1 and Esté exemplai corresponde a ric car final de dissurtación de mestrado findida por diban Porto Biencalana Ni Comuner fulgadores am pela amorada digembro de 1990 dis Thisiding da UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRICOLA

DISTRIBUIÇÃO DE CARGAS NORMAIS SOBRE AS LATERAIS DE UMA CARROCERIA DE CANA PICADA

LILIAN PORTO BIANCALANA MORAES

Orientador: Prof. Dr. Oscar A. Braunbeck 🍏

Dissertação apresentada à Faculdade de Engenharia Agrícola da Universidade Estadual de Campinas, para obtenção do título de Mestre em Engenharia Agrícola.

C A M P I N A S Estado de São Paulo - Brasil 1990

Ao meu marido Edson. pelo carinho e compreensão.

.

- •

AGRADECIMENTOS

- ... à Faculdade de Engenharia Agrícola pela oportunidade;
- ... ao Prof. Dr. Oscar A. Braunbeck pela orientação intelígente, pelo incentivo e pela amizade;
- ... ao Prof. Dr. Antônio A. Guidetti pela realização da parte experimental e pelas sugestões oportunas;
- ... à Copersucar pela concessão da realização e publicação deste trabalho;
- ... à Usina São Martinho/Monte Sereno pela cessão da carroceria e realização dos experimentos;
- ... aos eng. Claudío Shuzo Ando, Maurílio de Oliveira Mello e Uriel A. Rosa pelo auxílio na realização dos experimentos;
- ... à Universidade Estadual de Campinas pelo fornecimento da bolsa de incentivo acadêmico.

SUMARIO

Pági	na
------	----

LISTA DE FIGURAS	. iii
LISTA DE TABELAS	. i×
RESUMD	×viii
1. INTRODUÇÃO	. 1
2. OBJETIVOS	. 4
3. REVISAD DE LITERATURA	. 6
4. MATERIAL E METODOS	. 16
4.1 Material	. 16
4.2 Métodos	. 18
4.2.1 Seleção dos pontos para análise	. 19
4.2.2 Obtenção da matriz de ligação	. 22
4.2.3 Determinação dos esforços	. 27
4.2.4 Caracterização do material	. 31
4.2.5 Recuperação elástica da carroceria.	. 38

Página

 5. RESULTADOS E DISCUSSÃO,	39
5.1 Caracterização do material	39
5.2 Recuperação elástica da carroceria	45
5.3 Matriz de ligação	47
5.4 Análise dos esforços	48
5.4.1 Deformações	50
5.4.2 Forças	57
5.4.3 Pressões	82
6. CONCLUSGES	86
ANEXO A	88
ANEXO B	100
ANEXO C	116
REFERENCIAS BIBLIOGRAFICAS	118
ABSTRACT	121

Figura	TITULO	Página
1	Esquema da tampa com suas respectivas vigas	
	e colunas. A numeração se refere aos nós	
	utilizados no modelamento para o SAP90	89
4.1	Caminhão para transporte de cana picada com	
	carroceria similar à utilizada no trabalho .	18
4.2	Esquema da lateral da carroceria com locais	
	de aplicação dos carregamentos de 9810N	20
4.3	Vista da tampa da carroceria com locais onde	
	foram colocados os extensômetros	25
4.4	Curva de calibração da célula de carga	26

.

LISTA DE FIGURAS

>

iii

Figura	TITULO	Página
		•
	<u>Detalhe da conexão do caminhão com a julieta</u>	
	contendo a kombi	29
4.6	Vista superior da carroceria mostrando o	
	carregamento de cana nivelado, após término	
	das medições em campo	32
4.7	Esquema dos pontos de medíção dos ângulos de	
	talude	36
4.8	Detalhe da medição do coefíciente de atrito	
	cana-chapa	37
5.1	Relação entre densidade de carga e	
	comprimento de tolete para a variedade	
	CB41-76	40
5.2	Vista superior da carroceria mostrando a	
	numeração das colunas	45
5.3	Vista espacial das deformações específicas	
	para a condição de carga (5)	51

ív

Figura	TITULO	Página
5.4	Vista espacial da distribuição das forças	
	para a condição de carga (10)	52
5.5	Deformações específicas nas 5 linhas de	
	extensômetros para a condição de carga (5)	54
5.6	Deformações específicas nas 5 linhas de	
	extensômetros para a condição de carga (9)	55
5.7	Forças ao longo do comprimento da carroceria	
	para a condição de carga (1)	59
5.8	Forças ao longo da altura da carroceria para	
	a condição de carga (1)	60
5.9	Forças ao longo do comprimento da carroceria	
	para a condição de carga (2)	61
5.10	Forças ao longo da altura da carroceria para	
	a condição de carga (2)	62

v

Figura	TITULO	Página
5.11	Forças ao longo do comprimento da carroceria	
	para a condição de carga (3)	63
5.12	Forças ao longo da altura da carroceria para	
	a condição de carga (3)	64
5.13	Forças ao longo do comprimento da carroceria	
	para a condição de carga (4)	65
5 14	Foresc so longo da altura da carrocoria para	
5.14	a condíção de carga (4)	66
5.15	Forças ao longo do comprimento da carroceria	
	para a condição de carga (5)	67
5.16	Forças ao longo da altura da carroceria para	
	a condição de carga (5)	68
E . 7		
5.1/	Forças ao longo do comprimento da carroceria	4.5
	para a condição de carga (6)	67

vi

Figura	TITULO	Página
5.18	Forças ao longo da altura da carroceria para	
	a condição de carga (6)	70
	×.	
5.19	Forças ao longo do comprimento da carroceria	
	para a condição de carga (7)	71
5.20	Forças ao longo da altura da carroceria para	
	a condição de carga (7)	72
5.21	Forças ao longo do comprimento da carroceria	
	para a condição de carga (8)	73
5.22	Forças ao longo da altura da carroceria para	
·	a condição de carga (8)	74
5.23	Forças ao longo do comprimento da carroceria	
	para a condição de carga (9)	75
5.24	Forças ao longo da altura da carroceria para	
	a condição de carga (9)	76

vii

Figura	TITULO	Página	
5.25	Forças ao longo do comprimento da carroceria		
	para a condição de carga (10)	77	
5.26	Forças ao longo da altura da carroceria para		
	a condição de carga (10)	78	
5.27	Valores comparativos para pressões na		
	lateral da carroceria	84	

Tabela	TITULO	Página
1	Posicionamento dos nós na carroceria	88
2	Valores de deformação nos extensómetros devido aplicação de carga no nó 41	90
3	Valores de deformação nos extensômetros devido aplícação de carga no nó 31	90
4	Valores de deformação nos extensômetros devido aplicação de carga no nó 21	91
4.1	Valores de momentos (Nm) na direção do carregamento, obtidos pelo SAP90, devido aplicação de carga puntual de 9810N	21

LISTA DE TABELAS

i×

Tabela	TITULO	Página
4_2	Comparações entre valores de peso do	
	carregamento de cana picada, obtidos durante	
	todo o levantamento de dados	33
5	Valores de deformação nos extensômetros	
	devido aplicação de carga no nó 11	91
5.1	Coeficiente de atrito interno para cana	
	picada. Variedade SP70-3370	43
5.2	Coeficiente de atrito cana-chapa para cana	
	picada. Variedade SP70-3370	44
5.3	Vão livre entre as laterais superiores da	
	carrocería	46
5 4	Valarar das forcas tatais o ararchas módias	
J • 4	valores das lorças totals e pressões medias	01
	atuando na lateral da tarroteria	01
5.5	Valores comparativos nara pressões na	
	lateral da carroceria.	83

Tabela	TITULO	Página
	Valores de deformação nos extensômetros	
	devido aplicação de carga no nó 1	92
7	Valores de deformação nos extensômetros	
	devido aplícação de carga no nó 42	92
8	Valores de deformação nos extensômetros	
	devido aplicação de carga no nó 32	93
9	Valores de deformação nos extensômetros	
	devido aplicação de carga no nó 22	93
10	Valores de deformação nos extensômetros	
	devido aplicação de carga no nó 12	94
11	Valores de deformação nos extensômetros	
	devido aplicação de carga no nó 2	94
12	Valores de deformação nos extensômetros	
	devido aplicação de carga no nó 43	95

хi

	Tabela	TITULO	Página
an yayo mama yana yana ya kata kata mana kata kata kata kata kata kata kata k	13	Valores de deformação nos extensômetros	
		devido aplicação de carga no nó 33	95
₿.			
	14	Valores de deformação nos extensômetros	
		devido aplicação de carga no nó 23	96
	15	Valores de deformação nos extensômetros	
		devido aplicação de carga no nó 13	96
	16	Valores de deformação nos extensômetros	
		devido aplicação de carga no nó 3	97
	17	Valores de deformação nos extensômetros	
		devido aplicação de carga no nó 44	97
	18	Valores de deformação nos extensômetros	
		devido aplicação de carga no nó 34	78
	19	Valores de deformação nos extensômetros	
		devido aplicação de carga no nó 24	98

Tabela	TITULO	Página		
· · · · · · · · · · · · · · · · · · ·				
20	Valores de deformação nos extensômetros			
	devido aplicação de carga no nó 14	79		
21	Valores de deformação nos extensômetros			
	devído aplicação de carga no nó 4	99		
22	Valores das deformações obtidas no campo			
	p_{2}	100		
	para condição de carga de carga (i)	100		
23	Valores das forças normaís correspondentes			
	às deformações mostradas na tabela 22	101		
24	Valores das pressões horizontais			
	correspondentes às deformações mostradas na			
	tabela 22	101		
25	Valores de deformações obtidas no campo para			
	condição de carga (2)	102		
26	Valores de forças normais correspondentes			
	às deformações mostradas na tabela 25	102		

Tabela	TITULO	Página
27	Valores das pressões horizontais	
	correspondentes às deformações mostradas na	
	tabela 25	103
28	Valores de deformações obtidas no campo para	
	condição de carga (3)	103
29	Valores de forças normais correspondentes	
	às deformações mostradas na tabela 28	104
30	Valores das pressões horizontais	
	correspondentes às deformações mostradas na	
	tabela 28	104
31	Valores de deformações obtidas no campo para	
	condição de carga (4)	105
32	Valores de forças normais correspondentes	
	às deformações mostradas na tabela 31	105

.

