4714277	2,16237593
205,6556	16550,56	21,977127	206,1556	16614,3	22,068451	0,21977127	0,4715258	2,14552994
206,6556	16586,73	22,152882	207,1556	16557,45	22,239035	0,22152882	0,4725565	2,13316022
207,6556	16538,5	22,330359	208,1556	16603,96	22,414787	0,22330359	0,4711823	2,11005241
208,6556	16559,17	22,502666	209,1556	16543,66	22,593988	0,22502666	0,4717712	2,09651259
209,6556	16559,17	22,68531	210,1556	16610,85	22,773188	0,2268531	0,4717712	2,07963314
210,6556	16531,61	22,859341	211,1556	16572,95	22,94894	0,22859341	0,470986	2,06036541
211,6556	16576,4	23,036818	212,1556	16535,05	23,131588	0,23036818	0,472262	2,05003136
212,6556	16590,18	23,217741	213,1556	16585,01	23,309063	0,23217741	0,4726547	2,03574801
213,6556	16521,27	23,395218	214,1556	16555,73	23,489986	0,23395218	0,4706915	2,01191321
214,6556	16547,11	23,577864	215,1556	16562,62	23,669186	0,23577864	0,4714277	1,99945026
215,6556	16505,77	23,758785	216,1556	16540,22	23,84494	0,23758785	0,4702497	1,9792668
216,6556	16566,06	23,944878	217,1556	16486,82	24,031033	0,23944878	0,4719675	1,97105849
217,6556	16567,78	24,125799	218,1556	16504,04	24,215401	0,24125799	0,4720166	1,95648074
218,6556	16481,65	24,303278	219,1556	16531,61	24,398046	0,24303278	0,4695626	1,93209583
219,6556	16529,89	24,487644	220,1556	16559,17	24,584137	0,24487644	0,4709369	1,92316131
220,6556	16505,77	24,673738	221,1556	16547,11	24,766785	0,24673738	0,4702497	1,90587151
221,6556	16505,77	24,859829	222,1556	16471,31	24,954597	0,24859829	0,4702497	1,8916049
222,6556	16454,08	25,045919	223,1556	16454,08	25,140688	0,25045919	0,4687773	1,87167148
223,6556	16495,43	25,230289	224,1556	16485,09	25,330229	0,25230289	0,4699553	1,86266305
224,6556	16436,86	25,423273	225,1556	16512,66	25,518042	0,25423273	0,4682865	1,84196002
225,6556	16426,52	25,616257	226,1556	16450,64	25,711027	0,25616257	0,4679921	1,82693378
226,6556	16431,69	25,80924	227,1556	16414,46	25,898842	0,2580924	0,4681393	1,81384375
227,6556	16498,88	25,995333	228,1556	16460,98	26,09355	0,25995333	0,4700534	1,80822234

228,6556	16378,29	26,188318	229,1556	16407,57	26,286533	0,26188318	0,4666178	1,78177856
229,6556	16397,24	26,381302	230,1556	16383,45	26,479515	0,26381302	0,4671577	1,770791
230,6556	16428,24	26,572561	231,1556	16343,83	26,669056	0,26572561	0,4680411	1,76137008
231,6556	16426,52	26,768991	232,1556	16340,39	26,858593	0,26768991	0,4679921	1,74826183
232,6556	16388,62	26,967148	233,1556	16369,67	27,061916	0,26967148	0,4669123	1,73141163
233,6556	16355,89	27,156685	234,1556	16297,32	27,256624	0,27156685	0,4659798	1,71589353
234,6556	16319,71	27,358286	235,1556	16357,61	27,456499	0,27358286	0,4649491	1,69948189
235,6556	16274,92	27,556438	236,1556	16281,81	27,654654	0,27556438	0,463673	1,68263046
236,6556	16261,14	27,754591	237,1556	16288,71	27,852808	0,27754591	0,4632804	1,66920286
237,6556	16262,87	27,95447	238,1556	16190,51	28,045792	0,2795447	0,4633295	1,65744329
238,6556	16243,92	28,150898	239,1556	16183,62	28,250837	0,28150898	0,4627896	1,64396045
239,6556	16197,4	28,357668	240,1556	16206,02	28,45933	0,28357668	0,4614644	1,6273003
240,6556	16147,44	28,55582	241,1556	16149,17	28,657482	0,2855582	0,4600411	1,61102399
241,6556	16142,27	28,752251	242,1556	16114,71	28,855635	0,28752251	0,4598938	1,59950553
242,6556	16126,77	28,962467	243,1556	16030,3	29,055513	0,28962467	0,4594521	1,58637086
243,6556	16094,04	29,16062	244,1556	16007,9	29,262281	0,2916062	0,4585197	1,57239338
244,6558	15980,34	29,362221	245,1558	15952,78	29,458712	0,29362221	0,4552804	1,55056516
245,6558	15999,29	29,563818	246,1558	15997,57	29,67065	0,29563818	0,4558202	1,54181787
246,6556	15971,73	29,772308	247,1558	15892,48	29,868803	0,29772308	0,455035	1,52838331
247,6558	15876,98	29,975632	248,1558	15833,91	30,073849	0,29975632	0,4523356	1,5090109
248,6558	15825,3	30,177233	249,1558	15856,31	30,27717	0,30177233	0,4508632	1,49405071
249,6558	15737,44	30,380556	250,1558	15801,18	30,485664	0,30380556	0,4483601	1,47581264
250,6558	15687,48	30,583878	251,1558	15701,26	30,69071	0,30583878	0,4469368	1,46134755
251,6558	15690,93	30,790646	252,1558	15622,02	30,890585	0,30790646	0,4470349	1,45185304
252,6558	15666,81	30,995691	253,1558	15653,03	31,099075	0,30995691	0,4463478	1,44003189
253,6558	15532,44	31,193848	254,1558	15558,28	31,295506	0,31193848	0,4425196	1,41861178

254,6558	15468,7	31,397167	255,1558	15468,7	31,502277	0,31397167	0,4407036	1,40364126
255,6558	15408,4	31,602213	256,1558	15415,29	31,71249	0,31602213	0,4389858	1,38909833
256,6558	15339,49	31,810707	257,1558	15361,89	31,924431	0,31810707	0,4370226	1,37382241
257,6558	15336,05	32,02092	258,1558	15310,21	32,12603	0,3202092	0,4369244	1,36449685
258,6558	15187,9	32,222523	259,1558	15253,36	32,329353	0,32222523	0,4327036	1,34286067
259,6558	15220,63	32,429291	260,1558	15134,49	32,527504	0,32429291	0,4336361	1,33717415
260,6558	15132,77	32,637783	261,1558	15020,79	32,73772	0,32637783	0,431133	1,32096303
261,6558	15019,07	32,837658	262,1558	15015,63	32,944489	0,32837658	0,4278937	1,30305801
262,6558	14905,37	33,04615	263,1558	14862,31	33,152981	0,3304615	0,4246545	1,28503463
263,6558	14889,87	33,252918	264,1558	14765,83	33,35458	0,33252918	0,4242128	1,2757159
264,6558	14757,22	33,457966	265,1558	14745,16	33,564796	0,33457966	0,4204336	1,25660244
265,6558	14660,75	33,664734	266,1558	14679,7	33,771564	0,33664734	0,4176851	1,24072004
266,6558	14536,71	33,868053	267,1558	14579,78	33,978333	0,33868053	0,4141514	1,22283784
267,6558	14488,48	34,07827	268,1558	14464,36	34,181656	0,3407827	0,4127771	1,21126196
268,6558	14361	34,285038	269,1558	14324,82	34,391869	0,34285038	0,4091452	1,19336366
269,6558	14288,64	34,495255	270,1558	14233,52	34,59864	0,34495255	0,4070838	1,18011549
270,6558	14230,07	34,700298	271,1558	14159,44	34,805408	0,34700298	0,4054151	1,16833328
271,6558	14038,85	34,905346	272,1558	14009,56	35,015621	0,34905346	0,3999673	1,14586248
272,6558	13961,33	35,119007	273,1558	13864,86	35,220669	0,35119007	0,3977586	1,13260216
273,6558	13802,84	35,324051	274,1558	13794,23	35,43261	0,35324051	0,3932433	1,11324513
274,6558	13678,81	35,534267	275,1558	13699,48	35,641098	0,35534267	0,3897095	1,09671474
275,6558	13553,05	35,74276	276,1558	13484,14	35,846146	0,3574276	0,3861267	1,08029345
276,6558	13494,48	35,958145	277,1558	13360,1	36,058083	0,35958145	0,384458	1,06918198
277,6558	13322,21	36,164913	278,1558	13323,93	36,268299	0,36164913	0,37955	1,04949789
278,6558	13139,6	36,371681	279,1558	13084,47	36,478512	0,36371681	0,3743475	1,02922799
279,6558	13008,67	36,585342	280,1558	12939,76	36,690449	0,36585342	0,3706174	1,01302165

280,6558	12931,15	36,804173	281,1558	12820,9	36,902386	0,36804173	0,3684088	1,00099745
281,6558	12726,15	37,005772	282,1558	12664,13	37,112602	0,37005772	0,3625683	0,97976153
282,6558	12526,31	37,219433	283,1558	12435,01	37,326263	0,37219433	0,356875	0,95884055
283,6558	12367,83	37,436539	284,1558	12261,02	37,545094	0,37436539	0,3523597	0,94121865
284,6558	12131,81	37,645035	285,1558	11988,83	37,758755	0,37645035	0,3456357	0,91814426
285,6558	11892,36	37,872478	286,1558	11713,2	37,977585	0,37872478	0,3388136	0,8946169
286,6558	-524,911	38,880478	287,1558	17,74204	38,771923	0,38880478	-0,0149547	-0,0384633
287,6558	26,35557	38,878754	288,1558	31,52369	38,975246	0,38878754	0,0007509	0,00193131
288,6558	26,35557	39,080353	289,1558	21,18745	39,176842	0,39080353	0,0007509	0,00192135
Test Control			Stopped			Time:	289,89038	

ANEXO 2 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO ENSAIO DE COMPRESSÃO PARA A DETERMINAÇÃO DO COEFICIENTE DE POISSON DAS SEÇÕES TUBULARES.

			Extensômetro1	Exrensômetro2	Extensômetro3	Extensômetro4		Média 1e2	Média 3e4	Poisson	Média
			Microstrain	Microstrain	Microstrain	Microstrain	Força				Poisson
Scan ID	Date	Time					Kgf				
1	2/20/2004	15:43:13	-2,37E+04	-4,73E+03	-1,42E+04	4,74E+03	0,00	-1,42E+04	-4733,4	3,33E-01	3,00E-01
2	2/20/2004	15:43:24	-1,92E+06	-1,40E+06	5,30E+05	5,78E+05	5,00	-1,66E+06	554310	3,34E-01	
3	2/20/2004	15:43:36	-4,18E+06	-3,47E+06	1,12E+06	1,15E+06	10,00	-3,82E+06	1134700	2,97E-01	
4	2/20/2004	15:43:46	-6,26E+06	-5,53E+06	1,68E+06	1,70E+06	15,00	-5,89E+06	1691500	2,87E-01	
5	2/20/2004	15:43:56	-8,26E+06	-7,53E+06	2,25E+06	2,26E+06	20,00	-7,89E+06	2253100	2,85E-01	
6	2/20/2004	15:44:06	-1,05E+07	-9,65E+06	3,08E+06	2,89E+06	25,00	-1,01E+07	2983000	2,97E-01	
7	2/20/2004	15:44:15	-1,26E+07	-1,18E+07	5,14E+06	3,47E+06	30,00	-1,22E+07	4303250	3,52E-01	
8	2/20/2004	15:44:28	-1,47E+07	-1,43E+07	2,15E+07	4,39E+06	35,00	-1,45E+07	12931400	8,92E-01	
9	2/20/2004	15:44:37	-1,52E+07	-1,49E+07	5,91E+07	3,88E+06	35,60	-1,50E+07	31483150	2,10E+00	
10	2/20/2004	15:45:01	-1,57E+07	-1,49E+07	7,13E+07	4,20E+06	35,80	-1,53E+07	37732400	2,47E+00	
11	2/20/2004	15:45:27	-2,03E+07	-1,61E+07	7,06E+07	7,65E+07	36,00	-1,82E+07	73557500	4,04E+00	
12	2/20/2004	15:45:37	-5,28E+07	-2,46E+07	7,06E+07	8,56E+07	36,20	-3,87E+07	78094000	2,02E+00	
13	2/20/2004	15:45:58		-1,17E+08	7,07E+07	9,91E+07	36,20				
14	2/20/2004	15:46:19			7,08E+07	9,94E+07	36,40				
15	2/20/2004	15:46:32			7,17E+07	9,88E+07	37,00				
16	2/20/2004	15:46:46			7,48E+07	9,89E+07	38,00				
17	2/20/2004	15:47:00			8,11E+07	1,01E+08	39,00				

Tabela CP1 – Dados experimentais do ensaio de compressão para seção tubular circular de diâmetro 73mm e # 5,16mm.

