UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL ARQUITETURA E URBANISMO

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS DO RIBEIRÃO JACUBA EMPREGANDO A FLUORESCÊNCIA DE RAIOS X POR REFLEXÃO TOTAL COM RADIAÇÃO SÍNCROTRON (SR-TXRF)

Renato Willian Martins de Oliveira

CAMPINAS - SP - Brasil Fevereiro – 2004 BIBLIOTECA CENTRAL César Lattes Desenvolvimento de Coleção UNICAMP

C-1

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL ARQUITETURA E URBANISMO

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS DO RIBEIRÃO JACUBA EMPREGANDO A FLUORESCÊNCIA DE RAIOS X POR REFLEXÃO TOTAL COM RADIAÇÃO SÍNCROTRON (SR-TXRF)

Renato Willian Martins de Oliveira

Orientadora: Silvana Moreira

Dissertação de mestrado submetida à Faculdade de Engenharia Civil, Arquitetura e Urbanismo da Universidade Estadual de Campinas para a obtenção do título de Mestre em Engenharia Civil, na área de concentração de Recursos Hídricos, em 19 de Fevereiro de 2004.

CAMPINAS - SP - Brasil Fevereiro – 2004

Atesto que cosa f a versão definitiva d dissertação/teş Prof. Dr.

UNIDADE TUNICAMP Nº CHAMADA OL4a EX TOMBO BC/70972 PROC. 16-P.00123.06 C ... PRECO 11.00 DATA 19/12/06 BIB-10 394730

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

Oliveira, Renato Willian Martins de. Avaliação da qualidade das águas do ribeirão OL4a Jacuba empregando a fluorescência de raios x por reflexão total com radiação Síncrotron (SR-TXRF) / Renato Willian Martins de Oliveira. --Campinas, SP: [s.n.], 2004. Orientadora: Silvana Moreira. Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil Arquitetura e Urbanismo. 1. Esgotos. 2. Água doce. 3. Metais Pesados. 4. Radiação. 5. Tratamento de efluentes. 1. Moreira, Silvana. II. Universidade Estadual de Campinas. Faculdade de Engenharia Civil Arquitetura e Urbanismo. III. Título.

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL ARQUITETURA E URBANISMO

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS DO RIBEIRÃO JACUBA EMPREGANDO A FLUORESCÊNCIA DE RAIOS X POR REFLEXÃO TOTAL COM RADIAÇÃO SÍNCROTRON (SR-TXRF)

Renato Willian Martins de Oliveira

Dissertação de Mestrado aprovada pela Banca Examinadora, constituída por:

Profa. Dra. Silvana Moreira Presidente e Orientadora – FEC/UNICAMP

Prof. Dr. Bruno Couracci Filho FEC/UNICAMP

Profa. Dra. Regina Cely Barroso IF/UERJ

Campinas, 19 de fevereiro de 2004

A Deus,

Ofereço.

Aos meus pais José e Maria, minha irmã Kátia e minha filha Jéssica, onde busco forças para acreditar que tudo é possível, Dedico.

Nossa vida é uma jornada, e, às vezes, as estradas em que viajamos são mais misteriosas e mágicas do que jamais imaginamos (Deanna Beisser)

Agradecimentos

Aos meus pais José e Maria que me dão carinho, amor e ajudam a realizar meus sonhos, sou eternamente grato.

Em especial a orientadora Professora Doutora Silvana Moreira pela amizade, confiança e ajuda.

A todos os professores com os quais tive o prazer de conviver durante o mestrado, que muito me auxiliaram na minha formação acadêmica.

Aos colegas de classe é o convívio geral, pela amizade e companheirismo.

Aos amigos Ivan, Sinira, que me apoiaram em momentos difíceis desta minha jornada, irei sempre lembrar.

A todos os funcionários da Faculdade de Engenharia Civil, pelo apoio prestado.

As empresas de Hortolândia que cederam o material para análise.

Ao Laboratório Nacional de Luz Síncrotron, onde as medidas foram realizadas.

E a todos aqueles que de alguma forma auxiliaram neste trabalho.

SUMÁRIO

página

LISTA DE FIGURAS	ix
LISTA DE TABELAS	xiv
LISTA DE ABREVIATURAS, SÍMBOLOS E DEFINIÇÕES	xvii
RESUMO	xxiv
1 - INTRODUÇÃO	1
2 - OBJETIVOS	5
3 - REVISÃO BIBLIOGRÁFICA	7
3.1 - Introdução	7
3.2 - Água e Metais	7
3.2.1 - Água	7
3.2.2 - Metais	10
3.2.2.1 - Ciclo Hidrológico e Metais	10

۹,

3.2.2.2 - Ocorrência dòs Metais na Natureza	11
3.2.2.3 - Bio-acumulação e Bio-disponibilidade	12
3.2.3 - Caracterização do Efluente	12
3.2.4 - Caracterização do Esgoto	13
3.2.5 - Legislação e Classificação do Ribeirão Jacuba	15
3.3 - Fluorescência de Raios X por Reflexão Total	20
4 – FLUORESCÊNCIA DE RAIOS X	25
4.1 - Fundamentos Teóricos da Fluorescência de Raios X	25
4.1.1 - Excitação dos Elementos	30
4.1.2 - Tubos de Raios X	31
4.2 - Fundamentos da Fluorescência de Raios X por Reflexão Total	33
4.3 - Fluorescência de Raios X por Reflexão Total com Excitação por Radiação Síncrotron	37
4.4 - Análise Quantitativa por TXRF	38
4.5 - Limite Mínimo Detectável	42
5 – MATERIAL	43
5.1 - Instrumentação	43
5.1.1 - Principais Características do Anel de Armazenamento e da	
Estação de Fluorescência de Raios X do Laboratório Nacional	
de Luz Síncrotron	43
5.2 - Suporte para Amostra	47
5.3 - Preparo dos Padrões	47
5.4 - Planejamento da Amostragem	47
5.5 - Coleta e Preparo das Amostras	49
5.5.1 - Locais de amostragem	49
5.5.2 - Preservação das amostras	52

5.5.3 - Postos de coleta de água superficial e esgoto	52
5.5.4 - Postos de coletas de efluentes	58
5.5.5 - Preparo das amostras de águas superficiais, esgoto e	
efluentes inorgânicos e orgânicos	59
6 – RESULTADOS E DISCUSSÃO	61
6.1 - Análise das Amostras Utilizando o Sistema de Fluorescência de	
Raios X com Reflexão Total e Radiação Síncrotron	61
6.1.1 - Cálculo da Sensibilidade Relativa	61
6.1.2 - Limite Mínimo de Detecção	67
6.1.3 - Análise dos Padrões Certificados	72
6.1.4 - Resultados das Amostras de Águas Superficiais coletadas no	
Ribeirão Jacuba	73
6.1.5 - Resultados das Amostras de Esgoto coletadas no Presídio	92
6.1.6 - Resultados das Amostras de Efluentes	109
6.1.6.1 - Resultados das Amostras de Efluentes coletadas na	440
Empresa Um	110
6.1.6.2 - Resultados das Amostras de Efluentes coletadas na	105
Empresa Dois	120
7 - CONCLUSÕES	137
8 - REFERÊNCIAS BIBLIOGRÁFICAS	143
9 - ABSTRACT	149

LISTA DE FIGURAS

página

3.1	Formas de ocorrência dos metais na natureza	11
4.1	Equação de Plank e espectro eletromagnético	26
4.2	Representação esquemática do efeito Auger	30
4.3	Representação esquemática do ângulo crítico (em minutos) para os	
	Raios X Mo- α de 17,44 keV e Cu-K α de 8,04 keV, incidindo sobre quartzo	35
4.4	Representação esquemática da refração e reflexão de um feixe de	
	radiação policromático, incidindo em um material em ângulo ϕ	
	qualquer	36
4.5	Geometria de excitação/detecção da TXRF, com as linhas pretas	
	representando os raios-X incidentes e espalhados, e as coloridas os	
	característicos	37
4.6	Desenho esquemático do sistema de fluorescência de raios X por	
	reflexão total com radiação síncrotron	38
5.1	Vista geral do anel de armazenamento de elétrons do LNLS, Campinas,	
	SP	45
5.2	Emissão de luz síncrotron devido à aceleração dos elétrons num dipolo do	
	anel de armazenamento que altera sua trajetória LNLS	45

5.3	Vista parcial da estação de fluorescência de raios X do LNLS 4					
5.4	Detalhe do posicionamento da amostra na linha de fluorescência de raios-X					
5.5	Planejamento da amostragem					
5.6	Formação do Rio Piracicaba em Americana – SP					
5.7	Região Metropolitana, localização geográfica do Município de					
	Hortolândia-SP	51				
5.8	Postos de amostragem no Ribeirão Jacuba – Hortolândia	54				
5.9	Fotografia do posto de coleta 1	55				
5.10	Fotografia do posto de coleta 3	55				
5.11	Fotografia do posto de coleta 4	56				
5.12	Fotografia do posto de coleta 5	56				
5.13	Fotografia do posto de coleta 7	57				
5.14	Fotografia do posto de coleta 9	57				
5.15	Fotografia do posto de coleta 10					
6.1	Curva da Sensibilidade Relativa para a série K utilizando SR-TXRF 6					
6.2	Curva da Sensibilidade Relativa para a série L utilizando SR-TXRF 66					
6.3	Limite Mínimo detectável (LMD) para a linha K, utilizando TXRF com					
	radiação síncrotron, para amostras de água superficial, esgoto e					
	efluente	70				
6.4	Limite Mínimo detectável (LMD) para a linha L, utilizando TXRF com					
	radiação síncrotron, para amostras padrão	71				
6.5	Valores máximos permitidos (µg.L ⁻¹) pela resolução CONAMA para os					
	elementos Al, V, Mn, Fe, Ca e Zn para água superficial	74				
6.6	Valores máximos permitidos (µg.L ⁻¹) pela resolução CONAMA para os					
	elementos Cr, Ni, Cu, As e Se para água superficial	74				
6.7	Valores máximos permitidos (µg.L ⁻¹) pela resolução CONAMA para os					
	elementos Ag, Cd, Hg, Pb para água superficial	75				
6.8	Valores máximos permitidos (µg.L ⁻¹) pela resolução CONAMA para os					
	elementos Sn e Ba para água superficial	75				

6.9	Valores máximos permitidos (µg.L ⁻¹) pela CETESB para os elementos	
	Ba, Cu, Sn e Zn para água superficial	76
6.10	Valores máximos permitidos (µg.L ⁻¹) pela CETESB para os elementos As,	
	Cd, Cr, Pb, Hg e Se para água superficial	76
6.11	Espectro dos raios X característicos dos elementos na amostra de água	
	superficial	77
6.12	Espectro dos raios X característicos dos elementos na amostra de	
	esgoto	78
6.13	Espectro dos raios X característicos dos elementos na amostra de	
	efluente	78
6.14	Concentrações de Silício nos postos de água superficial	79
6.15	Concentrações de Fósforo nos postos de água superficial	80
6.16	Concentrações de Enxofre nos postos de água superficial	81
6.17	Concentrações de Cloro nos postos de água superficial	82
6.18	Concentrações de Potássio nos postos de água superficial	83
6.19	Concentrações de Cálcio nos postos de água superficial	84
6.20	Concentrações de Titânio nos postos de água superficial	85
6.21	Concentrações de Cromo nos postos de água superficial	86
6.22	Concentrações de Manganês nos postos de água superficial	88
6.23	Concentrações de Ferro nos postos de água superficial	89
6.24	Concentrações de Níquel nos postos de água superficial	90
6.25	Concentrações de Cobre nos postos de água superficial	91
6.26	Concentrações de Zinco nos postos de água superficial	92
6.27	Valores máximos permitidos (µg.L ⁻¹) pela resolução CONAMA para os	
	elementos Cr, As, Se, Cd, Pb e Hg em efluentes	93
6.28	Valores máximos permitidos (µg.L ⁻¹) pela resolução CONAMA para os	
	elementos Mn, Fe, Cu, Zn, Ag, Sn e Ba em efluentes	93
6.29	Valores máximos permitidos (µg.L ⁻¹) pela CETESB para os elementos	
	As, Cd, Cr, Hg, Ag e Se em efluentes	94
6.30	Valores máximos permitidos (μ g.L ⁻¹) pela CETESB para os elementos Ba,	
	B, Pb, Cu, Sn, Fe, Mn, Ni e Zn em efluentes	94

6.31	Concentrações de Silício no esgoto	96
6.32	Concentrações de Fósforo no esgoto	96
6.33	Concentrações de Enxofre no esgoto	97
6.34	Concentrações de Cloro no esgoto	97
6.35	Concentrações de Potássio no esgoto	98
6.36	Concentrações de Cálcio no esgoto	98
6.37	Concentrações de Bromo no esgoto	99
6.38	Concentrações de Titânio no esgoto	99
6.39	Concentrações de Cromo no esgoto	100
6.40	Concentrações de Manganês no esgoto	101
6.41	Concentrações de Ferro no esgoto	101
6.42	Concentrações de Níquel no esgoto	102
6.43	Concentrações de Cobre no esgoto	103
6.44	Concentrações de Zinco no esgoto	103
6.45	Concentrações de Estrôncio no esgoto	104
6.46	Concentrações de Zircônio no esgoto	104
6.47	Concentrações de Estanho no esgoto	105
6.48	Concentrações de Bário no esgoto	106
6.49	Comparação das concentrações dos elementos Si, P, S, Cl, K e Ca no	
	esgoto	107
6.50	Comparação das concentrações dos elementos Ti, Cr, Mn, Fe, Ni, Cu,	
	Zn e Br no esgoto	108
6.51	Comparação das concentrações dos elementos Sr, Zr, Sn e Ba no	
	esgoto	109
6.52	Concentrações de Silício em amostras da empresa um	113
6.53	Concentrações de Fósforo em amostras da empresa um	113
6.54	Concentrações de Enxofre em amostras da empresa um	114
6.55	Concentrações de Cloro em amostras da empresa um	115
6.56	Concentrações de Potássio em amostras da empresa um	115
6.57	Concentrações de Cálcio em amostras da empresa um	116
6.58	Concentrações de Titânio em amostras da empresa um	116

6.59	Concentrações de Cromo em amostras da empresa um	117
6.60	Concentrações de Manganês em amostras da empresa um	117
6.61	Concentrações de Ferro em amostras da empresa um	118
6.62	Concentrações de Níquel em amostras da empresa um	119
6.63	Concentrações de Cobre em amostras da empresa um	119
6.64	Concentrações de Zinco em amostras da empresa um	120
6.65	Concentrações de Bromo em amostras da empresa um	121
6.66	Concentrações de Estrôncio em amostras da empresa um	121
6.67	Concentrações de Zircônio em amostras da empresa um	122
6.68	Concentrações de Estanho em amostras da empresa um	122
6.69	Concentrações de Bário em amostras da empresa um	123
6.70	Concentrações de Chumbo em amostras da empresa um	124
6.71	Concentrações de Silício em amostras da empresa dois	127
6.72	Concentrações de Fósforo em amostras da empresa dois	127
6.73	Concentrações de Enxofre em amostras da empresa dois	128
6.74	Concentrações de Cloro em amostras da empresa dois	128
6.75	Concentrações de Potássio em amostras da empresa dois	129
6.76	Concentrações de Cálcio em amostras da empresa dois	129
6.77	Concentrações de Titânio em amostras da empresa dois	130
6.78	Concentrações de Cromo em amostras da empresa dois	131
6.79	Concentrações de Manganês em amostras da empresa dois	131
6.80	Concentrações de Ferro em amostras da empresa dois	132
6.81	Concentrações de Níquel em amostras da empresa dois	133
6.82	Concentrações de Cobre em amostras da empresa dois	133
6.83	Concentrações de Zinco em amostras da empresa dois	134
6.84	Concentrações de Bromo em amostras da empresa dois	135
6.85	Concentrações de Estrôncio em amostras da empresa dois	135
6.86	Concentrações de Estanho em amostras da empresa dois	136

LISTA DE TABELAS

página

Composição do esgoto doméstico in natura	14
Valores máximos permitido pela Resolução CONAMA Nº 20/86 para	
águas de classe 2	16
Valores máximos permitidos pela resolução CONAMA Nº 20/86 para	
descarte de efluentes nas águas	17
Valores máximos permitidos pelo Decreto 8.468/76 do Estado de São	
Paulo para águas de classe 2	18
Valores máximos permitidos pelo Decreto 8.468/76 do Estado de São	
Paulo para o descarte de efluentes de qualquer natureza lançados nos	
cursos de águas	18
Energia crítica de excitação e seus correspondentes comprimentos de	
ondas para os elementos silício, arsênico, selênio e chumbo	27
Correspondência entre as notações dos diagramas de linhas IUPAC e	
Siegbahn	29
Principais radionuclídeos utilizados como fontes de excitação na análise	
por fluorescência de raios X por dispersão de energia	33
Postos de coletas e localização no município de Hortolândia – SP	53
	Composição do esgoto doméstico <i>in natura</i>

•

5.2	Postos de coletas nas empresas no município de Hortolândia – SP	59
6.1	Concentração dos elementos (Si, K, Ca, Ti, Cr, Fe, Ni, Zn, Ga, Se, Sr e	
	Mo) nas soluções padrões para a série K	62
6.2	Concentração dos elementos (Ga, Mo, Cd, Sb, Ba, Pt, Hg, Tl e Pb) nas	
	soluções padrões para a série L	62
6.3	Intensidade Relativa dos elementos nas amostras padrão para a	
	determinação da sensibilidade da série K	63
6.4	Intensidade relativa dos elementos nas amostras padrão para a	
	determinação da sensibilidade da série L	64
6.5	Sensibilidade Relativa obtida para os elementos da série K	64
6.6	Sensibilidade Relativa obtida para os elementos da série L	65
6.7	Limite de detecção para a série K, nas amostras de água	67
6.8	Limite de detecção para Ba e Pb, nas amostras de água	67
6.9	Limite de detecção para a série K, nas amostras de esgoto	68
6.10	Limite de detecção para Ba e Pb, nas amostras esgoto	68
6.11	Limite de detecção para a série K, nas amostras de efluentes	69
6.12	Limite de detecção para a série L, nas amostras padrão	69
6.13	Comparação dos valores medidos e certificados do padrão	
	multielementar	72
6.14	Comparação dos valores medidos e certificados do padrão Drinking	
	Water Pollutants	73
6.15	Concentrações de Silício em águas superficiais	79
6.16	Concentrações de Fósforo em águas superficiais	80
6.17	Concentrações de Enxofre em águas superficiais	81
6.18	Concentrações de Cloro em águas superficiais	82
6.19	Concentrações de Potássio em águas superficiais	83
6.20	Concentrações de Cálcio em águas superficiais	84
6.21	Concentrações de Titânio em águas superficiais	85
6.22	Concentrações de Cromo em águas superficiais	86
6.23	Concentrações de Manganês em águas superficiais	87
6.24	Concentrações de Ferro em águas superficiais	88

6.25	Concentrações de Níquel em águas superficiais	89
6.26	Concentrações de Cobre em águas superficiais	90
6.27	Concentrações de Zinco em águas superficiais	91
6.28	Concentrações dos elementos Si, P, S, K, Ca e Br no esgoto	95
6.29	Concentrações dos elementos Ti, Cr, Mn, Fe, Ni, Cu e Zn no esgoto	95
6.30	Concentrações dos elementos Sr, Zr, Sn e Ba no esgoto	95
6.31	Concentrações dos elementos Si, P e S em amostras de efluentes da	
	empresa um	110
6.32	Concentrações dos elementos Cl, K e Ca em amostras de efluente da	
	empresa um	110
6.33	Concentrações dos elementos Ti, Cr e Mn em amostras de efluentes da	
	empresa um	111
6.34	Concentrações dos elementos Fe, Ni e Cu em amostras de efluentes da	
	empresa um	111
6.35	Concentrações dos elementos Zn, Br e Sr em amostras de efluentes da	
	empresa um	111
6.36	Concentrações dos elementos Zr e Sn em amostras de efluentes da	
	empresa um	112
6.37	Concentrações dos elementos Ba e Pb em amostras de efluentes da	
	empresa um	112
6.38	Concentrações dos elementos Si, P, S e Cl em amostras de efluentes da	
	empresa dois	125
6.39	Concentrações dos elementos K, Ca, Ti e Cr em amostras de efluentes da	
	empresa dois	125
6.40	Concentrações dos elementos Mn, Fe, Ni e Cu em amostras de efluentes	
	da empresa dois	126
6.41	Concentrações dos elementos Zn, Br, Sr e Sn em amostras de efluentes	
	da empresa dois	126

LISTA DE ABREVIATURAS, SÍMBOLOS E DEFINIÇÕES.

ANC	Amostra não coletada
α	Partícula alfa
at/g	Átomo-grama ou molécula-grama do material (g/mol).
a.C.	Antes de Cristo.
Ag	Elemento químico Prata.
AI	Elemento químico Alumínio.
APDC	Ditiocarbamato de pirrolidina de amônio.
AAS	Atomic Absorption Spectroscopy (Espectrometria de absorção atômica).
As	Elemento químico Arsênio.
AXIL	Analysis of X-ray spectra by Interative Least-squares fitting.
β	Partícula beta negativa
b	Constante de Moseley, com valores iguais a 1 e 7,4 para saltos quânticos para a camada K e L, respectivamente.

