

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL DEPARTAMENTO DE HIDRÁULICA E SANEAMENTO

APLICAÇÃO DE MÉTODOS MACROSCÓPICOS NA DETERMINAÇÃO DA CARGA SÓLIDA TOTAL TRANSPORTADA EM RIOS

Eng^o: Luiz Evaristo Dias de Paiva Orientador: Prof. Dr. Evaldo Miranda Coiado

> Dissertação de mestrado apresentada à Universidade Estadual de Campinas, como parte dos requisitos necessários para obtenção do título de Mestre em Engenharia Civil na área de concentração em Recursos Hídricos e Saneamento.

Campinas Estado de São Paulo Março de 1995

> UNICAMP BHELDIECA CENTRAL

UNIDADE 780
N. CHAMACA:
TINCAME
T166a
T 00, 25961
PACO 4331.95
PRECO 78 11 00
DATA 211 12195
N.º CPD

CM-00078450-6

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

P161a	Paiva, Luiz Evaristo Dias de Aplicação de métodos macroscópicos na determinação da carga sólida total transportada em rios. / Luiz Evaristo Dias de PaivaCampinas, SP: [s.n.], 1995.
	Orientador: Evaldo Miranda Coiado. Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil.
	1. Transporte de sedimento. 2. Sedimentos em suspensão. 3. Sedimentos e depósitos. I. Coiado, Evaldo Miranda. II. Universidade Estadual de Campinas. Faculdade de Engenharia Civil. III. Título.

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL DEPARTAMENTO DE HIDRÁULICA E SANEAMENTO

APLICAÇÃO DE MÉTODOS MACROSCÓPICOS NA DETERMINAÇÃO DA CARGA SÓLIDA TOTAL TRANSPORTADA EM RIOS

Engº : Luiz Evaristo Dias de Paiva Orientador: Prof. Dr. Evaldo Miranda Coiado FOLHA DE APROVAÇÃO

Dissertação defendida e aprovada, em março de 1995, pela banca examinadora constituída pelos professores :

TITULARES :

Carlo Art

Orientador : Prof. Dr Evaldo Miranda Coiado Faculdade de Engenharia Civil-Unicamp

Prof. Dr. Vieira Ďir

Faculdade de Engenharia Civil-Unicamp

ll

Prof. Dr. Carlos LLoret Ramos Escola Politécnica da USP - SP

AGRADECIMENTOS

Ao Conselho Nacional de Pesquisa (CNPq) e à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo apoio financeiro para a realização desta pesquisa;

Ao Prof. Dr. Evaldo Miranda Coiado pela dedicada orientação;

Ao prof. Dr. Antonio Vitorio Lorenzon Filho , à engenheira civil Márcia Aparecida D. da Silva e ao funcionário Benedito Prado Pereira pela ajuda nos trabalhos de topografia;

Aos funcionários do Laboratório de Hidráulica e Saneamento -Obadias P. da Silva Jr , Antonio Siviero, Pedro Sérgio Fadini, Rosana Otsuka, Paula Stela M. Batholomei, Graziela Siebert e ao professor Msc.Edson A. Nour - pelas contribuições dadas na fase preliminar do trabalho;

Ao Prof. Dr. José Geraldo Pena de Andrade e ao Prof. Dr. Dirceu Brasil Vieira pelas sugestões recebidas no exame de qualificação; Aos colegas Aluísio Arantes T.Jr, Rosilene A. Nascimento, Nilson P. Astal, pelas informações trocadas durante o curso de mestrado; Ao João Luis Almeida Paiva, Rita de Cássia Ogera, Alexandre Coelho Teixeira, Andréa Morero e Melquysedec dos Santos pela amizade e cooperação recebidas;

À Maria Cristina Ferraz de Toledo pelo cuidadoso trabalho de revisão;

Ao João Batista D. de Paiva e família pela importante contribuição na minha formação profissional;

À minha família pelo apoio e afetos recebidos.

DEDICATÓRIA

Aos meus pais Ana e José e e ao meu irmão João Batista, dedico.

ÍNDICE

1	INTRODUÇÃO1
2	REVISÃO BIBLIOGRÁFICA5
2.1	Generalidades5
2.2	Métodos macroscópicos para determinação da carga
	do leito8
2.2.1	Métodos macroscópicos de origem empírica10
2.2.1.1	Método de Laursen (1958)10
2.2.1.2	Equação de Garde e Dattatri (1963)13
2.2.1.3	Método de Bishop, Simons e Richardson (1965)14
2.2.1.4	Abordagem de Shen e Hungs (1972)18
2.2.1.5	Abordagem de Maddock (1976)19
2.2.1.6	Equação de Karim e Kennedy (1983)20
2.2.2	Métodos macroscópicos provenientes de análise
	dimensional22
2.2.2.1	Fórmula de Ackers-White (1973)22
2.2.3	Métodos macroscópicos de origem semi-teórica26
2.2.3.1	Equação de Bagnold (1966)26
2.2.3.2	Fórmula de Engelund-Hansen (1967)28
2.2.3.3	Método de Yang (1973)29
3	PROCEDIMENTO EXPERIMENTAL
3.1	0 trecho em estudo
3.2	Metodologia
3.3	Hidrometria
3.3.1	Medição da vazão
3.3.2	Medição da declividade40
3.4	Sedimentometria40
3.4.1	Medição de descarga sólida de fundo40

3.4.2	Medição da descarga sólida em suspensão42
3.4.3	Granulometria do material sólido que constitui o leito
	do rio45
4	RESULTADOS E DISCUSSÕES48
4.1	Apresentação dos dados de campo48
4.2	Apresentação dos resultados54
4.2.1	Considerações preliminares54
4.2.2	Análise e discussão dos resultados63
5	CONCLUSÕES E RECOMENDAÇÕES73
6 REFERÊ	NCIAS BIBLIOGRÁFICAS74
Lista de	anexos
ANEXO I	- Exemplo de aplicação das equações macroscópicas
ANEXO I	I - Curvas de regressão entre a descarga sólida total medida e calculadas pelas equações
ANEXO I	II - Tabelas de cálculo das diferenças percentuais relativas
ANEXO IV	- Curvas granulométricas do material do leito
ANEXO V	- Cálculo do raio hidráulico referente às deformações do leito

Lista de Símbolos

В	- largura da secção transversal em estudo;	
b	- largura da faixa de influência;	
C,	- concentração medida em ppm;	
C'	- concentração dos sólidos fixos em suspensão (medida);	
CV	- concentração total de sedimentos em peso por unidad	e
	de volume;	
с	- constante empírica usada na fórmula de Ackers-White;	
dm,	- profundidade da faixa de influência i;	
d	- profundidade média em qualquer vertical considerada;	
D	- diâmetro representativo da partícula de sedimento;	
D	- diâmetro do sedimento tal que 50% da amostra te	m
30	diâmetro inferior	
D	- diâmetro do sedimento tal que 35% da amostra te	m
55	diâmetro inferior;	
D	- diâmetro do sedimento tal que 65% da amostra ter	n
05	diâmetro inferior;	
D	- diâmetro do sedimento tal que 85% da amostra ter	n
55	diâmetro inferior;	
D	- diâmetro do sedimento tal que 90% da amostra ter	n
20	diâmetro inferior;	
ρ	- eficiência de transporte da carga do leito usada na	
C	fórmula de Bagnold;	
f'	- fator de atrito da fórmula de Ackers - White;	
Fgr	- número de mobilidade da fórmula de Ackers - White;	
f(U*/W)	- função usada no método de Laursen;	
g	- aceleração da gravidade;	
k	- parâmetro adimensional de distribuição de velocidades	5
(k=60) da	fórmula de Maddock;	
k,	- constante de correção do aparelho de medida da	ı
-	descarga de fundo (k ₁ =1,43);	
L	- distância longitudinal entre as réguas (comprimento do	>
	trecho em estudo) = 598,36m;	

	iv
L,	- leitura da régua de jusante;
L	- leitura da régua de montante;
m	- constante da fórmula de Ackers - White;
n	- expoente da fórmula de Ackers - White determinado de
	forma empírica;
Pq,	- percentagem de vazão líquida que passa na faixa de
-	influência;
Р	- perímetro molhado da secção transversal;
P	- fração percentual de um dado diâmetro D _i ;
Pc	- peso da cápsula de porcelana;
Pca	- peso da cápsula de porcelana mais amostra a 105°c;
Pca'	- peso da cápsula de porcelana mais amostra a 550°c;
Pf	- peso do microfiltro;
Ps	- peso do sólido seco coletado pelo aparelho de medida
	de descarga de fundo num intervalo de tempo Δ ti;
pfa'	- peso dos sólidos fixos em suspensão;
Q	- vazão líquida total da secção ;
qsa _i	- descarga sólida em peso seco que passa pela boca do
	aparelho de medição da descarga de fundo;
тр	- descarga sólida total em peso por unidade de largura
	por unidade de tempo;
q	- vazão líquida por unidade de largura do canal;
qв	- taxa de transporte da carga do leito ;
R	- raio hidráulico da secção ;
R'	- raio hidráulico relativo ao grão;
R"	- raio hidráulico relativo às deformações do leito;
S	- declividade da linha d'água;
Tc	- temperatura da água em $^{\circ}C;$
Τf	- temperatura da água em ⁰ F;
υ	- velocidade média da corrente;
U*	- velocidade de atrito;
, U*	- velocidade de atrito relativa ao grão ;
" U*	- velocidade de atrito relativa às deformações do leito;
Ui	- velocidade média na vertical i ;

Ucr	- velocidade crítica para o movimento inicial da
	partícula;
Ŵ	- velocidade de queda da partícula de tamanho Di;
x′	- fator de correção que leva em conta os efeitos
	viscosos
	obtidos em função do diâmetro D65 e da espessura da
	subcamada limite laminar;
Y	- função empírica empregada na fórmula de Shen e Hungs;
δ'	- espessura da sub-camada limite laminar;
α	- coeficiente de atrito da fórmula de Bagnold;
φ	- fator adimensional da descarga de sedimentos;
, фт	- fator adimensional de intensidade da carga total do
Ţ -	material transportado para a fórmula de Bishop, Simons
	e Richardson;
φ(I)) - relação empírica encontrada experimentalmente para o
	método de Maddock ;
γ	- peso específico da água;
γs	- peso específico do sedimento;
ys'	- peso específico do sedimento submerso;
ν	- viscosidade cinemática da água;
μ	- viscosidade dinâmica da água;
ρ	- massa específica da água;
ρs	- massa específica do sedimento;
το	- tensão de atrito média da corrente (γ.R.S);
τ*	- tensão de atrito adimensional [$\tau_0/(\gamma_s-\gamma)$ D];
το	 - tensão de atrito média da corrente relativa ao grao
	(y.R'.S);
τ*	 - tensão de atrito média relativa ao grao na forma
	adimensional $[\tau \circ ' / (\gamma \circ - \gamma) \cdot D]$;
τ0	c, - tensão crítica de cisalhamento para o sedimento de
	tamanho D _i ;
ψ'	- intensidade de tensão de cisalhamento;

v

RESUMO

Durante o período de março de 93 a abril de 94 foram realizadas 24 campanhas de medidas da descarga sólida total transportada em uma secção transversal do rio Atibaia em Sousas distrito de Campinas (SP).

A carga total de sedimentos medida resultou da soma das parcelas referentes às descargas de sedimentos transportadas em descargas de sedimentos transportadas suspensão com as por arrastamento do leito. Para cada uma das 24 campanhas de medidas foram realizadas tarefas de campo e de laboratório. Em campo, foram feitos levantamentos hidráulicos (medidas de velocidade e de vazão); sedimentométricos (coleta do material para estimativa descarqa sedimentos transportada suspensão da de em е por leito); geométricos da secção arrastamento do transversal determinação da área, determinação (batimetria da secção, do perímetro molhado e levantamento da declividade da linha d'água) e coleta do material depositado no leito da secção para elaboração de curvas granulométricas. Em laboratório, foram feitos trabalhos estufas, filtragem de pesagem, secagem em е análise granulométricas do material depositado na secção. A conclusão das tarefas de campo e de laboratório possibilitou quantificar a descarga sólida total transportada no período da pesquisa.

Com a obtenção das descargas medidas foi possível comparar os métodos de <u>Laursen</u> (1958), citado por GARDE & RAJU (1985), PAIVA (1988); <u>Garde & Dattatri</u> (1965), citado por GARDE & RAJU (1985); <u>Bagnold</u> (1966), segundo SIMONS & SENTURK (1977), GRAF (1971), GARDE & RAJU (1985); <u>Bishop Simons & Richardson</u> (1965); <u>Shen e Hungs</u> (1972), de acordo YANG & MOLINAS (1982); <u>Maddock</u> (1976); <u>Karim & Kennedy</u> (1985), citado por GARDE & RAJU (1985); <u>Acker & White</u> (1973); <u>Engelung & Hansen</u> (1967), citado por PAIVA (1988); e Yang (1973, 1976, 1979).

Nos métodos macroscópicos em geral estabelece-se que o diâmetro médio D₅₀ (diâmetro do sedimento tal que 50 % da amostra tem diâmetro inferior) seja utilizado para representar a amostra como um todo no cálculo da carga total. Nesta pesquisa, foram utilizadas duas formas de cálculo, uma seguindo a definição de cada autor e outra fracionando-se a amostra do material do leito. Desta forma, para o segundo caso, a carga total de sedimentos é o resultado da soma das descargas parciais referentes às frações de cada diâmetro Di. Esse procedimento serviu para observar que em alguns casos o cálculo com a amostra fracionada apresenta melhores resultados. Das equações comparadas, aquelas que apresentaram melhores resultados foram as de: Engelung & Hansen, Bagnold, Karin & Kennedy, Yang, e Garde & Dattatri. The macroscopic methods to computation of the total sediment load in alluvial stream.

This work analyses the application of ten macroscopical equations selected from bibliographical review.

The solid discharges calculated through the equations were compared to those obtained during twenty-four campaings that took place in Atibaia river, São Paulo. This to point out, the equations, among ten that better fitted the case that is being studied. 1 - Introdução

No estudo dos canais aluviais torna-se necessário conhecer a taxa total de sedimento transportado, bem como as características do fluido e do escoamento.

de erosão e deposição 0s processos de sedimentos resultam da relação de equilíbrio entre a capacidade do fluxo para transportá-los em uma secção e a quantidade dos mesmos que chega até esta secção. Quando a capacidade de transporte é maior, ocorre a erosão para complementar esta deficiência. Ao contrário, quando a capacidade de transporte é menor, o excesso de sedimentos trazidos até a secção fica depositado. Nos reservatórios de barramentos, a capacidade acumulação e nos do curso para transportar sedimentos é reduzida para níveis extremamente baixos e conseqüentemente, a carga afluente é depositada na forma de assoreamento.

0 Brasil possui diversas formas de aproveitamento hidrelétricos, cuja capacidade de geração foi reduzida ou até mesmo, cuja operação foi interrompida pelo assoreamento dos respectivos reservatórios. Além disso, embora não se disponha de um levantamento abrangente dos custos das medidas para garantir a continuidade de geração das usinas, alguns números podem ser apresentados. А mais recente paralisação das três unidades geradoras da UHE Funil, no Rio das Contas na Bahia, por exemplo, período de janeiro de ocorrido no 1992 a março de 1993, proporcionou a CHESF (Companhia Hidrelétrica do São Francisco) uma perda no faturamento de US\$ 1.200.000 (ALMEIDA, 1993, CARVALHO e ROCHA, 1993)

Sabe-se que os efeitos danosos causados ao meio ambiente pela presença dos sedimentos vão desde a perda do solo fértil pela erosão até o assoreamento da calha dos rios e reservatórios. O sedimento em suspensão nos rios reduz a vida aquática enquanto que o assoreamento da calha do rio provoca maiores enchentes, impedindo a navegação e reduzindo a vida útil dos reservatórios de acumulação influenciando em sua capacidade de geração de energia. Além desses e outros danos, os sedimentos soltos em suspensão podem ainda provocar a abrasão em turbinas, máquinas e comportas.

A engenharia muitas vezes despreza o fato de que os rios naturais conduzem não somente água, mas também sedimentos e que a taxa de sedimento transportada está intimamente relacionada com a forma e estabilidade do canal. Deste modo, é imprescindível considerar a taxa da carga de sedimento transportada como uma variável a ser equacionada em projetos de barragens, canais, reservatórios de acumulação ou em qualquer obra hidráulica.

A quantidade de sedimentos transportada pelos rios, além de informar sobre as características e o estado da bacia hidrográfica, é de fundamental importância para o planejamento e aproveitamento dos recursos hídricos de uma região, seja para análise da viabilidade de utilização da água para abastecimento ou irrigação ou seja para o cálculo da vida útil dos reservatórios.

Os sedimentos soltos existentes numa bacia hidrográfica passíveis de serem transportados pelas enxurradas para dentro das calhas dos rios, originam-se principalmente da erosão.

A erosão pode ainda ser agravada pela influência do homem através dos desmatamentos desordenados, das construções em geral, da mineração descontrolada e de atividades agrícolas sem critérios conservacionistas, podendo causar ainda efeitos patológicos ao meio ambiente que vão desde a alteração da qualidade da água dos rios até enchentes à jusante de um barramento provocado pelo assoreamento de sedimentos provenientes da bacia hidrográfica.

Os rios são importantes fontes de abastecimento de água e suas vazões são compostas pela mistura de água e sedimentos que são causadores de numerosos problemas. Sendo assim, o aproveitamento da água não pode ser tratado separadamente das questões pertinentes à erosão e à sedimentação.

Nos Estados Unidos por exemplo, milhões de dólares do governo federal são gastos anualmente em pesquisas relacionadas com o problema da erosão e sedimentação (LANE et al., 1982). Entretanto, este é um assunto de complexa solução e no estágio atual das pesquisas, ainda está longe de ser solucionado pela via estrutural. Contudo, as pesquisas atuais podem auxiliar de forma indireta na prevenção e controle através de medidas não estruturais (zoneamento, legislação, proteção das bacias contra a erosão, conscientização da população, etc).

A degradação do meio ambiente, em termos de erosão, pode ser qualificada e mesmo estimada conhecendo-se no tempo a evolução da quantidade e das características dos sedimentos transportados pelos rios.

O estado de São Paulo, que apresenta regiões extremamente suscetíveis à erosão, transporte e deposição de sedimentos conta atualmente com poucas informações sobre a descarga sólida transportada pelos rios.

existência ainda de uma rede de А não medidas sedimentométricas leva, muitas vezes, à utilização de modelos matemáticos ou até de métodos para o cálculo da carga sólida transportada em canais naturais, que foram desenvolvidos ou testados em canaletas de laboratório e, mesmo aqueles obtidos em condição de campo, têm sua aplicação limitada às regiões para as quais foram desenvolvidos e portanto sua aplicação a outras regiões pode levar a erros consideráveis.

Assim sendo, diante da escassez de dados nessa área da hidráulica, esta pesquisa testou em condições de campo a aplicação dos seguintes métodos macroscópicos existentes na literatura clássica para a determinação da carga sólida total transportada em canais naturais:<u>Laursen</u> (1958), citado por GARDE e RAJU (1985) ,SIMONS (1971) RAUDKIVI (1976),PAIVA (1988); <u>Garde e Dattatri</u> (1963),citado por GARDE e Raju (1985); <u>Bagnold</u> (1963),segundo SIMONS e Senturk (1977), GRAF (1971), GARDE e Raju (1985); <u>Bishop-Simons e Richardson</u> (1965); <u>Shen e Hungs</u> (1972), de acordo com YANG e MOLINAS (1982); <u>Maddock</u> (1976);<u>Karim-Kennedy</u> (1985), citado por GARDE e RAJU (1985); <u>Ackers-White</u> (1973); <u>Engelund-Hansen</u> (1967), citado por PAIVA (1988); e Yang (1973, 1976, 1979).Esses métodos são geralmente apresentados na sua forma original usando-

3

se um único diâmetro representativo.

Os cálculos efetuados nesta pesquisa foram realizados de duas maneiras, uma seguindo a definição imposta por cada autor e outra usando-se a amostra de sedimento fracionada. Desta forma, para o segundo caso, a carga total de sedimentos é o resultado da soma das descargas parciais referentes às frações de diâmetros Di. Pretende-se que este trabalho possa ser utilizado por qualquer profissional da Engenharia que venha atuar na área de transporte de sedimento. O anexo I confirmará esta tendência. Nele estão aplicadas todas as equações selecionadas que serão testadas com os dados de campo levantados no rio Atibaia no distrito de Sousas na cidade de Campinas (SP).

Este trabalho é composto de 5 capítulos no corpo principal, a relação da bibliografia incluída no texto e 5 anexos assim distribuídos: resumo; capítulo 1, introdução; capítulo 2, revisão bibliográfica; capítulo 3, materiais e métodos; capítulo 4, resultados e discussões; capítulo 5, conclusões e recomendações; referências bibliográficas. O anexo I tráz um exemplo de cálculo das equações usadas na pesquisa, o anexo II apresenta as curvas de regressão que relacionam as descargas sólidas totais medidas com os valores obtidos pelos métodos testados, o anexo III apresenta as tabelas das diferenças percentuais relativas entre os valores medidos e calculados por cada método o anexo IV e o V apresenta os dados granulométricos e o cálculo do raio hidráulico referente às deformações leito 24 do para as campanhas de medidas respectivamente.

4

2 - Revisão Bibliográfica

2.1 - Generalidades

A maioria dos problemas práticos, relacionados com rios naturais e canais, exige o conhecimento da carga de sedimentos por transportados ou ainda conhecimento eles 0 da carga que seguramente poderão conduzir sem que signifique, necessariamente, perigo de assoreamento. Por exemplo, a perda da capacidade de um armazenamento de reservatório projetado ou а perda da capacidade de fluxo de um rio depende, principalmente, da carga de sedimento transportada (RAJU . K. et al. 1981).

métodos de cálculo da carga total de sedimento Os transportada são divididos em duas categorias. Os métodos da primeira categoria subdividem a carga total de sedimentos em carga em suspensão e carga por arrastamento ou ainda em carga medida e não medida (definida como a carga que não é amostrada devido à impossibilidade do amostrador varrer toda а profundidade de amostragem em uma secção considerada). A adição da carga em suspensão com a carga transportada por arrastamento do leito produz a descarga total. Esses métodos podem ser denominados " microscópicos ".

Os métodos de cálculo que constituem a segunda categoria não fazem a divisão citada na primeira categoria. Os defensores da segunda categoria raciocinam que o processo do transporte em suspensão é um estágio avançado do transporte por arraste. Assim, a taxa total de sedimento transportada deve ser relacionada principalmente com a tensão de cisalhamento e não é necessário fazer distinção entre carga em suspensão e carga por arrastamento do leito. Esses métodos são denominados de "macroscópicos". As relações propostas sob esta categoria são baseadas em análises dimensionais, intuição ou completo empirismo . Essencialmente, a dos métodos macroscópicos maioria usa um único tamanho representativo para toda amostra е desse modo ignoram а possibilidade do transporte separadamente (GARDE e RAJU, 1985).

A quantidade total de sedimentos transportada em um rio, segundo esses mesmos autores , é usualmente definida como a soma da descarga de sedimentos transportada por arrastamento do leito descarga de sedimento proveniente do com a mesmo leito е transportada em suspensão, acrescidos da descarga de sedimentos em suspensão proveniente da bacia hidrográfica. O "SUBCOMMITEE ON SEDIMENT TERMINOLOGY OF THE AMERICAN GEOPHISICAL UNION " citado por GARDE e RAJU (1985), define a carga proveniente da bacia como sendo qualquer parte da carga de sedimento que é composta de partículas de tamanho menor do que aquelas encontradas em quantidade apreciável numa porção mutável do rio. Usualmente, a soma da descarga de sedimentos transportada por arrastamento do leito, com a descarga de sedimento transportada em suspensão, é denominada de descarga sólida total.

а determinação da guantidade de sedimentos Para transportada por um curso d'água, o engenheiro dispõe de duas medição alternativas. A primeira é a direta através dos amostradores ou acumuladores. A segunda é utilizar uma das diversas equações disponíveis na literatura. Porém, ambos os métodos têm grandes limitações. Desta forma, profissionais responsáveis por projetos e controle operacionais de canais e reservatórios de acumulação têm necessidade de definir métodos adequados para calcular a descarga de sedimentos em condições reais. A obtenção destes métodos é um dos mais importantes objetivos das pesquisas práticas em sedimentação (SRINIVASAN e 1993). Estes enfoques podem ser perfeitamente CAVALCANTE , ilustrados pelo que escreveu o "TASK COMMITEE", citado por Paiva quando afirma:"...linhas de pesquisas (1988)orientativas compreensivas para seleção e aplicação de fórmulas apropriadas de transporte de sedimentos para uso em canais de rios naturais não urgente necessidade de testar existem. Há uma as fórmulas propostas sob uma variedade de condições como as encontradas na prática da engenharia. Uma análise sistemática das considerações requeridas para cada fórmula e para cada faixa de condições onde cada fórmula é aplicável, é necessário. De maior importância pode

ser uma listagem das condições sob as quais cada fórmula não deve ser aplicada, ou porque essas condições violam as considerações estabelecidas da fórmula, ou, porque se conhece que a fórmula produz estimativas irrealísticas sob dada condição.

Tais linhas orientativas deveriam ao menos restringir а faixa de opção disponível ao engenheiro e, talvez, ajudar no desenvolvimento de relações melhoradas. Uma vez que os esforços para relacionar a morfologia do canal e a produção de sedimentos, devem, ou usar uma relação de transporte de sedimentos ou confiar nas implicações de uma relação assumida, a falta de uma fórmula de transporte de sedimentos apropriada tende a limitar o progresso no desenvolvimento de relações, com bases físicas, entre a morfologia do canal e a produção de sedimentos. Também a falta de uma relação, apropriada para os rios naturais, faz as interpretações relações empíricas tênues e dependentes das considerações de requeridas por cada fórmula de transporte de sedimentos. Se as condições não são encontradas na corrente natural então as interpretações freqüentemente têm pouca relação com o processso que ocorre no rio ".

Esta revisão, visa apresentar algumas equações e modelos existentes na literatura clássica que forneçam a descarga total do material transportado em função dos diâmetros representativo do sedimento sem fazer distinção entre carga por arrastamento e carga em suspensão, ou seja, as equações macroscópicas. 2.2 - Métodos macroscópicos para a determinação da carga do leito

As primeiras investigações a respeito da quantificação da descarga de sedimentos foram propostas por DUBOYS em 1879. A partir de então outros pesquisadores se engajaram no estudo em busca da solução do problema. Das equações atualmente conhecidas umas são de natureza completamente empírica, algumas foram obtidas a partir da análise dimensional e outras são deduzidas a partir de abordagens semi-teóricas (GARDE e RAJU, 1985).

No decorrer deste tópico serão apresentadas as equações a serem aplicadas na determinação da carga total do material do leito. Estas equações estão selecionadas de acordo com a natureza de sua dedução conforme o parágrafo acima descrito. Para tanto, faz-se necessário as seguintes definições interpretadas por Garde e Raju (1985):

a) Métodos macroscópicos de origem empírica. Nestas equações os valores dos parâmetros envolvidos são freqüentemente dados em função do tamanho do sedimento. Geralmente esses modelos são dimensionais, seus valores são aplicados somente para o sistema de unidades usados pelo autor que as deduziu. A maioria delas não inclui diretamente as formas do leito na taxa de transporte;

b) Métodos macroscópicos provenientes da análise dimensional. Nas equações de natureza empírica, os parâmetros são definidos por tentativas e erros. Aqui a diferença está no fato dos parâmetros serem definidos através de uma análise dimensional do problema;

c) Métodos macroscópicos de origem semi-teórica. Estas investigações são baseadas em princípios da mecânica dos fluidos e em princípios estatísticos. Entretanto, neste caso as equações não são deduzidas de forma completamente teórica. Constantemente utilizam-se dados experimentais para determinar os parâmetros envolvidos na derivação.

Geralmente as equações semi-teóricas consideram o

movimento individual de uma partícula e usam a velocidade como fonte de referência de estudo. Einstein em 1942, foi o primeiro a tentar uma solução semi-teórica para o problema da carga de sedimentos. Porém, a relação por ele apresentada não inclui o efeito das formas de fundo no transporte.

Depois de Einstein outros pesquisadores buscaram soluções baseadas nesta teoria. Bagnold, (1966) "apud" GARDE e RAJU (1985), aplicou o conceito de dispersão de partículas sólidas submetidas ao cisalhamento e incluiu o efeito deste fenômeno em suas equações básicas. Ele considerou a resistência total como sendo a soma da tensão de cisalhamento do fluido e a tensão de cisalhamento resultante da colisão das partículas de sedimento. Esta última é dependente da força normal que age na partícula e do ângulo de fricção interno entre elas.

2.2.1.- Métodos macroscópicos de origem empírica

2.2.1.1 - Método de Laursen (1958)

Laursen (1958), "apud" GARDE e RAJU (1985), SIMONS e SENTURK (1971), RAUDKIVI (1976), PAIVA (1988), desenvolveu uma relação funcional entre as condições de escoamento e a descarga de sedimentos resultante. Esta fórmula foi apresentada pelo Task Committee (1971) na seguinte forma :

$$CV = 0,01 \gamma \sum Pi (Di/d)^{7/6} \left[\frac{\tau o'}{\tau oci} - 1 \right] f \left(\frac{U^*}{W_i} \right)$$
(2.1)

onde :

- Pi = Porcentagem de cada fração de diâmetro Di da amostra;
- CV = concentração referente à carga total de sedimentos em peso por unidade de volume;

 $\tau o' = tensão de atrito média relativa ao grão em kgf/m²,$ obtida pela fórmula de Manning Strickler;

$$\tau o' = -\frac{\rho U^2}{58} \left(\frac{D_{50}}{d} \right)^{1/3} \qquad (kgf/m^2) \qquad (2.2)$$

ρ	= massa específica da água em kgf.s ⁴ / m [*] ;
U	= velocidade média da corrente em m/s ;
D50	= diâmetro médio do sedimento em m;
d	= profundidade média em m ;
U*	= velocidade de atrito dada por:

 $U^* = \sqrt{g. R. S}$ (m/s) (2.3)

R = raio hidraúlico da secção em m; g = aceleração da gravidade em m/s^2 ; = declividade da linha d'água m/m ;

= velocidade de sedimentação da partícula de tamanho Di na água em m/s, determinada pela equação de Rubey (1933) " apud " GARDE e RAJU (1985), na forma:

$$W_{i} = \sqrt{\frac{36\mu^{2} + \frac{2}{\sigma^{2}D_{i}}^{2} + \frac{2}{3} \left(\frac{\gamma_{s} - \gamma_{s}}{\rho}\right) D_{i}} - \frac{6 \cdot \mu}{\rho \cdot D_{i}}$$
(2.4)

sendo :

$$\mu$$
 = viscosidade dinâmica do fluido em kgf.s/m²;

 $f\left(\frac{U^*}{W_i}\right) = dada$ na figura (2.1) obtida de experimentos em canaletas de laboratório;

 tensão crítica de cisalhamento para o sedimento de tamanho Di dada pelo diagrama de Shields (1936) "apud"
 GARDE e RAJU (1985) na figura (2.2) em kgf/m².

A concentração total de sedimentos, em peso por unidade de volume, é obtida pela soma de cada fração pi, de um dado diâmetro Di.

A descarga sólida de material do leito é então calculada pela equação :

$$qT = Q \cdot CV \tag{2.5}$$

Q

qт

= vazão líquida total do canal, em m³/s;

- CV = concentração referente à carga total de sedimentos, em peso por unidade de volume;
 - = descarga sólida total do material transportado em kgf/S.

Figura 2.1 - Função f $\left(\frac{U^*}{W}\right)$ para o Método de Laursen (1958), "apud" GARDE e RANGA (1985), SIMONS e SENTURK (1977), PAIVA (1988), RAUDKIVI (1976).

Figura 2.2 - Tensão crítica de Shildes (1936) para o movimento incipiente "apud" GARDE e RAJU (1985).

Na equação (2.1), o parâmetro ($\tau o/\tau o_{ci-1}$) está relacionado com o transporte da carga por arrastamento enquanto que o fator f(U*/wi) relaciona-se com a carga em suspensão. A função f $\left(\frac{U*}{W_i}\right)$ foi determinada em canais de laboratório de dimensões 3 ft de largura e 90 ft de comprimento, com sedimento de densidade 2,65 e tamanho variando na faixa de 0.01mm a 4.08mm (SIMONS e SENTURK, 1977).

Laursen também comparou valores da descarga de sedimentos calculada pela equação (2.1) com valores observados de três pequenos rios dos EUA , o rio Niobrara próximo a Cody, Nebrasca, Mountain Creak na Carolina do Sul e West Goose Creak no Mississipi. Essas secções tinham profundidade variando de 0,12 a 1,3 ft e sedimentos do leito com tamanho médio 0.217mm, 0.86mm, aproximações 0.27mm, respectivamente. As entre valores os calculados e observados foram boas para o rio Niobrara, mas somente regular para os demais rios (GRAF, 1971).

2.2.1.2. - Equação de Garde e Dattatri (1963)

Garde e Datratti (1963), "apud" GARDE e RAJU (1985) postularam que a equação da carga total de sedimentos do leito, principalmente quando a desuniformidade e as configurações do leito não são claramente consideradas pode ser determinada de acordo com a equação (2.6)

З

$$qT = \gamma_s . U^* . D . f(\tau^*)$$
 (2.6)

γs	= peso específico do sedimento em kgf/m
U*	= velocidade de atrito, dada pela equação (2.3) em m/s
τ*	= tensão de atrito adimensional dada por:

$$\tau^* = \frac{\tau_0}{(\gamma s - \gamma) \cdot D} \tag{2.7}$$

το = tensão de atrito médio da corrente em kgf/m^2 , dada por: το = γ .R .S (2.8)

ï

D = diâmetro representativo do material do sedimento em m;

R = raio hidraúlico da secção em m;

S = declividade da linha d'água (adimensional);

 γ = peso específico da água em kgf/m³;

qT = descarga sólida total de sedimentos em kgf/m.s.

Plotando-se dados de campo е de laboratório com sedimentos faixa 0,01mm variando na de а 0,93mm, Garde (1968)"apud" GARDE e RAJU (1985) encontrou que os dados podem ser descritos pela relação:

$$qT = 16 . \gamma_s . U^* D. \tau^{*^4}$$
 (2.9)

O expoente de τ^* na equação (2.9) pode sofrer variações, dependendo principalmente de como está ocorrendo o transporte do sedimento, os valores baixos serão atribuídos à carga transportada por arrastamento e os altos ao transporte em suspensão (GARDE e RAJU, 1985).

2.2.1.3 - Método de Bishop, Simons e Richardson (1965)

Einstein (1950) definiu dois parâmetros, que são fundamentais para a determinação da carga do leito: A intensidade de transporte da carga do leito definida como:

$$\phi = \frac{q_{B}}{\rho s \cdot g} \left(\frac{\rho}{\rho s - \rho}\right)^{1/2} \cdot \left(\frac{1}{g \cdot D^{3}}\right)^{1/2}$$
(2.10)

e a intensidade de tensão de cisalhamento da partícula definida pela expressão :

$$\psi' = \left(\frac{\rho s - \rho}{\rho}\right) \left(\frac{D_{35}}{R' \cdot S}\right)$$
(2 11)

nas quais :

φ

= denota a intensidade de transporte da carga do leito;

dв	= taxa de transporte da carga do leito em kgf/s.m;
ρs	= massa específica do sedimento em kgf.s ² /m ⁴ ;
g	= aceleração da gravidade em m/s ² ;
D35	= diâmetro do sedimento tal que 35% da amostra tem
	diâmetro inferior;
D	= diâmetro representativo da partícula em m;
ψ'	= intensidade de tensão de cisalhamento (adimensional)
R′	= raio hidráulico relativo ao grão em m;
S	= declividade da linha d'água (adimensional)

Com base em experimentos nos canais de laboratório, usando sedimentos de diâmetro 0,19mm, 0,27mm, 0,47mm e 0,93mm Bishop, Simons e Richardson (1965), ajustaram os parâmetros ϕ e ψ' , propostos por Einstein (1950), para determinar a descarga total de sedimentos. O fator adimensional de intensidade foi designado por ϕ T, definido como segue:

$$\phi_{\rm T} = \frac{q_{\rm T}}{\rho \cdot q^{3/2} \cdot D^{3/2} \left(\frac{\rho_{\rm S}}{\rho} - 1\right)^{1/2}}$$
(2.12)

onde :

- φT
- = fator adimensional de intensidade de carga total do material transportado;
- qT = descarga sólida total do material transportado, em kgf/m.s;

= massa específica da água em, kgf.s²/m⁴;

ρ ψ'

intensidade de tensão de cisalhamento (adimensional)
 determinada pela equação (2.11).

O raio hidráulico R' em relação ao grão é determinado pelo método de tentativas e erros como segue:

Passos:

(I) conhecido o raio hidráulico (R) da secção em estudo, adota-se

```
um valor (R') ligeiramente inferior a (R);

(II) com o valor de (R') calcula-se o parâmetro (\psi') dado pela

equação (2.11);

(III) com o valor de (\psi') tira-se da figura (2.3) o valor de (U/U") e

calcula-se U".

onde :

U*" = velocidade de atrito relativa às deformações do leito,
```

```
-
```

em m/s;

U

= velocidade média da corrente em m/s;

(IV) com o valor de (U*) calcula-se R através da relação:

$$U^{*''} = \sqrt{(g \cdot R'' \cdot s)}$$
 (2.13)

onde :

g = aceleração da gravidade em m/s²;

R'' = raio hidráulico com relação às deformações do leito em
m;

S

(V) Se
$$R' + R'' = R$$
 fim

Se R'+ R'' \neq R adota-se um outro valor para R' e inicia-se novamente o processo pelo passo I, até encontrar que R'+R''= R.

A relação entre ϕr e ψ' está representada na figura (2.4) de acordo com Bishop, Simons e Richardson (1965) para diferentes diâmetros de grãos de areia.

Figura 2.4 - Curvas $\phi_T - \psi'$, para diferentes diâmetros de grãos de areia para o método de Bishop, Simons e Richardson (1965).

Com o valor de ϕ r conhecido, a descarga sólida total é determinada de forma instantânea pela equação (2.12). Segundo GRAF (1971) a equação de Bishop, Simons e Richardson (1965) apresentou boa aproximação quando aplicada para prever a taxa de transporte dos rios Grande, Niobrara e Colorado.