18	2/20/2004	15:47:07		8,78E+07	1,06E+08	40,00		
19	2/20/2004	15:47:14		9,55E+07	1,12E+08	41,00		
20	2/20/2004	15:47:21		1,04E+08	1,20E+08	42,00		
21	2/20/2004	15:47:29		1,13E+08	1,29E+08	43,00		
22	2/20/2004	15:47:36		1,21E+08	1,37E+08	44,00		
23	2/20/2004	15:47:45		1,31E+08	1,48E+08	45,00		
24	2/20/2004	15:47:51		1,37E+08	1,55E+08	45,50		
25	2/20/2004	15:47:55		1,43E+08		46,00		
26	2/20/2004	15:48:05		1,54E+08		47,00		

			Extensômetro1	Extensômetro2	Extensômetro3	Exrensômetro4		Média 1e2	Média 3e4	Poisson	Média
			Microstrain	Microstrain	Microstrain	Microstrain	Força				Poisson
Scan ID	Date	Time					kgf				
1	2/20/2004	15:55:08	-1,42E+04	-1,42E+04	-9,46E+03	3,32E+04	0,00	-14188,5	11865,6	0,836283	
2	2/20/2004	15:55:23	-2,10E+06	-1,69E+06	5,63E+05	6,92E+05	5,00	-1894050	627770	0,331443	0,307678
3	2/20/2004	15:55:35	-4,51E+06	-3,78E+06	1,22E+06	1,37E+06	10,00	-4144100	1293400	0,312106	
4	2/20/2004	15:55:44	-6,62E+06	-5,75E+06	1,79E+06	1,97E+06	15,00	-6187550	1881050	0,304006	
5	2/20/2004	15:55:54	-8,75E+06	-7,75E+06	2,38E+06	2,59E+06	20,00	-8248950	2485300	0,301287	
6	2/20/2004	15:56:03	-1,13E+07	-9,79E+06	2,93E+06	3,17E+06	25,00	-10531450	3049350	0,289547	
7	2/20/2004	15:56:12	-1,71E+07	-1,17E+07	3,44E+06	3,60E+06	30,00	-14384000	3518600	0,244619	
8	2/20/2004	15:56:31	-7,36E+07	-1,44E+07	3,37E+06	3,20E+06	35,00	-43966000	3283800	0,07469	
9	2/20/2004	15:56:39	-8,13E+07	-1,45E+07	3,26E+06	2,83E+06	35,50	-47904000	3044250	0,063549	
10	2/20/2004	15:56:54	-8,51E+07	-1,42E+07	3,24E+06	9,36E+06	35,80	-49653000	6299250	0,126865	
11	2/20/2004	15:57:07	-8,42E+07	-1,44E+07	2,60E+06	7,83E+07	36,00	-49298500	40450100	0,820514	
12	2/20/2004	15:57:29	-8,30E+07	-3,38E+07	3,33E+06	8,51E+07	36,20	-58395500	44194850	0,756819	
13	2/20/2004	15:57:58	-8,39E+07	-6,25E+07	2,93E+07	8,62E+07	36,20	-73185000	57758000	0,789205	
14	2/20/2004	15:58:09	-8,54E+07	-8,03E+07	8,00E+07	8,68E+07	36,40	-82856000	83406500	1,006644	
15	2/20/2004	15:58:19	-8,78E+07	-1,27E+08	9,08E+07	8,82E+07	36,80	-1,08E+08	89498500	0,832095	
16	2/20/2004	15:58:23	-8,98E+07		9,39E+07	8,95E+07	37,00				
17	2/20/2004	15:58:31	-9,38E+07		9,96E+07	9,26E+07	37,50				
18	2/20/2004	15:58:38	-9,84E+07		1,05E+08	9,63E+07	38,00				
19	2/20/2004	15:58:44	-1,03E+08		1,09E+08	9,97E+07	39,00				
20	2/20/2004	15:58:55	-1,21E+08		1,21E+08	1,11E+08	40,00				

Tabela CP2 – Dados experimentais do ensaio de compressão para seção tubular circular de diâmetro 73mm e #5,16mm.

21	2/20/2004	15:59:03	-1,34E+08	1,30E+08	1,20E+08	41,00					
22	2/20/2004	15:59:10	-1,47E+08	1,39E+08	1,28E+08	42,00					
23	2/20/2004	15:59:14		1,44E+08	1,33E+08	42,50					
24	2/20/2004	15:59:18		1,49E+08	1,38E+08	43,00					
25	2/20/2004	15:59:21		1,53E+08	1,42E+08	43,50					
26	2/20/2004	15:59:25			1,47E+08	44,00					
27	2/20/2004	15:59:29			1,52E+08	44,50					
28	2/20/2004	15:59:33			1,57E+08	45,00					
								Média	Média		
---------	-----------	----------	---------------	---------------	---------------	---------------	-------	----------	----------	----------	----------
			Extensômetro1	Extensômetro2	Extensômetro3	Exrensômetro4		1e2	3e4	Poisson	Média
			Microstrain	Microstrain	Microstrain	Microstrain	Força				Poisson
Scan ID	Date	Time					kgf				
1	2/20/2004	14:54:31	4,74E+04	-1,42E+04	-9,48E+03	-9,42E+03	0,00	16590	-11832,1	-0,7132	0,342412
2	2/20/2004	14:55:00	-1,22E+06	-1,28E+06	4,36E+05	4,05E+05	5,00	-1249150	-422570	0,338286	
3	2/20/2004	14:55:13	-2,43E+06	-2,48E+06	7,96E+05	7,40E+05	10,00	-2457850	-842745	0,342879	
4	2/20/2004	14:55:25	-3,58E+06	-3,63E+06	1,15E+06	1,06E+06	15,00	-3607100	-1243850	0,344834	
5	2/20/2004	14:55:36	-4,65E+06	-4,72E+06	1,48E+06	1,35E+06	20,00	-4685150	-1621250	0,34604	
6	2/20/2004	14:55:48	-5,77E+06	-5,86E+06	1,83E+06	1,65E+06	25,00	-5817350	-2017350	0,346782	
7	2/20/2004	14:55:59	-6,81E+06	-6,91E+06	2,16E+06	1,93E+06	30,00	-6861850	-2375550	0,346197	
8	2/20/2004	14:56:10	-7,87E+06	-7,95E+06	2,49E+06	2,20E+06	35,00	-7908450	-2728900	0,345061	
9	2/20/2004	14:56:21	-8,96E+06	-8,99E+06	2,84E+06	2,45E+06	40,00	-8973800	-3075050	0,34267	
10	2/20/2004	14:56:31	-9,97E+06	-9,94E+06	3,15E+06	2,72E+06	45,00	-9953800	-3392800	0,340855	
11	2/20/2004	14:56:43	-1,11E+07	-1,09E+07	3,48E+06	3,02E+06	50,00	-1,1E+07	-3731600	0,338667	
12	2/20/2004	14:56:55	-1,22E+07	-1,19E+07	3,75E+06	3,29E+06	55,00	-1,2E+07	-4089150	0,339095	
13	2/20/2004	14:57:06	-1,33E+07	-1,29E+07	4,06E+06	3,48E+06	60,00	-1,3E+07	-4430250	0,337581	
14	2/20/2004	14:57:40	-3,13E+07	-1,35E+07	3,54E+07	3,70E+06	63,80	-2,2E+07	10952000	-0,48874	
15	2/20/2004	14:57:51	-4,53E+07	-1,37E+07	4,34E+07	3,67E+06	64,00	-3E+07	14846500	-0,50314	
16	2/20/2004	14:58:13	-8,49E+07	-1,93E+07	5,26E+07	4,34E+06	64,00	-5,2E+07	16634000	-0,31931	
17	2/20/2004	14:58:28	-1,10E+08	-2,81E+07	5,73E+07	4,16E+06	64,20	-6,9E+07	14580000	-0,21053	
18	2/20/2004	14:58:45	-1,31E+08	-1,12E+08	6,29E+07	3,51E+06	64,50	-1,2E+08	-2,5E+07	0,202627	

Tabela CP3 – Dados experimentais do ensaio de compressão para seção tubular circular de diâmetro 114,3mm e # 6,02mm.

19	2/20/2004	14:59:04	-1,46E+08	-1,42E+08	6,84E+07	1,84E+06	64,80	-1,4E+08	-3,7E+07	0,255464	
20	2/20/2004	14:59:21		-1,45E+08	7,12E+07	5,56E+05	65,00				
21	2/20/2004	15:00:22			8,34E+07	7,82E+07	68,00				
22	2/20/2004	15:00:46			9,25E+07	9,16E+07	70,00				
23	2/20/2004	15:01:23			1,06E+08	1,08E+08	73,00				
24	2/20/2004	15:01:42			1,14E+08	1,17E+08	75,00				
25	2/20/2004	15:02:08			1,24E+08	1,28E+08	77,00				
26	2/20/2004	15:02:21			1,30E+08	1,34E+08	78,00				
27	2/20/2004	15:02:35			1,35E+08	1,39E+08	79,00				
28	2/20/2004	15:02:48			1,41E+08	1,45E+08	80,00				
29	2/20/2004	15:03:02			1,46E+08	1,51E+08	81,00				
30	2/20/2004	15:03:14			1,51E+08	1,56E+08	82,00				

								Média	Média		
			Extensômetro1	Extensômetro2	Extensômetro3	Extensômetro4		1e2	3e4	Poisson	Média
			Microstrain	Microstrain	Microstrain	Microstrain	Força				Poisson
Scan ID	Date	Time					kgf				
1	2/20/2004	15:14:40	0,0000E+00	-4,73E+03	-4,73E+03	1,42E+04	0,00	-2364,5	4735,4	2,002707	0,29962
2	2/20/2004	15:14:51	-8,99E+05	-9,50E+05	1,99E+05	2,65E+05	5,00	-924845	231915	0,250761	
3	2/20/2004	15:15:02	-2,03E+06	-2,06E+06	5,06E+05	5,82E+05	10,00	-2041000	544310	0,266688	
4	2/20/2004	15:15:12	-3,14E+06	-3,17E+06	8,19E+05	8,90E+05	15,00	-3152250	854355	0,27103	
5	2/20/2004	15:15:21	-4,23E+06	-4,23E+06	1,14E+06	1,19E+06	20,00	-4225400	1166700	0,276116	
6	2/20/2004	15:15:31	-5,39E+06	-5,35E+06	1,47E+06	1,52E+06	25,00	-5373950	1495750	0,278333	
7	2/20/2004	15:15:40	-6,45E+06	-6,37E+06	1,78E+06	1,82E+06	30,00	-6408750	1798800	0,280679	
8	2/20/2004	15:15:49	-7,51E+06	-7,42E+06	2,10E+06	2,11E+06	35,00	-7467050	2106500	0,282106	
9	2/20/2004	15:15:58	-8,66E+06	-8,52E+06	2,44E+06	2,43E+06	40,00	-8591150	2433250	0,283228	
10	2/20/2004	15:16:06	-9,68E+06	-9,52E+06	2,74E+06	2,73E+06	45,00	-9599300	2733950	0,284807	
11	2/20/2004	15:16:15	-1,08E+07	-1,06E+07	3,10E+06	3,05E+06	50,00	-1,1E+07	3072500	0,286227	
12	2/20/2004	15:16:24	-1,19E+07	-1,17E+07	3,45E+06	3,37E+06	55,00	-1,2E+07	3408800	0,288625	
13	2/20/2004	15:16:33	-1,29E+07	-1,26E+07	3,78E+06	3,72E+06	60,00	-1,3E+07	3749850	0,293795	
14	2/20/2004	15:16:47	-1,38E+07	-1,40E+07	7,80E+06	3,57E+06	65,00	-1,4E+07	5687300	0,408526	
15	2/20/2004	15:16:54	-1,35E+07	-1,54E+07	8,62E+06	3,02E+06	64,80	-1,4E+07	5822450	0,402562	
16	2/20/2004	15:17:05	-1,90E+07	-1,83E+07	9,75E+06	2,97E+06	64,40	-1,9E+07	6360550	0,34082	
17	2/20/2004	15:17:17	-5,07E+07	-2,12E+07	1,35E+07	4,60E+06	64,60	-3,6E+07	9055600	0,251604	
18	2/20/2004	15:17:47	-1,38E+08	-6,61E+07	2,98E+07	7,22E+06	64,80	-1E+08	18484900	0,181183	

Tabela CP4 – Dados experimentais do ensaio de compressão para seção tubular circular de diâmetro 114,3mm e # 6,02mm.

19	2/20/2004	15:18:04	-1,14E+08	3,80E+07	1,89E+07	65,00		
20	2/20/2004	15:18:17	-1,32E+08	4,52E+07	3,03E+07	65,20		
21	2/20/2004	15:18:35	-1,46E+08	5,64E+07	5,33E+07	65,60		
22	2/20/2004	15:18:44	-1,52E+08	6,23E+07	6,51E+07	66,00		
23	2/20/2004	15:19:01		6,95E+07	7,98E+07	67,00		
24	2/20/2004	15:19:13		7,39E+07	8,81E+07	68,00		
25	2/20/2004	15:19:25		7,85E+07	9,53E+07	69,00		
26	2/20/2004	15:19:36		8,25E+07	1,01E+08	70,00		
27	2/20/2004	15:19:45		8,61E+07	1,06E+08	71,00		
28	2/20/2004	15:19:56		9,02E+07	1,11E+08	72,00		
29	2/20/2004	15:20:05		9,40E+07	1,15E+08	73,00		
30	2/20/2004	15:20:15		9,82E+07	1,20E+08	74,00		
31	2/20/2004	15:20:25		1,02E+08	1,25E+08	75,00		
32	2/20/2004	15:20:35		1,07E+08	1,30E+08	76,00		
33	2/20/2004	15:20:46		1,11E+08	1,35E+08	77,00		
34	2/20/2004	15:20:57		1,16E+08	1,41E+08	78,00		
35	2/20/2004	15:21:09		1,21E+08	1,46E+08	79,00		
36	2/20/2004	15:21:20		1,26E+08	1,51E+08	80,00		
37	2/20/2004	15:21:31		1,32E+08	1,57E+08	81,00		
38	2/20/2004	15:21:45		1,37E+08		82,00		
39	2/20/2004	15:22:08		1,47E+08		84,00		
40	2/20/2004	15:22:20		1,53E+08		85,00		

ANEXO 3 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO ENSAIO I DO PROTÓTIPO DA LIGAÇÃO YT DE SEÇÕES TUBULARES CIRCULARES.