Tabela	TITULO	Página
33	Valores das pressões horizontais	
	correspondentes às deformações mostradas na	
	tabela 31	106
34	Valores de deformações obtidas no campo para	
	condição de carga (5)	106
35	Valores de forcas normais correspondentes	
00		107
	as deformações mostradas na tabela 34	107
36	Valores das pressões horizontais	
	correspondentes às deformações mostradas na	
	tabela 34	107
37	Valores de deformações obtidas no campo para	
	condição de carga (6)	108
	Condição de Carga (o)	100
38	Valores de forças normaís correspondentes	
	às deformações mostradas na tabela 37	108

хv

Tabela -	TITULO			Página	
39 \	/alores	das	pressões	horizontais	ana baha sa bana sa
C	corresponder	ntes às (deformações	mostradas na	
t •	tabela 37			• • • • • • •	109
40 \	/alores de d	deformaçi	des obtidas	no campo para	
c	condição de	carga (7)		109
41 🗸	/alores de	forças	normais c	orrespondentes	
è	as deformaçî	des most:	radas na ta	bela 40	110
42 V	alores	das	pressões	horizontais	
c	orresponder	ntes às d	deformações	mostradas na	
t	abela 40				110
43 V	alores de c	ieformaçõ	ðes obtidas	no campo para	
C	condição de	carga (8)		111
44 V	alores de	forças	normais c	orrespondentes	
à	s deformaçõ	jes mostr	radas na ta	bela 43	111

Tabela			TITULO	ی پیروپر بالالد سایت پیروپر پریوپر خانات اطلال اطلال پنیر بریوپر بروپر اطلات کیس بیروپر	Página
45	Valores	das	pressões	horizontais	
	corresponde	ntes às	deformações	mostradas na	
	tabela 43.				112
46	Valores de	deformaç	ões obtidas	no campo para	
	condição de	e carga (9)		112
47	Valores de	forças	normais co	rrespondentes	
	às deformaç	ões most	radas na tab	ela 46	113
48	Valores	das	pressões	horizontais	
	corresponde	ntes às	deformações	mostradas na	
	tabela 46.				113
49	Valores de	deformaç	ões obtidas	no campo para	
	condição de	carga (10)		114
50	Valores de	forças	normais co	rrespondentes	
	às deformaç	ðes most	radas na tab	ela 49 	114
51	Valores	das	pressões	horizontais	
	corresponde	ntes às (deformações	mostradas na	
	tabela 49.		* * * * * *		115

RESUMO

Foram medidos os esforços laterais na estrutura de uma carrocería para transporte de cana picada.

Vinte extensômetros elétricos foram distibuídos e montados na metade frontal da estrutura da tampa lateral basculante.

A matriz de ligação foi obtida, aplicando-se forças conhecidas em cada ponto de localização dos extensômetros com a leitura correspondente da deformação nos demais pontos. Esta matriz permite transformar os dados de deformações registrados no campo em valores correspondentes de forças.

As medições foram realizadas sob condições estáticas e níveis normais de carregamento, em percurso de 12 Km do campo até a usina. Também foram realizadas medições em trechos de estrada com inclinação lateral.

Pressões laterais médias de 1961 N/m² foram obtidas para todas as condições experimentais. A distribuição de cargas não foi uniforme.

xviii

As cargas concentraram-se precisamente em duas vigas rígidas longitudinais localízadas respectivamente no fundo e a 2/3 da altura da carroceria. Elas transmitiram as cargas laterais para as paredes frontal e traseíra da estrutura.

Picos de carga foram localizados perto das extremidades das vigas a aproximadamente 1/4 do comprimento total; praticamente não houve carga na parte central das vigas.

A massa de cana pícada se comporta principalmente como um bloco sólido devido ao entrelaçamento mútuo dos toletes de cana. O cultivo de cana-de-acúcar vem sendo cada vez mais difundido no Brasil e. particularmente, no Estado de São Paulo a partir da década de 70. Atualmente, a produção anual brasileira está em torno de 240 milhões de toneladas de cana-de-acúcar sendo que a mesma é, comumente, transportada a uma distância média de 15Km do local de colheita até a usina através de carrocerias com capacidade útil em torno de 15 toneladas.

Este transporte pode ocorrer em rodovias de tráfego intenso, tornando-se necessário um estudo mais aprofundado do comportamento das pressões atuantes nas laterais da carroceria, visando evitar o subdimensionamento da mesma e eventuais acidentes nas rodovias.

A cana é transportada,predominantemente, sob a forma de cana inteira mas a presença de carrocerias para cana picada, tipo gaiola, tem aumentado nas frotas de transporte em função de diversos fatores, tais como: - exigências mais restritivas em rodovias, principalmente asfaltadas, com relação à queda de cana das carrocerías:

- necessidade de utilização de colheita mecânica durante feríados, fins de semana e fins de safra:

 utilização de carregadoras continuas, como solução ao problema de lavagem de cana (poluição e perdas de açúcar), as quais trabalham com cana picada.

A estrutura de uma carroceria para transporte de cana picada pesa em torno de 4,0t, enquanto que para o transporte de cana inteira, as carrocerias são mais simples, pesando em torno de 2,0t. Este peso da estrutura pode ser considerado como peso morto que encarece o custo de transporte devido ao acréscimo na carga a ser transportada e exige maior consumo de energia e poténcia no motor.

Para cada tonelada reduzida no peso da carroceria obtém-se uma diminuição de 1/15 no custo de transporte, o que equivale a uma redução em torno de 6% no custo total.

Durante o transporte uma carroceria carregada está sujeita a esforços em suas paredes devido à existência de cargas estáticas e dinâmicas. Estes esforços em suas laterais sofrerão variação em sua intensidade devido à influência de diversos parâmetros, tais como:

- alteração do centro de gravidade: a massa transportada sofre variação em seu centro de gravidade conforme for ocorrendo a acomodação dos toletes durante o trajeto;

- características da carga: o teor de umidade da cana afeta significantemente os resultados em relação à obtenção dos esforços. Esta mudança no teor de umidade pode ocorrer devido à variação sazonal ou ocorrência de chuvas durante o transporte. O aumento no teor de umidade da cana acarreta um aumento na densidade da mesma:

 condições do terreno: a existência de irregularidades, inclinações, assim como o tipo de superfície, altera os resultados para os esforços.

Tendo em vista os aspectos acima mencionados, a necessidade de um melhor dimensionamento da carroceria torna-se evidente. O cálculo estrutural computadorizado de estruturas reticuladas tem atingido ampla difusão juntamente com os computadores digitais. e através destas experiências evidenciou-se o potencial real de redução de peso no dimensionamento de estruturas com alto grau de hiperestaticidade. Um total aproveitamento desta técnica exige um nível de precisão equivalente nos dados de cargas aplicadas à estrutura.

OBJETIVOS

O presente trabalho tem por objetivo o levantamento e análise dos esforços a que as paredes laterais de uma carroceria estão sujeitas, a partir de dados obtidos em campo, visando possibilitar um melhor dimensionamento da estrutura e, consequentemente, a diminuição de seu peso próprio.

Serão estudados apenas os esforços devido ao carregamento da cana e em situações estáticas.

Etapas de desenvolvimento do trabalho:

(a) Modelamento da estrutura da carrocería no SAP-90 com aplicação de carregamentos em diversos pontos préestabelecidos da lateral, visando a definição de 20 pontos ideais para colocação dos extensômetros e posicionamento dos mesmos: (b) Montagem da matriz de ligação [L] para a lateral basculante da carroceria, pela aplicação de uma força conhecida em cada um dos 20 pontos na carroceria real e obtenção das deformações em todos os demais;

> (c) Levantamento experimental dos esforcos laterais estáticos atuantes na carroceria durante atuação em campo;

(d) Análise dos esforços obtidos.

REVISAD DE LITERATURA

Devído à não existência de estudos sobre o comportamento dos esforços atuantes em paredes causadas pelo carregamento de cana (picada e inteira), baseou-se no comportamento das pressões ocasionadas por grãos e fluidos, para comparação com os esforcos obtidos neste trabalho.

Segundo CATALAN (1977), um dos primeiros processos utilizados no cálculo das pressões exercidas pelo material ensilado foi a teoria hidrostática, a qual considerava estas pressões idênticas às exercidas por um líquido em repouso com mesmo peso específico do material:

$$P_{h} = \gamma \cdot h$$
(1)
onde:
$$P_{h} - \text{ pressão lateral (N/m2)}$$

$$\gamma - \text{ peso específico do material (N/m3)}$$

$$h - \text{ altura a partir do topo (m)}$$

 $P = \gamma \cdot h$

Deste modo. ocorre uma variação linear da pressão horizontal em relação à altura, sendo que esta pressão é constante em qualquer ponto ao longo do perímetro em uma mesma seção. Esta teoria não considera o atrito do material com as paredes, admíte que as pressões em, um ponto interior do material são iguais em qualquer direção, considera o peso específico do material como constante em qualquer ponto no interior da massa (ignora a compactação) e ainda, adota que todo material é suportado pelo fundo da célula.

Para o caso particular de grãos sabe-se, atualmente, que as pressões horizontais são menores do que as fornecidas por esta teoria.

FORTES (1985) realizou um estudo sobre as várias teorias existentes para determinação das pressões ocasionadas por grãos e, entre elas, a teoria de Janssen, cujo resumo é apresentado a seguir.

A teoria de Janssen foi apresentada em 1895, sendo bastante utilizada até hoje. A determinação das pressões horizontais e verticais ocorre pelo equilíbrio das forças verticais que atuam em uma camada horizontal de altura infinitesimal do material ensilado; a pressão vertical em uma seção transversal horizontal da massa ensilada é considerada constante na seção, sendo que as forças atuantes sobre a camada de material ensilado são o

peso próprio da camada, as forças nas faces superior e inferior da camada devidas ao material e a força de atríto entre material e parede.

$$P_{h} = \frac{\gamma \cdot R_{h}}{\mu'} \cdot [1 - e^{-(\mu' kh)/R_{h}}]$$
 (2)

sendo:

 $P_h = pressão lateral (N/m^2)$ $R_h = S / U - raio hidráulico médio da seção (m)$ $\mu' = tg \phi' - coeficiente de atrito material-parede$ $\gamma = peso específico do material (N/m^3)$ h = altura do topo até seção considerada (m)k = razão entre pressão horizontal e vertical

A relação entre a pressão horizontal e vertical (k) depende:

 profundidade da seção: a relação k é considerada constante, não dependendo da seção analísada;

- geometria do solo;

- material da parede e rugosidade da mesma.

O valor de k não foi especificado por Janssen em sua teoria, estabelecendo que este valor deveria ser determinado experimentalmente para cada silo e material a ser armazenado. Diversos estudos utilizam como valor de k aquele determinado de modo idêntico ao coeficiente do empuxo ativo da teoria de Rankine:

$$k = \frac{1 - \sin \phi}{1 + \sin \phi} \tag{3}$$

onde: k - razão entre pressão horizontal e vertical

 ϕ - ångulo de atrito interno (grau)

DWYER (1970) derivou equações para desacelerações máximas obtidas em um sistema tratorreboque para diferentes tipos de reboques convencionais, relacionando as máximas desacelerações dos reboques com superfícies de diferentes coeficientes de coesão e diferentes inclinações da barra de tração. Foram obtidos resultados no sistema trator-reboque.