В	Elemento químico Boro.
Ва	Elemento químico Bário.
Br	Elemento químico Bromo.
С	Elemento químico Carbono.
Са	Elemento químico Cálcio.
CE	Captura eletrônica.
CEETEPS	Centro Estadual de Educação Tecnológica Paula Souza.
Ci	Concentração (ppm ou µg.mL ⁻¹), do elemento i.
CETESB	Companhia de Tecnologia de Saneamento Ambiental.
Cl	Elemento químico Cloro.
Со	Elemento químico Cobalto.
CONAMA	Conselho Nacional do Meio Ambiente.
cps	Contagem por segundo.
Cr	Elemento químico cromo.
Cu	Elemento químico cobre.
Cy	Concentração do padrão interno (Y) na amostra.
°C	Graus Celsius.
Ge (Li)	Detector de Germânio lítio.
Si (Li)	Detector de Silício dopado com Lítio.
е	Carga elétrica do elétron = 4,8.10 ⁻¹⁰ ues.
E	Energia dos raios X (eV).
E _{crit}	Energia crítica.
ED-XRF	<i>Energy Dispersive X-ray Fluorescence</i> (fluorescência de raios dispersiva em energia ou por dispersão de energia).
E _{max}	Energia máxima.

Х

EPA	Environmental Protection	Agency (Agência	de Proteção	Ambiental).

ETI Estação de tratamento de efluente industrial.

ETO Estação de tratamento efluente orgânico.

ETOB Estação de tratamento de efluente bruto.

ETOF Estação de tratamento de efluente orgânico final.

eV Elétron volt.

Fe Elemento químico Ferro.

Ga Elemento químico Gálio.

GE-XRF Fluorescência de raios-X por emissão em ângulo baixo.

g/cm³ Grama por centímetro cúbico.

h Constante de Planck = $6,625. 10^{-27}$ erg.s.

H Elemento químico Hidrogênio.

Hg Elemento químico Mercúrio.

HNO₃ Ácido nítrico.

H₂O₂ Peróxido de Hidrogênio.

I Elemento químico lodo.

IAEA International Atomic Energy Agency (Agência Internacional de Energia Atômica).

 $\begin{array}{ll} \text{Inductive Coupled Plasma} & - & \text{Atomic Emission Spectroscopy} \\ \text{(Espectroscopia de Emissão Atômica Induzida por Plasma Acoplado).} \\ \text{Intensidade líquida dos raios-X (cps) da linha característica K} \alpha \text{ ou L} \alpha \\ \text{do elemento i.} \end{array}$

ly Intensidade do padrão interno (Y) na amostra.

IUPAC	International Union of Pure and Applied Chemistry (União Internacional de Química Pura e Aplicada).		
К	Elemento químico Potássio.		
$K_{\alpha} e K_{\beta}$	Linhas espectrais formadas pela excitação da camada eletrônica.		
kV	Quilovolts.		
keV	1 quilo elétronvolt = 10^3 eV (unidade de energia); 1 eV = energia adquirida por um elétron quando acelerado por uma diferença de potencial elétrica de 1 volt.		
4 km ²	Quilômetro quadrado.		
Lα	Linha de energia L de um átomo, subnível α .		
L _β	Linha de energia L de um átomo, subnível β.		
Li	Elemento químico Lítio.		
LMDi	Limite mínimo de detectável para o elemento i, concentração mínima na qual se pode detectar o elemento i utilizando uma determinada metodologia analítica.		
LNLS	Laboratório Nacional de Luz Síncrotron, CNPq/MCT, Campinas, SP.		
m	Massa do elétron = 9,11. 10 ⁻²⁸ gramas.		
Mg	Elemento químico Magnésio.		
mA	Miliampére.		
mg.kg ⁻¹	Miligrama por Quilograma.		
mg.L ⁻¹	Miligramas por Litro.		
mL	Mililitro.		
mm	Milímetro.		
Mn	Elemento químico Manganês.		
m.s ⁻¹	Metro por segundo.		
Мо	Elemento químico Molibdênio.		

Coleção Tenrca MP

Ν	Elemento químico Nitrogênio.	
NaDDTC	Dietil ditiocarbamato de sódio.	
Na	Elemento químico Sódio.	
n _e	Densidade eletrônica do material (elétrons. cm ⁻³).	
ng/g ⁻¹	Nanograma por Grama.	
ng.mL ⁻¹	Nanograma por Mililitro.	
Ni	Elemento químico Níquel.	
n _{i,} n _f	Número quântico principal do nível inicial e final do salto quântico.	
Р	Elemento químico Fósforo.	
Pb	Elemento químico Chumbo.	
PIXE	Particle Induced by X-ray Emission (Emissão de raios X induzida por partícula).	
pg.L ⁻¹	Picogramas por litro.	
ppb	Partes por bilhão (unidade de concentração).	
ppm	Partes por milhão (unidade de concentração).	
QXAS	Quantitative X-ray Analysis System (Programa de Análise Quantitativa por XRF).	
Radiação de fundo	<i>Background</i> - Região abaixo do pico dos elementos, no espectro dos raios-X característicos, que estabelece o valor para o limite mínimo de detecção do elemento na amostra, para o sistema analítico.	
Reforço	<i>Enhancement</i> - Reforço dos raios X característicos, devido às interações com os elementos que compõem a amostra.	
Ri	Intensidade relativa.	
S	Elemento químico Enxofre.	
Sb	Elemento químico Antimônio.	
Se	Elemento químico Selênio.	

- Si Elemento químico Silício.
- Sn Elemento químico Estanho.
- SP Estado de São Paulo.
- Sr Elemento químico Estrôncio.
- S_{Ri} Sensibilidade relativa para o elemento i.
- Synchrotron Radiation Total Reflection X-Ray Fluorescence SR-TXRF (Fluorescência de raios X por Reflexão Total com Radiação Síncrotron)
- s_Y Sensibilidade do detector para o padrão interno Y.
- t Tempo
- TEFATube Excitation Fluorescence Analysis (Análise por Fluorescência de
Raios X com excitação por Tubo).
- TXRF Total reflection X-Ray Fluorescence (Fluorescência de raios X por Reflexão Ttotal).
- μg Micrograma.
- $\mu g.g^{-1}$ Micrograma por grama.
- μg.L⁻¹ Micrograma por litro.
- μL Microlitro.
- V Elemento químico Vanádio.
- VMP Valor Máximo Permitido.
- W Elemento químico Tungstênio.
- WD-XRF Wavelength Dispersive X-Ray Fluorescence (Fluorescência de raios X por dispersão de comprimento de onda).
- XRF X-Ray Fluorescence (Fluorescência de raios X).
- Zn Elemento químico Zinco.

Zr	Elemento químico Zircônio.
Y	Elemento químico Ítrio.
φcrit	Ângulo crítico.
ρ	Densidade do material.
%	Porcentagem.
λ	Comprimento de onda.
γ	Raios gama

RESUMO

OLIVEIRA, R. W. M. Avaliação da qualidade das águas do ribeirão Jacuba empregando a fluorescência de raios X por reflexão total com radiação síncrotron (SR-TXRF). 149 p., 2004. Dissertação de Mestrado. Faculdade de Engenharia Civil Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas.

A poluição do meio ambiente tornou-se de interesse público em todas as partes do mundo. Não apenas os países desenvolvidos vêm sendo afetados pelos problemas ambientais; também as nações em desenvolvimento começam a sofrer os graves impactos da poluição. Isso decorre do rápido crescimento econômico associado à exploração de recursos naturais.

Este trabalho tem como objetivo estudar a qualidade da água no Ribeirão Jacuba Município de Hortolândia dos efluentes e esgotos, através de análise de metais pesados em diferentes amostras.

As amostras foram divididas em três grupos que delimitam a área de estudo: amostras de águas superficiais, coletadas em nove postos, amostras de efluentes inorgânicos e orgânicos sem tratamento e tratadas e, amostras de esgoto do presídio estadual.

A técnica empregada SR-TXRF apresenta algumas vantagens em relação à outros métodos, dentre as quais podemos destacar rapidez, limite de detecção na faixa de parte por bilhão (ppb), além de ser um método multielementar, que permite a detecção de vários elementos em uma única medida. E esta técnica tem um elevado potencial de aplicação em várias áreas, onde há necessidade de correlação entre os elementos essenciais e tóxicos.

Palavras Chaves: Esgotos, Efluentes, Água Doce, Metais Pesados, Radiação Síncrotron, Fluorescência de Raios X.

1 - INTRODUÇÃO

A proteção do meio ambiente contra os agentes poluidores de origem doméstico e industrial é um problema complexo para os países em desenvolvimento. As alterações promovidas no último século nas características físico-químicas e biológicas têm acarretado modificações na qualidade dos recursos naturais principalmente em relação aos recursos hídricos, uma vez que ocorre o acúmulo de substâncias tóxicas neste ambiente, como conseqüência pode-se observar o desequilíbrio do ecossistema, e também prejuízos a outros organismos dependentes deste recurso.

A poluição da água está relacionada ao desenvolvimento que algumas regiões apresentam. O Estado de São Paulo tem se mostrado um grande centro de desenvolvimento industrial e tecnológico nas ultimas décadas, em destaque temos a Região Metropolitana de Campinas que integra dezenove cidades, onde se observa uma área altamente urbanizada e industrializada. O efeito colateral deste crescimento acelerado e muitas vezes desorganizado é a poluição dos rios, promovendo o aumento nas concentrações de substâncias contaminantes descartadas nos cursos d'água sem prévio tratamento.

Em destaque temos os metais pesados, que quando se disponibilizam em concentrações elevadas podem promover alterações a diversos organismos presentes no meio aquático e conseqüentemente à população humana, que consome a água.

Na região metropolitana o município de Hortolândia apresenta atenção especial por não contar com estações de tratamento de esgoto e seu recurso hídrico é limitado, fator preocupante quando nos deparamos com descartes de substâncias contaminantes nos cursos d'água do Ribeirão Jacuba.

Verifica-se assim, que a qualidade da água, está relacionada com o crescimento populacional e industrial de algumas regiões. O aumento na produção de esgoto e efluentes industriais, descartados nos mananciais sem prévio tratamento acarreta sérios prejuízos ao ambiente aquático e podendo muitas vezes comprometer a saúde humana.

A ingestão de metais pesados pela população é nociva à saúde, dentro dos quais pode-se destacar o Pb, Hg, As, Cr e Se. Casos ocorridos, em amostras coletadas sobre o rio Atibaia, na rodovia Campinas-Cosmópolis, em setembro de 1991, onde a CETESB, detectou um índice de concentração de 3,6 μ g.L⁻¹ de mercúrio, valor bastante elevado quando comparado ao valor máximo permitido de 0,2 μ g.L⁻¹.

Sabe-se que o mercúrio é um metal que pode provocar lesões renais e danos ao sistema nervoso central, quando acumulado em altas concentrações no organismo, MONTICELI & MARTINS, 1993.

Frente a este problema, o Conselho Nacional do Meio Ambiente apresenta a RESOLUÇÃO CONAMA 20/86, o qual apresentam a classificação das águas em defesa de assegurar os níveis de qualidade, usos preponderantes e adequando os níveis de qualidade exigidos, para um determinado corpo d'água em função do uso que se pretende dar aos mesmos. Também está assegurado aos estados determinar os padrões de qualidade dos recursos hídricos.

No Estado de São Paulo a Companhia Estadual de Tecnologia e Saneamento Básico em Defesa do Meio Ambiente aplica o decreto estadual 8.468/76 que confere qualidade aos corpos de águas e efluentes.

Com a visível preocupação da contaminação dos recursos hídricos, muitos são os meios para se avaliar a qualidade da água nos corpos hídricos. A fluorescência de Raios X tem se apresentado como uma técnica sensível para análise desta amostras ambientais por apresentar um baixo limite de detecção e necessitar de um pequeno volume da amostra e detectar vários elementos em uma única medida.

2 - OBJETIVOS

O presente trabalho tem como objetivo avaliar a contaminação de metais pesados em águas superficiais do Ribeirão Jacuba, esgoto e efluentes industriais no Município de Hortolândia - SP, usando a técnica de Fluorescência de Raios X por Reflexão Total com Radiação Síncrotron (SR-TXRF).

Para alcançar estes objetivos as metas a serem atingidas foram:

- Levantamento bibliográfico da metodologia da TXRF;

- Coleta de amostras de águas superficiais, amostras de esgoto e efluentes inorgânicos e orgânicos;

- Empregar a TXRF com excitação por Radiação Síncrotron para a análise quantitativa das amostras;

- Verificar a qualidade das águas superficiais, esgoto e dos efluentes industriais não-tratados e tratados;

- Avaliar os resultados obtidos para o monitoramento de metais pesados;

 Comparar os valores medidos com os valores máximos permitidos (VMP) pela resolução CONAMA 20/86.

3 - REVISÃO BIBLIOGRÁFICA

3.1 - Introdução

Desde a Antigüidade a humanidade vem promovendo alterações no ambiente em que vive, o crescimento desordenado está diretamente associado ao crescimento industrial e o desenvolvimento econômico. Ao lado dos crescentes problemas provocados pela contaminação do meio ambiente tem sido dada grande importância à contaminação das águas por substâncias tóxicas, que podem causar danos à saúde humana, sendo de particular interesse os metais.

3.2 - Água e Metais

3.2.1 - Água

Nosso planeta possui cerca de 1,3 bilhão de quilômetros cúbicos de água que preenchem os vazios da crosta terrestre, cobrindo três quartos da superfície. Deste montante somente 3% apresenta-se na forma de água superficial, sendo mais fácil sua extração. Diante destes valores é de grande importância à preservação dos recursos hídricos no planeta, BRANCO, 1993.

A água possui a propriedade de dissolver um número muito grande de substâncias, tanto naturais quanto sintéticas, nas formas sólidas, líquidas ou gasosas, facilitando assim sua absorção ou seu transporte. Então dificilmente se encontra a água na natureza em estado de pureza absoluta. Quimicamente sem impurezas a água contém uma mistura de 33 substâncias distintas, PEREIRA, 1998.

A análise das características físicas, químicas, biológicas e radioativas da água está associada com a presença de vários elementos inorgânicos e orgânicos, como também de organismos vivos que em determinadas quantidades, indicam a qualidade dos recursos hídricos e a finalidade a que esta água se destina, determinando assim se esta água deverá ser submetida a um prévio tratamento antes de ser disponibilizada para o ao consumo humano.

A presença de organismos patogênicos é observada com aumento de substâncias orgânicas, despejos de resíduos da atividade agrícola, animais, industriais, domésticos e outros agentes poluentes das diversas atividades humanas. Muitas vezes o descarte de efluentes ou esgoto sem o prévio tratamento, promove o aumento da carga poluidora, nos rios, lagos e poços, influenciando na qualidade da água e assumindo proporções mais complexas no tratamento da mesma.

Nas águas naturais também são encontradas diversas substâncias sendo de grande importância os metais, porém o aumento de metais está relacionado aos lançamentos de efluentes industriais gerados por indústrias extrativistas de metais, industrias de tintas e pigmentos e industrias química. Estes setores industriais promovem um aumento considerável de poluentes no ambiente aquático alterando suas características originais. Quando o descarte de efluente apresenta alta carga poluidora, esta é suficiente para influenciar nas características da água, tornando-a inaceitável para o uso que se pretende, diz-se então que a água está poluída.

O termo poluição refere-se aos efeitos nocivos freqüentes a fauna e flora, então muitas vezes as características relacionadas à água suja e imprópria para o consumo humano é classificada como limpa para a industria, PEREIRA, 1998.

O aumento das concentrações de substâncias potencialmente tóxicas na água, principalmente os metais pesados, é um fator de grande preocupação aos seres humanos, quando esta água é utilizada para consumo humano. Diante deste problema faz-se necessário aplicar tecnologias de tratamentos para água, utilizando os valores máximos permitidos pela resolução CONAMA Nº 20 de 18/06/1986 que estabelece a nível nacional classificação dos corpos de águas receptores e padrões de qualidade para a água e efluente, Resolução CONAMA.

Diante do quadro sanitário e econômico, as características dos compostos inorgânicos das águas como os metais são de grande importância, pois podem manifestar problemas de saúde e inviabilizar o uso da água por exigir tratamentos específicos.

A disposição dos efluentes industriais e domésticos contendo espécies metálicas sem o prévio tratamento e o uso contínuo da água acarretará o acúmulo mesmo que em concentrações baixas de diversos elementos alterando as características físico-químicas da água, reduzindo a biodiversidade e contaminando os organismos vivos.

Na sua grande maioria, em pequenas concentrações os metais são necessários ao metabolismo dos organismos. Quando em concentrações maiores podem ser tóxicos aos microorganismos responsáveis pela bio-degradação da matéria orgânica, retardando a recuperação do ambiente e podendo promover a deterioração na qualidade dos recursos hídricos.

O acúmulo das diversas substâncias químicas na cadeia alimentar poderá causar a intoxicação de diversos seres vivos, vindo até a ocorrer a morte destes. A presença destas substâncias nos rios poderá chegar até o homem, manifestando sintomas específicos e quadro clínico próprio.

3.2.2 - Metais

Metais são elementos que abrangem aproximadamente 80% dos elementos químicos, sendo bons condutores de eletricidade, possuem baixa eletro-negatividade, brilho característico, alto ponto de fusão e ebulição, maleabilidade e ductilidade, FONSECA, 2001.

Acredita-se que os metais talvez sejam os agentes tóxicos mais conhecidos pelo homem. Há aproximadamente 2.000 anos a.C., grandes quantidades de chumbo eram obtidas de minérios, como subproduto da fusão da prata e isso provavelmente tenha sido o início da utilização desse metal pelo homem.

Os metais pesados são definidos como aqueles que apresentam massa atômica superior à do Cálcio (40,078g), ou também definido por alguns como elementos que possuem densidade superior a 5g/cm³.

Toda forma de vida orgânica depende dos íons metálicos para sobreviver, os metais essenciais são: Sódio, Cálcio, Magnésio, Zinco, Manganês, Ferro, Cobalto, Cobre e Molibdênio, FÖRSTNER & WITTMANN, 1981. Porém alguns metais são tóxicos e mesmo os metais essenciais em concentrações elevadas podem causar danos à saúde humana.

3.2.2.1 - Ciclo hidrológico e os metais

Desde o surgimento da água no planeta Terra os metais são transportados pelo ciclo hidrológico, as mudanças ambientas promovem a distribuição dos metais nas fases dissolvida e particulada.

Na forma particulada os metais ficam retidos nos sedimentos de rios e lagos, o que retém seu transporte até os oceanos, todavia, alterações nas condições ambientais podem ocasionar a remobilização dos metais acumulados, No caso dos metais

dissolvidos, estes podem levar alguns dias ou semanas para chegarem aos oceanos, SALOMONS & FÖRSTNER, 1984.

3.2.2.2 - Ocorrência dos metais na natureza

Na natureza os metais apresentam diferentes formas físico-químicas determinando sua concentração total. Todavia, quando estão na forma solúvel, podem entrar na cadeia alimentar humana e de outros animais ao serem absorvidos primariamente por plantas e microorganismos, DI BERNARDO, 1993.

Fatores ambientais como o pH, temperatura, potencial de oxidação e salinidade, afetam as características físico-químicas dos metais nas águas. A forma de disponibilidade está diretamente associada aos danos que serão provocados ao ambiente e à população humana. Na figura 3.1. são apresentadas as diversas formas em que os metais ocorrem na natureza.

3.2.2.3 - Bio-acumulação e Bio-disponibilidade

A presença dos metais no ambiente pode estar distribuída em quatro reservatórios abióticos: material em suspensão, sedimentos, águas superficiais e águas intersticiais.

A bio-acumulação destes metais nos reservatórios se dá pela combinação com certas substâncias (ácidos complexos), que se combinam com os átomos, formando complexos metálicos inofensivos chamados quelatos, que acabam por sedimentar-se, BONACELLA & MAGOSSI, 1990.

A concentração dos metais bio-disponíveis em cada um dos reservatórios é de fundamental importância na proteção dos recursos naturais e da saúde pública, no que se refere aos metais tóxicos que se acumulam no ambiente.

3.2.3 – Caracterização do Efluente

Na indústria, de modo geral, a água pode ser a matéria-prima que junto com outras pode criar um produto acabado, pode ser utilizada como meio de transporte, agente de limpeza, sistema de refrigeração, fonte de vapor ou produção de energia, BRAILE & CAVALCANTI, 1993.

A partir da segunda guerra mundial ocorreu a expansão acelerada da indústria petroquímica promovendo um aumento da poluição, e atualmente, os poluentes industriais que mais preocupam são os inorgânicos, especialmente os sintéticos e os metais pesados resultantes do despejo de efluentes industriais.

No despejo de efluentes industriais sem prévio tratamento (*in natura*), os metais podem aparecer em grandes concentrações. Os efluentes que mais preocupam são os oriundos de curtumes (Cromo hexavalente), galvanoplastia (Cádmio, Cromo, Níquel, Cobre, Zinco, Prata), NUVOLARI, 2003.