Força	EER1	EER2	EER3	EER4	EER5	EER6	EER7	EER8	EER9	EER10	EER11	EER12	EER13	EER14	EER15	EER16
kN																
-0,2	3	0	0	-2	-2	-4	4	2	-1	-2	0	-2	-1	-4	-4	-2
0,2	5	0	6	-3	-3	-2	-2	-2	-1	-1	-1	-2	-1	-2	-2	-2
12,2	10	-7	6	28	-15	-32	-19	-7	-73	-34	-33	-72	67	62	61	65
20,2	16	-11	13	47	-25	-54	-31	-10	-109	-66	-69	-107	111	105	104	108
30,2	23	-16	23	70	-37	-80	-44	-12	-151	-108	-115	-147	164	159	157	162
40,2	31	-20	31	96	-48	-110	-57	-14	-193	-154	-162	-187	221	213	211	219
50,4	39	-26	40	119	-59	-138	-72	-15	-234	-199	-207	-225	275	266	263	272
60,4	47	-32	48	144	-70	-167	-88	-14	-274	-244	-255	-263	330	317	314	325
70,4	54	-38	56	169	-81	-198	-103	-13	-315	-289	-302	-301	387	362	365	382
75,2	58	-42	60	184	-86	-214	-110	-12	-336	-313	-329	-322	419	386	391	412
75	60	-43	60	184	-85	-214	-110	-11	-335	-312	-328	-321	418	385	390	412
80,8	63	-49	67	199	-90	-232	-118	-7	-356	-335	-354	-343	451	403	417	442
90,4	70	-54	74	225	-101	-261	-132	-8	-396	-382	-402	-379	508	452	467	497
100,6	78	-63	83	251	-113	-292	-147	-6	-437	-429	-450	-416	572	496	520	558
110,2	84	-72	91	280	-123	-323	-164	-3	-477	-473	-497	-452	636	533	569	616
120,8	92	-80	101	306	-135	-354	-180	-4	-521	-522	-545	-489	703	578	622	678
125,6	95	-85	105	320	-141	-370	-186	-5	-542	-545	-569	-506	738	597	647	711
130,8	98	-94	109	337	-147	-389	-197	-1	-564	-571	-594	-526	780	615	673	748
140,2	104	-101	116	362	-160	-416	-211	-4	-608	-619	-638	-558	842	661	723	807

Tabela A3.1 – Tabela dos resultados das leituras dos extensômetros no ENSAIO I (EER em microstrain).

150,8	112	-111	126	389	-173	-447	-226	-6	-658	-673	-685	-592	923	701	777	879
161	116	-126	134	422	-186	-480	-246	7	-707	-725	-730	-625	1056	737	828	952
170,6	123	-133	142	445	-201	-509	-259	3	-758	-782	-771	-649	1162	776	879	1021
175,6	126	-137	145	458	-208	-523	-266	3	-785	-811	-793	-660	1229	791	904	1060
199,6	144	-154	168	517	-247	-598	-298	5	-943	-999	-884	-676	1668	851	1032	1268
200,2	145	-154	169	518	-248	-602	-300	10	-968	-1027	-882	-658	1785	832	1040	1290
210,2	152	-156	178	539	-264	-627	-314	6	-1027	-1105	-926	-664	1897	877	1097	1357
210	153	-152	182	535	-265	-628	-316	9	-1049	-1134	-926	-641	1983	858	1105	1374
214,8	156	-155	186	545	-271	-639	-323	6	-1074	-1163	-947	-652	2024	884	1131	1403
220	161	-146	194	547	-282	-648	-329	0	-1120	-1227	-973	-635	2138	893	1166	1452
224,8	163	-134	202	543	-293	-652	-336	-9	-1172	-1301	-1004	-619	2294	899	1207	1504
230	167	-116	211	536	-305	-654	-342	-22	-1217	-1377	-1045	-601	2444	910	1249	1558
229,2	166	-112	211	532	-305	-650	-341	-21	-1217	-1378	-1044	-596	2453	905	1244	1557
230,4	164	-95	215	516	-311	-641	-341	-33	-1242	-1438	-1063	-573	2608	893	1260	1587
235	167	-93	220	524	-318	-650	-348	-39	-1268	-1477	-1089	-581	2670	915	1289	1617
240	167	-49	233	491	-336	-633	-351	-72	-1344	-1618	-1145	-549	3089	919	1335	1693
214,2	137	41	223	354	-306	-452	-282	-145	-1317	-1384	-1096	-501	3413	675	1194	1621

Força	TD1	TD2	TD3	TD4	TD5	TD6	TD7	TD8	TD9	TD10	TD11	TD12	TD13	TD14	TD15	TD16	TD17	TD18	TD19	banzo
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,0
50	-0,020	0,063	-0,084	-0,003	0,086	0,120	-0,010	0,060	-0,660	1,210	1,260	1,180	-0,610	-0,722	-0,160	9,670	-0,230	0,314	-0,080	0,0
75	-0,043	0,112	-0,144	-0,005	0,109	0,220	-0,020	0,080	-1,060	1,940	2,030	1,920	-1,000	-1,242	-0,340	9,640	-0,390	-0,120	-0,184	0,0
100	-0,061	0,175	-0,200	-0,005	0,110	0,260	-0,050	0,110	-1,480	2,700	2,770	2,660	-1,400	-1,774	-0,540	12,120	-0,655	-0,546	-0,405	0,0
125	-0,077	0,243	-0,252	-0,005	0,110	0,330	-0,070	0,130	-1,890	3,440	3,560	3,400	-1,780	-2,179	-0,710	11,990	-1,030	-0,966	-0,725	0,1
150	-0,103	0,342	-0,307	-0,005	0,110	0,400	-0,110	0,150	-2,390	4,280	4,380	4,140	-2,220	-2,719	-0,850	11,840	-1,200	-1,466	-0,950	0,2
175	-0,121	0,420	-0,342	-0,005	0,110	0,450	-0,140	0,180	-2,820	5,080	5,230	5,010	-2,590	-3,206	-0,900	11,810	-1,270	-1,906	-1,150	0,5
200	-0,128	0,510	-0,382	-0,005	0,111	0,520	-0,150	0,320	-3,330	5,940	6,130	5,840	-3,040	-4,343	-0,970	11,570	-1,560	-2,806	-1,750	0,8
210	-0,148	0,570	-0,400	-0,003	0,112	0,530	-0,170	0,380	-3,530	6,400	6,550	6,250	-3,240	-5,680	-0,990	11,510	-1,655	-3,896	-2,530	0,9
220	-0,153	0,623	-0,410	0,000	0,112	0,550	-0,180	0,390	-3,810	6,880	7,030	6,690	-3,410	-7,327	-1,010	11,390	-1,800	-5,231	-3,510	1,4
230	-0,159	0,675	-0,423	0,001	0,112	0,570	-0,180	0,440	-4,100	7,430	7,580	7,190	-3,620	-9,324	-1,030	11,230	-1,870	-6,871	-4,730	2,1
240	-0,193	0,728	-0,437	0,011	0,121	0,580	-0,220	0,500	-4,400	8,220	8,330	7,820	-3,920	-11,761	-1,050	10,970	-2,130	-9,071	-6,140	4,4

Tabela A3.2 – Tabela dos resultados das leituras dos transdutores de deslocamentos (TDs) no ENSAIO I.

Tabela A3.3 – Tabela dos resultados das	leituras dos transdutores de deslocamentos
digitais (TDs) no ENSAIO I.	

Força	TD 21	TD 20
kN	mm	mm
0	0	0
0,200	0,002	-0,003
12,200	0,248	0,312
20,200	0,459	0,517
30,200	0,728	0,761
40,200	1,017	1,030
50,400	1,292	1,309
60,400	1,582	1,593
70,400	1,893	1,908
75,200	2,078	2,082
75,000	2,080	2,082
80,800	2,283	2,281
90,400	2,572	2,562
100,600	2,899	2,874
110,200	3,254	3,213
120,800	3,571	3,525
125,600	3,741	3,696
130,800	3,995	3,913
140,200	4,276	4,186
150,800	4,630	4,525
161,000	5,077	4,950
170,600	5,405	5,271
175,600	5,594	5,454
199,600	6,753	6,573
200,200	6,974	6,787
210,200	7,390	7,191
210,000	7,599	7,390
214,800	7,749	7,539
220,000	8,160	7,940
224,800	8,666	8,429
230,000	9,240	8,989
229,200	9,268	9,019

230,400	9,706	9,444
235,000	9,942	9,689
240,000	10,373	10,731
214,200	10,370	13,437

ANEXO 4 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO ENSAIO II DO PROTÓTIPO DA LIGAÇÃO YT DE SEÇÕES TUBULARES CIRCULARES.

Força	EER1	EER2	EER3	EER4	EER5	EER6	EER7	EER8	EER9	EER10	EER11	EER12	EER13	EER14	EER15	EER16
kN																
-0,2	-1	3	-1	-5	-2	-4	2	4	3	-4	0	-1	-8	-5	-1	-3
0,0	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-2	-1	-1	-1	-1
10,4	12	-9	1	24	-10	-24	-18	-8	-64	-24	-36	-60	56	63	51	44
20,0	26	-20	2	50	-19	-45	-33	-15	-117	-45	-72	-117	109	123	99	87
30,4	40	-32	2	76	-27	-68	-52	-23	-173	-69	-111	-175	165	186	149	130
40,6	54	-45	2	105	-34	-92	-70	-31	-229	-95	-155	-233	224	252	200	177
50,6	61	-53	8	128	-47	-115	-82	-36	-273	-132	-198	-272	273	309	248	218
50,2	60	-55	8	129	-47	-115	-82	-35	-267	-131	-198	-272	272	307	246	215
0,2	0	-2	0	1	0	-2	-1	0	-2	-2	-1	-2	-1	1	-1	0
-0,2	0	-1	0	0	-1	-2	-1	0	-2	-2	0	-2	-1	0	-1	-2
10,6	13	-11	2	27	-11	-25	-18	-8	-65	-25	-36	-64	58	66	53	45
19,8	26	-20	2	51	-19	-45	-33	-15	-118	-45	-71	-119	109	125	99	86
30,2	39	-33	1	78	-27	-68	-50	-22	-174	-68	-109	-176	164	187	148	129
40,6	54	-45	2	106	-35	-91	-69	-29	-228	-95	-152	-233	222	251	198	174
50,6	61	-55	9	130	-48	-116	-83	-35	-275	-134	-200	-274	276	313	251	219
61,4	68	-65	17	156	-62	-142	-97	-41	-323	-176	-251	-315	331	376	304	267
70,4	74	-75	23	180	-74	-165	-110	-47	-364	-210	-296	-351	380	431	349	308
75,2	78	-81	27	194	-81	-178	-116	-49	-388	-228	-322	-372	407	460	374	329

Tabela A4.1 – Tabela dos resultados das leituras dos extensômetros no ENSAIO II (EER em microstrain).

75,8	78	-84	27	197	-80	-179	-117	-47	-386	-226	-326	-375	407	465	373	328
-0,2	-1	-5	0	3	0	-2	0	2	-1	-2	-2	-3	-2	2	-6	-5
10,6	13	-13	3	29	-10	-26	-17	-7	-66	-22	-37	-68	58	68	49	43
20,4	26	-25	3	55	-18	-46	-34	-14	-121	-43	-72	-123	110	128	97	84
30,4	40	-36	2	81	-25	-69	-50	-20	-177	-65	-111	-180	166	191	145	127
40,6	53	-48	3	108	-33	-92	-68	-28	-230	-91	-153	-234	222	253	195	171
50,6	60	-57	9	133	-47	-116	-82	-33	-277	-129	-200	-275	274	312	244	215
60,8	68	-68	17	158	-60	-142	-95	-38	-324	-170	-249	-315	328	375	297	260
70,0	75	-78	23	182	-74	-166	-108	-44	-368	-207	-295	-352	379	432	346	304
80,2	81	-88	31	208	-87	-192	-122	-50	-413	-248	-344	-391	433	492	397	352
89,8	88	-97	38	231	-99	-215	-134	-56	-456	-284	-390	-427	482	547	443	394
90,8	89	-98	38	234	-102	-217	-135	-57	-460	-288	-396	-430	488	554	449	398
100,8	96	-111	45	260	-115	-243	-150	-62	-507	-326	-447	-470	541	614	496	445
100,6	96	-114	46	264	-114	-243	-149	-59	-504	-322	-452	-470	540	615	489	441
0,0	0	-7	0	7	1	-3	1	4	-2	-3	-4	-5	-1	5	-16	-9
11,8	15	-19	2	37	-10	-30	-18	-4	-76	-22	-43	-77	64	79	43	44
20,4	26	-28	2	59	-17	-49	-32	-10	-126	-41	-75	-127	112	132	86	81
30,6	40	-39	3	86	-25	-70	-50	-18	-182	-64	-114	-184	168	195	134	125
41,2	54	-52	4	113	-34	-94	-67	-25	-235	-90	-156	-236	223	259	185	169
50,4	60	-61	10	136	-46	-117	-80	-29	-280	-126	-201	-274	273	315	233	210
61,8	68	-72	18	165	-62	-146	-96	-36	-332	-171	-256	-319	334	384	291	263
71,0	75	-81	25	188	-75	-169	-109	-42	-375	-208	-300	-356	383	439	338	305
80,4	81	-90	31	213	-87	-193	-120	-47	-419	-246	-346	-391	433	495	386	348
90,4	89	-102	39	238	-101	-219	-134	-54	-465	-288	-394	-429	488	555	438	396
100,8	95	-113	46	263	-115	-244	-149	-59	-511	-329	-443	-467	541	615	489	443

110,6	102	-122	53	288	-128	-268	-162	-66	-557	-367	-491	-505	594	672	540	490
120,8	110	-134	61	314	-143	-294	-176	-71	-603	-405	-542	-544	647	733	587	537
125,6	111	-142	66	331	-150	-308	-182	-73	-626	-421	-575	-563	674	765	604	561
124,4	111	-142	64	329	-148	-306	-181	-71	-621	-415	-572	-559	668	759	594	554
0,0	0	-10	0	10	1	-5	3	10	-1	-4	-4	-4	-2	10	-35	-11
10,6	14	-20	1	36	-9	-28	-15	1	-71	-19	-39	-69	57	76	18	36
20,2	28	-32	2	61	-17	-50	-31	-6	-128	-38	-76	-127	109	135	65	77
30,2	41	-44	0	89	-25	-71	-48	-14	-185	-58	-114	-184	165	199	114	121
39,8	53	-55	2	114	-33	-93	-65	-20	-235	-83	-153	-233	217	256	160	161
42,0	54	-57	4	118	-36	-98	-67	-21	-244	-90	-164	-241	227	269	171	170
51,0	60	-66	10	142	-47	-121	-79	-25	-288	-125	-206	-277	275	323	216	211
60,8	68	-77	16	167	-61	-146	-93	-32	-334	-164	-254	-316	329	383	267	256
70,6	75	-86	23	191	-74	-170	-107	-38	-379	-202	-300	-353	380	440	317	300
81,6	84	-98	32	219	-88	-198	-121	-44	-430	-246	-352	-396	440	505	373	352
90,6	90	-107	39	243	-101	-221	-134	-49	-473	-284	-398	-431	489	560	420	396
100,6	96	-117	47	267	-116	-246	-148	-56	-517	-324	-445	-468	541	618	470	442
110,6	102	-126	54	292	-129	-271	-161	-62	-564	-366	-492	-505	595	677	522	489
120,8	109	-136	61	318	-143	-297	-175	-68	-610	-409	-540	-543	648	737	575	538
131,4	117	-148	69	345	-159	-324	-190	-75	-660	-452	-593	-581	706	800	629	589
141,2	123	-158	76	370	-173	-348	-202	-80	-704	-490	-643	-617	757	857	675	636
151,0	128	-169	83	395	-187	-373	-214	-83	-746	-528	-692	-647	806	914	715	678
149,8	129	-172	83	398	-185	-372	-212	-80	-742	-526	-694	-644	803	918	709	675
0,2	1	-14	-1	14	0	-8	5	15	-4	-7	-6	-6	-1	21	-51	-13
10,2	14	-24	1	40	-10	-30	-12	7	-73	-19	-41	-67	55	86	0	32
19,8	28	-35	1	65	-17	-50	-27	0	-128	-37	-77	-122	106	143	46	72

