UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

Sprear Este exemplar voursponde à redacad final da ; torado defendida por Felix Emilio Prado Cornejo reduced final da tese dontorado defendida vada pela Comises Julgadora em 15 de mais de 1997 Comissan de 1964 Campinas," 16 de julho

CONSTRUÇÃO E AVALIAÇÃO DE UN SECADOR COM PROMOTORES ESTACIONÁRIOS DE MISTURA

Campinas -SP março de 1997

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

Cornejo, Felix Emilio Prado C814c Construção e avaliação de um secador com promotores estacionários de mistura / Felix Emilio Prado Cornejo.--Campinas, SP: [s.n.], 1997. Orientador: Kil Jin Park. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola. 1. Cereais - Secagem. 2. Massa - Transferência. 3. Calor - Transmissão. 1. Park, Kil Jin. II. Universidade Estadual de Campinas. Faculdade de Engenharia Agrícola. III. Título. UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

CONSTRUÇÃO E AVALIAÇÃO DE UM SECADOR COM PROMOTORES ESTACIONÁRIOS DE MISTURA

FELIX EMILIO PRADO, CORNEJO

Engenheiro Mecânico Mestre em Engenharia Agrícola

Prof.Dr. KIL JIN, PARK

Orientador

Tese apresentada à Faculdade de Engenharia Agrícola da Universidade Estadual de Campinas para obtenção do título de Doutor em Engenharia Agrícola.

> Campinas -SP março de 1997

Dedico este trabalho a um ser humano digno de respeito. Por sua honradez, caracter e amizade. Kil Jin Park.

.

2

-

AGRADECIMENTOS

A **Deus** pela força espiritual que me deu no transcorrer deste trabalho;

Ao Prof. Dr. **KIL JIN PARK**, amigo e orientador pela sua dedicação, paciência, respeito e por me permitir absorver um pouco de sua experiência e conhecimento;

A **Empresa Brasileira de Pesquisa Agropecuária**, pela oportunidade de realizar este trabalho;

A Faculdade de Engenharia Agrícola / UNICAMP, por me permitir cursar e obter este título nesta honrosa instituição;

A Dra. Marília Nutti, chefe do Centro Nacional de Pesquisa de Tecnologia Agroindustrial de Alimentos / EMBRAPA, pelo seu estímulo e apoio na conclusão deste trabalho;

Ao Dr. Moacir Pedroso Junior, chefe do Centro de Pesquisa de Informática para a Agricultura / EMBRAPA, pela sua amizade e apoio sem o qual esta tese seria muito mais difícil de ser concluída;

Ao Dr. **José Ruy Porto de Carvalho**, pela sua brilhante capacidade no auxílio da análise estatística.

Ao Prof. Dr. João Domingos Biagi, pelo apoio e participação na banca de qualificação e defesa de tese;

Ao Prof. Dr. **Jaime Toledo Piza e Almeida Neto**, pelo apoio e participação na banca de qualificação e defesa de tese;

Ao Prof. Dr. Satoshi Tobinaga, por sua participação na banca de defesa de tese.

Ao Prof. Dr. **Javier Teles Romero**, por sua amizade e participação na banca de defesa de tese;

A Prof^a. **Enny Terezinha Martucci**, pela sua amizade e participação na banca de defesa de tese;

Ao Prof.Dr. **José Gilberto Jardine**, pelo companheirismo durante muitos anos de atividade profissional e por sua participação na banca de defesa de tese;

A amiga **Regina Isabel Nogueira**, por seu estímulo e parceria profissional;

A amiga Vânia Aparecida Bellodi Sant'Ana Furlan por sua amizade e estímulo; Aos amigos Sérgio Macedo Pontes, Claudio Souza da Silva e Élio di Franco, na construção e coleta dos dados experimentais;

Aos amigos do **CTAA** e do **CNPTIA**, pelo encorajamento e estímulo durante a confecção desta tese;

Aos amigos e companheiros do **Departamento de Engenharia de** Alimentos/CTAA;

Aos amigos Luís Felipe Toro Alonso e Fernando Pedro Reis Brod, por me permitir fazer parte de sua equipe e pela colaboração durante a redação da tese;

Ao amigo Ailton da Costa, pela revisão do projeto original;

A minha mãe Maria da Penha Prado pelos valores que me passou;

A minha Maria Cristina de Souza pela sua ajuda, estímulo e carinho;

Aos meus queridos filhos e amigos Danielle Rocha Cornejo, Luciane Rocha Cornejo e Felix Rocha Cornejo e;

A todos que direta ou indiretamente contribuíram para a realização deste trabalho.

ÍNDICE

NOMENCLATURA.(1)	i
NOMENCLATURA (2)	iv
ÍNDICE DE FÍGURAS	vii
ÍNDICE DE QUADROS	x
RESUMO	xii
ABSTRACT	xiii

1) INTRODUÇÃO	1
2) REVISÃO BIBLIOGRÁFICA	7
2.1) TRANSFERÊNCIA DE CALOR	7
a. CONDUÇÃO	7
b. CONVECÇÃO	8
c. PERFIS DE TEMPERATURA DO GÁS E DO SÓLIDO	19
d. PROMOTORES ESTACIONÁRIOS	23
2.2) SECAGEM	24
2.2.1) ISOTÉRMAS	28
2.2.2) TEORIA DE SECAGEM	31
2.3) SISTEMAS DE SECAGEM PARA GRÃOS	55
2.3.1) SECADORES	55
2.3.2) SECA-AERAÇÃO	62
3) MATERIAL E MÉTODOS	64
3.1) MATÉRIA PRIMA	65
3.2) TÉRMOMETRIA	66
3.3) EQUIPAMENTOS DE APOIO	66
3.4) CONSTRUÇÃO DE UMA UNIDADE LABORATORIAL DE SECAGEM	67
3.5) UNIDADE EM ESCALA PILOTO	72

3.5.1) CONTROLE OPERACIONAL E EXPERIMENTAL DA	75
3.6) INSTRUMENTAÇÃO	76
3.6.1) VAZÃO DE GÁS	76
3.6.2) VELOCIDADE MÉDIA DAS PARTÍCULAS SÓLIDAS	77
3.6.3) TEMPERATURAS	77
3.6.4) UMIDADES	77
3.7) RESFRIAMENTO	77
3.8) CONDIÇÕES EXPERIMENTAIS	78
3.9) TRANSFERÊNCIA DE CALOR	79
3.9.1) DETERMINAÇÃO DOS COEFICIENTES DE TROCA TÉRMICA,	
UTILIZANDO O CONCEITO DE TROCADORES DE CALOR	80
3.9.2) UTILIZAÇÃO DA EQUAÇÃO DE SARTORI (1986), PARA OBTENÇÃO	
DO COEFICIENTE CONVECTIVO DE TRANSFERÊNCIA DE CALOR	81
3.9.3) OBTENÇÃO DOS NÚMEROS ADIMENSIONAIS DE NUSSELT, REYNOLDS E PRANDTL	01
3 10) SECACEM	82
3.10.1) DETERMINAÇÃO DA ADIMENSIONAL DE UMIDADE	82
3.10.2) MODELO DE DIFUSÃO LÍOUIDA DE FICK	83
3.10.3) DETERMINAÇÃO DO CONTEÚDO ADIMENSIONAL DE UMIDADE	
PELO MODELO DE PAGE	84
3.10.4) DETERMINAÇÃO DO CONTEÚDO DE UMIDADE DO GRÃO DURANTE	
O AQUECIMENTO E O RESFRIAMENTO	84
4) RESULTADOS E DISCUSSÃO	85
4.1) UMIDIFICAÇÃO DOS GRÃOS	85
4.2) TRANSFERÊNCIA DE CALOR	85
4.2.1) DETERMINAÇÃO DO FLUXO DE CALOR ENTRE A PARTÍCULA SUBMETIDA A SECAGEM E O FLUXO DO AR NO SECADOR	85
4.2.2) DETERMINAÇÃO DOS COEFICIENTES DE TROCA TÉRMICA, UTILIZANDO O CONCEITO DE TROCADORES DE CALOR	86
4.2.3) UTILIZAÇÃO DA EQUAÇÃO DE SARTORI (1986), PARA OBTENÇÃO DO COEFICIENTE CONVECTIVO DE TRANSFERÊNCIA DE CALOR	88