O efluente industrial pode também apresentar diversos elementos metálicos potencialmente tóxicos como: Cádmio, Chumbo, Cobre, Mercúrio, Molibdênio, Níquel, Selênio, Zinco e Arsênio, que em determinadas concentrações podem promover toxidade tanto a plantas, animais e ao homem, podendo estes metais ser transferidos através da cadeia alimentar.

No tratamento biológico de efluentes, alguns metais podem ser tóxicos aos microorganismos responsáveis pela bio-degradação da matéria orgânica. Os metais complexados normalmente são retirados do líquido nos tanques de sedimentação e farão parte do lodo primário ou secundário, outra parte, na forma iônica, poderá sair junto ao efluente tratado. Nesse caso, constitui-se ameaça aos seres aquáticos e a saúde do ser humano.

3.2.4 – Caracterização do Esgoto

O despejo líquido resultante do uso da água para higiene e necessidades fisiológicas humanas, geradas a partir da água de abastecimento, pode variar suas características em diferentes localidades e segundo taxa de consumo *per capita*, podendo resultar em um efluente mais diluído.

O lançamento do esgoto doméstico sem prévio tratamento nos corpos d'água acarreta sérios prejuízos à qualidade da água. Além do aspecto visual desagradável, pode haver o declínio dos níveis de oxigênio dissolvido e exalação de gases mal cheirosos decorrentes da degradação da matéria orgânica, aumentando a possibilidade de contaminação dos organismos aquáticos, animais e dos seres humanos pelo consumo ou contato com essa água.

A tabela 3.1 apresenta uma idéia da constituição qualitativa do esgoto doméstico *in natura* lançados nos corpos d'água, ALMEIDA, 1985, JORDÃO & PESSOA, 1995, PEGORARO.

Tabela 3.1 - Composição do esgoto doméstico in natura.

Tipos de substâncias	Origem	Observações			
Sabões	Lavagem de				
	louças e roupas				
Detergentes (biodegradáveis ou	Lavagem de	A maioria dos detergentes			
não)	louças e roupas	contém o nutriente fósforo na			
		forma de polifosfato.			
Cloreto de sódio	Cozinhas e na	Cada ser humano elimina pela			
	urina humana	urina de 7 a 15 gramas/dia.			
Fosfatos	Detergentes e	Cada ser humano elimina, em			
	urina humana	média, pela urina, 1,5 gramas/dia.			
Sulfatos	Urina humana				
Carbonatos	Urina humana	****			
Uréia, amoníaco e ácido úrico.	Urina humana	Cada ser humano elimina de 14 a			
		42 gramas de uréia por dia.			
Gorduras	Cozinhas e fezes				
	humanas				
Substâncias córneas,	Fezes humanas	Vão se constituir na porção de			
ligamentos da carne e fibras		matéria orgânica em			
vegetais não digeridas.		decomposição, encontrada nos			
		esgotos.			
Porções de amido e de	Fezes humanas	Idem			
proteínas					
Urobilina, pigmentos hepáticos.	Urina humana	Idem			
Mucos, células de descamação	Fezes humanas	Idem			
epitelial.					
Vermes, bactérias, vírus e	Fezes humanas	ldem			
leveduras.					

Desse modo, a qualidade dos corpos d'água está relacionada à preservação das características físico-químicas e biológicas da água e esta, por sua vez, é afetada pelo descarte de esgoto e efluentes nos cursos d'água.

3.2.5 - Legislação e Classificação do Ribeirão Jacuba

De acordo com a Legislação Federal de Controle da Poluição Ambiental, a Resolução do Conselho Nacional do Meio Ambiente Nº 20/86 determina os níveis de qualidade dos corpos d'água em águas doces, salobras e salinas assegurando os seus usos preponderantes e atendendo às necessidades da comunidade. De acordo com os seus usos, os corpos de águas podem ser classificados em diferentes categorias.

O Ribeirão Jacuba está classificado dentro da Classe 2, seu uso é destinado para:

(a) Abastecimento doméstico, após tratamento convencional;

- (b) Proteção das comunidades aquáticas;
- (c) Recreação de contato primário;
- (d) Irrigação de hortaliças e plantas frutífera;

(e) Criação natural e/ou intensiva (aqüicultura) de espécies destinadas à alimentação humana.

Os padrões estabelecidos para os corpos de água doce para Classe 2 estão apresentados no Artigo 5 da resolução CONAMA 20/86, o qual determina os valores máximos permitidos para diversas substâncias na água. Na tabela 3.2 estão listados os limites para as substâncias potencialmente prejudiciais aos seres vivos e seus efeitos causados ao organismo.

Tabela	3.2	- Valores	máximos	permitidos	pela	Resolução	CONAMA	N٥	20/86	para
		águas o	de classe 2	2.						

Elemento	VMP (μg.L ⁻¹)	Efeitos causados à saúde
Alumínio	100	
Arsênio	50	No homem produz efeitos nos sistemas respiratório, cardiovascular, nervoso e hematopoiético.
Bário	1000	A ingestão pode causar vômitos, diarréia, dor abdominal e desalojar o potássio das células.
Berílio	100	
Boro	750	
Cádmio	1	Exposições a longo prazo provoca danos aos rins. A toxicidade pode provocar distúrbios gastrointestinais.
Chumbo	30	Seu excesso provoca trocas sanguíneas, danos severos ao sistema nervoso e provocam, também, problemas digestivos.
Cobalto	200	
Cobre	20	Consumo prolongado pode ocasionar danos funcionais ao fígado e aos rins.
Cromo	50	É bastante tóxico: produz irritação na pele e nariz.
Estanho	2000	
Ferro	300	Não é tóxico. A inalação de vapores metálicos produz sideroses (pigmentação vermelha no pulmão).
Lítio	2500	·····
Manganês	100	As exposições mais significativas ocorrem através dos fumos e poeiras de manganês. Provoca danos no SNC
Mercúrio	0,2	É um poderoso veneno. Provoca envenenamento crônico, ataca o sistema nervoso central. Nas crianças, produz danos irreversíveis e, muitas vezes, letal.
Níquel	25	Está freqüentemente associado a lesões cutâneas; distúrbios renais e hepáticos, infertilidade, neoplasias (câncer) pulmonares, apatia, cefaléias, insônia, diarréia, náuseas.
Prata	10	
Selênio	10	
Vanádio	100	Irritação respiratória, tremores nos dedos e braços; altamente tóxicos para animais.
Zinco	180	É tóxico: provoca febre e calafrios por inalação dos vapores metálicos em baixas doses e tem efeito acumulativo
Cloretos	250000	
Fosfato Total	1400	

Os despejos de efluentes de qualquer fonte poluidora descartada direta ou indiretamente nas águas devem seguir também as condições estabelecidas pela resolução CONAMA Nº 20/86 de acordo com o Artigo 21, estes limites estão listados na tabela 3.3.

Tabela 3.3 - Valores máximos permitidos pela resolução CONAMA Nº 20/86 para descarte de efluentes nas águas.

Elemento	VMP (μg.L ⁻¹)
Arsênio	500
Bário	5000
Boro	5000
Cádmio	200
Chumbo	500
Cobre	1000
Cromo	500
Estanho	4000
Ferro	15000
Manganês	1000
Mercúrio	10
Prata	2000
Selênio	100
Zinco	1000

Contudo não cabe somente ao Governo federal determinar os padrões de qualidade das águas. No Estado de São Paulo o controle da poluição dos recursos hídricos, compete à Companhia Estadual de Tecnologia e Saneamento Básico e Defesa do Meio Ambiente - CETESB aplicar o Decreto 8.468/76, na padronização da qualidade dos corpos de água e efluentes lançados nos cursos de águas.

As águas no estado de São Paulo são classificadas em 4 classes. Na tabela 3.4 estão listados os valores máximos permitidos de poluentes para águas de classe 2.

Na tabela 3.5 estão listados os valores máximos permitidos pelo Decreto 8.468/76 dos poluentes presentes em efluentes de qualquer natureza lançados nas águas do Estado de São Paulo.

Tabela 3.4 - Valores máximos permitidos pelo Decreto 8.468/76 do Estado de SãoPaulo para águas de classe 2.

Elemento	VMP (μg.L ⁻¹)
Arsênio	100
Bário	1000
Cádmio	10
Cromo	50
Cobre	1000
Chumbo	100
Estanho	2000
Mercúrio	2
Selênio	10
Zinco	5000

Tabela 3.5 - Valores máximos permitidos pelo Decreto 8.468/76 do Estado de SãoPaulo para o descarte de efluentes de qualquer natureza lançados noscursos de águas.

Elemento	۷MP (µg.L ⁻¹)
Arsênio	200
Bário	5000
Boro	5000
Cádmio	200
Chumbo	500
Cobre	1000
Cromo	100
Estanho	4000
Ferro	15000
Manganês	1000
Mercúrio	10
Níquel	2000
Prata	20
Selênio	20
Zinco	5000

Portanto, a qualidade das águas e dos efluentes descartados nos cursos de água, deve estar enquadrada dentro dos limites estabelecidos pela legislação em vigência, determinado a qualidade para seu uso e preservando a vida dos organismos vivos e do próprio ser humano que a consome.

Cabe ressaltar que o Comitê da Bacia Hidrográfica dos Rios Piracicaba, Capivari e Jundiaí – CBH-PCJ e PCJ Federal apresentam planos elaborados pela Câmara Técnica do plano de Bacias.

As atribuições exercidas por este comitê propõem a elaboração de algumas diretrizes apresentadas abaixo:

I) Propor Termos de Referência e acompanhar a elaboração do Plano de Recursos Hídricos das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí;

 II) Propor Termos de Referência e acompanhar a elaboração anual dos Relatórios de Situação dos Recursos Hídricos das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí;

III) Estudar, discutir e promover discussões, avaliar e propor diretrizes, critérios e valores para a implementação e aplicação da cobrança pelo uso dos recursos hídricos;

IV) Propor diretrizes e ações conjuntas para a integração e otimização de procedimentos entre as instituições responsáveis pela Gestão dos recursos hídricos e pela cobrança pelo uso de recursos hídricos;

V) Interagir com as outras Câmaras Técnicas, a fim de subsidiar o CBH-PCJ e o PCJ FEDERAL com pareceres, dados e outras atividades para a tomada de

decisões e na elaboração do Plano de Bacias e do Relatório de Situação do CBH-PCJ e PCJ FEDERAL;

VI) Manifestar-se sobre pedidos de inclusão de novos membros na CT-PB;

VII) Elaborar, aprovar e alterar, quando couber, seu Regimento Interno e seu Plano de Trabalho Anual.

3.3 - Fluorescência de Raios X Por Reflexão Total

A espectrometria de raios X é um método analítico que tem sido muito utilizado na avaliação quali-quantitativa da composição química em vários tipos de amostras ambientais por permitir a análise de vários elementos simultaneamente em uma única medida.

O método analítico da fluorescência de raios X pode ser dividido em: Fluorescência de raios X por comprimento de onda (WD-XRF); fluorescência de raios X por dispersão em energia (ED-XRF); Fluorescência de raios X por reflexão total (TXRF); Emissão de raios X induzida por partícula (PIXE), Fluorescência de raios X induzida por Radiação Síncrotron (SR-XRF) e Fluorescência de raios X por emissão em baixo ângulo (GE-XRF) dependendo da origem dos raios X ou do sistema de detecção, COSTA, et. al. 2003, SANSONI, 1992.

Várias são as aplicações das variantes da técnica de fluorescência de raios X, podendo ser aplicadas na análise de amostras de águas, soluções diversas, metais, solos, rochas, ar, sangue, fluídos corporais, alimentos e vegetais e tecidos humanos, KLOCKENKÄMPER, et. al., 1992, PINKERTON, et. al., 1990.

Uma das variantes da fluorescência de raios X é denominada Reflexão Total (TXRF). Esta variante vem sendo bem desenvolvida nos últimos anos por apresentar algumas características particulares na análise de amostras: atmosféricas, sedimentos, água, solo, plantas e outros materiais de interesse ambiental, COSTA, et. al., 2003, SIMABUCO e MATSUMOTO, 2000. As características são: I) análise de elementos traços, concentração na faixa de parte por bilhão µg.L⁻¹; II) amostras líquidas em pequeno volume (microlitros); III) simplicidade no preparo das amostras.

Além desses fatores a TXRF é um método rápido para a determinação simultânea de elementos com número atômico maiores que 11 e para níveis abaixo de μ g.L⁻¹, KLOCKENKÄMPER, et. al., 1992; TÖLG & KLOCKENKÄNPER, 1993.

A análise pela técnica de fluorescência de raios X por reflexão total (TXRF), tem sido descrita por muitos autores na análise de amostras de águas (rio, chuva e mar) para monitoramento de metais a níveis de traços no ambiente aquático, porém para análise na água do mar há a necessidade de separação dos metais por complexação, MURKHTAR, et. al.,1991; PRANGE, et. al., 1985; PRANGE, et. al., 1993.

Estudo da contaminação e bio-disponibilidade de metais em lagos formados por escavações para extração de argila na cidade de Santa Gertrudes, São Paulo, utilizando a TXRF apresentou a presença de alguns elementos potencialmente disponíveis para o ambiente, VIVES, et. al., 2003.

Para a análise dos elementos utilizou-se como padrão interno o gálio (Ga), e as amostras foram medidas por um tempo de 200 s para a excitação e detecção dos raios X característicos. Dentre os elementos determinados, os que mais apresentam potencial de dano ambiental são: V, Cr, Cu, Zn, Sr e Pb. Os limites de detecção destes elementos variaram entre 0,10 μ g.g⁻¹ para o V e 0,21 μ g.g⁻¹ para o Pb e as concentrações de 80 a 450 mg.kg⁻¹ para os V, 30 a 150 mg.kg⁻¹ para o Cr e de 10 a 120 mg.kg⁻¹ para o Cu.

Análise de elementos traços em águas de chuva utilizando a TXRF foi realizada em amostras de águas de chuva, as amostras foram coletadas por um amostrador automático, estes se abriam somente durante as chuvas e permaneciam fechados durante período seco evitando assim a contaminação por partículas de poeira contendo metais, garantindo a qualidade das amostras, STÖSSEL & PRANGE, 1985. As amostras foram excitadas por tubos de Mo e W, durante um período de 1000 s, com um modulo de TXRF, sob tensão de 59 keV e 33 mA.

Na determinação de metais traços em água provenientes do ciclo da chuva o preparo das amostras necessitou de diferentes técnicas devido a presença de vários tipos de matrizes encontrado, PRANGE, et. al., 1987.

As amostras de água de chuva foram analisadas na determinação de metais traços utilizando a TXRF e excitação Mo e W. Nestas amostras foram detectados 27 elementos (do S e Ba).

A determinação de cobre, mercúrio e chumbo, em água potável com préconcentração inicial, utilizando a TXRF mostrou-se rápida, relativamente simples e precisa, HOLYNSKA, et. al., 1996. Para a complexação dos diferentes metais, para análise foi utilizada uma mistura de 1:1 de uma solução aquosa de NaDDTC e APDC.

Os limites de detecção encontrados, 1ng.mL⁻¹ para o Cu, 0,5 ng.mL⁻¹ para o Hg e 0,5 ng.mL⁻¹ para o Pb estão bem abaixo das concentrações admissíveis para água potável. Isto torna o método apropriado para o monitoramento da qualidade da água.

Para análise de elementos traços em águas superficiais da Baia de Sepetiba, Rio de Janeiro utilizou-se a TXRF com excitação de radiação Síncrotron com um feixe policromático de 20 keV para excitação e detector de Si (Li) com resolução de 165 eV e 5,9 keV e tempo de medida de 150 s para obtenção do espectro de raios-X nas amostras de água, COSTA, et. al., 2003.

No tratamento das amostras foi realizada a pré-concentração dos elementos metálicos com APDC para eliminação do efeito matriz, na análise foram detectadas as presenças de 17 elementos. A SR-TXRF mostrou-se um método apropriado para a detecção de elementos traços em amostras de águas marinhas.

Os resultados obtidos com TXRF mostraram que esta técnica tem grande aplicabilidade, apresentando bons limites de detecção e boa precisão, características essenciais em aplicações de monitoramento ambiental.

4 – FLUORESCÊNCIA DE RAIOS X

4.1 - Fundamentos Teóricos

A análise por fluorescência de raios X é um método quali-quantitativo baseado na medida de comprimentos de ondas ou nas energias e nas intensidades (número de raios X detectados por unidade de tempo) dos raios X característicos emitidos pelos elementos que constituem a amostra, BOUMANS & KLOCKENKÄMPER, 1989, IAEA, 1970.

Quando a amostra é excitada, os elementos presentes tendem a ejetar os elétrons do interior dos níveis dos átomos, e como conseqüência realizam um salto quântico para preencher a vacância. A transição eletrônica constitui uma perda de energia para o elétron, esta energia é emitida na forma de fóton de raios X característico que emitem linhas espectrais cujas intensidades estão relacionadas com concentração dos elementos na amostra. Para excitação da amostra normalmente empregam-se tubos de raios X, ou raios X ou gama que são emitidos por fontes radioativas e o mais recente radiação síncrotron.

A figura 4.1 apresenta o espectro de ondas eletromagnéticos que inclui ondas de rádio, microondas, infravermelho, radiação visível, raios gama, etc, estas diferem em amplitude e comprimento, mas toda a radiação eletromagnética tem velocidade de $3x10^8 \text{ m.s}^{-1}$ no vácuo.

BIBLIOTECA CENTRAL CESAR LATTES DESENVELVIMENTO DE COLEÇÃO

	FREQUÊNCIA (Hz)	FÓTON (ENERGIA	COMPRIMENTO DE ONDA (nm)
LEI DE PLANCKE=h.fE=h.c/ λ E=h.c/ λ E=h.c/ λ E energia do fóton (J)h = constante de Planck =6,625. 10 ⁻³⁴ (J.s)f = freqüência (Hz) λ = comprimento de onda (m)c = velocidade da luz no vácuo =3.10 ⁸ m.s ⁻¹ Lembrando que:1 J= 0,625.10 ¹⁹ eV1 m = 10 ⁹ nmtem-se que:E. λ = 1240 eV.nmInfravermelhoEspectro visívelRaios XUltravioletaTV FM e RádioTV FM e RádioRaios Gama	(Hz) 10 ²¹ 10 ²⁰ 10 ¹⁹ 10 ¹⁸ 10 ¹⁷ 10 ¹⁶ 10 ¹⁵ 10 ¹⁴ 10 ¹² 10 ¹¹ 10 ¹⁰ 10 ⁹ 10 ⁸ 10 ⁷ 10 ⁶ 10 ⁵ 10 ⁴	(eV) 10^7 10^6 10^5 10^4 10^3 10^2 10^1 1 1 10^{-1} 10^{-2} 10^{-3} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10}	(nm) 10^{-3} 10^{-2} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{10} 10^{11} 10^{12} -1Km 10^{13} 10^{14}
		1	

Figura 4.1 - Equação de Plank e espectro eletromagnético

Para a produção de raios X característico e necessário retirar elétrons das camadas mais internas dos átomos, por exemplo, camada K, para isto a energia mínima deve ser superior a energia de ligação do elétron nessa camada, denominada energia de ligação eletrônica ou também de corte de absorção E_k.

As energias de ligação são chamadas de energia crítica de excitação, e elas representam a energia mínima que deve ser igualada ou excedida para ejetar elétrons de um átomo, deixando assim, o átomo instável ou ionizado necessário para iniciar o processo de emissão dos raios X característico. Como exemplo a tabela 4.1. mostra as energias críticas de excitação para os níveis de energia K, L dos elementos Silícios (Si), Arsênico (As), Selênio (Se) e Chumbo (Pb).

Tabela	4.1	-	Energia	crítica	de	excita	ação	(liga	ação)	(keV)	е	seus	corres	pon	dente	s
			comprim	nentos	de (ondas	para	os	elem	entos	silíc	io, a	rsênico.	se	lênio	е
			chumbo													

Elemento	К	L1	L2	L3
Si				
E (keV)	1,839	0,149	0,099	0,099
λ(A°)	6,472	83,200	123,000	123,000
As				
E (keV)	11,855	1,360	1,317	1,282
λ(A°)	1,046	9,115	9,413	9,670
Se				
E (keV)	12,643	1,477	1,419	1,379
λ(A°)	0,981	8,393	8,736	8,990
Pb				
E (keV)	88,005	15,861	15,200	13,035
λ(A°)	0,141	0,782	0,816	0,951

Quando amostras são irradiadas com feixe de fótons de energia E_o, e esta excede à energia critica de excitação dos elétrons em um dado átomo, alguns elétrons são ejetados do átomo, determinando que o átomo esteja em um estado excitado ou ionizado.

O átomo estando em estado ionizado torna-se instável e quase instantaneamente ocorre um processo de transição eletrônica começa a fim de preencher as vacâncias deixadas pelos elétrons ejetados. Se um elétron de um nível K é ejetado, a vacância pode ser preenchida por elétrons dos níveis M, N. Então cada transição eletrônica constitui uma perda de energia para o elétron, resultando na emissão de um fóton de raios-X, com energia igual à diferença entre os dois níveis de energia envolvidos e bem definidos para cada elemento.

Os raios X emitidos por um elemento são reunidos sob a denominação $K_{\alpha} e K_{\beta}$, devido às transições L \rightarrow K e M \rightarrow K, respectivamente, e os raios X devido à transição M \rightarrow L são denominados de L_{α} e L_{β}, etc.