30,0	42	-49	0	94	-25	-75	-46	-8	-190	-57	-117	-184	165	209	98	119
40,8	54	-59	3	121	-36	-98	-63	-14	-245	-86	-161	-234	222	272	149	163
50,4	61	-69	10	145	-48	-122	-76	-19	-290	-122	-207	-272	273	330	197	206
60,2	68	-80	17	169	-61	-147	-89	-25	-337	-160	-254	-311	325	389	247	250
70,6	75	-90	24	195	-75	-173	-104	-31	-386	-199	-304	-351	381	451	299	298
80,4	82	-101	31	221	-89	-198	-117	-37	-431	-241	-353	-388	434	510	351	344
90,2	89	-111	38	247	-102	-224	-131	-43	-477	-282	-400	-427	487	569	402	392
100,6	97	-121	46	273	-117	-250	-145	-49	-525	-323	-448	-465	542	629	453	440
110,8	103	-132	53	299	-132	-275	-160	-56	-571	-366	-497	-503	596	689	507	489
121,0	110	-141	61	322	-144	-300	-172	-61	-615	-408	-543	-539	648	746	558	535
131,2	116	-152	68	348	-160	-326	-186	-68	-664	-452	-593	-576	703	807	611	586
140,6	122	-161	76	371	-173	-349	-199	-75	-706	-493	-636	-609	753	862	658	630
150,6	128	-172	83	398	-187	-374	-212	-81	-752	-538	-684	-645	807	921	711	679
160,6	136	-182	91	423	-201	-399	-226	-87	-798	-581	-733	-680	860	981	762	729
170,6	142	-192	98	449	-217	-427	-238	-92	-843	-629	-785	-713	916	1043	811	781
175,4	146	-200	101	464	-224	-441	-243	-89	-862	-656	-812	-724	940	1079	838	807
175,2	148	-204	99	466	-221	-442	-244	-85	-856	-660	-817	-719	938	1081	845	802
0,0	10	-21	-11	20	5	-12	2	24	-9	-16	4	-16	-2	40	-49	-13
10,8	21	-31	-6	47	-7	-35	-12	16	-73	-30	-44	-79	57	108	7	36
21,0	32	-41	-2	72	-18	-56	-26	9	-131	-49	-81	-132	109	168	55	78
31,0	44	-55	0	99	-28	-79	-41	2	-190	-70	-120	-188	165	231	106	123
40,4	52	-65	4	125	-39	-102	-57	-4	-241	-100	-164	-233	217	290	154	164
50,6	59	-75	11	148	-52	-127	-69	-10	-288	-138	-211	-273	271	349	203	209
60,4	66	-86	19	175	-66	-153	-84	-15	-335	-176	-259	-311	323	409	255	255
70,6	73	-96	26	201	-80	-178	-97	-22	-382	-216	-308	-352	378	469	306	302

81,2	81	-107	33	227	-94	-205	-113	-28	-432	-259	-358	-391	435	532	359	351
90,8	88	-118	40	253	-107	-230	-125	-33	-475	-298	-404	-429	487	589	409	397
100,8	94	-128	48	279	-122	-256	-138	-40	-523	-341	-452	-467	541	649	462	446
110,4	101	-138	56	302	-135	-279	-151	-46	-567	-381	-496	-502	592	704	510	490
121,2	107	-149	63	330	-149	-305	-165	-52	-615	-426	-546	-540	648	766	565	541
130,4	114	-157	70	352	-163	-329	-179	-58	-657	-467	-590	-573	698	821	613	587
140,4	121	-168	77	378	-177	-354	-191	-65	-703	-512	-636	-609	751	880	666	635
150,4	126	-177	85	402	-191	-379	-206	-71	-750	-558	-681	-644	805	938	717	683
160,4	133	-187	93	427	-205	-404	-218	-78	-793	-602	-728	-677	858	995	767	731
170,8	139	-198	101	452	-220	-429	-233	-83	-838	-649	-774	-712	911	1053	820	780
180,4	146	-207	107	478	-234	-453	-246	-89	-884	-696	-819	-746	964	1113	871	829
190,2	153	-217	115	501	-247	-479	-258	-94	-925	-746	-866	-777	1016	1172	924	877
200,2	160	-228	122	528	-263	-508	-271	-95	-968	-810	-916	-801	1070	1238	980	927
200,2	161	-232	124	533	-263	-511	-268	-85	-966	-820	-916	-793	1067	1242	992	917
0,2	12	-26	-11	25	2	-19	8	37	-14	-28	-1	-20	-3	63	-29	-22
10,8	22	-35	-6	52	-10	-42	-7	29	-80	-42	-40	-81	54	126	23	24
21,0	33	-47	-4	78	-22	-64	-20	22	-140	-62	-78	-136	108	190	75	68
30,6	44	-59	-1	105	-31	-86	-36	15	-199	-83	-115	-191	163	250	123	111
40,8	53	-69	5	130	-43	-111	-50	10	-248	-117	-162	-233	217	310	173	156
51,0	61	-80	12	156	-57	-137	-65	3	-298	-156	-210	-274	272	372	224	202
61,0	68	-91	19	183	-70	-162	-77	-2	-345	-195	-259	-314	325	432	276	248
70,8	74	-101	26	208	-84	-187	-91	-8	-390	-234	-304	-351	377	490	325	293
80,4	82	-112	33	233	-98	-213	-104	-13	-436	-275	-352	-389	430	548	375	339
91,0	87	-123	40	259	-112	-239	-118	-19	-482	-318	-399	-428	486	608	427	389
100,8	95	-133	48	285	-125	-264	-132	-25	-529	-360	-447	-465	539	666	479	436

111,2	102	-143	56	310	-139	-290	-145	-31	-575	-405	-496	-502	593	726	532	486
120,8	107	-154	63	333	-153	-314	-159	-38	-618	-446	-538	-536	644	782	581	531
130,2	114	-164	70	360	-167	-338	-172	-44	-663	-491	-585	-572	698	839	632	579
141,4	121	-174	78	385	-182	-365	-187	-50	-711	-539	-633	-608	755	901	686	631
151,0	127	-183	86	410	-196	-389	-199	-57	-754	-584	-677	-642	805	957	736	677
160,8	133	-193	94	434	-210	-413	-213	-63	-798	-631	-722	-676	858	1014	788	725
171,0	139	-202	102	459	-225	-439	-227	-69	-845	-678	-768	-710	913	1074	840	774
181,0	147	-212	109	484	-239	-463	-239	-75	-890	-726	-813	-743	967	1133	893	824
190,6	153	-221	116	508	-253	-487	-252	-82	-932	-773	-857	-775	1018	1187	942	871
200,8	160	-231	124	532	-266	-511	-264	-87	-974	-820	-901	-806	1069	1245	993	918
210,6	166	-241	132	558	-279	-537	-278	-92	-1016	-875	-950	-835	1123	1305	1051	970
210,8	167	-245	132	562	-280	-541	-276	-83	-1013	-889	-954	-827	1121	1313	1061	969
0,0	13	-28	-11	29	0	-23	11	45	-16	-33	-1	-21	-5	76	-16	-24
11,6	23	-39	-6	57	-12	-47	-4	38	-88	-51	-43	-85	56	145	41	26
20,8	34	-49	-4	81	-23	-69	-19	30	-145	-71	-80	-137	108	203	89	67
31,0	46	-63	-1	109	-33	-91	-33	22	-205	-92	-117	-193	164	266	138	111
41,0	53	-73	5	134	-46	-116	-47	18	-253	-127	-163	-233	215	325	187	154
50,2	60	-82	12	157	-58	-139	-59	13	-297	-163	-207	-270	265	380	234	197
60,2	67	-93	19	184	-72	-165	-73	7	-344	-202	-255	-310	319	440	285	242
70,8	74	-104	27	210	-86	-191	-87	1	-392	-244	-304	-349	375	502	338	292
81,0	81	-115	34	237	-101	-218	-101	-5	-441	-289	-353	-390	432	564	392	341
90,6	87	-125	41	262	-113	-242	-115	-11	-482	-327	-396	-425	480	617	438	385
101,0	95	-136	49	288	-128	-269	-128	-17	-531	-373	-445	-464	537	679	493	436
110,8	101	-145	56	313	-142	-294	-142	-23	-576	-416	-491	-500	589	737	543	483
121,0	108	-156	64	339	-156	-319	-156	-28	-621	-461	-538	-535	643	795	596	531

131,0	114	-167	73	363	-170	-344	-169	-35	-666	-507	-584	-571	697	853	647	581
140,8	121	-176	78	388	-183	-368	-182	-41	-710	-551	-627	-604	748	910	697	627
150,8	127	-186	86	412	-198	-393	-196	-47	-754	-597	-673	-638	803	968	749	675
160,8	134	-196	94	438	-211	-418	-209	-54	-801	-645	-719	-673	856	1027	802	726
170,8	139	-206	102	462	-226	-443	-222	-61	-845	-691	-763	-707	908	1083	852	772
181,0	146	-215	110	487	-240	-468	-236	-67	-890	-740	-809	-741	964	1142	905	824
191,8	153	-226	118	514	-256	-494	-250	-74	-938	-790	-857	-776	1020	1204	961	875
200,4	159	-234	125	536	-268	-516	-262	-79	-978	-834	-897	-806	1068	1256	1008	919
210,8	166	-243	133	561	-282	-541	-276	-85	-1022	-885	-943	-837	1122	1315	1061	971
221,0	172	-253	141	587	-297	-567	-288	-89	-1065	-941	-992	-865	1177	1376	1118	1024
219,0	173	-258	140	588	-296	-570	-284	-76	-1056	-956	-988	-845	1170	1377	1114	1016
0,0	13	-31	-11	31	-1	-28	17	57	-20	-40	1	-16	-5	89	-13	-26
12,0	25	-42	-6	61	-16	-55	0	49	-96	-64	-47	-76	60	163	47	27
21,2	36	-52	-3	86	-26	-76	-14	42	-153	-84	-82	-127	112	221	95	69
31,0	46	-65	-1	112	-36	-98	-29	36	-210	-104	-117	-182	165	280	143	110
39,8	52	-74	5	136	-48	-120	-39	29	-253	-136	-159	-218	212	334	188	150
51,0	61	-86	13	164	-63	-149	-56	24	-306	-179	-211	-262	270	399	243	199
61,4	68	-97	20	191	-78	-175	-69	18	-354	-221	-260	-303	326	462	297	248
70,4	74	-107	27	214	-89	-198	-82	13	-396	-257	-302	-338	374	514	342	290
80,4	81	-118	35	240	-104	-224	-96	7	-443	-300	-351	-377	429	575	393	338
90,8	88	-129	42	266	-118	-251	-110	1	-491	-345	-399	-416	485	635	447	389
100,8	94	-140	49	292	-132	-276	-123	-4	-536	-387	-444	-454	538	693	498	436
111,2	102	-150	58	317	-147	-302	-138	-10	-583	-433	-493	-492	593	753	551	487
120,8	108	-160	64	341	-160	-326	-151	-17	-625	-475	-536	-526	644	807	600	532
130,8	114	-171	72	368	-174	-351	-165	-22	-671	-522	-583	-561	698	867	653	580

141,0	120	-180	80	392	-188	-377	-178	-28	-718	-569	-629	-597	752	926	705	631
150,6	127	-190	87	417	-201	-401	-190	-35	-761	-614	-672	-630	804	982	755	678
161,0	134	-199	96	442	-217	-427	-204	-41	-807	-663	-719	-665	859	1042	809	729
171,8	140	-210	105	468	-231	-452	-219	-48	-854	-712	-766	-700	915	1102	863	780
180,4	146	-218	111	491	-244	-475	-230	-54	-893	-754	-806	-730	963	1153	910	824
190,8	152	-228	119	515	-259	-500	-243	-60	-939	-804	-851	-764	1017	1213	963	875
200,6	158	-237	127	540	-271	-524	-256	-66	-982	-851	-895	-796	1069	1270	1014	922
211,2	165	-247	135	565	-287	-549	-270	-73	-1029	-904	-942	-830	1126	1330	1069	975
220,2	171	-255	141	589	-299	-572	-283	-78	-1070	-950	-983	-858	1174	1385	1119	1021
230,6	179	-265	151	616	-314	-598	-296	-83	-1114	-1007	-1032	-888	1231	1445	1175	1077
230,2	179	-273	151	621	-316	-605	-290	-68	-1110	-1026	-1034	-872	1233	1449	1175	1073
10,6	24	-46	-8	63	-19	-60	7	62	-97	-64	-38	-72	58	164	40	20
20,6	34	-59	-5	89	-30	-82	-8	55	-158	-84	-75	-127	113	224	89	64
30,6	46	-71	-1	117	-41	-106	-22	48	-217	-110	-116	-181	169	289	141	108
41,0	53	-82	5	144	-55	-131	-36	43	-266	-148	-163	-222	222	349	192	154
50,6	61	-92	13	169	-67	-156	-48	38	-313	-186	-209	-262	274	407	243	198
60,8	68	-103	19	195	-81	-181	-63	33	-358	-227	-255	-300	327	466	292	245
70,4	74	-114	27	220	-95	-207	-76	27	-404	-268	-302	-338	380	524	343	290
81,0	81	-126	34	246	-108	-234	-91	22	-451	-312	-350	-378	435	585	396	339
90,4	87	-136	42	272	-123	-258	-104	15	-495	-353	-395	-414	487	641	445	386
100,0	94	-145	49	295	-136	-283	-116	9	-538	-395	-440	-450	539	696	494	433
110,8	101	-156	57	323	-151	-309	-131	4	-587	-442	-488	-489	595	759	550	484
120,8	108	-166	64	348	-165	-334	-144	-3	-632	-486	-534	-525	648	815	600	532
130,8	114	-177	72	373	-179	-360	-159	-9	-676	-533	-580	-560	702	875	652	581
140,8	120	-186	79	398	-193	-384	-172	-15	-721	-578	-625	-595	755	931	704	629