4.2.4) OBTENÇÃO DOS NUMEROS ADIMENSIONAIS DE NUSSELT,	
REYNOLDS E PRANDTL	92
4.3) SECAGEM.	96
4.3.1) DETERMINAÇÃO DA ADIMENSIONAL DE UMIDADE	96
4.3.2) MODELO DE DIFUSÃO LÍQUIDA DE FICK	97
4.3.3) DETERMINAÇÃO DO CONTEÚDO ADIMENSIONAL DE UMIDADE PELO MODELO DE PAGE	99
4.3.4) DETERMINAÇÃO DA VARIAÇÃO DO CONTEÚDO DE UMIDADE DO GRÃO DURANTE O AQUECIMENTO E RESFRIAMENTO	103
4.3.5) SUGESTÕES	104
5) CONCLUSÕES	108
REFERÊNCIAS BIBLIOGRÁFICAS	110
ANEXOS	120
1) DETERMINAÇÃO DOS BALANÇOS DE ENERGIA	121
2) DETERMINAÇÃO DOS COEFICIENTES DE TRANSFERÊNCIA DE CALOR	125
3) BASE DE CÁLCULO UTILIZANDO A EQUAÇÃO DE SARTORI, PARA OBTENÇÃO DO COEFICIENTE CONVECTIVO DE TRANSFERÊNCIA DE CALOR	132
4) PROGRAMA DE ENTRADA DE DADOS NO SAS	137
4a) DETERMINAÇÃO DO COEFICIENTE CONVECTIVO DE TRANSFERÊNCIA DE CALOR SEGUNDO SARTORI (1986)	143
5) BASE DE CÁLCULO, UTILIZANDO A EQUAÇÃO DE ROSSI E ROA (1980), PARA OBTENÇÃO DA ADIMENSIONAL DE UMIDADE	149
6) TABELA DOS VALORES DETERMINADOS PELO PACOTE ESTATÍSTICO SAS	153
6a) CÁLCULO DA DIFUSIVIDADE EFETIVA, UTILIZANDO O PROCEDIMENTO DE REGRESSÃO NÃO LINEAR DO SAS	154
6b) PROGRAMA DE ENTRADA DE DADOS NO SAS PARA O CÁLCULO DA SÉRIE DE FOURIER PARA 3, 5, 10, 14 e 20 TÊRMOS	160
7) DETERMINAÇÃO DO CONTEÚDO DE UMIDADE PELO MODELO DE PAGE (1949) E PAGE MODIFICADO	193
7a) PROGRAMA DE ENTRADA DE DADOS	195
8) DETERMINAÇÃO DA VARIAÇÃO DO CONTEÚDO DE UMIDADE DURANTE O AQUECIMENTO E RESFRIAMENTO	227

8a) PROGRAMA DE ENTRADA DE DADOS	228
9) BASE DE CÁLCULO PARA DETERMINAÇÃO DO NÚMERO DE REYNOLDS	239
10) BASE DE CÁLCULO PARA DETERMINAÇÃO DO NÚMERO DE NUSSELT E PRANDTL	241
11) PATENTE INDUSTRIAL	243

þ

•

NOMENCLATURA (1)

А	$\psi T_{fo} - T_{so}$	[heta]
a	constante da equação (47) (53)	adimensional
a'	área de transferência por unidade de volume no leito	$\begin{bmatrix} L^2 \end{bmatrix}$
a _w	atividade termodinâmica de água	adimensional
<i>a</i> *	área de transferência	$\begin{bmatrix} L^2 \end{bmatrix}$
В	$1 - \psi$	adimensional
b	constante da equação (47) (53)	adimensional
С	constante da equação (53)	adimensional
C_p	calor específico a pressão constante	$\left[L^2T^{-2}\theta^{-1}\right]$
C_{se}	concentração massica de água no sólido (bs)	adimensional
D'	fator de profundidade do leito, referente ao modelo de Hukill	adimensional
D_{c}	diâmetro de dutos circulares (secador)	
D_{ef}	difusividade efetiva da água no interior do sólido	$\left[L^2T^{-1}\right]$
D_{li}	diâmetro linear maximo da partícula	[<i>L</i>]
D_p	diâmetro médio da partícula, definido pela equação,	$\begin{bmatrix} L \end{bmatrix}$
Ε	entalpia perdida pelas paredes do sistema	$\left[L^2T^{-2} ight]$
f	taxa local de secagem por unidade de volume	$\left[ML^{-3}T^{-1}\right]$
f	pressão do vapor de ar da secagem	$\left[ML^{-1}T^{-2}\right]$
\mathbf{f}_{d}	pressão do vapor na superfície do grão para temperatura T _d	$\left[ML^{-1}T^{-2}\right]$
G	densidade de fluxo de massa (velocidade massica)	$ML^{-2}T^{-1}$
g _n	definido na equação (20),	adimensional
Н	altura do leito	[L]
<h></h>	entalpia média por umidade de massa	$\left[L^2 T^{-2}\right]$
h	coeficiente de transferência de calor	$\left[MT^{-3}\theta^{-1}\right]$
h ₁	coeficiente de transferência de calor convectivo, para equação (35)	$\left[MT^{-3}\theta^{-1}\right]$
h_2	coeficiente de transferência de calor convectivo, para equação (35a	$\mathbf{a}) \left[MT^{-3}\theta^{-1}\right]$
h₃	coeficiente de transferência de calor convectivo, para equação (35a	a) $\left[MT^{-3}\theta^{-1}\right]$
h _e	coeficiente de transferência de calor convectivo, para esferas	$\left[MT^{-3}\theta^{-1}\right]$
k	condutividade térmica	$\left[MLT^{-3}\theta^{-1}\right]$
К	constante de secagem	$\left[T^{-1}\right]$

.