SAGI et al (1972) realizaram um estudo teórico da combinação de um trator com tração nas quatro rodas e um reboque de eixo duplo, analisando a influência do peso do reboque sobre a capacidade de frenagem do sistema trator-reboque em comparação com o trator sozinho. Para o desenvolvimento do trabalho a carga transportada pelo reboque era composta por uma massa homogênea, sendo considerada a força atuante no centro de gravidade do conjunto reboque-carga. Eles constataram que o peso do reboque é um fator significativo durante a frenagem do sistema trator-reboque.

Em um trabalho posterior, SAGI *et al* (1973) estudaram o comportamento do sistema trator-reboque através da análise das cargas dinâmicas máximas impostas à extremidade da barra de tração, sob diversas condições operacionais; constatando que as cargas críticas ocorrem durante a frenagem e são funções do carregamento estático e das dimensões geométricas do reboque.

Um estudo sobre o comportamento das pressões ocasionadas por feno peletizado nas paredes laterais de uma caixa de armazenagem foi realizado por DOBIE *et al* (1966).

As pressões foram obtidas em um único ponto situado na base de uma das paredes laterais, a qual era parte superior, permitindo articulada em sua Ο deslocamento em sua base. Para várias profundidades de carga, os deslocamentos ocasíonados foram medidos com o auxílio de um relógio comparador e, a partir daí, obtidas as pressões correspondentes. Neste trabalho, os autores sugerem a utilização, para estruturas retangulares largas COM paredes contínuas, da seguinte equação para determinação da pressão:

$$P_{h} = 9 \cdot h \tag{4}$$

onde: P - pressão lateral (N/m³) h

h – altura do topo até seção considerada (m)

Para a coleta de dados os autores utilizaram simulação, não tendo sido fornecida nenhuma informação sobre o comportamento das pressões num sistema real.

JOFRIET *E* DAYNARD (1981) realizaram uma adaptação da equação de Janssen para predizer as pressões estáticas horizontais atuantes nas paredes de um silo cilíndrico contendo uma mistura composta por espigas de milho e milho debulhado; foi considerado o comportamento

da pressão vertical em função da variação de densidade do material ensilado e da atuação da força de atrito.

Alternativamente, Jofriet sugere uma aproximação para o diagrama do carregamento, usando a fórmula de Janssen:

$$P_{h} = \frac{\gamma D g}{4 \mu'} \cdot (1 - e^{-\beta h})$$
 (5)

5

onde:

$$P_{h} = \text{pressão lateral} (N/m^{2})$$
$$\beta = -\frac{\mu' k}{R_{h}}$$

 γ - peso específico do material (N/m³)

- D diâmetro do círculo inscríto na seção considerada (m)
- g aceleração gravitacional (m/s²)

 μ' - coeficiente de atrito material-parede

h – altura do topo até seção considerada (m)

Os autores constataram que as pressões estimadas pelas equações desenvolvidas por eles são menos conservativas que as especificadas pela CFBC (Canadian Farm Building Code), sendo que a aproximação proposta por Jofriet se mostra ideal por sua simplificação e valores fornecidos.

CFBC:
$$P_{\rm b} = 4.8 \pm 0.58 \, {\rm h} \, {\rm D}^{0.55}$$
 (6)

D - diâmetro do círculo inscrito na seção considerada (m)

5

Em um trabalho posterior, JDFRIET *et al* (1982) realizaram um estudo similar para alfafa constatando que o coeficiente de atrito *u* tem um efeito mais significativo na pressão lateral que a relação entre pressão horizontal e vertical, k. Também, para este produto, foi constatado que as pressões obtidas pelas equações fornecem, na maioria dos casos, valores menores que os obtidos pela equação da CFBC e que a equação simplificada fornece bons resultados.

BISHARA et al (1983) desenvolveram นก equacionamento das pressões estáticas laterais e verticais em silo circular de concreto armado contendo material granular. Foram obtidas duas séries de equações através da análise regressão linear material de não para viscoelástico: equação para material granular fino (tamanho menor ou igual a 2,54mm) e material granular grosso (tamanho maior que 2,54mm). O equacionamento foi realizado em termos de ângulo de atrito interno, densidade

do material e equação hidrostática. Os autores chegaram ás seguintes conclusões:

- as curvas obtidas para pressão vertical e lateral apresentaram um comportamento muito similar para o material fino e grosso;

ambas as curvas apresentaram uma diminuição no
valor da pressão quando próximas à base do silo;

- a relação entre pressão vertical e horizontal é uma constante e função do coeficiente de atrito interno, diâmetro do silo, densidade do material e coeficiente de atrito entre material e parede;

- ocorre uma variação da pressão vertical na base do silo, na forma de uma parábola simétrica com o pico no centro do sílo e valores menores próximos à parede, devido à influência do coeficiente de atrito material-parede.

MELLO *et* ANDO (1988) determinaram a densidade para as variedades de cana pícada NA56-79 e SP70-1143, obtendo um valor médio de 4206.43 N/m³ para o mesmo modelo de colhedora, com toletes com comprimento médio de 191 mm.
BRAUNBECK & PELIZARI (1986) determinaram a densidade de carga em função do comprimento de toletes, para a variedade CB41-76, obtendo uma relação inversa entre esses dois parâmetros.

MATERIAL E METODOS

4.1 - MATERIAL

Para o desenvolvimento deste trabalho foram utilízados os seguintes materiais:

- Microcomputador da linha PC com memória de 640 kbytes
 e uma unidade de disco rígido (winchester) com
 30 Mbytes de memória auxiliar;
- Impressora Grafix 100 F/T de 132 colunas;
- Pacote para resolução de cálculo estrutural SAP90,
 comercíalizado pela Multiplus informática;
- Programa, denominado SAPTENS, para cálculo das tensões através dos esforços obtidos pelo programa SAP90;
- Programa, denominado SISLIN, para resolução de sistemas lineares através do método de Gauss;

- 20 extensômetros ligados em forma de meia ponte com
 01 extensômetro ativo e outro para compensação de temperatura;
- 20 pontes amplificadoras HBM tipo KWS 3073;
- O1 célula de carga com capacidade para 3000Kgf;
- O1 perua kombi para instalação dos equipamentos pertencente ao Centro de Tecnologia da UNICAMP;
- Ol carroceria de caminhão para transporte de cana picada pertencente à Agrpecuária Monte Sereno S/A;
- O1 julieta para transporte da perua kombi,
 pertencente à Agropecuária Monte Sereno S/A;
- O2 geradores de energia elétrica movidos à diesel para fornecimento de energia ao sistema de medida.

Para possibilitar a obtenção dos esforços atuantes na lateral da carroceria, o trabalho foi dividido nas seguintes etapas:

- . seleção dos pontos para análise
- . obtenção da matriz de ligação
- . medição das deformações em situações estáticas reais
- . determinação dos esforços atuantes para condições de campo.

FIGURA 4.1 - Caminhão para transporte de cana picada com carrocería similar à utilizada no trabalho.

4.2.1 Seleção dos pontos para análise

A primeíra etapa do trabalho consistiu na definição dos pontos necessários para a determinação dos esforços provocados pelo carregamento de cana picada na lateral basculante da carroceria.

Após definição da carroceria a ser utilizada, foi realizado o modelamento completo no SAP90 de sua estrutura e de seu chassi, o qual une o piso da mesma com o chassi do caminhão.

Primeiramente, foi analisada a influência da carroceria sobre a lateral basculante através da aplicação de forças concentradas em alguns pontos da mesma.

Constatou-se, pela análise de tensões, que a tampa não reagiu à aplicação de forças nas paredes adjacentes e oposta da carroceria.

Além disso, foi constatada simetria na tampa pela aplicação de cargas em 2 pontos geometricamente opostos na mesma.

Por estes motivos, utilizou-se apenas a tampa para a determinação dos pontos a serem selecionados para colocação dos extensômetros.

Simulou-se um carregamento de 9.810N em 32 pontos selecionados na metade da lateral, conforme mostrado na figura 4.2.

FIGURA 4.2 - Esquema da lateral da carrocería com locais de aplicação dos carregamentos de 9810N.

A tabela 4.1 apresenta os valores de momentos obtidos nos 32 pontos. Estes valores correspondem aos momentos ocorridos no ponto de aplicação da carga. Os valores entre parenteses se referem aos 20 pontos escolhidos.

TABELA 4.1 - Valores de momentos (Nm) na direção do carregamento, obtidos pelo SAP90, devido aplicação de carga pontual de 9.810N.

linha	1	:	(1	1048)	(959)	ł	(895)	ļ	(869)
linha	2	;	(593)	(676)	ł	(702	.)	1	(709)
			1	242			1237			1231			1229	
linha	3	:	(1	.335)	(1328)	(1322)	(1321)
			1	432			1447			1452			1453	
linha	4	:	(1	.092)	(1202	}	(1245)	(1254)
				459			720			822			845	
linha	5	:	(4	1899)	(7456)	(8821)	(9461)

* As linhas especificadas se referem às posições de colocação dos extensômetros ao longo da altura.

4.2.2 Obtenção da matriz de ligação

Com o objetivo de se conhecer a distribuição de cargas ao longo da lateral da carroceria, a mesma foi discretizada em um número finito de áreas, sendo que a carga atuante em cada área foi obtida pontualmente através da matriz de ligação descrita a seguir.

A matriz de ligação da estrutura consiste em uma matriz que relaciona os esforços atuantes na lateral basculante da carroceria com as deformações provocadas pelos mesmos.

Para possibilitar a obtenção da matriz, foram feitas as seguintes considerações:

- o material da estrutura obedece a lei da Hooke, isto é,
 o material é perfeitamente elástico e apresenta uma relação linear entre esforço e deformação;
- os deslocamentos da estrutura são pequenos, ou seja,
 pode-se considerar sempre as dimensões iniciais da mesma
 para efeito de cálculo;
- . o efeito das forças axíais na flexão é desprezível.

Portanto, a estrutura foi adotada como linearmente elástica, sendo válido o princípio da superposição: " As deformações causadas por cada esforço individualmente podem ser somadas para obtenção das deformações provocadas pela aplicação de todos os esforços simultaneamente ".

Através dos valores de deformações obtidos pela aplicação de carga conhecida nos 20 pontos que continham os extensômetros, foi possível extrapolar o restante da matriz através de simulação no SAP90.