2.2.1.4.- Abordagem de Shen e Hungs (1972)

Shen e Hungs, "apud" YANG e MOLINAS (1982) após a análise de 587 dados de laboratório, com areias de tamanhos variados, determinaram por regressão uma equação para a taxa de transporte de sedimentos, apresentada a seguir:

$$\log CV = -107404, 46 + 324214, 75.Y - 326309, 59.Y^{2} + 109503, 87.Y^{3} \quad (2.14)$$

Onde :

$$Y = \left(\begin{array}{cc} U.S & 0.075 \\ \hline U.S & 0.0075 \\ \hline W & 0.32 \end{array}\right)$$
(2.15)

CV = concentração referente à carga total de sedimentos em partes por milhões por peso;

U = velocidade média da corrente , em ft/s;

W = velocidade de queda da partícula ,em ft/s, dada pela equação (2.4);

S

= declividade da linha d'água ,em m/m .

A carga total de sedimentos em kgf/s será dada pela equação 2.16 abaixo :

$$qT = 10^{-3} \cdot CV \cdot Q$$
 (2.16)

onde:

Q = vazão líquida total da secção em m³/s

A equação (2.14) ajusta-se muito bem com resultados medidos а partir de canais de laboratório е pequenos rios.Entretanto, medidos resultados computados е por estas equações para grandes rios, indicam que ela não deve ser empregada nestas condições. A ausência de um parâmetro de profundidade na equação (2.14) pode ser responsável por sua inaplicabilidade para grandes rios, onde variações na profundidade são significantes (YANG e MOLINAS, 1982).

2.2.1.5. - Abordagem de Maddock (1976)

MADDOCK (1976) através de estudos de laboratório determinou que :

$$\overline{CV} = \left\{ \begin{array}{c} 10^{3} \underline{U.S} \\ \phi(D) \end{array} - \begin{array}{c} K \cdot \left(\frac{\gamma s}{\gamma} - 1\right) g^{1/2} \\ \phi(D) \\ \phi(D) \end{array} \right\} \left[\left(\frac{\gamma s}{\gamma} - 1\right) g \cdot D \\ W^{2} \end{array} \right]^{1/4} \right\} \left\{ \begin{array}{c} (2.17) \\ (2.17) \end{array} \right\}$$

A equação (2.17) é dimensionalmente homogênea e foi testada experimentalmente para quatro diferentes tipos de diâmetros de grãos de areia (MADDOCK, 1976).

19

Figura 2.5 - Relação entre o diâmetro médio do sedimento e ϕ (D) encontrado experimentalmente por MADDOCK (1976)

2.2.1.6 - Equação de Karim e Kennedy (1983)

A equação de Karim e Kennedy (1983),"apud" GARDE e RAJU (1985), foi determinada por análise de regressão de dados de rios e canais de laboratório, sendo apresentada na seguinte forma:

$$\log \frac{q^{T}}{\gamma_{s} \sqrt{(\rho_{s}/\rho - 1)g.D^{3}}} = -2,2786 + 2,9719.V_{1} + 0,2989 V_{1}.V_{2} + 1,06 V_{1}.V_{3}$$
(2.18)

onde:

$$V_{1} = \log \frac{U}{\sqrt{\left[\left(\gamma_{s} - \gamma\right)/\rho\right] \cdot D}}; V_{2} = \log (D/d)$$

$$V_{3} = \log \left[\frac{U^{*} - U_{cr}}{\sqrt{\left[\left(\gamma_{s} - \gamma\right)/\rho\right] \cdot D}}\right];$$

= descarga sólida total de sedimentos transportada em qт kqf.m/s; = massa específica do sedimento em $kgf.s^{2}/m$; ρs = massa específica da áqua em $kgf.s^2/m^4$; ρ = aceleração da gravidade em m/s^2 ; g = diâmetro representativo do sedimento em m; D = profundidade média da corrente em m ; d = peso específico do sedimento em kgf/m³; γs = peso específico da água em kgf/m³; Y = velocidade de atrito em m/s; Ū* = velocidade crítica para o movimento inicial Ucr da partícula em m/s. Dada pela equação (2.19) a seguir :

$$U_{Cr} = \sqrt{\frac{\tau_{0ci}}{\rho}}$$
(2.19)

 τ 0ci

= tensão crítica para o movimento inicial da partícula mencionada no item (2.2.1.1) dada pelo diagrama de Shildes na figura (2.2);

A equação (2.18) apresentou bom ajuste para uma grande quantidade de dados de rios naturais e canais de laboratório, Karim e Kennedy (1983), citado por GARDE e RAJU,(1985). Entretanto, De Vries segundo GARDE e RAJU (1985), encontrou

;

que este método não é tão preciso quanto os métodos de Engelund-Hansen (1967), citado por Paiva, (1988) e também por Ackers e White, (1973).

2.2.2 - Métodos macroscópicos provenientes de análise dimensional

2.2.2.1 - Fórmula de Ackers-White (1973)

Baseado no conceito de potência da corrente Ackers e White (1973) aplicaram a técnica da análise dimensional para expressar a mobilidade e taxa de transporte de sedimentos em termos de alguns parâmetros adimensionais. O parâmetro que expressa a mobilidade dos sedimentos é definido por:

$$F_{gr} = \frac{U^{*^{n}}}{\sqrt{g.D.(\gamma_{s}/\gamma - 1)}} \left(\frac{U}{\sqrt{32} \log(10.d/D)} \right)^{1-n}$$
(2.20)

para sedimentos grossos n=0 a expressão fica reduzida a:

$$F_{gr} = \frac{U}{\sqrt{g.D.(\gamma_s/\gamma - 1)}} \cdot \frac{1}{\sqrt{32} \log(10.d/D)}$$
(2.21)

para sedimentos finos n = 1

$$F_{gr} = \frac{U}{\sqrt{g.D.(\gamma_s/\gamma - 1)}}$$
(2.22)

Para grãos de tamanho intermediário n pode tomar um valor entre 0 e 1, a hipótese assumida é que o valor dependerá de uma expressão adimensional para o diâmetro do grão. Essa hipótese foi examinada experimentalmente e obteve-se que:

$$D_{gr} = D_{35} \left(\frac{g. (\gamma_{s}/\gamma - 1)}{v^{2}} \right)^{1/3}$$
(2.23)

onde : D35

= diâmetro do sedimento tal que 35% da amostra tem diâmetro inferior ;
g = aceleração da gravidade em m/s^2 ;

= viscosidade cinemática da água em m²/s ;

U = velocidade média da corrente em m/s ;

- d = profundidade média em m ;
- U* = velocidade de atrito em m/s definida pela equação
 (2.3);

 γ = peso específico da água em kgf/m³;

Ackers e White (1973) relacionaram a concentração referente à carga total de sedimentos transportada, com uma função do número de mobilidade da partícula (Chang, 1988), definida por :

$$CV = c. \ \rho_s/\rho \quad \frac{D}{R} \quad \left(\begin{array}{c} U \\ -U^* \end{array} \right)^n \cdot \left(\begin{array}{c} \frac{F_g}{A} \\ -1 \end{array} \right)^m \qquad (2.24)$$

CV = concentração total de sedimentos por peso

ρs/p

υ

= relação entre a massa especifíca do sedimento e da água tomada como sendo igual à 2,65;

A carga total transportada em ton/dia é dada por:

qT = 86400 . Q . CV (2.25)

onde :

 $Q = vazão em m^3/s$

Segundo Chang (1988), na dedução do fator de mobilidade para o transporte de sedimentos, está distinguida a carga por arrastamento e a carga em suspensão. O transporte de sedimentos grossos na forma de carga do leito é atribuído a potência da corrente que gera tensões de cisalhamento do grão, $\tau o'U$, a qual é refletida na segunda parte da equação (2.20).

Para sedimentos finos que são transportados principalmente em suspensão, a intensidade de turbulência para manter a suspensão é assumida como uma função da tensão total de cisalhamento do leito, deste modo a potência da corrente é $\tau_0.U$. A primeira parte de Fg reflete a potência consumida associada com a intensidade de turbulência do escoamento. O coeficiente "n" é um coeficiente de transição, que depende do tamanho do sedimento; ele é utilizado quando ambas as formas de transporte estão presentes, e é zero para sedimentos grossos onde a carga de sedimento existente é atribuída à carga do leito. O coeficiente A, pode ser interpretado como um valor crítico para Fg. Os valores das constantes C, A, n, e m foram determinados a partir da análise de 1000 grupos de dados de laboratório e estão resumidos na tabela 2.1 (CHANG, 1988).

Tabela(2.1) - Valores das constantes da fórmula de ACKERS - WHITE

coeficientes	Dg >60	1,0 ≤ Dg < 60
с	0,025	$\log c = 2,86.\log D_{gr} - (\log D_{gr})^2 - 3,53$
n	0,000	1 - 0,56 log Dgr
A	0.170	0,23 / (Dgr) ^{1/2} + 0,14
m	1,500	9,66 / Dgr + 1,34

Para a aplicação do método de Ackers e White (1973) são necessários os seguintes dados :

- 1 diâmetro da partícula D35;
- 2 massa específica do sedimento ;
- 3 velocidade média do escoamento U;
- 4 profundidade do escoamento d;
- 5 declividade da linha d'água S;
- 6 velocidade de atrito U* dada pela equação (2.3);
- 7 viscosidade cinemática da água v ;
- 8 aceleração da gravidade g ;

Processo de cálculo

I) determina-se o valor de Dgr a partir de valores conhecidos de D,g, S, e v pela equação (2.23);
II) determina-se os valores de n, A, m e c associados com Dgr pelas equações divulgadas na tabela (2.1).
III) calcula-se o valor da mobilidade da partícula Fgr, pela equação (2.20),(2.21) ou (2.22).
IV) calcula-se a concentração referente à carga total de sedimentos pela equação (2.24)

A equação de Ackers e White (1973) foi derivada usando-se dados de laboratório em canais com profundidade menores que 0,40m. Comparações foram feitas com dados obtidos em pesquisas de campo nas estações Wallingford, na Inglaterra.

Outras pesquisas em laboratório usando areia de diâmetro 0,61mm (Dgr = 14,1) mostraram uma diferença em torno de 10% a menos na taxa de sedimentos observada, enquanto que análises com areia de diâmetro 0,18mm (Dgr = 4,3) apresentaram resultados menos satisfatórios, mostrando um erro médio da ordem de 120%.

Pesquisas realizadas no rio Paraguai baseadas no tamanho médio D50 = 24mm apresentaram um erro médio em torno de 7% com desvio padrão aproximadamente igual a 82%. Melhores resultados foram obtidos quando se usou D35 = 0,20 mm como diâmetro representativo do material (ACKERS-WHITE, 1973).

25

2.2.3 - Métodos macroscópicos de origem semi-teórica

2.2.3.1 - Equação de Bagnold (1966)

Bagnold (1966), "apud" SIMONS e SENTURK (1977), GRAF (1971) GARDE e RAJU (1985), baseou-se no conceito balanço de energia e desenvolveu a seguinte equação para o transporte de sedimentos:

$$qT = \left(\frac{\gamma}{\gamma s - \gamma}\right) \tau_0 U \left[\frac{\rho}{tang \alpha} + 0,011 - U \right] \qquad (2.26)$$

na qual :

Ŵ	-	velocidade	de	queda	da	partícula	determinada	pela
		equação (2.	4)	em m/s;				

 γ = peso específico da água em kgf/m³;

γs = peso específico do sedimento em kgf/m³;

U = velocidade média da corrente em m/s;

 τ_0 = tensão de atrito média da corrente em $k_{gf/m}^2$, dada pela equação (2.8);

qr = descarga sólida total em kgf/m.s

 ρ_e = eficiência de transporte da carga do leito dada na figura (2.6). Sendo inversamente proporcional a velocidade do fluido e ao diâmetro do sedimento, com valores permanecendo no intervalo 0,15 à 0,11, quando o diâmetro estiver na faixa de 0,03mm à 1,0mm conforme pode ser visto na figura 2.6 (GARDE e RAJU, 1985). tang α = coeficiente de atrito dado na figura (2.7).

A equação (2.26) é aplicável a escoamento turbulento, cujos resultados são melhores para grandes taxas de transporte e pode também ser usada em qualquer sistema de unidades consistentes. Esta equação não deve ser aplicada para leitos com partículas de tamanho D \leq 0,015mm (SIMONS e SENTURK 1977, GRAF, 1971, GARDE e RAJU, 1985).

Figura 2.6 - Fator de eficiência de transporte para o Método de Bagnold (1966), " apud " SIMONS e SENTURK (1977), GRAF (1971), GARDE e RAJU (1985).

Figura 2.7 - Coeficiente de fricção sólida para o Método de Bagnold (1966)," apud " GRAF (1971).

2.2.3.2 - Fórmula de Engelund-Hansen (1967)

Segundo Paiva (1988) o método de Engelund e Hansen (1967) é expresso pela equação :

$$f'\phi = 0, 1 (\tau^*)^{5/2}$$
(2.27)

sendo:

τ*

$$f' = \frac{2. \tau_0}{\rho. U^2} = \frac{2. g. R. S}{U^2}$$
(2.28)
$$\phi = \frac{q\tau}{\sqrt{1-q\tau}}$$
(2.29)

$$\varphi = \frac{\gamma_{s}}{\gamma_{s}} \left[\left(\frac{\gamma_{s}}{\gamma} - \frac{1}{\gamma} \right) \cdot g \cdot Dso^{3} \right]^{1/2}$$

= será dada pela equação (2.7) anteriormente definida como

$$\tau^* = \frac{\gamma}{(\gamma_{\rm S} - \gamma) \cdot D_{50}}$$

το

f' = fator de atrito (adimensional) ;

$$\phi$$
 = fator adimensional da descarga de sedimentos;

- qT = descarga sólida total do material transportado, em
 kgf/m.s;
- το = tensão de atrito média da corrente, em kgf/ m², dada pela equação (2.8);

U = velocidade média da corrente, em m/s.

Substituindo as equações (2.28) e (2.29) em (2.27) obtêm-se:

$$qT = 0.05.\gamma_{s}.U^{2}.\left[\frac{D_{50}}{g.(\gamma_{s}/\gamma - 1)}\right] \cdot \left[\frac{\tau_{0}}{(\gamma_{s} - \gamma_{s}).D_{50}}\right]^{3/2} (2.30)$$

A equação de Engelund-Hansen deve ser empregada para correntes de leitos com dunas de acordo com o princípio de similaridade. Entretanto, pode ser empregada para outros regimes de escoamento com partículas de tamanho superior a 0,15mm sem sérios erros (CHANG, 1988).

YANG (1973, 1976, 1979), usando o conceito de potência da corrente determinou que a soma de sedimentos transportada pela água em um canal aluvial pode ser calculada por:

 $\log CV = 5,435 - 0,286 \log \frac{W.D}{v} - 0,457 \log \frac{U*}{W} + \frac{1}{W}$ $(1,799 - 0,409 \log \frac{W.D}{v} - 0,314 \log \frac{U*}{W} \log \frac{(U.S - Ucr.S)}{W}$ (2.31)

onde:

CV	=	concentração	referente	а	carga	total	de	sedimentos	em
		partes por m	ilhões por	pe	so;				

- W = velocidade de queda da partícula , em m/s determinada pela equação (2.4);
- D = diâmetro representativo da partícula de sedimentos, em m;
- v = viscosidade cinemática da água, em m²/s;
- Ucr = velocidade crítica para o movimento inicial da partícula, dada por :

$$\underline{U_{cr}} = 2,5 \left[\frac{\log(\underline{W} \cdot \underline{D}) - 0,06}{\nu} \right]^{-1} + 0,066 \quad (2.32)$$

para
$$1,2 < \frac{W.D}{v} < 70$$
 (2.33)

$$\frac{U_{cr}}{W} = 2,05 \qquad \text{para } 70 \leq \frac{W \cdot D}{\nu} \qquad (2.34)$$

U* = velocidade de atrito , dada pela equação (2.3), em m./s.

Yang (1979) avaliou que o termo relativo à potência crítica unitária da corrente não afetaria de maneira significativa o resultado final da concentração total de sedimentos quando esta soma é superior a 20 ppm. Desta forma, apresentou uma nova versão para a equação anterior com o seguinte aspecto:

$$\log CV = 5,165 - 0,153 \log \left(\frac{W}{v} \cdot D\right) - 0,297 \frac{U*}{W} + \left[1,78 - 0,360 \times \log \left(\frac{W}{v} \cdot D\right) - 0,48 \log \left(\frac{U*}{W}\right)\right] \log \left(\frac{U.S}{W}\right) \quad (2.35)$$

A precisão e aplicabilidade da equação (2.35) foram verificadas experimentalmente para um grupo de 1093 dados de laboratório e 166 dados de rios (YANG, 1979).

A figura (2.8) mostra um exemplo da comparação entre a concentração total de sedimentos computada pela equação (2.35) e a concentração total medida em um canal de 2,44 m de largura com sedimentos de tamanho médio 0,50mm. A precisão foi muito boa apesar existência de diferentes formas de leitos. da Α convergência mostrada na figura (2.8) indica que a equação (2.35) pode ser aplicada para canais aluviais com diferentes formas de leitos (YANG, 1979).

Comparações entre resultados computados a partir da equação (2.35) e valores medidos por Gilbert (1914) são mostrados na figura (2.9) "apud " YANG (1979).

A figura (2.10) apresenta uma aplicação da equação (2.35) e os resultados indicam que esta equação pode ser empregada tanto para pequenos como para grandes rios com precisão razoavelmente boa (YANG, 1979).

Estudos de Yang (1973) mostram que as variações na profundidade média da corrente, temperatura da água e tamanho do sedimento podem causar alterações significantes no resultado final do cálculo da concentração total de sedimentos.

Figura 2.8 - Comparação entre resultados calculados a partir da equação (2.35) e medidos por Gui (1966), " apud " YANG (1979), em canais de laboratório com areia de tamanho 50 mm de diâmetro.

Figura 2.9 - Comparações entre resultados calculados a partir da equação (2.35) e valores medidos por Gilbert (1914) em canais de laboratório com areia de 1,71 mm de diâmetro " apud " YANG (1973).

32

Figura 2.10 - Comparação entre resultados calculados a partir da equação (2.35) e valores medidos em rios.

3 - PROCEDIMENTO EXPERIMENTAL

3.1 - O trecho em estudo

Escolheu-se para estudo um trecho do rio Atibaia, um dos principais afluentes do rio Piracicaba, cuja secção fica localizada no Distrito de Sousas em Campinas (SP).

Foram feitas algumas investigações preliminares acerca da secção de medidas. Optou-se por uma secção de fácil acesso localizada num trecho reto do rio sobre a qual existe uma passarela de pedestres, o que facilitou muito os trabalhos de medidas. A Figura 3.1 apresenta um desenho esquemático da Bacia do rio Piracicaba, o traçado em negrito destaca a presença do rio Atibaia na bacia.O trecho estudado tem uma extensão de aproximadamente 600m como pode ser visto na Figura 3.2.

3.2 - Metodologia

Geralmente as campanhas de medição de descarga sólida transportada por um rio envolvem medidas hidráulicas e sedimentométricas no campo e serviços de laboratório.

3.3 - Hidrometria

3.3.1 - Medição de vazão

As medições de descargas líquidas podem se feitas de duas maneiras, através de medidas indiretas e diretas. Em geral, para o segundo caso, chega-se à vazão pelo conhecimento prévio da velocidade medida através de instrumentos (molinete). Para esta pesquisa optou-se pela medida direta, que consistiu em :

a) Realização da batimetria na secção de medição para a determinação da área de escoamento e do perímetro molhado;
b) Medições das velocidades médias nas verticais de 1 a 7 mostradas na figura 3.3;

c) Leitura da régua limnimétrica instalada na extremidade à jusante do trecho em estudo para elaboração da curva chave da secção e também para determinação da declividade da linha d'agua.

O cálculo da vazão é dado por:

$$Q = \sum_{i=1}^{n} \overline{U_i} \cdot d_{mi} \cdot b_i$$
(3.1)

onde:

\overline{U}_1	= velocidade média medida na vertical 1 em m/s
dmi	= profundidade da faixa de influência i em m;
bi	= largura da faixa de influência i em m;

Um dos métodos utilizados para a determinação da velocidade média em uma vertical é o método dos três pontos.

As experiências demonstram que em condições normais, a média aritmética das velocidades a 20% e 80% da profundidade a partir da superfície é a velocidade média na vertical, e que o valor encontrado para a velocidade a 60% da profundidade, é bem próximo do valor da velocidade média .

Após a realização de diversas medições em cada vertical, foi confirmada a teoria descrita no paragráfo anterior, o que possibilitou realizar medidas somente num ponto da vertical, a 60% da profundidade média.

As medidas de velocidades foram feitas com um molinete fluviométrico da marca IH. Para computar a velocidade, a hélice do molinete mostrado na figura (3.4) gira sobre rolamentos esféricos e aciona, quase sem atrito, uma micro chave magnética hermeticamente fechada, que por sua vez comanda um dispositivo de sinalização, contador dos giros da hélice, sendo a velocidade do fluxo dada pela equação (3.2) em função destes giros.

 $\overline{U}_{i} = 0,02278 + 0,2638 \text{ Ni}$ (m/s) (3.2)

Ni = número de giros da hélice do molinete na vertical i por segundo.

Figura 3.1 - Esquema representativo da Bacia do Rio Piracicaba, mostrando o rio Atibaia.

Figura 3.2 - Croqui mostrando as posições das réguas limnimétricas e a secção de medidas.(ESC 1:100)

Figura 3.3 - Seçcão de medidas no rio Atibaia, distrito de Sousas, Campinas (SP) - ESC VERT 1:20 - ESC HOR 1:20

Figura 3.4.a - Vista do molinete fluviométrico acoplado ao guincho

Figura 3.4.b - Detalhe do molinete fluviométrico IH (Fonte:Catálolgo Geral de Aparelhos e Instrumentos de Fabricação IH).

3.3.2 - Medição da declividade

Para a medição da declividade foram instaladas duas réguas limnimétricas, uma à jusante e outra à montante do trecho em estudo. Levantamentos altimétricos permitiram estabelecer cotas nas réguas em relação a um mesmo referencial. O zero superior da régua de jusante corresponde à cota 998,008 e da régua de montante corresponde à cota 998,436.

Feitas as leituras, determinou-se por subtração o desnível da superfície livre da água. A declividade da linha d'água é dada para o caso específico em estudo pela expressão:

 $S = [(L_j - L_m + 0, 428)] / L$ (3.3)

Lj		leitura	da	régua	de	jusante	em	m	;			
Lm		leitura	da	régua	de	montante	e en	l m	;			
L	=	distânci	a]	Longitu	ıdir	al entre	e as	r	éguas	=	598,	36m.

3.4 - Sedimentometria

3.4.1- Medição de descarga sólida de fundo.

As medidas do escoamento do material de fundo foram efetivadas pelo método da quantificação direta, para tanto foi utilizado um amostrador do tipo ARNHEM-BTMA ilustrado na figura (3.5). O processo de medição consistiu em fazer descer o aparelho ao fundo, deixando-o nesta posição por um determinado período, e recolhendo-o posteriormente.

Após um período de testes optou-se por deixar o amostrador no fundo do rio nas posições verticais (2), (4), (6) (conforme mostra a figura 3.3) durante quarenta minutos em cada vertical.

O cálculo da descarga sólida de fundo é feita através da fórmula :

 $Q_{SA} = \sum_{i=1}^{n} q_{sai}$, bi (t/dia) (3.4) 0,085

Figura 3.5 - Amostrador ARNHEM-BTMA para escoamento do material do leito (Fonte:Simons 1977).

onde:

bi = faixa de influência da medição em m;

qsai = descarga sólida em peso seco que passa pela boca do aparelho;

$$q_{sai} = \sum_{i=1}^{n} \frac{K_{1} \cdot P_{s}}{\Delta t_{i}}$$
(3.5)

Ps = peso do sólido seco coletado pelo aparelho num intervalo de tempo Ati em toneladas;

K1 = constante de correção do aparelho = 1,43 (valor médio).

O aparelho utilizado ARNHEM-BTMA é do tipo deprimogênio e consiste numa caixa de tela, com formato divergente na parte posterior que provoca uma diminuição de pressão e conseqüentemente um aumento de velocidade, compensando assim a perda de carga provocada pela presença da tela. O uso deste aparelho é recomendado para cursos de baixa declividade com material fino superior a 0,30mm (diâmetro da tela).

O material sólido coletado pelo amostrador ARNHEM-BTMA era colocado numa cápsula de porcelana de peso conhecido (Pc) e submetido inicialmente à secagem em estufa durante 24 horas a Passado este período, a cápsula era 105°C. submetida а um resfriamento em um dessecador até que a temperatura ambiente fosse atingida. Posteriormente, a cápsula de porcelana era novamente pesada obtendo-se o peso (Pca). A diferença (Pca - Pc) resulta no peso dos sólidos totais recolhidos pelo amostrador. A seguir, a cápsula com a amostra era levada a uma mufla onde era submetida à temperatura de 550°C durante 30 minutos. Este procedimento serve para eliminar os sólidos voláteis (matéria orgânica). Decorridos os 30 minutos, a amostra passava mais uma vez por um processo de resfriamento num dessecador até atingir a temperatura ambiente, sendo novamente pesada, resultando o peso Pca'. A diferença (Pca' - Pc) resulta o peso dos sólidos fixos (areia, seixo e outros).

3.4.2 - Medição da descarga sólida em suspensão.

O equipamento utilizado para a medição da descarga sólida em suspensão, foi o amostrador do tipo AMS-3 conforme mostra a figura (3.6), que consiste numa peça de ferro fundido de formato hidrodinâmico, com aletas direcionadas e um bocal, para a coleta do material. No seu interior é colocado uma garrafa amostradora com capacidade de um litro.

Este tipo de amostrador possibilita somente a amostragem do tipo integrada, ou seja, a coleta é feita em uma vertical, durante o trajeto de descida do aparelho até as proximidades do fundo, e subida até a superfície, com a mesma velocidade, até que a garrafa colete um volume máximo igual ou inferior a 3/4 de sua capacidade.

As amostras foram coletadas nas sete verticais indicadas na Figura 3.3.

Figura (3.6) - Amostrador modelo AMS-3 para a coleta de sedimentos em suspensão

A equação (3.6), indicada abaixo, fornecerá a descarga sólida medida numa determinada vertical:

$$q_{ssi} = C_i \cdot P_i \cdot Q \cdot 0.0864$$
 (3.6)

onde :

qss	=	descarga sólida em suspensão da vertical i em ton/dia;
Cì		concentração medida em _{ppm} por volume ;
Pi	-	porcentagem de vazão líquida que passa na faixa de
		influência desta vertical;

Q = vazão líquida total em m³/s.

A descarga sólida total do material em suspensão que passa pela secção é dada pela somatória das descargas sólidas parciais.

$$Qss = \sum_{i=1}^{n} q_{ssi}$$
(3.7)

De cada amostra coletada pelo amostrador após a agitação para uma homogeneização perfeita, retirava-se mais ou menos 200 ml para serem filtrados num microfiltro (GF/G; 1,2 μ m de abertura, "WHATMAN"), utilizando-se uma bomba a vácuo acoplada num suporte <u>milipor</u> para filtro de 4,7 cm de diâmetro. Antes da filtragem, secava-se o microfilto numa mufla a 550°C, durante 15 minutos. Decorrido este tempo, o microfiltro passava por um processo de resfriamento num dessecador até atingir a temperatura ambiente para logo em seguida ser pesado resultando o peso (Pf) em mg.

O microfiltro e os sólidos retidos na operação da filtragem eram secos numa estufa a 105° C, durante 24 horas. Decorridos estas horas, o filtro era resfriado num dessecador até atingir a temperatura ambiente e pesado novamente resultando o peso (Pfa). A diferença (Pfa - Pf) resulta o peso dos sólidos totais, retidos pelo microfiltro, existentes no volume filtrado (Vf). Após a segunda pesagem, o filtro era submetido à temperatura de 550°C numa mufla, durante 30 minutos. Ao final deste tempo, o filtro era resfriado num dessecador até atingir a temperatura ambiente, sendo novamente pesado, resultando o peso P_{fa} '. A diferença (P_{fa} ' - P_f) gera o peso dos sólidos fixos existentes no volume filtrado (V_f).

As concentrações Ci de cada amostra foram calculadas através das seguintes relações :

$$C_{i} = \frac{P_{fa} - P_{f}}{V_{f}}$$
(3.8)

onde:

Ci	=	concent	ração	dos s	sólidos	totais (em susp	ensão	em ppm	;
Pfa	=	peso d	los só	lidos	totais	retidos	s pelo	micro	Eiltro	em
		(mg);								
Pf	=	peso do	o micro	ofilti	ro em (m	g);				

Vf = volume da amostra filtrada em litros.

$$\frac{C_i = P_{fa} - P_f}{V_f}$$
(3.9)

onde:

Ci	= concentração dos sólidos fixos em suspensão em _{ppm} ;
Pfa'	= peso dos sólidos fixos retidos pelo microfiltro em (mg);
Pf	= peso do microfiltro em (mg);
Vf	= volume da amostra filtrada em litros.

3.4.3 - Granulometria do material sólido que constitui o leito do rio

As amostras do material sólido que constitui o leito do rio foram coletadas por uma draga do tipo PETERSON em bronze fundido, com um dispositivo de desarme tipo alavanca de braço móvel, conforme mostra a Figura 3.7. A draga desce com as caçambas abertas pela alavanca. Ao chegar ao fundo, pelo alívio das tensões de tração, a alavanca desarma permitindo que a draga ao ser levantada, feche automaticamente, coletando amostra de sedimento. No fechamento, a própria alavanca mantém as caçambas fechadas através de um pino de travagem. Para a realização destas coletas usou-se uma draga de fundo com capacidade de 1,5 litros.

foram coletadas fundo rio As amostras no do nas verticais (2), (6), indicadas na figura 3.3. (4) cada е Εm amostras foram juntadas, constituindo uma única campanha as amostra, seca em estufa a 105 °C, durante 24 horas e destorroadas. Em seguida, por quarteamento separava-se 500 gramas do material coletado os quais por agitação mecânica eram peneirados numa série de peneiras Teyler de números 4; 10; 20; 40; 60; 100 e 200, em um intervalo de tempo de 20 minutos.

Posteriormente, efetuava-se a pesagem do material retido em cada peneira constituindo uma fração com diâmetro médio inferior ao da peneira anterior e superior ao da peneira na qual foi retido. Assim para as frações com diâmetro superiores a 0,074 mm (peneira nº200) utilizou-se o método do peneiramento. Para a fração retida no prato, ou seja, com diâmetro médio inferior a 0,074 mm deveria ter sido empregado o método da análise por sedimentação contínua meio líquido num descrito no próximo parágrafo, caso a fração representasse em peso um valor superior a 5% do total. Porém, nesta pesquisa não houve a aplicação deste método, pelo fato de nenhuma das amostras ter atingido este limite.

No método da sedimentação contínua, uma certa quantidade de solo é dispersa num frasco contendo água (100 gramas de solo seco em um litro d'água) e um agente antifloculante, a fim de se obter uma suspensão fina. As partículas cairão então, sob a ação da gravidade, em um meio resistente, segundo a Lei de Stokes, com velocidades uniformes proporcionais ao diâmetro da partícula.

A partir do conhecimento dos pesos das diversas frações foram determinadas as curvas granulométricas do material do leito e delas foram tirados os diâmetros D35 e D50, utilizados nas equações e modelos propostos pelos vários autores.

Figura (3.7) - Caçamba tipo PETERSEN para a coleta de material de fundo (Fonte: Catálogo Geral de Aparelhos e Instrumentos de Fabricação IH) 4 - Resultados e Discussões

4.1 - Apresentação dos dados de campo

Foram realizadas 24 campanhas de medição da descarga sólida total e de parâmetros necessários para a aplicação dos métodos macroscópicos selecionados na revisão bibliográfica. Os dados foram medidos no rio Atibaia.Por isso, foram necessários fazer levantamentos hidráulicos, sedimentométricos, granulométricos e geométricos da secção transversal cuja metodologia foi detalhada no capítulo 3.

Na tabela 4.1 apresentam-se, resumidos, os dados geométricos transversal hidráulicos, da secção е sedimentométricos, obtidos durante o período de medições. Da referida tabela, pôde-se observar as seguintes faixas de variação para os parâmetros profundidade (1,12 a 2,74m) vazão (3,74 a 52,61 m³); raio hidráulico (0,83 a 1,65 m) declividade da linha d'água ($0.3.10^{-4}$ a 2,31.10⁻⁴ m/m); carga de sedimento em 2,69 a 443,21 ton/dia); carga de sedimento suspensão (transportada por arrastamento do leito (1,27.10⁻³ a 307,28.10⁻³); carga total de sedimentos transportada, resultante da ton/dia soma da carga transportada por arrastamento do leito com a carga transportada em suspensão (3,39 a 443,52 ton/dia).

A figura 4.1 apresenta os pontos que relacionam a vazão líquida com a descarga sólida total medida e a função ajustada através de regressão. Para essa curva foi obtido um coeficiente de correlação igual 0,94. As curvas das figuras 1 a 10, do anexo II, apresentam as regressões entre a descarga sólida total medida e calculadas pelo métodos macroscópicos.

A Figura 4.2 apresenta a curva chave da secção de medidas, onde nela, estão relacionadas as cotas na réqua limnimétrica instalada à vazão jusante da secção е а correspondente a cada cota.

Na Figura 4.3 apresenta-se um diagrama que relaciona a vazão líquida, a vazão sólida e a precipitação pluviométrica média mensal fornecida pelo posto pluviométrico E3 - 015 localizado no município de Itatiba (SP), à montante da secção de medidas.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
N⁰EXP	DATA	d	LJR	LRM	CRJ	ÁREA	Q	U	R	S	U*	B	QSS	Q _B	Q _T
							2.						ton/dia	ton/dia	ton/dia
		m	m	m	m	m ²	m ³ /s	m/s	m	104	m/s	m			
			<u> </u>		<u> </u>	L			ļ	<u> </u>	L	ļ	L	10-3	
1	26/03/93	2.15	1.81	2.12	996.20	49.63	31.69	0.64	1.36	1.94	0.05	34.70	251.55	122.27	251.67
2	06/04/93	1.84	2.06	2.37	995.92	41.73	21.73	0.52	1.12	1.97	0.05	34.87	83.19	25.90	83.22
3	20/04/93	1.70	2.14	2.46	995.75	38.78	16.78	0.43	1.08	1.85	0.04	34.88	127.64	36.07	127.68
4	04/05/93	1.87	2.03	2.33	995.91	44.71	22.67	0.51	1.20	2.11	0.05	34.78	179.78	36.95	179.82
5	18/05/93	1.51	2.42	2.70	995.59	36.60	13.12	0.36	1.03	1.63	0.04	34.38	21.63	19.22	21.65
6	01/06/93	2.45	1.48	1.78	996.53	55.70	40.92	0.73	1.50	2.31	0.06	35.24	455.86	166.50	456.03
7	08/06/93	1.81	2.05	2.35	995.96	43.63	23.11	0.53	1.16	1.64	0.04	34.91	65.57	20.92	65.59
8	15/06/93	1.62	2.29	2.56	995.72	37.96	17.03	0.45	1.07	1.81	0.04	34.21	28.19	5.95	28.20
9	22/06/93	1.61	2.28	2.58	995.73	37.60	16.91	0.45	1.01	1,71	0.04	34.54	20.76	4.99	20.77
10	29/06/93	1.32	2.57	2.83	995.44	31.40	9.48	0.30	0.87	1.64	0.04	33.99	10.12	5.75	10.13
11	06/07/93	1.31	2.63	2.99	995.38	31.18	8.26	0.26	0.88	1.05	0.03	33.77	8.57	1.27	8.57
12	21/07/93	1.24	2.65	3.07	995.36	29.13	7.03	0.24	0.83	0.89	0.03	33.64	7.47	5.03	7.48
13	03/08/93	1.12	2.81	3.19	995.20	25.71	3.74	0.15	0.75	0.64	0.02	32.82	2.69	1.71	2.69
14	17/08/93	1.18	2.72	3.13	995.29	27.41	5.93	0.22	0.78	0.30	0.02	33.53	3.39	1.35	3.39
15	31/08/93	1.31	2.65	3.05	995.36	31.48	6.13	0.20	0.88	0.47	0.02	33.74	4.82	1.37	4.82
16	21/09/93	1.40	2.51	2.82	995.50	34.11	10.95	0.32	0.96	1.47	0.04	33.97	20.02	4.39	20.02
17	28/09/93	2.39	1.49	1.78	996.52	51.42	38.11	0.74	1.37	2.31	0.06	34.92	355.16	354.88	355.51
18	05/10/93	1.49	2.39	2.73	995.23	35.54	14.02	0.39	0.98	1.47	0.04	34.38	92.03	3.82	92.03
19	21/10/93	1.82	2.05	2.37	995.96	42.75	22.83	0.53	1.14	1.89	0.05	34.84	146.15	19.42	146.17
20	28/10/93	2.06	1.81	2.12	996.20	47.48	28.95	0.61	1.27	2.06	0.05	33.88	342.10	29.10	342.13
21	04/11/93	1.18	2.70	3.10	995.31	30.01	7.25	0.24	0.85	0.80	0.03	33.82	18.57	6.97	18.58
22	09/11/93	1.30	2.60	2.95	995.41	31.47	9.90	0.31	0.89	1.30	0.03	34.01	25.53	4.19	25.53
23	20/12/93	1.82	2.06	2.37	996.95	42.79	21.41	0.50	1.21	1.97	0.05	34.64	139.82	71.37	139.89
24	10/03/94	2.74	1.19	1.57	996.81	64.04	52.61	0.82	1.65	0.80	0.04	35.65	443.21	307.28	443.52

Tabela 4.1 - Características hidráulicas, sedimentométricas e granulométricas da secção transversal para o Rio Atibaia

Simbologia :

- N⁰ Número do experimento
- d Profundidade média da corrente, em m;
- LJR Leitura da régua de jusante, em m;
- LJM Leitura da régua de montante, em m;
- CRJ Cota da régua de jusante, em m;
- U Velocidade média da corrente, em m/s;
- Q Vazão líquida, em m³/s;
- U Velocidade média da corrente, em m/s
- R Raio hidráulico da secção, em m;
- S Declividade da linha d'água adimensional ,em m/m;
- U* Velocidade de atrito da corrente, em m/s
- B Largura da secção transversal, em m;
- QSS Carga de sedimentos em suspensão medida em ton/dia;
- QB Carga de sedimento transportada por arrastamento medida em ton/dia;
- QT Carga total de sedimentos medida em ton/dia.

Logarítimo das vazões em m3/s

Figura 4.1 - Relação entre a vazão líquida medida em m³/s e a descarga sólida total medida em ton/dia.