150,0	126	-196	87	421	-206	-408	-184	-21	-762	-622	-667	-627	804	985	753	674
161,2	133	-206	95	449	-222	-436	-199	-28	-813	-675	-717	-664	864	1050	811	729
170,8	139	-216	103	472	-235	-459	-211	-34	-854	-720	-760	-697	915	1104	859	776
180,2	146	-225	110	497	-249	-484	-225	-40	-899	-767	-804	-729	968	1161	911	824
190,6	152	-234	119	521	-263	-508	-237	-46	-943	-815	-848	-762	1020	1218	964	874
200,8	158	-243	126	547	-277	-532	-251	-52	-988	-864	-894	-795	1074	1277	1017	923
210,2	165	-252	135	570	-289	-556	-263	-58	-1029	-911	-935	-825	1126	1332	1066	970
220,8	171	-262	143	596	-304	-581	-277	-65	-1076	-964	-982	-858	1181	1393	1122	1024
230,6	178	-271	151	620	-317	-606	-291	-70	-1119	-1015	-1028	-888	1235	1450	1175	1075
240,2	185	-281	158	645	-331	-631	-303	-74	-1160	-1071	-1074	-913	1287	1507	1230	1127
240,2	185	-289	159	655	-336	-644	-294	-52	-1162	-1104	-1078	-889	1295	1500	1226	1129
245,0	188	-293	163	666	-343	-655	-302	-55	-1182	-1129	-1100	-902	1320	1526	1251	1151
245,2	189	-298	164	671	-345	-662	-296	-43	-1184	-1148	-1102	-888	1323	1519	1256	1169
250,0	192	-304	167	683	-352	-675	-303	-44	-1207	-1176	-1124	-901	1348	1547	1311	1198
251,6	194	-311	170	693	-356	-687	-300	-28	-1215	-1204	-1133	-890	1356	1546	1342	1235
255,0	195	-315	172	703	-362	-698	-303	-26	-1232	-1230	-1149	-893	1374	1559	1364	1274
255,4	194	-323	173	711	-363	-706	-299	-11	-1239	-1256	-1157	-875	1377	1548	1437	1356
260,0	196	-329	176	725	-369	-721	-302	-6	-1260	-1292	-1180	-876	1397	1556	1533	1440
260,0	194	-333	176	730	-366	-724	-300	9	-1265	-1311	-1183	-854	1383	1540	1821	1684
265,4	197	-338	180	743	-371	-737	-305	13	-1292	-1354	-1210	-852	1402	1555	2176	1984
270,0	195	-342	183	754	-375	-747	-310	24	-1329	-1415	-1248	-815	1397	1548	3056	3520
275,2	192	-326	187	749	-374	-739	-313	24	-1379	-1475	-1298	-759	1382	1535	5029	7208
275,4	189	-310	189	737	-374	-726	-313	17	-1398	-1476	-1317	-738	1365	1572	6790	9279
277,0	190	-306	190	736	-376	-726	-314	15	-1409	-1485	-1327	-736	1367	1599	7272	9713
278,8	190	-300	193	733	-378	-724	-317	10	-1423	-1494	-1344	-730	1363	1596	7935	10313

279,0	189	-298	193	731	-379	-723	-316	8	-1427	-1494	-1347	-728	1363	1601	8123	10479
280,0	189	-284	193	719	-379	-714	-317	0	-1444	-1495	-1369	-711	1349	1802	9336	11459
282,0	188	-256	194	694	-379	-699	-319	-14	-1476	-1497	-1406	-683	1376	2113	10955	12702
283,4	188	-244	195	684	-381	-694	-321	-21	-1494	-1499	-1427	-672	1394	2278	11414	13152
283,8	188	-241	195	682	-382	-693	-321	-22	-1498	-1500	-1432	-669	1395	2312	11504	13260
284,8	188	-227	195	670	-382	-685	-322	-29	-1513	-1503	-1456	-654	1394	2478	11881	13712
286,0	189	-198	194	644	-382	-669	-322	-45	-1549	-1498	-1502	-621	1390	2804	12626	14383
287,0	189	-180	193	627	-382	-659	-322	-54	-1570	-1498	-1535	-598	1399	2992	13021	14663
288,8	190	-173	195	622	-383	-658	-325	-60	-1588	-1509	-1562	-590	1408	3092	13195	14760
289,0	190	-169	193	621	-383	-656	-326	-62	-1592	-1511	-1569	-587	1408	3116	13242	14786
290,0	191	-151	194	602	-383	-645	-326	-74	-1613	-1510	-1606	-561	1428	3279	13502	14937
292,0	192	-125	193	582	-383	-631	-327	-88	-1645	-1507	-1673	-525	1478	3545	13707	15054
292,2	193	-119	193	577	-384	-627	-327	-93	-1655	-1503	-1686	-516	1496	3616	13748	15085
293,8	194	-103	194	563	-382	-618	-328	-103	-1679	-1496	-1702	-492	1502	3831	13836	15149
294,6	195	-85	192	549	-382	-607	-328	-114	-1707	-1488	-1756	-463	1484	4108	13897	15241
295,6	195	-74	193	540	-382	-602	-329	-121	-1716	-1489	-1794	-445	1513	4328	13958	15338
296,2	197	-59	192	529	-380	-593	-328	-129	-1731	-1511	-1804	-419	1553	4855	14017	15487
297,4	198	-47	192	520	-379	-586	-328	-138	-1743	-1516	-1836	-390	1621	5231	14122	15666
297,8	199	-35	192	511	-378	-579	-328	-145	-1765	-1520	-1946	-362	1769	5531	14244	15809
299,4	202	-15	192	498	-375	-565	-327	-159	-1924	-1542	-2375	-299	2017	6247	14567	
300,4	205	0	193	489	-372	-555	-326	-169	-2038	-1585	-2827	-244	2595	6944	14907	
301,2	207	17	193	480	-369	-541	-324	-180	-2207	-1642	-3454	-174	4171	8137	15353	
303,0	211	28	193	476	-367	-530	-323	-190	-2587	-1698	-4215	-113	5739	9739	15739	
303,4	213	40	194	471	-365	-521	-321	-199	-3270	-2140	-4842	-49	7035	11447		
304,0	215	49	195	468	-361	-510	-320	-208	-3983	-2645	-5571	20	8694	13010		

305,2	219	59	195	466	-358	-498	-320	-218	-4881	-3395	-6539	103	10536	14446	
306,4	224	71	197	464	-355	-485	-318	-230	-5552	-4410	-7900	193	12246		
307,4	227	80	199	463	-352	-475	-317	-238	-6091	-5933	-8989	271	13424		
308,6	234	91	202	463	-349	-463	-316	-248	-6754	-8838	-10175	373	14564		
309,6	234	95	203	463	-349	-459	-316	-253	-6985	-10144	-10537	408	14899		
310,2	239	107	207	461	-345	-444	-314	-265	-7946	-14050	-11654	526			
311,4	244	117	210	462	-342	-433	-313	-275	-8735		-12397	612			
312,6	251	131	214	460	-337	-417	-311	-288	-9998		-13283	724			
313,2	254	141	218	460	-335	-408	-310	-295	-10695		-13744	790			
314,2	261	153	222	458	-332	-396	-309	-305	-11637		-14359	878			
315,2	264	161	225	458	-330	-388	-308	-312	-12218		-14779	936			
316,2	270	173	229	456	-328	-378	-305	-319	-12824		15773	1003			
317,2	274	183	231	455	-325	-369	-304	-327	-13271			1064			
318,4	281	196	235	454	-324	-360	-302	-332	-13642			1124			
319,4	286	208	240	453	-321	-350	-301	-340	-13962			1182			
320,6	291	218	244	451	-318	-342	-301	-345	-14194			1225			
321,8	297	230	248	450	-317	-333	-298	-352	-14433			1272			
323,0	303	247	253	447	-314	-320	-296	-360	-14692			1331			
324,2	311	264	258	445	-309	-307	-293	-369	-14944			1392			
325,8	320	284	266	442	-305	-291	-289	-379				1456			
326,4	323	291	268	441	-304	-285	-288	-382				1480			
327,4	328	303	272	440	-301	-275	-285	-388				1518			
328,4	333	314	275	439	-298	-266	-284	-393				1550			
329,4	339	328	279	437	-297	-256	-281	-399				1590			
330,0	345	342	284	435	-294	-246	-280	-405				1626			

331,8	352	358	289	433	-291	-233	-277	-414	1674		
332,6	359	374	294	430	-288	-220	-274	-421	1714		
333,4	365	388	299	429	-285	-208	-271	-427			
334,4	371	406	304	427	-280	-194	-268	-435			
335,0	378	422	309	425	-277	-181	-265	-441			
336,2	387	441	315	423	-272	-165	-261	-449			
338,0	398	469	322	420	-266	-143	-256	-460	1972		
338,4	402	478	326	418	-263	-135	-253	-464	2000		
339,2	410	495	330	417	-260	-122	-249	-469	2047		
340,2	417	513	337	414	-256	-105	-244	-477	2109		
341,2	427	537	344	413	-249	-85	-238	-486	2184		
342,6	437	561	352	411	-243	-65	-233	-494	2254		
343,4	443	578	357	410	-240	-50	-229	-500	2303		
344,4	451	600	366	409	-235	-30	-223	-507	2370		
345,2	459	619	371	407	-230	-13	-219	-515	2413		
346,4	470	647	381	407	-222	12	-209	-524	2462		
348,4	488	692	397	407	-210	54	-197	-539	2575		
350,2	502	726	409	408	-200	86	-187	-549	2667		
352,2	522	771	427	412	-185	131	-172	-561	2773		
355,2	549	828	450	420	-167	191	-152	-577	2903		
358,6	581	886	477	436	-144	255	-128	-587	3016		
264,6	469	781	355	300	-55	387	-44	-495	3107		
251,8	452	768	338	280	-42	405	-30	-484	3129		
250,2	450	766	337	277	-41	405	-29	-481	3150		
220,6	411	736	299	228	-14	444	-1	-453	3222		

210,0	398	725	285	210	-3	459	8	-442	3255	;		
199,6	385	714	273	194	6	474	18	-431	3290)		
175,0	354	690	241	153	30	510	40	-408	3364			
149,6	322	663	206	112	55	542	62	-383	3439)		
99,4	259	610	137	32	103	598	103	-330	3630)		
74,8	226	581	103	-8	126	626	124	-300	3757	,		
49,8	195	551	66	-47	148	653	142	-270	3872	2		
0,0	137	476	-31	-126	204	722	147	-234	3913	}		

Força	TD1	TD2	TD3	TD4	TD5	TD6	TD7	TD8	TD9	TD10	TD11	TD12	TD13	TD14	TD15	TD16	TD17	TD18	TD19	Banzo
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,0
50	-0,032	0,003	-0,003	-0,001	0,054	0,071	0,050	-0,002	-0,710	1,230	1,200	1,290	-0,570	-0,580	-0,020	-0,010	0,000	-0,590	-0,195	0,1
	-0,006	-0,020	-0,002	-0,001	0,000	0,018	-0,020	-0,002	-0,020	0,010	0,010	0,120	0,010	-0,010	0,000	-0,040	0,000	0,020	-0,158	0,0
75	-0,074	0,010	-0,003	-0,003	0,111	0,119	0,060	-0,003	-1,120	1,910	1,910	2,000	-0,920	-1,010	-0,050	-0,070	-0,010	-0,810	-0,210	0,1
	-0,012	-0,045	-0,003	-0,003	0,011	0,019	-0,010	0,011	-0,050	0,040	0,040	0,150	0,020	-0,130	0,000	-0,070	-0,050	0,010	-0,125	0,0
100	-0,121	0,060	-0,003	-0,008	0,153	0,191	0,080	-0,004	-1,520	2,590	2,570	2,690	-1,250	-1,470	-0,100	-0,190	-0,010	-1,070	-0,225	0,4
	-0,020	-0,025	-0,003	-0,008	0,024	0,019	-0,010	0,016	-0,080	0,100	0,090	0,200	-0,040	-0,300	-0,010	-0,120	-0,060	0,000	-0,122	0,0
125	-0,161	0,099	-0,003	-0,015	0,194	0,266	0,140	-0,003	-1,900	3,320	3,260	3,370	-1,590	-1,950	-0,160	-0,310	-0,020	-1,250	-0,210	0,5
	-0,024	-0,062	-0,003	-0,004	0,040	0,019	0,000	0,016	-0,110	0,180	0,150	0,250	-0,070	-0,490	0,000	-0,130	-0,060	-0,070	-0,115	0,0
150	-0,214	0,130	-0,003	-0,017	0,241	0,331	0,180	0,006	-2,300	4,010	3,970	4,060	-1,950	-2,460	-0,220	-0,350	0,000	-1,350	-0,210	0,6
	-0,040	-0,080	-0,003	-0,009	0,064	0,019	0,020	0,018	-0,160	0,250	0,220	0,320	-0,100	-0,710	0,000	-0,250	-0,140	-0,050	-0,118	0,2
175	-0,266	0,213	-0,004	-0,022	0,314	0,411	0,230	-0,014	-2,720	5,800	4,740	4,770	-2,320	-2,950	-0,320	-0,450	-0,040	-1,360	-0,236	0,7
	-0,052	-0,072	-0,004	-0,004	0,089	0,021	0,040	0,036	-0,240	0,380	0,330	0,420	-0,160	-0,910	0,010	-0,410	-0,230	-0,130	-0,221	0,3
200	-0,311	0,250	-0,100	-0,018	0,354	0,481	0,270	0,021	-3,150	5,540	5,490	5,370	-2,700	-3,450	-0,360	-0,420	0,020	-1,360	-0,170	0,9
	-0,056	-0,082	-0,050	0,002	0,127	0,021	0,060	0,101	-0,310	0,510	0,480	0,550	-0,230	-1,100	0,040	-0,360	-0,180	-0,190	-0,178	0,5
210	-0,332	0,270	-0,114	-0,017	0,384	0,511	0,270	0,046	-3,270	5,820	5,700	5,690	-2,760	-3,580	-0,380	-0,450	0,000	-1,370	-0,169	0,9

Tabela A4.2 – Tabela dos resultados das leituras dos transdutores de deslocamentos (TDs) no ENSAIO II.

