### UNIVERSIDADE ESTADUAL DE CAMPINAS/UNICAMP

### FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

# A INFLUÊNCIA DO DIÂMETRO REPRESENTATIVO DO MATERIAL DO LEITO NAS FÓRMULAS DE CÁLCULO DO TRANSPORTE DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE

Luiz Evaristo Dias de Paiva

Orientador: Prof. Dr. Evaldo Miranda Coiado

Vol.I

**Campinas – SP – Brasil** 

dezembro de 2007

#### UNIVERSIDADE ESTADUAL DE CAMPINAS/UNICAMP

#### FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

# A INFLUÊNCIA DO DIÂMETRO REPRESENTATIVO DO MATERIAL DO LEITO NAS FÓRMULAS DE CÁLCULO DO TRANSPORTE DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE

Luiz Evaristo Dias de Paiva

### **Orientador: Prof. Dr. Evaldo Miranda Coiado**

Tese de doutorado apresentada à Faculdade de Engenharia Civil, Arquitetura e Urbanismo da UNICAMP, como parte dos requisitos necessários para a obtenção do título de doutor em Engenharia Civil, área de concentração em Recursos Hídricos

Vol.I

**Campinas – SP – Brasil** 

dezembro de 2007

### FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE -UNICAMP

| P166i | Paiva, Luiz Evaristo Dias de<br>A influência do diâmetro representativo do material<br>do leito nas fórmulas de cálculo do transporte de<br>sedimentos em escoamentos com superfície livre / Luiz<br>Evaristo Dias de PaivaCampinas, SP: [s.n.], 2007. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Orientador: Evaldo Miranda Coiado<br>Tese (Doutorado) - Universidade Estadual de<br>Campinas, Faculdade de Engenharia Civil, Arquitetura e<br>Urbanismo.                                                                                               |
|       | 1. Transporte de sedimento. 2. Sedimentos em<br>suspensão. 3. Sedimentação e depósitos. I. Coiado,<br>Evaldo Miranda. II. Universidade Estadual de<br>Campinas. Faculdade de Engenharia Civil, Arquitetura e<br>Urbanismo. III. Título.                |

Título em Inglês: The influence of representative diameter of the bed material load in the formulae for calculating the sediment transport in free surface flows
Palavras-chave em Inglês: Discharge, Bedload, Open flow water, Sediment dimension, Granulometric data
Área de concentração: Recursos Hídricos
Titulação: Doutor em Engenharia Civil
Banca examinadora: Ana Inês Borri Genovez, Edevar Luvizotto Júnior, Antônio Augusto dos Santos Nogueira
Data da defesa: 13/12/2007
Programa de Pós-Graduação: Engenharia Civil

### UNIVERSIDADE ESTADUAL DE CAMPINAS/UNICAMP

#### FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

## A INFLUÊNCIA DO DIÂMETRO REPRESENTATIVO DO MATERIAL DO LEITO NAS FÓRMULAS DE CÁLCULO DO TRANSPORTE DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE

Luiz Evaristo Dias de Paiva

Tese de doutorado aprovada pela Banca Examinadora, constituída pelos professores:

anthan.

Prof. Dr. Evaldo Miranda Coiado Presidente e orientador/FEC/UNICAMP Jom Genovy Prof.Dra. Ana Inês Borri Genovez FEC/UNICAMP

Prof. Dr. Edevar Luvizotto Júnior

**FEC/UNICAMP** 

dilouid nonue

Prof. Dr. Antônio Augusto dos Santos Nogueira

EPUSP

Prof. Dr. Ademir Goulart Figueiredo UNESP

Campinas, 13 de dezembro de 2007

#### AGRADECIMENTOS

A Deus pela oportunidade de existir e por viver este momento. Pela saúde, pela paz, pelo dom da persistência e pela força para lutar com dignidade.

Ao Professor Dr. Evaldo Miranda Coiado que desde o mestrado me orientou de forma segura e competente, transmitindo conhecimento técnico e de vida, aliando incentivo, amizade, respeito e confiança pelo meu trabalho com a competência que lhe é peculiar. Por tudo lhe sou grato e me orgulho de ser seu amigo e discípulo.

Aos amigos e colegas do Departamento de Hidráulica e Saneamento da Universidade Federal de Juiz de Fora, pelo apoio à realização da tese.

Ao amigo Fabiano César Tosseti Leal, pelos incentivos e pelo apoio incondicional.

Ao amigo José Homero Pinheiro Soares, pelos incentivos e pelo apoio incondicional.

Aos professores e funcionários da Faculdade de Engenharia Civil, Arquitetura e Urbanismo da Universidade Estadual de Campinas, especialmente aos do departamento de Recursos Hídricos e aos do setor de informática, pela cordialidade e por me receberem sempre muito bem.

Aos colegas de doutorado, pelo companheirismo.

Ao Professor Dr. Antônio Augusto dos Santos Nogueira (EPUSP) e à Professora Dra. Ana Inês Borri Genovez (FEC/UNICAMP) pelas sugestões na qualificação.

Aos meus Pais Ana Dias de Paiva e José Dias Primo pelo amor e a presença constantes.

À minha esposa Adriana Aparecida Barbosa Paiva e à minha filha Laura Barbosa Dias de Paiva, pelo apoio incondicional, pelo carinho e pelo amor e pela compreensão das horas ausentes do convívio familiar, dos sábados e domingos sem lazer vivenciados ao longo dos últimos anos agradeço.

Aos meus irmãos Erivalda Dias de Paiva, Francisco Eudes Dias de Paiva, João Batista Dias de Paiva, Maria das Graças Dias de Paiva, Terezinha Maria Dias de Paiva, Verônica Dias de Paiva seus cônjuges e sobrinhos, pelos conselhos, amparo a força transmitida em todas as circunstâncias.

Ao meu irmão Francisco Eudes Dias de Paiva e família, pelos incentivos constantes e pela disposição a ajudar quando solicitados.

A minha irmã Erivalda Dias de Paiva e família, pelos incentivos constantes e pela disposição a ajudar quando solicitadas.

A minha sobrinha Juliana Carolina Dias de Paiva, pelas idas e vindas a Unicamp para resolver assuntos do meu interesse e pelo apoio constante.

Dedico um agradecimento especial ao meu irmão João Batista Dias de Paiva e família que, além dos meus pais Ana e José, exerceram importante papel na minha educação.

A Cecília de Macedo Garcez, pela revisão do texto.

Ao casal Silvio Silveira Garcez e Nisséa de Macedo Garcez e família, pelos incentivos constantes.

Aos amigos que me incentivaram

A todos que, direta ou indiretamente, contribuíram para a realização deste trabalho, registro o meu agradecimento.

## DEDICATÓRIA

À minha filha Laura, a minha esposa Adriana, aos meus pais Ana e José e ao meu irmão João Batista.

Dedico

#### RESUMO

Nesta tese apresenta-se uma alternativa à definição do diâmetro de cálculo a ser usado nas equações de estimativa da descarga de sedimentos na camada do leito, em escoamento com superfície livre.

Foram empregadas quatorze equações de estimativa da descarga de sedimentos, a partir das quais foram determinados os diâmetros que poderiam ser empregados em substituição àqueles definidos pelos respectivos autores das equações. Para o desenvolvimento deste trabalho, foram empregados dados coletados no Rio Atibaia em Sousas, no município de Campinas (SP). No decorrer dos estudos, verificou-se que a vazão e a declividade da linha de água foram as variáveis mais significativas na definição do diâmetro.

Para validar a alternativa à definição do diâmetro de cálculo a ser usado nas equações de estimativa da descarga de sedimentos na camada do leito, foram utilizados dados de dois outros rios, de porte menor e maior que o rio Atibaia. Para os dois rios, a aplicação da metodologia produziu resultados mais satisfatórios, se comparados àqueles obtidos pelos métodos na sua forma original.

A aplicação da metodologia proposta nesta tese apresenta; além de ter demonstrado reduções nas diferenças percentuais relativas entre os valores das descargas calculadas e medidas, a vantagem de poder ser empregada para cursos de água com granulometria uniforme ou não e dispensa o levantamento de dados granulométricos.

#### ABSTRACT

This thesis presents an alternative proposal to evaluate the sediment size to be used in the methods to estimate its discharge from bedload when occurring under open flow water.

Fourteen different equations were employed in this work. From this equations different diameters were obtained that could replace respectively those suggested for each equation. Also, in order to undetake this work, data were collected from Atibaia River, Campinas-SP. Analises of these data showed that the discharge and slope of free surface of water were the most important variable to define de sediment dimension.

To validate the alternative proposal to the calculated diameter, dates were used of the two other rivers one smaller and the other larger than Atibaia. Metodology applied to those data produced sactisfactory results compared with the original methodology.

The proposed methodology applied during this studies, besides having demonstrated decreased relative differences between calculated discharges and the measured ones also showed that it can be used in rivers whit uniform or non uniform grain sizes eliminating the necessity of collecting granulometric data.

### LISTA DE FIGURAS

| Figura 2.1 | Forças que atuam sobre uma partícula sólida num escoamento turbulento.                                           |  |  |
|------------|------------------------------------------------------------------------------------------------------------------|--|--|
|            | [SIMONS & SENTURK, 1992]51                                                                                       |  |  |
| Figura 2.2 | Diagrama de Shields (1936) para início do movimento 59                                                           |  |  |
| Figura 2.3 | Previsão do comprimento das dunas [JULIEN & KLAASSEN, 1995]87                                                    |  |  |
| Figura 2.4 | Previsão da altura das dunas [JULIEN & KLAASSEN, 1995]87                                                         |  |  |
| Figura 2.5 | Fator de correção dos efeitos viscosos – Einstein e Barbarossa, 1952<br>[GARDE & RAJU, 1985]102                  |  |  |
| Figura 2.6 | Resistência de forma baseada em dados de rios- Einstein e Barbarossa, 1952<br>[VANONI, 1975]103                  |  |  |
| Figura 2.7 | Relação de resistência de Engelund, 1966 [CHANG, 1988; SIMONS & SENTURK, 1992]                                   |  |  |
| Figura 2.8 | Esquema do leito para a dedução da equação das dunas e rugas. [SIMONS & ET AL, 1965; WILSON-Jr & PAIVA, 2003]109 |  |  |
| Figura 2.9 | Balanço do fluxo de sedimento num volume elementar do escoamento<br>bidimensional [CHANG, 1988]115               |  |  |

| Figura 2.10 | Gráfico de Rouse (1937) para diferentes valores de Z [SIMONS &                                                                                             |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | SENTURK, 1992]122                                                                                                                                          |  |  |
| Figura 3.1  | Diferentes formas de transporte [Alfarez & Flores, 1996; COIADO, 2002-<br>2003]                                                                            |  |  |
| Figura 3.2  | Modelo idealizado por Du-Boys, 1879162                                                                                                                     |  |  |
| Figura 3.3  | Fator de ocultação – EINSTEIN (1950)169                                                                                                                    |  |  |
| Figura 3.4  | Fator de correção de pressão – EINSTEIN (1950)170                                                                                                          |  |  |
| Figura 3.5  | Relação entre a intensidade de transporte e a intensidade da corrente –<br>Einstein (1942)172                                                              |  |  |
| Figura 3.6  | Variação de $\overline{U}_{p}/\overline{U}_{in}$ com relação $\tau_{c}/\tau_{0}$ , segundo Kalisnke,1947. [FONTE: COIADO, 2002-2003]                       |  |  |
| Figura 3.7  | Função de Kalinske para calcular a descarga sólida na camada do leito,<br>segundo Kalinske (1947) [Fonte: COIADO, 2002-2003]183                            |  |  |
| Figura 3.8  | Parâmetro de transporte para fundo plano – Garde e Albertson, 1961<br>[Fonte: COIADO 200-2003]193                                                          |  |  |
| Figura 3.9  | Valores de $\phi_{k_1}$ em função de $\theta_i$ e $U/U_*$ para leitos constituídos de rugas e dunas. Garde e Albertson, 1961. [Fonte: COIADO-2002-2003]194 |  |  |
| Figura 4.1  | Representação esquemática da Bacia Hidrográfica do Rio Piracicaba (NASCIMENTO, 2001)                                                                       |  |  |
| Figura 4.2  | Representação esquemática do trecho de estudos e a indicação da seção de medidas (NASCIMENTO, 2001)225                                                     |  |  |

| Figura 4.3  | Seção de medidas no Rio Atibaia, Sousas, Campinas-SP (COL          | ADO &    |
|-------------|--------------------------------------------------------------------|----------|
|             | PAIVA, 2005)                                                       | 225      |
| Figura 4.4  | Fluxograma para obtenção dos dados usados na pesquisa              | 227      |
| Figura 4.5  | Molinete fluviométrico preparado para medição da velocidade        |          |
| Figura 4.6  | Amostrador tipo AMS-3 para sedimento em suspensão                  | 234      |
| Figura 4.7  | Amostrador de sedimento da camada do leito                         | 237      |
| Figura 4.8  | Amostrador tipo Peterson de material do leito                      | 239      |
| Figura 4.9  | Ilustração da obtenção do diâmetro verdadeiro para o método $M_1$  | 246      |
| Figura 4.10 | Ilustração da obtenção do diâmetro verdadeiro único Dvj para ser u | isado no |
|             | cálculo da descarga de sedimentos                                  | 248      |
| Figura 6.1  | Valores das descargas de sedimentos medidas em cada campanha pa    | ra o Rio |
|             | Atibaia                                                            |          |

## LISTA DE QUADROS

| Quadro 4.1 | Equações desenvolvidas pela metodologia proposta na tese                                                                                                                                                         |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quadro 4.2 | Diferentes diâmetros e suas aplicações. [SIMONS & SENTURK, 1992;<br>COIADO & PAIVA, 2005]                                                                                                                        |
| Quadro 5.1 | Resumo dos dados granulométricos do Rio Atibaia265                                                                                                                                                               |
| Quadro 5.2 | Comparações entre os valores das faixas de diâmetros dos sedimentos utilizados no desenvolvimento das diversas fórmulas e a faixa de diâmetros dos sedimentos coletados no Rio Atibaia/SP                        |
| Quadro 5.3 | Resumo dos cálculos dos diâmetros estimados pelas equações analíticas desenvolvidas para o Rio Atibaia                                                                                                           |
| Quadro 5.4 | Estatística dos eventos em que os diâmetros calculados são maiores do que aqueles coletados no Rio Atibaia                                                                                                       |
| Quadro 5.5 | Identificação do diâmetro coletado que mais se aproxima do calculado296                                                                                                                                          |
| Quadro 7.1 | Comparações entre os valores das faixas de diâmetros dos sedimentos utilizados no desenvolvimento das diversas fórmulas e a faixa de diâmetros dos sedimentos coletados no Ribeirão do Feijão [SAMANEZ, 1998]326 |

- Quadro 8.1 Comparações entre os valores das faixas de diâmetros dos sedimentos utilizados no desenvolvimento das diversas fórmulas e a faixa de diâmetros dos sedimentos coletados no Rio Mogi-Guaçu [PONCE, 1990]......347

# LISTA DE TABELAS

| Tabela 2.1 | Equações empíricas para o cálculo da tensão crítica [GARDE & RAJU, 1985]                                                        |
|------------|---------------------------------------------------------------------------------------------------------------------------------|
| Tabela 3.1 | Critérios para a definição da carga de lavagem [NASCIMENTO, 2001].128                                                           |
| Tabela 3.2 | Classificação dos modelos de transporte de sedimentos130                                                                        |
| Tabela 3.3 | Valores para $A_0 e \tau_c em$ função do diâmetro – Straub, 1935. [GARDE & RAJU, 1985]165                                       |
| Tabela 3.4 | determinação do fator $\overline{x}$                                                                                            |
| Tabela 3.5 | Cálculo do diâmetro crítico para o método de Schoklitsch, 1950197                                                               |
| Tabela 3.6 | Evolução da metodologia de Meyer-Peter & Muller199                                                                              |
| Tabela 3.7 | Recomendações sobre a aplicação de algumas das equações do transporte de sedimentos na camada do leito [COIADO & PAIVA 2005]217 |
| Tabela 3.8 | Fundamentos teóricos dos métodos de cálculo selecionados para a tese219                                                         |
| Tabela 5.1 | Parâmetros usados para o ajuste do diâmetro do sedimento254                                                                     |
| Tabela 5.2 | Base de dados referentes a referente ao Rio Atibaia em Sousas-Campinas-<br>SP                                                   |

| Tabela 5.3  | Equações de estimativas dos diâmetros dos métodos de cálculo do transporte de sedimentos na camada do leito                                                                            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 5.4a | Freqüências relativas e acumuladas para os diâmetros D <sub>10</sub> , D <sub>16</sub> 266                                                                                             |
| Tabela 5.4b | Freqüências relativas e acumuladas para os diâmetros D <sub>35</sub> , D <sub>50</sub>                                                                                                 |
| Tabela 5.4c | Freqüências relativas e acumuladas para os diâmetros D <sub>65</sub> , D <sub>84</sub> 268                                                                                             |
| Tabela 5.4d | Freqüências relativas e acumuladas para os diâmetros D <sub>90</sub> , Da269                                                                                                           |
| Tabela 5.5  | Diâmetros desenvolvidos pelas equações analíticas para o Rio Atibaia274                                                                                                                |
| Tabela 5.6  | Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados                                                       |
| Tabela 6.1  | Diâmetros usados no transporte de sedimentos do Rio Atibaia                                                                                                                            |
| Tabela 6.2  | Descargas calculadas pelo método de Duboys (1879) usando o diâmetro D <sub>50</sub><br>e o Dvj                                                                                         |
| Tabela 6.3  | Comparação entre a diferença percentual relativa média entre a descarga obtida pelos métodos de cálculo quando se usa o D <sub>i</sub> e o Dvj para o Rio Atibaia                      |
| Tabela 6.4  | Resumo dos resultados das descargas calculadas pelas equações do transporte de sedimentos na camada do leito                                                                           |
| Tabela 6.5  | Comparação da diferença percentual relativa média entre as descargas maiores que zero, obtidas pelos métodos de cálculo, quando são usados o D <sub>i</sub> e o Dvj para o Rio Atibaia |
| Tabela 7.1  | BASE DE DADOS REFERENTE AO RIBEIRÃO DO FEIJÃO – SÃO -<br>CARLOS – SÃO PAULO                                                                                                            |

| Tabela 7.2a | Freqüências relativas e acumuladas para os diâmetros D <sub>10</sub> , D <sub>30</sub> para o<br>Ribeirão do Feijão                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 7.2b | Freqüências relativas e acumuladas para os diâmetros D <sub>35</sub> , D <sub>50</sub> para o<br>Ribeirão do Feijão                                                 |
| Tabela 7.2c | Freqüências relativas e acumuladas para os diâmetros D <sub>60</sub> , D <sub>65</sub> para o<br>Ribeirão do Feijão                                                 |
| Tabela 7.2d | Freqüências relativas e acumuladas para os diâmetros D <sub>90</sub> , D <sub>a</sub> para o<br>Ribeirão do Feijão                                                  |
| Tabela 7.3  | Diâmetros estimados pelas equações analíticas usando os dados do Ribeirão<br>do Feijão – São – Carlos -SP                                                           |
| Tabela 7.4  | Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão                                               |
| Tabela 7.5  | Diâmetros selecionados para emprego nas equações analíticas de estimativa<br>do transporte de sedimentos para o Ribeirão do Feijão                                  |
| Tabela 7.6  | Descargas calculadas pelo método de Einstein e Brown (1950) usando o diâmetro D <sub>90</sub> e o Dvj para o Ribeirão do Feijão                                     |
| Tabela 7.7  | Comparação da diferença percentual relativa média entre a descarga obtida pelos métodos de cálculo quando se usa o D <sub>i</sub> e o Dvj para o Ribeirão do Feijão |
| Tabela 8.1  | BASE DE DADOS REFERENTE A REFERENTE AO RIO MOGI-<br>GUAÇU – SÃO - CARLOS – SÃO PAULO                                                                                |
| Tabela 8.2a | Freqüências relativas e acumuladas para os diâmetros D <sub>35</sub> , D <sub>50</sub> para o Rio<br>Mogi-Guaçu                                                     |

| Tabela 8.2b | Freqüências relativas e acumuladas para os diâmetros D <sub>65</sub> , D <sub>90</sub> para o Rio<br>Mogi-Guaçu                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 8.3  | Diâmetros estimados pelas equações analíticas usando os dados do Rio<br>Mogi-Guaçu – São – Carlos -SP                                                           |
| Tabela 8.4  | Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu                                               |
| Tabela 8.5  | Diâmetros selecionados para emprego nas equações analíticas de estimativa<br>do transporte de sedimentos para o Rio Mogi-<br>Guaçu                              |
| Tabela 8.6  | Descargas calculadas pelo método de Duboys (1879) usando o diâmetro D <sub>50</sub><br>e o Dvj                                                                  |
| Tabela 8.7  | Comparação da diferença percentual relativa média entre a descarga obtida pelos métodos de cálculo quando se usa o D <sub>i</sub> e o Dvj para o Rio Mogi-Guaçu |
| Tabela 9.1  | Parâmetros médios referentes aos cursos de águas usados na pesquisa367                                                                                          |

# LISTA DE SÍMBOLOS

| Símbolo         | Significado                                                                                                               | Dimensão               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|------------------------|
| a <sub>1</sub>  | distância $\overline{CG}$ : C - centro de gravidade: G-ponto de                                                           | [L]                    |
|                 | contato                                                                                                                   |                        |
| А               | área da seção transversal                                                                                                 | [L <sup>2</sup> ]      |
| A <sub>0</sub>  | constante obtida experimentalmente para o método de                                                                       | $[M^{-2}L^4.T^{-3}]$   |
|                 | Du-boys                                                                                                                   |                        |
| $A_{1;} A_2$    | coeficientes usados por Karim (1988)                                                                                      | [1]                    |
| A <sub>p</sub>  | área exposta da partícula na direção normal ao                                                                            | [L <sup>2</sup> ]      |
|                 | escoamento                                                                                                                |                        |
| A*              | constante de Einstein                                                                                                     | [1]                    |
| A <sub>uf</sub> | área unitária da superfície do leito                                                                                      | [L <sup>2</sup> ]      |
| b <sub>i</sub>  | largura da faixa de influência.                                                                                           | [L]                    |
| В               | largura da seção transversal                                                                                              | [L]                    |
| B <sub>r</sub>  | coeficiente função da rugosidade do fundo.                                                                                | [1]                    |
| B <sub>I</sub>  | coeficiente de impacto que pode variar de acordo com a                                                                    | [1]                    |
| С               | concentração de sedimentos transeunte                                                                                     | [M.L <sup>-3</sup> ]   |
| C′              | coeficiente de Chezy referente ao grão de sedimentos                                                                      | $[L^{1/2} T^{-1}]$     |
| $\overline{C}$  | constate de integração da equação de distribuição de                                                                      | [1]                    |
|                 | velocidades de Prandtal                                                                                                   |                        |
| Cb              | concentração de sedimentos no nível correspondente a altura máxima do salto da partícula quando do transporte por arraste | [M.L <sup>-3</sup> ]   |
| C <sub>a</sub>  | representa a concentração de referência a uma distância<br>"a" do fundo                                                   | [M . L <sup>-3</sup> ] |
| C <sub>c</sub>  | coeficiente de resistência ao escoamento de Chézy                                                                         | $[L^{1/2} T^{-1}].$    |
| $C_D^{"}$       | coeficiente de arraste referente a velocidade de queda da partícula                                                       | [1]                    |
| C <sub>i</sub>  | concentração dos sólidos totais em suspensão medida                                                                       | [M.L <sup>-3</sup> ]   |

| Símbolo         | Significado                                                                   | Dimensão             |
|-----------------|-------------------------------------------------------------------------------|----------------------|
| C'i             | concentração dos sólidos fixos em suspensão                                   | [M.L <sup>-3</sup> ] |
| Cint; C'int     | constante de integração do método de Simons et alli., (1965)                  | [1]                  |
| $C_1, \alpha_1$ | constante que leva em conta a forma da partícula                              | [1]                  |
| $C_2, \alpha_2$ | constante de proporcionalidade que leva em conta o volume da partícula        | [1]                  |
| C <sub>a</sub>  | coeficiente de atrito da equação de Du-boys                                   | [1]                  |
| C <sub>D</sub>  | coeficiente de arraste                                                        | [1]                  |
| C <sub>L</sub>  | coeficiente de elevação                                                       | [1]                  |
| C <sub>0</sub>  | concentração máxima admitida no nível correspondente a altura máxima do salto | [M.L <sup>-3</sup> ] |
| Ср              | coeficiente de pressão                                                        | [1]                  |
| Cy              | concentração de sedimentos a uma distância y do leito                         | [M.L <sup>-3</sup> ] |
| d               | profundidade média da corrente                                                | [L]                  |
| ď               | profundidade semelhante ao raio hidráulico relativo a rugosidade do leito     | [L]                  |
| d <sub>c</sub>  | profundidade critica para inicio do movimento                                 | [L]                  |
| dm <sub>i</sub> | profundidade na faixa de influência                                           | [L]                  |
| d <sub>rs</sub> | densidade relativa do sedimento                                               | [1]                  |
| D*              | diâmetro adimensional da partícula                                            | [1]                  |
| D <sub>a</sub>  | diâmetro aritmético da amostra                                                | [L]                  |
| D               | diâmetro da partícula                                                         | [L]                  |
| D <sub>i</sub>  | diâmetro do sedimento tal que (i %) da amostra tem diâmetro inferior          | [L]                  |
| D <sub>e</sub>  | diâmetro efetivo                                                              | [L]                  |
| D <sub>en</sub> | tamanho de sedimento na camada encouraçada do fundo                           | [L]                  |
| Dmax            | diâmetro máximo do sedimento                                                  | [L]                  |

| Símbolo                | Significado                                                                    | Dimensão |
|------------------------|--------------------------------------------------------------------------------|----------|
| $D_{V\hat{I}}$         | diâmetro verdadeiro a ser usado em cada campanha de medidas                    | [L]      |
| Dvj                    | diâmetro verdadeiro único a ser usada no método "M <sub>j</sub> "              | [L]      |
| $D_{Vj\;[DUB]}$        | diâmetro verdadeiro único calculado para o método de Du-Boys                   | [L]      |
| D <sub>Vj [SCH]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Schoklitsch            | [L]      |
| D <sub>Vj [SHI]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Shields                | [L]      |
| D <sub>Vj [MPM]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Meyer-Peter & Muller   | [L]      |
| D <sub>Vj [KAL]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Kalinske               | [L]      |
| $D_{Vj\;[\text{LEV}]}$ | diâmetro verdadeiro único calculado para o método de<br>Levi                   | [L]      |
| D <sub>Vj [EIB]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Einstein & Brown       | [L]      |
| D <sub>Vj [SKA]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Sato, Kikkawa & ashida | [L]      |
| D <sub>Vj [ROT]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Rottner                | [L]      |
| D <sub>Vj [GAA]</sub>  | diâmetro verdadeiro único calculado para o método de<br>Garde & Albertson      | [L]      |
| $D_{Vj \; [YAL]}$      | diâmetro verdadeiro único calculado para o método de<br>Yalin                  | [L]      |
| $D_{Vj\;[PEV]}$        | diâmetro verdadeiro único calculado para o método de<br>Pernecker & Volmers    | [L]      |
| $D_{Vj\;[INL]}$        | diâmetro verdadeiro único calculado para o método de<br>Inglis & Lacey         | [L]      |

| Símbolo               | Significado                                                  | Dimensão |
|-----------------------|--------------------------------------------------------------|----------|
| D <sub>Vj [BOG]</sub> | diâmetro verdadeiro único calculado para o método de         | [L]      |
|                       | Bogardi                                                      |          |
| D <sub>10</sub>       | diâmetro do sedimento tal que 10% da amostra tem             | [L]      |
|                       | diâmetro inferior                                            |          |
| D <sub>16</sub>       | diâmetro do sedimento tal que 16% da amostra tem             | [L]      |
|                       | diâmetro inferior                                            |          |
| D <sub>35</sub>       | diâmetro do sedimento tal que 35% da amostra tem             | [L]      |
|                       | diâmetro inferior                                            |          |
| D <sub>50</sub>       | diâmetro do sedimento tal que 50% da amostra tem             | [L]      |
|                       | diâmetro inferior                                            |          |
| D <sub>65</sub>       | diâmetro do sedimento tal que 60% da amostra tem             | [L]      |
|                       | diâmetro inferior                                            |          |
| D <sub>84</sub>       | diâmetro do sedimento tal que 84% da amostra tem             | [L]      |
|                       | diâmetro inferior                                            |          |
| D <sub>90</sub>       | diâmetro do sedimento tal que 90% da amostra tem             | [L]      |
|                       | diâmetro inferior                                            |          |
| $E[\%]D_i$            | diferença percentual relativa entre as descargas medidas     | [1]      |
|                       | e aquelas calculadas usando o diâmetro D <sub>i</sub>        |          |
| E[%]D <sub>50</sub>   | diferença percentual relativa entre as descargas medidas     | [1]      |
|                       | e aquelas calculadas usando o diâmetro $D_{50}$              |          |
| E[%]Da                | diferença percentual relativa entre as descargas medidas     | [1]      |
|                       | e aquelas calculadas usando o diâmetro aritmético            |          |
| E[%]D <sub>90</sub>   | diferença percentual relativa entre as descargas medidas     | [1]      |
|                       | e aquelas calculadas usando o diâmetro $D_{90}$              |          |
| $E[\%]D_{vj}$         | diferença percentual relativa entre as descargas medidas     | [1]      |
|                       | e aquelas calculadas usando o diâmetro $D_{vj}$              |          |
| f                     | coeficiente de atrito da equação de Darcy                    | [1]      |
| $f(D_i)$              | probabilidade de ocorrência de do diâmetro d <sub>i</sub> na | [1]      |
|                       | amostra                                                      |          |

| Símbolo                   | Significado                                                                      | Dimensão                              |
|---------------------------|----------------------------------------------------------------------------------|---------------------------------------|
| F                         | freqüência absoluta dos dados agrupados                                          | [1]                                   |
| <b>F</b> <sub>i</sub> (%) | freqüência relativa dos dados agrupados                                          | [1]                                   |
| Fi- <sub>AC</sub> (%)     | freqüência relativa dos dados agrupados acumulada                                | [1]                                   |
| F <sub>D</sub>            | força de arraste                                                                 | [M.L <sup>-1</sup> .T <sup>-2</sup> ] |
| F <sub>r</sub>            | número de Froude do escoamento                                                   | [1]                                   |
| F <sub>R</sub>            | força de resistência de oposição ao movimento da partícula                       | $[M \cdot L^{-1} \cdot T^{-2}]$       |
| F <sub>S</sub>            | força de elevação da partícula                                                   | $[M \cdot L^{-1} \cdot T^{-2}]$       |
| g                         | aceleração da gravidade                                                          | [L.T <sup>-2</sup> ]                  |
| h                         | altura das configurações de fundo                                                | [L]                                   |
| h <sub>t</sub>            | altura teórica do salto da partícula                                             | [L]                                   |
| i <sub>b</sub>            | fração do material do leito de diâmetro d                                        | [1]                                   |
| i <sub>B</sub>            | fração da carga do leito de diâmetro d                                           | [1]                                   |
| k <sub>b</sub>            | parâmetro do método de Einstein-Brow                                             | [1]                                   |
| $k_{bD84}$                | parâmetro do método de Einstein-Brow para o diâmetro<br>D <sub>84</sub>          | [1]                                   |
| $k_{bDvj}$                | parâmetro do método de Einstein-Brow para o diâmetro<br>Dvj                      | [1]                                   |
| k                         | constante de Von Karman                                                          | [1]                                   |
| k <sub>s</sub>            | rugosidade equivalente do grão ou altura da rugosidade                           |                                       |
|                           | da parede.                                                                       | [1]                                   |
| K <sub>1</sub>            | constante de correção do aparelho (k1=1,43) valor médio                          | [1]                                   |
| Kg                        | fator de correção para compensar os efeitos da uniformidade do material do leito | [1]                                   |

| Símbolo                        | Significado                                            | Dimensão             |
|--------------------------------|--------------------------------------------------------|----------------------|
| K <sub>ML</sub>                | constante usado no método de Mavis e Laushey           | [1]                  |
| K <sub>MP</sub>                | constante                                              | [1]                  |
| Lc                             | comprimento das configurações de fundo                 | [L]                  |
| Lj                             | leitura da régua de jusante                            | [L]                  |
| L <sub>M</sub>                 | leitura da régua de montante                           | [L]                  |
| L                              | extensão do trecho                                     | [L]                  |
| 1                              | comprimento de mistura de Prandtl                      | [L]                  |
| М                              | coeficiente de uniformidade de Kramer                  | [1]                  |
| $m_1; m_2$                     | coeficiente de proporcionalidade                       | [1]                  |
| m <sub>3</sub> ;m <sub>4</sub> | constantes determinadas experimentalmente              | [1]                  |
| m <sub>5</sub>                 | constante da fórmula de White                          | [1]                  |
| Ν                              | número de verticais de amostragens                     | [1]                  |
| Ñ                              | número de partículas erodidas no leito                 | [1]                  |
| n                              | coeficiente de rugosidade de Manning                   | $[L^{-1/3} T]$       |
| n'                             | coeficiente de Manning-Strickler relativo a rugosidade | $[L^{-1/3} T]$       |
|                                | do leito                                               |                      |
| n <sub>c</sub>                 | número de camadas do leito do método de Du-boys        | [1]                  |
| N <sub>i</sub>                 | número de giros da hélice do molinete por segundo na   | [1]                  |
|                                | vertical i                                             |                      |
| Р                              | perímetro                                              | [L]                  |
| Pc                             | potência da corrente                                   | $[M . L^2 . T^{-3}]$ |
| p <sub>auf</sub>               | fração da área unitária do leito coberto partículas    | [1]                  |
| Ŷ                              | probabilidade de remoção                               | [1]                  |
| pf                             | peso do micro filtro                                   | [ <b>M</b> ]         |
|                                |                                                        |                      |
| pfa                            | peso dos sólidos totais retidos pelo microfiltro       | [ <b>M</b> ]         |
| pfa'                           | peso dos sólidos fixos retidos pelo microfiltro        | [ <b>M</b> ]         |

| Símbolo                             | Significado                                                                | Dimensão                              |
|-------------------------------------|----------------------------------------------------------------------------|---------------------------------------|
| pfa                                 | peso dos sólidos totais retidos pelo microfiltro                           | [ <b>M</b> ]                          |
| P <sub>i</sub>                      | porcentagem da vazão líquida que passa na faixa de                         | [1]                                   |
|                                     | influencia de cada vertical                                                |                                       |
| P <sub>SC</sub>                     | peso do sólido seco coletado pelo aparelho num                             | [ <b>M</b> ]                          |
|                                     | intervalo de tempo $\Delta t_i$                                            |                                       |
| P <sub>S</sub>                      | peso submerso ou aparente da partícula sólida                              | [ <b>M</b> ]                          |
| Q                                   | vazão líquida                                                              | $[L^{3}.T^{-1}]$                      |
| Q <sub>m</sub>                      | vazão média medida                                                         | [L <sup>3</sup> .T <sup>-1</sup> ]    |
| Q <sub>SS</sub>                     | descarga sólida total medida do sedimento em suspensão                     | [M.T <sup>-1</sup> ]                  |
| $q = \frac{Q}{B}$                   | vazão por unidade de largura do canal                                      | [L <sup>3</sup> .T <sup>-1</sup> /L]  |
| q <sub>c</sub>                      | vazão crítica por unidade de largura                                       | [L <sup>3</sup> .T <sup>-1</sup> /L]  |
| $q_{\rm B}$                         | descarga de sedimentos na camada do leito ou descarga                      | [M.T <sup>-1</sup> ]                  |
|                                     | de sedimentos por arraste                                                  |                                       |
| qBm                                 | descarga total de sedimentos medida na camada do leito                     | [ <b>M.T</b> <sup>-1</sup> ]          |
| q <sub>bp</sub>                     | descarga sólida medida na camada do leito que passa pela boca do aparelho; | [M.T <sup>-1</sup> ]                  |
| qBS                                 | transporte de sedimentos originado do leito e                              | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
| q <sub>BT</sub>                     | transporte total do leito                                                  | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
| $q_{\rm L}$                         | carga de lavagem                                                           | [M.T <sup>-1</sup> ]                  |
| q <sub>S</sub>                      | carga total em suspensão                                                   | [ <b>M.T</b> <sup>-1</sup> ]          |
| qT                                  | carga total ou transporte total                                            | [M.T <sup>-1</sup> ]                  |
| $\mathfrak{q}_{B\hat{I}}M_{j}D_{i}$ | descarga de sedimentos estimada pelo método "M <sub>j</sub> "              | [M.T <sup>-1</sup> ]                  |
|                                     | para a campanha de medições de número $\hat{I}$ , determinada              |                                       |
|                                     | em função do diâmetro (D <sub>i</sub> )                                    |                                       |

| Símbolo                | Significado                                              | Dimensão                              |
|------------------------|----------------------------------------------------------|---------------------------------------|
| qB[DUB] <sub>D50</sub> | descarga sólida calculada pelo método de Duboys          | [ <b>M.T</b> <sup>-1</sup> ]          |
|                        | usando o diâmetro D <sub>50</sub>                        |                                       |
| qB[DUB] <sub>Dvj</sub> | descarga sólida calculada pelo método de Duboys          | [ <b>M.T</b> <sup>-1</sup> ]          |
|                        | usando o diâmetro Dvj                                    |                                       |
| q <sub>ssi</sub>       | descarga sólida em suspensão medida na vertical de       | [ <b>M.T</b> <sup>-1</sup> ]          |
|                        | medidas                                                  |                                       |
| qB[SCH] <sub>Da</sub>  | descarga sólida calculada pelo método de Schoklitsch     | [M.T <sup>-1</sup> ]                  |
|                        | usando o diâmetro aritmético                             |                                       |
| qB[SCH] <sub>Dvj</sub> | descarga sólida calculada pelo método de Schoklitsch     | [M.T <sup>-1</sup> ]                  |
|                        | usando o diâmetro Dvj                                    |                                       |
| qB[SHI] <sub>D90</sub> | descarga sólida calculada pelo método de Shields usando  | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
|                        | o diâmetro D <sub>90</sub>                               |                                       |
| qB[SHI] <sub>Dvj</sub> | descarga sólida calculada pelo método de Shields usando  | [M.T <sup>-1</sup> ]                  |
|                        | o diâmetro Dvj                                           |                                       |
| qB[MPM] <sub>D90</sub> | descarga sólida calculada pelo método de Meyer Peter e   | [ <b>M.T</b> <sup>-1</sup> ]          |
|                        | Muller, usando o diâmetro D <sub>90</sub>                |                                       |
| qB[MPM] <sub>Dvj</sub> | descarga sólida calculada pelo método de Meyer Peter e   | [ <b>M.T</b> <sup>-1</sup> ]          |
|                        | Muller, usando o diâmetro Dvj                            |                                       |
| qB[KAL]D <sub>84</sub> | descarga sólida calculada pelo método de Kalinske,       | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
|                        | usando o diâmetro D <sub>84</sub>                        |                                       |
| qB[KAL]Dvj             | descarga sólida calculada pelo método de Kalinske,       | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
|                        | usando o diâmetro Dvj                                    |                                       |
| qB[LEV]D <sub>50</sub> | descarga sólida calculada pelo método de Levi para o     | [M.T <sup>-1</sup> ]                  |
|                        | diâmetro D <sub>50</sub>                                 |                                       |
| qB[LEV]Dvj             | descarga sólida calculada pelo método de Levi para o     | [M.T <sup>-1</sup> ]                  |
|                        | diâmetro Dvj                                             |                                       |
| qB[EIB]D <sub>84</sub> | descarga sólida calculada pelo método de Einstein para o | [M.T <sup>-1</sup> ]                  |
|                        | diâmetro D <sub>84</sub>                                 |                                       |
| qB[EIB]Dvj             | descarga sólida calculada pelo método de Einstein para o | [ <b>M.T</b> <sup>-1</sup> ]          |
|                        | diâmetro Dvj                                             |                                       |

| Símbolo                | Significado                                             | Dimensão                              |
|------------------------|---------------------------------------------------------|---------------------------------------|
| qB[SKA]D <sub>84</sub> | descarga sólida calculada pelo método de Sato Kikawa e  | [M.T <sup>-1</sup> ]                  |
|                        | Ashida para o diâmetro D <sub>84</sub>                  |                                       |
| qB[SKA]Dvj             | descarga sólida calculada pelo método de Sato Kikawa e  | [M.T <sup>-1</sup> ]                  |
|                        | Ashida para o diâmetro Dvj                              |                                       |
| qB[ROT]D <sub>84</sub> | descarga sólida calculada pelo método de Rottner para o | [M.T <sup>-1</sup> ]                  |
|                        | diâmetro D <sub>84</sub>                                |                                       |
| qB[ROT]Dvj             | descarga sólida calculada pelo método de Rottner para o | [ <b>M</b> .T <sup>-1</sup> ]         |
|                        | diâmetro Dvj                                            |                                       |
| qB[GAA]D <sub>90</sub> | descarga sólida calculada pelo método de Garde e        | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
|                        | Albertson para o diâmetro D <sub>90</sub>               |                                       |
| qB[GAA]Dvj             | descarga sólida calculada pelo método de Garde e        | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
|                        | Albertson para o diâmetro Dvj                           |                                       |
| qB[YAL]D <sub>90</sub> | descarga sólida calculada pelo método de Yalin para o   | [M.T <sup>-1</sup> ]                  |
|                        | diâmetro D <sub>90</sub>                                |                                       |
| qB[YAL]Dvj             | descarga sólida calculada pelo método de Yalin para o   | [M.T <sup>-1</sup> ]                  |
|                        | diâmetro Dvj                                            |                                       |
| qB[PER]D <sub>50</sub> | descarga sólida calculada pelo método de Pernecker e    | [M.T <sup>-1</sup> ]                  |
|                        | Volmer para o diâmetro D <sub>50</sub>                  |                                       |
| qB[PER]Dvj             | descarga sólida calculada pelo método de Pernecker e    | [M.T <sup>-1</sup> ]                  |
|                        | Volmer para o diâmetro Dvj                              |                                       |
| qB[INL]D <sub>50</sub> | descarga sólida calculada pelo método de Inglis e Lacei | [M.T <sup>-1</sup> ]                  |
|                        | para o diâmetro D <sub>50</sub>                         |                                       |
| qB[INL]Dvj             | descarga sólida calculada pelo método de Inglis e Lacei | [M.T <sup>-1</sup> ]                  |
|                        | para o diâmetro Dvj                                     |                                       |
| qB[BOG]D <sub>84</sub> | descarga sólida calculada pelo método de Bogardi para o | [ <b>M</b> . <b>T</b> <sup>-1</sup> ] |
|                        | diâmetro D <sub>84</sub>                                |                                       |
| R*                     | número de Reynolds de cisalhamento                      | [1]                                   |
| R*90                   | número de Reynolds de cisalhamento referente ao         | [1]                                   |
|                        | diâmetro D <sub>90</sub>                                |                                       |

| Símbolo                              | Significado                                                | Dimensão                       |
|--------------------------------------|------------------------------------------------------------|--------------------------------|
| R* <sub>Dvj</sub>                    | número de Reynolds de cisalhamento referente ao            | [1]                            |
|                                      | diâmetro Dvj                                               |                                |
| R <sub>H</sub>                       | raio hidráulico da seção                                   | [L]                            |
| $R'_{\rm H}$                         | parcela do raio hidráulico relativo a rugosidade do leito; | [L]                            |
| R″ <sub>H</sub>                      | parcela do raio hidráulico relacionado às configurações    | [L]                            |
|                                      | do leito.                                                  |                                |
| S                                    | declividade da linha de água                               | [1]                            |
| S'                                   | parcela da declividade da linha de água despendida para    | [1]                            |
|                                      | vencer a resistência de superfície                         |                                |
| S″                                   | parcela da declividade da linha de água despendida para    | [1]                            |
|                                      | vencer a resistência proveniente das formas de fundo.      |                                |
| Т                                    | parâmetro de transporte do método de Van Rijn              | [1]                            |
| T <sub>T</sub>                       | representa o parâmetro de transporte do método de          |                                |
|                                      | Yang.                                                      | [ <b>M</b> . T <sup>-3</sup> ] |
| U                                    | velocidade média do escoamento                             | [L. T <sup>-1</sup> ]          |
| U <sub>b</sub>                       | velocidade competente do fundo.                            | [L. T <sup>-1</sup> ]          |
| Uc                                   | velocidade crítica média.                                  | [L. T <sup>-1</sup> ]          |
| $Uc_{50}$                            | velocidade critica média para o diâmetro $D_{50}$          | [L. T <sup>-1</sup> ]          |
| Uc <sub>Dvj</sub>                    | velocidade critica média para o diâmetro $D_{vj}$          | [L. T <sup>-1</sup> ]          |
| U <sub>nc</sub>                      | velocidade na camada de superfície                         | [L. T <sup>-1</sup> ]          |
| $\overline{\mathrm{U}}_{\mathrm{i}}$ | velocidade média medida na vertical i                      | [L. T <sup>-1</sup> ]          |
| Uy                                   | velocidade da corrente a uma posição y acima do leito      | [L. T <sup>-1</sup> ]          |
| $\overline{\mathrm{U}}_{\mathrm{p}}$ | velocidade média temporal da partícula de sedimentos       | [L. T <sup>-1</sup> ]          |
| U <sub>in</sub>                      | velocidade instantânea do fluido no nível da partícula     | [L. T <sup>-1</sup> ]          |
| Uin <sub>[D84]</sub>                 | velocidade instantânea do fluido no nível da partícula, ao | [L. T <sup>-1</sup> ]          |
|                                      | se considerar o diâmetro D <sub>84</sub>                   |                                |
| Uin[Dvj]                             | velocidade instantânea do fluido no nível da partícula, ao | [L. T <sup>-1</sup> ]          |
|                                      | se considerar o diâmetro Dvj                               |                                |

| Símbolo                 | Significado                                                                    | Dimensão              |
|-------------------------|--------------------------------------------------------------------------------|-----------------------|
| Up                      | velocidade de deslocamento da partícula de sedimento                           | [L. T <sup>-1</sup> ] |
| U*c                     | velocidade de cisalhamento crítica do escoamento                               | [L. T <sup>-1</sup> ] |
| U*                      | velocidade de cisalhamento média do escoamento.                                | [L. T <sup>-1</sup> ] |
| Ú* <sup>′</sup>         | velocidade de cisalhamento do escoamento relativa à rugosidade do leito        | [L. T <sup>-1</sup> ] |
| U* <sup>"</sup>         | parcela da velocidade de atrito do escoamento devido às                        | [L. T <sup>-1</sup> ] |
|                         | configurações do leito                                                         |                       |
| Vf                      | volume da amostra filtrada                                                     | [L <sup>3</sup> ]     |
| V <sub>*</sub>          | velocidade média de cisalhamento do vento.                                     | [L. T <sup>-1</sup> ] |
| Vs                      | velocidade de deslocamento das configurações do leito                          | [L. T <sup>-1</sup> ] |
| $\overline{\mathbf{X}}$ | diâmetro característico da mistura água sedimento                              | [L]                   |
| W <sub>0</sub>          | velocidade de queda da partícula para a água em repouso                        | [L.T <sup>-1</sup> ]  |
| W <sub>D50</sub>        | velocidade de sedimentação da partícula para o diâmetro                        | [L.T <sup>-1</sup> ]  |
|                         | $D_{50}$                                                                       |                       |
| Dvj                     | velocidade de sedimentação da partícula para o diâmetro                        | [L.T <sup>-1</sup> ]  |
|                         | Dvj                                                                            |                       |
| W                       | velocidade de queda da partícula                                               | [L.T <sup>-1</sup> ]  |
| у                       | profundidade acima do leito do canal                                           | [L]                   |
| У <sub>0</sub>          | distância a partir do leito onde a velocidade é zero                           | [L]                   |
| Y                       | representa a cota média do trecho do leito de                                  | [L]                   |
|                         | comprimento $\Delta x$                                                         |                       |
| $\widehat{Y}$           | coeficiente para corrigir a mudança no coeficiente de                          | [1]                   |
|                         | sustentação em misturas com varias rugosidades                                 |                       |
| α                       | declividade do leito                                                           | [1]                   |
| $\alpha_1, \beta_1$     | parâmetros adimensionais do método de Yalin (1963)                             | [1]                   |
| $\alpha_{1D90}$         | parâmetros adimensionais do método de Yalin (1963) para o diâmetro $D_{90}$    | [1]                   |
| $\alpha_{1Dvj}$         | parâmetros adimensionais do método de Yalin (1963)<br>para o diâmetro Dyi      | [1]                   |
| $\beta_{1D90}$          | parâmetros adimensionais do método de Yalin (1963)<br>para o diâmetro $D_{90}$ | [1]                   |

| Símbolo                  | Significado                                                               | Dimensão                        |
|--------------------------|---------------------------------------------------------------------------|---------------------------------|
| $\beta_{1Dvj}$           | parâmetros adimensionais do método de Yalin (1963)<br>para o diâmetro Dyj | [1]                             |
| χ                        | caracteriza os efeitos da viscosidade na camada laminar                   | [1]                             |
| δ                        | espessura da camada limite                                                | [L]                             |
| $\Delta_{ m Pi}$         | variação percentual entre duas classes consecutivas de                    | [1]                             |
|                          | diâmetros D <sub>i</sub>                                                  |                                 |
| $\Delta t_i$             | intervalo de tempo de amostragem                                          | [T]                             |
| $\Delta D_i$             | fração em porcentagem do material do leito de                             |                                 |
|                          | granulometria igual àquela encontrada para a descarga                     | [1]                             |
|                          | de sedimentos transportada na camada do leito.                            |                                 |
| $\Delta d$               | espessura das camadas do método de Du-Boys                                | [L]                             |
| ΔU                       | acréscimo de velocidades entre camada adjacentes para                     | [L.T <sup>-1</sup> ]            |
|                          | o método de Du-Boys                                                       |                                 |
| $\epsilon_x, \epsilon_y$ | coeficientes de difusão turbulenta                                        | [1]                             |
| ε <sub>m</sub>           | coeficiente de quantidade de movimento;                                   | [1]                             |
| φ,φ*                     | parâmetro de transporte da descarga do leito                              | [1]                             |
| фD90                     | parâmetro de transporte da descarga do leito para o                       | [1]                             |
|                          | diâmetro D <sub>90</sub>                                                  |                                 |
| ф <sub>kD90</sub>        | coeficiente adimensional obtido experimentalmente para                    | [1]                             |
|                          | o método de Garde e Albertson (1961), para o diâmetro                     |                                 |
|                          | $D_{90}$                                                                  |                                 |
| ф <sub>kDvj</sub>        | coeficiente adimensional obtido experimentalmente para                    | [1]                             |
|                          | o método de Garde e Albertson (1961), para o diâmetro                     |                                 |
|                          | Dvj                                                                       |                                 |
| $\gamma_{s}^{\prime}$    | peso específico do sedimento submerso                                     | $[M \cdot L^{-2} \cdot T^{-2}]$ |
| $\gamma_{s}$             | peso específico do sedimento                                              | $[M \cdot L^{-2} \cdot T^{-2}]$ |
| γ                        | peso específico da água                                                   | $[M \cdot L^{-2} \cdot T^{-2}]$ |
| η                        | fator de forma                                                            | [1]                             |
| φ                        | parâmetro adimensional de Shields                                         | [1]                             |

| Símbolo          | Significado                                                                                      | Dimensão                                         |
|------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|
| λ                | porosidade do material do leito, tem-se:                                                         | [1]                                              |
| ν                | viscosidade cinemática da água.                                                                  | [L <sup>2</sup> .T <sup>-1</sup> ]               |
| θ                | ângulo de repouso. normalmente adotado como igual ao                                             |                                                  |
|                  | coeficiente de atrito entre as partículas.                                                       | [1]                                              |
| $\theta_{i_c}$   | tensão crítica de cisalhamento normalizada                                                       | [1]                                              |
| $\theta_{icD90}$ | tensão crítica de cisalhamento normalizada, referente ao                                         | [1]                                              |
| 0                | diametro $D_{90}$                                                                                |                                                  |
| $\theta_{icDvj}$ | diâmetro Dvj                                                                                     | [1]                                              |
| $\theta_i$       | tensão tangencial de cisalhamento normalizada                                                    | [1]                                              |
| θi <sub>90</sub> | tensão tangencial de cisalhamento normalizada relativa                                           | [1]                                              |
| $\theta i_{Dvj}$ | tensão tangencial de cisalhamento normalizada relativa                                           | [1]                                              |
| $\theta_i'$      | tensão tangencial de cisalhamento normalizada referente                                          | [1]                                              |
| $\theta_i^{''}$  | parâmetro adimensional relativo às formas de fundo.                                              | [1]                                              |
| ρ                | massa específica da água                                                                         | [M] . [L <sup>-3</sup> ]                         |
| $\rho_{ar}$      | massa específica do ar                                                                           | [ <b>M</b> ] . [L <sup>-3</sup> ]                |
| $\rho_{S}$       | massa específica do sedimento                                                                    | [ <b>M</b> ] . [L <sup>-3</sup> ]                |
| σ                | desvio padrão da amostra                                                                         | [L]                                              |
| $\sigma_{g}$     | desvio padrão geométrico da amostra                                                              | [L]                                              |
| $\tau_0$         | tensão tangencial média de cisalhamento da corrente.                                             | $[M . L^{-1} . T^{-2}]$                          |
| $	au_0'$         | parcela da tensão tangencial média de cisalhamento do escoamento referente a rugosidade do leito | $[M . L^{-1} . T^{-2}]$                          |
| $	au_0''$        | parcela da tensão tangencial devida as configurações do leito                                    | [ <b>M</b> . L <sup>-1</sup> . T <sup>-2</sup> ] |
| $\tau_{c}$       | tensão tangencial crítica de cisalhamento                                                        | $[M . L^{-1} . T^{-2}]$                          |

| Símbolo                  | Significado                                             | Dimensão                              |
|--------------------------|---------------------------------------------------------|---------------------------------------|
| $\tau_{cD90}$            | tensão tangencial crítica de cisalhamento, referente ao |                                       |
|                          | diâmetro D <sub>90</sub>                                | $[M . L^{-1} . T^{-2}]$               |
| $\tau_{cD84}$            | tensão tangencial crítica de cisalhamento, referente ao |                                       |
|                          | diâmetro D <sub>84</sub>                                | [M.L <sup>-1</sup> .T <sup>-2</sup> ] |
| $	au_{cDvj}$             | tensão tangencial crítica de cisalhamento, referente ao |                                       |
|                          | diâmetro Dvj                                            | $[M . L^{-1} . T^{-2}]$               |
| $\tau_y$                 | tensão de cisalhamento numa posição y na vertical.      | $[M . L^{-1} . T^{-2}]$               |
| ξ                        | fator de ocultação                                      | [1]                                   |
| $\psi_3$                 | coeficiente de fricção.                                 | [1]                                   |
| $\psi_1, \psi_2, \psi_3$ | parâmetros a serem determinados experimentalmente;      | [1]                                   |
| Ψ'                       | intensidade de tensão de cisalhamento para o grão de    | [1]                                   |
|                          | sedimentos                                              |                                       |
| ψ, ψ*                    | intensidade da corrente                                 | [1]                                   |
| $\psi_{\mathrm{D84}}$    | intensidade da corrente para o diâmetro D <sub>84</sub> | [1]                                   |
| $\psi_{\mathrm{Dvj}}$    | intensidade da corrente para o diâmetro Dvj             | [1]                                   |
| ς                        | coeficiente usado para correlacionar a alturas das      | [1]                                   |
|                          | configurações com a profundidade da corrente usado no   |                                       |
|                          | método de Julien.                                       |                                       |
| ζ                        | coeficiente usado no método de Julien para corrigir a   | [1]                                   |
|                          | relação de esbeltez das configurações de fundo          |                                       |

# SUMÁRIO

|       | RESUMO                                                                               | 8                     |
|-------|--------------------------------------------------------------------------------------|-----------------------|
|       | ABATRATCT                                                                            | 9                     |
|       | LISTA DE FIGURAS                                                                     | 10                    |
|       | LISTA DE QUADROS                                                                     |                       |
|       | LISTA DE TABELAS                                                                     | 15                    |
|       | LISTA DE SÍMBOLOS                                                                    | 19                    |
|       | SUMÁRIO                                                                              |                       |
| 1     | INTRODUÇÃO                                                                           | 41                    |
| 1.1   | Objetivo                                                                             | 43                    |
| 1.2   | Estrutura do trabalho                                                                | 43                    |
| 2     | ASPECTOS CONCEITUAIS DO MOVIMENTO DE<br>SEDIMENTOS EM ESCOAMENTOS COM SUPEI<br>LIVRE | <b>RFÍCIE</b><br>47   |
| 2.1   | Generalidades                                                                        | 47                    |
| 2.2   | Classificação relativa à origem dos sedimentos e às moda<br>do transporte            | <b>ilidades</b><br>47 |
| 2.2.1 | Quanto à origem                                                                      | 47                    |
| 2.2.2 | Quanto aos tipos de movimento                                                        | 49                    |
| 2.3   | Estudo do início do transporte sólido                                                | 50                    |
| 2.3.1 | Considerações preliminares                                                           | 50                    |

| 2.3.2     | Condições críticas para o início do transporte sólido                                             | 51                |
|-----------|---------------------------------------------------------------------------------------------------|-------------------|
| 2.3.2.1   | Abordagens teórica e semiteórica, baseadas na tensão crítica                                      | .51               |
| 2.3.2.1.1 | Análises de White, 1940                                                                           | 56                |
| 2.3.2.1.2 | Estudos de Shields, 1937                                                                          | 57                |
| 2.3.2.2   | Abordagens teórica e semiteórica, baseadas na velocidade crítica                                  | .60               |
| 2.3.2.2.1 | Estudos de Yang, 1993                                                                             | .60               |
| 2.3.2.3   | Métodos baseados em critérios experimentais                                                       | .67               |
| 2.3.2.3.1 | Critério de Meyer-Peter e Müller (1948)                                                           | . 67              |
| 2.3.2.3.2 | Critério de Mavis e Laushey, 1948                                                                 | .68               |
| 2.3.2.4   | Equações empíricas para o cálculo da tensão crítica de                                            |                   |
|           | cisalhamento                                                                                      | .69               |
| 2.4       | Estudos das formas de fundo em escoamentos com superfíc                                           | ie                |
|           | Livre                                                                                             | 71                |
| 2.4.1     | Classificação dos regimes de escoamento de leitos aluvionares, segu<br>SIMONS & RICHARDSON (1961) | <b>ndo</b><br>.71 |
| 2.4.2     | Evolução das formas de fundo, de acordo com o número de Fron                                      | ıde               |
|           | do escoamento, segundo os critérios de SIMONS & RICHARDS                                          | 9N                |
|           | (1961)                                                                                            | .72               |
| 2.4.3     | Métodos de previsão da geometria das deformações de fundo                                         | em                |
|           | escoamento com superfície livre                                                                   | .73               |
| 2.4.3.1   |                                                                                                   |                   |
|           | <u>Metodologia de Yalin (1964)</u>                                                                | 74                |
| 2.4.3.2   | <u>Metodologia de Yalin (1964)</u><br><u>Metodologia de Allen (1963)</u>                          | 74<br>76          |

| 2.4.3.4 | <u>Metodologia de Van Rijn (1984a, 1984b, 1984c).</u>                     |
|---------|---------------------------------------------------------------------------|
| 2.4.3.5 | Metodologia de Julien &Klaassen (1995)                                    |
| 2.5     | Estudos da resistência hidráulica                                         |
| 2.5.1   | Equação para a distribuição da velocidade em escoamentos                  |
|         | turbulentos, segundo Prandtl, 1925-1926                                   |
| 2.5.1.1 | <i>Lei de distribuição de velocidades para escoamentos turbulentos</i> 90 |
| 2.5.1.2 | Perfil de velocidade logarítmico para escoamento turbulento               |
|         | hidraulicamente liso, segundo Prandtl, 1925-1926                          |
| 2.5.1.3 | Perfil de velocidade logarítmico para escoamento turbulento               |
|         | hidraulicamente rugoso, segundo Prandtl, 1925-192693                      |
| 2.5.2   | <b>Equações de resistência para leito plano e/ou paredes rígidas</b> 94   |
| 2.5.2.1 | <u>Equação de Chézy (1769)</u> 94                                         |
| 2.5.2.2 | <u>Equações de Manning, 1895.</u> 96                                      |
| 2.5.2.3 | <u>Equações de Manning-Strickler, 1923</u> 96                             |
| 2.5.2.4 | <u>Equações de Meyer-Petter e Müller (1948</u> )98                        |
| 2.5.3   | Equações da resistência baseadas na divisão da resistência em duas        |
|         | parcelas: Para leitos móveis                                              |
| 2.5.3.1 | <u>Método de Einstein-Barbarossa (1952)</u> 99                            |
| 2.5.3.2 | <u>Método de Engelund, 1966</u> 104                                       |
| 2.6     | <b>Considerações sobre o transporte de sedimentos por arraste</b> 107     |
| 2.6.1   | Equação das dunas e rugas, segundo Simons et al (1965)108                 |
| 2.7     | <b>Considerações sobre o transporte de sedimentos em suspensão</b> 113    |

| 2.7.1     | Equação diferencial do transporte de sedimentos e difusão                       |
|-----------|---------------------------------------------------------------------------------|
|           | turbulenta para o escoamento turbulento bidimensional114                        |
| 2.7.2     | Distribuição da concentração de sedimentos na vertical116                       |
| 2.7.3     | Integração da equação da distribuição da concentração na vertical               |
| 2.7.4     | Transporte sólido em suspensão                                                  |
| 2.8       | Considerações finais                                                            |
| 3         | REVISÃO BIBLIOGRÁFICA                                                           |
| 3.1       | INTRODUÇÃO125                                                                   |
| 3.2       | Evolução histórica dos modelos de cálculo do transporte de                      |
|           | sedimentos em escoamentos com superfície livre131                               |
| 3.3       | Equacionamento dos principais modelos de cálculo indireto do                    |
|           | transporte de sedimentos na camada do leito157                                  |
| 3.3.1     | Generalidades                                                                   |
| 3.3.2     | Equação teórica para o cálculo da descarga de sedimentos161                     |
| 3.3.2.1   | <i>Equação de Du-Boys ( 1879)</i>                                               |
| 3.3.3     | <b>Equações semiteóricas para o cálculo da descarga de</b><br><b>sedimentos</b> |
| 3.3.3.1   | <i>Equação de Einstein (1950).</i>                                              |
| 3.3.3.2   | Equação de Einstein-Brown (1950)172                                             |
| 3.3.3.3   | <u>Equação de Van Rijn (1984a)</u> 174                                          |
| 3.3.3.4   | <u>Equação de Kalinske, 1947</u> 176                                            |
| 3.3.3.4.1 | Outra versão da equação de Kalinske, 1947                                       |
| 3.3.3.5 | <u>Método de Sato Kikkawa &amp; Ashida (1958)</u>                |     |
|---------|------------------------------------------------------------------|-----|
| 3.3.3.6 | <u>Método de Yalin, 1963</u>                                     |     |
| 3.3.3.7 | <u>Método de Levi (1948)</u>                                     |     |
| 3.3.3.8 | <u>Fórmula de Inglis-Lacey (1968)</u>                            |     |
| 3.3.4   | Equações provenientes de análise dimensional                     | 190 |
| 3.3.4.1 | <u>Equação de Shields, 1936</u>                                  | 190 |
| 3.3.4.2 | <u>Método de Bogardi (1955-1974)</u>                             | 191 |
| 3.3.4.3 | Abordagem de Garde & Albertson, 1961                             |     |
| 3.3.4.4 | <u>Rottner (1959)</u>                                            | 195 |
| 3.3.5   | Métodos empíricos                                                |     |
| 3.3.5.1 | <u>Método de Schoklitsch (1914, 1950)</u>                        | 196 |
| 3.3.5.2 | Método de Meyer-Peter & Muller (1948)                            | 198 |
| 3.3.6   | Método de Pernecker & Vollmers (1965)                            |     |
| 3.4     | Comentários finais acerca da aplicação dos métodos de estimativa |     |
|         | da descarga de sedimentos na camada do leito                     | 203 |
| 4       | MATERIAIS E MÉTODOS                                              |     |
| 4.1     | Descrição sumária da bacia do rio Piracicaba                     |     |
| 4.2     | O trecho em estudo                                               |     |
| 4.3     | A base de dados existente                                        |     |
| 4.4     | Medidas Hidrométricas                                            |     |
| 4.4.1   | Medidas da velocidade                                            |     |
| 4.4.2   | Medida da vazão                                                  |     |

| 4.4.3   | Medida da declividade                                                | 230                  |
|---------|----------------------------------------------------------------------|----------------------|
| 4.5     | Medidas sedimentométricas                                            | 231                  |
| 4.5.1   | Amostragens de sedimentos em suspensão                               | 231                  |
| 4.5.1.1 | Cálculo da concentração de sedimentos                                | 233                  |
| 4.5.2   | Amostragens de sedimentos por arraste do leito                       | 235                  |
| 4.5.3   | Granulometria do sedimento do leito                                  | 237                  |
| 4.5.4   | Granulometria do sedimento fino                                      | 238                  |
| 4.6     | Metodologia para a definição do diâmetro representativo j<br>amostra | <b>para a</b><br>239 |
| 4.6.1   | Considerações sobre a metodologia para escolha do diâmetro           | 239                  |
| 4.6.2   | Definição do diâmetro                                                | 242                  |
| 5.      | ANÁLISE E DISCUSSÃO DOS RESULTADOS                                   | 253                  |
| 5.1     | Considerações preliminares                                           | 253                  |
| 5.2.    | Apresentação dos resultados                                          | 255                  |
| 5.2.1   | Compatibilidade ou não das faixas granulométricas dos diâmetre       |                      |
|         | medidos no Rio Atibaia e aquelas sugeridas pelos autor               | es dos               |
|         | métodos de estimativa da descarga de sedimentos na cama              | ıda do               |
|         | leito                                                                | 263                  |
| 5.3     | COMENTÁRIOS FINAIS                                                   | 296                  |
| 6       | APLICAÇÃO DA METODOLOGIA AOS DADOS DO                                | RIO                  |
|         | ATIBAIA                                                              | 299                  |
| 6.1     | Considerações preliminares                                           | 299                  |

| 6.2 | Comparação dos resultados das descargas para o Rio Atibaia em                            |  |  |
|-----|------------------------------------------------------------------------------------------|--|--|
|     | Sousas Campinas-SP                                                                       |  |  |
| 6.3 | Comentários finais sobre o resultado da metodologia aplicada aos<br>dados do Rio Atibaia |  |  |
| 7   | PRIMEIRO ESTUDO DE CASO: APLICAÇÃO DA<br>METODOLOGIA AOS DADOS DO RIBEIRÃO DO            |  |  |
|     | FEIJÃO                                                                                   |  |  |
| 7.1 | Considerações preliminares                                                               |  |  |
| 7.2 | Seleção de diâmetros a serem usados nos métodos de cálculos par                          |  |  |
|     | o Ribeirão do Feijão                                                                     |  |  |
| 7.3 | Diâmetros calculados pelas equações analíticas usando os dados                           |  |  |
|     | do Ribeirão do Feijão                                                                    |  |  |
| 7.4 | Comparação entre as descargas calculadas pelos diâmetros D <sub>i</sub> e                |  |  |
|     | Dvj e as descargas medidas no Ribeirão do Feijão                                         |  |  |
| 7.5 | Comentários finais referentes à aplicação, ao Ribeirão do Feijão,                        |  |  |
|     | da metodologia proposta                                                                  |  |  |
| 8   | SEGUNDO ESTUDO DE CASO: APLICAÇÃO DA                                                     |  |  |
|     | METODOLOGIA AOS DADOS DO RIO MOGI-GUAÇU341                                               |  |  |
| 8.1 | Considerações preliminares                                                               |  |  |
| 8.2 | Seleção de diâmetros a aplicação dos métodos de cálculos para o                          |  |  |
|     | Rio Mogi-Guaçu                                                                           |  |  |
| 8.3 | Diâmetros calculados pelas equações analíticas usando os dados                           |  |  |
|     | do Rio Mogi-Guaçu                                                                        |  |  |

| 8.4 | Comparação entre as descargas calculadas usando os diâmetros     |     |  |
|-----|------------------------------------------------------------------|-----|--|
|     | D <sub>i</sub> e Dvj com as descargas medidas no Rio Mogi-Guaçu  | 354 |  |
| 8.5 | Comentários finais referente a aplicação, para o Rio Mogi-Guaçu, |     |  |
|     | da metodologia proposta                                          |     |  |
| 9   | DISCUSSÕES, CONCLUSÕES E RECOMENDAÇÕES                           | 361 |  |
| 9.1 | CONCLUSÕES                                                       | 369 |  |
| 9.2 | RECOMENDAÇOES                                                    | 371 |  |
|     | REFERÊRENCIAS BIBLIOGRÁFICAS                                     | 373 |  |
|     | VOL.II. ANEXOS                                                   |     |  |
|     | ANEXO A                                                          | 391 |  |
|     | ANEXO B                                                          | 471 |  |
|     | ANEXO C                                                          | 547 |  |
|     | ANEXO D                                                          | 571 |  |
|     | ANEXO E                                                          | 581 |  |
|     | ANEXO F                                                          | 607 |  |

# 1 – INTRODUÇÃO

Os estudos referentes ao movimento de sedimentos nos escoamentos com superfície livre constituem fator essencial para a solução de problemas de engenharia hidráulica relacionados com exploração de bacias fluviais, projetos de estruturas hidráulicas e portuárias, operação e manutenção de canais de navegação e de reservatórios de usinas hidrelétricas e de abastecimento de água.

O maior provedor de sedimentos para dentro das calhas dos canais naturais é a bacia hidrográfica. Assim sendo, uma vez que a incidência de eventos pluviosos em áreas desprovidas de cobertura vegetal promove a ação erosiva na bacia hidrográfica; em tais situações, os sedimentos soltos tornam-se ainda mais passíveis de serem transportados para dentro das calhas dos rios.

Nos cursos de águas naturais, o início do movimento dos sedimentos ocorre porque a força hidrodinâmica instantânea, agindo na partícula sólida, atinge uma intensidade maior do que a intensidade da força de resistência, proveniente do seu peso próprio e do contato desta com o leito. Uma vez rompida a inércia, dá-se início aos processos de erosão e deformações do leito, promovendo sistemáticas intervenções na descarga sólida transportada.

Os processos de erosão e deposição de sedimentos resultam da relação do equilíbrio entre a capacidade das vazões líquidas para transportá-los em uma seção e a quantidade desses que chegam até esta seção. Quando a capacidade de transporte das vazões líquidas é maior do que a quantidade de sedimentos que chegam, ocorre a erosão do leito, se este for composto de sedimentos passíveis de serem transportados pela vazão em escoamento. Ao contrário, quando a capacidade de transporte é menor do que a quantidade de sedimentos que chegam, ocorre a deposição.

A quantidade de sedimentos transportados pelos rios, além de informar sobre as características e o estado de conservação da bacia hidrográfica, é de fundamental importância para o aproveitamento e o gerenciamento dos recursos hídricos de uma região, seja para análise de viabilização de sua utilização para o abastecimento público ou irrigação seja para o cálculo da vida útil dos reservatórios.

No que se concerne ao cálculo da descarga de sedimentos em escoamentos com superfície livre, depois da equação de DuBoys, em 1879, surgiram inúmeras outras, umas de natureza completamente empíricas e algumas amparadas em fundamentos teóricos da mecânica dos fluidos. No entanto, a maioria delas apresenta várias hipóteses simplificadoras e uma infinidade de variáveis, na tentativa de se reproduzir, na prática, o que se prevê através dos ensaios experimentais.

Embora, ao longo dos anos, novos equipamentos e técnicas de medições em rios tenham sido aprimorados e desenvolvidos, persistem, ainda hoje, alguns questionamentos e incertezas quanto à consistência dos dados obtidos. Igualmente, nos casos de grandes discrepâncias entre os valores de descargas sólidas calculadas e medidas, discute-se se os erros são de medições ou das escolhas inadequadas das fórmulas ou dos métodos utilizados.

Portanto, foram essas evidências que motivaram o desenvolvimento desta tese, cujo resultado primordial foi a apresentação de uma nova abordagem para a escolha do diâmetro a

ser empregado nos métodos de cálculo da descarga de sedimentos em escoamento com superfície livre.

### 1.1- Objetivo

Definir um diâmetro, com base nas variáveis intervenientes no movimento do fluido e do sedimento, a ser utilizado nos diferentes modelos de cálculo do transporte de sedimentos, na camada do leito, visando aproximar as descargas medidas às calculadas.

A tese foi desenvolvida usando uma base de dados constituída de 171 campanhas de medidas hidrossedimentométricas realizadas no rio Atibaia, em Sousas, no município de Campinas (SP). Além de dispensar o levantamento de curvas granulométricas, a metodologia apresentada nesta tese é versátil, podendo ser empregado para amostras de sedimentos de gradação uniforme ou não, e se mostrou adequada quando aplicada a dois estudos de casos: o ribeirão do Feijão e o rio Mogi-Guaçu, ambos em São Carlos (SP).

# 1.2 – Estrutura do trabalho

CAPÍTULO 1 – INTRODUÇÃO: apresentaram-se os aspectos gerais sobre o transporte de sedimentos em escoamentos com superfície livre, procurando identificar os problemas sobre as incertezas na estimativa da descarga sólida e sugerindo alternativas para o enfretamento do problema. Também foi descrito o objetivo do trabalho.

CAPÍTULO 2 – ASPECTOS CONCEITUAIS DO MOVIMENTO DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE: foi apresentada uma série de conceitos básicos referentes à hidráulica fluvial e transporte de sedimentos, com um enfoque voltado aos assuntos referentes à hidrossedimentologia. Foram abordados os temas que constituem a base das linhas de pesquisas no assunto, a saber: início do transporte sólido, estudo das deformações de fundo, estudos das resistências hidráulicas e, por fim, o transporte de sedimentos por arraste e em suspensão.

CAPÍTULO 3 – REVISÃO BIBLIOGRÁFICA: com o objetivo de contextualizar o trabalho dentro da evolução dos modelos de cálculo da descarga de sedimentos inicialmente, na revisão bibliográfica, foi feita uma descrição, sucinta e em ordem cronológica, dos principais modelos de cálculo da descarga de sedimentos, começando por Du Boys em 1879, até os anos atuais. A revisão prosseguiu com a apresentação das principais equações de estimativa do transporte de sedimentos, enfatizando suas hipóteses simplificadoras e os aspectos restritivos de suas aplicações. No final do capítulo três foi apresentada uma discussão sobre os principais trabalhos relevantes à aplicação dos principais métodos.

CAPÍTULO 4 – PROCEDIMENTO EXPERIMENTAL: descreveram-se detalhes sobre o levantamento dos dados hidrossedimentométricos utilizados no trabalho. São apresentadas as características do trecho e da seção de monitoramento.

CAPÍTULO 5 – ANÁLISE E DISCUSSÃO DOS RESULTADOS: nesse capítulo, apresentam-se as discussões enfatizando-se predominantemente a metodologia para definição dos diâmetros de cálculo desenvolvidos a partir da base de dados do Rio Atibaia.

CAPITULO 6 – APLICAÇÃO DA METODOLOGIA AOS DADOS DO RIO ATIBAIA: nesse capítulo, as equações analíticas para o cálculo dos diâmetros a serem usados nos métodos de estimativa da descarga sólida foram aplicados para a estimativa da descarga usando os dados do Rio Atibaia. As descargas calculadas apresentaram diferenças percentuais relativas menores do que aquelas encontradas quando a descarga foi calculada a partir dos diâmetros coletados no fundo do rio. Enfatizando que as descargas calculadas foram comparadas às medidas no referido rio.

CAPÍTULO 7 – PRIMEIRO ESTUDO DE CASO: APLICAÇÃO DA METODOLOGIA AOS DADOS DO RIBEIRÃO DO FEIJÃO: um procedimento similar ao realizado no capítulo seis foi aplicado nesse capítulo. As descargas calculadas pelos métodos de estimativa da descarga sólida, usando-se os diâmetros de cálculo desenvolvidos na tese, aproximaram-se mais das medidas, se comparadas àquelas calculadas pelo uso dos diâmetros coletados no Ribeirão do Feijão.

CAPÍTULO 8 – SEGUNDO ESTUDO DE CASO: APLICAÇÃO DA METODOLOGIA AOS DADOS DO RIO MOGI-GUAÇU: novamente a metodologia desenvolvida na tese foi aplicada a esse segundo estudo de caso e, mais uma vez, as descargas calculadas usando-se as equações analíticas, para cálculo dos diâmetros nos métodos de estimativa, ficaram mais próximas das medidas, se comparadas àquelas calculadas com os diâmetros coletados no Rio Mogi-Guaçu.

CAPÍTULO 9: DISCUSSÕES, CONCLUSÕES E RECOMENDAÇÕES: nesse capítulo complementam-se mais algumas discussões em relação àquelas já escritas no decorrer dos capítulos anteriormente desenvolvidos e apresentam-se as conclusões e recomendações.

Além dos capítulos apresentados, no final da tese, constam, ainda, as principais referências bibliográficas e seis anexos. A tese foi desenvolvida em dois volumes. No segundo volume são apresentados os anexos, conforme relação abaixo.

**Anexo** A: apresentam-se as tabelas com a comparação entre os diâmetros calculados pelas equações de estimativa e os coletados no Rio Atibaia.

Anexo B: mostra as tabelas com a comparação entre as descargas medidas no rio Atibaia e aquelas calculadas pelos métodos de estimativa.

Anexo C: têm-se as tabelas com as comparações entre os diâmetros calculados pelas equações de estimativa e os coletados no Ribeirão do Feijão.

Anexo D: apresentam-se as tabelas com as comparações entre as descargas medidas no Ribeirão do Feijão e aquelas calculadas pelos métodos de estimativas, usando-se os diâmetros coletados e usando também os diâmetros obtidos pelas equações analíticas desenvolvidas na pesquisa.

**Anexo E**: há a comparação entre os diâmetros calculados pelas equações de estimativa e os coletados no rio Mogi-Guaçu.

Anexo F: comporta as tabelas com as comparações entre as descargas medidas no Rio Mogi-Guaçu e aquelas calculadas pelos métodos de estimativas, usando-se os diâmetros coletados e usando também os diâmetros obtidos pelas equações analíticas desenvolvidas na pesquisa.

# 2 – ASPECTOS CONCEITUAIS DO MOVIMENTO DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE

# 2.1 – Generalidades

Neste capítulo, serão brevemente comentados alguns dos principais assuntos referentes ao transporte de sedimentos em escoamentos com superfície livre, com um enfoque voltado ao movimento dos sedimentos não-coesivos. Pretende-se abordar os principais assuntos relativos ao transporte sólido, a saber: estudo de início do movimento; estudo das deformações de fundo; estudo da resistência hidráulica e estudos do movimento sólido por arraste e em suspensão.

# 2.2 – Classificação relativa à origem dos sedimentos e às modalidades do transporte

(MENDES, 1995; ECKHARDT, 1998; ALFREDINE, 1983)

### 2.2.1 – Quanto à origem

#### Sedimentos originados do leito do rio

São deslocados do leito e da margem do rio pela ação das forças do escoamento, sendo que podem ser transportados por arraste (mantendo um contato quase que permanente com o leito) ou podem ser transportados em suspensão, pela ação das forças de advecção e difusão turbulenta. A descarga de sedimentos transportada, em geral, é relacionada à vazão líquida do escoamento.

Ainda, com relação ao sedimento originado do leito, alguns autores definem uma terceira modalidade de transporte, denominada de saltação, em que a partícula de sedimentos é removida do leito pelo movimento de ascensão vertical, retornando novamente ao fundo do canal fluvial, se o seu peso próprio superar as forças hidrodinâmicas nas regiões de fraca turbulência. Em geral, dependendo das dimensões do salto, para efeito de cálculo da descarga de sedimentos, essa modalidade de transporte é considerada como descarga de arraste.

#### • Sedimentos originados da bacia hidrográfica

Os sedimentos originados da bacia hidrográfica são normalmente de granulometria mais fina do que aqueles erodidos e transportados com o curso de água. Alguns autores como ALFREDINE (1983) comentam que a ordem de grandeza dos diâmetros desses sedimentos é inferior ao diâmetro  $D_{10}$  do material do leito e que tal sedimentos são constituídos basicamente por silte e argila, sendo transportados predominantemente em suspensão. A correlação com parâmetros do escoamento, como a vazão, por exemplo, torna-se difícil, devido à sua susceptibilidade às intervenções antrópicas que comumente ocorrem na bacia. Alguns autores como Chow (1964) [*apud* COIADO (2002-2003)] afirmam que, na maioria dos rios, os sedimentos são formados predominantemente por carga de lavagem e este valor está em torno de 80% e 90% da descarga total. NASCIMENTO & COIADO (2000) em suas investigações experimentais no Rio Atibaia, Brasil, verificaram que a descarga de lavagem nesse rio representa de 82% a 97% da descarga total de sedimentos transportada.

# 2.2.2 – Quanto aos tipos de movimento

#### • Transporte por arraste

Os deslocamentos são feitos através de saltos, rolamentos e deslizamentos das partículas sólidas, havendo um contato permanente destas com o leito do rio. Existem três enfoques normalmente utilizados para a descrição do movimento dos sedimentos por arraste:

- Equação tipo Du Boys, que considera a relação da tensão de cisalhamento;
- equação do tipo Schoklitsch, que considera a relação da descarga sólida;
- equação de Einstein, baseada em teoria de probabilidade e estatística.

#### • Transporte em suspensão

O transporte de sedimentos em suspensão é resultado da turbulência do escoamento, particularmente da componente vertical das flutuações da velocidade. A concentração de

sedimentos em suspensão, ao longo de uma vertical, aumenta no sentido superfície livre ao fundo. A lei de distribuição da concentração em profundidade foi apresentada inicialmente e enunciada por Rouse em 1937.

### 2.3 - Estudo do início do transporte sólido

# 2.3.1- Considerações preliminares

Quando a força de arrasto é menor que um certo valor crítico, o material do fundo do canal permanece em repouso, e esse pode ser considerado rígido. Mas quando essa força atinge ou excede o seu valor crítico, começa o movimento da partícula. Em geral, as observações do movimento da partícula são difíceis e os dados mais confiáveis são originados de experiências de laboratório.

Os conceitos que são empregados para o estudo do início do movimento dos sedimentos no leito referem-se às teorias baseadas na velocidade crítica, no conceito de tensão de cisalhamento e, por último, no critério da força de sustentação crítica do leito. Amparados nesses conceitos, existem métodos de natureza empírica e outros semiteóricos. Alguns deles serão apresentados neste capítulo.

No que se refere ao aspecto de quantificação dos grãos de sedimentos o início de transporte é abordado valendo-se de quatro alternativas: movimento de uma partícula isolada; movimento de um grupo de partículas; movimento geral do leito e, por último, em situações de baixas velocidades em que a descarga de sedimentos tende a zero [COIADO, 2002-2003].

### 2.3.2 - Condições críticas para o início do transporte sólido

[COIADO, 2002-2003; COIADO & PAIVA, 2005; SIMONS & SENTURK, 1992; ECKARDT, 1998; GARDE & RAJU, 1985].

## 2.3.2.1- Abordagens teórica e semiteórica, baseadas na tensão crítica

Sob condições críticas de início de desprendimento do grão de sedimentos do leito para a corrente, as forças hidrodinâmicas do escoamento tendem a ser equilibradas pelas forças de resistência das partículas. Essas suposições possibilitam (fazendo-se o balanço das forças sobre uma partícula de sedimentos em repouso, submetida à ação de um escoamento turbulento, como se observa numa visão qualitativa na **figura 2.1**) definir a tensão crítica de início de transporte.



Figura 2.1 – Forças que atuam sobre uma partícula sólida num escoamento turbulento. [SIMONS & SENTURK, 1992]

Na qual:

 $\alpha$  - declividade do leito;

 $\theta$  - ângulo de repouso. Normalmente adotado como igual ao coeficiente de atrito entre as partículas;

 $F_D$  – força de arraste: resultado da ação da componente das forças de viscosidade do líquido agindo sobre a superfície exposta da partícula e das forças diferenciais de pressão na parte posterior e anterior da partícula [ECKARDT, 1998]. Dada por:

$$F_D = C_1 \cdot \tau_0 \cdot D^2$$

(2.1)

C<sub>1</sub> - constante que leva em conta a forma da partícula;

 $\tau_0$  - tensão tangencial média de cisalhamento da corrente;

D - diâmetro da partícula.

Sendo que a tensão de cisalhamento é proporcional ao quadrado da velocidade de cisalhamento no leito.

$$\tau_0 = \rho \cdot U *^2 \tag{2.2}$$

ρ - massa específica da água;

U\* - velocidade de cisalhamento média do escoamento;

 $F_S$ - força de elevação da partícula: a força de ascensão é comparável à força de arraste, porque se deve às diferenças de pressão acima e abaixo da partícula. Essa força é calculada pela equação 2.3.

$$F_{\rm S} = \frac{1}{2} C_{\rm L} \rho \cdot A_{\rm p} \cdot U^2$$
 (2.3)

 $A_p = C_1 D^2$  - área exposta da partícula na direção normal ao escoamento;

C<sub>L</sub> - coeficiente de elevação;

U - velocidade média do escoamento;

 $P_S$  – peso submerso ou aparente da partícula sólida, dado pelo produto do volume da partícula pelo seu peso específico submerso, ou seja:

$$P_{\rm S} = C_2 D^3 \cdot \gamma'_{\rm S} \tag{2.4}$$

C<sub>2</sub> - constante de proporcionalidade que leva em conta o volume da partícula;

 $\gamma_S^\prime$  - peso específico do sedimento submerso.

A tensão tangencial crítica de cisalhamento ( $\tau_c$ ) é calculada tomando-se, na **figura 2.1**, os momentos das forças atuantes na partícula, em relação ao ponto G, sendo este o ponto de contato entre as partículas:

$$P_{S} a_{1} sen (\theta - \alpha) - F_{S} a_{1} sen \theta = F_{D} a_{1} cos \theta$$
(2.5)

Substituindo-se as equações 2.1, 2.3 e 2.4 na equação 2.5, tem-se:

$$C_2 D^3 .\gamma'_s . a_1 . sen (\theta - \alpha) - \frac{1}{2} C_L . \rho . A_p . U^2 . a_1 . sen \theta = C_1 . \tau_0 . D^2 . a_1 . cos \theta$$
 (2.6)

$$C_2 D^3 .\gamma'_{s} . sen (\theta - \alpha) - \frac{1}{2} C_L . \rho . C_1 D^2 . U^2 . sen \theta = C_1 . \tau_0 . D^2 . cos \theta$$
 (2.7)

$$C_2 D.\gamma'_{s} . sen (\theta - \alpha) - \frac{1}{2} C_L . C_1 \rho . U^2 . sen \theta = C_1 . \tau_0 . \cos \theta$$
 (2.8)

Fazendo  $U^2 = m_1 \cdot U_*^2$  e fazendo também  $m_2 = \frac{1}{2} \cdot C_1 \cdot m_1$ , obtém-se:

$$C_2 D.\gamma'_{s} . \operatorname{sen} (\theta - \alpha) - C_L . \tau_0 . m_2 . \operatorname{sen} \theta = \tau_0 . C_1 . \cos \theta$$
(2.9)

Considerando-se que, na condição crítica,  $\tau_0$  =  $\tau_c$  , tem-se:

$$C_2 D.\gamma'_{s} \cdot \operatorname{sen} (\theta - \alpha) - C_L \cdot \tau_c \cdot m_2 \cdot \operatorname{sen} \theta = \tau_c \cdot C_1 \cdot \cos \theta$$
(2.10)

$$C_2.D.\gamma'_{s}.sen(\theta - \alpha) = C_L.\tau_c.m_2.sen\theta + \tau_c.C_1.cos\theta$$
(2.11)

Se a declividade do leito for muito pequena,  $\alpha \approx 0$ .

$$C_2 D.\gamma'_{s} \sin \theta = \tau_c [C_L, m_2, \sin \theta + C_1, \cos \theta]$$
(2.12)

$$\tau_{c} = \frac{C_{2} D. \gamma'_{s}. \operatorname{sen} \theta}{[C_{L}. m_{2}. \operatorname{sen} \theta + C_{1}. \cos \theta]}$$
(2.13)

A divisão da **equação 2.13** por (C<sub>2</sub> . sen  $\theta$ ) leva a:

$$\frac{\tau_{\rm c}}{D.\gamma_{\rm s}'} = \frac{1}{\left[\frac{C_{\rm L}}{C_2} + \frac{C_1}{C_2} \operatorname{ctg}\theta\right]}$$
(2.14)

$$\frac{\tau_{\rm c}}{{\rm D.}\gamma_{\rm s}'} = \frac{1}{\left[m_3 + m_4\,{\rm ctg}\theta\right]} \tag{2.15}$$

sendo

$$m_3 = \frac{C_L \cdot m_2}{C_2}$$
 e  $m_4 = \frac{C_1}{C_2}$ , determinados experimentalmente.

A equação 2.15 possibilita a descrição do início do transporte como função do parâmetro adimensional  $\frac{\tau_c}{D.\gamma'_s}$ , que representa a relação entre a tensão crítica tangencial ao escoamento e as forças gravitacionais agindo na partícula isolada.

2.3.2.1.1- Análises de White, 1940 [COIADO; 2002-2003; SIMONS & SENTURK, 1992]

White (1940) desprezou as forças de elevação ( $F_S$ ), por exercerem pequena influência sobre o movimento incipiente, se comparadas com as demais forças. Assim, na **equação 2.14**, fazendo-se  $C_L = 0$ , obtém-se:

$$\frac{\tau_{\rm c}}{{\rm D}.(\gamma_{\rm s}-\gamma)} = \frac{{\rm C}_2}{{\rm C}_1} \tan\theta$$
(2.16)

$$\tau_{c} = m_{5} \cdot (\gamma_{s} - \gamma) D$$
(2.17)

Na qual:

 $m_5$ - constante. Função da densidade e da forma da partícula, das propriedades do líquido e da organização das partículas no fundo;

 $\gamma_s$  - peso específico do sedimento;

γ - peso específico da água;

 $\tau_c$  - tensão tangencial crítica de cisalhamento.

2.3.2.1.2 – Estudos de Shields, 1937 [ALFREDINE, 1983; ECKARDT, 1998; COIADO, 2002 - 2003]

Shields (1936) apresentou um dos primeiros critérios para o estudo do início do transporte sólido, baseando-se em análise dimensional. A **figura 2.2** apresenta o diagrama de Shields, que foi desenvolvido para escoamentos uniformes e permanentes, sobre leitos constituídos de material não-coesivo e uniforme.

Trata-se do critério mais conhecido para o estudo do início do transporte sólido. Este critério permite facilmente distinguir as regiões de movimento e de repouso do sedimento, além da influência das forças hidrodinâmicas no movimento das partículas menores, enquanto

que, para as partículas mais grosseiras, são apresentadas como dominantes as forças de sustentação turbulentas e as de arraste por pressão diferencial sobre o sedimento.

Três regiões distintas são identificadas por autores como GRAF (1971) no diagrama de Shields. As formas dessas curvas apresentam algumas semelhanças com aquelas empregadas na determinação do coeficiente de fricção para escoamentos em condutos forçados. A mais conhecida é aquela denominada de Harpas de Nikuradse, em que se identificam regiões de escoamento laminar, de transição e turbulento, com alternativas diferentes para a estimativa do coeficiente de fricção, dependendo de cada tipo de escoamento predominante [AZEVEDO NETO, 1991]. Abaixo, descreve-se um resumo sobre as três regiões.

•Região 1:  $[D < \delta]$  e R\*  $\leq 10$ . As partículas são encobertas pelo filme limite laminar e seu movimento se deve principalmente aos efeitos das forças viscosas. O parâmetro de Shields é inversamente proporcional ao número de Reynolds.

• Região 2 – [ $D \cong \delta$ ] e Reynolds 10 < R<sub>\*</sub> < 400. Nesta região, fica caracterizada a transição entre o escoamento laminar e o turbulento. O movimento da partícula passa a depender tanto das ações da viscosidade quanto das ações da turbulência. Nesta região, o parâmetro de Shields assume o seu valor mínimo, ou seja:

$$\frac{\tau_c}{D.(\gamma_s - \gamma)} = 0.03$$
, que se observa para valores de R \*  $\approx 10$ .

•Região 3 -  $[D < \delta]$  e Reynolds R\*  $\geq$  400. Com o aumento gradativo da turbulência e, conseqüentemente, do número de Reynolds, a espessura da camada laminar tende a desaparecer, sendo sobreposta pela presença da rugosidade do grão. A rugosidade do leito

contribui para a turbulência e o parâmetro de Shields independe do número de Reynolds, assumindo um valor constante igual a 0,06.

$$\frac{\tau_c}{.D.\left(\gamma_s-\gamma\right)}{=}\,0{,}06$$
 , que se observa para valores de  $R_*{\,>\,}400$ 

Na qual:

 $\delta$  - espessura da camada limite;

 $R_* = \frac{D.U_*}{v}$  - número de Reynolds de cisalhamento do leito;

v - viscosidade cinemática da água.



Figura 2.2 – Diagrama de Shields (1936) para início do movimento

# 2.3.2.2- Abordagens teórica e semiteórica, baseadas na velocidade crítica

# 2.3.2.2.1- Estudos de Yang, 1993 [YANG, 1973; YANG, 1993; COIADO, 2002 – 2003]

Yang considera os casos dos rios com declividades muito pequenas, de modo que é possível desprezar as componentes da força gravitacional na direção do fluxo. Sendo assim, a força de arraste é determinada com uma expressão semelhante à mostrada na **equação 2.18**.

$$F_{\rm D} = C_{\rm D} . \frac{\pi . D^2}{4} . \frac{\rho}{2} . U_{\rm y}^2$$
(2.18)

 $U_v$  - velocidade da corrente a uma posição y acima do fundo;

C<sub>D</sub> - coeficiente de arraste.

A força de resistência de queda de uma esfera é igualada ao peso aparente da mesma esfera, ou seja:

$$C_{\rm D}^{''} \cdot \frac{\pi . D^2}{4} \cdot \frac{\rho}{2} \cdot W_0^2 = \frac{\pi . D^3}{6} \cdot (\rho_{\rm S} - \rho) \cdot g$$
 (2.19)

Na qual:

 $C_D^{"}$  = coeficiente de arraste referente à velocidade de queda da partícula;

 $\mathbf{W}_{0}$  - velocidade de queda da partícula para a água em repouso;

 $\rho_{s}\,$  - massa especifica do sedimento;

g - aceleração da gravidade.

Fazendo  $C_D^{"} = \psi_1 C_D$  e eliminando  $C_D$  das **equações 2.18** e **2.19**, a força de arraste se escreve por:

$$F_{\rm D} = \frac{\pi . D^3}{6.\psi_1 . W_0^2} .(\rho_{\rm S} - \rho).g.U_{\rm y}^2$$
(2.20)

Yang considerou a distribuição de velocidade segundo uma lei de distribuição logarítmica dada por:

$$\frac{U_{Y}}{U_{*}} = 5,75.\log.\frac{y}{D} + B_{r}$$
(2.21)

Na qual:

 $B_r$ - coeficiente função da rugosidade do fundo, que depende se o regime do fluxo é hidraulicamente liso de transição ou rugoso;

y - profundidade acima do leito do canal.

Então a velocidade numa posição "y" do fundo é:

$$U_y = B_r \cdot U_*$$
 (2.22)

A velocidade média pode ser obtida por integração da equação 2.21 para o intervalo desde y= $\epsilon$  até y=d fazendo  $\epsilon \rightarrow 0$ :

$$U = U_* \left[ 5,75 \cdot \left( \log \cdot \frac{d}{D} - 1 \right) + B_r \right]$$
(2.23)

Na qual:

d – profundidade média da corrente.

Combinado as equações 2.20, 2.22, e 2.23, chega-se a equação para a força de arraste:

$$F_{\rm D} = \frac{\pi . D^3}{6.\psi_1} (\rho_{\rm S} - \rho) g \left(\frac{U}{W_0}\right)^2 \left[\frac{B_{\rm r}}{5.75 \left[\log\left(\frac{d}{\rm D}\right) - 1\right] + B_{\rm r}}\right]^2$$
(2.24)

$$F_{\rm S} = C_{\rm L} \cdot \frac{\pi . D^2}{4} \cdot \frac{\rho}{2} \cdot U_{\rm y}^2$$
(2.25)

A relação entre os coeficientes  $C_D$  e  $C_L$  pode ser obtida experimentalmente, de modo que  $\psi_2.C_L=C_D$ . Recordando que  $C''_D=\psi_1.C_L$ , então  $C''_D=\psi_1.\psi_2.C_L$ . Recorrendo-se à equação 2.19 pode se escrever:

$$C_{L} = \frac{\pi . D^{3}}{6.\psi_{1}.\psi_{2} W_{0}^{2}} (\rho_{S} - \rho) . g. \frac{2 x 4}{\pi . D^{2}.\rho}$$
(2.26)

Substituindo-se a equação 2.26 na 2.25 obtém-se a equação 2.27:

$$F_{\rm S} = \frac{\pi . D^3}{6.\psi_1.\psi_2 W_0^2} (\rho_{\rm S} - \rho) . g . U_y^2$$
(2.27)

Combinando as equações 2.22, 2.23 com a 2.27, chega-se à equação 2.28.

$$F_{S} = \frac{\pi . D^{3}}{6.\psi_{1}.\psi_{2}} (\rho_{S} - \rho) g \left(\frac{U}{W_{0}}\right)^{2} \left[\frac{B_{r}}{5.75 \left[\log\left(\frac{d}{D}\right) - 1\right] + B_{r}}\right]^{2}$$
(2.28)

O peso aparente da partícula é:

$$P_{\rm S} = \frac{\pi . D^3}{6} (\rho_{\rm S} - \rho) g$$
(2.29)

Então a força de resistência é:

$$F_{R} = \psi_{3} \cdot (P_{S} - F_{S})$$
 (2.30)

 ${\rm F}_{\rm R}\,$  - força de resistência de oposição ao movimento da partícula.

Substituindo, na equação 2.30, Ps e F<sub>L</sub> pelas equações 2.28 e 2.29 obtém-se:

$$F_{\rm R} = \frac{\psi_3 \pi D^3}{6} (\rho_{\rm S} - \rho) g \left\{ 1 - \frac{1}{\psi_1 \psi_2} \left( \frac{U}{W_0} \right)^2 \left[ \frac{B_{\rm r}}{5,75 \left[ \log \left( \frac{d}{D} \right) - 1 \right] + B_{\rm r}} \right]^2 \right\}$$
(2.31)

Yang considera que o movimento da partícula se inicia quando  $F_D=F_R$ . Das **equações** 2.24 e 2.31 resulta:

$$\frac{U_{c}}{W_{0}} = \left[\frac{5,75\left[\log\left(\frac{d}{D}\right) - 1\right]}{B_{r}} + 1\right] \left(\frac{\psi_{1}\psi_{2}\psi_{3}}{\psi_{2} + \psi_{3}}\right)^{1/2}$$
(2.32)

Na qual:

 $U_c$ -velocidade crítica média. Corresponde à velocidade média do fluxo no movimento incipiente da partícula;

 $\frac{U_c}{W_0}$  - velocidade crítica adimensional;

 $\psi_1$ ,  $\psi_2$ ,  $\psi_3$  = parâmetros a serem determinados experimentalmente.

A definição do parâmetro  $\,B_r\,$  fica condicionada às condições de turbulência do escoamento.

• Para o regime liso,  $B_r$  é função somente do número de Reynolds de cisalhamento do leito  $(R_* = \frac{U_*D}{v})$ :

Para 
$$0 < R_* < 5$$
,  $B_r = 5,5+5,75 \log\left(\frac{U_*D}{v}\right)$  (2.33)

Então a equação 2.32 transforma-se em:

$$\frac{U_{c}}{W_{0}} = \left[\frac{\log\left(\frac{d}{D}\right) - 1}{\log\left(\frac{U*D}{v}\right) + 0.956} + 1\right] \left(\frac{\psi_{1}\psi_{2}\psi_{3}}{\psi_{2} + \psi_{3}}\right)^{1/2}$$
(2.34)

• Para o regime rugoso (turbulência completa),  $B_r$  é função só da rugosidade relativa D/d. De modo que:

Para 
$$R_* = \frac{U_*D}{v} > 70$$
 ,  $B_r = 8,5$  (2.35)

Então a equação 2.32 pode ser escrita da seguinte forma:

$$\frac{U_{c}}{W_{0}} = \left[\frac{\log\left(\frac{d}{D}\right) - 1}{1,48} + 1\right] \left(\frac{\psi_{1}\psi_{2}\psi_{3}}{\psi_{2} + \psi_{3}}\right)^{1/2}$$
(2.36)

Para o regime de transição, em que o número de Reynolds está entre 5 e 70, a equação
2.34 pode ser usada.

YANG (1973) utilizou dados de diversos investigadores na determinação dos coeficientes das **equações 2.34 e 2.36** e obteve as relações representadas pelas **equações 2.37** e **2.38**.

Para 
$$1,2 < R_* = \frac{U*D}{v} > 70$$
  $\frac{U_c}{W_0} = \frac{2,5}{\log\left(\frac{U*D}{v}\right) - 0,06} + 0,66$  (2.37)

Para 
$$R_* = \frac{U_*D}{v} \ge 70$$
  $\frac{U_c}{W_0} = 2,05$  (2.38)

<u>2.3.2.3 – Métodos baseados em critérios experimentais</u> [COIADO, 2002 - 2003]

2.3.2.3.1- Critério de Meyer-Peter e Müller (1948) [COIADO, 2002 - 2003]

Na equação de Meyer-Peter e Müller (1948), o tamanho da partícula de sedimento susceptível ao movimento incipiente é obtido por:

$$D_{en} = \frac{S.d}{K_{MP} \left(\frac{n}{D_{90}^{1/6}}\right)^{3/2}}$$
(2.39)

Na qual:

D<sub>en</sub> - tamanho de sedimento na camada encouraçada do fundo;

S = declividade da linha de água;

 $K_{MP}$  = constante. Igual a 0,19 quando "**d**" estiver em pés e igual 0,058 quando "**d**" estiver em metros;

n – coeficiente de rugosidade ou de resistência ao escoamento de Manning, cuja dimensão é  $[L^{-1/3} T];$ 

 $D_{90}$  = diâmetro do sedimento tal que 90% da amostra tenha diâmetro inferior.

2.3.2.3.2- Critério de Mavis e Laushey, 1948 [GARDE & RAJU, 1985]

Mavis e Laushey (1948) desenvolveram uma relação experimental baseada na velocidade da partícula a uma dada profundidade do leito, para estabelecer o início do desligamento da partícula do fundo para a corrente.

$$U_b = K_{ML} . D^{1/2}$$
(2.40)

Na qual:

 $U_b$ - velocidade competente do fundo. Equivale à velocidade de deslocamento do leito admitida como 0,7.U.

K<sub>ML</sub>= constante. Igual a 0,51 quando U<sub>b</sub> está em ft/s e 0,155 quando U<sub>b</sub> está em m/s.

<u>2.3.2.4 – Equações empíricas para o cálculo da tensão crítica de cisalhamento</u> [GARDE & RAJU, 1985; COIADO, 2002 - 2003]

Devido ao caráter aleatório das variáveis intervenientes no transporte do sedimento do fundo para a corrente, a definição da tensão de cisalhamento crítica para os escoamentos naturais ainda é um assunto que requer maiores investigações. Talvez por isso, no decorrer do século XIX, diversos pesquisadores tenham buscado, em laboratório, onde é possível controlar melhor as características do fluxo e dos sedimentos, encontrar uma equação apropriada para definição do início do transporte sólido.

A **tabela 2.1** apresenta um grupo de equações mais comentadas na literatura, obtidas em GARDE & RAJU (1985), para a estimativa da tensão crítica de cisalhamento. Com exceção do diâmetro que neste texto é sempre recomendado para ser utilizado em milímetros, as demais variáveis estão no sistema MKFS ou Técnico. Do contrário, serão definidos na própria tabela.

Tabela 2.1 – Equações empíricas para o cálculo da tensão crítica [GARDE & RAJU, 1985]

| EQUAÇÃO                                                                                                                                                        | AUTOR  | OBSERVAÇÕES                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                | Kramer | $\tau_{c} = [M \cdot L^{-2}] = [g / cm^{2}]$                                                  |
| $\tau c = \frac{100}{6} (\gamma s - \gamma) \frac{Da}{M}$<br>D <sub>a</sub> - diâmetro aritmético da amostra;<br>M - coeficiente de uniformidade de<br>Kramer. |        | $0,24 < D_a < 6,52 mm$<br>0,65 < M < 1,00<br>$\gamma_{s}, \gamma = [M . L^{-3}] = [g / cm^3]$ |

| EQUAÇÃO                                                                                                                                                                          | AUTOR        | OBSERVAÇÕES                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\pi c = 0.0285 \cdot \left(\frac{\rho s - \rho}{\rho}\right)^{1/2} \left(\frac{D}{M}\right)^{1/2}$                                                                              | USWES        | 0,205 < D < 4,077 mm<br>0,28 < M < 0,643<br>$\frac{\gamma_s}{\gamma} = 2,70$                                                                                                                                                                       |
| $*\tau c = 0,0216 \left(\frac{\rho s - \rho}{\rho} \cdot \frac{D}{M}\right)^{1/2}$ $**\tau c = 0,0304 \left(\frac{\rho s - \rho}{\rho} \cdot \frac{D}{M}\right)$                 | Chang        | *VÁLIDA PARA $\left(\frac{\rho s - \rho}{\rho}, \frac{D}{M}\right) > 2,0$<br>**VÁLIDAPARA<br>$\left(\frac{(\rho s - \rho)}{\rho}, \frac{D}{M}\right) \le 2,0$<br>0,134 < D < 8,09  mm<br>0,23 < M < 1,0<br>$2,05 < \frac{\gamma_s}{\gamma} > 3,89$ |
| $\pi = \frac{(\rho s - \rho)}{\rho} \times \frac{D}{13,25}$                                                                                                                      | Krey         |                                                                                                                                                                                                                                                    |
| * $\pi c = 0,013.D\left(\frac{\rho s - \rho}{\rho} \cdot \frac{1}{M}\right) + 0,01216$<br>** $\pi c = 0,0538.D\left(\frac{\rho s - \rho}{\rho} \cdot \frac{1}{M}\right) - 0,073$ | Indri        | * D< 1,0 mm<br>**D≥ 1,0 mm                                                                                                                                                                                                                         |
| $\tau c = \left[0,201.\gamma s(\gamma s - \gamma f)\eta D^3\right]^{1/2}$<br>$\eta$ - fator de forma                                                                             | Scholklitsch | $\tau_{c} = [F \cdot L^{-2}] = [N / m^{2}]$<br>$\gamma_{s}, \gamma = [F \cdot L^{-3}] = [N / m^{3}]$<br>D = [L] = m<br>$1,0 < \eta < 4,0$<br>$\eta = 1,5$ para as areias                                                                           |

Tabela 2.1 – Equações empíricas para o cálculo da tensão crítica [GARDE & RAJU, 1985]

#### 2.4 – Estudos das formas de fundo em escoamentos com superfície livre

A morfologia dos leitos móveis sob a ação de correntes fluviais é ditada principalmente pelo transporte por arraste dos sedimentos mais grosseiros, uma vez que o material de granulometria mais fina é normalmente transportado em suspensão.

A ação do escoamento sobre um leito de material não-coesivo, geralmente areia ou cascalho, promove o surgimento de cinco tipos de configurações de fundo, sendo elas leito plano, rugas, dunas, transição e antidunas, cujo aparecimento está associado aos regimes de escoamento dos leitos aluvionares.

Os regimes de escoamento dos leitos aluvionares variam conforme a alteração das características do escoamento, do fluido e do material do leito, condicionando a rugosidade de forma, correspondente à resistência de forma devida às deformações do leito. A resistência total do fundo resulta da adição da correspondente à forma com a superficial, esta última devido à rugosidade dos grãos.

# 2.4.1 - Classificação dos regimes de escoamento de leitos aluvionares, segundo SIMONS & RICHARDSON (1961)

Do ponto de vista das variações do leito, quer no aspecto do transporte, ou no que se referem aos aspectos da rugosidade, os regimes de escoamento aluvionares são classificados segundo SIMONS & RICHARDSON (1961), como:

#### •Regime inferior de escoamento

Corresponde à ocorrência das rugas e dunas. É caracterizado por uma rugosidade de forma elevada determinante na resistência total do escoamento.

#### •Regime de transição

Corresponde à fase de desaparecimento das dunas até o surgimento do leito plano, sendo a rugosidade do leito muito instável e dependente da regressão das dunas.

#### •Regime superior de escoamento

Corresponde à ocorrência do leito plano e antidunas. A rugosidade de forma passa a ser pouco significativa, predominando a rugosidade superficial.

# 2.4.2 - Evolução das formas de fundo, de acordo com o número de Froude do escoamento, segundo os critérios de SIMONS & RICHARDSON (1961)

A situação inicial é de um escoamento líquido sobre um leito de partículas sólidas em repouso. Mas, com o aumento gradativo da velocidade do líquido, formam-se diferentes configurações de fundo que, segundo o critério de SIMONS E RICHARDSON (1961), variam com o número de Froude (**Fr**).
• Fr<0,15: Apenas alguns grãos se movimentam por arraste, com o leito mantendo-se plano.

• 0,15<Fr<0,30: O transporte em suspensão é pequeno e o deslocamento por arraste é predominantemente por rolamentos e deslizamentos, com alguns grãos dando pequenos saltos. Aparecem as primeiras rugas.

• 0,30<Fr<0,60: Começa a haver o aumento gradativo do transporte em suspensão. Aumentam as irregularidades do leito e surgem as dunas.

• 0,60<Fr<1,30: Os grãos da camada superior estão em movimento quase permanente. Diminuem os períodos de repouso e o leito torna-se novamente plano ou ondulado.

• Fr>1,30: As formas onduladas transformam-se em antidunas que se propagam contra a corrente líquida. O escoamento é muito turbulento e o transporte das partículas em suspensão é predominante.

# 2.4.3 – Métodos de previsão da geometria das deformações de fundo em escoamento com superfície livre

A seguir serão apresentados, de forma resumida, alguns dos principais métodos de estimativa da geometria das formas de fundo em escoamentos com superfície livre. Estas metodologias serão apresentadas porque representam os trabalhos de relevância reconhecida sobre o assunto.

### <u>2.4.3.1 – Metodologia de Yalin (1964)</u>

YALIN (1964) desenvolveu uma metodologia para a previsão de formas de fundo, usando estudos realizados em canais de laboratório e análise dimensional. Para o desenvolvimento da sua metodologia, Yalin estabeleceu que:

•A altura das formas deve ser função da tensão de cisalhamento adimensional e não deve exceder 1/6 da profundidade da corrente líquida.

•Na condição de escoamento uniforme, permanente e bidimensional, a variação da tensão de cisalhamento da corrente líquida ao longo da duna só depende da variação da profundidade média do escoamento, como se observa na **equação 2.41** apresentada abaixo:

$$\frac{h}{d} = f\left(\frac{\tau_0 - \tau_c}{\tau_0}\right)$$
(2.41)

Na qual:

h – altura da duna

A base de dados usada nos estudos de YALIN (1964) pode ser resumida nas seguintes faixas de variações, respectivamente, da profundidade, do diâmetro médio do

material do leito e da declividade média da linha de água:  $0,133 \text{ m} \le d \le 28,194 \text{ m}, 0,137 \text{ mm}$  $\le D_{50} \le 2,450 \text{ mm}, 0,00001 \text{m/m} \le S \le 0,014 \text{ m/m}.$  Essa base de dados foi utilizada na definição da **equação 2.42**.

$$\frac{h}{d_c} = \frac{1}{6} \left[ \left( \frac{d}{d_c} \right) - 1 \right]$$
(2.42)

d<sub>c</sub> – profundidade crítica para o início do movimento.

O comprimento das configurações de fundo é apresentado nestes estudos como proporcional a profundidade média da corrente ou ao diâmetro médio do material do leito. Ou seja:

Lc = 1000 D<sub>50</sub> se 
$$\frac{u * D_{50}}{v} < 20$$
 (2.43)

Lc = 5 d.....se 
$$\frac{u * D_{50}}{v} > 20$$
 (2.44)

D50 - diâmetro do sedimento tal que 50% da amostra tem diâmetro inferior;

Lc - comprimento da configuração de fundo.

De acordo com SIMONS E SENTURK (1992), o critério de Yalin baseia-se em duas suposições básicas:

•O comprimento das dunas ou rugas é muito maior do que a altura e o diâmetro médio do material do leito.

•A tensão de cisalhamento média da corrente líquida que age na parte inferior de jusante da crista da ruga ou duna é aproximadamente igual à tensão de cisalhamento crítica de início de transporte.

RAUDKIVI (1967) comenta que as conclusões dos estudos de YALIN (1964) podem induzir a um novo critério de classificação das dunas e rugas em escoamentos com superfície livre: rugas são aquelas ondulações cujo comprimento é proporcional ao tamanho da partícula e independe da profundidade do escoamento e dunas são aquelas ondulações cujo comprimento é proporcional à profundidade do escoamento.

2<u>.4.3.2– Metodologia de Allen (1963)</u> [SIMONS & SENTURK, 1992]

Allen (1963) mostrou, através de observações experimentais, que a profundidade da corrente líquida poderia se relacionar com a altura das configurações de fundo através das expressões matemáticas mostradas nas **equações 2.45, 2.46 e 2.47**. A primeira das três equações é indicada para configurações do tipo dunas e as outras duas para configurações do tipo rugas. Ainda, segundo SIMONS E SENTURK (1992), o método de Allen mostrou-se apropriado quando comparado com dados experimentais.

| Log d = 0.8271 log h + 0.8901      | (2.45) |
|------------------------------------|--------|
| •Para pequenas rugas ( h < 0,15m)  |        |
| $\log h = 0.9508 \log Lc - 1.0867$ | (2.46) |

•Para grandes rugas

$$\log h = 0,7384 \log Lc - 1,0746$$
 (2.47)

#### 2.4.3.3–Metodologia de Ranga Raju e Sony (1976)

A metodologia apresentada nesse estudo é sustentada na hipótese de que a altura e o comprimento das configurações de fundo exibem uma intrínseca relação com os coeficientes de resistência ao escoamento do fluído.

O ponto de partida para a determinação da relação entre a altura e o comprimento das configurações de fundo foi a aplicação da equação de SIMONS et al (1965) que, em seguida, foi comparada ao parâmetro de intensidade de transporte da descarga de sedimentos transportada por arraste. No entanto, é interessante destacar que a relação proposta pelos autores presta-se às configurações do tipo dunas e rugas de formas triangulares. Nas **equações 2.48 e 2.49**, são apresentadas as relações obtidas através de ajustes com dados experimentais,

para a determinação da altura e do comprimento das configurações de fundo, em função de parâmetros do escoamento do fluido e dos sedimentos.

$$\frac{d}{D_{50}} \left(\frac{U}{\sqrt{g R_{H}}}\right)^{2} \left(\frac{U}{\sqrt{\frac{(\gamma_{s}, \gamma)D_{50}}{\rho}}}\right) = 6,5.10^{3} \left(\tau_{0}'\right)^{\frac{8}{3}}$$
(2.48)

$$\frac{\text{Lc}}{\text{D}_{50}} \left(\frac{\text{U}}{\sqrt{\text{g R}_{\text{H}}}}\right)^2 \left(\frac{\text{U}}{\sqrt{\frac{(\gamma_{\text{s}} - \gamma)\text{D}_{50}}{\rho}}}\right) \frac{\text{R}_{\text{H}}}{\text{D}_{50}} = 3.10^8 \left(\tau_0'\right)^{\frac{10}{3}}$$
(2.49)

Na qual:

$$\tau'_0 = \frac{\gamma R'_H S}{(\gamma_{s-} \gamma) D_{50}}$$
(2.50)

$$u = \frac{1}{n_s} R'_H \frac{2}{3} \cdot S^{1/2}$$
(2.51)

$$n = \frac{D_{50}^{1/6}}{25,6}$$
 no sistema M.K.S de unidades (2.52)

sendo:

 $R_{\rm H}$  - raio hidráulico da seção;

R'<sub>H</sub>-parcela do raio hidráulico relativo à rugosidade do leito;

 $\tau'_0$ -parcela da tensão tangencial média de cisalhamento do escoamento referente à rugosidade do leito.

Combinando-se as **equações 2.48** e **2.49**, chega-se a uma expressão de fácil aplicação que relaciona a altura e o comprimento das configurações de fundo.

$$\frac{h}{Lc} = 2,16.10^{-5} \left(\frac{R_{\rm H}}{D_{50}}\right) \left(\tau_0'\right)^{-\frac{2}{3}}$$
(2.53)

## 2.4.3.4– Metodologia de Van Rijn (1984a, 1984b, 1984c)

VAN RIJN (1984a) define que o transporte de sedimentos por arraste ocorre numa espessura teórica dada pela **equação 2.54**. Ele também admite que todas as partículas presentes em uma camada de altura maior do que as alturas correspondentes ao limite máximo da altura teórica calculada são transportadas em suspensão.

O pesquisador assume ainda que o transporte de sedimentos pode ser descrito pelos parâmetros adimensionais de ACKER & WHITER (1973).

 Altura teórica dos saltos: A altura teórica dos saltos foi obtida por estudos com sedimentos de granulometria variando na faixa de 100μ a 2000μ e com velocidades de atrito variando na faixa de 0,02 m/s a 0,14 m/s. Admitindo uma rugosidade efetiva do leito como sendo duas vezes o diâmetro representativo do material do leito, foi definida a expressão para a estimativa da altura dos saltos como se vê na equação 2.54.

$$\frac{h_t}{D} = 0.30 D *^{0.70} T^{0.50}$$
(2.54)

Na qual:

h<sub>t</sub> – altura teórica do salto;

- T parâmetro de transporte de VAN RIJN (1984 a);
- D\* diâmetro adimensional da partícula.

•Velocidade da partícula: Para o cálculo da velocidade da partícula, o autor baseou-se no principio de Bagnold (1966). A equação 2.55 é a expressão definida por Van Rijn para o cálculo da velocidade de deslocamento da partícula de sedimentos.

$$\frac{U_{b}}{\left[\left(\frac{\rho_{s}}{\rho} - 1\right)g D\right]^{0,50}} = 1,5 T^{0,60}$$
(2.55)

U<sub>b</sub> – velocidade de deslocamento da partícula de sedimentos.

•Definição da concentração dos sedimentos na camada do leito, passível de ocorrer o transporte por arraste do leito: É assumido que a espessura da camada do leito pode ser dada pela equação 2.54, com um valor mínimo igual a duas vezes o valor do diâmetro médio da partícula, em qualquer condição de escoamento e de característica do sedimento. Nesse caso, a concentração de sedimentos nessa camada pode ser representada pela equação 2.56.

$$\frac{C_{b}}{C_{0}} = 0.18 \frac{T}{D_{*}}$$
(2.56)

Na qual:

 $C_b$  – concentração de sedimentos no nível correspondente à altura máxima dos saltos da partícula, quando do transporte por arraste;

 $C_0$  –concentração máxima admitida no nível correspondente à altura máxima do salto adotada como igual a 0,65.

Em VAN RIJN (1984c), a classificação das formas de fundo é assumida como governada principalmente pela descarga de sedimentos transportada por arraste, sendo basicamente descrita pelo diâmetro adimensional da partícula e pelo parâmetro de intensidade de transporte, expressos pelas **equações 2.59** e **2.60**.

Na pesquisa de VAN RIJN (1984a, 1986b, 1984c), foram empregados 84 experimentos realizados em canais de laboratório e 22 conjuntos de dados de campo. O diâmetro do sedimento variou de 0,19 mm a 2,30 mm e de 0,40 mm a 3,60 mm para os dados de laboratório e de campo, respectivamente.

As **equações 2.57 e 2.58** foram obtidas através de regressão e possibilitam a determinação da altura e do comprimento das configurações de fundo em função da profundidade da corrente e das características do escoamento e do sedimento. É importante observar que esse método é recomendado para regime de configurações de fundo do tipo dunas ou de transição.

$$\frac{h}{d} = 0.11 \left(\frac{D_{50}}{d}\right)^{0.30} (1 - e^{-0.5T}) (25 - T)$$
(2.57)

$$\frac{h}{Lc} = 0.015 \left(\frac{D_{50}}{d}\right)^{0.30} (1 - e^{-0.5T}) (25 - T)$$
(2.58)

$$D_* = D_{50} \left[ \left( \frac{\rho_s - \rho}{\rho v^2} \right) g \right]^{\frac{1}{3}}$$
(2.59)

$$T = \frac{(U'_{*})^{2} - (U_{*c})^{2}}{(U_{*c})^{2}} = \left[ \left( \frac{U'_{*}}{U_{*c}} \right)^{2} - 1 \right]$$
(2.60)

$$U'_* = \frac{U\sqrt{g}}{C'}$$
(2.61)

C' = 
$$18\log\left[\frac{12 \,\text{R}'_{\text{H}}}{3 \,\text{D}_{90}}\right]$$

Na qual:

C'- coeficiente de Chezy referente ao grão de sedimentos;

 $U_{*c}$  - velocidade crítica de atrito para início do movimento, que é calculada segundo o critério de Shields (1936) [*apud* VAN RIJN (1984a)];

U'\* - velocidade de cisalhamento do escoamento relativa à rugosidade do leito.

Nas equações 2.57 e 2.58, nota-se que valores para T=0 ou T  $\geq$ 25 caracterizam a configuração de leito plano. Quando o parâmetro T aumenta até 5 (cinco), a profundidade da duna apresenta valores crescentes. Mas, quando o limite de 5 (cinco) é superado, ocorre redução.

Segundo Fredsoe (1979, 1981), citado em STRASSER (2002), a dinâmica deste comportamento é esperada, porque, para baixos valores da potência da corrente, ocorre uma predominância da descarga de sedimentos por arraste, em relação à descarga em suspensão e isso promove o aumento da altura das configurações de fundo. Ao contrário, quando existe o crescimento na potência, passa a haver predominância do transporte em suspensão em relação ao transporte por arraste, causando reduções nos valores das alturas das configurações de fundo.

Combinando as **equações 2.57 e 2.58**, encontra-se que o comprimento das dunas pode ser representado pela **equação 2.63**. Isto comprova as suposições de YALIN (1964), que também deduziu que o comprimento das configurações de fundo é proporcional à profundidade do escoamento, sendo dado como  $Lc = 2\pi d$ .

$$Lc = 7,33 d$$
 (2.63)

Segundo CHANG (1988), isso gera uma variação diferenciada da geometria das formas de fundo com o aumento do escoamento. Para a altura da duna, a tendência é de haver uma redução, enquanto que o comprimento tende a se manter inalterado, mudando de cenário somente com o aumento da profundidade da corrente líquida. Além da metodologia para a previsão da formas de fundo, VAN RIJN (1984a) apresenta uma equação para o cálculo da descarga de sedimentos por arraste. Essa equação será apresentada no capítulo quatro.

#### 2.4.3.5–Metodologia de Julien & Klaassen (1995)

Na avaliação desses autores, o método de VAN RIJN (1984c) está entre os mais empregados para estudos referentes à previsão da geometria das formas de fundo em correntes naturais. Os parâmetros para definir a altura e o comprimento são determinados basicamente pela profundidade do escoamento e pelo diâmetro mediano do material do leito.

A partir de dados de campo de diferentes rios mundiais, JULIEN E KLAASSEN (1995) propuseram modificações no método de VAN RIJN (1984c), em observância a uma série de pontos passíveis de discussão quanto à variação do parâmetro de transporte. No

artigo, são comentados dois estudos realizados por Termes (1986) e por Raslan (1991). Esses estudos evidenciaram que:

•a altura relativa das formas do leito (h/d) é praticamente constante para 5<T<25;

•o leito plano não ocorre para T = 25 e número de Froude = 0,80;

•o método de Van Rijn (1985c) subestima a altura das formas do leito para T>8;

•medições do comprimento das dunas mostraram-se, diversas vezes, maiores do que as previstas pelo método de Van Rijn para valores de T<5.

JULEIN E KLAASSEN (1995) verificaram que a altura relativa das dunas não diminui com o aumento da vazão para valores de T>10, que configurações de fundo plano não ocorrem para T=25 e que dunas podem ser verificadas para valores de T acima de 40. As diferenças foram atribuídas ao fato de o método de Van Rijn ter sido desenvolvido com base em dados de laboratório.

Nas **figuras 2.3 e 2.4**, nota-se que as curvas contínuas propostas por VAN RIJN (1984c) aproximam-se melhor dos dados experimentais para valores do parâmetro de transporte até 25. Acima desse limite, começam a surgir maiores distorções entre os pontos experimentais e essas curvas.

JULEIN E KLAASSEN (1995) sugeriram que a altura e a esbeltez das dunas poderiam ser estimadas de maneira independente do parâmetro de transporte. Deste modo, propuseram alterações nos coeficientes do termo  $(d_{50} / h)$  para melhorar o ajuste entre os

resultados estimados pelo método de Van Rijn e os dados experimentais usados na pesquisa. As **equações 2.64 e 2.65** mostram as novas relações.

$$\frac{h}{d} = \zeta \left(\frac{D_{50}}{d}\right)^{0,3}$$
(2.64)

Na qual:

 $0.8 < \varsigma < 8$  com um valor médio de 2.5.

$$\frac{h}{Lc} = \zeta \left(\frac{D_{50}}{d}\right)^{0.3}$$
(2.65)

Sendo:

 $0,125 < \zeta < 2$ , com o valor médio de 0,4.

Combinado-se as equações 2.64 e 2.65 tem-se:

$$Lc = 6,25d$$
 (2.66)

Nota-se que a **equação 2.66** é semelhante às equações obtidas por VAN RIJN (1984c) e YALIN (1964). Observa-se que o coeficiente de proporcionalidade é próximo ao valor encontrado por Yalin. Isso demonstra consistência nas expressões obtidas para estimar a altura e a esbeltez das dunas.



Figura 2.3 – Previsão do comprimento das dunas [JULIEN & KLAASSEN, 1995]



Figura 2.4 – Previsão da altura das dunas [JULIEN & KLAASSEN, 1995]

#### 2.5 – Estudos da resistência hidráulica

[SIMONS & SENTURK, 1995; GARDE & RAJU, 1985; CHAG, 1987]

A abordagem do problema da resistência hidráulica em escoamentos com superfície livre pode ser realizada através de dois tipos de equações: as que consideram a fronteira do escoamento constituída por leitos rígidos e aquelas que consideram o leito aluvional propenso a sistemáticas alterações. Para o primeiro caso, algumas equações citadas na literatura, como as de Darcy, Hazen-Willians, Chezy, Manning e Keulegen são comumente usadas e são consideradas clássicas.

No caso dos escoamentos com superfície livre em que o leito do curso de água é do tipo aluvional, alguns autores, como GARDE & RAJU (1985) e SIMONS & SENTURK (1992), ainda consideram que os estudos podem ser abordados de duas maneiras: métodos que lidam com a resistência global oferecida pelo escoamento e métodos que consideram que uma parte da resistência é oferecida pelo grão e outra parte é atribuída às resistências de formas devido às ondulações do leito.

Nos itens subseqüentes, apresentam-se algumas das equações, buscando-se contemplar tanto os métodos indicados para canais de leitos rígidos quanto aqueles indicados para canais de leitos aluvionais. Antes, no **item 2.5.1**, apresenta-se a lei de distribuição de velocidades proposta por Prandtl (1925-1926), uma vez que algumas das equações de resistência apresentadas na forma de equações logarítmicas de velocidades são amparadas nessa teoria. Apesar de a teoria de Prandtl ser originalmente desenvolvida para tubos rígidos, essas equações são freqüentemente empregadas para escoamentos com superfície livre, mas há de se observar que elas são restritas aos casos de escoamentos com leitos planos sem o movimento de sedimentos [GARDE & RAJU, 1985].

# 2.5.1 – Equação para a distribuição da velocidade em escoamentos turbulentos, segundo Prandtl, 1925-1926

[GARDE & RAJU, 1985; CHANG, 1987; SIMONS & SENTURK, 1992]

Prandtl levantou as seguintes hipóteses para a dedução da lei de distribuição logarítmica de velocidades:

- 1. as flutuações turbulentas são confinadas dentro de certo limite definido por um comprimento chamado comprimento de mistura de Prandtl;
- a tensão tangencial média de cisalhamento é relacionada ao comprimento de mistura pela expressão:

$$\tau_0 = \rho l^2 \left[ \frac{dU}{dy} \right]^2$$
(2.67)

$$\sqrt{\frac{\tau_0}{\rho}} = l \left[ \frac{dU}{dy} \right] = U *$$
(2.68)

Na qual:

l – comprimento de mistura de Prandtl.

**3.** O comprimento de mistura se relaciona com a constante universal de Von Karman para águas limpas (k=0,40) pela expressão:

$$l = k \cdot y$$

## 2.5.1.1 Lei de distribuição de velocidades para escoamentos turbulentos

Para a obtenção de lei de distribuição de velocidades, basta combinar as **equações 2.68 e 2.69** e em seguida integrar:

$$U = \frac{U*}{k} \ln y + \overline{C}$$
(2.70)

Na qual:

 $\overline{C}$  - constante de integração.

•Considerações acerca da constante de integração  $\overline{C}$ : a constante de integração pode ser determinada fazendo-se y igual a y<sub>0</sub>, que corresponda a uma certa distância a partir do leito onde a velocidade de escoamento possa ser aproximada a zero e onde o escoamento turbulento não seja predominante. [SIMONS & SENTURK, 1992; GARDE & RAJU, 1985]. Assim, a equação do perfil de velocidade para o escoamento turbulento hidraulicamente liso ou rugoso pode ser representada pela **equação 2.71**.

(2.69)

$$\mathbf{U} = \frac{\mathbf{U}_*}{\mathbf{k}} \ln \left[ \frac{\mathbf{y}}{\mathbf{y}_0} \right]$$

(2.71)

Na qual:

 $y_0$  - distância a partir do leito onde a velocidade é zero

# <u>2.5.1.2 – Perfil de velocidade logarítmico para escoamento turbulento</u> <u>hidraulicamente liso, segundo Prandtl, 1925-1926.</u> [SIMONS & SENTURK, 1992]

Para este caso são consideradas as seguintes suposições:

•A distância y<sub>0</sub> é da ordem da espessura da subcamada limite laminar.

•Essa distância é proporcional ao termo v/U\* .Ou seja  $y_0 \propto \frac{v}{U*}$ .

•O coeficiente de proporcionalidade foi inicialmente definido por Von Karman e pode ser comparável a um número de Reynolds de cisalhamento, de modo que se pode definir  $y_0$  como:

$$y_0 = R * \frac{v}{U*}$$
 (2.72)

Substituindo a equação 2.72 na equação 2.71 e manipulando convenientemente chega-se a:

$$\frac{\mathrm{U}}{\mathrm{U}_*} = \frac{1}{\mathrm{k}} \ln \left[ \frac{1}{\mathrm{R}_*} \right] + \frac{1}{\mathrm{k}} \ln \left[ \frac{\mathrm{y} \cdot \mathrm{U}_*}{\mathrm{v}} \right]$$
(2.73)

Fazendo:

$$B_{r} = \frac{1}{k} \ln \left[ \frac{1}{R_{*}} \right]$$
(2.74)

$$B_{r} = 5,75 \log \left[\frac{1}{R*}\right]$$
(2.75)

a equação 2.73 pode ser escrita na forma:

$$\frac{\mathrm{U}}{\mathrm{U}_*} = \mathrm{B}_{\mathrm{r}} + 5,75 \log\left[\frac{\mathrm{y}.\mathrm{U}_*}{\mathrm{v}}\right]$$
(2.76)

Segundo Nikuradse (1925-1926) [*apud* SIMONS & SENTURK (1992)], o termo B<sub>r</sub> é sensível às oscilações da turbulência do escoamento. No caso do escoamento turbulento hidraulicamente liso, estudos experimentais definiram que  $R_* \approx \frac{1}{9}$ . O que leva, após a substituição na **equação 2.74,** a B<sub>r</sub> = 5,5. Conseqüentemente, a equação para o perfil de velocidade do escoamento turbulento fica determinada.

$$\frac{U}{U_{*}} = 5,5 + 2,5 \ln \left[ \frac{y \cdot U_{*}}{v} \right]$$
(2.77)

$$\frac{U}{U_*} = 5,5 + 5,75 \log\left[\frac{y.U_*}{v}\right]$$
(2.78)

# <u>2.5.1.3 – Perfil de velocidade logarítmico para escoamento turbulento</u> <u>hidraulicamente rugoso, segundo Prandtl, 1925-1926</u> [SIMONS & SENTURK, 1992]

No caso do escoamento turbulento hidraulicamente rugoso, em que a rugosidade se sobrepõe à espessura da subcamada limite laminar, o valor " $B_r$ " foi definido, segundo Nikuradse (1925-1926), pela **equação 2.79**.

$$B_r = 8,5-5,75\log\left[\frac{k_s \cdot U_*}{v}\right]$$
 (2.79)

Na qual:

 ${\bf k}_{\rm s}\,$  - rugosidade equivalente do grão ou altura da rugosidade da parede.

Substituindo na **equação 2.76**, chega-se à equação do perfil de velocidade para o escoamento turbulento hidraulicamente rugoso.

$$\frac{U}{U_*} = 8,5 + 5,75 \log\left[\frac{y}{k_s}\right]$$
(2.80)

## 2.5.2 – Equações de resistência para leito plano e/ou paredes rígidas

Para a previsão da resistência em escoamento com leitos rígidos, normalmente é assumido leito plano e se considera somente a rugosidade superficial. A resistência de forma, se existir, é contemplada no parâmetro ( $k_s$ ), denominado de rugosidade equivalente. Esta rugosidade corresponde à rugosidade de uma areia que produz a resistência ao escoamento igual à resistência das partículas que constituem o leito do rio [SIMONS & SENTURK, 1992].

## <u>2.5.2.1 – Equação de Chézy (1769)</u>

[SIMONS & SENTURK, 1992]

Em 1769, o engenheiro francês Antoine Chézy desenvolveu uma das primeiras fórmulas para o cálculo da velocidade média em escoamento com superfície livre e fluxo uniforme. A fórmula tem até hoje grande reconhecimento entre os engenheiros que lidam com recursos hídricos. A fórmula foi verificada com dados experimentais medidos em rios e

canais de terra. Chézy assumiu que a força de atrito pode ser expressa como função das variáveis de resistência ao escoamento, da viscosidade dinâmica e da velocidade.

$$\tau_0 = f \cdot \rho \frac{U^2}{8}$$
 (2.81)

Na qual:

f – fator de atrito da equação de Darcy.

$$U = \sqrt{\frac{8.\gamma}{f.\rho}} \cdot \sqrt{R.S}$$
(2.82)

$$U = C_c \cdot \sqrt{R \cdot S}$$
 (2.83)

Na qual:

$$C_c = \sqrt{\frac{8.\gamma}{f.\rho}}$$
 - coeficiente de resistência ao escoamento de Chézy.

### <u>2.5.2.2 – Equações de Manning, 1895.</u>

[SIMONS & SENTURK, 1992]

Através da aplicação de dados experimentais obtidos por Darcy e Bazin nos idos de 1865, Manning - baseando-se em diferentes formas da seção transversal e em diversos valores para a declividade - determinou a seguinte equação indicada para escoamentos uniformes:

$$U = \frac{1}{n} R_{H}^{2/3} . S^{1/2}$$
 (sistema métrico) (2.84)

$$U = \frac{1,486}{n} R_{\rm H}^{2/3} . S^{1/2} \qquad \text{(unidades inglesas)}$$
 (2.85)

## 2.5.2.3 – Equações de Manning-Strickler, 1923

A fórmula de Strickler (1923) [*apud* SIMONS & SENTURK (1992)] define o coeficiente de Manning como uma função da dimensão da partícula. Essa fórmula, foi obtida em experimentos em um canal de laboratório, de fundo fixo, formado por grãos de sedimento colados na parede e no leito. Por essas razões, essa equação não é recomendada para escoamentos em canais de leitos móveis.

$$n = \frac{D^{\frac{1}{6}}}{21,1}$$
 (sistema métrico)

(2.86)

$$n = \frac{D^{\frac{1}{6}}}{25,7}$$
 (unidades inglesas)

Substituindo-se as equações de Strickler nas equações de Manning, obtém-se a equação de Manning-Strickler:

$$U = \frac{21,11}{D^{\frac{1}{6}}} R_{H}^{\frac{2}{3}} . S^{\frac{1}{2}}$$
 (sistema métrico) (2.88)

$$U = \frac{38,19}{D^{\frac{1}{6}}} R_{H}^{\frac{2}{3}} . S^{\frac{1}{2}}$$
 (unidades inglesas) (2.89)

A fórmula de Manning-Strickler na versão adimensional é obtida dividindo-se membro a membro a **equação 2.88** pela velocidade de cisalhamento no leito, usando o valor de  $9,81 \text{ m/s}^2$  para a aceleração da gravidade.

$$\frac{U}{U*} = \frac{U}{\sqrt{g.R_{H.S}}} = 6,74 \left(\frac{R_{H}}{D}\right)^{\frac{1}{6}}$$
(2.90)

#### 2.5.2.4 – Equações de Meyer-Petter e Müller (1948)

[SIMONS & SENTURK, 1992]

Meyer-Peter e Müller alteraram a equação de Strickler para aplicações em que contemplam leitos constituídos pelas misturas de areias. Esta equação não é recomendada para aproximar o coeficiente de Manning para leitos constituídos de pedregulhos.

$$n = \frac{D_{90}^{1/6}}{26}$$
 (sistema métrico) (2.91)

# 2.5.3 – Equações da resistência baseadas na divisão da resistência em duas parcelas: Para leitos móveis. [GARDE & RAJU, 1985]

Quando, nos escoamentos com superficie livre, existe a presença de configurações de fundo, a resistência ao escoamento deve ser decomposta em duas parcelas: uma para contemplar a resistência de superfície e outra para considerar a resistência de forma, devido às ondulações. Nesta seção, apenas o método de Einstein e Barbarossa (1952) e o método de Engelung (1966) serão apresentados, devido ao valor histórico e devido a suas potencialidades às aplicações práticas.

Einstein e Barbarossa (1952) foram os primeiros a propor a divisão da resistência total em duas parcelas. A partir de então outros seguidores, como Engelund (1966) e Alan e Kennedy (1969), adotaram o mesmo princípio e desenvolveram suas metodologias para a estimativa da resistência ao escoamento em separado. A literatura especializada (GARDE & RAJU, 1985; SIMONS & SENTURK, 1992; VANONI,1975) apresenta uma série de outros métodos de relevante conhecimento que não serão apresentados por fugir dos objetivos deste trabalho.

### 2.5.3.1 – Método de Einstein-Barbarossa (1952)

[GARDE & RAJU, 1985]

No método de Einstein e Barbarossa, a tensão tangencial média do escoamento foi decomposta em duas parcelas, como se observa na **equação 2.92.** 

$$\tau_0 = \tau'_0 + \tau''_0 \tag{2.92}$$

 $\tau_0''$  - parcela da tensão tangencial devida às configurações do leito.

A subdivisão da tensão média do escoamento é também associada à subdivisão do raio hidráulico em duas parcelas:

 $R_{\rm H} = R'_{\rm H} + R''_{\rm H}$ 

(2.93)

 $R''_H$  - parcela do raio hidráulico relacionado às configurações do leito.

Como conseqüência, a parcela da tensão tangencial resultante das configurações do leito pode ser representada pela **equação 2.94**.

$$\tau_0'' = \gamma (R_H - R'_H).S$$
 (2.94)

De modo semelhante, a velocidade de cisalhamento pode ser dividida de acordo com as **equações 2.95** e **2.96**.

$$U_{*}' = \sqrt{g_{\cdot}R'_{H}.S}$$
 (2.95)

$$U_*'' = \sqrt{g_{\cdot}(R_{\rm H} - R'_{\rm H}).S}$$
(2.96)

Nas quais:

U<sup>\*</sup> - parcela da velocidade de cisalhamento do escoamento devido às configurações do leito.

O método de Einstein e Barbarossa (1952) para o cálculo da resistência ao escoamento pode ser dado pelas equações 2.97 e 2.100. A equação 2.97 é recomendada quando a rugosidade do grão e o escoamento produzirem uma superfície hidraulicamente

rugosa. Neste caso, ocorre uma predominância das forças de viscosidades em relação às forças de turbulências. Todavia, GARDE & RAJU (1985, p.136), enfatizam que a **equação 2.97** deva ser usada unicamente para leito plano, rugoso, sem movimento do sedimento.

$$\frac{U}{U'_{*}} = 7,66 \left(\frac{R'_{\rm H}}{D_{65}}\right)^{1/6}$$
(2.97)

 $D_{65}$  - diâmetro do sedimento tal que 65% da amostra tem diâmetro inferior.

Para os casos do escoamento turbulento hidraulicamente rugoso:

$$\frac{D_{65}}{\delta} > 5 \tag{2.98}$$

A espessura da camada limite que consta na **equação 2.98** pode ser calculada pela equação **2.99** abaixo:

$$\delta = \frac{11.6.\nu}{U'_{*}} = \frac{11.6.\nu}{\sqrt{g.R'_{\rm H}.S}}$$
(2.99)

Para os casos em que o escoamento produz uma superfície hidraulicamente lisa, isto é, quando as influências turbulentas do escoamento predominarem sobre as influências viscosas da camada laminar, tem-se:

$$\frac{U}{U'_{*}} = 5,75 \log \left[ \frac{12,27 \cdot R'_{H} \cdot \chi}{D_{65}} \right]$$
(2.100)

 $\chi$  - caracteriza os efeitos da viscosidade na camada laminar e suas intervenções no perfil de velocidade logarítmico, sendo determinado na **figura 2.5** 



Figura 2.5 – Fator de correção dos efeitos viscosos – Einstein e Barbarossa, 1952 [GARDE & RAJU, 1985]

A parcela relativa à resistência de forma pode ser relacionada à intensidade de tensão de cisalhamento para o grão de sedimentos através da **equação 2.101.** 

$$\frac{\mathrm{U}}{\mathrm{U}_{\ast}^{\prime\prime}} = \mathrm{f} \left( \Psi^{\prime} \right) \tag{2.101}$$

Na qual:

 $\Psi'$ - intensidade de tensão de cisalhamento para o grão de sedimentos, determinada pela equação 2.102:

$$\Psi' = \frac{\left[\left(\gamma_{s} - \gamma\right) \cdot D_{35}\right]}{\tau'_{0}}$$
(2.102)

A função que relaciona a intensidade de tensão de cisalhamento com a velocidade de atrito do escoamento devido às configurações do leito está apresentada na **figura 2.6**, obtida em trabalhos experimentais realizados em diversos rios.



# <u>2.5.3.2 – Método de Engelund, 1966</u> [CHANG, 1988; SIMONS & SENTURKS, 1992]

O método de Engelund, a exemplo do de Meyer-Peter, adota a divisão da declividade da linha de água para distribuição da resistência hidráulica em duas parcelas. Ou seja, assume que:

$$S = S' + S''$$
 (2.103)

Na qual:

S'- parcela da declividade da linha de água despendida para vencer a resistência de superfície;

S" - parcela da declividade da linha de água despendida para vencer a resistência proveniente das formas de fundo.

A magnitude da dissipação da energia inerente às formas de fundo pode ser dada segundo SIMONS & SENTURK (1992), como na **equação 2.104:** 

$$S'' = \Delta H'' = \frac{q^2}{2.g.L_c} \cdot \left[ \frac{1}{d - \frac{1}{2}h} - \frac{1}{d + \frac{1}{2}h} \right] \approx \frac{U^2}{2.g.L_c} \cdot \left[ \frac{h}{d} \right]^2$$
(2.104)

Na qual:

$$q = \frac{Q}{d}$$
 - vazão por unidade de largura do canal, que implica  $U = \frac{q}{d}$ .

A partir da **equação 2.103**, pode-se escrever para a tensão tangencial média de cisalhamento da corrente:

$$\tau_0 = \gamma . R . (S' + S'')$$
(2.105)

Combinando-se as **equações 2.104** e **2.105**, com a observância de substituir "R ≈d" para os canais largos, obtém-se:

$$\frac{\tau_0}{\gamma \cdot d} = \frac{\tau'_0}{\gamma \cdot d} + S''$$
(2.106)

$$\frac{\tau_0}{\gamma.d} = \frac{\tau'_0}{\gamma.d} + \frac{U^2}{2.g.L_c} \cdot \left[\frac{h}{d}\right]^2$$
(2.107)

Assumindo

$$\theta_1 = \frac{d.S}{\left[ \left( \frac{\rho_s}{\rho} \right) - 1 \right] \cdot D}$$
(2.108)

por conseguinte tem-se:

$$\theta_1' = \frac{d'.S}{\left[ \left( \frac{\rho_s}{\rho} \right) - 1 \right].D}$$
(2.109)

$$\theta_1'' = \frac{1}{2} F_r^2 \frac{h^2}{[(\rho_s/\rho) - 1] D.L_c}$$
(2.110)

Na qual:

d' - profundidade semelhante ao raio hidráulico relativo à rugosidade do leito;

 $\theta_i$  - tensão tangencial de cisalhamento normalizada;

 $\theta'_i$ - tensão tangencial de cisalhamento normalizada referente ao grão de sedimentos;

 $\theta_i$ " - parâmetro adimensional relativo às formas de fundo.

Substituindo as equações 2.108, 2.109 e 2.110 na equação 2.107 chega-se a:

$$\theta_i = \theta'_i + \theta''_i$$
(2.111)

Os resultados de Engelund estão resumidos no gráfico da **figura 2.7**, que combina entre si as tensões tangenciais normalizadas. O gráfico, gerado com a utilização dos dados de Guy et al (1966) [apud SIMONS & SENTURK (1992)], permite identificar regiões que caracterizam diferentes formas de fundo e diferentes regimes dos escoamentos aluvionares,

transformando-se em um poderoso instrumento para a previsão dos tipos de configurações de fundo possíveis de serem obtidos em escoamentos com superfície livre sobre fundos móveis.



Figura 2.7- Relação de resistência de Engelund, 1966 [CHANG, 1988; SIMONS & SENTURK, 1992]

## **2.6- Considerações sobre o transporte de sedimentos por arraste** [GARDE & RAJU, 1985; SIMONS & SENTURK, 1992; WILSON-Jr & PAIVA, 2003]

O transporte de sedimento por arraste é definido como aquele que ocorre em permanente contato com o leito. Geralmente esse material se constitui numa parcela menor no cômputo total da descarga de sedimentos, estimando-se em cerca de 5% a 25% da descarga total [SIMONS & SENTURK, 1992]. Mas, apesar da menor quantidade, este tipo de transporte é de fundamental importância na dinâmica do movimento dos sedimentos em

canais de leitos móveis, devido à sua interação com a formação das formas de fundo, que têm uma conseqüente intervenção na resistência ao escoamento do fluido.

Neste tópico, será apresentada apenas a abordagem teórica de SIMONS et al (1965). No capítulo três, serão apresentadas outras equações teóricas, semiteóricas e empíricas que serão empregadas na tese.

## 2.6.1- Equação das dunas e rugas, segundo Simons et al (1965) [SIMONS et al, 1965; WILSON-Jr & PAIVA, 2003]

Trata-se da estimativa do movimento por arraste a partir do levantamento das configurações de fundo do escoamento. A descarga sólida do sedimento por unidade de largura será explicitada em função da velocidade de deslocamento  $V_s$ , e da altura média **h**, das configurações do leito.

$$q_{\rm B} = f\left(V_{\rm s}, h\right) \tag{2.112}$$

Considere-se o elemento de comprimento  $\Delta X$  da forma de fundo esquemática apresentada na **figura 2.8**. A acumulação de material nesse elemento diferencial é igual à diferença entre a quantidade de material que entra através da seção X e a quantidade de material que sai pela seção X+  $\Delta X$ , num período de tempo  $\Delta t$ , sendo que essa acumulação pode ser positiva ou negativa.


Figura 2.8 – Esquema do leito para a dedução da equação das dunas e rugas. [SIMONS & ET AL, 1965; WILSON-Jr & PAIVA, 2003]

A equação geral do balanço volumétrico de sedimentos através do elemento de comprimento  $\Delta x$  é a seguinte:

$$\begin{bmatrix} A \text{cumulação volumétric a} \\ \text{no elemento } \Delta X \end{bmatrix} = \begin{bmatrix} \text{Volume de sólidos} \\ \text{que entram através de } X \end{bmatrix} - \begin{bmatrix} \text{Volume de sólidos} \\ \text{que saem através de } X + \Delta X \end{bmatrix}$$
 (2.113)

Considerando-se um escoamento de largura B constante e sendo  $\lambda$  a porosidade do material do leito, tem-se:

$$\begin{bmatrix} A \operatorname{cumula} \tilde{\zeta} a \circ \operatorname{volumétrica} \\ \operatorname{no Elemento} \Delta X \end{bmatrix} = (1 - \lambda) B \frac{\partial Y}{\partial t} \Delta X$$
(2.114)

em que Y representa a cota média do trecho do leito de comprimento  $\Delta X$ .

Admitindo-se que a descarga sólida por arraste varie de forma contínua ao longo do curso de água, pode-se escrever:

$$\begin{bmatrix} Volume de sólidos \\ que entram através de X \end{bmatrix} = B q_B$$
(2.115)

$$\begin{bmatrix} Volume de sólidos \\ que saem através de X + \Delta X \end{bmatrix} = Bq_B + B\frac{\partial q_B}{\partial X}\Delta X$$
(2.116)

Combinando-se as **equações 2.113 e 2.116**, obtém-se a equação diferencial do movimento de sedimentos por arraste:

$$\frac{\partial \mathbf{Y}}{\partial t} + \frac{1}{1 - \lambda} \frac{\partial \mathbf{q}_{\mathrm{B}}}{\partial \mathbf{X}} = 0$$
(2.117)

Esta equação é válida para qualquer tipo de configuração de fundo, podendo ser utilizada como condição de contorno do movimento de sedimentos em suspensão que se depositam sobre o fundo de um escoamento. Para sua resolução, considera-se a seguinte transformação de variável:

$$\delta = X - V_s t \tag{2.118}$$

Desenvolvendo-se a equação 2.117 em conformidade com a equação 2.118, ao se aplicar a regra da cadeia, obtém-se:

$$\frac{\partial Y}{\partial t} = \frac{\partial Y}{\partial \delta} \frac{\partial \delta}{\partial t} = -V_s \frac{dY}{d\delta}$$
(2.119)

$$\frac{\partial q_{\rm B}}{\partial X} = \frac{\partial q_{\rm B}}{\partial \delta} \frac{\partial \delta}{\partial X} = \frac{d q_{\rm B}}{d \delta}$$
(2.120)

Substituindo-se as equações 2.119 e 2.120 na equação 2.117, resulta:

$$dq_{\rm B} = (1-\lambda) V_{\rm s} dY$$
(2.121)

E, após a integração indefinida da equação 2.121, chega-se a:

$$q_{\rm B} = (1 - \lambda) V_{\rm s} Y + C_{\rm int}$$
 (2.122)

Onde  $C_{int}$  é uma constante de integração a ser determinada. Para tanto, algumas hipóteses são consideradas. A principal delas é a que admite as dunas e rugas como formas triangulares, compostas de módulos, também triangulares, que se deslocam alternadamente. Neste caso:

$$q_{\rm B} = (1 - \lambda) V_{\rm s} \frac{h}{2} + C'_{\rm int}$$
 (2.123)

A nova constante de integração **C'**<sub>int</sub> pode ser interpretada como representativa da parte do material do leito que não participa do movimento de propagação das dunas ou rugas. Nas condições de leito plano, no início do movimento sólido ou quando os sedimentos estiverem se deslocando quase que continuamente sobre o fundo, com períodos de repouso

curtos, a altura das configurações é igual a zero e a constante de integração C'<sub>int</sub> é igual à própria descarga sólida  $q_B$  a ser determinada.

Quando o leito estiver coberto por dunas e rugas estacionárias, todas as partículas participam do movimento das configurações. Neste caso, C'<sub>int</sub> é igual a zero, e a equação 2.123 fica determinada.

Aumentando-se a velocidade de escoamento, o leito poderá adquirir uma formação plana, depois de passar por configurações de transição. Para as condições de transição, a exemplo do leito plano, a constante C'<sub>int</sub> permanece indeterminada.

Conclui-se que a **equação 2.123** pode ser aplicada para se estimar a descarga sólida por arraste para configurações do leito tipo dunas e rugas, onde C'<sub>int</sub> = 0. Por isto, a **equação 2.124** resultante passou a ser conhecida como **Equação das Dunas e Rugas**.

$$q_{\rm B} = (1 - \lambda) V_{\rm s} \frac{\rm h}{2}$$
(2.124)

Esta equação foi aplicada por SIMONS *et al*, (1965) aos resultados de 101 ensaios efetuados num canal de laboratório de 2,5 m de largura, onde as alturas médias e as velocidades das dunas e rugas foram registradas, através de medições diretas, de observação visual ao longo das paredes transparentes do canal e de equipamentos de sondagem, tipo ecobatímetro.

A equação mostrou-se mais adequada para as dunas do que para as rugas, e os resultados foram mais representativos para o material do leito de granulometria grossa. Isto se deve ao fato de que as dunas de areia grossa são mais próximas da formação triangular do que as dunas de areia fina e também ao fato de que as dunas são mais próximas da formação triangular do que triangular do que as rugas.

Esses autores concluíram também que a equação das dunas e rugas permite estimar a descarga total do material do leito, para escoamentos sobre leitos formados por:

•dunas de areia grossa, de diâmetros compreendidos entre 0,50 a 2,00 mm;

•rugas de areia fina, de diâmetros compreendidos entre 0,065 a 0,250 mm;

•quando o transporte em suspensão for desprezível.

**2.7 – Considerações sobre o transporte de sedimentos em suspensão** [SIMONS E SENTURK, 1992; CHANG, 1988, ALFREDINI, 1983]

A maior parte do material que é transportado em escoamentos com superfície livre, em canais naturais, é devido ao sedimento em suspensão. Esse transporte é resultado da turbulência do escoamento, que é sensível às intervenções de três elementos importantes do transporte sólido. O primeiro deles, a difusão turbulenta, é traduzida por uma troca contínua de partículas através do escoamento em todas as direções. O segundo, o transporte advectivo na direção do escoamento, é provocado pela transferência de quantidade de movimento do fluido para a partícula e o terceiro é atribuído à decantação das partículas devido à ação da gravidade.

# 2.7.1 – Equação diferencial do transporte de sedimentos e difusão turbulenta para o escoamento turbulento bidimensional

A equação de difusão para a distribuição não-uniforme de sedimentos em um escoamento turbulento uniforme bidimensional é derivada da equação da continuidade do transporte de sedimentos através de um elemento diferencial de volume ( $\Delta x.\Delta y$ ) e profundidade unitária perpendicular ao plano do papel, como aquele esquematizado na **figura 2.9**.

Para um intervalo de tempo  $\Delta t$ , o aporte de sedimento resultante da contribuição do escoamento e da difusão turbulenta está mostrado na referida figura para as direções "**x**" e "**y**". As componentes da velocidade local na direção x e y são U e W e os coeficientes de difusão são  $\varepsilon_x e \varepsilon_y$ , respectivamente. Fazendo-se o balanço para o fluxo de sedimentos de entrada e de saída no elemento diferencial, chega-se à **equação 2.125**:

$$\left[-\frac{\partial(\mathbf{uC})}{\partial x} + \frac{\partial}{\partial x}\left(\varepsilon_{x}\frac{\partial \mathbf{C}}{\partial x}\right) - \frac{\partial(\mathbf{wC})}{\partial y} + \frac{\partial}{\partial y}\left(\varepsilon_{y}\frac{\partial \mathbf{C}}{\partial y}\right)\right]\Delta x \Delta y \Delta t = \frac{\partial \mathbf{C}}{\partial t}\Delta x \Delta y \Delta t$$
(2.125)

Na qual:

 $\epsilon_x$ ;  $\epsilon_v$  - coeficientes de difusão turbulenta;

w – velocidade de queda da partícula.

Utilizando a equação da continuidade  $\partial U/\partial x + \partial w/\partial y = 0$ , a equação 2.125 torna-se:

$$\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} - w \frac{\partial C}{\partial y} = + \frac{\partial}{\partial x} \left( \varepsilon_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left( \varepsilon_y \frac{\partial C}{\partial y} \right)$$
(2.126)

C - concentração de sedimentos transeunte.



Figura 2.9- Balanço do fluxo de sedimento num volume elementar do escoamento bidimensional [CHANG, 1988]

### 2.7.2 – Distribuição da concentração de sedimentos na vertical

A equação que representa a distribuição da concentração de sedimentos em uma vertical de controle é originada da **equação 2.126**, valendo-se das seguintes suposições:

•a variação da concentração e a difusão turbulenta ocorrem somente na direção vertical;

•difusão turbulenta não ocorre na direção longitudinal e na direção transversal.

$$w\frac{\partial C}{\partial y} + \frac{\partial}{\partial y} \left( \varepsilon_y \frac{\partial C}{\partial y} \right)$$
(2.127)

ou, desenvolvendo o produto das derivadas,

$$w\frac{\partial C}{\partial z} + \frac{\partial \varepsilon_y}{\partial y}\frac{\partial C}{\partial y} + \varepsilon_y\frac{\partial^2 C}{\partial y^2} = 0$$
(2.128)

Desprezando o produto de segunda ordem, obtém-se a seguinte equação diferencial para a distribuição vertical de concentração:

$$w\frac{\partial C}{\partial y} + \varepsilon_y \frac{\partial^2 C}{\partial y^2} = 0$$
(2.129)

$$\frac{\partial}{\partial y} \left( wC + \varepsilon_y \frac{\partial C}{\partial y} \right) = 0$$
(2.130)

Que, em conseqüência, produz:

$$\left(wC + \varepsilon_y \frac{\partial C}{\partial y}\right) = cte$$
(2.131)

Levando-se em conta que para C=0 a parcela  $\left(\frac{\partial C}{\partial y}\right) = 0$ , a constante de integração na

equação 2.131 será zero. Ademais, uma vez que se está considerando somente a variação na vertical, a derivada parcial de C corresponde à sua derivada total. Com essas duas considerações, a equação 2.131 pode ser substituída pela equação 2.132.

$$\left(wC + \varepsilon_y \frac{dC}{dy}\right) = 0$$
(2.132)

A **equação 2.132** contém dois termos representativos de duas tendências opostas que juntamente mantêm a distribuição permanente da concentração de sedimento. O primeiro termo é a taxa de sedimento depositada através de uma área unitária e o segundo representa o fluxo vertical do transporte de sedimento devido à difusão turbulenta [CHANG, 1988].

### 2.7.3 - Integração da equação da distribuição da concentração na vertical

A equação 2.132 pode ser integrada entre os limites a e y para se obter:

$$\ln \frac{C}{C_a} = -\int_{a}^{y} \frac{w}{\varepsilon_y} \, dy$$
(2.133)

Na qual:

C<sub>a</sub> - representa a concentração de referência a uma distância "**a**" do fundo.

A integral do lado direito da **equação 2.133** pode ser resolvida se são conhecidas as variações de w e  $\varepsilon_y$  com y. Como uma primeira aproximação, pode-se considerar que tanto w quanto  $\varepsilon_z$  são invariáveis com relação a y [GARDE & RAJU, 1985]. Desta forma:

$$\ln \frac{C}{C_a} = -\frac{w}{\varepsilon_y} (y - a)$$
(2.134)

$$\frac{C}{C_{a}} = \exp\left[-w\left(y-a\right)/\varepsilon_{y}\right]$$
(2.135)

A equação 2.135 foi uma das primeiras a serem apresentadas para descrever a variação da concentração de sedimentos numa vertical do curso de água. Na literatura, existem algumas controvérsias sobre a sua autoria. GARDE & RAJU (1985) atribuem a Smidt, enquanto SIMONS & SENTURK (1992) atribuem a O'Brien-Chistiansen (1933). Porém o que é importante é observar que a equação estabelece que a concentração é decrescente do fundo para a superfície. Abaixo descreve-se a metodologia de Rouse, 1937 [*apud* GARDE & RAJU, 1985; SIMONS & SENTURK, 1992; CHANG, 1988] para a integração da equação 2.132.

Para a integração da equação 2.132, segundo a metodologia de Rouse (1937), assumese que o coeficiente de quantidade de movimento  $\varepsilon_m$  pode ser comparado ao coeficiente de difusão turbulenta. O coeficiente  $\varepsilon_m$  pode ser calculado pela equação 2.136.

$$\varepsilon_{\rm m} = \frac{\tau_{\rm y}}{\rho ({\rm dU}/{\rm dy})}$$
(2.136)

Na qual:

 $\epsilon_m$  - coeficiente de quantidade de movimento;

 $\tau_{y}$  - tensão de cisalhamento numa posição y na vertical.

E para uma distribuição vertical linear das tensões tangenciais pode-se escrever:

$$\tau_{\rm v} = \tau_0 \left( 1 - {\rm y} / {\rm d} \right)$$
 (2.137)

Combinando-se as equações 2.136 e 2.137,  $\epsilon_m$  pode ser calculado como:

$$\varepsilon_{\rm m} = \frac{\tau_0}{\rho} \left( \frac{\rm d-y}{\rm d} \right) \cdot \frac{1}{\rm dU/dy}$$
(2.138)

A etapa subseqüente trata da determinação da relação de (dU/dy) que está associada com o perfil de velocidades para o fluxo turbulento em escoamentos que conduzem a mistura água e sedimentos. Esse perfil de velocidade pode ser medido ou pode ser calculado, utilizando-se uma das diversas relações propostas na literatura [SIMONS & SENTURK, 1992]. Rouse (1937) [*apud* GARDE & RAJU (1985)] utilizou a expressão conhecida como de Prandtl-Von Kárman para descrever o gradiente de velocidade em função da velocidade média de cisalhamento do escoamento. Ou seja:

$$\frac{\mathrm{dU}}{\mathrm{dy}} = \frac{\mathrm{U}_{*}}{\mathrm{ky}} \tag{2.139}$$

Por definição, a relação  $\frac{\tau_0}{\rho}$  corresponde a U\*<sup>2</sup>. Logo, combinando as **equações** 2.137 e 2.138 obtém-se:

$$\varepsilon_{\rm m} = U * k \cdot y \left( \frac{d - y}{d} \right) \tag{2.140}$$

Assumindo  $\varepsilon_m = \varepsilon_y$  e substituindo a **equação 2.140** na **equação 2.132**, chega-se às **equações 2.141** e **2.142**. Para a obtenção da equação de Rouse (1937), basta fazer  $z = \frac{W}{U_*}k$ 

e resolver a integral do lado direito da **equação 2.142**, decompondo-a em frações parciais para se chegar à **equação 2.143**.

$$\frac{dC}{C_a} = -\frac{w}{U * k y} \frac{d dy}{(d - y)}$$
(2.141)

$$\ln \frac{C}{C_{a}} = -\frac{w}{U_{*} k y} \int_{a}^{y} \frac{d dy}{(d - y)}$$
(2.142)

$$\frac{C}{C_a} = \left(\frac{d-y}{y}\frac{a}{y-a}\right)^z$$
(2.143)

$$z = \frac{W}{U_* k}$$
(2.144)

A equação 2.143 dá a concentração, em qualquer nível "y", da vertical do escoamento, desde que se disponibilize o nível "a" e a sua respectiva concentração de referência.

Na **figura 2.10** mostram-se várias curvas relacionando  $(y - a)/(d - a) e C/C_a$  para diversos valores de **z**, fixando-se d/a = 0,05. Nota-se que, para qualquer valor de Z, a concentração é mais elevada próximo ao leito e decresce em direção à superfície. A distribuição vertical é mais uniforme para pequenos valores de Z, o que pode ser atribuído aos sedimentos mais finos e/ou às características dos escoamentos de turbulência mais elevada. Os sedimentos de granulometrias maiores, que implicarão maiores valores de Z, permanecerão mais concentrados próximo ao leito.

## 2.7.4 – Transporte sólido em suspensão

A descarga sólida em suspensão por unidade de largura é calculada através da integração na profundidade do produto das leis de distribuição de velocidade e da concentração.

$$q_{s} = \int_{0}^{h} U_{y} \cdot C_{y} \cdot dy$$
(2.145)

 $U_{y}$  - velocidade a uma distância y acima do leito;

 $C_{\rm y}\,$  - concentração de sedimentos a uma distância y do leito.



Figura 2.10 – Gráfico de Rouse (1937) para diferentes valores de Z [SIMONS & SENTURK, 1992]

#### 2.8 – Considerações finais

Neste capítulo, foram apresentados pontos importantes do estudo do início do transporte sólido; estudos das formas de fundo; estudos das resistências hidráulicas e dos estudos do transporte de sedimentos por arraste e em suspensão, que, conforme já relatado no capítulo um, formam as principais linhas de pesquisa na área do transporte de sedimentos. Não se teve a pretensão de abordar todos os métodos relacionados a cada um dos temas apresentados, porque isso tomaria um tempo em demasia e fugiria dos objetivos do trabalho, uma vez que cada assunto fornece elementos para um numero substancial de teses. Porém, por julgar que o contato com as matérias apresentadas torna-se imprescindível à formação em Transporte de Sedimentos, alguns tópicos foram criteriosamente incluídos.

Dentre os tópicos destacam-se: apresentação das equações das forças que atuam numa partícula isolada em repouso no meio líquido, importante para os estudos de início do transporte sólido; os estudos de Simons e Richardon sobre a evolução das formas de fundo; as equações de Prandtl para o perfil de velocidade, imprescindível nos estudos das resistências hidráulicas; a equação das dunas e rugas desenvolvida por Simons e Nordin, fundamental no estudo do transporte sólido por arraste em canais de leitos aluvionais e a equação diferencial do transporte de sedimentos para o escoamento turbulento bidimensional, que é a base para a dedução da equação do perfil de concentração de Rouse.

No capítulo três, que trata da revisão bibliográfica, serão apresentados os métodos de cálculo da descarga de sedimento na camada do leito que foram empregados no desenvolvimento da tese.

123

# 3 – REVISÃO BIBLIOGRÁFICA

## 3.1 – INTRODUÇÃO

O transporte de sedimentos em um rio pode ser dividido em dois grupos: o do sedimento do leito e o do sedimento de carga de lavagem, trazido da bacia hidrográfica ou erodido das margens. O primeiro é o material que forma o leito do curso de água e o segundo encontra-se dentro desse material. Este último é formado por sedimento de granulometria bem mais fina do que o primeiro, como os siltes e as argilas. Do ponto de vista da Engenharia Sanitária e Ambiental, esses sedimentos têm fundamental importância, devido às suas propriedades coloidais com potencial para agregar materiais contaminantes como os metais pesados.

Do ponto de vista da dinâmica do movimento fluvial, a diferença principal entre o equacionamento da descarga do leito e o equacionamento da descarga de lavagem, consiste no fato de que o transporte do leito está sujeito às intervenções hidrodinâmicas, é também influenciado pelas características físicas do material e pelas propriedades do fluido, ao passo que a correlação entre as características do escoamento e o material advindo da carga de lavagem, torna-se difícil, devido às suscetibilidades desta às intervenções externas como as de natureza antrópica, ou de ordem natural, como os eventos pluviosos que contribuem para aumentar o escoamento superficial e, conseqüentemente, a carga de lavagem.

O material que compõe a carga de lavagem é transportado predominantemente em suspensão, ao passo que uma parte do material do leito é transportada em suspensão e uma outra é transportada na camada do leito. Quantitativamente, os sedimentos transportados na camada do leito, em geral, são menos expressivos do que os do transporte em suspensão, mas esses sedimentos têm fundamental importância na dinâmica do movimento dos sedimentos em escoamentos com superfície livre, devido às suas interações com as formas de fundo e às suas intervenções na resistência hidráulica ao escoamento [COIADO, 2002-2003].

EINSTEIN (1950) também estabeleceu uma camada do leito nos estudos do transporte de sedimentos. Segundo ele, essa camada corresponde a cerca de duas vezes o diâmetro do sedimento. Portanto, em um curso de água natural, a camada do leito é igual ao número de partículas de diferentes tamanhos. A **figura 3.1** ilustra as diferentes formas de transporte de sedimentos [COIADO, 2002-2003]. Nota-se, na referida figura, que é possível distinguir pelo menos seis modalidades diferentes de transporte, a saber:

•transporte por arraste do leito (qB): o sedimento rola ou desliza, mantendo um contato permanente com o leito. Alguns autores, como SIMONS & SENTURK (1992), denominam esta modalidade de transporte de carga de contato. Uma outra modalidade de transporte considerada apenas por alguns autores, como ALFREDINI (1983), é a saltação, em que os materiais são alternadamente arrastados e transportados por pequenos saltos, pela turbulência do escoamento, ou são movidos pelo impacto de outras partículas. Normalmente, essa suspensão é caracterizada por períodos curtos, porque as componentes verticais das forças de turbulência são insuficientes para manter a suspensão, o que faz com que o sedimento retorne ao leito pela ação do seu peso. Do ponto de vista das quantidades transportadas e dependendo das dimensões do salto, essas partículas são, normalmente, incorporadas ao transporte por arraste [VIEIRA DA SILVA & WILSON-Jr, 2003].



Figura 3.1 – Diferentes formas de transporte [Alfarez & Flores, 1996; COIADO, 2002-2003]

•Sedimento originado do leito e transportado em suspensão (qBS): os sedimentos transportados em suspensão são sustentados pelas componentes verticais ascendentes das correntes turbulentas, cujo peso próprio não é suficiente para a sua decantação. Esses sedimentos são transitados em suspensão por longos períodos de tempo e, se as flutuações acentuadas de velocidades induzirem a sua deposição, essas partículas poderão novamente ser recolocadas em suspensão.

•Carga de lavagem  $(q_L)$ : parte do material que é composta de partículas de tamanho menor do que aquele encontrado em grandes quantidades e em movimento no leito do rio. Tem como origem os processos erosivos ocorridos nas margens dos rios e da bacia hidrográfica. Sua caracterização é feita baseando-se numa classificação granulométrica, o que tem gerado distintas classificações para este tipo de material. A tabela 3.1 apresenta alguns exemplos de alternativas sugeridas para distinguir o sedimento transportado em suspensão e originado do leito daquele tido como carga de lavagem.

| Critérios para diferenciar a carga de lavagem da carga do material do leito |                                                                                                                                   |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Autor                                                                       | Definição para carga de lavagem                                                                                                   |  |  |  |
| Raudkivi, 1976                                                              | Material de granulometria menor do que 0,0625 mm                                                                                  |  |  |  |
| Einstein, 1950                                                              | 10% do material mais fino encontrado no fundo do rio                                                                              |  |  |  |
| Alvarez & Flores ,1996                                                      | Carga de lavagem corresponde ao sedimento cujo diâmetro é menor do que o $D_{10}$                                                 |  |  |  |
| Shen, 1971                                                                  | Carga de lavagem é aquela predominantemente<br>composta por silte e argila com possibilidade de se<br>encontrar também areia fina |  |  |  |

Tabela 3.1 - Critérios para a definição da carga de lavagem [NASCIMENTO, 2001]

•**Transporte total em suspensão**  $(q_S)$ : a carga total em suspensão é a soma da carga constituída dos sedimentos originados do leito do rio e transportados em suspensão com a parcela da carga de lavagem.

$$q_{\rm S} = q_{\rm BS} + q_{\rm L} \tag{3.1}$$

•**Transporte total do leito**  $(q_{BT})$ : formado pela soma dos sedimentos transportados por arraste do leito com os sedimentos originados do leito e transportados em suspensão.

$$q_{BT} = qB + qBS \tag{3.2}$$

•Carga total (qT): é composta pela soma da carga total do leito (q<sub>BT</sub>) com a carga de lavagem.

Ou seja:

$$qT = q_{BT} + q_L$$
(3.3)

$$qT = qB + q_{BS} + q_L$$
(3.4)

$$qT = qB + q_S \tag{3.5}$$

Mesmo existindo diferentes classificações teóricas para as modalidades do transporte de sedimentos em escoamentos com superfície livre, essa distinção não é tarefa das mais fáceis na natureza, devido a uma infinidade de variáveis interferentes no processo. A forma de transporte, nas mesmas condições hidráulicas, pode mudar completamente em função da gradação e da uniformidade do material do leito. O que se sabe ao certo é que os sedimentos mais finos são transportados em suspensão e os mais grossos por arraste do leito [ALFREDINI, 1983].

As diferentes modalidades do transporte de sedimentos apresentadas na **figura 3.1** induzem ao surgimento de diferentes classificações para os modelos de transporte de sedimentos. Sob o critério de separação da descarga de sedimentos por arraste daquela transportada em suspensão, para o cálculo da descarga total de sedimentos, os modelos podem ser classificados em macroscópicos e microscópicos.

Os métodos de estimativa da descarga por arraste ou na camada do leito são normalmente, classificados de acordo com o critério adotado para se considerar o início do movimento da partícula. De acordo com esse critério, as equações podem ser classificadas como do tipo DuBoys, Schoklitsch e Einstein. Na **tabela 3.2** comentam-se essas classificações.

| Equações para a descarga total                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           | Equações para a descarga do leito                                                                                                                      |                                                                    |                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           | Tipologia                                                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                               |
| Macroscópicos                                                                                                                                                                                                                                                                                                                                                                                                | Microscópicos                                                                                             | DuBoys                                                                                                                                                 | Schoklitsch                                                        | Einstein                                                                                                                                                                                                                                                                                      |
| <ul> <li>O transporte em<br/>suspensão é um<br/>estágio avançado<br/>do transporte por<br/>arraste.</li> <li>Descarga<br/>relacionada com a<br/>tensão de<br/>cisalhamento.</li> <li>Relações<br/>baseadas em<br/>análise<br/>dimensional,<br/>intuição ou<br/>completo<br/>empirismo.</li> <li>Normalmente<br/>utilizam um único<br/>diâmetro,<br/>ignorando o<br/>transporte<br/>separadamente.</li> </ul> | •A descarga total<br>é igual à<br>descarga por<br>arraste mais<br>aquela<br>transportada em<br>suspensão. | •A descarga de<br>sedimentos na<br>camada do leito é<br>calculada em<br>função da tensão<br>crítica de<br>cisalhamento para<br>início de<br>transporte | •A descarga<br>é calculada<br>em função de<br>uma vazão<br>crítica | <ul> <li>As equações são<br/>embasadas em<br/>considerações<br/>estocásticas, em que<br/>EINSTEIN (1950)<br/>assumiu que a partícula<br/>de sedimentos se move<br/>se a força<br/>hidrodinâmica de<br/>sustentação da<br/>partícula excede o seu<br/>peso específico<br/>submerso.</li> </ul> |

#### Tabela 3.2 - Classificação dos modelos de transporte de sedimentos

Ainda, segundo GARDE & RAJU (1985), de acordo com a forma de sua dedução, no universo dessas equações, algumas são de natureza empírica, outras são obtidas de considerações teóricas e semiteóricas e outras são originadas de análise dimensional. **No item 3.3**, serão apresentadas algumas das principais equações para o cálculo da descarga de sedimentos na camada do leito, seguindo a classificação de GARDE & RAJU (1985). Mas, antes, no **item 3.2**, será apresentada uma evolução histórica das principais teorias que governam o transporte de sedimentos, começando pelo trabalho de DuBoys, desenvolvido no século dezenove, até os mais recentes.

# 3.2 – Evolução histórica dos modelos de cálculo do transporte de sedimentos em escoamentos com superfície livre

Desde o final do século XIX, diversos pesquisadores se dedicaram à busca de um modelo ideal para descrição qualitativa e quantitativa do transporte de sedimentos por arraste e em suspensão nos escoamentos com superfície livre. Segundo GRAF (1971), o primeiro modelo de transporte por arraste de fundo que se conhece é a equação de Du Boys (1879), a qual define a taxa de transporte como uma função da tensão tangencial crítica de cisalhamento para o início do movimento.

Embora o método de Du Boys (1879) seja um dos mais citados como precursor dos estudos do transporte de sedimentos em canais, faz-se mister citar o trabalho de Darwin, em 1883, sobre a formação de rugas em leitos arenosos, causadas pelo surgimento de vórtices na interface entre a água e o leito de areia. Destaca-se que a formação desses vórtices foi atribuída ao aumento da velocidade da corrente líquida [GARDE & RAJU, 1985; RAUDKIVI, 1976].

No início do século XX, diversos pesquisadores adotaram o critério da tensão tangencial crítica para o desenvolvimento dos modelos de descrição do transporte de sedimentos por arraste. Schoklistsch (1914) [*apud* PONCE (1990)] foi um dos primeiros a adotar o critério da tensão tangencial crítica na formulação do seu modelo. Na década de trinta do século passado, diversos autores atribuíram o início do transporte por arraste à tensão tangencial crítica e apresentaram suas formulações com uma estrutura semelhante à apresentada por Du Boys. Entre esses estão: Mc Dougall (1933); O' Brien e Rindlaud (1934); Straub (1935); Shields (1936); Chang (1939); Mayer-Peter e Muller (1948); Sato, Kikkawa e

Ashida (1958); Yalin (1963) e Pernecker e Vollmer (1965) [PONCE, 1990; COIADO & PAIVA, 2005].

Sob um enfoque diferente daquele apresentado por Du Boys surge, em 1925, uma das primeiras metodologias para o cálculo da descarga de sedimentos a partir do conhecimento das configurações de fundo. Essa metodologia proposta por Exner (1925) "apud" RAUDKIVI (1976) defende que a capacidade do transporte do sedimento pelo escoamento depende da velocidade do líquido, ou seja: a aceleração do escoamento provoca erosão enquanto que a desaceleração causa deposição.

Shields (1936) [*apud* PAIVA (1988)] apresentou o primeiro critério racional para o estudo do início do movimento do material sólido, estabelecendo uma relação entre a tensão tangencial média do leito e a tensão crítica de início de transporte para um dado tamanho do sedimento.

Nos anos quarenta, a metodologia cujo enfoque é baseado na tensão tangencial crítica começa a dividir opiniões com a abordagem da velocidade crítica de início de transporte. Nesta categoria dois métodos merecem destaque. O trabalho de Velikanov (1946) e o trabalho de Levi (1948), nos quais definiu-se a descarga de sedimentos por arraste como proporcional à diferença entre a velocidade média do escoamento e a velocidade média crítica para início de transporte (PONCE, 1990; COIADO & PAIVA, 2005).

Meyer-Peter e Müller (1948) [*apud* SIMONS E SENTURK (1992)] baseando-se em análises semiteóricas, deduziram uma equação que apresenta como principal inovação a separação da linha de energia do escoamento em duas parcelas: uma para contemplar o efeito

da rugosidade do grão no início do movimento e outra para considerar a resistência causada pelas formas de fundo.

EINSTEIN (1950) revolucionou os estudos do transporte de sedimentos ao introduzir a teoria de probabilidade na descrição do movimento de partículas sólidas. O modelo teórico idealizado por Einstein para ao transporte de fundo baseia-se na intensa troca entre as partículas que estão em movimento e as que estão em repouso. Esse modelo expressa a condição de equilíbrio entre essas trocas, ou seja, o número de partículas erodidas deve ser igual ao número de partículas depositadas, ambos, por unidade de tempo e por unidade de área.

Segundo GRAF (1971), o método de EINSTEIN (1950) representou um dos maiores avanços na ciência do transporte de sedimentos por, substituir o conceito da tensão e o das velocidades críticas pela teoria de probabilidade. EINSTEIN (1950) também definiu a camada do leito como sendo igual a duas vezes o diâmetro representativo do material do leito e concluiu que a descarga de fundo move-se por saltos, com as partículas alternando períodos de repouso e de deslocamento. Por outro lado, o salto médio dado por qualquer partícula do material do fundo não excede em 100 vezes o seu diâmetro, valor este obtido por métodos estatísticos.

A metodologia desenvolvida por EINSTEIN (1950) é até hoje referência para diversos pesquisadores. Já a partir dos anos cinqüenta, surgiram os trabalhos de Einstein e Brown (1950), Einstein-Barbarossa (1952) e Colby & Hembre (1955) [PAIVA, 1988; PONCE, 1990; SIMONS E SENTURK, 1992; SAMANEZ, 1998; ECKHARDT, 1998]. No final dos anos sessenta e início dos anos setenta, mais dois trabalhos de relevância reconhecida foram divulgados, tendo como base o método de EINSTEIN (1950):o trabalho de TOFFALLETI (1969) e o de EINSTEIN & ABDEL-AAL (1972).

133

EINSTEIN (1950) define que o transporte do material de fundo ocorre numa camada de espessura duas vezes maior do que o diâmetro representativo do material do leito e é caracterizado por saltos e rolamentos com comprimentos e alturas comparados ao diâmetro da partícula. Segundo Einstein, nessa camada, a mistura devido à turbulência é tão pequena que não influencia no transporte do material e, desta forma, o transporte em suspensão é praticamente impossível. No entanto, a distância percorrida pela partícula é definida como sendo cem vezes o seu diâmetro, independentemente das condições do escoamento, da taxa de transporte e da composição do material do leito.

No trabalho de EINSTEIN (1950), o fator de ocultação é calculado em função de uma relação do tipo "D/ $\chi$ ", sendo que "D" é um diâmetro representativo do material do leito e que " $\chi$ " caracteriza os efeitos de viscosidade na camada laminar e suas intervenções no perfil de velocidade logarítmico, sendo calculado em função da relação "D<sub>65</sub>/ $\delta$ ", na qual D<sub>65</sub> representa o diâmetro do material do leito tal que 65% da amostra tenha diâmetro inferior e  $\delta$  é a espessura da camada limite laminar.

Segundo PONCE (1990), Einstein e Brown modificaram o método de Einstein (1950) com uma alteração no parâmetro adimensional de intensidade de transporte da descarga de fundo, a qual é realizada em função da potência cúbica do inverso da intensidade de atrito. Shen (1971), citado em SIMONS E SENTURK (1992), sugere o uso da curva de Einstein e Brown (1950) para o cálculo da descarga de fundo.

Segundo GARDE E RAJU (1985), a exemplo de Meyer-Peter e Müller (1948), Einstein & Barbarosa (1952) também buscaram considerar os efeitos das formas de fundo em seus estudos. Nesse caso, a contribuição dada foi devida à modificação no critério de cálculo da resistência ao escoamento. Nos seus estudos, Einstein & Barbarosa (1952) propuseram a divisão do raio hidráulico em duas parcelas, uma para contemplar a contribuição do grão e outra para contemplar a contribuição das formas de fundo na resistência total ao escoamento.

O método de Einstein, modificado por Colby e Hembree (1955) [*apud* PONCE (1990)] enquadra-se na categoria dos chamados métodos microscópicos, porque faz a separação da descarga de sedimentos medida em suspensão e por arraste, obtendo-se a descarga total pela soma das duas parcelas. O método inclui a modificação realizada por Einstein e Barbarossa (1952) e a descarga por arraste é calculada pelo método de Einstein (1950). PAIVA (1988) apresenta uma série de fatores que distinguem o método modificado por Colby e Hembree do método de Einstein entre eles destacam-se:

•O método modificado baseia-se em dados que podem ser observados em uma determinada seção do rio e não necessariamente ao longo de um trecho.

•A profundidade é usada para substituir o raio hidráulico.

•O valor do parâmetro que quantifica a descarga de sedimentos por arraste é arbitrariamente dividido por dois para ajustar melhor os dados experimentais.

Yalin (1963) [*apud* PONCE (1990)] propôs um método para o cálculo da descarga de sedimentos baseado na teoria da tensão crítica, e considera que o movimento do sedimento se realiza fundamentalmente por saltação, e comparou a fórmula a dados experimentais. Segundo COIADO & PAIVA (2005), os princípios básicos que governam o método de Yalin (1963) são: o fato de que o método foi desenvolvido para fluxo permanente e o fato de que é baseado no balanço de forças que atuam sobre a partícula.

SIMONS et al (1965) apresentaram uma metodologia ainda utilizada para a determinação da descarga de sedimentos por arraste a partir dos registros das alturas e das velocidades de deslocamentos das configurações de fundo. Apesar das semelhanças, essa metodologia difere da de Exner porque este último considera que o movimento do leito é influenciado pela velocidade do escoamento e não pela velocidade de deslocamento das formas de fundo.

BAGNOLD (1965) publicou seus estudos iniciados no começo da década de 40, nos quais formulou uma teoria para a determinação da descarga sólida em função da velocidade de deslocamento dos grãos de sedimentos. Esses estudos possibilitam a determinação da descarga de sedimentos, em unidade de massa por unidade de largura e tempo, a partir do conhecimento da variação temporal da velocidade do vento em uma fronteira próxima ao solo.

$$q_{\rm B} = B_{\rm I} \left(\frac{\rho_{\rm ar}}{g}\right) V_*^{3}$$
(3.6)

Na qual:

 $q_{\rm B}$  – descarga de sedimentos por arraste;

 $B_{I}$  – coeficiente de impacto que pode variar de acordo com a natureza da areia;

 $\rho_{ar}$  - massa específica do ar;

V\* - velocidade média de cisalhamento do vento;

g – aceleração da gravidade.

Os estudos de BAGNOLD (1965) trouxeram um enfoque diferente daqueles propostos pelos autores que o antecederam, porque o autor baseou-se no conceito de balanço de energia, estabelecendo que a potência disponível do escoamento é responsável pelo transporte de sedimentos. A obra de BAGNOLD (1965) torna-se de fundamental importância para a compreensão do movimento do transporte de sedimentos, seja em escoamento com superfície livre, seja em áreas a céu aberto, como em regiões desertas desmatadas. Abaixo, são comentados, de maneira resumida, alguns aspectos conceituais interpretados na obra em discussão:

#### Sobre o movimento do grão de sedimento:

•O grão de sedimento se move rolando ou executando pequenos saltos na superfície e a altura alcançada depende da velocidade de ejeção da sua posição de repouso.

# Sobre as características das configurações na superfície da terra em função da velocidade do vento e do grão de sedimentos:

•O comprimento de rugas, medido de crista a crista, aumenta com o aumento da velocidade do vento. Para areias de grãos aproximadamente uniformes, de tamanhos variando de 0,3 a 0,18 mm, o comprimento máximo encontrado para as rugas foi de 12 cm. Mas, quando a velocidade do vento excedeu um certo valor, as rugas foram destruídas e a superfície tomou uma forma plana.

•As dimensões e os tipos das deformações geradas pelo vento no deserto também são influenciados pela uniformidade dos grãos de areia. Nas regiões de areia de granulometria uniforme, praticamente não foi observada a presença de rugas.

#### Interferências da morfologia do leito na velocidade do ar e da água

•A velocidade do ar próximo à superfície é afetada inteiramente pela intensidade da saltação de areia acima desta e há um equilíbrio entre as duas, independentemente da morfologia abaixo da superfície.

•Na água, o efeito da saltação inicialmente pode ser desprezível, mas a velocidade é diretamente afetada pelas ondulações na superfície do leito.

#### Variação da velocidade do vento com a altura:

•Uma série de medições da velocidade do vento foi realizada para diferentes alturas acima da superfície, e constatou-se que essa velocidade é proporcional ao logaritmo da altura.

Continuando a sua série de estudos sobre o transporte de sedimentos, Bagnold (1966) [*apud* SIMONS & SENTURK (1992)] apresenta seu método para determinação da descarga de sedimentos em escoamentos com superfície livre, baseando-se no conceito do balanço de energia, envolvendo o trabalho, a energia dissipada pelo fluxo e a quantidade de sedimentos transportada. O método relaciona o trabalho útil e a energia disponível através de um fator de eficiência. Do ponto de vista físico, SIMONS & SENTURK (1992) comentam que a potência da corrente corresponde à energia provedora do transporte dos sedimentos.

O método de TOFFALETI (1969) é um dos de maior aceitação para utilização prática, porque foi originado com base em inúmeras medições em correntes naturais. O método possibilita o cálculo em separado da descarga de sedimentos por arraste e em suspensão e tem como base de concepção o método de EINSTEIN (1950). O método de TOFFALETI (1969) aproveita conceitos já consolidados e estabelecidos no modelo de Einstein, tais como o de intensidade da corrente e o de intensidade de transporte. O trabalho de Toffaleti avançou em relação ao método de Einstein porque é revestido de uma vasta gama de experiências de trabalhos de campo, realizados no rio Mississipi, em Vickisburg e no rio Atchafalaya, em Simmesport, ambos nos Estados Unidos [ECKHARDT, 1998].

SIMONS & SENTURK (1992) apresentaram uma sequência de pontos que diferem o método de TOFFALETI (1969) do de EINSTEIN (1950), entre os quais destacam-se:

•Um perfil de distribuição de velocidade descrito por uma lei de distribuição do tipo potência, em vez de uma lei logarítmica, como utilizado por Einstein.

•Uma combinação de diversos fatores de correção de Einstein em um único fator.

•A divisão da profundidade dividida em quatro zonas de transporte, com os perfis de concentração calculados por equações distintas.

•A zona inferior assumida por Toffaleti é definida como maior do que a camada de espessura
2D, em que D é o diâmetro médio do material do leito, definida por Einstein.

•No método de Toffaleti, a função de intensidade da corrente, definida por Einstein como responsável pelo transporte por arraste, é aplicada não apenas na camada 2D, mas em toda zona inferior, definida por Toffaleti como  $d_i = d/11,24$ , em que **d** representa a profundidade da corrente na seção transversal considerada.

EINSTEIN & ABDEL-AAL (1972) propuseram ligeira modificação no método de EINSTEIN (1950). No seu método original, Einstein considerou que a distribuição da velocidade e a equação de atrito são idênticas às que se tem em águas claras. Sabe-se, no entanto, que, para as águas claras, o coeficiente de von Karman é tido como constante, com valor fixo em  $\mathbf{k} = 0,40$ . Baseando-se nestas evidências, após uma série de experiências, Einstein e Abdel-Aal observaram que a constante "k" reduzia-se à medida que a concentração de sedimentos aumentava próximo ao leito. De acordo com os estudos, essa alteração na concentração promovia mudanças no perfil de velocidade, afastando-se do perfil de velocidade adotado no método de Einstein e, por conseguinte, observavam-se alterações na concentração de sedimentos em suspensão.

Para considerar as mudanças decorrentes da constante de von Karman, EINSTEIN & ABDEL-AAL (1972) propuseram uma relação para a constante, em função de um parâmetro adimensional que relaciona a velocidade de queda do sedimento, um diâmetro representativo da amostra, a vazão líquida por unidade de largura, a declividade média do canal e a velocidade média do escoamento.

Já na década de 80, VAN RIJN (1984a, 1984b, 1984c) publicou uma série de trabalhos sobre o estudo do movimento dos sedimentos em escoamentos com superfície livre. São estudos abrangentes que abordam desde os aspectos do início do transporte de sedimentos, passando pela estimativa das descargas de sedimentos transportadas em suspensão e por arraste, até a estimativa da rugosidade relativa do leito e previsão de geometria das configurações de fundo.

No primeiro trabalho, foi apresentada uma metodologia para a determinação da descarga de sedimentos como produto da altura do salto da partícula, da sua velocidade de deslocamento e da concentração de sedimentos próxima ao leito. A equação do movimento para a altura, o comprimento do salto e a velocidade de deslocamento de uma partícula

isolada foi resolvida pelo uso de um modelo computacional, que foi calibrado para grãos de sedimentos do tipo cascalho e para diferentes tipos de escoamentos.

Resultados computacionais obtidos por VAN RIJN (1984a) possibilitaram a determinação de uma equação simples para a estimativa da altura dos saltos. Uma metodologia semiteórica foi apresentada para a determinação da concentração de sedimentos próxima ao leito. Nesse artigo, portanto, foi destacada a dinâmica do movimento do grão isolado que formou a base dos estudos apresentados pelo autor no artigo seguinte, onde foram publicadas as equações da descarga de sedimentos transportados por arraste e em suspensão.

O segundo artigo de Van Rijn apresenta uma metodologia capaz de computar a descarga de sedimentos, pela integração, na profundidade, do produto da concentração local pela velocidade do escoamento. O método é baseado na estimativa da concentração de referência no leito do escoamento. Diversas medições foram realizadas para calibrar o modelo proposto. Análises experimentais com 800 dados mostraram que os resultados ficaram em uma faixa de 70% dos valores medidos.

No terceiro artigo, é apresentada uma metodologia para a classificação das formas de fundo, a determinação das suas dimensões geométricas e a rugosidade relativa do leito. As relações são baseadas em análises de dados de laboratório e de campo. Os resultados gerados pela metodologia foram comparados aos obtidos com os métodos de Brownlie, Engelung & Hansen e Ackers & White.

No artigo de VAN RIJN (1984c), apresenta-se uma classificação para as formas de fundo, assumindo-se que a alteração no leito é governada principalmente pela descarga de

sedimentos transportada por arraste, sendo basicamente descrita pelo diâmetro adimensional da partícula e pelo parâmetro de intensidade de transporte de ACKERS & WHITE (1973).

Nas duas primeiras publicações de VAN RIJN (1984a, 1984b), nota-se que a abordagem para a definição da descarga de sedimentos segue o enfoque de Bagnold (1966), citado em PONCE (1990), que considera que o movimento da partícula no fundo do escoamento é dominado pela força gravitacional que age no grão de sedimento, enquanto o efeito da turbulência é considerado de menor importância.

Segundo Bagnold (1966), citado em VAN RIJN (1984a), quando a velocidade de cisalhamento do leito for superior à velocidade de sedimentação da partícula, dá-se início ao transporte em suspensão. Do contrário, quando a velocidade de cisalhamento for menor, o transporte predominante é do tipo saltação.

Sob o argumento de que o transporte de sedimentos nos escoamentos com superfície livre em correntes naturais é de difícil estimativa, porque a condição de início de movimento de um determinado tamanho, bem como a taxa de transporte do sedimento podem ser afetadas pela presença de diferentes gradações do sedimento na amostra, SAMAGA (1986), através de aplicação de dados levantados por ele mesmo, em canal de laboratório, e também pelo uso de dados de Mirsi e Sutherland, publicou um trabalho experimental com proposição de alteração no modo de estimativa do fator de ocultação das partículas de sedimentos, o qual foi primeiro proposto por EINSTEIN (1950).

O trabalho experimental de Samaga tem como base os também experimentais trabalhos de dois outros autores. Comenta-se que, nos trabalhos que o antecederam, foi detectada uma série de inconveniências na metodologia proposta por EINSTEIN (1950), com destaque para aquela referente ao termo que contempla o efeito da ocultação das partículas menores entre as maiores no transporte de sedimentos na camada do leito.

Os experimentos foram conduzidos em um canal de recirculação de 30 m de comprimento, 0,20 m de largura e 0,50 metros de profundidade, localizado no laboratório de hidráulica da Universidade de Roorkee, na Índia. O sedimento usado foi areia de densidade relativa 2,65. Quatro misturas de diâmetros de  $D_{50} = 0,20$ ; 0,27; 0,29 e 0,35 mm foram usadas na pesquisa.

No trabalho de SAMAGA (1986) o fator de ocultação é calculado em função de dois parâmetros adimensionais. O primeiro  $(\tau'_0/\gamma'.D)$  dá uma indicação da intervenção da tensão de cisalhamento na resistência ao movimento individual do grão de sedimentos. O segundo  $(\tau'_0/\tau_c)$  reflete a influência da tensão de cisalhamento na resistência ao movimento na mistura.

A descarga de sedimentos, por faixa de frações de diâmetros, pode ser fornecida através de uma relação gráfica obtida experimentalmente, pelo uso dos dados do próprio Samaga e de outros citados em seu artigo. A curva relaciona o primeiro termo adimensional citado no parágrafo anterior, sendo que sobre este termo incide o fator de ocultação, calculado pela nova abordagem  $\xi .\tau'_0 / \gamma'_S .D$ . A curva ajustada relaciona este último termo adimensional e o parâmetro de transporte de sedimentos do método de EINSTEIN (1950).

SAMAGA (1986) comenta que, no trabalho desenvolvido por Mirsi, a metodologia de Einstein tendeu a subestimar a descarga de sedimentos, principalmente para a estimativa da descarga das misturas com granulometrias maiores.

WIBERG & SMITH (1989) publicaram um modelo sobre o transporte de sedimento, baseado na inspeção do movimento isolado do grão de sedimentos numa trajetória conhecida. É um modelo basicamente fundamentado no mecanismo do movimento do grão isoladamente, sendo, portanto, possível estimar o comprimento e a altura do salto da partícula, a velocidade de deslocamento e a descarga de sedimentos na camada do leito.

Para avaliar a magnitude da concentração de sedimentos, considerou-se o limite do número de partícula passível de ser transportado dentro da camada do leito. Os autores argumentam que o mecanismo de desprendimento dos grãos de sedimentos promove sua aceleração para jusante e, neste processo, ocorre uma dissipação de quantidade de movimento extraída do escoamento, com uma considerável redução da tensão média de cisalhamento do fluido. A conseqüência disso é um aumento de erosão no leito, promovendo-se sucessivos deslocamentos de outras partículas do leito para corrente.

WIBERG & SMITH (1989) atribuíram que a transferência da quantidade de movimento do fluido para o sedimento, e que resulta na aceleração da partícula de sedimentos para jusante, é acompanhada pela componente horizontal da força de arrasto. Segundo os autores, essa componente tem um valor mínimo próximo ao topo da camada do leito, onde a velocidade do sedimento aproxima-se da velocidade do fluido, e atinge o valor máximo fora da camada, de modo que, uma vez iniciado o movimento da partícula, a sua trajetória é governada principalmente pelo aumento entre a diferença da sua velocidade e a velocidade do escoamento.

O modelo apresentado por WIBERG & SMITH (1989) difere de alguns dos modelos de cálculo da descarga de sedimentos na camada do leito, porque a formulação apresentada é fundamentada principalmente nas equações da quantidade de movimento e não contém coeficientes empíricos estabelecidos pelo uso de medições de sedimentos. Embora a descrição do modelo esteja fundamentada em sedimentos de granulometria uniforme, os autores argumentam que tal modelo pode ser utilizado para a estimativa da descarga de sedimentos com diferentes misturas, sem perda de sua validade. Mas os autores enfatizam que a precisão do modelo está condicionada à precisão na determinação da tensão crítica de cisalhamento do leito.

Com o intuito de analisar a intervenção da densidade do material na descarga de sedimento transportada, LOW (1989), através de estudos em canais de laboratório, utilizando sedimentos artificiais de diferentes densidades, apresentou uma equação para a estimativa da descarga de sedimentos em escoamentos com superfície livre.

Argumentando que, para o cômputo da descarga de sedimentos, faz-se necessário considerar fatores que contemplem características do sedimento e do escoamento, o autor apresenta uma equação meramente empírica em que a descarga de sedimentos é dada como uma simples relação de potência entre a velocidade de cisalhamento do leito e a velocidade de sedimentação da partícula de sedimento.

A descarga de sedimentos transportada é encontrada como sendo proporcional à sexta potência da velocidade de cisalhamento e inversamente proporcional à quinta potência da velocidade de sedimentação da partícula.
Os estudos foram realizados em caneleta de laboratório de aproximadamente 16 cm de largura e 6 metros de comprimento, com o uso de sedimentos artificiais de diâmetro 3,5 mm e densidades relativas variando entre 1,0 e 2,5. Segundo o autor, a experiência mostrou que a velocidade de cisalhamento é mais adequada para a estimativa da descarga de sedimentos do que a velocidade média do escoamento.

SWAMEE (1991), utilizando dados de EINSTEIN (1950) e de outros pesquisadores, como Mirsi e Samaga, cujos trabalhos foram divulgados na década de 80, publicou uma equação semiteórica para a determinação da descarga de sedimentos transportada em suspensão e na camada do leito. A metodologia utilizada pelo autor fundamentou-se basicamente na proposição de uma alternativa para a determinação do diâmetro representativo que consta do parâmetro de transporte de EINSTEIN (1950) e na equação de cálculo da tensão de cisalhamento adimensional que, segundo SWAMEE (1991), consta no artigo de Mirsi publicado em 1981.

A proposição feita por SWAMEE (1991) possibilita o ajustamento do parâmetro de transporte de EINSTEIN (1950), para ser empregado tanto para o caso dos sedimentos coesivos quanto para aqueles não-coesivos. No estudo de SWAMEE (1991), assim como em EINSTEIN (1950), é admitido que o material transportado numa camada correspondente a duas vezes o diâmetro representativo do material do leito é considerado como transportado por arraste, enquanto que aquele transeunte fora desta camada é considerado como transportado em suspensão.

Uma das vantagens que se observa em relação à equação é a sua versatilidade quanto à aplicação para os casos de sedimentos uniformes e não-uniformes. A não-uniformidade do grão é definida por uma relação empírica descrita em função de três parâmetros de ajustes para aproximar uma distribuição qualquer a uma distribuição unimodal. É estabelecida uma equação analítica para previsão da moda da distribuição. O diâmetro tido como moda da distribuição é então relacionado com o coeficiente de uniformidade de Kramer. Uma vez ajustado o diâmetro representativo do material do leito para sedimentos uniformes ou não, recorre-se ao parâmetro de transporte de EINSTEIN (1950) para o cálculo da descarga de sedimentos na camada do leito.

Baseando-se na suposição de que o trabalho realizado pela força de gravidade para manter a partícula em suspensão é proporcional à produção de energia cinética de turbulência, CELIK (1991) desenvolveu uma relação semiteórica para a determinação da concentração de sedimentos em suspensão. Segundo o autor, nos escoamentos com superfície livre em canais abertos com águas claras, a energia de turbulência produzida pela força gravitacional que age no fluido é dissipada diretamente pela ação das forças de viscosidade agindo em pequena escala no movimento turbulento. Mas, quando o escoamento é provido pela presença de sedimentos em suspensão, parte da energia produzida é direcionada para manter a partícula em suspensão.

A equação desenvolvida por CELIK (1991) permite o cálculo da concentração de referência, tendo obtido boas aproximações quando comparada com dados experimentais. A fórmula envolve um número relativamente pequeno de parâmetros, de fácil medição, o que torna atrativo o seu emprego para fins práticos de engenharia de recursos hídricos.

Ademais, uma vez que a nova fórmula é baseada na equação de energia cinética de turbulência, expressando os vários processos físicos intervenientes no escoamento, seja pela compreensão da intervenção das forças de viscosidade e/ou da difusão turbulenta que governam o escoamento, a fórmula de CELIK (1991) pode ser empregada nas mais complexas situações de escoamentos com superfície livre em correntes naturais, como aquelas com altas taxas de concentrações de sedimentos, em que a produção e a dissipação de

energia cinética de turbulência são afetadas sobremaneira pela presença das partículas no fluxo.

HSU (1992), ao apresentar seu modelo computacional conceptual sobre o movimento dos sedimentos em escoamentos com superfície livre, questionou a aplicação de um único diâmetro representativo de sedimentos de diferentes misturas. O autor argumenta que, para sedimentos não-uniformes, o diâmetro mediano  $D_{50}$  não é suficiente para representar a gradação do material do leito, porque essa situação é peculiar apenas ao caso da distribuição gaussiana. Por outro lado, a gradação do material transportado em suspensão necessariamente não será a mesma do material depositado no fundo do canal.

Ao contrário de SAMAGA (1986), que enfocou seus estudos no fator de ocultação das partículas menores sobre as maiores nos leitos dos cursos de águas em escoamentos com superfície livre, no modelo de HSU (1992) a gradação do material transportado é considerada usando o conceito de probabilidade associada.

O modelo proposto simula inicialmente a distribuição do material transportado e estima a descarga correspondente a cada fração de tamanho. A descarga total é obtida pela soma dessas frações parciais. A idéia central do modelo é baseada em evidências experimentais de que cada classe de tamanho do material transportado está sujeita às oscilações de variáveis intervenientes no escoamento do leito como, por exemplo, a velocidade de cisalhamento do leito. Com essas considerações é postulado que a fração de cada classe do material do leito é proporcional à probabilidade associada a dois fatores.

O primeiro deles, o fator de mobilidade do tamanho de classe do material do leito para uma dada condição do escoamento predominante, é calculado através de uma função densidade de probabilidade do tipo gaussiana, na qual se determina a probabilidade de a velocidade do escoamento ultrapassar a velocidade crítica para início de transporte de uma determinada faixa de tamanho de sedimentos que compõe o leito do canal.

Já o segundo, denominado fator de disponibilidade do material do leito, avalia a probabilidade de um determinado tamanho de sedimento D<sub>i</sub> ser encontrado no sedimento que compõe o leito do curso de água.

DAMGAARD (1997) estabeleceu modificações no parâmetro adimensional de Shields e na equação de Meyer Peter e Müller com o intuito de apresentar uma nova metodologia de quantificação da descarga de sedimentos, incluindo os efeitos da força gravitacional na dinâmica do movimento dos sedimentos. O argumento para a formulação da nova metodologia é o fato de que, quando a gravidade tem uma componente paralela à direção longitudinal do canal onde o sedimento depositado está no limiar para ser transportado, a descarga de sedimentos e as condições iniciais de movimento são ligeiramente afetadas.

Contudo, comenta-se que, como esta é uma situação muito comum de ocorrer nos cursos de águas naturais, tanto no caso dos escoamentos fluviais em águas costeiras quanto em águas estuarinas, torna-se conveniente averiguar a intervenção dos efeitos das forças gravitacionais no comportamento do transporte de sedimentos nessas condições. Segundo DAMGAARD (1997), Luque (1972) e Luque e Van Beek (1976), em seus estudos experimentais, fizeram uma minuciosa investigação sobre os efeitos da declividade na dinâmica do movimento dos sedimentos. O propósito do trabalho de DAMGAARD foi estabelecer experimentalmente uma relação funcional do tipo  $\phi = f(\phi, S)$  em que " $\phi$ " é o parâmetro de transporte da descarga do leito, " $\phi$ " é o parâmetro adimensional de Shields para início de transporte, S é a declividade da linha de água.

Regressões lineares usando dados experimentais foram feitas de modo que foi possível redefinir o parâmetro adimensional de Shields para valores críticos dependendo da declividade da linha de água. O autor sugere que o parâmetro que contempla os efeitos das tensões cisalhantes constantes da equação de Meyer Peter seja calculado com o adimensional de Shields submetido à alteração. Testes realizados por DAMGAARD (1997) usando dados experimentais mostraram que os efeitos da declividade tendem a se reduzir com o aumento do parâmetro adimensional de Shields.

KARIM (1998) apresentou uma relação para a previsão da descarga de sedimentos, fracionando a amostra de sedimentos, para amostras não-uniformes. A integração entre os diferentes tamanhos é feita através de uma formulação na qual se insere uma expressão para o fator de ocultação, refletindo a redução no transporte das partículas finas, devido ao seu encobrimento ou ocultação pelas partículas maiores. A relação foi testada para diversos grupos de dados de escoamentos com superfície livre, incluindo ensaios de laboratório e dados de levantamentos de correntes naturais.

Para se obter a nova relação, o autor reporta-se a outros trabalhos de sua autoria publicados na década de 80, nos quais, segundo KARIM (1998), determinou-se uma expressão para a descarga de sedimentos para amostras uniformes, através de análises de

regressão, considerando-se que a velocidade do escoamento (U), a velocidade média de cisalhamento do escoamento (U\*), a velocidade de queda da partícula (W) e o diâmetro mediano (D<sub>50</sub>) seriam as variáveis de maior significância para o transporte de sedimentos. No trabalho de 1998, o autor altera a equação apresentada entre os anos de 1981 e 1983, incidindo sobre esta uma expressão que contempla o fator de ocultação e que também possibilita o cálculo da descarga de sedimentos, tanto para sedimentos de granulometria uniforme, quanto para aqueles de granulometria não-uniforme. A descarga total é obtida pela soma das descargas parciais correspondentes a cada fração de diâmetro da amostra.

A expressão para o cálculo do fator de ocultação foi obtida pela suposição, já assimilada e difundida entre diversos autores citados na literatura (SIMONS & SENTURK, 1998; EINSTEIN, 1950; GARDE & RAJU, 1985), de que, em um canal natural com o leito composto por diversos tamanhos na mistura, partículas menores tendem a permanecer em repouso por um certo período de tempo, devido à ocultação pelas maiores, até que estas venham a ser colocadas em movimento pelos fenômenos de transferência de massa do tipo advecção diferenciada.

KARIM (1998) descreve que, em uma mistura não-uniforme, as partículas de tamanhos menores, especialmente para um dado tamanho  $D_i$  do sedimento na amostra, deverão representar um percentual da descarga menor, se comparada às descargas de sedimentos para a mesma fração de tamanho  $D_i$  transportada em leitos de granulometria mais uniformes.

Baseando-se nessa premissa, é assumido que o fator de transporte da descarga do leito é definido como sendo proporcional a uma relação entre  $D_i$  e o diâmetro mediano da amostra ( $D_{50}$ ). Ou seja:  $(D_i/D_{50})^{A_2}$ . Por outro lado, assume-se que o fator de ocultação

pode ser dado por uma relação do tipo  $\xi = A_1 (D_1/D_{50})^{A_2}$ , de modo que  $A_1$  e  $A_2$  levam em conta os efeitos da gradação do sedimento na mistura e são determinados experimentalmente.

Einstein & Chen (1953) [*apud* KARIM (1998)] através de análises experimentais, assumiram que  $A_1$  e  $A_2$  podem ser expressos como função da velocidade média de cisalhamento do escoamento e da velocidade de queda da partícula, esta última determinada para o diâmetro mediano da amostra, de modo que A1 e A2 podem ser dados respectivamente por  $A_1 = 1,15$  (W/U\*) e por  $A_2 = 0,60$  (W/U\*).

Tendo-se por base apenas os estudos experimentais de Einstein & Chen (1953), citado em KARIM (1998), observa-se que, como A<sub>1</sub> e A<sub>2</sub> são proporcionais ao fator  $(W/U_*)$ , o efeito da ocultação poderá ser mais significativo nos escoamentos com predominância do transporte por arraste, em relação ao escoamento em suspensão, porque espera-se que a relação  $(W/U_*)$ , seja maior para o primeiro tipo de transporte. A faixa de diâmetros medianos usados no trabalho de Einstein & Chen (1953) variou entre 0,12 mm a 0,52 mm.

Além da simplicidade que é característica da metodologia de KARIM (1998), a sua equação é notadamente de fácil aplicação. Ademais, comparações entre descargas calculadas por esse método e descargas medidas experimentalmente forneceram para a diferença percentual relativa média um valor de 45%, o que consolida uma precisão razoável, credenciando o método à aplicação em casos práticos.

YANG (2003), através de análise dimensional, desenvolveu uma equação empírica para a determinação da descarga total de sedimentos do leito em escoamentos com superfície livre. Foram utilizados argumentos já bastante comentados [SIMONS & SENTURK (1992)] de que variáveis, como profundidade, largura da seção transversal, velocidade média do escoamento, declividade da linha de água, peso específico do sedimento, peso específico da água, viscosidade cinemática, diâmetro representativo do material do leito e velocidade de queda da partícula, devem ser consideradas na análise dimensional, para a determinação de uma equação de cálculo do transporte de sedimentos do material do leito.

A exemplo de outros pesquisadores [VAN RIJN 1984 a,b; GRAF, 1971; SIMONS & SENTURK, 1992], YANG (2003) sustenta que a velocidade de cisalhamento do escoamento é mais representativa do que a velocidade média do escoamento para contemplar as flutuações de turbulência em torno de uma fronteira sólida como o fundo do rio.

Nessa nova equação, a velocidade de cisalhamento do escoamento é calculada usando a metodologia de VAN RIJN (1984 a,b). O propósito do trabalho em discussão foi o de desenvolver uma equação empírica para expressar a descarga de sedimentos baseando-se em um novo parâmetro de transporte, como se vê na **equação 3.7.** 

$$T_{T} = \frac{\gamma_{s}}{(\gamma_{s} - \gamma)} \tau_{0} \left( \frac{U_{*}^{\prime 2} - U_{*c}^{2}}{W} \right)$$
(3.7)

Na qual:

T<sub>T</sub> - representa o parâmetro de transporte;

 $\gamma_s$  - peso específico do sedimento;

 $\gamma$  - peso específico da água;

 $\tau_0$  - tensão tangencial média de cisalhamento da corrente;

U' - parcela da velocidade de cisalhamento do escoamento devido a rugosidade do grão;

U\*c - velocidade de cisalhamento crítica do escoamento;

W - velocidade de queda da partícula.

Na equação 3.7, nota-se que o parâmetro  $T_T$  tem dimensão de uma potência da corrente, ou seja, corresponde a um produto de uma tensão por uma velocidade. Por outro lado, o termo do lado direito da equação traduz a susceptibilidade da mobilidade do grão.

A equação para a estimativa da descarga de sedimentos desenvolvida por YANG (2003) é linearmente relacionada com o parâmetro de transporte citado no parágrafo anterior e com um fator de proporcionalidade. A equação torna-se atrativa para ser aplicada porque tanto o fator de proporcionalidade quanto o parâmetro de transporte são de fácil obtenção.

Recentemente PUJOL (2004) realizou um trabalho de cunho experimental com o propósito de desenvolver expressões para o cálculo da descarga de sedimentos a partir de equações já existentes. Na sua pesquisa, foi proposta uma alteração no parâmetro de transporte da equação de Engelund e Hansen para a descarga total de sedimentos, mas a calibração foi feita a partir de dados de laboratório. O trabalho foi baseado em análise dimensional e não foi feita consideração à uniformidade ou não da amostra do material do leito. O autor ratifica as dificuldades e a necessidade de se definir uma equação para a estimativa da descarga de sedimentos com uma precisão desejável para ser empregada em diferentes cursos de águas. Segundo ele, nos últimos vinte anos poucas fórmulas surgiram.

Segundo PUJOL (2004), a sua contribuição pretendeu mostrar que a manipulação das fórmulas existentes para a previsão do transporte de sedimentos permite obter resultados com uma precisão razoável para os propósitos da Engenharia de Recursos Hídricos e que as modificações em equações já consagradas têm apresentado avanços no que se refere a estudos realizados em canais de laboratório.

Neste **item 3.2**, apresentou-se uma evolução das teorias que governaram o transporte de sedimentos, começando pelos estudos de Du-Boys no século XIX até mais recente, com o objetivo de destacar as principais tendências das metodologias que governam os transportes de sedimentos por arraste do leito. Cumpre esclarecer que nesta, etapa da revisão bibliográfica, preocupou-se em relatar apenas o surgimento de novos métodos de estimativa da descarga de sedimentos na camada do leito. A apresentação das principais equações será contemplada no **item 3.3**.

Notou-se que, simultaneamente à evolução das metodologias, novas teorias foram sendo incorporadas e aprimoradas, como, por exemplo, aquelas que levam em consideração as flutuações turbulentas do escoamento, que caracterizam o transporte do sedimento por advecção diferenciada e as intervenções da gradação do material do leito no transporte.

Observou-se que os trabalhos de Einstein e Meyer Peter Müller, como esperado, continuam sendo referências para o surgimento de outras metodologias de estudos do transporte de sedimentos. No caso de Einstein, tal fato se dá não pelo resgate da teoria de probabilidade e estatística peculiar ao seu método, mas principalmente pelas proposições de ajustes no parâmetro de transporte da descarga do leito e no fator de ocultação pioneiramente introduzido pelo autor no seu trabalho original [EINSTEIN, 1950].

3.3 – Equacionamento dos principais modelos de cálculo indireto do transporte de sedimentos na camada do leito

#### 3.3.1 – Generalidades

As principais linhas de pesquisa do transporte de sedimentos em escoamentos com superfície livre podem ser sistematizadas em quatro categorias distintas: estudo do início do movimento sólido no leito; estudos das deformações de fundo; estudo da resistência hidráulica ao escoamento e, por fim, o estudo do movimento sólido por arraste e em suspensão.

O estudo do início do movimento das partículas sólidas tem particular importância nas pesquisas referentes ao transporte de sedimentos, por estabelecer critérios que definem os canais naturais como de leitos rígidos ou erodíveis. No entanto, devido ao fato de seu caráter aleatório ser variável no tempo e no espaço, a sua descrição na natureza torna-se de difícil observação, razão pela qual os dados mais confiáveis têm sido resultado de experiências de laboratório.

Em geral, três enfoques são adotados para estudo do início do movimento da partícula de sedimentos: um com base na velocidade crítica, no qual se considera o impacto do líquido; outro, em que é considerado o emprego da tensão de cisalhamento crítica do leito, considerando os efeitos de fricção do arrasto do escoamento; e, por último, o que considera o uso da força de sustentação, onde se contempla a diferença de pressão devido às flutuações do gradiente de velocidade [GRAF,1971].

157

O estudo das configurações de fundo tem como objetivo avaliar a interação da fronteira do escoamento com o transporte de sedimentos, permitindo estimar as resistências hidráulicas aos escoamentos. Devido à complexidade de se definir precisamente a geometria da fronteira móvel, tanto os estudos das deformações de fundo, quanto os da resistência hidráulica não estão ainda totalmente solucionados.

O detalhamento e a descrição da resistência ao escoamento têm particular importância nos estudos em escoamentos em condutos livres ou forçados. Em ambos os casos, a resistência ao escoamento gera dissipação de energia, que não é mais recuperável. Diante disto, surge a real necessidade de se desenvolverem modelos para estimar essas perdas nos projetos hidráulicos. No caso dos cursos de águas naturais, uma parte dessa energia se dissipa pela contribuição das formas de fundo e outra parte pela granulometria do sedimento do leito [SIMONS & SENTURK, 1992].

A otimização da precisão da estimativa da descarga de sedimentos nos escoamentos com superfície livre desperta grande interesse entre os engenheiros e pesquisadores que lidam com transporte de sedimentos e constitui um dos principais problemas a serem equacionados nos estudos relacionados à Hidráulica Fluvial.

Para a determinação da quantidade de sedimentos transportada em um curso de água, pode-se optar por duas alternativas. A primeira delas é a medição direta pelo emprego de amostradores ou acumuladores. A segunda faz uso de uma das diversas equações disponíveis na literatura. Porém, ambos os métodos têm grandes limitações, seja pela impossibilidade dos amostradores coletarem amostras que representem precisamente a descarga transportada, seja pelas simplificações normalmente atribuídas aos diversos métodos e equações de estimativa. Diante dessas incertezas, o "TASK COMITEE", citado em PAIVA (1988), alerta para uma série de observações sobre a utilização das fórmulas de transporte de sedimentos e para os critérios de medições da descarga sólida:

• Há uma urgente necessidade de se testarem as fórmulas propostas sob uma variedade de condições como as encontradas na prática da Engenharia;

• uma análise sistemática das condições requeridas para cada fórmula e para cada faixa de condições em que essa fórmula possa ser empregada é necessária;

• de maior importância pode ser uma listagem das condições sob as quais cada fórmula não deve ser aplicada;

 a falta de uma equação de transporte de sedimentos apropriada tende a limitar o progresso no desenvolvimento de relações com bases físicas entre a morfologia do canal e a produção de sedimentos;

 a ausência de uma relação apropriada para os rios naturais faz as interpretações de relações empíricas tênues e dependentes das considerações requeridas para cada fórmula de transporte de sedimentos;

• as relações originadas de canais de laboratório dificilmente contemplarão todas as intervenções impostas pela natureza ao transporte dos sedimentos.

A bibliografia que trata do assunto [VANONI, 1975; GARDE & RAJU, 1985; PAIVA, 1988; SIMONS & SENTURK, 1992; COIADO, 2002-2003] traz uma grande quantidade de métodos para quantificar o transporte de sedimentos, o que indica que o tema ainda não está totalmente esclarecido. Para cada modalidade de transporte indicada na **figura**  **3.1** existe mais de um método que pode ser empregado. No decorrer do século XX, muitas equações foram desenvolvidas. Mas, a maioria delas foi obtida de estudos de laboratório, em que as condições ensaiadas nem sempre condizem com as observadas nos escoamentos naturais [HABERSACK & LARONE, 2002].

Por outro lado, quase que a totalidade das fórmulas de transporte de sedimentos é para a descarga de sedimentos sob condições de escoamentos uniformes e não incluem a carga de lavagem. Somente para se ter uma idéia de quantas e quais são, segundo o COMMITEE ON SEDIMENTATION OF HYDRAULICS DIVISION, enquadram-se nessa categoria as equações de Du Boys (1879); Meyer Peter (1948); Schoklitsch (1935); Shields (1936); Laursen (1958); Einstein-Brow (1950); Einstein Bed Load Function (1950); Blench (1964); Colby (1964); Engelund (1967) Inglis-Lacey (1968) e Toffaleti (1969). Estas equações não representam o universo de todas existentes para o cálculo da descarga de sedimentos mas, certamente, estão entre as mais divulgadas e aplicadas em Engenharia de Recursos Hídricos.

A precisão da estimativa da descarga de sedimentos na camada do leito pelas equações do tipo Du Boys (1879) está condicionada à precisão da estimativa da tensão crítica de cisalhamento para início de transporte, o que pode fornecer diferentes valores da descarga de sedimentos estimada por um mesmo método, devido a variedades de critérios empregados para o cálculo da tensão crítica de início de transporte [COIADO & PAIVA, 2005].

Depois de Du Boys, muitas equações do transporte de sedimentos surgiram para o cálculo da descarga de sedimentos por arraste e/ou na camada do leito. Esta camada será aqui considerada como correspondente a duas vezes o diâmetro do sedimento, seguindo os critérios de EINSTEIN (1950). Para efeito prático, quando este texto fizer referência ao movimento do sedimento por arraste do leito, ou ao movimento do sedimento na camada do leito, estará se referindo à mesma modalidade de transporte. A partir do **item 3.2.2**, serão

apresentadas as equações mais recomendadas para a estimativa da descarga de sedimentos na camada do leito. No rol dessas equações, algumas foram apresentadas devido ao seu valor histórico na evolução dos estudos do transporte de sedimentos, mas nem todas serão aqui empregadas. As tabelas 3.7 e 3.8 que constam no final deste capítulo trazem informações referentes ao conjunto de quatorze equações que serão usadas na pesquisa.

### 3.3.2 – Equação teórica para o cálculo da descarga de sedimentos

## <u>3.3.2.1- Equação de Du-Boys (1879)</u>

[GARDE & RAJU, 1985; SIMONS & SENTURK, 1992; ECKHARDT,1998; COIADO, 2002-2003]

Du-Boys assumiu que o sedimento move-se em camadas paralelas de espessura igual ao diâmetro do material do leito, seguindo uma distribuição linear de velocidade, como mostra a **figura 3.2**, de modo que na camada inferior a velocidade é zero, na segunda é  $\Delta U$ , na terceira  $2\Delta U$  e assim sucessivamente, até que na camada superior a velocidade pode ser dada como ( $n_c -1$ ) $\Delta U$ .



Figura 3.2 - Modelo idealizado por Du-Boys, 1879

Para a definição da equação de Du-Boys, as seguintes considerações deverão ser adotadas:

1. A velocidade na superfície é representada por:

$$U_{nc} = (n_c - 1)\Delta U$$
(3.8)

Na qual:

 $\mathrm{U}_{nc}\,$  - velocidade na camada de superfície;

n<sub>c</sub> - número de camadas do leito;

 $\Delta U$  - acréscimo de velocidades entre camada adjacentes.

2. A descarga sólida em volume por unidade de tempo e por unidade de largura é obtida através da área de deslocamento das camadas, como mostrado no diagrama qualitativo da evolução da velocidade de deslocamento das camadas, conforme figura 3.2.

$$q_{\rm B} = \frac{(n_{\rm c} - 1)\Delta U}{2} n_{\rm c} \Delta d \tag{3.9}$$

Na qual:

 $\Delta d$  - espessura das camadas, igual ao diâmetro do material do leito.

**3.** A tensão tangencial média de cisalhamento da corrente é balanceada pelas forças de resistência à elevação das camadas em movimento, ou seja:

$$\tau_0 = C_a (\gamma_s - \gamma) n_c \Delta d \tag{3.10}$$

Na qual:

C<sub>a</sub> - coeficiente de atrito;

O valor de  $n_c = 1$  é obtido assumindo que somente uma camada estará susceptível à condição crítica de transporte ( $\tau_0 = \tau_c$ ) que caracteriza o início do movimento dos sedimentos de diâmetro igual a D. Assim, a **equação 3.10** torna-se:

$$\tau_{c} = C_{a} (\gamma_{s} - \gamma) D$$
(3.11)

ou

$$\tau_0 = n_c \tau_c \tag{3.12}$$

Substituindo-se a equação 3.12 na equação 3.9, obtém-se a equação de Du-Boys, na qual q<sub>B</sub> é dada em volume por unidade de tempo e por unidade de largura, respectivamente pelas equações 3.13 e 3.14. Nesta última,  $A_0 = \frac{(\Delta U)D}{2\tau_c^2}$ . Já na equação 3.15 a descarga encontra-se em peso por unidade de largura e tempo. Em recente trabalho, COIADO (2002-

2003) apresentou a **equação 3.16** que representa uma versão simplificada da equação de DuBoys & Straub, na qual a descarga de sedimentos é dada em kgf/m.s.

$$q_{\rm B} = \left(\frac{\tau_0}{\tau_c}\right) \left(\frac{\tau_0}{\tau_c} - 1\right) \frac{\Delta U}{2} D$$
(3.13)

$$q_{\rm B} = A_0 \tau_0 \left( \tau_0 - \tau_c \right) \tag{3.14}$$

$$q_{\rm B} = \gamma_{\rm s} A_0 \tau_0 (\tau_0 - \tau_{\rm c}) \tag{3.15}$$

Na qual:

A<sub>0</sub> - constante obtida experimentalmente.

$$q_{\rm B} = \frac{0.01003}{D^{3/4}} \tau_0 \left(\tau_0 - \tau_c\right) \tag{3.16}$$

A **tabela 3.3** mostra alguns valores para a constante  $A_0$  e para a tensão tangencial crítica de cisalhamento  $\tau_c$  obtidos por Straub (1935) [*apud* GARDE & RAJU, 1985] para diferentes diâmetros de areias.

Tabela 3.3 – Valores para  $A_0 e \tau_c em função do diâmetro – Straub, 1935. [GARDE & RAJU, 1985]$ 

| D (mm)                               | 0,125 | 0,250 | 0,500 | 1,00  | 2,00  | 4,00  |
|--------------------------------------|-------|-------|-------|-------|-------|-------|
| A <sub>0</sub> (10 <sup>-3</sup> )   | 3,157 | 1,871 | 1,130 | 0,663 | 0,390 | 0,234 |
| $(m^6/kgf^2.s)$                      |       |       |       |       |       |       |
| $\tau_{\rm c}~({\rm kgf}/{\rm m}^2)$ | 0,078 | 0,083 | 0,107 | 0,156 | 0,259 | 0,439 |

## 3.3.3 – Equações semiteóricas para o cálculo da descarga de sedimentos

Este tipo de equação é concebido com base em formulações teóricas baseadas em principio de estatística e de mecânica dos fluidos. Nesse caso, a solução teórica é complementada por experiências praticas para a obtenção das constantes envolvidas na dedução.

Normalmente, nas equações semiteóricas considera-se o movimento individual da partícula e se usam algumas expressões para obter a velocidade de deslocamento. BAGNOLD (1965) realizou um estudo minucioso sobre o movimento individual do sedimento do leito no qual ficou comprovado que a partícula, ao se deslocar, varre certa distância, pára e, em seguida, retoma sua trajetória.

GRIGG (1970), nos seus estudos sobre o movimento individual do grão de sedimentos, constatou que o transporte total e a dispersão em um canal natural aluvional são resultados do transporte e da dispersão individual de cada partícula envolvida na dinâmica do movimento, e que esse movimento dos sedimentos individualmente consiste em uma série alternada por saltos e períodos de repouso. Nesta seção, serão apresentadas algumas das principais equações classificadas como semiteóricas.

#### 3.3.3.1-Equação de Einstein (1950)

[EINSTEIN, 1950; GRAF, 1971; PAIVA, 1988, PONCE,1990 ; SIMONS & SENTURK, 1992; COIADO, 2002-2003]

Os estudos de Einstein (1942-1950) contribuíram sobremaneira para a evolução das teorias que governam o transporte de sedimentos em escoamentos com superfície livre, principalmente porque Einstein rompeu com as teorias do passado de Du-Boys e Shoklitsch. Segundo GRAF (1971), existem três princípios básicos que diferenciam o método de EINSTEIN (1950) daqueles desenvolvidos por seus antecessores:

1. A definição de um parâmetro crítico de início de movimento foi evitada;

2. Einstein sugeriu que o transporte do material do leito está mais relacionado às variações temporais da velocidade do que a um valor médio desta velocidade;

**3.** o princípio e o fim do movimento da partícula foram explicados pelo conceito de probabilidade de remoção, que relaciona as forças hidrodinâmicas instantâneas e a força de sustentação decorrente do peso da partícula.

Segundo PAIVA (1988), evidências experimentais levaram EINSTEIN (1950) a concluir que:

1. Existe uma intensa e permanente troca de partículas entre o material do leito em repouso e aquele em movimento;

2. a carga do leito move-se lentamente para jusante, com o movimento das partículas dandose em passos rápidos, com períodos de repouso intermediários relativamente longos;

**3**. o salto médio dado por qualquer partícula parece ser constante e independente da condição do escoamento, da taxa de transporte e da composição do leito;

**4**. a variação do transporte sólido é atribuída à mudança nos intervalos de tempo em que as partículas permanecem em repouso e em movimento.

Com esses conceitos, Einstein (1942) apresentou o método de cálculo para a descarga de sedimentos de granulometria uniforme, em função de dois parâmetros. O primeiro, **equação 3.17**, traduz a intensidade da corrente. O segundo, **equação 3.18**, representa a intensidade de transporte - às vezes denominada de parâmetro de transporte [COIADO, 2002-2003].

$$\psi = \frac{(\gamma_{\rm s} - \gamma)D_{50}}{\gamma.R_{\rm H}.S}$$
(3.17)

Na qual:

 $\psi$  - intensidade da corrente

$$\phi = \frac{g_B}{\gamma_s} \left(\frac{\gamma}{\gamma_s - \gamma}\right)^{1/2} \left(\frac{1}{g.D_{50}^3}\right)^{1/2}$$
(3.18)

EINSTEIN (1950) aprimorou seu método anterior para o cálculo da descarga de sedimentos para sedimentos de granulometria variada. Neste caso, o método pode ser resumido como se apresenta em PAIVA (1988).

A intensidade de transporte da descarga do leito pode ser definida por

$$\phi_* = \frac{i_B}{i_b} \frac{g_B}{\gamma_s} \left(\frac{\gamma}{\gamma_s - \gamma}\right)^{1/2} \left(\frac{1}{g.D^3}\right)^{1/2}$$
(3.19)

i<sub>B</sub> - fração da carga do leito de diâmetro D;

i<sub>b</sub> - fração do material do leito de diâmetro D.

A intensidade de transporte  $\phi_*$  é uma função da intensidade da corrente obtida de acordo com a equação 3.20.

$$\psi_* = \xi \, \widehat{Y} \left( \frac{\log 10.6}{\log \left( \frac{10.6 \, \chi \cdot \overline{x}}{D_{65}} \right)} \right)^2 \frac{(\gamma_s - \gamma) D}{\gamma \cdot R'_H \cdot S}$$
(3.20)

Na qual:

 $\xi$  - fator de ocultação dado pela **figura 3.3**;



Figura 3.3 – Fator de ocultação – EINSTEIN (1950)

 $\overline{x}$  - diâmetro característico da mistura água /sedimento dado na **tabela 3.4** com  $\Delta = \frac{D_{65}}{\chi}$ ;

| Valor de $\overline{x}$              | condição              |
|--------------------------------------|-----------------------|
| $\overline{\mathbf{x}} = 0,77\Delta$ | $\Delta/\delta > 1,8$ |
| $\overline{x} = 1,39 \delta$         | $\Delta/\delta < 1.8$ |

Tabela 3.4 – determinação do fator  $\overline{x}$ 

 $\chi$  - caracteriza os efeitos da viscosidade na camada laminar. Esta variável já foi definido no **capítulo 2**, dada na **figura 2.5** naquele capítulo;

 $\hat{Y}$  - coeficiente para corrigir a mudança no coeficiente de sustentação em misturas com varias rugosidades, dado na **figura 3.4.** 



Figura 3.4 – Fator de correção de pressão – EINSTEIN (1950)

EINSTEIN (1950) definiu a probabilidade de remoção ( $\hat{P}$ ) como sendo a fração do tempo durante o qual, em qualquer lugar, a força de sustentação instantânea excede o peso da partícula. Definiu também que esta fração de tempo poderia ser representada por uma lei normal de distribuição. A **equação 3.20.a** faz a articulação entre a probabilidade de remoção, o parâmetro de intensidade ( $\psi$ \*) e o parâmetro de intensidade de transporte ( $\phi$ \*).

$$\hat{\mathbf{P}} = 1 - \frac{1}{\sqrt{\pi}} \int_{-B_*\psi_* - \frac{1}{\eta_0}}^{B_*\psi_* - \frac{1}{\eta_0}} e^{-t^2} dt = \frac{A_* \phi_*}{1 + A_* \phi_*}$$
(3.20.a)

Na qual, A\* e B\* são constantes universais que devem ser determinadas experimentalmente.

Usando dados de Gilbert, 1914 e Meyer-Peter, 1934, A\* e B\* foram determinadas como sendo respectivamente 43,5 e 0,143. O valor de  $\eta_0=0,50$  foi obtido por El-Sami [SYMONS & SENTURK, 1992].

Após a substituição das constantes na **equação 3.20.a**, obtém-se a relação final para a obtenção da intensidade de transporte em função da intensidade da corrente. Esta equação está plotada para diferentes valores de  $\Psi$ \* na **figura 3.5**. COIADO (2002-2003) alerta para o fato de que a **equação 3.21** é recomendada para valores de  $\Psi$ \* compreendidos entre 5,27 e 22, para não fugir aos limites dos dados experimentais.

 $0,465\phi_* = e^{-0,391\psi_*}$ 

(3.21)



Figura 3.5 – Relação entre a intensidade de transporte e a intensidade da corrente – Einstein (1942)

#### 3.3.3.2-Equação de Einstein-Brown (1950)

[PONCE, 1990; SIMONS & SENTURK, 1992; COIADO, 2002-2003]

Segundo SIMONS & SENTURK (1992), esta fórmula é uma modificação desenvolvida por Brown (1950) na fórmula de Einstein (1942). Abaixo segue resumo das equações de Einstein e Brown (1950):

$$\phi = f\left(\frac{1}{\psi}\right) \tag{3.22}$$

Na qual:

$$\phi = \frac{q_{\rm B}}{k_{\rm b} \sqrt{g\left(\frac{\gamma_{\rm s}}{\gamma} - 1\right) D_{50}^3}}$$
(3.23)

$$\frac{1}{\Psi} = \frac{\tau_0}{(\gamma_s - \gamma)D_{50}}$$
(3.24)

$$k_{b} = \sqrt{\frac{2}{3} + \frac{36.v^{2}}{g\left(\frac{\gamma_{s} - \gamma}{\gamma}\right)D_{50}^{3}}} - \sqrt{\frac{36.v^{2}}{g\left(\frac{\gamma_{s} - \gamma}{\gamma}\right)D_{50}^{3}}}$$
(3.25)

A equação 3.26 traduz o método final de Einstein & Brown (1950), ela foi ajustada usando os dados de pesquisas de canais de laboratório realizadas por Gilbert, 1914 e Meyer Peter & Muller. Segundo COIADO (2002-2003) a equação 3.26 é recomendada para  $\psi$  menor do que 5,26.

$$\phi = 40 \left(\frac{1}{\psi}\right)^3 \tag{3.26}$$

# <u>3.3.3.3-Equação de Van Rijn (1984a)</u> [VAN RIJN, 1984; NASCIMENTO, 2001]

VAN RIJN (1984a) define uma camada teórica, dentro da qual, o transporte de sedimentos é considerado como arraste e fora desta é tido como em suspensão. A descarga de sedimentos na camada do leito é basicamente descrita pelos parâmetros adimensionais similares aos introduzidos por ACKER & WHITE (1973).

A altura teórica dos saltos pode ser fornecida pela **equação 3.27**, obtida de estudos com sedimentos de granulometria variando na faixa de  $100\mu$  a  $2000\mu$ , para velocidade de cisalhamento média do escoamento variando na faixa de 0,02 m/s a 0,14 m/s. Essa altura é usada como referência para a definição da espessura da camada do leito, com um valor mínimo igual a duas vezes o diâmetro médio da partícula, para qualquer condição de escoamento e/ou característica dos sedimentos.

$$\frac{h_t}{D} = 0.30 D *^{0.70} T^{0.50}$$
(3.27)

D\* - diâmetro adimensional da partícula.

Para o cálculo da velocidade da partícula VAN RIJN (1984a), baseou-se no princípio de Bagnold (1966), que considera que o movimento do sedimento na camada do leito é governado pela força gravitacional, enquanto que o efeito da turbulência é considerado de menor importância. A **equação 3.28** é a expressão definida por Van Rijn para o cálculo da velocidade de deslocamento da partícula de sedimentos.

$$\frac{U_{b}}{\left[\left(\frac{\rho_{s}}{\rho} - 1\right)g D\right]^{0,50}} = 1,5 T^{0,60}$$
(3.28)

U<sub>b</sub> – velocidade de deslocamento da partícula de sedimentos.

A descarga de sedimentos por arraste do leito pode ser descrita por dois parâmetros adimensionais. O primeiro, mostrado na **equação 3.29**, denota o diâmetro adimensional do sedimento. O segundo, expresso pela **equação 3.30**, representa o parâmetro de intensidade de transporte. A **equação 3.33** pode ser usada para estimar a descarga de sedimentos por arraste em ( $m^3/s.m$ ) e foi deduzida para sedimentos de diâmetros variando na faixa de 200-2000  $\mu m$ .

$$D_* = D_{50} \left[ \left( \frac{\rho_s - \rho}{\rho v^2} \right) g \right]^{\frac{1}{3}}$$
(3.29)

$$T = \frac{(U'_{*})^{2} - (U_{*_{c}})^{2}}{(U_{*_{c}})^{2}} = \left[ \left( \frac{U'_{*}}{U_{c}} \right)^{2} - 1 \right]$$
(3.30)

$$U'_{*} = \frac{U\sqrt{g}}{C'}$$
(3.31)

$$C' = 18\log\left[\frac{12 \, \text{R}'_{\text{H}}}{3 \, \text{D}_{90}}\right] \tag{3.32}$$

$$\frac{q_{\rm B}}{\left[\left(\frac{\rho_{\rm s}}{\rho} - 1\right)g\right]^{0,50}D_{50}^{1,5}} = 0,053\frac{T^{2,1}}{D_*^{0,30}}$$
(3.33)

# <u>3.3.3.4 – Equação de Kalinske, 1947</u>

[RAUDKIVI, 1967; GARDE& RAJU, 1985; ECKHARDT, 1998; COIADO, 2002-2003]

Kalinske em 1947 propôs uma equação racional para o cálculo da descarga de sedimentos na camada do leito, baseada nas seguintes considerações básicas:

- Considerou que o início do transporte é governado por uma tensão crítica de cisalhamento;
- a velocidade média da partícula é função da tensão crítica de cisalhamento agindo no sedimento e da tensão tangencial média de cisalhamento da corrente;
- considerou uma área unitária A<sub>uf</sub> da superfície do leito para descrever o transporte;
- considerou dentro dessa área um número  $\hat{N}$  de partículas cuja área individualmente é  $\alpha_1 D^2$ ;
- a área total ocupada pelas partículas será  $\hat{N}\alpha_1 D^2$ ;
- o numero N de partículas é relacionado com o parâmetro p<sub>auf</sub> que traduz a fração da área unitária do leito coberto pelas partículas.

$$p_{auf} = \frac{\hat{N} \cdot \alpha_1 D^2}{A_{uf}} = \hat{N} \alpha_1 D^2$$
(3.34)

A descarga sólida  $q_B$  em peso por unidade de largura e unidade de tempo é igual ao produto da velocidade média de deslocamento das partículas de sedimento  $\overline{U}_p$ , pelo seu peso e pelo número total delas, que podem ser desprendidas por unidade de área do leito.

$$q_{\rm B} = \left(\frac{p_{\rm auf}}{\alpha_1 D^2}\right) \cdot \left(\gamma'_{\rm s} \alpha_2 D^3\right) \cdot \overline{U}_{\rm p}$$
(3.35)

Na qual:

 $\overline{U}_p$  - velocidade média temporal da partícula de sedimentos, calculada segundo a lei normal de distribuição.

Segundo RAUDKIVI (1967), para se avaliar a velocidade média  $\overline{U}_p$  de deslocamento da partícula, é assumido que os desvios da velocidade instantânea do fluido no nível da partícula, em torno do seu valor médio, são distribuídos de acordo com uma lei normal, conforme **equação 3.36.** 

$$f(U_{in}) = \frac{1}{\sigma\sqrt{2\pi}} e^{\left[\frac{(U_{in} - \overline{U}_{in})^2}{2\sigma^2}\right]}$$
(3.36)

RAUDKIVI (1967) apresenta a **equação 3.37** para o cálculo do valor médio da velocidade de deslocamento da partícula de sedimentos, com  $\int_{-\infty}^{\infty} f(U_{in}) dU_{in} = 1$ .

$$\overline{U}_{p} = \int_{U_{c}}^{\infty} U_{p} f(U_{in}) dU_{in}$$
(3.37)

Na qual:

 $U_p$  - velocidade de deslocamento de uma partícula sólida, no escoamento turbulento, para um instante qualquer, dada pela **equação 3.38.** 

$$U_{p} = \beta (U_{in} - U_{c})$$
(3.38)

 $\mathbf{U}_{in}$  - velocidade instantânea do fluido no nível da partícula.

Substituindo-se a equação 3.38 na 3.37 chega-se à:

$$\overline{U}_{p} = \beta \int_{U_{c}}^{\infty} (U_{in} - U_{c}) f(U_{in}) dU_{in}$$
(3.39)

$$\overline{U}_{p} = \beta \int_{U_{c}}^{\infty} (U_{in} - U_{c}) \frac{1}{\sigma\sqrt{2\pi}} e^{-\left[\frac{(U_{in} - \overline{U}_{in})^{2}}{2\sigma^{2}}\right]} dU_{in}$$
(3.40)

Fazendo a mudança de variável  $t = \frac{(U_{in} - \overline{U}_{in})}{\sigma} e$   $t_c = \frac{(U_c - \overline{U}_{in})}{\sigma}$ , obtém-se:

$$(U_{in} - U_c) = \sigma(t - t_c)$$
(3.41)

$$dU_{in} = \sigma dt \tag{3.42}$$

O limite de integração inferior muda de  $U_c = t_c$ , dado que, para  $U_{in} = U_c$ , surge que  $t = t_c$ . Substituindo-se **as equações 3.41** e **3.42** na **3.40**, tem-se:

$$\overline{U}_{p} = \beta \int_{t_{c}}^{\infty} \sigma(t - t_{c}) \frac{1}{\sqrt{2\pi}} e^{\left[-\frac{t^{2}}{2}\right]} dt$$
(3.43)

Após a resolução das integrais na **equação 3.43,** conforme RAUDKIVI [1967, p.55], chega-se a:

$$\frac{\overline{U}_{p}}{\overline{U}_{in}} = \beta \left[ \frac{\sigma}{\overline{U}_{in} \sqrt{2\pi}} e^{\left(-t_{c}^{2}/2\right)} \right] - \beta \left[ \frac{U_{c}}{\overline{U}_{in}} - 1 \right] \left[ \frac{1}{2} - \int_{0}^{t_{c}} \phi(t) dt \right]$$
(3.44)

Na qual:

$$\phi(t) = \frac{1}{\sqrt{2\pi}} e^{\left[\frac{-t_c^2}{2}\right]}$$
(3.45)

Definindo-se, segundo RAUDKIVI (1967), o termo  $r = \sigma/U_{in}$  como intensidade relativa, pode-se escrever:

$$\mathbf{t}_{c} = \left(\frac{\mathbf{U}_{c}}{\overline{\mathbf{U}}_{in}} - 1\right)\frac{1}{r}$$
(3.46)

Ao se observarem as **equações 3.44** e **3.46**, nota-se que a razão  $\frac{\overline{U}_p}{U_{in}}$  é função da intensidade relativa de turbulência "**r**" e também da razão  $\frac{U_c}{\overline{U}_{in}}$ . Logo, a **expressão 3.44** pode ser reescrita como uma equação do tipo:

$$\frac{\overline{U}_{p}}{\overline{U}_{in}} = f\left(r, \frac{U_{c}}{\overline{U}_{in}}\right)$$
(3.47)

Uma vez que a tensão de cisalhamento varia com o quadrado da velocidade, a relação  $\frac{U_c}{U_{in}}$  pode ser escrita também em função de  $\sqrt{\tau_c/\tau_0}$ . Deste modo, a relação **3.47** pode ser escrita como segue:

$$\frac{\overline{U}_{p}}{\overline{U}_{in}} = f_{l}\left(r, \frac{\tau_{c}}{\tau_{0}}\right)$$
(3.48)

Para calcular a descarga de sedimentos na camada do leito, inicialmente reescreve-se a **expressão 3.35** na versão adimensional abaixo:

$$\frac{q_{\rm B}}{\gamma_{\rm s}' {\rm D}\,\overline{{\rm U}}_{\rm in}} = \frac{\alpha_2}{\alpha_1} p_{\rm auf} \,\frac{{\rm U}_{\rm p}}{\overline{{\rm U}}_{\rm in}} \tag{3.49}$$

A **equação 3.50** apresenta uma das versões da equação de Kalinske (1947) *[apud* COIADO, 2002-2003] para calcular a descarga de sedimentos, em peso seco, por unidade de largura e tempo, para o caso particular em que os coeficientes são representados pelos valores

abaixo, citados em RAUDKIVI (1967, p.56). A relação entre  $\overline{U}_{p}/\overline{U}_{in}$  é fornecida através da figura 3.6 e a tensão tangencial crítica de cisalhamento é obtida pela equação 3.55, segundo

Kalinske (1947) citado em COIADO (2002-2003).

$$\frac{q_{\rm B}}{\gamma_{\rm s}' {\rm D} \,{\rm U}_*} = 2,57 \frac{\overline{\rm U}_{\rm p}}{\overline{\rm U}_{\rm in}}$$
(3.50)

Na qual:

$$\frac{\alpha_2}{\alpha_1} = \frac{\frac{\pi}{6}}{\frac{\pi}{4}} = \frac{2}{3}$$
 (Para partículas esféricas) (3.51)

$$p_{auf} = 0.35$$
 (3.52)

$$\overline{U}_{in} = 11U_* = 11\sqrt{\frac{\tau_0}{\rho}}$$
(3.53)

## *3.3.3.4.1 – Outra versão da equação de Kalinske, 1947* [COIADO 2002-2003]

A equação 3.54 está plotada na figura 3.7 para diferentes valores de  $\frac{\tau_c}{\tau_0}$ . As tensões tangenciais críticas de cisalhamento e média do escoamento são fornecidas respectivamente pelas equações 3.55 e 3.56.
$$\frac{q_{\rm B}}{\gamma'_{\rm s} \rm D \, U_*} = f\left(2.5 \frac{\tau_{\rm 0c}}{\tau_0}\right) \tag{3.54}$$

$$\tau_{c} = 0.116 (\gamma_{s} - \gamma) D$$
 (3.55)

 $\tau_0 = \gamma R_H S$ 

(3.56)



Figura 3.6 – Variação de  $\overline{U}_p / U_{in}$  com relação  $\tau_c / \tau_0$ , segundo Kalinske, 1947. [FONTE: COIADO, 2002-2003]



Figura 3.7 – Função de Kalinske para calcular a descarga sólida na camada do leito, segundo Kalinske (1947) [Fonte: COIADO, 2002-2003]

<u>3.3.3.5 – Método de Sato Kikkawa & Ashida (1958)</u> [GARDE & RAJU, 1985; COIADO, 2002-2003]

Baseando-se em análises similares à de Einstein, Sato Kikkawwa & Ashida em 1959 desenvolveram uma equação semiteórica para o transporte do material da camada do leito, baseando-se nas seguintes considerações:

•as forças de sustentação da turbulência do fluxo sobre as partículas são responsáveis pelo transporte da partícula;

•considerou-se a porção da área unitária da partícula exposta a essas forças de turbulência.

Observa-se que a equação é do tipo DuBoys. Para a comprovação das equações, foram utilizados dados de Gilbert e dos próprios autores. As **equações 3.57 e 3.58**, apresentadas por COAIDO (2002-2003), resumem o método, no qual a tensão tangencial crítica de cisalhamento é obtida pelo diagrama de Shields.

$$q_{\rm B} = U_* (\tau_0 - \tau_c)$$
  $n \ge 0.025$  (3.57)

$$q_{\rm B} = U_* (\tau_0 - \tau_c) \left(\frac{1}{40 \ n}\right)^{3,5}$$
 0,010  $\le n \le 0,025$  (3.58)

Nas quais:

n = coeficiente de Manning.

#### <u>3.3.3.6 – Método de Yalin, 1963</u>

[YALIN, 1977; GARDE & RAJU, 1985; COIADO, 2002-2003]

Yalin, em 1963, publicou seu método de cálculo da descarga de sedimentos na camada do leito para fluxo permanente, o qual é baseado nos seguintes fundamentos:

•a espessura da camada de fundo é aproximadamente igual ao diâmetro da partícula, que Yalin não definiu muito claramente;

-considerou que as partículas se deslocam efetuando saltos médios com velocidade média  $\overline{U}_p$ ;

•efetuou o balanço das forças que atuam contra a partícula.

De maneira resumida, o método de Yalin (1963), pode ser sintetizado pela equação 3.59.

$$q_B = W_B \cdot \overline{U}_p$$

(3.59)

Na qual:

W<sub>B</sub> - peso total das partículas de sedimento transportadas por unidade de área;

Yalin (1963) [*apud* YALIN, 1977] ao resolver as equações diferenciais para o salto das partículas, obteve a **equação 3.60**, em que se nota o envolvimento de fatores que traduzem a turbulência do escoamento e de termos que caracterizam a resistência da partícula ao movimento.

$$\frac{\mathrm{U}_{\mathrm{p}}}{\mathrm{U}_{*}} = \Omega \left( 1 - \frac{1}{\hat{\alpha}_{1}\beta_{1}} \ln \left( 1 + \hat{\alpha}_{1}\beta_{1} \right) \right)$$
(3.60)

Na qual:

### $\Omega$ - é um coeficiente adimensional

$$\hat{\alpha}_1 = 2,45. \frac{\sqrt{\theta_{ic}}}{(d_{rs})^{0,4}}$$
(3.61)

$$\beta_1 = \frac{\tau_0 - \tau_c}{\tau_0} = \frac{\theta_i - \theta_{ic}}{\theta_{ic}} = \left\lfloor \frac{\theta_i}{\theta_{ic}} - 1 \right\rfloor$$
(3.62)

Nas quais:

## $\theta_{ic}$ - tensão tangencial de cisalhamento crítica normalizada;

 $d_{rs} = \frac{\gamma_s}{\gamma} = \frac{\rho_s}{\rho}$  - densidade relativa dos sedimentos.

O peso total das partículas transportadas por unidade de área na camada do leito é dado pela **equação 3.63**.

$$W_{\rm B} = \lambda_{\rm i} \beta_{\rm l} D(\gamma_{\rm s} - \gamma)$$
(3.63)

Ao substituir as equações 3.60 e 3.63 na equação 3.59, obtém-se:

$$g_{\rm B} = \Omega \cdot \lambda_i \beta_1 \cdot D \cdot U * \left( \gamma_{\rm S} - \gamma \right) \left( 1 - \frac{1}{\alpha_1 \beta_1} \ln(1 + \alpha_1 \beta_1) \right)$$
(3.64)

Usando dados medidos em laboratório por Gilbert e Meyer-Peter, para sedimentos variando na faixa de 0,787 a 2,86 mm, o produto  $\Omega .\lambda_i$  foi encontrado igual a 0,635, de modo que a descarga de sedimentos em peso por unidade de largura e tempo pode ser obtida diretamente pela **equação 3.65** [COIADO, 2002-2003].

$$g_{\rm B} = 0.635 \,\beta_1.{\rm D.U}_* (\gamma_{\rm s} - \gamma) \left( 1 - \frac{1}{\alpha_1 \beta_1} {\rm Ln} (1 + \alpha_1 \beta_1) \right)$$
 (3.65)

Segundo COIADO (2002-2003), ao se utilizar a equação 3.65, deve-se atentar às seguintes observações:

- 1. Essa equação foi obtida para partículas de sedimentos uniformes;
- quando os sedimentos têm diferentes tamanhos, recomenda-se utilizar como diâmetro representativo o diâmetro médio D<sub>m</sub>;
- 3. as tensões críticas deverão ser obtidas pelo método de Shields;
- **4**. a equação deve ser utilizada com cautela para amostras com desvio padrão geométrico superior a 3,0.

## <u>3.3.3.7 – Método de Levi (1948)</u> [COIADO, 2002-2003]

A equação semiteórica de Levi (1948) foi obtida para areia de quartzo. Considera que o movimento do sedimento é influenciado pela velocidade média do escoamento. A descarga de sedimento na camada do leito é dada pela **equação 3.66** em kgf/m.s.

$$q_{\rm B} = \frac{0.002.\gamma_{\rm s}.U^3.(U-U_{\rm c})}{g^{3/2}.(d.D_{\rm m})^{1/4}}$$
(3.66)

$$U_{c} = 1.4.\sqrt{g.D_{m}} \cdot \left(\frac{D_{max}}{D_{m}}\right)^{1/7} \left(1 + Ln\sqrt{\frac{d}{7.D_{m}}}\right) \quad \text{para, } 10 < \frac{d}{D_{m}} < 60$$
 (3.67)

$$U_{c} = 1, 4.\sqrt{g.D_{m}} \left(\frac{D_{max}}{D_{m}}\right)^{1/7} Ln\left(\frac{d}{7.D_{m}}\right) \qquad \text{para,} \qquad \frac{d}{D_{m}} \ge 60 \qquad (3.68)$$

nas quais:

 $D_{\mbox{max}}$  - diâmetro representativo máximo da amostra.

# <u>3.3.3.8 – Fórmula de Inglis-Lacey (1968)</u> [COIADO, 2002-2003; ASCE-TASK COMMITTEE, 1971]

A fórmula de Inglis-Lacey foi baseada em experiências realizadas pelo próprio autor nos idos de 1929. A fórmula leva em conta o diâmetro e a velocidade de queda do material de fundo e a concentração do material transeunte.

Segundo COIADO (2002-2003), Inglis utilizou em suas análises as equações de regime propostas por Lacey em 1929. Assim, o método é recomendado para leitos arenosos. A **equação 3.69** resume o método. A fórmula é dimensionalmente homogênea, tendo a maioria dos termos adimensionais, com exceção do último, que imprime a unidade da descarga de sedimentos em peso por unidade de largura e tempo.

$$g_{\rm B} = 0,562 \ \frac{(vg)}{W_{\rm Dm}}^{1/3} \ \frac{{\rm U}^2}{g.{\rm D}} \ \frac{\gamma.{\rm U}^3}{g} \tag{3.69}$$

Na qual:

W<sub>Dm</sub> - velocidade de queda correspondente ao diâmetro médio.

## 3.3.4 – Equações provenientes de análise dimensional

As equações provenientes de análise dimensional são obtidas pela combinação de parâmetros do fluido e do escoamento e apresentam a comodidade de a grande maioria ser adimensional, podendo ser utilizada em qualquer sistema de unidades conveniente. No entanto, os cuidados deverão ser redobrados quando da aplicação dessas equações, quanto às observâncias às faixas de aplicações recomendadas aos parâmetros adimensionais envolvidos. Neste item, serão apresentadas algumas das mais comentadas.

<u>3.3.4.1 – Equação de Shields,1936</u> [GARDE & RAJU, 1985; COIADO, 200-2003]

Segundo GRAF (1971), Shields (1936) procurou estabelecer uma relação simples, mas que incorporasse em uma única fórmula o maior número de fatores intervenientes no transporte do sedimento. A **equação 3.70** resume o método de Shields, apresentado em COIADO (2002-2003). Nota-se que a expressão é dimensionalmente homogênea, podendo

ser utilizada em qualquer sistema de unidades. A fórmula, cujo princípio ampara-se no excesso de tensões tangenciais, pode ser classificada como do tipo de DuBoys.

$$\frac{g_{\rm B}.(d_{\rm rs}-1)}{q.S} = 10.\left(\frac{\tau_0 - \tau_c}{(\gamma s - \gamma)D_{50}}\right)$$
(3.70)

Na qual:

 $\tau_c$  - obtida do diagrama de Shields.

# <u>3.3.4.2 – Método de Bogardi (1955-1974)</u> [COIADO, 2002-2003]

Bogardi (1974) combinou o emprego de diferentes parâmetros adimensionais e dados de diversos autores, tais como Yen, Gilbert, Franco e Garde. Os dados foram lançados em papel bi-log para a busca da expressão matemática que melhor se ajustava. A **equação 3.71** resume o ajuste. Neste estudo foram utilizados sedimentos de granulometria uniformes, variando na faixa de 0,31 a 15,5 mm.

$$g_{\rm B} = 22.\gamma_{\rm s} \left[ g \left( \frac{\gamma_{\rm s} - \gamma}{\gamma} \right) D_{\rm m}^3 \right]^{1/2} \left( \frac{\tau_0}{(\gamma_{\rm s} - \gamma) D_{\rm m}} \right)^{4,121}$$
(3.71)

A utilização do método de Bogardi fica condicionada à faixa de variação da tensão de cisalhamento normalizada  $\theta_i = \tau_0 / (\gamma_s - \gamma) D_m$ . Segundo Diaz & Maza (1986) citados em COIADO (2002-2003), o método é recomendado para valores de  $\theta_i$  variando nos seguintes limites:

- 1.  $\theta_i \leq 0.8$  . Neste caso serve para avaliar a descarga de sedimentos na camada do leito.
- **2.**  $\theta_i > 0.8$ . Neste caso é recomendado para avaliar a descarga total do material do leito.
- 3.  $\theta_i > 2,5$ . O método não é recomendado porque resulta em valor absurdo da descarga de sedimentos. Por outro lado, há de se observar ainda que o peso específico recomendado é de 2650 kgf/m<sup>3</sup>.

# <u>3.3.4.3 – Abordagem de Garde & Albertson, 1961</u> [GARDE & RAJU, 1985; COIADO, 2002-2003]

O método de Garde & Albertson (1961) resulta das análises dos parâmetros de adimensionais de Kalinske e Shields. Para isto, foram feitas comparações com os dados de Gilbert e Liu. Uma das diferenças principais deste método é a consideração das formas de fundo nas análises. A descarga de sedimentos na camada do leito é obtida combinando-se equações analíticas e relações gráficas, resultantes de estudos experimentais. A **equação 3.72** é recomendada para leitos planos e a **3.73** para leitos constituídos de rugas e dunas. Estas equações foram extraídas de COIADO (2002-2003).

 $q_B = \gamma_s U * D_{50} \phi_k$ 

(3.72)

Na qual:

 $\phi_k$  - coeficiente obtido experimentalmente, combinando-se a expressão 3.72a e a figura 3.8

$$\phi_{k} = f\left(\frac{\tau_{0}}{(\gamma_{s} - \gamma)D}\right) = f(\theta_{i})$$
(3.72a)



Figura 3.8 – Parâmetro de transporte para fundo plano – Garde e Albertson, 1961 [Fonte: COIADO 200-2003]

GARDE & RAJU (1985), ao comentarem os estudos de Garde & Albertson (1961), descrevem que, para o caso de rugas e dunas, a inclusão na metodologia de um terceiro parâmetro, que contemple os efeitos da turbulência do escoamento, reduziria as discrepâncias entre os dados obtidos e os observados para os casos em que o leito fosse constituído por rugas e dunas. A **equação 3.73** é a recomendada para estes casos. A combinação da **expressão 3.74** e o gráfico da **figura 3.9** permite a obtenção do parâmetro  $\phi_{k1}$ . A descarga de sedimentos é fornecida em peso por unidade de largura e tempo.

$$q_{\rm B} = \gamma_{\rm s} \, \rm U * \, D_{50} \, \phi_{k1} \tag{3.73}$$

$$\phi_{k1} = f\left(\frac{\tau_0}{(\gamma_s - \gamma)D}, \frac{U}{U_*}\right) = f\left(\theta_i, \frac{U}{U_*}\right)$$
(3.74)



Figura 3.9 – Valores de  $\phi_{k1}$  em função de  $\theta_i$  e  $U/U_*$  para leitos constituídos de rugas e dunas. Garde e Albertson, 1961. [Fonte: COIADO-2002-2003]

Segundo COIADO (2002-2003), o método de Garde e Alberson (1961) é recomendado para os casos de diâmetros variando de 0,78 a 15,5 mm. É preciso respeitar também os limites de aplicação para  $\theta_i \in \frac{U}{U_*}$ , respectivamente, de acordo com as seguintes faixas:  $0,018 \le \theta_i \le 0,60$  e  $8 \le \frac{U}{U_*} \le 15$ .

## <u>3.3.4.4 – Rottner (1959)</u> [GARDE & RAJU, 1985; COIADO, 2002-2003]

Rotther (1959) abordou o problema da descarga de sedimentos, baseando-se em um conjunto de quatro adimensionais, que engloba termos representativos da rugosidade relativa do leito, da energia do escoamento e do peso do sedimento submerso. Estes termos estão agregados à **equação 3.75**, extraída de COIADO (2003-2003). Esta equação foi obtida pela manipulação de 2500 dados de laboratório [GARDE & RAJU, 1985]. A descarga  $q_B$  é fornecida em peso por unidade de largura e tempo.

$$q_{\rm B} = \gamma_{\rm s} \sqrt{g_{\rm s} \left(\frac{\gamma_{\rm s} - \gamma}{\gamma}\right) d^3} \left[ \left(0,1437 \left(\frac{D_{\rm m}}{d}\right)^{2/3} + 0,03\right) \frac{V}{\sqrt{g\left(\frac{\gamma_{\rm s} - \gamma}{\gamma}\right) d}} - 1,674 \left(\frac{D_{\rm a}}{d}\right)^{2/3} \right]^3$$
(3.75)

O método de Rottner (1959) é recomendado para sedimentos variando de 0,31mm a 15,5 mm. A faixa recomendada para a variação do peso específico é 1030 a 2690 kgf/ m<sup>3</sup> [COIADO, 2002-2003].

#### 3.3.5 – Métodos empíricos

Nestas equações, os valores dos parâmetros envolvidos são freqüentemente dados em função do diâmetro representativo do material do leito. Geralmente esses modelos são dimensionais, sendo tais valores aplicados somente para o sistema de unidades usadas pelo autor que os deduziram. A maioria dessas fórmulas não considera a intervenção das formas de fundo no transporte de sedimentos.

## <u>3.3.5.1 – Método de Schoklitsch (1914, 1950)</u> [COIADO, 2002-2003]

A metodologia de Schoklitsch começou a ser desenvolvida em 1914, quando foi publicada a primeira fórmula. Nesta metodologia, a descarga de sedimentos na camada do leito é obtida em função da diferença entre a vazão líquida que está em escoamento e a vazão líquida crítica que inicia o arraste do sedimento. A **equação 3.76** traduz a versão final da metodologia de Schoklitsch e que foi publicada em 1950. Nota-se a sua tipologia similar à de Du-Boys (1879) [COIADO, 2002-2003].

O método foi obtido pela combinação de experiências em canais de laboratório e dados medidos em rios. Para partículas não uniformes, é recomendada a utilização do diâmetro  $D_{40}$ , como representativo do material do leito. Para o cálculo da tensão tangencial crítica de cisalhamento, recomenda-se empregar o diagrama de Shields.

$$q_{\rm B} = 2500.{\rm S}^{3/2}.(q-q_{\rm c})$$
  $q_{\rm B} = [{\rm kgf} / {\rm m.s}]$  (3.76)

Na qual:

 $q_c$  - vazão por unidade de largura crítica, calculada por:

$$q_{c} = \frac{1}{n} D_{c}^{5/3} . S^{1/2}$$
(3.77)

$$n = \frac{D^{1/6}}{19,05}$$
 **D** = [**m**] (3.78)

 $D_c$  – diâmetro crítico, calculado pelas equações constantes na **tabela 3.5**, respeitando-se os limites de variações para o diâmetro representativo do material do leito.

Tabela 3.5 - Cálculo do diâmetro crítico para o método de Schoklitsch, 1950

| Faixas de variação para D | Equação para D <sub>c</sub>                                                                  |  |
|---------------------------|----------------------------------------------------------------------------------------------|--|
| 0,0001 ≤ D≤ 0,003m        | $D_{c} = 0,000285. \frac{\left(\frac{\gamma_{s} - \gamma}{\gamma}\right)D^{1/3}}{S} $ (3.79) |  |
| D≥ 0,006m                 | $D_{c} = 0,076 \frac{\left(\frac{\gamma_{s} - \gamma}{\gamma}\right)D}{S} $ (3.80)           |  |

#### 3.3.5.2 – Método de Meyer-Peter & Muller (1948)

#### [GARDE & RAJU, 1985; SIMONS & SENTUR, 1992; COIADO, 2002-2003]

As fórmulas de Meyer-Peter & Muller, para o cálculo da descarga de fundo por arraste, foram obtidas a partir de experiências realizadas entre os anos de 1932 e 1948, no Instituto Tecnológico Federal de Zurich. Para se chegar à equação final, foram utilizados diversos materiais de diferentes pesos específicos e granulometria. A **tabela 3.6**, adaptada do trabalho de COIADO (2002-2003), apresenta algumas características dos materiais que foram utilizados ao longo das evoluções da metodologia de Meyer-Peter & Muller (1932-1948). A primeira das fórmulas - SIMONS & SENTURK (1992, p.577) - foi apresentada em 1934. A **equação 3.81** traduz a metodologia final que se constitui na quarta e última fórmula.

A **equação 3.81** deve ser utilizada no sistema métrico de unidades, respeitando as seguintes faixas de aplicações:

- •S =  $4 \times 10^{-4}$  a  $2 \times 10^{-2}$  m/m;
- • $D_a = 0,4 \text{ mm a } 4,22 \text{ mm};$
- • $(\gamma_{s}/\gamma) = dr_{s}$  1,25, 2,68, e 4,22;
- •Profundidade = de 1 a 120 cm;
- • $\tau_c = 0,047 \text{ kgf/m}^2$ ;
- $\bullet$  ( $\phi_i 0.047$ ) é a parte da tensão de cisalhamento responsável pelo transporte.

A equação avança em relação às demais equações empíricas porque leva em conta as intervenções das formas de fundo no transporte dos sedimentos. Meyer-Peter & Muller consideram uma redução na tensão de cisalhamento originada pela combinação da rugosidade

superficial e pela rugosidade de forma, traduzindo essa redução pela divisão da declividade da linha de água em duas parcelas, S' e S'', de modo que uma parte da energia disponível do escoamento (S') é despendida para vencer a resistência ao transporte, devido ao grão de sedimentos e outra parte (S'') é utilizada para vencer a resistência de forma do leito [GARDE & RAJU, 1985].

| Cronologia             | Característica do material                                                                           |
|------------------------|------------------------------------------------------------------------------------------------------|
| Primeira fórmula, 1934 | •Cascalho natural de grãos uniformes;                                                                |
|                        | •diâmetros variando na faixa de 5,05 a 28,6 mm;                                                      |
|                        | • peso específico = $2680 \text{ kgf/m}^3$ .                                                         |
| Segunda fórmula        | •Partículas de diâmetros uniformes de diâmetro                                                       |
|                        | 5,05 mm;                                                                                             |
|                        | •três tipos de pesos específicos: $\gamma_s = 4220 \text{ kgf/m}^3$                                  |
|                        | (barita); $\gamma_s = 2680 \text{ kgf/m}^3$ (cascalho natural) e $\gamma_s$                          |
|                        | =1250 kgf/m <sup>3</sup> (lignita).                                                                  |
| Terceira fórmula       | •Material natural com peso específico igual a $\gamma_s$                                             |
|                        | =2680 kgf/m <sup>3</sup> , mas com partículas de diferentes                                          |
|                        | tamanhos.                                                                                            |
| Quarta fórmula, 1948   | •Utilizaram-se misturas de partículas de                                                             |
| "Equação 3.81"         | diferentes diâmetros e diferentes pesos                                                              |
|                        | específicos [ $\gamma_s$ =4220 kgf/m <sup>3</sup> ; $\gamma_s$ =2680 kgf/m <sup>3</sup> ; $\gamma_s$ |
|                        | $=1250 \text{ kgf/m}^3$ ].                                                                           |

Tabela 3.6 – Evolução da metodologia de Meyer-Peter & Muller

$$\left(\frac{n'}{n}\right)^{3/2} \cdot \frac{\gamma \cdot R_{\rm H} \cdot S}{(\gamma_{\rm s} - \gamma) \cdot D_{\rm a}} = 0,047 + 0,25 \left(\frac{\gamma}{g}\right)^{1/3} \cdot \left(\frac{q_{\rm B}}{\gamma_{\rm s}}\right)^{2/3} \cdot \left(\frac{1}{(\gamma_{\rm s} - \gamma)^{1/3} \cdot D_{\rm a}}\right)$$
(3.81)

Entretanto, na sua formulação final, Meyer-Peter & Muller consideram apenas a resistência oferecida pelas partículas sólidas como mais significativa para o transporte sólido na camada do leito. Com essas considerações, S' foi obtida pela utilização da equação de Manning-Strickle, razão pela qual é possível escrever as **equações 3.82** e **3.83**, sendo esta ultima, em conformidade com EINSTEIN (1950), para os caso em que se considera a redução pelo raio hidráulico e não pela declividade da linha de água [GARDE & RAJU,1985].

$$\frac{S'}{S} = \left[\frac{n'}{n}\right]^2$$
(3.82)

$$\frac{\mathbf{R}_{\mathrm{H}}'}{\mathbf{R}} = \left[\frac{\mathbf{n}'}{\mathbf{n}}\right]^{3/2} \tag{3.83}$$

Nas quais:

n' – coeficiente de Manning-Strickler relativo à rugosida do leito.

Manipulando a **expressão 3.81**, é possível escrever o método de Meyer-Peter & Muller em função do parâmetro adimensional de transporte da descarga do leito, como se apresenta subseqüentemente:

$$\left[\frac{n'}{n}\right]^{3/2} \theta_{i} = 0,047 + 0,25 \phi^{2/3}$$
(3.84)

$$n = \frac{R_{\rm H}^{2/3} \cdot S^{1/2}}{U}$$
(3.84a)

$$\phi = \frac{q_B}{\gamma_s} \left[ \frac{\gamma}{\gamma_s - \gamma} \right]^{1/2} \left[ \frac{1}{g D_a^3} \right]^{1/2} \qquad q_B = [F / L \cdot T]$$
(3.85)

$$D_{a} = \Sigma \frac{\Delta_{Pi} \cdot D_{i}}{100}$$
(3.85a)

 $\Delta_{Pi}\,$  - variação percentual entre duas classes consecutivas de diâmetros  $\,D_{\,i}\,.$ 

$$n' = \frac{(D_{90})^{1/6}}{26}$$
  $D_{90} = [m]$  (3.86)

A tensão tangencial de cisalhamento normalizada referente ao grão de sedimentos pode ser definida como  $\theta'_i = \gamma . R'_H / (\gamma_s - \gamma) D_a$ . Valendo-se desta definição e combinando-se as **equações 3.83** e **3.84**, obtém-se a equação adimensional de Meyer-Peter & Muller na versão similar à equação de DuBoys, na qual a descarga de sedimentos é fornecida por diferenças entre tensões de cisalhamento.

$$\phi = 8.(\theta_1' - 0.047)^{3/2}$$
(3.87)

Ao se analisar a equação supramencionada, observa-se que a descarga de sedimentos torna-se nula para valores de  $\theta'_i = 0,047$ , o que significa que a tensão de cisalhamento crítica adimensional tem um valor correspondente a 0,047. Deste modo, a quantidade . $(\theta'_i - 0,047)$  representa a tensão de cisalhamento efetiva responsável pelo transporte do sedimento [GARDE & RAJU, 1985].

## **3.3.6 – Método de Pernecker & Vollmers (1965)** [COIADO, 2002-2003]

Numa avaliação preliminar, esta metodologia não se enquadra na classificação feita por GARDE & RAJU (1985) quanto à natureza da dedução, porque o método foi originado pelo ajuste de curvas baseadas em trabalhos desenvolvidos por outros autores. Pernecker & Vollmers (1965) desenharam as curvas obtidas com as fórmulas de vários autores entre, elas as de Kalinske, Meyer-Peter e Muller e Einstein-Brown, e chegaram à equação proposta.

$$g_{\rm B} = 25.\gamma_{\rm s} \left[ g \left( \frac{\gamma_{\rm s} - \gamma}{\gamma} \right) D^3 \right]^{1/2} \left( \frac{\tau_0}{(\gamma_{\rm s} - \gamma)D} \right)^{3/2} \left[ \left( \frac{\tau_0}{(\gamma_{\rm s} - \gamma)D} - 0.04 \right) \right]$$
(3.88)

A **equação 3.88** é também do tipo DuBoys, na qual, para valores da tensão tangencial de cisalhamento do leito normalizada  $\theta_i$  igual a 0,04, como se observa no último termo do lado direito da equação, a descarga de sedimentos torna-se nula. Ademais, o método não deve ser aplicado para valores de  $\theta_i$  menores do que 0,50. Contudo, se  $\theta_i$  for maior do que 0,50, este pode ser empregado para calcular o transporte total de fundo.

# 3.4 - Comentários finais acerca da aplicação dos métodos de estimativa da descarga de sedimentos na camada do leito

Depois de DuBoys (1879), muitos métodos surgiram ao longo dos séculos dezoito e dezenove. Desses, principalmente aqueles que foram baseados em conceitos teóricos e/ou semiteóricos, promoveram sistemáticas revoluções no passado e continuam até hoje na pauta do debate para a elucidação de uma série de questões ainda não transparentes sobre os aspectos quantitativos do transporte de sedimentos em escoamentos com superfície livre.

Nota-se, na bibliografia especializada, que, no rol dos métodos de transporte de sedimentos, alguns deles, como o de Einstein, o de Meyer-Peter & Müller, o de Bagnold, o de Yang, entre outros, receberam grandes destaques e despertaram maiores interesses da comunidade cientifica internacional, tornando-se referências para numerosas pesquisas voltadas às investigações de suas aplicabilidades aos cursos de águas naturais. Deste modo, não é viável, e também não se tem a pretensão de apresentar extensivos debates sobre cada fórmula isoladamente, mas sim apresentar uma breve discussão sobre a aplicabilidade das fórmulas mais importantes, priorizando aquelas mencionadas nesta revisão bibliográfica.

Uma pesquisa experimental realizada por Stall (1958), citado em SIMONS & SENTURK (1992), fez uma análise comparativa entre resultados da descarga de sedimentos medida e estimada pelos métodos de EISNTEIN (1950), DuBoys (1878) e Schoklitsch (1935). A pesquisa mostrou que a fórmula de Schoklitsch apresentou a melhor estimativa, com 30 % de distorção em comparação com os dados medidos. Já os outros dois métodos promoveram maiores erros. O método de Einstein apresentou 750% e o de DuBoys, 200%.

Egiarzoff (1965), citado em PONCE (1990), constatou que o método de EINSTEIN (1950) superestimou valores calculados para a descarga de sedimentos, em comparação com dados medidos numa pesquisa experimental. Ainda em PONCE (1990), comenta-se a pesquisa de Silva (1981), que comparou os dados da descarga de fundo do rio Paraíba do Sul com cinco métodos de estimativa indireta, constatando que o método de Shields (1936) e o método de DuBoys foram os que mais aproximaram os valores estimados dos dados medidos.

Segundo Cunha (1969), citado em PONCE (1990), em trechos de rios onde o transporte sólido é elevado, a equação de Yalin (1963) é mais confiável do que a de EINSTEIN (1950).

AMIM (1981) apresentou resultados de uma pesquisa experimental em rios americanos na qual foram empregadas as equações de Meyer-Peter & Muller (1948) e TOFFALETI (1969). A principal conclusão da pesquisa foi que o primeiro método superestimou as descargas calculadas. Já em relação ao segundo método, as recomendações de AMIM (1981) são melhores e ele descreve que o método de TOFFALLETI (1969) forneceu valores substancialmente precisos para dois rios americanos, consolidando-se como um método adequado para os propósitos da Engenharia.

GARDE & RAJU (1985) identificam que apesar, de Meyer-Peter & Muller (1948) terem proposto a divisão da declividade da linha de água em duas parcelas, uma para contemplar a redução na tensão de cisalhamento devido à rugosidade do leito e outra devido às formas de fundo, depois de modificações para ajustar seus dados experimentais às equações analíticas, fica evidente que a divisão do raio hidráulico foi também considerada na dedução da equação final de estimativa da descarga de sedimentos na camada do leito.

BATHURTST et al (1987) apresentaram estudos experimentais, com o intuito de analisar a aplicabilidade de alguns dos métodos de estimativa do transporte de sedimentos e suas aplicabilidades às situações de escoamentos com superfície livre, dotados de forte declividade e/ou leitos constituídos por materiais de granulometria grosseira. Para a pesquisa, foram utilizados dados medidos no canal do laboratório da Ecole Polytechnique Fédérale de Laussanne e de cursos de água naturais. Os estudos foram conduzidos sobre duas óticas diferentes: para os dois casos foram empregados dados de laboratório e de cursos de águas naturais, sendo que, no primeiro caso, foi analisado o comportamento de alguns dos principais métodos de previsão do início de transporte e, no segundo caso, foram analisados dados de descargas de sedimentos, para verificar a precisão de algumas equações de estimativa do transporte sólido.

Dos estudos de BATHURTST et al (1987) foi possível concluir que o critério de Schoklitsch mostrou-se mais preciso do que o critério de Shields, quando a investigação foi pautada na utilização de dados de laboratório. Já para os casos de cursos de águas naturais, o método de Schoklitsch precisou ser ajustado para contemplar os efeitos da gradação do material do leito. Com a mudança, a precisão melhorou para cursos de água naturais com declividade variando na faixa de 0,25 a 10 por cento. Por outro lado, sobre o método de Shields, o autor não faz boas referências e o classifica como inadequado para propósito prático, argumentando que a profundidade do escoamento, que segundo ele, não é de fácil medição nos cursos de águas naturais com declividades acentuadas, interfere sobremaneira no parâmetro de Shields.

No que se refere à descarga de sedimentos transportada, baseando-se na diferença percentual relativa entre os valores medidos e os estimados, para canais de laboratório, BATHURTST et al (1987, p. 469) apresentam uma tabela na qual são revelados os seguintes índices de classificação sobre o desempenho dos modelos, num universo de doze dos métodos usados em sua pesquisa. Em primeiro lugar, entre todos os apresentados, ficou o método de Schoklitsch, com índice de 25%; em quarto lugar, o de Meyer-Peter e Müller, com índice de

59%. Os demais não estão relacionados nesta revisão. Todavia, quando a comparação foi feita com os dados de cursos de águas naturais, na pesquisa, apenas é revelado que o método de Schoklitsch manteve uma melhor performance, seguido por Bagnold, Meyer-Peter & Muller e Ackers & White, sendo que a estes três últimos foram atribuídos os mesmos níveis de desempenho. As diferenças percentuais relativas não foram reveladas.

PAIVA (1988), em uma pesquisa realizada no rio Mogi-Guaçu, em Santa Eudóxia, São Carlos, SP, testou dezesseis modelos de cálculo de estimativa da descarga de sedimentos, comparando resultados medidos e calculados por diversos métodos. Uma das primeiras constatações foi a de que, de modo geral, os métodos macroscópicos apresentaram melhores resultados na pesquisa.

Uma outra constatação que merece destaque na pesquisa supramencionada diz respeito às flutuações da quantidade da descarga de sedimentos em torno dos valores máximos, para os métodos que incorporam a concentração de sedimentos medida. A julgar por essa característica, PAIVA (1988) destaca que o método de TOFFALETI (1969) superestimou os valores da descarga de sedimentos, quando havia pouca carga transportada; do contrário, para altas quantidades de sedimentos as estimativas foram mais precisas.

Segundo PAIVA (1988), nenhum dos métodos de cálculo da descarga de sedimentos por arraste do leito apresentou boa concordância com os dados medidos. Todos superestimaram em demasia a descarga para esta modalidade de transporte. Somente para se ter uma idéia da ordem de grandeza dos valores obtidos para os erros padrões de estimativa, o pesquisador descreve que os três métodos que apresentaram os melhores resultados, quando suas estimativas foram comparadas pela média medida, apresentaram erros padrões de estimativa iguais a 396%; 381% e 537%. Estes escores foram obtidos na ordem pelo método de Einstein modificado por Colby e Hembre (1955); TOFFALETI (1969) e Meyer-Peter &

Müller (1948). Por outro lado, valores para os erros com tamanha magnitude denunciam uma provável inaplicabilidade desses métodos ao caso específico.

Ainda na pesquisa citada no parágrafo acima, é apresentada uma constatação que causa impacto em relação ao método de EINSTEIN (1950), uma vez que este método é referência em praticamente todos os livros de transporte de sedimentos. Segundo PAIVA (1988, p. 139):

os métodos de Einstein (1950) e Einstein e Abdel Aal (1972), para o cálculo do transporte de sedimentos em suspensão, forneceram os piores resultados, pois calcularam transporte de sedimentos praticamente nulo, em todos os experimentos, indicando a inviabilidade de sua aplicação para rios naturais.

Por outro lado, a pesquisa demonstrou que entre aqueles métodos que incorporam dados medidos de concentração, o de TOFFALETI (1969) apresentou ótimo desempenho, com uma diferença percentual relativa de 4,6 %, na comparação entre as descargas medidas e as estimadas.

No trabalho de LOW (1989) que foi desenvolvido em canaletas de laboratório, com sedimentos de densidade relativa variando entre 1 e 2,5 e com sedimentos de diâmetro uniforme igual a 3,5 mm, foi constatado que a equação de Meyer-Peter & Muller (1948) e a equação de Shields (1936) superestimaram os dados experimentais, enquanto que a equação de Yalin (1963) tendeu a subestimar.

PONCE (1990) realizou uma pesquisa de campo no rio Mogi-Guaçu, em Santa Eudóxia, São Carlos, SP, na qual foram empregados dez métodos de cálculo indireto da descarga de sedimentos, entre eles o método de Meyer-Peter & Muller (1948), o de Einstein & Brow (1950), o de Yalin (1963) e o de VAN RIJN (1984). Nessa pesquisa, constatou-se que a grande maioria dos métodos empregados não atendeu plenamente aos requisitos de precisão para o cálculo da descarga de sedimentos no curso de água onde foi realizada a pesquisa. Exceção se faz apenas ao método de Yalin (1963) e ao método de TOFFALETI (1969), que foram os que apresentaram os melhores resultados com erros padrões de estimativa, respectivamente, iguais a 18,03% e 23,41 %.

NAKATO (1990) aplicou onze dos mais tradicionais métodos para a estimativa da descarga de sedimentos. Daqueles relacionados ao transporte na camada do leito, o método de Einstein & Brow (1950) superestimou na ordem de dez vezes mais a descarga de sedimentos, em comparação com aquelas estimadas pelo método de Meyer-Peter & Muller (1948) e pelo método de Schoklitsch (1914). A pesquisa foi realizada em condições de campo, com os dados medidos no rio Sacramento na Califórnia, Estados Unidos. Segundo NAKATO (1990), a grande totalidade das onze equações empregadas mostrou deficiências significativas para a estimativa do transporte de sedimentos. A faixa granulométrica do material empregado na pesquisa foi abrangente, contendo desde areia fina até sedimentos grossos.

Numa pesquisa realizada por SAMANEZ (1998), em condições de campo, no Ribeirão do Feijão, em São Carlos, São Paulo, onde foram aplicados oito métodos de estimativa do transporte de sedimentos, concluiu-se que o método de Meyer-Peter e Muller (1948) mostrou-se mais adequado do que o de EINSTEIN (1950) para a estimativa da descarga de fundo no referido rio, segundo o critério de classificação adotado pelo autor.

Para a classificação dos métodos quanto à aplicabilidade para o caso específico nessa pesquisa, foi adotado um fator "**r**", que representa o coeficiente entre os dados medidos e os estimados. Segundo o autor, métodos com valores médios de "**r**" compreendidos entre 0,1 e 10 estão credenciados à estimativa do transporte do sedimento no Ribeirão do Feijão. A julgar por esse critério, o método de Meyer-Peter & Muller (1948) é adequado e apresenta melhor

classificação do que o de EINSTEIN (1950), por ter recebido escore 7,10 enquanto que para este último o valor médio para **r** foi de 18,04.

Ainda no trabalho de SAMANEZ (1998), é comentado que o método de Meyer-Peter & Muller (1948), na maioria dos casos, estimou diversos valores nulos da descarga de sedimentos, o que, segundo o autor, atribui-se ao fato de que este método não adota o cálculo da descarga de sedimentos pelo fracionamento da amostra.

É oportuno observar que outros fatores além da gradação da amostra são intervenientes no cômputo final da descarga de sedimentos. COIADO & PAIVA (2005) mostraram que a estimativa da tensão tangencial crítica de cisalhamento para início de transporte interfere, sobremaneira, no resultado final da descarga estimada.

No trabalho de COIADO & PAIVA (2005), discutiu-se e chegou-se à conclusão de que, em um mesmo método pode-se, para um mesmo diâmetro representativo da amostra do material do leito, obter mais de um valor da descarga de sedimentos, devido aos mais variados critérios de cálculo da tensão tangencial crítica de cisalhamento.

No caso específico do método de Meyer-Peter & Muller (1948), a tensão tangencial crítica normalizada de cisalhamento para início de transporte tem valor igual a 0,047, portanto, entende-se que este deve ser um número limite que pode auxiliar como um indicador à tomada de decisão à aplicação do referido método em cursos de águas naturais, com a comprovação de que, para valores abaixo de 0,047 para este parâmetro, a descarga estimada será nula, não refletindo, muitas vezes, o que de fato ocorre no fundo do rio.

Para SIMONS & SENTURK (1992), a fórmula de Meyer-Peter & Muller (1948), ao ser empregada em cursos de águas estáveis, gera bons resultados, mas, quando empregada em cursos de água em que a inclinação do leito supera 0,001, o método pode apresentar grandes discrepâncias. A precisão dessa fórmula é fortemente influenciada pelo tamanho do material do leito e fornece melhores resultados para materiais grossos. SIMONS & SENTURK (1992) também alertam que grandes discrepâncias podem ocorrer se a fórmula for empregada em canais cujo leito seja constituído de material de partículas finas.

Outras constatações da influência da declividade do canal na estimativa da descarga de sedimentos pelo método de Meyer-Peter-Muller já haviam sido reportadas em pesquisas anteriores. SMART (1984), em pesquisa realizada em canais de laboratório, constatou que este método subestima a descarga de sedimentos para valores da declividade do canal na ordem de 3%.

SRINIVASAN & SIQUEIRA (2000) promoveram uma pesquisa em canais de laboratório na Universidade Federal de Campina Grande-PB para verificar a versatilidade da aplicação de cinco equações de transporte de sedimentos, quanto à gradação da amostra e às condições de configurações do leito, constatando que a equação de EINSTEIN (1950), quando aplicada às condições de rugas e dunas, superestimou substancialmente as quantidades de sedimentos transportadas, inviabilizando qualquer tentativa de ajuste com os dados medidos. Segundo estes pesquisadores, para a situação de leito plano, o método apresentou ligeira melhora na estimativa.

HADERSACK (2002) desenvolveu uma pesquisa experimental em rios australianos com o intuito de analisar a intervenção dos critérios de início de transporte da descarga de sedimentos e empregou treze equações de transporte de sedimentos, entre elas as equações de Meyer-Peter & Muller (1948) e Schoklitsch (1943). O parâmetro utilizado para avaliar a precisão dos métodos foi o coeficiente "**r**", computado pela relação entre a descarga de sedimentos calculada e a medida. Por esse critério, segundo o autor, 75% das freqüências dos valores de "**r**" ficaram no intervalo de **0**,5<r<2.

No artigo de HADERSACK (2002), foi revelado que o método de Meyer-Peter & Muller (1948), além de subestimar os valores calculados, ainda, por diversas vezes, forneceu valor zero para a estimativa. Quanto ao método de Schoklitsch (1943), foi relatado que este também subestima os valores calculados.

ESPINOSA (2003), em seus estudos realizados sobre a identificação de potencial de erodibilidade e uso do solo, através da aplicação de modelos de transporte de sedimentos em correntes naturais, concluiu que os métodos de Schoklitsch (1962) e a equação de Meyer-Peter & Muller (1948) prevêem adequadamente a descarga de sedimentos para cursos de água em que a capacidade de transporte seja considerada limitada. A limitação a que o autor se refere deve-se à maior ou menor susceptibilidade ao movimento dos grãos de sedimentos sob a ação da potência da corrente. Ademais, o autor relata que a equação de Schoklitsch previu satisfatoriamente bem a descarga de sedimentos em oito dos vinte e dois cursos de águas analisados.

RIVAS (2004), numa pesquisa realizada no rio Orinoco, na Venezuela, comparou cinco dos mais conceituados modelos de transporte de sedimentos, adotando como referência para as descargas estimadas um intervalo de confiança que variou de 50% a 200% dos valores medidos. Segundo o autor, o método de Bagnold (1966) e o método de Van Rijn (1984) forneceram percentuais de 40% e 30% das estimativas dentro do intervalo de confiança.

COIADO & PAIVA (2005) ao empregaram uma série de métodos de cálculo da tensão tangencial crítica para inicio de transporte, constataram que todos apresentam algum tipo de restrição. Essas restrições poderão trazer intervenções desfavoráveis às equações de estimativa da descarga de sedimentos, principalmente àquelas com tipologia similar à de DuBoys (1879) em que a descarga fornecida é função da tensão crítica de cisalhamento.

No trabalho de COIADO & PAIVA (2005), comenta-se que, ao considerar a granulometria dos sedimentos coletados do leito do rio Atibaia e as faixas de tamanhos dos sedimentos utilizados no desenvolvimento das fórmulas analisadas, foi verificado que somente a fórmula de DuBoys (1879) e Straub (1935) mostram-se adequadas para serem utilizadas no cálculo da descarga do leito do referido curso de água. Estes resultados corroboram estudos desenvolvidos por PAIVA (1996), usando a base de dados da seção de monitoramento do rio Atibaia.

Parece consenso que no estado atual do conhecimento, não existe ainda uma regra geral que forneça ao analista segurança plena para indicar um método específico para cursos de águas naturais [CARVALHO et al, 2005]. Essa constatação vem sendo reforçada em outros trabalhos sobre o uso de fórmulas de transporte de sedimentos. Em recente pesquisa PUJOL (2004) emitiu opinião sobre a aplicação dos métodos de cálculo do transporte de sedimentos, reforçando a necessidade de intensificação e continuidade das pesquisas.

Na opinião de PUJOL (2004) "a dificuldade para desenvolver fórmulas de transporte de sedimentos de material de fundo com significado prático tem levado a publicação de poucas fórmulas nos últimos vinte anos". Atualmente já se sabe que entre 70 a 80% das fórmulas de estimativa fornecem resultados entre a metade e o dobro do medido.

Muitos autores têm buscado alternativas para aprimorar as descargas estimadas. YANG (1996), mais de vinte anos depois, reportou-se ao seu trabalho original, publicado em 1973, com o intuito de aprimorá-lo às medições em correntes de água naturais. As alterações foram feitas nos critérios de estimativas da velocidade de queda, da viscosidade do fluido e do peso específico do sedimento submerso. Com as alterações, a nova metodologia forneceu resultados satisfatórios quando empregada ao Yellow River (Rio Amarelo) na China, conhecido como um curso de água com capacidade para fornecer altas concentrações de sólidos transportados. A título de ilustração, no artigo, YANG (1996) relata que, em setembro de 1977, foram registrados índices de concentração da ordem de **911 kg/m<sup>3</sup>**.

COIADO & PAIVA (2005) alertam para algumas características inerentes a alguns dos métodos de transporte de sedimentos na camada do leito. Os pesquisadores destacaram que a desatenção às observações apresentadas poderá acarretar resultados incompatíveis aos propósitos de estimativa da descarga de sedimentos em correntes naturais. A **tabela 3.7** resume as observações e a **tabela 3.8** apresenta a fundamentação teórica que cada autor utilizou para a apresentação do seu método.

Embora alguns autores PAIVA (1988); PONCE (1990); SIMONS & SENTURK (1992) e SAMANEZ (1998) insistam em apresentar regras de orientação com o intuito de elucidar dúvidas que freqüentemente se apoderam de especialistas menos experientes no assunto, as incertezas sobre o emprego adequado desses métodos perduram por muitas gerações.

No entanto, acredita-se que uma observação mais criteriosa, como se buscou neste trabalho de doutorado, sobre as hipóteses simplificadoras para as quais o método foi desenvolvido possa reduzir erros comumente encontrados e possa contribuir também para a implantação de uma mudança de paradigma nos rumos dos estudos referentes aos aspectos quantitativos do transporte de sedimentos.

Hoje novas recomendações têm tomado forma no que diz respeito à aplicação das fórmulas de transporte de sedimentos. Em recente trabalho, PUJOL, PETERSON & CHARETTE (2004) explicitam que, no decorrer da utilização de tais fórmulas, é imprescindível verificar com mais atenção as hipóteses básicas em que os métodos foram deduzidos, averiguando se as condições hidrodinâmicas do rio onde o método será aplicado condizem com aquelas para as quais este foi desenvolvido.

Ratificando a importância das discussões sobre a aplicabilidade dos diferentes modelos do transporte de sedimentos em escoamentos com superfície livre e sobre qual diâmetro deva ser usado como representativo do material que constitui o leito do rio, recentemente, COIADO & PAIVA (2005) mostraram que o diâmetro mediano (D<sub>50</sub>) das amostras coletadas do fundo do rio Atibaia/SP difere dos diâmetros médios aritméticos (Da) e geométricos (Dg).

COIADO & PAIVA (2005) descreveram que o transporte de sedimento na camada do leito, segundo as fórmulas do tipo DuBoys, é função da diferença entre as tensões de cisalhamento do escoamento e a tensão crítica para o início do transporte. Esta última, por sua vez, depende do tamanho do sedimento utilizado. Portanto, para o caso de amostras nãouniformes, a definição do diâmetro representativo de toda a amostra torna-se muito importante.

Para amostras de sedimentos não-uniformes, busca-se definir com segurança um diâmetro representativo, que possa ser utilizado nas fórmulas de transporte de sedimentos na

camada do leito. Numa primeira alternativa, o razoável será fracionar a amostra e calcular as descargas da camada do leito para cada uma das frações e, em seguida, obter a descarga total pela somatória dessas descargas ou, numa segunda alternativa, pode-se investir no desenvolvimento de novas metodologias, relacionando parâmetros do escoamento e diferentes diâmetros do material que constitui o leito do rio, para se indicar o diâmetro representativo adequado para representar os sedimentos de granulometria uniformes ou não, quando da aplicação dos diferentes modelos de cálculo [MOLINAS & WU, 1998]

É sabido também, através da literatura, que, na grande maioria dos métodos de cálculo da descarga de sedimentos, usa-se o diâmetro mediano D<sub>50</sub> da amostra. Mas diversos trabalhos sobre o assunto [MOLINAS & WU, 1998; KARIM, 1998; SRINIVASAN & SIQUEIRA, 2000; SUN & DONAHUE, 2000] têm demonstrado que o uso desse diâmetro é questionável para representar o material do leito, isto porque as amostras naturais não seguem rigorosamente uma distribuição gaussiana.

Como se nota, existem argumentos suficientes para se observarem com mais atenção as hipóteses simplificadoras peculiares a cada método, no sentido de minimizar os efeitos das discrepâncias entre as descargas medidas e as estimadas.

Indiscutivelmente, nota-se, na literatura especializada que as equações de Meyer-Peter e Muller, EINSTEIN (1950), Bagnold (1966) e YANG (1973) continuam despertando interesses de estudiosos no assunto. Por essa razão, é comum encontrar programas computacionais de estimativa de erosão em bacias hidrográficas que usam esses modelos sem muita transparência no que se refere aos critérios de escolha. É o caso, por exemplo, do modelo CAUDAL3 [AGUIRRE & SANCHEZ, 1993] que emprega a equação de Meyer-Peter e Muller sem justificar a razão da escolha. Avalia-se que um dos pontos indutores a resultados equivocados na quantificação do transporte de sedimentos, seja transitando em suspensão, seja por arraste, reside no fato de que, quando se usa o diâmetro mediano ( $D_{50}$ ) para representar a amostra como um todo, implicitamente se assume que a amostra segue uma distribuição normal ou gaussiana, o que de fato não é comum acontecer nos cursos de águas naturais. Com base nos critérios de GARDE & RAJU (1985) e SIMONS & SENTURK (1992) para decidir se uma amostra segue a lei de distribuição gaussiana, pode-se dizer que apenas cinco das 171 amostras do material coletado no leito do rio Atibaia segue essa distribuição.

PUJOL (2004) comenta que é possível mostrar que as equações de transporte de sedimentos, quando manipuladas convenientemente, permitem obter descargas com uma precisão adequada para os propósitos de Engenharia Hidráulica. Segundo ele, as investigações têm dado bons resultados para estudos em canais de laboratório, resta então intensificar as investigações aos cursos de águas naturais. Talvez, seguindo essa linha de pensamento, seja possível chegar a estimativas mais precisas para as descargas, o que é indiscutivelmente, o principal objetivo dos profíssionais que lidam com Hidrossedimentologia.

Foram esses argumentos que motivaram o desenvolvimento da tese de doutorado, na qual se buscou substituir os diâmetros representativos coletados no fundo do rio por uma equação analítica, amparada em variáveis que descrevem a dinâmica do movimento do fluido e do sedimento em escoamentos com superfície livre. Os resultados foram satisfatórios e reduziram sobremaneira a diferença percentual relativa entre a descarga medida e a estimada, quando o diâmetro empregado nos diferentes métodos de estimativa da descarga foi o calculado.

| Autor                                         | RESSALVAS                                                                                                                                                                                                     |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DuBoys (1879)                                 | <ul> <li>•D<sub>50</sub> para partículas não-uniformes</li> <li>•Tensão crítica calculada segundo Straub (1935)</li> </ul>                                                                                    |
| Schoklitsch (1914,<br>1950)                   | <ul> <li>Limita a faixa de diâmetros (0,315<di<7,02mm)< li=""> <li>Recomenda D40 para sedimentos de granulometria não-<br/>uniforme. Usa a tensão crítica de Shields (1936)</li> </di<7,02mm)<></li></ul>     |
| Shields (1936)                                | •Quando a tensão tangencial de cisalhamento normalizada do fluxo $\theta_i > 0,3$ , calcula a descarga total do material do leito<br>•1,06< dr <sub>s</sub> <4,20<br>•1,56 <d<sub>50&lt;2,46</d<sub>          |
| Meyer-Peter &<br>Muller (1948)                | • $4x10^{-4} < S < 2x10^{-2}$<br>•0,40 mm <d<4,22 mm<br="">•drs =1,25; 2,68; e 4,22<br/>•1,0 <h<1,20 m<br="">•<math>\tau_c = 0,047 \text{ kgf/m}^2</math><br/>•Contempla as formas de fundo</h<1,20></d<4,22> |
| Kalinske (1947)                               | <ul> <li>Partículas esféricas e leito plano</li> <li>D<sub>50</sub> para material não-uniforme</li> </ul>                                                                                                     |
| Levi (1948)                                   | •Recomendada apenas para canais com leitos de areia                                                                                                                                                           |
| Einstein (1942) &<br>Einstein-Brown<br>(1950) | •0,30 <da<30 mm<br="">•1250&lt;<math>\gamma_{s}</math>&lt;4200 kgf/m<sup>3</sup><br/>•Para <math>\tau_{*}</math>&gt;0,3 pode-se calcular o transporte total</da<30>                                           |
| Sato, Kikkawa &<br>Ashida (1958)              | <ul> <li>•0,305 ≤D≤7,01 – dados de Gilber (1914)</li> <li>•2,21 ≤D≤4,58 obtidos pelos próprios autores</li> <li>•Tensão crítica obtida do diagrama de Shields.(1936)</li> </ul>                               |
| Rottner (1959)                                | •0,31≤D≤15,5 mm<br>•1030<γs<2690 kgf/m <sup>3</sup>                                                                                                                                                           |
| Garde & Albertson<br>(1961)                   | <ul> <li>Para comparar as validades das equações foram utilizadas partículas com diâmetros que variam na faixa de 0,78 a 15,5 mm;</li> <li>0,018 ≤ τ<sub>*</sub> ≤ 0,6</li> <li>8 ≤(V/U*)≤15</li> </ul>       |

Tabela 3.7 – Recomendações sobre a aplicação de algumas das equações do transporte de sedimentos na camada do leito [COIADO & PAIVA 2005]
| Autor                          | RESSALVAS                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Yalin (1963)                   | •Desenvolvida para amostra de partículas com diâmetro uniforme;<br>•para material não uniforme recomenda usar D=Dm;<br>• $(\tau_{*c}) e(\tau_c)$ devem ser determinados com o método de Shields;<br>•foi desenvolvida com dados experimentais, obtidos em canais de<br>laboratório, utilizando sedimentos com diâmetros que variaram<br>entre 0,787 a 2,86 mm;<br>•a equação deve ser aplicada com cuidado, para materiais bem<br>graduados, em que $\sigma_g >3$ ; |  |
| Pernecker &<br>Vollmers (1965) | <ul> <li>Calcula a descarga por arraste do leito somente para tensão tangencial crítica de cisalhamento normalizada menor do que 0,50;</li> <li>calcula a descarga total quando a tensão tangencial crítica de cisalhamento normalizada é maior do que 0,50;</li> <li>para a tensão tangencial crítica normalizada igual a 0,04 não acusa transporte de sedimentos.</li> </ul>                                                                                      |  |
| Inglis & Lacey<br>(1968)       | •Recomendada apenas para canais de leitos arenosos                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Bogardi (1955, 1974)           | <ul> <li>Não deve ser usada quando a tensão tangencial crítica de cisalhamento for maior do que2,5;</li> <li>recomendada para diâmetros variando na faixa de 0,31 a 0,823 mm;</li> <li>recomendada para declividades variando na faixa de 0,00035 e 0,0232 m/m.</li> </ul>                                                                                                                                                                                          |  |

Tabela 3.7 – Recomendações sobre a aplicação de algumas das equações do transporte de sedimentos na camada do leito [COIADO & PAIVA 2005]

| AUTOR                           | FUNDAMENTOS TEÓRICOS                                                                                                          |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| <b>DuBoys (1879)</b>            | O material se move em uma série de camadas superpostas, de espessura igual ao diâmetro da partícula de tamanho uniforme       |  |
| [Equação 3.13]                  | Estabelece uma tensão crítica de início de transporte do                                                                      |  |
|                                 | sedimento.                                                                                                                    |  |
| Schoklitsch (1914,              | A descarga sólida é função da diferença da vazão de escoamento                                                                |  |
| 1950)<br>(Faugcão 3.76)         | e da vazão crítica que inicia o arraste do sedimento.                                                                         |  |
| Shields (1936)                  | Equação baseada na análiza dimensional                                                                                        |  |
| [Equação 3.70]                  |                                                                                                                               |  |
| Meyer-Peter &                   | Equação empírica. Três versões antecederam a versão final. As                                                                 |  |
| Muller (1948)                   | experiências foram realizadas entre os anos de 1932 e 1948. Na                                                                |  |
| [Equação 3.81]                  | uniforme de diâmetros variando entre 5,05 e 28,60 mm. A quarta                                                                |  |
|                                 | e última versão está apresentada na equação 3.81.                                                                             |  |
| Valinglya (1047)                | Dress dânsis comita ínico. Considerou es ofeitos dos fluturos                                                                 |  |
| Equação 3.50                    | turbulentas.                                                                                                                  |  |
| Levi (1948)                     | Considerou as velocidades médias e críticas do escoamento e não                                                               |  |
| [Equação 3.66]                  | as tensões de cisalhamento.                                                                                                   |  |
| Einstein-Brown                  | Assimila os conceitos probabilísticos de Einstein [1942-1950].                                                                |  |
| (1950)                          | No caso de Einstein, a descarga e dada em função de dois<br>parâmetros: a intensidade da corrente e o parâmetro de transporte |  |
| [Equação 3.23]                  | da descarga do leito. Einstein e Brown (1950), utilizando dados                                                               |  |
|                                 | de Gilbert e Meyer-Peter & Muller, ajustaram uma função                                                                       |  |
|                                 | relacionando os parametros de Einstein.                                                                                       |  |
| Sato, Kikkawa &                 | Análise semiteórica com fundamentos semelhantes aos de                                                                        |  |
| Ashida (1958)<br>[Equação 3 57] | EINSTEIN (1950). Contempla a resistência hidráulica                                                                           |  |
| Rottner (1959)                  | Equação semiteórica baseada na análise dimensional e em                                                                       |  |
| [Equação 3.75]                  | resultados experimentais.                                                                                                     |  |
| Garde & Albertson               | Baseia-se em análises dos parâmetros adimensionais de Kalinske                                                                |  |
| (1961)                          | y Shields. Foram feitas comparações com os dados de Gilbert e                                                                 |  |
| [Equações 3.72 e<br>3.73]       | Liu em canais com leito plano e leitos deformados constituídos de rugas ou dunas                                              |  |
|                                 | a rubus ou dunus.                                                                                                             |  |
|                                 |                                                                                                                               |  |

Tabela 3.8 – Fundamentos teóricos dos métodos de cálculo selecionados para a tese

| AUTOR                                            | FUNDAMENTOS TEÓRICOS                                                                                                                                                                                                                              |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Yalin (1963)<br>[Equação 3.65]                   | Equação desenvolvida para fluxo permanente. Baseada no balanço entre as forças que atuam sobre a partícula.                                                                                                                                       |  |  |
| Pernecker &<br>Vollmers (1965)<br>[Equação 3.88] | Desenvolveram curvas de ajuste a partir de métodos de diversos<br>autores, entre eles Kalinske, Meyer-Peter e Muller e Einstein e<br>Brown.                                                                                                       |  |  |
| Inglis & Lacey<br>(1968)<br>[Equação 3.69]       | Baseada nas experiências de Lacey desenvolvidas em 1929.<br>Considera a velocidade de sedimentação do material do leito e<br>contempla a concentração do material transportado por arraste.                                                       |  |  |
| Bogardi (1955, 1974)<br>[Equação 3.71]           | Utilizou uma série de parâmetros adimensionais. É um método<br>originado de experiências de laboratório, nas quais foram<br>utilizados sedimentos de granulometria uniforme e dados de<br>vários autores, tais como Yen, Gilbert; Franco e Garde. |  |  |

Tabela 3.8 – Fundamentos teóricos dos métodos de cálculo selecionados para a tese

# 4 – MATERIAIS E MÉTODOS

# 4.1 – Descrição sumária da bacia do rio Piracicaba

Segundo Siviero (2003), a bacia do Rio Piracicaba, esquematicamente representada na **figura 4.1**, possui área de drenagem de 12.400 Km<sup>2</sup>, sendo dividida em quatro sub-bacias. A saber: sub-bacia do Atibaia (2760 km<sup>2</sup>), sub-bacia do Corumbataí (1700 km<sup>2</sup>), sub-bacia do Jaguari (4290 km<sup>2</sup>) e sub-bacia do Piracicaba (3650 km<sup>2</sup>).

Estudos de FERRAZ & MORTATI (2002) descreve a bacia do Rio Piracicaba como uma região subtropical, de acelerado desenvolvimento econômico, agrícola e industrial no estado, a qual apresenta uma acelerada alteração de paisagem, principalmente pelo avanço dos plantios de cana-de-açúcar e da expansão urbana.

A atividade econômica na bacia do rio Piracicaba segue o perfil do desenvolvimento econômico da Região Sudeste, com vocações regionais para a indústria e a agroindústria, constituindo o terceiro maior pólo econômico brasileiro.

Em Siviero (2003), relata-se uma diversificada variedade de uso do solo na região, caracterizada por plantações de cana-de-açúcar, pastagens, *citrus* e silvicultura. A população da região é de aproximadamente de 3,2 milhões de habitantes, concentrados em mais de 90% das áreas urbanas. A área de drenagem do trecho em estudos é de aproximadamente 934 km<sup>2</sup> e apresenta declividade média da ordem de 14%.

Segundo FERRAZ & MORTATI (2002), a geomorfologia da região é "constituída pelas formações Bauru, Serra Geral e Botucatu-Pirambóia, pelos grupos Passo-Dois e Tubarão e Pré-Cambriano-Cristalino. As principais classes de solo predominantes são: Podzólico Vermelho-Amarelo e o Latossolo Vermelho-Amarelo".

#### Ainda, segundo FERRAZ & MORTATI (2002):

A distribuição pluvial segue um regime caracterizado por duas estações bem distintas com verão chuvoso que se estende de outubro a março e inverno seco de abril a setembro. A média pluviométrica anual da bacia é de 1440 mm, sendo a média mensal do período seco, que vai de abril a setembro, inferior a 20 mm e do período úmido, entre outubro e março, 300 mm.

## 4.2 - O trecho em estudo

A seção de monitoramento localiza-se em um trecho reto do rio Atibaia, em Sousas, Campinas – SP. Alguns critérios foram determinantes na definição do rio a ser pesquisado, na definição do trecho de medidas e na definição da seção de monitoramento. O Rio Atibaia é um dos principais afluentes do Rio Piracicaba e, além disso, ainda responde por cerca de 90% do abastecimento de água da cidade de Campinas-SP (NASCIMENTO, 2001).

O trecho de medidas foi escolhido também de maneira criteriosa: buscou-se um trecho reto de rio com declividade moderada e seção transversal com geometria próxima da trapezoidal, de modo que o escoamento se torne o mais próximo possível da condição de uniforme. São essas as observações mais relevantes para melhorar a precisão nas medidas de velocidade e concentração de sedimentos (CARVALHO, 1994).

O trecho de medidas, esquematicamente mostrado na **figura 4.2**, é bem reto, tem seções transversais trapezoidais e aproximadamente 600 metros de extensão. Nota-se a indicação das réguas límnimétricas de montante e de jusante para leitura da declividade da linha de água.



• Seção de medidas em Sousas, Campinas, São Paulo, Brasil

Figura 4.1 – Representação esquemática da Bacia Hidrográfica do Rio Piracicaba (NASCIMENTO, 2001).

Foram feitas algumas investigações preliminares acerca da seção de medidas. Optouse por uma seção de fácil acesso, localizada em um trecho reto do rio em uma área urbana sobre a qual há uma passarela de pedestre; essa infra-estrutura básica facilitou sobremaneira o levantamento dos dados hidrossedimentométricos usados na tese. Na **figura 4.3**, apresenta-se um exemplo de batimetria obtida na seção de aproximadamente 34 metros de largura, com a indicação das 07 (sete) verticais onde foram feitas as medidas de velocidade e de vazão e as amostragens dos sedimentos.



Figura 4.2 – Representação esquemática do trecho de estudos e a indicação da seção de medidas (NASCIMENTO, 2001).



Figura 4.3 – Seção de medidas no Rio Atibaia, Sousas, Campinas-SP (COIADO & PAIVA, 2005).

## 4.3 – A base de dados existente

Para o desenvolvimento da tese foi utilizada uma base de dados constituída de 171 (cento e setenta e uma) campanhas de medições de parâmetros hidráulicos, sedimentométricos e de dados morfológicos da seção de monitoramento.

A metodologia para a obtenção dos dados pode ser sistematizada nos procedimentos mostrados no fluxograma da **figura 4.4**. Em cada campanha de medição, é recomendável se fazer "**in loco**", no mínimo, as medições sugeridas no fluxograma. Observa-se que, na **figura 4.4**, aponta-se a necessidade do levantamento de um conjunto de dados constituídos de medidas hidráulicas sedimentométricas e morfológicas.

Apesar de aplicada aos dados do Rio Atibaia, a metodologia pode ser empregada em outras situações sem perda de validade. Além de possibilitar a obtenção da descarga de sedimentos medida, essa metodologia também viabilizou o cálculo indireto da descarga de sedimentos na camada do leito pelos diversos métodos existentes na literatura.

Apesar de descrito em PAIVA (1995), o procedimento usado para a obtenção da descarga de sedimentos em suspensão foi novamente abordado neste capítulo para não quebrar a seqüência proposta no fluxograma da **figura 4.4**.



Figura 4.4 – Fluxograma para obtenção dos dados usados na pesquisa.

## 4.4 – Medidas Hidrométricas

## 4.4.1 – Medidas da velocidade

As medidas de velocidade foram feitas com um molinete fluviométrico da marca IH. Para computar a velocidade, a hélice do molinete (**figura 4.5**) girava sobre rolamentos esféricos e acionava, quase sem atrito, uma microchave magnética hermeticamente fechada, que, por sua vez, comandava um dispositivo de sinalização contador dos giros da hélice, sendo que a velocidade do fluxo foi calculada por uma equação analítica, como a **equação 4.1**, em função dos giros da hélice do molinete. A velocidade foi medida a 60% da profundidade em cada uma das 07 (sete) verticais de medidas.

$$U_i = 0,02278 + 0,2638 N_i$$
 (4.1)

 $\overline{\mathrm{U}}_{\mathrm{i}}$  - velocidade média medida na vertical i;

 $N_i$  - número de giros por segundo da hélice do molinete na vertical i.



#### Figura 4.5 – Molinete fluviométrico preparado para medição da velocidade

## 4.4.2 – Medida da vazão

A obtenção da descarga líquida pode ser feita de duas maneiras, através de medidas indiretas e diretas. Em geral, para o segundo caso, chega-se à vazão pelo conhecimento prévio da velocidade medida através de instrumentos. Nesta pesquisa, optou-se pela medição direta.

Antecipando as medições das vazões fazia-se a batimetria. Configurando-se em uma das medidas geométricas realizadas no Rio Atibaia, a batimetria da seção foi obtida medindose com um "limnímetro" adaptado, que consistia de um peso, "base", conectado a um cabo de aço. A variação da extensão do cabo de aço era registrada quando o cabo de aço era enrolado ou desenrolado de um cilindro contendo um sistema de engrenagens e um registrador numérico operados por uma de manivela. Na descida do peso, ao longo de cada uma vertical de medidas, registrava-se a profundidade para cada uma das 07 (sete) verticais indicadas na **figura 4.3**. O cálculo da vazão foi dado pela seguinte expressão:

$$Q_{m} = \sum_{i=1}^{n} \overline{U}_{i} \cdot dm_{i} \cdot b_{i}$$
(4.2)

Q<sub>m</sub> - vazão média medida;

 $\overline{U}_i$  - velocidade média medida na vertical i;

dm<sub>i</sub> - profundidade na faixa de influência;

b<sub>i</sub> - largura da faixa de influência.

# 4.4.3 – Medida da declividade

Para a medição da declividade foram instaladas duas réguas limnimétricas, uma a jusante e outra a montante da seção de monitoramento. Levantamentos altimétricos permitiram estabelecer cotas nas réguas em relação a um mesmo referencial. O zero superior da régua de jusante correspondeu à cota 998,008 e da régua de montante correspondeu à cota 998,436.

Em cada uma das campanhas de medidas em campo, fazia-se simultaneamente a leitura do nível da água na régua de montante e na de jusante. Após as leituras, determinou-se, por subtração, o desnível da superfície livre da água. A medida da declividade foi obtida pela relação entre as leituras nas réguas e a distância do trecho de medidas de extensão 598,36 metros.

$$S = \frac{(L_j - L_M - 0.498)}{L}$$

S - declividade da linha de água;

L<sub>i</sub>-leitura da régua de jusante;

L<sub>M</sub> -leitura da régua de montante;

L - extensão do trecho.

## 4.5 – Medidas sedimentométricas

# 4.5.1 – Amostragens de sedimentos em suspensão

O sedimento em suspensão foi coletado com um amostrador do tipo AMS-3 (figura 4.6). Esse amostrador consiste em uma peça de ferro fundido de formato hidrodinâmico, com aletas direcionadores e um bocal para a coleta do material. Para a coleta da mistura água e sedimentos, no seu interior, colocou-se uma garrafa amostradora com capacidade de um litro.

(4.3)

O amostrador, originalmente projetado para amostragens integradas, foi devidamente adaptado para amostrar também leituras pontuais de concentração de sedimentos em suspensão. A metodologia de coleta integrada é feita em cada vertical durante o trajeto de descida do aparelho até a profundidade próxima do fundo, e subida, até a superfície, sempre procurando manter a velocidade de percurso constante, e com o devido cuidado de coletar um volume da mistura no máximo igual a  $\frac{3}{4}$  do volume da garrafa de armazenamento. As amostras foram coletadas nas sete verticais de medidas da seção transversal.

Nas amostragens pontuais, o amostrador é posicionado em pontos preestabelecidos ao longo da vertical de medida, sem que se colete amostra de sedimento durante o trajeto de introdução e retirada do medidor do rio. O amostrador mostrado na **figura 4.6** foi adaptado para tornar esta operação exequível. A **equação 4.4** fornece a descarga sólida medida em uma determinada vertical, enquanto que a **equação 4.5** fornece a descarga sólida total em suspensão que passa pela seção transversal de medição.

$$q_{ssi} = C_i \cdot P_i \cdot Q_m \cdot 0,0864$$
 (4.4)

 $\boldsymbol{q}_{ssi}$  - descarga sólida em suspensão medida na vertical de medidas;

C<sub>i</sub>- concentração dos sólidos totais em suspensão medida;

P<sub>i</sub> - porcentagem da vazão líquida que passa na faixa de influencia de cada vertical;

Q<sub>m</sub>-vazão média medida.

$$Q_{SS} = \sum_{1}^{n} q_{SSi}$$
(4.5)

Q<sub>SS</sub> - Descarga sólida total medida do sedimento em suspensão;

n- número de verticais de amostragens.

# 4.5.1.1 – Cálculo da concentração de sedimentos

De cada amostra coletada pelo amostrador após a agitação para uma homogeneização perfeita, retirava-se mais ou menos 200 ml para serem filtrados num micro-filtro, utilizando-se uma bomba a vácuo, acoplada em um suporte milipor para filtros de 4,7 cm de diâmetro. Antes da filtragem, secava-se o microfiltro numa mufla a 550 <sup>0</sup>C durante 15 minutos. Decorrido este tempo, o microfiltro passava por um processo de resfriamento em um dessecador até atingir a temperatura ambiente e em seguida era pesado, resultando o peso (Pf) em mg.

O microfiltro e os sólidos retidos na operação da filtragem eram secos em uma estufa a  $105^{0}$ C, durante 24 horas. Decorridas estas horas, o filtro era resfriado num dessecador até atingir a temperatura ambiente e pesado novamente resultando no peso (Pfa). A diferença (pfa – pf) resulta no peso dos sólidos totais (retidos pelo microfiltro) existente no volume filtrado (vf).

Após a segunda pesagem, o filtro era submetido à temperatura de 550 <sup>o</sup>C numa mufla, durante 30 minutos. Ao final deste tempo, o filtro era esfriado num dessecador até atingir a temperatura ambiente, sendo novamente pesado, resultando no peso (pfa'). A diferença (pf-pfa') gera os pesos dos sólidos fixos existentes no volume filtrado (Vf).

As concentrações de cada amostra foram calculadas pelas equações 4.6 e 4.7:

$$C_{i} = \frac{pfa - pf}{Vf}$$
(4.6)

$$C'_{i} = \frac{pfa' - pf}{Vf}$$
(4.7)

 $C_i^\prime$  - concentração dos sólidos fixos em suspensão;

pfa - peso dos sólidos totais retidos pelo microfiltro;

pfa' - peso dos sólidos fixos retidos pelo microfiltro;

pf - peso do micro filtro;

Vf - volume da amostra filtrada.



Figura 4.6 – Amostrador tipo AMS-3 para sedimento em suspensão

## 4.5.2 – Amostragens de sedimentos por arraste do leito

As amostragens da descarga de sedimentos de fundo foram realizadas pelo método direto. Para tanto, foi utilizado um amostrador do tipo **ARNHEM-BTMA**. Este tipo de amostrador é composto de uma entrada retangular rígida que é seguida de um gargalo de borracha e de um recipiente feito de tela de malha de diâmetro tal que retém partículas maiores que areias classificadas como muito finas. Portanto, o amostrador é capaz de reter partículas de tamanhos maiores ou iguais aos das areias médias da ordem de 0,30 mm. O processo de medição consiste em fazer descer o aparelho ao fundo, deixando-o submerso e estático sobre o leito do rio por um intervalo de tempo preestabelecido e recolhendo-o posteriormente. O cálculo da descarga sólida na camada do leito foi realizado pela expressão analítica representada pela **equação 4.8**.

$$qBm = \sum \frac{q_{bp} \cdot b_i}{0,085}$$
(4.8)

qBm – descarga total de sedimentos medida na camada do leito;

q<sub>bp</sub> - descarga sólida medida na camada do leito que passa pela boca do aparelho;

$$q_{\rm bp} = \sum \frac{K_1 \, P_{\rm SC}}{\Delta t_i} \tag{4.9}$$

 $P_{SC}$  – peso do sólido seco coletado pelo aparelho em intervalo de tempo  $\Delta t_i$ ;

K<sub>1</sub> – constante de correção do aparelho (cujo valor médio é de K1=1,43).

 $\Delta t_i$  - intervalo de tempo de amostragem

O aparelho ARNHEM-BTMA mostrado na **figura 4.7** é do tipo deprimogênio e consiste em uma caixa de tela com formato divergente na parte posterior que provoca uma diminuição de pressão e, conseqüentemente, um aumento na velocidade, compensando assim a perda de carga provocada pela presença da tela. O uso deste aparelho é recomendado para cursos de água de baixa declividade com material fino superior a 0,30 mm de diâmetro de tela.

O material sólido coletado pelo amostrador ARNHEM-BTMA era colocado numa cápsula de porcelana de peso conhecido (Pc) e era submetido inicialmente à secagem em estufa a uma temperatura de 105 <sup>0</sup>C durante pelo menos 24 horas. Passado esse período, a cápsula era submetida a um resfriamento em um dessecador até que a temperatura ambiente fosse atingida. Posteriormente, a cápsula de porcelana era novamente pesada, obtendo-se o peso (Pca). A diferença (Pca-Pc) resultava no peso seco dos sólidos totais coletados no amostrador.

Para eliminar a matéria orgânica, por calcinação, a cápsula com os sólidos secos totais, era levada a uma mufla, onde era submetida à temperatura de 550  $^{0}$ C, durante 30 minutos. Este procedimento serviu para eliminar os sólidos voláteis (matéria orgânica). Decorridos os 30 minutos, a amostra passava mais uma vez por um processo de resfriamento em dessecador até atingir a temperatura ambiente, sendo novamente pesada, resultando no peso Pca'. A diferença (Pca' – Pc) resultou no peso dos sólidos fixos ( areia e outros).



Figura 4.7 – Amostrador de sedimento da camada do leito.

# 4.5.3 – Granulometria do sedimento do leito

As amostras do material sólido que constituem o leito do rio foram coletadas por uma draga tipo PETERSEN (**figura 4.8**) em bronze fundido, com dispositivo de desarme tipo alavanca de braço móvel. A draga descia com as caçambas abertas pela alavanca. Ao chegar ao fundo, pelo alívio das tensões de tração, a alavanca desarmava, permitindo que a draga, ao ser levantada, fechasse automaticamente, coletando amostras de sedimento. No fechamento, a própria alavanca mantinha as caçambas fechadas através de um pino de travagem.

Para a realização das coletas do material do leito, usou-se uma draga de fundo com capacidade de 1,5 litro. As amostras foram coletadas em mais de uma vertical de medidas da seção de medidas. Este procedimento foi importante para se ter uma melhor representação da granulometria do leito do rio.

Em cada campanha, as amostras foram juntadas, constituindo-se em uma única amostra, que posteriormente era seca em estufa a 105 <sup>o</sup>C, durante 24 horas. Passado este prazo, as amostras eram destorroadas. Em seguida, por quarteamento, separavam-se 500 gramas do material coletado, os quais, por agitação mecânica, eram peneirados em uma série de peneiras Teyler de número 4;10;20;40;60;100 e 200. O peneiramento durava 20 (vinte) minutos.

Decorridos os 20 (vinte) minutos, efetuava-se a pesagem do material retido em cada uma das peneiras, constituindo uma fração com diâmetro médio inferior ao da peneira anterior e superior ao da peneira na qual o material foi retido. Assim, para as frações com diâmetro superior a 0,074 mm e em observância ao que prescreve a ABNT para as análises granulométricas para essa faixa de diâmetros, o método do peneiramento foi adequado para a elaboração da curva granulométrica do material do leito.

# 4.5.4 – Granulometria do sedimento fino

As frações de sedimentos finos, ou seja, aquelas que passam pela peneira de número 200 e que apresentam diâmetros menores do que 0,074 mm, normalmente são analisados pelo método da sedimentação contínua num meio líquido. O método consiste em se dispersar uma certa quantidade de solo num frasco contendo água (em geral 100 gramas de solo seco em um litro de água e um agente antifloculante), a fim de se obter uma suspensão fina. As partículas cairão então sob a ação da gravidade, em um meio resistente, segundo a lei de Stokes, com velocidade de queda uniforme proporcional ao diâmetro da partícula. Esta metodologia pode ser empregada tanto para o material fino que constitui o leito do rio quanto para os sedimentos transportados em suspensão.



Figura 4.8 – Amostrador tipo Petersen de material do leito.

# 4.6 – Metodologia para a definição do diâmetro representativo para a amostra

# 4.6.1 – Considerações sobre a metodologia para escolha do diâmetro

A metodologia usada na escolha do diâmetro representativo do material do leito no Rio Atibaia foi baseada naquelas recomendações para amostras de sedimentos não-uniformes, fazendo-se o fracionamento da amostra, uma vez que a série de dados existente não apresenta boa uniformidade e tampouco segue a distribuição normal. Um dos procedimentos utilizados para a estimativa da descarga de sedimentos de modo indireto pelo uso dos métodos de estimativa é o de se utilizar apenas um diâmetro representativo para toda a amostra do material do leito. Em geral, adota-se o diâmetro mediano  $D_{50}$ .Trabalhos experimentais dão conta de que esta é uma prática que pode trazer equívocos na estimativa da descarga de sedimentos junto do leito no Rio Atibaia [SILVESTRE-JR, et al, 1997].

Acredita-se que se pode atribuir a três razões as discrepâncias nos resultados das descargas estimadas quando se usa um único diâmetro. A primeira delas se deve ao fato de que, ao se usar apenas um diâmetro representativo, está se admitindo que a amostra é uniforme.

A segunda hipótese justifica-se pela razão de que nem todas as faixas do diâmetro do material depositado no fundo do rio estarão presentes na amostra do material transeunte - para se resguardar desta situação, quando se quer levar em consideração a gradação do material do leito, normalmente, fraciona-se a amostra em faixas de diâmetros e calculam-se as descargas parciais, obtendo-se a descarga total pela soma das parcelas.

A terceira e última hipótese se deve ao de que o diâmetro  $D_{50}$  representa o diâmetro mediano para os casos em que a assimetria da amostra aproxima-se da distribuição gaussiana, o que não é muito comum nos leitos dos cursos de águas naturais [COIADO & PAIVA, 2005; WU et al, 2004; MOLINAS & WU, 1998].

A **equação 4.10** apresenta a fórmula analítica da Função Densidade de Probabilidade da distribuição gaussiana [GARDE & RAJU, 1985].

240

$$f(D_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-[(D_i - D_a)^2]/2\sigma^2}$$
(4.10)

Na qual:

 $f(D_i)$  - Probabilidade de ocorrência do diâmetro  $D_i$  na amostra;

D<sub>a</sub> – diâmetro médio aritmético

 $\sigma$  - desvio padrão da amostra

As amostras que obedecem á equação (4.10) apresentam a seguinte propriedade:

$$\sigma = \frac{D_{84}}{D_{50}} = \frac{D_{50}}{D16}$$
(4.11)

A julgar apenas pelo critério descrito pela **equação 4.11** num universo de 171 campanhas de medidas no Rio Atibaia, somente 05 (cinco) seguem a distribuição normal. Por outro lado, o material no leito do Rio Atibaia não apresenta boa uniformidade. O fato de que as amostras do Rio Atibaia não apresentarem boa uniformidade, justifica a busca por uma definição do diâmetro adequado às equações de estimativa da descarga de sedimentos na camada do leito [COIADO & PAIVA, 2005].

## 4.6.2 – Definição do diâmetro

A metodologia para a busca do diâmetro foi dividida em duas etapas. Na primeira delas, foram calculadas as descargas através dos diferentes métodos de estimativa citados no capítulo três, usando diferentes diâmetros obtidos das curvas granulométricas, de forma a incorporar sedimentos de classes granulométricas diferentes. Para este fracionamento, foram considerados 07 (sete) diâmetros que são freqüentemente utilizados nos métodos de cálculo citados na literatura, às vezes diretamente ou, em outras vezes, indiretamente, na definição de parâmetros neles usados.

Essa primeira etapa possibilitou encontrar 171 (cento e setenta e um) diâmetros verdadeiros ( $D_{V\hat{1}}$ ), o que correspondeu a igual número de campanhas de medições existente para a seção de medidas do Rio Atibaia (isto foi feito para cada um dos 14 (quatorze) métodos de estimativa apresentados no capítulo da revisão bibliográfica). Ao final desta etapa, foi conhecido para cada método, e para cada campanha de medidas, o diâmetro verdadeiro que mais aproximou a descarga estimada à medida.

Numa segunda etapa, os diâmetros encontrados na primeira etapa foram correlacionados com parâmetros característicos do escoamento. Este procedimento finalizou o caminho para se chegar ao diâmetro de cálculo (Dvj) único, a ser usado em um determinado método, agora não mais considerando as campanhas individualmente, mas sim o conjunto das 171 (cento e setenta e uma).

Para se chegar ao diâmetro Dvj comentado no parágrafo supradescrito, foi elaborado um conjunto de gráficos como aquele exemplificado na **figura 4.10**, onde se coloca num gráfico qualitativo, a título de ilustração, o procedimento em que se correlacionou a vazão do escoamento com o diâmetro  $(D_{V\hat{1}})$ , com o intuito de obter a equação analítica para a obtenção do (Dvj), em função da vazão. Esta metodologia poderá ser sistematizada nos 10 (dez) passos subseqüentemente descritos:

1. Em cada uma das 171 campanhas de medidas, foram identificados nas curvas granulométricas do material do leito, os diâmetros representativos  $D_i$ , sendo i =10; 16; 35; 50; 65; 84 e 90, em que  $D_i$  representa o diâmetro tal que i % da amostra tem diâmetro inferior. Por exemplo:  $D_{10}$  significa o diâmetro em milímetros, tal que 10% da amostra tem diâmetro inferior inferior. Esses diâmetros foram utilizados nos métodos de estimativa da descarga de sedimentos que foram selecionados para serem ajustados às estimativas da descarga de sedimentos na camada do leito no Rio Atibaia.

**2.** Utilizando diferentes métodos e diferentes diâmetros, em cada uma das campanhas de medidas, foi calculada a descarga de sedimentos. Numa análise qualitativa este procedimento poderá ser brevemente descrito pela **equação 4.12**.

$$q_{B\hat{I}}M_{j}D_{i} = f(D_{i}) = X_{t}$$
(4.12)

Sendo:

 $q_{B\hat{1}}M_{\hat{j}}D_{\hat{i}}$  - descarga de sedimentos estimada pelo método " $M_{\hat{j}}$ " para a campanha de medições de número  $\hat{i}$ , determinada em função do diâmetro  $(D_{\hat{i}})$ ;

 $M_j$  – identifica o método a ser usado. No caso de se empregarem 14 (quatorze) métodos, j=1,2,3....14.

 $\hat{i} = 1, 2, 3, 4, \dots, 171$ . Identifica a campanha de medidas;

i = identifica o diâmetro usado no cálculo da descarga e tem valores adotados iguais a 10;16;35;50;65; 84 e 90;

X<sub>t</sub> - representa os valores da descarga calculada para os diferentes diâmetros. (t=1,2,3...7).

Por exemplo:

 $q_{B1}M_1D_{10} = X_1$ - Representa a descarga de sedimentos calculada para primeira campanha de medição, através do primeiro método (M<sub>1</sub>), usando o diâmetro D<sub>10</sub>.

 $q_{B_1}M_1D_{16} = X_2$ - Representa a descarga de sedimentos calculada para a primeira campanha de medição, através do primeiro método (M<sub>1</sub>) usando o diâmetro D<sub>16</sub>. E assim sucessivamente, até o diâmetro (D<sub>90</sub>).

 $q_{B_1}M_2D_{10} = Y_1$ - Representa a descarga de sedimentos calculada para a primeira campanha de medição, através do segundo método (M<sub>2</sub>) usando o diâmetro D<sub>10</sub>. E assim, sucessivamente, até o diâmetro (D<sub>90</sub>).

Como exemplo, toma-se a hipótese de se calcular a descarga de sedimentos usando o primeiro método  $(M_1)$  para a primeira campanha de medições. Empregando-se a **equação 4.12** chega-se a 7 (sete) valores para a descarga de sedimentos. Ou seja:

 $q_{B1}M_1D_{10} = X_1$ - descarga calculada pelo método " $M_1$ " para a campanha 1, usando-se o diâmetro  $D_{10}$ .

 $q_{B1}M_1D_{16} = X_2$ .....idem para o  $D_{16}$ 

 $q_{B1}M_1D_{35} = X_3$ .....idem para o  $D_{35}$ 

 $q_{B_1}M_1D_{50} = X_4....$ 

 $q_{B_1}M_1D_{65} = X_5....$ 

 $q_{B_1}M_1D_{84} = X_6$ .....

 $q_{B1}M_1D_{90} = X_7$ ....idem para o D90.

**3.** Com os valores das descargas obtidas no passo 2 (dois), elaborou-se um conjunto de gráficos no qual nas abscissas foram lançados os 7 (sete) valores dos diâmetros  $D_i$  e nas ordenadas os 7(sete) valores obtidos para as descargas  $q_{B\hat{I}}M_{\hat{J}}D_{\hat{I}} = f(D_{\hat{I}}) = X_t$  calculadas.

4. Entrou-se com o valor da descarga de sedimentos medida  $(q_{Bm_{\hat{I}}})$  no eixo das ordenadas, onde  $q_{Bm_{\hat{I}}}$  representou a descarga de sedimentos medida para a campanha de medidas de número  $_{\hat{I}}$ . Simultaneamente leu-se na abscissa o diâmetro verdadeiro  $(D_{V\hat{I}})$  que representará aquele mais indicado para calcular a descarga de sedimento para o método em uso.

O gráfico qualitativo da f**igura 4.9** exemplifica o procedimento usado para se chegar ao valor do diâmetro verdadeiro  $(D_{V_1})$ , tomando-se como exemplo o caso da primeira campanha de medidas, onde  $q_{Bm_1}$  e  $D_{V_1}$  representam, respectivamente, a descarga de sedimentos na camada do leito medida e o diâmetro do sedimento verdadeiro, ambos relativos à primeira campanha de medição, com a descarga de sedimentos estimada pelo primeiro método " $M_1$ ".

5. Repetiu-se o procedimento, iniciando-se pelo passo 2 para a obtenção do diâmetro verdadeiro  $D_{V2}$  para a campanha número 2, e assim sucessivamente, até se obter o diâmetro verdadeiro  $D_{V3}$ ,  $D_{V4}$ ,  $D_{V5}$ ..... $D_{V171}$ .



FIGURA 4.9 – Ilustração da obtenção do diâmetro verdadeiro para o método M<sub>1</sub>

6. Conhecidos os 171 diâmetros verdadeiros  $(D_{V\hat{I}})$  que corrigiram as descargas de sedimentos estimadas pelo método  $M_j$ , a próxima etapa foi fazer a correlação desses valores

com os parâmetros característicos do escoamento (Q, S,  $C_p$ ,  $P_c$ ) obtidos em cada uma das campanhas de medições, de modo que, de posse do conhecimento desses parâmetros, definiuse por regressão, uma equação analítica para calcular o diâmetro (**Dvj**) mais apropriado para ser utilizado no método M<sub>j</sub>. De maneira analítica tem-se a equação:

$$Dvj = f(Q, S, P_c, C_p)$$
 (4.13)

Na qual:

J = 1,2,3....14

Q - vazão líquida do escoamento medida;

S- declividade da linha de água;

P<sub>c</sub> – potência da corrente;

C<sub>p</sub>-coeficiente de pressão.

Dvj - diâmetro verdadeiro único a ser usado no método " $M_j$ ". Para exemplificar, entenda-se que Dvj<sub>-1</sub> representa o diâmetro verdadeiro único a ser utilizado no primeiro método ( $M_1$ ) quando da sua utilização para a estimativa da descarga de sedimentos, enquanto que Dvj-2 representaria o diâmetro verdadeiro a ser empregado no segundo método ( $M_2$ ) e assim sucessivamente.

**7.** A correlação entre as variáveis características do escoamento, apresentadas na equação 4.13, e os diâmetros referenciados no passo 6 foi feita em gráficos como aquele ilustrativo mostrado na **figura 4.10**.

8. Repetiram-se os mesmos procedimentos, começando pelo passo 2 (dois), agora com o segundo método ( $M_2$ ), que possibilitou definir a equação analítica para encontrar o segundo diâmetro Dvj-2, prosseguindo-se da mesma maneira até que se encontrasse o Dvj-3, Dvj-4, Dvj-5..... Dvj-14.



FIGURA 4.10 – Ilustração da obtenção do diâmetro verdadeiro único Dvj para ser usado no cálculo da descarga de sedimentos.

9. Uma vez encontrada a relação analítica entre Dvj e as variáveis Q,S,P<sub>c</sub> e C<sub>p</sub> características do escoamento, na seqüência da tese, tal relação substituiu o diâmetro nos diferentes métodos  $M_j$  promovendo a correção na estimativa da descarga de sedimentos do Rio Atibaia. No **quadro 4.1** apresentam-se as equações para cálculo do diâmetro **Dvj**, após a aplicação desta metodologia.

10. Após a correção do método  $M_j$ , novos valores por ele foram calculados e comparados àqueles medidos na seção do Rio Atibaia para a verificação da autenticidade da correção proposta. Mas, a análise da veracidade das equações do **quadro 4.1** não se limitou apenas ao Rio Atibaia, essas equações foram empregadas também ao Ribeirão do Feijão e ao Rio Mogi-Guaçu, ambos em São Carlos(SP) e os resultados foram considerados bons.

| Autor                         | Equação para Dvj                                                     |
|-------------------------------|----------------------------------------------------------------------|
| DuBoys (1879)                 | $D_{Vj [DUB]} = 73,595 \text{ x S}^{1,2139}$                         |
| Schoklitsch (1914, 1950)      | $D_{Vj [SCH]} = 0,0726x \ln[Q] - 0,1419$                             |
| Shields (1936)                | $D_{Vj [SHI]} = 0,4965 \times S^{0,5532}$                            |
| Meyer-Peter & Muller (1948)   | $D_{Vj [MPM]} = 0,0034 \text{ x Pc}^{0,576}$                         |
| Kalinske (1947)               | $D_{Vj [KAL]} = 0,0044 \text{ x } [e^{-5,7716 \text{ x } Pc}]$       |
| Levi (1948)                   | $D_{Vj [LEV]} = 2,3204 \text{ x Cp}^{-1,7324}$                       |
| Einstein-Brown (1950)         | $D_{Vj [EIB]} = -0,0012 x Ln(Q) + 0,0097$                            |
| Sato, Kikkawa & Ashida (1958) | $D_{Vj [SKA]} = 0,0453 \text{ x Pc}^{0,7149}$                        |
| Rottner (1959)                | $D_{Vj [ROT]} = 4x10^{-05} x S^{-0.1843}$                            |
| Garde & Albertson (1961)      | $D_{Vj [GAA]} = 0,0027x Ln(S) + 0,0302$                              |
| Yalin (1963)                  | $D_{Vj [YAL]} = 3,8117 \text{ x } \text{S}^{0,7909}$                 |
| Pernecker & Vollmers (1965)   | $D_{Vj [PEV]} = 1,1846 \text{ x } \text{S}^{0,65}$                   |
| Inglis & Lacey (1968)         | $D_{Vj[INL]} = -0,0012 x Ln(Q) + 0,0124$                             |
| Bogardi (1955, 1974)          | $D_{Vj [BOG]} = 0,0018 \text{ x } [e^{4723,1 \text{ x } \text{ S}}]$ |

Quadro 4.1 – Equações desenvolvidas pela metodologia proposta na tese

Neste capítulo, foi apresentada a proposição de uma alternativa possível de ser empregada na definição do diâmetro representativo para amostras de sedimentos nãouniformes, como as do rio Atibaia. Esta proposição teve como finalidade promover correção nas descargas de sedimentos estimadas por métodos citados na literatura, visando aproximar as descargas estimadas das medidas. A busca deste diâmetro verdadeiro único e peculiar a cada método foi o principal objetivo desta tese de doutorado.

Além de empregada aos dados do Rio Atibaia a metodologia também mostrou consistência quando utilizada a estimativa da descarga de sedimentos para mais dois cursos de água naturais. O Ribeirão do Feijão e o Rio Mogi-Guaçu, ambos em São Carlos-SP.

Por outro lado, ao se empregar uma metodologia que calcula o diâmetro em função de parâmetros do escoamento, além de se eliminar a necessidade de levantamento de curvas granulométricas, elimina-se também a possibilidade de erros quanto aos aspectos relativos à gradação da amostra. Ademais, reduz-se a margem de dúvidas sobre qual diâmetro a se utilizar quando da aplicação de um método de cálculo do transporte de sedimentos.

Somente para se ter uma idéia dos questionamentos descritos no parágrafo supracitado, no **quadro 4.2**, há exemplos de alguns diâmetros usados por autores citados na literatura para o emprego dos seus métodos, dando uma ilustração da variedade de tipos que são utilizados, demonstrando não se ter certeza de qual deve ser empregado.

| Diâmetros       | FORMA DE UTILIZAÇÃO                                                          |  |
|-----------------|------------------------------------------------------------------------------|--|
| D <sub>40</sub> | Usado por Schoklitsch para representar a mistura                             |  |
| D <sub>50</sub> | • Usado por Shields na análise do princípio do movimento e no seu método     |  |
|                 | estimativa da descarga de sedimentos                                         |  |
|                 | • Usado por Einstein e Brown no método de cálculo da descarga de sedimentos  |  |
|                 | na camada do leito                                                           |  |
|                 | • Usado por Garde & Albertson na equação da descarga na camada do leito      |  |
|                 | • Usado por DuBoys no cálculo da descarga na camada do leito                 |  |
|                 | • Usado por Straub no cálculo da descarga na camada do leito                 |  |
|                 | • Usado por Kalinske para cálculo da descarga de sedimentos não uniformes na |  |
|                 | camada do leito                                                              |  |
| D <sub>65</sub> | • Usado por Einstein para representar a rugosidade da mistura de sedimentos  |  |
| D <sub>90</sub> | • Usado por Meyer Peter & Muller para representar a rugosidade da mistura de |  |
|                 | sedimentos                                                                   |  |
| D <sub>85</sub> | • Usado por Simons Richardson na fórmula para computar a resistência ao      |  |
|                 | escoamento em canais de leitos arenosos                                      |  |

Quadro 4.2 Diferentes diâmetros e suas aplicações. [SIMONS & SENTURK, 1992; COIADO & PAIVA, 2005]

# 5 – ANÁLISE E DISCUSSÃO DOS RESULTADOS

# 5.1. Considerações preliminares

A leitura atenta ao capítulo quatro desta tese mostra o desenvolvimento de uma metodologia consistente que promove uma melhor aproximação entre as descargas sólidas transportadas junto ao leito, mensuradas por vários métodos de previsão, e aquelas medidas. Portanto, não se trata somente de realizar a comparação entre as descargas medidas e as calculadas pelos vários métodos de previsão existentes.

A metodologia foi desenvolvida predominantemente na forma de indicação do diâmetro representativo do material do leito. Alguns autores utilizam o diâmetro mediano da amostra, enquanto outros fracionam e calculam separadamente as frações das descargas, obtendo pela soma o resultado final do transporte do material.

A metodologia proposta dispensa o levantamento do material do fundo, eliminando também a necessidade de elaboração de curvas granulométricas para a obtenção do diâmetro representativo do material do leito, como de praxe se faz.

Neste trabalho, defende-se que o diâmetro do material do leito seja indicado em função de parâmetros responsáveis pelo movimento dos sedimentos do leito do canal. Esta é uma abordagem moderna e freqüentemente defendida por diversos autores contemporâneos [PUJOL, 2004; COIADO & PAIVA, 2005; MOLINAS & WU, 1998; WU et al, 2004].

Na **tabela 5.1** apresenta-se o conjunto dos parâmetros previamente selecionados para o cálculo do diâmetro do sedimento, que foram utilizados nos métodos de cálculo do transporte de sedimentos, tendo como base a série de dados medidos no Rio Atibaia. Para alguns dos adimensionais fez-se uma breve descrição de acordo com STREETER & WYLIE (1982). Os parâmetros foram selecionados pelo fato de exercerem influência direta ou indireta no movimento dos sedimentos do leito.

| PARÂMETRO                           | TÍTULO                             | DESCRIÇÃO                                                              |
|-------------------------------------|------------------------------------|------------------------------------------------------------------------|
| Q                                   | Vazão                              | -                                                                      |
| S                                   | Declividade do leito               | Gradiente de energia do escoamento                                     |
| $C_{\rm p} = \frac{d \cdot g}{U^2}$ | Coeficiente de pressão<br>estática | Relaciona a força de pressão e as forças de inércia                    |
| $P_{C} = \tau_{0} Q$                | Potência da corrente               | Traduz a energia despendida pelo escoamento no transporte do sedimento |

Tabela 5.1 – Parâmetros usados para o ajuste do diâmetro do sedimento
## 5.2. Apresentação dos resultados

Inicialmente desenvolveu-se um conjunto de equações de estimativa do diâmetro de cálculo do transporte de sedimentos com base em 171 campanhas de medições de parâmetros hidrossedimentométricos realizados no Rio Atibaia, procedendo-se sistematicamente conforme a metodologia descrita no **item 4.6.2** do capítulo da metodologia.

A base de dados do Rio Atibaia está apresentada na **tabela 5.2**, na qual estão organizados os parâmetros hidráulicos e geométricos do referido rio, as características da granulometria do material do leito, além de algumas propriedades do fluido, do escoamento e dos sedimentos. Nota-se, na parte inferior da tabela, valores máximos, médios e mínimos para todos os parâmetros. Também, para alguns deles, estão apresentados os desvios médios, em relação aos seus valores médios medidos.

Para efeito de comparação, destacam-se os valores máximos, mínimos e médios de alguns dos mais importantes parâmetros característicos do escoamento e dos sedimentos. A vazão máxima apresenta valor de 159,8 m<sup>3</sup>/s, o valor mínimo é de 3,7 m<sup>3</sup>/s, já o valor médio é de 27,6 m<sup>3</sup>/s, enquanto que o valor dos desvios médios dos valores em relação à média é de 16,1 m<sup>3</sup>/s.