50

cotas em m

Figura 4.2 - Relação entre as cotas da régua de jusante da secção transversal e a vazão líquida.

Verifica-se na figura 4.3, como era esperado, que existe uma correspondência entre os picos, de máximo e de mínimo, referentes à precipitação, vazão líquida e descarga sólida transportada, ou seja, a precipitação à montante da secção provoca aumentos da vazão líquida e da descarga sólida total, devido principalmente às erosões.

Portanto, no estudo de transporte de sedimentos, deve-se levar em conta as precipitações ocorridas à montante da secção em estudo e é possível relacioná-las com as descargas líquidas e sólidas, desde que considerados outros aspectos como o estado de conservação da bacia hidrográfica, em termos de conservação e uso do solo.

Por fugir dos objetivos deste trabalho esta associação não foi feita, ficando como sugestão para novas investigações científicas.

Na tabela 4.2 apresentam-se os dados de precipitação pluviométrica média mensais referentes ao posto pluviométrico E-015, localizado na bacia do rio Piracicaba no município de Itatiba (SP). Os números foram fornecidos pelo Departamento de Águas e Energia Elétrica do Estado de São Paulo-D.A.E.E. Os valores médios mensais das vazões líquidas e as descargas sólidas totais médias mensais medidas, são referentes ao ano de 1993. Esses dados geraram a figura 4.3.

Tabela	4.2	-	Dados	médi	os me	ensais	de	p	recipi	tação	е	dados	médios
			mensais	de de	vazão	líqu	ida	е	vazão	sólid	a.		

meses	preci (mm)	Q (m ³ /s)	QT (ton/dia)
mar	161	31,69	251,69
abr	67	19,66	105,45
mai	130	19,70	100,74
jun	44	21,49	116,14
jul	9	7,65	8,03
ago	39	5,27	3,63
set	167	24,53	187,77
out	148	21,91	193,44
nov	112	8,58	22,06
dez	227	21,41	139,89

Simbologia :

prec - Precipitação mensal em mm; Q - Vazão líquida média mensal, em m³/s; QT - Vazão sólida total média mensal, em ton/dia.

Figura 4.3 - Relação entre a precipitação pluviométrica média mensal e as vazões líquidas e sólidas médias mensais para o período de março a dezembro de 1993

SIMBOLOGIA :

P - Precipitação mensal em, mm; Q - Vazão líquida em, m³/s; QT - Vazão sólida em, ton/dia.

As tabelas 1 a 24 do anexo IV apresentam o resumo dos dados granulométricos obtidos na pesquisa. Nessas tabelas podem ser observadas as faixas de variação do tamanho do sedimento, a fração percentual de cada diâmetro em relação a uma amostra padrão de 500 gramas e as velocidades de sedimentação do diâmetro médio geométrico de cada faixa de variação. As figuras 1 a 24 do anexo IV apresentam as curvas granulométricas do material do leito para as 24 campanhas de medição. Observam-se através destas curvas que os diâmetros médios D50 do período ficaram na faixa de 0,40mm a 1,30mm.

4.2 - Apresentação dos resultados:

4.2.1 - Considerações preliminares

Para a análise dos métodos macroscópicos mencionados na revisão bibliográfica é importante assimilar as seguintes informações :

i) Sempre que possível foram utilizadas as unidades do Sistema técnico (S I). Não foi possível utilizar o Sistema técnico apenas para a determinação do coeficiente $\phi(d)$, utilizado na fórmula de <u>Maddock</u> (1976) e dos coeficientes ρ_{e} (eficiência de transporte da carga do leito) e tanga (coficiente de fricção sólida), utilizados na fórmula de <u>Bagnold</u>. O primeiro é obtido em pés por segundo (ft/s), entrando-se com o diâmetro do sedimento em mm na Figura (2.5), para em seguida, ser transformado em m/s, antes de ser aplicado na equação 2.17.

Os coeficientes da fórmula de Bagnold são adimensionais e devem ser determinados respectivamente nas figuras (2.6) e (2.7) com os dados de entrada sendo a velocidade média do escoamento em pés por segundo (ft/s) e o diâmetro do sedimento em milímetros.

Outra exceção foi atribuída à fórmula de <u>Shen e Hungs</u>. Neste método foram mantidas as unidades definidas pelo autor para o cálculo de "Y" na equação (2.15). Deste modo, a unidade utilizada para a velocidade média da corrente e a velocidade de queda foi o (ft/s). Com o valor de "Y", a concentração de sedimentos referente à carga total foi determinada pela equação (2.14) em partes por milhões por peso.

Essas informações facilitarão o entendimento dos cálculos apresentados no anexo I.

ii) Em alguns casos a concentração total de sedimentos será dada

em partes por milhões em peso (ppm em peso) ou partes por milhões por volume (ppm em volume). Estas unidades serão explicadas abaixo com base nas definições dadas por Garde e Raju (1985) como segue:

a) Partes por milhões em peso (ppm em peso) - correspondem ao miligrama por kilo (mg/kg) do Sistema técnico (S I). Neste caso o produto da concentração de sedimentos pelo peso específico da mistura água-sedimento (tomada arbitrariamente como o peso específico da água) e pela vazão líquida fornecerá a carga sólida total transportada em peso seco por unidade de tempo.

Assim, a carga total de sedimentos em toneladas por dia é determinada pela equação (4.1) expressa a seguir :

 $qT = 10^{-6}$. CV. γ_m . Q. 10^{-3} . 86400. 0,01. P% ton/dia (4.1)

onde :

CV= Concentração de sedimentos em ppm (em peso); γm = Peso específico da mistura água-sedimento, tomada

arbitrariamente como o peso específico da água = 1000kgf/m³;

Pi% = Porcentagem da fração de diâmetro Di da amostra ;
Q = Vazão líquida total em m³/s.

b) Partes por milhões por volume (ppm em volume) - corresponde ao miligrama por litro (mg/l) do Sistema técnico. Neste caso, a concentração total de sedimentos multiplicada pela vazão líquida fornecerá a carga total de sedimentos em peso seco por unidade de tempo. Deste modo, a carga total de sedimentos em toneladas por dia é dada pela equação (4.2) definida como seque:

$$qT = 10^{-6} \cdot 10^3 \cdot CV \cdot Q \cdot 86400 \cdot 10^{-3} \cdot 0,01 \cdot P_{\$} \cdot ton/dia (4.2)$$

onde :

CV = Concentração referente à carga total de sedimentos em

partes por milhões em volume (ppm em volume);

= Vazão líquida total em m³/s;

Q P%

= porcentagem da fração de diâmetro Di da amostra total.

iii) Os cálculos foram efetuados de duas maneiras, considerando as amostras do material do leito fracionada e não fracionada.

a) Amostras do material do leito fracionadas

O diâmetro representativo de cada fração da amostra total resultou numa carga parcial de sedimentos transportada. A carga total é a soma das cargas parciais multiplicada pela porcentagem que representa cada fração em relação à amostra do material do leito. Isso pode ser representado pela relação abaixo.

$$Q_{T} = \Sigma q_{D_{i}} P_{i}$$
(4.3)

onde :

 $\mathtt{q}_{\mathtt{Di}}$

= Carga parcial de sedimento referente ao grão de tamanho Di;

Pi = Porcentagem da fração de diâmetro Di da amostra total

b) Amostras do material do leito não fracionadas

No segundo caso a carga total de sedimentos é calculada com o diâmetro médio do material do leito D50, representando a amostra como um todo. A relação abaixo ilustra esta situação:

 $QT = q_{D50}$ (4.4) onde : q_{D50} = Carga de sedimentos calculada com o diâmetro médio; QT = Carga total de sedimentos.

iv) Para facilitar a aplicação do Método de Laursen, o gráfico da figura 2.1 foi substituído pelo grupo de equações apresentado por Paiva (1988) descritas abaixo : Para U*/w < 0,33 ou 3,58 < U*/w < 20 log [f(U*/wi)] = A log [U* / w] + B (4.5) e para o restante da curva : f(U*/wi) = A $(U*/w)^{\alpha}$ (4.6) Na equação 4.5 , A e B assumem os valores : A = 2,2475 e B = 1,0303 para U*/w < 0,33 e : A = 2,2482 e B = 0,7536 para 3,58 < U*/w < 20

Na equação (4.6), A e α assumem os valores apresentados na tabela 4.3.

Tabela 4.3 - Valores de A e α para a equação 4.6

FAIXA DE APLICAÇÃO	А	α
0,33 < U*/w < 1,00	14,68	0,53
1,00 < U*/w < 2,00	14,96	1,07
2,00 < U*/w < 3,58	7,55	2,02
20,0 < U*/w < 80,0	36,57	1,51
80,0 < U*/w < 600	6527,40	0,32
600,00 < U*/w	18567,76	0,16

v) Para facilitar a aplicação do Método de Bishop; Simons e Richardson, o gráfico da figura (2.4) foi substituído pela equação (4.7) determinada por Paiva (1988) e descrita a seguir:

(4.7)

 $\phi_{T} = A (\psi')^{\alpha}$

onde A e α assumem os valores apresentados na tabela 4.4 : Tabela 4.4 - valores de A e α para a equação (4.7)

			· · · · · · · · · · · · · · · · · · ·
D (mm)	ψ′	A	α
< 0.23	< 0,84	17,63	- 10,01
	0,84 a 2,00	59,16	- 2,59
	2 a 5	63,07	- 2,49
	5 a 8,94	588,46	- 3,97
	8,94 a 11,26	322390663,70	- 10,00
	> 11,26	882703,52	- 7,53
0 23 = 0 37	< 1,00	29,80	- 6,03
0,25 0 0,51	1,00 a 2,00	29,73	- 2,34
	2,00 a 4,00	18,50	- 1,55
	4,00 a 7,00	443,42	- 3,80
	7,00 a 10,0	1395,32	- 4,39
	> 10,0	18375,37	- 5,49
0 37 a 0.70	< 3,00	13,81	- 1,36
0,5, 0 0,10	3,00 a 5,00	13,69	- 1,30
	5,00 a 7,00	218,49	- 2,99
	7,0 a 15,91	12392,76	- 5,00
	> 15,91	$1,83 \times 10^5$	- 14,35
> 0.70	< 3.00	6,60	- 1,04
> 0,70	3 00 3 5.00	21,19	- 2,04
	5.00 a 11.26	45,63	- 2,52
	> 11,26	131874,48	- 5,80

vi) Para facilitar a obtenção da tensão crítica de Shildes e do coeficiente ϕ (D), utilizados respectivamente nos Métodos de Laursen e Maddock, as figuras (2.2) e (2.5) foram substituídas pelo grupo de equações apresentadas nas tabelas 4.5 e 4.6. Os coeficientes da fórmula de Bagnold foram obtidos através de

58
leituras gráficas.

Tabela 4.5 - Valores de f(R*) dados em função de R* para a figura 2.2.

FAIXA DE VARIAÇÃO DE R*	EQ. PARA O CÁLCULO DE f(R*)
R* < 2,00	$\log [f(R^*)] = -0,96 \log R^* - 0,92$
2,00 < R* < 4,00	$\log [f(R^*)] = -0,60 \log R^* - 1,04$
4,00 < R* < 7,00	$\log [f(R^*)] = -0,29 \log R^* - 1,22$
7,00 < R* < 10,0	$\log [f(R^*)] = -0, 16 \log R^* - 1, 34$
15,0 < R* < 20,0	$\log [f(R^*)] = 0,21 \log R^* - 1,74$
20,0 < R* < 40,0	$\log [f(R^*)] = 0,19 \log R^* - 1,72$
40,0 < R* < 400	$\log [f(R^*)] = 0,18 \log R^* - 1,72$

Tabela 4.6 - Valores de ϕ (D) em ft/s dados em função do diâmetro do sedimento em mm para a figura 2.5

VARIAÇÃO DE D EM mm	EQ. PARA O CÁLCULO DE ϕ (D)
0,1 < D < 0,2	$\log [\phi (D)] = 0,77 \log D - 1,23$
0,2 < D < 0,4 0,4 < D < 0,5	$\log [\phi (D)] = 0,61 \log D - 1,34$ $\log [\phi (D)] = 0,64 \log D - 1,33$
0,5 < D < 1,0 1,0 < D < 2,0	$\log [\phi (D)] = 0,52 \log D - 1,33$ $\log [\phi (D)] = 0,53 \log D - 1,37$
2,0 < D < 4,0	$\log [\phi (D)] = 0,54 \log D - 1,37$

vii) Na equação (2.11) o raio hidráulico com relação ao grão (
R') foi substituído pelo raio hidráulico da secção. Para usar R
ao invés de R' partiu-se das seguintes observações :

a) Tentou-se determinar R' com os dados levantados nas 24 campanhas de medidas, conforme mostra o anexo V, porém, nenhuma convergência satisfatória foi encontrada ao efetuar-se o passo V do item 2.2.1.3, onde impõe-se que R'+ R'' = R, sendo R'' o raio hidráulico com relação às deformações do leito. Isso acontece quando o leito do canal é plano, ou seja, não há deformações do leito e neste caso R''= 0 e R = R' (SIMONS e Senturk, 1977).

b) Foram comparadas batimetrias da secção transversal de épocas anteriores com batimetrias atuais. Na tabela 4.7 estão apresentadas cotas de vários pontos da secção transversal medidas em março de 93 e cotas destes mesmos pontos medidas em agosto de 94. A tabela 4.7 gerou o gráfico da Figura 4.4. A aproximação dos pontos com a reta da Figura 4.4 indica que não houve variação significante do leito do rio para o período anteriormente citado.

Tabela 4.7 - Comparação de cotas medidas na secção transversal em março de 1993 com cotas medidas em agosto de 1994.

			cotas	
Março	de	93	Agosto de	94
2,	14		2,14	
2,	53		2,53	
2,	87		2,87	
З,	29		3,29	
4,	30		4,20	
5,	00		4,76	
5,	20		5,10	
5,	30		5,26	
5,	40		5,43	
5,	60		5,51	
5,	75		5,71	
5,8	30		5,80	
5,8	88		5,87	
5,8	38		5,87	
5,8	30		5,82	
5,	90		5,92	
5,	90		5,89	

60

Tabela 4.7 - Comparação de cotas medidas na secção transversal em março de 1993 com cotas medidas em agosto de 1994 (continuação)

	cotas
Março de 93	Agosto de 94
6,00	5,91
6,05	6,00
6,05	6,06
6,12	6,12
6,00	5,97
6,00	5,91
6,10	6,10
6,20	6,16
6,30	6,28
6,25	6,26
6,20	6,14
6,15	6,13
6,10	6,01
6,20	6,09
6,20	6,06
6,05	5,86
5,80	5,76
5,70	5,68
5,50	5,49
5,40	5,30
5,20	5,12
5,10	5,00
5,00	4,82
4,58	4,58
4,35	4,35
3,57	3,57
3,50	3,50
2,80	2,80
2,30	2,30

Cotas em março de 1993

Figura 4.4 - Gráfico comparativo da variação do leito em função de medidas de cotas em pontos da secção transversal em março de 1993 e de cotas medidas nos mesmos pontos em agosto de 1994.

C) A Figura (2.3) foi desenvolvida originalmente a partir da análise de dados de rios naturais, sendo utilizada para estimar entre outras variáveis a vazão e a velocidade da secção partindo-se do conhecimento prévio do raio hidráulico.

Segundo Garde e Raju (1985) este método tem sido criticado por diversos pesquisadores e algumas vezes apresenta erros da ordem de 300 por cento na estimativa da velocidade. Desta forma, a figura 2.3 não prevê satisfatoriamente a resistência ao escoamento. Os principais pontos vulneráveis do método segundo Garde, é que o tamanho, a forma e o atrito das ondulações não são função apenas de ψ' , como assumido por Einstein e Barbarossa. Garde e Ranga Raju (1966) " apud " GARDE e Raju (1985) mostraram que a diferença entre os valores de U / U*'' pode ser descrita pela existência de diferentes regimes de escoamento para um mesmo valor de ψ' . Isto deixa a evidência de que U / U*'' não é função somente de ψ' .

No caso do rio Atibaia trata-se de valores medidos e no entanto é normal que estes dados não chequem perfeitamente com os dados que foram utilizados por Einstein e Barbarossa para a elaboração do gráfico da figura 2.3.

viii) O resumo final da aplicação dos métodos macroscópicos foi apresentado em duas tabelas. A primeira refere-se ao cálculo da carga total de sedimentos realizado com o diâmetro médio da partícula e a segunda apresenta o cálculo efetuado de forma fracionada.

IV) Para as 24 campanhas realizadas foi obtida a regressão entre a vazão sólida total e a vazão líquida medida. A equação abaixo mostra o ajuste obtido.

log (QT) = -1,24 + 2,49 log (Q) onde : QT - Vazão sólida total medida em ton/dia; Q - Vazão líquida em m³/s.

iv) O anexo I deste trabalho tráz um exemplo de cálculo de todas as equações estudadas. A metodologia seguida neste exemplo reproduz fielmente os passos desenvolvidos para se chegar ao resumo dos cálculos apresentados nas tabelas 4.8 e 4.9.

4.2.2 - Análise e discussão dos resultados :

Para avaliar o melhor resultado obtido entre os métodos empregados foi utilizado o cálculo da diferença percentual relativa, descrito matematicamente pela equação 4.8.

No do	QLAU	QGD	QBS	QSH	QMAD	QKK	QAW	QBG	QEH	QYAN
Experimento					ļ					
01	1466,20	66,06	656,58	49,53	8,85	29,47	132,79	97,62	204,44	117,69
02	109,12	15,20	454,27	12,47	0,00	21,93	36,90	58,12	82,97	57,31
03	0,00	3,55	512,29	2,63	0,00	18,49	2,53	38,22	34,93	41,62
04	0,00	4,83	911,29	8,45	0,00	28,60	6,83	60,01	54,37	77,86
05	0,00	4,38	307,50	0,88	0,00	11,70	1,80	27,25	26,03	12,83
06	236,30	14,64	1112,44	72,03	0,00	55,85	93,17	136,05	162,62	306,38
07	0,00	4,52	414,02	7,91	0,00	21,81	26,42	48,01	57,57	49,95
08	0,00	3,78	408,18	3,38	0,00	18,42	6,30	40,06	38,56	32,28
09	0,00	0,63	281,13	1,94	0,00	20,24	0,00	31,85	21,31	34,15
10	0,00	0,76	251,80	0,17	0,00	10,11	0,00	17,61	10,00	6,19
11	0,00	0,06	37,84	0,01	0,00	7,53	0,00	9,12	3,20	1,61
12	0,00	0,03	10,59	0,00	0,00	5,93	0,00	12,35	2,06	0,64
13	0,00	0,01	1,14	0,00	0,00	3,11	0,00	5,09	0,51	0,00
14	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,00	0,38	0,00
15	0,00	0,00	0,54	0,00	0,00	2,83	0,05	3,14	0,69	0,01
16	0,00	1,98	276,09	0,30	0,00	9,23	0,11	19,44	15,66	6,79
17	1514,01	35,12	754,81	96,15	7,44	47,40	175,59	125,18	222,36	241,09
18	0,00	0,65	289,83	0,00	0,00	14,85	0,00	23,71	16,19	14,88
19	0,00	4,04	522,70	9,04	0,00	27,09	17,93	50,42	55,40	65,21
20	302,10	14,47	599,53	27,93	0,00	32,84	64,74	77,70	110,19	115,13
21	0,00	0,00	5,51	0,00	0,00	19,86	0,00	7,11	1,13	0,41
22	0,00	0,06	59,01	0,06	0,00	15,51	0,00	15,88	4,55	5,75
23	0,00	9,73	541,10	8,27	0,00	24,08	18,30	53,97	65,83	57,46
24	2650,11	0,89	227,80	20,19	0,00	24,07	172,28	59,21	81,34	84,22

Tabela 4.8 - Resultado final da carga total determinada com o diâmetro médio do sedimento pelos métodos macroscópicos aplicados aos dados do rio Atibaia - SP

64

Simbologia :

QLAU	-Carga total determinada pelo método de Laursen;
QGD	-Carga total determinada pelo método de Garde e Dattatri;
QSB	-Carga total determinada pelo método de Bishop, Simons e Richardson;
QSH	-Carga total determinada pelo método de Shen e Hungs;
QMAD	-Carga total determinada pelo método de Maddock;
QKK	-Carga total determinada pelo método de Karim e Kennedy;
QAW	-Carga total determinada pelo método de Ackers e White;
QBAG	-Carga total determinada pelo método de Bagnold;
QEH	-Carga total determinada pelo método de Engelund e Hansen;
QYAN	-Carga total determinada pelo método de Yang.

No do	QLAU	QGD	QBS	QSH	QMAD	QKK	QAW	QBG	QEH	QYAN
Experimento										
01	2213,81	242,49	1763,42	62,45	19,81	28,48	167,06	107,01	217,87	142,65
02	588,84	89,53	1602,07	16,90	3,24	16,50	12,94	63,37	89,41	68,61
03	119,36	40,52	1109,43	4,52	0,25	13,46	3,24	43,92	46,25	32,17
04	550,16	154,64	1587,26	17	3,99	22,36	17,5	71,05	91,46	81,73
05	21,12	19,50	568,89	1,36	0,00	11,30	4,52	31,3	29,55	24,87
06	1269,80	185,82	1990,91	93,49	24,30	52,06	144,58	152,19	220,33	289,89
07	1787,31	23,04	710,68	10,34	0,62	20,61	33,55	54,33	69,53	57,74
08	1403,25	20,62	667,57	4,63	0,14	16,01	12,65	41,71	44,94	34,00
09	53,89	6,80	402,57	2,76	0,24	12,95	6,62	35,10	27,00	29,01
10	0,00	4,19	416,80	0,27	0,00	8,84	0,59	29,04	11,97	6,17
11	0,00	0,67	63,96	0,03	0,00	4,48	0,06	10,16	4,24	1,33
12	0,00	0,28	17,01	0,01	0,00	2,47	0,02	7,35	2,67	0,60
13	0,00	0,05	1,97	0,00	0,00	1,51	0,00	2,64	0,60	0,01
14	0,00	0,00	0,00	0,00	0,00	0,25	0,00	2,15	0,45	0,01
15	0,00	0,02	1,18	0,00	0,00	1,51	0,00	3,56	0,86	0,04
16	2,29	10,28	533,27	0,53	0,00	8,28	2,00	21,28	18,44	7,44
17	1885,5	158,27	1323,85	111,55	29,91	45,03	198,37	138,52	252,92	261,40
18	28,41	6,73	355,87	0,11	0,00	9,72	3,63	23,60	20,53	12,89
19	304,15	36,52	807,80	12,54	1,00	19,93	32,33	54,52	68,26	66,17
20	874,60	90,88	857,81	36	. 7,05	30,26	83,75	83,30	131,48	124,41
21	0,00	0,15	6,59	0,00	0,00	3,69	0,01	6,88	1,78	0,38
22	0,00	2,32	77,37	0,03	0,00	6,29	0,51	15,76	7,45	3,80
23	269,84	64,140	839,15	11,25	0,84	21,96	30,02	59,37	7,22	62,41
24	2662,52	5,94	372,68	29,20	0,64	22,59	168,63	69,67	99,15	99,75

Tabela 4.9 - Resultado final da carga total determinada de forma fracionada pelos métodos macroscópicos aplicados aos dados do rio Atibaia - SP

Simbologia :

QLAU	-Carga total determinada pelo método de Laursen;
QGD	-Carga total determinada pelo método de Garde e Dattatri;
QSB	-Carga total determinada pelo método de Bishop, Simons e Richardson;
QSH	-Carga total determinada pelo método de Shen e Hungs;
QMAD	-Carga total determinada pelo método de Maddock;
QKK	-Carga total determinada pelo método de Karim e Kennedy;
QAW	-Carga total determinada pelo método de Ackers e White;
QBAG	-Carga total determinada pelo método de Bagnold;
QEH	-Carga total determinada pelo método de Engelund e Hansen;
QYAN	-Carga total determinada pelo método de Yang.

Esta equação representa a média dos desvios entre os valores calculados e observados. Portanto, apresenta resultados mais satisfatórios do que uma simples relação entre os valores calculados e o padrão (valores medidos).

DIF (%) =
$$\sum_{n} \sqrt{\frac{(Qmed - Qcal)^2}{Qmed}}$$
 (4.8)

onde :

DIF (%	5)	=	Diferença percentual relativa;
Qmed		=	Carga total de sedimentos medida ;
Qcal		=	Carga total de sedimentos calculada;
n			Número de amostragens (24).

As tabelas 1 a 10 do anexo IV apresentam o cálculo da diferença percentual relativa determinada pela equação 4.8. O resumo final dos resultados obtidos pela referida equação está apresentado na tabela 4.10 em ordem crescente das diferenças percentuais relativas para as cargas de sedimentos calculadas com o diâmetro médio (D50) e de forma fracionada, respectivamente.

Tabela 4.10.a - Resumo dos cálculos da diferença percentual relativa determinada pela equação 4.8 para o cálculo efetuado com o diâmetro médio.

AUTORES	Dif (%)
ENGELUND E HANSEN	52,99
BAGNOLD	53,710
KARIM E KENNEDY	57,460
YANG	63,180
ACKERS E WHITE	86,320
SHEN E HUNGS	92,740
GARDE E DATTATRI	94,140
MADDOCK	99,770
LAURSEN	133,43
BIS.SIM.RICHARDSON	475,03

Tabela 4.10.b - Resumo dos cálculos da diferença percentual relativa determinada pela equação 4.8 para o cálculo efetuado de forma fracionada.

AUTORES	Dif (%)
ENGELUND E HANSEN	51,22
BAGNOLD	51,91
YANG	59,66
GARDE E DATTATRI	64,84
KARIM E KENNEDY	71,35
ACKERS E WHITE	81,76
SHEN E HUNGS	92,77
MADDOCK	98,58
LAURSEN	488,33
BIS.SIM.RICHARDSON	861,38

Na tabela 4.10 verifica-se que ao utilizar o D_{50} como diâmetro representativo da amostra (sem fracioná-la) a equação que melhor se ajustou aos dados medidos foi a de Engelund e Hansen com uma diferença percentual relativa da ordem de de 53 % . Porém, ao aplicar essa mesma equação considerando-se a amostra do material do leito fracionada, observou-se que o resultado obtido apresentou um menor valor da diferença percentual relativa. Deste modo, face a grande dificuldade observada em aplicar o método utilizando-se a amostra do material do leito fracionada e diante da pequena variação da diferença percentual relativa encontrada, fracionando e não fracionando a amostra, recomenda-se que, ao calcular-se a carga total pelo Método de Engelund e Hansen, o diâmetro médio D50 seja utilizado para representar a amostra como um todo.

O Método de Bagnold está inserido entre os que apresentaram melhores resultados nesta pesquisa. Observa-se na tabela 4.10 que este método apresentou uma diferença percentual relativa da ordem de 54 %. Observa-se ainda nessa tabela que a diferença entre os cálculos executados com o diâmetro médio da partícula e de forma fracionada não varia muito. Assim, nada impedirá de se calcular a carga total de sedimentos fracionando a amostra ou utilizando-se o diâmetro médio dos sedimentos. Porém, pelas mesmas razões descritas no paragráfo anterior, recomenda-se que seja utilizado o diâmetro médio da amostra para calcular a carga total de sedimentos quando esse for utilizado.

O Método de Karim e Kennedy, quando empregado utilizando-se o diâmetro médio da amostra, apresentou uma diferença percentual relativa da ordem de 57%. Quando aplicado fracionando-se a amostra, o resultado não foi tão satisfatório quanto no primeiro caso. Assim, o cálculo da carga total de sedimentos pelo Método de Karim e Kennedy deve ser efetuado utilizando-se o tamanho médio (D50) para representar a amostra como um todo.

O método de Yang melhorou quando aplicado utilizando-se a amostra do material do leito fracionada. Porém, as diferenças percentuais relativas para um ou outro caso (determinado de forma fracionada e com o diâmetro médio) não divergiram muito entre si. Desta forma, a exemplo dos métodos já analisados, o método de Yang deve ser aplicado utilizando-se o diâmetro médio da amostra.

0 Método de Ackers е White apresentou uma diferença percentual relativa da ordem de 86 % e 81 % quando diâmetro médio de aplicado com ο е forma fracionada, respectivamente. Assim, perante a pequena variação observada quando empregou-se o cálculo com o diâmetro médio e fracionando se a amostra, recomenda-se que seja usado o diâmetro médio da amostra para calcular a carga total de sedimentos pelo Método de Yanq.

O Método de Shen e Hungs apresentou resultados praticamente iguais quando calculado com o diâmetro médio do material do leito e fracionando-se a amostra. Desta forma torna-se viável recomendar o uso do diâmetro médio da amostra quando for necessário a utilização deste Método para o cálculo da carga total. A indicação do uso do diâmetro médio baseou-se na facilidade dos cálculos e na semelhança das diferenças percentuais relativas observadas na tabela 4.10. Para o referido método pode-se observar na tabela anteriormente mencionada que as diferenças percentuais relativas são da ordem de 93 % tanto para o cálculo da carga total fracionando-se a amostra quanto para o cálculo utilizando-se o diâmetro médio.

A equação de Garde e Dattatri apresentou uma diferença percentual relativa da ordem de 94 % para o cálculo da carga total com o diâmetro médio e 64,84 % fracionando-se a amostra. Deste modo, apesar de mais difícil de se aplicar a grande demonstrada pelas diferenças percentuais relativas variação apresentadas pelas duas formas de cálculo executadas, recomenda-se que os cálculos sejam efetuados fracionando-se a amostra do leito quando esse método material do for empregado para а estimativa da carga total de sedimentos em rios naturais.

Maddock Α equação de apresentou diferenças percentuais relativas praticamente iguais quando foi utilizada para estimar a carga total de sedimentos com o diâmetro médio e fracionando-se a amostra do material do leito. A tabela 4.10 mostra uma diferença percentual relativa de 99,70 % para o primeiro caso e 98,58 % para o segundo caso. Deste modo, diante da dificuldade apresentada em efetuar o cálculo da carga total fracionando-se a amostra, o método de Maddock deve ser empregado utilizando-se o diâmetro médio nos casos em que for utilizado para estimar a carga total de sedimentos.

O Método de Laursen e o Método de Bishop, Simons e Richardson, foram os que apresentaram os piores resultados na estimativa da carga total de sedimentos, tanto para o cálculo da carga total fracionando-se a amostra do material quanto para o caso do uso do diâmetro médio.

O Método de Laursen apresentou uma diferença percentual relativa de 134,43 % para a estimativa da carga com o diâmetro médio e 488,33 % para o caso da amostra fracionada. Deste modo, o diâmetro médio deve ser selecionado para representar a amostra do material do leito nos casos em que a carga total de sedimentos venha a ser estimada através da equação de Laursen.

O Método de Bishop, Simons e Richardson, apresentou uma diferença percentual relativa da ordem de 480 % para a estimativa da carga total de sedimentos com o emprego do diâmetro médio da amostra e 860 % para a amostra do material do leito fracionada. Portanto, quando a carga total de sedimentos for estimada pelo método de Bishop, Simons e Richardson é propício o emprego do diâmetro médio da amostra do material do leito na estimativa.

variações nas diferenças percentuais As relativas devem-se às características peculiares de cada equação. Um dos pontos facilmente visíveis dentre as equações selecionadas é que a grande maioria delas provém de dados de laboratório. As equações deduzidas a partir de dados de laboratório certamente vão estar susceptíveis a erros oriundos de fatores naturais como a inclusão da carga de lavagem proveniente da bacia hidrográfica. Nos processos reais, sucessivos escoamentos superficiais certamente provocarão um desgaste significativo da crosta da bacia hidrográfica que naturalmente ocasionará uma alteração da carga de lavagem.

Várias experiências práticas têm demonstrado que uma equação que prevê a descarga de um rio, pode apresentar resultados bem diferentes para outra situação, mesmo quando são encontradas algumas coincidências entre as variáveis envolvidas no processo (NAKATO, 1990).

Yang (1973) mostrou que a profundidade do escoamento, o tamanho do sedimento e a temperatura da água têm influência direta no cálculo da carga total de sedimentos.

Em recente trabalho, Ramos (1993) evidencia que para valores da profundidade relativa h/d (h = profundidade média do escoamento , d = diâmetro representativo do sedimento) variando na faixa de 5 a 10 alteram de forma significativa as distribuições de tensões de velocidades em torno do grão afetando a força ascencional sobre este.

Outro ponto vulnerável a resultados falseados está na indefinição de alguns dos parâmetros envolvidos na dedução das equações. Observa-se ainda que as limitações impostas para a dedução de uma equação empírica dificilmente entrarão em perfeita harmonia com o que ocorre nos processos naturais. Nesta pesquisa foi utilizado K = 60 na equação de MADDOCK (eq.2.17), mas, poderia ter sido usado K = 30, 40, etc, já que o autor indica uma faixa para o valor de K.

O princípio de movimento de uma partícula de sedimentos segundo Simons e Senturk (1977) é função do parâmetro $[\tau c/(\gamma s-\gamma a)D]$ onde, τc é a tensão crítica para o movimento inicial da partícula, γs (peso específico do sedimento); γa (peso específico da água);D (diâmetro da partícula de sedimentos).

Gesller (1971) " apud " RAMOS (1993) empregando estudos estatísticos observou que quando a tensão de cisalhamento igualar-se ao valor da tensão crítica de Shields, haverá igual possibilidade do sedimento mover-se ou permanecer em repouso. No trabalho de Ramos (1993) são apresentados diversos autores que estudaram o princípio de transporte do sedimento. Fica evidenciado no referido trabalho que a tensão de cisalhamento de Shields superestima a tensão de cisalhamento crítica de início de transporte principalmente para sedimentos de granulometria fina.

Observou - se, nas tabelas 4.8 e 4.9, que ao aplicar os os métodos selecionados na revisão bibliográfica obtiveram-se em alguns experimentos, a carga total transportada nula tanto para a forma fracionada como para aquelas considerando-se um único diâmetro médio representativo da amostra.

A maioria dos métodos de cálculo da carga total de sedimentos utiliza um único tamanho (geralmente o tamanho médio D50) para representar a amostra como um todo. Pelo exposto nos parágrafos anteriores, o cálculo com um único diâmetro pode levar a resultados equivocados devido ao fato das partículas menores,que apresentam desvio padrão muito grande em relação ao valor médio, poderem ser arrastadas e gerarem cargas de sedimentos. O valor nulo segundo a teoria de Shields pode ser atribuído ao fato da tensão de arrastamento no grão não ter sido suficiente para transportá-lo, daí justificam-se os resultados opostos (cargas positivas e cargas nulas) para uma mesma campanha de medidas e para o mesmo método quando computadas de forma fracionada e com o diâmetro médio.

Pela discussão anterior, percebe-se facilmente que a aplicação das diversas equações citadas na literatura para estimar a carga sólida total transportada em rios naturais, pode levar a resultados totalmente irreais, caso as condições para as quais está sendo aplicada a equação venham divergir daquelas para as quais ela foi desenvolvida. Portanto, é necessário para cada situação desenvolver medições de campo a fim de se estabelecer a melhor equação, conforme foi feito neste trabalho. 5 - Conclusões e recomendações

Dos métodos macroscópicos aplicados aos dados na secção de estudos do rio Atibaia concluiu-se:

i) Todos os métodos apresentaram diferenças percentuais relativas superiores a 50% ;

ii) Recomenda-se, diante da simplicidade dos cálculos e baseado nos resultados, não fracionar a amostra (usar o diâmetro médio D50) para calcular a carga total de sedimentos transportada pelos métodos de Engelund e Hansen; Bagnold; Karim e Kennedy; Yang; Ackers e White; Shen e Hungs; Maddock; Laursen e Bishop, Simons e Richardson;

 iii) Foi verificado que em alguns casos a carga total calculada com um único diâmetro pode apresentar resultados menos favoráveis do que quando calculada com a amostra fracionada para um mesmo método;

iv) Para a carga total calculada com o diâmetro médio da amostra, apresentaram melhores resultados os métodos de Engelund e Hansen, Bagnold, Karim e Kennedy e Yang apresentando uma diferença percentual relativa referente ao valor medido respectivamente igual a 52,99, 53,71, 57,46 e 63,18;

v) Para a carga total determinada de forma fracionada, apresentaram melhores resultados os métodos de Engelund e Hansen, Bagnold, Yang e Garde e Dattatri apresentando uma diferença percentual relativa referente ao valor medido respectivamente igual a 51,22, 51,99, 59,66, 64,84. 6 - REFERÊNCIAS BIBLIOGRÁFICAS

- ACKERS. P, WHITE, W.R. Sediment transport: New approach and analises, <u>Journal of the Hidraulics Division</u>, ASCE, v.99, n. HY. 11, p. 2041-2060, nov. 1973.
- ALMEIDA. S.B., CARVALHO, N.O. Efeitos do assoreamento de reservatórios na geração de energia elétrica :análise da UHE Mascarenhas ES. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 10, 1993, Gramado. <u>ANAIS</u> ... Porto Alegre:,ABRH, 1993. v.5, p . 167-173.
- BISHOP, A.A., SIMONS, D.B , RICHARDSON, E.V. Total bed material transport, <u>Journal of the Hidraulics Division</u>, ASCE, v. 91 , n. HY 2, p. 175-191, feb 1965.
- CARVALHO, N.O., AYRES,R.M., ROCHA ,J.P.da. Plano de uso do solo na bacia do Rio São Lourenço :estudos de controle de erosão e assoreamento na Bacia do Rio São Lourenço.In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 10, 1993, Gramado. <u>ANAIS</u> ... Porto Alegre : ABRH, 1993. v.5, p. 274-283.
- CHANG, H.H. <u>Fluvial process in river engineering</u>. Awiley-Interscience Publication. New York, Chichester, Brisbane, Toronto, Singapore, 1988. 432 p.
- EINSTEIN, H.A.The Bed-load Function for Sediment Transportation in Open Chanel Flows, <u>United States Department of Agriculture</u> <u>Tech Bulletin</u> n. 1026. p. 1-78, 1950.
- GARDE, R.J., RAJU, R. K. G. <u>Mechanics</u> of sediment transportation and alluvial stream problems . sec edition, Jonh Willey & Sons, New York, USA, 1985. 618 p.
- GRAF, W.H. <u>Hidraulics of sediment Transport</u>. Mc Graf-Hill Book Company, New York, 1971. 513 p.
- RAJU, K.G.R., GARDE, R.J., BHADWAJ, R.C. Total load transport in alluvial channels. <u>Journal of the Hidraulics Division</u>, ASCE, v.107, n. HY2, p. 179-191, feb 1981.
- LANE, L.J. et al. Relationships between morphology of shal stream and sediment yield , <u>Journal of the Hidraulics Division</u>, ASCE, v.108, n. HY. 11, Nov. 1982.