As anotações da IUPAC e Siegbahn podem ser comparadas na tabela 4.2 Os principais motivos que levaram a criação da notação IUPAC foram: **a**) sistemática; **b**) simples e fácil de aplicar a qualquer nível de transição; **c**) abrange todas as transições das séries M e N; **d**) consistente com a notação usada em espectroscopia eletrônica **e**) está relacionada à notação usada em espectroscopia de elétron Auger.

A energia de ligação eletrônica pode ser calculada de modo aproximado, aplicando-se a teoria atômica de Bohr para o átomo de hidrogênio e átomos de hidrogênoides, e posteriormente, fazendo-se algumas considerações sobre a experiência de Moseley.

Desse modo à equação 4.1 permite o cálculo aproximado dessa energia para os elétrons das camadas K e L dos átomos de um elemento:

$$E = 13,65(Z-b)^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$
(4.1)

Onde:

E = energia dos raios X (eV);

 n_i , n_f = número quântico principal do nível inicial e final do salto quântico;

- Z = número atômico do elemento emissor dos raios X;
- b = constante de Moseley, com valores iguais a 1 e 7,4 para saltos quânticos para a camada K e L, respectivamente.

Pode ser observado nesta equação 4.1 que a energia de ligação para uma dada camada é diretamente proporcional ao quadrado do número atômico **Z** do elemento excitado.

Siegbahn	IUPAC	Siegbahn	IUPAC	Siegbahn	IUPAC	Siegbahn	IUPAC
Κα1	K-L ₃	La ₁	L ₃ -M ₅	Lγ ₁	L ₂ -N ₄	Μα1	M ₅ -N ₇
Κα2	K-L ₂	La2	L ₃ -M ₄	Lγ ₂	L ₁ -N ₂	Μα2	M ₅ -N ₆
Κβ1	K-M ₃	Lβ1	L ₂ -M ₄	Lγ ₃	L ₁ -N ₃	Μβ	M ₄ -N ₆
Kβ ^l ₂	K-N ₃	Lβ ₂	L ₃ -N ₅	Lγ ₄	L ₁ -O ₃	Μγ	M ₃ -N ₅
Κ β ¹¹ 2	K-N ₂	Lβ ₃	L ₁ -M ₃	Lγ ₄	L ₁ -O ₂	Mζ	M _{4,5} -N _{2,3}
Kβ ³	K-M ₂	Lβ ₄	L ₁ -M ₂	Lγ5	L ₂ -N ₁	······	
Kβl₄	K-N ₅	Lβ ₅	L ₃ -O _{4,5}	Lγ ₆	L ₂ -O ₄		
Κ β ¹¹ ₄	K-N₄	Lβ ₆	L ₃ -N ₁	Lγ ₈	L ₂ -O ₁		
Kβ _{4x}	K-N ₄	Lβ ₇	L ₃ -O ₁	Lγ ₈	L ₂ -N ₆₍₇₎		
Kβ ^I 5	K-M ₅	Lβ ₇	L ₃ -N _{6,7}	Lη	L ₂ -M ₁		
Κ β ¹¹ 5	K-M4	Lβ ₉	L ₁ -M ₅	Lı	L ₃ -M ₁	······································	
		Lβ ₁₀	L ₁ -M ₄	Ls	L ₃ -M ₃		
		Lβ ₁₅	L ₁ -N ₄	Lt	L ₃ -M ₂		
	hungan (Lβ ₁₇	L ₂ -M ₃	Lu	L ₃ -N _{6,7}		
				L _v	L ₂ -N ₆₍₇₎	**************************************	

Tabela 4.2 ·	 Correspondência 	entre	as	notações	dos	diagramas	de	linhas	IUPAC	е
	Siegbahn.									

Algumas vezes, os raios X característicos interagem com os elétrons mais externos do próprio átomo, e desse modo, ao invés de serem emitidos raios X característicos são emitidos elétrons, denominados elétrons Auger, conforme pode ser visualizado na Figura 4.2, de energias também características, base da espectrometria Auger.

Dessa forma, pode-se definir o rendimento de fluorescência com o numero de raios X efetivamente emitidos em relação ao número de vacâncias produzidas em uma camada.

Figura 4.2 - Representação esquemática do efeito Auger.

4.1.1 - Excitação dos Elementos

Para promover a emissão de raios X característicos dos elementos presentes em uma amostra, à excitação pode ser feita de várias maneiras: excitação por partículas aceleradas com elétrons, prótons ou íons; excitação por raios X, partículas alfa, partículas beta negativas, ou raios gama emitidos por radionuclídeos, por tubos de raios X e radiação síncrotron. Cada transição eletrônica realizada constitui na redução de energia para o elétron, sendo está energia emitida na forma de fóton de raios X, característico de cada elemento.

4.1.2 - Tubos de Raios X

Para a análise por fluorescência de raios X a amostra tem que ser irradiada com fótons altamente energéticos. A energia da fonte de excitação na maioria dos equipamentos comerciais é um feixe policromático primário emitido por tubos de raios X, acoplado a um gerador de alta voltagem estabilizado.

Os processos que permitem a emissão de radiação X de tubos de alto vácuo tipo Coolidge são:

a) O filamento de tungstênio (cátodo) é aquecido ate incandescer, gerando elétrons;

 b) Estes elétrons carregados negativamente são acelerados e focalizados em direção a um alvo metálico (ânodo) por meio de um alto potencial aplicado entre os dois eletrodos;

c) As radiações X são emitidas devido à ação de frenamento (isto é, desaceleração dos elétrons de alta velocidade) na matéria, e saída através de uma fina janela de berílio;

As duas interações dos elétrons incidentes com o alvo que são mais importantes em fluorescência de raios X são aquelas que dão origem:

 A um espectro contínuo (também chamado branco ou radiação Bremsstrahlung);

II) As radiações características do elemento alvo.

O espectro contínuo é o resultado da perda de energia quando os elétrons altamente acelerados colidem com os elétrons livres e sofrem desaceleração dentro do alvo.

O comprimento de onda corresponde a mais alta energia do fóton emitido por um tubo de raios X é chamado de mínimo comprimento de onda, e é dado por:

$$\lambda_{\min} = \frac{12,3981}{kV}$$
(4.2)

Onde:

 λ = comprimento de onda (angstrons), e; kV = voltagem aplicada (guilovolts).

Com o uso de fontes radioativas, emissoras de partículas alfa, beta negativa, raios X ou gama de baixa energia, não é necessário o uso de equipamentos eletroeletrônicos, sendo a principal vantagem monocromática.

A tabela 4.3 apresenta as características dos radionuclídeos utilizados como fonte de radiação, como: meia-vida; tempo de desintegração e energia do fóton emitido, sendo os de maior interesse experimental aqueles que se desintegram por captura eletrônica.

Dedienuelídeo	Meia-Vida	Tipo de	Fóton Emitido			
Radionucideo	(anos)	desintegração (*)	keV	%		
Fe – 55	2,7	CE	6 (raios X-K do Mn)	28,5		
Pu – 238	86,4	α	12-17 (raios X-L do U)	13,0		
Cd = 109	1 27	CE	88 γ	4,0		
	1, 61	~_	22 (raios X-K da Ag)	107,0		
1_ 125	0.16	CE	35 γ	7,0		
	0,10		27 (raios X-K do Te)	138,0		
	22.0		47 γ 11-13 (raios X-L do Bi mais	4,0		
Pb - 210	22,0	β	radiação de freamento ate 1,17 MeV)	24,0		
A 044	400.0		60 γ	36,0		
Am – 24 I	420,0	α	14-21 (raios X-L do Np)	37,0		
			103 γ	20,0		
04 152		CE	97 γ	30,0		
Gu - 155		UE UE	70 γ	2,6		
			41 (raios X-K do Eu)	10,0		
			700 γ	0.0		
			136 γ	0,2		
Co – 57	0,74	CE	122 γ	88,9		
			14 γ			
			6.4 (raios X-K do Fe)	0,2		

Tabela 4.3 - Principais radionuclídeos utilizados como fontes de excitação na análisepor fluorescência de raios X por dispersão de energia, IAEA, 1970.

(*) CE = captura eletrônica; α = partícula alfa; β = partícula beta negativa; γ = raio gama

4.2 - Fundamentos da Fluorescência de Raios X por Reflexão Total

Quando ocorre a passagem de um feixe de radiação monoenergético de um meio (ar ou vácuo) e atinge uma superfície plana de um dado material, pode ocorrer a **refração**, adentrando pelo material, ou a **reflexão**, sendo refletido pela sua superfície, em ângulo de emergência igual ao de incidência. A ocorrência de um ou outro processo dependerá da energia da radiação incidente, da densidade eletrônica do material e do ângulo de incidência da radiação.

Desse modo, há um ângulo crítico (ϕ_{crit}) equação 4.3, no qual a radiação não é refratada e tampouco refletida, permanecendo no plano de interface, AIGINGER & WOBRAUSCHEK, 1974, KLOCKENKÄMPER, et. al., 1992.

$$\phi_{crit} = \frac{e.h}{E} \sqrt{\frac{n_e}{2.\pi.m}}$$
(4.3)

Onde:

 ϕ_{crit} = ângulo crítico, em radianos;

e = carga elétrica do elétron = $4,8.10^{-10}$ ues;

h = constante de Planck = $6,625. 10^{-27}$ erg.s;

E = energia da radiação (erg);

 n_e = densidade eletrônica do material (elétrons. cm⁻³);

m = massa do elétron = $9,11. 10^{-28}$ gramas;

A densidade eletrônica do material ne é dada pela equação 4.4:

$$n_e = \frac{N_o \cdot \rho \cdot Z}{A} \tag{4.4}$$

Onde:

 $N_o = n$ úmero de Avogrado = 6,023. 10²³ at/atg;

 ρ = densidade do material (g.cm⁻³);

Z = número de elétrons em um átomo ou molécula do material;

A = atomograma ou molécula-grama do material (g.mol⁻¹).

Substituindo-se os valores constantes, e utilizando-se a energia da radiação em unidades de keV (1 keV = 1,6. 10^{-12} erg), pode-se calcular o ângulo crítico ϕ_{crit} em minutos pela equação 4.5:

$$\phi_{crit} = \frac{99,1}{E} \sqrt{\frac{\rho.Z}{A}}$$
(4.5)

Desse modo, se o raio X K_{α} do Cu de 8,04 keV incidir sobre o quartzo (Z = 30 elétrons, A = 60,0843 g e ρ = 2,5 g.cm⁻³), o ângulo crítico ϕ_{crit} será de 13,8 minutos. Para este mesmo material, o ângulo crítico para os raios X Mo-k_{α} de 17,44 keV será de 6,4 minutos (Figura 4.3).

Figura 4.3 - Representação esquemática do ângulo crítico (em minutos) para os Raios X Mo- α de 17,44 keV e Cu-K α de 8,04 keV, incidindo sobre quartzo.

Por outro lado, se um feixe policromático, contendo radiações desde zero até um valor máximo, E_{max} , incidir sobre um material com um ângulo crítico ϕ_{crit} , os raio de energia E_{crit} , dada pelo inverso da equação 4.5, terá o sentido da interface, enquanto que as radiações de energia entre zero até este valor crítico sofrer reflexão, e as de energia entre o valor crítico e o valor máximo sofrerão a refração Figura 4.4.

Figura 4.4 - Representação esquemática da refração e reflexão de um feixe de radiação policromático, incidindo em um material em ângulo ϕ qualquer.

Assim, se uma alíquota na faixa de microlitros de uma solução bastante diluída (água de chuva, por exemplo), for pipetada sobre um suporte de quartzo e depois seca, de modo a formar uma mancha ("spot") de 5 mm de diâmetro e uma espessura da ordem de nanômetros, e se sobre ela incidir um feixe de raios-X Mo-K α de 17,44 keV, em um ângulo de incidência de 5,5 mm, o feixe incidente será totalmente refletido, não adentrando no suporte e portanto não sofrerá espalhamento pelos efeitos Rayleigh ou Compton.

Entretanto, o feixe incidente atravessa todo o filme fino formado pela deposição da amostra, tanto no sentido da incidência como na emergência, e com isto há grande probabilidade de excitar os átomos que compõem a amostra.

Desse modo, os picos de espalhamento incoerente e coerente serão bastante reduzidos no espectro de pulsos produzidos pelo detector, mesmo quando for colocado o mais próximo possível. Nestas condições geométricas, de excitação/detecção tem-se a então denominada fluorescência de raios X por reflexão total (TXRF) figura 4.5.

TXRF

Figura 4.5 - Geometria de excitação/detecção da TXRF, com as linhas pretas representando os raios X incidentes e espalhados, e as coloridas os característicos, NASCIMENTO FILHO, 1999.

4.3 - Fluorescência de Raios X por Reflexão Total com Excitação por Radiação Síncrotron

Várias são as maneiras para se obter melhores limites de detecção (LD_i) na análise por fluorescência de raios X. Uma das formas de melhorar o (LD_i) é obviamente aumentar o tempo de contagem e a sensibilidade e reduzir a intensidade do *background* (radiação de fundo). A redução da intensidade de radiação de fundo pode ser obtida através da aplicação de fenômenos físicos como a reflexão total ou a polarização linear da radiação de excitação ou uma combinação das duas.

Atualmente a fonte de raios X mais intensa disponível á a síncrotron, pois fornece ao mesmo tempo propriedades de brilhância, polarização linear e colimação natural. A figura 4.6 apresenta o esquema de fluorescência de raios X por reflexão total com radiação síncrotron.

Figura 4.6 - Desenho esquemático do sistema de Fluorescência de Raios X por Reflexão Total com Radiação Síncrotron.

4.4 - Análise Quantitativa por TXRF

Na técnica de TXRF uma alíquota de 5 a 50 μ L da amostra líquida *in natura* ou digerida é colocada no centro de um suporte de quartzo ou germânio e seca. O filme fino obtido, com massa entre 10 pg.L⁻¹ a 10 μ g.L⁻¹, cobrindo um círculo com aproximadamente 5 mm de diâmetro, está pronto para ser analisado por TXRF.

Quando a amostra apresentar elementos voláteis como Hg e As estes devem ser convertidos em formas químicas mais estáveis pela adição de uma pequena quantidade de solução quelante, por exemplo, ditiocarbamato de pirrolidina de amônia (APDC), colocada na superfície do suporte da amostra antes da evaporação do solvente, GIRARDI, et. al., 1967. Devido à diminuta espessura da amostra e alta energia dos raios X normalmente utilizados na excitação (raios X Mo-Kα de 17 keV), não há ocorrência do efeito de absorção e reforço na TXRF, e, conseqüentemente, não é necessária a correção para o efeito matriz.

Neste caso, a equação básica 4.6 para análise quantitativa é a relação entre a intensidade fluorescente da linha característica K α ou L α e a concentração de um elemento de interesse na amostra:

$$I_i = S_i . C_i \tag{4.6}$$

Onde:

- I_i = intensidade líquida dos raios X (cps) da linha característica K ou L do elemento i de interesse;
- C_i = concentração do elemento **i** (ppm ou μg.mL⁻¹), na solução pipetada no suporte;
- S_i = sensibilidade elementar do sistema (cps.µg.L⁻¹), para o elemento i de interesse.

Devido à ausência do efeito matriz, pode-se determinar a sensibilidade elementar de modo simultâneo para vários elementos, utilizando-se uma solução padrão multielementar, contendo esses elementos em baixa concentração (na faixa de ppm) e emissores de raios X de energias não muito próximas, evitando a ocorrência de sobreposição de picos.

Além disso, na TXRF é possível adicionar um padrão interno à amostra e neste caso tem-se a vantagem de corrigir as instabilidades do sistema e erros operacionais.

Então com base nas sensibilidades elementares dos elementos contidos na solução padrão multilelementar, pode-se estimar a sensibilidade para um elemento

detectado na amostra e, conseqüentemente, estimar a sua concentração, mesmo que o padrão não contenha este elemento.

Os elementos a serem utilizados como padrões internos devem ocorrer em concentrações baixas nas amostras, e assim os elementos Ge e Ga têm sido utilizados para amostras de águas, e o Co e Y para outros tipos de amostras.

Utilizando a equação 4.6 podemos fazer a razão entra a intensidade do elemento i e o padrão interno Y.

$$\frac{I_i}{I_y} = \frac{s_i \cdot C_i}{s_y \cdot C_y}$$
$$\frac{I_i}{I_y} = \frac{s_i}{s_y} \cdot C_i$$

Fazendo:

$$R_i = \frac{I_i}{I_y} C_y \qquad \text{e} \qquad \qquad S_{Ri} = \frac{S_i}{S_y} \tag{4.7}$$

Temos:

$$R_i = S_{Ri}.C_i \tag{4.8}$$

Onde:

 R_i = intensidade relativa;

 I_i = intensidade de elemento i na amostra;

C_i = concentração do elemento i na amostra;

l_y = intensidade do padrão interno (Y) na amostra;

C_y = concentração do padrão interno (Y) na amostra;

s_i = sensibilidade do detector para o elemento i; s_Y = sensibilidade do detector para o padrão interno Y; S_{Ri} = sensibilidade relativa para o elemento i.

O coeficiente angular (S_{Ri}) da reta, no gráfico $R_i \times C_i$, representa a sensibilidade relativa do elemento i.

Com isto, pode-se calcular a concentração do elemento de interesse, utilizandose a equação 4.9:

$$C_i = \frac{I_i}{I_y} . S_{Ri} . C_y \tag{4.9}$$

A função do padrão interno é eliminar o efeito de geometria, porque o filme fino formado sobre o suporte não possui geometria regular. Desta forma, a contagem obtida na irradiação da amostra depende da posição em que esta for colocada no suporte. Com a adição do padrão interno, o resultado obtido será sempre em relação a este padrão, não importando a posição da amostra.

Cabe ressaltar que existe uma alta correlação matemática entre sensibilidade elementar e o número atômico dos elementos. Assim, com base nas sensibilidades elementares dos elementos contidos na solução padrão multielementar, pode-se estimar a sensibilidade para um elemento detectado na amostra não contido na solução padrão e conseqüentemente estimar a sua concentração na amostra de interesse.

De maneira análoga, as mesmas equações podem ser utilizadas para a linha K_{β} e outras, como L e M, onde logicamente as sensibilidades elementares terão outros valores.

4.5 - Limite Mínimo Detectável (LMD)

Para o cálculo do limite mínimo detectável (LMD) para TXRF, com radiação síncrotron, foi ajustada a área abaixo do pico de cada elemento de interesse no espectro dos raios X característicos, obtendo-se as intensidades do *background*. Os ajustes foram realizados para amostras de água superficial, esgoto, efluente orgânico e inorgânico. Para o cálculo, utilizou-se a equação abaixo, CURRIE, 1968, KLOCKENKÄNPER, et. al., 1995.

$$LMD_i = \frac{3}{S_i} \sqrt{\frac{I_i(BG)}{t}}$$
(4.10)

Substituindo:

$$S_i = S_{Ri} \cdot S_{Ga}$$
 e $S_{Ga} = \frac{I_{Ga}}{C_{Ga}}$

Na equação 4.10 temos que:

$$LMD_i = 3 \cdot \frac{C_{Ga}}{I_{Ga} \cdot S_i} \sqrt{\frac{I_i(BG)}{t}}$$
(4.11)

Onde:

t = tempo de contagem (s)

De modo geral, os limites de detecção para a análise em fluorescência de raios X por reflexão total são bem menores que para outras técnicas de fluorescência, devido a três fatores: (1) baixa intensidade do *continuum*; (2) o fluxo da radiação primaria disponível para a excitação da amostra, devido ao feixe refletido, é muito mais efetiva do que na XRF e (3) a distância entre a amostra (filme fino) e o detector de Si é muito menor que na ED-XRF aumentando, portanto a eficiência de detecção dos raios X característicos.

5 - MATERIAL

5.1 - Instrumentação

Na detecção dos raios X produzidos pelos elementos nas amostras e nos padrões foi utilizado um detector de Si(Li), com resolução de 165 eV, enquanto que para excitação foi empregado um feixe branco de radiação Síncrotron com 3,0 mm de largura e 2,0 mm de altura sob condição de reflexão total, acoplado a um módulo amplificador e placa analisadora de pulsos multicanal, inserida dentro de um microcomputador PC.

Todas as medidas foram realizadas na estação experimental de fluorescência de raios X do Laboratório Nacional de Luz Síncrotron, Campinas SP, PÉREZ, et. al., 1999.

5.1.1 - Principais Características do Anel de Armazenamento e da Estação de Fluorescência de Raios X do Laboratório Nacional de Luz Sincrotron

- Energia do elétron no anel de armazenamento: 1,37 GeV (corrente em torno de 100 mA).
- Campo magnético do dipolo D09B: 1,65 T.

- Anel de armazenamento de elétrons: 93,2 m de perímetro e 30 m de diâmetro.
- Acelerador linear de elétrons: 18 m.
- Energia crítica do fóton: 2,08 keV.
- Freqüência de revolução dos elétrons no anel de armazenamento: 3,2 MHz.
- Fluxo de fótons, à 8 keV, em uma área de 20 mm² : 4,2x10⁹ fótons/s.
- Feixe policromático (branco) ou seleção de energia entre 3 e 14 keV, utilizando cristal monocromador de silício (111).
- Alto grau de polarização do feixe.
- Detectores semicondutores, de Si(Li), com resolução de 165 eV à 5,9 keV e de Ge (HP), com resolução de 150 eV à 5,9 keV.
- Posicionamento da amostra utilizando um sistema semi-automático, com movimento tridimensional, PÉREZ, et. al.,1999 e LNLS, 2003.