A declividade do leito apresenta valores máximos, mínimo e médio, respectivamente, iguais a  $8,2x10^{-4}$ ,  $3,0x10^{-5}$  e  $1,8x10^{-4}$ , enquanto que o valor médio dos desvios em relação à média é de  $6,9x10^{-5}$ .

| Ta  | bela 5.2 - | - Base              | de dad    | os refe           | erente  | ao F           | lio A   | tibaia | em S  | Sousa           | ıs - C | ampi   | nas -    | SP       |          |                 |                     |                     |           |                     |            |                  |                     |        |         |         |                       |
|-----|------------|---------------------|-----------|-------------------|---------|----------------|---------|--------|-------|-----------------|--------|--------|----------|----------|----------|-----------------|---------------------|---------------------|-----------|---------------------|------------|------------------|---------------------|--------|---------|---------|-----------------------|
|     | Parâi      | metros l            | hidráulic | os e geo          | ométric | os par         | a o rio | Atiba  | ia    | Gı              | anulor | netiia | do ma    | nterial  | do lei   | to              |                     |                     | Propried  | ades do             | fluido, do | o escoa          | mento e             | dos se | dimento | IS .    |                       |
| (1) | (2)        | (3)                 | (4)       | (5)               | (6)     | (7)            | (8)     | (9)    | (10)  | (11)            | (12)   | (13)   | (14)     | (15)     | (16)     | (17)            | (18)                | (19)                | (20)      | (21)                | (22)       | (23)             | (24)                | (25)   | (26)    | (27)    | (28)                  |
| Nº. | DATA       | Q                   | S         | Α                 | Р       | R <sub>H</sub> | d       | в      | U     | D <sub>10</sub> | D16    | D35    | $D_{50}$ | $D_{65}$ | $D_{84}$ | D <sub>90</sub> | y.                  | Ŷ                   | ν         | $\tau_0$            | v          | $\mathbf{U}_{*}$ | q = Q/B             | Fr     | Ср      | Pc      | <b>q</b> <sub>B</sub> |
|     |            | (m <sup>3</sup> /s) | (m/m)     | (m <sup>2</sup> ) | (m)     | (m)            | (m)     | (m)    | (m/s) | (mm)            | (mm)   | (mm)   | (mm)     | (mm)     | (mm)     | (mm)            | Kgf/ m <sup>3</sup> | Kgf/ m <sup>3</sup> | $m^2/s$   | Kgf/ m <sup>2</sup> | Manning    | (m/s)            | m <sup>3</sup> /s.m | -      | -       | Kgf/m.s | ton/dia               |
| 1   | 26/3/1993  | 31,690              | 1,94E-04  | 49,630            | 36,500  | 1,360          | 1,430   | 34,700 | 0,640 | 0,150           | 0,180  | 0,340  | 0,640    | 0,970    | 1,560    | 1,860           | 2650                | 1000                | 1,010E-06 | 0,264               | 0,027      | 0,051            | 0,913               | 0,171  | 34,249  | 0,169   | 0,141                 |
| 2   | 6/4/1993   | 21,730              | 1,97E-04  | 41,730            | 36,300  | 1,150          | 1,200   | 34,870 | 0,520 | 0,190           | 0,240  | 0,370  | 0,540    | 0,880    | 2,770    | 3,820           | 2650                | 1000                | 1,010E-06 | 0,227               | 0,030      | 0,047            | 0,623               | 0,152  | 43,536  | 0,118   | 0,038                 |
| 3   | 20/4/1993  | 16,780              | 1,85E-04  | 38,780            | 35,800  | 1,080          | 1,110   | 34,880 | 0,430 | 0,240           | 0,290  | 0,480  | 0,680    | 1,040    | 2,960    | 4,110           | 2650                | 1000                | 1,010E-06 | 0,200               | 0,033      | 0,044            | 0,481               | 0,130  | 58,892  | 0,086   | 0,045                 |
| 4   | 4/5/1993   | 22,670              | 2,11E-04  | 44,710            | 37,400  | 1,200          | 1,290   | 34,780 | 0,510 | 0,220           | 0,270  | 0,530  | 0,860    | 1,370    | 3,240    | 4,220           | 2650                | 1000                | 1,010E-06 | 0,253               | 0,032      | 0,050            | 0,652               | 0,143  | 48,654  | 0,129   | 0,045                 |
| 5   | 18/5/1993  | 13,120              | 1,63E-04  | 36,600            | 35,500  | 1,030          | 1,060   | 34,380 | 0,360 | 0,240           | 0,280  | 0,400  | 0,510    | 0,640    | 0,970    | 1,230           | 2650                | 1000                | 1,010E-06 | 0,168               | 0,036      | 0,041            | 0,382               | 0,112  | 80,236  | 0,060   | 0,024                 |
| 6   | 1/6/1993   | 40,920              | 2,31E-04  | 55,700            | 37,100  | 1,500          | 1,580   | 35,240 | 0,730 | 0,330           | 0,400  | 0,710  | 1,020    | 1,470    | 2,500    | 3,130           | 2650                | 1000                | 1,010E-06 | 0,347               | 0,027      | 0,058            | 1,161               | 0,185  | 29,086  | 0,253   | 0,19                  |
| 7   | 8/6/1993   | 23,110              | 1,64E-04  | 43,630            | 37,650  | 1,160          | 1,250   | 34,910 | 0,530 | 0,270           | 0,320  | 0,450  | 0,570    | 0,730    | 1,130    | 1,420           | 2650                | 1000                | 1,010E-06 | 0,190               | 0,027      | 0,043            | 0,662               | 0,151  | 43,654  | 0,101   | 0,026                 |
| 8   | 15/6/1993  | 17,030              | 1,81E-04  | 37,960            | 35,400  | 1,070          | 1,110   | 34,210 | 0,450 | 0,290           | 0,340  | 0,500  | 0,640    | 0,830    | 1,440    | 3,780           | 2650                | 1000                | 1,010E-06 | 0,194               | 0,031      | 0,044            | 0,498               | 0,136  | 53,773  | 0,087   | 0,008                 |
| 9   | 22/6/1993  | 16,910              | 1,72E-04  | 37,600            | 37,230  | 1,010          | 1,090   | 34,540 | 0,450 | 0,360           | 0,440  | 0,690  | 0,970    | 1,500    | 4,470    | 4,940           | 2650                | 1000                | 1,010E-06 | 0,1/4               | 0,029      | 0,041            | 0,490               | 0,138  | 52,804  | 0,078   | 0,008                 |
| 10  | 29/6/1993  | 9,480               | 1,64E-04  | 31,400            | 36,000  | 0,870          | 0,920   | 33,990 | 0,300 | 0,320           | 0,370  | 0,520  | 0,660    | 0,850    | 1,400    | 2,000           | 2650                | 1000                | 1,010E-06 | 0,143               | 0,039      | 0,037            | 0,279               | 0,100  | 100,280 | 0,043   | 0,007                 |
| 11  | 6/7/1993   | 8,260               | 1,05E-04  | 31,180            | 35,500  | 0,880          | 0,920   | 33,770 | 0,260 | 0,300           | 0,360  | 0,560  | 0,780    | 1,220    | 4,100    | 4,750           | 2650                | 1000                | 1,010E-06 | 0,092               | 0,036      | 0,030            | 0,245               | 0,087  | 133,509 | 0,024   | 0,002                 |
| 12  | 21///1993  | 7,030               | 8,90E-05  | 29,130            | 35,200  | 0,830          | 0,870   | 33,040 | 0,240 | 0,300           | 0,360  | 0,500  | 0,770    | 1,090    | 3,330    | 4,500           | 2630                | 1000                | 1,010E-06 | 0,074               | 0,035      | 0,027            | 0,209               | 0,082  | 148,172 | 0,018   | 0,006                 |
| 13  | 3/8/1993   | 3,/40               | 0,40E-05  | 25,710            | 34,430  | 0,750          | 0,780   | 32,820 | 0,150 | 0,270           | 0,320  | 0,480  | 0,630    | 0,870    | 3,900    | 4,700           | 2630                | 1000                | 1,010E-06 | 0,048               | 0,044      | 0,022            | 0,114               | 0,034  | 340,080 | 0,007   | 0,002                 |
| 14  | 17/8/1993  | 5,930               | 3,00E-05  | 21,410            | 35,200  | 0,780          | 0,820   | 33,530 | 0,220 | 0,270           | 0,320  | 0,470  | 0,040    | 0,920    | 2,300    | 4,020           | 2600                | 1000                | 1,010E-06 | 0,023               | 0,021      | 0,015            | 0,1/7               | 0,078  | 100,202 | 0,000   | 0,002                 |
| 15  | 31/8/1993  | 10.050              | 4,/UE-05  | 31,480            | 35,000  | 0,880          | 1 000   | 33,/40 | 0,190 | 0,260           | 0,320  | 0,490  | 0,000    | 0,950    | 2,170    | 3,100           | 2030                | 1000                | 1,010E-00 | 0,041               | 0,035      | 0,020            | 0,102               | 0,005  | 05 901  | 0,000   | 0,002                 |
| 10  | 21/9/1993  | 20 110              | 2 21 5 04 | 54,110            | 35,000  | 1 270          | 1,000   | 24 020 | 0,320 | 0,240           | 0,270  | 0,570  | 0,470    | 0,010    | 1,000    | 1,450           | 2650                | 1000                | 1,010E-00 | 0,141               | 0,037      | 0,057            | 1 001               | 0,102  | 35,001  | 0,045   | 0,000                 |
| 17  | 5/10/1003  | 14 020              | 1.47E-04  | 35 540            | 36 300  | 1,370          | 1,470   | 34,920 | 0,740 | 0,310           | 0,370  | 0,510  | 0,030    | 0,000    | 4 770    | 5110            | 2650                | 1000                | 1,010E-00 | 0 144               | 0.023      | 0,030            | 0.408               | 0,133  | 66 432  | 0,254   | 0,004                 |
| 10  | 21/10/1003 | 22 830              | 1 805.04  | 42 150            | 37 400  | 1 140          | 1 210   | 34,900 | 0,370 | 0,200           | 0,340  | 0,510  | 0,070    | 0,970    | 3 630    | 4 620           | 2650                | 1000                | 1,010E-06 | 0,144               | 0.028      | 0.046            | 0,400               | 0 157  | 40 707  | 0,030   | 0.023                 |
| 20  | 28/10/1993 | 28.940              | 2.06E-04  | 47.480            | 37.500  | 1.270          | 1.360   | 34 880 | 0,610 | 0,290           | 0.350  | 0,500  | 0.630    | 0,800    | 1.240    | 1.640           | 2650                | 1000                | 1.010E-06 | 0.262               | 0.028      | 0.051            | 0.830               | 0.167  | 35.855  | 0.160   | 0.037                 |
| 21  | 4/11/1993  | 7.250               | 8.00E-01  | 30.010            | 35,500  | 0.850          | 0.890   | 33,820 | 0.240 | 0.340           | 0.440  | 0,840  | 1.260    | 2.140    | 4.520    | 4.960           | 2650                | 1000                | 1.010E-06 | 0.068               | 0.033      | 0.026            | 0.214               | 0.081  | 151.578 | 0.016   | 0.003                 |
| 22  | 9/11/1993  | 9.900               | 1.30E-04  | 31,470            | 35,350  | 0.890          | 0.930   | 34.010 | 0.310 | 0.300           | 0.390  | 0.750  | 1.150    | 1.870    | 4.270    | 4.820           | 2650                | 1000                | 1.010E-06 | 0.116               | 0.034      | 0.034            | 0.291               | 0.103  | 94,935  | 0.036   | 0.005                 |
| 23  | 20/12/1993 | 21.410              | 1.97E-04  | 42.790            | 35,500  | 1.210          | 1.240   | 34.640 | 0.500 | 0.300           | 0.360  | 0.510  | 0.630    | 0.810    | 1.260    | 1.710           | 2650                | 1000                | 1.010E-06 | 0.238               | 0.032      | 0.048            | 0.618               | 0.143  | 48.658  | 0.119   | 0.08                  |
| 24  | 10/2/1994  | 52.610              | 8.00E-05  | 64.040            | 38,700  | 1.650          | 1.800   | 35.650 | 0.820 | 0.270           | 0.320  | 0,470  | 0.590    | 0,740    | 1.110    | 1.370           | 2650                | 1000                | 1.010E-06 | 0.132               | 0.015      | 0.036            | 1.476               | 0.195  | 26,261  | 0.108   | 0.332                 |
| 25  | 29/3/1994  | 37,700              | 1.97E-04  | 68,500            | 35,750  | 1,920          | 1,990   | 34.340 | 0.550 | 0.250           | 0.300  | 0.440  | 0.560    | 0.730    | 1.180    | 1.660           | 2650                | 1000                | 1.010E-06 | 0.378               | 0.039      | 0.061            | 1.098               | 0.124  | 64,535  | 0.208   | 0.027                 |
| 26  | 19/4/1994  | 20,090              | 1,30E-04  | 51,340            | 34,800  | 1,470          | 1,510   | 34,000 | 0,390 | 0,240           | 0,290  | 0,420  | 0,550    | 0,740    | 1,340    | 2,260           | 2650                | 1000                | 1,010E-06 | 0,191               | 0.038      | 0.043            | 0,591               | 0,101  | 97,391  | 0.075   | 0.022                 |
| 27  | 6/5/1994   | 12,100              | 9,60E-05  | 44,600            | 34,200  | 1,300          | 1,330   | 33,600 | 0,270 | 0,230           | 0,280  | 0,420  | 0,540    | 0,710    | 1,200    | 4,430           | 2650                | 1000                | 1,010E-06 | 0,125               | 0,043      | 0,035            | 0,360               | 0,075  | 178,975 | 0,034   | 0,012                 |
| 28  | 20/5/1994  | 12,580              | 1,14E-04  | 44,600            | 34,200  | 1,300          | 1,330   | 33,600 | 0,280 | 0,250           | 0,290  | 0,410  | 0,520    | 0,650    | 0,950    | 1,200           | 2650                | 1000                | 1,010E-06 | 0,148               | 0,045      | 0,038            | 0,374               | 0,078  | 166,420 | 0,041   | 0,012                 |
| 29  | 17/6/1994  | 12,820              | 7,20E-05  | 44,800            | 34,600  | 1,290          | 1,330   | 33,640 | 0,290 | 0,240           | 0,280  | 0,390  | 0,480    | 0,590    | 0,830    | 1,000           | 2650                | 1000                | 1,010E-06 | 0,093               | 0,035      | 0,030            | 0,381               | 0,080  | 155,140 | 0,027   | 0,005                 |
| 30  | 1/7/1994   | 13,710              | 1,14E-04  | 47,450            | 34,540  | 1,380          | 1,400   | 33,810 | 0,290 | 0,270           | 0,310  | 0,430  | 0,530    | 0,650    | 0,890    | 1,050           | 2650                | 1000                | 1,010E-06 | 0,157               | 0,046      | 0,039            | 0,406               | 0,078  | 163,306 | 0,046   | 0,006                 |
| 31  | 15/7/1994  | 10,560              | 6,40E-05  | 44,280            | 34,220  | 1,290          | 1,320   | 33,640 | 0,240 | 0,230           | 0,270  | 0,370  | 0,470    | 0,600    | 0,890    | 1,100           | 2650                | 1000                | 1,010E-06 | 0,083               | 0,040      | 0,028            | 0,314               | 0,067  | 224,813 | 0,020   | 0,051                 |
| 32  | 29/7/1994  | 13,980              | 1,14E-04  | 47,300            | 34,480  | 1,370          | 1,400   | 33,810 | 0,300 | 0,280           | 0,340  | 0,500  | 0,650    | 0,870    | 1,660    | 2,300           | 2650                | 1000                | 1,010E-06 | 0,156               | 0,044      | 0,039            | 0,413               | 0,081  | 152,600 | 0,047   | 0,01                  |
| 33  | 12/8/1994  | 6,910               | 4,70E-05  | 42,610            | 34,060  | 1,250          | 1,280   | 33,260 | 0,160 | 0,280           | 0,320  | 0,450  | 0,570    | 0,730    | 1,230    | 2,180           | 2650                | 1000                | 1,010E-06 | 0,059               | 0,050      | 0,024            | 0,208               | 0,045  | 490,500 | 0,009   | 0,011                 |
| 34  | 26/8/1994  | 9,440               | 6,20E-05  | 46,190            | 34,190  | 1,350          | 1,380   | 33,470 | 0,200 | 0,270           | 0,300  | 0,410  | 0,510    | 0,630    | 0,880    | 1,050           | 2650                | 1000                | 1,010E-06 | 0,084               | 0,048      | 0,029            | 0,282               | 0,054  | 338,445 | 0,017   | 0,002                 |
| 35  | 8/9/1994   | 10,930              | 8,00E-05  | 47,280            | 34,480  | 1,370          | 1,400   | 33,680 | 0,230 | 0,280           | 0,320  | 0,440  | 0,540    | 0,680    | 1,000    | 1,270           | 2650                | 1000                | 1,010E-06 | 0,110               | 0,048      | 0,033            | 0,325               | 0,062  | 259,622 | 0,025   | 0,004                 |
| 36  | 22/9/1994  | 14,320              | 1,30E-04  | 50,300            | 34,700  | 1,450          | 1,480   | 33,920 | 0,280 | 0,210           | 0,250  | 0,360  | 0,450    | 0,580    | 0,890    | 1,100           | 2650                | 1000                | 1,010E-06 | 0,189               | 0,052      | 0,043            | 0,422               | 0,073  | 185,189 | 0,053   | 0,002                 |
| 37  | 6/10/1994  | 9,670               | 4,70E-05  | 44,940            | 34,300  | 1,310          | 1,340   | 33,490 | 0,220 | 0,270           | 0,320  | 0,450  | 0,570    | 0,740    | 1,180    | 1,520           | 2650                | 1000                | 1,010E-06 | 0,062               | 0,037      | 0,025            | 0,289               | 0,061  | 271,599 | 0,014   | 0,002                 |
| 38  | 27/10/1994 | 28,500              | 1,22E-04  | 63,310            | 35,500  | 1,780          | 1,840   | 34,480 | 0,450 | 0,260           | 0,330  | 0,530  | 0,730    | 1,010    | 1,790    | 3,150           | 2650                | 1000                | 1,010E-06 | 0,217               | 0,036      | 0,046            | 0,827               | 0,106  | 89,138  | 0,098   | 0,424                 |
| 39  | 23/11/1994 | 11,000              | 4,70E-05  | 55,610            | 34,330  | 1,330          | 1,660   | 33,520 | 0,200 | 0,300           | 0,340  | 0,480  | 0,600    | 0,750    | 1,140    | 1,450           | 2650                | 1000                | 1,010E-06 | 0,063               | 0,041      | 0,025            | 0,328               | 0,050  | 407,115 | 0,013   | 0,004                 |
| 40  | 22/12/1994 | 70,640              | 2,14E-04  | 98,560            | 37,280  | 2,640          | 2,760   | 35,680 | 0,720 | 0,320           | 0,370  | 0,550  | 0,710    | 0,950    | 1,600    | 2,510           | 2650                | 1000                | 1,010E-06 | 0,565               | 0,039      | 0,074            | 1,980               | 0,138  | 52,229  | 0,407   | 0,218                 |
| 41  | 5/1/1995   | 56,360              | 2,31E-04  | 82,620            | 36,260  | 2,280          | 2,340   | 35,270 | 0,680 | 0,280           | 0,320  | 0,450  | 0,570    | 0,720    | 1,080    | 1,360           | 2650                | 1000                | 1,010E-06 | 0,527               | 0,039      | 0,072            | 1,598               | 0,142  | 49,644  | 0,358   | 0,523                 |
| 42  | 19/1/1995  | 19,980              | 1,47E-04  | 52,840            | 34,820  | 1,510          | 1,560   | 33,920 | 0,380 | 0,220           | 0,270  | 0,410  | 0,570    | 0,900    | 4,170    | 4,790           | 2650                | 1000                | 1,010E-06 | 0,222               | 0,042      | 0,047            | 0,589               | 0,097  | 105,981 | 0,084   | 0,015                 |

| Ta  | bela 5.2 - | Base                | de dad   | os refe           | erente  | ao F                      | lio A   | tibaia | em S  | Sousa           | ıs - C         | ampi            | nas -    | SP       |        |                 |                     |                           |                   |                     |            |                  |                     |        |                  |         |                       |
|-----|------------|---------------------|----------|-------------------|---------|---------------------------|---------|--------|-------|-----------------|----------------|-----------------|----------|----------|--------|-----------------|---------------------|---------------------------|-------------------|---------------------|------------|------------------|---------------------|--------|------------------|---------|-----------------------|
|     | Parâi      | metros l            | idráulic | os e geo          | métrico | os par                    | a o rio | Atibai | ia    | Gı              | anuloi         | netria          | do ma    | nterial  | do lei | to              |                     |                           | Propried          | ades do             | fluido, do | escoa            | mento e             | dos se | dimento          | S       |                       |
| (1) | (2)        | (3)                 | (4)      | (5)               | (6)     | (7)                       | (8)     | (9)    | (10)  | (11)            | (12)           | (13)            | (14)     | (15)     | (16)   | (17)            | (18)                | (19)                      | (20)              | (21)                | (22)       | (23)             | (24)                | (25)   | (26)             | (27)    | (28)                  |
| Nº. | DATA       | Q                   | S        | A                 | Р       | $\mathbf{R}_{\mathbf{H}}$ | d       | в      | U     | D <sub>10</sub> | D16            | D <sub>35</sub> | $D_{50}$ | $D_{65}$ | D84    | D <sub>90</sub> | 7.                  | 7                         | ν                 | $\tau_0$            | v          | $\mathbf{U}_{*}$ | q = Q/B             | Fr     | Ср               | Pc      | <b>q</b> <sub>B</sub> |
|     |            | (m <sup>3</sup> /s) | (m/m)    | (m <sup>2</sup> ) | (m)     | (m)                       | (m)     | (m)    | (m/s) | (mm)            | (mm)           | (mm)            | (mm)     | (mm)     | (mm)   | (mm)            | Kgf/ m <sup>3</sup> | .′<br>Kgf∕ m <sup>3</sup> | m <sup>2</sup> /s | Kgf/ m <sup>2</sup> | Manning    | (m/s)            | m <sup>3</sup> /s.m | -      | -                | Kgf/m.s | ton/dia               |
| 43  | 26/1/1995  | 17,010              | 1,47E-04 | 50,970            | 34,770  | 1,460                     | 1,500   | 33,930 | 0,330 | 0,290           | 0,340          | 0,460           | 0,570    | 0,700    | 1,020  | 1,280           | 2650                | 1000                      | 1,010E-06         | 0,215               | 0,047      | 0,046            | 0,501               | 0,086  | 135,124          | 0,071   | 0,036                 |
| 44  | 9/2/1995   | 159,810             | 1,14E-04 | 143,850           | 39,850  | 3,610                     | 3,570   | 40,300 | 1,110 | 0,170           | 0,250          | 0,550           | 0,820    | 1,250    | 4,840  | 5,150           | 2650                | 1000                      | 1,010E-06         | 0,412               | 0,023      | 0,064            | 3,966               | 0,188  | 28,424           | 0,457   | 3,097                 |
| 45  | 16/2/1995  | 68,210              | 2,47E-04 | 89,000            | 36,460  | 2,440                     | 2,510   | 35,400 | 0,770 | 0,210           | 0,260          | 0,410           | 0,590    | 0,880    | 1,790  | 2,700           | 2650                | 1000                      | 1,010E-06         | 0,603               | 0,037      | 0,077            | 1,927               | 0,155  | 41,530           | 0,464   | 0,485                 |
| 46  | 8/3/1995   | 31,340              | 1,72E-04 | 63,570            | 35,530  | 1,790                     | 1,820   | 34,940 | 0,490 | 0,180           | 0,200          | 0,300           | 0,410    | 0,600    | 1,200  | 1,850           | 2650                | 1000                      | 1,010E-06         | 0,308               | 0,039      | 0,055            | 0,897               | 0,116  | 74,362           | 0,151   | 0,396                 |
| 47  | 24/3/1995  | 64,810              | 1,80E-04 | 89,070            | 36,470  | 2,440                     | 2,520   | 35,380 | 0,730 | 0,170           | 0,210          | 0,390           | 0,650    | 1,140    | 2,970  | 4,030           | 2650                | 1000                      | 1,010E-06         | 0,439               | 0,033      | 0,066            | 1,832               | 0,147  | 46,390           | 0,321   | 1,/21                 |
| 48  | 7/4/1995   | 47,300              | 1,97E-04 | 74,200            | 35,980  | 2,000                     | 2,120   | 35,050 | 0,040 | 0,150           | 0,170          | 0,210           | 0,250    | 0,330    | 0,720  | 1,100           | 2630                | 1000                      | 1,010E-06         | 0,406               | 0,036      | 0,063            | 1,301               | 0,140  | 30,114<br>73 737 | 0,260   | 0,1/1                 |
| 49  | 28/4/1995  | 29,990              | 1,801-04 | 66 610            | 35,430  | 1,/40                     | 1,/80   | 34,030 | 0,490 | 0,150           | 0,170          | 0,210           | 0,240    | 0,320    | 1 550  | 1,440           | 2650                | 1000                      | 1,010E-00         | 0,313               | 0,040      | 0,055            | 0,000               | 0,117  | 57 972           | 0,155   | 0,001                 |
| 51  | 0/6/1005   | 20 510              | 1.475.04 | 57 870            | 35,060  | 1,670                     | 1,520   | 34,740 | 0,370 | 0,100           | 0,170<br>N 10N | 0,250           | 0,320    | 0,050    | 1,000  | 1 580           | 2650                | 1000                      | 1,010E-06         | 0,337               | 0.047      | 0,037            | 0 597               | 0,151  | 134 537          | 0.081   | 0,400                 |
| 52  | 23/6/1995  | 20,500              | 1.04F-04 | 53,430            | 36,180  | 1.980                     | 1,560   | 34.340 | 0.380 | 0.170           | 0,190          | 0.280           | 0.500    | 0,900    | 2,040  | 2.860           | 2650                | 1000                      | 1.010E-06         | 0.206               | 0.042      | 0.045            | 0.597               | 0.097  | 105,981          | 0.078   | 0.018                 |
| 53  | 5/7/1995   | 16.290              | 1.47E-04 | 50.010            | 34,700  | 1.440                     | 1.460   | 34.190 | 0.330 | 0.160           | 0.180          | 0.260           | 0.370    | 0.530    | 0.910  | 1.230           | 2650                | 1000                      | 1.010E-06         | 0.212               | 0.047      | 0.046            | 0.476               | 0.087  | 131.521          | 0.070   | 0.051                 |
| 54  | 12/7/1995  | 45,940              | 2.39E-04 | 75,710            | 36.020  | 2.100                     | 2.160   | 35.030 | 0.610 | 0.140           | 0.150          | 0.180           | 0.200    | 0.230    | 0.500  | 0.920           | 2650                | 1000                      | 1.010E-06         | 0.502               | 0.042      | 0.070            | 1.311               | 0.133  | 56.946           | 0.306   | 4.163                 |
| 55  | 19/7/1995  | 22,540              | 1,55E-04 | 56,290            | 35,140  | 2,160                     | 1,630   | 34,590 | 0,400 | 0,140           | 0,160          | 0,200           | 0,240    | 0,300    | 0,600  | 0,850           | 2650                | 1000                      | 1,010E-06         | 0,335               | 0,052      | 0,057            | 0,652               | 0,100  | 99,939           | 0,134   | 0,016                 |
| 56  | 26/7/1995  | 26,290              | 1,64E-04 | 59,620            | 35,320  | 1,690                     | 1,720   | 34,610 | 0,440 | 0,160           | 0,170          | 0,230           | 0,350    | 0,660    | 1,390  | 1,930           | 2650                | 1000                      | 1,010E-06         | 0,277               | 0,041      | 0,052            | 0,760               | 0,107  | 87,155           | 0,122   | 0,118                 |
| 57  | 10/8/1995  | 14,710              | 1,22E-04 | 49,260            | 34,640  | 1,420                     | 1,440   | 34,090 | 0,300 | 0,170           | 0,190          | 0,250           | 0,320    | 0,420    | 0,710  | 0,950           | 2650                | 1000                      | 1,010E-06         | 0,173               | 0,047      | 0,041            | 0,432               | 0,080  | 156,960          | 0,052   | 0,012                 |
| 58  | 31/8/1995  | 10,610              | 8,00E-05 | 43,280            | 34,130  | 1,270                     | 1,290   | 33,650 | 0,250 | 0,140           | 0,160          | 0,190           | 0,230    | 0,280    | 1,460  | 4,690           | 2650                | 1000                      | 1,010E-06         | 0,102               | 0,042      | 0,032            | 0,315               | 0,070  | 202,478          | 0,025   | 0,002                 |
| 59  | 21/9/1995  | 21,800              | 4,73E-04 | 56,170            | 35,130  | 1,600                     | 1,640   | 34,280 | 0,390 | 0,160           | 0,180          | 0,230           | 0,290    | 0,390    | 0,750  | 1,140           | 2650                | 1000                      | 1,010E-06         | 0,757               | 0,076      | 0,086            | 0,636               | 0,097  | 105,775          | 0,295   | 0,031                 |
| 60  | 28/9/1995  | 23,780              | 1,30E-04 | 58,450            | 35,260  | 1,660                     | 1,690   | 34,680 | 0,410 | 0,170           | 0,190          | 0,270           | 0,400    | 0,750    | 1,660  | 2,500           | 2650                | 1000                      | 1,010E-06         | 0,216               | 0,039      | 0,046            | 0,686               | 0,101  | 98,625           | 0,088   | 0,249                 |
| 61  | 5/10/1995  | 13,590              | 9,70E-05 | 48,180            | 34,550  | 1,390                     | 1,410   | 34,160 | 0,280 | 0,170           | 0,190          | 0,270           | 0,360    | 0,570    | 1,240  | 1,640           | 2650                | 1000                      | 1,010E-06         | 0,135               | 0,044      | 0,036            | 0,398               | 0,075  | 176,430          | 0,038   | 0,002                 |
| 62  | 19/10/1995 | 48,820              | 1,88E-04 | 77,210            | 36,080  | 2,140                     | 2,200   | 35,020 | 0,630 | 0,180           | 0,210          | 0,370           | 0,820    | 1,560    | 3,060  | 3,790           | 2650                | 1000                      | 1,010E-06         | 0,402               | 0,036      | 0,063            | 1,394               | 0,136  | 54,3/6           | 0,253   | 0,205                 |
| 03  | 23/11/1995 | 15,110              | 9,70E-05 | 48,000            | 34,500  | 1,390                     | 1,410   | 34,050 | 0,310 | 0,100           | 0,190          | 0,310           | 0,520    | 0,810    | 1,370  | 1,000           | 2630                | 1000                      | 1,010E-06         | 0,133               | 0,040      | 0,036            | 0,444               | 0,083  | 143,934          | 0,042   | 0,006                 |
| 04  | 10/1/1995  | 9,250               | 0,4UE-05 | 42,470            | 33,900  | 1,250                     | 1,2/0   | 33,390 | 0,220 | 0,150           | 0,180          | 0,340           | 0,030    | 0,970    | 1,500  | 1,800           | 2650                | 1000                      | 1,010E-06         | 0,000               | 0,042      | 0,028            | 2 990               | 0,002  | 22 044           | 0,018   | 5 141                 |
| 66  | 21/1/1006  | 22 280              | 1.475.04 | 54 000            | 3/,5/0  | 1 540                     | 3,040   | 30,910 | 0,950 | 0,170           | 0,190          | 0,200           | 0,000    | 0,000    | 1,100  | 1,/50           | 2650                | 1000                      | 1,010E-00         | 0,042               | 0,032      | 0,075            | 0.656               | 0,174  | 92 206           | 0,010   | 0.019                 |
| 67  | 7/2/1006   | 22,500              | 1 64E-04 | 68 500            | 34,990  | 1,040                     | 1,050   | 34,120 | 0,410 | 0,170           | 0,100<br>N 10N | 0,220           | 0,200    | 0,510    | 1 100  | 1 680           | 2650                | 1000                      | 1,010E-06         | 0.315               | 0.034      | 0.047            | 1 132               | 0,104  | 56 865           | 0,055   | 0,015                 |
| 68  | 6/3/1996   | 60.160              | 2.06E-04 | 84,790            | 36.330  | 2.330                     | 2.400   | 35,360 | 0,710 | 0.170           | 0,190          | 0.230           | 0.270    | 0.320    | 0.430  | 0.560           | 2650                | 1000                      | 1.010E-06         | 0.480               | 0.036      | 0.069            | 1,701               | 0.146  | 46,705           | 0.341   | 3,542                 |
| 69  | 20/3/1996  | 111.450             | 2.47E-04 | 111.680           | 37.370  | 2,990                     | 3.060   | 36,550 | 1.000 | 0.170           | 0.190          | 0.250           | 0.300    | 0.360    | 0.570  | 1.690           | 2650                | 1000                      | 1.010E-06         | 0.739               | 0.033      | 0.085            | 3.049               | 0.183  | 30.019           | 0.739   | 1.15                  |
| 70  | 3/4/1996   | 35,030              | 1,80E-04 | 65,410            | 35,620  | 1,840                     | 1,880   | 34,870 | 0,540 | 0,230           | 0,260          | 0,340           | 0,430    | 0,620    | 1,410  | 2,050           | 2650                | 1000                      | 1,010E-06         | 0,331               | 0,037      | 0,057            | 1,005               | 0,126  | 63,247           | 0,179   | 0,133                 |
| 71  | 16/4/1996  | 32,340              | 1,64E-04 | 65,310            | 35,620  | 1,830                     | 1,890   | 34,520 | 0,500 | 0,230           | 0,250          | 0,310           | 0,370    | 0,440    | 0,740  | 1,180           | 2650                | 1000                      | 1,010E-06         | 0,300               | 0,038      | 0,054            | 0,937               | 0,116  | 74,164           | 0,150   | 0,051                 |
| 72  | 15/5/1996  | 25,670              | 1,47E-04 | 58,860            | 35,280  | 1,670                     | 1,720   | 34,240 | 0,440 | 0,230           | 0,260          | 0,350           | 0,440    | 0,640    | 1,500  | 2,200           | 2650                | 1000                      | 1,010E-06         | 0,245               | 0,039      | 0,049            | 0,750               | 0,107  | 87,155           | 0,108   | 0,246                 |
| 73  | 22/5/1996  | 22,580              | 1,47E-04 | 56,300            | 35,130  | 1,600                     | 1,650   | 34,200 | 0,400 | 0,190           | 0,230          | 0,320           | 0,410    | 0,610    | 1,630  | 3,000           | 2650                | 1000                      | 1,010E-06         | 0,235               | 0,041      | 0,048            | 0,660               | 0,099  | 101,166          | 0,094   | 0,008                 |
| 74  | 19/6/1996  | 13,760              | 9,70E-05 | 49,150            | 34,640  | 1,420                     | 1,460   | 33,760 | 0,280 | 0,240           | 0,270          | 0,350           | 0,420    | 0,550    | 0,990  | 1,360           | 2650                | 1000                      | 1,010E-06         | 0,138               | 0,044      | 0,037            | 0,408               | 0,074  | 182,686          | 0,039   | 0,012                 |
| 75  | 3/6/1996   | 16,830              | 1,14E-04 | 52,610            | 34,890  | 1,510                     | 1,540   | 34,070 | 0,320 | 0,200           | 0,250          | 0,400           | 0,640    | 1,100    | 2,520  | 3,770           | 2650                | 1000                      | 1,010E-06         | 0,172               | 0,044      | 0,041            | 0,494               | 0,082  | 147,533          | 0,055   | 0,023                 |
| 76  | 17/7/1996  | 12,790              | 9,70E-05 | 47,410            | 34,500  | 1,370                     | 1,400   | 33,810 | 0,270 | 0,170           | 0,210          | 0,320           | 0,460    | 0,860    | 2,820  | 4,090           | 2650                | 1000                      | 1,010E-06         | 0,133               | 0,045      | 0,036            | 0,378               | 0,073  | 188,395          | 0,036   | 0,004                 |
| 77  | 31/7/1996  | 12,230              | 1,05E-04 | 46,640            | 34,430  | 1,350                     | 1,340   | 34,750 | 0,260 | 0,220           | 0,270          | 0,410           | 0,560    | 0,800    | 1,340  | 1,660           | 2650                | 1000                      | 1,010E-06         | 0,142               | 0,048      | 0,037            | 0,352               | 0,072  | 194,459          | 0,037   | 0,005                 |
| 78  | 7/8/1996   | 12,600              | 8,00E-05 | 47,650            | 34,520  | 1,380                     | 1,400   | 34,040 | 0,260 | 0,180           | 0,220          | 0,330           | 0,450    | 0,750    | 1,980  | 3,050           | 2650                | 1000                      | 1,010E-06         | 0,110               | 0,043      | 0,033            | 0,370               | 0,070  | 203,166          | 0,029   | 0,004                 |
| 79  | 14/8/1996  | 14,240              | 1,05E-04 | 50,300            | 34,720  | 1,450                     | 1,480   | 33,990 | 0,280 | 0,190           | 0,230          | 0,360           | 0,540    | 1,000    | 2,700  | 3,730           | 2650                | 1000                      | 1,010E-06         | 0,152               | 0,047      | 0,039            | 0,419               | 0,073  | 162,189          | 0,043   | 0,005                 |
| 80  | 21/8/1990  | 13,090              | 0,90E-05 | 31,000            | 34,/80  | 1,470                     | 1,200   | 33,890 | 0,300 | 0,210           | 0,240          | 0,300           | 0,200    | 0,920    | 3,2/0  | 4,350           | 2650                | 1000                      | 1,010E-06         | 0,131               | 0,041      | 0,036            | 0,445               | 0,070  | 204 647          | 0,039   | 0,003                 |
| 82  | 40/0/1990  | 12,200              | 9,/UE-05 | 47,410            | 34,200  | 1,3/0                     | 1,410   | 33,/30 | 0,200 | 0,190           | 0,230          | 0,350           | 0,520    | 1,0/0    | 3,850  | 2,030           | 2650                | 1000                      | 1,010E-06         | 0,133               | 0.047      | 0,030            | 0,505               | 0,070  | 204,017          | 0,035   | 0,003                 |
| 82  | 11/0/1006  | 78 240              | 2315.04  | 07 060            | 36 770  | 2 660                     | 2 730   | 35 840 | 0,400 | 0,230           | 0,270          | 0,000           | 0,530    | 1 200    | 4 100  | 4 700           | 2650                | 1000                      | 1,010E-00         | 0.614               | 0.045      | 0.078            | 2 183               | 0.155  | 41 846           | 0.492   | 3 697                 |
|     | 11/2/1220  |                     |          | 21,200            |         |                           |         | 0.040  | 0,000 | . 0,000         |                | 0,100           | 0,010    |          | 1,1.70 | 1,120           | 2030                |                           | .,0 .JL-00        | 0,014               | 0,000      | 0,010            | 2,105               | 5,155  | 11,040           | UTUL    | 5,551                 |

| Ta  | bela 5.2 - | Base                | de dad    | os refe           | erente  | ao F                      | A ois   | tibaia   | em S  | Sousa           | ıs - C | ampi            | nas -    | SP       |          |           |                     |                     |                   |                     |            |                  |                     |        |                   |         |                       |
|-----|------------|---------------------|-----------|-------------------|---------|---------------------------|---------|----------|-------|-----------------|--------|-----------------|----------|----------|----------|-----------|---------------------|---------------------|-------------------|---------------------|------------|------------------|---------------------|--------|-------------------|---------|-----------------------|
|     | Parâi      | metros l            | nidráulic | os e geo          | métrico | os par                    | a o ric | ) Atibai | ia    | Gı              | anulor | netria          | do ma    | nterial  | do lei   | to        |                     |                     | Propried          | ades do             | fluido, do | escoa            | mento e             | dos se | dimento           | IS      |                       |
| (1) | (2)        | (3)                 | (4)       | (5)               | (6)     | (7)                       | (8)     | (9)      | (10)  | (11)            | (12)   | (13)            | (14)     | (15)     | (16)     | (17)      | (18)                | (19)                | (20)              | (21)                | (22)       | (23)             | (24)                | (25)   | (26)              | (27)    | (28)                  |
| Nº. | DATA       | Q                   | S         | Α                 | Р       | $\mathbf{R}_{\mathbf{H}}$ | d       | в        | U     | D <sub>10</sub> | D16    | D <sub>35</sub> | $D_{50}$ | $D_{65}$ | $D_{84}$ | D90       | 7.                  | Ŷ                   | ν                 | $\tau_0$            | v          | $\mathbf{U}_{*}$ | q = Q/B             | Fr     | Ср                | Pc      | <b>q</b> <sub>B</sub> |
|     |            | (m <sup>3</sup> /s) | (m/m)     | (m <sup>2</sup> ) | (m)     | (m)                       | (m)     | (m)      | (m/s) | (mm)            | (mm)   | (mm)            | (mm)     | (mm)     | (mm)     | (mm)      | Kgf/ m <sup>3</sup> | Kgf/ m <sup>3</sup> | m <sup>2</sup> /s | Kgf/ m <sup>2</sup> | Manning    | (m/s)            | m <sup>3</sup> /s.m | -      | -                 | Kgf/m.s | ton/dia               |
| 84  | 2/10/1996  | 17,000              | 1,05E-04  | 51,200            | 34,800  | 1,500                     | 1,500   | 34,100   | 0,330 | 0,210           | 0,240  | 0,330           | 0,420    | 0,740    | 1,820    | 2,370     | 2650                | 1000                | 1,010E-06         | 0,158               | 0,041      | 0,039            | 0,499               | 0,086  | 135,124           | 0,052   | 0,006                 |
| 85  | 16/10/1996 | 28,700              | 1,50E-04  | 63,400            | 35,500  | 1,800                     | 1,830   | 34,700   | 0,450 | 0,230           | 0,270  | 0,390           | 0,670    | 1,650    | 4,070    | 4,690     | 2650                | 1000                | 1,010E-06         | 0,270               | 0,040      | 0,051            | 0,827               | 0,106  | 88,653            | 0,122   | 0,25                  |
| 86  | 6/11/1996  | 32,100              | 1,60E-04  | 65,800            | 35,600  | 1,800                     | 1,900   | 34,700   | 0,490 | 0,210           | 0,240  | 0,330           | 0,420    | 0,740    | 3,000    | 4,160     | 2650                | 1000                | 1,010E-06         | 0,288               | 0,038      | 0,053            | 0,925               | 0,113  | 77,630            | 0,141   | 0,32                  |
| 87  | 20/11/1996 | 27,900              | 1,30E-04  | 65,200            | 35,600  | 1,800                     | 1,880   | 34,700   | 0,430 | 0,210           | 0,250  | 0,350           | 0,500    | 1,100    | 3,500    | 4,400     | 2650                | 1000                | 1,010E-06         | 0,234               | 0,039      | 0,048            | 0,804               | 0,100  | 99,745            | 0,101   | 0,034                 |
| 88  | 6/12/1996  | 24,360              | 1,30E-04  | 58,600            | 35,300  | 1,700                     | 1,690   | 34,600   | 0,420 | 0,210           | 0,240  | 0,310           | 0,380    | 0,480    | 0,930    | 1,400     | 2650                | 1000                | 1,010E-06         | 0,221               | 0,039      | 0,047            | 0,704               | 0,103  | 93,985            | 0,093   | 4,34                  |
| 89  | 9/1/1997   | 28,580              | 1,47E-04  | 59,320            | 35,510  | 1,780                     | 1,710   | 34,680   | 0,480 | 0,190           | 0,220  | 0,310           | 0,380    | 0,500    | 0,830    | 1,110     | 2650                | 1000                | 1,010E-06         | 0,262               | 0,037      | 0,051            | 0,824               | 0,11/  | 12,809            | 0,126   | 0,033                 |
| 90  | 22/1/199/  | 41,340              | 2,14E-04  | 106 700           | 35,910  | 2,020                     | 2,080   | 34,/80   | 0,570 | 0,200           | 0,230  | 0,310           | 0,370    | 0,400    | 0,//0    | 1,100     | 2630                | 1000                | 1,010E-06         | 0,432               | 0,041      | 0,000            | 1,109               | 0,120  | 02,003            | 0,240   | 0,140                 |
| 91  | 3/2/1997   | 104,400             | 2,14E-04  | 100,/90           | 39,//0  | 2,090                     | 2,930   | 30,400   | 0,980 | 0,220           | 0,240  | 0,300           | 0,300    | 0,420    | 0,000    | 1 100     | 2030                | 1000                | 1,010E-06         | 0,370               | 0,029      | 0,075            | 2,000               | 0,103  | 29,920            | 0,364   | 21,99                 |
| 92  | 26/2/1007  | 19 420              | 1,4/1-04  | 47 220            | 35,700  | 1,210                     | 1,570   | 34,520   | 0,470 | 0,230           | 0,250  | 0,330           | 0,390    | 0,490    | 0,040    | 1,100     | 2650                | 1000                | 1,010E-00         | 0,222               | 0,034      | 0,047            | 0,741               | 0,120  | 90 296            | 0,104   | 0.16                  |
| 93  | 16/4/1007  | 10,420              | 1,22E-04  | 47,220            | 35,090  | 1 250                     | 1 200   | 22 640   | 0,390 | 0,230           | 0,200  | 0,340           | 0,400    | 0,510    | 0,000    | 1,030     | 2650                | 1000                | 1,010E-00         | 0,103               | 0.034      | 0,040            | 0,344               | 0,105  | 109 471           | 0,004   | 0,10                  |
| 05  | 14/5/1007  | 11 200              | 1.05E.04  | 43,440            | 34 400  | 1 100                     | 1 240   | 33,040   | 0,340 | 0,230           | 0,230  | 0,330           | 0,400    | 0,510    | 0,000    | 1 1 1 2 0 | 2650                | 1000                | 1,010E-00         | 0,121               | 0.041      | 0,034            | 0,434               | 0.080  | 155 158           | 0,041   | 0.104                 |
| 96  | 4/6/1997   | 15 350              | 1 225-04  | 46 010            | 34 960  | 1 320                     | 1 370   | 33 640   | 0,200 | 0 150           | 0,200  | 0,400           | 0,550    | 1 480    | 4 440    | 4 920     | 2650                | 1000                | 1,010E-06         | 0.161               | 0.040      | 0.040            | 0.456               | 0.090  | 123 413           | 0.053   | 0.006                 |
| 97  | 2/7/1997   | 14.990              | 1,22E-04  | 45,710            | 34.930  | 1 310                     | 1 350   | 33.840   | 0.330 | 0.210           | 0.280  | 0.550           | 0,700    | 1.410    | 3.400    | 4 400     | 2650                | 1000                | 1.010E-06         | 0.160               | 0.040      | 0.040            | 0.443               | 0.091  | 121,612           | 0.053   | 0.005                 |
| 98  | 12/8/1997  | 16,380              | 1.13E-04  | 46.600            | 35,020  | 1.330                     | 1.370   | 33.930   | 0.350 | 0.220           | 0.290  | 0.550           | 0.890    | 1.410    | 4,000    | 4.700     | 2650                | 1000                | 1.010E-06         | 0.150               | 0.037      | 0.038            | 0.483               | 0.095  | 109,712           | 0.053   | 0.003                 |
| 99  | 26/8/1997  | 19,340              | 1.47E-04  | 49.680            | 35.320  | 1.410                     | 1.460   | 33.970   | 0.390 | 0.150           | 0.220  | 0.430           | 0.650    | 0.980    | 1.840    | 2.460     | 2650                | 1000                | 1.010E-06         | 0.207               | 0.039      | 0.045            | 0.569               | 0.103  | 94.166            | 0.081   | 0.0054                |
| 100 | 9/9/1997   | 9.160               | 1.05E-04  | 38.030            | 34,000  | 1.120                     | 1.140   | 33,400   | 0.240 | 0.160           | 0.210  | 0.390           | 0.580    | 0.880    | 1.630    | 2.250     | 2650                | 1000                | 1.010E-06         | 0.118               | 0.046      | 0.034            | 0.274               | 0.072  | 194.156           | 0.028   | 0.0024                |
| 101 | 23/9/1997  | 17,790              | 7,90E-04  | 47,940            | 35,160  | 1,360                     | 1,410   | 33,960   | 0,370 | 0,140           | 0,160  | 0,230           | 0,300    | 0,400    | 0,960    | 4,370     | 2650                | 1000                | 1.010E-06         | 1.074               | 0,093      | 0,103            | 0,524               | 0.099  | 101,038           | 0,398   | 0.0128                |
| 102 | 7/10/1997  | 16,420              | 1,40E-04  | 46,430            | 35,010  | 1,330                     | 1,370   | 33,980   | 0,350 | 0,150           | 0,180  | 0,250           | 0,320    | 0,420    | 0,670    | 0,850     | 2650                | 1000                | 1,010E-06         | 0,186               | 0,041      | 0,043            | 0,483               | 0,095  | 109,712           | 0,065   | 0,0134                |
| 103 | 21/10/1997 | 19,540              | 7,00E-05  | 50,410            | 35,390  | 1,420                     | 1,480   | 34,070   | 0,390 | 0,150           | 0,170  | 0,260           | 0,340    | 0,470    | 0,830    | 1,090     | 2650                | 1000                | 1,010E-06         | 0,099               | 0,027      | 0,031            | 0,574               | 0,102  | 95,456            | 0,039   | 0,0141                |
| 104 | 4/11/1997  | 14,400              | 1,10E-04  | 44,700            | 34,820  | 1,280                     | 1,320   | 33,800   | 0,320 | 0,150           | 0,180  | 0,290           | 0,410    | 0,590    | 1,080    | 1,440     | 2650                | 1000                | 1,010E-06         | 0,141               | 0,039      | 0,037            | 0,426               | 0,089  | 126,457           | 0,045   | 0,0029                |
| 105 | 2/12/1997  | 22,510              | 1,20E-04  | 51,850            | 35,520  | 1,460                     | 1,520   | 34,220   | 0,430 | 0,160           | 0,190  | 0,250           | 0,320    | 0,430    | 0,960    | 1,620     | 2650                | 1000                | 1,010E-06         | 0,175               | 0,033      | 0,041            | 0,658               | 0,111  | 80,645            | 0,075   | 0,439                 |
| 106 | 16/12/1997 | 41,240              | 2,10E-04  | 65,470            | 36,490  | 1,790                     | 1,880   | 34,770   | 0,630 | 0,170           | 0,190  | 0,240           | 0,290    | 0,350    | 0,500    | 0,630     | 2650                | 1000                | 1,010E-06         | 0,376               | 0,034      | 0,061            | 1,186               | 0,147  | 46,467            | 0,237   | 5,77                  |
| 107 | 13/1/1998  | 42,740              | 3,31E-04  | 68,720            | 36,020  | 1,910                     | 1,970   | 34,820   | 0,620 | 0,190           | 0,210  | 0,270           | 0,320    | 0,370    | 0,500    | 0,590     | 2650                | 1000                | 1,010E-06         | 0,632               | 0,045      | 0,079            | 1,227               | 0,141  | 50,275            | 0,392   | 0,107                 |
| 108 | 27/1/1998  | 21,940              | 8,00E-05  | 48,980            | 34,330  | 1,430                     | 1,440   | 34,010   | 0,450 | 0,160           | 0,180  | 0,240           | 0,290    | 0,350    | 0,510    | 0,670     | 2650                | 1000                | 1,010E-06         | 0,114               | 0,025      | 0,034            | 0,645               | 0,120  | 69,760            | 0,051   | 0,0098                |
| 109 | 11/2/1998  | 54,610              | 2,14E-04  | 75,260            | 36,430  | 2,070                     | 2,140   | 35,240   | 0,730 | 0,210           | 0,260  | 0,410           | 0,620    | 0,980    | 1,780    | 2,300     | 2650                | 1000                | 1,010E-06         | 0,443               | 0,033      | 0,066            | 1,550               | 0,159  | 39,395            | 0,323   | 1,66                  |
| 110 | 26/2/1998  | 69,920              | 2,14E-04  | 85,700            | 37,060  | 2,310                     | 2,480   | 34,550   | 0,820 | 0,250           | 0,310  | 0,500           | 0,710    | 1,020    | 1,800    | 2,360     | 2650                | 1000                | 1,010E-06         | 0,494               | 0,031      | 0,070            | 2,024               | 0,166  | 36,182            | 0,405   | 1,06                  |
| 111 | 11/3/1998  | 32,010              | 1,81E-04  | 58,750            | 35,280  | 1,670                     | 1,690   | 34,680   | 0,540 | 0,220           | 0,260  | 0,410           | 0,640    | 1,020    | 1,940    | 2,590     | 2650                | 1000                | 1,010E-06         | 0,302               | 0,035      | 0,054            | 0,923               | 0,133  | 56,855            | 0,163   | 1,6                   |
| 112 | 25/3/1998  | 42,210              | 1,97E-04  | 65,930            | 35,280  | 1,840                     | 1,870   | 35,220   | 0,640 | 0,200           | 0,230  | 0,310           | 0,380    | 0,480    | 0,750    | 0,930     | 2650                | 1000                | 1,010E-06         | 0,362               | 0,033      | 0,060            | 1,198               | 0,149  | 44,787            | 0,232   | 0,31                  |
| 113 | 8/4/1998   | 18,310              | 1,30E-04  | 46,180            | 34,000  | 1,360                     | 1,380   | 33,540   | 0,400 | 0,220           | 0,250  | 0,350           | 0,440    | 0,570    | 0,930    | 1,220     | 2650                | 1000                | 1,010E-06         | 0,177               | 0,035      | 0,042            | 0,546               | 0,109  | 84,611            | 0,071   | 0,034                 |
| 114 | 22/4/1998  | 17,930              | 7,20E-05  | 49,870            | 34,430  | 1,450                     | 1,470   | 33,960   | 0,360 | 0,220           | 0,260  | 0,360           | 0,460    | 0,630    | 1,180    | 1,860     | 2650                | 1000                | 1,010E-06         | 0,104               | 0,030      | 0,032            | 0,528               | 0,095  | 111,271           | 0,038   | 0,0043                |
| 115 | 6/5/1998   | 56,680              | 1,80E-04  | 77,660            | 36,570  | 2,120                     | 2,200   | 35,220   | 0,730 | 0,190           | 0,230  | 0,320           | 0,400    | 0,520    | 0,810    | 1,000     | 2650                | 1000                | 1,010E-06         | 0,382               | 0,030      | 0,061            | 1,609               | 0,157  | 40,499            | 0,279   | 0,165                 |
| 116 | 21/5/1998  | 16,460              | 1,64E-04  | 48,450            | 34,270  | 1,410                     | 1,420   | 34,010   | 0,340 | 0,210           | 0,240  | 0,320           | 0,380    | 0,480    | 0,740    | 0,940     | 2650                | 1000                | 1,010E-06         | 0,231               | 0,047      | 0,048            | 0,484               | 0,091  | 120,503           | 0,079   | 0,0051                |
| 117 | 3/6/1998   | 20,110              | 1,30E-04  | 47,890            | 34,200  | 1,400                     | 1,420   | 33,700   | 0,420 | 0,180           | 0,210  | 0,300           | 0,390    | 0,510    | 0,910    | 1,200     | 2650                | 1000                | 1,010E-06         | 0,182               | 0,034      | 0,042            | 0,597               | 0,113  | 18,969            | 0,076   | 0,0159                |
| 118 | 17/0/1998  | 14,170              | 1,11E-04  | 43,110            | 33,000  | 1,280                     | 1,300   | 33,040   | 0,330 | 0,180           | 0,220  | 0,340           | 0,470    | 0,/30    | 1,820    | 3,210     | 2650                | 1000                | 1,010E-06         | 0,142               | 0,038      | 0,037            | 0,429               | 0,092  | 00.017            | 0,047   | 0.005                 |
| 119 | 10/7/1998  | 13,380              | 1,30E-04  | 43,400            | 33,050  | 1,290                     | 1,320   | 33,020   | 0,300 | 0,200           | 0,250  | 0,440           | 0,/90    | 1,380    | 3,000    | 3,880     | 2030                | 1000                | 1,010E-06         | 0,168               | 0,038      | 0,041            | 0.257               | 0,100  | 99,91/<br>117 202 | 0,060   | 0,000                 |
| 120 | 29/1/1998  | 11,000              | 9,/UE-05  | 31,300            | 32,/30  | 1,140                     | 1,150   | 32,200   | 0.310 | 0,210           | 0,280  | 0,200           | 0,920    | 1,520    | 3,030    | 3,000     | 2030                | 1000                | 1,010E-00         | 0,111               | 0,035      | 0,033            | 0,337               | 0,092  | 100 127           | 0,034   | 0.0024                |
| 121 | 12/0/1998  | 12,900              | 1,1/E-04  | 30,220            | 32,930  | 1,1/0                     | 1,100   | 32,770   | 0,340 | 0,210           | 0,240  | 0,400           | 0,/30    | 1,130    | 2,500    | 3,220     | 2650                | 1000                | 1,010E-00         | 0,157               | 0,035      | 0,037            | 0,333               | 0,100  | 153 825           | 0,047   | 0,0034                |
| 122 | 20/0/1998  | 0,740               | 0,90E-05  | 34,120            | 32,170  | 1,000                     | 1 200   | 32,000   | 0,200 | 0,400           | 0,240  | 0,490           | 0,250    | 1,130    | 2,000    | 3,750     | 2650                | 1000                | 1,010E-00         | 0,034               | 0,030      | 0,030            | 0,212               | 0,001  | 98 402            | 0,023   | 0                     |
| 123 | 16/0/1000  | 12,340              | 5,/UE-05  | 44,/10            | 33,240  | 1 160                     | 1 160   | 32,900   | 0,000 | 0,210           | 0,200  | 0,400           | 0,000    | 1,430    | 1 910    | 1,000     | 2650                | 1000                | 1,010E-00         | 0,123               | 0,032      | 0,035            | 0,400               | 0,101  | 111 120           | 0,044   | 0 006                 |
| 144 | 10/7/1770  | 14,000              | 0,401-02  | 30,040            | 34,040  | 1,100                     | 1,100   | 104,700  | 0,040 | 0,410           | 0,470  | 0,240           | 0,770    | 1,000    | 1,010    | £,000     | 2030                | 1000                | 1,0 TOE-00        | 0,014               | 0,020      | 0,021            | 0,505               | 0,033  | 11,123            | 0,024   | 0,000                 |

| Ta  | bela 5.2 - | Base                | de dad   | os refe           | erente  | ao F                      | tio A   | tibaia | em S  | Sousa           | ıs - C | ampi            | nas -    | SP              |          |       |                    |                     |                   |                     |            |                  |                     |        |         |         |                       |
|-----|------------|---------------------|----------|-------------------|---------|---------------------------|---------|--------|-------|-----------------|--------|-----------------|----------|-----------------|----------|-------|--------------------|---------------------|-------------------|---------------------|------------|------------------|---------------------|--------|---------|---------|-----------------------|
|     | Parâi      | metros l            | udráulic | os e geo          | métric  | os par                    | a o rio | Atibai | ia    | Gı              | anuloi | netria          | do ma    | nterial         | do lei   | to    |                    |                     | Propried          | ades do             | fluido, do | escoa:           | mento e             | dos se | dimento | S       |                       |
| (1) | (2)        | (3)                 | (4)      | (5)               | (6)     | (7)                       | (8)     | (9)    | (10)  | (11)            | (12)   | (13)            | (14)     | (15)            | (16)     | (17)  | (18)               | (19)                | (20)              | (21)                | (22)       | (23)             | (24)                | (25)   | (26)    | (27)    | (28)                  |
| Nº. | DATA       | Q                   | S        | A                 | Р       | $\mathbf{R}_{\mathbf{H}}$ | d       | в      | U     | D <sub>10</sub> | D16    | D <sub>35</sub> | $D_{50}$ | D <sub>65</sub> | $D_{84}$ | D90   | Vs                 | Ŷ                   | ν                 | $\tau_0$            | v          | $\mathbf{U}_{*}$ | q = Q/B             | Fr     | Ср      | Pc      | <b>q</b> <sub>B</sub> |
|     |            | (m <sup>3</sup> /s) | (m/m)    | (m <sup>2</sup> ) | (m)     | (m)                       | (m)     | (m)    | (m/s) | (mm)            | (mm)   | (mm)            | (mm)     | (mm)            | (mm)     | (mm)  | Kgf/m <sup>3</sup> | Kgf/ m <sup>3</sup> | m <sup>2</sup> /s | Kgf/ m <sup>2</sup> | Manning    | (m/s)            | m <sup>3</sup> /s.m | -      | -       | Kgf/m.s | ton/dia               |
| 125 | 30/9/1998  | 15,220              | 8,00E-05 | 43,240            | 33,610  | 1,290                     | 1,320   | 32,870 | 0,350 | 0,230           | 0,300  | 0,680           | 1,180    | 1,840           | 3,410    | 4,160 | 2650               | 1000                | 1,010E-06         | 0,103               | 0,030      | 0,032            | 0,463               | 0,097  | 105,708 | 0,036   | 0,004                 |
| 126 | 14/10/1998 | 30,020              | 2,10E-04 | 51,430            | 34,590  | 1,490                     | 1,550   | 33,280 | 0,580 | 0,300           | 0,380  | 0,660           | 0,950    | 1,330           | 2,270    | 2,950 | 2650               | 1000                | 1,010E-06         | 0,313               | 0,033      | 0,055            | 0,902               | 0,149  | 45,201  | 0,181   | 0,0235                |
| 127 | 28/10/1998 | 21,360              | 1,97E-04 | 43,030            | 33,590  | 1,280                     | 1,310   | 32,920 | 0,500 | 0,250           | 0,290  | 0,480           | 0,680    | 0,980           | 1,920    | 2,830 | 2650               | 1000                | 1,010E-06         | 0,252               | 0,033      | 0,050            | 0,649               | 0,139  | 51,404  | 0,126   | 0,0103                |
| 128 | 11/11/1998 | 11,590              | 1,47E-04 | 33,490            | 31,990  | 1,050                     | 1,070   | 31,400 | 0,350 | 0,220           | 0,280  | 0,540           | 0,850    | 1,320           | 2,630    | 3,560 | 2650               | 1000                | 1,010E-06         | 0,154               | 0,036      | 0,039            | 0,369               | 0,108  | 85,687  | 0,054   | 0                     |
| 129 | 25/11/1998 | 11,510              | 1,80E-04 | 32,990            | 31,920  | 1,030                     | 1,050   | 31,290 | 0,350 | 0,230           | 0,260  | 0,370           | 0,500    | 0,750           | 1,470    | 1,970 | 2650               | 1000                | 1,010E-06         | 0,185               | 0,039      | 0,043            | 0,368               | 0,109  | 84,086  | 0,065   | 0                     |
| 130 | 9/12/1998  | 24,340              | 2,30E-04 | 46,230            | 33,340  | 1,390                     | 1,390   | 33,180 | 0,530 | 0,340           | 0,400  | 0,630           | 0,830    | 1,080           | 1,580    | 1,850 | 2650               | 1000                | 1,010E-06         | 0,320               | 0,036      | 0,055            | 0,734               | 0,144  | 48,544  | 0,169   | 0                     |
| 131 | 22/12/1998 | 22,010              | 2,10E-04 | 43,210            | 33,000  | 1,310                     | 1,310   | 32,950 | 0,510 | 0,150           | 0,210  | 0,290           | 0,300    | 0,440           | 0,000    | 0,840 | 2630               | 1000                | 1,010E-06         | 0,2/3               | 0,034      | 0,052            | 0,008               | 0,142  | 49,408  | 0,140   | 1 479                 |
| 132 | 0/1/1999   | 48,050              | 2,30E-04 | 74,450            | 35,330  | 2,110                     | 2,140   | 34,790 | 0,050 | 0,110           | 0,130  | 0,170           | 0,200    | 0,230           | 0,300    | 0,340 | 2620               | 1000                | 1,010E-06         | 0,485               | 0,038      | 0,069            | 1,398               | 0,142  | 49,089  | 0,315   | 1,4/0                 |
| 133 | 21/1/1999  | 10,390              | 2,80E-04 | 06 250            | 35,900  | 2,320                     | 2,370   | 35,230 | 1,020 | 0,140           | 0,150  | 0,180           | 0,200    | 0,230           | 0,290    | 0,330 | 2650               | 1000                | 1,010E-06         | 0,650               | 0,035      | 0,000            | 2 750               | 0,174  | 25 364  | 0,346   | 3,703                 |
| 124 | 2/2/1000   | 55 260              | 3,00E-04 | 71 610            | 25 150  | 2,000                     | 2,090   | 25 190 | 0 770 | 0,150           | 0,100  | 0,190           | 0,220    | 0,230           | 0,340    | 0,300 | 2650               | 1000                | 1,010E-00         | 0,700               | 0,032      | 0,007            | 1 571               | 0,133  | 23,304  | 0,750   | 2.82                  |
| 135 | 11/2/1000  | 60 250              | 2,002-04 | 80130             | 35,150  | 2 240                     | 2,040   | 35 260 | 0,770 | 0,150           | 0,100  | 0,100           | 0,200    | 0,220           | 0,200    | 0,200 | 2650               | 1000                | 1,010E-00         | 0.627               | 0,033      | 0.078            | 1.964               | 0 182  | 30 109  | 0,535   | 3 047                 |
| 137 | 25/2/1999  | 70.420              | 2,50E-04 | 79,300            | 35,660  | 2.220                     | 2,230   | 35,520 | 0,000 | 0,300           | 0,170  | 0,770           | 1.120    | 1.590           | 2.850    | 3,730 | 2650               | 1000                | 1.010E-06         | 0.555               | 0.030      | 0.074            | 1,983               | 0.190  | 27.618  | 0.494   | 5.114                 |
| 138 | 11/3/1999  | 68,530              | 2.30E-04 | 81,070            | 35,780  | 2.270                     | 2.300   | 35.200 | 0.850 | 0.160           | 0.170  | 0.210           | 0.240    | 0.280           | 0.360    | 0.400 | 2650               | 1000                | 1.010E-06         | 0.522               | 0.031      | 0.072            | 1.947               | 0.179  | 31,229  | 0.444   | 1.803                 |
| 139 | 25/3/1999  | 66.090              | 3.00E-04 | 79.140            | 35.640  | 2.220                     | 2.260   | 34,990 | 0.840 | 0.160           | 0.170  | 0.210           | 0.250    | 0.300           | 0.400    | 0.480 | 2650               | 1000                | 1.010E-06         | 0.666               | 0.035      | 0.081            | 1.889               | 0.178  | 31.421  | 0.559   | 3.64                  |
| 140 | 15/4/1999  | 23,750              | 2.30E-04 | 47.230            | 33,430  | 1.410                     | 1.400   | 33,720 | 0.500 | 0.140           | 0.160  | 0.200           | 0.230    | 0.280           | 0.390    | 0.470 | 2650               | 1000                | 1.010E-06         | 0.324               | 0.038      | 0.056            | 0.704               | 0.135  | 54.936  | 0.162   | 0.02                  |
| 141 | 29/4/1999  | 16,540              | 8,20E-04 | 40,720            | 32,810  | 1,240                     | 1,220   | 33,270 | 0,410 | 0,150           | 0,170  | 0,230           | 0,290    | 0,380           | 0,600    | 0,780 | 2650               | 1000                | 1,010E-06         | 1,017               | 0,081      | 0,100            | 0,497               | 0,119  | 71,197  | 0,417   | 0,013                 |
| 142 | 13/5/1999  | 20,690              | 2,60E-04 | 43,140            | 33,050  | 1,310                     | 1,290   | 33,410 | 0,480 | 0,120           | 0,140  | 0,170           | 0,200    | 0,230           | 0,310    | 0,370 | 2650               | 1000                | 1,010E-06         | 0,341               | 0,040      | 0,058            | 0,619               | 0,135  | 54,926  | 0,163   | 0,023                 |
| 143 | 9/6/1999   | 18,060              | 2,00E-04 | 39,950            | 32,730  | 1,220                     | 1,200   | 33,290 | 0,450 | 0,180           | 0,200  | 0,700           | 1,500    | 2,220           | 4,130    | 5,120 | 2650               | 1000                | 1,010E-06         | 0,244               | 0,036      | 0,049            | 0,543               | 0,131  | 58,133  | 0,110   | 0,01                  |
| 144 | 22/7/1999  | 14,450              | 2,10E-04 | 32,650            | 32,000  | 1,020                     | 1,000   | 32,520 | 0,440 | 0,160           | 0,190  | 0,290           | 0,420    | 0,800           | 2,220    | 3,260 | 2650               | 1000                | 1,010E-06         | 0,214               | 0,033      | 0,046            | 0,444               | 0,140  | 50,671  | 0,094   | 0,003                 |
| 145 | 5/8/1999   | 12,640              | 2,14E-04 | 32,270            | 32,090  | 1,010                     | 0,990   | 32,650 | 0,390 | 0,160           | 0,190  | 0,300           | 0,450    | 1,000           | 2,700    | 3,820 | 2650               | 1000                | 1,010E-06         | 0,216               | 0,038      | 0,046            | 0,387               | 0,125  | 63,852  | 0,084   | 0,002                 |
| 146 | 19/8/1999  | 13,180              | 2,10E-04 | 32,940            | 32,180  | 1,020                     | 1,000   | 32,780 | 0,400 | 0,120           | 0,150  | 0,230           | 0,310    | 0,420           | 0,970    | 1,340 | 2650               | 1000                | 1,010E-06         | 0,214               | 0,037      | 0,046            | 0,402               | 0,128  | 61,313  | 0,086   | 0,004                 |
| 147 | 2/9/1999   | 10,020              | 5,00E-05 | 30,220            | 31,800  | 0,950                     | 0,940   | 32,070 | 0,330 | 0,200           | 0,250  | 0,570           | 1,360    | 2,440           | 4,740    | 5,030 | 2650               | 1000                | 1,010E-06         | 0,048               | 0,021      | 0,022            | 0,312               | 0,109  | 84,678  | 0,016   | 0                     |
| 148 | 15/9/1999  | 19,510              | 2,10E-04 | 41,440            | 33,170  | 1,250                     | 1,240   | 33,310 | 0,470 | 0,160           | 0,210  | 0,400           | 0,850    | 1,370           | 2,520    | 3,270 | 2650               | 1000                | 1,010E-06         | 0,263               | 0,036      | 0,051            | 0,586               | 0,135  | 55,067  | 0,123   | 0,343                 |
| 149 | 30/9/1999  | 8,250               | 1,80E-04 | 28,910            | 31,580  | 0,920                     | 0,900   | 32,020 | 0,290 | 0,100           | 0,130  | 0,190           | 0,250    | 0,340           | 0,940    | 1,640 | 2650               | 1000                | 1,010E-06         | 0,166               | 0,044      | 0,040            | 0,258               | 0,098  | 104,982 | 0,048   | 0,001                 |
| 150 | 14/10/1999 | 10,410              | 2,10E-04 | 29,950            | 31,580  | 0,950                     | 0,920   | 32,410 | 0,350 | 0,090           | 0,120  | 0,180           | 0,230    | 0,310           | 1,010    | 2,430 | 2650               | 1000                | 1,010E-06         | 0,200               | 0,040      | 0,044            | 0,321               | 0,11/  | /3,6/5  | 0,070   | 0,003                 |
| 151 | 28/10/1999 | 14,180              | 2,30E-04 | 33,940            | 31,580  | 1,070                     | 1,030   | 32,880 | 0,420 | 0,130           | 0,160  | 0,240           | 0,350    | 0,590           | 2,400    | 3,700 | 2650               | 1000                | 1,010E-06         | 0,246               | 0,038      | 0,049            | 0,431               | 0,132  | 57,281  | 0,103   | 0,027                 |
| 152 | 11/11/1999 | 11,740              | 2,00E-04 | 31,730            | 31,580  | 1,000                     | 0,970   | 32,800 | 0,370 | 0,100           | 0,120  | 0,170           | 0,210    | 0,250           | 0,380    | 0,480 | 2000               | 1000                | 1,010E-06         | 0,200               | 0,038      | 0,044            | 0,338               | 0,120  | 69,308  | 0,074   | 28                    |
| 153 | 25/11/1999 | 22,410              | 2,30E-04 | 41,9/0            | 31,580  | 1,330                     | 1,280   | 32,880 | 0,530 | 0,110           | 0,130  | 0,190           | 1,230    | 0,300           | 0,840    | 1,830 | 2000               | 1000                | 1,010E-06         | 0,300               | 0,035      | 0,000            | 0,002               | 0,150  | 44,702  | 0,102   | 0,009                 |
| 154 | 9/12/1999  | £ 220               | 2,00E-04 | 41,400            | 31,280  | 1,310                     | 1,200   | 33,190 | 0,220 | 0,230           | 0,290  | 0,/10           | 1,330    | 2,130           | 3,/00    | 4,200 | 2650               | 1000                | 1,010E-00         | 0,341               | 0,035      | 0,050            | 0,000               | 0,157  | 40,337  | 0,107   | 0,030                 |
| 155 | 6/1/2000   | 02 200              | 1,00C-04 | 22,200            | 30,510  | 2 2 2 2 0                 | 2 290   | 25 600 | 0,240 | 0,200           | 0,230  | 0,000           | 0,220    | 1,000           | 2,730    | 3,900 | 2650               | 1000                | 1,010E-00         | 0,550               | 0,074      | 0,033            | 2 331               | 0,030  | 24,320  | 0,004   | 0,003                 |
| 150 | 13/1/2000  | 17 560              | 2,001-04 | 37 680            | 30,740  | 1 1 50                    | 1 140   | 32,090 | 0,300 | 0,000           | 0,090  | 0,100           | 0,220    | 0,430           | 1 070    | 2 060 | 2650               | 1000                | 1,010E-00         | 0,050               | 0,030      | 0,000            | 0.534               | 0,205  | 50 627  | 0,037   | 0,214                 |
| 158 | 20/1/2000  | 18 520              | 2 50E-04 | 37,000            | 32,7780 | 1 1 50                    | 1 140   | 33 270 | 0,470 | 0,100           | 0,200  | 0,290           | 0,370    | 1 4 20          | 4 070    | 6 230 | 2650               | 1000                | 1,010E-06         | 0.288               | 0.035      | 0.053            | 0,554               | 0 147  | 46 578  | 0 141   | 0.041                 |
| 150 | 27/1/2000  | 22,030              | 2.60E-04 | 41.420            | 33,170  | 1.250                     | 1.250   | 33,250 | 0.530 | 0.120           | 0.150  | 0.230           | 0.340    | 0.600           | 4.670    | 0.300 | 2650               | 1000                | 1.010E-06         | 0.325               | 0.035      | 0.056            | 0.663               | 0.151  | 43.654  | 0.172   | 0.09                  |
| 160 | 3/2/2000   | 31,180              | 4.10E-04 | 48.890            | 33.870  | 1.440                     | 1.440   | 34.000 | 0.640 | 0.150           | 0.160  | 0.210           | 0.250    | 0.320           | 2.760    | 0.280 | 2650               | 1000                | 1.010E-06         | 0.590               | 0.040      | 0.076            | 0.917               | 0.170  | 34,488  | 0.378   | 0.553                 |
| 161 | 9/2/2000   | 19.990              | 2.30E-04 | 39,300            | 32.940  | 1.190                     | 1.190   | 33.100 | 0.510 | 0.160           | 0.180  | 0.230           | 0.270    | 0.330           | 0.490    | 0.640 | 2650               | 1000                | 1.010E-06         | 0.274               | 0.033      | 0.052            | 0.604               | 0.149  | 44.882  | 0.140   | 0.487                 |
| 162 | 18/2/2000  | 41,300              | 2.80E-04 | 54,970            | 34,360  | 1,600                     | 1,580   | 34,700 | 0,750 | 0,150           | 0,160  | 0.200           | 0.240    | 0,290           | 4,840    | 1,350 | 2650               | 1000                | 1,010E-06         | 0,448               | 0.031      | 0.066            | 1.190               | 0.191  | 27,555  | 0,336   | 0.447                 |
| 163 | 24/2/2000  | 28,130              | 1,30E-04 | 44,820            | 32,500  | 1,380                     | 1,340   | 33,560 | 0,630 | 0,100           | 0,120  | 0,160           | 0,190    | 0,230           | 0,330    | 0,390 | 2650               | 1000                | 1,010E-06         | 0,179               | 0,022      | 0.042            | 0,838               | 0,174  | 33,120  | 0,113   | 0,603                 |
| 164 | 3/3/2000   | 26,110              | 4,60E-04 | 42,910            | 33,330  | 1,290                     | 1,280   | 33,420 | 0,610 | 0,170           | 0,190  | 0,260           | 0,320    | 0,420           | 1,310    | 2,080 | 2650               | 1000                | 1,010E-06         | 0,593               | 0,042      | 0,076            | 0,781               | 0,172  | 33,746  | 0,362   | 0,219                 |
| 165 | 10/3/2000  | 19,400              | 2,80E-04 | 36,470            | 32,620  | 1,120                     | 1,110   | 32,880 | 0,530 | 0,080           | 0,100  | 0,150           | 0,180    | 0,220           | 0,300    | 0,370 | 2650               | 1000                | 1,010E-06         | 0,314               | 0,034      | 0,055            | 0,590               | 0,161  | 38,765  | 0,166   | 0,04                  |

| Tabela 5.2 - Base | de dados referente ao | Rio Atibaia em Sou: | sas - Campinas - SP |
|-------------------|-----------------------|---------------------|---------------------|
|                   |                       |                     |                     |

|     | Parâ      | metros l            | hidráulic | os e geo          | métrico | os par                    | a o rio | Atibai | ia    | Gı              | anulo    | netria   | do ma    | aterial  | do lei            | to       |                     |                     | Propried  | ades do             | fluido, do | escoa            | mento e             | dos se | dimento        | S       |                |
|-----|-----------|---------------------|-----------|-------------------|---------|---------------------------|---------|--------|-------|-----------------|----------|----------|----------|----------|-------------------|----------|---------------------|---------------------|-----------|---------------------|------------|------------------|---------------------|--------|----------------|---------|----------------|
| (1) | (2)       | (3)                 | (4)       | (5)               | (6)     | (7)                       | (8)     | (9)    | (10)  | (11)            | (12)     | (13)     | (14)     | (15)     | (16)              | (17)     | (18)                | (19)                | (20)      | (21)                | (22)       | (23)             | (24)                | (25)   | (26)           | (27)    | (28)           |
| N°  | DATA      | Q                   | S         | Α                 | Р       | $\mathbf{R}_{\mathbf{H}}$ | d       | В      | U     | D <sub>10</sub> | $D_{16}$ | $D_{35}$ | $D_{50}$ | $D_{65}$ | $\mathbf{D_{84}}$ | $D_{90}$ | 7s                  | Ÿ                   | ν         | $\tau_0$            | ν          | $\mathbf{U}_{*}$ | q = Q/B             | Fr     | Ср             | Pc      | q <sub>B</sub> |
|     |           | (m <sup>3</sup> /s) | (m/m)     | (m <sup>2</sup> ) | (m)     | (m)                       | (m)     | (m)    | (m/s) | (mm)            | (mm)     | (mm)     | (mm)     | (mm)     | (mm)              | (mm)     | Kgf/ m <sup>3</sup> | Kgf/ m <sup>3</sup> | $m^2/s$   | Kgf/ m <sup>2</sup> | Manning    | (m/s)            | m <sup>3</sup> /s.m | -      | <del>.</del> . | Kgf/m.s | ton/dia        |
| 166 | 17/3/2000 | 22,240              | 3,60E-04  | 38,560            | 32,870  | 1,170                     | 1,160   | 33,270 | 0,580 | 0,140           | 0,150    | 0,190    | 0,230    | 0,290    | 1,190             | 3,530    | 2650                | 1000                | 1,010E-06 | 0,421               | 0,036      | 0,064            | 0,668               | 0,172  | 33,828         | 0,244   | 0,218          |
| 167 | 24/3/2000 | 33,550              | 2,00E-04  | 47,820            | 33,780  | 1,420                     | 1,400   | 34,120 | 0,700 | 0,200           | 0,240    | 0,350    | 0,500    | 0,840    | 1,980             | 2,850    | 2650                | 1000                | 1,010E-06 | 0,284               | 0,026      | 0,053            | 0,983               | 0,189  | 28,029         | 0,199   | 0,491          |
| 168 | 31/3/2000 | 57,660              | 3,00E-04  | 68,260            | 35,310  | 1,930                     | 1,940   | 35,270 | 0,840 | 0,220           | 0,250    | 0,350    | 0,440    | 0,630    | 1,250             | 1,650    | 2650                | 1000                | 1,010E-06 | 0,579               | 0,032      | 0,075            | 1,635               | 0,193  | 26,972         | 0,486   | 1,121          |
| 169 | 7/4/2000  | 14,550              | 2,60E-04  | 33,620            | 32,270  | 1,040                     | 1,030   | 32,770 | 0,430 | 0,130           | 0,150    | 0,220    | 0,290    | 0,410    | 1,840             | 5,640    | 2650                | 1000                | 1,010E-06 | 0,270               | 0,038      | 0,052            | 0,444               | 0,135  | 54,647         | 0,116   | 0,05           |
| 170 | 14/4/2000 | 12,120              | 2,30E-04  | 29,740            | 31,750  | 0,940                     | 0,920   | 32,200 | 0,410 | 0,140           | 0,190    | 0,320    | 0,460    | 0,760    | 1,660             | 2,450    | 2650                | 1000                | 1,010E-06 | 0,216               | 0,035      | 0,046            | 0,376               | 0,136  | 53,689         | 0,089   | 0,005          |
| 171 | 19/4/2000 | 11,240              | 2,50E-04  | 29,010            | 31,610  | 0,920                     | 0,910   | 31,990 | 0,390 | 0,160           | 0,190    | 0,370    | 0,920    | 1,760    | 4,000             | 5,260    | 2650                | 1000                | 1,010E-06 | 0,230               | 0,038      | 0,048            | 0,351               | 0,131  | 58,692         | 0,090   | 0,012          |
|     | MAXIMO    | 159,81              | 8,20E-04  | 143,85            | 39,85   | 3,61                      | 3,57    | 40,30  | 1,11  | 0,36            | 0,44     | 0,84     | 1,50     | 2,44     | 4,840             | 6,23     | 2650,00             | 1000,00             | 1,010E-06 | 1,07                | 0,09       | 0,10             | 3,97                | 0,20   | 490,50         | 0,80    | 28,00          |
|     | MÍNIMO    | 3,74                | 3,00E-05  | 22,28             | 30,51   | 0,73                      | 0,73    | 30,48  | 0,15  | 0,08            | 0,09     | 0,15     | 0,18     | 0,22     | 0,26              | 0,28     | 2650,00             | 1000,00             | 1,010E-06 | 0,02                | 0,02       | 0,02             | 0,11                | 0,05   | 24,31          | 0,01    | 0,00           |
|     | MÉDIO     | 27,52               | 1,78E-04  | 52,63             | 34,80   | 1,50                      | 1,53    | 34,06  | 0,47  | 0,20            | 0,24     | 0,37     | 0,52     | 0,78     | 2,01              | 2,40     | 2650,00             | 1000,00             | 1,010E-06 | 0,27                | 0,04       | 0,05             | 0,79                | 0,12   | 95,92          | 0,16    | 0,72           |
|     | DES.MEDIO | 16,13               | 6,92E-05  |                   |         | 3                         | 8       |        | 0,156 |                 |          |          |          |          |                   |          |                     |                     |           |                     |            |                  |                     |        |                |         | 1,1005         |

A velocidade do escoamento apresenta valor máximo igual a 1,11m/s enquanto que os valores mínimos e médios são, respectivamente, 0,15m/s e 0,47 m/s. Já o desvio médio em relação à média medida é de 0,16 m/s.

A descarga de sedimentos na camada do leito apresenta valores, baixos se comparados àqueles para a descarga de sedimentos transportada em suspensão [PAIVA, 1995]. Inclusive, no universo das 171 campanhas de medições realizadas no Rio Atibaia, foram observados 09 (nove) eventos de descargas nulas. O valor da descarga máxima medida foi de **28 ton/dia**, com uma média de **0,72 ton/dia**. O desvio médio, em relação à média, foi de **1,11 ton/dia**.

Desenvolveu-se a primeira etapa da metodologia proposta para obter, a partir dos dados do Rio Atibaia, um conjunto de equações que fornecessem o diâmetro a ser utilizado nos métodos de cálculo do transporte de sedimentos. Esses diâmetros podem ser calculados em função das variáveis apresentadas na **tabela 5.1.** Essas equações estão apresentadas na **tabela 5.3** e foram obtidas seguindo os procedimentos descritos no **item 4.6.2** do capítulo de metodologia. Destaca-se que, ao se utilizarem os diâmetros calculados pelas equações analíticas da **tabela 5.3** nos métodos de estimativa da descarga de sedimentos na camada do leito, resultaram diferenças percentuais relativas, entre os valores das descargas medidas e calculadas, inferiores àquelas calculadas utilizando os diâmetros representativos das amostras coletadas do fundo do rio.

Para esclarecer os critérios que resultaram nas equações de estimativa dos diâmetros **Dvj** mostrados na **tabela 5.3**, é oportuno reafirmar que os diâmetros  $D_{V\hat{1}}$ , obtidos na primeira etapa da metodologia, foram correlacionados com o conjunto de variáveis anotadas na **tabela 5.1**, de modo que, em cada teste, obtinha-se, para cada método, um conjunto de **04** (**quatro**) equações para a estimativa do diâmetro Dvj.

Para se chegar à equação final, que calcula o diâmetro para um determinado método, foram calculadas quatro séries de diâmetros  $\overline{D}_{V_j}$ . Uma série para cada equação. Em seguida, calculavam-se as descargas correspondentes a esses diâmetros e comparava-as com as descargas medidas no Rio Atibaia. Aquela equação cuja série de diâmetros calculada gerou descargas com menor diferença percentual relativa, entre os valores medidos e os estimados, foi a classificada para a estimativa do diâmetro que corrige o método em análise.

Observa-se, na **tabela 5.3**, que das 14 (quatorze) equações apresentadas para a estimativa dos diâmetros a serem empregados nas equações analíticas para o cálculo do transporte de sedimentos, 7(sete) são definidas diretamente pela declividade do rio, 3 (três) em função da vazão, 3 (três) pela potência da corrente e a apenas 1(uma) pelo coeficiente de pressão. Uma vez que a potência da corrente depende também da declividade do rio, então se pode afirmar que a declividade do rio é a variável mais expressiva para se definir analiticamente o diâmetro representativo do material do leito a ser utilizado nos métodos para se estimar a descarga do leito. Isto acaba por exigir uma atenção especial ao controle da declividade de se refletir sobre a percepção de que as variáveis morfológicas e as hidrodinâmicas, de fato, se interagem na dinâmica do movimento dos sedimentos em rios. Assim, as oscilações das variáveis hidrodinâmicas dos escoamentos em canais naturais são altamente susceptíveis às oscilações das variáveis morfológicas.

Deve-se atentar que algumas equações apresentam alguma restrição quanto ao valor limite da variável empregada para se calcular o diâmetro. Entre elas está aquela que estima o diâmetro para o método de Schoklitsch (1914, 1950), que deve ser empregada para vazões maiores do que 7,1 m<sup>3</sup>/s. Para o método de Einstein e Brow (1950), a vazão não deve ser superior a 3240 m<sup>3</sup>/s. Para o método de Inglis & Lacey (1968), esta variável não deve superar o valor de 3074 m<sup>3</sup>/s. Já para se calcular o diâmetro para o método de Garde & Albertson (1961), a declividade deve ser superior a 1,4 x 10<sup>-5</sup> m/m. A não observância aos limites de

aplicação para esses casos específicos pode resultar em estimativas de valores nulos para os diâmetros calculados.

Também na **tabela 5.3** estão indicadas as faixas de diâmetros originalmente recomendados pelos autores dos métodos quando da sua aplicação para o cálculo da descarga de sedimentos [COIADO & PAIVA, 2005]. Para efeito de comparação apresenta-se, no **quadro 5.1**, o extrato dos valores máximos, médios e mínimos da granulometria do material do leito encontrados para as 171 campanhas de medidas realizadas no Rio Atibaia.

5.2.1. Compatibilidade ou não das faixas granulométricas dos diâmetros medidos no Rio Atibaia e aquelas sugeridas pelos autores dos métodos de estimativa da descarga de sedimentos na camada do leito.

Para melhor comparação entre as faixas de diâmetros originalmente sugeridas pelos autores e aquelas encontradas no Rio Atibaia, encontram-se na **tabela 5.4**, organizados por intervalos de classes, os dados granulométricos usados nesta pesquisa. Na referida tabela, **I**<sub>C</sub> representa o intervalo de classe; **F** representa a freqüência absoluta; **Fi** a freqüência relativa e **F**<sub>IAC</sub> a freqüência relativa acumulada. Julga-se que a organização dos dados granulométricos medidos, em intervalo de classe, permite uma melhor visualização da quantidade de eventos em que uma determinada classe granulométrica apresenta diâmetro em milímetros, comparável àquelas preestabelecidas por um determinado autor para a aplicação do seu método. Isto acaba se transformando em um elemento para contribuir na tomada de decisão para a escolha do diâmetro representativo do material do leito.

Tabela 5.3 – Equações de estimativas dos diâmetros dos métodos de cálculo do transporte de sedimentos na camada do leito

| (1)<br>AUTOR                     | (2)<br>EQUAÇÃO PARA D <sub>VJ</sub><br>(D <sub>VJ</sub> em metros) | (3)<br>OBSERVAÇÃO               | (4)<br>D (ORIGINAL)<br>(mm) |
|----------------------------------|--------------------------------------------------------------------|---------------------------------|-----------------------------|
| DuBoys (1879)                    | D <sub>Vi [DUB]</sub> =73,595 x S <sup>1,214</sup>                 |                                 | $0,10 \le D \le 4,0$        |
| Schoklitsch<br>(1914, 1950)      | $D_{Vj [SCH]} = 0,0726 \ln[Q] - 0,142$                             | Q>7,061 m <sup>3</sup> /s       | 0,315 ≤ D ≤7,02             |
| Shields (1936)                   | $D_{Vj [SHI]} = 0,497 \times S^{0,553}$                            |                                 | 1,56 ≤ D ≤2,47              |
| Meyer-Peter &<br>Muller (1948)   | $D_{Vj [MPM]} = 0,0034 \times Pc^{0.576}$                          | Pc em kgf/ m.s                  | 0,40 ≤ D ≤4,22              |
| Kalinske (1947)                  | $D_{Vj [KAL]} = 0,0044 \ x [e^{-5,772} \ x^{Pc}]$                  |                                 | $0,315 \le D \le 28,6$      |
| Levi (1948)                      | $D_{Vj [LEV]} = 2,320 \times Cp^{-1,732}$                          |                                 | $0,063 \le D \le 2,0$       |
| Einstein-Brown<br>(1950)         | $D_{Vj [EIB]} = -0,0012 Ln(Q) + 0,0097$                            | $Q < 3240 \text{ m}^3/\text{s}$ | $0,30 \le D \le 30$         |
| Sato, Kikkawa &<br>Ashida (1958) | $D_{Vj [SKA]} = 0,0453 \times Pc^{0,715}$                          |                                 | $0,30 \le D \le 7,01$       |
| Rottner (1959)                   | $D_{Vj [ROT]} = 4_x 10^{-05} s^{-0,184}$                           |                                 | $0,31 \le D \le 15,5$       |
| Garde &<br>Albertson (1961)      | $D_{Vj [GAA]} = 0,0027 \text{ x Ln}(S) + 0,0302$                   | S> 1,39 x 10 <sup>-5</sup>      | $0,78 \le D \le 15,5$       |
| Yalin (1963)                     | $D_{Vj [YAL]} = 3,812 \times S^{0,791}$                            |                                 | $0,787 \le D \le 2,86$      |
| Pernecker &<br>Vollmers (1965)   | $D_{Vj [PEV]} = 1,185 \times S^{0,65}$                             |                                 | Não sugerido                |
| Inglis & Lacey<br>(1968)         | $D_{Vj [INL]} = -0,0012 \times Ln(Q) + 0,0124$                     | Q < 3074 m <sup>3</sup> /s      | $0,063 \le D \le 2,0$       |
| Bogardi (1955,<br>1974)          | $D_{Vj [BOG]} = 0,0018 \times [e^{4723,1 \times S}]$               |                                 | 0,31 ≤ D ≤ 15,5             |

| 1993   | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>84</sub> | D <sub>90</sub> |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| а      |                 |                 |                 |                 |                 |                 |                 |
| 2000   | (mm)            |
| Média  | 0,20            | 0,24            | 0,37            | 0,52            | 0,78            | 1,73            | 2,41            |
| Máximo | 0,36            | 0,44            | 0,84            | 1,5             | 2,44            | 4,84            | 6,23            |
| Mínimo | 0,08            | 0,09            | 0,15            | 0,18            | 0,22            | 0,26            | 0,28            |

Quadro 5.1 – Resumo dos dados granulométricos do Rio Atibaia

No **quadro 5.2**, apresenta-se, resumidamente uma interpretação dos resultados apresentados no **tabela 5.4** comparando-os com as faixas de diâmetros recomendadas pelos respectivos autores.

É oportuno esclarecer que o **quadro 5.2** foi elaborado observando-se, em cada classe de diâmetro, a porcentagem de eventos, em relação às 171 campanhas de medições, para os quais os diâmetros apresentaram magnitudes, cujos valores, encontravam-se dentro daqueles limites estabelecidos pelos autores de seus respectivos métodos. Assim, por exemplo, pode-se dizer que 96,5 % das campanhas de medições realizadas no Rio Atibaia apresentam diâmetro  $D_{10}$ , cujos valores em milímetros estão na faixa de 0,10 a 4,0 milímetros, sendo este o intervalo estabelecido por Du-Boys (1879), para o diâmetro "D", quando da aplicação do seu método.

|        |        | $D_{10}$   |                    |                  | 8          |        | $D_{16}$   |              |                  |
|--------|--------|------------|--------------------|------------------|------------|--------|------------|--------------|------------------|
| Ic (m  | m)     | F          | F <sub>i</sub> (%) | F <sub>iAC</sub> | Ic (m      | m)     | F          | $F_i$ (%)    | F <sub>iAC</sub> |
| 0.000  | 0.0800 | 2          | 1,17               | 1.17             | ດມາດ       | 0.000  | 1          | 0.58         | 0.58             |
| 0.0800 | 0.0864 | 0          | 0.00               | 1.17             | 0.090      | 0.098  | 0          | 0.00         | 0.58             |
| 0.0864 | 0.0928 | 1          | 0.58               | 1.75             | 0.098      | 0.106  | 1          | 0.58         | 1.17             |
| 0.0928 | 0.0992 | 0          | 0.00               | 1.75             | 0.106      | 0.114  | 0          | 0.00         | 1.17             |
| 0.0992 | 0.1056 | 3          | 1.75               | 3.51             | 0.114      | 0.122  | 3          | 1.75         | 2.92             |
| 0.1056 | 0.1120 | 2          | 1.17               | 4.68             | 0.122      | 0.130  | 3          | 1.75         | 4.68             |
| 0.1120 | 0.1184 | 0          | 0.00               | 4.68             | 0.130      | 0.138  | 0          | 0.00         | 4.68             |
| 0.1184 | 0.1248 | 3          | 1.75               | 6.43             | 0.138      | 0.146  | 1          | 0.58         | 5.26             |
| 0.1248 | 0.1312 | 2          | 1,17               | 7.60             | 0.146      | 0.154  | 6          | 3.51         | 8.77             |
| 0.1312 | 0.1376 | <br>N      | 0.00               | 7.60             | 0.154      | 0.162  | 9          | 5.26         | 14.04            |
| 0.1376 | 0.1440 | 8          | 4.68               | 12.28            | 0,162      | 0,170  | 9          | 5.26         | 19.3             |
| 0.1440 | 0.1504 | 15         | 8,77               | 21,05            | 0,170      | 0,178  | n          | 0,00         | 19.30            |
| 0.1504 | 0.1568 | n          | 0,00               | 21,05            | 0,178      | 0,186  | <u> </u>   | 5.85         | 25.14            |
| 0.1568 | 0.1632 | 16         | 9,36               | 30.41            | 0,186      | 0,194  | 16         | 9,36         | 34 5             |
| 0.1632 | 0.1696 | n<br>N     | 0,00               | 30.41            | 0,194      | 0.202  | 4          | 2.34         | 36.8             |
| 0,1696 | 0,1760 | 15         | 8.77               | 39.18            | 0.202      | 0.210  | 8          | 4.68         | 41.5             |
| 0,1760 | 0,1824 | 7          | 4.09               | 43.27            | 0.210      | 0,218  | n<br>N     | 0,00         | 41.5             |
| 0 1824 | 0 1888 | n          | 0.00               | 43.27            | 0.218      | 0,226  | 4          | 2 34         | 43.80            |
| 0 1888 | 0,1050 | 7          | 4 00               | 47 37            | 0,226      | 0,234  | 0          | 5.26         | 40 1             |
| 0 1052 | 0,2016 | 10         | 5.85               | 53.22            | 0.234      | 0.242  | 0          | 5.26         | 54 30            |
| 0 2016 | 0,2080 | 0          | 0.00               | 53 22            | 0.242      | 0.250  | 11         | 643          | 60.8             |
| 0,2080 | 0,2144 | 14         | \$10               | 61.40            | 0.250      | 0,258  | 0          | 0,00         | 60.8             |
| 0,2000 | 0,2144 | 14         | 5.85               | 67.25            | 0,250      | 0,256  | 0          | 5.26         | 66 09            |
| 0,2208 | 0,2272 | 0          | 0,00               | 67.25            | 0,266      | 0,200  | 10         | 5.85         | 71.04            |
| 0,2200 | 0,2272 | 14         | 8 10               | 75 44            | 0,200      | 0,274  | 6          | 3.51         | 75 4/            |
| 0 2336 | 0,2400 | 0          | 0,17               | 75 44            | 0.282      | 0,202  | 7          | 1 00         | 70.5             |
| 0,2330 | 0,2400 | 6          | 2.51               | 78.05            | 0,202      | 0,200  | ń          | 0,00         | 70.5             |
| 0,2400 | 0,2404 | 4          | 224                | 81 20            | 0,290      | 0,290  | 2          | 1.75         | 81.20            |
| 0,2404 | 0,2520 | 4<br>0     | 2,94<br>0.00       | 91 20            | 0,296      | 0,000  | 2          | 1,75         | 97.44            |
| 0,2320 | 0,2392 | 1          | 0,00               | 81.97            | 0,300      | 0,014  | - <u>-</u> | 5.26         | 92,40            |
| 0,2392 | 0,2030 |            | 0,20               | 95.06            | 0,314      | 0,220  | 9<br>1     | 0,40         | 99.21            |
| 0,2030 | 0,2720 | ^<br>      | 4,09               | 85,90            | 0,322      | 0,000  | <u> </u>   | 0,00         | 90,00            |
| 0,2720 | 0,2704 | 6          | 2,00               | 90.47            | 0,330      | 0,030  | r<br>L     | 202          | 01.2             |
| 0,2704 | 0,2040 | 2          | 175                | 01 22            | 0,336      | 0,340  | 1          | 2,92<br>0.50 | 91,2.            |
| 0,2040 | 0,2912 | 3<br>0     | 1,75               | 91,23            | 0,340      | 0,354  | 1          | 175          | 91,01            |
| 0,2912 | 0,2970 | 7          | 4.00               | 91,23            | 0,354      | 0,004  |            | 2.75         | 93,2             |
| 0 2040 | 0,0040 | 2          | 4,09               | 95,54            | 0,302      | 0,270  | 4<br>N     | 4,24<br>0.00 | 95,91            |
| 0,3040 | 0,0104 | - <u>-</u> | 1,17               | 90,49            | 0,370      | 0/00/0 | 1          | 0,00         | 93,91            |
| 0 2140 | 0,2020 | 2          | 117                | 90,49            | 0.204      | 0,204  | 1          | 117          | 90,45            |
| 0,2727 | 0,5232 | - 4        | 1,1/               | 97,00            | 0,300      | 0,394  | 4          | 1,17         | 9/,00<br>9/,00   |
| 0,2204 | 0,2260 | U<br>1     | 0,00               | 97,00            | 0,394      | 0,404  | 4          | 1,1/         | 70,0.            |
| 0,3290 | 0,3300 | 1          | 0,28               | 90,45            | 0,402      | 0,410  | U<br>n     | 0,00         | 70,0.            |
| 0,2424 | 0,3424 | 2          | 1,17               | 99,42            | 0,410      | 0,418  | U<br>0     | 0,00         | 98,8.            |
| 0,3424 | 0,3488 | U          | 0,00               | 99,42            | 0,418      | 0,420  | U          | 0,00         | 98,8.            |
| 0,3488 | 0,3552 | U          | 0,00               | 99,42            | 0,420      | 0,434  | U          | 1.17         | 98,8.            |
| 0,3552 | 010640 | 1          | 0,58               | 100,00           | 0,434      | 0,442  | 2          | 1,17         | 100,0            |
|        | soma   | 171        | 100                | 100              | Inconcerne | soma   | 171        | 100          | 100              |

| TITTITITI CARGENERAL CONTINUES OF CONTINUES | TABELA 5.4a - Freqü | ências relativas e acumulada | as para os diâmetros D10. D16 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|-------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|-------------------------------|

|        |        | D35    | 3.9.4  |        |       |       | D50      |        |                |
|--------|--------|--------|--------|--------|-------|-------|----------|--------|----------------|
| Ic (m  | m)     | F      | Fi (%) | FiAC   | Ic (m | m)    | F        | Fi (%) | FiAC           |
| 0.000  | 0.1500 | 1      | 0,58   | 0.58   | 000.0 | 0.180 | 1        | 0.58   | 0.58           |
| 0.1500 | 0.1660 | 2      | 1.17   | 1.75   | 0.180 | 0.210 | 7        | 4.09   | 4.68           |
| 0.1660 | 0.1820 | 7      | 4.09   | 5.85   | 0.210 | 0.240 | 12       | 7.02   | 11.70          |
| 0.1820 | 0.1980 | 6      | 3.51   | 9.36   | 0.240 | 0.270 | 7        | 4.09   | 15.79          |
| 0.1980 | 0.2140 | 8      | 4.68   | 14.04  | 0.270 | 0.300 | 7        | 4.09   | 19.88          |
| 0.2140 | 0.2300 | 11     | 6.43   | 20.47  | 0.300 | 0.330 | 9        | 5.26   | 25.15          |
| 0.2300 | 0.2460 | 3      | 1.75   | 22.22  | 0.330 | 0.360 | 7        | 4,09   | 29.24          |
| 0.2460 | 0.2620 | 10     | 5.85   | 28.07  | 0.360 | 0.390 | 12       | 7.02   | 36.26          |
| 0.2620 | 0.2780 | 3      | 1.75   | 29.82  | 0,390 | 0.420 | 11       | 6.43   | 42.69          |
| 0 2780 | 0,2940 | 5      | 2.92   | 32.75  | 0.420 | 0.450 | 7        | 4 09   | 46 79          |
| 0 2040 | 0,2100 | 10     | 5.85   | 38.60  | 0.450 | 0,120 | 7        | 4 00   | 50.89          |
| 0 3100 | 0 3260 | 6      | 2.51   | 4211   | 0,480 | 0,100 | 7        | 4 00   | 54 0           |
| 0 3260 | 0 3420 | 10     | 5.85   | 47.05  | 0,400 | 0,540 | 10       | 5.85   | 60.8           |
| 0 3420 | 0,3580 | 7      | 1 00   | 52.05  | 0,540 | 0,570 | 0        | 5.26   | 66.09          |
| 0 3480 | 0 3740 | 12     | 7.02   | 50.06  | 0,570 | 0,600 | ģ        | 202    | 60,01          |
| 0 3740 | 0,0740 | 6      | 2.51   | 62.57  | 0,600 | 0,000 | 6        | 3.51   | 72.51          |
| 0,3740 | 0,3900 | ں<br>ج | 202    | 65 50  | 0,000 | 0,030 | 11       | 6.43   | 78.04          |
| 0,3700 | 0,4000 | 0      | 5.26   | 70.76  | 0,030 | 0,000 |          | 2 24   | R1 20          |
| 0,4000 | 0,4220 | 2      | 117    | 71.03  | 0,000 | 0,070 | 4        | 1 75   | 91,43<br>93 0/ |
| 0,4220 | 0,4500 | 4      | 1,17   | 76.02  | 0,090 | 0,720 | 3        | 2.24   | 95.29          |
| 0,4360 | 0,4340 | ,      | 4,09   | 77.79  | 0,720 | 0,750 | 4        | 175    | 05,50          |
| 0,4540 | 0,4700 | 3      | 251    | 91.20  | 0,750 | 0,700 | 3        | 1,75   | 07,1.          |
| 0,4700 | 0,4000 | U<br>E | 202    | 01,29  | 0,700 | 0,010 |          | 1.75   | 07,72          |
| 0,4000 | 0,5040 | 2      | 1.75   | 04,21  | 0,010 | 0,040 | 3        | 1,/5   | 07,4           |
| 0,5020 | 0,5100 | 3      | 1,/5   | 05,90  | 0,040 | 0,070 | 4        | 2,94   | 91,01          |
| 0,5160 | 0,2340 | 3      | 1,/5   | 01,12  | 0,870 | 0,900 | 4        | 1,17   | 92,90          |
| 0,5340 | 0,000  |        | 4,09   | 91,81  | 0,900 | 0,930 | <u> </u> | 1,1/   | 94,1:          |
| 0,5500 | 0,2000 | 3      | 1,/0   | 93,57  | 0,930 | 0,900 | <u> </u> | 0,58   | 94,14          |
| 0,5000 | 0,2820 | 1      | 0,00   | 94,15  | 0,900 | 1,990 | 1        | 0,50   | 93,34          |
| 0,5820 | 0,5980 | U      | 0,00   | 94,15  | 0,990 | 1,020 | 1        | 0,58   | 95,9           |
| 0,5980 | 0,0140 | U      | 0,00   | 94,15  | 1,020 | 1,050 | U        | 0,00   | 95,9           |
| 0,0140 | 0,0300 | 1      | 0,58   | 94,74  | 1,000 | 1,080 | U        | 0,00   | 95,91          |
| 0,0300 | 0,0400 | U      | 0,00   | 94,/4  | 1,080 | 1,110 | U        | 0,00   | 95,91          |
| 0,0400 | 0,0020 | 1      | 0,58   | 95,32  | 1,110 | 1,140 | 1        | 0,58   | 90,45          |
| 0,0020 | 0,0780 | U      | 0,00   | 95,32  | 1,140 | 1,170 | 1        | 0,58   | 97,08          |
| 0,0780 | 0,0940 | 2      | 1,17   | 96,49  | 1,170 | 1,200 | 1        | 0,58   | 97,00          |
| 0,6940 | 0,7100 | 3      | 1,75   | 98,25  | 1,200 | 1,230 | <u> </u> | 0,00   | 97,60          |
| 0,7100 | 0,7260 | U      | 0,00   | 98,25  | 1,230 | 1,260 | 1        | 0,58   | 98,2           |
| 0,7260 | 0,7420 | U      | 0,00   | 98,25  | 1,260 | 1,290 | U        | 0,00   | 98,2           |
| 0,7420 | 0,7580 | 1      | 0,58   | 98,83  | 1,290 | 1,320 | 0        | 0,00   | 98,25          |
| 0,7580 | 0,7740 | 1      | 0,58   | 99,42  | 1,320 | 1,350 | 1        | 0,58   | 98,83          |
| U,7740 | 0,7900 | 0      | 0,00   | 99,42  | 1,350 | 1,380 | 1        | 0,58   | 99,42          |
| 0,7900 | 0,8060 | 0      | 0,00   | 99,42  | 1,380 | 1,410 | 0        | 0,00   | 99,42          |
| 0,8060 | 0,8220 | 0      | 0,00   | 99,42  | 1,410 | 1,440 | 0        | 0,00   | 99,42          |
| 0,8220 | 0,8380 | 0      | 0,00   | 99,42  | 1,440 | 1,470 | 0        | 0,00   | 99,42          |
| 0,8380 | 0,8540 | 1      | 0,58   | 100,00 | 1,470 | 1,500 | 1        | 0,58   | 100,0          |
|        | soma   | 171    | 100    | 100    |       | soma  | 171      | 100    | 100            |

## TABELA 5.4b - Freqüências relativas e acumuladas para os diâmetros $D_{35}, D_{50}$

|        |           | D65    |        |        |       |         | D84    |        |                |
|--------|-----------|--------|--------|--------|-------|---------|--------|--------|----------------|
| Ic (m  | m)        | F      | Fi (%) | FiAC   | Ic (m | m)      | F      | Fi (%) | FiAC           |
| 000.0  | 0,220     | 2      | 1,17   | 1,17   | 0.000 | 0,260   | 1      | 0.58   | 0.58           |
| 0.220  | 0.271     | 8      | 4.68   | 5.85   | 0,260 | 0.365   | 8      | 4.68   | 5.26           |
| 0.271  | 0.321     | 13     | 7,60   | 13.45  | 0,365 | 0,470   | 5      | 2.92   | 8,19           |
| 0.321  | 0.372     | 7      | 4.09   | 17.54  | 0.470 | 0.575   | 6      | 3.51   | 11.70          |
| 0.372  | 0.422     | 9      | 5.26   | 22.81  | 0.575 | 0.680   | 5      | 2.92   | 14.62          |
| 0.422  | 0.473     | 7      | 4.09   | 26.90  | 0.680 | 0.785   | 7      | 4.09   | 18.71          |
| 0.473  | 0.523     | 11     | 6.43   | 33.33  | 0.785 | 0.890   | 10     | 5.85   | 24.50          |
| 0.523  | 0.574     | 4      | 2.34   | 35.67  | 0.890 | 0.995   | 15     | 8.77   | 33.33          |
| 0.574  | 0.624     | 11     | 6.43   | 42.11  | 0.995 | 1,100   | 8      | 4.68   | 38.01          |
| 0.624  | 0,675     | 9      | 5.26   | 47.37  | 1,100 | 1,205   | 11     | 6.43   | 44.44          |
| 0.675  | 0.725     | 4      | 2.34   | 49.71  | 1,205 | 1,310   | 6      | 3.51   | 47.94          |
| 0 725  | 0,776     | 14     | 819    | 57 80  | 1 310 | 1 415   | 7      | 4 09   | 52.04          |
| 0 776  | 0.826     | 7      | 4 00   | 61 99  | 1415  | 1,715   | Á      | 2 34   | 54 30          |
| 0.826  | 0,020     | 6      | 3.51   | 65 50  | 1,520 | 1 625   | 5      | 202    | 57 31          |
| 0 877  | 0,077     | R      | 4 68   | 7018   | 1.625 | 1,020   | 5      | 202    | 60.23          |
| 0.077  | 0.078     | 6      | 3.51   | 73.68  | 1,730 | 1 8 3 5 | 7      | 4 00   | 64 33          |
| 0.078  | 1 0 28    | 0      | 5.26   | 78.05  | 1,835 | 1,030   | à      | 1.75   | 66.05          |
| 1 0 28 | 1,020     | 2      | 117    | 8012   | 1,000 | 2 0 4 5 | 5      | 202    | 60,00          |
| 1 070  | 1120      |        | 202    | 83.04  | 2045  | 2150    | 1      | 0.58   | 60 50          |
| 1120   | 1 1 1 2 0 | 2      | 1 75   | 84.80  | 2150  | 2,100   | 2      | 117    | 70.76          |
| 1 1 20 | 1,100     | 1      | 0.58   | 85 28  | 2,150 | 2 360   | 2      | 1.75   | 72 51          |
| 1,100  | 1,230     | 1      | 0,58   | 85.96  | 2,255 | 2,000   | 1      | 0.58   | 73 10          |
| 1 281  | 1 221     | 2      | 175    | 87 72  | 2,000 | 2 570   | 1      | 1 75   | 74.84          |
| 1,201  | 1,292     | 2      | 1,75   | 80.47  | 2,405 | 2,575   | 2      | 1,75   | 76.01          |
| 1 202  | 1,002     |        | 224    | 01.91  | 2,576 | 2,075   | 4<br>5 | 202    | 79.04          |
| 1,002  | 1,432     | 4      | 117    | 91,01  | 2,075 | 2,700   | 2      | 117    | 0,9.           |
| 1,432  | 1,403     |        | 1,17   | 92,90  | 2,700 | 2,005   |        | 1,17   | 00,14<br>Q1 70 |
| 1,403  | 1,555     | 4      | 1,17   | 94,15  | 2,005 | 2,990   | 4      | 2.24   | 01,43          |
| 1,555  | 1,204     | 1      | 0,50   | 94,74  | 2,990 | 2 200   | 4      | 0.59   | 03,03          |
| 1,204  | 1,034     | 1      | 0,20   | 95,52  | 3,093 | 3,200   |        | 117    | 04,21          |
| 1,034  | 1,005     | 1      | 0.00   | 95,91  | 3,200 | 2 410   | 4      | 1,17   | 05,00          |
| 1,065  | 1,/35     | 1      | 0,00   | 95,91  | 2 410 | 3,410   | 1      | 1.75   | 07.70          |
| 1,794  | 1,/00     | 1      | 0,00   | 90,49  | 3,410 | 3,515   | 3<br>0 | 1,/5   | 0/,/2          |
| 1,/00  | 1,030     | 0      | 117    | 90,49  | 3,212 | 3,020   | 1      | 0,00   | 0/,/2          |
| 1,030  | 1,00/     | 4      | 1,1/   | 97,00  | 3,020 | 3,120   | 1      | 0,50   | 16,00          |
| 1,00/  | 1,93/     | 0      | 0,00   | 97,00  | 3,/25 | 3,830   | 1      | 0,58   | 00,05          |
| 1,93/  | 1,900     | 0      | 0,00   | 97,00  | 3,830 | 3,935   | 4      | 1,17   | 90,00          |
| 1,900  | 2,030     | 0      | 0,00   | 97,00  | 3,935 | 4,040   | 4      | 1,17   | 91,23          |
| 2,038  | 2,089     | U<br>1 | 0,00   | 9/,00  | 4,040 | 4,145   | 4      | 2,34   | 93,51          |
| 2,089  | 2,139     | 1      | 0,58   | 98,25  | 4,145 | 4,250   | 2      | 1,17   | 94,/4          |
| 2,139  | 2,190     | 1      | 0,58   | 98,83  | 4,250 | 4,355   | 1      | 0,58   | 95,32          |
| 2,190  | 2,240     | 1      | 0,58   | 99,42  | 4,355 | 4,400   | 1      | 0,58   | 95,91          |
| 2,240  | 2,291     | U      | 0,00   | 99,42  | 4,400 | 4,505   | 2      | 1,17   | 97,08          |
| 2,291  | 2,341     | U      | 0,00   | 99,42  | 4,505 | 4,670   | 1      | 0,58   | 97,60          |
| 2,341  | 2,392     | U      | 0,00   | 99,42  | 4,670 | 4,775   | 2      | 1,17   | 98,83          |
| 2,392  | 2,442     | 1      | 0,58   | 100,00 | 4,775 | 4,880   | 2      | 1,17   | 100,0          |
|        | soma      | 171    | 100    | 100    |       | soma    | 171    | 100    | 100            |

TABELA 5.4c - Freqüências relativas e acumuladas para os diâmetros  ${
m D_{65},\,D_{84}}$ 

|       |       | D90 | 349 F  |        |       |       | Da  |        |       |
|-------|-------|-----|--------|--------|-------|-------|-----|--------|-------|
| Ic (m | m)    | F   | Fi (%) | FiAC   | Ic (m | m)    | F   | Fi (%) | FiAC  |
| 000.0 | 0.280 | 2   | 1,17   | 1,17   | 0.000 | 0,202 | 1   | 0.58   | 0.58  |
| 0,280 | 0,417 | 9   | 5,26   | 6,43   | 0,202 | 0,247 | 8   | 4,68   | 5,26  |
| 0,417 | 0.554 | 4   | 2.34   | 8,77   | 0.247 | 0,292 | 4   | 2.34   | 7.60  |
| 0,554 | 0,691 | 5   | 2.92   | 11,70  | 0,292 | 0,337 | 4   | 2,34   | 9,94  |
| 0,691 | 0,828 | 1   | 0,58   | 12,28  | 0,337 | 0,382 | 4   | 2,34   | 12,28 |
| 0,828 | 0,965 | 7   | 4,09   | 16,37  | 0,382 | 0,427 | 5   | 2.92   | 15,20 |
| 0,965 | 1,102 | 12  | 7,02   | 23,39  | 0,427 | 0,472 | 8   | 4,68   | 19,88 |
| 1,102 | 1,239 | 10  | 5,85   | 29,24  | 0,472 | 0,517 | 9   | 5,26   | 25,15 |
| 1,239 | 1,376 | 7   | 4,09   | 33,33  | 0,517 | 0,562 | 10  | 5,85   | 30,99 |
| 1,376 | 1,513 | 6   | 3,51   | 36,84  | 0,562 | 0,607 | 5   | 2.92   | 33,92 |
| 1.513 | 1,650 | 7   | 4,09   | 40.94  | 0.607 | 0,652 | 9   | 5.26   | 39,18 |
| 1,650 | 1,787 | 8   | 4,68   | 45,61  | 0,652 | 0,697 | 8   | 4,68   | 43,86 |
| 1,787 | 1,924 | 6   | 3,51   | 49,12  | 0,697 | 0,742 | 6   | 3,51   | 47,37 |
| 1,924 | 2,061 | 5   | 2.92   | 52,05  | 0,742 | 0,787 | 10  | 5,85   | 53,22 |
| 2,061 | 2,198 | 2   | 1,17   | 53,22  | 0,787 | 0,832 | 6   | 3,51   | 56,73 |
| 2,198 | 2,335 | 5   | 2.92   | 56,14  | 0,832 | 0,877 | 3   | 1,75   | 58,48 |
| 2,335 | 2,472 | 5   | 2,92   | 59,06  | 0,877 | 0,922 | 4   | 2,34   | 60,82 |
| 2,472 | 2,609 | 3   | 1,75   | 60,82  | 0,922 | 0,967 | 10  | 5,85   | 66,67 |
| 2,609 | 2,746 | 1   | 0,58   | 61,40  | 0,967 | 1,012 | 5   | 2,92   | 69,59 |
| 2,746 | 2,883 | 5   | 2,92   | 64,33  | 1,012 | 1,057 | 3   | 1,75   | 71,35 |
| 2,883 | 3,020 | 3   | 1,75   | 66,08  | 1,057 | 1,102 | 1   | 0,58   | 71,93 |
| 3,020 | 3,157 | 3   | 1,75   | 67,84  | 1,102 | 1,147 | 0   | 0,00   | 71,93 |
| 3,157 | 3,294 | 4   | 2,34   | 70,18  | 1,147 | 1,192 | 6   | 3,51   | 75,44 |
| 3,294 | 3,431 | 0   | 0,00   | 70,18  | 1,192 | 1,237 | 6   | 3,51   | 78,95 |
| 3,431 | 3,568 | 3   | 1,75   | 71,93  | 1,237 | 1,282 | 2   | 1,17   | 80,12 |
| 3,568 | 3,705 | 1   | 0,58   | 72,51  | 1,282 | 1,327 | 2   | 1,17   | 81,29 |
| 3,705 | 3,842 | 8   | 4,68   | 77,19  | 1,327 | 1,372 | 3   | 1,75   | 83,04 |
| 3,842 | 3,979 | 2   | 1,17   | 78,36  | 1,372 | 1,417 | 3   | 1,75   | 84,80 |
| 3,979 | 4,116 | 7   | 4,09   | 82,46  | 1,417 | 1,462 | 1   | 0,58   | 85,38 |
| 4,116 | 4,253 | 3   | 1,75   | 84,21  | 1,462 | 1,507 | 4   | 2,34   | 87,72 |
| 4,253 | 4,390 | 2   | 1,17   | 85,38  | 1,507 | 1,552 | 3   | 1,75   | 89,47 |
| 4,390 | 4,527 | 5   | 2,92   | 88,30  | 1,552 | 1,597 | 2   | 1,17   | 90,64 |
| 4,527 | 4,664 | 2   | 1,17   | 89,47  | 1,597 | 1,642 | 0   | 0,00   | 90,64 |
| 4,664 | 4,801 | 7   | 4,09   | 93,57  | 1,642 | 1,687 | 2   | 1,17   | 91,81 |
| 4,801 | 4,938 | 2   | 1,17   | 94,74  | 1,687 | 1,732 | 3   | 1,75   | 93,57 |
| 4,938 | 5,075 | 3   | 1,75   | 96,49  | 1,732 | 1,777 | 3   | 1,75   | 95,32 |
| 5,075 | 5,212 | 3   | 1,75   | 98,25  | 1,777 | 1,822 | 1   | 0,58   | 95,91 |
| 5,212 | 5,349 | 1   | 0,58   | 98,83  | 1,822 | 1,867 | 2   | 1,17   | 97,08 |
| 5,349 | 5,486 | 0   | 0,00   | 98,83  | 1,867 | 1,912 | 1   | 0,58   | 97,66 |
| 5,486 | 5,623 | 0   | 0,00   | 98,83  | 1,912 | 1,957 | 1   | 0,58   | 98,25 |
| 5,623 | 5,760 | 1   | 0,58   | 99,42  | 1,957 | 2,002 | 0   | 0,00   | 98,25 |
| 5,760 | 5,897 | 0   | 0,00   | 99,42  | 2,002 | 2,047 | 1   | 0,58   | 98,83 |
| 5,897 | 6,034 | 0   | 0,00   | 99,42  | 2,047 | 2,092 | 0   | 0,00   | 98,83 |
| 6,034 | 6,171 | 0   | 0,00   | 99,42  | 2,092 | 2,137 | 2   | 1,17   | 100,0 |
| 6,171 | 6,308 | 1   | 0,58   | 100,00 | 2,137 | 2,182 | 0   | 0,00   | 100,0 |
|       | soma  | 171 | 100    | 100    |       | soma  | 171 | 100    | 100   |

| TABELA 5.4d - Frequ | ências relativas e acumuladas | para os diâmetros Don. Da |
|---------------------|-------------------------------|---------------------------|
|                     |                               |                           |

Corroborando com Coiado & Paiva (2005), observa-se que a escolha do diâmetro da amostra exige cuidados especiais, no sentido de observar, pelo menos, se o escolhido atende a faixa preestabelecida pelo autor para a aplicação do seu método.

A escolha inadequada do diâmetro pode levar a resultados não representativos do ponto de vista da precisão do cálculo da descarga de sedimentos, às vezes pelo surgimento de quantidades substanciais de eventos de cálculos de descargas nulas. No caso do Rio Atibaia, por exemplo, a faixa, em mm, para o diâmetro  $D_{50}$ , um dos mais usados nas equações de cálculo do transporte de sedimentos, não atende às recomendações de mais de um autor para a aplicação dos seus respectivos métodos.

Um exemplo explícito mostrado no **quadro 5.2** de inaplicabilidade de métodos para o caso do Rio Atibaia – pela análise da faixa de diâmetros - é o método de Shields (1936), sendo que, aproximadamente, 18,2 % é a porcentagem máxima de campanhas de medições, para as quais o  $D_{90}$  atende aos limites estabelecidos pelo autor para a aplicação do seu método. Quando se observa o  $D_{50}$ , nota-se uma incompatibilidade ainda maior, uma vez que nenhuma campanha atende aos limites estabelecidos pelo autor, inviabilizando o seu emprego para esta classe granulométrica.

Ainda com relação ao **quadro 5.2**, ao se observarem os valores aproximados das porcentagens das campanhas de medições cujos diâmetros medidos atendem às faixas indicadas pelos autores e ao se considerarem os escores máximos dessas porcentagens, podese observar que, com relação ao método de Du-Boys (1879), **cem por cento** das campanhas de medições apresentam o  $D_{35}$ ,  $D_{50}$ ,  $D_{65}$  e o Da dentro da faixa estabelecida pelo autor. Logo, por esse critério, qualquer uma dessas classes atende plenamente ao método. Ao prosseguir analisando as maiores porcentagens de campanhas de medições em que uma determinada faixa de diâmetros atende aos métodos de cálculo da descarga de sedimentos, observa-se que poucos métodos apresentam faixas de diâmetros que caem em **cem por cento** dentro dos limites da classe estabelecida para o  $D_{50}$ . Nota-se que, dos quatorze métodos, apenas três atendem a esta classe. Sendo eles: o método de Du-Boys (1879), o de Levi (1948) e o método de Inglis e Lacei (1968).

No **quadro 5.2,** na coluna observação, fez-se uma ligeira classificação da classe granulométrica, cuja magnitude do diâmetro melhor atende aos limites estabelecidos para cada método de cálculo, lembrando que tal classe granulométrica deva atender à maior quantidade de campanhas de medições possível para o Rio Atibaia.

Portanto, conclui-se que as faixas de diâmetros referentes aos  $D_{35}$ ,  $D_{50}$  e  $D_{65}$ atendem plenamente ao método de Du-Boys (1879). A faixa de diâmetros correspondente ao diâmetro aritmético (**Da**) atende totalmente ao método de Schoclitsch (1914,1950). As faixas de diâmetros encontradas no Rio Atibaia não atendem ao método de Shields (1936). O diâmetro **D**<sub>90</sub> atende parcialmente aos métodos de Meyer-Peter e Muller (1948), Garde e Albertson (1961) e ao método de Yalin (1963). Já o diâmetro **D**<sub>84</sub> atende parcialmente aos métodos de Kalinske (1947), Einstein (1942) & Einstein-Brown (1950); Sato-Kikawa e & Ashida (1958), Rottner (1959) e Bogardi (1974). As faixas de diâmetros correspondentes aos **D**<sub>10</sub>, **D**<sub>16</sub>, **D**<sub>35</sub> e **D**<sub>50</sub> atendem plenamente aos métodos de Levi (1948) e ao método de Inglis e Lacey (1968). Quadro 5.2 – Comparações entre os valores das faixas de diâmetros dos sedimentos utilizados no desenvolvimento das diversas fórmulas e a faixa de diâmetros dos sedimentos coletados no Rio Atibaia/SP (COIADO & PAIVA, 2005)

| Autores                                   | Faixas<br>recomendadas     | Valoro<br>campa<br>às fa<br>aplica | es ap<br>inhas d<br>ixas ir<br>ção dos | oroxima<br>e medi<br>idicada<br>seus re | ados<br>ções cu<br>as pelo<br>espectiv | das<br>ijos diâ<br>os dive<br>zos mét | porcen<br>imetros<br>ersos a<br>odos | tagens<br>(D) at<br>autores | das<br>endem<br>para | <b>OBSERVAÇÃO:</b><br>Com relação ao critério faixa de<br>diâmetros, observa-se que são<br>poucos os diâmetros D <sub>i</sub> que<br>atendem plenamente aos limites |
|-------------------------------------------|----------------------------|------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------|-----------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | D(mm)                      | <b>D</b> <sub>10</sub>             | <b>D</b> <sub>16</sub>                 | <b>D</b> <sub>35</sub>                  | D <sub>50</sub>                        | <b>D</b> <sub>65</sub>                | D <sub>84</sub>                      | D <sub>90</sub>             | Da                   | estabelecidos nos métodos                                                                                                                                           |
| 1 – DuBoys (1879) e Straub (1935)         | $0,10 \le D_{84} \le 4,0$  | 96,50                              | 98,83                                  | 100                                     | 100                                    | 100                                   | 91,23                                | 82,46                       | 100                  | Atende com o D <sub>35</sub> ;D <sub>50</sub> e D <sub>65</sub>                                                                                                     |
| 2 - Schoklitsch (1914, 1950)              | $0,315 \le D \le 7,02$     | 3,51                               | 12,28                                  | 57,89                                   | 74,85                                  | 86,55                                 | 94,74                                | 93,57                       | 100                  | Atende com o D <sub>a</sub>                                                                                                                                         |
| 3 - Shields (1936)                        | $1,56 \le D_{50} \le 2,47$ | 0                                  | 0                                      | 0                                       | 0                                      | 5,45                                  | 17,54                                | 18,16                       | 12,28                | Não atende                                                                                                                                                          |
| 4 - Meyer-Peter e Müller (1948)           | $0,40 \le D_a \le 4,22$    | 0                                  | 1,17                                   | 34,50                                   | 57,31                                  | 77,19                                 | 91,81                                | 93,57                       | 84,8                 | Atende parcialmente com o D <sub>90</sub>                                                                                                                           |
| 5 - Kalinske (1947)                       | $0,315 \le D \le 28,6$     | 3,51                               | 12,28                                  | 57,89                                   | 74,85                                  | 86,55                                 | 94,74                                | 93,57                       | 90,06                | Atende parcialmente com o D <sub>84</sub>                                                                                                                           |
| 6 - Levi (1948)                           | $0,063 \le D \le 2,0$      | 100                                | 100                                    | 100                                     | 100                                    | 97,66                                 | 66,01                                | 52,05                       | 98,25                | Atende com o $D_{10}$ ; $D_{16}D_{35}$ e $D_{50}$                                                                                                                   |
| 7-Einstein (1942) & Einstein-Brown (1950) | $0,30 \le D \le 30,0$      | 4,68                               | 18,71                                  | 61,40                                   | 80,12                                  | 86,55                                 | 94,74                                | 93,57                       | 90,06                | Atende parcialmente com o $D_{84}$                                                                                                                                  |
| 8 - Sato, Kikkawa e Ashida (1958)         | $0,30 \le D \le 7,01$      | 4,68                               | 18,71                                  | 61,40                                   | 80,12                                  | 86,55                                 | 94,74                                | 93,57                       | 90,06                | Atende parcialmente com o $D_{84}$                                                                                                                                  |
| 9 - Rottner (1959)                        | $0,31 \le D \le 15,5$      | 3,51                               | 17,54                                  | 61,40                                   | 74,85                                  | 86,55                                 | 94,74                                | 93,57                       | 90,06                | Atende parcialmente com o $D_{84}$                                                                                                                                  |
| 10 -Garde e Albertson (1961)              | $0,78 \le D \le 15,5$      | 0                                  | 0                                      | 0,58                                    | 12,87                                  | 38,01                                 | 81,29                                | 87,72                       | 43,27                | Atende parcialmente com o $D_{90}$                                                                                                                                  |
| 11 - Yalin (1963)                         | $0,787 \le D \le 2,86$     | 0                                  | 0                                      | 0,58                                    | 12,28                                  | 38,01                                 | 75,44                                | 87,72                       | 43,27                | Atende parcialmente com o $D_{90}$                                                                                                                                  |
| 12 - Pernecker e Vollmer (1965)           | Não especificado           | -                                  | -                                      | -                                       | -                                      | -                                     | -                                    | -                           | -                    | Não especificado                                                                                                                                                    |
| 13 - Inglis e Lacey (1968)                | $0,063 \le D \le 2,0$      | 100                                | 100                                    | 100                                     | 100                                    | 97,66                                 | 66,01                                | 52,05                       | 98,25                | Atende com o D <sub>10</sub> ;D <sub>16</sub> D <sub>35</sub> e D <sub>50</sub>                                                                                     |
| 14 - Bogardi (1974)                       | $0,31 \le D \le 15,5$      | 3,51                               | 17,54                                  | 61,40                                   | 74,85                                  | 86,55                                 | 94,74                                | 93,57                       | 90,06                | Atende parcialmente com o $D_{84}$                                                                                                                                  |

No **Capítulo 6**, foram analisados os cálculos das descargas realizadas pelos quatorze métodos usados na pesquisa para o Rio Atibaia. Portanto, o diagnóstico apresentado no **quadro 5.2**, contribuiu para se escolher o diâmetro do material coletado do fundo do rio a ser usado nesses cálculos. Assim, foi possível verificar o comportamento das diferenças percentuais relativas, entre os valores das descargas medidas e calculadas, utilizando-se os diâmetros calculados pelo conjunto de equações citadas na **tabela 5.3**. Os diâmetros calculados por tais equações estão apresentados na **tabela 5.5**, a partir da qual gerou-se o **quadro 5.3**.

Comparando os valores médios dos diâmetros, apresentados nos **quadros 5.3** e **5.1**, nota-se que, das quatorze equações, **12 (doze)** estimaram valores maiores do que os médios coletados para a classe granulométrica compreendida entre o  $D_{10}$ . e o  $D_{84}$  no Rio Atibaia. Exceção apenas às equações que estimaram os diâmetros para os métodos de Meyer Peter e Muller (1914) e para o método de Rottner (1950), que produziram valores médios respectivamente iguais 1,04 mm e 0,20 mm. Neste caso, o valor de 1,04 mm é menor do que aquele coletado correspondente ao  $D_{84}$  (1,73 mm), e o valor de 0,20 mm é igual ao diâmetro  $D_{10}$  (0,20 mm) e menor do que os demais coletados.

Nos **quadros 5.1** e **5.3**, comparando os valores médios estimados e o  $D_{90}$  coletado, tem-se que **5 (cinco)** das quatorze equações de estimativa geraram valores menores. Ou seja, neste caso, juntam-se as equações analíticas de estimativa do diâmetro para o método de Meyer Peter e Muller (1914) e Rottner (1950) àquelas que estimaram também para os métodos de Duboys (1879), Kalinske (1947) e Levi (1948), cujos valores médios estimados foram respectivamente, 2,14 mm, 2,33 mm e 2,11mm, portanto, menores do que o valor médio para o  $D_{90}$  (2,41 mm) coletado.

| (1) | (1)                           | (2)                           | (3)                         | (4)                         | (5)                         | (6)                         | (7)                         | (8)                         | (9)                         | (10)                        | (11)                        | (12)                        | (13)                        | (14)                       |
|-----|-------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|
| N°  | D <sub>Vj [DUB]</sub><br>(mm) | D <sub>vj [SCH]</sub><br>(mm) | D <sub>Vj [SHI]</sub><br>mm | D <sub>vj [MPM]</sub><br>mm | D <sub>Vj [KAL]</sub><br>mm | D <sub>Vj [LEV]</sub><br>mm | D <sub>Vj [EIB]</sub><br>mm | D <sub>Vj [SKA]</sub><br>mm | D <sub>Vj [ROT]</sub><br>mm | D <sub>Vj [GAA]</sub><br>mm | D <sub>Vj [YAL]</sub><br>mm | D <sub>Vj [PEV]</sub><br>mm | D <sub>Vj [INL]</sub><br>mm | D <sub>Vj[BOC]</sub><br>mm |
| 1   | 2,29                          | 109,01                        | 4,39                        | 1,22                        | 1,66                        | 5,09                        | 5,55                        | 12,70                       | 0,19                        | 7,12                        | 4,42                        | 4,58                        | 8,25                        | 4,50                       |
| 2   | 2,34                          | 81,61                         | 4,43                        | 0,99                        | 2,23                        | 3,36                        | 6,01                        | 9,82                        | 0,19                        | 7,16                        | 4,47                        | 4,62                        | 8,71                        | 4,56                       |
| 3   | 2,17                          | 62,85                         | 4,27                        | 0,83                        | 2,68                        | 1,99                        | 6,32                        | 7,84                        | 0,19                        | 6,99                        | 4,25                        | 4,44                        | 9,02                        | 4,31                       |
| 4   | 2,54                          | 84,69                         | 4,60                        | 1,05                        | 2,09                        | 2,77                        | 5,95                        | 10,49                       | 0,19                        | 7,35                        | 4,72                        | 4,83                        | 8,65                        | 4,88                       |
| 5   | 1,86                          | 44,98                         | 3,99                        | 0,68                        | 3,10                        | 1,17                        | 6,61                        | 6,09                        | 0,20                        | 6,65                        | 3,85                        | 4,09                        | 9,31                        | 3,89                       |
| 6   | 2,84                          | 127,56                        | 4,83                        | 1,54                        | 1,02                        | 6,76                        | 5,25                        | 16,96                       | 0,19                        | 7,59                        | 5,07                        | 5,13                        | 7,95                        | 5,36                       |
| 7   | 1,87                          | 86,08                         | 4,00                        | 0,91                        | 2,46                        | 3,34                        | 5,93                        | 8,79                        | 0,20                        | 6,67                        | 3,87                        | 4,10                        | 8,63                        | 3,91                       |
| 8   | 2,11                          | 63,92                         | 4,22                        | 0,83                        | 2,66                        | 2,33                        | 6,30                        | 7,92                        | 0,20                        | 6,93                        | 4,18                        | 4,38                        | 9,00                        | 4,23                       |
| 9   | 1,98                          | 63,41                         | 4,11                        | 0,78                        | 2,80                        | 2,41                        | 6,31                        | 7,32                        | 0,20                        | 6,80                        | 4,02                        | 4,23                        | 9,01                        | 4,06                       |
| 10  | 1,87                          | 21,39                         | 4,00                        | 0,55                        | 3,44                        | 0,79                        | 7,00                        | 4,76                        | 0,20                        | 6,67                        | 3,87                        | 4,10                        | 9,70                        | 3,91                       |
| 11  | 1,09                          | 11,39                         | 3,12                        | 0,40                        | 3,83                        | 0,48                        | 7,17                        | 3,15                        | 0,22                        | 5,46                        | 2,72                        | 3,07                        | 9,87                        | 2,96                       |
| 12  | 0,89                          | 15,06                         | 2,85                        | 0,33                        | 3,97                        | 0,40                        | 7,36                        | 2,54                        | 0,22                        | 5,02                        | 2,39                        | 2,76                        | 10,06                       | 2,74                       |
| 13  | 0,60                          | 0,69                          | 2,38                        | 0,20                        | 4,22                        | 0,10                        | 8,12                        | 1,33                        | 0,24                        | 4,13                        | 1,84                        | 2,23                        | 10,82                       | 2,44                       |
| 14  | 0,24                          | 11,26                         | 1,56                        | 0,16                        | 4,27                        | 0,33                        | 7,56                        | 1,05                        | 0,27                        | 2,08                        | 1,01                        | 1,36                        | 10,26                       | 2,07                       |
| 15  | 0,41                          | 2,80                          | 2,00                        | 0,21                        | 4,20                        | 0,16                        | 7,52                        | 1,42                        | 0,25                        | 3,29                        | 1,44                        | 1,82                        | 10,22                       | 2,25                       |
| 16  | 1,64                          | 31,86                         | 3,76                        | 0,57                        | 3,39                        | 0,86                        | 6,83                        | 4,95                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 9,53                        | 3,60                       |
| 17  | 2,84                          | 122,40                        | 4,83                        | 1,47                        | 1,14                        | 8,03                        | 5,33                        | 16,05                       | 0,19                        | 7,59                        | 5,07                        | 5,13                        | 8,03                        | 5,36                       |
| 18  | 1,64                          | 49,80                         | 3,76                        | 0,65                        | 3,18                        | 1,62                        | 6,53                        | 5,78                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 9,23                        | 3,60                       |
| 19  | 2,22                          | 85,20                         | 4,33                        | 0,98                        | 2,25                        | 3,78                        | 5,95                        | 9,73                        | 0,19                        | 7,05                        | 4,33                        | 4,50                        | 8,65                        | 4,39                       |
| 20  | 2,47                          | 102,42                        | 4,54                        | 1,18                        | 1,75                        | 4,70                        | 5,66                        | 12,20                       | 0,19                        | 7,28                        | 4,63                        | 4,76                        | 8,36                        | 4,76                       |
| 21  | 0,78                          | 1,92                          | 2,69                        | 0,32                        | 4,00                        | 0,39                        | 7,32                        | 2,39                        | 0,23                        | 4,73                        | 2,19                        | 2,57                        | 10,02                       | 2,63                       |
| 22  | 1,41                          | 24,54                         | 3,52                        | 0,50                        | 3,58                        | 0,87                        | 6,95                        | 4,20                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 9,65                        | 3,33                       |
| 23  | 2,34                          | 80,54                         | 4,43                        | 1,00                        | 2,21                        | 2,77                        | 6,02                        | 9,90                        | 0,19                        | 7,16                        | 4,47                        | 4,62                        | 8,72                        | 4,56                       |
| 24  | 0,78                          | 145,81                        | 2,69                        | 0,94                        | 2,36                        | 8,07                        | 4,94                        | 9,24                        | 0,23                        | 4,73                        | 2,19                        | 2,57                        | 7,64                        | 2,63                       |
| 25  | 2,34                          | 121,61                        | 4,43                        | 1,38                        | 1,32                        | 1,70                        | 5,34                        | 14,74                       | 0,19                        | 7,16                        | 4,47                        | 4,62                        | 8,04                        | 4,56                       |
| 26  | 1,41                          | 75,92                         | 3,52                        | 0,76                        | 2,86                        | 0,83                        | 6,10                        | 7,08                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 8,80                        | 3,33                       |
| 27  | 0,98                          | 39,11                         | 2,97                        | 0,48                        | 3,62                        | 0,29                        | 6,71                        | 4,01                        | 0,22                        | 5,22                        | 2,53                        | 2,90                        | 9,41                        | 2,83                       |
| 28  | 1.20                          | 41.93                         | 3.27                        | 0.54                        | 3.46                        | 0.33                        | 6 66                        | 4 66                        | 0.21                        | 5.69                        | 2.90                        | 3.24                        | 9 36                        | 3.08                       |

| (1) | (l)                           | (2)                           | (3)                         | (4)                         | (5)                         | (6)                         | (7)                         | (8)                         | (9)                         | (10)                        | (11)                        | (12)                        | (13)                        | (14)                        |
|-----|-------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| N°  | D <sub>Vj [DUB]</sub><br>(mm) | D <sub>Vj [SCH]</sub><br>(mm) | D <sub>vj [SHI]</sub><br>mm | D <sub>vj [MPM]</sub><br>mm | D <sub>Vj [KAL]</sub><br>mm | D <sub>vj [LEv]</sub><br>mm | D <sub>Vj [EIB]</sub><br>mm | D <sub>Vj [SKA]</sub><br>mm | D <sub>vj [ROT]</sub><br>mm | D <sub>Vj [GAA]</sub><br>mm | D <sub>Vj [YAL]</sub><br>mm | D <sub>Vj [PEV]</sub><br>mm | D <sub>vj [INL]</sub><br>mm | D <sub>vj [BOC]</sub><br>mm |
| 29  | 0,69                          | 43,30                         | 2,54                        | 0,42                        | 3,77                        | 0,37                        | 6,64                        | 3,42                        | 0,23                        | 4,45                        | 2,02                        | 2,40                        | 9,34                        | 2,53                        |
| 30  | 1,20                          | 48,18                         | 3,27                        | 0,57                        | 3,38                        | 0,34                        | 6,56                        | 4,98                        | 0,21                        | 5,69                        | 2,90                        | 3,24                        | 9,26                        | 3,08                        |
| 31  | 0,60                          | 29,22                         | 2,38                        | 0,36                        | 3,92                        | 0,20                        | 6,87                        | 2,75                        | 0,24                        | 4,13                        | 1,84                        | 2,23                        | 9,57                        | 2,44                        |
| 32  | 1,20                          | 49,59                         | 3,27                        | 0,58                        | 3,36                        | 0,38                        | 6,53                        | 5,08                        | 0,21                        | 5,69                        | 2,90                        | 3,24                        | 9,23                        | 3,08                        |
| 33  | 0,41                          | 0,06                          | 2,00                        | 0,23                        | 4,17                        | 0,05                        | 7,38                        | 1,61                        | 0,25                        | 3,29                        | 1,44                        | 1,82                        | 10,08                       | 2,25                        |
| 34  | 0,57                          | 21,08                         | 2,33                        | 0,32                        | 3,99                        | 0,10                        | 7,01                        | 2,43                        | 0,24                        | 4,04                        | 1,79                        | 2,18                        | 9,71                        | 2,41                        |
| 35  | 0,78                          | 31,72                         | 2,69                        | 0,41                        | 3,80                        | 0,15                        | 6,83                        | 3,26                        | 0,23                        | 4,73                        | 2,19                        | 2,57                        | 9,53                        | 2,63                        |
| 36  | 1,41                          | 51,34                         | 3,52                        | 0,62                        | 3,24                        | 0,27                        | 6,51                        | 5,53                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 9,21                        | 3,33                        |
| 37  | 0,41                          | 22,83                         | 2,00                        | 0,29                        | 4,07                        | 0,14                        | 6,98                        | 2,09                        | 0,25                        | 3,29                        | 1,44                        | 1,82                        | 9,68                        | 2,25                        |
| 38  | 1,31                          | 101,30                        | 3,40                        | 0,89                        | 2,50                        | 0,97                        | 5,68                        | 8,59                        | 0,21                        | 5,87                        | 3,06                        | 3,39                        | 8,38                        | 3,20                        |
| 39  | 0,41                          | 32,19                         | 2,00                        | 0,27                        | 4,09                        | 0,07                        | 6,82                        | 1,98                        | 0,25                        | 3,29                        | 1,44                        | 1,82                        | 9,52                        | 2,25                        |
| 40  | 2,58                          | 167,20                        | 4,63                        | 2,03                        | 0,42                        | 2,45                        | 4,59                        | 23,81                       | 0,19                        | 7,39                        | 4,77                        | 4,88                        | 7,29                        | 4,95                        |
| 41  | 2,84                          | 150,81                        | 4,83                        | 1,88                        | 0,56                        | 2,68                        | 4,86                        | 21,74                       | 0,19                        | 7,59                        | 5,07                        | 5,13                        | 7,56                        | 5,36                        |
| 42  | 1,64                          | 75,52                         | 3,76                        | 0,82                        | 2,70                        | 0,72                        | 6,11                        | 7,73                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 8,81                        | 3,60                        |
| 43  | 1,64                          | 63,83                         | 3,76                        | 0,74                        | 2,92                        | 0,47                        | 6,30                        | 6,82                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 9,00                        | 3,60                        |
| 44  | 1,20                          | 226,47                        | 3,27                        | 2,17                        | 0,32                        | 7,03                        | 3,61                        | 25,87                       | 0,21                        | 5,69                        | 2,90                        | 3,24                        | 6,31                        | 3,08                        |
| 45  | 3,08                          | 164,66                        | 5,02                        | 2,18                        | 0,30                        | 3,65                        | 4,63                        | 26,17                       | 0,18                        | 7,77                        | 5,35                        | 5,36                        | 7,33                        | 5,78                        |
| 46  | 1,98                          | 108,20                        | 4,11                        | 1,14                        | 1,84                        | 1,33                        | 5,57                        | 11,72                       | 0,20                        | 6,80                        | 4,02                        | 4,23                        | 8,27                        | 4,06                        |
| 47  | 2,09                          | 160,95                        | 4,21                        | 1,77                        | 0,69                        | 3,01                        | 4,69                        | 20,09                       | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 7,39                        | 4,21                        |
| 48  | 2,34                          | 138,17                        | 4,43                        | 1,56                        | 0,98                        | 2,57                        | 5,07                        | 17,28                       | 0,19                        | 7,16                        | 4,47                        | 4,62                        | 7,77                        | 4,56                        |
| 49  | 2,09                          | 105,00                        | 4,21                        | 1,16                        | 1,81                        | 1,38                        | 5,62                        | 11,86                       | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 8,32                        | 4,21                        |
| 50  | 2,09                          | 121,73                        | 4,21                        | 1,31                        | 1,45                        | 2,05                        | 5,34                        | 13,92                       | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 8,04                        | 4,21                        |
| 51  | 1,64                          | 77,42                         | 3,76                        | 0,80                        | 2,76                        | 0,48                        | 6,07                        | 7,50                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 8,77                        | 3,60                        |
| 52  | 1,08                          | 77,38                         | 3,11                        | 0,78                        | 2,80                        | 0,72                        | 6,08                        | 7,33                        | 0,22                        | 5,44                        | 2,70                        | 3,05                        | 8,78                        | 2,94                        |
| 53  | 1,64                          | 60,69                         | 3,76                        | 0,73                        | 2,94                        | 0,50                        | 6,35                        | 6,76                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 9,05                        | 3,60                        |
| 54  | 2,96                          | 135,96                        | 4,93                        | 1,72                        | 0,75                        | 2,11                        | 5,11                        | 19,44                       | 0,19                        | 7,68                        | 5,21                        | 5,24                        | 7,81                        | 5,57                        |
| 55  | 1,75                          | 84,27                         | 3,88                        | 1,07                        | 2,03                        | 0,80                        | 5,96                        | 10,76                       | 0,20                        | 6,52                        | 3,70                        | 3,96                        | 8,66                        | 3,74                        |
| 56  | 1.87                          | 95.44                         | 4.00                        | 1.01                        | 2.18                        | 1.01                        | 5,78                        | 10.06                       | 0.20                        | 6,67                        | 3.87                        | 4.10                        | 8,48                        | 3.91                        |

| (l) | (1)                           | (2)                           | (3)                         | (4)                         | (5)                         | (6)                         | (7)                         | (8)                         | (9)                         | (10)                        | (11)                        | (12)                        | (13)                        | (14)                        |
|-----|-------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| N°  | D <sub>Vj [DUB]</sub><br>(mm) | D <sub>Vj [SCH]</sub><br>(mm) | D <sub>Vj [SHI]</sub><br>mm | D <sub>vj [MPM]</sub><br>mm | D <sub>vj [KAL]</sub><br>mm | D <sub>Vj [LEV]</sub><br>mm | D <sub>Vj [EIB]</sub><br>mm | D <sub>Vj [SKA]</sub><br>mm | D <sub>vj [ROT]</sub><br>mm | D <sub>vj [GAA]</sub><br>mm | D <sub>Vj [YAL]</sub><br>mm | D <sub>Vj [PEV]</sub><br>mm | D <sub>Vj [INL]</sub><br>mm | D <sub>vj [BOC]</sub><br>mm |
| 57  | 1,31                          | 53,29                         | 3,40                        | 0,62                        | 3,26                        | 0,36                        | 6,47                        | 5,47                        | 0,21                        | 5,87                        | 3,06                        | 3,39                        | 9,17                        | 3,20                        |
| 58  | 0,78                          | 29,57                         | 2,69                        | 0,41                        | 3,80                        | 0,23                        | 6,87                        | 3,28                        | 0,23                        | 4,73                        | 2,19                        | 2,57                        | 9,57                        | 2,63                        |
| 59  | 6,77                          | 81,85                         | 7,19                        | 1,68                        | 0,80                        | 0,72                        | 6,00                        | 18,93                       | 0,16                        | 9,53                        | 8,94                        | 8,17                        | 8,70                        | 16,81                       |
| 60  | 1,41                          | 88,16                         | 3,52                        | 0,84                        | 2,64                        | 0,82                        | 5,90                        | 8,00                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 8,60                        | 3,33                        |
| 61  | 0,99                          | 47,54                         | 2,99                        | 0,51                        | 3,54                        | 0,30                        | 6,57                        | 4,35                        | 0,22                        | 5,25                        | 2,55                        | 2,92                        | 9,27                        | 2,85                        |
| 62  | 2,21                          | 140,38                        | 4,31                        | 1,54                        | 1,02                        | 2,29                        | 5,03                        | 16,98                       | 0,19                        | 7,04                        | 4,31                        | 4,49                        | 7,73                        | 4,37                        |
| 63  | 0,99                          | 55,23                         | 2,99                        | 0,55                        | 3,46                        | 0,42                        | 6,44                        | 4,68                        | 0,22                        | 5,25                        | 2,55                        | 2,92                        | 9,14                        | 2,85                        |
| 64  | 0,60                          | 19,61                         | 2,38                        | 0,33                        | 3,97                        | 0,15                        | 7,03                        | 2,52                        | 0,24                        | 4,13                        | 1,84                        | 2,23                        | 9,73                        | 2,44                        |
| 65  | 2,58                          | 196,88                        | 4,63                        | 2,56                        | 0,13                        | 5,42                        | 4,10                        | 31,81                       | 0,19                        | 7,39                        | 4,77                        | 4,88                        | 6,80                        | 4,95                        |
| 66  | 1,64                          | 83,75                         | 3,76                        | 0,86                        | 2,58                        | 0,92                        | 5,97                        | 8,28                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 8,67                        | 3,60                        |
| 67  | 1,87                          | 125,44                        | 4,00                        | 1,28                        | 1,53                        | 2,12                        | 5,28                        | 13,43                       | 0,20                        | 6,67                        | 3,87                        | 4,10                        | 7,98                        | 3,91                        |
| 68  | 2,47                          | 155,54                        | 4,54                        | 1,83                        | 0,62                        | 2,98                        | 4,78                        | 20,98                       | 0,19                        | 7,28                        | 4,63                        | 4,76                        | 7,48                        | 4,76                        |
| 69  | 3,08                          | 200,31                        | 5,02                        | 2,86                        | 0,06                        | 6,40                        | 4,04                        | 36,47                       | 0,18                        | 7,77                        | 5,35                        | 5,36                        | 6,74                        | 5,78                        |
| 70  | 2,09                          | 116,28                        | 4,21                        | 1,26                        | 1,57                        | 1,76                        | 5,43                        | 13,23                       | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 8,13                        | 4,21                        |
| 71  | 1,87                          | 110,48                        | 4,00                        | 1,14                        | 1,85                        | 1,34                        | 5,53                        | 11,67                       | 0,20                        | 6,67                        | 3,87                        | 4,10                        | 8,23                        | 3,91                        |
| 72  | 1,64                          | 93,71                         | 3,76                        | 0,94                        | 2,36                        | 1,01                        | 5,81                        | 9,23                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 8,51                        | 3,60                        |
| 73  | 1,64                          | 84,40                         | 3,76                        | 0,87                        | 2,56                        | 0,78                        | 5,96                        | 8,36                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 8,66                        | 3,60                        |
| 74  | 0,99                          | 48,44                         | 2,99                        | 0,52                        | 3,52                        | 0,28                        | 6,55                        | 4,42                        | 0,22                        | 5,25                        | 2,55                        | 2,92                        | 9,25                        | 2,85                        |
| 75  | 1,20                          | 63,06                         | 3,27                        | 0,64                        | 3,20                        | 0,41                        | 6,31                        | 5,70                        | 0,21                        | 5,69                        | 2,90                        | 3,24                        | 9,01                        | 3,08                        |
| 76  | 0,99                          | 43,13                         | 2,99                        | 0,50                        | 3,58                        | 0,27                        | 6,64                        | 4,20                        | 0,22                        | 5,25                        | 2,55                        | 2,92                        | 9,34                        | 2,85                        |
| 77  | 1,09                          | 39,88                         | 3,12                        | 0,51                        | 3,56                        | 0,25                        | 6,70                        | 4,28                        | 0,22                        | 5,46                        | 2,72                        | 3,07                        | 9,40                        | 2,96                        |
| 78  | 0,78                          | 42,05                         | 2,69                        | 0,44                        | 3,73                        | 0,23                        | 6,66                        | 3,58                        | 0,23                        | 4,73                        | 2,19                        | 2,57                        | 9,36                        | 2,63                        |
| 79  | 1,09                          | 50,93                         | 3,12                        | 0,55                        | 3,44                        | 0,27                        | 6,51                        | 4,75                        | 0,22                        | 5,46                        | 2,72                        | 3,07                        | 9,21                        | 2,96                        |
| 80  | 0,89                          | 55,14                         | 2,85                        | 0,53                        | 3,51                        | 0,34                        | 6,44                        | 4,48                        | 0,22                        | 5,02                        | 2,39                        | 2,76                        | 9,14                        | 2,74                        |
| 81  | 0,99                          | 40,00                         | 2,99                        | 0,49                        | 3,60                        | 0,23                        | 6,69                        | 4,09                        | 0,22                        | 5,25                        | 2,55                        | 2,92                        | 9,39                        | 2,85                        |
| 82  | 1,64                          | 89,22                         | 3,76                        | 0,91                        | 2,46                        | 0,70                        | 5,88                        | 8,77                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 8,58                        | 3,60                        |
| 83  | 2,84                          | 174,62                        | 4,83                        | 2,26                        | 0,26                        | 3,60                        | 4,47                        | 27,27                       | 0,19                        | 7,59                        | 5,07                        | 5,13                        | 7,17                        | 5,36                        |
| 84  | 1.09                          | 63.79                         | 3.12                        | 0.62                        | 3.26                        | 0.47                        | 6,30                        | 5.47                        | 0.22                        | 5.46                        | 2.72                        | 3,07                        | 9.00                        | 2.96                        |

| (1) | (1)                           | (2)                           | (3)                                             | (4)                         | (5)                         | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7)                         | (8)                         | (9)                                   | (10)                        | (11)                        | (12)                        | (13)                        | (14)                        |
|-----|-------------------------------|-------------------------------|-------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| N°  | D <sub>Vj [DUB]</sub><br>(mm) | D <sub>Vj [SCH]</sub><br>(mm) | D <sub>vj [SHI]</sub><br>mm                     | D <sub>Vj [MPM]</sub><br>mm | D <sub>Vj [KAL]</sub><br>mm | D <sub>vj [LEv]</sub><br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D <sub>Vj [EIB]</sub><br>mm | D <sub>Vj [SKA]</sub><br>mm | D <sub>Vj [ROT]</sub><br>mm           | D <sub>Vj [GAA]</sub><br>mm | D <sub>Vj [YAL]</sub><br>mm | D <sub>Vj</sub> [PEV]<br>mm | D <sub>vj [INL]</sub><br>mm | D <sub>vj [BOC]</sub><br>mm |
| 85  | 1,68                          | 101,81                        | 3,81                                            | 1,01                        | 2,18                        | 0,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,67                        | 10,04                       | 0,20                                  | 6,43                        | 3,60                        | 3,87                        | 8,37                        | 3,66                        |
| 86  | 1,82                          | 109,94                        | 3,94                                            | 1,10                        | 1,95                        | 1,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,54                        | 11,17                       | 0,20                                  | 6,60                        | 3,79                        | 4,04                        | 8,24                        | 3,83                        |
| 87  | 1,41                          | 99,76                         | 3,52                                            | 0,91                        | 2,46                        | 0,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,71                        | 8,77                        | 0,21                                  | 6,04                        | 3,22                        | 3,53                        | 8,41                        | 3,33                        |
| 88  | 1,41                          | 89,91                         | 3,52                                            | 0,86                        | 2,58                        | 0,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,87                        | 8,28                        | 0,21                                  | 6,04                        | 3,22                        | 3,53                        | 8,57                        | 3,33                        |
| 89  | 1,64                          | 101,51                        | 3,76                                            | 1,03                        | 2,13                        | 1,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,68                        | 10,28                       | 0,20                                  | 6,37                        | 3,55                        | 3,82                        | 8,38                        | 3,60                        |
| 90  | 2,58                          | 128,30                        | 4,63                                            | 1,52                        | 1,06                        | 1,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,23                        | 16,64                       | 0,19                                  | 7,39                        | 4,77                        | 4,88                        | 7,93                        | 4,95                        |
| 91  | 2,58                          | 195,60                        | 4,63                                            | 2,45                        | 0,17                        | 6,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,12                        | 30,09                       | 0,19                                  | 7,39                        | 4,77                        | 4,88                        | 6,82                        | 4,95                        |
| 92  | 1,64                          | 93,06                         | 3,76                                            | 0,92                        | 2,41                        | 1,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,82                        | 9,00                        | 0,20                                  | 6,37                        | 3,55                        | 3,82                        | 8,52                        | 3,60                        |
| 93  | 1,31                          | 69,62                         | 3,40                                            | 0,70                        | 3,04                        | 0,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,20                        | 6,36                        | 0,21                                  | 5,87                        | 3,06                        | 3,39                        | 8,90                        | 3,20                        |
| 94  | 0,99                          | 52,69                         | 2,99                                            | 0,54                        | 3,47                        | 0,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,48                        | 4,64                        | 0,22                                  | 5,25                        | 2,55                        | 2,92                        | 9,18                        | 2,85                        |
| 95  | 1,09                          | 34,14                         | 3,12                                            | 0,49                        | 3,60                        | 0,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,79                        | 4,12                        | 0,22                                  | 5,46                        | 2,72                        | 3,07                        | 9,49                        | 2,96                        |
| 96  | 1,31                          | 56,38                         | 3,40                                            | 0,63                        | 3,24                        | 0,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,42                        | 5,56                        | 0,21                                  | 5,87                        | 3,06                        | 3,39                        | 9,12                        | 3,20                        |
| 97  | 1,31                          | 54,66                         | 3,40                                            | 0,62                        | 3,25                        | 0,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,45                        | 5,53                        | 0,21                                  | 5,87                        | 3,06                        | 3,39                        | 9,15                        | 3,20                        |
| 98  | 1,19                          | 61,09                         | 3,25                                            | 0,62                        | 3,25                        | 0,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,34                        | 5,52                        | 0,21                                  | 5,66                        | 2,88                        | 3,22                        | 9,04                        | 3,07                        |
| 99  | 1,64                          | 73,15                         | 3,76                                            | 0,80                        | 2,76                        | 0,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,15                        | 7,50                        | 0,20                                  | 6,37                        | 3,55                        | 3,82                        | 8,85                        | 3,60                        |
| 100 | 1,09                          | 18,90                         | 3,12                                            | 0,44                        | 3,74                        | 0,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,04                        | 3,54                        | 0,22                                  | 5,46                        | 2,72                        | 3,07                        | 9,74                        | 2,96                        |
| 101 | 12,61                         | 67,09                         | 9,54                                            | 2,00                        | 0,44                        | 0,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,25                        | 23,43                       | 0,15                                  | 10,91                       | 13,41                       | 11,40                       | 8,95                        | 75,12                       |
| 102 | 1,54                          | 61,27                         | 3,66                                            | 0,71                        | 3,02                        | 0,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,34                        | 6,43                        | 0,21                                  | 6,24                        | 3,41                        | 3,70                        | 9,04                        | 3,49                        |
| 103 | 0,67                          | 73,90                         | 2,50                                            | 0,52                        | 3,52                        | 0,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,13                        | 4,44                        | 0,23                                  | 4,37                        | 1,97                        | 2,36                        | 8,83                        | 2,51                        |
| 104 | 1,15                          | 51,74                         | 3,21                                            | 0,57                        | 3,39                        | 0,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,50                        | 4,94                        | 0,21                                  | 5,59                        | 2,82                        | 3,17                        | 9,20                        | 3,03                        |
| 105 | 1,28                          | 84,17                         | 3,36                                            | 0,77                        | 2,85                        | 1,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,96                        | 7,13                        | 0,21                                  | 5,82                        | 3,02                        | 3,35                        | 8,66                        | 3,17                        |
| 106 | 2,53                          | 128,13                        | 4,59                                            | 1,48                        | 1,12                        | 3,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,24                        | 16,18                       | 0,19                                  | 7,34                        | 4,70                        | 4,82                        | 7,94                        | 4,85                        |
| 107 | 4,39                          | 130,72                        | 5,90                                            | 1,98                        | 0,46                        | 2,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,19                        | 23,19                       | 0,18                                  | 8,56                        | 6,74                        | 6,48                        | 7,89                        | 8,59                        |
| 108 | 0,78                          | 82,31                         | 2,69                                            | 0,62                        | 3,27                        | 1,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,99                        | 5,43                        | 0,23                                  | 4,73                        | 2,19                        | 2,57                        | 8,69                        | 2,63                        |
| 109 | 2,58                          | 148,52                        | 4,63                                            | 1,77                        | 0,68                        | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,90                        | 20,21                       | 0,19                                  | 7,39                        | 4,77                        | 4,88                        | 7,60                        | 4,95                        |
| 110 | 2,58                          | 166,46                        | 4,63                                            | 2,02                        | 0,42                        | 4,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,60                        | 23,75                       | 0,19                                  | 7,39                        | 4,77                        | 4,88                        | 7,30                        | 4,95                        |
| 111 | 2 11                          | 109.74                        | 4.22                                            | 1.20                        | 1.72                        | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,54                        | 12,40                       | 0.20                                  | 6.93                        | 4.18                        | 4.38                        | 8.24                        | 4.23                        |
|     | -,                            |                               | 1000 C 17 T T C C C C C C C C C C C C C C C C C | -,                          |                             | <ul> <li>A second sec<br/>second second sec</li></ul> |                             |                             | · · · · · · · · · · · · · · · · · · · |                             | 1                           |                             |                             | 1                           |

| (1) | (1)                           | (2)                           | (3)                         | (4)                         | (5)                         | (6)                         | (7)                         | (8)                         | (9)                         | (10)                        | (11)                        | (12)                        | (13)                        | (14)                        |
|-----|-------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| N°  | D <sub>Vj [DUB]</sub><br>(mm) | D <sub>Vj [SCH]</sub><br>(mm) | D <sub>Vj [SHI]</sub><br>mm | D <sub>Vj [MPM]</sub><br>mm | D <sub>Vj [KAL]</sub><br>mm | D <sub>Vj [LEV]</sub><br>mm | D <sub>Vj [EIB]</sub><br>mm | D <sub>Vj [SKA]</sub><br>mm | D <sub>vj [ROT]</sub><br>mm | D <sub>Vj [GAA]</sub><br>mm | D <sub>Vj [YAL]</sub><br>mm | D <sub>Vj [PEV]</sub><br>mm | D <sub>Vj [INL]</sub><br>mm | D <sub>vj [BOC]</sub><br>mm |
| 113 | 1,41                          | 69,18                         | 3,52                        | 0,74                        | 2,93                        | 1,06                        | 6,21                        | 6,82                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 8,91                        | 3,33                        |
| 114 | 0,69                          | 67,66                         | 2,54                        | 0,51                        | 3,54                        | 0,66                        | 6,24                        | 4,34                        | 0,23                        | 4,45                        | 2,02                        | 2,40                        | 8,94                        | 2,53                        |
| 115 | 2,09                          | 151,22                        | 4,21                        | 1,63                        | 0,88                        | 3,81                        | 4,86                        | 18,17                       | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 7,56                        | 4,21                        |
| 116 | 1,87                          | 61,45                         | 4,00                        | 0,79                        | 2,80                        | 0,58                        | 6,34                        | 7,35                        | 0,20                        | 6,67                        | 3,87                        | 4,10                        | 9,04                        | 3,91                        |
| 117 | 1,41                          | 75,99                         | 3,52                        | 0,77                        | 2,83                        | 1,20                        | 6,10                        | 7,21                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 8,80                        | 3,33                        |
| 118 | 1,16                          | 50,57                         | 3,22                        | 0,58                        | 3,36                        | 0,61                        | 6,52                        | 5,08                        | 0,21                        | 5,61                        | 2,84                        | 3,18                        | 9,22                        | 3,04                        |
| 119 | 1,41                          | 57,46                         | 3,52                        | 0,67                        | 3,11                        | 0,80                        | 6,40                        | 6,09                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 9,10                        | 3,33                        |
| 120 | 0,99                          | 36,04                         | 2,99                        | 0,49                        | 3,61                        | 0,60                        | 6,76                        | 4,06                        | 0,22                        | 5,25                        | 2,55                        | 2,92                        | 9,46                        | 2,85                        |
| 121 | 1,24                          | 44,09                         | 3,32                        | 0,58                        | 3,36                        | 0,79                        | 6,63                        | 5,06                        | 0,21                        | 5,76                        | 2,96                        | 3,30                        | 9,33                        | 3,13                        |
| 122 | 0,89                          | 15,32                         | 2,85                        | 0,40                        | 3,82                        | 0,38                        | 7,10                        | 3,20                        | 0,22                        | 5,02                        | 2,39                        | 2,76                        | 9,80                        | 2,74                        |
| 123 | 0,99                          | 56,33                         | 2,99                        | 0,57                        | 3,41                        | 0,82                        | 6,42                        | 4,88                        | 0,22                        | 5,25                        | 2,55                        | 2,92                        | 9,12                        | 2,85                        |
| 124 | 0,60                          | 38,50                         | 2,38                        | 0,39                        | 3,84                        | 0,66                        | 6,72                        | 3,13                        | 0,24                        | 4,13                        | 1,84                        | 2,23                        | 9,42                        | 2,44                        |
| 125 | 0,78                          | 55,76                         | 2,69                        | 0,50                        | 3,57                        | 0,72                        | 6,43                        | 4,22                        | 0,23                        | 4,73                        | 2,19                        | 2,57                        | 9,13                        | 2,63                        |
| 126 | 2,53                          | 105,08                        | 4,59                        | 1,27                        | 1,54                        | 3,15                        | 5,62                        | 13,37                       | 0,19                        | 7,34                        | 4,70                        | 4,82                        | 8,32                        | 4,85                        |
| 127 | 2,34                          | 80,37                         | 4,43                        | 1,03                        | 2,13                        | 2,52                        | 6,03                        | 10,31                       | 0,19                        | 7,16                        | 4,47                        | 4,62                        | 8,73                        | 4,56                        |
| 128 | 1,64                          | 35,98                         | 3,76                        | 0,63                        | 3,22                        | 1,04                        | 6,76                        | 5,62                        | 0,20                        | 6,37                        | 3,55                        | 3,82                        | 9,46                        | 3,60                        |
| 129 | 2,09                          | 35,48                         | 4,21                        | 0,70                        | 3,03                        | 1,07                        | 6,77                        | 6,41                        | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 9,47                        | 4,21                        |
| 130 | 2,82                          | 89,85                         | 4,82                        | 1,22                        | 1,65                        | 2,78                        | 5,87                        | 12,73                       | 0,19                        | 7,58                        | 5,05                        | 5,11                        | 8,57                        | 5,33                        |
| 131 | 2,53                          | 82,54                         | 4,59                        | 1,10                        | 1,96                        | 2,70                        | 5,99                        | 11,13                       | 0,19                        | 7,34                        | 4,70                        | 4,82                        | 8,69                        | 4,85                        |
| 132 | 2,82                          | 140,13                        | 4,82                        | 1,75                        | 0,71                        | 2,67                        | 5,04                        | 19,86                       | 0,19                        | 7,58                        | 5,05                        | 5,11                        | 7,74                        | 5,33                        |
| 133 | 3,58                          | 166,94                        | 5,38                        | 2,40                        | 0,19                        | 5,45                        | 4,60                        | 29,38                       | 0,18                        | 8,11                        | 5,90                        | 5,81                        | 7,30                        | 6,75                        |
| 134 | 3,89                          | 191,33                        | 5,59                        | 2,98                        | 0,04                        | 8,57                        | 4,19                        | 38,47                       | 0,18                        | 8,30                        | 6,24                        | 6,08                        | 6,89                        | 7,42                        |
| 135 | 3,12                          | 149,37                        | 5,05                        | 1,98                        | 0,46                        | 5,22                        | 4,89                        | 23,22                       | 0,18                        | 7,81                        | 5,40                        | 5,40                        | 7,59                        | 5,86                        |
| 136 | 3,58                          | 165,76                        | 5,38                        | 2,38                        | 0,20                        | 6,37                        | 4,61                        | 29,14                       | 0,18                        | 8,11                        | 5,90                        | 5,81                        | 7,31                        | 6,75                        |
| 137 | 3,12                          | 166,98                        | 5,05                        | 2,26                        | 0,25                        | 7,39                        | 4,59                        | 27,36                       | 0,18                        | 7,81                        | 5,40                        | 5,40                        | 7,29                        | 5,86                        |
| 138 | 2,82                          | 165,00                        | 4,82                        | 2,13                        | 0,34                        | 5,98                        | 4,63                        | 25,34                       | 0,19                        | 7,58                        | 5,05                        | 5,11                        | 7,33                        | 5,33                        |
| 139 | 3,89                          | 162,37                        | 5,59                        | 2,43                        | 0,17                        | 5,91                        | 4,67                        | 29,91                       | 0,18                        | 8,30                        | 6,24                        | 6,08                        | 7,37                        | 7,42                        |
| 140 | 2.82                          | 88.07                         | 4.82                        | 1.19                        | 1,73                        | 2,25                        | 5,90                        | 12,34                       | 0.19                        | 7,58                        | 5.05                        | 5,11                        | 8,60                        | 5.33                        |

| Tabe | la 5.5 - 1            | Diâmetro              | os estima             | ados pela             | s equaçõ              | ões analí             | ticas de              | senvolvi              | das para              | a o Rio A             | Atibaia               |                       |                       |                       |
|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| (1)  | (1)                   | (2)                   | (3)                   | (4)                   | (5)                   | (6)                   | (7)                   | (8)                   | (9)                   | (10)                  | (11)                  | (12)                  | (13)                  | (14)                  |
| N°   | D <sub>Vj</sub> [DUB] | D <sub>vj [sch]</sub> | D <sub>Vj [SHI]</sub> | D <sub>vj [MPM]</sub> | D <sub>vj [KAL]</sub> | D <sub>Vj</sub> [LEV] | D <sub>Vj</sub> [EIB] | D <sub>Vj [SKA]</sub> | D <sub>vj [ROT]</sub> | D <sub>vj [GAA]</sub> | D <sub>Vj [YAL]</sub> | D <sub>Vj</sub> [PEV] | D <sub>Vj</sub> [INL] | D <sub>vj [BOG]</sub> |
|      | (mm)                  | (mm)                  | mm                    |
| 141  | 13,20                 | 61,80                 | 9,74                  | 2,05                  | 0,40                  | 1,43                  | 6,33                  | 24,24                 | 0,15                  | 11,01                 | 13,81                 | 11,68                 | 9,03                  | 86,55                 |
| 142  | 3,27                  | 78,05                 | 5,16                  | 1,20                  | 1,71                  | 2,25                  | 6,06                  | 12,41                 | 0,18                  | 7,91                  | 5,57                  | 5,54                  | 8,76                  | 6,15                  |
| 143  | 2,38                  | 68,18                 | 4,46                  | 0,95                  | 2,33                  | 2,04                  | 6,23                  | 9,34                  | 0,19                  | 7,20                  | 4,52                  | 4,67                  | 8,93                  | 4,63                  |
| 144  | 2,53                  | 51,99                 | 4,59                  | 0,87                  | 2,55                  | 2,58                  | 6,50                  | 8,37                  | 0,19                  | 7,34                  | 4,70                  | 4,82                  | 9,20                  | 4,85                  |
| 145  | 2,58                  | 42,28                 | 4,63                  | 0,82                  | 2,70                  | 1,73                  | 6,66                  | 7,73                  | 0,19                  | 7,39                  | 4,77                  | 4,88                  | 9,36                  | 4,95                  |
| 146  | 2,53                  | 45,31                 | 4,59                  | 0,83                  | 2,68                  | 1,86                  | 6,61                  | 7,82                  | 0,19                  | 7,34                  | 4,70                  | 4,82                  | 9,31                  | 4,85                  |
| 147  | 0,44                  | 25,41                 | 2,07                  | 0,31                  | 4,02                  | 1,06                  | 6,93                  | 2,32                  | 0,25                  | 3,46                  | 1,51                  | 1,90                  | 9,63                  | 2,28                  |
| 148  | 2,53                  | 73,79                 | 4,59                  | 1,02                  | 2,16                  | 2,24                  | 6,13                  | 10,15                 | 0,19                  | 7,34                  | 4,70                  | 4,82                  | 8,83                  | 4,85                  |
| 149  | 2,09                  | 11,30                 | 4,21                  | 0,59                  | 3,33                  | 0,73                  | 7,17                  | 5,17                  | 0,20                  | 6,92                  | 4,16                  | 4,36                  | 9,87                  | 4,21                  |
| 150  | 2,53                  | 28,18                 | 4,59                  | 0,73                  | 2,94                  | 1,35                  | 6,89                  | 6,76                  | 0,19                  | 7,34                  | 4,70                  | 4,82                  | 9,59                  | 4,85                  |
| 151  | 2,82                  | 50,62                 | 4,82                  | 0,92                  | 2,42                  | 2,09                  | 6,52                  | 8,94                  | 0,19                  | 7,58                  | 5,05                  | 5,11                  | 9,22                  | 5,33                  |
| 152  | 2,38                  | 36,91                 | 4,46                  | 0,76                  | 2,87                  | 1,49                  | 6,74                  | 7,04                  | 0,19                  | 7,20                  | 4,52                  | 4,67                  | 9,44                  | 4,63                  |
| 153  | 2,82                  | 83,85                 | 4,82                  | 1,19                  | 1,73                  | 3,21                  | 5,97                  | 12,34                 | 0,19                  | 7,58                  | 5,05                  | 5,11                  | 8,67                  | 5,33                  |
| 154  | 3,27                  | 85,26                 | 5,16                  | 1,30                  | 1,49                  | 3,80                  | 5,95                  | 13,68                 | 0,18                  | 7,91                  | 5,57                  | 5,54                  | 8,65                  | 6,15                  |
| 155  | 6,89                  | 22,10                 | 7,24                  | 0,82                  | 2,71                  | 0,55                  | 7,69                  | 7,72                  | 0,16                  | 9,57                  | 9,04                  | 8,25                  | 10,39                 | 17,37                 |
| 156  | 3,58                  | 179,08                | 5,38                  | 2,62                  | 0,11                  | 9,22                  | 4,39                  | 32,80                 | 0,18                  | 8,11                  | 5,90                  | 5,81                  | 7,09                  | 6,75                  |
| 157  | 3,12                  | 66,14                 | 5,05                  | 1,07                  | 2,02                  | 2,59                  | 6,26                  | 10,83                 | 0,18                  | 7,81                  | 5,40                  | 5,40                  | 8,96                  | 5,86                  |
| 158  | 3,12                  | 70,01                 | 5,05                  | 1,10                  | 1,95                  | 2,99                  | 6,20                  | 11,16                 | 0,18                  | 7,81                  | 5,40                  | 5,40                  | 8,90                  | 5,86                  |
| 159  | 3,27                  | 82,61                 | 5,16                  | 1,23                  | 1,63                  | 3,34                  | 5,99                  | 12,88                 | 0,18                  | 7,91                  | 5,57                  | 5,54                  | 8,69                  | 6,15                  |
| 160  | 5,69                  | 107,83                | 6,64                  | 1,94                  | 0,50                  | 5,03                  | 5,57                  | 22,59                 | 0,17                  | 9,14                  | 7,98                  | 7,45                  | 8,27                  | 12,48                 |
| 161  | 2,82                  | 75,55                 | 4,82                  | 1,09                  | 1,97                  | 3,19                  | 6,11                  | 11,09                 | 0,19                  | 7,58                  | 5,05                  | 5,11                  | 8,81                  | 5,33                  |
| 162  | 3,58                  | 128,23                | 5,38                  | 1,81                  | 0,63                  | 7,42                  | 5,23                  | 20,77                 | 0,18                  | 8,11                  | 5,90                  | 5,81                  | 7,93                  | 6,75                  |
| 163  | 1,41                  | 100,35                | 3,52                  | 0,97                  | 2,29                  | 5,40                  | 5,70                  | 9,53                  | 0,21                  | 6,04                  | 3,22                  | 3,53                  | 8,40                  | 3,33                  |
| 164  | 6,54                  | 94,94                 | 7,08                  | 1,89                  | 0,54                  | 5,22                  | 5,79                  | 21,91                 | 0,16                  | 9,45                  | 8,74                  | 8,02                  | 8,49                  | 15,81                 |
| 165  | 3,58                  | 73,38                 | 5,38                  | 1,21                  | 1,69                  | 4,11                  | 6,14                  | 12,56                 | 0,18                  | 8,11                  | 5,90                  | 5,81                  | 8,84                  | 6,75                  |
| 166  | 4,86                  | 83,30                 | 6,18                  | 1,51                  | 1,07                  | 5,20                  | 5,98                  | 16,54                 | 0,17                  | 8,79                  | 7,20                  | 6,84                  | 8,68                  | 9,86                  |
| 167  | 2,38                  | 113,15                | 4,46                  | 1,34                  | 1,40                  | 7,21                  | 5,48                  | 14,27                 | 0,19                  | 7,20                  | 4,52                  | 4,67                  | 8,18                  | 4,63                  |
| 168  | 3,89                  | 152,46                | 5,59                  | 2,24                  | 0,27                  | 7,70                  | 4,83                  | 27,06                 | 0,18                  | 8,30                  | 6,24                  | 6,08                  | 7,53                  | 7,42                  |

Tabela 5.5 - Diâmetros estimados pelas equações analíticas desenvolvidas para o Rio Atibaia

| (1) | (1)                   | (2)                   | (3)                   | (4)                   | (5)                   | (6)                   | (7)                   | (8)                   | (9)                   | (10)                  | (11)                  | (12)                  | (13)                  | (14)                  |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| N°  | D <sub>Vj</sub> [DUB] | D <sub>Vj [SCH]</sub> | D <sub>Vj [SHI]</sub> | D <sub>Vj</sub> [MPM] | D <sub>vj [kal]</sub> | D <sub>Vj</sub> [LEV] | D <sub>Vj [EIB]</sub> | D <sub>Vj [SKA]</sub> | D <sub>vj [Rot]</sub> | D <sub>vj [GAA]</sub> | D <sub>Vj [YAL]</sub> | D <sub>Vj</sub> [PEV] | D <sub>Vj [INL]</sub> | D <sub>vj [вос]</sub> |
|     | (mm)                  | (mm)                  | mm                    |
| 169 | 3,27                  | 52,49                 | 5,16                  | 0,98                  | 2,25                  | 2,27                  | 6,49                  | 9,73                  | 0,18                  | 7,91                  | 5,57                  | 5,54                  | 9,19                  | 6,15                  |
| 170 | 2,82                  | 39,23                 | 4,82                  | 0,84                  | 2,64                  | 2,34                  | 6,71                  | 8,01                  | 0,19                  | 7,58                  | 5,05                  | 5,11                  | 9,41                  | 5,33                  |
| 171 | 3,12                  | 33,75                 | 5,05                  | 0,85                  | 2,62                  | 2,00                  | 6,80                  | 8,08                  | 0,18                  | 7,81                  | 5,40                  | 5,40                  | 9,50                  | 5,86                  |

Legenda referente a tabela 5.5

Dvj <sub>[DuB]</sub> - Diâmetro calculado pela equação: DVj <sub>[DUB]</sub>=73,595 x S<sup>1,2139</sup>. Para o método de Du-Boys (1879)

D<sub>Vi ISCHI</sub> - Diâmetro calculado pela equação: D<sub>Vi ISCHI</sub>= 0,0726 x ln[Q] - 0,1419. Para o método de Schoklitsch (1914, 1950)

D<sub>Vi ISHII</sub> - Diâmetro calculado pela equação: D<sub>Vi ISHII</sub> = 0,4965 x S<sup>0,5532</sup>. Para o método de Shields (1936)

D<sub>Vi [MPM]</sub> - Diâmetro calculado pela equação: D<sub>Vi [MPM]</sub> = 0,0034 x Pc<sup>0,576</sup>. Para o método de Meyer-Peter-Muller

D<sub>Vi [KAL]</sub> - Diâmetro calculado pela equação: D<sub>Vi [KAL]</sub> = 0,0044 x [e<sup>-5,7716 x Pc</sup>]. Para o método de Kalinske

D<sub>Vi [LEV]</sub> - Diâmetro calculado pela equação: D<sub>Vi [LEV]</sub> = 2,3204 x Cp<sup>-1,7324</sup>. Para o método de Levi (1948)

D<sub>Vi [EIB]</sub> - Diâmetro calculado pela equação: D<sub>Vi [EIB]</sub> = - 0,0012 x Ln(Q) + 0,0097. Para o método de Eistein & Brow (1942-1950)

D<sub>Vi [SKA]</sub> - Diâmetro calculado pela equação: DVj <sub>[SKA]</sub> = 0,0453 x Pc<sup>0,7149</sup>. Para o método de Sato, Kikkawa & Ashida.

 $D_{Vj [ROT]}$  - Diâmetro calculado pela equação:  $D_{Vj [ROT]} = 4 \times 10^{-05} \times S^{-0,1843}$ . Para o método de Rottner

D<sub>Vi [GAA]</sub> - Diâmetro calculado pela equação: D<sub>Vi [GAA]</sub>= 0,0027x Ln(S) + 0,0302 Para o método de Garde & Albertson (1961)

D<sub>Vi [YAL]</sub> - Diâmetro calculado pela equação: D<sub>Vi [YAL]</sub> = 3,8117 x S<sup>0,7909</sup> Para o método de Yalin (1963)

D<sub>Vi (PEV)</sub> - Diâmetro calculado pela equação: D<sub>Vi (PEV)</sub> = 1,1846 x S<sup>0,65</sup> . Para o método de Pernecker & Vollmer (1965)

D<sub>Vj [INL]</sub> - Diâmetro calculado pela equação: DVj [INL] = - 0,0012xLn(Q) + 0,0124 . Para o método de Inglis & Lacey (1968)

D<sub>Vi (BOCI</sub> - Diâmetro calculado pela equação: D<sub>Vi (BOCI</sub> = 0,0018 x [e <sup>4723,1x \$</sup>]Para o método de Bogardi (1955, 1974)

Quando os valores máximos, apresentados nos **quadros 5.1 e 5.3**, são comparados observa-se que apenas **3 (três)** das quatorze equações analíticas geram valores menores do que aqueles máximos coletados para as classes granulométricas compreendidas entre o  $D_{10}$  (0,36 mm) e o  $D_{90}$  (6,23 mm). Ou seja, as aplicações das equações analíticas para os métodos de Meyer-Peter e Muller (1914), Kalinske (1947) e Rottner (1950) resultaram, respectivamente, nos valores 2,98 mm, 4,27 mm e 0,27 mm.

Prosseguindo a comparação, agora entre os valores mínimos, observa-se a mesma tendência de os valores estimados serem maiores do que aqueles coletados. Nota-se, entretanto, que oito dos valores calculados são maiores do que os observados para o Rio Atibaia quando se considera a faixa de diâmetros compreendida entre o diâmetro  $D_{10}$  e o  $D_{90}$ .

Ainda fazendo a comparação entre os valores estimados e os obtidos pelas coletas de campo, apresenta-se, na **tabela 5.6**, uma alternativa de comparar, agora não mais pelos valores médios, máximos e mínimos, mas sim considerando dado por dado. Esta tabela refere-se ao método de Duboys (1879) usada aqui para exemplificar o procedimento. As demais, referentes aos outros 13 treze métodos, constam no Anexo I.

Na **tabela 5.6**, as colunas numeradas de dois a oito referem-se às classes granulométricas coletadas no Rio Atibaia. A coluna nove traz a série de diâmetros calculados pela equação analítica desenvolvida para o método de Du-Boys (1879).

Nas colunas de dez a dezesseis apresenta-se uma alternativa de comparação entre os diâmetros calculados e os coletados. Desse modo, pode-se detalhar a quantidade de eventos dos diâmetros calculados cuja magnitude é maior ou não do que aquelas correspondentes aos

diâmetros coletados. É oportuno esclarecer que as células preenchidas com o número 1 identificam o diâmetro do sedimento coletado cuja magnitude é menor do que aquela dos diâmetros calculados. Do contrário, a célula será preenchida com o número zero. Nas colunas compreendidas entre dezessete e vinte e três, colocou-se a diferença percentual relativa entre os valores. Destaca-se que a comparação foi feita sempre em relação ao maior valor.

O quadro 5.4 representa um extrato dos dados apresentados na tabela 5.6 na qual pode-se observar que é evidente a tendência de os diâmetros calculados apresentarem valores que se aproximam mais daqueles observados para a faixa granulométrica mais graúda, ou seja, superior ao  $D_{65}$ .

Observa-se que, em quase 94% das vezes, os valores estimados para o método de Du-Boys são maiores do que aqueles observados para o Rio Atibaia, quando se analisa integralmente a faixa granulométrica compreendida do  $D_{10}$  ao  $D_{50}$ . Observa-se também que em mais de 85% das vezes os valores são maiores do que os diâmetros coletados quando se compara ao diâmetro  $D_{65}$ . No entanto, quando se compara ao  $D_{84}$  e ao  $D_{90}$ , as porcentagens caem, respectivamente, para 57,9% e 46,2%.

Nota-se, no lado direto do **quadro 5.4**, no "**site**" onde se apresentam as diferenças percentuais relativas médias **[DPRM]** entre os valores – reportando-se que se comparou sempre pelo maior valor – que há uma tendência de redução da diferença dessas percentagens quando aumenta a granulometria. O valor de 207,1% para o  $D_{84}$  identifica que os valores estimados aproximam-se mais desta classe.

| Quaul 0 3.5           | Kesuin | o uos carcu            | 105 u05 u1a | men os estimados peras equações ana                                  | inicas desenvorvidas para o Trio Aribaia. |
|-----------------------|--------|------------------------|-------------|----------------------------------------------------------------------|-------------------------------------------|
| Símbolo               | Diâı   | netros estin<br>[ mm ] | mados       | Equação                                                              | AUTOR                                     |
|                       | Média  | Máximo                 | Mínimo      |                                                                      |                                           |
| D <sub>Vj [DUB]</sub> | 2,14   | 13,19                  | 0,24        | $D_{V_{j}[DUB]} = 73,595 \text{ x S}^{1,2139}$                       | 1 – DuBoys (1879) e Straub (1935)         |
| D <sub>Vi [SCH]</sub> | 81,54  | 226,47                 | 0,06        | D <sub>Vj [SCH]</sub> =0,0726x ln[Q]-0,1419                          | 2 - Schoklitsch (1914, 1950)              |
| D <sub>Vj [SCI]</sub> | 4,04   | 9,74                   | 1,56        | $D_{\rm Vj [SHI]} = 0,4965 \ {\rm x} \ {\rm S}^{0,5532}$             | 3 - Shields (1936)                        |
| D <sub>Vj [MPM]</sub> | 1,04   | 2,98                   | 0,16        | $D_{Vj [MPM]} = 0,0034 \text{ x Pc}^{0,576}$                         | 4 - Meyer-Peter e Müller (1948)           |
| D <sub>Vj [KAL]</sub> | 2,33   | 4,27                   | 0,05        | $D_{Vj [KAL]} = 0,0044 \text{ x } [e^{-5,7716 \text{ x } Pc}]$       | 5 - Kalinske (1947)                       |
| D <sub>Vj [LEV]</sub> | 2,11   | 9,22                   | 0,05        | $D_{V_{j}[LEV]} = 2,3204 \text{ x Cp}^{-1,7324}$                     | 6 - Levi (1948)                           |
| D <sub>Vj [EIB]</sub> | 6,02   | 8,12                   | 3,61        | $D_{V_{j}[EB]} = -0,0012 x Ln(Q) + 0,0097$                           | 7-Einstein (1942) & Einstein-Brown (1950) |
| D <sub>Vj [SKA]</sub> | 10,94  | 38,47                  | 1,05        | $D_{Vj[SKA]} = 0,0453 \text{ x Pc}^{0,7149}$                         | 8 - Sato, Kikkawa e Ashida (1958)         |
| D <sub>Vj [ROT]</sub> | 0,20   | 0,27                   | 0,15        | $D_{V_{i}[ROT]} = 4 \times 10^{-05} \times S^{-0,1843}$              | 9 - Rottner (1959)                        |
| D <sub>Vj[GAA]</sub>  | 6,52   | 11,01                  | 2,08        | $D_{V_{i}[GAA]} = 0,0027 x Ln(S) + 0,0302$                           | 10 -Garde e Albertson (1961)              |
| D <sub>Vj [YAL]</sub> | 4,03   | 13,81                  | 1,01        | $D_{V_{j}[YAL]} = 3,8117 \text{ x S}^{0,7909}$                       | 11 - Yalin (1963)                         |
| D <sub>Vj [PEV]</sub> | 4,19   | 11,68                  | 1,36        | $D_{V_{j}[PEV]} = 1,1846 \text{ x S}^{0,65}$                         | 12 - Pernecker e Vollmer (1965)           |
| D <sub>Vj [INL]</sub> | 8,72   | 10,82                  | 6,31        | $D_{Vj[INL]} = -0,0012xLn(Q) + 0,0124$                               | 13 - Inglis e Lacey (1968)                |
| D <sub>Vj [BOG]</sub> | 5,27   | 86,55                  | 2,07        | $D_{V_{i}[BOG]} = 0,0018 \text{ x} [e^{4723,1 \text{ x} \text{ S}}]$ | 14 - Bogardi (1974)                       |

Quadro 5.3 – Resumo dos cálculos dos diâmetros estimados pelas equações analíticas desenvolvidas para o Rio Atibaia.

Para o método de Shoklitsch (1914, 1950), quase que na totalidade dos casos, o diâmetro calculado é maior do que aqueles observados para as classes granulométricas compreendidas entre o  $D_{10}$  e  $D_{90}$  coletadas no Rio Atibaia. A diferença percentual relativa média de 6937,6% revela que os valores estimados mais se aproximam do  $D_{90}$ . Ademais, os altos valores de tais diferenças mostram ainda que os valores calculados revelaram-se bem maiores do que os coletados.

Ao se analisar o método de Shields (1936), percebe-se que, em cem por cento dos casos, os valores dos diâmetros calculados foram maiores do que aqueles coletados, quando se compara com a classe granulométrica compreendida entre o  $D_{10}$  e o  $D_{50}$ . Ao se comparar com as classes  $D_{65}$ ,  $D_{84}$  e a  $D_{90}$ , nota-se que as porcentagens em que os valores estimados superam os coletados são, respectivamente, de 99,42%, 87,72% e 77,19%. A "DPRM" de 236,2% revela que os valores calculados mais se aproximam do  $D_{90}$ .

No que se refere ao método de Meyer-Peter & Muller (1948), ainda encontrou-se quantidades substanciais de eventos cujo diâmetro calculado superou os diâmetros daqueles estimados. Mas, somente até a classe granulométrica compreendida entre o  $D_{10}$  e o  $D_{65}$ , esse comportamento foi observado.

Para as outras duas classes granulométricas subseqüentes, a tendência se inverteu e 70% dos diâmetros da classe granulométrica  $D_{84}$  coletada é maior do que os valores estimados. Para a classe granulométrica  $D_{90}$ , cerca de 80% dos diâmetros coletados são maiores do que aqueles calculados para o método de Mayer-Peter & Muller. Ao se analisar sob a ótica da "DPRM" (165,2%), vê-se que os diâmetros calculados mais se aproximam daqueles para a classe granulométrica equivalente ao  $D_{65}$ . A equação de estimativa do diâmetro para o método de Kalinske (1947) gerou valores com magnitudes menores para cerca de 50% dos casos, quando se comparam as classes granulométricas compreendidas entre o  $D_{10}$  e o  $D_{65}$ . Mas, quando a comparação é feita com o  $D_{84}$ , ou com o  $D_{90}$ , os valores dos diâmetros coletados com magnitudes maiores é a maioria, apresentando, respectivamente, porcentagens de 60 % e 70%. A análise com a DPRM (305,5%) revela que os valores estimados mais se aproximam da classe granulométrica  $D_{65}$ .

Quando se tomam como base as classes granulométricas  $D_{10}$  e  $D_{16}$ , mais de 90% dos valores gerados pela equação analítica que estima os diâmetros para o método de Levi (1948) apresentaram magnitudes maiores do que aquelas observadas para os diâmetros coletados no Rio Atibaia.

Ainda com relação ao método de Levi (1948), ao se comparar com a classe granulométrica  $D_{35}$ , mais de 84% dos diâmetros calculados são maiores do que o daqueles coletados. Mas, quando se muda a análise para as classes granulométricas acima do  $D_{50}$ , a quantidade de eventos em que o diâmetro calculado é maior, em relação à quantidade de valores dos diâmetros coletados, começa a diminuir.

Nas classes granulométricas correspondentes ao  $D_{84}$  e ao  $D_{90}$ , as quantidades de eventos em que os valores dos diâmetros do material coletado ultrapassam aquela dos calculados pelo método de Levi (1948) são, respectivamente, 52,05% e de 65,5%. Pela análise da DMRM (371,2%), observa-se que o diâmetro do material calculado que mais se aproximou do coletado foi o  $D_{84}$ .

A equação analítica para o cálculo do diâmetro referente ao método de Einstein & Brow (1950) estimou valores maiores do que os calculados para quase 100% das comparações com os valores dos diâmetros coletados. Ao se analisar pela **DPRM (325,5%)** nota-se que os valores calculados mais se aproximam do diâmetro da classe granulométrica correspondente ao  $D_{90}$ .

A equação analítica de estimativa do diâmetro do método de Sato, Kikkawa e Ashida (1958), em 100% dos casos, estimou diâmetros com valores maiores do que aqueles correspondentes às classes granulométricas  $D_{10}$ ,  $D_{16}$ ,  $D_{35}$  e ao  $D_{50}$ . Para as demais classes granulométricas, a quantidade de eventos cujo diâmetro calculado foi maior continuou sendo maioria, sempre com porcentagens maiores do que 90%. A análise pela **DPRM (921%)** indica que o diâmetro calculado mais se aproxima do  $D_{90}$ .

A estimativa do diâmetro pela equação usada para o método de Rottner (1959) apresentou resultado atípico em relação às demais. Razão pela qual, foi somente na comparação com a classe granulométrica  $D_{10}$  que cerca de 54% da quantidade de eventos dos diâmetros calculados apresentou magnitudes maiores do que aquelas observadas para os diâmetros coletados no Rio Atibaia.

Para a classe granulométrica  $D_{16}$ , os valores dos diâmetros coletados em 68,4% dos casos são maiores do que aqueles calculados, assim como para a classe granulométrica  $D_{35}$  – na qual, em 92,4% dos casos, o diâmetro coletado é maior. A partir da classe granulométrica  $D_{50}$ , a quantidade de eventos em que o diâmetro do material coletado é maior do que o calculado aumenta substancialmente. E, em quase 100% dos casos, o diâmetro coletado é maior do que aquele calculado. A análise pela **DPRM (26,3%)** indica que o diâmetro calculado mais se aproxima do  $D_{10}$ . As equações analíticas de estimativa do diâmetro para os métodos de Garde e Albertson (1961) estimaram valores maiores do que aqueles observados em quase 100% dos casos, ao se comparar com as classes granulométricas observadas no Rio Atibaia. Entretanto, pela análise da **DPRM (409%)**, nota-se que os diâmetros calculados mais se aproximam do **D**<sub>90</sub>.

As equações analíticas de estimativa do diâmetro para os métodos de Yalin (1963), Pernecker e Vollmer (1965), Inglis e Lacei (1968) e Bogardi (1974) estimaram valores maiores do que aqueles coletados para o Rio Atibaia em quase 100% dos casos, quando se compara às classes granulométricas compreendidas entre o  $D_{10}$  e o  $D_{65}$ .

Ao se comparar às demais classes granulométricas, nota-se que a quantidade de eventos cujos valores dos diâmetros estimados para o método de Yalin (1963) são maiores do que os coletados no Rio Atibaia totalizam 86% e 73,7%, respectivamente, quando se compara às classes granulométricas  $D_{84}$  e o  $D_{90}$ . Pela análise da DPRM (253,1%), nota-se que o diâmetro estimado mais se aproxima do  $D_{90}$ .

Quando se comparam os diâmetros calculados com aqueles das classes granulométricas  $D_{84}$  e a  $D_{90}$ , nota-se que a equação de estimativa do diâmetro para o método de Pernecker e Volmer (1965) estimou quantidades de eventos maiores em, respectivamente, 87,7% e 73,7% dos casos. Ao se analisar pela DPRM (253,3%), nota-se que o diâmetro calculado mais se aproxima do  $D_{90}$  coletado no leito do Rio Atibaia.

A equação analítica de estimativa do diâmetro desenvolvida para o método de Inglis e Lacei (1968) estimou valores maiores do que aqueles coletados no Rio Atibaia em cem por cento dos casos, quando se compara com todas as classes granulométricas encontradas no rio Atibaia. Entretanto, ao se analisar pela **DPRM (523,5%)**, observa-se que o diâmetro calculado mais se aproxima do  $D_{90}$ .

A estimativa pela equação usada no cálculo do diâmetro para o método de Bogardi (1974) resultou valores dos diâmetros maiores do que aqueles coletados no Rio Atibaia em quase 100% dos casos, quando se analisam as classes granulométricas compreendidas entre o  $D_{10}$  e o  $D_{65}$ . Porém, ao se observarem as classes  $D_{84}$  e o  $D_{90}$ , notam-se uma ligeira redução da porcentagem em que a quantidade de eventos de diâmetros calculados é maior do que os diâmetros daqueles coletados, mudando de 100% para, respectivamente, 87,7% e 78,4%. A análise pela DPRM (350,4%) identifica que o diâmetro calculado mais se aproxima do  $D_{90}$ .

| Tal | bela 5.         | 6 - Coi         | mpara           | ção en   | tre os          | diâme | tros ca | alculados             | pelas           | equa            | ções d          | e estin         | nativa:            | s dese                      | nvolvi          | das para | o Rio A | tibaia e | os diâme | tros cole | etados             |        |
|-----|-----------------|-----------------|-----------------|----------|-----------------|-------|---------|-----------------------|-----------------|-----------------|-----------------|-----------------|--------------------|-----------------------------|-----------------|----------|---------|----------|----------|-----------|--------------------|--------|
|     | DIÂME           | TROS            | DO LET          | TO DO    | PARA C          | RIO A | TIBAIA  |                       |                 | COMPA           | <b>ARAÇÃ</b>    | O ENTI          | RE D <sub>VJ</sub> | <sub>№</sub> D <sub>i</sub> |                 | RELAÇ    | ÃO PERC | ENTUAL E | NTRE OS  | VALORES   | DE D <sub>VJ</sub> |        |
|     | Granul          | ometria         | a do mat        | erial do | leito           |       |         |                       | (10)            | (11)            | (12)            | (13)            | (14)               | (15)                        | (16)            | E        | OS VALO | RES MED  | IDOS NO  | RIO ATIB. | AIA                |        |
| (l) | (2)             | (3)             | (4)             | (5)      | (6)             | (7)   | (8)     | (9)                   |                 | COMP            | ARAÇ            | ÃO DE           | Dvj puj            | COM                         |                 | (17)     | (18)    | (19)     | (20)     | (21)      | (22)               | (23)   |
| N°  | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D50      | D <sub>65</sub> | D84   | D90     | D <sub>VJ</sub> [DUB] | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>    | D84                         | D <sub>90</sub> |          | i       | <3       |          | 1         |                    |        |
|     | (mm)            | (mm)            | (mm)            | (mm)     | (mm)            | (mm)  | (mm)    | (mm)                  |                 |                 | 0.000           |                 |                    |                             |                 |          |         | e        |          |           |                    |        |
| 1   | 0,15            | 0,18            | 0,34            | 0,64     | 0,97            | 1,56  | 1,86    | 2,29                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 1429,4   | 1174.5  | 574,7    | 258,5    | 136,5     | 47,1               | 23,3   |
| 2   | 0,19            | 0,24            | 0,37            | 0,54     | 0,88            | 2,77  | 3,82    | 2,34                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 1130,1   | 873,8   | 531,7    | 332,8    | 165,6     | 18,5               | 63,4   |
| 3   | 0,24            | 0,29            | 0,48            | 0,68     | 1,04            | 2,96  | 4,11    | 2,17                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 802,3    | 646,7   | 351,2    | 218,5    | 108,2     | 36,7               | 89,8   |
| 4   | 0,22            | 0,27            | 0,53            | 0,86     | 1,37            | 3,24  | 4,22    | 2,54                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 1054,7   | 840,9   | 379,3    | 195,4    | 85,4      | 27,5               | 66,1   |
| 5   | 0,24            | 0,28            | 0,40            | 0,51     | 0,64            | 0,97  | 1,23    | 1,86                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 673,8    | 563,2   | 364,3    | 264,1    | 190,2     | 91,4               | 51,0   |
| 6   | 0,33            | 0,40            | 0,71            | 1,02     | 1,47            | 2,50  | 3,13    | 2,84                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 0               | 759,3    | 608,9   | 299,4    | 178,0    | 92,9      | 13,4               | 10,4   |
| 7   | 0,27            | 0,32            | 0,45            | 0,57     | 0,73            | 1,13  | 1,42    | 1,87                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 592,9    | 484,7   | 315,8    | 228,2    | 156,3     | 65,6               | 31,8   |
| 8   | 0,29            | 0,34            | 0,50            | 0,64     | 0,83            | 1,44  | 3,78    | 2,11                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 0               | 627,2    | 520,2   | 321,8    | 229,5    | 154,1     | 46,4               | 79,2   |
| 9   | 0,36            | 0,44            | 0,69            | 0,97     | 1,50            | 4,47  | 4,94    | 1,98                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 450,6    | 350,5   | 187,3    | 104,4    | 32,1      | 125,5              | 149,2  |
| 10  | 0,32            | 0,37            | 0,52            | 0,66     | 0,85            | 1,40  | 2,00    | 1,87                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 0               | 484,7    | 405,6   | 259,8    | 183,5    | 120,1     | 33,6               | 6,9    |
| 11  | 0,30            | 0,36            | 0,56            | 0,78     | 1,22            | 4,10  | 4,75    | 1,09                  | 1               | 1               | 1               | 1               | 0                  | 0                           | 0               | 263,0    | 202,5   | 94,4     | 39,6     | 12,0      | 276,5              | 336,2  |
| 12  | 0,30            | 0,36            | 0,56            | 0,77     | 1,09            | 3,33  | 4,50    | 0,89                  | 1               | 1               | 1               | 1               | 0                  | 0                           | 0               | 197,0    | 147,5   | 59,1     | 15,7     | 22,4      | 273,8              | 405,1  |
| 13  | 0,27            | 0,32            | 0,48            | 0,63     | 0,87            | 3,90  | 4,70    | 0,60                  | 1               | 1               | 1               | 0               | 0                  | 0                           | 0               | 121,1    | 86,6    | 24,4     | 5,5      | 45,7      | 553,3              | 687,3  |
| 14  | 0,27            | 0,32            | 0,47            | 0,64     | 0,92            | 2,30  | 4,02    | 0,24                  | 0               | 0               | 0               | 0               | 0                  | 0                           | 0               | 13,5     | 34,5    | 97,5     | 168,9    | 286,6     | 866,5              | 1589,3 |
| 15  | 0,28            | 0,32            | 0,49            | 0,66     | 0,95            | 2,17  | 3,16    | 0,41                  | 1               | 1               | 0               | 0               | 0                  | 0                           | 0               | 46,6     | 28,3    | 19,4     | 60,8     | 131,5     | 428,8              | 670,0  |
| 16  | 0,24            | 0,27            | 0,37            | 0,47     | 0,61            | 1,00  | 1,45    | 1,64                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 582,6    | 506,7   | 342,7    | 248,5    | 168,5     | 63,8               | 13,0   |
| 17  | 0,31            | 0,37            | 0,51            | 0,63     | 0,80            | 1,29  | 1,77    | 2,84                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 814,7    | 666,4   | 456,0    | 350,1    | 254,4     | 119,8              | 60,2   |
| 18  | 0,28            | 0,34            | 0,51            | 0,69     | 0,97            | 4,77  | 5,11    | 1,64                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 485,1    | 381,8   | 221,2    | 137,4    | 68,9      | 191,2              | 211,9  |
| 19  | 0,31            | 0,37            | 0,55            | 0,71     | 0,96            | 3,63  | 4,62    | 2,22                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 616,9    | 500,7   | 304,1    | 213,0    | 131,5     | 63,3               | 107,9  |
| 20  | 0,29            | 0,35            | 0,50            | 0,63     | 0,80            | 1,24  | 1,64    | 2,47                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 750,9    | 605,0   | 393,5    | 291,7    | 208,4     | 99,0               | 50,5   |
| 21  | 0,34            | 0,44            | 0,84            | 1,26     | 2,14            | 4,52  | 4,96    | 0,78                  | 1               | 1               | 0               | 0               | 0                  | 0                           | 0               | 130,2    | 77,9    | 7,3      | 61,0     | 173,4     | 477,5              | 533,7  |
| 22  | 0,30            | 0,39            | 0,75            | 1,15     | 1,87            | 4,27  | 4,82    | 1,41                  | 1               | 1               | 1               | 1               | 0                  | 0                           | 0               | 370,4    | 261,8   | 88,1     | 22,7     | 32,5      | 202,6              | 241,6  |
| 23  | 0,30            | 0,36            | 0,51            | 0,63     | 0,81            | 1,26  | 1,71    | 2,34                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 679,1    | 549,2   | 358,3    | 271,0    | 188,5     | 85,5               | 36,7   |
| 24  | 0,27            | 0,32            | 0,47            | 0,59     | 0,74            | 1,11  | 1,37    | 0,78                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 189,9    | 144,6   | 66,5     | 32,7     | 5,8       | 41,8               | 75,0   |
| 25  | 0,25            | 0,30            | 0,44            | 0,56     | 0,73            | 1,18  | 1,66    | 2,34                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 834,9    | 679,1   | 431,2    | 317,4    | 220,2     | 98,1               | 40,8   |
| 26  | 0,24            | 0,29            | 0,42            | 0,55     | 0,74            | 1,34  | 2,26    | 1,41                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 0               | 488,0    | 386,6   | 236,0    | 156,6    | 90,7      | 5,3                | 60,2   |
| 27  | 0,23            | 0,28            | 0,42            | 0,54     | 0,71            | 1,20  | 4,43    | 0,98                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 324,6    | 248,8   | 132,5    | 80,9     | 37,6      | 22,9               | 353,6  |
| 28  | 0,25            | 0,29            | 0,41            | 0,52     | 0,65            | 0,95  | 1,20    | 1,20                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 381,3    | 314,9   | 193,5    | 131,4    | 85,1      | 26,6               | 0,3    |
| 29  | 0,24            | 0,28            | 0,39            | 0,48     | 0,59            | 0,83  | 1,00    | 0,69                  | 1               | 1               | 1               | 1               | 1                  | 0                           | 0               | 187,0    | 146,0   | 76,6     | 43,5     | 16,7      | 20,5               | 45,2   |
| 30  | 0,27            | 0,31            | 0,43            | 0,53     | 0,65            | 0,89  | 1,05    | 1,20                  | 1               | 1               | 1               | 1               | 1                  | 1                           | 1               | 345,6    | 288,1   | 179,8    | 127,0    | 85,1      | 35,2               | 14,6   |

| Tal                                      | bela 5.         | 6 - Co                      | mpara           | ção en | tre os          | diâme | tros ca                                  | alculados             | pelas           | equa                                                  | ções d                                    | e estin  | nativa          | s dese          | nvolvi          | das para | o Rio A                                             | tibaia e                    | os diâme | etros cole | etados |       |  |
|------------------------------------------|-----------------|-----------------------------|-----------------|--------|-----------------|-------|------------------------------------------|-----------------------|-----------------|-------------------------------------------------------|-------------------------------------------|----------|-----------------|-----------------|-----------------|----------|-----------------------------------------------------|-----------------------------|----------|------------|--------|-------|--|
| DIÂMETROS DO LETTO DO PARA O RIO ATIBAIA |                 |                             |                 |        |                 |       |                                          |                       |                 | COMPARAÇÃO ENTRE D <sub>VJ &amp;</sub> D <sub>i</sub> |                                           |          |                 |                 |                 |          | RELAÇÃO PERCENTUAL ENTRE OS VALORES DE $D_{\rm VJ}$ |                             |          |            |        |       |  |
| Granulometria do material do leito       |                 |                             |                 |        |                 |       |                                          | 1                     | (10)            | (11)                                                  | (12)                                      | (13)     | (14)            | (15)            | (16)            | E        | OS VALC                                             | DRES MEDIDOS NO RIO ATIBAIA |          |            |        |       |  |
| (l)                                      | (2)             | (2) (3) (4) (5) (6) (7) (8) |                 |        |                 | (9)   | COMPARAÇÃO DE D <sub>VJ [DUB]</sub> COM: |                       |                 |                                                       |                                           |          | (17)            | (18)            | (19)            | (20)     | (21)                                                | (22)                        | (23)     |            |        |       |  |
| N°                                       | D <sub>10</sub> | D <sub>16</sub>             | D <sub>35</sub> | D50    | D <sub>65</sub> | D84   | D90                                      | D <sub>Vj</sub> [DUB] | D <sub>10</sub> | D <sub>16</sub>                                       | D <sub>35</sub>                           | $D_{50}$ | D <sub>65</sub> | D <sub>84</sub> | D <sub>90</sub> |          | i 31                                                |                             |          |            | 1      | 0     |  |
|                                          | (mm)            | (mm)                        | (mm)            | (mm)   | (mm)            | (mm)  | (mm)                                     | (mm)                  |                 |                                                       | 5-10-10-00-00-00-00-00-00-00-00-00-00-00- |          |                 |                 |                 |          |                                                     | c                           |          |            |        |       |  |
| 31                                       | 0,23            | 0,27                        | 0,37            | 0,47   | 0,60            | 0,89  | 1,10                                     | 0,60                  | 1               | 1                                                     | 1                                         | 1        | 0               | 0               | 0               | 159.6    | 121.1                                               | 61.3                        | 27.0     | 0.5        | 49.1   | 84.3  |  |
| 32                                       | 0,28            | 0,34                        | 0,50            | 0,65   | 0,87            | 1,66  | 2,30                                     | 1,20                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 329,7    | 253,9                                               | 140,6                       | 85,1     | 38,3       | 38,0   | 91,2  |  |
| 33                                       | 0,28            | 0,32                        | 0,45            | 0,57   | 0,73            | 1,23  | 2,18                                     | 0,41                  | 1               | 1                                                     | 0                                         | 0        | 0               | 0               | 0               | 46,6     | 28,3                                                | 9,6                         | 38,9     | 77,9       | 199,7  | 431,2 |  |
| 34                                       | 0,27            | 0,30                        | 0,41            | 0,51   | 0,63            | 0,88  | 1,05                                     | 0,57                  | 1               | 1                                                     | 1                                         | 1        | 0               | 0               | 0               | 112,7    | 91,5                                                | 40,1                        | 12,6     | 9,7        | 53,2   | 82,8  |  |
| 35                                       | 0,28            | 0,32                        | 0,44            | 0,54   | 0,68            | 1,00  | 1,27                                     | 0,78                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 179,5    | 144,6                                               | 77,9                        | 44,9     | 15,1       | 27,8   | 62,3  |  |
| 36                                       | 0,21            | 0,25                        | 0,36            | 0,45   | 0,58            | 0,89  | 1,10                                     | 1,41                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 572,0    | 464,4                                               | 292,0                       | 213,6    | 143,3      | 58,6   | 28,3  |  |
| 37                                       | 0,27            | 0,32                        | 0,45            | 0,57   | 0,74            | 1,18  | 1,52                                     | 0,41                  | 1               | 1                                                     | 0                                         | 0        | 0               | 0               | 0               | 52,0     | 28,3                                                | 9,6                         | 38,9     | 80,3       | 187,5  | 270,4 |  |
| 38                                       | 0,26            | 0,33                        | 0,53            | 0,73   | 1,01            | 1,79  | 3,15                                     | 1,31                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 402,5    | 295,9                                               | 146,5                       | 79,0     | 29,3       | 37,0   | 141,1 |  |
| 39                                       | 0,30            | 0,34                        | 0,48            | 0,60   | 0,75            | 1,14  | 1,45                                     | 0,41                  | 1               | 1                                                     | 0                                         | 0        | 0               | 0               | 0               | 36,8     | 20,7                                                | 17,0                        | 46,2     | 82,7       | 177,8  | 253,3 |  |
| 40                                       | 0,32            | 0,37                        | 0,55            | 0,71   | 0,95            | 1,60  | 2,51                                     | 2,58                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 707,6    | 598,5                                               | 369,9                       | 264,0    | 172,0      | 61,5   | 3,0   |  |
| 41                                       | 0,28            | 0,32                        | 0,45            | 0,57   | 0,72            | 1,08  | 1,36                                     | 2,84                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 912,7    | 786,1                                               | 530,1                       | 397,5    | 293,8      | 162,6  | 108,5 |  |
| 42                                       | 0,22            | 0,27                        | 0,41            | 0,57   | 0,90            | 4,17  | 4,79                                     | 1,64                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 644,6    | 506,7                                               | 299,5                       | 187,4    | 82,0       | 154,6  | 192,4 |  |
| 43                                       | 0,29            | 0,34                        | 0,46            | 0,57   | 0,70            | 1,02  | 1,28                                     | 1,64                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 464,9    | 381,8                                               | 256,1                       | 187,4    | 134,0      | 60,6   | 28,0  |  |
| 44                                       | 0,17            | 0,25                        | 0,55            | 0,82   | 1,25            | 4,84  | 5,15                                     | 1,20                  | 1               | 1                                                     | 1                                         | 1        | 0               | 0               | 0               | 607,7    | 381,3                                               | 118,8                       | 46,7     | 3,9        | 302,3  | 328,0 |  |
| 45                                       | 0,21            | 0,26                        | 0,41            | 0,59   | 0,88            | 1,79  | 2,70                                     | 3,08                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 1364,6   | 1083,0                                              | 650,2                       | 421,3    | 249,5      | 71,8   | 13,9  |  |
| 46                                       | 0,18            | 0,20                        | 0,30            | 0,41   | 0,60            | 1,20  | 1,85                                     | 1,98                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 1001,2   | 891,1                                               | 560,7                       | 383,5    | 230,4      | 65,2   | 7,1   |  |
| 47                                       | 0,17            | 0,21                        | 0,39            | 0,65   | 1,14            | 2,97  | 4,03                                     | 2,09                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 1132,2   | 897,5                                               | 437,1                       | 222,3    | 83,7       | 41,8   | 92,4  |  |
| 48                                       | 0,15            | 0,17                        | 0,21            | 0,25   | 0,33            | 0,72  | 1,10                                     | 2,34                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 1458,2   | 1274,8                                              | 1013,0                      | 834,9    | 608,3      | 224,6  | 112,5 |  |
| 49                                       | 0,15            | 0,17                        | 0,21            | 0,24   | 0,32            | 0,91  | 1,44                                     | 2,09                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 1296,5   | 1132,2                                              | 897,5                       | 772,8    | 554,6      | 130,2  | 45,5  |  |
| 50                                       | 0,16            | 0,17                        | 0,23            | 0,32   | 0,65            | 1,55  | 2,79                                     | 2,09                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 0               | 1209,2   | 1132,2                                              | 810,7                       | 554,6    | 222,3      | 35,1   | 33,2  |  |
| 51                                       | 0,17            | 0,19                        | 0,25            | 0,33   | 0,49            | 1,09  | 1,58                                     | 1,64                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 863,6    | 762,2                                               | 555,3                       | 396,4    | 234,3      | 50,3   | 3,7   |  |
| 52                                       | 0,17            | 0,19                        | 0,28            | 0,50   | 0,90            | 2,04  | 2,86                                     | 1,08                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 533,1    | 466,5                                               | 284,4                       | 115,3    | 19,6       | 89,5   | 165,7 |  |
| 53                                       | 0,16            | 0,18                        | 0,26            | 0,37   | 0,53            | 0,91  | 1,23                                     | 1,64                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 923,8    | 810,1                                               | 530,1                       | 342,7    | 209,1      | 80,0   | 33,2  |  |
| 54                                       | 0,14            | 0,15                        | 0,18            | 0,20   | 0,23            | 0,50  | 0,92                                     | 2,96                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 2010,9   | 1870,1                                              | 1541,8                      | 1377,6   | 1184,9     | 491,0  | 221,2 |  |
| 55                                       | 0,14            | 0,16                        | 0,20            | 0,24   | 0,30            | 0,60  | 0,85                                     | 1,75                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 1147,9   | 991,9                                               | 773,5                       | 627,9    | 482,3      | 191,2  | 105,5 |  |
| 56                                       | 0,16            | 0,17                        | 0,23            | 0,35   | 0,66            | 1,39  | 1,93                                     | 1,87                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 0               | 1069,3   | 1000,5                                              | 713,4                       | 434,5    | 183,5      | 34,6   | 3,2   |  |
| 57                                       | 0,17            | 0,19                        | 0,25            | 0,32   | 0,42            | 0,71  | 0,95                                     | 1,31                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 668,5    | 587,6                                               | 422,6                       | 308,3    | 211,1      | 84,0   | 37,5  |  |
| 58                                       | 0,14            | 0,16                        | 0,19            | 0,23   | 0,28            | 1,46  | 4,69                                     | 0,78                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 459,1    | 389,2                                               | 312,0                       | 240,3    | 179,5      | 86,5   | 499,2 |  |
| 59                                       | 0,16            | 0,18                        | 0,23            | 0,29   | 0,39            | 0,75  | 1,14                                     | 6,77                  | 1               | 1                                                     | 1                                         | 1        | 1               | 1               | 1               | 4130,0   | 3660,0                                              | 2842,6                      | 2233,8   | 1635,4     | 802,4  | 493,7 |  |
| 60                                       | 0,17            | 0,19                        | 0,27            | 0,40   | 0,75            | 1,66  | 2,50                                     | 1,41                  | 1               | 1                                                     | 1                                         | 1        | 1               | 0               | 0               | 730,1    | 642,7                                               | 422,6                       | 252,8    | 88,1       | 17,6   | 77,2  |  |
| Tal | bela 5.         | 6 - Co          | mpara           | ção en          | itre os  | diâme   | etros ca | alculados             | pelas           | equa | ções d          | e estin  | nativa:            | s dese                      | nvolvi | das para | o Rio A  | tibaia e o | os diâme | tros cole | tados              |       |
|-----|-----------------|-----------------|-----------------|-----------------|----------|---------|----------|-----------------------|-----------------|------|-----------------|----------|--------------------|-----------------------------|--------|----------|----------|------------|----------|-----------|--------------------|-------|
|     | DIÂMI           | TROS            | DO LET          | FO DO           | PARA C   | ) RIO A | TIBAIA   |                       |                 | COMP | ARAÇÃ           | O ENT    | RE D <sub>VJ</sub> | <sub>№</sub> D <sub>i</sub> |        | RELAÇ    | ÃO PERCI | ENTUAL E   | NTRE OS  | VALORES   | DE D <sub>VJ</sub> |       |
| 1   | Granu           | ometria         | a do mat        | erial do        | leito    |         |          | 1                     | (10)            | (11) | (12)            | (13)     | (14)               | (15)                        | (16)   | E        | OS VALO  | RES MEDI   | DOS NO   | RIO ATIB  | AIA                |       |
| (1) | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8)      | (9)                   |                 | COMP | ARAÇÎ           | ÃO DE    | Dvj pvj            | зјсом                       |        | (17)     | (18)     | (19)       | (20)     | (21)      | (22)               | (23)  |
| N°  | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | $D_{65}$ | D84     | D90      | D <sub>Vj</sub> [DUB] | D <sub>10</sub> | D16  | D <sub>35</sub> | $D_{50}$ | D <sub>65</sub>    | D84                         | D90    |          | 1 26     |            | 1        | 1         | 28                 | ŝ     |
|     | (mm)            | (mm)            | (mm)            | (mm)            | (mm)     | (mm)    | (mm)     | (mm)                  |                 |      |                 | 0.000    |                    |                             |        |          |          |            |          |           |                    |       |
| 61  | 0,17            | 0,19            | 0,27            | 0,36            | 0,57     | 1,24    | 1,64     | 0,99                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 481,8    | 420,5    | 266,3      | 174,7    | 73.5      | 25,4               | 65,8  |
| 62  | 0,18            | 0,21            | 0,37            | 0,82            | 1,56     | 3,06    | 3,79     | 2,21                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 1126,8   | 951,5    | 496,8      | 169,3    | 41,6      | 38,6               | 71,6  |
| 63  | 0,16            | 0,19            | 0,31            | 0,52            | 0,81     | 1,37    | 1,66     | 0,99                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 518,1    | 420,5    | 219,0      | 90,2     | 22,1      | 38,5               | 67,8  |
| 64  | 0,15            | 0,18            | 0,34            | 0,63            | 0,97     | 1,56    | 1,86     | 0,60                  | 1               | 1    | 1               | 0        | 0                  | 0                           | 0      | 298,0    | 231,7    | 75,6       | 5,5      | 62,5      | 161,3              | 211,6 |
| 65  | 0,17            | 0,19            | 0,26            | 0,38            | 0,60     | 1,18    | 1,75     | 2,58                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 1420,2   | 1260,1   | 893,9      | 580,1    | 330,7     | 119,0              | 47,7  |
| 66  | 0,17            | 0,18            | 0,22            | 0,26            | 0,31     | 0,41    | 0,47     | 1,64                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 863,6    | 810,1    | 644,6      | 530,1    | 428,4     | 299,5              | 248,5 |
| 67  | 0,17            | 0,19            | 0,25            | 0,32            | 0,44     | 1,19    | 1,68     | 1,87                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 1000,5   | 884,7    | 648,4      | 484,7    | 325,2     | 57,2               | 11,4  |
| 68  | 0,17            | 0,18            | 0,23            | 0,27            | 0,32     | 0,43    | 0,56     | 2,47                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 1351,5   | 1270,8   | 972,8      | 813,9    | 671,1     | 473,8              | 340,6 |
| 69  | 0,17            | 0,19            | 0,25            | 0,30            | 0,36     | 0,57    | 1,69     | 3,08                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 1709,2   | 1518,8   | 1130,3     | 925,2    | 754,4     | 439,6              | 82,0  |
| 70  | 0,23            | 0,26            | 0,34            | 0,43            | 0,62     | 1,41    | 2,05     | 2,09                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 810,7    | 705,7    | 516,1      | 387,1    | 237,9     | 48,6               | 2,2   |
| 71  | 0,23            | 0,25            | 0,31            | 0,37            | 0,44     | 0,74    | 1,18     | 1,87                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 713,4    | 648,4    | 503,5      | 405,6    | 325,2     | 152,8              | 58,5  |
| 72  | 0,23            | 0,26            | 0,35            | 0,44            | 0,64     | 1,50    | 2,20     | 1,64                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 0      | 612,2    | 530,1    | 368,0      | 272,3    | 156,0     | 9,2                | 34,3  |
| 73  | 0,19            | 0,23            | 0,32            | 0,41            | 0,61     | 1,63    | 3,00     | 1,64                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 0      | 762,2    | 612,2    | 411,9      | 299,5    | 168,5     | 0,5                | 83,1  |
| 74  | 0,24            | 0,27            | 0,35            | 0,42            | 0,55     | 0,99    | 1,36     | 0,99                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 312,1    | 266,3    | 182,6      | 135,5    | 79,8      | 0,1                | 37,5  |
| 75  | 0,20            | 0,25            | 0,40            | 0,64            | 1,10     | 2,52    | 3,77     | 1,20                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 501,6    | 381,3    | 200,8      | 88,0     | 9,4       | 109,4              | 213,3 |
| 76  | 0,17            | 0,21            | 0,32            | 0,46            | 0,86     | 2,82    | 4,09     | 0,99                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 481,8    | 370,9    | 209,1      | 115,0    | 15,0      | 185,1              | 313,6 |
| 77  | 0,22            | 0,27            | 0,41            | 0,56            | 0,80     | 1,34    | 1,66     | 1,09                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 394,9    | 303,3    | 165,6      | 94,4     | 36,1      | 23,1               | 52,5  |
| 78  | 0,18            | 0,22            | 0,33            | 0,45            | 0,75     | 1,98    | 3,05     | 0,78                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 334,8    | 255,8    | 137,2      | 73,9     | 4,4       | 153,0              | 289,7 |
| 79  | 0,19            | 0,23            | 0,36            | 0,54            | 1,00     | 2,70    | 3,73     | 1,09                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 473,1    | 373,4    | 202,5      | 101,6    | 8,9       | 148,0              | 242,6 |
| 80  | 0,21            | 0,24            | 0,36            | 0,50            | 0,92     | 3,27    | 4,35     | 0,89                  | 1               | 1    | 1               | 1        | 0                  | 0                           | 0      | 324,2    | 271,2    | 147,5      | 78,2     | 3,3       | 267,1              | 388,3 |
| 81  | 0,19            | 0,23            | 0,35            | 0,52            | 1,07     | 3,85    | 4,63     | 0,99                  | 1               | 1    | 1               | 1        | 0                  | 0                           | 0      | 420,5    | 330,0    | 182,6      | 90,2     | 8,2       | 289,3              | 368,2 |
| 82  | 0,23            | 0,27            | 0,38            | 0,53            | 0,88     | 1,95    | 2,89     | 1,64                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 612,2    | 506,7    | 331,1      | 209,1    | 86,2      | 19,0               | 76,4  |
| 83  | 0,23            | 0,27            | 0,40            | 0,64            | 1,29     | 4,19    | 4,79     | 2,84                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 1132,8   | 950,2    | 608,9      | 343,1    | 119,8     | 47,8               | 68,9  |
| 84  | 0,21            | 0,24            | 0,33            | 0,42            | 0,74     | 1,82    | 2,37     | 1,09                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 418,5    | 353,7    | 230,0      | 159,3    | 47,1      | 67,1               | 117,7 |
| 85  | 0,23            | 0,27            | 0,39            | 0,67            | 1,65     | 4,07    | 4,69     | 1,68                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 629,9    | 521,8    | 330,5      | 150,6    | 1,7       | 142,4              | 179,4 |
| 86  | 0,21            | 0,24            | 0,33            | 0,42            | 0,74     | 3,00    | 4,16     | 1,82                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 764,6    | 656,5    | 450,2      | 332,3    | 145,4     | 65,2               | 129,1 |
| 87  | 0,21            | 0,25            | 0,35            | 0,50            | 1,10     | 3,50    | 4,40     | 1,41                  | 1               | 1    | 1               | 1        | 1                  | 0                           | 0      | 572,0    | 464,4    | 303,2      | 182,2    | 28,3      | 148,0              | 211,8 |
| 88  | 0,21            | 0,24            | 0,31            | 0,38            | 0,48     | 0,93    | 1,40     | 1,41                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 572,0    | 488,0    | 355,2      | 271,3    | 194,0     | 51,7               | 0,8   |
| 89  | 0,19            | 0,22            | 0,31            | 0,38            | 0,50     | 0,83    | 1,11     | 1,64                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 762,2    | 644,6    | 428,4      | 331,1    | 227,6     | 97,4               | 47,6  |
| 90  | 0,20            | 0,23            | 0,31            | 0,37            | 0,46     | 0,77    | 1,10     | 2,58                  | 1               | 1    | 1               | 1        | 1                  | 1                           | 1      | 1192,1   | 1023,6   | 733,6      | 598,5    | 461,8     | 235,6              | 134,9 |

| Tal | bela 5.         | 6 - Co:         | mpara           | ção en   | tre os | diâme    | tros ca | alculados             | pelas           | equa            | :őes d          | e estin  | nativa:            | s dese | nvolvi | das para | o Rio A | tibaia e. | os diâme | etros cole | etados               |       |
|-----|-----------------|-----------------|-----------------|----------|--------|----------|---------|-----------------------|-----------------|-----------------|-----------------|----------|--------------------|--------|--------|----------|---------|-----------|----------|------------|----------------------|-------|
|     | DIÂME           | TROS            | DO LET          | го до    | PARA C | ) RIO A' | TIBAIA  |                       |                 | COMPA           | ARAÇÃ           | O ENT    | RE D <sub>VJ</sub> | § Di   |        | RELAÇ    | ÃO PERC | ENTUAL F  | NTRE OS  | VALORES    | S DE D <sub>VJ</sub> |       |
| 1   | Granul          | ometri          | a do mat        | erial do | leito  |          |         | 1                     | (10)            | (11)            | (12)            | (13)     | (14)               | (15)   | (16)   | Е        | OS VALC | RES MED   | IDOS NO  | RIO ATIB   | AIA                  |       |
| (1) | (2)             | (3)             | (4)             | (5)      | (6)    | (7)      | (8)     | (9)                   | , í             | COMP            | ARAÇÎ           | ÃO DE    | Dvjpuj             | COM    | :      | (17)     | (18)    | (19)      | (20)     | (21)       | (22)                 | (23)  |
| N°  | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | $D_{50}$ | D65    | D84      | D90     | D <sub>Vj</sub> [DUB] | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | $D_{50}$ | D <sub>65</sub>    | D84    | D90    |          | 9       |           | -        |            |                      |       |
|     | (mm)            | (mm)            | (mm)            | (mm)     | (mm)   | (mm)     | (mm)    | (mm)                  |                 |                 | 1               |          |                    |        |        |          |         |           |          |            |                      |       |
| 91  | 0,22            | 0,24            | 0,30            | 0,36     | 0,42   | 0,65     | 0,98    | 2,58                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 1074.7   | 976.8   | 761.4     | 617.9    | 515.3      | 297.6                | 163.7 |
| 92  | 0,23            | 0,25            | 0,33            | 0,39     | 0,49   | 0,82     | 1,10    | 1,64                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 612,2    | 555,3   | 396,4     | 320,0    | 234,3      | 99,8                 | 48,9  |
| 93  | 0,23            | 0,26            | 0,34            | 0,40     | 0,51   | 0,80     | 1,03    | 1,31                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 468,0    | 402,5   | 284,2     | 226,6    | 156,2      | 63,3                 | 26,8  |
| 94  | 0,23            | 0,25            | 0,33            | 0,40     | 0,51   | 0,88     | 1,16    | 0,99                  | 1               | 1               | 1               | 1        | 1                  | 1      | 0      | 330,0    | 295,6   | 199,7     | 147,2    | 93,9       | 12,4                 | 17,3  |
| 95  | 0,20            | 0,23            | 0,32            | 0,39     | 0,51   | 0,84     | 1,18    | 1,09                  | 1               | 1               | 1               | 1        | 1                  | 1      | 0      | 444,4    | 373,4   | 240,3     | 179,2    | 113,5      | 29,6                 | 8,4   |
| 96  | 0,15            | 0,20            | 0,40            | 0,75     | 1,48   | 4,44     | 4,92    | 1,31                  | 1               | 1               | 1               | 1        | 0                  | 0      | 0      | 770,9    | 553,2   | 226,6     | 74,2     | 13,3       | 239,9                | 276,6 |
| 97  | 0,21            | 0,28            | 0,55            | 0,89     | 1,41   | 3,49     | 4,40    | 1,31                  | 1               | 1               | 1               | 1        | 0                  | 0      | 0      | 522,1    | 366,6   | 137,5     | 46,8     | 7,9        | 167,1                | 236,8 |
| 98  | 0,22            | 0,29            | 0,55            | 0,89     | 1,41   | 4,00     | 4,70    | 1,19                  | 1               | 1               | 1               | 1        | 0                  | 0      | 0      | 441,1    | 310,5   | 116,4     | 33,7     | 18,5       | 236,0                | 294,8 |
| 99  | 0,15            | 0,22            | 0,43            | 0,65     | 0,98   | 1,84     | 2,46    | 1,64                  | 1               | 1               | 1               | 1        | 1                  | 0      | 0      | 992,1    | 644,6   | 281,0     | 152,0    | 67,2       | 12,3                 | 50,2  |
| 100 | 0,16            | 0,21            | 0,39            | 0,58     | 0,88   | 1,63     | 2,25    | 1,09                  | 1               | 1               | 1               | 1        | 1                  | 0      | 0      | 580,5    | 418,5   | 179,2     | 87,7     | 23,7       | 49,7                 | 106,6 |
| 101 | 0,14            | 0,16            | 0,23            | 0,30     | 0,40   | 0,96     | 4,37    | 12,61                 | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 8910,5   | 7784,2  | 5384,7    | 4104,9   | 3053,7     | 1214,0               | 188,7 |
| 102 | 0,15            | 0,18            | 0,25            | 0,32     | 0,42   | 0,67     | 0,85    | 1,54                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 929,3    | 757,7   | 517,6     | 382,5    | 267,6      | 130,4                | 81,6  |
| 103 | 0,15            | 0,17            | 0,26            | 0,34     | 0,47   | 0,83     | 1,09    | 0,67                  | 1               | 1               | 1               | 1        | 1                  | 0      | 0      | 343,7    | 291,5   | 156,0     | 95,8     | 41,6       | 24,7                 | 63,8  |
| 104 | 0,15            | 0,18            | 0,29            | 0,41     | 0,59   | 1,08     | 1,44    | 1,15                  | 1               | 1               | 1               | 1        | 1                  | 1      | 0      | 668,1    | 540,1   | 297,3     | 181,0    | 95,3       | 6,7                  | 25,0  |
| 105 | 0,16            | 0,19            | 0,25            | 0,32     | 0,43   | 0,96     | 1,62    | 1,28                  | 1               | 1               | 1               | 1        | 1                  | 1      | 0      | 700,3    | 573,9   | 412,2     | 300,1    | 197,8      | 33,4                 | 26,5  |
| 106 | 0,17            | 0,19            | 0,24            | 0,29     | 0,35   | 0,50     | 0,63    | 2,53                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 1385,7   | 1229,3  | 952,4     | 770,9    | 621,6      | 405,1                | 300,9 |
| 107 | 0,19            | 0,21            | 0,27            | 0,32     | 0,37   | 0,50     | 0,59    | 4,39                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 2209,5   | 1989,5  | 1525,2    | 1271,3   | 1085,9     | 777,6                | 643,7 |
| 108 | 0,16            | 0,18            | 0,24            | 0,29     | 0,35   | 0,51     | 0,67    | 0,78                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 389,2    | 334,8   | 226,1     | 169,9    | 123,6      | 53,5                 | 16,8  |
| 109 | 0,21            | 0,26            | 0,41            | 0,62     | 0,98   | 1,78     | 2,30    | 2,58                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 1130,6   | 893,9   | 530,3     | 316,8    | 163,7      | 45,2                 | 12,4  |
| 110 | 0,25            | 0,31            | 0,50            | 0,71     | 1,02   | 1,80     | 2,36    | 2,58                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 933,7    | 733,6   | 416,9     | 264,0    | 153,4      | 43,6                 | 9,5   |
| 111 | 0,22            | 0,26            | 0,41            | 0,64     | 1,02   | 1,94     | 2,59    | 2,11                  | 1               | 1               | 1               | 1        | 1                  | 1      | 0      | 858,6    | 711,1   | 414,4     | 229,5    | 106,7      | 8,7                  | 22,8  |
| 112 | 0,20            | 0,23            | 0,31            | 0,38     | 0,48   | 0,75     | 0.93    | 2,34                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 1068,6   | 916,2   | 653,9     | 515,1    | 386.9      | 211,6                | 151,3 |
| 113 | 0,22            | 0,25            | 0,35            | 0,44     | 0,57   | 0,93     | 1,22    | 1,41                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 541,4    | 464,4   | 303,2     | 220,7    | 147,6      | 51,7                 | 15,7  |
| 114 | 0.22            | 0,26            | 0.36            | 0,46     | 0,63   | 1,18     | 1.86    | 0,69                  | 1               | 1               | 1               | 1        | 1                  | 0      | 0      | 213,1    | 164.9   | 91,3      | 49,7     | 93         | 71,3                 | 170,1 |
| 115 | 0,19            | 0,23            | 0,32            | 0,40     | 0.52   | 0,81     | 1,00    | 2,09                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 1002,5   | 810,7   | 554,6     | 423,7    | 302,8      | 158,6                | 109,5 |
| 116 | 0,21            | 0,24            | 0,32            | 0,38     | 0,48   | 0,74     | 0,94    | 1,87                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 790,9    | 679,5   | 484,7     | 392,3    | 289,8      | 152,8                | 99,0  |
| 117 | 0,18            | 0,21            | 0,30            | 0,39     | 0,51   | 0,91     | 1,20    | 1,41                  | 1               | 1               | 1               | 1        | 1                  | 1      | 1      | 684,0    | 572.0   | 370.4     | 261.8    | 176.7      | 55,1                 | 17.6  |
| 118 | 0.18            | 0,22            | 0,34            | 0,47     | 0.73   | 1.82     | 3,21    | 1,16                  | 1               | 1               | 1               | 1        | 1                  | 0      | 0      | 547,1    | 429.5   | 242.6     | 147.8    | 59.6       | 56.2                 | 175.6 |
| 119 | 0,20            | 0.25            | 0,44            | 0,79     | 1.38   | 3,00     | 3.88    | 1,41                  | 1               | 1               | 1               | 1        | 1                  | 0      | 0      | 605.6    | 464.4   | 220.7     | 78.6     | 23         | 112,6                | 175.0 |
| 120 | 0,21            | 0,28            | 0,56            | 0,92     | 1,52   | 3,03     | 3,85    | 0,99                  | 1               | 1               | 1               | 1        | 0                  | 0      | 0      | 370,9    | 253,2   | 76,6      | 7,5      | 53,7       | 206,4                | 289,3 |

| Tal | bela 5.         | 6 - Co:         | mpara           | ção en   | tre os | diâme    | tros ca | alculados             | pelas           | equa | ções d          | e estin  | nativa               | s dese | nvolvi                                | das para | o Rio A | tibaia e. | os diâm  | etros col | etados               |        |
|-----|-----------------|-----------------|-----------------|----------|--------|----------|---------|-----------------------|-----------------|------|-----------------|----------|----------------------|--------|---------------------------------------|----------|---------|-----------|----------|-----------|----------------------|--------|
|     | DLÂME           | TROS            | DO LET          | FO DO    | PARA C | ) RIO A' | TIBAIA  |                       | 3               | COMP | <b>ARAÇÃ</b>    | O ENT    | RE D <sub>VJ</sub> . | &Di    |                                       | RELAÇ    | ÃO PERC | ENTUAL F  | INTRE OS | VALORES   | S DE D <sub>VJ</sub> |        |
| 1   | Granul          | ometri          | a do mat        | erial do | leito  |          |         |                       | (10)            | (11) | (12)            | (13)     | (14)                 | (15)   | (16)                                  | Е        | OS VALC | RES MED   | IDOS NO  | RIO ATIB  | AIA                  |        |
| (1) | (2)             | (3)             | (4)             | (5)      | (6)    | (7)      | (8)     | (9)                   | , í             | COMP | ARAÇ            | ÃO DE    | Dvrpu                | COM    | :                                     | (17)     | (18)    | (19)      | (20)     | (21)      | (22)                 | (23)   |
| N°  | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | $D_{50}$ | D65    | D84      | D90     | D <sub>Vj</sub> [DUB] | D <sub>10</sub> | D16  | D <sub>35</sub> | $D_{50}$ | D <sub>65</sub>      | D84    | D90                                   |          | 9       |           | 6        |           |                      |        |
|     | (mm)            | (mm)            | (mm)            | (mm)     | (mm)   | (mm)     | (mm)    | (mm)                  |                 |      |                 |          |                      |        | · · · · · · · · · · · · · · · · · · · |          | s       | e         |          |           | o                    |        |
| 121 | 0,21            | 0,27            | 0,48            | 0,73     | 1,13   | 2,32     | 3,55    | 1,24                  | 1               | 1    | 1               | 1        | 1                    | 0      | 0                                     | 491,3    | 359,9   | 158,7     | 70,1     | 9,9       | 86,8                 | 185,9  |
| 122 | 0,20            | 0,24            | 0,37            | 0,59     | 1,13   | 2,60     | 3,75    | 0,89                  | 1               | 1    | 1               | 1        | 0                    | 0      | 0                                     | 345,4    | 271,2   | 140,8     | 51,0     | 26,8      | 191,9                | 320,9  |
| 123 | 0,21            | 0,26            | 0,48            | 0,86     | 1,43   | 3,13     | 4,06    | 0,99                  | 1               | 1    | 1               | 1        | 0                    | 0      | 0                                     | 370,9    | 280,4   | 106,0     | 15,0     | 44,6      | 216,5                | 310,5  |
| 124 | 0,21            | 0,29            | 0,54            | 0,77     | 1,08   | 1,81     | 2,88    | 0,60                  | 1               | 1    | 1               | 0        | 0                    | 0      | 0                                     | 184,3    | 105,9   | 10,6      | 29,0     | 80,9      | 203,2                | 382,4  |
| 125 | 0,23            | 0,30            | 0,68            | 1,18     | 1,84   | 3,41     | 4,16    | 0,78                  | 1               | 1    | 1               | 0        | 0                    | 0      | 0                                     | 240,3    | 160,9   | 15,1      | 50,8     | 135,1     | 335,7                | 431,5  |
| 126 | 0,30            | 0,38            | 0,66            | 0,95     | 1,33   | 2,27     | 2,95    | 2,53                  | 1               | 1    | 1               | 1        | 1                    | 1      | 0                                     | 741,9    | 564,7   | 282,7     | 165,9    | 89,9      | 11,3                 | 16,8   |
| 127 | 0,25            | 0,29            | 0,48            | 0,68     | 0,98   | 1,92     | 2,83    | 2,34                  | 1               | 1    | 1               | 1        | 1                    | 1      | 0                                     | 834,9    | 705,9   | 386,9     | 243,7    | 138,5     | 21,7                 | 21,1   |
| 128 | 0,22            | 0,28            | 0,54            | 0,85     | 1,32   | 2,63     | 3,56    | 1,64                  | 1               | 1    | 1               | 1        | 1                    | 0      | 0                                     | 644,6    | 485,1   | 203,4     | 92,7     | 24,1      | 60,5                 | 117,3  |
| 129 | 0,23            | 0,26            | 0,37            | 0,50     | 0,75   | 1,47     | 1,97    | 2,09                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 810,7    | 705,7   | 466,1     | 318,9    | 179,3     | 42,5                 | 6,3    |
| 130 | 0,34            | 0,40            | 0,63            | 0,83     | 1,08   | 1,58     | 1,85    | 2,82                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 729,6    | 605,2   | 347,7     | 239,8    | 161,2     | 78,5                 | 52,5   |
| 131 | 0,15            | 0,21            | 0,29            | 0,36     | 0,44   | 0,66     | 0,84    | 2,53                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 1583,8   | 1102,7  | 770,9     | 601,6    | 474,0     | 282,7                | 200,7  |
| 132 | 0,11            | 0,13            | 0,17            | 0,20     | 0,23   | 0,30     | 0,34    | 2,82                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2464,2   | 2069,7  | 1559,2    | 1310,3   | 1126,4    | 840,2                | 729,6  |
| 133 | 0,14            | 0,15            | 0,18            | 0,20     | 0,23   | 0,29     | 0,33    | 3,58                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2458,1   | 2287,6  | 1889,7    | 1690,7   | 1457,1    | 1135,0               | 985,3  |
| 134 | 0,15            | 0,16            | 0,19            | 0,22     | 0,25   | 0,32     | 0,38    | 3,89                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2496,2   | 2333,9  | 1949,6    | 1670,1   | 1457,7    | 1117,0               | 924,8  |
| 135 | 0,15            | 0,16            | 0,18            | 0,20     | 0,22   | 0,26     | 0,28    | 3,12                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 1980,7   | 1850,7  | 1633,9    | 1460,6   | 1318,7    | 1100,4               | 1014,7 |
| 136 | 0,16            | 0,17            | 0,19            | 0,22     | 0,25   | 0,31     | 0,35    | 3,58                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2138,4   | 2006,7  | 1785,0    | 1527,9   | 1332,6    | 1055,3               | 923,3  |
| 137 | 0,30            | 0,39            | 0,77            | 1,12     | 1,59   | 2,85     | 3,73    | 3,12                  | 1               | 1    | 1               | 1        | 1                    | 1      | 0                                     | 940,4    | 700,3   | 305,3     | 178,7    | 96,3      | 9,5                  | 19,5   |
| 138 | 0,16            | 0,17            | 0,21            | 0,24     | 0,28   | 0,36     | 0,40    | 2,82                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 1662,9   | 1559,2  | 1243,2    | 1075,3   | 907,4     | 683,5                | 605,2  |
| 139 | 0,16            | 0,17            | 0,21            | 0,25     | 0,30   | 0,40     | 0,48    | 3,89                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2333,9   | 2190,7  | 1754,4    | 1457,7   | 1198,1    | 873,6                | 711,3  |
| 140 | 0,14            | 0,16            | 0,20            | 0,23     | 0,28   | 0,39     | 0,47    | 2,82                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 1914,8   | 1662,9  | 1310,3    | 1126,4   | 907,4     | 623,2                | 500,1  |
| 141 | 0,15            | 0,17            | 0,23            | 0,29     | 0,38   | 0,60     | 0,78    | 13,20                 | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 8699,0   | 7663,9  | 5638,5    | 4451,2   | 3373,3    | 2099,8               | 1592,1 |
| 142 | 0,12            | 0,14            | 0,17            | 0,20     | 0,23   | 0,31     | 0,37    | 3,27                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2627,7   | 2238,1  | 1825,5    | 1536,6   | 1323,2    | 955,9                | 784,7  |
| 143 | 0,18            | 0,20            | 0,70            | 1,50     | 2,22   | 4,13     | 5,12    | 2,38                  | 1               | 1    | 1               | 1        | 1                    | 0      | 0                                     | 1222,5   | 1090,3  | 240,1     | 58,7     | 7,2       | 73,5                 | 115,1  |
| 144 | 0,16            | 0,19            | 0,29            | 0,42     | 0,80   | 2,22     | 3,26    | 2,53                  | 1               | 1    | 1               | 1        | 1                    | 1      | 0                                     | 1478,6   | 1229,3  | 770,9     | 501,4    | 215,7     | 13,8                 | 29,1   |
| 145 | 0,16            | 0,19            | 0,30            | 0,45     | 1,00   | 2,70     | 3,82    | 2,58                  | 1               | 1    | 1               | 1        | 1                    | 0      | 0                                     | 1515,2   | 1260,1  | 761,4     | 474,3    | 158,4     | 4,5                  | 47,8   |
| 146 | 0,12            | 0,15            | 0,23            | 0,31     | 0,42   | 0,97     | 1,34    | 2,53                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2004,8   | 1583,8  | 998,2     | 714,8    | 501,4     | 160,4                | 88,5   |
| 147 | 0,20            | 0,25            | 0,57            | 1,36     | 2,44   | 4,74     | 5,03    | 0,44                  | 1               | 1    | 0               | 0        | 0                    | 0      | 0                                     | 121,2    | 77,0    | 28,8      | 207,4    | 451,5     | 971,4                | 1036,9 |
| 148 | 0,16            | 0,21            | 0,40            | 0,85     | 1,37   | 2,52     | 3,27    | 2,53                  | 1               | 1    | 1               | 1        | 1                    | 1      | 0                                     | 1478,6   | 1102,7  | 531,4     | 197,1    | 84,4      | 0,2                  | 29,5   |
| 149 | 0,10            | 0,13            | 0,19            | 0,25     | 0,34   | 0,94     | 1,64    | 2,09                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 1994,7   | 1511,3  | 1002,5    | 737,9    | 516,1     | 122,8                | 27,7   |
| 150 | 0,09            | 0,12            | 0,18            | 0,23     | 0,31   | 1,01     | 2,43    | 2,53                  | 1               | 1    | 1               | 1        | 1                    | 1      | 1                                     | 2706,4   | 2004,8  | 1303,2    | 998,2    | 714,8     | 150,1                | 3,9    |

| Tal | ela 5.0         | \$ - Co:        | mpara           | ção en   | tre os   | diâme  | tros ca  | alculados             | pelas           | equaç | ões de          | e estin  | nativas                  | dese                        | nvolvio         | las para | o Rio A  | tibaia e | os diâme | etros cole | etados               |        |
|-----|-----------------|-----------------|-----------------|----------|----------|--------|----------|-----------------------|-----------------|-------|-----------------|----------|--------------------------|-----------------------------|-----------------|----------|----------|----------|----------|------------|----------------------|--------|
|     | DIÂME           | TROS            | DO LET          | ro do    | PARA O   | RIO AT | TIBAIA   |                       |                 | COMPA | RAÇÃ            | O ENTI   | RE D <sub>VJ &amp;</sub> | <sub>2</sub> D <sub>i</sub> |                 | RELAÇ    | ÃO PERCI | ENTUAL E | NTRE OS  | VALORES    | B DE D <sub>VJ</sub> |        |
|     | Granul          | ometri          | a do mat        | erial do | leito    |        |          |                       | (10)            | (11)  | (12)            | (13)     | (14)                     | (15)                        | (16)            | E        | OS VALO  | RES MED  | IDOS NO  | RIO ATIB.  | AIA                  |        |
| (1) | (2)             | (3)             | (4)             | (5)      | (6)      | (7)    | (8)      | (9)                   |                 | COMP. | ARAÇÃ           | O DE 1   | ם מענן כע                | COM                         |                 | (17)     | (18)     | (19)     | (20)     | (21)       | (22)                 | (23)   |
| N°  | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | $D_{50}$ | $D_{65}$ | D84    | $D_{90}$ | D <sub>VJ</sub> [DUB] | D <sub>10</sub> | D16   | D <sub>35</sub> | $D_{50}$ | $D_{65}$                 | D <sub>84</sub>             | D <sub>90</sub> |          |          |          | 1        |            |                      | °      |
|     | (mm)            | (mm)            | (mm)            | (mm)     | (mm)     | (mm)   | (mm)     | (mm)                  |                 |       | 5000 - 100 A.A. |          |                          |                             |                 |          |          |          |          |            |                      |        |
| 151 | 0,13            | 0,16            | 0,24            | 0,35     | 0.59     | 2,40   | 3,70     | 2.82                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 0               | 2069.7   | 1662.9   | 1075.3   | 705.9    | 378.1      | 17.5                 | 31.2   |
| 152 | 0,10            | 0,12            | 0,17            | 0.21     | 0.25     | 0.38   | 0.48     | 2.38                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 2280,5   | 1883.8   | 1300,3   | 1033.6   | 852.2      | 526,4                | 395.9  |
| 153 | 0,11            | 0,13            | 0,19            | 0,23     | 0,30     | 0,84   | 1,83     | 2,82                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 2464,2   | 2069,7   | 1384,6   | 1126,4   | 840,2      | 235,8                | 54,1   |
| 154 | 0,23            | 0,29            | 0,71            | 1,33     | 2,13     | 3,76   | 4,50     | 3,27                  | 1               | 1     | 1               | 1        | 1                        | 0                           | 0               | 1323,2   | 1028,7   | 361,0    | 146,1    | 53,7       | 14,9                 | 37,5   |
| 155 | 0,20            | 0,23            | 0,36            | 0,53     | 1,00     | 2,73   | 3,98     | 6,89                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 3344,9   | 2895,6   | 1813,8   | 1200,0   | 589,0      | 152,4                | 73,1   |
| 156 | 0,08            | 0,09            | 0,16            | 0,22     | 0,43     | 2,14   | 4,06     | 3,58                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 0               | 4376,8   | 3879,3   | 2138,4   | 1527,9   | 732,9      | 67,4                 | 13,4   |
| 157 | 0,18            | 0,20            | 0,29            | 0,39     | 0,80     | 1,07   | 2,06     | 3,12                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 1633,9   | 1460,6   | 976,2    | 700,3    | 290,1      | 191,7                | 51,5   |
| 158 | 0,20            | 0,23            | 0,39            | 0,73     | 1,42     | 4,07   | 6,23     | 3,12                  | 1               | 1     | 1               | 1        | 1                        | 0                           | 0               | 1460,6   | 1257,0   | 700,3    | 327,5    | 119,8      | 30,4                 | 99,6   |
| 159 | 0,12            | 0,15            | 0,23            | 0,34     | 0,60     | 4,67   | 0,30     | 3,27                  | 1               | 1     | 1               | 1        | 1                        | 0                           | 1               | 2627,7   | 2082,2   | 1323,2   | 862,7    | 445,5      | 42,7                 | 991,1  |
| 160 | 0,15            | 0,16            | 0,21            | 0,25     | 0,32     | 2,76   | 0,28     | 5,69                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 3693,3   | 3456,2   | 2609,5   | 2176,0   | 1678,1     | 106,2                | 1932,1 |
| 161 | 0,16            | 0,18            | 0,23            | 0,27     | 0,33     | 0,49   | 0,64     | 2,82                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 1662,9   | 1467,0   | 1126,4   | 944,7    | 754,7      | 475,6                | 340,7  |
| 162 | 0,15            | 0,16            | 0,20            | 0,24     | 0,29     | 4,84   | 1,35     | 3,58                  | 1               | 1     | 1               | 1        | 1                        | 0                           | 1               | 2287,6   | 2138,4   | 1690,7   | 1392,3   | 1135,0     | 35,1                 | 165,3  |
| 163 | 0,10            | 0,12            | 0,16            | 0,19     | 0,23     | 0,33   | 0,39     | 1,41                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 1311,1   | 1075,9   | 782,0    | 642,7    | 513,5      | 327,6                | 261,8  |
| 164 | 0,17            | 0,19            | 0,26            | 0,32     | 0,42     | 1,31   | 2,08     | 6,54                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 3748,8   | 3343,6   | 2416,5   | 1944,7   | 1457,8     | 399,5                | 214,6  |
| 165 | 0,08            | 0,10            | 0,15            | 0,18     | 0,22     | 0,30   | 0,37     | 3,58                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 4376,8   | 3481,4   | 2287,6   | 1889,7   | 1527,9     | 1093,8               | 867,9  |
| 166 | 0,14            | 0,15            | 0,19            | 0,23     | 0,29     | 1,19   | 3,53     | 4,86                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 1               | 3370,7   | 3139,3   | 2457,4   | 2012,6   | 1575,5     | 308,3                | 37,6   |
| 167 | 0,20            | 0,24            | 0,35            | 0,50     | 0,84     | 1,98   | 2,85     | 2,38                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 0               | 1090,3   | 891,9    | 580,1    | 376,1    | 183,4      | 20,2                 | 19,7   |
| 168 | 0,22            | 0,25            | 0,35            | 0,44     | 0,63     | 1,25   | 1,65     | 3,89                  | 1               | 1     | 1               | 1        | 1                        | <u> </u>                    | 1               | 1670,1   | 1457,7   | 1012,6   | 785,1    | 518,1      | 211,5                | 136,0  |
| 169 | 0,13            | 0,15            | 0,22            | 0,29     | 0,41     | 1,84   | 5,64     | 3,27                  | 1               | 1     | 1               | 1        | 1                        | 1                           | 0               | 2417,9   | 2082,2   | 1387,9   | 1028,7   | 698,4      | 77,9                 | 72,3   |
| 170 | 0,14            | 0,19            | 0,32            | 0,46     | 0,76     | 1,66   | 2,45     | 2,82                  | 1               | 1     | 1               | 1        | 1                        | <u> </u>                    | 1               | 1914,8   | 1384,6   | 781,5    | 513,2    | 271,1      | 69,9                 | 15,1   |
| 171 | 0,16            | 0,19            | 0,37            | 0,92     | 1,76     | 4,00   | 5,26     | 3,12                  | 1               | 1     | 1               | 1        | 1                        | 0                           | 0               | 1850,7   | 1542,7   | 743,5    | 239,3    | 77,3       | 28,2                 | 68,5   |
|     |                 |                 |                 |          |          |        |          |                       |                 | (%    | o) de eve       | entos en | nque D'                  | /J > D                      |                 | DIF      | ERENÇA   | PERCENT  | UAL REL  | ATTVA MI   | DIA                  |        |
|     |                 |                 |                 |          |          |        |          |                       | 99,42           | 99,42 | 95,91           | 93,57    | 85,38                    | 57,89                       | 46,20           | 1130,6   | 957,8    | 642,5    | 476,9    | 338,6      | 207,1                | 212,1  |

Dvj <sub>[DuB]</sub> - Diâmetro calculado pela equação: DVj <sub>[DUB]</sub>=73,595 x S<sup>1,2139</sup>. Para o método de Du-Boys (1879)

S - declividade da linha de água

| Autores                                   | Porce<br>m             | ntagem<br>Iaior do     | de eve<br>o que o      | ntos em<br>diâmet | n que D<br>ro colet    | <sub>Vj</sub> calcu<br>tado (D | l <b>lado é</b><br>i) | Média d<br>estimad<br>maior va | las difere<br>os e os n<br>alor | enças per<br>nedidos, | ccentuais<br>sendo a | relativas<br>compara | entre os<br>ção semj | valores<br>pre pelo |
|-------------------------------------------|------------------------|------------------------|------------------------|-------------------|------------------------|--------------------------------|-----------------------|--------------------------------|---------------------------------|-----------------------|----------------------|----------------------|----------------------|---------------------|
|                                           | <b>D</b> <sub>10</sub> | <b>D</b> <sub>16</sub> | <b>D</b> <sub>35</sub> | D <sub>50</sub>   | <b>D</b> <sub>65</sub> | <b>D</b> <sub>84</sub>         | D <sub>90</sub>       | <b>D</b> <sub>10</sub>         | D <sub>16</sub>                 | D <sub>35</sub>       | D <sub>50</sub>      | D <sub>65</sub>      | D <sub>84</sub>      | D <sub>90</sub>     |
| 1 – DuBoys (1879) e Straub (1935)         | 99,42*                 | 99,42                  | 95,91                  | 93,57             | 85,38                  | 57,89                          | 46,20                 | 1131,6                         | 957,8                           | 642,5                 | 476,9                | 338,6                | 207,1                | 212,1               |
| 2 - Schoklitsch (1914, 1950)              | 99,42                  | 99,42                  | 99,42                  | 99,42             | 98,25                  | 98,25                          | 97,66                 | 44677,1                        | 38421,1                         | 26970,8               | 20792,8              | 15439,9              | 8659,3               | 6937,6              |
| 3 - Shields (1936)                        | 100                    | 100                    | 100                    | 100               | 99,42                  | 87,72                          | 77,19                 | 2141,6                         | 1813,8                          | 1226,7                | 913,1                | 644,6                | 306,6                | 236,2               |
| 4 - Meyer-Peter e Müller (1948)           | 96,49                  | 95,32                  | 89,47                  | 77,19             | 59,65                  | 29,24                          | 19,88                 | 487,0                          | 407,2                           | 265,4                 | 200,3                | 165,2                | 229,2                | 308,7               |
| 5 - Kalinske (1947)                       | 52,05                  | 51,46                  | 49,71                  | 49,12             | 47,37                  | 38,01                          | 25,15                 | 566,3                          | 487,2                           | 360,6                 | 312,9                | 305,5                | 505,4                | 657,6               |
| 6 - Levi (1948)                           | 95,32                  | 93,57                  | 84,21                  | 75,44             | 63,74                  | 47,95                          | 34,50                 | 1116,8                         | 951,4                           | 653,4                 | 511,9                | 410,2                | 371,2                | 446,0               |
| 7-Einstein (1942) & Einstein-Brown (1950) | 100                    | 100                    | 100                    | 100               | 100                    | 99,42                          | 98,25                 | 3118,3                         | 2627,3                          | 1764,5                | 1306,6               | 920,1                | 442,7                | 325,5               |
| 8 - Sato, Kikkawa e Ashida (1958)         | 100                    | 100                    | 100                    | 100               | 99                     | 95,32                          | 92,40                 | 6093,2                         | 5251,6                          | 3684,7                | 2841,5               | 2107,9               | 1149,5               | 921,1               |
| 9 - Rottner (1959)                        | 54,39                  | 31,58                  | 7,60                   | 1,17              | 0,00                   | 0,00                           | 0,00                  | 26,3                           | 30,6                            | 82,5                  | 156,5                | 285,0                | 783,5                | 1088,8              |
| 10 -Garde e Albertson (1961)              | 100                    | 100                    | 100                    | 100               | 100                    | 98,83                          | 97,66                 | 3487,9                         | 2958,4                          | 2015,2                | 1511,7               | 1081,4               | 537,0                | 409,6               |
| 11 - Yalin (1963)                         | 100                    | 100                    | 100                    | 100               | 99                     | 85,96                          | 73,68                 | 2163,6                         | 1836,9                          | 1247,8                | 932,5                | 661,9                | 320,0                | 253,1               |
| 12 - Pernecker e Vollmer (1965)           | 100                    | 100                    | 100                    | 100               | 99                     | 87,72                          | 77,19                 | 2236,9                         | 1896,9                          | 1286,5                | 960,2                | 680,4                | 326,4                | 253,4               |
| 13 - Inglis e Lacey (1968)                | 100                    | 100                    | 100                    | 100               | 100                    | 100                            | 100                   | 4569,4                         | 3860,5                          | 2612,1                | 1948,9               | 1388,3               | 694,4                | 523,5               |
| 14 - Bogardi (1974)                       | 100                    | 100                    | 100                    | 100               | 99,42                  | 87,72                          | 78,36                 | 2960,4                         | 2536,3                          | 1748,9                | 1323,7               | 955,6                | 467,7                | 350,4               |

Quadro 5.4 – Estatística dos eventos em que os diâmetros calculados são maiores do que aqueles coletados no Rio Atibaia

Exemplo: \*Significa que 99,42 % dos valores dos diâmetros calculados, usando as equações analíticas para o método de Du-Boys (1879), apresentaram magnitudes maiores do que aqueles coletados no Rio Atibaia para a classe D10.

## 5.3 – COMENTÁRIOS FINAIS

No **quadro 5.5**, onde se identifica com quais diâmetros coletados os calculados mais se aproximam, nota-se que as estimativas pelas equações analíticas mostradas na **tabela 5.3** atestaram que das 14 (quatorze) equações 13 (treze) estimaram valores para os diâmetros com granulometria acima do diâmetro  $D_{65}$ . Neste caso, consolidou-se a tendência de tais equações estimarem valores com característica de uma granulometria mais grosseira.

| Autores                                   | Identii<br>que r<br>equaçã | fica o (<br>nais s<br>ăo anal | diâmeti<br>e apro<br>ítica pa | ro cole<br>oxima<br>ira um | tado no<br>do ca<br>determ | ) Rio A<br>lculado<br>inado n | Atibaia<br>pela<br>nétodo |
|-------------------------------------------|----------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|-------------------------------|---------------------------|
|                                           | <b>D</b> <sub>10</sub>     | <b>D</b> <sub>16</sub>        | D <sub>35</sub>               | D <sub>50</sub>            | D <sub>65</sub>            | D <sub>84</sub>               | D <sub>90</sub>           |
| 1 – DuBoys (1879) e Straub (1935)         |                            |                               |                               |                            |                            | XXXX                          |                           |
| 2 - Schoklitsch (1914, 1950)              |                            |                               |                               |                            |                            |                               | XXXX                      |
| 3 - Shields (1936)                        |                            |                               |                               |                            |                            |                               | xxxx                      |
| 4 - Meyer-Peter e Müller (1948)           |                            |                               |                               |                            | XXXX                       |                               |                           |
| 5 - Kalinske (1947)                       |                            |                               |                               |                            | xxxx                       |                               |                           |
| 6 - Levi (1948)                           |                            |                               |                               |                            |                            | XXXX                          |                           |
| 7-Einstein (1942) & Einstein-Brown (1950) |                            |                               |                               |                            |                            |                               | XXXX                      |
| 8 - Sato, Kikkawa e Ashida (1958)         |                            |                               |                               |                            |                            |                               | XXXX                      |
| 9 - Rottner (1959)                        | XXXX                       |                               |                               |                            |                            |                               |                           |
| 10 –Garde e Albertson (1961)              |                            |                               |                               |                            |                            |                               | XXXX                      |
| 11 – Yalin (1963)                         |                            |                               |                               |                            |                            |                               | XXXX                      |
| 12 - Pernecker e Vollmer (1965)           |                            |                               |                               |                            |                            |                               | XXXX                      |
| 13 – Inglis e Lacey (1968)                |                            |                               |                               |                            |                            |                               | XXXX                      |
| 14 - Bogardi (1974)                       |                            |                               |                               |                            |                            |                               | XXXX                      |

Quadro 5.5 - Identificação do diâmetro coletado que mais se aproxima do calculado

Os resultados atípicos encontrados para a equação analítica que estima o diâmetro analítico para ao método de Rottner (1959) é justificável com base no modo de estimativa do

diâmetro  $D_{V\hat{I}}$  que, como explicado no capitulo de metodologia, constituiu-se em uma etapa que antecedeu a da estimativa do diâmetro **D**vj.

Excepcionalmente, para o método Rottner (1959), os valores dos diâmetros  $D_{V\hat{I}}$  foram transpostos da série de dados dos diâmetros coletados, fugindo à regra daquilo que foi feito para os demais métodos, nos quais os diâmetros  $D_{V\hat{I}}$  foram, na maioria das vezes, estimados por equações, gerando uma nova série com características diferentes daquelas encontrada no Rio Atibaia.

Contudo, tal iniciativa foi necessária porque o referido método estimou valores baixos para a descarga de sedimentos, quando se utilizaram os diâmetros previamente selecionados para o cálculo da descarga sólida e, tais valores, quando não nulos, muito se aproximaram da ordem de grandeza dos valores das descargas medidos no rio Atibaia, facilitando a seleção de um deles para representar o  $D_{V\hat{1}}$ . Assim, julga-se que, de fato, era esperado, que esta equação gerasse valores para os diâmetros calculados mais aproximados daqueles encontrados no Rio Atibaia se comparados àqueles que foram gerados pelas equações analíticas referentes aos demais métodos.

Quando se calcula a descarga de sedimentos pelos métodos analíticos da descarga de sedimentos em escoamentos com superfície livre, verifica-se que a descarga de sedimentos decresce com o aumento da granulometria do material do leito. Assim, uma equação analítica que estime diâmetros de valores elevados, ao se analisar apenas por esse critério, acaba se tornando mais conveniente para estimar a descarga de sedimentos na camada do leito para rios com baixas descargas de sedimentos como aquelas verificadas para o Rio Atibaia, cujos valores máximo e médio são de, respectivamente, 28 ton/dia e 0,72 ton/dia.

Nos capítulos seguintes, a metodologia ora proposta terá sua validade verificada. No capítulo 6(seis), apresenta-se uma comparação entre a descarga estimada pelos métodos de cálculo do transporte de sedimentos na camada do leito e as descargas medidas. Nesta verificação, os diâmetros para os métodos de cálculo serão substituídos pelas equações citadas na **tabela 5.3** e estabelecidas para o Rio Atibaia.

Nos capítulos sete e oito, um procedimento análogo será realizado. Neles, a metodologia desenvolvida terá sua validade verificada ao ser aplicada a uma base de dados secundária, relativa a dois estudos de casos distintos. O primeiro deles refere-se aos dados de Ribeirão do Feijão em São Carlos (SP) e o segundo aos dados do Rio Mogi-Guaçu, também em São Carlos (SP).

## 6 – APLICAÇÃO DA METODOLOGIA AOS DADOS DO RIO ATIBAIA

## 6.1. Considerações preliminares

Neste capítulo, as descargas de sedimentos para o rio Atibaia foram calculadas pelos quatorze métodos empregados nesta pesquisa. Os cálculos foram realizados de duas maneiras: na primeira, as descargas foram calculadas utilizando-se os diâmetros pré-selecionados entre aqueles da série constituída de sete grupos de classe granulométrica obtidas pela coleta do material depositado no fundo do rio – que aqui se convencionou denominá-los de  $D_i$ . O segundo modo será a estimativa da descarga de sedimentos utilizando a série de diâmetros obtida pelas equações analíticas desenvolvidas para o Rio Atibaia. Estes diâmetros foram convencionalmente denominados de Dvj.

A partir dos valores das descargas de sedimentos, obtidas pelos procedimentos descritos no parágrafo supramencionado, foi possível comparar se as diferenças percentuais relativas médias aumentaram ou diminuíram quando se confrontaram os resultados obtidos por um e outro procedimento.

Na coluna 02, da tabela 6.1, apresentam-se, os diâmetros pré-selecionados à aplicação para o cálculo da descarga de sedimentos, mantendo o critério de atender a maior quantidade possível de campanhas de medições do rio Atibaia, no que se refere às faixas de diâmetros recomendados pelos respectivos autores. Já na coluna 3, escreveram-se as equações de estimativa do diâmetro **D**vj.

| 1                                            | 2               | 3                                                                      |
|----------------------------------------------|-----------------|------------------------------------------------------------------------|
| Autores                                      | Di              | Equação                                                                |
| 1 – DuBoys (1879) e Straub (1935)            | D <sub>50</sub> | $D_{V_1[DUB]} = 73,595 \text{ x S}^{1,2139}$                           |
| 2 - Schoklitsch (1914, 1950)                 | Da              | D <sub>Vj [SCH]</sub> =0,0726x ln[Q]-0,1419                            |
| 3 - Shields (1936)                           | D <sub>90</sub> | $D_{\rm Vj [SHI]} = 0,4965 \ {\rm x} \ {\rm S}^{0,5532}$               |
| 4 - Meyer-Peter e Müller (1948)              | D <sub>90</sub> | $D_{\rm Vj [MPM]} = 0,0034 \text{ x Pc}^{0.576}$                       |
| 5 - Kalinske (1947)                          | D <sub>84</sub> | $D_{Vj [KAL]} = 0,0044 \text{ x } [e^{-5,7716 \text{ x Pc}}]$          |
| 6 - Levi (1948)                              | D <sub>50</sub> | $D_{V_{i}[LEV]} = 2,3204 \text{ x Cp}^{-1,7324}$                       |
| 7-Einstein (1942) & Einstein-Brown<br>(1950) | D <sub>84</sub> | $D_{Vj [EIB]} = -0,0012 x Ln(Q) +0,0097$                               |
| 8 - Sato, Kikkawa e Ashida (1958)            | D <sub>84</sub> | $D_{V_{1}[SKA]} = 0.0453 \text{ x Pc}^{0.7149}$                        |
| 9 - Rottner (1959)                           | D <sub>84</sub> | $D_{V_{i}[ROT]} = 4x10^{-05} x S^{-0,1843}$                            |
| 10 -Garde e Albertson (1961)                 | D <sub>90</sub> | $D_{V_{i}[GAA]} = 0,0027 \text{ x Ln}(S) + 0,0302$                     |
| 11 - Yalin (1963)                            | D <sub>90</sub> | $D_{V_{j}[YAL]} = 3,8117 \text{ x S}^{0,7909}$                         |
| 12 - Pernecker e Vollmer (1965)              | D <sub>50</sub> | $D_{V_{j}[PEV]} = 1,1846 \text{ x S}^{0,65}$                           |
| 13 - Inglis e Lacey (1968)                   | D <sub>50</sub> | $D_{V_{i}[INL]} = -0,0012 x Ln(Q) + 0,0124$                            |
| 14 - Bogardi (1974)                          | D <sub>84</sub> | $D_{V_{1}[BOG]} = 0,0018 \text{ x } [e^{4723,1 \text{ x } \text{ S}}]$ |

Tabela 6.1 – Diâmetros usados no transporte de sedimentos do Rio Atibaia

# 6.2 – Comparação dos resultados das descargas para o Rio Atibaia em Sousas Campinas-SP

Na **tabela 6.2**, que exemplifica os cálculos das descargas de sedimentos pelo método de Du-Boys (1879), comparam-se, através da diferença percentual relativa média, as descargas de sedimentos obtidas usando os diâmetros Di e as descargas medidas. Na mesma tabela, a descarga medida foi novamente comparada, também pela diferença percentual relativa média, àquelas calculadas com o **DVj**. Já na **tabela 6.2a** ainda referente ao mesmo método, fez-se comparação similar, agora considerando apenas as campanhas de medições em que tanto a descarga calculada usando o diâmetro D<sub>i</sub> quanto aquelas usando o Dvj apresentaram valores maiores que zero. As comparações mostraram que, em ambos os casos, as descargas calculadas com os **DVj** apresentaram menores diferenças percentuais relativas médias.

O objetivo da análise, excluindo os eventos de descargas nulas, foi verificar a consistência da metodologia nessa nova condição e novamente constatou-se que a diferença percentual relativa também diminuiu. O **Anexo B** traz as demais tabelas com os cálculos desenvolvidos para os outros treze métodos. Nota-se, nas **tabelas 6.2 e 6.2a**, uma redução na diferença percentual relativa média, da ordem de  $10^2$ , quando a descarga de sedimentos foi estimada empregando-se o diâmetro Dvj.

A **tabela 6.3** mostra o resumo das diferenças percentuais relativas médias extraídas da série de tabelas apresentadas no **Anexo B**, considerando o conjunto completo das descargas calculadas (diz-se completo porque na **tabela 6.5** virão os resultados com apenas os valores positivos das descargas estimadas).

Ao se focalizarem os valores das diferenças percentuais relativas médias **na tabela 6.3**, nota-se que estes valores reduziram para os quatorze métodos, quando a descarga de sedimentos é estimada utilizando o Dvj como diâmetro de estimativa da descarga de sedimentos na camada do leito.

Essa redução era esperada, uma vez que os valores das descargas estimadas com o Dvj, em geral, apresentaram magnitudes menores do que aqueles estimados com o  $D_i$  e, neste caso, como as descargas de sedimentos medidas no Rio Atibaia apresentam valores considerados baixos, então a diferença percentual relativa média para este rio reduziu.

Na tabela 6.3,  $E[\%]D_i$  representa a diferença percentual relativa média entre os valores das descargas estimadas pelas equações do transporte de sedimentos na camada do leito, usando o diâmetro Di, enquanto que E[%]Dvj representa a diferença percentual relativa média estimada pelas equações do transporte de sedimentos, mas usando o diâmetro Dvj.

| Tavel      | a 0.2 - D             | cscarg | gas cal   | -mauas   | pero me             | touo de          | Dunc     | ys (18  | (9) usano          | IU-SC 0 DI      | anicu o D5                |                      |
|------------|-----------------------|--------|-----------|----------|---------------------|------------------|----------|---------|--------------------|-----------------|---------------------------|----------------------|
| (1)<br>NTO | (2)                   | (3)    | (4)<br>Dr | (5)      | (6)                 | (/)              | (8)      | (9)     | (10)<br>«RIDURI    | (11)<br>«RIDURI | (12)<br>FI041D            | (13)<br>F[06]Ded     |
| IN°        | DAIA                  | D50    | Dy Dus    |          | են                  | τ <sub>c50</sub> | в        | qBm     | dRIDORID20         | վելությու       | E[%0]D50                  | E[ao]DA]             |
|            |                       |        |           | 7s       |                     |                  | 1        | ton/dia | 10.000             | 100 - Marca 201 |                           |                      |
|            |                       | (mm)   | (mm)      | Kgf/ m'  | Kgf/ m <sup>*</sup> | Kgf/ m*          | (m)      | ton/dia | ton/dia            | ton/dia         | , NHO                     |                      |
| 1          | 26/3/1993             | 0,640  | 2,294     | 2650,000 | 0,264               | 0,122            | 34,700   | 0,141   | 280,600            | 0,000           | 198907,27                 | 100,00               |
| 2          | 0/4/1993              | 0,540  | 2,337     | 2650,000 | 0,227               | 0,111            | 34,870   | 0,038   | 222,641            |                 | 236311.84                 | 100,00               |
| 4          | 4/5/1993              | 0,080  | 2,100     | 2650,000 | 0,253               | 0,120            | 34,880   | 0,045   | 165,846            | 0,000           | 368446,38                 | 100,00               |
| 5          | 18/5/1993             | 0,510  | 1,857     | 2650,000 | 0,168               | 0,108            | 34,380   | 0,024   | 87,811             | 0,000           | 365777,78                 | 100,00               |
| 6          | 1/6/1993              | 1,020  | 2,836     | 2650,000 | 0,347               | 0,160            | 35,240   | 0,190   | 345,032            | 8,715           | 181495,55                 | 4486,80              |
| 7          | 8/6/1993              | 0,570  | 1,871     | 2650,000 | 0,190               | 0,114            | 34,910   | 0,026   | 118,335            | 0,000           | 455036,13                 | 100,00               |
|            | 22/6/1993             | 0,640  | 1 982     | 2650,000 | 0,194               | 0,122            | 34,210   |         | 102,930            |                 | 217691 51                 | 100,00               |
| 10         | 29/6/1993             | 0,660  | 1,871     | 2650,000 | 0,143               | 0,124            | 33,990   | 0,007   | 19,500             | 0,000           | 278467,03                 | 100,00               |
| 11         | 6/7/1993              | 0,780  | 1,089     | 2650,000 | 0,092               | 0,136            | 33,770   | 0,002   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 12         | 21/7/1993             | 0,770  | 0,891     | 2650,000 | 0,074               | 0,135            | 33,640   | 0,006   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 13         | 3/8/1993              | 0,630  | 0,597     | 2650,000 | 0,048               | 0,121            | 32,820   |         |                    |                 |                           | 100,00               |
| 14         | 31/8/1993             | 0,040  | 0,238     | 2650,000 | 0,023               | Π 124            | 33,740   | 0,002   | 0,000              |                 | 100,00                    | 100,00               |
| 16         | 21/9/1993             | 0,470  | 1,638     | 2650,000 | 0,141               | 0,104            | 33,970   | 0,006   | 47,925             | 0,000           | 798642,75                 | 100,00               |
| 17         | 28/9/1993             | 0,630  | 2,836     | 2650,000 | 0,316               | 0,121            | 34,920   | 0,384   | 471,943            | 0,000           | 122801,93                 | 100,00               |
| 18         | 5/10/1993             | 0,690  | 1,638     | 2650,000 | 0,144               | 0,127            | 34,380   | 0,006   | 17,556             | 0,000           | 292503,98                 | 100,00               |
| 19         | 21/10/1993            | 0,710  | 2,223     | 2650,000 | 0,215               | 0,129            | 34,840   | 0,023   | 280,623            |                 | 758340.85                 |                      |
| 20         | 4/11/1993             | 1,260  | 0,783     | 2650.000 | 0,202               | 0,121            | 33,820   | 0,003   | 0,000              | 0,000           | 100.00                    | 100.00               |
| 22         | 9/11/1993             | 1,150  | 1,411     | 2650,000 | 0,116               | 0,174            | 34,010   | 0,005   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 23         | 20/12/1993            | 0,630  | 2,337     | 2650,000 | 0,238               | 0,121            | 34,640   | 0,080   | 212,088            | 0,000           | 265009,89                 | 100,00               |
| 24         | 10/2/1994             | 0,590  | 0,783     | 2650,000 | 0,132               | 0,116            | 35,650   | 0,332   | 16,777             | 0,000           | 4953,33                   | 100,00               |
| 25<br>26   | 19/3/1994             | 0,260  | 1 411     | 2650,000 | 0,378               | 0,113            | 34,340   | 0,027   | 123 448            | 93,717          | 561026.56                 | 347001,30<br>100.00  |
| 20         | 6/5/1994              | 0,540  | 0,977     | 2650,000 | 0,125               | 0,112            | 33,600   | 0,012   | 13,802             | 0,000           | 114918,95                 | 100,00               |
| 28         | 20/5/1994             | 0,520  | 1,203     | 2650,000 | 0,148               | 0,109            | 33,600   | 0,012   | 48,720             | 0,000           | 405896,18                 | 100,00               |
| 29         | 17/6/1994             | 0,480  | 0,689     | 2650,000 | 0,093               | 0,105            | 33,640   | 0,005   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 30         | 1/7/1994              | 0,530  | 1,203     | 2650,000 | 0,157               | 0,110            | 33,810   | 0,006   | 62,003             | 0,000           | 1033291,15                | 100,00               |
| 32         | 29/7/1994             | 0,470  | 1 203     | 2650,000 | 0,065               | 0,104            | 33,810   | 0,051   | 37 801             |                 | 377912.88                 | 100,00               |
| 33         | 12/8/1994             | 0,570  | 0,410     | 2650,000 | 0,059               | 0,114            | 33,260   | 0,011   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 34         | 26/8/1994             | 0,510  | 0,574     | 2650,000 | 0,084               | 0,108            | 33,470   | 0,002   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 35         | 8/9/1994              | 0,540  | 0,783     | 2650,000 | 0,110               | 0,111            | 33,680   | 0,004   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 30         | 6/10/1994             | 0,450  | 0.410     | 2650,000 | 0,169               | 0,102            | 33,920   |         | 154,507            |                 | 100 00                    |                      |
| 38         | 27/10/1994            | 0,730  | 1,306     | 2650,000 | 0,217               | 0,131            | 34,480   | 0,424   | 126,259            | 26,277          | 29678,13                  | 6097,38              |
| 39         | 23/11/1994            | 0,600  | 0,410     | 2650,000 | 0,063               | 0,117            | 33,520   | 0,004   | 0,000              | 0,000           | 100,00                    | 100,00               |
| 40         | 22/12/1994            | 0,710  | 2,584     | 2650,000 | 0,565               | 0,129            | 35,680   | 0,218   | 1752,122           | 384,008         | 803625,48                 | 176050,58            |
| 41         | 5/1/1995              | 0,570  | 2,836     | 2650,000 | 0,527               | 0,114            | 35,270   | 0,523   | 1799,134           | 249,304         | 343902,60                 | 47567,98             |
| 42         | 26/1/1995             | 0,570  | 1,638     | 2650,000 | 0,222               | 0,114            | 33,920   | 0,015   | 171 459            | 0,000           | 476174.08                 | 100,00               |
| 44         | 9/2/1995              | 0,820  | 1,203     | 2650,000 | 0,412               | 0,140            | 40,300   | 3,097   | 805,485            | 517,458         | 25908,54                  | 16608,38             |
| 45         | 16/2/1995             | 0,590  | 3,076     | 2650,000 | 0,603               | 0,116            | 35,400   | 0,485   | 2374,811           | 345,692         | 489551,79                 | 71176,72             |
| 46         | 8/3/1995              | 0,410  | 1,982     | 2650,000 | 0,308               | 0,098            | 34,940   | 0,396   | 677,919            | 51,681          | 171091,66                 | 12950,87             |
| 47<br>48   | 7/4/1005              | 0,600  | 2,093     | 2650,000 | 0,439               | 0,123            | 35,380   | 0.171   | 1047,435           | 237,348         | 1168535.91                | 78620.35             |
| -+0<br>49  | 28/4/1995             | 0,240  | 2,095     | 2650,000 | 0,313               | 0,083            | 34,630   | 0.081   | 1123,778           | 44,715          | 1387280.78                | 55103.87             |
| 50         | 12/5/1995             | 0,320  | 2,095     | 2650,000 | 0,337               | 0,090            | 34,740   | 0,468   | 1045,588           | 72,426          | 223316,24                 | 15375,68             |
| 51         | 9/6/1995              | 0,330  | 1,638     | 2650,000 | 0,231               | 0,091            | 34,350   | 0,023   | 393,180            | 7,182           | 1709378,80                | 31127,42             |
| 52         | 5/7/1005              | 0,500  | 1,076     | 2650,000 | 0,206               | 0,107            | 34,340   |         | 180,/29<br>275,670 | 41,049<br>0.000 | 1003947,30<br>540037.00   | 22/948,44            |
| 54         | 12/7/1995             | 0,370  | 2.955     | 2650,000 | 0.212               | 0.080            | 35.030   | 4.163   | 3826.580           | 185.697         | 91818 81                  | 4360.65              |
| 55         | 19/7/1995             | 0,240  | 1,747     | 2650,000 | 0,335               | 0,083            | 34,590   | 0,016   | 1312,313           | 119,616         | 8201859,15                | 747501,74            |
| 56         | 26/7/1995             | 0,350  | 1,871     | 2650,000 | 0,277               | 0,093            | 34,610   | 0,118   | 599,723            | 29,700          | 508139,59                 | 25069,30             |
| 57         | 10/8/1995             | 0,320  | 1,306     | 2650,000 | 0,173               | 0,090            | 34,090   | 0,012   | 178,630            | 0,000           | 1488483,66                | 100,00               |
| 50<br>50   | 31/8/1995             | 0,230  | 0,783     | 2650,000 | 0,102               | 0,082            | 33,650   | 0,002   | 6776 262           | 76 904          | 1567287,4U<br>21858770.0c | 247653.36            |
| ر<br>60    | 28/9/1995             | 0,290  | 1.411     | 2650,000 | 0,757               | 0.097            | 34,480   | 0.249   | 271.555            | 14.254          | 108958 25                 | 247053,36<br>5624,39 |
| 61         | 5/10/1995             | 0,360  | 0,989     | 2650,000 | 0,135               | 0,094            | 34,160   | 0,002   | 63,114             | 0,000           | 3155576,27                | 100,00               |
| 62         | 19/10/1995            | 0,820  | 2,208     | 2650,000 | 0,402               | 0,140            | 35,020   | 0,205   | 661,039            | 149,633         | 322358,20                 | 72891,66             |
| 63         | 23/11/1995            | 0,520  | 0,989     | 2650,000 | 0,135               | 0,109            | 34,050   | 0,006   | 29,471             | 0,000           | 491079,71                 | 100,00               |
| 64         | 10/1/1995             | 0,630  | 0,397     | 2650,000 | 0,080               | 0,121            | 33,390   | 5 1/1   | 4123.863           | 589 441         | 100,00                    | 100,00               |
| 66         | 31/1/1996             | 0,260  | 1,638     | 2650.000 | 0,042               | 0,084            | 34,120   | 0,019   | 464.321            | 3,373           | 2443692.46                | 17650.91             |
| 67         | 7/2/1996              | 0,320  | 1,871     | 2650,000 | 0,315               | 0,090            | 35,120   | 0,238   | 901,819            | 74,423          | 378815,66                 | 31170,05             |
| 68         | 6/3/1996              | 0,270  | 2,467     | 2650,000 | 0,480               | 0,085            | 35,360   | 3,542   | 2756,544           | 236,401         | 77724,51                  | 6574,22              |
| 69         | 20/3/1996             | 0,300  | 3,076     | 2650,000 | 0,739               | 0,088            | 36,550   | 1,150   | 6676,780           | 680,693         | 580489,53                 | 59090,70             |
| 70         | 3/4/1990<br>16/4/1006 | 0,430  | 2,095     | 2650,000 | 0,331               | 0,100            | 34,870   | 0,133   | 692 108            | 54 991          | 1356974-18                | 49532,60             |
| · •        |                       |        |           |          |                     |                  | - 1,- 40 | 1.001   |                    |                 |                           |                      |

| (1)      | (2)        | (3)   | (4)    | (5)                 | (6)                | (7)                 | (8)              | (9)     | (10)              | (11)       | (12)                    | (13)      |
|----------|------------|-------|--------|---------------------|--------------------|---------------------|------------------|---------|-------------------|------------|-------------------------|-----------|
| Nº       | DATA       | Dza   | Dynus  |                     | To                 | Teza                | B                | gBm     | qB[DUB]D50        | qB[DUB]Dei | E[%]D50                 | E[%]Dvj   |
|          |            | - 20  |        | y.                  |                    | -650                |                  | ton/dia |                   |            |                         |           |
|          |            | (mm)  | (mm)   | Kof/ m <sup>3</sup> | Kof/m <sup>2</sup> | Kof/ m <sup>2</sup> | (m)              | ton/dia | ton/dia           | ton/dia    | -                       |           |
| 72       | 15/5/1996  | 0.440 | 1.638  | 2650.000            | 0,245              | 0,101               | 34,240           | 0,246   | 345,702           | 20,766     | 140429,29               | 8341.28   |
| 73       | 22/5/1996  | 0,410 | 1,638  | 2650,000            | 0,235              | 0,098               | 34,200           | 0,008   | 331,082           | 11,063     | 4138425,68              | 138185,95 |
| 74       | 19/6/1996  | 0,420 | 0,989  | 2650,000            | 0,138              | 0,099               | 33,760           | 0,012   | 52,754            | 0,000      | 439517,81               | 100,00    |
| 76<br>76 | 3/6/1996   | 0,640 | 1,203  | 2650,000            | 0,172              | 0,122               | 34,070           |         | 36,683            |            | 916981.26               | 100,00    |
| 77       | 31/7/1996  | 0,560 | 1,089  | 2650,000            | 0,142              | 0,113               | 34,750           | 0,005   | 33,274            | 0,000      | 665376,93               | 100,00    |
| 78       | 7/8/1996   | 0,450 | 0,783  | 2650,000            | 0,110              | 0,102               | 34,040           | 0,004   | 8,536             | 0,000      | 213306,47               | 100,00    |
| 79<br>©∩ | 14/8/1996  | 0,540 | 1,089  | 2650,000            | 0,152              | 0,111               | 33,990           | 0,005   | 51,785            | 0,000      | 1035595,66              | 100,00    |
| 81       | 28/8/1996  | 0,500 | 0,891  | 2650,000            | 0,133              | 0,107               | 33,730           | 0.003   | 26,585            | 0.000      | 886079,46               | 100,00    |
| 82       | 4/9/1996   | 0,530 | 1,638  | 2650,000            | 0,251              | 0,110               | 34,560           | 0,036   | 303,968           | 26,898     | 844256,74               | 74616,84  |
| 83       | 11/9/1996  | 0,640 | 2,836  | 2650,000            | 0,614              | 0,122               | 35,840           | 3,697   | 2337,908          | 431,886    | 63137,97                | 11582,05  |
| 84<br>85 | 2/10/1996  | 0,420 | 1,089  | 2650,000            | 0,158              | 0,099               | 34,100<br>34,700 | 0,006   | 92,277<br>283,480 | 42,806     | 1537849,11              | 17022.26  |
| 86       | 6/11/1996  | 0,420 | 1,816  | 2650,000            | 0,288              | 0,099               | 34,700           | 0,320   | 556,925           | 47,608     | 173939,10               | 14777,37  |
| 87       | 20/11/1996 | 0,500 | 1,411  | 2650,000            | 0,234              | 0,107               | 34,700           | 0,034   | 266,618           | 33,054     | 784071,90               | 97119,03  |
| 88       | 6/12/1996  | 0,380 | 1,411  | 2650,000            | 0,221              | 0,095               | 34,600           | 4,340   | 305,732           | 19,296     | 6944,52                 | 344,61    |
| <br>90   | 22/1/1997  | 0,380 | 2,584  | 2650,000            | 0,202              | 0,095               | 34,080           | 0,035   | 1649,834          | 135,592    | 1129923,45              | 92771,28  |
| 91       | 3/2/1997   | 0,360 | 2,584  | 2650,000            | 0,576              | 0,094               | 36,460           | 21,990  | 3355,511          | 416,815    | 15159,26                | 1795,47   |
| 92       | 12/3/1997  | 0,390 | 1,638  | 2650,000            | 0,222              | 0,096               | 34,320           | 1,010   | 298,714           | 0,000      | 29475,60                | 100,00    |
| 93       | 16/4/1997  | 0,400 | 1,306  | 2650,000            | 0,165              | 0,097               | 33,840<br>33,640 | 0,160   | 29.842            |            | 93154.87                | 100,00    |
| 95       | 14/5/1997  | 0,390 | 1,089  | 2650,000            | 0,125              | 0,096               | 33,160           | 0,104   | 36,942            | 0,000      | 35421,33                | 100,00    |
| 96       | 4/6/1997   | 0,750 | 1,306  | 2650,000            | 0,161              | 0,133               | 33,640           | 0,006   | 29,259            | 0,000      | 487557,29               | 100,00    |
| 97       | 2/7/1997   | 0,890 | 1,306  | 2650,000            | 0,160              | 0,147               | 33,840           | 0,005   | 11,540            | 0,000      | 230699,30               | 100,00    |
| 98       | 26/8/1997  | 0,890 | 1,190  | 2650,000            | 0,150              | 0,147               | 33,930<br>33,970 | 0,003   | 2,708             | 0,000      | 2351403.85              | 100,00    |
| 100      | 9/9/1997   | 0,580 | 1,089  | 2650,000            | 0,118              | 0,115               | 33,400           | 0,002   | 1,997             | 0,000      | 83100,54                | 100,00    |
| 101      | 23/9/1997  | 0,300 | 12,615 | 2650,000            | 1,074              | 0,088               | 33,960           | 0,013   | 13683,807         | 0,000      | 106904643,78            | 100,00    |
| 102      | 7/10/1997  | 0,320 | 1,544  | 2650,000            | 0,186              | 0,090               | 33,980           | 0,013   | 221,074           | 0,000      | 1649706,04              | 100,00    |
| 103      | 4/11/1997  | 0,340 | 1.152  | 2650,000            | 0,099              | 0.092               | 34,070           | 0.003   | 60,761            | 0.000      | 2095111.53              | 100,00    |
| 105      | 2/12/1997  | 0,320 | 1,280  | 2650,000            | 0,175              | 0,090               | 34,220           | 0,439   | 185,596           | 0,000      | 42177,02                | 100,00    |
| 106      | 16/12/1997 | 0,290 | 2,526  | 2650,000            | 0,376              | 0,087               | 34,770           | 5,770   | 1472,500          | 68,751     | 25419,94                | 1091,52   |
| 107      | 13/1/1998  | 0,320 | 4,388  | 2650,000            | 0,632              | 0.090               | 34,820           | 0,107   | 4325,380          | 175,206    | 4042311,54              | 163643,52 |
| 100      | 11/2/1998  | 0,270 | 2,584  | 2650,000            | 0,443              | 0,00,               | 35,240           | 1,660   | 1113,801          | 153,415    | 66996,44                | 9141,86   |
| 110      | 26/2/1998  | 0,710 | 2,584  | 2650,000            | 0,494              | 0,129               | 34,550           | 1,060   | 1244,242          | 234,172    | 117281,32               | 21991,74  |
| 111      | 11/3/1998  | 0,640 | 2,109  | 2650,000            | 0,302              | 0,122               | 34,680           | 1,600   | 408,047           | 31,659     | 25402,95                | 1878,67   |
| 112      | 8/4/1998   | 0,380 | 2,337  | 2650,000            | 0,362              | 0,095               | 33,220           | 0,310   | 1005,545          | 0.000      | 375468.38               | 24322,96  |
| 114      | 22/4/1998  | 0,460 | 0,689  | 2650,000            | 0,104              | 0,103               | 33,960           | 0,004   | 1,079             | 0,000      | 24983,52                | 100,00    |
| 115      | 6/5/1998   | 0,400 | 2,095  | 2650,000            | 0,382              | 0,097               | 35,220           | 0,165   | 1170,404          | 136,771    | 709235,46               | 82791,81  |
| 116      | 21/5/1998  | 0,380 | 1,871  | 2650,000            | 0,231              | 0,095               | 34,010           | 0.005   | 163 9/9           |            | 6668237,05              | 100,00    |
| 118      | 17/6/1998  | 0,370 | 1,411  | 2650,000            | 0,142              | 0,000               | 33,040           | 0,000   | 48,153            | 0,000      | 0,00                    | 0,00      |
| 119      | 15/7/1998  | 0,790 | 1,411  | 2650,000            | 0,168              | 0,137               | 33,020           | 0,005   | 31,372            | 0,000      | 627343,37               | 100,00    |
| 120      | 29/7/1998  | 0,920 | 0,989  | 2650,000            | 0,111              | 0,150               | 32,500           | 0,002   | 0,000<br>5 200    | 0,000      | 100,00                  | 100,00    |
| 121      | 25/8/1998  | 0,730 | 0.891  | 2650,000            | 0,137              | 0,131               | 32,770           | 0.000   | 0.000             | 0.000      | 0.00                    | 00,001    |
| 123      | 2/9/1998   | 0,860 | 0,989  | 2650,000            | 0,123              | 0,144               | 32,900           | 0,000   | 0,000             | 0,000      | 0,00                    | 0,00      |
| 124      | 16/9/1998  | 0,770 | 0,597  | 2650,000            | 0,074              | 0,135               | 32,900           | 0,006   | 0,000             | 0,000      | 100,00                  | 100,00    |
| 125      | 30/9/1998  | 1,180 | 0,783  | 2650,000            | 0,103              | 0.153               | 32,870           |         | 0,000             | 4 315      | 100,00                  | 100,00    |
| 120      | 28/10/1998 | 0,680 | 2,320  | 2650,000            | 0,252              | 0,135               | 32,920           | 0,024   | 216,168           | 0,000      | 2098616,31              | 100,00    |
| 128      | 11/11/1998 | 0,850 | 1,638  | 2650,000            | 0,154              | 0,143               | 31,400           | 0,000   | 9,542             | 0,000      | 0,00                    | 0,00      |
| 129      | 25/11/1998 | 0,500 | 2,095  | 2650,000            | 0,185              | 0,107               | 31,290           | 0,000   | 117,415           | 0,000      | 0,00                    | 0,00      |
| 130      | 22/12/1998 | 0,830 | 2,821  | 2650,000            | 0,320              | 0.094               | 180,26<br>32,950 | 0.000   | 545.810           | 0.000      | 0.00                    | 0,00      |
| 132      | 6/1/1999   | 0,200 | 2,821  | 2650,000            | 0,485              | 0,080               | 34,790           | 1,478   | 3530,253          | 179,669    | 238753,38               | 12056,20  |
| 133      | 21/1/1999  | 0,200 | 3,581  | 2650,000            | 0,650              | 0,080               | 35,230           | 3,703   | 6722,682          | 332,289    | 181446,90               | 8873,50   |
| 134      | 28/1/1999  | 0,220 | 3,894  | 2650,000            | 0,780              | 0,081               | 35,810           | 0,000   | 9365,885          | 540,016    | 1/1020-17               | 0,00      |
| 135      | 11/2/1999  | 0,200 | 3,121  | 2650,000            | 0,510              | 0,080               | 35,260           | 3,047   | 5794.364          | 291.780    | 190066.21               | 9475.99   |
| 137      | 25/2/1999  | 1,120 | 3,121  | 2650,000            | 0,555              | 0,171               | 35,520           | 5,114   | 1072,776          | 248,871    | 20877,24                | 4766,47   |
| 138      | 11/3/1999  | 0,240 | 2,821  | 2650,000            | 0,522              | 0,083               | 35,200           | 1,803   | 3629,562          | 243,455    | 201206,83               | 13402,79  |
| 139      | 15/4/1000  | 0.250 | 3,894  | 2650,000            | 0,666              | 0.083               | 34,990           | 3,640   | 1230.255          | 302,853    | 162445,98<br>6151175.77 | 8220,14   |
| 140      | 29/4/1999  | 0,230 | 13,199 | 2650,000            | 1,017              | 0,087               | 33,270           | 0,013   | 12265.878         | 0,000      | 94352804.47             | 100,00    |
| 142      | 13/5/1999  | 0,200 | 3,273  | 2650,000            | 0,341              | 0,080               | 33,410           | 0,023   | 1530,910          | 0,000      | 6656032,28              | 100,00    |

| (1) | (2)        | (3)   | (4)                   | (5)                | (6)                | (7)                 | (8)    | (9)     | (10)       | (11)       | (12)        | (13)      |
|-----|------------|-------|-----------------------|--------------------|--------------------|---------------------|--------|---------|------------|------------|-------------|-----------|
| N°  | DATA       | Dso   | D <sub>Vj</sub> [DUB] |                    | ፒሰ                 | T.50                | в      | qBm     | qB[DUB]D50 | qB[DUB]Duj | E[%]D50     | E[%]Dvj   |
|     |            |       | 7,50,079              | 7.                 | 8                  |                     |        | ton/dia |            | 70         |             |           |
|     |            | (mm)  | (mm)                  | Kgf/m <sup>3</sup> | Kgf/m <sup>2</sup> | Kgf/ m <sup>2</sup> | (m)    | ton/dia | ton/dia    | ton/dia    | -           | -         |
| 143 | 9/6/1999   | 1,500 | 2.381                 | 2650.000           | 0.244              | 0.209               | 33,290 | 0.010   | 32.662     | 0.000      | 326519.23   | 100.00    |
| 144 | 22/7/1999  | 0,420 | 2,526                 | 2650,000           | 0,214              | 0,099               | 32,520 | 0,003   | 236,344    | 0,000      | 7878040,33  | 100,00    |
| 145 | 5/8/1999   | 0,450 | 2,584                 | 2650,000           | 0,216              | 0,102               | 32,650 | 0.002   | 225,327    | 0.000      | 11266236,69 | 100,00    |
| 146 | 19/8/1999  | 0,310 | 2,526                 | 2650.000           | 0.214              | 0.089               | 32,780 | 0.004   | 326,580    | 0.000      | 8164391,24  | 100,00    |
| 147 | 2/9/1999   | 1.360 | 0.442                 | 2650.000           | 0.048              | 0.195               | 32.070 | 0.000   | 0.000      | 0.000      | 0.00        | 0.00      |
| 148 | 15/9/1999  | 0.850 | 2.526                 | 2650.000           | 0.263              | 0.143               | 33,310 | 0.343   | 181.835    | 0.000      | 52913.17    | 100.00    |
| 149 | 30/9/1999  | 0,250 | 2,095                 | 2650,000           | 0,166              | 0,083               | 32,020 | 0.001   | 189,763    | 0.000      | 18976209,10 | 100,00    |
| 150 | 14/10/1999 | 0,230 | 2,526                 | 2650.000           | 0.200              | 0.082               | 32,410 | 0.003   | 352,999    | 0.000      | 11766526.97 | 100.00    |
| 151 | 28/10/1999 | 0.350 | 2.821                 | 2650.000           | 0.246              | 0.093               | 32,880 | 0.027   | 420,781    | 0.000      | 1558348.65  | 100.00    |
| 152 | 11/11/1999 | 0,210 | 2,381                 | 2650,000           | 0,200              | 0,080               | 32,800 | 28,000  | 390,194    | 0,000      | 1293,55     | 100,00    |
| 153 | 25/11/1999 | 0,230 | 2,821                 | 2650.000           | 0,306              | 0,082               | 32,880 | 0.089   | 1045,674   | 0.000      | 1174814,69  | 100,00    |
| 154 | 9/12/1999  | 1,330 | 3,273                 | 2650.000           | 0.341              | 0.192               | 33,190 | 0.036   | 209,452    | 0.000      | 581712.03   | 100.00    |
| 155 | 23/12/1999 | 0,530 | 6,890                 | 2650,000           | 0,350              | 0,110               | 30,480 | 0,003   | 636,091    | 0,000      | 21202948,97 | 100,00    |
| 156 | 6/1/2000   | 0,220 | 3,581                 | 2650,000           | 0,650              | 0,081               | 35,690 | 0,214   | 6323,630   | 336,627    | 2954867,13  | 157202,47 |
| 157 | 13/1/2000  | 0,390 | 3,121                 | 2650,000           | 0.288              | 0,096               | 32,910 | 0.313   | 564,612    | 0.000      | 180287,19   | 100.00    |
| 158 | 20/1/2000  | 0,730 | 3,121                 | 2650,000           | 0,288              | 0,131               | 33,270 | 0,041   | 292,575    | 0,000      | 713497,33   | 100,00    |
| 159 | 27/1/2000  | 0,340 | 3,273                 | 2650,000           | 0,325              | 0,092               | 33,250 | 0,090   | 872,920    | 0,000      | 969811,60   | 100,00    |
| 160 | 3/2/2000   | 0,250 | 5,690                 | 2650,000           | 0,590              | 0,083               | 34,000 | 0,553   | 4435,184   | 2,913      | 801922,42   | 426,77    |
| 161 | 9/2/2000   | 0,270 | 2,821                 | 2650,000           | 0,274              | 0,085               | 33,100 | 0,487   | 702,537    | 0,000      | 144158,21   | 100,00    |
| 162 | 18/2/2000  | 0,240 | 3,581                 | 2650,000           | 0,448              | 0,083               | 34,700 | 0,447   | 2552,486   | 40,205     | 570926,03   | 8894,35   |
| 163 | 24/2/2000  | 0,190 | 1,411                 | 2650,000           | 0,179              | 0,079               | 33,560 | 0,603   | 324,369    | 0,000      | 53692,47    | 100,00    |
| 164 | 3/3/2000   | 0,320 | 6,543                 | 2650,000           | 0,593              | 0,090               | 33,420 | 0,219   | 3617,849   | 0,000      | 1651885,63  | 100,00    |
| 165 | 10/3/2000  | 0,180 | 3,581                 | 2650,000           | 0,314              | 0,078               | 32,880 | 0,040   | 1354,138   | 0,000      | 3385244,41  | 100,00    |
| 166 | 17/3/2000  | 0,230 | 4,859                 | 2650,000           | 0,421              | 0,082               | 33,270 | 0,218   | 2206,591   | 0,000      | 1012097,80  | 100,00    |
| 167 | 24/3/2000  | 0,500 | 2,381                 | 2650,000           | 0,284              | 0,107               | 34,120 | 0,491   | 443,749    | 0,000      | 90276,60    | 100,00    |
| 168 | 31/3/2000  | 0,440 | 3,894                 | 2650,000           | 0,579              | 0,101               | 35,270 | 1,121   | 2782,637   | 166,634    | 248128,13   | 14764,77  |
| 169 | 7/4/2000   | 0,290 | 3,273                 | 2650,000           | 0,270              | 0,087               | 32,770 | 0,050   | 633,756    | 0,000      | 1267411,17  | 100,00    |
| 170 | 14/4/2000  | 0,460 | 2,821                 | 2650,000           | 0,216              | 0,103               | 32,200 | 0,005   | 216,851    | 0,000      | 4336926,16  | 100,00    |
| 171 | 19/4/2000  | 0,920 | 3,121                 | 2650,000           | 0,230              | 0,150               | 31,990 | 0,012   | 96,322     | 0,000      | 802579,29   | 100,00    |
|     |            |       |                       | A                  |                    |                     |        | A       |            | MÉDIA      | 2.52E+06    | 2.13E+04  |

Tabela 6.2 - Descargas calculadas pelo método de Duboys (1879) usando-se o Diâmetro D<sub>50</sub> e o D<sub>VI</sub>

qBm - descarga total de sedimentos medida na camada do leito

qB[DUB]<sub>D50</sub> - Descarga solida calculada pelo método de Duboys usando o diâmetro D<sub>50</sub>

 $qB[DUB]_{Dej}$  – Descarga solida calculada pelo método de Duboys usando o diâmetro D $v_j$ 

E[%]D50 - Diferença percentual relativa entre as descargas medidas e aquelas calculadas, usando o Diâmetro D50

E[%]Dvj - Diferença percentual relativa entre as descargas medidas e aquelas calculadas, usando o Diâmetro Dvj

| (1) | (2)         | (3)      | (4)       | (5)                         | (6)                         | (7)          | (8)   | (9)     | (10)                   | (11)       | (12)                  | (13)     |
|-----|-------------|----------|-----------|-----------------------------|-----------------------------|--------------|-------|---------|------------------------|------------|-----------------------|----------|
| 10  | DATA        | $D_{50}$ | Dvj (dvb) | $\mathbf{g}_{\mathbf{s}}$   | το                          | $\tau_{c50}$ | в     | qBm     | qB[DUB] <sub>D50</sub> | qB[DUB]Dvj | E[%]D <sub>50</sub>   | E[%]Dvj  |
|     |             | (mm)     | (mm)      | $\mathrm{Kgf}/\mathrm{m}^3$ | $\mathrm{Kgf}/\mathrm{m}^2$ | $Kgf/m^2$    | (m)   | ton/dia | ton/dia                | ton/dia    | -                     | -        |
| Ì., | 1/6/1993    | 1,02     | 2,84      | 2650,00                     | 0,35                        | 0,16         | 35,24 | 0,19    | 345,03                 | 8,71       | 181495,6              | 4486,8   |
| 5   | 29/3/1994   | 0,56     | 2,34      | 2650,00                     | 0,38                        | 0,11         | 34,34 | 0,03    | 818,97                 | 93,72      | 3033119,8             | 347001,3 |
| 8   | 27/10/1994  | 0,73     | 1,31      | 2650,00                     | 0,22                        | 0,13         | 34,48 | 0,42    | 126,26                 | 26,28      | 29678,1               | 6097,4   |
| )   | 22/12/1994  | 0,71     | 2,58      | 2650,00                     | 0,56                        | 0,13         | 35,68 | 0,22    | 1752,12                | 384,01     | 803625,5              | 176050,6 |
| 1   | 5/1/1995    | 0,57     | 2,84      | 2650,00                     | 0,53                        | 0,11         | 35,27 | 0,52    | 1799,13                | 249,30     | 343902,6              | 47568,0  |
| 4   | 9/2/1995    | 0,82     | 1,20      | 2650,00                     | 0,41                        | 0,14         | 40,30 | 3,10    | 805,48                 | 517,46     | 25908,5               | 16608,4  |
| 5   | 16/2/1995   | 0,59     | 3,08      | 2650,00                     | 0,60                        | 0,12         | 35,40 | 0,49    | 2374,81                | 345,69     | 489551,8              | 71176,7  |
| 5   | 8/3/1995    | 0,41     | 1,98      | 2650,00                     | 0,31                        | 0,10         | 34,94 | 0,40    | 677,92                 | 51,68      | 171091,7              | 12950,9  |
| 7   | 24/3/1995   | 0,65     | 2,09      | 2650,00                     | 0,44                        | 0,12         | 35,38 | 1,72    | 1047,44                | 237,35     | 60762,0               | 13691,3  |
| 3   | 7/4/1995    | 0,25     | 2,34      | 2650,00                     | 0,41                        | 80,0         | 35,05 | 0,17    | 1998,37                | 134,61     | 1168535,9             | 78620,3  |
| 9   | 28/4/1995   | 0,24     | 2,09      | 2650,00                     | 0,31                        | 80,0         | 34,63 | 0,08    | 1123,78                | 44,72      | 1387280,8             | 55103,9  |
| )   | 12/5/1995   | 0,32     | 2,09      | 2650,00                     | 0,34                        | 0,09         | 34,74 | 0,47    | 1045,59                | 72,43      | 223316,2              | 15375,7  |
| L   | 9/6/1995    | 0,33     | 1,64      | 2650,00                     | 0,23                        | 0,09         | 34,35 | 0,02    | 393,18                 | 7,18       | 1709378,8             | 31127,4  |
| 2   | 23/6/1995   | 0,50     | 1,08      | 2650,00                     | 0,21                        | 0,11         | 34,34 | 0,02    | 180,73                 | 41,05      | 1003947,3             | 227948,4 |
| 1   | 12/7/1995   | 0,20     | 2,96      | 2650,00                     | 0,50                        | 0,08         | 35,03 | 4,16    | 3826,58                | 185,70     | 91818,8               | 4360,6   |
| 5   | 19/7/1995   | 0,24     | 1,75      | 2650,00                     | 0,33                        | 0,08         | 34,59 | 0,02    | 1312,31                | 119,62     | 8201859,2             | 747501,7 |
| 5   | 26/7/1995   | 0,35     | 1,87      | 2650,00                     | 0,28                        | 0,09         | 34,61 | 0,12    | 599,72                 | 29,70      | 508139,6              | 25069,3  |
| 9   | 21/9/1995   | 0,29     | 6,77      | 2650,00                     | 0,76                        | 0,09         | 34,28 | 0,03    | 6776,25                | 76,80      | 21858780,0            | 247653,4 |
| )   | 28/9/1995   | 0,40     | 1,41      | 2650,00                     | 0,22                        | 0,10         | 34,68 | 0,25    | 271,56                 | 14,25      | 108958,2              | 5624,4   |
| 2   | 19/10/1995  | 0,82     | 2,21      | 2650,00                     | 0,40                        | 0,14         | 35,02 | 0,21    | 661,04                 | 149,63     | 322358,2              | 72891,7  |
| 5   | 10/1/1996   | 0,38     | 2,58      | 2650,00                     | 0,64                        | 0,10         | 36,91 | 5,14    | 4123,86                | 589,44     | 80115,2               | 11365,5  |
| 6   | 31/1/1996   | 0,26     | 1,64      | 2650,00                     | 0,23                        | 0,08         | 34,12 | 0,02    | 464,32                 | 3,37       | 2443692,5             | 17650,9  |
| 7   | 7/2/1996    | 0,32     | 1,87      | 2650,00                     | 0,31                        | 0,09         | 35,12 | 0,24    | 901,82                 | 74,42      | 378815,7              | 31170,0  |
| 8   | 6/3/1996    | 0,27     | 2,47      | 2650,00                     | 0,48                        | 0,09         | 35,36 | 3,54    | 2756,54                | 236,40     | 77724,5               | 6574,2   |
| 9   | 20/3/1996   | 0,30     | 3,08      | 2650,00                     | 0,74                        | 0,09         | 36,55 | 1,15    | 6676,78                | 680,69     | 580489,5              | 59090,7  |
| 0   | 3/4/1996    | 0,43     | 2,09      | 2650,00                     | 0,33                        | 0,10         | 34,87 | 0,13    | 773,83                 | 66,01      | 581725,1              | 49532,6  |
| 1   | 16/4/1996   | 0,37     | 1,87      | 2650,00                     | 0,30                        | 0,09         | 34,52 | 0,05    | 692,11                 | 54,99      | 1356974,2             | 107726,1 |
| 2   | 15/5/1996   | 0,44     | 1,64      | 2650,00                     | 0,25                        | 0,10         | 34,24 | 0,25    | 345,70                 | 20,77      | 140429,3              | 8341,3   |
| 3   | 22/5/1996   | 0,41     | 1,64      | 2650,00                     | 0,24                        | 0,10         | 34,20 | 0,01    | 331,08                 | 11,06      | 4138425,7             | 138186,0 |
| 2   | 4/9/1996    | 0,53     | 1,64      | 2650,00                     | 0,25                        | 0,11         | 34,56 | 0,04    | 303,97                 | 26,90      | 844256,7              | 74616,8  |
| 3   | 11/9/1996   | 0,64     | 2,84      | 2650,00                     | 0,61                        | 0,12         | 35,84 | 3,70    | 2337,91                | 431,89     | 63138,0               | 11582,1  |
| 5   | 16/10/1996  | 0,67     | 1,68      | 2650,00                     | 0,27                        | 0,12         | 34,70 | 0,25    | 283,48                 | 42,81      | 113292,0              | 17022,3  |
| 6   | 6/11/1996   | 0,42     | 1,82      | 2650,00                     | 0,29                        | 0,10         | 34,70 | 0,32    | 556,93                 | 47,61      | 173939,1              | 14777,4  |
| 7   | 20/11/1996  | 0,50     | 1,41      | 2650,00                     | 0,23                        | 0,11         | 34,70 | 0,03    | 266,62                 | 33,05      | 784071,9              | 97119,0  |
| 8   | 6/12/1996   | 0,38     | 1,41      | 2650,00                     | 0,22                        | 0,10         | 34,60 | 4,34    | 305,73                 | 19,30      | 6944,5                | 344,6    |
| ,   | 9/1/1997    | 0,38     | 1,64      | 2650,00                     | 0,26                        | 0,10         | 34,68 | 0,03    | 480,30                 | 38,03      | 1455347,5             | 115154,4 |
| ]   | 22/1/1997   | 0,37     | 2,58      | 2650,00                     | 0,43                        | 0,09         | 34,78 | 0,15    | 1649,83                | 135,59     | 1129923,4             | 92771,3  |
| 1   | 3/2/1997    | 0,36     | 2,58      | 2650,00                     | 0,58                        | 0,09         | 36,46 | 21,99   | 3355,51                | 416,81     | 15159,3               | 1795,5   |
| 16  | 16/12/1997  | 0,29     | 2,53      | 2650,00                     | 0,38                        | 0,09         | 34,77 | 5,77    | 1472,50                | 68,75      | 25419,9               | 1091,5   |
| 7   | 13/1/1998   | 0,32     | 4,39      | 2650,00                     | 0,63                        | 0,09         | 34,82 | 0,11    | 4325,38                | 175,21     | 4042311,5             | 103643,5 |
| 9   | 11/2/1998   | 0,62     | 2,58      | 2050,00                     | 0,44                        | 0,12         | 35,24 | 1,66    | 1113,80                | 153,41     | 00996,4               | 9141,9   |
| U   | 26/2/1998   | 0,71     | 2,58      | 2650,00                     | 0,49                        | 0,13         | 34,55 | 1,06    | 1244,24                | 234,17     | 117281,3              | 21991,7  |
| 1   | 11/3/1998   | 0,04     | 2,11      | 2050,00                     | 0,30                        | 0,12         | 34,08 | 1,00    | 408,05                 | 31,00      | 25402,9               | 1878,7   |
| 4   | 25/3/1998   | 0,38     | 2,34      | 2050,00                     | 0,30                        | 0,10         | 35,22 | 0,31    | 1085,54                | /5,/1      | 3000/5,7              | 24323,0  |
| 2   | 0/0/1998    | 0,40     | 2,09      | 2050,00                     | 0,58                        | 0,10         | 30,22 | 0,17    | 11/0,40                | 130,77     | 1122744.2             | 102/91,8 |
| 0   | 6/1/10/1998 | 0,95     | 2,23      | 2020,00                     | 0.40                        | 0,15         | 33,28 | 1.40    | 200,22                 | 4,32       | 1134/04,2             | 10203,4  |
| 4   | 0/1/1999    | 0,20     | 2,82      | 2020,00                     | 0,49                        | 80,0         | 34,/9 | 1,48    | 3730,25                | 1/9,07     | 238/53,4              | 12050,2  |
| 5   | 21/1/1999   | 0,20     | 3,58      | 2050,00                     | 0,05                        | 0,08         | 35,23 | 3,70    | 0/22,08                | 532,29     | 181440,9              | 00       |
| 4   | 20/1/1999   | 0,22     | 3,89      | 2050,00                     | 0,78                        | 80,0         | 35,81 | 0,00    | 9305,89                | 240,02     | U,U<br>141020.2       | 60527    |
| 5   | 3/2/1999    | 0,20     | 3,12      | 2020,00                     | 0,51                        | 0,00         | 35,18 | 2,82    | 37/9,8/                | 201.79     | 141030,2              | 0476.0   |
| 7   | 11/2/1999   | 1.12     | 3,20      | 2030,00                     | 0,03                        | 0,08         | 35,20 | 505     | 2/94,30                | 271,/8     | 190000,4              | 94/0,U   |
| 0   | 11/2/1000   | 1,12     | 3,12      | 2050,00                     | 0,00                        | 0,17         | 35,52 | 3,11    | 10/2,/8                | 240,0/     | 200//2                | 4/00,5   |
| 0   | 25/2/1000   | 0,24     | 2,02      | 2030,00                     | 0,54                        | 0,00         | 33,40 | 1,00    | 5049,50                | 243,40     | 162446.0              | 82201    |
| 1   | 6/1/2000    | 0,25     | 3,07      | 2050,00                     | 0,07                        | 0,00         | 34,99 | 3,04    | 6222.62                | 302,00     | 102440,0              | 157202 5 |
| 0   | 2/2/2000    | 0,22     | 3,20      | 2020,00                     | 0,00                        | 0,00         | 33,09 | 0,41    | 0323,03                | 330,03     | 4934807,1<br>901033.4 | 10/2020  |
| 0   | 3/2/2000    | 0,25     | 2,09      | 2050,00                     | 0,59                        | 0,00         | 34,00 | 0,25    | 4433,18                | 40.20      | 601922,4<br>570026.0  | 420,0    |
| 4   | 21/2/2000   | 0,24     | 3,20      | 2030,00                     | 0,45                        | 0,00         | 34,/0 | 112     | 2002,49                | 40,20      | 2/09/20,0             | 14764 0  |
| 0   | 31/3/2000   | U,44     | 3,89      | 2050,00                     | 0,50                        | U,10         | 37,21 | i 1,12  | 2/02,04                | 100,03     | 240120,1              | 14/04,8  |
|     |             |          |           |                             |                             |              |       |         |                        | WIEDIA     | 1,41+00               | 0,3E+04  |

Ainda na **tabela 6.3** observam-se valores muito elevados para as diferenças percentuais relativas médias, obtidas pela comparação entre o valor medido e o calculado. Estes resultados podem ser atribuídos a dois fatores: o primeiro deles deve-se aos baixos valores das descargas de sedimentos medidas no rio Atibaia - descarga mínima **zero**, descarga média igual **0,72 ton/dia** e máxima igual a **28 ton /dia**. O segundo deve-se ao fato de que as descargas calculadas normalmente apresentam valores bem maiores do que os medidos.

Portanto, uma vez que a diferença percentual é um dado comparativo entre o valor medido e o estimado e como os métodos de cálculo do transporte de sedimento, normalmente calculam valores elevados – quando a descarga de sedimentos é positiva - então o resultado da diferença percentual relativa média é traduzido por um valor alto. Para efeito de comparação apresentam-se na **tabela 6.4** os valores máximos, médios e mínimos calculados pelos métodos de transporte de sedimentos, para o Rio Atibaia. E apresenta-se na, **figura 6.1**, a evolução das descargas de sedimentos no Rio Atibaia para as 171 campanhas de medidas realizadas.

| 1                                         | 2                    | 3                            | 4        | 5               |
|-------------------------------------------|----------------------|------------------------------|----------|-----------------|
| Autores                                   | E[%]D <sub>i</sub>   | E[%]D <sub>vj</sub>          | E(%)     | Observação      |
| 1 – DuBoys (1879) e Straub (1935)         | 2,52x10 <sup>6</sup> | 2,13x10 <sup>4</sup>         | 11731    | Redução do erro |
| 2 - Schoklitsch (1914, 1950)              | 41871,28             | 102,01                       | 40946,25 | Redução do erro |
| 3 - Shields (1936)                        | 2129263              | 34524,54                     | 6067,4   | Redução do erro |
| 4 - Meyer-Peter e Müller (1948)           | 2951,9               | 125,99                       | 2243     | Redução do erro |
| 5 - Kalinske (1947)                       | 2,16E+05             | 9,42E+04                     | 129,30   | Redução do erro |
| 6 - Levi (1948)                           | 90563,94             | 19674,18                     | 360,3    | Redução do erro |
| 7-Einstein (1942) & Einstein-Brown (1950) | 1457093,31           | 77558,02                     | 1778,7   | Redução do erro |
| 8 - Sato, Kikkawa e Ashida (1958)         | 96683,07             | 94,74                        | 101950,9 | Redução do erro |
| 9 - Rottner (1959)                        | 94,74                | 94,12                        | 0,7      | Redução do erro |
| 10 -Garde e Albertson (1961)              | 787522,50            | 37766,49                     | 1985,2   | Redução do erro |
| 11 - Yalin (1963)                         | 340068,21            | 178,49                       | 190425,1 | Redução do erro |
| 12 - Pernecker e Vollmer (1965)           | 4364710,04           | 24403,52                     | 17785,6  | Redução do erro |
| 13 - Inglis e Lacey (1968)                | 1,22x10 <sup>9</sup> | <b>8,98</b> x10 <sup>6</sup> | 13485,7  | Redução do erro |
| 14 - Bogardi (1974)                       | 802319,01            | 616,60                       | 130019,9 | Redução do erro |

Tabela 6.3 – Comparação entre a diferença percentual relativa média entre a descarga obtida pelos métodos de cálculo quando se usa o D<sub>i</sub> e o Dyj para o Rio Atibaia

A nuvem de pontos da **figura 6.1** revela que as descargas de sedimentos apresentam, de fato, valores muito baixos para o transporte na camada do leito. Nota-se, por exemplo, que o valor de **28 ton/dia**, correspondente ao máximo, ocorreu apenas uma vez entre as 171 campanhas realizadas. Por outro lado, quantificam-se somente **21 (vinte e um)** valores das descargas com magnitude acima de 1 (uma) tonelada por dia. Observa-se também uma quantidade substancial de pontos cujos valores das descargas são menores do que 0,5 toneladas por dia. Ademais, nas 171 campanhas de medidas foram identificados **9 (nove)** valores de descargas nulas. Somente para se ter uma noção dos quantitativos obtidos para o Rio Atibaia, em NASCIMENTO (2001) constata-se o valor médio de aproximadamente **360 ton/dia** para a descarga total média medida.



#### Evolução das medidas das descargas de sedimentos no Rio Atibaia

Figura 6.1 – Valores das descargas de sedimentos medidas em cada campanha para o Rio Atibaia

| Tabela 6.4 – | Resumo | dos r | esultados | das | descargas | calculada | s pelas | equações o | do t | transporte | de sediment | os na | a camada | a do |
|--------------|--------|-------|-----------|-----|-----------|-----------|---------|------------|------|------------|-------------|-------|----------|------|
| leito        |        |       |           |     |           |           |         |            |      |            |             |       |          |      |

|                                                                 |                                                                                                                                                  | qB[                         | D <sub>i</sub> ] - ton             | /dia                             | qB                             | [Dvj] - ton                 | /dia          |                   |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|----------------------------------|--------------------------------|-----------------------------|---------------|-------------------|--|
| 1                                                               | 2                                                                                                                                                | 3                           | 4                                  | 5                                | 6                              | 7                           | 8             | 9                 |  |
| Autores                                                         | Di                                                                                                                                               | Max                         | Med                                | Min                              | Max                            | Med                         | Min           | CC-t <sub>c</sub> |  |
| 1 – DuBoys (1879) e Straub (1935)                               | D <sub>50</sub>                                                                                                                                  | 13683,8                     | 1012,9                             | 0,0                              | 680,7                          | 55,3                        | 0,0           | ССР               |  |
| 2 - Schoklitsch (1914, 1950)                                    | Da                                                                                                                                               | 109,5                       | 16,6                               | 0,0                              | 0,16                           | 0,0001                      | 0,0           | ССР               |  |
| 3 - Shields (1936)                                              | D <sub>90</sub>                                                                                                                                  | 238822,8                    | 2223,5                             | 0,0                              | 421,4                          | 18,03                       | 0,0           | ССР               |  |
| 4 - Meyer-Peter e Müller (1948)                                 | D90                                                                                                                                              | 377,5                       | 15,4                               | 0,0                              | 21,6                           | 0,37                        | 0,0           | ССР               |  |
| 5 - Kalinske (1947)                                             | D <sub>84</sub>                                                                                                                                  | 701                         | 85,73                              | 0,0                              | 447,8                          | 64,57                       | 0,0           | ССР               |  |
| 6 - Levi (1948)                                                 | D <sub>50</sub>                                                                                                                                  | 2216,3                      | 174,8                              | 0,0                              | 665,1                          | 38,5                        | 0,0           | CCP*              |  |
| 7-Einstein (1942) & Einstein-Brown (1950)                       | D <sub>84</sub>                                                                                                                                  | 14481,7                     | 687,3                              | 0,03                             | 569,4                          | 37,02                       | 0,004         | **                |  |
| 8 - Sato, Kikkawa e Ashida (1958)                               | D <sub>84</sub>                                                                                                                                  | 302,6                       | 33,6                               | 0,0                              | 0,0                            | 0,0                         | 0,0           | CPD-S             |  |
| 9 - Rottner (1959)                                              | D <sub>84</sub>                                                                                                                                  | 0,04                        | 0,0005                             | 0,0                              | 1,6                            | 0,05                        | 0,0           | **                |  |
| 10 -Garde e Albertson (1961)                                    | D <sub>90</sub>                                                                                                                                  | 6739,1                      | 429,3                              | 0,06                             | 373,6                          | 17,50                       | 0,05          | **                |  |
| 11 - Yalin (1963)                                               | D90                                                                                                                                              | 2902,3                      | 209,7                              | 0,0                              | 52,60                          | 1,26                        | 0,0           | CPD-S             |  |
| 12 - Pernecker e Vollmer (1965)                                 | <b>D</b> <sub>50</sub>                                                                                                                           | 27685,3                     | 1651,8                             | 0,0                              | 347,3                          | 25,82                       | 0,0           | **                |  |
| 13 - Inglis e Lacey (1968)                                      | D <sub>50</sub>                                                                                                                                  | <b>6,8</b> x10 <sup>7</sup> | <b>2,7</b> x10 <sup>6</sup>        | $5,8x10^2$                       | <b>4,5</b> x10 <sup>5</sup>    | <b>1,8</b> x10 <sup>4</sup> | 7,32          | **                |  |
| 14 - Bogardi (1974)                                             | D <sub>84</sub>                                                                                                                                  | 20741,3                     | 656,2                              | 0,00006                          | 8,60                           | 0,69                        | 0,00008       | **                |  |
|                                                                 |                                                                                                                                                  | OBSER                       | VAÇOES                             |                                  |                                |                             |               |                   |  |
| qB[D <sub>i</sub> ] – Identifica a descarga calculada com o diá | ìmetro Di                                                                                                                                        |                             | CC-τ <sub>c</sub> – Id<br>CCP – Ca | entifica o crit<br>Icula com cri | tério adotado<br>tério próprio | o para o cálc<br>)          | ulo da tensão | o crítica         |  |
| qB[Dvj] – Identifica a descarga calculada pelo uso              | aB[Dvj] – Identifica a descarga calculada pelo uso do diâmetro Dvj<br>*Considera uma velocidade crítica e não tensão crítica<br>**Não especifica |                             |                                    |                                  |                                |                             |               |                   |  |

Outro fator interveniente no resultado final da diferença percentual relativa média é o critério adotado para o cálculo da tensão tangencial crítica para início de transporte (COIADO & PAIVA, 2005). Dependendo da maneira como este parâmetro é avaliado, podem-se ter, para a mesma campanha de medidas, valores das descargas de sedimentos nulas, se calculadas por um método, e valores elevados, se calculados por outro.

Na **tabela 6.4**, verifica-se que dos quatorze métodos somente quatro não estimaram valores nulos para a descarga de sedimentos, a saber: o de Einstein e Brow (1950), o Garde e Albertson (1961), o de Inglis e Lacei (1968) e o método de Bogardi (1974). Observa-se também a diversidade de critérios adotados para a estimativa da tensão tangencial crítica para início do transporte sólido.

COIADO & PAIVA (2005) alertaram para o fato de que os métodos que podem ser classificados como do tipo Du-Boys (1879) têm os valores das descargas de sedimentos por eles estimados condicionado à estimativa da tensão crítica para início de transportes e são susceptíveis a estimarem valores nulos, dependendo do critério de cálculo da tensão crítica de cisalhamento. Conduto, análises quanto aos critérios de escolha da tensão crítica de cisalhamento, fogem ao objetivo da tese, ficando como sugestões para pesquisas futuras.

Como o objetivo da tese foi o de avaliar se a metodologia proposta aproxima os valores das descargas de sedimentos calculadas quando se usa o **DVj** como uma alternativa aos métodos tradicionais de escolha por um único diâmetro representativo do material do leito, colocaram-se na **tabela 6.5** os resultados das diferenças percentuais relativas entre os valores medidos e os estimados, para aqueles casos em que tanto os valores das descargas estimadas usando o **Di** quanto aqueles usando o **DVj** apresentaram valores maiores que zero. Ou seja, foram excluídos os valores nulos.

Nota-se, na referida tabela, que a diferença percentual relativa, quando se usa o **Dvj** para o cálculo das descargas de sedimentos na camada do leito, continuou diminuindo. As razões, para se analisarem também os dados considerando somente os valores positivos das descargas calculadas devem-se ao fato de que aquelas situações em que um determinado método estima muitos eventos de descargas nulas acabam por apresentar valor baixo para a média da diferença percentual relativa entre o valor medido e o estimado.

Reportando-se ao exposto no parágrafo supradescrito, julga-se que um método que estima altas quantidades de eventos de descargas nulas, além de se tornar inadequado à estimativa das descargas de sedimentos em curso de água natural, pode induzir a uma análise equivocada, no que tange à seleção de um método à aplicação prática, caso se focalize apenas o resultado final da média dos valores das diferenças percentuais relativas.

Tal constatação pode ser verificada na equação analítica para a estimativa da diferença percentual relativa  $[E[\%] = |((q_B medido-q_B estimado)/q_B medido)*100)|]$ . Nota-se que para valores estimados nulos, a diferença percentual relativa se converte em um valor igual a 100%. Por outro lado, julga-se que um método que estime mais eventos de descargas positivas, mesmo apresentando diferenças percentuais relativas maiores, revela resultados mais representativos do ponto de vista da tomada de decisões quanto à sua aplicabilidade à Engenharia de Recursos Hídricos.

Nota-se, na **tabela 6.5**, que os resultados mostraram consistência na metodologia com a redução da diferença percentual relativa também para a situação em que foram consideradas somente as descargas positivas.

| 1                                             | 2                            | 3                            | 4     | 5                            |
|-----------------------------------------------|------------------------------|------------------------------|-------|------------------------------|
| Autores                                       | E[%]D <sub>i</sub>           | E[%]D <sub>vj</sub>          | E(%)  | Observação                   |
| 1 – DuBoys (1879) e Straub (1935)             | 1,2 x 10 <sup>6</sup>        | <b>6,3</b> x 10 <sup>4</sup> | 1775  | Reduziu 1775%                |
| 2 - Schoklitsch (1914,1950)                   | -                            | -                            | -     | Não houve coincidência*      |
| 3 - Shields (1936)                            | 2129263                      | 34524,5                      | 6067  | Reduziu 6067 %               |
| 4 - Meyer-Peter e Müller (1948)               | 332,8                        | 44,4                         | 650   | Reduziu 650 %                |
| 5 - Kalinske (1947)                           | <b>3,0</b> x 10 <sup>5</sup> | 1,9 x 10 <sup>5</sup>        | 58    | Reduziu 58 %                 |
| 6 - Levi (1948)                               | 98007,3                      | 25411,5                      | 286   | Reduziu 286 %                |
| 7-Einstein (1942) & Einstein-<br>Brown (1950) | -                            | -                            | -     | Não houve descarga<br>nula** |
| 8 - Sato, Kikkawa e Ashida (1958)             | -                            | -                            | -     | qB[Dvj] =0<br>todos***       |
| 9 - Rottner (1959)                            | -                            | -                            | -     | Não houve coincidências      |
| 10 -Garde e Albertson (1961)                  | _                            | -                            | -     | Não houve descarga nula      |
| 11 - Yalin (1963)                             | 152732,8                     | 736,5                        | 20638 | Reduziu 20638 %              |
| 12 - Pernecker e Vollmer (1965)               | 9375255,9                    | 78528,4                      | 11839 | Reduziu 11839%               |
| 13 - Inglis e Lacey (1968)                    | -                            | -                            | -     | Não houve descarga nula      |
| 14 - Bogardi (1974)                           | -                            | -                            | -     | Não houve descarga nula      |

Tabela 6.5 – Comparação da diferença percentual relativa média entre as descargas maiores que zero, obtidas pelos métodos de cálculo, quando são usados o  $D_i$  e o Dvj para o Rio Atibaia

\*Na campanha em que a descarga para o Di foi positiva, aquela para o DVj foi nula e vice- versa

\*\*Nos dois casos não houve nenhum evento de descarga nula

\*\*\* Todos os valores estimados para a descarga usando o Dvj foram nulos. Julga-se inconveniente sua aplicação ao Rio Atibaia.

# 6.3. Comentários finais sobre o resultado da metodologia aplicada aos dados do Rio Atibaia

Ao se aplicarem os métodos de cálculo do transporte de sedimentos em escoamentos com superfície livre, é imprescindível o conhecimento da tensão tangencial média de cisalhamento da corrente ( $\tau_0 = \gamma$ . R S).

Nota-se, portanto, em sua definição, o envolvimento de variáveis relacionadas à morfologia da seção e das características do fluido transeunte. Deste fato, surge que a tensão tangencial média de cisalhamento acaba se transformando em uma variável importante na tomada de decisão quanto à escolha dos métodos de estimativa da descarga na camada do leito.

No caso do Rio Atibaia, onde as declividades são baixas (**da ordem de 10^{-4}**), era de se esperar que, em algumas das campanhas de medições, fossem constatados valores para as tensões tangenciais críticas de cisalhamento maiores do que aqueles obtidos para o valor da tensão tangencial média, esta teoricamente é um dos provedores da energia disponível para o transporte do material sólido.

Mesmo ciente de que a magnitude da tensão crítica de cisalhamento está intrinsecamente relacionada à granulometria do matéria do leito, há de se fazer valer que os fatores morfológicos – como a declividade do rio - são também altamente intervenientes no movimento dos sedimentos em escoamentos com superfície livre, deixando, portanto, a indicação de que tais variáveis devem agir simultaneamente.

Do exposto acima, decorre que a análise isolada quanto à intervenção de uma ou outra variável no transporte dos sedimentos em escoamentos com superfície livre pode levar a resultados equivocados. Neste sentido, este trabalho avança e dá sua contribuição porque nele defende-se que o diâmetro do material do leito não seja escolhido apenas pelo dado do diâmetro representativo na curva granulométrica do material do leito.

Por outro lado, os diferentes critérios usados para a definição da tensão crítica de cisalhamento são, indiscutivelmente, um agravante no processo de escolha do método "ideal" para a aplicação da estimativa das descargas de sedimentos em escoamentos com superfície livre (COIADO & PAIVA, 2005).

Outra sugestão, que se julga relevante às futuras pesquisas em hidrossedimentologia, é a de buscar o desenvolvimento de métodos e modelos que considerem também os fatores morfológicos e a caracterização do solo da bacia hidrográfica na qual o rio está inserido, uma vez que todo sedimento depositado ou transeunte no curso de água natural tem sua origem na bacia hidrográfica.

Ao se aplicar a metodologia desenvolvida com o propósito de aproximar os resultados entre as descargas de sedimentos medidas e as estimadas, geraram-se resultados que se julgam satisfatórios, porque as diferenças percentuais relativas diminuíram quando se comparam os valores obtidos para descargas calculadas usando o D<sub>i</sub> e o Dvj.

No entanto, tais resultados não credenciam os quatorze métodos a estimativa da descarga de sedimentos na camada do leito no Rio Atibaia. Constatou-se inclusive que alguns são inadequados à aplicação para este rio, como o método de Rottner (1959), que estimou 170 (cento e setenta) valores de descarga nulos no universo de 171 campanhas de medidas,

quando a descarga foi calculada usando o D<sub>i</sub>. Resultado similar foi apresentado pelo método de Sato Kikawa e Ashida (1958), que estimou todos os valores nulos quando se usou o diâmetro Dvj no cálculo da descarga sólida.

Resultados melhores do que aqueles obtidos para o método de Rottner (1959) e Sato Kikawa e Ashida (1958) foram gerados pelos métodos de Einstein e Brow (1950), Garde e Albertson (1961), Inglis e Lacei (1968) e o método de Bogardi (1974), que estimaram todos os valores das descargas positivas, seja quando foi usado o diâmetro Di ou quando foi usado o Dvj.

Além dos quatro últimos métodos citados no parágrafo supracitado, destaca-se que o método de Kalinske (1947), se aplicado convenientemente - para os casos em que a razão  $\tau c/\tau o$  é inferior a 2,4 - elimina-se a possibilidade de obtenção de resultados de descargas nulas, do contrário, se a razão for maior do 2,4 o método não deve ser aplicado, porque foge-se ao limites dos dados experimentais [ SIMONS & SENTURK, 1992]

Ademais, alguns métodos apresentaram resultados considerados satisfatórios em hidrossedimentologia - como o método de Meyer-Peter e Muller (1914), que apresentou escore de cerca de 50% para a diferença percentual relativa, quando a descarga de sedimentos foi estimada usando o diâmetro Dvj.

Em Pujol e Charette (2004), comenta-se que uma fórmula de sedimentos apresenta resultados satisfatórios quando, de 70% a 80% dos seus valores estimados, apresenta diferença percentual relativa em torno de 50% a 200% em comparação com os valores medidos.

Trabalhar os métodos que estimaram descargas diferentes de zero e investigar melhor os critérios para o cálculo da tensão crítica de cisalhamento, considerar as variáveis relacionadas às características físicas da bacia (declividade, forma, tipo de solo, vegetação predominante etc), talvez sejam caminhos a se trilhar na busca de uma alternativa para a redução das margens de erro entre as descargas de sedimentos medidas e aquelas estimadas pelos modelos existentes.

Nos capítulos subseqüentes, a metodologia ora apresentada será empregada para outros rios afim de que seja verificada a sua aplicabilidade a outros cursos de águas naturais diferentes do Rio Atibaia.

# 7 – PRIMEIRO ESTUDO DE CASO: APLICAÇÃO DA METODOLOGIA AOS DADOS DO RIBEIRÃO DO FEIJÃO

## 7.1. Considerações preliminares

Neste capítulo, foi feita uma aplicação da metodologia desenvolvida e apresentada no **capítulo 6**. Neste capítulo sete, a base de dados foi obtida em SAMAEZ (1998). Os dados foram medidos no Ribeirão do Feijão e se constituem em 48 campanhas de medidas hidráulicas e de transporte de sedimentos.

A base de dados do Ribeirão do Feijão está apresentada na **tabela 7.1**. Os dados referem-se aos parâmetros hidráulicos e geométricos, às características da granulometria do material do leito, além de algumas propriedades do fluido, do escoamento e dos sedimentos. Notam-se, na parte inferior da tabela, valores máximos, médios e mínimos para todos os parâmetros. Também, para alguns deles, estão apresentados os desvios médios, em relação aos seus valores médios medidos.

Para efeito de comparação, destacam-se alguns valores máximos, mínimos e médios dos mais importantes parâmetros característicos do escoamento e dos sedimentos obtidos para o Ribeirão do Feijão. A vazão máxima apresenta valor de  $3,3 \text{ m}^3/\text{s}$ , o valor mínimo é de aproximadamente  $0,8 \text{ m}^3/\text{s}$ , já o valor médio é de  $1,4 \text{ m}^3/\text{s}$ , enquanto que o valor dos desvios médios dos valores em relação à média é de aproximadamente  $0,4 \text{ m}^3/\text{s}$ .

A declividade do leito apresenta valores máximos, mínimo e médio, respectivamente iguais a  $3,9x10^{-3}$ ,  $1,1x10^{-4}$  e  $1,3x10^{-3}$ , enquanto que o valor médio dos desvios em relação à média é de  $5,0x10^{-4}$ .

A velocidade do escoamento apresenta valor máximo igual a 0,5 m/s, enquanto os valores mínimos e médios são, respectivamente, 0,1 m/s e 0,3 m/s. Já o desvio médio em relação à média medida é de 0,04 m/s.

O valor da descarga máxima medida foi de **2,1 ton/dia**, com média de **0,11 ton/dia**. O desvio médio em relação à média foi de **0,14 ton/dia**. O valor mínimo medido para o Ribeirão do Feijão foi de **0,002 ton/dia**.

A aplicação da metodologia se deu de modo similar àquela apresentada no **capítulo 6**, ou seja, as descargas de sedimentos foram calculadas pelos métodos de cálculo do transporte de sedimentos usando os diâmetros Di e os Dvj e ambas foram comparadas à descarga medida, para analisar a variação da diferença percentual relativa média para um e outro caso.

Subsequentemente calculou-se E (%) Di (diferença percentual relativa entre a descarga calculada pelos diâmetros Di) e calculou-se também E(%)Dvj – diferença percentual relativa entre a descarga medida e aquela estimada pelos diâmetros Dvj.

| TA    | BELA 7.                | 1-BASI     | E DE D.    | ADO    | S RE    | FER     | ENT     | E AC    | ) RIB  | EIRA | ÍO D    | O FE  | CIJÃO    | ) -SÃ   | O CA    | RL(   | $\mathbf{SS} - \mathbf{SA}$ | ÃO PAU  | ЛО [S     | AMAN                                    | EZ,19   | 98]     |         |         |                  |         |         |
|-------|------------------------|------------|------------|--------|---------|---------|---------|---------|--------|------|---------|-------|----------|---------|---------|-------|-----------------------------|---------|-----------|-----------------------------------------|---------|---------|---------|---------|------------------|---------|---------|
|       | Parâmetro              | os hidrául | licos e ge | ométri | icos pa | ara o F | Ribeirá | ăo do I | Feijão |      | Gra     | ulome | etria do | o mater | rial do | leito |                             |         | Propried  | lades do                                | fluido, | do esco | amento  | e dos s | edimen           | tos     |         |
| (1)   | (2)                    | (3)        | (4)        | (5)    | (6)     | (7)     | (8)     | (9)     | (10)   | (11) | (12)    | (13)  | (14)     | (15)    | (16)    | (17)  | (18)                        | (19)    | (20)      | (21)                                    | (22)    | (23)    | (24)    | (25)    | (26)             | (27)    | (28)    |
| Nº.   | DATA                   | 0          | S          | A      | Р       | Ru      | d       | в       | U      | Die  | D20     | Das   | Dro      | Dee     | Der     | Daa   | 1/5                         |         | v         | τo                                      | n       | TL.     | a = O/B | Fr      | G                | Pe      | de.     |
| 0.00  | 1.202.202.02           |            |            |        |         |         |         |         |        | ~ 10 | ~ 30    | - 35  | - 50     | ~ 00    | - 05    | ~ 90  |                             | 1 3     | 2         | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |         |         | 3       |         | Ср               | 10      | ЧВ      |
| _     |                        | (m³/s)     | (m/m)      | (m*)   | (m)     | (m)     | (m)     | (m)     | (m/s)  | (mm) | (mm)    | (mm)  | (mm)     | (mm)    | (mm)    | (mm)  | Kgf/ m°                     | Kgf/ m° | m"/s      | Kgf/ m*                                 | Manning | (m/s)   | m″/s.m  |         | 19 <del>10</del> | Kgf/m.s | ton/dia |
| 1     | 14/5/1996              | 1,100      | 0,001190   | 4,91   | 6,96    | 0,71    | 0,98    | 5,00    | 0,22   | 0,21 | 0,29    | 0,31  | 0,35     | 0,37    | 0,38    | 0,53  | 2650,00                     | 1000,00 | 1,04E-06  | 0,84                                    | 0,122   | 0,091   | 0,220   | 0,072   | 191,99           | 0,19    | 0,022   |
| 2     | 21/5/1996              | 1,320      | 0,001210   | 5,04   | 7,02    | 0,72    | 1,01    | 5,00    | 0,26   | 0,24 | 0,33    | 0,34  | 0,38     | 0,40    | 0,41    | 0,59  | 2650,00                     | 1000,00 | 1,04E-06  | 0,87                                    | 0,106   | 0,092   | 0,264   | 0,083   | 144,05           | 0,23    | 0,017   |
| 3     | 28/5/1996              | 1,054      | 0,001140   | 4,90   | 6,96    | 0,70    | 0,98    | 5,00    | 0,22   | 0,24 | 0,32    | 0,33  | 0,37     | 0,40    | 0,40    | 0,56  | 2650,00                     | 1000,00 | 1,08E-06  | 0,80                                    | 0,124   | 0,089   | 0,211   | 0,069   | 207,98           | 0,17    | 0,016   |
| 4     | 4/6/1996               | 1,135      | 0,001080   | 5,00   | 7,00    | 0,71    | 1,00    | 5,00    | 0,23   | 0,22 | 0,31    | 0,33  | 0,38     | 0,40    | 0,43    | 0,72  | 2650,00                     | 1000,00 | 1,08E-06  | 0,77                                    | 0,116   | 0,087   | 0,227   | 0,073   | 190,19           | 0,18    | 0,005   |
| 5     | 11/6/1996              | 1,077      | 0,000960   | 4,92   | 6,96    | 0,71    | 0,98    | 5,00    | 0,22   | 0,23 | 0,32    | 0,33  | 0,36     | 0,39    | 0,40    | 0,56  | 2650,00                     | 1000,00 | 1,11E-06  | 0,68                                    | 0,112   | 0,082   | 0,215   | 0,071   | 201,06           | 0,15    | 0,002   |
| 6     | 18/6/1996              | 0,982      | 0,000940   | 4,82   | 6,93    | 0,70    | 0,96    | 5,00    | 0,20   | 0,28 | 0,36    | 0,38  | 0,43     | 0,48    | 0,51    | 0,75  | 2650,00                     | 1000,00 | 1,09E-06  | 0,65                                    | 0,118   | 0,080   | 0,196   | 0,066   | 227,00           | 0,13    | 0,005   |
| 7     | 25/6/1996              | 1,547      | 0,000890   | 4,73   | 6,89    | 0,69    | 0,95    | 5,00    | 0,33   | 0,24 | 0,32    | 0,33  | 0,37     | 0,40    | 0,40    | 0,58  | 2650,00                     | 1000,00 | 9,30E-07  | 0,61                                    | 0,071   | 0,077   | 0,309   | 0,107   | 86,79            | 0,20    | 0,002   |
| 8     | 1/7/1996               | 1,146      | 0,001050   | 4,86   | 6,94    | 0,70    | 0,97    | 5,00    | 0,24   | 0,31 | 0,48    | 0,48  | 0,61     | 0,69    | 0,74    | 1,57  | 2650,00                     | 1000,00 | 1,11E-06  | 0,74                                    | 0,108   | 0,085   | 0,229   | 0,076   | 171,03           | 0,17    | 0,007   |
| 9     | 9/7/1996               | 1,072      | 0,000960   | 4,70   | 6,88    | 0,68    | 0,94    | 5,00    | 0,23   | 0,25 | 0,35    | 0,35  | 0,39     | 0,42    | 0,46    | 86,0  | 2650,00                     | 1000,00 | 1,08E-06  | 0,66                                    | 0,105   | 0,080   | 0,214   | 0,075   | 177,39           | 0,15    | 0,006   |
| 10    | 16/7/1996              | 1,029      | 0,000870   | 4,81   | 6,93    | 0,69    | 0,96    | 5,00    | 0,21   | 0,25 | 0,38    | 0,38  | 0,44     | 0,50    | 0,54    | 1,08  | 2650,00                     | 1000,00 | 1,14E-06  | 0,60                                    | 0,108   | 0,077   | 0,206   | 0,070   | 205,86           | 0,13    | 0,006   |
| 11    | 23/7/1996              | 0,884      | 0,000830   | 4,60   | 6,84    | 0,67    | 0,92    | 5,00    | 0,19   | 0,19 | 0,31    | 0,31  | 0,35     | 0,37    | 0,39    | 0,58  | 2650,00                     | 1000,00 | 1,16E-06  | 0,56                                    | 0,115   | 0,074   | 0,177   | 0,064   | 245,09           | 0,11    | 0,003   |
| 12    | 30/7/1996              | 0,985      | 0,000830   | 4,98   | 6,99    | 0,71    | 1,00    | 5,00    | 0,20   | 0,28 | 0,41    | 0,41  | 0,50     | 0,57    | 0,60    | 1,03  | 2650,00                     | 1000,00 | 1,10E-06  | 0,59                                    | 0,116   | 0,076   | 0,197   | 0,063   | 248,98           | 0,12    | 0,004   |
| 13    | 6/8/1996               | 0,827      | 0,000750   | 4,81   | 6,92    | 0,70    | 0,96    | 5,00    | 0,17   | 0,22 | 0,48    | 0,48  | 0,35     | 0,38    | 0,39    | 0,54  | 2650,00                     | 1000,00 | 1,05E-06  | 0,52                                    | 0,125   | 0,072   | 0,165   | 0,056   | 319,00           | 0,09    | 0,006   |
| 14    | 13/8/1996              | 1,093      | 0,001130   | 4,95   | 7,04    | 0,70    | 0,97    | 5,10    | 0,22   | 0,22 | 0,32    | 0,32  | 0,36     | 0,38    | 0,41    | 0,57  | 2650,00                     | 1000,00 | 1,05E-06  | 0,79                                    | 0,120   | 0,088   | 0,214   | 0,072   | 194,83           | 0,18    | 0,004   |
| 15    | 23/8/1996              | 0,774      | 0,000820   | 4,66   | 6,86    | 0,68    | 0,93    | 5,00    | 0,17   | 0,24 | 0,34    | 0,34  | 0,38     | 0,40    | 0,41    | 0,59  | 2650,00                     | 1000,00 | 1,08E-06  | 0,56                                    | 0,133   | 0,074   | 0,155   | 0,055   | 331,08           | 0,09    | 0,004   |
| 16    | 27/8/1996              | 0,774      | 0,000840   | 4,66   | 6,86    | 0,68    | 0,93    | 5,00    | 0,12   | 0,19 | 0,33    | 0,33  | 0,38     | 0,40    | 0,44    | 0,75  | 2650,00                     | 1000,00 | 1,05E-06  | 0,57                                    | 0,193   | 0,075   | 0,155   | 0,038   | 678,01           | 0,07    | 0,005   |
| 17    | 3/9/1996               | 1,303      | 0,001320   | 5,15   | 7,12    | 0,72    | 1,01    | 5,10    | 0,25   | 0,25 | 0,37    | 0,37  | 0,44     | 0,50    | 0,55    | 1,20  | 2650,00                     | 1000,00 | 1,04E-06  | 0,95                                    | 0,116   | 0,097   | 0,255   | 0,080   | 154,79           | 0,24    | 0,005   |
| 18    | 10/9/1996              | 3,145      | 0,002390   | 7,69   | 9,85    | 0,78    | 0,97    | 7,90    | 0,41   | 0,22 | 0,34    | 0,34  | 0,38     | 0,42    | 0,44    | 0,64  | 2650,00                     | 1000,00 | 1,54E-06  | 1,87                                    | 0,101   | 0,135   | 0,398   | 0,132   | 57,06            | 0,76    | 2,097   |
| 19    | 17/9/1996              | 1,668      | 0,001810   | 5,43   | 7,41    | 0,73    | 1,01    | 5,40    | 0,31   | 0,20 | 0,31    | 0,31  | 0,35     | 0,38    | 0,40    | 0,57  | 2650,00                     | 1000,00 | 1,03E-06  | 1,33                                    | 0,113   | 0,114   | 0,309   | 0,098   | 104,71           | 0,41    | 0,057   |
| 20    | 20/9/1996              | 1,132      | 0,001030   | 4,57   | 6,76    | 0,68    | 0,93    | 4,90    | 0,25   | 0,23 | 0,33    | 0,33  | 0,38     | 0,40    | 0,42    | 0,60  | 2650,00                     | 1000,00 | 1,03E-06  | 0,70                                    | 0,100   | 0,083   | 0,231   | 0,082   | 148,66           | 0,17    | 0,005   |
| 21    | 1/10/1996              | 0,968      | 0,000770   | 4,44   | 6,65    | 0,67    | 0,93    | 4,80    | 0,22   | 0,22 | 0,32    | 0,32  | 0,36     | 0,38    | 0,40    | 0,57  | 2650,00                     | 1000,00 | 1,00E-06  | 0,51                                    | 0,097   | 0,0/1   | 0,202   | 0,072   | 190,94           | 0,11    | 0,007   |
| 22    | 8/10/1996              | 1,026      | 0,000840   | 4,56   | 6,82    | 0,67    | 0,91    | 5,00    | 0,23   | 0,23 | 0,32    | 0,32  | 0,37     | 0,39    | 0,41    | 0,57  | 2650,00                     | 1000,00 | 1,07E-06  | 0,56                                    | 0,099   | 0,074   | 0,205   | 0,075   | 1/6,/3           | 0,13    | 0,006   |
| 23    | 15/10/1996             | 1,684      | 0,001600   | 5,23   | 7,27    | 0,72    | 0,99    | 5,30    | 0,32   | 0,24 | 0,34    | 0,35  | 0,40     | 0,44    | 0,46    | 0,/5  | 2650,00                     | 1000,00 | 9,99E-07  | 1,15                                    | 0,100   | 0,106   | 0,318   | 0,103   | 93,38            | 0,37    | 0,166   |
| 24    | 22/10/1996             | 1,963      | 0,000670   | 4,38   | 6,76    | 0,65    | 0,88    | 5,00    | 0,22   | 0,25 | 0,36    | 0,36  | 0,42     | 0,46    | 0,50    | 0,74  | 2650,00                     | 1000,00 | 9,21E-07  | 0,43                                    | 0,088   | 0,065   | 0,393   | 0,075   | 1/1,55           | 0,10    | 0,005   |
| 25    | 31/10/1996             | 1,080      | 0,000810   | 4,34   | 0,74    | 0,64    | 0,87    | 5,00    | 0,25   | 0,23 | 0,35    | 0,35  | 0,41     | 0,47    | 0,50    | 0,79  | 2650,00                     | 1000,00 | 9,61E-07  | 0,52                                    | 0,085   | 0,072   | 0,216   | 0,085   | 137,18           | 0,13    | 0,038   |
| 26    | 5/11/1996              | 1,251      | 0,000110   | 4,49   | 0,09    | 0,67    | 0,90    | 4,90    | 0,28   | 0,19 | 0,30    | 0,30  | 0,34     | 0,37    | 0,39    | 0,58  | 2650,00                     | 1000,00 | 9,59E-07  | 0,07                                    | 0,029   | 0,027   | 0,255   | 0,094   | 113,05           | 0,02    | 0,037   |
| 27    | 12/11/1996             | 0,904      | 0,000520   | 4,13   | 0,52    | 0,63    | 0,86    | 4,80    | 0,22   | 0,19 | 0,28    | 0,30  | 0,35     | 0,38    | 0,39    | 0,56  | 2650,00                     | 1000,00 | 9,39E-07  | 0,33                                    | 0,077   | 0,057   | 0,188   | 0,075   | 1/5,91           | 0,07    | 0,003   |
| 28    | 19/11/1996             | 1,962      | 0,001980   | 5,50   | 7,40    | 0,75    | 1,03    | 5,40    | 0,35   | 0,24 | 0,32    | 0,34  | 0,38     | 0,42    | 0,44    | 0,08  | 2600,00                     | 1000,00 | 9,52E-07  | 1,48                                    | 0,104   | 0,120   | 0,303   | 0,111   | 80,77            | 0,52    | 0,031   |
| 29    | 22/11/1996             | 3,325      | 0,003595   | 7,03   | 8,34    | 0,84    | 1,17    | 6,00    | 0,47   | 0,32 | 0,41    | 0,43  | 0,50     | 0,53    | 0,50    | 0,83  | 2650,00                     | 1000,00 | 1,01E-00  | 3,03                                    | 0,113   | 0,172   | 0,334   | 0,140   | 31,30            | 1,43    | 0,476   |
| 30    | 25/11/1990             | 1,1/3      | 0,001055   | 4,53   | 0,/5    | 0,07    | 0,92    | 4,90    | 0,20   | 0,20 | 0,30    | 0,30  | 0,40     | 0,44    | 0,40    | 0,59  | 2000,00                     | 1000,00 | 9,00E-07  | 0,71                                    | 0,090   | 0,005   | 0,239   | 0,000   | 155,15           | 0,10    | 0,000   |
| 31    | 5/12/1990<br>5/12/1990 | 1,000      | 0,000070   | 4,59   | 0,/1    | 0,08    | 0,90    | 4,80    | 0,24   | 0,22 | 0,31    | 0.25  | 0,37     | 0,40    | 0,42    | 0,02  | 2650.00                     | 1000,00 | 0.77E.07  | 0,00                                    | 0,097   | 0,076   | 0,227   | 0,077   | 100,97           | 0,14    | 0,013   |
| 32    | 3/12/1990              | 1,101      | 0,000990   | 4,/1   | 7.26    | 0,09    | 1.02    | 4,90    | 0,23   | 0,24 | 0,33    | 0,35  | 0,40     | 0,45    | 0.47    | 0,/1  | 2650.00                     | 1000,00 | 3,11E-01  | 0,00                                    | 0,105   | 0,002   | 0,225   | 0,010   | 116 11           | 0,10    | 0,000   |
| 33    | 12/12/1990             | 1,213      | 0,001030   | 107    | 1,20    | 0,73    | 1,05    | 5,20    | 0,30   | 0,23 | 0.22    | 0.25  | 0,30     | 0,40    | 0,42    | 0,05  | 2650.00                     | 1000,00 | 9,34E-07  | 0.90                                    | 0,100   | 0,105   | 0,303   | 0,035   | 120.02           | 0,55    | 0,040   |
| 34    | 10/12/1990             | 1,314      | 0,0012/0   | 4,0/   | 0,95    | 0,70    | 1.26    | 5,00    | 0,21   | 0,21 | 0,33    | 0,35  | 0,40     | 0,44    | 0,40    | 0,20  | 2650.00                     | 1000,00 | 9,00E-07  | 0,05                                    | 0,104   | 0,035   | 0,203   | 0,007   | 130,33           | 0,24    | 0,000   |
| 33    | 9/1/1997               | 2,100      | 0,002380   | 1,04   | 7 11    | 0,0/    | 1,40    | 5,00    | 0,51   | 0,10 | 0,20    | 0.42  | 0,47     | 0,50    | 0,52    | 1.24  | 2650.00                     | 1000,00 | 0,50E-07  | 0.50                                    | 0,144   | 0,142   | 0,307   | 0,000   | 123,00           | 0,04    | 0,021   |
| 30    | 0/1/199/               | 1,290      | 0,000080   | 4,00   | 7.54    | 0,00    | 0,91    | 2,00    | 0,20   | 0.51 | 0,39    | 0,42  | 0,20     | 0,53    | 0,57    | 1,44  | 2650.00                     | 1000,00 | 0.30E-07  | 0,55                                    | 0,003   | 0,010   | 0,245   | 0,051   | 121,32           | 0,10    | 0,000   |
| 31    | 14/1/1997              | 1,30/      | 0,001390   | 5,22   | 9.67    | 0,09    | 1.10    | 5,/0    | 0,30   | 0,20 | 0,30    | 0,38  | 0,44     | 0,50    | 0,53    | 0,01  | 2650.00                     | 1000,00 | 3,20E-07  | 2.86                                    | 0,097   | 0,097   | 0,275   | 0,100   | 94 90            | 1.00    | 0,039   |
| 30    | 24/1/199/              | 2,203      | 0,003940   | 674    | 0,0/    | 0,73    | 1,19    | 6.70    | 0,35   | 0,10 | 0,10    | 0,17  | 0,40     | 0,23    | 0,40    | 115   | 2650.00                     | 1000,00 | 0.24E.07  | 2,00                                    | 0,143   | 0,100   | 0,330   | 0,103   | 34,30            | 0.71    | 0,000   |
| 39    | 11/2/1007              | 1 547      | 0,002390   | 5.61   | 7 20    | 0,04    | 1,10    | 5,/0    | 0,22   | 0,43 | 0,35    | 0,39  | 0,44     | 0,40    | 0,52    | 0.77  | 2650.00                     | 1000,00 | 9,2 IE-07 | 0.98                                    | 0,157   | 0,140   | 0,300   | 0.084   | 141.66           | 0.27    | 0,020   |
| 40    | 20/2/1007              | 1,547      | 0,001270   | 5,01   | 7.56    | 0.74    | 1,10    | 5,10    | 0,20   | 0,29 | 0,50    | 0,00  | 0,43     | 0,40    | 0,52    | 0,79  | 2650.00                     | 1000,00 | 0,70E-07  | 1 36                                    | 0 136   | 0,050   | 0,303   | 0.081   | 150.63           | 0,27    | 0,007   |
| 41    | £/3/1007               | 1,473      | 0,001600   | 5,70   | 7.24    | 0,73    | 1.03    | 5,00    | 0,20   | 0,29 | 0,50    | 0,00  | 0,43     | 0,40    | 0,52    | 0,70  | 2650.00                     | 1000,00 | 9,12E-07  | 1 15                                    | 0 116   | 0 106   | 0.283   | 0.089   | 130,03           | 0,55    | 0,003   |
| 42    | 10/3/1007              | 1,409      | 0.0015/0   | 5.40   | 7 34    | 0.74    | 1.02    | 5 30    | 0.26   | 0,24 | 0,35    | 0.42  | 0,57     | 0,45    | 0,40    | 1 32  | 2650.00                     | 1000,00 | 9.11E-07  | 1 13                                    | 0 123   | 0 105   | 0 267   | 0.082   | 147 88           | 0,52    | 0.006   |
| 44    | 13/3/1007              | 1,273      | 0,001140   | 5 33   | 7.30    | 0.73    | 1.00    | 5,30    | 0,24   | 0.31 | 0.30    | 0.42  | 0.51     | 0.57    | 0,61    | 1,18  | 2650.00                     | 1000.00 | 9.54E-07  | 0.83                                    | 0.115   | 0.090   | 0,240   | 0.076   | 171.91           | 0.20    | 0.002   |
| 1.000 |                        |            |            |        |         |         |         |         |        |      | 1 49.00 |       |          |         |         |       |                             |         |           |                                         |         |         |         | -,      |                  |         | 0,002   |

| 1 P    | DELA /.   | I-DAO               | E DE DI    | abu               | o KE   | TER                       | ENI     | LAC     | J KID. | LIKA     | 10 D     | OFF      | LIJAC    | )-0A     | 0.04     | TUT (    | Jo - oA             | IO FA               | oro le                  | AIVLAIN                     | LZ, 19  | 90                   |                     |         |         |         |                |
|--------|-----------|---------------------|------------|-------------------|--------|---------------------------|---------|---------|--------|----------|----------|----------|----------|----------|----------|----------|---------------------|---------------------|-------------------------|-----------------------------|---------|----------------------|---------------------|---------|---------|---------|----------------|
|        | Parâmetr  | os hidráu           | licos e ge | ométri            | cos pa | ara o F                   | Ribeirá | ão do I | Feijão |          | Gra      | ulome    | etria do | o mate:  | rial do  | leito    |                     |                     | Propried                | lades do                    | fluido, | do esco              | amento              | e dos s | ediment | tos     |                |
| (1)    | (2)       | (3)                 | (4)        | (5)               | (6)    | (7)                       | (8)     | (9)     | (10)   | (11)     | (12)     | (13)     | (14)     | (15)     | (16)     | (17)     | (18)                | (19)                | (20)                    | (21)                        | (22)    | (23)                 | (24)                | (25)    | (26)    | (27)    | (28)           |
| Nº.    | DATA      | Q                   | S          | Α                 | Р      | $\mathbf{R}_{\mathbf{H}}$ | d       | в       | U      | $D_{10}$ | $D_{30}$ | $D_{35}$ | $D_{50}$ | $D_{60}$ | $D_{65}$ | $D_{90}$ | γs                  | Y                   | ν                       | το                          | n       | $\mathbf{U}_{\star}$ | q = Q / B           | Fr      | Ср      | Pc      | q <sub>B</sub> |
|        |           | (m <sup>3</sup> /s) | (m/m)      | (m <sup>2</sup> ) | (m)    | (m)                       | (m)     | (m)     | (m/s)  | (mm)     | Kgf/ m <sup>3</sup> | Kgf/ m <sup>3</sup> | <b>m<sup>2</sup></b> /s | $\mathrm{Kgf}/\mathrm{m}^2$ | Manning | (m/s)                | m <sup>3</sup> /s.m | -       | -       | Kgf/m.s | ton/dia        |
| 45     | 17/3/1997 | 1,338               | 0,001290   | 5,35              | 7,25   | 0,74                      | 1,03    | 5,20    | 0,25   | 0,22     | 0,32     | 0,33     | 0,38     | 0,41     | 0,43     | 0,65     | 2650,00             | 1000,00             | 9,21E-07                | 0,95                        | 0,117   | 0,097                | 0,257               | 0,079   | 161,51  | 0,24    | 0,007          |
| 46     | 20/3/1997 | 1,206               | 0,001130   | 5,29              | 7,30   | 0,73                      | 1,00    | 5,30    | 0,23   | 0,28     | 0,37     | 0,39     | 0,46     | 0,54     | 0,56     | 0,93     | 2650,00             | 1000,00             | 9,59E-07                | 0,82                        | 0,119   | 0,090                | 0,228               | 0,073   | 188,33  | 0,19    | 0,005          |
| 47     | 4/4/1997  | 1,171               | 0,001710   | 5,28              | 7,22   | 0,73                      | 1,01    | 5,20    | 0,22   | 0,24     | 0,34     | 0,35     | 0,40     | 0,44     | 0,48     | 0,74     | 2650,00             | 1000,00             | 9,65E-07                | 1,25                        | 0,151   | 0,111                | 0,225               | 0,071   | 201,04  | 0,28    | 0,006          |
| 48     | 7/4/1997  | 1,173               | 0,001050   | 5,22              | 7,20   | 0,72                      | 1,00    | 5,20    | 0,23   | 0,24     | 0,32     | 0,34     | 0,39     | 0,43     | 0,45     | 0,67     | 2650,00             | 1000,00             | 9,77E-07                | 0,76                        | 0,116   | 0,086                | 0,226               | 0,072   | 194,17  | 0,17    | 0,003          |
|        | MAXIMO    | 3,33                | 0,00394    | 7,69              | 9,85   | 0,87                      | 1,26    | 7,90    | 0,47   | 0,32     | 0,48     | 0,48     | 0,61     | 0,69     | 0,74     | 1,57     | 2650,00             | 1000,00             | 1,54E-06                | 3,03                        | 0,193   | 0,172                | 0,55                | 0,14    | 678,01  | 1,43    | 2,097          |
| 000000 | MÍNIMO    | 0,77                | 0,00011    | 4,13              | 6,52   | 0,63                      | 0,86    | 4,80    | 0,12   | 0,10     | 0,16     | 0,17     | 0,20     | 0,25     | 0,26     | 0,46     | 2650,00             | 1000,00             | 8,70E-07                | 0,07                        | 0,029   | 0,027                | 0,15                | 0,04    | 51,30   | 0,02    | 0,002          |
|        | MÉDIO     | 1,41                | 0,00133    | 5,18              | 7,24   | 0,71                      | 0,99    | 5,27    | 0,26   | 0,24     | 0,34     | 0,35     | 0,40     | 0,44     | 0,47     | 0,77     | 2650,00             | 1000,00             | 1,02E-06                | 0,98                        | 0,111   | 0,093                | 0,26                | 0,08    | 179,90  | 0,29    | 0,113          |
|        | DES.MEDIO | 0,38                | 0,00050    |                   | l      |                           | 1       |         | 0,04   |          |          |          | 1        |          |          |          |                     |                     |                         |                             |         | Ì                    |                     |         |         |         | 0,143          |

TABELA 7.1-BASE DE DADOS REFERENTE AO RIBEIRÃO DO FEIJÃO -SÃO CARLOS - SÃO PAULO [SAMANEZ,1998]

## 7.2 – Seleção de diâmetros a serem usados nos métodos de cálculos para o Ribeirão do Feijão

Na **tabela 7.2**, trazem-se os dados granulométricos do Ribeirão do Feijão agrupados em intervalos de classe. Isto permitiu identificar a classe de diâmetros (**Di**) que melhor atende aos métodos analíticos de cálculo do transporte de sedimentos, no quesito faixa de diâmetros.