MADDOCK. T.Jr. Equation for resistence to flow and

sediment transport in alluvial chanel , <u>Water Resoucerces</u> <u>Research</u>, v. 12, n. 1, p. 11 - 21.1976.

- NAKATO. T.Teste of Selected sediment-transport Formulas, <u>Journal</u> of the <u>Hidraulics Division</u> ASCE, v. 116, n. 3, P. 362-379, 1990.
- PAIVA, J.B.D.de. <u>Avaliação dos modelos matemáticos de cálculo de</u> <u>transporte de sedimentos em rios</u>. São Carlos : Escola de Engenharia de São Carlos, 1988. 315 p.Tese (Doutorado em Hidraúlica e Saneamento) Escola de Engenharia de São Carlos, S P, 1988.
- RAMOS, C.L., HELOU,G.C.N. Dinâmica do transporte sólido nos rios Tietê e Pinheiros na região metropolitana de São Paulo In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 10, 1993, Gramado. <u>ANAIS</u> ... Porto Alegre ABRH, 1993.v.5 ,p . 257-263.
- RAMOS, C.LL. <u>Início de Transporte Sólido em Misturas</u>. São Paulo : Escola Politécnica da Universidade de São Paulo, 1993. 190 p.Tese (Doutorado em Engenharia Sanitária) Universidade de São Paulo, SP, 1993.
- RAUDKIVI, A.J. Loose boundary hidraulics. 2nd edition, Pergamon International, New Zealand, 1976. 397 p.
- SIMONS, D.B., SENTURK, F. <u>Sediment Transport Tecnology Water</u> <u>Resources Publication</u>, Fort Collins, Colorado, 1977. 807 p.
- SRINIVASAN,V.S., CAVALCANTE, R.G. Um estudo comparativo das equações de transporte de sedimentos para as dunas. In:SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 10, 1993, Gramado <u>ANAIS</u>...Porto Alegre : ABRH, 1993. v.5, pp .238-247.
- TASK COMMITEE OF SEDIMENTATION MANUAL. Sediment transport mechanics : H sediment discharge formulas, <u>Journal of the</u> <u>Hidraulics Division</u>, ASCE, v.97, n.HY 4, April, p.523-567. 1971.
- TOFFALETI, F.B. Definitive computations of Sand Discharge in rivers, <u>Journal of the Hidraulics Division</u>, ASCE, V.95, n.HY.1, p. 225 - 248. 1969.
- YANG, C.T. Incipient motion and sediment transport, Journal of the

<u>Hidraulics</u> <u>Division</u>, ASCE, v. 99, n. HY.10, p. 11679-1704, 1973.

- YANG, C.T., STALL, J.B. Aplicability of unit stream power equation, <u>Journal of the Hidraulics Division</u>, ASCE, v. 102, n. HY 5, p. 559-568, 1976.
- YANG, C.T. Unit Stream Power Equations For Total Load, <u>Journal</u> of <u>Hidrology</u> v. 40, n 1/2, p. 559-568, 1979.
- YANG, C.T., MOLINAS, A. Sediment Transporte and Unit stream power, "Journal of the Hidraulics Division, ASCE, v. 108, n.Y6, p. 774-793, 1982.

ANEXO I - EXEMPLO DE APLICAÇÃO DAS EQUAÇÕES MACROSCÓPICAS

1 - EXEMPLO DE CÁLCULO

Neste exemplo serão apresentados os cálculos empregando-se os métodos de Laursen, Garde e Dattatri, Bishop, Simons e Richardson, Shen e Hungs, Maddock, Karim-Keneddy, Akers-White, Bagnold, Engelund-Hansen e Yang.

As tabelas 1 a 10 ilustrarão os cálculos com os métodos supra citados.Os subscritos a e b para cada tabela indicarão que as carga totais foram calculadas considerando as amostras do material do leito não fracionada (uso do D50) e fracionada respectivamente, conforme foi mencionado no item 4.2.1. Os dados para este exemplo foram obtidos da campanha de medidas número 6 realizada em 01 /06 / 93, cujos dados básicos são:

Profundidade	(P) = 2,48 m
Vazão	$(Q) = 40,92 \text{ m}^3/\text{s}$
Velocidade	(U) = 0,73 m/s
Área	$(A) = 55,70 \text{ m}^2$
Largura s.transversal	(B) = 32,24 m
Inclinação da linha d'água	$(S) = 2,31 \times 10^{-4} \text{ m/m}$
Raio hidráulico	(R) = 1,5 m
Velocidade de atrito	$(U^*) = 0.06 \text{ m/s} \text{ dada pela}$
	equação (5.3)
Peso esp. do sedimento	$(\gamma_s) = 2650 \text{ kgf/m}^3$
Peso esp. da água	$(\gamma) = 1000 \text{ kgf/m}^3$
Massa esp. da água	$(\rho) = 102 \text{ kgf.s}^2/\text{m}^4$
Relação massa do sed/massa da água	$(\rho_{\rm s}/\rho) = 2,65$
Viscosidade cinemática da água	$(v) = 1,02 \times 10^{-6} \text{ m}^2/\text{s}$
Aceleração da gravidade	$(g) = 9,81 \text{ m/s}^2$

1.1 - Aplicação do método de Laursen (1958) segundo GARDE E RAJU (1985), SIMONS (1977), RAUDKIVI (1976), PAIVA (1988) cujos resultados estão na tabela 1.

$$\overline{CV} = 0.01 \gamma \sum P_i (D_i/d)^{7/6} \left[\frac{\tau_0'}{\tau_{0c_i}} - 1 \right] f \left(\frac{U^*}{W_{0i}} \right)$$
 (2.1) kgf/m³

$$\tau o' = -\frac{\rho U^2}{58} \left(\frac{D_{50}}{d} \right)^{1/3} \qquad (kgf/m^2)$$
(2.2)

$$qT = Q \cdot CV.86.400$$
 (2.5) Ton/dia

Cálculos da tabela 1

- Coluna 01 Profundidade média da corrente em m;
- Coluna 02 Raio hidráulico da secção em m;
- Coluna 03 Vazão líquida da secção em m³/s;
- Coluna 04 Velocidade média da corrente em m/s;
- Coluna 05 Velocidade de atrito da partícula em m/s;
- Coluna 06 Diâmetro do sedimento em m (x10⁻⁴);

Coluna 07 - Relação (Di/d) adimensional ;

Coluna 08 - Porcentagem de cada fração de diâmetro Di da amostra;

- Coluna 09 Velocidade de queda da partícula em m/s dada pela equação (2.4)
- Coluna 10 Relação entre a velocidade de queda da partícula e a velocidade de atrito da secção, coluna 05/coluna 09, adimensional;
- Coluna 11 Parâmetro de Laursen dado na figura 2.1 em função dos dados da coluna 10;
- Coluna 12 Número de Reynoldes de atrito da partícula dado pela

relação $R^* = (D_i . U^*)/\nu$, adimensional;

- Coluna 13 Coeficientes usados no cálculo da tensão crítica de Shildes, dados na figura 2.2 em função dos valores da coluna 12 (adimensionais);
- Coluna 14 Tensão crítica de Shildes para o movimento inicial da partícula dada na figura 2.2 em função dos valores da coluna 12, em kgf/m²;
- Coluna 15 Tensão de atrito média da corrente relativa ao grão, dada pela equação (2.2), em kgf/m²;
- Coluna 16 Relação (το'/τοci-1), adimensional.Quando τοci > το', então (το'/τοci-1)<0, neste caso fica caracterizado a ausência do movimento da partícula, o que implica em CV = 0;
- Coluna 17 Concentração parcial de sedimentos em peso por unidade de volume (kgf/m³) ;
- Coluna 18 Carga parcial de sedimentos em ton/dia, dada pela relação (2.5).

A carga total de sedimentos é o valor da coluna (18) na tabela (1.a) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (1.b) para o cálculo fracionado. Tabela 1.a - Cálculo da carga total de sedimentos pelo método Laursen (1958) "apud" GARDE e RAJU (1985),SIMONS (1971), RAUDKIVI (1976), PAIVA (1988), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
d	R	Q	U	U*	D	(D/d)	P%	W	U*/W	f(U*/w)	R*	f(R*)	τς	to'	(το'/τς-1)	CV	qt
m	m	m ³ /s	m/s	m/s	10 ³	10 ⁴		m/s					10 ²	10^2	10 ²	10 ²	
2,45	1,50	40,92	0,73	0,06	1,00	4,08	100	0,10	0,61	11,28	57,16	0,04	6,60	6,95	5,33	6,68	236,30

CARGA TOTAL 236,30

Tabela 1.b - Cálculo da carga total de sedimentos pelo método Laursen (1958) "apud" GARDE e RAJU (1985),SIMONS (1971), RAUDKIVI (1976), PAIVA (1988), com os diâmetros D_i de cada fração da amostra.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
d	R	Q	U	U*	D	(D/d)	P%	W	U*/W	f(U*/W)	R*	f(R*)	τς	το'	(το'/τς-1)	CV	qt
					10 ³	104							10 ²	10 ²	10 ²	10 ²	
m	m	m ³ /s	m/s	m/s	m			m/s					kgf/m ²	kgf/m ²	-		
2,45	1,50	40,92	0,73	0,06	3,09	12,26	20,76	0,18	0,33	8,13	176,34	0,05	24,9	10,10	-59,44	0.00	0.00
2,45	1,50	40,92	0,73	0,06	1,30	5,29	35,84	0.,11	0,52	10,36	74,08	0,04	8,90	7,58	-15,6	0.00	0.00
2,45	1,50	40,92	0,73	0,06	0,59	2,42	23,45	0,07	0,84	13,38	33,95	0,04	3,72	5,84	56,9	10,80	382,17
2,45	1,50	40,92	0,73	0,06	0,32	1,32	13,86	0,04	1,39	21,28	18,52	0,04	1,76	4,77	171	15,00	531,16
2,45	1,50	40,92	0,73	0,06	0,19	0,79	3,53	0,02	2,53	38,26	11,03	0,03	1,02	4,02	294	6,48	229,15
2,45	1,50	40,92	0,73	0,06	0,11	0,43	0,28	0,01	6,48	376,74	6,00	0,04	0,62	3,28	462	3,60	127,33

CARGA TOTAL 1269,80

1.2 - Aplicação do método de Garde (1965) segundo GARDE e RAJU (1985) cujos resultados estão na tabela 2.

$$qT = 16 . \gamma_s . U* D. \tau^{*4}$$
 (2.9) kgf/s.m

$$qT = 36633.36$$
. Pi. B. U*. D. τ^{**} . (2.9) ton/dia

Cálculos da tabela 2

Coluna 01 - Raio hidráulico da secção em m; Coluna 02 - Diâmetro do sedimento em m (x10³) ; Coluna 03 - Porcentagem de cada fração de diâmetro Di da amostra; Coluna 04 - Largura da secção transversal em m; Coluna 05 - Velocidade de atrito da partícula em m/s; Coluna 06 - Tensão de atrito média da corrente em kgf/m², dada pela equação(2.8); Coluna 07 - Tensão de atrito adimensional determinada pela equação (2.7); Coluna 08 - Valores da coluna (07) elevados à quarta potência ; Coluna 09 - Carga parcial de sedimentos em toneladas por dia dada pela equação (2.9).

A carga total de sedimentos é o valor da coluna (09) na tabela (2.ª) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (2.b) para o cálculo fracionado. Tabela 2.a - Cálculo da carga total de sedimentos pelo método de Garde e Dattatri (1963) "apud"GARDE e RAJU (1985), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
R	D	P%	В	U*	το	τ*	(τ *) ⁴	qt
	103						104	
m	m		m	m/s	kgf/m ²			ton/dia
1,50	1,00	100	35,24	0,06	0,35	0,21	19,40	14,64

CARGA TOTAL 14.64

Tabela 2.b - Cálculo da carga total de sedimentos pelo método de Garde e Dattatri (1963) "apud" GARDE e RAJU (1985),com os diâmetros D_i de cada fração da amostra.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
R	D	P%	В	U*	το	τ*	(τ *) ⁴	qt
	103							
m	m			m/s	kgf/m ²	10 ²	10 ⁴	ton/dia
1,50	3,09	20,76	35,24	0,06	0,35	6,81	0,22	0,10
1,50	1,30	35,84	35,24	0,06	0,35	16,20	6,89	2,41
1,50	0,59	23,45	35,24	0,06	0,35	35,40	156	16,38
1,50	0,32	13,86	35,24	0,06	0,35	64,80	1760	59,65
1,50	0,19	3,53	35,24	0,06	0,35	109	14000	71,88
1,50	0,11	0,28	35,24	0,06	0,35	200	160000	35,41

CARGA TOTAL 185,82

1.3 - Aplicação do método de Bishop, Simons e Richardson (1965) cujos resultados estão na tabela 3.

$$\psi' = \left(\frac{\rho s - \rho}{\rho}\right) \left(\frac{D_{35}}{R' \cdot S}\right)$$
(2.11)

$$\phi_{T} = \frac{q_{T}}{\rho \cdot g^{3/2} \cdot D^{3/2} \left(\frac{\rho_{s}}{\rho} - 1\right)^{1/2}}$$
(2.12)

$$qT = pi \cdot B \cdot D^{3/2} \cdot \phi T \cdot 3478.24$$
 ton/dia (2.12)

Cálculos da tabela 3

- Coluna 01 Raio hidráulico com relação ao grão em m, determinado no item (2.2.1.3) do capítulo 2. Neste exemplo R' foi substituído pelo raio hidráulico da secção;
- Coluna 02 Diâmetro do sedimento em m (×10³);
- Coluna 03 Porcentagem de cada fração de diâmetro Di da amostra;
- Coluna 04 Diâmetro do sedimento tal que 35% da amostra tem diâmetro inferior;
- Coluna 05 Intensidade da tensão de cisalhamento determinada pela pela equação (2.11), adimensional;

- Coluna 06 Fator adimensional de intensidade da carga total do material transportado, determinado na figura (2.4);
- Coluna 07 Largura da secção transversal em m;
- Coluna 08 Valores da coluna 02 elevados a 3/2 ;
- Coluna 09 Carga parcial de sedimentos em toneladas por dia dada pela equação 2.12.

A carga total de sedimentos é o valor da coluna (09) na tabela (3.ª), quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (3.b) para o cálculo fracionado.

Tabela 3.a - Cálculo da carga total de sedimentos pelo método de Bishop, Simons e Richardson (1965), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
R'	D	P%	D35%	Ψ	φT	В	D ^{3/2}	qT
	10 ³		103				106	
m	m		m			m	m ^{3/2}	ton/dia
1,50	1,00	100	0,70	3,33	2,87	35,24	31,600	1112,44

CARGA TOTAL 1112,44

Tabela 3.b - Cálculo da carga total de sedimentos pelo pelo método de Bishop, Simons e Richardson (1965), com os diâmetros D_i de cada fração da amostra.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
R'	D	P%	D35%	Ψ'	φT	В	D ^{3/2}	qT
	10 ³		10 ³				106	
m	m		m			m	m ^{3/2}	ton/dia
1.50	3.09	20,76	0,70	3,33	2,870	35,24	171	1251,37
1.50	1.30	35,84	0,70	3,33	2,87	35,24	46,7	588,24
1.50	0.59	23,45	0,70	3,33	2,87	35,24	14.5	119,43
1.50	0.32	13,86	0,70	3,33	2,87	35,24	5.83	28,44
1.50	0.19	3,53	0,70	3,33	2,87	35,24	2.68	3,33
1.50	0.11	0,28	0,70	3,33	2,87	35,24	1.08	0,11

CARGA TOTAL 1990,91

1.4 - Aplicação do método de Shen e Hungs (1972),"apud" YANG E MOLINAS (1982) cujos resultados estão na tabela 4.

log CV = $-107404,46 + 324214,75.Y - 326309,59.Y^{2} + 109503,87.Y^{3}$ (2.14) Onde CV é dado em ppm por peso :

$$Y = \begin{pmatrix} 0.57 \\ U.S & 0,0075 \\ \hline W_0^{0},32 \end{pmatrix}$$
(2.15)

Para calcular Y na equação (2.15) deve-se entrar com as velocidades em ft/s e em seguida substituí-lo na equação (2.14) para se obter CV em partes por milhões por peso.

A carga total de sedimentos em toneladas por dia é dada pela equação 4.2 definida no item 4.2.1.

 $qt = 0,0864 . CV . Q . P_i . 0,01$ (4.2)

onde :

Cálculos da tabela 4

Coluna 01 - Velocidade média da corrente em m/s; Coluna 02 - Diâmetro do sedimento em m (x10³); Coluna 03 - Porcentagem de cada fração de diâmetro Di da amostra; Coluna 04 - Velocidade de queda da partícula; Coluna 05 - Declividade da linha d'água, (adimensional); Coluna 06 - Valor da constante Y da equação (2.15) no Sistema Inglês de Unidades (fts); Coluna 07 - Concentração parcial de sedimentos em pom em volume

Coluna 07 - Concentração parcial de sedimentos em ppm em volume dada pela equação (2.14);

Coluna 08 - Carga parcial de sedimentos em toneladas por dia dada pela equação (4.2).

A carga total de sedimentos é o valor da coluna (08) na tabela (4.a) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (4.b) para o cálculo fracionado. Tabela 4.a - Cálculo da carga total de sedimentos pelo método de Shen e Hungs (1972) "apud" YANG e MOLINAS (1982), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
U	D	P%	W	S	Y	CV	qt
	103			10-4	10 ²		
m/s	m		m/s		(fts)	(ppm)	ton/dia
2,39	1,00	100,00	0,32	2,31	97,40	20,37	72,03

CARGA TOTAL 72,03

Tabela 4.b - Cálculo da carga total de sedimentos pelo método de Shen e Hungs (1972) "apud" YANG e MOLINAS (1982) com os diâmetros D_i de cada fração

da amostra.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
U	D	P%	w	S	Y	CV	qt
	10 ³			10-4	10 ²		
m/s	m		m/s	j	(fts)	(ppm)	ton/dia
2,39	3,09	20,76	0,58	2,31	97,20	9,80	7,19
2,39	1,30	35,84	0,37	2,31	97,40	17,33	21,96
2,39	0,59	23,45	0,23	2,31	97,50	30,29	25,12
2,39	0,32	13,86	0,14	2,31	97,60	51,54	25,25
2,39	0,19	3,53	0,07	2,31	97,70	94,76	11,83
2,39	0,11	0,28	0,03	2,31	97,90	216,17	2,14

CARGA TOTAL 93.49

1.5 - Aplicação do Metodo de Maddock (1976) cujos resultados estão na tabela 5.

$$\bar{CV} = \begin{bmatrix} 10^3 & \underline{U.S} \\ \phi(D) & - \frac{310,08 D}{\phi(D).d^{1/2}} \begin{bmatrix} \underline{16,19.D} \\ W^2 \end{bmatrix}^{1/4} \end{bmatrix}^{4/3} (2.17)$$

Onde :

CV - concentração de sedimentos em partes por milhões por peso.

Foi usado K = 60 na equação (2.17) apresentada no item 2.2.1.5; $\phi(D) - \acute{E}$ obtido em ft/s na figura 2.5 em função do diâmetro do sedimento em mm, porém, este deve ser tranformado em m/s antes de ser empregado na equação 2.17 acima.

A carga total de sedimentos é dada pela equação (4.1) definida no item 4.2.1, apresentada abaixo :

 $q_T = 8,64 \cdot 10^{-4} \cdot CV \cdot Q \cdot P_{\delta}^{\delta}$ em ton/dia (4.1)

Cálculos da tabela 5

Coluna 01 - Profundidade média da secção em m; Coluna 02 - Diâmetro médio do sedimento em m; Coluna 03 - Porcentagem de cada fração de diâmetro D: da amostra; Coluna 04 - Declividade da linha d'água (adimensional);

- Coluna 05 Velocidade de queda da partícula em m/s dada pela equação (2.4);
- Coluna 06 Coeficiente dado na figura (2.5) em ft/s em função do diâmetro do sedimento em mm;
- Coluna 07 Valores da coluna 06 em m/s;
- Coluna 08 Parâmetro adimensional de distribuição de velocidades,segundo Maddock (1976);
- Coluna 09 Concentração parcial de sedimentos em partes por milhões por peso dada pela equação (2.17);
- Coluna 10 Carga parcial de sedimentos em toneladas por dia dada pela equação (4.1).

A carga total de sedimentos é o valor da coluna (10) na tabela (5.a) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (5.b) para o cálculo fracionado.

> UBICAMP GRESSING CONTRAL

Tabela 5.a - Cálculo da carga total de sedimentos pelo método de Maddock (1976), com a mostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Р	D	P%	S	W	Ø(D)	Ø(D)	K	CV	qt
	10 ³		104		10 ³	10 ³			
m				m/s	ft/s	m/s		ppm	ton/dia
2,45	1,00	100	2,31	0,10	40	12,20	60	0,00	0.00

CARGA TOTAL 0.00

Tabela 5.b- Cálculo da carga total de sedimentos pelo método de Maddock (1976),com os diâmetros D_i de cada fração da amostra.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Р	D	P%	S	W	Ø(D)	Ø(D)	K	CV	qt
	103		10 ⁴		10 ³	10 ³			
m				m/s	ft/s	m/s	1	ppm	ton/dia
2,45	3,09	20,76	2,31	0,18	78,40	23,90	60	0.00	0,00
2,45	1,30	35,84	2,31	0,11	59,30	18,09	60	0.00	0.00
2,45	0,59	23,45	2,31	0,07	35,60	10,86	60	4,00	3,95
2,45	0,32	13,86	2,31	0,04	22,80	6,95	60	27,39	16.50
2,45	0,19	3,53	2,31	0,02	16,40	5,00	60	60,29	10.14
2,45	0,11	0,28	2,31	0,01	10,80	3,29	60	6,07	1.40

CARGA TOTAL 24,30

1.6 - Aplicação do método de Karim - Kennedy (1983) segundo GARDE e RJU (1985) cujos resultados estão na tabela 6.

$$\log \frac{q^{T}}{10661,60 \cdot \sqrt{D^{3}}} = -2,2786 + 2,9719 \cdot V_{1} + 0,2989 V_{1} \cdot V_{2} + 1,06 V_{1} \cdot V_{3}$$
(2.18)

onde:

$$V_1 = \log \frac{U}{4,02\sqrt{D}}$$
; $V_2 = \log (D/d)$;

$$V_3 = \log \left[\frac{U^* - U^* cr}{4,02 \sqrt{D}} \right];$$

Fazendo :

Tem-se :

$$q_T = 10^{K'} \cdot 10661, 60 \sqrt{D^3} \cdot B \cdot 0,864 \cdot P_{\delta}$$
 ton/dia (2.18)

Cálculos da Tabela 6

- Coluna 01 Profundidade média da corrente em m;
- Coluna 02 Diâmetro do sedimento em m;
- Coluna 03 Porcentagem de cada fração de diâmetro Di da amostra ;
- Coluna 04 Velocidade média da corrente em m/s;
- Coluna 05 Largura da secção tranversal em m;
- Coluna 06 Velocidade de atrito da partícula em m/s dada pela equação (2.3);
- Coluna 07 Número de Reynolds de atrito da partícula dado pela relação R = (D . U*)/ ν ;
- Coluna 08 Coeficientes usados no cálculo da tensão crítica de Shildes, dados na figura 2.2 em função dos valores da coluna 12 (adimensionais);
- Coluna 09 Tensão crítica de Shildes para o movimento inicial da partícula dada na figura 2.2 em função dos valores da coluna 07;
- Coluna 10 Velocidade crítica para o movimento inicial da partícula dada pela equação (2.19);
- Colunas (11,12,13) Valores das constantes adimensionais da fórmula de Karim-Kennedy;
- Coluna 14 Valores de K';
- Coluna 15 Carga parcial de sedimentos em toneladas por dia dada pela equação 2.18.

A carga total de sedimentos é o valor da coluna (15) na tabela (6.a) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (6.b) para o cálculo fracionado.
Tabela 6.a - Cálculo da carga total de sedimentos pelo método de Karim e Kennedy (1983) "apud" GARDE e RAJU (1985), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
d	D	(P%)	U	В	U*	R*	f(R*)	τci	U*cr	VI	V2	V3	K'	qt
	103							10 ²	10 ²					
m	m		m/s	m	m/s			kgf/m ²	m/s					ton/dia
2,45	1,00	100,00	0,73	32,24	0,06	57,16	0.04	6,60	2,54	0,76	-3,39	-0,59	-1,26	55,85

CARGA TOTAL 55,85

Tabela 6.b - Cálculo da carga total de sedimentos pelo método de Karim e Kennedy (1983) "apud" GARDE e RAJU (1985) com os diâmetros D_i de cada fração da amostra.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
d	D	(P%)	U	В	U*	R*	f(R*)	τci	U*cr	V1	V2	V3	K'	qt
	103							10 ²	10 ²					
m			m/s	m	m/s			kgf/m ²	m/s					ton/dia
2,45	3,09	20.76	0,73	32,24	0,06	176,34	0.05	24,90	4,95	0,51	-2,90	-1,40	-1,96	12,66
2,45	1,30	35,84	0,73	32,24	0,06	74,08	0.04	8,98	2,97	0,70	-3.28	-0,70	-1,40	21,49
2,45	0,59	23,45	0,73	32,24	0,06	33,95	0.04	3,72	1,91	0,87	-3.62	-0,40	-1,00	11,10
2,45	0,32	13,86	0,73	32,24	0,06	18,52	0.04	1,76	1,32	1.00	-3.88	-0,20	-0,68	5,52
2,45	0,19	3,53	0,73	32,24	0,06	11,03	0.03	1,02	1,00	1.12	-4.10	-0,06	-0,40	1,21
245	0,11	0,28	0,73	32,24	0,06	6,00	.0.04	0,62	7,82	1.25	-4.37	0,08	-0,08	0,08
										C A D	0	TOT	3 A Y	

CARGA TOTAL 52,06

1.7 - Aplicação da fórmula de Ackers-White (1973) cujos resultados estão na tabela 7.

$$F_{gr} = \frac{U^{*n}}{4,02 \sqrt{D}} \left(\frac{U}{5,66 \log(10.d/D)} \right)^{1-n}$$
(2.20)

$$Dg = D \cdot 24964, 19$$
 (2.23)

$$CV = c. 2,65 \quad \underline{D}_{R} \quad \left(\begin{array}{c} \underline{U} \\ \underline{U*} \end{array} \right)^{n} \cdot \left(\begin{array}{c} \frac{Fg}{A} \\ -1 \end{array} \right)^{m} \quad (2.24)$$

As constantes c, A, m, n são dadas na tabela 2.1 apresentadas no item 2.2.2.1 no capítulo 2 e reescritas a seguir:

Tabela (2.1) - Valores das constantes da fórmula de ACKERS - WHITE

coeficientes	Dg >60	1,0 ≤ Dg < 60
с	0,025	$\log c = 2,86.\log D_{gr} - (\log D_{gr})^2 - 3,53$
n	0,000	1 - 0,56 log Dgr
A	0.170	$0,23 / (D_{gr})^{1/2} + 0,14$
m	1,500	9,66 / Dgr + 1,34

A carga total de sedimentos em toneladas por dia é calculada pela relação (2.5) como segue:

 $qT = CV \cdot Q \cdot \gamma_m \cdot 86400 \cdot 0.01 \cdot P_{\odot}^{\circ} =$

= 864 . Q . CV . P% ton/dia (2.5)

Cálculo da tabela 7

- Coluna 01 Profundidade média da corrente em m;
- Coluna 02 Raio hidráulico da secção em m;
- Coluna 03 Diâmetro do sedimento em m ;
- Coluna 04 Porcentagem de cada fração de diâmetro Di da amostra;
- Coluna 05 Velocidade média da corrente em m/s;
- Coluna 06 Velocidade de atrito da partícula em m/s dada pela equação (2.3);
- Coluna 07 Diâmetro adimensional definido pela equação (2.23);
- Colunas 08, 09, 10, 11 Constantes da fórmula de Ackers-White, dadas na tabela 2.1;
- Coluna 12 Número de mobilidade da partícula da fórmula de Ackers-White, dado pela equação (2.20)
- Coluna 13 Concentração parcial de sedimentos por peso obtida pela equação (2.24);
- Coluna 14 Carga parcial de sedimentos em toneladas por dia obtida pela equação 2.25.

A carga total de sedimentos é o valor da coluna (14) na tabela (7.a) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (7.b) para o cálculo fracionado.

Tabela 7.a - Cálculo da carga total de sedimentos pelo método de Ackers e White (1973), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
d	R	D	p%	U	U*	Dg	n	Α	m	с	Fg	CV	qt
		10 ³								10 ²		10 ⁵	
m	m			_m/s	m/s							(ppm)	ton/dia
2,45	1,50	1,00	100	0,73	0,06	24,97	0,22	0,19	1,73	3,62	0,27	2,64	93,17

CARGA TOTAL 93,17

Tabela 7.b - Cálculo da carga total de sedimentos pelo método de Ackers e White (1973),com os diâmetros D_i de cada fração da amostra para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
d	R	D	p%	U	U*	Dg	n	A	m	C	Fg	cv	qt
		10 ³								10 ²		10 ⁵	
m	m			m/s	m/s							(ppm)	ton/dia
2,45	1,50	3,09	20,76	0,73	0,06	77,02	0,00	0,17	1,50	2,50	0,15	0,00	0,00
2,45	1,50	1,30	35,84	0,73	0,06	32,36	0,15	0,18	1,64	3,22	0,23	1,45	18,39
2,45	1,50	0,59	23,45	0,73	0,06	14,83	0,34	0,20	1,99	2,80	0,37	5,32	44,35
2,45	1,50	0,32	13,86	0,73	0,06	8,09	0,49	0,22	2,53	1,75	0,54	9,42	46,17
2,45	1,50	0,19	3,53	0,73	0.06	4,82	0,62	0,24	3,34	90,5	0,76	0,19	23,60
2,45	1,50	0,11	0,28	0,73	0,06	2,62	0,77	0,28	5,02	31,0	1,15	122	12,07

CARGA TOTAL 144,58

1.8 - Aplicação da equação de Bagnold (1966) "apud" SIMONS (1977), GRAF (1971),GARDE e RAJU (1985) cujos resultados estão na tabela 8.

$$q\tau = 0,61 \tau o U \begin{bmatrix} \frac{\rho_e}{\tan g \alpha} + 0,011 \\ U \end{bmatrix} \qquad kgf/m^3 \qquad (2.26)$$

$$qT = 0,61 \tau o U \begin{bmatrix} \rho_e + 0,011 & U \\ tang \alpha & Wo \end{bmatrix} . 86400 . 10^{-3} . B . P_{\odot}^{\circ} . 0,01 =$$

 $q\tau = 0,53 \tau_0 U \left[\frac{\rho_e}{\tan g \alpha} + 0,011 \frac{U}{W_0} \right] B \cdot P_{\infty}^* \quad ton/dia \quad (2.26)$

Cálculo da tabela 8

- Coluna 01 Raio hidráulico da secção em m;
- Coluna 02 Diâmetro do sedimento em m ;
- Coluna 03 Porcentagem de cada fração de diâmetro Di da amostra;
- Coluna 04 Declividade da linha d'água (adimensional);
- Coluna 05 Tensão de atrito média da corrente em kgf/m²;
- Coluna 06 Velocidade média da corrente em m/s;
- Coluna 07 Valores da coluna 06 em ft/s;
- Coluna 08 Velocidade de queda da partícula em m/s;
- Coluna 09 Largura da secção transversal em m;
- Coluna 10 Eficiência de transporte da carga do leito dada na figura (2.6) em função do diâmetro do sedimento em mm e da velocidade da corrente em ft/s;
- Coluna 11 Coeficiente de atrito dado na figura (2.7) em função do diâmetro do sedimento em mm e da velocidade média da corrente em ft/s;
- Coluna 12 Carga parcial de sedimentos em toneladas por dia, dada pela equação 2.26.

A carga total de sedimentos é o valor da coluna (12) na tabela (8.a) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (8.b) para o cálculo fracionado. Tabela 8 a - Cálculo da carga total de sedimentos pelo método de Bagnold (1966) "apud" SIMONS e SENTURK (1977), GRAF (1971), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
R	D	Р%	S	το	U	U	W	В	pe	tana	qt
m	10 ³		104	kof/m ²	m/s	ft/s	m/s	m			ton/dia
1,50	1,00	100	2,31	0,35	0,73	2,39	0,10	35,24	0,12	0,60	135.05

CARGA TOTAL 135,05

Tabela 8 b- Cálculo da carga total de sedimentos pelo método de Bagnold (1966) "apud" SIMONS e SENTURK (1977), GRAF (1971), com os diâmetros D_i de cada fração da amostra.

(1)	(2)	(3)	_(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
(R)	D	P%	S	το	U	U	w	в	pe	tana	qt
	103		104								
	m			kgf/m ²	m/s	ft/s	m/s	m			ton/dia
1,50	3,09	20,76	2,31	0,35	0,73	2,39	0,18	35,24	0,13	0,38	35,55
1,50	1,30	35,84	2,31	0,35	0,73	2,39	0,11	35,24	0,12	0,52	51,07
1,50	0,59	23,45	2,31	0,35	0,73	2,39	0,07	35,24	0,13	0,72	32,36
1,50	0,32	13,86	2,31	0,35	0,73	2,39	0,04	35,24	0,13	0,75	23,50
1,50	0,19	3,56	2,31	0,35	0,73	2,39	0,02	35,24	0,14	0,75	8,71
1,50	0,11	0,28	2,31	0,35	0,73	2,39	0,01	35,24	0,14	0,75	1,40

CARGA TOTAL 152,19

1.9 - Aplicação da fórmula de Engelund-Hansen (1967) cujos resultados estão na tabela 9.

$$q\tau = 132,5 . U^2 . \left[\frac{\sqrt{D}}{4,02}\right] \left[\frac{\tau_0}{1650 . D}\right]^{3/2} kfg/m.s$$
 (2.30)

$$q\tau = 132,5 .U^2 . \left[\frac{\sqrt{D}}{4,02}\right] \left[\frac{\tau_0}{1650 .D}\right]^{3/2} . 86400 .10^{-3} .B .P% .0,01=$$

$$q\tau = 114,48 \cdot U^2 \cdot \left[\frac{\sqrt{D}}{4,02}\right] \left[\frac{\tau_0}{1650 \cdot D}\right]^{3/2} \cdot B \cdot P_0^* \quad ton/dia (2.30)$$

Cálculos da tabela 9

Coluna 01 - Raio hidráulico da secção em m; Coluna 02 - Diâmetro do sedimento em m ; Coluna 03 - Porcentagem de cada fração de diâmetro Di da amostra ; Coluna 04 - Declividade da linha d'água (adimensional); Coluna 05 - Tensão de atrito média da corrente em kgf/m²; Coluna 06 - Velocidade média da corrente em m/s; Coluna 07 - Largura da secção tranversal em m; Coluna 08 - Carga parcial de sedimentos em toneladas por dia, dada pela equação (2.30)

A carga total de sedimentos é o valor da coluna (08) na tabela (9.ª) quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (9.b) para o cálculo fracionado. Tabela 9.a - Cálculo da carga total sedimentos pelo método de Engelund - Hansen (1967) "apud" PAIVA (1988), com a amostra não fracionada (uso do D50) para o experimento número 06

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
R	D	P%	S	το	U	В	qt
	-						
	10 ³		10 ⁴				
m]			kgf/m ²	m/s	m	ton/dia
1,50	1,00	100	2,31	0,35	0,73	35,24	162,62

CARGA TOTAL 162,62

Tabela 9.b - Cálculo da carga total sedimentos pelo método de Engelund - Hansen (1967) "apud" PAIVA (1988), com os diâmetros D_i de cada fração da amostra.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
R	D	P%	S	το	U	В	qt
m	10 ³		10 ⁴	kgf/m ²	m/s	m	ton/dia
1,50	3,09	20,77	2,31	0,35	0,73	35,24	10,78
1,50	1,30	35,90	2,31	0,35	0,73	35,24	44,28
1,50	0,59	23,94	2,31	0,35	0,73	35,24	63,21
1,50	0,32	13,88	2,31	0,35	0,73	35,24	68,50
1,50	0,19	3,54	2,31	0,35	0,73	35,24	29,29
1,50	0,11	0,28	2,31	0,35	0,73	35,24	4,27

CARGA TOTAL 220,33

1.10 - Aplicação do método de Yang (1973), cujos resultados estão na tabela 10.

$$\log CV = 5,435 - 0,286 \log \frac{W.D}{v} - 0,457 \log \frac{U^*}{W} + (1,799 - 0,409 \log \frac{W.D}{v} - 0,314 \log \frac{U^*}{W} \log (\frac{U.S}{W} - \frac{Ucr S}{W}) (2.31)$$

onde:

CV = concentração total de sedimentos em partes por milhões
 por peso;

O grupo de equações (2.32) a (2.34) fornece a relação entre a velocidade de sedimentação e a velocidade crítica da partícula (YANG, 1979).

$$\frac{U_{cr}}{W} = 2,5 \left[\frac{\log(W^*.D)}{\nu} - 0,06 \right]^{-1} + 0,066 \quad (2.32)$$

para
$$1,2 < U*.D < 70$$
 (2.33)

$$\frac{Ucr}{W} = 2,05 \quad \text{para } 70 \le \frac{U \star .D}{v} \quad (2.34)$$

U* = velocidade de atrito dada pela equação (2.3), em m./s.
W = velocidade de sedimentação da partícula em m/s, dada pela equação 2.4.

A carga total de sedimentos em toneladas por dia é dada pela equação (4.1) descrita no item 4.2.1 apresentada abaixo:

$$q_T = 8,64 \times 10^{-4} \text{ CV} \cdot \text{Q} \cdot \text{P}$$
 (4.1) ton/dia

Cálculos da tabela 10

- Coluna 01 Diâmetro do sedimento em m (x10³);
- Coluna 02 Número de Reynoldes para o movimento inicial da partícula dado pela relação R* = (Di . U*)/v, adimensional;
- Coluna 03 Velocidade de queda da partícula em m/s dada pela equação 2.4;
- Coluna 04 Porcentagem de cada fração de diâmetro Di da amostra;
- Coluna 05 Declividade da linha d'água (adimensional);
- Coluna 06 Tensão de atrito média da corrente em kgf/m²;
- Coluna 07 Relação entre a velocidade de queda da partícula e a velocidade crítica para o movimento inicial (adimensional);
- Coluna 08 Velocidade de atrito da partícula dada pela equação 2.3, em m/s ;
- Coluna 09 Vazão líquida da corrente em m³/s;
- Coluna 10 Concentração parcial de sedimentos em partes por milhões em peso dada pela equação (2.31);
- Coluna 11 Carga parcial de sedimentos em toneladas por dia, dada pela relação (4.1).