Para cada ponto considerado, tem-se:

 $D_{1} = L_{1,1} \times F_{1} + L_{1,2} \times F_{2} + \dots + L_{1,40} \times F_{40}$. $D_{40} = L_{40,1} \times F_{1} + L_{40,2} \times F_{2} + \dots + L_{40,40} \times F_{40}$

generalizando:

$$D_{i} = \sum_{j=1}^{40} L_{ij} \times F_{j}$$

C 7)

onde:

- D₁ deformação específica no ponto i
- F, força aplicada no ponto j 👘 👘
- L₁ coeficiente da matriz relacionando a deformação ocorrida no ponto i devido aplicação de força no ponto j

Na forma matricial, tem-se:

[D](40x1) - vetor das deformações nos nós
[F](40x1) - vetor das forças aplicadas nos nós
[L](40x40) - matriz de ligação da estrutura

Ao se aplicar uma única força i de cada vez, obtém-se:

 $D_{i} = L_{1,i} \times F_{i}$ $D_{AO} = L_{AO,i} \times F_{i}$

ou seja:

 $L_{1,1} = D_1 / F_1$

 $L_{AO,i} = D_{AO} / F_i$

Portanto, para cada carregamento aplicado foi possível a determinação de uma coluna da matriz de ligação.

A matríz de ligação é apresentada no anexo C.

Obtenção das deformações específicas

Os extensômetros foram colocados de maneira a registrar a deformação específica ocorrida ao longo do comprimento das vigas.

Experimentalmente, utilizou-se de um cilíndro hidráulico e uma célula de carga para aplicação de uma força conhecida, de dentro para fora da carroceria, em cada um dos 20 pontos selecionados.

FIGURA 4.3 - Vista da tampa da carroceria com locais onde foram colocados os extensômetros.

O carregamento aplicado em cada ponto foi medido por um voltimetro e transformado em força através de um coeficiente de transformação obtido pela curva de calibração do aparelho, conforme Figura 4.4.

O efeito da outra metade da lateral da carroceria sobre os pontos considerados foi obtido pela simulação no SAP90 das forças aplicadas. As tabelas contendo as deformações são fornecidas no Anexo A.

4.2.3 - Determinação dos esforços

(a) Obtenção das deformações específicas

Após o carregamento do caminhão, foi efetuado o nivelamento da cana visando a utilização da viga de topo da lateral da carroceria como ponto inicial para determinação dos esforços verticais.

Foram realizadas medições estáticas para as seguintes condições de carga:

- carregamento normal imediatamente após saída do talhão, em terreno relativamente plano;
- carregamento nivelado na saída do talhão;
- 3. carregamento nivelado após trajeto de 2Km em estrada de terra, em velocidade normal de trabalho. Medição realizada em terreno relativamente plano;
- carregamento nivelado após trajeto de 4Km. Terreno relativamente plano;
- carregamento nivelado após trajeto de 6Km. Terreno relativamente plano;

- carregamento nivelado após trajeto de 8Km. Terreno levemente inclinado para a frente e para o lado da tampa;
 - 7. carregamento nivelado após trajeto de 10Km. Terreno relativamente plano;
 - carregamento nivelado após trajeto de 12Km. Terreno relativamente plano;
 - 9. carregamento nivelado. Medição realizada dentro do talhão, com inclinação de 10°30'para o lado da tampa;
 - 10. carregamento nivelado. Medição realizada dentro do talhão, com inclinação de 12º06' do lado oposto ao da tampa.

Os valores de deformações específicas obtidos são fornecidos no anexo B.

A aparelhagem necessária para medição das deformações foi colocada dentro de uma perua kombi, a qual estava instalada em uma julieta acoplada à carroceria do teste. A figura 4.5 mostra a perua sobre a julieta, durante o carregamento da cana.

.

FIGURA 4.5 - Detalhe da conexão do caminhão com a julieta contendo a kombi.

(b) obtenção das forças

As forças foram obtidas com o auxílío do programa SISLIN e da matriz de ligação, através da relação matricial:

$$[D] = [L] \times [F]$$
(8)

onde:

- [D] vetor formado pelos valores de deformações específicas obtidos para cada situação de carga [L] - matriz de ligação
- [F] vetor das forças correspondentes

(c) Obtenção das pressões

As pressões foram obtidas pela divisão da lateral da carrocería em áreas correspondentes para cada extensômetro:

$$P = F / A \tag{9}$$

onde:

P - pressão (N/m²)

F - força no ponto (N)

A - área correspondente (m^2)

4.2.4 Caracterização do material

(a) Dados gerais da cana

- variedade: SP70-1284
- tombamento da cana: 100%
- nº de corte: 1º corte 18 meses
- talhão: 663/664
- tipo de solo: LR4 (D) latossolo roxo
- declividade do terreno: 5%
- colhedora: DM-6000 nº 255 (Dedini)

(b) Densidade do material

A densidade da cana foi obtida através da pesagem do carregamento de cana e determinação de seu volume diretamente na carroceria do caminhão. O carregamento de cana foi primeiramente nivelado para possibilitar a visualização de seu acomodamento durante o trajeto e para definição da viga superior da lateral como ponto de origem para determinação dos esforços, conforme mostrado na figura 4.6.

FIGURA 4.6 - Vista superior da carroceria mostrando o carregamento de cana nívelado, após término das medições em campo.

A retirada do excesso de cana não alterou a análise dos resultados, uma vez que o peso total do carregamento se manteve coerente com os pesos obtidos em outras viagens, onde o carregamento foi realizado normalmente, conforme mostrado na tabela 4.2.

2

ς,

TABELA 4.2 - Comparações entre valores de peso do carregamento de cana picada, obtidos durante todo o levantamento de dados.

peso carga (N)
168756
176596
171108
167090
166404

¹ a amostra 1 se refere ao carregamento nivelado

(c) comprimento dos toletes/pedaços

O carregamento de cana picada é composto por toletes (o corte do facão picador é visível em ambas as extremidades), por pedaços e impurezas (palha, terra, etc.). Para a determinação do comprimento da cana picada foram considerados os toletes e pedaços.

O comprimento da cana picada é um fator relevante devido à sua influência na distribuição da cana e, consequentemente, na densidade do material. Além disso, este dado influi no valor do ângulo de atrito.

O comprimento obtido depende essencialmente da colhedora utilizada sendo que a variedade da cana tem muito pouca influência em seu valor.

As amostras foram obtidas retirando-se as canas em 5 pontos diferentes de 6 caminhões carregados, totalizando 2290 toletes/pedaços. A medição foi realizada com o auxílio de uma trena.

(d) diâmetro dos toletes

O diâmetro dos toletes é uma característica da cana que sofre influência de diversos fatores tais como: variedade da cana, tipo de solo, variações climáticas, estágio de maturação e idade.

Devido ao formato elíptico da cana foram medidos 2 diâmetros com o auxílio de um paquímetro. Para esta determinação foram analisados 129 toletes retirados em 5 pontos diferentes de 6 caminhões carregados. O diâmetro foi obtido no ponto médio do internódio.

(e) coeficiente de atrito

<u>coeficiente de atrito interno</u>: Para obtenção do coeficiente de atrito interno, foi considerado que o mesmo é igual ao ângulo de talude do material. O ângulo de talude depende das características da cana e da massa de impurezas presentes (folhas, ponteiros e terra). Este dado foi obtido descarregando-se uma amostra de cana sobre uma área nivelada previamente escolhida. O ângulo foi medido com o auxílio de 2 réguas unidas por uma articulação, em 4 pontos opostos (A,B,C e D) da massa, conforme figura 4.7.

FIGURA 4.7 - Esquema dos pontos de medição dos ângulos de talude.

- coeficiente de atrito cana-chapa: O coeficiente de atrito material-parede depende das características da cana e da superfície considerada. Este dado foi obtido colocando-se uma lâmina de cana de 180mm em uma carreta cuja base era composta por uma chapa de aço 1020 de espessura 3/16", lisa e não pintada. Esta carreta possuía um sistema hidráulico o qual permitia o levantamento de sua parte frontal, basculando-a lentamente. Foram medidas as duas laterais do chassi em relação ao solo para obtenção do ángulo de atrito, no início do movimento do material.

Ų.

FIGURA 4.8 - Detalhe da medição do coeficiente de atrito cana-chapa.

4.2.5 Recuperação elástica da carroceria

Foi denominado vão lívre superior, a distância entre as 2 vigas superiores das laterais da carroceria.

> Antes do início dos testes e após o término do experimento, mediu-se as distâncias laterais entre todas as colunas da carroceria com o auxílio de uma trena, visando a verificação de ocorrência da recuperação elástica da carroceria.

RESULTADOS E DISCUSSÃO

5.1 CARACTERIZAÇÃO DO MATERIAL

A seguir são apresentados alguns parâmetros do material empregado. Apesar destes valores não terem sido utilizados diretamente no trabalho, eles são importantes por caracterizarem o material.

(a) Densidade do material

- volume da carroceria: 32.42 m³
- peso do material: 168928 N
- peso específico da carga: 5210.62 N/m^3 (531.15 Kgf/m^3)

A relação entre o comprimento médio dos toletes e a densidade obtida neste trabalho, está de acordo com a equação fornecida por / 2 / e apresentada graficamente a seguir:

FIGURA 5.1 - Relação entre densidade de carga e comprimento de toletes para a variedade CB41-76.

(b) Comprimento dos toletes/pedaços

Esta análise foi realizada com cana de mesma variedade que a utilizada no trabalho e colhida pela mesma máquina.

n° pedaço	2290	
média (mn	n)	157.7
desvio pa	adrão (mm)	52.3

O desvio padrão foi grande devido à irregularidade na operação de picagem e, também, por terem sido incluídos os pedaços, os quais apresentam comprimentos menores que os toletes.

(c) Diâmetro dos toletes

Estes valores foram obtidos através de uma amostra de cana de mesma variedade daquela utílizada no desenvolvimento do trabalho.

Conforme explicado na seção 4.2.4, devido ao formato elíptico da cana foram obtidos valores dos 2 diâmetros. - menor diámetro:

n° pec	laços	129	:
média	(mm)	25.1	
desvio	padrão (mm)	3.6	

- maior diâmetro

n° pedaços	129
média (mm)	26.7
desvio padrão (mm) 4.0

(d) Coeficiente de atrito

As determinações dos coeficientes de atrito interno e cana-chapa foram realizadas para cana da variedade SP70-3370.

Não foi possível a utilização da variedade SP70-1284 pois esta determinação foi realizada 2 semanas após o trabalho, data em que já havia terminado a colheita desta variedade, não havendo portanto disponibilidade da mesma. Devido à utilização de uma variedade diferente de cana, os valores apresentados a seguir servem apenas como orientação.

- coeficiente de atrito interno

A tabela 5.1 fornece os valores obtidos para o coeficiente de atrito interno da cana.

TABELA	5.1	 Coeficiente	de	atrito	interno	para	cana
		picada. Vari	edade	≘ SP70-3	370.		

amostra	ang.A (grau)	ang.B (grau)	ang.C (grau)	ang.D (grau)	mėdia (grau)	coef. atrito
11	45	53	50	49	49.3	1.16
2	36	35	36	40	53.3	0.75
3	36.5	35	39.5	36	53.3	0.75

desvio padrão do coeficiente de atrito: .24

* a amostra 1 contínha maior teor de palha que as demais.

A tabela 5.2 fornece os valores obtidos para o coeficiente de atrito cana-chapa para cana picada.