	-0,066	-0,082	-0,056	0,001	0,144	0,021	0,060	0,118	-0,360	0,570	0,550	0,620	-0,270	-1,130	0,060	-0,350	-0,170	-0,200	-0,157	0,5
220	-0,348	0,290	-0,120	-0,012	0,417	0,541	0,280	0,056	-3,530	6,270	6,220	6,050	-3,050	-3,890	-0,390	-0,360	0,080	-1,370	-0,118	0,9
	-0,071	-0,070	-0,064	0,009	0,159	0,021	0,070	0,136	-0,420	0,710	0,670	0,730	-0,330	-1,410	0,090	-0,310	-0,120	-10,200	-0,103	0,5
230	-0,376	0,310	-0,125	-0,006	0,433	0,568	0,300	-0,081	-3,750	6,670	6,640	6,450	-3,270	-4,140	-0,400	-0,360	0,120	-1,360	-0,111	1,1
	-0,089	-0,035	-0,070	0,012	0,179	0,021	0,090	0,136	-0,500	0,870	0,800	0,850	-0,400	-1,500	0,110	-0,320	-0,110	-10,220	-0,078	0,6
240	-0,413	0,350	-0,136	-0,001	0,468	0,591	0,320	-0,302	-4,060	7,100	7,120	6,900	-3,500	-4,470	-0,400	-0,360	0,140	-1,360	-0,073	1,2
245	-0,425	0,370	-0,139	-0,001	0,483	0,601	0,340	-0,339	-4,170	7,450	7,300	7,190	-3,650	-4,660	-0,400	-0,380	0,140	-1,360	-0,073	1,3
250	-0,451	0,410	-0,141	-0,001	0,492	0,611	0,370	-0,514	-4,390	7,750	7,680	7,570	-3,800	-4,850	-0,400	-0,400	0,160		-0,073	1,3
255	-0,466	0,430	-0,148	0,010	0,512	0,612	0,380	-0,734	-4,560	8,280	8,200	8,080	-4,090	-5,240	-0,300	-0,400	0,200		-0,073	1,5
260	-0,531	0,482	-0,160	0,027	0,514	0,620	0,410	-0,964	-4,950	8,800	8,750	8,610	-4,290	-5,470	-0,470	-0,400	0,220		-0,073	1,5
265	-0,551	0,505	-0,165	0,062	0,526	0,622	0,450	-1,314	-5,320	9,650	9,550	9,370	-4,800	-6,130	-0,600	-0,410	0,270		-0,073	1,7
270	-0,616	0,570	-0,165	0,092	0,529	0,627	0,500	-1,814	3,930	10,400	10,360	9,490	-5,200	-6,340	-0,710	-0,410	0,300		-0,071	1,8

'		-	
	Força	TD20	TD21
	kN	mm	mm
	0	0,000	0,000
	-0,2	-0,004	-0,009
	0	0,000	-0,003
	10,4	-0,293	-0,245
	20	-0,567	-0,480
	30,4	-0,879	-0,731
	40,6	-1,201	-0,997
	50,6	-1,475	-1,241
	50,2	-1,496	-1,254
	0,2	-0,048	-0,018
	-0,2	-0,034	-0,012
	10,6	-0,318	-0,263
	19,8	-0,586	-0,492
	30,2	-0,893	-0,740
	40,6	-1,207	-0,994
	50,6	-1,499	-1,257
	61,4	-1,794	-1,529
	70,4	-2,051	-1,764
	75,2	-2,205	-1,905
	75,8	-2,261	-1,941
	-0,2	-0,080	-0,046
	10,6	-0,349	-0,300
	20,4	-0,632	-0,532
	30,4	-0,936	-0,789
	40,6	-1,247	-1,040
	50,6	-1,533	-1,293
	60,8	-1,823	-1,550
	70	-2,095	-1,801
	80,2	-2,370	-2,061
	89,8	-2,627	-2,299
	90,8	-2,659	-2,324
	100,8	-2,959	-2,587

Tabela A4.3 – Tabela dos resultados das leituras dos transdutores de deslocamentos digitais (TDs) no ENSAIO II.

100,6	-3,021	-2,629
0	-0,151	-0,101
11,8	-0,445	-0,376
20,4	-0,695	-0,593
30,6	-1,004	-0,841
41,2	-1,315	-1,098
50,4	-1,591	-1,339
61,8	-1,918	-1,636
71	-2,177	-1,868
80,4	-2,435	-2,110
90,4	-2,716	-2,366
100,8	-2,993	-2,626
110,6	-3,271	-2,877
120,8	-3,564	-3,140
125,6	-3,778	-3,302
124,4	-3,780	-3,296
0	-0,215	-0,150
10,6	-0,476	-0,407
20,2	-0,759	-0,642
30,2	-1,067	-0,887
39,8	-1,357	-1,125
42	-1,416	-1,180
51	-1,678	-1,419
60,8	-1,968	-1,669
70,6	-2,240	-1,923
81,6	-2,545	-2,198
90,6	-2,804	-2,440
100,6	-3,073	-2,684
110,6	-3,355	-2,941
120,8	-3,631	-3,198
131,4	-3,935	-3,467
141,2	-4,224	-3,718
151	-4,536	-3,984
149,8	-4,593	-4,023
0,2	-0,331	-0,232
10,2	-0,572	-0,477

19,8	-0,843	-0,703
30	-1,173	-0,969
40,8	-1,481	-1,223
50,4	-1,764	-1,483
60,2	-2,051	-1,737
70,6	-2,351	-2,006
80,4	-2,633	-2,259
90,2	-2,910	-2,519
100,6	-3,194	-2,773
110,8	-3,478	-3,039
121	-3,741	-3,277
131,2	-4,040	-3,543
140,6	-4,301	-3,785
150,6	-4,585	-4,033
160,6	-4,874	-4,296
170,6	-5,194	-4,580
175,4	-5,412	-4,769
175,2	-5,464	-4,821
0	-0,486	-0,361
10,8	-0,752	-0,618
21	-1,035	-0,850
31	-1,342	-1,110
40,4	-1,630	-1,357
50,6	-1,925	-1,620
60,4	-2,220	-1,883
70,6	-2,518	-2,146
81,2	-2,823	-2,418
90,8	-3,099	-2,675
100,8	-3,384	-2,932
110,4	-3,644	-3,177
121,2	-3,934	-3,443
130,4	4 000	-3 678
	-4,203	0,070
140,4	-4,203 -4,488	-3,938
140,4 150,4	-4,203 -4,488 -4,765	-3,938 -4,189
140,4 150,4 160,4	-4,203 -4,488 -4,765 -5,033	-3,938 -4,189 -4,433

180,4	-5,587	-4,947
190,2	-5,881	-5,210
200,2	-6,239	-5,540
200,2	-6,361	-5,644
0,2	-0,693	-0,523
10,8	-0,947	-0,764
21	-1,243	-1,015
30,6	-1,544	-1,269
40,8	-1,844	-1,529
51	-2,146	-1,795
61	-2,446	-2,061
70,8	-2,732	-2,321
80,4	-3,018	-2,580
91	-3,312	-2,849
100,8	-3,590	-3,109
111,2	-3,877	-3,378
120,8	-4,145	-3,614
130,2	-4,428	-3,871
141,4	-4,722	-4,137
151	-4,986	-4,384
160,8	-5,259	-4,632
171	-5,537	-4,886
181	-5,815	-5,142
190,6	-6,079	-5,387
200,8	-6,347	-5,635
210,6	-6,656	-5,919
210,8	-6,786	-6,023
0	-0,814	-0,621
11,6	-1,087	-0,884
20,8	-1,373	-1,122
31	-1,687	-1,382
41	-1,978	-1,639
50,2	-2,256	-1,886
60,2	-2,547	-2,149
70,8	-2,861	-2,428
81	-3,167	-2,703

90,6	-3,431	-2,947
101	-3,732	-3,222
110,8	-4,008	-3,476
121	-4,292	-3,733
131	-4,576	-3,993
140,8	-4,837	-4,241
150,8	-5,117	-4,494
160,8	-5,396	-4,751
170,8	-5,662	-4,996
181	-5,944	-5,256
191,8	-6,232	-5,525
200,4	-6,481	-5,754
210,8	-6,758	-6,008
221	-7,065	-6,289
219	-7,226	-6,408
0	-0,969	-0,752
12	-1,261	-1,033
21,2	-1,549	-1,272
31	-1,845	-1,516
39,8	-2,116	-1,764
51	-2,445	-2,051
61,4	-2,754	-2,333
70,4	-3,014	-2,568
80,4	-3,320	-2,837
90,8	-3,618	-3,119
100,8	-3,904	-3,378
111,2	-4,204	-3,650
120,8	-4,469	-3,889
130,8	-4,749	-4,149
141	-5,030	-4,412
150,6	-5,292	-4,659
161	-5,579	-4,916
171,8	-5,864	-5,182
180,4	-6,110	-5,408
190,8	-6,389	-5,662
200,6	-6,656	-5,910

211,2	-6,945	-6,173
220,2	-7,197	-6,408
230,6	-7,494	-6,689
230,2	-7,675	-6,864
10,6	-1,421	-1,171
20,6	-1,719	-1,412
30,6	-2,035	-1,685
41	-2,341	-1,957
50,6	-2,633	-2,214
60,8	-2,927	-2,486
70,4	-3,223	-2,749
81	-3,523	-3,030
90,4	-3,804	-3,281
100	-4,088	-3,531
110,8	-4,392	-3,809
120,8	-4,673	-4,066
130,8	-4,952	-4,326
140,8	-5,220	-4,580
150	-5,478	-4,818
161,2	-5,783	-5,100
170,8	-6,042	-5,341
180,2	-6,314	-5,592
190,6	-6,587	-5,840
200,8	-6,862	-6,096
210,2	-7,120	-6,332
220,8	-7,409	-6,592
230,6	-7,665	-6,845
240,2	-7,831	-7,121
240,2	-7,831	-7,420
245	-7,830	-7,539
245,2	-8,603	-7,723
250	-8,753	-7,873
251,6	-9,036	-8,142
255	-9,225	-8,325
255,4	-9,296	-8,655
260	-9,295	-8,970

260	-9,294	-9,368
265,4	-9,296	-9,857
270	-9,302	-10,908
275,2	-9,304	-12,522
275,4	-9,305	-13,330
277	-9,304	-13,562
278,8	-9,306	-13,910
279	-9,306	-13,999
280	-9,306	-14,617
282	-9,305	-15,723
283,4	-9,306	-16,216
283,8	-9,306	-16,332
284,8	-9,307	-16,818
286	-9,306	-17,708
287	-9,306	-17,708
288,8	-9,305	-17,714
289	-9,306	-17,711
290	-9,305	-17,714
292	-9,307	-17,711
292,2	-9,305	-17,717
293,8	-9,307	-17,717
294,6	-9,306	-17,708
295,6	-9,306	-17,717
296,2	-9,306	-17,717
297,4	-9,306	-17,714
297,8	-9,306	-17,714
299,4	-9,307	-17,714
300,4	-9,305	-17,708
301,2	-9,305	-17,717
303	-9,306	-17,714
303,4	-9,306	-17,714
304	-9,306	-17,717
305,2	-9,305	-17,717
306,4	-9,305	-17,720
307,4	-9,306	-17,714
308,6	-9,306	-17,717

309,6	-9,306	-17,708
310,2	-9,306	-17,711
311,4	-9,306	-17,717
312,6	-9,306	-17,714
313,2	-9,305	-17,720
314,2	-9,306	-17,717
315,2	-9,305	-17,717
316,2	-9,306	-17,717
317,2	-9,307	-17,717
318,4	-9,306	-17,720
319,4	-9,307	-17,717
320,6	-9,306	-17,720
321,8	-9,305	-17,720
323	-9,307	-17,717
324,2	-9,307	-17,714
325,8	-9,306	-17,714
326,4	-9,306	-17,714
327,4	-9,305	-17,714
328,4	-9,305	-17,714
329,4	-9,304	-17,717
330	-9,305	-17,711
331,8	-9,305	-17,720
332,6	-9,302	-17,714
333,4	-9,304	-17,717
334,4	-9,301	-17,717
335	-9,302	-17,720
336,2	-9,302	-17,720
338	-9,301	-17,717
338,4	-9,301	-17,717
339,2	-9,299	-17,717
340,2	-9,301	-17,714
341,2	-9,299	-17,717
342,6	-9,299	-17,714
343,4	-9,299	-17,717
344,4	-9,299	-17,717
345,2	-9,298	-17,720

346,4	-9,298	-17,717
348,4	-9,330	-17,720
350,2	-9,455	-17,723
352,2	-9,716	-17,717
355,2	-10,437	-17,714
358,6	-10,439	-17,717
264,6	-10,435	-17,723
251,8	-10,434	-17,723
250,2	-10,434	-17,723
220,6	-10,433	-17,726
210	-10,433	-17,732
199,6	-10,434	-17,729
175	-10,433	-17,726
149,6	-10,433	-17,732
99,4	-10,433	-17,732
74,8	-10,434	-17,726
49,8	-10,432	-17,729
0	-10,422	-17,732

ANEXO 5 – TABELAS COM OS DADOS EXPERIMENTAIS OBTIDOS NO ENSAIO III DO PROTÓTIPO DA LIGAÇÃO YT DE SEÇÕES TUBULARES CIRCULARES.