k,	fator de intensidade de secagem	$\left[ML^{-2}T^{-1}\theta^{-1}\right]$
k ₂	fator de intensidade de secagem	$\left[ML^{-2}T^{-1}\theta^{-1}\right]$
k _f	condutividade térmica do fluido	$\left[MLT^{-3}\theta^{-1}\right]$
k,	condutividade líquida	$\left[MLT^{-3}\theta^{-1}\right]$
k _{mp}	coeficiente de transferência de massa	$\begin{bmatrix} L^{-1}T \end{bmatrix}$
k _s	condutividade térmica do sólido	$\left[MLT^{-3}\theta^{-1}\right]$
L	comprimento do secador	
L ₁	calor latente de água adsorvida	$\begin{bmatrix} L^2 T^{-2} \end{bmatrix}$
L _g	calor latente de vaporização de água no grão	$\begin{bmatrix} L^2 T^{-2} \end{bmatrix}$
m _a	massa de água	[<i>M</i>]
m _{sc}	massa de matéria seca	[M]
m _u	massa de matéria umida	[M]
\overline{m}	vazão massica	$\left[MT^{-1} ight]$
Nu	número de Nusselt	adimensional
Ρ	pressão	$\left[ML^{-1}T^{-2}\right]$
P_{atm}	pressão atmosférica	$\left[ML^{-1}T^{-2}\right]$
Pr	número de Prandtl	adimensional
P_v	pressão de vapor de água no alimento	$\left[ML^{-1}T^{-2}\right]$
P_{vo}	pressão de vapor de água saturada	$\left[ML^{-1}T^{-2}\right]$
q	fluxo térmico por convecção	$\left[ML^{-2}T^{-3}\right]$
Q_{m}	fluxo de massa	$\left[ML^{-2}T^{-1}\right]$
Q_q	fluxo de calor	$\left[ML^{-2}T^{-3}\right]$
R	conteúdo de umidade	adimensional
r	raio	$\begin{bmatrix} L \end{bmatrix}$
R	constante universal dos gases	$\left[L^2 T^{-2} MOL^{-1} \theta^{-1}\right]$
Re	número de Reynolds	adimensional
S	$6(1-\varepsilon)/\phi D_p$, área da superfície das partículas, p/ unidade de volum	te do leito $\begin{bmatrix} L^{-1} \end{bmatrix}$
S_p	superfície específica do produto por unidade de massa	$\left[M^{-1}L^2 ight]$
S	superfície específica de evaporação	$\left[M^{-1}L^2 ight]$
Т	temperatura	$\left[heta ight]$
t	tempo	[<i>T</i>]

1

*

i

T _d	temperatura da superfície do grão	$[\theta]$
T_{s}	temperatura da superfície	[heta]
T_{∞}	temperatura do meio, $\sum_{i} Nidi = D_p \sum_{i} Ni$ Ni - nº de partículas com diâmetro di	[heta]
u	$\left(T_{s}-T_{fo}\right)/\left(T_{so}-T_{fo}\right)$	adimensiona
U	coeficiente global de transferência de calor	$\left[MT^{-3}\theta^{-1}\right]$
UR	umidade relativa	adimensional
v	velocidade	$\begin{bmatrix} LT^{-1} \end{bmatrix}$
Vp	velocidade da partícula no leito	$\begin{bmatrix} LT^{-1} \end{bmatrix}$
Vs	velocidade de secagem	$\begin{bmatrix} LT^{-1} \end{bmatrix}$
V∞	velocidade no meio	$\begin{bmatrix} LT^{-1} \end{bmatrix}$
V_{e}	volume específico	$\left[M^{-1}L^3\right]$
W _n	raízes da equação (21),	adimensiona
х	coordenada na direção do escoamento do gás	$\begin{bmatrix} L \end{bmatrix}$
X'	taxa de umidade	adimensional
Х	$\frac{h \mathrm{S}}{\mathrm{C}_{\mathrm{f}} G_{\mathrm{f}}} \mathrm{x}$	adimensional
Y	conteúdo de umidade	$\left[M_{1} / M_{2} \right]$
z	variável espacial	adimensional

.

٠

.

Þ

\$

LETRAS GREGAS

α	difusividade térmica	$\begin{bmatrix} L^2 T^{-1} \end{bmatrix}$
з	porosidade	adimensional
ξ	$k_s / h_f r$	adimensional
η	fator de umidade de tempo, referente ao modelo de Hukill	adimensional
γ	$k_s / \rho_s C_s v_p$	$\begin{bmatrix} L \end{bmatrix}$
λ	$-hS(1-\psi)/C_fG_f$	$\begin{bmatrix} L^{-1} \end{bmatrix}$
ρ	densidade	$\left[ML^{-3} \right]$
λ	razão de torsão	adimensional
ρ_{s}	massa específica do sólido	ML^{-3}
ф	esfericidade, definido pela equação (55)	adimensional
ψ	$C_f G_f / C_s G_s$	adimensional
μ	viscosidade	$\left[M\!L^{\!-\!1}T^{-1} \right]$

NOMENCLATURA (2)

А	$\psi T_{co} - T_{co}$	К
а	constante da equação (47) (53)	adimensiona
a'	área de transferência por unidade de volume no leito	m ²
a	atividade termodinâmica de água	adimensional
w	área de transferência	m
B		adimensional
h	$\gamma \gamma$ constante da equação (47) (53)	adimensiona
c c	constante da equação (53)	adimensional
č	calor específico a pressão constante	k.l/kaK
C P	concentração massica de água no sólido (bs)	adimensiona
D'	fator de profundidade do leito, referente ao modelo de Hukill	adimensional
D.	diâmetro de dutos circulares (secador)	m
D _{ef}	difusividade efetiva da água no interior do sólido	m²/s
D_{μ}	diâmetro linear maximo da partícula	m
$D_{p}^{''}$	diãmetro médio da partícula, definido pela equação,	m
Ē	entalpia perdida pelas paredes do sistema	kJ/ka
f	pressão do vapor de ar da secadem	Pa
f	pressão do vapor na superfície do grão para temperatura Ta	Pa
Ğ	densidade de fluxo de massa (velocidade massica)	kg/m²s
g,	definido na equação (20),	adimensional
H	altura do leito	m
<h></h>	entalpia média por umidade de massa	kJ/kg
h	coeficiente de transferência de calor	kJ/m²sK
h₁	coeficiente de transferência de calor convectivo, para equação	(35) kJ/m ² sK
h_2	coeficiente de transferência de calor convectivo, para equação	(35a) kJ/m²sK
h₃	coeficiente de transferência de calor convectivo, para equação	(35a) kJ/m²sK
h _e	coeficiente de transferência de calor convectivo, para esferas	kJ/m²sK
k	condutividade térmica	W/mK ou kJ/msK
K	constante de secagem	S ⁻¹
k1	fator de intensidade de secagem	kg _{H2O} /m²sK
k ₂	fator de intensidade de secagem	kg _{H2O} /m²sK
k _f	condutividade térmica do fluido	kJ/msK ou W/mK
k,	condutividade líquida	kJ/msK ou W/mK
k _{mp}	coeficiente de transferência de massa	kg/Pa m²s
k_s	condutividade térmica do sólido	kJ/msK
L	comprimento do secador	m
L ₁	calor latente de água adsorvida	kJ/kg
L_{g}	calor latente de vaporização de água no grão	kJ/kg
m _a	massa de água	kg
m _{sc}	massa de matéria seca	kg

۵.

.