Uma vista geral do anel de armazenamento de elétrons do LNLS é mostrada na figura 5.1, a emissão de luz síncrotron num dipolo do anel é mostrado na figura 5.2.

A figura 5.3 mostra uma vista parcial da estação de fluorescência de raios X por reflexão total do LNLS, enquanto na figura 5.4 podemos visualizar o sistema de posicionamento da amostra.

Figura 5.1 - Vista geral do anel de armazenamento de elétrons do LNLS, Campinas, SP.

Figura 5.2 - Emissão de luz síncrotron devido à aceleração dos elétrons num dipolo do anel de armazenamento que altera sua trajetória LNLS.

Figura 5.3 - Vista parcial da estação de fluorescência de raios X do LNLS Campinas - SP.

Figura 5.4 - Detalhe do posicionamento da amostra na linha de fluorescência de raios X LNLS, Campinas SP.

5.2 - Suporte para Amostra

Na análise por TXRF, para se produzir a reflexão total, o suporte da amostra deve ser polido e plano. Normalmente, suportes de quartzo são utilizados. Entretanto apresentam algumas desvantagens significativas: a radiação fluorescente do silício no quartzo torna impossível uma determinação quantitativa de silício na amostra. Além disso, os suportes de quartzo são caros, devem ser bem polidos e a limpeza, tanto dos suportes novos, quanto dos usados, deve ser feita cuidadosamente, caso contrário, pode permanecer uma contaminação, principalmente dos elementos Fe, Cu e Zn.

O Lucite (perspex) é um material que pode ser adquirido em forma de chapas com superfícies muito lisas que não necessitam de polimento, reduzindo o custo e o risco de contaminação. Este suporte contém somente os elementos H, C e O, dificultando a contaminação por outros elementos.

A superfície do lucite é protegida com um filme plástico fino para evitar arranhões e contaminação durante o manuseio. O lucite pode ser cortado facilmente no formato desejado e utilizado imediatamente após a retirada do filme plástico, SCHMITT, et. al., 1987.

5.3 - Preparo dos Padrões

Para realizar a calibração do sistema de detecção, e posteriormente calcular a sensibilidade relativa, foram preparadas dez soluções padrão contendo o elemento gálio (Ga), utilizado como padrão interno.

5.4 - Planejamento da Amostragem

Todas as decisões com relação ao projeto se apóiam nesta fase. Desta forma, o programa de amostragem foi realizado criteriosamente no controle da qualidade

desde a remoção, fracionamento, e preparação, e requer um rígido planejamento, conforme apresentado na figura 5.5, CETESB, 1989.

Figura 5.5 - Planejamento da amostragem

Vale ressaltar que a realização de procedimentos inadequada durante as coletas e locais impróprios, não pode garantir a precisão dos dados, mesmo diante das técnicas e dos equipamentos sofisticados atuais.

Para coleta das amostras faz se necessário a definição de protocolo considerando-se algumas variáveis:

1 - Coletar porção representativa para análise: fundamental na determinação do método analítico a ser empregado;
2 - O número de amostras, número de pontos de coleta e a escolha dos indicadores de qualidade são determinados pela finalidade do estudo;

3 - Os diferentes tipos de amostras podem ser analisadas em suas características físico-químicas, biológicas, microbiológicas. Para representação da confiabilidade dos resultados das amostras deve-se:

- a) Coletar amostras com o cuidado de evitar a presença de elementos particulados, exceto guando se tratar de sedimentos;
- b) Acondicionamento e lavagem apropriada;
- c) Volume necessário de amostra para análise;
- d) Identificação das amostras;
- e) Preservação da amostra;
- f) Acondicionamento das amostras em local apropriado;

A confiabilidade dos resultados está diretamente relacionada à preservação das amostras. Quando se trabalha com a análise de elementos traços, a amostra tem que ser bem preservada para não sofrer perdas dos elementos pela absorção do recipiente durante o tempo de armazenamento até a análise final.

5.5 - Coleta e Preparo das Amostras

A coleta e preparo das amostras serão descritos nos itens a seguir.

5.5.1 - Locais de Amostragem

A micro bacia do Ribeirão Jacuba está localizada dentro da bacia hidrográfica do Piracicaba que nasce na cidade de Americana. Sua formação ocorre com o encontro das águas do rio Atibaia com o Jaguari (Figura 5.6). À esquerda podemos ver o Rio Atibaia e à direita o Rio Jaguari e no centro o Rio Piracicaba.

Figura 5.6 - Formação do Rio Piracicaba em Americana - SP.

O Piracicaba tem outros afluentes importantes como: Quilombo (que nasce em Campinas), Toledo (que nasce na região de Santa Bárbara D'Oeste), Corumbataí (que nasce em Analândia), ribeirão Anhumas (que nasce em Campinas), ribeirão Piracicamirim (que nasce na região de Piracicaba), ribeirão Pinheiros (que nasce na região de Vinhedo), entre outros. A Bacia do rio Piracicaba possui uma superfície de 12.746 km².

As amostras estudadas foram coletadas no município de Hortolândia, Estado de São Paulo, localizada na latitude 22°51'22" S e longitude 47°13'05" W, que está localizado na região metropolitana de Campinas com 22 cidades e 2,2 milhões de habitantes, a 100 km de distância da capital, São Paulo (Figura 5.7). É uma região de alta produtividade e com grande potencial tecnológico no estado de São Paulo.

O clima regional é o tropical alternadamente seco e úmido com temperatura média anual de 18 a 20 °C, média mínima de 4 a 6 °C e média máxima de 30 a 32 °C. Os índices pluviométricos variam de 900 a 1.000 mm na estação chuvosa e de 200 a 300 mm na estação seca.

O Município de Hortolândia possui uma população em torno de 170 mil habitantes, distribuídos em uma área de 62 km². O município apresenta recurso curso hídrico com diversas nascentes formando os cursos de águas que deságuam ao longo do leito principal formando o Ribeirão Jacuba, figura 5.8.

Figura 5.7 - Região Metropolitana, localização geográfica do Município de Hortolândia-SP.

O período de amostragem foi realizado quinzenalmente entre os meses de março a agosto de 2002. Este período é marcado por uma estação seca com poucas

chuvas, o que pode promover o aumento na concentração dos elementos presentes no meio aquático aumentando riscos potenciais de toxidade aos seres vivos.

Foram demarcados nove postos para água superficial, um posto de esgoto *in natura* e dois postos de efluentes industriais.

5.5.2 - Preservação das Amostras

Conforme descrição no item 3.2.8, a coleta está fundamentada no planejamento de amostragem. A preservação da qualidade do material se faz necessário para análise com finalidade de expressar o grau de confiabilidade dos resultados obtidos.

Os frascos plásticos utilizados para coletas das amostras foram submetidos à lavagem para remoção dos agentes contaminantes. A lavagem foi realizada com solução aquosa de 10% HNO₃ onde os frascos permaneceram submersos por 24 horas.

Os frascos foram então lavados com água destilada e, secos a temperatura ambiente. As amostras coletadas foram acidificadas no local e conservadas em geladeira até a preparação. O volume 50 mL foi coletado para amostra de água superficial e 100 mL de efluente sendo estes volumes suficientes para preparo de repetições futuras, caso necessário.

5.5.3 - Postos de Coleta de Água Superficial e Esgoto

O município de Hortolândia não possui estação de tratamento de efluentes. Os materiais resultantes das atividades humanas são descartadas em fossas sanitárias ou, descartados diretamente nos cursos d'água do Ribeirão. A tabela 5.1 apresenta a localização dos postos de amostragem para água superficial e esgoto.

52

 Tabela 5.1 - Postos de coleta e localização no município de Hortolândia – SP.

Postos	Localização	Figura
Posto 1 ÁGUA	Região com alto índice de indústrias. A área apresenta alto índice de erosão e observa-se formação de espuma constantemente.	5.9
Posto 2 ÁGUA	Nascente a montante do aterro sanitário, apresenta área com pequena erosão e vegetação rasteira.	5.8
Posto 3 ÁGUA	Nascente a jusante do Presídio Estadual, apresenta área com vegetação rasteira.	5.10
Posto 4 ÁGUA	Lagoa próxima à rodovia SP-101, apresenta vegetação rasteira ao seu redor, utilizada como fonte de pesca e lazer mesmo proibido.	5.11
Posto 5 ÁGUA	Curso d'água próximo a empresa Comfibra a montante do posto 4, apresenta área com vegetação rasteira e morta;É observado constantemente acumulo de espuma.	5.12
Posto 6 ÁGUA	Curso d'água próximo à granja, localizado a jusante do posto três.	5.8
Posto 7 ÁGUA	Curso d'água próximo ao Banco Bradesco, recebe água dos postos 1, 2,3 e 6.	5.13
Posto 8 ÁGUA	Cursos d'água próximo ao estacionamento da Viação Boa Vista, recebe água dos postos 4 e 5. Apresenta vegetação rasteira e arbórea, em sua proximidade localiza-se estacionamento de ônibus.	5.8
Posto 9 ÁGUA	Curso d'água final do Ribeirão Jacuba recebe água de todos os postos marcados para amostragem. Apresenta vegetação rasteira e pouca vegetação arbórea.	5.14
Posto 10 ESGOTO	Posto de amostragem do esgoto do presídio. Apresenta vegetação rasteira.	5.15

Legenda:

- Posto de coleta 2
- Posto de coleta 3
- 0 Posto de coleta 4
- 6 Posto de coleta 5

- Posto de coleta 7
 - Posto de coleta 8
 - Posto de coleta 9

0

0

Posto de coleta 10

Figura 5.8 - Postos de amostragem no Ribeirão Jacuba - Hortolândia.

Figura 5.9 – Fotografia do posto de coleta 1.

Figura 5.10 – Fotografia do posto de coleta 3.

Figura 5.11 – Fotografia do posto de coleta 4.

Figura 5.12 – Fotografia do posto de coleta 5.

Figura 5.13 – Fotografia do posto de coleta 7.

Figura 5.14 – Fotografia do posto de coleta 9.

Figura 5.15 - Fotografia do posto de coleta 10.

5.5.4 - Postos de Coletas de Efluentes

As características dos efluentes industriais estão representadas no item 3.2.3. As amostras de efluentes industriais foram coletadas em duas empresas no município de Hortolândia, e seus efluentes são tratados antes de serem descartados no Ribeirão Jacuba. A coleta destes efluentes foi dividida em grupos de efluentes tratados e não tratados e estão relacionados na tabela 5.2. Tabela 5.2 - Postos de coletas nas empresas no município de Hortolândia - SP.

Postos	Características				
Empresa 1 - ETOB	Estação de tratamento de efluente inorgânico e orgânico bruto.				
Empresa 1 - ETOF	Estação de tratamento de efluente inorgânico e orgânico tratado para descarte no Ribeirão.				
Empresa 1 - ETI	Estação de tratamento de efluente industrial.				
Empresa 2 - ETIB	Estação de tratamento de efluente bruto.				
Empresa 2 - ETIF	Estação de tratamento de efluente tratado para descarte no Ribeirão.				

5.5.5 - Preparo das Amostras de Águas Superficiais, Esgoto e Efluentes Inorgânicos e Orgânicos.

No preparo das amostras de água e efluente inorgânico, foi realizada uma préfiltragem a vácuo, utilizando filtro de papel celulose com porosidade de 0,45 μ m de diâmetro de poro. A seguir, foi tomado 1 mL de amostra, acrescido de um volume de 100 μ L de Gálio (102,5 ppm). Foram pipetados 5 μ L da amostra sob um disco de Lucite com 3 mm de espessura e 3 cm de diâmetro, para posterior secagem com luz infravermelha.

Para as amostras de esgoto e efluente orgânico realizou-se a digestão proposta pela Agência de Proteção Ambiental (*Environmental Protection Agency* - EPA), baseado no método 3050B, KIMBROUGH & WAKAKUWA, 1989. As etapas da digestão foram:

- 1) A 50 mL de amostra foram acrescentados 10 mL de ácido nítrico (HNO₃) concentrado e a mistura foi deixada em refluxo por 10 minutos;
- A seguir foram adicionados 5 mL de ácido nítrico (HNO₃) concentrado, deixando por refluxo por 30 minutos ou até digerir completamente;

- Após isso foram adicionados 8 mL de peróxido de hidrogênio (H₂O₂), na concentração de 30%;
- Posteriormente adiciona-se peróxido de hidrogênio (H₂O₂) até borbulhar, reduzindo-se o volume até 5 mL e adicionando-se 10 mL de ácido clorídrico (HCL) concentrado. A amostra foi deixada em refluxo por 15 minutos ou até a redução do volume a 5 mL;
- 5) Finalmente a solução foi retirada e resfriada a temperatura ambiente.

Após o resfriamento das amostras, estas foram preparadas de maneira idêntica às amostras de água e efluente inorgânico. Para cada amostra foram realizadas triplicatas.

6 - RESULTADOS E DISCUSSÃO

6.1 - Análise das Amostras Utilizando o Sistema de Fluorescência de Raios X com Reflexão Total (TXRF) com Radiação Síncrotron

Após o preparo, os padrões e as amostras foram medidas por 100 segundos pela técnica de reflexão total (TXRF) com radiação síncrotron na linha XRF, no Laboratório Nacional de Luz Síncrotron, Campinas – SP.

Para a obtenção da intensidade fluorescente, foi empregado um programa computacional, denominado QXAS (*Quantitative X-ray Analysis System*), este programa foi desenvolvido pela IAEA (*International Atomic Energy Agency*) e é distribuído gratuitamente.

6.1.1 - Cálculo da Sensibilidade Relativa

Para calcular a sensibilidade elementar, foram utilizadas dez soluções padrões conhecidas e em diferentes concentrações, acrescidas do elemento gálio (Ga), como padrão interno. As tabelas 6.1 e 6.2, apresentam os valores das concentrações dos elementos e do padrão interno em cada amostra padrão, para determinação da sensibilidade para as linhas da série K e L, respectivamente.

	Concentração dos Elementos nas Amostras Padrão (mg.L ⁻¹)					
Z	Elemento	Padrão 1K	Padrão 2K	Padrão 3K	Padrão 4K	Padrão 5K
14	Si	13,830	25,769	36,180	45,338	53,457
19	К	4,619	8,607	12,084	15,143	17,855
20	Са	4,633	8,632	12,120	15,188	17,908
22	Ti	4,564	8,504	11,940	14,962	17,642
24	Cr	4,564	8,504	11,940	14,962	17,642
26	Fe	4,578	8,530	11,976	15,008	17,695
28	Ni	4,587	8,547	12,000	15,038	17,730
30	Zn	4,564	8,504	11,940	14,962	17,642
31	Ga	9,404	8,761	8,200	7,707	7,270
34	Se	4,495	8,376	11,760	14,737	17,376
38	Sr	4,610	8,590	12,060	15,113	17,819
42	Мо	4,587	8,547	12,000	15,038	17,730

Tabela 6.1 - Concentração (μg.L⁻¹) dos elementos (Si, K, Ca, Ti, Cr, Fe, Ni, Zn, Ga, Se, Sr e Mo) nas soluções padrões para a série K.

Tabela 6.2 - Concentração (μg.L⁻¹) dos elementos (Ga, Mo, Cd, Sb, Ba, Pt, Hg, Ti e Pb) nas soluções padrões para a série L.

	Concentração dos Elementos nas Amostras Padrão (mg.L ⁻¹)						
z	Elemento	Padrão 1L	Padrão 2L	Padrão 3L	Padrão 4L	Padrão 5L	
31	Ga	9,318	8,487	8,008	7,482	7,021	
42	Мо	13,636	25,336	35,156	43,796	51,370	
48	Cd	13,636	25,210	35,156	43,796	51,370	
51	Sb	4,514	8,487	11,637	14,496	17,003	
56	Ba	4,591	25,210	11,836	14,745	17,295	
78	Pt	4,409	8,345	11,367	14,161	16,610	
80	Hg	0,182	8,151	0,469	0,584	0,685	
81	TI	4,545	0,336	11,719	14,599	17,123	
82	Pb	4,591	8,403	11,836	14,745	17,295	

Utilizando se a equação 4.6, pode-se obter a razão entre a intensidade do elemento (i) e do padrão interno (Ga).

O coeficiente angular (S_i) da reta, no gráfico R_i versus C_i, representa a sensibilidade relativa do elemento i. Nas tabelas 6.3 e 6.4 podem ser vistos os valores das intensidades relativas (R_i) de cada elemento.

Tabela 6.3 - Intensidade Relativa (Ri) dos elementos nas amostras padrão para adeterminação da sensibilidade relativa para a série K.

	Intensidade Relativa nas Amostras Padrão (mg.L ⁻¹)					
Z	Elemento	Padrão 1K	Padrão 2K	Padrão 3K	Padrão 4K	Padrão 5K
14	Si	0,032	0,060	0,084	0,105	0,124
19	K	0,275	0,513	0,720	0,902	1,064
20	Са	0,491	0,914	1,283	1,608	1,896
22	Ti	0,832	1,551	2,178	2,729	3,218
24	Cr	1,487	2,770	3,890	4,874	5,747
26	Fe	2,515	4,687	6,580	8,245	9,722
28	Ni	3,586	6,681	9,381	11,75	13,86
30	Zn	4,687	8,734	12,26	15,36	18,11
31	Ga	4,495	8,376	11,76	14,73	17,37
34	Se	7,362	6,858	6,420	6,033	5,691
38	Sr	1,241	2,311	3,245	4,067	4,795
42	Мо	0,222	0,413	0,580	0,727	0,858

	Intensidade Relativa nas Amostras Padrão (mg.L ⁻¹)					
Z	Elemento	Padrão 1L	Padrão 2L	Padrão 3L	Padrão 4L	Padrão 5L
42	Мо	0,574	1,067	1,481	1,845	2,164
48	Cd	0,935	1,729	2,412	3,004	3,524
56	Ba	0,916	5,028	2,360	2,941	3,449
78	Pt	4,855	9,189	12,516	15,593	18,290
81	TI	3,744	0,277	9,653	12,026	14,105
82	Pb	3,285	6,013	8,469	10,551	12,376

Tabela 6.4 - Intensidade relativa (Ri) dos elementos nas amostras padrão para adeterminação da sensibilidade relativa para a série L.

Utilizando-se os dados das tabelas 6.1; 6.2; 6.3 e 6.4, foram obtidos os valores das sensibilidades relativas para os elementos das séries K e L. respectivamente, os quais estão apresentados nas tabelas 6.5 e 6.6.

Tabela 6.5 - Sensibilidade Relativa para o	s elementos	da série K.
--	-------------	-------------

Z	Elemento	Sensibilidade Experimental	Sensibilidade Ajustada
14	Si	0,00231	0,00246
19	K	0,05960	0,05318
20	Ca	0,10588	0,08612
22	Ti	0,18239	0,19785
24	Cr	0,32577	0,38105
26	Fe	0,54942	0,61521
28	Ni	0,78172	0,83262
30	Zn	1,02698	0,94463
31	Ga	1,00000	0,94176
34	Se	0,78287	0,71625
38	Sr	0,26910	0,26818
42	Мо	0,04837	0,04959

Z	Elemento	Sensibilidade Experimental	Sensibilidade Ajustada
42	Мо	0,044346	0,042129
48	Cd	0,062243	0,068595
56	Ba	0,219538	0,199429
78	Pt	1,068924	1,101122
81	TI	0,851863	0,823742
82	Pb	0,762806	0,715570

Tabela 6.6 - Sensibilidade Relativa para os elementos da série L.

Com os dados das tabela 6.5 e 6.6 foram obtidas as curvas de sensibilidade relativa para as séries K e L dos elementos de interesse presentes nas amostras padrões. As curvas estão apresentadas nas figuras 6.1 e 6.2.

Figura 6.1 - Curva da Sensibilidade Relativa para a série K utilizando SR-TXRF.

Figura 6.2 - Curva da Sensibilidade Relativa para a série L utilizando SR-TXRF.

A equação ajustada que relaciona a sensibilidade relativa e o número atômico (Z) do elemento, para a série K, é dada por:

$$S_{Ri} = \exp(-20,47223 + 1,342009Z - 0,02205Z^2)$$
(6.1)

O coeficiente de correlação (R^2) para o ajuste da curva da sensibilidade para a série K foi de 0,99629. Para a série L, foi obtida a equação (6.2), com coeficiente de correlação $R^2 = 0,99748$.

$$S_{Ri} = \exp(-18,44133 - 1,34843Z + 0,02637Z^2 - 1,5509910^{-4}Z^3)$$
(6.2)

6.1.2 - Limite Mínimo de Detecção (LMD)

Os valores obtidos para os limites de detecção para as amostras de água superficial, esgoto e efluentes por SR-TXRF, calculados pela equação 4.11, são apresentados nas tabelas 6.7 à 6.11, para um tempo de contagem de 100 s.