A carga total de sedimentos é o valor da coluna (11) na tabela (10.a)quando o cálculo for efetivado considerando-se a amostra do material do leito não fracionada (uso do D50) e é a soma dos valores desta coluna na tabela (10.15), para o cálculo fracionado.

Tabela 10.a - Cálculo da carga total de sedimentos pelo método de Yang (1973), com a amostra não fracionada (uso do D50) para o experimento número 06.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
D	R*	Wo	P%	S	το	Ucr/Wo	U*	Q	CV	q
10 ³				10 ⁴	kgf/m ²			3		
m		m/s					m/s	m²/s	ppm	tom/dia
1,00	57,16	0,10	100	2,31	0,35	2,05	0,06	40,92	86,66	306,38

CARGA TOTAL 306,38

Tabela 10.b - Cálculo da carga total de sedimentos pelo método de Yang (1973), com os diâmetros Di de cada fração da amostra

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
D	R*	Wo	P%	s		Ucr/Wo	U*	Q	CV	q
10 ³		(10 ⁴	kgf/m ²		(3/2		ta-v/đia
m		<u>m/s</u>	<u> </u>				M/S	m /s	ppm	tom/dia
3,09	176,34	0,18	20,76	2,31	0,35	2,05	0,06	40,92	126,54	100,72
1,30	74,08	0,11	35,84	2,31	0,35	2,05	0,06	40,92	87,19	92,14
0,59	33,95	0,07	23,45	2,31	0,35	1,86	0,06	40,92	73,49	50,56
0,32	18,52	0,04	13,86	2,31	0,35	2,24	0,06	40,92	74,09	27,37
0,19	11,03	0,02	3,53	2,31	0,35	2,71	0,06	40,92	100,23	12,05
0,11	6,00	<u>0,</u> 01	0,28	2,31	0,35	3,65	0,06	40,92	224,80	7,15

CARGA TOTAL 289,89

ANEXO II - CURVAS DE REGRESSÃO ENTRE A DESCARGA SÓLIDA TOTAL MEDIDA E CALCULADAS PELAS EQUAÇÕES

Figura 1.a - Relação entre as descargas totais medidas e calculadas pelo Método de LAURSEN (1958), " apud " GARDE e RAJU (1985), SIMONS (1977), RAUDKIVI (1976), PAIVA (1988), com a amostra não fracionada (uso do D50).

Figura 1.b - Relação entre as descargas totais medidas e calculadas pelo Método de LAURSEN (1958), " apud " GARDE e RAJU (1985), SIMONS (1977), RAUDKIVI (1976), PAIVA (1988), com os diâmetros Di de cada fração da amostra.

Carga total (qtm) em ton/dia

Fiugura 2.a - Relação entre as descargas totais medidas e calculadas pelo Método de GARDE E DATTATRI (1963), " apud " GARDE e RAJU (1985), com a amostra não fracionada (uso do D50).

Figura 2.b - Relação entre as descargas totais medidas e calculadas pelo método de GARDE E DATTATRI (1963) " apud " GARDE e RAJU (1985), com os diâmetros Di de cada fração da amostra.

Carga total medida (qtm) em ton/dia

Figura 3.a - Relação entre as descargas totais medidas e calculadas pelo Método de BISHOP, SIMONS E RICHARDSON (1965), com os diâmetros Di de cada fração da amostra.

Figura 3.b - Relação entre as descargas sólidas totais medidas e calculadas pelo Método de BISHOP, SIMONS E RICHARDSON (1965), com os diâmetros Di de cada fração da amostra.

Figura 4.a - Relação entre as descargas totais medidas e calculadas pelo Método de SHEN E HUNGS (1972), " apud "YANG E MOLINAS (1982), com a amostra não fracionada (uso do D50).

Figura 4.b - Relação entre as descargas totais medidas e calculadas pelo Método de SHEN E HUNGS (1972), " apud " YANG E MOLINAS (1982), com os diâmetros Di de cada fração da amostra.

Figura 5.a - Relação entre as descargas totais medidas e calculadas pelo Método de MADDOCK (1976), com a amostra não fracionada (uso de d50).

Figura 5.b - Relação entre as descargas totais medidas e calculadas pelo Método de MADDOCK (1976), com os diâmetros Di de cada fração da amostra

Figura 6.a - Relação entre as descargas totais medidas e calculadas pelo Método de KARIM E KENNEDY (1983), " apud " GARDE e RAJU (1985), com a amostra não fracionada (uso do D50).

Carga total medida (qtm) em ton/dia

Figura 6.b - Relação entre as descargas totais medidas e calculadas pelo Método de KARIM E KENNEDY (1983) " apud " GARDE e RAJU (1985), com os diâmetros Di de cada fração da amostra.

Figura 7.a - Relação entre as descargas totais medidas e calculadas pelo Método de ACKERS E WHITE (1973), com a amostra não fracionada (uso do D50).

Figura 7.b - Relação entre as descargas totais medidas e calculadas pelo Método de ACKERS e WHITE (1973), com os diâmetros Di de cada fração da amostra

Carga total medida

Figura 8.a - Relação entre as descargas totais medidas e calculadas pelo Método de BAGNOLD (1966), "apud "SIMONS (1977), GRAF (1971), GARDE e RAJU (1985), com amostra não fracionada (uso do D50).

Figura 8.b - Relação entre as descargas totais medidas e calculadas pelo Método de BAGNOLD (1966), "apud "GARDE e RAJU (1985), com a amostra não fracionada (uso do D50).

Figura 9.a - Relação entre as descargas totais medidas e calculadas pelo Método de ENGELUND e HANSEN (1967), " apud " PAIVA (1988), com a amostra não fracionada (uso do D50).

Figura 9.b - Relação entre as descargas totais medidas e calculadas pelo Método de ENGELUND e HANSEN (1967), " apud " PAIVA (1988), com os diâmetros Di de cada fração da amostra.

Carga total medida (qtm) em ton/dia

Figura 10.b - Relação entre as descargas totais medidas e calculadas pelo Método de YANG (1976), com os diâmetros Di de cada fração da amostra

ANEXO III - TABELAS DE CÁLCULO DAS DIFERENÇAS PERCENTUAIS RELATIVAS

Para o anexo III considerar a seguinte legenda:

Qm Carga total de sedimentos medida

- QLau Carga total de sedimentos calculada pelo método de Laursen
- QGD Carga total de sedimentos calculada pelo método de Garde e Dattatri
- QBSR Carga total de sedimentos calculada pelo método de Bishop, Simons e Richrdson
- QSH Carga total de sedimentos calculada pelo método de Shen e Hungs
- QMAD Carga total de sedimentos calculada pelo método de Maddock
- QKk Carga total de sedimentos calculada pelo método de Karim e Kennedy
- QAcw Carga total de sedimentos calculada pelo método de Ackers e White
- QBag Carga total de sedimentos calculada pelo método de Bagnold
- QEng Carga total de sedimntos calculada pelo método de Engelund e Hansen
- Qyan Carga total de sedimentos calculada pelo método de Yang

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Eng.)	(Qm-QEng)/Qm	[(Qm-QEng)/Qm] ²	{[(Qm-QEng)/Qm] ² } ¹ / ₂	${[(Qm-QEng)/Qm]^{2}}^{\frac{1}{2}}$
1	251,67	204,44	0,19	0,04	0,19	18,77
2	83,22	82,97	0,00	0,00	0,00	0,30
3	127,68	34,93	0,73	0,53	0,73	72,64
4	179,82	54,37	0,70	0,49	0,70	69,76
5	21,65	26,03	-0,20	0,04	0,20	20,23
б	456,03	162,62	0,64	0,41	0,64	64,34
7	65,59	57,57	0,12	0,01	0,12	12,23
8	28,20	38,56	-0,37	0,13	0,37	36,74
9	20,77	21,31	-0,03	0,00	0,03	2,60
10	10,13	10,00	0,01	0,00	0,01	1,28
11	8,57	3,20	0,63	0,39	0,63	62,66
12	7,48	2,06	0,72	0,53	0,72	72,46
13	2,69	0,51	0,81	0,66	0,81	81,04
14	3,39	0,38	0,89	0,79	0,89	88,79
15	4,82	0,69	0,86	0,73	0,86	85,68
16	20,02	15,66	0,22	0,05	0,22	21,78
17	355,51	222,36	0,37	0,14	0,37	37,45
18	92,03	16,19	0,82	0,68	0,82	82,41
19	146,17	55,40	0,62	0,39	0,62	62,10
20	342,13	110,19	0,68	0,46	0,68	67,79
21	18,58	1,13	0,94	0,88	0,94	93,92
22	25,53	4,55	0,82	0,68	0,82	82,18
23	139,89	65,83	0,53	0,28	0,53	52,94
24	443,52	81,34	0,82	0,67	0,82	81,66
					SOMA	52,99

Tabela 9.a - Estimativa da diferença percentual relativa para o método de de Engelund e Hansen com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Lau.)	(Qm-QLau)/Qm	[(Qm-QLau)/Qm] ²	{[(Qm-QLau)/Qm] ² } ¹ / ₂	{[(Qm-QLau)/Qm] ² } ^{1/2}
1	251,67	1466,20	-4,83	23,29	4,83	482,59
2	83,22	109,12	-0,31	0,10	0,31	31,12
3	127,68	0,00	1,00	1,00	1,00	100,00
4	179,82	0,00	1,00	1,00	1,00	100,00
5	21,65	0,00	1,00	1,00	1,00	100,00
6	456,03	236,30	0,48	0,23	0,48	48,18
7	65,59	0,00	1,00	1,00	1,00	100,00
8	28,20	0,00	1,00	1,00	1,00	100,00
9	20,77	0,00	1,00	1,00	1,00	100,00
10	10,13	0,00	1,00	1,00	1,00	100,00
11	8,57	0,00	1,00	1,00	1,00	100,00
12	7,48	0,00	1,00	1,00	1,00	100,00
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,00	1,00	1,00	1,00	100,00
16	20,02	0,00	1,00	1,00	1,00	100,00
17	355,51	1514,01	-3,26	10,62	3,26	325,87
18	92,03	0,00	1,00	1,00	1,00	100,00
19	146,17	0,00	1,00	1,00	1,00	100,00
20	342,13	302,10	0,12	0,01	0,12	11,70
21	18,58	0,00	1,00	1,00	1,00	100,00
22	25,53	0,00	1,00	1,00	1,00	100,00
23	139,89	0,00	1,00	1,00	1,00	100,00
24	443,52	2650,11	-4,98	24,75	4,98	497,52
		[SOMA	133,21

Tabela 1.a - Estimativa da diferença percentual relativa para o método de Laursen com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Lau.)	(Qm-QLau)/Qm	[(Qm-QLau)/Qm] ²	${[(Qm-QLau)/Qm]^2}^{\frac{1}{2}}$	{[(Qm-QLau)/Qm] ² } ¹ / ₂
1	251,67	2213,81	-7,80	60,79	7,80	779,65
2	83,22	588,84	-6,08	36,91	6,08	607,57
3	127,68	119,36	0,07	0,00	0,07	6,52
4	179,82	550,16	-2,06	4,24	2,06	205,95
5	21,65	21,12	0,02	0,00	0,02	2,45
6	456,03	1269,80	-1,78	3,18	1,78	178,45
7	65,59	1787,31	-26,25	689,05	26,25	2624,97
8	28,20	1403,25	-48,76	2377,60	48,76	4876,06
9	20,77	53,89	-1,59	2,54	1,59	159,46
10	10,13	0,00	1,00	1,00	1,00	100,00
11	8,57	0,00	1,00	1,00	1,00	100,00
12	7,48	0,00	1,00	1,00	1,00	100,00
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,00	1,00	1,00	1,00	100,00
16	20,02	2,29	0,89	0,78	0,89	88,56
17	355,51	1885,50	-4,30	18,52	4,30	430,36
18	92,03	28,41	0,69	0,48	0,69	69,13
19	146,17	304,15	-1,08	1,17	1,08	108,08
20	342,13	874,60	-1,56	2,42	1,56	155,63
21	18,58	0,00	1,00	1,00	1,00	100,00
22	25,53	0,00	1,00	1,00	1,00	100,00
23	139,89	269,84	-0,93	0,86	0,93	92,89
24	443,52	2662,52	-5,00	25,03	5,00	500,32
					SOMA	486,92

Tabela 1.b - Estimativa da diferença percentual relativa para o método de Laursen com a carga total determinada de forma fracionada
(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(GD)	(Qm-QGD)/Qm	[(Qm-QGD)/Qm] ²	{[(Qm-QGD)/Qm] ² } ¹ / ₂	{[(Qm-QGD)/Qm] ² } ¹ / ₂
1	251,67	66,06	0,74	0,54	0,74	73,75
2	83,22	15,20	0,82	0,67	0,82	81,74
3	127,68	3,55	0,97	0,95	0,97	97,22
4	179,82	4,83	0,97	0,95	0,97	97,31
5	21,65	4,38	0,80	0,64	0,80	79,77
б	456,03	14,64	0,97	0,94	0,97	96,79
7	65,59	4,52	0,93	0,87	0,93	93,11
8	28,20	3,78	0,87	0,75	0,87	86,60
9	20,77	0,63	0,97	0,94	0,97	96,97
10	10,13	0,76	0,92	0,86	0,92	92,50
11	8,57	0,06	0,99	0,99	0,99	99,30
12	7,48	0,03	1,00	0,99	1,00	99,60
13	2,69	0,01	1,00	0,99	1,00	99,63
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,00	1,00	1,00	1,00	100,00
16	20,02	1,98	0,90	0,81	0,90	90,11
17	355,51	35,12	0,90	0,81	0,90	90,12
18	92,03	0,65	0,99	0,99	0,99	99,29
19	146,17	4,04	0,97	0,95	0,97	97,24
20	342,13	14,47	0,96	0,92	0,96	95,77
21	18,58	0,00	1,00	1,00	1,00	100,00
22	25,53	0,06	1,00	1,00	1,00	99,76
23	139,89	9,73	0,93	0,87	0,93	93,04
24	443,52	0,89	1,00	1,00	1,00	99,80
			1		SOMA	94,14

Tabela 2.a - Estimativa da diferença percentual relativa para o método de Garde e Dattatri com a carga total determinada usando-se o diâmetro médio

.

State of the second

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(GD)	(Qm-QGD)/Qm	[(Qm-QGD)/Qm] ²	{[(Qm-QGD)/Qm] ² } ¹ / ₂	{[(Qm-QGD)/Qm] ² } ¹ / ₂
1	251,67	242,49	0,04	0,00	0,04	3,65
2	83,22	89,53	-0,08	0,01	0,08	7,58
3	127,68	40,52	0,68	0,47	0,68	68,26
4	179,82	154,64	0,14	0,02	0,14	14,00
5	21,65	19,50	0,10	0,01	0,10	9,93
6	456,03	185,82	0,59	0,35	0,59	59,25
7	65,59	23,04	0,65	0,42	0,65	64,87
8	28,20	20,62	0,27	0,07	0,27	26,88
9	20,77	6,80	0,67	0,45	0,67	67,26
10	10,13	4,19	0,59	0,34	0,59	58 ,6 4
11	8,57	0,67	0,92	0,85	0,92	92,18
12	7,48	0,28	0,96	0,93	0,96	96,26
13	2,69	0,05	0,98	0,96	0,98	98,14
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,02	1,00	0,99	1,00	99,59
16	20,02	10,28	0,49	0,24	0,49	48,65
17	355,51	158,27	0,55	0,31	0,55	55,48
18	92,03	6,73	0,93	0,86	0,93	92,69
19	146,17	36,52	0,75	0,56	0,75	75,02
20	342,13	90,88	0,73	0,54	0,73	73,44
21	18,58	0,15	0,99	0,98	0,99	99,19
22	25,53	2,32	0,91	0,83	0,91	90,91
23	139,89	64,14	0,54	0,29	0,54	54,15
24	443,52	5,94	0,99	0,97	0,99	98,66
					SOMA	64,78

Tabela 2.b - Estimativa da diferença percentual relativa para método de Garde e Dattatri com a carga total determinada de forma fracionada

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	QBSR	(Qm-QBSR)/Qm	[(Qm-QBSR)/Qm] ²	{[(Qm-QBSR)/Qm] ² } ¹ / ₂	{[(Qm-QBSR)/Qm] ² } ¹ / ₅
1	251,67	656,58	~1,61	2,59	1,61	160,89
2	83,22	454,27	~4,45	19,80	4,46	445,87
3	127,68	512,29	~3,01	9.07	3,01	301,23
4	179,82	911,29	-4,07	16,55	4,07	406,78
5	21,65	307,50	-13,20	174,33	13,20	1320,32
6	456,03	1112,44	-1,44	2,07	1,44	143,94
7	65,59	414,02	-5,31	28,22	5,31	531,22
8	28,20	408,18	~13,47	181,56	13,47	1347,45
9	20,77	281,13	-12,54	157,14	12,54	1253,54
10	10,13	251,80	-23,86	569,15	23,86	2385,69
11	8,57	37,84	-3,42	11,66	3,42	341,54
12	7,48	10,59	-0,42	0,17	0,42	41,58
13	2,69	1,14	0,58	0.33	0,58	57,62
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,54	0,89	0,79	0,89	88,80
16	20,02	276,09	-12,79	163,60	12,79	1279,07
17	355,51	754,81	-1,12	1,26	1,12	112,32
18	92,03	289,83	~2,15	4.62	2,15	214,93
19	146,17	522,70	-2,58	6,64	2,58	257,60
20	342,13	599,53	-0,75	0,57	0,75	75,23
21	18,58	5,51	0,70	0,49	0,70	70,34
22	25,53	59,01	-1,31	1.72	1,31	131,14
23	139,89	541,10	-2,87	8,23	2,87	206,80
24	443,52	227,80	0,49	0,24	0,49	48,64
					Gina	475,11

Tabela 3.a - Estimativa da diferença percentual relativa para o método de Bishop, Simons e Richardson com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
nº exp	Q(m)	Q(BSR)	(Qm-QBSR)/Qm	[(Qm-QBSR)/Qm] ²	{[(Qm-QBSR)/Qm] ² } ¹ / ₂	{[(Qm-QBSR)/Qm] ² } ¹ / ₂
1	251,67	1763,42	-6,01	36,08	6,01	600,69
2	83,22	1602,07	-18,25	333,10	18,25	1825,10
3	127,68	1109,43	-7,69	59,12	7,69	768,91
4	179,82	1587,26	-7,83	61,26	7,83	782,69
5	21.65	568,89	-25,28	638,91	25,28	2527,67
6	456,03	1990,90	-3,37	11.33	3,37	336,57
7	65,59	710,68	-9,84	96,73	9,84	983,52
8	28,20	667,57	-22,67	514,05	22,67	2267,27
9	20,77	402,57	-10,38	337,91	18,38	1038,23
10	10,13	416,80	~40,15	1611,63	40,15	4014,51
11	8,57	63,96	-6,46	41.77	6,46	646,32
12	7,48	17,01	-1,27	1,62	1,27	127,41
13	2,69	1,97	0,27	0,07	0,27	26,77
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	1,18	0,76	0,57	0,76	75,52
16	20,02	533,27	~25,64	657,25	25,64	2563,69
17	355,51	1323,85	-2,72	7.42	2,72	272,38
18	92,03	355,87	-2,87	8,22	2,87	286,69
19	146,17	807,80	-4,53	20,49	4,53	452,64
20	342,13	857,81	-1,51	2,27	1,51	150,73
21	18,58	6,59	0,65	0,42	0,65	64,53
22	25,53	77,37	-2,03	4.12	2,03	203,06
23	139,89	839,15	-5,00	24,99	5,00	499,86
24	443,52	372,68	0,16	0,03	0,16	15,97
					SONA	892,95

Tabela 3.b - Estimativa da diferença percentual relativa para o método de Bishop, Simons e Richardson com a carga total determinada de forma fracionada

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(SH)	(Qm-QSH)/Qm	[(Qm-QSH)/Qm] ²	{[(Qm-QSH)/Qm] ² } ¹ / ₂	{[(Qm-QSH)/Qm] ² } ¹ / ₂
1	251,67	49,53	0,80	0,65	0,80	80,32
2	83,22	12,47	0,85	0.72	0,85	85,02
3	127,68	2,63	0,98	0,96	0,98	97,94
4	179,82	8,45	0,95	0,91	0,95	95,30
5	21.65	0,88	0,96	0,92	0,96	95,94
6	456,03	72,03	0,84	0,71	0,84	84,20
7	65,59	7,91	0,88	0,77	0,88	87,94
8	28,20	3,38	0,88	0.77	0,88	80,01
9	20.77	1,94	0,91	0,82	0,91	90,66
10	10.13	0,17	0,98	0,97	0,98	98,32
11	8,57	0,01	1,00	1.00	1,00	99,88
12	7,48	0,00	1,00	1,00	1,00	100,00
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1.00	1,00	100,00
15	4,82	0,00	1,00	1.00	1,00	100,00
16	20,02	0,30	0,99	0,97	0,99	98,5 0
17	355,51	96,15	0,73	0.53	0,73	72,95
18	92,03	0,00	1,00	1.00	1,00	100,00
19	146,17	9,04	0,94	0,88	0,94	93,82
20	342,13	27,93	0,92	0,84	0,92	91,84
21	18,58	0,00	1,00	1.00	1.00	100,00
22	25,53	0,06	1,00	1.00	1,00	99,7 6
23	139,89	8,27	0,94	0,89	0.94	94,09
24	443,52	20,19	0,95	0,91	0,95	95,45
					SONA	93,75

Tabela 4.a - Estimativa da diferença percentual relativa para o método de Shen e Hungs com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(SH)	(Qm-QLau)/Qm	[(Qm-QLau)/Qm] ²	{[(Qm-QLau)/Qm] ² } ¹ / ₂	{[(Qm-QLau)/Qm] ² }½
1	251,67	62,45	0,75	0.57	0,75	75,19
2	83,22	16,90	0,80	0,64	0,80	79,69
3	127,68	4,52	0,96	0,93	0,96	96,46
4	179,82	17,00	0,91	0,82	0,91	90,55
5	21,65	1,36	0,94	0,88	0,94	93,72
6	456,03	93,49	0,79	0,63	0,79	79,50
7	65,59	10,34	0,84	0,71	0,84	84,24
8	28,20	4,63	0,84	0.70	0,84	83,58
9	20,77	2,76	0,87	0.75	0,87	86,71
10	10,13	0,27	0,97	0,95	0,97	97,33
11	8,57	0,03	1,00	0,99	1,00	99,65
12	7,48	0,01	1,00	1.00	1,00	99,87
13	2,69	0,00	1,00	1.00	1,00	100,00
14	3,39	0,00	1,00	1,00	1.00	100,00
15	4,82	0,00	1,00	1,00	1,00	100,00
16	20,02	0,53	0,97	0,95	0,97	97,35
17	355,51	111,55	0,69	0,47	0,69	68,62
18	92,03	0.11	1,00	1,00	1,00	99,08
19	146,17	12,54	0,91	0,84	0,91	91,42
20	342,13	36,00	0,89	0,80	0,69	89,48
21	18,58	Ŋ.OO	1,00	1.00	1.00	100,00
22	25,53	0.03	1,00	1,00	1,00	99,88
23	139,89	11.25	0,92	0,85	0.92	91,96
24	443,52	29,20	0,93	0,87	0,93	93,42
					SOMA	91,60

Tabela 4.b - Estimativa da diferença percentual relativa para o método de Shen e Hungs com a carga total determinada de forma fracionada

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(MAD)	(Qm-QMAD)/Qn	[(Qm-QMAD)/Qm] ²	{[(Qm-QMAD)/Qm] ² } ¹ / ₂	{[(Qm-QMAD)/Qm] ² } ¹ / ₂
1	251,67	8,85	0,96	0,93	0,96	96,48
2	83,22	0,00	1,00	1,00	1,00	100,00
3	127,68	0,00	1,00	1,00	1,00	100,00
4	179,82	0,00	1,00	1,00	1,00	100,00
5	21,65	0,00	1,00	1,00	1,00	100,00
6	456,03	0,00	1,00	1,00	1,00	100,00
7	65,59	0,00	1,00	1,00	1,00	100,00
8	28,20	0,00	1,00	1,00	1,00	100,00
9	20,77	0,00	1,00	1,00	1,00	100,00
10	10,13	0,00	1,00	1,00	1,00	100,00
11	8,57	0,00	1,00	1,00	1,00	100,00
12	7,48	0,00	1,00	1,00	1,00	100,00
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,00	1,00	1,00	1,00	100,00
16	20,02	0,00	1,00	1,00	1,00	100,00
17	355,51	7,44	0,98	0,96	0,98	97,91
18	92,03	0,00	1,00	1,00	1,00	100,00
19	146,17	0,00	1,00	1,00	1,00	100,00
20	342,13	0,00	1,00	1,00	1,00	100,00
21	18,58	0,00	1,00	1,00	1,00	100,00
22	25,53	0,00	1,00	1,00	1,00	100,00
23	139,89	0,00	1,00	1,00	1,00	100,00
24	443,52	0,00	1,00	1,00	1,00	100,00
					SOMA	99,77

Tabela 5.a - Estimativa da diferença percentual relativa para o método de Maddock com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(MAD)	(Qm-QMAD)/Qm	[(Qm-QMAD)/Qm] ²	{[(Qm-QMAD)/Qm] ² } ¹ / ₂	{[(Qm-QMAD)/Qm] ² } ¹ / ₂
1	251,67	19,81	0,92	0,85	0,92	92,13
2	83,22	3,24	0,96	0,92	0,96	96,11
3	127,68	0,25	1,00	1,00	1,00	99,80
4	179,82	3,99	0,98	0,96	0,98	97,78
5	21,65	0,00	1,00	1,00	1,00	100,00
6	456,03	24,30	0,95	0,90	0,95	94,67
7	65,59	0,62	0,99	0,98	0,99	99,05
8	28,20	0,14	1,00	0,99	1,00	99,50
9	20,77	0,24	0,99	0,98	0,99	98,84
10	10,13	0,00	1,00	1,00	1,00	100,00
11	8,57	0,00	1,00	1,00	1,00	100,00
12	7,48	0,00	1,00	1,00	1,00	100,00
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,00	1,00	1,00	1,00	100,00
16	20,02	0,00	1,00	1,00	1,00	100,00
17	355,51	29,91	0,92	0,84	0,92	91,59
18	92,03	0,00	1,00	1,00	1,00	100,00
19	146,17	1,00	0,99	0,99	0,99	99,32
20	342,13	7,05	0,98	0,96	0,98	97,94
21	18,58	0,00	1,00	1,00	1,00	100,00
22	25,53	0,00	1,00	1,00	1,00	100,00
23	139,89	0,84	0,99	0,99	0,99	99,40
24	443,52	0,64	1,00	1,00	1,00	99,86
					SOMA	98,58

Tabela 5.b - Estimativa da diferença percentual relativa para o método de Maddock com a carga total determinada de forma fracionada

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n ^o exp	Q(m)	Q(kk)	(Qm-Qkk)/Qm	[(Qm-Qkk)/Qm] ²	{[(Qm-Qkk)/Qm] ² } ¹ / ₂	{[(Qm-Qkk)/Qm] ² } ¹ / ₂
1	251,67	29,47	0,88	0,78	0,88	88,29
2	83,22	21,93	0,74	0,54	0,74	73,65
3	127,68	18,49	0,86	0,73	0,86	85,52
4	179,82	28,60	0,84	0,71	0,84	84,10
5	21,65	11,70	0,46	0,21	0,46	45 ,96
6	456,03	55,85	0,88	0,77	0,88	87,75
7	65,59	21,81	0,67	0,45	0,67	66,75
8	28,20	18,42	0,35	0,12	0,35	34,68
9	20,77	20,24	0,03	0,00	0,03	2,55
10	10,13	10,11	0,00	0,00	0,00	0,20
11	8,57	7,53	0,12	0,01	0,12	12,14
12	7,48	5, 93	0,21	0,04	0,21	20,72
13	2,69	3,11	-0,16	0,02	0,16	15,61
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	2,83	0,41	0,17	0,41	41,29
16	20,02	9,23	0,54	0,29	0,54	53,90
17	355,51	47,40	0,87	0,75	0,87	86,67
18	92,03	14,85	0,84	0,70	0,84	83,86
19	146,17	27,09	0,81	0,66	0,81	81,47
20	342,13	32,84	0,90	0,82	0,90	90,40
21	18,58	19,86	-0,07	0,00	0,07	6,89
22	25,53	15,51	0,39	0,15	0,39	39,25
23	139,89	24,08	0,83	0,69	0,83	82,79
24	443,52	24,07	0,95	0,89	0,95	94,57
					SOMA	57,46

Tabela 6.a - Estimativa da diferença percentual relativa para o método de Karim e Kennedy com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(kk)	(Qm-Qkk)/Qm	[(Qm-Qkk)/Qm] ²	{[(Qm-Qkk)/Qm] ² } ¹ / ₂	{[(Qm-Qkk)/Qm] ² } ¹ / ₂
1	251,67	28,48	0,89	0,79	0,89	88,68
2	83,22	16,50	0,80	0,64	0,80	80,17
3	127,68	13,46	0,89	0,80	0,89	89,46
4	179,82	22,36	0,88	0,77	0,88	87,57
5	21,65	11,30	0,48	0,23	0,48	47,81
6	456,03	52,06	0,89	0,78	0,89	88,58
7	65,59	20,61	0,69	0,47	0,69	68,58
8	28,20	16,01	0,43	0,19	0,43	43,23
9	20,77	12,95	0,38	0,14	0,38	37,65
10	10,13	8,84	0,13	0,02	0,13	12,73
11	8,57	4,48	0,48	0,23	0,48	47,72
12	7,48	2,47	0,67	0,45	0,67	66,98
13	2,69	1,51	0,44	0,19	0,44	43,87
14	3,39	0,25	0,93	0,86	0,93	92,63
15	4,82	1,51	0,69	0,4'7	0,69	68,67
16	20,02	8,28	0,59	0,34	0,59	58,64
17	355,51	45,03	0,87	0,76	0,87	87,33
18	92,03	9,72	0,89	0,80	0,89	89,44
19	146,17	19,93	0,86	0,75	0,86	86,37
20	342,13	30,26	0,91	0,83	0,91	91,16
21	18,58	3,69	0,80	0,64	0,80	80,14
22	25,53	6,29	0,75	0,57	0,75	75,36
23	139,89	21,96	0,84	0,71	0,84	84,30
24	443,52	22,59	0,95	0,90	0,95	94,91
					SOMA	71,33

Tabela 6.b - Estimativa da diferença percentual relativa para o método de Karim e Kennedy com a carga total determinada de forma fracionada

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
nº exp	Q(m)	Q(Acw)	(Qm-QAcw)/Qm	[(Qm-QAcw)/Qm] ²	{[(Qm-QAcw)/Qm] ² } ¹ / ₂	{[(Qm-QAcw)/Qm] ² } ^{1/2}
1	251,67	132,79	0,47	0,22	0,47	47,24
2	83,22	36,90	0,56	0,31	0,56	55,66
3	127,68	2,53	0,98	0,96	0,98	98,02
4	179,82	6,83	0,96	0,93	0,96	96,20
5	21,65	1,80	0,92	0,84	0,92	91,69
6	456,03	93,17	0,80	0,63	0,80	79,57
7	65,59	26,42	0,60	0,36	0,60	59,72
8	28,20	6,30	0,78	0,60	0,78	77,66
9	20,77	0,00	1,00	1,00	1,00	100,00
10	10,13	0,00	1,00	1,00	1,00	100,00
11	8,57	0,00	1,00	1,00	1,00	100,00
12	7,48	0,00	1,00	1,00	1,00	100,00
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,05	0,99	0,98	0,99	98,96
16	20,02	0,11	0,99	0,99	0,99	99,45
17	355,51	175,59	0,51	0,26	0,51	50,61
18	92,03	0,00	1,00	1,00	1,00	100,00
19	146,17	17,93	0,88	0,77	0,88	87,73
20	342,13	64,74	0,81	0,66	0,81	81,08
21	18,58	0,00	1,00	1,00	1,00	100,00
22	25,53	0,00	1,00	1,00	1,00	100,00
23	139,89	18,30	0,87	0,76	0,87	86,92
24	443,52	172,28	0,61	0,37	0,61	61,16
					SOMA	86,32

Tabela 7.a - Estimativa da diferença percentual relativa para o método de Ackers e White com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Acw)	(Qm-QAcw)/Qm	[(Qm-QAcw)/Qm] ²	{[(Qm-QAcw)/Qm] ² } ¹ / ₂	{[(Qm-QAcw)/Qm] ² } ¹ / ₂
1	251,67	167,06	0,34	0,11	0,34	33,62
2	83,22	12,94	0,84	0,71	0,84	84,45
3	127,68	3,24	0,97	0,95	0,97	97,46
4	179,82	17,50	0,90	0,81	0,90	90,27
5	21,65	4,52	0,79	0,63	0,79	79,12
б	456,03	144,58	0,68	0,47	0,68	68,30
7	65,59	33,55	0,49	0,24	0,49	48,85
8	28,20	12,65	0,55	0,30	0,55	55,14
9	20,77	6,62	0,68	0,46	0,68	68,13
10	10,13	0,59	0,94	0,89	0,94	94,18
11	8,57	0,06	0,99	0,99	0,99	99,30
12	7,48	0,02	1,00	0,99	1,00	99,73
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,00	1,00	1,00	1,00	100,00
16	20,02	2,00	0,90	0,81	0,90	90,01
17	355,51	198,37	0,44	0,20	0,44	44,20
18	92,03	3,63	0,96	0,92	0,96	96,06
19	146,17	32,33	0,78	0,61	0,78	77,88
20	342,13	83,75	0,76	0,57	0,76	75,52
21	18,58	0,01	1,00	1,00	1,00	99,9 5
22	25,53	0,51	0,98	0,96	0,98	98,00
23	139,89	30,02	0,79	0,62	0,79	78,54
24	443,52	168,63	0,62	0,38	0,62	61,98
					soma	80,86

,

Tabela 7.b - Estimativa da diferença percentual relativa para o método de Ackers e White com a carga total determinada de forma fracionada

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Bab)	(Qm-Qbag)/Qm	[(Qm-QBag)/Qm] ²	{[(Qm-QBag)/Qm] ² } ¹ / ₂	$\{[(Qm-QBag)/Qm]^2\}^{\frac{1}{2}}$
1	251,67	97,62	0,61	0,37	0,61	61,21
2	83,22	58,12	0,30	0,09	0,30	30,16
3	127,68	38,22	0,70	0,49	0,70	70,07
4	179,82	60,01	0,67	0,44	0,67	66,63
5	21,65	27,25	-0,26	0,07	0,26	25,87
б	456,03	136,35	0,70	0,49	0,70	70,10
7	65,59	48,01	0,27	0,07	0,27	26,80
8	28,20	40,06	-0,42	0,18	0,42	42,06
9	20,77	31,85	-0,53	0,28	0,53	53,35
10	10,13	17,61	-0,74	0,55	0,74	73,84
11	8,57	9,12	-0,06	0,00	0,06	6,42
12	7,48	12,35	-0,65	0,42	0,65	65,11
13	2,69	5,09	-0,89	0,80	0,89	89,22
14	3,39	2,00	0,41	0,17	0,41	41,00
15	4,82	3,14	0,35	0,12	0,35	34,85
16	20,02	19,44	0,03	0,00	0,03	2,90
17	355,51	125,18	0,65	0,42	0,65	64,79
18	92,03	23,71	0,74	0,55	0,74	74,24
19	146,17	50,42	0,66	0,43	0,66	65,51
20	342,13	77,70	0,77	0,60	0,77	77,29
21	18,58	7,11	0,62	0,38	0,62	61,73
22	25,53	15,88	0,38	0,14	0,38	37,80
23	139,89	53,97	0,61	0,38	0,61	61,42
24	443,52	59,21	0,87	0,75	0,87	86,65
					SOMA	53,71

Tabela 8.a - Estimativa da diferença percentual relativa para o método de Bagnold com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Bab)	(Qm-Qbag)/Qm	[(Qm-QBag)/Qm] ²	{[(Qm-QBag)/Qm] ² } ¹ / ₂	$\{[(Qm-QBag)/Qm]^2\}^{\frac{1}{2}}$
1	251,67	107,01	0,57	0,33	0,57	57,48
2	83,22	63,37	0,24	0,06	0,24	23,85
3	127,68	43,92	0,66	0,43	0,66	65,60
4	179,82	71,05	0,60	0,37	0,60	60,49
5	21,65	31,30	-0,45	0,20	0,45	44,57
б	456,03	152,19	0,67	0,44	0,67	66,63
7	65,59	54,33	0,17	0,03	0,17	17,17
8	28,20	41,71	-0,48	0,23	0,48	47,91
9	20,77	35,10	-0,69	0,48	0,69	68,99
10	10,13	29,04	-1,87	3,48	1,87	186,67
11	8,57	10,16	-0,19	0,03	0,19	18,55
12	7,48	7,35	0,02	0,00	0,02	1,74
13	2,69	2,64	0,02	0,00	0,02	1,86
14	3,39	2,15	0,37	0,13	0,37	36,58
15	4,82	3,56	0,26	0,07	0,26	26,14
16	20,02	21,28	-0,06	0,00	0,06	6,29
17	355,51	138,52	0,61	0,37	0,61	61,04
18	92,03	23,60	0,74	0,55	0,74	74,36
19	146,17	54,52	0,63	0,39	0,63	62,70
20	342,13	83,30	0,76	0,57	0,76	75,65
21	18,58	6,88	0,63	0,40	0,63	62,97
22	25,53	15,76	0,38	0,15	0,38	38,27
23	139,89	59,37	0,58	0,33	0,58	57,56
24	443,52	69,67	0,84	0,71	0,84	84,29
					SOMA	51,97

Tabela 8.b - Estimativa da diferença percentual relativa para o método de Bagnold com a carga total determinada de forma fracionada