Deste modo, após análise da **tabela 7.2**, foi possível elaborar o **quadro 7.1**, no qual foi possível determinar a quantidade de campanhas de medições em que um determinado diâmetro **Di** atende às exigências preestabelecidas para cada método no que se refere à faixa, em milímetros, do diâmetro a ser empregado. Assim, por exemplo, para as 48 campanhas de medições no Ribeirão do Feijão, todos os diâmetros **D**<sub>10</sub> coletados apresentam em milímetros magnitudes entre **0,10** e **4,0**. Como se observa no referido quadro, todas as demais classes granulométricas também satisfazem ao método de Du-Boys (1879).

Ainda exemplificando a interpretação do **quadro 7.1**, pode-se dizer que apenas cerca de 10% das campanhas de medições do Ribeirão do Feijão apresentam diâmetro  $D_{10}$  com magnitude em milímetros, que obedecem à faixa estabelecida para o emprego do método de Shoklitsch (1914,1950).

|     |      | J    | D <sub>10</sub> |                          |
|-----|------|------|-----------------|--------------------------|
| Ic  | (mm) | F    | $F_i$ (%)       | $F_{iAC}\left(\%\right)$ |
| ,10 | 0,11 | 1,00 | 2,08            | 2,08                     |
| 1   | 0,11 | 0,00 | 0,00            | 2,08                     |
| 1   | 0.12 | 0,00 | 0,00            | 2,08                     |
| 2   | 0.12 | 0.00 | 0.00            | 2.08                     |
| 2   | 0.13 | 0.00 | 0.00            | 2.08                     |
| 13  | 0.13 | 0.00 | 0.00            | 2.08                     |
| 13  | 0.14 | 0.00 | 0.00            | 2.08                     |
| 14  | 0.14 | 0.00 | 0.00            | 2.08                     |
| 4   | 0.15 | 0.00 | 0.00            | 2.08                     |
| 15  | 0.15 | 0.00 | 0.00            | 2.08                     |
| 15  | 0.16 | 0.00 | 0.00            | 2.08                     |
| 16  | 0.16 | 0.00 | 0.00            | 2.08                     |
| 16  | 0.17 | 1.00 | 2.08            | 4.17                     |
| 17  | 0.17 | 0.00 | 0.00            | 4.17                     |
| 17  | 0.18 | 0.00 | 0.00            | 4.17                     |
| 18  | 0 18 | 0.00 | 0.00            | 417                      |
| 18  | 0.19 | 0.00 | 0.00            | 417                      |
| 19  | 0.19 | 0.00 | 0.00            | 417                      |
| 19  | 0.20 | 1.00 | 2.08            | 6.25                     |
| 0   | 0.20 | 3,00 | 6.25            | 12 50                    |
| 20  | 0.21 | 0.00 | 0.00            | 12,50                    |
| 1   | 0.21 | 1.00 | 2.08            | 14.58                    |
| 1   | 0.22 | 1.00 | 2,00            | 16.67                    |
| 2   | 0,22 | 3.00 | 6.25            | 22,07                    |
| 22  | 0,22 | 2.00 | 6.25            | 22,92                    |
| 12  | 0,25 | 2.00 | 417             | 29,17                    |
| 12  | 0,25 | 2,00 | 4,17            | 22,22                    |
| 13  | 0,24 | 5.00 | 10,00           | 33,33                    |
| 24  | 0,24 | 5,00 | 10,42           | 45,75                    |
| 25  | 0.25 | 5.00 | 10.42           | 66.67                    |
| 25  | 0,25 | 2,00 | 10,42           | 70.92                    |
| 25  | 0,20 | 2,00 | 4,1/            | 77.09                    |
| 20  | 0.20 | 0.00 | 0,25            | 77,00                    |
| 20  | 0.27 | 0.00 | 0.00            | 77.00                    |
| 27  | 0.29 | 0.00 | 0.00            | 77.08                    |
| 20  | 0,20 | 0.00 | 0,00            | 77.00                    |
| 20  | 0,20 | 3.00 | 6.25            | 82.22                    |
| 10  | 0,29 | 1.00 | 2,25            | 05,55<br>85.45           |
| 29  | 0,29 | 2.00 | 4.17            | 00,42<br>90,50           |
| 20  | 0,50 | 2,00 | 4,1/            | 07,58<br>90,59           |
| 00  | 0,30 | 0,00 | 0,00            | 89,58                    |
| 30  | 0,31 | 0,00 | 0,00            | 89,58<br>80,50           |
| 51  | 0,31 | 0,00 | 0,00            | 89,58                    |
| 51  | 0,32 | 2,00 | 4,17            | 93,75                    |
| 52  | 0,33 | 2,00 | 4,17            | 97,92                    |
| 5   | 0,34 | 1,00 | 2,08            | 100,00                   |
|     | soma | 48   | 100             | 100                      |

| TABELA 7.2 | a - Fre | qüências        | relativas e              | cumulada para | os diâmetros | D <sub>10</sub> e | D <sub>30</sub> para o | Ribeirão      | do Feijão |
|------------|---------|-----------------|--------------------------|---------------|--------------|-------------------|------------------------|---------------|-----------|
|            |         | D <sub>10</sub> |                          |               |              | ]                 | D <sub>30</sub>        |               |           |
| Ic (mm)    | F       | $F_i$ (%)       | $F_{iAC}\left(\%\right)$ |               | Ic (mm)      | F                 | $F_i(\%)$              | $F_{iAC}$ (%) |           |

|      | ()   | ê.   | S 20047 - 18 | 12773374 - C |
|------|------|------|--------------|--------------|
| 0,16 | 0,17 | 1,00 | 2,08         | 2,08         |
| 0,17 | 0,18 | 0,00 | 0,00         | 2,08         |
| 0,18 | 0,18 | 0,00 | 0,00         | 2,08         |
| 0,18 | 0,19 | 0,00 | 0,00         | 2,08         |
| 0,19 | 0,20 | 0,00 | 0,00         | 2,08         |
| 0,20 | 0,21 | 0,00 | 0,00         | 2,08         |
| 0,21 | 0,21 | 0,00 | 0,00         | 2,08         |
| 0,21 | 0,22 | 1,00 | 2,08         | 4,17         |
| 0,22 | 0,23 | 0,00 | 0,00         | 4,17         |
| 0,23 | 0,24 | 0,00 | 0,00         | 4,17         |
| 0,24 | 0,24 | 0,00 | 0,00         | 4,17         |
| 0,24 | 0,25 | 0,00 | 0,00         | 4,17         |
| 0,25 | 0,26 | 0,00 | 0,00         | 4,17         |
| 0,26 | 0,27 | 0,00 | 0,00         | 4,17         |
| 0,27 | 0,27 | 0,00 | 0,00         | 4,17         |
| 0,27 | 0,28 | 0,00 | 0,00         | 4,17         |
| 0,28 | 0,29 | 0,00 | 0,00         | 4,17         |
| 0,29 | 0,30 | 2,00 | 4,17         | 8,33         |
| 0,30 | 0,30 | 0,00 | 0,00         | 8,33         |
| 0,30 | 0,31 | 1,00 | 2,08         | 10,42        |
| 0,31 | 0,32 | 4,00 | 8,33         | 18,75        |
| 0,32 | 0,33 | 5,00 | 10,42        | 29,17        |
| 0,33 | 0,33 | 6,00 | 12,50        | 41,67        |
| 0,33 | 0,34 | 5,00 | 10,42        | 52,08        |
| 0,34 | 0,35 | 5,00 | 10,42        | 62,50        |
| 0,35 | 0,36 | 0,00 | 0,00         | 62,50        |
| 0,36 | 0,36 | 4,00 | 8,33         | 70,83        |
| 0,36 | 0,37 | 3,00 | 6,25         | 77,08        |
| 0,37 | 0,38 | 2,00 | 4,17         | 81,25        |
| 0,38 | 0,39 | 2,00 | 4,17         | 85,42        |
| 0,39 | 0,39 | 0,00 | 0,00         | 85,42        |
| 0,39 | 0,40 | 0,00 | 0,00         | 85,42        |
| 0,40 | 0,41 | 3,00 | 6,25         | 91,67        |
| 0,41 | 0,42 | 0,00 | 0,00         | 91,67        |
| 0,42 | 0,42 | 2,00 | 4,17         | 95,83        |
| 0,42 | 0,43 | 0,00 | 0,00         | 95,83        |
| 0,43 | 0,44 | 0,00 | 0,00         | 95,83        |
| 0,44 | 0,45 | 0,00 | 0,00         | 95,83        |
| 0,45 | 0,45 | 0,00 | 0,00         | 95,83        |
| 0,45 | 0,46 | 0,00 | 0,00         | 95,83        |
| 0,46 | 0,47 | 0,00 | 0,00         | 95,83        |
| 0,47 | 0,48 | 0,00 | 0,00         | 95,83        |
| 0,48 | 0,49 | 0,00 | 0,00         | 95,83        |
| 0,49 | 0,50 | 2,00 | 4,17         | 100,00       |
| 0,50 | 0,51 | 0,00 | 0,00         | 100,00       |
|      |      | 40   | 100          | 100          |

|       | 05   | D    | 35        |                |
|-------|------|------|-----------|----------------|
| Ic    | (mm) | F    | $F_i$ (%) | $F_{iAC}$ (%)  |
| 0,17  | 0,18 | 1,00 | 2,08      | 2,08           |
| 0,18  | 0,19 | 0,00 | 0,00      | 2,08           |
| 0,19  | 0,19 | 0,00 | 0,00      | 2,08           |
| 0,19  | 0,20 | 0,00 | 0,00      | 2,08           |
| 0,20  | 0,21 | 0,00 | 0,00      | 2,08           |
| 0,21  | 0,22 | 0,00 | 0,00      | 2,08           |
| 0,22  | 0,22 | 0,00 | 0,00      | 2,08           |
| 0,22  | 0,23 | 1,00 | 2,08      | 4,17           |
| 0,23  | 0,24 | 0,00 | 0,00      | 4,17           |
| 0,24  | 0,25 | 0,00 | 0,00      | 4,17           |
| 0,25  | 0,25 | 0,00 | 0,00      | 4,17           |
| 0.25  | 0.26 | 0.00 | 0.00      | 4.17           |
| 0.26  | 0.27 | 0.00 | 0.00      | 4.17           |
| 0.27  | 0.28 | 0.00 | 0.00      | 4.17           |
| 0.28  | 0.28 | 0.00 | 0.00      | 4.17           |
| 0.28  | 0.29 | 0.00 | 0.00      | 4.17           |
| 0.29  | 0.30 | 0.00 | 0.00      | 417            |
| 0.30  | 0.31 | 0.00 | 0.00      | 4.17           |
| 0.31  | 0.31 | 3.00 | 6.25      | 10.42          |
| 0.31  | 0.32 | 2.00 | 417       | 14 58          |
| 0.32  | 0.33 | 2,00 | 417       | 18 75          |
| 0.33  | 0.34 | 3.00 | 6.25      | 25.00          |
| 0.34  | 0.34 | 8.00 | 16.67     | 41.67          |
| 0.34  | 0.35 | 4.00 | 8 33      | 50.00          |
| 0.35  | 0.36 | 3,00 | 6 25      | 56.25          |
| 0.36  | 0.37 | 4 00 | 833       | 64 58          |
| 0.37  | 0.37 | 2,00 | 417       | 68.75          |
| 0.37  | 0.39 | 2,00 | 417       | 72 92          |
| 0.39  | 0,30 | 4.00 | 9.22      | 91.25          |
| 0,30  | 0,39 | 2.00 | 0,55      | 95.42          |
| 0,39  | 0,40 | 2,00 | 4,17      | 95 42          |
| 0,40  | 0,40 | 0,00 | 0,00      | 05,42<br>95.42 |
| 0,40  | 0,41 | 0,00 | 0,00      | 05,42          |
| 0,41  | 0,42 | 2.00 | 4.17      | 80,42          |
| 0,42  | 0,43 | 2,00 | 4,17      | 02,75          |
| 0,43  | 0,45 | 2,00 | 4,17      | 93,75<br>02.75 |
| 0,43  | 0,44 | 0,00 | 0,00      | 93,75          |
| 0,44  | 0,45 | 1,00 | 2,08      | 25,65          |
| 0,45  | 0,46 | 0,00 | 0,00      | 95,83          |
| 0,46  | 0,46 | 0,00 | 0,00      | 95,83          |
| 0,46  | 0,47 | 0,00 | 0,00      | 95,83          |
| 0,47  | 0,48 | 0,00 | 0,00      | 95,83          |
| 0,48  | 0,49 | 0,00 | 0,00      | 95,83          |
| 0,49  | 0,50 | 2,00 | 4,17      | 100,00         |
| 0,50  | 0,51 | 0,00 | 0,00      | 100,00         |
| ~ ~ ~ |      |      |           |                |

|       |      | $D_5$ | 0                      | na -                 |
|-------|------|-------|------------------------|----------------------|
| Ic    | (mm) | F     | $F_{i}\left(\%\right)$ | F <sub>iAC</sub> (%) |
| 0,20  | 0,21 | 0,00  | 0,00                   | 0,00                 |
| 0,21  | 0,22 | 1,00  | 2,08                   | 2,08                 |
| 0,22  | 0,23 | 0,00  | 0,00                   | 2,08                 |
| 0.23  | 0,24 | 0,00  | 0,00                   | 2,08                 |
| 0.24  | 0.25 | 0.00  | 0.00                   | 2.08                 |
| 0.25  | 0.26 | 0.00  | 0.00                   | 2.08                 |
| 0.26  | 0.27 | 0.00  | 0.00                   | 2.08                 |
| 0.2.7 | 0.28 | 0.00  | 0.00                   | 2.08                 |
| 0.28  | 0.28 | 1.00  | 2.08                   | 417                  |
| 0.28  | 0.29 | 0.00  | 0.00                   | 417                  |
| 0.29  | 0.30 | 0.00  | 0.00                   | 417                  |
| 0.30  | 0.31 | 0.00  | 0.00                   | 417                  |
| 0.31  | 0.32 | 0.00  | 0.00                   | 4.17                 |
| 0.22  | 0,32 | 0,00  | 0,00                   | 417                  |
| 0.22  | 0,35 | 0.00  | 0,00                   | 417                  |
| 0,35  | 0,34 | 0,00  | 0,00                   | 4,17                 |
| 0,34  | 0,35 | 4.00  | 0,00                   | 4,17                 |
| 0,35  | 0,30 | 4,00  | 0,33                   | 12,50                |
| 0,36  | 0,37 | 3,00  | 6,25                   | 18,/5                |
| 0,37  | 0,38 | 5,00  | 10,42                  | 29,17                |
| 0,38  | 0,39 | 8,00  | 16,67                  | 45,83                |
| 0,39  | 0,40 | 3,00  | 6,25                   | 52,08                |
| 0,40  | 0,41 | 3,00  | 6,25                   | 58,33                |
| 0,41  | 0,42 | 4,00  | 8,33                   | 66,67                |
| 0,42  | 0,43 | 1,00  | 2,08                   | 68,75                |
| 0,43  | 0,44 | 1,00  | 2,08                   | 70,83                |
| 0,44  | 0,44 | 4,00  | 8,33                   | 79,17                |
| 0,44  | 0,45 | 3,00  | 6,25                   | 85,42                |
| 0,45  | 0,46 | 0,00  | 0,00                   | 85,42                |
| 0,46  | 0,47 | 1,00  | 2,08                   | 87,50                |
| 0,47  | 0,48 | 0,00  | 0,00                   | 87,50                |
| 0,48  | 0,49 | 0,00  | 0,00                   | 87,50                |
| 0,49  | 0,50 | 0,00  | 0,00                   | 87,50                |
| 0,50  | 0,51 | 2,00  | 4,17                   | 91,67                |
| 0,51  | 0,52 | 2,00  | 4,17                   | 95,83                |
| 0,52  | 0,53 | 1,00  | 2,08                   | 97,92                |
| 0,53  | 0,54 | 0,00  | 0,00                   | 97,92                |
| 0,54  | 0,55 | 0,00  | 0,00                   | 97,92                |
| 0,55  | 0,56 | 0,00  | 0,00                   | 97,92                |
| 0,56  | 0,57 | 0,00  | 0,00                   | 97,92                |
| 0,57  | 0,58 | 0,00  | 0,00                   | 97,92                |
| 0,58  | 0,59 | 0,00  | 0,00                   | 97,92                |
| 0,59  | 0,59 | 0,00  | 0,00                   | 97,92                |
| 0,59  | 0,60 | 0,00  | 0,00                   | 97,92                |
| 0,60  | 0,61 | 0,00  | 0,00                   | 97,92                |
| 0,61  | 0,62 | 1,00  | 2,08                   | 100,00               |
|       | soma | 48    | 100                    | 100                  |

| TARET A | 7 2h - | Freqüências re  | lativas e a | cumulada nara | os diâmetros | Dar a D | ra nara o R   | ihairão do | Feijão |
|---------|--------|-----------------|-------------|---------------|--------------|---------|---------------|------------|--------|
| TADELA  | 1.40-  | riequencias ie. | lauvas e a  | cummana para  | os mametros. | D35 e D | 50 para origi | Then an an | renau  |

|       |      | D    | 60        |               |
|-------|------|------|-----------|---------------|
| Ic    | (mm) | F    | $F_i$ (%) | $F_{iAC}$ (%) |
| 0,25  | 0,26 | 1,00 | 2,08      | 2,08          |
| 0,26  | 0,27 | 0,00 | 0,00      | 2,08          |
| 0,27  | 0,28 | 0,00 | 0,00      | 2,08          |
| 0,28  | 0,29 | 0,00 | 0,00      | 2,08          |
| 0,29  | 0,30 | 0,00 | 0,00      | 2,08          |
| 0,30  | 0,31 | 0,00 | 0,00      | 2,08          |
| 0,31  | 0,32 | 1,00 | 2,08      | 4,17          |
| 0,32  | 0,33 | 0,00 | 0,00      | 4,17          |
| 0,33  | 0,34 | 0,00 | 0,00      | 4,17          |
| 0,34  | 0,35 | 0,00 | 0,00      | 4,17          |
| 0,35  | 0,36 | 0,00 | 0,00      | 4,17          |
| 0,36  | 0,37 | 0,00 | 0,00      | 4,17          |
| 0,37  | 0,38 | 2,00 | 4,17      | 8,33          |
| 0,38  | 0,39 | 6,00 | 12,50     | 20,83         |
| 0,39  | 0,40 | 2,00 | 4,17      | 25,00         |
| 0,40  | 0,41 | 4,00 | 8,33      | 33,33         |
| 0,41  | 0,42 | 5,00 | 10,42     | 43,75         |
| 0,42  | 0,43 | 4,00 | 8,33      | 52,08         |
| 0,43  | 0,44 | 2,00 | 4,17      | 56,25         |
| 0,44  | 0,45 | 4,00 | 8,33      | 64,58         |
| 0,45  | 0,46 | 1,00 | 2,08      | 66,67         |
| 0,46  | 0,47 | 0,00 | 0,00      | 66,67         |
| 0,47  | 0,48 | 1,00 | 2,08      | 68,75         |
| 0.48  | 0.49 | 4.00 | 8.33      | 77.08         |
| 0.49  | 0,50 | 1,00 | 2,08      | 79,17         |
| 0,50  | 0.51 | 1.00 | 2,08      | 81.25         |
| 0.51  | 0.52 | 2.00 | 4.17      | 85.42         |
| 0.52  | 0.53 | 0.00 | 0.00      | 85,42         |
| 0.53  | 0.54 | 0.00 | 0.00      | 85.42         |
| 0.54  | 0.55 | 3.00 | 6.25      | 91.67         |
| 0.55  | 0.56 | 0.00 | 0.00      | 91.67         |
| 0.56  | 0.57 | 0.00 | 0.00      | 91.67         |
| 0.57  | 0.58 | 2.00 | 4.17      | 95.83         |
| 0.58  | 0.59 | 1.00 | 2.08      | 97.92         |
| 0.59  | 0.60 | 0.00 | 0.00      | 97.92         |
| 0.60  | 0.61 | 0.00 | 0.00      | 97.92         |
| 0.61  | 0.62 | 0.00 | 0.00      | 97.92         |
| 0.62  | 0.63 | 0.00 | 0.00      | 97.92         |
| 0.63  | 0.64 | 0.00 | 0.00      | 97.92         |
| 0.64  | 0.65 | 0.00 | 0.00      | 97.92         |
| 0.65  | 0.66 | 0.00 | 0.00      | 97.92         |
| 0.66  | 0.67 | 0.00 | 0.00      | 97.92         |
| 0.67  | 0.68 | 0.00 | 0.00      | 97.92         |
| 0.68  | 0.69 | 0.00 | 0.00      | 97.92         |
| 0.69  | 0.70 | 1.00 | 2.08      | 100.00        |
| *,*** |      | 40   | 100       | 100           |

| D <sub>65</sub> |      |      |           |                      |  |  |  |  |  |
|-----------------|------|------|-----------|----------------------|--|--|--|--|--|
| Ic              | (mm) | F    | $F_i$ (%) | F <sub>iAC</sub> (%) |  |  |  |  |  |
| 0,26            | 0,27 | 0,00 | 0,00      | 0,00                 |  |  |  |  |  |
| 0,27            | 0,28 | 1,00 | 2,08      | 2,08                 |  |  |  |  |  |
| 0,28            | 0,29 | 0,00 | 0,00      | 2,08                 |  |  |  |  |  |
| 0.29            | 0,30 | 0,00 | 0,00      | 2,08                 |  |  |  |  |  |
| 0.30            | 0.32 | 0.00 | 0.00      | 2.08                 |  |  |  |  |  |
| 0.32            | 0.33 | 0.00 | 0.00      | 2.08                 |  |  |  |  |  |
| 0 33            | 0 34 | 1.00 | 2.08      | 417                  |  |  |  |  |  |
| 0 34            | 0.35 | 0.00 | 0.00      | 417                  |  |  |  |  |  |
| 0.35            | 0.36 | 0.00 | 0.00      | 417                  |  |  |  |  |  |
| 0.36            | 0.37 | 0.00 | 0.00      | 417                  |  |  |  |  |  |
| 0,30            | 0,37 | 0,00 | 0,00      | 4,17                 |  |  |  |  |  |
| 0,37            | 0,30 | 0,00 | 0,00      | 4,17                 |  |  |  |  |  |
| 0,38            | 0,39 | 0,00 | 0,00      | 4,17                 |  |  |  |  |  |
| 0,39            | 0,40 | 4,00 | 8,33      | 12,50                |  |  |  |  |  |
| 0,40            | 0,41 | 5,00 | 10,42     | 22,92                |  |  |  |  |  |
| 0,41            | 0,43 | 5,00 | 10,42     | 33,33                |  |  |  |  |  |
| 0,43            | 0,44 | 3,00 | 6,25      | 39,58                |  |  |  |  |  |
| 0,44            | 0,45 | 2,00 | 4,17      | 43,75                |  |  |  |  |  |
| 0,45            | 0,46 | 3,00 | 6,25      | 50,00                |  |  |  |  |  |
| 0,46            | 0,47 | 2,00 | 4,17      | 54,17                |  |  |  |  |  |
| 0,47            | 0,48 | 4,00 | 8,33      | 62,50                |  |  |  |  |  |
| 0,48            | 0,49 | 1,00 | 2,08      | 64,58                |  |  |  |  |  |
| 0,49            | 0,50 | 1,00 | 2,08      | 66,67                |  |  |  |  |  |
| 0,50            | 0,51 | 0,00 | 0,00      | 66,67                |  |  |  |  |  |
| 0,51            | 0,52 | 3,00 | 6,25      | 72,92                |  |  |  |  |  |
| 0,52            | 0,54 | 3,00 | 6,25      | 79,17                |  |  |  |  |  |
| 0.54            | 0.55 | 1.00 | 2,08      | 81.25                |  |  |  |  |  |
| 0.55            | 0.56 | 2.00 | 4.17      | 85.42                |  |  |  |  |  |
| 0.56            | 0.57 | 1.00 | 2.08      | 87.50                |  |  |  |  |  |
| 0.57            | 0.58 | 1.00 | 2.08      | 89.58                |  |  |  |  |  |
| 0.58            | 0.59 | 1.00 | 2,00      | 91.67                |  |  |  |  |  |
| 0.50            | 0.60 | 0.00 | 2,00      | 01.67                |  |  |  |  |  |
| 0,55            | 0,00 | 2,00 | 4.17      | 05.92                |  |  |  |  |  |
| 0,00            | 0,61 | 2,00 | 4,17      | 95,05                |  |  |  |  |  |
| 0,61            | 0,62 | 0,00 | 0,00      | 95,85                |  |  |  |  |  |
| 0,62            | 0,63 | 1,00 | 2,08      | 97,92                |  |  |  |  |  |
| 0,63            | 0,65 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,65            | 0,66 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,66            | 0,67 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,67            | 0,68 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,68            | 0,69 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,69            | 0,70 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,70            | 0,71 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,71            | 0,72 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,72            | 0,73 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,73            | 0,74 | 0,00 | 0,00      | 97,92                |  |  |  |  |  |
| 0,74            | 0,75 | 1,00 | 2,08      | 100,00               |  |  |  |  |  |
|                 | soma | 48   | 100       | 100                  |  |  |  |  |  |

| TADETA | 720    | Fragitâncias ra | lativan a | acumulada nava | an diâmatran   | D oD no      | vo o Dihoivão do Foijão |
|--------|--------|-----------------|-----------|----------------|----------------|--------------|-------------------------|
| IABELA | 1.20 - | rrequencias re. | lauvas e  | acumulada para | os diametros . | Den e Des pa | ra o Ribeirao do Feijao |

| D <sub>90</sub> |      |       |           |                          |  |  |  |
|-----------------|------|-------|-----------|--------------------------|--|--|--|
| Ic              | (mm) | F     | $F_i$ (%) | $F_{iAC}\left(\%\right)$ |  |  |  |
| 0,46            | 0,49 | 0,00  | 0,00      | 0,00                     |  |  |  |
| 0,49            | 0,51 | 1,00  | 2,08      | 2,08                     |  |  |  |
| 0,51            | 0,54 | 0,00  | 0,00      | 2,08                     |  |  |  |
| 0,54            | 0,56 | 1,00  | 2,08      | 4,17                     |  |  |  |
| 0,56            | 0,59 | 3,00  | 6,25      | 10,42                    |  |  |  |
| 0,59            | 0,61 | 10,00 | 20,83     | 31,25                    |  |  |  |
| 0,61            | 0,64 | 4,00  | 8,33      | 39,58                    |  |  |  |
| 0,64            | 0,66 | 1,00  | 2,08      | 41,67                    |  |  |  |
| 0,66            | 0,69 | 3,00  | 6,25      | 47,92                    |  |  |  |
| 0,69            | 0,72 | 3,00  | 6,25      | 54,17                    |  |  |  |
| 0,72            | 0,74 | 2,00  | 4,17      | 58,33                    |  |  |  |
| 0,74            | 0,77 | 2,00  | 4,17      | 62,50                    |  |  |  |
| 0,77            | 0,79 | 4,00  | 8,33      | 70,83                    |  |  |  |
| 0,79            | 0,82 | 2,00  | 4,17      | 75,00                    |  |  |  |
| 0,82            | 0,84 | 2,00  | 4.17      | 79,17                    |  |  |  |
| 0.84            | 0.87 | 1.00  | 2.08      | 81.25                    |  |  |  |
| 0.87            | 0.89 | 0.00  | 0.00      | 81.25                    |  |  |  |
| 0,89            | 0.92 | 0,00  | 0,00      | 81,25                    |  |  |  |
| 0.92            | 0.94 | 0,00  | 0,00      | 81.25                    |  |  |  |
| 0.94            | 0.97 | 1.00  | 2.08      | 83,33                    |  |  |  |
| 0.97            | 1.00 | 0.00  | 0.00      | 83.33                    |  |  |  |
| 1.00            | 1.02 | 0.00  | 0.00      | 83.33                    |  |  |  |
| 1.02            | 1.05 | 0.00  | 0.00      | 83.33                    |  |  |  |
| 1.05            | 1.07 | 1.00  | 2.08      | 85.42                    |  |  |  |
| 1.07            | 1.10 | 0.00  | 0.00      | 85.42                    |  |  |  |
| 1.10            | 1.12 | 1.00  | 2.08      | 87.50                    |  |  |  |
| 1.12            | 1.15 | 0.00  | 0.00      | 87.50                    |  |  |  |
| 1.15            | 1.17 | 1.00  | 2.08      | 89.58                    |  |  |  |
| 1.17            | 1.20 | 0.00  | 0.00      | 89.58                    |  |  |  |
| 1.20            | 1.23 | 2.00  | 4.17      | 93.75                    |  |  |  |
| 1.23            | 1.25 | 0.00  | 0.00      | 93.75                    |  |  |  |
| 1.25            | 1.28 | 1.00  | 2.08      | 95.83                    |  |  |  |
| 1 28            | 1 30 | 0.00  | 0.00      | 95.83                    |  |  |  |
| 1.30            | 1.33 | 0.00  | 0.00      | 95.83                    |  |  |  |
| 1 33            | 1 35 | 0.00  | 0.00      | 95.83                    |  |  |  |
| 1 35            | 1 38 | 1 00  | 2.08      | 97.92                    |  |  |  |
| 1 38            | 1.30 | 0.00  | 0.00      | 97.92                    |  |  |  |
| 1.40            | 1 43 | 0.00  | 0.00      | 97.92                    |  |  |  |
| 1.43            | 1 45 | 0.00  | 0.00      | 97.92                    |  |  |  |
| 1 45            | 1.48 | 0.00  | 0.00      | 97.92                    |  |  |  |
| 1.49            | 1,40 | 0.00  | 0.00      | 97.92                    |  |  |  |
| 1.51            | 1.51 | 0.00  | 0.00      | 97.92                    |  |  |  |
| 1.52            | 1,55 | 0.00  | 0,00      | 97.92                    |  |  |  |
| 1,55            | 1.50 | 0.00  | 0,00      | 97,92                    |  |  |  |
| 1.59            | 1.50 | 1.00  | 2.09      | 100.00                   |  |  |  |
| 1,00            | 1,00 | 1,00  | 2,00      | 100,00                   |  |  |  |

| Da        |      |      |           |                |  |  |  |  |  |
|-----------|------|------|-----------|----------------|--|--|--|--|--|
| Ic (mm)   |      | F    | $F_i(\%)$ | $F_{iAC}$ (%)  |  |  |  |  |  |
| 0,29 0,30 |      | 0,00 | 0,00      | 0,00           |  |  |  |  |  |
| 0,30      | 0,32 | 2,00 | 4,17      | 4,17           |  |  |  |  |  |
| 0,32      | 0,33 | 0,00 | 0,00      | 4,17           |  |  |  |  |  |
| 0.33      | 0.34 | 0.00 | 0,00      | 4.17           |  |  |  |  |  |
| 0.34      | 0.35 | 0.00 | 0.00      | 4.17           |  |  |  |  |  |
| 0.35      | 0.37 | 0.00 | 0.00      | 4.17           |  |  |  |  |  |
| 0.37      | 0.38 | 0.00 | 0.00      | 417            |  |  |  |  |  |
| 0.38      | 0.39 | 2 00 | 417       | 8 33           |  |  |  |  |  |
| 0.39      | 0.40 | 3,00 | 6.25      | 14 58          |  |  |  |  |  |
| 0.40      | 0.42 | 5,00 | 10.42     | 25.00          |  |  |  |  |  |
| 0.42      | 0.43 | 4.00 | 9 22      | 22,00          |  |  |  |  |  |
| 0.42      | 0.44 | 5.00 | 10.42     | 12 75          |  |  |  |  |  |
| 0,45      | 0,44 | 3,00 | 6 25      | 43,73<br>50.00 |  |  |  |  |  |
| 0.45      | 0.45 | 5,00 | 10.42     | 60.42          |  |  |  |  |  |
| 0,45      | 0,47 | 3,00 | 2.09      | 62.50          |  |  |  |  |  |
| 0,47      | 0,48 | 1,00 | 2,08      | 62,50          |  |  |  |  |  |
| 0,48      | 0,49 | 2,00 | 4,17      | 66,67          |  |  |  |  |  |
| 0,49      | 0,50 | 1,00 | 2,08      | 68,/5          |  |  |  |  |  |
| 0,50      | 0,52 | 2,00 | 4,17      | 72,92          |  |  |  |  |  |
| 0,52      | 0,53 | 2,00 | 4,17      | 77,08          |  |  |  |  |  |
| 0,53      | 0,54 | 1,00 | 2,08      | 79,17          |  |  |  |  |  |
| 0,54      | 0,55 | 0,00 | 0,00      | 79,17          |  |  |  |  |  |
| 0,55      | 0,57 | 0,00 | 0,00      | 79,17          |  |  |  |  |  |
| 0,57      | 0,58 | 2,00 | 4,17      | 83,33          |  |  |  |  |  |
| 0,58      | 0,59 | 0,00 | 0,00      | 83,33          |  |  |  |  |  |
| 0,59      | 0,60 | 0,00 | 0,00      | 83,33          |  |  |  |  |  |
| 0,60      | 0,62 | 2,00 | 4,17      | 87,50          |  |  |  |  |  |
| 0,62      | 0,63 | 1,00 | 2,08      | 89,58          |  |  |  |  |  |
| 0,63      | 0,64 | 1,00 | 2,08      | 91,67          |  |  |  |  |  |
| 0,64      | 0,65 | 0,00 | 0,00      | 91,67          |  |  |  |  |  |
| 0,65      | 0,67 | 1,00 | 2,08      | 93,75          |  |  |  |  |  |
| 0,67      | 0,68 | 1,00 | 2,08      | 95,83          |  |  |  |  |  |
| 0,68      | 0,69 | 0,00 | 0,00      | 95,83          |  |  |  |  |  |
| 0,69      | 0,70 | 0,00 | 0,00      | 95,83          |  |  |  |  |  |
| 0,70      | 0,71 | 1.00 | 2.08      | 97.92          |  |  |  |  |  |
| 0.71      | 0.73 | 0.00 | 0.00      | 97.92          |  |  |  |  |  |
| 0,73      | 0,74 | 0,00 | 0,00      | 97.92          |  |  |  |  |  |
| 0.74      | 0.75 | 0.00 | 0.00      | 97.92          |  |  |  |  |  |
| 0.75      | 0.76 | 0.00 | 0.00      | 97.92          |  |  |  |  |  |
| 0.76      | 0.78 | 0.00 | 0.00      | 97.92          |  |  |  |  |  |
| 0.78      | 0 79 | 0.00 | 0.00      | 97.92          |  |  |  |  |  |
| 0.79      | 0.80 | 0.00 | 0.00      | 97.92          |  |  |  |  |  |
| 0.80      | 0.91 | 0,00 | 0,00      | 97.92          |  |  |  |  |  |
| 0,00      | 0.01 | 0,00 | 0,00      | 07.02          |  |  |  |  |  |
| 0,01      | 0,03 | 1.00 | 2.00      | 100.00         |  |  |  |  |  |
| 0,85      | 0.85 | 1,00 | 2,08      | 100,00         |  |  |  |  |  |
| 0,84      | 0,85 | 0,00 | 0,00      | 100,00         |  |  |  |  |  |
|           | soma | 48   | 100       | 100            |  |  |  |  |  |

TABELA 7.2d - Freqüências relativas e acumulada para os diâmetros D<sub>90</sub> e D<sub>a</sub> para o Ribeirão do Feijão

Quadro 7.1 – Comparações entre os valores das faixas de diâmetros dos sedimentos utilizados no desenvolvimento das diversas fórmulas e a faixa de diâmetros dos sedimentos coletados no Ribeirão do Feijão [SAMANEZ, 1998]

| Faixas<br>AutoresFaixas<br>recomendadasValoresaproximadosdasPorcentagensda<br>da<br>campanhasda<br>campanhasAutoresrecomendadasrecomendadasaplicaçãodos seus respectivos métodosaplicaçãodos seus respectivos métodos |                            |                        |                 |                 |                 |                        | das<br>endem<br>para | <b>OBSERVAÇÃO:</b><br>Com relação ao critério faixa de<br>diâmetros, observa-se que são<br>poucos os diâmetros D <sub>i</sub> que<br>atendem plenamente aos limites |      |                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-----------------|-----------------|-----------------|------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------|
|                                                                                                                                                                                                                       | D(mm)                      | <b>D</b> <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | <b>D</b> <sub>60</sub> | D <sub>65</sub>      | D <sub>90</sub>                                                                                                                                                     | Da   | estabelecidos nos métodos                             |
| 1 – DuBoys (1879) e Straub (1935)                                                                                                                                                                                     | $0,10 \le D_{84} \le 4,0$  | 100                    | 100             | 100             | 100             | 100                    | 100                  | 100                                                                                                                                                                 | 100  | Atende com qualquer diâmetro $\boldsymbol{D}_i$       |
| 2 - Schoklitsch (1914, 1950)                                                                                                                                                                                          | $0,315 \le D \le 7,02$     | 10,4                   | 89,6            | 89,6            | 95,8            | 95,8                   | 97,9                 | 100                                                                                                                                                                 | 100  | $At ende \ com \ o \ D_{90} \ e/ou \ com \ o \ \ D_a$ |
| 3 - Shields (1936)                                                                                                                                                                                                    | $1,56 \le D_{50} \le 2,47$ | 0                      | 0               | 0               | 0               | 0                      | 0                    | 2,1                                                                                                                                                                 | 0    | Nenhuma faixa atende ao método                        |
| 4 - Meyer-Peter e Müller (1948)                                                                                                                                                                                       | $0,40 \le D_a \le 4,22$    | 0                      | 14,6            | 14,6            | 47,9            | 75                     | 95,8                 | 100                                                                                                                                                                 | 91,7 | Atende com o D <sub>90</sub>                          |
| 5 - Kalinske (1947)                                                                                                                                                                                                   | $0,315 \le D \le 28,6$     | 10,4                   | 89,6            | 89,6            | 95,8            | 97,9                   | 97,9                 | 100                                                                                                                                                                 | 100  | Atende com o $D_{90}$ e/ou com o $D_a$                |
| 6 - Levi (1948)                                                                                                                                                                                                       | $0,063 \le D \le 2,0$      | 100                    | 100             | 100             | 100             | 100                    | 100                  | 100                                                                                                                                                                 | 100  | Atende com qualquer diâmetro $D_{\rm i}$              |
| 7-Einstein (1942) & Einstein-Brown (1950)                                                                                                                                                                             | $0,30 \le D \le 30,0$      | 10,4                   | 91,7            | 95,8            | 95,8            | 97,9                   | 97,9                 | 100                                                                                                                                                                 | 100  | Atende com o $D_{90}e/oucomoD_a$                      |
| 8 - Sato, Kikkawa e Ashida (1958)                                                                                                                                                                                     | $0,30 \le D \le 7,01$      | 10,4                   | 91,7            | 95,8            | 95,8            | 97,9                   | 97,9                 | 100                                                                                                                                                                 | 100  | Atende com o $D_{90}e/oucomoD_a$                      |
| 9 - Rottner (1959)                                                                                                                                                                                                    | $0,31 \le D \le 15,5$      | 10,4                   | 89,6            | 89,6            | 95,8            | 97,9                   | 97,9                 | 100                                                                                                                                                                 | 100  | Atende com o $D_{90}e/oucomoD_a$                      |
| 10 -Garde e Albertson (1961)                                                                                                                                                                                          | $0,78 \le D \le 15,5$      | 0                      | 0               | 0               | 0               | 0                      | 0                    | 37,5                                                                                                                                                                | 2,1  | Atende parcialmente com o $D_{90}$                    |
| 11 - Yalin (1963)                                                                                                                                                                                                     | $0,787 \le D \le 2,86$     | 0                      | 0               | 0               | 0               | 0                      | 0                    | 37,5                                                                                                                                                                | 2,1  | Atende parcialmente com o $D_{90}$                    |
| 12 - Pernecker e Vollmer (1965)                                                                                                                                                                                       | Não especificado           | -                      | -               | -               | -               | -                      | -                    | -                                                                                                                                                                   | -    | Não especificado                                      |
| 13 - Inglis e Lacey (1968)                                                                                                                                                                                            | $0,063 \le D \le 2,0$      | 100                    | 100             | 100             | 100             | 100                    | 100                  | 100                                                                                                                                                                 | 100  | Atende com qualquer diâmetro D <sub>i</sub>           |
| 14 - Bogardi (1974)                                                                                                                                                                                                   | $0,31 \le D \le 15,5$      | 10,4                   | 89,6            | 89,6            | 95,8            | 97,9                   | 97,9                 | 100                                                                                                                                                                 | 100  | Atende com o $D_{90}$ e/ou com o $D_a$                |
#### 7.3 – Diâmetros calculados pelas equações analíticas usando os dados do Ribeirão do Feijão

Antes da etapa de cálculo da descarga de sedimentos necessitou-se calcular os diâmetros Dvj. Vale então se reportar ao **capítulo 5** para esclarecer que as equações que estimaram os diâmetros Dvj foram as mesmas constantes na **tabela 5.3**. Obviamente, neste capítulo, os parâmetros constantes nas equações daquela tabela tiveram seus valores substituídos pelos inerentes ao Ribeirão do Feijão. Na **tabela 7.3** apresenta-se o resultado do cálculo do diâmetro Dvj, pelas equações analíticas referentes a cada autor.

A exemplo do que foi feito no **item 5.2.1**, compararam-se também os valores dos diâmetros calculados pelas equações analíticas, usando os dados dos diâmetros coletados no Ribeirão do Feijão com aqueles estimados pelas equações analíticas. Parte desses resultados está apresentada na **tabela 7.4**, referente ao método de Du-Boys (1879). O **Anexo C** traz as demais tabelas constando os cálculos para os demais métodos.

**Na tabela 7.4**, as células preenchidas com o número 1 identificam o diâmetro do sedimento coletado cuja magnitude menor do que aquele dos diâmetros calculados. Do contrário, a célula será preenchida com o número zero. Nas colunas compreendidas entre dezessete e vinte e três, colocou-se a diferença percentual relativa entre os valores. Destaca-se que a comparação foi feita sempre em relação ao maior valor. Isso permitiu comparar um a um o diâmetro medido e o calculado, identificando quem é maior e o quanto a diferença entre eles representa em termos percentuais.

No **quadro 7.2**, que apresenta um resumo da **tabela 7.4**, permite-se, pela observação da diferença percentual relativa, identificar com qual diâmetro medido o calculado mais se aproxima.

| (1) | (1)                   | (2)                   | (3)       | (4)                   | (5)       | (6)                   | (7)                   | (8)                   | (9)                   | (10)                  | (11)                  | (12)                  |
|-----|-----------------------|-----------------------|-----------|-----------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| N°  | D <sub>VJ</sub> [DUB] | D <sub>VJ</sub> [SHI] | Dig parag | D <sub>Vj [KAL]</sub> | Dvj [LEV] | D <sub>Vj [EIB]</sub> | D <sub>VJ [SKA]</sub> | D <sub>Vj [R0T]</sub> | D <sub>VJ [GAA]</sub> | D <sub>VJ [YAL]</sub> | D <sub>VJ</sub> [PEV] | D <sub>Vj [INL]</sub> |
|     | (mm)                  | mm                    | ՠՠ        | mm                    | mm        | mm                    | mm                    | ՠՠ                    | mm                    | mm                    | mm                    | mm                    |
| 1   | 20,74                 | 11,97                 | 1,30      | 1,49                  | 0,26      | 9,59                  | 13,71                 | 0,14                  | 12,02                 | 18,54                 | 14,88                 | 12,29                 |
| 2   | 21,17                 | 12,08                 | 1,45      | 1,18                  | 0,42      | 9,37                  | 15,72                 | 0,14                  | 12,06                 | 18,79                 | 15,04                 | 12,07                 |
| 3   | 19,69                 | 11,69                 | 1,24      | 1,63                  | 0,22      | 9,64                  | 12,90                 | 0,14                  | 11,90                 | 17,92                 | 14,47                 | 12,34                 |
| 4   | 18,44                 | 11,35                 | 1,25      | 1,60                  | 0,26      | 9,55                  | 13,03                 | 0,14                  | 11,76                 | 17,17                 | 13,97                 | 12,25                 |
| 5   | 15,98                 | 10,63                 | 1,13      | 1,87                  | 0,24      | 9,61                  | 11,58                 | 0,14                  | 11,44                 | 15,65                 | 12,94                 | 12,31                 |
| 6   | 15,58                 | 10,51                 | 1,06      | 2,04                  | 0,19      | 9,72                  | 10,72                 | 0,14                  | 11,38                 | 15,39                 | 12,77                 | 12,42                 |
| 7   | 14,58                 | 10,19                 | 1,35      | 1,39                  | 1,02      | 9,18                  | 14,33                 | 0,15                  | 11,23                 | 14,74                 | 12,32                 | 11,88                 |
| 8   | 17,82                 | 11,17                 | 1,24      | 1,62                  | 0,31      | 9,54                  | 12,95                 | 0,14                  | 11,68                 | 16,79                 | 13,72                 | 12,24                 |
| 9   | 15,98                 | 10,63                 | 1,14      | 1,86                  | 0,29      | 9,62                  | 11,64                 | 0,14                  | 11,44                 | 15,65                 | 12,94                 | 12,32                 |
| 10  | 14,18                 | 10,07                 | 1,05      | 2,09                  | 0,23      | 9,67                  | 10,49                 | 0,15                  | 11,17                 | 14,47                 | 12,14                 | 12,37                 |
| 11  | 13,39                 | 9,81                  | 0,94      | 2,37                  | 0,17      | 9,85                  | 9,18                  | 0,15                  | 11,05                 | 13,94                 | 11,78                 | 12,55                 |
| 12  | 13,39                 | 9,81                  | 0,99      | 2,24                  | 0,16      | 9,72                  | 9,77                  | 0,15                  | 11,05                 | 13,94                 | 11,78                 | 12,42                 |
| 13  | 11,84                 | 9,27                  | 0,85      | 2,62                  | 0,11      | 9,93                  | 8,08                  | 0,15                  | 10,77                 | 12,87                 | 11,02                 | 12,63                 |
| 14  | 19,48                 | 11,63                 | 1,25      | 1,60                  | 0,25      | 9,59                  | 13,06                 | 0,14                  | 11,88                 | 17,80                 | 14,39                 | 12,29                 |
| 15  | 13,20                 | 9,74                  | 0,86      | 2,58                  | 0,10      | 10,01                 | 8,26                  | 0,15                  | 11,01                 | 13,81                 | 11,68                 | 12,71                 |
| 16  | 13,59                 | 9,87                  | 0,71      | 3,00                  | 0,03      | 10,01                 | 6,50                  | 0,15                  | 11,08                 | 14,08                 | 11,87                 | 12,71                 |
| 17  | 23,52                 | 12,68                 | 1,50      | 1,09                  | 0,37      | 9,38                  | 16,40                 | 0,14                  | 12,30                 | 20,13                 | 15.92                 | 12,08                 |
| 18  | 48,36                 | 17,61                 | 2,91      | 0,05                  | 2,10      | 8,33                  | 37,35                 | 0,12                  | 13,90                 | 32,19                 | 23,42                 | 11,03                 |
| 19  | 34,51                 | 15,10                 | 2,03      | 0,42                  | 0,73      | 9,09                  | 23,84                 | 0,13                  | 13,15                 | 25,84                 | 19,55                 | 11,79                 |
| 20  | 17,41                 | 11,05                 | 1,24      | 1,63                  | 0,40      | 9,55                  | 12,89                 | 0,14                  | 11,63                 | 16,54                 | 13,55                 | 12,25                 |
| 21  | 12,23                 | 9,41                  | 0,96      | 2,30                  | 0,26      | 9,74                  | 9,48                  | 0,15                  | 10,84                 | 13,14                 | 11,21                 | 12,44                 |
| 22  | 13,59                 | 9,87                  | 1,03      | 2,12                  | 0,30      | 9,67                  | 10,33                 | 0,15                  | 11,08                 | 14,08                 | 11,87                 | 12,37                 |
| 23  | 29,71                 | 14,10                 | 1,92      | 0,52                  | 0,90      | 9,07                  | 22,27                 | 0,13                  | 12,82                 | 23,43                 | 18,04                 | 11,77                 |
| 24  | 10,33                 | 8,71                  | 0,88      | 2,54                  | 0,29      | 8,89                  | 8,45                  | 0,15                  | 10,47                 | 11,77                 | 10,25                 | 11,59                 |
| 25  | 13,00                 | 9,68                  | 1,05      | 2,08                  | 0,46      | 9,61                  | 10,53                 | 0,15                  | 10,98                 | 13,68                 | 11,59                 | 12,31                 |
| 26  | 1,15                  | 3,21                  | 0,36      | 3,91                  | 0,64      | 9,43                  | 2,82                  | 0,21                  | 5,59                  | 2,82                  | 3,17                  | 12,13                 |
| 27  | 7,59                  | 7,57                  | 0,75      | 2,90                  | 0,30      | 9,82                  | 6,91                  | 0,16                  | 9,78                  | 9,63                  | 8,69                  | 12,52                 |
| 28  | 38,48                 | 15,86                 | 2,33      | 0,22                  | 1,15      | 8,89                  | 28,41                 | 0,13                  | 13,39                 | 27,74                 | 20,72                 | 11,59                 |
| 29  | 79,38                 | 22,07                 | 4,18      | 0,00                  | 2,53      | 8,26                  | 58,60                 | 0,11                  | 15,00                 | 44,46                 | 30,53                 | 10,96                 |
| 30  | 17.92                 | 11.20                 | 1,28      | 1,53                  | 0,47      | 9,51                  | 13,47                 | 0,14                  | 11.69                 | 16.86                 | 13,76                 | 12,21                 |
| 31  | 14,18                 | 10,07                 | 1,10      | 1,95                  | 0,33      | 9,60                  | 11,17                 | 0,15                  | 11,17                 | 14,47                 | 12,14                 | 12,30                 |
| 32  | 16,59                 | 10,81                 | 1,18      | 1,75                  | 0,31      | 9,58                  | 12,21                 | 0,14                  | 11,52                 | 16,03                 | 13,20                 | 12,28                 |
| 33  | 28.14                 | 13.76                 | 1.80      | 0.65                  | 0.61      | 9.16                  | 20.56                 | 0.13                  | 12.70                 | 22.62                 | 17.52                 | 11.86                 |

Tabela 7.3 - Diâmetros estimados pelas equações analíticas usando os dados do Ribeirão do Feijão - São Carlos - SP

| (1) | (1)        | (2)                   | (3)                   | (4)                   | (5)       | (6)                   | (7)       | (8)       | (9)                   | (10)                  | (11)                  | (12)                  |
|-----|------------|-----------------------|-----------------------|-----------------------|-----------|-----------------------|-----------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|
| N°  | Dvj (dvra) | D <sub>VJ</sub> [SHI] | D <sup>zg</sup> (vævd | D <sub>VJ [KAL]</sub> | Dvj [LEV] | D <sub>VJ</sub> (EIB) | Dvj [SKA] | Dīj [ROT] | D <sub>VJ [GAA]</sub> | D <sub>VJ [YAL]</sub> | D <sub>VJ</sub> [PEV] | D <sub>VJ</sub> [INL] |
|     | (mm)       | ՠՠ                    | mm                    | mm                    | mm        | mm                    | mm        | mm        | mm                    | ՠՠ                    | mm                    | mm                    |
| 34  | 22,45      | 12,41                 | 1,49                  | 1,10                  | 0,50      | 9,37                  | 16,33     | 0,14      | 12,19                 | 19,52                 | 15,53                 | 12,07                 |
| 35  | 48,11      | 17,56                 | 2,62                  | 0,11                  | 0,51      | 8,77                  | 32,82     | 0,12      | 13,89                 | 32,08                 | 23,35                 | 11,47                 |
| 36  | 14,38      | 10,13                 | 1,18                  | 1,74                  | 0,56      | 9,39                  | 12,24     | 0,15      | 11,20                 | 14,61                 | 12,23                 | 12,09                 |
| 37  | 25,05      | 13,04                 | 1,66                  | 0,83                  | 0,79      | 9,16                  | 18,65     | 0,13      | 12,44                 | 20,97                 | 16,46                 | 11,86                 |
| 38  | 88,72      | 23,21                 | 3,40                  | 0,01                  | 0,87      | 8,75                  | 45,38     | 0,11      | 15,25                 | 47,80                 | 32,41                 | 11,45                 |
| 39  | 53,32      | 18,41                 | 2,80                  | 0,07                  | 0,72      | 8,74                  | 35,62     | 0,12      | 14,12                 | 34,30                 | 24,67                 | 11,44                 |
| 40  | 22,45      | 12,41                 | 1,60                  | 0,93                  | 0,44      | 9,18                  | 17,73     | 0,14      | 12,19                 | 19,52                 | 15,53                 | 11,88                 |
| 41  | 34,28      | 15,05                 | 1,86                  | 0,58                  | 0,39      | 9,23                  | 21,43     | 0,13      | 13,14                 | 25,72                 | 19,48                 | 11,93                 |
| 42  | 29,04      | 13,95                 | 1,76                  | 0,70                  | 0,50      | 9,24                  | 20,00     | 0,13      | 12,77                 | 23,09                 | 17,82                 | 11,94                 |
| 43  | 28,36      | 13,81                 | 1,69                  | 0,79                  | 0,41      | 9,28                  | 19,02     | 0,13      | 12,71                 | 22,74                 | 17,60                 | 11,98                 |
| 44  | 19,69      | 11,69                 | 1,34                  | 1,40                  | 0,31      | 9,41                  | 14,28     | 0,14      | 11,90                 | 17,92                 | 14,47                 | 12,11                 |
| 45  | 22,88      | 12,52                 | 1,49                  | 1,11                  | 0,35      | 9,35                  | 16,23     | 0,14      | 12,24                 | 19,76                 | 15,68                 | 12,05                 |
| 46  | 19,48      | 11,63                 | 1,29                  | 1,50                  | 0,27      | 9,48                  | 13,65     | 0,14      | 11,88                 | 17,80                 | 14,39                 | 12,18                 |
| 47  | 32,21      | 14,63                 | 1,62                  | 0,89                  | 0,24      | 9,51                  | 18,12     | 0,13      | 13,00                 | 24,70                 | 18,84                 | 12,21                 |
| 48  | 17,82      | 11,17                 | 1,23                  | 1,64                  | 0,25      | 9,51                  | 12,82     | 0,14      | 11,68                 | 16,79                 | 13,72                 | 12,21                 |

Tabela 7.3 – Diâmetros estimados pelas equações analíticas usando os dados do Ribeirão do Feijão – São Carlos – SP

|          |                 | 19530 19570     | 10000000 | 2000.000 |                 | "       |        |                       | -     |       |         |        |                     |                   | 5     | -       |          |          |         |           |                    |        |
|----------|-----------------|-----------------|----------|----------|-----------------|---------|--------|-----------------------|-------|-------|---------|--------|---------------------|-------------------|-------|---------|----------|----------|---------|-----------|--------------------|--------|
| DIAN     | ETROS           | DO LEI          | TO DO I  | PARA O   | RIBEIR          | AO DO I | FEIJAO |                       |       | COM   | PARA    | çao en | VIRE D              | VJ & Di           | n lì  | RELAÇ   | AO PERCI | ENTUAL E | NTRE OS | VALORES   | DE D <sub>VJ</sub> |        |
|          | Granu           | lometi          | ia do i  | materia  | al do le        | eito    |        |                       | (10)  | (11)  | (12)    | (13)   | (14)                | (15)              | (16)  | EOSV    | ALORES A | PARA DIC | OLETADO | OS NO RIE | EIRÃO DO           | FEIJÃO |
| (1)      | (2)             | (3)             | (4)      | (5)      | (6)             | (7)     | (8)    | (9)                   | (     | COMP  | ARAÇÂ   | O DE   | D <sub>VJ (DU</sub> | <sub>B]</sub> COM | :     | (17)    | (18)     | (19)     | (20)    | (21)      | (22)               | (23)   |
| Nº.      | D <sub>10</sub> | D <sub>30</sub> | D35      | D50      | D <sub>60</sub> | D65     | D90    | D <sub>Vj</sub> [DUB] | D10   | D30   | D35     | D50    | D60                 | D65               | D90   | 5       |          |          |         |           |                    | 1      |
| 13130.00 | (mm)            | (mm)            | (mm)     | (mm)     | (mm)            | (1010)  | (mm)   | (mm)                  | 00.57 | 00420 | 0042.07 | .00277 |                     | 1994E.Cr          | 03545 |         |          |          |         |           |                    |        |
| 1        | 0.21            | 0.20            | 0 21     | 0.25     | 0.37            | 0.28    | 0.53   | 20.74                 | 1     | 1     | 1       | -      | 1                   | 1                 | 1     | 9777.2  | 7179.0   | 6634 5   | 5904.0  | 5400.0    | 5301.6             | 3701.6 |
| 2        | 0.24            | 0.22            | 0.34     | 0,28     | 0,40            | 0,41    | 0,20   | 20,74                 | 1     | 1     | 1       | 1      | 1                   | 1                 | •     | 8646 3  | 6353 1   | 6143.7   | 5529 3  | 5165.2    | 5012.6             | 3493.6 |
| 3        | 0,24            | 0.32            | 0,33     | 0,37     | 0.40            | 0.40    | 0,55   | 10.60                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 8172 7  | 6130.7   | 5866 4   | 5294 3  | 4884 6    | 4822 3             | 3397.2 |
| 4        | 0.22            | 0.31            | 0.33     | 0.38     | 0.40            | 0.43    | 0.72   | 18,44                 | 1     | 1     | 1       | 1      | 1                   |                   | 1     | 8319.3  | 5867.1   | 5504.4   | 4790.8  | 4475.3    | 4178.0             | 2478.8 |
| 5        | 0.23            | 0.32            | 0.33     | 0.36     | 0.39            | 0.40    | 0.56   | 15.98                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 6759.2  | 4957.6   | 4787.4   | 4302.7  | 4029.7    | 3895.5             | 2753.9 |
| 6        | 0,28            | 0,36            | 0.38     | 0,43     | 0,48            | 0.51    | 0,75   | 15.58                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5483,7  | 4191.6   | 4054,3   | 3539.9  | 3125,4    | 2966.7             | 1971.6 |
| 7        | 0,24            | 0,32            | 0,33     | 0,37     | 0,40            | 0,40    | 0,58   | 14,58                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 6025,4  | 4427,5   | 4291,1   | 3861,5  | 3590,8    | 3508,5             | 2422,2 |
| 8        | 0,31            | 0,48            | 0,48     | 0,61     | 0,69            | 0,74    | 1,57   | 17,82                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5666,5  | 3619,9   | 3619,9   | 2821,1  | 2467,5    | 2307,9             | 1037,8 |
| 9        | 0,25            | 0,35            | 0,35     | 0,39     | 0,42            | 0,46    | 0,68   | 15,98                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 6344,3  | 4440,3   | 4440,3   | 3966,6  | 3714,3    | 3404,8             | 2250,3 |
| 10       | 0,25            | 0,38            | 0,38     | 0,44     | 0,50            | 0,54    | 1,08   | 14,18                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5527,7  | 3671,7   | 3671,7   | 3108,5  | 2719,4    | 2540,9             | 1213,1 |
| 11       | 0,19            | 0,31            | 0,31     | 0,35     | 0,37            | 0,39    | 0,58   | 13,39                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 6949,6  | 4291,5   | 4291,5   | 3737,9  | 3500,6    | 3316,9             | 2193,5 |
| 12       | 0,28            | 0,41            | 0,41     | 0,50     | 0,57            | 0,60    | 1,03   | 13,39                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 4700,8  | 3143,2   | 3143,2   | 2557,6  | 2262,3    | 2147,4             | 1206,8 |
| 13       | 0,22            | 0,48            | 0,48     | 0,35     | 0,38            | 0,39    | 0,54   | 11,84                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5408,7  | 2372,6   | 2372,6   | 3245,7  | 3033,2    | 2921,3             | 2093,3 |
| 14       | 0,22            | 0,32            | 0,32     | 0,36     | 0,38            | 0,41    | 0,57   | 19,48                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 8794,8  | 6025,7   | 6025,7   | 5281,1  | 5039,7    | 4709,8             | 3305,5 |
| 15       | 0,24            | 0,34            | 0,34     | 0,38     | 0,40            | 0,41    | 0,59   | 13,20                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5354,0  | 3839,9   | 3839,9   | 3419,6  | 3183,2    | 3088,1             | 2133,3 |
| 16       | 0,19            | 0,33            | 0,33     | 0,38     | 0,40            | 0,44    | 0,75   | 13,59                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 6905,3  | 4043,4   | 4043,4   | 3495,3  | 3280,7    | 3002,8             | 1719,3 |
| 17       | 0,25            | 0,37            | 0,37     | 0,44     | 0,50            | 0,55    | 1,20   | 23,52                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 9235,0  | 6223,7   | 6223,7   | 5307,8  | 4576,8    | 4208,4             | 1868,5 |
| 18       | 0,22            | 0,34            | 0,34     | 0,38     | 0,42            | 0,44    | 0,64   | 48,36                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 21489,2 | 14207,7  | 14207,7  | 12493,7 | 11469,4   | 10866,0            | 7409,3 |
| 19       | 0,20            | 0,31            | 0,31     | 0,35     | 0,38            | 0,40    | 0,57   | 34,51                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 16984,1 | 11141,0  | 11141,0  | 9648,6  | 9029,6    | 8527,5             | 5975,7 |
| 20       | 0,23            | 0,33            | 0,33     | 0,38     | 0,40            | 0,42    | 0,60   | 17,41                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 7370,9  | 5111,8   | 5111,8   | 4541,9  | 4230,2    | 4074,4             | 2810,9 |
| 21       | 0,22            | 0,32            | 0,32     | 0,36     | 0,38            | 0,40    | 0,57   | 12,23                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5587,5  | 3769,7   | 3769,7   | 3306,2  | 3135,0    | 2941,8             | 2052,8 |
| 22       | 0,23            | 0,32            | 0,32     | 0,37     | 0,39            | 0,41    | 0,57   | 13,59                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5732,8  | 4094,6   | 4094,6   | 3623,4  | 3411,7    | 3247,4             | 2292,7 |
| 23       | 0,24            | 0,34            | 0,35     | 0,40     | 0,44            | 0,46    | 0,75   | 29,71                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 12307,4 | 8697,1   | 8398,4   | 7347,8  | 6682,2    | 6314,0             | 3876,2 |
| 24       | 0,25            | 0,36            | 0,36     | 0,42     | 0,46            | 0,50    | 0,74   | 10,33                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 4064,6  | 2753,1   | 2753,1   | 2364,9  | 2130,7    | 1953,3             | 1299,5 |
| 25       | 0,23            | 0,35            | 0,35     | 0,41     | 0,47            | 0,50    | 0,79   | 13,00                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 5480,9  | 3583,7   | 3583,7   | 3071,6  | 2649,1    | 2480,0             | 1537,7 |
| 26       | 0,19            | 0,30            | 0,30     | 0,34     | 0,37            | 0,39    | 0,58   | 1,15                  | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 493,9   | 286,6    | 286,6    | 234,9   | 210,5     | 195,4              | 99,7   |
| 27       | 0,19            | 0,28            | 0,30     | 0,35     | 0,38            | 0,39    | 0,56   | 7,59                  | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 3875,3  | 2583,0   | 2405,9   | 2081,9  | 1914,0    | 1832,0             | 1265,6 |
| 28       | 0,24            | 0,32            | 0,34     | 0,38     | 0,42            | 0,44    | 0,68   | 38,48                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 16206,4 | 11888,5  | 11218,6  | 9921,6  | 9128,6    | 8626,3             | 5542,7 |
| 29       | 0,32            | 0,41            | 0,43     | 0,50     | 0,53            | 0,56    | 0,83   | 79,38                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 24706,3 | 19308,3  | 18232,6  | 15904,0 | 14765,2   | 14100,4            | 9498,6 |
| 30       | 0,26            | 0,30            | 0,36     | 0,40     | 0,44            | 0,46    | 0,59   | 17,92                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 6928,0  | 5795,2   | 4906,0   | 4358,1  | 4019,9    | 3762,4             | 2947,9 |
| 31       | 0,22            | 0,31            | 0,33     | 0,37     | 0,40            | 0,42    | 0,62   | 14,18                 | 1     | 1     | 1       | 1      | 1                   | 1                 | 1     | 6317,1  | 4416,5   | 4236,9   | 3712,3  | 3436,6    | 3300,9             | 2206,0 |

#### Tabela 7.4 - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂM | ETROS                   | DO LE                   | TO DO I                 | PARA O                  | RIBEIR                  | ÃO DO F                 | FEIJAO                  |                               | Ĩ.,             | COM             | PARAÇ  | :ÃO EN          | ITRE D              | vj & Di           |       | RELAÇ   | ÃO PERCI | ENTUAL E | NTRE OS | VALORES  | $\text{DE} D_{VJ}$ |         |
|------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------------|-----------------|-----------------|--------|-----------------|---------------------|-------------------|-------|---------|----------|----------|---------|----------|--------------------|---------|
|      | Granu                   | lomet                   | ria do i                | nateria                 | al do le                | eito                    |                         |                               | (10)            | (11)            | (12)   | (13)            | (14)                | (15)              | (16)  | EOSV    | ALORES F | PARA DIC | OLETADO | S NO RIB | EIRÃO DO           | FEIJÃO  |
| (1)  | (2)                     | (3)                     | (4)                     | (5)                     | (6)                     | (7)                     | (8)                     | (9)                           |                 | COMPA           | ARAÇÃ  | O DE            | D <sub>VJ (DU</sub> | <sub>вј</sub> сом | 1:    | (17)    | (18)     | (19)     | (20)    | (21)     | (22)               | (23)    |
| N°   | D <sub>10</sub><br>(mm) | D <sub>30</sub><br>(mm) | D <sub>35</sub><br>(mm) | D <sub>50</sub><br>(mm) | D <sub>60</sub><br>(mm) | D <sub>65</sub><br>(mm) | D <sub>90</sub><br>(mm) | D <sub>VJ [DUB]</sub><br>(mm) | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub>     | D <sub>65</sub>   | D90   |         |          |          |         |          |                    |         |
| 32   | 0,24                    | 0,33                    | 0,35                    | 0,40                    | 0,45                    | 0,47                    | 0,71                    | 16,59                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 6929,7  | 4973,4   | 4626,5   | 4057,9  | 3628,1   | 3400,0             | 2243,2  |
| 33   | 0,23                    | 0,31                    | 0,33                    | 0,38                    | 0,40                    | 0,42                    | 0,65                    | 28,14                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 12082,4 | 8862,2   | 8401,9   | 7404,4  | 6917,8   | 6632,4             | 4229,4  |
| 34   | 0,21                    | 0,33                    | 0,35                    | 0,40                    | 0,44                    | 0,46                    | 0,58                    | 22,45                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 10488,1 | 6764,5   | 6387,5   | 5554,1  | 5060,2   | 4769,2             | 3756,8  |
| 35   | 0,16                    | 0,21                    | 0,22                    | 0,27                    | 0,30                    | 0,32                    | 0,46                    | 48,11                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 29971,5 | 23031,9  | 21573,2  | 17853,1 | 15884,9  | 14935,8            | 10314,4 |
| 36   | 0,31                    | 0,39                    | 0,42                    | 0,50                    | 0,53                    | 0,57                    | 1,24                    | 14,38                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 4479,6  | 3559,0   | 3291,5   | 2787,5  | 2592,9   | 2414,0             | 1059,7  |
| 37   | 0,28                    | 0,36                    | 0,38                    | 0,44                    | 0,50                    | 0,53                    | 0,81                    | 25,05                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 8942,2  | 6819,0   | 6456,8   | 5541,2  | 4889,4   | 4616,9             | 2992,2  |
| 38   | 0,10                    | 0,16                    | 0,17                    | 0,20                    | 0,25                    | 0,26                    | 0,59                    | 88,72                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 91363,8 | 56771,7  | 52397,0  | 44039,3 | 36112,2  | 33506,0            | 15014,1 |
| 39   | 0,25                    | 0,35                    | 0,37                    | 0,44                    | 0,48                    | 0,52                    | 1,15                    | 53,32                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 21661,4 | 15220,5  | 14232,1  | 12128,3 | 10961,3  | 10232,4            | 4548,2  |
| 40   | 0,29                    | 0,36                    | 0,38                    | 0,43                    | 0,48                    | 0,52                    | 0,77                    | 22,45                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 7667,1  | 6100,8   | 5838,3   | 5096,0  | 4557,0   | 4258,6             | 2800,1  |
| 41   | 0,29                    | 0,36                    | 0,38                    | 0,43                    | 0,48                    | 0,52                    | 0,78                    | 34,28                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 11761,1 | 9556,0   | 9016,7   | 7927,8  | 7011,8   | 6492,0             | 4277,9  |
| 42   | 0,24                    | 0,33                    | 0,35                    | 0,39                    | 0,43                    | 0,46                    | 0,69                    | 29,04                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 11948,5 | 8779,8   | 8292,2   | 7307,4  | 6700,2   | 6226,1             | 4108,3  |
| 43   | 0,31                    | 0,39                    | 0,42                    | 0,51                    | 0,58                    | 0,61                    | 1,33                    | 28,36                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 8933,4  | 7117,5   | 6718,5   | 5450,8  | 4782,1   | 4519,7             | 2029,5  |
| 44   | 0,31                    | 0,39                    | 0,42                    | 0,51                    | 0,57                    | 0,60                    | 1,18                    | 19,69                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 6334,3  | 4909,9   | 4610,3   | 3783,4  | 3366,4   | 3198,0             | 1575,7  |
| 45   | 0,22                    | 0,32                    | 0,33                    | 0,38                    | 0,41                    | 0,43                    | 0,65                    | 22,88                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 10298,5 | 7026,7   | 6832,3   | 5968,1  | 5425,8   | 5207,8             | 3441,3  |
| 46   | 0,28                    | 0,37                    | 0,39                    | 0,46                    | 0,54                    | 0,56                    | 0,93                    | 19,48                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 6783,3  | 5179,0   | 4933,5   | 4134,7  | 3541,0   | 3403,5             | 1999,1  |
| 47   | 0,24                    | 0,34                    | 0,35                    | 0,40                    | 0,44                    | 0,48                    | 0,74                    | 32,21                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 13264,9 | 9373,3   | 9024,5   | 7912,3  | 7220,3   | 6582,4             | 4235,0  |
| 48   | 0,24                    | 0,32                    | 0,34                    | 0,39                    | 0,43                    | 0,45                    | 0,67                    | 17,82                         | 1               | 1               | 1      | 1               | 1                   | 1                 | 1     | 7450,2  | 5468,3   | 5125,4   | 4504,3  | 4072,9   | 3877,3             | 2559,5  |
|      |                         |                         |                         |                         |                         |                         |                         |                               |                 | (%) (           | le eve | ntos e          | m que               | DVJ >             | Di    | DIFE    | RENÇA F  | PERCENT  | UAL REL | ATIVA M  | ÉDIA               |         |
|      |                         |                         |                         |                         |                         |                         |                         |                               | 100,0           | 100,0           | 100,0  | 100,0           | 100,0               | 100,0             | 100,0 | 10957,8 | 7665,2   | 7313,7   | 6337,8  | 5697,4   | 5371,4             | 3319,4  |

Tabela 7.4 - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| Autores                                   | Porcei<br>é i          | ntagem<br>naior d      | de eve<br>o que o | ntos em<br>) diâme | n que o<br>tro cole | D <sub>Vj</sub> cal<br>etado (I | culado<br>D <sub>i</sub> ) | Média d<br>estimado<br>maior va | las difere<br>os e os n<br>alor | enças per<br>nedidos, | centuais<br>sendo a | relativas<br>compara | s entre os<br>ição semj | valores<br>pre pelo |
|-------------------------------------------|------------------------|------------------------|-------------------|--------------------|---------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|-----------------------|---------------------|----------------------|-------------------------|---------------------|
|                                           | <b>D</b> <sub>10</sub> | <b>D</b> <sub>16</sub> | D <sub>35</sub>   | D <sub>50</sub>    | D <sub>60</sub>     | D <sub>65</sub>                 | D <sub>90</sub>            | <b>D</b> <sub>10</sub>          | <b>D</b> <sub>16</sub>          | D <sub>35</sub>       | D <sub>50</sub>     | D <sub>60</sub>      | D <sub>65</sub>         | D <sub>90</sub>     |
| 1 – DuBoys (1879) e Straub (1935)         | 100,0*                 | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 10957,8                         | 7665,2                          | 7313,7                | 6337,8              | 5697,4               | 5371,4                  | 3319,4              |
| 2 - Shields (1936)                        | 100,0                  | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 5296,3                          | 3702,5                          | 3549,2                | 3087,0              | 2792,8               | 2635,2                  | 1649,8              |
| 3 - Meyer-Peter e Müller (1948)           | 100,0                  | 100,0                  | 100,0             | 100,0              | 97,9                | 97,9                            | 87,5                       | 563,3                           | 368,7                           | 348,9                 | 291,0               | 254,3                | 235,1                   | 116,7               |
| 4 - Kalinske (1947)                       | 87,5                   | 87,5                   | 87,5              | 87,5               | 87,5                | 87,5                            | 77,1                       | 1153,2                          | 1143,2                          | 1179,0                | 1257,8              | 1308,8               | 1343,0                  | 1818,9              |
| 5 - Levi (1948)                           | 79,2                   | 54,2                   | 50,0              | 41,7               | 35,4                | 33,3                            | 18,8                       | 139,7                           | 116,7                           | 112,9                 | 112,3               | 115,7                | 120,4                   | 196,7               |
| 6-Einstein (1942) & Einstein-Brown (1950) | 100,0                  | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 3969,4                          | 2758,6                          | 2655,4                | 2317,9              | 2106,3               | 1989,0                  | 1256,6              |
| 7 - Sato, Kikkawa e Ashida (1958)         | 100,0                  | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 7429,5                          | 5220,7                          | 4988,3                | 4325,2              | 3901,0               | 3680,4                  | 2291,6              |
| 8 - Rottner (1959)                        | 4,2                    | 0,0                    | 0,0               | 0,0                | 0,0                 | 0,0                             | 0,0                        | 73,5                            | 142,7                           | 151,5                 | 187,3               | 215,6                | 233,8                   | 439,9               |
| 9 - Garde e Albertson (1961)              | 100,0                  | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 5092,1                          | 3557,6                          | 3418,3                | 2980,7              | 2704,9               | 2554,2                  | 1613,2              |
| 10 - Yalin (1963)                         | 100,0                  | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 8643,9                          | 6058,5                          | 5799,6                | 5042,3              | 4555,7               | 4299,2                  | 2693,5              |
| 11 - Pernecker e Vollmer (1965)           | 100,0                  | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 6719,2                          | 4704,7                          | 4507,7                | 3921,0              | 3546,1               | 3346,6                  | 2098,5              |
| 12 - Inglis e Lacey (1968)                | 100,0                  | 100,0                  | 100,0             | 100,0              | 100,0               | 100,0                           | 100,0                      | 5141,3                          | 3582,6                          | 3449,3                | 3014,1              | 2741,2               | 2590,1                  | 1646,5              |

Quadro 7.2 – Estatística dos eventos em que os diâmetros calculados são maiores do que aqueles coletados no Ribeirão do Feijão

Exemplo: \* Significa que 100 % dos valores dos diâmetros calculados, usando as equações analíticas para o método de Du-Boys (1879) apresentaram magnitudes maiores do que aqueles coletados no Ribeirão do Feijão para a classe D10.

Ao se analisar o **quadro 7.2**, pode-se observar que, das doze equações analíticas usadas para a estimativa do diâmetro de cálculo dos métodos de cálculo do transporte de sedimentos na camada do leito, nove apresentaram valores que mais se aproximam do  $D_{90}$ , como revela o **quadro 7.3**. Nota-se, portanto, a tendência de os diâmetros calculados aproximarem-se daqueles de granulometria maiores.

| Autores                                   | Identi<br>Feijão<br>equaça | fica o<br>que m<br>ão anal | diâmetr<br>ais se aj<br>ítica pa | o colet<br>proxim<br>ra um | tado no<br>a do ca<br>determ | ) Ribei<br>lculado<br>inado 1 | rão do<br>o pela<br>método |
|-------------------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------|------------------------------|-------------------------------|----------------------------|
|                                           | <b>D</b> <sub>10</sub>     | <b>D</b> <sub>16</sub>     | D <sub>35</sub>                  | D <sub>50</sub>            | D <sub>60</sub>              | D <sub>65</sub>               | <b>D</b> <sub>90</sub>     |
| 1 – DuBoys (1879) e Straub (1935)         |                            |                            |                                  |                            |                              |                               | XXXX                       |
| 2 - Shields (1936)                        |                            |                            |                                  |                            |                              |                               | xxxx                       |
| 3 - Meyer-Peter e Müller (1948)           |                            |                            |                                  |                            |                              |                               | xxxx                       |
| 4 - Kalinske (1947)                       |                            | xxxx                       |                                  |                            |                              |                               |                            |
| 5 - Levi (1948)                           |                            |                            | XXXX                             |                            |                              |                               |                            |
| 6-Einstein (1942) & Einstein-Brown (1950) |                            |                            |                                  |                            |                              |                               | xxxx                       |
| 7 - Sato, Kikkawa e Ashida (1958)         |                            |                            |                                  |                            |                              |                               | XXXX                       |
| 8 - Rottner (1959)                        | XXXX                       |                            |                                  |                            |                              |                               |                            |
| 9 -Garde e Albertson (1961)               |                            |                            |                                  |                            |                              |                               | XXXX                       |
| 10 - Yalin (1963)                         |                            |                            |                                  |                            |                              |                               | XXXX                       |
| 11 - Pernecker e Vollmer (1965)           |                            |                            |                                  |                            |                              |                               | XXXX                       |
| 12 - Inglis e Lacey (1968)                |                            |                            |                                  |                            |                              |                               | XXXX                       |

Quadro 7.3 – Identificação do diâmetro coletado no Ribeirão do Feijão que mais se aproxima do calculado pelas equações analíticas

# 7.4 – Comparação entre as descargas calculadas pelos diâmetros D<sub>i</sub> e Dvj e as descargas medidas no Ribeirão do Feijão

Para efeito de comparação consideraram-se apenas aquelas campanhas de medições em que tanto as descargas calculadas pelo **Di** quanto aquelas calculadas com o **Dvj** apresentaram valores maiores do que zero para as descargas de sedimentos.

Uma vez não considerando as campanhas de medições em que não houve a coincidência de valores maiores do que zero para a descarga estimada com o **Di** e com o **Dvj** ou vice-versa, houve uma redução da quantidade de métodos a serem analisados em comparação com os quatorze empregados no **capítulo 6**. E, como conseqüência, também em alguns casos, foi necessário deixar de fora da análise algumas campanhas de medições.

Julgou-se conveniente adotar o critério de analisar somente as descargas maiores do zero, razão porque, o interesse é verificar se a diferença percentual relativa média diminui quando a descarga de sedimentos é estimada com o Dvj em relação àquela estimada com o Di. No entanto, se estivessem considerados todos os eventos, poder-se-ia encontrar resultados maquiados – conforme já comentado no capítulo 6, razão pela qual os eventos de descargas nulas tendem a estabilizar a diferença percentual relativa média em um valor em torno de 100%.

Na **tabela 7.5**, mostram-se os métodos que apresentaram coincidências de descargas calculadas com o **Di** e o **Dvj**. Apresentam-se, também, os diâmetros **Di** que foram utilizados em tais métodos na oportunidade em que foi calculada a descarga de sedimentos na camada

do leito. A **tabela 7.5** traz ainda, na coluna três, as equações analíticas usadas no cálculo do **Dvj**.

| Tabela 7.5 – Diâmetros selecionados<br>do transporte de sedimentos para o R | para empre<br>Ribeirão do | ego nas equações analíticas de estimativa<br>Feijão           |
|-----------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------|
| 1                                                                           | 2                         | 3                                                             |
| Autores                                                                     | D <sub>i</sub>            | Equação para o cálculo de Dvj                                 |
| Shields (1936)                                                              | <b>D</b> <sub>90</sub>    | $D_{Vj [SHI]} = 0,4965 \text{ x } \text{S}^{0,5532}$          |
| Kalinske (1947)                                                             | D <sub>90</sub>           | $D_{Vj [KAL]} = 0,0044 \text{ x } [e^{-5,7716 \text{ x Pc}}]$ |
| Levi (1948)                                                                 | <b>D</b> <sub>90</sub>    | $D_{V_{j} LEV } = 2,3204 \text{ x Cp}^{-1,7324}$              |
| Einstein (1942) & Einstein-Brown (1950)                                     | <b>D</b> <sub>90</sub>    | $D_{V_{i} EIB } = -0,0012 x Ln(Q) + 0,0097$                   |
| Garde e Albertson (1961)                                                    | <b>D</b> <sub>90</sub>    | $D_{V_{i}[GAA]} = 0,0027 x Ln(S) + 0,0302$                    |
| Pernecker e Vollmer (1965)                                                  | D <sub>50</sub>           | $D_{V_i   PEV_i  } = 1,1846 \text{ x S}^{0,65}$               |
| Inglis e Lacey (1968)                                                       | <b>D</b> <sub>90</sub>    | $D_{V_{i}[INL]} = -0,0012xLn(Q) + 0,0124$                     |

Na **tabela 7.6**, apresentam-se os resultados das descargas calculadas pelo método de Einstein-Brown (1950), usando os diâmetros **Di** e **Dvj**. Nas **colunas 18** e **19** da referida tabela, colocaram-se os resultados das diferenças percentuais relativas entre os valores calculados e aqueles medidos no Ribeirão do Feijão. Nota-se uma redução substancial – da ordem de  $10^2$  - na diferença percentual relativa média quando se comparam os valores das descargas calculados com o **Dvj**. O **Anexo D** traz as tabelas com os resultados dos demais métodos.

| Tab      | ela 7.6 - De | escarg                 | as calcul:                  | adas pelo                   | méto      | do de Ein         | stein-Br | own (.                | 1950) v    | isando            | o diân       | netro D          | 90 e o    | Dvj pai     | ra o Ribeir                    | ão do Feijá        | ío                          |                 |
|----------|--------------|------------------------|-----------------------------|-----------------------------|-----------|-------------------|----------|-----------------------|------------|-------------------|--------------|------------------|-----------|-------------|--------------------------------|--------------------|-----------------------------|-----------------|
| (l)<br>№ | (2)<br>DATA  | (3)<br>D <sub>90</sub> | (4)<br>D <sub>Vj[EIB]</sub> | (5)<br>τ <sub>0</sub>       | (6)<br>U* | (7)<br>V          | (8)<br>S | (9)<br>R <sub>H</sub> | (10)       | (11)              | (12)         | (13)             | (14)<br>B | (15)<br>qBm | (16)<br>qB[EIB]D <sub>84</sub> | (17)<br>qB[EIB]Dvj | (18)<br>E[%]D <sub>84</sub> | (19)<br>E[%]Dvj |
|          |              | (mm)                   | mm                          | $\mathrm{Kgf}/\mathrm{m}^2$ | (m/s)     | m <sup>2</sup> /s | (m/m)    | (m)                   | $k_{bD84}$ | k <sub>bDvj</sub> | $\Psi_{D84}$ | $\Psi_{\rm Dvj}$ | (m)       | ton/dia     | ton/dia                        | ton/dia            |                             |                 |
| 1        | 14/5/1996    | 0,53                   | 9,59                        | 0,84                        | 0,09      | 1,04E-06          | 1,19E-03 | 0,71                  | 0,70       | 0,81              | 1,05         | 18,85            | 5,00      | 0,02        | 1377,06                        | 21,03              | 6,26E+06                    | 9,55E+04        |
| 2        | 21/5/1996    | 0,59                   | 9,37                        | 0,87                        | 0,09      | 1,04E-06          | 1,21E-03 | 0,72                  | 0,71       | 0,81              | 1,12         | 17,79            | 5,00      | 0,02        | 1344,81                        | 24,17              | 7,91E+06                    | 1,42E+05        |
| 3        | 28/5/1996    | 0,56                   | 9,64                        | 0,80                        | 0,09      | 1,08E-06          | 1,14E-03 | 0,70                  | 0,71       | 0,81              | 1,16         | 19,81            | 5,00      | 0,02        | 1123,97                        | 18,26              | 7,02E+06                    | 1,14E+05        |
| 4        | 4/6/1996     | 0,72                   | 9,55                        | 0,77                        | 0,09      | 1,08E-06          | 1,08E-03 | 0,71                  | 0,74       | 0,81              | 1,53         | 20,43            | 5,00      | 0,01        | 726,99                         | 16,42              | 1,45E+07                    | 3,28E+05        |
| 5        | 11/6/1996    | 0,56                   | 9,61                        | 0,68                        | 0,08      | 1,11E-06          | 9,60E-04 | 0,71                  | 0,71       | 0,81              | 1,36         | 23,40            | 5,00      | 0,00        | 681,61                         | 11,04              | 3,41E+07                    | 5,52E+05        |
| 6        | 18/6/1996    | 0,75                   | 9,72                        | 0,65                        | 0,08      | 1,09E-06          | 9,40E-04 | 0,70                  | 0,74       | 0,81              | 1,90         | 24,55            | 5,00      | 0,01        | 412,84                         | 9,72               | 8,26E+06                    | 1,94E+05        |
| 7        | 25/6/1996    | 0,58                   | 9,18                        | 0,61                        | 0,08      | 9,30E-07          | 8,90E-04 | 0,69                  | 0,71       | 0,81              | 1,56         | 24,76            | 5,00      | 0,00        | 480,40                         | 8,69               | 2,40E+07                    | 4,34E+05        |
| 8        | 1/7/1996     | 1,57                   | 9,54                        | 0,74                        | 0,08      | 1,11E-06          | 1,05E-03 | 0,70                  | 0,79       | 0,81              | 3,52         | 21,41            | 5,00      | 0,01        | 208,06                         | 14,25              | 2,97E+06                    | 2,03E+05        |
| 9        | 9/7/1996     | 0,68                   | 9,62                        | 0,66                        | 0,08      | 1,08E-06          | 9,60E-04 | 0,68                  | 0,73       | 0,81              | 1,71         | 24,20            | 5,00      | 0,01        | 478,15                         | 9,99               | 7,97E+06                    | 1,66E+05        |
| 10       | 16/7/1996    | 1,08                   | 9,67                        | 0,60                        | 0,08      | 1,14E-06          | 8,70E-04 | 0,69                  | 0,77       | 0,81              | 2,95         | 26,41            | 5,00      | 0,01        | 196,81                         | 7,74               | 3,28E+06                    | 1,29E+05        |
| 11       | 23/7/1996    | 0,58                   | 9,85                        | 0,56                        | 0,07      | 1,16E-06          | 8,30E-04 | 0,67                  | 0,71       | 0,81              | 1,73         | 29,09            | 5,00      | 0,00        | 361,43                         | 5,96               | 1,20E+07                    | 1,99E+05        |
| 12       | 30/7/1996    | 1,03                   | 9,72                        | 0,59                        | 0,08      | 1,10E-06          | 8,30E-04 | 0,71                  | 0,77       | 0,81              | 2,86         | 27,13            | 5,00      | 0,00        | 198,72                         | 7,20               | 4,97E+06                    | 1,80E+05        |
| 13       | 6/8/1996     | 0,54                   | 9,93                        | 0,52                        | 0,07      | 1,05E-06          | 7,50E-04 | 0,70                  | 0,70       | 0,81              | 1,71         | 31,43            | 5,00      | 0,01        | 324,84                         | 4,78               | 5,41E+06                    | 7,96E+04        |
| 14       | 13/8/1996    | 0,57                   | 9,59                        | 0,79                        | 0,09      | 1,05E-06          | 1,13E-03 | 0,70                  | 0,71       | 0,81              | 1,19         | 19,93            | 5,10      | 0,00        | 1089,27                        | 18,19              | 2,72E+07                    | 4,55E+05        |
| 15       | 23/8/1996    | 0,59                   | 10,01                       | 0,56                        | 0,07      | 1,08E-06          | 8,20E-04 | 0,68                  | 0,72       | 0,81              | 1,75         | 29,66            | 5,00      | 0,00        | 352,42                         | 5,76               | 8,81E+06                    | 1,44E+05        |
| 16       | 27/8/1996    | 0,75                   | 10,01                       | 0,57                        | 0,07      | 1,05E-06          | 8,40E-04 | 0,68                  | 0,74       | 0,81              | 2,16         | 28,95            | 5,00      | 0,01        | 277,22                         | 6,19               | 5,54E+06                    | 1,24E+05        |
| 17       | 3/9/1996     | 1,20                   | 9,38                        | 0,95                        | 0,10      | 1,04E-06          | 1,32E-03 | 0,72                  | 0,78       | 0,81              | 2,07         | 16,22            | 5,10      | 0,01        | 686,30                         | 32,60              | 1,37E+07                    | 6,52E+05        |
| 18       | 10/9/1996    | 0,64                   | 8,33                        | 1,87                        | 0,14      | 1,54E-06          | 2,39E-03 | 0,78                  | 0,73       | 0,81              | 0,57         | 7,36             | 7,90      | 2,10        | 18740,67                       | 451,86             | 8,94E+05                    | 2,14E+04        |
| 19       | 17/9/1996    | 0,57                   | 9,09                        | 1,33                        | 0,11      | 1,03E-06          | 1,81E-03 | 0,73                  | 0,71       | 0,81              | 0,71         | 11,30            | 5,40      | 0,06        | 5421,78                        | 97,30              | 9,51E+06                    | 1,71E+05        |
| 20       | 20/9/1996    | 0,60                   | 9,55                        | 0,70                        | 0,08      | 1,03E-06          | 1,03E-03 | 0,68                  | 0,72       | 0,81              | 1,42         | 22,67            | 4,90      | 0,01        | 662,21                         | 11,79              | 1,32E+07                    | 2,36E+05        |
| 21       | 1/10/1996    | 0,57                   | 9,74                        | 0,51                        | 0,07      | 1,00E-06          | 7,70E-04 | 0,67                  | 0,71       | 0,81              | 1,82         | 31,24            | 4,80      | 0,01        | 280,83                         | 4,54               | 4,01E+06                    | 6,48E+04        |
| 22       | 8/10/1996    | 0,57                   | 9,67                        | 0,56                        | 0,07      | 1,07E-06          | 8,40E-04 | 0,67                  | 0,71       | 0,81              | 1,67         | 28,39            | 5,00      | 0,01        | 381,49                         | 6,24               | 6,36E+06                    | 1,04E+05        |
| 23       | 15/10/1996   | 0,75                   | 9,07                        | 1,15                        | 0,11      | 9,99E-07          | 1,60E-03 | 0,72                  | 0,74       | 0,81              | 1,07         | 13,02            | 5,30      | 0,17        | 2410,19                        | 62,38              | 1,45E+06                    | 3,75E+04        |
| 24       | 22/10/1996   | 0,74                   | 8,89                        | 0,43                        | 0,07      | 9,21E-07          | 6,70E-04 | 0,65                  | 0,74       | 0,81              | 2,80         | 33,79            | 5,00      | 0,01        | 124,31                         | 3,26               | 2,49E+06                    | 6,51E+04        |
| 25       | 31/10/1996   | 0,79                   | 9,61                        | 0,52                        | 0,07      | 9,61E-07          | 8,10E-04 | 0,64                  | 0,75       | 0,81              | 2,51         | 30,39            | 5,00      | 0,04        | 195,11                         | 5,04               | 5,13E+05                    | 1,32E+04        |
| 26       | 5/11/1996    | 0,58                   | 9,43                        | 0,07                        | 0,03      | 9,59E-07          | 1,10E-04 | 0,67                  | 0,71       | 0,81              | 12,92        | 211,15           | 4,90      | 0,04        | 0,83                           | 0,01               | 2,13E+03                    | 6,13E+01        |
| 27       | 12/11/1996   | 0,56                   | 9,82                        | 0,33                        | 0,06      | 9,39E-07          | 5,20E-04 | 0,63                  | 0,71       | 0,81              | 2,79         | 49,23            | 4,80      | 0,00        | 75,65                          | 1,18               | 2,52E+06                    | 3,91E+04        |
| 28       | 19/11/1996   | 0,68                   | 8,89                        | 1,48                        | 0,12      | 9,52E-07          | 1,98E-03 | 0,75                  | 0,73       | 0,81              | 0,76         | 9,95             | 5,40      | 0,03        | 5856,95                        | 138,14             | 1,89E+07                    | 4,46E+05        |
| 29       | 22/11/1996   | 0,83                   | 8,26                        | 3,03                        | 0,17      | 1,01E-06          | 3,60E-03 | 0,84                  | 0,75       | 0,81              | 0,45         | 4,50             | 6,00      | 0,48        | 43409,70                       | 1486,60            | 9,12E+06                    | 3,12E+05        |
| 30       | 25/11/1996   | 0,59                   | 9,51                        | 0,71                        | 0,08      | 9,65E-07          | 1,06E-03 | 0,67                  | 0,71       | 0,81              | 1,37         | 22,16            | 4,90      | 0,01        | 714,57                         | 12,53              | 8,93E+06                    | 1,57E+05        |
| 31       | 3/12/1996    | 0,62                   | 9,60                        | 0,60                        | 0,08      | 1,00E-06          | 8,70E-04 | 0,68                  | 0,72       | 0,81              | 1,71         | 26,61            | 4,80      | 0,01        | 392,10                         | 7,19               | 3,02E+06                    | 5,52E+04        |
| 32       | 5/12/1996    | 0,71                   | 9,58                        | 0,68                        | 0,08      | 9,77E-07          | 9,90E-04 | 0,69                  | 0,74       | 0,81              | 1,71         | 23,15            | 4,90      | 0,01        | 501,89                         | 11,13              | 6,27E+06                    | 1,39E+05        |

| (l) | (2)        | (3)      | (4)                  | (5)                 | (6)   | (7)      | (8)      | (9)            | (10)              | (11)              | (12)         | (13)             | (14) | (15)    | (16)                   | ao uo reija<br>(17) | (18)                | (19)     |
|-----|------------|----------|----------------------|---------------------|-------|----------|----------|----------------|-------------------|-------------------|--------------|------------------|------|---------|------------------------|---------------------|---------------------|----------|
| N°  | DATA       | $D_{90}$ | D <sub>VifEIB1</sub> | $\tau_0$            | U*    | ν        | S        | R <sub>H</sub> | 111223112         | 12-26-96068       |              | 1.5.1.1.5.4.04.1 | в    | qBm     | qB[EIB]D <sub>84</sub> | qB[EIB]Dvj          | E[%]D <sub>84</sub> | E[%]Dvj  |
|     |            | (mm)     | mm                   | Kgf/ m <sup>2</sup> | (m/s) | $m^2/s$  | (m/m)    | (m)            | k <sub>bD84</sub> | k <sub>bDvj</sub> | $\Psi_{D84}$ | $\Psi_{\rm Dvj}$ | (m)  | ton/dia | ton/dia                | ton/dia             |                     |          |
| 33  | 12/12/1996 | 0,65     | 9,16                 | 1,12                | 0,10  | 9,54E-07 | 1,53E-03 | 0,73           | 0,73              | 0,81              | 0,96         | 13,45            | 5,20 | 0,04    | 2653,57                | 56,17               | 6,63E+06            | 1,40E+05 |
| 34  | 18/12/1996 | 0,58     | 9,37                 | 0,89                | 0,09  | 9,68E-07 | 1,27E-03 | 0,70           | 0,71              | 0,81              | 1,08         | 17,40            | 5,00 | 0,01    | 1463,48                | 25,88               | 1,83E+07            | 3,23E+05 |
| 35  | 4/1/1997   | 0,46     | 8,77                 | 2,07                | 0,14  | 8,90E-07 | 2,38E-03 | 0,87           | 0,67              | 0,81              | 0,37         | 7,00             | 5,60 | 0,02    | 27607,22               | 402,96              | 1,31E+08            | 1,92E+06 |
| 36  | 8/1/1997   | 1,24     | 9,39                 | 0,59                | 0,08  | 9,50E-07 | 8,80E-04 | 0,68           | 0,78              | 0,81              | 3,44         | 26,08            | 5,30 | 0,01    | 163,10                 | 8,16                | 2,04E+06            | 1,02E+05 |
| 37  | 14/1/1997  | 0,81     | 9,16                 | 0,96                | 0,10  | 9,28E-07 | 1,39E-03 | 0,69           | 0,75              | 0,81              | 1,39         | 15,69            | 5,70 | 0,04    | 1362,72                | 38,83               | 3,49E+06            | 9,95E+04 |
| 38  | 24/1/1997  | 0,59     | 8,75                 | 2,86                | 0,17  | 9,00E-07 | 3,94E-03 | 0,73           | 0,71              | 0,81              | 0,34         | 5,04             | 6,30 | 0,01    | 60998,17               | 1208,44             | 7,62E+08            | 1,51E+07 |
| 39  | 28/1/1997  | 1,15     | 8,74                 | 2,17                | 0,15  | 9,21E-07 | 2,59E-03 | 0,84           | 0,78              | 0,81              | 0,87         | 6,66             | 5,70 | 0,03    | 9498,09                | 473,10              | 3,39E+07            | 1,69E+06 |
| 40  | 11/2/1997  | 0,77     | 9,18                 | 0,98                | 0,10  | 8,70E-07 | 1,27E-03 | 0,77           | 0,75              | 0,81              | 1,31         | 15,52            | 5,10 | 0,01    | 1347,24                | 35,98               | 1,92E+07            | 5,14E+05 |
| 41  | 20/2/1997  | 0,78     | 9,23                 | 1,36                | 0,12  | 9,72E-07 | 1,80E-03 | 0,75           | 0,75              | 0,81              | 0,95         | 11,24            | 5,50 | 0,09    | 3837,70                | 103,15              | 4,31E+06            | 1,16E+05 |
| 42  | 5/3/1997   | 0,69     | 9,24                 | 1,15                | 0,11  | 9,59E-07 | 1,57E-03 | 0,73           | 0,74              | 0,81              | 0,99         | 13,25            | 5,20 | 0,02    | 2636,53                | 59,65               | 1,55E+07            | 3,51E+05 |
| 43  | 10/3/1997  | 1,33     | 9,28                 | 1,13                | 0,11  | 9,11E-07 | 1,54E-03 | 0,74           | 0,79              | 0,81              | 1,94         | 13,51            | 5,30 | 0,01    | 1022,31                | 57,66               | 1,70E+07            | 9,61E+05 |
| 44  | 13/3/1997  | 1,18     | 9,41                 | 0,83                | 0,09  | 9,54E-07 | 1,14E-03 | 0,73           | 0,78              | 0,81              | 2,33         | 18,66            | 5,30 | 0,00    | 484,45                 | 22,36               | 2,42E+07            | 1,12E+06 |
| 45  | 17/3/1997  | 0,65     | 9,35                 | 0,95                | 0,10  | 9,21E-07 | 1,29E-03 | 0,74           | 0,73              | 0,81              | 1,12         | 16,21            | 5,20 | 0,01    | 1629,92                | 33,16               | 2,33E+07            | 4,74E+05 |
| 46  | 20/3/1997  | 0,93     | 9,48                 | 0,82                | 0,09  | 9,59E-07 | 1,13E-03 | 0,73           | 0,76              | 0,81              | 1,87         | 19,08            | 5,30 | 0,01    | 645,40                 | 21,12               | 1,29E+07            | 4,22E+05 |
| 47  | 4/4/1997   | 0,74     | 9,51                 | 1,25                | 0,11  | 9,65E-07 | 1,71E-03 | 0,73           | 0,74              | 0,81              | 0,98         | 12,55            | 5,20 | 0,01    | 3057,24                | 73,19               | 5,10E+07            | 1,22E+06 |
| 48  | 7/4/1997   | 0,67     | 9,51                 | 0,76                | 0,09  | 9,77E-07 | 1,05E-03 | 0,72           | 0,73              | 0,81              | 1,45         | 20,64            | 5,20 | 0,00    | 790,53                 | 16,47               | 2,64E+07            | 5,49E+05 |
|     |            |          |                      |                     |       |          |          |                |                   |                   |              |                  |      |         |                        | MEDIA               | 2,99E+07            | 6,49E+05 |

# 7.5-Comentários finais referentes à aplicação, ao Ribeirão do Feijão, da metodologia proposta

Na **tabela 7.7**, que apresenta o resumo da comparação das descargas de sedimentos estimadas com aquelas medidas, mostra-se que houve uma redução substancial da diferença percentual relativa média quando a descarga de sedimentos foi calculada com o diâmetro Dvj.

Ainda com relação à **tabela 7.7**, pode-se, corroborando o descrito no parágrafo anterior, afirmar que dos sete métodos empregados quatro apresentaram redução da ordem de  $10^2$  quando a descarga foi calculada com o **Dvj** em vez de se calcular com o Di.

Focalizando novamente a tabela supra mencionada, observa-se que, para o método de Levi (1948), quando a descarga foi calculada com o **Dvj**, a diferença percentual relativa média reduziu 330%. Para o método de Pernecker e Vollmer (1965), a redução foi ainda maior – da ordem de  $10^3$ .

Exceção apenas foi observada para o método de Kalinske que apresentou resultados praticamente inalterados quando a descarga foi estimada com o **Di** e o **Dvj**. A explicação para tal resultado pode residir no fato de que, excepcionalmente, para este método, as descargas calculadas nem sempre reduzem quando o diâmetro aumenta como era de se esperar, e como é comum em todos os demais métodos.

Continuando a análise dos resultados apresentados na **tabela 7.7**, e ao se observar a **coluna 4**, na qual consta a redução do erro médio obtido quando a descarga de sedimentos é calculada com o Dvj, nota-se que, dos sete métodos elencados, os quatro que apresentaram as maiores reduções foram, pela ordem, os métodos de Perceker e Volmer (1965), com redução de 46329%, o método de Garde e Albertson (1961), com 19216%, o método de Shields (1936), com redução de 18860%, e, finalizando, o método de Inglis e Lacei (1968), que reduziu o erro em 8900%.

Do exposto no parágrafo supra descrito constata-se, pela observação da **tabela 7.5**, que, entre os quatros métodos citados no parágrafo supra descrito, os três primeiros têm os seus diâmetros de cálculo definidos em função da declividade do material do leito. Isso ratifica a importância dessa variável à definição da seção de monitoramento para os estudos do transporte de sedimentos em escoamentos com superfície livre.

Tabela 7.7 – Comparação da diferença percentual relativa média entre a descarga obtida pelos métodos de cálculo quando se usa o D<sub>i</sub> e o Dvj para o Ribeirão do Feijão

| 1                                       | 2                            | 3                           | 4      | 5               |
|-----------------------------------------|------------------------------|-----------------------------|--------|-----------------|
| Autores                                 | E[%]D <sub>i</sub>           | E[%]D <sub>vj</sub>         | E(%)   | Observação      |
| Shields (1936)                          | <b>4,30</b> x10 <sup>7</sup> | $2,28 \times 10^5$          | 18860% | Redução do erro |
| Kalinske (1947)                         | 9,98x10 <sup>5</sup>         | 9,95x10 <sup>5</sup>        | 0,0    | Sem alteração   |
| Levi (1948)                             | 4053,8                       | 1226,7                      | 330%   | Redução do erro |
| Einstein (1942) & Einstein-Brown (1950) | <b>3,0</b> x10 <sup>7</sup>  | 6,5x10 <sup>5</sup>         | 4615%  | Redução do erro |
| Garde e Albertson (1961)                | <b>9,8</b> x10 <sup>7</sup>  | 5,1x10 <sup>5</sup>         | 19216% | Redução do erro |
| Pernecker e Vollmer (1965)              | 1,3x10 <sup>8</sup>          | <b>2,8</b> x10 <sup>5</sup> | 46329% | Redução do erro |
| Inglis e Lacey (1968)                   | <b>1,8</b> x10 <sup>7</sup>  | <b>2,0</b> x10 <sup>5</sup> | 8900%  | Redução do erro |

Ao ser aplicada ao Ribeirão do Feijão a metodologia desenvolvida na tese mostrou consistência e ratificou o que está se propondo, uma vez que as descargas estimadas com o **Dvj** reduziram a diferença percentual relativa média em comparação com a diferença percentual relativa média quando tal descarga é estimada pelo **Di**.

Por outro lado, foi confirmada a tendência dos diâmetros calculados apresentarem valores elevados, em comparação com os coletados no fundo do Rio. Isso acaba aproximando esses diâmetros daqueles coletados de maior granulometria. No caso do Ribeirão do Feijão, das doze equações empregadas, nove calcularam diâmetros mais próximos do D<sub>90</sub>.

Ademais, o Ribeirão do Feijão - pelas características morfológicas e pelas observações de alguns dos parâmetros hidráulicos observados na **tabela 7.1** - apresenta-se como um curso de água menor do que o Rio Atibaia. Sinalizando, portanto, em uma avaliação preliminar, que a metodologia proposta produz bons resultados também para cursos de água de pequena monta.

No capítulo oito, a metodologia desenvolvida nesta tese será aplicada para o segundo estudo de caso, utilizando a base de dados medida no Rio Mogi-Guaçu, em São Carlos - São Paulo (PONCE, 1990).

### 8 – SEGUNDO ESTUDO DE CASO: APLICAÇÃO DA METODOLOGIA AOS DADOS DO RIO MOGI-GUAÇU - [PONCE, 1990]

#### 8.1. Considerações preliminares

Neste capitulo, foi feita uma aplicação da metodologia, usando-se a base de dados fornecida em PONCE (1990). Os dados foram medidos no Rio Mogi-Guaçu e se constitui em 36 campanhas de medidas hidráulicas e de transporte de sedimentos.

A base de dados do Rio Mogi-Guaçu está apresentada na **tabela 8.1** na qual foram organizados nesta, tabela, os dados referentes aos parâmetros hidráulicos e geométricos do referido rio, as características da granulometria do material do leito, além de algumas propriedades do fluido, do escoamento e dos sedimentos. Notam-se, na parte inferior da tabela, valores máximos, médios e mínimos para todos os parâmetros. Também, para alguns deles, estão apresentados os desvios médios, em relação aos seus valores médios medidos.

Para efeito de comparação, destacam-se alguns valores máximos, mínimos e médios de alguns dos mais importantes parâmetros característicos do escoamento e dos sedimentos, obtidos para o Rio Mogi-Guaçu. A vazão máxima apresenta valor de **523,23 m<sup>3</sup>/s**, o valor mínimo é de aproximadamente **62,85 m<sup>3</sup>/s**, já o valor médio é de **195,70 m<sup>3</sup>/s**, enquanto que o valor dos desvios médios dos valores em relação à média é de aproximadamente **106,58 m<sup>3</sup>/s**.

A declividade do leito apresenta valores máximos, mínimo e médio, respectivamente iguais a  $1,85 \times 10^{-4}$ ,  $1,1 \times 10^{-4}$  e  $1,47 \times 10^{-4}$ , enquanto que o valor médio dos desvios em relação à média é de  $1,83 \times 10^{-5}$ .

A velocidade do escoamento apresenta valor máximo igual a **1,10 m/s** enquanto que os valores mínimos e médios são respectivamente **0,46 m/s** e **0,72 m/s**. Já o desvio médio em relação à média medida é de **0,14 m/s**.

O valor da descarga máxima medida foi de 97,26 ton/dia, com média de 33,58 ton/dia. O desvio médio em relação à média foi de 21,43 ton/dia. O valor mínimo medido para o Rio Mogi-Guaçu foi de 4,17 ton/dia.

A aplicação da metodologia se deu de modo similar àquela que foi feita para os **capítulos seis e sete**, ou seja, as descargas de sedimentos foram calculadas pelos métodos de cálculo do transporte de sedimentos usando os diâmetros Di e os Dvj e ambas foram comparadas às descargas medidas, para analisar a variação da diferença percentual relativa média para um e outro caso.

Posteriormente calculou-se E(%)Di (diferença percentual relativa entre a descarga calculada pelas equações do transporte de sedimentos usando os diâmetros Di's e a medida) e calculou-se também E(%)Dvj – diferença percentual relativa entre a descarga medida e aquela estimada pelas equações do transporte de sedimentos usando os diâmetros Dvj's.

|     | TABEL      | A 8.1 - ]           | BASE I     | DE DA             | DOS     | REFE                      | EREN   | TE A   | O RIC | ) MOGI   | -GUAÇI     | U - SAO    | CARL     | OS - SA            | AO PAU             | лор               | ONCE,     | 1990]               |            |        |                                        |        |          |         |                |
|-----|------------|---------------------|------------|-------------------|---------|---------------------------|--------|--------|-------|----------|------------|------------|----------|--------------------|--------------------|-------------------|-----------|---------------------|------------|--------|----------------------------------------|--------|----------|---------|----------------|
|     | Parâmetro  | s hidrául           | icos e geo | ométric           | os para | o Rio I                   | Mogi-( | Guaçu  |       | Granul   | ometria do | ) material | do leito |                    |                    |                   | Proprieda | ades do fl          | uido, do e | scoame | ento e dos                             | sedime | ntos     |         |                |
| (1) | (2)        | (3)                 | (4)        | (5)               | (6)     | (7)                       | (8)    | (9)    | (10)  | (11)     | (12)       | (13)       | (14)     | (15)               | (16)               | (17)              | (18)      | (19)                | (20)       | (21)   | (22)                                   | (23)   | (24)     | (25)    | (26)           |
| Nº. | DATA       | Q                   | S          | Α                 | Р       | $\mathbf{R}_{\mathbf{H}}$ | d      | в      | U     | $D_{35}$ | $D_{50}$   | $D_{65}$   | $D_{90}$ | $\gamma_{\rm s}$   | γ                  | Т                 | ν         | το                  | n          | U*     | $\mathbf{q} = \mathbf{Q} / \mathbf{B}$ | Fr     | Ср       | Pc      | q <sub>B</sub> |
|     | e          | (m <sup>3</sup> /s) | (m/m)      | (m <sup>2</sup> ) | (m)     | (m)                       | (m)    | (m)    | (m/s) | (mm)     | (mm)       | (mm)       | (mm)     | Kgf/m <sup>3</sup> | Kgf/m <sup>3</sup> | ( <sup>0</sup> C) | $m^2/s$   | Kgf/ m <sup>2</sup> | Manning    | (m/s)  | m <sup>3</sup> /s.m                    | 2      | <u> </u> | Kgf/m.s | ton/dia        |
| 1   | 10/12/1988 | 77,18               | 1,30E-04   | 160,88            | 96,34   | 1,67                      | 1,68   | 95,70  | 0,48  | 0,35     | 0,46       | 0,58       | 0,93     | 2650,00            | 1000,00            | 27,18             | 8,54E-07  | 0,217               | 0,033      | 0,046  | 0,81                                   | 0,12   | 71,53    | 0,10    | 10,73          |
| 2   | 11/12/1988 | 74,44               | 1,50E-04   | 134,48            | 96,06   | 1,40                      | 1,41   | 95,30  | 0,55  | 0,49     | 0,60       | 0,73       | 1,48     | 2650,00            | 1000,00            | 26,90             | 8,59E-07  | 0,210               | 0,028      | 0,045  | 0,78                                   | 0,15   | 45,73    | 0,12    | 18,34          |
| 3   | 14/1/1989  | 452,72              | 1,85E-04   | 414,47            | 106,55  | 3,89                      | 3,99   | 103,80 | 1,09  | 0,52     | 0,63       | 0,80       | 1,93     | 2650,00            | 1000,00            | 24,38             | 9,09E-07  | 0,720               | 0,031      | 0,084  | 4,36                                   | 0,17   | 32,94    | 0,78    | 82,23          |
| 4   | 15/1/1989  | 446,47              | 1,63E-04   | 406,74            | 105,65  | 3,85                      | 3,95   | 103,00 | 1,10  | 0,32     | 0,42       | 0,59       | 1,39     | 2650,00            | 1000,00            | 24,26             | 9,12E-07  | 0,628               | 0,029      | 0,078  | 4,33                                   | 0,18   | 32,02    | 0,69    | 81,15          |
| 5   | 20/1/1989  | 405,37              | 1,10E-04   | 427,36            | 106,04  | 4,03                      | 4,16   | 102,80 | 0,95  | 0,39     | 0,50       | 0,66       | 1,30     | 2650,00            | 1000,00            | 24,82             | 9,00E-07  | 0,443               | 0,028      | 0,066  | 3,94                                   | 0,15   | 45,22    | 0,42    | 87,21          |
| 6   | 27/1/1989  | 264,39              | 1,10E-04   | 347,05            | 104,22  | 3,33                      | 3,43   | 101,30 | 0,76  | 0,35     | 0,43       | 0,58       | 1,18     | 2650,00            | 1000,00            | 24,94             | 8,98E-07  | 0,366               | 0,031      | 0,060  | 2,61                                   | 0,13   | 58,26    | 0,28    | 40,13          |
| 7   | 3/2/1989   | 163,21              | 1,30E-04   | 236,60            | 100,25  | 2,36                      | 2,38   | 99,35  | 0,69  | 0,30     | 0,40       | 0,53       | 1,14     | 2650,00            | 1000,00            | 26,50             | 8,67E-07  | 0,307               | 0,029      | 0,055  | 1,64                                   | 0,14   | 49,04    | 0,21    | 33,57          |
| 8   | 24/2/1989  | 304,15              | 1,10E-04   | 354,15            | 104,47  | 3,39                      | 3,48   | 101,70 | 0,80  | 0,30     | 0,45       | 0,50       | 1,10     | 2050,00            | 1000,00            | 20,44             | 8,08E-07  | 0,373               | 0,028      | 0,060  | 2,99                                   | 0,15   | 40,10    | 0,32    | 57,80          |
| 9   | 3/3/1989   | 402,10              | 1,10E-04   | 402,10            | 105,82  | 3,80                      | 3,92   | 102,70 | 0,90  | 0,34     | 0,41       | 0,54       | 0,95     | 2050,00            | 1000,00            | 25,52             | 8,80E-07  | 0,418               | 0,028      | 0,004  | 3,92                                   | 0,15   | 4/,48    | 0,38    | 58,78          |
| 10  | 10/3/1989  | 201,12              | 1,10E-04   | 342,50            | 103,47  | 3,31                      | 3,39   | 100,90 | 1.07  | 0,34     | 0,41       | 0,29       | 1,10     | 2050,00            | 1000,00            | 23,20             | 0,00E-07  | 0,504               | 0,032      | 0,000  | 2,49<br>5.02                           | 0,15   | 40.44    | 0,50    | 29,00          |
| 12  | 31/3/1989  | 203.81              | 1,20E-04   | 343 65            | 107,47  | 3 32                      | 3 30   | 104,00 | 0.85  | 0,47     | 0,00       | 0,55       | 1.27     | 2650,00            | 1000,00            | 24.77             | 9,00E-07  | 0,240               | 0,020      | 0,073  | 200                                    | 0,10   | 46.03    | 0,39    | 43.01          |
| 13  | 7/4/1989   | 226.65              | 1 30E-04   | 279 63            | 102.05  | 274                       | 2.78   | 100.50 | 0.81  | 0,10     | 0,24       | 0,63       | 1 30     | 2650,00            | 1000,00            | 24.93             | 8.98F-07  | 0,140               | 0.028      | 0,000  | 2.26                                   | 016    | 41.57    | 0,29    | 48 57          |
| 14  | 14/4/1989  | 278.16              | 1.40E-04   | 311.50            | 103.15  | 3.02                      | 3.07   | 101.40 | 0.89  | 0,40     | 0.52       | 0.69       | 1.25     | 2650.00            | 1000.00            | 24.20             | 9.13E-07  | 0.423               | 0.028      | 0.064  | 2.74                                   | 0.16   | 38.02    | 0.38    | 64.46          |
| 15  | 28/4/1989  | 162.23              | 1,60E-04   | 217.35            | 100,63  | 2,16                      | 2,19   | 99,25  | 0,75  | 0,40     | 0,49       | 0,63       | 1.27     | 2650,00            | 1000,00            | 21,83             | 9,64E-07  | 0,346               | 0,028      | 0,058  | 1.63                                   | 0,16   | 38,19    | 0.26    | 21,38          |
| 16  | 5/5/1989   | 189,89              | 1,25E-04   | 257,00            | 101,18  | 2,54                      | 2,57   | 100,00 | 0,74  | 0,37     | 0,46       | 0,59       | 1,10     | 2650,00            | 1000,00            | 25,53             | 9,27E-07  | 0,318               | 0,028      | 0,056  | 1,90                                   | 0,15   | 46,04    | 0,23    | 48,42          |
| 17  | 9/5/1989   | 189,52              | 1,40E-04   | 249,50            | 101,01  | 2,47                      | 2,49   | 100,00 | 0,76  | 0,37     | 0,44       | 0,57       | 1,05     | 2650,00            | 1000,00            | 20,62             | 9,92E-07  | 0,346               | 0,028      | 0,058  | 1,90                                   | 0,15   | 42,29    | 0,26    | 34,44          |
| 18  | 23/5/1989  | 124,32              | 1,20E-04   | 194,27            | 99,12   | 1,96                      | 1,98   | 99,10  | 0,64  | 0,41     | 0,51       | 0,67       | 1,21     | 2650,00            | 1000,00            | 19,70             | 1,01E-06  | 0,235               | 0,027      | 0,048  | 1,25                                   | 0,15   | 47,42    | 0,15    | 34,59          |
| 19  | 2/6/1989   | 126,31              | 1,40E-04   | 192,90            | 98,92   | 1,95                      | 1,97   | 98,00  | 0,65  | 0,40     | 0,51       | 0,69       | 1,57     | 2650,00            | 1000,00            | 18,18             | 1,05E-06  | 0,273               | 0,028      | 0,052  | 1,29                                   | 0,15   | 45,74    | 0,18    | 25,42          |
| 20  | 6/6/1989   | 129,30              | 1,50E-04   | 196,48            | 98,73   | 1,99                      | 2,02   | 97,50  | 0,66  | 0,40     | 0,49       | 0,63       | 1,20     | 2650,00            | 1000,00            | 18,73             | 1,04E-06  | 0,299               | 0,029      | 0,054  | 1,33                                   | 0,15   | 45,49    | 0,20    | 18,83          |
| 21  | 13/6/1989  | 139,63              | 1,50E-04   | 209,80            | 99,90   | 2,10                      | 2,13   | 98,60  | 0,67  | 0,42     | 0,52       | 0,66       | 1,30     | 2650,00            | 1000,00            | 18,37             | 1,05E-06  | 0,315               | 0,030      | 0,056  | 1,42                                   | 0,15   | 46,55    | 0,21    | 19,59          |
| 22  | 20/6/1989  | 116,42              | 1,40E-04   | 180,53            | 98,11   | 1,84                      | 11,85  | 97,40  | 0,65  | 0,39     | 0,49       | 0,63       | 1,22     | 2650,00            | 1000,00            | 17,45             | 1,07E-06  | 0,258               | 0,027      | 0,050  | 1,20                                   | 0,06   | 275,14   | 0,17    | 26,70          |
| 23  | 27/6/1989  | 116,10              | 1,40E-04   | 180,23            | 97,95   | 1,84                      | 1,86   | 96,80  | 0,64  | 0,46     | 0,58       | 0,74       | 1,43     | 2650,00            | 1000,00            | 18,10             | 1,06E-06  | 0,258               | 0,028      | 0,050  | 1,20                                   | 0,15   | 44,55    | 0,16    | 25,31          |
| 24  | 5/7/1989   | 112,79              | 1,65E-04   | 173,03            | 97,76   | 1,77                      | 1,79   | 96,60  | 0,65  | 0,39     | 0,50       | U,64       | 1,24     | 2650,00            | 1000,00            | 18,85             | 1,04E-06  | 0,292               | 0,029      | 0,054  | 1,17                                   | 0,16   | 41,56    | 0,19    | 7,22           |
| 25  | 12/7/1989  | 95,10               | 1,76E-04   | 153,60            | 97,22   | 1,58                      | 1,59   | 96,50  | 0,62  | 0,40     | 0,51       | 0,05       | 1,53     | 2650,00            | 1000,00            | 15,53             | 1,13E-00  | 0,278               | 0,029      | 0,052  | 0,99                                   | 0,10   | 40,58    | 0,17    | 8,96           |
| 20  | 13///1989  | 94,27               | 1,00E.04   | 153,20            | 97,15   | 1,28                      | 1,59   | 90,50  | 0,01  | 0,44     | 0,50       | 0,72       | 1 40     | 2020,00            | 1000,00            | 15,12             | 1,14E-00  | 0,245               | 0,028      | 0,049  | 0,98                                   | 0,15   | 41,92    | 0,15    | 10.02          |
| 21  | 26/7/1080  | 92,21               | 1,00E-04   | 135,25            | 97,03   | 1,00                      | 1,01   | 90,45  | 0,39  | 0,45     | 0,50       | 0,75       | 1,00     | 2050,00            | 1000,00            | 14,90             | 1,136-00  | 0,200               | 0,031      | 0,055  | 0,90                                   | 0,15   | 45,57    | 0,17    | 10,92          |
| 20  | 0/8/1080   | 107.06              | 1,50E-04   | 170 30            | 97,09   | 1,75                      | 1.77   | 96 50  | 0,01  | 0,45     | 0,05       | 0,02       | 1,00     | 2650,00            | 1000,00            | 18 65             | 1,10E-00  | 0,240               | 0,027      | 0,049  | 111                                    | 0,10   | 40,07    | 0,15    | 2017           |
| 30  | 16/8/1989  | 86.95               | 1,70E-04   | 148.40            | 96.00   | 1.53                      | 1.54   | 96.40  | 0,50  | 0,38     | 0.47       | 0,0        | 1.13     | 2650,00            | 1000,00            | 18.03             | 1,042.00  | 0.260               | 0,020      | 0,051  | 0.90                                   | 0.15   | 43.40    | 0.15    | 12.15          |
| 31  | 23/8/1989  | 81.05               | 1.80E-04   | 142.75            | 97.11   | 1.47                      | 1.48   | 96.40  | 0.57  | 0.35     | 0.45       | 0.59       | 1.10     | 2650.00            | 1000,00            | 21.45             | 9.73E-07  | 0.265               | 0.030      | 0.051  | 0.84                                   | 0.15   | 44.69    | 0.15    | 4.17           |
| 32  | 13/9/1989  | 123,33              | 1,60E-04   | 196,90            | 99,44   | 1,98                      | 2,00   | 98,30  | 0,63  | 0,46     | 0,59       | 0,80       | 1,73     | 2650,00            | 1000,00            | 23,50             | 9,28E-07  | 0,317               | 0,032      | 0,056  | 1,25                                   | 0,14   | 49,43    | 0,20    | 6,00           |
| 33  | 27/9/1989  | 65,10               | 1,50E-04   | 141,50            | 93,09   | 1,52                      | 1,47   | 96,10  | 0,46  | 0,40     | 0,53       | 0,70       | 1,53     | 2650,00            | 1000,00            | 21,15             | 9,80E-07  | 0,228               | 0,035      | 0,047  | 0,68                                   | 0,12   | 68,15    | 0,10    | 11,44          |
| 34  | 4/10/1989  | 66,26               | 1,50E-04   | 137,25            | 91,50   | 1,50                      | 1,43   | 96,20  | 0,48  | 0,39     | 0,52       | 0,70       | 1,40     | 2650,00            | 1000,00            | 23,03             | 9,38E-07  | 0,225               | 0,033      | 0,047  | 0,69                                   | 0,13   | 60,89    | 0,11    | 4,63           |
| 35  | 11/10/1989 | 65,34               | 1,60E-04   | 119,25            | 95,40   | 1,25                      | 1,26   | 94,60  | 0,55  | 0,38     | 0,49       | 0,66       | 1,41     | 2650,00            | 1000,00            | 23,65             | 9,25E-07  | 0,200               | 0,027      | 0,044  | 0,69                                   | 0,16   | 40,86    | 0,11    | 6,62           |
| 36  | 8/11/1989  | 62,85               | 1,80E-04   | 116,90            | 94,27   | 1,24                      | 1,25   | 93,50  | 0,54  | 0,41     | 0,54       | 0,74       | 1,59     | 2650,00            | 1000,00            | 24,83             | 9,00E-07  | 0,223               | 0,029      | 0,047  | 0,67                                   | 0,15   | 42,05    | 0,12    | 4,26           |
|     | MAXIMO     | 523,23              | 1,85E-04   | 491,15            | 107,47  | 4,57                      | 11,85  | 104,00 | 1,10  | 0,52     | 0,66       | 0,95       | 2,37     | 2650,00            | 1000,00            | 27,18             | 1,15E-06  | 0,72                | 0,04       | 80,0   | 5,03                                   | 0,18   | 275,14   | 0,78    | 97,26          |
|     | MÍNIMO     | 62,85               | 1,10E-04   | 116,90            | 91,50   | 1,24                      | 1,25   | 93,50  | 0,46  | 0,30     | 0,40       | 0,53       | 0,93     | 2650,00            | 1000,00            | 14,90             | 8,54E-07  | 0,20                | 0,03       | 0,04   | 0,67                                   | 0,06   | 32,02    | 0,10    | 4,17           |
|     | MÉDIO      | 195,70              | 1,47E-04   | 244,88            | 100,10  | 2,41                      | 2,92   | 98,87  | 0,72  | 0,41     | 0,51       | 0,68       | 1,40     | 2650,00            | 1000,00            | 21,83             | 9,80E-07  | 0,34                | 0,03       | 0,06   | 1,94                                   | 0,15   | 58,18    | 0,27    | 33,58          |
|     | DES.MEDIO  | 106,58              | 1,83E-05   |                   |         |                           |        |        | 0,14  |          |            |            |          |                    |                    |                   | 3         |                     |            |        |                                        |        |          |         | 21,43          |

### 8.2 – Seleção de diâmetros a aplicação dos métodos de cálculos para o Rio Mogi-Guaçu

Na **tabela 8.2** traz-se os dados granulométricos do Rio Mogi-Guaçu agrupados em intervalos de classe. Isto permitiu, a exemplo do que foi feito com os dados do Rio Atibaia, no **capitulo seis** e com os dados do Ribeirão do Feijão, no **capítulo sete**, identificar a classe de diâmetros (**Di**) coletada no Rio Mogi-Guaçu, que melhor atende aos métodos analíticos de cálculo do transporte de sedimentos, no quesito faixa de diâmetros.

Deste modo, após análise da **tabela 8.2**, foi possível elaborar o **quadro 8.1** no qual foi possível visualizar a quantidade de campanhas de medições em que um determinado diâmetro **Di** atende às exigências preestabelecidas para cada método no que se refere à faixa, em milímetros, do diâmetro a ser empregado. Assim, por exemplo, para as 36 campanhas de medições no Rio Mogi-Guaçu, todos os diâmetros **D**<sub>35</sub> coletados apresentam, em milímetros, magnitudes entre **0,10** e **4.0**. Como se observa no referido quadro, todas as demais classes granulométricas também satisfazem ao método de Du-Boys (1879).

|       |       | 0    | D <sub>35</sub>    |                      |
|-------|-------|------|--------------------|----------------------|
| Ic    | (mm)  | F    | F <sub>i</sub> (%) | F <sub>iAC</sub> (%) |
| 0,300 | 0,305 | 1,00 | 2,78               | 2,78                 |
| 0,305 | 0,310 | 0,00 | 0,00               | 2,78                 |
| 0.310 | 0.315 | 0.00 | 0.00               | 2.78                 |
| 0,315 | 0,320 | 0,00 | 0,00               | 2,78                 |
| 0,320 | 0,325 | 1,00 | 2,78               | 5,56                 |
| 0,325 | 0,330 | 0,00 | 0,00               | 5,56                 |
| 0,330 | 0,335 | 0,00 | 0,00               | 5,56                 |
| 0,335 | 0,340 | 0,00 | 0,00               | 5,56                 |
| 0,340 | 0,345 | 2,00 | 5,56               | 11,11                |
| 0,345 | 0,350 | 0,00 | 0,00               | 11,11                |
| 0,350 | 0,355 | 3,00 | 8,33               | 19,44                |
| 0,355 | 0,360 | 0,00 | 0,00               | 19,44                |
| 0,360 | 0,365 | 1,00 | 2,78               | 22,22                |
| 0,365 | 0,370 | 0,00 | 0,00               | 22,22                |
| 0,370 | 0,375 | 2,00 | 5,56               | 27,78                |
| 0,375 | 0,380 | 0,00 | 0,00               | 27,78                |
| 0,380 | 0,385 | 2,00 | 5,56               | 33,33                |
| 0,385 | 0,390 | 0,00 | 0,00               | 33,33                |
| 0,390 | 0,395 | 5,00 | 13,89              | 47,22                |
| 0,395 | 0,400 | 0,00 | 0,00               | 47,22                |
| 0,400 | 0,405 | 6,00 | 16,67              | 63,89                |
| 0,405 | 0,410 | 0,00 | 0,00               | 63,89                |
| 0,410 | 0,415 | 2,00 | 5,56               | 69,44                |
| 0,415 | 0,420 | 0,00 | 0,00               | 69,44                |
| 0,420 | 0,425 | 1,00 | 2,78               | 72,22                |
| 0,425 | 0,430 | 0,00 | 0,00               | 72,22                |
| 0,430 | 0,435 | 3,00 | 8,33               | 80,56                |
| 0,435 | 0,440 | 0,00 | 0,00               | 80,56                |
| 0,440 | 0,445 | 1,00 | 2,78               | 83,33                |
| 0,445 | 0,450 | 0,00 | 0,00               | 83,33                |
| 0,450 | 0,455 | 0,00 | 0,00               | 83,33                |
| 0,455 | 0,460 | 0,00 | 0,00               | 83,33                |
| 0,460 | 0,465 | 2,00 | 5,56               | 88,89                |
| 0,465 | 0,470 | 0,00 | 0,00               | 88,89                |
| 0,470 | 0,475 | 1,00 | 2,78               | 91,67                |
| 0,475 | 0,480 | 0,00 | 0,00               | 91,67                |
| 0,480 | 0,485 | 0,00 | 0,00               | 91,67                |
| 0,485 | 0,490 | 0,00 | 0,00               | 91,67                |
| 0,490 | 0,495 | 2,00 | 5,56               | 97,22                |
| 0,495 | 0,500 | 0,00 | 0,00               | 97,22                |
| 0,500 | 0,505 | 0,00 | 0,00               | 97,22                |
| 0,505 | 0,510 | 0,00 | 0,00               | 97,22                |
| 0,510 | 0,515 | 0,00 | 0,00               | 97,22                |
| 0,515 | 0,520 | 0,00 | 0,00               | 97,22                |
| 0,520 | 0,525 | 1,00 | 2,78               | 100,00               |
|       | soma  | 36   | 100                | 100                  |

|       |       | Ι    |           |                      |  |
|-------|-------|------|-----------|----------------------|--|
| Ic    | (mm)  | F    | $F_i$ (%) | F <sub>iAC</sub> (%) |  |
| 0,400 | 0,406 | 1,00 | 2,78      | 2,78                 |  |
| 0,406 | 0,412 | 0,00 | 0,00      | 2,78                 |  |
| 0,412 | 0,418 | 2,00 | 5,56      | 8,33                 |  |
| 0,418 | 0,424 | 0,00 | 0,00      | 8,33                 |  |
| 0,424 | 0,430 | 1,00 | 2,78      | 11,11                |  |
| 0,430 | 0,436 | 1,00 | 2,78      | 13,89                |  |
| 0,436 | 0,442 | 0,00 | 0,00      | 13,89                |  |
| 0,442 | 0,448 | 1,00 | 2,78      | 16,67                |  |
| 0,448 | 0,454 | 0,00 | 0,00      | 16,67                |  |
| 0,454 | 0,460 | 2,00 | 5,56      | 22,22                |  |
| 0,460 | 0,466 | 2,00 | 5,56      | 27,78                |  |
| 0.466 | 0.472 | 0.00 | 0.00      | 27.78                |  |
| 0.472 | 0.478 | 1.00 | 2.78      | 30.56                |  |
| 0,478 | 0,484 | 0,00 | 0,00      | 30.56                |  |
| 0,484 | 0,490 | 0,00 | 0,00      | 30.56                |  |
| 0.490 | 0.496 | 5.00 | 13.89     | 44 44                |  |
| 0 496 | 0 502 | 0.00 | 0.00      | 44 44                |  |
| 0 502 | 0 508 | 2.00 | 5 56      | 50.00                |  |
| 0 508 | 0.514 | 0.00 | 0.00      | 50.00                |  |
| 0.514 | 0.520 | 3,00 | 8 33      | 58 33                |  |
| 0 520 | 0.526 | 3,00 | 8 33      | 66.67                |  |
| 0.526 | 0.532 | 0.00 | 0,00      | 66.67                |  |
| 0.532 | 0.538 | 1.00 | 2 78      | 69.44                |  |
| 0.538 | 0 544 | 0.00 | 0.00      | 69.44                |  |
| 0.544 | 0,550 | 2.00 | 5 56      | 75.00                |  |
| 0.550 | 0.556 | 1.00 | 2,50      | 77.78                |  |
| 0,556 | 0,550 | 1,00 | 2,70      | 77,70                |  |
| 0,550 | 0,562 | 2,00 | 5.56      | 02.22                |  |
| 0,562 | 0,308 | 2,00 | 0.00      | 03,33                |  |
| 0,500 | 0,574 | 0,00 | 0,00      | 03,33                |  |
| 0,574 | 0,500 | 1.00 | 2,00      | 05,55                |  |
| 0,500 | 0,500 | 1,00 | 2,70      | 00,11                |  |
| 0,500 | 0,592 | 1.00 | 0,00      | 00,11                |  |
| 0,592 | 0,598 | 1,00 | 2,78      | 00,00                |  |
| 0,598 | 0,604 | 0,00 | 0,00      | 01.65                |  |
| 0,604 | 0,610 | 1,00 | 2,78      | 91,67                |  |
| 0,610 | 0,010 | 0,00 | 0,00      | 91,67                |  |
| 0,010 | 0,622 | 0,00 | 0,00      | 91,67                |  |
| 0,622 | 0,628 | 0,00 | 0,00      | 91,67                |  |
| 0,628 | 0,634 | 0,00 | 0,00      | 91,67                |  |
| 0,634 | 0,640 | 2,00 | 5,56      | 97,22                |  |
| 0,640 | 0,646 | 0,00 | 0,00      | 97,22                |  |
| 0,646 | 0,652 | 0,00 | 0,00      | 97,22                |  |
| 0,652 | 0,658 | 0,00 | 0,00      | 97,22                |  |
| 0,658 | 0,664 | 0,00 | 0,00      | 97,22                |  |
| 0,664 | 0,670 | 1,00 | 2,78      | 100,00               |  |
|       | soma  | 36   | 100       | 100                  |  |

#### TABELA 8.2a - Freqüências relativas e acumuladas para os diâmetros D<sub>35</sub> e D<sub>50</sub> para o Rio Mogi-Guaçu

|       |       | D    | 65        |                      |
|-------|-------|------|-----------|----------------------|
| Ic    | (mm)  | F    | $F_i$ (%) | F <sub>iAC</sub> (%) |
| 0,530 | 0,540 | 1,00 | 2,78      | 2,78                 |
| 0,540 | 0,549 | 0,00 | 0,00      | 2,78                 |
| 0,549 | 0,559 | 1,00 | 2,78      | 5,56                 |
| 0,559 | 0,568 | 0,00 | 0,00      | 5,56                 |
| 0,568 | 0,578 | 1,00 | 2,78      | 8,33                 |
| 0,578 | 0,588 | 1,00 | 2,78      | 11,11                |
| 0,588 | 0,597 | 2,00 | 5,56      | 16,67                |
| 0,597 | 0,607 | 4,00 | 11,11     | 27,78                |
| 0,607 | 0,616 | 1,00 | 2,78      | 30,56                |
| 0,616 | 0,626 | 0,00 | 0,00      | 30,56                |
| 0,626 | 0,636 | 0,00 | 0,00      | 30,56                |
| 0,636 | 0,645 | 4,00 | 11,11     | 41,67                |
| 0,645 | 0,655 | 1,00 | 2,78      | 44,44                |
| 0,655 | 0,664 | 1,00 | 2,78      | 47,22                |
| 0,664 | 0,674 | 3,00 | 8,33      | 55,56                |
| 0,674 | 0,684 | 1,00 | 2,78      | 58,33                |
| 0,684 | 0,693 | 0,00 | 0,00      | 58,33                |
| 0,693 | 0,703 | 4,00 | 11,11     | 69,44                |
| 0,703 | 0,712 | 2,00 | 5,56      | 75,00                |
| 0,712 | 0,722 | 0,00 | 0,00      | 75,00                |
| 0,722 | 0,732 | 1,00 | 2,78      | 77,78                |
| 0,732 | 0,741 | 2,00 | 5,56      | 83,33                |
| 0,741 | 0,751 | 2,00 | 5,56      | 88,89                |
| 0,751 | 0,760 | 0,00 | 0,00      | 88,89                |
| 0,760 | 0,770 | 0,00 | 0,00      | 88,89                |
| 0,770 | 0,780 | 0,00 | 0,00      | 88,89                |
| 0,780 | 0,789 | 0,00 | 0,00      | 88,89                |
| 0,789 | 0,799 | 0,00 | 0,00      | 88,89                |
| 0,799 | 0,808 | 0,00 | 0,00      | 88,89                |
| 0,808 | 0,818 | 2,00 | 5,56      | 94,44                |
| 0,818 | 0,828 | 0,00 | 0,00      | 94,44                |
| 0,828 | 0,837 | 1,00 | 2,78      | 97,22                |
| 0,837 | 0,847 | 0,00 | 0,00      | 97,22                |
| 0,847 | 0,856 | 0,00 | 0,00      | 97,22                |
| 0,856 | 0,866 | 0,00 | 0,00      | 97,22                |
| 0,866 | 0,876 | 0,00 | 0,00      | 97,22                |
| 0,876 | 0,885 | 0,00 | 0,00      | 97,22                |
| 0,885 | 0,895 | 0,00 | 0,00      | 97,22                |
| 0,895 | 0,904 | 0,00 | 0,00      | 97,22                |
| 0,904 | 0,914 | 0,00 | 0,00      | 97,22                |
| 0,914 | 0,924 | 0,00 | 0,00      | 97,22                |
| 0,924 | 0,933 | 0,00 | 0,00      | 97,22                |
| 0,933 | 0,943 | 0,00 | 0,00      | 97,22                |
| 0,943 | 0,952 | 0,00 | 0,00      | 97,22                |
| 0.952 | 0.961 | 1.00 | 1 7 78    | 100.001              |

| D <sub>90</sub> |       |      |                    |               |  |  |  |  |  |  |
|-----------------|-------|------|--------------------|---------------|--|--|--|--|--|--|
| Ic              | (mm)  | F    | F <sub>i</sub> (%) | $F_{iAC}$ (%) |  |  |  |  |  |  |
| 0,930           | 0,963 | 1,00 | 2,78               | 2,78          |  |  |  |  |  |  |
| 0,963           | 0,996 | 1,00 | 2,78               | 5,56          |  |  |  |  |  |  |
| 0,996           | 1,029 | 0,00 | 0,00               | 5,56          |  |  |  |  |  |  |
| 1,029           | 1,062 | 0,00 | 0,00               | 5,56          |  |  |  |  |  |  |
| 1,062           | 1,095 | 1,00 | 2,78               | 8,33          |  |  |  |  |  |  |
| 1,095           | 1,128 | 0,00 | 0,00               | 8,33          |  |  |  |  |  |  |
| 1,128           | 1,161 | 3,00 | 8,33               | 16,67         |  |  |  |  |  |  |
| 1,161           | 1,194 | 3,00 | 8,33               | 25,00         |  |  |  |  |  |  |
| 1,194           | 1,227 | 1,00 | 2,78               | 27,78         |  |  |  |  |  |  |
| 1,227           | 1,260 | 3,00 | 8,33               | 36,11         |  |  |  |  |  |  |
| 1,260           | 1,293 | 2,00 | 5,56               | 41,67         |  |  |  |  |  |  |
| 1,293           | 1,326 | 2,00 | 5,56               | 47,22         |  |  |  |  |  |  |
| 1,326           | 1,359 | 2,00 | 5,56               | 52,78         |  |  |  |  |  |  |
| 1,359           | 1,392 | 1,00 | 2,78               | 55,56         |  |  |  |  |  |  |
| 1,392           | 1,425 | 2,00 | 5,56               | 61,11         |  |  |  |  |  |  |
| 1,425           | 1,458 | 3,00 | 8,33               | 69,44         |  |  |  |  |  |  |
| 1.458           | 1.491 | 1.00 | 2,78               | 72.22         |  |  |  |  |  |  |
| 1.491           | 1.524 | 1.00 | 2.78               | 75.00         |  |  |  |  |  |  |
| 1.524           | 1.557 | 0.00 | 0.00               | 75.00         |  |  |  |  |  |  |
| 1.557           | 1.590 | 2.00 | 5.56               | 80.56         |  |  |  |  |  |  |
| 1.590           | 1.623 | 1.00 | 2.78               | 83.33         |  |  |  |  |  |  |
| 1.623           | 1.656 | 1.00 | 2.78               | 86.11         |  |  |  |  |  |  |
| 1.656           | 1.689 | 0.00 | 0.00               | 86.11         |  |  |  |  |  |  |
| 1.689           | 1.722 | 2.00 | 5.56               | 91.67         |  |  |  |  |  |  |
| 1.722           | 1,755 | 0.00 | 0.00               | 91.67         |  |  |  |  |  |  |
| 1.755           | 1.788 | 1.00 | 2.78               | 94.44         |  |  |  |  |  |  |
| 1,788           | 1.821 | 0.00 | 0.00               | 94.44         |  |  |  |  |  |  |
| 1.821           | 1.854 | 0.00 | 0.00               | 94.44         |  |  |  |  |  |  |
| 1.854           | 1.887 | 0.00 | 0.00               | 94 44         |  |  |  |  |  |  |
| 1 887           | 1 920 | 0.00 | 0.00               | 94 44         |  |  |  |  |  |  |
| 1 920           | 1 953 | 0.00 | 0.00               | 94 44         |  |  |  |  |  |  |
| 1 953           | 1 986 | 1.00 | 2.78               | 97.22         |  |  |  |  |  |  |
| 1 986           | 2 019 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2.019           | 2.052 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2.052           | 2.085 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2.085           | 2,118 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2,118           | 2,151 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2.151           | 2,184 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2.184           | 2.217 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2 217           | 2,250 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2 250           | 2 283 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2 282           | 2,205 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2,205           | 2,349 | 0.00 | 0.00               | 97.22         |  |  |  |  |  |  |
| 2,310           | 2,342 | 0.00 | 0,00               | 97.22         |  |  |  |  |  |  |
| 2,382           | 2,415 | 1.00 | 2.78               | 100.00        |  |  |  |  |  |  |
| 2,302           | some  | 19   | 100                | 100           |  |  |  |  |  |  |
|                 | aoma  | 10   | 100                | : 100         |  |  |  |  |  |  |

# TABELA 8.2b – Freqüências relativas e acumuladas para os diâmetros D<sub>65</sub> e D<sub>90</sub> para o Rio Mogi-Guaçu

Quadro 8.1 – Comparações entre os valores das faixas de diâmetros dos sedimentos utilizados no desenvolvimento das diversas fórmulas e a faixa de diâmetros dos sedimentos coletados no Rio Mogi-Guaçu [PONCE, 1990]

| Autores                                   | Faixas<br>recomendadas             | Valores a<br>campanhas<br>às faixas i<br>aplicação do | proximados<br>de medições cu<br>indicadas pelo<br>s seus respectiv | das porcer<br>ijos diâmetros<br>os diversos<br>vos métodos | ntagens das<br>(D <sub>i</sub> ) atendem<br>autores para | <b>OBSERVAÇÃO:</b><br>A granulometria apresentada<br>para o Rio Mogi-Guaçu é bem<br>abrangente, muitos diâmetros<br>(Di)'s atendem às faixas |
|-------------------------------------------|------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | D(mm)                              | D <sub>35</sub>                                       | D <sub>50</sub>                                                    | D <sub>65</sub>                                            | D <sub>90</sub>                                          | estabelecidas pelos autores.                                                                                                                 |
| 1 – DuBoys (1879) e Straub (1935)         | $0,10 \le D_{84} \le 4,0$          | 100                                                   | 100                                                                | 100                                                        | 100                                                      | Atende com qualquer diâmetro $\boldsymbol{D}_{i}$                                                                                            |
| 2 - Schoklitsch (1914, 1950)              | $0,315 \le D \le 7,02$             | 97,2                                                  | 100                                                                | 100                                                        | 100                                                      | Atende com o $D_{50;}$ $D_{65;}$ $D_{90}$                                                                                                    |
| 3 - Shields (1936)                        | $1,\!56\!\le\!D_{50}\!\le\!2,\!47$ | 0                                                     | 0                                                                  | 0                                                          | 25                                                       | Atende parcialmente com o D <sub>90</sub>                                                                                                    |
| 4 - Meyer-Peter e Müller (1948)           | $0,40 \le D_a \le 4,22$            | 36,1                                                  | 100                                                                | 100                                                        | 100                                                      | Atende com o D <sub>50;</sub> D <sub>65;</sub> D <sub>90</sub>                                                                               |
| 5 - Kalinske (1947)                       | $0,315 \le D \le 28,6$             | 97,2                                                  | 100                                                                | 100                                                        | 100                                                      | Atende com o D <sub>50;</sub> D <sub>65;</sub> D <sub>90</sub>                                                                               |
| 6 - Levi (1948)                           | $0,063 \le D \le 2,0$              | 100                                                   | 100                                                                | 100                                                        | 97,2                                                     | Atende com o $D_{35}$ ; $D_{50}$ ; $D_{65}$                                                                                                  |
| 7-Einstein (1942) & Einstein-Brown (1950) | $0,30 \le D \le 30,0$              | 100                                                   | 100                                                                | 100                                                        | 100                                                      | Atende com qualquer diâmetro D <sub>i</sub>                                                                                                  |
| 8 - Sato, Kikkawa e Ashida (1958)         | $0,30 \le D \le 7,01$              | 100                                                   | 100                                                                | 100                                                        | 100                                                      | Atende com qualquer diâmetro $D_i$                                                                                                           |
| 9 - Rottner (1959)                        | $0,31 \le D \le 15,5$              | 100                                                   | 100                                                                | 100                                                        | 100                                                      | Atende com qualquer diâmetro $D_i$                                                                                                           |
| 10 -Garde e Albertson (1961)              | $0,78 \le D \le 15,5$              | 0                                                     | 0                                                                  | 11,1                                                       | 100                                                      | Atende com o D <sub>90</sub>                                                                                                                 |
| 11 - Yalin (1963)                         | $0,787 \le D \le 2,86$             | 0                                                     | 0                                                                  | 11,1                                                       | 100                                                      | Atende com o D <sub>90</sub>                                                                                                                 |
| 12 - Pernecker e Vollmer (1965)           | Não especificado                   | -                                                     | -                                                                  | -                                                          | -                                                        | Não especificado                                                                                                                             |
| 13 - Inglis e Lacey (1968)                | $0,063 \le D \le 2,0$              | 100                                                   | 100                                                                | 100                                                        | 97,2                                                     | Atende com o $D_{35}$ ; $D_{50}$ ; $D_{65}$                                                                                                  |
| 14 - Bogardi (1974)                       | $0,31 \le D \le 15,5$              | 97,2                                                  | 100                                                                | 100                                                        | 100                                                      | Atende com o D <sub>50;</sub> D <sub>65;</sub> D <sub>90</sub>                                                                               |

#### 8.3 – Diâmetros calculados pelas equações analíticas usando os dados do Rio Mogi-Guaçu

Na **tabela 8.3**, apresenta-se o resultado do cálculo do diâmetro Dvj, feito através das equações analíticas inerente a cada autor, usando os dados do Rio Mogi-Guaçu.

A exemplo do que foi feito no **item 5.2.1**, foram comparados também os valores dos diâmetros calculados através das equações analíticas, usando os dados dos diâmetros coletados no Rio Mogi-Guaçu e aqueles estimados pelas equações analíticas. Uma parte dos resultados está apresentada na **tabela 8.4**, referente ao método de Du-Boys (1879). O **Anexo** E traz as tabelas restantes, em que constam os cálculos para os demais métodos.

Na **tabela 8.4**, as células preenchidas com o número 1 identificam o diâmetro do sedimento coletado cujo diâmetro tem magnitude menor do que aquele dos diâmetros calculados. Do contrário, a célula será preenchida com o número zero. Nas colunas compreendidas entre dezessete e vinte e três, colocou-se a diferença percentual relativa entre os valores. Destaca-se que a comparação foi feita sempre em relação ao maior valor. Isso permitiu comparar um a um o diâmetro medido e o calculado, identificando quem é maior e o quanto a diferença entre eles representa em termos percentuais.

No **quadro 8.2**, que apresenta um resumo da **tabela 8.4**, permite-se, pela observação da diferença percentual relativa, identificar com qual diâmetro medido o calculado mais se aproxima.

| (1) | (1)                           | (2)                           | (3)                         | (4)                         | (5)                         | (б)                         | (7)                         | (8)                         | (9)                         | (10)                        | (11)                        | (12)                        | (13)                        | (14)                        |
|-----|-------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| N°  | D <sub>VJ</sub> (DUB)<br>(mm) | D <sub>VJ [SCH]</sub><br>(mm) | D <sub>vj [sнпj</sub><br>mm | D <sub>vj parag</sub><br>mm | D <sub>VJ [KAL]</sub><br>mm | D <sub>VJ [LEV]</sub><br>mm | D <sub>vj (EBB)</sub><br>mm | D <sub>VJ [SKA]</sub><br>mm | D <sub>VJ (ROT)</sub><br>mm | D <sub>VJ [GAA]</sub><br>mm | D <sub>VJ [YAL]</sub><br>mm | D <sub>VJ [PEV]</sub><br>mm | D <sub>vj [INL]</sub><br>mm | D <sub>VJ</sub> (BOG)<br>mm |
| 1   | 1,41                          | 173,63                        | 3.52                        | 0,92                        | 2,41                        | 1,42                        | 4,48                        | 8,99                        | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 7,18                        | 3,33                        |
| 2   | 1.68                          | 171,01                        | 3.81                        | 0,98                        | 2.26                        | 3,09                        | 4.53                        | 9.68                        | 0,20                        | 6,43                        | 3,60                        | 3.87                        | 7.23                        | 3,66                        |
| 3   | 2,17                          | 302,07                        | 4,27                        | 2,96                        | 0,05                        | 5,45                        | 2,36                        | 38,08                       | 0,19                        | 6,99                        | 4,25                        | 4,44                        | 5,06                        | 4,31                        |
| 4   | 1,86                          | 301,06                        | 3,99                        | 2,75                        | 0,08                        | 5,72                        | 2,38                        | 34,76                       | 0,20                        | 6,65                        | 3,85                        | 4,09                        | 5,08                        | 3,89                        |
| 5   | 1,15                          | 294,05                        | 3,21                        | 2,07                        | 0,39                        | 3,15                        | 2,49                        | 24,41                       | 0,21                        | 5,59                        | 2,82                        | 3,17                        | 5,19                        | 3,03                        |
| 6   | 1,15                          | 263,02                        | 3,21                        | 1,63                        | 0,88                        | 2,03                        | 3,01                        | 18,16                       | 0,21                        | 5,59                        | 2,82                        | 3,17                        | 5,71                        | 3,03                        |
| 7   | 1,41                          | 228,00                        | 3,52                        | 1,39                        | 1,30                        | 2,73                        | 3,59                        | 14,93                       | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 6,29                        | 3,33                        |
| 8   | 1,15                          | 273,19                        | 3,21                        | 1,77                        | 0,69                        | 3,04                        | 2,84                        | 20,09                       | 0,21                        | 5,59                        | 2,82                        | 3,17                        | 5,54                        | 3,03                        |
| 9   | 1,15                          | 293,46                        | 3,21                        | 1,94                        | 0,50                        | 2,89                        | 2,50                        | 22,52                       | 0,21                        | 5,59                        | 2,82                        | 3,17                        | 5,20                        | 3,03                        |
| 10  | 1,15                          | 259,28                        | 3,21                        | 1,58                        | 0,95                        | 1,80                        | 3,07                        | 17,57                       | 0,21                        | 5,59                        | 2,82                        | 3,17                        | 5,77                        | 3,03                        |
| 11  | 1,28                          | 312,58                        | 3,36                        | 2,50                        | 0,15                        | 3,82                        | 2,19                        | 30,94                       | 0,21                        | 5,82                        | 3,02                        | 3,35                        | 4,89                        | 3,17                        |
| 12  | 1,48                          | 270,68                        | 3,59                        | 1,95                        | 0,49                        | 3,05                        | 2,88                        | 22,72                       | 0,21                        | 6,14                        | 3,32                        | 3,62                        | 5,58                        | 3,41                        |
| 13  | 1,41                          | 251,84                        | 3,52                        | 1,66                        | 0,83                        | 3,64                        | 3,19                        | 18,63                       | 0,21                        | 6,04                        | 3,22                        | 3,53                        | 5,89                        | 3,33                        |
| 14  | 1,54                          | 266,71                        | 3,66                        | 1,94                        | 0,50                        | 4,25                        | 2,95                        | 22,52                       | 0,21                        | 6,24                        | 3,41                        | 3,70                        | 5,65                        | 3,49                        |
| 15  | 1,82                          | 227,56                        | 3,94                        | 1,56                        | 0,99                        | 4,22                        | 3,59                        | 17,25                       | 0,20                        | 6,60                        | 3,79                        | 4,04                        | 6,29                        | 3,83                        |
| 16  | 1,35                          | 238,99                        | 3,44                        | 1,48                        | 1,13                        | 3,05                        | 3,40                        | 16,08                       | 0,21                        | 5,93                        | 3,12                        | 3,44                        | 6,10                        | 3,25                        |
| 17  | 1,54                          | 238,85                        | 3,66                        | 1,57                        | 0,97                        | 3,53                        | 3,41                        | 17,43                       | 0,21                        | 6,24                        | 3,41                        | 3,70                        | 6,11                        | 3,49                        |
| 18  | 1,28                          | 208,24                        | 3,36                        | 1,14                        | 1,85                        | 2,90                        | 3,91                        | 11,70                       | 0,21                        | 5,82                        | 3,02                        | 3,35                        | 6,61                        | 3,17                        |
| 19  | 1,54                          | 209,39                        | 3,66                        | 1,26                        | 1,58                        | 3,08                        | 3,89                        | 13,16                       | 0,21                        | 6,24                        | 3,41                        | 3,70                        | 6,59                        | 3,49                        |
| 20  | 1,68                          | 211,09                        | 3,81                        | 1,33                        | 1,41                        | 3,11                        | 3,87                        | 14,18                       | 0,20                        | 6,43                        | 3,60                        | 3,87                        | 6,57                        | 3,66                        |
| 21  | 1,68                          | 216,67                        | 3,81                        | 1,39                        | 1,30                        | 2,99                        | 3,77                        | 14,90                       | 0,20                        | 6,43                        | 3,60                        | 3,87                        | 6,47                        | 3,66                        |
| 22  | 1,54                          | 203,47                        | 3,66                        | 1,21                        | 1,67                        | 0,14                        | 3,99                        | 12,63                       | 0,21                        | 6,24                        | 3,41                        | 3,70                        | 6,69                        | 3,49                        |
| 23  | 1,54                          | 203,27                        | 3,66                        | 1,20                        | 1,70                        | 3,23                        | 3,99                        | 12,49                       | 0,21                        | 6,24                        | 3,41                        | 3,70                        | 6,69                        | 3,49                        |
| 24  | 1,88                          | 201,17                        | 4,01                        | 1,31                        | 1,47                        | 3,64                        | 4,03                        | 13,81                       | 0,20                        | 6,68                        | 3,89                        | 4,12                        | 6,73                        | 3,92                        |
| 25  | 2,04                          | 188,83                        | 4,16                        | 1,24                        | 1,63                        | 3,80                        | 4,23                        | 12,89                       | 0,20                        | 6,86                        | 4,09                        | 4,30                        | 6,93                        | 4,13                        |
| 26  | 1,75                          | 188,15                        | 3,88                        | 1,14                        | 1,86                        | 3,59                        | 4,24                        | 11,64                       | 0,20                        | 6,52                        | 3,70                        | 3,96                        | 6,94                        | 3,74                        |
| 27  | 2,09                          | 186,59                        | 4,21                        | 1,22                        | 1,65                        | 3,13                        | 4,27                        | 12,76                       | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 6,97                        | 4,21                        |
| 28  | 1,82                          | 184,85                        | 3,94                        | 1,12                        | 1,89                        | 3,88                        | 4,30                        | 11,47                       | 0,20                        | 6,60                        | 3,79                        | 4,04                        | 7,00                        | 3,83                        |
| 29  | 1,68                          | 197,39                        | 3,81                        | 1,21                        | 1,69                        | 3,33                        | 4,09                        | 12,51                       | 0,20                        | 6,43                        | 3,60                        | 3,87                        | 6,79                        | 3,66                        |
| 30  | 1,95                          | 182,28                        | 4,08                        | 1,16                        | 1,81                        | 3,38                        | 4,34                        | 11,86                       | 0,20                        | 6,76                        | 3,98                        | 4,20                        | 7,04                        | 4,02                        |
| 31  | 2,09                          | 177,18                        | 4,21                        | 1,14                        | 1,84                        | 3,21                        | 4,43                        | 11,72                       | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 7,13                        | 4,21                        |
| 32  | 1,82                          | 207,66                        | 3,94                        | 1,34                        | 1,39                        | 2,70                        | 3,92                        | 14,31                       | 0,20                        | 6,60                        | 3,79                        | 4,04                        | 6,62                        | 3,83                        |
| 33  | 1,68                          | 161,27                        | 3,81                        | 0,93                        | 2,40                        | 1,55                        | 4,69                        | 9,04                        | 0,20                        | 6,43                        | 3,60                        | 3,87                        | 7,39                        | 3,66                        |
| 34  | 1,68                          | 162,55                        | 3,81                        | 0,94                        | 2,36                        | 1,88                        | 4,67                        | 9,23                        | 0,20                        | 6,43                        | 3,60                        | 3,87                        | 7,37                        | 3,66                        |
| 35  | 1,82                          | 161,54                        | 3,94                        | 0,95                        | 2,33                        | 3,75                        | 4,68                        | 9,35                        | 0,20                        | 6,60                        | 3,79                        | 4,04                        | 7,38                        | 3,83                        |
| 36  | 2,09                          | 158,72                        | 4,21                        | 1,01                        | 2,19                        | 3,57                        | 4,73                        | 9,98                        | 0,20                        | 6,92                        | 4,16                        | 4,36                        | 7,43                        | 4,21                        |

| Tab  | ela 8    | 4 - Co          | ompa     | ração   | entre    | e os di | iâmetr      | os calcu              | lados           | pela  | s equ           | açõe   | s de e               | stima                              | tivas | e os diá        | àmetros         | coleta          | dos no    | Rio Mo   | ogi-Gua            | çu           |
|------|----------|-----------------|----------|---------|----------|---------|-------------|-----------------------|-----------------|-------|-----------------|--------|----------------------|------------------------------------|-------|-----------------|-----------------|-----------------|-----------|----------|--------------------|--------------|
| DIÂM | ETROS    | DO LEI          | TO DO I  | PARA O  | RIO MO   | OGI-GUA | <b>i</b> çu |                       |                 | COM   | PARAG           | ção en | ITRE D               | <sub>VJ &amp;</sub> D <sub>i</sub> | i i   | RELAÇ           | ÃO PERCE        | NTUAL EN        | NTRE OS V | ALORES   | DE D <sub>VJ</sub> |              |
|      | Granu    | lomet           | ria do i | materia | al do le | eito    |             |                       | (10)            | (11)  | (12)            | (13)   | (14)                 | (15)                               | (16)  | EOSV            | ALORES F        | ARA DIC         | OLETADO   | S NO RIG | ) MOGI-GU          | JAÇU         |
| (1)  | (2)      | (3)             | (4)      | (5)     | (6)      | (7)     | (8)         | (9)                   |                 | COMPA | ARAÇÃ           | O DE   | D <sub>VJ (DUI</sub> | <sub>B]</sub> COM                  | :     | (17)            | (18)            | (19)            | (20)      | (21)     | (22)               | (23)         |
| N°   | $D_{35}$ | D <sub>50</sub> | $D_{65}$ | D90     | 34       | 1993    |             | D <sub>VJ</sub> [DUB] | D <sub>35</sub> | D50   | D <sub>65</sub> | D90    | 121                  | 121                                | 191   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D90       | 2        | (1-1)              | 5 <b>4</b> 3 |
|      | (mm)     | (mm)            | (mm)     | (mm)    |          |         |             | (mm)                  | 1 1             | 1     |                 |        | (i)                  | 1 1                                |       |                 |                 |                 |           |          |                    |              |
| 1    | 0,35     | 0,46            | 0,58     | 0,93    | -        | -       | -           | 1,41                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 303.2           | 206.8           | 143.3           | 51.7      | н        | 1                  | 14.<br>1     |
| 2    | 0,49     | 0,60            | 0,73     | 1,48    | -        | -       | -           | 1,68                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 242.6           | 179.8           | 130.0           | 13.4      | -        |                    |              |
| 3    | 0,52     | 0,63            | 0,80     | 1,93    | _        | -       | -           | 2,17                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 316.5           | 243.7           | 170.7           | 12.2      | _        | -                  | _            |
| 4    | 0,32     | 0,42            | 0,59     | 1,39    | -        | -       | -           | 1,86                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 480.3           | 342.2           | 214.8           | 33.6      | -        | -                  | -            |
| 5    | 0,39     | 0,50            | 0,66     | 1,30    | -        | -       | -           | 1,15                  | 1               | 1     | 1               | 0      | -                    | -                                  | -     | 195.4           | 130.4           | 74.6            | 12.8      | -        |                    |              |
| 6    | 0,35     | 0,43            | 0,58     | 1,18    | -        | -       | -           | 1,15                  | 1               | 1     | 1               | 0      | -                    | -                                  | -     | 229,2           | 167.9           | 98.6            | 2.4       | -        | -                  | -            |
| 7    | 0,30     | 0,40            | 0,53     | 1,14    | -        |         | -           | 1,41                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 370,4           | 252.8           | 166.2           | 23.8      | -        |                    | -            |
| 8    | 0,36     | 0,45            | 0,56     | 1,16    | -        |         | -           | 1,15                  | 1               | 1     | 1               | 0      | -                    | -                                  | -     | 220.0           | 156.0           | 105,7           | 0.7       | -        | -                  | -            |
| 9    | 0,34     | 0,41            | 0,54     | 0,95    | -        | -       | -           | 1,15                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 238,9           | 181.0           | 113,4           | 21,3      | -        | -                  | -            |
| 10   | 0,34     | 0,41            | 0,59     | 1,10    | -        |         | -           | 1,15                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 238,9           | 181.0           | 95,3            | 4.7       | -        |                    | -            |
| 11   | 0,47     | 0,66            | 0,95     | 2,37    | -        | -       | -           | 1,28                  | 1               | 1     | 1               | 0      | -                    | -                                  | -     | 172,4           | 94,0            | 34,8            | 85,1      | -        | -                  | _            |
| 12   | 0,43     | 0,54            | 0,69     | 1,27    | -        | -       | -           | 1,48                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 243,6           | 173,6           | 114,1           | 16,3      | -        | -                  |              |
| 13   | 0,39     | 0,49            | 0,63     | 1,39    | -        |         | -           | 1,41                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 261,8           | 188,0           | 124,0           | 1,5       | -        |                    |              |
| 14   | 0,40     | 0,52            | 0,69     | 1,25    | -        | -       | -           | 1,54                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 286,0           | 196,9           | 123,8           | 23,5      | -        | -                  | -            |
| 15   | 0,40     | 0,49            | 0,63     | 1,27    | -        | -       | -           | 1,82                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 353,9           | 270,5           | 188,2           | 43,0      | -        | -                  | -            |
| 16   | 0,37     | 0,46            | 0,59     | 1,10    | -        | -       | -           | 1,35                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 263,7           | 192,5           | 128,1           | 22,3      | -        |                    |              |
| 17   | 0,37     | 0,44            | 0,57     | 1,05    | -        | -       | -           | 1,54                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 317,3           | 250,9           | 170,9           | 47,0      | -        | -                  |              |
| 18   | 0,41     | 0,51            | 0,67     | 1,21    | -        | -       | -           | 1,28                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 212,3           | 151,1           | 91,1            | 5,8       | -        |                    |              |
| 19   | 0,40     | 0,51            | 0,69     | 1,57    | -        | -       | -           | 1,54                  | 1               | 1     | 1               | 0      | -                    | -                                  | -     | 286,0           | 202,7           | 123,8           | 1,7       | -        | -                  | -            |
| 20   | 0,40     | 0,49            | 0,63     | 1,20    | -        | -       | -           | 1,68                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 319,7           | 242,6           | 166,5           | 39,9      | -        |                    | -            |
| 21   | 0,42     | 0,52            | 0,66     | 1,30    | -        |         | -           | 1,68                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 299,7           | 222,9           | 154,4           | 29,1      | -        |                    | -            |
| 22   | 0,39     | 0,49            | 0,63     | 1,22    | -        | -       | -           | 1,54                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 295,9           | 215,1           | 145,1           | 26,6      | -        | -                  | -            |
| 23   | 0,46     | 0,58            | 0,74     | 1,43    | -        | -       | -           | 1,54                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 235,6           | 166,2           | 108,6           | 8,0       | -        |                    | -            |
| 24   | 0,39     | 0,50            | 0,64     | 1,24    | -        |         | -           | 1,88                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 383,3           | 276,9           | 194,5           | 52,0      | -        |                    |              |
| 25   | 0,40     | 0,51            | 0,65     | 1,53    | -        | -       | -           | 2,04                  | 1               | 1     | 1               | 1      | -                    | -                                  | -     | 409,6           | 299,7           | 213,6           | 33,2      | -        | -                  | -            |

| Tab  | ela 8           | .4 - C   | ompa     | ração   | entre    | os di   | âmetr | os calcu              | lados           | pela  | s equ    | açõe    | s de e              | stima                              | tivas | e os diá        | metros          | s coleta | dos no    | Rio Mo   | ogi-Gua            | ıçu          |
|------|-----------------|----------|----------|---------|----------|---------|-------|-----------------------|-----------------|-------|----------|---------|---------------------|------------------------------------|-------|-----------------|-----------------|----------|-----------|----------|--------------------|--------------|
| DIÂN | ETROS           | DO LE    | TODO     | PARA O  | RIO M    | OGI-GUA | içu   |                       |                 | COM   | PARAÇ    | ÃO EN   | ITRE D              | <sub>VJ &amp;</sub> D <sub>i</sub> |       | RELAÇ           | ÃO PERCE        | NTUAL EN | NTRE OS V | ALORES   | DE D <sub>VJ</sub> |              |
|      | Granu           | llomet   | ria do 1 | materia | al do le | eito    |       |                       | (10)            | (11)  | (12)     | (13)    | (14)                | (15)                               | (16)  | EOSV            | ALORES F        | PARA DIC | OLETADO   | S NO RIO | MOGI-GI            | JAÇU         |
| (1)  | (2)             | (3)      | (4)      | (5)     | (6)      | (7)     | (8)   | (9)                   | (               | COMP  | ARAÇÃ    | O DE    | D <sub>VJ (DU</sub> | <sub>B]</sub> COM                  | :     | (17)            | (18)            | (19)     | (20)      | (21)     | (22)               | (23)         |
| Nº   | D <sub>35</sub> | $D_{50}$ | $D_{65}$ | D90     | 34       |         | 2     | D <sub>Vj</sub> [DUB] | D <sub>35</sub> | D50   | $D_{65}$ | D90     | 1                   | 12                                 | 19    | D <sub>35</sub> | D <sub>50</sub> | $D_{65}$ | $D_{90}$  | 8        |                    | 5 <b>2</b> 3 |
|      | (mm)            | (mm)     | (mm)     | (mm)    |          |         |       | (mm)                  |                 |       |          |         |                     | 0 0                                |       |                 |                 |          |           |          |                    |              |
| 26   | 0,44            | 0,56     | 0,72     | 1,33    | -        |         | -     | 1,75                  | 1               | 1     | 1        | 1       | -                   | -                                  |       | 297,0           | 212,0           | 142,6    | 31,4      |          |                    | 141          |
| 27   | 0,43            | 0,56     | 0,73     | 1,68    | -        | -       | -     | 2,09                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 387,1           | 274,1           | 186,9    | 24,7      | -        |                    | -            |
| 28   | 0,49            | 0,63     | 0,82     | 1,68    | -        | -       | -     | 1,82                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 270,5           | 188,2           | 121,4    | 8,1       | -        | -                  | _            |
| 29   | 0,43            | 0,55     | 0,69     | 1,41    | -        |         | -     | 1,68                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 290,4           | 205,2           | 143,3    | 19,1      | -        | 19 <b>-</b> 2      | 147          |
| 30   | 0,38            | 0,47     | 0,60     | 1,13    | -        |         | -     | 1,95                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 414,3           | 315,8           | 225,7    | 72,9      | -        | 00                 | ( <b>-</b> ) |
| 31   | 0,35            | 0,45     | 0,59     | 1,10    | -        | -       | -     | 2,09                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 498,5           | 365,5           | 255,0    | 90,4      | -        | -                  | -            |
| 32   | 0,46            | 0,59     | 0,80     | 1,73    | -        | -       | -     | 1,82                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 294,7           | 207,7           | 127,0    | 5,0       | -        | -                  | -            |
| 33   | 0,40            | 0,53     | 0,70     | 1,53    | -        | -       | -     | 1,68                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 319,7           | 216,8           | 139,8    | 9,7       | -        | 17                 |              |
| 34   | 0,39            | 0,52     | 0,70     | 1,40    | -        | -       | -     | 1,68                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 330,5           | 222,9           | 139,8    | 19,9      | -        | -                  | -            |
| 35   | 0,38            | 0,49     | 0,66     | 1,41    | -        |         | -     | 1,82                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 377,8           | 270,5           | 175,1    | 28,8      | -        | (-)                |              |
| 36   | 0,41            | 0,54     | 0,74     | 1,59    | -        | -       | -     | 2,09                  | 1               | 1     | 1        | 1       | -                   | -                                  | -     | 410,9           | 287,9           | 183,1    | 31,7      | -        | -                  | -            |
|      |                 |          |          |         |          |         |       |                       | 8               | (%)   | le eve   | ntos ei | m que               | DVJ >                              | Di    | DIFE            | RENÇA P         | ERCENT   | UAL REL   | ATIVA N  | IÉDIA              |              |
|      |                 |          | -        |         |          |         | _     | _                     | 100,0           | 100,0 | 100,0    | 86,1    | ļ                   |                                    |       | 307,4           | 220,9           | 145,4    | 26,5      |          | ļ                  |              |
|      | -               |          |          |         |          |         |       |                       |                 |       |          |         |                     |                                    |       |                 |                 |          |           |          |                    |              |

| Autores                                   | Porcentag<br>calculado<br>coletado ( | gem de ev<br>é maior<br>D <sub>i</sub> ) | ventos em<br>do que o | que D <sub>Vj</sub><br>diâmetro | Média das diferenças percentuais relativas entre<br>os valores estimados e os medidos, sendo a<br>comparação sempre pelo maior valor |                 |                 |                 |  |  |
|-------------------------------------------|--------------------------------------|------------------------------------------|-----------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--|--|
|                                           | D <sub>35</sub>                      | D <sub>50</sub>                          | D <sub>65</sub>       | D <sub>90</sub>                 | D <sub>35</sub>                                                                                                                      | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> |  |  |
| 1 – DuBoys (1879) e Straub (1935)         | 100,0                                | 100,0                                    | 100,0                 | 86,1                            | 307,4                                                                                                                                | 220,9           | 145,4           | 26,5            |  |  |
| 2 - Schoklitsch (1914, 1950)              | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 56228,3                                                                                                                              | 44379,2         | 33812,3         | 16821,1         |  |  |
| 3 - Shields (1936)                        | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 841,3                                                                                                                                | 641,8           | 467,0           | 182,7           |  |  |
| 4 - Meyer-Peter e Müller (1948)           | 100,0                                | 100,0                                    | 100,0                 | 55,6                            | 272,4                                                                                                                                | 193,9           | 123,8           | 34,3            |  |  |
| 5 - Kalinske (1947)                       | 88,9*                                | 83,3                                     | 80,6                  | 58,3                            | 287,7                                                                                                                                | 230,9           | 195,4           | 242,8           |  |  |
| 6 - Levi (1948)                           | 97,2                                 | 97,2                                     | 97,2                  | 97,2                            | 700,3                                                                                                                                | 534,6           | 389,7           | 160,1           |  |  |
| 7-Einstein (1942) & Einstein-Brown (1950) | 100,0                                | 100,0                                    | 100,0                 | 97,2                            | 831,4                                                                                                                                | 633,4           | 461,4           | 181,7           |  |  |
| 8 - Sato, Kikkawa e Ashida (1958)         | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 4013,5                                                                                                                               | 3146,4          | 2369,5          | 1120,1          |  |  |
| 9 - Rottner (1959)                        | 0,0                                  | 0,0                                      | 0,0                   | 0,0                             | 96,4                                                                                                                                 | 149,4           | 226,4           | 567,2           |  |  |
| 10 –Garde e Albertson (1961)              | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 1493,6                                                                                                                               | 1156            | 859,9           | 378,9           |  |  |
| 11 - Yalin (1963)                         | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 784,2                                                                                                                                | 596,7           | 432,6           | 165,2           |  |  |
| 12 - Pernecker e Vollmer (1965)           | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 854,5                                                                                                                                | 652,1           | 474,9           | 186,5           |  |  |
| 13 - Inglis e Lacey (1968)                | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 1515,2                                                                                                                               | 1172,6          | 873,3           | 387,2           |  |  |
| 14 - Bogardi (1974)                       | 100,0                                | 100,0                                    | 100,0                 | 100,0                           | 806,8                                                                                                                                | 614,6           | 446,2           | 172,1           |  |  |

Quadro 8.2 – Estatística dos eventos em que os diâmetros calculados são maiores do que aqueles coletados no Rio Mogi-Guaçu

Exemplo: \* Significa que 88,9 % dos valores dos diâmetros calculados, usando as equações analíticas para o método de Kalinske (1947), apresentaram magnitudes maiores do que aqueles coletados no Rio Mogi-Guaçu para a classe D<sub>35.</sub>

Ao se analisar o quadro 8.2, pode-se observar que, das quatorze equações analíticas usadas para a estimativa do diâmetro usado nos métodos de cálculo do transporte de sedimentos na camada do leito, doze apresentaram valores que mais se aproximam do  $D_{90}$ , as duas restantes, uma apresentou valores mais próximos do D<sub>65</sub> e a outra apresentou valores próximos ao **D**<sub>35</sub>, como se revela no **quadro 8.3**. Nota-se, portanto, a tendência dos diâmetros calculados aproximarem-se daqueles de granulometria maiores.

| aproxima do calculado pelas equações analít | icas                                             | KIU WIUg                                     | I-Guaçu qu                                          | le mais se                         |
|---------------------------------------------|--------------------------------------------------|----------------------------------------------|-----------------------------------------------------|------------------------------------|
| Autores                                     | Identifica<br>Mogi-Gua<br>calculado<br>um detern | o diâme<br>içu que i<br>pela eqi<br>ninado m | etro coletad<br>nais se apr<br>uação anali<br>étodo | o no Rio<br>oxima do<br>ítica para |
|                                             | D <sub>35</sub>                                  | D <sub>50</sub>                              | D <sub>65</sub>                                     | D <sub>90</sub>                    |
| 1 – DuBoys (1879) e Straub (1935)           |                                                  |                                              |                                                     | xxxxxxx                            |
| 2 - Schoklitsch (1914, 1950)                |                                                  |                                              |                                                     | xxxxxxx                            |
| 3 - Shields (1936)                          |                                                  |                                              |                                                     | xxxxxxx                            |
| 4 - Meyer-Peter e Müller (1948)             |                                                  |                                              |                                                     | xxxxxxx                            |
| 5 - Kalinske (1947)                         |                                                  |                                              | xxxxxxx                                             |                                    |
| 6 - Levi (1948)                             |                                                  |                                              |                                                     | xxxxxxx                            |
| 7-Einstein (1942) & Einstein-Brown (1950)   |                                                  |                                              |                                                     | xxxxxxx                            |
| 8 - Sato, Kikkawa e Ashida (1958)           |                                                  |                                              |                                                     | xxxxxxx                            |
| 9 - Rottner (1959)                          | xxxxxxx                                          |                                              |                                                     |                                    |
| 10 –Garde e Albertson (1961)                |                                                  |                                              |                                                     | xxxxxxx                            |
| 11 - Yalin (1963)                           |                                                  |                                              |                                                     | xxxxxxx                            |
| 12 - Pernecker e Vollmer (1965)             |                                                  |                                              |                                                     | xxxxxxx                            |
| 13 - Inglis e Lacey (1968)                  |                                                  |                                              |                                                     | xxxxxxx                            |
| 14 - Bogardi (1974)                         |                                                  |                                              |                                                     | xxxxxxx                            |

Quadro 8.3 Idontificação da diâmetro colotado no Dio Mari Cuesou que mais se

### 8.4 – Comparação entre as descargas calculadas usando os diâmetros D<sub>i</sub> e Dvj com as descargas medidas no Rio Mogi-Guaçu

Para efeito de comparação, a exemplo do que foi feito para o **capítulo sete**, foram analisadas apenas aquelas campanhas de medições em que tanto as descargas calculadas pelo **Di's** quanto aquelas calculadas com os **Dvj's** apresentaram valores maiores do que zero para as descargas de sedimentos.

Uma vez não considerando as campanhas de medições em que não houve a coincidência de valores maiores do que zero para a descarga estimada com o **Di** e o **Dvj** houve uma redução da quantidade de métodos a serem analisados em comparação com os quatorze empregados no **capítulo 6**. E, como conseqüência, também em alguns casos, foi necessário deixar de fora da análise algumas campanhas de medições.

Na **tabela 8.5** mostram-se os métodos que apresentaram coincidências de descargas maiores que zero, calculadas tanto com o **Di** quanto com o **Dvj**. Apresentam-se, também, os diâmetros **Di** selecionados para serem utilizados em tais métodos, na oportunidade em que foi calculada a descarga de sedimentos na camada do leito. Na **tabela 8.5**, encontram-se ainda, na coluna três, as equações analíticas usadas no cálculo do **Dvj**.

| do transporte de sedimentos para o Rio Mogi-Guaçu |                              |                                                                |  |  |  |  |  |  |  |  |
|---------------------------------------------------|------------------------------|----------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1                                                 | 2                            | 3                                                              |  |  |  |  |  |  |  |  |
| Autores                                           | D <sub>i</sub> (selecionado) | Equação                                                        |  |  |  |  |  |  |  |  |
| 1 – DuBoys (1879) e Straub (1935)                 | D <sub>50</sub>              | D <sub>Vj [DUB]</sub> =73,595 x S <sup>1,2139</sup>            |  |  |  |  |  |  |  |  |
| 2 - Shields (1936)                                | D <sub>90</sub>              | $D_{Vj [SHI]} = 0,4965 \text{ x } \text{S}^{0,5532}$           |  |  |  |  |  |  |  |  |
| 3 - Meyer-Peter e Müller (1948)                   | D <sub>50</sub>              | $D_{Vj [MPM]} = 0,0034 \text{ x Pc}^{0,576}$                   |  |  |  |  |  |  |  |  |
| 4 - Kalinske (1947)                               | D <sub>50</sub>              | $D_{Vj [KAL]} = 0,0044 \text{ x } [e^{-5,7716 \text{ x } Pc}]$ |  |  |  |  |  |  |  |  |
| 5 - Levi (1948)                                   | D <sub>50</sub>              | $D_{Vj [LEV]} = 2,3204 \text{ x } \text{Cp}^{-1,7324}$         |  |  |  |  |  |  |  |  |
| 6-Einstein (1942) & Einstein-Brown                | D <sub>50</sub>              | $D_{Vj [EIB]} = -0,0012 x Ln(Q) + 0,0097$                      |  |  |  |  |  |  |  |  |
| 7 - Garde e Albertson (1961)                      | D <sub>90</sub>              | $D_{Vj [GAA]} = 0,0027x Ln(S) + 0,0302$                        |  |  |  |  |  |  |  |  |
| 8 - Yalin (1963)                                  | D <sub>90</sub>              | $D_{Vj [YAL]} = 3,8117 \text{ x S}^{0,7909}$                   |  |  |  |  |  |  |  |  |
| 9 - Pernecker e Vollmer (1965)                    | D <sub>50</sub>              | $D_{Vj [PEV]} = 1,1846 \text{ x } \text{S}^{0,65}$             |  |  |  |  |  |  |  |  |
| 10 - Inglis e Lacey (1968)                        | D <sub>50</sub>              | $D_{Vj [INL]} = -0,0012 x Ln(Q) + 0,0124$                      |  |  |  |  |  |  |  |  |
| 11 - Bogardi (1974)                               | D <sub>50</sub>              | $D_{Vj [BOG]} = 0,0018 \text{ x } [e^{4723,1x \text{ S}}]$     |  |  |  |  |  |  |  |  |

Tabela 8.5 – Diâmetros selecionados para emprego nas equações analíticas de estimativa do transporte de sedimentos para o Rio Mogi-Guaçu

Na tabela 8.6, apresentam-se, a titulo de ilustração, os resultados das descargas calculadas pelo método de Du-Boys (1879), usando os diâmetros **Di** e **Dvj**. Nas colunas 12 e 13 da referida tabela, anotaram-se os resultados das diferenças percentuais relativas entre os valores calculados e aqueles medidos no Rio Mogi-Guaçu. Nota-se uma redução substancial de mais de 470% (quatrocentos e setenta por cento) na diferença percentual relativa média, quando se comparam os valores das descargas calculados com o Dvj em relação àqueles obtidos com o Di. o Anexo F traz as tabelas com os resultados dos demais métodos.

| Tab | Fabela 8.6 - Descargas calculadas pelo método de Duboys (1879) usando-se o diâmetro D <sub>50</sub> e o D <sub>VJ</sub> |          |           |                             |           |                     |                     |        |         |                        |                        |                     |         |
|-----|-------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------------------------|-----------|---------------------|---------------------|--------|---------|------------------------|------------------------|---------------------|---------|
| (1) | (2)                                                                                                                     | (3)      | (4)       | (5)                         | (6)       | (7)                 | (7)                 | (8)    | (9)     | (10)                   | (11)                   | (12)                | (13)    |
| N°  | DATA                                                                                                                    | $D_{50}$ | Dvj (DVB) | 7s                          | το        | $\tau_{c50}$        | $\tau_{cDvj}$       | в      | qBm     | qB[DUB] <sub>D50</sub> | qB[DUB] <sub>Dyj</sub> | E[%]D <sub>50</sub> | E[%]Dvj |
|     |                                                                                                                         | (mm)     | (mm)      | $\mathrm{Kgf}/\mathrm{m}^3$ | $Kgf/m^2$ | Kgf/ m <sup>2</sup> | Kgf/ m <sup>2</sup> | (m)    | ton/dia | ton/dia                | ton/dia                | -                   | -       |
| 1   | 10/12/1988                                                                                                              | 0,46     | 1,41      | 2650,00                     | 0,22      | 0,10                | 0,20                | 95,70  | 10,73   | 652,33                 | 42,79                  | 5979,54             | 298,74  |
| 3   | 14/1/1989                                                                                                               | 0,63     | 2,17      | 2650,00                     | 0,72      | 0,12                | 0,27                | 103,80 | 82,23   | 9753,45                | 2877,62                | 11761,19            | 3399,48 |
| 4   | 15/1/1989                                                                                                               | 0,42     | 1,86      | 2650,00                     | 0,63      | 0,10                | 0,24                | 103,00 | 81,15   | 10085,00               | 2403,65                | 12327,61            | 2861,99 |
| 5   | 20/1/1989                                                                                                               | 0,50     | 1,15      | 2650,00                     | 0,44      | 0,11                | 0,17                | 102,80 | 87,21   | 3968,35                | 1701,95                | 4450,34             | 1851,56 |
| 6   | 27/1/1989                                                                                                               | 0,43     | 1,15      | 2650,00                     | 0,37      | 0,10                | 0,17                | 101,30 | 40,13   | 2864,25                | 989,87                 | 7037,42             | 2366,65 |
| 7   | 3/2/1989                                                                                                                | 0,40     | 1,41      | 2650,00                     | 0,31      | 0,10                | 0,20                | 99,35  | 33,57   | 1955,82                | 388,20                 | 5726,10             | 1056,39 |
| 8   | 24/2/1989                                                                                                               | 0,45     | 1,15      | 2650,00                     | 0,37      | 0,10                | 0,17                | 101,70 | 57,86   | 2878,35                | 1046,37                | 4874,68             | 1708,44 |
| 9   | 3/3/1989                                                                                                                | 0,41     | 1,15      | 2650,00                     | 0,42      | 0,10                | 0,17                | 102,70 | 58,78   | 4127,13                | 1452,75                | 6921,32             | 2371,50 |
| 10  | 10/3/1989                                                                                                               | 0,41     | 1,15      | 2650,00                     | 0,36      | 0,10                | 0,17                | 100,90 | 29,06   | 2936,38                | 968,84                 | 10004,54            | 3233,91 |
| 11  | 17/3/1989                                                                                                               | 0,66     | 1,28      | 2650,00                     | 0,55      | 0,12                | 0,19                | 104,00 | 97,26   | 5099,15                | 2640,79                | 5142,81             | 2615,19 |
| 12  | 31/3/1989                                                                                                               | 0,54     | 1,48      | 2650,00                     | 0,45      | 0,11                | 0,21                | 101,45 | 43,91   | 3747,02                | 1264,56                | 8433,41             | 2779,88 |
| 13  | 7/4/1989                                                                                                                | 0,49     | 1,41      | 2650,00                     | 0,36      | 0,11                | 0,20                | 100,50 | 48,57   | 2353,93                | 666,41                 | 4746,47             | 1272,06 |
| 14  | 14/4/1989                                                                                                               | 0,52     | 1,54      | 2650,00                     | 0,42      | 0,11                | 0,21                | 101,40 | 64,46   | 3382,14                | 1000,80                | 5146,89             | 1452,59 |
| 15  | 28/4/1989                                                                                                               | 0,49     | 1,82      | 2650,00                     | 0,35      | 0,11                | 0,24                | 99,25  | 21,38   | 2159,80                | 358,06                 | 10001,98            | 1574,74 |
| 16  | 5/5/1989                                                                                                                | 0,46     | 1,35      | 2650,00                     | 0,32      | 0,10                | 0,19                | 100,00 | 48,42   | 1876,35                | 486,63                 | 3775,16             | 905,01  |
| 17  | 9/5/1989                                                                                                                | 0,44     | 1,54      | 2650,00                     | 0,35      | 0,10                | 0,21                | 100,00 | 34,44   | 2411,65                | 510,99                 | 6902,46             | 1383,70 |
| 18  | 23/5/1989                                                                                                               | 0,51     | 1,28      | 2650,00                     | 0,24      | 0,11                | 0,19                | 99,10  | 34,59   | 755,21                 | 144,64                 | 2083,31             | 318,15  |
| 19  | 2/6/1989                                                                                                                | 0,51     | 1,54      | 2650,00                     | 0,27      | 0,11                | 0,21                | 98,00  | 25,42   | 1125,09                | 178,64                 | 4325,98             | 602,76  |
| 20  | 6/6/1989                                                                                                                | 0,49     | 1,68      | 2650,00                     | 0,30      | 0,11                | 0,23                | 97,50  | 18,83   | 1471,87                | 219,64                 | 7716,63             | 1066,43 |
| 21  | 13/6/1989                                                                                                               | 0,52     | 1,68      | 2650,00                     | 0,32      | 0,11                | 0,23                | 98,60  | 19,59   | 1607,63                | 287,94                 | 8106,41             | 1369,83 |
| 22  | 20/6/1989                                                                                                               | 0,49     | 1,54      | 2650,00                     | 0,26      | 0,11                | 0,21                | 97,40  | 26,70   | 998,87                 | 124,54                 | 3641,10             | 366,45  |
| 23  | 27/6/1989                                                                                                               | 0,58     | 1,54      | 2650,00                     | 0,26      | 0,12                | 0,21                | 96,80  | 25,31   | 822,13                 | 123,78                 | 3148,25             | 389,04  |
| 24  | 5/7/1989                                                                                                                | 0,50     | 1,88      | 2650,00                     | 0,29      | 0,11                | 0,25                | 96,60  | 7,22    | 1350,81                | 123,48                 | 18609,22            | 1610,19 |
| 25  | 12/7/1989                                                                                                               | 0,51     | 2,04      | 2650,00                     | 0,28      | 0,11                | 0,26                | 96,50  | 8,96    | 1163,29                | 40,91                  | 12883,14            | 356,58  |
| 26  | 13/7/1989                                                                                                               | 0,56     | 1,75      | 2650,00                     | 0,24      | 0,11                | 0,23                | 96,50  | 7,91    | 739,95                 | 28,64                  | 9254,59             | 262,06  |
| 27  | 19/7/1989                                                                                                               | 0,56     | 2,09      | 2650,00                     | 0,29      | 0,11                | 0,27                | 96,45  | 10,92   | 1154,72                | 52,56                  | 10474,37            | 381,36  |
| 28  | 26/7/1989                                                                                                               | 0,63     | 1,82      | 2650,00                     | 0,24      | 0,12                | 0,24                | 96,45  | 10,09   | 602,79                 | 0,80                   | 5874,12             | 92,05   |
| 29  | 9/8/1989                                                                                                                | 0,55     | 1,68      | 2650,00                     | 0,26      | 0,11                | 0,23                | 96,50  | 20,17   | 917,70                 | 95,88                  | 4449,81             | 375,38  |
| 30  | 16/8/1989                                                                                                               | 0,47     | 1,95      | 2650,00                     | 0,26      | 0,10                | 0,25                | 96,40  | 12,15   | 1060,57                | 16,36                  | 8628,94             | 34,68   |
| 32  | 13/9/1989                                                                                                               | 0,59     | 1,82      | 2650,00                     | 0,32      | 0,12                | 0,24                | 98,30  | 6,00    | 1428,42                | 236,72                 | 23707,01            | 3845,26 |
| 33  | 27/9/1989                                                                                                               | 0,53     | 1,68      | 2650,00                     | 0,23      | 0,11                | 0,23                | 96,10  | 11,44   | 639,62                 | 3,95                   | 5491,07             | 65,44   |
|     | A                                                                                                                       |          |           |                             |           |                     |                     |        |         |                        | MÉDIA                  | 7794,4              | 1363,5  |

# 8.5-Comentários finais referente a aplicação, para o Rio Mogi-Guaçu, da metodologia proposta

Na **tabela 8.7**, que apresenta o resumo da comparação das descargas de sedimentos estimadas com a medida, mostra-se que houve uma redução substancial da diferença percentual relativa média quando a descarga de sedimentos foi calculada com o diâmetro Dvj.

Focalizando novamente a **tabela 8.7**, observa-se que o método que apresentou a menor diferença percentual relativa média quando as descargas foram calculadas usando o Di e o Dvj foi o método de Kalinske, com escore de 112%. Destaca-se que, quando aplicado aos dados do Rio Atibaia no **capítulo seis**, e ao Ribeirão do Feijão no **capítulo sete**, este método também praticamente não apresentou alteração na diferença percentual relativa média quando a descarga foi calculada usando o **Di** ou o **Dvj**.

Ainda na **tabela 8.7,** nota-se que todas as onze equações usadas para estimar o diâmetro DVj, empregado nos métodos de cálculo do transporte de sedimentos, reduziram a diferença percentual relativa média entre os valores medidos e os observados, em comparação com aquelas descargas que foram geradas com o uso do diâmetros  $D_i$ .

Ainda na **tabela 8.7**, observa-se que oito das onze equações de estimativa dos diâmetros **Dvj's**, usados no cálculo da descarga de sedimentos pelos métodos analíticos, reduziram em mais de **720%** as diferenças percentuais relativas médias, em relação àquelas diferenças percentuais relativas médias obtidas com as descargas geradas também pelos métodos analíticos, mas calculadas usando os diâmetros **Di's**. Vale reafirmar que a diferença

percentual relativa média, referenciada neste parágrafo e em outros pontos desta tese, foi obtida comparando-se sempre as descargas calculadas com a medida.

Tabela 8.7 – Comparação da diferença percentual relativa média entre a descarga obtida pelos métodos de cálculo quando se usa o D<sub>i</sub> e o Dvj para o Rio Mogi-Guaçu

| 1                                       | 2                  | 3                   | 4      | 5               |
|-----------------------------------------|--------------------|---------------------|--------|-----------------|
| Autores                                 | E[%]D <sub>i</sub> | E[%]D <sub>vj</sub> | E(%)   | Observação      |
| <b>DuBoys (1879) e Straub (1935)</b>    | 7794,4             | 1363,5              | 472 %  | Redução do erro |
| Shields (1936)                          | 5979,2             | 722,6               | 727 %  | Redução do erro |
| Mever-Peter e Müller (1948)             | 874,5              | 92,3                | 847 %  | Reducão do erro |
| Kalinske (1947)                         | 2222,2             | 1046                | 112 %  | Redução do erro |
| Levi (1948)                             | 3606,3             | 960,5               | 275 %  | Redução do erro |
| Einstein (1942) & Einstein-Brown (1950) | 8532,8             | 467,9               | 1724 % | Redução do erro |
| Garde e Albertson (1961)                | 4131               | 119,2               | 3366 % | Redução do erro |
| Yalin (1963)                            | 1830,3             | 116,2               | 1475 % | Redução do erro |
| Pernecker e Vollmer (1965)              | 9486,4             | 368,8               | 2472 % | Redução do erro |
| Inglis e Lacey (1968)                   | $2,9 \times 10^7$  | $5,8 \times 10^5$   | 4900 % | Redução do erro |
| Bogardi (1974)                          | 2537,5             | 85,5                | 2868 % | Redução do erro |

O **quadro 8.4** lista, pela ordem, os oito métodos que apresentaram as maiores reduções da diferença percentual relativa média, quando a descarga de sedimentos foi calculada com o **Dvj**.

Observa-se, no referido quadro, que, para se definirem os diâmetros Dvj, em cinco equações foram usadas a declividade, em duas delas usou-se a vazão e em apenas uma a potência da corrente. Relembrando que a potência da corrente é também função da declividade ( $Pc = \tau_0 \times U$ ), tem-se, portanto, numa releitura do **quadro 8.4**, que seis equações dependem da declividade e duas da vazão. Isto, além de alertar para os cuidados especiais à

definição precisa das duas variáveis, sinaliza também para a existência de uma relação intrínseca entre as variáveis morfológicas e as hidrodinâmicas na dinâmica do movimento dos sedimentos em escoamentos com superfície livre [CARVALHO, 1994; SIMONS & SENTURK, 1992].

Quadro 8.4 – Classificação pela ordem de eficiência da redução da diferença percentual relativa média das descargas calculadas com o DVj em relação àquelas calculadas com o Di

| 1                                       | 2    | 3                                                    |
|-----------------------------------------|------|------------------------------------------------------|
| Autores                                 | E(%) | Observação                                           |
| Inglis e Lacey (1968)                   | 4900 | Dvj calculado em função da vazão (Q)                 |
| Garde e Albertson (1961)                | 3366 | Dvj calculado em função da declividade (S)           |
| Bogardi (1974)                          | 2868 | Dvj calculado em função da declividade (S)           |
| Pernecker e Vollmer (1965)              | 2472 | Dvj calculado em função da declividade (S)           |
| Einstein (1942) & Einstein-Brown (1950) | 1724 | Dvj calculado em função da vazão (Q)                 |
| Yalin (1963)                            | 1475 | Dvj calculado em função da declividade (S)           |
| Meyer-Peter e Müller (1948)             | 847  | Dvj calculado em função da potência da corrente (Pc) |
| Shields (1936)                          | 727  | Dvj calculado em função da declividade (S)           |

Ao ser aplicada ao Rio Mogi-Guaçu, a metodologia desenvolvida na tese mostrou consistência ao reduzir substancialmente as diferenças percentuais relativas quando as descargas foram calculadas usando os diâmetros **Dvj's**.

Por outro lado, foi confirmada - a exemplo do rio Atibaia e do Ribeirão do Feijão - a tendência de os diâmetros calculados apresentarem valores elevados em comparação com os coletados no fundo do rio, o que acaba aproximando esses diâmetros daqueles coletados que apresente maior granulometria.

No caso do Rio Mogi-Guaçu, das quatorze equações empregadas, doze calcularam diâmetros mais próximos do  $D_{90}$ , uma calculou diâmetro mais próximo do  $D_{65}$  e a outra calculou diâmetro mais próximo do  $D_{35}$ .

Ademais, o Rio Mogi-Guaçu - pelas características morfológicas e pelas observações de alguns dos parâmetros hidráulicos amostrados na **tabela 8.1**, apresenta-se como um curso de água maior do que o Rio Atibaia e o Ribeirão do Feijão, sinalizando, portanto, em uma avaliação preliminar, que a metodologia proposta produz bons resultados para cursos de águas de pequenos e médios portes.

Ainda sobre a aplicação da metodologia ao Rio Mogi-Guaçu, observou-se que as variáveis hidrodinâmicas (velocidade e vazão) e as variáveis morfológicas (declividade do leito) revelaram-se como mais favoráveis à definição do diâmetro Dvj, a julgar pela redução da diferença percentual relativa média entre a descarga calculada e a observada.

# 9 – DISCUSSÕES, CONCLUSÕES E RECOMENDAÇÕES

Ao longo dos capítulos cinco, seis, sete e oito desta tese, ao se aplicar a metodologia proposta, problemas relacionados a dois critérios importantes, quando da aplicação dos métodos de cálculo do transporte de sedimentos, foram revelados pelos resultados das descargas de sedimentos calculados com as equações analíticas de estimativa.

O primeiro deles, conforme já alertado por COIADO & PAIVA (2005), está relacionado à escolha da equação ou ao critério para o cálculo da tensão crítica de cisalhamento da corrente. O segundo problema, o qual se constituiu na motivação principal para o desenvolvimento da tese, diz respeito aos critérios de escolha do diâmetro representativo do material do leito.

Para os cursos de água com declividades baixas, dificilmente o primeiro problema será totalmente evitado. Razão pela qual, ao se ampararem apenas no critério das tensões de cisalhamento, as descargas de sedimentos serão dadas em função da parcela ( $\tau_0 - \tau_c$ ). Por essa razão, muitos métodos, e em especial aqueles do tipo **Duboys (1879)**, estimarão, as vezes, descargas de sedimentos nulas (COIADO & PAIVA, 2005).

Apenas por essa razão, já se faz necessário promover uma seleção criteriosa antes da aplicação de uma dada equação à estimativa da descarga de sedimentos aos escoamentos com superfície livre. Exemplo explícito, e que reforça tal necessidade, refere-se ao método de Meyer-Peter e Muller no qual, para casos em que a tensão tangencial crítica de cisalhamento adimensional supera o valor de 0,047, as descargas calculadas serão inevitavelmente nulas, inviabilizando o uso do método nestas condições.

Continuando as discussões, vale citar também o método de Kalinske (1947), que, em alguns casos, estimou valores crescentes para as descargas de sedimentos quando o diâmetro aumentou, o que de fato é uma contradição, porque o esperado é que a descarga calculada reduza ao se aumentar o diâmetro do sedimento, caso as magnitudes das variáveis hidrodinâmicas se mantenham inalteradas.

No entanto, tal contradição se justifica pela concepção do método que calcula a descarga de sedimentos em função da razão entre tensões de cisalhamento e não pela diferença. Por outro lado, a descarga é fornecida por uma equação do tipo  $[qB = Constante x D x f(\tau_0/\tau_c)]$ , com a função  $f(\tau_0/\tau_c)$  diminuindo com o aumento do diâmetro e sendo obtida de dados experimentais.

No entanto, às vezes, quando se muda a faixa granulométrica, para a mesma campanha de medições, proporcionalmente, o aumento do diâmetro é maior do que a redução do termo  $f(\tau_0/\tau_c)$ . Isso faz com que a descarga aumente, ao invés de diminuir, como era de se esperar. Ademais, por ser este um método de caráter semiteórico torna-se necessário observar os limites de aplicação para as faixas dos valores da função  $f(\tau_0/\tau_c)$ .
NAKATO (1990) comenta que, em varias experiências práticas, têm-se demonstrado que uma equação que prevê a descarga de um rio pode apresentar resultados bem diferentes para outra situação, mesmo quando são encontradas algumas coincidências entre as variáveis envolvidas no processo.

Em PUJOL & CHARETTE (2004), comenta-se que uma equação que estime valores com uma margem de erro compreendida entre 50% e 200% está dentro da margem de erro consideravelmente aceitável à estimativa da descarga de sedimentos, para os propósitos da Engenharia de Recursos Hídricos.

Provavelmente, as adversidades mencionadas nos dois últimos parágrafos anteriormente descritos reduzirão quando às equações de estimativa do transporte de sedimentos forem sendo incorporados fatores relacionados às características da bacia hidrográfica, que é, indiscutivelmente, a principal fonte provedora do transporte de sedimentos para os cursos de água naturais.

No caso da escolha do diâmetro a ser empregado nos métodos de cálculo do transporte de sedimentos na camada do leito, foi constatado que as faixas das dimensões do diâmetro  $D_{50}$  inviabilizariam o emprego de mais de um método à estimativa da descarga de sedimentos no Rio Atibaia, no Ribeirão do Feijão e no Rio Mogi-Guaçu, pela incompatibilidade das faixas recomendadas pelos autores para os seus métodos. Um retorno aos capítulos seis, sete e oito revelará que os métodos de Shields (1936); Garde & Albertson (1961) e método de Yalin (1963) não se empregariam para o diâmetro  $D_{50}$ .

Foram evidências como essas que motivaram a realização deste trabalho, que culminou com a apresentação de uma metodologia alternativa aplicável à definição do diâmetro de cálculo para uso nos métodos do transporte de sedimentos na camada do leito, tendo como base o uso de parâmetros intervenientes na dinâmica do movimento dos sedimentos em escoamentos com superfície livre, e não apenas na simples escolha do diâmetro originado da curva granulométrica do material do fundo do rio.

A metodologia mostrou-se consistente e reduziu sobremaneira a diferença percentual relativa média, quando, nas equações analíticas de estimativa do transporte de sedimentos, foi usado o diâmetro **DVj** para o cálculo da descarga sólida em três rios diferentes. O primeiro, o Rio Atibaia, se constitui na fonte dos dados primário usando para definir a metodologia. Entretanto, os demais, o Ribeirão do Feijão e o Rio Mogi-Guaçu, ambos em São Carlos, São Paulo, contribuíram como estudo de caso para a verificação da eficiência da metodologia.

A aplicação da metodologia ao Rio Atibaia e a outros dois rios, além de reduzir a diferença percentual relativa média quando a descarga foi calculada usando o **Dvj**, revelou que alguns métodos mereceram destaques por apresentarem valores para tais diferenças dentro dos limites razoáveis à aplicação da estimativa da descarga de sedimentos nos cursos de água usados na tese (PUJOL & CHARETTE, 2004).

Ao ser aplicado aos dados do Rio Atibaia, o método de Meyer-Peter e Muller (1948), ao calcular a descarga tendo **Dvj** como diâmetro de cálculo (erro médio de 44%), reduziu em 650 % a diferença percentual relativa média em relação àquela descarga calculada com o **Di** [erro médio de 332,8%]. Quando aplicado aos dados do Rio Mogi-Guaçu, o método de Meyer-Peter e Muller (1948), ao calcular a descarga tendo **Dvj** como diâmetro de cálculo (erro médio de 92,3%) reduziu em 847 % a diferença percentual relativa média em relação àquela descarga calculada com o **Di** (erro médio de 874,5%).

Quando aplicado aos dados do Rio Mogi-Guaçu, o método de Yalin (1963), ao calcular a descarga tendo **Dvj** como diâmetro de cálculo (erro médio de 116,2%) reduziu em 1475 % a diferença percentual relativa média em relação àquela descarga calculada com o **Di** [erro médio de 1830,3%].

O método de Garde & Albertson (1961) não calculou nenhum evento de descarga nula para nenhum dos três rios pesquisados. Para o Rio Mogi-Guaçu, a descarga calculada com o **Dvj** (erro médio de 119,2%) reduziu em 3366% a diferença percentual relativa média, em relação àquela calculada com o **Di** [erro médio de 4131%]. A diferença percentual relativa média de **119,2%** é um número que está dentro dos limites considerados razoáveis à aplicação do método ao Rio Mogi-Guaçu [PUJOL & CHARETTE, 2004].

O método de Bogardi (1974) não calculou nenhum evento de descarga nula para o Rio Mogi-Guaçu, a descarga calculada com o **Dvj** (erro médio de 85,5%) reduziu em 2868% a diferença percentual relativa média, em relação àquela calculada com o **Di** (erro médio de 2537,5%). A diferença percentual relativa média de **85,5%** credencia o método à estimativa da descarga de sedimentos no Rio Mogi-Guaçu [PUJOL & CHARETTE, 2004].

Com relação ao Ribeirão do Feijão, observa-se – **na tabela 7.7** – que a diferença percentual relativa média diminuiu quando a descarga de sedimentos foi estimada usando o Dvj. No entanto, as diferenças percentuais relativas médias permaneceram em patamares

acima de 1000%, descredenciando os métodos à estimativa da descarga de sedimentos ao referido curso de água.

Exemplificando, nota-se que o método de Pernecker e Volmer (1969) reduziu a diferença percentual relativa média de  $(1,3 \times 10^8)$  para  $(2,8 \times 10^5)$ , concretizando uma ordem de grandeza de  $10^3$ . Mas, a diferença percentual relativa média de  $(2,8 \times 10^5)$ , mesmo obtida com o Dvj, não credencia o método a estimar a descarga de sedimentos no Ribeirão do Feijão. Para este ribeirão, o método que apresentou a menor diferença percentual relativa média foi o de Levi (1948), com escore de 1226,7 % obtido quando a descarga foi calculada com o Dvj.

Todavia os altos valores para as diferenças percentuais relativas para o Ribeirão do Feijão podem revelar - como ocorre nos escoamentos com superfície livre em cursos de águas naturais – a relação de interação da granulometria do material do leito com as variáveis hidrodinâmicas do escoamento e com as variáveis morfológicas do trecho e da seção de monitoramento na estimativa da descarga de sedimentos. Portanto, isso talvez justifique os valores mais baixos das diferenças percentuais relativas médias encontradas para alguns métodos quando as descargas foram calculadas no Rio Atibaia e no Rio Mogi-Guaçu.

Para os propósitos da pesquisa, o resultado foi bom porque as diferenças percentuais relativas diminuíram para os sete métodos, quando a descarga foi calculada com o Dvj. No entanto, os altos valores das diferenças percentuais relativas não motivam a indicação de nenhuma deles à estimativa das descargas de sedimentos no Ribeirão do Feijão. Ademais, tais resultados remetem à necessidade da continuação das pesquisas sobre a aplicação dos métodos de cálculo em escoamentos para cursos de água menores – da ordem de grandeza daquela do Ribeirão do Feijão.

Seria possível continuar as discussões seguindo a mesma linha de descrição apresentada nos três últimos parágrafos, mas julga-se desnecessário para não se alongar em demasia, porque basta um retorno às **tabelas 6.3, 6.5, 7.7 e 8.7**, para se constatar que em quase todos os casos em que a descarga de sedimentos foi calculada com o diâmetro **Dvj**, houve redução da diferença percentual relativa média entre os valores medidos e os calculados. Em alguns casos, tal redução atingiu a ordem de 10<sup>3</sup> (exceção apenas ao método de Kalinske (1947) que não apresentou alteração para o Ribeirão do Feijão).

Sobre os diâmetros calculados pelas equações analíticas desenvolvidas na pesquisa destaca-se que, para os três rios estudados, os diâmetros calculados se aproximaram mais daqueles de granulometria mais grossa, quando comparados aos diâmetros coletados, sendo que os valores calculados mais se aproximaram do  $D_{90}$ .

Na **tabela 9.1**, apresentam-se, a título de comparação, algumas das características inerentes aos cursos de águas analisados nesta pesquisa sinalizando, portanto, a versatilidade da metodologia à aplicação a cursos de água de pequenos, médios e grandes portes, se empregada com o intuito de se reduzir a diferença percentual relativa média, quando o diâmetro é calculado com o **Dvj**.

| Parâmetro | unidade             | Rio Atibaia           | Ribeirão do Feijão      | Rio Mogi-Guaçu          |
|-----------|---------------------|-----------------------|-------------------------|-------------------------|
| Q         | m <sup>3</sup> /s   | 27,52                 | 1,41                    | 195,70                  |
| S         | m/m                 | $1,78 \times 10^{-4}$ | 1,33 x 10 <sup>-3</sup> | 1,85 x 10 <sup>-4</sup> |
| d         | М                   | 1,53                  | 0,99                    | 2,92                    |
| В         | М                   | 34,06                 | 5,27                    | 98,87                   |
| U         | m/s                 | 0,47                  | 0,26                    | 0,72                    |
| qв        | ton/dia             | 0,72                  | 0,11                    | 33,58                   |
| Q/B       | m <sup>3</sup> /s.m | 0,81                  | 0,27                    | 1,98                    |

Tabela 9.1 – Parâmetros médios referentes aos cursos de águas usados na pesquisa

As discussões apresentadas neste capítulo remetem à necessidade de se tomarem cuidados especiais quando da aplicação das equações de cálculo do transporte de sedimentos e revelam, como já se esperava, que, no universo das quatorze equações, todas não seriam adequadamente aplicais aos cursos de água aqui trabalhados. Mas, também aponta que algumas delas podem ser aplicadas à estimativa da descarga de sedimentos, usando o Dvj como diâmetro de cálculo nos modelos de transporte de sedimentos na camada do leito.

Por outro lado, reforça-se novamente que o objetivo da tese não se limita a testar as equações para verificação da sua aplicação dos métodos de cálculo das descargas de sedimentos, uma vez que, estudos dessa natureza já foram desenvolvidos para os três cursos de água analisados. (PAIVA. L.E.D.de, 1995; PAIVA, 1988; PONCE, 1990; SAMANEZ, 1998). No item 9.1 a seguir, apresentam-se as principais conclusões do trabalho, enquanto que, no item 9.2, apresentam-se as principais recomendações que se julgam pertinentes.

## 9.1 – CONCLUSÕES

•A metodologia proposta nesta tese apresenta a vantagem de poder ser empregada para cursos de água com granulometria uniforme ou não e dispensa o levantamento de dados de granulométricos.

•Ao se verificarem as faixas de diâmetros encontradas no Rio Atibaia, no Ribeirão do Feijão e no Rio Mogi-Guaçu observou-se que o método de Shields (1936), o método de Garde & Albertson (1961), e o de Yalin (1963) não se empregariam para o Diâmetro D<sub>50;</sub>

•Os diâmetros calculados com as equações analíticas apresentaram magnitudes mais próximas daqueles de granulometria maiores, se comparados aos coletados - na maioria das vezes, os valores do D<sub>90</sub> coletados foram os que mais se aproximaram dos calculados.

•Quatorze métodos foram empregados para calcular a descarga de sedimentos usando o **Dvj** como diâmetro de cálculo nas equações do transporte de sedimentos no Rio Atibaia. Todavia, todos reduziram a diferença percentual relativa média em relação às diferenças em que a descarga foi calculada usando o diâmetro **Di**.

•Sete métodos foram empregados ao Ribeirão do Feijão, para validar a metodologia proposta na tese. Desses, com exceção do método de Kalinske (1947), seis reduziram a diferença percentual relativa média quando a descarga foi calculada com o **Dvj**, em vez de ser calculada com o **Di**;

•Onze métodos foram empregados ao Rio Mogi-Guaçu, para validar a metodologia proposta nesta tese. Desses, todos reduziram a diferença percentual relativa média quando a descarga foi calculada com o **Dvj**, em vez do **Di**.

•As diferenças percentuais relativas médias para o Ribeirão do Feijão, mesmo com a descarga calculada com o Dvj, foram superiores a 1000%.

•O método de Garde e Albertson (1961) e o método de Inglis e Lacei (1968) não apresentaram nenhum evento de descarga nula ao serem aplicados aos três cursos de água usados na pesquisa.

•A diferença percentual relativa média entre a descarga calculada pelo método de Garde e Albertson (1961) e a medida foi de 119,2%, ao se empregar o Dvj como diâmetro de cálculo no Rio Mogi-Guaçu.

• A diferença percentual relativa média entre a descarga calculada pelo método de Bogardi (1974) e a descarga medida foi de 85,5%, ao se empregar o Dvj como diâmetro de cálculo no Rio Mogi-Guaçu.

•A diferença percentual relativa média entre a descarga calculada pelo método de Meyer-Peter e Muller (1948) e a descarga medida foi de 44%, ao se empregar o Dvj como diâmetro de cálculo no Rio Atibaia.

• A diferença percentual relativa média entre a descarga calculada pelo método de Meyer-Peter e Muller (1948) e a descarga medida foi de 92,3%, ao se empregar o Dvj como diâmetro de cálculo no Rio Mogi-Guaçu.

• A diferença percentual relativa média entre a descarga calculada pelo método de Yalin (1963) e a descarga medida foi de 116,2%, ao se empregar o Dvj como diâmetro de cálculo no Rio Mogi-Guaçu;

•A declividade do leito e a vazão do escoamento apresentaram-se como os parâmetros que mais constaram nas equações analíticas para a estimativa do Dvj. No entanto, a declividade do leito constou na maioria das vezes.

## 9.2 – RECOMENDAÇÕES

•Recomenda-se continuar as pesquisas no sentido de uniformizar o cálculo das tensões tangenciais críticas de cisalhamento, a fim de reduzir a quantidade de eventos de descargas nulos, e a fim de aproximar os valores das descargas calculadas às medidas.

•Recomenda-se intensificar as pesquisas em hidrossedimentologia, no sentido de incorporar às equações de cálculo fatores relacionados às características da bacia hidrográfica, uma vez que, por ser essa a principal fonte provedora dos sedimentos para dentro dos cursos de água, acredita-se que influencie as estimativas do material transportado.

•Recomenda-se intensificar as pesquisas, empregando a metodologia desenvolvida nesta tese para elucidar a relação intrínseca entre as variáveis hidrodinâmicas e morfológicas da seção e a granulometria do material do leito, no sentido de aproximar ainda mais os valores das descargas calculadas e aquelas medidas para ribeirões da mesma ordem de grandeza do Ribeirão do Feijão.

•Enquanto aguardam-se essas mudanças, recomenda-se, para uma previsão inicial, empregar a equação de Meyer-Peter e Muller (1947), usando o diâmetro Dvj às estimativas da descarga de sedimentos a cursos de água com características similares àquelas do Rio Atibaia.

•Para cursos de água com características semelhantes ao Rio Mogi-Guaçu, recomenda-se, como previsão inicial, empregar as equações de Garde e Albertson (1963), Meyer-Peter e Muller (1948), Yalin (1963) e Bogardi (1974) para a estimativa da descarga sólida, usando o Dvj como diâmetro de cálculo.

•Para escolha do diâmetro representativo, não se deve escolher aleatoriamente na curva granulométrica o diâmetro  $D_{50}$ , sem antes, pelo menos, fazer a separação em intervalos de classe, como foi feito nesta tese, para se ter a certeza de que tal diâmetro atende às faixas estabelecidas pelo autor dos métodos de cálculo da descarga de sedimentos.

•Pelos resultados encontrados neste trabalho, recomenda-se, na ocasião de se utilizarem os métodos de cálculo do transporte de sedimentos na camada do leito, empregar as equações de estimativa do diâmetro Dvj aqui desenvolvidas, respeitando-se sempre as limitações colocadas no capítulo cinco para suas utilizações.

## **REFERÊNCIAS BIBLIOGRÁFICAS**

ACKERS.P; WHITE. W, R., 1973.

Sediment Transport: New Approach and Analises. Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY11, Proc. Paper 2041-2060.

AGUIRRE.J, A, M; SANCHEZ. J, C R., B.D., 1983.

Métodos Para La Estimacion de Los Efectos Torrenciales en Una Cuenca Hidrográfica- Manual Para un Programa Basico. Escola Técnica Sueperior de Ingenieros de Montes,. Fundaciona Conde Del Valle de Salazar. 88p.

ALFREDINI. P., 1983.

*Análise de Métodos de Modelação Física da Ação de Correntes Sobre Leito Móvel.* Tese apresentada para a obtenção do grau de Mestre em Engenharia, 221p, EPUSP, São Paulo, SP.

AMIN. M; MURPHY, P.J., 1981.

*Two Bed-Load Formulas: An Evaluation.* Journal of the Hydraulics Engineering, ASCE, Vol. 107, No. HY8, Proc. Paper 961-971.

AZEVEDO NETO, J.M.de; ALVAREZ, G.A., 1991

Manual de Hidráulica. 7ª ed. São Paulo. 336p.

### ASCE, TASK COMMITTEE FOR PREPARATION OF SEDIMENT MANUAL., 1971

Sediment Transportation Mechanics: H. Sediment Discharge Formulas. Journal of the Hydraulics Division, ASCE, Vol.97, No.HY4, Proc. Paper 523-567.

BAGNOL, R.A.; F,R.S.,1965.

The Physics of Blown Sand And Desert Dunes. 3<sup>nd</sup> Edition London. Great Britain, 265p.

BATHURST.J, C ; GRAF. W, H; CAO. H,H., 1987.

*Bed Load Discharge Equations For Steep Mountain Rivers*. In: Sediment Transport in Gravel-Bed Rivers. (Edited by. Thorne.C, R; Bathurst. J,C; HEY.R, D) - Wiley & Sons - Chichester, New York, Brisbane, Toronto, Singapore. Proc. Paper 453-477.

CARVALHO, N.O., 1995.

Hidrossedimentologia Prática. 1º edição. CPRM, 372p.

CARVALHO, N. O; et al., 2005.

*Descarga Sólida do Leito de um Rio por Medições Diretas: Estudo de Caso.* XVI Simpósio Brasileiro de Recursos Hídricos. ABRH. João Pessoa, Estado da Paraíba, Brasil, Novembro de 2005.

CELIK, I.; RODI, W., 1991.

Suspended Sediment-Transport Capacity for Open Channel Flow. Journal of the Hydraulics Engineering, ASCE, Vol. 117, No.2, Proc. Paper 191-204.

COIADO, E. M., 2002-2003.

*Forma de Transporte de Sedimentos – Métodos Para Cuantificar el Caudal Sólido -*Capítulo 4. In: Seminário Transporte de Sedimentos – Sedimentatción- Muestras y Aparatos. Escuela Técnica Superior de Ingenieros de Montes de Madrid. Madrid-Espanha, 2002/2003.

COIADO, E. M., 2002-2003.

*Condiciones Criticas Para la Iniciación del Movimiento* - Capítulo 2. In: Seminário Transporte de Sedimentos – Sedimentatción- Muestras y Aparatos. Escuela Técnica Superior de Ingenieros de Montes de Madrid. Madrid-Espanha, 2002/2003.

COIADO, E. M., et al., 2004.

Impactos da Poluição do Rio Atibaia/SP Sobre os Parâmetros Para se Avaliar o Assoreamento do Reservatório de Salto Grande/SP. XXI Congresso Latino Americano de Hidráulica. Anais. São Pedro-SP. Brasil, Outubro de 2004 [E.372].

COIADO, E. M.; PAIVA, L.E.D.de., 2005.

Análises Sobre Algumas Fórmulas Para o Cálculo do Transporte de Sedimentos na Camada do Leito. XVI Simpósio Brasileiro de Recursos Hídricos. ABRH. João Pessoa, Estado da Paraíba, Brasil, Novembro de 2005.

DAMGAARD, J.S; WHITEHOUSE, R.J.S; SOULSBY, R.L., 1997.

*Bed-Load Sediment Transport on Steep Longitudinal Slopes*. Journal of the Hydraulics Engineering, ASCE, Vol. 123, No.12, Proc. Paper 1130-1138.

EINSTEIN.H.A.,1950.

The bad load function for sediment transportation in open channel flows. Techn. Bulletin, n.1026, U.S.Dept. of Agriculture, Soil Conservation Service, Washington, D.C.

EINSTEIN.H.A; ABDEL-AAL. F.M., 1972.

*Einstein Bed-Load Function at High Sediment Rates*. Journal of the Hydraulics Division, ASCE, Vol. 98, No.HY1, Proc. Paper 137-151.

ECKHARDT, M., 1998.

*Estimativa do Transporte de Sedimentos em Escoamentos Com Superficie Livre Pelo Método de Toffaleti*. Dissertação de Mestrado apresentada à Universidade Federal do Rio de Janeiro – COPPE-UFRJ, como parte dos requisitos necessários para obtenção do título de Mestre em Ciências em Engenharia Civil. COPPE-UFRJ, 144p. Rio de Janeiro - RJ.

ESPINOSA-BRAVO, M; OSTERKAMP, W.R; LOPES, V.L.,2003

*Bedload Transport in Alluvial Channels*. Journal of the Hydraulics Division, ASCE, Vol. 129, No.10, Proc. Paper 783-795.

FERRAZ & MORTATI (2002).

Avaliação do Processo Erosivo Mecânico em Bacia Subtropical Desenvolvida Pela Análise de Sedimentos Finos em Suspensão e os Componentes do Escoamento em Bacia Tropical de Meso escala. Geociências-Rio Claro, v.21, n. ½, p.113-120.

GARDE, R. J.; RANGA RAJU, K. G., 1985.

*Mechanics of Sediment Transportation and Alluvial Stream Problems*. 2<sup>nd</sup> Edition New York. John Wiley & Sons. 618p.

GRAF, W.H., 1971.

Hydraulics of Sediment Transport. New York. McGraw-Hill. 513p.

GRIGG, N.S., 1970.

Motion of Single Particles in Alluvial Channels. Journal of the Hydraulics Division, ASCE, Vol.96, No.HY12, Proc. Paper 2501-2518.

HARARAMPIDES. K; et al., 2003

*Deposition Properties of Fine Sediment*. Journal of the Hydraulics Engineering, ASCE, Vol. 129, No.3, Proc. Paper 230-234.

HABERSACK, H. M; LARONNE, J.B., 2002

Evaluation and Improvement of Bed Load Discharge Formulas basead on Helley-Smith Sampling in an Alpine Gravel Bed River. Journal of the Hydraulics Engineering, ASCE, Vol. 128, No.5, Proc. Paper 484-498.

HSU, S.M; HOLLY-Jr, F.M., 1992.

*Conceptual Bed-Load Transport Model and Verification for Sediment Mixtures*. Journal of the Hydraulics Engineering, ASCE, Vol. 118, No.8, Proc. Paper 1135-1152.

IBGE: Censo Demográfico – Brasil. 1991

JULIEN, P.Y., KLASSEN, G.J., 1995

Sand-Dune Geometry of Large Rivers During Floods. Journal of Hydraulic Engineering, Vol. 121, No.9, pp. 657-663.

KARIM, F.,1998.

*Bed Material Discharge Prediction for Nonuniform Bed Sediments.* Journal of the Hydraulics Engineering, ASCE, Vol. 124, No. 6, Proc. Paper 597-605.

LOW.,1989.

*Effect of Density on Bed-Load Transport*. Journal of the Hydraulics Engineering, ASCE, Vol. 115, No. 1, Proc. Paper 124-138.

MENDES, M.F.A., 1995.

Modelo Poissonianos Homogêneos Unidimensionais Aplicados ao Transporte e à Dispersão de Poluentes e de Sedimentos Finos em Suspensão, nos Escoamentos à Superfície Livre. Dissertação de Mestrado apresentada à Universidade Federal do Rio de Janeiro – COPPE-UFRJ, como parte dos requisitos necessários para obtenção do título de Mestre em Ciências em Engenharia Civil. COPPE-UFRJ. Rio de Janeiro - RJ.

MOLINAS, A.; WU, B., 1998.

*Effect of Size Gradation on Transport of Sediment Mixtures.* Journal of the Hydraulics Engineering, ASCE, Vol. 124, No. 8, Proc. Paper 786-793.

NASCIMENTO, A.P; COIADO, E. M., 2000.

Análise Sobre a Representatividade da Carga de Lavagem em Escoamento a superfície Livre. IV Encontro Nacional de Engenharia de Sedimentos. ABRH. Santa Maria - RS, Brasil, Novembro de 2000.

NASCIMENTO, A.P; COIADO, E. M.; MARTINS, M.E., 2000.

*Estimativa da Carga de Lavagem Transportada pelo Rio Atibaia.* Congresso Internacional. XIX Congresso Latino Americano de Hidráulica. Anais. Córdoba -Argentina, 2000 [id. prod.103229]. NASCIMENTO, A.P., 2001.

*Estimativa da Carga de Lavagem Transportada pelo Rio Atibaia, SP.* Dissertação de Mestrado apresentada à Universidade Estadual de Campinas, como parte dos requisitos necessários para obtenção do título de Mestre em Engenharia Civil na área de concentração em Recursos Hídricos e Saneamento. UNICAMP, 198p. Campinas-SP.

NAKATO, T., 1990.

*Tests of Seleted Sediment-Transport Formulas*. Journal of the Hydraulics Engineering, ASCE, Vol. 116, No.3, Proc. Paper 362-379.

PAIVA, L. E. D. de., 1995.

*Aplicação de Métodos Macroscópicos na Determinação da Carga Sólida Total Transportada em Rios.* Dissertação de Mestrado apresentada à Universidade Estadual de Campinas, como parte dos requisitos necessários para obtenção do título de Mestre em Engenharia Civil na área de concentração em Recursos Hídricos e Saneamento. UNICAMP, 76p. Campinas-SP.

PAIVA, L. E.D. de; COIADO, E. M.;1996.

*Estudo do Diâmetro Representativo do Material que Constitui o Leito do Rio na Utilização dos Métodos Macroscópicos*. II Congresso de Engenharia Civil da Universidade Federal de Juiz de Fora. UFJF. Juiz de Fora-MG, Brasil, Anais. v.2, p. 183-187.

PAIVA.J.B.D., 1988.

Avaliação dos modelos matemáticos de cálculo do transporte de sedimentos em rios. Tese apresentada para à Escola de Engenharia de São Paulo para obtenção do grau de Doutor em Engenharia, área de concentração: Hidráulica e Saneamento. USP, 240p. São Carlos-SP. Análise da Aplicabilidade e Modificações de Modelos de Cálculo do Transporte de Sedimento por Arrasto de Fundo em Rios de Médio Porte. Tese apresentada à Escola de Engenharia de São Paulo para obtenção do grau de Doutor em Engenharia, área de concentração: Hidráulica e Saneamento. USP, 373p. São Carlos-SP.

PUJOL, A; PATERSON, A; CHARETTE, J., 2004.

La Aproximación de Las Fórmulas de Transporte. Congresso Internacional. XXI Congresso Latino Americano de Hidráulica. Anais. São Pedro-SP. Brasil, Outubro de 2004 [F.381].

RANGA RAJU,K,G., SONI, J.P., 1976

*Geometry of Riplles and Dunes in alluvial Channels,* Journal of The Hydraulics Reserch, Vol. 14, No. 3, Proc. Paper 241 – 249.

RAUDKIVI, A.J., 1976.

Losse Boundary Hydraulics. 2<sup>st</sup> Editinon . New Zealand.397p.

RIVAS, S.A.M; SÁNCHEZ, J.L.L.,2004.

*Transporte de Sedimentos em el Rio Orinoco*. Congresso Internacional. XXI Congresso Latino Americano de Hidráulica. Anais. São Pedro-SP. Brasil, Outubro de 2004 [F.117].

SAMAGA, B.R.; RAJU, K.G.; GARDE. R.J., 1986.

*Bed Load Transport of Sediment Mixtures*. Journal of the Hydraulics Engineering, ASCE, Vol. 112, No.11, Proc. Paper 1003-1019.

SAMANEZ, S.V.G., 1998.

*Estudo da Aplicabilidade de Métodos de Estimativa de Transporte de Sedimentos em Rios Pequenos.* Dissertação de Mestrado apresentada à Escola de Engenharia de São Paulo para obtenção do grau de Mestre em Engenharia, área de concentração: Hidráulica e Saneamento. USP, 223p. São Carlos-SP.

SILVESTRE-Jr, O.B.; SOARES, J.H.P.; PAIVA, L.E.D.de., 1997.

*Estudo das Equações de Cálculo da Carga de Sedimentos Transportada Junto do Leito.* XII Simpósio Brasileiro de Recursos Hídricos. ABRH. Vitória-ES, Brasil, Novembro de 1997.

SIMONS, D.B & SENTÜRK, F., 1992.

Sediment Transport Tecnology and Water Resources publications. Fort Collins. Colorado. USA.897p.

SIMONS, D. E., RICHARDSON, E. V., 1961.

*Forms of Bed Roughness in Alluvial Channels*. Journal of the Hydraulics Division, ASCE, Vol. 87, No HY3, Proc. Paper 87-106.

SIMONS, D. E., RICHARDSON, E. V., NORDIN, C. F., 1965.

*Bed-Load Equation for Ripples and Dunes*. Geological Survey Professional Paper 462.H, United States Government Printing Office, Washington.

SIVIERO, M.R.L.,2003.

*Estudo da Ocupação do Solo a Montante de uma Seção do Rio Atibaia associada 'a descarga sólida Transportada*. Tese apresentada à Faculdade de Engenharia Civil da Universidade Estadual de Campinas, como parte dos requisitos para a obtenção do grau de Doutor em Engenharia Civil na área de concentração em Recursos Hídricos e Saneamento. UNICAMP, 97p. Campinas-SP.

SMART, M.G., 1984.

Sediment Transport Formula for Steep Channels. Journal of the Hydraulics Engineering, ASCE, Vol. 110, No.3, Proc. Paper 267-276.

SRINIVASAN, V.S; SIQUEIRA, M.T., 2000.

A Influência da Distribuição Granulométrica Sobre o Transporte Sólido em Canais Erodíveis. IV Encontro Nacional de Engenharia de Sedimentos. ABRH. Vitória - ES, Brasil, Novembro de 2000.

STRASSER, M.A., 2002

*Estudo da Geometria das Formas de Fundo no Curso Médio do Rio Amazonas.* Tese apresentada para obtenção do grau de Mestre em Ciências em Engenharia Civil. COPPE/UFRJ, 100 p., Rio de Janeiro, RJ.

STREETER, V.L; WYLIE, E.B., 1982

*Mecânica dos Fluidos*. 7<sup>0</sup> edição. McGraw-Hill do Brasil, Ltda. 585p.

SUN, Z; DONAHUE, J.,2000.

*Statistically Derived BedLoad Formula Any Fraction of Nonuniform Sediment*. Journal of the Hydraulics Engineering, ASCE, Vol. 126, No. 2, Proc. Paper 105-111.

SWAMEE, P.K.; OJHA, C.S.P., 1991.

*Bed-Load and Suspended-Load Transport of Nonuniform Sediments*. Journal of the Hydraulics Engineering, ASCE, Vol. 117, No.6, Proc. Paper 775-787.

TOFFALETI, F.B., 1969.

*Definitive Computations of Sand Discharge in Rivers*. Journal of the Hydraulics Division, ASCE, Vol. 95, No.HY1, Proc. Paper 225-248.

VANONI, V.A., 1975.

Sedimentation Engineering . New York. ASCE. 744p.

VAN RIJAN, L.C., 1984a.

Sediment Transport, Part I: Bad Load Transport. Journal of Hydraulic Engineering, Vol. 110, No. 10, Proc Paper. 1431-1553.

VAN RIJAN, L.C., 1984b

Sediment transport, Part II: Suspendend Load Transport. Journal of Hydraulic Engineering, Vol. 110, No. 11, Proc Paper. 1431-1553.

VAN RIJAN, L.C., 1984c

Sediment Transport, Part III: Bed Forms and Alluvial Roughness. Journal of Hydraulic Engineering, Vol. 110, No. 12, Proc Paper. 1733-1754.

VIEIRA DA SILVA.R.C.; WILSON-Jr. G., 2005.

Hidráulica Fluvial. Volume II. Rio de Janeiro - RJ. COPPE/UFRJ. 255p.

WIDEBERG, P, L.;SMITH,J,D.,1989.

Model for Calculating Bed Load Transport of Sediment. Journal of the Hydraulics Engineering, ASCE, Vol. 115, No. 1, Proc. Paper 101-123.

WILSON-Jr.G; PAIVA.L.E.D.de., 2003

Estimativa da descarga sólida por arraste a partir do registro das configurações de fundo: aplicação ao córrego Horácio, noroeste do Estado do Paraná. In: IX Simpósio Brasileiro de Recursos Hídricos. ABRH. Curitiba, Paraná. WU,B.;MOLINAS, A.; JULIEN, P.Y.;2004.

*Bed Material Load Computations for Nonuniform Sediment*. Journal of the Hydraulics Engineering, ASCE, Vol. 130, No. 10, Proc. Paper 1002-1012.

YALIN, M.S., 1964

*Geometrical Properties of Sand Waves*, Journal of the Hydraulics Division, V.90, n.HY5, Proc. Paper 105-119.

YALIN, M.S., 1977

Mechanics of Sediment Transport . 2<sup>nd</sup> Edition. Pergamon Press. New York, U.S.A. 298p.

YANG, S.Q.; LIM, S.Y., 1973.

*Incipient Motion and Sediment Transport*, Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY.10, Proc. Paper 1679-1704.

YANG, C.T; MOLINAS, A., 1996.

Sediment Transport in the Yellow River, Journal of the Hydraulics Engineering, ASCE, Vol. 122, No. 5, Proc. Paper 237-254.

YANG, S.Q.; LIM, S.Y., 2003.

*Total Load Transport Formula for Flow in Alluvial Channels*, Journal of the Hydraulics Engineering, ASCE, Vol. 129, No. 1, Proc. Paper 68-72.

## UNIVERSIDADE ESTADUAL DE CAMPINAS/UNICAMP

## FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

# A INFLUÊNCIA DO DIÂMETRO REPRESENTATIVO DO MATERIAL DO LEITO NAS FÓRMULAS DE CÁLCULO DO TRANSPORTE DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE

Luiz Evaristo Dias de Paiva

Orientador: Prof. Dr. Evaldo Miranda Coiado

Vol.II

ANEXOS

**Campinas – SP – Brasil** 

dezembro de 2007

### UNIVERSIDADE ESTADUAL DE CAMPINAS/UNICAMP

#### FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

# A INFLUÊNCIA DO DIÂMETRO REPRESENTATIVO DO MATERIAL DO LEITO NAS FÓRMULAS DE CÁLCULO DO TRANSPORTE DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE

Luiz Evaristo Dias de Paiva

## Orientador: Prof. Dr. Evaldo Miranda Coiado

Tese de doutorado apresentada à Faculdade de Engenharia Civil, Arquitetura e Urbanismo da UNICAMP, como parte dos requisitos necessários para a obtenção do título de doutor em Engenharia Civil, área de concentração em Recursos Hídricos

Vol.II

**Campinas – SP – Brasil** 

### dezembro de 2007

387

## FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE -UNICAMP

| P166i | Paiva, Luiz Evaristo Dias de<br>A influência do diâmetro representativo do material<br>do leito nas fórmulas de cálculo do transporte de<br>sedimentos em escoamentos com superfície livre / Luiz<br>Evaristo Dias de PaivaCampinas, SP: [s.n.], 2007. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Orientador: Evaldo Miranda Coiado<br>Tese (Doutorado) - Universidade Estadual de<br>Campinas, Faculdade de Engenharia Civil, Arquitetura e<br>Urbanismo.                                                                                               |
|       | 1. Transporte de sedimento. 2. Sedimentos em<br>suspensão. 3. Sedimentação e depósitos. I. Coiado,<br>Evaldo Miranda. II. Universidade Estadual de<br>Campinas. Faculdade de Engenharia Civil, Arquitetura e<br>Urbanismo. III. Título.                |

Título em Inglês: The influence of representative diameter of the bed material load in the formulae for calculating the sediment transport in free surface flows
Palavras-chave em Inglês: Discharge, Bedload, Open flow water, Sediment dimension, Granulometric data
Área de concentração: Recursos Hídricos
Titulação: Doutor em Engenharia Civil
Banca examinadora: Ana Inês Borri Genovez, Edevar Luvizotto Júnior, Antônio Augusto dos Santos Nogueira
Data da defesa: 13/12/2007
Programa de Pós-Graduação: Engenharia Civil

### UNIVERSIDADE ESTADUAL DE CAMPINAS/UNICAMP

#### FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E URBANISMO

# A INFLUÊNCIA DO DIÂMETRO REPRESENTATIVO DO MATERIAL DO LEITO NAS FÓRMULAS DE CÁLCULO DO TRANSPORTE DE SEDIMENTOS EM ESCOAMENTOS COM SUPERFÍCIE LIVRE

Luiz Evaristo Dias de Paiva

Tese de doutorado aprovada pela Banca Examinadora, constituída pelos professores:

authur

Prof. Dr. Evaldo Miranda Coiado Presidente e orientador/FEC/UNICAMP Jom Genovy Prof.Dra. Ana Inés Borri Genovez FEC/UNICAMP

Prof. Dr. Edevar Luvizotto Júnior

**FEC/UNICAMP** 

dilouid nonue

Prof. Dr. Antônio Augusto dos Santos Nogueira

EPUSP

Prof. Dr. Ademir Goulart Figueiredo UNESP

Campinas, 13 de dezembro de 2007

# ANEXO A

Comparação entre os diâmetros calculados pelas equações desenvolvidas na pesquisa e os diâmetros coletados no rio Atibaia

| DIA       | METRO  | OS DO I | LEITO   | DOPA     | RAOR    | IO ATI | BAIA    |                     |        | COMP | ARA ÇA     | O ENT    | RE DV  | J&D    |        | RELAQ    | AOPERC                | ENTUAL           | ENTRE O          | S VALORE           | S DE DV.         | I                 |
|-----------|--------|---------|---------|----------|---------|--------|---------|---------------------|--------|------|------------|----------|--------|--------|--------|----------|-----------------------|------------------|------------------|--------------------|------------------|-------------------|
|           | Granul | ometri  | a do ma | terial d | o leito |        |         |                     | (10)   | (11) | (12)       | (13)     | (14)   | (15)   | (16)   | Ε        | OS VALO               | RES MED          | DOS NOI          | RIO ATIBA          | AIA              |                   |
| (1)       | (2)    | (3)     | (4)     | (5)      | (6)     | (7)    | (8)     | (9)                 | C      | OMPA | RAÇÃO      | DED      | VJ [SC | H] COM | 4:     | (17)     | (18)                  | (19)             | (20)             | (21)               | (22)             | (23)              |
| N⁰        | D10    | Dl6     | D35     | D50      | D65     | D84    | D90     | D <sub>M SCHI</sub> | D10    | Dl6  | D35        | D50      | D65    | D84    | D90    |          |                       |                  |                  |                    |                  |                   |
|           | (mm)   | ແກກນ    | ແກກນ    | (mm)     | նուու   | (mm)   | ໌ເກາກນ້ | ້າມ                 |        |      |            |          |        |        |        |          |                       |                  |                  |                    |                  |                   |
| 1         | 0.150  | 0.180   | 0.340   | 0.640    | 0.970   | 1.560  | 1.860   | 109.006             | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 72570.5  | 60458.7               | 31960.5          | 16932.1          | 11137.7            | 6887.5           | 5760.5            |
| 2         | 0.190  | 0.240   | 0.370   | 0.540    | 0.880   | 2,770  | 3.820   | 81.613              | - 1    | 1    | 1          | - 1      | - 1    | ī      | 1      | 42854.3  | 33905.5               | 21957.6          | 15013.5          | 9174.2             | 2846.3           | 2036.5            |
| 3         | 0.240  | 0.290   | 0.480   | 0.680    | 1.040   | 2.960  | 4.110   | 62,846              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 26085,7  | 21570,9               | 12992,8          | 9142,0           | 5942,8             | 2023,2           | 1429,1            |
| 4         | 0,220  | 0,270   | 0,530   | 0,860    | 1,370   | 3,240  | 4,220   | 84,688              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 38394,4  | 31265,8               | 15878,8          | 9747,4           | 6081,6             | 2513,8           | 1906,8            |
| 5         | 0,240  | 0,280   | 0,400   | 0,510    | 0,640   | 0,970  | 1,230   | 44,982              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 18642,7  | 15965,1               | 11145,6          | 8720,1           | 6928,5             | 4537,4           | 3557,1            |
| 6         | 0,330  | 0,400   | 0,710   | 1,020    | 1,470   | 2,500  | 3,130   | 127,564             | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 38555,6  | 31790,9               | 17866,7          | 12406,2          | 8577,8             | 5002,5           | <b>3975,5</b>     |
| 7         | 0,270  | 0,320   | 0,450   | 0,570    | 0,730   | 1,130  | 1,420   | 86,083              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 31782,7  | 26801,0               | 19029,6          | 15002,3          | 11692,2            | 7518,0           | 5962,2            |
| 8         | 0,290  | 0,340   | 0,500   | 0,640    | 0,830   | 1,440  | 3,780   | 63,919              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 21941,1  | 18699,8               | 12683,9          | 9887,4           | 7601,1             | 4338,8           | 1591,0            |
| 9         | 0,360  | 0,440   | 0,690   | 0,970    | 1,500   | 4,470  | 4,940   | 63,406              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 17512,8  | 14310,4               | 9089,3           | 6436,7           | 4127,1             | 1318,5           | 1183,5            |
| 10        | 0,320  | 0,370   | 0,520   | 0,660    | 0,850   | 1,400  | 2,000   | 21,391              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 6584,6   | <b>5681,</b> 3        | 4013,6           | 3141,0           | 2416,6             | 1427,9           | 969 <i>,</i> 5    |
| 11        | 0,300  | 0,360   | 0,560   | 0,780    | 1,220   | 4,100  | 4,750   | 11,389              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 3696,5   | 3063,7                | 1933,8           | 1360,2           | 833,6              | 177,8            | 139,8             |
| 12        | 0,300  | 0,360   | 0,560   | 0,770    | 1,090   | 3,330  | 4,500   | 15,057              | 1      | 1    | . <u>1</u> | 1        | 1      | 1      | 1      | 4919,1   | 4082,6                | 2588,8           | 1855,5           | 1281,4             | 352,2            | 234,6             |
| 13        | 0,270  | 0,320   | 0,480   | 0,630    | 0,870   | 3,900  | 4,700   | 0,685               | 1      | 1    | 1          | 1        | 0      | 0      | 0      | 153,8    | 114,2                 | 42,8             | 8,8              | 26,9               | 469,1            | 585,8             |
| 14        | 0,270  | 0,320   | 0,470   | 0,640    | 0,920   | 2,300  | 4,020   | 11,263              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 4071,7   | 3419,8                | 2296,5           | 1659,9           | 1124,3             | 389,7            | 180,2             |
| R         | 0,280  | 0,320   | 0,490   | 0,660    | 0,950   | 2,170  | 3,160   | 2,797               | 1      | 1    | 1          | 1        | 1      | 1      | 0      | 899,0    | 774,1                 | 470,8            | 323,8            | 194,4              | 28,9             | 13,0              |
| 16        | 0,240  | 0,270   | 0,370   | 0,470    | 0,610   | 1,000  | 1,450   | 31,856              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 13173,5  | 11698,7               | 8509,8           | 6678,0           | 5122,4             | 3085,6           | 2097,0            |
| 17        | 0,310  | 0,370   | 0,510   | 0,630    | 0,800   | 1,290  | 1,770   | 122,399             | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 39383,4  | 32980,7               | 23899,7          | 19328,4          | 15199,8            | 9388,3           | 6815,2            |
| 18        | 0,280  | 0,340   | 0,510   | 0,690    | 0,970   | 4,770  | 5,110   | 49,799              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 17685,4  | 14546,8               | 9664,5           | 7117,3           | 5033,9             | 944,0            | 874,5             |
| 19        | 0,310  | 0,370   | 0,550   | 0,710    | 0,%0    | 3,630  | 4,620   | 85,198              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 27383,3  | 22926,6               | 15390,6          | 11899,8          | 8774,8             | 2247,1           | 1744,1            |
| 20        | 0,290  | 0,350   | 0,500   | 0,630    | 0,800   | 1,240  | 1,640   | 102,415             | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 35215,6  | 29161,5               | 20383,1          | 16156,4          | 12701,9            | 8159,3           | 6144,8            |
| 21        | 0,340  | 0,440   | 0,840   | 1,260    | 2,140   | 4,520  | 4,960   | 1,921               | 1      | 1    | Į          | 1        | U      | U      | U      | 464,9    | 336,5                 | 128,7            | 52,4             | 11,4               | 135,3            | 158,2             |
| 77        | 0,300  | 0,390   | 0,750   | 1,150    | 1,870   | 4,270  | 4,820   | 24,538              | 1      | 1    | 1          | 1        | 1      | 1      | 1      | 8079,3   | 619L8<br>200711       | 31/L/<br>18601.4 | 2033,7           | 1212,2             | 4/4,/            | 409,1             |
| 23        | 0,300  | 0,360   | 0,510   | 0,030    | 0,810   | 1,200  | 1,710   | 80,230<br>145.007   | 1      | 1    | 1          | 1        | 1      | 1      | 1<br>1 | 20/45,4  | 454647                | 20022.0          | 12083,5          | 984L,/             | 12025.0          | 4009,7            |
| 24        | 0,270  | 0,320   | 0,470   | 0,590    | 0,740   | 1,110  | 1,3/0   | 140,007             | 1      | 1    |            | 1        | 1      | 1      | 1<br>1 | 405 45 0 | 42404,7               | 30744,0          | 24013,0          | 1/000,0            | 10007.0          | 10042,0           |
| 2         | 0,250  | 0,300   | 0,440   | 0,500    | 0,/30   | 1,180  | 1,000   | 77 016              | I      | 1    |            |          | 1      | 1      | 1      | 48545,3  | 40437,8               | 2/539,4          | 21010,/          | 10559,4            | 10206,2          | /220,1            |
| 20<br>77  | 0,240  | 0,290   | 0,420   | 0,220    | 0,740   | 1,340  | 2,200   | /2,910<br>20 107    | I      | 1    |            |          | 1      | 1      | 1      | 31531,/  | 12076,0               | 00111            | 13/049           | E 400 0            | 2202,4           | J497,1<br>700 0   |
| 4/        | 0,230  | 0,200   | 0,420   | 0,240    | 0,/10   | 1,200  | 4,400   | 39,107              | I      | 1    |            | 1        | 1      | 1      | 1      | 16902,9  | 1,0000,7              | 741LI<br>10127 1 | 7142,0           | 2406,0<br>£250.0   | 2120,9<br>4212.0 | 2204.2            |
| -40<br>70 | 0,420  | 0.320   | 0,410   | 0,490    | 0,020   | 0,770  | 1,200   | 41,701              | 1      | 1    | 1          | 1        | 1      | 1      | 1<br>1 | 170/12,4 | 14327,0               | 111002.4         | (703,7<br>9071 5 | 0320,2<br>7730 E   | 4313,8           | 3324,3<br>/1730.2 |
| 30        | 0,240  | 0,200   | 0,350   | 0,400    | 0,270   | 0,000  | 1,000   | 48 176              | I<br>1 | 1    | 1          | <u>1</u> | 1      | 1      | 1<br>1 | 17742,7  | 15305,4               | 11103,4          | 0741,7<br>2020 9 | 7311 7             | £313.0           | 4499 2            |
| 31        | 0,210  | 0,310   | 0370    | 0,230    | 0,000   | 0,050  | 1,020   | 29 224              |        | 4    | 4          | 4        | 4      | 4      | 4      | 12605.0  | 10723 6               | 7798 2           | 6447 S           | 47.70.6            | 34 83 6          | 2556 7            |
| 31        | 0,430  | 0,240   | 0,370   | 0,470    | 0,000   | 1.660  | 7 300   | 23,224              | 1      |      | 4          | 4        |        |        |        | 12000,9  | 1/1/23,3              | 0848.4           | 7620 6           | 41 10,0<br>56 00 2 | J103,3<br>3887 4 | 2000,1            |
|           | 0,400  | 0,340   | 0,200   | . 0,020  | . 0,0/0 | 7000   |         | -+3,3 JZ            |        |      | 1          |          |        |        |        | 11011,3  | 1 <del>4 1</del> 03,0 | 3010,4           | 1 929,9          | JU UU,Z            | 2001,9           | 2000,2            |

Tabela 5.6a - Comparação entre dos diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIA      | METRO  | DS DO I | LEITO   | DOPA      | RA OR   | IO ATI         | BAIA  |          | (    | COMP | ARA ÇA | O ENT  | RE DV  | J&D    |      | RELAC              | AOPERC  | ENTUAL             | ENTRE O              | S VALORI  | S DE DV | J                |
|----------|--------|---------|---------|-----------|---------|----------------|-------|----------|------|------|--------|--------|--------|--------|------|--------------------|---------|--------------------|----------------------|-----------|---------|------------------|
|          | Granul | ometriz | ı do ma | terial de | o leito |                |       |          | (10) | (11) | (12)   | (13)   | (14)   | (15)   | (16) | E                  | OS VALO | RES MED            | DOS NO               | RIO ATIB. | AIA     |                  |
| (1)      | (2)    | (3)     | (4)     | (5)       | (6)     | $-\mathcal{O}$ | (8)   | (9)      | C    | OMPA | RAÇĂ   | D DE D | VJ [SC | H] COM | 4:   | (17)               | (18)    | (19)               | (20)                 | (21)      | (22)    | (23)             |
| N⁰       | D10    | D16     | D35     | D50       | D65     | D84            | D90   | D N SCHI | D10  | Dl6  | D35    | D50    | D65    | D84    | D90  |                    |         |                    |                      |           |         |                  |
|          | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  | ດ້ານການ  |      |      |        |        |        |        |      |                    |         |                    |                      |           |         |                  |
| 33       | 0,280  | 0,320   | 0,450   | 0,570     | 0,730   | 1,230          | 2,180 | 0,061    | 0    | 0    | 0      | 0      | 0      | 0      | 0    | 360,3              | 426,0   | 639,7              | 837,0                | 1100,0    | 1921,9  | 3483,6           |
| 34       | 0,270  | 0,300   | 0,410   | 0,510     | 0,630   | 0,880          | 1,050 | 21,084   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 7708,8             | 6927,9  | 5042,4             | 4034,1               | 32 46,6   | 2295,9  | 1908,0           |
| 35       | 0,280  | 0,320   | 0,440   | 0,540     | 0,680   | 1,000          | 1,270 | 31,724   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 11229,9            | 9813,7  | 7109,9             | 5774,8               | 4565,3    | 3072,4  | 2397,9           |
| 36       | 0,210  | 0,250   | 0,360   | 0,450     | 0,580   | 0,890          | 1,100 | 51,336   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 24345,9            | 20434,5 | 14160,1            | 11 308,1             | 8751,1    | 5668,1  | 4566,9           |
| 37       | 0,270  | 0,320   | 0,450   | 0,570     | 0,740   | 1,180          | 1,520 | 22,831   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 8356,1             | 7034,8  | 4973,7             | 3905,5               | 2985,3    | 1834,9  | 1402,1           |
| 38       | 0,260  | 0,330   | 0,530   | 0,730     | 1,010   | 1,790          | 3,150 | 101,303  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 38862,7            | 30597,9 | 19013,8            | 13777,1              | 9930,0    | 5559,4  | 3116,0           |
| 39       | 0,300  | 0,340   | 0,480   | 0,600     | 0,750   | 1,140          | 1,450 | 32,187   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 10629,1            | 9366,8  | 6605,7             | 5264,5               | 4191,6    | 2723,4  | 2119,8           |
| 40       | 0,320  | 0,370   | 0,550   | 0,710     | 0,950   | 1,600          | 2,510 | 167,202  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 52150,5            | 45089,6 | 30300,3            | 23449,5              | 17500,2   | 10350,1 | 6561,4           |
| 41       | 0,280  | 0,320   | 0,450   | 0,570     | 0,720   | 1,080          | 1,360 | 150,806  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 53759,2            | 47026,8 | 33412,4            | 26357,1              | 208 45,2  | 13863,5 | 10988,7          |
| 42       | 0,220  | 0,270   | 0,410   | 0,570     | 0,900   | 4,170          | 4,790 | 75,518   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 34226,1            | 27869,5 | 18318,9            | 13148,7              | 8290,8    | 1711,0  | 1476,6           |
| 43       | 0,290  | 0,340   | 0,460   | 0,570     | 0,700   | 1,020          | 1,280 | 63,834   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 21911,7            | 18674,7 | 13777,0            | 11098,9              | 9019,1    | 6158,2  | 4887,0           |
| 44       | 0,170  | 0,250   | 0,550   | 0,820     | 1,250   | 4,840          | 5,150 | 226,471  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 133118,4           | 90488,5 | 41076,6            | 27518,5              | 18017,7   | 4579,2  | 4297,5           |
| 45       | 0,210  | 0,260   | 0,410   | 0,590     | 0,880   | 1,790          | 2,700 | 164,660  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 78309,6            | 63230,8 | 40061,0            | 27808,5              | 18611,4   | 90 98,9 | 5998,5           |
| 46       | 0,180  | 0,200   | 0,300   | 0,410     | 0,600   | 1,200          | 1,850 | 108,199  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 60010,8            | 53999,7 | 35966,5            | 26290,1              | 17933,2   | 8916,6  | 5748,6           |
| 47       | 0,170  | 0,210   | 0,390   | 0,650     | 1,140   | 2,970          | 4,030 | 160,948  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 94575,3            | 76541,9 | 41168,7            | 24661,2              | 14018,2   | 5319,1  | 3893,7           |
| 48       | 0,150  | 0,170   | 0,210   | 0,250     | 0,330   | 0,720          | 1,100 | 138,175  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 92016,5            | 811/9,2 | 65697,5            | 55169,9              | 41771,1   | 19090,9 | 12461,3          |
| 49       | 0,150  | 0,170   | 0,210   | 0,240     | 0,320   | 0,910          | 1,440 | 105,003  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 69901,8<br>76090.6 | 01000,J | 49901,3            | 43651,1              | 32113,4   | 77696   | (191,9           |
| 50       | 0,160  | 0,1/0   | 0,230   | 0,320     | 0,000   | 1,550          | 2,790 | 121,129  | 1    | 1    |        |        | 1      | 1      |      | 10900,0            | 1000,2  | 92029,0<br>20067-2 | 31 940,2<br>32 200 4 | 10021,9   | 7002 6  | 420 3,0          |
| 21<br>52 | 0,170  | 0,190   | 0,220   | 0,330     | 0,490   | 2.0.40         | 1,260 | 77 292   | 4    |      |        |        |        | 4      |      | 45440,1            | 40040,4 | 30001,3<br>37636 7 | 23 JUU,1<br>45 376 6 | 130 33,0  | 2602.2  | 4133,3<br>2606.7 |
| 74<br>53 | 0,170  | 0,190   | 0,200   | 0,200     | 0,500   | 4040           | 1 720 | 60.604   | 4    |      |        |        | 4      | 4      |      | 37833.8            | 33648 0 | 21 330,1           | 46303.8              | 44364 7   | 66607   | 4834.6           |
| 20<br>24 | 0,100  | 0,100   | 0,200   | 0,370     | 0,500   | 0,910          | 1,200 | 135 965  | 1    | 4    | 1      | -      |        |        |      | 970176             | 90543 1 | 75435 9            | 678823               | 59015.0   | 270929  | 146788           |
|          | 0,140  | 0 160   | 0,100   | 0.240     | 0,200   | 0,500          | 0,320 | 84,270   | 1    | 1    | 4      | 1      | 1      | 1      | 1    | 60093.0            | 52568.9 | 42035.1            | 35012.6              | 27990.1   | 13945.0 | 9814.1           |
| 56       | 0 160  | 0 170   | 0,200   | 0 340     | 0.660   | 1 3 90         | 1 930 | 95 443   | 1    |      | 4      | 4      | 4      | . 1    | . 1  | 59551 9            | 56043.0 | 41 397 0           | 27169.5              | 14361 1   | 6766 4  | 4845.2           |
| 57       | 0.170  | 0,190   | 0.250   | 0.320     | 0.420   | 0.710          | 0.950 | 53,287   | 1    | 1    | 4      | 1      | 1      | . 1    | 1    | 31245.4            | 27945.8 | 21214.8            | 16552.2              | 12587.4   | 7405.2  | 5509.2           |
| 58       | 0.140  | 0,160   | 0.190   | 0.230     | 0.280   | 1.460          | 4.690 | 29.566   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 21018.9            | 18379.0 | 15461.3            | 12755.0              | 10459.4   | 1925.1  | 530.4            |
| 59       | 0.160  | 0.180   | 0.230   | 0.290     | 0.390   | 0.750          | 1.140 | 81.847   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 51054.2            | 45370.4 | 35 485.5           | 28123.0              | 20886.3   | 10812.9 | 7079.5           |
| 60       | 0,170  | 0,190   | 0,270   | 0,400     | 0,750   | 1,660          | 2,500 | 88,158   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 51757.7            | 46299.0 | 32551.2            | 21939.5              | 11654.4   | 5210.7  | 3426.3           |
| 61       | 0,170  | 0,190   | 0,270   | 0,360     | 0,570   | 1,240          | 1,640 | 47,538   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 27863,3            | 24919,8 | 17506,5            | 13104,9              | 8239,9    | 3733,7  | 2798,6           |
| 62       | 0,180  | 0,210   | 0,370   | 0,820     | 1,560   | 3,060          | 3,790 | 140,379  | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 77888,3            | 66747,1 | 37840,3            | 17019,4              | 8898,7    | 4487,5  | 3603,9           |
| 63       | 0,160  | 0,190   | 0,310   | 0,520     | 0,810   | 1,370          | 1,660 | 55,235   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 34421,8            | 28971,0 | 17717,7            | 10522,1              | 6719,1    | 3931,7  | 3227,4           |
| 64       | 0,150  | 0,180   | 0,340   | 0,630     | 0,970   | 1,560          | 1,860 | 19,608   | 1    | 1    | 1      | 1      | 1      | 1      | 1    | 12971,8            | 10793,1 | 5667,0             | 3012,3               | 1921,4    | 1156,9  | 954,2            |

Tabela 5.6a - Comparação entre dos diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIA      | METRO  | OS DO I | LEITO   | DOPA      | RA OR   | I O ATI        | BAIA  |                     | (    | COMP  | ARA ÇA | O ENT  | RE DV  | J & D  |      | RELA               | ÇAOPERC  | ENTUAL  | ENTRE O            | S VALORI            | S DE DV  | J                  |
|----------|--------|---------|---------|-----------|---------|----------------|-------|---------------------|------|-------|--------|--------|--------|--------|------|--------------------|----------|---------|--------------------|---------------------|----------|--------------------|
|          | Granul | ometria | ı do ma | terial de | o leino |                |       |                     | (10) | (11)  | (12)   | (13)   | (14)   | (15)   | (16) | E                  | OS VALO  | RES MED | DOS NOI            | RIO ATIB            | AIA      |                    |
| (1)      | (2)    | (3)     | (4)     | (5)       | (6)     | $-\mathcal{O}$ | (8)   | (9)                 | C    | OMPAI | RAÇÃO  | D DE D | VJ [SC | нј сол | 4:   | (17)               | (18)     | (19)    | (20)               | (21)                | (22)     | (23)               |
| N⁰       | D10    | Dl6     | D35     | D50       | D65     | D84            | D90   | D <sub>M SCHI</sub> | D10  | Dl6   | D35    | D50    | D65    | D84    | D90  |                    |          |         |                    |                     |          |                    |
|          | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  | ້າມ                 |      |       |        |        |        |        |      |                    |          |         |                    |                     |          |                    |
| 65       | 0.170  | 0.190   | 0.260   | 0.380     | 0.600   | 1.180          | 1.750 | 196.878             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 115710.4           | 103519.8 | 75622.2 | 51709.9            | 32712.9             | 16584.5  | 11150.2            |
| 66       | 0,170  | 0,180   | 0.220   | 0,260     | 0,310   | 0,410          | 0.470 | 83,753              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 49166,5            | 46429,4  | 37969,5 | 32112,7            | 26917,1             | 20327,6  | 17719,8            |
| 67       | 0,170  | 0,190   | 0,250   | 0,320     | 0,440   | 1,190          | 1,680 | 125,439             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 73687,8            | 65920,6  | 50075,7 | 39099,8            | 28408,9             | 10441,1  | 7366,6             |
| 68       | 0,170  | 0,180   | 0,230   | 0,270     | 0,320   | 0,430          | 0,560 | 155,543             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 91395,7            | 86312,6  | 67527,3 | 57508,4            | 48507,1             | 36072,7  | 27675,5            |
| 69       | 0,170  | 0,190   | 0,250   | 0,300     | 0,360   | 0,570          | 1,690 | 200,306             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 117726,8           | 105324,0 | 80022,2 | 66668,5            | 555 40,5            | 350 41,3 | 11752,4            |
| 70       | 0,230  | 0,260   | 0,340   | 0,430     | 0,620   | 1,410          | 2,050 | 116,280             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 50456,7            | 44623,3  | 34100,1 | 26942,0            | 18654,9             | 81 46,8  | 5572,2             |
| 71       | 0,230  | 0,250   | 0,310   | 0,370     | 0,440   | 0,740          | 1,180 | 110,480             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 47934,7            | 44091,9  | 35538,6 | 29759,4            | 25009,0             | 14829,7  | 9262,7             |
| 72       | 0,230  | 0,260   | 0,350   | 0,440     | 0,640   | 1,500          | 2,200 | 93,710              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 40643,7            | 35942,5  | 26674,4 | 21197,8            | 14542,3             | 61 47,4  | 4159,6             |
| 73       | 0,190  | 0,230   | 0,320   | 0,410     | 0,610   | 1,630          | 3,000 | 84,399              | 1    |       | 1      | 1      | 1      | 1      | 1    | 44320,5            | 36595,2  | 26274,7 | 20485,1            | 13735,9             | 5077,8   | 2713,3             |
| 74       | 0,240  | 0,270   | 0,350   | 0,420     | 0,550   | 0,990          | 1,360 | 48,440              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 20083,4            | 17840,8  | 13740,1 | 11433,4            | 8/0/,3              | 47 92,9  | 3461,8             |
| 12       | 0,200  | 0,250   | 0,220   | 0.440     | 1,100   | 2,920          | 3,770 | 03,002<br>42,4.22   | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 31430,8            | 20124,1  | 15665,4 | 9753,4             | 30 JZ,9<br>40 4 5 5 | 2402,4   | 1572,7             |
| /0<br>TT | 0,170  | 0,210   | 0,320   | 0,400     | 0,000   | 13/0           | 4,090 | 43,133              | 1    | 4     | 4      | 4      |        |        |      | 29212,3            | 20435,0  | 9627.5  | 9210,1<br>7024 Q   | 4910,0              | 1429,3   | 904,0<br>22026     |
| 78       | 0 1 20 | 0 220   | 0,410   | 0.450     | 0,000   | 1980           | 3 050 | 42 0 46             | 1    | 4     | 1      | 1      |        | 1      | 4    | 23259.1            | 19012 0  | 12641 3 | 9243.6             | 5506.2              | 2010,5   | 12786              |
| 79       | 0,190  | 0.230   | 0,360   | 0.540     | 1.000   | 2,700          | 3.730 | 50.930              | 1    | 1     | 1      | 1      | 1      | . 1    | 1    | 26705.0            | 22043.3  | 14047.1 | 9331.4             | 4993.0              | 1786.3   | 1265.4             |
| 80       | 0.210  | 0.240   | 0.360   | 0.500     | 0.920   | 3.270          | 4.350 | 55,139              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 26156.5            | 22874.5  | 15216.3 | 10927.7            | 5893,3              | 1586,2   | 1167.6             |
| 81       | 0,190  | 0,230   | 0,350   | 0,520     | 1,070   | 3,850          | 4,630 | 40,001              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 20953,3            | 17291,8  | 11328,9 | 7592,5             | 36 38,4             | 939,0    | 764,0              |
| 82       | 0,230  | 0,270   | 0,380   | 0,530     | 0,880   | 1,950          | 2,890 | 89,219              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 38690,8            | 32944,0  | 23378,7 | 16733,8            | 100 38,5            | 4475,3   | 2987,2             |
| 83       | 0,230  | 0,270   | 0,400   | 0,640     | 1,290   | 4,190          | 4,790 | 174,620             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 75821,8            | 64574,1  | 43555,0 | 27184,4            | 13436,4             | 4067,5   | 3545,5             |
| 84       | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 1,820          | 2,370 | 63,791              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 30276,8            | 26479,7  | 19230,7 | 15088,4            | 8520,4              | 3405,0   | 2591,6             |
| 85       | 0,230  | 0,270   | 0,390   | 0,670     | 1,650   | 4,070          | 4,690 | 101,811             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 44165,5            | 37607,7  | 26005,3 | 15095,6            | 6070,3              | 2401,5   | 2070,8             |
| 86       | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 3,000          | 4,160 | 109,939             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 52251,9            | 45707,9  | 33214,8 | 26075,9            | 14756,6             | 3564,6   | 2542,8             |
| 87       | 0,210  | 0,250   | 0,350   | 0,500     | 1,100   | 3,500          | 4,400 | 99,758              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 47404,0            | 39803,3  | 28402,4 | 19851,7            | 8968,9              | 2750,2   | 2167,2             |
| 88       | 0,210  | 0,240   | 0,310   | 0,380     | 0,480   | 0,930          | 1,400 | 89,908              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 42713,2            | 37361,5  | 28902,5 | 23559,9            | 18630,8             | 9567,5   | 6322,0             |
| 89       | 0,190  | 0,220   | 0,310   | 0,380     | 0,500   | 0,830          | 1,110 | 101,507             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 53324,5            | 46039,3  | 32644,0 | 26612,2            | 20201,3             | 12129,7  | 9044,7             |
| 90       | 0,200  | 0,230   | 0,310   | 0,370     | 0,460   | 0,770          | 1,100 | 128,305             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 00040Z,4           | 55684,7  | 41288,7 | 54577,0            | 46472.2             | 16563,0  | 11564,1<br>40050 5 |
| 91       | 0,220  | 0,240   | 0,300   | 0,300     | 0,420   | 0,020          | 0,260 | 190,003             | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 00010,5<br>40350 f | 37401,3  | 28099 4 | 34234,2<br>23760 8 | 40472,2             | 299 92,0 | 13033,5            |
| 93       | 0.230  | 0.260   | 0,330   | 0.400     | 0,450   | 0,010          | 1,030 | 69.616              | 1    | 4     | 1      | 4      | 1      | 1      | 4    | 30167.6            | 26675.2  | 20033,1 | 17303.9            | 13550.1             | 8601.9   | 6658.8             |
| 94       | 0.230  | 0.250   | 0.330   | 0.400     | 0.510   | 0.880          | 1.160 | 52.692              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 22809.7            | 20977-0  | 15867.4 | 13073.1            | 10231.8             | 5887.8   | 4442.4             |
| 95       | 0,200  | 0,230   | 0,320   | 0,390     | 0,510   | 0,840          | 1,180 | 34,141              | . 1  | 1     | 1      | 1      | . 1    | 1      | 1    | 16970.3            | 14743.8  | 10569.0 | 8654.0             | 6594.3              | 3964.4   | 2793.3             |
| 96       | 0,150  | 0,200   | 0,400   | 0,750     | 1,480   | 4,440          | 4,920 | 56,379              | 1    | 1     | 1      | 1      | 1      | 1      | 1    | 37486,0            | 28089,5  | 13994,7 | 7417,2             | 3709,4              | 1169,8   | 1045,9             |
| 30       | 0,120  | 0,200   | 0,400   | 0,720     | 1,400   |                | 4,720 | 00,010              | •    | 1     |        | •      | •      | •      |      | J1400,0            | 20009,9  | 13334,1 | 1411,2             | 3103,4              | 1103,0   | 1049,              |

Tabela 5.6a - Comparação entre dos diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIA  | METR   | OS DO I | LEITO   | DOPA     | RA OR   | I O ATI        | BAIA  |                    |      | COMP | ARA ÇA | O ENT  | RE DV  | J & D |            | RELAC              | CAOPERC             | ENTUAL             | ENTRE O            | S VALORE  | S DE DV          | Ţ                |
|------|--------|---------|---------|----------|---------|----------------|-------|--------------------|------|------|--------|--------|--------|-------|------------|--------------------|---------------------|--------------------|--------------------|-----------|------------------|------------------|
|      | Granul | ometria | a do ma | terial d | o leino |                |       |                    | (10) | (11) | (12)   | (13)   | (14)   | (15)  | (16)       | E                  | OS VAL O            | RES MED            | DOS NO:            | RIO ATIB. | AIA              |                  |
| (1)  | (2)    | (3)     | (4)     | (5)      | (6)     | $-\mathcal{O}$ | (8)   | (9)                | C    | OMPA | RAÇÃO  | D DE D | VJ [SC | H] CO | <b>1</b> : | (17)               | (18)                | (19)               | (20)               | (21)      | (22)             | (23)             |
| N⁰   | D10    | Dl6     | D35     | D50      | D65     | D84            | D90   | D <sub>MSCHI</sub> | D10  | Dl6  | D35    | D50    | D65    | D84   | D90        |                    |                     |                    |                    |           |                  |                  |
|      | (mm)   | (mm)    | (mm)    | (mm)     | (mm)    | (mm)           | նատմ  | fum)               |      |      |        |        |        |       |            |                    |                     |                    |                    |           |                  |                  |
| 97   | 0.210  | 0.280   | 0.550   | 0.890    | 1.410   | 3.490          | 4.400 | 54.656             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 25926.7            | 19420.0             | 9837.5             | 6041.1             | 3776.3    | 1466.1           | 1142.2           |
| 98   | 0.220  | 0.290   | 0.550   | 0.890    | 1.410   | 4,000          | 4.700 | 61.094             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 27670.0            | 20966.9             | 11008.0            | 6764.5             | 4232,9    | 1427,4           | 1199,9           |
| 99   | 0.150  | 0.220   | 0.430   | 0.650    | 0.980   | 1.840          | 2.460 | 73,154             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 48669,3            | 33151,8             | 16912,5            | 11154,5            | 7364,7    | 3875,8           | 2873,7           |
| 100  | 0,160  | 0,210   | 0,390   | 0,580    | 0,880   | 1,630          | 2,250 | 18,898             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 11711,1            | 8899,0              | 4745,6             | 3158,2             | 2047,5    | 1059,4           | 739,9            |
| 101  | 0,140  | 0,160   | 0,230   | 0,300    | 0,400   | 0,960          | 4,370 | 67,089             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 47820,7            | 41830,6             | 29069,1            | 22263,0            | 16672,3   | 6888,4           | 1435,2           |
| 102  | 0,150  | 0,180   | 0,250   | 0,320    | 0,420   | 0,670          | 0,850 | 61,271             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 40747,4            | 33939,5             | 24408,4            | 19047,2            | 14488,4   | 90 44,9          | 7108,4           |
| 103  | 0,150  | 0,170   | 0,260   | 0,340    | 0,470   | 0,830          | 1,090 | 73,901             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 49167,2            | 43371,1             | 28323,4            | 21635,5            | 15623,6   | 8803,7           | 6679,9           |
| 104  | 0,150  | 0,180   | 0,290   | 0,410    | 0,590   | 1,080          | 1,440 | 51,741             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 34393,8            | 28644,9             | 17741,6            | 12519,7            | 8669,6    | 46 90,8          | 3493,1           |
| 105  | 0,160  | 0,190   | 0,250   | 0,320    | 0,430   | 0,960          | 1,620 | 84,173             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 52508,4            | 44201,8             | 33569,4            | 26204,2            | 19475,2   | 8668,1           | 5095,9           |
| 106  | 0,170  | 0,190   | 0,240   | 0,290    | 0,350   | 0,500          | 0,630 | 128,129            | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 75270,0            | 67336,4             | 53287,1            | 44082,4            | 36508,3   | 25525,8          | 20237,9          |
| 107  | 0,190  | 0,210   | 0,270   | 0,320    | 0,370   | 0,500          | 0,590 | 130,723            | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 68701,5            | 62149,0             | 48315,9            | 40750,9            | 352 30,5  | 260 44,6         | 22056,4          |
| 108  | 0,160  | 0,180   | 0,240   | 0,290    | 0,350   | 1,510          | 0,670 | 82,311             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 51344,6            | 45628,6             | 34196,4            | 28283,2            | 23417,5   | 160 39,5         | 12185,3          |
| 109  | 0,210  | 0,260   | 0,410   | 0,620    | 0,980   | 1,000          | 2,300 | 148,516            | 1    | 1    | 1      | 1      | 1      | 1     | 1          | (UD21,8<br>664024  | 57021,4             | 30123,4            | 23854,2            | 15054,7   | 8243,b           | 60522            |
| 110  | 0,470  | 0,310   | 0,200   | 0,110    | 1,020   | 1,000          | 2,300 | 100,430            | 4    |      |        |        |        | 1     |            | 00403,1<br>40770 6 | 0 JOSO,U<br>40406 8 | 33191,9<br>26664 7 | 23344,0<br>47046.4 | 10219,4   | 914r,r<br>5556 A | 0900,0<br>4426.0 |
| 111  | 0,220  | 0,200   | 0,410   | 0,040    | 1,020   | 1,740          | 4,570 | 100,100            | 4    | 4    |        | 4      | 4      |       | 4          | 64808.5            | 42103,0<br>56342.4  | 41776 4            | 34062.3            | 269.45.2  | 17208 9          | 4130,3           |
| 113  | 0,200  | 0,250   | 0,310   | 0,500    | 0,460   | 0,720          | 1 220 | 69.181             | 1    | - 1  |        | 1      | -      |       | 1          | 31345.8            | 27572.3             | 19665.9            | 15622,9            | 12037.0   | 7338.8           | 5570.5           |
| 114  | 0.220  | 0.260   | 0,350   | 0,460    | 0.630   | 1.180          | 1.860 | 67.658             | 1    | 1    | 1      | 1      | . 1    | . 1   | . 1        | 30653.7            | 25922.3             | 18693.9            | 14608.3            | 10639.4   | 5633.7           | 3537.5           |
| 115  | 0.190  | 0.230   | 0.320   | 0.400    | 0.520   | 0.810          | 1.000 | 151,217            | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 79487,8            | 65646,4             | 47155,2            | 37704,2            | 28980,2   | 18568,7          | 15021,7          |
| 116  | 0,210  | 0,240   | 0,320   | 0,380    | 0,480   | 0,740          | 0,940 | 61,448             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 29160,8            | 25503,2             | 19102,4            | 16070,5            | 12701,6   | 8203,7           | 6437,0           |
| 117  | 0,180  | 0,210   | 0,300   | 0,390    | 0,510   | 0,910          | 1,200 | 75,988             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 42115,8            | 36084,9             | 25229,5            | 19384,2            | 147 99,7  | 8250,4           | 6232,4           |
| 118  | 0,180  | 0,220   | 0,340   | 0,470    | 0,730   | 1,820          | 3,210 | 50,572             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 27995,5            | 22887,2             | 14774,1            | 10660,0            | 6827,6    | 2678,7           | 1475,4           |
| 119  | 0,200  | 0,250   | 0,440   | 0,790    | 1,380   | 3,000          | 3,880 | 57,459             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 28629,4            | 22883,5             | 12958,8            | 7173,3             | 4063,7    | 1815,3           | 1380,9           |
| 120  | 0,210  | 0,280   | 0,560   | 0,920    | 1,520   | 3,030          | 3,850 | 36,043             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 17063,3            | 12772,5             | 6336,2             | 3817,7             | 2271,2    | 1089,5           | 836,2            |
| 121  | 0,210  | 0,270   | 0,480   | 0,730    | 1,130   | 2,320          | 3,550 | 44,092             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 20896,0            | 16230,2             | 9085,7             | 5939,9             | 3801,9    | 1800,5           | 1142,0           |
| 122  | 0,200  | 0,240   | 0,370   | 0,590    | 1,130   | 2,600          | 3,750 | 15,324             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 7562,0             | 6285,0              | 4041,6             | 2497,3             | 1256,1    | 489,4            | 308,6            |
| 123  | 0,210  | 0,260   | 0,480   | 0,860    | 1,430   | 3,130          | 4,060 | 56,332             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 26724,6            | 21566,0             | 11635,8            | 6450,2             | 3839,3    | 1699,7           | 1287,5           |
| 124  | 0,210  | 0,290   | 0,540   | 0,770    | 1,080   | 1,810          | 2,880 | 38,504             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 18235,3            | 13177,3             | 7030,4             | 4900,5             | 3465,2    | 2027,3           | 1237,0           |
| 125  | 0,230  | 0,300   | 0,680   | 1,180    | 1,840   | 3,410          | 4,160 | 55,762             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 24144,1            | 18487,2             | 8100,2             | 4625,6             | 2930,5    | 1535,2           | 1240,4           |
| 120  | 0,300  | 0,380   | 0,000   | 0,950    | 1,330   | 2,270          | 2,950 | 105,075            | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 34925,1            | 27991,4             | 15820,5            | 10960,6<br>44740.0 | 7800,4    | 4528,9           | 3461,9           |
| 1227 | 0,250  | 0,290   | 0,480   | 0,080    | 0,980   | 1,920          | 2,830 | 00,300<br>20.000   | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 32040,5<br>460647  | 21012,5             | 10043,0            | 11/10,0            | 0100,6    | 4005,7           | 2139,8           |
| 178  | 0,220  | 0,280   | 0,540   | 0,850    | 1,520   | 2,030          | 3,500 | 35,980             | 1    | 1    | 1      | 1      | 1      | 1     | 1          | 16254,7            | 12/50,1             | 656J,U             | 4133,0             | 2625,8    | 1268,1           | 910,7            |

Tabela 5.6a - Comparação entre dos diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIA | METRO  | OS DO I | LEITO   | DOPA     | RA OR   | IO ATI          | BAIA           |                  | (    | COMP | ARA ÇA | O ENT | RE DV  | J&D    |            | RELA               | ÇAOPERC   | ENTUAL            | ENTRE O           | S VALORI           | S DE DV  | Ţ       |
|-----|--------|---------|---------|----------|---------|-----------------|----------------|------------------|------|------|--------|-------|--------|--------|------------|--------------------|-----------|-------------------|-------------------|--------------------|----------|---------|
|     | Granul | ometria | a do ma | terial d | o leito |                 |                |                  | (10) | (11) | (12)   | (13)  | (14)   | (15)   | (16)       | E                  | OS VAL C  | RES MEL           | DID OS NO         | RIO ATIB.          | AIA      |         |
| (1) | (2)    | (3)     | (4)     | (5)      | (6)     | $(\mathcal{T})$ | (8)            | (9)              | С    | OMPA | RAÇÃO  | DDED  | VJ [SC | нј сол | <b>1</b> : | (17)               | (18)      | (19)              | (20)              | (21)               | (22)     | (23)    |
| N°  | D10    | D16     | D35     | D50      | D65     | D84             | D90            | D N BCH          | D10  | D16  | D35    | D50   | D65    | D84    | D90        |                    |           |                   |                   |                    |          |         |
|     | (mm)   | (mm)    | (mm)    | (mm)     | (mm)    | (mm)            | (mm)           | () p ()          |      |      |        |       |        |        |            |                    |           |                   |                   |                    |          |         |
| 120 | 0 7 20 | 0.260   | 0.370   | : 0 200  | 0 720   | 1.470           | 1 070          | 25 A77           | - 1  | 4    | 4      | - 1   | - 1    | - 1    | 4          | 45335.0            | 4 25 45 2 | 0.499.5           | 6 0 0 5           | 46 20 2            | 2242.4   | 470.0.0 |
| 130 | 0,230  | 0,200   | 0,570   | 0,200    | 1 090   | 1,470           | 1,970          | 89 8 48          | 1    | 4    | 1      | 1     |        |        |            | 26325.0            | 22362.0   | 3400,5<br>14161 6 | 10725 1           | 8249.3             | 5586.6   | 4756.6  |
| 131 | 0,340  | 0,400   | 0,030   | 0,850    | 1,000   | 1,500           | 1,020          | 82.543           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 54928.4            | 39206.0   | 28363.0           | 22828.5           | 18659.7            | 12406.5  | 9726.5  |
| 132 | 0.110  | 0.130   | 0,170   | 0.200    | 0.230   | 0.300           | 0.340          | 140.126          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 127287.0           | 107689.0  | 82326.9           | 69962.9           | 60824.2            | 46608.6  | 41113.4 |
| 133 | 0,140  | 0,150   | 0,180   | 0,200    | 0,230   | 0.290           | 0.330          | 166,944          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 119145,8           | 111196,1  | 92646,7           | 83372,1           | 72484,4            | 57466,9  | 50489,1 |
| 134 | 0,150  | 0,160   | 0,190   | 0,220    | 0,250   | 0,320           | 0,380          | 191,331          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 127453,8           | 119481,7  | 100600,4          | 86868,5           | 76432,3            | 59690,9  | 50250,2 |
| 135 | 0,150  | 0,160   | 0,180   | 0,200    | 0,220   | 0,260           | 0,280          | 149,375          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 99483,2            | 93259,2   | 82886,0           | 74587,4           | 67797,6            | 57351,8  | 53248,1 |
| 136 | 0,160  | 0,170   | 0,190   | 0,220    | 0,250   | 0,310           | 0,350          | 165,759          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 103499,2           | 97405,1   | 87141,4           | 75244,9           | 66203,5            | 53370,5  | 47259,6 |
| 137 | 0,300  | 0,390   | 0,770   | 1,120    | 1,590   | 2,850           | 3,730          | 166,975          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 55558,4            | 42714,1   | 21585,1           | 14808,5           | 10401,6            | 5758,8   | 4376,5  |
| 138 | 0,160  | 0,170   | 0,210   | 0,240    | 0,280   | 0,360           | 0,400          | 165,000          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 103024,9           | 96958,8   | 78471,4           | 68650,0           | 58828,5            | 457 33,3 | 41150,0 |
| 139 | 0,160  | 0,170   | 0,210   | 0,250    | 0,300   | 0,400           | 0,480          | 162,368          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 101379,9           | 95410,5   | 77218,0           | 64847,1           | 54022,6            | 40492,0  | 33726,6 |
| 140 | 0,140  | 0,160   | 0,200   | 0,230    | 0,280   | 0,390           | 0,470          | 88,066           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 62804,6            | 54941,6   | 43933,2           | 38189,8           | 31352,3            | 22481,2  | 18637,6 |
| 141 | 0,150  | 0,170   | 0,230   | 0,290    | 0,380   | 0,600           | 0,780          | 61,800           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 41099,8            | 36252,8   | 26769,5           | 21210,3           | 16163,1            | 10200,0  | 7823,0  |
| 142 | 0,120  | 0,140   | U,170   | 0,200    | 0,230   | 0,310           | 0,370          | 78,053           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 64943,9            | 55651,9   | 45813,3           | 38926,3           | 33835,9            | 25078,3  | 20995,3 |
| 143 | 0,180  | 0,200   | 0,700   | 1,500    | 2,220   | 4,130           | 5,120          | 68,183<br>54.000 | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 31119,2            | 33991,3   | 9640,4<br>47000 4 | 4445,5            | 2971,5             | 1550,9   | 1231,7  |
| 144 | 0,100  | 0,190   | 0,290   | 0,420    | 0,800   | 2,220           | 3,200          | 01,992<br>40.076 |      |      | 4      | 4     | 4      |        | -          | 32333,3<br>36333.9 | 21204,4   | 11020,4           | 0204.8            | 03 99,1<br>44 97 6 | 4465 8   | 1494,9  |
| 147 | 0,100  | 0,120   | 0,300   | 0,450    | 1,000   | 0.070           | 3,840<br>1 240 | 46 344           | 4    | 4    | 4      | 4     | 4      |        |            | 37664.4            | 22130,0   | 19601 6           | 3234,0<br>14517 3 | 4121,0             | 4574.5   | 3284.6  |
| 147 | 0,120  | 0.250   | 0.570   | 1 360    | 2 440   | 4.740           | 5 030          | 25.413           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 12606.4            | 10065.1   | 4358.4            | 1768.6            | 941.5              | 436.1    | 405.2   |
| 148 | 0.160  | 0.210   | 0.400   | 0.850    | 1.370   | 2.520           | 3.270          | 73.789           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 46018.3            | 35037.8   | 18347.3           | 8581.1            | 5286.1             | 2828.1   | 2156.6  |
| 149 | 0.100  | 0.130   | 0.190   | 0.250    | 0.340   | 0.940           | 1.640          | 11,301           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 11201,5            | 8593,4    | 5848,1            | 4420,6            | 3224,0             | 1102,3   | 589,1   |
| 150 | 0,090  | 0,120   | 0,180   | 0,230    | 0,310   | 1,010           | 2,430          | 28,185           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 31216,5            | 23387,4   | 15558,3           | 12154,3           | 8991,9             | 2690,6   | 1059,9  |
| 151 | 0,130  | 0,160   | 0,240   | 0,350    | 0,590   | 2,400           | 3,700          | 50,623           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 38840,8            | 31539,4   | 20992,9           | 14363,7           | 8480,2             | 2009,3   | 1268,2  |
| 152 | 0,100  | 0,120   | 0,170   | 0,210    | 0,250   | 0,380           | 0,480          | 36,914           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 36813,9            | 30661,6   | 21614,1           | 17 478,1          | 14665,6            | 9614,2   | 7590,4  |
| 153 | 0,110  | 0,130   | 0,190   | 0,230    | 0,300   | 0,840           | 1,830          | 83,850           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 76127,5            | 64400,2   | 44031,7           | 36356,6           | 27850,1            | 9882,2   | 4482,0  |
| 154 | 0,230  | 0,290   | 0,710   | 1,330    | 2,130   | 3,760           | 4,500          | 85,262           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 36970,4            | 29300,6   | 11908,7           | 6310,7            | 3902,9             | 2167,6   | 1794,7  |
| 155 | 0,200  | 0,230   | 0,360   | 0,530    | 1,000   | 2,730           | 3,980          | 22,104           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 10951,8            | 9510,3    | 6039,9            | 4070,5            | 2110,4             | 709,7    | 455,4   |
| 156 | 0,080  | 0,090   | 0,160   | 0,220    | 0,430   | 2,140           | 4,060          | 179,083          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 223753,2           | 198880,6  | 111826,6          | 81 301,2          | 41547,1            | 8268,3   | 4310,9  |
| 157 | 0,180  | 0,200   | 0,290   | 0,390    | 0,800   | 1,070           | 2,060          | 66,144           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 36646,8            | 32972,1   | 22708,4           | 16860,1           | 8168,0             | 6081,7   | 3110,9  |
| 158 | 0,200  | 0,230   | 0,390   | 0,730    | 1,420   | 4,070           | 6,230          | 70,009           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 34904,3            | 30338,5   | 17850,9           | 9490,2            | 48 30,2            | 1620,1   | 1023,7  |
| 159 | 0,120  | 0,150   | 0,230   | 0,340    | 0,600   | 4,670           | 0,300          | 82,609           | 1    | 1    | 1      | 1     | 1      | 1      | 1          | 68740,5            | 54972,4   | 35816,8           | 24196,7           | 13668,1            | 1668,9   | 27436,2 |
| 160 | 0,150  | U, 160  | 0,210   | 0,250    | 0,320   | 2,760           | 0,280          | 107,828          | 1    | 1    | 1      | 1     | 1      | 1      | 1          | /1785,2            | 67292,4   | 51246,6           | 43031,1           | 33596,2            | 3806,8   | 38409,9 |

Tabela 5.6a - Comparação entre dos diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIA        | METR                                         | OS DO I | LEITO | DOPA                | RA OR   | IO ATI | IBAIA |                     |         | COMP  | ARA CA | O ENT   | RE DV  | J & D     |            | RELAC    | CAOPERC   | ENTUAL  | ENTRE O  | S VALORE  | S DE DV | J            |
|------------|----------------------------------------------|---------|-------|---------------------|---------|--------|-------|---------------------|---------|-------|--------|---------|--------|-----------|------------|----------|-----------|---------|----------|-----------|---------|--------------|
| F          | Granu                                        | ometria | do ma | terial de           | o leito |        |       |                     | (10)    | an    | (12)   | 1.030   | (14)   | 05        | വറ         | Е        | OS VALC   | RES MED | DOSNO    | RIO ATIB  | AIA     |              |
| m          | (7)                                          | (2)     | 10    | <i>(</i> <b>T</b> ) | (6)     | m      | 793   | <i>(</i> 0)         | ()<br>C | OWDAT | DACA.  |         | VIICO  |           | цу<br>ur.  |          | (19)      | (10)    | (20)     | (21)      | (22)    | <b>/7</b> 23 |
| <u>(1)</u> | (4)                                          | (3)     | (4)   | (7)                 | (0)     |        | (0)   | (5)                 |         |       |        |         | vo [aC |           | 11:<br>D00 | ųŋ       | (10)      | (15)    | (20)     | (21)      | (22)    | ردي          |
| N°         | DIU                                          | D16     | Dæ    | D50                 | D65     | D84    | 1 D90 | D <sub>U</sub> gcag | DIU     | D16   | D35    | D50     | D65    | D84       | D80        |          |           |         |          |           |         |              |
|            | (mm)                                         | (mm)    | (mm)  | (mm)                | (mm)    | (mm)   | (mm)  | (mm.)               |         |       |        |         |        |           |            |          |           |         |          |           |         |              |
| 161        | 0,160                                        | 0,180   | 0,230 | 0,270               | 0,330   | 0,490  | 0,640 | 75,554              | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 47121,2  | 41874,4   | 32749,5 | 27882,9  | 22795,1   | 15319,2 | 11705,3      |
| 162        | 0,150                                        | 0,160   | 0,200 | 0,240               | 0,290   | 4,840  | 1,350 | 128,235             | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 85389,7  | 80046,6   | 64017,3 | 53331,1  | 44118,8   | 2549,5  | 9398,9       |
| 163        | 0,100                                        | 0,120   | 0,160 | 0,190               | 0,230   | 0,330  | 0,390 | 100,354             | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 100254,3 | 83528,6   | 62621,5 | 52718,1  | 43532,3   | 30310,4 | 25631,9      |
| 164        | 0,170                                        | 0,190   | 0,260 | 0,320               | 0,420   | 1,310  | 2,080 | 94,944              | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 55749,6  | 49870,7   | 36417,0 | 29570,1  | 22505,8   | 7147,7  | 446 4,6      |
| 165        | 0,080                                        | 0,100   | 0,150 | 0,180               | 0,220   | 0,300  | 0,370 | 73,379              | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 91623,5  | 73278,8   | 48819,2 | 40666,0  | 33254,0   | 24359,6 | 19732,1      |
| 166        | 0,140                                        | 0,150   | 0,190 | 0,230               | 0,290   | 1,190  | 3,530 | 83,297              | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 59398,1  | 55431,6   | 43740,7 | 36116,3  | 28623,2   | 6899,8  | 2259,7       |
| 167        | 0,200                                        | 0,240   | 0,350 | 0,500               | 0,840   | 1,980  | 2,850 | 113,146             | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 56473,2  | 47044,4   | 32227,6 | 22529,3  | 13369,8   | 5614,5  | 3870,1       |
| 168        | 0,220                                        | 0,250   | 0,350 | 0,440               | 0,630   | 1,250  | 1,650 | 152,461             | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 69200,6  | 60884,5   | 43460,4 | 34550,3  | 24100,2   | 12096,9 | 9140,1       |
| 169        | 0,130                                        | 0,150   | 0,220 | 0,290               | 0,410   | 1,840  | 5,640 | 52,493              | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 40279,3  | 34895,4   | 23760,5 | 18001,1  | 12703,2   | 2752,9  | 830,7        |
| 170        | 0,140                                        | 0,190   | 0,320 | 0,460               | 0,760   | 1,660  | 2,450 | 39,227              | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 27919,0  | 20545,6   | 12158,3 | 8427,5   | 5061,4    | 2263,0  | 1501,1       |
| 171        | 0,160 0,190 0,370 0,920 1,760 4,000 5,260 33 |         |       |                     |         |        |       |                     | 1       | 1     | 1      | 1       | 1      | 1         | 1          | 20996,4  | 17665,3   | 9022,7  | 3568,9   | 1817,9    | 743,9   | 541,7        |
|            |                                              |         |       |                     |         |        |       |                     |         | (%)   | de eve | antos e | mque l | ) V J > [ | )          | DIFEF    | REN ÇA PE | RCENTU  | AL RELAT | IVA MĖDIĮ | ۹       |              |
|            |                                              |         |       |                     |         |        |       |                     | 99,42   | 99,42 | 99,42  | 99,42   | 98,25  | 98,25     | 97,66      | 44677,1  | 38421,1   | 26970,8 | 20792,8  | 15439,9   | 8659,3  | 6937,6       |

Tabela 5.6a - Comparação entre dos diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>VI ISCHI</sub> - Diâmetro calculado pela equação: D<sub>VI ISCHI</sub>= 0,0726 , In[Q] - 0,1419. Para o método de Schoklitsch (1914, 1950)

Q - Vazão em m<sup>3</sup>/s

| DIÄ | METRO  | DS DO I | LEITO   | DOPA      | RA OR  | IO ATI | BAIA  |                     | (    | COMP.           | ARA ÇA (        | O ENT           | RE D <sub>UJ</sub> | D D             |      | RELAC  | ÇAOPERC | ENTUAL  | ENTRE O | S VALORE  | S DE D        |       |
|-----|--------|---------|---------|-----------|--------|--------|-------|---------------------|------|-----------------|-----------------|-----------------|--------------------|-----------------|------|--------|---------|---------|---------|-----------|---------------|-------|
|     | Granul | ometria | ı do ma | terial do | leito  |        |       |                     | (10) | (11)            | (12)            | (13)            | (14)               | (15)            | (16) | E      | OS VALO | RES MED | DOS NO: | RIO ATIB. | AIA           |       |
| (1) | (2)    | (3)     | (4)     | (5)       | (6)    | (7)    | (8)   | (9)                 |      | COMP            | ARAÇĀ           | O DE            | D. NI SHI          | COM:            |      | (17)   | (18)    | (19)    | (20)    | (21)      | (22)          | (23)  |
| N⁰  | D10    | Dl6     | D35     | D50       | D65    | D84    | D90   | D <sub>M SHII</sub> | Die  | D <sub>16</sub> | D <sub>26</sub> | D <sub>50</sub> | Des                | D <sub>84</sub> | Dan  |        |         |         |         |           |               |       |
|     | (mm)   | (mm)    | (mm)    | (mm)      | նուում | (mm)   | (mm)  | 510-5<br>1000       |      | ~               | ~               | ~               | ~                  | "               | ,,   |        |         |         |         |           |               |       |
| 1   | 0,150  | 0,180   | 0,340   | 0,640     | 0,970  | 1,560  | 1,860 | 4,389               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 2825,8 | 2338,1  | 1190,8  | 585,7   | 352,4     | 181,3         | 135,9 |
| 2   | 0,190  | 0,240   | 0,370   | 0,540     | 0,880  | 2,770  | 3,820 | 4,426               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 2229,5 | 1744,2  | 1096,2  | 719,6   | 403,0     | 59,8          | 15,9  |
| 3   | 0,240  | 0,290   | 0,480   | 0,680     | 1,040  | 2,960  | 4,110 | 4,275               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1681,2 | 1374,1  | 790,6   | 528,7   | 311,0     | 44,4          | 4,0   |
| 4   | 0,220  | 0,270   | 0,530   | 0,860     | 1,370  | 3,240  | 4,220 | 4,597               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1989,7 | 1602,7  | 767,4   | 434,6   | 235,6     | 41,9          | 8,9   |
| 5   | 0,240  | 0,280   | 0,400   | 0,510     | 0,640  | 0,970  | 1,230 | 3,986               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1560,7 | 1323,5  | 896,4   | 681,5   | 522,8     | 310,9         | 224,0 |
| 6   | 0,330  | 0,400   | 0,710   | 1,020     | 1,470  | 2,500  | 3,130 | 4,834               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1364,7 | 1108,4  | 580,8   | 373,9   | 228,8     | 93,3          | 54,4  |
| 7   | 0,270  | 0,320   | 0,450   | 0,570     | 0,730  | 1,130  | 1,420 | 3,999               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1381,2 | 1149,7  | 788,7   | 601,6   | 447,8     | 253,9         | 181,6 |
| 8   | 0,290  | 0,340   | 0,500   | 0,640     | 0,830  | 1,440  | 3,780 | 4,223               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1356,4 | 1142,2  | 744,7   | 559,9   | 408,8     | 193,3         | 11,7  |
| 9   | 0,360  | 0,440   | 0,690   | 0,970     | 1,500  | 4,470  | 4,940 | 4,106               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 1040,5 | 833,2   | 495,1   | 323,3   | 173,7     | 8,9           | 20,3  |
| 10  | 0,320  | 0,370   | 0,520   | 0,660     | 0,850  | 1,400  | 2,000 | 3,999               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1149,7 | 980,9   | 669,1   | 505,9   | 370,5     | 185,7         | 100,0 |
| 11  | 0,300  | 0,360   | 0,560   | 0,780     | 1,220  | 4,100  | 4,750 | 3,125               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 941,6  | 768,0   | 458,0   | 300,6   | 156,1     | 31,2          | 52,0  |
| 12  | 0,300  | 0,360   | 0,560   | 0,770     | 1,090  | 3,330  | 4,500 | 2,852               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 850,6  | 692,2   | 409,3   | 270,4   | 161,6     | 16,8          | 57,8  |
| 13  | 0,270  | 0,320   | 0,480   | 0,630     | 0,870  | 3,900  | 4,700 | 2,376               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 780,1  | 642,6   | 395,1   | 277,2   | 173,1     | 64,1          | 97,8  |
| 14  | 0,270  | 0,320   | 0,470   | 0,640     | 0,920  | 2,300  | 4,020 | 1,563               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 478,8  | 388,3   | 232,5   | 144,2   | 69,9      | 47,2          | 157,3 |
| Ŀ   | 0,280  | 0,320   | 0,490   | 0,660     | 0,950  | 2,170  | 3,160 | 2,003               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 615,4  | 526,0   | 308,8   | 203,5   | 110,9     | 8,3           | 57,7  |
| 16  | 0,240  | 0,270   | 0,370   | 0,470     | 0,610  | 1,000  | 1,450 | 3,764               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1468,4 | 1294,2  | 917,4   | 700,9   | 517,1     | 276,4         | 159,6 |
| 17  | 0,310  | 0,370   | 0,510   | 0,630     | 0,800  | 1,290  | 1,770 | 4,834               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1459,2 | 1206,4  | 847,8   | 667,2   | 504,2     | 274,7         | 173,1 |
| 18  | 0,280  | 0,340   | 0,510   | 0,690     | 0,970  | 4,770  | 5,110 | 3,764               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 1244,4 | 1007,1  | 638,1   | 445,5   | 288,1     | 26,7          | 35,8  |
| 19  | 0,310  | 0,370   | 0,550   | 0,710     | 0,960  | 3,630  | 4,620 | 4,326               | 1    | 1               | 1               | 1               | 1                  | 1               | 0    | 1295,4 | 1069,1  | 686,5   | 509,3   | 350,6     | 19,2          | 6,8   |
| 20  | 0,290  | 0,350   | 0,500   | 0,630     | 0,800  | 1,240  | 1,640 | 4,537               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1464,4 | 1196,2  | 807,4   | 620,1   | 467,1     | 265,9         | 176,6 |
| 21  | 0,340  | 0,440   | 0,840   | 1,260     | 2,140  | 4,520  | 4,960 | 2,688               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 690,7  | 511,0   | 220,1   | 113,4   | 25,6      | 68,1          | 84,5  |
| 22  | 0,300  | 0,390   | 0,750   | 1,150     | 1,870  | 4,270  | 4,820 | 3,517               | 1    | 1               | 1               | 1               | 1                  | 0               | 0    | 1072,3 | 801,8   | 368,9   | 205,8   | 88,1      | 21,4          | 37,1  |
| 23  | 0,300  | 0,360   | 0,510   | 0,630     | 0,810  | 1,260  | 1,710 | 4,426               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1375,4 | 1129,5  | 767,9   | 602,6   | 446,4     | 251,3         | 158,8 |
| 24  | 0,270  | 0,320   | 0,470   | 0,590     | 0,740  | 1,110  | 1,370 | 2,688               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 895,7  | 740,2   | 472,0   | 355,7   | 263,3     | 142,2         | 96,2  |
| 25  | 0,250  | 0,300   | 0,440   | 0,560     | 0,730  | 1,180  | 1,660 | 4,426               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1670,4 | 1375,4  | 905,9   | 690,4   | 506,3     | 275,1         | 166,6 |
| 26  | 0,240  | 0,290   | 0,420   | 0,550     | 0,740  | 1,340  | 2,260 | 3,517               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1365,4 | 1112,7  | 737,3   | 539,4   | 375,2     | 162,5         | 55,6  |
| 27  | 0,230  | 0,280   | 0,420   | 0,540     | 0,710  | 1,200  | 4,430 | 2,974               | 1    | 1               | 1               | 1               | 1                  | 1               | 0    | 1193,0 | 962,1   | 608,0   | 450,7   | 318,8     | 147,8         | 49,0  |
| 28  | 0,250  | 0,290   | 0,410   | 0,520     | 0,650  | 0,950  | 1,200 | 3,270               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1208,2 | 1027,7  | 697,7   | 528,9   | 403,1     | 244,3         | 172,5 |
| 29  | 0,240  | 0,280   | 0,390   | 0,480     | 0,590  | 0,830  | 1,000 | 2,536               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 956,8  | 805,8   | 550,3   | 428,4   | 329,9     | 205,6         | 153,6 |
| 30  | 0,270  | 0,310   | 0,430   | 0,530     | 0,650  | 0,890  | 1,050 | 3,270               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1111,3 | 955,0   | 660,6   | 517,1   | 403,1     | <b>26</b> 7,5 | 211,5 |
| 31  | 0,230  | 0,270   | 0,370   | 0,470     | 0,600  | 0,890  | 1,100 | 2,376               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 933,2  | 780,1   | 542,2   | 405,6   | 296,0     | 167,0         | 116,0 |
| 32  | 0,280  | 0,340   | 0,500   | 0,650     | 0,870  | 1,660  | 2,300 | 3,270               | 1    | 1               | 1               | 1               | 1                  | 1               | 1    | 1068,0 | 861,9   | 554,1   | 403,1   | 275,9     | 97,0          | 42,2  |

Tabela 5.6b - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR   | DS DO I | LEITO   | DOPA      | RA OR   | IO ATI | BAIA  |                     | (    | COMP/           | ARA ÇA O          | ENT RF            | E D <sub>VJ</sub> | <sub>A</sub> D  |      | RELAÇ  | AOPERC  | ENTUAL  | ENTRE OS   | 5 VALORE  | S DE D <sub>uj</sub> |               |
|-----|--------|---------|---------|-----------|---------|--------|-------|---------------------|------|-----------------|-------------------|-------------------|-------------------|-----------------|------|--------|---------|---------|------------|-----------|----------------------|---------------|
|     | Granul | ometria | ı do ma | terial do | ) leito |        |       |                     | (10) | (11)            | (12) (            | 13) (             | 14)               | (15)            | (16) | Ε      | OS VALO | RES MED | ID OS NO I | RIO ATIB/ | AIA                  |               |
| (1) | (2)    | (3)     | (4)     | (5)       | (6)     | 9      | (8)   | (9)                 |      | COMP            | ARAÇÃO            | DE D,             | त ह मा            | COM:            |      | (17)   | (18)    | (19)    | (20)       | (21)      | (22)                 | (23)          |
| N°  | D10    | D16     | D35     | D50       | D65     | D84    | D90   | D <sub>M SHII</sub> | Die  | D <sub>16</sub> | D <sub>26</sub> I | D <sub>an</sub> I | D <sub>65</sub>   | D <sub>24</sub> | Dan  |        |         |         |            |           |                      |               |
|     | (mm)   | (mm)    | (mm)    | (mm)      | նատմ    | (mm)   | (mm)  | 312—3<br>7000.      |      | ~               | ~                 | ~                 | ~                 | ~~              | ~    |        |         |         |            |           |                      |               |
| 33  | 0,280  | 0,320   | 0,450   | 0,570     | 0,730   | 1,230  | 2,180 | 2,003               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 0    | 615,4  | 526,0   | 345,2   | 251,4      | 174,4     | 62,9                 | 8,8           |
| 34  | 0,270  | 0,300   | 0,410   | 0,510     | 0,630   | 0,880  | 1,050 | 2,335               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 764,8  | 678,3   | 469,5   | 357,8      | 270,6     | 165,3                | 122,4         |
| 35  | 0,280  | 0,320   | 0,440   | 0,540     | 0,680   | 1,000  | 1,270 | 2,688               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 860,2  | 740,2   | 511,0   | 397,9      | 295,4     | 168,8                | 111,7         |
| 36  | 0,210  | 0,250   | 0,360   | 0,450     | 0,580   | 0,890  | 1,100 | 3,517               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1574,7 | 1306,7  | 876,9   | 681,5      | 506,4     | 295,2                | 219,7         |
| 37  | 0,270  | 0,320   | 0,450   | 0,570     | 0,740   | 1,180  | 1,520 | 2,003               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 641,9  | 526,0   | 345,2   | 251,4      | 170,7     | 69,8                 | 31,8          |
| 38  | 0,260  | 0,330   | 0,530   | 0,730     | 1,010   | 1,790  | 3,150 | 3,395               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1205,9 | 928,9   | 540,6   | 365,1      | 236,2     | 89,7                 | 7,8           |
| 39  | 0,300  | 0,340   | 0,480   | 0,600     | 0,750   | 1,140  | 1,450 | 2,003               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 567,7  | 489,2   | 317,3   | 233,9      | 167,1     | 75,7                 | 38,2          |
| 40  | 0,320  | 0,370   | 0,550   | 0,710     | 0,950   | 1,600  | 2,510 | 4,633               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1348,0 | 1152,3  | 742,4   | 552,6      | 387,7     | 189,6                | 84,6          |
| 41  | 0,280  | 0,320   | 0,450   | 0,570     | 0,720   | 1,080  | 1,360 | 4,834               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1626,3 | 1410,5  | 974,1   | 748,0      | 571,3     | 347,6                | 255,4         |
| 42  | 0,220  | 0,270   | 0,410   | 0,570     | 0,900   | 4,170  | 4,790 | 3,764               | 1    | 1               | 1                 | 1                 | 1                 | 0               | 0    | 1611,0 | 1294,2  | 818,1   | 560,4      | 318,3     | 10,8                 | 27,2          |
| 43  | 0,290  | 0,340   | 0,460   | 0,570     | 0,700   | 1,020  | 1,280 | 3,764               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1198,0 | 1007,1  | 718,3   | 560,4      | 437,8     | 269,0                | 194,1         |
| 44  | 0,170  | 0,250   | 0,550   | 0,820     | 1,250   | 4,840  | 5,150 | 3,270               | 1    | 1               | 1                 | 1                 | 1                 | 0               | 0    | 1823,8 | 1208,2  | 494,6   | 298,8      | 161,6     | 48,0                 | 57 <i>,</i> 5 |
| 45  | 0,210  | 0,260   | 0,410   | 0,590     | 0,880   | 1,790  | 2,700 | 5,016               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2288,6 | 1829,2  | 1123,4  | 750,2      | 470,0     | 180,2                | 85,8          |
| 46  | 0,180  | 0,200   | 0,300   | 0,410     | 0,600   | 1,200  | 1,850 | 4,106               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2181,1 | 1953,0  | 1268,6  | 901,5      | 584,3     | 242,2                | 121,9         |
| 47  | 0,170  | 0,210   | 0,390   | 0,650     | 1,140   | 2,970  | 4,030 | 4,211               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2376,8 | 1905,0  | 979,6   | 547,8      | 269,3     | 41,8                 | 4,5           |
| 48  | 0,150  | 0,170   | 0,210   | 0,250     | 0,330   | 0,720  | 1,100 | 4,426               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2850,7 | 2503,6  | 2007,7  | 1670,4     | 1241,2    | 514,7                | 302,4         |
| 49  | 0,150  | 0,170   | 0,210   | 0,240     | 0,320   | 0,910  | 1,440 | 4,211               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2707,0 | 2376,8  | 1905,0  | 1654,4     | 1215,8    | 362,7                | 192,4         |
| 50  | 0,160  | 0,170   | 0,230   | 0,320     | 0,650   | 1,550  | 2,790 | 4,211               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2531,6 | 2376,8  | 1730,7  | 1215,8     | 547,8     | 171,6                | 50,9          |
| 51  | 0,170  | 0,190   | 0,250   | 0,330     | 0,490   | 1,090  | 1,580 | 3,764               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2114,3 | 1881,2  | 1405,7  | 1040,7     | 668,2     | 245,3                | 138,2         |
| 52  | 0,170  | 0,190   | 0,280   | 0,500     | 0,900   | 2,040  | 2,860 | 3,108               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1728,5 | 1536,0  | 1010,2  | 521,7      | 245,4     | 52,4                 | 8,7           |
| 53  | 0,160  | 0,180   | 0,260   | 0,370     | 0,530   | 0,910  | 1,230 | 3,764               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2252,7 | 1991,3  | 1347,8  | 917,4      | 6 10,2    | 313,7                | 206,0         |
| 54  | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,500  | 0,920 | 4,925               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 3418,2 | 3183,7  | 2636,4  | 2362,7     | 2041,5    | 885,1                | 435,4         |
| 55  | 0,140  | 0,160   | 0,200   | 0,240     | 0,300   | 0,600  | 0,850 | 3,876               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2668,7 | 2322,7  | 1838,1  | 1515,1     | 1192,1    | 546,0                | 356,0         |
| 56  | 0,160  | 0,170   | 0,230   | 0,350     | 0,660   | 1,390  | 1,930 | 3,999               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2399,5 | 2252,5  | 1638,8  | 1042,6     | 505,9     | 187,7                | 107,2         |
| 57  | 0,170  | 0,190   | 0,250   | 0,320     | 0,420   | 0,710  | 0,950 | 3,395               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1897,3 | 1687,1  | 1258,2  | 961,1      | 708,4     | 378,2                | 257,4         |
| 58  | 0,140  | 0,160   | 0,190   | 0,230     | 0,280   | 1,460  | 4,690 | 2,688               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 0    | 1820,4 | 1580,3  | 1315,0  | 1068,9     | 860,2     | 84,1                 | 74,4          |
| 59  | 0,160  | 0,180   | 0,230   | 0,290     | 0,390   | 0,750  | 1,140 | 7,185               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 4390,9 | 3891,9  | 3024,1  | 2377,7     | 1742,4    | 858,1                | 530,3         |
| 60  | 0,170  | 0,190   | 0,270   | 0,400     | 0,750   | 1,660  | 2,500 | 3,517               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1968,7 | 1751,0  | 1202,5  | 779,2      | 368,9     | 111,9                | 40,7          |
| 61  | 0,170  | 0,190   | 0,270   | 0,360     | 0,570   | 1,240  | 1,640 | 2,991               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1659,4 | 1474,2  | 1007,7  | 730,8      | 424,7     | 141,2                | 82,4          |
| 62  | 0,180  | 0,210   | 0,370   | 0,820     | 1,560   | 3,060  | 3,790 | 4,313               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 2296,1 | 1953,8  | 1065,7  | 426,0      | 176,5     | 40,9                 | 13,8          |
| 63  | 0,160  | 0,190   | 0,310   | 0,520     | 0,810   | 1,370  | 1,660 | 2,991               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1769,3 | 1474,2  | 864,8   | 475,2      | 269,2     | 118,3                | 80,2          |
| 64  | 0,150  | 0,180   | 0,340   | 0,630     | 0,970   | 1,560  | 1,860 | 2,376               | 1    | 1               | 1                 | 1                 | 1                 | 1               | 1    | 1484,2 | 1220,2  | 598,9   | 277,2      | 145,0     | 52,3                 | 27,8          |

Tabela 5.6b - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ        | METRO  | DS DO I | LEITO   | DOPA      | RA OR   | I O ATI | BAIA  |                     | (    | COMP/           | ARA ÇA          | O ENT | 'RE D <sub>uj</sub> | D IA            |      | RELAC  | ÇAOPERC  | ENTUAL  | ENTRE O | S VALORI  | S DE D |               |
|------------|--------|---------|---------|-----------|---------|---------|-------|---------------------|------|-----------------|-----------------|-------|---------------------|-----------------|------|--------|----------|---------|---------|-----------|--------|---------------|
|            | Granul | ometria | a do ma | terial de | o leino |         |       |                     | (10) | (11)            | (12)            | (13)  | (14)                | (15)            | (16) | E      | OS VAL O | RES MED | DOS NOI | RIO ATIB. | AIA    |               |
| <b>(l)</b> | (2)    | (3)     | (4)     | (5)       | (6)     | -(7)    | (8)   | (9)                 |      | COMP            | ARAÇA           | AO DE | D <sub>USE</sub>    | COM:            |      | (17)   | (18)     | (19)    | (20)    | (21)      | (22)   | (23)          |
| N          | D10    | Dl6     | D35     | D50       | D65     | D84     | D90   | D <sub>M SHII</sub> | Die  | D <sub>16</sub> | D <sub>25</sub> | Den   | Des                 | D <sub>24</sub> | Dan  |        |          |         |         |           |        |               |
|            | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  | mma.                |      |                 | ~               | ~     | ~                   |                 | ~    |        |          |         |         |           |        |               |
| 65         | 0,170  | 0,190   | 0,260   | 0,380     | 0,600   | 1,180   | 1,750 | 4,633               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 2625.6 | 2338,7   | 1682.1  | 1119,3  | 672.2     | 292.7  | 164,8         |
| 66         | 0,170  | 0,180   | 0,220   | 0,260     | 0,310   | 0,410   | 0,470 | 3,764               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 2114,3 | 1991,3   | 1611,0  | 1347,8  | 1114,3    | 818,1  | 700,9         |
| 67         | 0,170  | 0,190   | 0,250   | 0,320     | 0,440   | 1,190   | 1,680 | 3,999               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 2252,5 | 2004,8   | 1499,7  | 1149,7  | 808,9     | 236,1  | 138,0         |
| 68         | 0,170  | 0,180   | 0,230   | 0,270     | 0,320   | 0,430   | 0,560 | 4,537               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 2568,7 | 2420,5   | 1872,5  | 1580,3  | 1317,8    | 955,1  | 710,1         |
| 69         | 0,170  | 0,190   | 0,250   | 0,300     | 0,360   | 0,570   | 1,690 | 5,016               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 2850,6 | 2540,0   | 1906,4  | 1572,0  | 1293,3    | 780,0  | 196,8         |
| 70         | 0,230  | 0,260   | 0,340   | 0,430     | 0,620   | 1,410   | 2,050 | 4,211               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1730,7 | 1519,4   | 1138,4  | 879,2   | 579,1     | 198,6  | 105,4         |
| 71         | 0,230  | 0,250   | 0,310   | 0,370     | 0,440   | 0,740   | 1,180 | 3,999               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1638,8 | 1499,7   | 1190,1  | 980,9   | 808,9     | 440,4  | 238,9         |
| 72         | 0,230  | 0,260   | 0,350   | 0,440     | 0,640   | 1,500   | 2,200 | 3,764               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1536,6 | 1347,8   | 975,5   | 755,5   | 488,2     | L51,0  | 71,1          |
| 73         | 0,190  | 0,230   | 0,320   | 0,410     | 0,610   | 1,630   | 3,000 | 3,764               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1881,2 | 1536,6   | 1076,3  | 818,1   | 517,1     | 130,9  | 25 <i>,</i> 5 |
| 74         | 0,240  | 0,270   | 0,350   | 0,420     | 0,550   | 0,990   | 1,360 | 2,991               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1146,2 | 1007,7   | 754,5   | 612,1   | 443,8     | 202,1  | 119,9         |
| 75         | 0,200  | 0,250   | 0,400   | 0,640     | 1,100   | 2,520   | 3,770 | 3,270               | 1    | 1               | 1               | 1     | 1                   | 1               | 0    | 1535,2 | 1208,2   | 717,6   | 411,0   | 197,3     | 29,8   | 15,3          |
| 76         | 0,170  | 0,210   | 0,320   | 0,460     | 0,860   | 2,820   | 4,090 | 2,991               | 1    | 1               | 1               | 1     | 1                   | 1               | 0    | 1659,4 | 1324,2   | 834,7   | 550,2   | 247,8     | 6,1    | 36,7          |
| Π.         | 0,220  | 0,270   | 0,410   | 0,560     | 0,800   | 1,340   | 1,660 | 3,125               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1320,4 | 1057,4   | 662,2   | 458,0   | 290,6     | 133,2  | 88,2          |
| 78         | 0,180  | 0,220   | 0,330   | 0,450     | 0,750   | 1,980   | 3,050 | 2,688               | 1    | 1               | 1               | 1     | 1                   | 1               | 0    | 1393,6 | 1122,0   | 714,7   | 497,4   | 258,5     | 35,8   | 13,4          |
| 79         | 0,190  | 0,230   | 0,360   | 0,540     | 1,000   | 2,700   | 3,730 | 3,125               | 1    | 1               | 1               | 1     | 1                   | 1               | 0    | 1544,7 | 1258,7   | 768,0   | 478,7   | 212,5     | 15,7   | 19,4          |
| 80         | 0,210  | 0,240   | 0,360   | 0,500     | 0,920   | 3,270   | 4,350 | 2,852               | 1    | 1               | 1               | 1     | 1                   | 0               | 0    | 1258,0 | 1088,3   | 692,2   | 470,4   | 210,0     | 14,7   | 52 <i>,</i> 5 |
| 81         | 0,190  | 0,230   | 0,350   | 0,520     | 1,070   | 3,850   | 4,630 | 2,991               | 1    | 1               | 1               | 1     | 1                   | 0               | 0    | 1474,2 | 1200,4   | 754,5   | 475,2   | 179,5     | 28,7   | 54,8          |
| 82         | 0,230  | 0,270   | 0,380   | 0,530     | 0,880   | 1,950   | 2,890 | 3,764               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1536,6 | 1294,2   | 890,6   | 610,2   | 327,8     | 93,0   | 30,3          |
| 83         | 0,230  | 0,270   | 0,400   | 0,640     | 1,290   | 4,190   | 4,790 | 4,834               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 2001,6 | 1690,2   | 1108,4  | 655,2   | 274,7     | 15,4   | 0,9           |
| 84         | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 1,820   | 2,370 | 3,125               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1388,1 | 1202,1   | 847,0   | 644,0   | 322,3     | 71,7   | 31,9          |
| 85         | 0,230  | 0,270   | 0,390   | 0,670     | 1,650   | 4,070   | 4,690 | 3,807               | 1    | 1               | 1               | 1     | 1                   | 0               | 0    | 1555,0 | 1309,8   | 876,0   | 468,1   | 130,7     | 6,9    | 23,2          |
| 86         | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 3,000   | 4,160 | 3,945               | 1    | 1               | 1               | 1     | 1                   | 1               | 0    | 1778,5 | 1543,7   | 1095,4  | 839,3   | 433,1     | 31,5   | 5,5           |
| 87         | 0,210  | 0,250   | 0,350   | 0,500     | 1,100   | 3,500   | 4,400 | 3,517               | 1    | 1               | . <u>1</u>      | 1     | 1                   | 1               | 0    | 1574,7 | 1306,7   | 904,8   | 603,4   | 219,7     | 0,5    | 25,1          |
| 88         | 0,210  | 0,240   | 0,310   | 0,380     | 0,480   | 0,930   | 1,400 | 3,517               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1574,7 | 1365,4   | 1034,5  | 825,5   | 632,7     | 278,2  | 151,2         |
| 89         | 0,190  | 0,220   | 0,310   | 0,380     | 0,500   | 0,830   | 1,110 | 3,764               | 1    | 1               | <u> </u>        | 1     | 1                   | 1               | 1    | 1881,2 | 1611,0   | 1114,3  | 890,6   | 652,9     | 353,5  | 239,1         |
| 90         | 0,200  | 0,230   | 0,310   | 0,370     | 0,460   | 0,770   | 1,100 | 4,633               | 1    | 1               | . <u>1</u>      | 1     | 1                   | 1               | 1    | 2216,7 | 1914,5   | 1394,7  | 1152,3  | 907,3     | 501,7  | 321,2         |
| 91         | 0,220  | 0,240   | 0,300   | 0,360     | 0,420   | 0,650   | 0,980 | 4,633               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 2006,1 | 1830,6   | 1444,5  | 1187,1  | 1003,2    | 612,8  | 372,8         |
| 92         | 0,230  | 0,250   | 0,330   | 0,390     | 0,490   | 0,820   | 1,100 | 3,764               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1536,6 | 1405,7   | 1040,7  | 865,2   | 668,2     | 359,1  | 242,2         |
| 93         | 0,230  | 0,260   | 0,340   | 0,400     | 0,510   | 0,800   | 1,030 | 3,395               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1376,3 | 1205,9   | 898,7   | 748,9   | 565,8     | 324,4  | 229,7         |
| 94         | 0,230  | 0,250   | 0,330   | 0,400     | 0,510   | 0,880   | 1,160 | 2,991               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1200,4 | 1096,4   | 806,3   | 647,7   | 486,5     | 239,9  | 157,8         |
| 95         | 0,200  | 0,230   | 0,320   | 0,390     | 0,510   | 0,840   | 1,180 | 3,125               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 1462,5 | 1258,7   | 876,5   | 701,3   | 512,7     | 272,0  | 164,8         |
| 96         | 0,150  | 0,200   | 0,400   | 0,750     | 1,480   | 4,440   | 4,920 | 3,395               | 1    | 1               | 1               | 1     | 1                   | 0               | 0    | 2163,6 | 1597,7   | 748,9   | 352,7   | 129,4     | 30,8   | 44,9          |

Tabela 5.6b - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados
| DIÄ        | METRO    | DS DO I | LE IT O         | DOPA      | RA OR   | IO ATI          | IBAIA  |                     |      | COMP/           | ARA ÇA | O ENT      | 'RE D <sub>u</sub> | D IA            |          | RELAC  | CAOPERC        | ENTUAL  | ENTRE OS | 5 VALORE  | S DE D |       |
|------------|----------|---------|-----------------|-----------|---------|-----------------|--------|---------------------|------|-----------------|--------|------------|--------------------|-----------------|----------|--------|----------------|---------|----------|-----------|--------|-------|
|            | Granul   | ometriz | a do ma         | terial de | o leino |                 |        |                     | (10) | (11)            | (12)   | (13)       | (14)               | (15)            | (16)     | Ε      | OS VALO        | RES MED | DOSNOE   | RIO ATIBA | AIA    |       |
| (1)        | (2)      | (3)     | (4)             | (5)       | (6)     | (7)             | (8)    | (9)                 |      | COMP            | ARAÇA  | 10 DE      | D. U SH            | COM:            |          | (17)   | (18)           | (19)    | (20)     | (21)      | (22)   | (23)  |
| N°         | $D_{10}$ | D16     | D <sub>26</sub> | D.50      | Des     | D <sub>84</sub> | Dan    | D <sub>W SHII</sub> | Die  | D <sub>16</sub> | Das    | Den        | $D_{65}$           | D <sub>24</sub> | $D_{aa}$ |        |                |         |          |           |        |       |
|            | (mm)     | (mm)    | émmi)           | (mm)      | (mm)    | 64<br>(mm)      | (1111) | -3 []               | 10   |                 | 30     | - 30       |                    | 04              | 70       |        |                |         |          |           |        |       |
| 97         | 0.210    | 0.280   | 0.550           | 0.890     | 1.410   | 3.490           | 4.400  | 3.395               | 1    | 1               | 1      | 1          | 1                  | n               | n        | 1516.9 | 1112.7         | 517.3   | 281.5    | 140.8     | 2.8    | 29.6  |
| 98         | 0,220    | 0,290   | 0,550           | 0,890     | 1,410   | 4,000           | 4,700  | 3,254               | - 1  | - 1             | - 1    | 1          | 1                  | Ū               | 0        | 1379,3 | 1022.2         | 491.7   | 265.7    | 130.8     | 22,9   | 44,4  |
| <b>9</b> 9 | 0,150    | 0,220   | 0,430           | 0,650     | 0,980   | 1,840           | 2,460  | 3,764               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 2409,5 | 1611,0         | 775,4   | 479,1    | 284,1     | 104,6  | 53,0  |
| 100        | 0,160    | 0,210   | 0,390           | 0,580     | 0,880   | 1,630           | 2,250  | 3,125               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1853,1 | 1388,1         | 701,3   | 438,8    | 255,1     | 91,7   | 38,9  |
| 101        | 0,140    | 0,160   | 0,230           | 0,300     | 0,400   | 0,960           | 4,370  | 9,543               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 6716,5 | 5864,4         | 4049,1  | 3081,0   | 2285,8    | 894,1  | 118,4 |
| 102        | 0,150    | 0,180   | 0,250           | 0,320     | 0,420   | 0,670           | 0,850  | 3,664               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 2342,7 | 1935,6         | 1365,6  | 1045,0   | 772,4     | 446,9  | 331,1 |
| 103        | 0,150    | 0,170   | 0,260           | 0,340     | 0,470   | 0,830           | 1,090  | 2,497               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1564,7 | 1368,9         | 860,4   | 634,4    | 431,3     | 200,8  | 129,1 |
| 104        | 0,150    | 0,180   | 0,290           | 0,410     | 0,590   | 1,080           | 1,440  | 3,206               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 2037,6 | 1681,3         | 1005,7  | 682,0    | 443,5     | 196,9  | 122,7 |
| 105        | 0,160    | 0,190   | 0,250           | 0,320     | 0,430   | 0,960           | 1,620  | 3,365               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 2002,8 | 1670,8         | 1245,8  | 951,4    | 682,4     | 250,5  | 107,7 |
| 106        | 0,170    | 0,190   | 0,240           | 0,290     | 0,350   | 0,500           | 0,630  | 4,585               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 2597,3 | 2313,3         | 1810,6  | 1481,1   | 1210,1    | 817,1  | 627,8 |
| 107        | 0,190    | 0,210   | 0,270           | 0,320     | 0,370   | 0,500           | 0,590  | 5,898               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 3004,1 | 2708,5         | 2084,4  | 1743,1   | 1494,0    | 1079,6 | 899,6 |
| 108        | 0,160    | 0,180   | 0,240           | 0,290     | 0,350   | 0,510           | 0,670  | 2,688               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1580,3 | 1393,6         | 1020,2  | 827,1    | 668,1     | 427,2  | 301,3 |
| 109        | 0,210    | 0,260   | 0,410           | 0,620     | 0,980   | 1,780           | 2,300  | 4,633               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 2106,4 | 1682,1         | 1030,1  | 647,3    | 372,8     | 160,3  | 101,5 |
| 110        | 0,250    | 0,310   | 0,500           | 0,710     | 1,020   | 1,800           | 2,360  | 4,633               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1753,4 | 1394,7         | 826,7   | 552,6    | 354,3     | 157,4  | 96,3  |
| 111        | 0,220    | 0,260   | 0,410           | 0,640     | 1,020   | 1,940           | 2,590  | 4,223               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1819,7 | 1524,4         | 930,1   | 559,9    | 314,1     | 117,7  | 63,1  |
| 112        | 0,200    | 0,230   | 0,310           | 0,380     | 0,480   | 0,750           | 0,930  | 4,426               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 2113,0 | 1824,4         | 1327,8  | 1064,8   | 822,1     | 490,1  | 375,9 |
| 113        | 0,220    | 0,250   | 0,350           | 0,440     | 0,570   | 0,930           | 1,220  | 3,517               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1498,6 | 1306,7         | 904,8   | 699,3    | 517,0     | 278,2  | 188,3 |
| 114        | 0,220    | 0,260   | 0,360           | 0,460     | 0,630   | 1,180           | 1,860  | 2,536               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1052,9 | 875,5          | 604,5   | 451,4    | 302,6     | 114,9  | 36,4  |
| 115        | 0,190    | 0,230   | 0,320           | 0,400     | 0,520   | 0,810           | 1,000  | 4,211               | 1    | 1               | 1      | ļ <b>1</b> | 1                  | 1               | 1        | 2116,1 | 1730,7         | 1215,8  | 952,6    | 709,7     | 419,8  | 321,1 |
| 116        | 0,210    | 0,240   | 0,320           | 0,380     | 0,480   | 0,740           | 0,940  | 3,999               | 1    | 1               | 1      | . <u>1</u> | 1                  | 1               | 1        | 1804,4 | 1566,3         | 1149,7  | 952,4    | 733,2     | 440,4  | 325,4 |
| 117        | 0,180    | 0,210   | 0,300           | 0,390     | 0,510   | 0,910           | 1,200  | 3,517               | 1    | 1               | 1      | . <u>1</u> | 1                  | 1               | 1        | 1853,8 | <b>1574,</b> 7 | 1072,3  | 801,8    | 589,6     | 286,5  | 193,1 |
| 118        | 0,180    | 0,220   | 0,340           | 0,470     | 0,730   | 1,820           | 3,210  | 3,222               | 1    | 1               | 1      | . <u>1</u> | 1                  | 1               | 1        | 1690,3 | 1364,8         | 847,8   | 585,6    | 341,4     | 77,1   | 0,4   |
| 119        | 0,200    | 0,250   | 0,440           | 0,790     | 1,380   | 3,000           | 3,880  | 3,517               | 1    | 1               | 1      | <b>1</b>   | 1                  | 1               | 0        | 1658,4 | 1306,7         | 699,3   | 345,2    | 154,8     | 17,2   | 10,3  |
| 120        | 0,210    | 0,280   | 0,560           | 0,920     | 1,520   | 3,030           | 3,850  | 2,991               | 1    | 1               | 1      | 1          | 1                  | 0               | 0        | 1324,2 | 968,2          | 434,1   | 225,1    | 96,8      | 1,3    | 28,7  |
| 121        | 0,210    | 0,270   | 0,480           | 0,730     | 1,130   | 2,320           | 3,550  | 3,318               | 1    | 1               | 1      | 1          | 1                  | 1               | 0        | 1479,9 | 1128,8         | 591,2   | 354,5    | 193,6     | 43,0   | 7,0   |
| 122        | 0,200    | 0,240   | 0,370           | 0,590     | 1,130   | 2,600           | 3,750  | 2,852               | 1    | 1               | 1      | 1          | 1                  | 1               | 0        | 1325,9 | 1088,3         | 670,8   | 383,4    | 152,4     | 9,7    | 31,5  |
| 123        | 0,210    | 0,260   | 0,480           | 0,860     | 1,430   | 3,130           | 4,060  | 2,991               | 1    | 1               | 1      | 1          | 1                  | 0               | 0        | 1324,2 | 1050,3         | 523,1   | 247,8    | 109,2     | 4,7    | 35,7  |
| 124        | 0,210    | 0,290   | 0,540           | 0,770     | 1,080   | 1,810           | 2,880  | 2,376               | 1    | 1               | 1      | 1          | 1                  | 1               | 0        | 1031,6 | 719,4          | 340,1   | 208,6    | 120,0     | 31,3   | 21,2  |
| 125        | 0,230    | 0,300   | 0,680           | 1,180     | 1,840   | 3,410           | 4,160  | 2,688               | 1    | 1               | 1      | 1          | 1                  | 0               | 0        | 1068,9 | 796,2          | 295,4   | 127,8    | 46,1      | 26,8   | 54,7  |
| 126        | 0,300    | 0,380   | 0,660           | 0,950     | 1,330   | 2,270           | 2,950  | 4,585               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1428,4 | 1106,7         | 594,7   | 382,7    | 244,8     | 102,0  | 55,4  |
| 127        | 0,250    | 0,290   | 0,480           | 0,680     | 0,980   | 1,920           | 2,830  | 4,426               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1670,4 | 1426,2         | 822,1   | 550,9    | 351,6     | 130,5  | 56,4  |
| 128        | 0,220    | 0,280   | 0,540           | 0,850     | 1,320   | 2,630           | 3,560  | 3,764               | 1    | 1               | 1      | 1          | 1                  | 1               | 1        | 1611,0 | 1244,4         | 597,1   | 342,9    | 185,2     | 43,1   | 5,7   |

Tabela 5.6b - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METR        | DS DO   | LEITO   | DOPA         | RA OR         | IO ATI        | IBAIA  |                     | (    | COMP/ | ARA ÇA | O ENT | RE D <sub>w</sub> | D D  |      | RELAC        | ÇAOPERC | ENTUAL  | ENTRE OS      | VALORE   | S DE D                                  |        |
|-----|-------------|---------|---------|--------------|---------------|---------------|--------|---------------------|------|-------|--------|-------|-------------------|------|------|--------------|---------|---------|---------------|----------|-----------------------------------------|--------|
|     | Granul      | ometris | a do ma | terial de    | o leino       |               |        |                     | (10) | (11)  | (12)   | (13)  | (14)              | (15) | (16) | E            | OS VALO | RES MED | <b>DOSNOH</b> | LO ATIBA | AIA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |        |
| (1) | (2)         | (3)     | (4)     | (5)          | (6)           | (7)           | (8)    | (9)                 |      | COMP  | ARAÇ/  | AO DE | D. URH            | COM: |      | (17)         | (18)    | (19)    | (20)          | (21)     | (22)                                    | (23)   |
| N°  | Die         | Dr      | Dar     | Dro          | Der           | Der           | Dae    | D <sub>M RHII</sub> | D    | Dre   | Dar    | Dee   | Der               | Der  | Dae  |              |         |         |               |          |                                         |        |
|     | -10<br>(mm) | (10)    | - 30    | - 50<br>(mm) | - 00<br>(mmm) | - 64<br>(mmm) | <br>() | al hard             | -10  | -10   | - 30   | - 50  | -10               | - 64 | -90  |              |         |         |               |          |                                         |        |
| 129 | 0.230       | 0.260   | 0.370   | 0.500        | 0.750         | 1.470         | 1.970  | 4 211               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 1730 7       | 15104   | 1038.0  | 742 1         | 461.4    | 186.4                                   | 1137   |
| 130 | 0.340       | 0.400   | 0,630   | 0.830        | 1.080         | 1.580         | 1,850  | 4,822               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 1318.2       | 1105.5  | 665.4   | 481.0         | 346.5    | 205.2                                   | 160.6  |
| 131 | 0.150       | 0.210   | 0.290   | 0.360        | 0.440         | 0.660         | 0.840  | 4.585               | ī    | 1     | ī      | ī     | 1                 | ī    | ī    | 2956.9       | 2083.5  | 1481.1  | 1173.7        | 942.1    | 594.7                                   | 445.9  |
| 132 | 0,110       | 0,130   | 0,170   | 0,200        | 0,230         | 0,300         | 0,340  | 4,822               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4283,6       | 3609,2  | 2736,5  | 2311,0        | 1996,5   | 1507,3                                  | 1318,2 |
| 133 | 0,140       | 0,150   | 0,180   | 0,200        | 0,230         | 0,290         | 0,330  | 5,376               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3740,2       | 3484,2  | 2886,9  | 2588,2        | 2237,5   | 1753,9                                  | 1529,2 |
| 134 | 0,150       | 0,160   | 0,190   | 0,220        | 0,250         | 0,320         | 0,380  | 5,586               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3623,7       | 3390,9  | 2839,7  | 2438,9        | 2134,2   | 1645,5                                  | 1369,9 |
| 135 | 0,150       | 0,160   | 0,180   | 0,200        | 0,220         | 0,260         | 0,280  | 5,050               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3266,4       | 3056,0  | 2705,4  | 2424,8        | 2195,3   | 1842,2                                  | 1703,4 |
| 136 | 0,160       | 0,170   | 0,190   | 0,220        | 0,250         | 0,310         | 0,350  | 5,376               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3260,2       | 3062,6  | 2729,7  | 2343,8        | 2050,5   | 1634,3                                  | 1436,1 |
| 137 | 0,300       | 0,390   | 0,770   | 1,120        | 1,590         | 2,850         | 3,730  | 5,050               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 1583,2       | 1194,8  | 555,8   | 350,9         | 217,6    | 77,2                                    | 35,4   |
| 138 | 0,160       | 0,170   | 0,210   | 0,240        | 0,280         | 0,360         | 0,400  | 4,822               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 2913,7       | 2736,5  | 2196,2  | 1909,2        | 1622,1   | 1239,4                                  | 1105,5 |
| 139 | 0,160       | 0,170   | 0,210   | 0,250        | 0,300         | 0,400         | 0,480  | 5,586               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3390,9       | 3185,6  | 2559,8  | 2134,2        | 1761,8   | 1296,4                                  | 1063,6 |
| 140 | 0,140       | 0,160   | 0,200   | 0,230        | 0,280         | 0,390         | 0,470  | 4,822               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3344,3       | 2913,7  | 2311,0  | 1996,5        | 1622,1   | 1136,4                                  | 926,0  |
| 141 | 0,150       | 0,170   | 0,230   | 0,290        | 0,380         | 0,600         | 0,780  | 9,742               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 6394,6       | 5630,5  | 4135,6  | 3259,3        | 2463,6   | 1523,6                                  | 1149,0 |
| 142 | 0,120       | 0,140   | 0,170   | 0,200        | 0,230         | 0,310         | 0,370  | 5,160               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4200,3       | 3586,0  | 2935,5  | 2480,2        | 2143,6   | 1564,6                                  | 1294,7 |
| 143 | 0,180       | 0,200   | 0,700   | 1,500        | 2,220         | 4,130         | 5,120  | 4,463               | 1    | 1     | 1      | 1     | 1                 | 1    | 0    | 2379,6       | 2131,6  | 537,6   | 197,5         | 101,0    | 8,1                                     | 14,7   |
| 144 | 0,160       | 0,190   | 0,290   | 0,420        | 0,800         | 2,220         | 3,260  | 4,585               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 2765,8       | 2313,3  | 1481,1  | 991,7         | 473,2    | 106,5                                   | 40,7   |
| 145 | 0,160       | 0,190   | 0,300   | 0,450        | 1,000         | 2,700         | 3,820  | 4,633               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 2795,9       | 2338,7  | 1444,5  | 929,7         | 363,3    | 71,6                                    | 21,3   |
| 146 | 0,120       | 0,150   | 0,230   | 0,310        | 0,420         | 0,970         | 1,340  | 4,585               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3721,1       | 2956,9  | 1893,6  | 1379,1        | 991,7    | 372,7                                   | 242,2  |
| 147 | 0,200       | 0,250   | 0,570   | 1,360        | 2,440         | 4,740         | 5,030  | 2,073               | 1    | 1     | 1      | 1     | 0                 | 0    | 0    | 936 <i>5</i> | 729,2   | 263,7   | 52,4          | 17,7     | 128,7                                   | 142,6  |
| 148 | 0,160       | 0,210   | 0,400   | 0,850        | 1,370         | 2,520         | 3,270  | 4,585               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 2765,8       | 2083,5  | 1046,3  | 439,5         | 234,7    | 82,0                                    | 40,2   |
| 149 | 0,100       | 0,130   | 0,190   | 0,250        | 0,340         | 0,940         | 1,640  | 4,211               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4110,5       | 3138,9  | 2116,1  | 1584,2        | 1138,4   | 347,9                                   | 156,7  |
| 150 | 0,090       | 0,120   | 0,180   | 0,230        | 0,310         | 1,010         | 2,430  | 4,585               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4994,8       | 3721,1  | 2447,4  | 1893,6        | 1379,1   | 354,0                                   | 88,7   |
| 151 | 0,130       | 0,160   | 0,240   | 0,350        | 0,590         | 2,400         | 3,700  | 4,822               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3609,2       | 2913,7  | 1909,2  | 1277,7        | 717,3    | 100,9                                   | 30,3   |
| 152 | 0,100       | 0,120   | 0,170   | 0,210        | 0,250         | 0,380         | 0,480  | 4,463               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4363,2       | 3619,4  | 2525,4  | 2025,3        | 1685,3   | 1074,5                                  | 829,8  |
| 153 | 0,110       | 0,130   | 0,190   | 0,230        | 0,300         | 0,840         | 1,830  | 4,822               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4283,6       | 3609,2  | 2437,9  | 19%,5         | 1507,3   | 474,0                                   | 163,5  |
| 154 | 0,230       | 0,290   | 0,710   | 1,330        | 2,130         | 3,760         | 4,500  | 5,160               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 2143,6       | 1679,4  | 626,8   | 288,0         | 142,3    | 37,2                                    | 14,7   |
| 155 | 0,200       | 0,230   | 0,360   | 0,530        | 1,000         | 2,730         | 3,980  | 7,244               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 3522,0       | 3049,6  | 1912,2  | 1266,8        | 624,4    | 165,4                                   | 82,0   |
| 156 | 0,080       | 0,090   | 0,160   | 0,220        | 0,430         | 2,140         | 4,060  | 5,376               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 6620,4       | 5873,7  | 3260,2  | 2343,8        | 1150,3   | 151,2                                   | 32,4   |
| 157 | 0,180       | 0,200   | 0,290   | 0,390        | 0,800         | 1,070         | 2,060  | 5,050               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 2705,4       | 2424,8  | 1641,3  | 1194,8        | 531,2    | 371,9                                   | 145,1  |
| 158 | 0,200       | 0,230   | 0,390   | 0,730        | 1,420         | 4,070         | 6,230  | 5,050               | 1    | 1     | 1      | 1     | 1                 | 1    | 0    | 2424,8       | 2095,5  | 1194,8  | 591,7         | 255,6    | 24,1                                    | 23,4   |
| 159 | 0,120       | 0,150   | 0,230   | 0,340        | 0,600         | 4,670         | 0,300  | 5,160               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4200,3       | 3340,3  | 2143,6  | 1417,8        | 760,1    | 10,5                                    | 1620,1 |
| 160 | 0,150       | 0,160   | 0,210   | 0,250        | 0,320         | 2,760         | 0,280  | 6,639               | 1    | 1     | 1      | 1     | 1                 | 1    | 1    | 4326,1       | 4049,5  | 3061,5  | 2555,7        | 1974,7   | 140,5                                   | 2271,1 |

Tabela 5.6b - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ                  | METR  | OS DO           | LEITO           | DOPA            | RA OR           | IO ATI          | IBAIA |                     |      | COMP                                                 | ARA ÇA          | IO ENT          | 'RE D           | D IA            |       | RELAÇ  | AOPERC   | ENTUAL    | ENTRE O         | S VALORI  | S DE D |        |
|----------------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|---------------------|------|------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------|--------|----------|-----------|-----------------|-----------|--------|--------|
|                      | Granu | bmetri          | a do ma         | terial d        | o leino         |                 |       |                     | (10) | (11)                                                 | (12)            | (13)            | (14)            | (15)            | (16)  | E      | OS VALO  | RES MED   | DID OS NO       | RIO ATIB. | AIA    |        |
| (1)                  | (2)   | (3)             | (4)             | (5)             | (6)             | $(\mathcal{O})$ | (8)   | (9)                 |      | COMP                                                 | ARAÇ/           | AO DE           | D. WEH          | COM:            |       | (17)   | (18)     | (19)      | (20)            | (21)      | (22)   | (23)   |
| $\mathbb{N}^{\circ}$ | Din   | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>84</sub> | D.00  | D <sub>VI SHI</sub> | D    | D <sub>16</sub>                                      | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>84</sub> | D.00  |        |          |           |                 |           |        |        |
|                      | (mm)  | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)  | nan.                |      | ~                                                    | 2               |                 |                 |                 |       |        |          |           |                 |           |        |        |
| 161                  | 0,160 | 0,180           | 0,230           | 0,270           | 0,330           | 0,490           | 0,640 | 4,822               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 2913,7 | 2578,9   | 1996,5    | 1685,9          | 1361,2    | 884,1  | 653,4  |
| 162                  | 0,150 | 0,160           | 0,200           | 0,240           | 0,290           | 4,840           | 1,350 | 5,376               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 3484,2 | 3260,2   | 2588,2    | 2140,1          | 1753,9    | 11,1   | 298,2  |
| 163                  | 0,100 | 0,120           | 0,160           | 0,190           | 0,230           | 0,330           | 0,390 | 3,517               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 3416,8 | 2830,7   | 2098,0    | 1751,0          | 1429,1    | 965,7  | 801,8  |
| 164                  | 0,170 | 0,190           | 0,260           | 0,320           | 0,420           | 1,310           | 2,080 | 7,075               | 1    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                 |                 |                 |                 |       |        | 3623,9   | 2621,3    | 2111,1          | 1584,6    | 440,1  | 240,2  |
| 165                  | 0,080 | 0,100           | 0,150           | 0,180           | 0,220           | 0,300           | 0,370 | 5,376               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 6620,4 | 5276,3   | 3484,2    | 2886,9          | 2343,8    | 1692,1 | 1353,1 |
| 166                  | 0,140 | 0,150           | 0,190           | 0,230           | 0,290           | 1,190           | 3,530 | 6,178               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 4313,0 | 4018,8   | 3151,7    | 2586,2          | 2030,4    | 419,2  | 75,0   |
| 167                  | 0,200 | 0,240           | 0,350           | 0,500           | 0,840           | 1,980           | 2,850 | 4,463               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 2131,6 | 1759,7   | 1175,2    | 792,6           | 431,3     | 125,4  | 56,6   |
| 168                  | 0,220 | 0,250           | 0,350           | 0,440           | 0,630           | 1,250           | 1,650 | 5,586               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 2438,9 | 2134,2   | 1495,9    | 1169,4          | 786,6     | 346,8  | 238,5  |
| 169                  | 0,130 | 0,150           | 0,220           | 0,290           | 0,410           | 1,840           | 5,640 | 5,160               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 0     | 3869,5 | 3340,3   | 2245,6    | 1679,4          | 1158,6    | 180,5  | 9,3    |
| 170                  | 0,140 | 0,190           | 0,320           | 0,460           | 0,760           | 1,660           | 2,450 | 4,822               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 1     | 3344,3 | 2437,9   | 1406,9    | 948,3           | 534,5     | 190,5  | 96,8   |
| 171                  | 0,160 | 0,190           | 0,370           | 0,920           | 1,760           | 4,000           | 5,260 | 5,050               | 1    | 1                                                    | 1               | 1               | 1               | 1               | 0     | 3056,0 | 2557,7   | 1264,8    | 448,9           | 186,9     | 26,2   | 4,2    |
|                      |       |                 |                 |                 |                 |                 |       |                     |      | (%                                                   | )de ev          | entos er        | mque D          | VJ > D          |       | DIFER  | ENÇA PEI | R CENT UA | <b>AL RELAT</b> | IVA MĖD   | A      |        |
|                      |       |                 |                 |                 |                 |                 |       |                     | 100  | 100                                                  | 100             | 100             | 99,42           | 87,72           | 77,19 | 2141,6 | 1813,8   | 1226,7    | 913,1           | 644,6     | 306,6  | 236,2  |

Tabela 5.6b - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>WERED</sub>- Diâmetro calculado pela equação: DVj [SHI] = 0,4965 × S<sup>0,553</sup>. Para o método de Shields (1936)

S - declividade da linha de água

| DIÄ  | METR   | OS DO I | LEITO   | DOPA      | RAOF    | RIO ATI | IBAIA |                     |                        | COMP/           | <b>ARAÇA</b>    | O ENI           | RE D <sub>vj</sub>  | <sub>a</sub> D   |          | RELA  | ÇA O PER | CENTUA | L ENTRE  | E OS VAL  | ORES DE | E D <sub>ug</sub> |
|------|--------|---------|---------|-----------|---------|---------|-------|---------------------|------------------------|-----------------|-----------------|-----------------|---------------------|------------------|----------|-------|----------|--------|----------|-----------|---------|-------------------|
|      | Granul | ometria | 1 do ma | terial do | o leito |         |       |                     | (10)                   | (11)            | (12)            | (13)            | (14)                | (15)             | (16)     | E     | OSVAL    | ORESME | EDIDOS N | IO RIO A' | ГІВАІА  |                   |
| (l)  | (2)    | (3)     | (4)     | (5)       | (6)     | - Ø     | (8)   | (9)                 | (                      | COMPA           | ARAÇA           | O DE 1          | D <sub>VJ MEM</sub> | <sub>q</sub> COM | :        | (17)  | (18)     | (19)   | (20)     | (21)      | (22)    | (23)              |
| N°   | D10    | Dló     | D35     | D50       | D65     | D84     | D90   | D <sub>vi mem</sub> | <b>D</b> <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>     | D <sub>64</sub>  | $D_{90}$ |       |          |        |          |           |         |                   |
|      | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  |                     |                        |                 |                 |                 |                     |                  |          |       |          |        |          |           |         |                   |
| 1    | 0.150  | 0.180   | 0.340   | 0.640     | 0.970   | 1.560   | 1.860 | 1.220               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 713.7 | 578.0    | 259.0  | 90.7     | 25.8      | 27.8    | 52.4              |
| 2    | 0.190  | 0.240   | 0.370   | 0.540     | 0.880   | 2.770   | 3.820 | 0,992               | ī                      | ī               | î               | ī               | ī                   | Ŏ                | Ŭ        | 422.1 | 313.3    | 168.1  | 83.7     | 12.7      | 179.3   | 285.1             |
| 3    | 0,240  | 0,290   | 0,480   | 0,680     | 1.040   | 2,960   | 4,110 | 0,827               | 1                      | 1               | 1               | 1               | 0                   | 0                | 0        | 244,6 | 185,2    | 72,3   | 21,6     | 25,8      | 257,9   | 397,0             |
| 4    | 0,220  | 0,270   | 0,530   | 0,860     | 1,370   | 3,240   | 4,220 | 1,046               | 1                      | 1               | 1               | 1               | 0                   | 0                | 0        | 375,3 | 287,3    | 97,3   | 21,6     | 31,0      | 209,8   | 303,5             |
| 5    | 0,240  | 0,280   | 0,400   | 0,510     | 0,640   | 0,970   | 1,230 | 0,675               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 181,4 | 141,2    | б8,8   | 32,4     | 5,5       | 43,6    | 82,1              |
| б    | 0,330  | 0,400   | 0,710   | 1,020     | 1,470   | 2,500   | 3,130 | 1,540               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 366,8 | 285,1    | 117,0  | 51,0     | 4,8       | 62,3    | 103,2             |
| 7    | 0,270  | 0,320   | 0,450   | 0,570     | 0,730   | 1,130   | 1,420 | 0,907               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 235,9 | 183,4    | 101,5  | 59,1     | 24,2      | 24,6    | 56,6              |
| 8    | 0,290  | 0,340   | 0,500   | 0,640     | 0,830   | 1,440   | 3,780 | 0,834               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 187,5 | 145,2    | бб,8   | 30,3     | 0,5       | 72,7    | 353,3             |
| 9    | 0,360  | 0,440   | 0,690   | 0,970     | 1,500   | 4,470   | 4,940 | 0,783               | 1                      | 1               | 1               | 0               | 0                   | 0                | 0        | 117,6 | 78,0     | 13,5   | 23,8     | 91,5      | 470,7   | 530,7             |
| 10   | 0,320  | 0,370   | 0,520   | 0,660     | 0,850   | 1,400   | 2,000 | 0,554               | 1                      | 1               | 1               | 0               | 0                   | 0                | 0        | 73,0  | 49,6     | б,5    | 19,2     | 53,5      | 152,9   | 261,3             |
| 11   | 0,300  | 0,360   | 0,560   | 0,780     | 1,220   | 4,100   | 4,750 | 0,397               | 1                      | 1               | 0               | 0               | 0                   | 0                | 0        | 32,3  | 10,3     | 41,1   | 96,5     | 207,3     | 932,9   | 1096,6            |
| 12   | 0,300  | 0,360   | 0,560   | 0,770     | 1,090   | 3,330   | 4,500 | 0,333               | 1                      | 0               | 0               | 0               | 0                   | 0                | 0        | 11,1  | 8,0      | 68,1   | 131,1    | 227,1     | 899,4   | 1250,5            |
| 13   | 0,270  | 0,320   | 0,480   | 0,630     | 0,870   | 3,900   | 4,700 | 0,198               | 0                      | 0               | 0               | 0               | 0                   | 0                | 0        | 36,2  | 61,4     | 142,1  | 217,7    | 338,7     | 1866,8  | 2270,3            |
| 14   | 0,270  | 0,320   | 0,470   | 0,640     | 0,920   | 2,300   | 4,020 | 0,163               | 0                      | 0               | O               | 0               | 0                   | 0                | 0        | 65,2  | 95,8     | 187,6  | 291,6    | 462,9     | 1307,2  | 2359,5            |
| 15   | 0,280  | 0,320   | 0,490   | 0,660     | 0,950   | 2,170   | 3,160 | 0,209               | 0                      | 0               | 0               | 0               | 0                   | 0                | 0        | 34,3  | 53,4     | 135,0  | 216,5    | 355,5     | 940,6   | 1415,3            |
| 16   | 0,240  | 0,270   | 0,370   | 0,470     | 0,610   | 1,000   | 1,450 | 0,571               | 1                      | 1               | 1               | 1               | 0                   | 0                | 0        | 137,9 | 1115     | 54,3   | 21,5     | 6,8       | 75,1    | 154,0             |
| 17   | 0,310  | 0,370   | 0,510   | 0,630     | 0,800   | 1,290   | 1,770 | 1,473               | 1                      | 1               | 1               | 1               | 1                   | 1                | 0        | 375,3 | 298,2    | 188,9  | 133,9    | 84,2      | 14,2    | 20,1              |
| 18   | 0,280  | 0,340   | 0,510   | 0,690     | 0,970   | 4,770   | 5,110 | 0,648               | 1                      | 1               | 1               | 0               | 0                   | 0                | 0        | 131,3 | 90,4     | 27,0   | 6,6      | 49,8      | 636,7   | 689,2             |
| 19   | 0,310  | 0,370   | 0,550   | 0,710     | 0,960   | 3,630   | 4,620 | 0,985               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 217,7 | 166,2    | 79,1   | 38,7     | 2,6       | 268,6   | 369,1             |
| 20   | 0,290  | 0,350   | 0,500   | 0,630     | 0,800   | 1,240   | 1,640 | 1,181               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 307,4 | 237,6    | 136,3  | 87,5     | 47,7      | 5,0     | 38,8              |
| 21   | 0,340  | 0,440   | 0,840   | 1,260     | 2,140   | 4,520   | 4,960 | 0,318               | 0                      | 0               | 0               | 0               | 0                   | 0                | 0        | 7,0   | 38,5     | 164,4  | 296,6    | 573,6     | 1322,8  | 1461,3            |
| 22   | 0,300  | 0,390   | 0,750   | 1,150     | 1,870   | 4,270   | 4,820 | 0,500               | ļ                      | 1               | Q               | Q               | Q                   | 0                | Û        | 66,7  | 28,2     | 50,0   | 130,0    | 274,0     | 754,0   | 864,0             |
| 23   | 0,300  | 0,360   | 0,510   | 0,630     | 0,810   | 1,260   | 1,710 | 0,999               | 1                      | 1               | 1               | 1               | 1                   | U                | U        | 232,9 | 177,4    | 95,8   | 58,5     | 23,3      | 26,2    | 71,2              |
| 24   | 0,270  | 0,320   | 0,470   | 0,590     | 0,740   | 1,110   | 1,370 | 0,945               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 249,9 | 195,2    | 101,0  | 60,1     | 27,7      | 17,5    | 45,0              |
| 25   | 0,250  | 0,300   | 0,440   | 0,560     | 0,730   | 1,180   | 1,660 | 1,376               | 1                      | 1               | 1               | 1               | 1                   | 1                | U        | 450,5 | 358,8    | 212,8  | 145,8    | 88,5      | 16,6    | 20,6              |
| 26   | 0,240  | 0,290   | 0,420   | 0,550     | 0,740   | 1,340   | 2,260 | 0,762               | 1                      | 1               | 1               | 1               | 1                   | 0                | 0        | 217,5 | 162,7    | 81,4   | 38,5     | 3,0       | 75,9    | 196,6             |
| 27   | 0,230  | 0,280   | 0,420   | 0,540     | 0,710   | 1,200   | 4,430 | 0,482               | 1                      | l               | 1               | 0               | 0                   | Ó                | 0        | 109,7 | 72,3     | 14,8   | 12,0     | 47,2      | 148,8   | 818,4             |
| 28   | 0,250  | 0,290   | 0,410   | 0,520     | 0,650   | 0,950   | 1,200 | 0,544               | 1                      | 1               | 1               | 1               | U                   | U                | U        | 117,5 | 87,5     | 32,6   | 4,6      | 19,5      | 74,7    | 120,7             |
| 29   | 0,240  | 0,280   | 0,390   | 0,480     | 0,590   | 0,830   | 1,000 | 0,424               | l                      | <u>l</u>        | 1               | Ō               | 0                   | Û                | Ō        | 76,7  | 51,4     | 8,7    | 13,2     | 39,2      | 95,8    | 135,9             |
| JU   | 0,270  | 0,310   | 0,430   | 0,530     | 0,650   | 0,890   | 1,050 | 0,574               | 1                      | 1               | 1               | 1               | U                   | U                | U        | 112,7 | 85,3     | 33,6   | 8,4      | 13,2      | 55,0    | 82,8              |
| 31   | 0,230  | 0,270   | 0,370   | 0,470     | 0,600   | 0,890   | 1,100 | 0,355               | 1                      | 1               | U               | U               | U                   | U                | U        | 54,5  | 31,6     | 4,2    | 32,3     | 68,9      | 150,5   | 209,6             |
| - 52 | 0,280  | 0,340   | 0,500   | 0,650     | 0,870   | 1,660   | 2,300 | 0,583               | 1                      | 1               | 1               | 0               | 0                   | 0                | 0        | 108,3 | 71,5     | 16,6   | 11,5     | 49,2      | 184,6   | 294,4             |