.

TABELA 5.2 - Coeficiente de atrito cana-chapa para cana picada. Variedade SP70-3370.

amostra	ang. A (grau)	ang. B (grau)	média (grau)	coef. atrito
1	29.9	29.8	29.8	.57
2	28.4	28.7	28.6	.54
3	27.7	26.8	27.3	.52

desvio padrão do coeficiente: .03

5.2 RECUPERAÇÃO ELASTICA DA CARROCERIA

FIGURA 5.2 - Vista superior da carroceria mostrando a numeração das colunas.

Os deslocamentos ocorridos entre as colunas, são fornecidos na tabela 5.3.

.

TABELA 5.3 - Vão livre entre as laterais superiores da carroceria.

coluna	antes teste	após teste	difere	nça V	
	(mm)	(mm)	(mm)	/*	
1:11	2610	2610	0	0	
2:12	2611	2615	4	.2	
3:13	2615	2615	0	0	
4:14	2610	2610	0	0	
5:15	2612	2615	3	- 1	
6:16	2610	2612	2	. 1	
7:17	2610	2610	0	0	
8:18	2605	2610	5	.2	

Pela análise destes valores é possível constatar que a carroceria não apresentou deformações permanentes, as quais poderiam interferir nos resultados obtidos em campo.

5.3 MATRIZ DE LIGAÇÃO

As forças e deformações específicas necessárias ao cálculo da matriz de ligação foram obtidas de acordo com o procedimento apresentado na seção 4.2.2.

Foram desprezados valores de deformação abaixo de 10% do maior valor registrado por estarem fora da faixa de precisão de leitura.

A estrutura utilizada forneceu valores baixos de deformações específicas (400 microstrain) ao se aplícarem cargas em torno de 10.000N, apesar da ocorrência de deslocamentos grandes no centro da tampa.

As duas vigas longitudinais apresentaram valores significativos de deformação específica (acima de 10% do maior valor registrado) para cargas aplicadas em qualquer ponto da lateral, enquanto que os extensômetros colocados nas outras posições registraram deformações significativas apenas quando a carga foi aplicada em pontos próximos aos mesmos.

Este fato pode ser explicado uma vez que as chapas dobradas, soldadas por pontos nas vigas, apenas servem como fechamento e transmitem suas cargas para as vigas e estas, para as cabeceiras da carroceria.

As medições de campo foram efetuadas para condições correspondentes ao sistema de transporte de cana picada.

Foram analisadas as seguintes condições de carga:

Condição (1): Os valores foram obtidos na saída do talhão. Imediatamente após o carregamento, ainda com a carga total, estacionou-se o caminhão numa estrada de terra plana e efetuou-se as medições estáticas das deformações.

Condição (2): Após a medição com a carga total, efetuouse o nivelamento da mesma e obteve-se novos valores de deformação. O nivelamento ocorreu para possibilitar a visualização do acomodamento dos toletes e para adoção de forças nulas na viga superior da carroceria. A medição ocorreu no mesmo local da condição (1). Condições (3) a (8): As medições foram realizadas após o caminhão percorrer uma distância de 2Km entre cada parada, totalizando 12Km em velocidade de operação. O trecho escolhido consistiu em uma estrada de terra com irregularidades típicas encontradas no transporte de cana à usina. Os pontos de parada ocorreram em locais planos, exceto na condição (6) onde o terreno apresentou uma leve inclinação para a frente e para o lado da tampa.

Condição (9): A medição foi realizada dentro de um talhão, com o caminhão apresentando uma inclinação de 10°30' para o lado da tampa.

Condição (10): Para esta condição, o caminhão também foi colocado dentro do talhão e mediu-se uma inclinação de 11º06' para o lado oposto ao da tampa.

Embora o objetivo principal do trabalho seja a determinação da distribuição de cargas na parede lateral da carroceria, são apresentadas as deformações específicas registradas como referência para a discussão geral do comportamento da tampa.

A figura 5.3 apresenta uma vista espacial das deformações específicas para a condição de carga (5). Pelas tabelas contendo os valores numéricos das deformações específicas para todas as condições de carga, fornecidas no anexo B, é possível constatar que o mesmo comportamento ocorre para as condições de carga (1) a (8).

A figura 5.4 mostra uma vista espacial da distribuição das forças para a condição de carga (10), observa-se uma mesma tendência para todas as condições de carga, conforme mostrado nas tabelas contendo os valores para as forças, fornecidas no anexo B.

Deve-se lembrar que os valores de cargas concentradas obtidos através da matriz de ligação são apenas uma aproximação, resultante do esquema da medição adotado, da distribuição do carregamento real.

¢

FIGURA 5.3 - Vista espacial das deformações específicas para a condição de carga (5).

FIGURA 5.4 - Vista espacial da dístribuição das forças para a condição de carga (10).

Analisando as figuras 5.3 e 5.4, observa-se que ocorre uma diferença de configuração na distribuição das deformações específicas e das forças responsáveis por estas deformações.

As vigas longitudinais, para as condições de carga (1) a (8), apresentam valores de deformações específicas crescentes em direção ao centro da mesma, conforme mostrado nas figuras 5.3 e 5.5, enquanto que para as forças tem-se a ocorrência de picos.

As deformações específicas para as condições de carga (9) e (10) apresentam um comportamento conforme mostrado na figura 5.6. Nota-se uma redução nas deformações específicas no centro da viga inferior, a qual pode ter sido ocasionada pelo atrito aço-aço que restringiu a deformação da mesma.

Para todas as condições de carga, observou-se que as deformações específicas foram maiores na viga longitudinal inferior, em relação à superior. Isto ocorre porque a viga superior está unida às vigas verticais servindo de amarração com a viga de topo em sua parte superior, além da existência da chapa dobrada. A viga inferior está unida apenas à chapa dobrada, a qual não tem função estrutural significativa. Portanto, a viga superior tem uma rigidez maior que a viga inferior.

FIGURA 5.5 - Deformações específicas nas 5 linhas de extensômetros para a condição de carga (5).

FIGURA 5.6 - Deformações específicas nas 5 linhas de extensômetros para a condição de carga (9).

Nas linhas 1, 3 e 4 dos extensómetros, foram medidas as deformações específicas ocorridas ao longo das colunas (no sentido vertical), enquanto que para as linhas 2 e 5 mediu-se as deformações específicas ao longo das vigas (sentido horizontal). Por este motivo, tem-se a diferença de comportamento observada nas figuras 5.5 e 5.6.

Para as medições realizadas em terreno plano, condições de carga (1) a (8), não foram detectados valores significativos de deformações específicas para os extensômetros situados no centro da 3º linha (colunas 3 a 6).

A integração das deformações especificas atuantes ao longo da tampa lateral da carroceria resultam em deslocamento de alguns centimetros na parte central que demandam providências especiais de projeto para evitar perdas de cana pelo afastamento da tampa do piso da carroceria.

As leituras dos extensômetros realizadas em campo e convertidas a valores de força através da matriz de ligação, estão representadas nas figuras 5.7 a 5.26 na forma de distribuição longitudinal e vertical para todas as condições de carga.

Os correspondentes valores numéricos encontramse no anexo B.

A estrutura da tampa apresenta valores de rigidez diferentes nos diversos pontos da mesma. Os coeficientes de rigidez dos pontos localizados sobre as linhas (2) e (5) são significativamente maiores aos coeficientes dos pontos restantes localizados sobre a chapa de fechamento.

Ao aplicar-se uma mesma força em 2 pontos diferentes da estrutura, o ponto que apresenta maior rígidez sofre menor deformação, uma vez que a rigidez é inversamente proporcional à deformação: onde:

Ņ

F - força aplicada

k - coeficiente de rigidez

u – deformação

Portanto, sendo a rigidez da chapa menor que a rígidez da viga, para uma mesma força aplicada a chapa sofrerá uma deformação maior.

Como a carga de cana apresenta uma forte coesão interna gerada pelo entrelaçamento dos toletes, essa massa provoca o mesmo deslocamento em todos os pontos de sua superfície, gerando portanto, reações de intensidade superior nos pontos da estrutura que apresentam maior rigidez. Em outras palavras, a carga apoia-se fundamentalmente nos pontos menos flexíveis.

FIGURA 5.7 - Forças ao longo do comprimento da carrocería para a condição de carga (1).

FIGURA 5.8 - Forças ao longo da altura da carroceria para a condição de carga (1).

FIGURA 5.9 - Forças ao longo do comprimento da carroceria para a condição de carga (2).

FIGURA 5.10 - Forças ao longo da altura da carroceria para a condição de carga (2).

FIGURA 5.11 - Forças ao longo do comprimento da carroceria para a condição de carga (3).

FIGURA 5.12 - Forças ao longo da altura da carroceria para a condição de carga (3).

FIGURA 5.13 - Forças ao longo do comprimento da carroceria para a condição de carga (4).

FIGURA 5.14 - Forças ao longo da altura da carrocería para a condição de carga (4).

FIGURA 5.15 - Forças ao longo do comprimento da carroceria para a condição de carga (5).

FIGURA 5.16 - Forças ao longo da altura da carroceria para a condição de carga (5).

FIGURA 5.17 - Forças ao longo do comprimento da carroceria para a condição de carga (6).

FIGURA 5.18 - Forças ao longo da altura da carroceria para a condição de carga (6).

FIGURA 5.19 - Forças ao longo do comprimento da carroceria para a condição de carga (7).

FIGURA 5.20 - Forças ao longo da altura da carroceria para a condição de carga (7).

FIGURA 5.21 - Forças ao longo do comprimento da carroceria para a condição de carga (8).

FIGURA 5.22 - Forças ao longo da altura da carrocería para a condição de carga (8).

;

FIGURA 5.23 - Forças ao longo do comprimento da carroceria para a condição de carga (9).

FIGURA 5.24 - Forças ao longo da altura da carrocería para a condição de carga (9).

FIGURA 5.25 - Forças ao longo do comprimento da carroceria para a condição de carga (10).

FIGURA 5.26 - Forças ao longo da altura da carroceria para a condição de carga (10).

Analisando os gráficos de forças, figuras 5.7 a 5.26, constatamos que os maiores valores ocorreram na viga longitudinal superior (linha 2). Isto ocorre porque a viga superior, apresentando rigidez maior, absorve a maior parcela dos esforços atuantes nas proximidades, provocando uma sobrecarga na mesma e uma consequente redução nos esforços suportados pelas vigas verticais e pela chapa, na altura da 3* linha de extensômetros.

Devido ao atrito material-piso, a viga longitudinal inferior apresenta valores de forças menores que a linha (4) de extensômetros e, também, menores que a linha (2), também denominada viga superior.

Para todas as condições de carga, obtiveram-se valores de forças nas colunas (2) e (7) maiores que nas colunas (1) e (8), devido à influência do atrito do material com as paredes frontal e traseira.