Força	EER1	EER2	EER3	EER4	EER5	EER6	EER7	EER8	EER9	EER10	EER11	EER12	EER13	EER14	EER15	EER16	EER17	EER18	EER19	EER20	EER21	EER22	EER23	EER24
kN																								
0,0	-1	-1	0	-1	-1	0	-1	-1	-2	0	-1	-1	0	0	0	0	-2	0	0	0	0	0	0	-1
49,6	29	-31	45	114	-65	-121	-67	-34	-235	-136	-329	-178	272	297	284	258	-203	8	190	231	71	177	-155	333
50,0	29	-32	44	114	-65	-123	-68	-34	-242	-133	-332	-176	273	298	285	259	-205	8	192	232	72	179	-156	331
75,2	45	-47	67	171	-99	-186	-100	-47	-378	-243	-460	-243	412	444	419	385	-308	15	292	358	137	279	-200	461
75,0	44	-48	67	171	-99	-186	-100	-45	-384	-239	-459	-237	411	442	415	382	-309	15	295	361	139	280	-197	451
100,2	60	-62	89	229	-132	-251	-132	-58	-519	-356	-582	-306	551	586	542	508	-414	22	399	493	210	384	-235	564
99,6	59	-66	89	229	-129	-252	-133	-54	-525	-352	-580	-298	549	581	533	501	-415	24	403	495	214	385	-231	542
125,0	74	-81	110	287	-164	-316	-165	-67	-652	-474	-701	-371	692	721	659	627	-520	31	506	634	281	489	-267	648
124,8	73	-82	111	289	-164	-318	-166	-63	-658	-472	-699	-368	698	717	653	622	-521	33	511	642	282	490	-263	625
149,8	87	-98	132	346	-195	-385	-198	-69	-785	-596	-816	-440	872	858	772	743	-629	44	616	881	401	608	-297	704
151,0	89	-101	133	350	-194	-389	-199	-67	-794	-599	-819	-442	895	863	772	745	-634	46	625	897	406	615	-299	706
160,4	93	-107	141	370	-207	-413	-211	-70	-839	-647	-862	-468	961	915	820	792	-675	48	663	979	453	668	-314	762
160,4	93	-108	141	371	-206	-415	-211	-65	-842	-647	-861	-465	988	914	814	787	-680	50	669	1003	441	669	-312	763
170,0	100	-114	151	393	-220	-442	-224	-69	-892	-701	-909	-493	1062	972	865	839	-727	54	712	1090	471	721	-331	838
170,2	99	-115	150	395	-219	-444	-223	-65	-894	-702	-908	-489	1083	973	862	835	-731	56	717	1105	450	721	-330	842
174,8	102	-118	154	406	-226	-456	-229	-67	-917	-728	-932	-504	1119	1002	886	859	-753	58	737	1160	479	742	-338	877
175,0	102	-119	154	407	-226	-458	-229	-64	-920	-730	-932	-501	1134	1005	884	858	-756	60	742	1192	480	746	-337	884
180,4	104	-121	160	418	-232	-471	-235	-65	-944	-757	-957	-516	1169	1034	911	885	-779	61	763	1234	493	767	-346	921
180,6	105	-123	160	421	-232	-476	-236	-61	-949	-765	-959	-514	1193	1041	909	884	-787	65	770	1267	484	779	-346	890
190,2	112	-128	168	440	-246	-503	-247	-61	-994	-832	-1008	-535	1274	1097	957	931	-839	64	810	1474	516	823	-363	946
200,4	117	-136	177	465	-259	-533	-260	-57	-1043	-899	-1058	-557	1388	1158	1002	977	-895	67	861	1740	556	854	-379	1016
200,2	116	-138	177	465	-259	-538	-259	-49	-1045	-939	-1062	-553	1424	1161	999	972	-909	66	870	2132	478	708	-377	1026
205,4	120	-140	183	475	-266	-551	-265	-51	-1068	-968	-1088	-566	1461	1190	1026	999	-933	66	890	2212	485	712	-385	1060
205,2	119	-142	182	477	-266	-555	-264	-47	-1067	-1026	-1090	-560	1502	1188	1023	994	-944	64	897	2552	439	568	-385	1072
210,2	121	-144	186	488	-272	-568	-271	-46	-1090	-1059	-1115	-572	1553	1217	1048	1019	-970	64	918	2648	480	565	-395	1114

Tabela A5.1 – Tabela dos resultados das leituras dos extensômetros no ENSAIO III (EER em microstrain).

210,4	122	-146	187	490	-273	-573	-270	-39	-1089	-1082	-1121	-567	1613	1218	1057	1019	-985	64	927	2790	509	572	-393	1132
210,6	121	-147	187	489	-274	-576	-270	-37	-1091	-1087	-1123	-569	1633	1218	1056	1019	-990	63	930	2815	513	576	-394	1134
215,6	124	-150	192	502	-281	-592	-275	-33	-1112	-1134	-1151	-577	1792	1241	1082	1038	-1029	61	956	2986	565	606	-402	1206
220,2	126	-154	197	513	-286	-606	-282	-31	-1134	-1169	-1177	-589	1896	1263	1108	1061	-1059	60	978	3110	599	616	-410	1265
219,8	126	-155	196	513	-286	-609	-281	-25	-1132	-1184	-1179	-584	2035	1259	1110	1054	-1071	58	986	3186	605	626	-409	2304
225,0	129	-159	201	526	-293	-624	-286	-23	-1154	-1221	-1207	-597	2268	1282	1138	1078	-1105	56	1011	3332	630	658	-417	3451
228,0	130	-162	203	532	-297	-635	-288	-17	-1164	-1248	-1227	-598	2530	1297	1152	1079	-1141	46	1021	3472	658	679	-421	4791
229,8	131	-166	204	539	-299	-645	-291	-11	-1174	-1275	-1243	-598	2988	1303	1166	1079	-1177	41	1042	3618	683	702	-425	6407
231,2	130	-172	207	545	-300	-655	-290	0	-1176	-1330	-1258	-594	3722	1298	1164	1066	-1224	28	1055	3812	712	736	-422	8334
230,6	130	-172	206	544	-301	-656	-288	4	-1175	-1339	-1259	-591	3922	1292	1161	1065	-1233	25	1058	3856	719	746	-422	8698
235,4	133	-175	211	556	-306	-668	-293	4	-1195	-1369	-1284	-603	4086	1319	1183	1093	-1258	25	1080	3921	744	768	-428	8960
238,2	134	-177	212	561	-310	-676	-296	4	-1206	-1389	-1301	-609	4280	1329	1197	1111	-1278	21	1092	3991	770	779	-432	9309
240,2	134	-182	214	568	-312	-686	-297	14	-1213	-1433	-1326	-606	5375	1329	1204	1141	-1329	9	1112	4277	818	778	-435	10608
240,6	131	-187	212	572	-311	-696	-294	32	-1211	-1498	-1349	-592	8141	1302	1203	1207	-1385	-7	1125	4925	904	791	-427	11961
240,4	131	-187	213	573	-310	-698	-293	36	-1211	-1513	-1356	-590	8789	1296	1196	1236	-1398	-5	1129	5049	911	795	-424	12122
245,4	133	-192	216	584	-316	-711	-299	37	-1232	-1550	-1384	-602	9281	1316	1218	1277	-1439	-13	1137	5186	928	815	-430	12287
250,0	133	-193	217	591	-319	-728	-303	50	-1251	-1672	-1448	-589	12396	1316	1214	1670	-1483	18	1192	6419	955	803	-426	13523
250,0	129	-185	206	576	-314	-727	-306	59	-1250	-1841	-1507	-560	13810	1731	1740	2908	-1410	231	1322	7832	819	799	-415	14619
249,8	127	-181	204	571	-312	-727	-308	62	-1250	-1909	-1536	-551	13968	2058	2318	3580	-1414	262	1344	8192	786	824	-412	14909
252,6	129	-181	206	577	-315	-733	-312	60	-1262	-1933	-1555	-556	14006	2097	2419	3721	-1479	180	1238	8269	790	837	-414	14975
255,4	132	-182	208	581	-317	-739	-313	59	-1273	-1958	-1576	-560	14052	2164	2556	3923	-1489	171	1209	8398	798	850	-416	15088
260,4	133	-173	207	578	-323	-746	-323	54	-1295	-2033	-1669	-549	14223	2606	3256	5665	-1616	109	1166	9342	772	931	-414	
260,6	130	-129	192	524	-316	-724	-330	41	-1347	-2377	-2044	-465	14434	4308	8221	11759	-2108	-29	824	11647	683	1545	-377	
261,0	129	-122	189	515	-316	-721	-330	38	-1360	-2398	-2137	-451	14457	4633	9084	12472	-2144	-47	775	11968	673	1686	-369	
263,4	130	-117	188	513	-318	-724	-334	35	-1381	-2436	-2220	-445	14494	4877	9811	12912	-2200	-72	753	12225	695	1823	-364	
265,4	132	-115	190	513	-320	-728	-336	33	-1393	-2457	-2263	-443	14518	5010	10122	13098	-2234	-83	750	12386	709	1888	-364	
268,0	133	-99	189	500	-321	-723	-342	23	-1428	-2527	-2444	-422	14576	5556	11321	13763	-2441	-117	758	13083	766	2253	-356	
270,2	136	-68	182	468	-320	-707	-348	1	-1482	-2704	-2821	-374	14659	6356	12918	14728	-2687	-145	719	14248	981	2908	-332	
273,4	138	-9	172	405	-319	-672	-356	-39	-1599	-3067	-3603	-279	14742	9302		15740	-3683	-159	1066		1559	3678	-275	
274,8	139	20	169	376	-316	-654	-358	-62	-1662	-3229	-3997	-231	14801	10318			-4173	-246	1291		1908	4180	-247	
276,8	141	57	164	339	-314	-629	-361	-88	-1775	-3446	-4536	-168	14909	11475			-4909	-290	1670		2348	4777	-207	

282,4	149	141	159	263	-308	-573	-370	-156	-1945	-4478	-5888	-19	15061		-6235	-370	2357	5171	550	1838	-103	
284,2	153	173	157	235	-305	-550	-371	-181	-2064	-5074	-6407	45	15123		-6723	-406	2666	5074	558	1541	-57	
285,0	155	192	156	219	-303	-535	-371	-196	-2108	-5743	-6738	88	15167		-6992	-415	2830	5017	561	1457	-28	
286,6	160	234	155	185	-296	-504	-372	-229	-2237	-7103	-7453	186	15268		-7546	-450	3171	4903	565	1351	31	
290,6	170	301	156	135	-285	-449	-371	-283	-2595	-10848	-9180	373	15567		-8620	-480	3894	4833	558	1219	120	
293,8	181	351	160	112	-273	-392	-366	-335	-2906		-10372	627			-9681	-565	4615	4783	241	483	217	
295,2	189	383	164	101	-264	-357	-360	-363	-3413		-10852	780			-10317	-647	5077	4631	265	438	284	
298,6	215	463	182	79	-238	-280	-342	-418	-4573		-12052	942			-11699	-899	6017	4465	305	399	468	
300,6	230	503	192	69	-228	-242	-336	-445	-4943		-12667	963			-12283	-1050	6353	4403	340	461	559	
302,6	244	541	203	61	-217	-207	-329	-470	-5199		-13323	990			-12796	-1197	6612	4339	366	514	653	
304,4	262	589	216	50	-205	-164	-321	-498	-5503		-14168	1034			-13364	-1371	6870	4275	383	540	795	
306,0	276	629	226	42	-190	-126	-314	-523	-5755		-14885	1080			-13808	-1522	7042	4227	401	574	966	
307,8	296	679	240	33	-177	-79	-305	-551	-6114			1151			-14347	-1713	7230	4196	415	690	1150	
310,0	318	739	256	23	-160	-25	-293	-580	-6559			1234			-14964	-1940	7416	4127	426	781	1349	
313,6	351	830	282	11	-134	55	-274	-620	-7221			1375				-2274	7640	4049	428	853	1706	
315,6	372	885	298	8	-118	105	-260	-640	-7657			1471				-2486	7776	4000	434	877	1956	
316,4	427	1035	338	-20	-69	257	-224	-700	-8612							-3015	7960	3854	445	916	2638	
285,6	455	1181	338	-135	0	507	-164	-739	-8574			1585				-3455	7590	3833	441	1048	3569	
269,4	467	1211	338	-155	51	616	-118	-705	-8536			1520				-3765	7559	3807	485	1082	4046	
Força	TD1	TD2	TD3	TD4	TD5	TD6	TD7	TD8	TD9	TD10	TD11	TD12	TD13	TD14	TD15	TD16	TD17	TD18	TD19			
-------	--------	-------	--------	--------	-------	-------	-------	-------	--------	-------	-------	-------	--------	--------	--------	--------	-------	--------	-------			
KN	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm			
0,0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000			
50,0	-0,032	0,005	-0,070	-0,001	0,006	0,080	0,130	0,290	-0,660	1,250	1,440	1,210	-0,630	-0,810	-0,120	0,040	0,030	-0,160	0,070			
75,0	-0,060	0,021	-0,090	-0,001	0,030	0,130	0,180	0,330	-1,000	1,900	2,110	1,850	-0,940	-1,220	-0,220	0,040	0,031	-0,270	0,070			
100,0	-0,093	0,047	-0,120	-0,001	0,073	0,190	0,100	0,380	-1,340	2,630	2,840	2,540	-1,320	-1,750	-0,340	-0,010	0,031	-0,430	0,040			
125,0	-0,136	0,078	-0,150	-0,001	0,075	0,240	0,130	0,450	-1,720	3,290	3,520	3,210	-1,650	-2,160	-0,440	-0,020	0,031	-0,560	0,030			
150,0	-0,170	0,108	-0,190	-0,001	0,092	0,290	0,170	0,520	-2,090	3,990	4,230	3,900	-2,020	-2,620	-0,580	-0,020	0,031	-0,710	0,020			
160,0	-0,186	0,115	-0,200	-0,001	0,093	0,310	0,160	0,560	-2,280	4,330	4,570	4,240	-2,190	-2,800	-0,640	-0,050	0,031	-0,890	0,020			
170,0	-0,194	0,123	-0,210	-0,001	0,094	0,330	0,160	0,570	-2,410	4,630	4,870	4,520	-2,340	-2,960	-0,680	-0,080	0,031	-1,100	0,010			
175,0	-0,202	0,127	-0,220	-0,001	0,094	0,340	0,170	0,400	-2,520	4,810	5,050	4,700	-2,430	-3,060	-0,710	-0,080	0,031	-1,150	0,020			
180,0	-0,206	0,127	-0,230	-0,001	0,094	0,350	0,170	0,170	-2,590	4,980	5,230	4,890	-2,520	-3,140	-0,740	-0,100	0,032	-1,180	0,010			
190,0	-0,215	0,128	-0,240	0,000	0,101	0,370	0,170		-2,790	5,310	5,570	5,210	-2,690	-3,200	-0,770	-0,100	0,033	-1,250	0,000			
200,0	-0,221	0,138	-0,260	0,003	0,105	0,380	0,170		-2,970	5,700	5,950	5,560	-2,880	-3,440	-0,820	-0,150	0,036	-1,320	0,020			
205,0	-0,226	0,144	-0,270	0,007	0,111	0,390	0,170		-3,000	5,850	6,130	5,740	-2,990	-3,560	-0,840	-0,160	0,039	-1,410	0,020			
210,0	-0,228	0,147	-0,280	0,012	0,114	0,400	0,170		-3,190	6,110	6,360	5,940	-3,100	-3,660	-0,860	-0,160	0,051	-1,540	0,030			
215,0	-0,233	0,148	-0,290	0,012	0,114	0,400	0,170		-3,310	6,320	6,570	6,140	-3,190	-3,770	-0,870	-0,160	0,055	-1,600	0,030			
220,0	-0,234	0,148	-0,300	0,021	0,125	0,410	0,170		-3,410	6,580	6,830	6,410	-3,330	-3,910	-0,910	-0,160	0,072	-1,630	0,040			
230,0	-0,246	0,168	-0,330	0,044	0,134	0,420	0,180		-3,780	7,110	7,370	6,910	-3,670	-4,310	-0,960	-0,160	0,120	-1,700	0,060			
240,0	-0,256	0,208	-0,360	0,081	0,135	0,420	0,180		-4,090	7,910	8,170	7,690	-4,060	-4,860	-1,130	-0,160	0,154	-1,760	0,080			
250,0	-0,286	0,268	-0,400	0,137	0,135	0,440	0,340		-4,970	9,560	9,820	9,190	-4,720	-5,550	-1,270	-0,160	0,430	-1,860	0,090			

Tabela A5.2 – Tabela dos resultados das leituras dos transdutores de deslocamentos (TDs) no ENSAIO III.