Z	Elemento	LMD Experimental (µg.L ⁻¹)	LMD Ajustado (µg.L ⁻¹)
14	Si	85,7937	87,5614
15	Р	41,4411	42,0479
16	S	21,2772	21,2590
17	CI	11,5152	11,3164
18	Ar	6,6501	6,3422
19	K	3,8847	3,7423
20	Са	2,3980	2,3249
22	Ti	1,0888	1,0472
24	Cr	0,5342	0,5796
25	Mn	0,4058	0,4658
26	Fe	0,3312	0,3942
28	Ni	0,3486	0,3294
29	Cu	0,3361	0,3253
30	Zn	0,3611	0,3382
31	Ga	0,3999	0,3702
35	Br	0,9785	0,8898
38	Sr	2,6369	2,9495

Tabela 6.7 - Limite de detecção para a série K, nas amostras de água.

Para a série L, foram detectados apenas os elementos Ba e Pb e, por isso não foi possível levantar a curva do limite de detecção para as amostras de água e esgoto.

Tabela 6.8 -	Limite de	detecção	para Ba	e Pb, nas	amostras de a	áqua.
		2	f	,		~

Z	Elemento	LMD Experimental (µg.L ⁻¹)
56	Ba	1,325
82	Pb	0,887

Z	Elemento	LMD Experimental (µg.L ⁻¹)	LMD Ajustado (µg.L ⁻¹)
14	Si	28,790	34,300
15	Р	12,607	13,895
16	S	5,308	6,142
17	Cl	3,070	2,954
18	Ar	2,067	1,541
19	K	1,261	0,870
20	Ca	0,723	0,530
22	Ti	0,244	0,244
24	Cr	0,116	0,147
25	Mn	0,099	0,125
26	Fe	0,085	0,113
28	Ni	0,081	0,108
29	Cu	0,097	0,115
30	Zn	0,147	0,127
31	Ga	0,191	0,147
35	Br	0,538	0,389
38	Sr	1,327	1,113
40	Zr	1,887	2,504

Tabela 6.9 - Limite de detecção para a série K, nas amostras de esgoto.

Tabela 6.10 - Limite de detecção para Ba e Pb, nas amostras de esgoto.

Z	Elemento	LMD Experimental (µg.L ⁻¹)
56	Ba	0,319
82	Pb	0,189

Para o levantamento da curva do limite de detecção para a série L (tabela 6.12), foram empregadas as mesmas soluções utilizadas para o levantamento da curva de sensibilidade para a série L.

z	Elemento	LMD Experimental (µg.L ⁻¹)	LMD Ajustado (µg.L ⁻¹)
14	Si	1050,526	1215,098
15	Р	507,896	544,452
16	S	267,560	258,661
17	CI	141,431	130,295
18	Ar	77,702	69,590
19	K	44,416	39,408
20	Са	26,646	23,662
22	Ti	11,104	10,169
24	Cr	5,191	5,523
25	Mn	3,770	4,444
26	Fe	2,909	3,791
28	Ni	3,022	3,289
29	Cu	3,159	3,344
30	Zn	3,806	3,606
31	Ga	4,826	4,122
35	Br	16,424	12,644
38	Sr	46,143	54,186

Tabela 6.11 - Limite de detecção para a série K, nas amostras de efluentes.

Tabela 6.12 - Limite de detecção para a série L, nas amostras padrão.

Z	Elemento	LMD Experimental (µg.L ⁻¹)	LMD Ajustado (µg.L ⁻¹)
38	Sr	52,3953	58,5289
42	Мо	48,3782	49,7454
48	Cd	27,5975	26,2232
51	Sb	17,7058	16,9565
56	Ba	7,0766	7,6302
78	Pt	1,9391	1,8679
80	Hg	2,5535	2,4969
81	TI	3,0015	3,0030
82	Pb	3,5979	3,7135

Com os dados das tabelas 6.7 a 6.12 foram levantadas as curvas do LMD para a série K por SR-TXRF (figura 6.3) para água, esgoto e efluentes.

Para os elementos da série L não foi possível levantar a curva do limite de detecção, pois apenas dois elementos foram detectados nas amostras de água, efluente e esgoto. Devido a isto, a curva foi então levantada utilizando as amostras padrão empregadas para o cálculo da sensibilidade relativa da série L (figura 6.4).

Figura 6.3 - Limite Mínimo de Detecção (LMD) para a série K, utilizando SR-TXRF, para amostras de água superficial, esgoto e efluente.

Figura 6.4 – Limite Mínimo detectável (LMD) para a série L, utilizando TXRF com radiação síncrotron, para as amostras padrão.

As equações obtidas para o limite mínimo detectável (μ g.L⁻¹) para as amostras de água (equação 6.3), esgoto (equação 6.4) e efluente (equação 6.5), para os elementos da série K são:

$$LMD_{(AGUA)} = \exp(20,14926 - 1,48028Z + 0,02575Z^2)$$

$$R^2 = 0,99817$$
(6.3)

 $LMD_{(ESGOTO)} = \exp(26,9606 - 2,4923Z + 6,522.10^{-2}Z^2 - 4,79729.10^{-4}Z^3)$ (6.4)

 $R^2 = 0,98255$

iblioteca Centra	L
Cérar Laites	
EGENVOLVIMENTO D	Æ
Conscao	
TRUCARP	

$$LMD_{(EFLUENTE)} = \exp(24,48848 - 1,65163Z + 2,927.10^{-2}Z^{2})$$

$$R^{2} = 0,99475$$
(6.5)

A equação 6.6. apresenta o ajuste da curva do limite mínimo de detecção para a série L, obtida através das amostras padrão.

$$LMD_{(serieL)} = \exp(-8,06647 + 0,63235Z - 0,01277.Z^{2} + 7,73513.10^{-5}.Z^{3})$$

$$R^{2} = 0,99866$$
(6.6)

6.1.3 - Análise dos Padrões Certificados

Para verificar o ajuste da curva de calibração para as linhas K e L, foram analisados dois padrões líquidos certificados, e os dados calculados, comparados com os valores certificados. Nas tabela 6.13 e 6.14 são apresentados os resultados para o padrão certificado multielementar (Sigma 41,101-8) para ICP/AAS e *Drinking Water Pollutants* (Aldrich).

Tabela 6.13 - Comparação dos valores medidos e certificados do padrãomultielementar.

Elemento	Valor Medido (mg.L ⁻¹)	Valor Certificado (mg.L ⁻¹)
Cr	6,62 ± 0,84	6,25 ± 0,31
Mn	9,59 ± 0,71	9,37 ± 0,46
Со	32,15 ± 1,93	31,25 ± 1,56
Ni	27,06 ± 1,06	25,00 ± 1,25
Cu	16,46 ± 0,45	15,63 ± 0,78
Zn	13,59 ± 0,38	12,50 ± 0,62

Tabela	6.14	•	Comparação	dos	valores	medidos	е	certificados	do	padrão	Drinking
			Water Pollut	ants.							

Elemento	Valor Medido (mg.L ⁻¹)	Valor Certificado (mg.L ⁻¹)		
Cr	8,87 ± 0,17	9,09 ± 0,45		
As	8,81 ± 0,88	9,09 ± 0,45		
Se	4,14 ± 0,37	4,54 ± 0,23		
Ba	90,72 ± 5,72	90,91 ± 4,55		
Pb	9,98 ± 0,75	9,09 ± 0,45		

Os valores medidos apresentaram desvios padrões inferiores a 5% e erros relativos inferiores a 10% para a maioria dos elementos, confirmando um bom ajuste para a curva de calibração.

6.1.4 – Resultados das Amostras de Águas Superficiais Coletadas no Ribeirão Jacuba

Os resultados das amostras de águas superficiais serão comparados com os valores estabelecidos pela resolução CONAMA 20/86 e pelo Decreto 8.468/76 CETESB. As figuras 6.5 a 6.8 apresentam os valores máximos permitidos pela Resolução CONAMA para água, enquanto que nas figuras 6.9 a 6.10 são apresentados os valores estabelecidos pela CETESB para Ba, Cu, Sn, Zn, As, Cd, Cr, Pb, Hg e Se.

Figura 6.5 - Valores máximos permitidos (μg.L⁻¹) pela resolução CONAMA para os elementos AI, V, Mn, Fe, Co e Zn para água superficial.

Figura 6.6 - Valores máximos permitidos (μg.L⁻¹) pela resolução CONAMA para os elementos Cr, Ni, Cu, As e Se para água superficial.

Figura 6.7 - Valores máximos permitidos (μg.L⁻¹) pela resolução CONAMA para os elementos Ag, Cd, Hg, Pb para água superficial.

Figura 6.9 - Valores máximos permitidos (μg.L⁻¹) pela CETESB para os elementos Ba, Cu, Sn e Zn para água superficial.

Figura 6.10 - Valores máximos permitidos (μg.L⁻¹) pela CETESB para os elementos As, Cd, Cr, Pb, Hg e Se para água superficial.

Nas figuras 6.11 a 6.13 estão apresentados os espectros dos raios-X característicos dos elementos das amostras de água superficial, esgoto e efluente industrial coletada no dia 15/07/2002.

Figura 6.11 - Espectro dos raios X característicos dos elementos na amostra de água superficial.

Figura 6.12 - Espectro dos raios X característicos dos elementos na amostra de esgoto.

As amostras de águas superficiais foram obtidas em nove postos, as concentrações dos elementos Si, P, S, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, estão apresentadas nas tabelas 6.15 a 6.27.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	11533	13920	10479	12281	9996	10169	13987
posto 2	7736	12621	7087	6769	8607	5837	9490
posto 3	10091	5303	13303	9570	5440	9255	9602
posto 4	6944	7138	11488	6618	5702	5662	6809
posto 5	10110	9786	12113	10938	7562	4845	13115
posto 6	12375	11570	20588	14133	34305	11002	13399
posto 7	9444	11309	16185	11377	11688	10204	12896
posto 8	12141	12300	10159	10220	9061	9157	11279
posto 9	10264	8742	13262	13935	10663	10352	8910

Tabela 6. 15 - Concentrações de Silício em águas superficiais (valores em µg.L⁻¹).

Figura 6.14 – Concentrações de Silício nos postos de água superficial.

A figura 6.14 mostra as concentrações do elemento Silício presente na água superficial. As concentrações altas podem ser observadas no posto seis com valores de 34305 μ g.L⁻¹. Valores acima de 4500 μ g.L⁻¹ foram detectados em todos os postos analisados.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	9244	3438	2390	2578	2642	3446	4007
posto 2	63	921	1322	528	708	770	777
posto 3	2603	551	5631	1555	976	1036	947
posto 4	1982	2061	3331	2188	1758	2659	2033
posto 5	2529	2056	5056	4454	2787	2714	5242
posto 6	3203	3548	3004	3231	13009	2898	4021
posto 7	2594	3465	5412	9462	5623	5636	2088
posto 8	3595	5471	2087	1850	2830	3536	6605
posto 9	2205	2653	4296	6719	4556	5199	3666
CONAMA			······································	1400			

Tabela 6.16 - Concentrações de Fósforo em águas superficiais (valores em μg.L⁻¹).

Figura 6.15 - Concentrações de Fósforo nos postos de água superficial.

A figura 6.15 mostra as concentrações do elemento Fósforo presente na água superficial. As concentrações no posto dois estão abaixo do valor máximo permitido em todas as coletas, no posto três as coletas dois, cinco, seis e sete também apresentam valores abaixo do permitido. Os outros postos apresentaram concentrações acima do permitido com valores até 13009 μg.L⁻¹.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	11361	3260	6382	3498	9039	5644	8248
posto 2	755	1985	1187	1070	1236	1118	1151
posto 3	1109	428	3171	1789	17727	648	1011
posto 4	4929	5120	5187	3835	3190	5977	5608
posto 5	4953	3995	4665	7235	4415	4859	6333
posto 6	5520	4411	9452	4324	20379	5928	6590
posto 7	4281	4437	10891	8735	9950	5423	17595
posto 8	6661	8043	11488	8363	9523	7165	11940
posto 9	4567	4552	10250	7004	10271	7299	7865

Tabela 6.17 - Concentrações de Enxofre em águas superficiais (valores em μg.L⁻¹).

Figura 6.16 - Concentrações de Enxofre nos postos de água superficial.

A figura 6.16 mostra as concentrações do elemento Enxofre presente na água superficial. As concentrações detectadas nas amostras apresentaram concentrações variando entre 428 μg.L⁻¹ a 20379 μg.L⁻¹. O posto oito apresentou maiores concentrações nas diferentes coletas realizadas quando comparada com coletas de outros postos.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	13634	6805	5823	6198	38231	4618	6184
posto 2	2129	21173	5679	3996	5107	1844	2508
posto 3	3014	8639	8116	5041	68442	2581	2709
posto 4	4967	3449	6487	4016	6280	3302	3535
posto 5	6040	6456	14656	12254	7324	5272	6743
posto 6	6079	6310	4128	4061	42462	10295	7163
posto 7	5730	7156	5743	54358	13035	9959	11669
posto 8	7329	21344	4084	6299	6197	4420	55207
posto 9	7098	8950	10120	10498	7975	6622	5589

Tabela 6.18 - Concentrações de Cloro em águas superficiais (valores em μg.L⁻¹).

Figura 6.17 - Concentrações de Cloro nos postos de água superficial.

As concentrações de cloro apresentaram maiores valores no posto sete quando comparado com outros postos, como pode ser observado pela figura 6.17 e, valores entre $1844\mu g.L^{-1}$ no posto dois e $68442 \mu g.L^{-1}$ no posto três.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
Posto 1	21035	9194	10999	9876	9492	10439	11747
posto 2	3901	6566	7040	6451	6436	4439	4918
posto 3	2939	4217	5956	4285	3640	1812	2162
posto 4	7321	8684	10755	7617	6295	6023	4483
posto 5	11945	11077	13715	14710	13911	10462	11700
posto 6	12057	9413	11942	10106	18457	10542	10169
posto 7	7429	8623	13728	10533	11091	8414	20190
posto 8	19471	26055	26523	21294	22258	16234	9032
posto 9	9076	11414	17050	13034	13211	11926	12373

Tabela 6.19 - Concentrações de Potássio em águas superficiais (valores em µg.L⁻¹).

Figura 6.18 - Concentrações de Potássio nos postos de água superficial.

A figura 6.18 mostra as concentrações do elemento Potássio presente na água superficial. As concentrações apresentaram uma variação entre 1812 μ g.L⁻¹ a 26523 μ g.L⁻¹. Entre os postos analisados o posto oito apresentou as maiores concentrações.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	18582	22821	18965	23864	15029	27684	26800
posto 2	3453	9131	11979	5908	7904	5998	7343
posto 3	22470	12229	22009	10777	22633	9499	8063
posto 4	19214	18889	23846	15768	14563	19820	13105
posto 5	21190	19596	31584	25151	17987	18853	28175
posto 6	22507	27229	19278	24495	17897	23561	25880
posto 7	20685	27731	41991	70036	40281	40512	26364
posto 8	23377	39704	19726	17042	20418	27089	39744
posto 9	17778	23532	36025	54982	33341	40660	28452

Tabela 6.20 - Concentrações de Cálcio em águas superficiais (valores em µg.L⁻¹).

Figura 6.19 - Concentrações de Cálcio nos postos de água superficial.
A figura 6.19 mostra as concentrações do elemento Cálcio presente na água superficial. Nas amostras analisadas foram observadas concentrações variando de 3453 µg.L⁻¹ a 70036 µg.L⁻¹. As maiores concentrações podem ser observadas no posto sete quando comparado com outros postos.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	274	142	134	76	357	357 89	
posto 2	113	615	164	130	797	41	67
posto 3	170	301	90	63	44	48	63
posto 4	265	42	128	109	82 40		91
posto 5	55	142	157	124	84	27	56
posto 6	77	111	781	43	766	222	65
posto 7	63	108	122	47	75	41	936
posto 8	76	179	93	95	96	83	144
posto 9	41	211	251	193	488	91	45

Tabela 6.21 - Concentrações de titânio em águas superficiais (valores em µg.L⁻¹).

A figura 6.20 mostra as concentrações do elemento titânio, este elemento apresentou concentrações com valores acima de 100 μ g.L⁻¹ na maioria dos postos. As maiores concentrações são observadas nos postos dois, seis, sete e nove com valores acima de 400 μ g.L⁻¹.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	8	83	5	121	7	1	<0,571
posto 2	1	9	1	112	16	<0,571	<0,571
posto 3	440	128	<0,571	2	554	<0,571	1
posto 4	12	1	<0,571	<0,571	3	2	<0,571
posto 5	5	30	2	<0,571	6	1	7
posto 6	54	2	10	<0,571	1	4	2
posto 7	7	5	6	60	2	3	1
posto 8	<0,571	80	2	3	1	3	3
posto 9	3	4	6	4	<0,571	<0,571	1
CONAMA				50			
CETESB				50			

Figura 6.21 - Concentrações de Cromo nos postos de água superficial.

A figura 6.21 mostra as concentrações de Cromo presente na água superficial, as amostras possuem concentrações acima do permitido nos postos um, dois, três e oito. Valores determinados no posto três promovem uma preocupação maior, pois valores acima de 554 μg.L⁻¹ foram observados sendo o valor permitido de 50 μg.L⁻¹, tanto pelo CONAMA quanto pela CETESB.

A tabela 6.23 e a figura 6.22 apresentam os valores das concentrações de manganês presente em águas superficiais.

Água	coleta 1	coleta 2	coleta 3	coleta 4	oleta 4 coleta 5		coleta 7
posto 1	186	207	138	162	127	142	111
posto 2	18	63	41	48	72	28	21
posto 3	46	705	<0,4618	13	527	4	6
posto 4	51	68	58	48	54	14	6
posto 5	117	114	63	116	128	99	124
posto 6	126	60	152	107	93	4	101
posto 7	140	162	238	10	158	128	69
posto 8	72	87	74	62	89	29	154
posto 9	132	186	249	178	169	115	112
CONAMA				100			

Tabela 6.23 - Concentrações de manganês em águas superficiais (valores em µg.L⁻¹).

As concentrações do elemento manganês se mostram acima dos valores máximos permitidos para os postos um, três, cinco, seis, sete, oito e nove. Os valores mais altos foram detectados no posto três com valores acima de 700 μ g.L⁻¹. Para os outros postos foram observados valores variando de 100 μ g.L⁻¹ a 238 μ g.L⁻¹.

A tabela 6.24 apresenta os valores das concentrações de ferro presente nas amostras de águas superficiais.

Figura 6.22 - Concentrações de Manganês nos postos de água superficial.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7	
posto 1	3186	3809	611	1428	1267	924	919	
posto 2	3262	2169	1271	1014	3430	294	537	
posto 3	2091	6147	323	610	5979	146	403	
posto 4	1591	321	933	1075 551 380		380	917	
posto 5	437	710	1099	1211	537	442	1216	
posto 6	308	820	6495	1380	1731	388	1164	
posto 7	617	943	1434	1252	734	528	2780	
posto 8	1006	1928	1365	1236	573	1115	953	
posto 9	283	1005	3326	2889	89 2237 778		587	
CONAMA		1	1	300	1	<u>1</u>	1	

Tabela 6.24 - Concentrações de ferro em águas superficiais (valores em μ g.L⁻¹).

A figura 6.23 mostra que as concentrações de ferro nas amostras de água superficial estão acima do valor máximo permitido em todos os postos.

Figura 6.23 - Concentrações de Ferro nos postos de água superficial.

A tabela 6.25 apresenta os valores das concentrações de níquel presente nas amostras de águas superficiais.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	33	32	19	61	17	19	21
posto 2	9	21	19	53	16	16	19
posto 3	115	13	45	21	150	16	20
posto 4	17	20	23	14	18	13	19
posto 5	14	35	23	21	59	16	25
posto 6	63	20	15	14	75	16	16
posto 7	15	23	18	19	23	17	69
posto 8	27	38	18	17	19	18	36
posto 9	20	19	20	12	13	29	19
CONAMA				25			

Tabela 6.25 - Concentrações de níquel em águas superficiais (valores em μ g.L⁻¹).

Nos postos um, dois, três, cinco, seis, sete, oito e nove se observam valores acima do permitido para o Níquel (figura 6.24). Nas coletas um e cinco do posto três valores quatro vezes acima do permitido foram determinados.

Figura 6.24 - Concentrações de Níquel nos postos de água superficial.

A tabela 6.26 apresenta os valores das concentrações de cobre presente nas amostras coletadas nos nove postos de águas superficiais.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	172	43	20	22	15	16	22
posto 2	20	27	19	21	16	11	13
posto 3	42	39	47	27	13	13	15
posto 4	17	16	30	17	18	11	17
posto 5	11	34	26	24	33	13	29
posto 6	33	27	23	14	93	15	18
posto 7	12	25	24	10	14	17	156
posto 8	24	46	27	20	18	15	29
posto 9	18	18	33	19	14	16	16
CONAMA			****	20			
CETESB				1000			

Tabela 6.26 - Concentrações de cobre em águas superficiais (valores em µg.L⁻¹).

Para o Cobre concentrações acima do valor máximo permitido pela CONAMA, foram observadas em praticamente todos os postos. No posto um obtivemos

concentrações variando entre 40 μ g.L⁻¹ e 160 μ g.L⁻¹, e valores acima de 80 μ g.L⁻¹ nos postos um, seis e sete. Porém estes valores de concentrações estão abaixo do limite estabelecido pela CETESB.