Tabela 5.6c - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ          | METR   | OS DO          | LEITO   | DOPA      | RA O I  | RIO AT. | IBAIA            |                      | 1               | COMP.           | ARAÇA           | O ENI           | RE D <sub>vj</sub>   | <sub>A</sub> D    |          | RELA            | ÇA O PER              | CENTUA         | L ENTRI          | E OS VAL      | ORES DI       | E D <sub>w</sub> |
|--------------|--------|----------------|---------|-----------|---------|---------|------------------|----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-------------------|----------|-----------------|-----------------------|----------------|------------------|---------------|---------------|------------------|
|              | Granul | ometri         | a do ma | terial de | o leito |         |                  |                      | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)              | (16)     | E               | OSVAL                 | ORESME         | EDIDOS N         | IO RIO A      | TIBAIA        |                  |
| <b>(l)</b>   | (2)    | (3)            | (4)     | (5)       | (б)     | - O     | (8)              | (9)                  | (               | COMP/           | RAÇA            | O DE 1          | D <sub>VJ PAPA</sub> | <sub>g</sub> COM  | (:       | (17)            | (18)                  | (19)           | (20)             | (21)          | (22)          | (23)             |
| N            | D10    | Dló            | D35     | D50       | D65     | D84     | D90              | D <sub>vi memi</sub> | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>      | $\mathbf{D}_{64}$ | $D_{20}$ |                 |                       |                |                  |               |               |                  |
|              | (mm)   | (mm)           | (mm)    | (mm)      | (mm)    | (mm)    | (mm)             | mm                   |                 |                 |                 |                 |                      |                   |          |                 |                       |                |                  |               |               |                  |
| 33           | 0.280  | 0.320          | 0.450   | 0.570     | 0.730   | 1.230   | 2.180            | 0.231                | Λ               | 0               | 0               | Λ               | <u> </u>             | 0                 | 1        | 21.1            | 38.4                  | 94.6           | 146.5            | 215.7         | 432.0         | 842.9            |
| 34           | 0.270  | 0.300          | 0.410   | 0.510     | 0.630   | 0.880   | 1,100            | 0.322                | ľ               | 1               | Õ               | Ŏ               | Ŭ                    | ŏ                 | Ŏ        | 19.4            | 75                    | 27.2           | 58.2             | 95.4          | 173.0         | 225.7            |
| 35           | 0,280  | 0,320          | 0,440   | 0,540     | 0.680   | 1.000   | 1,270            | 0,408                | 1               | 1               | Ō               | Ū               | 0                    | Ō                 | O        | 45,7            | 275                   | 7.8            | 32,3             | 66,6          | 145.0         | 211.2            |
| 36           | 0,210  | 0,250          | 0,360   | 0,450     | 0,580   | 0,890   | 1,100            | 0,625                | 1               | 1               | 1               | 1               | 1                    | 0                 | 0        | 197,4           | 149,9                 | 73,5           | 38,8             | 7,7           | 42,5          | 76,1             |
| 37           | 0,270  | 0,320          | 0,450   | 0,570     | 0,740   | 1,180   | 1,520            | 0,285                | 1               | 0               | 0               | 0               | 0                    | 0                 | 0        | 5,7             | 12,1                  | 57,7           | 99,7             | 159,3         | 313,5         | 432,7            |
| 38           | 0,260  | 0,330          | 0,530   | 0,730     | 1,010   | 1,790   | 3,150            | 0,891                | 1               | 1               | 1               | 1               | 0                    | 0                 | 0        | 242,6           | 169,9                 | 68,1           | 22,0             | 13,4          | 101,0         | 253,7            |
| 39           | 0,300  | 0,340          | 0,480   | 0,600     | 0,750   | 1,140   | 1,450            | 0,272                | 0               | 0               | 0               | 0               | 0                    | 0                 | 0        | 10,1            | 24,8                  | 76,2           | 120,2            | 175,2         | 318,4         | 432,1            |
| 40           | 0,320  | 0,370          | 0,550   | 0,710     | 0,950   | 1,600   | 2,510            | 2,025                | 1               | 1               | 1               | 1               | 1                    | 1                 | 0        | 532,9           | 447,3                 | 268,2          | 185,2            | 113,2         | 26,6          | 23,9             |
| 41           | 0,280  | 0,320          | 0,450   | 0,570     | 0,720   | 1,080   | 1,360            | 1,882                | 1               | 1               | 1               | 1               | 1                    | 1                 | 1        | 572,1           | 488,1                 | 318,2          | 230,2            | 161,4         | 74,3          | 38,4             |
| 42           | 0,220  | 0,270          | 0,410   | 0,570     | 0,900   | 4,170   | 4,790            | 0,818                | 1               | 1               | 1               | 1               | 0                    | 0                 | 0        | 271,9           | 203,1                 | 99,6           | 43,6             | 10,0          | 409,6         | 485,4            |
| 43           | 0,290  | 0,340          | 0,460   | 0,570     | 0,700   | 1,020   | 1,280            | 0,740                | 1               | 1               | 1               | 1               | 1                    | 0                 | 0        | 155,1           | 117,6                 | 60,9           | 29,8             | 5,7           | 37,9          | 73,0             |
| 44           | 0,170  | 0,250          | 0,550   | 0,820     | 1,250   | 4,840   | 5,150            | 2,165                | 1               | <u> </u>        | 1               | 1               | 1                    | U                 | U        | 1173,6          | 766,1                 | 293,7          | 164,0            | 73,2          | 123,5         | 137,9            |
| 45           | 0,210  | 0,260          | 0,410   | 0,590     | 0,880   | 1,790   | 2,700            | 2,185                | I               | ļ               | 1               | Į               | 1                    | I                 | U        | 940,4           | 740,3                 | 432,9          | 270,3            | 148,3         | 22,1          | 23,6             |
| 40           | 0,180  | 0,200          | 0,300   | 0,410     | U,6UU   | 1,200   | 1,850            | 1,144                | 1               | 1               | 1               | 1               | 1                    | U                 | U        | 535,4           | 471,9                 | 281,5          | 179,0            | 90,0          | 4,9           | 01,7             |
| 47           | 0,170  | 0,210          | 0,390   | 0,650     | 1,140   | 2,970   | 4,030            | 1,/00                | 1               | 1               | 1               | 1               | 1                    | U.                | U        | 958,7           | /40,8                 | 552,8          | 1/1,/            | 54,9          | 08,2          | 128,2            |
| 476          | 0,150  | 0,170          | 0,210   | 0,250     | 0,550   | 0,720   | 1,100            | 1,504                | 1               | <u> </u>        | 1               | 1               | 1                    | <u>1</u>          | 1        | 942,7           | 820,0                 | 044,8          | 525,0            | 5/5,9         | 117,2         | 42,2             |
| 49<br>50     | 0,150  | 0,170          | 0,210   | 0,240     | 0,320   | 0,910   | 1,440            | 1,155                | 1               | 1               | 1               | 1               | 1                    | 1                 | U        | 0/0,1           | <i>چ</i> עוכ<br>ד כד> | 450,1          | 38 L 3<br>2 10 5 | 201,0         | 20,9          | 24,7             |
| 20           | 0,100  | 0,170          | 0,230   | 0.320     | 0,050   | 1,220   | 2,/90            | 1,314                | 1               | I               | 1<br>1          | 1               | 1                    | U                 | U        | /21,0<br>220 2  | 2201                  | 4/1,Z          | 310,2<br>1410    | 102,1<br>23.0 | 18,0<br>24 4  | 112,4            |
| 21<br>52     | 0,170  | 0,190          | 0,220   | 0,330     | 0,490   | 2,040   | 1,200            | 0,798                | 1               | <b>1</b>        | 1               | <u>1</u>        | 1                    | U<br>0            | U        | 309,2<br>361 0  | 340,1                 | 219,3          | 141,9<br>56 7    | 02,9          | 30,0<br>160 2 | 90,0<br>265 0    |
| - 74<br>- 52 | 0,170  | U,19U<br>n 10n | 0,280   | 0,200     | 0,900   | 2,040   | 2,800            | 0,704                | 1<br>1          | 1               | 1               | 1<br>1          | U<br>1               | U<br>0            | U<br>N   | JUI,U<br>220 0  | 312,4<br>207 0        | 1/2,2          | 20,7<br>00 A     | 14,0<br>20 5  | 24.0          | 407,0<br>67.6    |
| 50<br>54     | 0,100  | 0,100          | 0,200   | 0,370     | 0,230   | 0,910   | 1,230<br>0 0 2 0 | 0,734<br>1710        | 1               | 1               | 1               | <u>1</u>        | 1                    |                   | U<br>1   | J20,0<br>1120 2 | 307,0<br>1046 3       | 102,J<br>955 7 | 70,4<br>750 7    | 30,2<br>647.6 | 24,0          | U,U<br>0 79      |
| 55           | 0,140  | 0,150          | 0,100   | 0,200     | 0,230   | 0,500   | 0,920            | 1,717                | 1               | 1               | 1               | <u>1</u>        | 1                    | 1                 | 1        | 662.8           | 5675                  | 434.0          | 345.0            | 256.0         | 240,7<br>78 0 | 25.6             |
| 56           | 0,140  | 0,100          | 0,200   | 0,240     | 0,500   | 1 300   | 1030             | 1,000                | 1               | 1               | 1               |                 | 1                    |                   | n        | 532.4           | 405.2                 | 330.0          | 180 1            | 53 3          | 37.4          | 00 T             |
| 57           | 0,100  | 0,100          | 0.250   | 0,320     | 0.420   | 0 710   | 0.950            | 0.619                | 1               | 1               | 1               | 1               | 1                    | Ň                 | Ň        | 264.2           | 225.8                 | 147.6          | 035              | 47.4          | 147           | 534              |
| 58           | 0,140  | 0,150          | 0,190   | 0.230     | 0.280   | 1.460   | 4690             | 0,410                | 1               | 1               | ī               | 1               | Î                    | Ň                 | Ň        | 192.8           | 156.2                 | 115.7          | 78.2             | 46.4          | 256.2         | 1044.2           |
| 59           | 0.160  | 0.180          | 0.230   | 0.290     | 0.390   | 0.750   | 1.140            | 1.684                | ī               | i               | ī               | ī               | i                    | ĩ                 | ĩ        | 952.2           | 835.3                 | 632.0          | 480.5            | 331.7         | 124.5         | 47.7             |
| 60           | 0.170  | 0.190          | 0.270   | 0.400     | 0.750   | 1.660   | 2.500            | 0,841                | ī               | ī               | ī               | ī               | ī                    | Ō                 | Ô        | 394.8           | 342.7                 | 211.5          | 110.3            | 12.1          | 97.4          | 197.2            |
| 61           | 0.170  | 0,190          | 0.270   | 0.360     | 0.570   | 1.240   | 1.640            | 0.515                | 1               | 1               | 1               | 1               | 0                    | 0                 | Ō        | 202.9           | 171.0                 | 90.7           | 43.1             | 10.7          | 140.8         | 218.5            |
| 62           | 0,180  | 0,210          | 0,370   | 0,820     | 1,560   | 3,060   | 3,790            | 1,542                | ī               | 1               | ī               | 1               | Ū                    | Ö                 | Ũ        | 756.8           | 634.4                 | 316.8          | 88.1             | 1.2           | 98.4          | 145.8            |
| 63           | 0,160  | 0,190          | 0,310   | 0,520     | 0,810   | 1,370   | 1,660            | 0,546                | 1               | 1               | 1               | 1               | 0                    | 0                 | 0        | 241,3           | 187,4                 | 76,2           | 5,0              | 48,3          | 150,9         | 204,0            |
| 64           | 0,150  | 0,180          | 0,340   | 0,630     | 0,970   | 1,560   | 1,860            | 0,332                | 1               | 1               | 0               | 0               | 0                    | 0                 | 0        | 121,2           | 84,3                  | 2,5            | 89,9             | 192,3         | 370,1         | 460,6            |

Tabela 5.6c - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ        | METR   | OS DO I | LEITO    | DO PA     | RAOF    | RIO ATI            | IBAIA |                      |                        | COMP/           | <b>ARAÇA</b>    | O ENI                  | RE D <sub>WJ</sub>  | <sub>A</sub> D    |                   | RELA           | ÇA O PER      | CENTUA       | L ENTRE   | C OS VAL      | ORES DI        | E D <sub>w</sub> |
|------------|--------|---------|----------|-----------|---------|--------------------|-------|----------------------|------------------------|-----------------|-----------------|------------------------|---------------------|-------------------|-------------------|----------------|---------------|--------------|-----------|---------------|----------------|------------------|
|            | Granul | ometria | i do mai | terial do | o leito |                    |       |                      | (10)                   | (11)            | (12)            | (13)                   | (14)                | (15)              | (16)              | F              | OSVAL         | ORESME       | DIDOS N   | IO RIO A'     | TIBAIA         |                  |
| <b>(l)</b> | (2)    | (3)     | (4)      | (5)       | (6)     | $-\mathcal{O}^{-}$ | (8)   | (9)                  | (                      | COMPA           | IRAÇA           | ODE 1                  | D <sub>VJ MEM</sub> | η COM             | I:                | (17)           | (18)          | (19)         | (20)      | (21)          | (22)           | (23)             |
| N          | D10    | Dló     | D35      | D50       | D65     | D84                | D90   | D <sub>vi memi</sub> | <b>D</b> <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | <b>D</b> <sub>50</sub> | D <sub>65</sub>     | $\mathbf{D}_{64}$ | $\mathbf{D}_{90}$ |                |               |              |           |               |                |                  |
|            | (mm)   | (mm)    | (mm)     | (mm)      | (mm)    | (mm)               | (mm)  | -51,                 |                        |                 |                 |                        |                     |                   |                   |                |               |              |           |               |                |                  |
| 65         | 0 170  | 0 100   | 0.260    | 0 380     | 0.600   | 1 180              | 1750  | 2557                 | 1                      | 1               | 1               | 1                      | 1                   | 1                 | : 1               | 1404.3         | 1246 0        | 883.6        | 573.0     | 326.2         | 116 7          | 46 1             |
| 66         | 0 170  | 0,120   | 0.220    | 0,300     | 0 3 10  | 0 410              | 0.470 | 0.865                | 1                      | i               | ī               | î                      | i                   |                   | i                 | 408.6          | 380.3         | 293.0        | 232.5     | 178.9         | 110,7          |                  |
| 67         | 0.170  | 0.190   | 0.250    | 0.320     | 0.440   | 1.190              | 1.680 | 1.277                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | Ō                 | 651.1          | 572.0         | 410.7        | 299.0     | 190.2         | 7.3            | 31.6             |
| 68         | 0,170  | 0,180   | 0,230    | 0,270     | 0,320   | 0,430              | 0,560 | 1,829                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | 1                 | 975,8          | 916,1         | 695,2        | 577,4     | 471,5         | 325,3          | 226,6            |
| 69         | 0,170  | 0,190   | 0,250    | 0,300     | 0,360   | 0,570              | 1,690 | 2,855                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | 1                 | 1579,6         | 1402,8        | 1042,1       | 851,8     | 693,2         | 400,9          | 69,0             |
| 70         | 0,230  | 0,260   | 0,340    | 0,430     | 0,620   | 1,410              | 2,050 | 1,262                | 1                      | 1               | 1               | 1                      | 1                   | 0                 | 0                 | 448,5          | 385,2         | 271,0        | 193,4     | 103,5         | 11,8           | 62,5             |
| 71         | 0,230  | 0,250   | 0,310    | 0,370     | 0,440   | 0,740              | 1,180 | 1,140                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | 0                 | 395,8          | 356,1         | 267,8        | 208,2     | 159,2         | 54,1           | 3,5              |
| 72         | 0,230  | 0,260   | 0,350    | 0,440     | 0,640   | 1,500              | 2,200 | 0,944                | 1                      | 1               | 1               | 1                      | 1                   | 0                 | 0                 | 310,2          | 262,9         | 169,6        | 114,4     | 47,4          | 59,0           | 133,2            |
| 73         | 0,190  | 0,230   | 0,320    | 0,410     | 0,610   | 1,630              | 3,000 | 0,871                | 1                      | 1               | 1               | <u> </u>               | 1                   | 0                 | 0                 | 358,6          | 278,9         | 172,3        | 112,5     | 42,9          | 87,1           | 244,3            |
| 74         | 0,240  | 0,270   | 0,350    | 0,420     | 0,550   | 0,990              | 1,360 | 0,521                | 1                      | 1               | 1               | 1                      | 0                   | 0                 | 0                 | 117,2          | 93,1          | 49,0         | 24,1      | 5,5           | 89,9           | 160,9            |
| 75         | 0,200  | 0,250   | 0,400    | 0,640     | 1,100   | 2,520              | 3,770 | 0,640                | 1                      | 1               | 1               | 1                      | 0                   | 0                 | 0                 | 220,1          | 156,1         | 60,0         | Q,0       | 71,8          | 293,6          | 488,9            |
| 76         | 0,170  | 0,210   | 0,320    | 0,460     | 0,860   | 2,820              | 4,090 | 0,500                | 1                      | 1               | 1               | I                      | U                   | <u>U</u>          | U                 | 194,2          | 138,2         | 56,3         | 8,7       | 72,0          | 463,9          | 717,8            |
| 77         | 0,220  | 0,270   | 0,220    | 0,500     | 0,800   | 1,540              | 1,000 | 805,0<br>0 1 1 0     | 1                      | 1               | 1               | U                      | U                   | U                 | U                 | 130,9          | 88,1          | 23,9         | 10,3      | 27,2<br>70 5  | 103,8          | 220,8<br>202.2   |
| /8         | 0,180  | 0,220   | 0,330    | 0,450     | 0,750   | 1,980              | 3,050 | 0,440                | 1                      | 1               | 1               | U<br>1                 | U                   | U                 | U                 | 144,5          | 99,9<br>140 1 | 33,3<br>52.4 | 23        | /0,5          | 350,2          | 573,5<br>575 2   |
| /7<br>00   | 0,190  | 0.230   | 0.240    | 0,540     | 1,000   | 2,700              | 3,/30 | 0,272<br>0,577       | 1<br>1                 | 1               | 1<br>1          | 1<br>1                 | U                   | U<br>0            | U                 | 170,7          | 140,1         | 23,4<br>45 2 | 43<br>52  | 01,1<br>74 7  | 300,0<br>510 0 | 777,3<br>776 0   |
| 00<br>91   | 0,210  | 0,240   | 0,300    | 0,200     | 0,920   | 3,270              | 4,320 | 0,227<br>0,490       | 1                      | 1               | 1               |                        | U<br>N              |                   | U<br>0            | 170,0<br>157 6 | 119,4         | 40,J<br>30 Q | 2,3<br>63 | /4,/<br>119.6 | 540,9<br>696 T | 740,0<br>946 1   |
| 97         | 0,170  | 0,230   | 0,320    | 0,520     | 1,070   | 1 050              | 2 800 | 0,403                | 1                      | 1               | 1               | 1                      | 1                   |                   | 0                 | 203.7          | 235.3         | 138.3        | 70.8      | 2 0           | 115.4          | 210.2            |
| 83         | 0.230  | 0,270   | 0,300    | 0,530     | 1,290   | 4 190              | 4790  | 2,259                | 1                      | 1               | 1               | 1                      | 1                   |                   | n<br>N            | 882.0          | 736.5         | 464.6        | 252.0     | 75.1          | 85.5           | 112,1            |
| 84         | 0.210  | 0.240   | 0.330    | 0.420     | 0.740   | 1.820              | 2.370 | 0.619                | ī                      | î               | î               | î                      | Ō                   | Ŏ                 | Ň                 | 194.8          | 158.0         | 87.6         | 47.4      | 19.5          | 194.0          | 282.8            |
| 85         | 0.230  | 0.270   | 0.390    | 0.670     | 1.650   | 4.070              | 4.690 | 1,010                | 1                      | 1               | - 1             | 1                      | Ō                   |                   | Ō                 | 339.0          | 274.0         | 158.9        | 50.7      | 63.4          | 303.1          | 364.5            |
| 86         | 0,210  | 0,240   | 0,330    | 0,420     | 0,740   | 3,000              | 4,160 | 1,101                | ī                      | 1               | ī               | 1                      | 1                   | Ō                 | Ō                 | 424,1          | 358.6         | 233,5        | 162,1     | 48,7          | 172,6          | 278,0            |
| 87         | 0,210  | 0,250   | 0,350    | 0,500     | 1,100   | 3,500              | 4,400 | 0,906                | 1                      | 1               | 1               | 1                      | 0                   | 0                 | 0                 | 331,3          | 262,3         | 158,8        | 81,2      | 21,4          | 286,4          | 385,8            |
| 88         | 0,210  | 0,240   | 0,310    | 0,380     | 0,480   | 0,930              | 1,400 | 0,865                | 1                      | 1               | 1               | 1                      | 1                   | 0                 | 0                 | 311,7          | 260,3         | 178,9        | 127,5     | 80,1          | 7,6            | 61,9             |
| 89         | 0,190  | 0,220   | 0,310    | 0,380     | 0,500   | 0,830              | 1,110 | 1,029                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | 0                 | 441,7          | 367,8         | 232,0        | 170,8     | 105,8         | 24,0           | 7,9              |
| 90         | 0,200  | 0,230   | 0,310    | 0,370     | 0,460   | 0,770              | 1,100 | 1,517                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | 1                 | 658,6          | 559,7         | 389,4        | 310,1     | 229,8         | 97,0           | 37,9             |
| 91         | 0,220  | 0,240   | 0,300    | 0,360     | 0,420   | 0,650              | 0,980 | 2,445                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | 1                 | 1011,4         | 918,8         | 715,0        | 579,2     | 482,1         | 276,2          | 149,5            |
| 92         | 0,230  | 0,250   | 0,330    | 0,390     | 0,490   | 0,820              | 1,100 | 0,925                | 1                      | 1               | 1               | 1                      | 1                   | 1                 | 0                 | 302,1          | 269,9         | 180,3        | 137,1     | 88,7          | 12,8           | 18,9             |
| 93         | 0,230  | 0,260   | 0,340    | 0,400     | 0,510   | 0,800              | 1,030 | 0,699                | 1                      | 1               | 1               | 1                      | 1                   | 0                 | 0                 | 204,1          | 169,0         | 105,7        | 74,9      | 37,1          | 14,4           | 47,3             |
| 94         | 0,230  | 0,250   | 0,330    | 0,400     | 0,510   | 0,880              | 1,160 | 0,542                | 1                      | 1               | 1               | 1                      | 1                   | 0                 | 0                 | 135,6          | 116,7         | 64,2         | 35,4      | б,2           | 62,4           | 114,1            |
| 95         | 0,200  | 0,230   | 0,320    | 0,390     | 0,510   | 0,840              | 1,180 | 0,493                | 1                      | 1               | 1               | 1                      | 0                   | 0                 | 0                 | 146,5          | 114,3         | 54,0         | 26,4      | 3,5           | 70,4           | 139,4            |
| 96         | 0,150  | 0,200   | 0,400    | 0,750     | 1,480   | 4,440              | 4,920 | 0,627                | 1                      | 1               | 1               | 0                      | 0                   | 0                 | 0                 | 318,1          | 213,5         | 56,8         | 19,6      | 136,0         | 608,0          | б84,б            |

Tabela 5.6c - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ        | METR   | OS DO I | LEITO   | DO PA     | RAOI            | RIO AT.        | IBAIA |                     |                        | COMP/           | ARAÇA           | O ENI             | RE D <sub>vj</sub>   | <sub>a</sub> D   |          | RELA   | ÇA O PER | CENTUA | L ENTRE | OS VAL    | ORES DE | E D <sub>10</sub> |
|------------|--------|---------|---------|-----------|-----------------|----------------|-------|---------------------|------------------------|-----------------|-----------------|-------------------|----------------------|------------------|----------|--------|----------|--------|---------|-----------|---------|-------------------|
|            | Granul | ometria | 1 do ma | terial de | o <b>leit</b> o |                |       |                     | (10)                   | (11)            | (12)            | (13)              | (14)                 | (15)             | (16)     | E      | OSVAL    | ORESME | DIDOS N | IO RIO A' | TIBAIA  |                   |
| <b>(l)</b> | (2)    | (3)     | (4)     | (5)       | (б)             | $-\mathcal{O}$ | (8)   | (9)                 | (                      | COMPA           | <b>RAÇA</b>     | O DE 1            | D <sub>VJ PAPA</sub> | <sub>l</sub> COM | [:       | (17)   | (18)     | (19)   | (20)    | (21)      | (22)    | (23)              |
| N          | D10    | Dló     | D35     | D50       | D65             | D84            | D90   | D <sub>vi mem</sub> | <b>D</b> <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | $\mathbf{D}_{50}$ | D <sub>65</sub>      | D <sub>64</sub>  | $D_{90}$ |        |          |        |         |           |         |                   |
|            | (mm)   | (mm)    | (mm)    | (mm)      | (mm)            | (mm)           | (mm)  | -) []               |                        |                 |                 |                   |                      | -                |          |        |          |        |         |           |         |                   |
| 07         | 0.210  | 0 280   | 0.550   | 0.800     | 1 410           | 3 490          | 4 400 | 0.624               | 1                      | 1               | 1               | 0                 | 0                    | Ω                | 0        | 107 3  | 123.0    | 13.5   | 42.5    | 125.8     | 459 በ   | 604 7             |
| 98         | 0.220  | 0,200   | 0.550   | 0,020     | 1.410           | 4 000          | 4700  | 0.623               | ī                      | ī               | 1               | Ő                 | Ŏ                    | Ň                | Ő        | 183.4  | 115.0    | 13,2   | 42.8    | 126.2     | 541.6   | 653.9             |
| 99         | 0.150  | 0.220   | 0.430   | 0.650     | 0.980           | 1.840          | 2.460 | 0.798               | 1                      | 1               | 1               | 1                 | Ū                    | Ū                | Ō        | 432.3  | 262.9    | 85.7   | 22.8    | 22.7      | 130.4   | 208.1             |
| 100        | 0,160  | 0,210   | 0,390   | 0,580     | 0,880           | 1,630          | 2,250 | 0,436               | ī                      | ī               | ī               | Ō                 | Ō                    | Ō                | Ō        | 172,2  | 107,4    | 11,7   | 33,2    | 102,0     | 274,2   | 416,6             |
| 101        | 0,140  | 0,160   | 0,230   | 0,300     | 0,400           | 0,960          | 4,370 | 1,999               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 0        | 1327,5 | 1149,1   | 768,9  | 566,2   | 399,6     | 108,2   | 118,7             |
| 102        | 0,150  | 0,180   | 0,250   | 0,320     | 0,420           | 0,670          | 0,850 | 0,705               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 0        | 370,2  | 291,8    | 182,1  | 120,4   | 67,9      | 5,3     | 20,5              |
| 103        | 0,150  | 0,170   | 0,260   | 0,340     | 0,470           | 0,830          | 1,090 | 0,523               | 1                      | 1               | 1               | 1                 | 1                    | 0                | 0        | 248,6  | 207,6    | 101,1  | 53,8    | 11,3      | 58,7    | 108,4             |
| 104        | 0,150  | 0,180   | 0,290   | 0,410     | 0,590           | 1,080          | 1,440 | 0,570               | 1                      | 1               | 1               | 1                 | 0                    | 0                | 0        | 280,1  | 216,8    | 96,6   | 39,1    | 3,5       | 89,4    | 152,5             |
| 105        | 0,160  | 0,190   | 0,250   | 0,320     | 0,430           | 0,960          | 1,620 | 0,767               | 1                      | 1               | 1               | 1                 | 1                    | 0                | 0        | 379,2  | 303,5    | 206,7  | 139,6   | 78,3      | 25,2    | 111,3             |
| 106        | 0,170  | 0,190   | 0,240   | 0,290     | 0,350           | 0,500          | 0,630 | 1,483               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 1        | 772,4  | 680,5    | 517,9  | 411,4   | 323,7     | 196,6   | 135,4             |
| 107        | 0,190  | 0,210   | 0,270   | 0,320     | 0,370           | 0,500          | 0,590 | 1,982               | 1                      | 1               | 1               | 1                 | 1                    | <u>l</u>         | 1        | 943,4  | 844,0    | 634,2  | 519,5   | 435,8     | 296,5   | 236,0             |
| 108        | 0,160  | 0,180   | 0,240   | 0,290     | 0,350           | 0,510          | 0,670 | 0,616               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 0        | 284,8  | 242,1    | 156,5  | 112,3   | 75,9      | 20,7    | 8,8               |
| 109        | 0,210  | 0,260   | 0,410   | 0,620     | 0,980           | 1,780          | 2,300 | 1,774               | 1                      | 1               | 1               | 1                 | 1                    | 0                | 0        | 745,0  | 582,5    | 332,8  | 186,2   | 81,1      | 0,3     | 29,6              |
| 110        | 0,250  | 0,310   | 0,500   | 0,710     | 1,020           | 1,800          | 2,360 | 2,021               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 0        | 708,5  | 552,0    | 304,2  | 184,7   | 98,2      | 12,3    | 16,8              |
| 111        | 0,220  | 0,260   | 0,410   | 0,640     | 1,020           | 1,940          | 2,590 | 1,197               | 1                      | 1               | 1               | 1                 | 1                    | 0                | 0        | 444,0  | 360,3    | 191,9  | 87,0    | 17,3      | 62,1    | 116,4             |
| 112        | 0,200  | 0,230   | 0,310   | 0,380     | 0,480           | 0,750          | 0,930 | 1,466               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 1        | 632,8  | 537,2    | 372,7  | 285,7   | 205,3     | 95,4    | 57,6              |
| 113        | 0,220  | 0,250   | 0,350   | 0,440     | 0,570           | 0,930          | 1,220 | 0,739               | 1                      | 1               | 1               | 1                 | 1                    | 0                | 0        | 236,0  | 195,7    | 111,2  | 68,0    | 29,7      | 25,8    | 65,0              |
| 114        | 0,220  | 0,260   | 0,360   | 0,460     | 0,630           | 1,180          | 1,860 | 0,514               | 1                      | 1               | 1               | 1                 | 0                    | 0                | 0        | 133,5  | 97,6     | 42,7   | 11,7    | 22,6      | 129,7   | 262,1             |
| 115        | 0,190  | 0,230   | 0,320   | 0,400     | 0,520           | 0,810          | 1,000 | 1,628               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 1        | 757,0  | 608,0    | 408,9  | 307,1   | 213,2     | 101,0   | 62,8              |
| 116        | 0,210  | 0,240   | 0,320   | 0,380     | 0,480           | 0,740          | 0,940 | 0,786               | 1                      | 1               | 1               | 1                 | 1                    | 1                | 0        | 274,2  | 227,4    | 145,6  | 106,8   | 63,7      | 6,2     | 19,6              |
| 117        | 0,180  | 0,210   | 0,300   | 0,390     | 0,510           | 0,910          | 1,200 | 0,773               | 1                      | 1               | 1               | 1                 | 1                    | 0                | 0        | 329,5  | 268,2    | 157,7  | 98,2    | 51,6      | 17,7    | 55,2              |
| 118        | 0,180  | 0,220   | 0,340   | 0,470     | 0,730           | 1,820          | 3,210 | 0,583               | 1                      | 1               | 1               | 1                 | 0                    | 0                | 0        | 224,1  | 165,2    | 71,6   | 24,1    | 25,1      | 211,9   | 450,2             |
| 119        | 0,200  | 0,250   | 0,440   | 0,790     | 1,380           | 3,000          | 3,880 | <b>U,</b> 675       | 1                      | 1               | 1               | U                 | U                    | U                | U        | 237,5  | 170,0    | 53,4   | 17,1    | 104,5     | 344,5   | 474,9             |
| 120        | 0,210  | 0,280   | 0,560   | 0,920     | 1,520           | 3,030          | 3,850 | 0,487               | 1                      | 1               | 0               | 0                 | 0                    | 0                | 0        | 132,0  | 74,0     | 15,0   | 88,9    | 212,0     | 522,0   | 690,3             |
| 121        | 0,210  | 0,270   | 0,480   | 0,730     | 1,130           | 2,320          | 3,550 | 0,581               | 1                      | 1               | 1               | 0                 | 0                    | 0                | 0        | 176,7  | 115,2    | 21,0   | 25,6    | 94,5      | 299,3   | 511,0             |
| 122        | 0,200  | 0,240   | 0,370   | 0,590     | 1,130           | 2,600          | 3,750 | 0,402               | 1                      | 1               | 1               | 0                 | 0                    | 0                | 0        | 100,9  | 67,4     | 8,6    | 46,9    | 181,3     | 547,2   | 833,5             |
| 123        | 0,210  | 0,260   | 0,480   | 0,860     | 1,430           | 3,130          | 4,060 | 0,565               | 1                      | 1               | 1               | 0                 | 0                    | Ō                | 0        | 169,1  | 117,3    | 17,7   | 52,2    | 153,1     | 453,9   | 618,5             |
| 124        | 0,210  | 0,290   | 0,540   | 0,770     | 1,080           | 1,810          | 2,880 | 0,394               | 1                      | 1               | 0               | 0                 | 0                    | 0                | 0        | 87,8   | 36,0     | 36,9   | 95,2    | 173,8     | 358,9   | 630,2             |
| 125        | 0,230  | 0,300   | 0,680   | 1,180     | 1,840           | 3,410          | 4,160 | 0,502               | 1                      | 1               | 0               | 0                 | 0                    | 0                | 0        | 118,3  | 67,3     | 35,4   | 135,0   | 266,5     | 579,2   | 728,6             |
| 126        | 0,300  | 0,380   | 0,660   | 0,950     | 1,330           | 2,270          | 2,950 | 1,272               | 1                      | 1               | 1               | 1                 | 0                    | 0                | 0        | 324,1  | 234,8    | 92,8   | 33,9    | 4,5       | 78,4    | 131,9             |
| 127        | 0,250  | 0,290   | 0,480   | 0,680     | 0,980           | 1,920          | 2,830 | 1,031               | 1                      | 1               | 1               | 1                 | 1                    | 0                | 0        | 312,6  | 255,7    | 114,9  | 51,7    | 5,3       | 86,1    | 174,4             |
| 128        | 0,220  | 0,280   | 0,540   | 0,850     | 1,320           | 2,630          | 3,560 | 0,633               | 1                      | 1               | 1               | 0                 | 0                    | 0                | 0        | 187,8  | 126,1    | 17,2   | 34,3    | 108,5     | 315,4   | 462,4             |

Tabela 5.6c - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR   | OS DO:  | LEITO   | DO PA     | RAOI    | RIO AT | IBAIA |                     |                        | COMP            | ARAÇA           | O ENI                  | RE D <sub>WJ</sub> | <sub>A</sub> D   |          | RELA   | ÇA O PEF | CENTUA | L ENTRE  | OS VAL    | ORES DI | E D <sub>w</sub> |
|-----|--------|---------|---------|-----------|---------|--------|-------|---------------------|------------------------|-----------------|-----------------|------------------------|--------------------|------------------|----------|--------|----------|--------|----------|-----------|---------|------------------|
|     | Granul | ometria | 1 do ma | terial de | o leito |        |       |                     | (10)                   | (11)            | (12)            | (13)                   | (14)               | (15)             | (16)     | E      | OSVAL    | ORESME | EDIDOS N | IO RIO AT | TBAIA   |                  |
| (l) | (2)    | (3)     | (4)     | (5)       | (б)     | - Ø    | (8)   | (9)                 | (                      | COMP/           | <b>IRAÇA</b>    | O DE 1                 | D vi imem          | <sub>п</sub> СОМ | l:       | (17)   | (18)     | (19)   | (20)     | (21)      | (22)    | (23)             |
| N   | D10    | Dló     | D35     | D50       | D65     | D84    | D90   | D <sub>vi mem</sub> | <b>D</b> <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | <b>D</b> <sub>50</sub> | D <sub>65</sub>    | D <sub>84</sub>  | $D_{90}$ |        |          |        |          |           |         |                  |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)   | (mm)  | -31                 |                        |                 |                 |                        |                    |                  |          |        |          |        |          |           |         |                  |
| 129 | 0.230  | 0.260   | 0.370   | 0.500     | 0.750   | 1.470  | 1.970 | 0.704               | 1                      | 1               | 1               | 1                      | 0                  | 0                | i 0      | 205.9  | 170.6    | 90.1   | 40.7     | 6.6       | 108.9   | 180.0            |
| 130 | 0.340  | 0.400   | 0.630   | 0.830     | 1.080   | 1.580  | 1.850 | 1,223               | ī                      | ī               | ī               | î                      | ĩ                  | Ŏ                | Ŏ        | 259,7  | 205,7    | 94.1   | 47.3     | 13.2      | 29,2    | 51.3             |
| 131 | 0,150  | 0,210   | 0,290   | 0,360     | 0,440   | 0,660  | 0,840 | 1,097               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 631,3  | 422,4    | 278,3  | 204,7    | 149,3     | 66,2    | 30,6             |
| 132 | 0,110  | 0,130   | 0,170   | 0,200     | 0,230   | 0,300  | 0,340 | 1,749               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 1490,3 | 1245,6   | 929,0  | 774,6    | 660,6     | 483,1   | 414,5            |
| 133 | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,290  | 0,330 | 2,399               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 1613,2 | 1499,0   | 1232,5 | 1099,3   | 942,8     | 727,1   | 626,8            |
| 134 | 0,150  | 0,160   | 0,190   | 0,220     | 0,250   | 0,320  | 0,380 | 2,980               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 1887,0 | 1762,8   | 1468,6 | 1254,7   | 1092,2    | 831,4   | 684,3            |
| 135 | 0,150  | 0,160   | 0,180   | 0,200     | 0,220   | 0,260  | 0,280 | 1,985               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 1223,0 | 1140,3   | 1002,5 | 892,3    | 802,1     | 663,3   | 608,8            |
| 136 | 0,160  | 0,170   | 0,190   | 0,220     | 0,250   | 0,310  | 0,350 | 2,383               | 1                      | 1               | 1               | 1                      | 1                  | <b>l</b>         | 1        | 1389,1 | 1301,5   | 1154,0 | 983,0    | 853,1     | 668,6   | 580,8            |
| 137 | 0,300  | 0,390   | 0,770   | 1,120     | 1,590   | 2,850  | 3,730 | 2,265               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 0        | 655,0  | 480,7    | 194,1  | 102,2    | 42,4      | 25,8    | 64,7             |
| 138 | 0,160  | 0,170   | 0,210   | 0,240     | 0,280   | 0,360  | 0,400 | 2,129               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 1230,9 | 1152,6   | 914,0  | 787,2    | 660,5     | 491,5   | 432,3            |
| 139 | 0,160  | 0,170   | 0,210   | 0,250     | 0,300   | 0,400  | 0,480 | 2,433               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 1420,8 | 1331,3   | 1058,7 | 873,3    | 711,1     | 508,3   | 406,9            |
| 140 | 0,140  | 0,160   | 0,200   | 0,230     | 0,280   | 0,390  | 0,470 | 1,192               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 751,7  | 645,2    | 496,2  | 418,4    | 325,8     | 205,7   | 153,7            |
| 141 | 0,150  | 0,170   | 0,230   | 0,290     | 0,380   | 0,600  | 0,780 | 2,054               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 1269,4 | 1108,3   | 793,1  | 608,3    | 440,5     | 242,3   | 163,3            |
| 142 | 0,120  | 0,140   | 0,170   | 0,200     | 0,230   | 0,310  | 0,370 | 1,198               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 898,3  | 755,7    | 604,7  | 499,0    | 420,9     | 286,4   | 223,8            |
| 143 | 0,180  | 0,200   | 0,700   | 1,500     | 2,220   | 4,130  | 5,120 | 0,953               | 1                      | 1               | 1               | 0                      | 0                  | 0                | 0        | 429,2  | 376,3    | 36,1   | 57,5     | 133,1     | 333,6   | 437,5            |
| 144 | 0,160  | 0,190   | 0,290   | 0,420     | 0,800   | 2,220  | 3,260 | 0,872               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 0        | 445,2  | 359,1    | 200,8  | 107,7    | 9,0       | 154,5   | 273,7            |
| 145 | 0,160  | 0,190   | 0,300   | 0,450     | 1,000   | 2,700  | 3,820 | 0,818               | 1                      | 1               | 1               | 1                      | 0                  | 0                | 0        | 411,2  | 330,5    | 172,7  | 81,8     | 22,3      | 230,1   | 367,0            |
| 146 | 0,120  | 0,150   | 0,230   | 0,310     | 0,420   | 0,970  | 1,340 | 0,826               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 0        | 588,1  | 450,5    | 259,0  | 166,4    | 96,6      | 17,5    | 62,3             |
| 147 | 0,200  | 0,250   | 0,570   | 1,360     | 2,440   | 4,740  | 5,030 | 0,310               | 1                      | 1               | 0               | 0                      | 0                  | 0                | 0        | 55,2   | 24,2     | 83,6   | 338,1    | 686,1     | 1427,1  | 1520,5           |
| 148 | 0,160  | 0,210   | 0,400   | 0,850     | 1,370   | 2,520  | 3,270 | 1,019               | 1                      | 1               | 1               | 1                      | 0                  | 0                | 0        | 536,7  | 385,1    | 154,7  | 19,8     | 34,5      | 147,4   | 221,0            |
| 149 | 0,100  | 0,130   | 0,190   | 0,250     | 0,340   | 0,940  | 1,640 | 0,592               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 0        | 491,6  | 355,0    | 211,3  | 136,6    | 74,0      | 58,9    | 177,2            |
| 150 | 0,090  | 0,120   | 0,180   | 0,230     | 0,310   | 1,010  | 2,430 | 0,734               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 0        | 715,4  | 511,6    | 307,7  | 219,1    | 136,7     | 37,6    | 231,1            |
| 151 | 0,130  | 0,160   | 0,240   | 0,350     | 0,590   | 2,400  | 3,700 | 0,920               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 0        | 607,6  | 475,0    | 283,3  | 162,8    | 55,9      | 160,9   | 302,2            |
| 152 | 0,100  | 0,120   | 0,170   | 0,210     | 0,250   | 0,380  | 0,480 | 0,759               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 1        | 658,9  | 532,4    | 346,4  | 261,4    | 203,5     | 99,7    | 58,1             |
| 153 | 0,110  | 0,130   | 0,190   | 0,230     | 0,300   | 0,840  | 1,830 | 1,192               | 1                      | 1               | 1               | 1                      | 1                  | 1                | 0        | 983,8  | 817,1    | 527,5  | 418,4    | 297,4     | 41,9    | 53,5             |
| 154 | 0,230  | 0,290   | 0,710   | 1,330     | 2,130   | 3,760  | 4,500 | 1,296               | 1                      | 1               | 1               | 0                      | 0                  | 0                | 0        | 463,3  | 346,8    | 82,5   | 2,6      | 64,4      | 190,2   | 247,3            |
| 155 | 0,200  | 0,230   | 0,360   | 0,530     | 1,000   | 2,730  | 3,980 | 0,817               | 1                      | 1               | 1               | 1                      | 0                  | 0                | 0        | 308,4  | 255,2    | 126,9  | 54,1     | 22,4      | 234,2   | 387,2            |
| 156 | 0,080  | 0,090   | 0,160   | 0,220     | 0,430   | 2,140  | 4,060 | 2,621               | 1                      | 1               | 1               | 1                      | 1                  | 1                | <u> </u> | 3176,6 | 2812,5   | 1538,3 | 1091,5   | 509,6     | 22,5    | 54,9             |
| 157 | 0,180  | 0,200   | 0,290   | 0,390     | 0,800   | 1,070  | 2,060 | 1,073               | 1                      | 1               | 1               | 1                      | 1                  | <b>l</b>         | <u> </u> | 496,4  | 436,7    | 270,2  | 175,2    | 34,2      | 0,3     | 91,9             |
| 158 | 0,200  | U,230   | 0,390   | 0,730     | 1,420   | 4,070  | 6,230 | 1,100               | 1                      | 1               | 1               | 1                      | 0                  | <u>0</u>         | 0        | 449,8  | 378,1    | 181,9  | 50,6     | 29,1      | 270,2   | 466,6            |
| 159 | 0,120  | 0,150   | 0,230   | 0,340     | 0,600   | 4,670  | 0,300 | 1,235               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 1        | 928,8  | 723,0    | 436,8  | 263,1    | 105,8     | 278,3   | 311,5            |
| 160 | 0,150  | 0,160   | 0,210   | 0,250     | 0,320   | 2,760  | 0,280 | 1,941               | 1                      | 1               | 1               | 1                      | 1                  | 0                | 1        | 1194,0 | 1113,1   | 824,3  | 676,4    | 506,6     | 42,2    | 593,2            |

Tabela 5.6c - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄMETROS DO LEITO DO PARA O RIO ATIBAIA                  |                 | C               | :OMP/           | <b>IRAÇA</b>    | O ENT                  | RE D <sub>vj</sub> | <sub>a</sub> D   |                   | RELA   | ÇA O PER | CENTUA | L ENTRE | OS VAL    | ORES DE | D <sub>u</sub> |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------|--------------------|------------------|-------------------|--------|----------|--------|---------|-----------|---------|----------------|
| Granulometria do material do leito                        | . [             | (10)            | (11)            | (12)            | (13)                   | (14)               | (15)             | (l6)              | E      | OSVAL    | ORESME | DIDOS N | IO RIO AT | TBAIA   |                |
| (1) (2) (3) (4) (5) (6) (7) (8)                           | (9)             | C               | OMPA            | RAÇA            | O DE 1                 | D vi pape          | <sub>п</sub> СОМ | :                 | (17)   | (18)     | (19)   | (20)    | (21)      | (22)    | (23)           |
| N <sup>®</sup> D10 D16 D35 D50 D65 D84 D90 D <sub>v</sub> | Vj <b>MPM</b> J | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | <b>D</b> <sub>50</sub> | D <sub>65</sub>    | D <sub>64</sub>  | $\mathbf{D}_{90}$ |        |          |        |         |           |         |                |
| (mm) (mm) (mm) (mm) (mm) (mm) (mm)                        | mm              |                 |                 |                 |                        |                    |                  |                   |        |          |        |         |           |         |                |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 1           | 1,094           | 1               | 1               | 1               | 1                      | 1                  | 1                | 1                 | 583,6  | 507,6    | 375,5  | 305,1   | 231,4     | 123,2   | 70,9           |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 1           | 1,814           | 1               | 1               | 1               | 1                      | 1                  | 0                | 1                 | 1109,4 | 1033,8   | 807,0  | 655,9   | 525,5     | 166,8   | 34,4           |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 0           | 0,969           | 1               | 1               | 1               | 1                      | 1                  | 1                | 1                 | 868,5  | 707,1    | 505,3  | 409,7   | 321,1     | 193,5   | 148,3          |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 1           | 1,894           | 1               | 1               | 1               | 1                      | 1                  | 1                | 0                 | 1013,9 | 896,6    | 628,3  | 491,7   | 350,8     | 44,5    | 9,8            |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 1           | 1,209           | 1               | 1               | 1               | 1                      | 1                  | 1                | 1                 | 1411,8 | 1109,4   | 706,3  | 571,9   | 449,7     | 303,1   | 226,9          |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 1           | 1,510           | 1               | 1               | 1               | 1                      | 1                  | 1                | 0                 | 978,4  | 906,5    | 694,6  | 556,4   | 420,6     | 26,9    | 133,8          |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 1           | 1,341           | 1               | 1               | 1               | 1                      | 1                  | 0                | 0                 | 570,4  | 458,7    | 283,1  | 168,2   | 59,6      | 47,7    | 112,6          |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 2           | 2,245           | 1               | 1               | 1               | 1                      | 1                  | 1                | 1                 | 920,3  | 797,9    | 541,4  | 410,2   | 256,3     | 79,6    | 36,0           |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 0           | 0,984           | 1               | 1               | 1               | 1                      | 1                  | 0                | 0                 | 657,3  | 556,3    | 347,5  | 239,5   | 140,1     | 86,9    | 472,9          |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 0           | 0,842           | 1               | 1               | 1               | 1                      | 1                  | 0                | 0                 | 501,4  | 343,2    | 163,1  | 83,0    | 10,8      | 97,1    | 191,0          |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 0           | 0,848           | 1               | 1               | 1               | 0                      | 0                  | 0                | 0                 | 429,9  | 346,2    | 129,1  | 8,5     | 107,6     | 371,8   | 520,4          |
|                                                           |                 |                 | (%)             | ) de eve        | ntos en                | ιque D             | J > D            |                   | DIFEF  | RENÇA P  | ERCENT | UAL REL | ATIVA M   | EDIA    |                |
|                                                           | (               | 96,49           | 95,32           | 89,47           | 77,19                  | 59,65              | 29,24            | 19,88             | 487,0  | 407,2    | 265,4  | 200,3   | 165,2     | 229,2   | 308,7          |

Tabela 5.6c - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>WERNET</sub>- Diâmetro calculado pela equação: DVj [MPM] = 0,0034 x Pc<sup>0,5%</sup>. Para o método de Meyer-Peter-Muller

Pc - Potência da corrente - Kgf/m.s

| DIÄ        | METR  | OS DO I | LEITO  | DO PA     | RA O I  | RIO AT. | IBAIA |                       |          | COMP     | <b>ARAÇA</b> | IO ENI | RE D <sub>vj</sub>   | <sub>a</sub> D |      | RELAÇ  | ÃO PERCI        | EN TUAL E | N TRE O S      | VALORES        | DE D <sub>10</sub> |       |
|------------|-------|---------|--------|-----------|---------|---------|-------|-----------------------|----------|----------|--------------|--------|----------------------|----------------|------|--------|-----------------|-----------|----------------|----------------|--------------------|-------|
|            | Granu | ometria | ido ma | terial de | o leito |         |       |                       | (10)     | (11)     | (12)         | (13)   | (14)                 | (15)           | (16) | Е      | OS VALOI        | RES MEDI  | DOSNOR         | IO ATIBAI      | A                  |       |
| <b>(l)</b> | (2)   | (3)     | (4)    | (5)       | (б)     | D -     | (8)   | (9)                   | I        | COMP/    | ARA ÇA       | ODE :  | D <sub>VJ JEAL</sub> | 1COM           | :    | (17)   | (18)            | (19)      | (20)           | (21)           | (22)               | (23)  |
| N⁰         | D10   | Dló     | D35    | D50       | D65     | D84     | D90   | D <sub>10 (KAL)</sub> | D10      | Dre      | Dar          | Dee    | Der                  | Der            | D    |        |                 |           |                |                |                    |       |
|            | (mm)  | (mm)    | (mm)   | (mm)      | (mm)    | (mm)    | (mm)  |                       | -10      | - 10     | - 30         | - 50   | -10                  | - 64           | - 90 |        |                 |           |                |                |                    |       |
| 1          | 0 150 | 0 180   | 0.340  | 0.640     | 0.070   | 1 560   | 1 860 | 1660                  | 1        | 1        | 1            | 1      | 1                    | 1              | 0    | 1006 9 | 822.4           | 388.3     | 159.4          | 71.2           | 64                 | 12.0  |
| 2          | 0,190 | 0.240   | 0.370  | 0.540     | 0.880   | 2.770   | 3,820 | 2.229                 | 1        | i        | ī            | ī      | i                    | Ō              | Ŏ    | 1073.3 | 828.9           | 502.5     | 3128           | 153.3          | 24.3               | 71.4  |
| 3          | 0.240 | 0.290   | 0.480  | 0.680     | 1.040   | 2.960   | 4,110 | 2.680                 | 1        | 1        | 1            | 1      | 1                    | Ū              | Ū    | 1016.6 | 824.1           | 458.3     | 2941           | 157.7          | 10,5               | 53.4  |
| 4          | 0,220 | 0,270   | 0,530  | 0,860     | 1,370   | 3,240   | 4,220 | 2,088                 | 1        | 1        | 1            | 1      | 1                    | 0              | 0    | 849,2  | 673,4           | 294,0     | 142,8          | 52,4           | 55,2               | 102,1 |
| 5          | 0,240 | 0,280   | 0,400  | 0,510     | 0,640   | 0,970   | 1,230 | 3,104                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 1193,4 | 1008,7          | 676,1     | 508,7          | 385,0          | 220,0              | 152,4 |
| б          | 0,330 | 0,400   | 0,710  | 1,020     | 1,470   | 2,500   | 3,130 | 1,022                 | 1        | 1        | 1            | 1      | 0                    | 0              | 0    | 209,7  | 155,5           | 43,9      | 0,2            | 43,8           | 144,6              | 206,3 |
| 7          | 0,270 | 0,320   | 0,450  | 0,570     | 0,730   | 1,130   | 1,420 | 2,459                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 810,7  | 668,4           | 446,4     | 331,4          | 236,8          | 117,6              | 73,2  |
| 8          | 0,290 | 0,340   | 0,500  | 0,640     | 0,830   | 1,440   | 3,780 | 2,661                 | 1        | 1        | 1            | 1      | 1                    | 1              | 0    | 817,5  | 682,6           | 432,1     | 315,7          | 220,6          | 84,8               | 42,1  |
| 9          | 0,360 | 0,440   | 0,690  | 0,970     | 1,500   | 4,470   | 4,940 | 2,802                 | 1        | 1        | 1            | 1      | 1                    | 0              | 0    | 678,4  | 536,9           | 306,1     | 188,9          | 86,8           | 59,5               | 76,3  |
| 10         | 0,320 | 0,370   | 0,520  | 0,660     | 0,850   | 1,400   | 2,000 | 3,437                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 974,0  | 828,9           | 560,9     | 420,7          | 304,3          | 145,5              | 71,8  |
| 11         | 0,300 | 0,360   | 0,560  | 0,780     | 1,220   | 4,100   | 4,750 | 3,830                 | 1        | 1        | 1            | 1      | 1                    | 0              | 0    | 1176,8 | 964,0           | 584,0     | <u>391,1</u>   | 214,0          | 7,0                | 24,0  |
| 12         | 0,300 | 0,360   | 0,560  | 0,770     | 1,090   | 3,330   | 4,500 | 3,972                 | 1        | 1        | 1            | 1      | 1                    | 1              | 0    | 1224,0 | 1003,3          | 609,3     | 415,8          | 264,4          | 19,3               | 13,3  |
| 13         | 0,270 | 0,320   | 0,480  | 0,630     | 0,870   | 3,900   | 4,700 | 4,221                 | 1        | 1        | 1            | 1      | 1                    | 1              | 0    | 1463,3 | 1219,0          | 779,4     | 570,0          | 385,2          | 8,2                | 11,4  |
| 14         | 0,270 | 0,320   | 0,470  | 0,640     | 0,920   | 2,300   | 4,020 | 4,271                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 1481,9 | 1234,7          | 808,8     | 567,4          | 364,3          | 85,7               | 6,2   |
| 15         | 0,280 | 0,320   | 0,490  | 0,660     | 0,950   | 2,170   | 3,160 | 4,205                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 1401,7 | 1214,0          | 758,1     | 537,1          | 342,6          | 93,8               | 33,1  |
| 16         | 0,240 | 0,270   | 0,370  | 0,470     | 0,610   | 1,000   | 1,450 | 3,390                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 1312,7 | 1155,7          | 816,3     | 621,4          | 455,8          | 239,0              | 133,8 |
| 17         | 0,310 | 0,370   | 0,510  | 0,630     | 0,800   | 1,290   | 1,770 | 1,139                 | l        | ļ        | 1            | 1      | 1                    | U              | U    | 267,4  | 207,8           | 123,3     | 80,8           | 42,3           | 13,3               | 55,4  |
| 18         | 0,280 | 0,340   | 0,510  | 0,690     | 0,970   | 4,770   | 5,110 | 3,181                 | 1        | 1        | 1            | 1      | 1                    | U              | U    | 1056,2 | 835,7           | 525,8     | 50 L I         | 228,0          | 49,9               | 00,0  |
| <u> </u>   | 0,310 | 0,370   | 0,550  | 0,710     | 0,960   | 3,630   | 4,620 | 2,248                 | 1        | ļ        | 1            | 1      | 1                    | U              | U    | 625,2  | 507,6           | 308,7     | 216,6          | 134,2          | 61,5               | 105,5 |
| 20         | 0,290 | 0,350   | 0,500  | 0,630     | 0,800   | 1,240   | 1,040 | 1,752                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 504,0  | 400,5           | 250,3     | 178,0          | 118,9          | 41,3               | 0,8   |
| 21         | 0,340 | 0,440   | 0,840  | 1,260     | 2,140   | 4,520   | 4,960 | 4,004                 | 1        | ļ        | 1            | 1      | 1                    | U              | U    | 1077,8 | 810,1           | 376,7     | 217,8          | 87,1           | 12,9               | 23,9  |
| 22         | 0,300 | 0,390   | 0,750  | 1,150     | 1,870   | 4,270   | 4,820 | 3511                  | I        | ļ        | 1            | 1      | 1                    | U              | U    | 1092,4 | 817,2           | 377,0     | 2111           | 91,5           | 19,4               | 34,7  |
| 23         | 0,300 | 0,360   | 0,510  | 0,630     | 0,810   | 1,260   | 1,710 | 2,212                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 057,2  | 514,5           | 555,0     | 251,0          | 1/5,0          | /5,5               | 29,5  |
| 24         | 0,270 | 0,320   | 0,470  | 0,590     | 0,740   | 1,110   | 1,370 | 2,550                 | 1        | ļ        | 1            | I      | 1                    | 1              | 1    | 772,5  | 030,2           | 401,2     | 299,3          | 218,4          | 112,2              | 72,0  |
| 25         | 0,250 | 0,300   | 0,440  | 0,560     | 0,730   | 1,180   | 1,000 | 1,524                 | 1        | 1        | 1            | 1      | 1                    | 1              | U    | 429,7  | 341,5           | 201,0     | 130,5          | 81,4           | 12,2               | 25,3  |
| 26         | 0,240 | 0,290   | 0,420  | 0,550     | 0,740   | 1,340   | 2,260 | 2,802                 | 1        | 1        | 1            | 1      | 1                    | 1              | 1    | 1092,4 | 880,8           | 581,4     | 420,5          | 280,7          | 115,0              | 20,0  |
| 27         | 0,230 | 0,280   | 0,420  | 0,540     | 0,710   | 1,200   | 4,430 | 3,622                 | <b>I</b> | ļ        | Į            | 1      | ļ                    |                | Ų    | 1474,9 | 1193,7          | 762,5     | 570,8          | 410,2          | 201,9              | 22,3  |
| 28         | 0,250 | 0,290   | 0,410  | 0,520     | 0,050   | 0,950   | 1,200 | 3,405                 |          | ļ        | 1            | 1      | 1                    | 1              | 1    | 1285,2 | 1094,1          | /44,6     | 505,9          | 452,8          | 204,5              | 188,6 |
| 29         | 0,240 | 0,280   | 0,390  | 0,480     | 0,590   | 0,830   | 1,000 | 3,700                 | ļ        | ļ        | <b>1</b>     | Į      | 1                    | ļ              | 1    | 1469,4 | 1245,2          | 805,8     | 684,7          | 538,4          | 353,8              | 276,6 |
| 30         | 0,270 | 0,510   | 0,4.90 | 0,530     | 0,050   | 0,890   | 1,050 | 5,581                 | 1        | Ļ        | 1            | 1      | Į                    | 1              | 1    | 1152,4 | 990,8<br>1252.5 | 080,4     | 538,U<br>735.0 | 420,2          | 2/9,9              | 222,0 |
| 31         | 0,230 | 0,270   | 0,370  | 0,470     | 0,600   | 0,890   | 1,100 | 3,925                 | 1        | 1        | 1            | 1      | ļ                    | 1              | 1    | 1000,5 | 1353,5          | 90U,/     | 135,0          | 554,1<br>207 0 | 341,0              | 250,8 |
| 52         | 0,280 | 0,340   | 0,500  | 0,650     | 0,870   | i 1,66U | 2,300 | 3,357                 | <u> </u> | <u> </u> | <u> </u>     | 1      | <u> </u>             | I              | 1    | 1099,1 | 887,5           | 571,5     | 416,5          | 285,9          | 102,3              | 46,U  |

Tabela 5.6d - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ              | METR  | OS DO   | LEITO   | DO PA     | RAOI    | RIO ATI | IBAIA |                      | (    | COMP/         | <b>ARAÇA</b> | O ENI  | RE D <sub>VJ</sub>   | <sub>a</sub> D |                           | RELAÇ          | ÃO PERCI       | EN TUAL E     | N TRE O S    | VALORES   | DEDw          |       |
|------------------|-------|---------|---------|-----------|---------|---------|-------|----------------------|------|---------------|--------------|--------|----------------------|----------------|---------------------------|----------------|----------------|---------------|--------------|-----------|---------------|-------|
|                  | Granu | ometria | 1 do ma | terial de | o leito |         |       |                      | (10) | (11)          | (12)         | (13)   | (14)                 | (15)           | (16)                      | E              | OS VALOI       | RES MEDD      | DOSNORI      | IO ATIBAL | A             |       |
| <b>(l)</b>       | (2)   | (3)     | (4)     | (5)       | (6)     | $\odot$ | (8)   | (9)                  |      | COMP/         | ARA ÇA       | O DE 1 | D <sub>VJ (KAL</sub> | 1COM           | :                         | (17)           | (18)           | (19)          | (20)         | (21)      | (22)          | (23)  |
| N°               | D10   | Dló     | D35     | D50       | D65     | D84     | D90   | D <sub>M IKALI</sub> | D10  | D             | Dx           | Dee    | Der                  | Der            | $\mathbf{D}_{\mathbf{m}}$ |                |                |               |              |           |               |       |
|                  | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  |                      | -10  | - 10          | - 30         | - 50   | - 68                 | - 84           | - 90                      |                |                |               |              |           |               |       |
| n                | 0.280 | 0 320   | 0.450   | 0.570     | 0 730   | 1 230   | 2 180 | 4 168                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1388 /         | 1202.43        | 826 1         | 631.2        | /TO 0:    | 238.8         | 012   |
| 34               | 0,200 | 0,320   | 0,4.50  | 0,570     | 0,730   | 0.880   | 1 050 | 3,995                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1379.5         | 1231.6         | 874.3         | 683.3        | 534.1     | 354.0         | 280.5 |
| 35               | 0.280 | 0.320   | 0.440   | 0.540     | 0.680   | 1.000   | 1.270 | 3,804                | ī    | 1             | ī            | ī      | 1                    | ī              | 1                         | 1258.7         | 1088.8         | 764.6         | 6045         | 459.4     | 280.4         | 199.5 |
| 36               | 0,210 | 0,250   | 0,360   | 0,450     | 0,580   | 0,890   | 1,100 | 3,245                | ī    | ī             | ī            | ī      | ī                    | ī              | 1                         | 1445,0         | 1197,8         | 801,3         | 621,0        | 459,4     | 264,6         | 195,0 |
| 37               | 0,270 | 0,320   | 0,450   | 0,570     | 0,740   | 1,180   | 1,520 | 4,069                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1407,1         | 1171,6         | 804,2         | 613,9        | 449,9     | 244,8         | 167,7 |
| 38               | 0,260 | 0,330   | 0,530   | 0,730     | 1,010   | 1,790   | 3,150 | 2,503                | 1    | 1             | 1            | 1      | 1                    | 1              | 0                         | 862,8          | 658,6          | 372,3         | 242,9        | 147,8     | 39,8          | 25,8  |
| 39               | 0,300 | 0,340   | 0,480   | 0,600     | 0,750   | 1,140   | 1,450 | 4,094                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1264,6         | 1104,0         | 752,9         | 582,3        | 445,8     | 259,1         | 182,3 |
| 40               | 0,320 | 0,370   | 0,550   | 0,710     | 0,950   | 1,600   | 2,510 | 0,421                | 1    | 1             | 0            | 0      | 0                    | 0              | 0                         | 31,4           | 13,7           | 30,8          | 68,8         | 125,9     | 280,4         | 496,8 |
| 41               | 0,280 | 0,320   | 0,450   | 0,570     | 0,720   | 1,080   | 1,360 | 0,557                | 1    | 1             | 1            | 0      | 0                    | 0              | 0                         | 98,9           | 74,0           | 23,7          | 2,4          | 29,3      | 93,9          | 144,2 |
| 42               | 0,220 | 0,270   | 0,410   | 0,570     | 0,900   | 4,170   | 4,790 | 2,704                | 1    | 1             | 1            | 1      | 1                    | 0              | 0                         | 1129,1         | 901,5          | 559,5         | 374,4        | 200,5     | 54,2          | 77,1  |
| 43               | 0,290 | 0,340   | 0,460   | 0,570     | 0,700   | 1,020   | 1,280 | 2,924                | 1    | <u>l</u>      | 1            | 1      | 1                    | 1              | 1                         | 908,2          | 759,9          | 535,6         | 412,9        | 317,7     | 186,6         | 128,4 |
| 44               | 0,170 | 0,250   | 0,550   | 0,820     | 1,250   | 4,840   | 5,150 | 0,315                | 1    | 1             | U            | U      | U                    | U              | U                         | 85,5<br>42.0   | 26,U           | 74,0          | 160,2        | 296,7     | 1450,1        | 15345 |
| 40               | 0,210 | 0,200   | 0,410   | 0,590     | 0,880   | 1,/90   | 2,/00 | 0,302                | 1    | 1             | U<br>1       | U<br>1 | U<br>1               | U<br>1         | U                         | 43,9           | 2,01           | 37,7          | 2,02         | 191,2     | 492,4<br>52 5 | /93,0 |
| 40               | 0,180 | 0,200   | 0,300   | 0,410     | 0,000   | 1,200   | 1,820 | 1,842                | 1    | 1             | 1<br>1       | 1      | 1                    | 1              | U                         | 923,4<br>206 0 | 821,U<br>220.2 | 214,0<br>TT 2 | 349,3<br>5 d | 207,0     | 23,2          | 402.0 |
| 4/<br>/0         | 0,170 | 0,210   | 0,390   | 0,020     | 1,140   | 2,970   | 4,030 | 0,072                | 1    | 1             | 1            | 1      | U<br>1               | U<br>1         | U<br>N                    | 222.7          | 470 1          | 240 0         |              | 107.0     | 367,5         | 402,0 |
| 40<br><u>4</u> 0 | 0,120 | 0,170   | 0,210   | 0,2.20    | 0,330   | 0,720   | 1,100 | 1815                 |      | <u>1</u><br>1 | 1            | 1      | 1                    | 1              | 1                         | 1100 7         | 970,1<br>067.4 | 764 1         | 656 1        | 467 1     | 00 A          | 26.0  |
| 50               | 0.160 | 0.170   | 0.230   | 0.320     | 0.650   | 1.550   | 2,790 | 1,454                | î    | î             | ī            | î      | i                    | Ô              | Ô                         | 808.7          | 755.2          | 532.1         | 3543         | 123.7     | б.б           | 91.9  |
| 51               | 0.170 | 0.190   | 0.250   | 0.330     | 0.490   | 1.090   | 1.580 | 2.760                | ī    | 1             | ī            | ī      | 1                    | 1              | ĩ                         | 1523.8         | 1352.9         | 1004.2        | 736.5        | 463.4     | 153.3         | 74.7  |
| 52               | 0,170 | 0,190   | 0,280   | 0,500     | 0,900   | 2,040   | 2,860 | 2,801                | ī    | 1             | ī            | ī      | ī                    | ī              | Ō                         | 1547,7         | 1374,2         | 900,4         | 460,2        | 211,2     | 37,3          | 2,1   |
| 53               | 0,160 | 0,180   | 0,260   | 0,370     | 0,530   | 0,910   | 1,230 | 2,940                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1737,5         | 1533,4         | 1030,8        | 694,6        | 454,7     | 223,1         | 139,0 |
| 54               | 0,140 | 0,150   | 0,180   | 0,200     | 0,230   | 0,500   | 0,920 | 0,752                | 1    | 1             | 1            | 1      | 1                    | 1              | 0                         | 436,9          | 401,1          | 317,6         | 275,8        | 226,8     | 50,3          | 22,4  |
| 55               | 0,140 | 0,160   | 0,200   | 0,240     | 0,300   | 0,600   | 0,850 | 2,031                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1350,9         | 1169,6         | 915,6         | 746,4        | 577,1     | 238,5         | 139,0 |
| 56               | 0,160 | 0,170   | 0,230   | 0,350     | 0,660   | 1,390   | 1,930 | 2,177                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1260,4         | 1180,3         | 846,3         | 521,9        | 229,8     | 56,6          | 12,8  |
| 57               | 0,170 | 0,190   | 0,250   | 0,320     | 0,420   | 0,710   | 0,950 | 3,260                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1817,5         | 1615,6         | 1203,9        | 918,7        | 676,1     | 359,1         | 243,1 |
| 58               | 0,140 | 0,160   | 0,190   | 0,230     | 0,280   | 1,460   | 4,690 | 3,800                | 1    | 1             | 1            | 1      | 1                    | 1              | 0                         | 2614,3         | 2275,0         | 1900,0        | 1552,2       | 1257,1    | 160,3         | 23,4  |
| 59               | 0,160 | 0,180   | 0,230   | 0,290     | 0,390   | 0,750   | 1,140 | 0,801                | 1    | 1             | 1            | 1      | 1                    | 1              | 0                         | 400,6          | 345,0          | 248,3         | 176,2        | 105,4     | б,8           | 42,3  |
| 60               | 0,170 | 0,190   | 0,270   | 0,400     | 0,750   | 1,660   | 2,500 | 2,640                | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 1453,2         | 1289,7         | 877,9         | 560,1        | 252,1     | 59,1          | 5,6   |
| 61               | 0,170 | 0,190   | 0,270   | 0,360     | 0,570   | 1,240   | 1,640 | 3,539                | 1    | <u>l</u>      | 1            | 1      | 1                    | 1              | 1                         | 1981,5         | 1762,4         | 1210,6        | 882,9        | 520,8     | 185,4         | 115,8 |
| 62               | 0,180 | 0,210   | 0,370   | 0,820     | 1,500   | 5,060   | 3,790 | 1,019                | 1    | <u></u>       | 1            | 1      | U                    | U              | U                         | 400,1          | 385,2          | 175,4         | 243          | 53,1      | 200,3         | 272,0 |
| 63               | 0,160 | 0,190   | 0,310   | 0,520     | 0,810   | 1,370   | 1,660 | 5,457<br>2,075       | 1    | 1             | 1            | 1      | 1                    | 1              | 1                         | 2000,6         | 1/19,4         | 1015,1        | 504,8        | 520,8     | 152,3         | 108,2 |
| 04               | 0,150 | 0,180   | 0,340   | 0,630     | 0,970   | 1,560   | 1,860 | 3,975                | 1    | I             | 1            | 1      | 1                    | 1              | 1                         | 2550,0         | 2108,3         | 1069,1        | 53LU         | 309,8     | 154,8         | 113,7 |

Tabela 5.6d - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ        | METR  | OS DO   | LEITO   | DOPA      | RAOI    | RIO AT. | IBAIA |                      | (    | COMP  | <b>ARAÇA</b> | O ENI  | RE D <sub>vj</sub>   | <sub>A</sub> D |      | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S      | VALORES   | DEDug  |        |
|------------|-------|---------|---------|-----------|---------|---------|-------|----------------------|------|-------|--------------|--------|----------------------|----------------|------|--------|----------|-----------|----------------|-----------|--------|--------|
|            | Granu | ometria | 1 do ma | terial de | o leito |         |       |                      | (10) | (11)  | (12)         | (13)   | (14)                 | (15)           | (16) | E      | OS VALOI | RES MEDI  | DOSNORI        | IO ATIBAL | A.     |        |
| <b>(l)</b> | (2)   | (3)     | (4)     | (5)       | (6)     | D -     | (8)   | (9)                  |      | COMP/ | ARA ÇA       | O DE : | D <sub>VJ (KAL</sub> | 1COM           | :    | (17)   | (18)     | (19)      | (20)           | (21)      | (22)   | (23)   |
| N          | D10   | Dló     | D35     | D50       | D65     | D84     | D90   | D <sub>M IKALI</sub> | D10  | D     | Dx           | Dee    | Der                  | Der            | Dm   |        |          |           |                |           |        |        |
|            | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  |                      | -10  | - 10  | - 30         | - 50   | - 10                 | - 64           | - 90 |        |          |           |                |           |        |        |
| 65         | 0.170 | 0.190   | 0.260   | 0 380     | 0.600   | 1 180   | 1.750 | 0.130                | 0    | 0     | 0            | 0      | 0                    | 0              | 0    | 30.5   | 45.0     | 99.7      | 1918           | 360.7     | 806.1  | 1243.8 |
| 66         | 0.170 | 0,180   | 0.220   | 0.260     | 0.310   | 0.410   | 0.470 | 2575                 | ĩ    | ĩ     | ľ            | ľ      | ĭ                    | ĩ              | ĺ    | 1414.8 | 1330.6   | 1070.5    | 890.4          | 730.7     | 528.1  | 447.9  |
| 67         | 0,170 | 0,190   | 0,250   | 0.320     | 0,440   | 1,190   | 1.680 | 1533                 | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 802,0  | 707,1    | 513,4     | 379,2          | 248,5     | 28,9   | 9,6    |
| 68         | 0,170 | 0,180   | 0,230   | 0,270     | 0,320   | 0,430   | 0,560 | 0,616                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 262,1  | 242,0    | 167,6     | 128,0          | 92,4      | 43,1   | 9,9    |
| 69         | 0,170 | 0,190   | 0,250   | 0,300     | 0,360   | 0,570   | 1,690 | 0,062                | 0    | 0     | 0            | Û      | 0                    | 0              | 0    | 174,3  | 206,5    | 303,3     | 384,0          | 480,8     | 819,6  | 2626,6 |
| 70         | 0,230 | 0,260   | 0,340   | 0,430     | 0,620   | 1,410   | 2,050 | 1,567                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 581,4  | 502,8    | 361,0     | 264,5          | 152,8     | 11,2   | 30,8   |
| 71         | 0,230 | 0,250   | 0,310   | 0,370     | 0,440   | 0,740   | 1,180 | 1,851                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 704,6  | 640,2    | 497,0     | 400,2          | 320,6     | 150,1  | 56,8   |
| 72         | 0,230 | 0,260   | 0,350   | 0,440     | 0,640   | 1,500   | 2,200 | 2,359                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 925,6  | 807,3    | 574,0     | 436,1          | 268,6     | 57,3   | 7,2    |
| 73         | 0,190 | 0,230   | 0,320   | 0,410     | 0,610   | 1,630   | 3,000 | 2,556                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 1245,5 | 1011,5   | 698,9     | 523,5          | 319,1     | 56,8   | 17,4   |
| 74         | 0,240 | 0,270   | 0,350   | 0,420     | 0,550   | 0,990   | 1,360 | 3,522                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 1367,5 | 1204,4   | 906,3     | 738,6          | 540,4     | 255,8  | 159,0  |
| 75         | 0,200 | 0,250   | 0,400   | 0,640     | 1,100   | 2,520   | 3,770 | 3,202                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 1500,8 | 1180,7   | 700,4     | 400,3          | 191,1     | 27,1   | 17,8   |
| 76         | 0,170 | 0,210   | 0,320   | 0,460     | 0,860   | 2,820   | 4,090 | 3,577                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 2004,1 | 1603,3   | 1017,8    | 677,6          | 315,9     | 26,8   | 14,3   |
| Π          | 0,220 | 0,270   | 0,410   | 0,560     | 0,800   | 1,340   | 1,660 | 3,557                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 1516,8 | 1217,4   | 767,5     | 535,2          | 344,6     | 165,4  | 114,3  |
| 78         | 0,180 | 0,220   | 0,330   | 0,450     | 0,750   | 1,980   | 3,050 | 3,728                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 1971,2 | 1594,7   | 1029,8    | 728,5          | 397,1     | 88,3   | 22,2   |
| 79         | 0,190 | 0,230   | 0,360   | 0,540     | 1,000   | 2,700   | 3,730 | 3,440                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 1710,7 | 1395,8   | 855,6     | 537,1          | 244,0     | 27,4   | 8,4    |
| 80         | 0,210 | 0,240   | 0,360   | 0,500     | 0,920   | 3,270   | 4,350 | 3,508                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 1570,5 | 1361,7   | 874,5     | 60 <b>1</b> ,6 | 281,3     | 7,3    | 24,0   |
| 81         | 0,190 | 0,230   | 0,350   | 0,520     | 1,070   | 3,850   | 4,630 | 3,605                | 1    | 1     | 1            | 1      | 1                    | 0              | 0    | 1797,1 | 1467,2   | 929,9     | 593,2          | 236,9     | б,8    | 28,4   |
| 82         | 0,230 | 0,270   | 0,380   | 0,530     | 0,880   | 1,950   | 2,890 | 2,463                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 970,8  | 812,1    | 548,1     | 364,7          | 179,9     | 26,3   | 17,3   |
| 83         | 0,230 | 0,270   | 0,400   | 0,640     | 1,290   | 4,190   | 4,790 | 0,258                | 1    | 0     | 0            | 0      | 0                    | 0              | 0    | 12,1   | 4,7      | 55,2      | 148,2          | 400,4     | 1525,2 | 1758,0 |
| 84         | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 1,820   | 2,370 | 3,260                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 1452,2 | 1258,2   | 887,8     | 676,1          | 340,5     | 79,1   | 37,5   |
| 85         | 0,230 | 0,270   | 0,390   | 0,670     | 1,650   | 4,070   | 4,690 | 2,182                | 1    | 1     | 1            | 1      | 1                    | 0              | 0    | 848,8  | 708,2    | 459,6     | 225,7          | 32,3      | 86,5   | 114,9  |
| 86         | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 3,000   | 4,160 | 1,949                | 1    | 1     | 1            | 1      | 1                    | 0              | 0    | 827,9  | 711,9    | 490,5     | 364,0          | 163,3     | 54,0   | 113,5  |
| 87         | 0,210 | 0,250   | 0,350   | 0,500     | 1,100   | 3,500   | 4,400 | 2,462                | 1    | 1     | 1            | 1      | 1                    | 0              | 0    | 1072,3 | 884,7    | 603,4     | 392,3          | 123,8     | 42,2   | 78,7   |
| 88         | 0,210 | 0,240   | 0,310   | 0,380     | 0,480   | 0,930   | 1,400 | 2,575                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 1126,2 | 973,0    | 730,7     | 577,7          | 436,5     | 176,9  | 83,9   |
| 89         | 0,190 | 0,220   | 0,310   | 0,380     | 0,500   | 0,830   | 1,110 | 2,131                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 1021,7 | 868,8    | 587,5     | 460,9          | 326,3     | 156,8  | 92,0   |
| 90         | 0,200 | 0,230   | 0,310   | 0,370     | 0,460   | 0,770   | 1,100 | 1,061                | 1    | 1     | 1            | 1      | 1                    | 1              | 0    | 430,6  | 361,4    | 242,4     | 186,8          | 130,7     | 37,8   | 3,6    |
| 91         | 0,220 | 0,240   | 0,300   | 0,360     | 0,420   | 0,650   | 0,980 | 0,170                | 0    | 0     | 0            | 0      | 0                    | 0              | 0    | 29,7   | 41,5     | 76,9      | 112,3          | 147,7     | 283,3  | 477,9  |
| 92         | 0,230 | 0,250   | 0,330   | 0,390     | 0,490   | 0,820   | 1,100 | 2,410                | 1    | 1     | 1            | 1      | 1                    | 1              | 1    | 947,7  | 863,9    | 630,2     | 517,9          | 391,8     | 193,9  | 119,1  |
| 93         | 0,230 | 0,260   | 0,340   | 0,400     | 0,510   | 0,800   | 1,030 | 0,230                | 0    | 0     | 0            | 0      | 0                    | 0              | O    | 0,0    | 13,0     | 47,8      | 73,9           | 121,7     | 247,8  | 347,8  |
| 94         | 0,230 | 0,250   | 0,330   | 0,400     | 0,510   | 0,880   | 1,160 | 0,230                | 0    | 0     | 0            | 0      | 0                    | 0              | 0    | 0,0    | 8,7      | 43,5      | 73,9           | 121,7     | 282,6  | 404,3  |
| 95         | 0,200 | 0,230   | 0,320   | 0,390     | 0,510   | 0,840   | 1,180 | 0,200                | 0    | 0     | 0            | 0      | 0                    | 0              | 0    | 0,0    | 15,0     | 60,0      | 95,0           | 155,0     | 320,0  | 490,0  |
| 96         | 0,150 | 0,200   | 0,400   | 0,750     | 1,480   | 4,440   | 4,920 | 0,150                | 0    | 0     | 0            | 0      | 0                    | 0              | 0    | 0,0    | 33,3     | 166,7     | 400,0          | 886,7     | 2860,0 | 3180,0 |

Tabela 5.6d - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR   | OS DO I | LEITO   | DOPA      | RAOI    | RIO AT | IBAIA |                      |          | COMP            | <b>ARAÇ</b> A | AO ENI | RE D <sub>vj</sub>   | <sub>A</sub> D |                           | RELAÇ | ÃO PERCI      | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
|-----|--------|---------|---------|-----------|---------|--------|-------|----------------------|----------|-----------------|---------------|--------|----------------------|----------------|---------------------------|-------|---------------|-----------|-----------|-----------|--------|--------|
|     | Granul | ometria | 1 do ma | terial de | o leito |        |       |                      | (10)     | (11)            | (12)          | (13)   | (14)                 | (15)           | (16)                      | Е     | OS VALOI      | RES MEDI  | DOSNOR    | IO ATIBAI | A      |        |
| (l) | (2)    | (3)     | (4)     | (5)       | (6)     | D -    | (8)   | (9)                  |          | COMP/           | ARA ÇA        | AO DE  | D <sub>VJ (KAL</sub> | 1COM           | :                         | (17)  | (18)          | (19)      | (20)      | (21)      | (22)   | (23)   |
| N⁰  | D10    | Dló     | D35     | D50       | D65     | D84    | D90   | D <sub>M (KAL)</sub> | D10      | D <sub>16</sub> | Dx            | Dre    | Der                  | Der            | $\mathbf{D}_{\mathbf{m}}$ |       |               |           |           |           |        |        |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)   | (mm)  |                      | 10       | 10              | 30            | 50     | 10                   | 64             | 90                        |       |               |           |           |           |        |        |
| 07  | 0.210  | 0.280   | 0.550   | 0.890     | 1 410   | 3 490  | 4 400 | 0.210                | 0        | <u>۱</u>        | 0             | . n    | 0                    | 0              | N                         | 0.0   | 333           | 161.0     | 323.8     | 571.4     | 1561.0 | 1995.2 |
| 98  | 0.220  | 0.290   | 0.550   | 0.890     | 1.410   | 4,000  | 4,700 | 0.220                | Ŏ        | Ŏ               | Ŏ             | Ŏ      | Ŏ                    | Õ              | Ŏ                         | 0.0   | 31.8          | 150.0     | 3045      | 540.9     | 1718.2 | 2036.4 |
| 99  | 0,150  | 0,220   | 0,430   | 0.650     | 0,980   | 1,840  | 2,460 | 0,150                | 0        | Ō               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 46,7          | 186,7     | 333,3     | 553,3     | 1126,7 | 1540,0 |
| 100 | 0,160  | 0,210   | 0,390   | 0,580     | 0,880   | 1,630  | 2,250 | 0,160                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 31,3          | 143,8     | 262,5     | 450,0     | 918,8  | 1306,3 |
| 101 | 0,140  | 0,160   | 0,230   | 0,300     | 0,400   | 0,960  | 4,370 | 0,140                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 14,3          | 64,3      | 114,3     | 185,7     | 585,7  | 3021,4 |
| 102 | 0,150  | 0,180   | 0,250   | 0,320     | 0,420   | 0,670  | 0,850 | 0,150                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 20,0          | бб,7      | 113,3     | 180,0     | 346,7  | 466,7  |
| 103 | 0,150  | 0,170   | 0,260   | 0,340     | 0,470   | 0,830  | 1,090 | 0,150                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 13,3          | 73,3      | 126,7     | 213,3     | 453,3  | 626,7  |
| 104 | 0,150  | 0,180   | 0,290   | 0,410     | 0,590   | 1,080  | 1,440 | 0,150                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 20,0          | 93,3      | 173,3     | 293,3     | 620,0  | 860,0  |
| 105 | 0,160  | 0,190   | 0,250   | 0,320     | 0,430   | 0,960  | 1,620 | 0,160                | . 0      | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 18,8          | 56,3      | 100,0     | 168,8     | 500,0  | 912,5  |
| 106 | 0,170  | 0,190   | 0,240   | 0,290     | 0,350   | 0,500  | 0,630 | 0,170                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 11,8          | 41,2      | 70,6      | 105,9     | 194,1  | 270,6  |
| 107 | 0,190  | 0,210   | 0,270   | 0,320     | 0,370   | 0,500  | 0,590 | 0,190                | 0        | 0               | 0             | . 0    | 0                    | 0              | 0                         | 0,0   | 10,5          | 42,1      | 68,4      | 94,7      | 163,2  | 210,5  |
| 108 | 0,160  | 0,180   | 0,240   | 0,290     | 0,350   | 0,510  | 0,670 | 0,160                | Į O      | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 12,5          | 50,0      | 81,3      | 118,8     | 218,8  | 318,8  |
| 109 | 0,210  | 0,260   | 0,410   | 0,620     | 0,980   | 1,780  | 2,300 | 0,210                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 23,8          | 95,2      | 195,2     | 366,7     | 747,6  | 995,2  |
| 110 | 0,250  | 0,310   | 0,500   | 0,710     | 1,020   | 1,800  | 2,360 | 0,250                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 24,0          | 100,0     | 184,0     | 308,0     | 620,0  | 844,0  |
| 111 | 0,220  | 0,260   | 0,410   | 0,640     | 1,020   | 1,940  | 2,590 | 0,220                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 18,2          | 86,4      | 190,9     | 363,6     | 781,8  | 1077,3 |
| 112 | 0,200  | 0,230   | 0,310   | 0,380     | 0,480   | 0,750  | 0,930 | 0,200                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 15,0          | 55,0      | 90,0      | 140,0     | 275,0  | 365,0  |
| 113 | 0,220  | 0,250   | 0,350   | 0,440     | 0,570   | 0,930  | 1,220 | 0,220                | <u> </u> | 0               | 0             | 0      | Û                    | 0              | 0                         | 0,0   | 13,6          | 59,1      | 100,0     | 159,1     | 322,7  | 454,5  |
| 114 | 0,220  | 0,260   | 0,360   | 0,460     | 0,630   | 1,180  | 1,860 | 0,220                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 18,2          | 63,6      | 109,1     | 186,4     | 436,4  | 745,5  |
| 115 | 0,190  | 0,230   | 0,320   | 0,400     | 0,520   | 0,810  | 1,000 | 0,190                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 21,1          | 68,4      | 110,5     | 173,7     | 326,3  | 426,3  |
| 116 | 0,210  | 0,240   | 0,320   | 0,380     | 0,480   | 0,740  | 0,940 | 0,210                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 14,3          | 52,4      | 81,O      | 128,6     | 252,4  | 347,6  |
| 117 | 0,180  | 0,210   | 0,300   | 0,390     | 0,510   | 0,910  | 1,200 | 0,180                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 16,7          | 66,7      | 116,7     | 183,3     | 405,6  | 566,7  |
| 118 | 0,180  | 0,220   | 0,340   | 0,470     | 0,730   | 1,820  | 3,210 | 0,180                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 22,2          | 88,9      | 161,1     | 305,6     | 911,1  | 1683,3 |
| 119 | 0,200  | 0,250   | 0,440   | 0,790     | 1,380   | 3,000  | 3,880 | 0,200                | U        | U               | U             | U      | U                    | U              | U                         | U,U   | 25 <b>,</b> U | 120,0     | 295,0     | 590,0     | 1400,0 | 1840,0 |
| 120 | 0,210  | 0,280   | 0,560   | 0,920     | 1,520   | 3,030  | 3,850 | 0,210                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 33,3          | 166,7     | 338,1     | 623,8     | 1342,9 | 1733,3 |
| 121 | 0,210  | 0,270   | 0,480   | 0,730     | 1,130   | 2,320  | 3,550 | 0,210                | Û        | 0               | Ū             | Ū      | 0                    | 0              | 0                         | 0,0   | 28,6          | 128,6     | 247,6     | 438,1     | 1004,8 | 1590,5 |
| 122 | 0,200  | 0,240   | 0,370   | 0,590     | 1,130   | 2,600  | 3,750 | 0,200                | 0        | 0               | Ū             | 0      | 0                    | 0              | 0                         | 0,0   | 20,0          | 85,0      | 195,0     | 465,0     | 1200,0 | 1775,0 |
| 123 | 0,210  | U,260   | 0,480   | 0,860     | 1,430   | 3,130  | 4,060 | 0,210                | Û        | <u> </u>        | Ū             | 0      | 0                    | Q              | Û                         | 0,0   | 23,8          | 128,6     | 309,5     | 581,0     | 1390,5 | 1833,3 |
| 124 | 0,210  | 0,290   | 0,540   | 0,770     | 1,080   | 1,810  | 2,880 | 0,210                | Ū        | 0               | 0             | 0      | Û                    | Û              | 0                         | 0,0   | 38,1          | 157,1     | 266,7     | 414,3     | 761,9  | 1271,4 |
| 125 | 0,230  | 0,300   | 0,680   | 1,180     | 1,840   | 3,410  | 4,160 | 0,230                | <u> </u> | <u> </u>        | Ō             | 0      | Û                    | Q              | 0                         | 0,0   | 30,4          | 195,7     | 413,0     | 700,0     | 1382,6 | 1708,7 |
| 126 | 0,300  | 0,380   | 0,660   | 0,950     | 1,330   | 2,270  | 2,950 | 0,300                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 26,7          | 120,0     | 216,7     | 343,3     | 656,7  | 883,3  |
| 127 | 0,250  | 0,290   | 0,480   | 0,680     | 0,980   | 1,920  | 2,830 | 0,250                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 16,0          | 92,0      | 172,0     | 292,0     | 668,0  | 1032,0 |
| 128 | 0,220  | 0,280   | 0,540   | 0,850     | 1,320   | 2,630  | 3,560 | 0,220                | 0        | 0               | 0             | 0      | 0                    | 0              | 0                         | 0,0   | 27,3          | 145,5     | 286,4     | 500,0     | 1095,5 | 1518,2 |

Tabela 5.6d - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ  | METR   | OS DO I        | LEITO   | DOPA      | RAOI      | RIO AT    | IBAIA   |                      |          | COMP            | ARAÇ <i>i</i> | AO ENI | RE D <sub>vj</sub>   | <sub>A</sub> D    |                           | RELAÇ      | ÃO PERCI     | EN TUAL E     | N TRE O S    | VALORES   | DEDw   |        |
|------|--------|----------------|---------|-----------|-----------|-----------|---------|----------------------|----------|-----------------|---------------|--------|----------------------|-------------------|---------------------------|------------|--------------|---------------|--------------|-----------|--------|--------|
|      | Granul | ometria        | 1 do ma | terial de | o leito   |           |         |                      | (10)     | (11)            | (12)          | (13)   | (14)                 | (15)              | (16)                      | Е          | OS VALOI     | RES MEDII     | DOSNOR:      | IO ATIBAL | A      |        |
| (l)  | (2)    | (3)            | (4)     | (5)       | (6)       | Ð         | (8)     | (9)                  |          | COMP/           | ARAÇ/         | ODE :  | D <sub>VJ (KAL</sub> | <sub>-1</sub> COM | :                         | (17)       | (18)         | (19)          | (20)         | (21)      | (22)   | (23)   |
| N⁰   | D10    | Dló            | D35     | D50       | D65       | D84       | D90     | D <sub>M (KAL)</sub> | D16      | D <sub>16</sub> | Dx            | Dre    | Der                  | Der               | $\mathbf{D}_{\mathbf{m}}$ |            |              |               |              |           |        |        |
|      | (mm)   | (mm)           | (mm)    | (mm)      | (mm)      | (mm)      | (mm)    |                      | 10       | - 10            | 30            | 50     | 10                   | 64                | - 90                      |            |              |               |              |           |        |        |
| 120  | 0.230  | 0.260          | 0.370   | 0 500     | 0 750     | 1 470     | 1070    | 0.230                | 0        | 0               | N             |        | n.                   | 0                 | 0                         | 0.0        | 13.0         | 60.0          | 1174         | 226 1     | 530 1  | 756 5  |
| 130  | 0,230  | 0,200          | 0,370   | 0,200     | 1 0.90    | 1,470     | 1,570   | 0,230                | Ň        | Ň               | Ň             | Ň      | Ň                    |                   | Ň                         | 0,0        | 13,0<br>17.6 | 85.3          | 1441         | 217.6     | 364.7  | 444.1  |
| 131  | 0.150  | 0.210          | 0.290   | 0.360     | 0.440     | 0.660     | 0.840   | 0.150                | Ō        | Ū               | 0             | Ō      | 0                    | 0                 | Ō                         | 0.0        | 40.0         | 93.3          | 140.0        | 193.3     | 340.0  | 460.0  |
| 132  | 0,110  | 0,130          | 0,170   | 0,200     | 0,230     | 0,300     | 0,340   | 0,110                | Ō        | Ō               | Ō             | Ō      | Ō                    | Ō                 | Ō                         | 0,0        | 18,2         | 54,5          | 81,8         | 109,1     | 172,7  | 209,1  |
| 133  | 0,140  | 0,150          | 0,180   | 0,200     | 0,230     | 0,290     | 0,330   | 0,140                | 0        | 0               | 0             | Ö      | 0                    | 0                 | 0                         | 0,0        | 7,1          | 28,6          | 42,9         | 64,3      | 107,1  | 135,7  |
| 134  | 0,150  | 0,160          | 0,190   | 0,220     | 0,250     | 0,320     | 0,380   | 0,150                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | б,7          | 26,7          | 46,7         | бб,7      | 113,3  | 153,3  |
| 135  | 0,150  | 0,160          | 0,180   | 0,200     | 0,220     | 0,260     | 0,280   | 0,150                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | б,7          | 20,0          | 33,3         | 46,7      | 73,3   | 86,7   |
| 136  | 0,160  | 0,170          | 0,190   | 0,220     | 0,250     | 0,310     | 0,350   | 0,160                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | б,З          | 18,8          | 37,5         | 56,3      | 93,8   | 118,8  |
| 137  | 0,300  | 0,390          | 0,770   | 1,120     | 1,590     | 2,850     | 3,730   | 0,300                | 0        | <u> </u>        | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | 30,0         | 156,7         | 273,3        | 430,0     | 850,0  | 1143,3 |
| 138  | 0,160  | 0,170          | 0,210   | 0,240     | 0,280     | 0,360     | 0,400   | 0,160                | U        | U               | U             | U      | U                    | U                 | U                         | U,U        | 6,3          | 31,3          | 50,0         | 75,0      | 125,0  | 150,0  |
| 1.99 | 0,160  | 0,170          | 0,210   | 0,250     | 0,300     | 0,400     | 0,480   | 0,160                | U        | U               | U             | U      | U                    |                   | U                         | U,U        | 6,3          | 31,3          | 56,3         | 87,5      | 150,0  | 200,0  |
| 140  | 0,140  | 0,100          | 0,200   | 0,230     | 0,280     | 0,390     | 0,470   | 0,140                | U        | U               | U             | U      | U                    | U                 | U                         | U,U<br>0 0 | 14,3         | 42,9<br>52 2  | 04,3         | 100,0     | 200.0  | 235,7  |
| 141  | 0,150  | 0,170          | 0,230   | 0,290     | 0,380     | 0.210     | 0,780   | 0,150                | U        | U               | U<br>0        | U      | U                    | U<br>0            | U                         | U,U<br>0 0 | 13,3         | 23,3          | 93,3<br>22 7 | 173,3     | 300,0  | 420,0  |
| 142  | 0,120  | 0,140          | 0,170   | 1 200     | 2 2 2 2 0 | 4 120     | 5 1 2 0 | 0,120                | U<br>0   | U<br>0          | U<br>0        | U<br>0 | U<br>N               | U<br>0            | U<br>N                    | 0,0        | 10,7         | 41,7<br>288 0 | 7333         | 1133.3    | 2104 4 | 200,3  |
| 140  | 0,100  | 0,200<br>N 19N | 0,700   | 1,500     | 0.800     | 2 2 2 2 0 | 3,120   | 0,100<br>0 160       |          |                 | , v           |        | ,<br>N               | v<br>N            | ,<br>U                    | 0,0<br>0 0 | 11,1         | 200,5         | 162.5        | 400.0     | 1297.5 | 10375  |
| 145  | 0.160  | 0.190          | 0.300   | 0.450     | 1.000     | 2.700     | 3.820   | 0.160                | Ň        | Ň               | Ň             | Ō      | Ň                    | Ň                 | Ň                         | 0.0        | 18,8         | 87.5          | 181.3        | 525.0     | 1587.5 | 2287.5 |
| 146  | 0.120  | 0.150          | 0.230   | 0.310     | 0.420     | 0.970     | 1.340   | 0.120                | Ō        | Ō               | Ō             | Ō      | Ō                    | Ō                 | Ō                         | 0,0        | 25,0         | 91,7          | 158,3        | 250,0     | 708,3  | 1016,7 |
| 147  | 0,200  | 0,250          | 0,570   | 1,360     | 2,440     | 4,740     | 5,030   | 0,200                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | 25,0         | 185,0         | 580,0        | 1120,0    | 2270,0 | 2415,0 |
| 148  | 0,160  | 0,210          | 0,400   | 0,850     | 1,370     | 2,520     | 3,270   | 0,160                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | 31,3         | 150,0         | 431,3        | 756,3     | 1475,0 | 1943,8 |
| 149  | 0,100  | 0,130          | 0,190   | 0,250     | 0,340     | 0,940     | 1,640   | 0,100                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | 30,0         | 90,0          | 150,0        | 240,0     | 840,0  | 1540,0 |
| 150  | 0,090  | 0,120          | 0,180   | 0,230     | 0,310     | 1,010     | 2,430   | 0,090                | 0        | 0               | 0             | ) O    | 0                    | 0                 | 0                         | 0,0        | 33,3         | 100,0         | 155,6        | 244,4     | 1022,2 | 2600,0 |
| 151  | 0,130  | 0,160          | 0,240   | 0,350     | 0,590     | 2,400     | 3,700   | 0,130                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | 23,1         | 84,6          | 169,2        | 353,8     | 1746,2 | 2746,2 |
| 152  | 0,100  | 0,120          | 0,170   | 0,210     | 0,250     | 0,380     | 0,480   | 0,100                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | 20,0         | 70,0          | 110,0        | 150,0     | 280,0  | 380,0  |
| 153  | 0,110  | 0,130          | 0,190   | 0,230     | 0,300     | 0,840     | 1,830   | 0,110                | 0        | 0               | 0             | , O    | 0                    | 0                 | 0                         | 0,0        | 18,2         | 72,7          | 109,1        | 172,7     | 663,6  | 1563,6 |
| 154  | 0,230  | 0,290          | 0,710   | 1,330     | 2,130     | 3,760     | 4,500   | 0,230                | 0        | 0               | 0             | 0      | 0                    | 0                 | 0                         | 0,0        | 26,1         | 208,7         | 478,3        | 826,1     | 1534,8 | 1856,5 |
| 155  | 0,200  | 0,230          | 0,360   | 0,530     | 1,000     | 2,730     | 3,980   | 0,200                | 0        | 0               | <u> </u>      | . 0    | 0                    | 0                 | 0                         | 0,0        | 15,0         | 80,0          | 165,0        | 400,0     | 1265,0 | 1890,0 |
| 156  | 0,080  | 0,090          | 0,160   | 0,220     | 0,430     | 2,140     | 4,060   | 0,080                | 0        | 0               | Ū             | 0      | 0                    | 0                 | 0                         | U,O        | 12,5         | 100,0         | 175,0        | 437,5     | 2575,0 | 4975,0 |
| 157  | 0,180  | 0,200          | 0,290   | 0,390     | 0,800     | 1,070     | 2,060   | 0,180                | <u> </u> | <u> </u>        | <u> </u>      | 0      | 0                    |                   | <u> </u>                  | U,O        | 11,1         | 61,1          | 116,7        | 344,4     | 494,4  | 1044,4 |
| 156  | 0,200  | 0,250          | 0,390   | 0,/30     | 1,420     | 4,0/0     | 0,230   | 0,200                | U        | U<br>N          | U             | U      | U                    | U                 | U                         | U,U        | 15,0         | 95,0          | 205,0        | 010,0     | 1955,0 | 5015,0 |
| 159  | 0,120  | 0,150          | 0,230   | 0,340     | 0,000     | 4,070     | 0,300   | 0,120                | U        | U               | U             | U      | U                    | U                 | U                         | U,U        | 25,0         | 91,/<br>40.0  | 183,5        | 400,0     | 3/91,/ | 150,0  |
| 100  | 0,150  | 0,100          | 0,210   | 0,250     | 0,320     | ; 2,/00   | 0,280   | 0,150                | U        | U               | U             | . U    | U                    | U                 | U                         | U,U        | 0,/          | 40,0          | 00,/         | 113,5     | 1/40,0 | 80,/   |

Tabela 5.6d - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIĂMETROS DO LEITO DO PARA O RIO ATIBAIA                  |          | (     | COMP/           | ARAÇA           | IO ENI          | RE D <sub>vj</sub>   | a D             |                           | RELAÇ | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | D E D va |        |
|-----------------------------------------------------------|----------|-------|-----------------|-----------------|-----------------|----------------------|-----------------|---------------------------|-------|----------|-----------|-----------|-----------|----------|--------|
| Granulometria do material do leito                        | . [      | (10)  | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)                      | Е     | OS VALOI | RES MEDI  | DOSNORI   | IO ATIBAL | A        |        |
| (1) (2) (3) (4) (5) (6) (7) (8)                           | (9)      | (     | COMPA           | ARAÇA           | ODE             | D <sub>VJ (KAL</sub> | 1COM            | [:                        | (17)  | (18)     | (19)      | (20)      | (21)      | (22)     | (23)   |
| N <sup>®</sup> D10 D16 D35 D50 D65 D84 D90 D <sub>5</sub> | VI [KAL] | D10   | D <sub>16</sub> | D <sub>25</sub> | D <sub>50</sub> | D <sub>65</sub>      | D <sub>84</sub> | $\mathbf{D}_{\mathbf{m}}$ |       |          |           |           |           |          |        |
| (mm) (mm) (mm) (mm) (mm) (mm) (mm)                        | nan.     |       |                 | 3               | 50              |                      | .4              | ~                         |       |          |           |           |           |          |        |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 0           | 0,160    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 12,5     | 43,8      | 68,8      | 106,3     | 206,3    | 300,0  |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 0           | 0,150    |       |                 |                 |                 |                      |                 |                           | 0,0   | б,7      | 33,3      | 60,0      | 93,3      | 3126,7   | 800,0  |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 0           | 0,100    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 20,0     | 60,0      | 90,0      | 130,0     | 230,0    | 290,0  |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 0           | 0,170    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 11,8     | 52,9      | 88,2      | 147,1     | 670,6    | 1123,5 |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 0           | 0,080    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 25,0     | 87,5      | 125,0     | 175,0     | 275,0    | 362,5  |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 0           | 0,140    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 7,1      | 35,7      | 64,3      | 107,1     | 750,0    | 2421,4 |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 0           | 0,200    | O     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 20,0     | 75,0      | 150,0     | 320,0     | 890,0    | 1325,0 |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 0           | 0,220    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 13,6     | 59,1      | 100,0     | 186,4     | 468,2    | 650,0  |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 0           | 0,130    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 15,4     | 69,2      | 123,1     | 215,4     | 1315,4   | 4238,5 |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 0           | 0,140    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 35,7     | 128,6     | 228,6     | 442,9     | 1085,7   | 1650,0 |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 0           | 0,160    | 0     | 0               | 0               | 0               | 0                    | 0               | 0                         | 0,0   | 18,8     | 131,3     | 475,0     | 1000,0    | 2400,0   | 3187,5 |
|                                                           |          |       | (%)             | ) de evo        | entos en        | ng ue D'i            | J > D           |                           | DIFEI | RENÇA P  | ERCENT    | UAL REL   | ATIVA M   | EDIA     |        |
|                                                           | (        | 52,05 | 51,46           | 49,71           | 49,12           | 47,37                | 38,01           | 25,15                     | 566,3 | 487,2    | 360,6     | 312,9     | 305,5     | 505,4    | 657,6  |

Tabela 5.6d - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>W (KAL)</sub>- Diâmetro calculado pela equação: D<sub>W (KAL)</sub> = 0,0044 × [e<sup>-5,7716 × Pc</sup>]. Para o método de Kalinske

Pc - Potência da corrente - Kgf/m.s

| DIÄ  | METR   | OS DO I | LEITO   | DO PA     | RA O F         | NO AT              | IBAIA   |                      | -        | COMP   | <b>ARAÇ</b> A | IO ENI       | RE D <sub>w</sub>  | <sub>IA</sub> D |        | RELAÇ           | ÃO PERCI        | EN TUAL E | N TRE O S              | VALORES   | DEDw          |               |
|------|--------|---------|---------|-----------|----------------|--------------------|---------|----------------------|----------|--------|---------------|--------------|--------------------|-----------------|--------|-----------------|-----------------|-----------|------------------------|-----------|---------------|---------------|
|      | Granul | ometria | 1 do ma | terial do | o leito        |                    |         |                      | (10)     | (11)   | (12)          | (13)         | (14)               | (15)            | (16)   | Е               | OS VALOI        | RES MEDII | DOSNOR                 | IO ATIBAI | A             |               |
| (l)  | (2)    | (3)     | (4)     | (5)       | (6)            | $-\mathcal{O}^{-}$ | (8)     | (9)                  |          | COMP.  | ARAÇA         | <b>IO DE</b> | D <sub>w LEV</sub> | n COM           | :      | (17)            | (18)            | (19)      | (20)                   | (21)      | (22)          | (23)          |
| N    | D10    | Dló     | D35     | D50       | D65            | D84                | D90     | D <sub>SCILLER</sub> | Die      | Dv     | Dar           | Dre          | Da                 | Der             | Dm     |                 |                 |           |                        |           |               |               |
|      | (      | (mm)    | (mm)    | (mm)      | (mm)           | (                  | (mm)    | 0][112.0]            | -10      | -10    | - 39          | - 50         | -00                | - 84            | -90    |                 |                 |           |                        |           |               |               |
| Ļ.,  |        |         | (11111) |           | <u> (IIII)</u> | (11011)<br>1 5 5 0 |         | JMM.<br>5 002        |          |        |               | <u> </u>     |                    | 1               |        | 2205 1          | 2720.2          | 1207.0    | 202.7                  | 425.0     | 004 S :       | 172.0         |
| 1    | 0,120  | 0,180   | 0,340   | 0,040     | 0,970          | 1,200              | 1,800   | 2,093                | <u>1</u> | 1      | 1             | <u>1</u>     | 1                  | 1<br>1          | 1      | 3297,1          | 1300.3          | 1397,8    | 090,7<br>522.4         | 427,0     | 220,5         | 1/3,8         |
| - 2  | 0,190  | 0,240   | 0,370   | 0,240     | 0,000          | 2,770              | 3,020   | 1001                 | 1        | 1      | 1             | 1            | 1                  | T               | 0      | 1000,0<br>720 T | 586.6           | 314.9     | 32 <u>4</u> 4<br>107.9 | 201,7     | 49 T          | 106 /         |
| 4    | 0,240  | 0.270   | 0.530   | 0,860     | 1.370          | 3.240              | 4220    | 2,772                | 1        | 1      | 1             | 1            | 1                  |                 | Ň      | 1160.0          | 926.7           | 423.0     | 222.3                  | 102.3     | 16.9          | 52.2          |
| 5    | 0.240  | 0.280   | 0.400   | 0.510     | 0.640          | 0.970              | 1,230   | 1.165                | ī        | i      | ī             | ī            | ī                  | ĩ               | Ŏ      | 385.5           | 316.2           | 191.3     | 128.5                  | 82.1      | 20.1          | 5.6           |
| б    | 0.330  | 0.400   | 0.710   | 1.020     | 1.470          | 2.500              | 3.130   | 6.759                | 1        | 1      | 1             | 1            | 1                  | -               | 1      | 1948.2          | 1589.8          | 852.0     | 5626                   | 359.8     | 170.4         | 115.9         |
| 7    | 0,270  | 0,320   | 0,450   | 0,570     | 0,730          | 1,130              | 1,420   | 3,345                | 1        | 1      | 1             | 1            | 1                  | 1               | 1      | 1138,8          | 945,3           | 643,3     | 486,8                  | 358,2     | 196,0         | 135,6         |
| 8    | 0,290  | 0,340   | 0,500   | 0,640     | 0,830          | 1,440              | 3,780   | 2,331                | 1        | 1      | 1             | 1            | 1                  | 1               | 0      | 703,8           | 585,6           | 366,2     | 264,2                  | 180,8     | 61,9          | 62,2          |
| 9    | 0,360  | 0,440   | 0,690   | 0,970     | 1,500          | 4,470              | 4,940   | 2,406                | 1        | 1      | 1             | 1            | 1                  | 0               | 0      | 568,2           | 446,7           | 248,6     | 148,0                  | 60,4      | 85,8          | 105,4         |
| 10   | 0,320  | 0,370   | 0,520   | 0,660     | 0,850          | 1,400              | 2,000   | 0,792                | 1        | 1      | 1             | 1            | 0                  | 0               | 0      | 147,5           | 114,0           | 52,3      | 20,0                   | 7,3       | 76,8          | 152,6         |
| 11   | 0,300  | 0,360   | 0,560   | 0,780     | 1,220          | 4,100              | 4,750   | 0,482                | 1        | 1      | 0             | 0            | 0                  | 0               | 0      | 60,8            | 34,0            | 16,1      | бЦ7                    | 152,9     | 750,1         | 884,8         |
| 12   | 0,300  | 0,360   | 0,560   | 0,770     | 1,090          | 3,330              | 4,500   | 0,403                | 1        | 1      | 0             | 0            | 0                  | 0               | 0      | 34,2            | 11,8            | 39,1      | 91,2                   | 170,7     | 727,0         | 1017,6        |
| 13   | 0,270  | 0,320   | 0,480   | 0,630     | 0,870          | 3,900              | 4,700   | 0,095                | 0        | 0      | 0             | 0            | 0                  | 0               | 0      | 182,8           | 235,2           | 402,8     | 559,9                  | 811,3     | 3985,2        | 4823,2        |
| 14   | 0,270  | 0,320   | 0,470   | 0,640     | 0,920          | 2,300              | 4,020   | 0,330                | 1        | 1      | 0             | 0            | 0                  | 0               | 0      | 22,2            | 3,1             | 42,4      | 93,9                   | 178,8     | 596,9         | 1118,1        |
| 15   | 0,280  | 0,320   | 0,490   | 0,660     | 0,950          | 2,170              | 3,160   | 0,160                | 0        | 0      | 0             | 0            | 0                  | 0               | 0      | 75,4            | 100,4           | 206,9     | 313,4                  | 495,0     | 1259,1        | 1879,1        |
| 16   | 0,240  | 0,270   | 0,370   | 0,470     | 0,610          | 1,000              | 1,450   | 0,857                | 1        | 1      | 1             | 1            | 1                  | 0               | 0      | 257,1           | 217,5           | 131,7     | 82,4                   | 40,5      | 16,7          | 69,2          |
| 17   | 0,310  | 0,370   | 0,510   | 0,630     | 0,800          | 1,290              | 1,770   | 8,029                | 1        | 1      | 1             | 1            | 1                  | 1               | 1      | 2489,9          | 2069,9          | 1474,3    | 1174,4                 | 903,6     | 522,4         | 353,6         |
| 18   | 0,280  | 0,340   | 0,510   | 0,690     | 0,970          | 4,770              | 5,110   | 1,010                | ĮĮ       | 1      | 1             | 1            | 1                  | U.              | U      | 477,2           | 575,5           | 216,9     | 134,2                  | 00,0      | 195,1         | 216,2         |
| 219  | 0,510  | 0,570   | 0,550   | 0,/10     | 0,960          | 5,050              | 4,020   | 5,770                |          |        | 1<br>1        | I            | 1                  |                 | U<br>1 | 1117,9          | 920,4           | 580,5     | 4518                   | 295,5     | 4,0           | 22,4          |
| 20   | 0,290  | 0,320   | 0,500   | 0,030     | 0,800          | 1,240              | 1,040   | 4,/04                | 1        | 1      | 1             | 1            | 1                  | 1               | 1      | 1922,1          | 1244,0          | 840,8     | 040,7                  | 488,0     | 279,4         | 180,8         |
| 21   | 0,340  | 0,440   | 0,840   | 1,200     | 2,140          | 4,720              | 4,900   | 0,387                | 1        | U<br>1 | U<br>1        | U            | U                  | U               | U N    | 13,9            | 13,/            | 117,0     | 220,0                  | 472,8     | 200 4         | 1181,)        |
| - 44 | 0,300  | 0,390   | 0,720   | 1,170     | 1,870          | 4,270              | 4,820   | 0,071                | <u>1</u> | 1      | 1             | U<br>1       | U<br>1             | U<br>1          | U<br>1 | 190,2           | 143,3<br>660 0  | 10,1      | 341                    | 242.2     | 390,4         | 473,0         |
| 23   | 0,300  | 0,300   | 0,210   | 0,030     | 0,810          | 1,200              | 1,/10   | 2,//2<br>0 0 20      | 1        | 1      | 1             | 1            | 1                  | 1               | 1      | 043,7<br>7000 n | 24211           | 443,2     | 337,7<br>1967 d        | 242,2     | 120,0<br>K% 0 | 1,2U<br>100 h |
| 24   | 0,270  | 0,320   | 0,470   | 0,390     | 0,740          | 1,110              | 1,370   | 0,000<br>1 £00       | 1        | 1      | 1             | 1            | 1                  | <u>1</u>        | 1      | 2000,U<br>570 T | 2421,1<br>466 A | 2010,2    | 203.4                  | 132.8     | 020,0<br>44 0 | 400,7         |
| 36   | 0,220  | 0,300   | 0,420   | 0,500     | 0,730          | 1,100              | 2 260   | 1,077                | 1        | 1      | 1             | 1            | 1                  |                 | ĥ      | 247 1           | 187.2           | 08.3      | 515                    | 132,0     | 44,0<br>60 Q  |               |
| 20   | 0,240  | 0,290   | 0,420   | 0,550     | 0,740          | 1,340              | 4 4 3 0 | 0,000                | 1        | 1      | n<br>N        | n<br>N       | n                  | Ň               | Ň      | 26.2            | 37              | 44 7      | 260                    | 144.6     | 313.4         | 14261         |
| 28   | 0.250  | 0.290   | 0.410   | 0.520     | 0.650          | 0.950              | 1.200   | 0.329                | ī        | 1      | Ň             | Ň            | Ň                  | Ň               | Ň      | 31.7            | 13.5            | 24.5      | 57.9                   | 97.4      | 188.5         | 264.4         |
| 29   | 0.240  | 0.280   | 0.390   | 0.480     | 0.590          | 0.830              | 1.000   | 0.372                | î        | î      | Ň             | Ň            | Ň                  | Ň               | Ň      | 54.9            | 32.8            | 4.9       | 29.1                   | 58.7      | 123.2         | 168.9         |
| 30   | 0.270  | 0.310   | 0.430   | 0.530     | 0.650          | 0.890              | 1.050   | 0.340                | î        | î      | Ŏ             | Ŏ            | Ŏ                  | Ŏ               | Ŏ      | 26.0            | 9.7             | 26.4      | 55.8                   | 91.1      | 161.6         | 208.6         |
| 31   | 0.230  | 0.270   | 0.370   | 0.470     | 0.600          | 0.890              | 1,100   | 0,196                | Ō        | Ō      | Ō             | Ū            | Ū                  | Ō               | Ō      | 17,6            | 38,1            | 89,2      | 140,3                  | 206.8     | 355,1         | 462,5         |
| 32   | 0,280  | 0,340   | 0,500   | 0,650     | 0,870          | 1,660              | 2,300   | 0,383                | 1        | 1      | 0             | 0            | 0                  | 0               | 0      | 36,7            | 12,5            | 30,7      | 69,9                   | 127,4     | 333,8         | 501,1         |

Tabela 5.6e - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ        | METR   | OS DO   | LEITO   | DOPA      | RAOH    | NO ATI         | IBAIA |       |                 | COMP/           | <b>ARAÇA</b> | O ENI | RED                  | D B                                 |                           | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
|------------|--------|---------|---------|-----------|---------|----------------|-------|-------|-----------------|-----------------|--------------|-------|----------------------|-------------------------------------|---------------------------|--------|----------|-----------|-----------|-----------|--------|--------|
|            | Granul | ometria | a do ma | terial do | o leito |                |       |       | (10)            | (11)            | (12)         | (13)  | (14)                 | (15)                                | (16)                      | E      | OS VALOI | RES MEDI  | DOSNORI   | IO ATIBAI | A      |        |
| <b>(l)</b> | (2)    | (3)     | (4)     | (5)       | (6)     | $-\mathcal{O}$ | (8)   | (9)   |                 | COMP.           | ARAÇA        | ODE   | D <sub>wa purv</sub> | <sub>1</sub> COM                    | :                         | (17)   | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N⁰         | D 10   | Dlő     | D35     | D50       | D65     | D84            | D90   | D     | D <sub>10</sub> | D <sub>16</sub> | Das          | D50   | $D_{65}$             | $\mathbf{D}_{\mathbf{s}\mathbf{t}}$ | $\mathbf{D}_{\mathbf{m}}$ |        |          |           |           |           |        |        |
|            | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  | 7770  | 10              |                 |              | 50    |                      |                                     | ~                         |        |          |           |           |           |        |        |
| 33         | 0.280  | 0.320   | 0.450   | 0.570     | 0.730   | 1.230          | 2.180 | 0.051 | Λ               | N               | n.           | Λ     | N                    | N                                   | N                         | 453.2  | 532.2    | 789.0     | 1026.1    | 1342.2    | 2330.0 | 4206.8 |
| 34         | 0.270  | 0.300   | 0.410   | 0.510     | 0.630   | 0.880          | 1.050 | 0,096 | Ŭ               | Õ               | Ŏ            | Ů     | Ŭ                    | Ŭ                                   | Ŏ                         | 180,5  | 211,6    | 325,9     | 429,8     | 554,4     | 814,1  | 990,7  |
| 35         | 0,280  | 0,320   | 0,440   | 0,540     | 0,680   | 1,000          | 1,270 | 0,152 | 0               | 0               | 0            | 0     | 0                    | 0                                   | 0                         | 83,7   | 110,0    | 188,7     | 2544      | 346,2     | 556,2  | 733,4  |
| 36         | 0,210  | 0,250   | 0,360   | 0,450     | 0,580   | 0,890          | 1,100 | 0,274 | 1               | 1               | 0            | 0     | 0                    | 0                                   | 0                         | 30,3   | 9,4      | 31,6      | 64,5      | 112,0     | 225,3  | 302,0  |
| 37         | 0,270  | 0,320   | 0,450   | 0,570     | 0,740   | 1,180          | 1,520 | 0,141 | 0               | 0               | 0            | Û     | 0                    | 0                                   | 0                         | 91,6   | 127,1    | 219,3     | 304,4     | 425,1     | 737,3  | 978,5  |
| 38         | 0,260  | 0,330   | 0,530   | 0,730     | 1,010   | 1,790          | 3,150 | 0,971 | 1               | 1               | 1            | 1     | 0                    | 0                                   | 0                         | 273,5  | 194,3    | 83,2      | 33,0      | 4,0       | 84,3   | 224,4  |
| 39         | 0,300  | 0,340   | 0,480   | 0,600     | 0,750   | 1,140          | 1,450 | 0,070 | 0               | 0               | 0            | 0     | 0                    | 0                                   | 0                         | 329,2  | 386,4    | 586,7     | 758,3     | 972,9     | 1530,9 | 1974,3 |
| 40         | 0,320  | 0,370   | 0,550   | 0,710     | 0,950   | 1,600          | 2,510 | 2,452 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 0                         | ббб,1  | 562,6    | 345,7     | 245,3     | 158,1     | 53,2   | 2,4    |
| 41         | 0,280  | 0,320   | 0,450   | 0,570     | 0,720   | 1,080          | 1,360 | 2,677 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 1                         | 856,1  | 736,6    | 494,9     | 369,6     | 271,8     | 147,9  | 96,8   |
| 42         | 0,220  | 0,270   | 0,410   | 0,570     | 0,900   | 4,170          | 4,790 | 0,720 | 1               | 1               | 1            | 1     | 0                    | 0                                   | 0                         | 227,1  | 166,5    | 75,5      | 26,2      | 25,1      | 479,5  | 565,7  |
| 43         | 0,290  | 0,340   | 0,460   | 0,570     | 0,700   | 1,020          | 1,280 | 0,472 | 1               | 1               | 1            | 0     | 0                    | 0                                   | 0                         | 62,9   | 38,9     | 2,7       | 20,7      | 48,2      | 115,9  | 171,0  |
| 44         | 0,170  | 0,250   | 0,550   | 0,820     | 1,250   | 4,840          | 5,150 | 7,034 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 1                         | 4037,5 | 2713,5   | 1178,9    | 757,8     | 462,7     | 45,3   | 36,6   |
| 45         | 0,210  | 0,260   | 0,410   | 0,590     | 0,880   | 1,790          | 2,700 | 3,647 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 1                         | 1636,6 | 1302,6   | 789,5     | 518,1     | 314,4     | 103,7  | 35,1   |
| 46         | 0,180  | 0,200   | 0,300   | 0,410     | 0,600   | 1,200          | 1,850 | 1,329 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 0                         | 638,5  | 564,7    | 343,1     | 224,2     | 121,6     | 10,8   | 39,2   |
| 47         | 0,170  | 0,210   | 0,390   | 0,650     | 1,140   | 2,970          | 4,030 | 3,011 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 0                         | 1670,9 | 1333,6   | 671,9     | 363,2     | 164,1     | 1,4    | 33,9   |
| 418        | 0,150  | 0,170   | 0,210   | 0,250     | 0,330   | 0,720          | 1,100 | 2,575 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 1                         | 1616,4 | 1414,4   | 1126,0    | 929,8     | 680,2     | 257,6  | 134,1  |
| 49         | 0,150  | 0,170   | 0,210   | 0,240     | 0,320   | 0,910          | 1,440 | 1,382 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 0                         | 821,0  | 712,7    | 557,9     | 475,6     | 331,7     | 51,8   | 4,2    |
| 50         | 0,160  | 0,170   | 0,230   | 0,320     | 0,650   | 1,550          | 2,790 | 2,046 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 0                         | 1178,9 | 1103,7   | 789,7     | 539,5     | 214,8     | 32,0   | 36,3   |
| 51         | 0,170  | 0,190   | 0,250   | 0,330     | 0,490   | 1,090          | 1,580 | 0,476 | 1               | 1               | 1            | 1     | 0                    | 0                                   | 0                         | 180,0  | 150,5    | 90,4      | 44,2      | 3,0       | 129,0  | 232,0  |
| 52         | 0,170  | 0,190   | 0,280   | 0,500     | 0,900   | 2,040          | 2,860 | 0,720 | 1               | 1               | 1            | 1     | 0                    | 0                                   | 0                         | 323,3  | 278,7    | 157,0     | 43,9      | 25,1      | 183,5  | 297,5  |
| 53         | 0,160  | 0,180   | 0,260   | 0,370     | 0,530   | 0,910          | 1,230 | 0,495 | 1               | 1               | 1            | 1     | 0                    | 0                                   | 0                         | 209,4  | 175,0    | 90,4      | 33,8      | 7,1       | 83,8   | 148,5  |
| 54         | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,500          | 0,920 | 2,111 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 1                         | 1407,5 | 1307,0   | 1072,5    | 955,3     | 817,6     | 322,1  | 129,4  |
| 55         | 0,140  | 0,160   | 0,200   | 0,240     | 0,300   | 0,600          | 0,850 | 0,797 | 1               | 1               | 1            | 1     | 1                    | 1                                   | 0                         | 469,0  | 397,9    | 298,3     | 231,9     | 165,5     | 32,8   | б,7    |
| 56         | 0,160  | 0,170   | 0,230   | 0,350     | 0,660   | 1,390          | 1,930 | 1,010 | 1               | 1               | 1            | 1     | 1                    | 0                                   | 0                         | 531,1  | 494,0    | 339,0     | 188,5     | 53,0      | 37,7   | 91,1   |
| 57         | 0,170  | 0,190   | 0,250   | 0,320     | 0,420   | 0,710          | 0,950 | 0,364 | 1               | 1               | 1            | 1     | 0                    | 0                                   | 0                         | 114,4  | 91,8     | 45,8      | 13,9      | 15,3      | 94,8   | 160,7  |
| 58         | 0,140  | 0,160   | 0,190   | 0,230     | 0,280   | 1,460          | 4,690 | 0,234 | 1               | 1               | 1            | 1     | 0                    | 0                                   | 0                         | 67,4   | 46,5     | 23,4      | 1,9       | 19,4      | 522,8  | 1900,7 |
| 59         | 0,160  | 0,180   | 0,230   | 0,290     | 0,390   | 0,750          | 1,140 | 0,722 | 1               | 1               | 1            | 1     | 1                    | 0                                   | 0                         | 351,2  | 301,1    | 213,9     | 149,0     | 85,1      | 3,9    | 57,9   |
| 60         | 0,170  | 0,190   | 0,270   | 0,400     | 0,750   | 1,660          | 2,500 | 0,815 | 1               | 1               | 1            | 1     | 1                    | 0                                   | 0                         | 379,4  | 329,0    | 201,9     | 103,8     | 8,7       | 103,7  | 206,7  |
| 61         | 0,170  | 0,190   | 0,270   | 0,360     | 0,570   | 1,240          | 1,640 | 0,298 | 1               | 1               | 1            | 0     | 0                    | 0                                   | 0                         | 75,0   | 56,6     | 10,2      | 21,0      | 91,5      | 316,7  | 451,1  |
| 62         | 0,180  | 0,210   | 0,370   | 0,820     | 1,560   | 3,060          | 3,790 | 2,286 | 1               | 1               | 1            | 1     | 1                    | 0                                   | 0                         | 1170,2 | 988,7    | 517,9     | 178,8     | 46,6      | 33,8   | 65,8   |
| 63         | 0,160  | 0,190   | 0,310   | 0,520     | 0,810   | 1,370          | 1,660 | 0,423 | 1               | 1               | 1            | 0     | 0                    | 0                                   | 0                         | 164,6  | 122,8    | 36,6      | 22,8      | 91,3      | 223,6  | 292,1  |
| 64         | 0,150  | 0,180   | 0,340   | 0,630     | 0,970   | 1,560          | 1,860 | 0,155 | 1               | 0               | 0            | 0     | 0                    | 0                                   | 0                         | 3,1    | 16,4     | 119,8     | 307,3     | 527,2     | 908,6  | 1102,6 |

Tabela 5.6e - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR  | OS DO I | LEITO   | DOPA      | RAOE    | NO AT.  | IBAIA |       |                 | COMP            | ARAÇA          | IO ENT | RE D <sub>v</sub> | D B   |              | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
|-----|-------|---------|---------|-----------|---------|---------|-------|-------|-----------------|-----------------|----------------|--------|-------------------|-------|--------------|--------|----------|-----------|-----------|-----------|--------|--------|
|     | Granu | ometria | ı do ma | terial do | o leito |         |       |       | (10)            | (11)            | (12)           | (13)   | (14)              | (15)  | (16)         | E      | OS VALOI | RES MEDI  | DOSNOR:   | IO ATIBAL | A      |        |
| (l) | (2)   | (3)     | (4)     | (5)       | (6)     | - $(T)$ | (8)   | (9)   |                 | COMP.           | ARAÇ <i>i</i>  | 10 DE  | D va purv         | n COM | :            | (17)   | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N   | D10   | Dló     | D35     | D50       | D65     | D84     | D90   | D     | D <sub>10</sub> | D <sub>16</sub> | D <sub>2</sub> | Dee    | Der               | D.,   | $D_{\infty}$ |        |          |           |           |           |        |        |
|     | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  |       | 10              |                 | 30             | 50     |                   | •4    | ~            |        |          |           |           |           |        |        |
| 65  | 0 170 | 0 190   | 0.260   | 0 380     | 0.600   |         | 1 750 | 5.419 | 1               | 1               | 1              | 1      | 1                 | 1     | 1            | 3087.4 | 2751.9   | 10841     | 1325.9    | 803 1     | 359.2  | 209.6  |
| 66  | 0.170 | 0,120   | 0.220   | 0.260     | 0.310   | 0.410   | 0.470 | 0.916 | ī               | ī               | ī              | ī      | ī                 | 1     | ī            | 438.7  | 408.8    | 316.3     | 252.2     | 195.4     | 123.4  | 94.9   |
| 67  | 0.170 | 0.190   | 0.250   | 0.320     | 0.440   | 1.190   | 1.680 | 2.116 | 1               | 1               | 1              | 1      | 1                 | 1     | 1            | 1144.6 | 1013.6   | 746.3     | 561.2     | 380.9     | 77.8   | 25.9   |
| 68  | 0,170 | 0,180   | 0,230   | 0,270     | 0,320   | 0,430   | 0,560 | 2,975 | 1               | ī               | ī              | 1      | ī                 | ī     | ī            | 1650,3 | 1553,0   | 1193,7    | 1002,0    | 829,8     | 592.0  | 431.3  |
| 69  | 0,170 | 0,190   | 0,250   | 0,300     | 0,360   | 0,570   | 1,690 | 6,399 | 1               | 1               | 1              | 1      | 1                 | 1     | 1            | 3664,3 | 3268,0   | 2459,7    | 2033,1    | 1677,6    | 1022,7 | 278,7  |
| 70  | 0,230 | 0,260   | 0,340   | 0,430     | 0,620   | 1,410   | 2,050 | 1,760 | 1               | 1               | 1              | 1      | 1                 | 1     | 0            | 665,1  | 576,8    | 417,6     | 309,2     | 183,8     | 24,8   | 16,5   |
| 71  | 0,230 | 0,250   | 0,310   | 0,370     | 0,440   | 0,740   | 1,180 | 1,336 | 1               | 1               | 1              | 1      | 1                 | 1     | 1            | 480,7  | 434,2    | 330,8     | 260,9     | 203,5     | 80,5   | 13,2   |
| 72  | 0,230 | 0,260   | 0,350   | 0,440     | 0,640   | 1,500   | 2,200 | 1,010 | 1               | 1               | 1              | 1      | 1                 | 0     | 0            | 339,0  | 288,4    | 188,5     | 129,5     | 57,8      | 48,6   | 117,9  |
| 73  | 0,190 | 0,230   | 0,320   | 0,410     | 0,610   | 1,630   | 3,000 | 0,780 | 1               | 1               | 1              | 1      | 1                 | 0     | 0            | 310,5  | 239,1    | 143,7     | 90,2      | 27,9      | 109,0  | 284,7  |
| 74  | 0,240 | 0,270   | 0,350   | 0,420     | 0,550   | 0,990   | 1,360 | 0,280 | 1               | 1               | 0              | 0      | 0                 | 0     | 0            | 16,7   | 3,8      | 24,9      | 49,9      | 96,3      | 253,4  | 385,5  |
| 75  | 0,200 | 0,250   | 0,400   | 0,640     | 1,100   | 2,520   | 3,770 | 0,406 | 1               | 1               | 1              | 0      | 0                 | 0     | 0            | 102,8  | 62,3     | 1,4       | 57,8      | 171,2     | 521,2  | 829,3  |
| 76  | 0,170 | 0,210   | 0,320   | 0,460     | 0,860   | 2,820   | 4,090 | 0,266 | 1               | 1               | 0              | 0      | 0                 | 0     | 0            | 56,2   | 26,5     | 20,5      | 73,2      | 223,8     | 961,7  | 1439,9 |
| Π   | 0,220 | 0,270   | 0,410   | 0,560     | 0,800   | 1,340   | 1,660 | 0,251 | 1               | 0               | 0              | 0      | 0                 | 0     | 0            | 14,3   | 7,4      | 63,1      | 122,7     | 218,2     | 433,0  | 560,3  |
| 78  | 0,180 | 0,220   | 0,330   | 0,450     | 0,750   | 1,980   | 3,050 | 0,233 | 1               | 1               | 0              | 0      | 0                 | 0     | 0            | 29,5   | 5,9      | 41,6      | 93,1      | 221,8     | 749,6  | 1208,8 |
| 79  | 0,190 | 0,230   | 0,360   | 0,540     | 1,000   | 2,700   | 3,730 | 0,274 | 1               | 1               | 0              | 0      | 0                 | 0     | 0            | 44,0   | 19,0     | 31,6      | 97,4      | 265,5     | 886,8  | 1263,2 |
| 80  | 0,210 | 0,240   | 0,360   | 0,500     | 0,920   | 3,270   | 4,350 | 0,340 | 1               | 1               | 0              | 0      | 0                 | 0     | 0            | 61,7   | 41,5     | б,0       | 47,3      | 171,0     | 863,1  | 1181,2 |
| 81  | 0,190 | 0,230   | 0,350   | 0,520     | 1,070   | 3,850   | 4,630 | 0,230 | 1               | 1               | 0              | 0      | 0                 | 0     | 0            | 21,2   | 0,1      | 52,0      | 125,9     | 364,8     | 1572,5 | 1911,4 |
| 82  | 0,230 | 0,270   | 0,380   | 0,530     | 0,880   | 1,950   | 2,890 | 0,704 | 1               | 1               | 1              | 1      | 0                 | 0     | 0            | 206,2  | 160,9    | 85,3      | 32,9      | 24,9      | 176,9  | 310,3  |
| 83  | 0,230 | 0,270   | 0,400   | 0,640     | 1,290   | 4,190   | 4,790 | 3,599 | 1               | 1               | 1              | 1      | 1                 | 0     | 0            | 1464,9 | 1233,1   | 799,8     | 462,4     | 179,0     | 16,4   | 33,1   |
| 84  | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 1,820   | 2,370 | 0,472 | 1               | 1               | 1              | 1      | 0                 | 0     | 0            | 124,9  | 96,8     | 43,1      | 12,5      | 56,7      | 285,3  | 401,7  |
| 85  | 0,230 | 0,270   | 0,390   | 0,670     | 1,650   | 4,070   | 4,690 | 0,980 | 1               | 1               | 1              | 1      | 0                 | 0     | 0            | 326,2  | 263,1    | 151,4     | 46,3      | 68,3      | 315,2  | 378,4  |
| 86  | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 3,000   | 4,160 | 1,234 | 1               | 1               | 1              | 1      | 1                 | 0     | 0            | 487,6  | 414,1    | 273,9     | 193,8     | 66,7      | 143,1  | 237,1  |
| 87  | 0,210 | 0,250   | 0,350   | 0,500     | 1,100   | 3,500   | 4,400 | 0,799 | 1               | 1               | 1              | 1      | 0                 | 0     | 0            | 280,6  | 219,7    | 128,4     | 59,9      | 37,6      | 337,9  | 450,5  |
| 88  | 0,210 | 0,240   | 0,310   | 0,380     | 0,480   | 0,930   | 1,400 | 0,886 | 1               | 1               | 1              | 1      | 1                 | 0     | 0            | 321,9  | 269,2    | 185,8     | 133,2     | 84,6      | 5,0    | 58,0   |
| 89  | 0,190 | 0,220   | 0,310   | 0,380     | 0,500   | 0,830   | 1,110 | 1,379 | 1               | 1               | 1              | 1      | 1                 | 1     | 1            | 625,7  | 526,8    | 344,8     | 262,9     | 175,8     | бб,1   | 24,2   |
| 90  | 0,200 | 0,230   | 0,310   | 0,370     | 0,460   | 0,770   | 1,100 | 1,781 | 1               | 1               | <u> </u>       | 1      | 1                 | 1     | 1            | 790,7  | 674,5    | 474,6     | 381,4     | 287,2     | 131,3  | 61,9   |
| 91  | 0,220 | 0,240   | 0,300   | 0,360     | 0,420   | 0,650   | 0,980 | 6,433 | 1               | 1               | 1              | 1      | 1                 | 1     | 1            | 2824,0 | 2580,3   | 2044,2    | 1686,9    | 1431,6    | 889,6  | 556,4  |
| 92  | 0,230 | 0,250   | 0,330   | 0,390     | 0,490   | 0,820   | 1,100 | 1,486 | . <b>1</b>      | 1               | 1              | 1      | 1                 | 1     | 1            | 546,2  | 494,5    | 350,4     | 281,1     | 203,3     | 81,3   | 35,1   |
| 93  | 0,230 | 0,260   | 0,340   | 0,400     | 0,510   | 0,800   | 1,030 | 0,950 | 1               | 1               | 1              | 1      | 1                 | 1     | 0            | 312,9  | 265,3    | 179,3     | 137,4     | 86,2      | 18,7   | 8,5    |
| 94  | 0,230 | 0,250   | 0,330   | 0,400     | 0,510   | 0,880   | 1,160 | 0,680 | 1               | 1               | 1              | 1      | 1                 | 0     | 0            | 195,8  | 172,1    | 106,1     | 70,1      | 33,4      | 29,4   | 70,5   |
| 95  | 0,200 | 0,230   | 0,320   | 0,390     | 0,510   | 0,840   | 1,180 | 0,372 | 1               | 1               | 1              | 0      | 0                 | 0     | 0            | 85,9   | 61,6     | 16,2      | 4,9       | 37,2      | 126,0  | 217,4  |
| 96  | 0,150 | 0,200   | 0,400   | 0,750     | 1,480   | 4,440   | 4,920 | 0,553 | 1               | 1               | 1              | 0      | 0                 | 0     | 0            | 268,5  | 176,3    | 38,2      | 35,7      | 167,8     | 703,3  | 790,2  |

Tabela 5.6e - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR  | OS DO I | LEITO   | DO PA     | RAOI    | RIO AT.   | IBAIA |                       |                 | COMP            | ARAÇA    | IO EN I  | RED <sub>W</sub> | IA D            |                                     | RELAÇ         | ÃO PERCI | EN TUAL E | N TRE O S      | VALORES       | DEDu  |                |
|-----|-------|---------|---------|-----------|---------|-----------|-------|-----------------------|-----------------|-----------------|----------|----------|------------------|-----------------|-------------------------------------|---------------|----------|-----------|----------------|---------------|-------|----------------|
|     | Granu | ometria | a do ma | terial do | o leito |           |       |                       | (10)            | (11)            | (12)     | (13)     | (14)             | (15)            | (16)                                | E             | OS VALOI | RES MEDI  | DOSNOR         | IO ATIBAI     | A     |                |
| (l) | (2)   | (3)     | (4)     | (5)       | (6)     | $-\infty$ | (8)   | (9)                   |                 | COMP.           | ARAÇA    | IO DE    | D TALEY          | η COM           | :                                   | (17)          | (18)     | (19)      | (20)           | (21)          | (22)  | (23)           |
| N⁰  | D10   | Dló     | D35     | D50       | D65     | D84       | D90   | D <sub>VI ILEVI</sub> | D <sub>10</sub> | D <sub>16</sub> | $D_{x}$  | $D_{50}$ | $D_{ee}$         | D <sub>94</sub> | $\mathbf{D}_{\mathbf{o}\mathbf{o}}$ |               |          |           |                |               |       |                |
|     | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)      | (mm)  |                       | 10              |                 | 30       | 50       |                  | 64              | 30                                  |               |          |           |                |               |       |                |
| 07  | 0.210 | 0.280   | 0.550   | 0.890     | 1.410   | 3.490     | 4.400 | 0.567                 | 1               | 1               | 1        | 0        | 0                | 0               | . 0                                 | 170.0         | 102.5    | 3.1       | 57.0           | 148.7         | 515.6 | 676.1          |
| 98  | 0.220 | 0.290   | 0.550   | 0.890     | 1.410   | 4,000     | 4700  | 0.678                 | ī               | ī               | i        | ŏ        | Ő                | Ŏ               | Ŏ                                   | 208.0         | 133.7    | 23.2      | 313            | 108.1         | 490.2 | 593.5          |
| 99  | 0.150 | 0.220   | 0.430   | 0.650     | 0.980   | 1.840     | 2.460 | 0.883                 | 1               | 1               | 1        | 1        | Ō                | Ō               | Ō                                   | 488.7         | 301.4    | 105.4     | 35.9           | 11.0          | 108.4 | 178.6          |
| 100 | 0,160 | 0,210   | 0,390   | 0,580     | 0,880   | 1,630     | 2,250 | 0,252                 | 1               | 1               | Ō        | Ō        | Ō                | Ō               | Ō                                   | 57,6          | 20,0     | 54,7      | 130,1          | 249,1         | 546,6 | 792,5          |
| 101 | 0,140 | 0,160   | 0,230   | 0,300     | 0,400   | 0,960     | 4,370 | 0,782                 | 1               | 1               | 1        | 1        | 1                | 0               | 0                                   | 458,3         | 388,5    | 239,8     | 160,5          | 95,4          | 22,8  | 459,1          |
| 102 | 0,150 | 0,180   | 0,250   | 0,320     | 0,420   | 0,670     | 0,850 | 0,678                 | 1               | 1               | 1        | 1        | 1                | 1               | 0                                   | 351,8         | 276,5    | 171,1     | 111,8          | б1,4          | 1,1   | 25,4           |
| 103 | 0,150 | 0,170   | 0,260   | 0,340     | 0,470   | 0,830     | 1,090 | 0,862                 | 1               | 1               | 1        | 1        | 1                | 1               | 0                                   | 475,0         | 407,3    | 231,7     | 153,7          | 83,5          | 3,9   | 26,4           |
| 104 | 0,150 | 0,180   | 0,290   | 0,410     | 0,590   | 1,080     | 1,440 | 0,530                 | 1               | 1               | 1        | 1        | 0                | 0               | 0                                   | 253,2         | 194,4    | 82,7      | 29,2           | 11,4          | 103,8 | 171,8          |
| 105 | 0,160 | 0,190   | 0,250   | 0,320     | 0,430   | 0,960     | 1,620 | 1,155                 | 1               | 1               | 1        | 1        | . 1              | 1               | 0                                   | 621,9         | 507,9    | 362,0     | 261,0          | 168,6         | 20,3  | 40,3           |
| 106 | 0,170 | 0,190   | 0,240   | 0,290     | 0,350   | 0,500     | 0,630 | 3,002                 | 1               | 1               | 1        | 1        | 1                | 1               | 1                                   | 1665,8        | 1480,0   | 1150,8    | 935,1          | 757,7         | 500,4 | 376,5          |
| 107 | 0,190 | 0,210   | 0,270   | 0,320     | 0,370   | 0,500     | 0,590 | 2,619                 | 1               | 1               | 1        | 1        | 1                | 1               | <u> </u>                            | 1278,4        | 1147,2   | 870,0     | 718,4          | 607,8         | 423,8 | 343,9          |
| 108 | 0,160 | 0,180   | 0,240   | 0,290     | 0,350   | 0,510     | 0,670 | 1,485                 | <u> </u>        | 1               | 1        | 1        | . <u>1</u>       | 1               | 1                                   | 828,1         | 724,9    | 518,7     | 412,0          | 324,3         | 191,2 | 121,6          |
| 109 | 0,210 | 0,260   | 0,410   | 0,620     | 0,980   | 1,780     | 2,300 | 3,996                 | 1               | 1               | 1        | 1        | 1                | 1               | 1                                   | 1802,9        | 1436,9   | 874,6     | 544,5          | 307,8         | 124,5 | 73,7           |
| 110 | 0,250 | 0,310   | 0,500   | 0,710     | 1,020   | 1,800     | 2,360 | 4,631                 | 1               | 1               | 1        | 1        | 1                | 1               | 1                                   | 1752,2        | 1393,7   | 826,1     | 552,2          | 354,0         | 157,3 | 96,2           |
| 111 | 0,220 | 0,260   | 0,410   | 0,640     | 1,020   | 1,940     | 2,590 | 2,116                 | 1               | 1               | 1        | 1        | 1                | 1               | U                                   | 862,0         | 714,0    | 416,2     | 230,7          | 107,5         | 9,1   | 22,4           |
| 112 | 0,200 | 0,230   | 0,310   | 0,380     | 0,480   | 0,750     | 0,930 | 3,200                 | 1               | 1               | <u> </u> | 1        | 1                | 1               | <u> </u>                            | 1499,9        | 1291,2   | 932,2     | 742,0          | 566,6         | 326,6 | 244,1          |
| 113 | 0,220 | 0,250   | 0,350   | 0,440     | 0,570   | 0,930     | 1,220 | 1,063                 | 1               | 1               | 1        | 1        | 1                | 1               | U                                   | 383,1         | 325,2    | 203,7     | 141,6          | 86,5          | 14,3  | 14,8           |
| 114 | 0,220 | 0,260   | 0,360   | 0,460     | 0,630   | 1,180     | 1,860 | 0,001                 | <b>I</b>        | 1               | 1        | 1        | . I              | Ų               | U                                   | 200,6         | 154,4    | 83,7      | 43,8           | 5,0           | 78,4  | 181,5          |
| 115 | 0,190 | 0,230   | 0,320   | 0,400     | 0,520   | 0,810     | 1,000 | 3,809                 | <u> </u>        | ļ               | ļ        | 1        | <u> </u>         | 1               | 1                                   | 1904,8        | 1556,1   | 1090,3    | 852,3          | 632,5         | 370,3 | 280,9          |
| 110 | 0,210 | 0,240   | 0,520   | 0,580     | 0,480   | 0,740     | 0,940 | 0,570                 | 1               | 1               | ĮĮ       | 1        | 1                | Ų               | U                                   | 174,5         | 140,0    | 80,0      | 51,0           | 20,0          | 28,5  | 05,2           |
| 117 | 0,180 | 0,210   | 0,300   | 0,390     | 0,510   | 0,910     | 1,200 | 1,198                 | <b>1</b>        | ļ               | <u> </u> | ļ        | 1                | 1               | U                                   | 505,5         | 470,4    | 299,3     | 207,1          | 134,9         | 31,6  | 0,2            |
| 118 | 0,180 | 0,220   | 0,540   | 0,470     | 0,7.90  | 1,820     | 3,210 | 0,005                 | <u> </u>        |                 | 1        | 1        | U                | U               | U                                   | 250,5         | 175,1    | 78,0      | 28,8           | 20,0          | 200,7 | 450,5          |
| 119 | 0,200 | 0,250   | 0,440   | 0,790     | 1,580   | 3,000     | 3,880 | 0,/97                 | 1               | 1               | 1        | 1        | U                | U               | U                                   | 298,4         | 218,/    | 81,1      | U, 9<br>7 2 4  | /3,Z          | 2/0,5 | 380,9          |
| 120 | 0,210 | 0,280   | 0,500   | 0,920     | 1,520   | 5,050     | 5,850 | 0,005                 | 1               | ļ               | <u> </u> | U,       | U                | U               | U                                   | 187,0         | 115,5    | /,0       | 520            | 152,2         | 402,7 | 558,8          |
| 121 | 0,210 | 0,270   | 0,480   | 0,/30     | 1,1.90  | 2,520     | 3,550 | 0,794                 | 1               | 1               | Į        | 1        | U                | U               | U .                                 | 2/8,0         | 194,0    | 05,4      | 8,7            | 42,5          | 192,2 | 547,2          |
| 122 | 0,200 | 0,240   | 0,370   | 0,590     | 1,130   | 2,600     | 3,750 | 0,577                 | 1               | 1               | 1        | U        | U                | U               | U                                   | 88,/          | 57,2     | 2,0       | 50,5           | 199,4         | 589,0 | 895,/          |
| 125 | 0,210 | 0,200   | 0,480   | 0,860     | 1,4.90  | 5,150     | 4,000 | 0,818                 | <b>1</b>        | Į               | ļ        | U,       | U                | Ň               | , U                                 | 289,6         | 214,7    | 70,5      | 5,1            | 74,8          | 282,5 | 390,2          |
| 124 | 0,210 | 0,290   | 0,540   | 0,770     | 1,080   | 1,810     | 2,880 | 0,003                 | 1               | 1               | 1        | U        | U                | U               | U                                   | 215,0         | 128,5    | 22,1      | 10,2           | 02,9<br>154 - | 1/3,1 | 334,5<br>475 - |
| 12  | 0,230 | 0,500   | 0,080   | 1,180     | 1,840   | 3,410     | 4,100 | 0,/25                 |                 | Ļ               | ļ        | U        | U,               | Ų               | U                                   | 214,2         | 140,9    | 0,5       | 05,5           | 154,0         | 5/1,8 | 4/5,0          |
| 120 | 0,300 | 0,380   | 0,000   | 0,950     | 1,330   | 2,270     | 2,950 | 3,149                 | 1               | 1               | <b>1</b> | <b>1</b> | 1                | 1               | 1                                   | 949,/         | 760.0    | 377,1     | 231,5<br>270 4 | 130,8         | 38,/  | 0,8<br>12.2    |
| 127 | 0,250 | 0,290   | 0,480   | 0,080     | 0,980   | 1,920     | 2,850 | 2,720                 | 1               | 1               | 1        | 1        | 1                | 1               | U N                                 | 908,1         | /09,U    | 427,0     | 270,0          | 157,2         | 31,5  | 12,5           |
| 128 | 0,220 | 0,280   | 0,540   | 0,850     | 1,520   | : 2,030   | 5,500 | 1,040                 | <u> </u>        | 1               | <u> </u> | <u> </u> | U                | U               | <u> </u>                            | <b>5</b> 72,7 | 271,4    | 92,0      | 22,3           | 20,9          | 152,9 | 242,4          |

Tabela 5.6e - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ  | METR  | OS DO I | LEITO   | DO PA     | RAOE    | NO AT.             | IBAIA   |                      | -        | COMP   | <b>ARAÇA</b> | O ENI    | RE D <sub>v</sub>     | <sub>(A</sub> D |                           | RELAÇ   | ÃO PERCI | EN TUAL E       | N TRE O S      | VALORES              | DEDw         |               |
|------|-------|---------|---------|-----------|---------|--------------------|---------|----------------------|----------|--------|--------------|----------|-----------------------|-----------------|---------------------------|---------|----------|-----------------|----------------|----------------------|--------------|---------------|
|      | Granu | ometria | i do ma | terial do | o leito |                    |         |                      | (10)     | (11)   | (12)         | (13)     | (14)                  | (15)            | (16)                      | Е       | OS VALOI | RES MEDI        | DOSNOR:        | IO ATIBAL            | A            |               |
| (l)  | (2)   | (3)     | (4)     | (5)       | (б)     | $-\mathcal{O}^{-}$ | (8)     | (9)                  | I        | COMP.  | <b>ARAÇA</b> | 10 DE    | D <sub>va pur</sub> v | η COM           | :                         | (17)    | (18)     | (19)            | (20)           | (21)                 | (22)         | (23)          |
| N⁰   | D10   | Dló     | D35     | D50       | D65     | D84                | D90     | D <sub>WILLEYI</sub> | D16      | Die    | Dx           | Dee      | Der                   | Der             | $\mathbf{D}_{\mathbf{m}}$ |         |          |                 |                |                      |              |               |
|      | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)               | (mm)    |                      | 10       | 10     | 30           | 50       | 10                    | 64              | 90                        |         |          |                 |                |                      |              |               |
| 120  | 0.230 | 0.260   | 0.370   | 0 500     | 0 750   | 1 470              | 1970    | 1074                 | 1        | 1      | 1            | 1        | 1                     | 0               | 0                         | 367 1   | 313.2    | 190 <i>d</i> i  | 114.0          | 43 3                 | 36.8         | 83.4          |
| 130  | 0,230 | 0.400   | 0.630   | 0,200     | 1.080   | 1,580              | 1,850   | 2,783                | i        | 1      | 1            | ī        | i                     | 1               | ĩ                         | 718.5   | 595.7    | 341.7           | 235.3          | 157.7                | 76.1         | 50.4          |
| 131  | 0.150 | 0.210   | 0.290   | 0.360     | 0.440   | 0.660              | 0.840   | 2.699                | - 1      | - 1    | 1            | 1        | 1                     |                 | - 1                       | 1699.4  | 1185.3   | 830.7           | 649.8          | 513.4                | 309.0        | 221.3         |
| 132  | 0,110 | 0,130   | 0,170   | 0,200     | 0,230   | 0,300              | 0,340   | 2,673                | ī        | 1      | ī            | 1        | ī                     | ī               | ī                         | 2329,8  | 1956,0   | 1472,2          | 1236,4         | 1062,1               | 790,9        | 686,1         |
| 133  | 0,140 | 0,150   | 0,180   | 0,200     | 0,230   | 0,290              | 0,330   | 5,445                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 3789,5  | 3530,2   | 2925,2          | 2622,7         | 2267,5               | 7,7771       | 1550,1        |
| 134  | 0,150 | 0,160   | 0,190   | 0,220     | 0,250   | 0,320              | 0,380   | 8,568                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 5612,1  | 5255,1   | 4409,6          | 3794,6         | 3327,3               | 2577,6       | 2154,8        |
| 135  | 0,150 | 0,160   | 0,180   | 0,200     | 0,220   | 0,260              | 0,280   | 5,223                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 3381,9  | 3164,3   | 2801,6          | 2511,4         | 2274,0               | 1908,8       | 1765,3        |
| 136  | 0,160 | 0,170   | 0,190   | 0,220     | 0,250   | 0,310              | 0,350   | 6,366                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 3878,7  | 3644,7   | 3250,5          | 2793,6         | 2446,4               | 1953,5       | 1718,9        |
| 137  | 0,300 | 0,390   | 0,770   | 1,120     | 1,590   | 2,850              | 3,730   | 7,393                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 2364,4  | 1795,7   | 860,2           | 560,1          | 365,0                | 159,4        | 98,2          |
| 138  | 0,160 | 0,170   | 0,210   | 0,240     | 0,280   | 0,360              | 0,400   | 5,976                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 3634,8  | 3415,1   | 2745,6          | 2389,9         | 2034,2               | 1559,9       | 1393,9        |
| 139  | 0,160 | 0,170   | 0,210   | 0,250     | 0,300   | 0,400              | 0,480   | 5,913                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 3595,4  | 3378,0   | 2715,5          | 2265,1         | 1870,9               | 1378,2       | 1131,8        |
| 140  | 0,140 | 0,160   | 0,200   | 0,230     | 0,280   | 0,390              | 0,470   | 2,246                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 1504,4  | 1303,8   | 1023,1          | 876,6          | 702,2                | 475,9        | 377,9         |
| 141  | 0,150 | 0,170   | 0,230   | 0,290     | 0,380   | 0,600              | 0,780   | 1,433                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 855,6   | 743,2    | 523,2           | 394,3          | 277,2                | 138,9        | 83,8          |
| 142  | 0,120 | 0,140   | 0,170   | 0,200     | 0,230   | 0,310              | 0,370   | 2,247                | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 1772,4  | 1504,9   | 1221,7          | 1023,4         | 876,9                | 624,8        | 507,3         |
| 143  | 0,180 | 0,200   | 0,700   | 1,500     | 2,220   | 4,130              | 5,120   | 2,036                | 1        | 1      | 1            | 1        | 0                     | 0               | 0                         | 1031,4  | 918,2    | 190,9           | 35,8           | 9,0                  | 102,8        | 151,4         |
| 144  | 0,160 | 0,190   | 0,290   | 0,420     | 0,800   | 2,220              | 3,260   | 2,584                | 1        | 1      | 1            | 1        | 1                     | 1               | 0                         | 1514,8  | 1259,8   | 790,9           | 515,1          | 223,0                | 16,4         | 26,2          |
| 145  | 0,160 | 0,190   | 0,300   | 0,450     | 1,000   | 2,700              | 3,820   | 1,731                | 1        | 1      | 1            | 1        | 1                     | U               | U                         | 981,8   | 811,U    | 477,0           | 284,6          | 73,1                 | 56,0         | 120,7         |
| 146  | 0,120 | 0,150   | 0,230   | 0,310     | 0,420   | 0,970              | 1,340   | 1,857                | 1        | ļ      | 1            | 1        | 1                     | 1               | 1                         | 1447,5  | 1138,0   | 707,4           | 499,0          | 342,1                | 91,4         | 38,6          |
| 147  | 0,200 | 0,250   | 0,570   | 1,360     | 2,440   | 4,740              | 5,030   | 1,061                | ļ        | ļ      | <u>l</u>     | Ų        | Ų                     | U               | U                         | 430,7   | 324,6    | 86,2            | 28,1           | 129,9                | 346,6        | 373,9         |
| 148  | 0,160 | 0,210   | 0,400   | 0,850     | 1,370   | 2,520              | 3,270   | 2,237                | 1        | 1      | 1            | 1        | 1                     | U               | U                         | 1298,0  | 965,2    | 459,2           | 163,2          | 03,3                 | 12,7         | 46,2          |
| 149  | 0,100 | 0,130   | 0,190   | 0,250     | 0,340   | 0,940              | 1,640   | 0,731                | 1        |        | <b>1</b>     | 1        | 1                     | U               | U                         | 631,4   | 462,7    | 285,0           | 192,6          | 115,1                | 28,5         | 124,2         |
| 150  | 0,090 | 0,120   | 0,180   | 0,230     | 0,510   | 1,010              | 2,450   | 1,551                |          |        | 1            | <b>I</b> | 1                     | 1               | U                         | 1401,0  | 1025,7   | 050,5           | 487,5          | 555,8                | 55,8<br>140  | /9,9          |
| 151  | 0,130 | 0,160   | 0,240   | 0,350     | 0,590   | 2,400              | 3,700   | 2,089                | 1        | 1      | 1            | 1        | 1                     | U               | U                         | 150/,1  | 1205,8   | 770.0           | 490,9          | 254,1                | 14,9         | 11,1          |
| 152  | 0,100 | 0,120   | 0,170   | 0,210     | 0,250   | 0,580              | 0,480   | 1,494                | I        | 1      | 1            | 1        | 1                     | 1               | 1                         | 1394,2  | 1145,2   | 1200 2          | 0115           | 497,7                | 295,2        | 211,5         |
| 120  | 0,110 | 0,130   | 0,190   | 0,230     | 0,300   | 0,840              | 1,830   | 3,410<br>2002        | 1        | 1      | 1            | 1        | 1                     | 1               | 1                         | 2818,4  | 2309,4   | 1289,0          | 1297,8         | 970,1<br>70 <i>2</i> | 282,2        | 10.2          |
| 154  | 0,230 | 0,290   | 0,710   | 1,550     | 2,150   | 3,/00              | 4,500   | 3,8U3<br>0.5.42      | 1        | 1      | 1            | 1        | 1                     | 1               | U                         | 1773,4  | 1211,4   | 437,0           | 162,9          | /8,7                 | 1,1          | 18,3          |
| 120  | 0,200 | 0,230   | 0,300   | 0,230     | 1,000   | 2,/30              | 3,980   | 0,240                | I        | I      | 1            | 1        | U                     | U<br>1          | Ű                         | 1/2,8   | 137,2    | 51,0<br>5662 4  | 3,0<br>4001 7  | 83,5<br>2044 ≠       | 400,5        | 029,4         |
| 150  | 0,000 | 0,020   | 0,100   | 0,220     | 0,450   | 1 070              | 4,000   | 7,565<br>7,500       | 1        | 1      |              | 1        | 1                     | 1<br>1          | 1                         | 11447,4 | 10140,4  | 2003,0<br>703.2 | 407 L/         | 2044,0               | 3,00,9       | 147,1<br>25,4 |
| 12/  | 0,100 | 0,200   | 0,290   | 0,320     | 0,800   | 1,070              | 4,000   | 2,700                | 1        | 1<br>1 | <u>1</u>     | I        | 1<br>1                | 1<br>0          | 1                         | 1337,0  | 1193,8   | 174,3           | 203,2<br>200 4 | 223,5<br>110 5       | 141,8        | 47,0<br>100 4 |
| 120  | 0,400 | 0,230   | 0,320   | 0,730     | 1,420   | 4,070              | 0,230   | 2,345                | 1        | 1      | <u>1</u>     | I        | 1                     | U<br>0          | U<br>1                    | 1324,8  | 2122,0   | 1354 2          | 303,5          | 110,2                | JU,1<br>30 4 | 100,4         |
| 1.79 | 0,120 | 0,120   | 0,230   | 0,340     | 0,000   | 4,070              | 0,300   | 3,343<br>6 023       | <u>1</u> | 1      | 1            | 1        | 1                     | U<br>1          | 1                         | 2007,4  | 20447    | 1324,3          | 003,0<br>10174 | 477,7                | J7,U<br>01 2 | 16070         |
| 100  | 0,120 | 0,100   | 0,210   | 0,270     | 0,320   | <u>: 2,/00</u>     | : 0,280 | 7,U34                | <b>1</b> | 1      | 1            | 1        | 1                     | 1               | 1                         | 3274,4  | 3044,/   | 2290,0          | 17140          | 14/2,4               | 84,J         | 107/10        |

Tabela 5.6e - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄMETI   | ROS DO    | LEITO   | DOPA      | RAOI    | RIOAT              | IBAIA |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMP.           | ARAÇA           | O ENI           | IRE D <sub>v</sub> | <sub>IA</sub> D  |       | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
|-----------|-----------|---------|-----------|---------|--------------------|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------|------------------|-------|--------|----------|-----------|-----------|-----------|--------|--------|
| Gran      | ulometri  | a do ma | terial de | o leito |                    |       |                     | (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (11)            | (12)            | (13)            | (14)               | (15)             | (16)  | Е      | OS VALOI | RES MEDI  | DOSNORI   | IO ATIBAI | A      |        |
| (1) (2)   | (3)       | (4)     | (5)       | (6)     | $-\mathcal{O}^{-}$ | (8)   | (9)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMP.           | ARAÇA           | IO DE           | D w p. p. p.       | <sub>م</sub> COM | :     | (17)   | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N" D10    | Dló       | D35     | D50       | D65     | D84                | D90   | D <sub>V[LEV]</sub> | D <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D <sub>16</sub> | D <sub>28</sub> | D <sub>50</sub> | D <sub>65</sub>    | D <sub>84</sub>  | Dan   |        |          |           |           |           |        |        |
| (mm       | ) (mm)    | (mm)    | (mm)      | (mm)    | (mm)               | (mm)  | nana.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 3               |                 | ~                  |                  | ~     |        |          |           |           |           |        |        |
| 161 0,16  | 0 į 0,180 | 0,230   | 0,270     | 0,330   | 0,490              | 0,640 | 3,188               | 1         1         1         1         1         1892           1         1         1         1         1         1         4848           1         1         1         1         1         1         5297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |                 |                    |                  |       |        | 1671,1   | 1286,1    | 1080,7    | 866,0     | 550,6  | 398,1  |
| 162 0,150 | 0 0,160   | 0,200   | 0,240     | 0,290   | 4,840              | 1,350 | 7,423               | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<> |                 |                 |                 |                    |                  |       |        | 4539,1   | 3611,3    | 2992,7    | 2459,5    | 53,4   | 449,8  |
| 163 0,10  | 0 0,120   | 0,160   | 0,190     | 0,230   | 0,330              | 0,390 | 5,397               | 1         1         1         1         1         1892,4           1         1         1         1         1         1         1892,4           1         1         1         1         1         1         4848,4           1         1         1         1         1         1         5297,0           1         1         1         1         1         1         2973,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |                 |                    |                  |       |        | 4397,5   | 3273,1    | 2740,5    | 2246,5    | 1535,5 | 1283,9 |
| 164 0,170 | 0   0,190 | 0,260   | 0,320     | 0,420   | 1,310              | 2,080 | 5,225               | 1         1         1         1         1         1892,4           1         1         1         1         1         1         4848,4           1         1         1         1         1         1         4848,4           1         1         1         1         1         1         5297,0           1         1         1         1         1         1         2973,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |                 |                    |                  |       |        | 2649,9   | 1909,6    | 1532,8    | 1144,0    | 298,8  | 151,2  |
| 165 0,080 | 0   0,100 | 0,150   | 0,180     | 0,220   | 0,300              | 0,370 | 4,109               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1               | 1               | 1                  | 1                | 1     | 5036,4 | 4009,1   | 2639,4    | 2182,8    | 1767,8    | 1269,7 | 1010,6 |
| 166 0,14  | 0 0,150   | 0,190   | 0,230     | 0,290   | 1,190              | 3,530 | 5,203               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1               | 1               | 1                  | 1                | 1     | 3616,4 | 3368,7   | 2638,4    | 2162,2    | 1694,1    | 337,2  | 47,4   |
| 167 0,200 | 0 0,240   | 0,350   | 0,500     | 0,840   | 1,980              | 2,850 | 7,207               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1               | 1               | 1                  | 1                | 1     | 3503,4 | 2902,8   | 1959,1    | 1341,3    | 757,9     | 264,0  | 152,9  |
| 168 0,220 | 0 0,250   | 0,350   | 0,440     | 0,630   | 1,250              | 1,650 | 7,703               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1               | 1               | 1                  | 1                | 1     | 3401,3 | 2981,1   | 2100,8    | 1650,6    | 1122,7    | 516,2  | 366,8  |
| 169 0,13  | 0 0,150   | 0,220   | 0,290     | 0,410   | 1,840              | 5,640 | 2,267               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1               | 1               | 1                  | 1                | 0     | 1643,6 | 1411,1   | 930,3     | 681,6     | 452,9     | 23,2   | 148,8  |
| 170 0,14  | 0 0,190   | 0,320   | 0,460     | 0,760   | 1,660              | 2,450 | 2,337               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1               | 1               | 1                  | 1                | 0     | 1569,5 | 1130,1   | 630,4     | 408,1     | 207,5     | 40,8   | 4,8    |
| 171 0,16  | 0   0,190 | 0,370   | 0,920     | 1,760   | 4,000              | 5,260 | 2,003               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1               | 1               | 1                  | 0                | 0     | 1151,9 | 954,2    | 441,3     | 117,7     | 13,8      | 99,7   | 162,6  |
|           |           |         |           |         |                    |       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (%              | i) de eve       | entos er        | nque D'            | VJ > D           |       | DIFE   | RENÇA P  | ERCENT    | UAL REL   | ATIVA M   | EDIA   |        |
|           |           |         |           |         |                    |       |                     | 95,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93,57           | 84,21           | 75,44           | 63,74              | 47,95            | 34,50 | 1116,8 | 951,4    | 653,4     | 511,9     | 410,2     | 371,2  | 446,0  |

Tabela 5.6e - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>101 (1.737)</sub> - Diâmetro calculado pela equação: D<sub>101 (1.737)</sub> = 2,3204 × Cp<sup>-1,7324</sup>. Para o método de Levi (1948)

Cp - Coeficiente de pressão - adimensional.

| DIÄ  | METR  | OS DO I | LEITO   | DOPA      | RA OF  | LIO ATI | IBAIA   |                       |          | COMP     | ARA ÇA   | IO ENI       | RE D                   | D B      |      | RELAÇ  | Ä O PER C        | ENTUAL E         | IN TRE OS | VALORES            | DEDVI            |                |
|------|-------|---------|---------|-----------|--------|---------|---------|-----------------------|----------|----------|----------|--------------|------------------------|----------|------|--------|------------------|------------------|-----------|--------------------|------------------|----------------|
|      | Granu | bmetria | a do ma | terial do | o lemo |         |         |                       | (10)     | (11)     | (12)     | (13)         | (14)                   | (15)     | (16) | E      | OS VALO          | RES MEDI         | DOS NO R  | IO A TIBA          | IA               |                |
| (1)  | (2)   | (3)     | (4)     | (5)       | (6)    | (7)     | (8)     | (9)                   |          | COMP     | ARAÇÂ    | <b>\ODE</b>  | D <sub>10 DTB</sub>    | a COM:   |      | (17)   | (18)             | (19)             | (20)      | (21)               | (22)             | (23)           |
| N°   | D10   | D16     | D35     | D50       | D65    | D84     | D90     | D <sub>10 (PTE1</sub> | Die      | Die      | Dx       | Dee          | $D_{\epsilon\epsilon}$ | D.       | Dao  |        |                  |                  |           |                    |                  |                |
|      | (mm)  | (mm)    | (mm)    | (mm)      | (mm)   | (mm)    | (mm)    | -9 (222)<br>1970      | 10       | 10       | 20       |              |                        | 64       | 90   |        |                  |                  |           |                    |                  |                |
|      | 0.150 | 0.180   | 0.340   | 0.640     | 0.970  | 1.560   | 1.860   | 5.553                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 3601.9 | 2984.9           | 1533.2           | 767.6     | 472.5              | 255.9            | 198-5          |
| 2    | 0.190 | 0.240   | 0,370   | 0.540     | 0.880  | 2,770   | 3.820   | 6.006                 | 1        | i        | 1        | 1            | 1                      | 1        | 1    | 3060.8 | 2402.3           | 1523.1           | 1012.1    | 582.5              | 116.8            | 57.2           |
| 3    | 0.240 | 0.290   | 0.480   | 0.680     | 1.040  | 2.960   | 4.110   | 6,316                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2531,6 | 2077,9           | 1215,8           | 828,8     | 507,3              | 113,4            | 53,7           |
| 4    | 0,220 | 0,270   | 0,530   | 0,860     | 1,370  | 3,240   | 4,220   | 5,955                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2606,7 | 2105,5           | 1023,5           | 592,4     | 334,7              | 83,8             | 41,1           |
| 5    | 0,240 | 0,280   | 0,400   | 0,510     | 0,640  | 0,970   | 1,230   | 6,611                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2654,6 | 2261,1           | 1552,8           | 11%,3     | 933,0              | 581,5            | 437,5          |
| 6    | 0,330 | 0,400   | 0,710   | 1,020     | 1,470  | 2,500   | 3,130   | 5,246                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 1489,7 | 1211,5           | 638,9            | 414,3     | 256,9              | 109,8            | 67,6           |
| 7    | 0,270 | 0,320   | 0,450   | 0,570     | 0,730  | 1,130   | 1,420   | 5,932                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 20%,9  | 1753,7           | 1218,2           | 940,6     | 712,6              | 424,9            | 317,7          |
| 8    | 0,290 | 0,340   | 0,500   | 0,640     | 0,830  | 1,440   | 3,780   | 6,298                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2071,7 | 1752,4           | 1159,6           | 884,1     | 658,8              | 337,4            | 66,6           |
| 9    | 0,360 | 0,440   | 0,690   | 0,970     | 1,500  | 4,470   | 4,940   | 6,307                 | 1        | 1        | 1        | 1            | ļ <b>1</b>             | 1        | 1    | 1651,8 | 1333,3           | 814,0            | 550,2     | 320,4              | 41,1             | 27,7           |
| 10   | 0,320 | 0,370   | 0,520   | 0,660     | 0,850  | 1,400   | 2,000   | 7,001                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2087,8 | 1792,2           | 1246,3           | 960,8     | 723,6              | 400,1            | 250,0          |
| 11   | 0,300 | 0,360   | 0,560   | 0,780     | 1,220  | 4,100   | 4,750   | 7,166                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2288,8 | 1890,6           | 1179,7           | 8 18,8    | 487,4              | 74,8             | 50,9           |
| 12   | 0,300 | 0,360   | 0,560   | 0,770     | 1,090  | 3,330   | 4,500   | 7,360                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2353,3 | 1944,4           | 1214,2           | 855,8     | 575,2              | 121,0            | 63,6           |
| 13   | 0,270 | 0,320   | 0,480   | 0,630     | 0,870  | 3,900   | 4,700   | 8,117                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2906,3 | 2436,6           | 1591,1           | 1188,4    | 833,0              | 108,1            | 72,7           |
| 14   | 0,270 | 0,320   | 0,470   | 0,640     | 0,920  | 2,300   | 4,020   | 7,564                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2701,5 | 2263,7           | 1509,4           | 1081,9    | 722,2              | 228,9            | 88,2           |
| Ŀ    | 0,280 | 0,320   | 0,490   | 0,660     | 0,950  | 2,170   | 3,160   | 7,524                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2587,2 | 2251,3           | 1435,5           | 1040,0    | 692,0              | 246,7            | 138,1          |
| 16   | 0,240 | 0,270   | 0,370   | 0,470     | 0,610  | 1,000   | 1,450   | 6,828                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 2745,0 | 2428,9           | 1745,4           | 1352,8    | 1019,3             | 582,8            | 370,9          |
| 17   | 0,310 | 0,370   | 0,510   | 0,630     | 0,800  | 1,290   | 1,770   | 5,331                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 1619,8 | 1340,9           | 945,4            | 746,3     | 566,4              | 313,3            | 201,2          |
| 18   | 0,280 | 0,340   | 0,510   | 0,690     | 0,970  | 4,770   | 5,110   | 6,531                 | I        | Į        | I        | Į 1          | 1                      | 1        | 1    | 2232,6 | 1821,0           | 1180,7           | 846,6     | 573,3              | 36,9             | 27,8           |
| 19   | 0,310 | 0,370   | 0,550   | 0,710     | 0,960  | 3,630   | 4,620   | 5,946                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 1818,2 | 1507,1           | 981,1<br>1920 a  | 737,5     | 519,4              | 63,8             | 28,7           |
| 20   | 0,290 | 0,350   | 0,500   | 0,630     | 0,800  | 1,240   | 1,640   | 5,002                 | 1        | 1        | 1        | 1            | 1                      | 1        | 1    | 1852,3 | 1517,6           | 1032,3           | 798,7     | 607,7              | 350,0            | 246,2          |
| 21   | 0,340 | 0,440   | 0,840   | 1,260     | 2,140  | 4,520   | 4,960   | 7,323                 | I        | <b>I</b> | ļ        | Į            | <u> </u>               | 1        | 1    | 2053,8 | 1564,3           | 771,8            | 481,2     | 242,2              | 62,0             | 47,6           |
| 22   | 0,300 | 0,390   | 0,750   | 1,150     | 1,870  | 4,270   | 4,820   | 6,949                 | 1        | <b>I</b> | ļ        | ļļ           | 1                      | 1        | 1    | 2216,3 | 1681,8           | 826,5            | 504,3     | 271,6              | 62,7             | 44,2           |
| 23   | 0,300 | 0,360   | 0,510   | 0,630     | 0,810  | 1,260   | 1,710   | 6,023                 | 1        | <b>1</b> | 1        | Į            | 1                      | 1        | 1    | 1907,8 | 1573,2           | 1081,1           | 856,1     | 643,6<br>5 - 0 - 0 | 378,0            | 252,2          |
| 24   | 0,270 | 0,520   | 0,470   | 0,590     | 0,740  | 1,100   | 1,370   | 4,945                 | I        |          | <b>1</b> | ĮĮ           | 1                      | 1        | 1    | 1731,3 | 1445,2           | 952,U            | 7.58,1    | 508,Z              | 345,5            | 260,9          |
| -    | 0,250 | 0,300   | 0,440   | 0,500     | 0,730  | 1,180   | 1,000   | 5,344                 |          |          |          | ĮĮ           | 1                      | 1        | 1    | 2037,8 | 1081,5           | 1114,0           | 854,4     | 6341               | 352.9            | 222,0          |
| 20   | 0,240 | 0,290   | 0,420   | 0,550     | 0,/40  | 1,340   | 2,200   | 6,100                 |          | 1        | ļ        | ĮĮ           | <b>1</b>               | 1        | 1    | 2441,6 | 2003,4           | 1392,3           | 1009,0    | 124,3              | 365,Z            | 109,9          |
| 2/   | 0,230 | 0,280   | 0,420   | 0,540     | 0,/10  | 1,200   | 4,430   | 0,/08                 | 1        | 1        | 1        | 1            | <b>1</b>               | 1        | 1    | 2810,0 | 2295,8           | 1497,2           | 1146,3    | 844,8              | 469,U<br>2010    | 51,4<br>455 1  |
| - 40 | 0,250 | 0,290   | 0,410   | 0,520     | 0,000  | 0,950   | 1,200   | 0,001                 | <b>1</b> | 1        |          | <sup>1</sup> | <b>1</b>               | 1        | 1    | 2204,0 | 217/,1           | 1244,/           | 1101,1    | 9448<br>1095 9     | 2000<br>2000     | 455,1          |
| 27   | 0,240 | 0,200   | 0,320   | 0,460     | 0,590  | 0,630   | 1,000   | 0,039<br>4 EE0        | 1        | 1        |          | 1            |                        | 1        | 1    | 2000,2 | 2015 4           | 1002,3           | 1127.4    | 1019,2             | 6750             | 200,9<br>504 5 |
| 30   | 0,270 | 0,310   | 0,430   | 0,530     | 0,000  | 0,890   | 1,050   | 0,226<br>6 972        | 1        | I        |          | 1            | 1<br>1                 | 1        | 1    | 2027,U | 2010,0<br>2445.0 | 1427,2<br>1727 2 | 1137,4    | 909,0<br>1075 2    | 0.00,9<br>6770 1 | 224,0<br>524 7 |
| 31   | 0,230 | 0,2/0   | 0,370   | 0,470     | 0,000  | 1.00    | 1,100   | 0,074                 | 1        | 1        |          | 1            |                        | 1        | 1    | 400/,0 | 1000.0           | 1/5/14           | 1302,0    | 1040,3             | 0/4,1<br>202 7   | 744,/          |
| - 54 | 0,280 | 0,340   | 0,500   | 0,050     | 0,8/0  | 1,000   | : 2,300 | 0,505                 | 1        | 1        | 1        | <u> </u>     | <b>I</b>               | <b>1</b> | I    | 4433,9 | 10440            | 1207,0           | yuo,4     | 051,1              | 273,7 j          | 104,1          |

Tabela 5.66 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METR   | OS DO   | LEITO   | DOPA      | RA OR   | I O ATI | BAIA  |                    |                 | COMP            | ARA ÇA          | O ENT           | RE D                | <sub>A</sub> D  |          | RELAÇ  | à O PER C | ENTUAL E | N TRE OS | VALORES    | DED <sub>VJ</sub> |       |
|-----|--------|---------|---------|-----------|---------|---------|-------|--------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|----------|--------|-----------|----------|----------|------------|-------------------|-------|
|     | Granul | ometris | a do ma | terial do | o leito |         |       |                    | (10)            | (11)            | (12)            | (13)            | (14)                | (15)            | (16)     | E      | OS VALO   | RES MEDI | DOS NO R | IO A TIBAI | IA                |       |
| (1) | (2)    | (3)     | (4)     | (5)       | (6)     | - CD -  | (8)   | (9)                |                 | COMP            | ARAÇÂ           | <b>ODE</b>      | D <sub>10 DTB</sub> | COM:            |          | (17)   | (18)      | (19)     | (20)     | (21)       | (22)              | (23)  |
| N⁰  | D10    | Dl6     | D35     | D50       | D65     | D84     | D90   | D <sub>W DEB</sub> | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>     | D <sub>84</sub> | Dan      |        |           |          |          |            |                   |       |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  | JIII.              | ~~              | ~               | ~               | ~               |                     |                 | ~        |        |           |          |          |            |                   |       |
| 33  | 0,280  | 0,320   | 0.450   | 0,570     | 0.730   | 1,230   | 2,180 | 7,380              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2535,9 | 2206,4    | 1540,1   | 1194,8   | 911.0      | 500,0             | 238,6 |
| 34  | 0,270  | 0,300   | 0,410   | 0,510     | 0,630   | 0,880   | 1,050 | 7,006              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2494,8 | 2235,4    | 1608,8   | 1273,7   | 1012,1     | 696,1             | 567,2 |
| 35  | 0,280  | 0,320   | 0,440   | 0,540     | 0,680   | 1,000   | 1,270 | 6,830              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2339,4 | 2034,4    | 1452,3   | 1164,8   | 904,4      | 583,0             | 437,8 |
| 36  | 0,210  | 0,250   | 0,360   | 0,450     | 0,580   | 0,890   | 1,100 | 6,506              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2998,1 | 2502,4    | 1707,2   | 1345,8   | 1021,7     | 631,0             | 491,5 |
| 37  | 0,270  | 0,320   | 0,450   | 0,570     | 0,740   | 1,180   | 1,520 | 6,977              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2484,1 | 2080,4    | 1450,5   | 1124,1   | 842,9      | 491,3             | 359,0 |
| 38  | 0,260  | 0,330   | 0,530   | 0,730     | 1,010   | 1,790   | 3,150 | 5,680              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2084,7 | 1621,2    | 971,7    | 678,1    | 462,4      | 217,3             | 80,3  |
| 39  | 0,300  | 0,340   | 0,480   | 0,600     | 0,750   | 1,140   | 1,450 | 6,823              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2174,2 | 1906,6    | 1321,4   | 1037,1   | 809,7      | 498,5             | 370,5 |
| 40  | 0,320  | 0,370   | 0,550   | 0,710     | 0,950   | 1,600   | 2,510 | 4,591              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 1334,7 | 1140,8    | 734,7    | 546,6    | 383,3      | 186,9             | 82,9  |
| 41  | 0,280  | 0,320   | 0,450   | 0,570     | 0,720   | 1,080   | 1,360 | 4,862              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 1636,4 | 1419,3    | 980,4    | 753,0    | 575,3      | 350,2             | 257,5 |
| 42  | 0,220  | 0,270   | 0,410   | 0,570     | 0,900   | 4,170   | 4,790 | 6,106              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2675,6 | 2161,6    | 1389,3   | 971,3    | 578,5      | 46,4              | 27,5  |
| 43  | 0,290  | 0,340   | 0,460   | 0,570     | 0,700   | 1,020   | 1,280 | 6,299              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2072,2 | 1752,8    | 1269,4   | 1005,2   | 799,9      | 517,6             | 392,1 |
| 44  | 0,170  | 0,250   | 0,550   | 0,820     | 1,250   | 4,840   | 5,150 | 3,611              | 1               | 1               | 1               | 1               | 1                   | 0               | 0        | 2024,2 | 1344,5    | 556,6    | 340,4    | 188,9      | 34,0              | 42,6  |
| 45  | 0,210  | 0,260   | 0,410   | 0,590     | 0,880   | 1,790   | 2,700 | 4,633              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2106,1 | 1681,9    | 1030,0   | 685,2    | 426,5      | 158,8             | 71,6  |
| 46  | 0,180  | 0,200   | 0,300   | 0,410     | 0,600   | 1,200   | 1,850 | 5,566              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2992,3 | 2683,1    | 1755,4   | 1257,6   | 827,7      | 363,8             | 200,9 |
| 47  | 0,170  | 0,210   | 0,390   | 0,650     | 1,140   | 2,970   | 4,030 | 4,694              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 2661,3 | 2135,4    | 1103,7   | 622,2    | 311,8      | 58,1              | 16,5  |
| 48  | 0,150  | 0,170   | 0,210   | 0,250     | 0,330   | 0,720   | 1,100 | 5,071              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3280,4 | 2882,7    | 2314,6   | 1928,3   | 1436,6     | 604,3             | 361,0 |
| 49  | 0,150  | 0,170   | 0,210   | 0,240     | 0,320   | 0,910   | 1,440 | 5,619              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3646,0 | 3205,3    | 2575,7   | 2241,2   | 1655,9     | 517 <i>,</i> 5    | 290,2 |
| 50  | 0,160  | 0,170   | 0,230   | 0,320     | 0,650   | 1,550   | 2,790 | 5,342              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3239,1 | 3042,6    | 2222,8   | 1569,5   | 721,9      | 244,7             | 91,5  |
| 51  | 0,170  | 0,190   | 0,250   | 0,330     | 0,490   | 1,090   | 1,580 | 6,075              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3473,5 | 3097,3    | 2330,0   | 1740,9   | 1139,8     | 457,3             | 284,5 |
| 52  | 0,170  | 0,190   | 0,280   | 0,500     | 0,900   | 2,040   | 2,860 | 6,075              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3473,8 | 3097,6    | 2069,8   | 1115,1   | 575,1      | 197,8             | 112,4 |
| 53  | 0,160  | 0,180   | 0,260   | 0,370     | 0,530   | 0,910   | 1,230 | 6,351              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3869,6 | 3428,5    | 2342,8   | 1616,6   | 1098,4     | 597,9             | 416,4 |
| 54  | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,500   | 0,920 | 5,107              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3548,0 | 3304,8    | 2737,3   | 2453,6   | 2120,5     | 921,4             | 455,1 |
| 55  | 0,140  | 0,160   | 0,200   | 0,240     | 0,300   | 0,600   | 0,850 | 5,962              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 4158,3 | 3626,0    | 2880,8   | 2384,0   | 1887,2     | 893,6             | 601,4 |
| 56  | 0,160  | 0,170   | 0,230   | 0,350     | 0,660   | 1,390   | 1,930 | 5,777              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3510,6 | 3298,2    | 2411,7   | 1550,6   | 775,3      | 315,6             | 199,3 |
| 57  | 0,170  | 0,190   | 0,250   | 0,320     | 0,420   | 0,710   | 0,950 | 6,474              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3708,1 | 3307,2    | 2489,5   | 1923,1   | 1441,4     | 811,8             | 581,4 |
| 58  | 0,140  | 0,160   | 0,190   | 0,230     | 0,280   | 1,460   | 4,690 | 6,866              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 4804,2 | 4191,2    | 3513,6   | 2885,1   | 2352,1     | 370,3             | 46,4  |
| 59  | 0,160  | 0,180   | 0,230   | 0,290     | 0,390   | 0,750   | 1,140 | 6,002              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3651,1 | 3234,3    | 2509,4   | 1969,6   | 1438,9     | 700,2             | 426,5 |
| 60  | 0,170  | 0,190   | 0,270   | 0,400     | 0,750   | 1,660   | 2,500 | 5,897              | 1               | 1               | 1               | 1               | 1                   | 1               | <u>1</u> | 3369,1 | 3003,9    | 2084,2   | 1374,3   | 686,3      | 255,3             | 135,9 |
| 61  | 0,170  | 0,190   | 0,270   | 0,360     | 0,570   | 1,240   | 1,640 | 6,569              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3764,0 | 3357,3    | 2332,9   | 1724,7   | 1052,4     | 429,7             | 300,5 |
| 62  | 0,180  | 0,210   | 0,370   | 0,820     | 1,560   | 3,060   | 3,790 | 5,034              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 26%,8  | 2297,3    | 1260,6   | 513,9    | 222,7      | 64,5              | 32,8  |
| 63  | 0,160  | 0,190   | 0,310   | 0,520     | 0,810   | 1,370   | 1,660 | 6,442              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 3926,0 | 3290,3    | 1977,9   | 1138,8   | 695,3      | 370,2             | 288,0 |
| 64  | 0,150  | 0,180   | 0,340   | 0,630     | 0,970   | 1,560   | 1,860 | 7,030              | 1               | 1               | 1               | 1               | 1                   | 1               | 1        | 4587,0 | 3805,8    | 1967,8   | 1015,9   | 624,8      | 350,7             | 278,0 |

Tabela 5.66 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ       | METRO     | DS DO I | LEITO   | DOPA      | RA OR   | LIO ATI         | BAIA      |                     |                 | COMP            | ARA ÇA          | O ENT    | 'RE D <sub>vj</sub>  | <sub>a</sub> D  |      | RELA Ç  | Ä O PER C | ENTUAL F | IN TRE OS | VALORES       | DEDVJ            |              |
|-----------|-----------|---------|---------|-----------|---------|-----------------|-----------|---------------------|-----------------|-----------------|-----------------|----------|----------------------|-----------------|------|---------|-----------|----------|-----------|---------------|------------------|--------------|
|           | Granul    | ometria | a do ma | terial do | ) leito |                 |           |                     | (10)            | (11)            | (12)            | (13)     | (14)                 | (15)            | (16) | E       | OS VALOI  | RES MEDI | DOS NOR   | IO A TIBAI    | EA.              |              |
| (1)       | (2)       | (3)     | (4)     | (5)       | (6)     | $(\mathcal{O})$ | (8)       | (9)                 |                 | COMP            | ARAÇÂ           | ODE      | D <sub>NI IPIB</sub> | COM:            |      | (17)    | (18)      | (19)     | (20)      | (21)          | (22)             | (23)         |
| N°        | D10       | Dl6     | D35     | D50       | D65     | D84             | D90       | D <sub>W DEB1</sub> | D <sub>10</sub> | D <sub>16</sub> | D <sub>38</sub> | Den      | Des                  | D <sub>24</sub> | Dan  |         |           |          |           |               |                  |              |
|           | (mm)      | (mm)    | (mm)    | (mm)      | ímmì    | (mm)            | (mm)      | 51—J                |                 |                 | ~               | ~        | ~                    |                 | 50   |         |           |          |           |               |                  |              |
| 65        | 0.170     | 0.190   | 0.260   | 0.380     | 0.600   | 1.180           | 1.750     | 4.100               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2312.0  | 2058.1    | 1477.1   | 979.0     | 583.4         | 247.5            | 134.3        |
| 66        | 0.170     | 0.180   | 0.220   | 0.260     | 0.310   | 0.410           | 0.470     | 5,970               | ī               | ī               | 1               | 1        | 1                    | 1               | 1    | 3411,9  | 3216.8    | 2613,7   | 2196.2    | 1825,9        | 1356.1           | 1170.3       |
| 67        | 0,170     | 0,190   | 0,250   | 0,320     | 0,440   | 1,190           | 1,680     | 5,281               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 3006,6  | 2679,6    | 2012,5   | 1550,4    | 1100,3        | 343,8            | 214,4        |
| 68        | 0,170     | 0,180   | 0,230   | 0,270     | 0,320   | 0,430           | 0,560     | 4,784               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2713,9  | 2557,6    | 1979,8   | 1671,7    | 1394,9        | 1012,5           | 754,2        |
| 69        | 0,170     | 0,190   | 0,250   | 0,300     | 0,360   | 0,570           | 1,690     | 4,044               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2278,7  | 2028,3    | 1517,5   | 1247,9    | 1023,3        | 609,4            | 139,3        |
| 70        | 0,230     | 0,260   | 0,340   | 0,430     | 0,620   | 1,410           | 2,050     | 5,433               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2262,0  | 1989,4    | 1497,8   | 1163,4    | 776,2         | 285,3            | 165,0        |
| 71        | 0,230     | 0,250   | 0,310   | 0,370     | 0,440   | 0,740           | 1,180     | 5,528               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2303,7  | 2111,4    | 1683,4   | 1394,2    | 1156,5        | 647,1            | 368,5        |
| 72        | 0,230     | 0,260   | 0,350   | 0,440     | 0,640   | 1,500           | 2,200     | 5,806               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2424,2  | 2132,9    | 1558,7   | 1219,5    | 807,1         | 287,0            | 163,9        |
| 73        | 0,190     | 0,230   | 0,320   | 0,410     | 0,610   | 1,630           | 3,000     | 5,960               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 3036,6  | 2491,1    | 1762,4   | 1353,5    | 877,0         | 265,6            | 98,7         |
| 74        | 0,240     | 0,270   | 0,350   | 0,420     | 0,550   | 0,990           | 1,360     | 6,554               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2630,8  | 2327,4    | 1772,5   | 1460,4    | 1091,6        | 562,0            | 381,9        |
| 75        | 0,200     | 0,250   | 0,400   | 0,640     | 1,100   | 2,520           | 3,770     | 6,312               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 3056,1  | 2424,9    | 1478,1   | 886,3     | 473,8         | 150 <i>,</i> 5   | 67,4         |
| 76        | 0,170     | 0,210   | 0,320   | 0,460     | 0,860   | 2,820           | 4,090     | 6,642               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 3806,8  | 3062,7    | 1975,5   | 1343,8    | 672,3         | 135,5            | 62,4         |
| π         | 0,220     | 0,270   | 0,410   | 0,560     | 0,800   | 1,340           | 1,660     | 6,695               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2943,3  | 2379,8    | 1533,0   | 1095,6    | 736,9         | 399,7            | 303,3        |
| 78        | 0,180     | 0,220   | 0,330   | 0,450     | 0,750   | 1,980           | 3,050     | 6,660               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 3599,8  | 2927,1    | 1918,0   | 1379,9    | 787,9         | 236,3            | 118,3        |
| 79        | 0,190     | 0,230   | 0,360   | 0,540     | 1,000   | 2,700           | 3,730     | 6,513               | 1               | 1               | ļ <u>1</u>      | 1        | 1                    | 1               | 1    | 3327,8  | 2731,6    | 1709,1   | 1106,1    | 551,3         | 141,2            | 74,6         |
| 80        | 0,210     | 0,240   | 0,360   | 0,500     | 0,920   | 3,270           | 4,350     | 6,443               | 1               | 1               | Į <u>I</u>      | <u> </u> | 1                    | 1               | 1    | 2968,2  | 2584,7    | 1689,8   | 1188,6    | 600,3         | 97 <b>,</b> 0    | 48,1         |
| 81        | 0,190     | 0,230   | 0,350   | 0,520     | 1,070   | 3,850           | 4,630     | 6,693               | 1               | 1               | Į <u>I</u>      | <u> </u> | 1                    | 1               | 1    | 3422,8  | 2810,2    | 1812,4   | 1187,2    | 525,5         | 73,9             | 44,6         |
| 82        | 0,230     | 0,270   | 0,380   | 0,530     | 0,880   | 1,950           | 2,890     | 5,880               | 1               | 1               | <u> </u>        | 1        | 1                    | 1               | 1    | 2450,5  | 2077,7    | 1447,3   | 1009,4    | 568,2         | 201,5            | 103,5        |
| 83        | 0,230     | 0,270   | 0,400   | 0,640     | 1,290   | 4,190           | 4,790     | 4,468               | 1               | 1               | <u> </u>        | 1        | 1                    | 1               | U    | 1842,7  | 1554,9    | 1017,1   | 598,2     | 246,4         | 0,0              | 7,2          |
| 84        | 0,210     | 0,240   | 0,330   | 0,420     | 0,740   | 1,820           | 2,370     | 6,300               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 2900,1  | 2525,1    | 1809,1   | 1400,0    | 751,4         | 246,2            | 105,8        |
| 85        | 0,230     | 0,270   | 0,390   | 0,670     | 1,650   | 4,070           | 4,690     | 5,672               | 1               | 1               | <u> </u>        | 1        | 1                    | 1               | 1    | 2366,0  | 2000,6    | 1354,3   | 746,5     | 243,7         | 39,4             | 20,9         |
| 80        | 0,210     | 0,240   | 0,330   | 0,420     | 0,740   | 3,000           | 4,160     | 5,537               | 1               | 1               | ļļ              | <b>1</b> | 1                    | 1               | 1    | 2536,8  | 2207,2    | 1578,0   | 1218,4    | 648,3         | 84,6             | 33,1         |
| 87        | 0,210     | 0,250   | 0,350   | 0,500     | 1,100   | 3,500           | 4,400     | 5,706               | 1               | 1               | ļļ              | <b>1</b> | 1                    | 1               | 1    | 2617,0  | 2182,3    | 1530,2   | 1041,1    | 418,7         | 63,0             | 29,7         |
| 88        | 0,210     | 0,240   | 0,310   | 0,380     | 0,480   | 0,930           | 1,400     | 5,868               | 1               | 1               | ļļ              | <b>1</b> | 1                    | 1               | 1    | 2694,5  | 2345,2    | 1793,1   | 1444,3    | 1122,6        | 531,0            | 319,2        |
| 89        | 0,190     | 0,220   | 0,310   | 0,380     | 0,500   | 0,830           | 1,110     | 5,0//               | 1               | 1               |                 | <b>1</b> | 1                    | 1               | 1    | 288/,8  | 2480,3    | 1/31,2   | 1393,9    | 1035,4        | 583,9            | 411,4        |
|           | 0,200     | 0,230   | 0,310   | 0,370     | 0,400   | 0,770           | 1,100     | 5,234               | 1               | 1               |                 | 1        | 1                    | 1               | 1    | 2710,7  | 21/5,0    | 1266,)   | 1314,5    | 1037,8        | 519,1            | 3/0,8        |
| 91        | 0,220     | 0,240   | 0,300   | 0,300     | 0,420   | 0,020           | 1 100     | 4,141<br>5 014      | 1               | 1               | <u>-</u>        | I        | 1                    | 1               | 1    | 2429.0  | 1017,3    | 1473,8   | 1044,8    | 00L)<br>10070 | 504,1<br>400 2   | J20,0        |
| 92        | 0,430     | 0,250   | 0,330   | 0,350     | 0,490   | 0,020           | 1,100     | 5,010               | 1               | 1               | <u>-</u>        | 1        | 1                    | 1               | 1    | 2426,9  | 2220,0    | 1004,5   | 1391,4    | 1116.4        | 6,700<br>1 172   | 440,8        |
| - 23      | 0,230     | 0,200   | 0,340   | 0,400     | 0,510   | 0,000           | 1,000     | 6 484               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 27719 A | 2403.4    | 1/44,/   | 1471,0    | 11712         | 636.9            | 459 Q        |
| - 24      | 0,200     | 0,220   | 0,330   | 0,400     | 0,510   | 0,000           | 1,100     | 6 790               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 3705 1  | 2473,4    | 20210    | 1641 1    | 1231.4        | 0.00,0<br>70.9 4 | 475 4        |
| 970<br>04 | 0,200     | 0,200   | 0,320   | 0,350     | 1,000   | 4.440           | 1,100     | 6.403               | 1               | 1               | 1               | 1        | 1                    | 1               | 1    | 4191 9  | 31113     | 1505 7   | 756 4     | 3340          | 447              | 30 4         |
|           | : 0,120 ) | 0,200   | 0,400   | 0,720     | 1,460   | 4,440           | : 4,740 ) | U,966J              | 1               | 1               | <u> </u>        | <b>.</b> | <b>1</b> )           | 1               | 1    | 4101,0  | 31143     | 1202,(   | (20,4)    | 33-90         | ·••••,( )        | , <i>2</i> ; |

Tabela 5.66 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METRO  | OS DO I | LEIT O  | DOPA      | RA OF   | LIO ATI        | BAIA  |                     |            | COMP            | ARA ÇA | O ENI       | RE D <sub>uj</sub>  | D IA            |      | RELAÇ  | ÃO PERC | ENTUAL F | IN TRE OS | VALORES    | $D  E  D_{\rm VJ}$ |       |
|-----|--------|---------|---------|-----------|---------|----------------|-------|---------------------|------------|-----------------|--------|-------------|---------------------|-----------------|------|--------|---------|----------|-----------|------------|--------------------|-------|
|     | Granul | ometris | a do ma | terial do | o leino |                |       |                     | (10)       | (11)            | (12)   | (13)        | (14)                | (15)            | (16) | E      | OS VALO | RES MEDI | DOS NO R  | IO A TIBAI | A                  |       |
| (1) | (2)    | (3)     | (4)     | (5)       | (6)     | $-\mathcal{O}$ | (8)   | (9)                 |            | COMP            | ARAÇÂ  | <b>AODE</b> | D <sub>10</sub> pre | COM:            |      | (17)   | (18)    | (19)     | (20)      | (21)       | (22)               | (23)  |
| N⁰  | D10    | Dl6     | D35     | D50       | D65     | D84            | D90   | D <sub>M DEE1</sub> | Die        | D <sub>16</sub> | Das    | Den         | $D_{65}$            | D <sub>84</sub> | Dan  |        |         |          |           |            |                    |       |
| L   | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  | 51.—.)<br>Tato      |            |                 | ~      | ~           | ~                   |                 | 50   |        |         |          |           |            |                    |       |
| 97  | 0.210  | 0.280   | 0.550   | 0.890     | 1.410   | 3.490          | 4.400 | 6.451               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2972.0 | 22040   | 1072.9   | 624.8     | 357.5      | 84.8               | 46.6  |
| 98  | 0,220  | 0,290   | 0,550   | 0,890     | 1,410   | 4,000          | 4,700 | 6,345               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2784,0 | 2087,8  | 1053,6   | 612,9     | 350,0      | 58,6               | 35,0  |
| 99  | 0,150  | 0,220   | 0,430   | 0,650     | 0,980   | 1,840          | 2,460 | 6,145               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3996,9 | 2693,4  | 1329,2   | 845,4     | 527,1      | 234,0              | 149,8 |
| 100 | 0,160  | 0,210   | 0,390   | 0,580     | 0,880   | 1,630          | 2,250 | 7,042               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 4301,4 | 3253,4  | 1705,7   | 1114,2    | 700,2      | 332,0              | 213,0 |
| 101 | 0,140  | 0,160   | 0,230   | 0,300     | 0,400   | 0,960          | 4,370 | 6,246               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 4361,2 | 3803,5  | 2615,5   | 1981,9    | 1461,4     | <del>55</del> 0,6  | 42,9  |
| 102 | 0,150  | 0,180   | 0,250   | 0,320     | 0,420   | 0,670          | 0,850 | 6,342               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 4127,9 | 3423,2  | 2436,7   | 1881,8    | 1410,0     | 846,5              | 646,1 |
| 103 | 0,150  | 0,170   | 0,260   | 0,340     | 0,470   | 0,830          | 1,090 | 6,133               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3988,7 | 3507,7  | 2258,9   | 1703,8    | 1204,9     | 638,9              | 462,7 |
| 104 | 0,150  | 0,180   | 0,290   | 0,410     | 0,590   | 1,080          | 1,440 | 6,499               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 4232,9 | 3510,7  | 2141,1   | 1485,2    | 1001,6     | 501,8              | 351,3 |
| 105 | 0,160  | 0,190   | 0,250   | 0,320     | 0,430   | 0,960          | 1,620 | 5,963               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3627,0 | 3038,6  | 2285,3   | 1763,5    | 1286,8     | 521,2              | 268,1 |
| 106 | 0,170  | 0,190   | 0,240   | 0,290     | 0,350   | 0,500          | 0,630 | 5,237               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2980,4 | 2656,2  | 2082,0   | 1705,8    | 1396,2     | 947,3              | 731,2 |
| 107 | 0,190  | 0,210   | 0,270   | 0,320     | 0,370   | 0,500          | 0,590 | 5,194               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2633,6 | 2373,3  | 1823,6   | 1523,1    | 1303,7     | 938,8              | 780,3 |
| 108 | 0,160  | 0,180   | 0,240   | 0,290     | 0,350   | 0,510          | 0,670 | 5,994               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3646,3 | 3230,0  | 2397,5   | 1966,9    | 1612,6     | 1075,3             | 794,6 |
| 109 | 0,210  | 0,260   | 0,410   | 0,620     | 0,980   | 1,780          | 2,300 | 4,900               | . <b>1</b> | Į <b>1</b>      | 1      | 1           | 1                   | 1               | 1    | 2233,2 | 1784,5  | 1095,1   | 690,3     | 400,0      | 175,3              | 113,0 |
| 110 | 0,250  | 0,310   | 0,500   | 0,710     | 1,020   | 1,800          | 2,360 | 4,603               | 1          | . <b>1</b>      | 1      | 1           | 1                   | 1               | 1    | 1741,3 | 1384,9  | 820,6    | 548,3     | 351,3      | 155,7              | 95,0  |
| 111 | 0,220  | 0,260   | 0,410   | 0,640     | 1,020   | 1,940          | 2,590 | 5,541               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2418,5 | 2031,1  | 1251,4   | 765,7     | 443,2      | 185,6              | 113,9 |
| 112 | 0,200  | 0,230   | 0,310   | 0,380     | 0,480   | 0,750          | 0,930 | 5,209               | . <b>1</b> | 1               | 1      | 1           | 1                   | 1               | 1    | 2504,4 | 2164,7  | 1580,3   | 1270,7    | 985,2      | 594,5              | 460,1 |
| 113 | 0,220  | 0,250   | 0,350   | 0,440     | 0,570   | 0,930          | 1,220 | 6,211               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2723,2 | 2384,4  | 1674,6   | 1311,6    | 989,7      | 567,9              | 409,1 |
| 114 | 0,220  | 0,260   | 0,360   | 0,460     | 0,630   | 1,180          | 1,860 | 6,236               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2734,6 | 2298,5  | 1632,3   | 1255,7    | 889,9      | 428,5              | 235,3 |
| 115 | 0,190  | 0,230   | 0,320   | 0,400     | 0,520   | 0,810          | 1,000 | 4,855               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2455,3 | 2010,9  | 1417,2   | 1113,8    | 833,7      | 499,4              | 385,5 |
| 116 | 0,210  | 0,240   | 0,320   | 0,380     | 0,480   | 0,740          | 0,940 | 6,339               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2918,5 | 2541,2  | 1880,9   | 1568,1    | 1220,6     | 756,6              | 574,3 |
| 117 | 0,180  | 0,210   | 0,300   | 0,390     | 0,510   | 0,910          | 1,200 | 6,099               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3288,1 | 2804,1  | 1932,8   | 1463,7    | 1095,8     | 570,2              | 408,2 |
| 118 | 0,180  | 0,220   | 0,340   | 0,470     | 0,730   | 1,820          | 3,210 | 6,519               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3521,5 | 2863,0  | 1817,2   | 1286,9    | 793,0      | 258,2              | 103,1 |
| 119 | 0,200  | 0,250   | 0,440   | 0,790     | 1,380   | 3,000          | 3,880 | 6,405               | ļ <u>1</u> | 1               | 1      | 1           | 1                   | 1               | 1    | 3102,4 | 2461,9  | 1355,6   | 710,7     | 364,1      | 113,5              | 65,1  |
| 120 | 0,210  | 0,280   | 0,560   | 0,920     | 1,520   | 3,030          | 3,850 | 6,759               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3118,5 | 2313,9  | 1106,9   | 634,7     | 344,7      | 123,1              | 75,6  |
| 121 | 0,210  | 0,270   | 0,480   | 0,730     | 1,130   | 2,320          | 3,550 | 6,626               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3055,1 | 2354,0  | 1280,4   | 807,6     | 486,4      | 185,6              | 86,6  |
| 122 | 0,200  | 0,240   | 0,370   | 0,590     | 1,130   | 2,600          | 3,750 | 7,101               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3450,6 | 2858,9  | 1819,3   | 1103,6    | 528,4      | 173,1              | 89,4  |
| 123 | 0,210  | 0,260   | 0,480   | 0,860     | 1,430   | 3,130          | 4,060 | 6,423               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2958,8 | 2370,6  | 1238,2   | 646,9     | 349,2      | 105,2              | 58,2  |
| 124 | 0,210  | 0,290   | 0,540   | 0,770     | 1,080   | 1,810          | 2,880 | 6,718               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 3099,1 | 2216,6  | 1144,1   | 772,5     | 522,0      | 271,2              | 133,3 |
| 125 | 0,230  | 0,300   | 0,680   | 1,180     | 1,840   | 3,410          | 4,160 | 6,433               | 1          | 1               | 1      | 1           | į <u>1</u>          | 1               | 1    | 2696,9 | 2044,3  | 846,0    | 445,2     | 249,6      | 88,6               | 54,6  |
| 126 | 0,300  | 0,380   | 0,660   | 0,950     | 1,330   | 2,270          | 2,950 | 5,618               | 1          | 1               | 1      | 1           | į <u>1</u>          | 1               | 1    | 1772,6 | 1378,4  | 751,2    | 491,3     | 322,4      | 147,5              | 90,4  |
| 127 | 0,250  | 0,290   | 0,480   | 0,680     | 0,980   | 1,920          | 2,830 | 6,026               | 1          | 1               | 1      | 1           | į <u>1</u>          | 1               | 1    | 2310,5 | 1978,0  | 1155,5   | 786,2     | 514,9      | 213,9              | 112,9 |
| 128 | 0,220  | 0,280   | 0,540   | 0,850     | 1,320   | 2,630          | 3,560 | 6,760               | 1          | 1               | 1      | 1           | 1                   | 1               | 1    | 2972,6 | 2314,2  | 1151,8   | 695,3     | 412,1      | 157,0              | 89,9  |

Tabela 5.66 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ         | METRO  | DS DO I | LEIT O  | DOPA      | RA OF   | LIO ATI      | BAIA  |                       | ĺ '  | COMP            | ARA ÇA          | O ENT           | RE D <sub>vj</sub>  | D D             |      | RELAÇ  | ÃO PERC | ENTUAL F      | IN TRE OS | VALORES    | $\mathbf{D} \mathbf{E} \mathbf{D}_{VJ}$ |        |
|-------------|--------|---------|---------|-----------|---------|--------------|-------|-----------------------|------|-----------------|-----------------|-----------------|---------------------|-----------------|------|--------|---------|---------------|-----------|------------|-----------------------------------------|--------|
|             | Granul | ometria | a do ma | terial do | ) leino |              |       |                       | (10) | (11)            | (12)            | (13)            | (14)                | (15)            | (16) | E      | OS VALO | RES MEDI      | DOS NO R  | IO A TIBAI | IA                                      |        |
| (1)         | (2)    | (3)     | (4)     | (5)       | (6)     | $-\infty$    | (8)   | (9)                   |      | COMP            | ARAÇÂ           | ODE             | D <sub>10 DTB</sub> | COM:            |      | (17)   | (18)    | (19)          | (20)      | (21)       | (22)                                    | (23)   |
| N°          | D10    | D16     | D35     | D50       | D65     | D84          | D90   | D <sub>VI [208]</sub> | D    | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>     | D <sub>84</sub> | D.00 |        |         |               |           |            |                                         |        |
| L           | (mm)   | (mm)    | (mm)    | (mm)      | ໌ທາກປ   | (mm)         | (mm)  | 31.<br>3100.          |      |                 | ~               | ~               | ~                   |                 | ~    |        |         |               |           |            |                                         |        |
| 129         | 0.230  | 0.260   | 0.370   | 0.500     | 0.750   | 1.470        | 1.970 | 6.768                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2842.7 | 2503.1  | 1729.2        | 1253.6    | 802.4      | 360.4                                   | 243.6  |
| 130         | 0.340  | 0.400   | 0.630   | 0.830     | 1.080   | 1.580        | 1.850 | 5,869                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1626,3 | 1367,4  | 831,7         | 607,2     | 443,5      | 2715                                    | 217,3  |
| 131         | 0,150  | 0,210   | 0,290   | 0,360     | 0,440   | 0,660        | 0,840 | 5,990                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3893,5 | 2752,5  | 1965,6        | 1563,9    | 1261,4     | 807,6                                   | 613,1  |
| 132         | 0,110  | 0,130   | 0,170   | 0,200     | 0,230   | 0,300        | 0,340 | 5,038                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 4480,4 | 3775,7  | 2863,8        | 2419,2    | 2090,6     | 1579,5                                  | 1381,9 |
| 133         | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,290        | 0,330 | 4,595                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3182,2 | 2963,4  | 2452,9        | 2197,6    | 1897,9     | 1484,5                                  | 1292,5 |
| 134         | 0,150  | 0,160   | 0,190   | 0,220     | 0,250   | 0,320        | 0,380 | 4,192                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2694,7 | 2520,0  | 2106,3        | 1805,5    | 1576,8     | 1210,0                                  | 1003,2 |
| 135         | 0,150  | 0,160   | 0,180   | 0,200     | 0,220   | 0,260        | 0,280 | 4,886                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3157,0 | 2953,5  | 2614,2        | 2342,8    | 2120,7     | 1779,1                                  | 1644,8 |
| 136         | 0,160  | 0,170   | 0,190   | 0,220     | 0,250   | 0,310        | 0,350 | 4,615                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2784,2 | 2614,5  | 2328,8        | 1997,6    | 1745,9     | 1388,6                                  | 1218,5 |
| 137         | 0,300  | 0,390   | 0,770   | 1,120     | 1,590   | 2,850        | 3,730 | 4,595                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1431,5 | 1078,1  | 496,7         | 310,2     | 189,0      | 61,2                                    | 23,2   |
| 138         | 0,160  | 0,170   | 0,210   | 0,240     | 0,280   | 0,360        | 0,400 | 4,627                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2792,0 | 2621,9  | 2103,5        | 1828,0    | 1552,6     | 1185,4                                  | 1056,8 |
| 139         | 0,160  | 0,170   | 0,210   | 0,250     | 0,300   | 0,400        | 0,480 | 4,671                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2819,2 | 2647,5  | 2124,2        | 1768,3    | 1456,9     | 1067,7                                  | 873,1  |
| 140         | 0,140  | 0,160   | 0,200   | 0,230     | 0,280   | 0,390        | 0,470 | 5,899                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 4113,5 | 3586,8  | 2849,5        | 2464,7    | 2006,8     | 1412,5                                  | 1155,1 |
| 141         | 0,150  | 0,170   | 0,230   | 0,290     | 0,380   | 0,600        | 0,780 | 6,333                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 4122,0 | 3625,3  | 2653,5        | 2083,8    | 1566,6     | 955 <i>,</i> 5                          | 711,9  |
| 142         | 0,120  | 0,140   | 0,170   | 0,200     | 0,230   | 0,310        | 0,370 | 6,064                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 4953,7 | 4231,7  | 3467,3        | 2932,2    | 2536,7     | 1856,3                                  | 1539,0 |
| 143         | 0,180  | 0,200   | 0,700   | 1,500     | 2,220   | 4,130        | 5,120 | 6,228                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3359,8 | 3013,8  | 789,7         | 315,2     | 180,5      | 50,8                                    | 21,6   |
| 144         | 0,160  | 0,190   | 0,290   | 0,420     | 0,800   | 2,220        | 3,260 | 6,495                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3959,5 | 3318,5  | 2139,7        | 1446,5    | 711,9      | 192,6                                   | 99,2   |
| 145         | 0,160  | 0,190   | 0,300   | 0,450     | 1,000   | 2,700        | 3,820 | 6,656                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 4059,9 | 3403,0  | 2118,6        | 1379,1    | 565,6      | 146,5                                   | 74,2   |
| 146         | 0,120  | 0,150   | 0,230   | 0,310     | 0,420   | 0,970        | 1,340 | 6,606                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 5404,6 | 4303,7  | 2772,0        | 2030,8    | 1472,8     | 581,0                                   | 393,0  |
| 147         | 0,200  | 0,250   | 0,570   | 1,360     | 2,440   | 4,740        | 5,030 | 6,935                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3367,3 | 2673,8  | 1116,6        | 409,9     | 184,2      | 46,3                                    | 37,9   |
| 148         | 0,160  | 0,210   | 0,400   | 0,850     | 1,370   | 2,520        | 3,270 | 6,135                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3734,3 | 2821,4  | 1433,7        | 621,8     | 347,8      | 143,4                                   | 87,6   |
| 149         | 0,100  | 0,130   | 0,190   | 0,250     | 0,340   | 0,940        | 1,640 | 7,168                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 7067,7 | 5413,6  | 3672,5        | 2767,1    | 2008,2     | 662,5                                   | 337,1  |
| 150         | 0,090  | 0,120   | 0,180   | 0,230     | 0,310   | <b>1,010</b> | 2,430 | 6,889                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 7554,1 | 5640,6  | 3727,0        | 2895,1    | 2122,2     | 582,0                                   | 183,5  |
| Ŀ51         | 0,130  | 0,160   | 0,240   | 0,350     | 0,590   | 2,400        | 3,700 | 6,518                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 4913,7 | 3973,6  | 2615,8        | 1762,2    | 1004,7     | 171,6                                   | 76,2   |
| 152         | 0,100  | 0,120   | 0,170   | 0,210     | 0,250   | 0,380        | 0,480 | 6,744                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 6644,4 | 5520,3  | 3867,3        | 3111,6    | 2597,8     | 1674,8                                  | 1305,1 |
| <b>15</b> 3 | 0,110  | 0,130   | 0,190   | 0,230     | 0,300   | 0,840        | 1,830 | 5,969                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 5326,0 | 4491,2  | 3041,4        | 2495,0    | 1889,5     | 610,5                                   | 226,2  |
| <b>15</b> 4 | 0,230  | 0,290   | 0,710   | 1,330     | 2,130   | 3,760        | 4,500 | 5,945                 | 1    | 1               | ļ <u>1</u>      | 1               | 1                   | 1               | 1    | 2484,9 | 1950,1  | 737,4         | 347,0     | 179,1      | 58,1                                    | 32,1   |
| 155         | 0,200  | 0,230   | 0,360   | 0,530     | 1,000   | 2,730        | 3,980 | 7,692                 | 1    | 1               | į <b>1</b>      | 1               | 1                   | 1               | 1    | 3746,0 | 3244,3  | 2036,7        | 1351,3    | 669,2      | 181,8                                   | 93,3   |
| 156         | 0,080  | 0,090   | 0,160   | 0,220     | 0,430   | 2,140        | 4,060 | 4,395                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 5393,1 | 4782,8  | 2646,6        | 1897,5    | 922,0      | 105,4                                   | 8,2    |
| 157         | 0,180  | 0,200   | 0,290   | 0,390     | 0,800   | 1,070        | 2,060 | 6,261                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3378,5 | 3030,6  | 2059,1        | 1505,4    | 682,7      | 485,2                                   | 203,9  |
| 158         | 0,200  | 0,230   | 0,390   | 0,730     | 1,420   | 4,070        | 6,230 | 6,197                 | 1    | 1               | 1               | 1               | 1                   | 1               | 0    | 2998,7 | 2594,5  | 1489,1        | 749,0     | 336,4      | 52,3                                    | 0,5    |
| 159         | 0,120  | 0,150   | 0,230   | 0,340     | 0,600   | 4,670        | 0,300 | 5,989                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 4890,9 | 3892,7  | 2504,0        | 1661,5    | 898,2      | 28,2                                    | 18%,4  |
| 160         | 0,150  | 0,160   | 0,210   | 0,250     | 0,320   | 2,760        | 0,280 | 5,572                 | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3614,8 | 3382,7  | <b>2553,5</b> | 2128,9    | 1641,3     | 101,9                                   | 1890,1 |

Tabela 5.66 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

|     |       |          | _       |           |         |                 |       |                    |                 | _               |        |                 |                     |                 |       |        |         |                 |          |            |              |        |
|-----|-------|----------|---------|-----------|---------|-----------------|-------|--------------------|-----------------|-----------------|--------|-----------------|---------------------|-----------------|-------|--------|---------|-----------------|----------|------------|--------------|--------|
| DIÄ | METR  | OS DO    | LEITO   | DOPA      | RA OF   | LIO ATI         | IBAIA |                    |                 | COMP            | ARA ÇA | AO ENT          | 'RE D <sub>u</sub>  | D IA            |       | RELAÇ  | ÃO PERC | ENTUAL E        | NTREOS   | VALORES    | $D E D_{VJ}$ |        |
|     | Gram  | lometris | a do ma | terial do | o leino |                 |       |                    | (10)            | (11)            | (12)   | (13)            | (14)                | (15)            | (16)  | E      | OS VALO | RES MEDI        | DOS NORI | IO A TIBAI | ÍA.          |        |
| (1) | (2)   | (3)      | (4)     | (5)       | (6)     | $(\mathcal{O})$ | (8)   | (9)                |                 | COMP            | ARAÇ/  | <b>AODE</b>     | D <sub>10</sub> pre | a COM:          |       | (17)   | (18)    | (19)            | (20)     | (21)       | (22)         | (23)   |
| N⁰  | D10   | D16      | D35     | D50       | D65     | D84             | D90   | D <sub>W DEE</sub> | D <sub>10</sub> | D <sub>16</sub> | D.     | D <sub>50</sub> | D <sub>65</sub>     | D <sub>84</sub> | Dan   |        |         |                 |          |            |              |        |
|     | (mm)  | (mm)     | (mm)    | (mm)      | (mm)    | (mm)            | (mm)  | nan.               |                 |                 | ~      | ~               |                     |                 | ~     |        |         |                 |          |            |              |        |
| 161 | 0,160 | 0,180    | 0,230   | 0,270     | 0,330   | 0,490           | 0,640 | 6,106              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 3716,1 | 3292,1  | 2554,7          | 2161,4   | 1750,2     | 1146,1       | 854,0  |
| 162 | 0,150 | 0,160    | 0,200   | 0,240     | 0,290   | 4,840           | 1,350 | 5,235              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 3390,0 | 3171,9  | 2517 <i>,</i> 5 | 2081,2   | 1705,2     | 8,2          | 287,8  |
| 163 | 0,100 | 0,120    | 0,160   | 0,190     | 0,230   | 0,330           | 0,390 | 5,696              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 5595,8 | 4646,5  | 3459,9          | 2897,8   | 2376,4     | 1626,0       | 1360,5 |
| 164 | 0,170 | 0,190    | 0,260   | 0,320     | 0,420   | 1,310           | 2,080 | 5,785              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 3303,1 | 2944,9  | 2125,1          | 1707,9   | 1277,4     | 341,6        | 178,1  |
| 165 | 0,080 | 0,100    | 0,150   | 0,180     | 0,220   | 0,300           | 0,370 | 6,142              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 7577,1 | 6041,7  | 3994,4          | 3312,0   | 2691,7     | 1947,2       | 1559,9 |
| 166 | 0,140 | 0,150    | 0,190   | 0,230     | 0,290   | 1,190           | 3,530 | 5,978              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 4169,8 | 3885,2  | 3046,2          | 2499,0   | 1961,3     | 402,3        | 69,3   |
| 167 | 0,200 | 0,240    | 0,350   | 0,500     | 0,840   | 1,980           | 2,850 | 5,484              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 2642,2 | 2185,1  | 1467,0          | 996,9    | 552,9      | 177,0        | 92,4   |
| 168 | 0,220 | 0,250    | 0,350   | 0,440     | 0,630   | 1,250           | 1,650 | 4,835              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 2097,5 | 1833,8  | 1281,3          | 998,8    | 667,4      | 286,8        | 193,0  |
| 169 | 0,130 | 0,150    | 0,220   | 0,290     | 0,410   | 1,840           | 5,640 | 6,487              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 4889,9 | 4224,6  | 2848,6          | 2136,9   | 1482,2     | 252,5        | 15,0   |
| 170 | 0,140 | 0,190    | 0,320   | 0,460     | 0,760   | 1,660           | 2,450 | 6,706              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 4690,1 | 3429,6  | 1995,7          | 1357,9   | 782,4      | 304,0        | 173,7  |
| 171 | 0,160 | 0,190    | 0,370   | 0,920     | 1,760   | 4,000           | 5,260 | 6,797              | 1               | 1               | 1      | 1               | 1                   | 1               | 1     | 4147,9 | 3477,2  | 1736,9          | 638,8    | 286,2      | 69,9         | 29,2   |
|     |       |          |         |           |         |                 |       |                    |                 | (%              | )de ev | entos er        | mque D              | VJ≻D            |       | DIFE   | RENÇA P | ER CENT I       | JAL RELA | AT IVA M   | EDIA         |        |
|     |       |          |         |           |         |                 |       |                    | 100             | 100             | 100    | 100             | 100                 | 99,42           | 98,25 | 3118,3 | 2627,3  | 1764,5          | 1306,6   | 920,1      | 442,7        | 325,5  |

Tabela 5.66 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>W (PTR)</sub>- Diâmetro calculado pela equação: D<sub>W (PTR)</sub> = - 0,0012xLn(Q)+ 0,0097. Para o método de Eistein & Brow (1942-1950)

Q - Vazão em m<sup>3</sup>/s

| DLÄ | METR  | OSDO    | LEITO   | DO PA    | RA OI             | RIO AT    | IBAIA                                   |                        |          | COMP     | ARA ÇA | O ENI    | TRE D <sub>w</sub>   | IA D             |          | RELAÇ            | ÃO PERC          | ENTUAL E         | NTRE OS         | VALORES    | DE D <sub>VJ</sub> |                |
|-----|-------|---------|---------|----------|-------------------|-----------|-----------------------------------------|------------------------|----------|----------|--------|----------|----------------------|------------------|----------|------------------|------------------|------------------|-----------------|------------|--------------------|----------------|
|     | Granu | ometriz | ı do ma | terial d | o leito           |           |                                         |                        | (10)     | (11)     | (12)   | (13)     | (14)                 | (15)             | (16)     | Е                | OS VALO          | RES MED D        | DOS NO R        | IO A TIBAL | A                  |                |
| (1) | (2)   | (3)     | (4)     | (5)      | (6)               | $-\infty$ | (8)                                     | (9)                    |          | COMP.    | ARA ÇA | O DE     | D <sub>VJ [SE/</sub> | <sub>u</sub> COM | :        | (17)             | (18)             | (19)             | (20)            | (21)       | (22)               | (23)           |
| N   | D10   | D16     | D35     | D50      | D65               | D84       | D90                                     | D <sub>10</sub> (ST A) | D        | Dr       | Dar    | D        | Da                   | Der              | D        |                  |                  |                  |                 |            |                    |                |
| L   | (mm)  | (1111)  | (mm)    | (mm)     | (mm)              | (mm)      | (mm)                                    | -9 [bm9                | -w       | - 10     | - 30   | - 50     | - 68                 | - 84             | -90      |                  |                  |                  |                 |            |                    |                |
| Ļ   | 0 120 | 0 100   | 0.240   | 0.440    | (1111)<br>: 0 070 | 1 560     | (1011)                                  | 10 TO1                 | . 1      |          |        | 1        |                      | 1                | 1        | 02676            | 2022 A           | 2625 7           | 1004 4          | 1200.43    | 714.0              | 50.2.0         |
|     | 0,120 | 0,100   | 0,340   | 0,040    | 0,970             | 2 770     | 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 | 0.910                  | 1        | 1        | 1      | 1        | <sup>1</sup>         | 1                | 1<br>1   | 0307,0<br>5069.0 | 0970,4<br>3001 3 | 3032,7<br>2553.9 | 1004,0          | 1209,4     | 714,2              | 202,9          |
| - 2 | 0,190 | 0,240   | 0,370   | 0,540    | 1 0.40            | 2,770     | 3,020<br>A 110                          | 7,015                  | 1        | 1        | 1      | 1        | 1                    | 1                |          | 31647            | 2601 0           | 1532.4           | 10523           | 653.4      | 164 7              | 00,6           |
| A   | 0,240 | 0,250   | 0,400   | 0,000    | 1 370             | 3 240     | 4 220                                   | 10.485                 | 1        | 1        | 1      | 1        |                      | 1                | 1        | 4666.0           | 3783.4           | 1878.3           | 1119.2          | 665.3      | 223.6              | 148.5          |
| 5   | 0.240 | 0.280   | 0.400   | 0.510    | 0.640             | 0.970     | 1.230                                   | 6.094                  | ī        | ī        | ī      | ī        | ī                    | ī                |          | 2439.0           | 2076.3           | 1423.4           | 1094.8          | 852.1      | 528.2              | 395.4          |
| б   | 0.330 | 0.400   | 0,710   | 1.020    | 1.470             | 2,500     | 3.130                                   | 16,956                 | 1        | ī        | ī      | ī        | ī                    | ī                | ī        | 5038,2           | 4139.0           | 2288,2           | 1562.3          | 1053,5     | 578.2              | 441.7          |
| 7   | 0,270 | 0,320   | 0,450   | 0,570    | 0,730             | 1,130     | 1,420                                   | 8,785                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1        | 3153,8           | 2645,4           | 1852,3           | 1441,3          | 1103,5     | 677,5              | 518,7          |
| 8   | 0,290 | 0,340   | 0,500   | 0,640    | 0,830             | 1,440     | 3,780                                   | 7,916                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1        | 2629,6           | 2228,2           | 1483,2           | 1136,9          | 853,7      | 449,7              | 109,4          |
| 9   | 0,360 | 0,440   | 0,690   | 0,970    | 1,500             | 4,470     | 4,940                                   | 7,324                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1        | 1934,4           | 1564,5           | 961,4            | 655,1           | 388,3      | 63,8               | 48,3           |
| 10  | 0,320 | 0,370   | 0,520   | 0,660    | 0,850             | 1,400     | 2,000                                   | 4,762                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1        | 1388,0           | 1186,9           | 815,7            | 621,4           | 460,2      | 240,1              | 138,1          |
| 11  | 0,300 | 0,360   | 0,560   | 0,780    | 1,220             | 4,100     | 4,750                                   | 3,151                  | 1        | 1        | 1      | 1        | 1                    | 0                | 0        | 950,3            | 775,2            | 462,6            | 303,9           | 158,3      | 30,1               | 50,8           |
| 12  | 0,300 | 0,360   | 0,560   | 0,770    | 1,090             | 3,330     | 4,500                                   | 2,536                  | 1        | 1        | 1      | 1        | 1                    | 0                | 0        | 745,2            | 604,3            | 352,8            | 229,3           | 132,6      | 31,3               | ,57            |
| 13  | 0,270 | 0,320   | 0,480   | 0,630    | 0,870             | 3,900     | 4,700                                   | 1,331                  | 1        | <u> </u> | 1      | 1        | <u>1</u>             | 0                | 0        | 393,1            | 316,1            | 177,4            | 111,3           | 53,0       | 192,9              | 253,0          |
| 14  | 0,270 | 0,320   | 0,470   | 0,640    | 0,920             | 2,300     | 4,020                                   | 1,047                  | 1        | 1        | 1      | 1        | 1                    | 0                | 0        | 288,0            | 227,3            | 122,9            | 63,7            | 13,9       | 119,6              | 283,8          |
| 15  | 0,280 | 0,320   | 0,490   | 0,660    | 0,950             | 2,170     | 3,160                                   | 1,417                  | 1        | 1        | 1      | 1        | 1                    | 0                | 0        | 406,2            | 342,9            | 189,3            | 114,7           | 49,2       | 53,1               | 123,0          |
| 16  | 0,240 | 0,270   | 0,370   | 0,470    | 0,610             | 1,000     | 1,450                                   | 4,947                  | ļļ       | 1        | 1      | <u> </u> | 1                    | 1                | <u>1</u> | 1961,4           | 1732,3           | 1237,1           | 952,6           | 711,0      | 394,7              | 241,2          |
| 17  | 0,310 | 0,370   | 0,510   | 0,6.90   | 0,800             | 1,290     | 1,770                                   | 16,047                 | <u> </u> | Į 1      | 1      | 1        | ĮĮ                   | 1                | 1        | 5076,5           | 4237,1           | 3046,5           | 2447,2          | 1905,9     | 1144,0             | 806,6          |
| 18  | 0,280 | 0,340   | 0,510   | 0,690    | 0,970             | 4,770     | 5,110                                   | 5,784                  | ļ        | <u> </u> | 1      | <b>I</b> | ļ                    | 1                | 1        | 1905,5           | 1601,0           | 1034,0           | 758,2           | 496,2      | 21,2               | 13,2           |
| 19  | 0,310 | 0,570   | 0,550   | 0,/10    | 0,900             | 5,050     | 4,020                                   | 9,752                  | <u> </u> | I        | 1      | 1        | ļ                    | 1                | 1        | 3039,4<br>4102.5 | 2530,5           | 1009,5           | 12/0,/          | 915,8      | 108,1              | 11U,/          |
| 20  | 0.240 | 0,350   | 0,500   | 0,050    | 0,800             | 1,240     | 1,040                                   | 12,199                 |          | 1        | 1      | 1        | 1                    | 1                | 1        | 4100,2           | 3367,4           | 2339,0<br>1045   | 1830,3          | 1424,9     | 003,0              | 043,8<br>107 5 |
| 21  | 0,340 | 0,440   | 0,840   | 1,200    | 2,140             | 4,720     | 4,900                                   | 4 106                  | 1<br>1   | 1        | 1      | 1        | 1                    | U                | U<br>0   | 002,9<br>1000 T  | 443,1<br>075 0   | 184,2<br>450 5   | 87,7<br>264 0   | 154.4      | 87,1<br>1 0        | 107,2          |
| 44  | 0,300 | 0,320   | 0,720   | 1,120    | 1,070             | 4,270     | 4,020                                   | 4,190                  | 1        | 1<br>1   | 1      | 1        | <sup>1</sup>         | U<br>1           | U<br>1   | 1290,/           | 970,9<br>9650 2  | 439,2            | 204,9<br>1771 6 | 124,4      | 1,0<br>505 0       | 14,2           |
| 23  | 0,300 | 0,300   | 0,510   | 0,030    | 0,010             | 1,200     | 1,710                                   | 0.242                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1        | 22921            | 2020,3           | 1041,4           | 1471,0          | 1140.0     | 732.6              | 477,0<br>574.6 |
| 25  | 0.250 | 0,320   | 0,470   | 0,550    | 0,740             | 1,110     | 1,570                                   | 14 744                 | 1        | 1        | 1      | 1        | 1                    | 1                | <br>1    | 5707.8           | 4814.8           | 32510            | 2532.0          | 1010 8     | 1149 5             | 788.2          |
| 26  | 0.240 | 0,300   | 0,470   | 0,500    | 0,730             | 1,100     | 2 260                                   | 7 079                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1        | 292403           | 2340.8           | 1595 3           | 1196.0          | 856 5      | 428.2              | 213.2          |
| 27  | 0,230 | 0.280   | 0.420   | 0.540    | 0,740             | 1,200     | 4.430                                   | 4.013                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1<br>0   | 1644.8           | 1333 2           | 8555             | 643 1           | 465.2      | 234.4              | 10.4           |
| 28  | 0,250 | 0.290   | 0.410   | 0.520    | 0.650             | 0.950     | 1.200                                   | 4.657                  | 1        | i        | 1      | 1        | ī                    | 1                | 1        | 1762.8           | 1505.9           | 1035.9           | 795.6           | 616.5      | 390.2              | 288.1          |
| 29  | 0.240 | 0.280   | 0.390   | 0.480    | 0.590             | 0.830     | 1.000                                   | 3.419                  | ī        | ī        | î      | Î        | i î                  | ī                | ī        | 1324.7           | 1121.2           | 776.7            | 612.3           | 479.5      | 312.0              | 241.9          |
| 30  | 0.270 | 0.310   | 0.430   | 0.530    | 0.650             | 0.890     | 1.050                                   | 4,984                  | ī        | î        | î      | î        | i î                  | ī                | î        | 1745.8           | 1507.6           | 1059.0           | 840.3           | 666.7      | 460.0              | 374.6          |
| 31  | 0.230 | 0.270   | 0.370   | 0,470    | 0.600             | 0.890     | 1.100                                   | 2,745                  | Ī        | Ī        | ī      | ī        | Ī                    | ī                | ī        | 1093,7           | 916.8            | 642,0            | 484,1           | 357,6      | 208,5              | 149,6          |
| 32  | 0,280 | 0,340   | 0,500   | 0,650    | 0,870             | 1,660     | 2,300                                   | 5,079                  | 1        | 1        | 1      | 1        | 1                    | 1                | 1        | 1714,1           | 1394,0           | 915,9            | 681,5           | 483,8      | 206,0              | 120,8          |

Tabela 5.6g - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÀ | METR  | OSDO    | LEITO   | DO PA    | RA OI   | RIO AT    | IBAIA   |                       |          | COMP       | ARA ÇA   | O ENI    | TRE D <sub>w</sub>   | L <sup>a</sup> D |          | RELA Ç        | ÃO PERC           | ENTUAL E          | NTRE OS          | VALORES    | $DE \ D_{\rm UJ}$ |                 |
|-----|-------|---------|---------|----------|---------|-----------|---------|-----------------------|----------|------------|----------|----------|----------------------|------------------|----------|---------------|-------------------|-------------------|------------------|------------|-------------------|-----------------|
|     | Granu | ometriz | ı do ma | terial d | o leito |           |         |                       | (10)     | (11)       | (12)     | (13)     | (14)                 | (15)             | (16)     | Е             | OS VALO           | RES MED D         | DOS NO R         | IO A TIBAI | A                 |                 |
| (l) | (2)   | (3)     | (4)     | (5)      | (6)     | $-\infty$ | (8)     | (9)                   |          | COMP.      | ARAÇA    | O DE     | D <sub>VJ (SEA</sub> | u COM            | :        | (17)          | (18)              | (19)              | (20)             | (21)       | (22)              | (23)            |
| N   | D10   | D16     | D35     | D50      | D65     | D84       | D90     | D <sub>10</sub> (RFA) | D        | Dv         | Dar      | Dm       | Da                   | Der              | Dm       |               |                   |                   |                  |            |                   |                 |
| L   | (mm)  | (       | (mm)    | (        | (       | 6         | (       | of family             | -10      | - 10       | - so     | - 50     | - @                  | - 84             | -90      |               |                   |                   |                  |            |                   |                 |
| 22  |       | 0.220   | 0.450   | 0 570    | 0 720   | 1 220     | (JIUIL) | 1611                  | . 1      | 1          | 1        | 1        |                      | 1                | 0        | 475.2         | 402.4             | 250.0             | 102 4            | 120.7      | 21.0              | 25.2            |
| 33  | 0,200 | 0,320   | 0,450   | 0,370    | 0,730   | 1,430     | 1 050   | 2 434                 | <b>1</b> | 1          | 1        | 1        | 1                    | 1<br>1           | . U<br>1 | 475,3<br>9017 | 403,4             | 403.6             | 102,U<br>377 2   | 296 3      | 31,0<br>176 6     | 32,3<br>121 Q   |
| 34  | 0,270 | 0,300   | 0,410   | 0,510    | 0,030   | 1 000     | 1,050   | 3 261                 | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 10647         | 010 1             | 473,0<br>6411     | 503.0            | 370 6      | 226 1             | 151,0           |
| 36  | 0.210 | 0.250   | 0.360   | 0.450    | 0.580   | 0.890     | 1,100   | 5.531                 | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 2533.7        | 2112.3            | 1436.3            | 1129.1           | 853.6      | 521.4             | 402.8           |
| 37  | 0.270 | 0.320   | 0.450   | 0.570    | 0.740   | 1.180     | 1.520   | 2.092                 | ī        | ī          | ī        | ī        | ī                    | ī                | ī        | 674.7         | 553.7             | 364.8             | 267.0            | 182.7      | 77.3              | 37.6            |
| 38  | 0,260 | 0,330   | 0,530   | 0,730    | 1,010   | 1,790     | 3,150   | 8,591                 | 1        | ī          | ī        | 1        | 1                    | ī                | 1        | 3204,2        | 2503,3            | 1520,9            | 1076.8           | 750,6      | 379,9             | 172,7           |
| 39  | 0,300 | 0,340   | 0,480   | 0,600    | 0,750   | 1,140     | 1,450   | 1,975                 | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 558,4         | 481,0             | 311,5             | 229,2            | 163,4      | 73,3              | 36,2            |
| 40  | 0,320 | 0,370   | 0,550   | 0,710    | 0,950   | 1,600     | 2,510   | 23,813                | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 7341,7        | 6336,1            | 4229,7            | 3254,0           | 2406,7     | 1388,3            | 848,7           |
| 41  | 0,280 | 0,320   | 0,450   | 0,570    | 0,720   | 1,080     | 1,360   | 21,742                | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 7664,9        | 6694,3            | 4731,5            | 3714,3           | 2919,7     | 1913,1            | 1498,7          |
| 42  | 0,220 | 0,270   | 0,410   | 0,570    | 0,900   | 4,170     | 4,790   | 7,733                 | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 3415,0        | 2764,1            | 1786,1            | 1256,7           | 759,2      | 85,4              | б1,4            |
| 43  | 0,290 | 0,340   | 0,460   | 0,570    | 0,700   | 1,020     | 1,280   | 6,825                 | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 2253,4        | 1907,3            | 1383,7            | 1097,3           | 875,0      | 569,1             | 433,2           |
| 44  | 0,170 | 0,250   | 0,550   | 0,820    | 1,250   | 4,840     | 5,150   | 25,873                | 1        | į <u>1</u> | 1        | 1        | ļ 1                  | 1                | 1        | 15119,3       | 10249,1           | 4604,1            | 3055,2           | 1969,8     | 434,6             | 402,4           |
| 45  | 0,210 | 0,260   | 0,410   | 0,590    | 0,880   | 1,790     | 2,700   | 26,166                | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 12359,9       | 9963,8            | 6281,9            | 4334,9           | 2873,4     | 1361,8            | 869,1           |
| 46  | 0,180 | 0,200   | 0,300   | 0,410    | 0,600   | 1,200     | 1,850   | 11,718                | <u> </u> | ĮĮ         | <u> </u> | ļ        | ļļ                   | <u> </u>         | <u> </u> | 6410,1        | 5759,1            | 3806,1            | 2758,1           | 1853,0     | 876,5             | 533,4           |
| 47  | 0,170 | 0,210   | 0,390   | 0,650    | 1,140   | 2,970     | 4,030   | 20,088                | ĮĮ       | 1          | 1        | 1        | 1                    | 1                | 1        | 11716,2       | 9465,5            | 5050,7            | 2990,4           | 1662,1     | 576,3             | 398,5           |
| 48  | 0,150 | 0,170   | 0,210   | 0,250    | 0,330   | 0,720     | 1,100   | 17,280                | Ļ        | ļļ         | ļļ       | <b>I</b> | <u> </u>             | <u>1</u>         | ļ        | 11419,7       | 10064,5           | 8128,4            | 6811,8           | 5136,2     | 2299,9            | 1470,9          |
| 49  | 0,150 | 0,170   | 0,210   | 0,240    | 0,520   | 0,910     | 1,440   | 11,805                | 1        | 1<br>1     | 1        | 1        | 1                    | 1                | 1        | /808,4        | 08/8,0            | 5548,9            | 4842,8           | 500/,1     | 1205,0            | /25,8           |
| 50  | 0,100 | 0,170   | 0,230   | 0,520    | 0,050   | 1,550     | 2,790   | 13,910                | 1<br>1   | 1          | 1        | 1        | 1                    | 1                | 1        | 8797,4        | 8085,7            | 2920,)<br>2000.0  | 4248,7           | 2040,9     | /9/,8<br>707.0    | 398,8           |
| 21  | 0,170 | 0,190   | 0,200   | 0,330    | 0,490   | 1,090     | 1,280   | 7,497                 | <u>1</u> | I          | 1        | 1        | 1                    | 1                | 1        | 4310,3        | 3840,1            | 2899,0            | 1265 0           | 1430,1     | 287,8             | 3/4,2           |
| 22  | 0.120 | 0,190   | 0,280   | 0,200    | 0,700   | 2,040     | 2,800   | (,349<br>2 720        |          | 1          | 1        | 1        | 1                    | 1<br>1           | 1        | 4211,2        | 3121,4            | 27172             | 1302,0           | / 14,3 :   | 209,3<br>213 2    | 120,3           |
| 23  | 0140  | 0,180   | 0,200   | 0,370    | 0,230   | 0,910     | 1,230   | 0,70                  |          | 1          | 1        | 1        | 1                    | 1<br>1           | 1        | 4143,/        | 3024,4<br>12057.2 | 2499,2<br>10607.6 | 1/20,2           | 0250 2     | 2707.2            | 949,4<br>2012 6 |
| 24  | 0,140 | 0,150   | 0,100   | 0,200    | 0,230   | 0,200     | 0,920   | 19,430                | <u>1</u> | 1          | 1        | 1        | 1                    | 1                | 1        | 13/04,/       | 12077,2           | 5790.9            | 4304.0           | 3497.2     | J/0/,4            | 1166 1          |
| 27  | 0,140 | 0,100   | 0,200   | 0,240    | 0,300   | 1 200     | 1 020   | 10,702                | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 6100,5        | 2020,0            | 3200,0<br>4276 1  | 4304,0<br>9776 7 | 1475.0     | 1073,0<br>674 1   | 4715            |
| 51  | 0,100 | 0,170   | 0,230   | 0,350    | 0,000   | 1,390     | 1,930   | 5 470                 | 1        | 1          | 1        | 1        | 1                    | <u>1</u>         | 1        | 21170         | 2020,2<br>2770 0  | 4270,1<br>2000 1  | 1600 4           | 142,0      | 670 <i>4</i>      | 421,2           |
| 20  | 0,170 | 0,150   | 0,230   | 0,320    | 0,420   | 1.460     | 4 600   | 3 270                 | 1        | 1          | 1        | 1        | 1                    |                  | 1        | 2242.0        | 10/0 2            | 1625 7            | 1375 6           | 1202,4     | 124.6             | 475,0           |
| 50  | 0,140 | 0,100   | 0,190   | 0,230    | 0,200   | 1,400     | 4,090   | 19 034                | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 117225        | 10419 7           | 91320             | 6479.9           | 4754.8     | 2424.5            | 1560.9          |
| 60  | 0 170 | 0,100   | 0,230   | 0,220    | 0,550   | 1 660     | 2 500   | 8.002                 | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 4607.0        | 41115             | 28637             | 1900 5           | 966.0      | 382.0             | 220 1           |
| 61  | 0,170 | 0,190   | 0.270   | 0,400    | 0,720   | 1.240     | 1.640   | 4 353                 | 1        | 1          | 1        | 1        | 1                    | 1                | 1        | 2460.4        | 2100 0            | 15121             | 1100,2           | 663 6      | 251.0             | 165.4           |
| 62  | 0.180 | 0.210   | 0.370   | 0.820    | 1.560   | 3.060     | 3.790   | 16.981                | 1        | 1          |          | 1        | iî                   | î                | 1        | 9333.7        | 7986.0            | 4489.4            | 1970.8           | 988.5      | 454.9             | 348.0           |
| 63  | 0.160 | 0.190   | 0.310   | 0.520    | 0.810   | 1.370     | 1.660   | 4.681                 | ī        | ī          | ī        | ī        | ī                    | î                | ī        | 2825.7        | 2363.8            | 1410.1            | 800.2            | 477.9      | 241.7             | 182.0           |
| 64  | 0.150 | 0.180   | 0.340   | 0.630    | 0.970   | 1.560     | 1.860   | 2.522                 | ī        | ī          | ī        | ī        | î                    | ī                | ī        | 1581.6        | 1301.3            | 641.9             | 300.4            | 160.0      | 61.7              | 35.6            |
|     |       | -,      |         |          |         |           |         |                       |          | ·          | ·        | <b>.</b> | <b>.</b>             | <b>.</b>         | ·        |               |                   |                   |                  |            | ·····             |                 |

Tabela 5.6g - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR   | OSDO    | LEITO   | DO PA    | RA O I  | RIOAT           | IBAIA |        | 3    | COMP  | ARA ÇA | 0 ENI | RE D <sub>w</sub>    | <sub>A</sub> D |      | RELAÇ   | ÃO PERCI | EN TUAL E | NTRE OS ' | VALORES   | DE D <sub>VJ</sub> |        |
|-----|--------|---------|---------|----------|---------|-----------------|-------|--------|------|-------|--------|-------|----------------------|----------------|------|---------|----------|-----------|-----------|-----------|--------------------|--------|
| Л   | Granul | ometriz | a do ma | terial d | o leito |                 |       |        | (10) | (11)  | (12)   | (13)  | (14)                 | (15)           | (16) | E       | OS VALOF | ES MEDI   | DOSNO RI  | O A TIBAL | 6                  |        |
| (l) | (2)    | (3)     | (4)     | (5)      | (6)     | $(\mathcal{D})$ | (8)   | (9)    |      | COMP. | ARAÇA  | ODE   | D <sub>VJ ISEA</sub> | COM            | :    | (17)    | (18)     | (19)      | (20)      | (21)      | (22)               | (23)   |
| N   | D10    | D16     | D35     | D50      | D65     | D84             | D90   | D      | D10  | D16   | D25    | D.50  | Des                  | Det            | Dan  | ))      | ž        | 1         | 8         |           |                    |        |
|     | (mm)   | (mm)    | (mm)    | (mm)     | (mm)    | (mm)            | (mm)  |        | m    |       | 30     |       | 6                    | 64             | ж    |         |          |           |           |           |                    |        |
| 65  | 0.170  | 0.190   | 0.260   | 0.380    | 0.600   | 1,180           | 1.750 | 31.811 |      | 1     | 1      |       | 1                    |                |      | 18612.5 | 16642.7  | 12135.1   | 8271.4    | 5201.9    | 2595.9             | 1717.8 |
| 66  | 0.170  | 0.180   | 0.220   | 0.260    | 0.310   | 0.410           | 0.470 | 8,280  | ī    | ī     | ĩ      | ĩ     | ī                    | ī              | ī    | 4770.8  | 4500,2   | 3663.8    | 3084.8    | 2571.1    | 1919.6             | 1661.8 |
| 67  | 0,170  | 0,190   | 0,250   | 0,320    | 0,440   | 1,190           | 1,680 | 13,434 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 7802,2  | 6970,4   | 5273,5    | 4098,0    | 2953,1    | 1028,9             | 699,6  |
| 68  | 0,170  | 0,180   | 0,230   | 0,270    | 0,320   | 0,430           | 0,560 | 20,983 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 12243,0 | 11557,3  | 9023,1    | 7671,5    | 6457,2    | 4779,8             | 3647,0 |
| 69  | 0,170  | 0,190   | 0,250   | 0,300    | 0,360   | 0,570           | 1,690 | 36,475 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 21355,8 | 19097,3  | 14490,0   | 12058,3   | 10031,9   | 6299,1             | 2058,3 |
| 70  | 0,230  | 0,260   | 0,340   | 0,430    | 0,620   | 1,410           | 2,050 | 13,234 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 5654,0  | 4990,1   | 3792,4    | 2977,7    | 2034,6    | 838,6              | 545,6  |
| 71  | 0,230  | 0,250   | 0,310   | 0,370    | 0,440   | 0,740           | 1,180 | 11,674 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 4975,5  | 4569,5   | 3665,7    | 3055,1    | 2553,1    | 1477,5             | 889,3  |
| 72  | 0,230  | 0,260   | 0,350   | 0,440    | 0,640   | 1,500           | 2,200 | 9,229  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 3912,5  | 3449,5   | 2536,8    | 1997,4    | 1342,0    | 515,2              | 319,5  |
| 73  | 0,190  | 0,230   | 0,320   | 0,410    | 0,610   | 1,630           | 3,000 | 8,361  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 4300,5  | 3535,2   | 2512,8    | 1939,2    | 1270,6    | 412,9              | 178,7  |
| 74  | 0,240  | 0,270   | 0,350   | 0,420    | 0,550   | 0,990           | 1,360 | 4,420  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 1741,5  | 1536,9   | 1162,8    | 952,3     | 703,6     | 346,4              | 225,0  |
| 75  | 0,200  | 0,250   | 0,400   | 0,640    | 1,100   | 2,520           | 3,770 | 5,702  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 2751,2  | 2181,0   | 1325,6    | 791,0     | 418,4     | 126,3              | 51,3   |
| 76  | 0,170  | 0,210   | 0,320   | 0,460    | 0,860   | 2,820           | 4,090 | 4,197  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 2369,0  | 1898,7   | 1211,6    | 812,4     | 388,1     | 48,8               | 2,6    |
| 77  | 0,220  | 0,270   | 0,410   | 0,560    | 0,800   | 1,340           | 1,660 | 4,278  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 1844,8  | 1484,6   | 943,5     | 664,0     | 434,8     | 219,3              | 157,7  |
| 78  | 0,180  | 0,220   | 0,330   | 0,450    | 0,750   | 1,980           | 3,050 | 3,578  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 1888,0  | 1526,5   | 984,3     | 695,2     | 377,1     | 80,7               | 17,3   |
| 79  | 0,190  | 0,230   | 0,360   | 0,540    | 1,000   | 2,700           | 3,730 | 4,748  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 2398,8  | 1964,2   | 1218,8    | 779,2     | 374,8     | 75,8               | 27,3   |
| 80  | 0,210  | 0,240   | 0,360   | 0,500    | 0,920   | 3,270           | 4,350 | 4,475  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 2031,1  | 1764,7   | 1143,2    | 795,1     | 386,5     | 36,9               | 2,9    |
| 81  | 0,190  | 0,230   | 0,350   | 0,520    | 1,070   | 3,850           | 4,630 | 4,086  | 1    | 1     | 1      | 1     | 1                    | 1              | 0    | 2050,3  | 1676,3   | 1067,3    | 685,7     | 281,8     | б,1                | 13,3   |
| 82  | 0,230  | 0,270   | 0,380   | 0,530    | 0,880   | 1,950           | 2,890 | 8,768  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 3712,1  | 3147,4   | 2207,3    | 1554,3    | 896,4     | 349,6              | 203,4  |
| 83  | 0,230  | 0,270   | 0,400   | 0,640    | 1,290   | 4,190           | 4,790 | 27,265 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 11754,5 | 9998,3   | 6716,3    | 4160,2    | 2013,6    | 550,7              | 469,2  |
| 84  | 0,210  | 0,240   | 0,330   | 0,420    | 0,740   | 1,820           | 2,370 | 5,470  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 2505,0  | 2179,3   | 1557,7    | 1202,5    | 639,2     | 200,6              | 130,8  |
| 85  | 0,230  | 0,270   | 0,390   | 0,670    | 1,650   | 4,070           | 4,690 | 10,038 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 4264,5  | 3617,9   | 2473,9    | 1398,3    | 508,4     | 146,6              | 114,0  |
| 86  | 0,210  | 0,240   | 0,330   | 0,420    | 0,740   | 3,000           | 4,160 | 11,172 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 5220,1  | 4555,1   | 3285,5    | 2560,0    | 1409,8    | 272,4              | 168,6  |
| 87  | 0,210  | 0,250   | 0,350   | 0,500    | 1,100   | 3,500           | 4,400 | 8,772  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 4077,3  | 3409,0   | 2406,4    | 1654,5    | 697,5     | 150,6              | 99,4   |
| 88  | 0,210  | 0,240   | 0,310   | 0,380    | 0,480   | 0,930           | 1,400 | 8,281  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 3843,2  | 3350,3   | 2571,2    | 2079,1    | 1625,1    | 790,4              | 491,5  |
| 89  | 0,190  | 0,220   | 0,310   | 0,380    | 0,500   | 0,830           | 1,110 | 10,279 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 5310,1  | 4572,3   | 3215,9    | 2605,0    | 1955,8    | 1138,5             | 826,1  |
| 90  | 0,200  | 0,230   | 0,310   | 0,370    | 0,460   | 0,770           | 1,100 | 16,641 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 8220,5  | 7135,3   | 5268,1    | 4397,6    | 3517,6    | 2061,2             | 1412,8 |
| 91  | 0,220  | 0,240   | 0,300   | 0,360    | 0,420   | 0,650           | 0,980 | 30,086 | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 13575,6 | 12435,9  | 9928,8    | 8257,3    | 7063,4    | 4528,7             | 2970,0 |
| 92  | 0,230  | 0,250   | 0,330   | 0,390    | 0,490   | 0,820           | 1,100 | 9,002  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 3814,0  | 3500,9   | 2627,9    | 2208,2    | 1737,2    | 997,8              | 718,4  |
| 93  | 0,230  | 0,260   | 0,340   | 0,400    | 0,510   | 0,800           | 1,030 | 6,365  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 2667,2  | 2347,9   | 1771,9    | 1491,1    | 1147,9    | 695,6              | 517,9  |
| 94  | 0,230  | 0,250   | 0,330   | 0,400    | 0,510   | 0,880           | 1,160 | 4,635  | 1    | 1     | 1      | 1     | 1                    | l              | 1    | 1915,3  | 1754,1   | 1304,6    | 1058,8    | 808,9     | 426,7              | 299,6  |
| 95  | 0,200  | 0,230   | 0,320   | 0,390    | 0,510   | 0,840           | 1,180 | 4,122  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 1961,1  | 1692,3   | 1188,2    | 957,0     | 708,3     | 390,7              | 249,3  |
| 96  | 0,150  | 0,200   | 0,400   | 0,750    | 1,480   | 4,440           | 4,920 | 5,558  | 1    | 1     | 1      | 1     | 1                    | 1              | 1    | 3605,4  | 2679,0   | 1289,5    | 641,1     | 275,5     | 25,2               | 13,0   |

Tabela 5.6g - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METR  | OSDO:    | LEITO   | DO PA    | RA OI   | RIOAT | IBAIA |           |          | COMP.    | ARAÇA    | <b>IOENI</b> | TRE D <sub>v</sub> | D D  |          | RELAÇ    | ÃO PERCI  | EN TUAL EI | NTRE OS ' | VALORES  | DEDW    | 2      |
|-----|-------|----------|---------|----------|---------|-------|-------|-----------|----------|----------|----------|--------------|--------------------|------|----------|----------|-----------|------------|-----------|----------|---------|--------|
| Ş   | Granu | lometria | a do ma | terial d | o leito |       | 1     |           | (10)     | (11)     | (12)     | (13)         | (14)               | (15) | (16)     | Е        | O S VALOI | RES MEDID  | OSNORI    | O ATIBAL | 4       |        |
| (1) | (2)   | (3)      | (4)     | (5)      | (6)     | (0)   | (8)   | (9)       |          | COMP     | ARAÇı    | 10 DE        | DWINKA             | COM  |          | (17)     | (18)      | (19)       | (20)      | (21)     | (22)    | (23)   |
| N   | D10   | D16      | D35     | D50      | D65     | D84   | D90   | DWERTAL   | D.,      | D.,      | D.,      | D.,          | D.,                | D.,  | D.,      |          |           |            |           |          |         | 1      |
|     | 1     | 2005     |         | 1        | 1       | 1     | 1.5   | A) [9974] | ~10      | ~10      | - 38     | ~50          | ~ 66               | -84  | ~90      |          |           |            |           |          |         |        |
|     | (mm)  | (mm)     | (mm)    | (mm)     | (mm)    | (mm)  | (mm)  | TATA.     | <u> </u> | Ļ        | Ļ        |              |                    |      |          |          |           |            |           |          |         |        |
| 97  | 0,210 | 0,280    | 0,550   | 0,890    | 1,410   | 3,490 | 4,400 | 5,528     | ļļ       | 1        |          | ļ <b>ļ</b>   | <u> </u>           | 1    | 1        | 2532,3   | 1874,2    | 905,1      | 521,1     | 292,0    | 58,4    | 25,6   |
| 98  | 0,220 | 0,290    | 0,550   | 0,890    | 1,410   | 4,000 | 4,700 | 5,517     | 1        | <u> </u> | ļļ       | 1            | ļ                  | 1    | 1        | 2407,9   | 1802,0    | 903,2      | 519,9     | 291,5    | 51,9    | 17,4   |
| 99  | 0,150 | 0,220    | 0,450   | 0,050    | 0,980   | 1,840 | 2,460 | 7,501     | ļ        | ļ        | ļ        | ļļ           | ļļ                 |      | <b>i</b> | 4900,9   | 5509,7    | 1044,5     | 1054,1    | 005,4    | 507,7   | 204,9  |
| 100 | 0,100 | 0,210    | 0,590   | 0,580    | 0,880   | 1,050 | 2,250 | 5,555     | Į        | 1        | Į        | Į            | 1                  | 1    | 1        | 2109,7   | 1585,0    | 800,5      | 509,0     | 501,8    | 110,9   | 5/,1   |
| 101 | 0,140 | 0,160    | 0,250   | 0,300    | 0,400   | 0,960 | 4,570 | 25,425    | 1        | 1        | ļ        | 1            | 1                  | 1    | 1        | 100.52,4 | 14540,8   | 10084,9    | 1/08,5    | 5/50,5   | 2340,1  | 450,0  |
| 102 | 0,150 | 0,180    | 0,20    | 0,520    | 0,420   | 0,070 | 0,850 | 0,451     | 1        | ļ        |          | 1            | 1                  | 1    | 1        | 4187,2   | 34/2,0    | 24/2,5     | 1909,0    | 1451,1   | 859,8   | 050,0  |
| 105 | 0,150 | 0,170    | 0,260   | 0,540    | 0,470   | 0,850 | 1,090 | 4,430     | ļ        | ļ        | ļ        | ļ            | ļļ                 |      | 1        | 2857,3   | 2509,4    | 1000,1     | 1204,7    | 845,8    | 434,4   | 307,0  |
| 104 | 0,150 | 0,180    | 0,290   | 0,410    | 0,590   | 1,080 | 1,440 | 4,939     | ļļ       | ļ        | ļ        | 1            | 1                  |      | <b>1</b> | 5192,9   | 2044,1    | 1005,2     | 1104,7    | 151,2    | 551,5   | 245,0  |
| 100 | 0,100 | 0,190    | 0,250   | 0,320    | 0,450   | 0,900 | 1,020 | 7,135     | 1        | 1        | 1        | ļļ           | ļ                  | 1    | 1        | 4,558,1  | 5054,2    | 2/55,2     | 2129,0    | 1558,8   | 045,0   | 540,5  |
| 100 | 0,170 | 0,190    | 0,240   | 0,290    | 0,550   | 0,500 | 0,050 | 10,170    | 1        | 1        | ļ        | 1            | 1                  |      | 1        | 9415,2   | 8415,0    | 00.39,9    | 54/7,9    | 4521,7   | 3135,2  | 2407,0 |
| 107 | 0,190 | 0,210    | 0,2/0   | 0,520    | 0,570   | 0,500 | 0,590 | 25,191    | 1        | 1        | ļļ       | 1            | 1                  | 1    | 1        | 12105,7  | 10945,2   | 8489,2     | /14/,1    | 010/,8   | 45.58,2 | 5850,0 |
| 108 | 0,100 | 0,180    | 0,240   | 0,290    | 0,550   | 0,510 | 0,070 | 5,455     | 1        | ļ        | ļ        | 1            | ļļ                 | 1    | 1        | 5295,1   | 2918,4    | 2105,8     | 1// 5,5   | 1452,5   | 905,5   | /10,9  |
| 109 | 0,210 | 0,260    | 0,410   | 0,620    | 0,980   | 1,780 | 2,500 | 20,211    | ļ        | ļ        | ļ        | 1            | ļ                  | 1    | 1        | 9524,3   | 1013,5    | 4829,5     | 3159,8    | 1902,5   | 1035,4  | 118,1  |
| 110 | 0,250 | 0,510    | 0,500   | 0,/10    | 1,020   | 1,800 | 2,500 | 25,754    | 1        | 1        | ļ        | ļļ           | 1                  | 1    | 1        | 9401,7   | 1502,1    | 4050,9     | 5245,7    | 2228,9   | 1219,7  | 900,5  |
| 111 | 0,220 | 0,260    | 0,410   | 0,640    | 1,020   | 1,940 | 2,590 | 12,397    | <u> </u> | 1        | ĮĮ       | ļ <b>1</b>   | 1                  | 1    | 1        | 5535,1   | 4008,1    | 2923,7     | 1857,1    | 1115,4   | 539,0   | 5/8,/  |
| 112 | 0,200 | 0,250    | 0,310   | 0,580    | 0,480   | 0,750 | 0,950 | 15,939    | ļļ       | 1        | ļļ       | ļļ           | <u> </u>           | 1    | 1        | 7869,6   | 68.90,1   | 5041,7     | 4094,5    | 3220,7   | 2025,2  | 1613,9 |
| 115 | 0,220 | 0,250    | 0,350   | 0,440    | 0,570   | 0,930 | 1,220 | 0,818     | 1        | <u> </u> | ļ        | 1            | ļ                  | 1    | 1        | 2998,9   | 2027,1    | 1847,9     | 1449,5    | 1090,1   | 055,1   | 458,8  |
| 114 | 0,220 | 0,200    | 0,500   | 0,400    | 0,050   | 1,180 | 1,800 | 4,339     | ļ        | ļ        | ļ        | 1            | 1                  | 1    | 1        | 18/2,2   | 1508,8    | 1105,2     | 843,2     | 2002 /   | 201,1   | 133,3  |
| ID  | 0,190 | 0,250    | 0,520   | 0,400    | 0,520   | 0,810 | 1,000 | 18,10/    | 1        | 1        | ļ        | ļļ           | <u> </u>           | 1    | 1        | 9401,5   | 1198,0    | 22//,1     | 4441,7    | 5595.0   | 2142,8  | 1/10,/ |
| 110 | 0,210 | 0,240    | 0,520   | 0,580    | 0,480   | 0,/40 | 0,940 | 1,354     | 1        | 1        | ļ        | 1            | 1                  | 1    | 1        | 3401,9   | 2904,1    | 2198,1     | 1855,5    | 1452,1   | 895,8   | 082,5  |
| 117 | 0,180 | 0,210    | 0,500   | 0,590    | 0,510   | 0,910 | 1,200 | 7,207     | ļ        | ļļ       |          | ļļ           | <u> </u>           | 1    | 1        | 5904,2   | 5552,1    | 2502,5     | 1/48,1    | 1515,2   | 092,0   | 500,6  |
| 118 | 0,180 | 0,220    | 0,540   | 0,4/0    | 0,/30   | 1,820 | 5,210 | 5,082     | 1        | ļ        | ļļ       | 1            | <u> </u>           | 1    | <b>1</b> | 2725,5   | 2210,0    | 1394,7     | 981,5     | 590,2    | 1/9,2   | 58,5   |
| 119 | 0,200 | 0,250    | 0,440   | 0,790    | 1,580   | 3,000 | 3,880 | 0,089     | 1        | 1        | 1        | 1            | 1                  | 1    | 1        | 2944,5   | 23.55,4   | 1285,8     | 0/0,/     | 341,2    | 105,0   | 50,9   |
| 120 | 0,210 | 0,280    | 0,500   | 0,920    | 1,520   | 5,050 | 5,850 | 4,005     | ļ        | ļļ       | ļ        | ļļ           | ļļ                 |      | 1        | 1854,5   | 1550,9    | 025,5      | 541,0     | 107,5    | 54,1    | 52     |
| 121 | 0,210 | 0,270    | 0,480   | 0,/30    | 1,150   | 2,520 | 5,550 | 5,055     | 1        | 1        | ĮĮ       | 1            | 1                  | 1    | 1        | 2507,5   | 1772,5    | 955,2      | 592,5     | 547,4    | 117,9   | 42,4   |
| 122 | 0,200 | 0,240    | 0,570   | 0,590    | 1,130   | 2,600 | 3,750 | 5,198     | 1        | 1        | ĮĮ       | 1            | 1                  | 1    | U        | 1499,0   | 1252,5    | /04,5      | 442,0     | 185,0    | 25,0    | 17,5   |
| 123 | 0,210 | 0,260    | 0,480   | 0,860    | 1,430   | 3,130 | 4,060 | 4,884     | ļļ       | <u> </u> | ļļ       | ļļ           | 1                  | l    | <b>l</b> | 2225,6   | 1778,4    | 917,4      | 467,9     | 2415     | 56,0    | 20,3   |
| 124 | 0,210 | 0,290    | 0,540   | 0,770    | 1,080   | 1,810 | 2,880 | 3,126     | 1        | ĮĮ       | 1        | 1            | ĮĮ                 | 1    | 1        | 1588,4   | 977,8     | 478,8      | 305,9     | 189,4    | 72,7    | 8,5    |
| 125 | 0,230 | 0,300    | 0,680   | 1,180    | 1,840   | 3,410 | 4,160 | 4,217     | 1        | 1        | 1        | 1            | ļļ                 | 1    | 1        | 1733,6   | 1305,8    | 520,2      | 257,4     | 129,2    | 23,7    | 1,4    |
| 126 | 0,300 | 0,380    | 0,660   | 0,950    | 1,330   | 2,270 | 2,950 | 13,373    | 1        | <u> </u> | <u> </u> | ļļ           | 1                  | l    | 1        | 4357,8   | 3419,3    | 1926,3     | 1307,7    | 905,5    | 489,1   | 353,3  |
| 127 | 0,250 | 0,290    | 0,480   | 0,680    | 0,980   | 1,920 | 2,830 | 10,307    | <u> </u> | 1        | Į 1      | <u> </u>     | 1                  | 1    | 1        | 4023,0   | 3454,3    | 2047,4     | 1415,8    | 951,8    | 456,8   | 264,2  |
| 128 | 0,220 | 0,280    | 0,540   | 0,850    | 1,320   | 2,630 | 3,560 | 5,624     | <u> </u> | 1        | <u> </u> | <u> </u>     | 1                  | 1    | 1        | 2456,2   | 1908,4    | 941,4      | 561,6     | 326,0    | 113,8   | 58,0   |

Tabela 5.6g - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| $\mathbf{DL}$ | ÄMETR              | OSDO           | LEITO   | DO PA    | RA OI          | RIO AT           | TBAIA          |                      |            | COMP     | ARA ÇA   | O ENI  | TRE D <sub>w</sub>   | D a              |              | RELAÇ             | ÃO PERCI           | EN TUAL F        | INTRE OS        | VALORES          | $D  E  D_{\rm VJ}$ |                |
|---------------|--------------------|----------------|---------|----------|----------------|------------------|----------------|----------------------|------------|----------|----------|--------|----------------------|------------------|--------------|-------------------|--------------------|------------------|-----------------|------------------|--------------------|----------------|
|               | Granu              | bmetri         | 1 do ma | terial d | o leito        |                  |                |                      | (10)       | (11)     | (12)     | (13)   | (14)                 | (15)             | (16)         | Е                 | OS VALOI           | RES MEDI         | DOSNO R         | IO A TIBAI       | A                  |                |
| (1)           | (2)                | (3)            | (4)     | (5)      | (6)            | $(\overline{O})$ | (8)            | (9)                  |            | COMP.    | ARA ÇA   | O DE   | D <sub>VJ [SE/</sub> | <sub>u</sub> COM | :            | (17)              | (18)               | (19)             | (20)            | (21)             | (22)               | (23)           |
| N             | D10                | Dló            | D35     | D50      | D65            | D84              | D90            | D <sub>VI SKAI</sub> | D10        | Die      | Das      | D      | Der                  | Der              | $D_{\infty}$ |                   |                    |                  |                 |                  |                    |                |
|               | (mm)               | (mm)           | (mm)    | (mm)     | (mm)           | (mm)             | (mm)           | -111                 | 10         | 10       | 30       | 50     |                      | 64               | 90           |                   |                    |                  |                 |                  |                    |                |
| 120           | 0.230              | 0.260          | 0.370   | 0 500    | 0 750          | 1.470            | 1 070          |                      | . 1        | 1        | 1        | 1      | 1                    | 1                | 1            | 2697.4            | 265.9              | 1632 7           | 1192.2          | 754.9            | 336 1              | 225.4          |
| 13(           | 0,230              | 0,200          | 0,370   | 0,200    | 1 0.90         | 1,470            | 1,970          | 12,733               | <b>1</b>   | <b>1</b> | i        | 1<br>1 | 1                    | 1                | <u>1</u>     | 3644.9            | 3083.2             | 1032,7           | 1434 1          | 1079.0           | 705.9              | 588.3          |
| 131           | 0.150              | 0.210          | 0.290   | 0.360    | 0.440          | 0.660            | 0.840          | 11.126               | ī          | ī        | ī        | ī      | i i                  | î                | ī            | 7317.2            | 5198.0             | 3736.5           | 2990.5          | 2428.6           | 1585.7             | 1224.5         |
| 132           | 2 0.110            | 0.130          | 0.170   | 0.200    | 0.230          | 0.300            | 0.340          | 19.855               | ī          | ī        | ī        | ī      | î                    | î                | ī            | 17950.4           | 15173.4            | 11579.6          | 9827.7          | 8532.8           | 6518.5             | 5739.8         |
| 133           | 0,140              | 0,150          | 0,180   | 0,200    | 0,230          | 0,290            | 0,330          | 29,378               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 20884,5           | 19485,5            | 16221,3          | 14589,1         | 12673,2          | 10030,4            | 8802,5         |
| 134           | 4 0,150            | 0,160          | 0,190   | 0,220    | 0,250          | 0,320            | 0,380          | 38,468               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 25545,6           | 23942,8            | 20146,6          | 17385,7         | 15287,4          | 11921,4            | 10023,3        |
| 13:           | 5 0,150            | 0,160          | 0,180   | 0,200    | 0,220          | 0,260            | 0,280          | 23,222               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 15381,1           | 14413,5            | 12800,9          | 11510,8         | 10455,3          | 8831,4             | 8193,4         |
| 136           | 6 0,160            | 0,170          | 0,190   | 0,220    | 0,250          | 0,310            | 0,350          | 29,136               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 18110,3           | 17039,1            | 15235,0          | 13143,8         | 11554,6          | 9298,9             | 8224,7         |
| 13            | , 0,300            | 0,390          | 0,770   | 1,120    | 1,590          | 2,850            | 3,730          | 27,360               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 9019,9            | 6915,3             | 3453,2           | 2342,8          | 1620,7           | 860,0              | 633,5          |
| 138           | 8 0,160            | 0,170          | 0,210   | 0,240    | 0,280          | 0,360            | 0,400          | 25,343               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 15739,5           | 14807,8            | 11968,2          | 10459,7         | 8951,2           | 6939,8             | 6235,8         |
| 139           | 0,160              | 0,170          | 0,210   | 0,250    | 0,300          | 0,400            | 0,480          | 29,907               | <u> </u>   | 1        | 1        | 1      | 1                    | 1                | <u> </u>     | 18591,6           | 17492,1            | 14141,2          | 11862,6         | 9868,9           | 7376,7             | 6130,5         |
| 14            | 0,140              | 0,160          | 0,200   | 0,230    | 0,280          | 0,390            | 0,470          | 12,339               | 1          | <u> </u> | 1        | 1      | ĮĮ                   | 1                | Į            | 8713,5            | 7011,7             | 0009,5           | 5204,0          | 4506,7           | 3063,8             | 2525,2         |
| 14            | 0,150              | 0,170          | 0,230   | 0,290    | 0,580          | 0.210            | 0.270          | 24,235               |            | ļ        | I        | I      |                      | 1                |              | 10050,9           | 14150,1            | 10437,1          | 8257,U          | 6277,7<br>5205.2 | 3939,2             | 3007,1         |
| 144           | 0,120              | 0,140          | 0,1/0   | 0,200    | 0,230          | 4 1 20           | 0,370<br>5 120 | 14,411               | <u>1</u>   | 1        | I        | 1      | 1                    | 1                |              | 10242,8<br>2007 4 | 8/07,3<br>4560 T   | 1200,8           | 0102,7<br>522 5 | 2290,2<br>220,5  | 3703,7             | 3224,4         |
| 143           | ) U,18U<br>I 0 160 | 0,200          | 0,700   | 1,200    | : <i>2,220</i> | 4,130            | 2,120          | 9,337<br>0 277       | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 5007,4            | 4000,7             | 1433,9<br>9706 7 | 744,7<br>1002 7 | 046 A            | 140,1<br>977 1     | 044<br>156 0   |
| 144           | 0,100<br>0 160     | 0,190<br>N 190 | 0,290   | 0,420    | 1 000          | 2,220            | 3,200          | 0,372<br>7 730       | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 4730 Q            | 4000,1<br>3068.2   | 2700,7           | 1673,2          | 540,4<br>673 N   | 196 3              | 100,0          |
| 14            | 0,100<br>0.120     | 0.150          | 0,300   | 0,310    | 0.420          | 0.970            | 1.340          | 7.820                | i          | i        | ī        | i      | i i                  | 1                | 1            | 6416.8            | 5113.4             | 3300.1           | 2422.6          | 1761.9           | 706.2              | 483.6          |
| 14            | 0.200              | 0.250          | 0.570   | 1.360    | 2.440          | 4,740            | 5.030          | 2.322                | 1          | 1        | 1        | ī      | Ō                    | 0                | - 0          | 1061.0            | 828.8              | 307.4            | 70.7            | 5.1              | 104.1              | 116.6          |
| 148           | 0.160              | 0.210          | 0.400   | 0.850    | 1.370          | 2.520            | 3.270          | 10,149               | 1          | 1        | ī        | ī      | ī                    | 1                | 1            | 6243,0            | 4732,8             | 2437,2           | 1094,0          | 640,8            | 302,7              | 210,4          |
| 149           | 0,100              | 0,130          | 0,190   | 0,250    | 0,340          | 0,940            | 1,640          | 5,170                | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 5069,8            | 3876,8             | 2620,9           | 1967,9          | 1420,5           | 450,0              | 215,2          |
| 150           | 0,090              | 0,120          | 0,180   | 0,230    | 0,310          | 1,010            | 2,430          | 6,756                | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 7406,5            | 5529,9             | 3653,3           | 2837,3          | 2079,3           | 568,9              | 178,0          |
| 151           | l 0,130            | 0,160          | 0,240   | 0,350    | 0,590          | 2,400            | 3,700          | 8,943                | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 6778,9            | 5489,1             | 3626,1           | 2455,0          | 1415,7           | 272,6              | 141,7          |
| 152           | 2 0,100            | 0,120          | 0,170   | 0,210    | 0,250          | 0,380            | 0,480          | 7,042                | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 6942,3            | 5768,5             | 4042,5           | 3253,5          | 2716,9           | 1753,2             | 1367,1         |
| 153           | \$ 0,110           | 0,130          | 0,190   | 0,230    | 0,300          | 0,840            | 1,830          | 12,337               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 11115,8           | 9390,3             | 6393,4           | 5264,1          | 4012,5           | 1368,7             | 574,2          |
| 154           | 1 0,230            | 0,290          | 0,710   | 1,330    | 2,130          | 3,760            | 4,500          | 13,680               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 5847,8            | 4617,2             | 1826,8           | 928,6           | 542,3            | 263,8              | 204,0          |
| 15            | 5 0,200            | 0,230          | 0,360   | 0,530    | 1,000          | 2,730            | 3,980          | 7,716                | <u> </u>   | 1        | 1        | 1      | 1                    | 1                | 1            | 3758,2            | 3255,0             | 2043,5           | 1355,9          | 671,6            | 182,7              | 93,9           |
| 150           | 5 0,080            | 0,090          | 0,160   | 0,220    | 0,430          | 2,140            | 4,060          | 32,801               | 1          | 1        | 1        | 1      | 1                    | 1                | 1            | 40901,2           | 36345,5            | 20400,6          | 14809,5         | 7528,1           | 1432,8             | 707,9          |
| 157           | 0,180              | 0,200          | 0,290   | 0,390    | 0,800          | 1,070            | 2,060          | 10,831               | <u> </u>   | ļ        | <u>1</u> | l      | ļ                    | 1                |              | 5917,1            | 5315,4             | 3634,8           | 2677,1          | 1253,9           | 912,2              | 425,8          |
| 158           | 0,200              | 0,250          | 0,390   | 0,/30    | 1,420          | 4,070            | 0,250          | 11,158               | ļ          | I        | 1        | I      | ļļ                   | 1                | 1            | 54/9,2            | 4/51,5<br>0400 0   | 2/01,1<br>22012  | 1428,5          | 085,8<br>2047 2  | 1/4,2              | /9,1<br>4104 4 |
| 155           | 0,120              | 0,150          | 0,250   | 0,540    | 0.220          | 4,0/0            | 0,500          | 12,003               | <b>1</b>   | 1        | 1        | 1      | 1                    | 1                | 1            | 10030,1           | 0400,9<br>1.4010.2 | 22012<br>102272  | 3089,2          | 2047,2<br>2020 2 | 1/2,9              | 4194,4         |
| <u>101</u>    | U; U,19U           | <u> </u>       | 0,210   | 0,250    | : 0,320        | : 2,/00          | 0,280          | 22,391               | <u>. I</u> | <u> </u> | <u> </u> | L      | <u> </u>             | 1                | <u> </u>     | 14900,4           | 14019,2            | 1005/5           | 8730,2          | 0,929,0          | / 18,5             | /908,1         |

Tabela 5.6g - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄMETROSDO LEITO DO PARA O RIO ATIBAIA       |             | (    | COMP            | ARA ÇA          | O ENI           | RE D <sub>w</sub>      | L& D             |       | RELAÇ   | ÃO PERC | EN TUAL E | NTRE OS | VALORES    | DE D <sub>VJ</sub> |        |
|-----------------------------------------------|-------------|------|-----------------|-----------------|-----------------|------------------------|------------------|-------|---------|---------|-----------|---------|------------|--------------------|--------|
| Granulometria do material do leito            |             | (10) | (11)            | (12)            | (13)            | (14)                   | (15)             | (16)  | E       | OS VALO | RES MEDI  | DOSNORI | IO A TIBAL | <u> </u>           |        |
| (1) (2) (3) (4) (5) (6) (7) (8)               | <b>(9</b> ) | -    | COMP/           | ARAÇA           | O DE            | D <sub>vj (se.</sub> / | <sub>q</sub> COM | :     | (17)    | (18)    | (19)      | (20)    | (21)       | (22)               | (23)   |
| N <sup>a</sup> D10 D16 D35 D50 D65 D84 D90    | D           | D10  | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>        | D.84             | Don   |         |         |           |         |            |                    |        |
| (mm) (mm) (mm) (mm) (mm) (mm) (mm)            | mm.         | ~    | ~               | 50              | ~               | ~                      |                  | ~     |         |         |           |         |            |                    |        |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 | 11,085      | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 6828,3  | 6058,5  | 4719,7    | 4005,7  | 3259,2     | 2162,3             | 1632,1 |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 | 20,772      | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 13748,0 | 12882,5 | 10286,0   | 8555,0  | 7062,8     | 329,2              | 1438,7 |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 | 9,532       | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 9432,4  | 7843,7  | 5857,8    | 4917,1  | 4044,5     | 2788,6             | 2344,2 |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 | 21,908      | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 12786,9 | 11430,4 | 8326,0    | 6746,2  | 5116,1     | 1572,3             | 953,3  |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 | 12,559      | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 15598,3 | 12458,6 | 8272,4    | 6877,0  | 5608,5     | 4086,2             | 3294,2 |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 | 16,539      | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 11713,9 | 10926,3 | 8604,9    | 7091,0  | 5603,2     | 1289,9             | 368,5  |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 | 14,274      | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 7036,8  | 5847,4  | 3978,2    | 2754,7  | 1599,2     | 620,9              | 400,8  |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 | 27,059      | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 12199,3 | 10723,4 | 7631,O    | 6049,7  | 4195,0     | 2064,7             | 1539,9 |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 | 9,728       | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 7382,8  | 6385,1  | 4321,6    | 3254,4  | 2272,6     | 428,7              | 72,5   |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 | 8,012       | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 5623,2  | 4117,1  | 2403,9    | 1641,8  | 954,3      | 382,7              | 227,0  |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 | 8,081       | 1    | 1               | 1               | 1               | 1                      | 1                | 1     | 4950,4  | 4153,0  | 2084,0    | 778,3   | 359,1      | 102,0              | 53,6   |
|                                               |             |      | (%              | ) de eve        | ntos er         | nque D'                | VJ>D             |       | DIFE    | RENÇA P | ERCENT    | UAL REL | ATIVA M    | EDIA               |        |
|                                               |             | 100  | 100             | 100             | 100             | 99                     | 95,32            | 92,40 | 6093,2  | 5251,6  | 3684,7    | 2841,5  | 2107,9     | 1149,5             | 921,1  |

Tabela 5.6g - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>16 KKA1</sub>- Diâmetro calculado pela equação: DVj <sub>(KKA1</sub> = 0,0453 × Pc<sup>0,7149</sup>. Para o método de Sato, Kikkawa & Ashida.

Pc - Potência da corrente - KgØm.s

| DIÄ | METRO  | OSDO    | LEITO   | DO PA     | RAOF  | RIOAT | IBAIA |                       |      | COMP            | ARAÇA           | O ENI | RE D <sub>v</sub> | <sub>&amp;</sub> D | 3                                       | RELAÇ   | ÃO PERCI | ENTUAL E | TRE OS   | VALORES    | DE D <sub>vj</sub> |        |
|-----|--------|---------|---------|-----------|-------|-------|-------|-----------------------|------|-----------------|-----------------|-------|-------------------|--------------------|-----------------------------------------|---------|----------|----------|----------|------------|--------------------|--------|
|     | Granul | ometriz | a do ma | ierial do | bino  |       |       |                       | (10) | (11)            | (12)            | (13)  | (14)              | (15)               | (16)                                    | E       | DS VALOR | RESMEDI  | OS NO RI | O A TIB AL | ι                  |        |
| (l) | (2)    | (3)     | (4)     | (5)       | (6)   | (T)   | (8)   | (9)                   |      | COMP.           | ARAÇA           | ODE   | DWIROT            | COM                |                                         | (17)    | (18)     | (19)     | (20)     | (21)       | (22)               | (23)   |
| N°  | D10    | Dló     | D35     | D50       | D65   | D84   | D90   | D <sub>VI [ROT]</sub> | D10  | D <sub>16</sub> | D <sub>25</sub> | D.40  | D.65              | Det                | Dan                                     | 34 - A2 |          |          |          |            |                    |        |
|     | (mm)   | (mm)    | (mm)    | ໌ຫາກນ     | (mm)  | (ກາກ) | (mm)  | TITO.                 | ~**  | 2034 <b>-8</b>  | ~               |       |                   | C.S                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         |          |          |          |            |                    |        |
| 1   | 0.150  | 0.180   | 0,340   | 0,640     | 0,970 | 1560  | 1.860 | 0,193                 | 1    | 1               | 0               | 0     | 0                 | 0                  | 0                                       | 28,9    | 7.4      | 75,9     | 231.1    | 401.8      | 707.1              | 862.3  |
| 2   | 0,190  | 0,240   | 0.370   | 0,540     | 0.880 | 2,770 | 3,820 | 0,193                 | 1    | 0               | 0               | 0     | 0                 | O                  | 0                                       | Ĺ4      | 24,5     | 92,0     | 180,2    | 356,6      | 1337,1             | 1881,9 |
| 3   | 0,240  | 0,290   | 0,480   | 0,680     | 1,040 | 2,960 | 4,110 | 0,195                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 23,1    | 48,7     | 146,2    | 248,7    | 433,4      | 1418,0             | 2007,8 |
| 4   | 0,220  | 0,270   | 0,530   | 0,860     | 1,370 | 3,240 | 4,220 | 0,190                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 15,6    | 41,9     | 178,5    | 351,9    | 619,8      | 1602,4             | 2117,3 |
| 5   | 0,240  | 0,280   | 0,400   | 0,510     | 0,640 | 0,970 | 1,230 | 0,200                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 20,2    | 40,3     | 100,4    | 155,5    | 220,6      | 386,0              | 516,2  |
| б   | 0,330  | 0,400   | 0,710   | 1,020     | 1,470 | 2,500 | 3,130 | 0,187                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 76,3    | 113,7    | 279,3    | 444,9    | 685,4      | 1235,7             | 1572,2 |
| 7   | 0,270  | 0,320   | 0,450   | 0,570     | 0,730 | L,130 | 1,420 | 0,199                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 35,4    | 60,5     | 125,7    | 185,9    | 266,1      | 466,8              | 612,2  |
| 8   | 0,290  | 0,340   | 0,500   | 0,640     | 0,830 | 1,440 | 3,780 | 0,1%                  | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 48,1    | 73,7     | 155,4    | 226,9    | 323,9      | 635,5              | 1830,7 |
| 9   | 0,360  | 0,440   | 0,690   | 0,970     | 1,500 | 4,470 | 4,940 | 0,198                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 82,2    | 122,6    | 249,1    | 390,8    | 659,0      | 2161,8             | 2399,6 |
| 10  | 0,320  | 0,370   | 0,520   | 0,660     | 0,850 | 1,400 | 2,000 | 0,199                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 60,5    | 85,6     | 160,8    | 231,0    | 326,3      | 602,2              | 903,1  |
| 11  | 0,300  | 0,360   | 0,560   | 0,780     | 1,220 | 4,100 | 4,750 | 0,216                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 38,6    | 66,3     | 158,7    | 260,4    | 463,6      | 1794,2             | 2094,5 |
| 12  | 0,300  | 0,360   | 0,560   | 0,770     | 1,090 | 3,330 | 4,500 | 0,223                 | 0    | 0               | , O             | 0     | 0                 | 0                  | 0                                       | 34,4    | 61,3     | 151,0    | 245,1    | 388,5      | 1392,3             | 1916,6 |
| 13  | 0,270  | 0,320   | 0,480   | 0,630     | 0,870 | 3,900 | 4,700 | 0,237                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 13,9    | 34,9     | 102,4    | 165,7    | 266,9      | 1544,7             | 1882,1 |
| 14  | 0,270  | 0,320   | 0,470   | 0,640     | 0,920 | 2,300 | 4,020 | 0,273                 | 1    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 1,0     | 17,4     | 72,4     | 134,7    | 237,4      | 743,5              | 1374,3 |
| 15  | 0,280  | 0,320   | 0,490   | 0,660     | 0,950 | 2,170 | 3,160 | 0,251                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 11,5    | 27,5     | 95,2     | 162,9    | 278,5      | 764,5              | 1158,9 |
| 16  | 0,240  | 0,270   | 0,370   | 0,470     | 0,610 | 1,000 | 1,450 | 0,203                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 18,0    | 32,7     | 81,9     | 131,0    | 199,9      | 391,6              | 612,8  |
| 17  | 0,310  | 0,370   | 0,510   | 0,630     | 0,800 | 1,290 | 1,770 | 0,187                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 65,6    | 97,7     | 172,5    | 236,6    | 327,4      | 589,2              | 845,6  |
| 18  | 0,280  | 0,340   | 0,510   | 0,690     | 0,970 | 4,770 | 5,110 | 0,203                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 37,6    | 67,1     | 150,7    | 239,2    | 376,8      | 2244,7             | 2411,9 |
| 19  | 0,310  | 0,370   | 0,550   | 0,710     | 0,960 | 3,630 | 4,620 | 0,194                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 59,6    | 90,5     | 183,2    | 265,6    | 394,3      | 1769,0             | 2278,7 |
| 20  | 0,290  | 0,350   | 0,500   | 0,630     | 0,800 | 1,240 | 1,640 | 0,191                 | U    | U               | U               | U     | U                 | U                  | U                                       | 51,7    | 83,1     | 161,6    | 229,6    | 318,5      | 548,6              | 757,9  |
| 21  | 0,340  | 0,440   | 0,840   | 1,260     | 2,140 | 4,520 | 4,960 | 0,228                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 49,4    | 93,3     | 269,1    | 453,7    | 840,4      | 1886,2             | 2079,5 |
| 22  | 0,300  | 0,390   | 0,750   | 1,150     | 1,870 | 4,270 | 4,820 | 0,208                 | U    | U               | U               | U     | U                 | U                  | U                                       | 44,2    | 87,4     | 260,4    | 452,6    | 798,6      | 1952,0             | 2216,3 |
| 23  | 0,300  | 0,360   | 0,510   | 0,630     | 0,810 | 1,260 | 1,710 | 0,193                 | U    | U               | U               | U     | U                 | U                  | U                                       | 55,6    | 86,8     | 164,6    | 226,9    | 320,2      | 553,7              | 787,2  |
| 24  | 0,270  | 0,320   | 0,470   | 0,590     | 0,740 | LIIU  | 1,370 | 0,228                 | U    | U               | U               | U     | U                 | U                  | U                                       | 18,6    | 40,6     | 106,5    | 159,3    | 225,2      | 387,8              | 502,0  |
| 25  | 0,250  | 0,500   | 0,440   | 0,560     | 0,730 | L,180 | 1,000 | 0,195                 | U    | U               | U               | U     | U                 | U                  | U                                       | 29,7    | 55,0     | 128,5    | 190,5    | 278,7      | 512,2              | 761,2  |
| 26  | 0,240  | 0,290   | 0,420   | 0,550     | 0,740 | 1,340 | 2,260 | 0,208                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 15,3    | 39,4     | 101,8    | 164,3    | 255,6      | 543,9              | 986,0  |
| 27  | 0,230  | 0,280   | 0,420   | 0,540     | 0,710 | 1,200 | 4,430 | 0,220                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 45      | 27,2     | 90,9     | 145,4    | 222,6      | 445,3              | 1913,2 |
| 28  | 0,250  | 0,290   | 0,410   | 0,520     | 0,650 | 0,950 | 1,200 | 0,215                 | U    | U               | U               | U     | U                 | U                  | U                                       | 17,3    | 50,U     | 92,3     | 145,9    | 204,9      | 545,6              | 402,9  |
| 29  | 0,240  | 0,280   | 0,390   | 0,480     | 0,590 | 0,830 | 1,000 | 0,252                 | Ű    | U               | U               | U     | U                 |                    | U                                       | 3,4     | 20,7     | 68,1     | 106,9    | 154,3      | 257,7              | 331,0  |
| 30  | 0,270  | 0,510   | 0,450   | 0,530     | 0,050 | 0,890 | 1,050 | 0,215                 | U    | U               | U               | U     | U                 | U                  | U                                       | 20,6    | 45,4     | 101,7    | 148,6    | 204,9      | 5175               | 392,5  |
| 31  | 0,250  | 0,270   | 0,370   | 0,470     | 0,600 | 0,890 | 1,100 | 0,237                 | 1    | U               | U               | U     | U                 | U                  | U                                       | 3,1     | 13,9     | 50,0     | 98,2     | 153,0      | 213,5              | 303,9  |
| 32  | 0,280  | 0,340   | 0,500   | 0,650     | 0,870 | L000  | 2,300 | 0,213                 | 0    | 0               | 0               | 0     | 0                 | 0                  | 0                                       | 313     | 59,5     | 134,5    | 204,9    | 308,1      | 678,6              | 978,8  |

Tabela 5.6h - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ  | METR   | OS DO I | LEITO   | DO PA     | RAOE    | RIO AT.            | IBAIA |                      |      | COMP     | ARAÇA  | O ENI | RED <sub>VJ</sub>    | <sub>a</sub> D |                           | RELAÇ       | ÃO PERCI           | EN TUAL E    | N TRE O S      | VALORES   | DEDug  |        |
|------|--------|---------|---------|-----------|---------|--------------------|-------|----------------------|------|----------|--------|-------|----------------------|----------------|---------------------------|-------------|--------------------|--------------|----------------|-----------|--------|--------|
|      | Granul | ometria | i do ma | terial do | o leito |                    |       |                      | (10) | (11)     | (12)   | (13)  | (14)                 | (15)           | (16)                      | E           | OS VALOI           | RES MEDI     | DOSNORI        | IO ATIBAI | A      |        |
| (l)  | (2)    | (3)     | (4)     | (5)       | (б)     | $-\mathcal{O}^{-}$ | (8)   | (9)                  | 1    | COMP.    | ARA ÇA | O DE  | D <sub>VJ (ROT</sub> | l COM          | :                         | (17)        | (18)               | (19)         | (20)           | (21)      | (22)   | (23)   |
| N°   | D10    | Dló     | D35     | D50       | D65     | D84                | D90   | D <sub>VI BOTI</sub> | D10  | Du       | Dx     | Dee   | Der                  | Der            | $\mathbf{D}_{\mathbf{m}}$ |             |                    |              |                |           |        |        |
|      | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)               | (mm)  | •][]                 | -10  | - 10     | - 30   | - 50  | - 10                 | - 64           | - 90                      |             |                    |              |                |           |        |        |
| 33   | 0.280  | 0.320   | 0.450   | 0.570     | 0.730   | 1.230              | 2.180 | 0.251                | 0    | 0        | 0      | 0     | 0                    | Λ              | . N                       | 11.5        | 27.5               | 79.3         | 127.1          | 190.8     | 390.0  | 768.5  |
| 34   | 0.270  | 0.300   | 0.410   | 0.510     | 0.630   | 0.880              | 1,050 | 0,239                | Õ    | Ŏ        | Õ      | Ŏ     | Õ                    | Ŏ              | Õ                         | 13.2        | 25.8               | 71.9         | 113.8          | 164.1     | 268.9  | 340.2  |
| 35   | 0.280  | 0.320   | 0.440   | 0.540     | 0.680   | 1.000              | 1.270 | 0.228                | Ō    | Ū        | Ū      | Ū     | 0                    | -<br>0         | Ō                         | 23.0        | 40.6               | 93.3         | 137.3          | 198.8     | 339.4  | 458.1  |
| 36   | 0,210  | 0,250   | 0,360   | 0,450     | 0,580   | 0,890              | 1,100 | 0,208                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 0,9         | 20,1               | 73,0         | 116,2          | 178,7     | 327,7  | 428,6  |
| 37   | 0,270  | 0,320   | 0,450   | 0,570     | 0,740   | 1,180              | 1,520 | 0,251                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 7,6         | 27,5               | 79,3         | 127,1          | 194,8     | 370,1  | 505,6  |
| 38   | 0,260  | 0,330   | 0,530   | 0,730     | 1,010   | 1,790              | 3,150 | 0,211                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 23,5        | 56,7               | 151,7        | 246,7          | 379,7     | 750,2  | 1396,1 |
| 39   | 0,300  | 0,340   | 0,480   | 0,600     | 0,750   | 1,140              | 1,450 | 0,251                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 19,5        | 35,5               | 91,2         | 139,0          | 198,8     | 354,2  | 477,7  |
| 40   | 0,320  | 0,370   | 0,550   | 0,710     | 0,950   | 1,600              | 2,510 | 0,190                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 68,6        | 94,9               | 189,7        | 274,0          | 400,4     | 742,9  | 1222,2 |
| 41   | 0,280  | 0,320   | 0,450   | 0,570     | 0,720   | 1,080              | 1,360 | 0,187                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 49,6        | 71,0               | 140,4        | 204,5          | 284,7     | 477,0  | 626,6  |
| 42   | 0,220  | 0,270   | 0,410   | 0,570     | 0,900   | 4,170              | 4,790 | 0,203                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 8,1         | 32,7               | 101,5        | 180,2          | 342,4     | 1949,8 | 2254,6 |
| 43   | 0,290  | 0,340   | 0,460   | 0,570     | 0,700   | 1,020              | 1,280 | 0,203                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 42,6        | 67,1               | 126,1        | 180,2          | 244,1     | 401,4  | 529,2  |
| 44   | 0,170  | 0,250   | 0,550   | 0,820     | 1,250   | 4,840              | 5,150 | 0,213                | 1    | 0        | 0      | 0     | 0                    | 0              | 0                         | 25,4        | 17,3               | 158,0        | 284,6          | 486,3     | 2170,2 | 2315,7 |
| 45   | 0,210  | 0,260   | 0,410   | 0,590     | 0,880   | 1,790              | 2,700 | 0,185                | 0    | 0        | 0      | 0     | 0                    | 0              | 0                         | 13,6        | 40,6               | 121,8        | 219,1          | 376,0     | 868,2  | 1360,4 |
| 46   | 0,180  | 0,200   | 0,300   | 0,410     | 0,600   | 1,200              | 1,850 | 0,198                | 1    | <u> </u> | 0      |       | 0                    | 0              | 0                         | 9,8         | 1,2                | 51,8         | 107,5          | 203,6     | 507,2  | 836,1  |
| 47   | 0,170  | 0,210   | 0,390   | 0,650     | 1,140   | 2,970              | 4,030 | 0,196                | 1    | U        | U      | U     | U                    | U              | U                         | 15,3        | 7,2                | <b>99,</b> 0 | 231,7          | 481,7     | 1415,5 | 1956,3 |
| 418  | 0,150  | 0,170   | 0,210   | 0,250     | 0,330   | 0,720              | 1,100 | 0,193                | 1    | ļ        | U      | U     | U                    | U              | U                         | 28,5        | 13,4               | 9,0          | 29,7           | 71,2      | 275,5  | 470,7  |
| 49   | 0,150  | 0,170   | 0,210   | 0,240     | 0,320   | 0,910              | 1,440 | 0,196                | 1    | 1        | U      | U     | U                    | U              | U                         | 30,7        | 15,3               | 7,2          | 22,5           | 63,3      | 364,3  | 634,8  |
| . 50 | 0,160  | 0,170   | 0,230   | 0,320     | 0,650   | 1,550              | 2,790 | 0,190                | 1    | ĮĮ       | U      | U     | U                    | U              | U                         | 22,5        | 15,5               | 17,4         | 03,5           | 251,7     | 090,9  | 1525,0 |
| 51   | 0,170  | 0,190   | 0,250   | 0,330     | 0,490   | 1,090              | 1,580 | 0,203                | Į    | <u> </u> | U      | U     | U                    | U              | U                         | 19,7        | 7,1                | 22,9         | 62,2           | 140,9     | 4,65,8 | 676,7  |
| 52   | 0,170  | 0,190   | 0,280   | 0,500     | 0,900   | 2,040              | 2,860 | 0,217                | 1    | 1        | U      | U     | U                    | U              | U                         | 27,5        | 14,1               | 29,1         | 150,0          | 515,1     | 840,8  | 1219,0 |
| 53   | 0,160  | 0,180   | 0,260   | 0,370     | 0,530   | 0,910              | 1,230 | 0,203                | 1    | <u> </u> | U      | U     | U                    | U              | U                         | 27,1        | 13,0               | 27,8         | 81,9           | 160,5     | 347,3  | 504,6  |
| - 54 | 0,140  | 0,150   | 0,180   | 0,200     | 0,2.90  | 0,500              | 0,920 | 0,180                |      | ļ        | ļ      | U     | U                    | U              | U                         | 32,9        | 24,0               | 5,5          | 7,5            | 25,7      | 108,8  | 394,0  |
| 50   | 0,140  | 0,160   | 0,200   | 0,240     | 0,300   | 0,600              | 0,850 | 0,201                | 1    | <u> </u> | 1      | U     | U                    | U              | U                         | 45,9        | 25,9               | 0,/          | 19,1           | 48,9      | 197,8  | 521,9  |
| 50   | 0,160  | 0,170   | 0,230   | 0,350     | 0,660   | 1,390              | 1,930 | 0,199                | 1    | 1        | U      | U     | U                    | U              | U                         | 24,6        | 17,5               | 15,4         | 75,6           | 231,0     | 597,2  | 868,0  |
| 5/   | 0,170  | 0,190   | 0,250   | 0,520     | 0,420   | 0,/10              | 0,950 | 0,211                | 1    | 1        | U      | U     | U                    | U              | U                         | 25,8        | 10,8               | 18,7         | 52,0           | 99,5      | 251,2  | 551,2  |
| 58   | 0,140  | 0,160   | 0,190   | 0,230     | 0,280   | 1,460              | 4,690 | 0,228                | 1    | 1        | 1      | U     | U                    | U              | U                         | 02,0        | 42,2               | 19,8         | Ļ1             | 25,0      | 541,0  | 1200'a |
| - 59 | 0,100  | 0,180   | 0,250   | 0,290     | 0,590   | 0,750              | 1,140 | 0,104                | 1    | Ų        | U      | Ŭ     | Ű                    | Ŭ              | U                         | 2,5         | 9,7                | 40,2         | /0,8           | 157,8     | 557,3  | 595,1  |
| 00   | 0,170  | 0,190   | 0,270   | 0,400     | 0,750   | 1,000              | 2,500 | 0,208                | ļ    | 1        | U      | U     | Ű                    | U              | U                         | 22,4        | <b>د</b> لا<br>معر | 29,7         | 92,2           | 200,4     | 09/,/  | 1101,4 |
| 01   | 0,1/0  | 0,190   | 0,270   | 0,500     | 0,570   | 1,240              | 1,040 | 0,220                | ļ    | ļ        | U      |       | Ŭ                    | U              | U                         | 29,2        | 15,0               | 22,9         | 05,9           | 159,5     | 404,0  | 040,7  |
| 02   | 0,180  | 0,210   | 0,370   | 0,820     | 1,500   | 5,000              | 3,/90 | 0,194                | 1    |          | U      | U     | U                    | U              | U                         | 8,U<br>27 2 | 8,U<br>12 -        | 90,5<br>41 1 | 521,8<br>124.0 | /02,4     | 14/5,9 | 1849,4 |
| 05   | 0,100  | 0,190   | 0,510   | 0,520     | 0,810   | 1,570              | 1,000 | 0,220                | 1    | 1        | U      | U     | U                    | U              | U                         | 37,3        | 15,0               | 41,1         | 130,8          | 208,8     | 743,8  | 000,8  |
| 04   | 0,150  | 0,180   | 0,340   | 0,630     | 0,970   | 1,500              | 1,860 | 0,237                | 1    | <u> </u> | U      | U     | U                    | U              | U                         | 58,1        | 31,7               | 43,4         | 105,7          | 309,1     | 557,9  | 684,4  |

Tabela 5.6h - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ      | METR   | OS DO I | LEITO   | DOPA      | RAOI    | NO AT.       | IBAIA |                      |      | COMP/           | ARAÇ <i>i</i> | 40 ENI   | RE D <sub>W</sub>    | <sub>IA</sub> D  |                           | RELAÇ | ÃO PERCI  | EN TUAL E | N TRE O S | VALORES   | D E D ur |              |
|----------|--------|---------|---------|-----------|---------|--------------|-------|----------------------|------|-----------------|---------------|----------|----------------------|------------------|---------------------------|-------|-----------|-----------|-----------|-----------|----------|--------------|
|          | Granul | ometria | 1 do ma | terial do | o leito |              |       |                      | (10) | (11)            | (12)          | (13)     | (14)                 | (15)             | (16)                      | Е     | OS VAL OI | RES MEDI  | DOSNOR    | IO ATIBAL | A        |              |
| (l)      | (2)    | (3)     | (4)     | (5)       | (6)     | $- \bigcirc$ | (8)   | (9)                  | I    | COMP/           | ARAÇ/         | AO DE D  | D <sub>VJ [ROT</sub> | <sub>1</sub> COM | :                         | (17)  | (18)      | (19)      | (20)      | (21)      | (22)     | (23)         |
| N⁰       | D10    | Dló     | D35     | D50       | D65     | D84          | D90   | D <sub>VI BOTI</sub> | D10  | D <sub>16</sub> | Dx            | Dee      | Der                  | D.               | $\mathbf{D}_{\mathbf{m}}$ |       |           |           |           |           |          |              |
|          | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)         | (mm)  |                      | 10   | 10              | 30            | 50       |                      |                  |                           |       |           |           |           |           |          |              |
| 65       | 0.170  | 0.190   | 0.260   | 0.380     | 0.600   | 1.180        | 1.750 | 0.190                | 1    | N               | i 0           | 1        | 0                    | Ο                | i 0                       | 11.7  | 0.1       | 37.0      | 100.2     | 216.1     | 521.6    | 821.9        |
| 66       | 0.170  | 0.180   | 0.220   | 0.260     | 0.310   | 0.410        | 0.470 | 0,203                | ī    | ĩ               | Ŏ             | Ō        | Ō                    | Ŏ                | Ŏ                         | 19,7  | 13,0      | 8,1       | 27,8      | 52,4      | 101,5    | 131.0        |
| 67       | 0,170  | 0,190   | 0,250   | 0,320     | 0,440   | 1,190        | 1,680 | 0,199                | 1    | 1               | 0             | 0        | 0                    | 0                | 0                         | 17,3  | 4,9       | 25,4      | 60,5      | 120,7     | 496,9    | 742,6        |
| 68       | 0,170  | 0,180   | 0,230   | 0,270     | 0,320   | 0,430        | 0,560 | 0,191                | 1    | 1               | 0             | 0        | 0                    | 0                | 0                         | 12,5  | б,2       | 20,3      | 41,2      | 67,4      | 124,9    | 192,9        |
| 69       | 0,170  | 0,190   | 0,250   | 0,300     | 0,360   | 0,570        | 1,690 | 0,185                | 1    | 0               | 0             | 0        | 0                    | 0                | 0                         | 8,8   | 2,8       | 35,2      | 62,3      | 94,7      | 208,3    | 814,1        |
| 70       | 0,230  | 0,260   | 0,340   | 0,430     | 0,620   | 1,410        | 2,050 | 0,196                | 0    | 0               | 0             | 0        | 0                    | 0                | 0                         | 17,4  | 32,7      | 73,5      | 119,4     | 216,4     | 619,5    | 946,0        |
| 71       | 0,230  | 0,250   | 0,310   | 0,370     | 0,440   | 0,740        | 1,180 | 0,199                | 0    | 0               | 0             | 0        | 0                    | 0                | 0                         | 15,4  | 25,4      | 55,5      | 85,6      | 120,7     | 271,2    | 491,9        |
| 72       | 0,230  | 0,260   | 0,350   | 0,440     | 0,640   | 1,500        | 2,200 | 0,203                | 0    | 0               | 0             | 0        | 0                    | 0                | 0                         | 13,1  | 27,8      | 72,0      | 116,3     | 214,6     | 637,3    | 981,4        |
| 73       | 0,190  | 0,230   | 0,320   | 0,410     | 0,610   | 1,630        | 3,000 | 0,203                | 1    | 0               | 0             | 0        | 0                    | 0                | 0                         | 7,1   | 13,1      | 57,3      | 101,5     | 199,9     | 701,2    | 1374,7       |
| 74       | 0,240  | 0,270   | 0,350   | 0,420     | 0,550   | 0,990        | 1,360 | 0,220                | 0    | 0               | 0             | 0        | 0                    | 0                | 0                         | 9,3   | 22,9      | 59,4      | 91,2      | 150,4     | 350,8    | 519,2        |
| 75       | 0,200  | 0,250   | 0,400   | 0,640     | 1,100   | 2,520        | 3,770 | 0,213                | 1    | 0               | 0             | 0        | 0                    | 0                | 0                         | б,б   | 17,3      | 87,6      | 200,2     | 416,0     | 1082,0   | 1668,4       |
| 76       | 0,170  | 0,210   | 0,320   | 0,460     | 0,860   | 2,820        | 4,090 | 0,220                | 1    | 1               | 0             | 0        | 0                    | 0                | 0                         | 29,2  | 4,6       | 45,7      | 109,4     | 291,6     | 1184,0   | 1762,2       |
| <u>π</u> | 0,220  | 0,270   | 0,410   | 0,560     | 0,800   | 1,340        | 1,660 | 0,216                | 0    | 0               | 0             | 0        | 0                    | 0                | 0                         | 1,6   | 24,7      | 89,4      | 158,7     | 269,6     | 519,1    | 666,9        |
| 78       | 0,180  | 0,220   | 0,330   | 0,450     | 0,750   | 1,980        | 3,050 | 0,228                | 1    | 1               | 0             | 0        | 0                    | 0                | 0                         | 26,4  | 3,4       | 45,0      | 97,7      | 229,6     | 770,1    | 1240,2       |
| 79       | 0,190  | 0,230   | 0,360   | 0,540     | 1,000   | 2,700        | 3,730 | 0,216                | 1    | U               | U             | U        | U                    | U                | U                         | 13,9  | 6,3       | 66,3      | 149,5     | 362,0     | 1147,4   | 1623,3       |
| 80       | 0,210  | 0,240   | 0,360   | 0,500     | 0,920   | 3,270        | 4,350 | 0,223                | 1    | 0               | 0             | 0        | 0                    |                  | 0                         | 6,3   | 7,6       | 61,3      | 124,1     | 312,3     | 1365,4   | 1849,4       |
| 81       | 0,190  | 0,230   | 0,350   | 0,520     | 1,070   | 3,850        | 4,630 | 0,220                | 1    | U               | U             | U        | Ū                    |                  | U                         | 15,6  | 4,7       | 59,4      | 136,8     | 387,2     | 1652,9   | 2008,1       |
| 82       | 0,230  | 0,270   | 0,380   | 0,530     | 0,880   | 1,950        | 2,890 | 0,203                | U    | U               | U             | U        | U                    | U                | U                         | 13,1  | 32,7      | 86,8      | 160,5     | 332,6     | 858,5    | 1320,6       |
| 85       | 0,230  | 0,270   | 0,400   | U,64U     | 1,290   | 4,190        | 4,790 | U,187                | Ų    | U               | U             | U        | U                    | <u>U</u>         | U                         | 22,9  | 44,3      | 113,7     | 241,9     | 589,2     | 2138,6   | 2459,1       |
| 84       | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 1,820        | 2,370 | 0,216                | 1    | U               | U             | U        | U                    | U                | U                         | 3,1   | 10,9      | 52,5      | 94,0      | 241,9     | 740,8    | <u>994,9</u> |
| 85       | 0,230  | 0,270   | 0,390   | 0,670     | 1,650   | 4,070        | 4,690 | 0,203                | U    | U               | , U           | U U      | U                    | U                | U.                        | 13,5  | 33,2      | 92,4      | 230,6     | 714,1     | 1908,1   | 2214,U       |
| 86       | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 3,000        | 4,160 | 0,200                | U    | U               | U U           | , U      | U                    | U                | U                         | 4,9   | 19,8      | 64,8      | 109,7     | 269,5     | 1397,9   | 1977,1       |
| 87       | 0,210  | 0,250   | 0,350   | 0,500     | 1,100   | 3,500        | 4,400 | 0,208                | U    | U               | U             | U        | U                    | <u> </u>         | U                         | 0,9   | 20,1      | 68,2      | 140,3     | 428,6     | 1581,9   | 2014,4       |
| 88       | 0,210  | 0,240   | 0,310   | 0,380     | 0,480   | 0,930        | 1,400 | 0,208                | Ų    | U               | U             | U        | U                    | <u>u</u>         | U                         | 0,9   | 15,3      | 49,0      | 82,6      | 130,7     | 346,9    | 572,8        |
| 89       | 0,190  | 0,220   | 0,310   | 0,380     | 0,500   | 0,830        | 1,110 | 0,203                | 1    | U               | U             | U        | U                    | U                | U                         | 7,1   | 8,1       | 52,4      | 86,8      | 145,8     | 308,0    | 445,6        |
| 90       | 0,200  | 0,230   | 0,310   | 0,370     | 0,460   | 0,770        | 1,100 | 0,190                | U    | U               | U             | U        | U                    | U                | U                         | 5,4   | 21,2      | 05,5      | 94,9      | 142,5     | 505,0    | 4/9,5        |
| 91       | U,220  | 0,240   | 0,300   | 0,360     | 0,420   | 0,650        | 0,980 | 0,190                | 0    | 0               | 0             | 0        | 0                    | <u>0</u>         | 0                         | 15,9  | 26,4      | 58,0      | 89,6      | 121,3     | 242,4    | 416,3        |
| 92       | 0,230  | 0,250   | 0,330   | 0,390     | 0,490   | 0,820        | 1,100 | 0,203                | 0    | 0               | 0             | 0        | 0                    | 0                | 0                         | 13,1  | 22,9      | 62,2      | 9L,7      | 140,9     | 303,1    | 440,7        |
| 93       | 0,230  | 0,260   | 0,340   | 0,400     | 0,510   | 0,800        | 1,030 | 0,211                | 0    | 0               | 0             | 0        | 0                    | 0                | 0                         | 9,2   | 23,5      | 61,5      | 90,0      | 142,2     | 280,0    | 389,2        |
| . 94     | 0,230  | 0,250   | 0,330   | 0,400     | 0,510   | 0,880        | 1,160 | 0,220                | Ū    | 0               | 0             | 0        | 0                    | <u>0</u>         | 0                         | 4,7   | 13,8      | 50,3      | 82,1      | 132,2     | 300,7    | 428,2        |
| 95       | 0,200  | 0,230   | 0,320   | 0,390     | 0,510   | 0,840        | 1,180 | 0,216                | 1    | 0               | . U           | <u> </u> | 0                    | 0                | Ū                         | 8,2   | 6,3       | 47,8      | 80,2      | 135,6     | 288,1    | 445,2        |
| 96       | 0,150  | 0,200   | 0,400   | 0,750     | 1,480   | 4,440        | 4,920 | 0,211                | 1    | 1               | <u> </u>      | <u> </u> | 0                    | 0                | <u> </u>                  | 40,4  | 5,3       | 90,0      | 256,2     | 602,9     | 2008,8   | 2236,8       |

Tabela 5.6h - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados
| DLÄ  | METR    | OS DO I | LEITO   | DO PA     | RAOI    | RIO AT  | IBAIA   |                                                   |        | COMP     | ARAÇA      | IO ENI   | RE D <sub>VJ</sub>   | <sub>a</sub> D |        | RELAÇ               | ÃO PERCI     | EN TUAL E      | N TRE O S       | VALORES        | DEDw            |                    |
|------|---------|---------|---------|-----------|---------|---------|---------|---------------------------------------------------|--------|----------|------------|----------|----------------------|----------------|--------|---------------------|--------------|----------------|-----------------|----------------|-----------------|--------------------|
|      | Granul  | ometria | 1 do ma | terial do | o leito |         |         |                                                   | (10)   | (11)     | (12)       | (13)     | (14)                 | (15)           | (16)   | Е                   | OS VALOI     | RES MEDI       | DOSNORI         | O ATIBAI       | A               |                    |
| (l)  | (2)     | (3)     | (4)     | (5)       | (6)     | D       | (8)     | (9)                                               |        | COMP     | ARA ÇA     | ODE      | D <sub>VJ (ROT</sub> | 1 COM          | :      | (17)                | (18)         | (19)           | (20)            | (21)           | (22)            | (23)               |
| N    | D10     | Dló     | D35     | D50       | D65     | D84     | D90     | $\mathbf{D}_{\mathbf{W},\mathbf{R},0,\mathbf{T}}$ | Die    | Dr       | Dar        | Dee      | Der                  | Der            | Dm     |                     |              |                |                 |                |                 |                    |
|      | (mm)    | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)    | ·][]                                              | -10    | - 10     | - 30       | - 50     | -10                  | - 64           | -90    |                     |              |                |                 |                |                 |                    |
| 07   | 0 210   | 0.280   | 0.550   | 0.800     | 1 410   | 3 400   | 4 400   | 0.211                                             | 1      | 0        |            | · · ·    | 0                    | 0              | · · ·  | 03                  | 33.0         | 161.2          | 322.7           | 560 7          | 1557.6          | 1080 8             |
| 98   | 0.220   | 0,200   | 0.550   | 0,890     | 1.410   | 4,000   | 4700    | 0.214                                             | Ō      | Ŏ        | Ŏ          | Ő        | Ő                    | ŏ              | Ő      | 3.0                 | 35.8         | 157.6          | 316.8           | 560.3          | 1773.2          | 21010              |
| 99   | 0.150   | 0.220   | 0.430   | 0.650     | 0.980   | 1.840   | 2.460   | 0.203                                             | 1      | Ō        | Ō          | Ō        | Ō                    |                | Ō      | 35.6                | 8.1          | 111.4          | 219.5           | 381.7          | 804.5           | 1109.2             |
| 100  | 0,160   | 0,210   | 0,390   | 0,580     | 0,880   | 1,630   | 2,250   | 0,216                                             | 1      | 1        | 0          | 0        | 0                    | 0              | 0      | 35,3                | 3,1          | 80,2           | 168,0           | 306,6          | 653,1           | 939,5              |
| 101  | 0,140   | 0,160   | 0,230   | 0,300     | 0,400   | 0,960   | 4,370   | 0,149                                             | 1      | 0        | 0          | 0        | 0                    | 0              | 0      | б,б                 | 7,2          | 54,1           | 101,0           | 168,1          | 543,3           | 2828,6             |
| 102  | 0,150   | 0,180   | 0,250   | 0,320     | 0,420   | 0,670   | 0,850   | 0,205                                             | 1      | 1        | 0          | 0        | 0                    | 0              | 0      | 36,8                | 14,0         | 21,8           | 55,9            | 104,6          | 226,4           | 314,1              |
| 103  | 0,150   | 0,170   | 0,260   | 0,340     | 0,470   | 0,830   | 1,090   | 0,233                                             | 1      | 1        | 0          | 0        | 0                    | 0              | 0      | 55,5                | 37,2         | 11,5           | 45,8            | 101,5          | 255,9           | 367,3              |
| 104  | 0,150   | 0,180   | 0,290   | 0,410     | 0,590   | 1,080   | 1,440   | 0,215                                             | 1      | 1        | 0          | 0        | 0                    | 0              | 0      | 43,1                | 19,2         | 35,1           | 91,1            | 174,9          | 403,3           | 571,0              |
| 105  | 0,160   | 0,190   | 0,250   | 0,320     | 0,430   | 0,960   | 1,620   | 0,211                                             | 1      | 1        | 0          | <u> </u> | 0                    | 0              | 0      | 32,0                | 11,2         | 18,4           | 51,5            | 103,6          | 354,6           | 667,1              |
| 106  | 0,170   | 0,190   | 0,240   | 0,290     | 0,350   | 0,500   | 0,630   | 0,190                                             | 1      | 1        | 0          | 0        | 0                    | 0              | 0      | 12,1                | 0,3          | 26,0           | 52,2            | 83,7           | 162,5           | 230,7              |
| 107  | 0,190   | 0,210   | 0,270   | 0,320     | 0,370   | 0,500   | 0,590   | 0,175                                             | 0      | 0        | 0          | 0        | 0                    | 0              | 0      | 8,5                 | 19,9         | 54,1           | 82,7            | 111,2          | 185,4           | 236,8              |
| 108  | 0,160   | 0,180   | 0,240   | 0,290     | 0,350   | 0,510   | 0,670   | 0,228                                             | 1      | 1        | 0          | 0        | 0                    | 0              | 0      | 42,2                | 26,4         | 5,5            | 27,4            | 53,8           | 124,1           | 194,4              |
| 109  | 0,210   | 0,260   | 0,410   | 0,620     | 0,980   | 1,780   | 2,300   | 0,190                                             | Û      | <u> </u> | 0          | 0        | Û                    | <u> </u>       | 0      | 10,6                | 37,0         | 116,0          | 226,6           | 416,3          | 837,7           | 1111,6             |
| 110  | 0,250   | 0,310   | 0,500   | 0,710     | 1,020   | 1,800   | 2,360   | 0,190                                             | Û      | <u> </u> | 0          | 0        | Û                    | <u> </u>       | Û      | 31,7                | 63,3         | 163,4          | 274,0           | 437,3          | 848,2           | 1143,2             |
| 111  | 0,220   | 0,260   | 0,410   | 0,640     | 1,020   | 1,940   | 2,590   | 0,190                                             | U      | U        | U          | U        | U                    |                | U      | 12,4                | 52,8         | 109,4          | 220,9           | 421,0          | 890,9           | 1222,9             |
| 112  | 0,200   | 0,230   | 0,310   | 0,580     | 0,480   | 0,750   | 0,930   | 0,193                                             | U      | U        | U          | U        | U                    | <u> </u>       | U      | 3,8                 | 19,5         | 60,8           | 97,1            | 149,0          | 289,1           | 382,5              |
| 113  | 0,220   | 0,250   | 0,350   | 0,440     | 0,570   | 0,930   | 1,220   | 0,208                                             | U      | U        | U          | U        | U                    | U              | U      | 5,7                 | 20,1         | 68,2           | 111,4           | 173,9          | 346,9           | 486,3              |
| 114  | 0,220   | 0,200   | 0,560   | 0,400     | 0,0.90  | 1,180   | 1,800   | 0,232                                             | 1      | U        | U          | U        | U                    | U              | U      | 2,2                 | 12,1         | 22,1<br>72,2   | 98,Z            | 1/1,2          | 408,5           | /01,0              |
| 115  | 0,190   | 0,230   | 0,520   | 0,400     | 0,520   | 0,810   | 1,000   | 0,190                                             | 1      | U        | U          | U        | U                    | U              | U      | J,1<br>8 3          | 17,4<br>20.4 | 03,3<br>20 2   | 104,1           | 105,5          | 313,3           | 410,5              |
| 110  | 0,210   | 0,240   | 0,320   | 0,580     | 0,480   | 0,740   | 0,940   | 0,199                                             | U      | U        | U          | U        | U                    | U              | U      | 5,3                 | 20,4         | 00,5           | 9U,O            | 140,8          | 271,2           | 3/1,5              |
| 11/  | 0,180   | 0,210   | 0,300   | 0,390     | 0,510   | 0,910   | 1,200   | 0,208                                             | 1      | U        | U          | U        | U                    |                | U      | 15,0                | 0,9          | 44,2<br>20 7   | 87,4            | 145,1          | 337,3           | 4/0,/              |
| 118  | 0,180   | 0,220   | 0,340   | 0,470     | 0,/30   | 1,820   | 3,210   | 0,214                                             | 1      | U        | U<br>A     | U        | U                    |                | U      | 19,0                | Z,/<br>20.1  |                | 119,4           | 240,7<br>552 0 | 1241 7          | 1398,3             |
| 119  | 0,200   | 0,250   | 0,440   | 0,790     | 1,580   | 3,000   | 3,880   | 0,208                                             | 1      | U        | U 0        | U        | U                    | U              | U      | 4,0                 | 20,1         | 111,4          | 279,0           | 203,2          | 1341,7          | 1/042              |
| 120  | 0,210   | 0,200   | 0,200   | 0,920     | 1,740   | 3,030   | 3,070   | 0,220                                             | 1      | U<br>0   | U 0        | U<br>0   | U                    |                | U      | 4,0                 | 212          | 177,0          | 310,9<br>344 1  | 772,1          | 12/9,0          | 1074,9             |
| 121  | 0,210   | 0,270   | 0,400   | 0,730     | 1,130   | 2,320   | 3,220   | 0,212                                             | 1      | U<br>N   | U<br>0     | U<br>N   | U                    | U              | U<br>N | 1,0                 | 27,3<br>7 5  | 120,2<br>52 0  | 244,1           | 432,0          | 223,4<br>1065 1 | کرد / 12<br>1200 ک |
| 144  | 0,200   | 0.240   | 0,370   | 0,290     | 1,130   | 2,000   | 3,/20   | 0,223                                             | 1<br>1 | U<br>0   | U 0        | U<br>0   | U<br>O               |                | U<br>N | 11,0                | رب)<br>10 م  | υ2,0<br>110 ε  | 104,4           | 400,4<br>221 1 | 1002,4          | 12002              |
| 124  | 0,410   | 0,200   | 0,400   | 0,000     | 1,430   | 3,130   | 4,000   | 0,220                                             | 1<br>1 | U<br>0   | U<br>0     | U<br>0   | U<br>0               | U<br>0         | U<br>0 | 4,0                 | 10,4         | 110,2          | 29 LO<br>224 T  | 355 5          | 1347,1          | 1/402              |
| 124  | 0,410   | 0,290   | 0,240   | 1 100     | 1,000   | 3 410   | 4 160   | 0,227                                             | 1      | 0        | U<br>0     | 0        | 0                    | U<br>0         | 0      | ۳,21<br>11          | (بکک<br>210  | 167,7          | / ۲۹۹۹<br>مراجع | 300,0<br>700 2 | 1209.4          | 1114,2             |
| 12   | 0,430   | 0,300   | 0,000   | 1,100     | 1,040   | 2,410   | 2050    | 0220<br>N 100                                     | U<br>0 | U<br>0   | U<br>0     | U<br>0   | U<br>0               |                | 0      | 1,1<br>575          | J1,0<br>2 00 | 170,0<br>246 5 | 410,7<br>200 7  | 700,2<br>500 2 | 1.390,4         | 1740,0             |
| 1.20 | 0,300   | 0,300   | 0,000   | 0,720     | 0.000   | 1 0 20  | 2020    | 0,170                                             | U<br>N | U<br>N   | U<br>0     | U<br>0   | U<br>N               |                | U<br>N | 2(,2<br>70 T        | 77,2<br>50 5 | 140,5<br>140 N | 370,7<br>252.9  | 270,2<br>ANS A | 2061,7          | 1369.2             |
| 12/  | 0,470   | 0,290   | 0,400   | 0,000     | 1 2 20  | 2,740   | 2,030   | 0,173                                             | U<br>D | 0        | 0          | 0        | 0                    | υ<br>          | 0      | / <i>ج</i> ع<br>0 1 | 27,4         | 147,0          | 2250            | 400,4<br>5/0 A | 1 10 2 0        | 1650.0             |
| 140  | : 0,440 | 0,400   | 0,240   | 0,070     | 1,340   | : 4,030 | : J,200 | لالكو∪                                            | U      | U        | <u>. U</u> |          | U                    |                |        | 0,1                 | 37,0         | 107,4          | J1/,0           | 240,9          | 1192,6          | 1020,0             |

Tabela 5.6h - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÂ | METR   | OS DO I | LEITO   | DOPA      | RAOI    | RIO AT. | IBAIA |                       |          | COMP | ARAÇA    | AO ENI     | RED <sub>W</sub>     | D a              |            | RELAÇ | ÃO PERCI    | EN TUAL E | N TRE O S | VALORES  | DEDw   |        |
|-----|--------|---------|---------|-----------|---------|---------|-------|-----------------------|----------|------|----------|------------|----------------------|------------------|------------|-------|-------------|-----------|-----------|----------|--------|--------|
|     | Granul | ometria | 1 do ma | terial do | o leito |         |       |                       | (10)     | (11) | (12)     | (13)       | (14)                 | (15)             | (16)       | Е     | OS VALO     | RES MEDI  | DOSNORI   | O ATIBAI | A      |        |
| (l) | (2)    | (3)     | (4)     | (5)       | (6)     | D -     | (8)   | (9)                   |          | COMP | ARA ÇA   | AO DE .    | D <sub>VJ (ROT</sub> | <sub>1</sub> COM | :          | (17)  | (18)        | (19)      | (20)      | (21)     | (22)   | (23)   |
| N⁰  | D10    | Dló     | D35     | D50       | D65     | D84     | D90   | D <sub>NI IROTI</sub> | D10      | Dr   | Dar      | Dee        | Der                  | Der              | Da         |       |             |           |           |          |        |        |
| L   | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  |                       | -10      | - 10 | - 30     | - 50       | -10                  | - 64             | -90        |       |             |           |           |          |        |        |
| 120 | 0.230  | 0.260   | 0.370   | 0 500     | 0.750   | 1 470   | 1070  | յառ<br>Ո 10ճ          | 0        | 0    |          | . 0        | 0                    | 0                | . 0        | 17.4  | 327         | 88.8      | 155 1     | 282 7    | 650.1  | 905.2  |
| 130 | 0.340  | 0.400   | 0.630   | 0,830     | 1.080   | 1,580   | 1.850 | 0.187                 | Ŏ        | Ŏ    | Ŏ        | Ö          | Ő                    | Ŏ                | Ö          | 81.5  | 1135        | 236.3     | 343.1     | 476.5    | 743.5  | 887.6  |
| 131 | 0.150  | 0.210   | 0.290   | 0.360     | 0.440   | 0.660   | 0.840 | 0.190                 | 1        | Ū    | 0        | Ō          | Ō                    |                  | Ō          | 27.0  | 10.2        | 52.2      | 89.0      | 131.0    | 246.5  | 341.0  |
| 132 | 0,110  | 0,130   | 0,170   | 0,200     | 0,230   | 0,300   | 0,340 | 0,187                 | 1        | 1    | 1        | Ō          | 0                    | Ō                | Ō          | 70,3  | 44,1        | 10,2      | б,8       | 22,8     | 60,2   | 81,5   |
| 133 | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,290   | 0,330 | 0,181                 | 1        | 1    | 1        | 0          | 0                    | 0                | 0          | 29,0  | 20,4        | 0,4       | 10,7      | 27,3     | 60,5   | 82,7   |
| 134 | 0,150  | 0,160   | 0,190   | 0,220     | 0,250   | 0,320   | 0,380 | 0,178                 | 1        | 1    | 0        | 0          | 0                    | 0                | 0          | 18,9  | 11,5        | б,5       | 23,3      | 40,2     | 79,4   | 113,0  |
| 135 | 0,150  | 0,160   | 0,180   | 0,200     | 0,220   | 0,260   | 0,280 | 0,184                 | 1        | 1    | 1        | 0          | 0                    | 0                | 0          | 23,0  | 15,3        | 2,5       | 8,4       | 19,3     | 40,9   | 51,8   |
| 136 | 0,160  | 0,170   | 0,190   | 0,220     | 0,250   | 0,310   | 0,350 | 0,181                 | 1        | 1    | 0        | 0          | 0                    | 0                | 0          | 12,9  | 6,3         | 5,2       | 21,8      | 38,4     | 71,6   | 93,7   |
| 137 | 0,300  | 0,390   | 0,770   | 1,120     | 1,590   | 2,850   | 3,730 | 0,184                 | 0        | 0    | 0        | 0          | 0                    | 0                | 0          | 62,6  | 111,4       | 317,4     | 507,2     | 761,9    | 1445,0 | 1922,0 |
| 138 | 0,160  | 0,170   | 0,210   | 0,240     | 0,280   | 0,360   | 0,400 | 0,187                 | 1        | 1    | 0        | 0          | 0                    | 0                | 0          | 17,1  | 10,2        | 12,1      | 28,1      | 49,5     | 92,2   | 113,5  |
| 139 | 0,160  | 0,170   | 0,210   | 0,250     | 0,300   | 0,400   | 0,480 | 0,178                 | 1        | 1    | 0        | 0          | 0                    | 0                | 0          | 11,5  | 4,9         | 17,7      | 40,2      | 68,2     | 124,3  | 169,1  |
| 140 | 0,140  | 0,160   | 0,200   | 0,230     | 0,280   | 0,390   | 0,470 | 0,187                 | 1        | 1    | 0        | 0          | 0                    | 0                | 0          | 33,8  | 17,1        | б,8       | 22,8      | 49,5     | 108,2  | 150,9  |
| 141 | 0,150  | 0,170   | 0,230   | 0,290     | 0,380   | 0,600   | 0,780 | 0,148                 | 0        | 0    | 0        | 0          | 0                    | 0                | 0          | 1,2   | 14,7        | 55,2      | 95,7      | 156,4    | 304,9  | 426,3  |
| 142 | 0,120  | 0,140   | 0,170   | 0,200     | 0,230   | 0,310   | 0,370 | 0,183                 | 1        | 1    | 1        | 0          | 0                    | 0                | 0          | 52,6  | 30,8        | 7,7       | 9,2       | 25,6     | 69,3   | 102,0  |
| 143 | 0,180  | 0,200   | 0,700   | 1,500     | 2,220   | 4,130   | 5,120 | 0,192                 | 1        | U    | U        | U          | U                    | U                | U          | 6,8   | 4,1         | 264,2     | 680,4     | 1055,0   | 2048,7 | 2563,7 |
| 144 | 0,160  | 0,190   | 0,290   | 0,420     | 0,800   | 2,220   | 3,260 | 0,190                 | 1        | 1    | 0        | 0          | 0                    | 0                | 0          | 19,1  | 0,3         | 52,2      | 120,5     | 320,0    | 1065,4 | 1611,4 |
| 145 | 0,160  | 0,190   | 0,300   | 0,450     | 1,000   | 2,700   | 3,820 | 0,190                 | 1        | Q    | 0        | 0          | Û                    | 0                | 0          | 18,6  | 0,1         | 58,0      | 137,1     | 426,8    | 1322,3 | 1912,3 |
| 146 | 0,120  | 0,150   | 0,230   | 0,310     | 0,420   | 0,970   | 1,340 | 0,190                 | 1        | 1    | U        | U          | U                    | <u>U</u>         | U          | 58,7  | 27,0        | 20,7      | 62,7      | 120,5    | 409,2  | 603,4  |
| 147 | 0,200  | 0,250   | 0,570   | 1,360     | 2,440   | 4,740   | 5,030 | 0,248                 | <u> </u> | Ŭ    | U        | U          | U                    | <u> </u>         | U          | 24,1  | <b>U,</b> 7 | 129,7     | 448,0     | 883,2    | 1810,0 | 1926,9 |
| 148 | 0,160  | 0,210   | 0,400   | 0,850     | 1,370   | 2,520   | 3,270 | 0,190                 | 1        | U    | U        | U          | U                    | U                | U          | 19,1  | 10,2        | 110,0     | 346,2     | 619,2    | 1222,9 | 1616,6 |
| 149 | 0,100  | 0,130   | 0,190   | 0,250     | 0,340   | 0,940   | 1,640 | 0,196                 | 1        | 1    | ļļ       | U U        | U                    | U                | U U        | 96,0  | 50,8        | 3,1       | 27,6      | 73,5     | 379,6  | 736,8  |
| 150 | 0,090  | 0,120   | 0,180   | 0,230     | 0,310   | 1,010   | 2,430 | 0,190                 | 1        | ļ    | 1        | U          | U                    | <u> </u>         | U          | 111,7 | 58,7        | 5,8       | 20,7      | 62,7     | 4,90,2 | 1175,6 |
| 151 | 0,130  | 0,160   | 0,240   | 0,350     | 0,590   | 2,400   | 3,700 | <b>U,18</b> 7         | 1        | 1    | U        | U          | U                    | U                | U          | 44,1  | 17,1        | 28,1      | 80,8      | 215,0    | 1181,2 | 1875,2 |
| 152 | 0,100  | 0,120   | 0,170   | 0,210     | 0,250   | 0,380   | 0,480 | 0,192                 | ĮĮ       | ļ    | ļ        | U          | U                    | <u>v</u>         | U          | 92,2  | 60,2        | 13,1      | 9,3       | 30,1     | 97,7   | 149,7  |
| 153 | 0,110  | 0,130   | 0,190   | 0,230     | 0,300   | 0,840   | 1,830 | 0,187                 | 1        | 1    | U        | U          | U                    | U                | U          | 70,3  | 44,1        | 1,4       | 22,8      | 60,2     | 348,4  | 876,9  |
| 154 | 0,230  | 0,290   | 0,710   | 1,330     | 2,130   | 3,760   | 4,500 | 0,185                 | U        | U    | U        | U          | U                    | U                | U          | 25,0  | 58,5        | 287,7     | 020,2     | 1003,1   | 1953,1 | 2357,2 |
| 155 | 0,200  | 0,230   | 0,360   | 0,530     | 1,000   | 2,730   | 3,980 | 0,164                 | Ū.       | Ū.   | Ū,       | Û          | Ũ                    | 0                | Û          | 22,3  | 40,6        | 120,1     | 224,0     | 511,4    | 1569,0 | 2353,2 |
| 156 | 0,080  | 0,090   | 0,160   | 0,220     | 0,430   | 2,140   | 4,060 | 0,181                 | <u> </u> | 1    | 1        | U          | U                    | U                | U          | 125,8 | 100,7       | 12,9      | 21,8      | 158,0    | 1084,6 | 214/,4 |
| 157 | 0,180  | 0,200   | 0,290   | 0,390     | 0,800   | 1,070   | 2,060 | 0,184                 | 1        | 0    | 0        | 0          | 0                    | <u> </u>         | 0          | 2,5   | 8,4         | 57,2      | 111,4     | 333,7    | 480,0  | 1016,7 |
| 158 | 0,200  | 0,230   | 0,390   | 0,730     | 1,420   | 4,070   | 6,230 | 0,184                 | Ū.       | Q    | 0        | 0          | Û                    | <u> </u>         | 0          | 8,4   | 24,7        | 111,4     | 295,7     | 669,8    | 2106,4 | 3277,3 |
| 159 | 0,120  | 0,150   | 0,230   | 0,340     | 0,600   | 4,670   | 0,300 | 0,185                 | <u> </u> | 1    | U        | U .        | U                    | U                | U .        | 52,6  | 22,1        | 25,6      | 85,7      | 227,6    | 2450,0 | 05,8   |
| 160 | 0,150  | U,160   | 0,210   | 0,250     | 0,320   | 2,760   | 0,280 | 0,168                 | 1        | 1    | <u> </u> | <u>i</u> 0 | 0                    | 0                | <u>i</u> 0 | 12,3  | 5,2         | 24,7      | 48,5      | 90,0     | 1539,0 | 66,3   |

Tabela 5.6h - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

|                                               |                       | -     | <u> </u> |              |          |                      |                             |      | -     |          |           |           |           |        |        |
|-----------------------------------------------|-----------------------|-------|----------|--------------|----------|----------------------|-----------------------------|------|-------|----------|-----------|-----------|-----------|--------|--------|
| DIÄMETROS DO LEITO DO PARA O RIO ATIBAIA      |                       | -     | COMP/    | <b>ARAÇA</b> | O ENI    | RE D <sub>v</sub>    | <sub>la</sub> D             |      | RELAÇ | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
| Granulometria do material do leito            |                       | (10)  | (11)     | (12)         | (13)     | (14)                 | (15)                        | (l6) | Е     | OS VALOI | RES MEDI  | DOSNORI   | IO ATIBAI | A      |        |
| (1) (2) (3) (4) (5) (6) (7) (8)               | (9)                   |       | COMP/    | ARA ÇA       | O DE     | D <sub>VJ (ROT</sub> | 1 COM                       |      | (17)  | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N° D10 D16 D35 D50 D65 D84 D90                | D <sub>Vi [ROT]</sub> | D10   | D16      | Das          | $D_{50}$ | De                   | D <sub>84</sub>             | Dan  |       |          |           |           |           |        |        |
| (mm) (mm) (mm) (mm) (mm) (mm)                 | nam.                  |       |          | ~            | 50       | ~                    | •4                          | ~    |       |          |           |           |           |        |        |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 | 0,187                 | 1     | 1        | 0            | 0        | 0                    | 0                           | 0    | 17,1  | 4,1      | 22,8      | 44,1      | 76,2      | 161,6  | 241,7  |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 | 0,181                 | 1     | 1        | 0            | 0        | 0                    | 0                           | 0    | 20,4  | 12,9     | 10,7      | 32,9      | 60,5      | 2579,1 | 647,3  |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 | 0,208                 | 1     | 1        | 1            | 1        | 0                    | 0                           | 0    | 108,1 | 73,4     | 30,1      | 9,5       | 10,5      | 58,6   | 87,4   |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 | 0,165                 | 0     | 0        | 0            | 0        | 0                    | 0                           | 0    | 3,1   | 15,2     | 57,7      | 94,1      | 154,8     | б94,б  | 1161,7 |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 | 0,181                 | 1     | 1        | 1            | 1        | 0                    | 0                           | 0    | 125,8 | 80,7     | 20,4      | 0,4       | 21,8      | бб,1   | 104,8  |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 | 0,172                 | 1     | 1        | 0            | 0        | 0                    | 0                           | 0    | 23,2  | 15,0     | 10,2      | 33,4      | 68,1      | 589,9  | 1946,6 |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 | 0,192                 | 0     | 0        | 0            | 0        | 0                    | 0                           | 0    | 4,1   | 24,9     | 82,1      | 160,1     | 337,0     | 930,1  | 1382,7 |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 | 0,178                 | 0     | 0        | 0            | 0        | 0                    | 0                           | 0    | 23,3  | 40,2     | 96,2      | 146,7     | 253,2     | 600,8  | 825,0  |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 | 0,183                 | 1     | 1        | 0            | 0        | 0                    | 0                           | 0    | 40,9  | 22,1     | 20,1      | 58,3      | 123,9     | 904,7  | 2979,6 |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 | 0,187                 | 1     | 0        | 0            | Û        | 0                    | 0                           | 0    | 33,8  | 1,4      | 70,8      | 145,6     | 305,7     | 786,2  | 1207,9 |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 | 0,184                 | 1     | 0        | 0            | 0        | 0                    | 0                           | 0    | 15,3  | 3,0      | 100,6     | 398,7     | 854,1     | 2068,4 | 2751,5 |
|                                               |                       |       | (%       | ) de eve     | entos en | ng ue D'             | $\mathbf{J} \ge \mathbf{D}$ |      | DIFE  | RENÇA I  | PER CENI  | UAL REI   | .ATIVA N  | EDIA   |        |
|                                               |                       | 54,39 | 31,58    | 7,60         | 1,17     | 0,00                 | 0,00                        | 0,00 | 26,3  | 30,6     | 82,5      | 156,5     | 285,0     | 783,5  | 1088,8 |

Tabela 5.6h - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

 $D_{_{\rm M}\,(\rm FeOT)^{-}}\,Di \hat{a} metro \,\,calculado\,p\,ela\,\,equação:\,D_{_{\rm M}\,(\rm Fe\,OT)}=4x10^{.05}\,{}_{\rm x}\,S^{.0,1643}\,.$  Para o método de Rottner

| DIÄ | METR   | OS DO I | LEITO   | DOPA      | RAOF    | NOAT           | IBAIA |         |      | COMP/ | <b>ARAÇ</b> A | O ENI    | RED                  | <sub>(A</sub> D  |                           | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | D E D va |       |
|-----|--------|---------|---------|-----------|---------|----------------|-------|---------|------|-------|---------------|----------|----------------------|------------------|---------------------------|--------|----------|-----------|-----------|-----------|----------|-------|
|     | Granul | ometria | a do ma | terial do | o leito |                |       |         | (10) | (11)  | (12)          | (13)     | (14)                 | (15)             | (16)                      | E      | OS VALOI | RES MEDI  | DOSNOR    | IO ATIBAI | A        |       |
| (l) | (2)    | (3)     | (4)     | (5)       | (б)     | $-\mathcal{O}$ | (8)   | (9)     |      | COMP/ | ARA ÇA        | ODE .    | D <sup>AN IGAN</sup> | <sub>y</sub> COM | [:                        | (17)   | (18)     | (19)      | (20)      | (21)      | (22)     | (23)  |
| N⁰  | D10    | Dlő     | D35     | D50       | D65     | D84            | D90   | D MIGAN | D10  | D16   | Dx            | $D_{50}$ | Des                  | D.               | $\mathbf{D}_{\mathbf{m}}$ |        |          |           |           |           |          |       |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  |         | 10   |       | 30            | 50       |                      | - 4              | ~                         |        |          |           |           |           |          |       |
| 1   | 0.150  | 0.180   | 0.340   | 0.640     | 0.970   | 1.560          | 1.860 | 7.121   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 4647.6 | 3856.3   | 1994.5    | 10127     | 634.2     | 356.5    | 282.9 |
| 2   | 0.190  | 0.240   | 0.370   | 0.540     | 0.880   | 2.770          | 3.820 | 7,163   | ī    | ī     | ī             | ī        | ī                    | ī                | ī                         | 3669,9 | 2884,5   | 1835,9    | 1226,4    | 714,0     | 158,6    | 87,5  |
| 3   | 0,240  | 0,290   | 0,480   | 0,680     | 1,040   | 2,960          | 4,110 | 6,993   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2813,8 | 2311,4   | 1356,9    | 928,4     | 572,4     | 136,3    | 70,1  |
| 4   | 0,220  | 0,270   | 0,530   | 0,860     | 1,370   | 3,240          | 4,220 | 7,348   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 3240,1 | 2621,5   | 1286,4    | 754,4     | 436,4     | 126,8    | 74,1  |
| 5   | 0,240  | 0,280   | 0,400   | 0,510     | 0,640   | 0,970          | 1,230 | 6,651   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2671,4 | 2275,4   | 1562,8    | 1204,2    | 939,3     | 585,7    | 440,8 |
| б   | 0,330  | 0,400   | 0,710   | 1,020     | 1,470   | 2,500          | 3,130 | 7,593   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2200,8 | 1798,2   | 969,4     | 644,4     | 416,5     | 203,7    | 142,6 |
| 7   | 0,270  | 0,320   | 0,450   | 0,570     | 0,730   | 1,130          | 1,420 | 6,668   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2369,5 | 1983,7   | 1381,7    | 1069,8    | 813,4     | 490,1    | 369,6 |
| 8   | 0,290  | 0,340   | 0,500   | 0,640     | 0,830   | 1,440          | 3,780 | 6,934   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2291,1 | 1939,4   | 1286,8    | 983,4     | 735,4     | 381,5    | 83,4  |
| 9   | 0,360  | 0,440   | 0,690   | 0,970     | 1,500   | 4,470          | 4,940 | 6,796   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 1787,9 | 1444,6   | 885,0     | 600,7     | 353,1     | 52,0     | 37,6  |
| 10  | 0,320  | 0,370   | 0,520   | 0,660     | 0,850   | 1,400          | 2,000 | 6,668   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 1983,7 | 1702,1   | 1182,3    | 910,3     | 684,4     | 376,3    | 233,4 |
| 11  | 0,300  | 0,360   | 0,560   | 0,780     | 1,220   | 4,100          | 4,750 | 5,464   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 1721,3 | 1417,7   | 875,7     | 600,5     | 347,9     | 33,3     | 15,0  |
| 12  | 0,300  | 0,360   | 0,560   | 0,770     | 1,090   | 3,330          | 4,500 | 5,017   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 1572,5 | 1293,7   | 796,0     | 551,6     | 360,3     | 50,7     | 11,5  |
| 13  | 0,270  | 0,320   | 0,480   | 0,630     | 0,870   | 3,900          | 4,700 | 4,127   | 1    | 1     | 1             | 1        | 1                    | 1                | 0                         | 1428,6 | 1189,7   | 759,8     | 555,1     | 374,4     | 5,8      | 13,9  |
| 14  | 0,270  | 0,320   | 0,470   | 0,640     | 0,920   | 2,300          | 4,020 | 2,081   | 1    | 1     | 1             | 1        | 1                    | 0                | 0                         | 670,9  | 550,4    | 342,8     | 225,2     | 126,2     | 10,5     | 93,1  |
| 15  | 0,280  | 0,320   | 0,490   | 0,660     | 0,950   | 2,170          | 3,160 | 3,294   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 1076,3 | 929,2    | 572,1     | 399,0     | 246,7     | 51,8     | 4,2   |
| 16  | 0,240  | 0,270   | 0,370   | 0,470     | 0,610   | 1,000          | 1,450 | 6,372   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2555,1 | 2260,1   | 1622,2    | 1255,8    | 944,6     | 537,2    | 339,5 |
| 17  | 0,310  | 0,370   | 0,510   | 0,630     | 0,800   | 1,290          | 1,770 | 7,593   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2349,2 | 1952,1   | 1388,8    | 1105,2    | 849,1     | 488,6    | 329,0 |
| 18  | 0,280  | 0,340   | 0,510   | 0,690     | 0,970   | 4,770          | 5,110 | 6,372   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2175,8 | 1774,2   | 1149,5    | 823,5     | 556,9     | 33,6     | 24,7  |
| 19  | 0,310  | 0,370   | 0,550   | 0,710     | 0,960   | 3,630          | 4,620 | 7,051   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2174,5 | 1805,6   | 1182,0    | 893,1     | 634,5     | 94,2     | 52,6  |
| 20  | 0,290  | 0,350   | 0,500   | 0,630     | 0,800   | 1,240          | 1,640 | 7,283   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2411,5 | 1981,0   | 1356,7    | 1056,1    | 810,4     | 487,4    | 344,1 |
| 21  | 0,340  | 0,440   | 0,840   | 1,260     | 2,140   | 4,520          | 4,960 | 4,730   | 1    | 1     | 1             | 1        | 1                    | <u>l</u>         | 0                         | 1291,1 | 974,9    | 463,0     | 275,4     | 121,0     | 4,6      | 4,9   |
| 22  | 0,300  | 0,390   | 0,750   | 1,150     | 1,870   | 4,270          | 4,820 | 6,040   | 1    | 1     | 1             | 1        | 1                    | <u>l</u>         | 1                         | 1913,5 | 1448,8   | 705,4     | 425,3     | 223,0     | 41,5     | 25,3  |
| 23  | 0,300  | 0,360   | 0,510   | 0,630     | 0,810   | 1,260          | 1,710 | 7,163   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2287,6 | 1889,7   | 1304,5    | 1036,9    | 784,3     | 468,5    | 318,9 |
| 24  | 0,270  | 0,320   | 0,470   | 0,590     | 0,740   | 1,110          | 1,370 | 4,730   | 1    | 1     | 1             | 1        | 1                    | <u> </u>         | 1                         | 1651,7 | 1378,0   | 906,3     | 701,6     | 539,1     | 326,1    | 245,2 |
| 25  | 0,250  | 0,300   | 0,440   | 0,560     | 0,730   | 1,180          | 1,660 | 7,163   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2765,1 | 2287,6   | 1527,9    | 1179,1    | 881,2     | 507,0    | 331,5 |
| 26  | 0,240  | 0,290   | 0,420   | 0,550     | 0,740   | 1,340          | 2,260 | 6,U4U   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2416,9 | 1982,9   | 1338,2    | 998,3     | 716,3     | 350,8    | 167,3 |
| 27  | 0,230  | 0,280   | 0,420   | 0,540     | 0,710   | 1,200          | 4,430 | 5,222   | 1    | 1     | 1             | 1        | 1                    | <u> </u>         | 1                         | 2170,4 | 1765,0   | 1143,3    | 867,0     | 635,5     | 335,2    | 17,9  |
| 28  | 0,250  | 0,290   | 0,410   | 0,520     | 0,650   | 0,950          | 1,200 | 5,686   | 1    | 1     | 1             | 1        | 1                    | <u>1</u>         | 1                         | 2174,3 | 1860,6   | 1286,8    | 993,4     | 774,7     | 498,5    | 373,8 |
| 29  | 0,240  | 0,280   | 0,390   | 0,480     | 0,590   | 0,830          | 1,000 | 4,445   | 1    | 1     | 1             | 1        | 1                    | <u>l</u>         | 1                         | 1752,1 | 1487,5   | 1039,8    | 826,1     | 653,4     | 435,6    | 344,5 |
| 30  | 0,270  | 0,310   | 0,430   | 0,530     | 0,650   | 0,890          | 1,050 | 5,686   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 2005,9 | 1734,1   | 1222,3    | 972,8     | 774,7     | 538,9    | 441,5 |
| 31  | 0,230  | 0,270   | 0,370   | 0,470     | 0,600   | 0,890          | 1,100 | 4,127   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 1694,4 | 1428,6   | 1015,4    | 778,1     | 587,9     | 363,7    | 275,2 |
| 32  | 0,280  | 0,340   | 0,500   | 0,650     | 0,870   | 1,660          | 2,300 | 5,686   | 1    | 1     | 1             | 1        | 1                    | 1                | 1                         | 1930,7 | 1572,3   | 1037,2    | 774,7     | 553,5     | 242,5    | 147,2 |