þ

m _u	massa de matéria umida	kg
\overline{m}	vazão massica	kg/
Nu	número de Nusselt	adimensiona
Р	pressão	P٤
P_{atm}	pressão atmosférica	Pa
Pr	número de Prandtl	adimensiona
P _v	pressão de vapor de água no alimento	Pa
P _{vo}	pressão de vapor de água saturada	Pa
q	fluxo térmico por convecção	kJ/:
Q _m	fluxo de massa	kg/m²៖
Q_q	fluxo de calor	kJ/s
R	conteúdo de umidade	adimensiona
r	raio	m
R*	constante universal dos gases	kJ/kg mol ł
Re	número de Reynolds	adimensiona
S	$6(1-\varepsilon)/\phi D_p$, área da superfície das partículas, p/ unidade de volume do	leito m
S,	superfície específica do produto por unidade de massa	m²/ka
ร้	superfície específica de evaporação	m²/kg
Т	temperatura	K
t	tempo	S
Τ _d	temperatura da superfície do grão	к
T _s	temperatura da superfície	К
T_{∞}	temperatura do meio, $\sum_{Nidi = D} \sum_{Ni} Ni - n^{\circ}$ de partículas com diámetro di	K
	$\sum_{i} \cdots \sum_{p} \sum_{i} \cdots$	
u	$\left(T_{s}-T_{fo}\right)/\left(T_{so}-T_{fo}\right)$	adimensiona
U	coeficiente global de transferência de calor	kJ/m²sK
UR	umidade relativa	adimensiona
v	velocidade	m/s
V _n	velocidade da partícula no leito	m/s
vs	velocidade de secagem	m/s
V _∞	velocidade no meio	m/s
V _e	volume específico	m³/kg
Ŵ	raízes da equação (21),	adimensiona
x	coordenada na direção do escoamento do gás	r
X,	taxa de umidade	adimensional
x	hS x	adimoneional
~	$C_f G_f$	admensional
Y	conteúdo de umidade	ka _{H20} /ka_
z	variável espacial	adimensional
	-	

₽

þ

.

8

ž

LETRAS GREGAS

α	difusividade térmica	m²/s
3	porosidade	adimensiona
ξ	$k_s / h_f r$	adimensional
η	fator de umidade de tempo, referente ao modelo de Hukill	adimensiona
γ	$k_s / \rho_s C_s v_p$	m
λ	$-hS(1-\psi)/C_fG_f$	m ⁻¹
ρ	densidade	kg/m³
ρ_{s}	massa específica do sólido	kg/m
λ	razão de torsão	adimensiona
φ	esfericidade, definido pela equação (55)	adimensiona
ψ	$C_f G_f / C_s G_s$	adimensional
μ	viscosidade	kg/ms

SUBSCRITO

p,

P

۲

ag	água	o	condição inicial
bh	bulbo úmido do ar	р	partícula
d	superfície do grão	q	calor
е	esfera	r	estado de referência
en	entrada	S	sólido
eq	condição de equilíbrio	sd	saída
f	fluido, ar ou gas	Ss	sólido seco
gr	grão	sts	seção transversal do secador
Ĩ	líquido	tc	trocador de calor
li	linear	u	matéria úmida
m	médio	V	vapor
ms	massa seca	Vo	vapor saturado

Obs. Foi utilizado para representar as unidades internacionais, simbologias que indicam dimensões:

- [M] massa
- [L] comprimento
- [T] tempo
- $[\theta]$ temperatura

ÍNDICE DE FIGURAS

Figura 1 -	Esquema de um escoamento em contracorrente	
Figura 2 -	Apresentação de forma simplificada da umidade existente nos grãos	26
Figura 3 -	Desenho esquemático de um grão e sua proporção variável de água e matéria seca	26
Figura 4 -	Representação esquemática da fixação de água no grão (milho a 15°C), fonte: LASSERAN (1978)	28
Figura 5 -	Representação gráfica de uma isoterma, fonte: BALABAN (1984)	29
Figura 6 -	Representação esquemática do modelo físico	32
Figura 7 -	Transporte da água do interior do sólido para a superfície de secagem	32
Figura 8 -	Representação esquemática do modelo de THOMPSON et alli (1968)	47
Figura 9 -	Desenho esquemático de um silo secador móvel	56
Figura 10 -	Secador móvel com sistema de carga contínua	57
Figura 11 -	Secador de torre	58
Figura 12 -	Caracterização do fluxo	59
Figura 13 -	Secador de torre utilizado para secagem de sementes (1) e secador de torre para secagem de grãos(2)	60
Figura 14 -	Detalhe construtivo do secador de torre	61
Figura 15 -	Desenho das unidades construidas para os testes experimentais	65
Figura 16 -	Representação esquemática dos dispositivos instalados no interior da torre	69

Figura 17 -	Alimentador vibratório	59
Figura 18 -	Detalhamento da unidade laboratorial	71
Figura 19 -	Detalhamento da unidade piloto (vista lateral)	73
Figura 20 -	Detalhamento da unidade piloto (vista frontal)	74
Figura 21 -	Esquema do controle operacional e experimental da unidade piloto7	15
Figura 22 -	Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela eq. 42a)3
Figura 22a-	Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela eq. 42a, considerando Re(partícula)	94
Figura 23 -	Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela eq. 42b9)4
Figura 23a-	Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela eq. 42b, considerando Re(partícula)	95
Figura 24 -	Ln de Nusselt x Ln de Reynolds para resfriamento utilizando o coeficiente de transferência de calor calculado pela eq. 42b	€
Figura 25 -	Curvas de secagem: valores experimentais e calculados para o experimento 1	19
Figura 26 -	Curvas de secagem: valores experimentais e calculados para o experimento 2 10	00
Figura 27 -	Curvas de secagem: valores experimentais e calculados para o experimento 3 10	00
Figura 28 -	Curvas de secagem: valores experimentais e calculados para o experimento 4 10	01
Figura 29 -	Curvas de secagem: valores experimentais e calculados para o experimento 5 10	01

.

b,

F

Figura 30 -	Curvas de secagem: valores experimentais e calculados para o experimento 6	102
Figura 31 -	Curvas de secagem: valores experimentais e calculados	
	para o experimento 7	102
Figura 32a -	Representação esquemática da unidade industrial	
	(vista lateral)	106
Figura 32b -	Representação esquemática da unidade industrial	
_	(vista frontal)	107

÷ *

-

F

k

ÍNDICE DE QUADROS

*

*

F

.

Quadro 1 -	Correlações para o coeficiente de transferência de calor - leito fixo, fonte: CALADO (1993) 19
Quadro 2 -	Correlações para o coeficiente de transferência de calor - leito deslizante, fonte: SARTORI (1986) 19
Quadro 3 -	Modelos de isotermas de sorção, fonte: CALADO (1992) 31
Quadro 4 -	Equações para difusividade efetiva, fonte: CALADO (1992) 43
Quadro 5 -	Constante de secagem para o modelo exponencial 44
Quadro 6 -	Parâmetros do modelo de PAGE, fonte: CALADO (1992) 51
Quadro 7 -	Parâmetros do modelo de OVERHULTS, fonte: CALADO (1992) 51
Quadro 8 -	Taxa da perda de umidade durante a secagem de produtos agrícolas, fonte: GODOI (1996) 52
Quadro 9 -	Condições operacionais da unidade piloto78
Quadro 10 -	Variáveis experimentais78
Quadro 11 -	Cálculo dos balanços de energia 85
Quadro 12 -	Caracterização do grão de soja 86
Quadro 13 -	Propriedades do ar
Quadro 14a -	Coeficientes de transferência de calor, considerando a área da seção transversal do secador
Quadro 14b-	Erros relativos dos coeficientes convectivos de transferência de calor, considerando a área da seção transversal do secador
Quadro 15a -	Coeficientes de transferência de calor, considerando a área de um trocador de calor

Quadro 15b-	Erros relativos dos coeficientes convectivos de transferência de calor, considerando a área de um trocador de calor
Quadro 16 -	Adimensionais de temperatura durante o aquecimento do grão, a cada passagem pela torre
Quadro 17 -	Adimensionais de temperatura durante o resfriamento do grão, a cada passagem pela torre
Quadro 18 -	Coeficiente convectivo de transferência de calor, utilizando a temperatura média do fluido durante o aquecimento91
Quadro 19 -	Coeficiente convectivo de transferência de calor, utilizando a temperatura média do sólido durante o aquecimento
Quadro 20 -	Erros relativos dos coeficientes convectivos obtidos utilizando as temperaturas médias do sólido e do fluido
Quadro 21 -	Coeficientes de transferência de calor, utilizando a temperatura média do sólido no resfriamento
Quadro 22 -	Umidades de equilíbrio
Quadro 23 -	Adimensional de umidade durante o aquecimento e resfriamento 97
Quadro 24 -	Valores de difusividade adimensionais do conteúdo de umidade, experimental e calculado, erro relativo utilizando 20 têrmos da série
Quadro 25a-	Percentual de decréscimo de umidade no aquecimento e no resfriamento103
Quadro 25b-	Variação do conteúdo de umidade durante o aquecimento e resfriamento103

*

4

F

k

Þ

RESUMO

Com o objetivo de avaliar as transferências de calor e massa durante a secagem da soja (*Glycine max. I. Merril*), foi construído um secador composto por duas secções, uma de aquecimento e outra de resfriamento. Na secção de aquecimento foram instalados promotores estacionários de mistura de sólidos, objeto da patente industrial nº 8700583.