Figura 6.25 - Concentrações de Cobre nos postos de água superficial.

A tabela 6.27 apresenta os valores das concentrações de zinco presente nas amostras coletadas nos nove postos de águas superficiais.

Água	coleta 1	coleta 2	coleta 3	coleta 4	coleta 5	coleta 6	coleta 7
posto 1	736	525	475	935	460	393	546
posto 2	340	570	674	635	607	258	482
posto 3	668	511	810	1002	597	424	361
posto 4	554	469	552	407	499	348	273
posto 5	449	604	590	1015	695	284	714
posto 6	545	599	411	579	652	333	651
posto 7	438	522	725	544	592	315	962
posto 8	578	1350	521	620	572	452	598
posto 9	370	574	798	452	418	1474	473
CONAMA				180		L	
CETESB				5000			

Tabela 6.27 - Concentrações de zinco em águas superficiais (valores em µg.L⁻¹).

A figura 6.26 mostra as concentrações do elemento zinco, observa-se a presença deste elemento acima dos valores máximos permitido (CONAMA) em todos os postos. Concentrações acima de 600 μ g.L⁻¹ foram observadas nos postos um, dois, três, cinco, seis, sete, oito e nove.

Figura 6.26 - Concentrações de Zinco nos postos de água superficial.

6.1.5 - Resultados das Amostras de Esgoto coletadas no Presídio

Para análise dos resultados de esgoto do Presídio (posto dez) utilizaram-se os valores da resolução CONAMA e da CETESB para classe de efluentes. As figuras 6.27a e 6.30 apresentam os valores máximos permitido para o descarte de efluentes.

Figura 6.27 - Valores máximos permitidos (µg.L⁻¹) pela resolução CONAMA para os elementos Cr, As, Se, Cd, Pb e Hg em efluentes.

Figura 6.29 - Valores máximos permitidos (μg.L⁻¹) pela CETESB para os elementos As, Cd, Cr, Hg, Ag e Se em efluentes.

Figura 6.30 - Valores máximos permitidos (μg.L⁻¹) pela CETESB para os elementos Ba, B, Pb, Cu, Sn, Fe, Mn, Ni e Zn em efluentes.

As tabelas 6.28 a 6.30 mostram os valores das concentrações dos elementos: Si, P, S, Cl, K, Ca, Br, Ti, Cr, Mn, Fe, Ni, Cu, Zn Sr, Zr, Sn e Ba, nas amostras de esgoto.

Coleta	Si	Р	S	CI	к	Са	Br
1	4779	2415	532	525	4141	3335	5
2	1899	1701	313	491 5202 2877		854	
3	3666	2577	1706	2034	2757	2627	17
4	1633	1755	1288	214	1630	1978	3
5	2802	3940	639	496	1963	2717	8
6	42634	11603	3355	722	5561	6593	14
7	11081	7760	2052	2832	5882	8080	14

Tabela 6.28 - Concentrações (µg.L⁻¹) dos elementos Si, P, S, K, Ca e Br no esgoto.

Tabela 6.29 - Concentrações (μg.L⁻¹) dos elementos Ti, Cr, Mn, Fe, Ni, Cu e Zn no esgoto.

Coleta	Ti	Cr	Mn	Fe	Ni	Cu	Zn
1	14	11	9	6	8	72	14
2	4	161	78	4	6	49	4
3	16	4	8	3	4	49	16
4	4	7	7	3	4	48	4
5	31	9	10	5	8	48	31
6	574	18	26	13	22	102	574
7	96	254	38	102	102 76 2		96
CONAMA	********	500	1000	15000	2000	1000	1000
CETESB		50	1000	15000	2000	1000	5000

Tabela 6.30 - Concentrações (μ g.L⁻¹) dos elementos Sr, Zr, Sn e Ba no esgoto.

Coleta	Sr	Zr	Sn	Ba
1	<1,1	<2,5		3
2	536	<2,5		265
3	<1,1	<2,5		4
4	3	<2,5		5
5	<1,1	347		<0,3
6	<1,1	<2,5		22
7	<1,1	36		<0,3
CONAMA			4000	5000
CETESB			4000	5000

Os dados das tabelas 6.28 a 6.30 estão apresentados nas figuras 6.31 a 6.48, dados comparados com o valor máximo permitido para efluentes pela resolução CONAMA. Concentrações de silício com 42634 μ g.L⁻¹ foram detectadas na sexta coleta em amostra dos esgoto.

Figura 6.31 - Concentrações de Silício no esgoto.

Figura 6.32 – Concentrações de Fósforo no esgoto.

A coleta seis apresentou a concentração mais alta para fósforo com 11603 μ g.L⁻¹. Concentrações de enxofre com 3355 μ g.L⁻¹ foram detectadas na sexta coleta em amostra dos esgoto.

Figura 6.33 - Concentrações de Enxofre no esgoto.

Figura 6.34 - Concentrações de Cloro no esgoto.

Figura 6.35 - Concentrações de Potássio no esgoto.

Figura 6.36 - Concentrações de Cálcio no esgoto.

Figura 6.37 - Concentrações de Bromo no esgoto.

Altas concentrações de cloro (2832 μ g.L⁻¹), potássio (5882 μ g.L⁻¹) e cálcio (8080 μ g.L⁻¹) foram detectadas para as amostras de esgoto na sétima coleta, enquanto que para bromo (854 μ g.L⁻¹) as mais altas concentrações foram as da segunda coleta.

Figura 6.38 - Concentrações de Titânio no esgoto.

A concentração de titânio nas amostras de esgoto apresentou valores acima de $20 \ \mu g.L^{-1}$ a partir da coleta cinco e concentração de 96 $\mu g.L^{-1}$ na coleta sete.

Figura 6.39 - Concentrações de Cromo no esgoto.

Para o cromo, em duas coletas foram observados valores de concentrações acima do limite estabelecido pela CETESB, com valores acima de 150µg.L⁻¹ na coleta dois e 250µg.L⁻¹ na coleta sete, porém estes valores não ultrapassam os limites definidos pela resolução CONAMA.

Figura 6.40 Concentrações de Manganês no esgoto.

Figura 6.41 - Concentrações de Ferro no esgoto.

O manganês apresentou maior concentração na coleta dois com valor de 78 μ g.L⁻¹ e nas outras coletas valores inferiores a 40 μ g.L⁻¹, sendo todos os valores determinados abaixo do máximo permitido.

Para o ferro os limites permitidos também não foram atingidos e as concentrações mais elevadas foram observadas nas amostras das coletas seis e sete com valores acima de 1400µg.L⁻¹.

Figura 6.42 - Concentrações de Níquel no esgoto.

O elemento níquel apresentou valores abaixo do máximo permitido, sendo o maior valor observado na coleta sete com 102µg.L⁻¹.

Figura 6.43 - Concentrações de Cobre no esgoto.

Figura 6.44 - Concentrações de Zinco no esgoto.

Para os elementos cobre e zinco, as concentrações estão abaixo do máximo permitido para todas as coletas, sendo o maior valor observado para ambos os elementos na coleta sete.

Figura 6.45 - Concentrações de Estrôncio no esgoto.

Figura 6.46 - Concentrações de Zircônio no esgoto.

Figura 6.47 - Concentrações de Estanho no esgoto.

As maiores concentrações de estrôncio (536 μ g.L⁻¹) e bário (265 μ g.L⁻¹) foram detectadas na coleta dois e a de zircônio na coleta cinco com 347 μ g.L⁻¹.

Para o elemento estanho, na coleta seis, o valor determinado para a concentração foi superior ao permitido pela Resolução CONAMA e pelo Decreto 8.468/76 da CETESB.

Figura 6.48 - Concentrações de Bário no esgoto.

A figura 6.49 apresenta a comparação das concentrações dos elementos Si, P, S, CI, K e Ca presentes nas amostras do esgoto do presídio.

O elemento silício e fósforo apresentaram as maiores concentrações durante as coletas. Observam-se também valores elevados de potássio e cálcio.

Figura 6.49 - Comparação das concentrações dos elementos Si, P, S, Cl, K e Ca no esgoto.

A figura 6.50 mostra a comparação das concentrações dos elementos Ti, Cr, Mn, Fe, Cu, Zn e Br presentes nas amostras do esgoto do presídio. O elemento bromo apresentou a maior concentração na segunda coleta. O elemento zinco e ferro apresentaram altas concentrações durante as coletas. Observam-se também valores elevados de cromo e níquel.

Figura 6.50 - Comparação das concentrações dos elementos Ti, Cr, Mn, Fe, Ni, Cu, Zn e Br no esgoto.

A figura 6.51 mostra a comparação das concentrações dos elementos Sr, Zr, Sn e Ba. O elemento estanho apresentou a maior concentração quando comparado com outros elementos na coleta seis.

Figura 6.51 - Comparação das concentrações dos elementos Sr, Zr, Sn e Ba no esgoto.

6.1.6 - Resultados das Amostras de Efluentes

As amostras coletadas nas duas empresas foram divididas em dois grupos: I– efluente inorgânico e orgânico, II– efluente com características industrial. Nos itens a baixos serão descritos os resultados obtidos nas coletas.

6.1.6.1 – Resultados das Amostras de Efluentes coletados na Empresa Um

As amostras forma divididas em três grupos. I– ETI amostras de efluente, II– ETOB amostras não tratadas que apresentam matéria inorgânica e orgânica em suspensão, submetidas à digestão para determinação da concentração final dos elementos e III– ETIF amostras tratadas não submetidas à digestão.

As tabelas 6.31 a 6.37 mostram os valores das concentrações dos elementos Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Zr, Sn, Ba e Pb nas amostras de efluentes da empresa um.

Tabela 6.31 -	Concentrações	dos	elementos	Si,	Ρ	e S	em	amostras	de	efluentes	da
empresa um (valores em μg.L ⁻¹).											

Elementos		Si			Р			S		
Amostras	ETI	ETOB	ETOF	ETI	ETOB	ETOF	ETI	ETOB	ETOF	
Coleta 1	16	16	6	10	3	4	2	1	1	
Coleta 2	25	70	13	10	3	5	3	1	1	
Coleta 3	24	20	45	5	5	9	2	1	1	
Coleta 4	44	33	21	34	7	4	9	2	1	
Coleta 5	10	8	7	15	5	3	2	1	1	
Coleta 6	26	7	2	18	7	2	4	2	2	
Coleta 7	177	12	7	83	8	2	48	4	2	

*ETOB - Efluente inorgânico e orgânico bruto ***ETI - Efluente industrial

Tabela 6.32 - Concentrações dos elementos CI, K e Ca em amostras de efluentes da empresa um (valores em μg.L⁻¹).

Elementos	CI			к			Са		
Amostras	ETI	ETOB	ETOF	ETI	ETOB	ETOF	ETI	ETOB	ETOF
Coleta 1	15	1	1	8	3	3	26	6	18
Coleta 2	5	1	1	9	6	2	24	13	18
Coleta 3	7	1	1	11	3	3	20	5	14
Coleta 4	70	2	1	21	18	3	251	12	9
Coleta 5	10	1	1	10	2	2	26	7	9
Coleta 6	9	1	9	16	6	3	43	10	11
Coleta 7	240	7	4	37	10	3	286	29	13

Elementos	Ti			Cr			Mn		
Amostras	ETI	ETOB	ETOF	ETI	ETOB	ETOF	ETI	ETOB	ETOF
Coleta 1	65	272	10	6	8	6	68	22	4
Coleta 2	53	32	4	7	17	7	51	13	5
Coleta 3	116	28	58	8	8	7	26	23	6
Coleta 4	141	479	38	15	17	6	577	257	5
Coleta 5	35	26	7	6	7	6	25	22	4
Coleta 6	74	244	9	7	12	6	93	34	4
Coleta 7	491	214	197	116	69	14	487	118	27
CONAMA				500			1000		
CETESB				100			1000		

Tabela 6.33 - Concentrações dos elementos Ti, Cr e Mn em amostras de efluentes da empresa um (valores em μg.L⁻¹).

Tabela 6.34 - Concentrações dos elementos Fe, Ni e Cu em amostras em amostras de efluentes da empresa um (valores em μ g.L⁻¹).

Elementos	Fe			Ni			Cu		
Amostras	ETI	ETOB	ETOF	ETI	ETOB	ETOF	ETI	ETOB	ETOF
Coleta 1	78	402	80	84	20	22	5	12	4
Coleta 2	400	226	115	117	8	17	35	13	5
Coleta 3	1439	193	196	66	19	20	13	5	5
Coleta 4	1128	1016	120	304	172	18	12	18	5
Coleta 5	<3,79	188	54	<3	16	16	<3	4	4
Coleta 6	793	280	69	185	37	13	25	7	4
Coleta 7	2077	988	2555	444	22	16	95	26	42
CONAMA	15000			2000			1000		
CETESB	15000			2000			1000		

Tabela 6.35 - Concentrações dos elementos Zn, Br e Sr em amostras de efluentes da empresa um (valores em μg.L⁻¹).

Elementos	Zn				Br			Sr		
Amostras	ETI	ETOB	ETOF	ETI	ETOB	ETOF	ETI	ETOB	ETOF	
Coleta 1	296	202	271	5	5	86	64	11	460	
Coleta 2	809	142	257	5	4	31	74	39	423	
Coleta 3	933	159	207	5	3	72	52	12	341	
Coleta 4	2994	181	182	4	3	76	725	47	87	
Coleta 5	<3,6	134	285	5	3	12	34	18	334	
Coleta 6	1280	280	138	5	8	15	184	24	433	
Coleta 7	2491	450	281	273	28	24	34	20	468	
CONAMA	1000									
CETESB	5000							•••		

Elementos		Zr		Sn			
Amostras	ETI	ETOB	ETOF	ETI	ETOB	ETOF	
Coleta 1	<191	14	<191		****	11461	
Coleta 2	<191	19	<191	** **		53989	
Coleta 3	<191	29	<191		2845	7790	
Coleta 4	<191	<191	<191			640	
Coleta 5	<191	<191	<191	477-357 498-485 min		556	
Coleta 6	<191	<191	<191		2042	609	
Coleta 7	<191	<191	<191	***==			
CONAMA				4000			
CETESB					4000		

Tabela 6.36 - Concentrações dos elementos Zr e Sn em amostras de efluentes da
empresa um (valores em $\mu g.L^{-1}$).

Tabela 6.37 - Concentrações dos elementos Ba e Pb em amostras de efluentes da empresa um (valores em μg.L⁻¹).

Elementos		Ва		Pb				
Amostras	ETI	ETOB	ETOF	ETI	ETOB	ETOF		
Coleta 1	37	12						
Coleta 2	224	4			10			
Coleta 3	314	3						
Coleta 4	343	75						
Coleta 5		7	374		2	**		
Coleta 6	136	25	147		3	÷		
Coleta 7						-		
CONAMA		5000			500			
CETESB		5000		500				

As figuras 6.52 a 6.70 apresentam as concentrações dos elementos Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Zr, Sn. Ba e Pb nas amostras da empresa um (1).

Figura 6.52 - Concentrações de Silício em amostras da empresa um.

Figura 6.53 - Concentrações de Fósforo em amostras da empresa um.

A concentração do elemento silício apresentou redução na maioria das amostras tratadas, somente na coleta três observa-se concentração maior no efluente tratado.

O elemento fósforo apresentou concentrações maiores nas três primeiras coletas em amostras tratadas. Nas quatro coletas seguintes observa-se a redução na concentração nas amostras tratadas.

Figura 6.54 - Concentrações de Enxofre em amostras da empresa um.

O elemento enxofre apresentou concentrações menores nas amostras tratadas para a maioria das coletas, sendo observado na coleta cinco, concentrações mais elevadas para as amostras tratadas.

Figura 6.55 - Concentrações de Cloro em amostras da empresa um.

Figura 6.56 - Concentrações de Potássio em amostras da empresa um.

Concentrações maiores de cloro são observadas na maioria das amostras póstratamento, já para o potássio a redução da concentração foi para as amostras tratadas.

Figura 6.57 - Concentrações de Cálcio em amostras da empresa um.

Figura 6.58 - Concentrações de Titânio em amostras da empresa um.

O elemento cálcio apresentou concentrações maiores em amostras nas amostras tratadas da coleta um, dois, três e seis, enquanto para o titânio foi verificada uma redução na concentração na maioria das amostras tratadas, com exceção da coleta três.

Figura 6.59 - Concentrações de Cromo em amostras da empresa um.

Figura 6.60 - Concentrações de Manganês em amostras da empresa um.

As concentrações do elemento cromo ficaram abaixo do valor máximo permitido pela CONAMA, sendo as concentrações mais altas para as amostras não tratadas, podendo ser observada uma redução nas concentrações para as amostras tratadas. Porém, na coleta sete do efluente industrial a concentração determinada foi superior ao limite estabelecido pela CETESB.

O elemento manganês apresentou maiores concentrações nas amostras de efluente bruto. Valores acima de 500 µg.L⁻¹ foram observados no efluente industrial na coleta quatro, mas apenas para a coleta sete a concentração foi acima do valor máximo permitido.

Como pode ser visto na figura 6.61, nas seis primeiras coletas, os valores de ferro no efluente bruto foram maiores do que nas amostras tratadas. Para todas as amostras os teores determinados ficaram abaixo dos valores máximos permitidos. Os valores mais elevados de ferro foram observados para o efluente industrial, com exceção das coletas 1 e 5.

Figura 6.62 - Concentrações de Níquel em amostras da empresa um.

Figura 6.63 - Concentrações de Cobre em amostras da empresa um.

Para o níquel foram observadas concentrações mais elevadas nas amostras de efluente industrial, enquanto que as amostras de efluente tratado apresentaram um decréscimo nas concentrações em relação às amostras de efluente bruto, como era esperado. O mesmo comportamento foi observado para o elemento cobre.

Figura 6.64 - Concentrações de Zinco em amostras da empresa um.

O elemento zinco apresentou concentrações acima do permitido estabelecido pela CONAMA, para o efluente industrial nas coletas 4, 6 e 7 e para o efluente bruto apenas na coleta 4.

Para os elementos, bromo e estrôncio as concentrações mais altas foram observadas nas amostras de efluente tratado.

Figura 6.65 - Concentrações de Bromo em amostras da empresa um.

Figura 6.67 - Concentrações de Zircônio em amostras da empresa um.

Figura 6.68 - Concentrações de Estanho em amostras da empresa um.

O zircônio foi detectado apenas no efluente bruto e, em três das sete coletas realizadas.

No caso do estanho concentrações acima do permitido pelo CONAMA, foram observadas nas coletas 1, 2 e 3 do efluente tratado. Este elemento não foi detectado nas amostras de efluente industrial.

Figura 6.69 - Concentrações de Bário em amostras da empresa um.

Concentrações na faixa de 150 a 350 μ g.L⁻¹ foram observadas para bário, nas coletas cinco e seis do efluente tratado. Na coleta sete não foi possível detectar este elemento em qualquer um dos efluentes e, nas coletas 1, 2, 3, 4 e 6 do efluente industrial as concentrações variaram de 50 a 350 μ g.L⁻¹.

Figura 6.70 - Concentrações de Chumbo em amostras da empresa um.

O Pb apresentou foi detectado apenas para algumas coletas em amostras de efluente bruto, porém com valores abaixo do valor máximo permitido.

6.1.6.2 – Resultados das Amostras de Efluentes coletados na Empresa Dois

No caso da segunda empresa amostrada, as amostras foram divididas em dois grupos: ETIB amostras não tratadas e ETIF amostras tratadas.

As tabelas 6.38 a 6.41 mostram os valores das concentrações dos elementos Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr e Sn nas amostras de efluente da empresa dois (2).

Tabela 6.38 - Concentrações dos elementos Si, P, S e Cl em amostras de efluentes da empresa dois (valores em μg.L⁻¹).

Elementos	Si		Ρ		S		CI	
Amostras	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF
Coleta 1		305	175	530	1126	780	2428	6441
Coleta 2		49	160	556	1123	742	1763	6225
Coleta 3		-	326	429	374	569	4863	4724
Coleta 4			559	589	582	523	7469	6888
Coleta 5					*****	*******		******
Coleta 6			593	418	692	397	8569	5484
Coleta 7	141	123	241	793	210	1023	2280	9697

Tabela 6.39 - Concentrações dos elementos K, Ca, Ti e Cr em amostras de efluentes da empresa dois (valores em μg.L⁻¹).

Elementos	к		Са		Ti		Cu	
Amostras	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF
Coleta 1	140	124	246	2885	13367	<10,16	<5,523	<5,523
Coleta 2	185	98	144	3158	8272	<10,16	4371	301
Coleta 3	86	143	1881	2709	212	<10,16	54	<5,523
Coleta 4	96	82	3282	3840	<10,16	<10,16	179	<5,523
Coleta 5					*****			*******
Coleta 6	85	64	3603	2396	<10,16	<10,16	<5,523	<5,523
Coleta 7	70	107	1291	4644	2156	1783	248	500
CONAMA	*******						500	
CETESB					w#=======		100	

Elementos	Mn		Fe		Ni		Cu	
Amostras	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF
Coleta 1	27590	308	<3,791	10	<3,289	<3,289	18373	20
Coleta 2	18428	308	2245	10	<3,289	28	15690	57
Coleta 3	1165	280	30	10	20	<3,289	241	61
Coleta 4	3844	783	277	85	266	<3,289	1375	28
Coleta 5				******				****
Coleta 6	375	254	10	20	<3,289	<3,289	<3,344	<3.344
Coleta 7	317	737	17	27	408	617	438	494
CONAMA	1000		15000		2000		1000	
CETESB	سر سر خت خت خت خت ک				2000		1000	

Tabela 6.40 - Concentrações dos elementos Mn, Fe, Ni e Cu em amostras de efluentes da empresa dois (valores em μg.L⁻¹).