					والجريد فارتشا المامد الشاملة فالمتشرف والتعامل ويسترونها ووسواحو متعريف المتعاد المراجع المتعرب وال	ويربدوهم المهموم ومعارضها فتنبع فتنبع فالغارة التراوية الإقبار أشتابا الشبط الشيد تهاجه وارجع وارغار
(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Eng.)	(Qm-QEng)/Qm	[(Qm-QEng)/Qm] ²	$\{[(Qm-QEng)/Qm]^2\}^{\frac{1}{2}}$	{[(Qm-QEng)/Qm] ² } ¹ / ₂
1	251,67	217,87	0,13	0,02	0,13	13,43
2	83,22	89,41	-0,07	0,01	0,07	7,44
3	127,68	46,25	0,64	0,41	0,64	63,78
4	179,82	91,46	0,49	0,24	0,49	49,14
5	21,65	29,55	-0,36	0,13	0,36	36,49
6	456,03	220,33	0,52	0,27	0,52	51,69
7	65,59	69,53	-0,06	0,00	0,06	6,01
8	28,20	44,94	-0,59	0,35	0,59	59,36
9	20,77	27,00	-0,30	0,09	0,30	30,00
10	10,13	11,97	-0,18	0,03	0,18	18,16
11	8,57	4,24	0,51	0,26	0,51	50,53
12	7,48	2,67	0,64	0,41	0,64	64,30
13	2,69	0,60	0,78	0,60	0,78	77,70
14	3,39	0,45	0,87	0,75	0,87	86,73
15	4,82	0,86	0,82	0,67	0,82	82,16
16	20,02	18,44	0,08	0,01	0,08	7,89
17	355,51	252,94	0,29	0,08	0,29	28,85
18	92,03	20,53	0,78	0,60	0,78	77,69
19	146,17	68,26	0,53	0,28	0,53	53,30
20	342,13	131,48	0,62	0,38	0,62	61,57
21	18,58	1,78	0,90	0,82	0,90	90,42
22	25,53	7,45	0,71	0,50	0,71	70,82
23	139,89	77,22	0,45	0,20	0,45	44,80
24	443,52	99,15	0,78	0,60	0,78	77,64
					SOMA	50,41
THE R PROPERTY AND ADDRESS OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.				والد الشاري الأراث الأثاثي المريبة الأرام مرعم ويستجمع فتنفيذ والخبير النائية فيحدد المريب المريب المريب		

Tabela 9.b - Estimativa da diferença percentual relativa para o método de de Engelund e Hansen com a carga total determinada de forma fracionada

	,		ارا استوجعه بارتو عصوم بعاريات محرور ويهورون الأقامة الكفاء التروي			المراجعة والمحاولة والمراجعة والمتحاد والمحاور والمحاور والمحاور والمحاور والمحاور والمحاور والمحاورة والمحاورة
(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
n° exp	Q(m)	Q(Yan)	(Qm-QYan)/Qm	[(Qm-QYan)/Qm] ²	${[(Qm-QYan)/Qm]^2}_{\frac{1}{2}}$	${[(Qm-QYan)/Qm]^{2}}_{2}$
1	251,67	117,69	0,53	0,28	0,53	53,24
2	83,22	57,31	0,31	0,10	0,31	31,13
3	127,68	41,62	0,67	0,45	0,67	67,40
4	179,82	77,86	0,57	0,32	0,57	56,70
5	21,65	12,83	0,41	0,17	0,41	40,74
6	456,03	306,38	0,33	0,11	0,33	32,82
7	65,59	49,95	0,24	0,06	0,24	23,85
8	28,20	32,28	-0,14	0,02	0,14	14,47
9	20,77	34,15	-0,64	0,41	0,64	64,42
10	10,13	6,19	0,39	0,15	0,39	38,89
11	8,57	1,61	0,81	0,66	0,81	81,21
12	7,48	0,64	0,91	0,84	0,91	91,44
13	2,69	0,00	1,00	1,00	1,00	100,00
14	3,39	0,00	1,00	1,00	1,00	100,00
15	4,82	0,01	1,00	1,00	1,00	99,79
16	20,02	6,79	0,66	0,44	0,66	66,08
17	355,51	241,09	0,32	0,10	0,32	32,18
18	92,03	14,88	0,84	0,70	0,84	83,83
19	146,17	65,21	0,55	0,31	0,55	55,39
20	342,13	115,13	0,66	0,44	0,66	66,35
21	18,58	0,41	0,98	0,96	0,98	97,79
22	25,53	5,75	0,77	0,60	0,77	77,48
23	139,89	57,46	0,59	0,35	0,59	58,92
24	443,52	84,22	0,81	0,66	0,81	81,01
			1		SOMA	63,13

Tabela 10a - Estimativa da diferença percentual relativa para o método de Yang com a carga total determinada usando-se o diâmetro médio

(0)	(1)	(2)	(3)	(4)	(5)	(6) x100
nº exp	Q(m)	Q(Yan)	(Qm-QYan)/Qm	[(Qm-QYan)/Qm] ²	{[(Qm-QYan)/Qm] ² } ¹ / ₂	${[(Qm-QYan)/Qm]^2}_{\frac{1}{2}}$
1	251,67	142,65	0,43	0,19	0,43	43,32
2	83,22	68,61	0,18	0,03	0,18	17,56
3	127,68	32,17	0,75	0,56	0,75	74,80
4	179,82	81,73	0,55	0,30	0,55	54,55
5	21,65	24,87	-0,15	0,02	0,15	14,87
6	456,03	289,89	0,36	0,13	0,36	36,43
7	65,59	57,74	0,12	0,01	0,12	11,97
8	28,20	34,00	-0,21	0,04	0,21	20,57
9	20,77	29,01	-0,40	0,16	0,40	39,67
10	10,13	6,17	0,39	0,15	0,39	39,09
11	8,57	1,33	0,84	0,71	0,84	84,48
12	7,48	0,60	0,92	0,85	0,92	91,98
13	2,69	0,01	1,00	0,99	1,00	99,63
14	3,39	0,01	1,00	0,99	1,00	99,71
15	4,82	0,04	0,99	0,98	0,99	99,17
16	20,02	7,44	0,63	0,39	0,63	62,84
17	355,51	261,40	0,26	0,07	0,26	26,47
18	92,03	12,89	0,86	0,74	0,86	85,99
19	146,17	66,17	0,55	0,30	0,55	54,73
20	342,13	124,41	0,64	0,40	0,64	63,64
21	18,58	0,38	0,98	0,96	0,98	97,95
22	25,53	3,80	0,85	0,72	0,85	85,12
23	139,89	62,41	0,55	0,31	0,55	55,39
24	443,52	99 ,75	0,78	0,60	0,78	77,51
					SOMA	59,89

Tabela 10.b - Estimativa da diferença percentual relativa para o método de Yang com a carga total determinada de forma fracionada

ANEXO IV - CURVAS GRANULOMÉTRICAS DO MATERIAL DO LEITO

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	f t⁄s
D > 4,70				
4,76 (D> 2,00	3,085	Ø,03	0,178	0,584
2,00 (D) 0,87	1,296	11,28	0,112	0,307
0,84 (D> 0,42	0,594	23,15	0,069	0,220
0,42 (D> 0,25	0,324	30,03	0,042	0,138
0,25 (D> 0,149	0,193	15,14	0,023	0,075
0,149 (D> 0,074	0,105	2,84	0,009	0,030
D <0,074	-			-
D50 = 0,40 mm			0,052	0,172

TABELA 1 - Dados Granulométricos para a campanha número 01 realizada em 26/03/93.

* - Velocidade de gueda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 01

Figura 1 - Curva granulométrica do material do leito para a campanha número 01 realizada em 26/03/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADI	E DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	ft/s
D > 4,76	-	-		
4,70 (D> 2,00	3,085	10,08	0,178	0,584
2,00 (D) 0,87	1,296	14,70	0,112	0,307
0,84 <d> 0,42</d>	0,594	22,54	0,009	0,226
0,42 (D> 0,25	0,324	24,11	0,042	0,138
0,25 (D) 0,149	0,193	11,99	0,023	0,075
0,149 (D> 0,074	0,105	2,57	0,009	0,030
D <0,074	—	-	-	-
D50 = 0,50 mm			0,624	0,205

TABELA 2 - Dados Granulométricos para a campanha número O2 realizada em 06/04/93.

* - Velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 02

Figura 2 - Curva granulométrica do material do leito para a campanha número 02 realizada em 06/04/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE DI Pix	m⁄s	ft/s
D > 4,76		-		
4,76 (D> 2,00	3,085	14,77	0,178	0,584
2,00 (D) 0,87	1,296	19,60	0,112	0,367
0,84 (D) 0,42	0,594	29,40	0,069	0,220
0,42 (D) 0,25	0,324	19,24	0,042	0,138
0,25 (D> 0,149	0,193	8,02	0,023	0,075
0,149 (D> 0,074	0,105	1,04	0,009	0,030
D (0,074	-		-	-
D50 = 0,70 mm			0,08	0,259

TABELA 3 - Dados Granulométricos para a campanha número 03 realizada em 20/04/93.

* - Velocidade de queda da partícula dada pela equação (5.4)

Figura 3 - Curva granulométrica do material do leito para a campanha número O3 realizada em 20/04/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pix	m/s	fi/s
D > 4,70			_	
4,76 (D> 2,00	3,085	17,74	0,178	0,584
2,00 (D) 0,87	1,290	20,93	0,112	0,307
0,84 (D) 0,42	0,594	20,10	0,069	0,220
0,42 (D) 0,25	0,324	14,10	0,042	0,138
0,25 (D) 0,149	0,193	11,04	0,023	0,075
0,149 (D> 0,074	0,105	2,70	0,009	0,030
D <0,074	-	-		-
D50 = 0,90 mm			0,092	0,302

TABELA 4 - Dados Granulométricos para a campanha número 04 realizada em 04/05/93.

* - Velocidade de queda da partícula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 04

Figura 4 - Curva granulométrica do material do leito para a campanha número 04 realizada em 04/05/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	E DE QUEDA
(mm)	MÉDIO (mm)	DE DI Pi%	m⁄s	f t/s
D > 4,76				
4,76 (D> 2,00	3,085	3,47	0,178	0,584
2,00 (D) 0,87	1,290	14,67	0,112	0,307
0,84 (D) 0,42	0,594	41,71	0,059	0,220
0,42 (D> 0,25	0,324	27,64	0,042	0,139
0,25 (D) 0,149	0,193	8,45	0,023	0,075
0,149 (D> 0,074	0,105	1,58	0,009	0,030
D <0,074	-	-		
D50 = 0,5 mm			0,062	0,205

TABELA 5 - Dados Granulométricos para a campanha número 05 realizada em 18/05/93.

- Velocidade de queda da partícula dada pela equação (5.4)

CURVA GRANULOMETRICA

Figura 5 - Curva granulométrica do material do leito para a campanha número 05 realizada em 18/05/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE DE QUEDA	
(mm)	MÉDIO (mm)	DE Di Ріж	m⁄s	ft/s
D > 4,76	-			
4,76 (D) 2,00	3,085	20,76	0,178	0,584
2,00 (D) 0,87	1,296	35,84	0,112	0,367
0,84 (D> 0,42	0,594	23,45	0,069	0,220
0,42 (D) 0,25	0,324	13,80	0,042	0,138
0,25 (D> 0,149	0,193	3,53	0,023	0,075
0,149 (D> 0,074	0,105	0,28	0,009	0,030
D <0,074		-		
D50 = 1,0 mm			0,10	0,321

TABELA 6 - Dados Granulométricos para a campanha número 06 realizada em 01/06/93.

* - Velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 06

Figura 6 - Curva granulométrica do material do leito para a campanha número 06 realizada em 01/06/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	ft∕s
D > 4,76			_	
4,76 (D> 2,00	3,095	4,17	0,178	0,584
2,00 (D) 0,87	1,290	22,18	0,112	0,307
0,84 (D> 0,42	0,594	42,58	0,069	0,220
0,42 (D> 0,25	0,324	24,17	0,042	0,138
0,25 (D> 0,149	0,193	5,67	0,023	0,075
0,149 (D> 0,074	0,105	0,75	0,009	0,030
D <0,074		-	-	-
D50 = 0,60 mm			0,071	0,233

TABELA 7 - Dados Granulométricos para a campanha número 07 realizada em 08/06/93.

- Velocidade de queda da partícula dada pela equação (5.4)

CURVA GRANULOMETRICA

Figura 7 - Curva granulométrica do material do leito para a campanha número 07 realizada em 08/06/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m/s	ft/s
D > 4,76				
4,76 (D> 2,00	3,085	5,01	0,179	0,584
2,00 (D) 0,87	1,290	21,88	0,112	0,307
0,84 <d> 0,42</d>	0,594	41,52	0,069	0,220
0,42 (D) 0,25	0,324	19,51	0,042	0,138
0,25 (D> 0,149	0,193	4,70	0,023	0,075
0,149 (D> 0,074	0,105	0,04	0,009	0,030
D <0,074	-	-	-	
D50 = 0,65 mm			0,075	0,246

TABELA 8 - Dados Granulométricos para a campanha número 08 realizada em 15/06/93.

- Velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA O8

Figura 8.0 - Curva granulométrica do material do leito para a campanha número 08 realizada em 15/06/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE DI Pi%	m∕s	ft∕s
D > 4,76	-			
4,76 (D> 2,00	3,085	10,03	0,178	0,584
2,00 (D) 0,87	1,290	27,33	0,112	0,367
0,84 (D> 0,42	0,594	30,02	0,009	0,220
0,42 (D> 0,25	0,324	11,14	0,042	0,138
0,25 (D> 0,149	0,193	2,42	0,023	0,075
0,149 (D> 0,074	0,105	0,31	0,009	0,030
D (0,074	_			-
D50 = 1,0 mm		· · · · · · · · · · · · · · · · · · ·	0,10	0,321

TABELA 9 - Dados Granulométricos para a campanha número 09 realizada em 22/06/93.

velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 09

Figura 9 - Curva granulométrica do material do leito para a campanha número 09 realizada em 22/06/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	f t/s
D > 4,76				
4,76 (D> 2,00	3,095	0, 93	0,178	0,584
2,00 (D) 0,87	1,290	24,00	0,112	0,307
0,84 <d> 0,42</d>	0,594	44,65	0,069	0,220
0,42 (D> 0,25	0,324	17,03	0,042	0,138
0,25 (D> 0,149	0,193	3,50	0,023	0,075
0,149 (D> 0,074	0,105	0,40	0,009	0,030
D <0,074	-		-	-
D50 = 0,70 mm			0,08	0,258

TABELA 10 - Dados Granulométricos para a campanha número 10 realizada em 29/06/93.

* - Velocidade de queda da partícula dada pela equação (5.4)

PORCENTAGEM QUE PASSA 100 90 80 70 60 50 40 30 20 10 0 1.000E-04 1.000E-03 0.01 0.1 1 10 **DIAMETRO EM mm**

CURVA GRANULOMETRICA AMOSTRA NUMERO 10

Figura 10 - Curva granulométrica do material do leito para a campanha número 10 realizada em 29/06/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	E DE QUEDA
(mm)	MÉDIO (mm)	DE DI Pi%	m⁄s	ft/s
D > 4,76	<u> </u>		awm	
4,76 (D> 2,00	3,085	15,49	0,178	0,584
2,00 (D) 0,87	1,296	20,85	0,112	0,367
0,84 <d> 0,42</d>	0,594	30,89	0,069	0,220
0,42 (D> 0,25	0,324	17,53	0,042	0,138
0,25 (D> 0,149	0,193	4,28	0,023	0,075
0,149 (D> 0,074	0,105	0,00	0,009	0,030
D <0,074		-		-
D50 = 0,85 mm			0,089	0,291

TABELA 11 - Dados Granulométricos para a campanha número 11 realizada em 06/07/93.

* - Velocidade de queda da partícula dada pela equação (5.4)

Figura 11 - Curva granulométrica do material do leito para a campanha número 11 realizada em 06/07/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	de di Pi%	m⁄s	ft/s
D > 4,76			-	
4,76 (D) 2,00	3,085	10,05	0,178	0,584
2,00 (D) 0,87	1,290	20,37	0,112	0,307
0,84 (D) 0,42	0,594	32,00	0,069	0,220
0,42 (D) 0,25	0,324	16,21	0,042	0,138
0,25 (D> 0,149	0,193	4,02	0,023	0,075
0,149 (D) 0,074	0,105	0,93	0,009	0,030
D (0,074	-		-	
D50 = 0,80			0,080	0,281

TABELA 12 - Dados Granulométricos para a campanha número 12 realizada em 21/07/93.

- Velocidade de queda da partícula dada pela equação (5.4)

Figura 12 - Curva granulométrica do material do leito para a campanha número 12 realizada em 21/07/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	E DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m∕s	f t/s
D > 4,70	-			
4,76 (D> 2,00	3,085	8,11	0,178	0,584
2,00 (D) 0,87	1,296	17,59	0,112	0,367
0,84 (D) 0,42	0,594	30,40	0,069	0,226
0,42 <d> 0,25</d>	0,324	20,48	0,042	0,138
0,25 (D) 0,149	0,193	5,98	0,023	0,075
0,149 (D> 0,074	0,105	1,11	0,009	0,030
D <0,074			-	
D50 = 0,65 mm			0,075	0,246

TABELA 13 - Dados Granulométricos para a campanha número 13 realizada em 03/08/93.

* — Velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 13

Figura 13 - Curva granulométrica do material do leito para a campanha número 13 realizada em 03/08/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	de di Pi%	m∕s	ft/s
D > 4,70				
4,76 (D> 2,00	3,085	10,97	0,178	0,584
2,00 (D) 0,87	1,296	20,29	0,112	0,307
0,84 (D) 0,42	0,594	32,00	0,009	0,220
0,42 (D> 0,25	0,324	22,22	0,042	0,138
0,25 (D> 0,149	0,193	5,78	0,023	0,075
0,149 (D> 0,074	0,105	1,22	0,009	0,030
D <0,074	-			
D50 = 0,65 mm			0,075	0,246

TABELA 14 - Dados Granulométricos para a campanha número 14 realizada em 17/08/93.

Velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 14

Figura 14 - Curva granulométrica do material do leito para a campanha número 14 realizada em 17/08/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	E DE QUEDA
(mm)	MÉDIO (mm)	de di Pi%	m⁄s	f t/s
D > 4,70		-+		
4,76 (D> 2,00	3,085	14,11	0,178	0,594
2,00 (D) 0,87	1,296	20,83	0,112	0,367
0,84 <d> 0,42</d>	0,594	33,08	0,069	0,220
0,42 (D) 0,25	0,324	21,77	0,042	0,138
0,25 (D) 0,149	0,193	5,27	0,023	0,075
0,149 (D> 0,074	0,105	0,82	0,009	0,030
D <0,074	-		-	-
D50 = 0,70 mm			0,078	0,258

TABELA 15 - Dados Granulométricos para a campanha número 15 realizada em 31/08/93.

- Velocidade de queda da partícula dada pela equação (5.4)

PORCENTAGEM QUE PASSA 100 90 80 70 80 50 40 30 20 10 0 1.000E-04 1.000E-03 0.01 0.1 1 10 DIAMETRO EM mm

Figura 15 - Curva granulométrica do material do leito para a campanha número 15 realizada em 31/08/93.

CURVA GRANULOMETRICA AMOSTRA NUMERO 15

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE DI Pi%	m⁄s	f t/s
D > 4,76		~~		
4,76 (D> 2,00	3,085	5,02	0,178	0,584
2,00 (D) 0,87	1,290	12,34	0,112	0,367
0,84 (D) 0,42	0,594	34,98	0,009	0,220
0,42 (D) 0,25	0,324	32,99	0,042	0,138
0,25 (D> 0,149	0,193	8,38	0,023	0,075
0,149 (D> 0,074	0,105	2,13	0,009	0,030
D <0,074		***	-	_
D50 = 0,50 mm			0,062	0,205

TABELA 16 - Dados Granulométricos para a campanha número 16 realizada em 21/09/93.

* – Velocidade de queda da particula dada pela equação (5.4)

Figura 16 - Curva granulométrica do material do leito para a campanha número 16 realizada em 21/09/93.

CURVA GRANULOMETRICA AMOSTRA NUMERO 16

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE DI Pi%	m∕s	ft∕s
D > 4,76				
4,76 (D> 2,00	3,085	Ø,25	0,178	0,584
2,00 (D) 0,87	1,290	22,44	0,112	0,367
0,84 (D> 0,42	0,594	40,49	0,009	0,220
0,42 (D) 0,25	0,324	19,20	0,042	0,138
0,25 (D> 0,149	0,193	3,30	0,023	0,075
0,149 (D) 0,074	0,105	0,41	0,009	0,030
D <0,074			-	-
D50 = 0,65 mm			0,075	0,246

TABELA 17 - Dados Granulométricos para a campanha número 17 realizada em 29/09/93.

* – Velocidade de queda da partícula dada pela equação (5.4)

Figura 17 - Curva granulométrica do material do leito para a campanha número 17 realizada em 28/09/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
ל מזמז)	MÉDIO (mm)	DE DI Pi%	m∕s	f t/s
D > 4,76			-	
4,70 (D> 2,00	3,085	O,18	0,178	0,584
2,00 (D) 0,87	1,296	18,18	0,112	0,307
0,84 <d> 0,42</d>	0,594	33,50	0,069	0,220
0,42 (D> 0,25	0,324	18,87	0,042	0,138
0,25 (D> 0,149	0,193	5,30	0,023	0,075
0,149 (D> 0,074	0,105	1,14	0,009	0,030
D <0,074	-	-		
D50 = 0,75 mm			0,082	0,270

TABELA 18 - Dados Granulométricos para a campanha número 18 realizada em 05/10/93.

* - Velocidade de queda da partícula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 18

Figura 18 - Curva granulométrica do material do leito para a campanha número 18 realizada em 05/10/93.
FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	ft/s
D > 4,70	—		-	
4,76 (D> 2,00	3,085	8,44	0,178	0,584
2,00 (D) 0,87	1,290	22,62	0,112	0,367
0,84 (D> 0,42	0,594	39,57	0,009	0,220
0,42 (D> 0,25	0,324	15,10	0,042	0,139
0,25 (D> 0,149	0,193	3,97	0,023	0,075
0,149 (D> 0,074	0,105	1,08	0,009	0,030
D <0,074	-	-	-	-
D50 = 0,75 mm			0,082	0,270

TABELA 19 - Dados Granulométricos para a campanha número 19 realizada em 21/10/93

* - Velocidade de queda da partícula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 19

Figura 19 - Curva granulométrica do material do leito para a campanha número 19 realizada em 21/10/93

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	E DE QUEDA
(mm)	MÉDIO (mm)	ре рі Ріж	m∕s	f t/s
D > 4,76		-	—	
4,76 (D) 2,00	3,085	3,14	0,178	0,584
2,00 (D) 0,87	1,296	22,78	0,112	0,367
0,84 <d> 0,42</d>	0,594	45,22	0,069	0,226
0,42 (D) 0,25	0,324	17,34	0,042	0,138
0,25 (D) 0,149	0,193	5,00	0,023	0,075
0,149 (D> 0,074	0,105	0,99	0,009	0,030
D <0,074		-	-	-
D50 = 0,65 mm			0,075	0,246

TABELA 20 - Dados Granulométricos para a campanha número 20 realizada em 28/10/93.

* - Velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 20

Figura 20 - Curva granulométrica do material do leito para a campanha número 20 realizada em 28/10/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	ft∕s
D > 4,76			-	
4,76 (D> 2,00	3,085	22,49	0,179	0,584
2,00 (D) 0,87	1,290	29,89	0,112	0,367
0,84 (D> 0,42	0,594	19,40	0,069	0,226
0,42 (D) 0,25	0,324	10,45	0,042	0,138
0,25 (D> 0,149	0,193	3,40	0,023	0,075
0,149 (D> 0,074	0,105	0,90	0,009	0,030
D <0,074	-			-
D50 = 1,30 mm			0,114	0,374

TABELA 21 - Dados Granulométricos para a campanha número 21 realizada em 04/11/93.

* - Velocidade de queda da particula dada pela equação (5.4)

Figura 21 - Curva granulométrica do material do leito para a campanha número 21 realizada em 04/11/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	f t⁄s
D > 4,70			-	
4,76 (D> 2,00	3,085	21,79	0,178	0,584
2,00 (D) 0,87	1,290	28,85	0,112	0,307
0,84 (D> 0,42	0,594	19,84	0,069	0,220
0,42 (D> 0,25	0,324	11,94	0,042	0,138
0,25 (D> 0,149	0,193	4,50	0,023	0,075
0,149 (D> 0,074	0,105	1,38	0,009	0,030
D (D,074	-			
D50 = 1,20 mm			0,109	0,357

TABELA 22 - Dados Granulométricos para a campanha número 22 realizada em 09/11/93.

* - Velocidade de queda da partícula dada pela equação (5,4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 22

Figura 22 - Curva granulométrica do material do leito para a campanha número 22 realizada em 09/11/93.

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE DI Pi%	m∕s	f t/s
D > 4,70			-	
4,76 (D> 2,00	3,085	4,29	0,178	0,584
2,00 (D) 0,87	1,296	22,80	0,112	0,367
0,84 (D> 0,42	0,594	45,52	0,009	0,226
0,42 (D> 0,25	0,324	17,14	0,042	0,138
0,25 (D> 0,149	0,193	4,04	0,023	0,075
0,149 (D> 0,074	0,105	1,28	0,009	0,030
D <0,074	—	-	-	-
D50 = 0,65 mm		сторов и полно с на селото с на на селото	0,075	0,240

TABELA 23 - Dados Granulométricos para a campanha número 23 realizada em 20/12/93.

* - Velocidade de queda da particula dada pela equação (5.4)

CURVA GRANULOMETRICA

Figura 23 - Curva granulométrica do material do leito para a campanha número 23 realizada em 20/12/93

FAIXA DE DIÂMETROS	DIÂMETRO	PORCENTAGEM	* VELOCIDADE	DE QUEDA
(mm)	MÉDIO (mm)	DE Di Pi%	m⁄s	ft/s
D > 4,76	—	_		
4,76 (D> 2,00	3,085	Э,27	0,178	0,584
2,00 (D) 0,87	1,296	22,01	0,112	0,307
0,84 (D) 0,42	0,594	45,14	0,009	0,220
0,42 <d> 0,25</d>	0,324	20,30	0,042	0,138
0,25 (D) 0,149	0,193	5,77	0,023	0,075
0,149 (D) 0,074	0,105	1,09	0,009	0,030
D <0,074	-		-	-
D50 = 0,60 mm			0,071	0,233

TABELA 24 - Dados Granulométricos para a campanha número 24 realizada em 10/03/94.

Velocidade de queda da partícula dada pela equação (5.4)

CURVA GRANULOMETRICA AMOSTRA NUMERO 24

Figura 24 - Curva granulométrica do material do leito para a campanha número 24 realizada em 10/03/94.

ANEXO V - CÁLCULO DO RAIO HIDRÁULICO REFERENTE ÀS DEFORMAÇÕES DO LEITO

Para esse anexo devem ser consideradas as seguintes anotações:

- R =Raio hidráulico da secção transversal, em m ;
- R' =Raio hidráulico referente ao grão, em m ;
- ψ' =Intensidade de tensão de cisalhamento do grão (adimensional).

Para facilitar os cálculos o gráfico da figura 2.3 foi substituído pelo grupo de equações abaixo :

log (U/U*'') = 1,62 - 1,21 log ψ ' para 0,5 $\leq \psi$ ' \geq 1,5 log (U/U*'') = 1,55 - 0,78 log ψ ' para 1,5 $\leq \psi$ ' \geq 3,0 log (U/U*'') = 1,35 - 0,41 log ψ ' para 3,0 $\leq \psi$ ' \geq 40

Tabela 5.	1 - Cál	culo do	raio hic	Iráulico re	lativo `as d	eformações	do leito	para a	campar	ıha núme	ro 01
					_	_		-	-		
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψı	log(U/U"+)	(U/U"*)	ۍ. ۳*	R"	R4 R"	R'
3,00E-04	1,36	1,29	0,64	1,94E-04	1,97E+00	1,319	20,868	0,031	0,494	1,786	1,36
3,00E-04	1,36	1,23	0,64	1,94E-04	2,08E+00	1,302	20,049	0,032	0,535	1,763	1,36
3,00E-04	1,36	1,17	0,64	1,94E-04	2,19E+00	1,285	19,263	0,033	0,580	1,746	1,36
3,00E-04	1,36	1,11	0,64	1,94E-04	2,30E+00	1,267	18,508	0,035	0,628	1,736	1,36
3,00E-04	1,36	1,05	0,64	1,94E-04	2,42E+00	1,250	17,782	0,036	0,681	1,733	1,36
3,00E-04	1,36	1,00	0,64	1.94E-04	2,55E+00	1,233	17,084	0,037	0,737	1,737	1,36
3,00E-04	1,36	0,95	0,64	1,94E-04	2,69E+00	1,215	16,414	0,039	0,799	1,749	1,36
3.00E-04	1,36	0,90	0,64	1,94E-04	2,83E+00	1,198	15,771	0,041	0,865	1,768	1,36
3,00E-04	1,36	0,86	0,64	1,94E-04	2,98E+00	1,180	15,152	0,042	0,937	1,795	1,36
3,00E-04	1,36	0,81	0, 6 4	1,94E-04	3,13E+00	1,147	14,015	0,046	1,096	1,910	1,36
3,00E-04	1,36	0,77	0,64	1,94E-04	3,30E+00	1,137	13,724	0,047	1,143	1,916	1,36
3,00E-04	1,36	0,73	0,64	1,94E-04	3,47E+00	1,128	13,439	0,048	1,192	1,927	1,36
3,00E-04	1,36	0,70	0,64	1,94E-04	3,65E+00	1,119	13,159	0,049	1,243	1,941	1,36
3,00E-04	1,36	0,55	0,64	1,94E-04	3,85E+00	1,110	12,885	0,050	1,296	1,960	1,36
3.00E-04	1,36	0,63	0,64	1,94E-04	4,05E+00	1,101	12,617	0,051	1,352	1,982	1,36
Tabela 5.	2 - Cál	culo do	raio hic	iráulico rei	lativo as d	eformações	do leito	para a	campar	iha núme	ro 02
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	\mathbb{R}^{i}	υ	S	Ψ^{i}	log(U/U"*)	(U/U"*)	U"+	\mathbb{R}^n	R'+ R"	R'
3,80E-04	1,12	1,06	0,52	1,97E-04	2,99E+00	1,179	15,095	0,034	0,614	1,678	1,12
3.80E-04	1,12	1,01	0,52	1,97E-04	3,15E+00	1,146	13,988	0,037	0,715	1,726	1,12
3,30E-04	1,12	0,96	0,52	1,97E-04	3,31E+00	1,137	13,697	0,038	0,746	1,706	1,12
3,80E-04	1,12	0,91	0,52	1,97E-04	3,49E+00	1,127	13,412	0,039	0,778	1,690	1,12
3,80E-04	1,12	0,87	0,52	1,97E-04	3,67E+00	1,118	13,133	0,040	0,811	1,678	1,12
3,80E-04	1,12	0,82	0,52	1,97E-04	3,87E+00	1,109	12,860	0,040	0,846	1,669	1,12
3,80E-04	1,12	0,78	0,52	1,97E-04	4,07E+00	1,100	12,592	0,041	0,882	1,665	1,12
3,80E-04	1,12	0,74	0,52	1,97E-04	4,28E+00	1,091	12,330	0,042	0,920	1,663	1,12
3,80E-04	1,12	0,71	0,52	1,97E-04	4,51E+00	1,082	12,073	0,043	0,960	1,666	1,12
3,80E-04	1,12	0,67	0,52	1,97E-04	4,75E+00	1,073	11,822	0,044	1,001	1,672	1,12
3,80E-04	1,12	0,64	0,52	1,97E-04	5,00E+00	1,064	11,576	0,045	1,044	1,681	1,12
3,80E-04	1,12	0,61	0,52	1,97E-04	5,26E+00	1,054	11,335	0,046	1,089	1,694	1,12
3,80E-04	1,12	0,57	0,52	1,97E-04	5,54E+00	1,045	11,099	0,047	1,136	1,711	1,12
3,80E-04	1,12	0,55	0,52	1,97E-04	5,83E+00	1,036	10,868	0,048	1,185	1,731	1,12
3,802-04	1,12	0,52	0,52	1,97E-04	6,13E+00	1,027	10,642	0,049	1,235	1,754	1,12