Para obter a equação de dimensionamento deste sistema, foi utilizado o conceito de trocadores de calor para calcular os coeficientes globais de transferência de calor. Os coeficientes globais obtidos foram 0,1496 kJ/m².s.K a 0,3784 kJ/m².s.K quando referido a área seccional e 0,0131 kJ/m².s.K a 0,0333 kJ/m².s.K quando referido a área média logarítmica do trocador de calor.

Para o estudo dos fenômenos de transferência de calor, foram calculados os coeficientes convectivos de transferência de calor utilizando os conceitos de FURNAS (1930) aplicados por SARTORI (1986). Estes coeficientes convectivos permitiram a obtenção da correlação adimensional do tipo Nu= f (Re^b). O expoente b apresentou os valores de -0,5163 utilizando a temperatura média do fluido e -0,3357 utilizando a temperatura média do sólido.

O comportamento da secagem no presente equipamento foi analisado utilizando as equações de FICK, PAGE e PAGE modificado. As difusividades efetivas situaram-se entre 1,60x10⁻¹¹ m²/s a 4,85x10⁻¹¹ m²/s. Os coeficientes de PAGE obtidos foram, k variando de 0,0001 a 0,0089 e c variando de 0,3663 a 1,0339. Os coeficientes de PAGE modificado obtidos foram, A variando de 0,9803 a 0,9954, k de 0 a 0,0086 e c de 0,3669 a 1,0829.

Secando soja (*Glycine max. I. Merril*), o sistema alcança 42,44% a 77,65% na redução do conteúdo de umidade durante o aquecimento e 22,35% a 57,56% na redução do conteúdo de umidade durante o resfriamento. O decréscimo de umidade durante o aquecimento foi de 0,2005 para 0,1527 kg $_{H20}$ /kg_{ms} e durante o resfriamento de 0,1527 para 0,1308 kg $_{H20}$ / kg_{ms}.

Os resultados obtidos demonstram que esta patente industrial para secagem de materiais granulares pode ser utilizada para a secagem de grãos.

xii

ABSTRACT

An dryer was build, in two different sections (heating and cooling), to evaluate heat and mass transfer during soybean (*Glycine max. I. Merril*) drying. In the heat section, a set of solids static mixers was installed (industrial patent n° 8700583).

The concept of heat exchangers was applied to calculate the global heat transfer coefficients and dimensioning the system. The global heat transfer coefficients referring the section surface ranged between 0,1496 kJ/m².s.K and 0,3784 kJ/m².s.K, referring the mean logarithmic heat transfer surface it ranged between 0,0131 kJ/m².s.K and 0,0333 kJ/m².s.K.

The concepts to convective heat transfer coefficients developed by FURNAS (1930) and applied by SARTORI (1986) were used to study the heat transfer phenomena. These coefficients allowed to obtain dimensonless correlations such as Nu = f (Re^b). The *b* exponent obtained applying the fluid average temperature was -0,5163 and applying the solid average temperature was -0,3357.

The drying behavior in the equipment was analyzed using FICK, PAGE and PAGE modified equations. The effective difusivities ranges between $1,60x10^{-11}$ m²/s and $4,85x10^{-11}$ m²/s. The PAGE equation coefficients obtained were, *k* ranging from 0,0001 to 0,0089 and *c* ranging from 0,3663 to 1,0339. The PAGE modified equation coefficients obtained were, *A* ranging from 0,9803 to 0,9954, *k* ranging from 0 to 0,0086 and *c* ranging from 0,3669 to 1,0829.

Drying soybean (*Glycine max. l. Merril*), the system leads from 42,44% to 77,65% of moisture content reduction during heating and 22,35 % to 57,56 % of moisture content reduction while cooling. The moisture content decrease ranged from 0,2005 to 0,1527 kg $_{\rm H2O}/\rm{kg_{ms}}$ during heating and 0,1527 to 0,1308 kg $_{\rm H2O}/\rm{kg_{ms}}$ while cooling.

The results obtained shows that the industrial patent for drying of particulate materials may be used to grain drying.

1) INTRODUÇÃO

Nas últimas décadas a pesquisa agropecuária contribuiu decisivamente para o aumento das safras agrícolas brasileiras. Cresceram as safras sem o proporcional aumento das áreas plantadas, provando que o país, com o uso de tecnologias adequadas, é capaz de aumentar a produtividade agrícola.

O objetivo primordial da pesquisa brasileira é basicamente a contribuição do bem-estar social e econômico da sociedade, gerando e transferindo, para os diversos segmentos que compõem o complexo agroindustrial brasileiro, tecnologias que garantam a competitividade e a qualidade dos produtos oferecidos no mercado.

O Brasil produziu nos últimos sete anos uma média de 59 milhões de toneladas de grãos (arroz, feijão, trigo, milho e soja). A disponibilidade interna desses produtos e dos demais alimentos, tradicionalmente consumidos no país, é superior às necessidades diárias de calorias e proteínas de uma população equivalente a brasileira.

Em outras palavras, a fome, que aflige 32 milhões de brasileiros, não se explica pela falta de alimentos. O problema alimentar reside no descompasso entre o poder aquisitivo de um amplo segmento da população e o custo de aquisição de uma quantidade de alimentos compatível com a necessidade do trabalhador e de sua família.

Não é de hoje que o paradoxo da fome, em um país que possui condições plenas para garantir uma oferta abundante de alimentos, vem desafiando os governantes.

A cada ano uma parcela expressiva da produção agrícola (cerca de 20 %) é perdida por deficiências de armazenagem, transporte e manuseio, ao mesmo tempo

em que aumenta o número de brasileiros que não conseguem manter padrões mínimos de alimentação. Alimentos se deterioram em algumas regiões mais desenvolvidas do país, enquanto nos rincões mais distantes, nas regiões mais pobres, um número expressivo de pessoas não dispõem do que comer, (PELIANO,1993).

O desenvolvimento de um país do terceiro mundo na agricultura, depende do esforço político de seus governantes e de pesquisas voltadas a soluções práticas, a fim de resolver os problemas existentes na produção.

Os grãos, após a colheita, são estocados ou beneficiados, devendo passar por processos de secagem e resfriamento que tem por finalidade preservar a qualidade do produto por um longo período de tempo.

A secagem é o método mais antigo e ainda o mais usado para conservar as matérias primas agropecuárias, por permitir a armazenagem por vários meses à temperatura ambiente.