Tabela 6.41 - Concentrações dos elementos Zn, Br, Sr e Sn em amostras de efluentes da empresa dois (valores em μg.L⁻¹).

Elementos	Zn		Br		Sr		Sn	
Amostras	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF	ETIB	ETIF
Coleta 1	1219176	483	<12,644	222	<54,186	7608	*****	13484
Coleta 2	817487	519	<12,644	346	<54,186	9105		15802
Coleta 3	7244	476	352	170	5098	6773		11795
Coleta 4	73283	534	102	348	8732	11607		20796
Coleta 5								
Coleta 6	452	202	457	239	8231	6340	======	10642
Coleta 7	4112	5159	496	630	5317	16587	15568	21377
CONAMA	1000				***		4000	
CETESB	5000		******		****		4000	

As figuras 6.71 a 6.76 apresentam as variações das concentrações dos elementos Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr e Sn nas coletas de efluente bruto e tratado da empresa dois (2).

Figura 6.71 - Concentrações de Silício em amostras da empresa dois.

O elemento silício apresentou altas concentrações no efluente tratado, na sétima coleta observa-se redução na concentração de silício após tratamento. No caso

do fósforo as concentrações foram maiores nas amostras tratadas, com exceção da coleta seis.

Figura 6.73 - Concentrações de Enxofre em amostras da empresa dois.

Figura 6.74 - Concentrações de Cloro em amostras da empresa dois.

O elemento enxofre apresentou uma redução na concentração das amostras tratadas, para a maioria das coletas, exceto para as coletas três e sete. O mesmo comportamento foi observado para o cloro, onde as concentrações maiores nas amostras tratadas foram observadas nas coletas um, dois e sete.

Figura 6.75 - Concentrações de Potássio em amostras da empresa dois.

Figura 6.76 - Concentrações de Cálcio em amostras da empresa dois.

O elemento potássio apresentou uma redução na concentração após o tratamento na maioria das coletas, exceto para as coletas três e sete. Por outro lado, o cálcio teve comportamento inverso, apresentando concentrações maiores nas amostras tratadas para a maioria das coletas, excetuando-se a coleta seis.

Figura 6.77 - Concentrações de Titânio em amostras da empresa dois.

O elemento titânio apresentou concentrações acima de 1000 μ g.L⁻¹ nas coletas um, dois, três e sete no posto ETIB. O posto ETIF apresentou concentrações com valores zero nas seis primeiras e somente na sétima coleta foi detectado concentração de 1783 μ g.L⁻¹.

Figura 6.78 - Concentrações de Cromo em amostras da empresa dois.

O elemento cromo apresentou excedeu os limites permitidos para o efluente bruto na coleta dois, com 4371µg.L⁻¹ quando comparado com a Resolução CONAMA. Mas se os dados forem comparados com os valores estabelecidos pela CETESB, os valores foram ultrapassados para as coletas dois, quatro e sete.

Concentrações acima dos valores permitidos foram observadas para o manganês nas quatro primeiras coletas do efluente bruto enquanto que no efluente tratado os valores estão dentro do permitido.

Figura 6.80 - Concentrações de Ferro em amostras da empresa dois.

O elemento ferro apresentou concentrações abaixo do permitido em todas as coletas tanto para o efluente bruto quanto para o tratado.

Figura 6.81 - Concentrações de Níquel em amostras da empresa dois.

Figura 6.82 - Concentrações de Cobre em amostras da empresa dois.

O elemento níquel apresentou concentrações abaixo do permitido em todas as amostras analisadas, destaque maior pode ser dado para a sétima coleta para o efluente tratado que apresentou a maior concentração deste elemento com 617µg.L⁻¹.

O mesmo não ocorreu com o cobre, o qual apresentou concentrações acima do permitido para as coletas 1, 2 e 4, nas amostras de efluente bruto, porém com concentrações abaixo do permitido para amostras de efluente tratado.

O zinco apresentou concentrações acima do permitido para o efluente bruto nas quatro primeiras coletas com valores acima de 7.244 μ g.L⁻¹. Entretanto, para o efluente tratado apenas a sétima coleta com 5.159 μ g.L⁻¹, está acima do permitido segundo a CONAMA e CETESB.

Figura 6.84 - Concentrações de Bromo em amostras da empresa dois.

Figura 6.85 - Concentrações de Estrôncio em amostras da empresa dois.

Para o Br, concentrações maiores foram observadas nas amostras tratadas das coletas 1, 2, 4 e 7. O mesmo ocorreu no caso do Sr, apresentando concentrações maiores para amostras tratadas na maioria das coletas.

Figura 6.86 - Concentrações de Estanho em amostras da empresa dois.

O estanho apresentou concentrações acima do permitido para as amostras de efluente tratado em todas as coletas realizadas e apenas foi detectado no efluente bruto da sétima coleta, com valores também acima do permitido.

7 – CONCLUSÕES

Neste trabalho utilizou-se a fluorescência de raios X por reflexão total com radiação síncrotron para analisar a contaminação de metais em águas superficiais, esgoto e efluentes.

A técnica da fluorescência de raios X por reflexão total com radiação síncrotron (SR-TXRF) mostrou-se adequada para a detecção dos elementos Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Zr, Sn, Ba e Pb em amostras de águas naturais, esgoto e efluentes.

Muitos dos elementos analisados nas amostras de água superficial não apresentam valores máximos permitidos pela resolução CONAMA ou pelo Decreto 8.468/76 da CETESB, portanto não é possível indicá-los como elementos potencialmente prejudiciais à saúde ou outros danos que possam a vir causar no ambiente aquático.

Para o elemento silício foram detectadas concentrações acima de 5.000 µg.L⁻¹ em maioria das coletas realizadas nos postos de água superficial. O elemento fósforo apresentou valores acima do permitido na maioria das coletas de água superficial, com valores 13009 µg.L⁻¹. Este elemento não foi encontrado no posto de coleta dois.

O elemento enxofre presente na água superficial apresentou concentrações variando entre 428 μ g.L⁻¹ a 20.379 μ g.L⁻¹. As concentrações de Cloro apresentaram maiores valores no posto sete quando comparado com outros postos. Valores entre 1844 μ g.L⁻¹ no posto dois e 68.442 μ g.L⁻¹ no posto três.

Para o elemento potássio em amostras de água superficial os valores detectados apresentaram uma variação entre 1.812 μ g.L⁻¹ a 26.523 μ g.L⁻¹. Para o elemento cálcio foram observadas concentrações entre 3.453 μ g.L⁻¹ a 70.036 μ g.L⁻¹. O elemento titânio apresentou concentrações com valores acima de 100 μ g.L⁻¹ na maioria dos postos. As maiores concentrações são observadas nos postos dois, seis, sete e nove com valores acima de 400 μ g.L⁻¹.

Comparando o elemento cromo presente em amostras de água superficial, com a legislação CONAMA e o decreto 8.468/76 da CETESB podemos observar as mesmas concentrações, pois os valores máximos permitidos são os mesmos. Os postos um, dois, três e oito apresentaram valores acima do permitido, porém o posto três promovem uma preocupação maior, valores acima de 554 µg.L⁻¹ valor 8.8 vezes o VMP.

Os valores detectados são indesejáveis do ponto de vista ambiental, devido à contaminação da água e ao perigo potencial que representa para a saúde humana.

O elemento manganês apresenta concentração acima dos valores máximos permitidos pela resolução CONAMA com valores 2.0 vezes o permitido. A concentração mais alta foi detectada no posto três com valores acima de 700 µg. L⁻¹. Para os outros postos foram detectados concentrações entre 100 µg.L⁻¹ a 238 µg.L⁻¹. valores estes preocupantes para a qualidade do ambiente como também para a saúde do homem.

A concentração do elemento ferro presente em amostras de água superficial estão 3,3 vezes o VMP pela resolução CONAMA sendo estes valores preocupantes

138

para a qualidade do ambiente. Em relação ao elemento níquel a concentração é de 6 vezes a VMP.

O elemento cobre apresentou concentrações 8.6 vezes o valor máximo permitido pela resolução CONAMA em todos os postos, é observado concentrações com 172 µg.L⁻¹, quando comparado com o decreto 8.468/76 CETESB os valores estão abaixo do permitido.1 Para o elemento zinco as concentrações com 8.1 vezes o valor permitido pela resolução CONAMA e quando comparado com o Decreto 8.468/76 CETESB os valores estão abaixo do permitido.

Nas amostras de águas superficiais o posto três apresentou concentrações acima dos valores máximos permitido para todos os elementos analisados. Este posto é uma nascente localizada próximo ao aterro sanitário e do descarte do esgoto.

Na análise das amostras de esgoto o elemento silício apresentou concentração de 42.634 μ g.L⁻¹, o elemento fósforo concentração de 11.603 μ g.L⁻¹, o elemento enxofre 3.355 μ g.L⁻¹ estes valores foram observados na coleta seis, o elemento cloro 2.832 μ g.L⁻¹, o elemento potássio 5.582 μ g.L⁻¹, o elemento cálcio 8.080 μ g.L⁻¹ ambos foram observadas na coleta sete e o elemento bromo com 854 μ g.L⁻¹ na coleta dois.

Para os elementos analisados nas amostras de esgoto o silício apresentou concentrações mais altas nas coletas quando comparados com as outras coletas.

Na as mostras de esgoto o elemento cromo apresentou concentração de 5 vezes o valor máximo permitido pelo decreto 8.468/76 CETESB e valores abaixo do permitido pela resolução CONAMA. Os elementos Ti, Mn, Fe, Ni, Cu e Zn apresentaram valores abaixo do permitido em todas as coletas realizadas.

O elemento cobre apresentou a maior freqüência comparada com os elementos Cr, Ti, Mn, Fe, Ni, e Zn, mesmo apresentando valor abaixo do permitido.

139

Na análise dos elementos Sr, Zr, Sn e Ba em amostras de esgoto, o elemento estanho apresenta concentração acima do permitido pela resolução CONAMA e decreto 8.468/76 CETESB com 2 vezes o valor permitido. Os elementos Sr, Zr,Sn e Ba apresentam algumas concentrações com valores abaixo do limite de detecção não podendo ser detectadas na análise das amostras.

As amostras de esgoto do presídio apresentaram valores abaixo do permitido para os elementos analisados. Porém observou-se concentrações maiores para o elemento zinco e ferro no esgoto.

As amostras de efluente da empresa um apresentaram concentrações acima do permitido, para o elemento zinco. Cabe destacar que o tratamento apresenta uma redução nas concentrações dos elementos presentes nas amostras após tratamento.

Nas amostras da empresa dois o elemento cromo mostrou concentrações acima do VMP na sétima coleta no posto ETIF. Na maioria das amostras analisadas as concentrações verificadas apresentam valores abaixo do VMP.

Pode-se considerar que o descarte de efluentes tratados no curso de água do Ribeirão Jacuba pode contribuir no aumento das concentrações dos elementos analisados.

Este estudo mostra que as concentrações dos elementos nas amostras de águas superficiais apresentam valores acima do permitido pelo CONAMA. Atenção maior para os postos três, sete e oito que apresentaram concentrações acima do VMP em todas as coletas.

Com este estudo pode-se indicar que o Ribeirão Jacuba apresenta indícios de contaminação por alguns elementos.

Cabe aos órgãos responsáveis realizar o monitoramento da qualidade das águas do Ribeirão Jacuba na finalidade de manter os limites estabelecidos pela legislação CONAMA na manutenção da qualidade dos recursos hídricos do município de Hortolândia.

8 - REFERÊNCIAS BIBLIOGRÁFICAS

AIGINGER, H.; WOBRAUSCHEK, P. A method for quantitative X-ray fluorescence analysis in the nanogram region. **Nuclear Instruments and Methods**. 114, p. 157-158, 1974.

ALMEIDA, A. F. **Elementos de anatomia e fisiologia humanas.** São Paulo: Nacional. 44^a edição. 362 p., 1985.

BONACELLA, P. H.; MAGOSSI, L. R. **A poluição das águas**. São Paulo: Moderna. 12^a edição. 56 p., 1990.

BOUMANS, P.; KLOCKENKÄMPER, R. Total reflection X-ray fluorescence spectrometry. **Spectrochimica Acta**. 44B, p. 433-549, 1989.

BRAILE, P. M.; CAVALCANTI, J. E. W. A. Manual de águas residuárias industriais. São Paulo: CETESB. 764 p., 1993.

BRANCO, S. M. **Água origem. Uso e preservação.** São Paulo: Moderna. 3ª edição. 71 p., 1993.

http://www.cetesb.sp.gov.br/Agua/rios/relatorios.asp. Acesso em 30 de setembro de 2000.

COSTA, A. C. M.; ANJOS, M. J.; MOREIRA, S.; LOPES, R. T.; de JESUS, E. F. O. Analysis of mineral water from Brazil using total reflection X-ray. fluorescence by synchrotron radiation. **Spectrochimica Acta.** 58B, p. 2199-2204, 2003.

CURRIE, L. A. Limits for qualitative detection and quantitative determination. **Analytical Chemistry**. 40, p. 586-593, 1968.

DI BERNARDO, L. Métodos e técnicas de tratamento de água. Rio de Janeiro: ABES. 1^a ed., 496 p., 1993.

FONSECA, M. R. M. **Completamente química: físico-química.** São Paulo: FTD. 1^a ed. 592 p., 2001.

FÖRSTNER, U.; WITTMANN, G. T. W. ,**Metal pollution in the aquatic environment**. 2^a ed. Germany. **Springer-Verlag**. 486 p., 1981.

GIRARDI, F. et. al., Elemental analysis of a biological standard reference material by non-destructive methods. In: **IAEA**, ed. – Nuclear Activation Techniques in the Life Sciences. Viena, p. 229, 1967.

HOLYNSKA, B.; OSTACHOWICZ, B.; WEGRZYNEK, D. Simple method of determination of copper. mercury and lead in potable water with preliminary preconcentration by total reflection X-ray fluorescence spectrometry. **Spectrochimica Acta**. 51B, p. 769 -773, 1996.

IAEA. **Radioisotopes X-Ray Fluorescence Spectrometry.** Vienna: International Atomic Energy Agency. **Technical Reports Series**. n^o 115, 102p., 1970.

144

JORDÃO, E. P.; PESSOA, C. A. **Tratamento de esgotos domésticos.** Rio de Janeiro: ABES. 3ª ed., 1995.

KIMBROUGH, D. E.; WAKAKUWA, J. R. Acid Digestion for Sediments. Sludges. Soils. and Solid Wastes. A Proposed Alternative to EPA SW 846 Method 3050. **Enviromental Science and Technology**. 23, p. 898-912, 1989.

KLOCKENKÄMPER, R.; KNOTH, L.; PRANGE, A.; SCHWENKE, H. Total reflection Xray fluorescence spectroscopy. **Analytical Chemistry.** 64, 1115-1123, 1992.

KLOCKENKÄMPER, R.; BAYER, H.; VON BOHLEN, A.; SCHMELING, M.; KLOCKOW, D. Collection of airborne particulate matter for a subsequent analysis by total reflection X-ray fluorescence. **Analytical Sciences**, 11, p. 495-498, 1995.

CONAMA. CONSELHO NACIONAL DO MEIO AMBIENTE. – Legislação Federal: Controle da Poluição Ambiental. Resolução CONAMA Nº 20/86. Disponível em: <u>http://www.lei.adv.br/020-86.htm</u>. Acesso em 17 de outubro de 2003.

LNLS. Laboratório Nacional de luz Síncrotron. Disponível em: http://www.lnls.br. Acesso em 25 de outubro de 2003.

MONTICELI, J. J.; MARTINS, J. P. S. A luta pela água nas bacias dos Rios Piracicaba e Capivari, Editora EME, 1ª edição, 126p., 1993.

MURKHTAR, S.; HASWELL, S. J.; ELLIS, A. T.; HAWKE, D. T. Application of total reflection X-ray fluorescence spectrometers to elemental determinations in water. soil and sewage sludge sample. **Analyst**. 116, p. 333-338, 1991.

NASCIMENTO FILHO, V. F. Técnicas analíticas nucleares de fluorescência de raios X por dispersão de energia (EDXRF) e por reflexão total (TXRF). Piracicaba. Apostila. ESALQ-CENA/USP. 33 p., 1999. NUVOLARI, A.; TELLES, D. D.; RIBEIRO, J. D.; MIYASHITA, N. I.; RODRIGUES, R. B. e ARAUJO, R. **Esgoto sanitário coleta transporte e reuso agrícola. São Paulo:** Edgard Blücher. 1ª edição, 520 p., 2003.

PEGORARO, L. S. Projeto Tietê. São Paulo: Gráfica Estadão. s/d 357p.

PEREIRA, E. S. Emprego da fluorescência de raios X por dispersão de energia na determinação de cromo (III) e cromo (IV) em águas naturais e residuárias. Campinas. 1998. 89p. Dissertação de Mestrado. Faculdade de Engenharia Civil. Universidade Estadual de Campinas (UNICAMP). 1998.

PÉREZ, C. A; RADTKE, M.; SÁNCHEZ, H. J.; TOLENTINO, H.; NEUENSHWANDER, R.; BARG, W.; RUBIO, M.; BUENO, M. I. S.; RAIMUNDO, I. M.; ROHWEDDER, J. R. Synchrotron radiation X-ray fluorescence at the LNLS: beamline instrumentation and experiments. **X-ray Spectrometry.** 28, p. 320-326, 1999.

PINKERTON, A.; NORRISH, K.; RANDALL, P. J. Determination of forms of sulphur in plant material by X-ray fluorescence spectrometry. **X-ray Spectrometry.** 19, p. 63-69, 1990.

PRANGE, A.; KNOCHEL, A.; MICHAELIS, W. Multi-element determination of dissolved heavy metal traces in seawater by total-reflection fluorescence spectrometry. **Analytica Chimica Acta.** 172, p. 79-100, 1985.

PRANGE, A.; BÖDDEKER, H.; KRAMER, K. Determination of trace elements in riverwater using total-reflection X-ray fluorescence. **Spectrochimica Acta**. 48B, p. 207-215, 1993.

SALOMONS, W.; FÖRSTNER, U. Metals in the hydrocycle. 1^a ed. Germany. Springer-Verlag. 349 p. 1984.

SANSONI, B. *Nuclear and Nuclear Related Analytical Techniques*. IAEA – Application of Isotopes and Radiation. In: **Conservation of the Environment**. **Proceeding of a Symposium**. Karlsrube. Germany. 17, 1992.

SCHMITT, M.; HOFFMANN, P.; LIESER, K. H. Perspex as sample carrier in TXRF. **Fresenius' Journal of Analytical Chemistry**. 328, p. 593-594, 1987.

SIMABUCO, S. M.; MATSUMOTO, E. Synchrotron radiation total reflection for rainwater analysis. **Spectrochimica Acta**. 55B, p. 1173-1179, 2000.

STÖSSEL, R. P.; PRANGE, A. Determination of trace elements in rainwater by totalreflection X-ray fluorescence. **Analytical Chemistry**. 57, p. 2880-2885, 1985.

TÖLG, G.; KLOCKENKÄNPER, R. The role of total-reflection X-ray fluorescence in atomic spectrometry. **Spectrochimica Acta**. 48B, p. 111-127, 1993.

VIVES, A. E. S.; BRIENZA, S. M. B.; MOREIRA, S. Contaminação e biodisponibilidade de metais em perfis de sedimentos de lagos através da reflexão total com radiação síncrotron. **XIII Reunião Anual de usuários do LNLS**. Campinas. Brasil. p. 197,2003.

9 - ABSTRACT

OLIVEIRA, R. W. M. – Water quality evaluation of Jacuba stream using Synchrotron Radiation Total Reflection X-ray Fluorescence Analysis (SR-TXRF). 149 p., 2004. Dissertation (Master's Degree). College of Civil Engineering, Architecture and Urbanism, Campinas State University, Campinas, Brazil.

The pollution of the environment became everywhere of public interest of the world. The developed countries not just come being affected for the environmental problems; the developing nations also begin to suffer the serious impacts of the pollution, what elapses of the fast economic growth associated to the exploration of natural resources.

This work has as objective to study the quality of the waters in Jacuba stream in Hortolândia city, residual waters and sewages, through heavy metal analysis in several samples.

The samples were divided in three groups that define the study area: samples of superficial waters, collected in nine different locations, samples of inorganic and organic residual waters, without treatment and treated and, samples of sewage from state prison.

The technique employed (SR-TXRF) presents some advantages in relation to the other methods, which we can emphasize the detection limit in the range of a few micrograms per liter (ppb), besides being a multi-elementary method that allows the detection of several elements in a unique measure. This technique has a high potential application in several areas, mainly in areas where it is necessary a correlation among the essential and toxicant elements.

Key words: residual water, sewage, superficial water, heavy metals, synchrotron radiation, X-ray fluorescence.