1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	U	S	Ψı	log(U/U"+)	(U/U"+)	U"*	R"	R'+ R"	R'
,80E-04	1,08	1,03	0,43	1,85E-04	4,17E+00	1,096	12,463	0,035	0,656	1,682	1,08
,SOE-04	1,08	0,97	0,43	1,85E-04	4,39E+00	1,087	12,204	0,035	0,684	1,659	1,08
1.80E-04	1,08	0,93	0,43	1,85E-04	4,62E+00	1,077	11,950	0,036	0,713	1,639	1,08
,80E-04	1,08	0,88	0,43	1,85E-04	4,87E+00	1,068	11,701	0,037	0,744	1,624	1,08
,80E-04	1,08	0,84	0,43	1,85E-04	5,12E+00	1,059	11,458	0,038	0,776	1,612	1,08
,80E-04	1,08	0,79	0,43	1,85E-04	5,39E+00	1,050	11,219	0,038	0,809	1,603	1,08
,80E-04	1,08	0,75	0,43	1,85E-04	5,68E+00	1,041	10,986	0,039	0,844	1,598	1,08
,80E-04	1,08	0,72	0,43	1,85E-04	5,98E+00	1,032	10,757	0,040	0,880	1,597	1,08
,80E-04	1,08	0,68	0,43	1,85E-04	6,29E+00	1,023	10,533	0,041	0,918	1,599	1,08
,80E-04	1,08	0,65	0,43	1,85E-04	6,62E+00	1,013	10,314	0,042	0,958	1,604	1,08
,80E-04	1,08	0,61	0,43	1,85E-04	6,97E+00	1,004	10,100	0,043	0,999	1,613	1,08
,80E-04	1,08	0,58	0,43	1,85E-04	7,34E+00	0,995	9,889	0,043	1,042	1,625	1,08
,80E-04	1,08	0,55	0,43	1,85E-04	7,72E+00	0,986	9,684	0,044	1,086	1,641	1,08
,80E-04	1,08	0,53	0,43	1,85E-04	8,13E+00	0,977	9,482	0,045	1,133	1,660	1,08
,80E-04	1,08	0.50	0.43	1.85E-04	8.567+00	0.968	9.285	0.046	1 182	1 682	1.08
rabela 5.	4- Cálc	ulo do i	raio hid	ráulico rela	ativo às de	formações	do leito	para a	campani	ha númer	0 04
labela 5.	4- Cálc 2	culo do 1 3	raio hid 4	ráulico rel:	ativo às de	formações 7	do leito	para a	campani	ha númer 11	0 04 12
Tabela 5. 1 D35	4- Cálc 2 R	ulo do i 3 R'	raio hid 4 U	ráulico rel: 5 S	ativo às de 6 Ψ'	formações ? log(U/U"-)	do leito 8 (U/U"*)	9 0,040 9 0"*	campan 10 R"	1,002 ha númer 11 R+R"	0 04 12 R'
Tabela 5. 1 D35 ,20E-04	.4- Cálc 2 R 1,20	rulo do 1 3 R ⁱ 1,14	raio hid 4 U 0,51	ráulico rel: 5 S 2,11E-04	ativo às de 5 Ψ' 3,57E+00	formações ? log(U/U"+) 1,124	8 (U/U"*) 13,291	9 9 0,038	10 R" 0,711	1,002 ha númer 11 R'+ R'' 1,851	0 04 12 R' 1,2
abela 5. 1 D35 ,20E-04 ,20E-04	.4- Cálc 2 R 1,20 1,20	culo do 1 3 R ¹ 1,14 1,08	raio hid 4 U 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04	ativo às de 6 Ψ' 3,57E+00 3,75E+00	formações ? log(U/U"*) 1,124 1,114	8 (U/U"*) 13,291 13,014	9 9 0,038 0,039	10 R" 0,711 0,742	1,302 ha númer 11 R'+ R'' 1,851 1,825	12 R' 1,2 1,2
1 D35 ,20E-04 ,20E-04 ,20E-04	2 R 1,20 1,20 1,20	rulo do 1 3 R' 1,14 1,08 1,03	raio hid 4 U 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04	ativo às de 6 Ψ' 3,57E+00 3,75E+00 3,95E+00	formações ? log(U/U"*) 1,124 1,114 1,105	8 (U/U"*) 13,291 13,014 12,744	0,040 para a 9 U"* 0,038 0,039 0,040	10 R" 0,711 0,742 0,774	1,852 ha número 11 R'+ R'' 1,851 1,825 1,803	1,00 0 04 12 R' 1,2 1,2 1,2
1 D35 ,20E-04 ,20E-04 ,20E-04 ,20E-04	2 R 1,20 1,20 1,20 1,20 1,20	sulo do 1 3 R ¹ 1,14 1,08 1,03 0,98	raio hid 4 U 0,51 0,51 0,51 0,51	ráulico rel: 5 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de ⁶ Ψ' 3,57E+00 3,75E+00 3,95E+00 4,16E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096	8 (U/U"*) 13,291 13,014 12,744 12,478	9 9 0,038 0,039 0,040 0,041	10 R" 0,711 0,742 0,774 0,807	1,852 ha númer 11 R+R" 1,851 1,825 1,803 1,784	12 R' 1,2 1,2 1,2 1,2 1,2
abela 5. 1 D35 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20	sulo do 1 3 R ¹ 1,14 1,08 1,03 0,98 0,93	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de 6 Ψ' 3,57E+00 3,75E+00 3,95E+00 4,16E+00 4,38E+00	formações ? log(U/U"+) 1,124 1,114 1,105 1,096 1,087	8 (U/U"*) 13,291 13,014 12,744 12,478 12,219	9 0,040 9 U"+ 0,038 0,039 0,040 0,041 0,042	10 10 R" 0,711 0,742 0,774 0,807 0,842	11 R'+ R" 1,851 1,825 1,803 1,784 1,770	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 20E-04 20E-04 20E-04 20E-04 20E-04 20E-04 20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20	sulo do 1 3 R' 1,14 1,08 1,03 0,98 0,93 0,88	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de ⁵ Ψ' 3,57E+00 3,75E+00 3,95E+00 4,16E+00 4,38E+00 4,61E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096 1,087 1,078	8 (U/U"*) 13,291 13,014 12,744 12,478 12,219 11,964	9 9 0,040 0,038 0,039 0,040 0,041 0,042 0,043	10 10 R" 0,711 0,742 0,774 0,807 0,842 0,878	11 R'+ R" 1,851 1,825 1,803 1,784 1,770 1,760	0 04 12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	Eulo do 1 3 R ¹ 1,14 1,08 1,03 0,98 0,93 0,88 0,84	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de ⁶ Ψ' 3,57E+00 3,75E+00 3,95E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00	formações 7 log(U/U"*) 1,124 1,114 1,105 1,096 1,087 1,078 1,069	8 (U/U"*) 13,291 13,014 12,744 12,478 12,219 11,964 11,715	9 9 0,038 0,039 0,040 0,041 0,042 0,043 0,044	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916	1,352 ha númer 11 R'+ R" 1,851 1,825 1,803 1,784 1,770 1,760 1,754	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	sulo do 1 3 R ¹ 1,14 1,08 1,03 0,98 0,93 0,88 0,84 0,80	raio hid 4 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de 6 Ψ' 3,57E+00 3,75E+00 3,95E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00 5,11E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096 1,087 1,078 1,069 1,060	8 (U/U"*) 13,291 13,014 12,744 12,478 12,219 11,964 11,715 11,472	9 0,039 0,039 0,040 0,041 0,042 0,043 0,044 0,044	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916 0,955	11 R+R" 1,851 1,855 1,803 1,784 1,770 1,760 1,754 1,751	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	xulo do 1 3 R ¹ 1,14 1,08 1,03 0,98 0,93 0,88 0,84 0,80 0,76	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	6 Ψ' 3,57E+00 3,75E+00 3,95E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00 5,11E+00 5,38E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096 1,087 1,078 1,069 1,060 1,050	8 (U/U"*) 13,291 13,014 12,744 12,478 12,219 11,964 11,715 11,472 11,233	9 U"* 0,038 0,039 0,040 0,041 0,042 0,043 0,044 0,044 0,045	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916 0,955 0,996	11 R'+ R" 1,851 1,825 1,803 1,784 1,770 1,760 1,754 1,751 1,751 1,752	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04 ,20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	sulo do s R' 1,14 1,03 0,98 0,93 0,88 0,84 0,80 0,76 0,72	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	5 Ψ' 3,57E+00 3,75E+00 3,75E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00 5,11E+00 5,38E+00 5,66E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096 1,087 1,069 1,060 1,050 1,041	do leito 8 (U/U"*) 13,291 13,014 12,744 12,744 12,219 11,964 11,715 11,472 11,233 10,999	9 U"+ 0,038 0,039 0,040 0,041 0,042 0,043 0,044 0,044 0,045 0,046	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916 0,955 0,996 1,039	11 R'+ R" 1,851 1,825 1,803 1,784 1,770 1,760 1,754 1,751 1,752 1,757	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	Eulo do 1 3 R ⁴ 1,14 1,03 0,98 0,93 0,88 0,84 0,80 0,76 0,72 0,68	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de 6 Ψ' 3,57E+00 3,75E+00 3,95E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00 5,11E+00 5,38E+00 5,66E+00 5,96E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096 1,087 1,078 1,069 1,060 1,050 1,041 1,032	do leito 8 (U/U"*) 13,291 13,014 12,744 12,744 12,744 12,744 11,219 11,964 11,715 11,472 11,233 10,999 10,770	9 9 0,038 0,039 0,040 0,041 0,042 0,043 0,044 0,044 0,044 0,045 0,046 0,047	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916 0,955 0,996 1,039 1,083	1,352 ha númer 11 R+R" 1,851 1,825 1,803 1,784 1,770 1,760 1,754 1,751 1,752 1,757 1,766	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	xulo do 1 3 R ¹ 1,14 1,08 1,03 0,98 0,93 0,88 0,84 0,80 0,76 0,72 0,68 0,65	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de 6 Ψ' 3,57E+00 3,75E+00 4,35E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00 5,11E+00 5,38E+00 5,66E+00 5,96E+00 6,27E+00	formações 7 log(U/U"+) 1,124 1,114 1,114 1,105 1,096 1,087 1,078 1,069 1,060 1,050 1,041 1,032 1,023	8 (U/U"*) 13,291 13,014 12,744 12,774 12,219 11,964 11,715 11,472 11,233 10,999 10,770 10,546	9 U"+ 0,038 0,039 0,040 0,041 0,042 0,043 0,044 0,044 0,045 0,046 0,047 0,048	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916 0,955 0,996 1,039 1,083 1,130	11 R+R" 1,851 1,825 1,803 1,784 1,770 1,760 1,754 1,751 1,757 1,766 1,778	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
1 D35 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04 ;20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	xulo do 3 R' 1,14 1,08 1,03 0,98 0,93 0,88 0,84 0,80 0,76 0,72 0,68 0,65 0,62	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	6 Ψ' 3,57E+00 3,75E+00 3,75E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00 5,11E+00 5,38E+00 5,66E+00 5,96E+00 6,27E+00 6,60E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096 1,087 1,069 1,069 1,060 1,050 1,050 1,041 1,032 1,023 1,014	8 (U/U"*) 13,291 13,014 12,744 12,744 12,219 11,964 11,715 11,472 11,233 10,999 10,546 10,327	9 U"* 0,038 0,039 0,040 0,041 0,042 0,043 0,044 0,044 0,045 0,046 0,047 0,048 0,049	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916 0,955 0,996 1,039 1,083 1,130 1,178	11 R'+ R" 1,851 1,825 1,803 1,784 1,770 1,760 1,754 1,751 1,755 1,755 1,766 1,778 1,794	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
Tabela 5. 1 D35 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04 5,20E-04	2 R 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	sulo do s R' 1,14 1,08 1,03 0,98 0,93 0,88 0,84 0,80 0,76 0,72 0,68 0,65 0,62 0,59	raio hid 4 U 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51	ráulico rel: 5 S 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04	ativo às de 6 Ψ' 3,57E+00 3,75E+00 3,75E+00 4,16E+00 4,38E+00 4,61E+00 4,85E+00 5,11E+00 5,38E+00 5,66E+00 5,96E+00 6,27E+00 6,60E+00 6,95E+00	formações 7 log(U/U"+) 1,124 1,114 1,105 1,096 1,087 1,069 1,060 1,050 1,041 1,023 1,014 1,005	do leito 8 (U/U"*) 13,291 13,014 12,744 12,744 12,744 12,744 11,715 11,472 11,233 10,999 10,770 10,546 10,327 10,112	9 U"+ 0,038 0,039 0,040 0,041 0,042 0,043 0,044 0,044 0,045 0,044 0,045 0,046 0,047 0,048 0,049 0,050	10 R" 0,711 0,742 0,774 0,807 0,842 0,878 0,916 0,955 0,996 1,039 1,033 1,130 1,178 1,229	11 R'+ R" 1,851 1,825 1,803 1,784 1,770 1,760 1,754 1,751 1,752 1,757 1,766 1,778 1,778 1,794 1,814	12 R' 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^{i}	log(U/U"*)	(U/U"+)	U"*	R"	R'+ R"	R'
,00 E-0 4	1,03	0,98	0,36	1,63E-04	4,14E+00	1,097	12,506	0,029	0,518	1,497	1,0
,00E-04	1,03	0,93	0,36	1,63E-04	4,36E+00	1,088	12,246	0,029	0,540	1,470	1,0
00E-04	1,03	0,88	0,36	1,63E-04	4,59E+00	1,079	11,991	0,030	0,564	1,447	1,0
,00E-04	1,03	0,84	0,36	1,63E-04	4,83E+00	1,070	11,741	0,031	0,588	1,427	1,0
00E-04	1,03	0,80	0,36	1,63E-04	5,08E+00	1,061	11,497	0,031	0,613	1,410	1,0
,00E-04	1,03	0,76	0,36	1,63E-04	5,35E+00	1,051	11,258	0,032	0,640	1,397	1,0
,00E-04	1,03	0,72	0,36	1,63E-04	5,63E+00	1,042	11,023	0,033	0,667	1,386	1,0
,00E-04	1,03	0,68	0,36	1,63E-04	5,93E+00	1,033	10,794	0,033	0,696	1,379	1,0
00E-04	1,03	0,65	0,36	1,63E-04	6,24E+00	1,024	10,569	0,034	0,726	1,375	1,0
00E-04	1,03	0,62	0,36	1,63E-04	6,57E+00	1,015	10,349	0,035	0,757	1,373	1,0
00E-04	1,03	0,59	0,36	1,63E-04	6,91E+00	1,006	10,134	0,036	0,789	1,375	1,0
00E-04	1,03	0,56	0,36	1,63E-04	7,28E+00	0,997	9,923	0,036	0,823	1,380	1,0
,00E-04	1,03	0,53	0,36	1,63E-04	7,66E+00	0,988	9,717	0,037	0,858	1,387	1,0
00E-04	1,03	0,50	0,36	1,63E-04	8,06E+00	0,978	9,514	0,038	0,895	1,398	1,0
,00E-04	1,03	0,48	0,36	1,63E-04	8,49E+00	0,969	9,316	0,039	0,934	1,411	1,0
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ	log(U/U"+)	(U/U"+)	U"+	R"	R'+ R"	R
.00E-04	1.50	1.43	0.73	2,31E-04	3.51E+00	1,126	13.381	0,055	1,313	2.738	1,
00E-04	1.50	1,35	077	2 318-04	3 608+00		12 100	0.056	1 370	2.724	
,	•		V / -			1,117	13,194	$\sim \sim \sim$	21010		1.
00E-04	1,50	1,29	0,73	2,31E-04	3,89E+00	1,117 1,108	12,830	0,057	1,429	2,715	1, 1,
,00E-04 ,00E-04	1,50 1,50	1,29 1,22	0,73 0,73	2,31E-04 2,31E-04	3,89E+00 4,09E+00	1,117 1,108 1,099	12,830 12,563	0,057 0,058	1,429 1,490	2,715 2,712	1, 1, 1,
,00E-04 ,00E-04 ,00E-04	1,50 1,50 1,50	1,29 1,22 1,16	0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00	1,117 1,108 1,099 1,090	12,830 12,563 12,301	0,057 0,058 0,059	1,429 1,490 1,554	2,715 2,712 2,715	1, 1, 1,
,00E-04 ,00E-04 ,00E-04 ,00E-04	1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10	0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00	1,117 1,108 1,099 1,090 1,081	12,830 12,563 12,301 12,045	0,057 0,058 0,059 0,061	1,429 1,490 1,554 1,621	2,715 2,712 2,715 2,723	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
,00E-04 ,00E-04 ,00E-04 ,00E-04	1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05	0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,77E+00	1,117 1,108 1,099 1,090 1,081 1,072	12,830 12,563 12,301 12,045 11,795	0,057 0,058 0,059 0,061 0,062	1,429 1,490 1,554 1,621 1,690	2,715 2,712 2,715 2,723 2,738	1, 1, 1, 1, 1,
00E-04 00E-04 00E-04 00E-04 00E-04 00E-04	1,50 1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05 1,00	0,73 0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,77E+00 5,02E+00	1,117 1,108 1,099 1,090 1,081 1,072 1,063	12,830 12,830 12,563 12,301 12,045 11,795 11,549	0,057 0,057 0,058 0,059 0,061 0,062 0,063	1,370 1,429 1,490 1,554 1,621 1,690 1,763	2,715 2,712 2,715 2,723 2,738 2,738 2,758	1, 1, 1, 1, 1, 1, 1,
00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04	1,50 1,50 1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05 1,00 0,95	0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,77E+00 5,02E+00 5,29E+00	1,117 1,108 1,099 1,090 1,081 1,072 1,063 1,053	12,830 12,563 12,301 12,045 11,795 11,549 11,309	0,057 0,058 0,059 0,061 0,062 0,063 0,065	1,429 1,490 1,554 1,621 1,690 1,763 1,839	2,715 2,712 2,715 2,723 2,738 2,758 2,758 2,784	1, 1, 1, 1, 1, 1, 1, 1,
00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04	1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05 1,00 0,95 0,90	0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,77E+00 5,02E+00 5,29E+00 5,57E+00	1,117 1,108 1,099 1,090 1,081 1,072 1,063 1,053 1,044	12,830 12,563 12,301 12,045 11,795 11,549 11,309 11,074	0,057 0,058 0,059 0,061 0,062 0,063 0,065 0,066	1,429 1,490 1,554 1,621 1,690 1,763 1,839 1,918	2,715 2,712 2,715 2,723 2,738 2,758 2,758 2,784 2,816	1, 1, 1, 1, 1, 1, 1, 1, 1,
00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04	1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05 1,00 0,95 0,90 0,85	0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,53E+00 5,02E+00 5,29E+00 5,57E+00 5,86E+00	1,117 1,108 1,099 1,090 1,081 1,072 1,063 1,053 1,044 1,035	12,830 12,563 12,301 12,045 11,795 11,549 11,309 11,074 10,843	0,057 0,058 0,059 0,061 0,062 0,063 0,065 0,066 0,066	1,429 1,490 1,554 1,621 1,690 1,763 1,839 1,918 2,000	2,715 2,712 2,715 2,723 2,738 2,758 2,758 2,784 2,816 2,853	1, 1, 1, 1, 1, 1, 1, 1,
00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04 00E-04	1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05 1,00 0,95 0,90 0,85 0,81	0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,53E+00 5,02E+00 5,29E+00 5,57E+00 5,86E+00 6,17E+00	1,117 1,108 1,099 1,090 1,081 1,072 1,063 1,053 1,053 1,044 1,035 1,026	12,830 12,563 12,301 12,045 11,795 11,549 11,309 11,074 10,843 10,617	0,057 0,058 0,059 0,061 0,062 0,063 0,065 0,066 0,067 0,069	1,429 1,490 1,554 1,621 1,690 1,763 1,839 1,918 2,000 2,086	2,715 2,712 2,715 2,723 2,738 2,758 2,758 2,758 2,784 2,816 2,853 2,853 2,897	1, 1, 1, 1, 1, 1, 1, 1, 1,
,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04	1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05 1,00 0,95 0,90 0,85 0,81 0,77	0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,77E+00 5,02E+00 5,29E+00 5,57E+00 5,86E+00 6,17E+00 6,49E+00	1,117 1,108 1,099 1,090 1,081 1,072 1,063 1,053 1,044 1,035 1,026 1,017	12,830 12,563 12,301 12,045 11,795 11,549 11,309 11,074 10,843 10,617 10,396	0,057 0,058 0,059 0,061 0,062 0,063 0,065 0,065 0,066 0,067 0,069 0,070	1,429 1,490 1,554 1,621 1,690 1,763 1,839 1,918 2,000 2,086 2,176	2,715 2,712 2,715 2,723 2,738 2,758 2,758 2,758 2,784 2,816 2,853 2,897 2,946],],],],],],],],],],],],],]
,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04 ,00E-04	1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	1,29 1,22 1,16 1,10 1,05 1,00 0,95 0,90 0,85 0,81 0,77 0,73	0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04 2,31E-04	3,89E+00 4,09E+00 4,31E+00 4,53E+00 4,77E+00 5,02E+00 5,29E+00 5,57E+00 5,57E+00 5,86E+00 6,17E+00 6,49E+00 6,84E+00	1,117 1,108 1,099 1,090 1,081 1,072 1,063 1,053 1,044 1,035 1,026 1,017 1,008	12,830 12,563 12,301 12,045 11,795 11,549 11,309 11,074 10,843 10,617 10,396 10,180	0,057 0,058 0,059 0,061 0,062 0,063 0,065 0,065 0,066 0,067 0,069 0,070 0,072	1,429 1,490 1,554 1,621 1,690 1,763 1,839 1,918 2,000 2,086 2,176 2,269	2,715 2,712 2,715 2,723 2,738 2,758 2,758 2,784 2,816 2,853 2,897 2,946 3,001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^*	log(U/U"*)	(U/U"•)	U"*	R"	R'+ R"	R'
4,50E-04	1,16	1,10	0,53	1,64E-04	4,11E+00	1,098	12,543	0,042	1,110	2,212	1,16
4,50E-04	1,16	1,05	0,53	1,64E-04	4,32E+00	1,089	12,282	0,043	1,157	2,204	1,16
4,50E-04	1,16	0,99	0,53	1,64E-04	4,55E+00	1,080	12,026	0,044	1,207	2,202	1,16
4,50E-04	1,16	0,94	0,53	1,64E-04	4,79E+00	1,071	11,776	0,045	1,259	2,204	1,16
4,50E-04	1,16	0,90	0,53	1,64E-04	5,04E+00	1,062	11,531	0,046	1,313	2,211	1,16
4,50E-04	1,16	0,85	0,53	1,64E-04	5,31E+00	1,053	11,291	0,047	1,370	2,222	1,16
4,50E-04	1,16	0,81	0,53	1,64E-04	5,59E+00	1,044	11,056	0,048	1,428	2,238	1,16
4,50E-04	1,16	0,77	0,53	1,64E-04	5,88E+00	1,034	10,826	0,049	1,490	2,259	1,16
4,50E-04	1,16	0,73	0,53	1,64E-04	6,19E+00	1,025	10,601	0,050	1,554	2,285	1,16
4,50E-04	1,16	0,69	0,53	1,64E-04	6,52E+00	1,016	10,380	0,051	1,620	2,315	1,16
4,50E-04	1,16	0,66	0,53	1,64E-04	6,86E+00	1,007	10,164	0,052	1,690	2,350	1,16
4,50E-04	1,16	0,63	0,53	1,64E-04	7,22E+00	0,998	9,952	0,053	1,763	2,390	1,16
4,50E-04	1,16	0,60	0,53	1,64E-04	7,60E+00	0,989	9,745	0,054	1,838	2,434	1,16
4,50E-04	1,16	0,57	0,53	1,64E-04	8,00E+00	0,980	9,542	0,056	1,917	2,483	1,16
4,50E-04	1,16	0,54	0,53	1,64E-04	8,42E+00	0,971	9,344	0,057	2,000	2,537	1,16
1	2	3	4	5	б	7	8	- Q	10	11	12
D35	R	R'	ប	S	Ψ	log(U/U"+)	۰ ۱۳۳۰)	TT".	R"	R4 R"	R
5 00R-04	1.07	1.02	0.45	1.81E-04	- 4.48E+00	1.083	12,101	0.037	0.779	1.795	1.07
5.00E-04	1.07	0.97	0.45	1.81E-04	4.72E+00	1,074	11.849	0.038	0.812	1,778	1.07
5.00E-04	1.07	0.92	0.45	1.81E-04	4.97E+00	1.065	11.602	0.039	0.847	1.765	1.07
5.00E-04	1.07	0.87	0.45	1.81E-04	5.23E+00	1.055	11.361	0.040	0.884	1.755	1.07
5.00E-04	1.07	0.83	0.45	1.81E-04	5.51E+00	1.046	11.125	0.040	0.922	1.749	1.07
5.00E-04	1.07	0.79	0,45	1.81E-04	5,79E+00	1.037	10.893	0.041	0,961	1,748	1.07
5.00E-04	1,07	0,75	0,45	1.81E-04	6,10E+00	1,028	10,666	0,042	1,002	1,750	1.07
5,00E-04	1,07	0,71	0,45	1,81E-04	6,42E+00	1,019	10,444	0,043	1,045	1,755	1,07
5,00E-04	1,07	0,67	0,45	1,81E-04	6,76E+00	1,010	10,227	0,044	1,090	1,765	1,07
5,00E-04	1,07	0,64	0,45	1,81E-04	7,11E+00	1,001	10,014	0,045	1,137	1,778	1,07
5,00E-04	1,07	0,61	0,45	1,81E-04	7,49E+00	0,991	9,806	0,046	1,186	1,795	1,07
5,00E-04	1,07	0,58	0,45	1,81E-04	7,88E+00	0,982	9,602	0,047	1,237	1,815	1,07
5,00E-04	1,07	0,55	0,45	1,81E-04	8,30E+00	0,973	9,402	0,048	1,290	1,839	1,07
5.00E-04	1,07	0,52	0,45	1,81E-04	8,73E+00	0,964	9,206	0,049	1,346	1.867	1.07
-,											

Tabela 5.	9 - Cál	culo do	raio hi	dráulico re	lativo às d	eformações	do leito	para a	campar	nha núm	ero 09
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	σ	S	Ψ^{i}	log(U/U"*)	(U/U"+)	U"+	R"	R'+ R"	R'
7,00E-04	1,01	0,96	0,45	1,71E-04	7,04E+00	1,003	10,058	0,045	1,193	2,153	1,01
7,00E-04	1,01	0,91	0,45	1,71E-04	7,41E+00	0,993	9,849	0,046	1,245	2,156	1,01
7,00E-04	1,01	0,87	0,45	1,71E-04	7,80E+00	0,984	9,644	0,047	1,298	2,164	1,01
7,00E-04	1,01	0,82	0,45	1,71E-04	8,21E+00	0,975	9,443	0,048	1,354	2,176	1,01
7,00E-04	1,01	0,78	0,45	1,71E-04	8,64E+00	0,966	9,246	0,049	1,412	2,193	1,01
7,00E-04	1,01	0,74	0,45	1,71E-04	9,10E+00	0,957	9,054	0,050	1,473	2,215	1,01
7,00E-04	1,01	0,71	0,45	1,71E-04	9,58E+00	0,948	8,866	0,051	1,536	2,241	1,01
7,00E-04	1,01	0,67	0,45	1,71E-04	1,01E+01	0,406	2,546	0,177	18,628	19,298	1,01
7,00E-04	1,01	0,64	0,45	1,71E-04	1,06E+01	0,379	2,392	0,188	21,090	21,727	1,01
7,00E-04	1,01	0,60	0,45	1,71E-04	1,12E+01	0,352	2,248	0,200	23,877	24,482	1,01
7,00E-04	1,01	0,57	0,45	1,71E-04	1,18E+01	0,325	2,113	0,213	27,033	27,608	1,01
7,00E-04	1,01	0,55	0,45	1,71E-04	1,24E+01	0,298	1,986	0,227	30,606	31,152	1,01
7,00E-04	1,01	0,52	0,45	1,71E-04	1,30E+01	0,271	1,866	0,241	34,651	35,169	1,01
7,00E-04	1,01	0,49	0,45	1,71E-04	1,37E+01	0,244	1,754	0,257	39,231	39,723	1,01
7,00E-04	1,01	0,47	0,45	1,71E-04	1,44E+01	0,217	1,649	0,273	44,415	44,883	1,01
Tabela 5.	.10 - C: 2	álculo do 3	o raio h 4	idráulico r 5	elativo às 6	deformaçõe 7	s do leit 8	o para	a campa 10	anha nún 11	12 12 12
D35	R	R'	υ	S	ψι	log(U/U"+)	د <u>"تر</u> یں	τ <u>ι</u>	B.	R4 R"	B'
5 00E-04	0.87	0.83	0.30	1.64E-04	6.09E+00	1.028	10.676	0.028	0.491	1.317	0.87
5.00E-04	0.87	0.79	0.30	1.64E-04	6.41E+00	1.019	10.454	0.029	0.512	1.297	0.87
5.00E-04	0.87	0.75	0.30	1.64E-04	6.74E+00	1.010	10.236	0.029	0.534	1.280	0.87
5 00E-04	0.87	0.71	0.30	1.64E-04	7.10E+00	1.001	10.023	0.030	0.557	1.265	0.87
5.00E-04	0.87	0.67	0.30	1.64E-04	7.47E+00	0.992	9.815	0.031	0.581	1.254	0.87
5.00E-04	0.87	0.64	0,30	1.64E-04	7.87E+00	0.983	9,610	0.031	0.606	1,245	0.87
5.00E-04	0.87	0.61	0,30	1.64E-04	8.28E+00	0.974	9,410	0.032	0,632	1,239	0,87
5.00E-04	0.87	0,58	0,30	1.64E-04	8,72E+00	0,964	9,215	0,033	0,659	1,236	0,87
5.00E-04	0.87	0,55	0,30	1.64E-04	9,17E+00	0,955	9,023	0,033	0,687	1,235	0,87
5.00E-04	0,87	0,52	0,30	1,64E-04	9,66E+00	0,946	8,835	0,034	0,717	1,238	0,87
5,00E-04	0,87	0,49	0,30	1,64E-04	1,02E+01	0,937	8,651	0,035	0,747	1,242	0,87
5,00E-04	0,87	0,47	0,30	1,64E-04	1,07E+01	0,928	8,471	0,035	0,780	1,250	0,87
5,00E-04	0,87	0,45	0,30	1,64E-04	1,13E+01	0,919	8,295	0,03 6	0,813	1,260	0,87
5,00E-04	0,87	0,42	0,30	1,64E-04	1,19E+01	0,910	8,122	0,037	0,848	1,272	0,87
5,00E-04	0,87	0,40	0,30	1,64E-04	1,25E+01	0,901	7,953	0,038	0,884	1,287	0,87

Tabela 5.	11 - Cá	ilculo d	o raio h	idráulico r	elativo às	deformaçõe	s do leit	o para	a campa	anha núm	iero 11
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^{i}	log(U/U"+)	(ሀ/ሆ"•)	U "≁	R"	R'+ R"	\mathbb{R}^{t}
5,50E-04	0,88	0,84	0,26	1,05E-04	1,03E+01	0,934	8,592	0,030	0,889	1,725	0,88
5,50E-04	0,88	0,79	0,26	1,05E-04	1,09E+01	0,925	8,413	0,031	0,927	1,721	0,88
5,50E-04	0,88	0,75	0,26	1,05E-04	1,15E+01	0,916	8,238	0,032	0,967	1,722	0,88
5,50E-04	0,88	0,72	0,26	1,05E-04	1,21E+01	0,907	8,066	0,032	1,009	1,725	0,88
5,50E-04	88,0	0,68	0,2 6	1,05E-04	1,27E+01	0,898	7,898	0,033	1,052	1,733	0,88
5,50E-04	0,88	0,65	0,26	1,05E-04	1,34E+01	0,888	7,734	0,034	1,097	1,744	0,85
5,50E-04	0,88	0,61	0,26	1,05E-04	1,41E+01	0,879	7,573	0,034	1,144	1,759	0,88
5,50E-04	0,88	0,58	0,26	1,05E-04	1,48E+01	0,870	7,416	0,035	1,193	1,777	0,88
,50E-04	0,88	0,55	0,26	1,05E-04	1,56E+01	0,861	7,261	0,036	1,245	1,799	0,88
50E-04	0,88	0,53	0,26	1,05E-04	1,64E+01	0,852	7,110	0,037	1,298	1,825	0,88
,50E-04	0,88	0,50	0,26	1,05E-04	1,73E+01	0,843	6,962	0,037	1,354	1,855	0,88
5,50E-04	0,88	0,48	0,26	1,05E-04	1,82E+01	0,834	6,817	0,038	1,412	1,888	0,88
50E-04	0,88	0,45	0,26	1,05E-04	1,91E+01	0,824	6,675	0,039	1,473	1,925	0,88
5,50E-04	0,88	0,43	0,26	1,05E-04	2,01E+01	0,815	6,536	0,040	1,536	1,965	0,88
5,50E-04	0,88	0,41	0,26	1,05E-04	2,12E+01	0,806	6,400	0,041	1,602	2,010	0,85
1	2 - 21	3	4	5	6	7	8	9 9	10	11	12
D95	a a	ים ים	TT	5	Ψ	איידוזדי א	(ការការ"	TT".	Вч	Bit Bii	R'
50B-04	0.83	0.70	0.24	8 907-05	1 79F+01	0.894	7 838	0.031	1 074	1 862	0.83
50B-04	0,83	0.75	0.24	8 902-05	1 36E+01	0.885	7.675	0.031	1,120	1,869	0.83
50E-04	0,00	0,71	0.24	8.902-05	1.43E+01	0.876	7.515	0.032	1,168	1.880	0.83
50E 04	0,83	0.68	0.24	8 90E-05	1.51E+01	0.867	7.359	0.033	1.218	1.894	0.83
50E-04	0.83	0.64	0.24	8.90E-05	1.59E+01	0.858	7.206	0.033	1.271	1.913	0.83
50E-04	0.83	0.61	0.24	8.90E-05	1.67E+01	0.849	7.056	0.034	1.325	1.935	0,83
5.50E-04	0.83	0.58	0.24	8.90E-05	1.76E+01	0.839	6.909	0.035	1,382	1,962	0.83
5.50E-04	0.83	0.55	0.24	8.90E-05	1.85E+01	0.830	6,765	0.035	1,441	1,992	0,83
5.50E-04	0.83	0.52	0,24	8.90E-05	1.95E+01	0.821	6,625	0.036	1,503	2,026	0,83
5.50E-04	0,83	0,50	0,24	8,90E-05	2,05E+01	0,812	6,487	0,037	1,568	2,065	0,83
5.50E-04	0,83	0,47	0,24	8,90E-05	2.16E+01	0,803	6,352	0,038	1,635	2,107	0,83
5.50E-04	0.83	0,45	0,24	8,90E-05	2,27E+01	0,794	6,219	0,039	1,706	2,154	0,83
5.50E-04	0,83	0,43	0,24	8,90E-05	2,39E+01	0,785	6,090	0,039	1,779	2,205	0.83
5.50E-04	0.83	0,40	0.24	8,90E-05	2,52E+01	0,775	5,963	0,040	1,855	2,260	0.83
5 50E-04	0.83	0.38	0.24	8.90E-05	2.65E+01	0.766	5.839	0.041	1.935	2.319	0.87

1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^{i}	log(U/U"+)	(U/U"*)	U"*	R"	R'+ R"	Rʻ
,80E-04	0,75	0,71	0,15	6,40E-05	1,74E+01	0,842	6,945	0,022	0,743	1,455	0,7
,80E-04	0,75	0,68	0,15	6,40E-05	1,83E+01	0,833	6,801	0,022	0,775	1,452	0,7
,80E-04	0,75	0,64	0,15	6,40E-05	1,92E+01	0,823	6,659	0,023	0,808	1,451	0,7
,80E-04	0,75	0,61	0,15	6,40E-05	2,03E+01	0,814	6,521	0,023	0,843	1,454	0,7
80E-04	0,75	0,58	0,15	6,40E-05	2,13E+01	0,805	6,385	0,023	0,879	1,459	0,7
,80E-04	0,75	0,55	0,15	6,40E-05	2,24E+01	0,796	6,252	0,024	0,917	1,468	0,7
,80E-04	0,75	0,52	0,15	6,40E-05	2,36E+01	0,787	6,122	0,025	0,956	1,480	0,7
,80E-04	0,75	0,50	0,15	6,40E-05	2,49E+01	0,778	5,995	0,025	0,997	1,495	0,7
,80E-04	0,75	0,47	0,15	6,40E-05	2,62E+01	0,769	5,870	0,026	1,040	1,513	0,7
,80E-04	0,75	0,45	0,15	6,40E-05	2,76E+01	0,759	5,748	0,026	1,085	1,534	0,7
,80E-04	0,75	0,43	0,15	6,40E-05	2,90E+01	0,750	5,628	0,027	1,131	1,558	0,7
,80E-04	0,75	0,41	0,15	6,40E-05	3,05E+01	0,741	5,511	0,027	1,180	1,585	0,7
,80E-04	0,75	0,39	0,15	6,40E-05	3,21E+01	0,732	5,396	0,028	1,231	1,616	0,7
				_			E 004		1 001		~ ~
,80E-04	0,75	0,37	0,15	6,40E-05	3,38E+01	0,723	5,284	0.028	1,284	1,649	0,7
1,80E-04 1,80E-04 Fabela 5.	0,75 0,75 14 - Cá	0,37 0,35 ilculo de	0,15 0,15 o raio h	6,40E-05 6,40E-05 idráulico r	3,38E+01 3,56E+01 elativo às (0,723 0,714 deformaçõe	5,284 5,174 s do leit	0,028 0,029 o para	1,284 1,339 a campa	1,649 1,686 anha núm	0,7 0,7
,80E-04 ,80E-04 T abela 5 . 1	0,75 0,75 14 - Cá 2	0,37 0,35 ilculo de 3	0,15 0,15 o raio h 4	6,40E-05 6,40E-05 idráulico r 5	3,38E+01 3,56E+01 elativo às 6	0,723 0,714 deformaçõe 7	5,284 5,174 s do leit 8	0,028 0,029 o para 9	1,284 1,339 a campa 10	1,649 1,686 anha núm 11	0,7 0,7 Iero 1
,80E-04 ,80E-04 F abela 5 . 1 D35	0,75 0,75 14 - Cá 2 R	0,37 0,35 ilculo de 3 R'	0,15 0,15 o raio h 4 U	6,40E-05 6,40E-05 idráulico r 5 S	3,38E+01 3,56E+01 elativo às 6 ⁶ Y '	0,723 0,714 deformaçõe 7 log(U/U"+)	5,284 5,174 s do leit 8 (U/U"*)	0,028 0,029 o para 9 U''*	1,284 1,339 a campa 10 R"	1,649 1,686 anha núm 11 R4R"	0,7 0,7 Iero I 11 R
,80E-04 ,80E-04 Cabela 5 . 1 D35 ,50E-04	0,75 0,75 14 - Cá 2 R 0,78	0,37 0,35 ilculo de 3 R' 0,74	0,15 0,15 o raio h 4 U 0,22	6,40E-05 6,40E-05 idráulico r 5 S 3,00E-05	3,38E+01 3,56E+01 elativo as 6 6 ¥' 3,56E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714	5,284 5,174 s do leit 8 (U/U"+) 5,173	0,028 0,029 o para 9 U''+ 0,043	1,284 1,339 a campa 10 R" 6,145	1,649 1,686 anha núm 11 R'+ R" 6,886	0,7 0,7 10 11 11 R 0,7
,80E-04 ,80E-04 Cabela 5 . 1 D35 ,80E-04 ,80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70	0,15 0,15 o raio h 4 U 0,22 0,22	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 ¥' 3,56E+01 3,75E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705	5,284 5,174 s do leit 8 (U/U"+) 5,173 5,066	0,028 0,029 0 para 9 U'' _* 0,043 0,043	1,284 1,339 a campa 10 R" 6,145 6,409	1,649 1,686 anha núm 11 R'+ R" 6,886 7,113	0,7 0,7 12 12 12 12 12 12 12 12 12 12 12 12 12
,80E-04 ,80E-04 Tabela 5 . 1 D35 ,80E-04 4,80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67	0,15 0,15 0 raio h 4 U 0,22 0,22 0,22	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 ¥' 3,56E+01 3,75E+01 3,95E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696	5,284 5,174 s do leit 8 (U/U"*) 5,173 5,066 4,960	0,028 0,029 0 para 9 U"* 0,043 0,043 0,044	1,284 1,339 a campa 10 R" 6,145 6,409 6,684	1,649 1,686 anha núm 11 R'+ R" 6,886 7,113 7,353	0,7 0,7 12 17 17 17 17 17 17 17 17 17 17 17 17 17
,80E-04 ,80E-04 Tabela 5 . 1 D35 ,80E-04 9,80E-04 9,80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64	0,15 0,15 0 raio h 4 U 0,22 0,22 0,22 0,22 0,22	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 Ψ^{1} 3,56E+01 3,75E+01 3,95E+01 4,16E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,686	5,284 5,174 s do leit 8 (U/U"*) 5,173 5,066 4,960 4,857	0,028 0,029 0 para 9 U ⁿ * 0,043 0,044 0,045	1,284 1,339 a campa 10 R" 6,145 6,409 6,684 6,971	1,649 1,686 anha núm 11 R+R" 6,886 7,113 7,353 7,607	0,7 0,7 12 11 12 12 12 12 12 0,7 0,7 0,7
80E-04 80E-04 abela 5 1 D35 80E-04 80E-04 80E-04 80E-04 80E-04	0.75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60	0,15 0,15 0 raio h 4 U 0,22 0,22 0,22 0,22 0,22 0,22	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 Ψ' 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,686 0,677	5,284 5,174 s do leit 8 (U/U"*) 5,173 5,066 4,960 4,857 4,756	0,028 0,029 0 para 9 U ⁿ * 0,043 0,043 0,044 0,045 0,046	1,284 1,339 a camps 10 R" 6,145 6,409 6,684 6,971 7,271	1,649 1,686 anha núm 11 R'+ R" 6,886 7,113 7,353 7,607 7,874	0,7 0,7 iero 1 17 R 0,7 0,7 0,7 0,7 0,7
,80E-04 ,80E-04 Tabela 5. 1 D35 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57	0,15 0,15 0 raio h 4 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 Ψ' 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01 4,60E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,686 0,677 0,668	5,284 5,174 s do leit 8 (U/U"+) 5,173 5,066 4,960 4,857 4,756 4,657	0,028 0,029 0 para 9 U"+ 0,043 0,043 0,044 0,045 0,046 0,047	1,284 1,339 a camps 10 R" 6,145 6,409 6,684 6,971 7,271 7,583	1,649 1,686 anha núm 11 R'+ R'' 6,886 7,113 7,353 7,607 7,874 8,157	0,7 0,7 iero 1 12 R 0,7 0,7 0,7 0,7
,80E-04 ,80E-04 Tabela 5 . 1 D35 ,50E-04 4,80E-04 4,80E-04 4,80E-04 4,80E-04 4,80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57 0,54	0,15 0,15 0 raio h 4 U 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 ¥' 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01 4,60E+01 4,85E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,686 0,677 0,668 0,659	5,284 5,174 s do leit 8 (U/U"+) 5,173 5,066 4,960 4,857 4,756 4,657 4,560	0,028 0,029 0 para 9 U ⁿ + 0,043 0,043 0,044 0,045 0,045 0,046 0,047 0,048	1,284 1,339 a camps 10 R" 6,145 6,409 6,684 6,971 7,271 7,583 7,909	1,649 1,686 anha núm 11 R'+ R'' 6,886 7,113 7,353 7,607 7,874 8,157 8,454	0,7 0,7 iero 1 17 R 0,7 0,7 0,7 0,7 0,7 0,7 0,7
,80E-04 ,80E-04 Tabela 5 . 1 D35 ,50E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57 0,54 0,52	0,15 0,15 0 raio h 4 U 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 Ψ^{1} 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01 4,60E+01 4,85E+01 5,10E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,677 0,668 0,677 0,668 0,659 0,650	5,284 5,174 s do leit 8 (U/U"*) 5,173 5,066 4,960 4,857 4,756 4,657 4,560 4,465	0,028 0,029 0 para 9 U ¹¹ * 0,043 0,043 0,044 0,045 0,046 0,047 0,048 0,049	1,284 1,339 a campa 10 R" 6,145 6,409 6,684 6,971 7,271 7,583 7,909 8,249	1,649 1,686 anha núm 11 R+R" 6,886 7,113 7,353 7,607 7,874 8,157 8,454 8,766	0,7 0,7 11 12 12 12 12 12 12 12 12 12 12 12 12
80E-04 80E-04 abela 5 1 D35 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57 0,54 0,52 0,49	0,15 0,15 0,15 0 raio h 4 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo as 6 Ψ' 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01 4,60E+01 4,85E+01 5,10E+01 5,37E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,686 0,677 0,668 0,659 0,650 0,650 0,641	5,284 5,174 s do leit 8 (U/U"+) 5,173 5,066 4,960 4,857 4,756 4,657 4,560 4,465 4,372	0,028 0,029 0 para 9 U ¹¹ * 0,043 0,043 0,044 0,045 0,045 0,046 0,047 0,048 0,049 0,050	1,284 1,339 a camps 10 R" 6,145 6,409 6,684 6,971 7,271 7,583 7,909 8,249 8,603	1,649 1,686 anha núm 11 R+ R" 6,886 7,113 7,353 7,607 7,874 8,157 8,454 8,766 9,095	0,7 0,7 11 11 12 12 12 12 12 12 12 12 12 12 12
80E-04 80E-04 7abela 5. 1 D35 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04	0.75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57 0,54 0,52 0,52 0,49 0,47	0,15 0,15 0,15 0 raio h 4 U 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 Ψ' 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01 4,60E+01 4,85E+01 5,10E+01 5,37E+01 5,65E+01	0,723 0,714 deformaçõe 7 log(U/U"-) 0,714 0,705 0,696 0,686 0,677 0,668 0,659 0,650 0,650 0,641 0,632	5,284 5,174 s do leit 8 (U/U"+) 5,173 5,066 4,960 4,857 4,756 4,657 4,560 4,465 4,372 4,281	0,028 0,029 0 para 9 U"* 0,043 0,043 0,044 0,045 0,046 0,047 0,046 0,047 0,048 0,049 0,050 0,051	1,284 1,339 a campa 10 R" 6,145 6,409 6,684 6,971 7,271 7,583 7,909 8,249 8,603 8,973	1,649 1,686 anha núm 11 R'+ R" 6,886 7,113 7,353 7,607 7,874 8,157 8,454 8,766 9,095 9,440	0,7 0,7 11 11 12 12 12 12 12 12 12 12 12 12 12
80E-04 80E-04 SoE-04 SoE-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57 0,54 0,52 0,49 0,47 0,44	0,15 0,15 0,15 0 raio h 4 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 Ψ^{1} 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01 4,60E+01 4,85E+01 5,10E+01 5,37E+01 5,95E+01 5,95E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,686 0,677 0,668 0,659 0,650 0,650 0,641 0,632 0,622	5,284 5,174 s do leit 8 (U/U"+) 5,173 5,066 4,960 4,857 4,756 4,657 4,560 4,465 4,372 4,281 4,192	0,028 0,029 0 para 9 U ¹¹ . 0,043 0,043 0,044 0,045 0,046 0,047 0,046 0,047 0,048 0,049 0,050 0,051 0,052	1,284 1,339 a camps 10 R" 6,145 6,409 6,684 6,971 7,271 7,583 7,909 8,249 8,603 8,973 9,358	1,649 1,686 anha núm 11 R'+ R'' 6,886 7,113 7,353 7,607 7,874 8,157 8,454 8,766 9,095 9,440 9,802	0,7 0,7 1ero 1 17 17 17 17 17 17 17 17 17 17 17 17 17
80E-04 80E-04 Sole-04 Sole-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04 80E-04	0,75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57 0,54 0,52 0,49 0,47 0,44 0,42	0,15 0,15 0,15 0 raio h 4 U 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo às 6 ¥' 3,56E+01 3,75E+01 3,95E+01 4,16E+01 4,37E+01 4,60E+01 4,85E+01 5,10E+01 5,37E+01 5,95E+01 6,26E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,686 0,677 0,668 0,659 0,650 0,641 0,632 0,622 0,613	5,284 5,174 s do leit 8 (U/U"*) 5,173 5,066 4,960 4,857 4,756 4,657 4,560 4,465 4,372 4,281 4,192 4,105	0,028 0,029 0 para 9 U ¹¹ + 0,043 0,043 0,044 0,045 0,045 0,046 0,047 0,048 0,049 0,050 0,051 0,052 0,054	1,284 1,339 a camps 10 R'' 6,145 6,409 6,684 6,971 7,271 7,583 7,909 8,249 8,603 8,973 9,358 9,760	1,649 1,686 anha núm 11 R'+ R" 6,886 7,113 7,353 7,607 7,874 8,157 8,454 8,766 9,095 9,440 9,802 10,182	0,7 0,7 11 12 12 12 12 12 12 12 12 12 12 12 12
80E-04 80E-04 7abela 5. 1 D35 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04 ,80E-04	0.75 0,75 14 - Cá 2 R 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0,37 0,35 ilculo de 3 R' 0,74 0,70 0,67 0,64 0,60 0,57 0,54 0,52 0,52 0,49 0,47 0,44 0,42 0,40	0,15 0,15 0,15 0 raio h 4 U 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,	6,40E-05 6,40E-05 idráulico r 5 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05 3,00E-05	3,38E+01 3,56E+01 elativo as 6 Ψ' 3,56E+01 3,75E+01 3,75E+01 4,16E+01 4,37E+01 4,60E+01 4,85E+01 5,10E+01 5,37E+01 5,65E+01 5,95E+01 6,26E+01 6,59E+01	0,723 0,714 deformaçõe 7 log(U/U"+) 0,714 0,705 0,696 0,696 0,659 0,659 0,659 0,650 0,641 0,632 0,622 0,613 0,604	5,284 5,174 s do leit 8 (U/U"+) 5,173 5,066 4,960 4,857 4,756 4,657 4,560 4,465 4,372 4,281 4,192 4,105 4,019	0,028 0,029 0 para 9 U ¹¹ * 0,043 0,043 0,043 0,043 0,043 0,044 0,045 0,045 0,046 0,047 0,048 0,049 0,050 0,051 0,052	1,284 1,339 a camps 10 R" 6,145 6,409 6,684 6,971 7,271 7,583 7,909 8,249 8,603 8,973 9,358 9,760 10,179	1,649 1,686 anha núm 11 R+ R" 6,886 7,113 7,353 7,607 7,874 8,157 8,454 8,766 9,095 9,440 9,802 10,182 10,580	0,7 0,7 11 11 12 12 12 12 12 12 12 12 12 12 12