As forças obtidas na chapa foram maiores para a linha (4) que para a linha (3), devido ao fato da viga superior absorver uma parcela de carga destinada à linha (3), e também, porque os pontos situados na linha (4) apresentam uma rigidez ligeiramente superior aos da linha (3).

Foram observados valores de forças próxímos a zero no centro da tampa (colunas 4 e 5). Isto ocorre porque a carga ao descarregar nas colunas (2) e (7), provoca uma deformação na estrutura, a qual não é acompanhada pela massa de toletes, reduzindo as forças aplicadas no centro da carroceria.

Analisando as figura 5.7 e 5.8, para a condição de carregamento normal e as figuras 5.9 e 5.10, para carregamento nivelado, constata-se que não houve variação significativa entre as forças obtídas.

Além disso, também não foi observado aumento de forças ou deformações entre as medições realizadas durante todo o trajeto, figuras 5.11 a 5.26. Isso porque durante o carregamento já ocorre o entrelaçamento dos toletes, que determina a rigidez da carga.

Essa rigidez é bem observada durante o descarregamento lateral da carga, onde a massa se desloca em bloco, provocando um grande impacto ao atingir a tampa semi-aberta.

Devido à rigidez da carga não é possível se realizar uma configuração das pressões atuantes na lateral da carroceria, uma vez que essa distribuição de pressões dependerá essencialmente da rigidez da estrutura.

Contudo, a integração de todas as pressões sobre toda a lateral da carroceria resulta num valor de carga total, o qual independe da estrutura.

A tabela 5.4 fornece valores totais de forcas e pressões médias obtidos nos levantamentos efetuados para cada condição de carga:

condição de carga	Força lateral total (N)	Pressão média total (N/m ⁼)
1	23424	1727
2	22050	1626
3	24712	1822
4	22736	1676
5	22090	1629
6	23498	1732
7	23028	1678
8	22580	1665
9	22228	1639
10	22994	1695
média	22934	1691
desvio padrão	: 809	60

TABELA 5.4 - Valores das forças totais e pressões médias atuando na lateral da carroceria.

\$

O dimensionamento da lateral de uma carroceria contendo uma rigidez homogênea permitirá a distribuição uniforme do carregamento, possibilitando uma otimização em sua estrutura com consequente redução de peso.

5.4.3 Pressões

₹.

Conforme visto anteriormente, o entrelaçamento da carga provocará a distribuição de forças nos pontos de maior rígidez da estrutura. Portanto, o estudo sobre a distribuição de pressão na lateral da carroceria so é válido para a estrutura em questão.

Para efeito de comparação entre as pressões obtidas para cana picada com as teorias existentes para fluidos (equação 1) e grãos (equação 2), serão consideradas as pressões ocorridas na coluna (2) para a condição de carga (1).

- valores utilizados:
- . peso específico da carga: 5210.62 N/mª
- . área: 17.21 m²
- . perímetro: 19.60 m
 - . raio hidráulico: 0.88 m
 - . coeficiente de atrito externo: 1.342
 - . coeficiente de Rankine: 0.11

A tabela 5.5 apresenta os valores comparativos entre as pressões obtidas nos 3 casos:

altura		pressão (N/m²)		
(m)	hidrostática	Janssen	experimental	
0	0	0	0	
.339	1766	186	0	
.686	3571	373	8602	
1.039	5415	549	1230	
1.386	7220	706	5614	
1.789	9320	883	4099	

TABELA 5.5 - Valores comparativos para pressões na lateral da carroceria.

A figura 5.27 mostra graficamente o comportamento das pressões obtidas para cana picada pela stilização da teoria de hidrostática, teoria de Janssen e salores obtidos experimentalmente.

FIRIRA 5.27 - Valores comparatívos para pressões na lateral da carrocería.

Os valores das pressões laterais obtidos em campo são menores que os fornecidos pela equação para fluidos e maiores que para a equação para grãos.

Portanto, conclui-se para a cana picada não é válida a utilização das equações existentes para fluidos e grãos, uma vez que a cana apresenta um comportamento regido pela coesão interna da carga.

CONCLUSOES

A forte coesão interna existente na carga de cana picada, provoca um deslocamento aproximadamente uniforme em todos os pontos de sua superfície, com consequente apoio da carga nos pontos da estrutura que apresentam maior rigidez, ou seja, a distribuição dos esforços depende essencialmente da estrutura utilizada.

Para a estrutura em questão, os valores de pressões obtidos em campo se situaram entre os teóricos fornecidos pela equação hidrostática e pela equação de Janssen, sendo constatado que essas duas equações não são válidas para a cana picada.

Devido ao atrito entre o material e as paredes, foi constatado que a força máxima ocorre a uma distância aproximada de 1/4 do comprimento total da carroceria.

A carga de cana, ao se apoiar nas proximidades da cabeceira das vigas, provoca um deslocamento máximo no centro da carroceria que não é acompanhado pela massa de toletes. Este deslocamento, que pode ser de alguns centímetros, é ocasionado pela integração das deformações específicas atuantes ao longo da tampa lateral da
carroceria, podendo provocar perdas de toletes que se soltem da carga.

A integração de todos os esforços atuantes na lateral da carroceria forneceu valores médios de 22.934 N para as forças e de 1.961 N/m² para as pressões, com coeficiente de variação de 3.5%, os quais podem ser utilizados como referência para o dimensionamento de carrocerias para cana picada, uma vez que esses valores independem da estrutura.

O dimensionamento estrutural das laterais, promovendo uma rigidez uniforme ao longo da mesma, permitirá a distribuição homogênea do carregamento, com consequente redução de peso na estrutura.

Para a estrutura em questão, a substituição da chapa por tela ou chapa perfurada reduzirá o peso da estrutura sem afetar o seu comportamento estrutural, uma vez que a chapa atua basicamente como fechamento. ANEXO A

Encontram-se, a seguir, as tabelas necessárias para maior compreensão ao texto deste trabalho:

Os valores contidos nas tabelas 2 a 21 referemse a valores maiores que 10% do maior valor de deformação obtido para cada força.

Foi considerada a simetria da estrutura para determinação dos valores de deformação quando da aplicação de cargas a partír da metade da carrocería.

As colunas 1,2,3 e 4 se referem aos valores obtidos no Centro de Tecnología - UNICAMP e as colunas 5,6,7 e 8 aos valores obtidos pelo SAP90.

TABELA 1 - Posícionamento dos nós na carroceria.

====	=======			=======		== <u></u> =====	
1	2	3	4	5	6	7	8
41	42	43	44	45	46	47	48
31	32	33	34	35	36	37	38
21	22	23	24	25	26	27	28
11	12	13	14	15	16	17	18
1	2	3	4	5	6	7	8

FIGURA 1 - Esquema da tampa com suas respectivas vigas e colunas. A numeração se refere aos nós utilizados no modelamento para o SAP90.

60

TABELA	2 - Val apl F ₄₁	tensômetros de∨ído da no nó 41.					
 . 1	2	3	4	5	6	7	8
207	-	_	_	_	_ ,		
199	167	123	87	70	51	32	21
-	_	-	_	-10000	-		
-		_		_		-	
50	78	85	82	64	41	- 	-

TABELA 3 - Valores de deformação nos extensômetros devido
aplicação da carga concentrada no nó 31.
F_31 = 12.900N

	============		========		=======		====
1	2	3	4	5	6	7	8
70							
30		~~	-				
277	199	147	108	84	60	35	
63	55	35					-
	_			~	_		
82	124	129	119	90	58		
							t <u>20 m an</u> ar

TABELA	4 - Va ar F	alores de olicação d 21 = 9.996	deformaç a carga N	ão nos e concentr	extensômet ada no nó	ros devi 21.	do
 . 1	2		4			7	8
			-	19 56.	-		
154	112	83	61	50		-	
417	-	-	-		-		_
223			-				-
131	117	78	56	42		****	
				oz == os == os es == ==			

TABELA 5 - Valores de deformação nos extensômetros devido
aplicação da carga concentrada no nó 11.
F11 = 9.790N

====				=======================================		= = = = = = = = = =	
1	2	3	4	5	6	7	8
				.			
	-					-64791	
89	82	69	59	57	40		
169	-			-	-		
386		-					
188	146	85	54	50	44		
====			:===========				

TABELA	6 -	Valores de d aplicação da F ₁ = 8.437N	eform carg	ação nos e a concentra	ktensôr ada no	netros dev nó 1.	′ido
 1		3					8
	_	_		-		-	_
41	64	68	69	50	30	-	
-		-	-			-	
-	-	-	-			-	****
219	168	110	84	56	38	<u></u>	

.

TABELA 7 - Valores de deformação nos extensômetros devido
aplicação da carga concentrada no nó 42.
 $F_{4=}$ = 9.928N

====		=======	=======	===========			
1	2	3	4	5	6	7	8
	205						
149	316	263	186	114	63		
	-	-	-		_		_
-	-	-		-	-	-	
82	127	144	143	116	79	39	
====			=========		*=======		== == == ==

TABE	LA 8 -	Valores aplicaçã F ₃₂ = 9.	de defor o da car 928N	mação no ga concei	s extens ntrada n	ômetros o nó 32.	devido
 1	2		4				8
				·			
130	322	254	180	113	54	-	-
45	66	46	<u></u>	_		-	-
-	_	-		-	-		_
99	158	174	170	139	94	48	

TABELA 9 - Valores de deformação nos extensômetros devido
aplicação da carga concentrada no nó 22. F_{22} = 8.270N

====					======		====
1	2	3	4	5	6	7	8
		_					
101	213	181	133	97	58	West	
-	310	-		_		-	-
-	195		-	-	-	-	-
111	214	182	150	117	79	44	-
=====							====

TABELA	4 10 - (;	/alores d aplicação 7 ₁₂ = 8.2	e deforr da caro 70N	nação nos ja concent	extensô trada no	metros dev nó 12.	ido
 1.	2						8
	-	vor				-	
88	164	166	151	108	66		
	124		-				
	320		-	-			±
144	298	221	180	112	75	39	_

TABELA 11 - Valores de deformação nos extensômetros devido aplicação da carga concentrada no nó 2. F_{2} = 8.270N