Tabela A5.3 – Tabela dos resultados das leituras dos transdutores de deslocamentos digitais (TDs) no ENSAIO III.

Força	TD21	TD20			
kN	mm	mm			
0,00	0,002	0,003			
49,60	1,148	1,354			
50,00	1,152	1,367			
75,20	1,774	2,048			
75,00	1,791	2,067			
100,20	2,432	2,755			
99,60	2,465	2,791			
125,00	3,116	3,501			
124,80	3,163	3,540			
149,80	3,880	4,320			
151,00	3,945	4,387			
160,40	4,199	4,666			
160,40	4,257	4,727			
170,00	4,538	5,008			
170,20	4,587	5,051			
174,80	4,722	5,191			
175,00	4,761	5,225			
180,40	4,900	5,378			
180,60	4,968	5,448			
190,20	5,273	5,772			
200,40	5,637	6,185			
200,20	5,728	6,283			
205,40	5,863	6,427			
205,20	5,934	6,506			
210,20	6,089	6,668			
210,40	6,180	6,757			
210,60	6,201	6,778			
215,60	6,417	7,007			
220,20	6,595	7,188			
219,80	6,669	7,267			
225,00	6,870	7,472			
228,00	7,033	7,646			

229,80	7,210	7,818
231,20	7,431	8,041
230,60	7,481	8,090
235,40	7,628	8,246
238,20	7,735	8,359
240,20	7,992	8,613
240,60	8,404	9,028
240,40	8,506	9,135
245,40	8,699	9,334
250,00	9,451	10,089
250,00	9,481	10,978
249,80	9,479	11,260
252,60	9,481	11,376
255,40	9,479	11,504
260,40	9,481	12,113
260,60	9,479	13,846
261,00	9,481	14,170
263,40	9,481	14,467
265,40	9,479	14,632
268,00	9,481	15,222
270,20	9,479	16,255
273,40	9,479	17,763
274,80	9,481	17,766
276,80	9,481	17,775
280,40	9,481	17,772
282,40	9,479	17,769
284,20	9,479	17,769
285,00	9,479	17,769
286,60	9,479	17,766
290,60	9,479	17,769
293,80	9,481	17,766
295,20	9,481	17,766
298,60	9,481	17,772
300,60	9,481	17,772
302,60	9,481	17,772
304,40	9,481	17,769

306,00	9,481	17,769
307,80	9,482	17,769
310,00	9,481	17,772
313,60	9,481	17,772
315,60	9,481	17,775
316,40	9,483	17,769
285,60	9,482	17,772
269,40	9,483	17,775

ANEXO 6 – DIAGRAMA TENSÃO-DEFORMAÇÃO.

O diagrama de tensão-deformação é construído através dos resultados do ensaio de tração. Dois diagramas de tensão-deformação do mesmo material não serão exatamente iguais, uma vez que os resultados dependem de variáveis tais como o tipo de material, a maneira como são fabricados os corpos-de-prova, imperfeições microscópicas do material, velocidade do carregamento e a temperatura durante o ensaio. A Figura A.1 mostra o diagrama de tensão-deformação pertencente ao aço. Pelo diagrama identificam-se quatro fases diferentes pelas qual o material pode se comportar, dependendo da grandeza da deformação causada.

Fonte: HIBBELER (2004), p 64.

Primeira fase (Região elástica) - Pode-se notar que o diagrama se comporta como uma reta na parte inicial, de modo que a tensão é proporcional à deformação, ou seja, o material é linearmente elástico. Isto ocorre até o limite de proporcionalidade onde se tem a tensão limite de proporcionalidade " σ_{lp} ". A deformação correspondente a essa tensão no aço é geralmente em torno de " $\varepsilon_{lp} = 0,0012$ ". Caso a tensão exceda ligeiramente este limite, o material pode ainda responder elasticamente, entretanto, o diagrama tende a se fletir e achatar. Quando a tensão alcança o limite de elasticidade,

se a força for removida, o corpo-de-prova ainda volta à sua forma original. O limite de elasticidade para o aço é muito próximo ao limite de proporcionalidade.

Segunda fase (Escoamento) - Acima do limite de elasticidade um pequeno aumento de tensão leva o corpo-de-prova ao colapso e faz com que ele se deforme permanentemente, isto se chama escoamento do material. A deformação correspondente à tensão de escoamento " σ_E " é geralmente em torno de " $\epsilon_E = 0,002$ ". Acima do limite de escoamento, a deformação é denominada de deformação plástica e sem qualquer aumento da força o corpo-de-prova continuará a se deformar.

Terceira fase (Endurecimento por deformação) - Após o término do escoamento um incremento de força adicional resulta em um diagrama que cresce continuamente, mas que se torna mais plano até que seja alcançada a tensão máxima denominada de tensão limite de resistência " σ r".

Quarta fase (Estricção) - A área da seção transversal do corpo-de-prova começa a diminuir ao atingir o limite de resistência. Como a área da seção transversal esta decrescendo continuamente, ela só pode suportar força decrescente e o diagrama tende a curvar-se para baixo até que o corpo-de-prova quebre com a tensão de ruptura " σ_{rup} ".

O diagrama de tensão-deformação real é obtido utilizando a área real da seção transversal e o comprimento do corpo-de-prova no instante em que a força é medida. Desta forma chega-se na tensão de ruptura real " σ_{rup} ".

341

ANEXO 7 – ROSETAS.

As rosetas são três extensômetros de resistência elétrica colados em determinada angulação. Pode-se ter rosetas com angulação de 60°, de 45° ou a angulação pode ser qualquer. Quando as leituras dos três extensômetros são realizadas os dados são usados para especificar o estado de deformação no ponto. Deve ser observado que como estas deformações são medidas somente no plano da superfície e, como o corpo não sofre tensões em sua superfície, os extensômetros podem estar sujeitos ao estado plano de tensões, mas não ao estado plano de deformação. Assim sendo, a reta normal para a superfície livre é um eixo principal de deformação e, desse modo, a deformação normal principal ao longo desse eixo não é medida pela roseta. O mais importante é que o deslocamento fora do plano, provocado por essa deformação principal, não é afetado pelas medições dos extensômetros no plano.

De uma forma geral, os eixos dos três extensômetros estão posicionados nos ângulos, θ_a , θ_b e θ_c como mostra a Figura A.2.

Figura A.2 – Roseta de angulação qualquer.

Após as leituras ε_a , ε_b e ε_c é possível determinar os componentes de deformação ε_x , ε_y e γ_{xy} no ponto, aplicando a equação da transformação de deformação dado pela equação (A.1) para cada extensômetro.

$$\begin{split} & \varepsilon_{a} = \varepsilon_{x} \cdot \cos^{2}\theta_{a} + \varepsilon_{y} \cdot \sin^{2}\theta_{a} + \gamma_{xy} \cdot \sin\theta_{a} \cdot \cos\theta_{a} \\ & \varepsilon_{b} = \varepsilon_{x} \cdot \cos^{2}\theta_{b} + \varepsilon_{y} \cdot \sin^{2}\theta_{b} + \gamma_{xy} \cdot \sin\theta_{b} \cdot \cos\theta_{b} \\ & \varepsilon_{c} = \varepsilon_{x} \cdot \cos^{2}\theta_{c} + \varepsilon_{y} \cdot \sin^{2}\theta_{c} + \gamma_{xy} \cdot \sin\theta_{c} \cdot \cos\theta_{c} \end{split}$$
(A.1)

Determinam-se os valores de ε_x , ε_y e γ_{xy} resolvendo as três equações simultaneamente. Com eles determinam-se as deformações principais no plano, a deformação por cisalhamento máxima no plano e aplicando a lei de Hooke, dada pela equação (A.2), obtém-se as tensões principais.

$$\varepsilon_{x} = \frac{1}{E} \cdot \left[\sigma_{x} - \nu \cdot (\sigma_{y} + \sigma_{z}) \right]$$

$$\varepsilon_{y} = \frac{1}{E} \cdot \left[\sigma_{y} - \nu \cdot (\sigma_{x} + \sigma_{z}) \right]$$

$$\varepsilon_{z} = \frac{1}{E} \cdot \left[\sigma_{z} - \nu \cdot (\sigma_{x} + \sigma_{y}) \right]$$
(A.2)

4

Exemplo de cálculo das tensões principais para roseta 1, mostrada no capítulo V.

Seja para o carregamento P=125 kN as seguintes leituras das deformações dada pelos extensômetros na roseta 1, mostrado na Figura A.3, $\varepsilon_a = 488,82 \cdot 10^{-6}$, $\varepsilon_b = 634,21 \cdot 10^{-6}$ e $\varepsilon_c = 281,06 \cdot 10^{-6}$, onde os ângulos são $\theta_a = 0^{\circ}$, $\theta_b = 270^{\circ}$ e $\theta_c = 315^{\circ}$.

Figura A.3 – Roseta 1 de 45º utilizada no protótipo YT.

Utilizando a equação (A.1), tem-se:

$$\begin{split} 488,&82\cdot 10^{-6} = \epsilon_x\cdot\cos^20 + \epsilon_y\cdot\sin^20 + \gamma_{xy}\cdot\sin0\cdot\cos0\\ 634,&21\cdot 10^{-6} = \epsilon_x\cdot\cos^2270 + \epsilon_y\cdot\sin^2270 + \gamma_{xy}\cdot\sin270\cdot\cos270\\ 281,&06\cdot 10^{-6} = \epsilon_x\cdot\cos^2315 + \epsilon_y\cdot\sin^2315 + \gamma_{xy}\cdot\sin315\cdot\cos315 \end{split}$$

$$\begin{split} & \epsilon_x = \epsilon_a = 488,82 \cdot 10^{-6} \\ & \epsilon_y = \epsilon_b = 634,21 \cdot 10^{-6} \\ & \gamma_{xy} = \epsilon_x + \epsilon_y - 2 \cdot \epsilon_c = \epsilon_a + \epsilon_b - 2 \cdot \epsilon_c = 560,11 \cdot 10^{-6} \end{split}$$

Através deste estado de deformação aplicando a lei de Hooke, dado pela equação (A.2), no plano x-y, então $\sigma_z = 0$, tem-se:

$$488,82 \cdot 10^{-6} = \frac{1}{227,382} \cdot \left[\sigma_{x} - 0,3 \cdot \sigma_{y}\right]$$
$$634,21 \cdot 10^{-6} = \frac{1}{227,382} \cdot \left[\sigma_{y} - 0,3 \cdot \sigma_{x}\right]$$

A solução deste sistema fornece os seguintes valores:

$$\sigma_x = 0,1697 \text{ GPa}$$

 $\sigma_y = 0,1951 \text{ GPa}$

Determina-se a tensão de cisalhamento usando a lei de Hooke para cisalhamento dado, pela equação (A.3).

$$\tau_{xy} = \mathbf{G} \cdot \boldsymbol{\gamma}_{xy} \tag{A.3}$$

Porém, deve-se calcular primeiramente o módulo de elasticidade transversal do aço, "G", dado pela equação (A.4).

$$G = \frac{E}{2 \cdot (1 + v)}$$
(A.4)

Portanto,

$$G = \frac{227,382}{2 \cdot (1+0,3)} = 87,455 \text{ GPa}$$

$$\tau_{xy} = 87,455 \cdot 560,11 \cdot 10^{-6} = 0,049 \text{ GPa}$$

Utilizando-se do círculo de Mohr para esse estado plano de tensões tem como ponto de referência $A(\sigma_x, \tau_{xy}) = A(0,1697, 0,049)$, centro em $\sigma_{méd} = \frac{\sigma_x + \sigma_y}{2} = \frac{0,1697 + 0,1951}{2} = 0,1824$.

O raio é determinado por:

$$R = \sqrt{\left(\sigma_{\text{méd}} - \sigma_{x}\right)^{2} + \left(\tau_{xy}\right)^{2}} = \sqrt{\left(0,1824 - 0,1697\right)^{2} + \left(0,049\right)^{2}} = 0,0506$$

As tensões principais são dadas por:

$$\begin{split} \sigma_{1} &= \sigma_{m\acute{e}d} + R = 0,\!1824 + 0,\!0506 = 0,\!233 \text{ GPa} \\ \sigma_{1} &= \sigma_{m\acute{e}d} - R = 0,\!1824 - 0,\!0506 = 0,\!132 \text{ GPa} \end{split}$$

As direções principais são dadas por:

tg
$$2 \cdot \theta = \frac{2 \cdot \tau_{xy}}{\sigma_x - \sigma_y} = \frac{2 \cdot 0,049}{0,1697 - 0,1951} = -3,8583$$

 $\theta' = -37,7348$ $\theta'' = 52,2652$