Tabela 5.	15 - Cá	ilculo de	o raio h	idráulico r	elativo às i	deformaçõe	s do leit	o para	a campa	anha nún	iero 15
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^i	log(U/U"*)	(U/U"+)	Ū "₊	R"	R'+ R"	R'
4.80E-04	0,88	0,84	0,20	4,70E-05	2,02E+01	0,815	6,534	0,031	2,032	2,868	0,88
4,80E-04	0,88	0,79	0,20	4,70E-05	2,12E+01	0,806	6,398	0,031	2,119	2,913	0,88
4,80E-04	0,88	0,75	0,20	4,70E-05	2,23E+01	0,797	6,265	0,032	2,210	2,965	0,88
4,80E-04	0,88	0,72	0,20	4,70E-05	2,35E+01	0,788	6,135	0,033	2,305	3,022	0,88
4,80E-04	0,88	0,68	0,20	4,70E-05	2,47E+01	0,779	6,007	0,033	2,404	3,085	0,88
4,80E-04	0,88	0,65	0,20	4,70E-05	2,60E+01	0,770	5,882	0,034	2,508	3,154	0,88
4,80E-04	0,88	0,61	0,20	4,70E-05	2,74E+01	0,760	5,760	0,035	2,615	3,230	0,88
4,80E-04	0,88	0,58	0,20	4,70E-05	2,89E+01	0,751	5,640	0,035	2,728	3,311	0,88
4,80E-04	0,88	0,55	0,20	4,70E-05	3,04E+01	0,742	5,522	0,036	2,845	3,399	0,88
4,80E-04	0,88	0,53	0,20	4,70E-05	3,20E+01	0,733	5,407	0,037	2,967	3,494	0,88
4,80E-04	0,88	0,50	0,20	4,70E-05	3,37E+01	0,724	5,295	0,038	3,094	3,595	0,88
4,80E-04	0,88	0,48	0,20	4,70E-05	3,54E+01	0,715	5,185	0,039	3,227	3,703	0,88
4,80E-04	0,88	0,45	0,20	4,70E-05	3,73E+01	0,706	5,077	0,039	3,366	3,818	0,88
4,80E-04	0,88	0,43	0,20	4,70E-05	3,93E+01	0,696	4,971	0,040	3,511	3,940	0,88
4,80E-04	0,88	0,41	0,20	4,70E-05	4,13E+01	0,687	4,868	0,041	3,661	4,069	0,88
Tabela 5.	.16 - Cá	ilculo de	o raio h	idráulico r	elativo às	deformaçõe 7	s do leit	o para	a camp:	anha nún	12
1	B	ים	 11	2	ີ່ໜ້າ	Les TITTA	دينتيت	TTP.	Dii 10	ъч-ри 194-ри	יק
2802 04	л 0.04	0.01	0 22	1 479-04	4 318400	1 000	12 302	0.026	0.460	1 381	20 0
2,502-04	0,90	0,91	0.32	1,478-04	4,512700	1,090	12,046	0,020	0480 0 480	1,201	0,06
3,300-04	0,90	0,87	0,32	1.478-04	4 7774-00	1,081	11 705	0.027	0,-02	1 333	0.96
3.502-04	0,20	0.78	0.32	1 478-04	5 02E+00	1.063	11 549	0.028	0 532	1,314	0.96
3 508-04	0.96	0.74	0.32	1.47E-04	5.29E+00	1.053	11.309	0.028	0.555	1.298	0.96
3 502-04	0.96	0.71	0.32	1.47E-04	5.57E+00	1.044	11.074	0.029	0.579	1.285	0.96
3.50E-04	0.96	0.67	0.32	1.47E-04	5.86E+00	1.035	10.843	0.030	0,604	1,274	0,96
3.50E-04	0.96	0.64	0.32	1.47E-04	6.17E+00	1.026	10.618	0.030	0,630	1,267	0.96
3.508-04	0.96	0.61	0.32	1.47E-04	6.49E+00	1.017	10.397	0.031	0,657	1,262	0,96
3.50E-04	0,96	0,57	0,32	1,47E-04	6,83E+00	1,008	10,180	0,031	0,685	1,260	0,96
3,50E-04	0,96	0,55	0,32	1,47E-04	7,19E+00	0,999	9,968	0,032	0,715	1,261	0,96
3.50E-04	0,96	0,52	0,32	1,47E-04	7,57E+00	0,989	9,761	0,033	0,745	1,264	0,96
3.50E-04	0,96	0,49	0,32	1,47E-04	7,97E+00	0,980	9,558	0,033	0,777	1,270	0,96
3.50E-04	0,96	0,47	0.32	1.47E-04	8,39E+00	0.971	9,359	0,034	0.811	1.279	0.96
3,50E-04	0,96	0,44	0,32	1,47E-04	8,83E+00	0,962	9,164	0,035	0,846	1,290	0,96
<u></u>	• ,• -										

Tabela 5.	.17 - Ca	alculo d	o raio h	idráulico r	elativo 'as	deformaçõe	s do leit	o para	a campa	anha núm	iero 17
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψı	log(U/U"+)	(U/U"+)	U "*	R"	R'+ R"	R'
5,00E-04	1,37	1,30	0,74	2,31E-04	2,74E+00	1,208	16,145	0,046	0,927	2,229	1,37
5,00E-04	1,37	1,24	0,74	2,31E-04	2,89E+00	1,191	15,512	0,048	1,004	2,241	1,37
5,00E-04	1,37	1,17	0,74	2,31E-04	3,04E+00	1,152	14,190	0,052	1,200	2,375	1,37
5,00E-04	1,37	1,12	0,74	2,31E-04	3,20E+00	1,143	13,895	0,053	1,252	2,367	1,37
5,00E-04	1,37	1,06	0,74	2,31E-04	3,37E+00	1,134	13,606	0,054	1,305	2,365	1,37
5,00E-04	1,37	1,01	0,74	2,31E-04	3,55E+00	1,125	13,323	0,056	1,361	2,369	1,37
5,00E-04	1,37	0,96	0,74	2,31E-04	3,73E+00	1,115	13,045	0,057	1,420	2,377	1,37
5,00E-04	1,37	0,91	0,74	2,31E-04	3,93E+00	1,106	12,774	0,058	1,481	2,390	1,3
5,00E-04	1,37	0,86	0,74	2,31E-04	4,14E+00	1,097	12,508	0,059	1,545	2,408	1,31
5,00E-04	1,37	0,82	0,74	2,31E-04	4,35E+00	1,088	12,248	0,060	1,611	2,431	1,37
5,00E-04	1,37	0,78	0,74	2,31E-04	4,58E+00	1,079	11,993	0,062	1,680	2,459	1,3.
5,00E-04	1,37	0,74	0,74	2,31E-04	4,82E+00	1,070	11,743	0,063	1,752	2,493	1,3
5,00E-04	1,37	0,70	0,74	2,31E-04	5,08E+00	1,061	11,499	0,064	1,828	2,531	1,31
00E-04	1,37	0,67	0,74	2,31E-04	5,35E+00	1,052	11,260	0,066	1,906	2,574	1,3
.00E-04	1,37	0,63	0,74	2,31E-04	5,63E+00	1,042	11,025	0,067	1,988	2,623	1,31
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^{i}	log(U/U"+)	(ਗ਼ਗ਼੶੶	U "∗	R"	R'+ R"	R'
5.00E-04	0.98	0.93	0.39	1.47E-04	6.03E+00	1.030	10.718	0.036	0.918	1.849	0.98
5.00E-04	0.98	0,88	0.39	1.47E-04	6.35E+00	1.021	10,495	0.037	0.958	1.842	0.9
5.00E-04	0.98	0.84	0.39	, 1.47E-04	6.68E+00	1.012	10,277	0.038	0,999	1,839	0,9
5.00E-04	0.98	0,80	0,39	1.47E-04	- 7.03E+00	1,003	10,063	0,039	1,042	1,840	0,9
5.00E-04	0.98	0.76	0.39	1.47E-04	7,40E+00	0.994	9.853	0.040	1.086	1,845	0.9
5.00E-04	0,98	0.72	0,39	1,47E-04	7,79E+00	0,984	9,648	0,040	1,133	1,853	0,9
5.00E-04	0,98	0,68	0,39	1,47E-04	8,20E+00	0,975	9,448	0,041	1,182	1,866	0,98
5,00E-04	0,98	0,65	0,39	1,47E-04	8,63E+00	0,966	9,251	0,042	1,232	1,883	0,91
5,00E-04	0,98	0,62	0,39	1,47E-04	9,09E+00	0,957	9,059	0,043	1,285	1,903	0,98
,00E-04	0,98	0,59	0,39	1,47E-04	9,56E+00	0,948	8,870	0,044	1,341	1,927	0,98
,00E-04	0,98	0,56	0,39	1,47E-04	1,01E+01	0,939	8,685	0,045	1,398	1,956	0,98
,00E-04	0,98	0,53	0,39	1,47E-04	1,06E+01	0,930	8,505	0,046	1,458	1,988	0,92
5,00E-04	0,98	0,50	0,39	1,47E-04	1,12B+01	0,921	8,328	0,047	1,521	2,024	0,98
5,00E-04	0,98	0,48	0,39	1,47E-04	1,17E+01	0,911	8,154	0,048	1,586	2,064	0,98
5.00E-04	0.98	0,45	0,39	1,47E-04	1,24E+01	0,902	7,985	0,049	1,654	2,108	0,91

Tabela 5.	.19 - Ca	álculo d	o raio h	idráulico 1	elativo às	deformaçõe	s do leit	o para	a camp:	anha núm	iero 19
1	2	3	4	5	б	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^i	log(U/U"+)	(ਗ਼ਗ਼**)	Ū "∗	R"	R4 R"	R'
5,50E-04	1,14	1,08	0,53	1,89E-04	4,43E+00	1,085	12,157	0,044	1,025	2,108	1,14
5,50E-04	1,14	1,03	0,53	1,89E-04	4,67E+00	1,076	11,904	0,045	1,069	2,098	1,14
5,50E-04	1,14	0,98	0,53	1,89E-04	4,91E+00	1,067	11,656	0,045	1,115	2,092	1,14
5,50E-04	1,14	0,93	0,53	1,89E-04	5,17E+00	1,057	11,414	0,046	1,163	2,091	1,14
5,50E-04	1,14	0,88	0,53	1,89E-04	5,44E+00	1,048	11,176	0,047	1,213	2,095	1,14
5,50E-04	1,14	0,84	0,53	1,89E-04	5,73E+00	1,039	10,944	0,048	1,265	2,103	1,14
5,50E-04	1,14	0,80	0,53	1,89E-04	6,03E+00	1,030	10,716	0,049	1,319	2,115	1,14
5,50E-04	1,14	0,76	0,53	1,89E-04	6,35E+00	1,021	10,493	0,051	1,376	2,132	1,14
5,50E-04	1,14	0,72	0,53	1,89E-04	6,68E+00	1,012	10,275	0,052	1,435	2,154	1,14
5,50E-04	1,14	0,68	0,53	1,89E-04	7,03E+00	1,003	10,061	0,053	1,497	2,179	1,14
5,50E-04	1,14	0,65	0,53	1,89E-04	7,40E+00	0,993	9,851	0,054	1,561	2,210	1,14
5,50E-04	1,14	0,62	0,53	1,89E-04	7,79E+00	0,984	9,646	0,055	1,628	2,244	1,14
5,50E-04	1,14	0,59	0,53	1,89E-04	8,20E+00	0,975	9,446	0,056	1,698	2,283	1,14
5,50E-04	1,14	0,56	0,53	1,89E-04	8,64E+00	0,966	9,249	0,057	1,771	2,327	1,14
5,50E-04	1,14	0,53	0,53	1,89E-04	9,09E+00	0,957	9,057	0,059	1,847	2,375	1,14
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ^i	log(U/U"+)	(177.14)	U"*	R"	R'+ R"	\mathbb{R}^{t}
4.80E-04	1.27	1.21	0.61	2.06E-04	3.19E+00	1.144	13.920	0,044	0.950	2,157	1.27
4.80E-04	1.27	1.15	0.61	2.06E-04	3.35E+00	1,135	13.630	0,045	0,991	2,137	1,27
4.80E-04	1,27	1,09	0,61	2,06E-04	3,53E+00	1,125	13,347	0,046	1,034	2,123	1,27
4,80E-04	1,27	1,03	0,61	2,06E-04	3,72E+00	1,116	13,069	0,047	1,078	2,113	1,27
4,80E-04	1,27	0,98	0,61	2,06E-04	3,91E+00	1,107	12,797	0,048	1,124	2,107	1,27
4,80E-04	1,27	0,93	0,61	2,06E-04	4,12E+00	1,098	12,530	0,049	1,173	2,106	1,27
4,80E-04	1,27	0,89	0,61	2,06E-04	4,33E+00	1,089	12,270	0,050	1,223	2,110	1,27
4,80E-04	1,27	0,84	0,61	2,06E-04	4,56E+00	1,080	12,014	0,051	1,276	2,118	1,27
4,80E-04	1,27	0,80	0,61	2,06E-04	4,80E+00	1,071	11,764	0,052	1,330	2,131	1,27
4,80E-04	1,27	0,76	0,61	2,06E-04	5,06E+00	1,061	11,520	0,053	1,388	2,148	1,27
4,80E-04	1,27	0,72	0,61	2,06E-04	5,32E+00	1,052	11,280	0,054	1,447	2,170	1,27
4,80E-04	1,27	0,69	0,61	2,06E-04	5,60E+00	1,043	11,045	0,055	1,509	2,196	1,27
4,80E-04	1,27	0,65	0,61	2,06E-04	5,90E+00	1,034	10,815	0,056	1,574	2,226	1,27
4,80E-04	1,27	0,62	0,61	2,06E-04	6,21E+00	1,025	10,590	0,058	1,642	2,261	1,27
4.80E-04	1.27	0.59	0,61	2,06E-04	6,53E+00	1,016	10,370	0,059	1,712	2,301	1,27

Tabela 5.	21 - Cá	álculo d	o raio h	idráulico r	elativo as	deformaçõe	s do leit	o para	a campa	inha nún	nero 21
1	2	3	4	5	6	7	8	9	10	11	12
D35	R	R'	σ	S	Ψ'	log(U/U"*)	(ਗ਼ਗ਼੶੶	ប "*	R"	R'+ R"	R'
8.00E-04	0.85	0,81	0,24	8,00E-05	2,04E+01	0,528	3,372	0,071	6,454	7,261	0,85
8.00E-04	0,85	0,77	0,24	8,00E-05	2,15E+01	0,511	3,240	0,074	6,991	7,758	0,85
8,00E-04	0,85	0,73	0,24	8,00E-05	2,26E+01	0,493	3,113	0,077	7,574	8,302	0,85
8,00E-04	0,85	0,69	0,24	8,00E-05	2,38E+01	0,476	2,991	0,080	8,204	8,897	0,85
8,00E-04	0,85	0,66	0,24	8,00E-05	2,51E+01	0,458	2,874	0,084	8,888	9,546	0,85
8,00E-04	0,85	0,62	0,24	8,00E-05	2,64E+01	0,441	2,761	0,087	9,628	10,253	0,85
8,00E-04	0,85	0,59	0,24	8,00E-05	2,78E+01	0,424	2,653	0,090	10,430	11,024	0,85
8,00E-04	0,85	0,56	0,24	8,00E-05	2,93E+01	0,406	2,549	0,094	11,299	11,863	0,85
8,00E-04	0,85	0,54	0,24	8,00E-05	3,08E+01	0,740	5,492	0,044	2,434	2,969	0,85
8,00E-04	0,85	0,51	0,24	8,00E-05	3,24E+01	0,731	5,377	0,045	2,538	3,047	0,85
8,00E-04	0,85	0,48	0,24	8,00E-05	3,41E+01	0,721	5,265	0,046	2,647	3,131	0,85
8,00E-04	0,85	0,46	0,24	8,00E-05	3,59E+01	0,712	5,156	0,047	2,761	3,220	0,85
8,00E-04	0,85	0,44	0,24	8,00E-05	3,78E+01	0,703	5,048	0,048	2,880	3,316	0,85
8,00E-04	0,85	0,41	0,24	8,00E-05	3,98E+01	0,694	4,943	0,049	3,003	3,418	0,85
8,00E-04	0,85	0,39	0,24	8,00E-05	4,19E+01	0,685	4,841	0,050	3,132	3,526	0,85
Tabela 5.	22 - Cá	ilculo de	o raio h 4	idráulico r 5	elativo`as ₁ 6	deformaçõe 7	s do leit 8	o para	a campa 10	mha nún 11	12 nero
D35	R	R'	υ	S	Ψ^{i}	log(U/U"+)	(ህ/ህ"+)	U''*	R"	$R^{i+}R^{n}$	Rʻ
7 50E-04	0.89	0.85	0.31	1.30E-04	1.13E+01	0.919	8.296	0.037	1.095	1,940	0.89
7.50E-04	0.89	0,80	0.31	1.30E-04	1.19E+01	0.910	8.124	0.038	1.142	1,945	0,89
7.50E-04	0.89	0.76	0.31	1.30E-04	1.25E+01	0.901	7.955	0.039	1,191	1,954	0,89
7.50E-04	0.89	0.72	0,31	1.30E-04	1,31E+01	0.891	7,789	0,040	1,242	1,967	0,89
7.50E-04	0.89	0.69	0,31	1.30E-04	1,38E+01	0,882	7,627	0.041	1,295	1,984	0,89
7,50E-04	0,89	0,65	0,31	1,30E-04	1,46E+01	0,873	7,468	0,042	1,351	2,005	0,89
7.50E-04	0,89	0,62	0,31	1,30E-04	1,53E+01	0,864	7,313	0,042	1,409	2,031	0,89
7,50E-04	0.89	0,59	0,31	1,30E-04	1,61E+01	0,855	7,161	0,043	1,470	2,060	0,89
7,50E-04	0,89	0,56	0,31	1,30E-04	1,70E+01	0,846	7,012	0,044	1,533	2,094	0,89
7.50E-04	0,89	0,53	0,31	1,30E-04	1,79E+01	0,837	6,866	0,045	1,599	2,131	0,89
7,50E-04	0,89	0,51	0,31	1,30E-04	1,88E+01	0,828	6,723	0,046	1,667	2,173	0,89
7,50E-04	0,89	0,48	0,31	1,30E-04	1,98E+01	0,818	6,583	0,047	1,739	2,220	0,89
7,50E-04	0,89	0,46	0,31	1,30E-04	2,08E+01	0,809	6,446	0,048	1,814	2,270	0,89
7,50E-04	0,89	0,43	0,31	1,30E-04	2,19E+01	0,800	6,312	0,049	1,891	2,325	0,89
7,50E-04	0,89	0,41	0,31	1,30E-04	2,31E+01	0,791	6,180	0,050	1,973	2,385	0,89

i	2	3	4	5	б	7	8	9	10	11	12
D35	R	R'	υ	S	Ψ'	log(U/U"*)	(U/U"*)	U"+	R"	R'+ R"	R١
5,00E-04	1,21	1,15	0,50	1,97E-04	3,64E+00	1,120	13,176	0,038	0,745	1,895	1,21
5,00E-04	1,21	1,09	0,50	1,97E-04	3,83E+00	1,111	12,902	0,039	0,777	1,869	1,21
5,00E-04	1,21	1,04	0,50	1,97E-04	4,04E+00	1,102	12,634	0,040	0,810	1,848	1,21
5,00E-04	1,21	0,99	0,50	1,97E-04	4,25E+00	1,092	12,371	0,040	0,845	1,831	1,21
,00E-04	1,21	0,94	0,50	1,97E-04	4,47E+00	1,083	12,113	0,041	0,882	1,818	1,21
5,00E-04	1,21	0,89	0,50	1,97E-04	4,71E+00	1,074	11,861	0,042	0,919	1,809	1,21
5,00E-04	1,21	0,84	0,50	1,97E-04	4,96E+00	1,065	11,614	0,043	0,959	1,804	1,21
,00E-04	1,21	0,80	0,50	1,97E-04	5,22B+00	1,056	11,373	0,044	1,000	1,803	1,21
,00E-04	1,21	0,76	0,50	1,97E-04	5,49E+00	1,047	11,136	0,045	1,043	1,806	1,21
5,00E-04	1,21	0,72	0,50	1,97E-04	5,78E+00	1,038	10,904	0,046	1,088	1,812	1,21
,00E-04	1,21	0,69	0,50	1,97E-04	6,08E+00	1,028	10,677	0,047	1,135	1,823	1,23
,00E-04	1,21	0,65	0,50	1,97E-04	6,40E+00	1,019	10,455	0,048	1,183	1,837	1,21
5,00E-04	1,21	0,62	0,50	1,97E-04	6,74E+00	1,010	10,237	0,049	1,234	1,855	1,23
007-04	1.01	0.50	0.50	1 978-04	7.108+00	1.001	10.024	0.050	1.287	1 877	1.2
	لا تشو ل	200	10 y 10 10	ا کا عبد ا جود	.,		,		.,	.,	- ,
5,00E-04 Fabela 5.	1,21 1,21 24 - Ci	0,56 0,56	0,50 0,50 o raio h	1,97E-04 idráulico r	7,47E+00 elativo as o	0,992 deformaçõe	9,816 s do leit	0,051 o para	1,343 a campa	1,903 mha núm	1,21 ero 24
5,00E-04 Fabela 5.	1,21 1,21 24 - Ca 2	0,55 0,56 álculo de 3	0,50 0,50 o raio h 4	1,97E-04 idráulico r 5	7,47E+00 elativo as o	0,992 deformaçõe 7	9,816 s do leit 8	0,051 0 para 9	1,343 a campa 10	1,903 anha núm 11	1,2" ero 24
5,00E-04 F abela 5. 1 D35	1,21 1,21 24 - Ct 2 R	0,56 0,56 ilculo de 3 R'	0,50 0,50 o raio h 4 U	1,97E-04 idráulico r 5 S	7,47E+00 elativo às (6 Ψ'	0,992 deformaçõe 7 log(U/U"*)	9,816 s do leit 8 (U/U"*)	0,051 o para 9 U"*	1,343 a camp: 10 R"	1,903 1,903 11 11 R+ R"	1,2 ero 2- 12 R'
5,00E-04 Fabela 5. 1 D35 5,50E-04	1,21 1,21 24 - Ca 2 R 1,65	0,55 0,56 álculo d 3 R' 1,57	0,50 0,50 0 raio h 4 U 0,82	1,97E-04 idráulico r 5 S 8,00E-05	7,47E+00 elativo às e 6 Ψ'' 5,92E+00	0,992 deformaçõe 7 log(U/U"*) 1,033	9,816 s do leit 8 (U/U"*) 10,797	0,051 o para 9 U"+ 0,076	1,343 a camp: 10 R" 7,349	1,903 anha núm 11 R'+ R" 8,917	1,2 ero 24 12 R' 1,65
,50E-04 Fabela 5. 1 D35 ,50E-04 .50E-04	1,21 1,21 24 - Ca 2 R 1,65 1,65	0,55 0,56 álculo d 3 R' 1,57 1,49	0,50 0,50 o raio h 4 U 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05	7,47E+00 elativo às o φ 5,92E+00 6,23E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024	9,816 s do leit 8 (U/U"*) 10,797 10,573	0,051 o para 9 U"* 0,076 0,078	1,343 a camp: 10 R" 7,349 7,665	1,903 anha núm 11 R'+ R'' 8,917 9,154	1,2 ero 24 12 R' 1,65 1,65
1 500E-04 Fabela 5. 1 D35 50E-04 50E-04 50E-04	1,21 1,21 24 - Ca 2 R 1,65 1,65 1,65	0,55 0,56 ilculo de 3 R' 1,57 1,49 1,41	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo às 6 Ψ' 5,92E+00 6,23E+00 6,56E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353	0,051 o para 9 U"* 0,076 0,078 0,079	1,343 a camp: 10 R" 7,349 7,665 7,994	1,903 anha núm 11 R.4 R." 8,917 9,154 9,409	1,2 ero 24 12 R ⁴ 1,65 1,65
1 500E-04 Fabela 5. 1 D35 50E-04 ,50E-04 ,50E-04 ,50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65	0,55 0,56 álculo d 3 R' 1,57 1,49 1,41 1,34	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo às 6 Ψ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137	0,051 0 para 9 U"* 0,076 0,078 0,079 0,081	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337	1,903 anha núm 11 R.+ R." 8,917 9,154 9,409 9,681	1,2 ero 24 12 R ⁱ 1,65 1,65 1,65
1 D35 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04	1,21 1,21 24 - C4 2 R 1,65 1,65 1,65 1,65 1,65	0,56 0,56 ilculo d 3 R' 1,57 1,49 1,41 1,34 1,28	0,50 0,50 0 raio h 4 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo às o ⁶ ⁴ 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926	0,051 0 para 9 U"+ 0,076 0,078 0,079 0,081 0,083	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337 8,696	1,903 mha núm 11 R+ R" 8,917 9,154 9,409 9,681 9,972	1,2 ero 24 12 R ⁴ 1,65 1,65 1,65 1,65
1 500E-04 Fabela 5. 1 D35 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65	0,55 ilculo d ⁴ 3 R ⁴ 1,57 1,49 1,41 1,34 1,28 1,21	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo às 6 Ψ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00 7,65E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926 9,720	0,051 0 para 9 U"* 0,076 0,078 0,079 0,081 0,083 0,084	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337 8,696 9,069	1,903 mha núm 11 R+ R" 8,917 9,154 9,409 9,681 9,972 10,282	1,2 ero 24 12 R ⁴ 1,65 1,65 1,65 1,65
1 D35 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65	0,55 ilculo d ⁴ 3 R ⁴ 1,57 1,49 1,41 1,34 1,28 1,21 1,15	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo as 6 Ψ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00 7,65E+00 8,05E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926 9,720 9,517	0,051 0 para 9 U"* 0,076 0,078 0,079 0,081 0,083 0,084 0,086	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459	1,903 mha núm 11 R.4 R." 8,917 9,154 9,409 9,681 9,972 10,282 10,611	1,2 ero 24 12 R ⁱ 1,65 1,65 1,65 1,65 1,65
1 D35 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04 50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	0,55 ilculo de 3 R' 1,57 1,49 1,41 1,34 1,28 1,21 1,15 1,09	0,50 0,50 0 raio h 4 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo as 6 Ψ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00 7,65E+00 8,05E+00 8,48E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979 0,969	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926 9,720 9,517 9,319	0,051 0 para 9 U"* 0,076 0,078 0,079 0,081 0,083 0,084 0,086 0,088	1,343 a campa 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459 9,865	1,903 nha núm 11 R+ R" 8,917 9,154 9,409 9,681 9,972 10,282 10,611 10,960	1,2 ero 24 12 R ⁴ 1,65 1,65 1,65 1,65 1,65 1,65
1 D35 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	0,55 0,56 ilculo de 3 R' 1,57 1,49 1,41 1,34 1,28 1,21 1,15 1,09 1,04	0,50 0,50 0 raio h 4 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo às o φ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00 7,65E+00 8,05E+00 8,48E+00 8,93E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979 0,969 0,960	9,816 s do leit 8 (U/U"*) 10,797 10,353 10,353 10,137 9,926 9,720 9,517 9,319 9,125	0,051 0 para 9 U"+ 0,076 0,078 0,079 0,081 0,083 0,084 0,086 0,088 0,090	1,343 a campa 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459 9,865 10,289	1,903 anha núm 11 R.+ R. 8,917 9,154 9,409 9,681 9,972 10,282 10,611 10,960 11,329	1,2 ero 24 12 R ⁴ 1,65 1,65 1,65 1,65 1,65 1,65 1,65
5,00E-04 Fabela 5. 1 D35 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	0,55 0,56 ilculo d 3 R' 1,57 1,49 1,41 1,34 1,28 1,21 1,15 1,09 1,04 0,99	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo as 6 Ψ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00 7,65E+00 8,05E+00 8,93E+00 9,39E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979 0,969 0,960 0,951	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926 9,720 9,517 9,319 9,125 8,935	0,051 0 para 9 U"+ 0,076 0,078 0,079 0,081 0,083 0,084 0,086 0,088 0,090 0,092	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459 9,865 10,289 10,731	1,903 mha núm 11 R+ R" 8,917 9,154 9,409 9,681 9,972 10,282 10,611 10,960 11,329 11,719	1,2 ero 2 R' 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65
1 D35 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	0,55 0,56 ilculo de 3 R' 1,57 1,49 1,41 1,34 1,28 1,21 1,15 1,09 1,04 0,99 0,94	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo as 6 Ψ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00 7,65E+00 8,05E+00 8,48E+00 8,93E+00 9,39E+00 9,89E+00	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979 0,969 0,969 0,960 0,951 0,942	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926 9,720 9,517 9,319 9,125 8,935 8,749	0,051 0 para 9 U"* 0,076 0,078 0,079 0,081 0,083 0,084 0,086 0,088 0,090 0,092 0,094	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459 9,865 10,289 10,731 11,192	1,903 mha núm 11 R.4 R. 9,154 9,409 9,681 9,972 10,282 10,611 10,960 11,329 11,719 12,130	1,2 ero 24 12 R ⁴ 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63
1 D35 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04 ,50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	0,55 0,56 ilculo de 3 R' 1,57 1,49 1,41 1,34 1,28 1,21 1,15 1,09 1,04 0,99 0,94 0,89	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo as 6 Ψ' 5,92E+00 6,23E+00 6,56E+00 6,91E+00 7,65E+00 8,05E+00 8,05E+00 8,48E+00 8,93E+00 9,39E+00 1,04E+01	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979 0,969 0,969 0,960 0,951 0,942 0,933	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926 9,720 9,517 9,319 9,125 8,935 8,749 8,567	0,051 0 para 9 U"* 0,076 0,078 0,079 0,081 0,083 0,084 0,086 0,088 0,086 0,088 0,090 0,092 0,094 0,096	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459 9,865 10,289 10,731 11,192 11,673	1,903 nha núm 11 R+ R" 8,917 9,154 9,409 9,681 9,972 10,282 10,611 10,960 11,329 11,719 12,130 12,564	1,2 ero 24 12 R ⁴ 1,63 1,63 1,63 1,63 1,63 1,63 1,65 1,65 1,65
1 D35 5,00E-04 D35 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04 5,0E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	0,55 0,56 ilculo de 3 R' 1,57 1,49 1,41 1,34 1,21 1,15 1,09 1,04 0,99 0,94 0,89 0,85	0,50 0,50 0 raio h 4 U 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo as 6 4 5,92E+00 6,23E+00 6,23E+00 6,91E+00 7,27E+00 7,65E+00 8,05E+00 8,05E+00 8,93E+00 9,39E+00 9,39E+00 1,04E+01 1,10E+01	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979 0,969 0,969 0,960 0,951 0,942 0,933 0,924	9,816 s do leit 8 (U/U"*) 10,797 10,573 10,353 10,137 9,926 9,720 9,517 9,319 9,125 8,935 8,749 8,567 8,389	0,051 0 para 9 U"* 0,076 0,078 0,079 0,081 0,083 0,084 0,086 0,088 0,090 0,092 0,094 0,096 0,098	1,343 a campa 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459 9,865 10,289 10,731 11,192 11,673 12,174	1,903 nha núm 11 R+R" 8,917 9,154 9,409 9,681 9,972 10,282 10,611 10,960 11,329 11,719 12,130 12,564 13,021	1,2 ero 2 R ¹ 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6
1 D35 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04 1,50E-04	1,21 1,21 24 - Ct 2 R 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	0,55 ilculo de 3 R' 1,57 1,49 1,41 1,34 1,28 1,21 1,15 1,09 1,04 0,99 0,94 0,89 0,85 0,80	0,50 0,50 0 raio h 4 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	1,97E-04 idráulico r 5 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05 8,00E-05	7,47E+00 elativo às o 6 9 9,92E+00 6,23E+00 6,56E+00 6,91E+00 7,27E+00 7,65E+00 8,05E+00 8,05E+00 8,93E+00 9,39E+00 9,39E+00 1,04E+01 1,10E+01 1,15E+01	0,992 deformaçõe 7 log(U/U"*) 1,033 1,024 1,015 1,006 0,997 0,988 0,979 0,969 0,969 0,960 0,951 0,942 0,933 0,924 0,915	9,816 s do leit 8 (U/U"+) 10,797 10,353 10,353 10,137 9,926 9,720 9,517 9,319 9,125 8,935 8,749 8,567 8,389 8,215	0,051 0 para 9 U"+ 0,076 0,078 0,079 0,081 0,083 0,084 0,086 0,088 0,088 0,090 0,092 0,094 0,096 0,098 0,100	1,343 a camp: 10 R" 7,349 7,665 7,994 8,337 8,696 9,069 9,459 9,865 10,289 10,731 11,192 11,673 12,174 12,697	1,903 mha núm 11 R.+ R" 8,917 9,154 9,409 9,681 9,972 10,282 10,611 10,960 11,329 11,719 12,130 12,564 13,021 13,502	1,2 ero 2 12 R ⁴ 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6