O agricultor brasileiro ainda utiliza muito a secagem de grãos feita na planta, dependendo das condições climáticas, sendo esta técnica a de menor investimento, porém, existem grandes desvantagens em sua utilização, como a dependência das condições meteorológicas que pode conduzir a deterioração e a incidência de pragas.

Além disso, quando as produções aumentam muito, como no Brasil, nos últimos anos, é necessário colher antecipadamente os grãos com alto teor de umidade (na ordem de 18 %) para otimizar o uso das colhedeiras.

A secagem artificial de grãos no Brasil é uma operação praticada principalmente pelas cooperativas agrícolas e pelas indústrias de processamento.

As técnicas de secagem variam conforme as características do produto e a finalidade a qual se destinam. A utilização de técnicas inadequadas de secagem pode comprometer de maneira significativa as qualidades nutricionais e fisiológicas do produto.

Os parâmetros que afetam a taxa de secagem, quando se seca grãos utilizando ar forçado, são: temperatura e umidade relativa ambiente, temperatura e a vazão do ar de secagem, teor de umidade inicial e de equilíbrio dos grãos e quando for o caso, velocidade desses grãos no secador.

Os parâmetros de secagem citados não são independentes, isto quer dizer que eles afetam a taxa de secagem como um conjunto de fatores e não isoladamente. O manejo adequado desses parâmetros permite que se determine qual o equipamento adequado para condições de secagem específicas.

A temperatura e umidade relativa do ambiente muitas vezes não são consideradas como de importância para a secagem a altas temperaturas. Estes dois parâmetros não têm influência sobre a taxa de secagem. Entretanto, eles determinam a quantidade de calor sensível necessária para se atingir a temperatura de secagem. Quanto menor a temperatura ambiente, maior será o gasto de energia para o aquecimento desse ar, revertendo em maior custo de secagem.

A velocidade com que o material passa no secador (na maioria das vezes mencionado como fluxo de massa) pode influenciar a taxa de secagem, a eficiência do processo e a qualidade final do produto, BALABAN (1984).

Na prática, como em muitos trabalhos científicos, a temperatura do ar de secagem para sementes não deve ser superior a 40°C. Esta afirmativa é incompleta, uma vez que o tempo de exposição do produto ao ar de secagem é um fator a ser considerado.

DALPASQUALE (1983), observou na secagem de soja utilizando um secador concorrente, que os parâmetros, temperatura do ar de secagem e fluxo de grãos são fatores que afetam a qualidade do produto. Em vista disso, ele sugere que seja utilizado o termo "tempo de residência do produto no secador" para se definir melhor as condições de secagem.

O tempo de residência pode aparecer explicitamente como um valor definido ou implicitamente mencionando-se a temperatura de secagem e velocidade do produto no secador.

Nas últimas décadas, foram muitos os trabalhos experimentais desenvolvidos na área de secagem, sendo poucos aqueles absorvidos pelas indústrias.

A secagem artificial é um processo altamente dispendioso em energia térmica para o aquecimento e mecânica para movimentação do ar. Da energia requerida no processamento de produtos agropecuários, 65 a 89,5% de toda a energia gasta é utilizada pelo processo de secagem (MEYER et alii, 1982), que depende fortemente das condições de operação e da umidade que se pretende retirar do produto.

O secador de grãos é um dispositivo que usa uma fonte térmica para aquecer o ar ambiente e um ventilador para forçar a movimentação deste ar aquecido, com a finalidade de remover a umidade de um determinado produto a ser seco. Entre os secadores industriais, a técnica de leito deslizante é a mais utilizada. O secador em leito deslizante pode ter diferentes configurações de acordo com as direções de escoamento do ar e do sólido. Os três tipos clássicos destes secadores apresentam escoamentos contracorrente, escoamentos cocorrentes e escoamentos cruzados.

Para a realização deste trabalho, foram efetuadas visitas técnicas a diversas unidades de beneficiamento de grãos, sementes e indústrias fabricantes de secadores.

As indústrias de beneficiamento de grãos (soja) utilizam secador de torre, com capacidade para 1200 ton./dia, sendo um de seus maiores problemas o desgaste mecânico devido ao atrito da matéria prima com as chapas metálicas.

Estes secadores operam com temperaturas de 100°C, sendo a remoção da umidade efetuada com uma matéria-prima muito heterogênea proveniente de diversos produtores.

Em função do grande volume de material processado por dia, o controle operacional existente é limitado e não se consegue ter uma idéia da variação de umidade deste produto quando armazenado.

Tem sido realizadas tentativas, por alguns fabricantes, no sentido de melhorar a eficiência de seus secadores, como por exemplo a inclinação das calhas para um melhor deslocamento da massa de grãos ao longo da torre de aquecimento e de resfriamento, com vistas à homogenização da umidade do grão. Sensores de temperatura ao longo da torre acionam células de descarga que por sua vez, controlam o tempo de exposição do produto.

Nas indústrias de beneficiamento de sementes, são utilizados basicamente dois tipos de secadores: os com capacidade para 15 t/h, que utilizam sistemas de cascata e os secadores estáticos. A temperatura utilizada é de 45°C e o tempo de secagem fica em torno de 4 a 6 horas para reduzir a umidade da soja de 17% para 13% base úmida.

Os que utilizam sistema estático são compostos por células metálicas com a introdução do ar aquecido por um tubo central perfurado. O seu desempenho é bastante comprometido em função da má distribuição do ar aquecido, levando de 6 a 8 horas para reduzir a umidade da soja de 17% para 13% base úmida.

Menção especial deve ser feita ao problema das sementes de soja, que pela dificuldade de manter a capacidade e o vigor germinativo até o plantio no ano seguinte, está se tornando um problema crônico no Brasil.

Dentre os grãos, destacam-se em termos de agricultura brasileira, o arroz, o amendoim, o milho, a soja e o trigo, os quais representam aproximadamente 90 % dos grãos produzidos para o consumo humano, sendo a soja uma das mais importantes fontes de óleo comestível e o subproduto obtido da extração que constitui numa das mais ricas fontes de proteínas para as indústrias alimentícias e de rações.

As pesquisas mais recentes em leito deslizante estão voltadas para a determinação experimental do parâmetro de troca térmica entre o ar e o sólido, e para aplicações onde a transferência de calor e massa são significativas.

Os objetivos do presente trabalho são a construção de um secador conforme reenvidicação da Patente Industrial nº 8700583 (1987),anexo(11). A novidade introduzida nesta patente é a existência de promotores estacionários de mistura de sólidos que permite uma melhor transferência de calor e massa entre o ar de secagem e o grão.

A construção de um secador modelo permite uma análise preliminar de seu funcionamento, possibilitando a construção de um secador em escala piloto para análise da transferência de calor e massa.

Com os resultados obtidos e com as informações dos sistemas de secagem existentes no mercado nacional visualiza-se a possibilidade da construção do presente sistema em escala comercial.

2) REVISÃO BIBLIOGRÁFICA

2.1) TRANSFERÊNCIA DE CALOR

A transferência de calor pode ocorrer por três mecanismos diferentes: condução, convecção e radiação. Na secagem de grãos, utilizando um secador com promotores estáticos anulares de mistura, os mecanismos de transferência de calor predominantes são a condução nos sólidos e a convecção na interface sólido-fluido. O mecanismo da convecção está relacionado à condução da fina película de fluido adjacente à superfície de transferência de calor dos sólidos, HOLMAN (1972).