====							
1	2	3	4	5	6	7	8
				-	-		-
59	111	129	134	111	70		
~~~	-			-	-	-	. –
<b></b>			-		<u></u>	-	
143	368	250	184	141	107	75	41
====		= = = = = = = = = = = = = = = = = = =	: == == == == == ==	=======	=========		_ = = = =

TABEL	A 12 -	Valores d aplicação F ₄₃ = 8.2	e deform da carg 70N	ação nos la concen	extensô trada no	metros de nó 43.	evido
1	2	3	4	5	6	7	8
-		177	-				
69	212	351	275	173	98		
	-					-	
	-					-	
81	135	161	172	149	117	65	
			_ = = = = = = =				

TABELA 13 - Valores de deformação nos extensômetros devido<br/>aplicação da carga concentrada no nó 33.<br/> $F_{33}$  = 8.270N

====				a ana ang ang ang ang ang ang ang ang			
1	2	3	4	5	6	7	8
_	_			_		_	
73	197	364	256	185	126	72	-
				-	-	-	_
	-		-			-	-
75	151	180	191	176	125	68	
====			========	========		=========	

	TABEL	A 14 - V a F	alores o plicação 23 = 8.2	de deform da carg 270N	ação nos a concer	extensô trada no	metros de nó 23.	evido
· .	1	2	3	4	5	6	7	8
		-		_			 -	
	72	167	277	221	164	101	40	-
			345			<i></i>		
	-	-	197		-			<u> </u>
	90	184	266	222	180	124	67	
	=====		=======	========		=======		====

TABELA 15 - Valores de deformação nos extensômetros devido<br/>aplicação da carga concentrada no nó 13.<br/>F13 = 8.270N

====:							====
1	2	3	4	5	6	7	8
	_				_	-	
67	145	213	197	170	112	48	
	_	107	_	-	_		
	-	337			-		-
91	210	335	257	179	118	63	

	f	- = 8.27	70N	-			
				-*******	=============	= = = = = = = = = = :	2 == == == ==
 1	2	3	4	5	6	7	
	و منفذ للبي الله الله الله عليه الله عليه						
	-			_			
56	125	169	187	172	116	53	-
	-			_	-		
	-			·	-	-	-
92	257	431	310	182	117	61	÷

TABELA 16 - Valores de deformação nos extensômetros devido

aplicação da carga concentrada no nó 3.

TABELA 17 - Valores de deformação nos extensômetros devido<br/>aplicação da carga concentrada no nó 44. $F_{44} = 8.270N$ 

===											
1	2	3	4	5	6	7	8				
_	_	_	151			varee					
41	126	239	342	250	162	63					
-		_		-			<del></del>				
	_	-		-							
60	109	136	155	149	117	70	_				
====	=======================================						====				

	TABELA	18 -	Valores de aplicação F ₃₄ = 8.27	deformaç da carga ON	ção nos e concente	extensôme [:] rada no no	tros devid 5 34.	10
• •	1	2	3	4	5	с	7	8
	, 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000					977 pair Juli 2007 777, pair 2007 7777 pair 2	4965 - 4965 - 9865 - 9867 - 3866 - 3866 - 3866 - 4966 - 4966 - 4	
	37	115	219	359	259	152	62	
	-		39	42	38		-	-
				-	_			_
	56	114	139	142	133	116	69	

¥

TABELA 19 - Valores de deformação nos extensômetros devido<br/>aplicação da carga concentrada no nó 24.<br/> $F_{24} = 8.270N$ 

		=========		========	========	========	= = = = =
1	2	3	4	5	6	7	8
	_	_	-	-		-	
-	105	194	288	224	140	67	-
-	-	-	347	47	_		-
-		-	179	-	-		-
57	129	183	256	242	174	100	-

TABELA	1 20 - V a F	/alores d aplicação 1 ₄ = 8.2	le deforma da carga 270N	ação nos a concer	s extensôm ntrada no	etros de nó 14.	vido
=====		<b>:</b> >	. = = = = = = = = = :				
 1	2	3	4		······6·····	· · · . <b>7</b> · · · · · · ·	· 8. · · · · ·
<b></b>	-		÷—	-	-		-
<u></u>	102	167	228	194	135	67	_
	-	4 <b>611</b> 7-	117	_	-	-	_
-			308			-	*****
50	137	219	337	265	173	94	
======							

TABELA 21 - Valores de deformação nos extensômetros devido<br/>aplicação da carga concentrada no nó 4. $F_4$  = 8.270N

====											
1	2	3	4	5	6	7	8				
-		-		-		_	-				
-	114	171	208	201	161	84					
		_		-			-				
	-	-		-							
54	171	295	457	283	177	93					
						==========					

## ANEXO B

Encontram-se, a seguir, as tabelas das deformações, forças e pressões normaís ocorridas experimentalmente para situações estáticas.

TABELA 22 - Valores das deformações obtidas no campo para condição de carga ( 1 ). Condição do carregamento: carga acíma das bordas. Local: Okm (saída do talhão). Condição do terreno: nivelado.

===		=======			======		
1	2	3	4	5	6	7	8
	_						_
108	208	259	272	272	259	208	108
80	55		•	-	_	55	80
77	77	55		-	55	77	77
155	269	288	308	308	288	269	155
====							*======

TABELA	23 -	Valores correspond tabela 22.	das entes	força às defo	s n rmações	ormais mostrada	(N) 5 na
 1	2	3	4	5		7	8
_			_				
441	2538	294		-	294	2538	441
1156	363	69	_	-	69	363	1156
1294	1774	1303			1303	1774	1294
941	696	480	363	363	480	696	941
<u></u>		_======================================					

TABELA	24 -	Valores correspo tabela 2	das p ndentes 2.	ressões às def	horizo ormações	ntais ( mostrad	N/m ⁼ ) das na
1	2	3	4	5	6	7	8
	-		_		_		
1495	8602	997	_	-	997	8602	1495
3919	1231	234			234	1231	3919
4095	5614	4123	-		4123	5614	4095
5535	4094	2824	2135	2135	2824	4094	5535
				_ = = = = = = =		=======	======

TABELA 25 - Valores de deformações obtidas no campo para condição de carga ( 2 ). Condição do carregamento: nivelado. Local: Okm (saída do talhão). Condição do terreno: nivelado.

		it te: te: ei an an an ai an a					
1	2	3	4	5	6	7	8
-	-	-					
109	210	266	284	284	266	210	109
71	49		-		-	49	71
70	74	54		_	54	74	70
145	267	291	310	310	291	267	145
<u> </u>	=======						=====

TABELA	26 -	Valores corresponde tabela 25.	das entes	fo às d	rças n eformações	ormais mostrad	(N) as na
1	2	3	4	5	6	7	8
_			_	_			
549	2607	431			431	2607	549
804				-			804
1313	1901	1401		<del></del>	1401	1901	1313
529	755	441	294	29	4 441	775	529

TABELA	27 -	Valores correspor tabela 23	das p ndentes 5.	as defo	horizo ormações	ntais (   mostrada	N/m² ) as na
 1	2			5			
-		_					
1861	8837	1461	-		1461	8837	1861
2725	-	-	-			_	2725
4155	6016	4434		-	4434	6016	4155
3112	4441	2594	1729	1729	2594	4441	3112
		========					=====

TABELA 28 - Valores de deformações obtidas no campo para condição de carga ( 3 ). Condição do carregamento: nivelado. Local: 2km. Condição do terreno: nivelado.

====	***************************************										
1	2	3	4	5	6	7	8				
	-	-	-	_	_	<del></del>	-				
111	214	274	294	294	274	214	111				
70	50	-	-		-	50	70				
70	74	58	-	-	58	74	70				
149	276	307	350	350	307	276	149				
====			======				======				

TABELA	29 -	Valores correspond tabela 28	das dentes =======	forca às defo	as n ormações	ormais mostrad	( N ) as na
 1	2	3	4	5	6	7	8
			20 100 100 100 200 200 100 100 100 ?			994 994 - 494 - 494 - 994 - 994 - 994 - 994 - 994 - 994 - 994 - 994 - 994 - 994 - 994 - 994 - 994 - 994	
892	2354	274	39	39	274	2354	891
774	88	39			39	88	774
1333	1852	1450	-		1450	1852	1333
676	813	823	1049	1049	823	813	676
	= = = = =				= =		

TABELA 30 - Valores das pressões horizontais ( N/m² ) correspondentes às deformações mostradas na tabela 28.

	: = = = = = = = =	=============					
1	2	3	4	5	6	7	8
<u></u>							
مىرىد.					-		
3024	7980	929	132	132	929	7980	3024
2624	298	132			132	298	2624
4218	5861	4589	-	-	4589	5861	4218
3976	4782	4841	6171	6171	4841	4782	3976
====		========			=======		

TABELA 31 - Valores de deformações obtidas no campo para condição de carga ( 4 ). Condição do carregamento: nivelado. Local: 4km. Condição do terreno: nivelado.

				z m m m m m m m m				
:.	1	2	3	4	5	6	7	8
						-		
	110	216	272	289	289	272	216	110
	69	53	—				53	69
	68	71	53			53	71	68
	137	268	297	330	330	297	268	137
	=====		========		. <b></b>			: =: == == == ==

TABELA	32 -	Valores correspond tabela 31.	das entes	força às defo	s rmações	normais mostrada	(N) 15 na
					=======		
1	2	3	4	5	6	7	8
		na aan ann ann ann ann mur ann ann tank tuur t					
_		_	_		_		_
		-		—			
657	2656	343	98	98	343	2656	657
745	176	-				176	745
1303	1725	1303		_	1303	1725	1303
137	892	637	696	696	637	892	137
======							

	TABELA	33 -	Valores correspon tabela 31	das p dentes •	ressões às defo	horizo rmações	ntais ( mostrad	N/m²) as na
۴	=======	======	=========	:	==========	========		====
	1	2	3	4	5	6	7	· · · · · · · · · · · · · · · · · · ·
		····						
ł	-	_	_	_	-			-
	2227	9003	1163	332	332	1163	9003	2227
	2525	597					597	2525
	4123	5459	4123			4123	5459	4123
	806	5247	3747	4094	4094	3747	5247	806
	======				=======	========		=====

TABELA 34 - Valores de deformações obtidas no campo para condição de carga ( 5 ). Condição do carregamento: nivelado. Local: 6km. Condição do terreno: nivelado.

====							
1	2	3	4	5	6	7	8
_							
114	221	276	289	289	276	221	114
70	55	_		-		55	70
71	73	53	_	-	53	73	71
143	273	304	328	328	304	273	143
====	=======	=========	=========	=======	=======================================	=======	====

TABELA	35 - V c t	alores correspond abela 34	das dentes d	torça às defe	as no ormações	mostrada	( N as n
1	2	3	4	5	6	7	
559	2773	412		_	412	2773	55
735	206	29	-		29	206	73
1382	1764	1284	<u>~</u>		1284	1764	138
274	804	372	451	451	372	804	27

TABELA 36 - Valores das pressões horizontais ( N/m² ) correspondentes às deformações mostradas na tabela 34.

1	2	3	4	5	6	7	8
alalis talah dalah dalam pagar	ayan <b>an</b> an terri 1996 Mili Mili And Ayan	886 048 1980 977 7777 - 2007 9767 9767 9	1997 - 1992 - 1993 - 1999 - 1999 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995		na 1969 ang		
1895	9400	1397	-	-	1397	9400	1895
2492	698	98		-	98	698	2492