Tabela 5.6i - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ  | METR  | OS DO I | LEITO   | DO PA     | RAOI    | RIOAT              | IBAIA |             |      | COMP/ | <b>ARAÇ</b> A   | O ENI            | RED <sub>W</sub>     | <sub>A</sub> D    |          | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | D E D uz |       |
|------|-------|---------|---------|-----------|---------|--------------------|-------|-------------|------|-------|-----------------|------------------|----------------------|-------------------|----------|--------|----------|-----------|-----------|-----------|----------|-------|
|      | Granu | ometria | i do ma | terial do | o leito |                    |       |             | (10) | (11)  | (12)            | (13)             | (14)                 | (15)              | (16)     | E      | OS VALOI | RES MEDI  | DOSNORI   | IO ATIBAI | A        |       |
| (l)  | (2)   | (3)     | (4)     | (5)       | (б)     | $-\mathcal{O}^{-}$ | (8)   | (9)         |      | COMP/ | ARA ÇA          | ODE .            | D <sup>AN ICAN</sup> | <sub>,1</sub> COM | :        | (17)   | (18)     | (19)      | (20)      | (21)      | (22)     | (23)  |
| N⁰   | D10   | Dló     | D35     | D50       | D65     | D84                | D90   | DMIGAA      | D10  | D16   | D <sub>25</sub> | $D_{\epsilon 0}$ | Des                  | D.                | $D_{00}$ |        |          |           |           |           |          |       |
|      | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)               | (mm)  | 515<br>TOTO | 10   |       | 30              | 50               |                      | 64                | ~        |        |          |           |           |           |          |       |
| 33   | 0.280 | 0.320   | 0.450   | 0.570     | 0.730   | 1.230              | 2.180 | 3.294       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 1076.3 | 929.2    | 631.9     | 477.8     | 351.2     | 167.8    | 51.1  |
| 34   | 0.270 | 0.300   | 0.410   | 0.510     | 0.630   | 0.880              | 1.050 | 4,041       | ī    | ī     | ī               | ī                | ī                    | ī                 | ī        | 1396,8 | 1247,1   | 885,7     | 692,4     | 541,5     | 359,2    | 284,9 |
| 35   | 0,280 | 0,320   | 0,440   | 0,540     | 0,680   | 1,000              | 1,270 | 4,730       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 1589,1 | 1378,0   | 974,9     | 775,9     | 595,5     | 373,0    | 272,4 |
| 36   | 0,210 | 0,250   | 0,360   | 0,450     | 0,580   | 0,890              | 1,100 | 6,040       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 2776,4 | 2316,2   | 1577,9    | 1242,3    | 941,5     | 578,7    | 449,1 |
| 37   | 0,270 | 0,320   | 0,450   | 0,570     | 0,740   | 1,180              | 1,520 | 3,294       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 1119,8 | 929,2    | 631,9     | 477,8     | 345,1     | 179,1    | 116,7 |
| 38   | 0,260 | 0,330   | 0,530   | 0,730     | 1,010   | 1,790              | 3,150 | 5,869       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 2157,3 | 1678,5   | 1007,4    | 704,0     | 481,1     | 227,9    | 86,3  |
| 39   | 0,300 | 0,340   | 0,480   | 0,600     | 0,750   | 1,140              | 1,450 | 3,294       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 997,8  | 868,7    | 586,2     | 448,9     | 339,1     | 188,9    | 127,1 |
| 40   | 0,320 | 0,370   | 0,550   | 0,710     | 0,950   | 1,600              | 2,510 | 7,386       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 2208,2 | 1896,3   | 1243,0    | 940,3     | 677,5     | 361,6    | 194,3 |
| 41   | 0,280 | 0,320   | 0,450   | 0,570     | 0,720   | 1,080              | 1,360 | 7,593       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 2611,7 | 2272,7   | 1587,3    | 1232,0    | 954,5     | 603,0    | 458,3 |
| 42   | 0,220 | 0,270   | 0,410   | 0,570     | 0,900   | 4,170              | 4,790 | 6,372       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 2796,5 | 2260,1   | 1454,2    | 1017,9    | б08,0     | 52,8     | 33,0  |
| 43   | 0,290 | 0,340   | 0,460   | 0,570     | 0,700   | 1,020              | 1,280 | 6,372       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 2097,3 | 1774,2   | 1285,3    | 1017,9    | 810,3     | 524,7    | 397,8 |
| 44   | 0,170 | 0,250   | 0,550   | 0,820     | 1,250   | 4,840              | 5,150 | 5,686       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3244,6 | 2174,3   | 933,8     | 593,4     | 354,9     | 17,5     | 10,4  |
| 45   | 0,210 | 0,260   | 0,410   | 0,590     | 0,880   | 1,790              | 2,700 | 7,773       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3601,7 | 2889,8   | 1796,0    | 1217,5    | 783,3     | 334,3    | 187,9 |
| 46   | 0,180 | 0,200   | 0,300   | 0,410     | 0,600   | 1,200              | 1,850 | 6,796       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3675,8 | 3298,2   | 2165,5    | 1557,6    | 1032,7    | 466,4    | 267,4 |
| 47   | 0,170 | 0,210   | 0,390   | 0,650     | 1,140   | 2,970              | 4,030 | 6,919       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3970,1 | 3194,8   | 1674,1    | 964,5     | 506,9     | 133,0    | 71,7  |
| 48   | 0,150 | 0,170   | 0,210   | 0,250     | 0,330   | 0,720              | 1,100 | 7,163       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 4675,2 | 4113,4   | 3310,8    | 2765,1    | 2070,5    | 894,8    | 551,2 |
| 49   | 0,150 | 0,170   | 0,210   | 0,240     | 0,320   | 0,910              | 1,440 | 6,919       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 4512,7 | 3970,1   | 3194,8    | 2783,0    | 2062,2    | 660,3    | 380,5 |
| 50   | 0,160 | 0,170   | 0,230   | 0,320     | 0,650   | 1,550              | 2,790 | 6,919       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 4224,4 | 3970,1   | 2908,3    | 2062,2    | 964,5     | 346,4    | 148,0 |
| 51   | 0,170 | 0,190   | 0,250   | 0,330     | 0,490   | 1,090              | 1,580 | 6,372       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3648,4 | 3253,8   | 2448,9    | 1831,0    | 1200,5    | 484,6    | 303,3 |
| 52   | 0,170 | 0,190   | 0,280   | 0,500     | 0,900   | 2,040              | 2,860 | 5,438       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3098,8 | 2762,1   | 1842,1    | 987,6     | 504,2     | 166,6    | 90,1  |
| - 53 | 0,160 | 0,180   | 0,260   | 0,370     | 0,530   | 0,910              | 1,230 | 6,372       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3882,7 | 3440,2   | 2350,9    | 1622,2    | 1102,3    | 600,3    | 418,1 |
| 54   | 0,140 | 0,150   | 0,180   | 0,200     | 0,230   | 0,500              | 0,920 | 7,685       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 5389,0 | 5023,0   | 4169,2    | 3742,3    | 3241,1    | 1436,9   | 735,3 |
| 55   | 0,140 | 0,160   | 0,200   | 0,240     | 0,300   | 0,600              | 0,850 | 6,515       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 4553,8 | 3972,1   | 3157,7    | 2614,7    | 2071,8    | 985,9    | 666,5 |
| 56   | 0,160 | 0,170   | 0,230   | 0,350     | 0,660   | 1,390              | 1,930 | 6,668       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 4067,4 | 3822,2   | 2799,0    | 1805,1    | 910,3     | 379,7    | 245,5 |
| 57   | 0,170 | 0,190   | 0,250   | 0,320     | 0,420   | 0,710              | 0,950 | 5,869       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3352,3 | 2988,9   | 2247,6    | 1734,1    | 1297,4    | 726,6    | 517,8 |
| 58   | 0,140 | 0,160   | 0,190   | 0,230     | 0,280   | 1,460              | 4,690 | 4,730       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3278,3 | 2856,U   | 2389,3    | 1956,3    | 1589,1    | 223,9    | 8,0   |
| 59   | 0,160 | 0,180   | 0,230   | 0,290     | 0,390   | 0,750              | 1,140 | 9,528       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 5854,8 | 5193,2   | 4042,5    | 3185,4    | 2343,0    | 1170,4   | 735,8 |
| 60   | 0,170 | 0,190   | 0,270   | 0,400     | 0,750   | 1,660              | 2,500 | 6,040       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3453,2 | 3079,2   | 2137,2    | 1410,1    | 705,4     | 263,9    | 141,6 |
| 61   | 0,170 | 0,190   | 0,270   | 0,360     | 0,570   | 1,240              | 1,640 | 5,250       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 2988,1 | 2663,1   | 1844,4    | 1358,3    | 821,0     | 323,4    | 220,1 |
| 62   | 0,180 | 0,210   | 0,370   | 0,820     | 1,560   | 3,060              | 3,790 | 7,037       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3809,2 | 3250,7   | 1801,8    | 758,1     | 351,1     | 130,0    | 85,7  |
| 63   | 0,160 | 0,190   | 0,310   | 0,520     | 0,810   | 1,370              | 1,660 | 5,250       | 1    | 1     | 1               | 1                | 1                    | 1                 | 1        | 3181,2 | 2663,1   | 1593,5    | 909,6     | 548,1     | 285,2    | 216,3 |
| 64   | 0,150 | 0,180   | 0,340   | 0,630     | 0,970   | 1,560              | 1,860 | 4,127       | 1    | 1     | <u> </u>        | 1                | 1                    | 1                 | 1        | 2651,4 | 2192,8   | 1113,9    | 555,1     | 325,5     | 164,6    | 121,9 |

Tabela 5.6i - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ      | METRO  | OS DO I | LEITO   | DO PA     | RAOI    | NO AT              | IBAIA |        |      | COMP/    | <b>ARAÇ</b> A   | O ENI    | RE D <sub>W</sub>    | <sub>A</sub> D   |                           | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw          |        |
|----------|--------|---------|---------|-----------|---------|--------------------|-------|--------|------|----------|-----------------|----------|----------------------|------------------|---------------------------|--------|----------|-----------|-----------|-----------|---------------|--------|
|          | Granul | ometria | a do ma | terial do | o leito |                    |       |        | (10) | (11)     | (12)            | (13)     | (14)                 | (15)             | (16)                      | E      | OS VALOI | RES MEDI  | DOSNOR    | IO ATIBAL | A             |        |
| (l)      | (2)    | (3)     | (4)     | (5)       | (6)     | $-\mathcal{O}^{-}$ | (8)   | (9)    |      | COMP/    | ARA ÇA          | ODE      | D <sup>AI ICYY</sup> | <sub>1</sub> COM | [:                        | (17)   | (18)     | (19)      | (20)      | (21)      | (22)          | (23)   |
| N°       | D10    | Dló     | D35     | D50       | D65     | D84                | D90   | DUIGAN | D10  | D16      | D <sub>26</sub> | $D_{50}$ | Des                  | D <sub>84</sub>  | $\mathbf{D}_{\mathbf{m}}$ |        |          |           |           |           |               |        |
|          | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)               | (mm)  | 770    | 10   |          | ~               |          | ~                    |                  | ~                         |        |          |           |           |           |               |        |
| 65       | 0.170  | 0.190   | 0.260   | 0.380     | 0.600   | 1.180              | 1.750 | 7,386  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 4244.9 | 3787.5   | 2740.9    | 1843.8    | 1131.0    | 526.0         | 322.1  |
| 66       | 0.170  | 0.180   | 0.220   | 0.260     | 0.310   | 0.410              | 0.470 | 6,372  | ī    | ī        | ī               | ī        | ī                    | ī                | ī                         | 3648,4 | 3440,2   | 2796,5    | 2350,9    | 1955,6    | 1454,2        | 1255,8 |
| 67       | 0,170  | 0,190   | 0,250   | 0,320     | 0,440   | 1,190              | 1,680 | 6,668  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 3822,2 | 3409,3   | 2567,1    | 1983,7    | 1415,4    | 460,3         | 296,9  |
| 68       | 0,170  | 0,180   | 0,230   | 0,270     | 0,320   | 0,430              | 0,560 | 7,283  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 4184,3 | 3946,3   | 3066,7    | 2597,6    | 2176,1    | 1593,8        | 1200,6 |
| 69       | 0,170  | 0,190   | 0,250   | 0,300     | 0,360   | 0,570              | 1,690 | 7,773  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 4472,6 | 3991,3   | 3009,4    | 2491,2    | 2059,3    | 1263,8        | 360,0  |
| 70       | 0,230  | 0,260   | 0,340   | 0,430     | 0,620   | 1,410              | 2,050 | 6,919  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2908,3 | 2561,2   | 1935,0    | 1509,1    | 1016,0    | 390,7         | 237,5  |
| 71       | 0,230  | 0,250   | 0,310   | 0,370     | 0,440   | 0,740              | 1,180 | 6,668  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2799,0 | 2567,1   | 2050,9    | 1702,1    | 1415,4    | 801,0         | 465,1  |
| 72       | 0,230  | 0,260   | 0,350   | 0,440     | 0,640   | 1,500              | 2,200 | 6,372  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2670,6 | 2350,9   | 1720,7    | 1348,2    | 895,7     | 324,8         | 189,6  |
| 73       | 0,190  | 0,230   | 0,320   | 0,410     | 0,610   | 1,630              | 3,000 | 6,372  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 3253,8 | 2670,6   | 1891,3    | 1454,2    | 944,6     | 290,9         | 112,4  |
| 74       | 0,240  | 0,270   | 0,350   | 0,420     | 0,550   | 0,990              | 1,360 | 5,250  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2087,4 | 1844,4   | 1400,0    | 1150,0    | 854,5     | 430,3         | 286,0  |
| 75       | 0,200  | 0,250   | 0,400   | 0,640     | 1,100   | 2,520              | 3,770 | 5,686  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2742,9 | 2174,3   | 1321,5    | 788,4     | 416,9     | 125,6         | 50,8   |
| 76       | 0,170  | 0,210   | 0,320   | 0,460     | 0,860   | 2,820              | 4,090 | 5,250  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2988,1 | 2399,9   | 1540,6    | 1041,3    | 510,4     | 86,2          | 28,4   |
| <u>π</u> | 0,220  | 0,270   | 0,410   | 0,560     | 0,800   | 1,340              | 1,660 | 5,464  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2383,6 | 1923,6   | 1232,6    | 875,7     | 583,0     | 307,7         | 229,1  |
| 78       | 0,180  | 0,220   | 0,330   | 0,450     | 0,750   | 1,980              | 3,050 | 4,730  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2527,6 | 2049,8   | 1333,2    | 951,O     | 530,6     | 138,9         | 55,1   |
| 79       | 0,190  | 0,230   | 0,360   | 0,540     | 1,000   | 2,700              | 3,730 | 5,464  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2775,7 | 2275,6   | 1417,7    | 911,8     | 446,4     | 102,4         | 46,5   |
| 80       | 0,210  | 0,240   | 0,360   | 0,500     | 0,920   | 3,270              | 4,350 | 5,017  | 1    | 1        | 1               | 1        | 1                    | l                | 1                         | 2289,3 | 1990,6   | 1293,7    | 903,5     | 445,4     | 53,4          | 15,3   |
| 81       | 0,190  | 0,230   | 0,350   | 0,520     | 1,070   | 3,850              | 4,630 | 5,250  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2663,1 | 2182,5   | 1400,0    | 909,6     | 390,6     | 36,4          | 13,4   |
| 82       | 0,230  | 0,270   | 0,380   | 0,530     | 0,880   | 1,950              | 2,890 | 0,572  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2670,0 | 2260,1   | 15/0,9    | 1102,5    | 024,1     | 220,8         | 120,5  |
| 83       | 0,230  | 0,270   | 0,400   | 0,640     | 1,290   | 4,190              | 4,790 | 7,593  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 3201,2 | 2712,1   | 1798,2    | 1086,4    | 488,6     | 81,2          | 58,5   |
| 84       | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 1,820              | 2,370 | 5,404  | 1    | 1        | L               | 1        | 1                    | 1                | 1                         | 2501,8 | 2170,0   | 1555,7    | 1200,9    | 0.58,4    | 200,2         | 130,5  |
| 85       | 0,230  | 0,270   | 0,390   | 0,670     | 1,650   | 4,070              | 4,690 | 6,427  | Į    | <u> </u> | ĮĮ              | ļ        | 1                    | I                | <u> </u>                  | 2694,3 | 2280,3   | 1547,9    | 859,2     | 289,5     | 57,9          | 37,0   |
| 80       | 0,210  | 0,240   | 0,330   | 0,420     | 0,740   | 3,000              | 4,160 | 100,0  | I    | <b>I</b> | 1               | 1        | 1                    | 1                | 1                         | 3043,4 | 2650,5   | 1900,3    | 1471,7    | 792,0     | 120,0         | 58,7   |
| 87       | 0,210  | 0,250   | 0,350   | 0,500     | 1,100   | 3,500              | 4,400 | 0,040  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 2776,4 | 2510,2   | 1025,8    | 1108,1    | 449,1     | /2,0          | 51,5   |
| 88       | 0,210  | 0,240   | 0,310   | 0,380     | 0,480   | 0,930              | 1,400 | 6,040  | ļ    | 1        | <u> </u>        | 1        | <u> </u>             | 1                | ļ                         | 2776,4 | 2416,9   | 1848,5    | 1489,6    | 1158,4    | 549,5         | 331,5  |
| 89       | 0,190  | 0,220   | 0,510   | 0,580     | 0,500   | 0,850              | 1,110 | 0,572  | 1    | 1        | 1               | 1        | 1                    | 1                | 1                         | 5255,8 | 2790,5   | 1955,0    | 15/0,9    | 11/4,5    | 00/,/         | 4/4,1  |
| 90       | 0,200  | 0,230   | 0,310   | 0,370     | 0,460   | 0,770              | 1,100 | /,580  | 1    | 1        | <b>I</b>        | 1        | 1                    | 1                | 1                         | 3593,1 | 5111,4   | 2282,7    | 1890,5    | 1505,/    | 859,5         | 5/1,5  |
| 91       | 0,220  | 0,240   | 0,300   | 0,360     | 0,420   | 0,650              | 0,980 | 7,586  | l    | Į        | <b>l</b>        | l        |                      | l                | 1                         | 3257,4 | 2977,6   | 2362,1    | 1951,7    | 1058,6    | 1036,3        | 053,7  |
| 92       | 0,230  | 0,250   | 0,330   | 0,390     | 0,490   | 0,820              | 1,100 | 0,572  |      | 1        | <b>I</b>        | 1        | 1                    | 1                | 1                         | 20/0,0 | 2448,9   | 1851,0    | 1533,9    | 1200,5    | 0//, <b>I</b> | 4/9,3  |
| 95       | 0,230  | 0,260   | 0,340   | 0,400     | 0,510   | 0,800              | 1,030 | 5,869  | ļ    | 1        | ļļ              | ļ        | 1                    | <u> </u>         | <b>I</b>                  | 2451,7 | 2157,3   | 1626,2    | 1367,2    | 1050,8    | 635,6         | 469,8  |
| . 94     | 0,230  | 0,250   | 0,550   | 0,400     | 0,510   | 0,880              | 1,100 | 5,250  | ļ    | 1        | ļ               | ļ        | ļ                    |                  | 1                         | 2182,5 | 1999.9   | 1490,9    | 12125     | 929,4     | 490,0         | 352,6  |
| 95       | 0,200  | 0,230   | 0,320   | 0,390     | 0,510   | 0,840              | 1,180 | 5,404  |      | 1        | 1               | 1        | <b>1</b>             | 1                | 1                         | 2051,9 | 22/5,0   | 1007,4    | 1301,0    | 9/1,5     | 550,5         | 303,U  |
| 90       | 0,150  | 0,200   | 0,400   | 0,750     | 1,480   | 4,440              | 4,920 | 5,869  | 1    | 1        | <u> </u>        | <u> </u> | <u> </u>             | I                | <b>I</b>                  | 3812,7 | 2834,5   | 1367,2    | 682,5     | 296,6     | 32,2          | 19,3   |

Tabela 5.6i - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METR  | OS DO I | LEITO   | DOPA      | RAOI    | RIO AT. | IBAIA |                        |          | COMP | <b>ARAÇ</b> A | AO ENT     | RED                  | D B              |                           | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
|-----|-------|---------|---------|-----------|---------|---------|-------|------------------------|----------|------|---------------|------------|----------------------|------------------|---------------------------|--------|----------|-----------|-----------|-----------|--------|--------|
|     | Granu | ometria | a do ma | terial do | o leito |         |       |                        | (10)     | (11) | (12)          | (13)       | (14)                 | (15)             | (16)                      | E      | OS VALOI | RES MEDI  | DOSNOR:   | IO ATIBAI | A      |        |
| (l) | (2)   | (3)     | (4)     | (5)       | (6)     | Ð       | (8)   | (9)                    |          | COMP | ARA ÇA        | AO DE      | D <sup>AJ ICAA</sup> | <sub>N</sub> COM | :                         | (17)   | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N⁰  | D10   | Dló     | D35     | D50       | D65     | D84     | D90   | D. <sup>10</sup> IGAAI | D16      | Dre  | Dx            | Dee        | Der                  | Der              | $\mathbf{D}_{\mathbf{m}}$ |        |          |           |           |           |        |        |
|     | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  | 31                     | 10       | 10   | 30            | 50         |                      | 64               | -90                       |        |          |           |           |           |        |        |
| 97  | 0.210 | 0.280   | 0.550   | 0.890     | 1.410   | 3.490   | 4.400 | 5.869                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 2694.8 | 1996.1   | 967.1     | 559.4     | 316.2     | 68.2   | 33.4   |
| 98  | 0.220 | 0.290   | 0.550   | 0.890     | 1.410   | 4,000   | 4,700 | 5.662                  | ī        | ī    | ī             | ī          | ī                    | Î                | ī                         | 2473.7 | 1852.4   | 929.5     | 536.2     | 301.6     | 41.6   | 20.5   |
| 99  | 0.150 | 0.220   | 0.430   | 0.650     | 0.980   | 1.840   | 2.460 | 6.372                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 4148.2 | 2796.5   | 1381.9    | 880,4     | 550.2     | 246.3  | 159.0  |
| 100 | 0,160 | 0,210   | 0,390   | 0,580     | 0,880   | 1,630   | 2,250 | 5,464                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 3314,9 | 2501,8   | 1301,0    | 842,0     | 520,9     | 235,2  | 142,8  |
| 101 | 0,140 | 0,160   | 0,230   | 0,300     | 0,400   | 0,960   | 4,370 | 10,913                 | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 7694,7 | 6720,4   | 4644,6    | 3537,5    | 2628,2    | 1036,7 | 149,7  |
| 102 | 0,150 | 0,180   | 0,250   | 0,320     | 0,420   | 0,670   | 0,850 | 6,241                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 4060,4 | 3367,0   | 2396,2    | 1850,2    | 1385,8    | 831,4  | 634,2  |
| 103 | 0,150 | 0,170   | 0,260   | 0,340     | 0,470   | 0,830   | 1,090 | 4,369                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 2812,7 | 2470,0   | 1580,4    | 1185,0    | 829,6     | 426,4  | 300,8  |
| 104 | 0,150 | 0,180   | 0,290   | 0,410     | 0,590   | 1,080   | 1,440 | 5,589                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 3626,3 | 3005,2   | 1827,4    | 1263,3    | 847,4     | 417,5  | 288,2  |
| 105 | 0,160 | 0,190   | 0,250   | 0,320     | 0,430   | 0,960   | 1,620 | 5,824                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 3540,2 | 2965,4   | 2229,7    | 1720,1    | 1254,5    | 506,7  | 259,5  |
| 106 | 0,170 | 0,190   | 0,240   | 0,290     | 0,350   | 0,500   | 0,630 | 7,335                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 4214,9 | 3760,7   | 2956,4    | 2429,4    | 1995,8    | 1367,1 | 1064,3 |
| 107 | 0,190 | 0,210   | 0,270   | 0,320     | 0,370   | 0,500   | 0,590 | 8,564                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 4407,3 | 3978,0   | 3071,8    | 2576,2    | 2214,6    | 1612,8 | 1351,5 |
| 108 | 0,160 | 0,180   | 0,240   | 0,290     | 0,350   | 0,510   | 0,670 | 4,730                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 2856,0 | 2527,6   | 1870,7    | 1530,9    | 1251,3    | 827,4  | 605,9  |
| 109 | 0,210 | 0,260   | 0,410   | 0,620     | 0,980   | 1,780   | 2,300 | 7,386                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 3417,3 | 2740,9   | 1701,5    | 1091,3    | 653,7     | 315,0  | 221,1  |
| 110 | 0,250 | 0,310   | 0,500   | 0,710     | 1,020   | 1,800   | 2,360 | 7,386                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 2854,5 | 2282,7   | 1377,3    | 940,3     | 624,1     | 310,3  | 213,0  |
| 111 | 0,220 | 0,260   | 0,410   | 0,640     | 1,020   | 1,940   | 2,590 | 6,934                  | 1        | 1    | 1             | į 1        | 1                    | 1                | 1                         | 3051,8 | 2566,9   | 1591,2    | 983,4     | 579,8     | 257,4  | 167,7  |
| 112 | 0,200 | 0,230   | 0,310   | 0,380     | 0,480   | 0,750   | 0,930 | 7,163                  | 1        | 1    | 1             | <u> </u>   | 1                    | 1                | 1                         | 3481,4 | 3014,2   | 2210,6    | 1784,9    | 1392,2    | 855,0  | 670,2  |
| 113 | 0,220 | 0,250   | 0,350   | 0,440     | 0,570   | 0,930   | 1,220 | 6,040                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 2645,7 | 2316,2   | 1625,8    | 1272,8    | 959,7     | 549,5  | 395,1  |
| 114 | 0,220 | 0,260   | 0,360   | 0,460     | 0,630   | 1,180   | 1,860 | 4,445                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 1920,5 | 1609,7   | 1134,8    | 866,3     | 605,6     | 276,7  | 139,0  |
| 115 | 0,190 | 0,230   | 0,320   | 0,400     | 0,520   | 0,810   | 1,000 | 6,919                  | 1        | 1    | 1             | 1          | 1                    | <u> </u>         | 1                         | 3541,6 | 2908,3   | 2062,2    | 1629,8    | 1230,6    | 754,2  | 591,9  |
| 116 | 0,210 | 0,240   | 0,320   | 0,380     | 0,480   | 0,740   | 0,940 | 6,668                  | 1        | 1    | 1             | į <u>1</u> | 1                    | 1                | 1                         | 3075,1 | 2678,2   | 1983,7    | 1654,7    | 1289,1    | 801,0  | 609,3  |
| 117 | 0,180 | 0,210   | 0,300   | 0,390     | 0,510   | 0,910   | 1,200 | 6,040                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 3255,8 | 2776,4   | 1913,5    | 1448,8    | 1084,4    | 563,8  | 403,4  |
| 118 | 0,180 | 0,220   | 0,340   | 0,470     | 0,730   | 1,820   | 3,210 | 5,614                  | 1        | 1    | 1             | 1          | 1                    | 1                | 1                         | 3018,8 | 2451,8   | 1551,1    | 1094,4    | 669,0     | 208,5  | 74,9   |
| 119 | 0,200 | 0,250   | 0,440   | 0,790     | 1,380   | 3,000   | 3,880 | 6,040                  | 1        | 1    | 1             | <u> </u>   | 1                    | 1                | 1                         | 2920,2 | 2316,2   | 1272,8    | 664,6     | 337,7     | 101,3  | 55,7   |
| 120 | 0,210 | 0,280   | 0,560   | 0,920     | 1,520   | 3,030   | 3,850 | 5,250                  | 1        | 1    | 1             | 1          | 1                    | <u> </u>         | 1                         | 2399,9 | 1774,9   | 837,5     | 470,6     | 245,4     | 73,3   | 36,4   |
| 121 | 0,210 | 0,270   | 0,480   | 0,730     | 1,130   | 2,320   | 3,550 | 5,756                  | ļ        | 1    | 1             | ļ          | 1                    | Ţ                | 1                         | 2640,9 | 2031,8   | 1099,2    | 688,5     | 409,4     | 148,1  | 62,1   |
| 122 | 0,200 | 0,240   | 0,370   | 0,590     | 1,130   | 2,600   | 3,750 | 5,017                  | 1        | 1    | 1             | <u> </u>   | 1                    | 1                | 1                         | 2408,7 | 1990,6   | 1256,1    | 750,4     | 344,0     | 93,0   | 33,8   |
| 123 | 0,210 | 0,260   | 0,480   | 0,860     | 1,430   | 3,130   | 4,060 | 5,250                  | 1        | 1    | 1             | Į <u>l</u> | 1                    | <u>l</u>         | 1                         | 2399,9 | 1919,2   | 993,7     | 510,4     | 267,1     | 67,7   | 29,3   |
| 124 | 0,210 | 0,290   | 0,540   | 0,770     | 1,080   | 1,810   | 2,880 | 4,127                  | I        | Ī    | <u> </u>      | <u> </u>   | <u>1</u>             |                  | 1                         | 1865,3 | 1323,1   | 664,3     | 436,0     | 282,1     | 128,0  | 43,3   |
| 125 | 0,230 | 0,300   | 0,680   | 1,180     | 1,840   | 3,410   | 4,160 | 4,730                  | <u>l</u> | 1    | 1             | 1          | 1                    | <u>l</u>         | 1                         | 1956,3 | 1476,5   | 595,5     | 300,8     | 157,0     | 38,7   | 13,7   |
| 126 | 0,300 | 0,380   | 0,660   | 0,950     | 1,330   | 2,270   | 2,950 | 7,535                  | ļ        | l    | ļļ            | <u> </u>   | 1                    | <u>l</u>         | 1                         | 2345,1 | 1830,3   | 1011,4    | 672,1     | 451,5     | 225,1  | 148,7  |
| 127 | 0,250 | 0,290   | 0,480   | 0,680     | 0,980   | 1,920   | 2,830 | /,105                  | 1        | 1    | <b>I</b>      | ĮĮ         | 1                    | I                | 1                         | 2/05,1 | 2569,9   | 1392,2    | 953,3     | 0.50,9    | 2/5,1  | 153,1  |
| 128 | 0,220 | U,280   | 0,540   | 0,850     | 1,320   | 2,630   | 3,560 | 6,372                  | 1        | 1    | 1             | <u> </u>   | 1                    | 1                | 1                         | 2796,5 | 2175,8   | 1080,1    | 649,7     | 382,7     | 142,3  | 79,0   |

Tabela 5.6i - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METR  | DS DO I | LEITO   | DOPA      | RAOI    | RIO AT. | IBAIA |                |      | COMP/    | ARAÇA           | O ENI    | RED                  | IA D             |                | RELAÇ            | ÃO PERCI        | EN TUAL E | IN TRE O S       | VALORES   | DEDw          |        |
|-----|-------|---------|---------|-----------|---------|---------|-------|----------------|------|----------|-----------------|----------|----------------------|------------------|----------------|------------------|-----------------|-----------|------------------|-----------|---------------|--------|
|     | Granu | ometria | i do ma | terial do | o leito |         |       |                | (10) | (11)     | (12)            | (13)     | (14)                 | (15)             | (16)           | E                | OS VALOI        | RES MEDI  | DOSNOR:          | IO ATIBAI | A             |        |
| (l) | (2)   | (3)     | (4)     | (5)       | (б)     | - (T) - | (8)   | (9)            |      | COMP     | ARA ÇA          | ODE      | D <sup>AN IGYY</sup> | <sub>y</sub> COM | :              | (17)             | (18)            | (19)      | (20)             | (21)      | (22)          | (23)   |
| N⁰  | D10   | Dlố     | D35     | D50       | D65     | D84     | D90   | DMIGAA         | D10  | D16      | D <sub>26</sub> | $D_{50}$ | Des                  | Der              | D <sub>m</sub> |                  |                 |           |                  |           |               |        |
|     | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)    | (mm)  | 7070           | 10   |          | ~               |          | ~                    |                  | ~              |                  |                 |           |                  |           |               |        |
| 129 | 0.230 | 0.260   | 0.370   | 0.500     | 0.750   | 1.470   | 1.970 | 6.919          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 2908.3           | 2561.2          | 1770.0    | 1283.8           | 822.5     | 370.7         | 251.2  |
| 130 | 0.340 | 0.400   | 0.630   | 0.830     | 1.080   | 1.580   | 1.850 | 7,581          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 2129,7           | 1795,2          | 1103,3    | 813,4            | 601,9     | 379,8         | 309,8  |
| 131 | 0,150 | 0,210   | 0,290   | 0,360     | 0,440   | 0,660   | 0,840 | 7,335          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 4790,2           | 3393,0          | 2429,4    | 1937,6           | 1567,1    | 1011,4        | 773,3  |
| 132 | 0,110 | 0,130   | 0,170   | 0,200     | 0,230   | 0,300   | 0,340 | 7,581          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 6791,8           | 5731,5          | 4359,4    | 3690,5           | 3196,1    | 2427,0        | 2129,7 |
| 133 | 0,140 | 0,150   | 0,180   | 0,200     | 0,230   | 0,290   | 0,330 | 8,112          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 5694,3           | 5308,0          | 4406,7    | 3956,0           | 3427,0    | 2697,3        | 2358,2 |
| 134 | 0,150 | 0,160   | 0,190   | 0,220     | 0,250   | 0,320   | 0,380 | 8,298          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 5432,2           | 5086,5          | 4267,5    | 3672,0           | 3219,3    | 2493,2        | 2083,8 |
| 135 | 0,150 | 0,160   | 0,180   | 0,200     | 0,220   | 0,260   | 0,280 | 7,806          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 5104,0           | 4778,8          | 4236,7    | 3803,0           | 3448,2    | 2902,3        | 2687,9 |
| 136 | 0,160 | 0,170   | 0,190   | 0,220     | 0,250   | 0,310   | 0,350 | 8,112          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 4970,0           | 4671,8          | 4169,5    | 3587,3           | 3144,8    | 2516,8        | 2217,7 |
| 137 | 0,300 | 0,390   | 0,770   | 1,120     | 1,590   | 2,850   | 3,730 | 7,806          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 2502,0           | 1901,6          | 913,8     | 597,0            | 390,9     | 173,9         | 109,3  |
| 138 | 0,160 | 0,170   | 0,210   | 0,240     | 0,280   | 0,360   | 0,400 | 7,581          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 4638,1           | 4359,4          | 3510,0    | 3058,7           | 2607,5    | 2005,8        | 1795,2 |
| 139 | 0,160 | 0,170   | 0,210   | 0,250     | 0,300   | 0,400   | 0,480 | 8,298          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 5086,5           | 4781,4          | 3851,6    | 3219,3           | 2666,1    | 1974,6        | 1628,8 |
| 140 | 0,140 | 0,160   | 0,200   | 0,230     | 0,280   | 0,390   | 0,470 | 7,581          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 5315,0           | 4638,1          | 3690,5    | 3196,1           | 2607,5    | 1843,8        | 1513,0 |
| 141 | 0,150 | 0,170   | 0,230   | 0,290     | 0,380   | 0,600   | 0,780 | 11,013         | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 7242,2           | 6378,4          | 4688,4    | 3697,7           | 2798,2    | 1735,5        | 1312,0 |
| 142 | 0,120 | 0,140   | 0,170   | 0,200     | 0,230   | 0,310   | 0,370 | 7,912          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 6493,3           | 5551,4          | 4554,1    | 3856,0           | 3340,0    | 2452,2        | 2038,4 |
| 143 | 0,180 | 0,200   | 0,700   | 1,500     | 2,220   | 4,130   | 5,120 | 7,204          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 3902,0           | 3501,8          | 929,1     | 380,2            | 224,5     | 74,4          | 40,7   |
| 144 | 0,160 | 0,190   | 0,290   | 0,420     | 0,800   | 2,220   | 3,260 | 7,335          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 4484,6           | 3760,7          | 2429,4    | 1646,5           | 816,9     | 230,4         | 125,0  |
| 145 | 0,160 | 0,190   | 0,300   | 0,450     | 1,000   | 2,700   | 3,820 | 7,386          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 4516,4           | 3787,5          | 2362,1    | 1541,4           | 638,6     | 173,6         | 93,4   |
| 146 | 0,120 | 0,150   | 0,230   | 0,310     | 0,420   | 0,970   | 1,340 | 7,335          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 6012,8           | 4790,2          | 3089,3    | 2266,2           | 1646,5    | 656,2         | 447,4  |
| 147 | 0,200 | 0,250   | 0,570   | 1,360     | 2,440   | 4,740   | 5,030 | 3,461          | 1    | 1        | 1               | 1        | 1                    | <u> </u>         | 0              | 1630,3           | 1284,2          | 507,1     | 154,5            | 41,8      | 37,0          | 45,4   |
| 148 | 0,160 | 0,210   | 0,400   | 0,850     | 1,370   | 2,520   | 3,270 | 7,335          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 4484,6           | 3393,0          | 1733,8    | 763,0            | 435,4     | 191,1         | 124,3  |
| 149 | 0,100 | 0,130   | 0,190   | 0,250     | 0,340   | 0,940   | 1,640 | 6,919          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 6819,1           | 5222,4          | 3541,6    | 2667,6           | 1935,0    | 636,1         | 321,9  |
| 150 | 0,090 | 0,120   | 0,180   | 0,230     | 0,310   | 1,010   | 2,430 | 7,335          | 1    | l        | l               | 1        | 1                    | 1                | 1              | 8050,3           | 6012,8          | 3975,2    | 3089,3           | 2266,2    | 626,3         | 201,9  |
| 151 | 0,130 | 0,160   | 0,240   | 0,350     | 0,590   | 2,400   | 3,700 | 7,581          | 1    | 1        | <u> </u>        | 1        | 1                    | 1                | 1              | 5731,5           | 4638,1          | 3058,7    | 2066,0           | 1184,9    | 215,9         | 104,9  |
| 152 | 0,100 | 0,120   | 0,170   | 0,210     | 0,250   | 0,380   | 0,480 | 7,204          | 1    | <u> </u> | I               | 1        | 1                    | 1                | 1              | 7103,6           | 5903,0          | 4137,4    | 3330,3           | 2781,4    | 1795,7        | 1400,7 |
| 155 | 0,110 | 0,130   | 0,190   | 0,230     | 0,500   | 0,840   | 1,850 | /,581          | 1    | 1        | 1<br>1          | 1        | 1                    | 1                | 1              | 0/91,8           | 5/515           | 5890,0    | 5190,1<br>1010   | 2427,0    | 802,5         | 514,5  |
| 154 | 0,230 | 0,290   | 0,710   | 1,330     | 2,130   | 3,760   | 4,500 | 7,912          | 1    | 1        | 1<br>,          | 1        | 1                    | 1                | 1              | JJ40,0           | 2028,5          | 1014,4    | 494,9            | 2/1,5     | 110,4         | 15,8   |
| 155 | 0,200 | 0,250   | 0,500   | 0,530     | 1,000   | 2,750   | 5,980 | 9,507          | 1    |          | <u> </u>        | ļ        | 1                    | ļļ               | 1              | 4085,7           | 4059,7          | 2557,6    | 1/05,2           | 850,7     | 250,5         | 140,4  |
| 150 | 0,080 | 0,090   | 0,100   | 0,220     | 0,450   | 2,140   | 4,060 | 8,112          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 10040,1          | 8915,4          | 4970,0    | 3587,5<br>1001 - | 1/80,5    | 279,1         | 99,8   |
| 157 | 0,180 | 0,200   | 0,290   | 0,390     | 0,800   | 1,070   | 2,000 | 7,800          | ļ    | <u></u>  | <u>ا</u>        | 1        | 1                    |                  | ļ              | 4230,7           | 3803,0          | 2591,7    | 19016            | 875,8     | 029,5         | 278,9  |
| 178 | 0,200 | 0,230   | 0,390   | 0,/30     | 1,420   | 4,070   | 0,230 | /,800<br>7.012 |      | <u>1</u> | I               | 1        | 1                    | 1<br>1           | 1              | 3803,0<br>2402.2 | 3293,9          | 1901,0    | 909,5<br>2227.0  | 449,/     | 91,8<br>20-4  | 22,3   |
| 159 | 0,120 | 0,150   | 0,250   | 0,540     | 0,000   | 4,0/0   | 0,500 | 1,912          | 1    | 1        | 1               | 1        | 1                    | 1                | 1              | 0493,5           | 21/4 <b>,</b> 0 | 3340,0    | 2227,0           | 1218,/    | 09,4<br>ADI A | 2731,5 |
| 100 | 0,150 | U,16U   | 0,210   | 0,250     | 0,320   | 2,760   | 0,280 | 9,142          | I    | 1        | I               | I        | <u> </u>             | 1                | 1              | 5994,5           | 5013,0          | 4253,2    | 3550,7           | 2756,8    | 231,2         | 3164,9 |

Tabela 5.6i - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIĂMETROS DO LEITO DO PARA O RIO ATIBAIA      |                       |      | COMP | ARAÇA    | O ENI    | RED.     | D La                        |                           | RELAÇ   | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
|-----------------------------------------------|-----------------------|------|------|----------|----------|----------|-----------------------------|---------------------------|---------|----------|-----------|-----------|-----------|--------|--------|
| Granulometria do material do leito            |                       | (10) | (11) | (12)     | (13)     | (14)     | (15)                        | (16)                      | Е       | OS VALOI | RESMEDI   | DOSNORI   | IO ATIBAL | A      |        |
| (1) (2) (3) (4) (5) (6) (7) (8)               | (9)                   |      | COMP | ARAÇA    | O DE     | D VI IGA | COM                         | :                         | (17)    | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N° D10 D16 D35 D50 D65 D84 D90                | D <sup>10 (CAA)</sup> | D10  | D    | Da       | Dee      | Da       | Der                         | $\mathbf{D}_{\mathbf{m}}$ |         |          |           |           |           |        |        |
| (mm) (mm) (mm) (mm) (mm) (mm)                 | ງເ<br>ກສານ            | -10  | - 10 | -30      | - 50     | - 10     | - 64                        | - 90                      |         |          |           |           |           |        |        |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 | 7,581                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 4638,1  | 4111,6   | 3196,1    | 2707,8    | 2197,3    | 1447,1 | 1084,5 |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 | 8,112                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 5308,0  | 4970,0   | 3956,0    | 3280,0    | 2697,3    | 67,6   | 500,9  |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 | 6,040                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 5940,5  | 4933,7   | 3675,3    | 3079,2    | 2526,3    | 1730,4 | 1448,8 |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 | 9,452                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 5460,3  | 4875,0   | 3535,6    | 2853,9    | 2150,6    | 621,6  | 354,4  |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 | 8,112                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 10040,1 | 8012,1   | 5308,0    | 4406,7    | 3587,3    | 2604,0 | 2092,4 |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 | 8,791                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 6179,0  | 5760,4   | 4526,6    | 3722,0    | 2931,2    | 638,7  | 149,0  |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 | 7,204                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 3501,8  | 2901,5   | 1958,2    | 1340,7    | 757,6     | 263,8  | 152,8  |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 | 8,298                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 3672,0  | 3219,3   | 2271,0    | 1786,0    | 1217,2    | 563,9  | 402,9  |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 | 7,912                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 5986,1  | 5174,6   | 3496,3    | 2628,3    | 1829,7    | 330,0  | 40,3   |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 | 7,581                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 5315,0  | 3890,0   | 2269,0    | 1548,0    | 897,5     | 356,7  | 209,4  |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 | 7,806                 | 1    | 1    | 1        | 1        | 1        | 1                           | 1                         | 4778,8  | 4008,5   | 2009,7    | 748,5     | 343,5     | 95,2   | 48,4   |
|                                               |                       |      | (%   | ) de eve | entos er | ng ue D' | $V \mathbf{J} > \mathbf{D}$ |                           | DIFEI   | RENÇA P  | ERCENT    | UAL REL   | ATIVA M   | EDIA   |        |
|                                               |                       | 100  | 100  | 100      | 100      | 100      | 98,83                       | 97,66                     | 3487,9  | 2958,4   | 2015,2    | 1511,7    | 1081,4    | 537,0  | 409,6  |

Tabela 5.6i - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>Vi (GAA)</sub> - Diâmetro calculado pela equação: D<sub>Vi (GAA)</sub>= 0,0027× Ln( S) + 0,0302 Para o método de Garde & Albertson (1961)

| DIÄ | METR  | OS DO   | LEITO   | DOPA      | RA O I  | RIO AT.        | IBAIA |                      | -    | COMP/ | <b>ARAÇA</b>  | O ENI    | RE D <sub>w</sub> | <sub>IA</sub> D |              | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DE D <sub>10</sub> |       |
|-----|-------|---------|---------|-----------|---------|----------------|-------|----------------------|------|-------|---------------|----------|-------------------|-----------------|--------------|--------|----------|-----------|-----------|-----------|--------------------|-------|
|     | Granu | ometria | a do ma | terial de | o leino |                |       |                      | (10) | (11)  | (12)          | (13)     | (14)              | (15)            | (l6)         | Е      | OS VALOI | RES MEDI  | DOSNOR    | IO ATIBAI | A                  |       |
| (l) | (2)   | (3)     | (4)     | (5)       | (б)     | $-\mathcal{O}$ | (8)   | (9)                  | I    | COMP. | ARAÇ <i>A</i> | 10 DE    | D UI INAL         | $_{\rm d}$ COM: | :            | (17)   | (18)     | (19)      | (20)      | (21)      | (22)               | (23)  |
| N°  | D10   | Dló     | D35     | D50       | D65     | D84            | D90   | D <sub>VITYALI</sub> | D10  | Die   | Dx            | $D_{so}$ | D <sub>cr</sub>   | Der             | $D_{\infty}$ |        |          |           |           |           |                    |       |
|     | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  |                      | 10   |       | 30            | 50       |                   | 64              | ×0           |        |          |           |           |           |                    |       |
| 1   | 0.150 | 0.180   | 0.340   | 0.640     | 0.970   | 1.560          | 1.860 | 4417                 | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 2844.8 | 2354.0   | 1109.2    | 590.2     | 355.4     | 183.1              | 137.5 |
| 2   | 0.190 | 0.240   | 0.370   | 0.540     | 0.880   | 2.770          | 3.820 | 4,471                | ī    | ī     | ī             | ī        | ī                 | ī               | ī            | 2253.2 | 1762.9   | 1108,4    | 728,0     | 408,1     | 61,4               | 17,0  |
| 3   | 0,240 | 0,290   | 0,480   | 0,680     | 1,040   | 2,960          | 4,110 | 4,254                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1672,6 | 1367.0   | 786,3     | 525,6     | 309,1     | 43,7               | 35    |
| 4   | 0,220 | 0,270   | 0,530   | 0,860     | 1,370   | 3,240          | 4,220 | 4,721                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 2045,7 | 1648,4   | 790,7     | 448,9     | 244,6     | 45,7               | 11,9  |
| 5   | 0,240 | 0,280   | 0,400   | 0,510     | 0,640   | 0,970          | 1,230 | 3,849                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1503,7 | 1274,6   | 862,2     | 654,7     | 501,4     | 296,8              | 212,9 |
| б   | 0,330 | 0,400   | 0,710   | 1,020     | 1,470   | 2,500          | 3,130 | 5,071                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1436,7 | 1167,8   | 614,2     | 397,2     | 245,0     | 102,8              | 62,0  |
| 7   | 0,270 | 0,320   | 0,450   | 0,570     | 0,730   | 1,130          | 1,420 | 3,868                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1332,4 | 1108,6   | 759,5     | 578,5     | 429,8     | 242,3              | 172,4 |
| 8   | 0,290 | 0,340   | 0,500   | 0,640     | 0,830   | 1,440          | 3,780 | 4,181                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1341,8 | 1129,8   | 736,3     | 553,3     | 403,8     | 190,4              | 10,6  |
| 9   | 0,360 | 0,440   | 0,690   | 0,970     | 1,500   | 4,470          | 4,940 | 4,016                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 1015,6 | 812,7    | 482,0     | 314,0     | 167,7     | 11,3               | 23,0  |
| 10  | 0,320 | 0,370   | 0,520   | 0,660     | 0,850   | 1,400          | 2,000 | 3,868                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1108,6 | 945,3    | 643,8     | 486,0     | 355,0     | 176,3              | 93,4  |
| 11  | 0,300 | 0,360   | 0,560   | 0,780     | 1,220   | 4,100          | 4,750 | 2,718                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 806,1  | 655,0    | 385,4     | 248,5     | 122,8     | 50,8               | 74,7  |
| 12  | 0,300 | 0,360   | 0,560   | 0,770     | 1,090   | 3,330          | 4,500 | 2,385                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 695,0  | 562,5    | 325,9     | 209,7     | 118,8     | 39,6               | 88,7  |
| 13  | 0,270 | 0,320   | 0,480   | 0,630     | 0,870   | 3,900          | 4,700 | 1,837                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 580,6  | 474,2    | 282,8     | 191,7     | 111,2     | 112,2              | 155,8 |
| 14  | 0,270 | 0,320   | 0,470   | 0,640     | 0,920   | 2,300          | 4,020 | 1,009                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 273,8  | 215,4    | 114,7     | 57,7      | 9,7       | 127,9              | 298,3 |
| 15  | 0,280 | 0,320   | 0,490   | 0,660     | 0,950   | 2,170          | 3,160 | 1,439                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 414,1  | 349,8    | 193,8     | 118,1     | 51,5      | 50,8               | 119,5 |
| 16  | 0,240 | 0,270   | 0,370   | 0,470     | 0,610   | 1,000          | 1,450 | 3,547                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1377,9 | 1213,7   | 858,6     | 654,7     | 481,5     | 254,7              | 144,6 |
| 17  | 0,310 | 0,370   | 0,510   | 0,630     | 0,800   | 1,290          | 1,770 | 5,071                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1535,8 | 1270,6   | 894,3     | 704,9     | 533,9     | 293,1              | 186,5 |
| 18  | 0,280 | 0,340   | 0,510   | 0,690     | 0,970   | 4,770          | 5,110 | 3,547                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 1166,8 | 943,2    | 595,5     | 414,0     | 265,7     | 34,5               | 44,1  |
| 19  | 0,310 | 0,370   | 0,550   | 0,710     | 0,960   | 3,630          | 4,620 | 4,327                | 1    | 1     | 1             | 1        | 1                 | 1               | 0            | 1295,8 | 1069,4   | 686,7     | 509,4     | 350,7     | 19,2               | 6,8   |
| 20  | 0,290 | 0,350   | 0,500   | 0,630     | 0,800   | 1,240          | 1,640 | 4,632                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1497,2 | 1223,4   | 826,4     | 635,2     | 479,0     | 273,5              | 182,4 |
| 21  | 0,340 | 0,440   | 0,840   | 1,260     | 2,140   | 4,520          | 4,960 | 2,192                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 544,8  | 398,2    | 161,0     | 74,0      | 2,4       | 106,2              | 126,3 |
| 22  | 0,300 | 0,390   | 0,750   | 1,150     | 1,870   | 4,270          | 4,820 | 3,218                | 1    | 1     | 1             | 1        | 1                 | 0               | 0            | 972,8  | 725,2    | 329,1     | 179,9     | 72,1      | 32,7               | 49,8  |
| 23  | 0,300 | 0,360   | 0,510   | 0,630     | 0,810   | 1,260          | 1,710 | 4,471                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1390,4 | 1142,0   | 776,7     | 609,7     | 452,0     | 254,8              | 161,5 |
| 24  | 0,270 | 0,320   | 0,470   | 0,590     | 0,740   | 1,110          | 1,370 | 2,192                | 1    | 1     | 1             | 1        | 1                 | 1               | <u> </u>     | 711,9  | 585,1    | 366,4     | 271,6     | 196,2     | 97,5               | 60,0  |
| 25  | 0,250 | 0,300   | 0,440   | 0,560     | 0,730   | 1,180          | 1,660 | 4,471                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1688,4 | 1390,4   | 916,2     | 698,4     | 512,5     | 278,9              | 169,3 |
| 26  | 0,240 | 0,290   | 0,420   | 0,550     | 0,740   | 1,340          | 2,260 | 3,218                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1241,0 | 1004'8   | 666,3     | 485,2     | 334,9     | 140,2              | 42,4  |
| 27  | 0,230 | 0,280   | 0,420   | 0,540     | 0,710   | 1,200          | 4,430 | 2,532                | 1    | 1     | 1             | 1        | 1                 | 1               | Ō            | 1001,0 | 804,4    | 502,9     | 368,9     | 256,6     | 111,0              | 74,9  |
| 28  | 0,250 | 0,290   | 0,410   | 0,520     | 0,650   | 0,950          | 1,200 | 2,901                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 1060,3 | 900,3    | 607,5     | 457,9     | 346,3     | 205,4              | 141,7 |
| 29  | 0,240 | 0,280   | 0,390   | 0,480     | 0,590   | 0,830          | 1,000 | 2,017                | 1    | 1     | 1             | 1        | 1                 | 1               | <u>1</u>     | 740,4  | 620,3    | 417,2     | 320,2     | 241,8     | 143,0              | 101,7 |
| 30  | 0,270 | 0,310   | 0,430   | 0,530     | 0,650   | 0,890          | 1,050 | 2,901                | 1    | 1     | 1             | 1        | 1                 | 1               | <u>1</u>     | 974,4  | 835,8    | 574,6     | 447,3     | 346,3     | 225,9              | 176,3 |
| 31  | 0,230 | 0,270   | 0,370   | 0,470     | 0,600   | 0,890          | 1,100 | 1,837                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 698,9  | 580,6    | 396,6     | 29 L,O    | 206,2     | 106,5              | 67,0  |
| 32  | 0,280 | 0,340   | 0,500   | 0,650     | 0,870   | 1,660          | 2,300 | 2,901                | 1    | 1     | 1             | 1        | 1                 | 1               | 1            | 936,0  | 753,2    | 480,2     | 346,3     | 233,4     | 74,7               | 26,1  |

Tabela 5.6j - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METR                               | OS DO I        | LEITO  | DOPA  | RA O I | RIO AT | IBAIA          |                |          | COMP  | <b>ARAÇA</b> | O ENI    | RED <sub>W</sub> | <sub>A</sub> D |              | RELAÇ                    | ÃO PERCI         | EN TUAL E | N TRE O S      | VALORES   | DEDu   |               |
|-----|------------------------------------|----------------|--------|-------|--------|--------|----------------|----------------|----------|-------|--------------|----------|------------------|----------------|--------------|--------------------------|------------------|-----------|----------------|-----------|--------|---------------|
|     | Granulometria do material do leito |                |        |       |        |        |                |                | (10)     | (11)  | (12)         | (13)     | (14)             | (15)           | (16)         | Е                        | OS VALOI         | RES MEDD  | DOSNOR         | IO ATIBAL | A      |               |
| (l) | (2)                                | (3)            | (4)    | (5)   | (6)    | - (T)  | (8)            | (9)            |          | COMP. | ARAÇA        | O DE     | D. TATI D        | , COM:         | :            | (17)                     | (18)             | (19)      | (20)           | (21)      | (22)   | (23)          |
| N⁰  | D10                                | Dló            | D35    | D50   | D65    | D84    | D90            | DWINAL         | Die      | Dr    | Dar          | Dee      | Der              | Der            | $D_{\infty}$ |                          |                  |           |                |           |        |               |
|     | (mm)                               | (mm)           | (mm)   | (mm)  | (mm)   | (mm)   | (mm)           | •][]           | -10      | - 10  | - 30         | - 50     | -10              | - 64           | - 90         |                          |                  |           |                |           |        |               |
| n   | 0.280                              | 0 320          | 0.450  | 0 570 | 0 730  | 1 230  | 2 180          | 1 <u>// 30</u> | 1        | 1     | 1            | 1        | 1                | 1              | 0            | 414.1                    | 340.8            | 210.0     | 152.5          | 07.2      | 17.0   | 515           |
| 34  | 0,200                              | 0,320          | 0,4.30 | 0,270 | 0,730  | 0.880  | 1050           | 1,452          | 1        | 1     | <b>1</b>     | 1        | 1                | 1              |              | 563.7                    | 497.3            | 337.1     | 251.4          | 184.4     | 103.6  | 70.7          |
| 35  | 0.280                              | 0.320          | 0.440  | 0.540 | 0.680  | 1.000  | 1.270          | 2.192          | 1        | ī     | ī            | 1        | ī                | 1              |              | 682.9                    | 585.1            | 398.2     | 306.0          | 222.4     | 119.2  | 72.6          |
| 36  | 0,210                              | 0,250          | 0,360  | 0,450 | 0,580  | 0,890  | 1,100          | 3,218          | ī        | ī     | ī            | 1        | ī                | ī              | ī            | 1432,6                   | 1187,3           | 794,0     | 615,2          | 454,9     | 261,6  | 192,6         |
| 37  | 0,270                              | 0,320          | 0,450  | 0,570 | 0,740  | 1,180  | 1,520          | 1,439          | 1        | 1     | 1            | 1        | 1                | 1              | 0            | 433,1                    | 349,8            | 219,9     | 152,5          | 94,5      | 22,0   | 5,6           |
| 38  | 0,260                              | 0,330          | 0,530  | 0,730 | 1,010  | 1,790  | 3,150          | 3,061          | 1        | 1     | 1            | 1        | 1                | 1              | 0            | 1077,2                   | 827,5            | 477,5     | 319,3          | 203,0     | 71,0   | 2,9           |
| 39  | 0,300                              | 0,340          | 0,480  | 0,600 | 0,750  | 1,140  | 1,450          | 1,439          | 1        | 1     | 1            | 1        | 1                | 1              | 0            | 379,8                    | 323,4            | 199,9     | 139,9          | 91,9      | 26,3   | 0,7           |
| 40  | 0,320                              | 0,370          | 0,550  | 0,710 | 0,950  | 1,600  | 2,510          | 4,774          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 1391,7                   | 1190,2           | 767,9     | 572,3          | 402,5     | 198,3  | 90,2          |
| 41  | 0,280                              | 0,320          | 0,450  | 0,570 | 0,720  | 1,080  | 1,360          | 5,071          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 1711,1                   | 1484,7           | 1026,9    | 789,7          | 604,3     | 369,5  | 272,9         |
| 42  | 0,220                              | 0,270          | 0,410  | 0,570 | 0,900  | 4,170  | 4,790          | 3,547          | 1        | 1     | 1            | 1        | 1                | 0              | 0            | 1512,2                   | 1213,7           | 765,1     | 522,3          | 294,1     | 17,6   | 35,0          |
| 43  | 0,290                              | 0,340          | 0,460  | 0,570 | 0,700  | 1,020  | 1,280          | 3,547          | 1        | 1     | 1            | <u>1</u> | 1                | 1              | 1            | 1123,1                   | 943,2            | 671,1     | 522,3          | 406,7     | 247,7  | 177,1         |
| 44  | 0,170                              | 0,250          | 0,550  | 0,820 | 1,250  | 4,840  | 5,150          | 2,901          | <u> </u> | 1     | 1            | <u> </u> | 1                | U              | U            | 1606,4                   | 1060,5           | 427,4     | 253,8          | 132,1     | 00,8   | 775           |
| 45  | 0,210                              | 0,260          | 0,410  | 0,590 | 0,880  | 1,790  | 2,700          | 5,347          | 1        | ļ     | 1            | <u>I</u> | 1                | 1              |              | 2446,1                   | 1956,5           | 1204,1    | 806,3          | 507,6     | 198,7  | 98,U          |
| 40  | 0,180                              | 0,200          | 0,300  | 0,410 | U,6UU  | 1,200  | 1,850          | 4,010          | 1        | ļ     |              | <u>1</u> | 1                | 1              |              | 2131,1                   | 1908,0           | 1238,7    | 879,5          | 509,3     | 234,7  | 117,1         |
| 47  | 0,170                              | 0,210          | 0,390  | 0,650 | 1,140  | 2,970  | 4,030          | 4,105          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 2548,9                   | 1882,4           | 907,5     | 540,5          | 205,2     | 40,2   | 3,3           |
| 416 | 0,150                              | 0,170          | 0,210  | 0,250 | 0,550  | 0,720  | 1,100          | 4,4/1          | 1        |       | 1            | <u>1</u> | 1                | 1              | 1            | 2880,7                   | 25,50,0          | 2029,1    | 1688,4         | 1254,9    | 521,0  | 500,5         |
| 49  | 0,170                              | 0,170          | 0,210  | 0,240 | 0,320  | 0,910  | 1,440          | 4,103          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 2075,4                   | 2348,9           | 1882,4    | 1034,0         | 240 5     | 377,7  | 189,1         |
| 20  | 0,100                              | 0,170          | 0,230  | 0.320 | 0,050  | 1,220  | 2,/90          | 4,103<br>2547  | 1        | 1     | 1            | 1<br>1   | 1                | 1              | 1            | 2701,9<br>100 <i>4</i> 4 | 2340,9<br>1744 0 | 1/10,0    | 1201ju<br>0740 | 240,2     | 200,0  | 49,2<br>194 5 |
| 21  | 0,170                              | 0,190          | 0,200  | 0,330 | 0,420  | 2 040  | 1,200          | 3,247<br>2,600 | 1        | 1     | 1            | <u>1</u> | 1                | 1<br>1         | 1            | 1700,4                   | 1700,0           | 1310,0    | 974,0<br>420 5 | 100 7     | 220,4  | 124,7         |
| 52  | 0,170                              | 0,190<br>0 190 | 0,200  | 0,200 | 0,900  | 2,040  | 2,000          | 2,070          | 1        | 1     | 1            | 1<br>1   | 1                | 1              | U<br>1       | 1400,7<br>7116 Q         | 1317,0           | 003,2     | 437,2<br>959 6 | 560.2     | 790.9  | 199 /         |
| 54  | 0,100                              | 0,100          | 0,200  | 0,370 | 0,230  | 0,710  | 1,230<br>N 020 | 5 200          | 1        | 1     | 1            |          | 1                | 1              | 1            | 26211                    | 33430            | 2704,2    | 2504 7         | 2165.0    | 041 0  | 466.2         |
| 66  | 0,140                              | 0,150          | 0,100  | 0.240 | 0,200  | 0,500  | 0,950          | 3 600          | 1        | 1     | ī            | î        | 1                | 1              | ī            | 2541.0                   | 22117            | 1749.4    | 14411          | 1132.0    | 516.5  | 335 1         |
| 56  | 0,140                              | 0,100          | 0,200  | 0,240 | 0,500  | 1 300  | 1030           | 3868           | 1        | 1     | 1            | î        | 1                | 1              | 1            | 2317.2                   | 2175.0           | 1581 6    | 1005.0         | 486 0     | 178.2  | 100 4         |
| 57  | 0.170                              | 0.190          | 0.250  | 0.320 | 0.420  | 0.710  | 0.950          | 3,061          | ī        | î     | ī            | î        | ī                | ī              | ī            | 1700.4                   | 1510.9           | 1124.3    | 856.5          | 628.7     | 331.1  | 222.2         |
| 58  | 0.140                              | 0.160          | 0.190  | 0.230 | 0.280  | 1.460  | 4.690          | 2.192          | ī        | ī     | ī            | ī        | ī                | ī              | Ō            | 1465.8                   | 1270.1           | 1053.8    | 853.1          | 682.9     | 50.1   | 113.9         |
| 59  | 0.160                              | 0.180          | 0.230  | 0.290 | 0.390  | 0.750  | 1.140          | 8,939          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 5486.6                   | 4865.9           | 3786.3    | 2982.3         | 2191.9    | 1091.8 | 684.1         |
| 60  | 0.170                              | 0.190          | 0.270  | 0.400 | 0.750  | 1.660  | 2.500          | 3,218          | ī        | ī     | ī            | ī        | ī                | ī              | ī            | 1793.2                   | 1593.9           | 1092.0    | 7046           | 329.1     | 93,9   | 28.7          |
| 61  | 0,170                              | 0,190          | 0,270  | 0,360 | 0,570  | 1,240  | 1,640          | 2,553          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 1401.8                   | 1243.7           | 845.6     | 609,2          | 347,9     | 105,9  | 55,7          |
| 62  | 0,180                              | 0,210          | 0,370  | 0,820 | 1,560  | 3,060  | 3,790          | 4,309          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 2293,7                   | 1951,8           | 1064,5    | 425,5          | 176,2     | 40,8   | 13,7          |
| 63  | 0,160                              | 0,190          | 0,310  | 0,520 | 0,810  | 1,370  | 1,660          | 2,553          | 1        | 1     | 1            | 1        | 1                | 1              | 1            | 1495,6                   | 1243,7           | 723,6     | 391,0          | 215,2     | 86,4   | 53,8          |
| 64  | 0,150                              | 0,180          | 0,340  | 0,630 | 0,970  | 1,560  | 1,860          | 1,837          | 1        | 1     | 1            | 1        | 1                | 1              | 0            | 1125,0                   | 920,8            | 440,4     | 191,7          | 89,4      | 17,8   | 1,2           |

Tabela 5.6j - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR  | OS DO I | LEITO   | DO PA     | RAOI    | RIO AT | IBAIA |                      | (    | COMP  | <b>ARAÇA</b>  | O ENI | RED <sub>VJ</sub>    | <sub>a</sub> D |              | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES  | DEDw  |       |
|-----|-------|---------|---------|-----------|---------|--------|-------|----------------------|------|-------|---------------|-------|----------------------|----------------|--------------|--------|----------|-----------|-----------|----------|-------|-------|
|     | Granu | ometria | 1 do ma | terial do | o leito |        |       |                      | (10) | (11)  | (12)          | (13)  | (14)                 | (15)           | (16)         | E      | OS VALOI | RES MEDI  | DOSNORI   | O ATIBAI | A     |       |
| (l) | (2)   | (3)     | (4)     | (5)       | (б)     | D -    | (8)   | (9)                  |      | COMP. | <b>ARAÇ</b> A | 10 DE | D <sup>WI LAYT</sup> | l COM          | :            | (17)   | (18)     | (19)      | (20)      | (21)     | (22)  | (23)  |
| N⁰  | D10   | Dló     | D35     | D50       | D65     | D84    | D90   | D <sub>VITVALI</sub> | D10  | D     | Dx            | Dee   | Der                  | Der            | $D_{\infty}$ |        |          |           |           |          |       |       |
|     | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)   | (mm)  |                      | 10   |       | 30            | 50    |                      | 64             | <b>%</b>     |        |          |           |           |          |       |       |
| 65  | 0.170 | 0.190   | 0.260   | 0.380     | 0.600   | 1.180  | 1.750 | 4774                 | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 2708.0 | 2412.4   | 1736.0    | 1156.2    | 695.6    | 304.5 | 172.8 |
| 66  | 0.170 | 0.180   | 0.220   | 0.260     | 0.310   | 0.410  | 0.470 | 3547                 | ī    | ī     | ī             | ī     | ī                    | î              | ī            | 1986.4 | 1870.5   | 1512.2    | 12642     | 1044.2   | 765.1 | 654.7 |
| 67  | 0.170 | 0.190   | 0.250   | 0.320     | 0.440   | 1.190  | 1.680 | 3,868                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 2175.0 | 1935.6   | 1447.0    | 1108.6    | 779.0    | 225,0 | 130,2 |
| 68  | 0,170 | 0,180   | 0,230   | 0,270     | 0,320   | 0,430  | 0,560 | 4,632                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 2624,6 | 2473,3   | 1913,9    | 1615,5    | 1347,5   | 977,2 | 727,1 |
| 69  | 0,170 | 0,190   | 0,250   | 0,300     | 0,360   | 0,570  | 1,690 | 5,347                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 3045,2 | 2714,2   | 2038,8    | 1682,3    | 1385,3   | 838,1 | 216,4 |
| 70  | 0,230 | 0,260   | 0,340   | 0,430     | 0,620   | 1,410  | 2,050 | 4,163                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1710,0 | 1501,2   | 1124,4    | 868,2     | 571,5    | 195,3 | 103,1 |
| 71  | 0,230 | 0,250   | 0,310   | 0,370     | 0,440   | 0,740  | 1,180 | 3,868                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1581,6 | 1447,0   | 1147,6    | 945,3     | 779,0    | 422,6 | 227,8 |
| 72  | 0,230 | 0,260   | 0,350   | 0,440     | 0,640   | 1,500  | 2,200 | 3,547                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1442,1 | 1264,2   | 913,4     | 706,1     | 454,2    | 136,5 | 61,2  |
| 73  | 0,190 | 0,230   | 0,320   | 0,410     | 0,610   | 1,630  | 3,000 | 3,547                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1766,8 | 1442,1   | 1008,4    | 765,1     | 481,5    | 117,6 | 18,2  |
| 74  | 0,240 | 0,270   | 0,350   | 0,420     | 0,550   | 0,990  | 1,360 | 2,553                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 963,8  | 845,6    | 629,4     | 507,9     | 364,2    | 157,9 | 87,7  |
| 75  | 0,200 | 0,250   | 0,400   | 0,640     | 1,100   | 2,520  | 3,770 | 2,901                | 1    | 1     | 1             | 1     | 1                    | 1              | 0            | 1350,4 | 1060,3   | 625,2     | 353,3     | 163,7    | 15,1  | 30,0  |
| 76  | 0,170 | 0,210   | 0,320   | 0,460     | 0,860   | 2,820  | 4,090 | 2,553                | 1    | 1     | 1             | 1     | 1                    | 0              | 0            | 1401,8 | 1115,7   | 697,8     | 455,0     | 196,9    | 10,5  | 60,2  |
| Π   | 0,220 | 0,270   | 0,410   | 0,560     | 0,800   | 1,340  | 1,660 | 2,718                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1135,5 | 906,7    | 563,0     | 385,4     | 239,8    | 102,8 | 63,7  |
| 78  | 0,180 | 0,220   | 0,330   | 0,450     | 0,750   | 1,980  | 3,050 | 2,192                | 1    | 1     | 1             | 1     | 1                    | 1              | 0            | 1117,9 | 896,4    | 564,3     | 387,1     | 192,3    | 10,7  | 39,1  |
| 79  | 0,190 | 0,230   | 0,360   | 0,540     | 1,000   | 2,700  | 3,730 | 2,718                | 1    | 1     | 1             | 1     | 1                    | 1              | 0            | 1330,6 | 1081,8   | 655,0     | 403,4     | 171,8    | 0,7   | 37,2  |
| 80  | 0,210 | 0,240   | 0,360   | 0,500     | 0,920   | 3,270  | 4,350 | 2,385                | 1    | 1     | 1             | 1     | 1                    | 0              | 0            | 1035,7 | 893,8    | 562,5     | 377,0     | 159,2    | 37,1  | 82,4  |
| 81  | 0,190 | 0,230   | 0,350   | 0,520     | 1,070   | 3,850  | 4,630 | 2,553                | 1    | 1     | 1             | 1     | 1                    | 0              | 0            | 1243,7 | 1010,0   | 629,4     | 391,0     | 138,6    | 50,8  | 81,4  |
| 82  | 0,230 | 0,270   | 0,380   | 0,530     | 0,880   | 1,950  | 2,890 | 3,547                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1442,1 | 1213,7   | 833,4     | 569,2     | 303,1    | 81,9  | 22,7  |
| 83  | 0,230 | 0,270   | 0,400   | 0,640     | 1,290   | 4,190  | 4,790 | 5,071                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 2104,8 | 1778,2   | 1167,8    | 692,4     | 293,1    | 21,0  | 5,9   |
| 84  | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 1,820  | 2,370 | 2,718                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1194,4 | 1032,6   | 723,7     | 547,2     | 267,3    | 49,4  | 14,7  |
| 85  | 0,230 | 0,270   | 0,390   | 0,670     | 1,650   | 4,070  | 4,690 | 3,604                | 1    | 1     | 1             | 1     | 1                    | 0              | 0            | 1467,0 | 1234,8   | 824,1     | 437,9     | 118,4    | 12,9  | 30,1  |
| 86  | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 3,000  | 4,160 | 3,793                | 1    | 1     | 1             | 1     | 1                    | 1              | 0            | 1706,1 | 1480,3   | 1049,3    | 803,0     | 412,5    | 26,4  | 9,7   |
| 87  | 0,210 | 0,250   | 0,350   | 0,500     | 1,100   | 3,500  | 4,400 | 3,218                | 1    | 1     | 1             | 1     | 1                    | 0              | 0            | 1432,6 | 1187,3   | 819,5     | 543,7     | 192,6    | 8,8   | 36,7  |
| 88  | 0,210 | 0,240   | 0,310   | 0,380     | 0,480   | 0,930  | 1,400 | 3,218                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1432,6 | 1241,0   | 938,2     | 746,9     | 570,5    | 246,1 | 129,9 |
| 89  | 0,190 | 0,220   | 0,310   | 0,380     | 0,500   | 0,830  | 1,110 | 3,547                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1766,8 | 1512,2   | 1044,2    | 833,4     | 609,4    | 327,3 | 219,5 |
| 90  | 0,200 | 0,230   | 0,310   | 0,370     | 0,460   | 0,770  | 1,100 | 4,774                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 2286,8 | 1975,5   | 1439,9    | 1190,2    | 937,7    | 519,9 | 334,0 |
| 91  | 0,220 | 0,240   | 0,300   | 0,360     | 0,420   | 0,650  | 0,980 | 4,774                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 2069,8 | 1889,0   | 1491,2    | 1226,0    | 1036,6   | 634,4 | 387,1 |
| 92  | 0,230 | 0,250   | 0,330   | 0,390     | 0,490   | 0,820  | 1,100 | 3,547                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1442,1 | 1318,8   | 974,8     | 809,5     | 623,9    | 332,5 | 222,4 |
| 93  | 0,230 | 0,260   | 0,340   | 0,400     | 0,510   | 0,800  | 1,030 | 3,061                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1230,7 | 1077,2   | 800,2     | 665,2     | 500,1    | 282,6 | 197,2 |
| 94  | 0,230 | 0,250   | 0,330   | 0,400     | 0,510   | 0,880  | 1,160 | 2,553                | 1    | 1     | <u>l</u>      | 1     | 1                    | 1              | 1            | 1010,0 | 921,2    | 673,6     | 538,3     | 400,6    | 190,1 | 120,1 |
| 95  | 0,200 | 0,230   | 0,320   | 0,390     | 0,510   | 0,840  | 1,180 | 2,718                | 1    | 1     | 1             | 1     | 1                    | 1              | 1            | 1259,1 | 1081,8   | 749,4     | 597,0     | 433,0    | 223,6 | 130,4 |
| 96  | 0,150 | 0,200   | 0,400   | 0,750     | 1,480   | 4,440  | 4,920 | 3,061                | 1    | 1     | 1             | 1     | 1                    | 0              | 0            | 1940,5 | 1430,3   | 665,2     | 308,1     | 106,8    | 45,1  | 60,7  |

Tabela 5.6j - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÂ  | METR  | OS DO I | LEITO   | DO PA     | RA O I  | RIO AT | IBAIA |               |          | COMP     | <b>ARAÇA</b> | O ENI   | RE D <sub>w</sub> | <sub>IA</sub> D  |           | RELAÇ            | ÃO PERCI         | EN TUAL E       | N TRE O S       | VALORES        | DEDw          |              |
|------|-------|---------|---------|-----------|---------|--------|-------|---------------|----------|----------|--------------|---------|-------------------|------------------|-----------|------------------|------------------|-----------------|-----------------|----------------|---------------|--------------|
|      | Granu | ometria | i do ma | terial do | ) leito |        |       |               | (10)     | (11)     | (12)         | (13)    | (14)              | (15)             | (16)      | Е                | OS VALOI         | RES MEDI        | DOSNORI         | IO ATIBAI      | A             |              |
| (l)  | (2)   | (3)     | (4)     | (5)       | (б)     | D -    | (8)   | (9)           |          | COMP.    | ARAÇA        | O DE    | D U IVAI          | <sub>4</sub> COM | :         | (17)             | (18)             | (19)            | (20)            | (21)           | (22)          | (23)         |
| N⁰   | D10   | Dló     | D35     | D50       | D65     | D84    | D90   | D             | D10      | Die      | Dx           | Dee     | Der               | Der              | D         |                  |                  |                 |                 |                |               |              |
| L    | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)   | (mm)  |               | 10       |          | 30           | 50      |                   | 64               | <b>90</b> |                  |                  |                 |                 |                |               |              |
| 07   | 0.210 | 0 290   | 0.550   | 0 800     | 1 / 10  | 3 400  | 4 400 | 3061          | 1        | 1        | 1            | 1       |                   | 0                | 0         | 1357 5           | 0031             | 456 5           | 243.0           | 117 1          | 14.03         | 43.8         |
| 0.0  | 0,210 | 0,200   | 0,550   | 0,070     | 1,410   | 4 000  | 4,400 | 2,881         | 1        | 1        | 1            | 1       | 1                 | 0                |           | 1209.4           | 893.3            | 423.8           | 223.7           | 104.3          | 38.0          | 63.2         |
| 99   | 0.150 | 0.220   | 0.430   | 0.650     | 0.980   | 1.840  | 2.460 | 3.547         | 1        | ī        | ī            | ī       | ī                 | ĩ                | 1         | 2264.6           | 1512.2           | 724.9           | 445.7           | 261.9          | 92.8          | 44.2         |
| 100  | 0,160 | 0,210   | 0.390   | 0,580     | 0,880   | 1,630  | 2,250 | 2,718         | ī        | ī        | ī            | ī       | ī                 | ī                | ī         | 1598,9           | 1194,4           | 597,0           | 368,7           | 208,9          | 66,8          | 20,8         |
| 101  | 0,140 | 0,160   | 0,230   | 0,300     | 0,400   | 0,960  | 4,370 | 13,411        | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 9479,1           | 8281,7           | 5730,7          | 4370,2          | 3252,7         | 1296,9        | 206,9        |
| 102  | 0,150 | 0,180   | 0,250   | 0,320     | 0,420   | 0,670  | 0,850 | 3,413         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 2175,1           | 1795,9           | 1265,1          | 966,5           | 712,5          | 409,4         | 301,5        |
| 103  | 0,150 | 0,170   | 0,260   | 0,340     | 0,470   | 0,830  | 1,090 | 1,972         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1215,0           | 1060,3           | 658,6           | 480,1           | 319,7          | 137,6         | 81,0         |
| 104  | 0,150 | 0,180   | 0,290   | 0,410     | 0,590   | 1,080  | 1,440 | 2,820         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1780,0           | 1466,7           | 872,4           | 587,8           | 378,0          | 161,1         | 95,8         |
| 105  | 0,160 | 0,190   | 0,250   | 0,320     | 0,430   | 0,960  | 1,620 | 3,021         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1788,1           | 1490,0           | 1108,4          | 844,0           | 602,5          | 214,7         | 86,5         |
| 106  | 0,170 | 0,190   | 0,240   | 0,290     | 0,350   | 0,500  | 0,630 | 4,703         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 2666,4           | 2375,2           | 1859,5          | 1521,7          | 1243,7         | 840,6         | 646,5        |
| 107  | 0,190 | 0,210   | 0,270   | 0,320     | 0,370   | 0,500  | 0,590 | 6,740         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 3447,3           | 3109,5           | 2396,2          | 2006,2          | 1721,6         | 1248,0        | 1042,3       |
| 108  | 0,160 | 0,180   | 0,240   | 0,290     | 0,350   | 0,510  | 0,670 | 2,192         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1270,1           | 1117,9           | 813,4           | 655,9           | 526,3          | 329,8         | 227,2        |
| 109  | 0,210 | 0,260   | 0,410   | 0,620     | 0,980   | 1,780  | 2,300 | 4,774         | <b>I</b> | ļ        | 1            |         | 1                 | 1                | <u>l</u>  | 2173,1           | 1736,0           | 1064,3          | 669,9           | 387,1          | 168,2         | 107,5        |
| 110  | 0,250 | 0,510   | 0,500   | 0,710     | 1,020   | 1,800  | 2,500 | 4,774         | I        |          | 1            | <u></u> | 1                 | 1                | 1         | 1809,4           | 1439,9           | 854,7           | 5725            | 508,U<br>200.0 | 105,2         | 102,5        |
| 111  | 0,220 | 0,200   | 0,410   | 0,040     | 1,020   | 1,940  | 2,590 | 4,181         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1800,0           | 1708,2           | 919,8           | 223,3<br>1074 4 | 309,9          | 115,5         | 200.0        |
| 112  | 0,200 | 0,230   | 0,310   | 0,380     | 0,480   | 0,720  | 1,230 | 4,471         | I        | <u>1</u> | 1            | I       | 1                 | 1                | <u>1</u>  | 2137,7<br>1262.0 | 1843,9           | 1342,3          | 1070,0          | 831,7<br>464.6 | 490,1         | 380,8        |
| 113  | 0,220 | 0,220   | 0,350   | 0,440     | 0,270   | 1 100  | 1,620 | 3,210<br>2017 | 1<br>1   | 1        | 1            | 1<br>1  | 1                 | 1                | 1<br>1    | 1302,9           | ۲, ۱۱۵<br>۲ ۲5 ۲ | 019,2<br>460.2  | UJL4<br>3205    | 404,0          | 240,1<br>70 0 | 103,0<br>8 A |
| 114  | 0,220 | 0,200   | 0,300   | 0,400     | 0,030   | 1,100  | 1,000 | 4 163         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 2010,0<br>2001 1 | 1710.0           | 400,£<br>1201.0 | 0.40.9          | 700.6          | 70,7<br>414.0 | 316.3        |
| 116  | 0,150 | 0,230   | 0.320   | 0,400     | 0,220   | 0,010  | 1,000 | 3868          | 1        | 1        | 1            | <br>1   | 1                 | 1                | 1         | 1741 7           | 15115            | 1108.6          | 9178            | 705,0          | 422 6         | 3114         |
| 117  | 0,210 | 0,240   | 0.300   | 0,300     | 0,400   | 0,740  | 1,200 | 3,218         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1688.0           | 1432.6           | 972.8           | 725.2           | 531.1          | 253.7         | 168.2        |
| 1 18 | 0,100 | 0.220   | 0.340   | 0.470     | 0.730   | 1.820  | 3.210 | 2.840         | 1        | ī        | ī            | î       | i                 | î                |           | 1477.9           | 11910            | 735.4           | 5043            | 289.1          | 56.1          | 13.0         |
| 1 19 | 0.200 | 0.250   | 0.440   | 0.790     | 1.380   | 3.000  | 3,880 | 3,218         | ī        | ī        | ī            | ī       | ī                 | ī                | Ŏ         | 1509.2           | 1187.3           | 631.4           | 307.4           | 133.2          | 7.3           | 20.6         |
| 120  | 0.210 | 0.280   | 0.560   | 0.920     | 1.520   | 3.030  | 3.850 | 2553          | 1        | 1        | 1            | 1       | 1                 | Ō                | 0         | 1115.7           | 811.8            | 355.9           | 177.5           | 68.0           | 18.7          | 50.8         |
| 121  | 0,210 | 0,270   | 0,480   | 0,730     | 1,130   | 2,320  | 3,550 | 2,961         | 1        | 1        | 1            | 1       | 1                 | 1                | 0         | 1310,0           | 996,7            | 516,9           | 305,6           | 162,0          | 27,6          | 19,9         |
| 122  | 0,200 | 0,240   | 0,370   | 0,590     | 1,130   | 2,600  | 3,750 | 2,385         | 1        | 1        | 1            | 1       | 1                 | 0                | Ü         | 1092,5           | 893,8            | 544,6           | 304,2           | 111,1          | 9,0           | 57,2         |
| 123  | 0,210 | 0,260   | 0,480   | 0,860     | 1,430   | 3,130  | 4,060 | 2,553         | 1        | 1        | 1            | 1       | 1                 | 0                | 0         | 1115,7           | 881,9            | 431,9           | 196,9           | 78,5           | 22,6          | 59,0         |
| 124  | 0,210 | 0,290   | 0,540   | 0,770     | 1,080   | 1,810  | 2,880 | 1,837         | 1        | 1        | 1            | 1       | 1                 | 1                | 0         | 775,0            | 533,6            | 240,3           | 138,6           | 70,1           | 1,5           | 56,7         |
| 125  | 0,230 | 0,300   | 0,680   | 1,180     | 1,840   | 3,410  | 4,160 | 2,192         | 1        | 1        | 1            | 1       | 1                 | 0                | 0         | 853,1            | 630,7            | 222,4           | 85,8            | 19,1           | 55,6          | 89,8         |
| 126  | 0,300 | 0,380   | 0,660   | 0,950     | 1,330   | 2,270  | 2,950 | 4,703         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1467,6           | 1137,6           | 612,6           | 395,0           | 253,6          | 107,2         | 59,4         |
| 127  | 0,250 | 0,290   | 0,480   | 0,680     | 0,980   | 1,920  | 2,830 | 4,471         | 1        | 1        | 1            | 1       | 1                 | 1                | 1         | 1688,4           | 1441,8           | 831,5           | 557,5           | 356,2          | 132,9         | 58,0         |
| 128  | 0,220 | 0,280   | 0,540   | 0,850     | 1,320   | 2,630  | 3,560 | 3,547         | 1        | 1        | 1            | 1       | 1                 | 1                | 0         | 1512,2           | 1166,8           | 556,8           | 317,3           | 168,7          | 34,9          | 0,4          |

Tabela 5.6j - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÂ | METR   | OS DO I | LEITO   | DO PA     | RA O I  | RIO AT.        | IBAIA |        |      | COMP/ | <b>ARAÇA</b> | O ENI    | RED       | D a      |                           | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDw   |        |
|-----|--------|---------|---------|-----------|---------|----------------|-------|--------|------|-------|--------------|----------|-----------|----------|---------------------------|--------|----------|-----------|-----------|-----------|--------|--------|
|     | Granul | ometria | 1 do ma | terial do | o leito |                |       |        | (10) | (11)  | (12)         | (13)     | (14)      | (15)     | (16)                      | E      | OS VALOI | RES MEDI  | DOSNOR:   | IO ATIBAI | A      |        |
| (l) | (2)    | (3)     | (4)     | (5)       | (б)     | $-\mathcal{O}$ | (8)   | (9)    |      | COMP. | ARAÇA        | IO DE    | D UI INAL | 4 COM    | :                         | (17)   | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N⁰  | D10    | Dló     | D35     | D50       | D65     | D84            | D90   | D      | D10  | D     | Dx           | Dee      | Der       | Der      | $\mathbf{D}_{\mathbf{m}}$ |        |          |           |           |           |        |        |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  |        | 10   | 10    | 30           | 50       |           | · · 4    | ×0                        |        |          |           |           |           |        |        |
| 129 | 0.230  | 0.260   | 0.370   | 0.500     | 0.750   | 1.470          | 1.970 | 4.163  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 1710.0 | 1501.2   | 1025.2    | 732.6     | 455.1     | 183.2  | 111.3  |
| 130 | 0.340  | 0.400   | 0.630   | 0.830     | 1.080   | 1.580          | 1.850 | 5,054  | ī    | ī     | ī            | ī        | ĩ         | ī        | ī                         | 1386,4 | 1163,4   | 702.2     | 508.9     | 367.9     | 219,9  | 173.2  |
| 131 | 0,150  | 0,210   | 0,290   | 0,360     | 0,440   | 0.660          | 0.840 | 4,703  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3035,2 | 2139,5   | 1521,7    | 1206,3    | 968.8     | 612,6  | 459,9  |
| 132 | 0,110  | 0,130   | 0,170   | 0,200     | 0,230   | 0,300          | 0,340 | 5,054  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4494,3 | 3787,5   | 2872,8    | 2426,8    | 2097,3    | 1584,6 | 1386,4 |
| 133 | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,290          | 0,330 | 5,904  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4117,4 | 3836,3   | 3180,2    | 2852,2    | 2467,1    | 1936,0 | 1689,2 |
| 134 | 0,150  | 0,160   | 0,190   | 0,220     | 0,250   | 0,320          | 0,380 | 6,236  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4057,0 | 3797,2   | 3181,9    | 2734,3    | 2394,2    | 1848,6 | 1540,9 |
| 135 | 0,150  | 0,160   | 0,180   | 0,200     | 0,220   | 0,260          | 0,280 | 5,398  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3498,8 | 3273,9   | 2899,0    | 2599,1    | 2353,7    | 1976,2 | 1827,9 |
| 136 | 0,160  | 0,170   | 0,190   | 0,220     | 0,250   | 0,310          | 0,350 | 5,904  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3590,3 | 3373,2   | 3007,6    | 2583,8    | 2261,8    | 1804,6 | 1587,0 |
| 137 | 0,300  | 0,390   | 0,770   | 1,120     | 1,590   | 2,850          | 3,730 | 5,398  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 1699,4 | 1284,2   | 601,1     | 382,0     | 239,5     | 89,4   | 44,7   |
| 138 | 0,160  | 0,170   | 0,210   | 0,240     | 0,280   | 0,360          | 0,400 | 5,054  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3058,6 | 2872,8   | 2306,5    | 2005,7    | 1704,9    | 1303,8 | 1163,4 |
| 139 | 0,160  | 0,170   | 0,210   | 0,250     | 0,300   | 0,400          | 0,480 | 6,236  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3797,2 | 3568,0   | 2869,3    | 2394,2    | 1978,5    | 1458,9 | 1199,1 |
| 140 | 0,140  | 0,160   | 0,200   | 0,230     | 0,280   | 0,390          | 0,470 | 5,054  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3509,8 | 3058,6   | 2426,8    | 2097,3    | 1704,9    | 1195,8 | 975,3  |
| 141 | 0,150  | 0,170   | 0,230   | 0,290     | 0,380   | 0,600          | 0,780 | 13,812 | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 9107,9 | 8024,7   | 5905,2    | 4662,7    | 3534,7    | 2202,0 | 1670,8 |
| 142 | 0,120  | 0,140   | 0,170   | 0,200     | 0,230   | 0,310          | 0,370 | 5,568  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4540,2 | 3877,3   | 3175,5    | 2684,1    | 2321,0    | 1696,2 | 1404,9 |
| 143 | 0,180  | 0,200   | 0,700   | 1,500     | 2,220   | 4,130          | 5,120 | 4,525  | 1    | 1     | 1            | 1        | 1         | 1        | 0                         | 2413,8 | 2162,4   | 546,4     | 201,7     | 103,8     | 9,6    | 13,2   |
| 144 | 0,160  | 0,190   | 0,290   | 0,420     | 0,800   | 2,220          | 3,260 | 4,703  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 2839,3 | 2375,2   | 1521,7    | 1019,7    | 487,9     | 111,8  | 44,3   |
| 145 | 0,160  | 0,190   | 0,300   | 0,450     | 1,000   | 2,700          | 3,820 | 4,774  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 2883,5 | 2412,4   | 1491,2    | 960,8     | 377,4     | 76,8   | 25,0   |
| 146 | 0,120  | 0,150   | 0,230   | 0,310     | 0,420   | 0,970          | 1,340 | 4,703  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3819,0 | 3035,2   | 1944,7    | 1417,1    | 1019,7    | 384,8  | 251,0  |
| 147 | 0,200  | 0,250   | 0,570   | 1,360     | 2,440   | 4,740          | 5,030 | 1,512  | 1    | 1     | 1            | 1        | 0         | 0        | 0                         | 655,8  | 504,6    | 165,2     | 11,1      | б1,4      | 213,6  | 232,8  |
| 148 | 0,160  | 0,210   | 0,400   | 0,850     | 1,370   | 2,520          | 3,270 | 4,703  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 2839,3 | 2139,5   | 1075,7    | 453,3     | 243,3     | 86,6   | 43,8   |
| 149 | 0,100  | 0,130   | 0,190   | 0,250     | 0,340   | 0,940          | 1,640 | 4,163  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4063,1 | 3102,4   | 2091,1    | 1565,2    | 1124,4    | 342,9  | 153,8  |
| 150 | 0,090  | 0,120   | 0,180   | 0,230     | 0,310   | 1,010          | 2,430 | 4,703  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 5125,4 | 3819,0   | 2512,7    | 1944,7    | 1417,1    | 365,6  | 93,5   |
| 151 | 0,130  | 0,160   | 0,240   | 0,350     | 0,590   | 2,400          | 3,700 | 5,054  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 3787,5 | 3058,6   | 2005,7    | 1343,9    | 756,6     | 110,6  | 36,6   |
| 152 | 0,100  | 0,120   | 0,170   | 0,210     | 0,250   | 0,380          | 0,480 | 4,525  | 1    | 1     | 1            | <u>l</u> | 1         | 1        | 1                         | 4424,8 | 3670,7   | 2561,7    | 2054,7    | 1709,9    | 1090,7 | 842,7  |
| 153 | 0,110  | 0,130   | 0,190   | 0,230     | 0,300   | 0,840          | 1,830 | 5,054  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4494,3 | 3787,5   | 2559,8    | 2097,3    | 1584,6    | 501,6  | 176,2  |
| 154 | 0,230  | 0,290   | 0,710   | 1,330     | 2,130   | 3,760          | 4,500 | 5,568  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 2321,0 | 1820,1   | 684,3     | 318,7     | 161,4     | 48,1   | 23,7   |
| 155 | 0,200  | 0,230   | 0,360   | 0,530     | 1,000   | 2,730          | 3,980 | 9,043  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4421,5 | 3831,7   | 2411,9    | 1606,2    | 804,3     | 231,2  | 127,2  |
| 156 | 0,080  | 0,090   | 0,160   | 0,220     | 0,430   | 2,140          | 4,060 | 5,904  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 7280,5 | 6460,4   | 3590,3    | 2583,8    | 1273,1    | 175,9  | 45,4   |
| 157 | 0,180  | 0,200   | 0,290   | 0,390     | 0,800   | 1,070          | 2,060 | 5,398  | 1    | 1     | <u> </u>     | 1        | 1         | <u> </u> | 1                         | 2899,0 | 2599,1   | 1761,5    | 1284,2    | 574,8     | 404,5  | 162,0  |
| 158 | 0,200  | 0,230   | 0,390   | 0,730     | 1,420   | 4,070          | 6,230 | 5,398  | 1    | 1     | <u> </u>     | 1        | 1         | 1        | 0                         | 2599,1 | 2247,0   | 1284,2    | 639,5     | 280,2     | 32,6   | 15,4   |
| 159 | 0,120  | 0,150   | 0,230   | 0,340     | 0,600   | 4,670          | 0,300 | 5,568  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 4540,2 | 3612,2   | 2321,0    | 1537,7    | 828,0     | 19,2   | 1756,1 |
| 160 | 0,150  | 0,160   | 0,210   | 0,250     | 0,320   | 2,760          | 0,280 | 7,983  | 1    | 1     | 1            | 1        | 1         | 1        | 1                         | 5222,0 | 4889,4   | 3701,5    | 3093,2    | 2394,7    | 189,2  | 2751,1 |

Tabela 5.6j - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIĂMETROS DO LEITO DO PARA O RIO ATIBAIA      |                       | (               | COMP/           | <b>ARAÇA</b>    | O ENI           | RE D <sub>v</sub> | <sub>IA</sub> D  |                 | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | D E D ur |        |
|-----------------------------------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|-------------------|------------------|-----------------|--------|----------|-----------|-----------|-----------|----------|--------|
| Granulometria do material do leito            |                       | (10)            | (11)            | (12)            | (13)            | (14)              | (15)             | (16)            | E      | OS VALOI | RES MEDI  | DOSNORI   | IO ATIBAL | A        |        |
| (1) (2) (3) (4) (5) (6) (7) (8)               | (9)                   | -               | COMP.           | ARAÇA           | ODE             | D NI IVAI         | <sub>4</sub> COM | :               | (17)   | (18)     | (19)      | (20)      | (21)      | (22)     | (23)   |
| N° D10 D16 D35 D50 D65 D84 D90                | D <sub>vj [YAL]</sub> | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>   | D.84             | D <sub>90</sub> |        |          |           |           |           |          |        |
| (mm) (mm) (mm) (mm) (mm) (mm) (mm)            | TITA.                 |                 | ~               | 2               |                 | ~                 |                  | ~               |        |          |           |           |           |          |        |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 | 5,054                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 3058,6 | 2707,6   | 2097,3    | 1771,7    | 1431,4    | 931,4    | 689,6  |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 | 5,904                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 3836,3 | 3590,3   | 2852,2    | 2360,2    | 1936,0    | 22,0     | 337,4  |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 | 3,218                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 3118,4 | 2582,0   | 1911,5    | 1593,9    | 1299,3    | 875,3    | 725,2  |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 | 8,744                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 5043,3 | 4501,9   | 3263,0    | 2632,4    | 1981,8    | 567,5    | 320,4  |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 | 5,904                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 7280,5 | 5804,4   | 3836,3    | 3180,2    | 2583,8    | 1868,1   | 1495,8 |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 | 7,203                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 5044,8 | 4701,8   | 3690,9    | 3031,6    | 2383,7    | 505,3    | 104,0  |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 | 4,525                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 2162,4 | 1785,4   | 1192,8    | 805,0     | 438,7     | 128,5    | 58,8   |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 | 6,236                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 2734,3 | 2394,2   | 1681,6    | 1317,2    | 889,8     | 398,8    | 277,9  |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 | 5,568                 | 1               | 1               | 1               | 1               | 1                 | 1                | 0               | 4183,3 | 3612,2   | 2431,0    | 1820,1    | 1258,1    | 202,6    | 1,3    |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 | 5,054                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 3509,8 | 2559,8   | 1479,3    | 998,6     | 565,0     | 204,4    | 106,3  |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 | 5,398                 | 1               | 1               | 1               | 1               | 1                 | 1                | 1               | 3273,9 | 2741,2   | 1359,0    | 486,8     | 206,7     | 35,0     | 2,6    |
|                                               |                       |                 | (%              | ) de eve        | entos er        | ng ue D'          | J > D            |                 | DIFE   | RENÇA P  | ERCENT    | UAL REL   | ATIVA M   | EDIA     |        |
|                                               |                       | 100             | 100             | 100             | 100             | 99                | 85,96            | 73,68           | 2163,6 | 1836,9   | 1247,8    | 932,5     | 661,9     | 320,0    | 253,1  |

Tabela 5.6j - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

 $D_{_{\rm WIVAL3}}$ - Diâmetro calculado pela equação:  $D_{_{\rm WIVAL3}}$  = 3,8117 «S<sup>0,7909</sup> Para o método de Yalin (1963)

| DIÄ         | METR    | OS DO          | LEITO   | DOPA      | RAOI    | RIO AT         | IBAIA |                      |          | COMP            | ARAÇA     | O ENI    | TRE D <sub>WJ</sub> | <sub>IA</sub> D |        | RELAÇ           | ÃO PERC         | EN TUAL E      | NTRE OS        | VALORES        | DEDur                 |                |
|-------------|---------|----------------|---------|-----------|---------|----------------|-------|----------------------|----------|-----------------|-----------|----------|---------------------|-----------------|--------|-----------------|-----------------|----------------|----------------|----------------|-----------------------|----------------|
|             | Granu   | ometri         | ı do ma | terial do | ) leito |                |       |                      | (10)     | (ll)            | (12)      | (13)     | (14)                | (15)            | (16)   | Е               | OS VALOI        | RES MEDI       | DOSNOR         | IO ATIBAI      | A                     |                |
| (l)         | (2)     | (3)            | (4)     | (5)       | (6)     | $-\mathcal{O}$ | (8)   | (9)                  |          | COMP.           | ARA ÇA    | O DE     | D <sub>vj pev</sub> | COM:            |        | (17)            | (18)            | (19)           | (20)           | (21)           | (22)                  | (23)           |
| N           | D10     | Dló            | D35     | D50       | D65     | D84            | D90   | D <sub>vi prvi</sub> | D10      | D <sub>16</sub> | Dx        | Dee      | Der                 | Der             | Dae    |                 |                 |                |                |                |                       |                |
|             | (mm)    | (mm)           | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  | -161                 | - 10     | - 10            | - 30      | - 50     | - ເອ                | - 64            | - 90   |                 |                 |                |                |                |                       |                |
| ┡┯          | 0 150   | 0 180          | 0 340   | 0 640     | 0.070   | 1 560          | 1 860 | 4 578                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 2051.8          | 24431           | 1246 4         | 6153           | 371.0          | 103.4                 | 146-1          |
| 2           | 0,190   | 0,100          | 0.370   | 0,540     | 0,880   | 2,770          | 3,820 | 4.624                | i        | ī               | i         | i        | i                   | î               | ī      | 2333.4          | 1826.5          | 1149.6         | 756.2          | 425.4          | 66.9                  | 21.0           |
| 3           | 0.240   | 0.290          | 0.480   | 0.680     | 1.040   | 2.960          | 4.110 | 4,438                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1749.4          | 1430.5          | 824.7          | 552,7          | 326.8          | 49,9                  | 8.0            |
| 4           | 0,220   | 0,270          | 0,530   | 0,860     | 1,370   | 3,240          | 4,220 | 4,835                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 2097,5          | 1690,6          | 812,2          | 462,2          | 252,9          | 49,2                  | 14,6           |
| 5           | 0,240   | 0,280          | 0,400   | 0,510     | 0,640   | 0,970          | 1,230 | 4,088                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1603,3          | 1359,9          | 922,0          | 701,5          | 538,7          | 321,4                 | 232,3          |
| б           | 0,330   | 0,400          | 0,710   | 1,020     | 1,470   | 2,500          | 3,130 | 5,128                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1453,8          | 1181,9          | 622,2          | 402,7          | 248,8          | 105,1                 | 63,8           |
| 7           | 0,270   | 0,320          | 0,450   | 0,570     | 0,730   | 1,130          | 1,420 | 4,104                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1420,0          | 1182,5          | 812,0          | 620,0          | 462,2          | 263,2                 | 189,0          |
| 8           | 0,290   | 0,340          | 0,500   | 0,640     | 0,830   | 1,440          | 3,780 | 4,376                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1408,9          | 1187,0          | 775,2          | 583,7          | 427,2          | 203,9                 | 15,8           |
| 9           | 0,360   | 0,440          | 0,690   | 0,970     | 1,500   | 4,470          | 4,940 | 4,233                | 1        | 1               | 1         | 1        | 1                   | 0               | 0      | 1075,9          | 862,1           | 513,5          | 336,4          | 182,2          | 5,6                   | 16,7           |
| 10          | 0,320   | 0,370          | 0,520   | 0,660     | 0,850   | 1,400          | 2,000 | 4,104                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1182,5          | 1009,2          | 689,3          | 521,8          | 382,8          | 193,2                 | 105,2          |
| 11          | 0,300   | 0,360          | 0,560   | 0,780     | 1,220   | 4,100          | 4,750 | 3,071                | 1        | 1               | 1         | 1        | 1                   | 0               | 0      | 923,8           | 753,2           | 448,5          | 293,8          | 151,8          | 33,5                  | 54,6           |
| 12          | 0,300   | 0,360          | 0,560   | 0,770     | 1,090   | 3,330          | 4,500 | 2,759                | 1        | 1               | 1         | 1        | 1                   | U               | U      | 819,5           | 666,3           | 392,6          | 258,2          | 153,1          | 20,7                  | 63,1           |
| 13          | 0,270   | 0,320          | 0,480   | 0,630     | 0,870   | 3,900          | 4,700 | 2,226                | 1        | <u> </u>        | 1         | <u> </u> | 1                   | 0               | 0      | 724,6           | 595,7           | 363,8          | 253,4          | 155,9          | 75,2                  | 111,1          |
| 14          | 0,270   | 0,320          | 0,470   | 0,640     | 0,920   | 2,300          | 4,020 | 1,361                | <u> </u> | <u> </u>        | 1         | ļļ       | 1                   |                 | 0      | 403,9           | 325,2           | 189,5          | 112,6          | 47,9           | 69,1                  | 195,5          |
| 15          | 0,280   | 0,320          | 0,490   | 0,660     | 0,950   | 2,170          | 3,160 | 1,822                | 1        | 1               | ĮĮ        | 1        | 1                   | U               | U      | 550,5           | 469,2           | 271,7          | 176,0          | 91,7           | 19,1                  | 73,5           |
| 16          | 0,240   | 0,270          | 0,370   | 0,470     | 0,610   | 1,000          | 1,450 | 3,822                | 1        | 1               | <u> </u>  | 1        | 1                   | 1               | 1      | 1492,6          | 1315,7          | 933,1          | 713,3          | 526,6          | 282,2                 | 163,6          |
| 17          | 0,310   | 0,370          | 0,510   | 0,630     | 0,800   | 1,290          | 1,770 | 5,128                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1554,1          | 1285,9          | 905,4          | 713,9          | 541,0          | 297,5                 | 189,7          |
| 18          | 0,280   | 0,340          | 0,510   | 0,690     | 0,970   | 4,770          | 5,110 | 5,822                | 1        | ĮĮ              | 1         | L        | 1                   | U.              | U      | 1205,1          | 1024,2          | 049,5          | 454,0          | 294,1          | 24,8                  | 55,1           |
| 19          | 0,510   | 0,570          | 0,550   | 0,/10     | 0,960   | 5,050          | 4,620 | 4,501                | 1        |                 | ļ         | 1        | 1                   | 1               | U      | 1,801,8         | 1110,4          | /18,5          | 555,9          | 508,8          | 240                   | 2,7            |
| 20          | 0,290   | 0,350          | 0,500   | 0,630     | 0,800   | 1,240          | 1,640 | 4,700                | 1        | ļ               |           | 1        | 1                   | 1               | 1      | 1541,5          | 1259,9          | 852,0          | 6222           | 495,0          | 283,9                 | 190,2          |
| 21          | 0,340   | 0,440          | 0,840   | 1,200     | 2,140   | 4,520          | 4,900 | 2,5/4                | 1        | <u> </u>        |           | 1        | 1                   | U               | U      | 05/,U           | 485,0           | 200,4          | 104,5          | 20,5           | /5,0                  | 92,1           |
| 22          | 0,300   | 0,390          | 0,750   | 1,150     | 1,8/0   | 4,270          | 4,820 | 3,529                | 1        | 1               | L         | 1        | 1                   | U<br>1          | U<br>1 | 10/0,3          | 804,8           | 3/0,5          | 200,9          | 88,/           | 21,0                  | 30,0<br>170 J  |
| 23          | 0,300   | 0,500          | 0,510   | 0,030     | 0,810   | 1,200          | 1,/10 | 4,024                | 1        | <b>1</b>        | 1         | 1        | 1                   | 1               | 1      | 1441,2          | 1184,3          | 800,0          | 033,9          | 4/0,8          | 200,9                 | 1/0,4          |
| 24          | 0,270   | 0,320          | 0,470   | 0,590     | 0,740   | 1,110          | 1,370 | 2,5/4                | 1        |                 | 1         | <b>1</b> | 1                   | 1               | 1      | 853,3<br>1740 d | /04,3           | 447,0          | 330,2<br>725 6 | 247,8          | 131,9                 | 8/,9<br>170 5  |
| 47          | 0,220   | 0,300          | 0,440   | 0,200     | 0,730   | 1,180          | 1,000 | 4,024                | 1        | 1               | 1<br>1    | 1        | 1                   | 1               | 1      | 1/49,4          | 1441,2          | 920,8<br>740-2 | /20,0<br>541.6 | 233,4          | 29 L0<br>162 2        | 1/8,7          |
| 20          | 0,240   | 0,290          | 0,420   | 0,220     | 0,740   | 1,340          | 4,200 | 3,549                | 1        | 1               | <b>1</b>  | 1        | 1                   | 1               | 1      | 13/0,4          | 0240            | /40,2<br>200.0 | 241,0<br>424.4 | 3/0,2          | 103,3<br>141 <i>2</i> | 20,1<br>53.0   |
| - 47        | 0,230   | 0,200<br>0,200 | 0,420   | 0,240     | 0,/10   | 1,200          | 4,430 | 2,090                | <b>1</b> |                 | <b>I</b>  | <b>1</b> | 1                   | 1               | U<br>1 | 1 106 0         | 934,9           | 709,9<br>600 2 | 430,0          | JUÖ,1<br>200 2 | 14L3<br>241 1         | 74,9<br>170 0  |
| 20          | 0,270   | 0,290          | 0,410   | 0,220     | 0,000   | 0,950          | 1,200 | 3,440                | 1        | 1               |           | 1        | 1                   | 1               | 1      | 1130,0          | 1017,3<br>720 4 | 020,3<br>516 2 | 743,1<br>400 7 | 370,7<br>207 4 | 241,1<br>100 2        | 1/0,0          |
| 29          | 0,240   | 00210          | 0,320   | 0,400     | 0,220   | 0,030          | 1,000 | 2,403                | <b>1</b> |                 |           | 1<br>1   | 1                   | 1               | 1      | 901,4<br>1100 0 | 720,4           | 210,3<br>652.5 | 400,7          | 307,4<br>200 4 | 107,0<br>7641         | 140,3<br>200 4 |
| 21          | 0,270   | 0,310          | 0,430   | 0,230     | 0,050   | 0,070          | 1,020 | 2 226                | 1        | <sup>1</sup>    | 1         | I        | 1                   | 1               | 1      | 1100,0<br>969 0 | 743,4<br>724 K  | 501 7          | 311,3          | 370,3<br>271 1 | 150 1                 | 200,0          |
| 20          | 0,430   | 0/240          | 0,370   | 0,470     | 0,000   | 0,020          | 2 200 | 2 240                | 1        | 1               | 1         | 1        | 1                   | 1               | 1      | 1057.2          | 754,0<br>052.0  | 240.0          | 373,7<br>200 4 | 271,1<br>272.4 | 120,1                 | 40 A           |
| <u>. 34</u> | : 0,400 | 0,340          | 0,200   | 0,020     | 0,070   | 1,000          | 4,300 | J,440                | <b>I</b> | <u> </u>        | <b>.1</b> | <u> </u> | L                   | <b>I</b> ;      | 1      | 1007,2          | 073,0           | 740,U          | J70 <i>7</i>   | £14,4;         | 77,4                  | 40,9           |

Tabela 5.6k - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÅ | METR  | OS DO          | LEITO   | DO PA     | RA O I  | RIO AT          | IBAIA |                      |                 | COMP  | <b>ARAÇA</b> | O ENI    | FRE D <sub>w</sub> | IA D   |        | RELAÇ  | ÃO PERC          | EN TUAL E        | N TRE OS        | VALORES         | DEDur           |               |
|-----|-------|----------------|---------|-----------|---------|-----------------|-------|----------------------|-----------------|-------|--------------|----------|--------------------|--------|--------|--------|------------------|------------------|-----------------|-----------------|-----------------|---------------|
|     | Granu | bmetri         | ı do ma | terial de | o leito |                 |       |                      | (10)            | (11)  | (12)         | (13)     | (14)               | (15)   | (16)   | Е      | OS VALOI         | RES MEDI         | DOSNO R         | IO ATIBAI       | A               |               |
| (l) | (2)   | (3)            | (4)     | (5)       | (6)     | $(\mathcal{T})$ | (8)   | (9)                  |                 | COMP. | ARA ÇA       | O DE     | D <sub>VJ PT</sub> | n COM: | :      | (17)   | (18)             | (19)             | (20)            | (21)            | (22)            | (23)          |
| N   | D10   | Dló            | D35     | D50       | D65     | D84             | D90   | D <sub>10 prin</sub> | D <sub>10</sub> | Dr    | Dar          | Dee      | Der                | Der    | Dae    |        |                  |                  |                 |                 |                 |               |
|     | (mm)  | (mm)           | (mm)    | (mm)      | (mm)    | (mm)            | (mm)  |                      | - 10            | - 10  | 30           | 50       | - 60               | 64     | - 90   |        |                  |                  |                 |                 |                 |               |
| 33  | 0.280 | 0.320          | 0.450   | 0.570     | 0.730   | 1 230           | 2 180 | 1.822                | 1               | 1     | 1            | 1        |                    | 1      | Û      | 550 5  | 469.2            | 304.8            | 219.6           | 140 5           | 48 1            | 10 7          |
| 34  | 0,200 | 0,320          | 0,420   | 0,570     | 0,730   | 0.880           | 1 050 | 2,181                | 1               | 1     | 1            | 1        | 1                  | 1      | ĩ      | 707.7  | 407,£<br>627,0   | 431.9            | 327.6           | 246.2           | 147.8           | 107.7         |
| 35  | 0.280 | 0.320          | 0.440   | 0.540     | 0.680   | 1.000           | 1.270 | 2.574                | ī               | ī     | ī            | ī        | ī                  | 1      | ī      | 819.2  | 704.3            | 485.0            | 376.6           | 278.5           | 157.4           | 102.7         |
| 36  | 0.210 | 0.250          | 0.360   | 0.450     | 0.580   | 0.890           | 1.100 | 3,529                | ī               | 1     | ī            | Ī        | ī                  | ī      | ī      | 1580,4 | 13115            | 880,2            | 684,2           | 508,4           | 296,5           | 220,8         |
| 37  | 0,270 | 0,320          | 0,450   | 0,570     | 0,740   | 1,180           | 1,520 | 1,822                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 574,6  | 469,2            | 304,8            | 219,6           | 146,2           | 54,4            | 19,8          |
| 38  | 0,260 | 0,330          | 0,530   | 0,730     | 1,010   | 1,790           | 3,150 | 3,386                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1202,4 | 926,1            | 538,9            | 363,9           | 235,3           | 89,2            | 7,5           |
| 39  | 0,300 | 0,340          | 0,480   | 0,600     | 0,750   | 1,140           | 1,450 | 1,822                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 507,2  | 435,7            | 279,5            | 203,6           | 142,9           | 59,8            | 25,6          |
| 40  | 0,320 | 0,370          | 0,550   | 0,710     | 0,950   | 1,600           | 2,510 | 4,879                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1424,7 | 1218,7           | 787,1            | 587,2           | 413,6           | 204,9           | 94,4          |
| 41  | 0,280 | 0,320          | 0,450   | 0,570     | 0,720   | 1,080           | 1,360 | 5,128                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1731,3 | 1502,4           | 1039,5           | 799,6           | 612,2           | 374,8           | 277,0         |
| 42  | 0,220 | 0,270          | 0,410   | 0,570     | 0,900   | 4,170           | 4,790 | 3,822                | 1               | 1     | 1            | 1        | 1                  | 0      | 0      | 1637,4 | 1315,7           | 832,3            | 570,6           | 324,7           | 9,1             | 25,3          |
| 43  | 0,290 | 0,340          | 0,460   | 0,570     | 0,700   | 1,020           | 1,280 | 3,822                | 1               | 1     | <u> </u>     | 1        | 1                  | 1      | 1      | 1218,0 | 1024,2           | 730,9            | 570,6           | 446,0           | 274,7           | 198,6         |
| 44  | 0,170 | 0,250          | 0,550   | 0,820     | 1,250   | 4,840           | 5,150 | 3,240                | <u> </u>        | 1     | 1            | 1        | <u> </u>           | U      | U      | 1805,9 | 1196,0           | 489,1            | 295,1           | 159,2           | 49,4            | 58,9          |
| 45  | 0,210 | 0,260          | 0,410   | 0,590     | 0,880   | 1,790           | 2,700 | 5,350                | 1               | ļ     | 1            | <b>I</b> | 1                  | 1      | 1      | 2450,4 | 1959,9           | 1206,3           | 807,8           | 508,6           | 199,2           | 98,4          |
| 40  | 0,180 | 0,200          | 0,300   | 0,410     | 0,000   | 1,200           | 1,850 | 4,233                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 2251,8 | 2010,0           | 1311,1           | 932,5<br>570.0  | 000,0           | 2948            | 128,8         |
| 4/  | 0,170 | 0,210          | 0,390   | 0.020     | 1,140   | 2,970           | 4,030 | 4,300                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 2404,0 | 2,410 T          | 1010,0           | 7/0,0<br>1740 4 | 202,2           | 40,0<br>543.3   | 220.2         |
| 40  | 0,120 | 0,170          | 0,210   | 0,270     | 0,330   | 0,720           | 1,100 | 4,024                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 2902,4 | 2019,7           | 2101,7<br>1076 2 | 1749,4          | 1301,1          | 2444            | 320,3         |
| 49  | 0,150 | 0,170          | 0,210   | 0,240     | 0,320   | 1 550           | 2 700 | 4,300                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 2600,7 | 2404,0           | 1970,2           | 1710,7          | 1202,3<br>570.9 | J ( 7,1         | 202,0<br>56 3 |
| 51  | 0,100 | 0,170<br>N 10N | 0,230   | 0,320     | 0,050   | 1,220           | 1.590 | 3 972                | 1               | 1     | 1            | 1        | 1                  | 1      | 1<br>1 | 2023,1 | 2404,0<br>1011.9 | 1/22,/           | 10593           | 570,0<br>690 1  | 10 L J<br>250 T | 20,3<br>141 0 |
| 52  | 0,170 | 0,190<br>N 10N | 0,220   | 0,330     | n onn   | 2 0.40          | 2 860 | 3.052                | ī               | 1     | 1            | 1        | 1                  | 1      | 1      | 1695.5 | 1506.5           | 000.1            | 510.5           | 239.2           | 49.6            | 6.7           |
| 53  | 0.160 | 0.180          | 0.260   | 0.370     | 0.530   | 0.910           | 1.230 | 3.822                | ī               | ī     | ī            | ĩ        | ī                  | ī      | ī      | 2289.0 | 2023.5           | 1370.1           | 933.1           | 621.2           | 320.0           | 210.8         |
| 54  | 0.140 | 0.150          | 0.180   | 0.200     | 0.230   | 0.500           | 0.920 | 5.242                | ī               | ī     | ī            | ī        | ī                  | ī      | ī      | 3644.6 | 3394.9           | 2812.4           | 2521.2          | 2179.3          | 948.5           | 469.8         |
| 55  | 0.140 | 0.160          | 0.200   | 0.240     | 0.300   | 0.600           | 0.850 | 3,956                | ī               | 1     | ī            | ī        | ī                  | 1      | ī      | 2725,9 | 2372.7           | 1878,1           | 1548,5          | 1218.8          | 559,4           | 365,4         |
| 56  | 0,160 | 0,170          | 0,230   | 0,350     | 0,660   | 1,390           | 1,930 | 4,104                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 2465,1 | 2314,2           | 1684,4           | 1072,6          | 521,8           | 195,3           | 112,6         |
| 57  | 0,170 | 0,190          | 0,250   | 0,320     | 0,420   | 0,710           | 0,950 | 3,386                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1891,9 | 1682,2           | 1254,5           | 958,2           | 706,2           | 376,9           | 256,4         |
| 58  | 0,140 | 0,160          | 0,190   | 0,230     | 0,280   | 1,460           | 4,690 | 2,574                | 1               | 1     | 1            | 1        | 1                  | 1      | 0      | 1738,5 | 1508,6           | 1254,6           | 1019,1          | 819,2           | 76,3            | 82,2          |
| 59  | 0,160 | 0,180          | 0,230   | 0,290     | 0,390   | 0,750           | 1,140 | 8,170                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 5006,4 | 4439,0           | 3452,3           | 2717,3          | 1994,9          | 989,4           | 616,7         |
| 60  | 0,170 | 0,190          | 0,270   | 0,400     | 0,750   | 1,660           | 2,500 | 3,529                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1975,8 | 1757,3           | 1207,0           | 782,2           | 370,5           | 112,6           | 41,2          |
| б1  | 0,170 | 0,190          | 0,270   | 0,360     | 0,570   | 1,240           | 1,640 | 2,917                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1616,0 | 1435,4           | 980,5            | 710,3           | 411,8           | 135,3           | 77,9          |
| 62  | 0,180 | 0,210          | 0,370   | 0,820     | 1,560   | 3,060           | 3,790 | 4,485                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 2391,7 | 2035,8           | 1112,2           | 447,0           | 187,5           | 46,6            | 18,3          |
| 63  | 0,160 | 0,190          | 0,310   | 0,520     | 0,810   | 1,370           | 1,660 | 2,917                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1723,3 | 1435,4           | 841,0            | 461,0           | 260,2           | 112,9           | 75,7          |
| б4  | 0,150 | 0,180          | 0,340   | 0,630     | 0,970   | 1,560           | 1,860 | 2,226                | 1               | 1     | 1            | 1        | 1                  | 1      | 1      | 1384,2 | 1136,8           | 554,8            | 253,4           | 129,5           | 42,7            | 19,7          |

Tabela 5.6k - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÀ | METR  | OS DO  | LEITO   | DOPA      | RAOI    | RIO AT           | IBAIA |                                                                      |      | COMP            | <b>ARAÇA</b>    | O ENI           | TRE D <sub>vj</sub> | <sub>IA</sub> D |      | RELAÇ  | à O PERC | EN TUAL E | N TRE OS | VALORES   | DEDw   |       |
|-----|-------|--------|---------|-----------|---------|------------------|-------|----------------------------------------------------------------------|------|-----------------|-----------------|-----------------|---------------------|-----------------|------|--------|----------|-----------|----------|-----------|--------|-------|
|     | Granu | bmetri | ı do ma | terial do | o leito |                  |       |                                                                      | (10) | (11)            | (12)            | (13)            | (14)                | (15)            | (16) | E      | OS VALOI | RES MEDI  | DOSNOR   | IO ATIBAI | A      |       |
| (l) | (2)   | (3)    | (4)     | (5)       | (б)     | $-(\mathcal{D})$ | (8)   | (9)                                                                  |      | COMP.           | ARA ÇA          | ODE             | D <sub>vj pev</sub> | η COM:          |      | (17)   | (18)     | (19)      | (20)     | (21)      | (22)   | (23)  |
| N   | D10   | Dló    | D35     | D50       | D65     | D84              | D90   | $\mathbf{D}_{\mathbf{v}_{j}   \mathbf{p} \mathbf{r} \mathbf{v}_{j}}$ | D10  | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>     | D.84            | Dan  |        |          |           |          |           |        |       |
| L   | (mm)  | (mm)   | (mm)    | (mm)      | (mm)    | (mm)             | ໌ຫາກນ | TITO.                                                                |      |                 | ~               |                 | ~                   |                 | ~~   |        |          |           |          |           |        |       |
| 65  | 0.170 | 0.190  | 0.260   | 0.380     | 0.600   | 1.180            | 1.750 | 4.879                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2770.1 | 2468.0   | 1776.6    | 1184.0   | 713.2     | 313.5  | 178.8 |
| 66  | 0.170 | 0.180  | 0.220   | 0.260     | 0.310   | 0.410            | 0.470 | 3,822                                                                | ī    | ī               | ī               | ī               | ī                   | ī               | ī    | 2148,4 | 2023,5   | 1637,4    | 1370,1   | 1133,0    | 832,3  | 713,3 |
| 67  | 0,170 | 0,190  | 0,250   | 0,320     | 0,440   | 1,190            | 1,680 | 4,104                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2314,2 | 2060,1   | 1541,6    | 1182,5   | 832,8     | 244,9  | 144,3 |
| б8  | 0,170 | 0,180  | 0,230   | 0,270     | 0,320   | 0,430            | 0,560 | 4,760                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2699,9 | 2544,3   | 1969,5    | 1662,9   | 1387,4    | 1006,9 | 750,0 |
| 69  | 0,170 | 0,190  | 0,250   | 0,300     | 0,360   | 0,570            | 1,690 | 5,356                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 3050,5 | 2718,8   | 2042,3    | 1685,3   | 1387,7    | 839,6  | 216,9 |
| 70  | 0,230 | 0,260  | 0,340   | 0,430     | 0,620   | 1,410            | 2,050 | 4,360                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1795,7 | 1577,0   | 1182,4    | 914,0    | 603,2     | 209,2  | 112,7 |
| 71  | 0,230 | 0,250  | 0,310   | 0,370     | 0,440   | 0,740            | 1,180 | 4,104                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1684,4 | 1541,6   | 1223,9    | 1009,2   | 832,8     | 454,6  | 247,8 |
| 72  | 0,230 | 0,260  | 0,350   | 0,440     | 0,640   | 1,500            | 2,200 | 3,822                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1561,9 | 1370,1   | 992,1     | 768,7    | 497,2     | 154,8  | 73,7  |
| 73  | 0,190 | 0,230  | 0,320   | 0,410     | 0,610   | 1,630            | 3,000 | 3,822                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1911,8 | 1561,9   | 1094,5    | 832,3    | 526,6     | 134,5  | 27,4  |
| 74  | 0,240 | 0,270  | 0,350   | 0,420     | 0,550   | 0,990            | 1,360 | 2,917                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1115,5 | 980,5    | 733,5     | 594,6    | 430,4     | 194,7  | 114,5 |
| 75  | 0,200 | 0,250  | 0,400   | 0,640     | 1,100   | 2,520            | 3,770 | 3,240                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 0    | 1520,1 | 1196,0   | 710,0     | 406,3    | 194,6     | 28,6   | 16,4  |
| 76  | 0,170 | 0,210  | 0,320   | 0,460     | 0,860   | 2,820            | 4,090 | 2,917                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 0    | 1616,0 | 1289,2   | 811,6     | 534,2    | 239,2     | 3,4    | 40,2  |
| 77  | 0,220 | 0,270  | 0,410   | 0,560     | 0,800   | 1,340            | 1,660 | 3,071                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1296,1 | 1037,6   | 649,1     | 448,5    | 283,9     | 129,2  | 85,0  |
| 78  | 0,180 | 0,220  | 0,330   | 0,450     | 0,750   | 1,980            | 3,050 | 2,574                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 0    | 1329,9 | 1069,9   | 679,9     | 472,0    | 243,2     | 30,0   | 18,5  |
| 79  | 0,190 | 0,230  | 0,360   | 0,540     | 1,000   | 2,700            | 3,730 | 3,071                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 0    | 1516,6 | 1235,4   | 753,2     | 468,8    | 207,1     | 13,8   | 21,4  |
| 80  | 0,210 | 0,240  | 0,360   | 0,500     | 0,920   | 3,270            | 4,350 | 2,759                                                                | 1    | 1               | 1               | 1               | 1                   | 0               | 0    | 1213,6 | 1049,4   | 666,3     | 451,7    | 199,8     | 18,5   | 57,7  |
| 81  | 0,190 | 0,230  | 0,350   | 0,520     | 1,070   | 3,850            | 4,630 | 2,917                                                                | 1    | 1               | 1               | 1               | 1                   | 0               | 0    | 1435,4 | 1168,4   | 733,5     | 461,0    | 172,6     | 32,0   | 58,7  |
| 82  | 0,230 | 0,270  | 0,380   | 0,530     | 0,880   | 1,950            | 2,890 | 3,822                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1561,9 | 1315,7   | 905,9     | 621,2    | 334,4     | 96,0   | 32,3  |
| 83  | 0,230 | 0,270  | 0,400   | 0,640     | 1,290   | 4,190            | 4,790 | 5,128                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2129,4 | 1799,1   | 1181,9    | 701,2    | 297,5     | 22,4   | 7,0   |
| 84  | 0,210 | 0,240  | 0,330   | 0,420     | 0,740   | 1,820            | 2,370 | 3,071                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1362,6 | 1179,8   | 830,7     | 631,3    | 315,1     | 68,8   | 29,6  |
| 85  | 0,230 | 0,270  | 0,390   | 0,670     | 1,650   | 4,070            | 4,690 | 3,873                                                                | 1    | 1               | 1               | 1               | 1                   | 0               | 0    | 1583,8 | 1334,4   | 893,0     | 478,0    | 134,7     | 5,1    | 21,1  |
| 86  | 0,210 | 0,240  | 0,330   | 0,420     | 0,740   | 3,000            | 4,160 | 4,039                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 0    | 1823,2 | 1582,8   | 1123,9    | 861,6    | 445,8     | 34,6   | 3,0   |
| 87  | 0,210 | 0,250  | 0,350   | 0,500     | 1,100   | 3,500            | 4,400 | 3,529                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 0    | 1580,4 | 1311,5   | 908,2     | 605,8    | 220,8     | 0,8    | 24,7  |
| 88  | 0,210 | 0,240  | 0,310   | 0,380     | 0,480   | 0,930            | 1,400 | 3,529                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1580,4 | 1370,4   | 1038,3    | 828,6    | 635,2     | 279,4  | 152,1 |
| 89  | 0,190 | 0,220  | 0,310   | 0,380     | 0,500   | 0,830            | 1,110 | 3,822                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1911,8 | 1637,4   | 1133,0    | 905,9    | бб4,5     | 360,5  | 244,4 |
| 90  | 0,200 | 0,230  | 0,310   | 0,370     | 0,460   | 0,770            | 1,100 | 4,879                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2339,6 | 2021,4   | 1473,9    | 1218,7   | 960,7     | 533,7  | 343,6 |
| 91  | 0,220 | 0,240  | 0,300   | 0,360     | 0,420   | 0,650            | 0,980 | 4,879                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 2117,8 | 1933,0   | 1526,4    | 1255,3   | 1061,7    | 650,6  | 397,9 |
| 92  | 0,230 | 0,250  | 0,330   | 0,390     | 0,490   | 0,820            | 1,100 | 3,822                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1561,9 | 1428,9   | 1058,3    | 880,1    | 680,1     | 366,1  | 247,5 |
| 93  | 0,230 | 0,260  | 0,340   | 0,400     | 0,510   | 0,800            | 1,030 | 3,386                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1372,2 | 1202,4   | 895,9     | 746,5    | 564,0     | 323,3  | 228,8 |
| 94  | 0,230 | 0,250  | 0,330   | 0,400     | 0,510   | 0,880            | 1,160 | 2,917                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1168,4 | 1066,9   | 784,0     | 629,3    | 472,0     | 231,5  | 151,5 |
| 95  | 0,200 | 0,230  | 0,320   | 0,390     | 0,510   | 0,840            | 1,180 | 3,071                                                                | 1    | 1               | 1               | 1               | 1                   | 1               | 1    | 1435,7 | 1235,4   | 859,8     | 687,6    | 502,2     | 265,6  | 160,3 |
| 96  | 0,150 | 0,200  | 0,400   | 0,750     | 1,480   | 4,440            | 4,920 | 3,386                                                                | 1    | 1               | 1               | 1               | 1                   | 0               | 0    | 2157,4 | 1593,1   | 746,5     | 351,5    | 128,8     | 31,1   | 45,3  |

Tabela 5.6k - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIA | <b>ÅMET</b> R | OS DO  | LEITO   | DOPA      | RAOI    | RIO A T        | IBAIA |                      |          | COMP            | <b>ARAÇA</b> | O ENI        | TRE D <sub>w</sub>  | D D   |      | RELAÇ  | à O PERC | EN TUAL E | NTRE OS  | VALORES   | DEDur  |       |
|-----|---------------|--------|---------|-----------|---------|----------------|-------|----------------------|----------|-----------------|--------------|--------------|---------------------|-------|------|--------|----------|-----------|----------|-----------|--------|-------|
|     | Granu         | ometri | n do ma | terial do | ) leito |                |       |                      | (10)     | (11)            | (12)         | (13)         | (14)                | (15)  | (16) | E      | OS VALOI | RES MEDI  | DOSNO RI | IO ATIBAL | A      |       |
| (l) | (2)           | (3)    | (4)     | (5)       | (б)     | $-\mathcal{O}$ | (8)   | (9)                  |          | COMP.           | ARA ÇA       | <b>IO DE</b> | D <sub>VJ PEV</sub> | n COM | :    | (17)   | (18)     | (19)      | (20)     | (21)      | (22)   | (23)  |
| N   | D10           | Dló    | D35     | D50       | D65     | D84            | D90   | D <sub>vi prvi</sub> | $D_{10}$ | D <sub>16</sub> | Dx           | Dee          | Der                 | Der   | Dae  |        |          |           |          |           |        |       |
| L   | (mm)          | (mm)   | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  |                      | 10       | 10              | 30           | 50           | 10                  | 64    | 90   |        |          |           |          |           |        |       |
| 07  | 0.210         | 0.280  | 0.550   | 0.890     | 1.410   | 3.490          | 4.400 | 3.386                | 1        | 1               | 1            | 1            | 1                   | Û     | n    | 1512.5 | 1109.3   | 515.7     | 280.5    | 140.2     | 31     | 20.0  |
| 98  | 0.220         | 0.290  | 0.550   | 0.890     | 1.410   | 4.000          | 4,700 | 3,222                | ī        | ī               | ī            | ī            | ī                   | Ŏ     | Ŭ    | 1364,4 | 1010,9   | 485,7     | 262,0    | 128,5     | 242    | 45,9  |
| 99  | 0,150         | 0,220  | 0,430   | 0,650     | 0,980   | 1,840          | 2,460 | 3,822                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 2448,2 | 1637,4   | 788,9     | 488,1    | 290,0     | 107,7  | 55,4  |
| 100 | 0,160         | 0,210  | 0,390   | 0,580     | 0,880   | 1,630          | 2,250 | 3,071                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1819,7 | 1362,6   | б87,б     | 429,6    | 249,0     | 88,4   | 36,5  |
| 101 | l 0,140       | 0,160  | 0,230   | 0,300     | 0,400   | 0,960          | 4,370 | 11,403               | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 8045,2 | 7027,0   | 4857,9    | 3701,1   | 2750,8    | 1087,8 | 160,9 |
| 102 | 2 0,150       | 0,180  | 0,250   | 0,320     | 0,420   | 0,670          | 0,850 | 3,703                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 2368,7 | 1957,2   | 1381,2    | 1057,2   | 781,7     | 452,7  | 335,6 |
| 103 | 0,150         | 0,170  | 0,260   | 0,340     | 0,470   | 0,830          | 1,090 | 2,360                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1473,2 | 1288,2   | 807,6     | 594,1    | 402,1     | 184,3  | 116,5 |
| 104 | 1 0,150       | 0,180  | 0,290   | 0,410     | 0,590   | 1,080          | 1,440 | 3,166                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 2010,5 | 1658,8   | 991,6     | 672,1    | 436,6     | 193,1  | 119,8 |
| 105 | 5 0,160       | 0,190  | 0,250   | 0,320     | 0,430   | 0,960          | 1,620 | 3,350                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1993,7 | 1663,1   | 1240,0    | 946,9    | 679,1     | 249,0  | 106,8 |
| 106 | 6 0,170       | 0,190  | 0,240   | 0,290     | 0,350   | 0,500          | 0,630 | 4,820                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 2735,1 | 2436,7   | 1908,2    | 1561,9   | 1277,0    | 863,9  | 665,0 |
| 107 | 0,190         | 0,210  | 0,270   | 0,320     | 0,370   | 0,500          | 0,590 | 6,478                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 3309,6 | 2984,9   | 2299,4    | 1924,5   | 1650,9    | 1195,7 | 998,0 |
| 108 | 0,160         | 0,180  | 0,240   | 0,290     | 0,350   | 0,510          | 0,670 | 2,574                | 1        | 1               | 1            | . <u>1</u>   | 1                   | 1     | 1    | 1508,6 | 1329,9   | 972,4     | 787,5    | 635,4     | 404,7  | 284,2 |
| 109 | 0,210         | 0,260  | 0,410   | 0,620     | 0,980   | 1,780          | 2,300 | 4,879                | 1        | 1               | 1            | ļ <u>1</u>   | 1                   | 1     | 1    | 2223,4 | 1776,6   | 1090,0    | 687,0    | 397,9     | 174,1  | 112,1 |
| 110 | 0,250         | 0,310  | 0,500   | 0,710     | 1,020   | 1,800          | 2,360 | 4,879                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1851,6 | 1473,9   | 875,8     | 587,2    | 378,3     | 171,1  | 106,7 |
| 111 | 0,220         | 0,260  | 0,410   | 0,640     | 1,020   | 1,940          | 2,590 | 4,376                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1889,0 | 1583,0   | 967,3     | 583,7    | 329,0     | 125,6  | 69,0  |
| 112 | 2 0,200       | 0,230  | 0,310   | 0,380     | 0,480   | 0,750          | 0,930 | 4,624                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 2211,8 | 1910,2   | 1391,5    | 1116,7   | 863,2     | 516,5  | 397,2 |
| 113 | i 0,220       | 0,250  | 0,350   | 0,440     | 0,570   | 0,930          | 1,220 | 3,529                | 1        | 1               | 1            | į 1          | 1                   | 1     | 1    | 1504,0 | 1311,5   | 908,2     | 702,0    | 519,1     | 279,4  | 189,3 |
| 114 | 1 0,220       | 0,260  | 0,360   | 0,460     | 0,630   | 1,180          | 1,860 | 2,403                | 1        | 1               | 1            | <u> </u>     | 1                   | 1     | 1    | 992,5  | 824,4    | 567,6     | 422,5    | 281,5     | 103,7  | 29,2  |
| 115 | § 0,190       | 0,230  | 0,320   | 0,400     | 0,520   | 0,810          | 1,000 | 4,360                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 2194,8 | 1795,7   | 1262,5    | 990,0    | 738,5     | 438,3  | 336,0 |
| 116 | 6 0,210       | 0,240  | 0,320   | 0,380     | 0,480   | 0,740          | 0,940 | 4,104                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1854,3 | 1610,1   | 1182,5    | 980,0    | 755,0     | 454,6  | 336,6 |
| 117 | 0,180         | 0,210  | 0,300   | 0,390     | 0,510   | 0,910          | 1,200 | 3,529                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1860,5 | 1580,4   | 1076,3    | 804,8    | 591,9     | 287,8  | 194,1 |
| 118 | 8 0,180       | 0,220  | 0,340   | 0,470     | 0,730   | 1,820          | 3,210 | 3,184                | 1        | 1               | 1            | į <u>1</u>   | 1                   | 1     | 0    | 1669,1 | 1347,5   | 836,6     | 577,5    | 336,2     | 75,0   | 0,8   |
| 119 | 0,200         | 0,250  | 0,440   | 0,790     | 1,380   | 3,000          | 3,880 | 3,529                | 1        | 1               | 1            | 1            | 1                   | 1     | 0    | 1664,4 | 1311,5   | 702,0     | 346,7    | 155,7     | 17,6   | 10,0  |
| 120 | 0,210         | 0,280  | 0,560   | 0,920     | 1,520   | 3,030          | 3,850 | 2,917                | 1        | 1               | 1            | 1            | 1                   | 0     | 0    | 1289,2 | 941,9    | 420,9     | 217,1    | 91,9      | 3,9    | 32,0  |
| 121 | 0,210         | 0,270  | 0,480   | 0,730     | 1,130   | 2,320          | 3,550 | 3,295                | 1        | 1               | 1            | 1            | 1                   | 1     | 0    | 1469,2 | 1120,5   | 586,5     | 351,4    | 191,6     | 42,0   | 7,7   |
| 122 | 2 0,200       | 0,240  | 0,370   | 0,590     | 1,130   | 2,600          | 3,750 | 2,759                | 1        | 1               | 1            | 1            | 1                   | 1     | 0    | 1279,3 | 1049,4   | 645,5     | 367,5    | 144,1     | 6,1    | 35,9  |
| 123 | 6 0,210       | 0,260  | 0,480   | 0,860     | 1,430   | 3,130          | 4,060 | 2,917                | 1        | 1               | 1            | 1            | 1                   | 0     | 0    | 1289,2 | 1022,0   | 507,8     | 239,2    | 104,0     | 7,3    | 39,2  |
| 124 | 1 0,210       | 0,290  | 0,540   | 0,770     | 1,080   | 1,810          | 2,880 | 2,226                | 1        | 1               | 1            | 1            | 1                   | 1     | 0    | 960,2  | 667,7    | 312,3     | 189,1    | 106,1     | 23,0   | 29,4  |
| 125 | 0,230         | 0,300  | 0,680   | 1,180     | 1,840   | 3,410          | 4,160 | 2,574                | 1        | 1               | 1            | <u> </u>     | 1                   | 0     | Û    | 1019,1 | 757,9    | 278,5     | 118,1    | 39,9      | 32,5   | 61,6  |
| 126 | 6 0,300       | 0,380  | 0,660   | 0,950     | 1,330   | 2,270          | 2,950 | 4,820                | 1        | 1               | <u>l</u>     | <u>1</u>     | 1                   | 1     | 1    | 1506,5 | 1168,3   | 630,2     | 407,3    | 262,4     | 112,3  | 63,4  |
| 127 | 0,250         | 0,290  | 0,480   | 0,680     | 0,980   | 1,920          | 2,830 | 4,624                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1749,4 | 1494,3   | 863,2     | 579,9    | 371,8     | 140,8  | 63,4  |
| 128 | 8 0,220       | 0,280  | 0,540   | 0,850     | 1,320   | 2,630          | 3,560 | 3,822                | 1        | 1               | 1            | 1            | 1                   | 1     | 1    | 1637,4 | 1265,1   | 607,8     | 349,7    | 189,6     | 45,3   | 7,4   |

Tabela 5.6k - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DI/ | ÄMETR              | OS DO            | LEITO          | DOPA             | RA O I  | RIO AT           | IBAIA           |                         |          | COMP.          | ARAÇA         | O ENI        | FRE D <sub>v</sub> | JA D             |      | RELA Ç           | ÃO PERC          | EN TUAL E        | NTRE OS         | VALORES         | DE D <sub>107</sub> |        |
|-----|--------------------|------------------|----------------|------------------|---------|------------------|-----------------|-------------------------|----------|----------------|---------------|--------------|--------------------|------------------|------|------------------|------------------|------------------|-----------------|-----------------|---------------------|--------|
|     | Granu              | bmetri           | a do ma        | terial d         | o leito |                  |                 |                         | (10)     | (11)           | (12)          | (13)         | (14)               | (15)             | (16) | Е                | OS VALOI         | RES MEDI         | DOSNO RI        | IO ATIBAI       | A                   |        |
| (l) | (2)                | (3)              | (4)            | (5)              | (6)     | $(\overline{0})$ | (8)             | (9)                     |          | COMP.          | ARAÇ <i>î</i> | <b>10 DE</b> | D <sub>VJ PT</sub> | <sub>ர</sub> COM | :    | (17)             | (18)             | (19)             | (20)            | (21)            | (22)                | (23)   |
| N   | D10                | D16              | D35            | D50              | D65     | D84              | D90             | D <sub>175 (P</sub> PP) | D        | D <sub>1</sub> | Dar           | Dee          | Da                 | Der              | Dae  |                  |                  |                  |                 |                 |                     |        |
|     | (                  | (                | ()             | ()               | ()      | ()               | (mm)            | 0] [[                   | ~ 10     | ~10            | ~ 38          | ~ 50         | ~ @                | -84              | - 90 |                  |                  |                  |                 |                 |                     |        |
| 100 | 0.020              | (IIIII)<br>0.020 | 0.270          | (11111)<br>0 200 | 0 750   | 1 470            | ų iuių<br>1 070 | 1 11 Min.               |          |                |               |              |                    |                  | 1    | 1705 7           | 1577.0           | 1070 4           | 772.0           | 401.2           | 104 4 3             | 101.2  |
| 129 | 1 0,230            | 0,200            | 0,370          | 0,500            | 0,/50   | 1,4/0            | 1,970           | 4,500                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 1/95,/           | 15//,0           | 10/8,4           | 112,0           | 481,5           | 190,0               | 121,3  |
| 130 | J 0,340<br>I 0 120 | 0,400            | 0,030          | 0,830            | 1,080   | 1,280            | 1,850           | 2,113                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 2112.1           | 21051            | /11,0<br>1561 0  | 710,1<br>1720 0 | 373,4<br>005 4  | £20.2               | 472.0  |
| 131 | L 0,130<br>N 0 110 | 0120             | 0,290          | 0,300            | 0,440   | 0,000            | 0.240           | 4,040<br>5 113          | 1        | 1              | 1             | 1            |                    | 1                | 1    | 3113,1<br>4549.4 | 2195,1           | 1501,9<br>2007 Q | 1430,0          | 997,4<br>2122 1 | 1604.4              | 4/3,0  |
| 134 | 2 0,110<br>2 0 140 | 0,130            | 0,170          | 0,200            | 0,230   | 0,300            | 0,340           | 2,113                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 4540,4           | J0JJ,4<br>2772.0 | 21707,0          | 2450,0          | 2123,1          | 10044               | 1403,9 |
| 133 | , 0,140<br>1 0 150 | 0,150            | 0,100<br>N 10N | 0,200            | 0,230   | 0,290            | 0,330           | 5,011                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 4050,5           | 3609.7           | 3120,1           | 26623           | 2420,4          | 1703,7              | 1/00 3 |
| 134 | C 0 150            | 0,100            | 0,120          | 0,220            | 0,2.20  | 0,340            | 0,300           | 5 308                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 3498 7           | 3070,2           | 2808.0           | 2500 0          | 2353.6          | 1076.2              | 1927.0 |
| 134 | 0,120<br>0 160     | 0,100            | 0,100<br>N 19N | 0,200            | 0,220   | 0,200            | 0,200           | 5 811                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 35317            | 3319.0           | 2058.2           | 2541.2          | 22224 3         | 1774.4              | 1560.2 |
| 13  | 0,100              | 0.390            | 0.770          | 1.120            | 1.590   | 2.850            | 3,730           | 5.398                   | î        | ī              | i             | i            | 1                  | î                | ī    | 1699.3           | 1284.1           | 601.0            | 382.0           | 239.5           | 89.4                | 44.7   |
| 139 | 1 0,160            | 0.170            | 0.210          | 0.240            | 0.280   | 0.360            | 0.400           | 5.113                   | î        | ī              | ī             | ĩ            | Î Î                | ī                | î    | 3095.8           | 2907.8           | 2334.9           | 2030.5          | 1726.2          | 1320.3              | 1178.3 |
| 139 | 0.160              | 0.170            | 0.210          | 0.250            | 0.300   | 0.400            | 0.480           | 6.077                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 3698.2           | 34748            | 2793.9           | 2330.9          | 1925.7          | 1419.3              | 1166.1 |
| 14  | 0.140              | 0.160            | 0.200          | 0.230            | 0.280   | 0.390            | 0.470           | 5.113                   | ī        | ī              | ī             | ī            | ī                  | ī                | ī    | 3552.3           | 3095.8           | 2456.6           | 2123.1          | 1726.2          | 1211.1              | 987.9  |
| 141 | 0.150              | 0.170            | 0.230          | 0.290            | 0.380   | 0.600            | 0.780           | 11.683                  | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 7688.6           | 6772.3           | 4979.5           | 3928.6          | 2974.4          | 1847.2              | 1397.8 |
| 142 | 2 0,120            | 0,140            | 0,170          | 0,200            | 0,230   | 0,310            | 0,370           | 5,537                   | 1        | ī              | ī             | ī            | 1                  | ī                | 1    | 4514,5           | 3855,3           | 3157,3           | 2668,7          | 2307,6          | 1686,3              | 1396,6 |
| 143 | 3 0,180            | 0,200            | 0,700          | 1,500            | 2,220   | 4,130            | 5,120           | 4,669                   | 1        | 1              | 1             | 1            | 1                  | 1                | 0    | 2494,0           | 2234,6           | 567,0            | 211,3           | 110,3           | 13,1                | 9,7    |
| 144 | 4 0,160            | 0,190            | 0,290          | 0,420            | 0,800   | 2,220            | 3,260           | 4,820                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 2912,3           | 2436,7           | 1561,9           | 1047,5          | 502,5           | 117,1               | 47,8   |
| 14: | 5 0,160            | 0,190            | 0,300          | 0,450            | 1,000   | 2,700            | 3,820           | 4,879                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 2949,4           | 2468,0           | 1526,4           | 984,2           | 387,9           | 80,7                | 27,7   |
| 146 | 5 0,120            | 0,150            | 0,230          | 0,310            | 0,420   | 0,970            | 1,340           | 4,820                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 3916,4           | 3113,1           | 1995,5           | 1454,7          | 1047,5          | 396,9               | 259,7  |
| 147 | 1 0,200            | 0,250            | 0,570          | 1,360            | 2,440   | 4,740            | 5,030           | 1,896                   | 1        | 1              | 1             | 1            | 0                  | 0                | 0    | 848,1            | 658,5            | 232,7            | 39,4            | 28,7            | 150,0               | 165,3  |
| 148 | 3 0,160            | 0,210            | 0,400          | 0,850            | 1,370   | 2,520            | 3,270           | 4,820                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 2912,3           | 2195,1           | 1104,9           | 467,0           | 251,8           | 91,3                | 47,4   |
| 149 | 9 0,100            | 0,130            | 0,190          | 0,250            | 0,340   | 0,940            | 1,640           | 4,360                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 4260,1           | 3253,9           | 2194,8           | 1644,0          | 1182,4          | 363,8               | 165,9  |
| 150 | ) 0,090            | 0,120            | 0,180          | 0,230            | 0,310   | 1,010            | 2,430           | 4,820                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 5255,2           | 3916,4           | 2577,6           | 1995,5          | 1454,7          | 377,2               | 98,3   |
| 15] | l 0,130            | 0,160            | 0,240          | 0,350            | 0,590   | 2,400            | 3,700           | 5,113                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 3833,2           | 3095,8           | 2030,5           | 1360,9          | 766,6           | 113,1               | 38,2   |
| 152 | 2 0,100            | 0,120            | 0,170          | 0,210            | 0,250   | 0,380            | 0,480           | 4,669                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 4569,2           | 3791,0           | 2646,6           | 2123,4          | 1767,7          | 1128,7              | 872,7  |
| 153 | 3 0,110            | 0,130            | 0,190          | 0,230            | 0,300   | 0,840            | 1,830           | 5,113                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 4548,4           | 3833,2           | 2591,2           | 2123,1          | 1604,4          | 508,7               | 179,4  |
| 154 | 4 0,230            | 0,290            | 0,710          | 1,330            | 2,130   | 3,760            | 4,500           | 5,537                   | 1        | 1              | ļ <u>1</u>    | 1            | 1                  | . 1              | 1    | 2307,6           | 1809,4           | 679,9            | 316,3           | 160,0           | 47,3                | 23,1   |
| 155 | 5 0,200            | 0,230            | 0,360          | 0,530            | 1,000   | 2,730            | 3,980           | 8,249                   | 1        | 1              | <u> </u>      | 1            | 1                  | 1                | 1    | 4024,3           | 3486,3           | 2191,3           | 1456,3          | 724,9           | 202,1               | 107,3  |
| 156 | 5 0,080            | 0,090            | 0,160          | 0,220            | 0,430   | 2,140            | 4,060           | 5,811                   | <u> </u> | 1              | 1             | <u>l</u>     | 1                  | 1                | 1    | 7163,3           | 6356,3           | 3531,7           | 2541,2          | 1251,3          | 171,5               | 43,1   |
| 157 | 0,180              | 0,200            | 0,290          | 0,390            | 0,800   | 1,070            | 2,060           | 5,398                   | <u> </u> | 1              | 1             | 1            | 1                  | 1                | 1    | 2898,9           | 2599,0           | 1761,4           | 1284,1          | 574,7           | 404,5               | 162,0  |
| 158 | 3 0,200            | 0,230            | 0,390          | 0,730            | 1,420   | 4,070            | 6,230           | 5,398                   | 1        | <u>1</u>       | <u> </u>      | 1            | 1                  | 1                | 0    | 2599,0           | 2247,0           | 1284,1           | 639,5           | 280,1           | 32,6                | 15,4   |
| 159 | 0,120              | 0,150            | 0,230          | 0,340            | 0,600   | 4,670            | 0,300           | 5,537                   | 1        | 1              | 1             | 1            | 1                  | 1                | 1    | 4514,5           | 3591,6           | 2307,6           | 1528,6          | 822,9           | 18,6                | 1745,8 |
| 160 | ) 0,150            | 0,160            | 0,210          | 0,250            | 0,320   | 2,760            | 0,280           | 7,445                   | 1        | 1              | <u> </u>      | 1            | 1                  | 1                | 1    | 4863,5           | 4553,3           | 3445,4           | 2878,1          | 2226,7          | 169,8               | 2559,0 |

Tabela 5.6k - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIĂMETROS DO LEITO DO PARA O RIO ATIBAIA      |                      |      | COMP  | <b>ARAÇA</b>    | O ENT    | RE D <sub>w</sub>   | <sub>LA</sub> D             |          | RELAÇ   | ÃO PERC  | EN TUAL E | NTRE OS | VALORES  | DEDw       |        |
|-----------------------------------------------|----------------------|------|-------|-----------------|----------|---------------------|-----------------------------|----------|---------|----------|-----------|---------|----------|------------|--------|
| Granulometria do material do leito            |                      | (10) | (11)  | (12)            | (13)     | (14)                | (15)                        | (16)     | Е       | OS VALOI | RESMEDI   | OSNO RI | O ATIBAL | <b>A</b> . |        |
| (1) (2) (3) (4) (5) (6) (7) (8)               | (9)                  |      | COMP. | ARAÇA           | O DE     | D <sub>VJ PPV</sub> | <sub>n</sub> COM            | :        | (17)    | (18)     | (19)      | (20)    | (21)     | (22)       | (23)   |
| N D10 D16 D35 D50 D65 D84 D90                 | D <sub>vi pevi</sub> | D10  | D16   | D <sub>26</sub> | $D_{50}$ | Des                 | D.4                         | $D_{aa}$ |         |          |           |         |          |            |        |
| (mm) (mm) (mm) (mm) (mm) (mm)                 | mma.                 |      |       | ~               | 50       | ~                   | .4                          | 50       |         |          |           |         |          |            |        |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 | 5,113                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 3095,8  | 2740,7   | 2123,1    | 1793,8  | 1449,5   | 943,5      | 698,9  |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 | 5,811                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 3531,7  | 2805,3   | 2321,1    | 1903,7  | 20,1     | 330,4      |        |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 | 3,529                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 3428,9  | 2840,7   | 2105,5    | 1757,3  | 1434,3   | 969,4      | 804,8  |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 | 8,024                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 4122,9  | 2986,0   | 2407,3    | 1810,4  | 512,5    | 285,7      |        |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 | 5,811                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 7 163,3 | 5710,6   | 3773,8    | 3128,1  | 2541,2   | 1836,9     | 1470,4 |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 | 6,842                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 4787,0  | 4461,2   | 3500,9    | 2874,7  | 2259,2   | 474,9      | 93,8   |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 | 4,669                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 2234,6  | 1845,5   | 1234,1    | 833,8   | 455,9    | 135,8      | б3,8   |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 | 6,077                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 2662,3  | 2330,9   | 1636,3    | 1281,2  | 864,6    | 386,2      | 268,3  |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 | 5,537                | 1    | 1     | 1               | 1        | 1                   | 1                           | 0        | 4159,5  | 3591,6   | 2417,0    | 1809,4  | 1250,6   | 200,9      | 1,9    |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 | 5,113                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 3552,3  | 2591,2   | 1497,9    | 1011,6  | 572,8    | 208,0      | 108,7  |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 | 5,398                | 1    | 1     | 1               | 1        | 1                   | 1                           | 1        | 3273,7  | 2741,1   | 1358,9    | 486,7   | 206,7    | 34,9       | 2,6    |
|                                               |                      |      | (%    | ) de evo        | entos er | ng ue D'            | $V \mathbf{J} > \mathbf{D}$ |          | DIFE    | RENÇA P  | ERCENT    | UAL REL | ATIVA M  | EDIA       |        |
|                                               |                      | 100  | 100   | 100             | 100      | 99                  | 87,72                       | 77,19    | 2236,9  | 1896,9   | 1286,5    | 960,2   | 680,4    | 326,4      | 253,4  |

Tabela 5.6k - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>vo remo</sub>- Diâmetro calculado pela equação: D<sub>vo remo</sub> = 1,1846 «S<sup>0,65</sup> . Para o método de Pernecker & Vollmer (1965)

| DIÄ | METRO  | OS DO I | LEITO   | DO PA     | RAOI    | RIO AT         | IBAIA |                     | (    | COMP/           | <b>ARAÇA</b>    | O ENI            | RE D <sub>W</sub>    | D IA              |      | RELAÇ  | ÃO PERC  | EN TUAL E | NTRE OS | VALORES   | D E D va      |       |
|-----|--------|---------|---------|-----------|---------|----------------|-------|---------------------|------|-----------------|-----------------|------------------|----------------------|-------------------|------|--------|----------|-----------|---------|-----------|---------------|-------|
|     | Granul | ometri  | n do ma | terial do | o leito |                |       |                     | (10) | (11)            | (12)            | (13)             | (14)                 | (15)              | (16) | E      | OS VALOI | RES MEDI  | DOSNO R | IO ATIBAI | A             |       |
| (l) | (2)    | (3)     | (4)     | (5)       | (6)     | $-\mathcal{O}$ | (8)   | (9)                 |      | COMP.           | ARAÇ <i>i</i>   | 10 DE            | D <sub>VJ IIII</sub> | <sub>4</sub> COM: |      | (17)   | (18)     | (19)      | (20)    | (21)      | (22)          | (23)  |
| N   | D10    | Dló     | D35     | D50       | D65     | D84            | D90   | D <sub>vi LNL</sub> | D10  | D <sub>16</sub> | D <sub>24</sub> | $D_{\epsilon 0}$ | Des                  | D.                | Daa  |        |          |           |         |           |               |       |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | նատմ  |                     |      |                 | 30              | 50               |                      | 64                | 50   |        |          |           |         |           |               |       |
| 1   | 0.150  | 0.180   | 0.340   | 0.640     | 0.970   | 1.560          | 1.860 | 8.253               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 5401.9 | 4484.9   | 2327.3    | 1189.5  | 750.8     | 429.0         | 343.7 |
| 2   | 0.190  | 0.240   | 0.370   | 0.540     | 0.880   | 2.770          | 3.820 | 8,706               | ī    | 1               | ī               | ī                | ī                    | ī                 | ī    | 4481.9 | 3527.3   | 2252,9    | 1512,1  | 889,3     | 2143          | 127,9 |
| 3   | 0,240  | 0,290   | 0,480   | 0,680     | 1,040   | 2,960          | 4,110 | 9,016               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3656,6 | 3008,9   | 1778,3    | 1225,8  | 766,9     | 204,6         | 119,4 |
| 4   | 0,220  | 0,270   | 0,530   | 0,860     | 1,370   | 3,240          | 4,220 | 8,655               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3834,0 | 3105,5   | 1533,0    | 906,4   | 531,7     | 167,1         | 105,1 |
| 5   | 0,240  | 0,280   | 0,400   | 0,510     | 0,640   | 0,970          | 1,230 | 9,311               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3779,6 | 3225,4   | 2227,8    | 1725,7  | 1354,8    | 859,9         | 657,0 |
| б   | 0,330  | 0,400   | 0,710   | 1,020     | 1,470   | 2,500          | 3,130 | 7,946               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 2307,9 | 1886,5   | 1019,2    | 679,0   | 440,5     | 217,8         | 153,9 |
| 7   | 0,270  | 0,320   | 0,450   | 0,570     | 0,730   | 1,130          | 1,420 | 8,632               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3096,9 | 2597,4   | 1818,2    | 1414,3  | 1082,4    | 663,9         | 507,9 |
| 8   | 0,290  | 0,340   | 0,500   | 0,640     | 0,830   | 1,440          | 3,780 | 8,998               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3002,8 | 2546,5   | 1699,6    | 1305,9  | 984,1     | 524,9         | 138,0 |
| 9   | 0,360  | 0,440   | 0,690   | 0,970     | 1,500   | 4,470          | 4,940 | 9,007               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 2401,8 | 1946,9   | 1205,3    | 828,5   | 500,4     | 101,5         | 82,3  |
| 10  | 0,320  | 0,370   | 0,520   | 0,660     | 0,850   | 1,400          | 2,000 | 9,701               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 2931,6 | 2521,9   | 1765,6    | 1369,8  | 1041,3    | 592,9         | 385,0 |
| 11  | 0,300  | 0,360   | 0,560   | 0,780     | 1,220   | 4,100          | 4,750 | 9,866               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3188,8 | 2640,6   | 1661,8    | 1164,9  | 708,7     | 140,6         | 107,7 |
| 12  | 0,300  | 0,360   | 0,560   | 0,770     | 1,090   | 3,330          | 4,500 | 10,060              | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3253,3 | 2694,4   | 1696,4    | 1206,5  | 822,9     | 202,1         | 123,6 |
| 13  | 0,270  | 0,320   | 0,480   | 0,630     | 0,870   | 3,900          | 4,700 | 10,817              | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3906,3 | 3280,3   | 2153,6    | 1617,0  | 1143,3    | 177,4         | 130,2 |
| 14  | 0,270  | 0,320   | 0,470   | 0,640     | 0,920   | 2,300          | 4,020 | 10,264              | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3701,5 | 3107,5   | 2083,8    | 1503,7  | 1015,6    | 346,3         | 155,3 |
| 15  | 0,280  | 0,320   | 0,490   | 0,660     | 0,950   | 2,170          | 3,160 | 10,224              | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3551,5 | 3095,1   | 1986,6    | 1449,1  | 976,2     | 371,2         | 223,5 |
| 16  | 0,240  | 0,270   | 0,370   | 0,470     | 0,610   | 1,000          | 1,450 | 9,528               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3870,0 | 3428,9   | 2475,1    | 1927,2  | 1462,0    | 852,8         | 557,1 |
| 17  | 0,310  | 0,370   | 0,510   | 0,630     | 0,800   | 1,290          | 1,770 | 8,031               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 2490,8 | 2070,7   | 1474,8    | 1174,8  | 903,9     | 522,6         | 353,8 |
| 18  | 0,280  | 0,340   | 0,510   | 0,690     | 0,970   | 4,770          | 5,110 | 9,231               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3196,9 | 2615,1   | 1710,1    | 1237,9  | 851,7     | 93,5          | 80,7  |
| Tà  | 0,310  | 0,370   | 0,550   | 0,710     | 0,960   | 3,630          | 4,620 | 8,646               | Ţ    | <u> </u>        | 1               | <u> </u>         | 1                    | 1                 | I    | 2689,1 | 2236,8   | 1472,1    | 1117,8  | 800,7     | 138,2         | 87,1  |
| 20  | 0,290  | 0,350   | 0,500   | 0,630     | 0,800   | 1,240          | 1,640 | 8,362               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 2783,4 | 2289,1   | 1572,3    | 1227,3  | 945,2     | 574,3         | 409,9 |
| 21  | 0,340  | 0,440   | 0,840   | 1,260     | 2,140   | 4,520          | 4,960 | 10,023              | 1    | <u> </u>        | ļ               | 1                | 1                    | 1                 | 1    | 2847,9 | 2177,9   | 1093,2    | 695,5   | 368,4     | 121,7         | 102,1 |
| 22  | 0,300  | 0,390   | 0,750   | 1,150     | 1,870   | 4,270          | 4,820 | y,64y               | ļ    | ļ               | ļ               | 1                | ļ                    | ļ                 | ļ    | 3116,3 | 2374,1   | 1186,5    | 739,0   | 416,0     | 126,0         | 100,2 |
| 23  | 0,300  | 0,360   | 0,510   | 0,630     | 0,810   | 1,260          | 1,710 | 8,723               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 2807,8 | 2323,2   | 1610,5    | 1284,7  | 977,0     | 592,3         | 410,1 |
| 24  | 0,270  | 0,320   | 0,470   | 0,590     | 0,740   | 1,110          | 1,370 | 7,645               | ļ    | <u> </u>        | ļ               | ĮĮ               | 1                    | 1                 | Į    | 2731,3 | 2288,9   | 1526,5    | 1195,7  | 933,0     | 588,7         | 458,0 |
| 25  | 0,250  | 0,300   | 0,440   | 0,560     | 0,730   | 1,180          | 1,660 | 8,044               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3117,8 | 2581,5   | 1728,3    | 1336,5  | 1002,0    | <b>581,</b> 7 | 384,6 |
| 26  | 0,240  | 0,290   | 0,420   | 0,550     | 0,740   | 1,340          | 2,260 | 8,800               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3566,6 | 2934,4   | 1995,2    | 1500,0  | 1089,2    | 556,7         | 289,4 |
| 27  | 0,230  | 0,280   | 0,420   | 0,540     | 0,710   | 1,200          | 4,430 | 9,408               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3990,5 | 3260,1   | 2140,0    | 1642,3  | 1225,1    | 684,0         | 112,4 |
| 28  | 0,250  | 0,290   | 0,410   | 0,520     | 0,650   | 0,950          | 1,200 | 9,361               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3644,6 | 3128,1   | 2183,3    | 1700,3  | 1340,2    | 885,4         | 680,1 |
| 29  | 0,240  | 0,280   | 0,390   | 0,480     | 0,590   | 0,830          | 1,000 | 9,339               | 1    | 1               | 1               | <u>1</u>         | 1                    | 1                 | 1    | 3791,2 | 3235,3   | 2294,6    | 1845,6  | 1482,8    | 1025,2        | 833,9 |
| 30  | 0,270  | 0,310   | 0,430   | 0,530     | 0,650   | 0,890          | 1,050 | 9,258               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3329,0 | 2886,5   | 2053,1    | 1646,8  | 1324,3    | 940,3         | 781,7 |
| 31  | 0,230  | 0,270   | 0,370   | 0,470     | 0,600   | 0,890          | 1,100 | 9,572               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 4061,5 | 3445,0   | 2486,9    | 1936,5  | 1495,3    | 975,5         | 770,1 |
| 32  | 0,280  | 0,340   | 0,500   | 0,650     | 0,870   | 1,660          | 2,300 | 9,235               | 1    | 1               | 1               | 1                | 1                    | 1                 | 1    | 3198,2 | 2616,1   | 1747,0    | 1320,7  | 961,5     | 456,3         | 301,5 |

Tabela 5.61 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÀ | METR  | OS DO I | LEITO   | DO PA     | RA O I  | RIO AT           | IBAIA |                     |      | COMP | <b>ARAÇA</b> | O ENI      | TRE D <sub>w</sub>   | IA D   |      | RELAÇ  | ÃO PERC  | EN TUAL E | NTRE OS | VALORES   | DEDw   |       |
|-----|-------|---------|---------|-----------|---------|------------------|-------|---------------------|------|------|--------------|------------|----------------------|--------|------|--------|----------|-----------|---------|-----------|--------|-------|
|     | Granu | ometriz | ı do ma | terial do | o leito |                  |       |                     | (10) | (11) | (12)         | (13)       | (14)                 | (15)   | (16) | Е      | OS VALOI | RES MEDI  | DOSNOR  | IO ATIBAI | A      |       |
| (l) | (2)   | (3)     | (4)     | (5)       | (6)     | $(\overline{O})$ | (8)   | (9)                 |      | COMP | ARAÇA        | 40 DE      | D <sub>VJ IINI</sub> | , COM: |      | (17)   | (18)     | (19)      | (20)    | (21)      | (22)   | (23)  |
| N   | D10   | Dló     | D35     | D50       | D65     | D84              | D90   | D <sub>NI UNL</sub> | D.,  | Dv   | Dar          | Dee        | Da                   | Der    | Dae  |        |          |           |         |           |        |       |
| L   | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)             | (mm)  | ·] [=]              | - 10 | - 10 | - 30         | - 50       | - 60                 | - 64   | - 90 |        |          |           |         |           |        |       |
| 33  | 0.280 | 0.320   | 0.450   | 0.570     | 0 730   | 1 230            | 2 180 | 10 080              | 1    | 1    | : 1          | 1          | 1                    | 1      | 1    | 3500.2 | 3050 1   | 2140-1    | 1668 5  | 1280 0    | 710.5  | 362.4 |
| 34  | 0 270 | 0,320   | 0,420   | 0,570     | 0,730   | 0 880            | 1 050 | 9.706               | i    | î    | <b>î</b>     | î          | i                    | î      | ī    | 3494.8 | 3135.4   | 2267.3    | 1803.1  | 1440.6    | 1003.0 | 824.4 |
| 35  | 0.280 | 0.320   | 0.440   | 0.540     | 0.680   | 1.000            | 1.270 | 9.530               | 1    | 1    | ī            | 1          | 1                    | 1      | ī    | 3303.6 | 2878.2   | 2066.0    | 1664.8  | 1301.5    | 853.0  | 650.4 |
| 36  | 0.210 | 0.250   | 0.360   | 0.450     | 0.580   | 0.890            | 1.100 | 9,206               | ī    | 1    | 1            | ī          | ī                    | ī      | ī    | 4283,8 | 3582,4   | 2457,2    | 1945,8  | 1487,2    | 9344   | 736,9 |
| 37  | 0,270 | 0,320   | 0,450   | 0,570     | 0,740   | 1,180            | 1,520 | 9,677               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 3484,1 | 2924,1   | 2050,5    | 1597,7  | 1207,7    | 720,1  | 536,7 |
| 38  | 0,260 | 0,330   | 0,530   | 0,730     | 1,010   | 1,790            | 3,150 | 8,380               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 3123,1 | 2439,4   | 1481,2    | 1048,0  | 729,7     | 368,2  | 166,0 |
| 39  | 0,300 | 0,340   | 0,480   | 0,600     | 0,750   | 1,140            | 1,450 | 9,523               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 3074,2 | 2700,7   | 1883,9    | 1487,1  | 1169,7    | 735,3  | 556,7 |
| 40  | 0,320 | 0,370   | 0,550   | 0,710     | 0,950   | 1,600            | 2,510 | 7,291               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 2178,4 | 1870,5   | 1225,6    | 926,9   | 667,5     | 355,7  | 190,5 |
| 41  | 0,280 | 0,320   | 0,450   | 0,570     | 0,720   | 1,080            | 1,360 | 7,562               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 2600,7 | 2263,1   | 1580,4    | 1226,6  | 950,3     | 600,2  | 456,0 |
| 42  | 0,220 | 0,270   | 0,410   | 0,570     | 0,900   | 4,170            | 4,790 | 8,806               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 3902,9 | 3161,6   | 2047,9    | 1445,0  | 878,5     | 111,2  | 83,8  |
| 43  | 0,290 | 0,340   | 0,460   | 0,570     | 0,700   | 1,020            | 1,280 | 8,999               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 3003,3 | 2546,9   | 1856,4    | 1478,8  | 1185,6    | 782,3  | 603,1 |
| 44  | 0,170 | 0,250   | 0,550   | 0,820     | 1,250   | 4,840            | 5,150 | 6,311               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 3612,5 | 2424,5   | 1047,5    | 669,7   | 404,9     | 30,4   | 22,5  |
| 45  | 0,210 | 0,260   | 0,410   | 0,590     | 0,880   | 1,790            | 2,700 | 7,333               | 1    | 1    | 1            | . <u>1</u> | 1                    | 1      | 1    | 3391,9 | 2720,3   | 1688,5    | 1142,9  | 733,3     | 309,7  | 171,6 |
| 46  | 0,180 | 0,200   | 0,300   | 0,410     | 0,600   | 1,200            | 1,850 | 8,266               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 4492,3 | 4033,1   | 2655,4    | 1916,1  | 1277,7    | 588,8  | 346,8 |
| 47  | 0,170 | 0,210   | 0,390   | 0,650     | 1,140   | 2,970            | 4,030 | 7,394               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 4249,6 | 3421,1   | 1796,0    | 1037,6  | 548,6     | 149,0  | 83,5  |
| 48  | 0,150 | 0,170   | 0,210   | 0,250     | 0,330   | 0,720            | 1,100 | 7,771               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 5080,4 | 4471,0   | 3600,3    | 3008,3  | 2254,7    | 979,3  | 606,4 |
| 49  | 0,150 | 0,170   | 0,210   | 0,240     | 0,320   | 0,910            | 1,440 | 8,319               | 1    | 1    | 1            | į <u>1</u> | 1                    | 1      | 1    | 5446,0 | 4793,5   | 3861,4    | 3366,2  | 2499,7    | 814,2  | 477,7 |
| 50  | 0,160 | 0,170   | 0,230   | 0,320     | 0,650   | 1,550            | 2,790 | 8,042               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 4926,6 | 4630,9   | 3396,7    | 2413,3  | 1137,3    | 418,9  | 188,3 |
| 51  | 0,170 | 0,190   | 0,250   | 0,330     | 0,490   | 1,090            | 1,580 | 8,775               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 5061,7 | 4518,4   | 3410,0    | 2559,1  | 1690,8    | 705,0  | 455,4 |
| 52  | 0,170 | 0,190   | 0,280   | 0,500     | 0,900   | 2,040            | 2,860 | 8,775               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 5062,1 | 4518,7   | 3034,1    | 1655,1  | 875,1     | 330,2  | 206,8 |
| 53  | 0,160 | 0,180   | 0,260   | 0,370     | 0,530   | 0,910            | 1,230 | 9,051               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 5557,1 | 4928,5   | 3381,3    | 2346,3  | 1607,8    | 894,7  | 635,9 |
| 54  | 0,140 | 0,150   | 0,180   | 0,200     | 0,230   | 0,500            | 0,920 | 7,807               | 1    | 1    | 1            | į <u>1</u> | 1                    | 1      | 1    | 5476,6 | 5104,8   | 4237,3    | 3803,6  | 3294,4    | 1461,4 | 748,6 |
| 55  | 0,140 | 0,160   | 0,200   | 0,240     | 0,300   | 0,600            | 0,850 | 8,662               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 6086,9 | 5313,5   | 4230,8    | 3509,0  | 2787,2    | 1343,6 | 919,0 |
| 56  | 0,160 | 0,170   | 0,230   | 0,350     | 0,660   | 1,390            | 1,930 | 8,477               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 5198,1 | 4886,5   | 3585,6    | 2322,0  | 1184,4    | 509,9  | 339,2 |
| 57  | 0,170 | 0,190   | 0,250   | 0,320     | 0,420   | 0,710            | 0,950 | 9,174               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 5296,3 | 4728,3   | 3569,5    | 2766,8  | 2084,2    | 1192,1 | 865,7 |
| 58  | 0,140 | 0,160   | 0,190   | 0,230     | 0,280   | 1,460            | 4,690 | 9,566               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 6732,7 | 5878,7   | 4934,7    | 4059,1  | 3316,4    | 555,2  | 104,0 |
| 59  | 0,160 | 0,180   | 0,230   | 0,290     | 0,390   | 0,750            | 1,140 | 8,702               | 1    | 1    | <u>1</u>     | 1          | 1                    | 1      | 1    | 5338,6 | 4734,3   | 3683,4    | 2900,6  | 2131,2    | 1060,2 | 663,3 |
| 60  | 0,170 | 0,190   | 0,270   | 0,400     | 0,750   | 1,660            | 2,500 | 8,597               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 4957,3 | 4424,9   | 3084,2    | 2049,3  | 1046,3    | 417,9  | 243,9 |
| 61  | 0,170 | 0,190   | 0,270   | 0,360     | 0,570   | 1,240            | 1,640 | 9,269               | 1    | 1    | 1            | <u> </u>   | 1                    | 1      | 1    | 5352,2 | 4778,3   | 3332,9    | 2474,7  | 1526,1    | 647,5  | 465,2 |
| 62  | 0,180 | 0,210   | 0,370   | 0,820     | 1,560   | 3,060            | 3,790 | 7,734               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 4196,8 | 3583,0   | 1990,3    | 843,2   | 395,8     | 152,8  | 104,1 |
| 63  | 0,160 | 0,190   | 0,310   | 0,520     | 0,810   | 1,370            | 1,660 | 9,142               | 1    | 1    | 1            | 1          | 1                    | 1      | 1    | 5613,5 | 4711,4   | 2848,9    | 1658,0  | 1028,6    | 567,3  | 450,7 |
| 64  | 0,150 | 0,180   | 0,340   | 0,630     | 0,970   | 1,560            | 1,860 | 9,730               | 1    | 1    | <u> </u>     | 1          | 1                    | 1      | 1    | 6387,0 | 5305,8   | 2761,9    | 1444,5  | 903,1     | 523,7  | 423,1 |

Tabela 5.61 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DL  | METR  | OS DO I | LEITO   | DO PA     | RA O I  | RIO AT | IBAIA |                     |      | COMP            | ARAÇA           | O ENI | TRE D <sub>va</sub> | IA D            |      | RELAÇ  | à O PERC        | EN TUAL E | N TRE OS | VALORES   | DEDw   |        |
|-----|-------|---------|---------|-----------|---------|--------|-------|---------------------|------|-----------------|-----------------|-------|---------------------|-----------------|------|--------|-----------------|-----------|----------|-----------|--------|--------|
|     | Granu | bmetriz | 1 do ma | terial do | o leito |        |       |                     | (10) | (11)            | (12)            | (13)  | (14)                | (15)            | (16) | Е      | OS VALOI        | RES MEDI  | DOSNOR   | IO ATIBAI | A      |        |
| (l) | (2)   | (3)     | (4)     | (5)       | (6)     | -(7)   | (8)   | (9)                 |      | COMP            | ARAÇA           | AO DE | D VI UNI            | , COM:          |      | (17)   | (18)            | (19)      | (20)     | (21)      | (22)   | (23)   |
| N   | D10   | Dló     | D35     | D50       | D65     | D84    | D90   | D <sub>vi enl</sub> | D10  | D <sub>16</sub> | D <sub>25</sub> | D.50  | Des                 | D <sub>84</sub> | Dan  |        |                 |           |          |           |        |        |
| L   | (mm)  | (mm)    | (mm)    | (mm)      | (mm)    | (mm)   | (mm)  | 7000                |      |                 | 30              | 50    |                     | 64              | 30   |        |                 |           |          |           |        |        |
| 65  | 0.170 | 0.190   | 0.260   | 0.380     | 0.600   | 1.180  | 1.750 | 6.800               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3900.2 | 3479.1          | 2515.5    | 1689.6   | 1033.4    | 476.3  | 288.6  |
| бб  | 0.170 | 0.180   | 0.220   | 0.260     | 0.310   | 0.410  | 0.470 | 8,670               | ī    | ī               | ī               | ī     | ī                   | ī               | ī    | 5000,1 | 4716,8          | 3841,0    | 3234,7   | 2696,8    | 2014,7 | 1744,7 |
| 67  | 0,170 | 0,190   | 0,250   | 0,320     | 0,440   | 1,190  | 1,680 | 7,981               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4594,8 | 4100,6          | 3092,5    | 2394,1   | 1713,9    | 570,7  | 375,1  |
| 68  | 0,170 | 0,180   | 0,230   | 0,270     | 0,320   | 0,430  | 0,560 | 7,484               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4302,1 | 4057,6          | 3153,7    | 2671,7   | 2238,6    | 1640,4 | 1236,4 |
| 69  | 0,170 | 0,190   | 0,250   | 0,300     | 0,360   | 0,570  | 1,690 | 6,744               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3866,9 | 3449,3          | 2597,5    | 2147,9   | 1773,3    | 1083,1 | 299,0  |
| 70  | 0,230 | 0,260   | 0,340   | 0,430     | 0,620   | 1,410  | 2,050 | 8,133               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3435,9 | 3027,9          | 2291,9    | 1791,3   | 1211,7    | 476,8  | 296,7  |
| 71  | 0,230 | 0,250   | 0,310   | 0,370     | 0,440   | 0,740  | 1,180 | 8,228               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3477,6 | 3191,4          | 2554,3    | 2123,9   | 1770,1    | 1012,0 | 597,3  |
| 72  | 0,230 | 0,260   | 0,350   | 0,440     | 0,640   | 1,500  | 2,200 | 8,506               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3598,1 | 3171,4          | 2330,2    | 1833,1   | 1229,0    | 467,0  | 286,6  |
| 73  | 0,190 | 0,230   | 0,320   | 0,410     | 0,610   | 1,630  | 3,000 | 8,660               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4457,6 | 3665,0          | 2606,1    | 2012,1   | 1319,6    | 431,3  | 188,7  |
| 74  | 0,240 | 0,270   | 0,350   | 0,420     | 0,550   | 0,990  | 1,360 | 9,254               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3755,8 | 3327,4          | 2544,0    | 2103,3   | 1582,5    | 834,7  | 580,4  |
| 75  | 0,200 | 0,250   | 0,400   | 0,640     | 1,100   | 2,520  | 3,770 | 9,012               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4406,1 | 3504,9          | 2153,1    | 1308,2   | 719,3     | 257,6  | 139,1  |
| 76  | 0,170 | 0,210   | 0,320   | 0,460     | 0,860   | 2,820  | 4,090 | 9,342               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 5395,1 | 4348,4          | 2819,3    | 1930,8   | 986,2     | 231,3  | 128,4  |
| 77  | 0,220 | 0,270   | 0,410   | 0,560     | 0,800   | 1,340  | 1,660 | 9,395               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4170,6 | 3379,8          | 2191,5    | 1577,7   | 1074,4    | 601,1  | 466,0  |
| 78  | 0,180 | 0,220   | 0,330   | 0,450     | 0,750   | 1,980  | 3,050 | 9,360               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 5099,8 | 4154,3          | 2736,2    | 1979,9   | 1147,9    | 372,7  | 206,9  |
| 79  | 0,190 | 0,230   | 0,360   | 0,540     | 1,000   | 2,700  | 3,730 | 9,213               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4748,8 | 3905 <i>,</i> 5 | 2459,1    | 1606,1   | 821,3     | 241,2  | 147,0  |
| 80  | 0,210 | 0,240   | 0,360   | 0,500     | 0,920   | 3,270  | 4,350 | 9,143               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4253,9 | 3709,7          | 2439,8    | 1728,6   | 893,8     | 179,6  | 110,2  |
| 81  | 0,190 | 0,230   | 0,350   | 0,520     | 1,070   | 3,850  | 4,630 | 9,393               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4843,9 | 3984,1          | 2583,8    | 1706,4   | 777,9     | 144,0  | 102,9  |
| 82  | 0,230 | 0,270   | 0,380   | 0,530     | 0,880   | 1,950  | 2,890 | 8,580               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3630,4 | 3077,7          | 2157,9    | 1518,8   | 875,0     | 340,0  | 196,9  |
| 83  | 0,230 | 0,270   | 0,400   | 0,640     | 1,290   | 4,190  | 4,790 | 7,168               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3016,6 | 2554,9          | 1692,1    | 1020,0   | 455,7     | 71,1   | 49,7   |
| 84  | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 1,820  | 2,370 | 9,000               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4185,8 | 3650,1          | 2627,3    | 2042,9   | 1116,2    | 394,5  | 279,8  |
| 85  | 0,230 | 0,270   | 0,390   | 0,670     | 1,650   | 4,070  | 4,690 | 8,372               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3539,9 | 3000,6          | 2046,6    | 1149,5   | 407,4     | 105,7  | 78,5   |
| 86  | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 3,000  | 4,160 | 8,237               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3822,6 | 3332,2          | 2396,2    | 1861,3   | 1013,2    | 174,6  | 98,0   |
| 87  | 0,210 | 0,250   | 0,350   | 0,500     | 1,100   | 3,500  | 4,400 | 8,406               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3902,7 | 3262,3          | 2301,6    | 1581,1   | бб4,1     | 140,2  | 91,0   |
| 88  | 0,210 | 0,240   | 0,310   | 0,380     | 0,480   | 0,930  | 1,400 | 8,568               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3980,2 | 3470,2          | 2664,0    | 2154,9   | 1685,1    | 821,3  | 512,0  |
| 89  | 0,190 | 0,220   | 0,310   | 0,380     | 0,500   | 0,830  | 1,110 | 8,377               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 4308,8 | 3707,6          | 2602,2    | 2104,4   | 1575,4    | 909,2  | 654,7  |
| 90  | 0,200 | 0,230   | 0,310   | 0,370     | 0,460   | 0,770  | 1,100 | 7,934               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3866,9 | 3349,5          | 2459,3    | 2044,3   | 1624,7    | 930,4  | 621,3  |
| 91  | 0,220 | 0,240   | 0,300   | 0,360     | 0,420   | 0,650  | 0,980 | 6,821               | 1    | 1               | . <u>1</u>      | 1     | 1                   | 1               | 1    | 3000,7 | 2742,3          | 2173,8    | 1794,8   | 1524,2    | 949,5  | 596,1  |
| 92  | 0,230 | 0,250   | 0,330   | 0,390     | 0,490   | 0,820  | 1,100 | 8,516               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3602,8 | 3306,6          | 2480,7    | 2083,7   | 1638,0    | 938,6  | 674,2  |
| 93  | 0,230 | 0,260   | 0,340   | 0,400     | 0,510   | 0,800  | 1,030 | 8,904               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3771,3 | 3324,6          | 2518,8    | 2126,0   | 1645,9    | 1013,0 | 764,5  |
| 94  | 0,230 | 0,250   | 0,330   | 0,400     | 0,510   | 0,880  | 1,160 | 9,184               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 3892,9 | 3573,4          | 2682,9    | 2195,9   | 1700,7    | 943,6  | 691,7  |
| 95  | 0,200 | 0,230   | 0,320   | 0,390     | 0,510   | 0,840  | 1,180 | 9,490               | 1    | 1               | . <u>1</u>      | 1     | 1                   | 1               | 1    | 4645,1 | 4026,2          | 2865,7    | 2333,4   | 1760,8    | 1029,8 | 704,3  |
| 96  | 0,150 | 0,200   | 0,400   | 0,750     | 1,480   | 4,440  | 4,920 | 9,123               | 1    | 1               | 1               | 1     | 1                   | 1               | 1    | 5981,8 | 4461,3          | 2180,7    | 1116,4   | 516,4     | 105,5  | 85,4   |

Tabela 5.61 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DI/ | <b>METR</b> | OS DO I | LEITO   | DOPA      | RAOI    | RIO AT           | IBAIA |                       |                 | COMP            | ARAÇA           | O ENI           | TRE D <sub>va</sub>   | IA D            |      | RELAÇ  | à O PERC | EN TUAL E | NTRE OS | VALORES   | DEDur  |        |
|-----|-------------|---------|---------|-----------|---------|------------------|-------|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|------|--------|----------|-----------|---------|-----------|--------|--------|
|     | Granu       | ometriz | ı do ma | terial do | o leito |                  |       |                       | (10)            | (11)            | (12)            | (13)            | (14)                  | (15)            | (16) | Е      | OS VALOI | RES MEDI  | DOSNOR  | IO ATIBAI | A      |        |
| (l) | (2)         | (3)     | (4)     | (5)       | (б)     | $(\overline{O})$ | (8)   | (9)                   |                 | COMP            | ARAÇ <i>i</i>   | 10 DE           | D <sub>VJ II</sub> NI | 4 COM:          |      | (17)   | (18)     | (19)      | (20)    | (21)      | (22)   | (23)   |
| N   | D10         | Dló     | D35     | D50       | D65     | D84              | D90   | D <sub>vj</sub> gralj | D <sub>10</sub> | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>       | D <sub>84</sub> | D.90 |        |          |           |         |           |        |        |
| L   | (mm)        | (mm)    | (mm)    | (mm)      | (mm)    | (mm)             | (mm)  | JULA.                 | ~               |                 |                 |                 | ~                     |                 |      |        |          |           |         |           |        |        |
| 97  | 0.210       | 0.280   | 0.550   | 0.890     | 1.410   | 3.490            | 4.400 | 9.151                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4257.7 | 3168.3   | 1563.8    | 928,2   | 549.0     | 162.2  | 108.0  |
| 98  | 0.220       | 0.290   | 0.550   | 0.890     | 1.410   | 4.000            | 4,700 | 9,045                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4011,2 | 3018,9   | 1544,5    | 916,3   | 541,5     | 126,1  | 92,4   |
| 99  | 0,150       | 0,220   | 0,430   | 0,650     | 0,980   | 1,840            | 2,460 | 8,845                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 5796,9 | 3920,6   | 1957,1    | 1260,8  | 802,6     | 380,7  | 259,6  |
| 100 | 0,160       | 0,210   | 0,390   | 0,580     | 0,880   | 1,630            | 2,250 | 9,742                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 5988,9 | 4539,1   | 2398,0    | 1579,7  | 1007,1    | 497,7  | 333,0  |
| 101 | 0,140       | 0,160   | 0,230   | 0,300     | 0,400   | 0,960            | 4,370 | 8,946                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 6289,7 | 5491,0   | 3789,4    | 2881,9  | 2136,4    | 831,8  | 104,7  |
| 102 | 2 0,150     | 0,180   | 0,250   | 0,320     | 0,420   | 0,670            | 0,850 | 9,042                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 5927,9 | 4923,2   | 3516,7    | 2725,6  | 2052,8    | 1249,5 | 963,7  |
| 103 | 0,150       | 0,170   | 0,260   | 0,340     | 0,470   | 0,830            | 1,090 | 8,833                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 5788,7 | 5095,9   | 3297,3    | 2498,0  | 1779,4    | 964,2  | 710,4  |
| 104 | 1 0,150     | 0,180   | 0,290   | 0,410     | 0,590   | 1,080            | 1,440 | 9,199                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 6032,9 | 5010,7   | 3072,2    | 2143,7  | 1459,2    | 751,8  | 538,8  |
| 105 | 5 0,160     | 0,190   | 0,250   | 0,320     | 0,430   | 0,960            | 1,620 | 8,663                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 5314,5 | 4459,6   | 3365,3    | 2607,3  | 1914,7    | 802,4  | 434,8  |
| 106 | 6 0,170     | 0,190   | 0,240   | 0,290     | 0,350   | 0,500            | 0,630 | 7,937                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4568,7 | 4077,2   | 3207,0    | 2636,8  | 2167,6    | 1487,3 | 1159,8 |
| 107 | 0,190       | 0,210   | 0,270   | 0,320     | 0,370   | 0,500            | 0,590 | 7,894                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4054,7 | 3659,0   | 2823,6    | 2366,8  | 2033,5    | 1478,8 | 1237,9 |
| 108 | 0,160       | 0,180   | 0,240   | 0,290     | 0,350   | 0,510            | 0,670 | 8,694                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 5333,8 | 4730,0   | 3522,5    | 2897,9  | 2384,0    | 1604,7 | 1197,6 |
| 109 | 0,210       | 0,260   | 0,410   | 0,620     | 0,980   | 1,780            | 2,300 | 7,600                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3518,9 | 2823,0   | 1753,6    | 1125,8  | 675,5     | 327,0  | 230,4  |
| 110 | 0,250       | 0,310   | 0,500   | 0,710     | 1,020   | 1,800            | 2,360 | 7,303                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 2821,3 | 2255,9   | 1360,6    | 928,6   | 616,0     | 305,7  | 209,5  |
| 111 | 0,220       | 0,260   | 0,410   | 0,640     | 1,020   | 1,940            | 2,590 | 8,241                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3645,8 | 3069,5   | 1909,9    | 1187,6  | 707,9     | 324,8  | 218,2  |
| 112 | 2 0,200     | 0,230   | 0,310   | 0,380     | 0,480   | 0,750            | 0,930 | 7,909                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3854,4 | 3338,6   | 2451,2    | 1981,3  | 1547,7    | 954,5  | 750,4  |
| 113 | 0,220       | 0,250   | 0,350   | 0,440     | 0,570   | 0,930            | 1,220 | 8,911                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3950,5 | 3464,4   | 2446,0    | 1925,2  | 1463,3    | 858,2  | 630,4  |
| 114 | 1 0,220     | 0,260   | 0,360   | 0,460     | 0,630   | 1,180            | 1,860 | 8,936                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3961,9 | 3337,0   | 2382,3    | 1842,7  | 1318,4    | 657,3  | 380,4  |
| 115 | 5 0,190     | 0,230   | 0,320   | 0,400     | 0,520   | 0,810            | 1,000 | 7,555                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3876,4 | 3184,8   | 2261,0    | 1788,8  | 1352,9    | 832,7  | 655,5  |
| 116 | 6 0,210     | 0,240   | 0,320   | 0,380     | 0,480   | 0,740            | 0,940 | 9,039                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4204,2 | 3666,2   | 2724,7    | 2278,7  | 1783,1    | 1121,5 | 861,6  |
| 117 | 0,180       | 0,210   | 0,300   | 0,390     | 0,510   | 0,910            | 1,200 | 8,799                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4788,1 | 4089,8   | 2832,8    | 2156,0  | 1625,2    | 866,9  | 633,2  |
| 118 | 8 0,180     | 0,220   | 0,340   | 0,470     | 0,730   | 1,820            | 3,210 | 9,219                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 5021,5 | 4090,3   | 2611,4    | 1861,4  | 1162,8    | 406,5  | 187,2  |
| 119 | 0,200       | 0,250   | 0,440   | 0,790     | 1,380   | 3,000            | 3,880 | 9,105                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4452,4 | 3541,9   | 1969,3    | 1052,5  | 559,8     | 203,5  | 134,7  |
| 120 | 0,210       | 0,280   | 0,560   | 0,920     | 1,520   | 3,030            | 3,850 | 9,459                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4404,2 | 3278,1   | 1589,1    | 928,1   | 522,3     | 212,2  | 145,7  |
| 121 | 0,210       | 0,270   | 0,480   | 0,730     | 1,130   | 2,320            | 3,550 | 9,326                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4340,8 | 3354,0   | 1842,9    | 1177,5  | 725,3     | 302,0  | 162,7  |
| 122 | 2 0,200     | 0,240   | 0,370   | 0,590     | 1,130   | 2,600            | 3,750 | 9,801                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4800,6 | 3983,9   | 2549,0    | 1561,2  | 767,4     | 277,0  | 161,4  |
| 123 | 0,210       | 0,260   | 0,480   | 0,860     | 1,430   | 3,130            | 4,060 | 9,123                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4244,5 | 3409,0   | 1800,7    | 960,9   | 538,0     | 191,5  | 124,7  |
| 124 | 1 0,210     | 0,290   | 0,540   | 0,770     | 1,080   | 1,810            | 2,880 | 9,418                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4384,8 | 3147,6   | 1644,1    | 1123,1  | 772,0     | 420,3  | 227,0  |
| 125 | 5 0,230     | 0,300   | 0,680   | 1,180     | 1,840   | 3,410            | 4,160 | 9,133                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3870,8 | 2944,3   | 1243,1    | 674,0   | 396,4     | 167,8  | 119,5  |
| 126 | 6 0,300     | 0,380   | 0,660   | 0,950     | 1,330   | 2,270            | 2,950 | 8,318                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 2672,6 | 2088,9   | 1160,3    | 775,6   | 525,4     | 266,4  | 182,0  |
| 127 | 0,250       | 0,290   | 0,480   | 0,680     | 0,980   | 1,920            | 2,830 | 8,726                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 3390,5 | 2909,0   | 1718,0    | 1183,3  | 790,4     | 354,5  | 208,3  |
| 128 | 8 0,220     | 0,280   | 0,540   | 0,850     | 1,320   | 2,630            | 3,560 | 9,460                 | 1               | 1               | 1               | 1               | 1                     | 1               | 1    | 4199,9 | 3278,5   | 1651,8    | 1012,9  | 616,7     | 259,7  | 165,7  |

Tabela 5.61 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÅ | METR  | OS DO I | LEITO   | DOPA     | RAOI    | RIO AT           | IBAIA |                     |                 | COMP | ARAÇA         | O ENI      | TRE D <sub>v.</sub>  | IA D              |      | RELAÇ   | à O PERC | EN TUAL E | N TRE OS | VALORES   | DEDw   |        |
|-----|-------|---------|---------|----------|---------|------------------|-------|---------------------|-----------------|------|---------------|------------|----------------------|-------------------|------|---------|----------|-----------|----------|-----------|--------|--------|
|     | Granu | bmetri  | n do ma | terial d | o leito |                  |       |                     | (10)            | (11) | (12)          | (13)       | (14)                 | (15)              | (16) | Е       | OS VALOI | RES MEDD  | DOSNO R  | IO ATIBAL | A      |        |
| (1) | (2)   | (3)     | (4)     | (5)      | (6)     | $(\overline{0})$ | (8)   | (9)                 |                 | COMP | ARAÇ <i>i</i> | 40 DE      | D <sub>VJ II</sub> M | <sub>4</sub> COM: |      | (17)    | (18)     | (19)      | (20)     | (21)      | (22)   | (23)   |
| N   | D10   | Dló     | D35     | D50      | D65     | D84              | D90   | D <sub>NI UNL</sub> | D <sub>10</sub> | Dr   | Dar           | Dee        | Da                   | Dat               | Dae  |         |          |           |          |           |        |        |
| L   | (mm)  | (mm)    | (mm)    | (mm)     | (mm)    | (mm)             | (mm)  | ·] [=]              | -10             | - 10 | -30           | - 50       | - 60                 | - 64              | - 90 |         |          |           |          |           |        |        |
| 120 | 0.230 | 0.260   | 0 370   | 0 500    | 0 750   | 1 470            | 1070  | 0.468               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4016.6  | 35416    | 2450 0    | 1703.6   | 1162 4    | 544.1  | 380.6  |
| 130 | 0.340 | 0,200   | 0.630   | 0,830    | 1,080   | 1,580            | 1,850 | 8.569               | i               | i    | i             | i          | i                    | i                 | i    | 2420.4  | 2042.4   | 1260.2    | 932.5    | 693.5     | 442.4  | 363.2  |
| 131 | 0.150 | 0,210   | 0.290   | 0.360    | 0.440   | 0.660            | 0.840 | 8.690               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 5693,5  | 4038,2   | 2896.6    | 2313.9   | 1875.0    | 1216.7 | 934.5  |
| 132 | 0,110 | 0,130   | 0,170   | 0,200    | 0,230   | 0,300            | 0,340 | 7,738               | ī               | ī    | Ī             | 1          | Ī                    | ī                 | ī    | 6934,9  | 5852,6   | 4452,0    | 3769,2   | 3264,5    | 2479,5 | 2176,0 |
| 133 | 0,140 | 0,150   | 0,180   | 0,200    | 0,230   | 0,290            | 0,330 | 7,295               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 5110,8  | 4763,4   | 3952,9    | 3547,6   | 3071,8    | 2415,6 | 2110,6 |
| 134 | 0,150 | 0,160   | 0,190   | 0,220    | 0,250   | 0,320            | 0,380 | 6,892               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4494,7  | 4207,5   | 3527,4    | 3032,8   | 2656,8    | 2053,8 | 1713,7 |
| 135 | 0,150 | 0,160   | 0,180   | 0,200    | 0,220   | 0,260            | 0,280 | 7,586               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4957,0  | 4641,0   | 4114,2    | 3692,8   | 3348,0    | 2817,5 | 2609,1 |
| 136 | 0,160 | 0,170   | 0,190   | 0,220    | 0,250   | 0,310            | 0,350 | 7,315               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4471,7  | 4202,8   | 3749,9    | 3224,9   | 2825,9    | 2259,6 | 1989,9 |
| 137 | 0,300 | 0,390   | 0,770   | 1,120    | 1,590   | 2,850            | 3,730 | 7,295               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 2331,5  | 1770,4   | 847,4     | 551,3    | 358,8     | 156,0  | 95,6   |
| 138 | 0,160 | 0,170   | 0,210   | 0,240    | 0,280   | 0,360            | 0,400 | 7,327               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4479,5  | 4210,2   | 3389,2    | 2953,0   | 2516,9    | 1935,4 | 1731,8 |
| 139 | 0,160 | 0,170   | 0,210   | 0,250    | 0,300   | 0,400            | 0,480 | 7,371               | 1               | 1    | Į <b>l</b>    | 1          | 1                    | 1                 | 1    | 4506,7  | 4235,8   | 3409,9    | 2848,3   | 2356,9    | 1742,7 | 1435,6 |
| 140 | 0,140 | 0,160   | 0,200   | 0,230    | 0,280   | 0,390            | 0,470 | 8,599               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 6042,1  | 5274,3   | 4199,5    | 3638,7   | 2971,0    | 2104,8 | 1729,6 |
| 141 | 0,150 | 0,170   | 0,230   | 0,290    | 0,380   | 0,600            | 0,780 | 9,033               | . 1             | 1    | 1             | 1          | 1                    | 1                 | 1    | 5922,0  | 5213,6   | 3827,4    | 3014,8   | 2277,1    | 1405,5 | 1058,1 |
| 142 | 0,120 | 0,140   | 0,170   | 0,200    | 0,230   | 0,310            | 0,370 | 8,764               | 1               | 1    | <u> </u>      | 1          | 1                    | 1                 | 1    | 7203,7  | 6160,3   | 5055,5    | 4282,2   | 3710,6    | 2727,2 | 2268,8 |
| 143 | 0,180 | 0,200   | 0,700   | 1,500    | 2,220   | 4,130            | 5,120 | 8,928               | 1               | 1    | į 1           | 1          | 1                    | 1                 | 1    | 4859,8  | 4363,8   | 1175,4    | 495,2    | 302,1     | 116,2  | 74,4   |
| 144 | 0,160 | 0,190   | 0,290   | 0,420    | 0,800   | 2,220            | 3,260 | 9,195               | 1               | 1    | <u> </u>      | 1          | 1                    | 1                 | 1    | 5647,0  | 4739,6   | 3070,7    | 2089,3   | 1049,4    | 3142   | 182,1  |
| 145 | 0,160 | 0,190   | 0,300   | 0,450    | 1,000   | 2,700            | 3,820 | 9,356               | į <u>1</u>      | 1    | 1             | 1          | 1                    | 1                 | 1    | 5747,4  | 4824,1   | 3018,6    | 1979,1   | 835,6     | 246,5  | 144,9  |
| 146 | 0,120 | 0,150   | 0,230   | 0,310    | 0,420   | 0,970            | 1,340 | 9,306               | Į <b>l</b>      | 1    | 1             | . <u>1</u> | 1                    | 1                 | 1    | 7654,6  | 6103,7   | 3945,9    | 2901,8   | 2115,6    | 859,3  | 594,4  |
| 147 | 0,200 | 0,250   | 0,570   | 1,360    | 2,440   | 4,740            | 5,030 | 9,635               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4717,3  | 3753,8   | 1590,3    | 608,4    | 294,9     | 103,3  | 91,5   |
| 148 | 0,160 | 0,210   | 0,400   | 0,850    | 1,370   | 2,520            | 3,270 | 8,835               | 1               | 1    | . <u>1</u>    | 1          | 1                    | 1                 | 1    | 5421,8  | 4107,1   | 2108,7    | 939,4    | 544,9     | 250,6  | 170,2  |
| 149 | 0,100 | 0,130   | 0,190   | 0,250    | 0,340   | 0,940            | 1,640 | 9,868               | 1               | 1    | ļ <u>1</u>    | 1          | 1                    | 1                 | 1    | 9767,7  | 7490,6   | 5093,5    | 3847,1   | 2802,3    | 949,8  | 501,7  |
| 150 | 0,090 | 0,120   | 0,180   | 0,230    | 0,310   | 1,010            | 2,430 | 9,589               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 10554,1 | 7890,6   | 5227,0    | 4069,0   | 2993,1    | 849,4  | 294,6  |
| 151 | 0,130 | 0,160   | 0,240   | 0,350    | 0,590   | 2,400            | 3,700 | 9,218               | Į <u>1</u>      | 1    | 1             | 1          | 1                    | 1                 | 1    | 6990,6  | 5661,1   | 3740,8    | 2533,7   | 1462,3    | 284,1  | 149,1  |
| 152 | 0,100 | 0,120   | 0,170   | 0,210    | 0,250   | 0,380            | 0,480 | 9,444               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 9344,4  | 7770,3   | 5455,5    | 4397,3   | 3677,8    | 2385,4 | 1867,6 |
| 153 | 0,110 | 0,130   | 0,190   | 0,230    | 0,300   | 0,840            | 1,830 | 8,669               | 1               | 1    | į <u>1</u>    | 1          | 1                    | 1                 | 1    | 7780,5  | 6568,1   | 4462,4    | 3669,0   | 2789,5    | 932,0  | 373,7  |
| 154 | 0,230 | 0,290   | 0,710   | 1,330    | 2,130   | 3,760            | 4,500 | 8,645               | 1               | 1    | ļ <u>1</u>    | 1          | 1                    | 1                 | 1    | 3658,8  | 2881,1   | 1117,6    | 550,0    | 305,9     | 129,9  | 92,1   |
| 155 | 0,200 | 0,230   | 0,360   | 0,530    | 1,000   | 2,730            | 3,980 | 10,392              | 1               | 1    | <u> </u>      | 1          | 1                    | 1                 | 1    | 5096,0  | 4418,3   | 2786,7    | 1860,8   | 939,2     | 280,7  | 161,1  |
| 156 | 0,080 | 0,090   | 0,160   | 0,220    | 0,430   | 2,140            | 4,060 | 7,095               | į <u>1</u>      | 1    | 1             | . <b>1</b> | 1                    | 1                 | 1    | 8768,1  | 7782,8   | 4334,1    | 3124,8   | 1549,9    | 231,5  | 74,7   |
| 157 | 0,180 | 0,200   | 0,290   | 0,390    | 0,800   | 1,070            | 2,060 | 8,961               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4878,5  | 4380,6   | 2990,1    | 2197,8   | 1020,2    | 737,5  | 335,0  |
| 158 | 0,200 | 0,230   | 0,390   | 0,730    | 1,420   | 4,070            | 6,230 | 8,897               | 1               | 1    | 1             | 1          | 1                    | 1                 | 1    | 4348,7  | 3768,4   | 2181,4    | 1118,8   | 526,6     | 118,6  | 42,8   |
| 159 | 0,120 | 0,150   | 0,230   | 0,340    | 0,600   | 4,670            | 0,300 | 8,689               | 1               | 1    | į <b>l</b>    | 1          | 1                    | 1                 | 1    | 7140,9  | 5692,7   | 3677,9    | 2455,6   | 1348,2    | 86,1   | 2796,4 |
| 160 | 0,150 | 0,160   | 0,210   | 0,250    | 0,320   | 2,760            | 0,280 | 8,272               | <u> </u>        | 1    | 1             | <u> </u>   | 1                    | 1                 | 1    | 5414,8  | 5070,2   | 3839,2    | 3208,9   | 2485,1    | 199,7  | 2854,4 |

Tabela 5.61 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIĂMETROS DO LEITO DO PARA O RIO ATIBAIA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            | COMP            | <b>ARAÇ</b> A   | O ENT           | IRE D <sub>v</sub>   | IA D   |        | RELAÇ  | ÃO PERCI | EN TUAL EI | NTRE OS  | VALORES  | DEDur  |        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------|--------|--------|--------|----------|------------|----------|----------|--------|--------|
| Granulometria do material do leito            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (10)                                                                                                                                                                                                                                                                       | (11)            | (12)            | (13)            | (14)                 | (15)   | (16)   | Е      | OS VALOI | RESMEDI    | OS NO RI | O ATIBAL | A.     |        |
| (1) (2) (3) (4) (5) (6) (7) (8)               | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            | COMP            | ARAÇ <i>i</i>   | 40 DE           | D <sub>VJ [IM]</sub> | 4 COM: | :      | (17)   | (18)     | (19)       | (20)     | (21)     | (22)   | (23)   |
| N D10 D16 D35 D50 D65 D84 D90                 | D <sub>vj</sub> [[RL]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D10                                                                                                                                                                                                                                                                        | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>      | D.84   | Dan    |        |          |            |          |          |        |        |
| (mm) (mm) (mm) (mm) (mm) (mm)                 | TATA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                            | ~               | ł               |                 | ~                    |        | ~      |        |          |            |          |          |        |        |
| 161 0,160 0,180 0,230 0,270 0,330 0,490 0,640 | 8,806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     1     1     1     1     5403,       1     1     1     1     1     1     5190,       1     1     1     1     1     1     5190,       1     1     1     1     1     1     8295,       1     1     1     1     1     1     4891,                                        |                 |                 |                 |                      |        |        |        |          | 3728,6     | 3161,4   | 2568,4   | 1697,1 | 1275,9 |
| 162 0,150 0,160 0,200 0,240 0,290 4,840 1,350 | 7,935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     1     1     1     1     5403,6       1     1     1     1     1     1     5190,0       1     1     1     1     1     1     1     8295,8       1     1     1     1     1     1     4891,3                                                                              |                 |                 |                 |                      |        |        |        |          | 3867,5     | 3206,2   | 2636,2   | 63,9   | 487,8  |
| 163 0,100 0,120 0,160 0,190 0,230 0,330 0,390 | 8,396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1 1 1 5   5 1 1 1 1 1 1 5   6 1 1 1 1 1 1 5   6 1 1 1 1 1 1 8295,8   5 1 1 1 1 1 1 4891,3   2 1 1 1 1 1 1 10952,1                                                                                                                                                  |                 |                 |                 |                      |        |        |        |          | 5147,4     | 4318,8   | 3550,3   | 2444,2 | 2052,8 |
| 164 0,170 0,190 0,260 0,320 0,420 1,310 2,080 | 8,485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                          | 1               | 1               | 1               | 1                    | 1      | 1      | 4891,3 | 4365,9   | 3163,5     | 2551,6   | 1920,3   | 547,7  | 307,9  |
| 165 0,080 0,100 0,150 0,180 0,220 0,300 0,370 | 8,842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 806   1   1   1   1   1   5403,6   4     335   1   1   1   1   1   1   5190,0   4     396   1   1   1   1   1   1   1   8295,8   6     885   1   1   1   1   1   1   4891,3   4     342   1   1   1   1   1   1   10952,1   1     578   1   1   1   1   1   1   6098,4   1 |                 |                 |                 |                      |        |        |        |          | 5794,4     | 4812,0   | 3918,9   | 2847,2 | 2289,6 |
| 166 0,140 0,150 0,190 0,230 0,290 1,190 3,530 | 8,678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                          | 1               | 1               | 1               | 1                    | 1      | 5685,2 | 4467,2 | 3672,9   | 2892,3     | 629,2    | 145,8    |        |        |
| 167 0,200 0,240 0,350 0,500 0,840 1,980 2,850 | 8,184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                          | 1               | 1               | 1               | 1                    | 1      | 1      | 3992,2 | 3310,1   | 2238,4     | 1536,9   | 874,3    | 313,4  | 187,2  |
| 168 0,220 0,250 0,350 0,440 0,630 1,250 1,650 | 7,535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                          | 1               | 1               | 1               | 1                    | 1      | 1      | 3324,8 | 2913,8   | 2052,7     | 1612,4   | 1096,0   | 502,8  | 356,6  |
| 169 0,130 0,150 0,220 0,290 0,410 1,840 5,640 | 9,187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                          | 1               | 1               | 1               | 1                    | 1      | 1      | 6966,8 | 6024,6   | 4075,9     | 3067,9   | 2140,7   | 399,3  | 62,9   |
| 170 0,140 0,190 0,320 0,460 0,760 1,660 2,450 | 9,406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                          | 1               | 1               | 1               | 1                    | 1      | 1      | 6618,7 | 4850,6   | 2839,4     | 1944,8   | 1137,7   | 466,6  | 283,9  |
| 171 0,160 0,190 0,370 0,920 1,760 4,000 5,260 | 9,497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                          | 1               | 1               | 1               | 1                    | 1      | 1      | 5835,4 | 4898,2   | 2466,7     | 932,2    | 439,6    | 137,4  | 80,5   |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            | (%              | ) de ev         | entos er        | nque D'              | VJ > D |        | DIFEI  | RENÇA P  | ERCENTI    | JAL REL  | ATIVA M  | EDIA   |        |
|                                               | (%) de evenios emque DVJ > D<br>100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1 |                                                                                                                                                                                                                                                                            |                 |                 |                 |                      |        |        |        |          |            |          | 1388,3   | 694,4  | 523,5  |

Tabela 5.61 - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>vi (IRL)</sub>- Diâmetro calculado pela equação: DVj [INL] = - 0,0012xLn(Q) +0,0124. Para o método de Inglis & Lacey (1968)

Q - Vazão em m<sup>3</sup>/s

| DIÄ         | METR  | OS DO   | LEITO  | DOPA      | RAOF    | NO AT | IBAIA |                    | _        | COMP            | ARAÇA    | O ENI    | RE D <sub>va</sub> | IA D             |          | RELAÇ  | ÃO PERCI       | EN TUAL E | N TRE O S | VALORES   | DEDur  |       |
|-------------|-------|---------|--------|-----------|---------|-------|-------|--------------------|----------|-----------------|----------|----------|--------------------|------------------|----------|--------|----------------|-----------|-----------|-----------|--------|-------|
|             | Granu | ometria | ado ma | terial de | o leito |       |       |                    | (10)     | (11)            | (12)     | (13)     | (14)               | (15)             | (16)     | E      | OS VALOI       | RES MEDII | DOSNOR:   | IO ATIBAI | A      |       |
| (l)         | (2)   | (3)     | (4)    | (5)       | (6)     | - O   | (8)   | (9)                |          | COMP            | ARA ÇA   | O DE     | D <sub>VJB00</sub> | <sub>я</sub> COM | :        | (17)   | (18)           | (19)      | (20)      | (21)      | (22)   | (23)  |
| N⁰          | D10   | Dló     | D35    | D50       | D65     | D84   | D90   | D <sub>M BOG</sub> | D10      | D <sub>16</sub> | Dw       | Dee      | Der                | Der              | Dm       |        |                |           |           |           |        |       |
| L           | (mm)  | (mm)    | (mm)   | (mm)      | (mm)    | (mm)  | (mm)  | - 1 [P]            | -10      | - 10            | - 30     | - 50     | - 10               | - 64             | - 90     |        |                |           |           |           |        |       |
| <u>-</u>    | 0.150 | 0 180   | 0.340  | 0.640     | 0.970   | 1.560 | 1.860 | 4.500              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 2900.0 | 2400.0         | 1223.5    | 603.1     | 363.0     | 188.5  | 141 0 |
| 2           | 0.190 | 0.240   | 0.370  | 0.540     | 0.880   | 2.770 | 3.820 | 4,564              | ī        | ī               | ī        | ī        | ī                  | î                | ī        | 2302.2 | 1801,7         | 1133.6    | 745.2     | 418,7     | 64.8   | 195   |
| 3           | 0,240 | 0,290   | 0,480  | 0,680     | 1,040   | 2,960 | 4,110 | 4,313              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 1697,0 | 1387,1         | 798,5     | 534,2     | 314,7     | 45,7   | 4,9   |
| 4           | 0,220 | 0,270   | 0,530  | 0,860     | 1,370   | 3,240 | 4,220 | 4,876              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 2116,4 | 1706,0         | 820,0     | 467,0     | 255,9     | 50,5   | 15,5  |
| 5           | 0,240 | 0,280   | 0,400  | 0,510     | 0,640   | 0,970 | 1,230 | 3,887              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 1519,6 | 1288,2         | 871,8     | 662,2     | 507,4     | 300,7  | 216,0 |
| б           | 0,330 | 0,400   | 0,710  | 1,020     | 1,470   | 2,500 | 3,130 | 5,359              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 1524,0 | 1239,8         | 654,8     | 425,4     | 264,6     | 114,4  | 71,2  |
| 7           | 0,270 | 0,320   | 0,450  | 0,570     | 0,730   | 1,130 | 1,420 | 3,905              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 1346,5 | 1120,5         | 767,9     | 585,2     | 435,0     | 245,6  | 175,0 |
| 8           | 0,290 | 0,340   | 0,500  | 0,640     | 0,830   | 1,440 | 3,780 | 4,232              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 1359,3 | 1144,7         | 746,4     | 561,2     | 409,9     | 193,9  | 12,0  |
| 9           | 0,360 | 0,440   | 0,690  | 0,970     | 1,500   | 4,470 | 4,940 | 4,056              | 1        | 1               | <u>l</u> | 1        | 1                  | 0                | 0        | 1026,6 | 821,8          | 487,8     | 318,1     | 170,4     | 10,2   | 21,8  |
| 10          | 0,320 | 0,370   | 0,520  | 0,660     | 0,850   | 1,400 | 2,000 | 3,905              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 1120,5 | 955,5          | 651,0     | 491,7     | 359,5     | 179,0  | 95,3  |
| 11          | 0,300 | 0,360   | 0,560  | 0,780     | 1,220   | 4,100 | 4,750 | 2,956              | 1        | 1               | 1        | 1        | 1                  | 0                | 0        | 885,2  | 721,0          | 427,8     | 278,9     | 142,3     | 38,7   | 60,7  |
| 12          | 0,300 | 0,360   | 0,560  | 0,770     | 1,090   | 3,330 | 4,500 | 2,741              | 1        | 1               | 1        | 1        | 1                  | 0                | 0        | 813,5  | 661,3          | 389,4     | 255,9     | 151,4     | 21,5   | 64,2  |
| 13          | 0,270 | 0,320   | 0,480  | 0,630     | 0,870   | 3,900 | 4,700 | 2,435              | 1        | 1               | 1        | 1        | 1                  | 0                | 0        | 802,0  | 661,0          | 407,4     | 286,6     | 179,9     | 60,1   | 93,0  |
| 14          | 0,270 | 0,320   | 0,470  | 0,640     | 0,920   | 2,300 | 4,020 | 2,074              | 1        | 1               | 1        | 1        | 1                  | 0                | 0        | 668,1  | 548,1          | 341,3     | 224,1     | 125,4     | 10,9   | 93,8  |
| 15          | 0,280 | 0,320   | 0,490  | 0,660     | 0,950   | 2,170 | 3,160 | 2,247              | 1        | 1               | 1        | 1        | 1                  | 1                | U        | 702,6  | 602,3          | 358,7     | 240,5     | 136,6     | 3,6    | 40,6  |
| 16          | 0,240 | 0,270   | 0,370  | 0,470     | 0,610   | 1,000 | 1,450 | 3,604              | 1        | 1               | 1        | l        | 1                  | 1                | 1        | 1401,7 | 1234,9         | 874,1     | 666,8     | 490,8     | 260,4  | 148,6 |
| 17          | 0,310 | 0,370   | 0,510  | 0,630     | 0,800   | 1,290 | 1,770 | 5,359              | 1        | 1               | 1        | 1        | 1                  | 1                | 1        | 1628,8 | 1348,4         | 950,8     | 750,7     | 569,9     | 315,4  | 202,8 |
| 18          | 0,280 | 0,340   | 0,510  | 0,690     | 0,970   | 4,770 | 5,110 | 3,604              | <b>l</b> | 1               | 1        | l        | 1                  | Q                | 0        | 1187,2 | 960,O          | 606,7     | 422,3     | 271,6     | 32,3   | 41,8  |
| Ц           | 0,310 | 0,370   | 0,550  | 0,710     | 0,960   | 3,630 | 4,620 | 4,395              | I        | ļ               | 1        | I        | 1                  | 1                | U        | 1317,7 | 1087,8         | 699,1     | 519,0     | 357,8     | 21,1   | 5,1   |
| 20          | 0,290 | 0,350   | 0,500  | 0,630     | 0,800   | 1,240 | 1,640 | 4,762              | 1        | 1               | I        | <u>I</u> | 1                  | 1                | 1        | 1542,2 | 1260,7         | 852,5     | 055,9     | 495,3     | 284,1  | 190,4 |
| 21          | 0,340 | 0,440   | 0,840  | 1,260     | 2,140   | 4,520 | 4,960 | 2,626              | 1        | ļ               | I        | I        | 1                  | U                | U        | 672,5  | 496,9          | 212,7     | 108,4     | 22,7      | 72,1   | 88,8  |
| <u>, 22</u> | 0,300 | 0,390   | 0,750  | 1,150     | 1,870   | 4,270 | 4,820 | 5,520              | 1        | ļ               | 1        | 1        | 1                  | U                | U        | 1008,7 | 752,8          | 343,5     | 189,2     | 77,9      | 28,4   | 44,9  |
| 23          | 0,300 | 0,360   | 0,510  | 0,630     | 0,810   | 1,260 | 1,710 | 4,504              | 1        | ļ               | 1        | 1        | 1                  | 1                | 1        | 1421,4 | 110/,8         | /94,9     | 0245      | 403,5     | 262,2  | 100,9 |
| 24          | 0,270 | 0,520   | 0,470  | 0,590     | 0,740   | 1,110 | 1,570 | 2,020              | <b>I</b> | Ļ               |          | Į        | 1                  | Į                | 1        | 872,8  | 720,8          | 458,8     | 345,2     | 254,9     | 1,50,0 | 91,7  |
| 2           | 0,250 | 0,500   | 0,440  | 0,560     | 0,/30   | 1,180 | 1,000 | 4,504              | 1        | ļ               | 1        | 1        | 1                  | 1                | 1        | 1/25,/ | 1421,4         | 957,5     | / 15,0    | 525,2     | 280,8  | 1/5,0 |
| 26          | 0,240 | 0,290   | 0,420  | 0,550     | 0,740   | 1,340 | 2,260 | 3,326              | <u> </u> | ļ               | ĮĮ       | <u> </u> | <u> </u>           | <u> </u>         | 1        | 1285,9 | 1046,9         | 691,9     | 504,7     | 349,5     | 148,2  | 47,2  |
| 27          | 0,230 | 0,280   | 0,420  | 0,540     | 0,/10   | 1,200 | 4,430 | 2,833              | <b>1</b> | ļ               | ļļ       | <u></u>  | 1                  | 1                | U        | 1131,6 | 911,7          | 574,4     | 424,6     | 299,0     | 136,1  | 50,4  |
| 28          | 0,250 | 0,290   | 0,410  | 0,520     | 0,650   | 0,950 | 1,200 | 5,084<br>2,520     | 1        | Ļ               |          |          | 1                  | 1                | 1        | 1155,0 | 90 <i>5</i> ,4 | 052,2     | 493,1     | 5/4,5     | 224,0  | 157,0 |
| 29          | 0,240 | 0,280   | 0,590  | 0,480     | 0,590   | 0,850 | 1,000 | 2,529              |          |                 | ļ        | <u>I</u> | 1                  | <u> </u>         | <b>1</b> | 955,8  | 805,2          | 548,5     | 420,9     | 528,7     | 204,7  | 152,9 |
|             | 0,270 | 0,510   | 0,4.90 | 0,530     | 0,050   | 0,890 | 1,050 | 5,084              | <b>1</b> |                 | ļ        | 1        | 1                  | 1                | 1        | 1042,2 | 894,8          | 017,2     | 481,9     | 5/4,5     | 240,5  | 193,7 |
| 31          | 0,230 | 0,270   | 0,370  | 0,470     | 0,600   | 0,890 | 1,100 | 2,435              | 1        | ļ               | ļ        | 1        | 1                  | 1                | 1        | 958,8  | 802,0          | 558,2     | 418,1     | 305,9     | 1/3,0  | 121,4 |
| 52          | 0,280 | 0,340   | 0,500  | 0,050     | 0,870   | 1,000 | 2,500 | 5,084              | <u> </u> | <u> </u>        | <u> </u> | <u> </u> | 1                  | 1                | 1        | 1001,4 | 807,1          | 510,8     | 574,5     | 254,5     | 85,8   | 34,1  |

Tabela 5.6m - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ  | METR  | OS DO   | LEITO   | DOPA     | RAOE    | RIO AT | IBAIA |            |          | COMP     | ARAÇA      | O ENI | RED                | IA D             |      | RELAÇ   | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDur  |        |
|------|-------|---------|---------|----------|---------|--------|-------|------------|----------|----------|------------|-------|--------------------|------------------|------|---------|----------|-----------|-----------|-----------|--------|--------|
|      | Granu | ometria | a do ma | terial d | o leito |        |       |            | (10)     | (11)     | (12)       | (13)  | (14)               | (15)             | (16) | Е       | OS VALOI | RES MEDII | DOSNOR    | IO ATIBAI | A      |        |
| (l)  | (2)   | (3)     | (4)     | (5)      | (б)     | - O    | (8)   | (9)        |          | COMP     | ARAÇA      | ODE . | D <sub>VJB00</sub> | <sub>я</sub> СОМ | :    | (17)    | (18)     | (19)      | (20)      | (21)      | (22)   | (23)   |
| N⁰   | D10   | Dló     | D35     | D50      | D65     | D84    | D90   |            | Die      | Dr       | Dar        | Dee   | Da                 | Dat              | De   |         |          |           |           |           |        |        |
| L    | (mm)  | (mm)    | (mm)    | (mm)     | (mm)    | (mm)   | (mm)  |            | -10      | - 10     | - 30       | - 50  | - 10               | - 84             | - 90 |         |          |           |           |           |        |        |
| n    | 0.280 | 0 320   | 0.450   | 0 570    | 0 7 20  | 1 230  | 2 190 | - 1000<br> | 1        | 1        | : 1        | 1     | 1                  | 1                | 1    | 702.6   | 6023     | 300 4     | 2043      | 207.0     | 92 T   | 31     |
| 30   | 0,200 | 0,320   | 0,4.30  | 0,570    | 0,730   | 1,230  | 1 050 | 2,412      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 702,0   | 7041     | 488.4     | 373.0     | 282.9     | 174.1  | 129.8  |
| 35   | 0.280 | 0.320   | 0.440   | 0.540    | 0.680   | 1.000  | 1.270 | 2.626      | 1        | ī        | ī          | 1     | ī                  | ī                | 1    | 838.0   | 720.8    | 496.9     | 386.4     | 286.2     | 162.6  | 106.8  |
| 36   | 0.210 | 0.250   | 0.360   | 0.450    | 0.580   | 0.890  | 1.100 | 3.326      | 1        | ī        | ī          | 1     | ī                  | ī                | ī    | 1483,8  | 1230,4   | 823,9     | 639,1     | 473,5     | 273.7  | 202,4  |
| 37   | 0,270 | 0,320   | 0,450   | 0,570    | 0,740   | 1,180  | 1,520 | 2,247      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 732,4   | 602,3    | 399,4     | 2943      | 203,7     | 90,5   | 47,9   |
| 38   | 0,260 | 0,330   | 0,530   | 0,730    | 1,010   | 1,790  | 3,150 | 3,203      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 1131,8  | 870,5    | 504,3     | 338,7     | 217,1     | 78,9   | 1,7    |
| 39   | 0,300 | 0,340   | 0,480   | 0,600    | 0,750   | 1,140  | 1,450 | 2,247      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 649,1   | 561,0    | 368,2     | 274,6     | 199,7     | 97,1   | 55,0   |
| 40   | 0,320 | 0,370   | 0,550   | 0,710    | 0,950   | 1,600  | 2,510 | 4,946      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 1445,5  | 1236,7   | 799,2     | 596,6     | 420,6     | 209,1  | 97,0   |
| 41   | 0,280 | 0,320   | 0,450   | 0,570    | 0,720   | 1,080  | 1,360 | 5,359      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 1814,0  | 1574,8   | 1090,9    | 840,2     | 644,3     | 396,2  | 294,1  |
| 42   | 0,220 | 0,270   | 0,410   | 0,570    | 0,900   | 4,170  | 4,790 | 3,604      | 1        | 1        | 1          | 1     | 1                  | 0                | 0    | 1538,2  | 1234,9   | 779,1     | 532,3     | 300,5     | 15,7   | 32,9   |
| 43   | 0,290 | 0,340   | 0,460   | 0,570    | 0,700   | 1,020  | 1,280 | 3,604      | 1        | 1        | į <u>1</u> | 1     | 1                  | 1                | 1    | 1142,8  | 960,0    | 683,5     | 532,3     | 414,9     | 253,3  | 181,6  |
| 44   | 0,170 | 0,250   | 0,550   | 0,820    | 1,250   | 4,840  | 5,150 | 3,084      | 1        | 1        | 1          | 1     | 1                  | 0                | 0    | 1714,1  | 1133,6   | 460,7     | 276,1     | 146,7     | 56,9   | 67,0   |
| 45   | 0,210 | 0,260   | 0,410   | 0,590    | 0,880   | 1,790  | 2,700 | 5,780      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 2652,3  | 2123,1   | 1309,7    | 879,6     | 556,8     | 222,9  | 114,1  |
| 46   | 0,180 | 0,200   | 0,300   | 0,410    | 0,600   | 1,200  | 1,850 | 4,056      | 1        | 1        | <u> </u>   | 1     | 1                  | 1                | 1    | 2153,2  | 1927,9   | 1251,9    | 889,2     | 576,0     | 238,0  | 119,2  |
| 47   | 0,170 | 0,210   | 0,390   | 0,650    | 1,140   | 2,970  | 4,030 | 4,212      | 1        | 1        | į <u>1</u> | 1     | 1                  | 1                | 1    | 2377,7  | 1905,7   | 980,0     | 548,0     | 269,5     | 41,8   | 4,5    |
| 48   | 0,150 | 0,170   | 0,210   | 0,250    | 0,330   | 0,720  | 1,100 | 4,564      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 2942,8  | 2584,8   | 2073,4    | 1725,7    | 1283,1    | 533,9  | 314,9  |
| 49   | 0,150 | 0,170   | 0,210   | 0,240    | 0,320   | 0,910  | 1,440 | 4,212      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 2708,0  | 2377,7   | 1905,7    | 1655,0    | 1216,3    | 362,9  | 192,5  |
| 50   | 0,160 | 0,170   | 0,230   | 0,320    | 0,650   | 1,550  | 2,790 | 4,212      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 2532,5  | 2377,7   | 1731,3    | 1216,3    | 548,0     | 171,7  | 51,0   |
| 51   | 0,170 | 0,190   | 0,250   | 0,330    | 0,490   | 1,090  | 1,580 | 3,604      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 2020,1  | 1796,9   | 1341,7    | 992,2     | 635,5     | 230,7  | 128,1  |
| 52   | 0,170 | 0,190   | 0,280   | 0,500    | 0,900   | 2,040  | 2,860 | 2,942      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 1630,4  | 1448,3   | 950,6     | 488,3     | 226,9     | 44,2   | 2,9    |
| 53   | 0,160 | 0,180   | 0,260   | 0,370    | 0,530   | 0,910  | 1,230 | 3,604      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 2152,6  | 1902,3   | 1286,2    | 874,1     | 580,0     | 296,1  | 193,0  |
| 54   | 0,140 | 0,150   | 0,180   | 0,200    | 0,230   | 0,500  | 0,920 | 5,566      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 3875,4  | 3610,4   | 2992,0    | 2682,8    | 2319,8    | 1013,1 | 505,0  |
| 55   | 0,140 | 0,160   | 0,200   | 0,240    | 0,300   | 0,600  | 0,850 | 3,743      | 1        | 1        | 1          | 1     | 1                  | 1                | 1    | 2573,5  | 2239,3   | 1771,5    | 1459,6    | 1147,6    | 523,8  | 340,3  |
| . 56 | 0,160 | 0,170   | 0,230   | 0,350    | 0,660   | 1,390  | 1,930 | 3,905      | <u> </u> | 1        | 1          | 1     | 1                  | 1                | 1    | 2340,9  | 2197,3   | 1598,0    | 1015,8    | 491,7     | 181,0  | 102,4  |
| 57   | 0,170 | 0,190   | 0,250   | 0,320    | 0,420   | 0,710  | 0,950 | 3,203      | 1        | 1        | <u> </u>   | 1     | 1                  | 1                | 1    | 1784,0  | 1585,6   | 1181,1    | 900,9     | 662,6     | 351,1  | 237,1  |
| 58   | 0,140 | 0,160   | 0,190   | 0,230    | 0,280   | 1,460  | 4,690 | 2,626      | 1        | 1        | 1          | 1     | 1                  | 1                | 0    | 1776,0  | 1541,5   | 1282,3    | 1041,9    | 838,0     | 79,9   | 78,6   |
| 59   | 0,160 | 0,180   | 0,230   | 0,290    | 0,390   | U,750  | 1,140 | 16,807     | 1        | 1        | <u> </u>   | 1     | 1                  | 1                | 1    | 10404,6 | 9237,4   | 7207,5    | 5695,6    | 4209,6    | 2141,0 | 1374,3 |
| 60   | 0,170 | 0,190   | 0,270   | 0,400    | 0,750   | 1,660  | 2,500 | 3,326      | <b>l</b> | 1        | 1          | 1     | 1                  | 1                | 1    | 1856,5  | 1650,6   | 1131,9    | 731,5     | 343,5     | 100,4  | 33,0   |
| 61   | 0,170 | 0,190   | 0,270   | 0,360    | 0,570   | 1,240  | 1,640 | 2,846      | 1        | <u>l</u> | 1          | l     | 1                  | 1                | 1    | 1574,1  | 1397,9   | 954,1     | 690,6     | 399,3     | 129,5  | 735    |
| 62   | 0,180 | 0,210   | 0,370   | 0,820    | 1,560   | 3,060  | 3,790 | 4,374      | 1        | 1        | Į <u>1</u> | 1     | 1                  | 1                | 1    | 2330,1  | 1983,0   | 1082,2    | 433,4     | 180,4     | 42,9   | 15,4   |
| 63   | 0,160 | 0,190   | 0,310   | 0,520    | 0,810   | 1,370  | 1,660 | 2,846      | 1        | 1        | Į <b>I</b> | 1     | 1                  | 1                | 1    | 1678,8  | 1397,9   | 818,1     | 447,3     | 251,4     | 107,7  | 71,4   |
| 64   | 0,150 | 0,180   | 0,340   | 0,630    | 0,970   | 1,560  | 1,860 | 2,435      | 1        | 1        | <u> </u>   | 1     | 1                  | 1                | 1    | 1523,5  | 1252,9   | 616,3     | 286,6     | 151,1     | 56,1   | 30,9   |

Tabela 5.6m - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ         | METR  | OS DO I | LEITO   | DOPA      | RAOF    | RIO AT  | IBAIA |                    |                 | COMP            | ARAÇA           | O ENT           | RE D <sub>v</sub>  | JA D              |                 | RELAÇ  | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | DEDu   |       |
|-------------|-------|---------|---------|-----------|---------|---------|-------|--------------------|-----------------|-----------------|-----------------|-----------------|--------------------|-------------------|-----------------|--------|----------|-----------|-----------|-----------|--------|-------|
|             | Granu | ometria | i do ma | terial de | o leito |         |       |                    | (10)            | (11)            | (12)            | (13)            | (14)               | (15)              | (16)            | Е      | OS VALOF | RES MEDII | OSNOR:    | IO ATIBAI | A      |       |
| (l)         | (2)   | (3)     | (4)     | (5)       | (6)     | D -     | (8)   | (9)                |                 | COMP/           | ARA ÇA          | O DE            | D <sub>VJB00</sub> | <sub>ея</sub> СОМ | :               | (17)   | (18)     | (19)      | (20)      | (21)      | (22)   | (23)  |
| N°          | D10   | Dló     | D35     | D50       | D65     | D84     | D90   | D <sub>N BOG</sub> | D <sub>10</sub> | D <sub>16</sub> | D <sub>38</sub> | D <sub>50</sub> | D <sub>65</sub>    | D.84              | D <sub>90</sub> |        |          |           |           |           |        |       |
|             | (mm)  | (mm)    | (mm)    | (mm)      | ໌ຫາກນ   | (mm)    | (ກາກນ | nm.                |                 | ~               | ~               |                 | ~                  |                   | ~               |        |          |           |           |           |        |       |
| 65          | 0.170 | 0.190   | 0.260   | 0.380     | 0.600   | 1.180   | 1.750 | 4.946              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 2809.3 | 2503.0   | 1802.2    | 1201.5    | 724.3     | 319.1  | 182.6 |
| 66          | 0.170 | 0.180   | 0.220   | 0.260     | 0.310   | 0,410   | 0,470 | 3,604              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 2020,1 | 1902,3   | 1538,2    | 1286,2    | 1062,6    | 779,1  | 666,8 |
| 67          | 0,170 | 0,190   | 0,250   | 0,320     | 0,440   | 1,190   | 1,680 | 3,905              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 2197,3 | 1955,5   | 1462,2    | 1120,5    | 787,6     | 228,2  | 132,5 |
| 68          | 0,170 | 0,180   | 0,230   | 0,270     | 0,320   | 0,430   | 0,560 | 4,762              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 2701,4 | 2545,8   | 1970,6    | 1663,8    | 1388,2    | 1007,5 | 750,4 |
| 69          | 0,170 | 0,190   | 0,250   | 0,300     | 0,360   | 0,570   | 1,690 | 5,780              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 3300,0 | 2942,1   | 2212,0    | 1826,6    | 1505,5    | 914,0  | 242,0 |
| 70          | 0,230 | 0,260   | 0,340   | 0,430     | 0,620   | 1,410   | 2,050 | 4,212              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 1731,3 | 1520,0   | 1138,8    | 879,5     | 579,4     | 198,7  | 105,5 |
| 71          | 0,230 | 0,250   | 0,310   | 0,370     | 0,440   | 0,740   | 1,180 | 3,905              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 1598,0 | 1462,2   | 1159,8    | 955,5     | 787,6     | 427,8  | 231,0 |
| 72          | 0,230 | 0,260   | 0,350   | 0,440     | 0,640   | 1,500   | 2,200 | 3,604              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 1467,0 | 1286,2   | 929,8     | 719,1     | 463,1     | 140,3  | 63,8  |
| 73          | 0,190 | 0,230   | 0,320   | 0,410     | 0,610   | 1,630   | 3,000 | 3,604              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 1796,9 | 1467,0   | 1026,3    | 779,1     | 490,8     | 121,1  | 20,1  |
| . 74        | 0,240 | 0,270   | 0,350   | 0,420     | 0,550   | 0,990   | 1,360 | 2,846              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 1085,8 | 954,1    | 713,2     | 577,6     | 417,5     | 187,5  | 109,3 |
| 75          | 0,200 | 0,250   | 0,400   | 0,640     | 1,100   | 2,520   | 3,770 | 3,084              | 1               | 1               | ĮĮ              | ļ               | 1                  | ļ                 | U               | 1442,0 | 1133,6   | 671,U     | 381,9     | 180,4     | 22,4   | 22,2  |
| 76          | 0,170 | 0,210   | 0,320   | 0,460     | 0,860   | 2,820   | 4,090 | 2,846              | 1               | 1               | 1               | 1               | 1                  | 1                 | U               | 1574,1 | 1255,3   | 789,4     | 518,7     | 230,9     | 0,9    | 43,7  |
| <u>, 77</u> | 0,220 | 0,270   | 0,410   | 0,560     | 0,800   | 1,340   | 1,660 | 2,956              | 1               | 1               | 1               | 1               | <u> </u>           | 1                 | 1               | 1243,5 | 994,7    | 620,9     | 427,8     | 269,5     | 120,6  | 78,1  |
| 78          | 0,180 | 0,220   | 0,330   | 0,450     | 0,750   | 1,980   | 3,050 | 2,626              | 1               | 1               | 1               | 1               | 1                  | 1                 | U               | 1359,1 | 1093,8   | 695,9     | 483,7     | 250,2     | 32,6   | 16,1  |
| 79          | 0,190 | 0,230   | 0,360   | 0,540     | 1,000   | 2,700   | 3,730 | 2,950              | 1               | 1               | 1               | 1               | 1                  | 1                 | U               | 1455,0 | 1185,1   | 721,0     | 447,5     | 195,0     | 9,5    | 26,2  |
| 80          | 0,210 | 0,240   | 0,360   | 0,500     | 0,920   | 3,270   | 4,350 | 2,741              | 1               | 1               | ĮĮ              | ļ               | 1                  | U                 | U               | 1205,0 | 1041,9   | 661,3     | 448,1     | 197,9     | 19,3   | 58,7  |
| 81          | 0,190 | 0,230   | 0,350   | 0,520     | 1,070   | 3,850   | 4,630 | 2,846              | 1               | 1               | 1               | 1               | 1                  | U                 | U               | 1397,9 | 1137,4   | 713,2     | 447,3     | 166,U     | 35,3   | 62,7  |
| 82          | 0,230 | 0,270   | 0,380   | 0,530     | 0,880   | 1,950   | 2,890 | 3,604              | <b>I</b>        | I               | 1               | 1               | ĮĮ                 | 1                 | 1               | 1467,0 | 1234,9   | 848,5     | 580,0     | 309,6     | 84,8   | 24,7  |
| 85          | 0,230 | 0,270   | 0,400   | 0,640     | 1,290   | 4,190   | 4,790 | 5,359              | 1               | 1               | <u> </u>        | I               | <u> </u>           | 1                 | 1               | 2230,1 | 1884,9   | 1239,8    | 737,4     | 315,4     | 27,9   | 11,9  |
| 84          | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 1,820   | 2,370 | 2,950              | 1               | 1               | <u> </u>        | 1               | 1                  | 1                 | 1               | 1307,4 | 11515    | /95,0     | 00.5,7    | 299,4     | 62,4   | 24,/  |
| 85          | 0,230 | 0,270   | 0,390   | 0,670     | 1,650   | 4,070   | 4,690 | 3,650              | 1               | 1               | I               | ļ               | 1                  | U                 | U               | 1489,4 | 1253,9   | 837,3     | 445,6     | 121,5     | 11,3   | 28,5  |
| 80          | 0,210 | 0,240   | 0,330   | 0,420     | 0,740   | 3,000   | 4,100 | 5,852              | 1               | 1               | 1               | 1               | Į 1                | 1                 | U               | 1724,9 | 1490,8   | 1001,5    | 812,5     | 417,9     | 27,7   | 8,5   |
| 87          | 0,210 | 0,250   | 0,350   | 0,500     | 1,100   | 3,500   | 4,400 | 5,520              | 1               | 1               | 1               | 1               | . I                | U                 | U               | 1485,8 | 1250,4   | 850,5     | 505,2     | 202,4     | 5,2    | 52,5  |
| 88          | 0,210 | 0,240   | 0,310   | 0,380     | 0,480   | 0,930   | 1,400 | 3,526              | 1               | 1               | <u> </u>        | <b>I</b>        | 1                  | 1                 | 1               | 1483,8 | 1285,9   | 972,9     | 775,3     | 592,9     | 257,6  | 137,6 |
| 89          | 0,190 | 0,220   | 0,510   | 0,580     | 0,500   | 0,830   | 1,110 | 5,004              | 1               | ļ               | <u> </u>        | 1               | 1                  | 1                 | 1               | 1/90,9 | 15,58,2  | 1002,0    | 848,5     | 020,8     | 554,2  | 224,7 |
| 90          | 0,200 | 0,230   | 0,310   | 0,370     | 0,460   | 0,770   | 1,100 | 4,946              | 1               | 1               | I               | 1               | 1                  | 1                 | 1               | 2372,9 | 2050,3   | 1495,4    | 1236,7    | 975,2     | 542,3  | 349,6 |
| 91          | 0,220 | 0,240   | 0,300   | 0,300     | 0,420   | 0,050   | 0,980 | 4,940              | <b>I</b>        |                 | ļ               | ļ               | 1                  | ļ                 | 1               | 2148,1 | 1960,7   | 1548,6    | 1273,8    | 1077,6    | 000,9  | 404,7 |
| 92          | 0,230 | 0,250   | 0,330   | 0,390     | 0,490   | 0,820   | 1,100 | 3,004              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 1407,0 | 1341,/   | 992,2     | 824,1     | 035,5     | 339,5  | 227,0 |
| 95          | 0,250 | 0,260   | 0,340   | 0,400     | 0,510   | 0,800   | 1,030 | 5,205              | ļ               | ļ               | <u> </u>        | ļ               | 1                  | 1                 | 1               | 1292,5 | 1151,8   | 842,0     | 700,7     | 528,0     | 300,3  | 210,9 |
| . 94        | 0,250 | 0,250   | 0,550   | 0,400     | 0,510   | 0,880   | 1,100 | 2,840              | 1               | Į               | 1               | 1               | 1                  | ļ                 | 1               | 1157,4 | 1058,4   | /02,4     | 0115      | 458,0     | 225,4  | 145,5 |
| 95          | 0,200 | 0,230   | 0,320   | 0,390     | 0,510   | 0,840   | 1,180 | 2,950              | 1               | 1               | 1               | 1               | 1                  | 1                 | 1               | 15//,8 | 1185,1   | 825,0     | 057,9     | 4/9,5     | 251,9  | 150,5 |
| 90          | 0,150 | 0,200   | 0,400   | 0,750     | 1,480   | : 4,440 | 4,920 | 3,203              | 1               | 1               | <u> </u>        | l               | <u> </u>           | U                 | U               | 2035,2 | 1501,4   | 700,7     | 327,0     | 110,4     | 58,6   | 55,6  |

Tabela 5.6m - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DIÄ | METR   | OS DO I | LEITO   | DOPA      | RAOI    | NO AT          | IBAIA |           |      | COMP | ARAÇA | O ENI | RED <sub>VJ</sub>   | D D   |              | RELAÇ   | ÃO PERCI | EN TUAL F | IN TRE O S | VALORES   | D E D ur |        |
|-----|--------|---------|---------|-----------|---------|----------------|-------|-----------|------|------|-------|-------|---------------------|-------|--------------|---------|----------|-----------|------------|-----------|----------|--------|
|     | Granul | ometria | i do ma | terial do | o leito |                |       |           | (10) | (11) | (12)  | (13)  | (14)                | (15)  | (16)         | E       | OS VALOI | RES MEDI  | DOSNOR:    | IO ATIBAL | A        |        |
| (l) | (2)    | (3)     | (4)     | (5)       | (б)     | $-\mathcal{O}$ | (8)   | (9)       |      | COMP | ARAÇA | O DE  | D <sub>VJ BOO</sub> | , COM | :            | (17)    | (18)     | (19)      | (20)       | (21)      | (22)     | (23)   |
| N⁰  | D10    | Dló     | D35     | D50       | D65     | D84            | D90   |           | D10  | Dr   | Dar   | Dee   | Der                 | Der   | $D_{\infty}$ |         |          |           |            |           |          |        |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)           | (mm)  | 1 1 1 1 1 | -10  | - 10 | - 30  | - 50  | -10                 | - 64  | - 90         |         |          |           |            |           |          |        |
| 97  | 0.210  | 0.280   | 0.550   | 0.890     | 1.410   | 3.490          | 4.400 | 3.203     | 1    | 1    | 1     | 1     | 1                   | Λ     | 0            | 1425.1  | 1043.8   | 482.3     | 259.9      | 127.1     | 9.0      | 37.4   |
| 98  | 0.220  | 0.290   | 0.550   | 0.890     | 1.410   | 4.000          | 4,700 | 3,069     | ī    | ī    | î     | ī     | ĩ                   | Õ     | Õ            | 1295,2  | 958,4    | 458,1     | 244.9      | 117.7     | 30,3     | 53,1   |
| 99  | 0,150  | 0,220   | 0,430   | 0,650     | 0,980   | 1,840          | 2,460 | 3,604     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 2302,8  | 1538,2   | 738,2     | 454,5      | 267,8     | 95,9     | 46,5   |
| 100 | 0,160  | 0,210   | 0,390   | 0,580     | 0,880   | 1,630          | 2,250 | 2,956     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1747,3  | 1307,4   | 657,9     | 409,6      | 235,9     | 81,3     | 31,4   |
| 101 | 0,140  | 0,160   | 0,230   | 0,300     | 0,400   | 0,960          | 4,370 | 75,116    | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 53554,4 | 46847,6  | 32559,2   | 24938,7    | 18679,0   | 7724,6   | 1618,9 |
| 102 | 0,150  | 0,180   | 0,250   | 0,320     | 0,420   | 0,670          | 0,850 | 3,487     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 2224,6  | 1837,2   | 1294,8    | 989,7      | 730,2     | 420,4    | 310,2  |
| 103 | 0,150  | 0,170   | 0,260   | 0,340     | 0,470   | 0,830          | 1,090 | 2,505     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1570,2  | 1373,7   | 863,6     | 636,8      | 433,0     | 201,8    | 129,8  |
| 104 | 0,150  | 0,180   | 0,290   | 0,410     | 0,590   | 1,080          | 1,440 | 3,026     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1917,5  | 1581,3   | 943,5     | 638,1      | 412,9     | 180,2    | 110,2  |
| 105 | 0,160  | 0,190   | 0,250   | 0,320     | 0,430   | 0,960          | 1,620 | 3,173     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1882,9  | 1569,8   | 1169,0    | 891,4      | 637,8     | 230,5    | 95,8   |
| 106 | 0,170  | 0,190   | 0,240   | 0,290     | 0,350   | 0,500          | 0,630 | 4,853     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 2754,8  | 2454,3   | 1922,2    | 1573,5     | 1286,6    | 870,6    | 670,3  |
| 107 | 0,190  | 0,210   | 0,270   | 0,320     | 0,370   | 0,500          | 0,590 | 8,595     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 4423,5  | 3992,7   | 3083,2    | 2585,8     | 2222,9    | 1618,9   | 1356,7 |
| 108 | 0,160  | 0,180   | 0,240   | 0,290     | 0,350   | 0,510          | 0,670 | 2,626     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1541,5  | 1359,1   | 994,4     | 805,7      | 650,4     | 415,0    | 292,0  |
| 109 | 0,210  | 0,260   | 0,410   | 0,620     | 0,980   | 1,780          | 2,300 | 4,946     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 2255,1  | 1802,2   | 1106,3    | 697,7      | 404,7     | 177,9    | 115,0  |
| 110 | 0,250  | 0,310   | 0,500   | 0,710     | 1,020   | 1,800          | 2,360 | 4,946     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1878,3  | 1495,4   | 889,2     | 596,6      | 384,9     | 174,8    | 109,6  |
| 111 | 0,220  | 0,260   | 0,410   | 0,640     | 1,020   | 1,940          | 2,590 | 4,232     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1823,6  | 1527,7   | 932,2     | 561,2      | 314,9     | 118,1    | 63,4   |
| 112 | 0,200  | 0,230   | 0,310   | 0,380     | 0,480   | 0,750          | 0,930 | 4,564     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 2182,1  | 1884,4   | 1372,3    | 1101,1     | 850,9     | 508,6    | 390,8  |
| 113 | 0,220  | 0,250   | 0,350   | 0,440     | 0,570   | 0,930          | 1,220 | 3,326     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1411,8  | 1230,4   | 850,3     | 655,9      | 483,5     | 257,6    | 172,6  |
| 114 | 0,220  | 0,260   | 0,360   | 0,460     | 0,630   | 1,180          | 1,860 | 2,529     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1049,6  | 872,7    | 602,5     | 449,8      | 301,4     | 114,3    | 36,0   |
| 115 | 0,190  | 0,230   | 0,320   | 0,400     | 0,520   | 0,810          | 1,000 | 4,212     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 2116,9  | 1731,3   | 1216,3    | 953,0      | 710,0     | 420,0    | 321,2  |
| 116 | 0,210  | 0,240   | 0,320   | 0,380     | 0,480   | 0,740          | 0,940 | 3,905     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1759,7  | 1527,3   | 1120,5    | 927,8      | 713,6     | 427,8    | 315,5  |
| 117 | 0,180  | 0,210   | 0,300   | 0,390     | 0,510   | 0,910          | 1,200 | 3,326     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1747,8  | 1483,8   | 1008,7    | 752,8      | 552,2     | 265,5    | 177,2  |
| 118 | 0,180  | 0,220   | 0,340   | 0,470     | 0,730   | 1,820          | 3,210 | 3,041     | 1    | 1    | 1     | 1     | 1                   | 1     | 0            | 1589,2  | 1282,1   | 794,3     | 546,9      | 316,5     | 67,1     | 5,6    |
| 119 | 0,200  | 0,250   | 0,440   | 0,790     | 1,380   | 3,000          | 3,880 | 3,326     | 1    | 1    | 1     | 1     | 1                   | 1     | 0            | 1563,0  | 1230,4   | 655,9     | 321,0      | 141,0     | 10,9     | 16,7   |
| 120 | 0,210  | 0,280   | 0,560   | 0,920     | 1,520   | 3,030          | 3,850 | 2,846     | 1    | 1    | 1     | 1     | 1                   | 0     | 0            | 1255,3  | 916,4    | 408,2     | 209,4      | 87,2      | 6,5      | 35,3   |
| 121 | 0,210  | 0,270   | 0,480   | 0,730     | 1,130   | 2,320          | 3,550 | 3,128     | 1    | 1    | 1     | 1     | 1                   | 1     | 0            | 1389,5  | 1058,5   | 551,7     | 328,5      | 176,8     | 34,8     | 13,5   |
| 122 | 0,200  | 0,240   | 0,370   | 0,590     | 1,130   | 2,600          | 3,750 | 2,741     | 1    | 1    | 1     | 1     | 1                   | 1     | 0            | 1270,3  | 1041,9   | 640,7     | 364,5      | 142,5     | 5,4      | 36,8   |
| 123 | 0,210  | 0,260   | 0,480   | 0,860     | 1,430   | 3,130          | 4,060 | 2,846     | 1    | 1    | 1     | 1     | 1                   | 0     | 0            | 1255,3  | 994,6    | 492,9     | 230,9      | 99,0      | 10,0     | 42,7   |
| 124 | 0,210  | 0,290   | 0,540   | 0,770     | 1,080   | 1,810          | 2,880 | 2,435     | 1    | 1    | 1     | 1     | 1                   | 1     | 0            | 1059,7  | 739,8    | 351,0     | 216,3      | 125,5     | 34,5     | 18,3   |
| 125 | 0,230  | 0,300   | 0,680   | 1,180     | 1,840   | 3,410          | 4,160 | 2,626     | 1    | 1    | 1     | 1     | 1                   | 0     | 0            | 1041,9  | 775,5    | 286,2     | 122,6      | 42,7      | 29,8     | 58,4   |
| 126 | 0,300  | 0,380   | 0,660   | 0,950     | 1,330   | 2,270          | 2,950 | 4,853     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1517,7  | 1177,2   | 635,3     | 410,9      | 264,9     | 113,8    | 64,5   |
| 127 | 0,250  | 0,290   | 0,480   | 0,680     | 0,980   | 1,920          | 2,830 | 4,564     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1725,7  | 1473,9   | 850,9     | 571,2      | 365,7     | 137,7    | 61,3   |
| 128 | 0,220  | 0,280   | 0,540   | 0,850     | 1,320   | 2,630          | 3,560 | 3,604     | 1    | 1    | 1     | 1     | 1                   | 1     | 1            | 1538,2  | 1187,2   | 567,4     | 324,0      | 173,0     | 37,0     | 1,2    |

Tabela 5.6m - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| DLÄ | METR   | OS DO I | LEITO   | DOPA      | RAOI    | RIO AT | IBAIA |                      |      | COMP | ARAÇA  | O ENI | RE D <sub>w</sub>  | D D              |              | RELAÇ   | ÃO PERCI | EN TUAL E | N TRE O S | VALORES   | D E D ur |         |
|-----|--------|---------|---------|-----------|---------|--------|-------|----------------------|------|------|--------|-------|--------------------|------------------|--------------|---------|----------|-----------|-----------|-----------|----------|---------|
|     | Granul | ometria | i do ma | terial do | o leito |        |       |                      | (10) | (11) | (12)   | (13)  | (14)               | (15)             | (16)         | E       | OS VALOF | RES MEDII | OSNOR     | IO ATIBAI | A        |         |
| (l) | (2)    | (3)     | (4)     | (5)       | (6)     | D -    | (8)   | (9)                  |      | COMP | ARA ÇA | ODE . | D <sub>VJB00</sub> | <sub>a</sub> COM | :            | (17)    | (18)     | (19)      | (20)      | (21)      | (22)     | (23)    |
| N⁰  | D10    | Dló     | D35     | D50       | D65     | D84    | D90   | D <sub>10 BOC9</sub> | D10  | Dr   | Dar    | Dee   | Der                | Der              | $D_{\infty}$ |         |          |           |           |           |          |         |
|     | (mm)   | (mm)    | (mm)    | (mm)      | (mm)    | (mm)   | (mm)  |                      | -10  | - 10 | - 30   | - 50  | - 60               | - 64             | - 90         |         |          |           |           |           |          |         |
| 120 | 0.230  | 0.260   | 0.370   | 0 500     | 0.750   | 1 470  | 1070  | 4212                 | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 1731 3  | 1520.0   | 1038.4    | 742.4     | 461.6     | 186 5    | 113.8   |
| 130 | 0.340  | 0,200   | 0.630   | 0.830     | 1.080   | 1,580  | 1.850 | 5.334                | i    | i    | i      | î     | i                  | 1                | i            | 1468.8  | 12335    | 746.7     | 5426      | 393.9     | 237.6    | 188.3   |
| 131 | 0.150  | 0.210   | 0.290   | 0.360     | 0.440   | 0.660  | 0.840 | 4.853                | 1    | ī    | ī      | 1     | 1                  | 1                | ī            | 3135.5  | 2211.0   | 1573.5    | 1248.1    | 1003.0    | 635.3    | 477.8   |
| 132 | 0.110  | 0.130   | 0.170   | 0.200     | 0.230   | 0.300  | 0.340 | 5,334                | ī    | 1    | ī      | ī     | ī                  | ī                | ī            | 4749,1  | 4003,1   | 3037,6    | 2567,0    | 2219,1    | 1678,0   | 1468,8  |
| 133 | 0,140  | 0,150   | 0,180   | 0,200     | 0,230   | 0,290  | 0,330 | 6,755                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4724,9  | 4403,2   | 3652,7    | 3277,4    | 2836,9    | 2229,2   | 1946,9  |
| 134 | 0,150  | 0,160   | 0,190   | 0,220     | 0,250   | 0,320  | 0,380 | 7,424                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4849,3  | 4540,0   | 3807,4    | 3274,5    | 2869,6    | 2220,0   | 1853,7  |
| 135 | 0,150  | 0,160   | 0,180   | 0,200     | 0,220   | 0,260  | 0,280 | 5,862                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 3808,3  | 3564,0   | 3156,9    | 2831,2    | 2564,7    | 2154,8   | 1993,7  |
| 136 | 0,160  | 0,170   | 0,190   | 0,220     | 0,250   | 0,310  | 0,350 | 6,755                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4121,8  | 3873,4   | 3455,2    | 2970,4    | 2601,9    | 2079,0   | 1829,9  |
| 137 | 0,300  | 0,390   | 0,770   | 1,120     | 1,590   | 2,850  | 3,730 | 5,862                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 1854,1  | 1403,2   | бб1,4     | 423,4     | 268,7     | 105,7    | 57,2    |
| 138 | 0,160  | 0,170   | 0,210   | 0,240     | 0,280   | 0,360  | 0,400 | 5,334                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 3233,7  | 3037,6   | 2440,0    | 2122,5    | 1805,0    | 1381,7   | 1233,5  |
| 139 | 0,160  | 0,170   | 0,210   | 0,250     | 0,300   | 0,400  | 0,480 | 7,424                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4540,0  | 4267,1   | 3435,2    | 2869,6    | 2374,7    | 1756,0   | 1446,7  |
| 140 | 0,140  | 0,160   | 0,200   | 0,230     | 0,280   | 0,390  | 0,470 | 5,334                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 3710,0  | 3233,7   | 2567,0    | 2219,1    | 1805,0    | 1267,7   | 1034,9  |
| 141 | 0,150  | 0,170   | 0,230   | 0,290     | 0,380   | 0,600  | 0,780 | 86,551               | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 57600,4 | 50812,1  | 37530,7   | 29745,0   | 22676,5   | 14325,1  | 10996,2 |
| 142 | 0,120  | 0,140   | 0,170   | 0,200     | 0,230   | 0,310  | 0,370 | 6,146                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 5021,6  | 4290,0   | 3515,3    | 2973,0    | 2572,2    | 1882,6   | 1561,1  |
| 143 | 0,180  | 0,200   | 0,700   | 1,500     | 2,220   | 4,130  | 5,120 | 4,629                | 1    | 1    | 1      | 1     | 1                  | 1                | 0            | 2471,8  | 2214,7   | 561,3     | 208,6     | 108,5     | 12,1     | 10,6    |
| 144 | 0,160  | 0,190   | 0,290   | 0,420     | 0,800   | 2,220  | 3,260 | 4,853                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 2933,2  | 2454,3   | 1573,5    | 1055,5    | 506,6     | 118,6    | 48,9    |
| 145 | 0,160  | 0,190   | 0,300   | 0,450     | 1,000   | 2,700  | 3,820 | 4,946                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 2991,1  | 2503,0   | 1548,6    | 999,1     | 394,6     | 83,2     | 29,5    |
| 146 | 0,120  | 0,150   | 0,230   | 0,310     | 0,420   | 0,970  | 1,340 | 4,853                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 3944,3  | 3135,5   | 2010,1    | 1465,5    | 1055,5    | 400,3    | 262,2   |
| 147 | 0,200  | 0,250   | 0,570   | 1,360     | 2,440   | 4,740  | 5,030 | 2,279                | 1    | 1    | 1      | 1     | 0                  | 0                | 0            | 1039,7  | 811,8    | 299,9     | 67,6      | 7,0       | 107,9    | 120,7   |
| 148 | 0,160  | 0,210   | 0,400   | 0,850     | 1,370   | 2,520  | 3,270 | 4,853                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 2933,2  | 2211,0   | 1113,3    | 471,0     | 254,2     | 92,6     | 48,4    |
| 149 | 0,100  | 0,130   | 0,190   | 0,250     | 0,340   | 0,940  | 1,640 | 4,212                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4112,0  | 3140,0   | 2116,9    | 1584,8    | 1138,8    | 348,1    | 156,8   |
| 150 | 0,090  | 0,120   | 0,180   | 0,230     | 0,310   | 1,010  | 2,430 | 4,853                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 5292,4  | 3944,3   | 2596,2    | 2010,1    | 1465,5    | 380,5    | 99,7    |
| 151 | 0,130  | 0,160   | 0,240   | 0,350     | 0,590   | 2,400  | 3,700 | 5,334                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4003,1  | 3233,7   | 2122,5    | 1424,0    | 804,1     | 122,2    | 44,2    |
| 152 | 0,100  | 0,120   | 0,170   | 0,210     | 0,250   | 0,380  | 0,480 | 4,629                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4529,3  | 3757,8   | 2623,1    | 2104,4    | 1751,7    | 1118,2   | 864,4   |
| 153 | 0,110  | 0,130   | 0,190   | 0,230     | 0,300   | 0,840  | 1,830 | 5,334                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 4749,1  | 4003,1   | 2707,4    | 2219,1    | 1678,0    | 535,0    | 191,5   |
| 154 | 0,230  | 0,290   | 0,710   | 1,330     | 2,130   | 3,760  | 4,500 | 6,146                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 2572,2  | 2019,3   | 765,6     | 362,1     | 188,5     | 63,5     | 36,6    |
| 155 | 0,200  | 0,230   | 0,360   | 0,530     | 1,000   | 2,730  | 3,980 | 17,372               | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 8586,1  | 7453,2   | 4725,6    | 3177,8    | 1637,2    | 536,3    | 336,5   |
| 156 | 0,080  | 0,090   | 0,160   | 0,220     | 0,430   | 2,140  | 4,060 | 6,755                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 8343,5  | 7405,3   | 4121,8    | 2970,4    | 1470,9    | 215,6    | бб,4    |
| 157 | 0,180  | 0,200   | 0,290   | 0,390     | 0,800   | 1,070  | 2,060 | 5,862                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 3156,9  | 2831,2   | 1921,5    | 1403,2    | 632,8     | 447,9    | 184,6   |
| 158 | 0,200  | 0,230   | 0,390   | 0,730     | 1,420   | 4,070  | 6,230 | 5,862                | 1    | 1    | 1      | 1     | 1                  | 1                | 0            | 2831,2  | 2448,9   | 1403,2    | 703,1     | 312,8     | 44,0     | б,3     |
| 159 | 0,120  | 0,150   | 0,230   | 0,340     | 0,600   | 4,670  | 0,300 | 6,146                | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 5021,6  | 3997,3   | 2572,2    | 1707,6    | 924,3     | 31,6     | 1948,6  |
| 160 | 0,150  | 0,160   | 0,210   | 0,250     | 0,320   | 2,760  | 0,280 | 12,482               | 1    | 1    | 1      | 1     | 1                  | 1                | 1            | 8221,1  | 7701,0   | 5843,6    | 4892,7    | 3800,5    | 352,2    | 4357,7  |

Tabela 5.6m - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

| _   |       |         | -      |           |         |                |       | -                  | <u> </u>                                                                                                                                                                                                                                                                                        |                 | ·               |                 |                    |                  |          | <u> </u> |          |           |           |           |                    |        |
|-----|-------|---------|--------|-----------|---------|----------------|-------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------|------------------|----------|----------|----------|-----------|-----------|-----------|--------------------|--------|
| DIA | METR  | OS DO:  | LEITO  | DOPA      | RAOI    | RIO AT         | IBAIA |                    |                                                                                                                                                                                                                                                                                                 | COMP.           | ARAÇA           | AO EN I         | IRE D <sub>V</sub> | IA D             |          | RELAÇ    | ÃO PERC  | EN TUAL E | N TRE O S | VALORES   | DED <sub>107</sub> |        |
|     | Granu | bmetria | ado ma | terial de | o leito |                |       |                    | (10)                                                                                                                                                                                                                                                                                            | (11)            | (12)            | (13)            | (14)               | (15)             | (16)     | E        | OS VALOI | RES MEDII | DOS NO RI | IO ATIBAL | A.                 |        |
| (1) | (2)   | (3)     | (4)    | (5)       | (6)     | $-\mathcal{O}$ | (8)   | (9)                |                                                                                                                                                                                                                                                                                                 | COMP.           | ARAÇA           | IO DE           | D <sub>VJB0</sub>  | <sub>ജ</sub> COM | [:       | (17)     | (18)     | (19)      | (20)      | (21)      | (22)               | (23)   |
| N⁰  | D10   | Dló     | D35    | D50       | D65     | D84            | D90   | D <sub>N BOG</sub> | D <sub>10</sub>                                                                                                                                                                                                                                                                                 | D <sub>16</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>    | D <sub>84</sub>  | $D_{90}$ |          |          |           |           |           |                    |        |
|     | (mm)  | (mm)    | (mm)   | (mm)      | (mm)    | (mm)           | (mm)  | JANNA.             |                                                                                                                                                                                                                                                                                                 | -               |                 |                 |                    |                  | ~        |          |          |           |           |           |                    |        |
| 161 | 0,160 | 0,180   | 0,230  | 0,270     | 0,330   | 0,490          | 0,640 | 5,334              | 34     1     1     1     1     1     3233,7       55     1     1     1     1     1     3233,7       55     1     1     1     1     1     4403,2       26     1     1     1     1     3226,1       06     1     1     1     1     19197,9       15     1     1     1     1     19243,5           |                 |                 |                 |                    |                  |          |          |          | 2219,1    | 1875,6    | 1516,4    | 988,6              | 733,4  |
| 162 | 0,150 | 0,160   | 0,200  | 0,240     | 0,290   | 4,840          | 1,350 | 6,755              | 334     1     1     1     1     1     3233,7       755     1     1     1     1     1     3233,7       755     1     1     1     1     1     4403,2       826     1     1     1     1     3226,1       806     1     1     1     1     9197,9       755     1     1     1     1     1     8343,5 |                 |                 |                 |                    |                  |          |          |          | 3277,4    | 2714,5    | 2229,2    | 39,6               | 400,4  |
| 163 | 0,100 | 0,120   | 0,160  | 0,190     | 0,230   | 0,330          | 0,390 | 3,326              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 3226,1   | 2671,7   | 1978,8    | 1650,6    | 1346,1    | 907,9              | 752,8  |
| 164 | 0,170 | 0,190   | 0,260  | 0,320     | 0,420   | 1,310          | 2,080 | 15,806             | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 9197,9   | 8219,1   | 5979,4    | 4839,5    | 3663,4    | 1 106,6            | 659,9  |
| 165 | 0,080 | 0,100   | 0,150  | 0,180     | 0,220   | 0,300          | 0,370 | 6,755              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 8343,5   | 6654,8   | 4403,2    | 3652,7    | 2970,4    | 2151,6             | 1725,6 |
| 166 | 0,140 | 0,150   | 0,190  | 0,230     | 0,290   | 1,190          | 3,530 | 9,856              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 6940,2   | 6470,8   | 5087,5    | 4185,3    | 3298,7    | 728,3              | 179,2  |
| 167 | 0,200 | 0,240   | 0,350  | 0,500     | 0,840   | 1,980          | 2,850 | 4,629              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 2214,7   | 1828,9   | 1222,7    | 825,9     | 451,1     | 133,8              | 62,4   |
| 168 | 0,220 | 0,250   | 0,350  | 0,440     | 0,630   | 1,250          | 1,650 | 7,424              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 3274,5   | 2869,6   | 2021,1    | 1587,3    | 1078,4    | 493,9              | 349,9  |
| 169 | 0,130 | 0,150   | 0,220  | 0,290     | 0,410   | 1,840          | 5,640 | 6,146              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 4627,7   | 3997,3   | 2693,6    | 2019,3    | 1399,0    | 234,0              | 9,0    |
| 170 | 0,140 | 0,190   | 0,320  | 0,460     | 0,760   | 1,660          | 2,450 | 5,334              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 3710,0   | 2707,4   | 1566,9    | 1059,6    | 601,8     | 221,3              | 117,7  |
| 171 | 0,160 | 0,190   | 0,370  | 0,920     | 1,760   | 4,000          | 5,260 | 5,862              | 1                                                                                                                                                                                                                                                                                               | 1               | 1               | 1               | 1                  | 1                | 1        | 3564,0   | 2985,5   | 1484,4    | 537,2     | 233,1     | 46,6               | 11,5   |
|     |       |         |        |           |         |                |       |                    |                                                                                                                                                                                                                                                                                                 | (%              | i) de evo       | entos er        | nque D'            | VJ > D           |          | DIFEI    | RENÇA F  | ERCENT    | UAL REL   | ATIVA M   | EDIA               |        |
|     |       |         |        |           |         |                |       |                    | 100                                                                                                                                                                                                                                                                                             | 100             | 100             | 100             | 99,42              | 87,72            | 78,36    | 2960,4   | 2536,3   | 1748,9    | 1323,7    | 955,6     | 467,7              | 350,4  |

Tabela 5.6m - Comparação entre os diâmetros calculados pelas equações de estimativas desenvolvidas para o Rio Atibaia e os diâmetros coletados

D<sub>W IBOCS</sub> - Diâmetro calculado pela equação: D<sub>W IBOCS</sub> = 0,0018 x [e 4723,1.8]Para o método de Bogardi (1955, 1974)

## ANEXO B

Comparação entre as descargas medidas no rio Atibai e aquelas calculadas

Comparação usando nas equações de cálculo do transporte de sedimentos os diâmetros definidos pelos próprios autores

Comparação usando nas equações de cálculo do transporte de sedimentos os diâmetros calculados pelas equações obtidas na pesquisa.

| (1) | (2)               | (3)   | (4)     | (5)      | (6)                 | (0)                  | (8)                   | (9)              | (10)     | (11)                | (12)                | (13)   | (14)      | (15)                 | (16)                   | (12)      | в         |
|-----|-------------------|-------|---------|----------|---------------------|----------------------|-----------------------|------------------|----------|---------------------|---------------------|--------|-----------|----------------------|------------------------|-----------|-----------|
| N°  | DATA              | Da    | Dvj     | S        | q = Q/B             | n <sub>Da</sub>      | n <sub>Dvi</sub>      | Dc <sub>Da</sub> | DcDvj    | qc <sub>Da</sub>    | qc <sub>Dvi</sub>   | В      | qBm       | qB[SCH] <sub>D</sub> | qB[SCH] <sub>Dri</sub> | E[%]Da    | E [% ]Dvj |
|     |                   | (m m) | (mm)    | (m/m)    | m <sup>3</sup> /s.m | m <sup>-1/3</sup> .s | m <sup>-1.3</sup> . s | m                | m        | m <sup>3</sup> /s.m | m <sup>3</sup> /s.m | (m)    | to n/d ia | ton/dia              | ton/dia                | -         | -         |
| 1   | 26/3/1993         | 0,822 | 109,006 | 1,94E-04 | 0,913               | 0,016                | 0,036                 | 0,227            | 70,460   | 0,073               | 461,455             | 34,700 | 0,141     | 17,012               | 0,000                  | 11965,327 | 100       |
| 2   | 6/4/1993          | 1,191 | 81,613  | 1,97E-04 | 0,623               | 0,017                | 0,035                 | 0,253            | 51,951   | 0,083               | 293,644             | 34,870 | 0,038     | 11,247               | 0,000                  | 29496,623 | 100       |
| 3   | 20/4/1993         | 1,333 | 62,846  | 1,85E-04 | 0,481               | 0,017                | 0,033                 | 0,280            | 42,599   | 0,093               | 213,519             | 34,880 | 0,045     | 7,348                | 0,000                  | 16229,909 | 100       |
| 4   | 4/5/1993          | 1,491 | 84,688  | 2,11E-04 | 0,652               | 0,018                | 0,035                 | 0,255            | <u> </u> | 0,084               | 286,500             | 34,780 | 0,045     | 13,080               | 0,000                  | 28966,664 | 100       |
| 5   | 18/5/1993         | 0,608 | 44,982  | 1,63E-04 | 0,382               | 0,015                | 0,031                 | 0,244            | 34,606   | 0,080               | 149,877             | 34,380 | 0,024     | 4,664                | 0,000                  | 19331,614 | 100       |
| 6   | 1/6/1993          | 1,365 | 127,564 | 2,31E-04 | 1,161               | 0,017                | 0,037                 | 0,226            | 69,249   | 0,073               | 476,541             | 35,240 | 0,19      | 29,087               | 0,000                  | 15208,713 | 100       |
| 7   | 8/6/1993          | 0,696 | 86,083  | 1,64E-04 | 0,662               | 0,016                | 0,035                 | 0,254            | 65,822   | 0,084               | 393,959             | 34,910 | 0,026     | 9,161                | 0,000                  | 35132,965 | 100       |
| 8   | 15/6/1993         | 0,961 | 63,919  | 1,81E-04 | 0,498               | 0,016                | 0,033                 | 0,256            | 44,284   | 0,084               | 224,671             | 34,210 | 0,008     | 7,438                | 0,000                  | 92877,712 | 100       |
| 9   | 22/6/1993         | 1,900 | 63,406  | 1,72E-04 | 0,490               | 0,018                | 0,033                 | 0,339            | 46,227   | 0,117               | 235,579             | 34,540 | 0,008     | 6,274                | 0,000                  | 78324,503 | 100       |
| 10  | 29/6/1993         | 0,851 | 21,391  | 1,64E-04 | 0,279               | 0,016                | 0,028                 | 0,272            | 16,356   | 0,090               | 48,799              | 33,990 | 0,007     | 2,908                | į 0,000                | 41441,24  | 100       |
| 11  | 6/7/1993          | 1,691 | 11,389  | 1,05E-04 | 0,245               | 0,018                | 0,025                 | 0,534            | 13,602   | 0,199               | 31,897              | 33,770 | 0,002     | 0,362                | 0,000                  | 17983,272 | 100       |
| 12  | 21/7/1993         | 1,489 | 15,057  | 8,90E-05 | 0,209               | 0,018                | 0,026                 | 0,603            | 21,215   | 0,229               | 58,801              | 33,640 | 0,006     | 0,000                | 0,000                  | 100       | 100       |
| 13  | 3/8/1993          | 1,539 | 0,685   | 6,40E-05 | 0,114               | 0,018                | 0,016                 | 0,848            | 0,648    | 0,341               | 0,249               | 32,820 | 0,002     | 0,000                | 0,000                  | 100       | 100       |
| 14  | 17/8/1993         | 1,164 | 11,263  | 3,00E-05 | 0,177               | 0,017                | 0,025                 | 1,649            | 47,081   | 0,740               | 135,287             | 33,530 | 0,002     | 0,000                | 0,000                  | 100       | 100       |
| 15  | 31/8/1993         | 1,093 | 2,797   | 4,70E-05 | 0,182               | 0,017                | 0,020                 | 1,031            | 1,410    | 0,428               | 0,617               | 33,740 | 0,002     | 0,000                | 0,000                  | 100       | 100       |
| 16  | 21/9/1993         | 0,611 | 31,856  | 1,47E-04 | 0,322               | 0,015                | 0,030                 | 0,271            | 27,175   | 0,090               | 100,767             | 33,970 | 0,006     | 3,036                | 0,000                  | 50495,94  | 100       |
| 17  | 28/9/1993         | 0,795 | 122,399 | 2,31E-04 | 1,091               | 0,016                | 0,037                 | 0,189            | 66,445   | 0,059               | 447,894             | 34,920 | 0,384     | 27,338               | 0,000                  | 7019,3287 | 100       |
| 18  | 5/10/1993         | 1,786 | 49,799  | 1,47E-04 | 0,408               | 0,018                | 0,032                 | 0,388            | 42,482   | 0,137               | 196,949             | 34,380 | 0,006     | 3,585                | 0,000                  | 59649,473 | 100       |
| 19  | 21/10/1993        | 1,528 | 85,198  | 1,89E-04 | 0,655               | 0,018                | 0,035                 | 0,287            | 56,528   | 0,096               | 328,724             | 34,840 | 0,023     | 10,933               | 0,000                  | 47436,946 | 100       |
| 20  | 28/10/1993        | 0,771 | 102,415 | 2,06E-04 | 0,830               | 0,016                | 0,036                 | 0,209            | 62,344   | 0,067               | 391,826             | 34,880 | 0,037     | 16,998               | 0,000                  | 45841,254 | 100       |
| 21  | 4/11/1993         | 2,0%  | 1,921   | 8,00E-05 | 0,214               | 0,019                | 0,019                 | 0,752            | 0,731    | 0,296               | 0,286               | 33,820 | 0,003     | 0,000                | 0,000                  | 100       | 100       |
| 22  | 9/11/1993         | 1,944 | 24,538  | 1,30E-04 | 0,291               | 0,019                | 0,028                 | 0,451            | 23,670   | 0,163               | 78,623              | 34,010 | 0,005     | 1,391                | 0,000                  | 27720,667 | 100       |
| 23  | 20/12/1993        | 0,785 | 80,536  | 1,97E-04 | 0,618               | 0,016                | 0,034                 | 0,220            | 51,265   | 0,071               | 287,850             | 34,640 | 0,08      | 11,325               | 0,000                  | 14055,735 | 100       |
| 24  | 10/2/1994         | 0,698 | 145,807 | 8,00E-05 | 1,476               | 0,016                | 0,038                 | 0,521            | 228,552  | 0,193               | 2006,566            | 35,650 | 0,332     | 7,067                | 0,000                  | 2028,4705 | 100       |
| 25  | 29/3/1994         | 0,715 | 121,613 | 1,97E-04 | 1,098               | 0,016                | 0,037                 | 0,213            | 77,413   | 0,068               | 534,136             | 34,340 | 0,027     | 21,118               | 0,000                  | 78113,941 | 100       |
| 26  | 19/4/1994         | 0,783 | 75,916  | 1,30E-04 | 0,591               | 0,016                | 0,034                 | 0,333            | 73,230   | 0,115               | 427,850             | 34,000 | 0,022     | 5,183                | 0,000                  | 23461,092 | 100       |
| 27  | 6/5/1994          | 0,890 | 39,107  | 9,60E-05 | 0,360               | 0,016                | 0,031                 | 0,471            | 51,083   | 0,172               | 225,312             | 33,600 | 0,012     | 1,286                | į 0,000                | 10619,029 | 100       |
| 28  | 20/5/1994         | 0,609 | 41,931  | 1,14E-04 | 0,374               | 0,015                | 0,031                 | 0,350            | 46,124   | 0,121               | 204,710             | 33,600 | 0,012     | 2,236                | 0,000                  | 18535,956 | 100       |
| 29  | 17/6/1994         | 48ک,0 | 43,303  | 7,20E-05 | 0,381               | 0,015                | 0,031                 | 0,534            | 75,420   | 0,199               | 367,238             | 33,640 | 0,005     | 0,809                | 0,000                  | 16077,374 | 100       |
| 30  | 1/7/1994          | 0,596 | 48,176  | 1,14E-04 | 0,406               | 0,015                | 0,032                 | 0,347            | 52,994   | 0,120               | 252,104             | 33,810 | 0,006     | 2,536                | 0,000                  | 42164,488 | 100       |
| 31  | 15/7/1994         | 0,561 | 29,224  | 6,40E-05 | 0,314               | 0,015                | 0,029                 | 0,606            | 57,260   | 0,230               | 233,586             | 33,640 | 0,051     | 0,311                | 0,000                  | 509,74533 | 100       |
| 32  | <i>29/7/</i> 1994 | 0,916 | 49,592  | 1,14E-04 | 0,413               | 0,016                | 0,032                 | 0,401            | 54,551   | 0,142               | 263,299             | 33,810 | 0,01      | 2,412                | 0,000                  | 24022,135 | 100       |
| 33  | 12/8/1994         | 0,769 | 0,061   | 4,70E-05 | 0,208               | 0,016                | 0,010                 | 0,917            | 0,393    | 0,373               | 0,139               | 33,260 | 0,011     | 0,000                | 0,159                  | 100       | 1343,703  |
| 34  | 26/8/1994         | 0,582 | 21,084  | 6,20E-05 | 0,282               | 0,015                | 0,028                 | 0,633            | 42,644   | 0,242               | 148,545             | 33,470 | 0,002     | 0,140                | 0,000                  | 6882,9164 | 100       |
| 35  | 8/9/1994          | 0,644 | 31,724  | 8,00E-05 | 0,325               | 0,015                | 0,030                 | 0,508            | 49,727   | 0,187               | 203,640             | 33,680 | 0,004     | 0,714                | 0,000                  | 17752,735 | 100       |
| 36  | 22/9/1994         | 0,549 | 51,336  | 1,30E-04 | 0,422               | 0,015                | 0,032                 | 0,296            | 49,520   | 0,100               | 237,918             | 33,920 | 0,002     | 3,500                | 0,000                  | 174894,74 | 100       |
| 37  | 6/10/1994         | 0,715 | 22,831  | 4,70E-05 | 0,289               | 0,016                | 0,028                 | 0,895            | 60,916   | 0,363               | 231,248             | 33,490 | 0,002     | 0,000                | 0,000                  | 100       | 100       |
| 38  | 27/10/1994        | 1,041 | 101,303 | 1,22E-04 | 0,827               | 0,017                | 0,036                 | 0,391            | 104,126  | 0,138               | 710,239             | 34,480 | 0,424     | 6,911                | 0,000                  | 1529,9164 | 100       |
| 39  | 23/11/1994        | 0,720 | 32,187  | 4,70E-05 | 0,328               | 0,016                | 0,030                 | 0,897            | 85,878   | 0,364               | 387,081             | 33,520 | 0,004     | 0,000                | 0,000                  | 100       | 100       |

Tabela 6.2b - Descargas calculadas pelo método de Shoklitsch (1914, 1950) usando-se o Diâmetro D<sub>el</sub> e o D<sub>VI</sub>

| (1)  | (2)        | (3)    | (4)      | (5)      | (6)                 | (7)                  | (8)                  | (9)   | (10)             | (11)                | (12)                | (13)   | (14)    | (15)                 | (16)                   | (12)                   | в         |
|------|------------|--------|----------|----------|---------------------|----------------------|----------------------|-------|------------------|---------------------|---------------------|--------|---------|----------------------|------------------------|------------------------|-----------|
| N°   | DATA       | D,     | Dvj      | S        | q = Q/B             | n <sub>Da</sub>      | n <sub>Dui</sub>     | Dcna  | DcDvj            | զշ <sub>րջ</sub>    | qc <sub>Dvi</sub>   | В      | qBm     | qB[SCH] <sub>D</sub> | qB[SCH] <sub>Dei</sub> | E[%]Da                 | E [% ]Dvj |
|      |            | (m m)  | (mm)     | (m/m)    | m <sup>3</sup> /s.m | m <sup>-1/3</sup> .s | m <sup>-1.3</sup> .s | m     | m                | m <sup>3</sup> /s.m | m <sup>3</sup> /s.m | (m)    | ton/dia | ton/dia              | ton/dia                | -                      | -         |
| 40   | 22/12/1994 | 0,958  | 167,202  | 2,14E-04 | 1,980               | 0,016                | 0,039                | 0,217 | 97,977           | 0,069               | 781,811             | 35,680 | 0,218   | 46,093               | 0,000                  | 21043,769              | 100       |
| 41   | 5/1/1995   | 0,681  | 150,806  | 2,31E-04 | 1,598               | 0,016                | 0,038                | 0,179 | 81,866           | 0,056               | 612,544             | 35,270 | 23كر0   | 41,255               | 0,000                  | 7788,1337              | 100       |
| 42   | 19/1/1995  | 1,574  | 75,518   | 1,47E-04 | 0,589               | 0,018                | 0,034                | 0,372 | 64,421           | 0,130               | 367,784             | 33,920 | 0,015   | 5,989                | 0,000                  | 39829,69               | 100       |
| 43   | 26/1/1995  | 0,664  | 63,834   | 1,47E-04 | 0,501               | 0,016                | 0,033                | 0,279 | 54,454           | 0,093               | 285,824             | 33,930 | 0,036   | 5,331                | 0,000                  | 14707,655              | 100       |
| 44   | 9/2/1995   | 1,862  | 226,471  | 1,14E-04 | 3,966               | 0,018                | 0,041                | 0,507 | 249,118          | 0,187               | 2569,539            | 40,300 | 3,097   | 40,032               | 0,000                  | 1192,6164              | 100       |
| 45   | 16/2/1995  | 0,930  | 164,660  | 2,47E-04 | 1,927               | 0,016                | 0,039                | 0,186 | 83,597           | 0,058               | 646,339             | 35,400 | 0,485   | 55,472               | 0,000                  | 11337,55               | 100       |
| 46   | 8/3/1995   | 0,642  | 108,199  | 1,72E-04 | 0,897               | 0,015                | 0,036                | 0,236 | 78,885           | 0,077               | 525,144             | 34,940 | 0,396   | 13,967               | 0,000                  | 3426,9383              | 100       |
| 47   | 24/3/1995  | 1,309  | 160,948  | 1,80E-04 | 1,832               | 0,017                | 0,039                | 0,286 | 112,127          | 0,096               | 903,513             | 35,380 | 1,721   | 32,038               | 0,000                  | 1761,6166              | 100       |
| 48   | 7/4/1995   | 0,394  | 138,175  | 1,97E-04 | 1,351               | 0,014                | 0,038                | 0,175 | 87,955           | 0,054               | 646,879             | 35,050 | 0,171   | 27,153               | 0,000                  | 15779,179              | 100       |
| 49   | 28/4/1995  | 0,454  | 105,003  | 1,80E-04 | 0,866               | 0,015                | 0,036                | 0,201 | 73,152           | 0,063               | 476,110             | 34,630 | 0,081   | 14,497               | <u> </u>               | 17797,92               | 100       |
| 50   | 12/5/1995  | 0,753  | 121,729  | 1,80E-04 | 1,087               | 0,016                | 0,037                | 0,238 | 84,804           | 0,077               | 594,287             | 34,740 | 0,468   | 18,297               | 0,000                  | 3809,5544              | 100       |
| 17   | 9/6/1995   | مددر ا | 77,418   | 1,47E-04 | <u>i U,597</u>      | 0,015                | 0,034                | 0,263 | 66,043           | <u> </u>            | 381,756             | 34,350 | 0,023   | 6,745                | <u> </u>               | 29226,873              | 100       |
| 52   | 23/6/1995  | 0,945  | 77,383   | 1,04E-04 | U, 597              | 0,016                | 0,034                | 0,444 | 93,306           | <u> </u>            | 571,241             | 34,340 | 0,018   | 3,437                | <u> </u>               | 18993,195              | 100       |
| 23   | 5///1995   | 0,509  | 60,694   | 1,47E-04 | <u> </u>            | 0,015                | <u> </u>             | 0,255 | 51,776           | 0,084               | 264,996             | 34,190 | 0,051   | 2,162                | <u> </u>               | 10027,756              | 100       |
|      | 12///1995  | 0,302  | 133,965  | 2,396-04 | 1,311               | 0,014                | 0,038                | 0,132 | 71,339           | 0,039               | 503,963             | 33,030 | 4,163   | 33,376               | <u> </u>               | 754,57858              | 100       |
| 22   | 19///1995  | 0,342  | 84,270   | 1,356-04 | 0,652               | 0,014                | <u> </u>             | 0,212 | 68,177           | 0,068               | 407,000             | 34,390 | 0,016   | 8,420                |                        | 22221222               | 100       |
| - 20 | 26///1995  | U,668  | 95,443   | 1,641-04 | U,760               | 0,016                | <u> </u>             | 0,201 | 72,979           | 0.002               | 439,928             | 34,610 | 0,118   | 10,635               |                        | 8913,0038              | 100       |
| - 27 | 10/8/1995  | 0,421  | 33,287   | 1,22E-04 | U,432               | 0,014                | 0,032                | 0,289 | 34,112           | 0.001               | 10,909              | 34,090 | 0,012   | 3,319                | 0,000                  | 2/33/28/               | 100       |
| 28   | 31/8/1995  | 0,772  | 29,260   |          |                     | 0,016                | 0.025                | 0,009 | 40,545           | 0,201               | 180,440             | 33,600 | 0,002   | 46010                |                        | 151000-44              | 100       |
| - 29 | 21/9/1993  | 0,420  | 00150    | 4,73E-04 | 0,000               | 0,014                | 0.035                | 0,075 | 05 000           | 0,020               | 535,407             | 34,280 | 0,051   | 40,712               | 0,000                  | 24.42 56.57            | 100       |
| <br> | 2019/1992  | 0,797  | 47,539   | 1,30E-04 | : 0,000             | 0,010                | 0.032                | 0,000 | 60,009<br>61,456 | 0.147               | 200,407             | 34,680 | 0,247   | 1760                 | 0.000                  | 2442,3037<br>99340.014 | 100       |
| 5    | 10/10/1005 | 1 / 07 | 1/10 370 | 1005-00  | 1304                | 0,015                | 0.032                | 0,412 | 01,400           | 0,147               | 470,044<br>600 560  | 35 000 | 0,002   | 25 356               | 0,000                  | 12269 674              | 100       |
| 8    | 23/11/1005 | 0717   | 55 235   | 0.701-04 | 0.444               | 0,018                | 0.032                | 0,200 | 71 407           | 0.156               | 373.661             | 34.050 | 0,200   | 2,00                 | 0,000                  | 33 50 8 0 77           | 100       |
| 64   | 7/12/1995  | 0.820  | 19608    | 640F-05  | 0.277               | 0,010                | 0.027                | 0,707 | 38.419           | 0.267               | 128 377             | 33 390 | 0,000   | 0.037                | 0,000                  | 1755 8852              | 100       |
| 65   | 10/1/1006  | 0,020  | 196 878  | 214F-04  | 2,990               | 0,010                | 0,027                | 0,000 | 115367           | 0.058               | 008 033             | 36910  | 5141    | 70.429               | 0,000                  | 1269 9545              | 100       |
| 66   | 31/1/1996  | 0,290  | 83753    | 147E-04  | 0.656               | 0,019                | 0.035                | 0.212 | 71 446           | 0.068               | 429 557             | 34 120 | 0019    | 7 728                | 0,000                  | 40575681               | 100       |
| ត    | 7/2/1996   | 0.574  | 125 439  | 1.64E-04 | 1 132               | 0.015                | 0.037                | 0.238 | 95,915           | 0.078               | 692,984             | 35120  | 0.238   | 16.793               | 0.000                  | 6955.8304              | 100       |
| 68   | 6/3/1996   | 0.306  | 155 543  | 2.06E-04 | 1,701               | 0.014                | 0.038                | 0.154 | 94.685           | 0.047               | 733,365             | 35360  | 3.542   | 37,370               | 0.000                  | 955.05827              | 100       |
| 69   | 20/3/1996  | 0.427  | 200,306  | 2.47E-04 | 3.049               | 0.014                | 0.040                | 0.143 | 101.694          | 0.043               | 867,196             | 36,550 | 1.15    | 92,137               | 0.000                  | 7911.8697              | 100       |
| 70   | 3/4/1996   | 0,724  | 116,280  | 1,80E-04 | 1.005               | 0.016                | 0.037                | 0,235 | 81.009           | 0.076               | 554,838             | 34,870 | 0.133   | 16,888               | 0.000                  | 12598.051              | 100       |
| 71   | 16/4/1996  | 0,478  | 110,480  | 1,64E-04 | 0,937               | 0,015                | 0,036                | 0,224 | 84,477           | 0,072               | 572,792             | 34,520 | 0,051   | 13,541               | 0,000                  | 26450,902              | 100       |
| 72   | 15/5/1996  | 0,760  | 93,710   | 1,47E-04 | 0,750               | 0,016                | 0,035                | 0,292 | 79,941           | 0,098               | 508,397             | 34,240 | 0,246   | 8,587                | 0,000                  | 3390,8217              | 100       |
| 73   | 22/5/1996  | 0,818  | 84,399   | 1,47E-04 | 0,660               | 0,016                | 0,035                | 0,299 | 71,997           | 0,101               | 434,536             | 34,200 | 0,008   | 7,362                | 0,000                  | 91923,136              | 100       |
| 74   | 19/6/1996  | 0,580  | 48,440   | 9,70E-05 | 0,408               | 0,015                | 0,032                | 0,404 | 62,623           | 0,144               | 306,878             | 33,760 | 0,012   | 1,839                | 0,000                  | 15224,852              | 100       |
| 75   | 3/6/1996   | 1,197  | 63,062   | 1,14E-04 | 0,494               | 0,017                | 0,033                | 0,438 | 69,368           | 0,158               | 377,557             | 34,070 | 0,023   | 3,013                | 0,000                  | 12998,367              | 100       |
| 76   | 17/7/1996  | 1,188  | 43,133   | 9,70E-05 | 0,378               | 0,017                | 0,031                | 0,514 | 55,762           | 0,190               | 257,853             | 33,810 | 0,004   | 1,315                | 0,000                  | 32771,069              | 100       |
| 77   | 31/7/1996  | 0,749  | 39,883   | 1,05E-04 | 0,352               | 0,016                | 0,031                | 0,407 | 47,631           | 0,145               | 209,015             | 34,750 | 0,005   | 1,674                | 0,000                  | 33382,954              | 100       |
| 78   | 7/8/1996   | 0.926  | 42,046   | 8,00E-05 | 0.370               | 0,016                | 0,031                | 0,573 | 65,908           | 0,216               | 310,727             | 34,040 | 0,004   | 0,813                | 0,000                  | 20218,627              | 100       |

Tab ela 6.26 - Descargas calculadas pelo método de Shoklitsch (1914, 1950) usando-se o Diâmetro D<sub>50</sub> e o D<sub>VJ</sub>
| (1)  | (2)        | (3)     | (4)      | (5)         | (6)                 | (7)                  | (8)                  | (9)     | (10)     | (11)                | (12)                | (13)     | (14)      | (15)                 | (16)                  | (12)         | в         |
|------|------------|---------|----------|-------------|---------------------|----------------------|----------------------|---------|----------|---------------------|---------------------|----------|-----------|----------------------|-----------------------|--------------|-----------|
| N°   | DATA       | D,      | Dvj      | S           | q = Q/B             | n <sub>Da</sub>      | n <sub>Dui</sub>     | Dcna    | DcDvj    | զշ <sub>րջ</sub>    | qc <sub>Dvi</sub>   | В        | qBm       | qB[SCH] <sub>D</sub> | qB[SCH] <sub>Dd</sub> | E[%]Da       | E [% ]Dvj |
|      |            | (m m)   | (mm)     | (m/m)       | m <sup>3</sup> /s.m | m <sup>-1/3</sup> .s | m <sup>-1,3</sup> .s | m       | m        | m <sup>3</sup> /s.m | m <sup>3</sup> /s.m | (m)      | to n/d ia | ton/dia              | ton/dia               | -            | -         |
| 79   | 14/8/1996  | 1,188   | 50,930   | 1,05E-04    | 0,419               | 0,017                | 0,032                | 0,474   | 60,824   | 0,173               | 301,619             | 33,990   | 0,005     | 1,943                | 0,000                 | 38751,568    | 100       |
| 80   | 21/8/1996  | 1,332   | 55,139   | 8,90E-05    | 0,445               | 0,017                | 0,032                | 0,581   | 77,690   | 0,219               | 412,054             | 33,890   | 0,005     | 1,388                | 0,000                 | 27661,539    | 100       |
| 81   | 28/8/1996  | 1,497   | 40,001   | 9,70E-05    | 0,363               | 0,018                | 0,031                | 0,555   | 51,713   | 0,208               | 230,285             | 33,730   | 0,003     | 1,083                | 0,000                 | 35984,725    | 100       |
| 82   | 4/9/1996   | 0,963   | 89,219   | 1,47E-04    | 0,698               | 0,016                | 0,035                | 0,316   | 76,109   | 0,108               | 472,287             | 34,560   | 0,036     | 7,856                | 0,000                 | 21723,463    | 100       |
| 83   | 11/9/1996  | 1,654   | 174,620  | 2,31E-04    | 2,183               | 0,018                | 0,039                | 0,241   | 94,794   | 0,078               | 763,223             | 35,840   | 3,697     | 57,202               | 0,000                 | 1447,2491    | 100       |
| 84   | 2/10/1996  | 0,845   | 63,791   | 1,05E-04    | 0,499               | 0,016                | 0,033                | 0,423   | 76,185   | 0,152               | 422,810             | 34,100   | 0,006     | 2,750                | 0,000                 | 45731,572    | 100       |
| 85   | 16/10/1996 | 1,684   | 101,811  | 1,50E-04    | 0,827               | 0,018                | 0,036                | 0,373   | 85,114   | 0,131               | 562,309             | 34,700   | 0,25      | 9,588                | 0,000                 | 3735,3791    | 100       |
| 86   | 6/11/1996  | 1,213   | 109,939  | 1,60E-04    | 0,925               | 0,017                | 0,036                | 0,313   | 86,165   | 0,107               | 585,210             | 34,700   | 0,32      | 12,414               | 0,000                 | 3779,2967    | 100       |
| 87   | 20/11/1996 | 1,413   | 99,758   | 1,30E-04    | 0,804               | 0,018                | 0,036                | 0,406   | 96,228   | 0,144               | 644,487             | 34,700   | 0,034     | 7,330                | 0,000                 | 21457,685    | 100       |
| 88   | 6/12/1996  | 0,538   | 89,908   | 1,30E-04    | 0,704               | 0,015                | 0,035                | 0,294   | 86,726   | 0,099               | 551,423             | 34,600   | 4,34      | 6,701                | 0,000                 | 54,408573    | 100       |
| 89   | 9/1/1997   | 0,497   | 101,507  | 1,47E-04    | 0,824               | 0,015                | 0,036                | 0,253   | 86,591   | 0,083               | 573,141             | 34,680   | 0,033     | 9,891                | 0,000                 | 29871,794    | 100       |
| 90   | 22/1/1997  | 0,477   | 128,305  | 2,14E-04    | 1,189               | 0,015                | 0,037                | 0,172   | 75,184   | 0,053               | 525,541             | 34,780   | 0,146     | 26,710               | 0,000                 | 18194,688    | 100       |
| 91   | 3/2/1997   | 0,436   | 195,603  | 2,14E-04    | 2,865               | 0,014                | 0,040                | 0,167   | 114,620  | 0,051               | 989,248             | 36,460   | 21,99     | 69,376               | 0,000                 | 215,49101    | 100       |
| 92   | 12/3/1997  | 0,505   | 93,057   | 1,47E-04    | 0,741               | 0,015                | 0,035                | 0,255   | 79,383   | 0,084               | 503,089             | 34,320   | 1,01      | 8,687                | 0,000                 | 760,06554    | 100       |
| 93   | 26/3/1997  | 0,504   | 69,616   | 1,22E-04    | 0,544               | 0,015                | 0,034                | 0,307   | 71,556   | 0,104               | 404,604             | 33,840   | 0,16      | 4,337                | 0,000                 | 2610,3403    | 100       |
| 94   | 16/4/1997  | 0,527   | 52,692   | 9,70E-05    | 0,434               | 0,015                | 0,032                | 0,392   | 68,120   | 0,138               | 348,160             | 33,640   | 0,032     | 2,050                | 0,000                 | 6307,6333    | 100       |
| 95   | 14/5/1997  | 11كر0 ا | 34,141   | 1,05E-04    | 0,341               | 0,015                | 0,030                | 0,358   | 40,774   | 0,125               | 165,543             | 33,160   | 0,104     | 1,666                | 0,000                 | 1501,4495    | 100       |
| 96   | 4/6/1997   | 1,751   | 56,379   | 1,22E-04    | 0,456               | 0,018                | 0,033                | 0,465   | 57,950   | 0,169               | 294,881             | 33,640   | 0,006     | 2,814                | 0,000                 | 46798,616    | 100       |
| 97   | 2/7/1997   | 1,572   | 54,656   | 1,22E-04    | 0,443               | 0,018                | 0,032                | 0,448   | 56,179   | 0,162               | 281,467             | 33,840   | 0,005     | 2,768                | 0,000                 | 55259,289    | 100       |
| 98   | 12/8/1997  | 1,701   | 61,094   | 1,13E-04    | 0,483               | 0,018                | 0,033                | 0,497   | 67,798   | 0,183               | 363,745             | 33,930   | 0,003     | 2,642                | 0,000                 | 87973,009    | 100       |
| . 99 | 26/8/1997  | 0,946   | 73,154   | 1,47E-04    | 0,569               | 0,016                | 0,034                | 0,314   | 62,405   | 0,107               | 350,653             | 33,970   | 0,0054    | 6,047                | 0,000                 | 111873,11    | 100       |
| 100  | 9/9/1997   | 0,852   | 18,898   | 1,05E-04    | 0,274               | 0,016                | 0,027                | 0,424   | 22,569   | 0,152               | 68,174              | 33,400   | 0,0024    | 0,949                | 0,000                 | 39430,924    | 100       |
| 101  | 23/9/1997  | 0,685   | 67,089   | 7,90E-04    | 0,524               | 0,016                | 0,033                | 0,052   | 10,649   | 0,013               | 43,298              | 33,960   | 0,0128    | 83,163               | 0,000                 | 649611,02    | 100       |
| 102  | 7/10/1997  | 0,403   | 61,271   | 1,40E-04    | 0,483               | 0,014                | 0,033                | 0,248   | 54,881   | 0,081               | 284,528             | 33,980   | 0,0134    | 4,887                | 0,000                 | 36373,53     | 100       |
| 103  | 21/10/1997 | 0,466   | 73,901   | 7,00E-05    | 0,574               | 0,015                | 0,034                | 0,521   | 132,388  | 0,193               | 846,092             | 34,070   | 0,0141    | 1,640                | 0,000                 | 11532,945    | 100       |
| 104  | 4/11/1997  | 182,0   | 51,741   | 1,10E-04    | 0,426               | 0,015                | 0,032                | 0,357   | 58,984   | 0,124               | 292,538             | 33,800   | 0,0029    | 2,543                | 0,000                 | 87605,578    | 100       |
| 105  | 2/12/1997  | 0,519   | 84,173   | 1,20E-04    | 0,658               | 0,015                | 0,035                | 0,315   | 87,961   | 0,107               | 548,415             | 34,220   | 0,439     | 5,349                | 0,000                 | 1118,4326    | 100       |
| 106  | 16/12/1997 | 0,336   | 128,129  | 2,105-04    | 1,186               | 0,014                | 0,037                | 0,100   | /0,511   | 0,047               | 036,134             | 34,770   | 3,77      | 26,030               | 0,000                 | 301,12019    | 100       |
| 107  | 13/1/1998  | 0,352   | 130,723  | 3,31E-04    | 1,227               | 0,014                | 0,037                | 0,100   | 49,525   | 0,028               | 324,927             | 34,820   | 0,107     | 24,315               | <u> </u>              | 00661,632    | 100       |
| 108  | 2//1/1998  | 0339    | 82,311   |             | <u> </u>            | 0,014                | 0,035                | 0,410   | 129,023  | 0,146               | 851,091             | 34,010   | 0,0098    | 4,624                | <u> </u>              | 20070,044    | 100       |
| 109  | 11/2/1998  | 0,923   | 148,516  | 2,142-04    | 1,00                | 0,016                | 0,038                | 0,214   | 87,027   | 0,068               | 604,486             | 33,240   | 1,00      | 33,298               | <u> </u>              | 4005 1059    | 100       |
| 110  | 26/2/1998  | 0,980   | 100,408  | 2,142-04    | 4,024               | 0,017                | 0,039                | 0,218   | 97,541   | <u> </u>            | 776,600             | 34,000   | 1,06      | 40,640               | <u> </u>              | 4206,1761    | 100       |
| 111  | 11/3/1998  | 0,98/   | 109,735  | 1,81E-04    | 1,923               | 0,017                | : U,U36              | 0,209   | 76,026   | <u> </u>            | 500,379             | : 34,68U | 1,6       | 15,281               |                       | 002,03993    | 100       |
| 112  | 2013/1998  | 0,467   | 129,817  | 1,978-04    | 1,198               | 0,015                | UU3/                 | 0,185   | 82,635   | 0,058               | 289,084             | 33,220   | . 0,31    | 23,993               |                       | /640,3493    | 100       |
| 113  | 8/4/1998   | 10,00   | 69,181   | 1,30E-04    | U, 246              |                      | UU34                 | 0,298   | 00,753   | <u> </u>            | 372,192             | : 33,340 | 0,034     | 4,780                |                       | 13939,848    | 100       |
| 114  | 22/4/1998  | 0,673   | 67,638   | : 7,20E-05  | 1,528               | 0,016                | 0,034                | 0,572   | 117,838  | 4,215               | /17,215             | : 33,960 | 0,0043    | 1,401                |                       | 32477,48     | 100       |
| 115  | 6/5/1998   | 0,495   | 151,217  | 1,80E-04    | 1,609               | 0,015                | : 0,038              | 0,207   | 46,005   | 0.022               | 822,823             | 33,220   | 0,165     | 28,360               |                       | 17087,872    | 100       |
| 116  | 21/5/1998  | 0,469   | 61,448   | 1,64E-04    | 0,484               | 0,015                | 0.033                | 0,443   | 40,500   | 0.002               | 400.462             | 34,010   |           | 6,301                | 0,000                 | 124033,01    | 100       |
| 117  | 3/6/1998   | ورحن ا  | ; 75,988 | : 1,3015-04 | ; 0,597             | : 0,015              | ; 0,034              | : 0,291 | ; 13,300 | ; 0,098             | 423,401             | : 33,700 | ; 0,0139  | 3,384                | ; 0,000               | ; JJ /J8,867 | 100       |

Tab ela 6.26 - Descargas calculadas pelo método de Shoklitsch (1914, 1950) usando-se o Diâmetro D<sub>50</sub> e o D<sub>VJ</sub>

| (1) | (2)                | (3)   | (4)     | (5)      | (6)                 | $- \sigma$           | (8)                  | (9)   | (10)   | (11)                | (12)                | (13)   | (14)    | (15)           | (16)                  | (12)      | 13      |
|-----|--------------------|-------|---------|----------|---------------------|----------------------|----------------------|-------|--------|---------------------|---------------------|--------|---------|----------------|-----------------------|-----------|---------|
| N°  | DATA               | D,    | Dvj     | S        | q = Q/B             | nna                  | n <sub>Dui</sub>     | Dcna  | DcDvj  | qсъ                 | qc <sub>Ivi</sub>   | В      | qBm     | qB[SCH]        | qB[SCH] <sub>Dd</sub> | E [% ]Da  | E[%]Dvj |
|     |                    | (m m) | (mm)    | (m/m)    | m <sup>3</sup> /s.m | m <sup>-1/3</sup> .s | m <sup>-1/3</sup> .s | m     | m      | m <sup>3</sup> /s.m | m <sup>3</sup> /s.m | (m)    | ton/dia | ton/dia        | ton/dia               | -         | -       |
| 118 | 17/6/1998          | 0,905 | 50,572  | 1,11E-04 | 0,429               | 0,016                | 0,032                | 0,410 | 57,132 | 0,146               | 279,712             | 33,040 | 0       | 2,362          | 0,000                 | 0         | 0       |
| 119 | 1 <i>5/7/</i> 1998 | 1,385 | 57,459  | 1,30E-04 | 0,472               | 0,018                | 0,033                | 0,403 | 55,426 | 0,143               | 281,724             | 33,020 | 0,005   | 3,474          | 0,000                 | 69387,49  | 100     |
| 120 | 29 <i>/7/</i> 1998 | 1,463 | 36,043  | 9,70E-05 | 0,357               | 0,018                | 0,030                | 0,550 | 46,596 | 0,206               | 196,965             | 32,500 | 0,0024  | 1,013          | 0,000                 | 42122,548 | 100     |
| 121 | 12/8/1998          | 1,179 | 44,092  | 1,17E-04 | 0,395               | 0,017                | 0,031                | 0,425 | 47,257 | 0,152               | 214,145             | 32,770 | 0,0034  | 2,180          | 0,000                 | 64031,167 | 100     |
| 122 | 25/8/1998          | 1,202 | 15,324  | 8,90E-05 | 0,272               | 0,017                | 0,026                | 0,562 | 21,591 | 0,211               | 60,371              | 32,080 | 0       | 0,355          | 0,000                 | 0         | 0       |
| 123 | 2/9/1998           | 1,455 | 56,332  | 9,70E-05 | 0,466               | 0,018                | 0,033                | 0,549 | 72,825 | 0,205               | 384,845             | 32,900 | 0       | 1,771          | <u>i 0,000</u>        |           | 0       |
| 124 | 16/9/1998          | 1,039 | 38,504  | 6,40E-05 | 0,365               | 0,017                | 0,031                | 0,744 | 75,444 | 0,293               | 353,273             | 32,900 | 0,006   | 0,262          | 0,000                 | 4270,47   | 100     |
| 125 | 30/9/1998          | 1,690 | 55,762  | 8,00E-05 | 0,463               | 0,018                | 0,032                | 0,700 | 87,406 | 0,273               | 474,556             | 32,870 | 0,004   | 0,968          | 0,000                 | 24094,631 | 100     |
| 126 | 14/10/1998         | 1,254 | 105,075 | 2,10E-04 | 0,902               | 0,017                | 0,036                | 0,241 | 62,745 | 0,079               | 398,156             | 33,280 | 0,0235  | 18,011         | <u>i</u> 0,000        | 76542,629 | 100     |
| 127 | 28/10/1998         | 1,019 | 80,366  | 1,97E-04 | 0,649               | 0,017                | 0,034                | 0,240 | 51,157 | 0,078               | 286,940             | 32,920 | 0,0103  | 11,219         | į 0,000               | 108821,01 | 100     |
| 128 | 11/11/1998         | 1,311 | 35,980  | 1,47E-04 | 0,369               | 0,017                | 0,030                | 0,350 | 30,693 | 0,121               | 120,954             | 31,400 | 0       | 2,994          | 0,000                 | 0         | 0       |
| 129 | 25/11/1998         | 0,771 | 35,477  | 1,80E-04 | 0,368               | 0,016                | 0,030                | 0,240 | 24,716 | 0,078               | 93,505              | 31,290 | 0       | 4,731          | 0,000                 | . 0       | 0       |
| 130 | 9/12/1998          | 0,973 | 89,848  | 2,30E-04 | 0,734               | 0,017                | 0,035                | 0,203 | 48,987 | 0,064               | 283,120             | 33,180 | Į 0     | 16,735         | 0,000                 | 0         | ĮO      |
| 131 | 22/12/1998         | 0,421 | 82,543  | 2,10E-04 | 0,668               | 0,014                | 0,035                | 0,168 | 49,290 | 0,051               | 277,217             | 32,950 | Į 0     | 13,353         | 0,000                 | 0         | 0       |
| 132 | 6/1/1999           | 0,214 | 140,126 | 2,30E-04 | 1,398               | 0,013                | 0,038                | 0,122 | 76,399 | 0,036               | 551,423             | 34,790 | 1,478   | 35,721         | 0,000                 | 2316,8383 | 100     |
| 133 | 21/1/1999          | 0,218 | 166,944 | 2,80E-04 | 1,998               | 0,013                | <u>i</u> 0,039       | 0,101 | 74,767 | 0,029               | 570,028             | 35,230 | 3,703   | 70,219         | 0,000                 | 1796,2863 | 100     |
| 134 | 28/1/1999          | 0,239 | 191,331 | 3,00E-04 | 2,750               | 0,013                | 0,040                | 0,097 | 79,976 | 0,027               | 645,297             | 35,810 | 0       | 109,447        | 0,000                 | 0         | 0       |
| 135 | 3/2/1999           | 0,209 | 149,375 | 2,50E-04 | 1,571               | 0,013                | 0,038                | 0,112 | 74,926 | 0,032               | 550,651             | 35,180 | 2,82    | 46,221         | 0,000                 | 1539,0382 | 100     |
| 136 | 11/2/1999          | 0,236 | 165,759 | 2,80E-04 | 1,964               | 0,013                | 0,039                | 0,104 | 74,236 | 0,029               | 563,968             | 35,260 | 3,047   | <i>6</i> 9,033 | 0,000                 | 2165,6145 | 100     |
| 137 | 25/2/1999          | 1,524 | 166,975 | 2,50E-04 | 1,983               | 0,018                | 0,039                | 0,216 | 83,755 | 0,069               | 650,786             | 35,520 | 5,114   | 58,024         | 0,000                 | 1034,6168 | 100     |
| 138 | 11/3/1999          | 0,263 | 165,000 | 2,30E-04 | 1,947               | 0,013                | 0,039                | 0,131 | 89,961 | 0,039               | 704,586             | 35,200 | 1,803   | 50,610         | 0,000                 | 2707,0126 | 100     |
| 139 | 25/3/1999          | 0,282 | 162,368 | 3,00E-04 | 1,889               | 0,013                | 0,039                | 0,103 | 67,870 | 0,029               | 504,467             | 34,990 | 3,64    | 73,037         | 0,000                 | 1906,5028 | 100     |
| 140 | 15/4/1999          | 0,267 | 88,066  | 2,30E-04 | 0,704               | 0,013                | 0,035                | 0,132 | 48,015 | 0,039               | 274,742             | 33,720 | 0,02    | 16,908         | 0,000                 | 84441,896 | 100     |
| 141 | 29/4/1999          | 0,367 | 61,800  | 8,20E-04 | 0,497               | 0,014                | 0,03                 | 0,041 | 9,451  | 0,010               | 36,651              | 33,270 | 0,013   | 82,209         | 0,000                 | 632277,52 | 100     |
| 142 | 13/5/1999          | 0,220 | 78,053  | 2,60E-04 | 0,619               | 0,013                | 0,034                | 0,109 | 37,645 | 0,031               | 198,687             | 33,410 | 0,023   | 17,792         | 0,000                 | 77256,124 | 100     |
| 143 | 9/6/1999           | 2,014 | 68,183  | 2,00E-04 | 0,543               | 0,019                | 0,034                | 0,297 | 42,750 | 0,100               | 220,309             | 33,290 | 0,01    | 8,996          | 0,000                 | 89857,861 | 100     |
| 144 | 22/7/1999          | 0,981 | 51,992  | 2,10E-04 | 0,444               | 0,017                | 0,032                | 0,223 | 31,047 | 0,072               | 138,584             | 32,520 | 0,003   | 7,969          | 0,000                 | 265530,33 | 100     |
| 145 | 5/8/1999           | 1,160 | 42,276  | 2,14E-04 | 0,387               | 0,017                | 0,031                | 0,231 | 24,773 | 0,075               | 99,401              | 32,650 | 0,002   | 6,898          | 0,000                 | 344786,07 | 100     |
| 146 | 19/8/1999          | 0,488 | 45,314  | 2,10E-04 | 0,402               | 0,015                | 0,031                | 0,176 | 27,059 | 0,055               | 112,757             | 32,780 | 0,004   | 7,489          | 0,000                 | 187120,12 | 100     |
| 147 | 2/9/1999           | 2,129 | 25,413  | 5,00E-05 | 0,312               | 0,019                | 0,028                | 1,210 | 63,735 | 0,516               | 252,640             | 32,070 | 0       | 0,000          | 0,000                 | 0         | 0       |
| 148 | 15/9/1999          | 1,236 | 73,789  | 2,10E-04 | 0,586               | 0,017                | 0,034                | 0,240 | 44,063 | 0,078               | 234,311             | 33,310 | 0,343   | 11,110         | 0,000                 | 3139,1907 | 100     |
| 149 | 30/9/1999          | 0,466 | 11,301  | 1,80E-04 | 0,258               | 0,015                | 0,025                | 0,203 | 7,873  | 0,064               | 16,812              | 32,020 | 0,001   | 3,232          | 0,000                 | 323146,74 | 100     |
| 150 | 14/10/1999         | 0,521 | 28,185  | 2,10E-04 | 0,321               | 0,015                | 0,029                | 0,180 | 16,830 | 0,056               | 55,313              | 32,410 | 0,003   | 5,651          | 0,000                 | 188260,45 | 100     |
| 151 | 28/10/1999         | 0,986 | 50,623  | 2,30E-04 | 0,431               | 0,017                | 0,032                | 0,203 | 27,601 | 0,064               | 119,738             | 32,880 | 0,027   | 9,087          | 0,000                 | 33554,263 | 100     |
| 152 | 11/11/1999         | 0,244 | 36,914  | 2,00E-04 | 0,358               | 0,013                | 0,030                | 0,147 | 23,145 | 0,044               | 87,762              | 32,800 | 28      | 6,289          | 0,000                 | 77,538971 | 100     |
| 153 | 25/11/1999         | 0,449 | 83,850  | 2,30E-04 | 0,682               | 0,015                | 0,035                | 0,157 | 45,717 | 0,047               | 255,249             | 32,880 | 0,089   | 15,709         | 0,000                 | 17550,062 | 100     |
| 154 | 9/12/1999          | 1,865 | 85,262  | 2,60E-04 | 0,688               | 0,018                | 0,035                | 0,223 | 41,122 | 0,072               | 226,841             | 33,190 | 0,036   | 18,540         | 0,000                 | 51399,62  | 100     |
| 155 | 23/12/1999         | 1,210 | 22,104  | 4,80E-04 | 0,175               | 0,017                | 0,028                | 0,104 | 5,775  | 0,030               | 14,643              | 30,480 | 0,003   | 10,058         | 0,000                 | 335171,11 | 100     |
| 156 | 6/1/2000           | 0.879 | 179.083 | 2.80E-04 | 2.331               | 0,016                | 0,039                | 0,161 | 80,203 | 0,049               | 633,315             | 35.690 | 0,214   | 82,430         | 0,000                 | 38418,572 | 100     |

Tabela 6.26 - Descargas calculadas pelo método de Shoklitsch (1914, 1950) usando-se o Diâmetro D<sub>50</sub> e o D<sub>VJ</sub>

| (1) | (2)       | (3)   | (4)     | (5)      | (6)                                  | $-\infty$            | (8)                   | (9)              | (10)   | (11)                | (12)                | (13)   | (14)    | (15)                 | (16)                   | (12)      | 13      |
|-----|-----------|-------|---------|----------|--------------------------------------|----------------------|-----------------------|------------------|--------|---------------------|---------------------|--------|---------|----------------------|------------------------|-----------|---------|
| N⁰  | DATA      | Da    | Dvj     | s        | $\mathbf{q} = \mathbf{Q}/\mathbf{B}$ | n <sub>Da</sub>      | n <sub>Dvj</sub>      | Dc <sub>Da</sub> | DcDvj  | qc Da               | qc <sub>Dvj</sub>   | В      | qBm     | qB[SCH] <sub>D</sub> | qB[SCH] <sub>Drj</sub> | E [% ]Da  | E[%]Dvj |
|     |           | (m m) | (mm)    | (m/m)    | m <sup>3</sup> /s.m                  | m <sup>-1/3</sup> .s | m <sup>-1/3</sup> . s | m                | m      | т <sup>3</sup> /s.m | m <sup>3</sup> /s.m | (m)    | ton/dia | ton/dia              | ton/dia                | -         | -       |
| 157 | 13/1/2000 | 0,656 | 66,144  | 2,50E-04 | 0,534                                | 0,015                | 0,033                 | 0,163            | 33,178 | 0,050               | 162,255             | 32,910 | 0,313   | 13,590               | 0,000                  | 4241,8795 | 100     |
| 158 | 20/1/2000 | 1,753 | 70,009  | 2,50E-04 | 0,557                                | 0,018                | 0,034                 | 0,227            | 35,116 | 0,073               | 176,680             | 33,270 | 0,041   | 13,734               | 0,000                  | 33398,376 | 100     |
| 159 | 27/1/2000 | 1,234 | 82,609  | 2,60E-04 | 0,663                                | 0,017                | 0,035                 | 0,194            | 39,843 | 0,061               | 216,335             | 33,250 | 0,09    | 18,113               | 0,000                  | 20025,705 | 100     |
| 160 | 3/2/2000  | 0,768 | 107,828 | 4,10E-04 | 0,917                                | 0,016                | 0,036                 | 0,105            | 32,980 | 0,030               | 189,629             | 34,000 | 222,0   | 54,095               | 0,000                  | 9682,0867 | 100     |
| 161 | 9/2/2000  | 0,324 | 75,554  | 2,30E-04 | 0,604                                | 0,014                | 0,034                 | 0,140            | 41,193 | 0,042               | 218,320             | 33,100 | 0,487   | 14,018               | 0,000                  | 2778,3542 | 100     |
| 162 | 18/2/2000 | 1,270 | 128,235 | 2,80E-04 | 1,190                                | 0,017                | 0,037                 | 0,182            | 57,431 | 0,0 <i>5</i> 7      | 383,749             | 34,700 | 0,447   | 39,811               | 0,000                  | 8806,2165 | 100     |
| 163 | 24/2/2000 | 0,219 | 100,354 | 1,30E-04 | 0,838                                | 0,013                | 0,036                 | 0,218            | 96,803 | 0,070               | 650,271             | 33,560 | 0,603   | 8,256                | 0,000                  | 1269,1382 | 100     |
| 164 | 3/3/2000  | 0,625 | 94,944  | 4,60E-04 | 0,781                                | 0,015                | 0,035                 | 0,087            | 25,883 | 0,024               | 136,997             | 33,420 | 0,219   | 53,928               | 0,000                  | 24524,767 | 100     |
| 165 | 10/3/2000 | 0,202 | 73,379  | 2,80E-04 | 0,590                                | 0,013                | 0,034                 | 0,099            | 32,863 | 0,028               | 166,110             | 32,880 | 0,04    | 18,713               | 0,000                  | 46682,142 | 100     |
| 166 | 17/3/2000 | 0,639 | 83,297  | 3,60E-04 | 0,668                                | 0,015                | 0,035                 | 0,113            | 29,015 | 0,032               | 149,848             | 33,270 | 0,218   | 31,228               | 0,000                  | 14224,611 | 100     |
| 167 | 24/3/2000 | 0,943 | 113,146 | 2,00E-04 | 0,983                                | 0,016                | 0,037                 | 0,231            | 70,943 | 0,075               | 470,960             | 34,120 | 0,491   | 18,942               | 0,000                  | 3757,8362 | 100     |
| 168 | 31/3/2000 | 0,667 | 152,461 | 3,00E-04 | 1,635                                | 0,016                | 0,038                 | 0,137            | 63,729 | 0,041               | 4 <i>5</i> 9,010    | 35,270 | 1,121   | 63,108               | 0,000                  | 5529,5811 | 100     |
| 169 | 7/4/2000  | 0,952 | 52,493  | 2,60E-04 | 0,444                                | 0,016                | 0,032                 | 0,178            | 25,318 | 0,055               | 109,583             | 32,770 | 0,05    | 11,540               | 0,000                  | 22980,04  | 100     |
| 170 | 14/4/2000 | 0,813 | 39,227  | 2,30E-04 | 0,376                                | 0,016                | 0,031                 | 0,191            | 21,387 | 0,060               | 81,673              | 32,200 | 0,005   | 7,681                | 0,000                  | 153512,08 | 100     |
| 171 | 19/4/2000 | 1,750 | 33,754  | 2,50E-04 | 0,351                                | 0,018                | 0,030                 | 0,227            | 16,931 | 0,073               | 59,150              | 31,990 | 0,012   | 7,600                | 0,000                  | 63230,041 | 100     |
|     |           |       |         |          |                                      |                      |                       |                  |        |                     |                     |        |         |                      | Média                  | 41871,282 | 102,01  |

Tabela 6.26 - Descargas calculadas pelo método de Shoklitsch (1914, 1950) usando-se o Diâmetro D<sub>50</sub> e o D<sub>VJ</sub>

qB[SCH]<sub>Da</sub> - Descarga solida calculada pelo método de Schoklitsch usando o diâmetro aritmético

qB[SCH]<sub>Dvi</sub> - Descarga solida calculada pelo método de Sholkitsch usando o diâmetro Dv<sub>i</sub>

E[%]Da - diferença percentual relativa entre as descargas medidas e aquelas calculadas usando o diâmetro aritmético

| (1) | (2)              | (3)             | (4)                 | (5)      | (6)                 | (7)   | (8)               | (9)    | (10)   | (11)                | (12)                | (13)              | (14)              | (15)      | (16)  | (17)     | (18)                 | (19)                   | (20)                | (21)    |
|-----|------------------|-----------------|---------------------|----------|---------------------|-------|-------------------|--------|--------|---------------------|---------------------|-------------------|-------------------|-----------|-------|----------|----------------------|------------------------|---------------------|---------|
| Nº  | DATA             | D <sub>90</sub> | D <sub>vj seq</sub> | S        | q = Q/B             | U,    | Ŷ                 | R.,90  | R. Dyj | $\theta_{\rm cD90}$ | $\theta_{\rm cDej}$ | $\tau_{\rm cD90}$ | τ <sub>cDoj</sub> | $\tau_0$  | В     | qBm      | qB[SHI] <sub>™</sub> | qВ[SHI] <sub>Dvj</sub> | E[%]D <sub>80</sub> | E[%]Dvj |
|     |                  | (mm)            | mm                  | (m/m)    | m <sup>3</sup> /s.m | (m/s) | m <sup>2</sup> /s | -      | -      |                     |                     |                   |                   | $Kgf/m^2$ | (m)   | ton/d ia | to n/dia             | ton/dia                | -                   | -       |
| 1   | <b>26/3/1993</b> | 1,86            | 4,39                | 1,94E-04 | 0,91                | 0,05  | 1,01E-06          | 93,69  | 221,06 | 0,04                | 0,05                | 0,13              | 0,38              | 0,26      | 34,70 | 0,141    | 136,27               | 0,00                   | 96548,91            | 100,00  |
| 2   | 6/4/1993         | 3,82            | 4,43                | 1,97E-04 | 0,62                | 0,05  | 1,01E-06          | 178,30 | 206,59 | 0,05                | 0,05                | 0,32              | 0,38              | 0,23      | 34,87 | 0,038    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 3   | 20/4/1993        | 4,11            | 4,27                | 1,85E-04 | 0,48                | 0,04  | 1,01E-06          | 180,16 | 187,38 | 0,05                | 0,05                | 0,34              | 0,36              | 0,20      | 34,88 | 0,045    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 4   | 4/5/1993         | 4,22            | 4,60                | 2,11E-04 | 0,65                | 0,05  | 1,01E-06          | 208,24 | 226,86 | 0,05                | 0,05                | 0,36              | 0,40              | 0,25      | 34,78 | 0,045    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 5   | 18/5/1993        | 1,23            | 3,99                | 1,63E-04 | 0,38                | 0,04  | 1,01E-06          | 49,42  | 160,15 | 0,04                | 0,05                | 0,08              | 0,32              | 0,17      | 34,38 | 0,024    | 50,21                | 0,00                   | 209115,6            | 100,00  |
| 6   | 1/6/1993         | 3,13            | 4,83                | 2,31E-04 | <b>1,1</b> 6        | 0,06  | 1,01E-06          | 180,68 | 279,02 | 0,05                | 0,06                | 0,26              | 0,44              | 0,35      | 35,24 | 0,190    | 82,36                | 0,00                   | 43244,9             | 100,00  |
| 7   | 8/6/1993         | 1,42            | 4,00                | 1,64E-04 | 0,66                | 0,04  | 1,01E-06          | 60,74  | 171,05 | 0,04                | 0,05                | 0,09              | 0,33              | 0,19      | 34,91 | 0,026    | 82,45                | 0,00                   | 317003,2            | 100,00  |
| 8   | 15/6/1993        | 3,78            | 4,22                | 1,81E-04 | 0,50                | 0,04  | 1,01E-06          | 163,13 | 182,27 | 0,05                | 0,05                | 0,31              | 0,35              | 0,19      | 34,21 | 0,008    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 9   | 22/6/1993        | 4,94            | 4,11                | 1,72E-04 | 0,49                | 0,04  | 1,01E-06          | 201,91 | 167,82 | 0,05                | 0,05                | 0,42              | 0,34              | 0,17      | 34,54 | 0,008    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 10  | 29/6/1993        | 2,00            | 4,00                | 1,64E-04 | 0,28                | 0,04  | 1,01E-06          | 74,08  | 148,14 | 0,04                | 0,05                | 0,14              | 0,32              | 0,14      | 33,99 | 0,007    | 1,47                 | 0,00                   | 20892,46            | 100,00  |
| 11  | 6/7/1993         | 4,75            | 3,12                | 1,05E-04 | 0,24                | 0,03  | 1,01E-06          | 141,59 | 93,15  | 0,05                | 0,04                | 0,37              | 0,22              | 0,09      | 33,77 | 0,002    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 12  | 21/7/1993        | 4,50            | 2,85                | 8,90E-05 | 0,21                | 0,03  | 1,01E-06          | 119,94 | 76,01  | 0,05                | 0,04                | 0,34              | 0,20              | 0,07      | 33,64 | 0,006    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 13  | 3/8/1993         | 4,70            | 2,38                | 6,40E-05 | 0,11                | 0,02  | 1,01E-06          | 100,98 | 51,05  | 0,04                | 0,04                | 0,34              | 0,15              | 0,05      | 32,82 | 0,002    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 14  | 17/8/1993        | 4,02            | 1,56                | 3,00E-05 | 0,18                | 0,02  | 1,01E-06          | 60,30  | 23,44  | 0,04                | 0,03                | 0,26              | 0,08              | 0,02      | 33,53 | 0,002    | 0,00                 | 0,00                   | 100                 | 100,00  |
| Ŀ   | 31/8/1993        | 3,16            | 2,00                | 4,70E-05 | 0,18                | 0,02  | 1,01E-06          | 63,02  | 39,95  | 0,04                | 0,04                | 0,21              | 0,12              | 0,04      | 33,74 | 0,002    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 16  | 21/9/1993        | 1,45            | 3,76                | 1,47E-04 | 0,32                | 0,04  | 1,01E-06          | 53,42  | 138,67 | 0,04                | 0,05                | 0,09              | 0,30              | 0,14      | 33,97 | 0,006    | 17,23                | 0,00                   | 287068,3            | 100,00  |
| 17  | 28/9/1993        | 1,77            | 4,83                | 2,31E-04 | 1,09                | 0,06  | 1,01E-06          | 97,65  | 266,65 | 0,04                | 0,05                | 0,13              | 0,44              | 0,32      | 34,92 | 0,384    | 296,52               | 0,00                   | 77117,52            | 100,00  |
| 18  | 5/10/1993        | 5,11            | 3,76                | 1,47E-04 | 0,41                | 0,04  | 1,01E-06          | 190,20 | 140,11 | 0,05                | 0,05                | 0,43              | 0,30              | 0,14      | 34,38 | 0,006    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 19  | 21/10/1993       | 4,62            | 4,33                | 1,89E-04 | 0,66                | 0,05  | 1,01E-06          | 210,30 | 196,90 | 0,05                | 0,05                | 0,40              | 0,37              | 0,22      | 34,84 | 0,023    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 20  | 28/10/1993       | 1,64            | 4,54                | 2,06E-04 | 0,83                | 0,05  | 1,01E-06          | 82,26  | 227,56 | 0,04                | 0,05                | 0,11              | 0,40              | 0,26      | 34,88 | 0,037    | 169,45               | 0,00                   | 457869,1            | 100,00  |
| 21  | 4/11/1993        | 4,96            | 2,69                | 8,00E-05 | 0,21                | 0,03  | 1,01E-06          | 126,84 | 68,75  | 0,05                | 0,04                | 0,38              | 0,18              | 0,07      | 33,82 | 0,003    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 22  | 9/11/1993        | 4,82            | 3,52                | 1,30E-04 | 0,29                | 0,03  | 1,01E-06          | 160,78 | 117,31 | 0,05                | 0,05                | 0,39              | 0,27              | 0,12      | 34,01 | 0,005    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 23  | 20/12/1993       | 1,71            | 4,43                | 1,97E-04 | 0,62                | 0,05  | 1,01E-06          | 81,87  | 211,91 | 0,04                | 0,05                | 0,12              | 0,38              | 0,24      | 34,64 | 0,080    | 93,04                | 0,00                   | 116200              | 100,00  |
| 24  | 10/2/1994        | 1,37            | 2,69                | 8,00E-05 | <b>1,48</b>         | 0,04  | 1,01E-06          | 48,81  | 95,79  | 0,04                | 0,04                | 0,09              | 0,19              | 0,13      | 35,65 | 0,332    | 45,43                | 0,00                   | 13582,86            | 100,00  |
| 25  | 29/3/1994        | 1,66            | 4,43                | 1,97E-04 | 1,10                | 0,06  | 1,01E-06          | 100,12 | 266,94 | 0,04                | 0,05                | 0,12              | 0,40              | 0,38      | 34,34 | 0,027    | 364,83               | 0,00                   | 1351135             | 100,00  |
| 26  | 19/4/1994        | 2,26            | 3,52                | 1,30E-04 | 0,59                | 0,04  | 1,01E-06          | 96,88  | 150,76 | 0,04                | 0,05                | 0,16              | 0,28              | 0,19      | 34,00 | 0,022    | 9,96                 | 0,00                   | 45182,83            | 100,00  |
| 27  | 6/5/1994         | 4,43            | 2,97                | 9,60E-05 | 0,36                | 0,03  | 1,01E-06          | 153,47 | 103,02 | 0,05                | 0,04                | 0,36              | 0,22              | 0,12      | 33,60 | 0,012    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 28  | 20/5/1994        | 1,20            | 3,27                | 1,14E-04 | 0,37                | 0,04  | 1,01E-06          | 45,30  | 123,46 | 0,04                | 0,05                | 0,07              | 0,25              | 0,15      | 33,60 | 0,012    | 28,30                | 0,00                   | 235728,8            | 100,00  |
| 29  | 17/6/1994        | 1,00            | 2,54                | 7,20E-05 | 0,38                | 0,03  | 1,01E-06          | 29,89  | 75,80  | 0,03                | 0,04                | 0,06              | 0,17              | 0,09      | 33,64 | 0,005    | 10,82                | 0,00                   | 216347,2            | 100,00  |
| 30  | 1/7/1994         | 1,05            | 3,27                | 1,14E-04 | 0,41                | 0,04  | 1,01E-06          | 40,84  | 127,20 | 0,04                | 0,05                | 0,06              | 0,25              | 0,16      | 33,81 | 0,006    | 44,59                | 0,00                   | 743059,5            | 100,00  |
| 31  | 15/7/1994        | 1,10            | 2,38                | 6,40E-05 | 0,31                | 0,03  | 1,01E-06          | 30,99  | 66,96  | 0,03                | 0,04                | 0,06              | 0,16              | 0,08      | 33,64 | 0,051    | 4,00                 | 0,00                   | 7750,662            | 100,00  |
| 32  | 29/7/1994        | 2,30            | 3,27                | 1,14E-04 | 0,41                | 0,04  | 1,01E-06          | 89,14  | 126,74 | 0,04                | 0,05                | 0,16              | 0,25              | 0,16      | 33,81 | 0,010    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 33  | 12/8/1994        | 2,18            | 2,00                | 4,70E-05 | 0,21                | 0,02  | 1,01E-06          | 51,82  | 47,61  | 0,04                | 0,04                | 0,14              | 0,12              | 0,06      | 33,26 | 0,011    | 0,00                 | 0,00                   | 100                 | 100,00  |
| 34  | 26/8/1994        | 1,05            | 2,33                | 6,20E-05 | 0,28                | 0,03  | 1,01E-06          | 29,79  | 66,24  | 0,03                | 0,04                | 0,06              | 0,16              | 0,08      | 33,47 | 0,002    | 4,42                 | 0,00                   | 221112,6            | 100,00  |

Tabela 6.2c - Descargas calculadas pelo método de Shields (1936) usando o diâmetro  $D_{90}$  e o Dvj

| (1)     | (2)        | (3)             | (4)     | (5)      | (6)                 | (7)   | (8)               | (9)    | (10)              | (11)                | (12)                | (13)              | (14)              | (15)               | (16)  | (17)     | (18)                   | (19)                   | (20)                | (21)     |
|---------|------------|-----------------|---------|----------|---------------------|-------|-------------------|--------|-------------------|---------------------|---------------------|-------------------|-------------------|--------------------|-------|----------|------------------------|------------------------|---------------------|----------|
| N⁰      | DATA       | D <sub>90</sub> | Dvj seq | S        | q = Q/B             | U,    | γ                 | R*50   | R• <sub>Dyj</sub> | $\theta_{\rm cD90}$ | $\theta_{\rm cDej}$ | $\tau_{\rm cD90}$ | τ <sub>cDvj</sub> | $\tau_0$           | В     | qBm      | qB[SHI] <sub>100</sub> | qB[SHI] <sub>Dvj</sub> | E[%]D <sub>80</sub> | E[%]Dvj  |
|         |            | (mm)            | mm      | (m/m)    | m <sup>3</sup> /s.m | (m/s) | m <sup>2</sup> /s | -      | -                 |                     |                     |                   |                   | Kgf/m <sup>2</sup> | (m)   | ton/d ia | to n/dia               | ton/dia                | -                   | -        |
| 35      | 8/9/1994   | 1,27            | 2,69    | 8,00E-05 | 0,32                | 0,03  | 1,01E-06          | 41,23  | 87,28             | 0,04                | 0,04                | 0,08              | 0,19              | 0,11               | 33,68 | 0,004    | 7,28                   | 0,00                   | 181948,2            | 100,00   |
| 36      | 22/9/1994  | 1,10            | 3,52    | 1,30E-04 | 0,42                | 0,04  | 1,01E-06          | 46,83  | 149,73            | 0,04                | 0,05                | 0,07              | 0,28              | 0,19               | 33,92 | 0,002    | 64,74                  | 0,00                   | 3237149             | 100,00   |
| 37      | 6/10/1994  | 1,52            | 2,00    | 4,70E-05 | 0,29                | 0,02  | 1,01E-06          | 36,99  | 48,74             | 0,04                | 0,04                | 0,09              | 0,12              | 0,06               | 33,49 | 0,002    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 38      | 27/10/1994 | 3,15            | 3,40    | 1,22E-04 | 0,83                | 0,05  | 1,01E-06          | 143,95 | 155,17            | 0,05                | 0,05                | 0,25              | 0,27              | 0,22               | 34,48 | 0,424    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 39      | 23/11/1994 | 1,45            | 2,00    | 4,70E-05 | 0,33                | 0,02  | 1,01E-06          | 35,55  | 49,11             | 0,04                | 0,04                | 0,08              | 0,13              | 0,06               | 33,52 | 0,004    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 40      | 22/12/1994 | 2,51            | 4,63    | 2,14E-04 | 1,98                | 0,07  | 1,01E-06          | 185,01 | 341,53            | 0,05                | 0,06                | 0,21              | 0,44              | 0,56               | 35,68 | 0,218    | 678,35                 | 125,23                 | 311068,2            | 57344,22 |
| 41      | 5/1/1995   | 1,36            | 4,83    | 2,31E-04 | 1,60                | 0,07  | 1,01E-06          | 96,79  | 344,00            | 0,04                | 0,06                | 0,10              | 0,46              | 0,53               | 35,27 | 0,523    | 1300,42                | 53,64                  | 248546,6            | 10155,89 |
| 42      | 19/1/1995  | 4,79            | 3,76    | 1,47E-04 | 0,59                | 0,05  | 1,01E-06          | 221,31 | 173,92            | 0,05                | 0,05                | 0,42              | 0,31              | 0,22               | 33,92 | 0,015    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 43      | 26/1/1995  | 1,28            | 3,76    | 1,47E-04 | 0,50                | 0,05  | 1,01E-06          | 58,15  | 171,01            | 0,04                | 0,05                | 0,08              | 0,31              | 0,21               | 33,93 | 0,036    | 81,63                  | 0,00                   | 226658,7            | 100,00   |
| 44      | 9/2/1995   | 5,15            | 3,27    | 1,14E-04 | 3,97                | 0,06  | 1,01E-06          | 323,99 | 205,74            | 0,06                | 0,05                | 0,49              | 0,28              | 0,41               | 40,30 | 3,097    | 0,00                   | 232,22                 | 100                 | 7398,22  |
| 45      | 16/2/1995  | 2,70            | 5,02    | 2,47E-04 | 1,93                | 0,08  | 1,01E-06          | 205,55 | 381,87            | 0,05                | 0,06                | 0,23              | 0,49              | 0,60               | 35,40 | 0,485    | 735,49                 | 117,25                 | 151548              | 24075,50 |
| 46      | 8/3/1995   | 1,85            | 4,11    | 1,72E-04 | 0,90                | 0,05  | 1,01E-06          | 100,66 | 223,42            | 0,04                | 0,05                | 0,14              | 0,36              | 0,31               | 34,94 | 0,396    | 159,55                 | 0,00                   | 40190,99            | 100,00   |
| <b></b> | 24/3/1995  | 4,03            | 4,21    | 1,80E-04 | 1,83                | 0,07  | 1,01E-06          | 261,91 | 273,64            | 0,05                | 0,06                | 0,36              | 0,38              | 0,44               | 35,38 | 1,721    | 68,91                  | 48,36                  | 3904,356            | 2710,03  |
| 48      | 7/4/1995   | 1,10            | 4,43    | 1,97E-04 | 1,35                | 0,06  | 1,01E-06          | 68,72  | 276,50            | 0,04                | 0,06                | 0,07              | 0,40              | 0,41               | 35,05 | 0,171    | 893,28                 | 0,68                   | 522286              | 300,27   |
| 49      | 28/4/1995  | 1,44            | 4,21    | 1,80E-04 | 0,87                | 0,06  | 1,01E-06          | 79,03  | 231,08            | 0,04                | 0,05                | 0,10              | 0,37              | 0,31               | 34,63 | 0,081    | 253,81                 | 0,00                   | 31 32 47,6          | 100,00   |
| 50      | 12/5/1995  | 2,79            | 4,21    | 1,80E-04 | 1,09                | 0,06  | 1,01E-06          | 158,74 | 239,56            | 0,05                | 0,05                | 0,23              | 0,37              | 0,34               | 34,74 | 0,468    | 85,73                  | 0,00                   | 18218,07            | 100,00   |
| 51      | 9/6/1995   | 1,58            | 3,76    | 1,47E-04 | 0,60                | 0,05  | 1,01E-06          | 74,44  | 177,34            | 0,04                | 0,05                | 0,11              | 0,31              | 0,23               | 34,35 | 0,023    | 74,28                  | 0,00                   | 322873,1            | 100,00   |
| 52      | 23/6/1995  | 2,86            | 3,11    | 1,04E-04 | 0,60                | 0,04  | 1,01E-06          | 127,27 | 138,33            | 0,05                | 0,05                | 0,22              | 0,24              | 0,21               | 34,34 | 0,018    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 53      | 5/7/1995   | 1,23            | 3,76    | 1,47E-04 | 0,48                | 0,05  | 1,01E-06          | 55,50  | 169,84            | 0,04                | 0,05                | 0,08              | 0,31              | 0,21               | 34,19 | 0,051    | 82,05                  | 0,00                   | 160776,8            | 100,00   |
| . 54    | 12/7/1995  | 0,92            | 4,93    | 2,39E-04 | 131                 | 0,07  | 1,01E-06          | 63,92  | 342,19            | 0,04                | 0,06                | 0,06              | 0,47              | 0,50               | 35,03 | 4,163    | 1670,36                | 21,01                  | 40024,05            | 404,69   |
| . 55    | 19/7/1995  | 0,85            | 3,88    | 1,55E-04 | 0,65                | 0,06  | 1,01E-06          | 48,23  | 219,95            | 0,04                | 0,05                | 0,05              | 0,34              | 0,33               | 34,59 | 0,016    | 367,78                 | 0,00                   | 2298514             | 100,00   |
| 56      | 26/7/1995  | 1,93            | 4,00    | 1,64E-04 | 0,76                | 0,05  | 1,01E-06          | 99,64  | 206,47            | 0,04                | 0,05                | 0,14              | 0,34              | 0,28               | 34,61 | 0,118    | 96,63                  | 0,00                   | 81785,7             | 100,00   |
| 57      | 10/8/1995  | 0,95            | 3,40    | 1,22E-04 | 0,43                | 0,04  | 1,01E-06          | 38,78  | 138,59            | 0,04                | 0,05                | 0,06              | 0,27              | 0,17               | 34,09 | 0,012    | 70,11                  | 0,00                   | 584190,8            | 100,00   |
| 58      | 31/8/1995  | 4,69            | 2,69    | 8,00E-05 | 0,32                | 0,03  | 1,01E-06          | 146,60 | 84,04             | 0,05                | 0,04                | 0,37              | 0,19              | 0,10               | 33,65 | 0,002    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 59      | 21/9/1995  | 1,14            | 7,19    | 4,73E-04 | 0,64                | 0,09  | 1,01E-06          | 97,25  | 612,99            | 0,04                | 0,06                | 0,08              | 0,71              | 0,76               | 34,28 | 0,031    | 1934,83                | 20,70                  | 6241280             | 66659,95 |
| 60      | 28/9/1995  | 2,50            | 3,52    | 1,30E-04 | 0,69                | 0,05  | 1,01E-06          | 113,89 | 160,21            | 0,05                | 0,05                | 0,19              | 0,29              | 0,22               | 34,68 | 0,249    | 10,93                  | 0,00                   | 4290,345            | 100,00   |
| 61      | 5/10/1995  | 1,64            | 2,99    | 9,70E-05 | 0,40                | 0,04  | 1,01E-06          | 59,05  | 107,70            | 0,04                | 0,05                | 0,11              | 0,22              | 0,13               | 34,16 | 0,002    | 7,19                   | 0,00                   | 359530,8            | 100,00   |
| 62      | 19/10/1995 | 3,79            | 4,31    | 1,88E-04 | 1,39                | 0,06  | 1,01E-06          | 235,74 | 268,28            | 0,05                | 0,06                | 0,33              | 0,39              | 0,40               | 35,02 | 0,205    | 52,03                  | 7,08                   | 25280,3             | 3353,85  |
| 63      | 23/11/1995 | 1,66            | 2,99    | 9,70E-05 | 0,44                | 0,04  | 1,01E-06          | 59,77  | 107,70            | 0,04                | 0,05                | 0,11              | 0,22              | 0,13               | 34,05 | 0,006    | 7,46                   | 0,00                   | 124153,9            | 100,00   |
| 64      | 7/12/1995  | 1,86            | 2,38    | 6,40E-05 | 0,28                | 0,03  | 1,01E-06          | 51,59  | 65,91             | 0,04                | 0,04                | 0,12              | 0,16              | 0,08               | 33,39 | 0,002    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 65      | 10/1/1996  | 1,75            | 4,63    | 2,14E-04 | 2,88                | 0,08  | 1,01E-06          | 137,51 | 364,07            | 0,05                | 0,06                | 0,14              | 0,45              | 0,64               | 36,91 | 5,141    | 2082,83                | 298,67                 | 40414,13            | 5709,50  |
| 66      | 31/1/1996  | 0,47            | 3,76    | 1,47E-04 | 0,66                | 0,05  | 1,01E-06          | 21,93  | 175,64            | 0,03                | 0,05                | 0,02              | 0,31              | 0,23               | 34,12 | 0,019    | 448,34                 | 0,00                   | 2359592             | 100,00   |
| 67      | 7/2/1996   | 1,68            | 4,00    | 1,64E-04 | <u>L13</u>          | 0,06  | 1,01E-06          | 92,45  | 220,07            | 0,04                | 0,05                | 0,12              | 0,35              | 0,31               | 35,12 | 0,238    | 239,18                 | 0,00                   | 100394,3            | 100,00   |
| 68      | 6/3/1996   | 0,56            | 4,54    | 2,06E-04 | 1,70                | 0,07  | 1,01E-06          | 38,05  | 308,23            | 0,04                | 0,06                | 0,03              | 0,43              | 0,48               | 35,36 | 3,542    | 3138,93                | 47,66                  | 88520,35            | 1245,46  |

Tabela 6.2c - Descargas calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj (Continuação)

| (1) | (2)        | (3)             | (4)                 | (5)      | (6)                                  | (7)   | (8)               | (9)    | (10)              | (11)                | (12)                | (13)              | (14)              | (15)      | (16)  | (17)     | (18)                   | (19)                   | (20)                | (21)      |
|-----|------------|-----------------|---------------------|----------|--------------------------------------|-------|-------------------|--------|-------------------|---------------------|---------------------|-------------------|-------------------|-----------|-------|----------|------------------------|------------------------|---------------------|-----------|
| N⁰  | DATA       | D <sub>90</sub> | D <sub>Vj</sub> բող | S        | $\mathbf{q} = \mathbf{Q}/\mathbf{B}$ | U.    | ν                 | R*90   | R∗ <sub>₽yj</sub> | $\theta_{\rm cD90}$ | $\theta_{\rm cDej}$ | $\tau_{\rm cD90}$ | τ <sub>cDoj</sub> | Շ         | В     | qBm      | qB[SHI] <sub>100</sub> | qB[SHI] <sub>Dvj</sub> | E[%]D <sub>90</sub> | E[%]Dvj   |
|     |            | (mm)            | mm                  | (m/m)    | m <sup>3</sup> /s.m                  | (m/s) | m <sup>2</sup> /s | -      | -                 |                     |                     |                   |                   | $Kgf/m^2$ | (m)   | ton/d ia | to n/dia               | ton/dia                | -                   | -         |
| 69  | 20/3/1996  | 1,69            | 5,02                | 2,47E-04 | 3,05                                 | 0,09  | 1,01E-06          | 142,42 | 422,72            | 0,05                | 0,06                | 0,13              | 0,50              | 0,74      | 36,55 | 1,150    | 3127,69                | 421,38                 | 271873,1            | 36542,14  |
| 70  | 3/4/1996   | 2,05            | 4,21                | 1,80E-04 | 1,00                                 | 0,06  | 1,01E-06          | 115,69 | 237,63            | 0,05                | 0,05                | 0,15              | 0,37              | 0,33      | 34,87 | 0,133    | 172,33                 | 0,00                   | 129474,9            | 100,00    |
| 71  | 16/4/1996  | 1,18            | 4,00                | 1,64E-04 | 0,94                                 | 0,05  | 1,01E-06          | 63,39  | 214,85            | 0,04                | 0,05                | 0,08              | 0,35              | 0,30      | 34,52 | 0,051    | 316,93                 | 0,00                   | 621327,7            | 100,00    |
| 72  | 15/5/1996  | 2,20            | 3,76                | 1,47E-04 | 0,75                                 | 0,05  | 1,01E-06          | 106,89 | 182,90            | 0,04                | 0,05                | 0,16              | 0,31              | 0,25      | 34,24 | 0,246    | 44,85                  | 0,00                   | 18133,2             | 100,00    |
| 73  | 22/5/1996  | 3,00            | 3,76                | 1,47E-04 | 0,66                                 | 0,05  | 1,01E-06          | 142,68 | 179,02            | 0,05                | 0,05                | 0,24              | 0,31              | 0,24      | 34,20 | 0,008    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 74  | 19/6/1996  | 1,36            | 2,99                | 9,70E-05 | 0,41                                 | 0,04  | 1,01E-06          | 49,50  | 108,85            | 0,04                | 0,05                | 0,09              | 0,22              | 0,14      | 33,76 | 0,012    | 16,41                  | 0,00                   | 136669,9            | 100,00    |
| 75  | 3/6/1996   | 3,77            | 3,27                | 1,14E-04 | 0,49                                 | 0,04  | 1,01E-06          | 153,39 | 133,06            | 0,05                | 0,05                | 0,30              | 0,25              | 0,17      | 34,07 | 0,023    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 76  | 17/7/1996  | 4,09            | 2,99                | 9,70E-05 | 0,38                                 | 0,04  | 1,01E-06          | 146,21 | 106,92            | 0,05                | 0,04                | 0,32              | 0,22              | 0,13      | 33,81 | 0,004    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 77  | 31/7/1996  | 1,66            | 3,12                | 1,05E-04 | 0,35                                 | 0,04  | 1,01E-06          | 61,29  | 115,38            | 0,04                | 0,05                | 0,11              | 0,24              | 0,14      | 34,75 | 0,005    | 8,08                   | 0,00                   | 161568,7            | 100,00    |
| 78  | 7/8/1996   | 3,05            | 2,69                | 8,00E-05 | 0,37                                 | 0,03  | 1,01E-06          | 99,38  | 87,60             | 0,04                | 0,04                | 0,22              | 0,19              | 0,11      | 34,04 | 0,004    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 79  | 14/8/1996  | 3,73            | 3,12                | 1,05E-04 | 0,42                                 | 0,04  | 1,01E-06          | 142,73 | 119,57            | 0,05                | 0,05                | 0,29              | 0,24              | 0,15      | 33,99 | 0,005    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 80  | 21/8/1996  | 4,35            | 2,85                | 8,90E-05 | 0,45                                 | 0,04  | 1,01E-06          | 154,30 | 101,16            | 0,05                | 0,04                | 0,35              | 0,21              | 0,13      | 33,89 | 0,005    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 81  | 28/8/1996  | 4,63            | 2,99                | 9,70E-05 | 0,36                                 | 0,04  | 1,01E-06          | 165,52 | 106,92            | 0,05                | 0,04                | 0,38              | 0,22              | 0,13      | 33,73 | 0,003    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 82  | 4/9/1996   | 2,89            | 3,76                | 1,47E-04 | 0,70                                 | 0,05  | 1,01E-06          | 142,09 | 185,08            | 0,05                | 0,05                | 0,23              | 0,32              | 0,25      | 34,56 | 0,036    | 9,04                   | 0,00                   | 25024,34            | 100,00    |
| 83  | 11/9/1996  | 4,79            | 4,83                | 2,31E-04 | 2,18                                 | 0,08  | 1,01E-06          | 368,21 | 371,56            | 0,06                | 0,06                | 0,47              | 0,47              | 0,61      | 35,84 | 3,697    | 176,92                 | 169,17                 | 4685,541            | 4475,79   |
| 84  | 2/10/1996  | 2,37            | 3,12                | 1,05E-04 | 0,50                                 | 0,04  | 1,01E-06          | 92,24  | 121,62            | 0,04                | 0,05                | 0,17              | 0,24              | 0,16      | 34,10 | 0,006    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 85  | 16/10/1996 | 4,69            | 3,81                | 1,50E-04 | 0,83                                 | 0,05  | 1,01E-06          | 238,98 | 193,97            | 0,05                | 0,05                | 0,42              | 0,32              | 0,27      | 34,70 | 0,250    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 86  | 6/11/1996  | 4,16            | 3,94                | 1,60E-04 | 0,93                                 | 0,05  | 1,01E-06          | 218,93 | 207,61            | 0,05                | 0,05                | 0,36              | 0,34              | 0,29      | 34,70 | 0,320    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 87  | 20/11/1996 | 4,40            | 3,52                | 1,30E-04 | 0,80                                 | 0,05  | 1,01E-06          | 208,72 | 166,83            | 0,05                | 0,05                | 0,38              | 0,29              | 0,23      | 34,70 | 0,034    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 88  | 6/12/1996  | 1,40            | 3,52                | 1,30E-04 | 0,70                                 | 0,05  | 1,01E-06          | 64,54  | 162,13            | 0,04                | 0,05                | 0,09              | 0,29              | 0,22      | 34,60 | 4,340    | 92,01                  | 0,00                   | 2019,934            | 100,00    |
| 89  | 9/1/1997   | <u> </u>        | 3,76                | 1,47E-04 | 0,82                                 | 0,05  | 1,01E-06          | 55,68  | 188,83            | 0,04                | 0,05                | 0,07              | 0,32              | 0,26      | 34,68 | 0,033    | 228,72                 | U,UU                   | 693006              | 100,00    |
| 90  | 22/1/1997  | 1,10            | 4,63                | 2,14E-04 | <b>, 1</b> ,19                       | 0,07  | 1,01E-06          | 70,92  | 298,74            | 0,04                | 0,06                | 0,07              | 0,43              | 0,43      | 34,78 | 0,146    | 913,23                 | 0,73                   | 625402,2            | 401,54    |
| 91  | 3/2/1997   | 0,98            | 4,63                | 2,14£-04 | 2,87                                 | 0,08  | 1,01E-06          | 72,92  | 344,75            | 0,04                | 0,06                | 0,07              | 0,44              | 0,58      | 36,46 | 21,990   | 3683,97                | 200,16                 | 16652,94            | 810,21    |
| 92  | 12/3/1997  | 1,10            | 3,76                | 1,47E-04 | 0,74                                 | 0,05  | 1,01E-06          | 50,82  | 173,92            | 0,04                | 0,05                | 0,07              | 0,31              | 0,22      | 34,32 | 1,010    | 164,84                 | 0,00                   | 16220,63            | 100,00    |
| 93  | 26/3/1997  | 1,03            | 3,40                | 1,22E-04 | 0,54                                 | 0,04  | 1,01E-06          | 40,99  | 135,13            | 0,04                | 0,05                | 0,06              | 0,27              | 0,16      | 33,84 | 0,160    | /1,26                  | 0,00                   | 44438,78            | 100,00    |
| 94  | 16/4/1997  | 1,16            | 2,99                | 9,70E-05 | 0,43                                 | 0,03  | 1,01E-06          | 39,61  | 102,13            | 0,04                | 0,04                | 0,07              | 0,22              | 0,12      | 33,64 | 0,032    | 20,21                  | 0,00                   | 63056,2             | 100,00    |
| 95  | 14/5/1997  | 1,18            | 3,12                | 1,05E-04 | 0,34                                 | 0,04  | 1,01E-06          | 40,90  | 108,32            | 0,04                | 0,05                | 0,07              | 0,23              | 0,12      | 33,16 | 0,104    | 17,30                  | 0,00                   | 16532,24            | 100,00    |
| 96  | 4/6/1997   | 4,92            | 3,40                | 1,22E-04 | 0,46                                 | 0,04  | 1,01E-06          | 193,62 | 133,62            | 0,05                | 0,05                | 0,42              | 0,26              | 0,16      | 33,64 | 0,006    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 97  | 2/7/1997   | 4,40            | 3,40                | 1,22E-04 | U,44                                 | 0,04  | 1,01E-06          | 172,50 | 133,11            | 0,05                | 0,05                | 0,36              | 0,26              | 0,16      | 33,84 | 0,005    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 98  | 12/8/1997  | 4,70            | 3,25                | 1,13E-04 | 0,48                                 | 0,04  | 1,01E-06          | 1/8,68 | 123,73            | 0,05                | 0,05                | 0,39              | 0,25              | 0,15      | 33,93 | 0,003    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 99  | 26/8/1997  | 2,46            | 3,76                | 1,47E-04 | 0,57                                 | 0,05  | 1,01E-06          | 109,83 | 168,06            | 0,05                | 0,05                | 0,18              | 0,31              | 0,21      | 33,97 | 0,005    | 8,73                   | 0,00                   | 161626,5            | 100,00    |
| 100 | 9/9/1997   | 2,25            | 3,12                | 1,05E-04 | 0,27                                 | 0,03  | 1,01E-06          | 15,67  | 105,09            | 0,04                | 0,04                | 0,15              | 0,23              | 0,12      | 33,40 | 0,002    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 101 | 23/9/1997  | 4,37            | 9,54                | 7,90E-04 | 0,52                                 | 0,10  | 1,01E-06          | 444,20 | 970,02            | 0,06                | 0,06                | 0,43              | 0,94              | 1,07      | 33,96 | 0,013    | 655,01                 | 60,59                  | 511/153             | 4/325/,// |
| 102 | 7/10/1997  | 0,85            | 3,66                | 1,40E-04 | U,48                                 | 0,04  | 1,01E-06          | 35,97  | 155,05            | 0,04                | 0,05                | 0,05              | 0,29              | 0,19      | 33,98 | 0,013    | 117,30                 | 0,00                   | 875270,1            | 100,00    |