Encontra-se na literatura uma grande variação da quantidade de dados e de modelos existentes para a transferência de calor na interface sólido-fluido em meios porosos, como é o caso de grãos, entre diferentes tipos de leito. Assim, há um extenso tratamento para leitos fixos, fluidizados e partícula única na literatura, enquanto que para leitos deslizantes, leitos de jorro e transporte pneumático há, comparativamente, uma pequena quantidade de trabalhos, SARTORI (1986).

a. CONDUÇÃO

Na condução, a equação da energia, inserindo a 1º lei de Fourier, pode ser escrita, como:

$$\rho C \frac{\partial T}{\partial t} = \nabla . (k \nabla T)$$
(1)

sendo:

 ρ - densidade, kg/m³

- C calor específico, kJ/kg K
- T temperatura, K
- t tempo, s
- k condutividade térmica, kJ/m.s.K

Quando a condutividade térmica é independente da temperatura ou da posição, a equação acima torna-se:

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$
 (2)

sendo: α - difusividade térmica, m²/s $\alpha = \frac{k}{\rho C}$

CARSLAW e JAGER (1959), apresentam uma extensa tabulação de soluções para esta equação, para diferentes condições de contorno e condições iniciais.

b. CONVECÇÃO

O fluxo térmico por convecção entre um contorno sólido e um fluido é dado pela equação:

$$q = a^* h \left(T_{\rm s} - T_{\infty} \right) \tag{3}$$

sendo:

 a^* - área de transfêrencia, m²

h - coeficiente convectivo de transferência calor, kJ/m². s.K

T_s - temperatura da superfície, K

q - fluxo térmico por convecção, kJ/s

 T_{∞} - temperatura do meio, K

O coeficiente convectivo de transferência de calor é na realidade uma função complexa do escoamento do fluido, das propriedades térmicas do meio fluido e da geometria do sistema, além da sua dependência em relação à temperatura.

Para o estudo da convecção ao redor de sólidos (grãos), é necessário um estudo do escoamento sobre corpos bojudos. A diferença mais importante entre o escoamento sobre corpos bojudos e sobre uma placa plana se encontra no comportamento da camada limite.

O deslocamento da camada limite de um fluido, quando escoando sobre um corpo aerodinâmico, ocorre quando o aumento da pressão ao longo da superfície se

torna muito grande e se dá perto da parte traseira. Já num corpo bojudo, o ponto de separação ocorre muito longe da borda de ataque.

Num corpo bojudo, a resistência de atrito superficial é pequena comparada com a resistência de forma. A resistência de forma surge da separação do escoamento que impede que as linhas de corrente se fechem, induzindo uma região de baixa pressão na parte traseira do corpo. Essa diferença de pressão produz uma força resistente, além do atrito superficial.

Quando as partículas utilizadas no estudo da transferência convectiva de calor têm uma forma irregular, as equações para esferas produzem resultados satisfatórios se o diâmetro da esfera for substituído por um diâmetro equivalente, ou seja, o diâmetro de uma partícula esférica que tenha a mesma área superficial que a partícula de forma irregular, KREITH (1969).

O coeficiente total de resistência de uma esfera é apresentado em função do número de Reynolds. Em um intervalo de números de Reynolds entre 25 e 100.000, a equação recomendada por McADAMS (1954), para o cálculo do coeficiente convectivo médio por unidade de área para esferas aquecidas ou resfriadas por um gás em um leito estático, é:

$$\frac{h_e D_o}{k_f} = 0.37 \left(\frac{V_{\infty} \rho_{\infty} D_0}{\mu_f}\right)^{0.6}$$
(4)

sendo:

h_e - ceficiente convectivo de transferência de calor para esferas, W/mK

D₀ - diâmetro da esfera, m

k_r - condutividade térmica do fluido, kJ/msK

 V_{∞} - velocidade no meio, m/s

 ρ_{∞} - densidade no meio, kg/m³

μ - viscosidade, kg/m s

A quantidade de dados e modelos existentes na literatura sobre a transferência de calor entre gás e sólido em meios porosos varia muito entre os diferentes tipos de leito, SARTORI (1986).

O autor fez um estudo do coeficiente de transmissão de calor entre sólido e fluido em leito deslizante, nas configurações de escoamentos em contracorrente, concorrentes e cruzados com situações de aquecimento e resfriamento de sólidos. Utilizou partículas de areia e vidro com diferentes granulometrias e grãos de milho, arroz e soja, empregando-se o ar como fluido percolante.

Os resultados mostraram coerência com os dados de literatura, com os valores do coeficiente de transferência de calor crescentes na ordem dos escoamentos concorrente, cruzados e contracorrente, tendendo assintoticamente a um mesmo valor para altos números de Reynolds.

Para o presente trabalho, o estudo do dimensionamento se aplica a um escoamento em contracorrente, portanto apresentamos a seguir uma revisão bibliográfica referente à transferência de calor entre o gás e o sólido em leito deslizante, na configuração de escoamento em contracorrente.

FURNAS (1930), adotou as seguintes suposições para o desenvolvimento das equações:

 a convecção através da superfície do sólido é o mecanismo predominante no processo de troca térmica;

- os escoamentos ocorrem no interior de um tubo cilíndrico de diâmetro constante;

- o sólido é alimentado na extremidade superior da coluna e o gás aquecido é alimentado na parte inferior;
- as densidades dos fluxos de massas do gás e do sólido são constantes;
- propriedades físico-químicas são constantes ao longo do leito;
- processo ocorre em regime permanente.

A partir do balanço térmico no sistema, são obtidas as equações:

- fase fluida e fase sólida,

$$C_f G_f \frac{dT_f}{dx} = C_s G_s \frac{dT_s}{dx}$$
(5)

sendo: C_f - calor específico do fluido, kJ/kg K

 $G_{\rm f}$ - densidade do fluxo de massa (fluido), kg/m²s

- C_s calor específico do sólido, kJ/kg K
- G_s densidade do fluxo de massa (sólido), kg/m²s
- T temperatura, K
- x coordenada na direção de escoamento do gás, m
- definição do coeficiente de transferência de calor,

$$C_s G_s \frac{dT_s}{dx} = -h S (T_f - T_s)$$
(6)

sendo:

 C_s - calor específico do sólido, kJ/kg K

 G_s - densidade do fluxo de massa (sólido), kg/m²s

T_s - temperatura (sólido), K

- T_f temperatura (fluido), K
- h coeficiente convectivo de transferência de calor entre o gás e o sólido, kJ/m² sK

Considerando que na região de entrada do gás, em x = 0, $T_f = T_{f0}$, e na região de entrada do sólido, em x = L, $T_s = T_{s1}$, FURNAS (1930) determinou os perfis de temperatura:

- fase fluida:

h

$$\ln\left[\frac{A+BT_{f}}{A+BT_{f0}}\right] = -\frac{BhS}{C_{f}G_{f}} x$$
(7)

- fase sólida:

$$\ln\left[\frac{A+B(T_s - T_{s1})}{A}\right] = B \frac{hS}{C_f G_f} (L - x)$$
(8)

onde,

$$A = \psi(T_{f0} - T_{s0}) \tag{9}$$

$$B = 1 - \psi \tag{10}$$

$$\psi = \frac{C_f G_f}{C_s G_s}$$
(11)

Neste caso, o coeficiente de troca térmica é constante, porém FURNAS (1930) também usou uma dependência exponencial do coeficiente h em relação à temperatura no intervalo de 25 à 110°C e constatou que, embora as formas sejam facilmente integráveis, as equações resultantes são muito complexas e não devem ser aplicadas nos cálculos práticos. Concluiu, ainda, que é melhor considerar o coeficiente h constante e usar um valor médio no intervalo de variações das condições de operação de interesse.