4373	5582	4063		-	4063	5582	4373
1612	4729	2188	2653	2653	2188	4729	1612
		= = = = = = = =					

TABELA 37 - Valores de deformações obtidas no campo para condição de carga ( 6 ). Condição do carregamento: nivelado. Local: 8km. Condição do terreno: levemente inclinado para a frente e para o lado da tampa.

====			========			========	-====
1	2	3	4	5	6	7	8
_		-	_		_		
120	231	284	291	291	284	231	120
73	56	-	_	-	-	56	73
77	76	51		-	51	76	77
153	298	316	329	329	316	298	153
====			***				:====

TABELA	38 -	Valores corresponder tabela 37.	das ntes	às	forç def	as ormaçõe	normais s mostra	(N) adas na
======	=====		= = = = = :	====	====	: = = = = = = =	=========	=======
1	2	3	4		5	6	7	8
						_		-
529	3303	529				529	3303	529
676	78	arran	-			-	78	676
1568	1911	1313	-		-	1313	1911	1568
_	1362	353	127		127	353	1362	

T#	BELA	39 - V c t	Valores d correspond cabela 37.	jas pri Jentes	essões às defor	horizon mações	ntaís ( mostra	N/m²) das na
	•	2	3	4	5	6	7	8
		_		_		-	_	_
17	93 1	1197	1793			1793	11197	1793
22	292	264	-		-	am-	264	2292
45	62	6047	4155		-	4155	6047	4962
<del></del>		8012	2076	747	747	2076	8012	-

TABELA 40 - Valores de deformações obtidas no campo para condição de carga ( 7 ). Condição do carregamento: nivelado. Local: 10km. Condição do terreno: nivelado.

== == == == ==							
1	2	3	4	5	6	7	8
							- <del></del>
<u></u>	-					-	
109	226	285	292	292	286	226	109
63	55	_	_	_	-	55	63
67	76	53		-	53	76	67
133	294	322	327	327	322	294	133

TABELA	41 -	Valores corresponder tabela 40.	das ntes às	forças defor	nc mações	ormais ( mostradas	N) na
 	2	3	4	5	6	7 ·	8
	-	-		_		· · · · · · · · · · · · · · · · · · ·	
176	3185	696		-	696	3185	176
578	127	-			_	127	578
1372	1882	1303		_	1303	1882	1372
735	1411	49			49	1411	735

TABELA 42 - Valores das pressões horizontais ( N/m² ) correspondentes às deformações mostradas na tabela 40.

	=======	========	===========				* = = = = = = = =				
1	2	3	4	5	6	7	8				
				*** ***** ****							
-		-									
597	10797	2359	****		2359	10797	597				
1959	431	-	-tar-	_		431	1959				
4342	6380	4123		-	4123	6380	4342				
4324	8300	288		-	288	8300	4324				

TABELA 43 - Valores de deformações obtidas no campo para condição de carga ( 8 ). Condição do carregamento: nivelado. Local: 12km. Condição do terreno: nivelado.

8	7	6	5	4	3	2	1
	- <u></u>						
101	214	273	287	287	273	214	101
57	48		<u></u>	_		48	57
66	75	57			57	75	66
131	292	321	330	330	321	292	131

TABEL	.A 44 -	Valores correspo tabela 4	das ondentes 13.	for às de	ças formaçõe	normais s mostra	(N) adas na
1	2	3	4	5		7	8
	_						_
	3038	412	127	127	412	3038	-
451	49		-			49	451
1421	1960	1490	20	20	1490	1960	1421
676	1470		176	176		1470	676
						========	========

TABEL	A 45 -	Valores correspo tabela 4	das ndentes 3.	pressões às def	horizc ormações	ntais ( mostrad	N∕m [⊋] )  as na
=====		=======	_ = = = = = = = = = = =				*****
1	2	3	4	5	6	7	. 8
_	-	-	-	<b>a</b>	-	-	
	10298	1397	431	431	1397	10298	valves
1529	166	-	-		_	166	1529
4497	6203	4715	63	63	4715	6203	4497
3976	8647	-	1035	1035		8647	3976
=====				======	= = = = = = = = = =		

¥

TABELA 46 - Valores de deformações obtidas no campo para condição de carga ( 9 ). Condição do carregamento: nivelado. Local: talhão. Condição do terreno: inclinação de 10°30' do 1ado da tampa.

					=======		
1	2	3	4	5	6	7	8
		_					
112	229	285	295	295	285	229	112
60	54	36	-	-	36	54	60
59	66	48	-		48	66	59
120	270	289	265	265	289	270	120
===		=========				=======	

TABELA	47 -	Valores correspon tabela 46	das dentes •	força às defo	s n rmações	ormais mostrad	(N) as na
				_ = = = = = = = = =			
1	2	3	4	5	6	7	8
-	-	****		\$	-		
578	3028	872	265	265	872	3028	578
412	-		216	216	-		412
1264	1725	1186	-	-	1186	1725	1264
-	1294	274			274	1294	_
== == == == == =							

TABELA	48	 Valores	das	pressô	jes	horizon	tais	( 1	V/m≃	)
		correspor	ndentes	às	defor	mações	mostr	ada	35	na
		tabela 40	<u>.</u>							

		======	=======================================	========	========		
1	2	3	4	5	6	7	8
-		-	-	-	-	-	-
1959	10264	2956	898	898	2956	10264	1959
1397	****		732	732		-	1397
4000	5459	3753		_	3753	5459	4000
-	7612	1612			1612	7612	

*****************

TABELA 49 - Valores de deformações obtidas no campo para a condição de carga ( 10 ). Condição do carregamento: nívelado. Local: talhão. Condição do terreno: inclinação de 12º06' do lado oposto ao da tampa.

====	======						======
1	2	3	4	5	6	7	8
-	_	_				-	
103	224	284	292	292	284	224	103
53	55	43	-		43	55	53
50	60	44	-		44	60	50
107	257	279	234	234	279	257	107
====	======		========		*******		

TABELA	50 -	Valores correspo tabela 4	das Indentes 19.	for às de	ças formaçõe	normaís es mostra(	(N) das na
= = = = = = =	=====						
1	2	3	4	5	6	7	8
		-	-				
363	3116	1098	510	510	1098	3116	363
451	216	255	<del></del>	_	255	216	451
1009	1421	931	69	69	931	1421	1009
-	1205	853	-	-	853	1205	-

TABELA	51 -	Valores correspo tabela 4	das p Indentes 9.	as def	horizc ormações	ontais ( s mostra	N∕m∓ ) das na
1	2	3	4	5	6	7	8
*****	-				-	_	-
231	10563	3722	1729	1729	3722	10563	1231
.529	732	864			864	732	1529
3193	4497	2946	218	218	2946	4497	3193
	7088	5018		-	5018	7088	****

## ANEXO C

					2	ATR
		71	21	1 1	4	a.
	41	51	21		¥ 	
41	205	23				
31	197	211	151	89	48	14
21		48	409	169	-24	41
11	10	17	219	୍ୟ ଅନ୍ତ 1 ସ ହ	755	8
1		or	12)	160	190	
42	1/5	20	110	02	74	201
- 52	163	131	110	82	(4	911
12	-77	71				-31
2	77	94	115	146	195	141
43						
33	122	112	81	69	79	260
23 13		21				-39
13	84	98	77	85	128	142
44	<b></b>	<b>n</b> ^	1.6	EP	0.0	104
54 71	86	82	90	34	80	104
14						-33
4	81	90	55	54	98	141
45						
35	69	64	49	57	58	113
25						
15						
5	63	68	41	50	60	115
46	1					
36	50	46		40	35	62
26	1					
16	£1	44		44	44	78
•		• •				
47	-					
57	52	21				
17						
7		21			24	39
	CTINO THE REAL PROPERTY OF					
10						
48 79	71					
28	***					
18						
8						

## REFERENCIAS BIBLIDGRAFICAS

- / 1 / BISHARA, A. G.; AYOUB, S. F. & MAHDY, A. S. Static pressures in concrete circular silos storing granular materials. ACI Journal. may/june 1983.
- / 2 / BRAUNBECK, O. A. & PELIZARI PINTO, A. C. Carregamento contínuo - resultados operacionais. Boletim Técnico Copersucar, 34: 3-14. 1986.
- / 3 / CATALAN, J. R. Silos teoría, investigação, construção. Editores Técnicos Associados S/A. Barcelona, Espanha. 1977
- / 4 / DALCOLMO, E. L. Coeficientes de atrito de forragens picadas em várias superfícies. Tese de Mestrado, FEA - UNICAMP. 1980.
- / 5 / DOBIE, J. B.; NEUBAUER, L. W. & CURLEY, R. G. Lateral pressures of wafers in storage. Translactions of the ASAE, 143-144. 1966.

- / 6 / DWYER, M. J. The braking performance of tractor - trailer combinations. J. Agrc. Engng. Res., 15(2):148-162,1970.
  - / 7 / FORTES F^o, J., Uma introdução ao estudo de silos. Tese de Mestrado, Escola de Engenharia de São Carlos - USP, São Carlos, 1985.
  - / 8 / JOFRIET, J. C. & DAYNARD, T. B. Tower silo wall loads high moisture corn. Canadian Agricultural Engineering, 23(2), 1981.
  - / 9 / JOFRIET, J. C.; SHAPTON, P. & DAYNARD, T. B. Haylage densities, pressures, and capacities in tower silos. Canadian Agricultural Engineering, 24(2), 1982.
  - / 10 / MELLO, M. O. & ANDO, C. S. Avaliação da densidade de carga, comprimento de toletes e velocidade efetiva de colhedoras na colheita de cana picada. Copersucar, 1989.
- / 11 / SAGI, R. ORLOWSKI, S. & NIR, D. Theorical study
  of braking capacity of a tractor-trailer system.
  Transactions of the ASAE. 845-848. 1972.

/ 12 / SAGI, R.; RACOTCH, A. & WOLF, D. Theorical considerations in placing the centre of gravity of single-axled trailers. J. Agric. Engng Res., 18:159-165, 1973. ABSTRACT

Lateral forces were measured on a 35 cubic meter truck structure for transportation of billet cane.

Twenty electric strain gages were distributed on the front of a half of the body size mounted on bar linkages for gravity unloading.

The calibration matrix was obtained by applying known forces at each strain gages location and reading corresponding strains for all twenty locations. This matrix allowed to transform strain data registered in the field to corresponding force values.

Measurements were carried under static conditions for normal load and level load at different points of the 12 km trajectory from the field to the factory. Measurements under lateral road slope were also carried.

Average lateral loads of 1961 N/m² was obtained consistentely for all experimental conditions.The distribution of the load was far from uniform.

Local concentration took place mostly on two longitudinal stiff beams located at the bottom and 2/3 of the height; they transmitted the lateral load to the front and rear-walls of the structure.

Pick loads were located close to the ends of the beams, up, about 1/4 of its lenght; there was almost no loads on the central part of the beams.

The billet cane load behaves mostly as a solid block as a result of the internal mutual linkage developed by the cane billets.