Tabela 6.2c - Descargas calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj (Continuação)

| (1) | (2)        | (3)             | (4)                 | (5)      | (6)                 | (7)   | (8)               | (9)    | (10)              | (11)                | (12)                | (13)              | (14)              | (15)               | (16)  | (17)     | (18)                   | (19)                   | (20)                | (21)     |
|-----|------------|-----------------|---------------------|----------|---------------------|-------|-------------------|--------|-------------------|---------------------|---------------------|-------------------|-------------------|--------------------|-------|----------|------------------------|------------------------|---------------------|----------|
| N⁰  | DATA       | D <sub>90</sub> | D <sub>vj</sub> բող | S        | q = Q/B             | U,    | ν                 | R*50   | R∗ <sub>₽yj</sub> | $\theta_{\rm cD90}$ | $\theta_{\rm cDej}$ | $\tau_{\rm cD90}$ | τ <sub>cDvj</sub> | το                 | В     | qBm      | qB[SHI] <sub>100</sub> | qB[SHI] <sub>Dvj</sub> | E[%]D <sub>80</sub> | E[%]Dvj  |
|     |            | (mm)            | mm                  | (m/m)    | m <sup>3</sup> /s.m | (m/s) | m <sup>2</sup> /s | -      | -                 |                     |                     |                   |                   | Kgf/m <sup>2</sup> | (m)   | ton/d ia | to n/dia               | ton/dia                | -                   | -        |
| 103 | 21/10/1997 | 1,09            | 2,50                | 7,00E-05 | 0,57                | 0,03  | 1,01E-06          | 33,70  | 77,20             | 0,03                | 0,04                | 0,06              | 0,17              | 0,10               | 34,07 | 0,014    | 14,65                  | 0,00                   | 103811,5            | 100,00   |
| 104 | 4/11/1997  | 1,44            | 3,21                | 1,10E-04 | 0,43                | 0,04  | 1,01E-06          | 52,99  | 117,99            | 0,04                | 0,05                | 0,09              | 0,24              | 0,14               | 33,80 | 0,003    | 17,24                  | 0,00                   | 594397,9            | 100,00   |
| 105 | 2/12/1997  | 1,62            | 3,36                | 1,20E-04 | 0,66                | 0,04  | 1,01E-06          | 66,50  | 138,10            | 0,04                | 0,05                | 0,11              | 0,26              | 0,18               | 34,22 | 0,439    | 35,49                  | 0,00                   | 7984,152            | 100,00   |
| 106 | 16/12/1997 | 0,63            | 4,59                | 2,10E-04 | 1,19                | 0,06  | 1,01E-06          | 37,88  | 275,69            | 0,04                | 0,06                | 0,04              | 0,42              | 0,38               | 34,77 | 5,770    | 1477,89                | 0,00                   | 25513,42            | 100,00   |
| 107 | 13/1/1998  | 0,59            | 5,90                | 3,31E-04 | 1,23                | 0,08  | 1,01E-06          | 46,00  | 459,87            | 0,04                | 0,06                | 0,04              | 0,58              | 0,63               | 34,82 | 0,107    | 4534,56                | 36,79                  | 4237809             | 34284,05 |
| 108 | 27/1/1998  | 0,67            | 2,69                | 8,00E-05 | 0,65                | 0,03  | 1,01E-06          | 22,22  | 89,17             | 0,03                | 0,04                | 0,04              | 0,19              | 0,11               | 34,01 | 0,010    | 65,93                  | 0,00                   | 672626,1            | 100,00   |
| 109 | 11/2/1998  | 2,30            | 4,63                | 2,14E-04 | 1,55                | 0,07  | 1,01E-06          | 150,12 | 302,42            | 0,05                | 0,06                | 0,18              | 0,43              | 0,44               | 35,24 | 1,660    | 417,95                 | 8,60                   | 25077,52            | 417,98   |
| 110 | 26/2/1998  | 2,36            | 4,63                | 2,14E-04 | 2,02                | 0,07  | 1,01E-06          | 162,72 | 319,47            | 0,05                | 0,06                | 0,19              | 0,44              | 0,49               | 34,55 | 1,060    | 608,39                 | 58,24                  | 57295,16            | 5394,59  |
| 111 | 11/3/1998  | 2,59            | 4,22                | 1,81E-04 | 0,92                | 0,05  | 1,01E-06          | 139,64 | 227,71            | 0,05                | 0,05                | 0,20              | 0,37              | 0,30               | 34,68 | 1,600    | 69,99                  | 0,00                   | 4274,393            | 100,00   |
| 112 | 25/3/1998  | 0,93            | 4,43                | 1,97E-04 | 1,20                | 0,06  | 1,01E-06          | 54,91  | 261,32            | 0,04                | 0,05                | 0,06              | 0,40              | 0,36               | 35,22 | 0,310    | 859,71                 | 0,00                   | 277226,2            | 100,00   |
| 113 | 8/4/1998   | 1,22            | 3,52                | 1,30E-04 | 0,55                | 0,04  | 1,01E-06          | 50,31  | 145,01            | 0,04                | 0,05                | 0,08              | 0,28              | 0,18               | 33,54 | 0,034    | 62,06                  | 0,00                   | 182443,2            | 100,00   |
| 114 | 22/4/1998  | 1,86            | 2,54                | 7,20E-05 | 0,53                | 0,03  | 1,01E-06          | 58,94  | 80,36             | 0,04                | 0,04                | 0,12              | 0,18              | 0,10               | 33,96 | 0,004    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 115 | 6/5/1998   | 1,00            | 4,21                | 1,80E-04 | 1,61                | 0,06  | 1,01E-06          | 60,58  | 255,07            | 0,04                | 0,05                | 0,07              | 0,38              | 0,38               | 35,22 | 0,165    | 1023,83                | 2,56                   | 620401,8            | 1448,52  |
| 116 | 21/5/1998  | 0,94            | 4,00                | 1,64E-04 | 0,48                | 0,05  | 1,01E-06          | 44,33  | 188,59            | 0,04                | 0,05                | 0,06              | 0,34              | 0,23               | 34,01 | 0,005    | 158,46                 | 0,00                   | 3107026             | 100,00   |
| 117 | 3/6/1998   | 1,20            | 3,52                | 1,30E-04 | 0,60                | 0,04  | 1,01E-06          | 50,20  | 147,13            | 0,04                | 0,05                | 0,08              | 0,28              | 0,18               | 33,70 | 0,016    | 73,79                  | 0,00                   | 46 3979,2           | 100,00   |
| 118 | 17/6/1998  | 3,21            | 3,22                | 1,11E-04 | 0,43                | 0,04  | 1,01E-06          | 118,65 | 119,12            | 0,05                | 0,05                | 0,24              | 0,24              | 0,14               | 33,04 | 0,000    | 0,00                   | 0,00                   | 0                   | 0,00     |
| 119 | 15/7/1998  | 3,88            | 3,52                | 1,30E-04 | 0,47                | 0,04  | 1,01E-06          | 155,82 | 141,23            | 0,05                | 0,05                | 0,31              | 0,28              | 0,17               | 33,02 | 0,005    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 120 | 29/7/1998  | 3,85            | 2,99                | 9,70E-05 | 0,36                | 0,03  | 1,01E-06          | 125,55 | 97,53             | 0,05                | 0,04                | 0,30              | 0,22              | 0,11               | 32,50 | 0,002    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 121 | 12/8/1998  | 3,55            | 3,32                | 1,17E-04 | 0,40                | 0,04  | 1,01E-06          | 128,80 | 120,38            | 0,05                | 0,05                | 0,27              | 0,25              | 0,14               | 32,77 | 0,003    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 122 | 25/8/1998  | 3,75            | 2,85                | 8,90E-05 | 0,27                | 0,03  | 1,01E-06          | 112,95 | 85,90             | 0,05                | 0,04                | 0,28              | 0,20              | 0,09               | 32,08 | 0,000    | 0,00                   | 0,00                   | 0                   | 0,00     |
| 123 | 2/9/1998   | 4,06            | 2,99                | 9,70E-05 | 0,47                | 0,03  | 1,01E-06          | 139,74 | 102,94            | 0,05                | 0,04                | 0,32              | 0,22              | 0,12               | 32,90 | 0,000    | 0,00                   | 0,00                   | U                   | 0,00     |
| 124 | 16/9/1998  | 2,88            | 2,38                | 6,40E-05 | 0,36                | 0,03  | 1,01E-06          | 76,95  | 63,49             | 0,04                | 0,04                | 0,20              | 0,16              | 0,07               | 32,90 | 0,006    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 125 | 30/9/1998  | 4,16            | 2,69                | 8,00E-05 | 0,46                | 0,03  | 1,01E-06          | 131,05 | 84,70             | 0,05                | 0,04                | 0,32              | 0,19              | 0,10               | 32,87 | 0,004    | 0,00                   | 0,00                   | 100                 | 100,00   |
| 126 | 14/10/1998 | 2,95            | 4,59                | 2,10E-04 | 0,90                | 0,06  | 1,01E-06          | 161,82 | 251,53            | 0,05                | 0,05                | 0,24              | 0,41              | 0,31               | 33,28 | 0,024    | 49,66                  | 0,00                   | 211221,4            | 100,00   |
| 127 | 28/10/1998 | 2,83            | 4,43                | 1,97E-04 | 0,65                | 0,05  | 1,015-06          | 139,36 | 217,96            | 0,05                | 0,05                | 0,22              | 0,38              | 0,25               | 32,92 | 0,010    | 14,02                  | 0,00                   | 135981,7            | 100,00   |
| 128 | 11/11/1998 | 3,50            | 3,76                | 1,47E-04 | U, 57               | 0,04  | 1,015-06          | 137,16 | 145,03            | 0,05                | 0,05                | 0,28              | 0,30              | 0,15               | 31,40 | 0,000    | 0,00                   | 0,00                   | U                   | 0,00     |
| 129 | 25/11/1998 | 1,97            | 4,21                | 1,80E-04 | 0,37                | 0,04  | 1,01E-06          | 83,18  | 1//,/9            | 0,04                | 0,05                | 0,14              | 0,35              | 0,19               | 31,29 | 0,000    | 15,76                  | 0,00                   | U                   | 0,00     |
| 130 | 9/12/1998  | 1,85            | 4,82                | 2,30E-04 | U,73                | 0,06  | 1,015-06          | 102,58 | 201,31            | 0,04                | 0,06                | 0,14              | 0,44              | 0,32               | 33,18 | 0,000    | 176,51                 | 0,00                   | U                   | 0,00     |
| 131 | 22/12/1998 | 0,84            | 4,59                | 2,10E-04 | U,67                | 0,05  | 1,01E-06          | 43,21  | 235,85            | 0,04                | 0,05                | 0,05              | 0,40              | 0,28               | 52,95 | 0,000    | 391,38                 | 0,00                   | 220422 0            | 4000.00  |
| 132 | 6/1/1999   | 0,34            | 4,82                | 2,30E-04 | 1,40                | 0,07  | 1,01E-06          | 23,23  | 329,42            | 0,03                | 0,06                | 0,02              | 0,46              | 0,49               | 34,79 | 1,4/8    | 4880,73                | 19,80                  | 330125,6            | 1239,89  |
| 133 | 21/1/1999  | 0,33            | 5,38                | 2,80E-04 | 2,00                | 0,08  | 1,01E-06          | 26,08  | 424,94            | 0,03                | 0,06                | 0,02              | 0,53              | 0,65               | 36,23 | 3,703    | 119/3,03               | 136,52                 | 323233,1            | 3586,61  |
| 134 | 28/1/1999  | 0,38            | 5,59                | 3,00E-04 | 2,75                | 0,09  | 1,01E-06          | 32,91  | 483,75            | 0,03                | 0,06                | 0,02              | 0,55              | 0,78               | 35,81 | 0,000    | 7764 27                | 381,14                 | 275425.0            | 200.20   |
| 135 | 3/2/1999   | 0,28            | 5,05                | 2,50E-04 | 1457                | 0,07  | 1,01E-06          | 19,01  | 353,64            | 0,03                | 0,06                | 0,01              | 0,49              | 0,51               | 35,18 | 2,820    | 1101,31                | 19,42                  | 210120,9            | 588,58   |
| 136 | 11/2/1999  | . 0,35          | 5,38                | 2,80E-04 | L,96                | 0,08  | 1,01E-06          | 27,18  | 417,54            | 0,03                | 0,06                | 0,02              | 0,53              | 0,63               | 35,26 | : 3,047  | 10690,05               | 108,67                 | 350738,6            | 3466,33  |

Tabela 6.2c - Descargas calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj (Continuação)

| (1)        | (2)                    | (3)             | (4)                 | (5)      | (6)                                  | (7)   | (8)      | (9)    | (10)              | (11)                | (12)                | (13)              | (14)              | (15)               | (16)  | (17)     | (18)                   | (19)                   | (20)                | (21)      |
|------------|------------------------|-----------------|---------------------|----------|--------------------------------------|-------|----------|--------|-------------------|---------------------|---------------------|-------------------|-------------------|--------------------|-------|----------|------------------------|------------------------|---------------------|-----------|
| N⁰         | DATA                   | D <sub>90</sub> | D <sub>Vj</sub> seq | S        | $\mathbf{q} = \mathbf{Q}/\mathbf{B}$ | U,    | γ        | R*50   | R∗ <sub>Dyj</sub> | $\theta_{\rm cD90}$ | $\theta_{\rm cDrj}$ | $\tau_{\rm cD90}$ | τ <sub>cDvj</sub> | τ,                 | В     | qBm      | qB[SHI] <sub>D90</sub> | qB[SHI] <sub>Dvj</sub> | E[%]D <sub>80</sub> | E[%]Dvj   |
|            |                        | (mm)            | mm                  | (m/m)    | m <sup>3</sup> /s.m                  | (m/s) | m²/s     | -      | -                 |                     |                     |                   |                   | Kgf/m <sup>2</sup> | (m)   | ton/d ia | ton/dia                | ton/dia                | -                   | -         |
| 137        | 25/2/1999              | 3,73            | 5,05                | 2,50E-04 | 1,98                                 | 0,07  | 1,01E-06 | 272,50 | 368,91            | 0,06                | 0,06                | 0,34              | 0,49              | 0,56               | 35,52 | 5,114    | 321,98                 | 69,47                  | 6196,095            | 1258,42   |
| 138        | 11/3/1999              | 0,40            | 4,82                | 2,30E-04 | 1,95                                 | 0,07  | 1,01E-06 | 28,34  | 341,68            | 0,03                | 0,06                | 0,02              | 0,46              | 0,52               | 35,20 | 1,803    | 6252,49                | 62,21                  | 346682,4            | 3350,60   |
| 139        | 25/3/1999              | 0,48            | 5,59                | 3,00E-04 | 1,89                                 | 0,08  | 1,01E-06 | 38,41  | 447,01            | 0,04                | 0,06                | 0,03              | 0,55              | 0,67               | 34,99 | 3,640    | 8358,40                | 127,34                 | 229526,5            | 3398,25   |
| 140        | 15/4/1999              | 0,47            | 4,82                | 2,30E-04 | 0,70                                 | 0,06  | 1,01E-06 | 26,25  | 269,29            | 0,03                | 0,06                | 0,03              | 0,44              | 0,32               | 33,72 | 0,020    | 1101,93                | 0,00                   | 5509543             | 100,00    |
| 141        | 29/4/1999              | 0,78            | 9,74                | 8,20E-04 | 0,50                                 | 0,10  | 1,01E-06 | 77,13  | 963,32            | 0,04                | 0,06                | 0,05              | 0,96              | 1,02               | 33,27 | 0,013    | 5314,07                | 23,13                  | 40877363            | 177847,12 |
| 142        | 13/5/1999              | 0,37            | 5,16                | 2,60E-04 | 0,62                                 | 0,06  | 1,01E-06 | 21,18  | 295,34            | 0,03                | 0,06                | 0,02              | 0,48              | 0,34               | 33,41 | 0,023    | 1483,04                | 0,00                   | 6447899             | 100,00    |
| 143        | 9/6/1999               | 5,12            | 4,46                | 2,00E-04 | 0,54                                 | 0,05  | 1,01E-06 | 248,02 | 216,20            | 0,05                | 0,05                | 0,46              | 0,39              | 0,24               | 33,29 | 0,010    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 144        | 22/7/1999              | 3,26            | 4,59                | 2,10E-04 | 0,44                                 | 0,05  | 1,01E-06 | 147,96 | 208,11            | 0,05                | 0,05                | 0,26              | 0,39              | 0,21               | 32,52 | 0,003    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 145        | 5/8/1999               | 3,82            | 4,63                | 2,14E-04 | 0,39                                 | 0,05  | 1,01E-06 | 174,16 | 211,24            | 0,05                | 0,05                | 0,32              | 0,40              | 0,22               | 32,65 | 0,002    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 146        | 19/8/1999              | 1,34            | 4,59                | 2,10E-04 | 0,40                                 | 0,05  | 1,01E-06 | 60,82  | 208,11            | 0,04                | 0,05                | 0,09              | 0,39              | 0,21               | 32,78 | 0,004    | 82,92                  | 0,00                   | 2073002             | 100,00    |
| 147        | 2/9/1999               | 5,03            | 2,07                | 5,00E-05 | 0,31                                 | 0,02  | 1,01E-06 | 107,50 | 44,30             | 0,04                | 0,04                | 0,37              | 0,13              | 0,05               | 32,07 | 0,000    | 0,00                   | 0,00                   | U                   | 0,00      |
| 148        | 15/9/1999              | 3,27            | 4,59                | 2,10E-04 | 0,59                                 | 0,05  | 1,01E-06 | 164,30 | 230,38            | 0,05                | 0,05                | 0,27              | 0,40              | 0,26               | 33,31 | 0,343    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 149        | 30/9/1999              | 1,64            | 4,21                | 1.80E-04 | 0,26                                 | 0,04  | 1,015-06 | 65,45  | 168,03            | 0,04                | 0,05                | 0,11              | 0,34              | 0,17               | 32,02 | 0,001    | 16,24                  | 0,00                   | 1623968             | 100,00    |
| 0-11       | 14/10/1999             | 2,43            | 4,59                | 2,10E-04 | U,32                                 | 0,04  | 1,015-06 | 100,44 | 200,84            | 0,04                | 0,05                | 0,18              | 0,39              | 0,20               | 32,41 | 0,003    | 5,58                   | 0,00                   | 105//3,2            | 100,00    |
| 151        | 28/10/1999             | 3,70            | 4,82                | 2,30E-04 | U,43                                 | 0,05  | 1,015-06 | 180,00 | 234,58            | 0,05                | 0,05                | 0,31              | 0,43              | 0,25               | 32,88 | 0,021    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 152        | 11/11/1999             | 0,48            | 4,40                | 2,00E-04 | 0,36                                 | 0.04  | 1,015-06 | 21,05  | 195,14            | 0,03                | 0,05                | 0.42              | 0,30              | 0,20               | 32,80 | 20,000   | 211,91                 | 0,00                   | 472000              | 100,00    |
| 153        | 25/11/1999             | 1,83            | 4,0Z<br>Z 4C        | 2,30E-04 | 0,08                                 | 0,05  | 1,015-06 | 33,20  | 201,94            | 0.02                | 0,00                | 0,13              | 0,44              | 0,31               | 34,88 | 0,009    | 154,14                 | 0,00                   | 173090              | 100,00    |
| 154        | 9/12/1999              | 4,50            | 9,10<br>7.14        | 4 00E-04 | 0,09                                 | 0.00  | 1,016-06 | 291,94 | 233,34            | 0,00                | 0,00                | 0.95              | 0,40              | 0,34               | 33,19 | 0,030    | 0.40                   | 0,00                   | 2760 444            | 100,00    |
| 177        | 23/12/1999<br>2/1/2000 | 3,70            | 6 29                | 4,00E-04 | 0,17                                 | 0,00  | 1,010-06 | 231,04 | 420,91            | 0,00                | 0,00                | 0,30              | 0,12              | 0,30               | 30,40 | 0,003    | 49443                  | 464.36                 | 31 00,441           | 75304 43  |
| 120<br>127 | 0/1/2000               | 4,00            | 5,50                | 2,80E-04 | 2_33<br>0.53                         | 0,00  | 1,01000  | 108 32 | 265 52            | 0.05                | 0,00                | 0,30              | 0,55              | 0,00               | 30,07 | 0,214    | 90 96                  | 0 0 0                  | 220123,1            | 1001,42   |
| 127        | 20/1/2000              | 673             | 5,05                | 2,70E-04 | 0,50                                 | 0.05  | 1,01200  | 207 69 | 205,52            | 0.06                | 0,05                | 0,15              | 0.46              | 0,20               | 32,71 | 0.044    | 0.00                   | 0,00                   | 20321,51            | 100,00    |
| 120        | 20/1/2000              | 0.02            | 5,05                | 2,50E-04 | 0,50                                 | 0,05  | 1,01000  | 1 68   | 205,52            | 0,00                | 0,05                | 0,55              | 0,40              | 0,23               | 33,57 | 0,041    | 19488 63               | 0,00                   | 24653933            | 100,00    |
| 160        | 3/2/2000               | 0,05            | 6 64                | 4 10F-04 | 0,00                                 | 0.08  | 101506   | 0.75   | 500,45            | 0.11                | 0.06                | 0,00              | 0,40              | 0,55               | 34,00 | 0 553    | 238822 79              | 0,00                   | 431 86661           | 100,00    |
| 161        | 9/2/2000               | 0.64            | 4.82                | 2.30E-04 | 0.60<br>1.60                         | 0.05  | 1.01E-06 | 32.83  | 247.39            | 0.03                | 0.05                | 0.04              | 0.43              | 0.27               | 33,10 | 0.487    | 540.67                 | 0.00                   | 110919.6            | 100,00    |
| 162        | 18/2/2000              | 1.35            | 5.38                | 2.80E-04 | 1.19                                 | 0.07  | 1.01E-06 | 88.61  | 352.89            | 0.04                | 0.06                | 0.10              | 0.52              | 0.45               | 34.70 | 0.447    | 956.86                 | 0.00                   | 21 3961.6           | 100.00    |
| 163        | 24/2/2000              | 0.39            | 3,52                | 1.30E-04 | 0.84                                 | 0.04  | 1.01E-06 | 16,20  | 146.08            | 0.03                | 0,05                | 0.02              | 0,28              | 0,18               | 33.56 | 0,603    | 474,49                 | 0.00                   | 78587,48            | 100.00    |
| 164        | 3/3/2000               | 2.08            | 7.08                | 4.60E-04 | 0.78                                 | 0.08  | 1.01E-06 | 157.13 | 534.50            | 0.05                | 0.06                | 0,17              | 0.70              | 0.59               | 33.42 | 0.219    | 779,74                 | 0.00                   | 355947.1            | 100.00    |
| 165        | 10/3/2000              | 0.37            | 5.38                | 2.80E-04 | 0.59                                 | 0.06  | 1.01E-06 | 20.32  | 295,25            | 0.03                | 0.06                | 0.02              | 0.50              | 0.31               | 32,88 | 0.040    | 1372.56                | 0.00                   | 3431292             | 100,00    |
| 166        | 17/3/2000              | 3.53            | 6,18                | 3.60E-04 | 0.67                                 | 0,06  | 1,01E-06 | 224,66 | 393,21            | 0,05                | 0,06                | 0,31              | 0,61              | 0,42               | 33.27 | 0,218    | 81,22                  | 0,00                   | 37155,46            | 100,00    |
| 167        | 24/3/2000              | 2,85            | 4,46                | 2.00E-04 | 0,98                                 | 0,05  | 1.01E-06 | 148,94 | 233,25            | 0,05                | 0,05                | 0,23              | 0,39              | 0,28               | 34,12 | 0,491    | 42,33                  | 0,00                   | 8521,435            | 100,00    |
| 168        | 31/3/2000              | 1.65            | 5,59                | 3,00E-04 | 1.63                                 | 0,08  | 1,01E-06 | 123,12 | 416,79            | 0,05                | 0,06                | 0,13              | 0,55              | 0,58               | 35,27 | 1,121    | 1506,49                | 25,59                  | 134288              | 2182,57   |
| 169        | 7/4/2000               | 5,64            | 5,16                | 2.60E-04 | 0,44                                 | 0,05  | 1,01E-06 | 287,60 | 263,15            | 0,06                | 0,05                | 0,52              | 0,47              | 0,27               | 32,77 | 0,050    | 0,00                   | 0,00                   | 100                 | 100,00    |
| 170        | 14/4 <b>/20</b> 00     | 2,45            | 4,82                | 2,30E-04 | 0,38                                 | 0,05  | 1,01E-06 | 111,71 | 219,87            | 0,05                | 0,05                | 0,18              | 0,42              | 0,22               | 32,20 | 0,005    | 11,84                  | 0,00                   | 236765              | 100,00    |

Tabela 6.2c - Descargas calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj (Continuação)

| (1) | (2)       | (3)             | (4)    | (5)      | (6)                 | (7)   | (8)               | (9)    | (10)              | (11)                | (12)                | (13)              | (14)              | (15)           | (16)  | (17)     | (18)                   | (19)                   | (20)                | (21)    |
|-----|-----------|-----------------|--------|----------|---------------------|-------|-------------------|--------|-------------------|---------------------|---------------------|-------------------|-------------------|----------------|-------|----------|------------------------|------------------------|---------------------|---------|
| N⁰  | DATA      | D <sub>90</sub> | Dvj sm | S        | q = Q/B             | U.    | ν                 | R*50   | R∗ <sub>Þyj</sub> | $\theta_{\rm cD90}$ | $\theta_{\rm cDej}$ | $\tau_{\rm cD90}$ | τ <sub>cDoj</sub> | τ <sub>o</sub> | В     | qBm      | qB[SHI] <sub>100</sub> | qВ[SHI] <sub>Dvj</sub> | E[%]D <sub>80</sub> | E[%]Dvj |
|     |           | (mm)            | mm     | (m/m)    | m <sup>3</sup> /s.m | (m/s) | m <sup>2</sup> /s | -      | -                 |                     |                     |                   |                   | $Kgf/m^2$      | (m)   | ton/d ia | to n/dia               | ton/dia                | -                   | -       |
| 171 | 19/4/2000 | 5,26            | 5,05   | 2,50E-04 | 0,35                | 0,05  | 1,01E-06          | 247,38 | 237,49            | 0,05                | 0,05                | 0,47              | 0,45              | 0,23           | 31,99 | 0,012    | 0,00                   | 0,00                   | 100                 | 100,00  |
|     |           |                 |        |          |                     |       |                   |        |                   |                     |                     |                   |                   |                |       |          |                        | Média                  | 998468              | 5975,50 |

Tabela 6.2 c - Descargas calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj (Continuação)

 $qB[SHI]_{D90}$  - Descarga solida calculada pelo método de Shields usando o diâmetro  $D_{90}$  $qB[SHI]_{Dyj}$  - Descarga solida calculada pelo método de Shields usando o diâmetro  $Dy_j$ 

| (1) | (2)        | (3)             | (4)                   | (5)      | (6)                                  | (7)           | (8)      | (9)    | (10)             | (11)                | (12)                | (13)              | (14)              | (15)            | (16)  | (17)     | (18)                   | (19)                  | (20)                 | (21)      |
|-----|------------|-----------------|-----------------------|----------|--------------------------------------|---------------|----------|--------|------------------|---------------------|---------------------|-------------------|-------------------|-----------------|-------|----------|------------------------|-----------------------|----------------------|-----------|
| N°  | DATA       | D <sub>90</sub> | D <sub>Vj [SEI]</sub> | S        | $\mathbf{q} = \mathbf{Q}/\mathbf{B}$ | U.            | ν        | R.,90  | R <sub>Dyj</sub> | $\theta_{\rm cD90}$ | $\theta_{\rm cDvi}$ | $\tau_{\rm cD90}$ | T <sub>cDvi</sub> | $\tau_0$        | В     | qBm      | qВ[SHI] <sub>D90</sub> | qB[SHI] <sub>Dj</sub> | E [%]D <sub>90</sub> | E [%]D vj |
|     |            | (mm             | mm                    | (m/m)    | m <sup>3</sup> /s.m                  | (m/s)         | m²/s     | -      |                  | 34554946            |                     | 638CP*38          |                   | Kgf⁄ m²         | (m)   | ton/d ia | ton/d ia               | ton/dia               | 100                  | 25        |
| 40  | 22/12/1994 | 2,51            | 4,63                  | 2,14E-04 | 1,98                                 | 0,07          | 1,01E-06 | 185,01 | 341,53           | 0,05                | 0,06                | 0,21              | 0,44              | 0,56            | 35,68 | 0,218    | 678,35                 | 125,23                | 311068,2             | 57344,2   |
| 41  | 5/1/1995   | 1,36            | 4,83                  | 2,31E-04 | 1,60                                 | 0,07          | 1,01E-06 | 96,79  | 344,00           | 0,04                | 0,06                | 0,10              | 0,46              | 0,53            | 35,27 | 0,523    | 1300,42                | 53,64                 | 248546,6             | 10155,9   |
| 45  | 16/2/1995  | 2,70            | 5,02                  | 2,47E-04 | 1,93                                 | 0,08          | 1,01E-06 | 205,55 | 381,87           | 0,05                | 0,06                | 0,23              | 0,49              | 0,60            | 35,40 | 0,485    | 735,49                 | 117,25                | 151548,0             | 24075,5   |
| 47  | 24/3/1995  | 4,03            | 4,21                  | 1,80E-04 | 1,83                                 | 0,07          | 1,01E-06 | 261,91 | 273,64           | 0,05                | 0,06                | 0,36              | 0,38              | 0,44            | 35,38 | 1,721    | 68,91                  | 48,36                 | 3904,4               | 2710,0    |
| 48  | 7/4/1995   | 1,10            | 4,43                  | 1,97E-04 | 1,35                                 | 0,06          | 1,01E-06 | 68,72  | 276,50           | 0,04                | 0,06                | 0,07              | 0,40              | 0,41            | 35,05 | 0,171    | 893,28                 | 0,68                  | 522286,0             | 300,3     |
| 54  | 12/7/1995  | 0,92            | 4,93                  | 2,39E-04 | <b>L</b> 31                          | 0,07          | 1,01E-06 | 63,92  | 342,19           | 0,04                | 0,06                | 0,06              | 0,47              | 0,50            | 35,03 | 4,163    | 1670,36                | 21,01                 | 40024,0              | 404,7     |
| 59  | 21/9/1995  | 1,14            | 7,19                  | 4,73E-04 | 0,64                                 | 0,09          | 1,01E-06 | 97,25  | 612,99           | 0,04                | 0,06                | 0,08              | 0,71              | 0,76            | 34,28 | 0,031    | 1934,83                | 20,70                 | 6241280,2            | 66660,0   |
| 62  | 19/10/1995 | 3,79            | 4,31                  | 1,88E-04 | 1,39                                 | 0,06          | 1,01E-06 | 235,74 | 268,28           | 0,05                | 0,06                | 0,33              | 0,39              | 0,40            | 35,02 | 0,205    | 52,03                  | 7,08                  | 25280,3              | 3353,9    |
| 65  | 10/1/1996  | 1,75            | 4,63                  | 2,14E-04 | 2,88                                 | 0,08          | 1,01E-06 | 137,51 | 364,07           | 0,05                | 0,06                | 0,14              | 0,45              | 0,64            | 36,91 | 5,141    | 2082,83                | 298,67                | 40414,1              | 5709,5    |
| 68  | 6/3/1996   | 0,56            | 4,54                  | 2,06E-04 | 1,70                                 | 0,07          | 1,01E-06 | 38,05  | 308,23           | 0,04                | 0,06                | 0,03              | 0,43              | 0,48            | 35,36 | 3,542    | 3138,93                | 47,66                 | 88520,4              | 1245,5    |
| 69  | 20/3/1996  | 1,69            | 5,02                  | 2,47E-04 | 3,05                                 | 0,09          | 1,01E-06 | 142,42 | 422,72           | 0,05                | 0,06                | 0,13              | 0,50              | 0,74            | 36,55 | 1,150    | 3127,69                | 421,38                | 271873,1             | 36542,1   |
| 83  | 11/9/1996  | 4,79            | 4,83                  | 2,31E-04 | 2,18                                 | 0,08          | 1,01E-06 | 368,21 | 371,56           | 0,06                | 0,06                | 0,47              | 0,47              | 0,61            | 35,84 | 3,697    | 176,92                 | 169,17                | 4685,5               | 4475,8    |
| 90  | 22/1/1997  | 1,10            | 4,63                  | 2,14E-04 | L,19                                 | 0,07          | 1,01E-06 | 70,92  | 298,74           | 0,04                | 0,06                | 0,07              | 0,43              | 0,43            | 34,78 | 0,146    | 913,23                 | 0,73                  | 625402,2             | 401,5     |
| 91  | 3/2/1997   | 0,98            | 4,63                  | 2,14E-04 | 2,87                                 | 0,08          | 1,01E-06 | 72,92  | 344,75           | 0,04                | 0,06                | 0,07              | 0,44              | 0,58            | 36,46 | 21,990   | 3683,97                | 200,16                | 166 52,9             | 810,2     |
| 101 | 23/9/1997  | 4,37            | 9,54                  | 7,90E-04 | 0,52                                 | 0,10          | 1,01E-06 | 444,20 | 970,02           | 0,06                | 0,06                | 0,43              | 0,94              | 1,07            | 33,96 | 0,013    | 655,01                 | 60,59                 | 5117153,1            | 473257,8  |
| 107 | 13/1/1998  | 0,59            | 5,90                  | 3,31E-04 | 1,23                                 | 0,08          | 1,01E-06 | 46,00  | 459,87           | 0,04                | 0,06                | 0,04              | 0,58              | 0,63            | 34,82 | 0,107    | 4534,56                | 36,79                 | 4237808,7            | 34284,0   |
| 109 | 11/2/1998  | 2,30            | 4,63                  | 2,14E-04 | 1,55                                 | 0,07          | 1,01E-06 | 150,12 | 302,42           | 0,05                | 0,06                | 0,18              | 0,43              | 0,44            | 35,24 | 1,660    | 417,95                 | 8,60                  | 25077,5              | 418,0     |
| 110 | 26/2/1998  | 2,36            | 4,63                  | 2,14E-04 | 2,02                                 | 0,07          | 1,01E-06 | 162,72 | 319,47           | 0,05                | 0,06                | 0,19              | 0,44              | 0,49            | 34,55 | 1,060    | 608,39                 | 58,24                 | 57295,2              | 5394,6    |
| 115 | 6/5/1998   | 1,00            | 4,21                  | 1,80E-04 | 1,61                                 | 0,06          | 1,01E-06 | 60,58  | 255,07           | 0,04                | 0,05                | 0,07              | 0,38              | 0,38            | 35,22 | 0,165    | 1023,83                | 2,56                  | 620401,8             | 1448,5    |
| 132 | 6/1/1999   | 0,34            | 4,82                  | 2,30E-04 | <b>1,40</b>                          | 0,07          | 1,01E-06 | 23,23  | 329,42           | 0,03                | 0,06                | 0,02              | 0,46              | 0,49            | 34,79 | 1,478    | 4880,73                | 19,80                 | 330125,6             | 1239,9    |
| 133 | 21/1/1999  | 0,33            | 5,38                  | 2,80E-04 | 2,00                                 | 0,08          | 1,01E-06 | 26,08  | 424,94           | 0,03                | 0,06                | 0,02              | 0,53              | 0,65            | 35,23 | 3,703    | 11973,03               | 136,52                | 323233,1             | 3586,6    |
| 135 | 3/2/1999   | 0,28            | 5,05                  | 2,50E-04 | 1,57                                 | 0,07          | 1,01E-06 | 19,61  | 353,64           | 0,03                | 0,06                | 0,01              | 0,49              | 0,51            | 35,18 | 2,820    | 7761,37                | 19,42                 | 275125,9             | 588,6     |
| 136 | 11/2/1999  | 0,35            | 5,38                  | 2,80E-04 | 1,96                                 | 0,08          | 1,01E-06 | 27,18  | 417,54           | 0,03                | 0,06                | 0,02              | 0,53              | 0,63            | 35,26 | 3,047    | 10690,05               | 108,67                | 3507 38,6            | 3466,3    |
| 137 | 25/2/1999  | 3,73            | 5,05                  | 2,50E-04 | 1,98                                 | 0,07          | 1,01E-06 | 272,50 | 368,91           | 0,06                | 0,06                | 0,34              | 0,49              | 0,56            | 35,52 | 5,114    | 321,98                 | 69,47                 | 6196,1               | 1258,4    |
| 138 | 11/3/1999  | 0,40            | 4,82                  | 2,30E-04 | 1,9 <del>5</del>                     | 0,07          | 1,01E-06 | 28,34  | 341,68           | 0,03                | 0,06                | 0,02              | 0,46              | 0,52            | 35,20 | 1,803    | 6252,49                | 62,21                 | 3466 82,4            | 3350,6    |
| 139 | 25/3/1999  | 0,48            | 5,59                  | 3,00E-04 | 1,89                                 | 0,08          | 1,01E-06 | 38,41  | 447,01           | 0,04                | 0,06                | 0,03              | 0,55              | 0,67            | 34,99 | 3,640    | 8358,40                | 127,34                | 229526,5             | 3398,2    |
| 141 | 29/4/1999  | 0,78            | 9,74                  | 8,20E-04 | 0,50                                 | 0,10          | 1,01E-06 | 77,13  | 963,32           | 0,04                | 0,06                | 0,05              | 0,96              | 1,02            | 33,27 | 0,013    | 5314,07                | 23,13                 | 40877362,6           | 177847,1  |
| 156 | 6/1/2000   | 4,06            | 5,38                  | 2,80E-04 | 2,33                                 | 0,08          | 1,01E-06 | 320,89 | 424,94           | 0,06                | 0,06                | 0,38              | 0,53              | 0,65            | 35,69 | 0,214    | 484,12                 | 161,36                | 226125,7             | 75301,4   |
| 168 | 31/3/2000  | 1,65            | 5,59                  | 3,00E-04 | 1,63                                 | 0,08          | 1,01E-06 | 123,12 | 416,79           | 0,05                | 0,06                | 0,13              | 0,55              | 0,58            | 35,27 | 1,121    | 1506,49                | 25,59                 | 134288.0             | 2182,6    |
|     |            |                 |                       |          |                                      | 90000 Boogoon |          |        | A                | 5F                  |                     |                   |                   | ••••••••••••••• |       |          | ******                 | Média                 | 2129263,0            | 34524,5   |

Tabela 6.2c1 - Descargas maiores que zero calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj

| (1) | (2)        | (3)               | (4)        | (5)                   | (6)    | (7)    | (8)   | (9)            | (10)                       | (11)                                   | (12)                                  | (13)             | (14)             | (15)   | (16)    | (17)              | (18)                           | (19)           | (20)     |
|-----|------------|-------------------|------------|-----------------------|--------|--------|-------|----------------|----------------------------|----------------------------------------|---------------------------------------|------------------|------------------|--------|---------|-------------------|--------------------------------|----------------|----------|
| N°  | DATA       | $\mathbf{D}_{90}$ | D. N [MPM] | n                     | n´     | Ъ      | n /n  | $\theta_{i_m}$ | $\theta_{i_{\text{Deri}}}$ | [n´/n] <sup>3/2</sup> θi <sub>90</sub> | [n´/n] <sup>3/2</sup> க் <sub>ங</sub> | Φ <sub>D90</sub> | φ <sub>Dui</sub> | B      | qBm     | <b>4B[MPM]</b> ∞0 | q <b>В[</b> МРМ] <sub>оң</sub> | <b>Ε[%]D</b> ∞ | E[%]Dvj  |
|     |            | (mm)              | nm         | Manning               |        | Kgť m² |       |                | 201                        |                                        |                                       |                  |                  | (m)    | ton/dia |                   |                                |                |          |
| 1   | 26/3/1993  | 1,860             | 1,220      | 0£27                  | 0 β 13 | 0,264  | 0,471 | 0,086          | 0,131                      | 0,028                                  | 0,042                                 | 0,000            | 0,000            | 34,700 | 0,141   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 2   | 6/4/1993   | 3,820             | 0,992      | 0£30                  | 0ρ12   | 0,227  | 0,410 | 0,036          | 0,138                      | 0,009                                  | 0,036                                 | 0,000            | 0,000            | 34,870 | 0,038   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 3   | 20/4/1993  | 4,110             | 0,827      | 0 <i>p</i> 33         | 0ρ12   | 0,200  | 0,354 | 0,029          | 0,146                      | 0,006                                  | 0,031                                 | 0,000            | 0,000            | 34,880 | 0,046   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 4   | 4/5/1993   | 4,220             | 1,046      | 0£32                  | 0ρ12   | 0,253  | 0,381 | 0,036          | 0,147                      | 0,009                                  | 0,035                                 | 0,000            | 0,000            | 34,780 | 0,046   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 5   | 18/5/1993  | 1,230             | 0,675      | 0£36                  | 0ρ11   | 0,168  | 0,315 | 0,083          | 0,151                      | 0,015                                  | 0,027                                 | 0,000            | 0,000            | 34,380 | 0,024   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 6   | 1/6/1993   | 3,130             | 40 کړ 1    | 0£27                  | 0 ρ13  | 0,347  | 0,479 | 0,067          | 0,136                      | 0,022                                  | 0,045                                 | 0,000            | 0,000            | 35,240 | 0,19    | 0,000             | 0,000                          | 100,000        | 100,000  |
| 7   | 8/6/1993   | 1,420             | 0,907      | 0.p27                 | 0.012  | 0,190  | 0,449 | 0,081          | 0,127                      | 0,024                                  | 0,038                                 | 0,000            | 0,000            | 34,910 | 0,026   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 8   | 15/6/1993  | 3,780             | 0,834      | 0£31                  | 0ρ12   | 0,194  | 0,377 | 0,031          | 0,141                      | 0,007                                  | 0,033                                 | 0,000            | 0,000            | 34,210 | 0,008   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 9   | 22/6/1993  | 4,940             | 0,783      | 0£29                  | 0ρ12   | 0,174  | 0,398 | 0,021          | 0,134                      | 0,005                                  | 0,034                                 | 0,000            | 0,000            | 34,540 | 0,008   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 10  | 29/6/1993  | 2,000             | 54گر 0     | 0 <i>p</i> 39         | 0ρ11   | 0,143  | 0,283 | 0,043          | 0,156                      | 0,007                                  | 0,024                                 | 0,000            | 0,000            | 33,990 | 0,007   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 11  | 6/7/1993   | 4,750             | 0,397      | 0£36                  | 0,ρ10  | 0,092  | 0,288 | 0,012          | 0,141                      | 0,002                                  | 0,022                                 | 0,000            | 0,000            | 33,770 | 0,002   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 12  | 21/7/1993  | 4,500             | 0,333      | 0.p3.s                | 0ρ10   | 0,074  | 0,292 | 0,010          | 0,134                      | 0,002                                  | 0,021                                 | 0,000            | 0,000            | 33¢40  | 0,006   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 13  | 3/8/1993   | 4,700             | 0,198      | 0,044                 | 0 £00  | 0,048  | 0,211 | 0,006          | 0,147                      | 0,001                                  | 0,014                                 | 0,000            | 0,000            | 32,820 | 0,002   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 14  | 17/8/1993  | 4,020             | 0,163      | 0£21                  | 0,009  | 0,023  | 0,426 | 0,004          | 0,087                      | 0,001                                  | 0,024                                 | 0,000            | 0,000            | 33,530 | 0,002   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 15  | 3 1/8/1993 | 3,160             | 0,209      | 0 <i>0</i> 33         | 0.009  | 0,041  | 0,283 | 0,008          | 0,120                      | 0,001                                  | 0,018                                 | 0,000            | 0,000            | 33,740 | 0,002   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 16  | 21/9/1993  | 1,450             | 71کر0      | 0 <i>p</i> 37         | 0ρ11   | 0,141  | 0,300 | 0,059          | 0,150                      | 0,010                                  | 0,025                                 | 0,000            | 0,000            | 33,970 | 0,006   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 17  | 28/9/1993  | 1,770             | 1,473      | 0.p2.5                | 0ρ13   | 0,316  | 0,512 | 0,108          | 0,130                      | 0,040                                  | 0,048                                 | 0,000            | 0,000            | 34,920 | 0,384   | 0,000             | 0,271                          | 100,000        | 29,349   |
| 18  | 5/10/1993  | 5,110             | 0,648      | 0 <i>p</i> 31         | 0ρ11   | 0,144  | 0,369 | 0,017          | 0,135                      | 0,004                                  | 0,030                                 | 0,000            | 0,000            | 34,380 | 0,006   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 19  | 21/10/1993 | 4,620             | 0,985      | 0£28                  | 0ρ12   | 0,215  | 0,437 | 0,028          | 0,133                      | 0,008                                  | 0,038                                 | 0,000            | 0,000            | 34,840 | 0,023   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 20  | 28/10/1993 | 1,640             | 1,181      | 0£28                  | 0 β13  | 0,262  | 0,453 | 0,097          | 0,134                      | 0,029                                  | 0,041                                 | 0,000            | 0,000            | 34,880 | 0,037   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 21  | 4/11/1993  | 4,960             | 0,318      | 0,033                 | 0 μ10  | 0,068  | 0,300 | 0,008          | 0,130                      | 0,001                                  | 0,021                                 | 0,000            | 0,000            | 33,820 | 0,003   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 22  | 9/11/1993  | 4,820             | 0,500      | 0£34                  | 0ρ11   | 0,116  | 0,318 | 0,015          | 0,140                      | 0,003                                  | 0,025                                 | 0,000            | 0,000            | 34£10  | 0,005   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 23  | 20/12/1993 | 1,710             | 0,999      | 0.032                 | 0.012  | 0,238  | 0,381 | 0,084          | 0,145                      | 0,020                                  | 0,034                                 | 0,000            | 0,000            | 34,640 | 0,08    | 0,000             | 0,000                          | 100,000        | 100,000  |
| 24  | 10/2/1994  | 1,370             | 0,945      | 0 <i>p</i> 15         | 0ρ12   | 0,132  | 0,791 | 0,058          | 0,085                      | 0,041                                  | 0,060                                 | 0,000            | 0,011            | 35\$50 | 0,332   | 0,000             | 10,760                         | 100,000        | 3141,044 |
| 25  | 29/3/1994  | 1,660             | 1,376      | 0,039                 | 0 β13  | 0,378  | 0,325 | 0,138          | 0,167                      | 0,026                                  | 0,031                                 | 0,000            | 0,000            | 34,340 | 0,027   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 26  | 19/4/1994  | 2,260             | 0,762      | 0 <i>0</i> 38         | 0.012  | 0,191  | 0,308 | 0,051          | 0,152                      | 0,009                                  | 0,026                                 | 0,000            | 0,000            | 34,000 | 0,022   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 27  | 6/5/1994   | 4,430             | 0,482      | 0£43                  | 0ρ11   | 0,125  | 0,249 | 0,017          | 0,157                      | 0,002                                  | 0,020                                 | 0,000            | 0,000            | 33¢00  | 0,012   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 28  | 20/5/1994  | 1,200             | 0,544      | 0.£45                 | 0.011  | 0,148  | 0,242 | 0,075          | 0,165                      | 0,009                                  | 0,020                                 | 0,000            | 0,000            | 33¢00  | 0,012   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 29  | 17/6/1994  | 1,000             | 0,424      | 0 <i>p</i> 3 <i>5</i> | 0ρ11   | 0,093  | 0,304 | 0,056          | 0,133                      | 0,009                                  | 0,022                                 | 0,000            | 0,000            | 33¢40  | 0,005   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 30  | 1/7/1994   | 1,050             | 0,574      | 0£46                  | 0ρ11   | 0,157  | 0,243 | 0,091          | 0,166                      | 0,011                                  | 0,020                                 | 0,000            | 0,000            | 33,810 | 0,006   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 31  | 1 5/7/1994 | 1,100             | 0,355      | 0£40                  | 0.010  | 0,083  | 0,259 | 0,045          | 0,141                      | 0,006                                  | 0,019                                 | 0,000            | 0,000            | 33¢40  | 0,051   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 32  | 29/7/1994  | 2,300             | 0,583      | 0£44                  | 0ρ11   | 0,156  | 0,253 | 0,041          | 0,162                      | 0,005                                  | 0,021                                 | 0,000            | 0,000            | 33,810 | 0,01    | 0,000             | 0,000                          | 100,000        | 100,000  |
| 33  | 12/8/1994  | 2,180             | 0,231      | 0,050                 | 0 μ10  | 0,059  | 0,192 | 0,016          | 0,154                      | 0,001                                  | 0,013                                 | 0,000            | 0,000            | 33,260 | 0,011   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 34  | 26/8/1994  | 1,050             | 0,322      | 0£48                  | 0 μ10  | 0,084  | 0,209 | 0,048          | 0,157                      | 0,005                                  | 0,015                                 | 0,000            | 0,000            | 33,470 | 0,002   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 35  | 8/9/1994   | 1,270             | 0,408      | 0£48                  | 0 μ10  | 0,110  | 0,218 | 0,052          | 0,163                      | 0,005                                  | 0,017                                 | 0,000            | 0,000            | 33¢80  | 0,004   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 36  | 22/9/1994  | 1,100             | 0,625      | 0,052                 | 0 ρ11  | 0,189  | 0,216 | 0,104          | 0,183                      | 0,010                                  | 0,018                                 | 0,000            | 0,000            | 33,920 | 0,002   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 37  | 6/10/1994  | 1,520             | 0,285      | 0£37                  | 0 μ10  | 0,062  | 0,265 | 0,025          | 0,131                      | 0,003                                  | 0,018                                 | 0,000            | 0,000            | 33,490 | 0,002   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 38  | 27/10/1994 | 3,150             | 0,891      | 0,036                 | 0 ρ12  | 0,217  | 0,331 | 0,042          | 0,148                      | 0,008                                  | 0,028                                 | 0,000            | 0,000            | 34,480 | 0,424   | 0,000             | 0,000                          | 100,000        | 100,000  |
| 39  | 23/11/1994 | 1,450             | 0,272      | 0,041                 | 0 μ10  | 0,063  | 0,236 | 0,026          | 0,139                      | 0,003                                  | 0,016                                 | 0,000            | 0,000            | 33,520 | 0,004   | 0,000             | 0,000                          | 100,000        | 100,000  |

Tabela 6.2d - Descargas calculadas pelo método de Meyer-Peter e Muller (1948) usando o diâmetro D<sub>90</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                  | (5)     | (6)           | (7)    | (8)   | (9)             | (10)            | (11)                                   | (12)                                  | (13)              | (14)         | (15)           | (16)    | (17)                | (18)                  | (19)           | (20)    |
|-----|------------|-----------------|----------------------|---------|---------------|--------|-------|-----------------|-----------------|----------------------------------------|---------------------------------------|-------------------|--------------|----------------|---------|---------------------|-----------------------|----------------|---------|
| N   | DATA       | D <sub>90</sub> | D <sub>U [MPM]</sub> | n       | n´            | Ъ      | n'/n  | $\theta i_{90}$ | $	heta i_{Dri}$ | [n1/n] <sup>3/2</sup> θi <sub>90</sub> | [n1/n] <sup>3/2</sup> 伯 <sub>已(</sub> | φ <sub>1090</sub> | $\phi_{Dvi}$ | B              | qBm     | q <b>B[MPM]</b> 090 | ⊈B[MPM] <sub>0η</sub> | <b>E[%]D</b> ∞ | E[%]Dvj |
|     |            | (mm)            | m                    | Manning |               | Kgť m² |       | ~               | 200             |                                        | _'                                    |                   |              | (m)            | ton/dia |                     |                       |                |         |
| 40  | 22/12/1994 | 10کر2           | 2,025                | 0£39    | 0 Ø 14        | 0,565  | 0,353 | 0,136           | 0,169           | 0,029                                  | 0,035                                 | 0,000             | 0,000        | 35¢80          | 0,218   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 41  | 5/1/1995   | 1,360           | 1,882                | 0.039   | 0 p 14        | 0,527  | 0,349 | 0,235           | 0,170           | 0,048                                  | 0,035                                 | 0,000             | 0,000        | 35,270         | 0,523   | 0,682               | 0,000                 | 30,440         | 100,000 |
| 42  | 19/1/1995  | 4,790           | 0,818                | 0£42    | 0 £12         | 0,222  | 0,280 | 0,028           | 0,164           | 0,004                                  | 0,024                                 | 0,000             | 0,000        | 33,920         | 0,015   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 43  | 26/1/1995  | 1,280           | 0,740                | 0£47    | 0 Ø 12        | 0,215  | 0,245 | 0,102           | 0,176           | 0,012                                  | 0,021                                 | 0,000             | 0,000        | 33,930         | 0,036   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 44  | 9/2/1995   | 5,150           | 2,165                | 0£23    | 0.ρ14         | 0,412  | 0¢11  | 0,048           | 0,115           | 0,023                                  | 0,055                                 | 0,000             | 0,006        | 40,300         | 3,097   | 0,000               | 21,556                | 100,000        | 596,036 |
| 45  | 16/2/1995  | 2,700           | 2,185                | 0.£37   | 0.014         | 0,603  | 0,375 | 0,135           | 0,167           | 0,031                                  | 0,038                                 | 0,000             | 0,000        | 35,400         | 0,485   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 46  | 8/3/1995   | 1,850           | 1,144                | 0.£39   | Ο £12         | 0,308  | 0,315 | 0,101           | 0,163           | 0,018                                  | 0,029                                 | 0,000             | 0,000        | 34,940         | 0,396   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 47  | 24/3/1995  | 4,030           | 1,766                | 0.£33   | 0ρ13          | 0,439  | 0,401 | 0,066           | 0,151           | 0,017                                  | 0,038                                 | 0,000             | 0,000        | 35,380         | 1,721   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 48  | 7/4/1995   | 1,100           | 1,564                | 0.£36   | 0 ρ13         | 0,406  | 0,369 | 0,224           | 0,157           | 0,050                                  | 0,035                                 | 0,001             | 0,000        | 35,050         | 0,171   | 1,651               | 0,000                 | 865,623        | 100,000 |
| 49  | 28/4/1995  | 1,440           | 1,155                | 0£40    | 0 β12         | 0,313  | 0315  | 0,132           | 0,164           | 0,023                                  | 0,029                                 | 0,000             | 0,000        | 34 <i>6</i> 30 | 0,081   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 50  | 12/5/1995  | 2,790           | 1,314                | 0.£36   | 0.013         | 0,337  | 0,356 | 0,073           | 0,155           | 0,016                                  | 0,033                                 | 0,000             | 0,000        | 34,740         | 0,468   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 51  | 9/6/1995   | 1,580           | 0,798                | 0£47    | 0 β12         | 0,231  | 0,250 | 0,089           | 0,175           | 0,011                                  | 0,022                                 | 0,000             | 0,000        | 34,350         | 0,023   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 52  | 23/6/1995  | 2,860           | 0,784                | 0£42    | 0 ρ12         | 0,206  | 0,276 | 0,044           | 0,159           | 0,006                                  | 0,023                                 | 0,000             | 0,000        | 34,340         | 0,018   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 53  | 5/7/1995   | 1,230           | 0,734                | 0£47    | Ο <i>Φ</i> 12 | 0,212  | 0,247 | 0,104           | 0,175           | 0,013                                  | 0,021                                 | 0,000             | 0,000        | 34,190         | 0,051   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 54  | 12/7/1995  | 0,920           | 1,719                | 0£42    | 0.ρ13         | 0,502  | 0,320 | 0,331           | 0,177           | 0,060                                  | 0,032                                 | 0,012             | 0,000        | 35030          | 4,163   | 10,602              | 0,000                 | 154,675        | 100,000 |
| 55  | 19/7/1995  | 0,850           | 1,068                | 0£52    | 0 £12         | 0,335  | 0,236 | 0,239           | 0,190           | 0,027                                  | 0,022                                 | 0,000             | 0,000        | 34,590         | 0,016   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 56  | 26/7/1995  | 1,930           | 1,012                | 0£41    | Ο Ø 12        | 0,277  | 0,295 | 0,087           | 0,166           | 0,014                                  | 0,027                                 | 0,000             | 0,000        | 34¢10          | 0,118   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 57  | 10/8/1995  | 0,950           | 0,619                | 0£47    | 0.011         | 0,173  | 0,241 | 0,111           | 0,170           | 0,013                                  | 0,020                                 | 0,000             | 0,000        | 34£90          | 0,012   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 58  | 3 1/8/1995 | 4,690           | 0,410                | 0£42    | 0 μ10         | 0,102  | 0,250 | 0,013           | 0,150           | 0,002                                  | 0,019                                 | 0,000             | 0,000        | 33¢50          | 0,002   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 59  | 21/9/1995  | 1,140           | 1,684                | 0£76    | 0 β13         | 0,757  | 0,174 | 0,402           | 0,272           | 0,029                                  | 0,020                                 | 0,000             | 0,000        | 34,280         | 0,031   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 60  | 28/9/1995  | 00کر2           | 0,841                | 0£39    | 0ρ12          | 0,216  | 0,303 | 0,052           | 0,155           | 0,009                                  | 0,026                                 | 0,000             | 0,000        | 34¢80          | 0,249   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 61  | 5/10/1995  | 1,640           | 15,0                 | 0£44    | 0.011         | 0,135  | 0,249 | 0,050           | 0,159           | 0,006                                  | 0,020                                 | 0,000             | 0,000        | 34,160         | 0,002   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 62  | 19/10/1995 | 3,790           | 1,542                | 0.£36   | 0 β13         | 0,402  | 0,362 | 0,064           | 0,158           | 0,014                                  | 0,034                                 | 0,000             | 0,000        | 35p20          | 0,205   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 63  | 23/11/1995 | 1,660           | 0,546                | 0£40    | 0 Ø 11        | 0,135  | 0,278 | 0,049           | 0,150           | 0,007                                  | 0,022                                 | 0,000             | 0,000        | 34.DSO         | 0,006   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 64  | 7/12/1995  | 1,860           | 0,332                | 0£42    | 0.010         | 0,080  | 0,240 | 0,026           | 0,146           | 0,003                                  | 0,017                                 | 0,000             | 0,000        | 33,390         | 0,002   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 65  | 10/1/1996  | 1,750           | 2,557                | 0£32    | Ο £ 14        | 0,642  | 0,444 | 0,222           | 0,152           | 0,066                                  | 0,045                                 | 0,021             | 0,000        | 36,910         | 5,141   | 51,284              | 0,000                 | 897,557        | 100,000 |
| 66  | 3 1/1/1996 | 0,470           | 0,865                | 0£39    | 0 <i>β</i> 12 | 0,226  | 0,301 | 0,292           | 0,159           | 0,048                                  | 0,026                                 | 0,000             | 0,000        | 34,120         | 0,019   | 0,108               | 0,000                 | 470,167        | 100,000 |
| 67  | 7/2/1996   | 1,680           | 1,277                | 0£34    | Ο <i>Φ</i> 13 | 0,315  | 0,371 | 0,114           | 0,149           | 0,026                                  | 0,034                                 | 0,000             | 0,000        | 35,120         | 0,238   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 68  | 6/3/1996   | 0,560           | 1,829                | 0£36    | 0 β13         | 0,480  | 0,379 | 0,519           | 0,159           | 0,121                                  | 0,037                                 | 0,161             | 0,000        | 35,360         | 3,542   | 69,507              | 0,000                 | 1862,367       | 100,000 |
| 69  | 20/3/1996  | 1,690           | 2,855                | 0£33    | 0 Ø 14        | 0,739  | 0,444 | 0,265           | 0,157           | 0,078                                  | 0,046                                 | 0,044             | 0,000        | 36,550         | 1,15    | 104,069             | 0,000                 | 8949,484       | 100,000 |
| 70  | 3/4/1996   | 2,050           | 1,262                | 0£37    | 0 ρ13         | 0,331  | 0,339 | 0,098           | 0,159           | 0,019                                  | 0,031                                 | 0,000             | 0,000        | 34,870         | 0,133   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 71  | 16/4/1996  | 1,180           | 1,140                | 0£38    | Ο £12         | 0,300  | 0,324 | 0,154           | 0,160           | 0,028                                  | 0,029                                 | 0,000             | 0,000        | 34,520         | 0,051   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 72  | 15/5/1996  | 2,200           | 0,944                | 0£39    | 0 Ø 12        | 0,245  | 0,311 | 0,068           | 0,158           | 0,012                                  | 0,027                                 | 0,000             | 0,000        | 34,240         | 0,246   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 73  | 22/5/1996  | 3,000           | 0,871                | 0£41    | Ο <i>Φ</i> 12 | 0,235  | 0,287 | 0,048           | 0,164           | 0,007                                  | 0,025                                 | 0,000             | 0,000        | 34,200         | 0,008   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 74  | 19/6/1996  | 1,360           | 0,521                | 0£44    | 0 Ø 11        | 0,138  | 0,246 | 0,061           | 0,160           | 0,007                                  | 0,019                                 | 0,000             | 0,000        | 33,760         | 0,012   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 75  | 3/6/1996   | 3,770           | 0,640                | 0.£44   | 0 Ø 11        | 0,172  | 0,257 | 0,028           | 0,163           | 0,004                                  | 0,021                                 | 0,000             | 0,000        | 34£70          | 0,023   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 76  | 17/7/1996  | 4,090           | 0,500                | 0£45    | 0 Ø 11        | 0,133  | 0,241 | 0,020           | 0,161           | 0,002                                  | 0,019                                 | 0,000             | 0,000        | 33,810         | 0,004   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 77  | 31/7/1996  | 1,660           | 0,508                | 0£48    | 0 Ø 11        | 0,142  | 0,226 | 0,052           | 0,169           | 0,006                                  | 0,018                                 | 0,000             | 0,000        | 34,750         | 0,005   | 0,000               | 0,000                 | 100,000        | 100,000 |
| 78  | 7/8/1996   | 3,050           | 0,440                | 0£43    | 0.011         | 0,110  | 0,249 | 0,022           | 0,152           | 0,003                                  | 0,019                                 | 0,000             | 0,000        | 34£40          | 0,004   | 0,000               | 0,000                 | 100,000        | 100,000 |

Tabela 6.2d - Descargas calculadas pelo método de Meyer-Peter e Muller (1948) usando o diâmetro D<sub>90</sub> e o Dvj

| (1)  | (2)         | (3)      | (4)                  | (5)           | (6)           | (7)                             | (8)   | (9)           | (10)  | (11)                                   | (12)                       | (13)  | (14)             | (15)            | (16)    | (17)        | (18)                           | (19)               | (20)    |
|------|-------------|----------|----------------------|---------------|---------------|---------------------------------|-------|---------------|-------|----------------------------------------|----------------------------|-------|------------------|-----------------|---------|-------------|--------------------------------|--------------------|---------|
| N°   | DATA        | $D_{90}$ | D <sub>U IMPMI</sub> | n             | n´            | նո                              | n′/n  | $\theta_{im}$ | θir   | [n'/n] <sup>3/2</sup> $	heta_{i_{90}}$ | [n′/n] <sup>3/2</sup> թեր։ | Φ     | φ <sub>n.e</sub> | В               | qBm     | qB[MPM],000 | q <b>В[</b> МРМ] <sub>оц</sub> | E[%]D <sub>∞</sub> | E[%]Dvj |
|      |             | (mm)     | nn                   | Manning       |               | Kgf <sup>7</sup> m <sup>2</sup> |       | ~             | 101   |                                        | - <u>-</u> ,               | 200   | - 24             | (m)             | ton/dia |             |                                |                    |         |
| 79   | 14/8/1996   | 3,730    | 0,552                | O£47          | 0.011         | 0,152                           | 0,235 | 0,025         | 0,167 | 0,003                                  | 0,019                      | 0,000 | 0,000            | 33,990          | 0,005   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 80   | 21/8/1996   | 4,350    | 0,527                | 0£41          | ο ρ11         | 0,131                           | 0,269 | 0,018         | 0,151 | 0,003                                  | 0,021                      | 0,000 | 0,000            | 33,890          | 0,005   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 81   | 28/8/1996   | 4,630    | 0,489                | 0£47          | ορ11          | 0,133                           | 0,231 | 0,017         | 0,165 | 0,002                                  | 0,018                      | 0,000 | 0,000            | 33,730          | 0,003   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 82   | 4/9/1996    | 2,890    | 0,905                | 0£43          | 0ρ12          | 0,251                           | 0,276 | 0,053         | 0,168 | 0,008                                  | 0,024                      | 0,000 | 0,000            | 34,560          | 0,036   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 83   | 11/9/1996   | 4,790    | 2,259                | 0£36          | 0.ρ14         | 0,614                           | 0,382 | 0,078         | 0,165 | 0,018                                  | 0,039                      | 0,000 | 0,000            | 35,840          | 3,697   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 84   | 2/10/1996   | 2,370    | 0,619                | 0£41          | ορ11          | 0,158                           | 0,276 | 0,040         | 0,154 | 0,006                                  | 0,022                      | 0,000 | 0,000            | 34,100          | 0,006   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 85   | 16/10/1996  | 4,690    | 1,010                | 0£40          | Ο£12          | 0,270                           | 0,302 | 0,035         | 0,162 | 0,006                                  | 0,027                      | 0,000 | 0,000            | 34,700          | 0,25    | 0,000       | 0,000                          | 100,000            | 100,000 |
| 86   | 671 1/1996  | 4,160    | 1,101                | 0£38          | Ο <i>β</i> 12 | 0,288                           | 0,324 | 0,042         | 0,159 | 0,008                                  | 0,029                      | 0,000 | 0,000            | 34,700          | 0,32    | 0,000       | 0,000                          | 100,000            | 100,000 |
| 87   | 20/11/1996  | 4,400    | 0,906                | 0£39          | 0ρ12          | 0,234                           | 0,305 | 0,032         | 0,157 | 0,005                                  | 0,026                      | 0,000 | 0,000            | 34,700          | 0,034   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 88   | 6/12/1996   | 1,400    | 0,865                | 0.p39         | 0 ρ12         | 0,221                           | 0,307 | 0,096         | 0,155 | 0,016                                  | 0,026                      | 0,000 | 0,000            | 34 <i>6</i> 00  | 4,34    | 0,000       | 0,000                          | 100,000            | 100,000 |
| 89   | 9/1/1997    | 1,110    | 1,029                | 0£37          | 0.ρ12         | 0,262                           | 0,329 | 0,143         | 0,154 | 0,027                                  | 0,029                      | 0,000 | 0,000            | 34 <i>6</i> 80  | 0,033   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 90   | 22/1/1997   | 1,100    | 1,517                | 0£41          | 0.ρ13         | 0,432                           | 0,318 | 0,238         | 0,173 | 0,043                                  | 0,031                      | 0,000 | 0,000            | 34,780          | 0,146   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 91   | 3/2/1997    | 0,980    | 2,445                | 0£29          | 0.ρ14         | 76کړ0                           | 0,489 | 0,356         | 0,143 | 0,122                                  | 0,049                      | 0,163 | 0,001            | 36,460          | 21,99   | 168,341     | 2,450                          | 665,535            | 88,858  |
| 92   | 12/3/1997   | 1,100    | 0,925                | 0£34          | 0.ρ12         | 0,222                           | 0,354 | 0,122         | 0,145 | 0,026                                  | 0,031                      | 0,000 | 0,000            | 34,320          | 1,01    | 0,000       | 0,000                          | 100,000            | 100,000 |
| 93   | 26/3/1997   | 1,030    | 0,699                | 0.£3.5        | ορ11          | 0,165                           | 0,331 | 0,097         | 0,143 | 0,018                                  | 0,027                      | 0,000 | 0,000            | 33,840          | 0,16    | 0,000       | 0,000                          | 100,000            | 100,000 |
| 94   | 16/4/1997   | 1,160    | 42,0                 | 0£34          | ορ11          | 0,121                           | 0,327 | 0,063         | 0,136 | 0,012                                  | 0,025                      | 0,000 | 0,000            | 33, <b>6</b> 40 | 0,032   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 95   | 14/5/1997   | 1,180    | 0,493                | 0£41          | 0 Ø 11        | 0,125                           | 0,263 | 0,064         | 0,154 | 0,009                                  | 0,021                      | 0,000 | 0,000            | 33,160          | 0,104   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 96   | 4/6/1997    | 4,920    | 0,627                | 0£40          | ορ11          | 0,161                           | 0,279 | 0,020         | 0,156 | 0,003                                  | 0,023                      | 0,000 | 0,000            | 33¢40           | 0,006   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 97   | 2/7/1997    | 4,400    | 0,624                | 0£40          | ορ11          | 0,160                           | 0,281 | 0,022         | 0,155 | 0,003                                  | 0,023                      | 0,000 | 0,000            | 33,840          | 0,005   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 98   | 12/8/1997   | 4,700    | 0,623                | 0£37          | 0 Ø 11        | 0,150                           | 0,306 | 0,019         | 0,146 | 0,003                                  | 0,025                      | 0,000 | 0,000            | 33,930          | 0,003   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 99   | 26/8/1997   | 2,460    | 0,798                | 0.£39         | 0.ρ12         | 0,207                           | 0,300 | 0,051         | 0,157 | 0,008                                  | 0,026                      | 0,000 | 0,000            | 33,970          | 0,0054  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 100  | 9/9/1997    | 2,250    | 0,436                | 0£46          | ορ11          | 0,118                           | 0,230 | 0,032         | 0,164 | 0,003                                  | 0,018                      | 0,000 | 0,000            | 33,400          | 0,0024  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 101  | 23/9/1997   | 4,370    | 1,999                | 0.093         | Ο £ 14        | 1,074                           | 0,146 | 0,149         | 0,326 | 0,008                                  | 0,018                      | 0,000 | 0,000            | 33,960          | 0,0128  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 102  | 7/10/1997   | 0,850    | 0,705                | 0£41          | ορ11          | 0,186                           | 0,281 | 0,133         | 0,160 | 0,020                                  | 0,024                      | 0,000 | 0,000            | 33,980          | 0,0134  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 103  | 21/10/1997  | 1,090    | 23گر0                | 0£27          | ορ11          | 0,099                           | 0,403 | 0,055         | 0,115 | 0,014                                  | 0,029                      | 0,000 | 0,000            | 34£70           | 0,0141  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 104  | 4 /1 1/1997 | 1,440    | 0,570                | 0 <i>p</i> 39 | ορ11          | 0,141                           | 0,287 | 0,059         | 0,150 | 0,009                                  | 0,023                      | 0,000 | 0,000            | 33,800          | 0,0029  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 10.5 | 2/12/1997   | 1,620    | 0,767                | 0£33          | 0.ρ12         | 0,175                           | 0,355 | 0,066         | 0,138 | 0,014                                  | 0,029                      | 0,000 | 0,000            | 34,220          | 0,439   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 106  | 16/12/1997  | 0,630    | 1,483                | 0£034         | 0 β13         | 0,376                           | 0,383 | 0,362         | 0,154 | 0,086                                  | 0,036                      | 0,061 | 0,000            | 34,770          | 5,77    | 30,867      | 0,000                          | 434,954            | 100,000 |
| 107  | 13/1/1998   | 0,590    | 1,982                | 0£45          | 0.ρ14         | 0,632                           | 0,302 | 0,649         | 0,193 | 0,108                                  | 0,032                      | 0,120 | 0,000            | 34,820          | 0,107   | 54,937      | 0,000                          | 51243,128          | 100,000 |
| 108  | 27/1/1998   | 0,670    | 0,616                | 0.p2.5        | ορ11          | 0,114                           | 0,445 | 0,103         | 0,113 | 0,031                                  | 0,033                      | 0,000 | 0,000            | 34£10           | 0,0098  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 109  | 1 1/2/1998  | 2,300    | 1,774                | 0£33          | 0 ρ13         | 0,443                           | 0,411 | 0,117         | 0,151 | 0,031                                  | 0,040                      | 0,000 | 0,000            | 35,240          | 1,66    | 0,000       | 0,000                          | 100,000            | 100,000 |
| 110  | 26/2/1998   | 2,360    | 2,021                | 0 <i>p</i> 31 | 0.ρ14         | 0,494                           | 0,439 | 0,127         | 0,148 | 0,037                                  | 0,043                      | 0,000 | 0,000            | 34,550          | 1,06    | 0,000       | 0,000                          | 100,000            | 100,000 |
| 111  | 11/3/1998   | 2,590    | 1,197                | 0.£3.5        | 0.013         | 0,302                           | 0,357 | 0,071         | 0,153 | 0,015                                  | 0,033                      | 0,000 | 0,000            | 34 <i>6</i> 80  | 1,6     | 0,000       | 0,000                          | 100,000            | 100,000 |
| 112  | 2 5/3/1998  | 0,930    | 1,466                | 0£33          | 0ρ13          | 0,362                           | 0,394 | 0,236         | 0,150 | 0,058                                  | 0,037                      | 0,010 | 0,000            | 35,220          | 0,31    | 8,888       | 0,000                          | 2766,939           | 100,000 |
| 113  | 8/4/1998    | 1,220    | 0,739                | 0£35          | 0 ρ12         | 0,177                           | 0,331 | 0,088         | 0,145 | 0,017                                  | 0,028                      | 0,000 | 0,000            | 33,540          | 0,034   | 0,000       | 0,000                          | 100,000            | 100,000 |
| 114  | 22/4/1998   | 1,860    | 0,514                | 0£30          | 0.011         | 0,104                           | 0,360 | 0,034         | 0,123 | 0,007                                  | 0,027                      | 0,000 | 0,000            | 33,960          | 0,0043  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 115  | 6/5/1998    | 1,000    | 1,628                | 0£30          | 0.ρ13         | 0,382                           | 0,435 | 0,231         | 0,142 | 0,066                                  | 0,041                      | 0,022 | 0,000            | 35,220          | 0,165   | 22,081      | 0,000                          | 13282,386          | 100,000 |
| 116  | 21/5/1998   | 0,940    | 0,786                | 0£47          | 0.ρ12         | 0,231                           | 0,247 | 0,149         | 0,178 | 0,018                                  | 0,022                      | 0,000 | 0,000            | 34£10           | 0,0051  | 0,000       | 0,000                          | 100,000            | 100,000 |
| 117  | 3/6/1998    | 1,200    | 0,773                | 0.p34         | 0 p12         | 0,182                           | 0,343 | 0,092         | 0,143 | 0,018                                  | 0,029                      | 0,000 | 0,000            | 33,700          | 0,0159  | 0,000       | 0,000                          | 100,000            | 100,000 |

Tabela 6.2d - Descargas calculadas pelo método de Meyer-Peter e Muller (1948) usando o diâmetro D<sub>oo</sub> e o Dvj

| (1)  | (2)                | (3)             | (4)        | (5)                   | (6)     | (7)                             | (8)   | (9)              | (10)               | (11)                                   | (12)                                   | (13)  | (14)            | (15)   | (16)    | (17)                            | (18)                           | (19)           | (20)     |
|------|--------------------|-----------------|------------|-----------------------|---------|---------------------------------|-------|------------------|--------------------|----------------------------------------|----------------------------------------|-------|-----------------|--------|---------|---------------------------------|--------------------------------|----------------|----------|
| N⁰   | DATA               | D <sub>20</sub> | D. у гырыд | n                     | n´      | ես                              | n′/n  | $\theta_{i_{0}}$ | θi <sub>Deri</sub> | [n1/n] <sup>3/2</sup> θi <sub>90</sub> | [n´/n] <sup>3/2</sup> 6i <sub>円i</sub> | фтео  | ф <sub>ты</sub> | B      | qBm     | q <b>B[</b> MPM] <sub>090</sub> | q <b>В[</b> МРМ] <sub>оң</sub> | <b>E[%]D</b> ∞ | E[%]Dvj  |
|      |                    | (mm)            | nm         | Manning               |         | Kgf <sup>j</sup> m <sup>2</sup> |       | ~                | 201                |                                        |                                        | 200   | 24              | (m)    | ton/dia |                                 |                                |                |          |
| 118  | 17/6/1998          | 3,210           | 0,583      | 0£38                  | 0 Ø 11  | 0,142                           | 0,295 | 0,027            | 0,148              | 0,004                                  | 0,024                                  | 0,000 | 0,000           | 33£40  | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 119  | 1 <i>5/7/</i> 1998 | 3,880           | 0,675      | 0£38                  | 0.ρ11   | 0,168                           | 0,304 | 0,026            | 0,151              | 0,004                                  | 0,025                                  | 0,000 | 0,000           | 33£20  | 0,005   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 120  | 29/7/1998          | 3,850           | 0,487      | 0,035                 | ορ11    | 0,111                           | 0,311 | 0,017            | 0,138              | 0,003                                  | 0,024                                  | 0,000 | 0,000           | 32,500 | 0,0024  | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 121  | 12/8/1998          | 3,550           | 81کے 0     | 0.p3.5                | 0ρ11    | 0,137                           | 0,315 | 0,023            | 0,143              | 0,004                                  | 0,025                                  | 0,000 | 0,000           | 32,770 | 0,0034  | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 122  | 2 5/8/1998         | 3,750           | 0,402      | 0£38                  | 0 Ø 10  | 0,094                           | 0,277 | 0,015            | 0,142              | 0,002                                  | 0,021                                  | 0,000 | 0,000           | 32£80  | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 123  | 2/9/1998           | 4,060           | 0,565      | 0,032                 | 0 ρ11   | 0,123                           | 0,345 | 0,018            | 0,132              | 0,004                                  | 0,027                                  | 0,000 | 0,000           | 32,900 | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 124  | 16/9/1998          | 2,880           | 0,394      | 0£728                 | 0 ρ 10  | 0,074                           | 0,377 | 0,016            | 0,114              | 0,004                                  | 0,026                                  | 0,000 | 0,000           | 32,900 | 0,006   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 125  | 30/9/1998          | 4,160           | 0,502      | 0 <i>p</i> 30         | 0 p 1 1 | 0,103                           | 0,358 | 0,015            | 0,125              | 0,003                                  | 0,027                                  | 0,000 | 0,000           | 32,870 | 0,004   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 126  | 14/10/1998         | 2,950           | 1,272      | 0 <i>0</i> 33         | 0 ρ13   | 0,313                           | 0,388 | 0,064            | 0,149              | 0,016                                  | 0,036                                  | 0,000 | 0,000           | 33,280 | 0,0235  | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 127  | 28/10/1998         | 2,830           | 1,031      | 0.023                 | 0 p12   | 0,252                           | 0,369 | 0,054            | 0,148              | 0,012                                  | 0,033                                  | 0,000 | 0,000           | 32,920 | 0,0103  | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 128  | 11/11/1998         | 3,560           | 0,633      | 0 <i>p</i> 36         | ορ11    | 0,154                           | 0,315 | 0,026            | 0,148              | 0,005                                  | 0,026                                  | 0,000 | 0,000           | 31,400 | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 129  | 25/11/1998         | 1,970           | 0,704      | 0,039                 | 0.ρ11   | 0,185                           | 0,293 | 0,057            | 0,160              | 0,009                                  | 0,025                                  | 0,000 | 0,000           | 31,290 | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 130  | 9/12/1998          | 1,850           | 1,223      | 0£36                  | 0 p 13  | 0,320                           | 0,353 | 0,105            | 0,158              | 0,022                                  | 0,033                                  | 0,000 | 0,000           | 33,180 | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 131  | 22/12/1998         | 0,840           | 1,097      | 0.£34                 | 0ρ12    | 0,275                           | 0,363 | 0,198            | 0,152              | 0,043                                  | 0,033                                  | 0,000 | 0,000           | 32,950 | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 13.2 | 6/1/1999           | 0,340           | 1,749      | 0.038                 | 0.ρ13   | 0,485                           | 0,348 | 0,865            | 0,168              | 0,177                                  | 0,034                                  | 0,377 | 0,000           | 34,790 | 1,478   | 75,736                          | 0,000                          | 5024,211       | 100,000  |
| 133  | 21/1/1999          | 0,330           | 2,399      | 0,035                 | 0.ρ14   | 0,650                           | 0,403 | 1,193            | 0,164              | 0,305                                  | 0,042                                  | 1,050 | 0,000           | 35,230 | 3,703   | 204,322                         | 0,000                          | 5417,743       | 100,000  |
| 134  | 28/1/1999          | 0,380           | 2,980      | 0£32                  | 0 Ø 15  | 0,780                           | 0,454 | 1,244            | 0,159              | 0,381                                  | 0,049                                  | 1,545 | 0,001           | 35810  | 0       | 377,479                         | 2,7 17                         | 0,000          | 0,000    |
| 13.5 | 3/2/1999           | 0,280           | 1,985      | 0.0233                | 0 p 14  | 10 کې 0                         | 0,413 | 1,104            | 0,156              | 0,293                                  | 0,041                                  | 0,975 | 0,000           | 35180  | 2,82    | 148,001                         | 0,000                          | 5148,264       | 100,000  |
| 136  | 11/2/1999          | 0,350           | 2,383      | 0£33                  | 0 p 14  | 0,627                           | 0,422 | 1,086            | 0,160              | 0,298                                  | 0,044                                  | 1,004 | 0,000           | 35,260 | 3,047   | 213,580                         | 0,000                          | 6909,514       | 100,000  |
| 137  | 2 5/2/1999         | 3,730           | 2,265      | 0,030                 | 0 Ø 14  | 0,555                           | 0,461 | 0,090            | 0,149              | 0,028                                  | 0,046                                  | 0,000 | 0,000           | 35,520 | 5,114   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 138  | 11/3/1999          | 0,400           | 2,129      | 0£31                  | 0 p 14  | 0,522                           | 0,448 | 0,791            | 0,149              | 0,237                                  | 0,045                                  | 0,662 | 0,000           | 35,200 | 1,803   | 171,770                         | 0,000                          | 9426,894       | 100,000  |
| 139  | 25/3/1999          | 0,480           | 2,433      | 0,035                 | 0 p 14  | 0,666                           | 0,402 | 0,841            | 0,166              | 0,214                                  | 0,042                                  | 0,548 | 0,000           | 34,990 | 3,64    | 185,588                         | 0,000                          | 4998,561       | 100,000  |
| 140  | 15/4/1999          | 0,470           | 1,192      | 0.038                 | 0 Ø 13  | 0,324                           | 0,328 | 0,418            | 0,165              | 0,079                                  | 0,031                                  | 0,046 | 0,000           | 33,720 | 0,02    | 14,287                          | 0,000                          | 71333,318      | 100,000  |
| 141  | 29/4/1999          | 0,780           | 2,054      | 0£81                  | 0 Ø 14  | 1,017                           | 0,170 | 0,790            | 0,300              | 0,055                                  | 0,021                                  | 0,006 | 0,000           | 33,270 | 0,013   | 4,134                           | 0,000                          | 31698,179      | 100,000  |
| 142  | 13/5/1999          | 0,370           | 1,198      | 0£40                  | 0 Ø 13  | 0,341                           | 0,312 | 0,558            | 0,172              | 0,097                                  | 0,030                                  | 0,090 | 0,000           | 33,410 | 0,023   | 19,630                          | 0,000                          | 85249,989      | 100,000  |
| 143  | 9/6/1999           | 5,120           | 0,953      | 0£36                  | 0 p 12  | 0,244                           | 0,336 | 0,029            | 0,155              | 0,006                                  | 0,030                                  | 0,000 | 0,000           | 33,290 | 0,01    | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 144  | 22/7/1999          | 3,260           | 0,872      | 0,033                 | 0 Ø 12  | 0,214                           | 0,356 | 0,040            | 0,149              | 0,008                                  | 0,032                                  | 0,000 | 0,000           | 32,520 | 0,003   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 14.5 | 5/8/1999           | 3,820           | 0,818      | 0 <i>0</i> 38         | 0 D 12  | 0,216                           | 0,312 | 0,034            | 0,160              | 0,006                                  | 0,028                                  | 0,000 | 0,000           | 32,650 | 0,002   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 146  | 19/8/1999          | 1,340           | 0,826      | 0£37                  | 0 ρ12   | 0,214                           | 0,321 | 0,097            | 0,157              | 0,018                                  | 0,029                                  | 0,000 | 0,000           | 32,780 | 0,004   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 147  | 2/9/1999           | 5,030           | 0,310      | 0,021                 | 0 Ø 10  | 0,048                           | 0,483 | 0,006            | 0,093              | 0,002                                  | 0,031                                  | 0,000 | 0,000           | 32070  | 0       | 0,000                           | 0,000                          | 0,000          | 0,000    |
| 148  | 1 5/9/1999         | 3,270           | 1,019      | 0.036                 | 0 p12   | 0,263                           | 0,341 | 0,049            | 0,156              | 0,010                                  | 0,031                                  | 0,000 | 0,000           | 33,310 | 0,343   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 149  | 30/9/1999          | 1,640           | 0,592      | 0£44                  | 0 Ø 11  | 0,166                           | 0,255 | 0,061            | 0,170              | 0,008                                  | 0,022                                  | 0,000 | 0,000           | 32,020 | 0,001   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 150  | 14/10/1999         | 2,430           | 0,734      | 0£40                  | 0 Ø 12  | 0,200                           | 0,289 | 0,050            | 0,165              | 0,008                                  | 0,026                                  | 0,000 | 0,000           | 32,410 | 0,003   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 151  | 28/10/1999         | 3,700           | 0,920      | 0,038                 | 0 D 12  | 0,246                           | 0,318 | 0,040            | 0,162              | 0,007                                  | 0,029                                  | 0,000 | 0,000           | 32,880 | 0,027   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 152  | 11/11/1999         | 0,480           | 0,759      | 0£38                  | 0 Ø 12  | 0,200                           | 0,304 | 0,253            | 0,160              | 0,042                                  | 0,027                                  | 0,000 | 0,000           | 32,800 | 28      | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 153  | 25/11/1999         | 1,830           | 1,192      | 0.p3.5                | 0 D 13  | 0,306                           | 0,362 | 0,101            | 0,156              | 0,022                                  | 0,034                                  | 0,000 | 0,000           | 32,880 | 0,089   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 154  | 9/12/1999          | 4,500           | 1,296      | 0 <i>p</i> 3 <i>5</i> | 0 Ø 13  | 0,341                           | 0,362 | 0,046            | 0,159              | 0,010                                  | 0,035                                  | 0,000 | 0,000           | 33,190 | 0,036   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 155  | 23/12/1999         | 3,980           | 0,817      | 0£74                  | 0 Ø 12  | 0,350                           | 0,159 | 0,053            | 0,260              | 0,003                                  | 0,016                                  | 0,000 | 0,000           | 30,480 | 0,003   | 0,000                           | 0,000                          | 100,000        | 100,000  |
| 156  | 6/1/2000           | 4,060           | 2,621      | 0.0230                | 0 £ 14  | 0,650                           | 0,477 | 0,097            | 0,150              | 0,032                                  | 0,050                                  | 0,000 | 0,001           | 35690  | 0,214   | 0,000                           | 4,472                          | 100,000        | 1989,654 |

Tabela 6.2d - Descargas calculadas pelo método de Meyer-Peter e Muller (1948) usando o diâmetro D<sub>90</sub> e o Dvj

| (1) | (2)        | (3)               | (4)                   | (5)             | (6)   | (7)                             | (8)   | (9)            | (10)                       | (11)                                   | (12)                                   | (13)               | (14)             | (15)   | (16)    | (17)                | (18)                           | (19)                      | (20)    |
|-----|------------|-------------------|-----------------------|-----------------|-------|---------------------------------|-------|----------------|----------------------------|----------------------------------------|----------------------------------------|--------------------|------------------|--------|---------|---------------------|--------------------------------|---------------------------|---------|
| N⁰  | DATA       | $\mathbf{D}_{90}$ | D <sub>VJ</sub> [MPM] | n               | n´    | ն                               | n /n  | $\theta_{i_m}$ | $\theta_{i_{\text{Deri}}}$ | [n1/n] <sup>3/2</sup> θi <sub>90</sub> | [n´/n] <sup>3/2</sup> 6i <sub>ni</sub> | φ <sub>τι 90</sub> | φ <sub>τωί</sub> | B      | qBm     | 4 <b>B[MPM]</b> 000 | q <b>В[</b> МРМ] <sub>ең</sub> | <b>Ε[%]D</b> <sub>∞</sub> | E[%]Dvj |
|     |            | (mm)              | nm                    | Manning         |       | Kgf <sup>0</sup> m <sup>2</sup> |       |                | 201                        |                                        |                                        | 2                  | 24               | (m)    | ton/dia |                     |                                |                           |         |
| 157 | 13/1/2000  | 2,060             | 1,073                 | 0£37            | 0ρ12  | 0,288                           | 0,333 | 0,085          | 0,162                      | 0,016                                  | 0,031                                  | 0,000              | 0,000            | 32,910 | 0,313   | 0,000               | 0,000                          | 100,000                   | 100,000 |
| 158 | 20/1/2000  | 6,230             | 1,100                 | 0.£3.5          | 0ρ12  | 0,288                           | 0,349 | 0,028          | 0,158                      | 0,006                                  | 0,033                                  | 0,000              | 0,000            | 33,270 | 0,041   | 0,000               | 0,000                          | 100,000                   | 100,000 |
| 159 | 27/1/2000  | 0,030             | 1,235                 | 0, <b>0</b> 3,5 | 0ρ13  | 0,325                           | 0,357 | 6,566          | 0,160                      | 1,399                                  | 0,034                                  | 12,583             | 0,000            | 33,250 | 0,09    | 63,328              | 0,000                          | 70264,937                 | 100,000 |
| 160 | 3/2/2000   | 0,010             | 1,941                 | 0£40            | 0ρ14  | 90کر 0                          | 0,337 | 35,782         | 0,184                      | 6,991                                  | 0,036                                  | 146,381            | 0,000            | 34,000 | 0,553   | 144,977             | 0,000                          | 26116,540                 | 100,000 |
| 161 | 9/2/2000   | 0,640             | 1,094                 | 0£33            | 0ρ12  | 0,274                           | 0,370 | 0,259          | 0,152                      | 0,058                                  | 0,034                                  | 0,010              | 0,000            | 33,100 | 0,487   | 4,721               | 0,000                          | 869,303                   | 100,000 |
| 162 | 18/2/2000  | 1,350             | 1,814                 | 0£31            | 0ρ13  | 0,448                           | 0,440 | 0,201          | 0,150                      | 0,059                                  | 0,044                                  | 0,010              | 0,000            | 34,700 | 0,447   | 16,088              | 0,000                          | 3499,079                  | 100,000 |
| 163 | 24/2/2000  | 0,390             | 0,969                 | 0£22            | 0ρ12  | 0,179                           | 0,539 | 0,279          | 0,112                      | 0,110                                  | 0,044                                  | 0,128              | 0,000            | 33,560 | 0,603   | 30,415              | 0,000                          | 4944,022                  | 100,000 |
| 164 | 3/3/2000   | 2,080             | 1,894                 | 0£42            | 0,ρ14 | 93,0                            | 0,325 | 0,173          | 0,190                      | 0,032                                  | 0,035                                  | 0,000              | 0,000            | 33,420 | 0,219   | 0,000               | 0,000                          | 100,000                   | 100,000 |
| 165 | 10/3/2000  | 0,370             | 1,209                 | 0£34            | 0ρ13  | 0,314                           | 0,369 | 0,514          | 0,157                      | 0,115                                  | 0,035                                  | 0,142              | 0,000            | 32,880 | 0,04    | 30,580              | 0,000                          | 76349,112                 | 100,000 |
| 166 | 17/3/2000  | 3,530             | 1,510                 | 0£36            | 0.013 | 0,421                           | 0,359 | 0,072          | 0,169                      | 0,016                                  | 0,036                                  | 0,000              | 0,000            | 33,270 | 0,218   | 0,000               | 0,000                          | 100,000                   | 100,000 |
| 167 | 24/3/2000  | 2,850             | 1,341                 | 0£26            | 0ρ13  | 0,284                           | 0,500 | 0,060          | 0,128                      | 0,021                                  | 0,045                                  | 0,000              | 0,000            | 34,120 | 0,491   | 0,000               | 0,000                          | 100,000                   | 100,000 |
| 168 | 3 1/3/2000 | 1,650             | 2,245                 | 0£32            | 0ρ14  | 0,579                           | 0,435 | 0,213          | 0,156                      | 0,061                                  | 0,045                                  | 0,013              | 0,000            | 35,270 | 1,121   | 29,176              | 0,000                          | 2502,688                  | 100,000 |
| 169 | 7/4/2000   | 5,640             | 0,984                 | 0£38            | 0ρ12  | 0,270                           | 0,315 | 0,029          | 0,166                      | 0,005                                  | 0,029                                  | 0,000              | 0,000            | 32,770 | 0,05    | 0,000               | 0,000                          | 100,000                   | 100,000 |
| 170 | 14/4/2000  | 2,450             | 0,842                 | 0 <i>0</i> 35   | 0ρ12  | 0,216                           | 0,333 | 0,053          | 0,156                      | 0,010                                  | 0,030                                  | 0,000              | 0,000            | 32,200 | 0,005   | 0,000               | 0,000                          | 100,000                   | 100,000 |
| 171 | 19/4/2000  | 5,260             | 0,848                 | 0.038           | 0 ρ12 | 0,230                           | 0,309 | 0,027          | 0,164                      | 0,005                                  | 0,028                                  | 0,000              | 0,000            | 31990  | 0,012   | 0,000               | 0,000                          | 100,000                   | 100,000 |
|     |            |                   |                       |                 |       |                                 |       |                |                            |                                        |                                        |                    |                  |        |         |                     | MÉDIA                          | 2951,904                  | 125,994 |

Tabela 6.2d - Descargas calculadas pelo método de Meyer-Peter e Muller (1948) usando o diâmetro D<sub>90</sub> e o Dvj

qB[MPM]<sub>D90</sub> - Descarga solida calculada pelo método de Meyer Peter e Muller usando o diâmetro D<sub>90</sub> qB[MPM]<sub>D90</sub> - Descarga solida calculada pelo método de Meyer Peter e Muller usando o diâmetro Dyj

| (1) | (2)       | (3)             | (4)                   | (5)     | (6)   | (7)     | (8)   | (9)             | (10)             | (11)                                  | (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (13)             | (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (15)   | (16)    | (17)                           | (18)                         | (19)          | (20)    |
|-----|-----------|-----------------|-----------------------|---------|-------|---------|-------|-----------------|------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------------------------------|------------------------------|---------------|---------|
| N°  | DATA      | D <sub>90</sub> | D <sub>Vj [MPM]</sub> | n       | n´    | το      | n /n  | $\theta i_{on}$ | $	heta i_{Drri}$ | [n′/n] <sup>32</sup> θi <sub>90</sub> | [n1/n] <sup>3/2</sup> ði <sub>Bi</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ф <sub>190</sub> | φ <sub>Dri</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В      | qBm     | q <b>B[</b> MPM] <sub>0%</sub> | գ <b>B[MPM]<sub>օղ</sub></b> | <b>¤</b> ‰⊅0∞ | E[%]Dvj |
|     |           | (mm)            | ու                    | Manning |       | Kgť m²  |       | ~               | 200              |                                       | , in the second s |                  | , in the second s | (m)    | ton/dia |                                |                              |               |         |
| 91  | 3/2/1997  | 0,980           | 2,445                 | 0.D 29  | 0£14  | 76 کړ 0 | 0,489 | 0,356           | 0,143            | 0,122                                 | 0,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,163            | 0,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36,460 | 21,99   | 168,341                        | 2,450                        | 665,535       | 88,858  |
| 134 | 28/1/1999 | 0,380           | 2,980                 | 0£32    | 0.015 | 0,780   | 0,454 | 1,244           | 0,159            | 0,381                                 | 0,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,545            | 0,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35810  | 0       | 377,479                        | 2,717                        | 0,000         | 0,000   |
|     |           |                 |                       |         |       |         |       |                 |                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |         |                                | MÉDIA                        | 332,767       | 44,429  |

Tabela 6.2d l - Descargas maiores que zero calculadas pelo método de Meyer-Peter e Muller (1948) usando o diâmetro D<sub>90</sub> e o Dvj

| (1)            | (2)        | (9)             | க                                                 | (5)                 | (6)   | $\overline{O}$    | (8)               | (9)                               | (10)                              | (11)                  | (12)           | (13)  | (14)     | (15)                   | (16)       | (17)                | (18)     |
|----------------|------------|-----------------|---------------------------------------------------|---------------------|-------|-------------------|-------------------|-----------------------------------|-----------------------------------|-----------------------|----------------|-------|----------|------------------------|------------|---------------------|----------|
| $\mathbb{N}^n$ | DATA       | D <sub>84</sub> | $\mathbf{D}_{Vj[\mathbf{E}\mathbf{A}\mathbf{L}]}$ | το                  | U.*   |                   |                   |                                   |                                   |                       |                | В     | q Bm     | qB[KAL]D <sub>S4</sub> | qB[KAL]D/j | E[%]D <sub>S4</sub> | E[%]Dvj  |
|                |            | (mm)            | <b>3100.</b>                                      | Kgf/ m <sup>2</sup> | (m/s) | τc <sub>D84</sub> | Tc <sub>Doj</sub> | τ <sub>cD84</sub> /τ <sub>0</sub> | τ <sub>σσj</sub> / τ <sub>0</sub> | UP/Uin <sub>paq</sub> | UP / Uin[Dvj]  | (m)   | to n/dia | to n/dia               | ton/d ia   |                     |          |
| 1              | 26/3/1993  | 1,56            | 1,66                                              | 0,26                | 0,05  | 0,30              | 0,32              | 1,13                              | 1,20                              | 0,060                 | 0,0 <i>5</i> 0 | 34,70 | 0,141    | 60,23                  | 54,07      | 42613,1             | 38249,5  |
| 2              | 6/4/1993   | 2,77            | 2,23                                              | 0,23                | 0,05  | 0,53              | 0,43              | 2,34                              | 1,88                              | 0,001                 | 0,008          | 34,87 | 0,038    | 2,20                   | 10,14      | 5699,5              | 26587,5  |
| 3              | 20/4/1993  | 2,96            | 2,68                                              | 0,20                | 0,04  | 0,57              | 0,51              | 2,84                              | 2,57                              | 0,000                 | 0,000          | 34,88 | 0,045    | 0,00                   | 0,00       | 100,0               | 100,0    |
| 4              | 4/5/1993   | 3,24            | 2,09                                              | 0,25                | 0,05  | 0,62              | 0,40              | 2,45                              | 1,58                              | 0,000                 | 0,0 18         | 34,78 | 0,045    | 0,00                   | 24,16      | 100,0               | 53585,6  |
| 5              | 18/5/1993  | 0,97            | 3,10                                              | 0,17                | 0,04  | 0,19              | 0,59              | Լ11                               | 3,54                              | 0,063                 | 0,000          | 34,38 | 0,024    | 31,43                  | 0,00       | 130853,1            | 100,0    |
| 6              | 1/6/1993   | 2,50            | 1,02                                              | 0,35                | 0,06  | 0,48              | 0,20              | 1,38                              | 0,56                              | 0,031                 | 0,223          | 35,24 | 0,190    | 58,65                  | 171,45     | 30770,0             | 90135,3  |
| 7              | 8/6/1993   | 1,13            | 2,46                                              | 0,19                | 0,04  | 0,22              | 0,47              | <b>1,14</b>                       | 2,47                              | 0,059                 | 0,000          | 34,91 | 0,026    | 36,82                  | 0,00       | 141515,7            | 100,0    |
| 8              | 15/6/1993  | 1,44            | 2,66                                              | 0,19                | 0,04  | 0,28              | 0,51              | l,42                              | 2,63                              | 0,028                 | 0,000          | 34,21 | 0,008    | 21,86                  | 0,00       | 273200,8            | 100,0    |
| 9              | 22/6/1993  | 4,47            | 2,80                                              | 0,17                | 0,04  | 0,86              | 0,54              | 4,92                              | 3,09                              | 0,000                 | 0,000          | 34,54 | 0,008    | 0,00                   | 0,00       | 100,0               | 100,0    |
| D              | 29/6/1993  | 1,40            | 3,44                                              | 0,14                | 0,04  | 0,27              | 0,66              | 1,88                              | 4,61                              | 0,008                 | 0,000          | 33,99 | 0,007    | 5,03                   | 0,00       | 71731,8             | 100,0    |
| 11             | 6/7/1993   | 4,10            | 3,83                                              | 0,09                | 0,03  | 0,78              | 0,73              | 8,49                              | 7,93                              | 0,000                 | 0,000          | 33,77 | 0,002    | 0,00                   | 0,00       | 100,0               | 100,0    |
| 2              | 21/7/1993  | 3,33            | 3,97                                              | 0,07                | 0,03  | 0,64              | 0,76              | 8,63                              | 10,29                             | 0,000                 | 0,000          | 33,64 | 0,006    | 0,00                   | 0,00       | 100,0               | 100,0    |
| в              | 3/8/1993   | 3,90            | 4,22                                              | 0,05                | 0,02  | 0,75              | 0,81              | 15 <i>,</i> 55                    | 16,83                             | 0,000                 | 0,000          | 32,82 | 0,002    | 0,00                   | 0,00       | 100,0               | 100,0    |
| 14             | 17/8/1993  | 2,30            | 4,27                                              | 0,02                | 0,02  | 0,44              | 0,82              | 18,81                             | 34,94                             | 0,000                 | 0,000          | 33,53 | 0,002    | 0,00                   | 0,00       | 100,0               | 100,0    |
| Б              | 31/8/1993  | 2,17            | 4,20                                              | 0,04                | 0,02  | 0,42              | 0,80              | 10,04                             | 19,46                             | 0,000                 | 0,000          | 33,74 | 0,002    | 0,00                   | 0,00       | 100,0               | 100,0    |
| ю              | 21/9/1993  | 1,00            | 3,39                                              | 0,14                | 0,04  | 0,19              | 0,65              | 1,36                              | 4,60                              | 0,033                 | 0,000          | 33,97 | 0,006    | 15,43                  | 0,00       | 257124,2            | 100,0    |
| Π.             | 28/9/1993  | 1,29            | 1,14                                              | 0,32                | 0,06  | 0,25              | 0,22              | 0,78                              | 0,69                              | 0,135                 | 0,167          | 34,92 | 0,384    | 124,18                 | 135,57     | 32239,8             | 35205,7  |
| B              | 5/10/1993  | 4,77            | 3,18                                              | 0,14                | 0,04  | 0,91              | 0,61              | 6,34                              | 4,23                              | 0,000                 | 0,000          | 34,38 | 0,006    | 0,00                   | 0,00       | 100,0               | 100,0    |
| 19             | 21/10/1993 | 3,63            | 2,25                                              | 0,22                | 0,05  | 0,69              | 0,43              | 3,22                              | 2,00                              | 0,000                 | 0,005          | 34,84 | 0,023    | 0,00                   | 6,46       | 100,0               | 27975,5  |
| 20             | 28/10/1993 | 1,24            | 1,75                                              | 0,26                | 0,05  | 0,24              | 0,34              | 0,91                              | 1,28                              | 0,101                 | 0,041          | 34,88 | 0,037    | 80,72                  | 46,32      | 218054,8            | 125086,2 |
| 21             | 4/11/1993  | 4,52            | 4,00                                              | 0,07                | 0,03  | 0,87              | 0,77              | 12,72                             | 11,27                             | 0,000                 | 0,000          | 33,82 | 0,003    | 0,00                   | 0,00       | 100,0               | 100,0    |
| 22             | 9/11/1993  | 4,27            | 3,58                                              | 0, 12               | 0,03  | 0,82              | 0,68              | 7,06                              | 5,92                              | 0,000                 | 0,000          | 34,01 | 0,005    | 0,00                   | 0,00       | 100,0               | 100,0    |
| 23             | 20/12/1993 | 1,26            | 2,21                                              | 0,24                | 0,05  | 0,24              | 0,42              | 1,01                              | 1,78                              | 0,079                 | Q011           | 34,64 | 0,080    | 60,99                  | 14,46      | 76 135,5            | 17978,8  |
| - 24           | 10/2/1994  | 1,11            | 2,36                                              | 0,13                | 0,04  | 0,21              | 0,45              | 1,61                              | 3,42                              | 0,017                 | 0,000          | 35,65 | 0,332    | 8,74                   | 0,00       | 2531,5              | 100,0    |
| 3              | 29/3/1994  | 1,18            | 1,32                                              | 0,38                | 0,06  | 0,23              | 0,25              | 0,60                              | 0,67                              | 0,207                 | 0,174          | 34,34 | 0,027    | 186,85                 | 176,98     | 691923,9            | 655372,7 |
| 36             | 19/4/1994  | 1,34            | 2,86                                              | 0,19                | 0,04  | 0,26              | 0,55              | 1,34                              | 2,87                              | 0,035                 | 0,000          | 34,00 | 0,022    | 25,03                  | 0,00       | 113692,6            | 100,0    |
| 27             | 6/5/1994   | 1,20            | 3,62                                              | 0,12                | 0,03  | 0,23              | 0,69              | 1,84                              | 5 <i>,5</i> 6                     | 0,009                 | 0,000          | 33,60 | 0,012    | 4,60                   | 0,00       | 38238,2             | 100,0    |
| 28             | 20/5/1994  | 0,95            | 3,46                                              | 0,15                | 0,04  | 0,18              | 0,66              | 1,23                              | 4,47                              | 0,047                 | 0,000          | 33,60 | 0,012    | 21,12                  | 0,00       | 175932,9            | 100,0    |
| 29             | 17/6/1994  | 0,83            | 3,77                                              | 0,09                | 0,03  | 0,16              | 0,72              | 1,71                              | 7,76                              | 0,013                 | 0,000          | 33,64 | 0,005    | 3,93                   | 0,00       | 78512,1             | 100,0    |
| 30             | 1/7/1994   | 0,89            | 3,38                                              | 0,16                | 0,04  | 0,17              | 0,65              | 1,08                              | 4,11                              | 0,067                 | 0,000          | 33,81 | 0,006    | 28,96                  | 0,00       | 482566,2            | 100,0    |
| 31             | 15/7/1994  | 0,89            | 3,92                                              | 0,08                | 0,03  | 0,17              | 0,75              | 2,06                              | 9,10                              | 0,004                 | 0,000          | 33,64 | 0,051    | 1,19                   | 0,00       | 2226,7              | 100,0    |
| 32             | 29/7/1994  | 1,66            | 3,36                                              | 0, 16               | 0,04  | 0,32              | 0,64              | 2,03                              | 4,11                              | 0,004                 | 0,000          | 33,81 | 0,010    | 3,42                   | 0,00       | 34070,2             | 100,0    |
| 33             | 12/8/1994  | 1,23            | 4,17                                              | 0,06                | 0,02  | 0,24              | 0,80              | 4,01                              | 13,58                             | 0,000                 | 0,000          | 33,26 | 0,011    | 0,00                   | 0,00       | 100,0               | 100,0    |

Tabela 6.2e - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| <b>(1)</b> | (2)        | (9)             | G                                                 | (5)                 | (0)   | $(\mathcal{O})$   | (8)               | (9)                               | (10)                       | (11)                  | (12)       | (13)  | (14)    | (15)                   | (16)       | (17)                | (18)      |
|------------|------------|-----------------|---------------------------------------------------|---------------------|-------|-------------------|-------------------|-----------------------------------|----------------------------|-----------------------|------------|-------|---------|------------------------|------------|---------------------|-----------|
| N°         | DATA       | D <sub>84</sub> | $\mathbf{D}_{Vj[\mathbf{E}\mathbf{A}\mathbf{L}]}$ | ղ                   | U.    |                   |                   |                                   |                            |                       |            | В     | q Bm    | qB[KAL]D <sub>≥4</sub> | qB[KAL]Dvj | E[%]D <sub>54</sub> | E[%]Dvj   |
|            |            | (mm)            | JITA.                                             | Kgf/ m <sup>2</sup> | (m/s) | Тс <sub>184</sub> | Tc <sub>Dvj</sub> | τ <sub>ւD84/</sub> τ <sub>0</sub> | $\tau_{cDvj}^{}/\tau_0^{}$ | UP/Uin <sub>ps4</sub> | UP/Um[Dvj] | (m)   | ton/dia | to n/dia               | ton/d ia   |                     |           |
| 34         | 26/8/1994  | 0,88            | 3,99                                              | 0,08                | 0,03  | 0,17              | 0,76              | 2,01                              | 9,14                       | 0,005                 | 0,000      | 33,47 | 0,002   | 1,43                   | 0,00       | 71291,1             | 100,0     |
| 35         | 8/9/1994   | 1,00            | 3,80                                              | 0,11                | 0,03  | 0,19              | 0,73              | 1,75                              | 6,64                       | 0,012                 | 0,000      | 33,68 | 0,004   | 4,67                   | 0,00       | 116673,5            | 100,0     |
| 36         | 22/9/1994  | 0,89            | 3,24                                              | 0,19                | 0,04  | 0,17              | 0,62              | 0,90                              | 3,29                       | 0, 101                | 0,000      | 33,92 | 0,002   | 48,21                  | 0,00       | 2410477,6           | 100,0     |
| 37         | 6/10/1994  | 1,18            | 4,07                                              | 0,06                | 0,02  | 0,23              | 0,78              | 3,67                              | 12,65                      | 0,000                 | 0,000      | 33,49 | 0,002   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 38         | 27/10/1994 | 1,79            | 2,50                                              | 0,22                | 0,05  | 0,34              | 0,48              | 1,58                              | 2,21                       | 0,018                 | 0,002      | 34,48 | 0,424   | 19,06                  | 3,21       | 4394,6              | 658,1     |
| <b>39</b>  | 23/11/1994 | 1,14            | 4,09                                              | 0,06                | 0,02  | 0,22              | 0,78              | 3,49                              | 12,53                      | 0,000                 | 0,000      | 33,52 | 0,004   | 0,00                   | 0,00       | 100,0               | 100,0     |
| -40        | 22/12/1994 | 1,60            | 0,42                                              | 0,56                | 0,07  | 0,31              | 0,08              | 0,54                              | 0,14                       | 0,235                 | 0,628      | 35,68 | 0,218   | 365,61                 | 256,85     | 167608,8            | 117723,2  |
| 41         | 5/1/1995   | 1,08            | 0,56                                              | 0,53                | 0,07  | 0,21              | 0,11              | 0,39                              | 0,20                       | 0,332                 | 0,517      | 35,27 | 0,523   | 333,39                 | 267,33     | 63645,1             | 5 1015,1  |
| 42         | 19/1/1995  | 4,17            | 2,70                                              | 0,22                | 0,05  | 0,80              | 0,52              | 3,60                              | 2,33                       | 0,000                 | 0,001      | 33,92 | 0,015   | 0,00                   | 2,14       | 100,0               | 14166,5   |
| 43         | 26/1/1995  | 1,02            | 2,92                                              | 0,21                | 0,05  | 0,20              | 0,56              | 0,91                              | 2,61                       | 0, 100                | 0,000      | 33,93 | 0,036   | 58,17                  | 0,00       | 161470,2            | 100,0     |
| 44         | 9/2/1995   | 4,84            | 0,32                                              | 0,41                | 0,06  | 0,93              | 0,06              | 2,25                              | 0,15                       | 0,002                 | 0,619      | 40,30 | 3,097   | 8,43                   | 183,06     | 172,3               | 58 10,8   |
| 46         | 16/2/1995  | 1,79            | 0,30                                              | 0,60                | 0,08  | 0,34              | 0,06              | 0,57                              | 0,10                       | 0,221                 | 0,731      | 35,40 | 0,485   | 394,20                 | 220,18     | 81177,5             | 45297,0   |
| 46         | 8/3/1995   | 1,20            | 1,84                                              | 0,31                | 0,05  | 0,23              | 0,35              | 0,75                              | 1,15                       | 0,146                 | 0,058      | 34,94 | 0,396   | 123,43                 | 74,97      | 31068,8             | 18831,4   |
| 47         | 24/3/1995  | 2,97            | 0,69                                              | 0,44                | 0,07  | 0,57              | 0,13              | 1,29                              | 0,30                       | 0,039                 | 0,411      | 35,38 | 1,721   | 99,68                  | 241,64     | 569 1,8             | 13940,4   |
| 48         | 7/4/1995   | 0,72            | 0,98                                              | 0,41                | 0,06  | 0,14              | 0,19              | 0,34                              | 0,46                       | 0,376                 | 0,282      | 35,05 | 0,171   | 219,23                 | 224,39     | 128104,5            | 131121,4  |
| 49         | 28/4/1995  | 0,91            | 1,81                                              | 0,31                | 0,06  | 0,17              | 0,35              | 0,56                              | 1,11                       | 0,227                 | 0,063      | 34,63 | 0,081   | 145,44                 | 80,31      | 179456,1            | 99049,3   |
| 50         | 12/5/1995  | 1,55            | 1,45                                              | 0,34                | 0,06  | 0,30              | 0,28              | 0,88                              | 0,83                       | 0,107                 | 0,121      | 34,74 | 0,468   | 121,03                 | 128,89     | 25760,6             | 27440,0   |
| 51         | 9/6/1995   | 1,09            | 2,76                                              | 0,23                | 0,05  | 0,21              | 0 <i>,5</i> 3     | 0,90                              | 2,29                       | 0,101                 | 0,002      | 34,35 | 0,023   | 66,12                  | 2,65       | 287380,7            | 11430,2   |
| 52         | 23/6/1995  | 2,04            | 2,80                                              | 0,21                | 0,04  | 0,39              | 0,54              | 1,90                              | 2,60                       | 0,007                 | 0,000      | 34,34 | 0,018   | 8,30                   | 0,00       | 46005,3             | 100,0     |
| -53        | 5/7/1995   | 0,91            | 2,94                                              | 0,21                | 0,05  | 0,17              | 0,56              | 0,82                              | 2,66                       | 0,122                 | 0,000      | 34,19 | 0,051   | 63,54                  | 0,00       | 124478,8            | 100,0     |
| - 54       | 12/7/1995  | 0,50            | 0,75                                              | 0,50                | 0,07  | 0,10              | 0,14              | 0,19                              | 0,29                       | 0,536                 | 0,425      | 35,03 | 4,163   | 241,37                 | 287,66     | 5698,0              | 68 10,0   |
| 5          | 19/7/1995  | 0,60            | 2,03                                              | 0,33                | 0,06  | 0,11              | 0,39              | 0,34                              | 1,16                       | 0,373                 | 0,056      | 34,59 | 0,016   | 162,46                 | 82,21      | 1015271,7           | 513730,0  |
| 56         | 26/7/1995  | 1,39            | 2,18                                              | 0,28                | 0,05  | 0,27              | 0,42              | 0,96                              | 1,50                       | 0,089                 | 0,022      | 34,61 | 0,118   | 81,76                  | 32,18      | 69 186,4            | 27173,4   |
| 57         | 10/8/1995  | 0,71            | 3,26                                              | 0,17                | 0,04  | 0,14              | 0,62              | 0,78                              | 3,60                       | 0,134                 | 0,000      | 34,09 | 0,012   | 48,88                  | 0,00       | 407271,2            | 100,0     |
| -58        | 31/8/1995  | 1,46            | 3,80                                              | 0, 10               | 0,03  | 0,28              | 0,73              | 2,75                              | 7,16                       | 0,000                 | 0,000      | 33,65 | 0,002   | 0,00                   | 0,00       | 100,0               | 100,0     |
| <b>Ð</b>   | 21/9/1995  | 0,75            | 0,80                                              | 0,76                | 0,09  | 0,14              | 0,15              | 0,19                              | 0,20                       | 0,538                 | 0,517      | 34,28 | 0,031   | 436,49                 | 447,79     | 1407921,5           | 1444398,3 |
| 60         | 28/9/1995  | 1,66            | 2,64                                              | 0,22                | 0,05  | 0,32              | 0,51              | <b>1,47</b>                       | 2,34                       | 0,024                 | 0,001      | 34,68 | 0,249   | 23,60                  | 2,03       | 9376,2              | 713,7     |
| ി          | 5/10/1995  | 1,24            | 3,54                                              | 0,13                | 0,04  | 0,24              | 0,68              | 1,76                              | 5,02                       | 0,011                 | 0,000      | 34,16 | 0,002   | 6,27                   | 0,00       | 313596,0            | 100,0     |
| 62         | 19/10/1995 | 3,06            | 1,02                                              | 0,40                | 0,06  | 0,59              | 0,20              | <b>L,46</b>                       | 0,48                       | 0,025                 | 0,268      | 35,02 | 0,205   | 62,73                  | 220,30     | 30499,8             | 107364,5  |
| 63         | 23/11/1995 | 1,37            | 3,46                                              | 0,13                | 0,04  | 0,26              | 0,66              | 1,94                              | 4,91                       | 0,006                 | 0,000      | 34,05 | 0,006   | 3,71                   | 0,00       | 61798,6             | 100,0     |
| 64         | 7/12/1995  | 1,56            | 3,97                                              | 0,08                | 0,03  | 0,30              | 0,76              | 3,73                              | 9,51                       | 0,000                 | 0,000      | 33,39 | 0,002   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 6          | 10/1/19%   | 1,18            | 0,13                                              | 0,64                | 0,08  | 0,23              | 0,02              | 0,35                              | 0,04                       | 0,365                 | 0,881      | 36,91 | 5,141   | 462,58                 | 123,09     | 8897,8              | 2294,3    |
| 66         | 31/1/19%   | 0,41            | 2,58                                              | 0,23                | 0,05  | 0,08              | 0,49              | 0,35                              | 2,18                       | 0,370                 | 0,002      | 34,12 | 0,019   | 89,29                  | 3,73       | 469837,9            | 19546,9   |

Tabela 6.2e - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| ക    | (2)        | ற               | G                       | (5)                | (6)   | $-\infty$         | (8)               | (9)                               | (10)                       | (11)                  | (12)       | (13)  | (14)    | (15)                   | (16)       | (17)                | (18)     |
|------|------------|-----------------|-------------------------|--------------------|-------|-------------------|-------------------|-----------------------------------|----------------------------|-----------------------|------------|-------|---------|------------------------|------------|---------------------|----------|
| N°   | DATA       | D <sub>84</sub> | $\mathbf{D}_{Vj}$ (EAL) | $\tau_0$           | U.    |                   |                   |                                   |                            |                       |            | В     | q Bm    | qB[KAL]D <sub>S4</sub> | qB[KAL]Dvj | E[%]D <sub>84</sub> | E[%]Dvj  |
|      |            | (mm)            | JTA                     | Kgf/m <sup>2</sup> | (m/s) | Тс <sub>184</sub> | Tc <sub>Dvj</sub> | τ <sub>α184/</sub> τ <sub>0</sub> | $\tau_{cDvj}^{}/\tau_0^{}$ | UP/Uin <sub>ps4</sub> | UP/Um(Dvj) | (m)   | ton/dia | to n/dia               | ton/d ia   |                     |          |
| 67   | 7/2/1996   | 1,19            | 1,53                    | 0,31               | 0,06  | 0,23              | 0,29              | 0,72                              | 0,93                       | 0,154                 | 0,095      | 35,12 | 0,238   | 131,15                 | 104,06     | 55003,5             | 43621,6  |
| 68   | 6/3/1996   | 0,43            | 0,62                    | 0,48               | 0,07  | 0,08              | 0,12              | 0,17                              | 0,25                       | 0,571                 | 0,468      | 35,36 | 3,542   | 218,19                 | 255,88     | 6060,1              | 7124,2   |
| Ð    | 20/3/1996  | 0,57            | 0,06                    | 0,74               | 0,09  | 0,11              | 0,01              | 0, 15                             | 0,02                       | 0,617                 | 0,949      | 36,55 | 1,150   | 400,79                 | 67,03      | 34751,0             | 5729,0   |
| 70   | 3/4/1996   | 1,41            | 1,57                    | 0,33               | 0,06  | 0,27              | 0,30              | 0,81                              | 0,91                       | 0,125                 | 0,101      | 34,87 | 0,133   | 127,94                 | 115,14     | 96094,3             | 86471,7  |
| 71   | 16/4/1996  | 0,74            | 1,85                    | 0,30               | 0,05  | 0,14              | 0,35              | 0,47                              | 1,18                       | 0,276                 | 0,053      | 34,52 | 0,051   | 140,33                 | 67,72      | 275055,8            | 132688,2 |
| 72   | 15/5/1996  | 1,50            | 2,36                    | 0,25               | 0,05  | 0,29              | 0,45              | 1,17                              | 1,84                       | 0,055                 | 0,009      | 34,24 | 0,246   | 50,48                  | 12,99      | 20422,0             | 5179,5   |
| 73   | 22/5/1996  | 1,63            | 2,56                    | 0,24               | 0,05  | 0,31              | 0,49              | <b>L</b> 33                       | 2,08                       | 0,036                 | 0,004      | 34,20 | 0,008   | 35,46                  | 5,48       | 443139,6            | 68400,6  |
| 74   | 19/6/1996  | 0,99            | 3,52                    | 0,14               | 0,04  | 0,19              | 0,67              | 1,38                              | 4,89                       | 0,032                 | 0,000      | 33,76 | 0,012   | 14,23                  | 0,00       | 118497,3            | 100,0    |
| 75   | 3/6/1996   | 2,52            | 3,20                    | 0,17               | 0,04  | 0,48              | 0,61              | 2,80                              | 3 <i>,5</i> 6              | 0,000                 | 0,000      | 34,07 | 0,023   | 0,00                   | 0,00       | 100,0               | 100,0    |
| 76   | 17/7/1996  | 2,82            | 3,58                    | 0,13               | 0,04  | 0,54              | 0,68              | 4,06                              | 5,15                       | 0,000                 | 0,000      | 33,81 | 0,004   | 0,00                   | 0,00       | 100,0               | 100,0    |
| π    | 31/7/1996  | 1,34            | 3,56                    | 0,14               | 0,04  | 0,26              | 0,68              | 1,81                              | 4,80                       | 0,010                 | 0,000      | 34,75 | 0,005   | 6,37                   | 0,00       | 127388,6            | 100,0    |
| 78   | 7/8/1996   | 1,98            | 3,73                    | 0,11               | 0,03  | 0,38              | 0,71              | 3,43                              | 6,46                       | 0,000                 | 0,000      | 34,04 | 0,004   | 0,00                   | 0,00       | 100,0               | 100,0    |
| 79   | 14/8/1996  | 2,70            | 3,44                    | 0,15               | 0,04  | 0,52              | 0,66              | 3,39                              | 4,32                       | 0,000                 | 0,000      | 33,99 | 0,005   | 0,00                   | 0,00       | 100,0               | 100,0    |
| 80   | 21/8/1996  | 3,27            | 3,51                    | 0,13               | 0,04  | 0,63              | 0,67              | 4,78                              | 5,13                       | 0,000                 | 0,000      | 33,89 | 0,005   | 0,00                   | 0,00       | 100,0               | 100,0    |
| 81   | 28/8/1996  | 3,85            | 3,60                    | 0,13               | 0,04  | 0,74              | 0,69              | 5,55                              | 5,19                       | 0,000                 | 0,000      | 33,73 | 0,003   | 0,00                   | 0,00       | 100,0               | 100,0    |
| 82   | 4/9/1996   | 1,95            | 2,46                    | 0,25               | 0,05  | 0,37              | 0,47              | <b>L48</b>                        | 1,88                       | 0,024                 | 0,008      | 34,56 | 0,036   | 28,82                  | 12,07      | 79949,4             | 33420,3  |
| 83   | 11/9/1996  | 4,19            | 0,26                    | 0,61               | 0,08  | 0,80              | 0,05              | 1,31                              | 0,08                       | 0,038                 | 0,769      | 35,84 | 3,697   | 163,59                 | 202,13     | 4325,0              | 5367,4   |
| 84   | 2/10/19%   | 1,82            | 3,26                    | 0, 16              | 0,04  | 0,35              | 0,62              | 2,21                              | 3,96                       | 0,002                 | 0,000      | 34,10 | 0,006   | 1,93                   | 0,00       | 32033,7             | 100,0    |
| 85   | 16/10/1996 | 4,07            | 2,18                    | 0,27               | 0,05  | 0,78              | 0,42              | 2,89                              | 1,55                       | 0,000                 | 0,020      | 34,70 | 0,250   | 0,00                   | 28,34      | 100,0               | 11236,0  |
| 86   | 6/11/1996  | 3,00            | 1,95                    | 0,29               | 0,05  | 0,57              | 0,37              | 1,99                              | 1,30                       | 0,005                 | 0,039      | 34,70 | 0,320   | 10,05                  | 51,84      | 3040,3              | 16099,8  |
| 87   | 20/11/1996 | 3,50            | 2,46                    | 0,23               | 0,05  | 0,67              | 0,47              | 2,86                              | 2,01                       | 0,000                 | 0,005      | 34,70 | 0,034   | 0,00                   | 6,89       | 100,0               | 20168,1  |
| 88   | 6/12/1996  | 0,93            | 2,58                    | 0,22               | 0,05  | 0,18              | 0,49              | 0,81                              | 2,23                       | 0,127                 | 0,002      | 34,60 | 4,340   | 69,91                  | 3,06       | 1510,8              | 29,6     |
| 89   | 9/1/1997   | 0,83            | 2,13                    | 0,26               | 0,05  | 0,16              | 0,41              | 0,61                              | 1,56                       | 0,202                 | 0,019      | 34,68 | 0,033   | 107,85                 | 26,36      | 326731,9            | 79769,8  |
| 90   | 22/1/1997  | 0,77            | 1,06                    | 0,43               | 0,07  | 0,15              | 0,20              | 0,34                              | 0,47                       | 0,375                 | 0,278      | 34,78 | 0,146   | 239,36                 | 244,51     | 163844,8            | 167369,4 |
| 91   | 3/2/1997   | 0,65            | 0,17                    | 0,58               | 0,08  | 0,12              | 0,03              | 0,22                              | 0,06                       | 0,501                 | 0,832      | 36,46 | 21,990  | 326,64                 | 141,57     | 1385,4              | 543,8    |
| 92   | 12/3/1997  | 0,82            | 2,41                    | 0,22               | 0,05  | 0,16              | 0,46              | 0,71                              | 2,08                       | 0,160                 | 0,004      | 34,32 | 1,010   | 77,00                  | 5,09       | 7524,0              | 403,5    |
| 93   | 26/3/1997  | 0,80            | 3,04                    | 0,16               | 0,04  | 0,15              | 0,58              | 0,93                              | 3,53                       | 0,095                 | 0,000      | 33,84 | 0,160   | 38,04                  | 0,00       | 23677,7             | 100,0    |
| 94   | 16/4/1997  | 0,88            | 3,47                    | 0,12               | 0,03  | 0,17              | 0,66              | 1,39                              | 5,47                       | 0,030                 | 0,000      | 33,64 | 0,032   | 11,40                  | 0,00       | 35532,0             | 100,0    |
| 95   | 14/5/1997  | 0,84            | 3,60                    | 0,12               | 0,04  | 0,16              | 0,69              | 1,29                              | 5 <i>5</i> 1               | 0,040                 | 0,000      | 33,16 | 0,104   | 14,39                  | 0,00       | 13733,3             | 100,0    |
| 96   | 4/6/1997   | 4,44            | 3,24                    | 0, 16              | 0,04  | 0,85              | 0,62              | 5,28                              | 3,85                       | 0,000                 | 0,000      | 33,64 | 0,006   | 0,00                   | 0,00       | 100,0               | 100,0    |
| 97   | 2/7/1997   | 3,49            | 3,25                    | 0,16               | 0,04  | 0,67              | 0,62              | 4,18                              | 3,89                       | 0,000                 | 0,000      | 33,84 | 0,005   | 0,00                   | 0,00       | 100,0               | 100,0    |
| . 98 | 12/8/1997  | 4,00            | 3,25                    | 0,15               | 0,04  | 0,77              | 0,62              | 5,09                              | 4,14                       | 0,000                 | 0,000      | 33,93 | 0,003   | 0,00                   | 0,00       | 100,0               | 100,0    |
| 99   | 26/8/1997  | 1,84            | 2,76                    | 0,21               | 0,05  | 0,35              | 0,53              | 1,70                              | 2 <i>,55</i>               | 0,013                 | 0,000      | 33,97 | 0,005   | 13,55                  | 0,00       | 250898,8            | 100,0    |

Tabela 6.2e - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| (1) | (2)        | Ø               | Ð                                                                | (5)                 | (6)   | $-\infty$         | (8)               | (9)                       | (10)                               | (11)                  | (12)          | (13)  | (14)    | (15)                   | (16)       | (17)                | (18)      |
|-----|------------|-----------------|------------------------------------------------------------------|---------------------|-------|-------------------|-------------------|---------------------------|------------------------------------|-----------------------|---------------|-------|---------|------------------------|------------|---------------------|-----------|
| N°  | DATA       | D <sub>84</sub> | $\mathbf{D}_{V_j   \mathbf{E} \mathbf{A} \mathbf{I} \mathbf{j}}$ | $\tau_0$            | U,    |                   |                   |                           |                                    |                       |               | В     | q Bm    | qB[KAL]D <sub>⊠4</sub> | qB[KAL]Dvj | E[%]D <sub>54</sub> | E[%]Dvj   |
|     |            | (mm)            | JATA.                                                            | Kgf/ m <sup>2</sup> | (m/s) | Тс <sub>184</sub> | Tc <sub>Dyj</sub> | <b>Շ<sub>084</sub>/ Ն</b> | $\tau_{_{CDvj}}^{} / \tau_{_0}^{}$ | UP/Uin <sub>ps4</sub> | UP / Uin[Dvj] | (m)   | ton/dia | to n/dia               | ton/d ia   |                     |           |
| 100 | 9/9/1997   | 1,63            | 3,74                                                             | 0,12                | 0,03  | 0,31              | 0,72              | 2,65                      | 6,08                               | 0,000                 | 0,000         | 33,40 | 0,002   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 101 | 23/9/1997  | 0,96            | 0,44                                                             | 1,07                | 0,10  | 0,18              | 0,08              | 0,17                      | 0,08                               | 0,572                 | 0,772         | 33,96 | 0,013   | 700,97                 | 437,62     | 5476256,4           | 3418787,4 |
| 102 | 7/10/1997  | 0,67            | 3,02                                                             | 0,19                | 0,04  | 0,13              | 0,58              | 0,69                      | 3,10                               | 0,167                 | 0,000         | 33,98 | 0,013   | 59,54                  | 0,00       | 444224,5            | 100,0     |
| 103 | 21/10/1997 | 0,83            | 3,52                                                             | 0, 10               | 0,03  | 0,16              | 0,67              | 1,60                      | 6,77                               | 0,017                 | 0,000         | 34,07 | 0,014   | 5,59                   | 0,00       | 39521,0             | 100,0     |
| 104 | 4/11/1997  | 1,08            | 3,39                                                             | 0,14                | 0,04  | 0,21              | 0,65              | <b>1,47</b>               | 4,61                               | 0,025                 | 0,000         | 33,80 | 0,003   | 12,22                  | 0,00       | 421405,9            | 100,0     |
| 105 | 2/12/1997  | 0,96            | 2,85                                                             | 0, 18               | 0,04  | 0,18              | 0,55              | 1,05                      | 3,11                               | 0,072                 | 0,000         | 34,22 | 0,439   | 36,11                  | 0,00       | 8125,4              | 100,0     |
| 106 | 16/12/1997 | 0,50            | 1,12                                                             | 0,38                | 0,06  | 0,10              | 0,21              | 0,25                      | 0,57                               | 0,458                 | 0,219         | 34,77 | 5,770   | 177,08                 | 190,43     | 2968,9              | 3200,4    |
| 107 | 13/1/1998  | 0,50            | 0,46                                                             | 0,63                | 0,08  | 0,10              | 0,09              | 0,15                      | 0,14                               | 0,610                 | 0,635         | 34,82 | 0,107   | 306,20                 | 292,42     | 286072,2            | 273192,7  |
| 108 | 27/1/1998  | 0,51            | 3,27                                                             | 0,11                | 0,03  | 0,10              | 0,63              | 0,85                      | 5,47                               | 0,114                 | 0,000         | 34,01 | 0,010   | 24,26                  | 0,00       | 247459,1            | 100,0     |
| 109 | 11/2/1998  | 1,78            | 0,68                                                             | 0,44                | 0,07  | 0,34              | 0,13              | 0,77                      | 0,29                               | 0,139                 | 0,418         | 35,24 | 1,660   | 209,93                 | 241,96     | 12546,5             | 14475,8   |
| 110 | 26/2/1998  | 1,80            | 0,42                                                             | 0,49                | 0,07  | 0,34              | 0,08              | 0,70                      | 0,16                               | 0,164                 | 0,585         | 34,55 | 1,060   | 259,99                 | 2 18,50    | 24427,6             | 20513,3   |
| 111 | 11/3/1998  | 1,94            | 1,72                                                             | 0,30                | 0,05  | 0,37              | 0,33              | 1,23                      | 1,09                               | 0,047                 | 0,066         | 34,68 | 1,600   | 63,33                  | 78,75      | 3858,0              | 4821,9    |
| 112 | 25/3/1998  | 0,75            | 1,15                                                             | 0,36                | 0,06  | 0,14              | 0,22              | 0,40                      | 0,61                               | 0,330                 | 0,201         | 35,22 | 0,310   | 190,22                 | 178,37     | 61262,8             | 57438,2   |
| 113 | 8/4/1998   | 0,93            | 2,93                                                             | 0, 18               | 0,04  | 0,18              | 0,56              | 1,01                      | 3,17                               | 0,080                 | 0,000         | 33,54 | 0,034   | 37,97                  | 0,00       | 111572,7            | 100,0     |
| 114 | 22/4/1998  | 1,18            | 3,54                                                             | 0, 10               | 0,03  | 0,23              | 0,68              | 2,16                      | 6,49                               | 0,003                 | 0,000         | 33,96 | 0,004   | 1,22                   | 0,00       | 28253,4             | 100,0     |
| 115 | 6/5/1998   | 0,81            | 0,88                                                             | 0,38                | 0,06  | 0,16              | 0,17              | 0,41                      | 0,44                               | 0,322                 | 0,296         | 35,22 | 0,165   | 205,83                 | 206,10     | 124646,2            | 124807,4  |
| 116 | 21/5/1998  | 0,74            | 2,80                                                             | 0,23                | 0,05  | 0,14              | 0,53              | 0,61                      | 2,31                               | 0,199                 | 0,001         | 34,01 | 0,005   | 87,55                  | 2,43       | 1716582,2           | 47486,8   |
| 117 | 3/6/1998   | 0,91            | 2,83                                                             | 0, 18               | 0,04  | 0,17              | 0,54              | 0,96                      | 2,98                               | 0,090                 | 0,000         | 33,70 | 0,016   | 42,52                  | 0,00       | 267313,9            | 100,0     |
| 118 | 17/6/1998  | 1,82            | 3,36                                                             | 0,14                | 0,04  | 0,35              | 0,64              | 2,45                      | 4,52                               | 0,000                 | 0,000         | 33,04 | 0,000   | 0,00                   | 0,00       | 0,0                 | 0,0       |
| 119 | 15/7/1998  | 3,00            | 3,11                                                             | 0,17                | 0,04  | 0,57              | 0,59              | 3,42                      | 3 <i>,</i> 54                      | 0,000                 | 0,000         | 33,02 | 0,005   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 120 | 29/7/1998  | 3,03            | 3,61                                                             | 0,11                | 0,03  | 0,58              | 0,69              | 5,24                      | 6,25                               | 0,000                 | 0,000         | 32,50 | 0,002   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 121 | 12/8/1998  | 2,32            | 3,36                                                             | 0,14                | 0,04  | 0,44              | 0,64              | 3,24                      | 4,70                               | 0,000                 | 0,000         | 32,77 | 0,003   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 122 | 25/8/1998  | 2,60            | 3,82                                                             | 0,09                | 0,03  | 0,50              | 0,73              | 5,27                      | 7,75                               | 0,000                 | 0,000         | 32,08 | 0,000   | 0,00                   | 0,00       | 0,0                 | 0,0       |
| 123 | 2/9/1998   | 3,13            | 3,41                                                             | 0,12                | 0,03  | 0,60              | 0,65              | 4,86                      | 5,29                               | 0,000                 | 0,000         | 32,90 | 0,000   | 0,00                   | 0,00       | 0,0                 | 0,0       |
| 124 | 16/9/1998  | 1,81            | 3,84                                                             | 0,07                | 0,03  | 0,35              | 0,73              | 4,67                      | 9,89                               | 0,000                 | 0,000         | 32,90 | 0,006   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 125 | 30/9/1998  | 3,41            | 3,57                                                             | 0, 10               | 0,03  | 0,65              | 0,68              | 6,32                      | 6,62                               | 0,000                 | 0,000         | 32,87 | 0,004   | 0,00                   | 0,00       | 100,0               | 100,0     |
| 126 | 14/10/1998 | 2,27            | 1,54                                                             | 0,31                | 0,06  | 0,43              | 0,30              | 1,39                      | 0,94                               | 0,031                 | 0,092         | 33,28 | 0,024   | 46,82                  | 96,20      | 199121,5            | 409255,0  |
| 127 | 28/10/1998 | 1,92            | 2,13                                                             | 0,25                | 0,05  | 0,37              | 0,41              | <b>1,46</b>               | 1,61                               | 0,025                 | 0,017         | 32,92 | 0,010   | 29,17                  | 21,14      | 283058,1            | 205103,1  |
| 128 | 11/11/1998 | 2,63            | 3,22                                                             | 0,15                | 0,04  | 0,50              | 0,62              | 3,26                      | 3,99                               | 0,000                 | 0,000         | 31,40 | 0,000   | 0,00                   | 0,00       | 0,0                 | QQ        |
| 129 | 25/11/1998 | 1,47            | 3,03                                                             | 0, 19               | 0,04  | 0,28              | 0,58              | 1,52                      | 3,12                               | 0,021                 | 0,000         | 31,29 | 0,000   | 15,45                  | 0,00       | 0,0                 | 0,0       |
| 130 | 9/12/1998  | 1,58            | 1,65                                                             | 0,32                | 0,06  | 0,30              | 0,32              | 0,95                      | 0,99                               | 0,092                 | 0,083         | 33,18 | 0,000   | 98,84                  | 93,30      | 0,0                 | Q         |
| 131 | 22/12/1998 | 0,66            | 1,96                                                             | 0,28                | 0,05  | 0,13              | 0,37              | 0,46                      | 1,36                               | 0,285                 | 0,033         | 32,95 | 0,000   | 117,81                 | 40,27      | 0,0                 | 0,0       |
| 132 | 6/1/1999   | 0,30            | 0,71                                                             | 0,49                | 0,07  | 0,06              | 0,14              | 0,12                      | 0,28                               | 0,679                 | 0,431         | 34,79 | 1,478   | 179,19                 | 269,80     | 12023,7             | 18154,2   |

Tabela 6.2e - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| (a) | <b>(2)</b> | (9)  | Ð                     | (5)     | (6)   | $\sigma$          | (8)               | (9)                                | (10)                              | (11)                  | (12)          | (13)  | (14)    | (15)                   | (16)       | (17)                | (18)           |
|-----|------------|------|-----------------------|---------|-------|-------------------|-------------------|------------------------------------|-----------------------------------|-----------------------|---------------|-------|---------|------------------------|------------|---------------------|----------------|
| N°  | DATA       | D.,  | D <sub>Vj</sub> (KAL) | ղ       | U,    |                   |                   |                                    |                                   |                       |               | В     | q Bm    | qB[KAL]D <sub>34</sub> | qB[KAL]D/j | E[%]D <sub>⊠4</sub> | E[%]Dvj        |
|     |            | (mm) | -<br>11110.           | Kgf/ m² | (m/s) | Тс <sub>184</sub> | Тс <sub>Вуј</sub> | ͳ <sub>ϲD84</sub> / ͳ <sub>0</sub> | τ <sub>ανj</sub> / τ <sub>0</sub> | UP/Uin <sub>ps4</sub> | UP / Uin[Dvj] | (m)   | ton/dia | ton/dia                | ton/d ia   |                     |                |
| 133 | 21/1/1999  | 0,29 | 0,19                  | 0,65    | 0,08  | 0,06              | 0,04              | 0,09                               | 0,06                              | 0,756                 | 0,834         | 35,23 | 3,703   | 225,97                 | 162,09     | 6002,3              | <b>42</b> 77,3 |
| 134 | 28/1/1999  | 0,32 | 0,04                  | 0,78    | 0,09  | 0,06              | 0,01              | 0,08                               | 0,01                              | 0,774                 | 0,965         | 35,81 | 0,000   | 284,08                 | 49,37      | 0,0                 | 0,0            |
| 135 | 3/2/1999   | 0,26 | 0,46                  | 0,51    | 0,07  | 0,05              | 0,09              | 0, 10                              | 0,17                              | 0,727                 | 0,571         | 35,18 | 2,820   | 172,28                 | 237,59     | 6009,3              | 8325,3         |
| 136 | 11/2/1999  | 0,31 | 0,20                  | 0,63    | 0,08  | QQ6               | 0,04              | 0,09                               | 0,06                              | 0,734                 | 0,823         | 35,26 | 3,047   | 230,55                 | 163,08     | 7466,3              | 5252,1         |
| 137 | 25/2/1999  | 2,85 | 0,25                  | 0,56    | 0,07  | 0,55              | 0,05              | 0,98                               | 0,09                              | 0,084                 | 0,751         | 35,52 | 5,114   | 230,81                 | 183,30     | 4413,2              | 3484,3         |
| 138 | 11/3/1999  | 0,36 | 0,34                  | 0,52    | 0,07  | 0,07              | 0,07              | 0,13                               | 0,12                              | 0,649                 | 0,665         | 35,20 | 1,803   | 215,80                 | 208,64     | 11869,0             | 11472,0        |
| 139 | 25/3/1999  | 0,40 | 0,17                  | 0,67    | 0,08  | 0,08              | 0,03              | 0,11                               | 0,05                              | 0,687                 | 0,849         | 34,99 | 3,640   | 284,61                 | 153,29     | 7718,9              | 4111,1         |
| 140 | 15/4/1999  | 0,39 | 1,73                  | 0,32    | 0,06  | 0,07              | 0,33              | 0,23                               | 1,02                              | 0,485                 | 0,078         | 33,72 | 0,020   | 131,67                 | 93,35      | 658271,7            | 466633,9       |
| 141 | 29/4/1999  | 0,60 | 0,40                  | 1,02    | 0,10  | 0,11              | 0,08              | 0,11                               | 0,07                              | 0,691                 | 0,783         | 33,27 | 0,013   | 504,88                 | 378,33     | 3883557,3           | 2910109,4      |
| 142 | 13/5/1999  | 0,31 | 1,71                  | 0,34    | 0,06  | 0,06              | 0,33              | 0,17                               | 0,96                              | 0,566                 | 0,088         | 33,41 | 0,023   | 124,08                 | 107,17     | 539398,3            | 465868,6       |
| 143 | 9/6/1999   | 4,13 | 2,33                  | 0,24    | 0,05  | 0,79              | 0,45              | 3,24                               | 1,83                              | 0,000                 | 0,009         | 33,29 | 0,010   | 0,00                   | 12,83      | 100,0               | 128227,4       |
| 144 | 22/7/1999  | 2,22 | 2,55                  | 0,21    | 0,05  | 0,42              | 0,49              | 1,98                               | 2,28                              | 0,005                 | 0,002         | 32,52 | 0,003   | 6,25                   | 2,30       | 208073,5            | 76574,8        |
| 145 | 5/8/1999   | 2,70 | 2,70                  | 0,22    | 0,05  | 0,52              | 0 <i>,5</i> 2     | 2,39                               | 2,40                              | 0,001                 | 0,001         | 32,65 | 0,002   | 1,62                   | 1,59       | 80840,3             | 79639,2        |
| 146 | 19/8/1999  | 0,97 | 2,68                  | 0,21    | 0,05  | 0,19              | 0,51              | 0,87                               | 2,40                              | 0,110                 | 0,001         | 32,78 | 0,004   | 58,98                  | 1,57       | 1474403,3           | 39063,8        |
| 147 | 2/9/1999   | 4,74 | 4,02                  | 0,05    | 0,02  | 0,91              | 0,77              | 19,10                              | 16,20                             | 0,000                 | 0,000         | 32,07 | 0,000   | 0,00                   | 0,00       | 0,0                 | 0,0            |
| 148 | 15/9/1999  | 2,52 | 2,16                  | 0,26    | 0,05  | 0,48              | 0,41              | <b>1,84</b>                        | 1,57                              | 0,009                 | 0,0 18        | 33,31 | 0,343   | 14,05                  | 24,65      | 3995,5              | 7087,5         |
| 149 | 30/9/1999  | 0,94 | 3,33                  | 0,17    | 0,04  | 0,18              | 0,64              | 1,09                               | 3,85                              | 0,066                 | 0,000         | 32,02 | 0,001   | 29,47                  | 0,00       | 2946820,9           | 100,0          |
| 150 | 14/10/1999 | 1,01 | 2,94                  | 0,20    | 0,04  | 0,19              | 0,56              | 0,97                               | 2,82                              | 0,087                 | 0,000         | 32,41 | 0,003   | 46,21                  | 0,00       | 1540277,2           | 100,0          |
| 151 | 28/10/1999 | 2,40 | 2,42                  | 0,25    | 0,05  | 0,46              | 0,46              | 1,87                               | 1,88                              | 0,008                 | 0,008         | 32,88 | 0,027   | 11,44                  | 10,79      | 422775              | 39851,8        |
| 152 | 11/11/1999 | 0,38 | 2,87                  | 0,20    | 0,04  | 0,07              | 0,55              | 0,36                               | 2,75                              | 0,355                 | 0,000         | 32,80 | 28,000  | 71,88                  | 0,00       | 156,7               | 100,0          |
| 153 | 25/11/1999 | 0,84 | 1,73                  | 0,31    | 0,05  | 0,16              | 0,33              | 0,53                               | 1,08                              | 0,244                 | 0,067         | 32,88 | 0,089   | 135,23                 | 76,66      | 151845,1            | 86034,2        |
| 154 | 9/12/1999  | 3,76 | 1,49                  | 0,34    | 0,06  | 0,72              | 0,29              | 2,11                               | 0,84                              | 0,003                 | 0,118         | 33,19 | 0,036   | 8,31                   | 123,67     | 22990,6             | 343427,1       |
| 155 | 23/12/1999 | 2,73 | 2,71                  | 0,35    | 0,06  | 0,52              | 0,52              | <b>1,49</b>                        | 1,48                              | 0,023                 | 0,024         | 30,48 | 0,003   | 41,28                  | 42,31      | 1375970,5           | 1410093,3      |
| 156 | 6/1/2000   | 2,14 | 0,11                  | 0,65    | 0,08  | 0,41              | 0,02              | 0,63                               | 0,03                              | 0,191                 | 0,898         | 35,69 | 0,214   | 427,06                 | 104,63     | 199459,5            | 48794,5        |
| 157 | 13/1/2000  | 1,07 | 2,02                  | 0,29    | 0,05  | 0,20              | 0,39              | 0,71                               | 1,34                              | 0, 158                | 0,035         | 32,91 | 0,313   | 108,32                 | 44,64      | 34507,2             | 14162,4        |
| 158 | 20/1/2000  | 4,07 | 1,95                  | 0,29    | 0,05  | 0,78              | 0,37              | 2,71                               | 1,30                              | 0,000                 | 0,039         | 33,27 | 0,041   | 0,00                   | 49,18      | 100,0               | 119853,1       |
| 159 | 27/1/2000  | 4,67 | 1,63                  | 0,33    | 0,06  | 0,89              | 0,31              | 2,75                               | 0,96                              | 0,000                 | 0,089         | 33,25 | 0,090   | 0,00                   | 99,87      | 100,0               | 110865,2       |
| 160 | 3/2/2000   | 2,76 | 0,50                  | 0,59    | 0,08  | 0,53              | 0,10              | 0,89                               | 0,16                              | 0,103                 | 0,590         | 34,00 | 0,553   | 270,79                 | 278,19     | 48866,6             | 50204,7        |
| 161 | 9/2/2000   | 0,49 | 1,97                  | 0,27    | 0,05  | 0,09              | 0,38              | 0,34                               | 1,37                              | 0,373                 | 0,032         | 33,10 | 0,487   | 114,89                 | 39,15      | 23490,5             | 7939,9         |
| 162 | 18/2/2000  | 4,84 | 0,63                  | 0,45    | 0,07  | 8,23              | 0,12              | 18,37                              | 0,27                              | 0,000                 | 0,441         | 34,70 | 0,447   | 0,00                   | 235,38     | 100,0               | 52558,1        |
| 163 | 24/2/2000  | 0,33 | 2,29                  | 0, 18   | 0,04  | 0,06              | 0,44              | 0,35                               | 2,44                              | 0,365                 | 0,000         | 33,56 | 0,603   | 62,14                  | 0,00       | 10204,8             | 100,0          |
| 164 | 3/3/2000   | 1,31 | 0,54                  | 0,59    | 0,08  | 0,25              | 0,10              | 0,42                               | 0,18                              | 0,310                 | 0,563         | 33,42 | 0,219   | 379,29                 | 286,47     | 173094,1            | 130706,7       |
| 165 | 10/3/2000  | 0,30 | 1,69                  | 0,31    | 0,06  | 0,06              | 0,32              | 0, 18                              | 1,03                              | 0,549                 | 0,076         | 32,88 | 0,040   | 110,15                 | 85,35      | 275263,0            | 213285,5       |

Tabela 6.2e - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| (1) | (2)                | (9)             | (5)       | (5)                 | (6)   | $\sigma$          | (8)               | (9)                                | (10)                               | (11)           | (12)       | (13)  | (14)     | (15)                   | (16)           | (17)                | (18)     |
|-----|--------------------|-----------------|-----------|---------------------|-------|-------------------|-------------------|------------------------------------|------------------------------------|----------------|------------|-------|----------|------------------------|----------------|---------------------|----------|
| N°  | DATA               | D <sub>84</sub> | Duj (KAL) | ե                   | U.    |                   |                   |                                    |                                    |                |            | в     | q Bm     | qB[KAL]D <sub>84</sub> | qB[KAL]Dvj     | E[%]D <sub>≅4</sub> | E[%]Dvj  |
|     |                    | (mm)            | JATA.     | Kgf/ m <sup>2</sup> | (m/s) | Тс <sub>184</sub> | Тс <sub>Dvj</sub> | τ <sub>.084</sub> / τ <sub>0</sub> | $\tau_{_{cDvj}}^{}/\tau_{_{0}}^{}$ | $UP/Uin_{peq}$ | UP/Um[Dvj] | (m)   | to n/dia | to n/dia               | ton/d ia       |                     |          |
| 166 | 17/3/2000          | 1,19            | 1,07      | 0,42                | 0,06  | 0,23              | 0,21              | 0,54                               | 0,49                               | 0,236          | 0,266      | 33,27 | 0,218    | 219,59                 | 223,99         | 100630,0            | 102648,9 |
| 167 | 24/3/2000          | 1,98            | 1,40      | 0,28                | 0,05  | 0,38              | 0,27              | 1,33                               | 0,94                               | 0,035          | 0,093      | 34,12 | 0,491    | 46,21                  | 85 <i>,5</i> 9 | 9311,5              | 17332,3  |
| 168 | 31/3/2000          | 1,25            | 0,27      | 0,58                | 0,08  | 0,24              | 0,05              | 0,41                               | 0,09                               | 0,317          | 0,750      | 35,27 | 1,121    | 385,56                 | 194,15         | 34293,9             | 17219,3  |
| 169 | 7/4/2000           | 1,84            | 2,25      | 0,27                | 0,05  | 0,35              | 0,43              | 1,30                               | 1,59                               | 0,039          | 0,0 18     | 32,77 | 0,050    | 43,90                  | 24,42          | 87698,7             | 48748,0  |
| 170 | 14/4 <b>/2</b> 000 | 1,66            | 2,64      | 0,22                | 0,05  | 0,32              | 0,50              | <b>Ļ47</b>                         | 2,34                               | 0,024          | 0,001      | 32,20 | 0,005    | 22,09                  | 1,93           | 441734,6            | 38476,9  |
| 171 | 19/4/2000          | 4,00            | 2,62      | 0,23                | 0,05  | 0,77              | 0,50              | 3,33                               | 2,18                               | 0,000          | 0,002      | 31,99 | 0,012    | 0,00                   | 3,53           | 100,0               | 29308,4  |
|     |                    |                 |           |                     |       |                   |                   |                                    |                                    |                |            |       |          |                        | MEDIA          | 2,2E+05             | 9,4E+04  |

Tabela 6.2e - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

qB[KAL]D84 - Descarga sólida calculada pelo método de Kalinske, usando o diàmetro D84

qB[KAL]Dvj - Descarga sólid a calculada p elo métod o de Kalinske, usando o diâmetro Dvj

τc<sub>πε4</sub> -tensão tangencial critica de cisalhamento, referente ao diâmetro D<sub>84</sub>

Uin<sub>man</sub> - velocidade instantânea do fluido no nível da partícula, ao se considerar o diâmetro D<sub>84</sub>

Uin[Dvj] - velocidade instantânea do fluido no nível da partícula, ao se considerar o diâmetro Dvj

OBS: No caso específico do método de Kalinske os valores de descargas nulas indicam que que a razão τ<sub>c</sub>/τ<sub>0</sub> é maior do que 2,4. Acima do limite dos dados experimentais

| $(\mathbf{a})$ | (2)        | (9)             | (5)                  | (5)      | (6)   | $-\infty$      | (8)                           | (9)                                   | (10)                                           | (11)                   | (12)         | (13)  | (14)         | (15)                   | (16)       | (17)                | (18)      |
|----------------|------------|-----------------|----------------------|----------|-------|----------------|-------------------------------|---------------------------------------|------------------------------------------------|------------------------|--------------|-------|--------------|------------------------|------------|---------------------|-----------|
| N°             | DATA       | D <sub>84</sub> | D <sub>VI EALI</sub> | $\tau_0$ | U*    |                |                               |                                       |                                                |                        |              | В     | qBm          | qB[KAL]D <sub>84</sub> | qB[KAL]Dvj | E[%]D <sub>84</sub> | E[%]Dvj   |
|                |            | (mm)            | 31——3<br>JANN        | Kgf/ m²  | (m/s) | $\tau c_{D84}$ | $\mathcal{T}c_{\mathrm{Dej}}$ | $\mathcal{T}_{\rm cD84\prime} \tau_0$ | $\mathcal{T}_{\mathrm{cDrej}} / \mathcal{T}_0$ | UP/Uin <sub>[D%]</sub> | UP / Uin[Dv] | (m)   | -<br>ton/dia | ton/dia                | ton/dia    |                     |           |
| 1              | 26/3/1993  | 1,56            | Ļóó                  | 0,26     | 0,05  | 0,30           | 0,32                          | 1,13                                  | 1,20                                           | 0,060                  | 0,050        | 34,70 | 0,141        | 60,23                  | 54,07      | 42613,1             | 38249,5   |
| 2              | 6/4/1993   | 2,77            | 2,23                 | 0,23     | 0,05  | 0,53           | 0,43                          | 2,34                                  | 1,88                                           | 0,001                  | 0,008        | 34,87 | 0,038        | 2,20                   | 10,14      | 5699,5              | 26587,5   |
| б              | 1/6/1993   | 2,50            | 1,02                 | 0,35     | 0,06  | 0,48           | 0,20                          | 1,38                                  | 0,56                                           | 0,031                  | 0,223        | 35,24 | 0,190        | 58,65                  | 171,45     | 30770,0             | 90135,3   |
| 17             | 28/9/1993  | 1,29            | <b>1,14</b>          | 0,32     | 0,06  | 0,25           | 0,22                          | 0,78                                  | 0,69                                           | 0,135                  | 0,167        | 34,92 | 0,384        | 124,18                 | 135,57     | 32239,8             | 35205,7   |
| 20             | 28/10/1993 | 1,24            | 1,75                 | 0,26     | 0,05  | 0,24           | 0,34                          | 0,91                                  | 1,28                                           | 0,101                  | 0,041        | 34,88 | 0,037        | 80,72                  | 46,32      | 218054,8            | 125086,2  |
| 23             | 20/12/1993 | 1,26            | 2,21                 | 0,24     | 0,05  | 0,24           | 0,42                          | 1,01                                  | 1,78                                           | 0,079                  | 0,011        | 34,64 | 0,080        | 60,99                  | 14,46      | 76135,5             | 17978,8   |
| 25             | 29/3/1994  | 1,18            | 1,32                 | 0,38     | 0,06  | 0,23           | 0,25                          | 0,60                                  | 0,67                                           | 0,207                  | 0,174        | 34,34 | 0,027        | 186,85                 | 176,98     | 691923,9            | 655372,7  |
| 38             | 27/10/1994 | 1,79            | 2,50                 | 0,22     | 0,05  | 0,34           | 0,48                          | 1,58                                  | 2,21                                           | 0,018                  | 0,002        | 34,48 | 0,424        | 19,06                  | 3,21       | 4394,6              | 658,1     |
| 40             | 22/12/1994 | 1,60            | 0,42                 | 0,56     | 0,07  | 0,31           | 0,08                          | 0,54                                  | 0,14                                           | 0,235                  | 0,628        | 35,68 | 0,218        | 365,61                 | 256,85     | 167608,8            | 117723,2  |
| 41             | 5/1/1995   | 1,08            | 0,56                 | 0,53     | 0,07  | 0,21           | 0,11                          | 0,39                                  | 0,20                                           | 0,332                  | 0,517        | 35,27 | 0,523        | 333,39                 | 267,33     | 63645,1             | 51015,1   |
| 44             | 9/2/1995   | 4,84            | 0,32                 | 0,41     | 0,06  | 0,93           | 0,06                          | 2,25                                  | 0,15                                           | 0,002                  | 0,619        | 40,30 | 3,097        | 8,43                   | 183,06     | 172,3               | 5810,8    |
| 45             | 16/2/1995  | 1,79            | 0,30                 | 0,60     | 0,08  | 0,34           | 0,06                          | 0,57                                  | 0,10                                           | 0,221                  | 0,731        | 35,40 | 0,485        | 394,20                 | 220,18     | 81177,5             | 45297,0   |
| 46             | 8/3/1995   | 1,20            | 1,84                 | 0,31     | 0,05  | 0,23           | 0,35                          | 0,75                                  | 1,15                                           | 0,146                  | 0,058        | 34,94 | 0,396        | 123,43                 | 74,97      | 31068,8             | 18831,4   |
| 47             | 24/3/1995  | 2,97            | 0,69                 | 0,44     | 0,07  | 0,57           | 0,13                          | 1,29                                  | 0,30                                           | 0,039                  | 0,411        | 35,38 | 1,721        | 99,68                  | 241,64     | 5691,8              | 13940,4   |
| 48             | 7/4/1995   | 0,72            | 0,98                 | 0,41     | 0,06  | 0,14           | 0,19                          | 0,34                                  | 0,46                                           | 0,376                  | 0,282        | 35,05 | 0,171        | 219,23                 | 224,39     | 128104,5            | 131121,4  |
| 49             | 28/4/1995  | 0,91            | 1,81                 | 0,31     | 0,06  | 0,17           | 0,35                          | 0,56                                  | 1,11                                           | 0,227                  | 0,063        | 34,63 | 0,081        | 145,44                 | 80,31      | 179456,1            | 99049,3   |
| 50             | 12/5/1995  | 1,55            | 1,45                 | 0,34     | 0,06  | 0,30           | 0,28                          | 0,88                                  | 0,83                                           | 0,107                  | 0,121        | 34,74 | 0,468        | 121,03                 | 128,89     | 25760,6             | 27440,0   |
| 51             | 9/6/1995   | 1,09            | 2,76                 | 0,23     | 0,05  | 0,21           | 0,53                          | 0,90                                  | 2,29                                           | 0,101                  | 0,002        | 34,35 | 0,023        | бб,12                  | 2,65       | 287380,7            | 11430,2   |
| 54             | 12/7/1995  | 0,50            | 0,75                 | 0,50     | 0,07  | 0,10           | 0,14                          | 0,19                                  | 0,29                                           | 0,536                  | 0,425        | 35,03 | 4,163        | 241,37                 | 287,66     | 5698,0              | 6810,0    |
| 55             | 19/7/1995  | 0,60            | 2,03                 | 0,33     | 0,06  | 0,11           | 0,39                          | 0,34                                  | 1,16                                           | 0,373                  | 0,056        | 34,59 | 0,016        | 162,46                 | 82,21      | 1015271,7           | 513730,0  |
| 56             | 26/7/1995  | 1,39            | 2,18                 | 0,28     | 0,05  | 0,27           | 0,42                          | 0,96                                  | 1,50                                           | 0,089                  | 0,022        | 34,61 | 0,118        | 81,76                  | 32,18      | 69186,4             | 27173,4   |
| 59             | 21/9/1995  | 0,75            | 0,80                 | 0,76     | 0,09  | 0,14           | 0,15                          | 0,19                                  | 0,20                                           | 0,538                  | 0,517        | 34,28 | 0,031        | 436,49                 | 447,79     | 1407921,5           | 1444398,3 |
| 60             | 28/9/1995  | 1,66            | 2,64                 | 0,22     | 0,05  | 0,32           | 0,51                          | 1,47                                  | 2,34                                           | 0,024                  | 0,001        | 34,68 | 0,249        | 23,60                  | 2,03       | 9376,2              | 713,7     |
| 62             | 19/10/1995 | 3,06            | 1,02                 | 0,40     | 0,06  | 0,59           | 0,20                          | 1,46                                  | 0,48                                           | 0,025                  | 0,268        | 35,02 | 0,205        | 62,73                  | 220,30     | 30499,8             | 107364,5  |
| 65             | 10/1/1996  | 1,18            | 0,13                 | 0,64     | 0,08  | 0,23           | 0,02                          | 0,35                                  | 0,04                                           | 0,365                  | 0,881        | 36,91 | 5,141        | 462,58                 | 123,09     | 8897,8              | 2294,3    |
| 66             | 31/1/1996  | 0,41            | 2,58                 | 0,23     | 0,05  | 0,08           | 0,49                          | 0,35                                  | 2,18                                           | 0,370                  | 0,002        | 34,12 | 0,019        | 89,29                  | 3,73       | 469837,9            | 19546,9   |
| 67             | 7/2/1996   | 1,19            | 1,53                 | 0,31     | 0,06  | 0,23           | 0,29                          | 0,72                                  | 0,93                                           | 0,154                  | 0,095        | 35,12 | 0,238        | 131,15                 | 104,06     | 55003,5             | 43621,6   |
| 68             | 6/3/1996   | 0,43            | 0,62                 | 0,48     | 0,07  | 0,08           | 0,12                          | 0,17                                  | 0,25                                           | 0,571                  | 0,468        | 35,36 | 3,542        | 218,19                 | 255,88     | 6060,1              | 7124,2    |
| 69             | 20/3/1996  | 0,57            | 0,06                 | 0,74     | 0,09  | 0,11           | 0,01                          | 0,15                                  | 0,02                                           | 0,617                  | 0,949        | 36,55 | 1,150        | 400,79                 | 67,03      | 34751,0             | 5729,0    |
| 70             | 3/4/1996   | 1,41            | <b>1,</b> 57         | 0,33     | 0,06  | 0,27           | 0,30                          | 0,81                                  | 0,91                                           | 0,125                  | 0,101        | 34,87 | 0,133        | 127,94                 | 115,14     | 96094,3             | 86471,7   |
| 71             | 16/4/1996  | 0,74            | 1,85                 | 0,30     | 0,05  | 0,14           | 0,35                          | 0,47                                  | 1,18                                           | 0,276                  | 0,053        | 34,52 | 0,051        | 140,33                 | 67,72      | 275055,8            | 132688,2  |
| 72             | 15/5/1996  | 1,50            | 2,36                 | 0,25     | 0,05  | 0,29           | 0,45                          | 1,17                                  | 1,84                                           | 0,055                  | 0,009        | 34,24 | 0,246        | 50,48                  | 12,99      | 20422,0             | 5179,5    |
| 73             | 22/5/1996  | 1,63            | 2,56                 | 0,24     | 0,05  | 0,31           | 0,49                          | 1,33                                  | 2,08                                           | 0,036                  | 0,004        | 34,20 | 0,008        | 35,46                  | 5,48       | 443139,6            | 68400,6   |

Tabela 6.2e.l - Valores maiores que zero das descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| <b>(1)</b>           | (2)             | (9)             | (5)                  | (5)      | (6)   | $(\mathcal{O})$ | (8)                           | (9)                                   | (10)                                                 | (11)                   | (12)         | (13)  | (14)    | (15)                   | (16)       | (17)                | (18)      |
|----------------------|-----------------|-----------------|----------------------|----------|-------|-----------------|-------------------------------|---------------------------------------|------------------------------------------------------|------------------------|--------------|-------|---------|------------------------|------------|---------------------|-----------|
| $\mathbb{N}^{\circ}$ | DATA            | D <sub>84</sub> | D <sub>VI EALI</sub> | $\tau_0$ | U*    |                 |                               |                                       |                                                      |                        |              | В     | qBm     | qB[KAL]D <sub>84</sub> | qB[KAL]Dvj | E[%]D <sub>84</sub> | E[%]Dvj   |
|                      |                 | (mm)            | JANNA.               | Kgf/ m²  | (m/s) | $7c_{D84}$      | $\mathcal{T}c_{\mathrm{Dej}}$ | $\mathcal{T}_{\rm cD84\prime} \tau_0$ | ${\mathcal{T}}_{\mathrm{cDroj}} / {\mathcal{T}}_{0}$ | UP/Uin <sub>[D%]</sub> | UP / Uin[Dv] | (m)   | ton/dia | ton/dia                | ton/dia    |                     |           |
| 82                   | 4/9/1996        | 1,95            | 2,46                 | 0,25     | 0,05  | 0,37            | 0,47                          | 1,48                                  | 1,88                                                 | 0,024                  | 0,008        | 34,56 | 0,036   | 28,82                  | 12,07      | 79949,4             | 33420,3   |
| 83                   | 11/9/1996       | 4,19            | 0,26                 | 0,61     | 0,08  | 0,80            | 0,05                          | 1,31                                  | 0,08                                                 | 0,038                  | 0,769        | 35,84 | 3,697   | 163,59                 | 202,13     | 4325,0              | 5367,4    |
| 86                   | 6/11/1996       | 3,00            | 1,95                 | 0,29     | 0,05  | 0,57            | 0,37                          | 1,99                                  | 1,30                                                 | 0,005                  | 0,039        | 34,70 | 0,320   | 10,05                  | 51,84      | 3040,3              | 16099,8   |
| 88                   | 6/12/1996       | 0,93            | 2,58                 | 0,22     | 0,05  | 0,18            | 0,49                          | 0,81                                  | 2,23                                                 | 0,127                  | 0,002        | 34,60 | 4,340   | 69,91                  | 3,06       | 1510,8              | 29,6      |
| 89                   | <u>9/1/1997</u> | 0,83            | 2,13                 | 0,26     | 0,05  | 0,16            | 0,41                          | 0,61                                  | 1,56                                                 | 0,202                  | 0,019        | 34,68 | 0,033   | 107,85                 | 26,36      | 326731,9            | 79769,8   |
| 90                   | 22/1/1997       | 0,77            | 1,06                 | 0,43     | 0,07  | 0,15            | 0,20                          | 0,34                                  | 0,47                                                 | 0,375                  | 0,278        | 34,78 | 0,146   | 239,36                 | 244,51     | 163844,8            | 167369,4  |
| 91                   | 3/2/1997        | 0,65            | 0,17                 | 0,58     | 0,08  | 0,12            | 0,03                          | 0,22                                  | 0,06                                                 | 0,501                  | 0,832        | 36,46 | 21,990  | 326,64                 | 141,57     | 1385,4              | 543,8     |
| 92                   | 12/3/1997       | 0,82            | 2,41                 | 0,22     | 0,05  | 0,16            | 0,46                          | 0,71                                  | 2,08                                                 | 0,160                  | 0,004        | 34,32 | 1,010   | 77,00                  | 5,09       | 7524,0              | 403,5     |
| 101                  | 23/9/1997       | 0,96            | 0,44                 | 1,07     | 0,10  | 0,18            | 0,08                          | 0,17                                  | 0,08                                                 | 0,572                  | 0,772        | 33,96 | 0,013   | 700,97                 | 437,62     | 5476256,4           | 3418787,4 |
| 106                  | 16/12/1997      | 0,50            | 1,12                 | 0,38     | 0,06  | 0,10            | 0,21                          | 0,25                                  | 0,57                                                 | 0,458                  | 0,219        | 34,77 | 5,770   | 177,08                 | 190,43     | 2968,9              | 3200,4    |
| 107                  | 13/1/1998       | 0,50            | 0,46                 | 0,63     | 0,08  | 0,10            | 0,09                          | 0,15                                  | 0,14                                                 | 0,610                  | 0,635        | 34,82 | 0,107   | 306,20                 | 292,42     | 286072,2            | 273192,7  |
| 109                  | 11/2/1998       | 1,78            | 0,68                 | 0,44     | 0,07  | 0,34            | 0,13                          | 0,77                                  | 0,29                                                 | 0,139                  | 0,418        | 35,24 | 1,660   | 209,93                 | 241,96     | 12546,5             | 14475,8   |
| 110                  | 26/2/1998       | 1,80            | 0,42                 | 0,49     | 0,07  | 0,34            | 0,08                          | 0,70                                  | 0,16                                                 | 0,164                  | 0,585        | 34,55 | 1,060   | 259,99                 | 218,50     | 24427,6             | 20513,3   |
| 111                  | 11/3/1998       | 1,94            | 1,72                 | 0,30     | 0,05  | 0,37            | 0,33                          | 1,23                                  | 1,09                                                 | 0,047                  | 0,066        | 34,68 | 1,600   | 63,33                  | 78,75      | 3858,0              | 4821,9    |
| 112                  | 25/3/1998       | 0,75            | 1,15                 | 0,36     | 0,06  | 0,14            | 0,22                          | 0,40                                  | 0,61                                                 | 0,330                  | 0,201        | 35,22 | 0,310   | 190,22                 | 178,37     | 61262,8             | 57438,2   |
| 115                  | 6/5/1998        | 0,81            | 0,88                 | 0,38     | 0,06  | 0,16            | 0,17                          | 0,41                                  | 0,44                                                 | 0,322                  | 0,296        | 35,22 | 0,165   | 205,83                 | 206,10     | 124646,2            | 124807,4  |
| 116                  | 21/5/1998       | 0,74            | 2,80                 | 0,23     | 0,05  | 0,14            | 0,53                          | 0,61                                  | 2,31                                                 | 0,199                  | 0,001        | 34,01 | 0,005   | 87,55                  | 2,43       | 1716582,2           | 47486,8   |
| 126                  | 14/10/1998      | 2,27            | 1,54                 | 0,31     | 0,06  | 0,43            | 0,30                          | 1,39                                  | 0,94                                                 | 0,031                  | 0,092        | 33,28 | 0,024   | 46,82                  | 96,20      | 199121,5            | 409255,0  |
| 127                  | 28/10/1998      | 1,92            | 2,13                 | 0,25     | 0,05  | 0,37            | 0,41                          | 1,46                                  | 1,61                                                 | 0,025                  | 0,017        | 32,92 | 0,010   | 29,17                  | 21,14      | 283058,1            | 205103,1  |
| 132                  | 6/1/1999        | 0,30            | 0,71                 | 0,49     | 0,07  | 0,06            | 0,14                          | 0,12                                  | 0,28                                                 | 0,679                  | 0,431        | 34,79 | 1,478   | 179,19                 | 269,80     | 12023,7             | 18154,2   |
| 133                  | 21/1/1999       | 0,29            | 0,19                 | 0,65     | 0,08  | 0,06            | 0,04                          | 90,0                                  | 0,06                                                 | 0,756                  | 0,834        | 35,23 | 3,703   | 225,97                 | 162,09     | 6002,3              | 4277,3    |
| 134                  | 28/1/1999       | 0,32            | 0,04                 | 0,78     | 0,09  | 0,06            | 0,01                          | 80,0                                  | 0,01                                                 | 0,774                  | 0,965        | 35,81 | 0,000   | 284,08                 | 49,37      | 0,0                 | 0,0       |
| 135                  | 3/2/1999        | 0,26            | 0,46                 | 0,51     | 0,07  | 0,05            | 0,09                          | 0,10                                  | 0,17                                                 | 0,727                  | 0,571        | 35,18 | 2,820   | 172,28                 | 237,59     | 6009,3              | 8325,3    |
| 136                  | 11/2/1999       | 0,31            | 0,20                 | 0,63     | 0,08  | 0,06            | 0,04                          | 90,0                                  | 0,06                                                 | 0,734                  | 0,823        | 35,26 | 3,047   | 230,55                 | 163,08     | 7466,3              | 5252,1    |
| 137                  | 25/2/1999       | 2,85            | 0,25                 | 0,56     | 0,07  | 0,55            | 0,05                          | 0,98                                  | 0,09                                                 | 0,084                  | 0,751        | 35,52 | 5,114   | 230,81                 | 183,30     | 4413,2              | 3484,3    |
| 138                  | 11/3/1999       | 0,36            | 0,34                 | 0,52     | 0,07  | 0,07            | 0,07                          | 0,13                                  | 0,12                                                 | 0,649                  | 0,665        | 35,20 | 1,803   | 215,80                 | 208,64     | 1 1869,0            | 11472,0   |
| 139                  | 25/3/1999       | 0,40            | 0,17                 | 0,67     | 0,08  | 80,0            | 0,03                          | 0,11                                  | 0,05                                                 | 0,687                  | 0,849        | 34,99 | 3,640   | 284,61                 | 153,29     | 7718,9              | 4111,1    |
| 140                  | 15/4/1999       | 0,39            | 1,73                 | 0,32     | 0,06  | 0,07            | 0,33                          | 0,23                                  | 1,02                                                 | 0,485                  | 0,078        | 33,72 | 0,020   | 131,67                 | 93,35      | 658271,7            | 466633,9  |
| 141                  | 29/4/1999       | 0,60            | 0,40                 | 1,02     | 0,10  | 0,11            | 0,08                          | 0,11                                  | 0,07                                                 | 0,691                  | 0,783        | 33,27 | 0,013   | 504,88                 | 378,33     | 3883557,3           | 2910109,4 |
| 142                  | 13/5/1999       | 0,31            | 1,71                 | 0,34     | 0,06  | 0,06            | 0,33                          | 0,17                                  | 0,96                                                 | 0,566                  | 0,088        | 33,41 | 0,023   | 124,08                 | 107,17     | 539398,3            | 465868,6  |
| 144                  | 22/7/1999       | 2,22            | 2,55                 | 0,21     | 0,05  | 0,42            | 0,49                          | 1,98                                  | 2,28                                                 | 0,005                  | 0,002        | 32,52 | 0,003   | 6,25                   | 2,30       | 208073,5            | 76574,8   |
| 145                  | 5/8/1999        | 2,70            | 2,70                 | 0,22     | 0,05  | 0,52            | 0,52                          | 2,39                                  | 2,40                                                 | 0,001                  | 0,001        | 32,65 | 0,002   | 1,62                   | 1,59       | 80840,3             | 79639,2   |
| 146                  | 19/8/1999       | 0,97            | 2,68                 | 0,21     | 0,05  | 0,19            | 0,51                          | 0,87                                  | 2,40                                                 | 0,110                  | 0,001        | 32,78 | 0,004   | 58,98                  | 1,57       | 1474403,3           | 39063,8   |

Tabela 6.2e.l - Valores maiores que zero das descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| (l) | <i>Q</i> ) | (9)  | <b>5</b>    | (5)<br>~ | (6)   | $- \mathcal{O}$ | (8)                        | (9)                                   | (10)                                           | (11)                       | (12)         | (13)<br>P | (14)<br>P | (15)<br>"DIVALID         | ( <b>16</b> ) | (17)<br>F196 PD      | (18)<br>E0(11)-2         |
|-----|------------|------|-------------|----------|-------|-----------------|----------------------------|---------------------------------------|------------------------------------------------|----------------------------|--------------|-----------|-----------|--------------------------|---------------|----------------------|--------------------------|
| IN° | DATA       | D.84 | D VJ [KAL]  | Ϋ0       | U*    |                 |                            |                                       |                                                |                            |              | в         | qBm       | d RIVAT ID <sup>84</sup> | dRIVATION     | Е[%0]D <sub>84</sub> | <b>բ[</b> ‰] <b>Ի</b> մ] |
|     |            | (mm) | TITA.       | Kgf/ m²  | (m/s) | $7c_{D84}$      | $\mathcal{T}c_{D\sigma j}$ | $\mathcal{T}_{\rm cD84\prime} \tau_0$ | $\mathcal{T}_{\mathrm{cDrej}} / \mathcal{T}_0$ | UP/Uin <sub>[D&amp;]</sub> | UP / Uin[Dv] | (m)       | ton/dia   | ton/dia                  | ton/dia       |                      |                          |
| 148 | 15/9/1999  | 2,52 | 2,16        | 0,26     | 0,05  | 0,48            | 0,41                       | 1,84                                  | 1,57                                           | 0,009                      | 0,018        | 33,31     | 0,343     | 14,05                    | 24,65         | 3995,5               | 7087,5                   |
| 151 | 28/10/1999 | 2,40 | 2,42        | 0,25     | 0,05  | 0,46            | 0,46                       | 1,87                                  | 1,88                                           | 0,008                      | 0,008        | 32,88     | 0,027     | 11,44                    | 10,79         | 42277,5              | 39851,8                  |
| 153 | 25/11/1999 | 0,84 | 1,73        | 0,31     | 0,05  | 0,16            | 0,33                       | 0,53                                  | 1,08                                           | 0,244                      | 0,067        | 32,88     | 0,089     | 135,23                   | 76,66         | 151845,1             | 86034,2                  |
| 154 | 9/12/1999  | 3,76 | <b>1,49</b> | 0,34     | 0,06  | 0,72            | 0,29                       | 2,11                                  | 0,84                                           | 0,003                      | 0,118        | 33,19     | 0,036     | 8,31                     | 123,67        | 22990,6              | 343427,1                 |
| 155 | 23/12/1999 | 2,73 | 2,71        | 0,35     | 0,06  | 0,52            | 0,52                       | 1,49                                  | 1,48                                           | 0,023                      | 0,024        | 30,48     | 0,003     | 41,28                    | 42,31         | 1375970,5            | 1410093,3                |
| 156 | 6/1/2000   | 2,14 | 0,11        | 0,65     | 0,08  | 0,41            | 0,02                       | 0,63                                  | 0,03                                           | 0,191                      | 0,898        | 35,69     | 0,214     | 427,06                   | 104,63        | 199459,5             | 48794,5                  |
| 157 | 13/1/2000  | 1,07 | 2,02        | 0,29     | 0,05  | 0,20            | 0,39                       | 0,71                                  | 1,34                                           | 0,158                      | 0,035        | 32,91     | 0,313     | 108,32                   | 44,64         | 34507,2              | 14162,4                  |
| 160 | 3/2/2000   | 2,76 | 0,50        | 0,59     | 0,08  | 0,53            | 0,10                       | 0,89                                  | 0,16                                           | 0,103                      | 0,590        | 34,00     | 0,553     | 270,79                   | 278,19        | 48866,6              | 50204,7                  |
| 161 | 9/2/2000   | 0,49 | 1,97        | 0,27     | 0,05  | 90,0            | 0,38                       | 0,34                                  | 1,37                                           | 0,373                      | 0,032        | 33,10     | 0,487     | 114,89                   | 39,15         | 23490,5              | 7939,9                   |
| 164 | 3/3/2000   | 1,31 | 0,54        | 0,59     | 0,08  | 0,25            | 0,10                       | 0,42                                  | 0,18                                           | 0,310                      | 0,563        | 33,42     | 0,219     | 379,29                   | 286,47        | 173094,1             | 130706,7                 |
| 165 | 10/3/2000  | 0,30 | 1,69        | 0,31     | 0,06  | 0,06            | 0,32                       | 0,18                                  | 1,03                                           | 0,549                      | 0,076        | 32,88     | 0,040     | 110,15                   | 85,35         | 275263,0             | 213285,5                 |
| 166 | 17/3/2000  | 1,19 | 1,07        | 0,42     | 0,06  | 0,23            | 0,21                       | 0,54                                  | 0,49                                           | 0,236                      | 0,266        | 33,27     | 0,218     | 219,59                   | 223,99        | 100630,0             | 102648,9                 |
| 167 | 24/3/2000  | 1,98 | 1,40        | 0,28     | 0,05  | 0,38            | 0,27                       | 1,33                                  | 0,94                                           | 0,035                      | 0,093        | 34,12     | 0,491     | 46,21                    | 85,59         | 9311,5               | 17332,3                  |
| 168 | 31/3/2000  | 1,25 | 0,27        | 0,58     | 0,08  | 0,24            | 0,05                       | 0,41                                  | 0,09                                           | 0,317                      | 0,750        | 35,27     | 1,121     | 385,56                   | 194,15        | 34293,9              | 17219,3                  |
| 169 | 7/4/2000   | 1,84 | 2,25        | 0,27     | 0,05  | 0,35            | 0,43                       | 1,30                                  | 1,59                                           | 0,039                      | 0,018        | 32,77     | 0,050     | 43,90                    | 24,42         | 87698,7              | 48748,0                  |
| 170 | 14/4/2000  | 1,66 | 2,64        | 0,22     | 0,05  | 0,32            | 0,50                       | 1,47                                  | 2,34                                           | 0,024                      | 0,001        | 32,20     | 0,005     | 22,09                    | 1,93          | 441734,6             | 38476,9                  |
|     |            |      |             |          |       |                 |                            |                                       |                                                |                            |              |           |           |                          | MEDIA         | 3,0E+05              | 1,9E+05                  |

Tabela 6.2e.1 - Valores maiores que zero das descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| (l) | (2)        | (3)  | (4)     | (5)     | (6)   | $-\infty$ | (8)      | (9)            | (10)       | (11)               | (12)         | (13)         | (14)  | (15)    | (16)                  | (17)       | (18)                | (19)      |
|-----|------------|------|---------|---------|-------|-----------|----------|----------------|------------|--------------------|--------------|--------------|-------|---------|-----------------------|------------|---------------------|-----------|
| N°  | DATA       | D 84 | DWIEDBI | το      | U,    | ν         | S        | R <sub>H</sub> |            |                    |              |              | B     | qBm     | qB[EB]D <sub>64</sub> | qB[EIB]Dvj | E[%]D <sub>84</sub> | E[%]Dvj   |
|     |            | (mm) | mm      | Kgf/ m² | (m/s) | m² /s     | (m/m)    | (m)            | $k_{bD84}$ | k <sub>b Dvj</sub> | $\Psi_{D84}$ | $\Psi_{Dvi}$ | (m)   | ton/dia | ton/dia               | ton/dia    |                     |           |
| 1   | 26/3/1993  | 1,56 | 5,55    | 0,26    | 0,05  | 1,01E-06  | 1,94E-04 | 1,36           | 0,79       | 0,81               | 9,76         | 34,73        | 34,70 | 0,14    | 67,23                 | 10,27      | 47580,75            | 7183,28   |
| 2   | 6/4/1993   | 2,77 | 6,01    | 0,23    | 0,05  | 1,01E-06  | 1,97E-04 | 1,15           | 0,81       | 0,81               | 20,17        | 43,74        | 34,87 | 0,04    | 18,39                 | 5,81       | 48299,87            | 15193,49  |
| 3   | 20/4/1993  | 2,96 | 6,32    | 0,20    | 0,04  | 1,01E-06  | 1,85E-04 | 1,08           | 0,81       | 0,81               | 24,44        | 52,16        | 34,88 | 0,05    | 11,44                 | 3,70       | 25317,72            | 8118,88   |
| 4   | 4/5/1993   | 3,24 | 5,95    | 0,25    | 0,05  | 1,01E-06  | 2,11E-04 | 1,20           | 0,81       | 0,81               | 21,11        | 38,80        | 34,78 | 0,05    | 20,30                 | 8,20       | 45007,13            | 18112,44  |
| 5   | 18/5/1993  | 0,97 | 6,61    | 0,17    | 0,04  | 1,01E-06  | 1,63E-04 | 1,03           | 0,77       | 0,81               | 9,53         | 64,97        | 34,38 | 0,02    | 33,93                 | 2,02       | 141286,16           | 8317,31   |
| б   | 1/6/1993   | 2,50 | 5,25    | 0,35    | 0,06  | 1,01E-06  | 2,31E-04 | 1,50           | 0,80       | 0,81               | 11,90        | 24,98        | 35,24 | 0,19    | 77,40                 | 25,71      | 40635,35            | 13434,20  |
| 7   | 8/6/1993   | 1,13 | 5,93    | 0,19    | 0,04  | 1,01E-06  | 1,64E-04 | 1,16           | 0,78       | 0,81               | 9,80         | 51,45        | 34,91 | 0,03    | 40,37                 | 3,51       | 155167,19           | 13397,71  |
| 8   | 15/6/1993  | 1,44 | 6,30    | 0,19    | 0,04  | 1,01E-06  | 1,81E-04 | 1,07           | 0,79       | 0,81               | 12,27        | 53,66        | 34,21 | 0,01    | 29,45                 | 3,32       | 367983,35           | 41370,47  |
| 9   | 22/6/1993  | 4,47 | 6,31    | 0,17    | 0,04  | 1,01E-06  | 1,72E-04 | 1,01           | 0,81       | 0,81               | 42,46        | 59,90        | 34,54 | 0,01    | 4,03                  | 2,41       | 50312,51            | 30057,59  |
| 10  | 29/6/1993  | 1,40 | 7,00    | 0,14    | 0,04  | 1,01E-06  | 1,64E-04 | 0,87           | 0,79       | 0,81               | 16,19        | 80,96        | 33,99 | 0,01    | 12,19                 | 1,13       | 173983,54           | 15974,42  |
| 11  | 6/7/1993   | 4,10 | 7,17    | 0,09    | 0,03  | 1,01E-06  | 1,05E-04 | 0,88           | 0,81       | 0,81               | 73,21        | 127,97       | 33,77 | 0,00    | 0,67                  | 0,29       | 33643,34            | 14560,65  |
| 12  | 21/7/1993  | 3,33 | 7,36    | 0,07    | 0,03  | 1,01E-06  | 8,90E-05 | 0,83           | 0,81       | 0,81               | 74,38        | 164,39       | 33,64 | 0,01    | 0,47                  | 0,14       | 7701,39             | 2290,24   |
| 13  | 3/8/1993   | 3,90 | 8,12    | 0,05    | 0,02  | 1,01E-06  | 6,40E-05 | 0,75           | 0,81       | 0,81               | 134,06       | 279,03       | 32,82 | 0,00    | 0,10                  | 0,03       | 4852,73             | 1557,81   |
| 14  | 17/8/1993  | 2,30 | 7,56    | 0,02    | 0,02  | 1,01E-06  | 3,00E-05 | 0,78           | 0,80       | 0,81               | 162,18       | 533,36       | 33,53 | 0,00    | 0,03                  | 0,004      | 1182,61             | 118,08    |
| 15  | 31/8/1993  | 2,17 | 7,52    | 0,04    | 0,02  | 1,01E-06  | 4,70E-05 | 0,88           | 0,80       | 0,81               | 86,57        | 300,17       | 33,74 | 0,00    | 0,16                  | 0,02       | 7664,98             | 1121,35   |
| 16  | 21/9/1993  | 1,00 | 6,83    | 0,14    | 0,04  | 1,01E-06  | 1,47E-04 | 0,96           | 0,77       | 0,81               | 11,69        | 79,83        | 33,97 | 0,01    | 19,07                 | 1,13       | 317797,91           | 18725,61  |
| 17  | 28/9/1993  | 1,29 | 5,33    | 0,32    | 0,06  | 1,01E-06  | 2,31E-04 | 1,37           | 0,78       | 0,81               | 6,73         | 27,80        | 34,92 | 0,38    | 153,74                | 18,95      | 39937,54            | 4835,33   |
| 18  | 5/10/1993  | 4,77 | 6,53    | 0,14    | 0,04  | 1,01E-06  | 1,47E-04 | 0,98           | 0,81       | 0,81               | 54,63        | 74,81        | 34,38 | 0,01    | 2,08                  | 1,30       | 34531,72            | 21559,80  |
| 19  | 21/10/1993 | 3,63 | 5,95    | 0,22    | 0,05  | 1,01E-06  | 1,89E-04 | 1,14           | 0,81       | 0,81               | 27,80        | 45,54        | 34,84 | 0,02    | 10,58                 | 5,07       | 45907,20            | 21940,95  |
| 20  | 28/10/1993 | 1,24 | 5,66    | 0,26    | 0,05  | 1,01E-06  | 2,06E-04 | 1,27           | 0,78       | 0,81               | 7,82         | 35,71        | 34,88 | 0,04    | 91,84                 | 9,78       | 248105,23           | 26322,98  |
| 21  | 4/11/1993  | 4,52 | 7,32    | 0,07    | 0,03  | 1,01E-06  | 8,00E-05 | 0,85           | 0,81       | 0,81               | 109,68       | 177,69       | 33,82 | 0,00    | 0,23                  | 0,11       | 7664,86             | 3677,32   |
| 22  | 9/11/1993  | 4,27 | 6,95    | 0,12    | 0,03  | 1,01E-06  | 1,30E-04 | 0,89           | 0,81       | 0,81               | 60,89        | 99,10        | 34,01 | 0,01    | 1,26                  | 0,61       | 25020,15            | 12041,51  |
| 23  | 20/12/1993 | 1,26 | 6,02    | 0,24    | 0,05  | 1,01E-06  | 1,97E-04 | 1,21           | 0,78       | 0,81               | 8,72         | 41,69        | 34,64 | 0,08    | 67,42                 | 6,70       | 84170,87            | 8268,90   |
| 24  | 10/2/1994  | 1,11 | 4,94    | 0,13    | 0,04  | 1,01E-06  | 8,00E-05 | 1,65           | 0,78       | 0,81               | 13,88        | 61,81        | 35,65 | 0,33    | 14,13                 | 1,57       | 4155,03             | 373,21    |
| 25  | 29/3/1994  | 1,18 | 5,34    | 0,38    | 0,06  | 1,01E-06  | 1,97E-04 | 1,92           | 0,78       | 0,81               | 5,15         | 23,31        | 34,34 | 0,03    | 293,37                | 31,70      | 1086465,81          | 117318,78 |
| 26  | 19/4/1994  | 1,34 | 6,10    | 0,19    | 0,04  | 1,01E-06  | 1,30E-04 | 1,47           | 0,79       | 0,81               | 11,57        | 52,67        | 34,00 | 0,02    | 31,20                 | 3,32       | 141724,24           | 15003,89  |
| 27  | 6/5/1994   | 1,20 | 6,71    | 0,12    | 0,03  | 1,01E-06  | 9,60E-05 | 1,30           | 0,78       | 0,81               | 15,87        | 88,69        | 33,60 | 0,01    | 10,07                 | 0,79       | 83780,62            | 6512,07   |
| 28  | 20/5/1994  | 0,95 | 6,66    | 0,15    | 0,04  | 1,01E-06  | 1,14E-04 | 1,30           | 0,77       | 0,81               | 10,58        | 74,17        | 33,60 | 0,01    | 23,49                 | 1,34       | 195636,75           | 11088,52  |
| 29  | 17/6/1994  | 0,83 | 6,64    | 0,09    | 0,03  | 1,01E-06  | 7,20E-05 | 1,29           | 0,76       | 0,81               | 14,74        | 117,94       | 33,64 | 0,01    | 6,99                  | 0,33       | 139685,55           | 6551,76   |
| 30  | 1/7/1994   | 0,89 | 6,56    | 0,16    | 0,04  | 1,01E-06  | 1,14E-04 | 1,38           | 0,76       | 0,81               | 9,33         | 68,78        | 33,81 | 0,01    | 30,98                 | 1,65       | 516208,17           | 27471,09  |
| 31  | 15/7/1994  | 0,89 | 6,87    | 0,08    | 0,03  | 1,01E-06  | 6,40E-05 | 1,29           | 0,76       | 0,81               | 17,79        | 137,33       | 33,64 | 0,05    | 4,45                  | 0,22       | 8634,90             | 335,02    |
| 32  | 29/7/1994  | 1,66 | 6,53    | 0,16    | 0,04  | 1,01E-06  | 1,14E-04 | 1,37           | 0,79       | 0,81               | 17,54        | 69,04        | 33,81 | 0,01    | 12,41                 | 1,63       | 124011,95           | 16172,35  |

Tabela 6.2g - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)  | (4)  | (5)     | (6)   | $(\mathcal{D})$ | (8)      | (9)  | (10)              | (11)               | (12)             | (13)             | (14)  | (15)    | (16)                  | (17)       | (18)                | (19)      |
|-----|------------|------|------|---------|-------|-----------------|----------|------|-------------------|--------------------|------------------|------------------|-------|---------|-----------------------|------------|---------------------|-----------|
| N°  | DATA       | D84  | D    | το      | U,    | ν               | S        | Rн   |                   |                    |                  |                  | В     | qBm     | qB[EB]D <sub>84</sub> | qB[EIB]Dvj | E[%]D <sub>84</sub> | E[%]Dvj   |
|     |            | (mm) | mm   | Kgf⁄ m² | (m/s) | m² /s           | (m/m)    | (m)  | k <sub>bD84</sub> | k <sub>b Dvj</sub> | $\Psi_{\rm D84}$ | $\Psi_{\rm Dvi}$ | (m)   | ton/dia | ton/dia               | ton/dia    |                     |           |
| 33  | 12/8/1994  | 1,23 | 7,38 | 0,06    | 0,02  | 1,01E-06        | 4,70E-05 | 1,25 | 0,78              | 0,81               | 34,54            | 207,28           | 33,26 | 0,01    | 1,00                  | 0,07       | 9020,68             | 545,75    |
| 34  | 26/8/1994  | 0,88 | 7,01 | 0,08    | 0,03  | 1,01E-06        | 6,20E-05 | 1,35 | 0,76              | 0,81               | 17,35            | 138,11           | 33,47 | 0,00    | 4,69                  | 0,22       | 234491,26           | 11071,83  |
| 35  | 8/9/1994   | 1,00 | 6,83 | 0,11    | 0,03  | 1,01E-06        | 8,00E-05 | 1,37 | 0,77              | 0,81               | 15,05            | 102,83           | 33,68 | 0,00    | 8,86                  | 0,52       | 221373,32           | 13009,14  |
| 36  | 22/9/1994  | 0,89 | 6,51 | 0,19    | 0,04  | 1,01E-06        | 1,30E-04 | 1,45 | 0,76              | 0,81               | 7,79             | 56,95            | 33,92 | 0,00    | 53,46                 | 2,89       | 2673049,07          | 144363,99 |
| 37  | 6/10/1994  | 1,18 | 6,98 | 0,06    | 0,02  | 1,01E-06        | 4,70E-05 | 1,31 | 0,78              | 0,81               | 31,62            | 186,98           | 33,49 | 0,00    | 1,23                  | 0,09       | 61603,49            | 4377,11   |
| 38  | 27/10/1994 | 1,79 | 5,68 | 0,22    | 0,05  | 1,01E-06        | 1,22E-04 | 1,78 | 0,80              | 0,81               | 13,60            | 43,16            | 34,48 | 0,42    | 30,48                 | 5,50       | 7087,57             | 1197,28   |
| 39  | 23/11/1994 | 1,14 | 6,82 | 0,06    | 0,02  | 1,01E-06        | 4,70E-05 | 1,33 | 0,78              | 0,81               | 30,09            | 180,09           | 33,52 | 0,00    | 1,36                  | 0,10       | 33849,02            | 2324,66   |
| 40  | 22/12/1994 | 1,60 | 4,59 | 0,56    | 0,07  | 1,01E-06        | 2,14E-04 | 2,64 | 0,79              | 0,81               | 4,67             | 13,41            | 35,68 | 0,22    | 654,15                | 137,71     | 299970,64           | 63068,41  |
| 41  | 5/1/1995   | 1,08 | 4,86 | 0,53    | 0,07  | 1,01E-06        | 2,31E-04 | 2,28 | 0,78              | 0,81               | 3,38             | 15,23            | 35,27 | 0,52    | 923,09                | 101,25     | 176399,85           | 19258,52  |
| 42  | 19/1/1995  | 4,17 | 6,11 | 0,22    | 0,05  | 1,01E-06        | 1,47E-04 | 1,51 | 0,81              | 0,81               | 31,00            | 45,39            | 33,92 | 0,02    | 9,16                  | 5,19       | 60989,53            | 34477,81  |
| 43  | 26/1/1995  | 1,02 | 6,30 | 0,21    | 0,05  | 1,01E-06        | 1,47E-04 | 1,46 | 0,77              | 0,81               | 7,84             | 48,43            | 33,93 | 0,04    | 65,16                 | 4,48       | 180912,93           | 12334,70  |
| 44  | 9/2/1995   | 4,84 | 3,61 | 0,41    | 0,06  | 1,01E-06        | 1,14E-04 | 3,61 | 0,81              | 0,81               | 19,41            | 14,48            | 40,30 | 3,10    | 55,56                 | 85,95      | 1694,12             | 2675,41   |
| 45  | 16/2/1995  | 1,79 | 4,63 | 0,60    | 0,08  | 1,01E-06        | 2,47E-04 | 2,44 | 0,80              | 0,81               | 4,90             | 12,68            | 35,40 | 0,49    | 668,81                | 163,62     | 137799,58           | 33636,64  |
| 46  | 8/3/1995   | 1,20 | 5,57 | 0,31    | 0,05  | 1,01E-06        | 1,72E-04 | 1,79 | 0,78              | 0,81               | 6,43             | 29,83            | 34,94 | 0,40    | 157,15                | 16,37      | 39585,51            | 4034,40   |
| 47  | 24/3/1995  | 2,97 | 4,69 | 0,44    | 0,07  | 1,01E-06        | 1,80E-04 | 2,44 | 0,81              | 0,81               | 11,16            | 17,64            | 35,38 | 1,72    | 122,62                | 62,06      | 7024,89             | 3505,97   |
| 48  | 7/4/1995   | 0,72 | 5,07 | 0,41    | 0,06  | 1,01E-06        | 1,97E-04 | 2,06 | 0,74              | 0,81               | 2,93             | 20,62            | 35,05 | 0,17    | 738,21                | 43,23      | 431603,46           | 25179,85  |
| 49  | 28/4/1995  | 0,91 | 5,62 | 0,31    | 0,06  | 1,01E-06        | 1,80E-04 | 1,74 | 0,76              | 0,81               | 4,79             | 29,60            | 34,63 | 0,08    | 242,71                | 16,84      | 299544,22           | 20694,33  |
| 50  | 12/5/1995  | 1,55 | 5,34 | 0,34    | 0,06  | 1,01E-06        | 1,80E-04 | 1,87 | 0,79              | 0,81               | 7,60             | 26,19            | 34,74 | 0,47    | 141,07                | 22,62      | 30043,97            | 4732,33   |
| 51  | 9/6/1995   | 1,09 | 6,07 | 0,23    | 0,05  | 1,01E-06        | 1,47E-04 | 1,57 | 0,78              | 0,81               | 7,79             | 43,43            | 34,35 | 0,02    | 74,66                 | 5,95       | 324505,10           | 25767,07  |
| 52  | 23/6/1995  | 2,04 | 6,08 | 0,21    | 0,04  | 1,01E-06        | 1,04E-04 | 1,98 | 0,80              | 0,81               | 16,35            | 48,68            | 34,34 | 0,02    | 21,36                 | 4,22       | 118581,25           | 23367,03  |
| 53  | 5/7/1995   | 0,91 | 6,35 | 0,21    | 0,05  | 1,01E-06        | 1,47E-04 | 1,44 | 0,76              | 0,81               | 7,09             | 49,51            | 34,19 | 0,05    | 73,98                 | 4,28       | 144957,96           | 8282,75   |
| 54  | 12/7/1995  | 0,50 | 5,11 | 0,50    | 0,07  | 1,01E-06        | 2,39E-04 | 2,10 | 0,69              | 0,81               | 1,64             | 16,79            | 35,03 | 4,16    | 2251,11               | 80,86      | 53974,33            | 1842,29   |
| 55  | 19/7/1995  | 0,60 | 5,96 | 0,33    | 0,06  | 1,01E-06        | 1,55E-04 | 2,16 | 0,72              | 0,81               | 2,96             | 29,38            | 34,59 | 0,02    | 521,92                | 18,81      | 3261929,79          | 117469,67 |
| 56  | 26/7/1995  | 1,39 | 5,78 | 0,28    | 0,05  | 1,01E-06        | 1,64E-04 | 1,69 | 0,79              | 0,81               | 8,28             | 34,39            | 34,61 | 0,12    | 91,90                 | 11,19      | 77780,93            | 9384,94   |
| 57  | 10/8/1995  | 0,71 | 6,47 | 0,17    | 0,04  | 1,01E-06        | 1,22E-04 | 1,42 | 0,74              | 0,81               | 6,76             | 61,66            | 34,09 | 0,01    | 56,92                 | 2,27       | 474272,66           | 18824,10  |
| 58  | 31/8/1995  | 1,46 | 6,87 | 0,10    | 0,03  | 1,01E-06        | 8,00E-05 | 1,27 | 0,79              | 0,81               | 23,71            | 111,50           | 33,65 | 0,00    | 4,10                  | 0,41       | 204849,45           | 20605,50  |
| 59  | 21/9/1995  | 0,75 | 6,00 | 0,76    | 0,09  | 1,01E-06        | 4,73E-04 | 1,60 | 0,75              | 0,81               | 1,64             | 13,09            | 34,28 | 0,03    | 4429,32               | 213,18     | 14288024,29         | 687578,91 |
| 60  | 28/9/1995  | 1,66 | 5,90 | 0,22    | 0,05  | 1,01E-06        | 1,30E-04 | 1,66 | 0,79              | 0,81               | 12,69            | 45,09            | 34,68 | 0,25    | 33,58                 | 5,13       | 13387,34            | 1961,46   |
| 61  | 5/10/1995  | 1,24 | 6,57 | 0,13    | 0,04  | 1,01E-06        | 9,70E-05 | 1,39 | 0,78              | 0,81               | 15,17            | 80,39            | 34,16 | 0,00    | 12,31                 | 1,05       | 615460,60           | 52382,23  |
| 62  | 19/10/1995 | 3,06 | 5,03 | 0,40    | 0,06  | 1,01E-06        | 1,88E-04 | 2,14 | 0,81              | 0,81               | 12,55            | 20,65            | 35,02 | 0,21    | 89,25                 | 42,54      | 43437,21            | 20650,71  |
| 63  | 23/11/1995 | 1,37 | 6,44 | 0,13    | 0,04  | 1,01E-06        | 9,70E-05 | 1,39 | 0,79              | 0,81               | 16,77            | 78,83            | 34,05 | 0,01    | 10,63                 | 1,08       | 177052,45           | 17855,05  |
| 64  | 7/12/1995  | 1,56 | 7,03 | 0,08    | 0,03  | 1,01E-06        | 6,40E-05 | 1,25 | 0,79              | 0,81               | 32,18            | 145,00           | 33,39 | 0,00    | 1,80                  | 0,19       | 90071,06            | 9581,02   |

Tabela 6.2g - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)  | (4)     | (5)     | (6)   | Ø        | (8)      | (9)            | (10)  | (11)               | (12)  | (13)  | (14)  | (15)    | (16)                  | (17)       | (18)                | (19)     |
|-----|------------|------|---------|---------|-------|----------|----------|----------------|-------|--------------------|-------|-------|-------|---------|-----------------------|------------|---------------------|----------|
| N°  | DATA       | D 84 | DWIEIBI | το      | U,    | ν        | S        | R <sub>H</sub> |       |                    |       |       | В     | qBm     | qB[EB]D <sub>64</sub> | qB[EIB]Dvj | E[%]D <sub>64</sub> | E[%]Dvj  |
|     |            | (mm) | mm      | Kgf∕ m² | (m/s) | m²/s     | (m/m)    | (m)            | k,ns4 | k <sub>h Bei</sub> | Ψnsi  | Ψmi   | (m)   | ton/dia | ton/dia               | ton/dia    |                     |          |
| 65  | 10/1/1996  | 1,18 | 4,10    | 0.64    | 0.08  | 1,01E-06 | 2.14E-04 | 3,00           | 0,78  | 0.81               | 3.03  | 10,54 | 36,91 | 5,14    | 1541,94               | 247,38     | 29892,91            | 4711,88  |
| 66  | 31/1/1996  | 0,41 | 5,97    | 0,23    | 0.05  | 1,01E-06 | 1,47E-04 | 1,54           | 0,65  | 0,81               | 2,99  | 43,51 | 34,12 | 0,02    | 256,16                | 5,72       | 1348131,20          | 30026,47 |
| 67  | 7/2/1996   | 1,19 | 5,28    | 0,31    | 0,06  | 1,01E-06 | 1,64E-04 | 1,92           | 0,78  | 0,81               | 6,24  | 27,67 | 35,12 | 0,24    | 171,02                | 19,04      | 71758,95            | 7900,71  |
| 68  | 6/3/1996   | 0,43 | 4,78    | 0,48    | 0,07  | 1,01E-06 | 2,06E-04 | 2,33           | 0,66  | 0,81               | 1,48  | 16,44 | 35,36 | 3,54    | 2391,42               | 78,71      | 67416,03            | 2122,18  |
| 69  | 20/3/1996  | 0,57 | 4,04    | 0,74    | 0,09  | 1,01E-06 | 2,47E-04 | 2,99           | 0,71  | 0,81               | 1,27  | 9,03  | 36,55 | 1,15    | 6329,72               | 380,72     | 550310,18           | 33006,03 |
| 70  | 3/4/1996   | 1,41 | 5,43    | 0,33    | 0,06  | 1,01E-06 | 1,80E-04 | 1,84           | 0,79  | 0,81               | 7,02  | 27,06 | 34,87 | 0,13    | 154,76                | 21,09      | 116262,29           | 15758,53 |
| 71  | 16/4/1996  | 0,74 | 5,53    | 0,30    | 0,05  | 1,01E-06 | 1,64E-04 | 1,83           | 0,75  | 0,81               | 4,07  | 30,39 | 34,52 | 0,05    | 283,31                | 15,14      | 555410,64           | 29577,81 |
| 72  | 15/5/1996  | 1,50 | 5,81    | 0,25    | 0,05  | 1,01E-06 | 1,47E-04 | 1,67           | 0,79  | 0,81               | 10,08 | 39,02 | 34,24 | 0,25    | 56,57                 | 7,64       | 22897,11            | 3004,67  |
| 73  | 22/5/1996  | 1,63 | 5,96    | 0,24    | 0,05  | 1,01E-06 | 1,47E-04 | 1,60           | 0,79  | 0,81               | 11,43 | 41,81 | 34,20 | 0,01    | 44,03                 | 6,45       | 550317,91           | 80546,97 |
| 74  | 19/6/1996  | 0,99 | 6,55    | 0,14    | 0,04  | 1,01E-06 | 9,70E-05 | 1,42           | 0,77  | 0,81               | 11,86 | 78,51 | 33,76 | 0,01    | 17,88                 | 1,11       | 148884,86           | 9147,88  |
| 75  | 3/6/1996   | 2,52 | 6,31    | 0,17    | 0,04  | 1,01E-06 | 1,14E-04 | 1,51           | 0,80  | 0,81               | 24,15 | 60,50 | 34,07 | 0,02    | 9,07                  | 2,31       | 39323,44            | 9953,54  |
| 76  | 17/7/1996  | 2,82 | 6,64    | 0,13    | 0,04  | 1,01E-06 | 9,70E-05 | 1,37           | 0,81  | 0,81               | 35,01 | 82,46 | 33,81 | 0,00    | 3,51                  | 0,98       | 87526,85            | 24360,82 |
| 77  | 31/7/1996  | 1,34 | 6,70    | 0,14    | 0,04  | 1,01E-06 | 1,05E-04 | 1,35           | 0,79  | 0,81               | 15,60 | 77,94 | 34,75 | 0,01    | 13,01                 | 1,21       | 260195,21           | 24017,50 |
| 78  | 7/8/1996   | 1,98 | 6,66    | 0,11    | 0,03  | 1,01E-06 | 8,00E-05 | 1,38           | 0,80  | 0,81               | 29,59 | 99,53 | 34,04 | 0,00    | 3,41                  | 0,56       | 85140,27            | 13963,47 |
| 79  | 14/8/1996  | 2,70 | 6,51    | 0,15    | 0,04  | 1,01E-06 | 1,05E-04 | 1,45           | 0,81  | 0,81               | 29,26 | 70,58 | 33,99 | 0,01    | 5,65                  | 1,52       | 112930,49           | 30363,68 |
| 80  | 21/8/1996  | 3,27 | 6,44    | 0,13    | 0,04  | 1,01E-06 | 8,90E-05 | 1,47           | 0,81  | 0,81               | 41,24 | 81,26 | 33,89 | 0,01    | 2,69                  | 0,98       | 53728,97            | 19485,05 |
| 81  | 28/8/1996  | 3,85 | 6,69    | 0,13    | 0,04  | 1,01E-06 | 9,70E-05 | 1,37           | 0,81  | 0,81               | 47,80 | 83,11 | 33,73 | 0,00    | 2,20                  | 0,96       | 73305,02            | 32061,81 |
| 82  | 4/9/1996   | 1,95 | 5,88    | 0,25    | 0,05  | 1,01E-06 | 1,47E-04 | 1,71           | 0,80  | 0,81               | 12,80 | 38,60 | 34,56 | 0,04    | 41,79                 | 8,12       | 115979,33           | 22457,11 |
| 83  | 11/9/1996  | 4,19 | 4,47    | 0,61    | 0,08  | 1,01E-06 | 2,31E-04 | 2,66           | 0,81  | 0,81               | 11,25 | 12,00 | 35,84 | 3,70    | 203,93                | 185,29     | 5415,98             | 4911,96  |
| 84  | 2/10/1996  | 1,82 | 6,30    | 0,16    | 0,04  | 1,01E-06 | 1,05E-04 | 1,50           | 0,80  | 0,81               | 19,07 | 66,00 | 34,10 | 0,01    | 11,22                 | 1,78       | 186933,22           | 29528,90 |
| 85  | 16/10/1996 | 4,07 | 5,67    | 0,27    | 0,05  | 1,01E-06 | 1,50E-04 | 1,80           | 0,81  | 0,81               | 24,87 | 34,66 | 34,70 | 0,25    | 17,49                 | 10,66      | 6896,84             | 4165,12  |
| 86  | 6/11/1996  | 3,00 | 5,54    | 0,29    | 0,05  | 1,01E-06 | 1,60E-04 | 1,80           | 0,81  | 0,81               | 17,19 | 31,72 | 34,70 | 0,32    | 33,41                 | 13,41      | 10339,94            | 4091,37  |
| 87  | 20/11/1996 | 3,50 | 5,71    | 0,23    | 0,05  | 1,01E-06 | 1,30E-04 | 1,80           | 0,81  | 0,81               | 24,68 | 40,23 | 34,70 | 0,03    | 14,25                 | 6,88       | 41820,41            | 20133,93 |
| 88  | 6/12/1996  | 0,93 | 5,87    | 0,22    | 0,05  | 1,01E-06 | 1,30E-04 | 1,70           | 0,77  | 0,81               | 6,94  | 43,81 | 34,60 | 4,34    | 82,64                 | 5,54       | 1804,18             | 27,67    |
| 89  | 9/1/1997   | 0,83 | 5,68    | 0,26    | 0,05  | 1,01E-06 | 1,47E-04 | 1,78           | 0,76  | 0,81               | 5,23  | 35,80 | 34,68 | 0,03    | 161,10                | 9,69       | 488087,71           | 29253,02 |
| 90  | 22/1/1997  | 0,77 | 5,23    | 0,43    | 0,07  | 1,01E-06 | 2,14E-04 | 2,02           | 0,75  | 0,81               | 2,94  | 19,98 | 34,78 | 0,15    | 807,86                | 49,45      | 553230,59           | 33771,06 |
| 91  | 3/2/1997   | 0,65 | 4,12    | 0,58    | 0,08  | 1,01E-06 | 2,14E-04 | 2,69           | 0,73  | 0,81               | 1,86  | 11,81 | 36,46 | 21,99   | 2515,34               | 174,83     | 11338,58            | 695,04   |
| 92  | 12/3/1997  | 0,82 | 5,82    | 0,22    | 0,05  | 1,01E-06 | 1,47E-04 | 1,51           | 0,75  | 0,81               | 6,10  | 43,24 | 34,32 | 1,01    | 98,97                 | 5,64       | 9699,45             | 458,75   |
| 93  | 26/3/1997  | 0,80 | 6,20    | 0,16    | 0,04  | 1,01E-06 | 1,22E-04 | 1,35           | 0,75  | 0,81               | 8,01  | 62,15 | 33,84 | 0,16    | 41,25                 | 2,06       | 25680,23            | 1190,20  |
| 94  | 16/4/1997  | 0,88 | 6,48    | 0,12    | 0,03  | 1,01E-06 | 9,70E-05 | 1,25           | 0,76  | 0,81               | 11,98 | 88,23 | 33,64 | 0,03    | 14,34                 | 0,77       | 44698,24            | 2295,47  |
| 95  | 14/5/1997  | 0,84 | 6,79    | 0,12    | 0,04  | 1,01E-06 | 1,05E-04 | 1,19           | 0,76  | 0,81               | 11,09 | 89,67 | 33,16 | 0,10    | 16,50                 | 0,77       | 15763,27            | 642,04   |
| 96  | 4/6/1997   | 4,44 | 6,42    | 0,16    | 0,04  | 1,01E-06 | 1,22E-04 | 1,32           | 0,81  | 0,81               | 45,49 | 65,81 | 33,64 | 0,01    | 3,16                  | 1,82       | 52577,14            | 30258,17 |

Tabela 6.2g - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)             | (4)   | (5)            | (6)   | $-\infty$ | (8)      | (9)            | (10)       | (11)               | (12)                  | (13)         | (14)  | (15)    | (16)                  | (17)       | (18)                | (19)       |
|-----|------------|-----------------|-------|----------------|-------|-----------|----------|----------------|------------|--------------------|-----------------------|--------------|-------|---------|-----------------------|------------|---------------------|------------|
| N°  | DATA       | D <sub>84</sub> | DWIEB | τ <sub>ο</sub> | U,    | ν         | S        | R <sub>H</sub> |            |                    |                       |              | В     | qBm     | qB[EB]D <sub>64</sub> | qB[EIB]Dvj | E[%]D <sub>64</sub> | E[%]Dvj    |
|     |            | (mm)            | mm    | Kgf⁄ m²        | (m/s) | m²/s      | (m/m)    | (m)            | $k_{bD84}$ | k <sub>b Dvj</sub> | $\Psi_{\mathbf{D}84}$ | $\Psi_{Dvi}$ | (m)   | ton/dia | ton/dia               | ton/dia    |                     |            |
| 97  | 2/7/1997   | 3,49            | 6,45  | 0,16           | 0,04  | 1,01E-06  | 1,22E-04 | 1,31           | 0,81       | 0,81               | 36,03                 | 66,60        | 33,84 | 0,01    | 4,45                  | 1,78       | 88846,40            | 35483,73   |
| 98  | 12/8/1997  | 4,00            | 6,34  | 0,15           | 0,04  | 1,01E-06  | 1,13E-04 | 1,33           | 0,81       | 0,81               | 43,92                 | 69,66        | 33,93 | 0,00    | 3,03                  | 1,52       | 100800,80           | 50592,86   |
| 99  | 26/8/1997  | 1,84            | 6,15  | 0,21           | 0,05  | 1,01E-06  | 1,47E-04 | 1,41           | 0,80       | 0,81               | 14,65                 | 48,92        | 33,97 | 0,01    | 25,07                 | 4,19       | 464236,86           | 77475,15   |
| 100 | 9/9/1997   | 1,63            | 7,04  | 0,12           | 0,03  | 1,01E-06  | 1,05E-04 | 1,12           | 0,79       | 0,81               | 22,87                 | 98,81        | 33,40 | 0,00    | 5,38                  | 0,61       | 223876,10           | 25470,49   |
| 101 | 23/9/1997  | 0,96            | 6,25  | 1,07           | 0,10  | 1,01E-06  | 7,90E-04 | 1,36           | 0,77       | 0,81               | 1,47                  | 9,59         | 33,96 | 0,01    | 8913,32               | 569,35     | 69635220,79         | 4447914,07 |
| 102 | 7/10/1997  | 0,67            | 6,34  | 0,19           | 0,04  | 1,01E-06  | 1,40E-04 | 1,33           | 0,73       | 0,81               | 5,94                  | 56,20        | 33,98 | 0,01    | 76,18                 | 2,90       | 568404,22           | 21529,73   |
| 103 | 21/10/1997 | 0,83            | 6,13  | 0,10           | 0,03  | 1,01E-06  | 7,00E-05 | 1,42           | 0,76       | 0,81               | 13,78                 | 101,81       | 34,07 | 0,01    | 8,68                  | 0,46       | 61434,95            | 3196,31    |
| 104 | 4/11/1997  | 1,08            | 6,50  | 0,14           | 0,04  | 1,01E-06  | 1,10E-04 | 1,28           | 0,78       | 0,81               | 12,66                 | 76,16        | 33,80 | 0,00    | 16,90                 | 1,20       | 582709,66           | 41337,52   |
| 105 | 2/12/1997  | 0,96            | 5,96  | 0,18           | 0,04  | 1,01E-06  | 1,20E-04 | 1,46           | 0,77       | 0,81               | 9,04                  | 56,16        | 34,22 | 0,44    | 38,95                 | 2,67       | 8771,39             | 507,23     |
| 106 | 16/12/1997 | 0,50            | 5,24  | 0,38           | 0,06  | 1,01E-06  | 2,10E-04 | 1,79           | 0,69       | 0,81               | 2,19                  | 22,99        | 34,77 | 5,77    | 938,70                | 32,48      | 16168,66            | 462,91     |
| 107 | 13/1/1998  | 0,50            | 5,19  | 0,63           | 0,08  | 1,01E-06  | 3,31E-04 | 1,91           | 0,69       | 0,81               | 1,30                  | 13,56        | 34,82 | 0,11    | 4472,17               | 156,65     | 4179501,42          | 146304,61  |
| 108 | 27/1/1998  | 0,51            | 5,99  | 0,11           | 0,03  | 1,01E-06  | 8,00E-05 | 1,43           | 0,70       | 0,81               | 7,36                  | 86,45        | 34,01 | 0,01    | 25,24                 | 0,73       | 257493,11           | 7368,84    |
| 109 | 11/2/1998  | 1,78            | 4,90  | 0,44           | 0,07  | 1,01E-06  | 2,14E-04 | 2,07           | 0,80       | 0,81               | 6,63                  | 18,25        | 35,24 | 1,66    | 266,56                | 59,50      | 15957,63            | 3484,13    |
| 110 | 26/2/1998  | 1,80            | 4,60  | 0,49           | 0,07  | 1,01E-06  | 2,14E-04 | 2,31           | 0,80       | 0,81               | 6,01                  | 15,36        | 34,55 | 1,06    | 357,29                | 88,98      | 33606,94            | 8293,95    |
| 111 | 11/3/1998  | 1,94            | 5,54  | 0,30           | 0,05  | 1,01E-06  | 1,81E-04 | 1,67           | 0,80       | 0,81               | 10,59                 | 30,25        | 34,68 | 1,60    | 73,47                 | 15,48      | 4491,61             | 867,72     |
| 112 | 25/3/1998  | 0,75            | 5,21  | 0,36           | 0,06  | 1,01E-06  | 1,97E-04 | 1,84           | 0,75       | 0,81               | 3,41                  | 23,71        | 35,22 | 0,31    | 500,03                | 29,74      | 161199,32           | 9492,67    |
| 113 | 8/4/1998   | 0,93            | 6,21  | 0,18           | 0,04  | 1,01E-06  | 1,30E-04 | 1,36           | 0,77       | 0,81               | 8,68                  | 57,97        | 33,54 | 0,03    | 41,02                 | 2,53       | 120535,77           | 7330,94    |
| 114 | 22/4/1998  | 1,18            | 6,24  | 0,10           | 0,03  | 1,01E-06  | 7,20E-05 | 1,45           | 0,78       | 0,81               | 18,65                 | 98,56        | 33,96 | 0,00    | 6,10                  | 0,52       | 141778,92           | 12075,57   |
| 115 | 6/5/1998   | 0,81            | 4,86  | 0,38           | 0,06  | 1,01E-06  | 1,80E-04 | 2,12           | 0,75       | 0,81               | 3,50                  | 20,99        | 35,22 | 0,17    | 524,89                | 38,53      | 318015,68           | 23254,17   |
| 116 | 21/5/1998  | 0,74            | 6,34  | 0,23           | 0,05  | 1,01E-06  | 1,64E-04 | 1,41           | 0,75       | 0,81               | 5,28                  | 45,23        | 34,01 | 0,01    | 127,67                | 5,56       | 2503311,81          | 108922,89  |
| 117 | 3/6/1998   | 0,91            | 6,10  | 0,18           | 0,04  | 1,01E-06  | 1,30E-04 | 1,40           | 0,76       | 0,81               | 8,25                  | 55,29        | 33,70 | 0,02    | 46,35                 | 2,85       | 291387,61           | 17798,83   |
| 118 | 17/6/1998  | 1,82            | 6,52  | 0,14           | 0,04  | 1,01E-06  | 1,11E-04 | 1,28           | 0,80       | 0,81               | 21,14                 | 75,70        | 33,04 | 0,00    | 7,98                  | 1,20       | 0,00                | 0,00       |
| 119 | 15/7/1998  | 3,00            | 6,40  | 0,17           | 0,04  | 1,01E-06  | 1,30E-04 | 1,29           | 0,81       | 0,81               | 29,52                 | 63,02        | 33,02 | 0,01    | 6,28                  | 2,03       | 125429,94           | 40449,18   |
| 120 | 29/7/1998  | 3,03            | 6,76  | 0,11           | 0,03  | 1,01E-06  | 9,70E-05 | 1,14           | 0,81       | 0,81               | 45,21                 | 100,85       | 32,50 | 0,00    | 1,75                  | 0,53       | 72616,52            | 21896,56   |
| 121 | 12/8/1998  | 2,32            | 6,63  | 0,14           | 0,04  | 1,01E-06  | 1,17E-04 | 1,17           | 0,80       | 0,81               | 27,96                 | 79,86        | 32,77 | 0,00    | 4,96                  | 1,04       | 145650,51           | 30496,55   |
| 122 | 25/8/1998  | 2,60            | 7,10  | 0,09           | 0,03  | 1,01E-06  | 8,90E-05 | 1,06           | 0,81       | 0,81               | 45,47                 | 124,20       | 32,08 | 0,00    | 1,34                  | 0,30       | 0,00                | 0,00       |
| 123 | 2/9/1998   | 3,13            | 6,42  | 0,12           | 0,03  | 1,01E-06  | 9,70E-05 | 1,27           | 0,81       | 0,81               | 41,92                 | 86,04        | 32,90 | 0,00    | 2,33                  | 0,80       | 0,00                | 0,00       |
| 124 | 16/9/1998  | 1,81            | 6,72  | 0,07           | 0,03  | 1,01E-06  | 6,40E-05 | 1,16           | 0,80       | 0,81               | 40,23                 | 149,31       | 32,90 | 0,01    | 1,14                  | 0,16       | 18951,80            | 2619,76    |
| 125 | 30/9/1998  | 3,41            | 6,43  | 0,10           | 0,03  | 1,01E-06  | 8,00E-05 | 1,29           | 0,81       | 0,81               | 54,52                 | 102,85       | 32,87 | 0,00    | 1,20                  | 0,47       | 29996,95            | 11582,01   |
| 126 | 14/10/1998 | 2,27            | 5,62  | 0,31           | 0,06  | 1,01E-06  | 2,10E-04 | 1,49           | 0,80       | 0,81               | 11,97                 | 29,62        | 33,28 | 0,02    | 62,07                 | 16,15      | 264009,83           | 68604,13   |
| 127 | 28/10/1998 | 1,92            | 6,03  | 0,25           | 0,05  | 1,01E-06  | 1,97E-04 | 1,28           | 0,80       | 0,81               | 12,56                 | 39,43        | 32,92 | 0,01    | 41,11                 | 7,53       | 398994,48           | 72975,95   |
| 128 | 11/11/1998 | 2,63            | 6,76  | 0,15           | 0,04  | 1,01E-06  | 1,47E-04 | 1,05           | 0,81       | 0,81               | 28,11                 | 72,26        | 31,40 | 0,00    | 5,66                  | 1,39       | 0,00                | 0,00       |

Tabela 6.2g - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)  | (4)     | (5)     | (6)   | $-\infty$ | (8)      | (9)            | (10)       | (11)               | (12)             | (13)             | (14)  | (15)    | (16)                  | (17)      | (18)                | (19)       |
|-----|------------|------|---------|---------|-------|-----------|----------|----------------|------------|--------------------|------------------|------------------|-------|---------|-----------------------|-----------|---------------------|------------|
| N°  | DATA       | D 84 | DWIEIBI | το      | U,    | ν         | S        | R <sub>H</sub> |            |                    |                  |                  | В     | qBm     | qB[EB]D <sub>64</sub> | qB[EB]Dvj | E[%]D <sub>64</sub> | E[%]Dvj    |
|     |            | (mm) | mm      | Kgf/ m² | (m/s) | m²/s      | (m/m)    | (m)            | $k_{bD84}$ | k <sub>o Dvi</sub> | Ψ <sub>B84</sub> | Ψ <sub>Dvi</sub> | (m)   | ton/dia | ton/dia               | ton/dia   |                     |            |
| 129 | 25/11/1998 | 1,47 | 6,77    | 0,19    | 0,04  | 1,01E-06  | 1,80E-04 | 1,03           | 0,79       | 0,81               | 13,08            | 60,23            | 31,29 | 0,00    | 22,93                 | 2,39      | 0,00                | 0,00       |
| 130 | 9/12/1998  | 1,58 | 5,87    | 0,32    | 0,06  | 1,01E-06  | 2,30E-04 | 1,39           | 0,79       | 0,81               | 8,15             | 30,29            | 33,18 | 0,00    | 112,27                | 16,08     | 0,00                | 0,00       |
| 131 | 22/12/1998 | 0,66 | 5,99    | 0,28    | 0,05  | 1,01E-06  | 2,10E-04 | 1,31           | 0,73       | 0,81               | 3,96             | 35,93            | 32,95 | 0,00    | 243,08                | 9,87      | 0,00                | 0,00       |
| 132 | 6/1/1999   | 0,30 | 5,04    | 0,49    | 0,07  | 1,01E-06  | 2,30E-04 | 2,11           | 0,58       | 0,81               | 1,02             | 17,13            | 34,79 | 1,48    | 3618,96               | 74,08     | 244755,50           | 4912,20    |
| 133 | 21/1/1999  | 0,29 | 4,60    | 0,65    | 0,08  | 1,01E-06  | 2,80E-04 | 2,32           | 0,57       | 0,81               | 0,74             | 11,67            | 35,23 | 3,70    | 9088,18               | 206,41    | 245327,54           | 5474,11    |
| 134 | 28/1/1999  | 0,32 | 4,19    | 0,78    | 0,09  | 1,01E-06  | 3,00E-04 | 2,60           | 0,59       | 0,81               | 0,68             | 8,87             | 35,81 | 0,00    | 14481,67              | 416,48    | 0,00                | 0,00       |
| 135 | 3/2/1999   | 0,26 | 4,89    | 0,51    | 0,07  | 1,01E-06  | 2,50E-04 | 2,04           | 0,53       | 0,81               | 0,84             | 15,81            | 35,18 | 2,82    | 4864,38               | 91,03     | 172395,59           | 3128,05    |
| 136 | 11/2/1999  | 0,31 | 4,61    | 0,63    | 0,08  | 1,01E-06  | 2,80E-04 | 2,24           | 0,59       | 0,81               | 0,82             | 12,14            | 35,26 | 3,05    | 7660,04               | 184,77    | 251296,10           | 5963,89    |
| 137 | 25/2/1999  | 2,85 | 4,59    | 0,56    | 0,07  | 1,01E-06  | 2,50E-04 | 2,22           | 0,81       | 0,81               | 8,47             | 13,66            | 35,52 | 5,11    | 264,07                | 129,81    | 5063,65             | 2438,29    |
| 138 | 11/3/1999  | 0,36 | 4,63    | 0,52    | 0,07  | 1,01E-06  | 2,30E-04 | 2,27           | 0,63       | 0,81               | 1,14             | 14,62            | 35,20 | 1,80    | 3761,29               | 105,97    | 208512,77           | 5777,24    |
| 139 | 25/3/1999  | 0,40 | 4,67    | 0,67    | 0,08  | 1,01E-06  | 3,00E-04 | 2,22           | 0,65       | 0,81               | 0,99             | 11,57            | 34,99 | 3,64    | 6884,87               | 215,61    | 189044,74           | 5823,39    |
| 140 | 15/4/1999  | 0,39 | 5,90    | 0,32    | 0,06  | 1,01E-06  | 2,30E-04 | 1,41           | 0,64       | 0,81               | 1,98             | 30,01            | 33,72 | 0,02    | 788,82                | 16,93     | 3943991,52          | 84558,78   |
| 141 | 29/4/1999  | 0,60 | 6,33    | 1,02    | 0,10  | 1,01E-06  | 8,20E-04 | 1,24           | 0,72       | 0,81               | 0,97             | 10,28            | 33,27 | 0,01    | 14062,43              | 463,07    | 108172447,14        | 3561986,12 |
| 142 | 13/5/1999  | 0,31 | 6,06    | 0,34    | 0,06  | 1,01E-06  | 2,60E-04 | 1,31           | 0,59       | 0,81               | 1,50             | 29,38            | 33,41 | 0,02    | 1162,36               | 18,65     | 5053642,34          | 80977,60   |
| 143 | 9/6/1999   | 4,13 | 6,23    | 0.24    | 0.05  | 1,01E-06  | 2.00E-04 | 1,22           | 0.81       | 0.81               | 27.93            | 42,11            | 33.29 | 0,01    | 12,12                 | 6,57      | 121082,04           | 65556,05   |
| 144 | 22/7/1999  | 2,22 | 6,50    | 0.21    | 0.05  | 1,01E-06  | 2.10E-04 | 1,02           | 0.80       | 0,81               | 17.10            | 50,03            | 32.52 | 0,00    | 20,11                 | 4,07      | 670089,79           | 135722,06  |
| 145 | 5/8/1999   | 2,70 | 6,66    | 0,22    | 0,05  | 1,01E-06  | 2,14E-04 | 1,01           | 0,81       | 0,81               | 20,61            | 50,81            | 32,65 | 0,00    | 15,53                 | 4,05      | 776506,80           | 202521,38  |
| 146 | 19/8/1999  | 0,97 | 6,61    | 0,21    | 0,05  | 1,01E-06  | 2,10E-04 | 1,02           | 0,77       | 0,81               | 7,47             | 50,88            | 32,78 | 0,00    | 67,19                 | 4,01      | 1679651,89          | 100026,55  |
| 147 | 2/9/1999   | 4,74 | 6,93    | 0,05    | 0,02  | 1,01E-06  | 5,00E-05 | 0,95           | 0,81       | 0,81               | 164,65           | 240,88           | 32,07 | 0,00    | 0,07                  | 0,04      | 0,00                | 0,00       |
| 148 | 15/9/1999  | 2,52 | 6,13    | 0,26    | 0,05  | 1,01E-06  | 2,10E-04 | 1,25           | 0,80       | 0,81               | 15,84            | 38,56            | 33,31 | 0,34    | 31,44                 | 8,37      | 9065.02             | 2338,88    |
| 149 | 30/9/1999  | 0.94 | 7.17    | 0.17    | 0.04  | 1.01E-06  | 1.80E-04 | 0.92           | 0.77       | 0.81               | 9.37             | 71.42            | 32.02 | 0.00    | 31.70                 | 1.60      | 3169677.56          | 159895.20  |
| 150 | 14/10/1999 | 1.01 | 6,89    | 0.20    | 0.04  | 1,01E-06  | 2.10E-04 | 0,95           | 0.77       | 0.81               | 8.35             | 56,97            | 32.41 | 0,00    | 50,70                 | 3,00      | 1689783,59          | 100056,66  |
| 151 | 28/10/1999 | 2,40 | 6,52    | 0.25    | 0.05  | 1,01E-06  | 2.30E-04 | 1,07           | 0.80       | 0.81               | 16.09            | 43,70            | 32.88 | 0,03    | 27,48                 | 6,22      | 101681,96           | 22921,17   |
| 152 | 11/11/1999 | 0,38 | 6,74    | 0,20    | 0,04  | 1,01E-06  | 2,00E-04 | 1,00           | 0,64       | 0,81               | 3,14             | 55,64            | 32,80 | 28,00   | 185,40                | 3,16      | 562,16              | 88,71      |
| 153 | 25/11/1999 | 0,84 | 5,97    | 0,31    | 0,05  | 1,01E-06  | 2,30E-04 | 1,33           | 0,76       | 0,81               | 4,53             | 32,19            | 32,88 | 0,09    | 240,03                | 13,62     | 269601,22           | 15197,96   |
| 154 | 9/12/1999  | 3,76 | 5,95    | 0,34    | 0.06  | 1.01E-06  | 2.60E-04 | 1.31           | 0.81       | 0.81               | 18.21            | 28,80            | 33,19 | 0.04    | 37.79                 | 19.08     | 104873,74           | 52907.03   |
| 155 | 23/12/1999 | 2,73 | 7.69    | 0,35    | 0.06  | 1,01E-06  | 4,80E-04 | 0,73           | 0.81       | 0,81               | 12,86            | 36,22            | 30,48 | 0.00    | 60,78                 | 12,98     | 2025828.42          | 432652,85  |
| 156 | 6/1/2000   | 2.14 | 4.39    | 0.65    | 0.08  | 1.01E-06  | 2.80E-04 | 2.32           | 0.80       | 0.81               | 5.44             | 11.16            | 35.69 | 0.21    | 649.64                | 223.50    | 303468.24           | 104337.05  |
| 157 | 13/1/2000  | 1.07 | 6,26    | 0.29    | 0.05  | 1,01E-06  | 2.50E-04 | 1,15           | 0.77       | 0.81               | 6.14             | 35,93            | 32,91 | 0,31    | 141,97                | 10,53     | 45256.59            | 3265,01    |
| 158 | 20/1/2000  | 4.07 | 6,20    | 0.29    | 0.05  | 1,01E-06  | 2.50E-04 | 1,15           | 0.81       | 0.81               | 23.36            | 35.57            | 33.27 | 0.04    | 20,25                 | 10,81     | 49286.01            | 26271,02   |
| 159 | 27/1/2000  | 4,67 | 5,99    | 0,33    | 0,06  | 1,01E-06  | 2,60E-04 | 1,25           | 0,81       | 0,81               | 23,71            | 30,41            | 33,25 | 0.09    | 23,82                 | 16,43     | 26361.36            | 18152,63   |
| 160 | 3/2/2000   | 2,76 | 5,57    | 0,59    | 0,08  | 1,01E-06  | 4,10E-04 | 1,44           | 0,81       | 0,81               | 7,71             | 15,57            | 34,00 | 0,55    | 319,10                | 112,16    | 57603,56            | 20182,31   |

Tabela 6.2g - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>84</sub> e o Dvj

| (1)    | (2)       | (3)     | (4)   | (5)     | (6)   | - $(D)$  | (8)      | (9)            | (10)       | (11)                                                    | (12)         | (13)         | (14)  | (15)    | (16)                   | (17)       | (18)                | (19)     |
|--------|-----------|---------|-------|---------|-------|----------|----------|----------------|------------|---------------------------------------------------------|--------------|--------------|-------|---------|------------------------|------------|---------------------|----------|
| N°     | DATA      | D 84    | DWEER | το      | U,    | ν        | S        | R <sub>H</sub> |            |                                                         |              |              | В     | qBm     | qB[E1B]D <sub>64</sub> | qB[EIB]Dvj | E[%]D <sub>84</sub> | E[%]Dvj  |
|        |           | (mm)    | mm    | Kgf⁄ m² | (m/s) | m²/s     | (m/m)    | (m)            | $k_{bD84}$ | $\mathbf{k}_{\mathbf{b}\mathbf{D}\mathbf{v}\mathbf{j}}$ | $\Psi_{D84}$ | $\Psi_{Dvi}$ | (m)   | ton/dia | ton/dia                | ton/dia    |                     |          |
| 161    | 9/2/2000  | 0,49    | 6,11  | 0,27    | 0,05  | 1,01E-06 | 2,30E-04 | 1,19           | 0,69       | 0,81                                                    | 2,95         | 36,81        | 33,10 | 0,49    | 353,79                 | 9,49       | 72546,65            | 1848,67  |
| 162    | 18/2/2000 | 4,84    | 5,23  | 0,45    | 0,07  | 1,01E-06 | 2,80E-04 | 1,60           | 0,81       | 0,81                                                    | 17,83        | 19,28        | 34,70 | 0,45    | 61,72                  | 54,90      | 13707,25            | 12181,99 |
| 163    | 24/2/2000 | 0,33    | 5,70  | 0,18    | 0,04  | 1,01E-06 | 1,30E-04 | 1,38           | 0,60       | 0,81                                                    | 3,04         | 52,39        | 33,56 | 0,60    | 159,88                 | 3,01       | 26414,18            | 398,51   |
| 164    | 3/3/2000  | 1,31    | 5,79  | 0,59    | 0,08  | 1,01E-06 | 4,60E-04 | 1,29           | 0,79       | 0,81                                                    | 3,64         | 16,09        | 33,42 | 0,22    | 948,74                 | 105,84     | 433115,04           | 48228,49 |
| 165    | 10/3/2000 | 0,30    | 6,14  | 0,31    | 0,06  | 1,01E-06 | 2,80E-04 | 1,12           | 0,58       | 0,81                                                    | 1,58         | 32,31        | 32,88 | 0,04    | 922,91                 | 14,06      | 2307172,97          | 35040,19 |
| 166    | 17/3/2000 | 1,19    | 5,98  | 0,42    | 0,06  | 1,01E-06 | 3,60E-04 | 1,17           | 0,78       | 0,81                                                    | 4,66         | 23,42        | 33,27 | 0,22    | 387,78                 | 35,88      | 177780,96           | 16359,71 |
| 167    | 24/3/2000 | 1,98    | 5,48  | 0,28    | 0,05  | 1,01E-06 | 2,00E-04 | 1,42           | 0,80       | 0,81                                                    | 11,50        | 31,86        | 34,12 | 0,49    | 58,18                  | 12,83      | 11749,24            | 2512,88  |
| 168    | 31/3/2000 | 1,25    | 4,83  | 0,58    | 0,08  | 1,01E-06 | 3,00E-04 | 1,93           | 0,78       | 0,81                                                    | 3,56         | 13,78        | 35,27 | 1,12    | 995,07                 | 135,65     | 88665,85            | 12000,97 |
| 169    | 7/4/2000  | 1,84    | 6,49  | 0,27    | 0,05  | 1,01E-06 | 2,60E-04 | 1,04           | 0,80       | 0,81                                                    | 11,23        | 39,58        | 32,77 | 0,05    | 53,71                  | 8,28       | 107310,94           | 16451,48 |
| 170    | 14/4/2000 | 1,66    | 6,71  | 0,22    | 0,05  | 1,01E-06 | 2,30E-04 | 0,94           | 0,79       | 0,81                                                    | 12,67        | 51,18        | 32,20 | 0,01    | 31,36                  | 3,96       | 627011,99           | 79000,77 |
| 171    | 19/4/2000 | 4,00    | 6,80  | 0,23    | 0,05  | 1,01E-06 | 2,50E-04 | 0,92           | 0,81       | 0,81                                                    | 28,70        | 48,76        | 31,99 | 0,01    | 10,23                  | 4,64       | 85142,91            | 38540,73 |
| ······ |           | <u></u> |       |         |       |          | ·····    |                | A          |                                                         |              |              |       |         |                        | MĚDIA      | 1457093.31          | 77558.02 |

Tabela 6.2g - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>84</sub> e o Dvj

kb<sub>D84</sub> -Parâmetro do método de Einstein-Brow para o diâmetro D<sub>84</sub>

kb<sub>Dvi</sub>. Parâmetro do método de Einstein-Brow para o diâmetro Dvj

 $\Psi_{\rm D84}$  . Intensidade da corrente para o diâmetro  $\rm D_{84}$ 

 $\Psi_{\mathrm{Dvj}_{-}}$  Intensidade da corrente para o diâmetro Dvj

qB[EIB]D<sub>84</sub> - Descarga calculada pelo método de Einstein-Brown, usando o diâmetro D84

qB[EIB]Dvj - Descarga calculada pelo método de Einstein-Brown, usando o diâmetro Dvj

| (1)         | (2)        | (3)             | (4)       | (5)       | (6)      | (7)            | (8)           | (9)   | (10)          | (11)          | (12)                                 | (13)                                 | (14)  | (15)          | (16)                   | (17)       | (18)                | (19)    |
|-------------|------------|-----------------|-----------|-----------|----------|----------------|---------------|-------|---------------|---------------|--------------------------------------|--------------------------------------|-------|---------------|------------------------|------------|---------------------|---------|
| N⁰          | DATA       | D <sub>Rd</sub> | DVj [SKA] | Շ         | S        | R <sub>H</sub> | n             | U.    |               |               |                                      |                                      | В     | qBm           | qB[SKA]D <sub>54</sub> | qB[SKA]Dvj | E[%]D <sub>50</sub> | E[%]Dvj |
|             |            | (mm)            | тт        | $Kgf/m^2$ | (m/m)    | (m)            | Manning       | (m/s) | $\tau_{cD64}$ | $\tau_{cDvj}$ | (τ <sub>0</sub> -τ <sub>cI64</sub> ) | (τ <sub>0</sub> -τ <sub>cDvj</sub> ) | (m)   | ton/d ia      | ton/dia                | ton/dia    | -                   | -       |
| 1           | 26/3/1993  | 1,56            | 12,70     | 0.26      | 1,94E-04 | 136            | 0.03          | 0.05  | 011           | 1,26          | 0,16                                 | 000                                  | 34,70 | 0,14          | 23,76                  | 0.00       | 16753,55            | 100,00  |
| 2           | 6/4/1993   | 2,77            | 9,82      | 0,23      | 1,97E-04 | 1,15           | 0 <b>р</b> 3  | 0,05  | 0,21          | 0,97          | 0,01                                 | 000                                  | 34,87 | 0,04          | 1,76                   | 0,00       | 4530,32             | 100,00  |
| 3           | 20/4/1993  | 2,96            | 7,84      | 0,20      | 1,85E-04 | 1£8            | 0,03          | 0£4   | 0,23          | 0,75          | 0,00                                 | 0,00                                 | 34,88 | 0,05          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 4           | 4/5/1993   | 3,24            | 10,49     | 0,25      | 2,11E-04 | 1,20           | 0 рз          | 0.05  | 0,26          | 1,04          | 0,00                                 | 0,00                                 | 34,78 | 0,05          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 5           | 18/5/1993  | 0,97            | 6,09      | 0,17      | 1,63E-04 | 1£3            | 0 <i>p</i> 4  | 0£4   | 0.06          | 0,54          | 0,11                                 | 000                                  | 34,38 | 0,02          | 13,30                  | 0,00       | 55329,66            | 100,00  |
| 6           | 1/6/1993   | 2,50            | 16,96     | 0,35      | 2,31E-04 | 1,50           | 0 <i>0</i> 3  | 0.D6  | 0,20          | 1,68          | 0,15                                 | 000                                  | 35,24 | 0,19          | 26,35                  | 0,00       | 13770,60            | 100,00  |
| 7           | 8/6/1993   | 1,13            | 8,79      | 0,19      | 1,64E-04 | 1,16           | 0 <i>p</i> 3  | 0£4   | 0£7           | 0,86          | 0,12                                 | 000                                  | 34,91 | 0,03          | 15,63                  | 0,00       | £0013,52            | 100,00  |
| 8           | 15/6/1993  | 1,44            | 7,92      | 0,19      | 1,81E-04 | 1p7            | 0 <i>p</i> 3  | 0£4   | 0.09          | 0,76          | 0,10                                 | 000                                  | 34,21 | 0,01          | 12,75                  | 0,00       | 1.59298,78          | 100,00  |
| 9           | 22/6/1993  | 4,47            | 7,32      | Q,17      | 1,72E-04 | 1¢1            | 0.03          | 0.£4  | 0,37          | 0,68          | 0,00                                 | 0.00                                 | 34,54 | į 0,01        | 0,00                   | 0,00       | 100,00              | 100,00  |
| 10          | 29/6/1993  | 1,40            | 4,76      | 0,14      | 1,64E-04 | 0,87           | 0.04          | 0.£4  | 0.09          | 0,39          | 0,05                                 | 0,00                                 | 33,99 | 0,01          | S,96                   | 0,00       | 85015,04            | 100,00  |
| 11          | 6/7/1993   | 4,10            | 3,15      | 0,09      | 1,05E-04 | 0,88           | 0.£4          | 0.03  | 0,31          | 0,23          | 0,00                                 | 000                                  | 33,77 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 12          | 21/7/1993  | 3,33            | 2,54      | Q07       | 8,90E-05 | 0,83           | 0.p3          | 0.£3  | 0,24          | 0,17          | 0,00                                 | 0.00                                 | 33,64 | 0,01          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 13          | 3/8/1993   | 3,90            | 1,33      | 0,05      | 6,40E-05 | 0,75           | 0.£4          | 0.£2  | 0,27          | 0,07          | 0,00                                 | 000                                  | 32,82 | . <u>0,00</u> | 0,00                   | 0,00       | 100,00              | 100,00  |
| 14          | 17/8/1993  | 2,30            | 1,05      | 0,02      | 3,00E-05 | 0,78           | 0,02          | 0£2   | 0,13          | 0,05          | 0,00                                 | 0.00                                 | 33,53 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 15          | 31/8/1993  | 2,17            | 1,42      | Q,04      | 4,70E-05 | 0,88           | 0,03          | 0£2   | 0,13          | 0,08          | 0,00                                 | 000                                  | 33,74 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 16          | 21/9/1993  | 1,00            | 4,95      | 0,14      | 1,47E-04 | 0,96           | 0.£4          | 0£4   | 0.06          | 0,41          | 0,08                                 | 000                                  | 33,97 | 0,01          | 9,01                   | 0,00       | 1.501.26,05         | 100,00  |
| 17          | 28/9/1993  | 1,29            | 16,05     | 0,32      | 2,31E-04 | 1,37           | 0,03          | 0£0   | 0.09          | 1,39          | 0,23                                 | 000                                  | 34,92 | 0,38          | 38,51                  | 0,00       | 9927,97             | 100,00  |
| 18          | 5/10/1993  | 4,77            | 5,78      | 0,14      | 1,47E-04 | 0,98           | 0.03          | 0.£4  | 0,40          | 0,90          | 0,00                                 | 0.00                                 | 34,38 | į 0,01        | 0,00                   | 0,00       | 100,00              | 100,00  |
| 19          | 21/10/1993 | 3,63            | 9,73      | 0,22      | 1,89E-04 | 1,14           | Į 0,03        | ops   | 0,30          | 0,96          | 0,00                                 | 0.00                                 | 34,84 | 0,02          | 0,00                   | 0,00       | 100,00              | 100,00  |
| , 20        | 28/10/1993 | 1,24            | 12,20     | 0,26      | 2,06E-04 | 1,27           | 0.03          | 0.05  | 0.D8          | 1,21          | 0,18                                 | Į 0,00                               | 34,88 | 0,04          | 27,49                  | 0,00       | 74199,96            | 100,00  |
|             | 4/11/1993  | 4,52            | 2,39      | Q07       | 8,00E-05 | 0,85           | Į 0,03        | 0.03  | 0,34          | 0,16          | . 0,00                               | 0.00                                 | 33,82 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| <u>, 22</u> | 9/11/1993  | 4,27            | 4,20      | Q12       | 1,30E-04 | 0,89           | 0.03          | 0.03  | 0,34          | 0,33          | 0,00                                 | Į 000                                | 34,01 | 0,01          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 23          | 20/12/1993 | 1,26            | 9,90      | 0,24      | 1,97E-04 | 1,21           | Į 0,03        | ops   | 0.08          | 0,98          | 0,16                                 | 0.00                                 | 34,64 | 0,08          | 22,59                  | 0,00       | 28132,28            | 100,00  |
|             | 10/2/1994  | 1,11            | 9,24      | 0,13      | 8,00E-05 | 1¢5            | 0,02          | 0£4   | 0£7           | 0,88          | 0,07                                 | Į 0,00                               | 35,65 | 0,33          | 41,42                  | 0,00       | 12374,46            | 100,00  |
| 25          | 29/3/1994  | 1,18            | 14,74     | 0,38      | 1,97E-04 | 192            | 0.04          | 0.06  | 0.08          | 1,46          | 0,30                                 | 000                                  | 34,34 | <u> </u>      | 23,91                  | 0,00       | 199564,82           | 100,00  |
| 26          | 19/4/1994  | 1,34            | 7,08      | 0,19      | 1,30E-04 | 1,47           | 0,04          | 0.£4  | 0.09          | 0,66          | 0,10                                 | 000                                  | 34,00 | <u> </u>      | 13,29                  | U,UU       | 60317,65            | 10000   |
| 27          | 6/5/1994   | 1,20            | 4,UI      | Q12       | 9,60E-05 | 1,30           | 0.£4          | 0,03  | 0.p7          | 0,32          | 0,05                                 | 1 ODO                                | 33,60 | <u> </u>      | 4نړد                   | U,UU       | 44424,08            | 10000   |
| 28          | 20/5/1994  | 0,95            | 4,66      | Q15       | 1,14E-04 | 1,30           | 0.05          | 0.£4  | 0.06          | 0,39          | 0,09                                 | 000                                  | 33,60 | 0,01          | 10,28                  | 0,00       | 85571,71            | 100,00  |
| 29          | 17/6/1994  | 0,83            | 3,42      | Q09       | 7,20E-05 | 1,29           | 0.03          | 0.03  | 0£4           | کټر 0         | 0,05                                 | 000                                  | 33,64 | , 0,01        | 4,24                   | 0,00       | 84697,71            | 100,00  |
| 30          | 1/7/1994   | 0,89            | 4,98      | 0,16      | 1,14E-04 | 1,38           | 0.05          | 0.£4  | 0.05          | 0,42          | 0,11                                 | 0.00                                 | 33,81 | 0,01          | 12,15                  | 0,00       | 202438,56           | 100,00  |
| 31          | 15/7/1994  | <u> </u>        | 2,75      | U08       | 6,40E-05 | 1,29           | 0.04          | 0.03  | ops           | 0,19          | 0,03                                 | 000                                  | 33,64 | <u>, 0,05</u> | 2,87                   | 0,00       | 5523,21             | 100,00  |
| 32          | 29/7/1994  | 1,66            | 5,08      | Q16       | 1,14E-04 | 137            | 0.04          | 0.£4  | 0,11          | 0,43          | 0,05                                 | 0.00                                 | 33,81 | 0,01          | 5,28                   | 0,00       |                     | 100,00  |
| 33          | 12/8/1994  | 1,23            | 1,61      | 0,06      | 4,70E-05 | 1,25           | 0.05          | 0.02  | 0£7           | 0,10          | 0,00                                 | 000                                  | 33,26 | . 0,01        | 0,00                   | 0,00       | 100,00              | 100,00  |
|             | 26/8/1994  | 0,88            | 2,43      | 0,08      | 6,20E-05 | 135            | 0.05          | 0.03  | 0.05          | 0,16          | 0,04                                 | 0,00                                 | 33,47 | . 0,00        | 3,02                   | 0,00       | 150693,94           | 100,00  |
| <u></u> 35  | 8/9/1994   | 1,00            | 3,26      | 0,11      | 8,00E-05 | 1,37           | ; O <i>QS</i> | 0.03  | 0.D6          | 0,24          | ; 0,05                               | <u>000 j</u>                         | 33,68 | <u>i</u> 0,00 | 5,02                   | 0,00       | 125450,76           | 100,00  |

Tabela 6.2h - Descargas calculadas pelo método de Sato Kikawa e Ashida (1958) usando o diâmetro D<sub>84</sub> e o Dvj

| (1)       | (2)        | (3)  | (4)       | (5)    | (6)      | (7)            | (8)          | (9)   | (10)              | (11)          | (12)                                 | (13)                                 | (14)  | (15)     | (16)                   | (17)       | (18)                | (19)    |
|-----------|------------|------|-----------|--------|----------|----------------|--------------|-------|-------------------|---------------|--------------------------------------|--------------------------------------|-------|----------|------------------------|------------|---------------------|---------|
| Nº        | DATA       | D 84 | DVj [SKA] | το     | S        | R <sub>H</sub> | n            | U.    |                   |               |                                      |                                      | В     | qBm      | qB[SKA]D <sub>84</sub> | qB[SKA]Dvj | E[%]D <sub>50</sub> | E[%]Dvj |
|           |            | (mm) | тт        | Kgf/m² | (m/m)    | (m)            | Manning      | (m/s) | $\tau_{\rm cD64}$ | $\tau_{cDvj}$ | (τ <sub>0</sub> -τ <sub>cE64</sub> ) | (τ <sub>0</sub> -τ <sub>cDvj</sub> ) | (m)   | ton/d ia | ton/dia                | ton/dia    | -                   | -       |
| 36        | 22/9/1994  | 0.89 | 5.53      | 0.19   | 1.30E-04 | 145            | 0.05         | 0.04  | 0.05              | 0,49          | 0,14                                 | 000                                  | 33.92 | 0.00     | 17.14                  | 0.00       | 857107,43           | 100.00  |
| 37        | 6/10/1994  | 1,18 | 2,09      | Q06    | 4,70E-05 | 131            | 0.04         | 0.02  | 0.07              | 0,13          | 0,00                                 | 000                                  | 33,49 | 0,00     | 0,00                   | 0,00       | 100,00              | 100,00  |
| 38        | 27/10/1994 | 1,79 | 8,59      | 0,22   | 1,22E-04 | 1,78           | 0,04         | 0,05  | 0,13              | 0,85          | 0,09                                 | 000                                  | 34,48 | 0,42     | 12,66                  | 0,00       | 2886,21             | 100,00  |
| 39        | 23/11/1994 | 1,14 | 1,98      | 0,06   | 4,70E-05 | 1,33           | 0.£4         | 0£2   | 0.D6              | 0,12          | 0,00                                 | 000                                  | 33,52 | 0,00     | 0,00                   | 0,00       | 100,00              | 100,00  |
| 40        | 22/12/1994 | 1,60 | 23,81     | 62,0   | 2,14E-04 | 2¢4            | 0 <i>p</i> 4 | 0£7   | 0,12              | 2,36          | 0,44                                 | 000                                  | 35,68 | 0,22     | 101,84                 | 0,00       | 46615,26            | 100,00  |
| 41        | 5/1/1995   | 1,08 | 21,74     | 3 کړ   | 2,31E-04 | 2,28           | 0.£4         | 0£7   | 0£7               | 2,15          | 0,45                                 | 000                                  | 35,27 | 0,52     | 99,06                  | 0,00       | 18840,89            | 100,00  |
| 42        | 19/1/1995  | 4,17 | 7,73      | 0,22   | 1,47E-04 | 151            | 0 <i>p</i> 4 | 0,05  | 0,35              | 0,75          | 0,00                                 | 000                                  | 33,92 | 0,02     | 0,00                   | 0,00       | 100,00              | 100,00  |
| 43        | 26/1/1995  | 1,02 | 6,82      | 0,21   | 1,47E-04 | 1,46           | 0.05         | 0.05  | 0.06              | 0,64          | 2,0                                  | 000                                  | 33,93 | 0,04     | 20,41                  | 0,00       | 56604,85            | 100,00  |
| 44        | 9/2/1995   | 4,84 | 25,87     | 0,41   | 1,14E-04 | 3¢1            | 0£3          | 0.D6  | 0,45              | 2,56          | 0,00                                 | 000                                  | 40,30 | 3,10     | 0,00                   | 0,00       | 100,00              | 100,00  |
| 45        | 16/2/1995  | 1,79 | 26,17     | 0,60   | 2,47E-04 | 2,44           | 0 <i>p</i> 4 | 0.D8  | 0,14              | 2,99          | 0,46                                 | 000                                  | 35,40 | 0,49     | 108,81                 | 0,00       | 22334,88            | 100,00  |
| 46        | 8/3/1995   | 1,20 | 11,72     | 0,31   | 1,72E-04 | 1,79           | 0.£4         | ٥٥٥   | 0.D8              | 1,16          | 0,23                                 | 0.00                                 | 34,94 | 0,40     | 37,84                  | 0,00       | 9456,50             | 100,00  |
| 47        | 24/3/1995  | 2,97 | 20,09     | 0,44   | 1,80E-04 | 2,44           | 0,03         | 0.p7  | 0,25              | 1,99          | 0,19                                 | 0.00                                 | 35,38 | 1,72     | 37,78                  | 0,00       | 2095,52             | 100,00  |
| 48        | 7/4/1995   | 0,72 | 17,28     | 0,41   | 1,97E-04 | 2.£6           | 0.£4         | 0.06  | 0.£4              | 1,71          | 0,36                                 | 0.00                                 | 35,05 | 0,17     | 69,12                  | 0,00       | 40320,54            | 100,00  |
| 49        | 28/4/1995  | 0,91 | 11,86     | 0,31   | 1,80E-04 | 174            | 0.£4         | 0.06  | 0.06              | 1,17          | 0,26                                 | 000                                  | 34,63 | 0,08     | 42,49                  | 0,00       | 52353,74            | 100,00  |
| 50        | 12/5/1995  | 1,55 | 13,92     | 0,34   | 1,80E-04 | 1,87           | 0.04         | 0.06  | 0,11              | 1,38          | 0,23                                 | 000                                  | 34,74 | 0,47     | 39,06                  | 0,00       | 8246,75             | 100,00  |
| 51        | 9/6/1995   | 1,09 | 7,50      | 0,23   | 1,47E-04 | 1,57           | 0.05         | 0.05  | 0£7               | 0,72          | 0,16                                 | 000                                  | 34,35 | 0,02     | 22,89                  | 0,00       | 99410,16            | 100,00  |
| 52        | 23/6/1995  | 2,04 | 7,33      | 0,21   | 1,04E-04 | 1,98           | 0.04         | 0.£4  | 54,0              | 0,70          | 0,06                                 | 000                                  | 34,34 | 0,02     | 8,01                   | 0,00       | 44391,40            | 100,00  |
| 53        | 5/7/1995   | 0,91 | 6,76      | 0,21   | 1,47E-04 | 1,44           | 0.05         | 0,05  | ops               | 0,63          | 0,16                                 | 0.00                                 | 34,19 | 0,05     | 21,14                  | 0,00       | 41360,40            | 100,00  |
| 54        | 12/7/1995  | 0,50 | 19,44     | 0ك0    | 2,39E-04 | 2,10           | 0.£4         | 0.07  | 0.£3              | 1,92          | 0,47                                 | 000                                  | 35,03 | 4,16     | 100,45                 | 0,00       | 2312,90             | 100,00  |
| 55        | 19/7/1995  | 0,60 | 10,76     | 0,33   | 1,55E-04 | 2,16           | 0.05         | 0.06  | 0.£3              | 1,07          | 0,30                                 | 000                                  | 34,59 | 0,02     | 51,43                  | 0,00       | 321315,65           | 100,00  |
| 56        | 26/7/1995  | 1,39 | 10,06     | 0,28   | 1,64E-04 | 1 <i>þ</i> 9   | 0.p4         | 0.05  | 0.09              | 1,00          | 0,18                                 | 000                                  | 34,61 | 0,12     | 28,50                  | 0,00       | 24055,61            | 100,00  |
| <u>57</u> | 10/8/1995  | 0,71 | 5,47      | Q17    | 1,22E-04 | 1,42           | 0.05         | 0.£4  | 0.£4              | 0,48          | 0,13                                 | 000                                  | 34,09 | 0,01     | 16,25                  | 0,00       | 135281,68           | 100,00  |
| S8        | 31/8/1995  | 1,46 | 3,28      | 0,10   | 8,00E-05 | 1,27           | 0.p4         | 0.03  | 0.09              | 0,24          | 0,01                                 | 000                                  | 33,65 | 0,00     | 1,09                   | 0,00       | 54634,00            | 100,00  |
| <u>9</u>  | 21/9/1995  | 0,75 | 18,93     | 0,76   | 4,73E-04 | 1¢0            | 0.08         | 0.00  | 0.p.s             | 1,87          | 0,71                                 | 000                                  | 34,28 | 0,03     | 180,47                 | 0,00       | 582053,42           | 100,00  |
| 60        | 28/9/1995  | 1,66 | 8,00      | 0,22   | 1,30E-04 | 1,66           | 0.£4         | 0.05  | 0,11              | 0,78          | 0,10                                 | 000                                  | 34,68 | 0,25     | 14,04                  | 0,00       | 5536,57             | 100,00  |
| 61        | 5/10/1995  | 1,24 | 4,35      | Q13    | 9,70E-05 | 1,39           | 0 <i>p</i> 4 | 0£4   | 0.D8              | 0,35          | 0,06                                 | 000                                  | 34,16 | 0,00     | 6,34                   | 0,00       | 316741,98           | 100,00  |
| 62        | 19/10/1995 | 3,06 | 16,98     | 0,40   | 1,88E-04 | 2,14           | 0.£4         | 0.06  | 0,26              | 1,68          | 0,14                                 | 000                                  | 35,02 | 0,21     | 27,49                  | 0,00       | 13310,70            | 100,00  |
| 63        | 23/11/1995 | 1,37 | 4,68      | 0,13   | 9,70E-05 | 1,39           | 0.p4         | 0.ρ4  | 0.09              | 0,38          | 0,05                                 | 000                                  | 34,05 | 0,01     | 5,27                   | 0,00       | 87677,24            | 100,00  |
| 64        | 7/12/1995  | 1,56 | 2,52      | Q,08   | 6,40E-05 | 1,25           | 0.£4         | 0.£3  | 0.09              | 0,17          | 0,00                                 | 0.00                                 | 33,39 | 0,00     | 0,00                   | 0,00       | 100,00              | 100,00  |
| 65        | 10/1/1996  | 1,18 | 31,81     | 0,64   | 2,14E-04 | 3.£0           | 0.p3         | 0.D8  | 8Q 0              | 3,15          | 65,0                                 | 000                                  | 36,91 | 5,14     | 141,03                 | 0,00       | 2643,14             | 100,00  |
| 66        | 31/1/1996  | 0,41 | 8,28      | 0,23   | 1,47E-04 | 1,54           | 0.£4         | 0,05  | 0.p2              | 0,82          | 0,21                                 | 000                                  | 34,12 | 0,02     | 28,54                  | 0,00       | 1,500,90,03         | 100,00  |
| 67        | 7/2/1996   | 1,19 | 13,43     | 0,31   | 1,64E-04 | 192            | <u></u> 0ρ3  | 0.06  | 0.D8              | 1,33          | 0,24                                 | 000                                  | 35,12 | 0,24     | 39,75                  | 0,00       | 16602,88            | 100,00  |
| 68        | 6/3/1996   | 0,43 | 20,98     | 0,48   | 2,06E-04 | 2,33           | 0.p4         | 0.07  | 0£2               | 2,08          | 0,46                                 | 000                                  | 35,36 | 3,54     | 95,61                  | 0,00       | 2599,20             | 100,00  |
| 69        | 20/3/1996  | 0,57 | 36,47     | 0,74   | 2,47E-04 | 2,99           | Į 0,03       | 0.09  | 0.ρ4              | 3,61          | 0,70                                 | 000                                  | 36,55 | 1,15     | 188,99                 | 0,00       | 16334,34            | 100,00  |
| 20        | 3/4/1996   | 1,41 | 13,23     | 0,33   | 1,80E-04 | 1,84           | 0.£4         | 0.06  | 0,10              | 1,31          | 0,23                                 | 000                                  | 34,87 | 0,13     | 40,06                  | 0,00       | 30020,44            | 100,00  |

Tab ela 6.2h - Descargas calculadas pelo método de Sato Kikawa e Ashida (1958) usando o diâmetro D<sub>64</sub> e o Dvj

| (1)  | (2)        | (3)             | (4)       | (5)       | (6)      | (7)            | (8)          | (9)          | (10)             | (11)          | (12)                                 | (13)                                  | (14)  | (15)          | (16)                   | (17)       | (18)                | (19)    |
|------|------------|-----------------|-----------|-----------|----------|----------------|--------------|--------------|------------------|---------------|--------------------------------------|---------------------------------------|-------|---------------|------------------------|------------|---------------------|---------|
| N⁰   | DATA       | D <sub>B4</sub> | DVj [SKA] | Շ         | S        | R <sub>H</sub> | n            | U.           |                  |               |                                      |                                       | В     | qBm           | qB[SKA]D <sub>84</sub> | qB[SKA]Dvj | E[%]D <sub>50</sub> | E[%]Dvj |
|      |            | (mm)            | mm        | $Kgf/m^2$ | (m/m)    | (m)            | Manning      | (m/s)        | $\tau_{e D 6 4}$ | $\tau_{cDvj}$ | (τ <sub>0</sub> -τ <sub>c164</sub> ) | (τ <sub>0</sub> - τ <sub>cDvj</sub> ) | (m)   | ton/d ia      | ton/dia                | ton/dia    | -                   | -       |
| 71   | 16/4/1996  | 0,74            | 11,67     | 0,30      | 1,64E-04 | 183            | 0.04         | 0.05         | 0.£4             | 1,16          | 0,26                                 | 000                                   | 34,52 | 0,05          | 41,43                  | 0,00       | 81144,48            | 100,00  |
| 72   | 15/5/1996  | 1,50            | 9,23      | 0,25      | 1,47E-04 | 167            | 0.04         | 0.05         | 0,10             | 0,91          | 0,14                                 | 000                                   | 34,24 | 0,25          | 20,81                  | 0,00       | 8357,90             | 100,00  |
| 73   | 22/5/1996  | 1,63            | 8,36      | 0,24      | 1,47E-04 | 1¢0            | 0,04         | 0.p.s        | 0,11             | 0,83          | 0,12                                 | 0,00                                  | 34,20 | 0,01          | 17,41                  | 0,00       | 217502,31           | 100,00  |
| 74   | 19/6/1996  | 0,99            | 4,42      | 0,14      | 9,70E-05 | 1,42           | 0.£4         | 0£4          | 0.DQ             | 0,36          | 0,08                                 | 000                                   | 33,76 | 0,01          | 8,58                   | 0,00       | 71405,96            | 100,00  |
| 75   | 3/6/1996   | 2,52            | 5,70      | 0,17      | 1,14E-04 | 151            | 0.£4         | 0.£4         | 0,19             | 0,30          | 0,00                                 | 000                                   | 34,07 | 0,02          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 76   | 17/7/1996  | 2,82            | 4,20      | 0,13      | 9,70E-05 | 1,37           | 0.£4         | 0£4          | 0,21             | 0,34          | 0,00                                 | 000                                   | 33,81 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 77   | 31/7/1996  | 1,34            | 4,28      | 0,14      | 1,05E-04 | 1,35           | 0,05         | 0.£4         | 0.D8             | 0,35          | 0,06                                 | 000                                   | 34,75 | 0,01          | 6,49                   | 0,00       | 129695,60           | 100,00  |
| 78   | 7/8/1996   | 1,98            | 3,58      | 0,11      | 8,00E-05 | 1,38           | 0.£4         | 0.03         | 0,13             | 0,27          | 0,00                                 | 0.00                                  | 34,04 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 79   | 14/8/1996  | 2,70            | 4,75      | 0,15      | 1,05E-04 | 1,45           | 0.05         | 0.£4         | 0,20             | 0,40          | 0,00                                 | 000                                   | 33,99 | į 0,01        | 0,00                   | 0,00       | 100,00              | 100,00  |
| 80   | 21/8/1996  | 3,27            | 4,48      | 0,13      | 8,90E-05 | 1,47           | 0,04         | 0.ρ4         | 0,25             | 0,36          | 0,00                                 | 0.00                                  | 33,89 | 0,01          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 81   | 28/8/1996  | 3,85            | 4,09      | 0,13      | 9,70E-05 | 1,37           | 0.05         | 0£4          | 0,30             | 0,32          | 0,00                                 | 000                                   | 33,73 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 82   | 4/9/1996   | 1,95            | 8,77      | 0,25      | 1,47E-04 | 171            | 0.04         | 0.05         | 0,14             | 0,87          | 0,11                                 | 0.00                                  | 34,56 | 0,04          | 16,35                  | 0,00       | 45309,45            | 100,00  |
|      | 11/9/1996  | 4,19            | 27,27     | 0,61      | 2,31E-04 | 2¢6            | 0.£4         | 0 <b>0</b> 8 | 0,40             | 2,70          | 0,22                                 | 0.00                                  | 35,84 | 3,70          | 52,44                  | 0,00       | 1318,36             | 100,00  |
| 84   | 2/10/1996  | 1,82            | 5,47      | 0,16      | 1,05E-04 | 1,50           | 0.£4         | 0.£4         | 0,12             | 0,47          | 0,03                                 | 0.00                                  | 34,10 | 0,01          | 3,97                   | 0,00       | 66123,79            | 100,00  |
| 85   | 16/10/1996 | 4,07            | 10,04     | 0,27      | 1,50E-04 | 1,80           | 0.04         | 0.05         | 0,35             | 0,99          | 0,00                                 | 0.00                                  | 34,70 | 0,25          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 86   | 6/11/1996  | 3,00            | 11,17     | 0,29      | 1,60E-04 | 1,80           | 0.£4         | 0.05         | 0,24             | 1,11          | 0,05                                 | 000                                   | 34,70 | 0,32          | 7,26                   | 0,00       | 2170,20             | 100,00  |
| 87   | 20/11/1996 | 3,50            | 8,77      | 0,23      | 1,30E-04 | 1,80           | 0.£4         | 0.05         | 0,29             | 0,87          | 0,00                                 | 000                                   | 34,70 | 0,03          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 88   | 6/12/1996  | 0,93            | 8,28      | 0,22      | 1,30E-04 | 170            | 0.£4         | 0,05         | 0.06             | 0,81          | 0,16                                 | 0.00                                  | 34,60 | 4,34          | 22,92                  | 0,00       | 428,11              | 100,00  |
| 89   | 9/1/1997   | 0,83            | 10,28     | 0,26      | 1,47E-04 | 178            | 0.£4         | 0.05         | ops              | 1,02          | 0,21                                 | 0.00                                  | 34,68 | 0,03          | 32,14                  | 0,00       | 97289,54            | 100,00  |
| 90   | 22/1/1997  | 0,77            | 16,64     | 0,43      | 2,14E-04 | 2.p2           | 0.p4         | 0£7          | ops              | 1,65          | 0,38                                 | 0.00                                  | 34,78 | 0,15          | 75,16                  | 0,00       | 51381,30            | 100,00  |
| 91   | 3/2/1997   | 0,65            | 30,09     | 8کې0      | 2,14E-04 | 2 <i>6</i> 9   | <u></u> 0ρ3  | 0.08         | 0.£4             | 2,98          | 0,54                                 | 0.00                                  | 36,46 | 21,99         | 126,70                 | 0,00       | 476,18              | 100,00  |
| 92   | 12/3/1997  | 0,82            | 9,00      | 0,22      | 1,47E-04 | 151            | 0.03         | 0.05         | 0.05             | 0,89          | 0,17                                 | 000                                   | 34,32 | 1,01          | 24,03                  | 0,00       | 2278,81             | 100,00  |
|      | 26/3/1997  | 0,80            | 6,36      | 0,16      | 1,22E-04 | 1,35           | <u></u> 0ρ3  | 0.£4         | ops              | 0,57          | 0,12                                 | 0.00                                  | 33,84 | 0,16          | 14,02                  | 0,00       | 8664,47             | 100,00  |
|      | 16/4/1997  | 0,88            | 4,64      | 0,12      | 9,70E-05 | 1,25           | 0.03         | 0.03         | ops              | 0,37          | 0,07                                 | 000                                   | 33,64 | 0,03          | 7,21                   | 0,00       | 22444,18            | 100,00  |
| . 95 | 14/5/1997  | 0,84            | 4,12      | 0,12      | 1,05E-04 | 1,19           | 0.04         | 0.ρ4         | 0.05             | 0,33          | 0,08                                 | 000                                   | 33,16 | 0,10          | 7,85                   | 0,00       | 7445,62             | 100,00  |
| 96   | 4/6/1997   | 4,44            | کرد ا     | 0,16      | 1,22E-04 | 1,32           | 0,04         | 0.£4         | 0,37             | 0,48          | 0,00                                 | 000                                   | 33,64 | 0,01          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 97   | 2/7/1997   | 3,49            | درد ا     | Q,16      | 1,22E-04 | 131            | 0.£4         | 0,04         | 0,27             | 0,48          | 0,00                                 | 000                                   | 33,84 | į 0,01        | 0,00                   | 0,00       | 100,00              | 100,00  |
| . 98 | 12/8/1997  | 4,00            | 5,52      | 0,15      | 1,13E-04 | 1,33           | 0.£4         | 0.£4         | 0,32             | 0,47          | 0,00                                 | 0.00                                  | 33,93 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| . 99 | 26/8/1997  | 1,84            | 7,90      | 0,21      | 1,47E-04 | 1,41           | 0.£4         | 0.p.s        | 0,13             | 0,72          | 0,08                                 | Į 040                                 | 33,97 | 0,01          | 10,40                  | 0,00       | 192486,02           | 100,00  |
| 100  | 9/9/1997   | 1,63            | 3,54      | 0,12      | 1,05E-04 | 1,12           | وړ و         | 0.рз         | 0,10             | 0,27          | 0,01                                 | 000                                   | 33,40 | 0,00          | 1,31                   | 0,00       | 54408,50            | 100,00  |
| 101  | 23/9/1997  | 0,96            | 23,43     | 1,07      | 7,90E-04 | 1,36           | 0.09         | 0,10         | 0£7              | 2,32          | 1,00                                 | 000                                   | 33,96 | 0,01          | 302,63                 | 0,00       | 2364213,47          | 100,00  |
| 102  | 7/10/1997  | 0,67            | 6,43      | 0,19      | 1,40E-04 | 1,33           | 0 <i>0</i> 4 | 0.04         | 0.£4             | 0,59          | كا,0                                 | 000                                   | 33,98 | 0,01          | 18,72                  | 0,00       | 139569,71           | 100,00  |
| 103  | 21/10/1997 | 0,83            | 4,44      | 0,10      | 7,00E-05 | 1,42           | 0.03         | 0.£3         | 0£4              | 0,35          | 0,05                                 | 000                                   | 34,07 | 0,01          | 5,01                   | 0,00       | 35437,23            | 100,00  |
| 104  | 4/11/1997  | 1,08            | 4,94      | 0,14      | 1,10E-04 | 1,28           | 0 <i>0</i> 4 | 0.ρ4         | 0.06             | 0,41          | 0,08                                 | 0,00                                  | 33,80 | 0,00          | 8,30                   | 0,00       | 286067,86           | 100,00  |
| 105  | 2/12/1997  | 0,96            | <u> </u>  | 0,18      | 1,20E-04 | 1,46           | 0.p3         | 0.£4         | 0.06             | 0,66          | 0,12                                 | <u>i 040</u>                          | 34,22 | <u>i 0,44</u> | 14,48                  | 0,00       | 3198,00             | 100,00  |

Tabela 6.2h - Descargas calculadas pelo método de Sato Kikawa e Ashida (1958) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)             | (4)       | (5)    | (6)      | (7)            | (8)          | (9)   | (10)          | (11)          | (12)                                 | (13)                                       | (14)  | (15)          | (16)                   | (17)       | (18)                | (19)    |
|-----|------------|-----------------|-----------|--------|----------|----------------|--------------|-------|---------------|---------------|--------------------------------------|--------------------------------------------|-------|---------------|------------------------|------------|---------------------|---------|
| N⁰  | DATA       | D <sub>R4</sub> | DVj [SKA] | το     | S        | R <sub>H</sub> | n            | υ.    |               |               |                                      |                                            | В     | qBm           | qB[SKA]D <sub>84</sub> | qB[SKA]Dvj | E[%]D <sub>50</sub> | E[%]Dvj |
|     |            | (mm)            | mm        | Kgf/m² | (m/m)    | (m)            | Manning      | (m/s) | $\tau_{eD64}$ | $\tau_{eDvj}$ | (τ <sub>0</sub> -τ <sub>cD64</sub> ) | $(\mathbf{\tau}_0 - \mathbf{\tau}_{cDvj})$ | (m)   | ton/d ia      | ton/dia                | ton/dia    | -                   | -       |
| 106 | 16/12/1997 | 0,50            | 16,18     | 0,38   | 2,10E-04 | 1,79           | 0.03         | 0.D6  | 0.£3          | 1,60          | 0,35                                 | 000                                        | 34,77 | 5,77          | 63,47                  | 0,00       | 999,92              | 100,00  |
| 107 | 13/1/1998  | 0,50            | 23,19     | 0,63   | 3,31E-04 | 191            | 0.05         | 8Q 0  | 0.£3          | 2,30          | 0,60                                 | 000                                        | 34,82 | 0,11          | 142,76                 | 0,00       | 133318,87           | 100,00  |
| 108 | 27/1/1998  | 0,51            | 5,43      | 0,11   | 8,00E-05 | 1,43           | 0 <i>0</i> 3 | 0.£3  | 0.03          | 0,45          | 0,09                                 | 0.00                                       | 34,01 | 0,01          | 8,69                   | 0,00       | 88609,25            | 100,00  |
| 109 | 11/2/1998  | 1,78            | 20,21     | 0,44   | 2,14E-04 | 2.p7           | 0.03         | 0£7   | 0,13          | 2,00          | 0,31                                 | 0.00                                       | 35,24 | 1,66          | 61,94                  | 0,00       | 3631,03             | 100,00  |
| 110 | 26/2/1998  | 1,80            | 23,75     | 0,49   | 2,14E-04 | 2,31           | 0 <i>p</i> 3 | 0£7   | 0,14          | 2,35          | 0,36                                 | 000                                        | 34,55 | 1,06          | 74,09                  | 0,00       | 6889,94             | 100,00  |
| 111 | 11/3/1998  | 1,94            | 12,40     | 0,30   | 1,81E-04 | 1¢7            | 0 <i>p</i> 4 | 0.05  | 0,14          | 1,23          | 0,16                                 | 000                                        | 34,68 | 1,60          | 25,97                  | 0,00       | 1522,91             | 100,00  |
| 112 | 25/3/1998  | 0,75            | 15,94     | 0,36   | 1,97E-04 | 1,84           | 0 <i>p</i> 3 | 0£6   | 0.p.s         | 1,58          | 0,32                                 | 000                                        | 35,22 | 0,31          | 57,47                  | 0,00       | 18439,35            | 100,00  |
| 113 | 8/4/1998   | 0,93            | 6,82      | 0,18   | 1,30E-04 | 1,36           | 0 <i>p</i> 3 | 0£4   | 0.05          | 0,63          | 0,12                                 | 0.00                                       | 33,54 | 0,03          | 14,70                  | 0,00       | 43145,67            | 100,00  |
| 114 | 22/4/1998  | 1,18            | 4,34      | Q,10   | 7,20E-05 | 1,45           | 0,03         | 0.£3  | 0£7           | 0,34          | 0,04                                 | 0.00                                       | 33,96 | <u>,</u> 0,00 | 3,29                   | 0,00       | 76433,87            | 100,00  |
| 115 | 6/5/1998   | 0,81            | 18,17     | 0,38   | 1,80E-04 | 2,12           | 0,03         | 0.06  | ops           | 1,80          | 0,33                                 | 0.00                                       | 35,22 | 0,17          | 61,64                  | 0,00       | 37254,77            | 100,00  |
| 116 | 21/5/1998  | 0,74            | 7,35      | 0,23   | 1,64E-04 | 1,41           | 0.05         | 0.£5  | 0.£4          | 0,71          | 0,19                                 | 0.00                                       | 34,01 | 0,01          | 26,37                  | 0,00       | 516924,09           | 100,00  |
| 117 | 3/6/1998   | 0,91            | 7,21      | Q,18   | 1,30E-04 | 1,40           | 0 <i>0</i> 3 | 0.£4  | 0.05          | 0,67          | 0,13                                 | 0.00                                       | 33,70 | 0,02          | 15,79                  | 0,00       | 99177,57            | 100,00  |
| 118 | 17/6/1998  | 1,82            | 5,08      | 0,14   | 1,11E-04 | 1,28           | 0.£4         | 0£4   | 0,12          | 0,43          | 0,02                                 | 0.00                                       | 33,04 | 0,00          | 2,16                   | 0,00       | 0,00                | 0,00    |
| 119 | 15/7/1998  | 3,00            | 6,09      | Q17    | 1,30E-04 | 1,29           | 0.£4         | 0£4   | 0,23          | 44,0          | 0,00                                 | 0.00                                       | 33,02 | 0,01          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 120 | 29/7/1998  | 3,03            | 4,06      | 0,11   | 9,70E-05 | 1,14           | 0 <i>p</i> 3 | 0.£3  | 0,22          | 0,32          | 0,00                                 | 000                                        | 32,50 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 121 | 12/8/1998  | 2,32            | 5,06      | 0,14   | 1,17E-04 | 1,17           | 0 <i>p</i> 4 | 0£4   | 0,16          | 0,42          | 0,00                                 | 000                                        | 32,77 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 122 | 25/8/1998  | 2,60            | 3,20      | 0,09   | 8,90E-05 | 1£6            | 0 <i>p</i> 4 | 0£3   | 0,18          | 0,23          | 0,00                                 | 000                                        | 32,08 | 0,00          | 0,00                   | 0,00       | 0,00                | 0,00    |
| 123 | 2/9/1998   | 3,13            | 4,88      | 0,12   | 9,70E-05 | 1,27           | 0,03         | 0.£3  | 0,23          | 0,40          | 0,00                                 | 0.00                                       | 32,90 | 0,00          | 0,00                   | 0,00       | 0,00                | 0,00    |
| 124 | 16/9/1998  | 1,81            | 3,13      | Q07    | 6,40E-05 | 1,16           | 0 <i>0</i> 3 | 0.£3  | 0,11          | 0,22          | 0,00                                 | 0.00                                       | 32,90 | 0,01          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 125 | 30/9/1998  | 3,41            | 4,22      | 0,10   | 8,00E-05 | 1,29           | 0.£3         | 0.£3  | 0,25          | 0,33          | 0,00                                 | 0.00                                       | 32,87 | 0,00          | 0,00                   | 0,00       | 100,00              | 100,00  |
| 126 | 14/10/1998 | 2,27            | 13,37     | 0,31   | 2,10E-04 | 1,49           | 0,03         | 0.D6  | 0,17          | 1,32          | 0,14                                 | 0.00                                       | 33,28 | 0,02          | 22,12                  | 0,00       | 94025,46            | 100,00  |
| 127 | 28/10/1998 | 1,92            | 10,31     | 0,25   | 1,97E-04 | 1,28           | 0.£3         | 0.p.s | 0,14          | 1,02          | 0,11                                 | 0.00                                       | 32,92 | 0,01          | 16,08                  | 0,00       | 155972,26           | 100,00  |
| 128 | 11/11/1998 | 2,63            | 5,62      | Q15    | 1,47E-04 | 1.p.s          | 0 <i>0</i> 4 | 0.£4  | 0,19          | 0,49          | 0,00                                 | 0.00                                       | 31,40 | 0,00          | 0,00                   | 0,00       | 0,00                | 0,00    |
| 129 | 25/11/1998 | 1,47            | 6,41      | 0,19   | 1,80E-04 | 1£3            | 0.£4         | 0£4   | 0,10          | 0,58          | 0,09                                 | 0.00                                       | 31,29 | 0,00          | 10,23                  | 0,00       |                     | 0,00    |
| 130 | 9/12/1998  | 1,58            | 12,73     | 0,32   | 2,30E-04 | 1,39           | 0.04         | 0.£6  | 0,11          | 1,26          | 0,21                                 | 0.00                                       | 33,18 | 0,00          | 33,33                  | 0,00       | 0,00                | 0,00    |
| 131 | 22/12/1998 | 0,66            | 11,13     | 0,28   | 2,10E-04 | 1,31           | 0,03         | 0.05  | 0£4           | 1,10          | 0,24                                 | 000                                        | 32,95 | 0,00          | 35,07                  | 0,00       | 0,00                | 0,00    |
| 132 | 6/1/1999   | 0,30            | 19,86     | 0,49   | 2,30E-04 | 2,11           | 0.£4         | 0£7   | 0.£2          | 1,97          | 0,47                                 | 000                                        | 34,79 | 1,48          | 97,45                  | 0,00       | 6493,31             | 100,00  |
| 133 | 21/1/1999  | 0,29            | 29,38     | 0,65   | 2,80E-04 | 2,32           | 0,03         | 0.D8  | 0.£2          | 2,91          | 0,63                                 | 0.00                                       | 35,23 | 3,70          | 154,13                 | 0,00       | 4062,24             | 100,00  |
| 134 | 28/1/1999  | 0,32            | 38,47     | 0,78   | 3,00E-04 | 2¢0            | 0.03         | 0.Dð  | 0£2           | 3,81          | 0,76                                 | 0.00                                       | 35,81 | 0,00          | 206,34                 | 0,00       | 0,00                | 0,00    |
| 135 | 3/2/1999   | 0,26            | 23,22     | 0,51   | 2,50E-04 | 2.p4           | 0.03         | 0£7   | 0£1           | 2,30          | 0,90                                 | 0.00                                       | 35,18 | 2,82          | 106,79                 | 0,00       | 3686,82             | 100,00  |
| 136 | 11/2/1999  | 0,31            | 29,14     | 0,63   | 2,80E-04 | 2,24           | 0.03         | 8Q0   | 0£2           | 2,88          | 0,61                                 | 000                                        | 35,26 | 3,05          | 145,93                 | 0,00       | 4689,25             | 100,00  |
| 137 | 25/2/1999  | 2,85            | 27,36     | 6کر0   | 2,50E-04 | 2,22           | 0.03         | 0£7   | 0,24          | 2,71          | 0,31                                 | 0.00                                       | 35,52 | 5,11          | 70,24                  | 0,00       | 1273,50             | 100,00  |
| 138 | 11/3/1999  | 0,36            | 25,34     | 22,0   | 2,30E-04 | 2,27           | 0.03         | 0£7   | 0.02          | 2,51          | 0,30                                 | 000                                        | 35,20 | 1,80          | 109,41                 | 0,00       |                     | 100,00  |
| 139 | 25/3/1999  | 0,40            | 29,91     | 0,67   | 3,00E-04 | 2,22           | 0.£4         | 8Q 0  | 0.02          | 2,96          | 0,64                                 | 000                                        | 34,99 | 3,64          | 157,19                 | 0,00       | 4218,48             | 100,00  |
| 140 | 15/4/1999  | 0,39            | 12,34     | 0,32   | 2,30E-04 | 1,41           | 0.£4         | 0.£6  | 0.02          | 1,22          | 0,30                                 | 0.00                                       | 33,72 | 0,02          | 49,95                  | 0,00       | 249643,35           | 100,00  |

Tabela 6.2h - Descargas calculadas pelo método de Sato Kikawa e Ashida (1958) usando o diâmetro D<sub>64</sub> e o Dvj

| (1) | (2)        | (3)             | (4)       | (5)                | (6)      | (7)            | (8)     | (9)   | (10)              | (11)                | (12)                                 | (13)                                 | (14)  | (15)        | (16)                   | (17)       | (18)       | (19)    |
|-----|------------|-----------------|-----------|--------------------|----------|----------------|---------|-------|-------------------|---------------------|--------------------------------------|--------------------------------------|-------|-------------|------------------------|------------|------------|---------|
| N⁰  | DATA       | D <sub>R4</sub> | DVj [SKA] | ե                  | S        | R <sub>H</sub> | n       | U.    |                   |                     |                                      |                                      | В     | qBm         | qB[SKA]D <sub>34</sub> | qB[SKA]Dvj | E[%]D₅     | E[%]Dıj |
|     |            | (mm)            | mm        | Kgf/m <sup>2</sup> | (m/m)    | (m)            | Manning | (m/s) | $\tau_{\rm cD64}$ | $\tau_{\!\rm cDvj}$ | (τ <sub>0</sub> -τ <sub>cD64</sub> ) | (τ <sub>0</sub> -τ <sub>cDvj</sub> ) | (m)   | ton/d ia    | ton/dia                | ton/dia    | -          | -       |
| 141 | 29/4/1999  | 0,60            | 24,24     | 1,02               | 8,20E-04 | 1,24           | 8Q0     | 0,10  | 0.£4              | 2,40                | 0,98                                 | 000                                  | 33,27 | 0,01        | 280,70                 | 0,00       | 2159145,93 | 100,00  |
| 142 | 13/5/1999  | 0,31            | 12,41     | 0,34               | 2,60E-04 | 1,31           | 0.£4    | 0.06  | 0.02              | 1,23                | 0,32                                 | 0.00                                 | 33,41 | 0,02        | 54,19                  | 0,00       | 235491,53  | 100,00  |
| 143 | 9/6/1999   | 4,13            | 9,34      | 0,24               | 2,00E-04 | 1,22           | 0.£4    | 0.05  | 0,35              | 0,92                | 0,00                                 | 0.00                                 | 33,29 | 0,01        | 0,00                   | 0,00       | 100,00     | 100,00  |
| 144 | 22/7/1999  | 2,22            | 8,37      | 0,21               | 2,10E-04 | 1£2            | 0.03    | ops   | 0,16              | 0,82                | 0,05                                 | 0.00                                 | 32,52 | 0,00        | 6,67                   | 0,00       | 222138,64  | 100,00  |
| 145 | 5/8/1999   | 2,70            | 7,73      | 0,22               | 2,14E-04 | 1¢1            | 0.£4    | ops   | 0,21              | 0,75                | 0,01                                 | 000                                  | 32,65 | 0,00        | 1,25                   | 0,00       | 62536,09   | 100,00  |
| 146 | 19/8/1999  | 0,97            | 7,82      | 0,21               | 2,10E-04 | 1¢2            | 0.£4    | ops   | 0.06              | 0,76                | 0,16                                 | 000                                  | 32,78 | 0,00        | 20,14                  | 0,00       | 503286,66  | 100,00  |
| 147 | 2/9/1999   | 4,74            | 2,32      | 0,05               | 5,00E-05 | 0,95           | 0,02    | 0,02  | 0,35              | ۵,۱۵                | 0,00                                 | 000                                  | 32,07 | 0,00        | 0,00                   | 0,00       | 0,00       | 0,00    |
| 148 | 15/9/1999  | 2,52            | 10,15     | 0,26               | 2,10E-04 | 1,25           | 0.£4    | ops   | 0,19              | 1,00                | 0,07                                 | 0.00                                 | 33,31 | 0,34        | 10,01                  | 0,00       | 2819,49    | 100,00  |
| 149 | 30/9/1999  | 0,94            | 5,17      | Q17                | 1,80E-04 | 0,92           | 0.£4    | 0.£4  | 0.06              | 0,44                | 0,11                                 | 0.00                                 | 32,02 | 0,00        | 12,30                  | 0,00       | 1229959,57 | 100,00  |
| 150 | 14/10/1999 | 1,01            | 6,76      | 0,20               | 2,10E-04 | 0.95           | 0.£4    | 0.£4  | 0.06              | 0,63                | 0,14                                 | 0.00                                 | 32,41 | 0,00        | 17,08                  | 0,00       | 569292,17  | 100,00  |
| 151 | 28/10/1999 | 2,40            | 8,94      | 0,25               | 2,30E-04 | 1¢7            | 0.£4    | ops   | 0,18              | 0,89                | 0,06                                 | 0.00                                 | 32,88 | <u>0,03</u> | 9,03                   | 0,00       | 33338,37   | 100,00  |
| 152 | 11/11/1999 | 0,38            | 7,04      | 0,20               | 2,00E-04 | 1.po           | 0.£4    | 0.£4  | 0.02              | 0,66                | 0,18                                 | 0.00                                 | 32,80 | 28,00       | 22,67                  | 0,00       | 19,05      | 100,00  |
| 153 | 25/11/1999 | 0,84            | 12,34     | 0,31               | 2,30E-04 | 1,33           | 0.£3    | ops   | ops               | 1,22                | 0,25                                 | 0.00                                 | 32,88 | 0,09        | 39,58                  | 0,00       | 44370,37   | 100,00  |
| 154 | 9/12/1999  | 3,76            | 13,68     | 0,34               | 2,60E-04 | 131            | 0.04    | 0.06  | 0,33              | 1,35                | 0,02                                 | 0.00                                 | 33,19 | 0,04        | 2,53                   | 0,00       |            | 100,00  |
| 155 | 23/12/1999 | 2,73            | 7,72      | 0,35               | 4,80E-04 | 0,73           | 0.07    | 0.00  | 0,22              | 0,76                | 0,13                                 | 0.00                                 | 30,48 | 0,00        | 20,01                  | 0,00       | 667014,28  | 100,00  |
| 156 | 6/1/2000   | 2,14            | 32,80     | 0,65               | 2,80E-04 | 2,32           | 0,03    | 0.D8  | 0,18              | 3,25                | 0,47                                 | 000                                  | 35,69 | 0,21        | 116,69                 | 0,00       | 54426,29   | 100,00  |
| 157 | 13/1/2000  | 1,07            | 10,83     | 0,29               | 2,50E-04 | 1,15           | 0.£4    | 0.05  | 0.p7              | 1,07                | 0,22                                 | 0,00                                 | 32,91 | 0,31        | 33,02                  | 0,00       | 10449,64   | 100,00  |
| 158 | 20/1/2000  | 4,07            | 11,16     | 0,29               | 2,50E-04 | 1,15           | 0.£4    | ops   | 0,35              | 1,10                | 0,00                                 | 0.00                                 | 33,27 | 0,04        | 0,00                   | 0,00       | 100,00     | 100,00  |
| 159 | 27/1/2000  | 4,67            | 12,88     | 0,33               | 2,60E-04 | 1,25           | 0.£4    | 0.06  | 0,42              | 1,28                | 0,00                                 | 0.00                                 | 33,25 | 0,09        | 0,00                   | 0,00       | 100,00     | 100,00  |
| 160 | 3/2/2000   | 2,76            | 22,59     | وكرن               | 4,10E-04 | 1,44           | 0.£4    | 0.08  | 0,24              | 2,24                | 0,35                                 | 0.00                                 | 34,00 | 0,55        | 79,00                  | 0,00       | 14186,10   | 100,00  |
| 161 | 9/2/2000   | 0,49            | 11,09     | 0,27               | 2,30E-04 | 1,19           | 0,03    | ops   | 0.рз              | 1,10                | 0,25                                 | 0.00                                 | 33,10 | 0,49        | 36,65                  | 0,00       | 7425,64    | 100,00  |
| 162 | 18/2/2000  | 4,84            | 20,77     | 0,45               | 2,80E-04 | 1,60           | 0.p3    | 0.p7  | 0,46              | 2,06                | 0,00                                 | 0.00                                 | 34,70 | 0,45        | 0,00                   | 0,00       | 100,00     | 100,00  |
| 163 | 24/2/2000  | 0,33            | 9,53      | 0,18               | 1,30E-04 | 1,38           | 0,02    | 0.£4  | 0.02              | 0,94                | 0,16                                 | 0.00                                 | 33,56 | 0,60        | 28,89                  | 0,00       | 4690,37    | 100,00  |
| 164 | 3/3/2000   | 1,31            | 21,91     | 0,59               | 4,60E-04 | 1,29           | 0.£4    | 0.D8  | 0,10              | 2,17                | 0,50                                 | 0.00                                 | 33,42 | 0,22        | 109,70                 | 0,00       | 49990,08   | 100,00  |
| 165 | 10/3/2000  | 0,30            | 12,56     | 0,31               | 2,80E-04 | 1,12           | 0,03    | 0.00  | 0.02              | 1,24                | 0,30                                 | 0.00                                 | 32,88 | 0,04        | 47,00                  | 0,00       | 117388,63  | 100,00  |
| 166 | 17/3/2000  | 1,19            | 16,54     | 0,42               | 3,60E-04 | 1,17           | 0.£4    | 0.06  | 0.D8              | 1,64                | 0,34                                 | 0,00                                 | 33,27 | 0,22        | 62,72                  | 0,00       | 28671,80   | 100,00  |
| 167 | 24/3/2000  | 1,98            | 14,27     | 0,28               | 2,00E-04 | 1,42           | 0.03    | 0.05  | 0,15              | 1,41                | 0,14                                 | 000                                  | 34,12 | 0,49        | 21,52                  | 0,00       | 4281,91    | 100,00  |
| 168 | 31/3/2000  | 1,25            | 27,06     | 8کې0               | 3,00E-04 | 1.93           | 0,03    | 0.08  | 0.09              | 2,68                | 0,49                                 | 0.00                                 | 35,27 | 1,12        | 112,33                 | 0,00       | 9920,10    | 100,00  |
| 169 | 7/4/2000   | 1,84            | 9,73      | 0,27               | 2,60E-04 | 1£4            | 0.£4    | ops   | 0,13              | 0,96                | 0,14                                 | 0.00                                 | 32,77 | 0,05        | 20,11                  | 0,00       | 40110,00   | 100,00  |
| 170 | 14/4/2000  | 1,66            | 8,01      | 0,22               | 2,30E-04 | 0,94           | 0.£4    | ops   | 0,11              | 0,78                | 0,10                                 | 0.00                                 | 32,20 | 0,01        | 13,09                  | 0,00       | 261734,54  | 100,00  |
| 171 | 19/4/2000  | 4,00            | 8,08      | 0,23               | 2,50E-04 | 0,92           | 0.£4    | ops   | 0,34              | 0,79                | 0,00                                 | 0.00                                 | 31,99 | 0,01        | 0,00                   | 0,00       | 100,00     | 100,00  |
|     |            |                 |           |                    |          |                |         |       |                   |                     |                                      |                                      |       |             |                        | MÈDIA      | 96683,07   | 94,74   |

Tabela 6.2h - Descargas calculadas pelo método de Sato Kikawa e Ashida (1958) usando o diâmetro D<sub>64</sub> e o Dvj

qB[SKA]D<sub>84</sub> - Descarga sólida calculada pelo método de Sato Kikawa e Ashida para o diâmetro D<sub>84</sub>

qB[SKA]Dvj - Descarga sólida calculada pelo método de Sato Kikawa e Ashida para o diâmetro Dvj
| (1)      | (2)         | (3)             | (4)                  | (5)                | (6)       | Φ              | (8)   | (9)      | <b>(10)</b>      | (A1) | (12)        | (13)      | (14)           | (15)       | (16)                | (17)       | (18)       | (២)    | (20)    | (21)                  | (22)       | (23)                | (24)    |
|----------|-------------|-----------------|----------------------|--------------------|-----------|----------------|-------|----------|------------------|------|-------------|-----------|----------------|------------|---------------------|------------|------------|--------|---------|-----------------------|------------|---------------------|---------|
| N        | DATA        | D <sub>64</sub> | D <sub>VI BOTI</sub> | Ն                  | S         | d              | U     | Amr      | B <sub>D64</sub> | B    | С           | D         | D              | Erei       | E                   | Free       | F          | B      | qBm     | qB[ROT]D <sub>p</sub> | qB[ROT]Dvj | E[%]D <sub>20</sub> | E[%]Dvj |
|          |             | (mm             | mm                   | Kgť m <sup>2</sup> | (m/m)     | (m)            | (m/s) | -        | -                |      | - mr        | -         | -              | - 164      | - 101               | - 164      | -          | (m)    | ton/dia | ton/dia               | ton/dia    | -                   | -       |
| 1        | 26/3/1993   | 1.56            | 0,19                 | 0.26               | 1.94E-04  | 1.43           | 0.64  | 18231.67 | 0.03             | 0.03 | 0.13        | 1,77502   | 4,41603        | 4,19E-03   | 4,04E-03            | -2.49E-06  | -4,98E-11  | 34.70  | 0.141   | 0.00                  | 0.00       | 100.00              | 100,00  |
| 2        | 6/4/1993    | 2,77            | 0,19                 | 0,23               | 1,97E-04  | 1,20           | 0,52  | 14015,04 | 0,03             | 0,03 | 0,12        | 2,92502   | 4,95503        | 3,84E-03   | 3,59E-03            | -1,64E-05  | -2,50E-09  | 34,87  | 0,038   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 3        | 20/4/1993   | 2,96            | 0,19                 | 0,20               | 1,85E-04  | 1,11           | 0,43  | 12468,29 | 0,03             | 0,03 | 0,10        | 3,22602   | 5,25603        | 3,32E-03   | 3,09E-03            | -2,41 E-05 | -1,01E-08  | 34,88  | 0,046   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 4        | 4/5/1993    | 3,24            | 0,19                 | 0,25               | 2,11E-04  | 1,29           | 0,51  | 15620,93 | 0,03             | 0,03 | 0,11        | 309602    | 4,675-03       | 3,64E-03   | 3,39E-03            | -2,03E-05  | -2,10E-09  | 34,78  | 0,046   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 5        | 18/5/1993   | 0.97            | 0,20                 | 0,17               | 1,63E-04  | 1,06           | 0,36  | 11635,40 | 0.03             | 0,03 | 0,09        | 1,58602   | 5,50603        | 2,73E-03   | 2,65E-03            | -2,22E-06  | -2,32E-08  | 34,38  | 0,024   | 0,00                  | 0,00       | 100,00              | 100,00  |
| <u>6</u> | 1,6/1993    | 2,50            | 0,19                 | i 0,35             | 2,31E-04  | 1,58           | 0,73  | 21174,25 | 0.03             | 0,03 | 0,14        | 2,27602   | <b>404E</b> 03 | 4,61E-03   | 4,38E-03            | -5,95E-06  | 4,03E-11   | 35,24  | 0,190   | 0,00                  | 0,00       | 100,00              | 98,63   |
| 1.       | 8,6/1993    | 1,13            | 0,20                 | 0,19               | 1,64E-04  | 1,25           | 0,53  | 14900,04 | 0.03             | 0,03 | 0,12        | 1,57602   | 4,92503        | 3,69 E-03  | 3,58E-03            | -1,71E-06  | -2,40E-09  | 34,91  | 0,028   | 0,00                  | 0,00       | 100,00              | 100,00  |
|          | 15/6/1993   | 1,44            | 020                  | 0,19               | 1,81E-04  | <u>, 1, 11</u> | U,40  | 12468,29 | <u> </u>         | 0,03 | 0,11        | 1,99EUZ   | 5,26EU3        | 3,375-03   | 3,235-03            | -4,53E-06  | -8,39E-09  | 34,21  | 0,008   | 0,00                  | ųω         | 100,00              | 100,00  |
| 1.2      | 22/6/1993   | 4,47            | 020                  | 0,17               | 1,72E-04  | 1,09           | U,40  | 12132,83 | <u> </u>         | 0,03 | 0,11        | 429602    | 0,30 - 03      | 3,015-03   | 3,20 E-U3           | -0,00E-00  | -9,20E09   | 34,54  |         | 0,00                  | <u></u>    | 100,00              | 100,00  |
| 10       | 67/1002     | 1,90            | 020                  | 0,14               | 1,0412-04 | 0.82           | 0.30  | 9408,10  | 002              | 0.03 | υμ8<br>0.07 | 462002    | 004003         | 2,465-00   | 2,37 E-03           | 7.00 0 05  | -4,93E08   | 22 77  | 0,007   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 11       | 0///1995    | 4,10            | 022                  | 0,09               | 0.0017-04 | 0,82           | 0.20  | 065170   | 002              | 0.03 | 0.08        | 4,03 802  | 878502         | 2 14 5 00  | 1085.00             | -7,80E-00  | -0µ1⊑00    | 22.64  | 0,002   | 0,00                  | 0,00       | 400,00              | 100,00  |
| 12       | 28/1002     | 200             | 022                  | 0.05               | 6 40 5-05 | 0.79           | 0.15  | 7244.52  | 0.03             | 0,03 | 0.04        | 4,10002   | 7.67503        | 1445.02    | 1,205.02            | -1.075.04  | -1,11007   | 20.00  | 0,000   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 14       | 17/8/1003   | 230             | 0.27                 | 0.02               | 3.0012-05 | 0.82           | 0.22  | 7916.68  | 0.03             | 0.03 | 0.06        | 333502    | 803503         | 1985-03    | 1.855-03            | -3.07E-05  | -2.36E-07  | 22.52  | 0.002   | 0.00                  | 0.00       | 100.00              | 100,00  |
| 15       | 31/8/1993   | 217             | 025                  | 0.04               | 4.70E-05  | 0.93           | 0.19  | 9561.96  | 0.03             | 0.03 | 0.05        | 2.94502   | 6,99503        | 1.59E-03   | 1.50E-03            | -2.16E-05  | -1.66E-07  | 33.74  | 0.002   | 0.00                  | 0.00       | 100.00              | 100.00  |
| 16       | 21/9/1993   | 100             | 0.20                 | 0.14               | 1.47E-04  | 1.00           | 0.32  | 10661.60 | 0.03             | 0.03 | 0.08        | 1,67502   | 5,79603        | 2,50E-03   | 2.43E-03            | -2,89E-06  | -3,81E-08  | 33.97  | 0,006   | 0.00                  | 0.00       | 100.00              | 100,00  |
| 17       | 28/9/1993   | 1,29            | 0,19                 | 0,32               | 2,31E-04  | 1,47           | 0,74  | 19001,96 | 0,03             | 0,03 | 0,15        | 1,53502   | 424603         | 4,75E-03   | 4,61 E-03           | -1,19E-06  | 5,04E-11   | 34,92  | 0,384   | 0,00                  | 0,00       | 100,00              | 99,25   |
| 18       | 5/10/1993   | 477             | 0,20                 | 0,14               | 1,47E-04  | 1,03           | 0,39  | 11144,95 | 0.03             | 0,03 | 0,10        | 4,65502   | 5,68503        | 3,25E-03   | 2,91E-03            | -8,10E-05  | -2,11E-08  | 34,38  | 0,006   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 19       | 21/10/1993  | 3.¢3            | 0,19                 | 0,22               | 1,89E-04  | 1,21           | 0,54  | 14190,59 | 0.03             | 0,03 | 0,12        | 3,485-02  | 4,94603        | 403E-03    | 3,71E-03            | -2,92E-05  | -1,87E-09  | 34,84  | 0,023   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 20       | 28/10/1993  | 1,24            | 0,19                 | 0,26               | 2,06E-04  | 1,38           | 0,61  | 16909,50 | 0.03             | 0,03 | 0,13        | 1,57602   | 4,53603        | 408E-03    | 3,95E-03            | -1,59E-06  | -1,90E-10  | 34,88  | 0,037   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 21       | 4/11/1993   | 4,52            | 0,23                 | 0,07               | 8,00E-05  | 0,89           | 0,24  | 8951,74  | 0.03             | 0,03 | 0,06        | 4,95502   | 6,74503        | 2,17E-03   | 1,93E-03            | -1,06E-04  | -1,11E07   | 33,82  | 0,003   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 22       | 9/11/1993   | 4,27            | 0,21                 | 0,12               | 1,30E-04  | 0,93           | 0,31  | 9561,96  | 0,03             | 0,03 | 0,08        | 4,62502   | 6,17503        | 2,71E-03   | 2,44E-03            | -8,25E-05  | -5,19E-08  | 34 p 1 | 0,005   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 23       | 20/12/1993  | 1,26            | 0,19                 | 0,24               | 1,97E-04  | 1,24           | 0,50  | 14721,60 | 0.03             | 0,03 | 0,11        | 1,695-02  | 4,84503        | 3,51E-03   | 3,39E-03            | -2,41E-06  | -3,02E-09  | 34.¢4  | 0,080   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 1.24     | 10/2/1994   | 111             | 0,23                 | 0,13               | 8.00E-05  | 1.80           | 0,82  | 25747,27 | 0.03             | 0,03 | 0,15        | 121502    | 422503         | 472E-03    | 4,61 E-03           | -4,07E-07  | 6,19E-11   | 35.65  | 0,332   | 0,00                  | 0.00       | 100,00              | 98,52   |
| 25       | 29/3/1994   | 118             | 0,19                 | 0.38               | 1.97E-04  | 1,99           | U,00  | 29929,67 | <u> </u>         | 0,03 | 0,10        | 1,18602   | 3,03503        | 3015-03    | 2,945-03            | -6,84E-0/  | -2,10E-10  | 34.34  | 0,027   | 0,00                  | <u></u>    | 100,00              | 100,00  |
| 20       | 6/6/1004    | 129<br>120      | 0,21                 | 0,19               | 1,3012-04 | 1,01           | 0.39  | 19782,80 | 0.03             | 0,03 | 0.06        | 1,00 - 02 | 4/4/ EU3       | 10000      | 1 77 5 00           | -2,1915-00 | -8,80E-09  | 34 UU  | 0,022   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 14/      | 0/5/1994    | 1,40            | 0.22                 | 0.15               | 9,00E-05  | 1,30           | 0.20  | 18252.00 | 0.02             | 0.00 | 0.06        | 124602    | 404E02         | 100000     | 1,000               | 1.62 E.08  | 2000000    | 22.60  | 0,012   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 20       | 17/6/1004   | 090             | 021                  | 0,0                | 7 20 8.05 | 1,30           | 0.20  | 16252.00 | 0.02             | 0,03 | 0.06        | 122502    | 622502         | 1045.00    | 1.040-00            | 1.005.08   | 287500     | 22.64  | 0,012   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 30       | 1/7/1004    | 0,00            | 023                  | 0.16               | 1 14 5.04 | 1 40           | 0,20  | 17660.06 | 0.03             | 0,00 | 0.06        | 122002    | 477503         | 1.805.02   | 1.855.03            | -1 155.08  | -7.40 E.08 | 22.81  | 0,000   | 0,00                  | 000        | 100,00              | 100,00  |
| 31       | 15/7/1004   | 0.80            | 024                  | 0.08               | 6 40 2.05 | 1.32           | 0.24  | 16169.00 | 0.03             | 0.03 | 0.05        | 129502    | 5.33503        | 1.62E-03   | 1.58E-03            | -1.43E-06  | -5.27E-08  | 33.64  | 0.051   | 0.00                  | 0.00       | 100.00              | 100.00  |
| 32       | 29/7/1994   | 166             | 021                  | 0.16               | 1.14E-04  | 1.40           | 0.30  | 17660.96 | 0.03             | 0.03 | 0.06        | 1,88502   | 4,77503        | 1,99E-03   | 1.92E-03            | -4.71E-06  | -2.33E-08  | 33.81  | 0.010   | 0.00                  | 0.00       | 100.00              | 100.00  |
| 33       | 12/8/1994   | 1,23            | 0.25                 | 0,06               | 4,70E-05  | 1,28           | D, 16 | 15439,64 | 0,03             | 0,03 | 0,04        | 1,63502   | 5,65503        | 1,10E-03   | 1,07E-03            | -3,51E-06  | -9,60E-08  | 33,26  | 0,011   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 34       | 26/8/1994   | 0,88            | 0,24                 | 0,08               | 6,20E-05  | 1,38           | 0,20  | 17283,87 | 0,03             | 0,03 | 0,04        | 1,24502   | 5,19603        | 1,31E-03   | 1,29E-03            | -1,36E-06  | -5,96E-08  | 33,47  | 0,002   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 35       | 8,9/1994    | 1ρ0             | 0,23                 | 0,11               | 8,00E-05  | 1,40           | 0,23  | 17660,96 | 0,03             | 0,03 | 0,05        | 1,346-02  | 4,995-03       | 1,50E-03   | 1,47E-03            | -1,67E-06  | -4,35E-08  | 33.¢8  | 0,004   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 36       | 22/9/1994   | 0,89            | 0,21                 | 0,19               | 1,30E-04  | 1,48           | 0,28  | 19196,18 | 0,03             | 0,03 | 0,06        | 1,19502   | 4,53603        | 1,77E-03   | 1,74E-03            | -1,05E-06  | -2,17E-08  | 33,92  | 0,002   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 37       | 6/10/1994   | 1,18            | 0,25                 | 0,06               | 4,70E-05  | 1,34           | 0,22  | 16537,87 | 0,03             | 0,03 | 0,05        | 1,54602   | 5,48E03        | 1,48E-03   | 1,44E-03            | -2,69E-06  | -6,60 E-08 | 33,49  | 0,002   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 38       | 27/10/1994  | 1,79            | 0,21                 | 0,22               | 1,22E-04  | 1,84           | 0,46  | 26610,26 | 0,03             | 0,03 | 0,08        | 1,64502   | 3,95503        | 2,59E-03   | 2,50E-03            | -2,65E-06  | -3,01E-09  | 34,48  | 0,424   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 39       | 23/11/1994  | 1,14            | 0,25                 | 0,06               | 4,70E-05  | 1,66           | 0,20  | 22802,61 | 0.03             | 0,03 | 0.04        | 1,30502   | 4,75503        | 1,20E-03   | 1,175-03            | -1,66E-06  | -4,58E-08  | 33,52  | 0,004   | 0,00                  | 0,00       | 100,00              | 100,00  |
| 40       | 22/12/1994  | 1,60            | 0,19                 | 0,56               | 2,14E-04  | 2,76           | 0,72  | 48886,17 | 0.03             | 0,03 | 0,11        | 1,16502   | 2,81603        | 3,34E-03   | 3,26E-03            | -6,72E-07  | 8,96E-11   | 35,68  | 0,218   | 0,00                  | 0,01       | 100,00              | 93,81   |
| 41       | 5/1/1995    | 108             | 0,19                 | 0,53               | 2,31E-04  | 2,34           | 0,68  | 38163,32 | 0.03             | 0,03 | 0,11        | : 1,00E02 | : 3,11E03      | 3,41E-03   | 3,34E-03            | -2,86E-07  | 1,32E-11   | 35,27  | 0,023   | 0,00                  | <u>цш</u>  | 100,00              | 99,71   |
| : 42     | : 19/1/1995 | : 4 J 7         | ישט י                | : 0,22             | 1,4715-04 | ; 1,30         | U,30  | 20773,48 | ; DD3            | 0,03 | 0.08        | : 322002  | : 4,300003     | ; 2,48 E-W | ; 2,30 <b>⊡</b> -03 | ;-2,04E-U0 | ;-8,ID⊟09  | :3392  | 0,010   | 0,00                  | ųω         | 100,00              | 100,003 |

Tabela 6.21 - Descargas calculadas pelo método de Rottner (1958) usando o diâmetro D<sub>ed</sub> e o Dvj

| (1)         | (2)         | (3)               | (4)                   | (5)                | (6)                   | Φ                  | (8)      | (9)      | <b>(10)</b>  | (A1)             | (12)          | (13)     | (14)             | (15)     | (16)       | (17)                     | (18)                | (19)           | (20)    | (21)     | (22)        | (23)               | (24)          |
|-------------|-------------|-------------------|-----------------------|--------------------|-----------------------|--------------------|----------|----------|--------------|------------------|---------------|----------|------------------|----------|------------|--------------------------|---------------------|----------------|---------|----------|-------------|--------------------|---------------|
| N           | DATA        | $\mathbf{D}_{54}$ | D <sub>Vi (ROT)</sub> | Ն                  | S                     | d                  | U        | Amr      | $B_{D64}$    | B <sub>Dvi</sub> | C             | D        | D <sub>Def</sub> | Erei     | End        | Free                     | F                   | В              | qBm     | qB[ROT]D | qB[ROT]Dvj  | E[%]D <sub>∞</sub> | E[%]Dvj       |
|             |             | (mm               | mm                    | Kgť m <sup>2</sup> | (m/m)                 | (m)                | (m/s)    | -        | -            | -                | -             | -        | -                | -        | -          | -                        | -                   | (m)            | ton/dia | ton/dia  | ton/dia     | -                  | -             |
| 43          | 26/1/1995   | 102               | 0.20                  | 0.21               | 1.47E-04              | 1.50               | 0.33     | 19586.61 | 0.03         | 0.03             | 0.07          | 129502   | 4,42503          | 2.08E-03 | 2.03E-03   | -1.28E-06                | -1.36E-08           | 33.93          | 0.036   | 0.00     | 0.00        | 100.00             | 100.00        |
| 44          | 9/2/1995    | 4 84              | 0,21                  | 0,41               | 1,14E-04              | 3,57               | 1,11     | 71915,86 | 0,03         | 0,03             | 0,15          | 2,05502  | 2,56503          | 4,64E-03 | 4,41 E-03  | -4,00E-06                | 6,38E-09            | 40,30          | 3,097   | 0,00     | 1,60        | 100,00             | 48,38         |
| 45          | 16/2/1995   | 179               | 0,18                  | 0,60               | 2,47E-04              | 2,51               | 0,77     | 42396,79 | 0,03         | 0,03             | 0,12          | 1,345-02 | 2,94503          | 3,76E-03 | 3,655-03   | -8,85E-07                | 3,63E-10            | 35,40          | 0,485   | 0,00     | 0,05        | 100,00             | 90,30         |
| 46          | 8/3/1995    | 1,20              | 0,20                  | 0,31               | 1,72E-04              | 1,82               | 0,49     | 26177,58 | 0,03         | 0,03             | 0,09          | 1,27602  | 3,81603          | 2,815-03 | 2,74E-03   | 9,63E-07                 | -1,23E-09           | 34,94          | 0,396   | 0,00     | 0,00        | 100,00             | 100,00        |
| 47          | 24/3/1995   | 2.97              | 0,20                  | 0,44               | 1,80E-04              | 2,52               | 0,73     | 42650,41 | 0,03         | 0,03             | 0,11          | 1,875-02 | 3,05603          | 3,61E-03 | 3,46E-03   | -3,42E-06                | 6,84E-11            | 35,38          | 1,721   | 0,00     | 0,01        | 100,00             | 99,48         |
| 48          | 7#/1995     | 072               | 0,19                  | 0,41               | 1,97E-04              | 2,12               | 0,64     | 32909,87 | 0,03         | 0,03             | 0,11          | 8,15603  | 3,38603          | 3,35E-03 | 3,31 E-03  | -1,10E-07                | -4,28E-13           | 35.DS          | 0,171   | 0,00     | 0,00        | 100,00             | 100,00        |
| 49          | 28/4/1995   | 091               | 0,20                  | 0,31               | 1,80E-04              | 1,78               | 0,49     | 25319,34 | 0,03         | 0,03             | 0,09          | 107602   | 3,85603          | 2,82E-03 | 2,77E-03   | -4,89E-07                | -1,25E-09           | 34 <i>\$</i> 3 | 0,081   | 0,00     | 0,00        | 100,00             | 100,00        |
| 50          | 12/5/1995   | 155               | 0,20                  | 0,34               | 1,80E-04              | 1,92               | 0.57     | 28364,44 | 0.03         | 0,03             | 0,10          | 1,45502  | 3,665-03         | 3,19E-03 | 3,10E-03   | -1,46E-06                | -1,73E-10           | 34,74          | 0,468   | 0,00     | 0,00        | 100,00             | 100,00        |
| 51          | 9,6/1995    | 109               | 0,20                  | 0.23               | 1,47E-04              | 1,68               | 0,35     | 23215,94 | 0.03         | 0,03             | 0.07          | 1,25602  | 4,10503          | 2,09E-03 | 2,04E-03   | -1,14E-06                | -8,74E-09           | 3435           | 0,023   | 0,00     | 0,00        | 100,00             | 100,00        |
| 52          | 23/6/1995   | 204               | 0,22                  | 0,21               | 1,04E-04              | 1,00               | U,38     | 20773,48 | <u> </u>     | 0,03             | 0.08          | 200602   | 4,49503          | 2,405-03 | 2,305-03   | -0,4/E-U6                | -106608             | 34,34          | 0,018   | 0,00     | <u>u</u> w  | 100,00             | <u>100,00</u> |
| 25          | 5///1995    | 0.91              | 020                   | 0,21               | 1,47E-04              | 1,46               | U,33     | 18808,39 | <u> </u>     | 0,03             | <u>, nn n</u> | 122602   | 4,00603          | 2,115-03 | 2,065-03   | -1,035-06                | -1,40E-08           | 34,19          | 0,061   | 0,00     | <u>u</u> w  | 100,00             | <u>100,00</u> |
|             | 12/7/1995   | 020               | 0,19                  | 0,50               | 2,3915-04             | 2,16               | U,61     | 33846,66 | <u> </u>     | 0,03             | 0,10          | 6,31603  | 3,26603          | 3,165-03 | 3,125-03   | -3,16E-D8                | -2,/8E-12           | 22,02          | 4,163   | 0,00     | <u>u</u> w  | 100,00             | 100,00        |
| <u>, 22</u> | 19/7/1995   | 120               | 020                   | 0,33               | 1,001-04              | 1,03               | 0,40     | 22187,20 | 0.03         | 0,03             | 0.00          | 145502   | 4,10 EU3         | 2,395-03 | 2,30       | 1 - 2,39 E-07            | -0,/3EU9            | 34,29          | 0,010   | 0,00     | <u>. uw</u> | 100,00             | 100,00        |
| 20          | 20/7/1995   | 1,29              | 0,20                  | 0.12               | 1,0412-04             | 1,74               | 0.20     | 10400.00 | 0.02         | 0,00             | 0.06          | 1.045.02 | 185E03           | 102500   | 1.00 E 00  | -1,09E-00                | -3 JOE 09           | 34 D I         | 0,110   | 0,00     | 0,00        | 400,00             | 400,00        |
| - 27        | 21/0/1995   | 146               | 021                   | 0,1/               | 0.007.05              | 1,44               | 0.30     | 15820.02 | 0.02         | 0,00             | 0.05          | 100002   | £ 27E 02         | 1725-00  | 1.67E.00   | -0,20E-07                | -2,10E00            | 22.65          | 0,012   | 0,00     | 0,00        | 400,00             | 400,00        |
| 50          | 11/0/1995   | 1,40              | 048                   | 0.76               | 0,00E-03<br>1 77 E 01 | 1,29               | 0.20     | 22201.75 | 0.02         | 0.00             | 0.00          | 0.04002  | 28100            | 2240     | 2 20 0 0   | 4 20 5 07                | -4,00⊡00<br>2,28⊑00 | 24.10          | 0,002   | 0,00     | 0,00        | 100,00             | 100,00        |
| 60          | 21/9/1995   | 1 66              | 0,10                  | 0,70               | 12012-04              | 1.04               | 0.39     | 22381,70 | 0.02         | 0.00             | 0,00          | 18500    | 414602           | 2/040-00 | 2,290-00   | :-4,39⊡-0r<br>:-2,70⊑.08 | -2,20000            | 24 40<br>24 60 | 0,031   | 0,00     | 0,00        | 400,00             | 400,00        |
| 61          | 5/10/1005   | 1.04              | 021                   | ممر 0<br>12        | 0.7017-05             | 1 41               | 0.20     | 17050 52 | 0.02         | 0,00             | 0.06          | 1.64602  | 40600            | 10450    | 170 - 00   | 2,780,00                 | -0,48E408           | 24 16          | 0,240   | 0,00     | 0.00        | 100,00             | 100,00        |
| 62          | 10/10/1995  | 3.06              | 0.19                  | 0.40               | 1 997-04              | : 1.17L.<br>: 2.20 | 0.63     | 34790 16 | 0.03         | 0,03             | 0.11          | 2.09502  | 3 32 503         | 3.365.03 | 3 20 5 03  | -5.36E-06                | -1 90E-00           | 25.02          | 0.205   | 0,00     | 000         | 100,00             | 100,000       |
| 63          | 23/11/1005  | 137               | 0.22                  | 0.13               | 0 20 E-0 4            | 1 41               | 0.31     | 17850.53 | 0.03         | 0.03             | 0.06          | 164502   | 485503           | 2045-03  | 1975-03    | -2.985-06                | -2.37E-08           | 34.05          | 0,000   | 0,00     | 000         | 100,000            | 100,000       |
| 64          | 7/12/1995   | 1 56              | 0.24                  | 0.08               | 64012-05              | 1 27               | 0.22     | 15259.07 | 0.03         | 0.03             | 0.05          | 192502   | 547503           | 154E-03  | 1485-03    | -5 51 E-06               | -6.35E-08           | 33 30          | 0,000   | 0,00     | 000         | 100,000            | 100,000       |
| 65          | 10/1/1996   | 118               | 0.19                  | 0.64               | 2.14E-04              | 3.04               | 0.95     | 56510.97 | 0.03         | 0.03             | 0.14          | 8,91503  | 2.63503          | 4.17E-03 | 4.09E-03   | -1.07E-07                | 3.10E-09            | 36.91          | 5,141   | 0.00     | 0.56        | 100.00             | 89.12         |
| 66          | 31/1/1996   | 041               | 0.20                  | 0.23               | 1.47E-04              | 1.58               | 0.41     | 21174.25 | 0.03         | 0.03             | 0.08          | 6.81503  | 427503           | 2.48E-03 | 2.46E-03   | -8.12E-08                | -5.90E-09           | 34.12          | 0.019   | 0.00     | 0.00        | 100.00             | 100.00        |
| 67          | 7/2/1996    | 119               | 0,20                  | 0.31               | 1.64E-04              | 1.95               | 0.58     | 29031.82 | 0.03         | 0.03             | 0.10          | 120502   | 3.66503          | 320E-03  | 3.13E-03   | -6.91E-07                | -1.49E-10           | 3512           | 0,238   | 0,00     | 0,00        | 100,00             | 100,00        |
| 68          | 6/3/1996    | 0.43              | 0,19                  | 0.48               | 2.06E-04              | 2,40               | 0,71     | 39640,51 | 0,03         | 0,03             | 0,11          | 5,32603  | 3,10603          | 3,47E-03 | 3,46E-03   | -6,34E-09                | 4,24E-11            | 3536           | 3,542   | 0,00     | 0,01        | 100,00             | 99,86         |
| 69          | 20/3/1996   | 0,57              | 0,18                  | 0,74               | 2,47E-04              | 3,06               | 1,00     | 57069,56 | 0,03         | 0,03             | 0,14          | 5,46503  | 2,58603          | 4,33E-03 | 4,29E-03   | -1,46E-09                | 5,06E-09            | 36,55          | 1,150   | 0,00     | 0,91        | 100,00             | 20,72         |
| 70          | 3/4/1996    | 1,41              | 0,20                  | 0,33               | 1,80E-04              | 1,88               | 0,54     | 27482,68 | 0,03         | 0,03             | 0,10          | 1,385-02 | 3,71603          | 3,05E-03 | 2,97E-03   | -1,25E-06                | -4,05E-10           | 34,87          | 0,133   | 0,00     | 0,00        | 100,00             | 100,00        |
| 71          | 16/4/1996   | 0.74              | 0,20                  | 0,30               | 1,64E-04              | 1,89               | 0,50     | 27702,25 | 0,03         | 0,03             | 0,09          | 8,96603  | 3,74603          | 2,78E-03 | 2,74E-03   | -2,38E-07                | -9,89E-10           | 34,52          | 0,051   | 0,00     | 0,00        | 100,00             | 100,00        |
| 72          | 15/5/1996   | 1,50              | 0,20                  | 0,25               | 1,47E-04              | 1,72               | 0,44     | 24050,00 | 0,03         | 0,03             | 0,08          | 1,53602  | 403603           | 2,615-03 | 2,53E-03   | -2,03E-06                | -3,40E-09           | 34,24          | 0,246   | 0,00     | 0,00        | 100,00             | 100,00        |
| 73          | 22/5/1996   | 1.63              | 0,20                  | 0,24               | 1,47E-04              | 1,65               | 0,40     | 22596,87 | 0,03         | 0,03             | 0,08          | 1,665-02 | 4,15503          | 2,43E-03 | 2,35E-03   | -2,85E-06                | -5,81E-09           | 34,20          | 0,008   | 0,00     | 0,00        | 100,00             | 100,00        |
| 74          | 19/6/1996   | 0,99              | 0,22                  | 0,14               | 9,70E-05              | 1,46               | 0,28     | 18808,39 | 0,03         | 0,03             | 0,06          | 1,29502  | 4,73503          | 1,795-03 | 1,75E-03   | -1,38E-06                | -2,66E-08           | 33,76          | 0,012   | 0,00     | 0,00        | 100,00             | 100,00        |
| 75          | 3/6/1996    | 2,52              | 0,21                  | 0,17               | 1,14E-04              | 1,54               | 0,32     | 20375,27 | 0,03         | 0,03             | 0,06          | 2,32502  | 4,48503          | 2,05E-03 | 1,95E-03   | -9,52E-06                | -1,62E-08           | 34. <b>p</b> 7 | 0,023   | 0,00     | 0,00        | 100,00             | 100,00        |
| 76          | 17/7/1996   | 2,82              | 0,22                  | 0,13               | 9,70E-05              | 1,40               | 0,27     | 17660,96 | 0,03         | 0,03             | 0,06          | 2,675-02 | 4,875-03         | 1,83E-03 | 1,73E-03   | -1,54E-05                | -3,11E-08           | 33 <i>8</i> 1  | 0,004   | 0,00     | 0,00        | 100,00             | 100,00        |
| 77          | 31/7/1996   | 1,34              | 0,22                  | 0,14               | 1,05E-04              | 1,34               | 0,26     | 16537,87 | 0,03         | 0,03             | 0,06          | 1,675-02 | 4,975-03         | 1,76E-03 | 1,70E-03   | -3,36E-06                | -3,49E-08           | 34,75          | 0,005   | 0,00     | 0,00        | 100,00             | 100,00        |
| 78          | 7.8/1996    | 1.98              | 0,23                  | 0,11               | 8.00E-05              | 1,40               | 0,28     | 17660,96 | 0.03         | 0,03             | 0.05          | 2,11602  | 4,99503          | 1,74E-03 | 1,66E-03   | -7,25E-06                | -3,67E-08           | 34. <u>0</u> 4 | 0,004   | 0,00     | 0,00        | 100,00             | 100,00        |
| .79         | 14/8/1996   | 270               | 0,22                  | 0,15               | 1.05E-04              | 1,48               | 0,28     | 19196,18 | 0,03         | 0,03             | 0,06          | 2,50602  | 4,65503          | 1,84E-03 | 1,74E-03   | -1,24E-05                | -2,46E-08           | 33,99          | 0,005   | 0,00     | 0,00        | 100,00             | 100,00        |
| 80          | 21/8/1996   | 3,27              | 0,22                  | 0,B                | 8,90E-05              | 1,50               | 0,30     | 19586,61 | 0,03         | 0,03             | 0,06          | 2,81602  | 4,70603          | 1,97E-03 | 1,86E-03   | -1,79E-05                | -2,31E08            | 33,89          | 0,005   | 0,00     | 0,00        | 100,00             | 100,00        |
| 81          | 28/8/1996   | 385               | 0,22                  | 0,13               | 9,70E-05              | 1,41               | 0,26     | 17850,63 | 0,03         | 0,03             | 0.05          | 3,27602  | 4,85503          | 1,79E-03 | 1,66E-03   | -2,96E-05                | -3,25E-08           | 3373           | 0,003   | 0,00     | 0,00        | 100,00             | 100,00        |
| 82          | 4/9/1996    | 195               | 0,20                  | 0,25               | 1,47E-04              | 1,75               | 0,40     | 24681,95 | 0,03         | 0,03             | 0.08          | 1,806-02 | 3,99503          | 2,375-03 | 2,285-03   | :-3,81E-06               | -4,97E-09           | 34,56          | 0,036   | 0,00     | 0,00        | 100,00             | 100,00        |
| 83          | 0/10/1996   | 4,19              | 0,19                  | 10,01              | 2 JIE-04              | 2,73               | 0.30     | 48091,28 | <u>. nh3</u> | 0,03             | 0,12          | 1.00502  | 2,80E03          | 3845-03  | 3,64E-03   | :-0,20E-00<br>4 04 E 00  | 0,82E-10            | 33 84          | 3,697   | 0,00     | 000         | 100,00             | 97,05         |
| : 84        | : 2/10/1996 | : 182             | ; 0,22                | : 0,16             | :1,05E-04             | ; 1, <b>3</b> 0    | ; U,33 j | 19090001 | : DD3        | 0,03             | יעט           | 1,90602  | : 401ED3         | 2,125-03 | ; Z,04E-03 | ;-4,∞E-U0                | -1,70E-08           | 34 <u>1</u> 0  | : 0,000 | ; 0,00   | ; 400 j     | 100,00             | ຸ່າແມ່ນ       |

Tabela 6.21 - Descargas calculadas pelo método de Rottner (1958) usando o diâmetro D<sub>s.4</sub> e o Dvj

| (1)          | (2)        | (3)                  | (4)                 | (5)                             | (6)       | Φ            | (8)   | (9)      | <b>(10)</b>                 | (A1)                        | (12) | (13)      | (14)             | (15)      | (16)        | (17)      | (18)         | (19)           | (20)    | (21)                  | (22)          | (23)                 | (24)    |
|--------------|------------|----------------------|---------------------|---------------------------------|-----------|--------------|-------|----------|-----------------------------|-----------------------------|------|-----------|------------------|-----------|-------------|-----------|--------------|----------------|---------|-----------------------|---------------|----------------------|---------|
| N            | DATA       | D <sub>64</sub>      | D <sub>V[ROT]</sub> | Ն                               | S         | d            | U     | Amr      | $\mathbf{B}_{\mathbf{D64}}$ | $\mathbf{B}_{\mathrm{Drj}}$ | C    | D         | D <sub>Dei</sub> | ETE       | End         | Free      | F            | В              | qBm     | qB[ROT]D <sub>6</sub> | qB[ROT]Dvj    | E[%]D <sub>\$0</sub> | E[%]Dvj |
|              |            | (mm                  | mm                  | Kgf <sup>°</sup> m <sup>2</sup> | (m/m)     | (m)          | (m/s) | -        | -                           | -                           | -    | -         | -                | -         | -           | -         | -            | (m)            | ton/dia | ton/dia               | ton/dia       | -                    | -       |
| 85           | 16/10/1996 | 4.D7                 | 0,20                | 0,27                            | 1,50E-04  | 1,83         | 0,46  | 26393,62 | 0,03                        | 0,03                        | 0,08 | 2,85502   | 3,86503          | 2,68E-03  | 2,51E-03    | -1,73E-05 | -2,48E-09    | 34,70          | 0,250   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 86           | 6/11/1996  | 3.ρ0                 | 0,20                | 0,29                            | 1,60E-04  | 1,90         | 0,49  | 27922,40 | 0,03                        | 0,03                        | 0,09 | 2,27502   | 3,74603          | 2,82E-03  | 2,68E-03    | -7,85E-06 | -1,18E-09    | 34,70          | 0,320   | 0,00                  | <u>, 0,00</u> | 100,00               | 100,00  |
| 87           | 20/11/1996 | 3,50                 | 0,21                | 0,23                            | 1,30E-04  | 1,88         | 0,43  | 27482,68 | 0,03                        | 0,03                        | 0,08 | 2,53502   | 3,865-03         | 2,51E-03  | 2,36E-03    | -1,19E-05 | -3,34E-09    | 34,70          | 0,034   | 0,00                  | 0,00          | 100,00               | 100,00  |
| <u>,</u> 88  | 6/12/1996  | 093                  | 0,21                | 0,22                            | 1,30E-04  | 1,69         | 0,42  | 23423,53 | 0,03                        | 0,03                        | 0,08 | 1,12502   | 4,14603          | 2,49E-03  | 2,44E-03    | -6,71E-07 | -4,96E-09    | 34 <i>6</i> 0  | 4,340   | 0,00                  | i 0.00        | 100,00               | 100,00  |
| 89           | 9/1/1997   | 0,83                 | 0,20                | 0,26                            | 1,47E-04  | 1,71         | 0,48  | 23840,56 | 0,03                        | 0,03                        | 0,09 | 103502    | 405603           | 2,825-03  | 2,77E-03    | -4,25E-07 | -2,10E-09    | 34 <i>6</i> 8  | 0,033   | 0,00                  | <u>0,00</u>   | 100,00               | 100,00  |
| 90           | 22/1/1997  | 0,77                 | 0,19                | 0,43                            | 2,14E-04  | 2,08         | 0,57  | 31982,88 | 0.03                        | 0,03                        | 0,10 | 8,63503   | 3,39503          | 3,02,5-03 | 2,98E-03    | -1,77E-07 | -7,28E-11    | 34,78          | 0,146   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 91           | 3/2/1997   | 0,65                 | 0,19                | 0,58                            | 2,14E-04  | 2,93         | 0,98  | 53471,67 | 0.03                        | 0,03                        | 0,14 | 6,13503   | 2,70503          | 4,34E-03  | 4,30E-03    | -5,74E-09 | 4,11E-09     | 36,46          | 21,990  | 0,00                  | 0,69          | 100,00               | 96,85   |
| 92           | 12/3/1997  | 0.82                 | 020                 | 0,22                            | 1,47E-04  | 1.57         | 0,47  | 20973,54 | 0.03                        | 0,03                        | 0,09 | 1,09502   | 4,29503          | 2,885-03  | 2,835-03    | -5,07E-07 | -308E-09     | 34,32          | 1,010   | 0,00                  | <u>u</u> w    | 100,00               | 100,00  |
| 93           | 26/3/1997  | 0.80                 | 021                 | 0,16                            | 1,22E-04  | 1,40         | 0.39  | 17000,90 | 0.03                        | 0,03                        | 0.07 | 1,15602   | 4,/3603          | 2,045-03  | 2,495-03    | -7,20E-07 | -1,135-08    | 33.84          | 0,100   |                       | <u> </u>      | 100,00               | 100,00  |
| 94           | 10/4/199/  | 0.004                | 022                 | <u>کلر U</u>                    | 9,0E-03   | 1,29         | 0.34  | 14721.60 | 0.02                        | 0,03                        | 0.08 | 1,30002   | 5,14EU3          | 1045 00   | 100500      | 1 22 5 08 | -2,38EU8     | 33 P4<br>22 16 | 0,032   | 0,00                  | 0.00          | 100,00               | 100,00  |
| 90           | 46/1007    | 1 0 0 4              | 024                 | کلر 0 ا                         | 1,002-04  | 1,24         | 0.20  | 17008.24 | 002                         | 0,00                        | 0.07 | 287002    | 400000           | 2 22 0    | : 1,80 E-00 | 4.050.05  | - 3 µ0 ⊑- 00 | 22.64          | 0,104   | 0,00                  | 0.00          | 400,00               | 400,00  |
| 90           | 2/7/1007   | 2 4 0                | 021                 | 0,10                            | 1 20 E-04 | 1,01<br>1 05 | 0.22  | 18722.24 | 002                         | 0,00                        | 0.07 | 2 16 502  | 400000           | 2,220-00  | 2,130-00    | 2 60 5 05 | 107000       | 72 04<br>72 04 | 0,000   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 2/           | 10/0/1997  | 1 2 <del>1</del> 2 1 | 021                 | 0,10                            | 1 12 F.OA | 1.30         | 0.35  | 17096.34 | 0.03                        | 0,03                        | 0.07 | 342502    | 485503           | 2 45 5.03 | 2,100-00    | 3 20 5.05 | -1,91,500    | 22.02          |         | 0.00                  |               | 100,00               | 100,00  |
| 00           | 26/8/1997  | 1.84                 | 020                 | 0,0                             | 1 47E-04  | 146          | 0.39  | 18808.39 | 0.03                        | 20,00                       | 0.08 | 195502    | 450503           | 2.545-03  | 2 445-03    | 4905-06   | -876E-09     | 33.97          | 0,0005  | 0,00                  | 000           | 100,000              | 100,000 |
| 100          | 0,0/1007   | 163                  | 0.22                | 0 12                            | 1.05E-04  | 1 14         | 0.24  | 12977 16 | 0.03                        | 20,00                       | 0.06 | 2 12 502  | 553503           | 1785-03   | 1705-03     | 7.385-06  | -5.61E-08    | 33.40          | 0,0002  | 0,00                  | 000           | 100,000              | 100,000 |
| 101          | 23/0/1007  | 0.96                 | 0.15                | 1.07                            | 7 90E-04  | 1 41         | 0.37  | 17850.53 | 0.03                        | 0.03                        | 0.08 | 130502    | 375503           | 2415-03   | 2.35E-03    | -1.17E-06 | -273E-09     | 33.96          | 0.013   | 0.00                  | 000           | 100.00               | 100,00  |
| 102          | 7/10/1997  | 0.67                 | 021                 | 0.19                            | 1.40E-04  | 1.37         | 0.35  | 17096.34 | 0.03                        | 0.03                        | 0.07 | 104502    | 472503           | 2.305-03  | 2.265-03    | -5.30E-07 | -1.49E-08    | 33.98          | 0.013   | 0.00                  | 000           | 100.00               | 100,00  |
| 103          | 21/10/1997 | 0.83                 | 023                 | 0.10                            | 7.00E-05  | 1.48         | 0.39  | 19196.18 | 0.03                        | 0.03                        | 0.08 | 1.14502   | 488503           | 2.47 5-03 | 2.42E-03    | -7.09E-07 | -1.49E-08    | 34.07          | 0,014   | 0,00                  | ÖÖÖ           | 100,00               | 100,00  |
| 104          | 4/11/1997  | 108                  | 0,21                | 0.14                            | 1.10E-04  | 1,32         | 0,32  | 16169,00 | 0,03                        | 0,03                        | 0,07 | 1,46502   | 4,99503          | 2,16E-03  | 2,11E-03    | -1,94E-06 | -2,39E-08    | 33,80          | 0,003   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 105          | 2/12/1997  | 0.96                 | 0,21                | 0,18                            | 1,20E-04  | 1,52         | 0,43  | 19979,64 | 0,03                        | 0,03                        | 0,09 | 1,235-02  | 4,49503          | 2,69E-03  | 2,63E-03    | -8,93E-07 | -6,40E-09    | 34,22          | 0,439   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 106          | 16/12/1997 | 0,50                 | 0,19                | 0,38                            | 2,10E-04  | 1,88         | 0,63  | 27482,68 | 0,03                        | 0,03                        | 0,11 | 6,92503   | 3,646-03         | 3,49E-03  | 3,46E-03    | -4,03E-08 | -5,50E-12    | 34,77          | 5,770   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 107          | 13/1/1998  | 0,50                 | 0,18                | 0,63                            | 3,31E-04  | 1,97         | 0,62  | 29479,61 | 0,03                        | 0,03                        | 0,11 | 6,71603   | 3,33503          | 3,36E-03  | 3,33E-03    | -3,77E-08 | -8,89E-16    | 34,82          | 0,107   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 108          | 27/1/1998  | 0,51                 | 0,23                | 0,11                            | 8,00E-05  | 1,44         | 0,46  | 18423,24 | 0,03                        | 0,03                        | 0,09 | 8,38603   | 4,89503          | 2,86E-03  | 2,84E-03    | -1,68E-07 | -8,71E-09    | 34 Ø 1         | 0,010   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 109          | 11/2/1998  | 178                  | 0,19                | 0,44                            | 2,14E-04  | 2,14         | 0,73  | 33376,67 | 0,03                        | 0,03                        | 0,12 | 1,48502   | 3,33503          | 3,88E-03  | 3,78E-03    | -1,30E-06 | 7,78E-11     | 35,24          | 1,660   | 0,00                  | į 0,01        | 100,00               | 99,52   |
| 110          | 26/2/1998  | 1,80                 | 0,19                | 0,49                            | 2,14E-04  | 2,48         | 0,82  | 41638,96 | 0,03                        | 0,03                        | 0,13 | 1,355-02  | 3,02,603         | 403E-03   | 3,925-03    | -8,54E-07 | 7,25E-10     | 34,55          | 1,060   | 0,00                  | į 0,09        | 100,00               | 91,50   |
| 111          | 11/3/1998  | 194                  | 0,20                | 0,30                            | 1,81E-04  | 1,69         | 0,54  | 23423,53 | 0,03                        | 0,03                        | 0,10 | 1,84502   | 3,98503          | 3,26E-03  | 3,13E-03    | -3,44E-06 | -6,04E-10    | 34 <i>6</i> 8  | 1,600   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 112          | 25/3/1998  | 075                  | 0,19                | 0,36                            | 1,97E-04  | 1,87         | 0,64  | 27263,70 | 0,03                        | 0,03                        | 0,12 | 9,10603   | 3,68 - 603       | 3,58E-03  | 3,53E-03    | -1,69E-07 | -3,62E-12    | 35,22          | 0,310   | 0,00                  | i 0,00        | 100,00               | 100,00  |
| <u>, 113</u> | 8,4/1998   | 0,93                 | 0,21                | 0,18                            | 1,30E-04  | 1,38         | 0,40  | 17283,87 | 0,03                        | 0,03                        | 0,08 | 1,295-02  | <b>4,74</b> E03  | 2,63E-03  | 2,57E-03    | -1,07E-06 | -1,02E-08    | 33 <i>,</i> 54 | 0,034   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 114          | 22/4/1998  | 118                  | 0,23                | 0,10                            | 7,20E-05  | 1.4          | 0,38  | 19001,96 | 0.03                        | 0,03                        | 0.07 | 1,45502   | 4,89503          | 2,31E-03  | 2,25E-03    | -1,80E-06 | -1,85E-08    | 33,96          | 0,004   | 0,00                  | 0,00          | 100,00               | 100,00  |
| 115          | 6/5/1998   | 0.81                 | 020                 | 0,38                            | 1,80E-04  | 2,20         | D,73  | 34790,16 | 0.03                        | 0,03                        | 0,12 | 8,60 - 03 | 3,34603          | 3,765-03  | 3,705-03    | -1,13E-07 | 4,90E-11     | 35,22          | 0,165   | 0,00                  | <u> </u>      | 100,00               | 96,85   |
| 110          | 21/5/1998  | 074                  | 020                 | 0,23                            | 1,04E-04  | 1,42         | U,34  | 18040,78 | UD3                         | 0,03                        | 0,00 | 108602    | 4,52503          | 2,195-03  | 2,165-03    | -6,4/E-U/ | -1,335-08    | 34 J) I        |         | 0,00                  | <u>u</u> w    | 100,00               | 100,00  |
| 117          | 3/0/1998   | 1091                 | 0,21                | 0,18                            | 1,3012-04 | 1,42         | 0,42  | 18040,76 | 0.03                        | 0,03                        | n ha | 1,24602   | 4,00 500         | 2,725-03  | 2,665-03    | -9,19E-07 | -7,885-09    | 3370           | 0,016   | 0,00                  | <u> </u>      | 100,00               | 100,00  |
| 118          | 17/6/1998  | 182                  | 021                 | 0,14                            | 1,11E-04  | 1,30         | U,33  | 10802,92 | 0.03                        | 0,03                        | 0,00 | 209502    | 6D3PD3           | 2,295-03  | 2,195-03    | -6,30E-06 | -2,30E-08    | 33 µ4          |         | 0,00                  | <u>u</u> w    | 100                  | 0,00    |
| 119          | 0/7/1998   | : 3 µ0               | 021                 | 0,17                            | 1,5012-04 | 1,32         | 0,30  | 10109,00 | 0.03                        | 0,03                        | 0.07 | 2,89502   | 4,891-03         | 2,035-03  | 2,37        | -1,84E-US | -1,09E08     | 20 60          |         | 0,00                  |               | 100,00               | 100,00  |
| 120          | 10/07/0998 | : <u>3µ3</u>         | 0.22                | 0,11                            | 9,70E-05  | 1,10         | 0.31  | 12666 12 | 0.02                        | 0.03                        | 0.02 | 3,19 - 02 | 522E02           | 2,301-03  | 2,195-03    | 1.245.05  | -3,80E08     | 22,20          | 0,002   | 0,00                  |               | 100,00               | 100,00  |
| 122          | 25/8/1998  | 2.60                 | 021                 | : 0,19<br>0 00                  | 2,1/E-04  | 1,10         | 0.34  | 11825.40 | 0.02                        | 0,03                        | 0.06 | 204502    | 602502           | 2.055.02  | 1 01 E.M    | 2 20 5.05 | -2 00 E-00   | 2477           | 0,000   | 0,00                  |               | 0.00                 | 0,000   |
| 122          | 2/0/1990   | 2 12                 | 022                 | 0,00                            | 0 70 8.00 | 1.00         | 0.20  | 15902.02 | 0.02                        | 0,03                        | 0.09 | 301502    | 6 12 5.02        | 2 58 5.00 | 2 20 E.02   | 2,280-00  | -2.03E00     | 22.00          | 0,000   | 0,00                  |               | 0,00                 | 0,00    |
| 124          | 16/0/1000  | 191                  | 022                 | 0.07                            | 6 40 8-05 | 1 18         | 0.30  | 13320.18 | 0.02                        | 0,03                        | 0.07 | 2 26 502  | 5.91502          | 2 285.02  | 2,380-00    | -2,00E-00 | -200000      | 22.00          |         | 0,00                  |               | 100.00               | 100.00  |
| 125          | 30/0/1008  | 341                  | 023                 | 0 10                            | 8 ME-05   | 1.32         | 0.35  | 16169.00 | 0.03                        | 0,00                        | 0.08 | 3 15 502  | 5 19503          | 2 48 5.03 | 2 315-03    | 2 46 E-05 | -7 39 E-08   | 32.87          | 0,000   | 0,00                  | 1000          | 100,00               | 100.00  |
| 126          | 14/10/1998 | 2.27                 | 0,19                | 0.31                            | 2.10E-04  | 1,55         | 0,58  | 20574,06 | 0,03                        | 0,03                        | 0,12 | 2,16502   | 4,14603          | 3,695-03  | 3,51E-03    | -5,74E-06 | -2,42E-10    | 33.28          | 0,024   | 0,00                  | 0,00          | 100,00               | 100,00  |

Tabela 6.21 - Descargas calculadas pelo método de Rottner (1958) usando o diâmetro D<sub>ed</sub> e o Dvj

| (1)  | ) (2)                                    | (3)             | (4)       | (5)           | (6)        | $\square$ | (8)   | (9)      | <b>a</b> 0)      | <b>(11)</b>                 | (12) | (13)             | (14)       | (15)      | (16)      | (17)          | (18)      | (19)           | (20)    | (21)     | (22)       | (23)               | (24)     |
|------|------------------------------------------|-----------------|-----------|---------------|------------|-----------|-------|----------|------------------|-----------------------------|------|------------------|------------|-----------|-----------|---------------|-----------|----------------|---------|----------|------------|--------------------|----------|
| N    | DATA                                     | D <sub>B4</sub> | D.VI DOTI | Ն             | S          | d         | U     | Amr      | B <sub>E64</sub> | $\mathbf{B}_{\mathrm{Dri}}$ | C    | D <sub>m</sub> , | Dnei       | E.e.      | End       | Free          | F         | B              | qBm     | qB[ROT]D | qB[ROT]Dvj | E[%]D <sub>∞</sub> | E[%]Dvj  |
|      |                                          | (mm             | mm        | Kgť m²        | (m/m)      | (m)       | (m/s) | -        | -                | - 3                         | - mr | -                | -          | -         | -         | -             | -         | (m)            | ton/dia | ton/dia  | ton/dia    | -                  |          |
| 127  | 28/10/1998                               | 192             | 0,19      | 0.25          | 1.97E-04   | 1,31      | 0,50  | 15985,61 | 0.03             | 0.03                        | 0,11 | 2,16502          | 4,675-03   | 3,46E-03  | 3,30E-03  | -5.97E-06     | -2,54E-09 | 32.92          | 0.010   | 0.00     | 0.00       | 100,00             | 100,00   |
| 128  | 11/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/ | 2,63            | 0,20      | 0,15          | 1,47E-04   | 1,07      | 0,35  | 11800,43 | 0,03             | 0,03                        | 0.08 | 3,05502          | 5,53503    | 2,74E-03  | 2,56E-03  | -2,14E-05     | -2,63E-08 | 31,40          | 0,000   | 0,00     | 0,00       | 0,00               | 0,00     |
| 129  | 25/11/1998                               | 1,47            | 0,20      | 0,19          | 1,80E-04   | 1,05      | 0,35  | 11471,13 | 0,03             | 0,03                        | 0,08 | 2,095-02         | 5,47603    | 2,70E-03  | 2,59E-03  | -6,08E-06     | -2,39E-08 | 31,29          | 0,000   | 0,00     | 0,00       | 0,00               | 0,00     |
| 130  | ) 9/12/1998                              | 1,58            | 0,19      | 0,32          | 2,30E-04   | 1,39      | 0,53  | 17472,08 | 0,03             | 0,03                        | 0,11 | 1,82502          | 4,405-03   | 3,53E-03  | 3,39E-03  | -3,18E-06     | -1,02E-09 | 33,18          | 0,000   | 0,00     | 0,00       | 0,00               | 0,00     |
| 131  | i 22/12/1998                             | 0,66            | 0,19      | 0,28          | 2,10E-04   | 1,31      | 0,51  | 15985,61 | 0.03             | 0,03                        | 0,11 | 1,06502          | 4,635-03   | 3,42E-03  | 3,37E-03  | 1, -3,69 E-07 | -2,01E-09 | 32,95          | 0,000   | 0,00     | 0,00       | 0,00               | 0,00     |
| 132  | 1 6/1/1999                               | 0,30            | 0,19      | 0,49          | 2,30E-04   | 2,14      | 0,65  | 33376,67 | 0.03             | 0,03                        | 0,11 | 4,52503          | 3,30 - 603 | 3,36E-03  | 3,34E-03  | -1,57E-09     | 8,70E-14  | 34,79          | 1,478   | 0,00     | 0,00       | 100,00             | 100,00   |
| 133  | 21/1/1999                                | 0,29            | 0,18      | 0,65          | 2,80E-04   | 2,37      | 0,84  | 38899,58 | 0.03             | 0,03                        | 0,14 | 4,13603          | 301603     | 4,12E-03  | 4,10E-03  | -7,91 E-16    | 1,31E-09  | 35,23          | 3,703   | 0,00     | 0,16       | 100,00             | 95,81    |
| 134  | 28/1/1999                                | 032             | 0,18      | 0,78          | 3,00E-04   | 2,69      | 1,02  | 47038,21 | 0.03             | 0,03                        | 0,15 | 405503           | 2,74603    | 4,69E-03  | 4,67 5-03 | 2,655-10      | 7,20E-09  | 3581           | 0,000   | 0,04     | 1,05       | 400,00             |          |
| 130  | 3/2/1999                                 | 0.20            | 0,18      | 1051          | 2,5015-04  | 2,04      | 0.00  | 31004,73 | 003              | 0,03                        | 0.13 | 4,24603          | 3,37 003   | 401500    | 4,005-03  | -4,88E-12     | 3,23E-10  | 32,18          | 2,820   | 0,00     | 0.40       | 100,00             | 98,92    |
| 120  | 2 25/2/1999                              | 1021            | 0,10      | 0,05          | 2,0012-04  | 2,21      | 0.90  | 26604.10 | 002              | 0.03                        | 0.14 | 107502           | 2 10 502   | 4,010-00  | 4,295-00  | 2,146-12      | 2.225.00  | 25.50          | 5 1 1 4 | 0,00     | 0.19       | 100,00             | 93/0     |
| 120  | 11/2/1000                                | 0.26            | 0,10      | 0,0           | 2 2012-04  | 2,20      | 0.09  | 27199.07 | 002              | 0,03                        | 0.14 | 498502           | 2 16 5.02  | 4245.00   | 4,400-00  | -3,3912-00    | 1,230-08  | 25.20          | 1902    | 0,00     | 0.14       | 100,00             | 0220     |
| 130  | 25/3/1000                                | 0.40            | 0,18      | 0.67          | 3 005-04   | 2,30      | 0.84  | 36222.05 | 0.03             | 0.03                        | 0.14 | 578503           | 3.08503    | 4235.02   | 4 20 5.03 | 1 15E.00      | 1.425-00  | 74 00          | 3.640   | 0,00     | 0.16       | 100,00             | 0574     |
| 140  | 15/4/1000                                | 0.30            | 0.19      | 0.32          | 2 30 12.04 | 1.40      | 0.50  | 17660.96 | 0.03             | 0.03                        | 0.11 | 7.14503          | 438503     | 322E-03   | 3.19E-03  | -6.05E-08     | -1.68E-09 | 33 72          | 0.020   | 0.00     | 0.00       | 100.00             | 100.00   |
| 141  | 29/4/1999                                | 040             | 0,15      | 1,02          | 8.20E-04   | 1.22      | 0,41  | 14366,87 | 0.03             | 0,03                        | 0,09 | 104602           | 4,11603    | 2,85E-03  | 2,80E-03  | -4,35E-07     | -2,23E-09 | 33.27          | 0.013   | 0.00     | 0.00       | 100,00             | 100,00   |
| 142  | 13/5/1999                                | 031             | 0,18      | 0.34          | 2.60E-04   | 1,29      | 0,48  | 15620,93 | 0.03             | 0.03                        | 0,11 | 6,47503          | 4,56603    | 321E-03   | 3,19E-03  | -3,47E-08     | -2,53E-09 | 33,41          | 0.023   | 0,00     | 0.00       | 100,00             | 100,00   |
| 143  | 9,6/1999                                 | 4,13            | 0,19      | 0,24          | 2,00E-04   | 1,20      | 0,46  | 14015,04 | 0.03             | 0,03                        | 0,10 | 3,82602          | 4,94603    | 3,40 E-03 | 3,11E-03  | -4,20E-05     | -6,14E-09 | 33,29          | 0,010   | 0,00     | 0,00       | 100,00             | 100,00   |
| 144  | 22/7/1999                                | 2,22            | 0,19      | 0,21          | 2,10E-04   | 1,00      | 0,44  | 10661,60 | 0.03             | 0,03                        | 0,11 | 2,85502          | 5,54E03    | 3,55E-03  | 3,33E-03  | -1,56E-05     | -1,08E-08 | 32,52          | 0,003   | 0,00     | 0,00       | 100,00             | 100,00   |
| 145  | 5,8/1999                                 | 2,70            | 0,19      | 0,22          | 2,14E-04   | 0,99      | 0,39  | 10502,08 | 0.03             | 0,03                        | 0,10 | 3,27602          | 5,57603    | 3,20 E-03 | 2,975-03  | -2,58E-05     | -1,75E-08 | 32,65          | 0,002   | 0,00     | 0,00       | 100,00             | 100,00 j |
| 146  | 5 197871999                              | 0.97            | 0,19      | 0,21          | 2,10E-04   | 1,00      | 0,40  | 10661,60 | 0.03             | 0,03                        | 0,10 | 1,64502          | 5,54E03    | 3,12E-03  | 3,03E-03  | -2,34E-06     | -1,59E-08 | 32,78          | 0,004   | 0,00     | 0,00       | 100,00             | 100,00   |
| 147  | 2/9/1999                                 | 4.74            | 0,25      | 0,05          | 5,00E-05   | 0,94      | 0,33  | 9716,60  | 0.03             | 0,03                        | 0,08 | 4,92502          | 6,89503    | 2,90 E-03 | 2,59E-03  | -9,94E-05     | -7,96E-08 | 32.p7          | 0,000   | 0,00     | 0,00       | 0,00               | 0,00     |
| 148  | 15/9/1999                                | 2,52            | 0,19      | 0,26          | 2,10E-04   | 1,24      | 0,47  | 14721,60 | 0.03             | 0,03                        | 0,10 | 2,695-02         | 4,805-03   | 3,39E-03  | 3,19E-03  | -1,29E-05     | -4,18E-09 | 33,31          | 0,343   | 0,00     | 0,00       | 100,00             | 100,00   |
| 149  | 30/9/1999                                | 0,94            | 0,20      | 0,17          | 1,80E-04   | 0,90      | 0,29  | 9103,03  | 0.03             | 0,03                        | 0,08 | 1,72502          | 6,06503    | 2,39E-03  | 2,325-03  | -3,27E-06     | -5,23E-08 | 32.p2          | 0,001   | 0,00     | 0,00       | 100,00             | 100,00   |
| 1.90 | ) 14/10/1999                             | 101             | 0,19      | 0,20          | 2,10E-04   | 0,92      | 0,35  | 9408,15  | 0.03             | 0,03                        | 0,09 | 1,78602          | 5,86503    | 2,86E-03  | 2,77E-03  | -3,34E-06     | -2,96E-08 | 32,41          | 0,003   | 0,00     | 0,00       | 100,00             | 100,00   |
| 151  | 28/10/1999                               | 2,40            | 0,19      | 0.25          | 2,30E-04   | 1,03      | 0,42  | 11144,95 | 0.03             | 0,03                        | 0,10 | 2,94602          | 5,37503    | 3,35E-03  | 3,13E-03  | -1,77E-06     | -1,12E-08 | 32,88          | 0,02/   | 0,00     | <u> </u>   | 100,00             | 100,00   |
| 15   | 2 11/11/1999                             | 0,38            | 0,19      | 0,20          | 2,0015-04  | 1.20      | 0.57  | 15420.64 | 0.02             | 0,03                        | 0.12 | 1 28 5 02        | 0,09003    | 2010-00   | 2,805-00  | -2,20E-07     | 1.2600    | 32.8U          | 28,000  | 0,00     | 0,00       | 100,00             | 100,00   |
| 100  | 0/10/10999                               | 2.26            | 0,19      | ادرا :<br>م م | 2,3012-04  | 1,20      | 0.55  | 10439,04 | 0.02             | 0.03                        | 0.12 | 2 40 5 02        | 400003     | 402502    | 3,94E-U3  | -7,34E-07     | -1,30E-09 | 34.00<br>22.10 |         | 0,00     | 0,00       | 100,00             | 100,00   |
| 159  | 22/1999                                  | 272             | 0,10      | 0,24          | 4 90E-04   | 0.72      | 0.30  | 8640 77  | 0.02             | 0,03                        | 0.07 | 402502           | 6 19 502   | 2.245.02  | 2 12 5.02 | -2,84E-00     | -0,10E-10 | 20.49          | 0,030   | 0,00     | 0.00       | 100,00             | 100,00   |
| 19   | 6/1/2000                                 | 214             | 0,10      | 0.65          | 2 90F.04   | 2 28      | 0,27  | 20146.04 | 0.03             | 0.00                        | 0.16 | 156502           | 3.00503    | 405E.M    | 4.795.03  | 1.215.06      | 5.61E-00  | 35.60          | 0.214   | 0.00     | 0.68       | 100,00             | 216.21   |
| 197  | 13/1/2000                                | 107             | 0.18      | 0.20          | 2 10 2.04  | 1.14      | 0.47  | 12977.16 | 0.03             | 0.03                        | 0.11 | 1.60502          | 497503     | 3.43E-03  | 3.33E-03  | -2.01E-06     | -4.43E-09 | 32.01          | 0.313   | 0.00     | 0.00       | 100.00             | 100.00   |
| 138  | 20/1/2000                                | 407             | 0.18      | 0.29          | 2_0E-04    | 1.14      | 0.49  | 12977.16 | 0.03             | 0.03                        | 0.11 | 3,91502          | 497503     | 3.80E-03  | 3.47E-03  | -4.40E-05     | -3.38E-09 | 33.27          | 0.041   | 0.00     | 0.00       | 100.00             | 100.00   |
| 159  | 27/1/2000                                | 4.67            | 0.18      | 0.33          | 2.60E-04   | 1.25      | 0.53  | 14900.04 | 0.03             | 0.03                        | 0.12 | 403502           | 4,655-03   | 3,94E-03  | 3.58E-03  | -4.81E-05     | -123E09   | 33.25          | 0.090   | 0.00     | 0.00       | 100.00             | 100.00   |
| 160  | 3/2/2000                                 | 276             | 0,17      | 0,59          | 4,10E-04   | 1,44      | D,64  | 18423,24 | 0,03             | 0,03                        | 0,13 | 2,58602          | 400603     | 4,27E-03  | 4,025-03  | -1,00E-05     | 7,24E-15  | 34 DO          | 0,553   | 0,00     | 0,00       | 100,00             | 100,00   |
| 161  | 9/2/2000                                 | 0,49            | 0,19      | 0,27          | 2,30E-04   | 1,19      | 0,51  | 13840,21 | 0,03             | 0,03                        | 0,12 | 9,27503          | 4,88503    | 3,58E-03  | 3,53E-03  | -1,84E-07     | -2,44E-09 | 33,10          | 0,487   | 0,00     | 0,00       | 100,00             | 100,00   |
| 162  | 18/2/2000                                | 4.84            | 0,18      | 0,45          | 2,80E-04   | 1,58      | 0,75  | 21174,25 | 0,03             | 0,03                        | 0,15 | 3,53502          | 3,94503    | 4,90 E-03 | 4,50E-03  | -2,81E-05     | 1,72E-10  | 34,70          | 0,447   | 0,00     | 0,01       | 100,00             | 97,58    |
| 163  | 24/2/2000                                | 0,33            | 0,21      | 0,18          | 1,30E-04   | 1,34      | 0,63  | 16537,87 | 0,03             | 0,03                        | 0,14 | 6,58503          | 4,84503    | 4,13E-03  | 4,11E-03  | -1,46E-08     | -3,76E-10 | 33,56          | 0,603   | 0,00     | 0,00       | 100,00             | 100,00   |
| 164  | 3/3/2000                                 | 1,31            | 0,16      | 0,59          | 4,60E-04   | 1,28      | 0,61  | 15439,64 | 0,03             | 0,03                        | 0,13 | 1,70502          | 4,275-03   | 4,22E-03  | 4,07 E-03 | -2,09E-06     | -7,98E-12 | 33,42          | 0,219   | 0,00     | 0,00       | 100,00             | 100,00   |
| 165  | 10/3/2000                                | 0,30            | 0,18      | 0,31          | 2,80E-04   | 1,11      | 0,53  | 12468,29 | 0,03             | 0,03                        | 0,13 | 7,001503         | 4,99503    | 3,83E-03  | 3,80E-03  | -3,19E-08     | -1,67E-09 | 32,88          | 0,040   | 0,00     | 0,00       | 100,00             | 100,00   |
| 166  | 17/3/2000                                | 1,19            | 0,17      | 0,42          | 3,60E-04   | 1,16      | 0,58  | 13320,16 | 0,03             | 0,03                        | 0,13 | 1,70502          | 4,70503    | 4,21E-03  | 4,07 E-03 | -2,11E-08     | -2,49E-10 | 33,27          | 0,218   | 0,00     | 0,00       | 100,00             | 100,00   |
| 167  | 24/3/2000                                | 1.98            | 0,19      | 0,28          | 2,00E-04   | 1,40      | 0,70  | 17660,96 | 0.03             | 0,03                        | 0,15 | 2,11E02          | 4,46503    | 4,68E-03  | 4,47E-03  | -4,42E-06     | 1,98E-15  | 34,12          | 0,491   | 0,00     | 0,00       | 100,00             | 100,00   |
| 3168 | 31/3/2000                                | 125             | ; 0,18    | : 0,38        | 3.00E-04   | : 1,94    | 0,84  | 28808,79 | ; D.D.3          | 0,03                        | 0,15 | 1,25602          | 3,41E03    | 4,66E-03  | 4,54E-03  | ;-4,80E-07    | 1,46E-09  | 35.27          | 1,121   | ; 0,00   | ; 0,13     | 100,00             | 88,68    |

Tabela 6.2i - Descargas calculadas pelo método de Rottner (1958) usando o diâmetro D<sub>s.4</sub> e o Dvj

| Tabela 6.2i - Descargas calculadas i | p elo método de Rottner | : (1958) usando | o diâmetro D.      | . e o Dvi |
|--------------------------------------|-------------------------|-----------------|--------------------|-----------|
| Tayona of the boot and a second      |                         | (1000) and 100  | v and local v D p. |           |

| _          |                   |                 | _                     |                    |          |         |       |          |                  |                             |                |         | -                |          |          |           |                  |       |         |                       |            |                    |         |
|------------|-------------------|-----------------|-----------------------|--------------------|----------|---------|-------|----------|------------------|-----------------------------|----------------|---------|------------------|----------|----------|-----------|------------------|-------|---------|-----------------------|------------|--------------------|---------|
| <b>(1)</b> | (2)               | (3)             | (4)                   | (5)                | (6)      | $\odot$ | (8)   | (9)      | (10)             | (A1)                        | (12)           | (13)    | (14)             | (15)     | (16)     | (17)      | (81)             | (19)  | (20)    | (21)                  | (22)       | (23)               | (24)    |
| N          | DATA              | D <sub>64</sub> | D <sub>vj [ROT]</sub> | τ <sub>o</sub>     | S        | d       | U     | Amr      | B <sub>D64</sub> | $\mathbf{B}_{\mathrm{Drj}}$ | C <sub>m</sub> | D       | D <sub>Dei</sub> | ETEI     | End      | FTEA      | F <sub>Dei</sub> | B     | qBm     | qB[ROT]D <sub>p</sub> | qB[ROT]Dyj | E[%]D <sup>®</sup> | E[%]Dvj |
|            |                   | (mm             | mm                    | Kgť m <sup>2</sup> | (m/m)    | (m)     | (m/s) | -        | -                | -                           | -              | -       | -                | -        | -        | -         | -                | (m)   | ion/dia | ton/dia               | ton/dia    | -                  | -       |
| 169        | 7 <b>/4/2</b> 000 | 1,84            | 0,18                  | 0,27               | 2,60E-04 | 1,03    | 0,43  | 11144,95 | 0,03             | 0,03                        | 0,11           | 2,46502 | 5,29503          | 3,38E-03 | 3,215-03 | -9,61E-06 | -9,08E09         | 32,77 | 0,050   | 0,00                  | 0,00       | 100,00             | 100,00  |
| 170        | 14/4/2000         | 1¢6             | 0,19                  | 0,22               | 2,30E-04 | 0,92    | 0,41  | 9408,15  | 0,03             | 0,03                        | 0,11           | 2,48502 | 5,79503          | 3,41E-03 | 3,24E-03 | -9,80E-06 | -1,67E-08        | 32,20 | 0,005   | 0,00                  | 0,00       | 100,00             | 100,00  |
| 171        | 19/4/2000         | 4.ρ0            | 0,18                  | 0,23               | 2,50E-04 | 0,91    | 0,39  | 9255,17  | 0,03             | 0,03                        | 0,10           | 4,49602 | 5,78603          | 3,44E-03 | 3,10E-03 | -7,14E-05 | -1,92E-08        | 31,99 | 0,012   | 0,00                  | 0,00       | 100,00             | 100,00  |
|            |                   |                 |                       |                    |          |         |       |          |                  |                             |                |         |                  |          |          |           |                  |       |         |                       | MEDIA      | 94,74              | 94,12   |

Amr = {[g.(dr-1).d<sup>3</sup>]<sup>0,5</sup>}.gs

 $\mathbf{B}_{164} = (0,1437, (\mathbf{D}_{64}\,/\,\mathbf{d})^{2/3} \pm 0,03)$ 

 $B_{T_{bfi}} = (0,1437, (Dvj/d)^{23} + 0,03)$ 

 $C_{mr} = \{U \mid [g_{rr}-1], d]^{0.5}\}$ 

 $D_{TRd} = 1.674 (D_{Rd} / d)^{2/3}$ 

 $D_{Trei} = 1,674 (Dvj / d)^{28}$ 

 $\mathbf{E}_{\mathsf{TEd}} = \mathbf{B}_{\mathsf{TEd} \ \mathsf{X}} \mathbf{C}_{\mathsf{mr}}$ 

 $\mathbf{E}_{\mathsf{Thri}} = \mathbf{B}_{\mathsf{Thri} \ \mathsf{X}} \ \mathbf{C}_{\mathsf{ror}}$ 

 $\mathbf{F}_{\mathsf{TEd}} = (\mathbf{E}_{\mathsf{TEd}} - \mathbf{D}_{\mathsf{TEd}})^3$ 

 $\mathbf{F}_{\mathrm{Dei}} = (\mathbf{E}_{\mathrm{Dei}} - \mathbf{D}_{\mathrm{Dei}})^3$ 

qB[ROT]D<sub>84</sub> - Descarga sólida calculada pelo método de Rottner para o diâmetro D<sub>84</sub>

qB[ROT]Dvj - Descarga sólida calculada pelo método de Rottner para o diâmetro Dvj

| (1) | (2)                | (3)             | (4)                   | (5)                  | (6)              | (7)             | (8)           | (9)                  | (10)  | (11)    | (12)                   | (13)      | (14)       | (15)     |
|-----|--------------------|-----------------|-----------------------|----------------------|------------------|-----------------|---------------|----------------------|-------|---------|------------------------|-----------|------------|----------|
| №   | DATA               | D <sub>90</sub> | D <sub>Vi [GAA]</sub> | $\mathrm{U}_{\star}$ | θ <sub>i90</sub> | $\theta_{iDvj}$ | $\phi_{kD90}$ | $\phi_{k\text{Dvj}}$ | В     | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E[%]D90    | E[%]Dvj  |
|     |                    | (mm)            | mm                    | (m/s)                |                  |                 |               |                      | (m)   | ton/dia | ton/dia                | ton/dia   | -          | -        |
| 1   | 26/3/1993          | 1,86            | 7,12                  | 0,05                 | 0,09             | 0,02            | 0,14          | 0,00                 | 34,70 | 0,141   | 104,45                 | 0,58      | 73977,74   | 308,29   |
| 2   | 6/4/1993           | 3,82            | 7,16                  | 0,05                 | 0,04             | 0,02            | 0,01          | 0,00                 | 34,87 | 0,038   | 9,64                   | 0,54      | 25259,23   | 1318,91  |
| 3   | 20/4/1993          | 4,11            | 6,99                  | 0,04                 | 0,03             | 0,02            | 0,00          | 0,00                 | 34,88 | 0,045   | 0,29                   | 0,49      | 545,84     | 998,89   |
| 4   | 4/5/1993           | 4,22            | 7,35                  | 0,05                 | 0,04             | 0,02            | 0,01          | 0,00                 | 34,78 | 0,045   | 11,71                  | 0,58      | 25930,28   | 1196,14  |
| 5   | 18/5/1993          | 1,23            | 6,65                  | 0,04                 | 0,08             | 0,02            | 0,13          | 0,00                 | 34,38 | 0,024   | 49,79                  | 0,42      | 207339,12  | 1670,66  |
| 6   | 1/6/1993           | 3,13            | 7,59                  | 0,06                 | 0,07             | 0,03            | 0,07          | 0,00                 | 35,24 | 0,190   | 97,02                  | 0,71      | 50964,10   | 275,97   |
| 7   | 8/6/1993           | 1,42            | 6,67                  | 0,04                 | 0,08             | 0,02            | 0,12          | 0,00                 | 34,91 | 0,026   | 59,41                  | 0,46      | 228396,66  | 1671,05  |
| 8   | 15/6/1993          | 3,78            | 6,93                  | 0,04                 | 0,03             | 0,02            | 0,00          | 0,00                 | 34,21 | 0,008   | 0,26                   | 0,47      | 3126,34    | 5818,43  |
| 9   | 22/6/1993          | 4,94            | 6,80                  | 0,04                 | 0,02             | 0,02            | 0,00          | 0,00                 | 34,54 | 0,008   | 0,32                   | 0,44      | 3931,89    | 5446,99  |
| 10  | 29/6/1993          | 2,00            | 6,67                  | 0,04                 | 0,04             | 0,01            | 0,01          | 0,00                 | 33,99 | 0,007   | 7,68                   | 0,39      | 109572,57  | 5446,75  |
| 11  | 6/7/1993           | 4,75            | 5,46                  | 0,03                 | 0,01             | 0,01            | 0,00          | 0,00                 | 33,77 | 0,002   | 0,22                   | 0,25      | 10957,44   | 12619,12 |
| 12  | 21/7/1993          | 4,50            | 5,02                  | 0,03                 | 0,01             | 0,01            | 0,00          | 0,00                 | 33,64 | 0,006   | 0,19                   | 0,21      | 3010,11    | 3367,73  |
| 13  | 3/8/1993           | 4,70            | 4,13                  | 0,02                 | 0,01             | 0,01            | 0,00          | 0,00                 | 32,82 | 0,002   | 0,15                   | 0,13      | 7563,92    | 6629,75  |
| 14  | 17/8/1993          | 4,02            | 2,08                  | 0,02                 | 0,00             | 0,01            | 0,00          | 0,00                 | 33,53 | 0,002   | 0,09                   | 0,05      | 4575,86    | 2320,93  |
| 15  | 31/8/1993          | 3,16            | 3,29                  | 0,02                 | 0,01             | 0,01            | 0,00          | 0,00                 | 33,74 | 0,002   | 0,10                   | 0,10      | 4817,18    | 5024,95  |
| 16  | 21/9/1993          | 1,45            | 6,37                  | 0,04                 | 0,06             | 0,01            | 0,04          | 0,00                 | 33,97 | 0,006   | 17,25                  | 0,37      | 287439,70  | 6046,93  |
| 17  | 28/9/1993          | 1,77            | 7,59                  | 0,06                 | 0,11             | 0,03            | 0,24          | 0,00                 | 34,92 | 0,384   | 190,71                 | 0,68      | 49564,93   | 76,17    |
| 18  | 5/10/1993          | 5,11            | 6,37                  | 0,04                 | 0,02             | 0,01            | 0,00          | 0,00                 | 34,38 | 0,006   | 0,30                   | 0,38      | 4940,47    | 6185,59  |
| 19  | 21/10/1993         | 4,62            | 7,05                  | 0,05                 | 0,03             | 0,02            | 0,00          | 0,00                 | 34,84 | 0,023   | 0,34                   | 0,52      | 1373,33    | 21.48,53 |
| 20  | 28/10/1993         | 1,64            | 7,28                  | 0,05                 | 0,10             | 0,02            | 0,18          | 0,00                 | 34,88 | 0,037   | 122,12                 | 0,59      | 329959,12  | 1492,82  |
| 21  | 4/11/1993          | 4,96            | 4,73                  | 0,03                 | 0,01             | 0,01            | 0,00          | 0,00                 | 33,82 | 0,003   | 0,20                   | 0,19      | 6513,21    | 6206,01  |
| 22  | 9/11/1993          | 4,82            | 6,04                  | 0,03                 | 0,01             | 0,01            | 0,00          | 0,00                 | 34,01 | 0,005   | 0,25                   | 0,32      | 4957,95    | 6238,66  |
| 23  | 20/12/1993         | 1,71            | 7,16                  | 0,05                 | 0,08             | 0,02            | 0,13          | 0,00                 | 34,64 | 0,080   | 87,39                  | 0,55      | 109136,68  | 586,78   |
| 24  | 10/2/1994          | 1,37            | 4,73                  | 0,04                 | 0,06             | 0,02            | 0,04          | 0,00                 | 35,65 | 0,332   | 15,95                  | 0,28      | 4703,17    | 16,31    |
| 25  | 29/3/1994          | 1,66            | 7,16                  | 0,06                 | 0,14             | 0,03            | 0,43          | 0,00                 | 34,34 | 0,027   | 343,68                 | 15,03     | 1272785,41 | 55568,09 |
| 26  | 19/4/1994          | 2,26            | 6,04                  | 0,04                 | 0,05             | 0,02            | 0,02          | 0,00                 | 34,00 | 0,022   | 18,71                  | 0,41      | 84965,62   | 1750,89  |
| 27  | 6/5/1994           | 4,43            | 5,22                  | 0,03                 | 0,02             | 0,01            | 0,00          | 0,00                 | 33,60 | 0,012   | 0,24                   | 0,28      | 1887,44    | 2242,69  |
| 28  | 20/5/1994          | 1,20            | 5,69                  | 0,04                 | 0,07             | 0,02            | 0,10          | 0,00                 | 33,60 | 0,012   | 34,62                  | 0,33      | 288419,59  | 2679,73  |
| 29  | 17/6/1994          | 1,00            | 4,45                  | 0,03                 | 0,06             | 0,01            | 0,03          | 0,00                 | 33,64 | 0,005   | 8,06                   | 0,21      | 161003,78  | 4033,85  |
| 30  | 1/7/1994           | 1,05            | 5,69                  | 0,04                 | 0,09             | 0,02            | 0,16          | 0,00                 | 33,81 | 0,006   | 50,58                  | 0,35      | 842829,26  | 5663,76  |
| 31  | 1 <i>5/7/</i> 1994 | 1,10            | 4,13                  | 0,03                 | 0,05             | 0,01            | 0,02          | 0,00                 | 33,64 | 0,051   | 3,83                   | 0,18      | 7406,22    | 254,76   |
| 32  | 29/7/1994          | 2,30            | 5,69                  | 0,04                 | 0,04             | 0,02            | 0,01          | 0,00                 | 33,81 | 0,010   | 7,67                   | 0,34      | 76587,08   | 3345,70  |

Tabela 6.2j - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)         | (6)              | (7)             | (8)           | (9)           | (10)  | (11)    | (12)                   | (13)      | (14)        | (15)      |
|-----|------------|-----------------|-----------------------|-------------|------------------|-----------------|---------------|---------------|-------|---------|------------------------|-----------|-------------|-----------|
| №   | DATA       | D <sub>90</sub> | D <sub>Vi [GAA]</sub> | $U_{\star}$ | θ <sub>i90</sub> | $\theta_{iDvj}$ | $\phi_{kD90}$ | $\phi_{kDvj}$ | В     | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E[%]D90     | E[%]Dvj   |
|     |            | (mm)            | mm                    | (m/s)       |                  |                 |               | -             | (m)   | ton/dia | ton/dia                | ton/dia   | -           | -         |
| 33  | 12/8/1994  | 2,18            | 3,29                  | 0,02        | 0,02             | 0,01            | 0,00          | 0,00          | 33,26 | 0,011   | 0,08                   | 0,12      | 624,63      | 994,76    |
| 34  | 26/8/1994  | 1,05            | 4,04                  | 0,03        | 0,05             | 0,01            | 0,02          | 0,00          | 33,47 | 0,002   | 4,56                   | 0,18      | 228107,91   | 8774,48   |
| 35  | 8/9/1994   | 1,27            | 4,73                  | 0,03        | 0,05             | 0,01            | 0,03          | 0,00          | 33,68 | 0,004   | 8,50                   | 0,24      | 212422,85   | 5879,51   |
| 36  | 22/9/1994  | 1,10            | 6,04                  | 0,04        | 0,10             | 0,02            | 0,22          | 0,00          | 33,92 | 0,002   | 80,26                  | 0,40      | 4012965,11  | 20073,25  |
| 37  | 6/10/1994  | 1,52            | 3,29                  | 0,02        | 0,02             | 0,01            | 0,00          | 0,00          | 33,49 | 0,002   | 0,06                   | 0,12      | 2764,42     | 6106,61   |
| 38  | 27/10/1994 | 3,15            | 5,87                  | 0,05        | 0,04             | 0,02            | 0,01          | 0,00          | 34,48 | 0,424   | 13,35                  | 0,43      | 3048,50     | 0,87      |
| 39  | 23/11/1994 | 1,45            | 3,29                  | 0,02        | 0,03             | 0,01            | 0,00          | 0,00          | 33,52 | 0,004   | 0,06                   | 0,13      | 1277,88     | 3029,70   |
| 40  | 22/12/1994 | 2,51            | 7,39                  | 0,07        | 0,14             | 0,05            | 0,42          | 0,02          | 35,68 | 0,218   | 640,82                 | 76,44     | 293855,46   | 34962,90  |
| 41  | 5/1/1995   | 1,36            | 7,59                  | 0,07        | 0,23             | 0,04            | 1,54          | 0,01          | 35,27 | 0,523   | 1215,52                | 52,43     | 232313,76   | 9925,41   |
| 42  | 19/1/1995  | 4,79            | 6,37                  | 0,05        | 0,03             | 0,02            | 0,00          | 0,00          | 33,92 | 0,015   | 0,35                   | 0,46      | 2214,58     | 2979,15   |
| 43  | 26/1/1995  | 1,28            | 6,37                  | 0,05        | 0,10             | 0,02            | 0,21          | 0,00          | 33,93 | 0,036   | 94,62                  | 0,45      | 262730,30   | 1161,93   |
| 44  | 9/2/1995   | 5,15            | 5,69                  | 0,06        | 0,05             | 0,04            | 0,02          | 0,01          | 40,30 | 3,097   | 60,31                  | 46,34     | 1847,35     | 1396,26   |
| 45  | 16/2/1995  | 2,70            | 7,77                  | 0,08        | 0,14             | 0,05            | 0,41          | 0,02          | 35,40 | 0,485   | 692,42                 | 86,62     | 142666,75   | 17760,49  |
| 46  | 8/3/1995   | 1,85            | 6,80                  | 0,05        | 0,10             | 0,03            | 0,20          | 0,00          | 34,94 | 0,396   | 165,67                 | 0,60      | 41736,40    | 50,91     |
| 47  | 24/3/1995  | 4,03            | 6,92                  | 0,07        | 0,07             | 0,04            | 0,06          | 0,01          | 35,38 | 1,721   | 133,33                 | 31,63     | 7647,17     | 1737,61   |
| 48  | 7/4/1995   | 1,10            | 7,16                  | 0,06        | 0,22             | 0,03            | 1,37          | 0,01          | 35,05 | 0,171   | 763,55                 | 20,56     | 446420,32   | 11924,79  |
| 49  | 28/4/1995  | 1,44            | 6,92                  | 0,06        | 0,13             | 0,03            | 0,39          | 0,00          | 34,63 | 0,081   | 244,7.4                | 0,61      | 302049,97   | 650,85    |
| 50  | 12/5/1995  | 2,79            | 6,92                  | 0,06        | 0,07             | 0,03            | 0,09          | 0,00          | 34,74 | 0,468   | 115,14                 | 0,63      | 24501,53    | 35,15     |
| 51  | 9/6/1995   | 1,58            | 6,37                  | 0,05        | 0,09             | 0,02            | 0,15          | 0,00          | 34,35 | 0,023   | 88,12                  | 0,48      | 383035,36   | 1973,61   |
| 52  | 23/6/1995  | 2,86            | 5,44                  | 0,04        | 0,04             | 0,02            | 0,01          | 0,00          | 34,34 | 0,018   | 13,78                  | 0,38      | 76463,58    | 2035,20   |
| 53  | 5/7/1995   | 1,23            | 6,37                  | 0,05        | 0,10             | 0,02            | 0,22          | 0,00          | 34,19 | 0,051   | 96,85                  | 0,45      | 189798,34   | 791,43    |
| 54  | 12/7/1995  | 0,92            | 7,68                  | 0,07        | 0,33             | 0,04            | 3,50          | 0,01          | 35,03 | 4,163   | 1811,38                | 41,27     | 43411,42    | 891,31    |
| 55  | 19/7/1995  | 0,85            | 6,52                  | 0,06        | 0,24             | 0,03            | 1,60          | 0,00          | 34,59 | 0,016   | 618,63                 | 0,59      | 3866345,00  | 3596,46   |
| 56  | 26/7/1995  | 1,93            | 6,67                  | 0,05        | 0,09             | 0,03            | 0,14          | 0,00          | 34,61 | 0,118   | 114,11                 | 0,55      | 96602,76    | 366,97    |
| 57  | 10/8/1995  | 0,95            | 5,87                  | 0,04        | 0,11             | 0,02            | 0,25          | 0,00          | 34,09 | 0,012   | 77,51                  | 0,38      | 645813,82   | 3047,43   |
| 58  | 31/8/1995  | 4,69            | 4,73                  | 0,03        | 0,01             | 0,01            | 0,00          | 0,00          | 33,65 | 0,002   | 0,23                   | 0,23      | 11307,72    | 11404,03  |
| 59  | 21/9/1995  | 1,14            | 9,53                  | 0,09        | 0,40             | 0,05            | 4,79          | 0,02          | 34,28 | 0,031   | 3693,57                | 125,90    | 11914655,99 | 406027,47 |
| 60  | 28/9/1995  | 2,50            | 6,04                  | 0,05        | 0,05             | 0,02            | 0,03          | 0,00          | 34,68 | 0,249   | 24,20                  | 0,44      | 9618,81     | 77,26     |
| 61  | 5/10/1995  | 1,64            | 5,25                  | 0,04        | 0,05             | 0,02            | 0,02          | 0,00          | 34,16 | 0,002   | 10,34                  | 0,30      | 516878,67   | 14833,15  |
| 62  | 19/10/1995 | 3,79            | 7,04                  | 0,06        | 0,06             | 0,03            | 0,06          | 0,01          | 35,02 | 0,205   | 107,88                 | 20,78     | 52523,45    | 10035,63  |
| 63  | 23/11/1995 | 1,66            | 5,25                  | 0,04        | 0,05             | 0,02            | 0,02          | 0,00          | 34,05 | 0,006   | 9,98                   | 0,30      | 166217,22   | 4861,69   |
| 64  | 7/12/1995  | 1,86            | 4,13                  | 0,03        | 0,03             | 0,01            | 0,00          | 0,00          | 33,39 | 0,002   | 0,08                   | 0,18      | 3883,53     | 8738,96   |

Tabela 6.2j - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)                  | (6)              | (7)             | (8)               | (9)           | (10)  | (11)    | (12)                   | (13)      | (14)       | (15)     |
|-----|------------|-----------------|-----------------------|----------------------|------------------|-----------------|-------------------|---------------|-------|---------|------------------------|-----------|------------|----------|
| N°  | DATA       | D <sub>90</sub> | D <sub>VI IGAA1</sub> | $\mathbf{U}_{\star}$ | θ <sub>i90</sub> | $\theta_{iDvi}$ | φ <sub>kD90</sub> | $\phi_{kDVi}$ | В     | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E[%]D90    | E[%]Dvj  |
|     |            | (mm)            | mm                    | (m/s)                |                  |                 |                   | •             | (m)   | ton/dia | ton/dia                | ton/dia   | -          | -        |
| 65  | 10/1/1996  | 1,75            | 7,39                  | 0,08                 | 0,22             | 0,05            | 1,35              | 0,03          | 36,91 | 5,141   | 1587,40                | 134,61    | 30777,28   | 2518,42  |
| 66  | 31/1/1996  | 0,47            | 6,37                  | 0,05                 | 0,29             | 0,02            | 2,60              | 0,00          | 34,12 | 0,019   | 449,22                 | 0,47      | 2364196,09 | 2369,41  |
| 67  | 7/2/1996   | 1,68            | 6,67                  | 0,06                 | 0,11             | 0,03            | 0,27              | 0,00          | 35,12 | 0,238   | 203,30                 | 0,60      | 85321,64   | 150,41   |
| 68  | 6/3/1996   | 0,56            | 7,28                  | 0,07                 | 0,52             | 0,04            | 6,72              | 0,01          | 35,36 | 3,542   | 2089,34                | 39,90     | 58887,71   | 1026,45  |
| 69  | 20/3/1996  | 1,69            | 7,77                  | 0,09                 | 0,26             | 0,06            | 2,06              | 0,04          | 36,55 | 1,150   | 2475,59                | 208,42    | 215168,33  | 18023,76 |
| 70  | 3/4/1996   | 2,05            | 6,92                  | 0,06                 | 0,10             | 0,03            | 0,19              | 0,00          | 34,87 | 0,133   | 177,00                 | 0,63      | 132985,87  | 373,50   |
| 71  | 16/4/1996  | 1,18            | 6,67                  | 0,05                 | 0,15             | 0,03            | 0,56              | 0,00          | 34,52 | 0,051   | 284,66                 | 0,57      | 558062,74  | 1021,38  |
| 72  | 15/5/1996  | 2,20            | 6,37                  | 0,05                 | 0,07             | 0,02            | 0,07              | 0,00          | 34,24 | 0,246   | 57 <u>4</u> 2          | 0,49      | 23240,91   | 99,31    |
| 73  | 22/5/1996  | 3,00            | 6,37                  | 0,05                 | 0,05             | 0,02            | 0,02              | 0,00          | 34,20 | 0,008   | 21 <u>D</u> 2          | 0,48      | 262617,49  | 5892,04  |
| 74  | 19/6/1996  | 1,36            | 5,25                  | 0,04                 | 0,06             | 0,02            | 0,05              | 0,00          | 33,76 | 0,012   | 18,38                  | 0,30      | 153092,04  | 2386,12  |
| 75  | 3/6/1996   | 3,77            | 5,69                  | 0,04                 | 0,03             | 0,02            | 0,00              | 0,00          | 34,07 | 0,023   | 0,24                   | 0,36      | 950,87     | 1484,91  |
| 76  | 17/7/1996  | 4,09            | 5,25                  | 0,04                 | 0,02             | 0,02            | 0,00              | 0,00          | 33,81 | 0,004   | 0,23                   | 0,29      | 5615,82    | 7236,71  |
| 77  | 31/7/1996  | 1,66            | 5,46                  | 0,04                 | 0,05             | 0,02            | 0,03              | 0,00          | 34,75 | 0,005   | 12,54                  | 0,32      | 250755,49  | 6384,35  |
| 78  | 7/8/1996   | 3,05            | 4,73                  | 0,03                 | 0,02             | 0,01            | 0,00              | 0,00          | 34,04 | 0,004   | 0,16                   | 0,24      | 3811,45    | 5965,44  |
| 79  | 14/8/1996  | 3,73            | 5,46                  | 0,04                 | 0,02             | 0,02            | 0,00              | 0,00          | 33,99 | 0,005   | 0,22                   | 0,33      | 4387,38    | 6473,25  |
| 80  | 21/8/1996  | 4,35            | 5,02                  | 0,04                 | 0,02             | 0,02            | 0,00              | 0,00          | 33,89 | 0,005   | 0,24                   | 0,28      | 4736,92    | 5479,07  |
| 81  | 28/8/1996  | 4,63            | 5,25                  | 0,04                 | 0,02             | 0,02            | 0,00              | 0,00          | 33,73 | 0,003   | 0,26                   | 0,29      | 8506,89    | 9659,14  |
| 82  | 4/9/1996   | 2,89            | 6,37                  | 0,05                 | 0,05             | 0,02            | 0,03              | 0,00          | 34,56 | 0,036   | 30,94                  | 0,50      | 85839,59   | 1291,07  |
| 83  | 11/9/1996  | 4,79            | 7,59                  | 0,08                 | 0,08             | 0,05            | 0,11              | 0,02          | 35,84 | 3,697   | 333,24                 | 101,20    | 8913,77    | 2637,47  |
| 84  | 2/10/1996  | 2,37            | 5,46                  | 0,04                 | 0,04             | 0,02            | 0,01              | 0,00          | 34,10 | 0,006   | 7,40                   | 0,34      | 123162,86  | 5489,38  |
| 85  | 16/10/1996 | 4,69            | 6,43                  | 0,05                 | 0,03             | 0,03            | 0,01              | 0,00          | 34,70 | 0,250   | 11,53                  | 0,53      | 4510,95    | 110,23   |
| 86  | 6/11/1996  | 4,16            | 6,60                  | 0,05                 | 0,04             | 0,03            | 0,01              | 0,00          | 34,70 | 0,320   | 20,75                  | 0,56      | 6384,43    | 74,23    |
| 87  | 20/11/1996 | 4,40            | 6,04                  | 0,05                 | 0,03             | 0,02            | 0,00              | 0,00          | 34,70 | 0,034   | 7,53                   | 0,46      | 22050,50   | 1252,55  |
| 88  | 6/12/1996  | 1,40            | 6,04                  | 0,05                 | 0,10             | 0,02            | 0,18              | 0,00          | 34,60 | 4,340   | 92,69                  | 0,45      | 2035,60    | 89,73    |
| 89  | 9/1/1997   | 1,11            | 6,37                  | 0,05                 | 0,14             | 0,02            | 0,47              | 0,00          | 34,68 | 0,033   | 209,40                 | 0,51      | 634435,56  | 1453,65  |
| 90  | 22/1/1997  | 1,10            | 7,39                  | 0,07                 | 0,24             | 0,04            | 1,59              | 0,01          | 34,78 | 0,146   | 909,69                 | 24,45     | 622975,68  | 16649,93 |
| 91  | 3/2/1997   | 0,98            | 7,39                  | 0,08                 | 0,36             | 0,05            | 4,08              | 0,02          | 36,46 | 21,990  | 2505,48                | 84,45     | 11293,71   | 284,05   |
| 92  | 12/3/1997  | 1,10            | 6,37                  | 0,05                 | 0,12             | 0,02            | 0,32              | 0,00          | 34,32 | 1,010   | 130,34                 | 0,47      | 12805,41   | 53,73    |
| 93  | 26/3/1997  | 1,03            | 5,87                  | 0,04                 | 0,10             | 0,02            | 0,19              | 0,00          | 33,84 | 0,160   | 59,38                  | 0,37      | 37010,53   | 128,48   |
| 94  | 16/4/1997  | 1,16            | 5,25                  | 0,03                 | 0,06             | 0,01            | 0,05              | 0,00          | 33,64 | 0,032   | 16,45                  | 0,28      | 51319,73   | 771,60   |
| 95  | 14/5/1997  | 1,18            | 5,46                  | 0,04                 | 0,06             | 0,01            | 0,06              | 0,00          | 33,16 | 0,104   | 17,56                  | 0,29      | 16787,88   | 179,30   |
| 96  | 4/6/1997   | 4,92            | 5,87                  | 0,04                 | 0,02             | 0,02            | 0,00              | 0,00          | 33,64 | 0,006   | 0,30                   | 0,36      | 4920,66    | 5889,05  |

Tabela 6.2j - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)                  | (6)              | (7)             | (8)           | (9)                  | (10)  | (11)    | (12)                   | (13)      | (14)        | (15)       |
|-----|------------|-----------------|-----------------------|----------------------|------------------|-----------------|---------------|----------------------|-------|---------|------------------------|-----------|-------------|------------|
| N°  | DATA       | D <sub>90</sub> | D <sub>Vj [GAA]</sub> | $\mathrm{U}_{\star}$ | θ <sub>i90</sub> | $\theta_{iDvj}$ | $\phi_{kD90}$ | $\phi_{k\text{Dvj}}$ | В     | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E[%]D90     | E[%]Dvj    |
|     |            | (mm)            | mm                    | (m/s)                |                  |                 |               |                      | (m)   | ton/dia | ton/dia                | ton/dia   | -           | -          |
| 97  | 2/7/1997   | 4,40            | 5,87                  | 0,04                 | 0,02             | 0,02            | 0,00          | 0,00                 | 33,84 | 0,005   | 0,27                   | 0,36      | 5299,49     | 7102,16    |
| 98  | 12/8/1997  | 4,70            | 5,66                  | 0,04                 | 0,02             | 0,02            | 0,00          | 0,00                 | 33,93 | 0,003   | 0,28                   | 0,34      | 9246,51     | 11159,70   |
| 99  | 26/8/1997  | 2,46            | 6,37                  | 0,05                 | 0,05             | 0,02            | 0,02          | 0,00                 | 33,97 | 0,005   | 20,92                  | 0,45      | 387322,42   | 8177,32    |
| 100 | 9/9/1997   | 2,25            | 5,46                  | 0,03                 | 0,03             | 0,01            | 0,00          | 0,00                 | 33,40 | 0,002   | 0,12                   | 0,28      | 4770,19     | 11726,57   |
| 101 | 23/9/1997  | 4,37            | 10,91                 | 0,10                 | 0,15             | 0,06            | 0,52          | 0,04                 | 33,96 | 0,013   | 1809,21                | 373,63    | 14134335,20 | 2918886,30 |
| 102 | 7/10/1997  | 0,85            | 6,24                  | 0,04                 | 0,13             | 0,02            | 0,39          | 0,00                 | 33,98 | 0,013   | 111,18                 | 0,42      | 829630,63   | 2997,10    |
| 103 | 21/10/1997 | 1,09            | 4,37                  | 0,03                 | 0,06             | 0,01            | 0,03          | 0,00                 | 34,07 | 0,014   | 8,60                   | 0,21      | 60906,11    | 1409,59    |
| 104 | 4/11/1997  | 1,44            | 5,59                  | 0,04                 | 0,06             | 0,02            | 0,04          | 0,00                 | 33,80 | 0,003   | 17,32                  | 0,32      | 597168,38   | 10986,92   |
| 105 | 2/12/1997  | 1,62            | 5,82                  | 0,04                 | 0,07             | 0,02            | 0,06          | 0,00                 | 34,22 | 0,439   | 31,83                  | 0,38      | 7151,08     | 13,81      |
| 106 | 16/12/1997 | 0,63            | 7,34                  | 0,06                 | 0,36             | 0,03            | 4,16          | 0,00                 | 34,77 | 5,770   | 1267,14                | 0,71      | 21860,83    | 87,71      |
| 107 | 13/1/1998  | 0,59            | 8,56                  | 0,08                 | 0,65             | 0,04            | 9,02          | 0,01                 | 34,82 | 0,107   | 3342,02                | 80,35     | 3123287,23  | 74992,00   |
| 108 | 27/1/1998  | 0,67            | 4,73                  | 0,03                 | 0,10             | 0,01            | 0,22          | 0,00                 | 34,01 | 0,010   | 37,86                  | 0,25      | 386192,55   | 2417,92    |
| 109 | 11/2/1998  | 2,30            | 7,39                  | 0,07                 | 0,12             | 0,04            | 0,29          | 0,01                 | 35,24 | 1,660   | 353,57                 | 27,43     | 21 199 ,35  | 1552,57    |
| 110 | 26/2/1998  | 2,36            | 7,39                  | 0,07                 | 0,13             | 0,04            | 0,35          | 0,01                 | 34,55 | 1,060   | 459,42                 | 42,46     | 43241,23    | 3905,52    |
| 111 | 11/3/1998  | 2,59            | 6,93                  | 0,05                 | 0,07             | 0,03            | 0,08          | 0,00                 | 34,68 | 1,600   | 89,54                  | 0,60      | 5496,12     | 62,52      |
| 112 | 25/3/1998  | 0,93            | 7,16                  | 0,06                 | 0,24             | 0,03            | 1,56          | 0,00                 | 35,22 | 0,310   | 699,28                 | 0,69      | 225473,49   | 122,22     |
| 113 | 8/4/1998   | 1,22            | 6,04                  | 0,04                 | 0,09             | 0,02            | 0,15          | 0,00                 | 33,54 | 0,034   | 57 Q6                  | 0,39      | 167718,60   | 1036,37    |
| 114 | 22/4/1998  | 1,86            | 4,45                  | 0,03                 | 0,03             | 0,01            | 0,01          | 0,00                 | 33,96 | 0,004   | 2,54                   | 0,22      | 58867,78    | 5044,66    |
| 115 | 6/5/1998   | 1,00            | 6,92                  | 0,06                 | 0,23             | 0,03            | 1,49          | 0,01                 | 35,22 | 0,165   | 733,35                 | 17,54     | 444355,63   | 10528,55   |
| 116 | 21/5/1998  | 0,94            | 6,67                  | 0,05                 | 0,15             | 0,02            | 0,52          | 0,00                 | 34,01 | 0,005   | 181,06                 | 0,49      | 3550094,56  | 9597,77    |
| 117 | 3/6/1998   | 1,20            | 6,04                  | 0,04                 | 0,09             | 0,02            | 0,16          | 0,00                 | 33,70 | 0,016   | 63,80                  | 0,39      | 401180,81   | 2377,21    |
| 118 | 17/6/1998  | 3,21            | 5,61                  | 0,04                 | 0,03             | 0,02            | 0,00          | 0,00                 | 33,04 | 0,000   | 0,18                   | 0,32      | 0,00        | 0,00       |
| 119 | 15/7/1998  | 3,88            | 6,04                  | 0,04                 | 0,03             | 0,02            | 0,00          | 0,00                 | 33,02 | 0,005   | 0,24                   | 0,37      | 4659,15     | 7309,14    |
| 120 | 29/7/1998  | 3,85            | 5,25                  | 0,03                 | 0,02             | 0,01            | 0,00          | 0,00                 | 32,50 | 0,002   | 0,19                   | 0,26      | 7763,13     | 10622,12   |
| 121 | 12/8/1998  | 3,55            | 5,76                  | 0,04                 | 0,02             | 0,01            | 0,00          | 0,00                 | 32,77 | 0,003   | 0,20                   | 0,32      | 5641,64     | 9209,53    |
| 122 | 25/8/1998  | 3,75            | 5,02                  | 0,03                 | 0,02             | 0,01            | 0,00          | 0,00                 | 32,08 | 0,000   | 0,17                   | 0,22      | 0,00        | 0,00       |
| 123 | 2/9/1998   | 4,06            | 5,25                  | 0,03                 | 0,02             | 0,01            | 0,00          | 0,00                 | 32,90 | 0,000   | 0,21                   | 0,27      | 0,00        | 0,00       |
| 124 | 16/9/1998  | 2,88            | 4,13                  | 0,03                 | 0,02             | 0,01            | 0,00          | 0,00                 | 32,90 | 0,006   | 0,12                   | 0,17      | 1851,55     | 2696,62    |
| 125 | 30/9/1998  | 4,16            | 4,73                  | 0,03                 | 0,02             | 0,01            | 0,00          | 0,00                 | 32,87 | 0,004   | 0,20                   | 0,23      | 4880,78     | 5562,75    |
| 126 | 14/10/1998 | 2,95            | 7,34                  | 0,06                 | 0,06             | 0,03            | 0,06          | 0,00                 | 33,28 | 0,024   | 70,17                  | 0,62      | 298475,89   | 2535,49    |
| 127 | 28/10/1998 | 2,83            | 7,16                  | 0,05                 | 0,05             | 0,02            | 0,03          | 0,00                 | 32,92 | 0,010   | 31,57                  | 0,54      | 306428,57   | 5113,94    |
| 128 | 11/11/1998 | 3,56            | 6,37                  | 0,04                 | 0,03             | 0,01            | 0,00          | 0,00                 | 31,40 | 0,000   | 0,20                   | 0,36      | 0,00        | 0,00       |

Tabela 6.2j - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj

| (1)  | (2)               | (3)             | (4)                   | (5)                  | (6)              | (7)             | (8)           | (9)           | (10)  | (11)    | (12)                   | (13)      | (14)        | (15)       |
|------|-------------------|-----------------|-----------------------|----------------------|------------------|-----------------|---------------|---------------|-------|---------|------------------------|-----------|-------------|------------|
| N°   | DATA              | D <sub>90</sub> | D <sub>Vj [GAA]</sub> | $\mathrm{U}_{\star}$ | θ <sub>i90</sub> | $\theta_{iDvj}$ | $\phi_{kD90}$ | $\phi_{kDvj}$ | В     | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E[%]D90     | E[%]Dvj    |
|      |                   | (mm)            | mm                    | (m/s)                |                  |                 |               |               | (m)   | ton/dia | ton/dia                | ton/dia   | -           | -          |
| 129  | 25/11/1998        | 1,97            | 6,92                  | 0,04                 | 0,06             | 0,02            | 0,04          | 0,00          | 31,29 | 0,000   | 21,88                  | 0,42      | 0,00        | 0,00       |
| 130  | 9/12/1998         | 1,85            | 7,58                  | 0,06                 | 0,10             | 0,03            | 0,22          | 0,00          | 33,18 | 0,000   | 175,46                 | 0,65      | 0,00        | 0,00       |
| 131  | 22/12/1998        | 0,84            | 7,34                  | 0,05                 | 0,20             | 0,02            | 1,03          | 0,00          | 32,95 | 0,000   | 339,30                 | 0,57      | 0,00        | 0,00       |
| 132  | 6/1/1999          | 0,34            | 7,58                  | 0,07                 | 0,87             | 0,04            | 12,49         | 0,01          | 34,79 | 1,478   | 2333,45                | 36,94     | 157778,90   | 2399,54    |
| 133  | 21/1/1999         | 0,33            | 8,11                  | 0,08                 | 1,19             | 0,05            | 17,48         | 0,02          | 35,23 | 3,703   | 3714,51                | 105,14    | 100210,88   | 2739,31    |
| 134  | 28/1/1999         | 0,38            | 8,30                  | 0,09                 | 1,24             | 0,06            | 18,26         | 0,04          | 35,81 | 0,000   | 4977,50                | 215,41    | 0,00        | 0,00       |
| 135  | 3/2/1999          | 0,28            | 7,81                  | 0,07                 | 1,10             | 0,04            | 16,12         | 0,01          | 35,18 | 2,820   | 2571,01                | 42,49     | 91070,45    | 1406,70    |
| 136  | 11/2/1999         | 0,35            | 8,11                  | 0,08                 | 1,09             | 0,05            | 15,84         | 0,02          | 35,26 | 3,047   | 3511,68                | 90,93     | 115150,31   | 2884,25    |
| 137  | 25/2/1999         | 3,73            | 7,81                  | 0,07                 | 0,09             | 0,04            | 0,16          | 0,01          | 35,52 | 5,114   | 348,69                 | 60,99     | 6718,26     | 1092,70    |
| 138  | 11/3/1999         | 0,40            | 7,58                  | 0,07                 | 0,79             | 0,04            | 11,37         | 0,01          | 35,20 | 1,803   | 2623,59                | 50,67     | 145412,46   | 27 10,24   |
| 139  | 25/3/1999         | 0,48            | 8,30                  | 0,08                 | 0,84             | 0,05            | 12,12         | 0,02          | 34,99 | 3,640   | 3768,01                | 109,05    | 103416,76   | 2895,82    |
| 140  | 15/4/1999         | 0,47            | 7,58                  | 0,06                 | 0,42             | 0,03            | 5,04          | 0,00          | 33,72 | 0,020   | 1031,91                | 0,66      | 5159466,20  | 3201,25    |
| 141  | 29/4/1999         | 0,78            | 11,01                 | 0,10                 | 0,79             | 0,06            | 11,36         | 0,03          | 33,27 | 0,013   | 6739,12                | 284,00    | 51839274,08 | 2184505,08 |
| 142  | 13/5/1999         | 0,37            | 7,91                  | 0,06                 | 0,56             | 0,03            | 7,38          | 0,00          | 33,41 | 0,023   | 1207,51                | 0,70      | 5249947,27  | 2942,14    |
| 143  | 9 <i>1</i> 6/1999 | 5,12            | 7,20                  | 0,05                 | 0,03             | 0,02            | 0,00          | 0,00          | 33,29 | 0,010   | 0,38                   | 0,54      | 3718,59     | 5272,56    |
| 144  | 22/7/1999         | 3,26            | 7,34                  | 0,05                 | 0,04             | 0,02            | 0,01          | 0,00          | 32,52 | 0,003   | 10,85                  | 0,50      | 361678,02   | 16590,98   |
| 145  | 5/8/1999          | 3,82            | 7,39                  | 0,05                 | 0,03             | 0,02            | 0,01          | 0,00          | 32,65 | 0,002   | 7,42                   | 0,51      | 370833,22   | 25325,49   |
| 146  | 19/8/1999         | 1,34            | 7,34                  | 0,05                 | 0,10             | 0,02            | 0,18          | 0,00          | 32,78 | 0,004   | 85,27                  | 0,50      | 2131604,01  | 12518,32   |
| 147  | 2/9/1999          | 5,03            | 3,46                  | 0,02                 | 0,01             | 0,01            | 0,00          | 0,00          | 32,07 | 0,000   | 0,16                   | 0,11      | 0,00        | 0,00       |
| 148  | 15/9/1999         | 3,27            | 7,34                  | 0,05                 | 0,05             | 0,02            | 0,02          | 0,00          | 33,31 | 0,343   | 25,70                  | 0,57      | 7393,73     | 65,53      |
| 149  | 30/9/1999         | 1,64            | 6,92                  | 0,04                 | 0,06             | 0,01            | 0,05          | 0,00          | 32,02 | 0,001   | 22,80                  | 0,41      | 2280051,13  | 40790,79   |
| 1.50 | 14/10/1999        | 2,43            | 7,34                  | 0,04                 | 0,05             | 0,02            | 0,02          | 0,00          | 32,41 | 0,003   | 17 59                  | 0,48      | 586259,21   | 15953,58   |
| 151  | 28/10/1999        | 3,70            | 7,58                  | 0,05                 | 0,04             | 0,02            | 0,01          | 0,00          | 32,88 | 0,027   | 13,96                  | 0,56      | 51606,97    | 1977,16    |
| 152  | 11/11/1999        | 0,48            | 7,20                  | 0,04                 | 0,25             | 0,02            | 1,83          | 0,00          | 32,80 | 28,000  | 292,95                 | 0,48      | 946,24      | 98,29      |
| 153  | 25/11/1999        | 1,83            | 7,58                  | 0,05                 | 0,10             | 0,02            | 0,21          | 0,00          | 32,88 | 0,089   | 155,36                 | 0,63      | 174458,86   | 602,55     |
| 154  | 9/12/1999         | 4,50            | 7,91                  | 0,06                 | 0,05             | 0,03            | 0,02          | 0,00          | 33,19 | 0,036   | 32,37                  | 0,70      | 89804,78    | 1830,79    |
| 155  | 23/12/1999        | 3,98            | 9,57                  | 0,06                 | 0,05             | 0,02            | 0,03          | 0,00          | 30,48 | 0,003   | 46,38                  | 0,78      | 1545895,66  | 25997,04   |
| 156  | 6/1/2000          | 4,06            | 8,11                  | 0,08                 | 0,10             | 0,05            | 0,19          | 0,02          | 35,69 | 0,214   | 490,94                 | 106,51    | 229311,91   | 49672,20   |
| 1.57 | 13/1/2000         | 2,06            | 7,81                  | 0,05                 | 0,08             | 0,02            | 0,13          | 0,00          | 32,91 | 0,313   | 110,16                 | 0,62      | 35093,47    | 99,60      |
| 158  | 20/1/2000         | 6,23            | 7,81                  | 0,05                 | 0,03             | 0,02            | 0,00          | 0,00          | 33,27 | 0,041   | 0,50                   | 0,63      | 1129,42     | 1440,44    |
| 1.59 | 27/1/2000         | 0,03            | 7,91                  | 0,06                 | 6,57             | 0,02            | 30,00         | 0,00          | 33,25 | 0,090   | 386,87                 | 0,68      | 429760,41   | 655,79     |
| 160  | 3/2/2000          | 0,01            | 9,14                  | 0,08                 | 35,78            | 0,04            | 30,00         | 0,01          | 34,00 | 0,553   | 177,73                 | 49,60     | 32039,74    | 8868,77    |

Tabela 6.2j - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj

| (1)              | (2)       | (3)             | (4)                   | (5)                  | (6)              | (7)             | (8)           | (9)                  | (10)  | (11)    | (12)                   | (13)      | (14)       | (15)     |
|------------------|-----------|-----------------|-----------------------|----------------------|------------------|-----------------|---------------|----------------------|-------|---------|------------------------|-----------|------------|----------|
| $\mathbb{N}^{0}$ | DATA      | D <sub>90</sub> | D <sub>Vi [GAA]</sub> | $\mathrm{U}_{\star}$ | θ <sub>i90</sub> | $\theta_{iDvj}$ | $\phi_{kD90}$ | $\phi_{k\text{DV}j}$ | В     | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E[%]D90    | E[%]Dvj  |
|                  |           | (mm)            | mm                    | (m/s)                |                  |                 |               |                      | (m)   | ton/dia | ton/dia                | ton/dia   | -          | -        |
| 161              | 9/2/2000  | 0,64            | 7,58                  | 0,05                 | 0,26             | 0,02            | 1,95          | 0,00                 | 33,10 | 0,487   | 490,78                 | 0,60      | 100675,58  | 22,26    |
| 162              | 18/2/2000 | 1,35            | 8,11                  | 0,07                 | 0,20             | 0,03            | 1,06          | 0,01                 | 34,70 | 0,447   | 756,36                 | 22,06     | 169108,81  | 4834,72  |
| 163              | 24/2/2000 | 0,39            | 6,04                  | 0,04                 | 0,28             | 0,02            | 2,33          | 0,00                 | 33,56 | 0,603   | 292,33                 | 0,39      | 48378,84   | 35,42    |
| 164              | 3/3/2000  | 2,08            | 9,45                  | 0,08                 | 0,17             | 0,04            | 0,74          | 0,01                 | 33,42 | 0,219   | 899,32                 | 45,55     | 410550,06  | 20700,09 |
| 165              | 10/3/2000 | 0,37            | 8,11                  | 0,06                 | 0,51             | 0,02            | 6,62          | 0,00                 | 32,88 | 0,040   | 1022,34                | 0,68      | 2555740,93 | 1593,62  |
| 166              | 17/3/2000 | 3,53            | 8,79                  | 0,06                 | 0,07             | 0,03            | 0,09          | 0,00                 | 33,27 | 0,218   | 149,87                 | 0,86      | 68649,28   | 294,90   |
| 167              | 24/3/2000 | 2,85            | 7,20                  | 0,05                 | 0,06             | 0,02            | 0,04          | 0,00                 | 34,12 | 0,491   | 52,68                  | 0,59      | 10629,24   | 20,99    |
| 168              | 31/3/2000 | 1,65            | 8,30                  | 0,08                 | 0,21             | 0,04            | 1,22          | 0,01                 | 35,27 | 1,121   | 1221,06                | 61,38     | 108825,85  | 5375,73  |
| 169              | 7/4/2000  | 5,64            | 7,91                  | 0,05                 | 0,03             | 0,02            | 0,00          | 0,00                 | 32,77 | 0,050   | 0,44                   | 0,61      | 771,79     | 1122,98  |
| 170              | 14/4/2000 | 2,45            | 7,58                  | 0,05                 | 0,05             | 0,02            | 0,03          | 0,00                 | 32,20 | 0,005   | 23,89                  | 0,51      | 477784,18  | 10195,81 |
| 171              | 19/4/2000 | 5,26            | 7,81                  | 0,05                 | 0,03             | 0,02            | 0,00          | 0,00                 | 31,99 | 0,012   | 0,37                   | 0,54      | 2950,05    | 4426,40  |
|                  |           |                 |                       |                      |                  |                 |               |                      |       |         |                        | MÉDIA     | 787522,50  | 37766,49 |

Tabela 6.2j - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj

 $\theta i_{90-}$  Tensão tangencial de cisalhamento normalizada relativa ao diâmetro  $D_{90-}$ 

 $heta i_{Dvi}$  - Tensão tangencial de cisalhamento normalizada relativa ao diâmetro Dvj

 $\phi_{kD90}$ . Coeficiente adimensional obtido experimentalmente para o método de Garde e Albertson (1961), para o diâmetro  $D_{90}$ 

 $\phi_{kDvi}$ -Coeficiente adimensional obtido experimentalmente para o método de Garde e Albertson (1961), para o diâmetro Dvj

qB[GAA]D<sub>90</sub>-Descarga sólida calculada pelo método de Garde e Albertson para o diâmetro D<sub>90</sub>

qB[GAA]Dvj - Descarga sólida calculada pelo método de Garde e Albertson para o diâmetro Dvj

| (1) | (2)                | (3)    | (4)         | (5)   | (6)              | $\odot$    | (8)               | (9)                | (10)                   | (11)              | (12)              | (13)              | (14)  | (15)     | (16)       | (17)       | (18)       | (19)    |
|-----|--------------------|--------|-------------|-------|------------------|------------|-------------------|--------------------|------------------------|-------------------|-------------------|-------------------|-------|----------|------------|------------|------------|---------|
| N⁰  | DATA               | Don    | D Vj [Y AL] | U*    | <sup>6i</sup> 90 | 61<br>Dori |                   |                    | $\mathbf{a}_{1_{D90}}$ | α <sub>1Dvi</sub> | β <sub>1D90</sub> | β <sub>1Dvj</sub> | В     | qBm      | qB[YAL]Don | qB[YAL]Dvj | E[%]Don    | E[%]Dvj |
|     |                    | (mm)   | тт          | (m/s) |                  |            | <sup>⊎</sup> rD90 | <sup>Յ</sup> icDoj |                        |                   |                   |                   | (m)   | ton/d ia | ton/dia    | ton/d ia   | -          | -       |
| 1   | 26/3/1993          | 1,86   | 4,42        | 0,05  | 0,09             | 0,04       | 0,04              | 0,05               | 0,35                   | 0,38              | 0,97              | -0,31             | 34,70 | 0,141    | 39,77      | 0,00       | 28105,80   | 100,00  |
| 2   | 6/4/1993           | 3,82   | 4,47        | 0,05  | 0,04             | 0,03       | 0,05              | 0,05               | 0,37                   | 0,38              | -0,29             | -0,41             | 34,87 | 0,038    | 0,00       | 0,00       | 100,00     | 100,00  |
| 3   | 20/4/1993          | 4,11   | 4,25        | 0,04  | 0,03             | 0,03       | 0,05              | 0,05               | 0,37                   | 0,37              | -0,42             | 0,44              | 34,88 | 0,045    | 0,00       | 0,00       | 100,00     | 100,00  |
| 4   | 4/5/1993           | 4,22   | 4,72        | 0,05  | 0,04             | 0,03       | 0,05              | 0,05               | 0,38                   | 0,38              | -0,30             | 0,39              | 34,78 | 0,045    | 0,00       | 0,00       | 100,00     | 100,00  |
| 5   | 18/5/1993          | 1,23   | 3,85        | 0,04  | 0,08             | 0,03       | 0,04              | 0,05               | 0,32                   | 0,37              | 1,18              | -0,46             | 34,38 | 0,024    | 28,15      | 0,00       | 117207,86  | 100,00  |
| 6   | 1/6/1993           | 3,13   | 5,07        | 0,06  | 0,07             | 0,04       | 0,05              | 0,06               | 0,37                   | 0,39              | 0,33              | -0,26             | 35,24 | 0,190    | 10,91      | 0,00       | 5642,78    | 100,00  |
| 7   | 8/6/1993           | 1,42   | 3,87        | 0,04  | 0,08             | 0,03       | 0,04              | 0,05               | 0,33                   | 0,37              | 1,05              | 0,40              | 34,91 | 0,026    | 28,69      | 0,00       | 110255,20  | 100,00  |
| 8   | 1.5/6/1993         | 3,78   | 4,18        | 0,04  | 0,03             | 0,03       | 0,05              | 0,05               | 0,37                   | 0,37              | -0,37             | 0,44              | 34,21 | 0,008    | 0,00       | 0,00       | 100,00     | 100,00  |
| 9   | 22/6/1993          | 4,94   | 4,02        | 0,04  | 0,02             | 0,03       | 0,05              | 0,05               | 0,38                   | 0,37              | -0,59             | -0,47             | 34,54 | 0,008    | 0,00       | 0,00       | 100,00     | 100,00  |
| 10  | 29/6/1993          | . 2,00 | 3,87        | 0,04  | 0,04             | 0,02       | 0,04              | 0,05               | 0,34                   | 0,36              | 0,04              | -0,53             | 33,99 | 0,007    | 0,07       | 0,00       | 943,85     | 100,00  |
| 11  | 6/7/1993           | 4,75   | 2,72        | 0,03  | 0,01             | 0,02       | 0,05              | 0,04               | 0,36                   | 0,34              | -0,75             | 0,51              | 33,77 | 0,002    | 0,00       | 0,00       | 100,00     | 100,00  |
| 12  | 21/7/1993          | 4,50   | 2,39        | 0,03  | 0,01             | 0,02       | 0,05              | 0,04               | 0,36                   | 0,33              | -0,78             | -0,53             | 33,64 | 0,006    | 0,00       | 0,00       | 100,00     | 100,00  |
| 13  | 3/8/1993           | 4,70   | 1,84        | 0,02  | 0,01             | 0,02       | 0,04              | 0,04               | 0,35                   | 0,32              | -0,86             | -0,56             | 32,82 | 0,002    | 0,00       | 0,00       | 100,00     | 100,00  |
| 14  | 17/8/1993          | 4,02   | 1,01        | 0,02  | 0,00             | 0,01       | 0,04              | 0,03               | 0,33                   | 0,29              | -0,91             | 0,55              | 33,53 | 0,002    | 0,00       | 0,00       | 100,00     | 100,00  |
| 15  | 31/8/1993          | 3,16   | 1,44        | 0,02  | 0,01             | 0,02       | 0,04              | 0,03               | 0,33                   | 0,30              | -0,80             | -0,48             | 33,74 | 0,002    | 0,00       | 0,00       | 100,00     | 100,00  |
| 16  | 21/9/1993          | 1,45   | 3,55        | 0,04  | 0,06             | 0,02       | 0,04              | 0,05               | 0,33                   | 0,36              | 0,53              | -0,49             | 33,97 | 0,006    | 6,82       | 0,00       | 113649,85  | 100,00  |
| 17  | 28/9/1993          | 1,77   | 5,07        | 0,06  | 0,11             | 0,04       | 0,04              | 0,06               | 0,35                   | 0,39              | 1,46              | 0,32              | 34,92 | 0,384    | 87,21      | 0,00       | 22611,16   | 100,00  |
| 18  | 5/10/1993          | 5,11   | 3,55        | 0,04  | 0,02             | 0,02       | 0,05              | 0,05               | 0,37                   | 0,36              | -0,67             | -0,48             | 34,38 | 0,006    | 0,00       | 0,00       | 100,00     | 100,00  |
| 19  | 21/10/1993         | 4,62   | 4,33        | 0,05  | 0,03             | 0,03       | 0,05              | 0,05               | 0,38                   | 0,38              | -0,46             | -0,41             | 34,84 | 0,023    | 0,00       | 0,00       | 100,00     | 100,00  |
| 20  | 28/10/1993         | 1,64   | 4,63        | 0,05  | 0,10             | 0,03       | 0,04              | 0,05               | 0,34                   | 0,38              | 1,28              | -0,36             | 34,88 | 0,037    | 57,24      | 0,00       | 154614,32  | 100,00  |
| 21  | 4/11/1993          | 4,96   | 2,19        | 0,03  | 0,01             | 0,02       | 0,05              | 0,04               | 0,36                   | 0,33              | -0,82             | -0,52             | 33,82 | 0,003    | 0,00       | 0,00       | 100,00     | 100,00  |
| 22  | 9/11/1993          | 4,82   | 3,22        | 0,03  | 0,01             | 0,02       | 0,05              | 0,04               | 0,37                   | 0,35              | -0,70             | -0,52             | 34,01 | 0,005    | 0,00       | 0,00       | 100,00     | 100,00  |
| 23  | 20/12/1993         | 1,71   | 4,47        | 0,05  | 0,08             | 0,03       | 0,04              | 0,05               | 0,34                   | 0,38              | 0,99              | -0,38             | 34,64 | 0,080    | 35,87      | 0,00       | 44731,87   | 100,00  |
| 24  | 10/2/1994          | 1,37   | 2,19        | 0,04  | 0,06             | 0,04       | 0,04              | 0,04               | 0,32                   | 0,34              | 0,55              | -0,13             | 35,65 | 0,332    | 6,84       | 0,00       | 1961,33    | 100,00  |
| 25  | 29/3/1994          | 1,66   | 4,47        | 0,08  | 0,14             | 0,05       | 0,04              | 0,06               | 0,35                   | 0,39              | 2,12              | 0,07              | 34,34 | 0,027    | 167,42     | 0,00       | 619991,18  | 100,00  |
| 26  | 19/4/1994          | 2,26   | 3,22        | 0,04  | 0,05             | 0,04       | 0,04              | 0,05               | 0,35                   | 0,36              | 0,17              | -0,24             | 34,00 | 0,022    | 1,39       | 0,00       | 61 96,82   | 100,00  |
|     | 6/5/1994           | 4,43   | 2,53        | 0,03  | 0,02             | 0,03       | 0,05              | 0,04               | 0,37                   | 0,34              | -0,65             | -0,31             | 33,60 | 0,012    | 0,00       | 0,00       | 100,00     | 100,00  |
| 28  | 20/5/1994          | 1,20   | 2,90        | 0,04  | 0,07             | 0,03       | 0,04              | 0,05               | 0,32                   | 0,35              | 1,01              | 0,31              | 33,60 | 0,012    | 18,89      | 0,00       | 157345,91  | 100,00  |
| 29  | 17/6/1994          | 1,00   | 2,02        | 0,03  | 0,06             | 0,03       | 0,03              | 0,04               | 0,31                   | 0,33              | 0,66              | -0,29             | 33,64 | 0,005    | 5,41       | 0,00       | 108070,93  | 100,00  |
| 30  | 1/7/1994           | 1,05   | 2,90        | 0,04  | 0,09             | 0,03       | 0,04              | 0,05               | 0,32                   | 0,35              | 1,50              | -0,28             | 33,81 | 0,006    | 34,38      | 0,00       | 572955,72  | 100,00  |
| 31  | 1 <i>5/7/</i> 1994 | 1,10   | 1,84        | 0,03  | 0,05             | 0,03       | 0,03              | 0,04               | 0,31                   | 0,32              | 0,33              | -0,29             | 33,64 | 0,051    | 1,50       | 0,00       | 2844,05    | 100,00  |
| 32  | 29/7/1994          | 2,30   | 2,90        | 0,04  | 0,04             | 0,03       | 0,04              | 0,05               | 0,34                   | 0,35              | -0,05             | -0,28             | 33,81 | 0,010    | 0,00       | 0,00       | 100,00     | 100,00  |
| 33  | 12/8/1994          | 2,18   | 1,44        | 0,02  | 0,02             | 0,02       | 0,04              | 0,03               | 0,32                   | 0,31              | -0,57             | -0,29             | 33,26 | 0,011    | 0,00       | 0,00       | 100,00     | 100,00  |
| 34  | 26/8/1994          | 1,05   | 1,79        | 0,03  | 0,05             | 0,03       | 0,03              | 0,04               | 0,31                   | 0,32              | 0,43              | -0,26             | 33,47 | 0,002    | 2,33       | 0,00       | 116286,61  | 100,00  |
| 35  | 8/9/1994           | 1,27   | 2,19        | 0,03  | 0,05             | 0,03       | 0,04              | 0,04               | 0,32                   | 0,34              | 0,44              | -0,26             | 33,68 | 0,004    | 3,52       | 0,00       | 87790,65   | 100,00  |
| 36  | 22/9/1994          | 1,10   | 3,22        | 0,04  | 0,10             | 0,04       | 0,04              | 0,05               | 0,32                   | 0,36              | 1,77              | -0,25             | 33,92 | 0,002    | 53,73      | 0,00       | 2686326,41 | 100,00  |
| 37  | 6/10/1994          | 1,52   | 1,44        | 0,02  | 0,02             | 0,03       | 0,04              | 0,04               | 0,31                   | 0,31              | -0,31             | -0,26             | 33,49 | 0,002    | 0,00       | 0,00       | 100,00     | 100,00  |
| 38  | 27/10/1994         | 3,15   | 3,06        | 0,05  | 0,04             | 0,04       | 0,05              | 0,05               | 0,36                   | 0,36              | -0,13             | -0,10             | 34,48 | 0,424    | 0,00       | 0,00       | 100,00     | 100,00  |
|     | 23/11/1994         | 1,45   | 1,44        | 0,02  | 0,03             | 0,03       | 0,04              | 0,04               | 0,31                   | 0,31              | -0,26             | -0,25             | 33,52 | 0,004    | 0,00       | 0,00       | 100,00     | 100,00  |
| 40  | 22/12/1994         | 2,51   | 4,77        | 0,07  | 0,14             | 0,07       | 0,05              | 0,06               | 0,37                   | 0,40              | 1,69              | 0,23              | 35,68 | 0,218    | 229,26     | 11,18      | 105063,12  | 5030,02 |
| 41  | 5/1/1995           | 1,36   | 5,07        | 0,07  | 0,23             | 0,06       | 0,04              | 0,06               | 0,35                   | 0,40              | 4,34              | 0,07              | 35,27 | 0,523    | 528,94     | 1,15       | 101035,06  | 119,47  |

Tabela 6.2k - Descargas calculadas pelo método de Yalin (1963) usando o diâmetro D<sub>90</sub> e o Dvj

| (1)      | (2)        | (3)         | (4)         | (5)   | (6)              | $\Box$              | (8)                | (9)                | (10)              | (11)              | (12)              | (13)              | (14)  | (15)     | (16)       | (17)       | (18)       | (19)    |
|----------|------------|-------------|-------------|-------|------------------|---------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------|----------|------------|------------|------------|---------|
| N⁰       | DATA       | Don         | D Vj [Y AL] | U*    | <sup>6i</sup> 90 | 061 <sub>Dori</sub> |                    |                    | α <sub>1D90</sub> | α <sub>IDvi</sub> | β <sub>1090</sub> | β <sub>1Dvj</sub> | В     | qBm      | qB[YAL]Dan | qB[YAL]Dvj | E[%]Dan    | E[%]Dvj |
|          |            | (mm)        | mm          | (m/s) |                  |                     | <sup>⊖</sup> irD90 | θ <sub>icDvj</sub> |                   |                   |                   |                   | (m)   | ton/d ia | ton/dia    | ton/d ia   | -          | -       |
| 42       | 19/1/1995  | 4,79        | 3,55        | 0,05  | 0,03             | 0,04                | 0,05               | 0,05               | 0,38              | 0,37              | -0,47             | -0,23             | 33,92 | 0,015    | 0,00       | 0,00       | 100,00     | 100,00  |
| 43       | 26/1/1995  | 1,28        | 3,55        | 0,05  | 0,10             | 0,04                | 0,04               | 0,05               | 0,33              | 0,37              | 1,59              | -0,25             | 33,93 | 0,036    | 55,94      | 0,00       | 155302,66  | 100,00  |
|          | 9/2/1995   | <u>5,15</u> | 2,90        | 0,06  | 0,05             | 0,09                | 0,06               | 0,05               | 0,40              | 0,37              | -0,16             | 0,70              | 40,30 | 3,097    | 0,00       | 52,55      | 100,00     | 1596,84 |
| 45       | 16/2/1995  | 2,70        | 5,35        | 0,08  | 0,14             | 0,07                | 0,05               | 0,06               | 0,38              | 0,41              | 1,61              | 0,14              | 35,40 | 0,485    | 233,47     | 4,95       | 48038,39   | 921,31  |
| 46       | 8/3/1995   | 1,85        | 4,02        | 0,05  | 0,10             | 0,05                | 0,04               | 0,05               | 0,35              | 0,38              | 1,27              | -0,12             | 34,94 | 0,396    | 70,89      | 0,00       | 17801,70   | 100,00  |
| 47       | 24/3/1995  | 4,03        | 4,16        | 0,07  | 0,07             | 0,06                | 0,05               | 0,06               | 0,39              | 0,39              | 0,21              | 0,16              | 35,38 | 1,721    | 6,63       | 4,15       | 285,11     | 140,85  |
| 48       | 7/4/1995   | 1,10        | 4,47        | 0,06  | 0,22             | 0,06                | 0,04               | 0,06               | 0,33              | 0,39              | 4,49              | -0,01             | 35,05 | 0,171    | 384,91     | 0,00       | 224993,37  | 100,00  |
| 49       | 28/4/1995  | 1,44        | 4,16        | 0,06  | 0,13             | 0,05                | 0,04               | 0,05               | 0,34              | 0,38              | 2,14              | 0,14              | 34,63 | 0,081    | 132,77     | 0,00       | 163818,30  | 100,00  |
|          | 12/5/1995  | 2,79        | 4,16        | 0,06  | 0,07             | 0,05                | 0,05               | 0,05               | 0,37              | 0,38              | 0,49              | -0,09             | 34,74 | 0,468    | 19,98      | 0,00       | 41 69,41   | 100,00  |
| 51       | 9/6/1995   | 1,58        | 3,55        | 0,05  | 0,09             | 0,04                | 0,04               | 0,05               | 0,34              | 0,37              | 1,13              | 0,20              | 34,35 | 0,023    | 40,71      | 0,00       | 176882,16  | 100,00  |
| 52       | 23/6/1995  | 2,86        | 2,70        | 0,04  | 0,04             | 0,05                | 0,05               | 0,05               | 0,36              | 0,36              | -0,07             | 0,00              | 34,34 | 0,018    | 0,00       | 0,00       | 100,00     | 95,13   |
| <u> </u> | 5/7/1995   | 1,23        | 3,55        | 0,05  | 0,10             | 0,04                | 0,04               | 0,05               | 0,33              | 0,37              | 1,68              | -0,26             | 34,19 | 0,051    | 59,39      | 0,00       | 116342,84  | 100,00  |
| 54       | 12/7/1995  | 0,92        | 5,21        | 0,07  | 0,33             | 0,06                | 0,04               | 0,06               | 0,33              | 0,40              | 7,24              | -0,01             | 35,03 | 4,163    | 727,80     | 0,00       | 17382,61   | 100,00  |
| 55       | 19/7/1995  | 0,85        | 3,70        | 0,06  | 0,24             | 0,05                | 0,04               | 0,05               | 0,32              | 0,38              | 5,34              | 0,05              | 34,59 | 0,016    | 340,17     | 0,33       | 2125945,11 | 1989,95 |
|          | 26/7/1995  | 1,93        | 3,87        | 0,05  | 0,09             | 0,04                | 0,04               | 0,05               | 0,35              | 0,38              | 0,97              | -0,16             | 34,61 | 0,118    | 42,22      | 0,00       | 35679,28   | 100,00  |
| 57       | 10/8/1995  | 0,95        | 3,06        | 0,04  | 0,11             | 0,03                | 0,04               | 0,05               | 0,31              | 0,36              | 2,08              | -0,26             | 34,09 | 0,012    | 57,86      | 0,00       | 482061,78  | 100,00  |
| - 58     | 31/8/1995  | 4,69        | 2,19        | 0,03  | 0,01             | 0,03                | 0,05               | 0,04               | 0,36              | 0,33              | -0,73             | į -0,31           | 33,65 | 0,002    | 0,00       | 0,00       | 100,00     | 100,00  |
| <u>.</u> | 21/9/1995  | 1,14        | 8,94        | 0,09  | 0,40             | 0,05                | 0,04               | 0,06               | 0,35              | 0,41              | 8,14              | -0,14             | 34,28 | 0,031    | 1305,32    | 0,00       | 4210620,49 | 100,00  |
| ல        | 28/9/1995  | 2,50        | 3,22        | 0,05  | 0,05             | 0,04                | 0,05               | 0,05               | 0,35              | 0,36              | 0,15              | -0,16             | 34,68 | 0,249    | 1,36       | 0,00       | 445,18     | 100,00  |
| 61       | 5/10/1995  | 1,64        | 2,55        | 0,04  | 0,05             | 0,03                | 0,04               | 0,04               | 0,33              | 0,35              | 0,26              | -0,26             | 34,16 | 0,002    | 2,01       | 0,00       | 100293,81  | 100,00  |
| 62       | 19/10/1995 | 3,79        | 4,31        | 0,06  | 0,06             | 0,06                | 0,05               | 0,06               | 0,38              | 0,39              | 0,20              | 0,03              | 35,02 | 0,205    | 5,64       | 0,13       | 2650,63    | 36,55   |
| 63       | 23/11/1995 | 1,66        | 2,55        | 0,04  | 0,05             | 0,03                | 0,04               | 0,04               | 0,33              | 0,35              | 0,25              | -0,26             | 34,05 | 0,006    | 1,76       | 0,00       | 29235,21   | 100,00  |
| 64       | 7/12/1995  | 1,86        | 1,84        | 0,03  | 0,03             | 0,03                | 0,04               | 0,04               | 0,32              | 0,32              | -0,32             | -0,31             | 33,39 | 0,002    | 0,00       | 0,00       | 100,00     | 100,00  |
| 65       | 10/1/1996  | 1,75        | 4,77        | 0,08  | 0,22             | 0,08                | 0,05               | 0,06               | 0,36              | 0,40              | 3,68              | 0,37              | 36,91 | 5,141    | 622,00     | 32,64      | 11998,82   | 534,92  |
| 66       | 31/1/1996  | 0,47        | 3,55        | 0,05  | 0,29             | 0,04                | 0,03               | 0,05               | 0,30              | 0,37              | 8,22              | -0,22             | 34,12 | 0,019    | 276,97     | 0,00       | 1457658,33 | 100,00  |
| 67       | 7/2/1996   | 1,68        | 3,87        | 0,06  | 0,11             | 0,05                | 0,04               | 0,05               | 0,35              | 0,38              | 1,61              | -0,06             | 35,12 | 0,238    | 98,13      | 0,00       | 41129,77   | 100,00  |
| 68       | 6/3/1996   | 0,56        | 4,63        | 0,07  | 0,52             | 0,06                | 0,04               | 0,06               | 0,31              | 0,40              | 13,53             | 0,10              | 35,36 | 3,542    | 1014,21    | 2,01       | 28533,82   | 43,33   |
| 69       | 20/3/1996  | 1,69        | 5,35        | 0,09  | 0,26             | 0,08                | 0,05               | 0,06               | 0,36              | 0,41              | 4,53              | 0,40              | 36,55 | 1,150    | 881,82     | 43,21      | 76580,14   | 3657,78 |
| 70       | 3/4/1996   | 2,05        | 4,16        | 0,06  | 0,10             | 0,05                | 0,05               | 0,05               | 0,35              | 0,38              | 1,14              | -0,10             | 34,87 | 0,133    | 67,54      | 0,00       | 50683,40   | 100,00  |
| 71       | 16/4/1996  | 1,18        | 3,87        | 0,05  | 0,15             | 0,05                | 0,04               | 0,05               | 0,33              | 0,38              | 2,85              | -0,10             | 34,52 | 0,051    | 169,00     | 0,00       | 331 270,91 | 100,00  |
| 72       | 15/5/1996  | 2,20        | 3,55        | 0,05  | 0,07             | 0,04                | 0,04               | 0,05               | 0,35              | 0,37              | 0,51              | -0,16             | 34,24 | 0,246    | 13,45      | 0,00       | 5367,14    | 100,00  |
| 73       | 22/5/1996  | 3,00        | 3,55        | 0,05  | 0,05             | 0,04                | 0,05               | 0,05               | 0,36              | 0,37              | -0,01             | -0,19             | 34,20 | 0,008    | 0,00       | 0,00       | 100,00     | 100,00  |
| 74       | 19/6/1996  | 1,36        | 2,55        | 0,04  | 0,06             | 0,03                | 0,04               | 0,04               | 0,32              | 0,35              | 0,62              | 0,25              | 33,76 | 0,012    | 8,37       | 0,00       | 69672,75   | 100,00  |
| 75       | 3/6/1996   | 3,77        | 2,90        | 0,04  | 0,03             | 0,04                | 0,05               | 0,05               | 0,37              | 0,36              | -0,43             | -0,22             | 34,07 | 0,023    | 0,00       | 0,00       | 100,00     | 100,00  |
| 76       | 17/7/1996  | 4,09        | 2,55        | 0,04  | 0,02             | 0,03                | 0,05               | 0,04               | 0,36              | 0,35              | -0,59             | -0,27             | 33,81 | 0,004    | 0,00       | 0,00       | 100,00     | 100,00  |
| 77       | 31/7/1996  | 1,66        | 2,72        | 0,04  | 0,05             | 0,03                | 0,04               | 0,04               | 0,33              | 0,35              | 0,30              | -0,29             | 34,75 | 0,005    | 2,76       | 0,00       | 55193,29   | 100,00  |
| 78       | 7/8/1996   | 3,05        | 2,19        | 0,03  | 0,02             | 0,03                | 0,04               | 0,04               | 0,35              | 0,34              | -0,50             | -0,26             | 34,04 | 0,004    | 0,00       | 0,00       | 100,00     | 100,00  |
| 79       | 14/8/1996  | 3,73        | 2,72        | 0,04  | 0,02             | 0,03                | 0,05               | 0,04               | 0,36              | 0,35              | -0,48             | -0,24             | 33,99 | 0,005    | 0,00       | 0,00       | 100,00     | 100,00  |
| 80       | 21/8/1996  | 4,35        | 2,39        | 0,04  | 0,02             | 0,03                | 0,05               | 0,04               | 0,37              | 0,34              | -0,63             | -0,22             | 33,89 | 0,005    | 0,00       | 0,00       | 100,00     | 100,00  |
| 81       | 28/8/1996  | 4,63        | 2,55        | 0,04  | 0,02             | 0,03                | 0,05               | 0,04               | 0,37              | 0,35              | -0,65             | -0,27             | 33,73 | 0,003    | 0,00       | 0,00       | 100,00     | 100,00  |
| 82       | 4/9/1996   | 2,89        | 3,55        | 0,05  | 0,05             | 0,04                | 0,05               | 0,05               | 0,36              | 0,37              | 0,10              | -0,14             | 34,56 | 0,036    | 0,82       | 0,00       | 2188,05    | 100,00  |

Tabela 6.2k - Descargas calculadas pelo método de Yalin (1963) usando o diâmetro D<sub>90</sub> e o Dvj

| (1)  | (2)        | (3)  | (4)         | (5)   | (6)              | $(\mathcal{O})$   | (8)                | (9)                | (10)                   | (11)              | (12)              | (13)              | (14)  | (15)     | (16)       | (17)       | (18)        | (19)    |
|------|------------|------|-------------|-------|------------------|-------------------|--------------------|--------------------|------------------------|-------------------|-------------------|-------------------|-------|----------|------------|------------|-------------|---------|
| N⁰   | DATA       | Don  | D Vj [Y AL] | U*    | <sup>64</sup> 90 | 8i <sub>Dvi</sub> |                    |                    | $\mathbf{a}_{1_{D90}}$ | α <sub>1Dvi</sub> | β <sub>1D90</sub> | β <sub>1Dvj</sub> | В     | qBm      | qB[YAL]Don | qB[YAL]Dvj | E[%]Dan     | E[%]Dvj |
|      |            | (mm) | тт          | (m/s) |                  |                   | <sup>⊖</sup> irD90 | <sup>⊎</sup> icD#j |                        |                   |                   |                   | (m)   | ton/d ia | ton/dia    | ton/d ia   | -           | -       |
| 8    | 11/9/1996  | 4,79 | 5,07        | 0,08  | 0,08             | 0,07              | 0,06               | 0,06               | 0,40                   | 0,41              | 0,32              | 0,23              | 35,84 | 3,697    | 22,48      | 12,70      | 508,13      | 243,44  |
| 84   | 2/10/1996  | 2,37 | 2,72        | 0,04  | 0,04             | 0,04              | 0,04               | 0,04               | 0,35                   | 0,35              | -0,07             | -0,22             | 34,10 | 0,006    | 0,00       | 0,00       | 100,00      | 100,00  |
| 85   | 16/10/1996 | 4,69 | 3,60        | 0,05  | 0,03             | 0,05              | 0,05               | 0,05               | 0,38                   | 0,37              | -0,35             | -0,10             | 34,70 | 0,250    | 0,00       | 0,00       | 100,00      | 100,00  |
| 86   | 6/11/1996  | 4,16 | 3,79        | 0,05  | 0,04             | 0,05              | 0,05               | 0,05               | 0,38                   | 0,38              | -0,20             | 0,11              | 34,70 | 0,320    | 0,00       | 0,00       | 100,00      | 100,00  |
|      | 20/11/1996 | 4,40 | 3,22        | 0,05  | 0,03             | 0,04              | 0,05               | 0,05               | 0,38                   | 0,37              | -0,38             | -0,09             | 34,70 | 0,034    | 0,00       | 0,00       | 100,00      | 100,00  |
| . 88 | 6/12/1996  | 1,40 | 3,22        | 0,05  | 0,10             | 0,04              | 0,04               | 0,05               | 0,33                   | 0,36              | 1,38              | -0,14             | 34,60 | 4,340    | 49,91      | 0,00       | 1050,06     | 100,00  |
|      | 9/1/1997   | 1,11 | 3,55        | 0,05  | 0,14             | 0,04              | 0,04               | 0,05               | 0,33                   | 0,37              | 2,67              | 0,11              | 34,68 | 0,033    | 132,85     | 0,00       | 402463,57   | 100,00  |
| 90   | 22/1/1997  | 1,10 | 4,77        | 0,07  | 0,24             | 0,05              | 0,04               | 0,06               | 0,34                   | 0,40              | 4,80              | 0,03              | 34,78 | 0,146    | 438,54     | 0,00       | 300268,00   | 100,00  |
| 91   | 3/2/1997   | 0,98 | 4,77        | 0,08  | 0,36             | 0,07              | 0,04               | 0,06               | 0,34                   | 0,40              | 7,62              | 0,25              | 36,46 | 21,990   | 935,37     | 13,67      | 41.53,62    | 37,82   |
| 92   | 12/3/1997  | 1,10 | 3,55        | 0,05  | 0,12             | 0,04              | 0,04               | 0,05               | 0,32                   | 0,37              | 2,21              | 0,23              | 34,32 | 1,010    | 86,50      | 0,00       | 8464,80     | 100,00  |
| 93   | 26/3/1997  | 1,03 | 3,06        | 0,04  | 0,10             | 0,03              | 0,04               | 0,05               | 0,32                   | 0,36              | 1,67              | 0,29              | 33,84 | 0,160    | 41,57      | 0,00       | 25882,45    | 100,00  |
| 94   | 16/4/1997  | 1,16 | 2,55        | 0,03  | 0,06             | 0,03              | 0,04               | 0,04               | 0,32                   | 0,34              | 0,76              | -0,33             | 33,64 | 0,032    | 9,49       | 0,00       | 29551,98    | 100,00  |
| 95   | 14/5/1997  | 1,18 | 2,72        | 0,04  | 0,06             | 0,03              | 0,04               | 0,04               | 0,32                   | 0,35              | 0,77              | -0,36             | 33,16 | 0,104    | 9,94       | 0,00       | 9454,67     | 100,00  |
| 96   | 4/6/1997   | 4,92 | 3,06        | 0,04  | 0,02             | 0,03              | 0,05               | 0,05               | 0,38                   | 0,36              | -0,61             | 0,31              | 33,64 | 0,006    | 0,00       | 0,00       | 100,00      | 100,00  |
| 97   | 2/7/1997   | 4,40 | 3,06        | 0,04  | 0,02             | 0,03              | 0,05               | 0,05               | 0,37                   | 0,36              | -0,56             | -0,31             | 33,84 | 0,005    | 0,00       | 0,00       | 100,00      | 100,00  |
| 98   | 12/8/1997  | 4,70 | 2,88        | 0,04  | 0,02             | 0,03              | 0,05               | 0,05               | 0,37                   | 0,35              | -0,61             | -0,30             | 33,93 | 0,003    | 0,00       | 0,00       | 100,00      | 100,00  |
| 99   | 26/8/1997  | 2,46 | 3,55        | 0,05  | 0,05             | 0,04              | 0,05               | 0,05               | 0,35                   | 0,37              | 0,13              | 0,28              | 33,97 | 0,005    | 0,98       | 0,00       | 18114,00    | 100,00  |
| 100  | 9/9/1997   | 2,25 | 2,72        | 0,03  | 0,03             | 0,03              | 0,04               | 0,04               | 0,34                   | 0,35              | -0,24             | 0,40              | 33,40 | 0,002    | 0,00       | 0,00       | 100,00      | 100,00  |
| 101  | 23/9/1997  | 4,37 | 13,41       | 0,10  | 0,15             | 0,05              | 0,06               | 0,06               | 0,41                   | 0,41              | 1,48              | -0,19             | 33,96 | 0,013    | 444,82     | 0,00       | 3475035,00  | 100,00  |
| 102  | 7/10/1997  | 0,85 | 3,41        | 0,04  | 0,13             | 0,03              | 0,04               | 0,05               | 0,31                   | 0,36              | 2,76              | -0,31             | 33,98 | 0,013    | 85,86      | 0,00       | 640643,93   | 100,00  |
| 103  | 21/10/1997 | 1,09 | 1,97        | 0,03  | 0,06             | 0,03              | 0,03               | 0,04               | 0,31                   | 0,33              | 0,59              | -0,23             | 34,07 | 0,014    | 5,01       | 0,00       | 35440,88    | 100,00  |
| 104  | 4/11/1997  | 1,44 | 2,82        | 0,04  | 0,06             | 0,03              | 0,04               | 0,04               | 0,33                   | 0,35              | 0,54              | -0,32             | 33,80 | 0,003    | 6,97       | 0,00       | 240273,03   | 100,00  |
| 105  | 2/12/1997  | 1,62 | 3,02        | 0,04  | 0,07             | 0,04              | 0,04               | 0,05               | 0,33                   | 0,36              | 0,62              | -0,24             | 34,22 | 0,439    | 11,76      | 0,00       | 2578,03     | 100,00  |
| 106  | 16/12/1997 | 0,63 | 4,70        | 0,06  | 0,36             | 0,05              | 0,04               | 0,06               | 0,31                   | 0,39              | 9,12              | 0,13              | 34,77 | 5,770    | 579,80     | 0,00       | 9948,58     | 100,00  |
| 107  | 13/1/1998  | 0,59 | 6,74        | 0,08  | 0,65             | 0,06              | 0,04               | 0,06               | 0,32                   | 0,41              | 16,42             | -0,05             | 34,82 | 0,107    | 1565,74    | 0,00       | 1463209,31  | 100,00  |
| 108  | 27/1/1998  | 0,67 | 2,19        | 0,03  | 0,10             | 0,03              | 0,03               | 0,04               | 0,30                   | 0,34              | 2,26              | -0,23             | 34,01 | 0,010    | 36,54      | 0,00       | 372764,31   | 100,00  |
| 109  | 11/2/1998  | 2,30 | 4,77        | 0,07  | 0,12             | 0,06              | 0,05               | 0,06               | 0.37                   | 0,40              | 1,41              | 0,01              | 35,24 | 1,660    | 131,88     | 0,00       | 7844,45     | 100,00  |
| 110  | 26/2/1998  | 2,36 | 4,77        | 0,07  | 0,13             | 0,06              | 0,05               | 0,06               | 0,37                   | 0,40              | 1,58              | 0,09              | 34,55 | 1,060    | 171,14     | 1,62       | 16045,36    | 52,92   |
| 111  | 11/3/1998  | 2,59 | 4,18        | 0,05  | 0,07             | 0,04              | 0,05               | 0,05               | 0,36                   | 0,38              | 0,48              | -0,17             | 34,68 | 1,600    | 16,84      | 0,00       | 952,78      | 100,00  |
| 112  | 25/3/1998  | 0,93 | 4,47        | 0,06  | 0,24             | 0,05              | 0,04               | 0,05               | 0,33                   | 0,39              | 5,09              | -0,10             | 35,22 | 0,310    | 370,10     | 0,00       | 119288,21   | 100,00  |
| 113  | 8/4/1998   | 1,22 | 3,22        | 0,04  | 0,09             | 0,03              | 0,04               | 0,05               | 0,32                   | 0,36              | 1,31              | -0,29             | 33,54 | 0,034    | 33,57      | 0,00       | 98638,82    | 100,00  |
| 114  | 22/4/1998  | 1,86 | 2,02        | 0,03  | 0,03             | 0,03              | 0,04               | 0,04               | 0,33                   | 0,33              | -0,14             | -0,22             | 33,96 | 0,004    | 0,00       | 0,00       | 100,00      | 100,00  |
| 115  | 6/5/1998   | 1,00 | 4,16        | 0,06  | 0,23             | 0,06              | 0,04               | 0,05               | 0,33                   | 0,39              | 4,84              | 0,02              | 35,22 | 0,165    | 379,64     | 0,08       | 229986,09   | 50,65   |
| 116  | 21/5/1998  | 0,94 | 3,87        | 0,05  | 0,15             | 0,04              | 0,04               | 0,05               | 0,32                   | 0,37              | 3,03              | -0,28             | 34,01 | 0,005    | 125,52     | 0,00       | 2461 001,72 | 100,00  |
| 117  | 3/6/1998   | 1,20 | 3,22        | 0,04  | 0,09             | 0,03              | 0,04               | 0,05               | 0,32                   | 0,36              | 1,42              | -0,28             | 33,70 | 0,016    | 38,80      | 0,00       | 243919,41   | 100,00  |
| 118  | 17/6/1998  | 3,21 | 2,84        | 0,04  | 0,03             | 0,03              | 0,05               | 0,04               | 0,36                   | 0,35              | -0,42             | -0,32             | 33,04 | 0,000    | 0,00       | 0,00       | 0,00        | 0,00    |
| 119  | 1.5/7/1998 | 3,88 | 3,22        | 0,04  | 0,03             | 0,03              | 0,05               | 0,05               | 0,37                   | 0,36              | -0,46             | -0,33             | 33,02 | 0,005    | 0,00       | 0,00       | 100,00      | 100,00  |
| 120  | 29/7/1998  | 3,85 | 2,55        | 0,03  | 0,02             | 0,03              | 0,05               | 0,04               | 0,36                   | 0,34              | -0,63             | -0,38             | 32,50 | 0,002    | 0,00       | 0,00       | 100,00      | 100,00  |
| 121  | 12/8/1998  | 3,55 | 2,96        | 0,04  | 0,02             | 0,03              | 0,05               | 0,04               | 0,36                   | 0,35              | -0,50             | -0,38             | 32,77 | 0,003    | 0,00       | 0,00       | 100,00      | 100,00  |
| 122  | 25/8/1998  | 3,75 | 2,39        | 0,03  | 0,02             | 0,02              | 0,05               | 0,04               | 0,35                   | 0,34              | -0,66             | -0,42             | 32,08 | 0,000    | 0,00       | 0,00       | 0,00        | 0,00    |
| 123  | 2/9/1998   | 4,06 | 2,55        | 0,03  | 0,02             | 0,03              | 0,05               | 0,04               | 0,36                   | 0,34              | -0,61             | -0,32             | 32,90 | 0,000    | 0,00       | 0,00       | 0,00        | 0,00    |

Tabela 6.2k - Descargas calculadas pelo método de Yalin (1963) usando o diâmetro D<sub>90</sub> e o Dvj

| (1) | (2)        | (3)  | (4)         | (5)   | (6)              | (7)    | (8)               | (9)                | (10)                         | (11)              | (12)              | (13)              | (14)  | (15)     | (16)       | (17)       | (18)        | (19)    |
|-----|------------|------|-------------|-------|------------------|--------|-------------------|--------------------|------------------------------|-------------------|-------------------|-------------------|-------|----------|------------|------------|-------------|---------|
| N⁰  | DATA       | Don  | D Vj [Y AL] | U*    | <sup>6i</sup> 90 | 61 Doi |                   |                    | $\mathbf{a}_{1\mathrm{D90}}$ | α <sub>1Dvi</sub> | β <sub>1D90</sub> | β <sub>1Dvj</sub> | В     | qBm      | qB[YAL]Don | qB[YAL]Dvj | E[%]Dan     | E[%]Dvj |
|     |            | (mm) | тт          | (m/s) |                  |        | <sup>⊎</sup> rD90 | <sup>⊎</sup> icD⊎j |                              |                   |                   |                   | (m)   | ton/d ia | ton/dia    | ton/d ia   | -           | -       |
| 124 | 16/9/1998  | 2,88 | 1,84        | 0,03  | 0,02             | 0,02   | 0,04              | 0,04               | 0,34                         | 0,32              | -0,63             | -0,35             | 32,90 | 0,006    | 0,00       | 0,00       | 100,00      | 100,00  |
| 125 | 30/9/1998  | 4,16 | 2,19        | 0,03  | 0,02             | 0,03   | 0,05              | 0,04               | 0,36                         | 0,34              | -0,68             | -0,30             | 32,87 | 0,004    | 0,00       | 0,00       | 100,00      | 100,00  |
| 126 | 14/10/1998 | 2,95 | 4,70        | 0,06  | 0,06             | 0,04   | 0,05              | 0,05               | 0,37                         | 0,39              | 0,31              | -0,26             | 33,28 | 0,024    | 7,87       | 0,00       | 33410,19    | 100,00  |
| 127 | 28/10/1998 | 2,83 | 4,47        | 0,05  | 0,05             | 0,03   | 0,05              | 0,05               | 0,36                         | 0,38              | 0,13              | -0,35             | 32,92 | 0,010    | 1,31       | 0,00       | 12637,47    | 100,00  |
| 128 | 11/11/1998 | 3,56 | 3,55        | 0,04  | 0,03             | 0,03   | 0,05              | 0,05               | 0,36                         | 0,36              | -0,45             | -0,44             | 31,40 | 0,000    | 0,00       | 0,00       | 0,00        | 0,00    |
| 129 | 25/11/1998 | 1,97 | 4,16        | 0,04  | 0,06             | 0,03   | 0,04              | 0,05               | 0,34                         | 0,37              | 0,34              | -0,46             | 31,29 | 0,000    | 4,42       | 0,00       | 0,00        | 0,00    |
| 130 | 9/12/1998  | 1,85 | 5,05        | 0,08  | 0,10             | 0,04   | 0,04              | 0,06               | 0,35                         | 0,39              | 1,35              | -0,31             | 33,18 | 0,000    | 76,31      | 0,00       | 0,00        | 0,00    |
| 131 | 22/12/1998 | 0,84 | 4,70        | 0,05  | 0,20             | 0,04   | 0,04              | 0,05               | 0,32                         | 0,38              | 4,40              | -0,34             | 32,95 | 0,000    | 214,34     | 0,00       | 0,00        | 0,00    |
| 132 | 6/1/1999   | 0,34 | 5,05        | 0,07  | 0,87             | 0,06   | 0,03              | 0,06               | 0,30                         | 0,40              | 25,98             | 0,00              | 34,79 | 1,478    | 1380,95    | 0,00       | 93333,54    | 100,00  |
| 133 | 21/1/1999  | 0,33 | 5,90        | 0,08  | 1,19             | 0,07   | 0,03              | 0,06               | 0,30                         | 0,41              | 35,27             | 0,11              | 35,23 | 3,703    | 2278,35    | 3,67       | 61 427,05   | 0,78    |
| 134 | 28/1/1999  | 0,38 | 6,24        | 0,09  | 1,24             | 0,08   | 0,03              | 0,06               | 0,31                         | 0,41              | 34,92             | 0,26              | 35,81 | 0,000    | 2902,29    | 23,30      | 0,00        | 0,00    |
| 135 | 3/2/1999   | 0,28 | 5,40        | 0,07  | 1,10             | 0,06   | 0,03              | 0,06               | 0,29                         | 0,40              | 34,61             | -0,04             | 35,18 | 2,820    | 1663,03    | 0,00       | 58872,77    | 100,00  |
| 136 | 11/2/1999  | 0,35 | 5,90        | 0,08  | 1,09             | 0,06   | 0,03              | 0,06               | 0,30                         | 0,41              | 31,72             | 0,07              | 35,26 | 3,047    | 2095,24    | 1,57       | 68664,10    | 48,50   |
| 137 | 25/2/1999  | 3,73 | 5,40        | 0,07  | 0,09             | 0,06   | 0,06              | 0,06               | 0,39                         | 0,41              | 0,63              | 0,04              | 35,52 | 5,114    | 59,38      | 0,40       | 1061,11     | 92,22   |
| 138 | 11/3/1999  | 0,40 | 5,05        | 0,07  | 0,79             | 0,06   | 0,03              | 0,06               | 0,30                         | 0,40              | 22,61             | 0,07              | 35,20 | 1,803    | 1442,92    | 1,02       | 79929,08    | 43,59   |
| 139 | 25/3/1999  | 0,48 | 6,24        | 0,08  | 0,84             | 0,06   | 0,04              | 0,06               | 0,31                         | 0,41              | 22,47             | 0,08              | 34,99 | 3,640    | 1944,61    | 1,98       | 53323,45    | 45,73   |
| 140 | 1.5/4/1999 | 0,47 | 5,05        | 0,08  | 0,42             | 0,04   | 0,03              | 0,06               | 0,30                         | 0,39              | 11,69             | -0,30             | 33,72 | 0,020    | 540,88     | 0,00       | 2704310,06  | 100,00  |
| 141 | 29/4/1999  | 0,78 | 13,81       | 0,10  | 0,79             | 0,04   | 0,04              | 0,06               | 0,34                         | 0,41              | 17,90             | -0,26             | 33,27 | 0,013    | 2846,74    | 0,00       | 21897862,48 | 100,00  |
| 142 | 13/5/1999  | 0,37 | 5,57        | 0,06  | 0,56             | 0,04   | 0,03              | 0,06               | 0,29                         | 0,40              | 16,76             | -0,35             | 33,41 | 0,023    | 692,59     | 0,00       | 3011181,88  | 100,00  |
| 143 | 9/6/1999   | 5,12 | 4,52        | 0,05  | 0,03             | 0,03   | 0,05              | 0,05               | 0,39                         | 0,38              | -0,47             | -0,38             | 33,29 | 0,010    | 0,00       | 0,00       | 100,00      | 100,00  |
| 144 | 22/7/1999  | 3,26 | 4,70        | 0,05  | 0,04             | 0,03   | 0,05              | 0,05               | 0,36                         | 0,38              | -0,18             | -0,47             | 32,52 | 0,003    | 0,00       | 0,00       | 100,00      | 100,00  |
| 145 | 5/8/1999   | 3,82 | 4,77        | 0,05  | 0,03             | 0,03   | 0,05              | 0,05               | 0,37                         | 0,38              | -0,31             | -0,48             | 32,65 | 0,002    | 0,00       | 0,00       | 100,00      | 100,00  |
| 146 | 19/8/1999  | 1,34 | 4,70        | 0,05  | 0,10             | QCG    | 0,04              | 0,05               | 0,33                         | 0,38              | 1,44              | -0,47             | 32,78 | 0,004    | 47,92      | 0,00       | 1197956,72  | 100,00  |
| 147 | 2/9/1999   | 5,03 | 1,51        | 0,02  | 0,01             | 0,02   | 0,04              | 0,03               | 0,35                         | 0,31              | -0,87             | -0,45             | 32,07 | 0,000    | 0,00       | 0,00       | 0,00        | 0,00    |
| 148 | 1.5/9/1999 | 3,27 | 4,70        | 0,05  | 0,05             | 0,03   | 0,05              | 0,05               | 0,37                         | 0,38              | -0,02             | -0,37             | 33,31 | 0,343    | 0,00       | 0,00       | 100,00      | 100,00  |
| 149 | 30/9/1999  | 1,64 | 4,16        | 0,04  | 0,06             | 0,02   | 0,04              | 0,05               | 0,33                         | 0,37              | 0,52              | -0,51             | 32,02 | 0,001    | 7,69       | 0,00       | 769177,59   | 100,00  |
| 150 | 14/10/1999 | 2,43 | 4,70        | 0,04  | 0,05             | 0,03   | 0,04              | 0,05               | 0,35                         | 0,38              | 0,11              | -0,50             | 32,41 | 0,003    | 0,64       | 0,00       | 21123,75    | 100,00  |
| 151 | 28/10/1999 | 3,70 | 5,05        | 0,05  | 0,04             | 0,03   | 0,05              | 0,05               | 0,37                         | 0,39              | -0,20             | -0,45             | 32,88 | 0,027    | 0,00       | 0,00       | 100,00      | 100,00  |
| 152 | 11/11/1999 | 0,48 | 4,52        | 0,04  | 0,25             | 0,03   | 0,03              | 0,05               | 0,29                         | 0,38              | 7,05              | -0,48             | 32,80 | 28,000   | 203,94     | 0,00       | 628,34      | 100,00  |
| 153 | 25/11/1999 | 1,83 | 5,05        | 0,05  | 0,10             | 0,04   | 0,04              | 0,06               | 0,35                         | 0,39              | 1,29              | -0,34             | 32,88 | 0,089    | 67,28      | 0,00       | 75500,64    | 100,00  |
| 154 | 9/12/1999  | 4,50 | 5,57        | 0,06  | 0,05             | 0,04   | 0,05              | 0,06               | 0,39                         | 0,40              | -0,16             | -0,35             | 33,19 | 0,036    | 0,00       | 0,00       | 100,00      | 100,00  |
| 155 | 23/12/1999 | 3,98 | 9,04        | 0,06  | 0,05             | 0,02   | 0,05              | 0,06               | 0,38                         | 0,41              | 0,00              | -0,61             | 30,48 | 0,003    | 0,00       | 0,00       | 89,18       | 100,00  |
| 156 | 6/1/2000   | 4,06 | 5,90        | 0,08  | 0,10             | 0,07   | 0,06              | 0,06               | 0,40                         | 0,41              | 0,69              | 0,11              | 35,69 | 0,214    | 84,59      | 3,72       | 39427,11    | 1639,22 |
| 157 | 13/1/2000  | 2,06 | 5,40        | 0,05  | 0,08             | 0,03   | 0,05              | 0,06               | 0,35                         | 0,39              | 0,88              | -0,42             | 32,91 | 0,313    | 36,76      | 0,00       | 11642,89    | 100,00  |
| 158 | 20/1/2000  | 6,23 | 5,40        | 0,05  | 0,03             | 0,03   | 0,06              | 0,06               | 0,40                         | 0,39              | 12_0-             | -0,42             | 33,27 | 0,041    | 0,00       | 0,00       | 100,00      | 100,00  |
| 159 | 27/1/2000  | 0,03 | 5,57        | 0,06  | 6,57             | 0,04   | 0,07              | 0,06               | 0,43                         | 0,40              | 95,70             | -0,38             | 33,25 | 0,090    | 443,76     | 0,00       | 492970,53   | 100,00  |
| 160 | 3/2/2000   | 0,01 | 7,98        | 0,08  | 35,78            | 0,04   | 0,11              | 0,06               | 42,0                         | 0,41              | 339,75            | -0,25             | 34,00 | 0,553    | 773,10     | 0,00       | 139701,96   | 100,00  |
| 161 | 9/2/2000   | 0,64 | 5,05        | 0,05  | 0,26             | 0,03   | 0,03              | 0,05               | 0,31                         | 0,39              | 6,49              | -0,40             | 33,10 | 0,487    | 290,76     | 0,00       | 59605,16    | 100,00  |
| 162 | 18/2/2000  | 1,35 | 5,90        | 0,07  | 0,20             | 0,05   | 0,04              | 0,06               | 0,34                         | 0,41              | 3,67              | -0,23             | 34,70 | 0,447    | 364,15     | 0,00       | 81 366,23   | 100,00  |
| 163 | 24/2/2000  | 0,39 | 3,22        | 0,04  | 0,28             | 0,03   | 0,03              | 0,05               | 0,29                         | 0,36              | 7,99              | -0,28             | 33,56 | 0,603    | 192,36     | 0,00       | 31799,95    | 100,00  |
| 164 | 3/3/2000   | 2,08 | 8,74        | 0,08  | 0,17             | 0,04   | 0,05              | 0,06               | 0,37                         | 0,41              | 2,53              | -0,31             | 33,42 | 0,219    | 356,50     | 0,00       | 162687,25   | 100,00  |

Tabela 6.2k - Descargas calculadas pelo método de Yalin (1963) usando o diâmetro D<sub>90</sub> e o Dvj

| (1) | (2)       | (3)  | (4)         | (5)   | (6)              | $(\mathcal{O})$    | (8)                | (9)                | (10)              | (11)              | (12)              | (13)              | (14)  | (15)     | (16)       | (17)       | (18)                | (19)    |
|-----|-----------|------|-------------|-------|------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------|----------|------------|------------|---------------------|---------|
| N⁰  | DATA      | Don  | D Vj [Y AL] | U*    | <sup>64</sup> 90 | 61 <sub>Dori</sub> |                    |                    | α <sub>1D90</sub> | α <sub>1Dvj</sub> | β <sub>1D90</sub> | β <sub>1Dvj</sub> | B     | qBm      | qB[YAL]Don | qB[YAL]Dvj | E[%]D <sub>on</sub> | E[%]Dvj |
|     |           | (mm) | тт          | (m/s) |                  |                    | <sup>⊖</sup> irD90 | θ <sub>icDoj</sub> |                   |                   |                   |                   | (m)   | ton/d ia | ton/dia    | ton/d ia   | -                   | -       |
| 165 | 10/3/2000 | 0,37 | 5,90        | 0,06  | 0,51             | 0,03               | 0,03               | 0,06               | 0,29              | 0,40              | 15,50             | 0,44              | 32,88 | 0,040    | 589,73     | 0,00       | 1474225,14          | 100,00  |
| 166 | 17/3/2000 | 3,53 | 7,20        | 0,06  | 0,07             | 0,04               | 0,05               | 0,06               | 0,38              | 0,41              | 0,37              | -0,41             | 33,27 | 0,218    | 15,99      | 0,00       | 7235,63             | 100,00  |
| 167 | 24/3/2000 | 2,85 | 4,52        | 0,05  | 0,06             | 0,04               | 0,05               | 0,05               | 0,36              | 0,38              | 0,25              | -0,29             | 34,12 | 0,491    | 4,96       | 0,00       | 911,08              | 100,00  |
| 168 | 31/3/2000 | 1,65 | 6,24        | 0,08  | 0,21             | 0,06               | 0,05               | 0,06               | 0,36              | 0,41              | 3,59              | -0,06             | 35,27 | 1,121    | 507,69     | 0,00       | 45189,08            | 100,00  |
| 169 | 7/4/2000  | 5,64 | 5,57        | 0,05  | 0,03             | 0,03               | 0,06               | 0,06               | 0,39              | 0,39              | -0,48             | 0,47              | 32,77 | 0,050    | 0,00       | 0,00       | 100,00              | 100,00  |
| 170 | 14/4/2000 | 2,45 | 5,05        | 0,05  | 0,05             | 0,03               | 0,05               | 0,05               | 0,35              | 0,38              | 0,18              | -0,51             | 32,20 | 0,005    | 1,78       | 0,00       | 35576,66            | 100,00  |
| 171 | 19/4/2000 | 5,26 | 5,40        | 0,05  | 0,03             | 0,03               | 0,05               | 0,05               | 0,39              | 0,39              | 12,0-             | -0,53             | 31,99 | 0,012    | 0,00       | 0,00       | 100,00              | 100,00  |
|     |           |      |             |       |                  |                    |                    |                    |                   |                   |                   |                   |       |          |            | MÉDIA      | 340068.21           | 178.49  |

Tabela 6.2k - Descargas calculadas pelo método de Yalin (1963) usando o diâmetro D<sub>90</sub> e o Dvj

 $\theta ic_{D90}$ tensão crítica de cisalhamento normalizada, referente ao diâmetro D90

 $\theta_{icDvj}$  tensão crítica de cisalhamento normalizada, referente ao diâmetro Dvj

 $\alpha_{1D90} = [2,45 \times (\theta_{icD90})^{1/2}] / [d_{rs}]^{0,*}$ 

 $\Omega_{1 \text{Dvj}} = [2,45 \times (\theta_{icDvj})^{1/2}] / [d_{rs}]^{0,4}$ 

 $\beta_{1DM} = [\ (\theta_{j00} \ / \ \theta_{l_{cD}90} \ ) - 1 \ ]$ 

qB[YAL]D<sub>90.</sub> Descarga sólida calculada pelo método de Yalin para o diâmetro D90

qB[YAL]Dvj\_Descarga sólida calculada pelo método de Yalin para o diâmetro Dvj

| (1) | (2)        | (3)      | (4)       | (5)   | (6)           | $\odot$            | (8)                | (9)                | (10)               | (11)              | (12)              | (13)              | (14)  | (15)    | (16)                   | (17)       | (18)               | (19)    |
|-----|------------|----------|-----------|-------|---------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------|---------|------------------------|------------|--------------------|---------|
| N°  | DATA       | $D_{90}$ | DVj [YAL] |       |               |                    |                    |                    |                    |                   |                   |                   | В     | qBm     | qB[YAL]D <sub>90</sub> | qB[YAL]Dvj | E[%]D <sub>m</sub> | E[%]Dvj |
|     |            |          |           | U*    | $\Theta_{90}$ | θi <sub>Dori</sub> |                    |                    | $\alpha_{1_{D}90}$ | α <sub>LDvj</sub> | β <sub>1090</sub> | β <sub>1Dvj</sub> |       | _       |                        |            |                    |         |
|     |            | (mm)     | mm        | (m/s) |               |                    | ⊎ <sub>irD90</sub> | H <sub>icDvj</sub> |                    | -                 |                   | -                 | (m)   | ton/dia | ton/dia                | ton/dia    | -                  | -       |
| 40  | 22/12/1994 | 1کر2     | 4,77      | 0,07  | 0,14          | 0,07               | 0,05               | 0,06               | 0,37               | 0,40              | 1,69              | 0,23              | 35,68 | 0,218   | 229,26                 | 11,18      | 105063,12          | 5030,02 |
| 41  | 5/1/1995   | 1,36     | 5,07      | 0,07  | 0,23          | 0,06               | 0,04               | 0,06               | 0,35               | 0,40              | 4,34              | 0,07              | 35,27 | 0,523   | 528,94                 | 1,15       | 101035,06          | 119,47  |
| 45  | 16/2/1995  | 2,70     | 5,35      | 0,08  | 0,14          | 0,07               | QOS                | 0,06               | 0,38               | 0,41              | 1,61              | 0,14              | 35,40 | 0,485   | 233,47                 | 4,95       | 48038,39           | 921,31  |
| 47  | 24/3/1995  | 4,03     | 4,16      | 0,07  | 0,07          | 0,06               | QOS                | 0,06               | 0,39               | 0,39              | 0,21              | 0,16              | 35,38 | 1,721   | 6,63                   | 4,15       | 285,11             | 140,85  |
| 55  | 19/7/1995  | 0,85     | 3,70      | 0,06  | 0,24          | 0,05               | 0,04               | 0,05               | 0,32               | 0,38              | 5,34              | 0,05              | 34,59 | 0,016   | 340,17                 | 0,33       | 2125945,11         | 1989,95 |
| 62  | 19/10/1995 | 3,79     | 4,31      | 0,06  | 0,06          | 0,06               | 0,05               | 0,06               | 0,38               | 0,39              | 0,20              | 0,03              | 35,02 | 0,205   | 5,64                   | 0,13       | 2650,63            | 36,55   |
| 65  | 10/1/1996  | 1,75     | 4,77      | 0,08  | 0,22          | 0,08               | 0,05               | 0,06               | 0,36               | 0,40              | 3,68              | 0,37              | 36,91 | 5,141   | 622,00                 | 32,64      | 11998,82           | 534,92  |
| 68  | 6/3/1996   | 6کړ0     | 4,63      | 0,07  | 0,52          | 0,06               | 0,04               | 0,06               | 0,31               | 0,40              | 13,53             | 0,10              | 35,36 | 3,542   | 1014,21                | 2,01       | 28533,82           | 43,33   |
| 69  | 20/3/1996  | 1,69     | 5,35      | 0,09  | 0,26          | 0,08               | 0,05               | 0,06               | 0,36               | 0,41              | 4,53              | 0,40              | 36,55 | 1,150   | 881,82                 | 43,21      | 76580,14           | 3657,78 |
| 83  | 11/9/1996  | 4,79     | 5,07      | 0,08  | 0,08          | 0,07               | 0,06               | 0,06               | 0,40               | 0,41              | 0,32              | 0,23              | 35,84 | 3,697   | 22,48                  | 12,70      | 508,13             | 243,44  |
| 91  | 3/2/1997   | 0,98     | 4,77      | 0,08  | 0,36          | 0,07               | 0,04               | 0,06               | 0,34               | 0,40              | 7,62              | 0,25              | 36,46 | 21,990  | 935,37                 | 13,67      | 41 53,62           | 37,82   |
| 110 | 26/2/1998  | 2,36     | 4,77      | 0,07  | 0,13          | 0,06               | 0,05               | 0,06               | 0,37               | 0,40              | 1,58              | 0,09              | 34,55 | 1,060   | 171,14                 | 1,62       | 16045,36           | 52,92   |
| 115 | 6/5/1998   | 1,00     | 4,16      | 0,06  | 0,23          | 0,06               | 0,04               | 0,05               | 0,33               | 0,39              | 4,84              | 0,02              | 35,22 | 0,165   | 379,64                 | 0,08       | 229986,09          | 50,65   |
| 133 | 21/1/1999  | 0,33     | 5,90      | 0,08  | 1,19          | 0,07               | 0,03               | 0,06               | 0,30               | 0,41              | 35,27             | 0,11              | 35,23 | 3,703   | 2278,35                | 3,67       | 61427,05           | 0,78    |
| 134 | 28/1/1999  | 0,38     | 6,24      | 0,09  | 1,24          | 0,08               | 0,03               | 0,06               | 0,31               | 0,41              | 34,92             | 0,26              | 35,81 | 0,000   | 2902,29                | 23,30      | 0,00               | 0,00    |
| 136 | 11/2/1999  | 0,35     | 5,90      | 0,08  | 1,09          | 0,06               | 0,03               | 0,06               | 0,30               | 0,41              | 31,72             | 0,07              | 35,26 | 3,047   | 2095,24                | 1,57       | 68664,10           | 48,50   |
| 137 | 25/2/1999  | 3,73     | 5,40      | 0,07  | 0,09          | 0,06               | 0,06               | 0,06               | 0,39               | 0,41              | 0,63              | 0,04              | 35,52 | 5,114   | 59,38                  | 0,40       | 1061,11            | 92,22   |
| 138 | 11/3/1999  | 0,40     | 5,05      | 0,07  | 0,79          | 0,06               | 0,03               | 0,06               | 0,30               | 0,40              | 22,61             | 0,07              | 35,20 | 1,803   | 1442,92                | 1,02       | 79929,08           | 43,59   |
| 139 | 25/3/1999  | 0,48     | 6,24      | 0,08  | 0,84          | 0,06               | 0,04               | 0,06               | 0,31               | 0,41              | 22,47             | 0,08              | 34,99 | 3,640   | 1944,61                | 1,98       | 53323,45           | 45,73   |
| 156 | 6/1/2000   | 4,06     | 5,90      | 0,08  | 0,10          | 0,07               | 0,06               | 0,06               | 0,40               | 0,41              | 0,69              | 0,11              | 35,69 | 0,214   | 84 ,59                 | 3,72       | 39427,11           | 1639,22 |
|     |            |          |           |       |               |                    |                    |                    |                    |                   |                   |                   |       |         |                        | MÉDIA      | 152732,76          | 736,45  |

Tabela 6.2kL - Valores maiores que zero das descargas calculadas pelo método de Yalin (1963) usando o diâmetro  $D_{90}$  e o Dvj

| (1) | (2)        | (3)             | (4)                   | (6)   | (7)           | (8)               | (9)                    | (10)                   | (11)                     | (12)                    | (13)  | (14)    | (15)       | (16)       | (17)               | (18)     |
|-----|------------|-----------------|-----------------------|-------|---------------|-------------------|------------------------|------------------------|--------------------------|-------------------------|-------|---------|------------|------------|--------------------|----------|
| N°  | DATA       | D <sub>50</sub> | D <sub>VI [PEV]</sub> | U.    | $\theta_{10}$ | θ <sub>iDvi</sub> | $(\theta_{iso})^{3/2}$ | $(\theta_{iBi})^{3/2}$ | (ဓ <sub>ုရာ</sub> )-0,04 | (θ <sub>Dj</sub> )-0,04 | B     | qBm     | qB[PER]D50 | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj  |
|     |            | (mm)            | mm                    | (m/s) |               |                   |                        |                        | -                        | -                       | (m)   | ton/dia | ton/dia    | ton/dia    | -                  | -        |
| 1   | 26/3/1993  | 0,64            | 4,58                  | 0,05  | 0,25          | 0,03              | 0,12                   | 0,01                   | 0,21                     | -0,01                   | 34,70 | 0,14    | 339,08     | 0,00       | 240379,10          | 100,00   |
| 2   | 6/4/1993   | 0,54            | 4,62                  | 0,05  | 0,25          | 0,03              | 0,13                   | 0,01                   | 0,21                     | -0,01                   | 34,87 | 0,04    | 276,82     | 0,00       | 728376,60          | 100,00   |
| 3   | 20/4/1993  | 0,68            | 4,44                  | 0,04  | 0,18          | 0,03              | 0,08                   | 0,00                   | 0,14                     | -0,01                   | 34,88 | 0,05    | 147,79     | 0,00       | 328314,26          | 100,00   |
| 4   | 4/5/1993   | 0,86            | 4,83                  | 0,05  | 0,18          | 0,03              | 0,08                   | 0,01                   | 0,14                     | -0,01                   | 34,78 | 0,05    | 210,78     | 0,00       | 468292,93          | 100,00   |
| 5   | 18/5/1993  | 0,51            | 4,09                  | 0,04  | 0,20          | 0,02              | 0,09                   | 0,00                   | 0,16                     | -0,02                   | 34,38 | 0,02    | 129,63     | 0,00       | 540004,17          | 100,00   |
| 6   | 1/6/1993   | 1,02            | 5,13                  | 0,06  | 0,21          | 0,04              | 0,09                   | 0,01                   | 0,17                     | 0,00                    | 35,24 | 0,19    | 409,68     | 2,36       | 21 5519,25         | 1140,46  |
| 7   | 8/6/1993   | 0,57            | 4,10                  | 0,04  | 0,20          | 0,03              | 0,09                   | 0,00                   | 0,16                     | -0,01                   | 34,91 | 0,03    | 161,51     | 0,00       | 621100,92          | 100,00   |
| 8   | 15/6/1993  | 0,64            | 4,38                  | 0,04  | 0,18          | 0,03              | 0,08                   | 0,00                   | 0,14                     | -0,01                   | 34,21 | 0,01    | 143,66     | 0,00       | 1795686,92         | 100,00   |
| 9   | 22/6/1993  | 0,97            | 4,23                  | 0,04  | 0,11          | 0,02              | 0,04                   | 0,00                   | 0,07                     | -0,02                   | 34,54 | 0,01    | 58,90      | 0,00       | 736121,02          | 100,00   |
| 10  | 29/6/1993  | 0,66            | 4,10                  | 0,04  | 0,13          | 0,02              | 0,05                   | 0,00                   | 0,09                     | -0,02                   | 33,99 | 0,01    | 57,29      | 0,00       | 81 8329 ,69        | 100,00   |
| 11  | 6/7/1993   | 0,78            | 3,07                  | 0,03  | 0,07          | 0,02              | 0,02                   | 0,00                   | 0,03                     | -0,02                   | 33,77 | 0,00    | 10,36      | 0,00       | 51 8003 ,21        | 100,00   |
| 12  | 21/7/1993  | 0,77            | 2,76                  | 0,03  | 0,06          | 0,02              | 0,01                   | 0,00                   | 0,02                     | -0,02                   | 33,64 | 0,01    | 4,21       | 0,00       | 70070,30           | 100,00   |
| 13  | 3/8/1993   | 0,63            | 2,23                  | 0,02  | 0,05          | 0,01              | 0,01                   | 0,00                   | 0,01                     | -0,03                   | 32,82 | 0,00    | 0,73       | 0,00       | 36521,08           | 100,00   |
| 14  | 17/8/1993  | 0,64            | 1,36                  | 0,02  | 0,02          | 0,01              | 0,00                   | 0,00                   | -0,02                    | -0,03                   | 33,53 | 0,00    | 0,00       | 0,00       | 100,00             | 100,00   |
| 15  | 31/8/1993  | 0,66            | 1,82                  | 0,02  | 0,04          | 0,01              | 0,01                   | 0,00                   | 0,00                     | -0,03                   | 33,74 | 0,00    | 0,00       | 0,00       | 100,00             | 100,00   |
| 16  | 21/9/1993  | 0,47            | 3,82                  | 0,04  | 0,18          | 0,02              | 0,08                   | 0,00                   | 0,14                     | -0,02                   | 33,97 | 0,01    | 87,85      | 0,00       | 1464040,82         | 100,00   |
| 17  | 28/9/1993  | 0,63            | 5,13                  | 0,06  | 0,30          | 0,04              | 0,17                   | 0,01                   | 0,26                     | 0,00                    | 34,92 | 0,38    | 564,88     | 0,00       | 147004,67          | 100,00   |
| 18  | 5/10/1993  | 0,69            | 3,82                  | 0,04  | 0,13          | 0,02              | 0,05                   | 0,00                   | 0,09                     | -0,02                   | 34,38 | 0,01    | 55,89      | 0,00       | 931460,98          | 100,00   |
| 19  | 21/10/1993 | 0,71            | 4,50                  | 0,05  | 0,18          | 0,03              | 0,08                   | 0,00                   | 0,14                     | -0,01                   | 34,84 | 0,02    | 172,30     | 0,00       | 749044,78          | 100,00   |
| 20  | 28/10/1993 | 0,63            | 4,76                  | 0,05  | 0,25          | 0,03              | 0,13                   | 0,01                   | 0,21                     | -0,01                   | 34,88 | 0,04    | 339,48     | 0,00       | 917405,11          | 100,00   |
| 21  | 4/11/1993  | 1,26            | 2,57                  | 0,03  | 0,03          | 0,02              | 0,01                   | 0,00                   | -0,01                    | -0,02                   | 33,82 | 0,00    | 0,00       | 0,00       | 100,00             | 100,00   |
| 22  | 9/11/1993  | 1,15            | 3,53                  | 0,03  | 0,06          | 0,02              | 0,02                   | 0,00                   | 0,02                     | -0,02                   | 34,01 | 0,01    | 9,65       | 0,00       | 192824,84          | 100,00   |
| 23  | 20/12/1993 | 0,63            | 4,62                  | 0,05  | 0,23          | 0,03              | 0,11                   | 0,01                   | 0,19                     | -0,01                   | 34,64 | 0,08    | 262,23     | 0,00       | 327688,72          | 100,00   |
| 24  | 10/2/1994  | 0,59            | 2,57                  | 0,04  | 0,14          | 0,03              | 0,05                   | 0,01                   | 0,10                     | -0,01                   | 35,65 | 0,33    | 56,16      | 0,00       | 16814,52           | 100,00   |
| 25  | 29/3/1994  | 0,56            | 4,62                  | 0,06  | 0,41          | 0,05              | 0,26                   | 0,01                   | 0,37                     | 0,01                    | 34,34 | 0,03    | 1013,77    | 26,30      | 3754613,12         | 97290,11 |
| 26  | 19/4/1994  | 0,55            | 3,53                  | 0,04  | 0,21          | 0,03              | 0,10                   | 0,01                   | 0,17                     | -0,01                   | 34,00 | 0,02    | 166,47     | 0,00       | 756596,59          | 100,00   |
| 27  | 6/5/1994   | 0,54            | 2,90                  | 0,03  | 0,14          | 0,03              | 0,05                   | 0,00                   | 0,10                     | -0,01                   | 33,60 | 0,01    | 50,93      | 0,00       | 424346,00          | 100,00   |
| 28  | 20/5/1994  | 0,52            | 3,24                  | 0,04  | 0,17          | 0,03              | 0,07                   | 0,00                   | 0,13                     | -0,01                   | 33,60 | 0,01    | 87,42      | 0,00       | 728418,68          | 100,00   |
| 29  | 17/6/1994  | 0,48            | 2,40                  | 0,03  | 0,12          | 0,02              | 0,04                   | 0,00                   | 0,08                     | -0,02                   | 33,64 | 0,01    | 25,28      | 0,00       | 505545,00          | 100,00   |
| 30  | 1/7/1994   | 0,53            | 3,24                  | 0,04  | 0,18          | 0,03              | 0,08                   | 0,01                   | 0,14                     | -0,01                   | 33,81 | 0,01    | 101,41     | 0,00       | 1690063,33         | 100,00   |
| 31  | 15/7/1994  | 0,47            | 2,23                  | 0,03  | 0,11          | 0,02              | 0,03                   | 0,00                   | 0,07                     | -0,02                   | 33,64 | 0,05    | 18,22      | 0,00       | 35631,66           | 100,00   |
| 32  | 29/7/1994  | 0,65            | 3,24                  | 0,04  | 0,15          | 0,03              | 0,06                   | 0,00                   | 0,11                     | -0,01                   | 33,81 | 0,01    | 75,73      | 0,00       | 757237,43          | 100,00   |
| 33  | 12/8/1994  | 0,57            | 1,82                  | 0,02  | 0,06          | 0,02              | 0,02                   | 0,00                   | 0,02                     | -0,02                   | 33,26 | 0,01    | 3,66       | 0,00       | 33137,80           | 100,00   |

Tabela 6.21 - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro  $D_{50}$  e o Dvj

| (1)      | (2)        | (3)             | (4)                   | (6)   | (7)           | (8)               | (9)                   | (10)                   | (11)                     | (12)                     | (13)  | (14)    | (15)       | (16)       | (17)               | (18)      |
|----------|------------|-----------------|-----------------------|-------|---------------|-------------------|-----------------------|------------------------|--------------------------|--------------------------|-------|---------|------------|------------|--------------------|-----------|
| N°       | DATA       | D <sub>50</sub> | D <sub>VI [PEV]</sub> | U.    | $\theta_{10}$ | θ <sub>iDvi</sub> | $(\theta_{iso})^{32}$ | $(\Theta_{iBi})^{3/2}$ | (Յ <sub>iso</sub> )-0,04 | (θ <sub>Dij</sub> )-0,04 | В     | qBm     | qB[PER]D50 | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj   |
|          |            | (mm)            | mm                    | (m/s) |               |                   |                       |                        | -                        | -                        | (m)   | ton/dia | ton/dia    | ton/dia    | -                  | -         |
| 34       | 26/8/1994  | 0,51            | 2,18                  | 0,03  | 0,10          | 0,02              | 0,03                  | 0,00                   | 0,06                     | -0,02                    | 33,47 | 0,00    | 16,56      | 0,00       | 827894,15          | 100,00    |
| 35       | 8/9/1994   | 0,54            | 2,57                  | 0,03  | 0,12          | 0,03              | 0,04                  | 0,00                   | 0,08                     | -0,01                    | 33,68 | 0,00    | 34,85      | 0,00       | 871259,37          | 100,00    |
| 36       | 22/9/1994  | 0,45            | 3,53                  | 0,04  | 0,25          | 0,03              | 0,13                  | 0,01                   | 0,21                     | -0,01                    | 33,92 | 0,00    | 204,00     | 0,00       | 10199827,96        | 100,00    |
| 37       | 6/10/1994  | 0,57            | 1,82                  | 0,02  | 0,07          | 0,02              | 0,02                  | 0,00                   | 0,03                     | -0,02                    | 33,49 | 0,00    | 4,48       | 0,00       | 223739,01          | 100,00    |
| 38       | 27/10/1994 | 0,73            | 3,39                  | 0,05  | 0,18          | 0,04              | 0,08                  | 0,01                   | 0,14                     | 0,00                     | 34,48 | 0,42    | 168,20     | 0,00       | 39568,87           | 100,00    |
| 39       | 23/11/1994 | 0,60            | 1,82                  | 0,02  | 0,06          | 0,02              | 0,02                  | 0,00                   | 0,02                     | -0,02                    | 33,52 | 0,00    | 4,17       | 0,00       | 104037,79          | 100,00    |
| 40       | 22/12/1994 | 0,71            | 4,88                  | 0,07  | 0,48          | 0,07              | 0,33                  | 0,02                   | 0,44                     | 0,03                     | 35,68 | 0,22    | 2302,36    | 157,10     | 1056027,59         | 71963,80  |
| 41       | 5/1/1995   | 0,57            | 5,13                  | 0,07  | 0,56          | 0,06              | 0,42                  | 0,02                   | 22,0                     | 0,02                     | 35,27 | 0,52    | 2408,68    | 103,07     | 460450,80          | 19606,77  |
| 42       | 19/1/1995  | 0,57            | 3,82                  | 0,05  | 0,24          | 0,04              | 0,11                  | 0,01                   | 0,20                     | 0,00                     | 33,92 | 0,02    | 238,91     | 0,00       | 1592624,04         | 100,00    |
| 43       | 26/1/1995  | 0,57            | 3,82                  | 0,05  | 0,23          | 0,03              | 0,11                  | 0,01                   | 0,19                     | -0,01                    | 33,93 | 0,04    | 218,15     | 0,00       | 605870,24          | 100,00    |
| 44       | 9/2/1995   | 0,82            | 3,24                  | 0,06  | 0,30          | 0,08              | 0,17                  | 0,02                   | 0,26                     | 0,04                     | 40,30 | 3,10    | 965,73     | 135,18     | 31 082,66          | 4264,95   |
| 45       | 16/2/1995  | 0,59            | 5,36                  | 0,08  | 0,62          | 0,07              | 0,49                  | 0,02                   | 8کر0                     | 0,03                     | 35,40 | 0,49    | 3295,54    | 160,48     | 679392,66          | 32988,40  |
| 46       | 8/3/1995   | 0,41            | 4,23                  | 0,05  | 0,46          | 0,04              | 0,31                  | 0,01                   | 0,42                     | 0,00                     | 34,94 | 0,40    | 851,34     | 8,37       | 21 4886 ,08        | 2012,57   |
| 47       | 24/3/1995  | 0,65            | 4,36                  | 0,07  | 0,41          | 0,06              | 0,26                  | 0,02                   | 0,37                     | 0,02                     | 35,38 | 1,72    | 1307,46    | 74,48      | 75870,92           | 4227,68   |
| 48       | 7/4/1995   | 0,25            | 4,62                  | 0,06  | 0,98          | 0,05              | 0,98                  | 0,01                   | 0,94                     | 0,01                     | 35,05 | 0,17    | 2938,47    | 41,08      | 1718303,02         | 23925,22  |
| 49       | 28/4/1995  | 0,24            | 4,36                  | 0,06  | 0,79          | 0,04              | 0,70                  | 0,01                   | 0,75                     | 0,00                     | 34,63 | 0,08    | 1566,11    | 7 ,37      | 1933370,94         | 9002,16   |
| - 30     | 12/5/1995  | 0,32            | 4,36                  | 0,06  | 0,64          | 0,05              | 0,51                  | 0,01                   | 0,60                     | 0,01                     | 34,74 | 0,47    | 1392,80    | 15,82      | 297507,06          | 3280,85   |
| 51       | 9/6/1995   | 0,33            | 3,82                  | 0,05  | 0,42          | 0,04              | 0,28                  | 0,01                   | 0,38                     | 0,00                     | 34,35 | 0,02    | 502,31     | 0,00       | 2183855,33         | 100,00    |
| 52       | 23/6/1995  | 0,50            | 3,05                  | 0,04  | 0,25          | 0,04              | 0,12                  | 0,01                   | 0,21                     | 0,00                     | 34,34 | 0,02    | 231,09     | 0,98       | 1283758,15         | 5325,01   |
| 33       | 5/7/1995   | 0,37            | 3,82                  | 0,05  | 0,35          | 0,03              | 0,20                  | 0,01                   | 0,31                     | -0,01                    | 34,19 | 0,05    | 350,94     | 0,00       | 688010,52          | 100,00    |
| 54       | 12/7/1995  | 0,20            | 5,24                  | 0,07  | 1,52          | 0,06              | 1,88                  | 0,01                   | 1,48                     | 0,02                     | 35,03 | 4,16    | 6337,89    | 77,14      | 152143,27          | 1752,87   |
| 55       | 19/7/1995  | 0,24            | 3,96                  | 0,06  | 0,85          | 0,05              | 0,78                  | 0,01                   | 0,81                     | 0,01                     | 34,59 | 0,02    | 1854,47    | 25,99      | 11590341,38        | 162330,92 |
| - 56     | 26/7/1995  | 0,35            | 4,10                  | 0,05  | 0,48          | 0,04              | 0,33                  | 0,01                   | 0,44                     | 0,00                     | 34,61 | 0,12    | 763,36     | 1,61       | 646819,01          | 1265,44   |
| 57       | 10/8/1995  | 0,32            | 3,39                  | 0,04  | 0,33          | 0,03              | 0,19                  | 0,01                   | 0,29                     | -0,01                    | 34,09 | 0,01    | 243,33     | 0,00       | 2027678,89         | 100,00    |
| - 38     | 31/8/1995  | 0,23            | 2,57                  | 0,03  | 0,27          | 0,02              | 0,14                  | 0,00                   | 0,23                     | -0,02                    | 33,65 | 0,00    | 85,27      | 0,00       | 4263223,63         | 100,00    |
| <u>.</u> | 21/9/1995  | 0,29            | 8,17                  | 0,09  | 1,58          | 0,06              | 1,99                  | 0,01                   | 1,54                     | 0,02                     | 34,28 | 0,03    | 11954,65   | 125,15     | 38563296,81        | 403620,89 |
| മ        | 28/9/1995  | 0,40            | 3,53                  | 0,05  | 0,33          | 0,04              | 0,19                  | 0,01                   | 0,29                     | 0,00                     | 34,68 | 0,25    | 342,80     | 0,00       | 137571,21          | 100,00    |
| 61       | 5/10/1995  | 0,36            | 2,92                  | 0,04  | 0,23          | 0,03              | 0,11                  | 0,00                   | 0,19                     | -0,01                    | 34,16 | 0,00    | 108,66     | 0,00       | 5432755,82         | 100,00    |
| 62       | 19/10/1995 | 0,82            | 4,49                  | 0,06  | 0,30          | 0,05              | 0,16                  | 0,01                   | 0,26                     | 0,01                     | 35,02 | 0,21    | 790,23     | 44,11      | 385379,13          | 21415,56  |
| 63       | 23/11/1995 | 0,52            | 2,92                  | 0,04  | 0,16          | 0,03              | 0,06                  | 0,00                   | 0,12                     | -0,01                    | 34,05 | 0,01    | 67,85      | 0,00       | 1130783,42         | 100,00    |
| 64       | 7/12/1995  | 0,63            | 2,23                  | 0,03  | 0,08          | 0,02              | 0,02                  | 0,00                   | 0,04                     | -0,02                    | 33,39 | 0,00    | 9,59       | 0,00       | 479638,37          | 100,00    |
| 65       | 10/1/1996  | 0,38            | 4,88                  | 0,08  | 1,02          | 0,08              | 1,04                  | 0,02                   | 0,98                     | 0,04                     | 36,91 | 5,14    | 6418,86    | 259,29     | 124756,30          | 4943,66   |
| 66       | 31/1/1996  | 0,26            | 3,82                  | 0,05  | 0,53          | 0,04              | 0,38                  | 0,01                   | 0,49                     | 0,00                     | 34,12 | 0,02    | 615,83     | 0,00       | 3241120,63         | 100,00    |

Tabela 6.21 - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro  $D_{s0}$  e o Dvj

| (1) | (2)        | (3)             | (4)                   | (6)   | (7)             | (8)                                  | (9)                    | (10)                   | (11)                     | (12)                            | (13)  | (14)    | (15)       | (16)       | (17)               | (18)      |
|-----|------------|-----------------|-----------------------|-------|-----------------|--------------------------------------|------------------------|------------------------|--------------------------|---------------------------------|-------|---------|------------|------------|--------------------|-----------|
| N°  | DATA       | D <sub>50</sub> | D <sub>VI [PEV]</sub> | U.    | θ <sub>in</sub> | $\theta_{\mathbb{D}_{\overline{v}}}$ | $(\theta_{iso})^{3/2}$ | $(\Theta_{iBi})^{3/2}$ | (Յ <sub>iso</sub> )-0,04 | $(\Theta_{\mathrm{D}ij})$ -0,04 | В     | qBm     | qB[PER]D50 | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj   |
|     |            | (mm)            | mm                    | (m/s) |                 |                                      |                        |                        |                          | _                               | (m)   | ton/dia | ton/dia    | ton/dia    | -                  | -         |
| 67  | 7/2/1996   | 0,32            | 4,10                  | 0,06  | 0,60            | 0,05                                 | 0,46                   | 0,01                   | 62,0                     | 0,01                            | 35,12 | 0,24    | 1186,26    | 13,86      | 498329,90          | 5722,00   |
| 68  | 6/3/1996   | 0,27            | 4,76                  | 0,07  | 1,08            | 0,06                                 | 1,12                   | 0,02                   | 1,04                     | 0,02                            | 35,36 | 3,54    | 41 91 ,23  | 85,31      | 118229,56          | 2308,56   |
| 69  | 20/3/1996  | 0,30            | 5,36                  | 0,09  | 1,49            | 0,08                                 | 1,82                   | 0,02                   | 1,45                     | 0,04                            | 36,55 | 1,15    | 11573,12   | 347,29     | 1006258,02         | 30099,30  |
| 70  | 3/4/1996   | 0,43            | 4,36                  | 0,06  | 0,47            | 0,05                                 | 0,32                   | 0,01                   | 0,43                     | 0,01                            | 34,87 | 0,13    | 974,70     | 13,79      | 732755,14          | 10266,00  |
| 71  | 16/4/1996  | 0,37            | 4,10                  | 0,05  | 0,49            | 0,04                                 | 0,34                   | 0,01                   | 0,45                     | 0,00                            | 34,52 | 0,05    | 880,67     | 8,42       | 1726708,99         | 16415,23  |
| 72  | 15/5/1996  | 0,44            | 3,82                  | 0,05  | 0,34            | 0,04                                 | 0,20                   | 0,01                   | 0,30                     | 0,00                            | 34,24 | 0,25    | 426,63     | 0,00       | 173328,52          | 100,00    |
| 73  | 22/5/1996  | 0,41            | 3,82                  | 0,05  | 0,35            | 0,04                                 | 0,21                   | 0,01                   | 0,31                     | 0,00                            | 34,20 | 0,01    | 412,40     | 0,00       | 5154916,14         | 100,00    |
| 74  | 19/6/1996  | 0,42            | 2,92                  | 0,04  | 0,20            | 0,03                                 | 0,09                   | 0,00                   | 0,16                     | -0,01                           | 33,76 | 0,01    | 94,14      | 0,00       | 784412,56          | 100,00    |
| 75  | 3/6/1996   | 0,64            | 3,24                  | 0,04  | 0,16            | 0,03                                 | 0,07                   | 0,01                   | 0,12                     | -0,01                           | 34,07 | 0,02    | 102,85     | 0,00       | 447059,45          | 100,00    |
| 76  | 17/7/1996  | 0,46            | 2,92                  | 0,04  | 0,18            | 0,03                                 | 0,07                   | 0,00                   | 0,14                     | -0,01                           | 33,81 | 0,00    | 76,02      | 0,00       | 1900466,18         | 100,00    |
| 77  | 31/7/1996  | 0,56            | 3,07                  | 0,04  | 0,15            | 0,03                                 | 0,06                   | 0,00                   | 0,11                     | -0,01                           | 34,75 | 0,01    | 72,27      | 0,00       | 1445231,47         | 100,00    |
| 78  | 7/8/1996   | 0,45            | 2,57                  | 0,03  | 0,15            | 0,03                                 | 0,06                   | 0,00                   | 0,11                     | -0,01                           | 34,04 | 0,00    | 46,63      | 0,00       | 1165663,44         | 100,00    |
| 79  | 14/8/1996  | 0,54            | 3,07                  | 0,04  | 0,17            | 0,03                                 | 0,07                   | 0,01                   | 0,13                     | -0,01                           | 33,99 | 0,01    | 90,80      | 0,00       | 181 5939 ,91       | 100,00    |
| 80  | 21/8/1996  | 0,50            | 2,76                  | 0,04  | 0,16            | 0,03                                 | 0,06                   | 0,00                   | 0,12                     | -0,01                           | 33,89 | 0,01    | 65,34      | 0,00       | 1306765,42         | 100,00    |
| 81  | 28/8/1996  | 0,52            | 2,92                  | 0,04  | 0,15            | 0,03                                 | 0,06                   | 0,00                   | 0,11                     | -0,01                           | 33,73 | 0,00    | 64,50      | 0,00       | 2149913,52         | 100,00    |
| 82  | 4/9/1996   | 0,53            | 3,82                  | 0,05  | 0,29            | 0,04                                 | 0,15                   | 0,01                   | 0,25                     | 0,00                            | 34,56 | 0,04    | 370,32     | 0,00       | 1028553,15         | 100,00    |
| 83  | 11/9/1996  | 0,64            | 5,13                  | 0,08  | 0,58            | 0,07                                 | 0,44                   | 0,02                   | 0,54                     | 0,03                            | 35,84 | 3,70    | 3214,09    | 193,52     | 86837,73           | 5134,42   |
| 84  | 2/10/1996  | 0,42            | 3,07                  | 0,04  | 0,23            | 0,03                                 | 0,11                   | 0,01                   | 0,19                     | -0,01                           | 34,10 | 0,01    | 137,15     | 0,00       | 2285755,04         | 100,00    |
| 85  | 16/10/1996 | 0,67            | 3,87                  | 0,05  | 0,24            | 0,04                                 | 0,12                   | 0,01                   | 0,20                     | 0,00                            | 34,70 | 0,25    | 341,63     | 3,77       | 136550,75          | 1406,89   |
| 86  | 6/11/1996  | 0,42            | 4,04                  | 0,05  | 0,42            | 0,04                                 | 0,27                   | 0,01                   | 0,38                     | 0,00                            | 34,70 | 0,32    | 692,11     | 5,93       | 216184,79          | 1752,79   |
| 87  | 20/11/1996 | 0,50            | 3,53                  | 0,05  | 0,28            | 0,04                                 | 0,15                   | 0,01                   | 0,24                     | 0,00                            | 34,70 | 0,03    | 328,81     | 0,25       | 966989,43          | 646,47    |
| 88  | 6/12/1996  | 0,38            | 3,53                  | 0,05  | 0,35            | 0,04                                 | 0,21                   | 0,01                   | 0,31                     | 0,00                            | 34,60 | 4,34    | 385,95     | 0,00       | 8792,75            | 100,00    |
| 89  | 9/1/1997   | 0,38            | 3,82                  | 0,05  | 0,42            | 0,04                                 | 0,27                   | 0,01                   | 0,38                     | 0,00                            | 34,68 | 0,03    | 601,79     | 2,37       | 1823509,41         | 7092,92   |
| 90  | 22/1/1997  | 0,37            | 4,88                  | 0,07  | 0,71            | 0,05                                 | 0,60                   | 0,01                   | 0,67                     | 0,01                            | 34,78 | 0,15    | 2269,10    | 46,52      | 1554075,53         | 31,761,25 |
| 91  | 3/2/1997   | 0,36            | 4,88                  | 0,08  | 0,97            | 0,07                                 | 0,95                   | 0,02                   | 0,93                     | 0,03                            | 36,46 | 21,99   | 5083,82    | 172,39     | 23018,77           | 683,94    |
| 92  | 12/3/1997  | 0,39            | 3,82                  | 0,05  | 0,34            | 0,04                                 | 0,20                   | 0,01                   | 0,30                     | 0,00                            | 34,32 | 1,01    | 376,06     | 0,00       | 37133,54           | 100,00    |
| 93  | 26/3/1997  | 0,40            | 3,39                  | 0,04  | 0,25            | 0,03                                 | 0,12                   | 0,01                   | 0,21                     | -0,01                           | 33,84 | 0,16    | 162,85     | 0,00       | 101683,93          | 100,00    |
| 94  | 16/4/1997  | 0,40            | 2,92                  | 0,03  | 0,18            | 0,03                                 | 0,08                   | 0,00                   | 0,14                     | -0,01                           | 33,64 | 0,03    | 70,13      | 0,00       | 21 9065 ,51        | 100,00    |
| 95  | 14/5/1997  | 0,39            | 3,07                  | 0,04  | 0,19            | 0,02                                 | 0,09                   | 0,00                   | 0,15                     | -0,02                           | 33,16 | 0,10    | 77,58      | 0,00       | 74500,66           | 100,00    |
| 96  | 4/6/1997   | 0,75            | 3,39                  | 0,04  | 0,13            | 0,03                                 | 0,05                   | 0,00                   | 0,09                     | -0,01                           | 33,64 | 0,01    | 67,33      | 0,00       | 1122024,38         | 100,00    |
| 97  | 2/7/1997   | 0,89            | 3,39                  | 0,04  | 0,11            | 0,03                                 | 0,04                   | 0,00                   | 0,07                     | -0,01                           | 33,84 | 0,01    | 51,14      | 0,00       | 1022600,59         | 100,00    |
| 98  | 12/8/1997  | 0,89            | 3,22                  | 0,04  | 0,10            | 0,03                                 | 0,03                   | 0,00                   | 0,06                     | -0,01                           | 33,93 | 0,00    | 42,35      | 0,00       | 1411437,15         | 100,00    |
| 99  | 26/8/1997  | 0,65            | 3,82                  | 0,05  | 0,19            | 0,03                                 | 0,08                   | 0,01                   | 0,15                     | -0,01                           | 33,97 | 0,01    | 168,80     | 0,00       | 3125849,06         | 100,00    |

Tabela 6.21 - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro  $D_{s0}$  e o Dvj

| (1) | (2)        | (3)             | (4)                   | (6)   | (7)       | (8)               | (9)                   | (10)                   | (11)                     | (12)                    | (13)  | (14)    | (15)       | (16)       | (17)               | (18)       |
|-----|------------|-----------------|-----------------------|-------|-----------|-------------------|-----------------------|------------------------|--------------------------|-------------------------|-------|---------|------------|------------|--------------------|------------|
| N°  | DATA       | D <sub>50</sub> | D <sub>vj [PEV]</sub> | U.    | eu<br>€jo | θ <sub>iDvi</sub> | $(\theta_{ist})^{32}$ | $(\Theta_{iBi})^{3/2}$ | (Յ <sub>iso</sub> )-0,04 | (θ <sub>Dj</sub> )-0,04 | B     | qBm     | qB[PER]D50 | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj    |
|     |            | (mm)            | mm                    | (m/s) |           |                   |                       |                        | _                        |                         | (m)   | ton/dia | ton/dia    | ton/dia    | -                  | -          |
| 100 | 9/9/1997   | 0,58            | 3,07                  | 0,03  | 0,12      | 0,02              | 0,04                  | 0,00                   | 0,08                     | -0,02                   | 33,40 | 0,00    | 38,36      | 0,00       | 1598232,61         | 100,00     |
| 101 | 23/9/1997  | 0,30            | 11,40                 | 0,10  | 2,17      | 0,06              | 3,20                  | 0,01                   | 2,13                     | 0,02                    | 33,96 | 0,01    | 27685,31   | 222,24     | 216291405,74       | 1736134,84 |
| 102 | 7/10/1997  | 0,32            | 3,70                  | 0,04  | 0,35      | 0,03              | 0,21                  | 0,01                   | 0,31                     | -0,01                   | 33,98 | 0,01    | 293,29     | 0,00       | 2188663,38         | 100,00     |
| 103 | 21/10/1997 | 0,34            | 2,36                  | 0,03  | 0,18      | 0,03              | 0,07                  | 0,00                   | 0,14                     | -0,01                   | 34,07 | 0,01    | 50,33      | 0,00       | 356831,58          | 100,00     |
| 104 | 4/11/1997  | 0,41            | 3,17                  | 0,04  | 0,21      | 0,03              | 0,09                  | 0,00                   | 0,17                     | -0,01                   | 33,80 | 0,00    | 103,16     | 0,00       | 3557181,98         | 100,00     |
| 105 | 2/12/1997  | 0,32            | 3,35                  | 0,04  | 0,33      | 0,03              | 0,19                  | 0,01                   | 0,29                     | -0,01                   | 34,22 | 0,44    | 251,62     | 0,00       | 57216,43           | 100,00     |
| 106 | 16/12/1997 | 0,29            | 4,82                  | 0,06  | 0,79      | 0,05              | 0,70                  | 0,01                   | 0,75                     | 0,01                    | 34,77 | 5,77    | 2052,85    | 20,01      | 35478,02           | 246,85     |
| 107 | 13/1/1998  | 0,32            | 6,48                  | 0,08  | 1,20      | 0,06              | 1,31                  | 0,01                   | 1,16                     | 0,02                    | 34,82 | 0,11    | 6960,53    | 115,14     | 650 5067 ,29       | 107507,09  |
| 108 | 27/1/1998  | 0,29            | 2,57                  | 0,03  | 0,24      | 0,03              | 0,12                  | 0,00                   | 0,20                     | -0,01                   | 34,01 | 0,01    | 90,02      | 0,00       | 918440,72          | 100,00     |
| 109 | 11/2/1998  | 0,62            | 4,88                  | 0,07  | 0,43      | 0,06              | 0,28                  | 0,01                   | 0,39                     | 0,02                    | 35,24 | 1,66    | 1403,06    | 53,64      | 84421,93           | 3131,22    |
| 110 | 26/2/1998  | 0,71            | 4,88                  | 0,07  | 0,42      | 0,06              | 0,27                  | 0,02                   | 0,38                     | 0,02                    | 34,55 | 1,06    | 1576,04    | 88,32      | 148583,35          | 8231,80    |
| 111 | 11/3/1998  | 0,64            | 4,38                  | 0,05  | 0,29      | 0,04              | 0,15                  | 0,01                   | 0,25                     | 0,00                    | 34,68 | 1,60    | 487,62     | 3,69       | 30376,24           | 130,79     |
| 112 | 25/3/1998  | 0,38            | 4,62                  | 0,06  | 0,58      | 0,05              | 0,44                  | 0,01                   | 4کړ0                     | 0,01                    | 35,22 | 0,31    | 1421,16    | 19,85      | 458338,89          | 6301,75    |
| 113 | 8/4/1998   | 0,44            | 3,53                  | 0,04  | 0,24      | 0,03              | 0,12                  | 0,01                   | 0,20                     | -0,01                   | 33,54 | 0,03    | 174,36     | 0,00       | 51 2735,38         | 100,00     |
| 114 | 22/4/1998  | 0,46            | 2,40                  | 0,03  | 0,14      | 0,03              | 0,05                  | 0,00                   | 0,10                     | -0,01                   | 33,96 | 0,00    | 38,40      | 0,00       | 892845,17          | 100,00     |
| 115 | 6/5/1998   | 0,40            | 4,36                  | 0,06  | 0,58      | 0,05              | 0,44                  | 0,01                   | 4ک,0                     | 0,01                    | 35,22 | 0,17    | 1535,26    | 37,21      | 930358,83          | 22449,42   |
| 116 | 21/5/1998  | 0,38            | 4,10                  | 0,05  | 0,37      | 0,03              | 0,22                  | 0,01                   | 0,33                     | -0,01                   | 34,01 | 0,01    | 427,26     | 0,00       | 8377467,70         | 100,00     |
| 117 | 3/6/1998   | 0,39            | 3,53                  | 0,04  | 0,28      | 0,03              | 0,15                  | 0,01                   | 0,24                     | -0,01                   | 33,70 | 0,02    | 218,32     | 0,00       | 1372959,36         | 100,00     |
| 118 | 17/6/1998  | 0,47            | 3,18                  | 0,04  | 0,18      | 0,03              | 0,08                  | 0,00                   | 0,14                     | -0,01                   | 33,04 | 0,00    | 87,07      | 0,00       | 0,00               | 0,00       |
| 119 | 15/7/1998  | 0,79            | 3,53                  | 0,04  | 0,13      | 0,03              | 0,05                  | 0,00                   | 0,09                     | -0,01                   | 33,02 | 0,01    | 69,08      | 0,00       | 1381407,80         | 100,00     |
| 120 | 29/7/1998  | 0,92            | 2,92                  | 0,03  | 0,07      | 0,02              | 0,02                  | 0,00                   | 0,03                     | -0,02                   | 32,50 | 0,00    | 13,49      | 0,00       | 561875,89          | 100,00     |
| 121 | 12/8/1998  | 0,73            | 3,30                  | 0,04  | 0,11      | 0,03              | 0,04                  | 0,00                   | 0,07                     | -0,01                   | 32,77 | 0,00    | 42,00      | 0,00       | 1235196,10         | 100,00     |
| 122 | 25/8/1998  | 0,59            | 2,76                  | 0,03  | 0,10      | 0,02              | 0,03                  | 0,00                   | 0,06                     | -0,02                   | 32,08 | 0,00    | 18,18      | 0,00       | 0,00               | 0,00       |
| 123 | 2/9/1998   | 0,86            | 2,92                  | 0,03  | 0,09      | 0,03              | 0,03                  | 0,00                   | 0,05                     | -0,01                   | 32,90 | 0,00    | 22,88      | 0,00       | 0,00               | 0,00       |
| 124 | 16/9/1998  | 0,77            | 2,23                  | 0,03  | 0,06      | 0,02              | 0,01                  | 0,00                   | 0,02                     | -0,02                   | 32,90 | 0,01    | 4,22       | 0,00       | 70152,86           | 100,00     |
| 125 | 30/9/1998  | 1,18            | 2,57                  | 0,03  | 0,05      | 0,02              | 0,01                  | 0,00                   | 0,01                     | -0,02                   | 32,87 | 0,00    | 4,87       | 0,00       | 121632,68          | 100,00     |
| 126 | 14/10/1998 | 0,95            | 4,82                  | 0,06  | 0,20      | 0,04              | 0,09                  | 0,01                   | 0,16                     | 0,00                    | 33,28 | 0,02    | 319,46     | 0,00       | 1359320,27         | 100,00     |
| 127 | 28/10/1998 | 0,68            | 4,62                  | 0,05  | 0,22      | 0,03              | 0,11                  | 0,01                   | 0,18                     | -0,01                   | 32,92 | 0,01    | 264,60     | 0,00       | 2568826,17         | 100,00     |
| 128 | 11/11/1998 | 0,85            | 3,82                  | 0,04  | 0,11      | 0,02              | 0,04                  | 0,00                   | 0,07                     | -0,02                   | 31,40 | 0,00    | 45,83      | 0,00       | 0,00               | 0,00       |
| 129 | 25/11/1998 | 0,50            | 4,36                  | 0,04  | 0,22      | 0,03              | 0,11                  | 0,00                   | 0,18                     | -0,01                   | 31,29 | 0,00    | 158,54     | 0,00       | 0,00               | 0,00       |
| 130 | 9/12/1998  | 0,83            | 5,11                  | 0,06  | 0,23      | 0,04              | 0,11                  | 0,01                   | 0,19                     | 0,00                    | 33,18 | 0,00    | 398,65     | 0,00       | 0,00               | 0,00       |
| 131 | 22/12/1998 | 0,36            | 4,82                  | 0,05  | 0,46      | 0,03              | 0,32                  | 0,01                   | 0,42                     | -0,01                   | 32,95 | 0,00    | 691,22     | 0,00       | 0,00               | 0,00       |
| 132 | 6/1/1999   | 0,20            | 5,11                  | 0,07  | 1,47      | 0,06              | 1,78                  | 0,01                   | 1,43                     | 0,02                    | 34,79 | 1,48    | 5781,49    | 70,81      | 391070,12          | 4690,95    |

Tabela 6.21 - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro  $D_{s0}$  e o Dvj

| (1) | (2)        | (3)             | (4)                   | (6)   | (7)             | (8)               | (9)                   | (10)                   | (11)                     | (12)                    | (13)  | (14)    | (15)       | (16)       | (17)               | (18)       |
|-----|------------|-----------------|-----------------------|-------|-----------------|-------------------|-----------------------|------------------------|--------------------------|-------------------------|-------|---------|------------|------------|--------------------|------------|
| N°  | DATA       | D <sub>50</sub> | D <sub>VI [PEV]</sub> | U.    | θ <sub>in</sub> | θ <sub>iDvi</sub> | $(\theta_{isp})^{32}$ | $(\Theta_{iBi})^{3/2}$ | (ဓ <sub>լso</sub> )-0,04 | (θ <sub>Dg</sub> )-0,04 | B     | qBm     | qB[PER]D50 | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj    |
|     |            | (mm)            | mm                    | (m/s) |                 |                   |                       |                        | -                        | -                       | (m)   | ton/dia | ton/dia    | ton/dia    | -                  | -          |
| 133 | 21/1/1999  | 0,20            | 5,81                  | 0,08  | 1,97            | 0,07              | 2,76                  | 0,02                   | 1,93                     | 0,03                    | 35,23 | 3,70    | 12222,16   | 175,90     | 329961,12          | 4650,18    |
| 134 | 28/1/1999  | 0,22            | 6,08                  | 0,09  | 2,15            | 0,08              | 3,15                  | 0,02                   | 2,11                     | 0,04                    | 35,81 | 0,00    | 17874,08   | 320,29     | 0,00               | 0,00       |
| 135 | 3/2/1999   | 0,20            | 5,40                  | 0,07  | 1,55            | 0,06              | 1,92                  | 0,01                   | 12,1                     | 0,02                    | 35,18 | 2,82    | 6627,79    | 75,99      | 234928,12          | 2594,64    |
| 136 | 11/2/1999  | 0,22            | 5,81                  | 0,08  | 1,73            | 0,07              | 2,27                  | 0,02                   | 1,69                     | 0,03                    | 35,26 | 3,05    | 10157,07   | 152,96     | 333246,72          | 4920,09    |
| 137 | 25/2/1999  | 1,12            | 5,40                  | 0,07  | 0,30            | 0,06              | 0,16                  | 0,02                   | 0,26                     | 0,02                    | 35,52 | 5,11    | 1313,64    | 112,59     | 25587,23           | 2101,68    |
| 138 | 11/3/1999  | 0,24            | 5,11                  | 0,07  | 1,32            | 0,06              | 1,51                  | 0,02                   | 1,28                     | 0,02                    | 35,20 | 1,80    | 5833,13    | 99,85      | 323423,69          | 5437,89    |
| 139 | 25/3/1999  | 0,25            | 6,08                  | 0,08  | 1,61            | 0,07              | 2,05                  | 0,02                   | 1,57                     | 0,03                    | 34,99 | 3,64    | 10288,70   | 172,63     | 282556,70          | 4642,57    |
| 140 | 15/4/1999  | 0,23            | 5,11                  | 0,06  | 0,85            | 0,04              | 0,79                  | 0,01                   | 0,81                     | 0,00                    | 33,72 | 0,02    | 1742,90    | 0,00       | 8714420,63         | 100,00     |
| 141 | 29/4/1999  | 0,29            | 11,68                 | 0,10  | 2,12            | 0,05              | 3,10                  | 0,01                   | 2,08                     | 0,01                    | 33,27 | 0,01    | 24437,51   | 149,41     | 187980727,64       | 1149200,88 |
| 142 | 13/5/1999  | 0,20            | 5,54                  | 0,06  | 1,03            | 0,04              | 1,05                  | 0,01                   | 0,99                     | 0,00                    | 33,41 | 0,02    | 2263,91    | 0,00       | 9842968,89         | 100,00     |
| 143 | 9/6/1999   | 1,50            | 4,67                  | 0,05  | 0,10            | 0,03              | 0,03                  | 0,01                   | 0,06                     | -0,01                   | 33,29 | 0,01    | 80,77      | 0,00       | 807584,07          | 100,00     |
| 144 | 22/7/1999  | 0,42            | 4,82                  | 0,05  | 0,31            | 0,03              | 0,17                  | 0,00                   | 0,27                     | -0,01                   | 32,52 | 0,00    | 298,08     | 0,00       | 9935810,99         | 100,00     |
| 145 | 5/8/1999   | 0,45            | 4,88                  | 0,05  | 0,29            | 0,03              | 0,16                  | 0,00                   | 0,25                     | -0,01                   | 32,65 | 0,00    | 283,06     | 0,00       | 14152907,33        | 100,00     |
| 146 | 19/8/1999  | 0,31            | 4,82                  | 0,05  | 0,42            | 0,03              | 0,27                  | 0,00                   | 0,38                     | -0,01                   | 32,78 | 0,00    | 422,92     | 0,00       | 10572991,72        | 100,00     |
| 147 | 2/9/1999   | 1,36            | 1,90                  | 0,02  | 0,02            | 0,02              | 0,00                  | 0,00                   | -0,02                    | -0,02                   | 32,07 | 0,00    | 0,00       | 0,00       | 0,00               | 0,00       |
| 148 | 15/9/1999  | 0,85            | 4,82                  | 0,05  | 0,19            | 0,03              | 0,08                  | 0,01                   | 0,15                     | -0,01                   | 33,31 | 0,34    | 226,53     | 0,00       | 65943,71           | 100,00     |
| 149 | 30/9/1999  | 0,25            | 4,36                  | 0,04  | 0,40            | 0,02              | 0,25                  | 0,00                   | 0,36                     | -0,02                   | 32,02 | 0,00    | 267,99     | 0,00       | 26798721,83        | 100,00     |
| 150 | 14/10/1999 | 0,23            | 4,82                  | 0,04  | 0,53            | 0,03              | 0,38                  | 0,00                   | 0,49                     | -0,01                   | 32,41 | 0,00    | 481,95     | 0,00       | 16064983,69        | 100,00     |
| 151 | 28/10/1999 | 0,35            | 5,11                  | 0,05  | 0,43            | 0,03              | 0,28                  | 0,00                   | 0,39                     | -0,01                   | 32,88 | 0,03    | 532,60     | 0,00       | 1972497,71         | 100,00     |
| 152 | 11/11/1999 | 0,21            | 4,67                  | 0,04  | 0,58            | 0,03              | 0,44                  | 0,00                   | 4ک,0                     | -0,01                   | 32,80 | 28,00   | 541,51     | 0,00       | 1833,96            | 100,00     |
| 153 | 25/11/1999 | 0,23            | 5,11                  | 0,05  | 0,81            | 0,04              | 0,72                  | 0,01                   | 0,77                     | 0,00                    | 32,88 | 0,09    | 1464,25    | 0,00       | 1645121,33         | 100,00     |
| 154 | 9/12/1999  | 1,33            | 5,54                  | 0,06  | 0,16            | 0,04              | 0,06                  | 0,01                   | 0,12                     | 0,00                    | 33,19 | 0,04    | 261,16     | 0,00       | 725333,73          | 100,00     |
| 155 | 23/12/1999 | 0,53            | 8,25                  | 0,06  | 0,40            | 0,03              | 0,25                  | 0,00                   | 0,36                     | -0,01                   | 30,48 | 0,00    | 783,50     | 0,00       | 26116669,27        | 100,00     |
| 156 | 6/1/2000   | 0,22            | 5,81                  | 0,08  | 1,79            | 0,07              | 2,39                  | 0,02                   | 1,75                     | 0,03                    | 35,69 | 0,21    | 11232,79   | 178,20     | 5248866,42         | 83169,15   |
| 157 | 13/1/2000  | 0,39            | 5,40                  | 0,05  | 0,45            | 0,03              | 0,30                  | 0,01                   | 0,41                     | -0,01                   | 32,91 | 0,31    | 709,07     | 0,00       | 226440,18          | 100,00     |
| 158 | 20/1/2000  | 0,73            | 5,40                  | 0,05  | 0,24            | 0,03              | 0,12                  | 0,01                   | 0,20                     | -0,01                   | 33,27 | 0,04    | 350,13     | 0,00       | 853880,77          | 100,00     |
| 159 | 27/1/2000  | 0,34            | 5,54                  | 0,06  | 0,58            | 0,04              | 0,44                  | 0,01                   | 4کر0                     | 0,00                    | 33,25 | 0,09    | 11 41,60   | 0,00       | 1268349,02         | 100,00     |
| 160 | 3/2/2000   | 0,25            | 7,45                  | 0,08  | 1,43            | 0,05              | 1,71                  | 0,01                   | 1,39                     | 0,01                    | 34,00 | 0,55    | 7373,28    | 42,71      | 1333224,21         | 7624,01    |
| 161 | 9/2/2000   | 0,27            | 5,11                  | 0,05  | 0,61            | 0,03              | 0,48                  | 0,01                   | 72_0                     | -0,01                   | 33,10 | 0,49    | 935,36     | 0,00       | 191965,80          | 100,00     |
| 162 | 18/2/2000  | 0,24            | 5,81                  | 0,07  | 1,13            | 0,05              | 1,20                  | 0,01                   | 1,09                     | 0,01                    | 34,70 | 0,45    | 3901,63    | 24,05      | 87 27 47 ,83       | 5280,50    |
| 163 | 24/2/2000  | 0,19            | 3,53                  | 0,04  | 0,57            | 0,03              | 0,43                  | 0,01                   | 52,0                     | -0,01                   | 33,56 | 0,60    | 466,36     | 0,00       | 77239,82           | 100,00     |
| 164 | 3/3/2000   | 0,32            | 8,02                  | 0,08  | 1,12            | 0,04              | 1,19                  | 0,01                   | 1,08                     | 0,00                    | 33,42 | 0,22    | 5689,22    | 25,32      | 2597716,52         | 11459,41   |
| 165 | 10/3/2000  | 0,18            | 5,81                  | 0,06  | 1,06            | 0,03              | 1,08                  | 0,01                   | 1,02                     | -0,01                   | 32,88 | 0,04    | 2015,55    | 0,00       | 5038776,72         | 100,00     |

Tabela 6.21 - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro  $D_{50}$  e o Dvj

| (1) | (2)       | (3)             | (4)                   | (6)   | (7)             | (8)               | (9)                   | (10)                   | (11)                     | (12)                    | (13)  | (14)    | (15)       | (16)       | (17)               | (18)     |
|-----|-----------|-----------------|-----------------------|-------|-----------------|-------------------|-----------------------|------------------------|--------------------------|-------------------------|-------|---------|------------|------------|--------------------|----------|
| N°  | DATA      | D <sub>50</sub> | D <sub>VI [PEV]</sub> | U.    | e <sub>in</sub> | θ <sub>iDvi</sub> | $(\theta_{iso})^{32}$ | $(\Theta_{iBi})^{3/2}$ | (ဓ <sub>ုရာ</sub> )-0,04 | (θ <sub>Dg</sub> )-0,04 | B     | qBm     | qB[PER]D50 | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj  |
|     |           | (mm)            | min                   | (m/s) |                 |                   |                       |                        | -                        | -                       | (m)   | ton/dia | ton/dia    | ton/dia    | -                  | -        |
| 166 | 17/3/2000 | 0,23            | 6,84                  | 0,06  | 1,11            | 0,04              | 1,17                  | 0,01                   | 1,07                     | 0,00                    | 33,27 | 0,22    | 3343,27    | 0,00       | 1533509,12         | 100,00   |
| 167 | 24/3/2000 | 0,50            | 4,67                  | 0,05  | 0,34            | 0,04              | 0,20                  | 0,01                   | 0,30                     | 0,00                    | 34,12 | 0,49    | 539,83     | 0,00       | 109844,88          | 100,00   |
| 168 | 31/3/2000 | 0,44            | 6,08                  | 0,08  | 0,80            | 0,06              | 0,71                  | 0,01                   | 0,76                     | 0,02                    | 35,27 | 1,12    | 4044,53    | 94,73      | 360696,54          | 8350,41  |
| 169 | 7/4/2000  | 0,29            | 5,54                  | 0,05  | 0,57            | 0,03              | 0,42                  | 0,01                   | 0,53                     | -0,01                   | 32,77 | 0,05    | 831,34     | 0,00       | 1662577,68         | 100,00   |
| 170 | 14/4/2000 | 0,46            | 5,11                  | 0,05  | 0,28            | 0,03              | 0,15                  | 0,00                   | 0,24                     | -0,01                   | 32,20 | 0,01    | 272,32     | 0,00       | 5446393,72         | 100,00   |
| 171 | 19/4/2000 | 0,92            | 5,40                  | 0,05  | 0,15            | 0,03              | 0,06                  | 0,00                   | 0,11                     | -0,01                   | 31,99 | 0,01    | 135,20     | 0,00       | 1126601,34         | 100,00   |
|     |           |                 |                       |       |                 |                   |                       |                        |                          |                         |       |         |            | MÉDIA      | 4364710,04         | 24403,53 |

Tabela 6.21 - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro  $D_{s0}$  e o Dvj

qB[PER]D $_{s0}$  - descarga sólida calculada pelo método de Pernecker e Volmer para o diâmetro D $_{s0}$ 

qB[PER]Dvj - descarga sólida calculada pelo método de Pernecker e Volmer para o diâmetro Dvj

| (1)  | (2)        | (3)             | (4)                   | (6)   | (7)              | (8)               | (9)                    | (10)                       | (11)                     | (12)                     | (13)  | (14)    | (15)                   | (16)       | (17)               | (18)       |
|------|------------|-----------------|-----------------------|-------|------------------|-------------------|------------------------|----------------------------|--------------------------|--------------------------|-------|---------|------------------------|------------|--------------------|------------|
| N°   | DATA       | D <sub>50</sub> | D <sub>vj [PEV]</sub> | U.    | θ <sub>i50</sub> | θ <sub>iDvi</sub> | $(\theta_{iSD})^{3/2}$ | $(\theta_{\rm IDi})^{3/2}$ | (Θ <sub>isp</sub> )-0,04 | (θ <sub>Dij</sub> )-0,04 | В     | qBm     | qB[PER]D <sub>50</sub> | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj    |
|      |            | (mm)            | mm                    | (m/s) |                  |                   |                        |                            |                          | _                        | (m)   | ton/dia | tonélia                | ton/dia    | -                  | -          |
| 6    | 1/6/1993   | 1,02            | 5,13                  | 0,06  | 0,21             | 0,04              | 0,09                   | 0,01                       | 0,17                     | 0,00                     | 35,24 | 0,19    | 409,68                 | 2,36       | 215519,25          | 1140,46    |
| 24   | 10/2/1994  | 0,59            | 2,57                  | 0,04  | 0,14             | 0,03              | 0,05                   | 0,01                       | 0,10                     | -0,01                    | 35,65 | 0,33    | 56,16                  | 0,00       | 16814,52           | 100,00     |
| 25   | 29/3/1994  | 0,56            | 4,62                  | 0,06  | 0,41             | 0,05              | 0,26                   | 0,01                       | 0,37                     | 0,01                     | 34,34 | 0,03    | 1013,77                | 26,30      | 3754613,12         | 97290,11   |
| 40   | 22/12/1994 | 0,71            | 4,88                  | 0,07  | 0,48             | 0,07              | 0,33                   | 0,02                       | 0,44                     | 0,03                     | 35,68 | 0,22    | 2302,36                | 157,10     | 1056027,59         | 71963,80   |
| 41   | 5/1/1995   | 0,57            | 5,13                  | 0,07  | 0,56             | 0,06              | 0,42                   | 0,02                       | 0,52                     | 0,02                     | 35,27 | 0,52    | 2408,68                | 103,07     | 460450,80          | 19606,77   |
| 44   | 9/2/1995   | 0,82            | 3,24                  | 0,06  | 0,30             | 0,08              | 0,17                   | 0,02                       | 0,26                     | 0,04                     | 40,30 | 3,10    | 965,73                 | 135,18     | 31082,66           | 4264,95    |
| 45   | 16/2/1995  | 0,59            | 5,36                  | 0,08  | 0,62             | 0,07              | 0,49                   | 0,02                       | 0,58                     | 0,03                     | 35,40 | 0,49    | 3295,54                | 160,48     | 679392,66          | 32988,40   |
| 46   | 8/3/1995   | 0,41            | 4,23                  | 0,05  | 0,46             | 0,04              | 0,31                   | 0,01                       | 0,42                     | 0,00                     | 34,94 | 0,40    | 851,34                 | 8,37       | 214886,08          | 2012,57    |
| 47   | 24/3/1995  | 0,65            | 4,36                  | 0,07  | 0,41             | 0,06              | 0,26                   | 0,02                       | 0,37                     | 0,02                     | 35,38 | 1,72    | 1307,46                | 74,48      | 75870,92           | 4227,68    |
| 48   | 7/4/1995   | 0,25            | 4,62                  | 0,06  | 0,98             | 0,05              | 0,98                   | 0,01                       | 0,94                     | 0,01                     | 35,05 | 0,17    | 2938,47                | 41,08      | 1718303,02         | 23925,22   |
| 49   | 28/4/1995  | 0,24            | 4,36                  | 0,06  | 0,79             | 0,04              | 0,70                   | 0,01                       | 0,75                     | 0,00                     | 34,63 | 0,08    | 1566,11                | 7,37       | 1933370,94         | 9002,16    |
| - 50 | 12/5/1995  | 0,32            | 4,36                  | 0,06  | 0,64             | 0,05              | 0,51                   | 0,01                       | 0,60                     | 0,01                     | 34,74 | 0,47    | 1392,80                | 15,82      | 297507,06          | 3280,85    |
| 52   | 23/6/1995  | 0,50            | 3,05                  | 0,04  | 0,25             | 0,04              | 0,12                   | 0,01                       | 0,21                     | 0,00                     | 34,34 | 0,02    | 231,09                 | 0,98       | 1283758,15         | 5325,01    |
| 54   | 12/7/1995  | 0,20            | 5,24                  | 0,07  | 1,52             | 0,06              | 1,88                   | 0,01                       | 1,48                     | 0,02                     | 35,03 | 4,16    | 6337,89                | 77,14      | 152143,27          | 1752,87    |
| 55   | 19/7/1995  | 0,24            | 3,96                  | 0,06  | 0,85             | 0,05              | 0,78                   | 0,01                       | 0,81                     | 0,01                     | 34,59 | 0,02    | 1854,47                | 25,99      | 11590341,38        | 162330,92  |
| 56   | 26/7/1995  | 0,35            | 4,10                  | 0,05  | 0,48             | 0,04              | 0,33                   | 0,01                       | 0,44                     | 0,00                     | 34,61 | 0,12    | 763,36                 | 1,61       | 646819,01          | 1265,44    |
| 59   | 21/9/1995  | 0,29            | 8,17                  | 0,09  | 8ک,1             | 0,06              | 1,99                   | 0,01                       | 1,54                     | 0,02                     | 34,28 | 0,03    | 11954,65               | 125,15     | 38563296,81        | 403620,89  |
| 62   | 19/10/1995 | 0,82            | 4,49                  | 0,06  | 0,30             | 0,05              | 0,16                   | 0,01                       | 0,26                     | 0,01                     | 35,02 | 0,21    | 790,23                 | 44,11      | 385379,13          | 21415,56   |
| రు   | 10/1/1996  | 0,38            | 4,88                  | 0,08  | 1,02             | 0,08              | 1,04                   | 0,02                       | 0,98                     | 0,04                     | 36,91 | 5,14    | 6418,86                | 259,29     | 124756,30          | 4943,66    |
| 67   | 7/2/1996   | 0,32            | 4,10                  | 0,06  | 0,60             | 0,05              | 0,46                   | 0,01                       | 0,56                     | 0,01                     | 35,12 | 0,24    | 1186,26                | 13,86      | 498329,90          | 5722,00    |
| 68   | 6/3/1996   | 0,27            | 4,76                  | 0,07  | 1,08             | 0,06              | 1,12                   | 0,02                       | 1,04                     | 0,02                     | 35,36 | 3,54    | 4191,23                | 85,31      | 118229,56          | 2308,56    |
| 69   | 20/3/1996  | 0,30            | 5,36                  | 0,09  | 1,49             | 0,08              | 1,82                   | 0,02                       | 1,45                     | 0,04                     | 36,55 | 1,15    | 11573,12               | 347,29     | 1006258,02         | 30099,30   |
| 70   | 3/4/1996   | 0,43            | 4,36                  | 0,06  | 0,47             | 0,05              | 0,32                   | 0,01                       | 0,43                     | 0,01                     | 34,87 | 0,13    | 974,70                 | 13,79      | 732755,14          | 10266,00   |
| 71   | 16/4/1996  | 0,37            | 4,10                  | 0,05  | 0,49             | 0,04              | 0,34                   | 0,01                       | 0,45                     | 0,00                     | 34,52 | 0,05    | 880,67                 | 8,42       | 1726708,99         | 16415,23   |
| 83   | 11/9/1996  | 0,64            | 5,13                  | 0,08  | 8کر0             | 0,07              | 0,44                   | 0,02                       | 0,54                     | 0,03                     | 35,84 | 3,70    | 3214,09                | 193,52     | 86837,73           | 5134,42    |
| 85   | 16/10/1996 | 0,67            | 3,87                  | 0,05  | 0,24             | 0,04              | 0,12                   | 0,01                       | 0,20                     | 0,00                     | 34,70 | 0,25    | 341,63                 | 3,77       | 136550,75          | 1406,89    |
| 86   | 6/11/1996  | 0,42            | 4,04                  | 0,05  | 0,42             | 0,04              | 0,27                   | 0,01                       | 0,38                     | 0,00                     | 34,70 | 0,32    | 692,11                 | 5,93       | 216184,79          | 1752,79    |
| 87   | 20/11/1996 | 0,50            | 3,53                  | 0,05  | 0,28             | 0,04              | 0,15                   | 0,01                       | 0,24                     | 0,00                     | 34,70 | 0,03    | 328,81                 | 0,25       | 966989,43          | 646,47     |
| 89   | 9/1/1997   | 0,38            | 3,82                  | 0,05  | 0,42             | 0,04              | 0,27                   | 0,01                       | 0,38                     | 0,00                     | 34,68 | 0,03    | 601,79                 | 2,37       | 1823509,41         | 7092,92    |
| 90   | 22/1/1997  | 0,37            | 4,88                  | 0,07  | 0,71             | 0,05              | 0,60                   | 0,01                       | 0,67                     | 0,01                     | 34,78 | 0,15    | 2269,10                | 46,52      | 1554075,53         | 31761,25   |
| 91   | 3/2/1997   | 0,36            | 4,88                  | 0,08  | 0,97             | 0,07              | 0,95                   | 0,02                       | 0,93                     | 0,03                     | 36,46 | 21,99   | 5083,82                | 172,39     | 23018,77           | 683,94     |
| 101  | 23/9/1997  | 0,30            | 11,40                 | 0,10  | 2,17             | 0,06              | 3,20                   | 0,01                       | 2,13                     | 0,02                     | 33,96 | 0,01    | 27685,31               | 222,24     | 21 6291 405,74     | 1736134,84 |
| 106  | 16/12/1997 | 0,29            | 4,82                  | 0,06  | 0,79             | 0,05              | 0,70                   | 0,01                       | 0,75                     | 0,01                     | 34,77 | 5,77    | 2052,85                | 20,01      | 35478,02           | 246,85     |

Tabela 6.211 - Valores maiores que zero das descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)       | (3)             | (4)                   | (6)   | (7)              | (8)               | (9)                        | (10)                        | (11)                     | (12)                     | (13)  | (14)    | (15)                   | (16)       | (17)               | (18)       |
|-----|-----------|-----------------|-----------------------|-------|------------------|-------------------|----------------------------|-----------------------------|--------------------------|--------------------------|-------|---------|------------------------|------------|--------------------|------------|
| N°  | DATA      | D <sub>50</sub> | D <sub>vj [PEV]</sub> | U.    | θ <sub>i50</sub> | θ <sub>iDvj</sub> | $(\theta_{\rm ISD})^{3/2}$ | $(\theta_{\rm iDij})^{3/2}$ | (Ө <sub>iso</sub> )-0,04 | (θ <sub>Dij</sub> )-0,04 | В     | qBm     | qB[PER]D <sub>50</sub> | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj    |
|     |           | (mm)            | mm                    | (m/s) |                  |                   |                            | -                           |                          |                          | (m)   | ton/dia | tonédia                | ton/dia    | -                  | -          |
| 107 | 13/1/1998 | 0,32            | 6,48                  | 0,08  | 1,20             | 0,06              | 1,31                       | 0,01                        | 1,16                     | 0,02                     | 34,82 | 0,11    | 6960,53                | 115,14     | 6505067,29         | 107507,09  |
| 109 | 11/2/1998 | 0,62            | 4,88                  | 0,07  | 0,43             | 0,06              | 0,28                       | 0,01                        | 0,39                     | 0,02                     | 35,24 | 1,66    | 1403,06                | 53,64      | 84421,93           | 3131,22    |
| 110 | 26/2/1998 | 0,71            | 4,88                  | 0,07  | 0,42             | 0,06              | 0,27                       | 0,02                        | 0,38                     | 0,02                     | 34,55 | 1,06    | 1576,04                | 88,32      | 148583,35          | 8231,80    |
| 111 | 11/3/1998 | 0,64            | 4,38                  | 0,05  | 0,29             | 0,04              | 0,15                       | 0,01                        | 0,25                     | 0,00                     | 34,68 | 1,60    | 487,62                 | 3,69       | 30376,24           | 130,79     |
| 112 | 25/3/1998 | 0,38            | 4,62                  | 0,06  | 82,0             | 0,05              | 0,44                       | 0,01                        | 0,54                     | 0,01                     | 35,22 | 0,31    | 1421,16                | 19,85      | 458338,89          | 6301,75    |
| 115 | 6/5/1998  | 0,40            | 4,36                  | 0,06  | 82,0             | 0,05              | 0,44                       | 0,01                        | 0,54                     | 0,01                     | 35,22 | 0,17    | 1535,26                | 37,21      | 930358,83          | 22449,42   |
| 132 | 6/1/1999  | 0,20            | 5,11                  | 0,07  | 1,47             | 0,06              | 1,78                       | 0,01                        | 1,43                     | 0,02                     | 34,79 | 1,48    | 5781 ,49               | 70,81      | 391070,12          | 4690,95    |
| 133 | 21/1/1999 | 0,20            | 5,81                  | 0,08  | 1,97             | 0,07              | 2,76                       | 0,02                        | 1,93                     | 0,03                     | 35,23 | 3,70    | 12222,16               | 175,90     | 329961,12          | 4650,18    |
| 134 | 28/1/1999 | 0,22            | 6,08                  | 0,09  | 2,15             | 0,08              | 3,15                       | 0,02                        | 2,11                     | 0,04                     | 35,81 | 0,00    | 17874,08               | 320,29     | 0,00               | 0,00       |
| 135 | 3/2/1999  | 0,20            | 5,40                  | 0,07  | 1,55             | 0,06              | 1,92                       | 0,01                        | 1,51                     | 0,02                     | 35,18 | 2,82    | 6627,79                | 75,99      | 234928,12          | 2594,64    |
| 136 | 11/2/1999 | 0,22            | 5,81                  | 0,08  | 1,73             | 0,07              | 2,27                       | 0,02                        | 1,69                     | 0,03                     | 35,26 | 3,05    | 10157,07               | 152,96     | 333246,72          | 4920,09    |
| 137 | 25/2/1999 | 1,12            | 5,40                  | 0,07  | 0,30             | 0,06              | 0,16                       | 0,02                        | 0,26                     | 0,02                     | 35,52 | 5,11    | 1313,64                | 112,59     | 25587,23           | 2101,68    |
| 138 | 11/3/1999 | 0,24            | 5,11                  | 0,07  | 1,32             | 0,06              | 1,51                       | 0,02                        | 1,28                     | 0,02                     | 35,20 | 1,80    | 5833,13                | 99,85      | 323423,69          | 5437,89    |
| 139 | 25/3/1999 | 0,25            | 6,08                  | 0,08  | 1,61             | 0,07              | 2,05                       | 0,02                        | 1,57                     | 0,03                     | 34,99 | 3,64    | 10288,70               | 172,63     | 282556,70          | 4642,57    |
| 141 | 29/4/1999 | 0,29            | 11,68                 | 0,10  | 2,12             | 0,05              | 3,10                       | 0,01                        | 2,08                     | 0,01                     | 33,27 | 0,01    | 24437 ,51              | 149,41     | 187980727,64       | 1149200,88 |
| 156 | 6/1/2000  | 0,22            | 5,81                  | 0,08  | 1,79             | 0,07              | 2,39                       | 0,02                        | 1,75                     | 0,03                     | 35,69 | 0,21    | 11232,79               | 178,20     | 5248866,42         | 83169,15   |
| 160 | 3/2/2000  | 0,25            | 7,45                  | 0,08  | 1,43             | 0,05              | 1,71                       | 0,01                        | 1,39                     | 0,01                     | 34,00 | 0,55    | 7373,28                | 42,71      | 1333224,21         | 7624,01    |
| 162 | 18/2/2000 | 0,24            | 5,81                  | 0,07  | 1,13             | 0,05              | 1,20                       | 0,01                        | 1,09                     | 0,01                     | 34,70 | 0,45    | 3901 ,63               | 24,05      | 872747,83          | 5280,50    |
| 164 | 3/3/2000  | 0,32            | 8,02                  | 0,08  | 1,12             | 0,04              | 1,19                       | 0,01                        | 1,08                     | 0,00                     | 33,42 | 0,22    | 5689,22                | 25,32      | 2597716,52         | 11459,41   |
| 168 | 31/3/2000 | 0,44            | 6,08                  | 0,08  | 0,80             | 0,06              | 0,71                       | 0,01                        | 0,76                     | 0,02                     | 35,27 | 1,12    | 4044,53                | 94,73      | 360696,54          | 8350,41    |
|     | ^         | ······          |                       |       |                  | <u></u>           |                            |                             |                          |                          |       |         |                        | MÉDIA      | 9375255,92         | 78528,36   |

Tabela 6.211 - Valores positivos das descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)        | (3)         | (4)                   | (5)   | (6)              | (7)             | (8)   | (9)     | (10)                   | (11)       | (12)     | (13)     |
|-----|------------|-------------|-----------------------|-------|------------------|-----------------|-------|---------|------------------------|------------|----------|----------|
| Nº  | DATA       | D <b>50</b> | D <sub>Vj</sub> [INL] | U     | W <sub>D50</sub> | W <sub>Dj</sub> | В     | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50  | E[%]Dvj  |
|     |            | (m m)       | (mm)                  | (m/s) | (m/s)            | (m/s)           | (m)   | ton/dia | ton/dia                | ton/dia    | -        | -        |
| 1   | 26/3/1993  | 0,64        | 8,25                  | 0,64  | 0,07             | 0,30            | 34,70 | 0,14    | 8,51E+05               | 1,64E+04   | 6,03E+08 | 1,17E+07 |
| 2   | 6/4/1993   | 0,54        | 8,71                  | 0,52  | 0,07             | 0,31            | 34,87 | 0,04    | 4,04E+05               | 5,40E+03   | 1,06E+09 | 1,42E+07 |
| 3   | 20/4/1993  | 0,68        | 9,02                  | 0,43  | 0,08             | 0,31            | 34,88 | 0,05    | 1,06E+05               | 1,98E+03   | 2,35E+08 | 4,40E+06 |
| 4   | 4/5/1993   | 0,86        | 8,65                  | 0,51  | 0,09             | 0,30            | 34,78 | 0,05    | 1,69E+05               | 4,93E+03   | 3,75E+08 | 1,10E+07 |
| 5   | 18/5/1993  | 0,51        | 9,31                  | 0,36  | 0,06             | 0,32            | 34,38 | 0,02    | 6,98E+04               | 7,65E+02   | 2,91E+08 | 3,19E+06 |
| 6   | 1/6/1993   | 1,02        | 7,95                  | 0,73  | 0,10             | 0,29            | 35,24 | 0,19    | 7,83E+05               | 3,41E+04   | 4,12E+08 | 1,80E+07 |
| 7   | 8/6/1993   | 0,57        | 8,63                  | 0,53  | 0,07             | 0,30            | 34,91 | 0,03    | 4,05E+05               | 6,02E+03   | 1,56E+09 | 2,32E+07 |
| 8   | 15/6/1993  | 0,64        | 9,00                  | 0,45  | 0,07             | 0,31            | 34,21 | 0,01    | 1,44E+05               | 2,45E+03   | 1,80E+09 | 3,06E+07 |
| 9   | 22/6/1993  | 0,97        | 9,01                  | 0,45  | 0,10             | 0,31            | 34,54 | 0,01    | 7,40E+04               | 2,47E+03   | 9,25E+08 | 3,08E+07 |
| 10  | 29/6/1993  | 0,66        | 9,70                  | 0,30  | 0,08             | 0,32            | 33,99 | 0,01    | 1,79E+04               | 2,86E+02   | 2,56E+08 | 4,08E+06 |
| 11  | 6/7/1993   | 0,78        | 9,87                  | 0,26  | 0,08             | 0,33            | 33,77 | 0,00    | 6,61E+03               | 1,35E+02   | 3,31E+08 | 6,77E+06 |
| 12  | 21/7/1993  | 0,77        | 10,06                 | 0,24  | 0,08             | 0,33            | 33,64 | 0,01    | 4,51E+03               | 8,77E+01   | 7,51E+07 | 1,46E+06 |
| 13  | 3/8/1993   | 0,63        | 10,82                 | 0,15  | 0,07             | 0,34            | 32,82 | 0,00    | 5,84E+02               | 7,32E+00   | 2,92E+07 | 3,66E+05 |
| 14  | 17/8/1993  | 0,64        | 10,26                 | 0,22  | 0,07             | 0,33            | 33,53 | 0,00    | 3,94E+03               | 5,49E+01   | 1,97E+08 | 2,75E+06 |
| 15  | 31/8/1993  | 0,66        | 10,22                 | 0,19  | 0,08             | 0,33            | 33,74 | 0,00    | 1,81E+03               | 2,67E+01   | 9,06E+07 | 1,34E+06 |
| 16  | 21/9/1993  | 0,47        | 9,53                  | 0,32  | 0,06             | 0,32            | 33,97 | 0,01    | 4,42E+04               | 4,05E+02   | 7,36E+08 | 6,75E+06 |
| 17  | 28/9/1993  | 0,63        | 8,03                  | 0,74  | 0,07             | 0,29            | 34,92 | 0,38    | 1,82E+06               | 3,56E+04   | 4,73E+08 | 9,27E+06 |
| 18  | 5/10/1993  | 0,69        | 9,23                  | 0,39  | 0,08             | 0,31            | 34,38 | 0,01    | 6,25E+04               | 1,16E+03   | 1,04E+09 | 1,93E+07 |
| 19  | 21/10/1993 | 0,71        | 8,65                  | 0,54  | 0,08             | 0,30            | 34,84 | 0,02    | 3,07E+05               | 6,58E+03   | 1,34E+09 | 2,86E+07 |
| 20  | 28/10/1993 | 0,63        | 8,36                  | 0,61  | 0,07             | 0,30            | 34,88 | 0,04    | 6,90E+05               | 1,27E+04   | 1,87E+09 | 3,44E+07 |
| 21  | 4/11/1993  | 1,26        | 10,02                 | 0,24  | 0,11             | 0,33            | 33,82 | 0,00    | 2,07E+03               | 8,87E+01   | 6,90E+07 | 2,96E+06 |
| 22  | 9/11/1993  | 1,15        | 9,65                  | 0,31  | 0,11             | 0,32            | 34,01 | 0,01    | 8,64E+03               | 3,40E+02   | 1,73E+08 | 6,79E+06 |
| 23  | 20/12/1993 | 0,63        | 8,72                  | 0,50  | 0,07             | 0,31            | 34,64 | 0,08    | 2,54E+05               | 4,39E+03   | 3,17E+08 | 5,49E+06 |
| 24  | 10/2/1994  | 0,59        | 7,64                  | 0,82  | 0,07             | 0,29            | 35,65 | 0,33    | 3,46E+06               | 6,54E+04   | 1,04E+09 | 1,97E+07 |
| 25  | 29/3/1994  | 0,56        | 8,04                  | 0,55  | 0,07             | 0,29            | 34,34 | 0,03    | 4,94E+05               | 7,92E+03   | 1,83E+09 | 2,93E+07 |
| 26  | 19/4/1994  | 0,55        | 8,80                  | 0,39  | 0,07             | 0,31            | 34,00 | 0,02    | 9,05E+04               | 1,23E+03   | 4,11E+08 | 5,58E+06 |
| 27  | 6/5/1994   | 0,54        | 9,41                  | 0,27  | 0,07             | 0,32            | 33,60 | 0,01    | 1,47E+04               | 1,75E+02   | 1,22E+08 | 1,46E+06 |
| 28  | 20/5/1994  | 0,52        | 9,36                  | 0,28  | 0,06             | 0,32            | 33,60 | 0,01    | 1,88E+04               | 2,11E+02   | 1,57E+08 | 1,76E+06 |
| 29  | 17/6/1994  | 0,48        | 9,34                  | 0,29  | 0,06             | 0,32            | 33,64 | 0,01    | 2,58E+04               | 2,53E+02   | 5,15E+08 | 5,05E+06 |
| 30  | 1/7/1994   | 0,53        | 9,26                  | 0,29  | 0,07             | 0,32            | 33,81 | 0,01    | 2,18E+04               | 2,57E+02   | 3,63E+08 | 4,29E+06 |
| 31  | 15/7/1994  | 0,47        | 9,57                  | 0,24  | 0,06             | 0,32            | 33,64 | 0,05    | 1,04E+04               | 9,46E+01   | 2,04E+07 | 1,85E+05 |
| 32  | 29/7/1994  | 0,65        | 9,23                  | 0,30  | 0,07             | 0,32            | 33,81 | 0,01    | 1,83E+04               | 3,06E+02   | 1,83E+08 | 3,06E+06 |

Tabela 6.2m - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)        | (3)         | (4)                   | (5)   | (6)              | (7)              | (8)   | (9)     | (10)                   | (11)       | (12)     | (13)     |
|-----|------------|-------------|-----------------------|-------|------------------|------------------|-------|---------|------------------------|------------|----------|----------|
| N°  | DATA       | D <b>50</b> | D <sub>Vj [INL]</sub> | U     | W <sub>D50</sub> | W <sub>Dri</sub> | В     | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50  | E[%]Dvj  |
|     |            | (m m)       | (mm)                  | (m/s) | (m/s)            | (m/s)            | (m)   | ton/dia | ton/dia                | ton/dia    | -        | -        |
| 33  | 12/8/1994  | 0,57        | 10,08                 | 0,16  | 0,07             | 0,33             | 33,26 | 0,01    | 9,68E+02               | 1,14E+01   | 8,80E+06 | 1,03E+05 |
| 34  | 26/8/1994  | 0,51        | 9,71                  | 0,20  | 0,06             | 0,32             | 33,47 | 0,00    | 3,60E+03               | 3,70E+01   | 1,80E+08 | 1,85E+06 |
| 35  | 8/9/1994   | 0,54        | 9,53                  | 0,23  | 0,07             | 0,32             | 33,68 | 0,00    | 6,60E+03               | 7,70E+01   | 1,65E+08 | 1,93E+06 |
| 36  | 22/9/1994  | 0,45        | 9,21                  | 0,28  | 0,06             | 0,31             | 33,92 | 0,00    | 2,44E+04               | 2,18E+02   | 1,22E+09 | 1,09E+07 |
| 37  | 6/10/1994  | 0,57        | 9,68                  | 0,22  | 0,07             | 0,32             | 33,49 | 0,00    | 4,79E+03               | 5,99E+01   | 2,39E+08 | 3,00E+06 |
| 38  | 27/10/1994 | 0,73        | 8,38                  | 0,45  | 0,08             | 0,30             | 34,48 | 0,42    | 1,17E+05               | 2,74E+03   | 2,76E+07 | 6,47E+05 |
| 39  | 23/11/1994 | 0,60        | 9,52                  | 0,20  | 0,07             | 0,32             | 33,52 | 0,00    | 2,73E+03               | 3,82E+01   | 6,82E+07 | 9,54E+05 |
| 40  | 22/12/1994 | 0,71        | 7,29                  | 0,72  | 0,08             | 0,28             | 35,68 | 0,22    | 1,33E+06               | 3,67E+04   | 6,09E+08 | 1,68E+07 |
| 41  | 5/1/1995   | 0,57        | 7,56                  | 0,68  | 0,07             | 0,28             | 35,27 | 0,52    | 1,42E+06               | 2,58E+04   | 2,72E+08 | 4,93E+06 |
| 42  | 19/1/1995  | 0,57        | 8,81                  | 0,38  | 0,07             | 0,31             | 33,92 | 0,02    | 7,46E+04               | 1,08E+03   | 4,97E+08 | 7,17E+06 |
| 43  | 26/1/1995  | 0,57        | 9,00                  | 0,33  | 0,07             | 0,31             | 33,93 | 0,04    | 3,68E+04               | 5,14E+02   | 1,02E+08 | 1,43E+06 |
| 44  | 9/2/1995   | 0,82        | 6,31                  | 1,11  | 0,09             | 0,26             | 40,30 | 3,10    | 1,03E+07               | 4,48E+05   | 3,33E+08 | 1,45E+07 |
| 45  | 16/2/1995  | 0,59        | 7,33                  | 0,77  | 0,07             | 0,28             | 35,40 | 0,49    | 2,51E+06               | 5,05E+04   | 5,17E+08 | 1,04E+07 |
| 46  | 8/3/1995   | 0,41        | 8,27                  | 0,49  | 0,05             | 0,30             | 34,94 | 0,40    | 4,89E+05               | 4,34E+03   | 1,23E+08 | 1,10E+06 |
| 47  | 24/3/1995  | 0,65        | 7,39                  | 0,73  | 0,07             | 0,28             | 35,38 | 1,72    | 1,63E+06               | 3,82E+04   | 9,48E+07 | 2,22E+06 |
| 48  | 7/4/1995   | 0,25        | 7,77                  | 0,64  | 0,03             | 0,29             | 35,05 | 0,17    | 4,93E+06               | 1,82E+04   | 2,88E+09 | 1,06E+07 |
| 49  | 28/4/1995  | 0,24        | 8,32                  | 0,49  | 0,03             | 0,30             | 34,63 | 0,08    | 1,40E+06               | 4,26E+03   | 1,73E+09 | 5,26E+06 |
| 50  | 12/5/1995  | 0,32        | 8,04                  | 0,57  | 0,04             | 0,29             | 34,74 | 0,47    | 1,65E+06               | 9,59E+03   | 3,53E+08 | 2,05E+06 |
| 51  | 9/6/1995   | 0,33        | 8,77                  | 0,35  | 0,04             | 0,31             | 34,35 | 0,02    | 1,34E+05               | 7,26E+02   | 5,84E+08 | 3,16E+06 |
| 52  | 23/6/1995  | 0,50        | 8,78                  | 0,38  | 0,06             | 0,31             | 34,34 | 0,02    | 9,46E+04               | 1,09E+03   | 5,26E+08 | 6,08E+06 |
| 53  | 5/7/1995   | 0,37        | 9,05                  | 0,33  | 0,05             | 0,31             | 34,19 | 0,05    | 8,01E+04               | 5,14E+02   | 1,57E+08 | 1,01E+06 |
| 54  | 12/7/1995  | 0,20        | 7,81                  | 0,61  | 0,03             | 0,29             | 35,03 | 4,16    | 6,37E+06               | 1,42E+04   | 1,53E+08 | 3,41E+05 |
| 55  | 19/7/1995  | 0,24        | 8,66                  | 0,40  | 0,03             | 0,31             | 34,59 | 0,02    | 5,07E+05               | 1,45E+03   | 3,17E+09 | 9,08E+06 |
| 56  | 26/7/1995  | 0,35        | 8,48                  | 0,44  | 0,05             | 0,30             | 34,61 | 0,12    | 3,80E+05               | 2,42E+03   | 3,22E+08 | 2,05E+06 |
| 57  | 10/8/1995  | 0,32        | 9,17                  | 0,30  | 0,04             | 0,31             | 34,09 | 0,01    | 6,55E+04               | 3,12E+02   | 5,46E+08 | 2,60E+06 |
| 58  | 31/8/1995  | 0,23        | 9,57                  | 0,25  | 0,03             | 0,32             | 33,65 | 0,00    | 5,16E+04               | 1,16E+02   | 2,58E+09 | 5,80E+06 |
| 59  | 21/9/1995  | 0,29        | 8,70                  | 0,39  | 0,04             | 0,31             | 34,28 | 0,03    | 2,98E+05               | 1,26E+03   | 9,60E+08 | 4,06E+06 |
| 60  | 28/9/1995  | 0,40        | 8,60                  | 0,41  | 0,05             | 0,30             | 34,68 | 0,25    | 2,08E+05               | 1,67E+03   | 8,36E+07 | 6,69E+05 |
| 61  | 5/10/1995  | 0,36        | 9,27                  | 0,28  | 0,05             | 0,32             | 34,16 | 0,00    | 3,71E+04               | 2,18E+02   | 1,85E+09 | 1,09E+07 |
| 62  | 19/10/1995 | 0,82        | 7,73                  | 0,63  | 0,09             | 0,29             | 35,02 | 0,21    | 5,28E+05               | 1,69E+04   | 2,58E+08 | 8,24E+06 |
| 63  | 23/11/1995 | 0,52        | 9,14                  | 0,31  | 0,06             | 0,31             | 34,05 | 0,01    | 3,17E+04               | 3,69E+02   | 5,28E+08 | 6,15E+06 |
| 64  | 7/12/1995  | 0,63        | 9,73                  | 0,22  | 0,07             | 0,32             | 33,39 | 0,00    | 4,03E+03               | 5,93E+01   | 2,02E+08 | 2,96E+06 |

Tabela 6.2m - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)   | (6)              | (7)             | (8)   | (9)     | (10)                   | (11)       | (12)     | (13)     |
|-----|------------|-----------------|-----------------------|-------|------------------|-----------------|-------|---------|------------------------|------------|----------|----------|
| Nº  | DATA       | D <sub>50</sub> | D <sub>Vj [INL]</sub> | U     | W <sub>D50</sub> | W <sub>Dj</sub> | В     | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50  | E[%]Dvj  |
|     |            | (m m)           | (mm)                  | (m/s) | (m/s)            | (m/s)           | (m)   | ton/dia | ton/dia                | ton/dia    | -        | -        |
| 65  | 10/1/1996  | 0,38            | 6,80                  | 0,95  | 0,05             | 0,27            | 36,91 | 5,14    | 1,63E+07               | 1,69E+05   | 3,17E+08 | 3,28E+06 |
| 66  | 31/1/1996  | 0,26            | 8,67                  | 0,41  | 0,03             | 0,31            | 34,12 | 0,02    | 4,77E+05               | 1,62E+03   | 2,51E+09 | 8,52E+06 |
| 67  | 7/2/1996   | 0,32            | 7,98                  | 0,58  | 0,04             | 0,29            | 35,12 | 0,24    | 1,82E+06               | 1,07E+04   | 7,66E+08 | 4,49E+06 |
| 68  | 6/3/1996   | 0,27            | 7,48                  | 0,71  | 0,04             | 0,28            | 35,36 | 3,54    | 7,11E+06               | 3,26E+04   | 2,01E+08 | 9,20E+05 |
| 69  | 20/3/1996  | 0,30            | 6,74                  | 1,00  | 0,04             | 0,27            | 36,55 | 1,15    | 3,29E+07               | 2,18E+05   | 2,86E+09 | 1,90E+07 |
| 70  | 3/4/1996   | 0,43            | 8,13                  | 0,54  | 0,06             | 0,30            | 34,87 | 0,13    | 7,27E+05               | 7,22E+03   | 5,47E+08 | 5,43E+06 |
| 71  | 16/4/1996  | 0,37            | 8,23                  | 0,50  | 0,05             | 0,30            | 34,52 | 0,05    | 6,46E+05               | 4,78E+03   | 1,27E+09 | 9,37E+06 |
| 72  | 15/5/1996  | 0,44            | 8,51                  | 0,44  | 0,06             | 0,30            | 34,24 | 0,25    | 2,46E+05               | 2,38E+03   | 1,00E+08 | 9,68E+05 |
| 73  | 22/5/1996  | 0,41            | 8,66                  | 0,40  | 0,05             | 0,30            | 34,20 | 0,01    | 1,73E+05               | 1,44E+03   | 2,17E+09 | 1,80E+07 |
| 74  | 19/6/1996  | 0,42            | 9,25                  | 0,28  | 0,05             | 0,32            | 33,76 | 0,01    | 2,75E+04               | 2,16E+02   | 2,30E+08 | 1,80E+06 |
| 75  | 3/6/1996   | 0,64            | 9,01                  | 0,32  | 0,07             | 0,31            | 34,07 | 0,02    | 2,61E+04               | 4,42E+02   | 1,13E+08 | 1,92E+06 |
| 76  | 17/7/1996  | 0,46            | 9,34                  | 0,27  | 0,06             | 0,32            | 33,81 | 0,00    | 1,95E+04               | 1,78E+02   | 4,88E+08 | 4,44E+06 |
| 77  | 31/7/1996  | 0,56            | 9,40                  | 0,26  | 0,07             | 0,32            | 34,75 | 0,01    | 1,18E+04               | 1,50E+02   | 2,36E+08 | 3,00E+06 |
| 78  | 7/8/1996   | 0,45            | 9,36                  | 0,26  | 0,06             | 0,32            | 34,04 | 0,00    | 1,69E+04               | 1,48E+02   | 4,23E+08 | 3,69E+06 |
| 79  | 14/8/1996  | 0,54            | 9,21                  | 0,28  | 0,07             | 0,31            | 33,99 | 0,01    | 1,78E+04               | 2,19E+02   | 3,56E+08 | 4,37E+06 |
| 80  | 21/8/1996  | 0,50            | 9,14                  | 0,30  | 0,06             | 0,31            | 33,89 | 0,01    | 2,86E+04               | 3,11E+02   | 5,73E+08 | 6,23E+06 |
| 81  | 28/8/1996  | 0,52            | 9,39                  | 0,26  | 0,06             | 0,32            | 33,73 | 0,00    | 1,30E+04               | 1,46E+02   | 4,34E+08 | 4,85E+06 |
| 82  | 4/9/1996   | 0,53            | 8,58                  | 0,40  | 0,07             | 0,30            | 34,56 | 0,04    | 1,11E+05               | 1,47E+03   | 3,09E+08 | 4,09E+06 |
| 83  | 11/9/1996  | 0,64            | 7,17                  | 0,80  | 0,07             | 0,28            | 35,84 | 3,70    | 2,68E+06               | 6,40E+04   | 7,25E+07 | 1,73E+06 |
| 84  | 2/10/1996  | 0,42            | 9,00                  | 0,33  | 0,05             | 0,31            | 34,10 | 0,01    | 6,33E+04               | 5,17E+02   | 1,05E+09 | 8,61E+06 |
| 85  | 16/10/1996 | 0,67            | 8,37                  | 0,45  | 0,08             | 0,30            | 34,70 | 0,25    | 1,35E+05               | 2,76E+03   | 5,42E+07 | 1,11E+06 |
| 86  | 6/11/1996  | 0,42            | 8,24                  | 0,49  | 0,05             | 0,30            | 34,70 | 0,32    | 4,65E+05               | 4,34E+03   | 1,45E+08 | 1,35E+06 |
| 87  | 20/11/1996 | 0,50            | 8,41                  | 0,43  | 0,06             | 0,30            | 34,70 | 0,03    | 1,77E+05               | 2,19E+03   | 5,22E+08 | 6,44E+06 |
| 88  | 6/12/1996  | 0,38            | 8,57                  | 0,42  | 0,05             | 0,30            | 34,60 | 4,34    | 2,58E+05               | 1,89E+03   | 5,94E+06 | 4,33E+04 |
| 89  | 9/1/1997   | 0,38            | 8,38                  | 0,48  | 0,05             | 0,30            | 34,68 | 0,03    | 5,04E+05               | 3,81E+03   | 1,53E+09 | 1,15E+07 |
| 90  | 22/1/1997  | 0,37            | 7,93                  | 0,57  | 0,05             | 0,29            | 34,78 | 0,15    | 1,25E+06               | 9,79E+03   | 8,59E+08 | 6,71E+06 |
| 91  | 3/2/1997   | 0,36            | 6,82                  | 0,98  | 0,05             | 0,27            | 36,46 | 21,99   | 2,08E+07               | 1,94E+05   | 9,45E+07 | 8,80E+05 |
| 92  | 12/3/1997  | 0,39            | 8,52                  | 0,47  | 0,05             | 0,30            | 34,32 | 1,01    | 4,27E+05               | 3,31E+03   | 4,23E+07 | 3,28E+05 |
| 93  | 26/3/1997  | 0,40            | 8,90                  | 0,39  | 0,05             | 0,31            | 33,84 | 0,16    | 1,58E+05               | 1,20E+03   | 9,89E+07 | 7,51E+05 |
| 94  | 16/4/1997  | 0,40            | 9,18                  | 0,34  | 0,05             | 0,31            | 33,64 | 0,03    | 7,92E+04               | 5,74E+02   | 2,48E+08 | 1,79E+06 |
| 95  | 14/5/1997  | 0,39            | 9,49                  | 0,28  | 0,05             | 0,32            | 33,16 | 0,10    | 3,10E+04               | 2,04E+02   | 2,98E+07 | 1,96E+05 |
| 96  | 4/6/1997   | 0,75            | 9,12                  | 0,33  | 0,08             | 0,31            | 33,64 | 0,01    | 2,31E+04               | 5,00E+02   | 3,85E+08 | 8,33E+06 |

Tabela 6.2m - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)                | (3)         | (4)                   | (5)   | (6)              | (7)              | (8)   | (9)     | (10)                   | (11)       | (12)     | (13)     |
|-----|--------------------|-------------|-----------------------|-------|------------------|------------------|-------|---------|------------------------|------------|----------|----------|
| Nº  | DATA               | D <b>50</b> | D <sub>Vj [INL]</sub> | U     | W <sub>D50</sub> | W <sub>Dyi</sub> | В     | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50  | E[%]Dvj  |
|     |                    | (mm)        | (mm)                  | (m/s) | (m/s)            | (m/s)            | (m)   | ton/dia | ton/dia                | ton/dia    | -        | -        |
| 97  | 2/7/1997           | 0,89        | 9,15                  | 0,33  | 0,09             | 0,31             | 33,84 | 0,01    | 1,76E+04               | 5,00E+02   | 3,53E+08 | 1,00E+07 |
| 98  | 12/8/1997          | 0,89        | 9,04                  | 0,35  | 0,09             | 0,31             | 33,93 | 0,00    | 2,37E+04               | 6,85E+02   | 7,91E+08 | 2,28E+07 |
| 99  | 26/8/1997          | 0,65        | 8,85                  | 0,39  | 0,07             | 0,31             | 33,97 | 0,01    | 6,82E+04               | 1,22E+03   | 1,26E+09 | 2,26E+07 |
| 100 | 9/9/1997           | 0,58        | 9,74                  | 0,24  | 0,07             | 0,32             | 33,40 | 0,00    | 7,17E+03               | 9,14E+01   | 2,99E+08 | 3,81E+06 |
| 101 | 23/9/1997          | 0,30        | 8,95                  | 0,37  | 0,04             | 0,31             | 33,96 | 0,01    | 2,12E+05               | 9,20E+02   | 1,65E+09 | 7,19E+06 |
| 102 | 7/10/1997          | 0,32        | 9,04                  | 0,35  | 0,04             | 0,31             | 33,98 | 0,01    | 1,41E+05               | 6,86E+02   | 1,05E+09 | 5,12E+06 |
| 103 | 21/10/1997         | 0,34        | 8,83                  | 0,39  | 0,05             | 0,31             | 34,07 | 0,01    | 2,16E+05               | 1,22E+03   | 1,53E+09 | 8,68E+06 |
| 104 | 4/11/1997          | 0,41        | 9,20                  | 0,32  | 0,05             | 0,31             | 33,80 | 0,00    | 5,62E+04               | 4,25E+02   | 1,94E+09 | 1,47E+07 |
| 105 | 2/12/1997          | 0,32        | 8,66                  | 0,43  | 0,04             | 0,31             | 34,22 | 0,44    | 3,98E+05               | 2,06E+03   | 9,07E+07 | 4,70E+05 |
| 106 | 16/12/1997         | 0,29        | 7,94                  | 0,63  | 0,04             | 0,29             | 34,77 | 5,77    | 3,32E+06               | 1,61E+04   | 5,76E+07 | 2,80E+05 |
| 107 | 13/1/1998          | 0,32        | 7,89                  | 0,62  | 0,04             | 0,29             | 34,82 | 0,11    | 2,52E+06               | 1,50E+04   | 2,36E+09 | 1,41E+07 |
| 108 | 27/1/1998          | 0,29        | 8,69                  | 0,45  | 0,04             | 0,31             | 34,01 | 0,01    | 6,04E+05               | 2,56E+03   | 6,16E+09 | 2,61E+07 |
| 109 | 11/2/1998          | 0,62        | 7,60                  | 0,73  | 0,07             | 0,29             | 35,24 | 1,66    | 1,76E+06               | 3,65E+04   | 1,06E+08 | 2,20E+06 |
| 110 | 26/2/1998          | 0,71        | 7,30                  | 0,82  | 0,08             | 0,28             | 34,55 | 1,06    | 2,46E+06               | 6,79E+04   | 2,32E+08 | 6,41E+06 |
| 111 | 11/3/1998          | 0,64        | 8,24                  | 0,54  | 0,07             | 0,30             | 34,68 | 1,60    | 3,64E+05               | 7,04E+03   | 2,27E+07 | 4,40E+05 |
| 112 | 25/3/1998          | 0,38        | 7,91                  | 0,64  | 0,05             | 0,29             | 35,22 | 0,31    | 2,16E+06               | 1,78E+04   | 6,95E+08 | 5,74E+06 |
| 113 | 8/4/1998           | 0,44        | 8,91                  | 0,40  | 0,06             | 0,31             | 33,54 | 0,03    | 1,50E+05               | 1,35E+03   | 4,40E+08 | 3,97E+06 |
| 114 | 22/4/1998          | 0,46        | 8,94                  | 0,36  | 0,06             | 0,31             | 33,96 | 0,00    | 8,27E+04               | 8,04E+02   | 1,92E+09 | 1,87E+07 |
| 115 | 6/5/1998           | 0,40        | 7,56                  | 0,73  | 0,05             | 0,28             | 35,22 | 0,17    | 3,78E+06               | 3,68E+04   | 2,29E+09 | 2,23E+07 |
| 116 | 21/5/1998          | 0,38        | 9,04                  | 0,34  | 0,05             | 0,31             | 34,01 | 0,01    | 8,81E+04               | 5,94E+02   | 1,73E+09 | 1,17E+07 |
| 117 | 3/6/1998           | 0,39        | 8,80                  | 0,42  | 0,05             | 0,31             | 33,70 | 0,02    | 2,39E+05               | 1,76E+03   | 1,50E+09 | 1,11E+07 |
| 118 | 17 <i>/</i> 6/1998 | 0,47        | 9,22                  | 0,33  | 0,06             | 0,31             | 33,04 | 0,00    | 5,01E+04               | 4,83E+02   | 0,00E+00 | 0,00E+00 |
| 119 | 15/7/1998          | 0,79        | 9,10                  | 0,36  | 0,08             | 0,31             | 33,02 | 0,01    | 3,22E+04               | 7,60E+02   | 6,45E+08 | 1,52E+07 |
| 120 | 29/7/1998          | 0,92        | 9,46                  | 0,31  | 0,09             | 0,32             | 32,50 | 0,00    | 1,18E+04               | 3,34E+02   | 4,90E+08 | 1,39E+07 |
| 121 | 12/8/1998          | 0,73        | 9,33                  | 0,34  | 0,08             | 0,32             | 32,77 | 0,00    | 2,73E+04               | 5,47E+02   | 8,04E+08 | 1,61E+07 |
| 122 | 25/8/1998          | 0,59        | 9,80                  | 0,26  | 0,07             | 0,32             | 32,08 | 0,00    | 9,98E+03               | 1,30E+02   | 0,00E+00 | 0,00E+00 |
| 123 | 2/9/1998           | 0,86        | 9,12                  | 0,36  | 0,09             | 0,31             | 32,90 | 0,00    | 2,80E+04               | 7,55E+02   | 0,00E+00 | 0,00E+00 |
| 124 | 16/9/1998          | 0,77        | 9,42                  | 0,32  | 0,08             | 0,32             | 32,90 | 0,01    | 1,86E+04               | 3,99E+02   | 3,10E+08 | 6,65E+06 |
| 125 | 30/9/1998          | 1,18        | 9,13                  | 0,35  | 0,11             | 0,31             | 32,87 | 0,00    | 1,47E+04               | 6,54E+02   | 3,68E+08 | 1,63E+07 |
| 126 | 14/10/1998         | 0,95        | 8,32                  | 0,58  | 0,10             | 0,30             | 33,28 | 0,02    | 2,62E+05               | 9,52E+03   | 1,12E+09 | 4,05E+07 |
| 127 | 28/10/1998         | 0,68        | 8,73                  | 0,50  | 0,08             | 0,31             | 32,92 | 0,01    | 2,12E+05               | 4,17E+03   | 2,06E+09 | 4,05E+07 |
| 128 | 11/11/1998         | 0,85        | 9,46                  | 0,35  | 0,09             | 0,32             | 31,40 | 0,00    | 2,36E+04               | 5,93E+02   | 0,00E+00 | 0,00E+00 |

Tabela 6.2m - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)   | (6)              | (7)              | (8)   | (9)     | (10)                   | (11)       | (12)     | (13)     |
|-----|------------|-----------------|-----------------------|-------|------------------|------------------|-------|---------|------------------------|------------|----------|----------|
| N°  | DATA       | D <sub>50</sub> | D <sub>Vj [INL]</sub> | U     | W <sub>D50</sub> | W <sub>Dgi</sub> | В     | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50  | E[%]Dvj  |
|     |            | (m m)           | (mm)                  | (m/s) | (m/s)            | (m/s)            | (m)   | ton/dia | ton/dia                | ton/dia    | -        | -        |
| 129 | 25/11/1998 | 0,50            | 9,47                  | 0,35  | 0,06             | 0,32             | 31,29 | 0,00    | 5,71E+04               | 5,90E+02   | 0,00E+00 | 0,00E+00 |
| 130 | 9/12/1998  | 0,83            | 8,57                  | 0,53  | 0,09             | 0,30             | 33,18 | 0,00    | 2,07E+05               | 5,78E+03   | 0,00E+00 | 0,00E+00 |
| 131 | 22/12/1998 | 0,36            | 8,69                  | 0,51  | 0,05             | 0,31             | 32,95 | 0,00    | 7,17E+05               | 4,64E+03   | 0,00E+00 | 0,00E+00 |
| 132 | 6/1/1999   | 0,20            | 7,74                  | 0,65  | 0,03             | 0,29             | 34,79 | 1,48    | 8,69E+06               | 1,96E+04   | 5,88E+08 | 1,33E+06 |
| 133 | 21/1/1999  | 0,20            | 7,30                  | 0,84  | 0,03             | 0,28             | 35,23 | 3,70    | 3,17E+07               | 7,82E+04   | 8,57E+08 | 2,11E+06 |
| 134 | 28/1/1999  | 0,22            | 6,89                  | 1,02  | 0,03             | 0,27             | 35,81 | 0,00    | 6,85E+07               | 2,29E+05   | 0,00E+00 | 0,00E+00 |
| 135 | 3/2/1999   | 0,20            | 7,59                  | 0,77  | 0,03             | 0,29             | 35,18 | 2,82    | 2,05E+07               | 4,77E+04   | 7,27E+08 | 1,69E+06 |
| 136 | 11/2/1999  | 0,22            | 7,31                  | 0,86  | 0,03             | 0,28             | 35,26 | 3,05    | 2,87E+07               | 8,77E+04   | 9,43E+08 | 2,88E+06 |
| 137 | 25/2/1999  | 1,12            | 7,29                  | 0,89  | 0,10             | 0,28             | 35,52 | 5,11    | 1,83E+06               | 1,05E+05   | 3,59E+07 | 2,06E+06 |
| 138 | 11/3/1999  | 0,24            | 7,33                  | 0,85  | 0,03             | 0,28             | 35,20 | 1,80    | 2,23E+07               | 8,24E+04   | 1,24E+09 | 4,57E+06 |
| 139 | 25/3/1999  | 0,25            | 7,37                  | 0,84  | 0,03             | 0,28             | 34,99 | 3,64    | 1,92E+07               | 7,65E+04   | 5,27E+08 | 2,10E+06 |
| 140 | 15/4/1999  | 0,23            | 8,60                  | 0,50  | 0,03             | 0,30             | 33,72 | 0,02    | 1,65E+06               | 4,37E+03   | 8,27E+09 | 2,18E+07 |
| 141 | 29/4/1999  | 0,29            | 9,03                  | 0,41  | 0,04             | 0,31             | 33,27 | 0,01    | 3,71E+05               | 1,48E+03   | 2,85E+09 | 1,14E+07 |
| 142 | 13/5/1999  | 0,20            | 8,76                  | 0,48  | 0,03             | 0,31             | 33,41 | 0,02    | 1,83E+06               | 3,43E+03   | 7,97E+09 | 1,49E+07 |
| 143 | 9/6/1999   | 1,50            | 8,93                  | 0,45  | 0,12             | 0,31             | 33,29 | 0,01    | 3,60E+04               | 2,41E+03   | 3,60E+08 | 2,41E+07 |
| 144 | 22/7/1999  | 0,42            | 9,20                  | 0,44  | 0,05             | 0,31             | 32,52 | 0,00    | 2,54E+05               | 2,01E+03   | 8,48E+09 | 6,70E+07 |
| 145 | 5/8/1999   | 0,45            | 9,36                  | 0,39  | 0,06             | 0,32             | 32,65 | 0,00    | 1,23E+05               | 1,08E+03   | 6,17E+09 | 5,38E+07 |
| 146 | 19/8/1999  | 0,31            | 9,31                  | 0,40  | 0,04             | 0,32             | 32,78 | 0,00    | 2,83E+05               | 1,24E+03   | 7,07E+09 | 3,09E+07 |
| 147 | 2/9/1999   | 1,36            | 9,63                  | 0,33  | 0,12             | 0,32             | 32,07 | 0,00    | 8,56E+03               | 4,39E+02   | 0,00E+00 | 0,00E+00 |
| 148 | 15/9/1999  | 0,85            | 8,83                  | 0,47  | 0,09             | 0,31             | 33,31 | 0,34    | 1,10E+05               | 3,04E+03   | 3,19E+07 | 8,87E+05 |
| 149 | 30/9/1999  | 0,25            | 9,87                  | 0,29  | 0,03             | 0,33             | 32,02 | 0,00    | 8,61E+04               | 2,21E+02   | 8,61E+09 | 2,21E+07 |
| 150 | 14/10/1999 | 0,23            | 9,59                  | 0,35  | 0,03             | 0,32             | 32,41 | 0,00    | 2,67E+05               | 5,99E+02   | 8,91E+09 | 2,00E+07 |
| 151 | 28/10/1999 | 0,35            | 9,22                  | 0,42  | 0,05             | 0,31             | 32,88 | 0,03    | 2,86E+05               | 1,61E+03   | 1,06E+09 | 5,94E+06 |
| 152 | 11/11/1999 | 0,21            | 9,44                  | 0,37  | 0,03             | 0,32             | 32,80 | 28,00   | 4,38E+05               | 8,19E+02   | 1,56E+06 | 2,83E+03 |
| 153 | 25/11/1999 | 0,23            | 8,67                  | 0,53  | 0,03             | 0,31             | 32,88 | 0,09    | 2,16E+06               | 5,63E+03   | 2,43E+09 | 6,33E+06 |
| 154 | 9/12/1999  | 1,33            | 8,65                  | 0,55  | 0,12             | 0,30             | 33,19 | 0,04    | 1,18E+05               | 6,87E+03   | 3,28E+08 | 1,91E+07 |
| 155 | 23/12/1999 | 0,53            | 10,39                 | 0,24  | 0,07             | 0,33             | 30,48 | 0,00    | 7,63E+03               | 7,57E+01   | 2,54E+08 | 2,52E+06 |
| 156 | 6/1/2000   | 0,22            | 7,09                  | 0,98  | 0,03             | 0,28             | 35,69 | 0,21    | 5,59E+07               | 1,79E+05   | 2,61E+10 | 8,35E+07 |
| 157 | 13/1/2000  | 0,39            | 8,96                  | 0,47  | 0,05             | 0,31             | 32,91 | 0,31    | 4,10E+05               | 2,94E+03   | 1,31E+08 | 9,40E+05 |
| 158 | 20/1/2000  | 0,73            | 8,90                  | 0,49  | 0,08             | 0,31             | 33,27 | 0,04    | 1,73E+05               | 3,70E+03   | 4,21E+08 | 9,03E+06 |
| 159 | 27/1/2000  | 0,34            | 8,69                  | 0,53  | 0,05             | 0,31             | 33,25 | 0,09    | 9,78E+05               | 5,68E+03   | 1,09E+09 | 6,31E+06 |
| 160 | 3/2/2000   | 0,25            | 8,27                  | 0,64  | 0,03             | 0,30             | 34,00 | 0,55    | 4,78E+06               | 1,60E+04   | 8,65E+08 | 2,90E+06 |

Tabela 6.2m - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)       | (3)             | (4)                   | (5)   | (6)              | (7)              | (8)   | (9)     | (10)                   | (11)       | (12)     | (13)     |
|-----|-----------|-----------------|-----------------------|-------|------------------|------------------|-------|---------|------------------------|------------|----------|----------|
| N°  | DATA      | D <sub>50</sub> | D <sub>Vj [INL]</sub> | U     | W <sub>D50</sub> | W <sub>Dyj</sub> | в     | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50  | E[%]Dvj  |
|     |           | (m m)           | (mm)                  | (m/s) | (m/s)            | (m/s)            | (m)   | ton/dia | ton/dia                | ton/dia    | -        | -        |
| 161 | 9/2/2000  | 0,27            | 8,81                  | 0,51  | 0,04             | 0,31             | 33,10 | 0,49    | 1,27E+06               | 4,57E+03   | 2,61E+08 | 9,38E+05 |
| 162 | 18/2/2000 | 0,24            | 7,93                  | 0,75  | 0,03             | 0,29             | 34,70 | 0,45    | 1,18E+07               | 3,85E+04   | 2,64E+09 | 8,62E+06 |
| 163 | 24/2/2000 | 0,19            | 8,40                  | 0,63  | 0,02             | 0,30             | 33,56 | 0,60    | 8,09E+06               | 1,43E+04   | 1,34E+09 | 2,37E+06 |
| 164 | 3/3/2000  | 0,32            | 8,49                  | 0,61  | 0,04             | 0,30             | 33,42 | 0,22    | 2,23E+06               | 1,19E+04   | 1,02E+09 | 5,45E+06 |
| 165 | 10/3/2000 | 0,18            | 8,84                  | 0,53  | 0,02             | 0,31             | 32,88 | 0,04    | 3,80E+06               | 5,47E+03   | 9,50E+09 | 1,37E+07 |
| 166 | 17/3/2000 | 0,23            | 8,68                  | 0,58  | 0,03             | 0,31             | 33,27 | 0,22    | 3,43E+06               | 8,93E+03   | 1,57E+09 | 4,10E+06 |
| 167 | 24/3/2000 | 0,50            | 8,18                  | 0,70  | 0,06             | 0,30             | 34,12 | 0,49    | 1,99E+06               | 2,56E+04   | 4,06E+08 | 5,22E+06 |
| 168 | 31/3/2000 | 0,44            | 7,53                  | 0,84  | 0,06             | 0,28             | 35,27 | 1,12    | 6,43E+06               | 7,46E+04   | 5,74E+08 | 6,66E+06 |
| 169 | 7/4/2000  | 0,29            | 9,19                  | 0,43  | 0,04             | 0,31             | 32,77 | 0,05    | 4,64E+05               | 1,81E+03   | 9,27E+08 | 3,62E+06 |
| 170 | 14/4/2000 | 0,46            | 9,41                  | 0,41  | 0,06             | 0,32             | 32,20 | 0,01    | 1,50E+05               | 1,35E+03   | 3,00E+09 | 2,70E+07 |
| 171 | 19/4/2000 | 0,92            | 9,50                  | 0,39  | 0,09             | 0,32             | 31,99 | 0,01    | 3,65E+04               | 1,03E+03   | 3,04E+08 | 8,59E+06 |
|     |           |                 |                       |       |                  |                  |       |         |                        | MÉDIA      | 1,22E+09 | 8,98E+06 |

Tabela 6.2m - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj

WD<sub>50-</sub>velocidade de sedimentação da partícula para o diâmetro D<sub>50</sub>

WDvj\_velocidade de sedimentação da partícula para o diâmetro Dvj

qB[INL]D<sub>50-</sub> descarga sólida calculada pelo método de Inglis e Lacei para o diâmetro D50

qB[INL]Dvj - descarga sólida calculada pelo método de Inglis e Lacei para o diâmetro Dvj

| (1) | (2)        | (3)             | (4)                   | (5)              | (6)               | (7)   | (8)     | (9)                    | (10)       | (11)                | (12)    |
|-----|------------|-----------------|-----------------------|------------------|-------------------|-------|---------|------------------------|------------|---------------------|---------|
| Nº  | DATA       | D <sub>84</sub> | D <sub>Vj [BOC]</sub> | θ <sub>i84</sub> | θ <sub>iDvj</sub> | В     | qBm     | qB[BOG]D <sub>84</sub> | qB[BOG]Dvj | E[%]D <sub>84</sub> | E[%]Dvj |
|     |            | (mm)            | mm                    |                  |                   | (m)   | ton/dia | ton/dia                | ton/dia    | -                   | -       |
| 1   | 26/3/1993  | 1,56            | 4,50                  | 0,10             | 0,04              | 34,70 | 0,141   | 3,6308                 | 0,2260     | 2475,03             | 60,29   |
| 2   | 6/4/1993   | 2,77            | 4,56                  | 0,05             | 0,03              | 34,87 | 0,038   | 0,4324                 | 0,1168     | 1037,80             | 207,34  |
| 3   | 20/4/1993  | 2,96            | 4,31                  | 0,04             | 0,03              | 34,88 | 0,045   | 0,2166                 | 0,0808     | 381,25              | 79,45   |
| 4   | 4/5/1993   | 3,24            | 4,88                  | 0,05             | 0,03              | 34,78 | 0,045   | 0,4522                 | 0,1549     | 904,99              | 244,23  |
| 5   | 18/5/1993  | 0,97            | 3,89                  | 0,10             | 0,03              | 34,38 | 0,024   | 1,9400                 | 0,0510     | 7983,52             | 112,59  |
| 6   | 1/6/1993   | 2,50            | 5,36                  | 0,08             | 0,04              | 35,24 | 0,190   | 3,2935                 | 0,4464     | 1633,43             | 134,92  |
| 7   | 8/6/1993   | 1,13            | 3,91                  | 0,10             | 0,03              | 34,91 | 0,026   | 2,2097                 | 0,0856     | 8399,01             | 229,39  |
| 8   | 15/6/1993  | 1,44            | 4,23                  | 0,08             | 0,03              | 34,21 | 0,008   | 1,2347                 | 0,0732     | 15334,28            | 814,93  |
| 9   | 22/6/1993  | 4,47            | 4,06                  | 0,02             | 0,03              | 34,54 | 0,008   | 0,0409                 | 0,0528     | 411,33              | 559,75  |
| 10  | 29/6/1993  | 1,40            | 3,91                  | 0,06             | 0,02              | 33,99 | 0,007   | 0,3750                 | 0,0255     | 5256,60             | 264,01  |
| 11  | 6/7/1993   | 4,10            | 2,96                  | 0,01             | 0,02              | 33,77 | 0,002   | 0,0037                 | 0,0088     | 85,97               | 338,50  |
| 12  | 21/7/1993  | 3,33            | 2,74                  | 0,01             | 0,02              | 33,64 | 0,006   | 0,0025                 | 0,0042     | 57,65               | 29,43   |
| 13  | 3/8/1993   | 3,90            | 2,44                  | 0,01             | 0,01              | 32,82 | 0,002   | 0,0003                 | 0,0010     | 86,14               | 52,37   |
| 14  | 17/8/1993  | 2,30            | 2,07                  | 0,01             | 0,01              | 33,53 | 0,002   | 0,0001                 | 0,0001     | 97,07               | 96,16   |
| 15  | 31/8/1993  | 2,17            | 2,25                  | 0,01             | 0,01              | 33,74 | 0,002   | 0,0007                 | 0,0007     | 64,13               | 67,28   |
| 16  | 21/9/1993  | 1,00            | 3,60                  | 0,09             | 0,02              | 33,97 | 0,006   | 0,8651                 | 0,0300     | 14318,04            | 400,65  |
| 17  | 28/9/1993  | 1,29            | 5,36                  | 0,15             | 0,04              | 34,92 | 0,384   | 12,7232                | 0,3044     | 3213,33             | 20,72   |
| 18  | 5/10/1993  | 4,77            | 3,60                  | 0,02             | 0,02              | 34,38 | 0,006   | 0,0159                 | 0,0331     | 164,62              | 451,62  |
| 19  | 21/10/1993 | 3,63            | 4,39                  | 0,04             | 0,03              | 34,84 | 0,023   | 0,1729                 | 0,1048     | 651,88              | 355,49  |
| 20  | 28/10/1993 | 1,24            | 4,76                  | 0,13             | 0,03              | 34,88 | 0,037   | 6,4335                 | 0,1891     | 17287,85            | 411,13  |
| 21  | 4/11/1993  | 4,52            | 2,63                  | 0,01             | 0,02              | 33,82 | 0,003   | 0,0008                 | 0,0034     | 72,82               | 12,76   |
| 22  | 9/11/1993  | 4,27            | 3,33                  | 0,02             | 0,02              | 34,01 | 0,005   | 0,0085                 | 0,0164     | 70,13               | 227,46  |
| 23  | 20/12/1993 | 1,26            | 4,56                  | 0,11             | 0,03              | 34,64 | 0,080   | 4,1751                 | 0,1431     | 5118,89             | 78,84   |
| 24  | 10/2/1994  | 1,11            | 2,63                  | 0,07             | 0,03              | 35,65 | 0,332   | 0,5244                 | 0,0549     | 57,95               | 83,47   |
| 25  | 29/3/1994  | 1,18            | 4,56                  | 0,19             | 0,05              | 34,34 | 0,027   | 32,9522                | 0,9508     | 121945,26           | 3421,56 |
| 26  | 19/4/1994  | 1,34            | 3,33                  | 0,09             | 0,03              | 34,00 | 0,022   | 1,4026                 | 0,1294     | 6275,25             | 488,38  |
| 27  | 6/5/1994   | 1,20            | 2,83                  | 0,06             | 0,03              | 33,60 | 0,012   | 0,3198                 | 0,0337     | 2564,60             | 180,53  |
| 28  | 20/5/1994  | 0,95            | 3,08                  | 0,09             | 0,03              | 33,60 | 0,012   | 1,1976                 | 0,0547     | 9879,70             | 355,80  |
| 29  | 17/6/1994  | 0,83            | 2,53                  | 0,07             | 0,02              | 33,64 | 0,005   | 0,2490                 | 0,0134     | 4880,78             | 168,56  |
| 30  | 1/7/1994   | 0,89            | 3,08                  | 0,11             | 0,03              | 33,81 | 0,006   | 1,8287                 | 0,0704     | 30378,72            | 1073,24 |
| 31  | 15/7/1994  | 0,89            | 2,44                  | 0,06             | 0,02              | 33,64 | 0,051   | 0,1276                 | 0,0091     | 150,29              | 82,11   |
| 32  | 29/7/1994  | 1,66            | 3,08                  | 0,06             | 0,03              | 33,81 | 0,010   | 0,3464                 | 0,0683     | 3364,01             | 583,16  |

Tabela 6.2n - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro  $D_{84}$ e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)              | (6)               | (7)   | (8)     | (9)                    | (10)       | (11)                | (12)    |
|-----|------------|-----------------|-----------------------|------------------|-------------------|-------|---------|------------------------|------------|---------------------|---------|
| N°  | DATA       | D <sub>84</sub> | D <sub>Vj [ВОС]</sub> | θ <sub>i84</sub> | θ <sub>iDvj</sub> | В     | qBm     | qB[BOG]D <sub>84</sub> | qB[BOG]Dvj | E[%]D <sub>84</sub> | E[%]Dvj |
|     |            | (mm)            | mm                    |                  |                   | (m)   | ton/dia | ton/dia                | ton/dia    | -                   | -       |
| 33  | 12/8/1994  | 1,23            | 2,25                  | 0,03             | 0,02              | 33,26 | 0,011   | 0,0133                 | 0,0027     | 20,91               | 75,09   |
| 34  | 26/8/1994  | 0,88            | 2,41                  | 0,06             | 0,02              | 33,47 | 0,002   | 0,1384                 | 0,0098     | 6821,43             | 392,37  |
| 35  | 8/9/1994   | 1,00            | 2,63                  | 0,07             | 0,03              | 33,68 | 0,004   | 0,3026                 | 0,0241     | 7466,22             | 502,16  |
| 36  | 22/9/1994  | 0,89            | 3,33                  | 0,13             | 0,03              | 33,92 | 0,002   | 3,8652                 | 0,1221     | 193159,20           | 6002,55 |
| 37  | 6/10/1994  | 1,18            | 2,25                  | 0,03             | 0,02              | 33,49 | 0,002   | 0,0181                 | 0,0033     | 805,69              | 67,35   |
| 38  | 27/10/1994 | 1,79            | 3,20                  | 0,07             | 0,04              | 34,48 | 0,424   | 1,1278                 | 0,2455     | 165,98              | 42,11   |
| 39  | 23/11/1994 | 1,14            | 2,25                  | 0,03             | 0,02              | 33,52 | 0,004   | 0,0211                 | 0,0036     | 428,09              | 10,85   |
| 40  | 22/12/1994 | 1,60            | 4,95                  | 0,21             | 0,07              | 35,68 | 0,218   | 80,5376                | 4,1823     | 36843,86            | 1818,48 |
| 41  | 5/1/1995   | 1,08            | 5,36                  | 0,30             | 0,06              | 35,27 | 0,523   | 167,0335               | 2,5086     | 31837,58            | 379,65  |
| 42  | 19/1/1995  | 4,17            | 3,60                  | 0,03             | 0,04              | 33,92 | 0,015   | 0,1323                 | 0,1939     | 782,21              | 1192,93 |
| 43  | 26/1/1995  | 1,02            | 3,60                  | 0,13             | 0,04              | 33,93 | 0,036   | 4,6170                 | 0,1689     | 12725,10            | 369,06  |
| 44  | 9/2/1995   | 4,84            | 3,08                  | 0,05             | 0,08              | 40,30 | 3,097   | 1,3546                 | 4,4141     | 56,26               | 42,53   |
| 45  | 16/2/1995  | 1,79            | 5,78                  | 0,20             | 0,06              | 35,40 | 0,485   | 77,7178                | 3,5996     | 15924,29            | 642,18  |
| 46  | 8/3/1995   | 1,20            | 4,06                  | 0,16             | 0,05              | 34,94 | 0,396   | 13,7378                | 0,5645     | 3369,13             | 42,55   |
| 47  | 24/3/1995  | 2,97            | 4,21                  | 0,09             | 0,06              | 35,38 | 1,721   | 5,5922                 | 2,2381     | 224,94              | 30,05   |
| 48  | 7/4/1995   | 0,72            | 4,56                  | 0,34             | 0,05              | 35,05 | 0,171   | 164,0851               | 1,2970     | 95856,19            | 658,50  |
| 49  | 28/4/1995  | 0,91            | 4,21                  | 0,21             | 0,05              | 34,63 | 0,081   | 30,1713                | 0,5438     | 37148,51            | 571,37  |
| 50  | 12/5/1995  | 1,55            | 4,21                  | 0,13             | 0,05              | 34,74 | 0,468   | 10,0859                | 0,7341     | 2055,11             | 56,87   |
| 51  | 9/6/1995   | 1,09            | 3,60                  | 0,13             | 0,04              | 34,35 | 0,023   | 5,2985                 | 0,2306     | 22937,15            | 902,65  |
| 52  | 23/6/1995  | 2,04            | 2,94                  | 0,06             | 0,04              | 34,34 | 0,018   | 0,6405                 | 0,2454     | 3458,33             | 1263,29 |
| 53  | 5/7/1995   | 0,91            | 3,60                  | 0,14             | 0,04              | 34,19 | 0,051   | 5,9277                 | 0,1608     | 11522,93            | 215,20  |
| 54  | 12/7/1995  | 0,50            | 5,57                  | 0,61             | 0,05              | 35,03 | 4,163   | 1023,7423              | 1,8501     | 24491,46            | 55,56   |
| 55  | 19/7/1995  | 0,60            | 3,74                  | 0,34             | 0,05              | 34,59 | 0,016   | 118,1856               | 0,9743     | 738559,74           | 5989,66 |
| 56  | 26/7/1995  | 1,39            | 3,91                  | 0,12             | 0,04              | 34,61 | 0,118   | 6,0029                 | 0,4003     | 4987,19             | 239,27  |
| 57  | 10/8/1995  | 0,71            | 3,20                  | 0,15             | 0,03              | 34,09 | 0,012   | 4,9597                 | 0,0956     | 41230,84            | 696,99  |
| 58  | 31/8/1995  | 1,46            | 2,63                  | 0,04             | 0,02              | 33,65 | 0,002   | 0,0821                 | 0,0176     | 4003,01             | 780,45  |
| 59  | 21/9/1995  | 0,75            | 16,81                 | 0,61             | 0,03              | 34,28 | 0,031   | 1880,5890              | 0,5430     | 6066316,11          | 1651,61 |
| 60  | 28/9/1995  | 1,66            | 3,33                  | 0,08             | 0,04              | 34,68 | 0,249   | 1,3468                 | 0,2179     | 440,89              | 12,49   |
| 61  | 5/10/1995  | 1,24            | 2,85                  | 0,07             | 0,03              | 34,16 | 0,002   | 0,4102                 | 0,0465     | 20411,03            | 2224,24 |
| 62  | 19/10/1995 | 3,06            | 4,37                  | 0,08             | 0,06              | 35,02 | 0,205   | 3,5660                 | 1,3979     | 1639,54             | 581,88  |
| 63  | 23/11/1995 | 1,37            | 2,85                  | 0,06             | 0,03              | 34,05 | 0,006   | 0,3149                 | 0,0463     | 5147,82             | 672,25  |
| 64  | 7/12/1995  | 1,56            | 2,44                  | 0,03             | 0,02              | 33,39 | 0,002   | 0,0256                 | 0,0080     | 1178,05             | 297,72  |

Tabela 6.2n - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                    | (5)              | (6)               | (7)   | (8)     | (9)                    | (10)       | (11)                | (12)    |
|-----|------------|-----------------|------------------------|------------------|-------------------|-------|---------|------------------------|------------|---------------------|---------|
| N°  | DATA       | D <sub>84</sub> | D <sub>Vj (BOC</sub> ) | θ <sub>i84</sub> | θ <sub>iDvj</sub> | В     | qBm     | qB[BOG]D <sub>84</sub> | qB[BOG]Dvj | E[%]D <sub>84</sub> | E[%]Dvj |
|     |            | (mm)            | mm                     |                  |                   | (m)   | ton/dia | ton/dia                | ton/dia    | -                   | -       |
| 65  | 10/1/1996  | 1,18            | 4,95                   | 0,33             | 0,08              | 36,91 | 5,141   | 313,4012               | 7,3269     | 5996,11             | 42,52   |
| 66  | 31/1/1996  | 0,41            | 3,60                   | 0,33             | 0,04              | 34,12 | 0,019   | 63,0518                | 0,2116     | 331751,66           | 1013,46 |
| 67  | 7/2/1996   | 1,19            | 3,91                   | 0,16             | 0,05              | 35,12 | 0,238   | 15,4849                | 0,6873     | 6406,27             | 188,78  |
| 68  | 6/3/1996   | 0,43            | 4,76                   | 0,68             | 0,06              | 35,36 | 3,542   | 1276,4959              | 2,3376     | 35938,85            | 34,00   |
| 69  | 20/3/1996  | 0,57            | 5,78                   | 0,79             | 0,08              | 36,55 | 1,150   | 3722,1334              | 8,5889     | 323563,77           | 646,87  |
| 70  | 3/4/1996   | 1,41            | 4,21                   | 0,14             | 0,05              | 34,87 | 0,133   | 12,1380                | 0,6894     | 9026,34             | 418,33  |
| 71  | 16/4/1996  | 0,74            | 3,91                   | 0,25             | 0,05              | 34,52 | 0,051   | 43,3765                | 0,5543     | 84951,93            | 986,85  |
| 72  | 15/5/1996  | 1,50            | 3,60                   | 0,10             | 0,04              | 34,24 | 0,246   | 2,9501                 | 0,2965     | 1099,22             | 20,52   |
| 73  | 22/5/1996  | 1,63            | 3,60                   | 0,09             | 0,04              | 34,20 | 0,008   | 1,9865                 | 0,2482     | 24730,93            | 3002,85 |
| 74  | 19/6/1996  | 0,99            | 2,85                   | 0,08             | 0,03              | 33,76 | 0,012   | 0,7988                 | 0,0502     | 6556,34             | 318,05  |
| 75  | 3/6/1996   | 2,52            | 3,08                   | 0,04             | 0,03              | 34,07 | 0,023   | 0,1745                 | 0,1028     | 658,84              | 346,95  |
| 76  | 17/7/1996  | 2,82            | 2,85                   | 0,03             | 0,03              | 33,81 | 0,004   | 0,0444                 | 0,0433     | 1009,95             | 983,53  |
| 77  | 31/7/1996  | 1,34            | 2,96                   | 0,06             | 0,03              | 34,75 | 0,005   | 0,4185                 | 0,0526     | 8271,00             | 952,80  |
| 78  | 7/8/1996   | 1,98            | 2,63                   | 0,03             | 0,03              | 34,04 | 0,004   | 0,0526                 | 0,0251     | 1215,08             | 527,11  |
| 79  | 14/8/1996  | 2,70            | 2,96                   | 0,03             | 0,03              | 33,99 | 0,005   | 0,0876                 | 0,0691     | 1652,28             | 1282,40 |
| 80  | 21/8/1996  | 3,27            | 2,74                   | 0,02             | 0,03              | 33,89 | 0,005   | 0,0283                 | 0,0450     | 466,15              | 799,51  |
| 81  | 28/8/1996  | 3,85            | 2,85                   | 0,02             | 0,03              | 33,73 | 0,003   | 0,0196                 | 0,0432     | 552,86              | 1341,29 |
| 82  | 4/9/1996   | 1,95            | 3,60                   | 0,08             | 0,04              | 34,56 | 0,036   | 1,6504                 | 0,3299     | 4484,48             | 816,42  |
| 83  | 11/9/1996  | 4,19            | 5,36                   | 0,09             | 0,07              | 35,84 | 3,697   | 9,1714                 | 4,8115     | 148,08              | 30,15   |
| 84  | 2/10/1996  | 1,82            | 2,96                   | 0,05             | 0,03              | 34,10 | 0,006   | 0,2842                 | 0,0797     | 4636,49             | 1229,01 |
| 85  | 16/10/1996 | 4,07            | 3,66                   | 0,04             | 0,04              | 34,70 | 0,250   | 0,3234                 | 0,4285     | 29,36               | 71,41   |
| 86  | 6/11/1996  | 3,00            | 3,83                   | 0,06             | 0,05              | 34,70 | 0,320   | 0,9386                 | 0,4940     | 193,30              | 54,37   |
| 87  | 20/11/1996 | 3,50            | 3,33                   | 0,04             | 0,04              | 34,70 | 0,034   | 0,2663                 | 0,3044     | 683,24              | 795,19  |
| 88  | 6/12/1996  | 0,93            | 3,33                   | 0,14             | 0,04              | 34,60 | 4,340   | 6,7675                 | 0,2398     | 55,93               | 94,47   |
| 89  | 9/1/1997   | 0,83            | 3,60                   | 0,19             | 0,04              | 34,68 | 0,033   | 18,3307                | 0,3906     | 55447,49            | 1083,56 |
| 90  | 22/1/1997  | 0,77            | 4,95                   | 0,34             | 0,05              | 34,78 | 0,146   | 177,1467               | 1,3528     | 121233,33           | 826,59  |
| 91  | 3/2/1997   | 0,65            | 4,95                   | 0,54             | 0,07              | 36,46 | 21,990  | 942,5893               | 4,6173     | 4186,45             | 79,00   |
| 92  | 12/3/1997  | 0,82            | 3,60                   | 0,16             | 0,04              | 34,32 | 1,010   | 9,5066                 | 0,1962     | 841,25              | 80,57   |
| 93  | 26/3/1997  | 0,80            | 3,20                   | 0,12             | 0,03              | 33,84 | 0,160   | 2,9237                 | 0,0771     | 1727,31             | 51,82   |
| 94  | 16/4/1997  | 0,88            | 2,85                   | 0,08             | 0,03              | 33,64 | 0,032   | 0,6408                 | 0,0296     | 1902,52             | 7,64    |
| 95  | 14/5/1997  | 0,84            | 2,96                   | 0,09             | 0,03              | 33,16 | 0,104   | 0,8077                 | 0,0299     | 676,61              | 71,28   |
| 96  | 4/6/1997   | 4,44            | 3,20                   | 0,02             | 0,03              | 33,64 | 0,006   | 0,0297                 | 0,0699     | 394,53              | 1064,17 |

Tabela 6.2n - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro D<sub>84</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                    | (5)              | (6)               | (7)   | (8)     | (9)                    | (10)       | (11)                | (12)    |
|-----|------------|-----------------|------------------------|------------------|-------------------|-------|---------|------------------------|------------|---------------------|---------|
| N°  | DATA       | D <sub>84</sub> | D <sub>Vj (BOC</sub> ] | θ <sub>i84</sub> | θ <sub>iDvj</sub> | В     | qBm     | qB[BOG]D <sub>84</sub> | qB[BOG]Dvj | E[%]D <sub>84</sub> | E[%]Dvj |
|     |            | (mm)            | mm                     |                  |                   | (m)   | ton/dia | ton/dia                | ton/dia    | -                   | -       |
| 97  | 2/7/1997   | 3,49            | 3,20                   | 0,03             | 0,03              | 33,84 | 0,005   | 0,0544                 | 0,0681     | 987,39              | 1261,95 |
| 98  | 12/8/1997  | 4,00            | 3,07                   | 0,02             | 0,03              | 33,93 | 0,003   | 0,0296                 | 0,0592     | 886,51              | 1874,76 |
| 99  | 26/8/1997  | 1,84            | 3,60                   | 0,07             | 0,03              | 33,97 | 0,005   | 0,8530                 | 0,1464     | 15696,77            | 2611,94 |
| 100 | 9/9/1997   | 1,63            | 2,96                   | 0,04             | 0,02              | 33,40 | 0,002   | 0,1115                 | 0,0234     | 4545,66             | 876,38  |
| 101 | 23/9/1997  | 0,96            | 75,12                  | 0,68             | 0,01              | 33,96 | 0,013   | 4134,0650              | 0,0450     | 32297283,00         | 251,89  |
| 102 | 7/10/1997  | 0,67            | 3,49                   | 0,17             | 0,03              | 33,98 | 0,013   | 7,7477                 | 0,1027     | 57718,95            | 666,43  |
| 103 | 21/10/1997 | 0,83            | 2,51                   | 0,07             | 0,02              | 34,07 | 0,014   | 0,3336                 | 0,0184     | 2265,84             | 30,76   |
| 104 | 4/11/1997  | 1,08            | 3,03                   | 0,08             | 0,03              | 33,80 | 0,003   | 0,6970                 | 0,0468     | 23933,33            | 1514,22 |
| 105 | 2/12/1997  | 0,96            | 3,17                   | 0,11             | 0,03              | 34,22 | 0,439   | 2,3651                 | 0,1031     | 438,76              | 76,52   |
| 106 | 16/12/1997 | 0,50            | 4,85                   | 0,46             | 0,05              | 34,77 | 5,770   | 308,7342               | 0,7989     | 5250,68             | 86,15   |
| 107 | 13/1/1998  | 0,50            | 8,59                   | 0,77             | 0,04              | 34,82 | 0,107   | 2634,4229              | 1,5243     | 2461977,48          | 1324,62 |
| 108 | 27/1/1998  | 0,51            | 2,63                   | 0,14             | 0,03              | 34,01 | 0,010   | 2,1298                 | 0,0290     | 21633,03            | 196,14  |
| 109 | 11/2/1998  | 1,78            | 4,95                   | 0,15             | 0,05              | 35,24 | 1,660   | 22,0771                | 1,5160     | 1229,94             | 8,67    |
| 110 | 26/2/1998  | 1,80            | 4,95                   | 0,17             | 0,06              | 34,55 | 1,060   | 33,0344                | 2,3359     | 3016,45             | 120,37  |
| 111 | 11/3/1998  | 1,94            | 4,23                   | 0,09             | 0,04              | 34,68 | 1,600   | 3,5889                 | 0,4647     | 124,31              | 70,96   |
| 112 | 25/3/1998  | 0,75            | 4,56                   | 0,29             | 0,05              | 35,22 | 0,310   | 93,0188                | 0,8183     | 29906,07            | 163,97  |
| 113 | 8/4/1998   | 0,93            | 3,33                   | 0,12             | 0,03              | 33,54 | 0,034   | 2,6155                 | 0,0927     | 7592,58             | 172,57  |
| 114 | 22/4/1998  | 1,18            | 2,53                   | 0,05             | 0,03              | 33,96 | 0,004   | 0,1619                 | 0,0219     | 3664,17             | 410,40  |
| 115 | 6/5/1998   | 0,81            | 4,21                   | 0,29             | 0,05              | 35,22 | 0,165   | 93,9649                | 1,2483     | 56848,42            | 656,53  |
| 116 | 21/5/1998  | 0,74            | 3,91                   | 0,19             | 0,04              | 34,01 | 0,005   | 14,5936                | 0,1865     | 286048,20           | 3556,58 |
| 117 | 3/6/1998   | 0,91            | 3,33                   | 0,12             | 0,03              | 33,70 | 0,016   | 3,1350                 | 0,1049     | 19617,28            | 559,95  |
| 118 | 17/6/1998  | 1,82            | 3,04                   | 0,05             | 0,03              | 33,04 | 0,000   | 0,1801                 | 0,0469     | 0,00                | 0,00    |
| 119 | 15/7/1998  | 3,00            | 3,33                   | 0,03             | 0,03              | 33,02 | 0,005   | 0,0962                 | 0,0734     | 1823,45             | 1367,69 |
| 120 | 29/7/1998  | 3,03            | 2,85                   | 0,02             | 0,02              | 32,50 | 0,002   | 0,0166                 | 0,0195     | 590,73              | 713,97  |
| 121 | 12/8/1998  | 2,32            | 3,13                   | 0,04             | 0,03              | 32,77 | 0,003   | 0,0811                 | 0,0371     | 2285,33             | 989,94  |
| 122 | 25/8/1998  | 2,60            | 2,74                   | 0,02             | 0,02              | 32,08 | 0,000   | 0,0127                 | 0,0111     | 0,00                | 0,00    |
| 123 | 2/9/1998   | 3,13            | 2,85                   | 0,02             | 0,03              | 32,90 | 0,000   | 0,0241                 | 0,0309     | 0,00                | 0,00    |
| 124 | 16/9/1998  | 1,81            | 2,44                   | 0,02             | 0,02              | 32,90 | 0,006   | 0,0125                 | 0,0058     | 108,97              | 3,99    |
| 125 | 30/9/1998  | 3,41            | 2,63                   | 0,02             | 0,02              | 32,87 | 0,004   | 0,0093                 | 0,0183     | 131,35              | 358,62  |
| 126 | 14/10/1998 | 2,27            | 4,85                   | 0,08             | 0,04              | 33,28 | 0,024   | 2,6310                 | 0,3591     | 11095,55            | 1427,95 |
| 127 | 28/10/1998 | 1,92            | 4,56                   | 0,08             | 0,03              | 32,92 | 0,010   | 1,6586                 | 0,1714     | 16002,94            | 1564,37 |
| 128 | 11/11/1998 | 2,63            | 3,60                   | 0,04             | 0,03              | 31,40 | 0,000   | 0,0917                 | 0,0402     | 0,00                | 0,00    |

Tabela 6.2n - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro  $D_{84}$ e o Dvj

| (1)  | (2)        | (3)             | (4)                   | (5)              | (6)               | (7)   | (8)     | (9)                    | (10)       | (11)                | (12)    |
|------|------------|-----------------|-----------------------|------------------|-------------------|-------|---------|------------------------|------------|---------------------|---------|
| N°   | DATA       | D <sub>84</sub> | D <sub>Vj</sub> (BOG) | θ <sub>i84</sub> | θ <sub>iDvj</sub> | В     | qBm     | qB[BOG]D <sub>84</sub> | qB[BOG]Dvj | E[%]D <sub>84</sub> | E[%]Dvj |
|      |            | (mm)            | mm                    |                  |                   | (m)   | ton/dia | ton/dia                | ton/dia    | -                   | -       |
| 129  | 25/11/1998 | 1,47            | 4,21                  | 0,08             | 0,03              | 31,29 | 0,000   | 0,8938                 | 0,0566     | 0,00                | 0,00    |
| 1 30 | 9/12/1998  | 1,58            | 5,33                  | 0,12             | 0,04              | 33,18 | 0,000   | 7,4088                 | 0,3054     | 0,00                | 0,00    |
| 131  | 22/12/1998 | 0,66            | 4,85                  | 0,25             | 0,03              | 32,95 | 0,000   | 39,0372                | 0,2091     | 0,00                | 0,00    |
| 132  | 6/1/1999   | 0,30            | 5,33                  | 0,98             | 0,06              | 34,79 | 1,478   | 3376,5678              | 1,7882     | 228355,19           | 20,99   |
| 133  | 21/1/1999  | 0,29            | 6,75                  | 1,36             | 0,06              | 35,23 | 3,703   | 12427,6543             | 3,2428     | 335510,43           | 12,43   |
| 134  | 28/1/1999  | 0,32            | 7,42                  | 1,48             | 0,06              | 35,81 | 0,000   | 20741,2786             | 5,4688     | 0,00                | 0,00    |
| 135  | 3/2/1999   | 0,26            | 5,86                  | 1,19             | 0,05              | 35,18 | 2,820   | 6096,1385              | 1,7321     | 216075,12           | 38,58   |
| 136  | 11/2/1999  | 0,31            | 6,75                  | 1,23             | 0,06              | 35,26 | 3,047   | 9037,3495              | 2,8086     | 296498,28           | 7,83    |
| 137  | 25/2/1999  | 2,85            | 5,86                  | 0,12             | 0,06              | 35,52 | 5,114   | 16,4083                | 2,4779     | 220,85              | 51,55   |
| 138  | 11/3/1999  | 0,36            | 5,33                  | 0,88             | 0,06              | 35,20 | 1,803   | 2863,1508              | 2,4452     | 158699,27           | 35,62   |
| 1 39 | 25/3/1999  | 0,40            | 7,42                  | 1,01             | 0,05              | 34,99 | 3,640   | 5888,2934              | 2,7864     | 161666,30           | 23,45   |
| 140  | 15/4/1999  | 0,39            | 5,33                  | 0,50             | 0,04              | 33,72 | 0,020   | 312,4835               | 0,3292     | 1562317,34          | 1545,79 |
| 1 41 | 29/4/1999  | 0,60            | 86,55                 | 1,03             | 0,01              | 33,27 | 0,013   | 11062,2498             | 0,0243     | 85094129,54         | 86,57   |
| 142  | 13/5/1999  | 0,31            | 6,15                  | 0,67             | 0,03              | 33,41 | 0,023   | 691,6798               | 0,2753     | 3007203,47          | 1097,14 |
| 143  | 9/6/1999   | 4,13            | 4,63                  | 0,04             | 0,03              | 33,29 | 0,010   | 0,1967                 | 0,1459     | 1867,21             | 1358,61 |
| 144  | 22/7/1999  | 2,22            | 4,85                  | 0,06             | 0,03              | 32,52 | 0,003   | 0,5717                 | 0,0736     | 18956,91            | 2353,38 |
| 145  | 5/8/1999   | 2,70            | 4,95                  | 0,05             | 0,03              | 32,65 | 0,002   | 0,3566                 | 0,0730     | 17731,99            | 3549,39 |
| 146  | 19/8/1999  | 0,97            | 4,85                  | 0,13             | 0,03              | 32,78 | 0,004   | 5,0477                 | 0,0742     | 126092,84           | 1754,75 |
| 1 47 | 2/9/1999   | 4,74            | 2,28                  | 0,01             | 0,01              | 32,07 | 0,000   | 0,0002                 | 0,0011     | 0,00                | 0,00    |
| 1 48 | 15/9/1999  | 2,52            | 4,85                  | 0,06             | 0,03              | 33,31 | 0,343   | 0,9711                 | 0,1743     | 183,11              | 49,19   |
| 1 49 | 30/9/1999  | 0,94            | 4,21                  | 0,11             | 0,02              | 32,02 | 0,001   | 1,8540                 | 0,0364     | 185299,39           | 3538,18 |
| 150  | 14/10/1999 | 1,01            | 4,85                  | 0,12             | 0,02              | 32,41 | 0,003   | 3,3491                 | 0,0547     | 111535,82           | 1724,11 |
| 151  | 28/10/1999 | 2,40            | 5,33                  | 0,06             | 0,03              | 32,88 | 0,027   | 0,8350                 | 0,1029     | 2992,52             | 281,28  |
| 152  | 11/11/1999 | 0,38            | 4,63                  | 0,32             | 0,03              | 32,80 | 28,000  | 44,3929                | 0,0633     | 58,55               | 99,77   |
| 153  | 25/11/1999 | 0,84            | 5,33                  | 0,22             | 0,03              | 32,88 | 0,089   | 32,0609                | 0,2523     | 35923,53            | 183,48  |
| 154  | 9/12/1999  | 3,76            | 6,15                  | 0,05             | 0,03              | 33,19 | 0,036   | 0,9916                 | 0,2735     | 2654,39             | 659,80  |
| 155  | 23/12/1999 | 2,73            | 17,37                 | 0,08             | 0,01              | 30,48 | 0,003   | 2,3686                 | 0,0185     | 78852,79            | 517,85  |
| 156  | 6/1/2000   | 2,14            | 6,75                  | 0,18             | 0,06              | 35,69 | 0,214   | 66,8273                | 3,2851     | 31127,70            | 1435,11 |
| 1 57 | 13/1/2000  | 1,07            | 5,86                  | 0,16             | 0,03              | 32,91 | 0,313   | 13,1785                | 0,1527     | 4110,39             | 51,22   |
| 158  | 20/1/2000  | 4,07            | 5,86                  | 0,04             | 0,03              | 33,27 | 0,041   | 0,4017                 | 0,1543     | 879,66              | 276,44  |
| 1 59 | 27/1/2000  | 4,67            | 6,15                  | 0,04             | 0,03              | 33,25 | 0,090   | 0,4640                 | 0,2259     | 415,52              | 150,98  |
| 160  | 3/2/2000   | 2,76            | 12,48                 | 0,13             | 0,03              | 34,00 | 0,553   | 22,0423                | 0,4222     | 3885,96             | 23,65   |

Tabela 6.2n - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro D<sub>84</sub> e o Dvj
| (1) | (2)       | (3)             | (4)                   | (5)              | (6)               | (7)   | (8)            | (9)                    | (10)       | (11)                | (12)    |
|-----|-----------|-----------------|-----------------------|------------------|-------------------|-------|----------------|------------------------|------------|---------------------|---------|
| N°  | DATA      | D <sub>84</sub> | D <sub>Vj [ВОС]</sub> | θ <sub>i84</sub> | θ <sub>iDvj</sub> | В     | qBm            | qB[BOG]D <sub>84</sub> | qB[BOG]Dvj | E[%]D <sub>84</sub> | E[%]Dvj |
|     |           | (mm)            | mm                    |                  |                   | (m)   | ton/dia        | ton/dia                | ton/dia    | -                   | -       |
| 161 | 9/2/2000  | 0,49            | 5,33                  | 0,34             | 0,03              | 33,10 | 0,487          | 83,8187                | 0,1606     | 17111,23            | 67,02   |
| 162 | 18/2/2000 | 4,84            | 6,75                  | 0,06             | 0,04              | 34,70 | 0,447          | 1,6549                 | 0,6908     | 270,23              | 54,54   |
| 163 | 24/2/2000 | 0,33            | 3,33                  | 0,33             | 0,03              | 33,56 | 0,603          | 42,0055                | 0,0985     | 6866,09             | 83,67   |
| 164 | 3/3/2000  | 1,31            | 15,81                 | 0,27             | 0,02              | 33,42 | 0,219          | 155,9951               | 0,2282     | 71130,65            | 4,21    |
| 165 | 10/3/2000 | 0,30            | 6,75                  | 0,63             | 0,03              | 32,88 | 0,040          | 527,8009               | 0,1505     | 1319402,35          | 276,30  |
| 166 | 17/3/2000 | 1,19            | 9,86                  | 0,21             | 0,03              | 33,27 | 0,218          | 48,6484                | 0,1908     | 22215,76            | 12,48   |
| 167 | 24/3/2000 | 1,98            | 4,63                  | 0,09             | 0,04              | 34,12 | 0,491          | 2,5887                 | 0,2795     | 427,23              | 43,08   |
| 168 | 31/3/2000 | 1,25            | 7,42                  | 0,28             | 0,05              | 35,27 | 1,121          | 168,2326               | 1,5775     | 14907,37            | 40,72   |
| 169 | 7/4/2000  | 1,84            | 6,15                  | 0,09             | 0,03              | 32,77 | 0,0 <i>5</i> 0 | 2,4615                 | 0,1043     | 4822,96             | 108,65  |
| 170 | 14/4/2000 | 1,66            | 5,33                  | 0,08             | 0,02              | 32,20 | 0,005          | 1,2601                 | 0,0591     | 25101,73            | 1082,31 |
| 171 | 19/4/2000 | 4,00            | 5,86                  | 0,03             | 0,02              | 31,99 | 0,012          | 0,1611                 | 0,0592     | 1242,83             | 393,05  |
|     |           |                 |                       |                  |                   |       |                |                        | MÉDIA      | 802319,01           | 616,60  |

Tabela 6.2n - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro D<sub>84</sub> e o Dvj

qB[BOG]D<sub>84 -</sub> Descarga sólida calculada pelo método de Bogardi para o diâmetro D<sub>84</sub>

qB[BOG]Dvj - descarga sólida calculada pelo método de Bogardi para o diâmetro Dvj

# ANEXO C

Comparação entre os diâmetros calculados pelas equações desenvolvidas na pesquisa e os diâmetros coletados no Ribeirão do Feijão

| DIÂI | METRO           | S DO LE         | ΕΙΤΟ DO         | PARA            | O RIBE          | IRÃO DI         | D FEIJAO        |                       |                 | COMP            | araç <i>ı</i>   | AO EN1          | ΓRE D <sub>V</sub>   | וצ D <sup>I</sup> |                 | RELAÇ  | ÃO PERC | ENTUAL F              | ENTRE OS | VALORE:  | SDEDwa   |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-------------------|-----------------|--------|---------|-----------------------|----------|----------|----------|----------|
|      | Granu           | lometri         | a do m          | aterial         | do leit         | 0               |                 |                       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)              | (16)            | E OS V | ALORES  | PARA D <sub>I</sub> ( | OLETAD   | OS NO RI | BEIRÃO D | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | COMP            | ARAÇA           | 10 DE           | D <sub>VJ [S H</sub> | nCOM:             |                 | (17)   | (18)    | (19)                  | (20)     | (21)     | (22)     | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj</sub> [SHI] | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub>   | D <sub>90</sub> |        |         |                       |          |          |          |          |
|      | (mm)            | mm                    |                 |                 |                 |                 |                      |                   |                 |        |         |                       |          |          |          |          |
| 1    | 0.21            | 0.29            | 0.31            | 0.35            | 0.37            | 0.38            | 0.53            | 11.97                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 5600.2 | 4100.2  | 3786.5                | 3359.7   | 3126.5   | 3017.3   | 2145.9   |
| 2    | 0,24            | 0.33            | 0,34            | 0,38            | 0,40            | 0,41            | 0,59            | 12,08                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4892,3 | 3583,3  | 3463,8                | 3113,1   | 2905,3   | 2818,2   | 1951,2   |
| 3    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,56            | 11,69                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4811,6 | 3599,2  | 3442,3                | 3102,6   | 2859,4   | 2822,4   | 1976,3   |
| 4    | 0,22            | 0,31            | 0,33            | 0,38            | 0,40            | 0,43            | 0,72            | 11,35                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 5080,4 | 3571,6  | 3348,4                | 2909,3   | 2715,2   | 2532,3   | 1486,7   |
| 5    | 0,23            | 0,32            | 0,33            | 0,36            | 0,39            | 0,40            | 0,56            | 10,63                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4462,0 | 3263,8  | 3150,6                | 2828,2   | 2646,6   | 2557,4   | 1798,1   |
| б    | 0,28            | 0,36            | 0,38            | 0,43            | 0,48            | 0,51            | 0,75            | 10,51                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 3665,7 | 2794,3  | 2701,7                | 2354,8   | 2075,2   | 1968,2   | 1297,1   |
| 7    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,58            | 10,19                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4183,0 | 3065,7  | 2970,3                | 2670,0   | 2480,6   | 2423,1   | 1663,6   |
| 8    | 0,31            | 0,48            | 0,48            | 0,61            | 0,69            | 0,74            | 1,57            | 11,17                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 3514,8 | 2231,9  | 2231,9                | 1731,1   | 1509,5   | 1409,4   | 613,3    |
| 9    | 0,25            | 0,35            | 0,35            | 0,39            | 0,42            | 0,46            | 0,68            | 10,63                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4186,1 | 2919,7  | 2919,7                | 2604,7   | 2436,9   | 2231,0   | 1463,2   |
| 10   | 0,25            | 0,38            | 0,38            | 0,44            | 0,50            | 0,54            | 1,08            | 10,07                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 3894,5 | 2577,2  | 2577,2                | 2177,4   | 1901,2   | 1774,5   | 832,0    |
| 11   | 0,19            | 0,31            | 0,31            | 0,35            | 0,37            | 0,39            | 0,58            | 9,81                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 5061,8 | 3115,5  | 3115,5                | 2710,1   | 2536,4   | 2401,9   | 1579,3   |
| 12   | 0,28            | 0,41            | 0,41            | 0,50            | 0,57            | 0,60            | 1,03            | 9,81                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 3415,2 | 2274,7  | 2274,7                | 1845,9   | 1629,7   | 1545,5   | 856,8    |
| 13   | 0,22            | 0,48            | 0,48            | 0,35            | 0,38            | 0,39            | 0,54            | 9,27                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4212,9 | 1835,8  | 1835,8                | 2519,4   | 2353,1   | 2265,5   | 1617,2   |
| 14   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,41            | 0,57            | 11,63                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 5211,8 | 3558,1  | 3558,1                | 3113,5   | 2969,3   | 2772,3   | 1933,7   |
| Ľ    | 0,24            | 0,34            | 0,34            | 0,38            | 0,40            | 0,41            | 0,59            | 9,74                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 3925,6 | 2808,0  | 2808,0                | 2497,8   | 2323,3   | 2253,1   | 1548,4   |
| ló   | 0,19            | 0,33            | 0,33            | 0,38            | 0,40            | 0,44            | 0,75            | 9,87                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4989,0 | 2909,9  | 2909,9                | 2511,8   | 2355,9   | 2154,0   | 1221,6   |
| 17   | 0,25            | 0,37            | 0,37            | 0,44            | 0,50            | 0,55            | 1,20            | 12,68                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4930,6 | 3307,8  | 3307,8                | 2814,3   | 2420,3   | 2221,8   | 960,8    |
| 18   | 0,22            | 0,34            | 0,34            | 0,38            | 0,42            | 0,44            | 0,64            | 17,61                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 7759,6 | 5108,7  | 5108,7                | 4484,8   | 4111,8   | 3892.2   | 2633,8   |
| 19   | 0,20            | 0,31            | 0,31            | 0,35            | 0,38            | 0,40            | 0,57            | 15,10                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 7373,4 | 4817,3  | 4817,3                | 4 164,5  | 3893,7   | 3674,0   | 2557,8   |
| 20   | 0,23            | 0,33            | 0,33            | 0,38            | 0,40            | 0,42            | 0,60            | 11,05                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4643,1 | 3208,8  | 3208,8                | 2847,1   | 2649,1   | 2550,2   | 1748,1   |
| 21   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,40            | 0,57            | 9,41                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4276,1 | 2877,4  | 2877,4                | 2520,8   | 2389,1   | 2240,5   | 1556,4   |
| 22   | 0,23            | 0,32            | 0,32            | 0,37            | 0,39            | 0,41            | 0,57            | 9,87                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4137,2 | 2947,1  | 2947,1                | 2604,8   | 2451,1   | 2331,7   | 1638,1   |
| 23   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,46            | 0,75            | 14,10                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 5788,3 | 4074,9  | 3933,2                | 3434,6   | 31 18,7  | 2944,0   | 1787,0   |
| 24   | 0,25            | 0,36            | 0,36            | 0,42            | 0,46            | 0,50            | 0,74            | 8,71                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 3412,8 | 2306,6  | 2306,6                | 1979,2   | 1781,6   | 1632,0   | 1080,4   |
| 25   | 0,23            | 0,35            | 0,35            | 0,41            | 0,47            | 0,50            | 0,79            | 9,68                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4052,8 | 2641,1  | 2641,1                | 2260,0   | 1945,7   | 1819,8   | 1118,6   |
| 26   | 0,19            | 0,30            | 0,30            | 0,34            | 0,37            | 0,39            | 0,58            | 3,21                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 1552,8 | 976,0   | 976,0                 | 832,1    | 764,3    | 722,2    | 455,7    |
| 27   | 0,19            | 0,28            | 0,30            | 0,35            | 0,38            | 0,39            | 0,56            | 7,57                  | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 3864,4 | 2575,6  | 2399,0                | 2075,9   | 1908,5   | 1826,7   | 1261,9   |
| 28   | 0,24            | 0,32            | 0,34            | 0,38            | 0,42            | 0,44            | 0,68            | 15,86                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 6622,4 | 4842,3  | 4566,1                | 4031,5   | 3704,5   | 3497,5   | 2226,2   |
| 29   | 0,32            | 0,41            | 0,43            | 0,50            | 0,53            | 0,56            | 0,83            | 22,07                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 6795,8 | 5295,2  | 4996,2                | 4348,9   | 4032,3   | 3847,5   | 2568,2   |
| 30   | 0,26            | 0,30            | 0,36            | 0,40            | 0,44            | 0,46            | 0,59            | 11,20                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4291,8 | 3583,9  | 3028,2                | 2685,8   | 2474,5   | 2313,6   | 1804,6   |
| 31   | 0,22            | 0,31            | 0,33            | 0,37            | 0,40            | 0,42            | 0,62            | 10,07                 | 1               | 1               | 1               | 1               | 1                    | 1                 | 1               | 4454,8 | 3105,8  | 2978,3                | 2605,9   | 24 10,2  | 2313,9   | 1536,8   |

Tabela 7.4a - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN                 | IETRO:                                    | S DO LE         | нто ро          | PARA            | O RIBEI         | IRÃO D(         | D FEIJAO        |                       |                 | COMP            | 'ARAÇ <i>ı</i>  | AO EN           | IRE D $_{ m V}$      | յուDլ           |                 | RELAÇ   | :ÃO PERC | ENTUAL E              | ENTRE OS | VALORES   | S DE Dwa |          |
|----------------------|-------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|---------|----------|-----------------------|----------|-----------|----------|----------|
|                      | Granu                                     | lometri         | a do m          | aterial         | do leit         | 0               |                 |                       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)            | ΕOSΝ    | ALORESI  | PARA D <sub>I</sub> C | OLETADO  | DS NO RIE | BEIRÃO D | O FEIJÃO |
| (1)                  | (2)                                       | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | COMP            | 'ARAÇ <i>ı</i>  | 10 DE           | D <sub>VJ [S H</sub> | ղ COM:          |                 | (17)    | (18)     | (19)                  | (20)     | (21)      | (22)     | (23)     |
| $\mathbb{N}^{\circ}$ | D <sub>10</sub>                           | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj [SHI]</sub> | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub> | D <sub>90</sub> |         |          |                       |          |           |          |          |
|                      | (mm)                                      | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | mm                    |                 |                 |                 |                 |                      |                 |                 |         |          |                       |          |           |          |          |
| 32                   | 0,24                                      | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 10,81                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4481,3  | 3206,4   | 2980,3                | 2609,8   | 2329,7    | 2181,0   | 1427,1   |
| 33                   | 0,23                                      | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 13,76                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5855,0  | 4280,9   | 4055,9                | 3568,3   | 3330,4    | 3190,9   | 2016,3   |
| 34                   | 0,21                                      | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 12,41                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5753,4  | 3694,9   | 3486,5                | 3025,7   | 2752,7    | 2591,8   | 2032,2   |
| 35                   | 0,16                                      | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 17,56                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 10878,0 | 8344,6   | 7812,0                | 6454,0   | 5735,5    | 5389,0   | 3701,9   |
| 36                   | 0,31                                      | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 10,13                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3126,1  | 2477,6   | 2289,1                | 1934,1   | 1797,0    | 167 1,0  | 716,9    |
| 37                   | 0,28                                      | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 13,04                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4609,3  | 3503,5   | 3314,9                | 2838,0   | 2498,6    | 2356,6   | 1510,5   |
| 38                   | 0,10                                      | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 23,21                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 23831,8 | 14780,7  | 13636,0               | 11449,2  | 9375,1    | 8693,1   | 3854,7   |
| 39                   | 0,25                                      | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | L,15            | 18,41                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 7412,6  | 5189,0   | 4847,8                | 4121,5   | 37 18,6   | 3467,0   | 1504,7   |
| 40                   | 0,29                                      | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 12,41                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4193,8  | 3328,0   | 3182,9                | 2772,5   | 2474,5    | 2309,6   | 1503,3   |
| 41                   | 0,29                                      | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 15,05                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5107,6  | 4139,4   | 3902,7                | 3424,6   | 3022,4    | 2794,2   | 1822,1   |
| 42                   | 0,24                                      | 0,33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 13,95                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5689,9  | 4167,2   | 3932,9                | 3459,6   | 3167,9    | 2940,0   | 1922,3   |
| 43                   | 0,31                                      | 0,39            | 0,42            | 0,51            | 0,58            | 0,61            | 1,33            | 13,81                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4296,7  | 3412,9   | 3218,7                | 2601,7   | 2276,2    | 2148,5   | 936.5    |
| 44                   | 0,31                                      | 0,39            | 0,42            | 0,51            | 0,57            | 0,60            | L 18            | 11,69                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3720,1  | 2874,4   | 2696,6                | 2205,6   | 1958,0    | 1858,1   | 894,9    |
| 45                   | 0.22                                      | 0.32            | 0.33            | 0.38            | 0.41            | 0.43            | 0.65            | 12,52                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5589,5  | 3799,4   | 3693,0                | 3220,1   | 2923,4    | 2804,2   | 1837,6   |
| 46                   | 0.28                                      | 0.37            | 0.39            | 0.46            | 0.54            | 0.56            | 0.93            | 11,63                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4010,5  | 3052,5   | 2905,9                | 2428,9   | 2074,3    | 1992,2   | 1153,5   |
| 47                   | 1 0,24 0,34 0,35 0,40 0,44 0,48 0,74 14,6 |                 |                 |                 |                 |                 |                 |                       |                 | 1               | 1               | 1               | 1                    | 1               | 1               | 5970,1  | 4202,6   | 4044,2                | 3539,0   | 3224,8    | 2935,0   | 1868,9   |
| 418                  | 0.24                                      | 0.32            | 0.34            | 0.39            | 0.43            | 0.45            | 0.67            | 11.17                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4632.9  | 3390.5   | 3175.6                | 2786.2   | 2515.9    | 2393.2   | 1567.1   |
| ·                    |                                           | f               | f.              |                 | Af              |                 |                 |                       |                 | (%)             | de eve          | ntos e          | m que l              | DVJ > [         | D,              | DIFE    | RENCAP   | ERCENTI               | UAL REL  | ATIVA MĚ  | DIA      |          |
|                      |                                           |                 |                 |                 |                 |                 |                 |                       | 100,0           | 100,0           | 100,0           | 100,0           | 100,0                | 100,0           | 100,0           | 5296,3  | 3702,5   | 3549,2                | 3087,0   | 2792,8    | 2635,2   | 1649,8   |

## Tabela 7.4a - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | IETRO:          | SDOLE           | ειτο do         | PARA            | O RIBEI         | IRÃO D(         | O FEIJAO | )                      |                 | COMP            | ARAÇA           | 40 EN1          | rre d <sub>v</sub>   | 1ª D'           |                   | RELAÇ  | ÃO PERC | ENTUAL I            | ENTRE OS | VALORE   | SDEDwa   |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|------------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-------------------|--------|---------|---------------------|----------|----------|----------|----------|
|      | Granul          | lometri         | a do m          | aterial         | do leit         | 0               |          |                        | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)              | EOSV   | ALORES  | PARA D <sub>I</sub> | OLETAD   | DS NO RI | BEIRÃO D | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)      | (9)                    |                 | COMP/           | ARAÇA           | O DE            | D <sub>VJ (MPA</sub> | ղCOM:           |                   | (17)   | (18)    | (19)                | (20)     | (21)     | (22)     | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | $D_{90}$ | D. <sub>Vj</sub> [MPM] | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub> | $\mathbf{D}_{90}$ |        |         |                     |          |          |          |          |
|      | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)     | mm                     |                 |                 |                 |                 |                      |                 |                   |        |         |                     |          |          |          |          |
| 1    | 0,21            | 0,29            | 0,31            | 0,35            | 0,37            | 0,38            | 0,53     | 1,30                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 518,1  | 355,5   | 321,4               | 275,2    | 249,9    | 238,0    | 143,5    |
| 2    | 0,24            | 0,33            | 0,34            | 0,38            | 0,40            | 0,41            | 0,59     | 1,45                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 499,0  | 341,9   | 327,6               | 285,5    | 260,6    | 250,1    | 146,1    |
| 3    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,56     | 1,24                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 419,2  | 291,1   | 274,5               | 238,6    | 212,9    | 208,9    | 119,5    |
| 4    | 0,22            | 0,31            | 0,33            | 0,38            | 0,40            | 0,43            | 0,72     | 1,25                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 469,0  | 303,2   | 278,7               | 230,5    | 209,2    | 189,1    | 74,3     |
| 5    | 0,23            | 0,32            | 0,33            | 0,36            | 0,39            | 0,40            | 0,56     | 1,13                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 386,3  | 258,6   | 246,5               | 212,2    | 192,8    | 183,3    | 102,3    |
| б    | 0,28            | 0,36            | 0,38            | 0,43            | 0,48            | 0,51            | 0,75     | 1,06                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 281,7  | 193,4   | 184,0               | 148,8    | 120,5    | 109,6    | 41,6     |
| 7    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,58     | 1,35                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 465,2  | 317,8   | 305,2               | 265,5    | 240,6    | 233,0    | 132,7    |
| 8    | 0,31            | 0,48            | 0,48            | 0,61            | 0,69            | 0,74            | 1,57     | 1,24                   | 1               | 1               | 1               | 1               | 1                    | 1               | 0                 | 301,1  | 158,8   | 158,8               | 103,2    | 78,6     | 67,5     | 26,3     |
| 9    | 0,25            | 0,35            | 0,35            | 0,39            | 0,42            | 0,46            | 0,68     | 1,14                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 358,8  | 223,2   | 223,2               | 189,5    | 171,6    | 149,5    | 67,3     |
| 10   | 0,25            | 0,38            | 0,38            | 0,44            | 0,50            | 0,54            | 1,08     | 1,05                   | 1               | 1               | 1               | 1               | 1                    | 1               | 0                 | 315,1  | 178,2   | 178,2               | 136,7    | 108,0    | 94,8     | 3,2      |
| 11   | 0,19            | 0,31            | 0,31            | 0,35            | 0,37            | 0,39            | 0,58     | 0,94                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 394,6  | 208,1   | 208,1               | 169,3    | 152,6    | 139,7    | 60,9     |
| 12   | 0,28            | 0,41            | 0,41            | 0,50            | 0,57            | 0,60            | 1,03     | 0,99                   | 1               | 1               | 1               | 1               | 1                    | 1               | 0                 | 254,1  | 139,2   | 139,2               | 96,0     | 74,3     | 65,8     | 3,7      |
| 13   | 0,22            | 0,48            | 0,48            | 0,35            | 0,38            | 0,39            | 0,54     | 0,85                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 294,2  | 76,9    | 76,9                | 139,4    | 124,2    | 116,2    | 57,0     |
| 14   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,41            | 0,57     | 1,25                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 469,9  | 292,5   | 292,5               | 244,8    | 229,3    | 208,2    | 118,2    |
| 15   | 0,24            | 0,34            | 0,34            | 0,38            | 0,40            | 0,41            | 0,59     | 0,86                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 256,4  | 157,5   | 157,5               | 130,0    | 114,6    | 108,3    | 45,9     |
| 16   | 0,19            | 0,33            | 0,33            | 0,38            | 0,40            | 0,44            | 0,75     | 0,71                   | 1               | 1               | 1               | 1               | 1                    | 1               | 0                 | 266,7  | 116,9   | 116,9               | 88,2     | 77,0     | 62,4     | 5,0      |
| 17   | 0,25            | 0,37            | 0,37            | 0,44            | 0,50            | 0,55            | 1,20     | 1,50                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 495,1  | 303,1   | 303,1               | 244,7    | 198,1    | 174,7    | 25,5     |
| 18   | 0,22            | 0,34            | 0,34            | 0,38            | 0,42            | 0,44            | 0,64     | 2,91                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 1199,3 | 761,1   | 761,1               | 657,9    | 596,3    | 560,0    | 351,9    |
| 19   | 0,20            | 0,31            | 0,31            | 0,35            | 0,38            | 0,40            | 0,57     | 2,03                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 903,3  | 560,2   | 560,2               | 472,5    | 436,2    | 406,7    | 256,8    |
| 20   | 0,23            | 0,33            | 0,33            | 0,38            | 0,40            | 0,42            | 0,60     | 1,24                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 430,2  | 269,8   | 269,8               | 229,4    | 207,3    | 196,2    | 106,6    |
| 21   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,40            | 0,57     | 0,96                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 348,4  | 205,1   | 205,1               | 168,6    | 155,1    | 139,8    | 69,7     |
| 22   | 0,23            | 0,32            | 0,32            | 0,37            | 0,39            | 0,41            | 0,57     | 1,03                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 343,4  | 218,9   | 218,9               | 183,1    | 167,0    | 154,5    | 81,9     |
| 23   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,46            | 0,75     | 1,92                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 701,3  | 468,2   | 448,9               | 381,0    | 338,0    | 314,2    | 156,8    |
| 24   | 0,25            | 0,36            | 0,36            | 0,42            | 0,46            | 0,50            | 0,74     | 0,88                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 254,4  | 142,8   | 142,8               | 109,8    | 89,9     | 74,8     | 19,1     |
| 25   | 0,23            | 0,35            | 0,35            | 0,41            | 0,47            | 0,50            | 0,79     | 1,05                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 350,3  | 197,2   | 197,2               | 155,9    | 121,8    | 108,2    | 32,2     |
| 26   | 0,19            | 0,30            | 0,30            | 0,34            | 0,37            | 0,39            | 0,58     | 0,36                   | 1               | 1               | 1               | 1               | 0                    | 0               | 0                 | 87,1   | 21,8    | 21,8                | 5,5      | 2,2      | 7,5      | 59,0     |
| 27   | 0,19            | 0,28            | 0,30            | 0,35            | 0,38            | 0,39            | 0,56     | 0,75                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 291,4  | 164,1   | 146,7               | 114,8    | 98,3     | 90,2     | 34,4     |
| 28   | 0,24            | 0,32            | 0,34            | 0,38            | 0,42            | 0,44            | 0,68     | 2,33                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 889,3  | 627,3   | 586,7               | 508,0    | 459,9    | 429,4    | 242,3    |
| 29   | 0,32            | 0,41            | 0,43            | 0,50            | 0,53            | 0,56            | 0,83     | 4,18                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 1207,4 | 922,9   | 866,2               | 743,5    | 683,5    | 648,4    | 405,9    |
| 30   | 0,26            | 0,30            | 0,36            | 0,40            | 0,44            | 0,46            | 0,59     | 1,28                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 401,9  | 321,0   | 257,5               | 218,3    | 194,2    | 175,8    | 117,6    |
| 31   | 0,22            | 0,31            | 0,33            | 0,37            | 0,40            | 0,42            | 0,62     | 1,10                   | 1               | 1               | 1               | 1               | 1                    | 1               | 1                 | 397,8  | 250,4   | 236,5               | 195,8    | 174,4    | 163,8    | 78,9     |

## Tabela 7.4b - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | 1ETR O          | S DO LE         | нто ро          | PARA            | O RIBE          | IRÃO D          | D FEIJAC        | )                     |                                                       | COMP            | Paraçı          | AO EN           | TRE $D_v$            | J&D∣              |                 | RELAÇ  | ÃO PERC | ENTUAL E              | NTRE OS | VALORES   | )<br>DE Dwa |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-------------------------------------------------------|-----------------|-----------------|-----------------|----------------------|-------------------|-----------------|--------|---------|-----------------------|---------|-----------|-------------|----------|
|      | Granu           | lometri         | a do m          | aterial         | do leit         | 0               |                 |                       | (10)                                                  | (11)            | (12)            | (13)            | (14)                 | (15)              | (16)            | EOSV   | ALORES  | PARA D <sub>I</sub> C | OLETAD  | OS NO RIE | BEIRÃO D    | D FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                   | I                                                     | COMP            | ARAÇA           | O DE            | D <sub>VJ [MPI</sub> | <sub>n</sub> COM: |                 | (17)   | (18)    | (19)                  | (20)    | (21)      | (22)        | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj [MPM]</sub> | D <sub>10</sub>                                       | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub>   | D <sub>90</sub> |        |         |                       |         |           |             |          |
|      | (mm)            | mm                    |                                                       |                 |                 |                 |                      |                   |                 |        |         |                       |         |           |             |          |
| 32   | 0,24            | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 1,18                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 401,1  | 261,6   | 236,9                 | 196,4   | 165,7     | 149,5       | 67,0     |
| 33   | 0,23            | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 1,80                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 678,9  | 473,0   | 443,6                 | 379,8   | 348,7     | 330,5       | 176,8    |
| 34   | 0,21            | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 1,49                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 605,0  | 367,1   | 332,0                 | 276,5   | 243,6     | 224,2       | 156,8    |
| 35   | 0,16            | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 2,62                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 1538,9 | 1160,7  | 1081,2                | 878,4   | 771,2     | 719,4       | 467,6    |
| 36   | 0,31            | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 1,18                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                 |                 |                 |                      |                   |                 | 201,5  | 179,4   | 137,9                 | 121,9   | 107,1     | 4,7         |          |
| 37   | 0,28            | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 1,66                  |                                                       |                 |                 |                 |                      |                   |                 | 500,4  | 359,4   | 335,4                 | 274,6   | 231,3     | 213,2       | 105,3    |
| 38   | 0,10            | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 3,40                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 3410,3 | 2082,7  | 1914,8                | 1594,0  | 1289,8    | 1189,8      | 480,1    |
| 39   | 0,25            | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | 1,15            | 2,80                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 1043,5 | 705,0   | 653,1                 | 542,6   | 481,2     | 442,9       | 144,2    |
| 40   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 1,60                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 452,5  | 341,1   | 322,4                 | 269,6   | 231,2     | 210,0       | 106,3    |
| 41   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 1,86                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 543,7  | 424,1   | 394,8                 | 335,7   | 286,0     | 257,8       | 137,6    |
| 42   | 0,24            | 0,33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 1,76                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 630,2  | 438,2   | 408,6                 | 349,0   | 312,2     | 283,4       | 155,1    |
| 43   | 0,31            | 0,39            | 0,42            | 0,51            | 0,58            | 0,61            | 1,33            | 1,69                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 438,1  | 329,9   | 306,1                 | 230,6   | 190,8     | 175,2       | 26,8     |
| 44   | 0,31            | 0,39            | 0,42            | 0,51            | 0,57            | 0,60            | 1,18            | 1,34                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 338,3  | 241,3   | 220,9                 | 164,5   | 136,1     | 124,7       | 14,1     |
| 45   | 0,22            | 0,32            | 0,33            | 0,38            | 0,41            | 0,43            | 0,65            | 1,49                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 576,0  | 363,3   | 350,7                 | 294,5   | 259,2     | 245,1       | 130,2    |
| 46   | 0,28            | 0,37            | 0,39            | 0,46            | 0,54            | 0,56            | 0,93            | 1,29                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 357,1  | 250,6   | 234,2                 | 181,2   | 141,8     | 132,6       | 39,4     |
| 47   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,48            | 0,74            | 1,62                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 574,2  | 377,9   | 360,3                 | 304,2   | 269,3     | 237,1       | 118,7    |
| 418  | 0,24            | 0,32            | 0,34            | 0,39            | 0,43            | 0,45            | 0,67            | 1,23                  | 1                                                     | 1               | 1               | 1               | 1                    | 1                 | 1               | 421,0  | 284,2   | 260,6                 | 217,7   | 188,0     | 174,5       | 83,5     |
|      |                 |                 |                 |                 |                 |                 |                 |                       |                                                       | (%)             | de eve          | ntos e          | mquel                | )VJ > [           | ),              | DIFE   | RENÇAP  | ERCENTI               | JAL REL | ATIVA MĖ  | DIA         |          |
|      |                 |                 |                 |                 |                 |                 |                 |                       | 100,0                                                 | 100,0           | 100,0           | 100,0           | 97,9                 | 97,9              | 87,5            | 563,3  | 368,7   | 348,9                 | 291,0   | 254,3     | 235,1       | 116,7    |

Tabela 7.4b - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂI | METRO:          | SDOLE           | ΞΙΤΟ DO         | ) PARA          | O RIBE          | IRÃO DO         | D FEIJAC | )                     |                 | COMP            | 'ARAÇ <i>i</i>  | AO EN1          | rre d <sub>v</sub>   | اھ D            |      | RELAÇ   | XÃO PERC | ENT UAL 1             | ENTRE OS | VALORE   | SDEDwa   |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|------|---------|----------|-----------------------|----------|----------|----------|----------|
|      | Granu           | lometri         | ia do m         | naterial        | do leit         | 0               |          |                       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16) | EOSΝ    | ALORES   | PARA D <sub>I</sub> ( | OLETAD   | OS NO RI | BEIRÃO D | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)      | (9)                   |                 | COMP            | ARAÇA           | IO DE           | D <sub>VJ [KAI</sub> | lCOM:           |      | (17)    | (18)     | (19)                  | (20)     | (21)     | (22)     | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>38</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | $D_{90}$ | D <sub>vj [EAL]</sub> | D <sub>10</sub> | D <sub>30</sub> | D <sub>38</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub> | Don  |         |          |                       |          |          |          |          |
|      | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)     | mm                    | ~               |                 | ~               | ~               | "                    | Ĩ               | ~    |         |          |                       |          |          |          |          |
| 1    | 0.21            | 0.29            | 0.31            | 0.35            | 0.37            | 0.38            | 0.53     | 1.49                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 608.2   | 421.9    | 382.9                 | 329.9    | 300.9    | 287.3    | 179.0    |
| 2    | 0,24            | 0.33            | 0,34            | 0,38            | 0,40            | 0.41            | 0,59     | 1,18                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 388,8   | 260,6    | 248,9                 | 214,6    | 194,2    | 185,7    | 100,8    |
| 3    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,56     | 1,63                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 582,9   | 414,3    | 392,5                 | 345,3    | 311,5    | 306,3    | 188,7    |
| 4    | 0,22            | 0,31            | 0,33            | 0,38            | 0,40            | 0,43            | 0,72     | 1,60                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 631,6   | 418,5    | 387,0                 | 325,0    | 297,5    | 271,7    | 124,1    |
| 5    | 0,23            | 0,32            | 0,33            | 0,36            | 0,39            | 0,40            | 0,56     | 1,87                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 701,8   | 491,2    | 471,3                 | 414,6    | 382,7    | 367,0    | 233,6    |
| б    | 0,28            | 0,36            | 0,38            | 0,43            | 0,48            | 0,51            | 0,75     | 2,04                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 630,8   | 461,7    | 443,7                 | 376,4    | 322,1    | 301,4    | 171,1    |
| 7    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,58     | 1,39                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 483,1   | 331,0    | 318,0                 | 277,1    | 251,3    | 243,5    | 140,1    |
| 8    | 0,31            | 0,48            | 0,48            | 0,61            | 0,69            | 0,74            | 1,57     | 1,62                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 423,2   | 237,5    | 237,5                 | 165,1    | 133,0    | 118,5    | 3,2      |
| 9    | 0,25            | 0,35            | 0,35            | 0,39            | 0,42            | 0,46            | 0,68     | 1,86                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 648,7   | 427,5    | 427,5                 | 372,4    | 343,1    | 307,2    | 173,0    |
| 10   | 0,25            | 0,38            | 0,38            | 0,44            | 0,50            | 0,54            | 1,08     | 2,09                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 728,3   | 455,1    | 455,1                 | 372,2    | 315,0    | 288,7    | 93,3     |
| 11   | 0,19            | 0,31            | 0,31            | 0,35            | 0,37            | 0,39            | 0,58     | 2,37                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 1147,0  | 676,8    | 676,8                 | 578,9    | 536,9    | 504,4    | 305,7    |
| 12   | 0,28            | 0,41            | 0,41            | 0,50            | 0,57            | 0,60            | 1,03     | 2,24                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 702,7   | 442,3    | 442,3                 | 344,4    | 295,0    | 275,8    | 118,5    |
| 13   | 0,22            | 0,48            | 0,48            | 0,35            | 0,38            | 0,39            | 0,54     | 2,62                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 1119,8  | 447,5    | 447,5                 | 640,8    | 593,8    | 569,0    | 385,7    |
| 14   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,41            | 0,57     | 1,60                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 629,4   | 402,3    | 402,3                 | 341,3    | 321,5    | 294,4    | 179,3    |
| L5   | 0,24            | 0,34            | 0,34            | 0,38            | 0,40            | 0,41            | 0,59     | 2,58                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 966,5   | 670,4    | 670,4                 | 588,3    | 542,0    | 523,4    | 336,7    |
| 16   | 0,19            | 0,33            | 0,33            | 0,38            | 0,40            | 0,44            | 0,75     | 3,00                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 1448,1  | 815,7    | 815,7                 | 694,6    | 647,1    | 585,7    | 302,1    |
| 17   | 0,25            | 0,37            | 0,37            | 0,44            | 0,50            | 0,55            | 1,20     | 1,09                  | 1               | 1               | 1               | 1               | 1                    | 1               | 0    | 333,3   | 193,6    | 193,6                 | 151,0    | 117,1    | 100,0    | 9,4      |
| 18   | 0,22            | 0,34            | 0,34            | 0,38            | 0,42            | 0,44            | 0,64     | 0,05                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0    | 317,3   | 529,6    | 529,6                 | 615,3    | 678,6    | 721,5    | 1099,6   |
| 19   | 0,20            | 0,31            | 0,31            | 0,35            | 0,38            | 0,40            | 0,57     | 0,42                  | 1               | 1               | 1               | 1               | 1                    | 1               | 0    | 107,6   | 36,6     | 36,6                  | 18,4     | 10,9     | 4,8      | 35,5     |
| 20   | 0,23            | 0,33            | 0,33            | 0,38            | 0,40            | 0,42            | 0,60     | 1,63                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 598,1   | 387,0    | 387,0                 | 333,7    | 304,6    | 290,1    | 172,0    |
| 21   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,40            | 0,57     | 2,30                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 971,4   | 629,0    | 629,0                 | 541,6    | 509,4    | 473,0    | 305,5    |
| 22   | 0,23            | 0,32            | 0,32            | 0,37            | 0,39            | 0,41            | 0,57     | 2,12                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 810,3   | 554,6    | 554,6                 | 481,1    | 448,0    | 422,4    | 273,4    |
| 23   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,46            | 0,75     | 0,52                  | 1               | 1               | 1               | 1               | 1                    | 1               | 0    | 116,6   | 53,6     | 48,4                  | 30,0     | 18,4     | 12,0     | 44,0     |
| 24   | 0,25            | 0,36            | 0,36            | 0,42            | 0,46            | 0,50            | 0,74     | 2,54                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 922,3   | 600,4    | 600,4                 | 505,1    | 447,6    | 404,0    | 243,5    |
| 25   | 0,23            | 0,35            | 0,35            | 0,41            | 0,47            | 0,50            | 0,79     | 2,08                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 792,3   | 489,0    | 489,0                 | 407,1    | 339,6    | 312,5    | 161,9    |
| 26   | 0,19            | 0,30            | 0,30            | 0,34            | 0,37            | 0,39            | 0,58     | 3,91                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 1914,2  | 1211,3   | 1211,3                | 1035,9   | 953,3    | 902,0    | 577,2    |
| 27   | 0,19            | 0,28            | 0,30            | 0,35            | 0,38            | 0,39            | 0,56     | 2,90                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 1419,6  | 925,6    | 857,9                 | 734,0    | 669,9    | 638,5    | 422,0    |
| 28   | 0,24            | 0,32            | 0,34            | 0,38            | 0,42            | 0,44            | 0,68     | 0,22                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0    | 8,3     | 47,3     | 56,0                  | 76,2     | 91,4     | 102,4    | 213,0    |
| 29   | 0,32            | 0,41            | 0,43            | 0,50            | 0,53            | 0,56            | 0,83     | 0,00                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0    | 28396,3 | 36321,8  | 38459,0               | 44069,2  | 47453,1  | 49679,4  | 73545,0  |
| 30   | 0,26            | 0,30            | 0,36            | 0,40            | 0,44            | 0,46            | 0,59     | 1,53                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 498,9   | 402,3    | 326,6                 | 279,9    | 251,1    | 229,1    | 159,7    |
| 31   | 0,22            | 0,31            | 0,33            | 0,37            | 0,40            | 0,42            | 0,62     | 1,95                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1    | 782,2   | 520,9    | 496,2                 | 424,1    | 386,2    | 367,5    | 217,0    |

## Tabela 7.4c - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | IETRO:          | S DO LE         | ΕΙΤΟ DC         | PARA            | O RIBE          | IRÃO DI         | D FEIJAC        | )                                                                |                 | COMP            | ARAÇA           | AO EN1          | rre d <sub>v.</sub>  | اھ D            |                 | RELAÇ  | ÃO PERC | ENTUAL E              | INTRE OS | VALORES   | ) DE Dwa |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|--------|---------|-----------------------|----------|-----------|----------|----------|
|      | Granu           | lometri         | a do m          | aterial         | do leit         | 0               |                 |                                                                  | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)            | EOSV   | ALORESI | PARA D <sub>I</sub> C | OLETADO  | OS NO RIE | EIRÃO D  | D FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                                                              |                 | COMP            | <b>NRAÇA</b>    | O DE            | D <sub>VJ [KAL</sub> | 1COM            |                 | (17)   | (18)    | (19)                  | (20)     | (21)      | (22)     | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>38</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | $\mathbf{D}_{\mathbf{v}_{j} [\mathbf{E} \mathbf{A} \mathbf{L}]}$ | D <sub>10</sub> | D <sub>30</sub> | D <sub>38</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub> | D <sub>90</sub> |        |         |                       |          |           |          |          |
|      | (mm)            | mm                                                               |                 |                 |                 |                 |                      |                 |                 |        |         |                       |          |           |          |          |
| 32   | 0,24            | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 1,75                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 641,1  | 434,9   | 398,3                 | 338,3    | 293,0     | 269,0    | 147,0    |
| 33   | 0,23            | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 0,65                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 181,5  | 107,1   | 96,4                  | 73,4     | 62,1      | 55,6     | 0,0      |
| 34   | 0,21            | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 1,10                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4 19,4 | 236,7   | 218,2                 | 177,3    | 153,1     | 138,8    | 89,2     |
| 35   | 0,16            | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 0,11                                                             | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 43,7   | 86,8    | 99,4                  | 140,7    | 170,3     | 187,4    | 314,9    |
| 36   | 0,31            | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 1,74                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 455,3  | 343,7   | 311,2                 | 250,1    | 226,5     | 204,8    | 40,6     |
| 37   | 0,28            | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 0,83                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 199,7  | 129,3   | 117,3                 | 86,9     | 65,3      | 56,3     | 2,5      |
| 38   | 0,10            | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 0,01                                                             | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 618,2  | 1055,0  | 1151,3                | 1388,2   | 17 14,0   | 1854,7   | 4246,2   |
| 39   | 0,25            | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | 1,15            | 0,07                                                             | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 244,1  | 388,8   | 422,5                 | 512,4    | 577,0     | 624,8    | 1511, 1  |
| 40   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 0,93                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 221,9  | 157,0   | 146,1                 | 115,4    | 93,0      | 80,7     | 20,2     |
| 41   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 0,58                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 0               | 100,7  | 63,4    | 54,3                  | 35,9     | 20,4      | 11,6     | 35,0     |
| 42   | 0,24            | 0,33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 0,70                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 190,0  | 113,7   | 102,0                 | 78,3     | 63,7      | 52,3     | 1,3      |
| 43   | 0,31            | 0,39            | 0,42            | 0,51            | 0,58            | 0,61            | 1,33            | 0,79                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 0               | 152,4  | 101,7   | 90,5                  | 55,1     | 36,4      | 29,1     | 68,0     |
| 44   | 0,31            | 0,39            | 0,42            | 0,51            | 0,57            | 0,60            | 1,18            | 1,40                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 356,2  | 255,2   | 234,0                 | 175,4    | 145,8     | 133,8    | 18,8     |
| 45   | 0,22            | 0,32            | 0,33            | 0,38            | 0,41            | 0,43            | 0,65            | 1,11                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 406,4  | 247,0   | 237,6                 | 195,5    | 169,1     | 158,5    | 72,4     |
| 46   | 0,28            | 0,37            | 0,39            | 0,46            | 0,54            | 0,56            | 0,93            | 1,50                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 429,0  | 305,7   | 286,8                 | 225,5    | 179,8     | 169,3    | 61,3     |
| 47   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,48            | 0,74            | 0,89                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 268,0  | 160,9   | 151,2                 | 120,6    | 101,6     | 84,0     | 19,4     |
| 48   | 0,24            | 0,32            | 0,34            | 0,39            | 0,43            | 0,45            | 0,67            | 1,64                                                             | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 594,7  | 412,3   | 380,8                 | 323,6    | 284,0     | 266,0    | 144,7    |
|      |                 |                 |                 |                 |                 |                 |                 |                                                                  |                 | (%) (           | ie eve          | ntos er         | nqueC                | )VJ > [         | ) <sub>1</sub>  | DIFEF  | RENÇA P | ERCENTI               | JAL RELA | ATIVA MÉ  | DIA      |          |
|      |                 |                 |                 |                 |                 |                 |                 |                                                                  | 87,5            | 87,5            | 87,5            | 87,5            | 87,5                 | 87,5            | 77,1            | 1153,2 | 1143,2  | 1179,0                | 1257,8   | 1308,8    | 1343,0   | 1818,9   |

Tabela 7.4c - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN                 | /IET ROS        | S DO LE         | ITODO           | PARA I          | O RIBEI         | RÃO DO   | ) FEIJAO        |       |                 | COMP            | ARAÇ <i>i</i>   | 40 E N 1        | rre d <sub>v.</sub>  | IS DI           |          | RELAÇ  | XÃO PERC | ENTUAL                | ENT RE OS | VALORES  | S DE D <sub>VA</sub> |          |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|-----------------|-------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|----------|--------|----------|-----------------------|-----------|----------|----------------------|----------|
|                      | Granul          | lometri         | a do m          | aterial         | do leito        | )        |                 |       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)     | EOSV   | ALORES   | PARA D <sub>I</sub> ( | OLETAD    | OS NO RI | BEIRÃO DO            | D FEIJÃO |
| (1)                  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)      | (8)             | (9)   |                 | COMP            | ARAÇÂ           | io de           | D <sub>VJ (LEV</sub> | COM             |          | (17)   | (18)     | (19)                  | (20)      | (21)     | (22)                 | (23)     |
| $\mathbb{N}^{\circ}$ | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | $D_{66}$ | D <sub>90</sub> | Dyrry | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | $D_{60}$             | D <sub>65</sub> | $D_{90}$ |        |          |                       |           |          |                      |          |
|                      | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)     | (mm)            | mm    |                 |                 |                 |                 |                      |                 |          |        |          |                       |           |          |                      |          |
| 1                    | 0,21            | 0,29            | 0,31            | 0,35            | 0,37            | 0,38     | 0,53            | 0,26  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 22,4   | 10,9     | 19,8                  | 34,6      | 44,3     | 49,4                 | 107,4    |
| 2                    | 0,24            | 0,33            | 0,34            | 0,38            | 0,40            | 0,41     | 0,59            | 0,42  | 1               | 1               | 1               | 1               | 1                    | 1               | 0        | 74,7   | 28,9     | 24,7                  | 12,4      | 5,2      | 2,1                  | 39,3     |
| 3                    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40     | 0,56            | 0,22  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 6,4    | 41,2     | 47,5                  | 63,1      | 76,5     | 78,7                 | 151,6    |
| 4                    | 0,22            | 0,31            | 0,33            | 0,38            | 0,40            | 0,43     | 0,72            | 0,26  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 19,3   | 18,3     | 25,9                  | 44,3      | 54,2     | 65,0                 | 173,7    |
| 5                    | 0,23            | 0,32            | 0,33            | 0,36            | 0,39            | 0,40     | 0,56            | 0,24  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 1,8    | 33,2     | 37,8                  | 53,0      | 63,1     | 68,6                 | 136,0    |
| 6                    | 0,28            | 0,36            | 0,38            | 0,43            | 0,48            | 0,51     | 0,75            | 0,19  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 45,1   | 88,8     | 95,0                  | 122,6     | 151,2    | 164,2                | 291,1    |
| 7                    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40     | 0,58            | 1,02  | 1               | 1               | 1               | 1               | 1                    | 1               | 1        | 327,4  | 215,9    | 206,4                 | 176,4     | 157,5    | 151,8                | 76,0     |
| 8                    | 0,31            | 0,48            | 0,48            | 0,61            | 0,69            | 0,74     | 1,57            | 0,31  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 1,6    | 52,5     | 52,5                  | 94,2      | 121,0    | 135,6                | 398,6    |
| 9                    | 0,25            | 0,35            | 0,35            | 0,39            | 0,42            | 0,46     | 0,68            | 0,29  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 18,9   | 19,4     | 19,4                  | 33,3      | 42,1     | 54,7                 | 130,7    |
| 10                   | 0,25            | 0,38            | 0,38            | 0,44            | 0,50            | 0,54     | 1,08            | 0,23  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 10,6   | 65,1     | 65,1                  | 94,0      | 120,8    | 135,7                | 374,1    |
| 11                   | 0,19            | 0,31            | 0,31            | 0,35            | 0,37            | 0,39     | 0,58            | 0,17  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 12,8   | 81,1     | 81,1                  | 107,3     | 120,9    | 132,8                | 246,8    |
| 12                   | 0,28            | 0,41            | 0,41            | 0,50            | 0,57            | 0,60     | 1,03            | 0,16  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 70,3   | 152,1    | 152,1                 | 207,6     | 246,0    | 263,7                | 525,6    |
| 13                   | 0,22            | 0,48            | 0,48            | 0,35            | 0,38            | 0,39     | 0,54            | 0,11  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 101,6  | 349,1    | 349,1                 | 231,9     | 254,4    | 267,5                | 406,3    |
| 14                   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,41     | 0,57            | 0,25  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 14,4   | 26,9     | 26,9                  | 44,5      | 51,2     | 61,6                 | 128,3    |
| Ŀ                    | 0,24            | 0,34            | 0,34            | 0,38            | 0,40            | 0,41     | 0,59            | 0,10  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 1 42,0 | 235,0    | 235,0                 | 275,0     | 302,0    | 314,0                | 491,0    |
| 16                   | 0,19            | 0,33            | 0,33            | 0,38            | 0,40            | 0,44     | 0,75            | 0,03  | 0               | 0               | 0               | 0               | 0                    | 0               | 0        | 571,5  | 1035,4   | 1035,4                | 1208,5    | 1291,5   | 1416,2               | 2 485,8  |
| 17                   | 0,25            | 0,37            | 0,37            | 0,44            | 0,50            | 0,55     | 1,20            | 0,37  | 1               | 1               | 1               | 0               | 0                    | 0               | 0        | 48,1   | 0,3      | 0,3                   | 16,5      | 34,7     | 46,3                 | 220,1    |
| 18                   | 0,22            | 0,34            | 0,34            | 0,38            | 0,42            | 0,44     | 0,64            | 2,10  | 1               | 1               | 1               | 1               | 1                    | 1               | 1        | 838,9  | 522,3    | 522,3                 | 447,7     | 403,2    | 376,9                | 226,6    |
| 19                   | 0,20            | 0,31            | 0,31            | 0,35            | 0,38            | 0,40     | 0,57            | 0,73  | 1               | 1               | 1               | 1               | 1                    | 1               | 1        | 263,7  | 139,3    | 139,3                 | 107,6     | 94,4     | 83,7                 | 29,4     |
| 20                   | 0,23            | 0,33            | 0,33            | 0,38            | 0,40            | 0,42     | 0,60            | 0,40  | 1               | 1               | 1               | 1               | 0                    | 0               | 0        | 71,8   | 19,9     | 19,9                  | 6,8       | 0,4      | 4,2                  | 49,4     |
| 21                   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,40     | 0,57            | 0,26  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 20,7   | 21,8     | 21,8                  | 38,3      | 45,7     | 54,9                 | 118,9    |
| 22                   | 0,23            | 0,32            | 0,32            | 0,37            | 0,39            | 0,41     | 0,57            | 0,30  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 27,3   | 9,2      | 9,2                   | 23,0      | 30,4     | 36,8                 | 91,4     |
| 23                   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,46     | 0,75            | 0,90  | 1               | 1               | 1               | 1               | 1                    | 1               | 1        | 274,1  | 165,3    | 156,3                 | 124,6     | 104,5    | 93,4                 | 19,9     |
| 24                   | 0,25            | 0,36            | 0,36            | 0,42            | 0,46            | 0,50     | 0,74            | 0,29  | 1               | 0               | 0               | 0               | 0                    | 0               | 0        | 18,7   | 23,0     | 23,0                  | 42,4      | 57,3     | 70,9                 | 150,7    |
| 25                   | 0,23            | 0,35            | 0,35            | 0,41            | 0,47            | 0,50     | 0,79            | 0,46  | 1               | 1               | 1               | 1               | 0                    | 0               | 0        | 97,5   | 30,4     | 30,4                  | 12,2      | 2,8      | 9,5                  | 72,5     |
| 26                   | 0,19            | 0,30            | 0,30            | 0,34            | 0,37            | 0,39     | 0,58            | 0,64  | 1               | 1               | 1               | 1               | 1                    | 1               | 1        | 231,7  | 115,9    | 115,9                 | 87,0      | 73,4     | 65,0                 | 11,5     |
| 27                   | 0,19            | 0,28            | 0,30            | 0,35            | 0,38            | 0,39     | 0,56            | 0,30  | 1               | 1               | 0               | 0               | 0                    | 0               | 0        | 56,6   | 5,7      | 1,3                   | 16,3      | 26,0     | 31,4                 | 85,9     |
| 28                   | 0,24            | 0,32            | 0,34            | 0,38            | 0,42            | 0,44     | 0,68            | 1,15  | 1               | 1               | 1               | 1               | 1                    | 1               | 1        | 388,1  | 258,8    | 238,8                 | 200,0     | 176,2    | 161,2                | 68,9     |
| 29                   | 0,32            | 0,41            | 0,43            | 0,50            | <b>0,5</b> 3    | 0,56     | 0,83            | 2,53  | 1               | 1               | 1               | 1               | 1                    | 1               | 1        | 690,3  | 518,3    | 484,0                 | 409,9     | 373,6    | 352,4                | 205,8    |
| 30                   | 0,26            | 0,30            | 0,36            | 0,40            | 0,44            | 0,46     | 0,59            | 0,47  | 1               | 1               | 1               | 1               | 1                    | 1               | 0        | 85,2   | 55,4     | 31,9                  | 17,5      | 8,6      | 1,8                  | 24,5     |
| 31                   | 0,22            | 0,31            | 0,33            | 0,37            | 0,40            | 0,42     | 0,62            | 0,33  | 1               | 1               | 1               | 0               | 0                    | 0               | 0        | 48,1   | 4,3      | 0,1                   | 13,6      | 22,5     | 27,4                 | 87,8     |

## Tabela 7.4d - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | /ET RO:         | S DO LE         | ITODO           | ) PARA          | O RIBEI         | RÃO DO          | ) FEIJAO        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMP            | ARAÇA           | O ENT           | 'RE D <sub>v</sub>   | וצ D <sup>I</sup> |                 | RELAÇ  | ÃO PERC  | ENTUAL E              | INTRE OS | VALORES   | S DE D <sub>VA</sub> |        |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------|-------------------|-----------------|--------|----------|-----------------------|----------|-----------|----------------------|--------|
|      | Granu           | lometri         | a do m          | aterial         | do leita        | )               |                 |       | (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (11)            | (12)            | (13)            | (14)                 | (15)              | (16)            | EOSV   | ALORES I | PARA D <sub>I</sub> C | OLETAD   | DS NO RIE | BEIRÃO DO            | FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMP            | <b>ARAÇÃ</b>    | O DE            | D <sub>VJ (LEV</sub> | COM               |                 | (17)   | (18)     | (19)                  | (20)     | (21)      | (22)                 | (23)   |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | Dyrry | D <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub>   | D <sub>90</sub> |        |          |                       |          |           |                      |        |
|      | (mm)            | mm    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |                 |                      |                   |                 |        |          |                       |          |           |                      |        |
| 32   | 0,24            | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 0,31  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0               | O               | 0               | 0                    | 0                 | 0               | 31,8   | 5,1      | 12,9                  | 28,3     | 43,1      | 52,4                 | 127,6  |
| 33   | 0,23            | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 0,61  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 1                    | 1                 | 0               | 165,9  | 95,6     | 85,6                  | 63,8     | 53,2      | 47,0                 | 5,8    |
| 34   | 0,21            | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 0,50  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 1                    | 1                 | 0               | 135,3  | 52,6     | 44,2                  | 25,7     | 14,7      | 8,2                  | 16,7   |
| 35   | 0,16            | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 0,51  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 1                    | 1                 | 1               | 216,2  | 143,2    | 127,9                 | 88,8     | 68,1      | 58,1                 | 9,5    |
| 36   | 0,31            | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 0,56  | 6         1         1         1         1         0         79,         9         1         1         1         1         1         0         185,         1         1         1         1         0         185,         1         1         1         1         1         0         185,         1         1         1         1         1         0         185,         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <t< td=""><td>33,1</td><td>13,4</td><td>5,7</td><td>1,3</td><td>119,7</td></t<></th1<></th1<></th1<> |                 |                 |                 |                      |                   |                 |        |          | 33,1                  | 13,4     | 5,7       | 1,3                  | 119,7  |
| 37   | 0,28            | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 0,79  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 1                    | 1                 | 0               | 185,9  | 118,8    | 107,3                 | 78,4     | 57,7      | 49,1                 | 2,3    |
| 38   | 0,10            | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 0,87  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 1                    | 1                 | 1               | 798,3  | 458,5    | 415,6                 | 333,5    | 255,6     | 230,0                | 48,4   |
| 39   | 0,25            | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | 1,15            | 0,72  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 1                    | 1                 | 0               | 192,2  | 105,7    | 92,4                  | 64,2     | 48,5      | 38,7                 | 60,2   |
| 40   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 0,44  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 0                    | 0                 | 0               | 50,6   | 20,2     | 15,1                  | 0,8      | 10,7      | 18,3                 | 77,8   |
| 41   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 0,39  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 0               | 0                    | 0                 | 0               | 35,4   | 10,2     | 4,1                   | 9,1      | 23,2      | 32,9                 | 100,1  |
| 42   | 0,24            | 0,33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 0,50  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 1               | 1                    | 1                 | 0               | 108,4  | 53,6     | 45,2                  | 28,1     | 17,6      | 9,4                  | 37,4   |
| 43   | 0,31            | 0,39            | 0,42            | 0,51            | 0,58            | 0,61            | 1,33            | 0,41  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 0               | 0               | 0                    | 0                 | 0               | 32,1   | 5,6      | 0,3                   | 23,2     | 40,0      | 48,0                 | 221,0  |
| 44   | 0,31            | 0,39            | 0,42            | 0,51            | 0,57            | 0,60            | 1,18            | 0,31  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0               | 0               | 0               | 0                    | 0                 | 0               | 1,7    | 26,3     | 34,3                  | 62,9     | 82,5      | 91,8                 | 277,5  |
| 45   | 0,22            | 0,32            | 0,33            | 0,38            | 0,41            | 0,43            | 0,65            | 0,35  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | 1               | 0               | 0                    | 0                 | 0               | 57,6   | 8,0      | 5,1                   | 8,7      | 19,4      | 24,3                 | 86,3   |
| 46   | 0,28            | 0,37            | 0,39            | 0,46            | 0,54            | 0,56            | 0,93            | 0,27  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0               | 0               | 0               | 0                    | 0                 | 0               | 6,5    | 38,9     | 45,6                  | 73,1     | 101,3     | 109,2                | 249,2  |
| 47   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,48            | 0,74            | 0,24  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0               | 0               | 0               | 0                    | 0                 | 0               | 1,5    | 43,3     | 48,7                  | 69,4     | 85,4      | 103,1                | 213,1  |
| 418  | 0,24            | 0,32            | 0,34            | 0,39            | 0,43            | 0,45            | 0,67            | 0,25  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0               | 0               | 0               | 0                    | 0                 | 0               | 6,8    | 26,9     | 35,3                  | 53,5     | 69,4      | 77,7                 | 165,8  |
|      |                 |                 |                 |                 |                 |                 |                 |       | (%) de eventos em que DVJ > D <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                 |                      |                   |                 |        | RENÇA PI | ERCENTI               | JAL RELA | ATIVA MÉ  | DIA                  |        |
|      |                 |                 |                 |                 |                 |                 |                 |       | 79,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54,2            | 50,0            | 41,7            | 35,4                 | 33,3              | 18,8            | 1 39,7 | 116,7    | 112,9                 | 112,3    | 115,7     | 120,4                | 196,7  |

Tabela 7.4d - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | METROS          | S DO LE         | ΙΤΟ DO          | PARA            | O RIBEI         | RÃO DO          | D FEIJAO |                     | COMPARAÇÃO ENTRE D <sub>VJ &amp;</sub> D <sub>I</sub> |                 |                 |                 |                      |                 |      | RELAÇ  | :ÃO PERC | ENTUAL                | ENTRE OS | VALORE   | S DE Dwa |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|---------------------|-------------------------------------------------------|-----------------|-----------------|-----------------|----------------------|-----------------|------|--------|----------|-----------------------|----------|----------|----------|----------|
|      | Granul          | ometri          | a do m          | aterial         | do leit         | D               |          |                     | (10)                                                  | (11)            | (12)            | (13)            | (14)                 | (15)            | (16) | EOSV   | ALORES   | PARA D <sub>I</sub> ( | OLETAD   | DS NO RI | BEIRÃO D | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)      | (9)                 |                                                       | COMP            | ARAÇA           | IO DE           | D <sub>VJ [EIE</sub> | , COM:          |      | (17)   | (18)     | (19)                  | (20)     | (21)     | (22)     | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | Don      | D <sub>ւյ բայ</sub> | D10                                                   | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | De                   | D <sub>65</sub> | Don  |        |          |                       |          |          |          |          |
|      | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)            | (mm)     | mm                  | ~                                                     |                 |                 |                 |                      |                 | ~    |        |          |                       |          |          |          |          |
| 1    | 0.21            | 0.29            | 0.31            | 0.35            | 0.37            | 0.38            | 0.53     | 9.59                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4464.6 | 3263.4   | 3012.2                | 2670.4   | 2483.7   | 2396.3   | 1698.4   |
| 2    | 0.24            | 0.33            | 0.34            | 0.38            | 0.40            | 0.41            | 0.59     | 9,37                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3770,6 | 2755,7   | 2663,1                | 2391,2   | 2230,1   | 2162,5   | 1490.3   |
| 3    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,56     | 9,64                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3949,1 | 2949,6   | 2820,3                | 2540,2   | 2339,7   | 2309,2   | 1611,7   |
| 4    | 0,22            | 0,31            | 0,33            | 0,38            | 0,40            | 0,43            | 0,72     | 9,55                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4259,8 | 2990,0   | 2802,1                | 2432,6   | 2269,2   | 2115,3   | 1235,4   |
| 5    | 0,23            | 0,32            | 0,33            | 0,36            | 0,39            | 0,40            | 0,56     | 9,61                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4024,9 | 2941,5   | 2839,1                | 2547,7   | 2383,5   | 2302,7   | 1616,2   |
| б    | 0,28            | 0,36            | 0,38            | 0,43            | 0,48            | 0,51            | 0,75     | 9,72                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3384,5 | 2578,2   | 2492,5                | 2171,4   | 1912,8   | 1813,7   | 1192,8   |
| 7    | 0,24            | 0,32            | 0,33            | 0,37            | 0,40            | 0,40            | 0,58     | 9,18                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3755,6 | 2749,8   | 2664,0                | 2393,6   | 2223,1   | 2171,4   | 1487,6   |
| 8    | 0,31            | 0,48            | 0,48            | 0,61            | 0,69            | 0,74            | 1,57     | 9,54                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 2986,2 | 1890,9   | 1890,9                | 1463,4   | 1274,1   | 1188,7   | 509,0    |
| 9    | 0,25            | 0,35            | 0,35            | 0,39            | 0,42            | 0,46            | 0,68     | 9,62                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3777,6 | 2632,0   | 2632,0                | 2347,0   | 2195,1   | 2008,9   | 1314,2   |
| 10   | 0,25            | 0,38            | 0,38            | 0,44            | 0,50            | 0,54            | 1,08     | 9,67                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3735,6 | 2470,7   | 2470,7                | 2086,8   | 1821,6   | 1699,9   | 795,0    |
| 11   | 0,19            | 0,31            | 0,31            | 0,35            | 0,37            | 0,39            | 0,58     | 9,85                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 5083,1 | 3128,8   | 3128,8                | 2721,8   | 2547,3   | 2412,2   | 1586,3   |
| 12   | 0,28            | 0,41            | 0,41            | 0,50            | 0,57            | 0,60            | 1,03     | 9,72                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3383,2 | 2253,1   | 2253,1                | 1828,2   | 1614,0   | 1530,6   | 848,1    |
| 13   | 0,22            | 0,48            | 0,48            | 0,35            | 0,38            | 0,39            | 0,54     | 9,93                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4517,6 | 1972,6   | 1972,6                | 2704,5   | 2526,4   | 2432,6   | 1738,5   |
| 14   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,41            | 0,57     | 9,59                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4280,5 | 2916,8   | 2916,8                | 2550,1   | 2431,2   | 2268,7   | 1577,1   |
| B    | 0,24            | 0,34            | 0,34            | 0,38            | 0,40            | 0,41            | 0,59     | 10,01               | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4035,3 | 2887,3   | 2887,3                | 2568,6   | 2389,4   | 2317,3   | 1593,3   |
| 16   | 0,19            | 0,33            | 0,33            | 0,38            | 0,40            | 0,44            | 0,75     | 10,01               | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 5058,5 | 2951,0   | 2951,0                | 2547,5   | 2389,4   | 2184,8   | 1239,7   |
| 17   | 0,25            | 0,37            | 0,37            | 0,44            | 0,50            | 0,55            | 1,20     | 9,38                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3623,2 | 2422,1   | 2422,1                | 2056,9   | 1765,3   | 1618,4   | 685,1    |
| 18   | 0,22            | 0,34            | 0,34            | 0,38            | 0,42            | 0,44            | 0,64     | 8,33                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3616,5 | 2363,0   | 2363,0                | 2068,0   | 1891,6   | 1787,8   | 1192,7   |
| 19   | 0,20            | 0,31            | 0,31            | 0,35            | 0,38            | 0,40            | 0,57     | 9,09                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4398,0 | 2859,6   | 2859,6                | 2466,7   | 2303,7   | 2171,5   | 1499,7   |
| 20   | 0,23            | 0,33            | 0,33            | 0,38            | 0,40            | 0,42            | 0,60     | 9,55                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3999,2 | 2759,6   | 2759,6                | 2447,0   | 2275,9   | 2190,5   | 1497,2   |
| 21   | 0,22            | 0,32            | 0,32            | 0,36            | 0,38            | 0,40            | 0,57     | 9,74                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4429,8 | 2982,0   | 2982,0                | 2612,8   | 2476,5   | 2322,6   | 1614,6   |
| 22   | 0,23            | 0,32            | 0,32            | 0,37            | 0,39            | 0,41            | 0,57     | 9,67                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4049,9 | 2884,3   | 2884,3                | 2549,1   | 2398,5   | 2281,6   | 1602,3   |
| 23   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,46            | 0,75     | 9,07                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3689,5 | 2586,8   | 2495,6                | 2174,7   | 1971,4   | 1859,0   | 1114,4   |
| 24   | 0,25            | 0,36            | 0,36            | 0,42            | 0,46            | 0,50            | 0,74     | 8,89                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3484,9 | 2356,0   | 2356,0                | 2021,9   | 1820,2   | 1667,5   | 1104,7   |
| 25   | 0,23            | 0,35            | 0,35            | 0,41            | 0,47            | 0,50            | 0,79     | 9,61                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4023,5 | 2621,7   | 2621,7                | 2243,3   | 1931,2   | 1806,3   | 1110,0   |
| 26   | 0,19            | 0,30            | 0,30            | 0,34            | 0,37            | 0,39            | 0,58     | 9,43                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4761,5 | 3064,9   | 3064,9                | 2641,6   | 2442,1   | 2318,3   | 1534,5   |
| 27   | 0,19            | 0,28            | 0,30            | 0,35            | 0,38            | 0,39            | 0,56     | 9,82                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 5041,9 | 3370,4   | 3141,3                | 2722,2   | 2505,1   | 2399,0   | 1666,4   |
| 28   | 0,24            | 0,32            | 0,34            | 0,38            | 0,42            | 0,44            | 0,68     | 8,89                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3667,5 | 2669,9   | 2515,1                | 2215,4   | 2032,2   | 1916,2   | 1203,7   |
| 29   | 0,32            | 0,41            | 0,43            | 0,50            | 0,53            | 0,56            | 0,83     | 8,26                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 2480,7 | 1919,1   | 1807,2                | 1565,0   | 1446,5   | 1377,3   | 898,6    |
| 30   | 0,26            | 0,30            | 0,36            | 0,40            | 0,44            | 0,46            | 0,59     | 9,51                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 3628,8 | 3027,8   | 2556,0                | 2265,3   | 2085,9   | 1949,3   | 1517,1   |
| 31   | 0,22            | 0,31            | 0,33            | 0,37            | 0,40            | 0,42            | 0,62     | 9,60                | 1                                                     | 1               | 1               | 1               | 1                    | 1               | 1    | 4243,3 | 2956,9   | 2835,4                | 2480,3   | 2293,7   | 2201,9   | 1460,8   |

#### Tabela 7.4e - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | IETRO:          | S DO LE         | ΕΙΤΟ DC         | ) PARA          | O RIBE          | RÃO DO          | D FEIJAO        |                                                            |                                                                                      | COMP            | 'araç <i>ı</i>  | AO EN           | TRE D $_{ m v}$      | մերը՝             |                 | RELAÇ  | ÃO PERC | ENTUAL E              | ENTRE OS | VALORES   | ) DEDwa  |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------|-------------------|-----------------|--------|---------|-----------------------|----------|-----------|----------|----------|
|      | Granu           | lometri         | a do m          | aterial         | do leit         | 0               |                 |                                                            | (10)                                                                                 | (11)            | (12)            | (13)            | (14)                 | (15)              | (16)            | ΕOSΝ   | ALORES  | PARA D <sub>I</sub> ( | OLETADO  | DS NO RIE | BEIRÃO D | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                                                        |                                                                                      | COMP            | ARAÇA           | 10 DE           | D <sub>VJ [EIE</sub> | <sub>a</sub> COM: |                 | (17)   | (18)    | (19)                  | (20)     | (21)      | (22)     | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj (EB)</sub>                                       | D <sub>10</sub>                                                                      | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub>   | D <sub>90</sub> |        |         |                       |          |           |          |          |
|      | (mm)            | mm                                                         |                                                                                      |                 |                 |                 |                      |                   |                 |        |         |                       |          |           |          |          |
| 32   | 0,24            | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 9,58                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 3961,2 | 2831,1  | 2630,6                | 2302,1   | 2053,8    | 1922,1   | 1253,7   |
| 33   | 0,23            | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 9,16                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 3863,8 | 2816,1  | 2666,3                | 2341,7   | 2183,4    | 2090,5   | 1308,7   |
| 34   | 0,21            | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 9,37                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 4320,9 | 2766,1  | 2608,8                | 2260,8   | 2054,6    | 1933,0   | 1510,4   |
| 35   | 0,16            | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 8,77 1 1 1 1 1 1 1 5382,1 4<br>9,39 1 1 1 1 1 1 1 2890,1 2 |                                                                                      |                 |                 |                 |                      |                   | 4117,0          | 3851,1 | 3172,9  | 2814,1                | 2641,1   | 1798,6    |          |          |
| 36   | 0,31            | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 9,39                                                       | 8,77 <u>1 1 1 1 1 1 5382,1 4</u><br>9,39 <u>1 1 1 1 1 1 1 2890,1 2</u>               |                 |                 |                 |                      |                   |                 |        | 2289,0  | 2114,4                | 1785,3   | 1658,2    | 1541,4   | 657,2    |
| 37   | 0,28            | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 9,16                                                       | 8,77 1 1 1 1 1 1 1 5,882,1<br>9,39 1 1 1 1 1 1 1 2890,1<br>9,16 1 1 1 1 1 1 1 3207,2 |                 |                 |                 |                      |                   |                 |        | 2430,7  | 2298,2                | 1963,3   | 1724,9    | 1625,2   | 1031,0   |
| 38   | 0,10            | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 8,75                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 8921,8 | 5509,7  | 5078,2                | 4253,8   | 3471,9    | 3214,8   | 1390,8   |
| 39   | 0,25            | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | L15             | 8,74                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 3467,7 | 2411,7  | 2249,7                | 1904,8   | 1713,5    | 1594,0   | 662,1    |
| 40   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 9,18                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 3075,2 | 2434,9  | 2327,6                | 2024,2   | 1803,8    | 1681,8   | 1085,6   |
| 41   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 9,23                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 3095,0 | 2501,0  | 2355,7                | 2062,4   | 1815,7    | 1675,7   | 1079,3   |
| 42   | 0,24            | 0,33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 9,24                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 3733,4 | 2725,2  | 2570,1                | 2256,8   | 2063,6    | 1912,7   | 1238,9   |
| 43   | 0,31            | 0,39            | 0,42            | 0,51            | 0,58            | 0,61            | 1,33            | 9,28                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 2856,5 | 2262,2  | 2131,6                | 1716,7   | 1497,8    | 1412,0   | 597,0    |
| 44   | 0,31            | 0,39            | 0,42            | 0,51            | 0,57            | 0,60            | <b>1,18</b>     | 9,41                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 2975,3 | 2294,5  | 2151,3                | 1756,1   | 1556,8    | 1476,3   | 700,9    |
| 45   | 0,22            | 0,32            | 0,33            | 0,38            | 0,41            | 0,43            | 0,65            | 9,35                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 4150,3 | 2813,0  | 2733,5                | 2380,3   | 2158,6    | 2069,5   | 1347,5   |
| 46   | 0,28            | 0,37            | 0,39            | 0,46            | 0,54            | 0,56            | 0,93            | 9,48                                                       | ,55 <u> </u>                                                                         |                 |                 |                 |                      |                   |                 | 3248,1 | 2467,8  | 2348,4                | 1959,8   | 1671,1    | 1604,2   | 921,0    |
| 47   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,48            | 0,74            | 9,51                                                       | 51 1 1 1 1 1 3846,                                                                   |                 |                 |                 |                      |                   |                 |        | 2697,2  | 2594,2                | 2265,8   | 2061,5    | 1873,1   | 1 180,0  |
| 418  | 0,24            | 0,32            | 0,34            | 0,39            | 0,43            | 0,45            | 0,67            | 9,51                                                       | 1                                                                                    | 1               | 1               | 1               | 1                    | 1                 | 1               | 3929,0 | 2871,4  | 2688,4                | 2357,0   | 2126,8    | 2022,4   | 1319,2   |
|      |                 |                 |                 |                 |                 |                 |                 |                                                            |                                                                                      | (%)             | de eve          | ntos e          | m que l              | DVJ>C             | ),              | DIFE   | RENÇAP  | ERCENT                | UAL RELA | ATIVA MÈ  | DIA      |          |
|      |                 |                 |                 |                 |                 |                 |                 |                                                            | 100,0                                                                                | 100,0           | 100,0           | 100,0           | 100,0                | 100,0             | 100,0           | 3969,4 | 2758,6  | 2655,4                | 2317,9   | 2106,3    | 1989,0   | 1256,6   |

#### Tabela 7.4e - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIAMET | RUa  | DO LE           | ITO DO | PARA            | D RIBEI         | RAO DO          | ) FEIJAO        |                       |                 | COMP            | AR AÇ A         | O ENT           | rre d <sub>vj</sub>  | ו&D∣            |                 | RELAÇ   | ÃO PERC | ENTUALI | ENTREOS | VALORE   | SDEDwa    |         |
|--------|------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|---------|---------|---------|---------|----------|-----------|---------|
| Gr     | anul | ometri          | a do m | aterial         | do leito        | )               |                 |                       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)            | EOSV    | ALORES  | PARA D  | COLETAD | OS NO RI | BEIRÃO DI | DFEIJÃO |
| (1) (  | 2)   | (3)             | (4)    | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | сомр            | ARAÇA           | O DE            | D <sub>VJ (SKA</sub> | COM:            |                 | (17)    | (18)    | (19)    | (20)    | (21)     | (22)      | (23)    |
| N° D   | ի    | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj [SEA]</sub> | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub> | D <sub>90</sub> |         |         |         |         |          |           |         |
| (n     | m)   | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)            | mm                    |                 |                 |                 |                 |                      |                 |                 |         |         |         |         |          |           |         |
| 1 0,   | ,21  | 0,29            | 0,31   | 0,35            | 0,37            | 0,38            | 0,53            | 13,71                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6429,1  | 4710,9  | 4351,6  | 3862,7  | 3595,7   | 3470,6    | 2472,4  |
| 2 0,   | ,24  | 0,33            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59            | 15,72                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6397,6  | 46 94,0 | 4538,4  | 4082,0  | 3811,5   | 3698,1    | 2569,6  |
| 30,    | ,24  | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,56            | 12,90                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5319,9  | 3982,1  | 3808,9  | 3434,1  | 3165,7   | 3124,8    | 2191,2  |
| 40,    | ,22  | 0,31            | 0,33   | 0,38            | 0,40            | 0,43            | 0,72            | 13,03                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5850,9  | 4117,6  | 3861,2  | 3356,9  | 31 33,8  | 2923,8    | 1722,7  |
| 50,    | ,23  | 0,32            | 0,33   | 0,36            | 0,39            | 0,40            | 0,56            | 11,58                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4871,2  | 3565,5  | 3442,2  | 3090,9  | 2893,0   | 2795,7    | 1968,4  |
| 60,    | ,28  | 0,36            | 0,38   | 0,43            | 0,48            | 0,51            | 0,75            | 10,72                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3743,9  | 2854,4  | 2759,9  | 2405,7  | 2120,4   | 2011,1    | 1326,1  |
| 7 0,   | ,24  | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,58            | 14,33                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5921,9  | 4350,9  | 4216,9  | 3794,6  | 3528,4   | 3447,5    | 2379,6  |
| 8 0,   | ,31  | 0,48            | 0,48   | 0,61            | 0,69            | 0,74            | 1,57            | 12,95                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4090,3  | 2603,1  | 2603,1  | 2022,6  | 1765,7   | 1649,7    | 726,8   |
| 90,    | ,25  | 0,35            | 0,35   | 0,39            | 0,42            | 0,46            | 0,68            | 11,64                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4594,5  | 3207,5  | 3207,5  | 2862,4  | 2678,6   | 2453,1    | 1612,1  |
| 10 0,  | ,25  | 0,38            | 0,38   | 0,44            | 0,50            | 0,54            | 1,08            | 10,49                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4062,6  | 2689,8  | 2689,8  | 2273,2  | 1985,4   | 1853,4    | 871,3   |
| 11 0,  | ,19  | 0,31            | 0,31   | 0,35            | 0,37            | 0,39            | 0,58            | 9,18                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4732,5  | 2910,4  | 2910,4  | 2530,9  | 2368,2   | 2242,3    | 1472,2  |
| 12 0,  | ,28  | 0,41            | 0,41   | 0,50            | 0,57            | 0,60            | 1,03            | 9,77                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3402,4  | 2266,0  | 2266,0  | 1838,8  | 1623,4   | 1539,6    | 853,3   |
| 13 0,  | ,22  | 0,48            | 0,48   | 0,35            | 0,38            | 0,39            | 0,54            | 8,08                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3657,1  | 1586,4  | 1586,4  | 2181,9  | 2037,0   | 1960,7    | 1395,9  |
| 14 0,  | ,22  | 0,32            | 0,32   | 0,36            | 0,38            | 0,41            | 0,57            | 13,06                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5863,4  | 4006,9  | 4006,9  | 3507,7  | 3345,9   | 3124,7    | 2183,2  |
| L5 0,  | ,24  | 0,34            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59            | 8,26                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3311,4  | 2364,3  | 2364,3  | 2101,5  | 1953,6   | 1894,1    | 1296,9  |
| 16 0,  | ,19  | 0,33            | 0,33   | 0,38            | 0,40            | 0,44            | 0,75            | 6,50                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3250,8  | 1881,9  | 1881,9  | 1619,7  | 1517,1   | 1384,1    | 770,2   |
| 17 0,  | ,25  | 0,37            | 0,37   | 0,44            | 0,50            | 0,55            | 1,20            | 16,40                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6408,6  | 4309,0  | 4309,0  | 3670,5  | 3160,7   | 2903,9    | 1272,5  |
| 18 0,  | ,22  | 0,34            | 0,34   | 0,38            | 0,42            | 0,44            | 0,64            | 37,35                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 16574,2 | 10950,3 | 10950,3 | 9626,6  | 8835,4   | 8369,4    | 5699,7  |
| 19 0,  | ,20  | 0,31            | 0,31   | 0,35            | 0,38            | 0,40            | 0,57            | 23,84                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 11699,9 | 7664,1  | 7664,1  | 6633,3  | 6205,8   | 5859,0    | 40 96,5 |
| 20 0,  | ,23  | 0,33            | 0,33   | 0,38            | 0,40            | 0,42            | 0,60            | 12,89                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5433,3  | 3760,0  | 3760,0  | 3338,0  | 3107,1   | 2991,7    | 2055,9  |
| 21 0,  | ,22  | 0,32            | 0,32   | 0,36            | 0,38            | 0,40            | 0,57            | 9,48                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4308,7  | 2899,6  | 2899,6  | 2540,3  | 2407,6   | 2257,9    | 1568,8  |
| 22 0,  | ,23  | 0,32            | 0,32   | 0,37            | 0,39            | 0,41            | 0,57            | 10,33                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4332,8  | 3087,8  | 3087,8  | 2729,7  | 2568,9   | 2444,0    | 1718,4  |
| 23 0   | 0,24 | 0,34            | 0,35   | 0,40            | 0,44            | 0,46            | 0,75            | 22,27                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 9200,7  | 6494,4  | 6270,5  | 5482,9  | 4984,0   | 4708,0    | 2880,6  |
| 24 0,  | ,25  | 0,36            | 0,36   | 0,42            | 0,46            | 0,50            | 0,74            | 8,45                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3308,0  | 2234,8  | 2234,8  | 1917,1  | 1725,5   | 1580,3    | 1045,2  |
| 25 0.  | .23  | 0.35            | 0.35   | 0.41            | 0.47            | 0.50            | 0.79            | 10.53                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4418,9  | 2882,7  | 2882,7  | 2468,1  | 2126,0   | 1989,1    | 1226,1  |
| 26 0.  | .19  | 0.30            | 0,30   | 0.34            | 0.37            | 0,39            | 0.58            | 2.82                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 1353,2  | 846,0   | 846,0   | 719,5   | 659,9    | 622,9     | 388,6   |
| 27 0.  | ,19  | 0,28            | 0,30   | 0,35            | 0,38            | 0,39            | 0,56            | 6,91                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 3518,6  | 2342,2  | 2181,0  | 1886,1  | 1733,3   | 1658,7    | 1143,1  |
| 28 0.  | ,24  | 0,32            | 0,34   | 0,38            | 0,42            | 0,44            | 0,68            | 28,41                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 11938,7 | 8750,9  | 8256,3  | 7298,8  | 6713,3   | 6342,5    | 4065,9  |
| 29 0.  | 32   | 0,41            | 0,43   | 0,50            | 0,53            | 0,56            | 0,83            | 58,60                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 18212,6 | 14227,7 | 13433,6 | 11714,6 | 10873,8  | 10383,1   | 6985,9  |
| 30 0.  | ,26  | 0,30            | 0,36   | 0,40            | 0,44            | 0,46            | 0,59            | 13,47                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5182,9  | 4331,4  | 3663,0  | 3251,1  | 2996,9   | 2803,3    | 2191,1  |
| 31 0,  | ,22  | 0,31            | 0,33   | 0,37            | 0,40            | 0,42            | 0,62            | 11,17                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4953,1  | 3456,5  | 3315,1  | 2902,0  | 2684,9   | 2578,0    | 1715,8  |

Tabela 7.4f - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN                 | 1ET ROS         | S DO LE         | ITO DO          | ) PARA          | O RIBEI         | IRÃO DO         | ) FEIJAO        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COMP            | ar aç <i>ı</i>  | AO EN'          | TRE D <sub>v</sub>   | 1 <sup>8</sup> D <sup>1</sup> |                 | RELAÇ   | :ÃO PERC | ENTUAL F              | ENTREOS   | VALORE   | SDEDwa    |         |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------|-------------------------------|-----------------|---------|----------|-----------------------|-----------|----------|-----------|---------|
|                      | Granu           | lometri         | a do m          | aterial         | do leita        | D               |                 |                       | (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (11)            | (12)            | (13)            | (14)                 | (15)                          | (16)            | EOSN    | ALORES   | PARA D <sub>I</sub> ( | COLETAD   | DS NO RI | BEIRÃO DI | DFEIJÃO |
| (1)                  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COMP            | ARAÇA           | O DE            | D <sub>VJ (SK4</sub> | COM:                          |                 | (17)    | (18)     | (19)                  | (20)      | (21)     | (22)      | (23)    |
| $\mathbb{N}^{\circ}$ | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>Vj [SEA]</sub> | D <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub>               | D <sub>90</sub> |         |          |                       |           |          |           |         |
|                      | (mm)            | (mm)            | (mm)            | ίmmì            | (mm)            | (mm)            | (mm)            | mm                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                 |                      |                               |                 |         |          |                       |           |          |           |         |
| 32                   | 0,24            | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 12,21                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 5075,0  | 3634,9   | 3379,5                | 2960,9    | 26 44,5  | 2476,6    | 1625,0  |
| 33                   | 0,23            | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 20,56                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 8801,9  | 6448,9   | 6112,5                | 5383,6    | 5028,0   | 4819,5    | 3063,6  |
| 34                   | 0,21            | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 16,33                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 7604,0  | 4894,6   | 4620,3                | 4014,0    | 3654,6   | 3442,8    | 2706,3  |
| 35                   | 0,16            | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 32,82                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 20409,9 | 15676,8  | 14681,9               | 12144,7   | 10802,3  | 10154,9   | 7003,0  |
| 36                   | 0,31            | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 12,24                 | 32,02         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>2787,3</td> <td>2358,3</td> <td>2192,6</td> <td>2040,2</td> <td>887,3</td> |                 |                 |                 |                      |                               |                 |         |          | 2787,3                | 2358,3    | 2192,6   | 2040,2    | 887,3   |
| 37                   | 0,28            | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 18,65                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 6632,8  | 5051,9   | 4782,1                | 4100,4    | 3615,1   | 3412,2    | 2202,4  |
| 38                   | 0,10            | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 45,38                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 46685,6 | 28991,0  | 26753,3               | 22478,1   | 18423,3  | 17090,2   | 7631,2  |
| 39                   | 0,25            | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | 1,15            | 35,62                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 14440,2 | 101 36,6 | 9476,2                | 8070,5    | 7290,8   | 6803,8    | 3005,8  |
| 40                   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 17,73                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 6034,2  | 4797,2   | 4589,9                | 4003,7    | 3578,0   | 3342,3    | 2190,4  |
| 41                   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 21,43                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 7316,2  | 5937,4   | 5600,2                | 4919,4    | 4346,7   | 4021,7    | 2637,3  |
| 42                   | 0,24            | 0,33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 20,00                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 8200,8  | 6017,7   | 5681,8                | 5003,3    | 4585,0   | 4258,4    | 2799,3  |
| 43                   | 0,31            | 0,39            | 0,42            | 0,51            | 0,58            | 0,61            | 1,33            | 19,02                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 5956,2  | 47 38,8  | 4471,3                | 3621,4    | 3173,1   | 2997,2    | 1327,7  |
| 44                   | 0,31            | 0,39            | 0,42            | 0,51            | 0,57            | 0,60            | 1,18            | 14,28                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 4566,2  | 3533,2   | 3315,9                | 2716,3    | 2413,8   | 2291,7    | 1115,2  |
| 45                   | 0,22            | 0,32            | 0,33            | 0,38            | 0,41            | 0,43            | 0,65            | 16,23                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 7279,0  | 4957,3   | 4819,3                | 4206,0    | 3821,2   | 3666,5    | 2413,0  |
| 46                   | 0,28            | 0,37            | 0,39            | 0,46            | 0,54            | 0,56            | 0,93            | 13,65                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 4723,9  | 3599,7   | 3427,6                | 2867,8    | 2451,7   | 2355,3    | 1371,1  |
| 47                   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,48            | 0,74            | 18,12                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 7417,5  | 5228,6   | 5032,3                | 4406,7    | 4017,5   | 3658,7    | 2338,4  |
| 48                   | 0,24            | 0,32            | 0,34            | 0,39            | 0,43            | 0,45            | 0,67            | 12,82                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | 1               | 1               | 1                    | 1                             | 1               | 5331,7  | 3905,9   | 3659,2                | 3212,4    | 2902,1   | 2761,3    | 1813,3  |
|                      |                 |                 |                 |                 |                 |                 |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (%)             | de eve          | ntos e          | m que l              | 1A1 > D                       | J               | DIFE    | RENÇA P  | ERCENT                | u al rela | ATIVA ME | DIA       |         |
|                      |                 |                 |                 |                 |                 |                 |                 |                       | 100,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,0           | 100,0           | 100,0           | 100,0                | 100,0                         | 100,0           | 7429,5  | 5220,7   | 4988,3                | 4325,2    | 3901,0   | 3680,4    | 2291,6  |

## Tabela 7.4f - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | METROS          | ) DO LE         | ІТО DO          | PARA    | O RIBEI         | IRÃO DO         | D FEIJAO |                       |      | COMP            | ARAÇA           | 10 EN 1         | tre d <sub>v.</sub>  | اھ D            |                 | RELAÇ | ÃO PERC | ENTUAL B              | INTRE OS | VALORES   | DE Dwa   |          |
|------|-----------------|-----------------|-----------------|---------|-----------------|-----------------|----------|-----------------------|------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|-------|---------|-----------------------|----------|-----------|----------|----------|
|      | Granu           | ometri          | a do m          | aterial | do leit         | 0               |          |                       | (10) | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)            | EOSV  | ALORES  | PARA D <sub>I</sub> ( | OLETAD   | DS NO RIE | BEIRÃO D | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)     | (6)             | (7)             | (8)      | (9)                   |      | COMP            | ARAÇA           | O DE            | D <sub>VJ (ROT</sub> | COM:            |                 | (17)  | (18)    | (19)                  | (20)     | (21)      | (22)     | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D.50    | D <sub>60</sub> | D <sub>65</sub> | Dau      | D <sub>vj [ROT]</sub> | D10  | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>65</sub> | D <sub>on</sub> |       |         |                       |          |           |          |          |
|      | (mm)            | (mm)            | (mm)            | (mm)    | (mm)            | (mm)            | (mm)     | mm                    | ~    | ~               | ~               | ~               |                      |                 | ~               |       |         |                       |          |           |          |          |
| 1    | 0,21            | 0.29            | 0.31            | 0.35    | 0.37            | 0.38            | 0,53     | 0.14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 51.8  | 106.0   | 122.6                 | 150.1    | 168.1     | 177.5    | 285,2    |
| 2    | 0,24            | 0,33            | 0,34            | 0,38    | 0,40            | 0,41            | 0,59     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 75,A  | 137,8   | 145,8                 | 172,6    | 191,4     | 200,1    | 327,0    |
| 3    | 0,24            | 0,32            | 0,33            | 0,37    | 0,40            | 0,40            | 0,56     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 70,6  | 126,6   | 136,6                 | 161,7    | 183,2     | 186,8    | 303,7    |
| 4    | 0,22            | 0,31            | 0,33            | 0,38    | 0,40            | 0,43            | 0,72     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 55,5  | 119,4   | 133,6                 | 167,6    | 186,1     | 206,0    | 407,6    |
| 5    | 0,23            | 0,32            | 0,33            | 0,36    | 0,39            | 0,40            | 0,56     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 61,9  | 1 19,5  | 127,2                 | 152,2    | 168,8     | 177,9    | 289,0    |
| б    | 0,28            | 0,36            | 0,38            | 0,43    | 0,48            | 0,51            | 0,75     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 93,1  | 151,2   | 159,5                 | 196,2    | 234,2     | 251,5    | 420,4    |
| 7    | 0,24            | 0,32            | 0,33            | 0,37    | 0,40            | 0,40            | 0,58     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | O               | 63,0  | 120,6   | 127,4                 | 152,1    | 170,6     | 176,8    | 296,0    |
| 8    | 0,31            | 0,48            | 0,48            | 0,61    | 0,69            | 0,74            | 1,57     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 118,2 | 238,3   | 238,3                 | 330,8    | 390,1     | 422,6    | 1006,0   |
| 9    | 0,25            | 0,35            | 0,35            | 0,39    | 0,42            | 0,46            | 0,68     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 72,3  | 144,5   | 144,5                 | 173,0    | 191,1     | 216,8    | 372,4    |
| 10   | 0,25            | 0,38            | 0,38            | 0,44    | 0,50            | 0,54            | 1,08     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 71,9  | 156,5   | 156,5                 | 201,5    | 243,1     | 266,3    | 636,7    |
| 11   | 0,19            | 0,31            | 0,31            | 0,35    | 0,37            | 0,39            | 0,58     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 28,5  | 106,3   | 106,3                 | 136,0    | 151,6     | 165,1    | 294,9    |
| 12   | 0,28            | 0,41            | 0,41            | 0,50    | 0,57            | 0,60            | 1,03     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 88,7  | 179,3   | 179,3                 | 240,8    | 283,5     | 303,1    | 593,2    |
| 13   | 0,22            | 0,48            | 0,48            | 0,35    | 0,38            | 0,39            | 0,54     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 42,7  | 217,9   | 217,9                 | 135,0    | 150,9     | 160,2    | 258,4    |
| 14   | 0,22            | 0,32            | 0,32            | 0,36    | 0,38            | 0,41            | 0,57     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 56,8  | 127,6   | 127,6                 | 159,1    | 171,3     | 189,9    | 309,5    |
| 15   | 0,24            | 0,34            | 0,34            | 0,38    | 0,40            | 0,41            | 0,59     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 63,3  | 126,0   | 126,0                 | 153,0    | 171,3     | 179,4    | 298,8    |
| lő   | 0,19            | 0,33            | 0,33            | 0,38    | 0,40            | 0,44            | 0,75     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 31,5  | 122,3   | 122,3                 | 156,2    | 172,5     | 196,9    | 406,3    |
| 17   | 0,25            | 0,37            | 0,37            | 0,44    | 0,50            | 0,55            | 1,20     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 85,6  | 174,0   | 174,0                 | 220,4    | 270,5     | 302,2    | 780,3    |
| 18   | 0,22            | 0,34            | 0,34            | 0,38    | 0,42            | 0,44            | 0,64     | 0,12                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 84,1  | 177,8   | 177,8                 | 215,6    | 243,5     | 262,4    | 429,3    |
| 19   | 0,20            | 0,31            | 0,31            | 0,35    | 0,38            | 0,40            | 0,57     | 0,13                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 57,7  | 139,7   | 139,7                 | 176,4    | 195,1     | 212,3    | 343,5    |
| 20   | 0,23            | 0,33            | 0,33            | 0,38    | 0,40            | 0,42            | 0,60     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 64,0  | 135,0   | 135,0                 | 163,9    | 182,9     | 193,5    | 320,8    |
| 21   | 0,22            | 0,32            | 0,32            | 0,36    | 0,38            | 0,40            | 0,57     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 43,4  | 110,8   | 1 10,8                | 139,4    | 152,1     | 168,1    | 278,9    |
| 22   | 0,23            | 0,32            | 0,32            | 0,37    | 0,39            | 0,41            | 0,57     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 57,9  | 119,6   | 1 19,6                | 147,4    | 162,3     | 175,2    | 285,0    |
| 23   | 0,24            | 0,34            | 0,35            | 0,40    | 0,44            | 0,46            | 0,75     | 0,13                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 82,8  | 157,8   | 166,8                 | 204,5    | 234,4     | 253,6    | 470,3    |
| 24   | 0,25            | 0,36            | 0,36            | 0,42    | 0,46            | 0,50            | 0,74     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 61,2  | 135,3   | 135,3                 | 172,4    | 201,0     | 227,0    | 379,8    |
| 25   | 0,23            | 0,35            | 0,35            | 0,41    | 0,47            | 0,50            | 0,79     | 0,15                  | 0    | 0               | Ö               | 0               | 0                    | 0               | 0               | 56,9  | 137,7   | 137,7                 | 176,0    | 218,4     | 239,3    | 434,6    |
| 26   | 0,19            | 0,30            | 0,30            | 0,34    | 0,37            | 0,39            | 0,58     | 0,21                  | 1    | 0               | 0               | 0               | 0                    | 0               | 0               | 10,6  | 38,9    | 38,9                  | 60,3     | 72,9      | 81,7     | 168,9    |
| 27   | 0,19            | 0,28            | 0,30            | 0,35    | 0,38            | 0,39            | 0,56     | 0,16                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 18,5  | 75,6    | 88,0                  | 115,9    | 133,9     | 143,8    | 245,0    |
| 28   | 0,24            | 0,32            | 0,34            | 0,38    | 0,42            | 0,44            | 0,68     | 0,13                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 87,3  | 154,8   | 169,9                 | 204,8    | 231,0     | 250,1    | 441,4    |
| 29   | 0,32            | 0,41            | 0,43            | 0,50    | 0,53            | 0,56            | 0,83     | 0,11                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 183,5 | 262,4   | 283,7                 | 339,5    | 373,1     | 395,3    | 632,8    |
| 30   | 0,26            | 0,30            | 0,36            | 0,40    | 0,44            | 0,46            | 0,59     | 0,14                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 80,2  | 114,9   | 153,1                 | 184,2    | 207,5     | 228,0    | 315,6    |
| 31   | 0,22            | 0,31            | 0,33            | 0,37    | 0,40            | 0,42            | 0,62     | 0,15                  | 0    | 0               | 0               | 0               | 0                    | 0               | 0               | 50,8  | 114,2   | 123,1                 | 153,8    | 173,6     | 184,5    | 319,5    |

## Tabela 7.4g - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | 1ETRO           | SDOLE           | ITO DO          | PARA            | O RIBE          | IRÃO D          | D FEIJAO        |                       |                 | COMP            | ARAÇA           | O ENT           | 're d <sub>vj</sub>  | a DI            |                 | RELAÇ | ÃO PERC | ENTUAL E              | NTRE OS | VALORES   | DEDwa   |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|-------|---------|-----------------------|---------|-----------|---------|----------|
|      | Granu           | lometri         | a do m          | aterial         | do leit         | 0               |                 |                       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)            | EOSV  | ALORES  | PARA D <sub>I</sub> C | OLETADO | DS NO RIE | EIRÃO D | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | Compi           | <b>NRAÇA</b>    | ODEI            | D <sub>VJ (ROT</sub> | COM:            |                 | (17)  | (18)    | (19)                  | (20)    | (21)      | (22)    | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>66</sub> | D <sub>90</sub> | D <sub>vj [ROT]</sub> | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | $D_{60}$             | D <sub>65</sub> | D <sub>90</sub> |       |         |                       |         |           |         |          |
|      | (mm)            | mm                    |                 |                 |                 |                 |                      |                 |                 |       |         |                       |         |           |         |          |
| 32   | 0,24            | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 0,14                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 64,9  | 128,4   | 145,2                 | 178,7   | 210,9     | 231,1   | 394,6    |
| 33   | 0,23            | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 0,13                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 74,9  | 137,7   | 150,6                 | 183,9   | 203,5     | 216,4   | 392,0    |
| 34   | 0,21            | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 0,14                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 55,1  | 139,2   | 153,1                 | 190,4   | 218,2     | 237,2   | 325,7    |
| 35   | 0,16            | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 0,12                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 31,4  | 70,8    | 82,3                  | 120,1   | 147,2     | 162,8   | 279,4    |
| 36   | 0,31            | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 0,15                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 114,7 | 168,7   | 189,9                 | 240,4   | 265,0     | 291,0   | 747,7    |
| 37   | 0,28            | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 0,13                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 106,0 | 169,2   | 184,1                 | 230,2   | 273,3     | 294,9   | 502,4    |
| 38   | 0,10            | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 0,11                  | 1               | 0               | 0               | 0               | 0                    | 0               | 0               | 14,4  | 40,6    | 52,3                  | 81,1    | 120,8     | 137,9   | 429,0    |
| 39   | 0,25            | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | 1,15            | 0,12                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 104,4 | 190,3   | 210,3                 | 263,7   | 302,0     | 330,4   | 856,7    |
| 40   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 0,14                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 111,4 | 164,8   | 176,5                 | 216,0   | 252,5     | 276,7   | 466,1    |
| 41   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 0,13                  | 0               | 0               | 0               | 0               | 0                    | O               | 0               | 125,4 | 176,9   | 193,3                 | 233,1   | 276,0     | 305,6   | 510,7    |
| 42   | 0,24            | 0,33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 0,13                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 83,3  | 148,7   | 163,2                 | 198,1   | 224,8     | 249,1   | 424,8    |
| 43   | 0,31            | 0,39            | 0,42            | 0,51            | 0,58            | 0,61            | 1,33            | 0,13                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 138,0 | 197,8   | 215,3                 | 287,3   | 340,3     | 365,3   | 909,5    |
| 44   | 0,31            | 0,39            | 0,42            | 0,51            | 0,57            | 0,60            | 1,18            | 0,14                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 119,4 | 181,8   | 199,7                 | 263,5   | 307,3     | 328,1   | 742,5    |
| 45   | 0,22            | 0,32            | 0,33            | 0,38            | 0,41            | 0,43            | 0,65            | 0,14                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 61,4  | 135,5   | 142,1                 | 176,5   | 203,7     | 216,2   | 373,9    |
| 46   | 0,28            | 0,37            | 0,39            | 0,46            | 0,54            | 0,56            | 0,93            | 0,14                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 102,6 | 164,1   | 177,0                 | 229,3   | 283,0     | 298,0   | 564,3    |
| 47   | 0,24            | 0,34            | 0,35            | 0,40            | 0,44            | 0,48            | 0,74            | 0,13                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 86,2  | 162,7   | 172,7                 | 210,6   | 240,0     | 272,4   | 474,1    |
| 48   | 0,24            | 0,32            | 0,34            | 0,39            | 0,43            | 0,45            | 0,67            | 0,14                  | 0               | 0               | 0               | 0               | 0                    | 0               | 0               | 66,7  | 126,0   | 140,8                 | 173,3   | 201,6     | 216,4   | 373,2    |
|      |                 |                 |                 |                 |                 |                 |                 |                       |                 | (%) (           | de ever         | ntos en         | n que D              | $VJ > D_1$      |                 | DIFE  | RENÇA P | ERCENTI               | JAL REL | ATIVA MĖ  | DIA     |          |
|      |                 |                 |                 |                 |                 |                 |                 |                       | 4,2             | 0,0             | 0,0             | 0,0             | 0,0                  | QQ              | 0,0             | 73,5  | 142,7   | 151,5                 | 187,3   | 215,6     | 233,8   | 439,9    |

#### Tabela 7.4g - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂI | METROS          | S DO LE         | ITO DO | PARA            | O RIBEI         | RÃO DO          | ) FEIJAO        |                      |                 | COMP            | ARAÇA | O ENT           | RE D <sub>VJ</sub> | & D1            |                 | RELAÇ  | ÃO PERC | ENT UAL E             | NTRE OS | VALORES  | DEDW    | 2        |
|------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|-------|-----------------|--------------------|-----------------|-----------------|--------|---------|-----------------------|---------|----------|---------|----------|
|      | Granu           | ometri          | a do m | aterial         | do leito        | )               | 6<br>04 - 2     |                      | (10)            | (11)            | (12)  | (13)            | (14)               | (15)            | (16)            | EOSV   | ALORES  | PARA D <sub>I</sub> ( | OLETADO | S NO RIE | EIRÃO D | D FEIJÃO |
| (1)  | (2)             | (3)             | (4)    | (5)             | (6)             | (7)             | (8)             | (9)                  |                 | COMPA           | ARAÇÂ | O DE            | D VJ GAA           | COM:            | k .             | (17)   | (18)    | (19)                  | (20)    | (21)     | (22)    | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>Vj[GAA]</sub> | D <sub>10</sub> | D <sub>30</sub> | D35   | D <sub>50</sub> | D <sub>60</sub>    | D <sub>66</sub> | D <sub>90</sub> |        |         |                       |         |          |         |          |
|      | (mm)            | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)            | mm                   |                 |                 |       |                 |                    |                 |                 |        |         |                       |         |          |         |          |
| 1    | 0,21            | 0,29            | 0,31   | 0,35            | 0,37            | 0,38            | 0,53            | 12,02                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5623,2 | 4117,1  | 3802,2                | 3373,6  | 3139,6   | 3029,9  | 2154,9   |
| 2    | 0,24            | 0,33            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59            | 12,06                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4885,0 | 3578,0  | 3458,6                | 3108,4  | 2900,9   | 2813,9  | 1948,2   |
| 3    | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,56            | 11,90                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4901,2 | 3666,7  | 3506,9                | 3161,1  | 2913,4   | 2875,7  | 2014,2   |
| 4    | 0,22            | 0,31            | 0,33   | 0,38            | 0,40            | 0,43            | 0,72            | 11,76                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5268,4 | 3704,8  | 3473,5                | 3018,5  | 2817,3   | 2627,8  | 1544,3   |
| 5    | 0,23            | 0,32            | 0,33   | 0,36            | 0,39            | 0,40            | 0,56            | 11,44                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4809,4 | 3519,9  | 3398,1                | 3051,2  | 2855,8   | 2759,7  | 1942,7   |
| 6    | 0,28            | 0,36            | 0,38   | 0,43            | 0,48            | 0,51            | 0,75            | 11,38                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 3979,6 | 3035,5  | 2935,2                | 2559,3  | 2256,5   | 21 40,6 | 1413,6   |
| 7    | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,58            | 11,23                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4620,3 | 3389,0  | 3283,9                | 2952,8  | 2744,2   | 2680,8  | 1843,7   |
| 8    | 0,31            | 0,48            | 0,48   | 0,61            | 0,69            | 0,74            | 1,57            | 11,68                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 3680,2 | 2338,6  | 2338,6                | 1814,9  | 1583,1   | 1478,5  | 645,9    |
| 9    | 0,25            | 0,35            | 0,35   | 0,39            | 0,42            | 0,46            | 0,68            | 11,44                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4512,4 | 3149,7  | 31 49,7               | 2810,6  | 2630,0   | 2408,5  | 1582,2   |
| 10   | 0,25            | 0,38            | 0,38   | 0,44            | 0,50            | 0,54            | 1,08            | 11,17                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4333,8 | 2871,6  | 2871,6                | 2427,8  | 2121,3   | 1980,6  | 934,5    |
| 11   | 0,19            | 0,31            | 0,31   | 0,35            | 0,37            | 0,39            | 0,58            | 11,05                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5713,7 | 3521,6  | 3521,6                | 3065,0  | 2869,3   | 2717,8  | 1791,4   |
| 12   | 0,28            | 0,41            | 0,41   | 0,50            | 0,57            | 0,60            | 1,03            | 11,05                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 3859,1 | 257 4,6 | 2574,6                | 2091,7  | 1848,1   | 1753,4  | 977,7    |
| 13   | 0,22            | 0,48            | 0,48   | 0,35            | 0,38            | 0,39            | 0,54            | 10,77                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4910,4 | 2148,9  | 21 48,9               | 2943,0  | 2749,8   | 26 48,0 | 1894,9   |
| 14   | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,41            | 0,57            | 11,88                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5324,2 | 3635,5  | 3635,5                | 3181,5  | 3034,3   | 2833,1  | 1976,8   |
| 15   | 0,24            | 0,34            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59            | 11,01                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4450,9 | 3187,5  | 3187,5                | 2836,9  | 2639,6   | 2560,2  | 1763,5   |
| 16   | 0,19            | 0,33            | 0,33   | 0,38            | 0,40            | 0,44            | 0,75            | 11,08                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5610,5 | 3277,5  | 3277,5                | 2830,8  | 2655,8   | 2429,3  | 1383,0   |
| 17   | 0,25            | 0,37            | 0,37   | 0,44            | 0,50            | 0,55            | 1,20            | 12,30                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4780,4 | 3206,1  | 3206,1                | 2727,3  | 2345,1   | 2152,5  | 929,2    |
| 18   | 0,22            | 0,34            | 0,34   | 0,38            | 0,42            | 0,44            | 0,64            | 13,90                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 6106,1 | 4012,9  | 4012,9                | 3520,2  | 3225,7   | 3052,3  | 2058,6   |
| 19   | 0,20            | 0,31            | 0,31   | 0,35            | 0,38            | 0,40            | 0,57            | 13,15                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 6410,4 | 4183,7  | 4183,7                | 3615,0  | 3379,1   | 3187,8  | 2215,3   |
| 20   | 0,23            | 0,33            | 0,33   | 0,38            | 0,40            | 0,42            | 0,60            | 11,63                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4890,9 | 3381,7  | 3381,7                | 3001,0  | 2792,8   | 2688,7  | 1844,6   |
| 21   | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,40            | 0,57            | 10,84                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4943,4 | 3331,4  | 3331,4                | 2920,4  | 2768,6   | 2597,4  | 1809,0   |
| 22   | 0,23            | 0,32            | 0,32   | 0,37            | 0,39            | 0,41            | 0,57            | 11,08                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4654,6 | 3319,2  | 3319,2                | 2935,2  | 2762,6   | 2628,6  | 1850,4   |
| 23   | 0,24            | 0,34            | 0,35   | 0,40            | 0,44            | 0,46            | 0,75            | 12,82                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5252,7 | 3695,2  | 3566,3                | 3113,1  | 2825,9   | 2667,1  | 1615,4   |
| 24   | 0,25            | 0,36            | 0,36   | 0,42            | 0,46            | 0,50            | 0,74            | 10,47                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4120,9 | 2791,6  | 2791,6                | 2398,3  | 2160,9   | 1981,1  | 1318,4   |
| 25   | 0.23            | 0.35            | 0.35   | 0,41            | 0.47            | 0,50            | 0,79            | 10,98                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4612,5 | 3010,5  | 3010,5                | 2578,1  | 2221,4   | 2078,6  | 1282,9   |
| 26   | 0.19            | 0.30            | 0.30   | 0.34            | 0.37            | 0.39            | 0.58            | 5,59                 | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 2781,1 | 1775,6  | 1775,6                | 1524,8  | 1406,6   | 1333,2  | 868,7    |
| 27   | 0.19            | 0.28            | 0.30   | 0.35            | 0.38            | 0.39            | 0.56            | 9,78                 | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5022,2 | 3357,1  | 3128,9                | 2711,3  | 2495,1   | 2389,4  | 1659,6   |
| 28   | 0,24            | 0,32            | 0,34   | 0,38            | 0,42            | 0,44            | 0,68            | 13,39                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 5575,2 | 4072,4  | 3839,2                | 3387,9  | 3111,9   | 2937,1  | 1863,8   |
| 29   | 0,32            | 0,41            | 0,43   | 0,50            | 0,53            | 0,56            | 0,83            | 15,00                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4588,7 | 3568,4  | 3365,1                | 2925,0  | 2709,7   | 2584,0  | 1714,2   |
| 30   | 0,26            | 0,30            | 0,36   | 0,40            | 0,44            | 0,46            | 0,59            | 11,69                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4485,7 | 3746,6  | 3166,4                | 2808,9  | 2588,2   | 2420,2  | 1888,7   |
| 31   | 0,22            | 0,31            | 0,33   | 0,37            | 0,40            | 0,42            | 0,62            | 11,17                | 1               | 1               | 1     | 1               | 1                  | 1               | 1               | 4955,7 | 3458,3  | 3316,8                | 2903,5  | 2686,3   | 2579,4  | 1716,8   |

## Tabela 7.4h - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN                 | 1ET ROS         | S DO LE         | TODO   | PARA            | O RIBEI         | RÃO DO          | ) FEIJAO |       |                 | COMP  | ARAÇA           | O EN.           | rre d <sub>v.</sub> | I& D∣           |       | RELAÇ   | ÃO PERC | ENT UAL E             | NTRE OS  | VALORES   | S DE D <sub>W</sub> | 2        |
|----------------------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|----------|-------|-----------------|-------|-----------------|-----------------|---------------------|-----------------|-------|---------|---------|-----------------------|----------|-----------|---------------------|----------|
|                      | Granu           | ometri          | a do m | aterial         | do leito        | )               |          |       | (10)            | (11)  | (12)            | (13)            | (14)                | (15)            | (16)  | EOSV    | ALORES  | PARA D <sub>I</sub> C | OLETADO  | OS NO RIE | BEIRÃO DO           | ) FEIJÃO |
| (1)                  | (2)             | (3)             | (4)    | (5)             | (6)             | (7)             | (8)      | (9)   |                 | COMP  | ARAÇÂ           | ODE             | D <sub>VJ GAA</sub> | COM             |       | (17)    | (18)    | (19)                  | (20)     | (21)      | (22)                | (23)     |
| $\mathbb{N}^{\circ}$ | D <sub>10</sub> | D <sub>30</sub> | Das    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | $D_{90}$ | D     | D <sub>10</sub> | D.30  | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>     | D <sub>65</sub> | D.90  |         |         |                       |          |           |                     |          |
|                      | (mm)            | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)     | mm    |                 |       |                 |                 |                     |                 |       |         |         |                       |          |           |                     |          |
| 32                   | 0,24            | 0,33            | 0,35   | 0,40            | 0,45            | 0,47            | 0,71     | 11,52 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 4782,2  | 3423,5  | 3182,6                | 2787,7   | 2489,2    | 2330,8              | 1527,4   |
| 33                   | 0,23            | 0,31            | 0,33   | 0,38            | 0,40            | 0,42            | 0,65     | 12,70 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 5396,7  | 3943,7  | 37 36,0               | 3285,9   | 3066,4    | 2937,6              | 1853,4   |
| 34                   | 0,21            | 0,33            | 0,35   | 0,40            | 0,44            | 0,46            | 0,58     | 12,19 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 5652,1  | 3629,2  | 3424,4                | 2971,6   | 2703,3    | 2545,2              | 1995,3   |
| 35                   | 0,16            | 0,21            | 0,22   | 0,27            | 0,30            | 0,32            | 0,46     | 13,89 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 8581,4  | 6578,0  | 6156,9                | 5082,9   | 4514,7    | 42 40,7             | 2906,5   |
| 36                   | 0,31            | 0,39            | 0,42   | 0,50            | 0,53            | 0,57            | 1,24     | 11,20 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 3468,1  | 2750,9  | 2542,4                | 2149,8   | 1998,1    | 1858,7              | 803,5    |
| 37                   | 0,28            | 0,36            | 0,38   | 0,44            | 0,50            | 0,53            | 0,81     | 12,44 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 4390,3  | 3336,0  | 3156,1                | 2701,4   | 2377,7    | 22 42,4             | 1435,6   |
| 38                   | 0,10            | 0,16            | 0,17   | 0,20            | 0,25            | 0,26            | 0,59     | 15,25 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 15622,9 | 9676,4  | 8924,4                | 7487,7   | 6125,0    | 5677,0              | 2498,2   |
| 39                   | 0,25            | 0,35            | 0,37   | 0,44            | 0,48            | 0,52            | 1,15     | 14,12 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 5662,7  | 3957,1  | 3695,3                | 3138,2   | 2829,2    | 2636,2              | 1130,9   |
| 40                   | 0,29            | 0,36            | 0,38   | 0,43            | 0,48            | 0,52            | 0,77     | 12,19 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 4119,5  | 3268,6  | 3126,0                | 2722,8   | 2430,0    | 2267,8              | 1475,5   |
| 41                   | 0,29            | 0,36            | 0,38   | 0,43            | 0,48            | 0,52            | 0,78     | 13,14 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 4445,4  | 3600,3  | 3393,6                | 2976,4   | 2625,3    | 2426,2              | 1577,7   |
| 42                   | 0,24            | 0,33            | 0,35   | 0,39            | 0,43            | 0,46            | 0,69     | 12,77 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 5197,5  | 380 4,3 | 3589,9                | 3156,9   | 2889,9    | 2681,5              | 1750,3   |
| 43                   | 0,31            | 0,39            | 0,42   | 0,51            | 0,58            | 0,61            | 1,33     | 12,71 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 3949,3  | 3135,3  | 2956,5                | 2388,2   | 2088,4    | 1970,8              | 854,6    |
| 44                   | 0,31            | 0,39            | 0,42   | 0,51            | 0,57            | 0,60            | 1,18     | 11,90 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 3789,8  | 2928,7  | 27 47,6               | 2247,7   | 1995,6    | 1893,8              | 913,0    |
| 45                   | 0,22            | 0,32            | 0,33   | 0,38            | 0,41            | 0,43            | 0,65     | 12,24 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 5462,1  | 3712,0  | 3608,1                | 3145,8   | 2855,7    | 27 39,1             | 1794,2   |
| 46                   | 0,28            | 0,37            | 0,39   | 0,46            | 0,54            | 0,56            | 0,93     | 11,88 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 4097,5  | 3119,3  | 2969,5                | 2482,4   | 2120,4    | 2036,5              | 1180,1   |
| 47                   | 0,24            | 0,34            | 0,35   | 0,40            | 0,44            | 0,48            | 0,74     | 13,00 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 5293,2  | 3722,8  | 3582,0                | 3133,2   | 2854,0    | 2596,6              | 1649,3   |
| 48                   | 0,24            | 0,32            | 0,34   | 0,39            | 0,43            | 0,45            | 0,67     | 11,68 | 1               | 1     | 1               | 1               | 1                   | 1               | 1     | 4849,5  | 3550,2  | 3325,5                | 2918,3   | 2635,5    | 2507,3              | 1643,4   |
|                      |                 |                 |        |                 |                 |                 |          |       |                 | (%)   | de eve          | ntos e          | n que D             | VJ > D          | 0     | DIFEF   | RENÇAP  | ERCENTU               | JAL RELA | TIVA MÉ   | DIA                 |          |
|                      |                 |                 |        |                 |                 |                 |          |       | 100,0           | 100,0 | 100,0           | 100,0           | 100,0               | 100,0           | 100,0 | 5092,1  | 3557,6  | 3418,3                | 2980,7   | 2704,9    | 2554,2              | 1613,2   |

## Tabela 7.4h - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂ | MET RO:         | S DO LE         | ITODO  | PARA            | O RIBEI         | IRÃO DO         | ) FEIJAO        | 1                     |                 | COMP            | ARAÇ/  | AO E NI         | rre d <sub>v.</sub> | J& D₁           |                 | RELAÇ   | ÃO PERC | ENTUAL                | ENTRE OS | VALORES   | DE D <sub>VJ</sub> |           |
|-----|-----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|--------|-----------------|---------------------|-----------------|-----------------|---------|---------|-----------------------|----------|-----------|--------------------|-----------|
|     | Granu           | lometri         | a do m | aterial         | do leito        | 0               |                 |                       | (10)            | (11)            | (12)   | (13)            | (14)                | (15)            | (16)            | EOSV    | ALORES  | PARA D <sub>1</sub> ( | OLETAD   | DS NO RIE | BEIRÃO D           | D FEIJÃO  |
| (1) | (2)             | (3)             | (4)    | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | COMP            | AR AÇÂ | O DE            | D VJ [YAL           | COM:            |                 | (17)    | (18)    | (19)                  | (20)     | (21)      | (22)               | (23)      |
| N°  | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>Vj [YAL]</sub> | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub>     | D <sub>65</sub> | D <sub>90</sub> |         |         |                       |          |           |                    |           |
|     | (mm)            | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)            | mm                    |                 |                 |        |                 |                     |                 |                 |         |         |                       |          |           |                    |           |
| 1   | 0,21            | 0,29            | 0,31   | 0,35            | 0,37            | 0,38            | 0,53            | 18,54                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 8729,8  | 6406,1  | 5920,3                | 5259,1   | 4898,0    | 4728,8             | 3378,9    |
| 2   | 0,24            | 0,33            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59            | 18,79                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 7663,9  | 5628,2  | 5442,4                | 48 97,0  | 4573,8    | 4438,3             | 3089,9    |
| 3   | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,56            | 17,92                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 7430,9  | 5572,0  | 5331,4                | 4810,6   | 4437,6    | 4380,9             | 3083,6    |
| 4   | 0,22            | 0,31            | 0,33   | 0,38            | 0,40            | 0,43            | 0,72            | 17,17                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 77 41,7 | 5457,7  | 5119,8                | 4455,2   | 4161,4    | 3884,5             | 2301,9    |
| 5   | 0,23            | 0,32            | 0,33   | 0,36            | 0,39            | 0,40            | 0,56            | 15,65                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 6614,9  | 4851,2  | 4684,6                | 4210,1   | 3942,8    | 3811,4             | 2693,9    |
| 6   | 0,28            | 0,36            | 0,38   | 0,43            | 0,48            | 0,51            | 0,75            | 15,39                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5415,2  | 4139,0  | 4003,3                | 3495,2   | 3085,8    | 2929,0             | 1946,2    |
| 7   | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,58            | 14,74                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 6091,8  | 4476,5  | 4338,7                | 3904,5   | 3630,7    | 3547,6             | 2 4 4 9,5 |
| 8   | 0,31            | 0,48            | 0,48   | 0,61            | 0,69            | 0,74            | 1,57            | 16,79                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5335,2  | 3406,2  | 3406,2                | 2653,3   | 2320,0    | 2169,6             | 972,5     |
| 9   | 0,25            | 0,35            | 0,35   | 0,39            | 0,42            | 0,46            | 0,68            | 15,65                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 6208,8  | 4344,8  | 4344,8                | 3881,1   | 3634,1    | 3331,1             | 2200,8    |
| 10  | 0,25            | 0,38            | 0,38   | 0,44            | 0,50            | 0,54            | 1,08            | 14,47                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5643,6  | 3749,4  | 3749,4                | 3174,6   | 2777,5    | 2595,3             | 1240,2    |
| 11  | 0,19            | 0,31            | 0,31   | 0,35            | 0,37            | 0,39            | 0,58            | 13,94                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 7239,5  | 4472,1  | 4472,1                | 3895,7   | 3648,6    | 3457,4             | 2287,8    |
| 12  | 0,28            | 0,41            | 0,41   | 0,50            | 0,57            | 0,60            | 1,03            | 13,94                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4898,2  | 3276,5  | 3276,5                | 2666,9   | 2359,4    | 2239,8             | 1260,5    |
| 13  | 0,22            | 0,48            | 0,48   | 0,35            | 0,38            | 0,39            | 0,54            | 12,87                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5886,4  | 2587,0  | 2587,0                | 35 35,8  | 3305,0    | 3183,4             | 2283,5    |
| 14  | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,41            | 0,57            | 17,80                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 8027,5  | 5497,2  | 5497,2                | 4816,9   | 4596,3    | 4294,8             | 3011,7    |
| 15  | 0,24            | 0,34            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59            | 13,81                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5607,4  | 4023,0  | 4023,0                | 3583,2   | 3335,8    | 3236,2             | 2237,0    |
| 16  | 0,19            | 0,33            | 0,33   | 0,38            | 0,40            | 0,44            | 0,75            | 14,08                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 7156,5  | 4192,0  | 4192,0                | 3624,3   | 3401,9    | 3114,1             | 1784,6    |
| 17  | 0,25            | 0,37            | 0,37   | 0,44            | 0,50            | 0,55            | 1,20            | 20,13                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 7886,9  | 5310,5  | 5310,5                | 4526,9   | 3901,4    | 3586,3             | 1584,3    |
| 18  | 0,22            | 0,34            | 0,34   | 0,38            | 0,42            | 0,44            | 0,64            | 32,19                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 14269,6 | 9423,1  | 9423,1                | 8282,3   | 7600,5    | 7198,9             | 4898,1    |
| 19  | 0,20            | 0,31            | 0,31   | 0,35            | 0,38            | 0,40            | 0,57            | 25,84                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 12689,8 | 8315,5  | 8315,5                | 7198,2   | 6734,8    | 6358,9             | 4448,5    |
| 20  | 0,23            | 0,33            | 0,33   | 0,38            | 0,40            | 0,42            | 0,60            | 16,54                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 6999,3  | 4852,5  | 4852,5                | 4311,0   | 4014,8    | 3866,8             | 2666,1    |
| 21  | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,40            | 0,57            | 13,14                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 6012,3  | 4058,7  | 4058,7                | 3560,6   | 3376,6    | 3169,0             | 2213,6    |
| 22  | 0,23            | 0,32            | 0,32   | 0,37            | 0,39            | 0,41            | 0,57            | 14,08                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 59 41,9 | 4245,0  | 4245,0                | 37 56,9  | 3537,6    | 3367,4             | 2378,5    |
| 23  | 0,24            | 0,34            | 0,35   | 0,40            | 0,44            | 0,46            | 0,75            | 23,43                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 9686,1  | 6838,5  | 6602,9                | 5774,3   | 5249,3    | 4958,9             | 3036,2    |
| 24  | 0.25            | 0.36            | 0.36   | 0.42            | 0.46            | 0,50            | 0.74            | 11,77                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 46 46,9 | 3152,0  | 3152,0                | 2709,6   | 2442,6    | 2240,4             | 1495,2    |
| 25  | 0,23            | 0.35            | 0.35   | 0,41            | 0.47            | 0,50            | 0,79            | 13,68                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5770,6  | 3774,9  | 3774,9                | 3236,2   | 2791,9    | 2614,0             | 1622,7    |
| 26  | 0,19            | 0,30            | 0,30   | 0,34            | 0.37            | 0,39            | 0,58            | 2,82                  | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 1353,6  | 846,3   | 846,3                 | 719,8    | 660,1     | 623,1              | 388,7     |
| 27  | 0,19            | 0,28            | 0,30   | 0,35            | 0,38            | 0,39            | 0,56            | 9,63                  | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 49 44,0 | 3304,2  | 3079,5                | 2668,4   | 2455,4    | 2351,4             | 1632,7    |
| 28  | 0,24            | 0,32            | 0,34   | 0,38            | 0,42            | 0,44            | 0,68            | 27,74                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 11652,7 | 8540,6  | 8057,8                | 7123,0   | 6551,4    | 6189,4             | 3966,9    |
| 29  | 0,32            | 0,41            | 0,43   | 0,50            | 0,53            | 0,56            | 0,83            | 44,46                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 13792,2 | 10769,2 | 10166,8               | 8862,7   | 8224,9    | 7852,6             | 5275,5    |
| 30  | 0,26            | 0,30            | 0,36   | 0,40            | 0,44            | 0,46            | 0,59            | 16,86                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 6511,0  | 5445,4  | 4609,0                | 40 93,6  | 3775,4    | 3533,2             | 2767,0    |
| 31  | 0,22            | 0,31            | 0,33   | 0,37            | 0,40            | 0,42            | 0,62            | 14,47                 | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 6449,3  | 4509,5  | 4326,3                | 3790,8   | 3509,4    | 3371,0             | 2253,5    |

## Tabela 7.4i - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | AET RO:         | S DO LE         | ITODO  | ) PARA          | O RIBEI         | IRÃO DO         | ) FEIJAO        | 2                     |                 | COMP            | ARAÇ/           | AO E N'         | rre d <sub>v.</sub> | J& D            |                 | RELA     | ÇÃO PERC | ENTUAL I | ENTRE OS | VALORE   | S DE D <sub>VJ</sub> |          |
|------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|-----------------|----------|----------|----------|----------|----------|----------------------|----------|
|      | Granu           | lometri         | a do m | aterial         | do leite        | 0               |                 |                       | (10)            | (11)            | (12)            | (13)            | (14)                | (15)            | (16)            | EOSV     | ALORES   | PARA D   | COLETAD  | OS NO RI | BEIRÃO DO            | D FEIJÃO |
| (1)  | (2)             | (3)             | (4)    | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | COMP            | AR AÇ Å         | IO DE           | D VJ TYAL           | COM             | ŝ.              | (17)     | (18)     | (19)     | (20)     | (21)     | (22)                 | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj [YAL]</sub> | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>     | D <sub>65</sub> | D <sub>90</sub> |          |          |          |          |          |                      |          |
|      | (mm)            | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)            | mm                    |                 |                 |                 |                 |                     |                 |                 |          |          |          |          |          |                      |          |
| 32   | 0,24            | 0,33            | 0,35   | 0,40            | 0,45            | 0,47            | 0,71            | 16,03                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 6692,9   | 4802,5   | 4467,3   | 3917,8   | 3502,5   | 3282,1               | 2164,3   |
| 33   | 0,23            | 0,31            | 0,33   | 0,38            | 0,40            | 0,42            | 0,65            | 22,62                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 9692,2   | 7103,8   | 6733,8   | 5932,0   | 5540,9   | 5311,5               | 3380,0   |
| 34   | 0,21            | 0,33            | 0,35   | 0,40            | 0,44            | 0,46            | 0,58            | 19,52                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 9108,3   | 5869,9   | 5542,1   | 4817,3   | 4387,7   | 4134,6               | 3254,2   |
| 35   | 0,16            | 0,21            | 0,22   | 0,27            | 0,30            | 0,32            | 0,46            | 32,08                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 19950,9  | 15323,8  | 14351,1  | 11870,7  | 10558,3  | 9925,4               | 6844,0   |
| 36   | 0,31            | 0,39            | 0,42   | 0,50            | 0,53            | 0,57            | 1,24            | 14,61                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 4551,4   | 3616,4   | 3344,6   | 2832,8   | 2635,1   | 2453,4               | 1077,8   |
| 37   | 0,28            | 0,36            | 0,38   | 0,44            | 0,50            | 0,53            | 0,81            | 20,97                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 7469,2   | 5691,9   | 5388,7   | 4622,2   | 4076,6   | 3848,5               | 2 488,5  |
| 38   | 0,10            | 0,16            | 0,17   | 0,20            | 0,25            | 0,26            | 0,59            | 47,80                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 49174,8  | 30538,8  | 28182,0  | 23679,4  | 19408,8  | 18004,8              | 8042,5   |
| 39   | 0,25            | 0,35            | 0,37   | 0,44            | 0,48            | 0,52            | 1,15            | 34,30                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 13900,1  | 9756,4   | 9120,5   | 7767,0   | 7016,2   | 6547,3               | 2890,4   |
| 40   | 0,29            | 0,36            | 0,38   | 0,43            | 0,48            | 0,52            | 0,77            | 19,52                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 6654,9   | 5292,7   | 5064,5   | 4418,9   | 3950,1   | 3690,6               | 2422,2   |
| 41   | 0,29            | 0,36            | 0,38   | 0,43            | 0,48            | 0,52            | 0,78            | 25,72                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 8800,5   | 7145,8   | 6741,1   | 5924,0   | 5236,6   | 4846,6               | 3185,1   |
| 42   | 0,24            | 0,33            | 0,35   | 0,39            | 0,43            | 0,46            | 0,69            | 23,09                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 9479,4   | 6960,1   | 6572,4   | 5789,4   | 5306,6   | 4929,7               | 3245,9   |
| 43   | 0,31            | 0,39            | 0,42   | 0,51            | 0,58            | 0,61            | 1,33            | 22,74                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 71 41,0  | 5685,4   | 5365,6   | 43 49,5  | 3813,4   | 3603,1               | 1607,0   |
| 44   | 0,31            | 0,39            | 0,42   | 0,51            | 0,57            | 0,60            | 1,18            | 17,92                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 5757,4   | 4460,7   | 4187,9   | 3435,2   | 3055,6   | 2902,3               | 1425,4   |
| 45   | 0,22            | 0,32            | 0,33   | 0,38            | 0,41            | 0,43            | 0,65            | 19,76                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 8883,8   | 6057,1   | 5889,2   | 51 42,6  | 4674,0   | 4485,7               | 2959,5   |
| 46   | 0,28            | 0,37            | 0,39   | 0,46            | 0,54            | 0,56            | 0,93            | 17,80                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 6189,4   | 4723,6   | 4499,3   | 3769,4   | 3226,9   | 3101,3               | 1818,0   |
| 47   | 0,24            | 0,34            | 0,35   | 0,40            | 0,44            | 0,48            | 0,74            | 24,70                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 101 48,9 | 7164,7   | 6897,1   | 6044,3   | 5513,6   | 5024,5               | 3224,3   |
| 48   | 0,24            | 0,32            | 0,34   | 0,39            | 0,43            | 0,45            | 0,67            | 16,79                 | 1               | 1               | 1               | 1               | 1                   | 1               | 1               | 7016,5   | 5148,4   | 4825,2   | 42 39,8  | 3833,2   | 3648,9               | 2406,7   |
|      |                 |                 |        |                 | 0               |                 |                 |                       |                 | (%)             | de eve          | ntos e          | m que D             | VJ>C            | ),              | DIFE     | RENCAP   | ERCENT   | UALREL   | ATIVA MÉ | DIA                  |          |
|      |                 |                 |        |                 |                 |                 |                 |                       | 100,0           | 100,0           | 100,0           | 100,0           | 100,0               | 100,0           | 100,0           | 8643,9   | 6058,5   | 5799,6   | 50 42,3  | 4555,7   | 4299,2               | 2693,5   |

## Tabela 7.4i - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | /ET ROS         | DO LE           | ITO DO | PARA            | O RIBEI         | RÃO DO          | ) FEIJAO        |                       |                 | COMP            | AR AÇ <i>ı</i>  | OEN             | rre d <sub>v</sub>   | J&D∣            |                 | RELAÇ   | ÃO PERC | ENTUAL                | ENT RE OS | VALORES   | DE D <sub>VJ</sub> | 100      |
|------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|---------|---------|-----------------------|-----------|-----------|--------------------|----------|
|      | Granul          | ometri          | a do m | ateria          | do leit         | 0               |                 |                       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)            | (16)            | EOSV    | ALORES  | PARA D <sub>1</sub> C | OLETAD    | DS NO RIE | BEIRÃO D           | D FEIJÃO |
| (1)  | (2)             | (3)             | (4)    | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | COMP            | ARAÇA           | O DE            | D <sub>VJ (PE)</sub> | COM             |                 | (17)    | (18)    | (19)                  | (20)      | (21)      | (22)               | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj [PEV]</sub> | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub>      | D <sub>66</sub> | D <sub>90</sub> |         | 15 (S   | <                     | 2         |           |                    |          |
|      | (mm)            | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)            | mm                    | 1000            | 8552            | 6225            | 2552            | 1000                 | 2552            | 1000            |         |         |                       | 0         |           |                    |          |
| 1    | 0,21            | 0,29            | 0,31   | 0,35            | 0,37            | 0,38            | 0,53            | 14,88                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6986,9  | 5121,9  | 4732,0                | 4201,3    | 3911,5    | 3775,7             | 2692,2   |
| 2    | 0,24            | 0,33            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59            | 15,04                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 61 16,8 | 4486,8  | 4338,0                | 3901,2    | 3642,5    | 3534,0             | 2454,3   |
| 3    | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,56            | 14,47                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5981,1  | 4480,1  | 4285,8                | 3865,2    | 3564,1    | 35 18,3            | 2470,7   |
| 4    | 0,22            | 0,31            | 0,33   | 0,38            | 0,40            | 0,43            | 0,72            | 13,97                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6280,5  | 4422,1  | 4147,2                | 3606,4    | 3367,3    | 3142,1             | 1854,3   |
| 5    | 0,23            | 0,32            | 0,33   | 0,36            | 0,39            | 0,40            | 0,56            | 12,94                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5455,1  | 3996,0  | 3858,2                | 3465,7    | 3244,5    | 3135,8             | 2211,3   |
| б    | 0,28            | 0,36            | 0,38   | 0,43            | 0,48            | 0,51            | 0,75            | 12,77                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4476,2  | 3417,2  | 3304,7                | 2883, 1   | 2543,4    | 2413,3             | 1597,8   |
| 7    | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,58            | 12,32                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5077,2  | 3726,7  | 3611,4                | 3248,3    | 3019,5    | 2950,0             | 2031,8   |
| 8    | 0,31            | 0,48            | 0,48   | 0,61            | 0,69            | 0,74            | 1,57            | 13,72                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4340,0  | 2764,2  | 2764,2                | 2149,1    | 1876,9    | 1754,0             | 776,1    |
| 9    | 0,25            | 0,35            | 0,35   | 0,39            | 0,42            | 0,46            | 0,68            | 12,94                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5119,1  | 3577,1  | 3577,1                | 3193,5    | 2989,1    | 2738,5             | 1803,4   |
| 10   | 0,25            | 0,38            | 0,38   | 0,44            | 0,50            | 0,54            | 1,08            | 12,14                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 47 17,9 | 3129,0  | 3129,0                | 2646,9    | 2313,7    | 2160,9             | 1024,2   |
| 11   | 0,19            | 0,31            | 0,31   | 0,35            | 0,37            | 0,39            | 0,58            | 11,78                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6097,5  | 3760,8  | 3760,8                | 3274,0    | 3065,4    | 2903,9             | 1916,3   |
| 12   | 0,28            | 0,41            | 0,41   | 0,50            | 0,57            | 0,60            | 1,03            | 11,78                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4120,5  | 2751,2  | 2751,2                | 2236,4    | 1976,8    | 1875,7             | 1048,8   |
| 13   | 0,22            | 0,48            | 0,48   | 0,35            | 0,38            | 0,39            | 0,54            | 11,02                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5027,7  | 2201,6  | 2201,6                | 3014,3    | 2816,6    | 2712,4             | 1941,6   |
| 14   | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,41            | 0,57            | 14,39                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6471,0  | 4425,3  | 4425,3                | 3875,2    | 3696,9    | 3453,2             | 2415,8   |
| 15   | 0.24            | 0.34            | 0.34   | 0.38            | 0,40            | 0,41            | 0,59            | 11,68                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4727,6  | 3387,4  | 3387,4                | 3015,4    | 2806,2    | 2722,0             | 1876,8   |
| 16   | 0,19            | 0,33            | 0,33   | 0,38            | 0,40            | 0,44            | 0,75            | 11,87                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6017,2  | 3518,1  | 3518,1                | 3039,5    | 2852,1    | 2609,4             | 1488,7   |
| 17   | 0,25            | 0,37            | 0,37   | 0,44            | 0,50            | 0,55            | 1,20            | 15,92                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 6217,5  | 4179,6  | 4179,6                | 3559,8    | 3065,0    | 2815,8             | 1232,2   |
| 18   | 0,22            | 0,34            | 0,34   | 0,38            | 0,42            | 0,44            | 0,64            | 23,42                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 10354,0 | 6828,1  | 6828,1                | 5998,2    | 5502,1    | 5210,0             | 3536,2   |
| 19   | 0,20            | 0,31            | 0,31   | 0,35            | 0,38            | 0,40            | 0,57            | 19,55                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 9576,3  | 6266,8  | 6266,8                | 5421,5    | 5071,0    | 4786,6             | 3341,2   |
| 20   | 0,23            | 0,33            | 0,33   | 0,38            | 0,40            | 0,42            | 0,60            | 13,55                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5715,1  | 3956,7  | 3956,7                | 3513,1    | 3270,5    | 3149,2             | 2165,8   |
| 21   | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,40            | 0,57            | 11,21                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5116,2  | 3449,0  | 3449,0                | 3023,9    | 2866,9    | 2689,7             | 1874,4   |
| 22   | 0,23            | 0,32            | 0,32   | 0,37            | 0,39            | 0,41            | 0,57            | 11,87                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4993,3  | 3562,8  | 3562,8                | 3151,3    | 2966,5    | 2823,0             | 1989,3   |
| 23   | 0,24            | 0,34            | 0,35   | 0,40            | 0,44            | 0,46            | 0,75            | 18,04                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 7433,6  | 5241,5  | 5060,1                | 4422,2    | 4018,0    | 3794,5             | 2314,3   |
| 24   | 0,25            | 0,36            | 0,36   | 0,42            | 0,46            | 0,50            | 0,74            | 10,25                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4031,1  | 2730,2  | 2730,2                | 2345,2    | 2112,8    | 1936,8             | 1288,2   |
| 25   | 0,23            | 0,35            | 0,35   | 0,41            | 0,47            | 0,50            | 0,79            | 11,59                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4874,3  | 3183,3  | 3183,3                | 2726,9    | 2350,3    | 2199,6             | 1359,7   |
| 26   | 0,19            | 0,30            | 0,30   | 0,34            | 0,37            | 0,39            | 0,58            | 3,17                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 1531,8  | 962,3   | 962,3                 | 820,3     | 753,3     | 711,7              | 448,7    |
| 27   | 0,19            | 0,28            | 0,30   | 0,35            | 0,38            | 0,39            | 0,56            | 8,69                  | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 4449,3  | 2970.3  | 2767,7                | 2396,9    | 2204,8    | 2111,0             | 1462,8   |
| 28   | 0,24            | 0,32            | 0,34   | 0,38            | 0,42            | 0,44            | 0,68            | 20,72                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 8680,0  | 6355,0  | 5994,3                | 5296,0    | 4869,0    | 4598,6             | 2938,2   |
| 29   | 0,32            | 0,41            | 0,43   | 0,50            | 0,53            | 0,56            | 0,83            | 30,53                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 9441,7  | 7365,4  | 6951,6                | 6055,9    | 5617,9    | 5362,2             | 3592,1   |
| 30   | 0,26            | 0,30            | 0,36   | 0,40            | 0,44            | 0,46            | 0,59            | 13,76                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5296,9  | 4427.0  | 3744,2                | 3323,4    | 3063,7    | 2866,0             | 2240,5   |
| 31   | 0,22            | 0,31            | 0,33   | 0,37            | 0,40            | 0,42            | 0,62            | 12,14                 | 1               | 1               | 1               | 1               | 1                    | 1               | 1               | 5393,7  | 3766,6  | 3612,9                | 3163,7    | 2927,7    | 2811,5             | 1874,2   |

## Tabela 7.4j - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | <b>IET RO</b>   | S DO LE         | EITO DC         | PARA            | O RIBE          | IRÃO DI         | D FEIJAC        | Î.                    | 0               | COMP            | ARAÇI  | AO EN           | TRE $D_v$            | J& D∣           | 0               | RELAÇ   | ÃO PERC | ENTUAL                | ENT RE OS | VALORE   | SDED <sub>VJ</sub> |          |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|--------|-----------------|----------------------|-----------------|-----------------|---------|---------|-----------------------|-----------|----------|--------------------|----------|
|      | Granu           | lometri         | a do m          | ateria          | do leit         | 0               |                 |                       | (10)            | (11)            | (12)   | (13)            | (14)                 | (15)            | (16)            | EOSV    | ALORES  | PARA D <sub>1</sub> 0 | OLETAD    | OS NO RI | BEIRÃO D           | O FEIJÃO |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)             | (8)             | (9)                   |                 | COMP            | ARAÇA  | O DE            | D <sub>VJ (PE)</sub> | COM             |                 | (17)    | (18)    | (19)                  | (20)      | (21)     | (22)               | (23)     |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj [PEv]</sub> | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub>      | D <sub>66</sub> | D <sub>90</sub> |         | 8 8     |                       | 2         |          | 4.<br>             | 5        |
| ·    | (mm)            | mm                    | oo              |                 | ·      |                 |                      |                 | oo              |         |         |                       | o         |          |                    |          |
| 32   | 0,24            | 0,33            | 0,35            | 0,40            | 0,45            | 0,47            | 0,71            | 13,20                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 5495,3  | 3938,2  | 3662,1                | 3209,5    | 2867,4   | 2685,8             | 1765,1   |
| 33   | 0,23            | 0,31            | 0,33            | 0,38            | 0,40            | 0,42            | 0,65            | 17,52                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 7485,9  | 5480,7  | 5194,1                | 4572,9    | 4270,0   | 4092,2             | 2595,9   |
| 34   | 0,21            | 0,33            | 0,35            | 0,40            | 0,44            | 0,46            | 0,58            | 15,53                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 7223,3  | 4647,8  | 4387,1                | 3810,7    | 3469,1   | 3267,8             | 2567,6   |
| 35   | 0,16            | 0,21            | 0,22            | 0,27            | 0,30            | 0,32            | 0,46            | 23,35                 | 1               | 1               | 1      | 1               | <u> </u>             | 1               | 1               | 14495,8 | 11127,5 | 10419,5               | 8613,9    | 7658,5   | 7197,9             | 4954,8   |
| 36   | 0,31            | 0,39            | 0,42            | 0,50            | 0,53            | 0,57            | 1,24            | 12,23                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 3795,4  | 3012,4  | 2784,8                | 2356,2    | 2190,6   | 2038,4             | 886,4    |
| 37   | 0,28            | 0,36            | 0,38            | 0,44            | 0,50            | 0,53            | 0,81            | 16,46                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 5843,6  | 4448,0  | 4209,9                | 3608, 1   | 3179,7   | 3000,5             | 1932,6   |
| 38   | 0,10            | 0,16            | 0,17            | 0,20            | 0,25            | 0,26            | 0,59            | 32,41                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 33309,7 | 20674,0 | 19076,0               | 16023, 1  | 13127,5  | 12175,5            | 5420,9   |
| 39   | 0,25            | 0,35            | 0,37            | 0,44            | 0,48            | 0,52            | 1,15            | 24,67                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 9970,5  | 6989,9  | 6532,4                | 5558,9    | 5018,8   | 4681,5             | 2051,1   |
| 40   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,77            | 15,53                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 5272,1  | 4188,8  | 4007,3                | 3493,9    | 3121,0   | 2914,7             | 1905,9   |
| 41   | 0,29            | 0,36            | 0,38            | 0,43            | 0,48            | 0,52            | 0,78            | 19,48                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 6639,1  | 5386,2  | 5079,8                | 4461,1    | 3940,7   | 3645,4             | 2387,4   |
| 42   | 0,24            | 0.33            | 0,35            | 0,39            | 0,43            | 0,46            | 0,69            | 17,82                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 7294,2  | 5349,5  | 5050,3                | 4445,9    | 4073,3   | 3782,3             | 2482,6   |
| 43   | 0.31            | 0.39            | 0.42            | 0.51            | 0.58            | 0.61            | 1.33            | 17,60                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 5504.4  | 4377.8  | 4130.3                | 3343.8    | 2928.9   | 2766.1             | 1221.2   |
| 44   | 0,31            | 0,39            | 0,42            | 0,51            | 0.57            | 0,60            | 1,18            | 14,47                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 4629,8  | 3582,7  | 3362,5                | 2754,6    | 2448,1   | 2324,3             | 1131,7   |
| 45   | 0.22            | 0.32            | 0.33            | 0.38            | 0.41            | 0.43            | 0.65            | 15,68                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 7029,1  | 4786.0  | 4652,7                | 4060,2    | 3688.4   | 3539.0             | 2327,9   |
| 46   | 0.28            | 0.37            | 0.39            | 0.46            | 0.54            | 0.56            | 0.93            | 14.39                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 4984.9  | 3799.8  | 3618.4                | 3028.3    | 2589.8   | 2488.2             | 1450.7   |
| 47   | 0.24            | 0.34            | 0.35            | 0.40            | 0.44            | 0.48            | 0.74            | 18.84                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 77 16.3 | 5440.4  | 5236.4                | 4585.9    | 4181.2   | 3808.2             | 2435.3   |
| 48   | 0.24            | 0.32            | 0.34            | 0.39            | 0.43            | 0.45            | 0.67            | 13.72                 | 1               | 1               | 1      | 1               | 1                    | 1               | 1               | 5713.4  | 4187.4  | 3923.4                | 3445.1    | 3113.0   | 2962.4             | 1947.7   |
|      |                 |                 |                 |                 |                 |                 |                 |                       | •               | (%)             | de eve | ntos e          | m que l              | )V.I > I        |                 | DIFF    | RENCAP  | FRCENT                | UAL REL   | ATIVA M  | DIA                |          |
|      |                 |                 |                 |                 |                 |                 |                 |                       | 100.0           | 100.0           | 100.0  | 100.0           | 100.0                | 100.0           | 100.0           | 6719.2  | 4704.7  | 4507.7                | 3921.0    | 3546.1   | 3346.6             | 2098.5   |

## Tabela 7.4j - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂN | METRO           | S DO LE         | ITO DO | PARA            | O RIBEI         | RÃO DO          | ) FEIJAO |                     |      | COMP            | ARAÇA | O ENT           | RE D <sub>V.</sub> | J& D₁           |                 | RELAÇ  | ÃO PERC | ENTUAL E              | ENTRE OS | VALORES   | DE D <sub>VJ</sub> | 20<br>20-00 |
|------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|----------|---------------------|------|-----------------|-------|-----------------|--------------------|-----------------|-----------------|--------|---------|-----------------------|----------|-----------|--------------------|-------------|
|      | Granu           | lometri         | a do m | aterial         | do leito        | 0               | i.       |                     | (10) | (11)            | (12)  | (13)            | (14)               | (15)            | (16)            | EOSV   | ALORES  | PARA D <sub>1</sub> C | OLETAD   | DS NO RIE | BEIRÃO DO          | D FEIJÃO    |
| (1)  | (2)             | (3)             | (4)    | (5)             | (6)             | (7)             | (8)      | (9)                 |      | COMP            | ARAÇÂ | IO DE           | DVJDNL             | COM             | 5 - L           | (17)   | (18)    | (19)                  | (20)     | (21)      | (22)               | (23)        |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | $D_{90}$ | D <sub>vj µwj</sub> | D10  | D <sub>30</sub> | D35   | D <sub>50</sub> | D <sub>60</sub>    | D <sub>65</sub> | D <sub>90</sub> |        |         |                       |          |           |                    |             |
|      | (mm)            | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)     | mm                  |      |                 |       |                 |                    |                 |                 |        |         |                       |          |           |                    |             |
| 1    | 0,21            | 0,29            | 0,31   | 0,35            | 0.37            | 0,38            | 0,53     | 12.29               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5750.3 | 4210.7  | 3888.8                | 3450.8   | 3211.5    | 3099.4             | 2205.0      |
| 2    | 0,24            | 0,33            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59     | 12,07               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4886.3 | 3578,9  | 3459,5                | 3109,3   | 2901.7    | 2814.7             | 1948,7      |
| 3    | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,56     | 12,34               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5083,6 | 3804,1  | 3638,5                | 3280,0   | 3023,3    | 2984,2             | 2091,3      |
| 4    | 0,22            | 0,31            | 0,33   | 0,38            | 0,40            | 0,43            | 0,72     | 12,25               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5492,7 | 3863,8  | 3622,8                | 31 48,8  | 2939,2    | 2741,8             | 1613,0      |
| 5    | 0,23            | 0,32            | 0,33   | 0,36            | 0,39            | 0,40            | 0,56     | 12,31               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5183,7 | 3795,9  | 3664,8                | 3291,5   | 3081,1    | 2977,7             | 2098,4      |
| 6    | 0,28            | 0,36            | 0,38   | 0,43            | 0,48            | 0,51            | 0,75     | 12,42               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4352,3 | 3322,0  | 3212,5                | 2802,3   | 2471,8    | 2345,2             | 1551,8      |
| 7    | 0,24            | 0,32            | 0,33   | 0,37            | 0,40            | 0,40            | 0,58     | 11,88               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4890,1 | 3588,3  | 3477,2                | 3127,3   | 2906,7    | 2839,7             | 1954,7      |
| 8    | 0,31            | 0,48            | 0,48   | 0,61            | 0,69            | 0,74            | 1,57     | 12,24               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 3860,0 | 2454,6  | 2454,6                | 1906,0   | 1663,2    | 1553,6             | 681,4       |
| 9    | 0,25            | 0,35            | 0,35   | 0,39            | 0,42            | 0,46            | 0,68     | 12,32               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4866,4 | 3399,0  | 3399,0                | 3034,0   | 2839,5    | 2601,0             | 1711,3      |
| 10   | 0,25            | 0,38            | 0,38   | 0,44            | 0,50            | 0,54            | 1,08     | 12,37               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4807,0 | 3188,7  | 3188,7                | 2697,7   | 2358,4    | 2202,7             | 1045,0      |
| 11   | 0,19            | 0,31            | 0,31   | 0,35            | 0,37            | 0,39            | 0,58     | 12,55               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 6504,2 | 4014,1  | 401 4,1               | 3495,4   | 3273,1    | 3101,0             | 2048,6      |
| 12   | 0,28            | 0,41            | 0,41   | 0,50            | 0,57            | 0,60            | 1,03     | 12,42               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4350,9 | 2906,8  | 2906,8                | 2363,9   | 2090,1    | 1983,6             | 1111,5      |
| 13   | 0,22            | 0,48            | 0,48   | 0,35            | 0,38            | 0,39            | 0,54     | 12,63               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5773,5 | 2536,3  | 2536,3                | 3467,2   | 3240,7    | 3121,4             | 2238,5      |
| 14   | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,41            | 0,57     | 12,29               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5513,4 | 3765,8  | 3765,8                | 3295,9   | 3143,6    | 2935,4             | 2049,2      |
| Ŀ    | 0,24            | 0,34            | 0,34   | 0,38            | 0,40            | 0,41            | 0,59     | 12,71               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5151,0 | 3693,3  | 3693,3                | 3288,6   | 3061,0    | 2969,4             | 2050,2      |
| 16   | 0,19            | 0,33            | 0,33   | 0,38            | 0,40            | 0,44            | 0,75     | 12,71               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 6450,2 | 3774,2  | 3774,2                | 3261,8   | 3061,0    | 2801,2             | 1601,1      |
| 17   | 0,25            | 0,37            | 0,37   | 0,44            | 0,50            | 0,55            | 1,20     | 12,08               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4694,6 | 3148,0  | 3148,0                | 2677,6   | 2302,1    | 2112,9             | 911,1       |
| 18   | 0,22            | 0,34            | 0,34   | 0,38            | 0,42            | 0,44            | 0,64     | 11,03               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4821,9 | 3161,8  | 3161,8                | 2771,1   | 2537,6    | 2400,0             | 1612,0      |
| 19   | 0,20            | 0,31            | 0,31   | 0,35            | 0,38            | 0,40            | 0,57     | 11,79               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5734,7 | 3739,1  | 3739,1                | 3229,4   | 3018,0    | 2846,5             | 1975,0      |
| 20   | 0,23            | 0,33            | 0,33   | 0,38            | 0,40            | 0,42            | 0,60     | 12,25               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5158,0 | 3568,0  | 3568,0                | 3167,0   | 2947,6    | 2837,9             | 1948,7      |
| 21   | 0,22            | 0,32            | 0,32   | 0,36            | 0,38            | 0,40            | 0,57     | 12,44               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5685,6 | 3836,4  | 3836,4                | 3364,9   | 3190,7    | 2994,3             | 2090,0      |
| 22   | 0,23            | 0,32            | 0,32   | 0,37            | 0,39            | 0,41            | 0,57     | 12,37               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5208,7 | 3717,7  | 3717,7                | 3288,8   | 3096,2    | 2946,6             | 2077,7      |
| 23   | 0,24            | 0,34            | 0,35   | 0,40            | 0,44            | 0,46            | 0,75     | 11,77               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4817,0 | 3386,2  | 3267,9                | 2851,5   | 2587,7    | 2441,8             | 1475,8      |
| 24   | 0,25            | 0,36            | 0,36   | 0,42            | 0,46            | 0,50            | 0,74     | 11,59               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4573,6 | 3101,8  | 3101,8                | 2666,3   | 2403,4    | 2204,3             | 1470,5      |
| 25   | 0,23            | 0,35            | 0,35   | 0,41            | 0,47            | 0,50            | 0,79     | 12,31               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5182,3 | 3386,6  | 3386,6                | 2901,9   | 2502,0    | 2342,0             | 1450,1      |
| 26   | 0,19            | 0,30            | 0,30   | 0,34            | 0,37            | 0,39            | 0,58     | 12,13               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 6153,2 | 3970,9  | 3970,9                | 3426,5   | 3169,9    | 3010,6             | 2002,5      |
| 27   | 0,19            | 0,28            | 0,30   | 0,35            | 0,38            | 0,39            | 0,56     | 12,52               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 6455,6 | 4324,4  | 4032,4                | 3498,0   | 3221,2    | 3086,0             | 2152,0      |
| 28   | 0,24            | 0,32            | 0,34   | 0,38            | 0,42            | 0,44            | 0,68     | 11,59               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4811,5 | 3511,0  | 3309,2                | 2918,6   | 2679,7    | 2528,4             | 1599,6      |
| 29   | 0,32            | 0,41            | 0,43   | 0,50            | 0,53            | 0,56            | 0,83     | 10,96               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 3324,4 | 2579,3  | 2430,8                | 2109,3   | 1952,1    | 1860,3             | 1225,1      |
| 30   | 0,26            | 0,30            | 0,36   | 0,40            | 0,44            | 0,46            | 0,59     | 12,21               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 4687,7 | 3916,0  | 3310,2                | 2936,9   | 2706,6    | 2531,1             | 1976,3      |
| 31   | 0,22            | 0,31            | 0,33   | 0,37            | 0,40            | 0,42            | 0,62     | 12,30               | 1    | 1               | 1     | 1               | 1                  | 1               | 1               | 5465,1 | 3816,8  | 3661,1                | 3206,1   | 2967,0    | 2849,4             | 1899,8      |

Tabela 7.4k - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

| DIÂI | METRO           | S DO LE         | ITO DO | PARA            | O RIBEI         | RÃO DO          | ) FEIJAO        |                      |                 | COMP            | ARAÇA  | AO E N          | TRE D <sub>V.</sub> | D <sub>1</sub>  |                 | RELAÇ   | ÃO PERC | ENTUAL E | NTREOS  | VALORES   | DE D <sub>VJ</sub> | 57<br>101-101 |
|------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|--------|-----------------|---------------------|-----------------|-----------------|---------|---------|----------|---------|-----------|--------------------|---------------|
|      | Granu           | lometri         | a do m | aterial         | do leita        | )               |                 |                      | (10)            | (11)            | (12)   | (13)            | (14)                | (15)            | (16)            | E OS V  | ALORES  | PARA DIC | OLETADO | DS NO RIE | BEIRÃO DO          | D FEIJÃO      |
| (1)  | (2)             | (3)             | (4)    | (5)             | (6)             | (7)             | (8)             | (9)                  |                 | COMP            | ARAÇ   | ÃO DE           | DVJ DNL             | COM             | §               | (17)    | (18)    | (19)     | (20)    | (21)      | (22)               | (23)          |
| N°   | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub> | D <sub>65</sub> | D <sub>90</sub> | D <sub>vj բտայ</sub> | D <sub>10</sub> | D <sub>30</sub> | D35    | D <sub>50</sub> | D <sub>60</sub>     | D <sub>66</sub> | D <sub>90</sub> |         |         |          |         |           |                    |               |
|      | (mm)            | (mm)            | (mm)   | (mm)            | (mm)            | (mm)            | (mm)            | mm                   |                 |                 |        |                 |                     |                 |                 |         |         |          |         |           |                    |               |
| 32   | 0,24            | 0,33            | 0,35   | 0,40            | 0,45            | 0,47            | 0,71            | 12,28                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5105,3  | 3656,7  | 3399,9   | 2978,8  | 2660,6    | 2491,7             | 1635,1        |
| 33   | 0,23            | 0,31            | 0,33   | 0,38            | 0,40            | 0,42            | 0,65            | 11,86                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5032,6  | 3675,9  | 3482,0   | 3061,7  | 2856,7    | 2736,5             | 1724,1        |
| 34   | 0,21            | 0,33            | 0,35   | 0,40            | 0,44            | 0,46            | 0,58            | 12,07                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5594,5  | 3591,8  | 3389,1   | 29 40,9 | 2675,2    | 2518,7             | 1974,3        |
| 35   | 0,16            | 0,21            | 0,22   | 0,27            | 0,30            | 0,32            | 0,46            | 11,47                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 7069,6  | 5415,1  | 5067,3   | 41 80,4 | 3711,1    | 3484,8             | 2383,0        |
| 36   | 0,31            | 0,39            | 0,42   | 0,50            | 0,53            | 0,57            | 1,24            | 12,09                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 3750,0  | 2976,0  | 2751,1   | 2327,5  | 2163,8    | 2013,4             | 874,9         |
| 37   | 0,28            | 0,36            | 0,38   | 0,44            | 0,50            | 0,53            | 0,81            | 11,86                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4182,0  | 3176,5  | 3005,0   | 2571,4  | 2262,7    | 2133,7             | 1364,3        |
| 38   | 0,10            | 0,16            | 0,17   | 0,20            | 0,25            | 0,26            | 0,59            | 11,45                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 11705,3 | 7240,5  | 6675,8   | 5597,1  | 4573,9    | 4237,5             | 1850,8        |
| 39   | 0,25            | 0,35            | 0,37   | 0,44            | 0,48            | 0,52            | 1,15            | 11,44                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4569,7  | 3187,6  | 2975,5   | 2524,0  | 2273,6    | 2117,2             | 897,5         |
| 40   | 0,29            | 0,36            | 0,38   | 0,43            | 0,48            | 0,52            | 0,77            | 11,88                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4009,5  | 3180,8  | 3041,9   | 26 49,2 | 2364,0    | 2206,1             | 1434,4        |
| 41   | 0,29            | 0,36            | 0,38   | 0,43            | 0,48            | 0,52            | 0,78            | 11,93                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4029,3  | 3261,6  | 3073,8   | 2694,8  | 2375,9    | 2194,9             | 1424,1        |
| 42   | 0,24            | 0,33            | 0,35   | 0,39            | 0,43            | 0,46            | 0,69            | 11,94                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4853,7  | 3550,9  | 3350,4   | 2945,5  | 2695,9    | 2501,0             | 1630,2        |
| 43   | 0.31            | 0.39            | 0.42   | 0.51            | 0.58            | 0.61            | 1.33            | 11,98                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 3716,4  | 2949,2  | 2780,6   | 22 45,1 | 1962,6    | 1851,7             | 799,7         |
| 44   | 0.31            | 0.39            | 0.42   | 0.51            | 0.57            | 0.60            | 1.18            | 12,11                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 3857,6  | 2981,5  | 2797,2   | 2288,6  | 2032,1    | 1928,5             | 930,7         |
| 45   | 0.22            | 0.32            | 0.33   | 0.38            | 0.41            | 0.43            | 0.65            | 12,05                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5377,5  | 3654,1  | 3551,7   | 3096,4  | 2810,8    | 2696,0             | 1765,4        |
| 46   | 0.28            | 0.37            | 0.39   | 0.46            | 0.54            | 0.56            | 0.93            | 12.18                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4202.2  | 3199.5  | 3046.1   | 25 46.8 | 2175.7    | 2089.8             | 1212.0        |
| 47   | 0.24            | 0.34            | 0.35   | 0.40            | 0.44            | 0.48            | 0.74            | 12.21                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 4966.6  | 3491.3  | 3359.1   | 2937.5  | 2675.1    | 2433.3             | 1543.4        |
| 48   | 0.24            | 0.32            | 0.34   | 0.39            | 0.43            | 0.45            | 0.67            | 12.21                | 1               | 1               | 1      | 1               | 1                   | 1               | 1               | 5073.1  | 3715.2  | 3480.2   | 3054.7  | 2759.1    | 2625.1             | 1722.2        |
|      |                 |                 |        | A               | A               |                 |                 |                      | 1               | (%)             | de eve | ntos e          | m aue D             | VJ > D          |                 | DIFF    | RENCAP  | ERCENTI  | JAL REL | ATIVA MÉ  | DIA                |               |
|      |                 |                 |        |                 |                 |                 |                 |                      | 100.0           | 100.0           | 100.0  | 100.0           | 100.0               | 100.0           | 100.0           | 5141.3  | 3582.6  | 3449.3   | 3014.1  | 2741.2    | 2590.1             | 1646.5        |
|      |                 |                 |        |                 |                 |                 |                 |                      |                 |                 |        |                 |                     |                 |                 |         |         |          |         |           |                    |               |

Tabela 7.4k - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Ribeirão do Feijão

## ANEXO D

Comparação entre as descargas medidas no Ribeirão do Feijão e aquelas calculadas

Comparação usando nas equações de cálculo do transporte de sedimentos e os diâmetros definidos pelos próprios autores

Comparação usando nas equações de cálculo do transporte de sedimentos os diâmetros calculados pelas equações obtidas na pesquisa

| (1)   | (2)        | (3)             | (4)       | (5)      | (6)                 | (7)    | (8)      | (9)    | (10)    | (11)            | (12)                | (13)              | (14)              | (15)               | (16) | (17)     | (18)                   | (19)                   | (20)                | (21)             |
|-------|------------|-----------------|-----------|----------|---------------------|--------|----------|--------|---------|-----------------|---------------------|-------------------|-------------------|--------------------|------|----------|------------------------|------------------------|---------------------|------------------|
| N°    | DATA       | Don             | Dvj (SHI) | S        | q = Q/B             | 558-57 | 10000    | R+m    | R+Dyj   | 15              | 28 - M              | 100 100           | 1.2 25            | 287 (54            | В    | q Bm     | 1.2. 250               | 17 52                  | 92 ES               | 24162.11         |
| 21657 |            | 199 <b>57</b> 1 | nethe 2   | 220112   | C 153 153           | U.     | ν        |        | 255     | (26)            | (27)                | (34)              | (35)              | $\tau_{\rm c}$     | 2010 | ton/dia  | qB[SHI] <sub>D00</sub> | qB[SHI] <sub>Dvj</sub> | E[%]D <sub>80</sub> | E[%]Dvj          |
|       |            | (mm)            | mm        | (m/m)    | m <sup>3</sup> /s.m | (m/s)  | m²/s     | 3-94   | 8       | $\theta_{cD90}$ | $\theta_{\rm cDej}$ | $\tau_{\rm cD90}$ | $\tau_{\rm cDoj}$ | Kgť m <sup>2</sup> | (m)  | to n/dia | ton/dia                | ton/dia                | ÷                   | 1 <del>9</del> 0 |
| 18    | 10/9/1996  | 0,64            | 17,61     | 2,39E-03 | 0,40                | 0,14   | 1,545-06 | 56,59  | 1546,99 | 0,04            | 0,06                | 0,041             | 1,743             | 1,867              | 7,90 | 2,10     | 6760,32                | 16,75                  | 3,22E+05            | 6,99E+02         |
| 29    | 22/11/1996 | 0,83            | 22,07     | 3,60E-03 | 0,55                | 0,17   | 1,015-06 | 141,74 | 3782,09 | 0,05            | 0,06                | 0,065             | 2,185             | 3,031              | 6,00 | 0,48     | 13602,05               | 145,44                 | 2,86E+06            | 3,05E +04        |
| 35    | 4/1/1997   | 0,46            | 17,56     | 2,38E-03 | 0,39                | 0,14   | 8,905-07 | 73,93  | 2810,84 | 0,04            | 0,06                | 0,032             | 1,739             | 2,068              | 5,60 | 0,02     | 7218,66                | 30,70                  | 3,44E+07            | 1,46E +05        |
| 38    | 24/1/1997  | 0,59            | 23,21     | 3,94E-03 | 0,35                | 0,17   | 9,00E-07 | 109,30 | 4322,25 | 0,05            | 0,06                | 0,044             | 2,298             | 2,864              | 6,30 | 0,01     | 13248,35               | 67,25                  | 1,66E+08            | 8,40E+05         |
| 39    | 28/1/1997  | 1,15            | 18,41     | 2,59E-03 | 0,39                | 0,15   | 9,21E-07 | 181,47 | 2911,99 | 0,05            | 0,06                | 0,096             | 1,822             | 2,165              | 5,70 | 0,03     | 3298,50                | 34,07                  | 1,18E+07            | 1,22E +05        |
|       |            | A               |           | A        | A                   |        |          |        | A       |                 |                     | A                 |                   | A                  |      |          | A                      | MEDIA                  | 4,30E+07            | 2,28E +05        |

Tabela 7.6a - Descargas calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj para o Ribeirão do Feijão

| (l)<br>N° | (2)<br>DATA | (9)<br>D <sub>90</sub> | (5)<br>D <sub>Vj [KAL]</sub> | (5)<br>7 <sub>0</sub> | (6)<br>U* | თ                    | (8)                           | (9)                                             | (10)                      | (11)                     | (12)        | (13)<br>B | (14)<br>qBm | (15)<br>qB[KAL]D <sub>90</sub> | (16)<br>qB[KAL]Dvj | (17)<br>E [%]D <sub>90</sub> | (18)<br>E[%]Dvj |
|-----------|-------------|------------------------|------------------------------|-----------------------|-----------|----------------------|-------------------------------|-------------------------------------------------|---------------------------|--------------------------|-------------|-----------|-------------|--------------------------------|--------------------|------------------------------|-----------------|
|           |             | (mm)                   | mn                           | Kgf/m²                | (m/s)     | $\mathcal{T}C_{D90}$ | $\mathcal{T}c_{\mathrm{Dej}}$ | $\mathcal{T}_{\rm cD90}^{}  / \mathcal{T}_0^{}$ | $\tau_{\rm cDrej}/\tau_0$ | UP/Uin <sub>[1990]</sub> | UP/Uin[Dvj] | (m)       | ton/dia     | ton/dia                        | ton/dia            |                              |                 |
| 1         | 14/5/1996   | 0,53                   | 1,49                         | 0,839                 | 0,091     | 0,10                 | 0,28                          | 0,12                                            | 0,34                      | 0,67                     | 0,38        | 5,00      | 0,022       | 59,52                          | 92,94              | 2,70E+05                     | 4,22E+05        |
| 2         | 21/5/1996   | 0,59                   | 1,18                         | 0,869                 | 0,092     | 0,11                 | 0,23                          | 0,13                                            | 0,26                      | 0,65                     | 0,45        | 5,00      | 0,017       | 65,17                          | 90,31              | 3,83E+05                     | 5,31E+05        |
| 3         | 28/5/1996   | 0,56                   | 1,63                         | 0,803                 | 0,089     | 0,11                 | 0,31                          | 0,13                                            | 0,39                      | 0,64                     | 0,34        | 5,00      | 0,016       | 58,99                          | 88,80              | 3,69E+05                     | 5,55E+05        |
| 4         | 4/6/1996    | 0,72                   | 1,60                         | 0,771                 | 0,087     | 0,14                 | 0,31                          | 0,18                                            | 0,40                      | 0,56                     | 0,33        | 5,00      | 0,005       | 63,76                          | 83,82              | 1,28E+06                     | 1,68E+06        |
| 5         | 11/6/1996   | 0,56                   | 1,87                         | 0,678                 | 0,082     | 0,11                 | 0,36                          | 0,16                                            | 0,53                      | 0,60                     | 0,24        | 5,00      | 0,002       | 49,87                          | 67,76              | 2,49E+06                     | 3,39E+06        |
| 6         | 18/6/1996   | 0,75                   | 2,04                         | 0,653                 | 0,080     | 0,14                 | 0,39                          | 0,22                                            | 0,60                      | 0,50                     | 0,21        | 5,00      | 0,005       | 54,67                          | 61,75              | 1,09E+06                     | 1,23E+06        |
| 7         | 25/6/1996   | 0,58                   | 1,39                         | 0,611                 | 0,077     | 0,11                 | 0,27                          | 0,18                                            | 0,43                      | 0,55                     | 0,30        | 5,00      | 0,002       | 45,38                          | 59,36              | 2,27E+06                     | 2,97E+06        |
| 8         | 1/7/1996    | 1,57                   | 1,62                         | 0,735                 | 0,085     | 0,30                 | 0,31                          | 0,41                                            | 0,42                      | 0,32                     | 0,31        | 5,00      | 0,007       | 78,13                          | 78,22              | 1,12E+06                     | 1,12E+06        |
| 9         | 9/7/1996    | 0,68                   | 1,86                         | 0,656                 | 0,080     | 0,13                 | 0,36                          | 0,20                                            | 0,54                      | 0,52                     | 0,23        | 5,00      | 0,006       | 52,20                          | 64,06              | 8,70E+05                     | 1,07E+06        |
| 10        | 16/7/1996   | 1,08                   | 2,09                         | 0,604                 | 0,077     | 0,21                 | 0,40                          | 0,34                                            | 0,66                      | 0,37                     | 0,18        | 5,00      | 0,006       | 56,85                          | 52,33              | 9,47E+05                     | 8,72E+05        |
| 11        | 23/7/1996   | 0,58                   | 2,37                         | 0,559                 | 0,074     | 0,11                 | 0,45                          | 0,20                                            | 0,81                      | 0,52                     | 0,13        | 5,00      | 0,003       | 41,15                          | 40,31              | 1,37E+06                     | 1,34E+06        |
| 12        | 30/7/1996   | 1,03                   | 2,24                         | 0,591                 | 0,076     | 0,20                 | 0,43                          | 0,33                                            | 0,73                      | 0,38                     | 0,15        | 5,00      | 0,004       | 54,68                          | 47,92              | 1,37E+06                     | 1,20E+06        |
| 13        | 6/8/1996    | 0,54                   | 2,62                         | 0,521                 | 0,072     | 0,10                 | 0,50                          | 0,20                                            | 0,96                      | 0,52                     | 0,09        | 5,00      | 0,006       | 36,99                          | 30,34              | 6,16E+05                     | 5,06E+05        |
| 14        | 13/8/1996   | 0,57                   | 1,60                         | 0,794                 | 0,088     | 0,11                 | 0,31                          | 0,14                                            | 0,38                      | 0,64                     | 0,34        | 5,10      | 0,004       | 60,12                          | 89,13              | 1,50E+06                     | 2,23E+06        |
| Ŀ         | 23/8/1996   | 0,59                   | 2,58                         | 0,557                 | 0,074     | 0,11                 | 0,49                          | 0,20                                            | 0,89                      | 0,52                     | 0,11        | 5,00      | 0,004       | 41,28                          | 36,80              | 1,03E+06                     | 9,20E+05        |
| 16        | 27/8/1996   | 0,75                   | 3,00                         | 0,570                 | 0,075     | 0,14                 | 0,57                          | 0,25                                            | 1,01                      | 0,46                     | 0,08        | 5,00      | 0,005       | 47,29                          | 32,75              | 9,46E+05                     | 6,55E+05        |
| 17        | 3/9/1996    | 1,20                   | 1,09                         | 0,954                 | 0,097     | 0,23                 | 0,21                          | 0,24                                            | 0,22                      | 0,47                     | 0,50        | 5,10      | 0,005       | 102,40                         | 98,17              | 2,05E+06                     | 1,96E+06        |
| 18        | 10/9/1996   | 0,64                   | 0,05                         | 1,867                 | 0,135     | 0,12                 | 0,01                          | 0,07                                            | 0,01                      | 0,81                     | 0,98        | 7,90      | 2,097       | 203,24                         | 20,65              | 9,59E+03                     | 8,85E+02        |
| 19        | 17/9/1996   | 0,57                   | 0,42                         | 1,327                 | 0,114     | 0,11                 | 0,08                          | 0,08                                            | 0,06                      | 0,76                     | 0,82        | 5,40      | 0,057       | 98,07                          | 77,65              | 1,72E+05                     | 1,36E+05        |
| 20        | 20/9/1996   | 0,60                   | 1,63                         | 0,695                 | 0,083     | 0,11                 | 0,31                          | 0,16                                            | 0,45                      | 0,58                     | 0,29        | 4,90      | 0,005       | 51,75                          | 70,48              | 1,03E+06                     | 1,41E+06        |
| 21        | 1/10/1996   | 0,57                   | 2,30                         | 0,514                 | 0,071     | 0,11                 | 0,44                          | 0,21                                            | 0,86                      | 0,51                     | 0,11        | 4,80      | 0,007       | 35,92                          | 32,50              | 5,13E+05                     | 4,64E+05        |
| 22        | 8/10/1996   | 0,57                   | 2,12                         | 0,562                 | 0,074     | 0,11                 | 0,41                          | 0,19                                            | 0,72                      | 0,53                     | 0,15        | 5,00      | 0,006       | 41,04                          | 44,56              | 6,84E+05                     | 7,43E+05        |
| 23        | 15/10/1996  | 0,75                   | 0,52                         | 1,150                 | 0,106     | 0,14                 | 0,10                          | 0,12                                            | 0,09                      | 0,67                     | 0,75        | 5,30      | 0,166       | 102,65                         | 80,69              | 6,17E+04                     | 4,85E+04        |
| 24        | 22/10/1996  | 0,74                   | 2,54                         | 0,434                 | 0,065     | 0,14                 | 0,49                          | 0,33                                            | 1,12                      | 0,39                     | 0,06        | 5,00      | 0,005       | 34,27                          | 18,69              | 6,85E+05                     | 3,74E+05        |
| 25        | 31/10/1996  | 0,79                   | 2,08                         | 0,522                 | 0,072     | 0,15                 | 0,40                          | 0,29                                            | 0,76                      | 0,42                     | 0,14        | 5,00      | 0,038       | 43,74                          | 38,30              | 1,15E+05                     | 1,01E+05        |
| 26        | 5/11/1996   | 0,58                   | 3,91                         | 0,074                 | 0,027     | 0,11                 | 0,75                          | 1,50                                            | 10,15                     | 0,02                     | 0,00        | 4,90      | 0,037       | 0,63                           | 0,19               | 1,60E+03                     | 4,10E+02        |
| 27        | 12/11/1996  | 0,56                   | 2,90                         | 0,329                 | 0,057     | 0,11                 | 0,56                          | 0,32                                            | 1,69                      | 0,39                     | 0,01        | 4,80      | 0,003       | 21,68                          | 3,93               | 7,23E+05                     | 1,31E+05        |
| 28        | 19/11/1996  | 0,68                   | 0,22                         | 1,475                 | 0,120     | 0,13                 | 0,04                          | 0,09                                            | 0,03                      | 0,75                     | 0,91        | 5,40      | 0,031       | 121,53                         | 47,28              | 3,92E+05                     | 1,52E+05        |
| 29        | 22/11/1996  | 0,83                   | 0,00                         | 3,031                 | 0,172     | 0,16                 | 0,00                          | 0,05                                            | 0,00                      | 0,84                     | 1,00        | 6,00      | 0,476       | 264,25                         | 0,43               | 5,54E+04                     | 1,06E+01        |
| 30        | 25/11/1996  | 0,59                   | 1,53                         | 0,708                 | 0,083     | 0,11                 | 0,29                          | 0,16                                            | 0,41                      | 0,59                     | 0,32        | 4,90      | 0,008       | 52,30                          | 72,41              | 6,54E+05                     | 9,05E+05        |
| 31        | 3/12/1996   | 0,62                   | 1,95                         | 0,595                 | 0,076     | 0,12                 | 0,37                          | 0,20                                            | 0,63                      | 0,52                     | 0,19        | 4,80      | 0,013       | 43,28                          | 50,49              | 3,33E+05                     | 3,88E+05        |
| 32        | 5/12/1996   | 0,71                   | 1,75                         | 0,683                 | 0,082     | 0,14                 | 0,33                          | 0,20                                            | 0,49                      | 0,52                     | 0,26        | 4,90      | 0,008       | 54,39                          | 68,10              | 6,80E+05                     | 8,51E+05        |
| 33        | 12/12/1996  | 0,65                   | 0,65                         | 1,123                 | 0,105     | 0,12                 | 0,12                          | 0,11                                            | 0,11                      | 0,70                     | 0,70        | 5,20      | 0,040       | 90,48                          | 90,50              | 2,26E+05                     | 2,26E+05        |

Tabela 7.66 - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>90</sub> e o Dvj pra o Ribeirão do Feijão

| (1)<br>N° | (2)<br>DATA | (9)<br>D <sub>90</sub><br>(mm) | (5)<br>D <sub>Vj [KAL]</sub><br>mm | 6)<br>7 <sub>0</sub><br>Kgf/m <sup>2</sup> | (6)<br>U*<br>(m/s)    | (7)<br>Пс <sub>1990</sub> | (8)<br>7с <sub>Деј</sub> | (9)<br>7 <sub>cD90</sub> /7 <sub>0</sub> | (10)<br>7 <sub>cDmi/</sub> 7 <sub>0</sub> | (11)<br>UP/Uin <sub>[290]</sub> | ( <b>12)</b><br>UP / Uin[Dvj] | (13)<br>B<br>(m) | (14)<br>qBm<br>ton/dia | (15)<br>qB[KAL]D <sub>90</sub><br>ton/dia | (16)<br>qB[KAL]Dvj<br>ton/dia | (17)<br>E [%]D <sub>90</sub> | (18)<br>E[%]Dvj |
|-----------|-------------|--------------------------------|------------------------------------|--------------------------------------------|-----------------------|---------------------------|--------------------------|------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------|------------------|------------------------|-------------------------------------------|-------------------------------|------------------------------|-----------------|
| 34        | 18/12/1996  | 0,58                           | 1,10                               | 0,889                                      | 0,093                 | 0,11                      | 0,21                     | 0,13                                     | 0,24                                      | 0,66                            | 0,48                          | 5,00             | 0,008                  | 66,09                                     | 89,82                         | 8,26E+05                     | 1,12E+06        |
| 35        | 4/1/1997    | 0,46                           | 0,11                               | 2,068                                      | 0,142                 | 0,09                      | 0,02                     | 0,04                                     | 0,01                                      | 0,87                            | 0,97                          | 5,60             | 0,021                  | 117,40                                    | 31,47                         | 5,59E+05                     | 1,50E+05        |
| 36        | 8/1/1997    | 1,24                           | 1,74                               | 0,594                                      | 0,076                 | 0,24                      | 0,33                     | 0,40                                     | 0,56                                      | 0,33                            | 0,22                          | 5,30             | 0,008                  | 60,09                                     | 57,96                         | 7,51E+05                     | 7,24E+05        |
| 37        | 14/1/1997   | 0,81                           | 0,83                               | 0,963                                      | 0,097                 | 0,16                      | 0,16                     | 0,16                                     | 0,16                                      | 0,59                            | 0,58                          | 5,70             | 0,039                  | 97,15                                     | 98,26                         | 2,49E+05                     | 2,52E+05        |
| 38        | 24/1/1997   | 0,59                           | 0,01                               | 2,864                                      | 0,168                 | 0,11                      | 0,00                     | 0,04                                     | 0,00                                      | 0,88                            | 1,00                          | 6,30             | 0,008                  | 199,78                                    | 5,21                          | 2,50E+06                     | 6,50E+04        |
| 39        | 28/1/1997   | 1,15                           | 0,07                               | 2,165                                      | 0,146                 | 0,22                      | 0,01                     | 0,10                                     | 0,01                                      | 0,72                            | 0,98                          | 5,70             | 0,028                  | 250,59                                    | 21,23                         | 8,95E+05                     | 7,57E+04        |
| 40        | 11/2/1997   | 0,77                           | 0,93                               | 0,975                                      | 0,098                 | 0,15                      | 0,18                     | 0,15                                     | 0,18                                      | 0,61                            | 0,55                          | 5,10             | 0,007                  | 86,09                                     | 93,60                         | 1,23E+06                     | 1,34E+06        |
| 41        | 20/2/1997   | 0,78                           | 0,58                               | 1,355                                      | 0,115                 | 0,15                      | 0,11                     | 0,11                                     | 0,08                                      | 0,70                            | 0,76                          | 5,50             | 0,089                  | 126,73                                    | 103,12                        | 1,42E+05                     | 1,16E+05        |
| 42        | 5/3/1997    | 0,69                           | 0,70                               | 1,151                                      | 0,106                 | 0,13                      | 0,13                     | 0,11                                     | 0,12                                      | 0,69                            | 0,68                          | 5,20             | 0,017                  | 95,97                                     | 96,74                         | 5,64E+05                     | 5,69E+05        |
| 43        | 10/3/1997   | 1,33                           | 0,79                               | 1,133                                      | 0,105                 | 0,25                      | 0,15                     | 0,22                                     | 0,13                                      | 0,49                            | 0,65                          | 5,30             | 0,006                  | 133,77                                    | 104,77                        | 2,23E+06                     | 1,75E+06        |
| 44        | 13/3/1997   | 1,18                           | 1,40                               | 0,832                                      | 0,090                 | 0,22                      | 0,27                     | 0,27                                     | 0,32                                      | 0,44                            | 0,39                          | 5,30             | 0,002                  | 91,01                                     | 96,09                         | 4,55E+06                     | 4,80E+06        |
| 45        | 17/3/1997   | 0,65                           | 1,11                               | 0,952                                      | 0,097                 | 0,12                      | 0,21                     | 0,13                                     | 0,22                                      | 0,65                            | 0,49                          | 5,20             | 0,007                  | 77,78                                     | 100,82                        | 1,11E+06                     | 1,44E+06        |
| 46        | 20/3/1997   | 0,93                           | 1,50                               | 0,819                                      | 0,090                 | 0,18                      | 0,29                     | 0,22                                     | 0,35                                      | 0,50                            | 0,37                          | 5,30             | 0,005                  | 80,74                                     | 95,65                         | 1,61E+06                     | 1,91E+06        |
| 47        | 4/4/1997    | 0,74                           | 0,89                               | 1,250                                      | 0,111                 | 0,14                      | 0,17                     | 0,11                                     | 0,14                                      | 0,69                            | 0,64                          | 5,20             | 0,006                  | 108,05                                    | 120,01                        | 1,80E+06                     | 2,00E+06        |
| 48        | 7/4/1997    | 0,67                           | 1,64                               | 0,760                                      | 0,086                 | 0,13                      | 0,31                     | 0,17                                     | 0,41                                      | 0,58                            | 0,32                          | 5,20             | 0,003                  | 63,49                                     | 85,51                         | 2,12E+06                     | 2,85E+06        |
|           |             |                                |                                    |                                            | A.I.I.A.I.I.I.I.I.I.I |                           |                          |                                          |                                           |                                 |                               |                  |                        |                                           | MEDIA                         | 9,88E+05                     | 9,95E+05        |

Tabela 7.66 - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>90</sub> e o Dvj pra o Ribeirão do Feijão

| <b>(1)</b> | (2)        | (3)               | (4)                          | (5)  | (6)  | Ø     | Dmax/                   | li.        | d/D     | 1       | (12)                                        | (13)         | (14)             | (15)              | (16) | (17)    | (18)                   | (19)      | (20)    | (21)    |
|------------|------------|-------------------|------------------------------|------|------|-------|-------------------------|------------|---------|---------|---------------------------------------------|--------------|------------------|-------------------|------|---------|------------------------|-----------|---------|---------|
| N          | DATA       | $\mathbf{D}_{50}$ | <b>D</b> <sub>vi (LEV)</sub> | Dmax | d    | U     | (8)                     | Ø          | aŋ      | an      | $(\mathcal{C}_{1}^{*},\mathcal{D}_{1}^{*})$ | 1702.024     | 1.11.159.157.15  | 250008            | В    | gBm.    | q B[LEV]D <sub>*</sub> | 4B[LEV]Dv | ₽¶%µ0∞  | E[%]Dvj |
|            |            | (mm)              | (mm)                         | (nm) | (m)  | (m/s) | (Dmax/D <sub>50</sub> ) | (Dmax/Dvj) | d / 90  | d / Dvj | Ln[(d/7.D50)                                | Ln[(d/7.Dvj) | Uc <sub>50</sub> | Uc <sub>Dvj</sub> | (m)  | ton/dia | tondia                 | ton/dia   | 22      | <u></u> |
| 29         | 17/6/1994  | 0,83              | 2,53                         | 2,53 | 1,17 | 0,47  | 1,17                    | 1,00       | 141475  | 462,65  | 2,65                                        | 2,10         | 0,39             | 0,46              | 6,00 | 0,48    | 4,31                   | 0,44      | 805,46  | 6,96    |
| 35         | 8/9/1994   | 0,46              | 0,51                         | 0,51 | 1,26 | 0,31  | 1,01                    | 1,00       | 2718,61 | 2482,87 | 2,98                                        | 2,94         | 028              | 0,29              | 5,60 | 0,02    | 0,37                   | 0,28      | 1648,95 | 1251,45 |
| 38         | 27/10/1994 | 0,59              | 0,87                         | 0,87 | 119  | 0,35  | 1,06                    | 1,00       | 2018,74 | 1360,02 | 2,83                                        | 2,63         | 0,32             | 0,34              | 6,30 | 0,01    | 0,78                   | 0,20      | 9706,91 | 2421,78 |
|            |            |                   |                              |      |      |       |                         |            |         |         |                                             |              |                  |                   |      |         |                        | MÉDIA     | 4053,77 | 1226,73 |

Tabela 7.6c - Descargas calculadas pelo método de Levi (1948) usando o diämetro D<sub>50</sub> e o Dvj para o Kibeirão do Feijão

| (1)              | (2)        | (3)      | (4)                   | (5)   | (6)            | (7)             | (8)           | (9)                | (10) | (11)    | (12)                   | (13)       | (14)     | (15)       |
|------------------|------------|----------|-----------------------|-------|----------------|-----------------|---------------|--------------------|------|---------|------------------------|------------|----------|------------|
| $\mathbb{N}^{o}$ | DATA       | $D_{90}$ | D <sub>Vi [GAA]</sub> | U*    | $\theta_{i90}$ | $\theta_{iDvj}$ | $\phi_{kD90}$ | $\phi_{kDVj}$      | в    | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj] | E[%]D90  | E[%]Dvj    |
|                  |            | (mm)     | mm                    | (m/s) | 2 20 200       | 2000.00007.20   |               | Conservation of Co | (m)  | ton/dia | ton/dia                | ton/dia    | -        | -          |
| 1                | 14/5/1996  | 0,53     | 12,02                 | 0,091 | 0,95           | 0,04            | 13,83         | 0,01               | 5,00 | 0,022   | 765,73                 | 15,20      | 3,48E+06 | 6,90E+04   |
| 2                | 21/5/1996  | 0,59     | 12,06                 | 0,092 | 0,89           | 0,04            | 12,92         | 0,01               | 5,00 | 0,017   | 804,50                 | 17,40      | 4,73E+06 | 1,02E+05   |
| 3                | 28/5/1996  | 0,56     | 11,90                 | 0,089 | 0,86           | 0,04            | 12,47         | 0,01               | 5,00 | 0,016   | 713,16                 | 12,96      | 4,46E+06 | 8,09E+04   |
| 4                | 4/6/1996   | 0,72     | 11,76                 | 0,087 | 0,65           | 0,04            | 9,10          | 0,01               | 5,00 | 0,005   | 647,81                 | 11,34      | 1,30E+07 | 2,27E+05   |
| 5                | 11/6/1996  | 0,56     | 11,44                 | 0,082 | 0,73           | 0,04            | 10,51         | 0,01               | 5,00 | 0,002   | 549,26                 | 7,13       | 2,75E+07 | 3,57 E +05 |
| 6                | 18/6/1996  | 0,75     | 11,38                 | 0,080 | 0,53           | 0,03            | 6,84          | 0,01               | 5,00 | 0,005   | 471,18                 | 6,20       | 9,42E+06 | 1,24 E +05 |
| 7                | 25/6/1996  | 0,58     | 11,23                 | 0,077 | 0,64           | 0,03            | 8,87          | 0,00               | 5,00 | 0,002   | 454,55                 | 4,87       | 2,27E+07 | 2,44 E +05 |
| 8                | 1/7/1996   | 1,57     | 11,68                 | 0,085 | 0,28           | 0,04            | 2,44          | 0,01               | 5,00 | 0,007   | 371,45                 | 9,45       | 5,31E+06 | 1,35E+05   |
| 9                | 9/7/1996   | 0,68     | 11,44                 | 0,080 | 0,58           | 0,03            | 7,85          | 0,01               | 5,00 | 0,006   | 489,94                 | 6,21       | 8,17E+06 | 1,03E+05   |
| 10               | 16/7/1996  | 1,08     | 11,17                 | 0,077 | 0,34           | 0,03            | 3,71          | 0,00               | 5,00 | 0,006   | 352,98                 | 4,69       | 5,88E+06 | 7,81E+04   |
| 11               | 23/7/1996  | 0,58     | 11,05                 | 0,074 | 0,58           | 0,03            | 7,76          | 0,00               | 5,00 | 0,003   | 384,25                 | 0,19       | 1,28E+07 | 6,14E+03   |
| 12               | 30/7/1996  | 1,03     | 11,05                 | 0,076 | 0,35           | 0,03            | 3,99          | 0,00               | 5,00 | 0,004   | 356,81                 | 4,43       | 8,92E+06 | 1,11E+05   |
| 13               | 6/8/1996   | 0,54     | 10,77                 | 0,072 | 0,59           | 0,03            | 7,86          | 0,00               | 5,00 | 0,006   | 347,39                 | 0,18       | 5,79E+06 | 2,84 E +03 |
| 14               | 13/8/1996  | 0,57     | 11,88                 | 0,088 | 0,84           | 0,04            | 12,13         | 0,01               | 5,10 | 0,004   | 715,48                 | 12,74      | 1,79E+07 | 3,18E+05   |
| 15               | 23/8/1996  | 0,59     | 11,01                 | 0,074 | 0,57           | 0,03            | 7,61          | 0,00               | 5,00 | 0,004   | 380,52                 | 0,19       | 9,51E+06 | 4,56E+03   |
| 16               | 27/8/1996  | 0,75     | 11,08                 | 0,075 | 0,46           | 0,03            | 5,76          | 00,0               | 5,00 | 0,005   | 368,71                 | 0,19       | 7,37E+06 | 3,69E+03   |
| 17               | 3/9/1996   | 1,20     | 12,30                 | 0,097 | 0,48           | 0,05            | 6,12          | 0,02               | 5,10 | 0,005   | 825,88                 | 24,93      | 1,65E+07 | 4,98E+05   |
| 18               | 10/9/1996  | 0,64     | 13,90                 | 0,135 | 1,76           | 80,0            | 26,21         | 0,12               | 7,90 | 2,097   | 4 130 ,80              | 414,48     | 1,97E+05 | 1,97E+04   |
| 19               | 17/9/1996  | 0,57     | 13,15                 | 0,114 | 1,42           | 0,06            | 20,91         | 0,05               | 5,40 | 0,057   | 1675,11                | 86,99      | 2,94E+06 | 1,53E+05   |
| 20               | 20/9/1996  | 0,60     | 11,63                 | 0,083 | 0,70           | 0,04            | 10,07         | 0,01               | 4,90 | 0,005   | 558,20                 | 7,44       | 1,12E+07 | 1,49E+05   |
| 21               | 1/10/1996  | 0,57     | 10,84                 | 0,071 | 0,55           | 0,03            | 7,22          | 0,00               | 4,80 | 0,007   | 320,25                 | 0,17       | 4,57E+06 | 2,32E+03   |
| 22               | 8/10/1996  | 0,57     | 11,08                 | 0,074 | 0,60           | 0,03            | 8,12          | 0,00               | 5,00 | 0,006   | 391,98                 | 0,19       | 6,53E+06 | 3,04 E +03 |
| 23               | 15/10/1996 | 0,75     | 12,82                 | 0,106 | 0,93           | 0,05            | 13,52         | 0,03               | 5,30 | 0,166   | 1301,98                | 50,49      | 7,84E+05 | 3,03E+04   |
| 24               | 22/10/1996 | 0,74     | 10,47                 | 0,065 | 0,36           | 0,03            | 4,08          | 0,00               | 5,00 | 0,005   | 225,15                 | 0,16       | 4,50E+06 | 3,03E+03   |
| 25               | 31/10/1996 | 0,79     | 10,98                 | 0,072 | 0,40           | 0,03            | 4,73          | 00,00              | 5,00 | 0,038   | 307,26                 | 0,18       | 8,08E+05 | 3,73E+02   |
| 26               | 5/11/1996  | 0,58     | 5,59                  | 0,027 | 0,08           | 0,01            | 0,11          | 0,00               | 4,90 | 0,037   | 1,88                   | 0,03       | 4,98E+03 | 8,86E+00   |
| 27               | 12/11/1996 | 0,56     | 9,78                  | 0,057 | 0,36           | 0,02            | 4,12          | 0,00               | 4,80 | 0,003   | 142,98                 | 0,12       | 4,77E+06 | 3,97E+03   |
| 28               | 19/11/1996 | 0,68     | 13,39                 | 0,120 | 1,31           | 0,07            | 19,29         | 60,0               | 5,40 | 0,031   | 1956,81                | 128,82     | 6,31E+06 | 4,15E+05   |
| 29               | 22/11/1996 | 0,83     | 15,00                 | 0,172 | 2,22           | 0,12            | 30,00         | 0,32               | 00,6 | 0,476   | 5876,73                | 1151,16    | 1,23E+06 | 2,42E+05   |
| 30               | 25/11/1996 | 0,59     | 11,69                 | 0,083 | 0,73           | 0,04            | 10,45         | 0,01               | 4,90 | 800,0   | 574,45                 | 7,90       | 7,18E+06 | 9,87E+04   |
| 31               | 3/12/1996  | 0,62     | 11,17                 | 0,076 | 0,59           | 0,03            | 7,88          | 0,00               | 4,80 | 0,021   | 2531,30                | 395,85     | 1,21E+07 | 1,88E+06   |
| 32               | 5/12/1996  | 0,71     | 11,52                 | 0,082 | 0,58           | 0,04            | 7,85          | 0,01               | 4,90 | 0,008   | 294,33                 | 4,61       | 3,68E+06 | 5,76E+04   |

Tabela 7.6d - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj para o Ribeirão do Feijão

| (1) | (2)        | (3)      | (4)                   | (5)   | (6)                | (7)             | (8)                  | (9)           | (10) | (11)    | (12)                   | (13)       | (14)     | (15)       |
|-----|------------|----------|-----------------------|-------|--------------------|-----------------|----------------------|---------------|------|---------|------------------------|------------|----------|------------|
| Nº  | DATA       | $D_{90}$ | D <sub>Vi [GAA]</sub> | U*    | $\theta_{i\!9\!0}$ | $\theta_{iDvj}$ | $\phi_{kD90}$        | $\phi_{kDVj}$ | в    | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj] | E[%]D90  | E[%]Dvj    |
|     |            | (mm)     | mm                    | (m/s) | 222,300            | 2000-2000-200   | 1000 AND 17 10 24 CM |               | (m)  | ton/dia | ton/dia                | ton/dia    | -        | -          |
| 33  | 12/12/1996 | 0,65     | 12,70                 | 0,105 | 1,05               | 0,05            | 15,25                | 0,03          | 5,20 | 0,039   | 1060,08                | 28,10      | 2,72E+06 | 7,20E+04   |
| 34  | 18/12/1996 | 0,58     | 12,19                 | 0,093 | 0,93               | 0,04            | 13,41                | 0,01          | 5,00 | 800,0   | 4258,04                | 1003,46    | 5,32E+07 | 1,25E+07   |
| 35  | 4/1/1997   | 0,46     | 13,89                 | 0,142 | 2,71               | 0,09            | 30,00                | 0,16          | 5,60 | 0,028   | 3650,13                | 449,75     | 1,30E+07 | 1,61E+06   |
| 36  | 8/1/1997   | 1,24     | 11,20                 | 0,076 | 0,29               | 0,03            | 2,56                 | 0,00          | 5,30 | 0,007   | 969,01                 | 27,92      | 1,38E+07 | 3,99E+05   |
| 37  | 14/1/1997  | 0,81     | 12,44                 | 0,097 | 0,72               | 0,05            | 10,32                | 0,02          | 5,70 | 0,089   | 1737,35                | 97,14      | 1,95E+06 | 1,09E+05   |
| 38  | 24/1/1997  | 0,59     | 15,25                 | 0,168 | 2,96               | 0,11            | 30,00                | 0,27          | 6,30 | 0,017   | 1282,87                | 50,14      | 7,55E+06 | 2,95E+05   |
| 39  | 28/1/1997  | 1,15     | 14,12                 | 0,146 | 1,14               | 0,09            | 16,73                | 0,17          | 5,70 | 0,006   | 1133,77                | 48,50      | 1,89E+07 | 8,08E+05   |
| 40  | 11/2/1997  | 0,77     | 12,19                 | 0,098 | 0,76               | 0,05            | 10,96                | 0,02          | 5,10 | 0,002   | 672,36                 | 15,98      | 3,36E+07 | 7,99E+05   |
| 41  | 20/2/1997  | 0,78     | 13,14                 | 0,115 | 1,05               | 0,06            | 15,28                | 0,05          | 5,50 | 0,007   | 959,72                 | 25,50      | 1,37E+07 | 3,64 E +05 |
| 42  | 5/3/1997   | 0,69     | 12,77                 | 0,106 | 1,01               | 0,05            | 14,70                | 0,03          | 5,20 | 0,005   | 705,01                 | 15,05      | 1,41E+07 | 3,01E+05   |
| 43  | 10/3/1997  | 1,33     | 12,71                 | 0,105 | 0,52               | 0,05            | 6,65                 | 0,03          | 5,30 | 0,006   | 1452,85                | 67,45      | 2,42E+07 | 1,12E+06   |
| 44  | 13/3/1997  | 1,18     | 11,90                 | 0,090 | 0,43               | 0,04            | 5,22                 | 0,01          | 5,30 | 0,003   | 670,32                 | 11,31      | 2,23E+07 | 3,77E+05   |
| 45  | 17/3/1997  | 0,65     | 12,24                 | 0,097 | 0,89               | 0,05            | 12,91                | 0,02          | 5,20 | 0,485   | 692,42                 | 86,62      | 1,43E+05 | 1,78E+04   |
| 46  | 20/3/1997  | 0,93     | 11,88                 | 0,090 | 0,54               | 0,04            | 6,98                 | 0,01          | 5,30 | 0,396   | 165,67                 | 0,60       | 4,17E+04 | 5,09E+01   |
| 47  | 4/4/1997   | 0,74     | 13,00                 | 0,111 | 1,02               | 0,06            | 14,83                | 0,04          | 5,20 | 1,721   | 133,33                 | 31,63      | 7,65E+03 | 1,74E+03   |
| 48  | 7/4/1997   | 0,67     | 11,68                 | 0,086 | 0,69               | 0,04            | 9,73                 | 0,01          | 5,20 | 0,171   | 763,55                 | 20,56      | 4,46E+05 | 1,19E+04   |
|     |            |          |                       |       |                    |                 |                      |               |      |         |                        | MEDIA      | 9,79E+06 | 5,07E+05   |

Tabela 7.6d - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>84</sub> e o Dvj para o Ribeirão do Feijão

| (1)          | (2)        | (3)             | (4)    | (6)   | (7)            | (8)               | (9)                    | (10)                       | (11)                     | (12)                     | (13) | (14)    | (15)        | (16)       | (17)               | (18)       |
|--------------|------------|-----------------|--------|-------|----------------|-------------------|------------------------|----------------------------|--------------------------|--------------------------|------|---------|-------------|------------|--------------------|------------|
| N°           | DATA       | D <sub>50</sub> | DVIDEN | U.    | $\Theta_{i50}$ | θ <sub>iDmi</sub> | $(\Theta_{150})^{3/2}$ | $(\Theta_{iD_{ij}})^{3/2}$ | (e <sub>150</sub> )-0,04 | (Ə <sub>Dıj</sub> )-0,04 | В    | qBm     | qB[PER]D50] | qB[PER]Dvj | E[%] <sub>50</sub> | E[%]Dvj    |
| 41. co.11.5c |            | (mm)            | mm     | (m/s) | 10776          |                   |                        | 52A                        | 6                        | 252                      | (m)  | ton/dia | ton/dia     | ton/dia    | -                  |            |
| 18           | 10/9/1996  | 0,38            | 23,42  | 0,135 | 2,946          | 0,048             | 5,057                  | 0,011                      | 2,906                    | 0,008                    | 7,90 | 2,097   | 12731,813   | 57,522     | 607044, 14         | 2643,08    |
| 19           | 17/9/1996  | 0,35            | 19,55  | 0,114 | 2,271          | 0,041             | 3,423                  | 0,008                      | 2,231                    | 0,001                    | 5,40 | 0,057   | 5858, 321   | 3,225      | 10277656,85        | 5557,42    |
| 28           | 19/11/1996 | 0,38            | 20,72  | 0,120 | 2,328          | 0,043             | 3,552                  | 0,009                      | 2,288                    | 0,003                    | 5,40 | 0,031   | 7042,586    | 10,455     | 22717917,82        | 33626,83   |
| 29           | 22/11/1996 | 0,50            | 30,53  | 0,172 | 3,703          | 0,060             | 7,126                  | 0,015                      | 3,663                    | 0,020                    | 6,00 | 0,476   | 33201,219   | 219,209    | 6974945,96         | 45952,31   |
| 35           | 4/1/1997   | 0,27            | 23,35  | 0,142 | 4,677          | 0,054             | 10,115                 | 0,012                      | 4,637                    | 0,014                    | 5,60 | 0,021   | 23695,349   | 78,259     | 112834893,27       | 372564,26  |
| 38           | 24/1/1997  | 0,20            | 32,41  | 0,168 | 8,637          | 0,054             | 25,382                 | 0,012                      | 8,597                    | 0,014                    | 6,30 | 0,008   | 71597,972   | 142,377    | 894974545,41       | 1779615,67 |
| 39           | 28/1/1997  | 0,44            | 24,67  | 0,146 | 3,010          | 0,053             | 5,222                  | 0,012                      | 2,970                    | 0,013                    | 5,70 | 0,028   | 16255,652   | 82,287     | 58055800,48        | 293781,46  |
| 41           | 20/2/1997  | 0,43            | 19,48  | 0,115 | 1,924          | 0,042             | 2,668                  | 0,009                      | 1,884                    | 0,002                    | 5,50 | 0,089   | 5106,835    | 6,495      | 5737917,23         | 7197,21    |
| 47           | 4/4/1997   | 0,40            | 18,84  | 0,111 | 1,885          | 0,040             | 2,587                  | 0,008                      | 1,845                    | 0,000                    | 5,20 | 0,006   | 4428,703    | 0,542      | 73811621,89        | 8933,51    |
|              |            |                 |        |       |                |                   |                        |                            |                          |                          |      |         |             | MĚDIA      | 1,32E+08           | 2,83E+05   |

Tabela 7.6e - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro D<sub>50</sub> e o Dvj para o Ribeirão do Feijão

| (1) | (2)        | (3)      | (4)                   | (5)   | (6)    | (7)    | (8)  | (9)     | (10)       | (11)       | (12)     | (13)     |
|-----|------------|----------|-----------------------|-------|--------|--------|------|---------|------------|------------|----------|----------|
| №   | DATA       | $D_{90}$ | D <sub>Vj [INL]</sub> | U     | Wnan   | Wnvi   | в    | qBm     | qB[INL]D50 | qB[INL]Dvj | E[%]D90  | E[%]Dvj  |
|     |            | (mm)     | (mm)                  | (m/s) | (m/s)  | (m/s)  | (m)  | ton/dia | ton/dia    | ton/dia    | 5        | 12       |
| 1   | 14/5/1996  | 0,53     | 12,29                 | 0,22  | 0,0653 | 0,3636 | 5,00 | 0,022   | 877,736    | 6,840      | 3,99E+06 | 3,10E+04 |
| 2   | 21/5/1996  | 0,59     | 12,07                 | 0,26  | 0,0701 | 0,3603 | 5,00 | 0,017   | 1620,221   | 15,384     | 9,53E+06 | 9,04E+04 |
| 3   | 28/5/1996  | 0,56     | 12,34                 | 0,22  | 0,0679 | 0,3644 | 5,00 | 0,016   | 650,973    | 5,538      | 4,07E+06 | 3,45E+04 |
| 4   | 4/6/1996   | 0,72     | 12,25                 | 0,23  | 0,0798 | 0,3631 | 5,00 | 0,005   | 572,610    | 7,345      | 1,15E+07 | 1,47E+05 |
| 5   | 11/6/1996  | 0,56     | 12,31                 | 0,22  | 0,0677 | 0,3640 | 5,00 | 0,002   | 720,360    | 6,091      | 3,60E+07 | 3,04E+05 |
| 6   | 18/6/1996  | 0,75     | 12,42                 | 0,20  | 0,0824 | 0,3656 | 5,00 | 0,005   | 309,009    | 4,215      | 6,18E+06 | 8,42E+04 |
| 7   | 25/6/1996  | 0,58     | 11,88                 | 0,33  | 0,0692 | 0,3575 | 5,00 | 0,002   | 5066,192   | 47,717     | 2,53E+08 | 2,39E+06 |
| 8   | 1/7/1996   | 1,57     | 12,24                 | 0,24  | 0,1262 | 0,3629 | 5,00 | 0,007   | 200,746    | 8,933      | 2,87E+06 | 1,28E+05 |
| 9   | 9/7/1996   | 0,68     | 12,32                 | 0,23  | 0,0772 | 0,3641 | 5,00 | 0,006   | 635,857    | 7,445      | 1,06E+07 | 1,24E+05 |
| 10  | 16/7/1996  | 1,08     | 12,37                 | 0,21  | 0,1025 | 0,3648 | 5,00 | 0,006   | 219,707    | 5,391      | 3,66E+06 | 8,98E+04 |
| 11  | 23/7/1996  | 0,58     | 12,55                 | 0,19  | 0,0697 | 0,3675 | 5,00 | 0,003   | 347,410    | 3,066      | 1,16E+07 | 1,02E+05 |
| 12  | 30/7/1996  | 1,03     | 12,42                 | 0,20  | 0,0994 | 0,3656 | 5,00 | 0,004   | 161,804    | 3,632      | 4,05E+06 | 9,07E+04 |
| 13  | 6/8/1996   | 0,54     | 12,63                 | 0,17  | 0,0659 | 0,3687 | 5,00 | 0,006   | 229,096    | 1,752      | 3,82E+06 | 2,91E+04 |
| 14  | 13/8/1996  | 0,57     | 12,29                 | 0,22  | 0,0687 | 0,3637 | 5,10 | 0,004   | 741,658    | 6,516      | 1,85E+07 | 1,63E+05 |
| 15  | 23/8/1996  | 0,59     | 12,71                 | 0,17  | 0,0703 | 0,3698 | 5,00 | 0,004   | 164,482    | 1,453      | 4,11E+06 | 3,62E+04 |
| 16  | 27/8/1996  | 0,75     | 12,71                 | 0,12  | 0,0820 | 0,3698 | 5,00 | 0,005   | 18,571     | 0,242      | 3,71E+05 | 4,74E+03 |
| 17  | 3/9/1996   | 1,20     | 12,08                 | 0,25  | 0,1086 | 0,3606 | 5,10 | 0,005   | 441,455    | 13,150     | 8,83E+06 | 2,63E+05 |
| 18  | 10/9/1996  | 0,64     | 11,03                 | 0,41  | 0,0745 | 0,3444 | 7,90 | 2,097   | 20427,349  | 258,074    | 9,74E+05 | 1,22E+04 |
| 19  | 17/9/1996  | 0,57     | 11,79                 | 0,31  | 0,0683 | 0,3561 | 5,40 | 0,057   | 4110,961   | 38,022     | 7,21E+06 | 6,66E+04 |
| 20  | 20/9/1996  | 0,60     | 12,25                 | 0,25  | 0,0708 | 0,3631 | 4,90 | 0,005   | 1176,042   | 11,198     | 2,35E+07 | 2,24E+05 |
| 21  | 1/10/1996  | 0,57     | 12,44                 | 0,22  | 0,0683 | 0,3659 | 4,80 | 0,007   | 659,753    | 5,627      | 9,42E+06 | 8,03E+04 |
| 22  | 8/10/1996  | 0,57     | 12,37                 | 0,23  | 0,0683 | 0,3649 | 5,00 | 0,006   | 804,897    | 6,924      | 1,34E+07 | 1,15E+05 |
| 23  | 15/10/1996 | 0,75     | 11,77                 | 0,32  | 0,0821 | 0,3559 | 5,30 | 0,166   | 3242,785   | 47,440     | 1,95E+06 | 2,85E+04 |
| 24  | 22/10/1996 | 0,74     | 11,59                 | 0,22  | 0,0814 | 0,3531 | 5,00 | 0,005   | 464,817    | 6,822      | 9,30E+06 | 1,36E+05 |
| 25  | 31/10/1996 | 0,79     | 12,31                 | 0,25  | 0,0852 | 0,3639 | 5,00 | 0,038   | 766,272    | 11,579     | 2,02E+06 | 3,04E+04 |
| 26  | 5/11/1996  | 0,58     | 12,13                 | 0,28  | 0,0691 | 0,3613 | 4,90 | 0,037   | 2251,472   | 20,480     | 6,08E+06 | 5,53E+04 |
| 27  | 12/11/1996 | 0,56     | 12,52                 | 0,22  | 0,0673 | 0,3671 | 4,80 | 0,003   | 700,064    | 5,701      | 2,33E+07 | 1,90E+05 |
| 28  | 19/11/1996 | 0,68     | 11,59                 | 0,35  | 0,0774 | 0,3531 | 5,40 | 0,031   | 6079,555   | 78,360     | 1,96E+07 | 2,53E+05 |
| 29  | 22/11/1996 | 0,83     | 10,96                 | 0,47  | 0,0874 | 0,3433 | 6,00 | 0,476   | 21292,684  | 409,188    | 4,47E+06 | 8,59E+04 |
| 30  | 25/11/1996 | 0,59     | 12,21                 | 0,26  | 0,0700 | 0,3625 | 4,90 | 0,008   | 1503,285   | 13,985     | 1,88E+07 | 1,75E+05 |
| 31  | 3/12/1996  | 0,62     | 12,30                 | 0,24  | 0,0722 | 0,3638 | 4,80 | 0,013   | 875,894    | 8,693      | 6,74E+06 | 6,68E+04 |
| 32  | 5/12/1996  | 0,71     | 12,28                 | 0,23  | 0,0793 | 0,3636 | 4,90 | 0,008   | 663,841    | 8,341      | 8,30E+06 | 1,04E+05 |

Tabela 7.6f - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj para o Ribeirão do Feijão

| (1) | (2)        | (3)               | (4)                   | (5)   | (6)              | (7)              | (8)  | (9)     | (10)       | (11)       | (12)     | (13)     |
|-----|------------|-------------------|-----------------------|-------|------------------|------------------|------|---------|------------|------------|----------|----------|
| N⁰  | DATA       | $\mathbf{D}_{90}$ | D <sub>vj [INL]</sub> | U     | W <sub>B90</sub> | W <sub>Dvj</sub> | в    | qBm     | qB[INL]D50 | qB[INL]Dvj | E[%]D90  | E[%]Dvj  |
|     |            | (mm)              | (mm)                  | (m/s) | (m/s)            | (m/s)            | (m)  | ton/dia | ton/dia    | ton/dia    | -        | 92       |
| 33  | 12/12/1996 | 0,65              | 11,86                 | 0,30  | 0,0749           | 0,3572           | 5,20 | 0,040   | 2584,447   | 29,729     | 6,46E+06 | 7,42E+04 |
| 34  | 18/12/1996 | 0,58              | 12,07                 | 0,27  | 0,0695           | 0,3604           | 5,00 | 0,008   | 1921,678   | 17,868     | 2,40E+07 | 2,23E+05 |
| 35  | 4/1/1997   | 0,46              | 11,47                 | 0,31  | 0,0587           | 0,3513           | 5,60 | 0,021   | 6202,676   | 41,739     | 2,95E+07 | 1,99E+05 |
| 36  | 8/1/1997   | 1,24              | 12,09                 | 0,27  | 0,1109           | 0,3607           | 5,30 | 0,008   | 599,353    | 18,902     | 7,49E+06 | 2,36E+05 |
| 37  | 14/1/1997  | 0,81              | 11,86                 | 0,30  | 0,0863           | 0,3572           | 5,70 | 0,039   | 2147,079   | 35,424     | 5,51E+06 | 9,07E+04 |
| 38  | 24/1/1997  | 0,59              | 11,45                 | 0,35  | 0,0699           | 0,3510           | 6,30 | 0,008   | 8735,316   | 89,215     | 1,09E+08 | 1,12E+06 |
| 39  | 28/1/1997  | 1,15              | 11,44                 | 0,33  | 0,1061           | 0,3508           | 5,70 | 0,028   | 1986,525   | 60,227     | 7,09E+06 | 2,15E+05 |
| 40  | 11/2/1997  | 0,77              | 11,88                 | 0,28  | 0,0839           | 0,3575           | 5,10 | 0,007   | 1363,148   | 20,849     | 1,95E+07 | 2,98E+05 |
| 41  | 20/2/1997  | 0,78              | 11,93                 | 0,26  | 0,0845           | 0,3583           | 5,50 | 0,089   | 1049,833   | 16,244     | 1,18E+06 | 1,82E+04 |
| 42  | 5/3/1997   | 0,69              | 11,94                 | 0,28  | 0,0780           | 0,3584           | 5,20 | 0,017   | 1708,573   | 21,477     | 1,01E+07 | 1,26E+05 |
| 43  | 10/3/1997  | 1,33              | 11,98                 | 0,26  | 0,1154           | 0,3591           | 5,30 | 0,006   | 443,855    | 15,858     | 7,40E+06 | 2,64E+05 |
| 44  | 13/3/1997  | 1,18              | 12,11                 | 0,24  | 0,1076           | 0,3610           | 5,30 | 0,002   | 354,382    | 10,245     | 1,77E+07 | 5,12E+05 |
| 45  | 17/3/1997  | 0,65              | 12,05                 | 0,25  | 0,0746           | 0,3601           | 5,20 | 0,007   | 1141,368   | 12,682     | 1,63E+07 | 1,81E+05 |
| 46  | 20/3/1997  | 0,93              | 12,18                 | 0,23  | 0,0938           | 0,3620           | 5,30 | 0,005   | 406,749    | 8,030      | 8,13E+06 | 1,60E+05 |
| 47  | 4/4/1997   | 0,74              | 12,21                 | 0,22  | 0,0818           | 0,3625           | 5,20 | 0,006   | 500,227    | 6,865      | 8,34E+06 | 1,14E+05 |
| 48  | 7/4/1997   | 0,67              | 12,21                 | 0,23  | 0,0765           | 0,3625           | 5,20 | 0,003   | 634,296    | 7,343      | 2,11E+07 | 2,45E+05 |
|     |            |                   |                       |       |                  |                  |      |         |            |            | 1,76E+07 | 2,04E+05 |

Tabela 7.6f - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj para o Ribeirão do Feijão

## ANEXO E

Comparação entre os diâmetros calculados pelas equações desenvolvidas na pesquisa e os diâmetros coletados no rio Mogi-Guaçu

| DIÂ M           | ETROS           | DO LE           | ITO DO  | PARA O          | RIOMO    | OGI-GU | ٩ÇU             | 1                   |                 | COMP            | ARAÇA | AO ENT          | TRE DW               | ıs⊾Dı |              | RELAÇ           | X O PERC        | ENTUAL          | ENTRE OS        | VALORES  | DE D <sub>VJ</sub> | 12.02530 |
|-----------------|-----------------|-----------------|---------|-----------------|----------|--------|-----------------|---------------------|-----------------|-----------------|-------|-----------------|----------------------|-------|--------------|-----------------|-----------------|-----------------|-----------------|----------|--------------------|----------|
|                 | Granu           | lometri         | ia do m | aterial         | do leito | )      |                 | Ĵ                   | (10)            | (11)            | (12)  | (13)            | (14)                 | (15)  | (16)         | EOSV            | ALORES          | PARA D          | COLETADO        | S NO RIO | MOGI-GI            | JAÇU     |
| (1)             | (2)             | (3)             | (4)     | (5)             | (6)      | (7)    | (8)             | (9)                 |                 | COMP/           | ARAÇÂ | O DE            | D <sub>VJ</sub> (BCH | COM:  | 8 ° ° ° °    | (17)            | (18)            | (19)            | (20)            | (21)     | (22)               | (23)     |
| N™              | D <sub>35</sub> | D <sub>50</sub> | D65     | D <sub>90</sub> | - 28     | Ξ.     | 2 ( <u>5</u> %) | D <sub>Vi</sub> sca | D <sub>35</sub> | D <sub>50</sub> | D 65  | D <sub>90</sub> | 1                    | -81   | - 81         | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | ÷.       | 19                 | ×.       |
| -5135.ec<br>-52 | (mm)            | (mm)            | (mm)    | (mm)            |          |        |                 | (mm)                | 2802            |                 |       | - 1627A         | ~                    |       |              |                 | 200-01          | 20123<br>54     | 125             |          |                    |          |
| 1               | 0,35            | 0,46            | 0,58    | 0,93            | -        | -      | £               | 173,63              | 1               | 1               | 1     | 1               | -                    | -     | (            | 49508,5         | 37645,6         | 29836,2         | 18569,9         | -        | -                  | -        |
| 2               | 0,49            | 0,60            | 0,73    | 1,48            | -        | -      | 4               | 171,01              | 1               | 1               | 1     | 1               | -                    | -     | -            | 34799,1         | 28400,9         | 23325,4         | 11454,4         | -        | -                  | -        |
| 3               | 0,52            | 0,63            | 0,80    | 193             | -        | -      | -               | 302,07              | 1               | 1               | 1     | 1               | -                    | -     | -            | 57990,2         | 47847,4         | 37658,6         | 15551,2         | -        | -                  | -        |
| 4               | 0,32            | 0 ,42           | 0,59    | 1,39            | -        | -      | -               | 301,06              | 1               | 1               | 1     | 1               | -                    | -     | -            | 93981,1         | 71580,9         | 50927,1         | 21559,0         | -        | -                  | -        |
| 5               | 0,39            | 0,50            | 0,66    | 1,30            | -        | -      | -               | 294,05              | 1               | 1               | 1     | 1               | -                    | -     | -            | 75297,1         | 58709,7         | 44452,8         | 22519,1         | 2        | -                  | -        |
| 6               | 0,35            | 0,43            | 0,58    | 1,18            | -        | -      | -               | 263,02              | 1               | 1               | 1     | 1               | -                    | -     | -            | 75048,9         | 61067,7         | 45248,5         | 22189,9         | -        | -                  | -        |
| 7               | 0,30            | 0,40            | 0,53    | 114             | -        | -      | -               | 228,00              | 1               | 1               | 1     | 1               | -                    | -     | -            | 75899,9         | 56899,9         | 42918,8         | 19900,0         | -        | -                  | -        |
| 8               | 0,36            | 0,45            | 0,56    | 116             | -        | -      | -               | 273,19              | 1               | 1               | 1     | 1               | -                    | -     | -            | 75786,7         | 60609,3         | 48684,3         | 23451,0         | -        | -                  | -        |
| 9               | 0,34            | 0,41            | 0,54    | 0,95            | -        | -      | -               | 293,46              | 1               | 1               | 1     | 1               | -                    | -     | -            | 86211,9         | 71475,7         | 54244,5         | 30790,6         | -        | -                  | -        |
| 10              | 0,34            | 0,41            | 0,59    | 1,10            | -        | -      | -               | 259,28              | 1               | 1               | 1     | 1               | -                    | -     | -            | 76159,6         | 63139,7         | 43846,2         | 23471,1         | -        | -                  | -        |
| 11              | 0,47            | 0,66            | 0,95    | 2,37            | -        | -      | -               | 312,58              | 1               | 1               | 1     | 1               | -                    | -     | -            | 66405,9         | 47260,2         | 32802,9         | 13088,9         |          | -                  | -        |
| 12              | 0,43            | 0,54            | 0,69    | 127             | -        | -      | -               | 270,68              | 1               | 1               | 1     | 1               | -                    | -     | -            | 62849,1         | 50026,1         | 39129,1         | 21213,5         | -        | -                  | -        |
| 13              | 0,39            | 0,49            | 0,63    | 1,39            | -        |        | -               | 251,84              | 1               | 1               | 1     | 1               | -                    | -     | -            | 64474,2         | 51295,8         | 39874,5         | 18017,9         | -        |                    | -        |
| 14              | 0,40            | 0.52            | 0,69    | 1,25            | -        | -      | -               | 266,71              | 1               | 1               | 1     | 1               | -                    | -     | -            | 66576,8         | 51189,8         | 38553,2         | 21236,6         | -        | -                  | -        |
| 15              | 0,40            | 0 49            | 0,03    | 1,27            | -        |        |                 | 227,56              | 1               | 1               | 1     | 1               |                      | -     | -            | 56790,6         | 46341,3         | 36021,0         | 17818,3         |          | -                  | -        |
| 10              | 0,37            | 0,40            | 0,59    | 1,10            | -        |        |                 | 238,99              | 1               | 1               | 1     | 1               |                      |       |              | 64492,4         | 51854,8         | 40407,1         | 21626,5         | -        |                    |          |
| 17              | 0,37            | 0,44            | 0,57    | 105             | -        | -      | -               | 238,85              | 1               | 1               | 1     | 1               | -                    | -     |              | 64454,1         | 54184,2         | 41803,6         | 22647,6         | -        | -                  | -        |
| 10              | 0,41            | 0.51            | 0,67    | 141             | -        | -      |                 | 208,24              | 1               | 1               | 1     | 1               |                      | -     |              | 50690,1         | 40731,3         | 30980,5         | 17109,9         |          |                    |          |
| 20              | 0,40            | 0 40            | 0.62    | 120             | -        | -      |                 | 209,39              | 1               | 1               | 1     | 1               | -                    | -     |              | 52248,1         | 40957,3         | 30246,7         | 13237,1         | -        |                    | -        |
| 21              | 0.42            | 0 52            | 0.66    | 130             | -        |        |                 | 211,09              | 1               | 1               | 1     | 1               | -                    | -     | <u>-</u>     | 52672,8         | 429/98          | 33406,5         | 17490,9         | -        |                    |          |
| 22              | 0.30            | 0.40            | 0.63    | 122             | -        |        | -               | 210,07              |                 | 1               | 1     | 1               | -                    | -     |              | 51488 A         | 41567,5         | 32729,0         | 16567,0         | -        | -                  | -        |
| 23              | 0.46            | 0.58            | 0.74    | 143             | -        |        |                 | 203,47              | 1               | 1               | 1     | 1               |                      |       | <del>.</del> | 02072,5         | 41420,1         | 32197,3         | 160/8,1         | -        | -                  |          |
| 24              | 0.30            | 0.50            | 0.64    | 124             | -        |        |                 | 203,27              | 1               | 1               | 1     | 1               |                      | -     |              | 44089,8         | 34947,1         | 27369,4         | 14114,9         |          | -                  | -        |
| 25              | 0.40            | 0.51            | 0.65    | 153             |          |        |                 | 100 02              |                 |                 | 4     | 4               |                      |       |              | 47400 4         | 20030.0         | 200542          | 10123,1         | -        | -                  |          |
| 26              | 0.44            | 0.56            | 0.72    | 133             |          |        |                 | 100,03              | 1               | i<br>           | 1     | 1               |                      |       |              | 471064          | 303202          | 26001,3         | 12242,1         |          |                    |          |
| 27              | 0,43            | 0.56            | 0,73    | 1,68            | -        |        |                 | 186 50              | 4               | 4               | 4     | 4               |                      |       |              | 42001,7         | 33220.5         | 25460.9         | 14040,7         |          |                    |          |
| 28              | 0.49            | 0.63            | 0.82    | 1.68            |          |        | _               | 184.85              | 4               | 4               | 4     | 4               |                      |       | _            | 37624.6         | 29241.4         | 22442.8         | 10903.0         |          |                    | _        |
|                 |                 |                 | i       |                 |          |        |                 | 104,00              |                 |                 |       |                 |                      |       |              | 010240          | 202414          | 22442,0         |                 |          |                    |          |

#### Tabela 8.4a - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu
| DIÅ M  | ETROS           | DO LE           | ITO DO          | PARA O          | RIOM     | OGI-GW | AÇU.           |                     |                 | COMP            | AR AÇ           | ÃO ENT          | rre D <sub>w</sub>   | us. Di |      | RELAÇ           | X O PERC        | ENTUAL          | ENTRE OS        | VALORES  | 6 DE D <sub>VJ</sub> |      |
|--------|-----------------|-----------------|-----------------|-----------------|----------|--------|----------------|---------------------|-----------------|-----------------|-----------------|-----------------|----------------------|--------|------|-----------------|-----------------|-----------------|-----------------|----------|----------------------|------|
|        | Granu           | lometri         | ia do m         | aterial         | do leito | 2      |                |                     | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)   | (16) | E OS V          | A LORES         | PARA DI         | COLETA DO       | S NO RI  | O MOGI-G             | UAÇU |
| (1)    | (2)             | (3)             | (4)             | (5)             | (6)      | (7)    | (8)            | (9)                 |                 | COMP/           | ARAÇÂ           | O DE            | D <sub>VJ</sub> (sci | H COM: |      | (17)            | (18)            | (19)            | (20)            | (21)     | (22)                 | (23) |
| N      | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> |          | ÷.     | 8 <del>.</del> | D <sub>Vi</sub> BCE | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | -                    | - 23   | -    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | -        | -                    | ÷    |
| 100.00 | (mm)            | (mm)            | (mm)            | (mm)            |          |        |                | (mm)                | 2.855           |                 |                 | 200             |                      |        |      |                 | 10001           | 1997-199<br>5-1 |                 |          |                      |      |
| 29     | 0,43            | 0 ,55           | 0,69            | 1,41            |          | -      | -              | 197,39              | 1               | 1               | 1               | 1               | -                    | -      | -    | 45804,2         | 35788,7         | 28507,0         | 13899,2         |          | -                    | -    |
| 30     | 0,38            | 0 ,47           | 0,60            | 113             | -        | -      | -              | 182,28              | 1               | 1               | 1               | 1               | -                    | -      | -    | 47869,3         | 38683,7         | 30280,5         | 16031,3         | -        | -                    | -    |
| 31     | 0,35            | 0 ,45           | 0,59            | 1,10            | -        | -      | -              | 177,18              | 1               | 1               | 1               | 1               | -                    | -      | -    | 50523 A         | 39273,7         | 29930,8         | 16007,4         | -        | -                    | -    |
| 32     | 0,46            | 0,59            | 0,80            | 1,73            | -        | -      | -              | 207,66              | 1               | 1               | 1               | 1               | -                    | -      | -    | 45043,3         | 35096,5         | 25857,4         | 11903,4         | -        | -                    | -    |
| 33     | 0,40            | 0,53            | 0,70            | 1,53            | -        | -      | -              | 161,27              | 1               | 1               | 1               | 1               | -                    | -      | -    | 40218,0         | 30328,7         | 22938,9         | 10440,7         | 2        | -                    | -    |
| 34     | 0,39            | 0 52            | 0,70            | 1,40            | -        | -      | -              | 162,55              | 1               | 1               | 1               | 1               | -                    | -      | -    | 41580,6         | 31160,5         | 23122,1         | 11511,0         | -        | -                    | -    |
| 35     | 0,38            | 0 ,49           | 0,66            | 1,41            | -        | -      | -              | 161,54              | 1               | 1               | 1               | 1               | -                    | -      | -    | 424 10,3        | 32867,2         | 24375,6         | 11356,7         | -        | -                    | -    |
| 36     | 0,41            | 0,54            | 0,74            | 1,59            | -        | -      | ·-             | 158,72              | 1               | 1               | 1               | 1               | -                    | -      | -    | 38611,8         | 29292,3         | 21348,4         | 9882,3          | -        | -                    | -    |
|        |                 |                 |                 |                 |          |        |                |                     |                 | (%)             | de eve          | ntoser          | n que l              | OVJ≻D  | )1   | DIFE            | RENÇAP          | PERCENT         | UAL RELA        | ATIVA ME | ÉDIA                 |      |
|        |                 |                 |                 |                 |          |        |                |                     | 100,0           | 100,0           | 100,0           | 100,0           |                      |        |      | 56228,3         | 44379,2         | 33812,3         | 16821,1         |          |                      |      |

Tabela 8.4a - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LE           | поро            | PARA O          | RIO MO   | OG+GU/ | ٩ÇU     |                   |                 | COMP            | ARAÇ <i>i</i>   | ÃO ENT          | REDV    | J& DI |      | RELAÇ           | à O PERC        | ENTUAL E        | NTRE OS         | VALORES  | DE D <sub>W</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|--------|---------|-------------------|-----------------|-----------------|-----------------|-----------------|---------|-------|------|-----------------|-----------------|-----------------|-----------------|----------|-------------------|------|
|      | Granu           | lometri         | adom            | aterial         | do leito | 0      |         |                   | (10)            | (11)            | (12)            | (13)            | (14)    | (15)  | (16) | E OS V          | ALORES          | PARA DIC        | OLETADO         | S NO RIO | MOGIG             | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)    | (8)     | (9)               |                 | COMP            | ARAÇÂ           | O DE            | Dvj (зн | COM:  |      | (17)            | (18)            | (19)            | (20)            | (21)     | (22)              | (23) |
| N    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1        | 1.00   | ×       | D <sub>vism</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | ×       | ×     | ×    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1997     |                   | 1    |
| . 3  | (mm)            | (mm)            | (mm)            | (mm)            |          | 10     |         | mm                | - 5553          | - 2000,         | - 200           |                 |         |       |      | 05721           |                 | 1000            | 0.525           |          |                   |      |
| 1    | 0,35            | 0,46            | 0,58            | 0,93            | -        | -      |         | 352               | 1               | 1               | 1               | 1               |         |       |      | 904,8           | 664,5           | 506,4           | 278,2           | -        | -                 | -    |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            | -        | -      | -       | 3,81              | 1               | 1               | 1               | 1               | -       | -     | -    | 676,8           | 534,4           | 421,4           | 157,2           | -        | -                 | -    |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            | -        | -      | -       | 427               | 1               | 1               | 1               | 1               | -       | -     | -    | 722,1           | 578,5           | 434,4           | 121,5           | -        | -                 | -    |
| 4    | 0,32            | 0,42            | 0,59            | 1,39            | -        | -      | -       | 3,99              | 1               | 1               | 1               | 1               | -       | -     | -    | 1145,5          | 849,0           | 575,5           | 186,7           | -        | -                 | -    |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -        | -      | -       | 3,21              | 1               | 1               | 1               | 1               | -       | -     | -    | 722,2           | 541,3           | 385,8           | 146,6           | -        | -                 | -    |
| 6    | 0,35            | 0,43            | 0,58            | 1,18            | -        | -      | -       | 321               | 1               | 1               | 1               | 1               | -       | -     | -    | 816,1           | 645,7           | 452,8           | 171,7           | -        | -                 | -    |
| 7    | 0,30            | 0,40            | 0,53            | 1,14            | -        | -      | -       | 352               | 1               | 1               | 1               | 1               | -       | -     | -    | 1072,3          | 779,2           | 563,6           | 208,5           | -        | -                 | -    |
| 8    | 0,36            | 0,45            | 0,56            | 1,16            | -        | -      | -       | 3,21              | 1               | 1               | 1               | 1               | -       | -     | -    | 790,7           | 612,5           | 472,6           | 176,4           | -        | -                 | -    |
| 9    | 0,34            | 0,41            | 0,54            | 0,95            | -        | -      | -       | 3,21              | 1               | 1               | 1               | 1               | -       | -     | -    | 843,1           | 682,0           | 493,8           | 237,5           | -        | -                 | -    |
| 10   | 0,34            | 0,41            | 0,59            | 1,10            | -        | -      | -       | 3,21              | 1               | 1               | 1               | 1               | -       | -     | -    | 843,1           | 682,0           | 443,5           | 191,5           | -        |                   |      |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -        | -      | -       | 3,36              | 1               | 1               | 1               | 1               | -       | -     | -    | 615,9           | 409,8           | 254,2           | 42,0            | -        | -                 | -    |
| 12   | 0,43            | 0,54            | 0,69            | 1,27            | -        | -      | -       | 3,59              | 1               | 1               | 1               | 1               | -       | -     | -    | 735,1           | 565,0           | 420,4           | 182,8           | -        |                   |      |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -        | -      | <u></u> | 3,52              | 1               | 1               | 1               | 1               |         |       |      | 801,8           | 617,7           | 458,2           | 153,0           | -        | -                 | -    |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            |          | -      | -       | 3,66              | 1               | 1               | 1               | 1               | -       | -     | -    | 816,0           | 604,6           | 431,0           | 193,1           |          | -                 |      |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -        | -      | -       | 394               | 1               | 1               | 1               | 1               | -       | -     | -    | 886,2           | 705,1           | 526,2           | 210,6           |          | -                 | -    |
| 10   | 0,37            | 0,40            | 0,59            | 1,10            |          | -      |         | 3,44              | 1               | 1               | 1               | 1               |         | -     | -    | 830,1           | 648,1           | 483,3           | 212,9           |          |                   |      |
| 17   | 0,37            | 0,44            | 0.67            | 1,05            | -        | -      | -       | 3,66              | 1               | 1               | 1               | 1               | -       | -     | -    | 890,3           | 732,7           | 542,8           | 249,0           | -        | -                 | -    |
| 18   | 0,41            | 0,51            | 0,07            | 1,21            | -        | -      | -       | 3,36              | 1               | 1               | 1               | 1               | -       | -     | -    | 720,6           | 559,7           | 402,2           | 178,1           |          | -                 |      |
| 19   | 0,40            | 0,51            | 0.69            | 1,57            | -        | -      |         | 3,66              | 1               | 1               | 1               | 1               | -       | -     | -    | 816,0           | 618,4           | 431,0           | 133 A           | -        | -                 | -    |
| 20   | 0,40            | 0,49            | 0,03            | 1,20            |          | -      |         | 3,81              | 1               | 1               | 1               | 1               |         | -     | -    | 851,6           | 676,8           | 504,2           | 217,2           |          | -                 | -    |
| 21   | 0.20            | 0,52            | 0.00            | 1,30            | -        | -      | -       | 3,81              | 1               | 1               | 1               | 1               |         | -     | -    | 806,3           | 632,0           | 476,8           | 192,8           | -        | -                 | -    |
| 22   | 0,39            | 0,49            | 0,03            | 1,22            |          | -      |         | 3,66              | 1               | 1               | 1               | 1               |         |       |      | 839,5           | 647,8           | 481,6           | 200,3           | -        | -                 | -    |
| 23   | 0,40            | 0,00            | 0.64            | 1,45            |          | -      | -       | 3,00              | 1               | 1               | 1               | 1               | -       | -     | -    | 696,5           | 531,7           | 396,1           | 156,2           | -        |                   | -    |
| 24   | 0,39            | 0,50            | 0.64            | 1,24            | -        | -      |         | 4,01              | 1               | 1               | 1               | 1               | -       | -     | -    | 928,9           | 702,5           | 527,0           | 223,6           |          | -                 | -    |
| 20   | 0,44            | 0,51            | 0.72            | 1 22            | -        | -      | -       | 4,10              | 1               | 1               | 1               | 1               | -       | -     | -    | 339,6           | /10,4           | 039,8           | 1/18            | -        | -                 | -    |
| 27   | 0.42            | 0.56            | 0.72            | 1.69            |          | -      |         | 388               | 1               | 1               | 1               | 1               |         | -     |      | /81,0           | 592,2           | 438,4           | 191,4           | -        |                   | -    |
| 29   | 0,40            | 0,50            | 0.93            | 1.00            | -        | -      |         | 4/1               | 1               | 1               | 1               | 1               | -       | -     | -    | 8/9,2           | 601,9           | 4/6,8           | 150,6           |          | -                 |      |
| 20   | 0,49            | 0,03            | 0,02            | 1,00            | - ]      | -      | -       | 394               | 1               | 1               | 1               | 1               | -       | -     |      | 705,1           | 526,2           | 381,1           | 134,8           |          | -                 | -    |

Tabela 8.4b - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂN | ETROS           | DO LE           | поро            | PARA O          | RIO M    | 06160/ | ٩ÇU |                    |                 | COMP            | ARAÇ <i>i</i>   | ÃO ENT          | RED                  | J& DI  |      | RELAÇ           | ÃO PERC         | ENTUAL E        | NTRE OS1          | VALORES  | DE D <sub>WJ</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|--------|-----|--------------------|-----------------|-----------------|-----------------|-----------------|----------------------|--------|------|-----------------|-----------------|-----------------|-------------------|----------|--------------------|------|
|      | Granu           | Iometri         | ia do m         | aterial         | do leito | 0      |     |                    | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)   | (16) | E OS V          | ALORES F        | PARA DIC        | OLETADO           | S NO RIO | MOGFC              | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)    | (8) | (9)                |                 | COMP            | ARAÇÂ           | O DE            | D <sub>V</sub> J [SH | g COM: |      | (17)            | (18)            | (19)            | (20)              | (21)     | (22)               | (23) |
| N    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | ÷.       | 198    | ×   | D <sub>vi sm</sub> | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | ×                    | ж.     | ×    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | $\mathbf{D}_{90}$ | 1        |                    |      |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          | 10     |     | mm                 |                 |                 |                 |                 |                      |        |      |                 |                 |                 |                   |          |                    |      |
| 29   | 0,43            | 0,55            | 0,69            | 1,41            | -        | -      |     | 3,81               | 1               | 1               | 1               | 1               | -                    | -      | -    | 785,2           | 592,1           | 451,7           | 170,0             | -        |                    | -    |
| 30   | 0,38            | 0,47            | 0,60            | 1,13            | -        | -      | -   | 4,08               | 1               | 1               | 1               | 1               | -                    | -      | -    | 973,5           | 768,0           | 579,9           | 261,0             | -        | -                  | -    |
| 31   | 0,35            | 0,45            | 0,59            | 1,10            | -        | -      | -   | 421                | 1               | 1               | 1               | 1               | -                    | -      | -    | 1103,0          | 835,7           | 613,6           | 282,8             | -        | -                  | -    |
| 32   | 0,46            | 0,59            | 0,80            | 1,73            | -        | -      | -   | 394                | 1               | 1               | 1               | 1               | -                    | -      | -    | 757,6           | 568,6           | 393,1           | 128,0             | -        | -                  | -    |
| 33   | 0,40            | 0,53            | 0,70            | 1,53            | -        | -      | -   | 3,81               | 1               | 1               | 1               | 1               | -                    | -      | -    | 851,6           | 618,2           | 443,8           | 148,8             | -        | -                  | -    |
| 34   | 0,39            | 0,52            | 0,70            | 1,40            | -        | -      | -   | 3,81               | 1               | 1               | 1               | 1               | -                    | -      | -    | 876,0           | 632,0           | 443,8           | 171,9             | -        | -                  | -    |
| 35   | 0,38            | 0,49            | 0,66            | 1,41            | -        | -      | -   | 394                | 1               | 1               | 1               | 1               | -                    | -      | -    | 938,1           | 705,1           | 497,7           | 179,8             | -        | -                  | -    |
| 36   | 0,41            | 0,54            | 0,74            | 1,59            | -        | -      | -   | 4,21               | 1               | 1               | 1               | 1               | -                    | -      | -    | 927,0           | 679,7           | 469,0           | 164,8             | -        | -                  | -    |
|      |                 |                 |                 |                 |          |        |     |                    |                 | (%)             | de eve          | ntos er         | n que                | ovj≻ o | ), [ | DIFEF           | RENÇA P         | ERCENTU         | JAL RELA          | TIVA ME  | ÉDIA               |      |
|      |                 |                 |                 |                 |          |        |     |                    | 100,0           | 100,0           | 100,0           | 100,0           |                      |        |      | 841,3           | 641,8           | 467,0           | 182,7             |          |                    |      |

Tabela 8.4b - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ET RO S         | DOLE            | по ро  | PARA O          | RIOM     | OGFGU | ١ÇU                 |                       | (               | COMP            | ARAÇÂ           | ÃO ENT          | RE Dv                | Ja Di  |         | RELAÇ           | ÃO PERC         | ENTUAL E              | NTRE OS  | VALORES  | DE D <sub>VJ</sub> | 1       |
|------|-----------------|-----------------|--------|-----------------|----------|-------|---------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|--------|---------|-----------------|-----------------|-----------------------|----------|----------|--------------------|---------|
|      | Granul          | lometri         | a do m | naterial        | do leito |       |                     |                       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)   | (16)    | EOSV            | ALORESI         | PARA D <sub>I</sub> C | OLETADO  | S NO RIO | MOGEG              | UAÇU    |
| (1)  | (2)             | (3)             | (4)    | (5)             | (6)      | (7)   | (8)                 | (9)                   |                 | COMP            | ARAÇÂ           | O DE            | D <sub>VJ</sub> рири | COM:   |         | (17)            | (18)            | (19)                  | (20)     | (21)     | (22)               | (23)    |
| N⁰   | D <sub>35</sub> | D <sub>50</sub> | D 65   | D <sub>90</sub> | 20       | 22    | 34<br>              | D <sub>Vi</sub> (MIM) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 22                   | 22     | -22     | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>       | $D_{90}$ | 20       | 2                  | -       |
|      | (mm)            | (mm)            | (mm)   | (mm)            |          |       |                     | mm                    |                 |                 |                 |                 |                      |        |         | 1. T . 11 222   |                 |                       |          |          |                    |         |
| 1    | 0,35            | 0,46            | 0,58   | 0,93            | ka-sa    | 00.00 | las <del>n</del> aa | 0.92                  | 1               | 1               | 1               | 0               | lac eac              | la est | Sec-sec | 164,1           | 100,9           | 59,4                  | 0,6      |          | Sec00              | lac-voo |
| 2    | 0,49            | 0,60            | 0,73   | 1,48            |          |       |                     | 0.98                  | 1               | 1               | 1               | 0               | <b>.</b>             |        |         | 100,1           | 63,4            | 34,3                  | 50,9     |          |                    |         |
| 3    | 0,52            | 0,63            | 0,80   | 1,93            | -        | -     | -                   | 2,96                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 468,5           | 369,2           | 269,5                 | 53,2     | -        | -                  | -       |
| 4    | 0,32            | 0,42            | 0,59   | 1,39            | -        | -     | -                   | 2,75                  | 1               | 1               | 1               | 1               |                      | -      | -       | 758,3           | 553,9           | 365,5                 | 97,6     | -        | -                  | -       |
| 5    | 0,39            | 0,50            | 0,66   | 1,30            |          |       | -                   | 2,07                  | 1               | 1               | 1               | 1               |                      | -      | -       | 429,8           | 313,2           | 213,0                 | 58,9     | -        | -                  | -       |
| 6    | 0,35            | 0,43            | 0,58   | 1 18            | -        | -     | -                   | 1,63                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 365,1           | 278,6           | 180,7                 | 37,9     | -        | -                  | -       |
| 7    | 0,30            | 0,40            | 0,53   | 1 ] 4           | -        | -     | -                   | 1,39                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 363,4           | 247,6           | 162,3                 | 21,9     | -        | -                  | -       |
| 8    | 0,36            | 0,45            | 0,56   | 1,16            | -        | -     | -                   | 1,77                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 390,6           | 292,4           | 215,4                 | 52,2     | -        |                    | -       |
| 9    | 0,34            | 0,41            | 0,54   | 0,95            | -        | -     | -                   | 1.94                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 469,4           | 372,2           | 258,5                 | 103,8    | -        | -                  | -       |
| 10   | 0,34            | 0,41            | 0,59   | 1,10            | -        | -     | -                   | 1,58                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 366,2           | 286,6           | 168,6                 | 44,1     | -        | -                  | -       |
| 11   | 0,47            | 0,66            | 0,95   | 2,37            | -        | -     | -                   | 2,50                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 432,1           | 278,9           | 163,3                 | 5,5      | -        | -                  | -       |
| 12   | 0,43            | 0,54            | 0,69   | 1,27            | -        | -     | -                   | 1,95                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 353,5           | 261,1           | 182,6                 | 53,6     |          | -                  | -       |
| 13   | 0,39            | 0,49            | 0,63   | 1,39            | -        | -     | -                   | 1,66                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 326,1           | 239,1           | 163,8                 | 19,5     | -        | -                  | -       |
| 14   | 0,40            | 0,52            | 0,69   | 1,25            | -        | -     |                     | 194                   | 1               | 1               | 1               | 1               | -                    | -      | -       | 384,1           | 272,4           | 180,6                 | 54,9     | -        | -                  | -       |
| 15   | 0,40            | 0,49            | 0,63   | 1,27            | -        | -     |                     | 1,56                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 290,5           | 218,8           | 148,0                 | 23,0     | -        | -                  | -       |
| 16   | 0,37            | 0,46            | 0,59   | 1,10            | -        | -     |                     | 1,48                  | 1               | 1               | 1               | 1               | -                    | -      |         | 299,0           | 220,9           | 150,2                 | 34,2     |          |                    | -       |
| 17   | 0,37            | 0,44            | 0,57   | 1,05            | -        | -     | -                   | 1,57                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 325,6           | 257,9           | 176,3                 | 50,0     | -        | -                  | -       |
| 18   | 0,41            | 0,51            | 0,67   | 1,21            | -        | -     | -                   | 114                   | 1               | 1               | 1               | 0               | -                    | -      | -       | 178,6           | 124,0           | 70,5                  | 5,9      | -        | -                  | -       |
| 19   | 0,40            | 0,51            | 0,69   | 1 57            | -        | -     | -                   | 1,26                  | 1               | 1               | 1               | 0               | -                    | -      | -       | 214,0           | 146,3           | 82,D                  | 25,0     |          |                    |         |
| 20   | 0,40            | 0,49            | 0,63   | 1,20            | -        | -     | -                   | 1,33                  | 1               | 1               | 1               | 1               | -                    | -      | -       | 233,5           | 172,2           | 111,7                 | 11,2     | -        | -                  | -       |
| 21   | 0,42            | 0,52            | U,00   | 1,30            | -        | -     |                     | 1,39                  | 1               | 1               | 1               | 1               | -                    |        |         | 230,4           | 166,9           | 110,3                 | 6,8      |          |                    |         |
| 11   | 0,39            | 0,49            | 0,03   | 1,77            | -        | -     |                     | 1,21                  | 1               | 1               | 1               | 0               | -                    | -      | -       | 211,4           | 147,9           | 92,8                  | 0,4      | -        |                    |         |
| 23   | 0,40            | 0,58            | 0,74   | 1,43            |          | -     |                     | 1,20                  | 1               | 1               | 1               | 0               |                      |        |         | 161,7           | 107,5           | 62,7                  | 18,8     |          |                    |         |
| 24   | 0,59            | 0,50            | 0,04   | 1.44            | -        | -     | -                   | 131                   | 1               | 1               | 1               | 1               | -                    | -      |         | 234,8           | 161,1           | 104,0                 | 5,3      | -        | -                  | -       |
| 25   | 0,40            | 0.56            | 0,05   | 1.22            | -        | -     | -                   | 124                   | 1               | 1               | 1               | 0               | -                    | -      |         | 208,8           | 142,2           | 90,0                  | 23,9     | -        |                    |         |
| 20   | 0.49            | 0,50            | 0,72   | 1.60            | -        | -     | -                   | 114                   | 1               | 1               | 1               | 0               | -                    | -      | -       | 158,5           | 103,1           | 58,0                  | 16,9     | -        | -                  | -       |
| 20   | 0,45            | 0,50            | 0,73   | 1 60            |          |       |                     | 1,22                  | 1               | 1               | 1               | 0               | -                    | -      |         | 184,9           | 118,7           | 67,8                  | 37,2     |          | -                  |         |
| 18   | 0,49            | 0,03            | 0,82   | 1 08            | -        | -     | -                   | 112                   | 1               | 1               | 1               | 0               | -                    | -      | -       | 129,4           | 78,4            | 37,1                  | 49,4     | -        | -                  | -       |

# Tabela 8.4c - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM     | ET RO S         | DOLE            | по ро           | PARA O          | RIO M    | OGFGU. | AÇU        |                       |                 | COMP            | ARAÇ            | ÃO ENT          | rre dv              | Ja Di |                    | RELAÇ           | ÃO PERC         | ENTUALE         | NTRE OS1        | VALORE       | S DE D <sub>VJ</sub> |      |
|----------|-----------------|-----------------|-----------------|-----------------|----------|--------|------------|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-------|--------------------|-----------------|-----------------|-----------------|-----------------|--------------|----------------------|------|
| <u>.</u> | Granu           | lometri         | ia do m         | aterial         | do leito | )      | 5445<br>55 |                       | (10)            | (11)            | (12)            | (13)            | (14)                | (15)  | (16)               | EOSV            | ALORESP         | ARA D, C        | OLETADO         | SNOR         | O MOG⊧G              | UAÇU |
| (1)      | (2)             | (3)             | (4)             | (5)             | (6)      | (7)    | (8)        | (9)                   |                 | COMP.           | ARAÇÂ           | O DE            | D <sub>VJ</sub> (MP | M COM | 2                  | (17)            | (18)            | (19)            | (20)            | (21)         | (22)                 | (23) |
| N        | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 5        | 5      | 22         | D <sub>Vi</sub> permi | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 4                   |       | 12                 | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 5            | 2                    | 20   |
|          | (mm)            | (mm)            | (mm)            | (mm)            |          |        |            | mm                    |                 |                 |                 |                 |                     |       |                    |                 |                 |                 |                 |              |                      |      |
| 29       | 0,43            | 0,55            | 0,69            | 1,41            |          |        |            | 1,21                  | 1               | 1               | 1               | 0               |                     |       |                    | 180,4           | 119,3           | 74,8            | 16,9            |              |                      |      |
| 30       | 0,38            | 0,47            | 0,60            | 1 13            |          |        |            | 1,16                  | 1               | 1               | 1               | 1               |                     |       | ka <del>s</del> sa | 204,0           | 145,8           | 92,5            | 22              | <del>.</del> |                      |      |
| 31       | 0,35            | 0,45            | 0,59            | 1 10            | -        | -      | -          | 114                   | 1               | 1               | 1               | 1               | -                   | -     |                    | 226,7           | 154,1           | 93,8            | 4,0             | -            | -                    | -    |
| 32       | 0,46            | 0,59            | 0,80            | 1,73            | -        | -      | -          | 1,34                  | 1               | 1               | 1               | 0               | -                   | -     |                    | 192,1           | 127,8           | 68,0            | 28,7            | -            |                      | -    |
| 33       | 0,40            | 0,53            | 0,70            | 1 53            |          | -      | -          | 0,93                  | 1               | 1               | 1               | 0               |                     | -     | ·                  | 131,9           | 75,0            | 32,5            | 64,9            | -            |                      |      |
| 34       | 0,39            | 0,52            | 0,70            | 1,40            | -        | -      | -          | 0,94                  | 1               | 1               | 1               | 0               | -                   | -     | <del>.</del>       | 141,9           | 81,4            | 34,8            | 48,4            | -            | -                    | _    |
| 35       | 0,38            | 0,49            | 0,66            | 1,41            | -        | -      |            | 0,95                  | 1               | 1               | 1               | 0               | -                   | -     | <u>-</u>           | 150,9           | 94,6            | 44,5            | 47,9            | -            | -                    | -    |
| 36       | 0,41            | 0,54            | 0,74            | 1 59            | -        | -      | -          | 1,01                  | 1               | 1               | 1               | 0               | -                   | -     | -                  | 145,1           | 86,1            | 35,8            | 58,2            | -            | -                    | -    |
|          |                 |                 |                 |                 |          |        |            |                       |                 | (%)             | de eve          | ntoser          | n que               | DVJ≻D | )1                 | DIFER           | RENÇA P         | ERCENTU         | JAL RELA        | ATIVA M      | ÉDIA                 |      |
|          |                 |                 |                 |                 |          |        |            |                       | 100,0           | 100,0           | 100,0           | 55,6            | <b>`</b>            | 1     |                    | 272,4           | 193,9           | 123,8           | 34,3            |              |                      |      |

Tabela 8.4c - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LE           | поро            | PARA O          | RIO M (  | )GI-GUA | (ÇU |                       |                 | COMP            | ARAÇÂ           | O ENT           | REDv      | յջ Dլ  |      | RELAÇ           | ÃO PERC         | ENTUAL E        | NTRE OS         | VALORES  | S DE D <sub>VJ</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|---------|-----|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------|--------|------|-----------------|-----------------|-----------------|-----------------|----------|----------------------|------|
|      | Granu           | lometri         | ado m           | aterial         | do leito | ,<br>,  |     | 1 1                   | (10)            | (11)            | (12)            | (13)            | (14)      | (15)   | (16) | EOSV            | ALORES F        | ARA DIC         | OLETADO         | S NO RIO | MOGI-G               | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8) | (9)                   |                 | COMP.           | ARAÇÂ           | O DE            | D vu (KAI | 1 COM: |      | (17)            | (18)            | (19)            | (20)            | (21)     | (22)                 | (23) |
| N™   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | S-       | 5       | 20  | D <sub>Vi</sub> (CAL) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 22        | 32     | 24   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> |          | 2                    | -    |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |         |     | mm                    |                 |                 |                 |                 |           |        |      |                 |                 |                 |                 |          |                      |      |
| 1    | 0,35            | 0,46            | 0 58            | 0,93            |          |         |     | 2,41                  | 1               | 1               | 1               | 1               |           |        |      | 588,9           | 424,2           | 315,7           | 159,3           | -        |                      |      |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            | -        | -       | -   | 2,26                  | 1               | 1               | 1               | 1               | -         | -      | -    | 361,0           | 276,5           | 209,5           | 52,6            | -        | -                    | -    |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            |          | -       | -   | 0,05                  | 0               | 0               | 0               | 0               | -         | -      | -    | 993,3           | 1224,6          | 1582,1          | 3958,0          | -        | -                    | -    |
| 4    | 0,32            | 0,42            | 0 ,59           | 1,39            | -        |         |     | 80,0                  | 0               | 0               | 0               | 0               |           |        | -    | 290,8           | 413,0           | 620,6           | 1597,7          | -        |                      | -    |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -        | -       | _   | 0,39                  | O               | 0               | 0               | 0               | -         | -      | -    | 0,7             | 29,2            | 70,5            | 235,8           | -        | -                    | -    |
| 6    | 0,35            | 0,43            | 0,58            | 1,18            | -        | -       | -   | 0,88                  | 1               | 1               | 1               | 0               | -         |        | -    | 152,1           | 105,2           | 52,1            | 33,7            | -        | -                    | -    |
| 7    | 0,30            | 0,40            | 0 ,53           | 1,14            | -        | -       | -   | 1,30                  | 1               | 1               | 1               | 1               | -         | -      | -    | 332,2           | 224,2           | 144,7           | 13,7            | -        | -                    | -    |
| 8    | 0,36            | 0,45            | 0,56            | 1,16            | -        | -       | -   | 0,69                  | 1               | 1               | 1               | 0               | -         | -      | -    | 92,0            | 53,6            | 23,4            | 67,8            | -        | -                    | -    |
| 9    | 0,34            | 0,41            | 0,54            | 0,95            | -        | -       | -   | 0,50                  | 1               | 1               | 0               | 0               | -         | -      | -    | 47,6            | 22,4            | 7,6             | 89,3            | -        | -                    | -    |
| 10   | 0,34            | 0,41            | 0 ,59           | 1,10            | -        | -       | -   | 0,95                  | 1               | 1               | 1               | 0               | -         |        | -    | 179,1           | 131,4           | 60,8            | 15,9            | -        | -                    | -    |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -        | -       | -   | 0,15                  | 0               | 0               | 0               | 0               | -         | -      | -    | 215,8           | 343,5           | 538,4           | 1492,7          | -        | -                    | -    |
| 12   | 0,43            | 0,54            | 0,69            | 1,27            | -        | -       | -   | 0,49                  | 1               | 0               | 0               | 0               | -         | -      | -    | 13,5            | 10,6            | 41,4            | 160,2           | -        | -                    | -    |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -        | -       | -   | 0,83                  | 1               | 1               | 1               | 0               | -         | -      | -    | 113,4           | 69,8            | 32,1            | 67 p            | -        | -                    | -    |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            | -        | -       | -   | 0,50                  | 1               | 0               | 0               | 0               | -         |        |      | 25,4            | 3,7             | 37,6            | 149,3           | -        | -                    | -    |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -        | -       | -   | 0,99                  | 1               | 1               | 1               | 0               | -         | -      | -    | 146,4           | 101,2           | 56,5            | 28,8            | -        | -                    | -    |
| 16   | 0,37            | 0,46            | 0,59            | 1,10            |          | -       | -   | 1,13                  | 1               | 1               | 1               | 1               | -         | -      | -    | 206,4           | 146,5           | 92,2            | 3,1             | -        | -                    | -    |
| 17   | 0,37            | 0,44            | 0,57            | 1,05            | -        | -       | -   | 0,97                  | 1               | 1               | 1               | 0               | -         | -      | -    | 160,9           | 119,4           | 69,4            | 8,8             | -        | -                    | -    |
| 18   | 0,41            | 0,51            | 0,67            | 1,21            | -        | -       | -   | 1,85                  | 1               | 1               | 1               | 1               | -         |        |      | 350,2           | 261,9           | 175,5           | 52,5            | -        | -                    | -    |
| 19   | 0,40            | 0,51            | 0,69            | 1,57            | -        | -       | -   | 1,58                  | 1               | 1               | 1               | 1               | -         |        |      | 295,0           | 209,8           | 129,0           | 0,6             | -        | -                    | -    |
| 20   | 0,40            | 0,49            | 0,63            | 1,20            |          |         | -   | 1,41                  | 1               | 1               | 1               | 1               |           |        |      | 252,8           | 188,0           | 124,0           | 17,6            | -        |                      | -    |
| 21   | 0,42            | 0,52            | 0,66            | 1,30            | -        | -       | -   | 1,30                  | 1               | 1               | 1               | 1               | -         | -      | -    | 209,9           | 150,3           | 97,2            | 0,1             | -        | -                    | -    |
| 22   | 0,39            | 0,49            | 0,63            | 1,22            | -        | -       | -   | 1,67                  | 1               | 1               | 1               | 1               | -         |        | -    | 329,2           | 241,6           | 165,7           | 37,2            | -        | -                    | -    |
| 23   | 0,46            | 0,58            | 0,74            | 1,43            | -        | -       | -   | 1,70                  | 1               | 1               | 1               | 1               | -         |        | -    | 269,4           | 192,9           | 129,6           | 18,8            | -        | -                    | -    |
| 24   | 0,39            | 0,50            | 0,64            | 1,24            | -        | -       | -   | 1,47                  | 1               | 1               | 1               | 1               | -         | -      | -    | 277,2           | 194,2           | 129,8           | 18,6            | -        | -                    | -    |
| 25   | 0,40            | 0,51            | 0,65            | 1,53            | -        | -       | -   | 1,63                  | 1               | 1               | 1               | 1               | -         | -      | -    | 306,7           | 219,0           | 150,3           | 6,3             | -        | -                    | -    |
| 26   | 0,44            | 0,56            | 0,72            | 1,33            | -        | -       | -   | 1,86                  | 1               | 1               | 1               | 1               | -         | -      | -    | 322,2           | 231,7           | 158,0           | 39,7            | -        | -                    | -    |
| 27   | 0,43            | 0,56            | 0,73            | 1,68            | -        | -       | -   | 1,65                  | 1               | 1               | 1               | 0               | -         | -      | -    | 283,8           | 194,7           | 126,1           | 1,8             | -        | -                    | -    |
| 28   | 0,49            | 0,63            | 0 ,82           | 1,68            | -        | -       | -   | 1,89                  | 1               | 1               | 1               | 1               | -         | -      | -    | 285,7           | 200,0           | 130,5           | 12,5            | -        | -                    | -    |

Tabela 8.4d - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂ M | ETROS           | DO LE           | поро            | PARA O          | RIO M            | 061-GW   | ٩ÇU |                       |                 | COMP            | ARAÇA           | AO ENT          | RED          | J& DI   |                | RELAÇ           | à O PERCI       | ENTUAL E        | NTRE OS           | VALORES | S DE D <sub>VJ</sub> |      |
|-------|-----------------|-----------------|-----------------|-----------------|------------------|----------|-----|-----------------------|-----------------|-----------------|-----------------|-----------------|--------------|---------|----------------|-----------------|-----------------|-----------------|-------------------|---------|----------------------|------|
|       | Granu           | lometri         | ado m           | aterial         | do leito         | ,        |     |                       | (10)            | (11)            | (12)            | (13)            | (14)         | (15)    | (16)           | E OS V.         | ALORES F        | ARA DIC         | OLETADO           | S NO RI | D MOGFG              | UAÇU |
| (1)   | (2)             | (3)             | (4)             | (5)             | (6)              | (7)      | (8) | (9)                   |                 | COMP            | ARAÇÀ           | O DE            | D VJ DKA     | 1] COM: |                | (17)            | (18)            | (19)            | (20)              | (21)    | (22)                 | (23) |
| N     | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 5                | -        | 1   | D <sub>Vi</sub> (EAL) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | -            | 1       | 1              | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | $\mathbf{D}_{90}$ | -       | 5                    | -    |
|       | (mm)            | (mm)            | (mm)            | (mm)            |                  |          |     | mm                    |                 |                 |                 |                 | _            |         |                |                 |                 |                 |                   |         |                      |      |
| 29    | 0,43            | 0,55            | 0,69            | 1,41            | anter de la come |          |     | 1,69                  | 1               | 1               | 1               | 1               | <del>.</del> |         |                | 294,0           | 208,0           | 145,5           | 20,1              |         | 2020-2020            |      |
| 30    | 0,38            | 0,47            | 0,60            | 1,13            | -                | -        | -   | 1,81                  | 1               | 1               | 1               | 1               | -            | -       | -              | 377,5           | 286,1           | 202,4           | 60,6              |         | -                    | -    |
| 31    | 0,35            | 0,45            | 0,59            | 1,10            | -                | <b>-</b> | -   | 1,84                  | 1               | 1               | 1               | 1               | -            | -       | -              | 426,4           | 309,4           | 212,3           | 67,5              |         | <del>.</del>         | -    |
| 32    | 0,46            | 0,59            | 0,80            | 1,73            | -                | <b>-</b> | -   | 1,39                  | 1               | 1               | 1               | 0               | -            | -       | -              | 202,3           | 135,7           | 73,8            | 24,4              | -       | -                    | -    |
| 33    | 0,40            | 0,53            | 0,70            | 1,53            | -                |          | -   | 2,40                  | 1               | 1               | 1               | 1               | -            | -       | -              | 500,5           | 353,2           | 243,1           | 57,0              | -       | -                    | -    |
| 34    | 0,39            | 0,52            | 0,70            | 1,40            | -                | -        | -   | 2,36                  | 1               | 1               | 1               | 1               | -            | -       | -              | 504,9           | 353,7           | 237,0           | 68,5              | -       | -                    | -    |
| 35    | 0,38            | 0,49            | 0,66            | 1,41            | -                | -        | _   | 2,33                  | 1               | 1               | 1               | 1               | -            | -       | -              | 513,7           | 375,9           | 253,3           | 65,4              | -       | 2                    | -    |
| 36    | 0,41            | 0,54            | 0,74            | 1,59            | -                | -        | -   | 2,19                  | 1               | 1               | 1               | 1               | -            | -       | -              | 435,2           | 306,4           | 196,6           | 38,0              | -       | -                    | -    |
|       |                 |                 |                 |                 |                  |          |     | -                     |                 | (%)             | de eve          | ntos er         | n que        | DVJ≻D   | ) <sub>1</sub> | DIFEF           | RENÇA P         | ERCENTU         | JAL RELA          | TIVA M  | ÉDIA                 |      |
|       |                 |                 |                 |                 |                  |          |     |                       | 88,9            | 83,3            | 80,6            | 58,3            |              |         |                | 287,7           | 230,9           | 195,4           | 242,8             |         |                      |      |

Tabela 8.4d - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LE           | поро            | PARA O          | RIO MO   | )GFGU | ٩ÇU      | 8                   |                 | COMP            | ARAÇ            | ÃO ENT          | rre d <sub>v.</sub> | Ja Di | 2    | RELAÇ           | à O PERC        | ENTUAL E        | NTRE OS         | VALORES  | DE D <sub>VJ</sub> | 1        |
|------|-----------------|-----------------|-----------------|-----------------|----------|-------|----------|---------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-------|------|-----------------|-----------------|-----------------|-----------------|----------|--------------------|----------|
|      | Granu           | ometri          | adom            | aterial         | do leito | )     | i.       |                     | (10)            | (11)            | (12)            | (13)            | (14)                | (15)  | (16) | E OS V          | ALORES R        | ARA DIC         | OLETADO         | S NO RIC | MOGEG              | UAÇU     |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)   | (8)      | (9)                 |                 | COMP            | ARAÇA           | O DE            | DVJIE               | COM:  |      | (17)            | (18)            | (19)            | (20)            | (21)     | (22)               | (23)     |
| N    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> |          |       |          | D <sub>vi</sub> fry | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 127                 | -     | 1    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1        | 15                 | <u> </u> |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |       |          | mm                  |                 |                 |                 |                 |                     |       |      |                 |                 |                 |                 |          |                    |          |
| 1    | 0,35            | 0,46            | 0,58            | 0,93            | -        | -     | <u> </u> | 1,42                | 1               | 1               | 1               | 1               | ÷- (                | -     | -    | 306,2           | 209,1           | 145,1           | 52,9            | -        | -                  | -        |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            | -        | -     | -        | 3,09                | 1               | 1               | 1               | 1               | -                   | -     | -    | 529,9           | 414,5           | 322,8           | 108,6           | -        | -                  | -        |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            | -        | -     | -        | 5,45                | 1               | 1               | 1               | 1               | -                   | -     | -    | 947,5           | 764,6           | 580,9           | 182,2           | -        | -                  | -        |
| 4    | 0,32            | 0,42            | 0,59            | 1,39            | -        | -     | -        | 5,72                | 1               | 1               | 1               | 1               | -                   | -     | -    | 1687,8          | 1262,1          | 869,7           | 311,6           | -        | -                  | -        |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -        | -     | -        | 315                 | 1               | 1               | 1               | 1               | -                   | -     | -    | 706,9           | 529,4           | 376,8           | 142,1           | -        | -                  | -        |
| 6    | 0,35            | 0,43            | 0,58            | 1,18            | -        | -     | -        | 2,03                | 1               | 1               | 1               | 1               | -                   | -     | -    | 479,7           | 371,9           | 249,8           | 72,0            | -        | -                  | -        |
| 7    | 0,30            | 0,40            | 0,53            | 1,14            | -        | -     | -        | 2,73                | 1               | 1               | 1               | 1               | -                   | -     | -    | 811,5           | 583,6           | 4 15,9          | 139,9           |          | -                  | -        |
| 8    | 0,36            | 0,45            | 0,56            | 1,16            | -        |       | -        | 3,04                | 1               | 1               | 1               | 1               | -                   | -     | -    | 743,6           | 574,8           | 442,3           | 161,8           |          |                    |          |
| 9    | 0,34            | 0,41            | 0,54            | 0,95            | -        | -     | -        | 2,89                | 1               | 1               | 1               | 1               | -                   | -     | -    | 750,7           | 605,4           | 435,6           | 204,5           |          |                    | -        |
| 10   | 0,34            | 0,41            | 0,59            | 1,10            | -        | -     | -        | 1,80                | 1               | 1               | 1               | 1               |                     |       | -    | 429,7           | 339,3           | 205,3           | 63,7            |          | -                  | -        |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -        | -     | -        | 3,82                | 1               | 1               | 1               | 1               | -                   | -     | -    | 712,4           | 478,5           | 301,9           | 61,1            |          | -                  | -        |
| 12   | 0,43            | 0,54            | 0,69            | 1,27            | -        | -     | -        | 3,05                | 1               | 1               | 1               | 1               | -                   | -     | -    | 609,7           | 465,1           | 342,3           | 140,3           | -        | -                  | -        |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -        | -     | -        | 3,64                | 1               | 1               | 1               | 1               | -                   | -     | -    | 833,7           | 643,1           | 478,0           | 162,0           | -        | -                  | -        |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            | -        | -     | -        | 425                 | 1               | 1               | 1               | 1               | -                   |       | -    | 962,3           | 717,2           | 515,8           | 239,9           | -        | -                  | -        |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -        | -     | -        | 422                 | 1               | 1               | 1               | 1               | -                   | -     | -    | 954,1           | 760,5           | 569,2           | 232,0           | -        | -                  | -        |
| 16   | 0,37            | 0,46            | 0,59            | 1,10            | -        | -     | -        | 3,05                | 1               | 1               | 1               | 1               | -                   | -     | -    | 724,4           | 563,1           | 417,0           | 177,3           | -        | -                  | -        |
| 17   | 0,37            | 0,44            | 0,57            | 1,05            | -        | -     | -        | 353                 | 1               | 1               | 1               | 1               | -                   | -     | -    | 855,1           | 703,2           | 520,0           | 236,6           | -        |                    | -        |
| 18   | 0,41            | 0,51            | 0,67            | 1,21            | -        | -     | -        | 290                 | 1               | 1               | 1               | 1               | -                   | -     | -    | 606,8           | 468,2           | 332,5           | 139,5           |          | -                  | -        |
| 19   | 0,40            | 0,51            | 0,69            | 1,57            | -        | -     | -        | 3,08                | 1               | 1               | 1               | 1               | -                   | -     | -    | 671,2           | 504,9           | 347,1           | 96,5            | -        |                    | -        |
| 20   | 0,40            | 0,49            | 0,63            | 1,20            | -        | -     | -        | 311                 | 1               | 1               | 1               | 1               | -                   | -     | -    | 678,6           | 535,6           | 394,3           | 159,5           | -        | -                  | -        |
| 21   | 0,42            | 0,52            | 0,66            | 1,30            | -        | -     | -        | 299                 | 1               | 1               | 1               | 1               | -                   |       | -    | 612,6           | 475,6           | 353,5           | 130,2           |          | -                  | -        |
| 22   | 0,39            | 0,49            | 0,63            | 1,22            | -        | -     | -        | 014                 | 0               | 0               | 0               | 0               | -                   | -     | -    | 183,0           | 255,6           | 357,2           | 785,3           |          | -                  | -        |
| 23   | 0,46            | 0,58            | 0,74            | 1,43            | -        |       | -        | 3,23                | 1               | 1               | 1               | 1               | -                   |       | -    | 602,1           | 456,8           | 336,4           | 125,8           |          |                    | -        |
| 24   | 0,39            | 0,50            | 0,64            | 1,24            | -        | -     | -        | 3,64                | 1               | 1               | 1               | 1               | -                   | -     | -    | 833,8           | 628,4           | 469,1           | 193,7           | -        |                    | -        |
| 25   | 0,40            | 0,51            | 0,65            | 1,53            | -        |       | -        | 3,80                | 1               | 1               | 1               | 1               | -                   |       |      | 849,1           | 644,4           | 484,1           | 148,1           |          |                    |          |
| 26   | 0,44            | 0,56            | 0,72            | 1,33            | -        | -     | -        | 359                 | 1               | 1               | 1               | 1               | -                   | -     | -    | 715,6           | 540,8           | 398,4           | 169,8           | -        | -                  | -        |
| 27   | 0,43            | 0,56            | 0,73            | 1,68            | -        | -     | -        | 313                 | 1               | 1               | 1               | 1               | -                   | -     | -    | 627,6           | 458,7           | 328,6           | 86,2            | -        | -                  | -        |
| 28   | 0,49            | 0,63            | 0,82            | 1,68            | -        | -     | -        | 3,88                | 1               | 1               | 1               | 1               | -                   | -     | -    | 691,7           | 515,8           | 373,1           | 130,9           | -        | -                  | -        |

Tabela 8.4e - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LE           | поро            | PARA O          | RIO MO   | )GFGU | ٩ÇU          | 2<br>                 |                 | COMP            | ARAÇ)           | ÃO ENT          | RED              | J& D∣ |      | RELAÇ           | O PERC          | ENTUAL E        | NTRE OS V       | /ALORES  | DE D <sub>VJ</sub> | 1    |
|------|-----------------|-----------------|-----------------|-----------------|----------|-------|--------------|-----------------------|-----------------|-----------------|-----------------|-----------------|------------------|-------|------|-----------------|-----------------|-----------------|-----------------|----------|--------------------|------|
|      | Granu           | Iometri         | adom            | aterial         | do leito | ,     |              |                       | (10)            | (11)            | (12)            | (13)            | (14)             | (15)  | (16) | E OS VI         | ALORES F        | ARA DIC         | OLETADO         | S NO RIO | D MOGEG            | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)   | (8)          | (9)                   |                 | COMP.           | ARAÇA           | O DE            | Dvjte            | COM:  |      | (17)            | (18)            | (19)            | (20)            | (21)     | (22)               | (23) |
| N    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1.00     | 100   |              | D <sub>Vi</sub> (LEV) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 12               | 27    | 10   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1        | 15                 | 1070 |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |       |              | mm                    |                 |                 |                 |                 |                  |       |      |                 |                 |                 |                 |          |                    |      |
| 29   | 0,43            | 0,55            | 0,69            | 1,41            | -        | -     | ) <b>-</b> 8 | 3,33                  | 1               | 1               | 1               | 1               | 8 <del>.</del> ( | ÷.    | i- ( | 675,0           | 505,9           | 383,0           | 136,3           | -        |                    | -    |
| 30   | 0,38            | 0,47            | 0,60            | 1,13            | -        | -     | -            | 3,38                  | 1               | 1               | 1               | 1               | -                | -     | -    | 789,2           | 618,9           | 463,2           | 199,0           | -        | -                  | -    |
| 31   | 0,35            | 0,45            | 0,59            | 1,10            | -        | -     | -            | 3,21                  | 1               | 1               | 1               | 1               | -                | -     | -    | 817,7           | 613,8           | 444,4           | 192,0           | -        | -                  | -    |
| 32   | 0,46            | 0,59            | 0,80            | 1,73            | -        | -     | -            | 2,70                  | 1               | 1               | 1               | 1               | -                | -     | -    | 486,3           | 357,1           | 237,1           | 55,9            | -        | -                  | -    |
| 33   | 0,40            | 0,53            | 0,70            | 1,53            | -        | -     | -            | 1,55                  | 1               | 1               | 1               | 1               | -                | -     | -    | 286,5           | 191,7           | 120,9           | 1,1             | -        | -                  | -    |
| 34   | 0,39            | 0,52            | 0,70            | 1,40            | -        | -     | -            | 1,88                  | 1               | 1               | 1               | 1               | -                | -     | -    | 381,9           | 261,5           | 168,5           | 34,3            | -        | -                  | -    |
| 35   | 0,38            | 0,49            | 0,66            | 1,41            | <i>.</i> |       | -            | 3,75                  | 1               | 1               | 1               | 1               |                  |       |      | 887,0           | 665,5           | 468,3           | 166,0           |          |                    |      |
| 36   | 0,41            | 0,54            | 0,74            | 1,59            | <b>-</b> |       | -            | 3,57                  | 1               | 1               | 1               | 1               | -                | -     | -    | 770,4           | 560,9           | 382,3           | 124,4           | -        |                    |      |
|      |                 |                 |                 |                 |          |       |              |                       |                 | (%)             | de eve          | ntos er         | n que            | DVJ≻D | ի    | DIFER           | ENÇA P          | ERCENTU         | AL RELA         | TIVA ME  | ÉDIA               |      |
|      |                 |                 |                 |                 |          |       |              |                       | 97,2            | 97,2            | 97,2            | 97,2            |                  |       |      | 700,3           | 534,6           | 389,7           | 160,1           |          |                    |      |

Tabela 8.4e - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂ M | ETROS           | DO LE           | ITO DO          | PARA O          | RIOM     | OGI-GU   | ٩ÇU          | 0.20                   | 40              | COMP            | AR AÇ.          | ÃO EI           | NTRE D | Wa Di |      | RELAÇ           | ÃOPERC          | ENTUAL E              | NTRE OS         | VALORES  | DE D <sub>VJ</sub> |      |
|-------|-----------------|-----------------|-----------------|-----------------|----------|----------|--------------|------------------------|-----------------|-----------------|-----------------|-----------------|--------|-------|------|-----------------|-----------------|-----------------------|-----------------|----------|--------------------|------|
|       | Granu           | lometr          | ia do m         | aterial         | do leite | 0        |              | (                      | (10)            | (11)            | (12)            | (13)            | (14)   | (15)  | (16) | EOSV            | ALORES          | PARA D <sub>1</sub> C | OLETADO         | IS NO RI | D M OGI-GI         | UAÇU |
| (1)   | (2)             | (3)             | (4)             | (5)             | (6)      | (7)      | (8)          | (9)                    |                 | COMP/           | ARAÇÂ           | O DE            | Dwg    | R COM | 1    | (17)            | (18)            | (19)                  | (20)            | (21)     | (22)               | (23) |
| N⁰    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 15       | 5        | -            | D <sub>Vi</sub> (2009) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1      | 1     | 1    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>       | D <sub>90</sub> | 5        |                    |      |
| -     | 0.35            | : 0.46          | 0.58            | 0.03            |          | 1        | 5            | mm                     |                 |                 |                 |                 | 8      | 8     | S    |                 | 074.0           | 070.0                 |                 |          |                    |      |
|       | 0,00            | 0.60            | 0.72            | 140             | -        |          |              | 4,48                   | 1               | 1               | 1               | 1               | -      | -     | -    | 1181,3          | 874,9           | 673,2                 | 382,2           | -        | -                  | -    |
| 2     | 0.52            | 0.63            | 0.90            | 102             |          |          |              | 4,53                   | 1               | 1               | · · · · · ·     |                 |        |       |      | 824,1           | 604,/           | 520,3                 | 205,9           |          | -                  | -    |
|       | 0.22            | 0.42            | 0.40            | 120             |          | -        | -            | 2,30                   | 1               | 1               | 1               | 1               |        | -     | -    | 354,2           | 274,9           | 195,2                 | 22,4            |          | -                  | -    |
|       | 0.20            | 0.40            | 0,05            | 120             | -        |          |              | Z,38                   | 1               | 1               | 1               | 1               | -      | -     |      | 643,2           | 466,3           | 303,1                 | /1,1            |          | -                  | -    |
|       | 0.25            | 0.42            | 0.50            | 110             | -        |          |              | 2,49                   | 1               | 1               | 1               | 1               | -      | -     | -    |                 | 398,8           | 277,9                 | 91,9            | -        | -                  |      |
| 7     | 0.30            | 0.40            | 0,50            | 114             | -        |          |              | 3,01                   | 1               | 1               | 1               | 1               | -      | -     | -    | 759,2           | 099,3           | 418,5                 | 154,8           | -        |                    | -    |
|       | 0.26            | 0.45            | 0.56            | 116             | -        |          |              | 3,59                   | 1               | 1               | 1               | 1               | -      | -     | -    | 1096,3          | (36.5           | 076,6                 | 214,6           |          |                    | -    |
| 9     | 0.34            | 0.41            | 0.54            | 0.05            | -        | -        |              | Z,84                   | 1               | 1               | 1               | 1               | -      | -     |      | 688,6           | 530,9           | 407,0                 | 144,7           | -        | -                  | -    |
| 10    | 0.24            | 0.41            | 0.50            | 110             | -        |          |              | 2,50                   | 1               | 1               | 1               | 1               | -      | -     | -    | 636,5           | 510,7<br>040,5  | 363,7                 | 163,6           | -        | -                  | -    |
| 11    | 0.47            | 0.66            | 0.05            | 237             | -        |          | <del>.</del> | 3,07                   | 1               | 1               |                 | - 1             |        |       | -    | 802,6           | 648,2           | 420,1                 | 1/9,0           | -        |                    | -    |
| 12    | 0.43            | 0.54            | 0.60            | 127             | -        |          |              | 2,19                   | 1               | 1               | 1               | U               | -      | -     | -    | 360,0           | 231,5           | 130,3                 | 8,3             | -        |                    | -    |
| 13    | 0.30            | 0 49            | 0.63            | 130             | -        |          |              | 2,88                   |                 | 1               |                 |                 | -      | -     |      | 740.4           | 433,4           | 317,5                 | 126,8           | -        | -                  | -    |
| 14    | 0.40            | 0.52            | 0 69            | 125             | -        |          | <u>-</u>     | 3,19                   | 4               | 1               | 4               | - 1             | -      | -     |      | (18,4<br>ecc.5  | 001,4<br>400.0  | 406,7                 | 123,6           | -        | -                  | -    |
| 15    | 0.40            | 0 49            | 0.63            | 127             | -        |          |              | 2,90                   |                 |                 |                 |                 | -      | -     | -    | 7000            | 400.0           | 470.0                 | 100,7           |          |                    |      |
| 16    | 0.37            | 0.46            | 0.59            | 110             | -        |          |              | 3,59                   | 4               | 4               |                 |                 |        |       | -    | (30)3           | 640 4           | 470,3                 | 102,3           |          |                    |      |
| 17    | 0.37            | 0.44            | 0.57            | 105             |          |          |              | 3,40<br>3.11           |                 |                 |                 |                 |        |       |      | 020,1           | 040,1           | 4110                  | 203,0           | -        |                    |      |
| 18    | 0.41            | 0.51            | 0.67            | 121             |          |          |              | 2 01                   | 4               | 4               | 4               | - 1             |        |       |      | 020,r<br>054.2  | 667.2           | 497,7                 | 2224,4          |          |                    |      |
| 19    | 0.40            | 0.51            | 0.69            | 157             |          | t        |              | 2 00                   | 4               | 4               |                 |                 |        |       |      | 0.040           | 607.2           | 404,0                 | 440.0           |          |                    |      |
| 20    | 0.40            | 0.49            | 0.63            | 120             |          | -        |              | 2.97                   | 4               | 4               |                 | - 1             |        |       |      | 966.4           | 60004           | 5126                  | 222.4           |          |                    |      |
| 21    | 0.42            | 0.52            | 0.66            | 130             |          | 1        |              | 2.97                   | 4               | 4               | 4               |                 |        |       |      | 700 /           | e25 e           | 474.7                 | 490.2           |          |                    |      |
| 22    | 0.39            | 0.49            | 0.63            | 122             |          |          |              | 2.00                   | 4               | 4               | 4               |                 |        |       |      | 972.4           | 714 6           | 4(1,(<br>522.5        | 227.2           |          |                    |      |
| 23    | 0.46            | 0.58            | 0.74            | 1.43            |          | 1        |              | 2.00                   | -               |                 |                 |                 |        |       |      | 700 /           | 500 7           | 429.0                 | 479.2           |          |                    |      |
| 24    | 0.39            | 0.50            | 0.64            | 124             |          |          |              | 4.02                   | 4               | 4               | 4               | - 1             |        |       |      | 932.2           | 705.9           | 433,0<br>529,6        | 224.9           |          |                    |      |
| 25    | 0,40            | 0.51            | 0.65            | 153             |          | <u> </u> | _            | 4.00                   | 4               | 4               | 4               | 4               | _      | _     |      | 950.2           | 730.4           | 551.2                 | 176 7           | _        |                    | _    |
| 26    | 0.44            | 0.56            | 0.72            | 133             |          |          | _            | 4.24                   | 4               | 4               | 4               | 4               |        |       |      | 864.7           | 658.0           | 489.5                 | 219.4           | _        |                    | -    |
| 27    | 0,43            | 0 56            | 0,73            | 1,68            | _        | -        | _            | 4 27                   | 4               | 4               | 4               | 1               | _      | _     | _    | 893.4           | 662.6           | 400,0                 | 454.2           | _        | _                  | _    |
| 28    | 0.49            | 0.63            | 0.82            | 1.68            |          | ·        | _            | 4 30                   | 4               | 4               | 4               | 1               |        |       |      | 777.4           | 582.4           | 400,0                 | 155.9           | _        |                    | _    |
|       | -1              | 1               | 1               |                 |          | 1        |              |                        |                 | i!              | į!              | i               |        |       |      |                 |                 | 424,3                 | 100,9;          | -        |                    | -    |

### Tabela 8.4f - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂ N | ETROS           | S DO LE         | ITO DO          | PARA O          | RIO M    | OGI-GUA | ιçυ | 1                    | ŝ               | COMP            | AR AÇ.          | ÃO EI             | NTRE ( | UNS DI |      | RELAÇ           | à O PERCI          | ENTUAL E              | NTRE OS ' | VALORES | DE D <sub>VJ</sub> |      |
|-------|-----------------|-----------------|-----------------|-----------------|----------|---------|-----|----------------------|-----------------|-----------------|-----------------|-------------------|--------|--------|------|-----------------|--------------------|-----------------------|-----------|---------|--------------------|------|
|       | Granu           | lometr          | ia do m         | aterial         | do leito | )       |     |                      | (10)            | (11)            | (12)            | (13)              | (14)   | (15)   | (16) | EOSV            | ALORES F           | PARA D <sub>1</sub> C | OLETADO   | S NO RI | MOGI-G             | UAÇU |
| (1)   | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8) | (9)                  | _               | COMPA           | ARAÇÂ           | O DE              | Dwg    | R COM  | 1    | (17)            | (18)               | (19)                  | (20)      | (21)    | (22)               | (23) |
| N⁰    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1        |         |     | D <sub>Vi</sub> (CB) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | $\mathbf{D}_{90}$ | 1      | 1      | 1    | D <sub>35</sub> | D <sub>50</sub>    | D <sub>65</sub>       | $D_{90}$  | 2       |                    | 50   |
|       | (mm)            | (mm)            | (mm)            | (mm)            |          |         |     | mm                   |                 |                 |                 |                   |        |        |      |                 |                    |                       |           |         |                    |      |
| 29    | 0,43            | 0,55            | 0,69            | 1,41            | -10      | × 1     | 194 | 4,09                 | 1               | 1               | 1               | 1                 | -      | -      | -    | 851,6           | 644 D              | 493,0                 | 190,2     | 8       | <u>.</u>           | ×    |
| 30    | 0,38            | 0 ,47           | 0,60            | 113             | -        | -       | -   | 4,34                 | 1               | 1               | 1               | 1                 | -      | -      | -    | 1042,5          | 823,7              | 623,6                 | 284,2     | -       | -                  | -    |
| 31    | 0,35            | 0 ,45           | 0,59            | 110             | -        | -       | -   | 4,43                 | 1               | 1               | 1               | 1                 | -      | -      | -    | 1164,5          | 883,5              | 650,2                 | 302,4     | -       | -                  | -    |
| 32    | 0,46            | 0,59            | 0,80            | 1,73            | -        | -       | -   | 3,92                 | 1               | 1               | 1               | 1                 | -      | -      | -    | 752,6           | 564,8              | 390,3                 | 126,7     | -       | -                  | -    |
| 33    | 0,40            | 0 53            | 0,70            | 1,53            | -        | -       | -   | 4,69                 | 1               | 1               | 1               | 1                 | -      | -      | -    | 1072,2          | 784,7              | 569,8                 | 206,5     | -       | -                  | -    |
| 34    | 0,39            | 0 52            | 0,70            | 1,40            | -        |         | -   | 4,67                 | 1               | 1               | 1               | 1                 | -      | -      | -    | 1096,8          | 797,6              | 566,8                 | 233,4     | -       | -                  | -    |
| 35    | 0,38            | 0 ,49           | 0,66            | 1,41            | -        | -       | -   | 4,68                 | 1               | 1               | 1               | 1                 | -      | -      |      | 1132,8          | 856,0              | 609,8                 | 232,2     | -       | -                  | -    |
| 36    | 0,41            | 0,54            | 0,74            | 1,59            | -        | -       | -   | 4,73                 | 1               | 1               | 1               | 1                 | -      | -      | -    | 1053,9          | 776,1              | 539,3                 | 197,6     | -       | -                  | -    |
|       |                 |                 |                 |                 |          |         |     |                      |                 | (%) c           | le ever         | ntose             | m que  | DVJ≻   | Di   | DIFER           | RENÇAP             | ERCENTU               | JAL RELA  | TIVA MI | ÈDIA               |      |
|       |                 |                 |                 |                 |          |         |     |                      | 100,0           | 100,0           | 100,0           | 97,2              |        |        |      | 831,4           | 633 <sub>,</sub> 4 | 461,4                 | 181,7     |         |                    |      |

# Tabela 8.4f - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DOLE            | ITO DO          | PARA O          | RIO M           | OGFGW | ٩ÇU | 1                    |                 | COMP            | ARAÇ <i>i</i>   | O ENT           | RE D <sub>v</sub>     | us⊾D <sub>I</sub> |      | RELAÇ           | ÃO PERC         | ENTUAL E        | NTRE OS         | VALORES | DE Dvj     |      |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|-----|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-------------------|------|-----------------|-----------------|-----------------|-----------------|---------|------------|------|
| 1    | Granu           | lometri         | a do m          | aterial         | do leito        | 5     |     | 1 1                  | (10)            | (11)            | (12)            | (13)            | (14)                  | (15)              | (16) | EOSV            | ALORES          | ARA DIC         | OLETA DO        | S NO RI | D M OGI-GI | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)             | (7)   | (8) | (9)                  | 100             | COMP.           | ARAÇÂ           | O DE            | D <sub>VJ [В К.</sub> | g C OM:           |      | (17)            | (18)            | (19)            | (20)            | (21)    | (22)       | (23) |
| N⁰   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 18 <del>0</del> |       | -   | D <sub>Vi</sub> RELA | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1                     | 1                 | 1    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | -       | -          | -    |
|      | (mm)            | (mm)            | (mm)            | (mm)            |                 |       |     | mm                   |                 | 1.229829        | 100395          | 12242           |                       |                   |      | 20105           |                 |                 |                 |         |            |      |
| 1    | 0,35            | 0,46            | 0,58            | 0,93            | -               | -     | -   | 8,99                 | 1               | 1               | 1               | 1               | -                     | -                 | -    | 2470,0          | 1855,4          | 1450,8          | 867,2           | -       | -          | -    |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            | -               | -     | -   | 9,68                 | 1               | 1               | 1               | 1               | -                     | -                 | -    | 1875,8          | 1513,6          | 1226,2          | 554,1           | -       | -          | -    |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            | -               | -     | -   | 38,08                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 7223,3          | 5944,6          | 4660,1          | 1873,1          | -       | -          | -    |
| 4    | 0,32            | 0,42            | 0,59            | 1,39            | -               | -     | -   | 34,76                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 10761,2         | 8175,2          | 5790,8          | 2400,4          | -       | -          | -    |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -               | -     | -   | 24,41                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 6159,4          | 4782,3          | 3598,7          | 1777,8          | -       | -          | -    |
| 6    | 0,35            | 0,43            | 0,58            | 1,18            | -               | -     | -   | 18,16                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 5088,1          | 4122,9          | 3030,8          | 1438,9          | -       | -          | -    |
| 7    | 0,30            | 0,40            | 0,53            | 1,14            | -               | -     | -   | 14,93                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 4876,5          | 3632,4          | 2716,9          | 1209,6          | -       | -          | -    |
| 8    | 0,36            | 0,45            | 0,56            | 116             | -               | -     | -   | 20,09                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 5480,8          | 4364,7          | 3487,7          | 1632,0          | -       | -          | -    |
| 9    | 0,34            | 0,41            | 0,54            | 0,95            | -               | -     | -   | 22,52                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 6523,5          | 5392,6          | 4070,3          | 2270,5          | -       | -          | -    |
| 10   | 0,34            | 0,41            | 0,59            | 1,10            |                 |       | -   | 17,57                | 1               | 1               | 1               | 1               |                       |                   |      | 5066,8          | 4184,7          | 2877,5          | 1497,0          | -       | -          | -    |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -               |       | -   | 30,94                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 6484,0          | 4588,6          | 3157,3          | 1205,7          | -       |            | -    |
| 12   | 0,43            | 0,54            | 0,69            | 1,27            | -               | -     | -   | 22,72                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 5184,6          | 4108,1          | 3193,3          | 1689,3          | -       | -          | -    |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -               | -     | -   | 18,63                | 1               |                 | 1               | 1               | -                     | -                 | -    | 4676,6          | 3701,8          | 2856,9          | 1240,2          | -       | -          | -    |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            | -               | -     | -   | 22,52                |                 | 1               | 1               | 1               | -                     | -                 | -    | 5530,9          | 4231,5          | 3164,3          | 1701,9          | -       | -          | -    |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -               | -     | -   | 17,25                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 4213,7          | 3421,4          | 2638,8          | 1258,6          | -       | -          | -    |
| 16   | 0,37            | 0,46            | 0,59            | 1,10            | -               | -     | -   | 16,08                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 4247,2          | 3396,6          | 2626,2          | 1362,2          | -       | -          | -    |
| 17   | 0,37            | 0,44            | 0,57            | 1,05            | -               | -     | -   | 17,43                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 4609,7          | 3860,5          | 2957,2          | 1559,6          | -       | -          | -    |
| 18   | 0,41            | 0,51            | 0,67            | 1,21            | -               | -     | -   | 11,70                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 2753,6          | 2194,1          | 1646,2          | 866,9           | -       | -          | -    |
| 19   | 0,40            | 0,51            | 0,69            | 1,57            | -               | -     | -   | 13,16                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 3190,1          | 2480,4          | 1807,3          | 738,2           | -       | -          | -    |
| 20   | 0,40            | 0,49            | 0,63            | 1,20            | -               | -     | -   | 14,18                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 3445,4          | 2794,2          | 2151,1          | 1081,8          | -       | -          | -    |
| 21   | 0,42            | 0,52            | 0,66            | 1,30            | -               | -     | -   | 14,90                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 3446,9          | 2764,8          | 2157,1          | 1045,9          | -       | -          | -    |
| 22   | 0,39            | 0,49            | 0,63            | 1,22            | -               | -     | -   | 12,63                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 3137,2          | 2476,6          | 1904,0          | 934,8           | -       | -          | -    |
| 23   | 0,46            | 0,58            | 0,74            | 1,43            | -               | -     | -   | 12,49                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 2614,3          | 2052,7          | 1587,3          | 773,1           | -       | -          | -    |
| 24   | 0,39            | 0,50            | 0,64            | 1,24            | -               | -     | -   | 13,81                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 3441,1          | 2662,1          | 2057,9          | 1013,7          | -       | -          | -    |
| 25   | 0,40            | 0,51            | 0,65            | 1,53            | -               | -     | -   | 12,89                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 3123,0          | 2427,8          | 1883,4          | 742,6           | -       | -          | -    |
| 26   | 0,44            | 0,56            | 0,72            | 1,33            |                 |       |     | 11,64                | 1               | 1               | 1               | 1               |                       |                   |      | 2544,6          | 1977,9          | 1516,2          | 774,9           | -       |            | -    |
| 27   | 0,43            | 0,56            | 0,73            | 1,68            | -               | -     | -   | 12,76                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 2867,1          | 2178,3          | 1647,7          | 659,4           |         |            | -    |
| 28   | 0,49            | 0,63            | 0,82            | 1,68            | -               | -     | -   | 11,47                | 1               | 1               | 1               | 1               | -                     | -                 | -    | 2240,7          | 1720,6          | 1298,7          | 582,7           | -       | - ]        | -    |

### Tabela 8.4g - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DOLE            | ITO DO          | PARA O          | RIO M    | 061 G W | ιÇU |                        |                 | COMP            | ARAÇ            | ÃO ENT          | rre d <sub>v</sub>    | յլ Ել   |         | RELAÇ           | ÃO PERC         | ENTUAL E        | NTRE OS '       | VALORES | DE D <sub>VJ</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|---------|-----|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------------|---------|---------|-----------------|-----------------|-----------------|-----------------|---------|--------------------|------|
| -    | Granu           | lometri         | ia do m         | aterial         | do leito | )       |     |                        | (10)            | (11)            | (12)            | (13)            | (14)                  | (15)    | (16)    | EOSV            | ALORESP         | ARA DIC         | OLETA DO        | S NO RI | D M OGI-G          | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8) | (9)                    | 83              | COMP/           | ARAÇÂ           | IO DE           | D <sub>VJ</sub> (з к. | g C OM: |         | (17)            | (18)            | (19)            | (20)            | (21)    | (22)               | (23) |
| N⁰   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | ŝ.       |         |     | D <sub>Vi</sub> (KELA) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1                     | ŝ.      | ж.<br>С | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> |         | -                  |      |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |         |     | mm                     |                 | 100000          | 101305          |                 |                       |         |         | 0.040.5         |                 |                 |                 |         |                    |      |
| 29   | 0,43            | 0,55            | 0,69            | 1,41            | -        | -       | -   | 12,51                  | 1               | 1               | 1               | 1               | -                     | -       | -       | 2810,1          | 2175,2          | 1713,6          | 787,5           | -       | ÷                  | -    |
| 30   | 0,38            | 0,47            | 0,60            | 113             | -        | -       | -   | 11,86                  | 1               | 1               | 1               | 1               | -                     | -       | -       | 3021,6          | 2423,9          | 1877,0          | 949,7           | -       | <u>_</u>           | -    |
| 31   | 0,35            | 0,45            | 0,59            | 1,10            | -        | -       | -   | 11,72                  | 1               | 1               | 1               | 1               | -                     | -       | -       | 3247,5          | 2503,6          | 1885,8          | 965,1           | -       | -                  | -    |
| 32   | 0,46            | 0,59            | 0,80            | 1,73            | -        | -       | -   | 14,31                  | 1               | 1               | 1               | 1               | -                     | -       | -       | 3011,7          | 2326,1          | 1689,2          | 727,4           | -       | -                  | -    |
| 33   | 0,40            | 0,53            | 0,70            | 1,53            | -        | -       | -   | 9,04                   | 1               | 1               | 1               | 1               | -                     | -       | -       | 2159,1          | 1605,0          | 1190,9          | 490,6           | -       | -                  | -    |
| 34   | 0,39            | 0,52            | 0,70            | 1,40            | -        | -       | -   | 9,23                   | 1               | 1               | 1               | 1               | -                     | -       | -       | 2266,1          | 1674,6          | 1218,2          | 559,1           | -       | -                  | -    |
| 35   | 0,38            | 0,49            | 0,66            | 1,41            | -        | -       | -   | 9,35                   | 1               | 1               | 1               | 1               | -                     | -       | -       | 2360,4          | 1808,1          | 1316,6          | 563,1           | -       | -                  | -    |
| 36   | 0,41            | 0,54            | 0,74            | 1,59            | -        | -       | -   | 9,98                   | 1               | 1               | 1               | 1               | -                     | -       | -       | 2334,4          | 1748,3          | 1248,8          | 527,7           | -       | -                  | -    |
|      |                 |                 |                 | ~~~~~           |          |         |     |                        |                 | (%)             | de eve          | ntos er         | mque                  | DVJ≻C   | ),      | DIFE            | RENÇAP          | ERCENTU         | JAL RELA        | TIVA ME | ÉDIA               |      |
|      |                 |                 |                 |                 |          |         |     |                        | 100,0           | 100,0           | 100,0           | 100,0           |                       |         | ĺ       | 4013,5          | 3146,4          | 2369,5          | 1120,1          |         |                    |      |

### Tabela 8.4g - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LE           | поро            | PARA O          | RIOM     | )GI-GUA | ιÇU             |                       |                 | COMP            | ARAÇÂ           | OENT        | REDv                 | J& D∣   |      | RELAÇ           | ÃO PERC         | ENTUAL E        | NTRE OS         | VALORE  | DE D <sub>VJ</sub> |          |
|------|-----------------|-----------------|-----------------|-----------------|----------|---------|-----------------|-----------------------|-----------------|-----------------|-----------------|-------------|----------------------|---------|------|-----------------|-----------------|-----------------|-----------------|---------|--------------------|----------|
| 1    | Granu           | lometri         | a do m          | aterial         | do leito | 0       |                 |                       | (10)            | (11)            | (12)            | (13)        | (14)                 | (15)    | (16) | E OS V          | ALORES          | PARA DIC        | OLETADO         | S NO RI | MOGEGI             | UAÇU     |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8)             | (9)                   |                 | COMP.           | ARAÇÂ           | ODE         | D <sub>VJ</sub> (RO1 | n COM:  | 8    | (17)            | (18)            | (19)            | (20)            | (21)    | (22)               | (23)     |
| N⁰   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | ×        | ж.      | 18 <del>0</del> | D <sub>Vi</sub> (ROT) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D,90        | - 19                 | - 194   | -    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> |         |                    | Ξ.       |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |         |                 | m m                   | 13888           | 23592           |                 | 885-72<br>0 |                      |         |      | \$20<br>        | 0.8%            | 62379           | 3656            |         |                    |          |
| 1    | 0,35            | 0,46            | 0 58            | 0,93            | -        |         |                 | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 68,2            | 121,1           | 178,7           | 346,9           |         | -                  | ÷        |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 141,8           | 196,0           | 260,2           | 630,2           | -       | -                  | <u>-</u> |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            | -        | -       | -               | 0,19                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 166,7           | 223,1           | 310,3           | 889,8           | -       | -                  | -        |
| 4    | 0,32            | 0,42            | 0 59            | 1,39            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       | - ]  | 60,3            | 110,4           | 195,6           | 596,4           | -       | -                  | -        |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 81,7            | 133,0           | 207,5           | 505,8           | -       | -                  | -        |
| 6    | 0,35            | 0,43            | 0 58            | 1,18            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 63,1            | 100,4           | 170,3           | 449,9           | -       | -                  | -        |
| 7    | 0,30            | 0,40            | 0 53            | 1,14            | -        |         | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       |      | 44,2            | 92,2            | 154,7           | 447,8           | -       | -                  | -        |
| 8    | 0,36            | 0,45            | 0 56            | 1,16            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 67,8            | 109,7           | 160,9           | 440,5           | -       | -                  | -        |
| 9    | 0,34            | 0,41            | 0 54            | 0,95            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 58,4            | 91,1            | 151,6           | 342,7           | -       | -                  | -        |
| 10   | 0,34            | 0,41            | 0,59            | 1,10            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 58,4            | 91,1            | 174,9           | 412,6           | -       | -                  | -        |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -        | -       |                 | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       |      | 122,6           | 212,5           | 349,8           | 1022,2          | -       | -                  | -        |
| 12   | 0,43            | 0,54            | 0,69            | 1,27            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       |      | 108,1           | 161,3           | 233,9           | 514,6           | -       | -                  | -        |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -        |         | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 87,4            | 135,5           | 202,7           | 568,0           |         |                    |          |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       |      | 94,9            | 153,3           | 236,1           | 508,9           | -       | -                  | -        |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -        |         | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       |      | 99,7            | 144,7           | 214,6           | 534,1           | -       | -                  | -        |
| 16   | 0,37            | 0,46            | 0,59            | 1,10            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 76,5            | 119,5           | 181,5           | 424,8           | -       | -                  | -        |
| 17   | 0,37            | 0,44            | 0 57            | 1,05            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 80,2            | 114,4           | 177,7           | 411,5           | -       | -                  | -        |
| 18   | 0,41            | 0,51            | 0,67            | 1,21            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 94,1            | 14 1,5          | 217,3           | 473,0           | -       | -                  | -        |
| 19   | 0,40            | 0,51            | 0,69            | 1,57            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       |      | 94,9            | 148,5           | 236,1           | 664,8           |         | -                  | -        |
| 20   | 0,40            | 0,49            | 0,63            | 1,20            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       |      | 97,4            | 141,8           | 210,8           | 492,1           | -       | -                  | -        |
| 21   | 0,42            | 0,52            | 0,66            | 1,30            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 107,2           | 156,6           | 225,6           | 541,4           | -       | -                  | -        |
| 22   | 0,39            | 0,49            | 0,63            | 1,22            | -        | -       | -               | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 90,0            | 138,7           | 206,9           | 494,3           | -       | -                  | -        |
| 23   | 0,46            | 0,58            | 0,74            | 1,43            | -        |         |                 | 0,21                  | 0               | 0               | 0               | 0           | -                    | -       |      | 124,1           | 182,6           | 260,5           | 596,6           |         | -                  | -        |
| 24   | 0,39            | 0,50            | 0,64            | 1,24            | -        |         | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 95,8            | 151,1           | 221,4           | 522,6           | -       | -                  | -        |
| 25   | 0,40            | 0,51            | 0,65            | 1,53            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       | -    | 103,3           | 159,2           | 230,3           | 677,5           | -       |                    | -        |
| 26   | 0,44            | 0,56            | 0,72            | 1,33            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | <u></u> | -    | 118,4           | 178,0           | 257,4           | 560,2           | -       | -                  | -        |
| 27   | 0,43            | 0,56            | 0,73            | 1,68            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       |      | 119,4           | 185,7           | 272,5           | 757,2           | -       | -                  | -        |
| 28   | 0,49            | 0,63            | 0,82            | 1,68            | -        | -       | -               | 0,20                  | 0               | 0               | 0               | 0           | -                    | -       | - [  | 144,7           | 214,6           | 309,4           | 738,8           | -       | -                  | -        |

# Tabela 8.4h - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETRO            | S DO LE         | поро            | PARA O          | RIOM     | 061-GUA | ιÇU |                      |                 | COMP            | ARAÇÂ           | O ENT           | REDv                | J& DI  |      | RELAÇ           | O PERC          | ENTUAL E        | NTRE OS '       | VALORES  | S DE D <sub>VJ</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|---------|-----|----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|--------|------|-----------------|-----------------|-----------------|-----------------|----------|----------------------|------|
| 1    | Granu           | lometri         | a do m          | aterial         | do leito | 2       |     |                      | (10)            | (11)            | (12)            | (13)            | (14)                | (15)   | (16) | E OS V          | ALORES F        | ARA DIC         | OLETADO         | S NO RIO | O MOG⊧G              | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8) | (9)                  |                 | COMP            | ARAÇÂ           | ODE             | D <sub>VJ</sub> (RO | ŋ COM: |      | (17)            | (18)            | (19)            | (20)            | (21)     | (22)                 | (23) |
| N⁼   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | ×        | ×       | 100 | D <sub>Vi</sub> porj | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | - 80                | 3      | -    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1        | 1                    | •    |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |         |     | m m                  |                 | 2009            |                 |                 |                     |        |      |                 | 4.25%           | a) 3.2          |                 |          |                      |      |
| 29   | 0,43            | 0,55            | 0,69            | 1,41            |          | -       | ·   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 112,2           | 171,4           | 240,4           | 595,7           |          | -                    | -    |
| 30   | 0,38            | 0,47            | 0,60            | 1,13            | -        | -       | -   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 91,9            | 137,3           | 202,9           | 470,5           | -        | -                    | -    |
| 31   | 0,35            | 0,45            | 0,59            | 1,10            | -        | -       | -   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 78,6            | 129,6           | 201,1           | 461,3           | -        | -                    | -    |
| 32   | 0,46            | 0,59            | 0,80            | 1,73            | -        | -       | -   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 129,7           | 194,6           | 299,4           | 763,8           | -        | -                    | -    |
| 33   | 0,40            | 0,53            | 0,70            | 1,53            | -        | -       | -   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 97,4            | 161,5           | 245,4           | 654,9           | -        | -                    | -    |
| 34   | 0,39            | 0,52            | 0,70            | 1,40            | -        | -       | -   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 92,4            | 156,6           | 245,4           | 590,8           | -        | -                    | -    |
| 35   | 0,38            | 0,49            | 0,66            | 1,41            | -        | -       | -   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 89,7            | 144,7           | 229,5           | 604,0           | -        | -                    | -    |
| 36   | 0,41            | 0,54            | 0,74            | 1,59            | -        | -       | -   | 0,20                 | 0               | 0               | 0               | 0               | -                   | -      | -    | 109,2           | 175,5           | 277,6           | 711,3           | -        | -                    | -    |
|      |                 |                 |                 |                 |          |         |     | 33333333             |                 | (%)             | de eve          | ntos er         | n que l             | DVJ≻D  | )լ   | DIFEF           | RENÇA P         | ERCENTU         | IAL RELA        | TIVA ME  | ÉDIA                 |      |
|      |                 |                 |                 |                 |          |         |     |                      | 00              | 0,0             | 0,0             | 0,0             |                     |        |      | 96,4            | 149,4           | 226,4           | 567,2           |          |                      |      |

Tabela 8.4h - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LE           | ITO DO          | PARA C          | RIOM         | OGI-GUA | ٩ÇU      |           |                 | COMF            | PAR AÇ          | ÃO ENT          | rre d <sub>v</sub>   | Js⊾Dj  |          | RELAÇ           | à O PERC        | ENTUALE               | NTRE OS         | VALORES           | DE D <sub>VJ</sub> |                     |
|------|-----------------|-----------------|-----------------|-----------------|--------------|---------|----------|-----------|-----------------|-----------------|-----------------|-----------------|----------------------|--------|----------|-----------------|-----------------|-----------------------|-----------------|-------------------|--------------------|---------------------|
|      | Granu           | lometri         | ia do m         | aterial         | do leito     | , .     | <u> </u> | ] ]       | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)   | (16)     | EOSV            | A LORES I       | PARA D <sub>1</sub> C | OLETADO         | S NO RI           | O MOGI-GI          | UA ÇU               |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)          | (7)     | (8)      | (9)       | 2               | COMP.           | ARAÇÂ           | O DE            | D <sub>VU</sub> (BAU | q COM: |          | (17)            | (18)            | (19)                  | (20)            | (21)              | (22)               | (23)                |
| N™   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 14           | 8       | 20       | D vi gang | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | -                    | 1      | 1        | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>       | D <sub>90</sub> | -                 | -                  | S4                  |
|      | (mm)            | (mm)            | (mm)            | (mm)            | ·            |         |          | mm        |                 |                 |                 |                 |                      |        |          |                 |                 |                       |                 |                   |                    |                     |
| 1    | 0,35            | 0,46            | 0,58            | 0,93            | <del>.</del> |         | 00.00    | 6,04      | 1               | 1               | 1               | 1               |                      |        | <b>.</b> | 1625,8          | 1213,1          | 941,5                 | 549,5           | lara <b>-</b> ard | 000-000            | lan <del>.</del> aa |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            | -            | -       | -        | 6,43      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1211,6          | 971,1           | 780,4                 | 334,2           | -                 | -                  | -                   |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            | <del>.</del> |         |          | 6,99      | 1               | 1               | 1               | 1               | -                    | -      |          | 1244,8          | 1010,0          | 774,1                 | 262,3           | -                 |                    | -                   |
| 4    | 0,32            | 0,42            | 0,59            | 1,39            | -            | -       |          | 6,65      | 1               | 1               | 1               | 1               | -                    | -      |          | 1978,5          | 1483,6          | 1027,3                | 378,5           | -                 |                    | -                   |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -            | -       | -        | 5,59      | 1               | 1               | 1               | 1               |                      | -      | -        | 1333,2          | 1017,9          | 746,9                 | 330,0           | -                 | -                  | -                   |
| 6    | 0,35            | 0,43            | 0,58            | 1,18            | -            | -       | -        | 5,59      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1497,0          | 1199,9          | 863,7                 | 373,7           | -                 | -                  | -                   |
| 7    | 0,30            | 0,40            | 0,53            | 1,14            | -            | -       | -        | 6,04      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1913,5          | 1410,1          | 1039,7                | 429,9           | -                 |                    | -                   |
| 8    | 0,36            | 0,45            | 0,56            | 1,16            | -            | -       | -        | 5,59      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1452,6          | 1142,1          | 898,1                 | 381,8           | -                 | -                  | -                   |
| 9    | 0,34            | 0,41            | 0,54            | 0,95            | -            | -       | -        | 5,59      | 1               | 1               | 1               | 1               | -                    |        | -        | 1543,9          | 1263,3          | 935,1                 | 488,4           | -                 | -                  | -                   |
| 10   | 0,34            | 0,41            | 0,59            | 1,10            | -            | -       | -        | 5,59      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1543,9          | 1263,3          | 847,4                 | 408,1           | -                 | -                  | -                   |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -            | -       | -        | 5,82      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1139,2          | 782,5           | 513,1                 | 145,8           | -                 | -                  | -                   |
| 12   | 0,43            | 0,54            | 0,69            | 1,27            | -            | -       | -        | 6,14      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1328,5          | 1037,5          | 790,2                 | 383,7           | -                 | -                  | -                   |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -            | -       | -        | 6,04      | 1               | 1               | 1               | 1               | -                    |        | -        | 1448,8          | 1132,7          | 858,8                 | 334,6           | -                 | -                  | -                   |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            | -            | -       | -        | 6,24      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1460,1          | 1100,1          | 804,4                 | 399,2           | -                 | -                  | -                   |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -            |         | -        | 6,60      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1550,3          | 1247,2          | 947,8                 | 419,8           | -                 | -                  | -                   |
| 16   | 0,37            | 0,46            | 0,59            | 1,10            |              | -       | -        | 5,93      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1503,9          | 1190,1          | 905,9                 | 439,5           | -                 |                    | -                   |
| 17   | 0,37            | 0,44            | 0,57            | 1,05            | -            | -       | -        | 6,24      | 1               | 1               | 1               | 1               | -                    |        | -        | 1586,6          | 1318,3          | 994,8                 | 494,3           | -                 | -                  | -                   |
| 18   | 0,41            | 0,51            | 0,67            | 1,21            | -            | -       | -        | 5,82      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1320,6          | 1042,0          | 769,3                 | 381,4           | -                 | -                  | -                   |
| 19   | 0,40            | 0,51            | 0,69            | 1,57            | -            | -       |          | 6,24      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1460,1          | 1123,6          | 804,4                 | 297,5           |                   |                    |                     |
| 20   | 0,40            | 0,49            | 0,63            | 1,20            | -            | -       | -        | 6,43      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1506,7          | 1211,6          | 920,1                 | 435,6           | -                 | -                  | -                   |
| 21   | 0,42            | 0,52            | 0,66            | 1,30            | -            | -       | -        | 6,43      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1430,2          | 1135,9          | 873,8                 | 394,4           | -                 | -                  | -                   |
| 22   | 0,39            | 0,49            | 0,63            | 1,22            | -            | -       | -        | 6,24      | 1               | 1               | 1               | 1               | -                    |        | -        | 1500,1          | 1173,6          | 890,6                 | 411,5           | -                 | -                  | -                   |
| 23   | 0,46            | 0,58            | 0,74            | 1,43            | -            | -       | -        | 6,24      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1256,6          | 976,0           | 743,3                 | 336,4           | -                 | -                  | -                   |
| 24   | 0,39            | 0,50            | 0,64            | 1,24            | -            | -       | -        | 6,68      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1613,9          | 1236,8          | 944,4                 | 439,0           | -                 | -                  | -                   |
| 25   | 0,40            | 0,51            | 0,65            | 1,53            | -            | -       | -        | 6,86      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1614,6          | 1244,8          | 955,1                 | 348,3           | -                 | -                  |                     |
| 26   | 0,44            | 0,56            | 0,72            | 1,33            | -            | -       | -        | 6,52      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1380,8          | 1063,5          | 804,9                 | 389,9           | -                 | -                  | -                   |
| 27   | 0,43            | 0,56            | 0,73            | 1,68            | -            | -       | -        | 6,92      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1509,1          | 1135,6          | 847,8                 | 311,9           | -                 | -                  | -                   |
| 28   | 0,49            | 0,63            | 0,82            | 1,68            | -            | -       | -        | 6,60      | 1               | 1               | 1               | 1               | -                    | -      | -        | 1247,2          | 947,8           | 705,0                 | 292,9           | -                 | -                  | -                   |

### Tabela 8.4i - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂ M | ETROS           | S DO LE         | ITO DO          | PARA O          | RIOM     | 061-GW       | ٩ÇU |           |                 | COMP            | ARAÇÂ           | ÃO ENT          | RE D <sub>V</sub>   | Js⊾Dj  |      | RELAÇ.          | à O PERCI       | ENTUALE              | NTRE OS         | VALORES  | B DE D <sub>VJ</sub> |         |
|-------|-----------------|-----------------|-----------------|-----------------|----------|--------------|-----|-----------|-----------------|-----------------|-----------------|-----------------|---------------------|--------|------|-----------------|-----------------|----------------------|-----------------|----------|----------------------|---------|
|       | Granu           | lometri         | iado m          | aterial         | do leito | ,            |     |           | (10)            | (11)            | (12)            | (13)            | (14)                | (15)   | (16) | EOSV            | ALORES F        | ARA D <sub>I</sub> C | OLETADO         | S NO RIO | D MOGI-G             | UA ÇU   |
| (1)   | (2)             | (3)             | (4)             | (5)             | (6)      | (7)          | (8) | (9)       | 1               | COMP/           | ARAÇÂ           | O DE            | D <sub>VU</sub> (BA | q COM: |      | (17)            | (18)            | (19)                 | (20)            | (21)     | (22)                 | (23)    |
| N     | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | -        | 5            | -   | D vi gang | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 24                  | 1      | E.   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>      | D <sub>90</sub> | •        | -                    | 3-      |
|       | (mm)            | (mm)            | (mm)            | (mm)            |          |              |     | mm        |                 |                 |                 |                 |                     |        |      |                 |                 |                      |                 |          |                      |         |
| 29    | 0,43            | 0,55            | 0,69            | 1,41            | wad.     | <del>.</del> |     | 6,43      | 1               | 1               | 1               | 1               |                     | wad.   |      | 1394,6          | 1068,5          | 831,4                | 355,8           | lace-ord | 0007000              | Sec-cel |
| 30    | 0,38            | 0,47            | 0,60            | 1,13            |          | -            | -   | 6,76      | 1               | 1               | 1               | 1               | -                   | -      | -    | 1680,2          | 1339,3          | 1027,5               | 498,7           |          | -                    | -       |
| 31    | 0,35            | 0,45            | 0,59            | 1,10            |          | -            | -   | 6,92      | 1               | 1               | 1               | 1               | -                   | -      | -    | 1876,9          | 1437,6          | 1072,7               | 529,0           | -        |                      | -       |
| 32    | 0,46            | 0,59            | 0,80            | 1,73            |          | -            | -   | 6,60      | 1               | 1               | 1               | 1               | -                   | -      | -    | 1335,0          | 1018,8          | 725,1                | 281,6           | -        | -                    | -       |
| 33    | 0,40            | 0,53            | 0,70            | 1,53            | -        | -            | -   | 6,43      | 1               | 1               | 1               | 1               | -                   | -      | -    | 1506,7          | 1112,6          | 818,1                | 320,1           | -        | -                    | -       |
| 34    | 0,39            | 0,52            | 0,70            | 1,40            | -        | -            | -   | 6,43      | 1               | 1               | 1               | 1               | -                   | -      | -    | 1547,9          | 1135,9          | 818,1                | 359,1           | -        | -                    | -       |
| 35    | 0,38            | 0,49            | 0,66            | 1,41            | -        | -            | -   | 6,60      | 1               | 1               | 1               | 1               | -                   | -      | -    | 1637,1          | 1247,2          | 900,2                | 368,2           | -        | -                    | -       |
| 36    | 0,41            | 0,54            | 0,74            | 1,59            | -        | -            | -   | 6,92      | 1               | 1               | 1               | 1               | -                   | -      | -    | 1587,6          | 1181,3          | 835,0                | 335,2           | -        | -                    | -       |
|       |                 |                 |                 |                 |          |              |     |           |                 | (%)             | de eve          | ntoser          | n que l             | DVJ≻D  | 4    | DIFEF           | RENÇAP          | ERCENTU              | AL RELA         | TIVA ME  | ÉDIA                 |         |
|       |                 |                 |                 |                 |          |              |     |           | 100,0           | 100,0           | 100,0           | 100,0           |                     |        |      | 1493,6          | 1156,0          | 859,9                | 378,9           |          |                      | [       |

Tabela 8.4i - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LE           | поро            | PARA C          | RIOMO    | OGI-GU      | ١ÇU |                       |                 | COMP            | ARAÇÂ           | AO ENT          | rre d <sub>v</sub>  | J& D∣  |      | RELAÇ           | à O P ERC       | ENTUAL E              | NTRE OS         | VALORE   | S DE D <sub>VJ</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|-------------|-----|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|--------|------|-----------------|-----------------|-----------------------|-----------------|----------|----------------------|------|
|      | Granu           | lometri         | n ob si         | naterial        | do leito | 0           | - 1 |                       | (10)            | (11)            | (12)            | (13)            | (14)                | (15)   | (16) | EOSV            | ALORES          | PARA D <sub>I</sub> C | OLETAD          | DS NO RI | D MOGEG              | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)         | (8) | (9)                   |                 | COMP.           | ARAÇÂ           | O DE            | D <sub>W [YAL</sub> | g COM: |      | (17)            | (18)            | (19)                  | (20)            | (21)     | (22)                 | (23) |
| N™   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | •        | ,           | 2   | D <sub>Vi</sub> (YAL) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> |                     | ,      |      | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>       | D <sub>90</sub> | -        | 2                    | -    |
| 1    | 0,35            | 0,46            | 0.58            | 0,93            |          | 8. <b>.</b> |     | 3.22                  | 1               | 1               | 1               | 1               |                     | -      |      | 819.5           | <b>599 B</b>    | 454.9                 | 246.1           |          |                      |      |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            |          |             |     | 3.60                  | 4               | 1               | 4               | 1               |                     |        | _    | 635.5           | 500.7           | 393.7                 | 1/13.5          | _        | _                    | _    |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            | -        | -           | _   | 425                   | 1               | 1               | 1               | 1               | -                   | -      | -    | 718.1           | 575.3           | 431.8                 | 120.4           | -        | -                    | -    |
| 4    | 0,32            | 0,42            | 0,59            | 1,39            | -        | -           | -   | 3.85                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 1102.8          | 816.4           | 552.4                 | 176.9           | -        | -                    | -    |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -        | -           | -   | 2,82                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 623,1           | 464,0           | 327,3                 | 116,9           | -        | -                    | -    |
| 6    | 0,35            | 0,43            | 0,58            | 1,18            | -        | -           | -   | 2,82                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 705,7           | 555,8           | 386,2                 | 139,0           | -        | -                    | -    |
| 7    | 0,30            | 0,40            | 0 ,53           | 1,14            | -        | -           | -   | 3 22                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 972,8           | 704,6           | 507,2                 | 182,3           | -        | 24                   | -    |
| 8    | 0,36            | 0,45            | 0,56            | 1,16            | -        | -           | -   | 2,82                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 683,3           | 526,7           | 403,6                 | 143,1           | -        | -                    | -    |
| 9    | 0,34            | 0,41            | 0 54            | 0,95            | -        | -           | -   | 2,82                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 729,4           | 587,8           | 422,2                 | 196,8           | -        | -                    | -    |
| 10   | 0,34            | 0,41            | 0 ,59           | 1,10            | -        | -           | -   | 2,82                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 729,4           | 587,8           | 378,0                 | 156,4           | -        | -                    | -    |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -        | -           | -   | 3,02                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 542,8           | 357,7           | 218,0                 | 27,5            | -        | -                    | -    |
| 12   | 0,43            | 0,54            | 0,69            | 1,27            | -        | -           | -   | 3,32                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 671,1           | 514,1           | 380,6                 | 161,1           | -        | -                    | -    |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -        | -           | -   | 3,22                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 725,2           | 556,8           | 410,9                 | 131,5           | -        | -                    | -    |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            | -        | -           | -   | 3,41                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 753,2           | 556,3           | 394,6                 | 173 p           | -        | -                    | -    |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -        | -           | -   | 3,79                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 848,2           | 674,0           | 502,0                 | 198,6           | -        | -                    | -    |
| 16   | 0,37            | 0,46            | 0 ,59           | 1,10            | -        | -           | -   | 3,12                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 743,3           | 578,3           | 428,8                 | 183,6           | -        | -                    | -    |
| 17   | 0,37            | 0,44            | 0 57            | 1,05            | -        | ļ           | -   | 3,41                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 822,3           | 675,6           | 498,7                 | 225.0           | -        | -                    |      |
| 18   | 0,41            | 0,51            | 0,67            | 1,21            | -        | -           | -   | 3,02                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 636,8           | 492,3           | 350,9                 | 149,7           | -        | -                    | -    |
| 19   | 0,40            | 0,51            | 0,69            | 1,57            |          | -           | -   | 3,41                  | 1               | 1               | 1               | 1               | -                   |        | -    | 753,2           | 569,1           | 394,6                 | 117,4           |          | -                    | -    |
| 20   | 0,40            | 0,49            | 0,63            | 1,20            | -        | -           | -   | 3,60                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 801,0           | 635,5           | 472,1                 | 200,3           | -        | -                    | -    |
| 21   | 0,42            | 0,52            | 0,66            | 1,30            | -        | -           | -   | 3,60                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 758,1           | 593,1           | 446,1                 | 177,2           |          | -                    | -    |
| 22   | 0,39            | 0,49            | 0,63            | 1,22            | -        | -           | -   | 3,41                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 775,0           | 596,5           | 441,7                 | 179,7           | -        | -                    | -    |
| 23   | 0,46            | 0,58            | 0,74            | 1,43            | -        | -           |     | 3,41                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 641,9           | 488,4           | 361,2                 | 138,6           |          | -                    | -    |
| 24   | 0,39            | 0,50            | 0,04            | 1,24            | -        | -           | -   | 3,89                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 896,5           | 677,2           | 507,2                 | 213,4           | -        | -                    | -    |
| 25   | 0,40            | 0,51            | 0,65            | 1,53            | -        | -           | -   | 4,09                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 922,4           | 701,9           | 529,2                 | 167,3           |          | -                    | -    |
| 20   | 0,44            | 0,50            | 0,72            | 1,33            | -        | -           | -   | 3,70                  | 1               | 1               | 1               | 1               | -                   | -      | -    | 740,6           | 560,5           | 413,7                 | 178,1           | -        | -                    | -    |
| 27   | 0,43            | 0,56            | 0,73            | 1,08            | -        | -           | -   | 416                   | 1               | 1               | 1               | 1               | -                   | -      | -    | 868,2           | 643,4           | 470,3                 | 147,8           | -        | -                    | -    |
| 28   | 0,49            | 0,63            | 0,82            | 1,08            | -        | -           | -   | 3,79                  | 1               | 1               | 1               | 1               | -                   | - ]    | -    | 674,0           | 502,0           | 362,5                 | 125,8           | -        | -                    | -    |

Tabela 8.4j - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETRO:           | s do le         | поро            | PARA O          | RIO M    | 061-GW | ٩ÇU |                       | ĺ               | COMP            | ARAÇ            | AO ENT          | rre d'              | /J& D∣            |      | RELAÇ           | à O P ERCI      | ENTUAL E        | NTRE OS         | VALORE   | S DE D <sub>VJ</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|--------|-----|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-------------------|------|-----------------|-----------------|-----------------|-----------------|----------|----------------------|------|
|      | Granu           | lometri         | iado m          | aterial         | do leito | 0      | v-1 |                       | (10)            | (11)            | (12)            | (13)            | (14)                | (15)              | (16) | E OS V          | ALORES F        | ARA DIC         | OLETADO         | S NO RI  | O MOGEG              | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)    | (8) | (9)                   |                 | COMP            | ARAÇÂ           | O DE            | D <sub>VJ</sub> (VA | <sub>ц</sub> СОМ: |      | (17)            | (18)            | (19)            | (20)            | (21)     | (22)                 | (23) |
| N⁰   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | •        |        |     | D <sub>Vi</sub> [YAL] | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 4                   | •                 | t.   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | -        | 24                   | -    |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |        |     | mm                    |                 |                 | 5-10            |                 |                     |                   | a;   |                 |                 |                 |                 |          |                      | 0    |
| 29   | 0,43            | 0,55            | 0,69            | 1,41            | 2005002  | S      |     | 3,60                  | 1               | 1               | 1               | 1               |                     | -                 |      | 738,1           | 555,3           | 422,3           | 155,6           |          | 2007000              |      |
| 30   | 0,38            | 0,47            | 0,60            | 1,13            |          |        | -   | 3,98                  | 1               | 1               | 1               | 1               |                     | -                 |      | 947,1           | 746,6           | 563,2           | 252,1           |          | -                    | -    |
| 31   | 0,35            | 0,45            | 0,59            | 1,10            |          | -      | -   | 416                   | 1               | 1               | 1               | 1               |                     |                   | -    | 1089,4          | 825,1           | 605,6           | 278,5           | -        | -                    | -    |
| 32   | 0,46            | 0,59            | 0,80            | 1,73            |          | -      | -   | 3,79                  | 1               | 1               | 1               | 1               | -                   | -                 | -    | 724,5           | 542,8           | 374,1           | 119,2           | -        |                      | -    |
| 33   | 0,40            | 0,53            | 0,70            | 1,53            | -        | -      | -   | 3,60                  | 1               | 1               | 1               | 1               | -                   | -                 | -    | 801,0           | 580,0           | 414,9           | 135,6           | -        | -                    | -    |
| 34   | 0,39            | 0,52            | 0,70            | 1,40            | -        | -      | -   | 3,60                  | 1               | 1               | 1               | 1               | -                   | -                 | -    | 824,1           | 593,1           | 414,9           | 157 A           | -        | -                    | -    |
| 35   | 0,38            | 0,49            | 0,66            | 1,41            | -        | -      | -   | 3,79                  | 1               | 1               | 1               | 1               | -                   | -                 | -    | 898,1           | 674,0           | 474,7           | 169,0           | -        | -                    | -    |
| 36   | 0,41            | 0,54            | 0,74            | 1,59            | -        | -      | -   | 416                   | 1               | 1               | 1               | 1               | -                   | -                 | -    | 915,4           | 670,9           | 462,6           | 161,8           | -        | -                    | -    |
|      |                 |                 |                 |                 |          |        |     |                       |                 | (%)             | de eve          | ntos er         | n que               | DVJ > D           | ),   | DIFER           | RENÇA PI        | ERCENTU         | JAL RELA        | ATIVA MI | ÉDIA                 |      |
|      |                 |                 |                 |                 |          |        |     |                       | 100 p           | 100,0           | 100,0           | 100,0           |                     | []                |      | 784,2           | 596,7           | 432,6           | 165,2           |          |                      |      |

Tabela 8.4j - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂ M | ETROS           | DOLE              | TO DO           | PARA O   | RIO MO   | OGI-GUA | ١ÇU |                       | -               | COMP            | AR AÇ           | ÃO ENT          | TRE D <sub>W</sub> | I & DI |                 | RELAÇ           | ÃO PERC         | ENTUAL E        | NTRE OS           | VALORES  | DE D <sub>VJ</sub> |      |
|-------|-----------------|-------------------|-----------------|----------|----------|---------|-----|-----------------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------|-----------------|-----------------|-----------------|-----------------|-------------------|----------|--------------------|------|
|       | Granu           | lometri           | a do m          | aterial  | do leito | )       |     |                       | (10)            | (11)            | (12)            | (13)            | (14)               | (15)   | (16)            | EOSV            | ALORESI         | PARA DI C       | OLETA DO          | S NO RIC | MOGI-GI            | UAÇU |
| (1)   | (2)             | (3)               | (4)             | (5)      | (6)      | (7)     | (8) | (9)                   | £               | COMP.           | ARAÇÂ           | <b>NODE</b>     | DVJ (PEV           | COM:   |                 | (17)            | (18)            | (19)            | (20)              | (21)     | (22)               | (23) |
| N     | D <sub>35</sub> | $\mathbf{D}_{50}$ | D <sub>65</sub> | $D_{90}$ | 372      |         | 3   | D <sub>Vi</sub> pervj | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 3722               | 3725   | (1 <b>7</b> 22) | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | $\mathbf{D}_{90}$ | 52       | 12                 | .577 |
|       | (mm)            | (mm)              | (mm)            | (mm)     |          |         |     | mm                    |                 |                 |                 |                 |                    |        |                 |                 |                 |                 |                   |          |                    |      |
| 1     | 0,35            | 0,46              | 0,58            | 0,93     | -        | -       |     | 3,53                  | 1               | 1               | 1               | 1               | -                  | -      | -               | 908,2           | 667,1           | 508,4           | 279,4             | -        | -                  | -    |
| 2     | 0,49            | 0,60              | 0,73            | 1,48     | -        | -       | -   | 3,87                  | 1               | 1               | 1               | 1               | -                  | -      | -               | 690,4           | 545,5           | 430,5           | 161,7             | -        | -                  | -    |
| 3     | 0,52            | 0,63              | 0,80            | 1,93     | -        | -       | -   | 4,44                  | 1               | 1               | 1               | 1               | -                  | -      | -               | 753,6           | 604,5           | 454,8           | 130,0             | -        | -                  | -    |
| 4     | 0,32            | 0 ,42             | 0,59            | 1,39     | -        |         | -   | 4,09                  | 1               | 1               | 1               | 1               |                    |        |                 | 1177,4          | 873,3           | 592,9           | 194,1             |          | -                  | -    |
| 5     | 0,39            | 0,50              | 0,66            | 1,30     | -        |         | -   | 3,17                  | 1               | 1               | 1               | 1               |                    |        |                 | 711,7           | 533,2           | 379,7           | 143,5             |          | -                  | -    |
| 6     | 0,35            | 0,43              | 0,58            | 118      |          |         | -   | 3,17                  | 1               | 1               | 1               | 1               | -                  | -      |                 | 804,5           | 636,2           | 445,8           | 168,3             |          | -                  |      |
| 7     | 0,30            | 0,40              | 0,53            | 114      |          | -       | -   | 3,53                  | 1               | 1               | 1               | 1               | -                  | -      |                 | 1076,3          | 782,2           | 565,8           | 209,5             |          | -                  | -    |
| 8     | 0,36            | 0,45              | 0,56            | 116      |          |         | -   | 3,17                  | 1               | 1               | 1               | 1               |                    |        |                 | 779,4           | 603,5           | 465,3           | 172,9             |          | -                  | -    |
| 9     | 0,34            | 0,41              | 0,54            | 0,95     | -        | -       | -   | 3,17                  | 1               | 1               | 1               | 1               |                    | -      | -               | 831,1           | 672,1           | 486,3           | 233,2             | - 4      | -                  | -    |
| 10    | 0,34            | 0,41              | 0,59            | 110      | -        | -       |     | 3,17                  | 1               | 1               | 1               | 1               | -                  | -      | -               | 831,1           | 672,1           | 436,6           | 187,8             | -        | -                  | -    |
| 11    | 0,47            | 0,66              | 0,95            | 2,37     | -        | -       | -   | 3,35                  | 1               | 1               | 1               | 1               | -                  | -      | -               | 612,8           | 407,6           | 252,6           | 41,3              | -        | -                  | -    |
| 17    | 0,43            | 0.04              | 0,09            | 127      | -        | -       |     | 3,62                  | 1               | 1               | 1               | 1               |                    |        |                 | 741,0           | 569,7           | 424,1           | 184,8             |          | -                  | -    |
| 13    | 0,39            | 0,49              | 0,03            | 139      | -        | -       |     | 3,53                  | 1               | 1               | 1               | 1               | -                  | -      | -               | 804,8           | 620,2           | 460,1           | 153,9             |          | -                  | -    |
| 14    | 0,40            | 0 02              | 0,09            | 145      |          | -       |     | 3,70                  | 1               | 1               | 1               | 1               |                    | -      |                 | 825,8           | 612,1           | 436,7           | 196,2             |          | -                  | -    |
| 15    | 0.25            | 0,49              | 0,03            | 1,10     | -        | -       |     | 4,04                  | 1               | 1               | 1               | 1               |                    | -      |                 | 909,7           | 724,2           | 541,1           | 218,0             | -        | -                  | -    |
| 10    | 0.25            | 0,40              | 0,59            | 105      |          |         |     | 3,44                  | 1               | 1               | 1               | 1               | -                  |        |                 | 829,7           | 647,8           | 483,1           | 212,7             |          | -                  | -    |
| 1/    | 0.41            | 0,44              | 0,57            | 121      |          | -       |     | 3,70                  | 1               | 1               | 1               | 1               | -                  | -      | -               | 900,8           | 741,6           | 649,7           | 252,7             | -        | -                  | -    |
| 10    | 0.40            | 0.51              | 0.60            | 167      |          | -       |     | 3,35                  | 1               |                 |                 |                 | -                  | -      |                 | (1(,1           | 006,9           | 400,0           | 176,9             |          |                    | -    |
| 20    | 0.40            | 0.40              | 0.63            | 120      | -        | -       |     | 3,70                  | 1               | 1               | 1               | 1               |                    |        |                 | 825,8           | 626,1           | 436,7           | 135,9             |          |                    | -    |
| 21    | 0.42            | 0.52              | 0.66            | 130      |          |         |     | 3,87                  | 1               | 1               | 1               | 1               |                    |        |                 | 868,2           | 690,4           | 014,7           | 407.0             |          | -                  | -    |
| 22    | 039             | 0.49              | 0.63            | 122      | -        |         |     | 3,6)                  |                 |                 |                 |                 |                    |        |                 | 040.5           | 644 p           | 400,0           | 197,9             |          | -                  | -    |
| 23    | 0.46            | 0.58              | 0.74            | 143      |          |         |     | 3,70                  | 1               |                 | 1               |                 |                    |        |                 | 705.0           | 600,7<br>500,5  | 487,8           | 459.0             |          | -                  | -    |
| 24    | 039             | 0 50              | 0.64            | 124      |          |         |     | 412                   |                 |                 |                 |                 |                    |        |                 | 960.6           | 724.4           | 5/2.0           | 222.2             |          | -                  |      |
| 25    | 0,40            | 0.51              | 0.65            | 153      |          |         |     | 4 30                  | 4               | 4               | 1               | 4               |                    |        |                 | 974.2           | 742.5           | 561.1           | 180.9             |          |                    | -    |
| 26    | 0,44            | 0 56              | 0,72            | 133      | _        | _       | _   | 3.06                  | 4               | 4               | 4               | 4               | _                  | _      | _               | 799.2           | 606.5           | 1/19 5          | 197.5             | _        | _                  | -    |
| 27    | 0,43            | 0.56              | 0,73            | 1,68     | _        | _       | _   | 4.36                  | 4               | 4               | 4               | 4               |                    |        |                 | 914.0           | 678.6           | 445,5           | 159.5             |          | _                  | _    |
| 28    | 0,49            | 0,63              | 0,82            | 1,68     | _        | -       | _   | 4.04                  | 4               | 4               | 4               | 4               | -                  | -      | -               | 724.2           | 541.1           | 392.5           | 140.4             | _        | _                  | -    |
|       |                 |                   |                 |          |          |         |     |                       |                 |                 |                 |                 |                    |        |                 | 1444:           | 041,1           | 002,0;          | 140,4             |          |                    |      |

### Tabela 8.4k - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂ M | ETROS           | DOLE            | ITO DO          | PARA O          | RIO M           | 061-GW   | ιçυ |                       |                 | COMP            | ARAÇ            | ÃO ENT          | rre d <sub>v</sub>  | us D <sub>i</sub> | 2              | RELAÇ           | ÃO PERCI        | ENTUAL E        | NTRE OS         | VALORES  | DE D <sub>VJ</sub> |      |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|-----|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-------------------|----------------|-----------------|-----------------|-----------------|-----------------|----------|--------------------|------|
|       | Granu           | lometri         | ia do m         | aterial         | do leito        | )        |     |                       | (10)            | (11)            | (12)            | (13)            | (14)                | (15)              | (16)           | E OS V          | A LORES F       | ARA DIC         | OLETA DO        | S NO RIO | D M OGI-G          | UAÇU |
| (1)   | (2)             | (3)             | (4)             | (5)             | (6)             | (7)      | (8) | (9)                   | 8               | COMP.           | ARAÇÀ           | ODE             | D <sub>VJ</sub> [PE | COM:              |                | (17)            | (18)            | (19)            | (20)            | (21)     | (22)               | (23) |
| N⁰    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | (1 <b>7</b> 2); | 372      | 12  | D <sub>Vi</sub> pervj | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 1972).              | 372               | 1972)          | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 70       | 172                | .570 |
|       | (mm)            | (mm)            | (mm)            | (mm)            |                 |          |     | mm                    |                 |                 |                 |                 |                     |                   |                |                 |                 |                 |                 |          |                    |      |
| 29    | 0,43            | 0 ,55           | 0,69            | 1,41            | -               | 800      | -   | 3,87                  | 1               | 1               | 1               | 1               |                     | -                 | -              | 800,7           | 604,2           | 461,3           | 174,7           |          |                    | -    |
| 30    | 0,38            | 0 ,47           | 0,60            | 113             | -               | -        | -   | 4,20                  | 1               | 1               | 1               | 1               | -                   | -                 | -              | 1005,6          | 793,9           | 600,2           | 271,8           | -        | -                  | -    |
| 31    | 0,35            | 0 ,45           | 0,59            | 110             | -               | -        | -   | 4,36                  | 1               | 1               | 1               | 1               | -                   | -                 | -              | 1145,7          | 868,9           | 639,0           | 296,4           | -        | -                  | -    |
| 32    | 0,46            | 0 ,59           | 0,80            | 1,73            | -               | -        | -   | 4,04                  | 1               | 1               | 1               | 1               | -                   | -                 | -              | 778,0           | 584,5           | 404,8           | 133,5           | -        | -                  | -    |
| 33    | 0,40            | 0 ,53           | 0,70            | 1,53            | ar <b>-</b> 23  | <b>-</b> |     | 3,87                  | 1               | 1               | 1               | 1               |                     | -                 |                | 868,2           | 630,7           | 453,3           | 153,1           |          |                    | -    |
| 34    | 0,39            | 0 ,52           | 0,70            | 1,40            |                 |          | -   | 3,87                  | 1               | 1               | 1               | 1               | -                   | -                 | -              | 893,0           | 644,8           | 453,3           | 176,6           | -        | -                  |      |
| 35    | 0,38            | 0 ,49           | 0,66            | 1,41            |                 |          | -   | 4,04                  | 1               | 1               | 1               | 1               |                     |                   |                | 962,8           | 724,2           | 511,9           | 186,4           | -        | -                  |      |
| 36    | 0,41            | 0 54            | 0,74            | 1,59            |                 |          | -   | 4,36                  | 1               | 1               | 1               | 1               | -                   | -                 | -              | 963,4           | 707 A           | 489,2           | 174,2           | -        | -                  | -    |
|       |                 |                 |                 |                 |                 |          |     | 8                     |                 | (%)             | de eve          | ntoser          | m que l             | DVJ≻D             | ) <sub>1</sub> | DIFER           | ENÇA PI         | ERCENTU         | JAL RELA        | ATIVA MÉ | ÉDIA               |      |
|       |                 |                 |                 |                 |                 |          |     | 3                     | (100,0)         | 100,0           | 100,0           | 100,0           |                     |                   |                | 854,5           | 652,1           | 474,9           | 186,5           |          |                    |      |

Tabela 8.4k - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂM | ETROS           | DO LEI          | TODO            | PARA O          | RIO M (  | OGI-GUA | ٩ÇU |                      | 1               | COMP            | ARAÇÂ           | OENT            | rre d <sub>v</sub>   | J& D∣ |      | RELAÇ           | à O PERC        | ENTUALE               | NTRE OS         | VALORES  | S DE D <sub>VJ</sub> |      |
|------|-----------------|-----------------|-----------------|-----------------|----------|---------|-----|----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|-------|------|-----------------|-----------------|-----------------------|-----------------|----------|----------------------|------|
| D    | Granul          | ometri          | ado m           | aterial         | do leito | )       |     |                      | (10)            | (11)            | (12)            | (13)            | (14)                 | (15)  | (16) | E OS V          | ALORES          | PARA D <sub>1</sub> C | OLETADO         | S NO RIO | D MOGEGI             | UAÇU |
| (1)  | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8) | (9)                  |                 | COMP            | ARAÇÂ           | O DE            | D <sub>V</sub> a jac | COM:  | S    | (17)            | (18)            | (19)                  | (20)            | (21)     | (22)                 | (23) |
| N⁰   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 2        | 24      |     | D <sub>vi</sub> garj | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 10                   | 100   | 10   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>       | D <sub>90</sub> | -        |                      | -    |
|      | (mm)            | (mm)            | (mm)            | (mm)            |          |         | 2   | mm                   |                 |                 |                 |                 |                      |       |      |                 | in vennen<br>Au |                       |                 |          |                      |      |
| 1    | 0,35            | 0,46            | 0,58            | 0,93            | -        | -       | -   | 7,18                 | 1               | 1               | 1               | 1               |                      | -     | -    | 1952,8          | 1461,9          | 1138,7                | 672,5           | -        | -                    | -    |
| 2    | 0,49            | 0,60            | 0,73            | 1,48            | -        | -       | -   | 7 23                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1375,1          | 1104,7          | 890,1                 | 388,4           | -        | -                    | -    |
| 3    | 0,52            | 0,63            | 0,80            | 1,93            | -        | -       | -   | 5,06                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 873,4           | 703,4           | 532,7                 | 162,3           | -        | -                    | -    |
| 4    | 0,32            | 0,42            | 0,59            | 1,39            | -        |         | -   | 5,08                 | 1               | 1               | 1               | 1               |                      |       | -    | 1487,0          | 1109,1          | 760,7                 | 265,3           | -        | -                    | -    |
| 5    | 0,39            | 0,50            | 0,66            | 1,30            | -        | -       | -   | 5 19                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1231,9          | 938,8           | 687,0                 | 299,6           | -        | -                    | -    |
| 6    | 0,35            | 0,43            | 0,58            | 1,18            | -        | -       | -   | 5,71                 | 1               | 1               | 1               | 1               | -                    | -     |      | 1530,6          | 1227,2          | 884,0                 | 383,7           | -        | -                    | -    |
| 7    | 0,30            | 0,40            | 0,53            | 1,14            | -        | -       | -   | 6 29                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1995,3          | 1471,5          | 1086,0                | 451,4           | -        | -                    | -    |
| 8    | 0,36            | 0,45            | 0,56            | 1,16            | -        |         | -   | 5 54                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1438,6          | 1130,9          | 889,1                 | 377,5           | -        | -                    | -    |
| 9    | 0,34            | 0,41            | 0,54            | 0,95            | -        | -       | -   | 5 20                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1430,6          | 1169,3          | 863,7                 | 447,8           | -        | -                    | -    |
| 10   | 0,34            | 0,41            | 0,59            | 1,10            | -        | -       | -   | 5 77                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1596,7          | 1307,0          | 877,8                 | 424,4           | -        | -                    | -    |
| 11   | 0,47            | 0,66            | 0,95            | 2,37            | -        | -       | -   | 4,89                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 940,0           | 640,6           | 414,5                 | 106,2           | -        | -                    | -    |
| 12   | 0,43            | 054             | 0,69            | 1,27            | -        |         | -   | 5 58                 | 1               |                 | 1               | 1               | -                    | -     | -    | 1197,8          | 933,4           | 708,8                 | 339,4           | -        | -                    | -    |
| 13   | 0,39            | 0,49            | 0,63            | 1,39            | -        | -       | -   | 5 ,89                | 1               | 1               | 1               | 1               | -                    | -     | -    | 14 10,7         | 1102,4          | 835,2                 | 323,9           | -        | -                    | -    |
| 14   | 0,40            | 0,52            | 0,69            | 1,25            | -        | -       | -   | 5 ,65                | 1               | 1               | 1               | 1               | -                    | -     | -    | 1311,5          | 985,8           | 718,3                 | 351,7           | -        | -                    | -    |
| 15   | 0,40            | 0,49            | 0,63            | 1,27            | -        | -       | -   | 6 29                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1473,3          | 1184,3          | 898,9                 | 395,5           | -        | -                    | -    |
| 16   | 0,37            | 0,46            | 0,59            | 1,10            | -        | -       | -   | 6,10                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1549,8          | 1227,0          | 934,6                 | 454,9           | -        | -                    | -    |
| 17   | 0,37            | 0,44            | 0,57            | 1,05            | -        | -       | -   | 6 11                 | 1               | 1               | 1               | 1               |                      |       | -    | 1550,4          | 1287,9          | 971,3                 | 481,6           | -        | -                    | -    |
| 18   | 0,41            | 0,51            | 0,67            | 1,21            | -        | -       | -   | 6 61                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1512,8          | 1 196,6         | 887,0                 | 446,5           | -        | -                    | -    |
| 19   | 0,40            | 0,51            | 0,69            | 1,57            | -        | -       | -   | 6 59                 | 1               | 1               | 1               | 1               | -                    | -     |      | 1548,4          | 1 192,8         | 855,6                 | 320,0           | -        | -                    | -    |
| 20   | 0,40            | 0,49            | 0,63            | 1,20            | -        |         | -   | 6 57                 | 1               | 1               | 1               | 1               | -                    | -     |      | 1541,4          | 1239,9          | 942,1                 | 447,1           | -        |                      |      |
| 21   | 0,42            | 0,52            | 0,66            | 1,30            | -        | -       | -   | 6 ,47                | 1               | 1               | 1               | 1               | -                    | -     | -    | 1441,2          | 1144,8          | 880,8                 | 397,9           | -        | -                    | -    |
| 22   | 0,39            | 0,49            | 0,63            | 1,22            | -        | -       | -   | 6 69                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1615,7          | 1265,6          | 962,1                 | 448,5           | -        | -                    | -    |
| 23   | 0,46            | 0,58            | 0,74            | 1,43            | -        | -       | -   | 6 ,69                | 1               | 1               | 1               | 1               | -                    | -     | -    | 1355,4          | 1054,3          | 804,7                 | 368,2           | -        | -                    | -    |
| 24   | 0,39            | 0,50            | 0,64            | 1,24            | -        | -       | -   | 6 73                 | 1               | 1               | 1               | 1               | -                    | -     |      | 1625,5          | 1245,9          | 951,5                 | 442,7           | -        | -                    | -    |
| 25   | 0,40            | 0,51            | 0,65            | 1,53            | -        | -       | -   | 6.93                 | 1               | 1               | 1               | 1               | -                    | -     |      | 1633,3          | 1259,5          | 966,7                 | 353,2           | -        | -                    | -    |
| 26   | 0,44            | 0,56            | 0,72            | 1,33            | -        | -       | -   | 6.94                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1478,3          | 1140,1          | 964,5                 | 422,2           | -        | -                    | -    |
| 27   | 0,43            | 0,56            | 0,73            | 1,68            | -        | -       | -   | 6,97                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1521,0          | 1144,7          | 854,8                 | 314,9           | -        | -                    | -    |
| 28   | 0,49            | 0,63            | 0,82            | 1,68            | -        | -       | -   | 7,00                 | 1               | 1               | 1               | 1               | -                    | -     | -    | 1328,4          | 1011,0          | 753,6                 | 316,6           | -        | -                    | -    |

### Tabela 8.41 - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

| DIÂ M | ETRO            | S DO LE         | поро            | PARA O          | RIO M    | 061-6UA | ١ÇU |                       | 1               | COMP            | ARAÇÂ           | OENT            | REDv            | J& D∣   |      | RELAÇ           | à O PERC        | ENTUAL E              | NTRE OS  | VALORES | S DE D <sub>VJ</sub> |      |
|-------|-----------------|-----------------|-----------------|-----------------|----------|---------|-----|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------|------|-----------------|-----------------|-----------------------|----------|---------|----------------------|------|
|       | Granu           | lometr          | iado m          | aterial         | do leito | )       |     |                       | (10)            | (11)            | (12)            | (13)            | (14)            | (15)    | (16) | EOSV            | ALORES          | PARA D <sub>1</sub> C | OLETADO  | S NO RI | O MOGEG              | UAÇU |
| (1)   | (2)             | (3)             | (4)             | (5)             | (6)      | (7)     | (8) | (P)                   |                 | COMP            | ARAÇÂ           | O DE            | DVJ             | 1 C OM: | ŝ    | (17)            | (18)            | (19)                  | (20)     | (21)    | (22)                 | (23) |
| N™    | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 2        | -       | -   | D <sub>Vi</sub> pperj | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub> | D <sub>90</sub> | 20              | 12      | 10   | D <sub>35</sub> | D <sub>50</sub> | D <sub>65</sub>       | $D_{90}$ | -       | •                    | 2    |
|       | (mm)            | (mm)            | (mm)            | (mm)            |          |         |     | mm                    |                 |                 |                 |                 | _               |         |      |                 |                 |                       |          |         |                      |      |
| 29    | 0,43            | 0,55            | 0,69            | 1,41            | lastal   |         |     | 6,79                  | 1               | 1               | 1               | 1               | la <del>.</del> |         | 5    | 1479,5          | 1134,9          | 884,3                 | 381,7    | 0007000 | l                    |      |
| 30    | 0,38            | 0,47            | 0,60            | 1,13            | -        | -       |     | 7,04                  | 1               | 1               | 1               | 1               |                 | -       |      | 1753,1          | 1398,2          | 1073,6                | 523,2    |         | -                    | -    |
| 31    | 0,35            | 0,45            | 0 59            | 1,10            | -        | -       |     | 7,13                  | 1               | 1               | 1               | 1               | -               | -       | -    | 1936,0          | 1483,5          | 1107,8                | 547,8    |         | -                    | -    |
| 32    | 0,46            | 0,59            | 0,80            | 1,73            | -        | -       |     | 6,62                  | 1               | 1               | 1               | 1               |                 |         |      | 1339,6          | 1022,4          | 727,8                 | 282,8    |         | -                    | -    |
| 33    | 0,40            | 0,53            | 0,70            | 1,53            | -        | -       | -   | 7,39                  | 1               | 1               | 1               | 1               | -               | -       | -    | 1747,2          | 1294,1          | 955,6                 | 382,9    | -       | -                    | -    |
| 34    | 0,39            | 0,52            | 0,70            | 1,40            | -        | -       | -   | 7,37                  | 1               | 1               | 1               | 1               | -               | -       | -    | 1789,2          | 1316,9          | 952,5                 | 426,3    | -       | -                    | -    |
| 35    | 0,38            | 0,49            | 0,66            | 1,41            | -        | -       | -   | 7,38                  | 1               | 1               | 1               | 1               | -               | -       | -    | 1843,3          | 1407,0          | 1018,9                | 423,7    | -       | -                    | -    |
| 36    | 0,41            | 0,54            | 0,74            | 1,59            | -        | -       | -   | 7,43                  | 1               | 1               | 1               | 1               | -               | -       | -    | 1712,5          | 1276,1          | 904,2                 | 367,4    | -       | -                    | -    |
|       |                 |                 |                 |                 |          |         |     |                       |                 | (%)             | de eve          | ntos er         | n que           | DVJ≻C   | ),   | DIFER           | RENÇA P         | ERCENTU               | IAL RELA | TIVA M  | ÉDIA                 |      |
|       |                 |                 |                 |                 |          |         |     |                       | 100,0           | 100,0           | 100,0           | 100,0           |                 |         |      | 1515,2          | 1172,6          | 873,3                 | 387,2    |         |                      |      |

Tabela 8.41 - Comparação entre os diâmetros calculados pelas equações de estimativas e os diâmetros coletados no Rio Mogi-Guaçu

### ANEXO F

Comparação entre as descargas medidas no rio Mogi-Guaçu e aquelas calculadas

Comparação usando nas equações de cálculo do transporte de sedimentos os diâmetros definidos pelos próprios autores

Comparação usando nas equações de cálculo do transporte de sedimentos os diâmetros calculados pelas equações obtidas na pesquisa

| (l) | (2)       | (3)             | (4)               | (5)      | (6)                 | (7)   | (8)      | (9)              | (10)               | (11)            | (12)                | (13)               | (14)                  | (15)                | (16)   | (17)    | (18)                   | (19)                   | (20)                | (21)    |
|-----|-----------|-----------------|-------------------|----------|---------------------|-------|----------|------------------|--------------------|-----------------|---------------------|--------------------|-----------------------|---------------------|--------|---------|------------------------|------------------------|---------------------|---------|
| N⁰  | DATA      | D <sub>90</sub> | $D_{V_j \ (BEE)}$ | S        | q = Q/B             | U,    | ν        | R <sub>*90</sub> | R ∗ <sub>Dvj</sub> | 1.8.4.9.4.711   |                     |                    |                       | $\tau_{c}$          | В      | qBm     | qB[SHI] <sub>D50</sub> | qB[SHI] <sub>Dvj</sub> | E[%]D <sub>80</sub> | E[%]Dvj |
|     |           | (mm)            | mm                | (m/m)    | m <sup>3</sup> /s.m | (m/s) | m² /s    |                  | - 1873<br>197      | $\theta_{dD90}$ | $\theta_{\rm cDoj}$ | $\tau_{\oplus 90}$ | τ <sub>.</sub><br>Doj | Kgf/ m <sup>2</sup> | (m)    | ton/dia | ton/d ia               | ton/dia                | 120                 |         |
| 3   | 14/1/1989 | 1,93            | 4,27              | 1,85E-04 | 4,36                | 0,08  | 9,09E-07 | 178,36           | 395,05             | 0,05            | 0,06                | 0,16               | 0,42                  | 0,72                | 103,80 | 82,230  | 7704,44                | 1844,22                | 9269,38             | 2142,75 |
| 4   | 15/1/1989 | 1,39            | 3,99              | 1,63E-04 | 4,33                | 0,08  | 9,12E-07 | 119,62           | 343,01             | 0,05            | 0,06                | 0,11               | 0,38                  | 0,63                | 103,00 | 81,150  | 8671,79                | 1421,11                | 10586,13            | 1651,21 |
| 5   | 20/1/1989 | 1,30            | 3,21              | 1,10E-04 | 3,94                | 0,07  | 9,00E-07 | 95,23            | 234,89             | 0,04            | 0,05                | 0,09               | 0,28                  | 0,44                | 102,80 | 87,210  | 3802,92                | 708,05                 | 4260,65             | 711,90  |
| 6   | 27/1/1989 | 1,18            | 3,21              | 1,10E-04 | 2,61                | 0,06  | 8,98E-07 | 78,80            | 214,11             | 0,04            | 0,05                | 0,08               | 0,28                  | 0,37                | 101,30 | 40,130  | 2225,48                | 256,66                 | 5445,68             | 539,57  |
| 7   | 3/2/1989  | 1,14            | 3,52              | 1,30E-04 | 1,64                | 0,05  | 8,67E-07 | 72,15            | 222,59             | 0,04            | 0,05                | 0,08               | 0,31                  | 0,31                | 99,35  | 33,570  | 1354,49                | 0,41                   | 3934,82             | 98,78   |
| 8   | 24/2/1989 | <b>L, 16</b>    | 3,21              | 1,10E-04 | 2,99                | 0,06  | 8,68E-07 | 80,84            | 223,45             | 0,04            | 0,05                | 0,08               | 0,28                  | 0,37                | 101,70 | 57,860  | 2673,22                | 308,41                 | 4520,16             | 433,03  |
| 9   | 3/3/1989  | 0,95            | 3,21              | 1,10E-04 | 3,92                | 0,06  | 8,86E-07 | 68,68            | 231,80             | 0,04            | 0,05                | 0,06               | 0,28                  | 0,42                | 102,70 | 58,780  | 5232,60                | 595,21                 | 8802,01             | 912,60  |
| 10  | 10/3/1989 | 1,10            | 3,21              | 1,10E-04 | 2,49                | 0,06  | 8,85E-07 | 74,28            | 216,53             | 0,04            | 0,05                | 0,08               | 0,28                  | 0,36                | 100,90 | 29,060  | 2302,03                | 235,88                 | 7821,64             | 711,69  |
| 11  | 17/3/1989 | 2,37            | 3,36              | 1,20E-04 | 5,03                | 0,07  | 9,66E-07 | 179,97           | 255,49             | 0,05            | 0,05                | 0,20               | 0,30                  | 0,55                | 104,00 | 97,260  | 2953,34                | 1457,02                | 2936,54             | 1398,06 |
| 12  | 31/3/1989 | 1,27            | 3,59              | 1,35E-04 | 2,90                | 0,07  | 9,01E-07 | 93,44            | 264,22             | 0,04            | 0,05                | 0,09               | 0,33                  | 0,45                | 101,45 | 43,910  | 3536,55                | 431,34                 | 7954,08             | 882,33  |
| 13  | 7/4/1989  | 1,39            | 3,52              | 1,30E-04 | 2,26                | 0,06  | 8,98E-07 | 91,51            | 231,53             | 0,04            | 0,05                | 0,10               | 0,31                  | 0,36                | 100,50 | 48,570  | 1726,42                | 124,79                 | 3454,51             | 156,92  |
| 14  | 14/4/1989 | 1,25            | 3,66              | 1,40E-04 | 2,74                | 0,06  | 9,13E-07 | 88,18            | 258,49             | 0,04            | 0,05                | 0,09               | 0,33                  | 0,42                | 101,40 | 64,460  | 3302,15                | 312,51                 | 5022,79             | 384,81  |
| 16  | 5/5/1989  | 1,10            | 3,44              | 1,25E-04 | 1,90                | 0,06  | 9,27E-07 | 66,22            | 207,16             | 0,04            | 0,05                | 0,07               | 0,30                  | 0,32                | 100,00 | 48,420  | 1671,91                | 48,63                  | 3352,93             | 0,44    |
| 17  | 9/5/1989  | 1,05            | 3,66              | 1,40E-04 | 1,90                | 0,06  | 9,92E-07 | 61,62            | 215,04             | 0,04            | 0,05                | 0,07               | 0,32                  | 0,35                | 100,00 | 34,440  | 2220,42                | 66,21                  | 6347,22             | 92,23   |
|     |           |                 |                   |          |                     |       |          |                  |                    |                 |                     |                    |                       |                     |        |         |                        | MEDIA                  | 5979,18             | 722,59  |

Tabela 8.6b - Descargas calculadas pelo método de Shields (1936) usando o diâmetro D<sub>90</sub> e o Dvj

| (1)<br>№ | (2)<br>DATA | (3)<br>D <sub>50</sub><br>(mm) | (4)<br>D <sub>vj բաթող</sub><br>mm | (5)<br>n<br>Manning | (6)<br>n´ | (7)<br>7 <sub>0</sub><br>Kgf⁄ m <sup>2</sup> | (8)<br>n´/n | <b>(9)</b><br>Hi <sub>90</sub> | (10)<br><sup>Өі</sup> Dvi | (11)<br>[n´/n] <sup>3/2</sup> 8i <sub>90</sub> | <b>(12)</b><br>[n´/n] <sup>3/2</sup> θi <sub>Dij</sub> | (13)<br>Ф <sub>D90</sub> | (14)<br>Ф <sub>Дит</sub> і | (15)<br>B<br>(m) | (16)<br>qBm<br>ton/dia | (17)<br>գ.B[MIPM] <sub>220</sub> | (18)<br>qB[MPM] <sub>Dvi</sub> | (19)<br>E[%]D <sub>so</sub> | (20)<br>E [%]Dvj |
|----------|-------------|--------------------------------|------------------------------------|---------------------|-----------|----------------------------------------------|-------------|--------------------------------|---------------------------|------------------------------------------------|--------------------------------------------------------|--------------------------|----------------------------|------------------|------------------------|----------------------------------|--------------------------------|-----------------------------|------------------|
| 3        | 14/1/1989   | 0,63                           | 2,96                               | 0,03                | 0,01      | 0,72                                         | 0,47        | 0,69                           | 0,15                      | 0,22                                           | 0,05                                                   | 0,60                     | 0,0002                     | 103,80           | 82,23                  | 905,01                           | 3,08                           | 1000,58                     | 96,26            |
| 4        | 15/1/1989   | 0,42                           | 2,75                               | 0,03                | 0,01      | 0,63                                         | 0,50        | 0,91                           | 0,14                      | 0,32                                           | 0,05                                                   | 1,17                     | 0,0011                     | 103,00           | 81,15                  | 956,68                           | 15,09                          | 1078,91                     | 81,40            |
| 11       | 17/3/1989   | 0,66                           | 2,50                               | 0,03                | 0,01      | 0,55                                         | 0,50        | 0,50                           | 0,13                      | 0,18                                           | 0,05                                                   | 0,39                     | 0,0001                     | 104,00           | 97,26                  | 626,32                           | 0,63                           | 543,96                      | 99,35            |
|          |             |                                |                                    |                     |           |                                              |             |                                |                           |                                                |                                                        |                          |                            |                  |                        |                                  |                                | 874,48                      | 92,34            |

Tabela 8.6c - Descargas calculadas pelo método de Meyer-Peter e Muller (1948) usando o diâmetro  ${
m D_{90}}$  e o Dvj

| (l)<br>N° | (2)<br>DAT A | (9)<br>D <sub>50</sub> | (5)<br>D <sub>vj (EAL)</sub> | (5)<br>T <sub>0</sub> | 6)<br>U* | Ø              | (8)              | (9)                  | (10)                 | (11)                    | (12)       | (13)<br>B | (14)<br>qBm | (15)<br>qB[KAL]D <sub>50</sub> | (16)<br>qB[KAL]Dvj | (17)<br>E[%]D <sub>50</sub> | (18)<br>E[%]Dvj |
|-----------|--------------|------------------------|------------------------------|-----------------------|----------|----------------|------------------|----------------------|----------------------|-------------------------|------------|-----------|-------------|--------------------------------|--------------------|-----------------------------|-----------------|
|           | o            | (mm)                   | mm                           | Kgf/m²                | (m/s)    | $\tau c_{D50}$ | $\tau_{c_{Dvj}}$ | $\tau_{cD50/}\tau_0$ | $\tau_{cDvj}/\tau_0$ | UP/Uin <sub>[DS+]</sub> | UP/Uin[Dv] | (m)       | ton/dia     | ton/dia                        | ton/dia            |                             |                 |
| 1         | 10/12/1988   | 0,46                   | 2,41                         | 0,22                  | 0,05     | 0,09           | 0,46             | 0,41                 | 2,13                 | 0,32                    | 0,003      | 95,70     | 10,73       | 239,98                         | 11,68              | 2136,5                      | 8,9             |
| 2         | 11/12/1988   | 0,60                   | 2,26                         | 0,21                  | 0,05     | 0,11           | 0,43             | 0,55                 | 2,06                 | 0,23                    | 0,004      | 95,30     | 18,34       | 220,78                         | 13,83              | 1103,8                      | 24,6            |
| 3         | 14/1/1989    | 0,63                   | 0,05                         | 0,72                  | 0,08     | 0,12           | 0,01             | 0,17                 | 0,01                 | 0,58                    | 0,959      | 103,80    | 82,23       | 1163,85                        | 145,82             | 1315,4                      | 77,3            |
| 4         | 15/1/1989    | 0,42                   | 0,08                         | 0,63                  | 0,08     | 0,08           | 0,02             | 0,13                 | 0,02                 | 0,66                    | 0,922      | 103,00    | 81,15       | 817,99                         | 223,42             | 908,0                       | 175,3           |
| 5         | 20/1/1989    | 0,50                   | 0,39                         | 0,44                  | 0,07     | 0,10           | 0,07             | 0,22                 | 0,17                 | 0,50                    | 0,579      | 102,80    | 87,21       | 622,02                         | 556,64             | 613,2                       | 538,3           |
| б         | 27/1/1989    | 0,43                   | 0,88                         | 0,37                  | 0,06     | 0,08           | 0,17             | 0,22                 | 0,46                 | 0,49                    | 0,283      | 101,30    | 40,13       | 469,47                         | 556,35             | 1069,9                      | 1286,4          |
| 7         | 3/2/1989     | 0,40                   | 1,30                         | 0,31                  | 0,05     | 0,08           | 0,25             | 0,25                 | 0,81                 | 0,46                    | 0,126      | 99,35     | 33,57       | 369,99                         | 327,08             | 1002,2                      | 874,3           |
| 8         | 24/2/1989    | 0,45                   | 0,69                         | 0,37                  | 0,06     | 0,09           | 0,13             | 0,23                 | 0,35                 | 0,48                    | 0,363      | 101,70    | 57,86       | 490,46                         | 565,07             | 747,7                       | 876,6           |
| 9         | 3/3/1989     | 0,41                   | 0,50                         | 0,42                  | 0,06     | 0,08           | 0,10             | 0,19                 | 0,23                 | 0,54                    | 0,485      | 102,70    | 58,78       | 534,66                         | 586,34             | 809,6                       | 897,5           |
| 10        | 10/3/1989    | 0,41                   | 0,95                         | 0,36                  | 0,06     | 0,08           | 0,18             | 0,22                 | 0,50                 | 0,50                    | 0,260      | 100,90    | 29,06       | 454,08                         | 544,25             | 1462,6                      | 1772,8          |
| 11        | 17/3/1989    | 0,66                   | 0,15                         | 0,55                  | 0,07     | 0,13           | 0,03             | 0,23                 | 0,05                 | 0,48                    | 0,844      | 104,00    | 97,26       | 893,36                         | 350,92             | 818,5                       | 260,8           |
| 12        | 31/3/1989    | 0,54                   | 0,49                         | 0,45                  | 0,07     | 0,10           | 0,09             | 0,23                 | 0,21                 | 0,48                    | 0,510      | 101,45    | 43,91       | 644,21                         | 613,07             | 1367,1                      | 1296,2          |
| 13        | 7/4/1989     | 0,49                   | 0,83                         | 0,36                  | 0,06     | 0,09           | 0,16             | 0,26                 | 0,45                 | 0,45                    | 0,293      | 100,50    | 48,57       | 478,49                         | 530,17             | 885,2                       | 991,6           |
| 14        | 14/4/1989    | 0,52                   | 0,50                         | 0,42                  | 0,06     | 0,10           | 0,10             | 0,24                 | 0,23                 | 0,48                    | 0,488      | 101,40    | 64,46       | 595,54                         | 585,62             | 823,9                       | 808,5           |
| 15        | 28/4/1989    | 0,49                   | 0,99                         | 0,35                  | 0,06     | 0,09           | 0,19             | 0,27                 | 0,55                 | 0,44                    | 0,233      | 99,25     | 21,38       | 456,81                         | 485,67             | 2036,6                      | 2171,6          |
| 16        | 5/5/1989     | 0,46                   | 1,13                         | 0,32                  | 0,06     | 0,09           | 0,22             | 0,28                 | 0,68                 | 0,43                    | 0,169      | 100,00    | 48,42       | 408,47                         | 391,91             | 743,6                       | 709,4           |
| 17        | 9/5/1989     | 0,44                   | 0,97                         | 0,35                  | 0,06     | 0,08           | 0,18             | 0,24                 | 0,53                 | 0,47                    | 0,239      | 100,00    | 34,44       | 441,02                         | 492,44             | 1180,5                      | 1329,9          |
| 18        | 23/5/1989    | 0,51                   | 1,85                         | 0,24                  | 0,05     | 0,10           | 0,35             | 0,42                 | 1,50                 | 0,32                    | 0,022      | 99,10     | 34,59       | 280,52                         | 72,21              | 711,0                       | 108,8           |
| 19        | 2/6/1989     | 0,51                   | 1,58                         | 0,27                  | 0,05     | 0,10           | 0,30             | 0,36                 | 1,11                 | 0,36                    | 0,063      | 98,00     | 25,42       | 341,55                         | 185,26             | 1243,6                      | 628,8           |
| 20        | 6/6/1989     | 0,49                   | 1,41                         | 0,30                  | 0,05     | 0,09           | 0,27             | 0,31                 | 0,90                 | 0,40                    | 0,101      | 97,50     | 18,83       | 377,57                         | 275,73             | 1905,1                      | 1364,3          |
| 21        | 13/6/1989    | 0,52                   | 1,30                         | 0,32                  | 0,06     | 0,10           | 0,25             | 0,32                 | 0,79                 | 0,40                    | 0,132      | 98,60     | 19,59       | 414,55                         | 344,35             | 2016,1                      | 1657,8          |
| 22        | 20/6/1989    | 0,49                   | 1,67                         | 0,26                  | 0,05     | 0,09           | 0,32             | 0,36                 | 1,24                 | 0,36                    | 0,045      | 97,40     | 26,70       | 312,05                         | 135,88             | 1068,7                      | 408,9           |
| 23        | 27/6/1989    | 0,58                   | 1,70                         | 0,26                  | 0,05     | 0,11           | 0,33             | 0,43                 | 1,26                 | 0,30                    | 0,043      | 96,80     | 25,31       | 314,28                         | 130,30             | 1141,7                      | 414,8           |
| 24        | 5/7/1989     | 0,50                   | 1,47                         | 0,29                  | 0,05     | 0,10           | 0,28             | 0,33                 | 0,96                 | 0,39                    | 0,088      | 96,60     | 7,22        | 365,92                         | 245,51             | 4968,2                      | 3300,4          |
| 25        | 12/7/1989    | 0,51                   | 1,63                         | 0,28                  | 0,05     | 0,10           | 0,31             | 0,35                 | 1,12                 | 0,37                    | 0,061      | 96,50     | 8,96        | 344,62                         | 184,39             | 3746,2                      | 1958,0          |
| 26        | 13/7/1989    | 0,56                   | 1,86                         | 0,24                  | 0,05     | 0,11           | 0,36             | 0,44                 | 1,45                 | 0,30                    | 0,026      | 96,50     | 7,91        | 290,39                         | 82,73              | 3571,1                      | 945,9           |
| 27        | 19/7/1989    | 0,56                   | 1,65                         | 0,29                  | 0,05     | 0,11           | 0,32             | 0,37                 | 1,10                 | 0,35                    | 0,065      | 96,45     | 10,92       | 366,46                         | 200,67             | 3255,9                      | 1737,7          |
| 28        | 26/7/1989    | 0,63                   | 1,89                         | 0,24                  | 0,05     | 0,12           | 0,36             | 0,50                 | 1,51                 | 0,26                    | 0,022      | 96,45     | 10,09       | 278,09                         | 71,64              | 2656,1                      | 610,0           |
| 29        | 9/8/1989     | 0,55                   | 1,69                         | 0,26                  | 0,05     | 0,11           | 0,32             | 0,40                 | 1,24                 | 0,33                    | 0,046      | 96,50     | 20,17       | 321,50                         | 140,78             | 1493,9                      | 597,9           |
| 30        | 16/8/1989    | 0,47                   | 1,81                         | 0,26                  | 0,05     | 0,09           | 0,35             | 0,35                 | 1,34                 | 0,37                    | 0,035      | 96,40     | 12,15       | 310,54                         | 114,22             | 2455,9                      | 840,1           |
| 31        | 23/8/1989    | 0,45                   | 1,84                         | 0,26                  | 0,05     | 0,09           | 0,35             | 0,33                 | 1,33                 | 0,39                    | 0,036      | 96,40     | 4,17        | 314,40                         | 117,79             | 7439,7                      | 2724,7          |

Tabela 8.6d - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj

| (l)<br>N° | (2)<br>DAT A | (9)<br>D <sub>50</sub> | (5)<br>D <sub>vj [kal]</sub> | (5)<br>T <sub>0</sub> | 6)<br>U* | Ø                     | (8)                     | (9)                   | (10)                         | (11)       | (12)       | (13)<br>B | (14)<br>qBm | (15)<br>qB[KAL]D <sub>50</sub> | (16)<br>qB[KAL]Dvj | (17)<br>E[%]D <sub>50</sub> | (18)<br>E[%]Dvj |
|-----------|--------------|------------------------|------------------------------|-----------------------|----------|-----------------------|-------------------------|-----------------------|------------------------------|------------|------------|-----------|-------------|--------------------------------|--------------------|-----------------------------|-----------------|
|           |              | (mm)                   | m                            | Kgf/m²                | (m/s)    | $\tau c_{\text{D50}}$ | $\tau_{c_{D \sigma j}}$ | $\tau_{cD50/} \tau_0$ | $\tau_{cDvj}^{} / \tau_0^{}$ | UP/Uinpos] | UP/Uin[Dv] | (m)       | ton/dia     | ton/dia                        | ton/dia            |                             |                 |
| 32        | 13/9/1989    | 0,59                   | 1,39                         | 0,32                  | 0,06     | 0,11                  | 0,27                    | 0,36                  | 0,84                         | 0,36       | 0,117      | 98,30     | 6,00        | 428,04                         | 328,03             | 7034,0                      | 5367,2          |
| 33        | 27/9/1989    | 0,53                   | 2,40                         | 0,23                  | 0,05     | 0,10                  | 0,46                    | 0,44                  | 2,02                         | 0,29       | 0,005      | 96,10     | 11,44       | 259,66                         | 18,19              | 2169,8                      | 59,0            |
| 34        | 4/10/1989    | 0,52                   | 2,36                         | 0,23                  | 0,05     | 0,10                  | 0,45                    | 0,44                  | 2,01                         | 0,30       | 0,005      | 96,20     | 4,63        | 254,87                         | 18,42              | 5404,7                      | 297,9           |
| 35        | 11/10/1989   | 0,49                   | 2,33                         | 0,20                  | 0,04     | 0,09                  | 0,45                    | 0,47                  | 2,23                         | 0,28       | 0,002      | 94,60     | 6,62        | 209,33                         | 7,16               | 3062,1                      | 8,1             |
| 36        | 8/11/1989    | 0,54                   | 2,19                         | 0,22                  | 0,05     | 0,10                  | 0,42                    | 0,46                  | 1,88                         | 0,28       | 0,008      | 93,50     | 4,26        | 244,17                         | 26,73              | 5631,7                      | 527,4           |
|           |              |                        |                              | ······                |          |                       |                         |                       |                              |            |            |           |             |                                | MÉDIA              | 2222,22                     | 1046,04         |

Tabela 8.6d - Descargas calculadas pelo método de Kaliske (1947) usando o diâmetro D<sub>84</sub> e o Dvj para os dados do Rio Atibaia

| a   | ) (2)         | (1)    | (4)     | (5)  | (0)   | (1)   | Dmax         | /Di          | d/D1     | 2            | 1                             |                              | 8    | \$\$  | (16)    | (17)    | (18)      | (19)           | (20)                       | (21)    |
|-----|---------------|--------|---------|------|-------|-------|--------------|--------------|----------|--------------|-------------------------------|------------------------------|------|-------|---------|---------|-----------|----------------|----------------------------|---------|
| N   | DATA          | D.,    | DVILLEN | Dmax | d     | U     | (8)          | (9)          | (10)     | <b>(III)</b> | <b>A</b> 2)                   | (13)                         | (14) | (15)  | В       | qBm     | qB[LEV]D. | 4 B[LEV]Dv     | <b>E[%]D</b> <sub>so</sub> | E[%]Dvj |
| L   |               | (mm)   | nm      | (mm) | (m)   | (m/s) | (Dmax/D_*)** | (Dmax/Dvj)** | a / D50  | d/Dyj        | Ln [(d/7.050) <sup>10</sup> ] | Ln[(d/7.Dvj) <sup>11</sup> ] | Ucso | Ucnvi | (m)     | ton/dia | ton/dia   | ton/dia        | 1000                       | -       |
| 1   | 10/12/198     | 8 0,46 | 1,42    | 1,42 | 1,68  | 0,48  | 1,17         | 1,00         | 3652,17  | 1181,61      | 3,13                          | 2,56                         | 0,35 | 0,42  | 95,70   | 10,73   | 127,05    | 39,96          | 1084,1                     | 272,A   |
| 2   | 11/12/198     | 8 0,60 | 3,09    | 3,09 | 14    | 0,55  | 1,26         | 1,00         | 2350,00  | 456,80       | 2,91                          | 2,09                         | 0,39 | 0,51  | 95,30   | 18,34   | 215,17    | 37,76          | 1073,2                     | 105,9   |
| 3   | 14/1/1989     | 0,63   | 5,45    | 5,45 | 3,99  | 1,09  | 1,36         | 1,00         | 6333,33  | 732,53       | 3,40                          | 2,33                         | 0,51 | 0,75  | 103,80  | 82,23   | 5190,81   | 1760,92        | 6212,6                     | 2041,5  |
| 4   | 15/1/1989     | 0,42   | 5,72    | 5,72 | 3,95  | 1,10  | 1,45         | 1,00         | 9404,76  | 690,44       | 3,60                          | 2,30                         | 0,47 | 0,76  | 103,00  | 81,15   | 6377,85   | 1784,31        | 7759,3                     | 2098,8  |
| 5   | 20/1/1989     | 0,50   | 3,15    | 3,15 | 4 16  | 0,95  | 1,30         | 1,00         | 8320,00  | 1321,90      | 3,54                          | 2,62                         | 0,45 | 0,64  | 102,80  | 87,21   | 3066,47   | 1185,98        | 3416,2                     | 1259,9  |
| 6   | 27/1/1989     | 0,43   | 2,03    | 2,03 | 3,43  | 0,76  | 1,25         | 1,00         | 7976,74  | 1690,44      | 3,52                          | 2,74                         | 0,40 | 0,54  | 101,30  | 40,13   | 1219,50   | 500,48         | 2938,9                     | 1147,2  |
| 1.7 | 3/2/1989      | 0,40   | 2,73    | 2,73 | 2,38  | 0,69  | 1,32         | 1,00         | 5950,00  | 870,40       | 3,37                          | 2,41                         | 0,39 | 0,55  | 99,35   | 33,57   | 832,84    | 234,71         | 2380,9                     | 599,2   |
| 8   | 24/2/1989     | 0,45   | 3,04    | 3,04 | 3,48  | 0,86  | 1,31         | 1,00         | 7733,33  | 1145,95      | 3,50                          | 2,55                         | 0,43 | 0,62  | 101, 70 | 57,86   | 2093,06   | 733,81         | 3517,4                     | 1168,2  |
| 9   | 3.3/1989      | 0,4    | 2,89    | 2,89 | 3,92  | 0,90  | 1,32         | 1,00         | 9560,98  | 1355,31      | 3,61                          | 2,63                         | 0,42 | 0,62  | 102,70  | 58,78   | 2654,37   | 954,33         | 4415,8                     | 1523,6  |
| 10  | 10/3/1989     | 0,4    | 1,80    | 1,80 | 3,39  | 0,73  | 1,24         | 1,00         | 8268,29  | 1882,27      | 3,54                          | 2,80                         | 0,39 | 0,52  | 100,90  | 29,06   | 1036,17   | 438,38         | 3465,6                     | 1408,5  |
| 1   | 17/3/198      | 0,66   | 3,82    | 3,82 | 4.72  | 1,07  | 1,29         | 1,00         | 7151,52  | 1236,16      | 3,46                          | 2,59                         | 0,50 | 0,70  | 104,00  | 97,26   | 4568,92   | 1912,57        | 4597,6                     | 1866,4  |
| 12  | 31/3/1989     | 0,54   | 3,05    | 3,05 | 3 39  | 0,85  | 1,28         | 1,00         | 6277,78  | 1110,89      | 3,40                          | 2,53                         | 0,44 | 0,61  | 101,45  | 43,91   | 1824 22   | 688,01         | 4054,4                     | 1466,9  |
| 13  | 7/4/1989      | 0,49   | 3,64    | 3,64 | 2,78  | 0,81  | 1,33         | 1,00         | 5673,47  | 763,47       | 3,35                          | 2,35                         | 0,43 | 0,62  | 100,50  | 48,57   | 1562,43   | 474,93         | 3116,9                     | 877,8   |
| 14  | 14/4/198      | 0,52   | 4,25    | 4,25 | 3,07  | 0,89  | 1,35         | 1,00         | 5903,85  | 722,46       | 3,37                          | 2,32                         | 0,45 | 0,66  | 101,40  | 64,46   | 2319,85   | 716,56         | 3498,9                     | 1011,6  |
| L   | 5 28/4/198    | 0,49   | 4,22    | 4,22 | 2,19  | 0.75  | 1,36         | 1,00         | 4469,39  | 519,42       | 3,23                          | 2,15                         | 0,43 | 0,61  | 99,25   | 21,38   | 1115,98   | 275,54         | 5119,8                     | 1188,8  |
| 16  | 5.5/1989      | 0,46   | 3,05    | 3,05 | 2,57  | 0,74  | 1,31         | 1,00         | 5586,96  | 842,54       | 3,34                          | 2,40                         | 0,4  | 0,58  | 100,00  | 48,42   | 1069,18   | 324,58         | 2108,1                     | 570,3   |
| 17  | 9.5/1989      | 0,44   | 3,53    | 3,53 | 2.40  | 0,76  | 1,35         | 1,00         | 5659,09  | 70459        | 3,35                          | 2,31                         | 0,4  | 0,60  | 100,00  | 34,44   | 1241,88   | 339,48         | 3505,9                     | 885,7   |
| 18  | 23/5/198      | 0,51   | 2,90    | 2,90 | 1,98  | 0,64  | 1,28         | 1,00         | 3882,35  | 683,22       | 3,16                          | 2,29                         | 0,40 | 0,54  | 99,10   | 34,59   | 519,16    | 139,72         | 1400,9                     | 303,9   |
| 19  | 2,6/1989      | 0,51   | 3,08    | 3,08 | 1,97  | 0,65  | 1,29         | 1,00         | 3862,75  | 638,59       | 3,16                          | 2,26                         | 0,40 | 0,55  | 98,00   | 25,42   | 553,68    | 144,22         | 2078,1                     | 467,3   |
| 21  | 6,6/1989      | 0,49   | 3,11    | 3,11 | 2,02  | 0,66  | 1,30         | 1,00         | 422,45   | 648,62       | 3,19                          | 2,26                         | 0,40 | 0,55  | 97,50   | 18,83   | 604,93    | 157,05         | 3112,6                     | 734,0   |
| 21  | 13/6/198      | 0,52   | 2,99    | 2,99 | 213   | 0,67  | 1,28         | 1,00         | 4096,15  | 711,68       | 3,19                          | 2,31                         | 0,4  | 0,55  | 98,60   | 19,59   | 632,17    | 180,89         | 3127,0                     | 823,4   |
| 22  | 20/6/1989     | 0,49   | 0,14    | 0,49 | 11,85 | 0,65  | 1,00         | 1,20         | 24183,67 | 85990,48     | 4.07                          | 4,71                         | 0,40 | 0,29  | 97,40   | 26,70   | 367,65    | 712,92         | 1277,0                     | 2570,1  |
| 23  | 27/6/198      | 0,58   | 3,23    | 3,23 | 1,86  | 0,64  | 1,28         | 1,00         | 3206,90  | 575,93       | 3,06                          | 2,21                         | 0,4  | 0,55  | 96,80   | 25,31   | 472,72    | 122,97         | 1767,7                     | 385,8   |
| 24  | 1 5/7/1989    | 0,50   | 3,64    | 3,64 | 1,79  | 0,65  | 1,33         | 1,00         | 3580,00  | 491,49       | 3,12                          | 2,13                         | 0,4  | 0,56  | 96,60   | 7,22    | 557,58    | 121,71         | 7622,8                     | 1585,7  |
| 2   | 5 12/7/198    | 0,51   | 3,80    | 3,80 | 1,59  | 0,62  | 1,33         | 1,00         | 3117,65  | 418,82       | 3,05                          | 2,05                         | 0,40 | 0,55  | 96,50   | 8,96    | 442,25    | 82,73          | 4835,9                     | 823,4   |
| 20  | 5 13/7/1989   | 0,56   | 3,59    | 3,59 | 1,59  | 0.61  | 1,30         | 1,00         | 2839,29  | 443,09       | 3,00                          | 2,07                         | 0,4  | 0,54  | 96,50   | 7,91    | 385,00    | 77,48          | 4767,3                     | 879,6   |
| 2   | 19/7/1989     | 0,56   | 3,13    | 3,13 | 1.0   | 0,59  | 1,28         | 1,00         | 2875,00  | 51462        | 3,01                          | 2,15                         | 0,40 | 0,53  | 96,45   | 10,92   | 325,04    | 69,80          | 2876,5                     | 539,2   |
| 2   | 26/7/198      | 0,63   | 3,88    | 3,88 | 1,52  | 0.61  | 1,30         | 1,00         | 2412,70  | 391,80       | 2,92                          | 2,01                         | 0,42 | 0,55  | 96,45   | 10,09   | 358,23    | 71,08          | 3450,4                     | 604,4   |
| 29  | 9,8/1989      | 0,55   | 3,33    | 3,33 | 177   | 0.63  | 1,29         | 1,00         | 3218,18  | 531,14       | 3,07                          | 2,16                         | 0,4  | 0,55  | 96,50   | 20,17   | 452,48    | 106,52         | 2143,3                     | 428,1   |
| 31  | ) 16/8/198    | 0,47   | 3,38    | 3,38 | 1,54  | 0,59  | 1,33         | 1,00         | 3276,60  | 455,76       | 3,07                          | 2,09                         | 0,39 | 0,53  | 96,40   | 12,15   | 364,49    | 63,48          | 2899,9                     | 422,5   |
| 31  | 23/8/1989     | 0,45   | 3,21    | 3,21 | 1.48  | 0,57  | 1,32         | 1,00         | 3288,89  | 460,76       | 3,08                          | 2,09                         | 0,38 | 0,52  | 96,40   | 4,17    | 316,51    | 50,39          | 7,490,1                    | 1108,5  |
| 32  | 13/9/198      | 0,59   | 2,70    | 2,70 | 2,00  | 0,63  | 1,24         | 1,00         | 3389,83  | 741,62       | 3,09                          | 2,33                         | 0,4  | 0,53  | 98,30   | 6,00    | 436,63    | 133,95         | 7177,1                     | 2132,6  |
| 33  | 27/9/198      | 0,53   | 1,55    | 1,55 | 147   | 0,46  | 1,17         | 1,00         | 2773,58  | 950,73       | 2,99                          | 2,46                         | 0,35 | 0,42  | 96,10   | 11,44   | 90,25     | 23,36          | 688,9                      | 1042    |
| 34  | 410/198       | 0,52   | 1,88    | 1,88 | 143   | 0,48  | 1,20         | 1,00         | 2750,00  | 760,82       | 2,99                          | 2,34                         | 0,36 | 0,45  | 96,20   | 4,63    | 116,35    | 23,92          | 2413,0                     | 416,7   |
| 3   | 5   11.40.498 | 9 0,49 | 3,75    | 3,75 | 1,26  | 0,55  | 1,34         | 1,00         | 2571.43  | 335,93       | 2,95                          | 1,94                         | 0,38 | 0,52  | 94,60   | 6,62    | 247,95    | 27,04          | 3645,5                     | 308,5   |
| 3   | 5 8/11/1989   | 0,54   | 3,57    | 3,57 | 1,25  | 0,54  | 1,31         | 100          | 2314,81  | 350,27       | 2,90                          | 1,96                         | 0,39 | 0,51  | 93,50   | 4,26    | 208,17    | 23,37<br>MEDIA | 4786,5                     | 448,6   |

Tabela 8.6e - Descargas calculadas pelo método de Levi (1948) usando o diâmetro D<sub>50</sub> e o Dvj

| <b>(1)</b> | (2)        | (3)             | (4)      | (5)      | (6)   | (7)      | (8)      | (9)            | (10)    | (11)                                          | (12)             | (13)         | (14)   | (15)    | (16)                   | (17)      | (18)                | (19)    |
|------------|------------|-----------------|----------|----------|-------|----------|----------|----------------|---------|-----------------------------------------------|------------------|--------------|--------|---------|------------------------|-----------|---------------------|---------|
| N°         | DATA       | D <sub>50</sub> | DVILETBI | $\tau_0$ | U,    | ν        | S        | R <sub>H</sub> | 2747036 | 11.001                                        | 1997 - 1996<br>1 | 1.17° 1.12°  | В      | qBm     | qB[EIB]D <sub>50</sub> | qB[EIB]Dv | E[%]D <sub>50</sub> | E[%]Dvj |
| //RCS      |            | (mm)            | mm       | Kgf/ m²  | (m/s) | m² /s    | (m/m)    | (m)            | k, D50  | $\mathbf{k}_{\mathbf{b}\mathbf{D}\mathbf{v}}$ | $\Psi_{\rm D50}$ | $\Psi_{Dvi}$ | (m)    | ton/dia | ton/dia                | ton/dia   |                     |         |
| 1          | 10/12/1988 | 0,46            | 4,48     | 0,22     | 0,05  | 854E-07  | 1,30E-04 | 1,67           | 0,70    | 0,81                                          | 3,50             | 34,08        | 95,70  | 10,73   | 567,88                 | 21,72     | 5192,5              | 102,5   |
| 2          | 11/12/1988 | 0,60            | 4,53     | 0,21     | 0,05  | 8,59E-07 | 1,50E-04 | 1,40           | 0,73    | 0,81                                          | 4,71             | 35,58        | 95,30  | 18,34   | 361,75                 | 19,30     | 1872,4              | 5,2     |
| 3          | 14/1/1989  | 0,63            | 2,36     | 0,72     | 0,08  | 9,09E-07 | 1,85E-04 | 3,89           | 0,74    | 0,81                                          | 1,44             | 5,41         | 103,80 | 82,23   | 14848,00               | 2227,04   | 17956,7             | 2608,3  |
| 4          | 15/1/1989  | 0,42            | 2,38     | 0,63     | 0,08  | 9,12E-07 | 1,63E-04 | 3,85           | 0,68    | 0,81                                          | 1,10             | 6,25         | 103,00 | 81,15   | 16539,06               | 1450,19   | 20280,8             | 1687,0  |
| 5          | 20/1/1989  | 0,50            | 2,49     | 0,44     | 0,07  | 9,00E-07 | 1,10E-04 | 4,03           | 0,71    | 0,81                                          | 1,86             | 9,28         | 102,80 | 87,21   | 4667,88                | 475,49    | 5252,5              | 445,2   |
| б          | 27/1/1989  | 0,43            | 3,01     | 0,37     | 0,06  | 8,98E-07 | 1,10E-04 | 3,33           | 0,69    | 0,81                                          | 1,94             | 13,55        | 101,30 | 40,13   | 3142,01                | 200,30    | 7729,6              | 399,1   |
| 7          | 3/2/1989   | 0,40            | 3,59     | 0,31     | 0,05  | 8,67E-07 | 1,30E-04 | 2,36           | 0,67    | 0,81                                          | 2,15             | 19,29        | 99,35  | 33,57   | 1978,67                | 88,83     | 5794,1              | 164,6   |
| 8          | 24/2/1989  | 0,45            | 2,84     | 0,37     | 0,06  | 8,68E-07 | 1,10E-04 | 3,39           | 0,69    | 0,81                                          | 1,99             | 12,56        | 101,70 | 57,86   | 3144,19                | 231,09    | 5334,1              | 299,4   |
| 9          | 3/3/1989   | 0,41            | 2,50     | 0,42     | 0,06  | 8,86E-07 | 1,10E-04 | 3,80           | 0,68    | 0,81                                          | 1,62             | 9,88         | 102,70 | 58,78   | 5019,69                | 395,96    | 8439,8              | 573,6   |
| 10         | 10/3/1989  | 0,41            | 3,07     | 0,36     | 0,06  | 8,85E-07 | 1,10E-04 | 3,31           | 0,68    | 0,81                                          | 1,86             | 13,91        | 100,90 | 29,06   | 3259,35                | 190,11    | 11115,9             | 554,2   |
| 11         | 17/3/1989  | 0,66            | 2,19     | 0,55     | 0,07  | 9,66E-07 | 1,20E-04 | 4,57           | 0,74    | 0,80                                          | 1,99             | 6,58         | 104,00 | 97,26   | 6180,20                | 1105,45   | 6254,3              | 1036,6  |
| 12         | 31/3/1989  | 0,54            | 2,88     | 0,45     | 0,07  | 9,01E-07 | 1,35E-04 | 3,32           | 0,72    | 0,81                                          | 1,99             | 10,60        | 101,45 | 43,91   | 4306,42                | 391,73    | 9707,4              | 792,1   |
| 13         | 7/4/1989   | 0,49            | 3,19     | 0,36     | 0,06  | 8,98E-07 | 1,30E-04 | 2,74           | 0,71    | 0,81                                          | 2,27             | 14,79        | 100,50 | 48,57   | 2429,94                | 167,23    | 4903,0              | 244,3   |
| 14         | 14/4/1989  | 0,52            | 2,95     | 0,42     | 0,06  | 9,13E-07 | 1,40E-04 | 3,02           | 0,72    | 0,81                                          | 2,03             | 11,50        | 101,40 | 64,46   | 3796,27                | 317,85    | 5789,3              | 393,1   |
| 15         | 28/4/1989  | 0,49            | 3,59     | 0,35     | 0,06  | 9,64E-07 | 1,60E-04 | 2,16           | 0,71    | 0,81                                          | 2,34             | 17,15        | 99,25  | 21,38   | 2191,79                | 126,47    | 10151,6             | 491,5   |
| 16         | 5/5/1989   | 0,46            | 3,40     | 0,32     | 0,06  | 9,27E-07 | 1,25E-04 | 2,54           | 0,70    | 0,81                                          | 2,39             | 17,69        | 100,00 | 48,42   | 1856,08                | 107,07    | 3733,3              | 121,1   |
| 17         | 9/5/1989   | 0,44            | 3,41     | 0,35     | 0,06  | 9,92E-07 | 1,40E-04 | 2,47           | 0,69    | 0,81                                          | 2,10             | 16,25        | 100,00 | 34,44   | 2535,86                | 138,19    | 7263,1              | 301,3   |
| 18         | 23/5/1989  | 0,51            | 3,91     | 0,24     | 0,05  | 1,01E-06 | 1,20E-04 | 1,96           | 0,71    | 0,81                                          | 3,58             | 27,45        | 99,10  | 34,59   | 655,05                 | 35,06     | 1793,8              | 1,4     |
| 19         | 2/6/1989   | 0,51            | 3,89     | 0,27     | 0,05  | 1,05E-06 | 1,40E-04 | 1,95           | 0,71    | 0,81                                          | 3,08             | 23,53        | 98,00  | 25,42   | 1012,99                | 54,61     | 3885,0              | 114,9   |
| 20         | 6/6/1989   | 0,49            | 3,87     | 0,30     | 0,05  | 1,04E-06 | 1,50E-04 | 1,99           | 0,71    | 0,81                                          | 2,71             | 21,37        | 97,50  | 18,83   | 1387,35                | 71,80     | 7267,8              | 281,3   |
| 21         | 13/6/1989  | 0,52            | 3,77     | 0,32     | 0,06  | 1,05E-06 | 1,50E-04 | 2,10           | 0,72    | 0,81                                          | 2,72             | 19,76        | 98,60  | 19,59   | 1526,59                | 88,45     | 7692,7              | 351,5   |
| 22         | 20/6/1989  | 0,49            | 3,99     | 0,26     | 0,05  | 1,07E-06 | 1,40E-04 | 1,84           | 0,71    | 0,81                                          | 3,14             | 25,57        | 97,40  | 26,70   | 890,73                 | 43,95     | 3236,1              | 64,6    |
| 23         | 27/6/1989  | 0,58            | 3,99     | 0,26     | 0,05  | 1,06E-06 | 1,40E-04 | 1,84           | 0,73    | 0,81                                          | 3,72             | 25,59        | 96,80  | 25,31   | 709,68                 | 43,62     | 2703,9              | 72,4    |
| 24         | 5/7/1989   | 0,50            | 4,03     | 0,29     | 0,05  | 1,04E-06 | 1,65E-04 | 1,77           | 0,71    | 0,81                                          | 2,82             | 22,76        | 96,60  | 7,22    | 1254,24                | 62,62     | 17271,8             | 767,4   |
| 25         | 12/7/1989  | 0,51            | 4,23     | 0,28     | 0,05  | 1,13E-06 | 1,76E-04 | 1,58           | 0,71    | 0,81                                          | 3,03             | 25,12        | 96,50  | 8,96    | 1054,21                | 50,17     | 11665,7             | 459,9   |
| 26         | 13/7/1989  | 0,56            | 4,24     | 0,24     | 0,05  | 1,14E-06 | 1,55E-04 | 1,58           | 0,73    | 0,81                                          | 3,77             | 28,60        | 96,50  | 7,91    | 636,94                 | 34,13     | 7952,3              | 331,5   |
| 27         | 19/7/1989  | 0,56            | 4,27     | 0,29     | 0,05  | 1,15E-06 | 1,80E-04 | 1,60           | 0,73    | 0,81                                          | 3,21             | 24,47        | 96,45  | 10,92   | 1035,34                | 54,99     | 9381,1              | 403,5   |
| 28         | 26/7/1989  | 0,63            | 4,30     | 0,24     | 0,05  | 1,10E-06 | 1,60E-04 | 1,50           | 0,74    | 0,81                                          | 4,33             | 29,56        | 96,45  | 10,09   | 511,73                 | 31,50     | 4971,7              | 212,2   |
| 29         | 9/8/1989   | 0,55            | 4,09     | 0,26     | 0,05  | 1,04E-06 | 1,50E-04 | 1,75           | 0,72    | 0,81                                          | 3,46             | 25,72        | 96,50  | 20,17   | 803,28                 | 44,39     | 3882,5              | 120,1   |
| 30         | 16/8/1989  | 0,47            | 4,34     | 0,26     | 0,05  | 1,06E-06 | 1,70E-04 | 1,53           | 0,70    | 0,81                                          | 2,98             | 27,54        | 96,40  | 12,15   | 957,21                 | 39,50     | 7778,3              | 225,1   |

Tabela 8.6f - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>50</sub> e o Dvj

| (l)                  | (2)        | (3)             | (4)     | (5)      | (6)   | Œ        | (8)      | (9)            | (10)       | (11)              | (12)             | (13)         | (14)  | (15)    | (16)                  | (17)      | (18)                | (19)    |
|----------------------|------------|-----------------|---------|----------|-------|----------|----------|----------------|------------|-------------------|------------------|--------------|-------|---------|-----------------------|-----------|---------------------|---------|
| $\mathbb{N}^{\circ}$ | DATA       | D <sub>50</sub> | DVIERBI | $\tau_0$ | U,    | ν        | S        | R <sub>H</sub> | 26985      | 1992-90           | 18 25            | 5.8 65       | В     | qBm     | qB[EB]D <sub>50</sub> | qB[EIB]Dv | E[%]D <sub>50</sub> | E[%]Dvj |
|                      |            | (mm)            | mm      | Kgf/ m²  | (m/s) | m² /s    | (m/m)    | (m)            | $k_{bB50}$ | k <sub>bDvi</sub> | $\Psi_{\rm B50}$ | $\Psi_{Dvi}$ | (m)   | ton/dia | ton/dia               | ton/dia   |                     |         |
| 31                   | 23/8/1989  | 0,45            | 4,43    | 0,26     | 0,05  | 9,73E-07 | 1,80E-04 | 1,47           | 0,69       | 0,81              | 2,81             | 27,60        | 96,40 | 4,17    | 1064,77               | 40,41     | 25434,1             | 869,0   |
| 32                   | 13/9/1989  | 0,59            | 3,92    | 0,32     | 0,06  | 9,28E-07 | 1,60E-04 | 1,98           | 0,73       | 0,81              | 3,07             | 20,43        | 98,30 | 6,00    | 1310,21               | 84,68     | 21736,9             | 1311,3  |
| 33                   | 27/9/1989  | 0,53            | 4,69    | 0,23     | 0,05  | 9,80E-07 | 1,50E-04 | 1,52           | 0,72       | 0,81              | 3,84             | 33,93        | 96,10 | 11,44   | 550,34                | 23,64     | 4710,7              | 106,7   |
| 34                   | 4/10/1989  | 0,52            | 4,67    | 0,23     | 0,05  | 9,38E-07 | 1,50E-04 | 1,50           | 0,72       | 0,81              | 3,81             | 34,23        | 96,20 | 4,63    | 542,80                | 22,90     | 11623,5             | 394,6   |
| 35                   | 11/10/1989 | 0,49            | 4,68    | 0,20     | 0,04  | 9,25E-07 | 1,60E-04 | 1,25           | 0,71       | 0,81              | 4,04             | 38,65        | 94,60 | 6,62    | 404,88                | 15,73     | 6016,1              | 137,6   |
| 36                   | 8/11/1989  | 0,54            | 4,73    | 0,22     | 0,05  | 9,00E-07 | 1,80E-04 | 1,24           | 0,72       | 0,81              | 3,99             | 34,97        | 93,50 | 4,26    | 490,17                | 21,29     | 11406,2             | 399,9   |
|                      |            |                 |         |          |       | ^        | •••••••  |                |            | A                 | ~                | •••••••      |       | A       |                       |           | 8532,8              | 467,9   |

Tabela 8.6f - Descargas calculadas pelo método de Einstein-Brown (1950) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                 | (5)   | (6)           | (7)             | (8)            | (9)               | (10)   | (11)    | (12)                   | (13)      | (14)      | (15)          |
|-----|------------|-----------------|---------------------|-------|---------------|-----------------|----------------|-------------------|--------|---------|------------------------|-----------|-----------|---------------|
| N°  | DATA       | D <sub>90</sub> | D <sub>WIGAA1</sub> | U,    | $\theta_{B0}$ | $\theta_{iDvi}$ | <i>ф</i> ид 90 | φ <sub>iDvi</sub> | в      | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E [% ]D90 | E [% ]Dvj     |
|     |            | (mm)            | mm                  | (m/s) |               | 01000000        |                |                   | (m)    | ton/dia | ton/dia                | ton/dia   | -         | 5 <b>7</b> 83 |
| 1   | 10/12/1988 | 0,93            | 6,04                | 0,05  | 0,14          | 0,02            | 0,46           | 0,0002            | 95,70  | 10,73   | 430,80                 | 1,22      | 3914,9    | 88,6          |
| 2   | 11/12/1988 | 1,48            | 6,43                | 0,05  | 0,09          | 0,02            | 0,14           | 0,0002            | 95,30  | 18,34   | 203,78                 | 1,27      | 1011,1    | 93,1          |
| 3   | 14/1/1989  | 1,93            | 6,99                | 0,08  | 0,23          | 0,06            | 1,41           | 0,0504            | 103,80 | 82,23   | 5.419,73               | 704,30    | 6490,9    | 756,5         |
| 4   | 15/1/1989  | 1,39            | 6,65                | 0,08  | 0,27          | 0,06            | 2,22           | 0,0367            | 103,00 | 81,15   | 5.718,61               | 451,66    | 6947,0    | 456,6         |
| 5   | 20/1/1989  | 1,30            | 5,59                | 0,07  | 0,21          | 0,05            | 1,14           | 0,0194            | 102,80 | 87,21   | 2.290,86               | 168,57    | 2526,8    | 93,3          |
| 6   | 27/1/1989  | 1,18            | 5,59                | 0,06  | 0,19          | 0,04            | 0,91           | 0,0097            | 101,30 | 40,13   | 1.487,33               | 75,08     | 3606,3    | 87,1          |
| 7   | 3/2/1989   | 1,14            | 6,04                | 0,05  | 0,16          | 0,03            | 0,64           | 0,0002            | 99,35  | 33,57   | 916,22                 | 1,51      | 2629,3    | 95,5          |
| 8   | 24/2/1989  | 1,16            | 5,59                | 0,06  | 0,19          | 0,04            | 0,99           | 0,0103            | 101,70 | 57,86   | 1.610,38               | 81, 19    | 2683,2    | 40,3          |
| 9   | 3/3/1989   | 0,95            | 5,59                | 0,06  | 0,27          | 0,05            | 2,09           | 0,0157            | 102,70 | 58,78   | 2.990,32               | 131,87    | 4987,3    | 124,3         |
| 10  | 10/3/1989  | 1,10            | 5,59                | 0,06  | 0,20          | 0,04            | 1,06           | 0,0095            | 100,90 | 29,06   | 1.605,64               | 72,93     | 5425,3    | 151,0         |
| 11  | 17/3/1989  | 2,37            | 5,82                | 0,07  | 0,14          | 0,06            | 0,45           | 0,0364            | 104,00 | 97,26   | 1.856,58               | 370,51    | 1808,9    | 280,9         |
| 12  | 31/3/1989  | 1,27            | 6,14                | 0,07  | 0,21          | 0,04            | 1,23           | 0,0143            | 101,45 | 43,91   | 2.411,15               | 135,47    | 5391,1    | 208,5         |
| 13  | 7/4/1989   | 1,39            | 6,04                | 0,06  | 0,16          | 0,04            | 0,57           | 0,0066            | 100,50 | 48,57   | 1.082,88               | 53,93     | 2129,5    | 11,0          |
| 14  | 14/4/1989  | 1,25            | 6,24                | 0,06  | 0,20          | 0,04            | 1,11           | 0,0109            | 101,40 | 64,46   | 2.081,02               | 101,83    | 3128,4    | 58,0          |
| 15  | 28/4/1989  | 1,27            | 6,60                | 0,06  | 0,16          | 0,03            | 0,66           | 0,0002            | 99,25  | 21,38   | 1.111,38               | 1,75      | 5098,2    | 91,8          |
| 16  | 5/5/1989   | 1,10            | 5,93                | 0,06  | 0,17          | 0,03            | 0,76           | 0,0046            | 100,00 | 48,42   | 1.070,46               | 34,85     | 2110,8    | 28,0          |
| 17  | 9/5/1989   | 1,05            | 6,24                | 0,06  | 0,20          | 0,03            | 1,04           | 0,0052            | 100,00 | 34,44   | 1.462,53               | 43,49     | 4146,6    | 26,3          |
| 18  | 23/5/1989  | 1,21            | 5,82                | 0,05  | 0,12          | 0,02            | 0,30           | 0,0002            | 99,10  | 34,59   | 389,64                 | 1,27      | 1026,5    | 96,3          |
| 19  | 2/6/1989   | 1,57            | 6,24                | 0,05  | 0,11          | 0,03            | 0,23           | 0,0002            | 98,00  | 25,42   | 412,48                 | 1,45      | 1522,7    | 94,3          |
| 20  | 6/6/1989   | 1,20            | 6,43                | 0,05  | 0,15          | 0,03            | 0,53           | 0,0002            | 97,50  | 18,83   | 773,17                 | 1,55      | 4006,1    | 91,8          |
| 21  | 13/6/1989  | 1,30            | 6,43                | 0,06  | 0,15          | 0,03            | 0,50           | 0,0002            | 98,60  | 19,59   | 817,15                 | 1,61      | 4071,3    | 91,8          |
| 22  | 20/6/1989  | 1,22            | 6,24                | 0,05  | 0,13          | 0,03            | 0,36           | 0,0002            | 97,40  | 26,70   | 492,65                 | 1,40      | 1745,1    | 94,8          |
| 23  | 27/6/1989  | 1,43            | 6,24                | 0,05  | 0,11          | 0,03            | 0,25           | 0,0002            | 96,80  | 25,31   | 392,32                 | 1,39      | 1450,0    | 94,5          |
| 24  | 5/7/1989   | 1,24            | 6,68                | 0,05  | 0,14          | 0,03            | 0,47           | 0,0002            | 96,60  | 7,22    | 686,94                 | 1,58      | 9414,4    | 78,1          |
| 25  | 12/7/1989  | 1,53            | 6,86                | 0,05  | 0,11          | 0,02            | 0,25           | 0,0002            | 96,50  | 8,96    | 444,14                 | 1,58      | 4856,9    | 82,3          |
| 26  | 13/7/1989  | 1,33            | 6,52                | 0,05  | 0,11          | 0,02            | 0,26           | 0,0002            | 96,50  | 7,91    | 373,80                 | 1,41      | 4625,7    | 82,2          |
| 27  | 19/7/1989  | 1,68            | 6,92                | 0,05  | 0,10          | 0,03            | 0,22           | 0,0002            | 96,45  | 10,92   | 431,22                 | 1,62      | 3848,9    | 85,1          |
| 28  | 26/7/1989  | 1,68            | 6,60                | 0,05  | 0,09          | 0,02            | 0,14           | 0,0002            | 96,45  | 10,09   | 254,37                 | 1,41      | 2421,1    | 86,0          |
| 29  | 9/8/1989   | 1,41            | 6,43                | 0,05  | 0,11          | 0,02            | 0,27           | 0,0002            | 96,50  | 20,17   | 421,22                 | 1,44      | 1988,4    | 92,9          |
| 30  | 16/8/1989  | 1,13            | 6,76                | 0,05  | 0,14          | 0,02            | 0,44           | 0,0002            | 96,40  | 12,15   | 558,00                 | 1,51      | 4492,6    | 87,6          |

Tabela 8.6g - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>90</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)   | (6)           | (7)                      | (8)   | (9)               | (10)  | (11)    | (12)                   | (13)      | (14)     | (15)     |
|-----|------------|-----------------|-----------------------|-------|---------------|--------------------------|-------|-------------------|-------|---------|------------------------|-----------|----------|----------|
| N°  | DATA       | D <sub>90</sub> | D <sub>VJ [GAA]</sub> | U,    | $\theta_{B0}$ | $\theta_{\mathrm{iDvj}}$ | фю 90 | φ <sub>lævj</sub> | в     | qBm     | qB[GAA]D <sub>90</sub> | qB[GA]Dvj | E [%]D90 | E [%]Dvj |
|     |            | (mm)            | mm                    | (m/s) |               |                          |       |                   | (m)   | ton/dia | ton/dia                | ton/dia   | 5        | 170      |
| 31  | 23/8/1989  | 1,10            | 6,92                  | 0,05  | 0,15          | 0,02                     | 0,49  | 0,0002            | 96,40 | 4, 17   | 608,83                 | 1,56      | 14500,3  | 62,7     |
| 32  | 13/9/1989  | 1,73            | 6,60                  | 0,06  | 0,11          | 0,03                     | 0,26  | 0,0002            | 98,30 | 6,00    | 555,93                 | 1,66      | 9165,5   | 72,4     |
| 33  | 27/9/1989  | 1,53            | 6,43                  | 0,05  | 0,09          | 0,02                     | 0,16  | 0,0002            | 96,10 | 11,44   | 248,92                 | 1,34      | 2075,9   | 88,3     |
| 34  | 4/10/1989  | 1,40            | 6,43                  | 0,05  | 0,10          | 0,02                     | 0,19  | 0,0002            | 96,20 | 4,63    | 271,43                 | 1,33      | 5762,5   | 71,3     |
| 35  | 11/10/1989 | 1,41            | 6,60                  | 0,04  | 0,09          | 0,02                     | 0,14  | 0,0002            | 94,60 | 6,62    | 187,92                 | 1,27      | 2738,7   | 80,9     |
| 36  | 8/11/1989  | 1,59            | 6,92                  | 0,05  | 0,09          | 0,02                     | 0,14  | 0,0002            | 93,50 | 4,26    | 215,82                 | 1,39      | 4966,3   | 67,5     |
|     |            |                 |                       |       |               |                          |       |                   |       |         |                        | MEDIA     | 4131,0   | 119,2    |

Tabela 8.6g - Descargas calculadas pelo método de Garde e Albertson (1961) usando o diâmetro D<sub>90</sub> e o Dvj

| (1)                  | (2)       | (3)      | (4)       | (5)   | (6)            | $(\mathcal{D})$ | (8)                | (9)                 | (10)           | (11)               | (12)  | (13) | (14)   | (15)    | (16)                   | (17)       | (18)                | (19)    |
|----------------------|-----------|----------|-----------|-------|----------------|-----------------|--------------------|---------------------|----------------|--------------------|-------|------|--------|---------|------------------------|------------|---------------------|---------|
| $\mathbb{N}^{\circ}$ | DATA      | $D_{90}$ | DVj [YAL] | II.   | <del>G</del> i | Ĥ               | 1004000            |                     | α.             | <b>n</b>           | B     | B    | В      | qBm     | qB[YAL]D <sub>90</sub> | qB[YAL]Dvj | E[%]D <sub>90</sub> | E[%]Dvj |
|                      |           | (mm)     | mm        | (m/s) | 90             | ~ª D¤i          | ⊎ <sub>icD90</sub> | ⊎ <sub>ic Dvj</sub> | - <b>1</b> D90 | <sup>ce</sup> lDvj | 12090 | PiDy | (m)    | ton/dia | ton/dia                | ton/dia    |                     | -       |
| 3                    | 14/1/1989 | 1,93     | 4,25      | 0,08  | 0,23           | 0,10            | 0,05               | 0,06                | 0,37           | 0,41               | 3,49  | 0,71 | 103,80 | 82,23   | 1911,27                | 290,23     | 2224,3              | 252,9   |
| 4                    | 15/1/1989 | 1,39     | 3,85      | 0,08  | 0,27           | 0,10            | 0,05               | 0,06                | 0,36           | 0,40               | 4,94  | 0,71 | 103,00 | 81,15   | 2125,53                | 240,57     | 2519,3              | 196,5   |
| 5                    | 20/1/1989 | 1,30     | 2,82      | 0,07  | 0,21           | 0,10            | 0,04               | 0,05                | 0,35           | 0,38               | 3,72  | 0,83 | 102,80 | 87,21   | 1061,86                | 188,48     | 1117,6              | 116,1   |
| б                    | 27/1/1989 | 1,18     | 2,82      | 0,06  | 0,19           | 0,08            | 0,04               | 0,05                | 0,34           | 0,37               | 3,48  | 0,55 | 101,30 | 40,13   | 767,54                 | 76,29      | 1812,6              | 90,1    |
| 7                    | 3/2/1989  | 1,14     | 3,22      | 0,05  | 0,16           | 0,06            | 0,04               | 0,05                | 0,34           | 0,38               | 2,96  | 0,12 | 99,35  | 33,57   | 509,77                 | 3,86       | 1418,5              | 88,5    |
| 8                    | 24/2/1989 | 1,16     | 2,82      | 0,06  | 0,19           | 0,08            | 0,04               | 0,05                | 0,34           | 0,38               | 3,61  | 0,56 | 101,70 | 57,86   | 812,66                 | 81,14      | 1304,5              | 40,2    |
| 9                    | 3/3/1989  | 0,95     | 2,82      | 0,06  | 0,27           | 0,09            | 0,04               | 0,05                | 0,33           | 0,38               | 5,55  | 0,73 | 102,70 | 58,78   | 1363,24                | 144,47     | 2219,2              | 145,8   |
| 10                   | 10/3/1989 | 1,10     | 2,82      | 0,06  | 0,20           | 0,08            | 0,04               | 0,05                | 0,34           | 0,37               | 3,84  | 0,53 | 100,90 | 29,06   | 827, 12                | 72,45      | 2746,2              | 149,3   |
| 11                   | 17/3/1989 | 2,37     | 3,02      | 0,07  | 0,14           | 0,11            | 0,05               | 0,05                | 0,37           | 0,38               | 1,78  | 1,07 | 104,00 | 97,26   | 679,60                 | 360,24     | 598,7               | 270,4   |
| 12                   | 31/3/1989 | 1,27     | 3,32      | 0,07  | 0,21           | 0,08            | 0,04               | 0,05                | 0,35           | 0,39               | 3,90  | 0,52 | 101,45 | 43,91   | 1109,72                | 92,74      | 2427,3              | 111,2   |
| 13                   | 7/4/1989  | 1,39     | 3,22      | 0,06  | 0,16           | 0,07            | 0,04               | 0,05                | 0,35           | 0,38               | 2,58  | 0,28 | 100,50 | 48,57   | 549,07                 | 24,63      | 1030,5              | 49,3    |
| 14                   | 14/4/1989 | 1,25     | 3,41      | 0,06  | 0,20           | 0,08            | 0,04               | 0,05                | 0,34           | 0,38               | 3,76  | 0,40 | 101,40 | 64,46   | 996,24                 | 55,49      | 1445,5              | 13,9    |
| 15                   | 28/4/1989 | 1,27     | 3,79      | 0,06  | 0,16           | 0,06            | 0,04               | 0,05                | 0,34           | 0,38               | 2,95  | 0,04 | 99,25  | 21,38   | 601,50                 | 0,56       | 2713,4              | 97,4    |
| 16                   | 5/5/1989  | 1,10     | 3,12      | 0,06  | 0,17           | 0,06            | 0,04               | 0,05                | 0,33           | 0,37               | 3,33  | 0,21 | 100,00 | 48,42   | 605,43                 | 12,59      | 1150,4              | 74,0    |
| 17                   | 9/5/1989  | 1,05     | 3,41      | 0,06  | 0,20           | 0,06            | 0,04               | 0,05                | 0,33           | 0,38               | 4,02  | 0,19 | 100,00 | 34,44   | 809,43                 | 11,66      | 2250,3              | 66,1    |
| 21                   | 13/6/1989 | 1,30     | 3,60      | 0,06  | 0,15           | 0,05            | 0,04               | 0,05                | 0,33           | 0,37               | 2,60  | 0,04 | 98,60  | 19,59   | 471,47                 | 0,46       | 2306,7              | 97,7    |
|                      |           |          |           |       |                |                 |                    |                     |                |                    |       |      |        |         |                        | MEDIA      | 1830,3              | 116,2   |

Tabela 8.6h - Descargas calculadas pelo método de Yalin (1963) usando o diâmetro  $D_{90}$ e o Dvj

| (1)     | (2)           | (3)  | (4)                   | (6)   | (7)  | (8)  | (9)      | (10)     | (11)     | (12)                   | (13)   | (14)    | (1.5)      | (16)       | (17)    | (18)    |
|---------|---------------|------|-----------------------|-------|------|------|----------|----------|----------|------------------------|--------|---------|------------|------------|---------|---------|
| N°      | DATA          | D.50 | D <sub>V5 (PEV)</sub> | U,    | θ.,  | θ    | (B, )3/2 | (Q.,)3/2 | (€)-0.04 | ( <del>0</del> ,)-0,04 | В      | qBm     | gB[PER]D50 | qB[PER]Dvj | E[%]50  | E[%]Dvj |
| 2224-32 | 10.2745335045 | (mm) | mm                    | (m/s) | - 50 | - mw |          | • TDM.   |          | Tal.                   | (m)    | ton/dia | ton/dia    | ton/dia    | -       | -       |
| 3       | 14/1/1989     | 0.63 | 4.44                  | 0.08  | 0.69 | 0.10 | 0.58     | 0.03     | 0.65     | 0.06                   | 103.80 | 82.23   | 13094.66   | 1268.66    | 15824.4 | 1442.8  |
| 4       | 15/1/1989     | 0.42 | 4.09                  | 0.08  | 0.91 | 0.09 | 0.86     | 0.03     | 0.87     | 0.05                   | 103.00 | 81.15   | 14149.12   | 933.18     | 17335.8 | 1049.9  |
| 5       | 20/1/1989     | 0,50 | 3,17                  | 0,07  | 0,54 | 0,08 | 0,39     | 0,02     | 0,50     | 0,04                   | 102,80 | 87,21   | 4826,77    | 467,75     | 5434,6  | 436,3   |
| б       | 27/1/1989     | 0,43 | 3,17                  | 0,06  | 0,52 | 0,07 | 0,37     | 0,02     | 0,48     | 0,03                   | 101,30 | 40,13   | 3471,99    | 232,46     | 8551,9  | 479,3   |
| 7       | 3/2/1989      | 0,40 | 3,53                  | 0,05  | 0,46 | 0,05 | 0,32     | 0,01     | 0,42     | 0,01                   | 99,35  | 33,57   | 2373,99    | 73,62      | 6971,8  | 119,3   |
| 8       | 24/2/1989     | 0,45 | 3,17                  | 0,06  | 0,50 | 0,07 | 0,36     | 0,02     | 0,46     | 0,03                   | 101,70 | 57,86   | 3461,00    | 249,77     | 5881,7  | 331,7   |
| 9       | 3/3/1989      | 0,41 | 3,17                  | 0,06  | 0,62 | 0,08 | 0,49     | 0,02     | 0,58     | 0,04                   | 102,70 | 58,78   | 5135,34    | 381,68     | 8636,5  | 549,3   |
| 10      | 10/3/1989     | 0,41 | 3,17                  | 0,06  | 0,54 | 0,07 | 0,39     | 0,02     | 0,50     | 0,03                   | 100,90 | 29,06   | 3599,21    | 226,25     | 12285,4 | 678,6   |
| 11      | 17/3/1989     | 0,66 | 3,35                  | 0,07  | 0,50 | 0,10 | 0,36     | 0,03     | 0,46     | 0,06                   | 104,00 | 97,26   | 6190,62    | 859,32     | 6265,0  | 783,5   |
| 12      | 31/3/1989     | 0,54 | 3,62                  | 0,07  | 0,50 | 0,08 | 0,36     | 0,02     | 0,46     | 0,04                   | 101,45 | 43,91   | 4568,56    | 367,23     | 10304,4 | 736,3   |
| 13      | 7/4/1989      | 0,49 | 3,53                  | 0,06  | 0,44 | 0,06 | 0,29     | 0,02     | 0,40     | 0,02                   | 100,50 | 48,57   | 2800,14    | 155,45     | 5665,2  | 220,0   |
| 14      | 14/4/1989     | 0,52 | 3,70                  | 0,06  | 0,49 | 0,07 | 0,35     | 0,02     | 0,45     | 0,03                   | 101,40 | 64,46   | 4093,04    | 279,67     | 6249,7  | 333,9   |
| 15      | 28/4/1989     | 0,49 | 4,04                  | 0,06  | 0,43 | 0,05 | 0,28     | 0,01     | 0,39     | 0,01                   | 99,25  | 21,38   | 2588,50    | 82,18      | 12007,1 | 284,4   |
| 16      | 5/5/1989      | 0,46 | 3,44                  | 0,06  | 0,42 | 0,06 | 0,27     | 0,01     | 0,38     | 0,02                   | 100,00 | 48,42   | 2225,51    | 97,96      | 4496,3  | 102,3   |
| 17      | 9/5/1989      | 0,44 | 3,70                  | 0,06  | 0,48 | 0,06 | 0,33     | 0,01     | 0,44     | 0,02                   | 100,00 | 34,44   | 2917,38    | 115,96     | 8370,9  | 236,7   |
| 18      | 23/5/1989     | 0,51 | 3,35                  | 0,05  | 0,28 | 0,04 | 0,15     | 0,01     | 0,24     | 0,00                   | 99,10  | 34,59   | 898,31     | 9,91       | 2497,0  | 71,4    |
| 19      | 2/6/1989      | 0,51 | 3,70                  | 0,05  | 0,32 | 0,04 | 0,18     | 0,01     | 0,28     | 0,00                   | 98,00  | 25,42   | 1334,04    | 22,48      | 5148,0  | 11,6    |
| 20      | 6/6/1989      | 0,49 | 3,87                  | 0,05  | 0,37 | 0,05 | 0,22     | 0,01     | 0,33     | 0,01                   | 97,50  | 18,83   | 1765,39    | 36,67      | 9275,4  | 94,8    |
| 21      | 13/6/1989     | 0,52 | 3,87                  | 0,06  | 0,37 | 0,05 | 0,22     | 0,01     | 0,33     | 0,01                   | 98,60  | 19,59   | 1901,74    | 55,67      | 9607,7  | 184,2   |
| 22      | 20/6/1989     | 0,49 | 3,70                  | 0,05  | 0,32 | 0,04 | 0,18     | 0,01     | 0,28     | 0,00                   | 97,40  | 26,70   | 1197,80    | 9,45       | 4386,1  | 64,6    |
| 23      | 27/6/1989     | 0,58 | 3,70                  | 0,05  | 0,27 | 0,04 | 0,14     | 0,01     | 0,23     | 0,00                   | 96,80  | 25,31   | 985,25     | 9,40       | 3792,7  | 62,9    |
| 24      | 5/7/1989      | 0,50 | 4,12                  | 0,05  | 0,35 | 0,04 | 0,21     | 0,01     | 0,31     | 0,00                   | 96,60  | 7,22    | 1629,59    | 15,49      | 22470,5 | 114,6   |
| 27      | 19/7/1989     | 0,56 | 4,36                  | 0,05  | 0,31 | 0,04 | 0,17     | 0,01     | 0,27     | 0,00                   | 96,45  | 10,92   | 1380,77    | 0,17       | 12544,4 | 98,5    |
| 29      | 9/8/1989      | 0,55 | 3,87                  | 0,05  | 0,29 | 0,04 | 0,16     | 0,01     | 0,25     | 0,00                   | 96,50  | 20,17   | 1102,31    | 4,81       | 5365,1  | 76,2    |
| 32      | 13/9/1989     | 0,59 | 4,04                  | 0,06  | 0,33 | 0,05 | 0,19     | 0,01     | 0,29     | 0,01                   | 98,30  | 6,00    | 1673,52    | 45,41      | 27791,9 | 656,8   |
|         |               |      |                       |       |      |      |          |          |          |                        |        |         |            | MEDIA      | 9486,4  | 368,8   |

Tabela 8.61 - Descargas calculadas pelo método de Pernecker e Volmer (1965) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)        | (3)             | (4)                   | (5)   | (6)   | (7)              | (8)    | (9)     | (10)                   | (11)       | (12)          | (13)      |
|-----|------------|-----------------|-----------------------|-------|-------|------------------|--------|---------|------------------------|------------|---------------|-----------|
| N°  | DATA       | D <sub>50</sub> | D <sub>vj [INL]</sub> | U     | W 150 | W <sub>Dvi</sub> | В      | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50       | E[%]Dvj   |
|     |            | (mm)            | (mm)                  | (m/s) | (m/s) | (m/s)            | (m)    | ton/dia | ton/dia                | ton/dia    | 28            | -         |
| 1   | 10/12/1988 | 0,46            | 7,18                  | 0,48  | 0,06  | 0,28             | 95,70  | 10,73   | 981973,32              | 13249,67   | 9151561,8     | 123382,4  |
| 2   | 11/12/1988 | 0,60            | 7,23                  | 0,55  | 0,07  | 0,28             | 95,30  | 18,34   | 1220192,11             | 25826,18   | 6653074,0     | 140718,9  |
| 3   | 14/1/1989  | 0,63            | 5,06                  | 1,09  | 0,07  | 0,23             | 103,80 | 82,23   | 37432481,80            | 1470590,22 | 45521585,3    | 1788286,5 |
| 4   | 15/1/1989  | 0,42            | 5,08                  | 1,10  | 0,05  | 0,23             | 103,00 | 81,15   | 78647614,61            | 1519875,71 | 96916245,8    | 1872821,4 |
| 5   | 20/1/1989  | 0,50            | 5,19                  | 0,95  | 0,06  | 0,24             | 102,80 | 87,21   | 27661259,08            | 704443,69  | 31717890,0    | 807655,6  |
| 6   | 27/1/1989  | 0,43            | 5,71                  | 0,76  | 0,06  | 0,25             | 101,30 | 40,13   | 11670107,80            | 197374,75  | 29080657,0    | 491738,4  |
| 7   | 3/2/1989   | 0,40            | 6,29                  | 0,69  | 0,05  | 0,26             | 99,35  | 33,57   | 8053431,18             | 103238,58  | 23989864,8    | 307432,2  |
| 8   | 24/2/1989  | 0,45            | 5,54                  | 0,86  | 0,06  | 0,24             | 101,70 | 57,86   | 20034878,15            | 384583,46  | 34626374,5    | 664579,3  |
| 9   | 3/3/1989   | 0,41            | 5,20                  | 0,90  | 0,05  | 0,24             | 102,70 | 58,78   | 30040921,35            | 535542,97  | 51107285,8    | 910997,3  |
| 10  | 10/3/1989  | 0,41            | 5,77                  | 0,73  | 0,05  | 0,25             | 100,90 | 29,06   | 10361812,38            | 158151,87  | 35656515,2    | 544125,3  |
| 11  | 17/3/1989  | 0,66            | 4,89                  | 1,07  | 0,08  | 0,23             | 104,00 | 97,26   | 31635339,45            | 1415732,48 | 32526467,4    | 1455516,4 |
| 12  | 31/3/1989  | 0,54            | 5,58                  | 0,85  | 0,07  | 0,24             | 101,45 | 43,91   | 13701007,98            | 357799,04  | 31 202 377 ,8 | 814746,4  |
| 13  | 7/4/1989   | 0,49            | 5,89                  | 0,81  | 0,06  | 0,25             | 100,50 | 48,57   | 12623719,49            | 256658,89  | 25990675,1    | 528330,9  |
| 14  | 14/4/1989  | 0,52            | 5,65                  | 0,89  | 0,06  | 0,25             | 101,40 | 64,46   | 18393155,04            | 442205,48  | 28534115,1    | 685915,3  |
| 15  | 28/4/1989  | 0,49            | 6,29                  | 0,75  | 0,06  | 0,26             | 99,25  | 21,38   | 8484632,02             | 156211,93  | 39684801,9    | 730545,1  |
| 16  | 5/5/1989   | 0,46            | 6,10                  | 0,74  | 0,06  | 0,26             | 100,00 | 48,42   | 8935938,28             | 154087,10  | 18454956,3    | 318130,3  |
| 17  | 9/5/1989   | 0,44            | 6,11                  | 0,76  | 0,06  | 0,26             | 100,00 | 34,44   | 11053620,83            | 175964,45  | 32095198,6    | 510830,5  |
| 18  | 23/5/1989  | 0,51            | 6,61                  | 0,64  | 0,06  | 0,27             | 99,10  | 34,59   | 3574900,84             | 65506,76   | 10334970,4    | 189280,6  |
| 19  | 2/6/1989   | 0,51            | 6,59                  | 0,65  | 0,06  | 0,27             | 98,00  | 25,42   | 3820175,67             | 70305,93   | 15028128,5    | 276477,2  |
| 20  | 6/6/1989   | 0,49            | 6,57                  | 0,66  | 0,06  | 0,27             | 97,50  | 18,83   | 4398660,80             | 75982,36   | 23359755,5    | 403417,6  |
| 21  | 13/6/1989  | 0,52            | 6,47                  | 0,67  | 0,06  | 0,26             | 98,60  | 19,59   | 4324333,42             | 84622,96   | 22074087,9    | 431870,2  |
| 22  | 20/6/1989  | 0,49            | 6,69                  | 0,65  | 0,06  | 0,27             | 97,40  | 26,70   | 4071195,14             | 68343,36   | 15247821,9    | 255867,7  |
| 23  | 27/6/1989  | 0,58            | 6,69                  | 0,64  | 0,07  | 0,27             | 96,80  | 25,31   | 2800286,57             | 62809,20   | 11063853,3    | 248059,6  |
| 24  | 5/7/1989   | 0,50            | 6,73                  | 0,65  | 0,06  | 0,27             | 96,60  | 7,22    | 3897666,83             | 67206,60   | 53984205,1    | 930739,3  |
| 25  | 12/7/1989  | 0,51            | 6,93                  | 0,62  | 0,06  | 0,27             | 96,50  | 8,96    | 2970135,32             | 50680,26   | 33148731,7    | 565527,9  |
| 26  | 13/7/1989  | 0,56            | 6,94                  | 0,61  | 0,07  | 0,27             | 96,50  | 7,91    | 2330963,69             | 46608,76   | 29468467,5    | 589138,5  |
| 27  | 19/7/1989  | 0,56            | 6,97                  | 0,59  | 0,07  | 0,27             | 96,45  | 10,92   | 1972065,38             | 39213,56   | 18059106,8    | 358998,6  |
| 28  | 26/7/1989  | 0,63            | 7,00                  | 0,61  | 0,07  | 0,27             | 96,45  | 10,09   | 1909282,47             | 46039,28   | 18922422,0    | 456186,2  |
| 29  | 9/8/1989   | 0,55            | 6,79                  | 0,63  | 0,07  | 0,27             | 96,50  | 20,17   | 2824666,16             | 56630,36   | 14004194,3    | 280665,3  |
| 30  | 16/8/1989  | 0,47            | 7,04                  | 0,59  | 0,06  | 0,27             | 96,40  | 12,15   | 2671611,67             | 38597,92   | 21988473,4    | 317578,4  |

Tabela8.6j - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj
| (1) | (2)        | (3)      | (4)                   | (5)   | (6)   | (7)              | (8)   | (9)     | (10)                   | (11)       | (12)       | (13)     |
|-----|------------|----------|-----------------------|-------|-------|------------------|-------|---------|------------------------|------------|------------|----------|
| N°  | DATA       | $D_{50}$ | D <sub>vj [INL]</sub> | U     | W 150 | W <sub>Dvi</sub> | В     | qBm     | qB[INL]D <sub>50</sub> | qB[INL]Dvj | E[%]D50    | E[%]Dvj  |
|     |            | (mm)     | (mm)                  | (m/s) | (m/s) | (m/s)            | (m)   | ton/dia | ton/dia                | ton/dia    | -          | 244<br>1 |
| 31  | 23/8/1989  | 0,45     | 7,13                  | 0,57  | 0,06  | 0,28             | 96,40 | 4,17    | 2428984,86             | 31908,01   | 58248937,5 | 765080,1 |
| 32  | 13/9/1989  | 0,59     | 6,62                  | 0,63  | 0,07  | 0,27             | 98,30 | 6,00    | 2553334,15             | 59926,80   | 42555469,2 | 998680,0 |
| 33  | 27/9/1989  | 0,53     | 7,39                  | 0,46  | 0,07  | 0,28             | 96,10 | 11,44   | 622143,88              | 10310,58   | 5438220,7  | 90027,4  |
| 34  | 4/10/1989  | 0,52     | 7,37                  | 0,48  | 0,06  | 0,28             | 96,20 | 4,63    | 796250,10              | 12824,15   | 17197526,4 | 276879,4 |
| 35  | 11/10/1989 | 0,49     | 7,38                  | 0,55  | 0,06  | 0,28             | 94,60 | 6,62    | 1715144,69             | 24823,65   | 25908430,1 | 374879,7 |
| 36  | 8/11/1989  | 0,54     | 7,43                  | 0,54  | 0,07  | 0,28             | 93,50 | 4,26    | 1306731,17             | 22173,26   | 30674340,5 | 520399,0 |
|     |            |          |                       |       |       |                  |       |         |                        | MEDIA      | 2,9E+07    | 5,8E +05 |

Tabela8.6j - Descargas calculadas pelo método de Inglis e Lacei (1968) usando o diâmetro D<sub>50</sub> e o Dvj

| (1) | (2)        | (3)      | (4)                 | (5)            | (6)             | (7)           | (8)     | (9)       | (10)       | (11)    | (12)    |
|-----|------------|----------|---------------------|----------------|-----------------|---------------|---------|-----------|------------|---------|---------|
| Nº  | DATA       | $D_{50}$ | D <sub>Vi BOC</sub> | $\theta_{i50}$ | $\theta_{iDvi}$ | в             | qBm     | qB[BOG]Dm | qB[BOG]Dvi | E[%]D_  | E[%]Dvi |
|     |            | (mm)     | mm                  |                |                 | (m)           | ton/dia | ton/dia   | ton/dia    | -       |         |
| 1   | 10/12/1988 | 0,46     | 3,33                | 0,29           | 0,04            | 95,70         | 10,73   | 110,08    | 0,62       | 925,9   | 94,3    |
| 2   | 11/12/1988 | 0,60     | 3,66                | 0,21           | 0,03            | 95,30         | 18,34   | 47,64     | 0,42       | 159,7   | 97,7    |
| 3   | 14/1/1989  | 0,63     | 4,31                | 0,69           | 0,10            | 103,80        | 82,23   | 7308,53   | 47,23      | 8787,9  | 42,6    |
| 4   | 15/1/1989  | 0,42     | 3,89                | 0,91           | 0,10            | 103,00        | 81,15   | 11937,60  | 35,00      | 14610,5 | 56,9    |
| 5   | 20/1/1989  | 0,50     | 3,03                | 0,54           | 0,09            | 102,80        | 87,21   | 1801,12   | 16,07      | 1965,3  | 81,6    |
| 6   | 27/1/1989  | 0,43     | 3,03                | 0,52           | 0,07            | 101,30        | 40,13   | 1200,52   | 7,21       | 2891,6  | 82,0    |
| 7   | 3/2/1989   | 0,40     | 3,33                | 0,46           | 0,06            | 99,35         | 33,57   | 685,50    | 2,66       | 1942,0  | 92,1    |
| 8   | 24/2/1989  | 0,45     | 3,03                | 0,50           | 0,07            | 101,70        | 57,86   | 1151,57   | 7,80       | 1890,3  | 86,5    |
| 9   | 3/3/1989   | 0,41     | 3,03                | 0,62           | 0,08            | 102,70        | 58,78   | 2375,96   | 12,60      | 3942,1  | 78,6    |
| 10  | 10/3/1989  | 0,41     | 3,03                | 0,54           | 0,07            | 100,90        | 29,06   | 1321,55   | 7,01       | 4447,6  | 75,9    |
| 11  | 17/3/1989  | 0,66     | 3,17                | 0,50           | 0,10            | 104,00        | 97,26   | 2115,13   | 34,53      | 2074,7  | 64,5    |
| 12  | 31/3/1989  | 0,54     | 3,41                | 0,50           | 0,08            | 101,45        | 43,91   | 1520,10   | 12,18      | 3361,8  | 72,3    |
| 13  | 7/4/1989   | 0,49     | 3,33                | 0,44           | 0,06            | 100,50        | 48,57   | 753,70    | 4,98       | 1451,8  | 89,7    |
| 14  | 14/4/1989  | 0,52     | 3,49                | 0,49           | 0,07            | 101,40        | 64,46   | 1318,87   | 9,00       | 1946,0  | 86,0    |
| 15  | 28/4/1989  | 0,49     | 3,83                | 0,43           | 0,05            | 99,25         | 21,38   | 657,20    | 3,00       | 2973,9  | 86,0    |
| 16  | 5/5/1989   | 0,46     | 3,25                | 0,42           | 0,06            | 100,00        | 48,42   | 550,94    | 3,28       | 1037,8  | 93,2    |
| 17  | 9/5/1989   | 0,44     | 3,49                | 0,48           | 0,06            | 100,00        | 34,44   | 880,07    | 3,87       | 2455,4  | 88,7    |
| 18  | 23/5/1989  | 0,51     | 3,17                | 0,28           | 0,04            | 99,10         | 34,59   | 120,99    | 1,00       | 249,8   | 97,1    |
| 19  | 2/6/1989   | 0,51     | 3,49                | 0,32           | 0,05            | 98,00         | 25,42   | 221,12    | 1,43       | 769,8   | 94,4    |
| 20  | 6/6/1989   | 0,49     | 3,66                | 0,37           | 0,05            | <b>97,5</b> 0 | 18,83   | 352,98    | 1,82       | 1774,6  | 90,3    |
| 21  | 13/6/1989  | 0,52     | 3,66                | 0,37           | 0,05            | 98,60         | 19,59   | 381,31    | 2,30       | 1846,4  | 88,3    |
| 22  | 20/6/1989  | 0,49     | 3,49                | 0,32           | 0,04            | 97,40         | 26,70   | 192,12    | 1,12       | 619,5   | 95,8    |
| 23  | 27/6/1989  | 0,58     | 3,49                | 0,27           | 0,04            | 96,80         | 25,31   | 122,73    | 1,11       | 384,9   | 95,6    |
| 24  | 5/7/1989   | 0,50     | 3,92                | 0,35           | 0,05            | 96,60         | 7,22    | 303,13    | 1,37       | 4098,5  | 81,0    |
| 25  | 12/7/1989  | 0,51     | 4,13                | 0,33           | 0,04            | 96,50         | 8,96    | 234,92    | 0,98       | 2521,9  | 89,1    |
| 26  | 13/7/1989  | 0,56     | 3,74                | 0,27           | 0,04            | 96,50         | 7,91    | 108,91    | 0,75       | 1276,8  | 90,5    |
| 27  | 19/7/1989  | 0,56     | 4,21                | 0,31           | 0,04            | 96,45         | 10,92   | 212,31    | 1,07       | 1844,2  | 90,2    |
| 28  | 26/7/1989  | 0,63     | 3,83                | 0,23           | 0,04            | 96,45         | 10,09   | 73,55     | 0,65       | 628,9   | 93,6    |
| 29  | 9/8/1989   | 0,55     | 3,66                | 0,29           | 0,04            | 96,50         | 20,17   | 151,98    | 1,06       | 653,5   | 94,7    |
| 30  | 16/8/1989  | 0,47     | 4,02                | 0,34           | 0,04            | 96,40         | 12,15   | 220,70    | 0,80       | 1716,5  | 93,4    |

Tabela8.6k - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro  $D_{50}$  e o Dvj

| (1)<br>№ | (2)<br>DATA | (3)<br>D <sub>50</sub><br>(mm) | (4)<br>D <sub>vj [BOG]</sub><br>mm | (5)<br>θ <sub>ισο</sub> | <b>(6)</b><br>θ <sub>iDvj</sub> | (7)<br>B<br>(m) | (8)<br>qBm<br>ton/dia | (9)<br>qB[BOG]D <sub>90</sub><br>ton/dia | (10)<br>qB[BOG]Dvj<br>ton/dia | (11)<br>E[%]D <sub>f0</sub><br>- | (12)<br>E[%]Dvj<br>- |
|----------|-------------|--------------------------------|------------------------------------|-------------------------|---------------------------------|-----------------|-----------------------|------------------------------------------|-------------------------------|----------------------------------|----------------------|
| 31       | 23/8/1989   | 0,45                           | 4,21                               | 0,36                    | 0,04                            | 96,40           | 4,17                  | 265,46                                   | 0,76                          | 6266,1                           | 81,9                 |
| 32       | 13/9/1989   | 0,59                           | 3,83                               | 0,33                    | 0,05                            | 98,30           | 6,00                  | 279,51                                   | 2,07                          | 4558,5                           | 65,5                 |
| 33       | 27/9/1989   | 0,53                           | 3,66                               | 0,26                    | 0,04                            | 96,10           | 11,44                 | 93,32                                    | 0,59                          | 715,7                            | 94,8                 |
| 34       | 4/10/1989   | 0,52                           | 3,66                               | 0,26                    | 0,04                            | 96,20           | 4,63                  | 92,98                                    | 0,56                          | 1908,2                           | 87,9                 |
| 35       | 11/10/1989  | 0,49                           | 3,83                               | 0,25                    | 0,03                            | 94,60           | 6,62                  | 65,76                                    | 0,30                          | 893,3                            | 95,5                 |
| 36       | 8/11/1989   | 0,54                           | 4,21                               | 0,25                    | 0,03                            | 93,50           | 4,26                  | 79,19                                    | 0,36                          | 1759,0                           | 91,5                 |
|          |             |                                |                                    |                         |                                 |                 |                       |                                          | MÉDIA                         | 2537,5                           | 85,5                 |

Tabela8.6k - Descargas calculadas pelo método de Bogardi (1974) usando o diâmetro  $D_{50}$  e o Dvj