A formulação do problema, levando-se em conta a condução térmica no interior da partícula, foi realizada por LOVELL e KARNOFSKY (1943).

As principais suposições consideradas, foram:

 o sólido se desloca com velocidade uniforme, devido a ação gravitacional e o escoamento de gás é contracorrente ao do sólido;

- as partículas são esferas de um mesmo diâmetro, que entram na parte superior do trocador com temperatura constante;
- o gás é alimentado na parte inferior do trocador de calor com temperatura constante;
- a troca térmica ocorre entre o gás e o sólido;

- na direção dos escoamentos, a condução de calor no gás é desprezível;

- não há fonte térmica nas partículas sem reação química;

- a condução térmica no interior da partícula é considerada;

- a parede do trocador é isolada termicamente do ambiente;

-as propriedades dos materiais são constantes.

Através de balanços térmicos são obtidas as equações:

- no leito:

$$C_{f} G_{r} \frac{dT_{r}}{dt} = h S (T_{r} - T_{s} \mid r) \frac{dx}{dt}$$

$$C_{f} G_{r} \frac{dT_{r}}{dx} = h S (T_{r} - T_{s} \mid r)$$
(12)

sujeita à condição de contorno na região de entrada do sólido: $T_f = T_{f1}$, em x = OLOVELL e KARNOFSKY (1943) invertem o sentido desta coordenada em relação ao sentido utilizado por FURNAS (1930).

- na região de entrada do sólido:

$$C_{f} G_{r} (T_{r} - T_{r_{1}}) = \frac{hSG_{s}}{(1 - \varepsilon)\rho_{s}} \int_{0}^{t} (T_{r} - T_{s}|_{r}) dt$$

$$C_{f} G_{r} (T_{r} - T_{r_{1}}) = \frac{C_{s} G_{s}}{\frac{4}{3} \pi r^{3}} \int_{0}^{r} 4 \pi z^{2} (T_{r} - T_{s_{1}}) dz$$
(13)

- no sólido:

$$\frac{\partial T_{s}}{\partial t} = \frac{k_{s}}{\rho_{s} C_{s}} \left(\frac{\partial^{2} T_{s}}{\partial z^{2}} + \frac{2}{z} \frac{\partial T_{s}}{\partial z} \right)$$
(14)

sujeita às seguintes condições:
$$T_{s} = T_{s_{1}}, \text{ em } t = 0$$

$$\frac{\partial T_{s}}{\partial z} = \frac{h}{k_{s}} (T_{f} - T_{s}|_{r}), \text{ em } z = r$$
(14a) (14b)

Os autores não obtiveram a solução analítica do problema, porém determinaram uma solução aproximada por meio de uma modificação do método gráfico de Schimidt, método de NESSI e NISSOLE apud LOVELL e KARNOFSKY (1943).

A solução exata deste problema foi calculada por MUNRO e AMUNDSON (1950) através de uma relação diferencial equivalente à relação integral desenvolvida por LOVELL e KARNOFSKY (1943), obtendo a equação para a partícula no leito,

$$\frac{\partial^2 \mathbf{T}_s}{\partial z^2} + \frac{2}{z} \left(\frac{\partial \mathbf{T}_s}{\partial z} \right) = \frac{\rho_s \mathbf{C}_s}{\mathbf{k}_s} \left(\frac{\partial \mathbf{T}_s}{\partial t} \right)$$
(15)

As esferas se deslocam com uma velocidade uniforme, $v_{P} = x/t$, onde x é a coordenada da distância em relação à parte superior do trocador, logo

$$\frac{\partial^2 T_s}{\partial z^2} + \frac{2}{z} \left(\frac{\partial T_s}{\partial z} \right) = \frac{V_p \rho_s C_s}{k_s} \left(\frac{\partial T_s}{\partial x} \right)$$
(16)

Com a suposição, de que as esferas são partículas de um mesmo tamanho e que entram na parte superior do trocador com temperatura constante, implica que T_s = T_{s1} , em x = 0. A consideração de que existe uma resistência à transferência de calor entre as partículas e o gás foi descrita pela igualdade

$$k_{s} \frac{\partial T_{s}}{\partial z} = h \left[T_{f} - T_{s} \left(z \right) \right]$$
(17)

A relação entre as temperaturas do gás e do sólido foi obtida a partir do balanço térmico entre duas secções do leito, desprezando a condução no gás, na direção dos escoamentos,

$$\frac{3 \psi \gamma}{r} \left(\frac{\partial T_s}{\partial z}\right)\Big|_{z=r} = \frac{dT_f}{dx} \quad onde, \quad \gamma \equiv \frac{k_s}{\rho C_s v_p}$$
(18)

A condição de contorno para esta equação foi $T_f = T_{f1}$, em x = 0.

A solução deste conjunto de equações foi obtida por meio da transformada de Laplace em relação à variável x.

Os perfis de temperatura do gás e do sólido, ao longo do leito, foram determinados para os casos de $\psi \neq 1$ e $\psi = 1$:

Para
$$\psi \neq 1$$

- perfil de temperatura do sólido:

$$T_{s}(z,x) = T_{s1} + \frac{T_{s1} - T_{f1}}{\psi - 1} - \frac{2r(T_{s1} - T_{f1})}{z} \sum_{n=1}^{\infty} \frac{\operatorname{sen} \frac{w_{n} z}{r}}{g_{n} \operatorname{sen} w_{n}} \exp\left(-\frac{\gamma}{r^{2}} w_{n}^{2} x\right)$$
(19)

onde,

$$g_{n} = 2(1 - \xi) - 3\psi - \xi w_{n}^{2} + \frac{3\psi + (\xi - 1)w_{n}^{2}}{3\psi + \xi w_{n}^{2}} (1 + 2\xi)$$

$$\xi = \frac{k_{s}}{h_{f} r}$$
(20)

e w_n são as raízes da equação,

$$\left[-3\psi + (1-\xi)w_n^2\right] \operatorname{sen} w_n + (3\psi + \xi w_n^2)w_n \cos w_n = 0$$
(21)

- perfil de temperatura do gás:

$$\frac{T_f - T_{s1}}{T_f - T_{s1}} = 1 + 6\psi \sum_{n=1}^{\infty} \frac{1 - \exp\left(-\frac{W_n^2 \gamma x}{r^2}\right)}{(3\psi + \xi w_n^2) - 3(3\psi + \xi w_n^2) + w_n^2(1 + 2\xi)}$$
(22)

- temperatura média das partículas na saída do trocador:

$$\overline{T_s} = T_{s1} + \frac{T_{s1} - T_{f1}}{\psi - 1} + 6 (T_{s1} - T_{f1}) \sum_{n=1}^{\infty} \frac{\exp\left(-\frac{\gamma}{r^2} w_n^2 x\right)}{(3\psi + \xi w_n^2)^2 - 3(3\psi + \xi w_n^2)^2 + w_n^2 (1 + 2\xi)}$$
(23)

ou

$$\frac{T_{s} - T_{s1}}{T_{s1} - T_{f1}} = \frac{1}{\psi - 1} + 6 \sum_{n=1}^{\infty} \frac{\exp\left(-\frac{\gamma}{r^{2}} w_{n}^{2} x\right)}{(3\psi + \xi w_{n}^{2})^{2} - 3(3\psi + \xi w_{n}^{2}) + (1 + 2\xi) w_{n}^{2}}$$
(24)

onde, a temperatura média das partículas na saída inferior do trocador é definida pela equação:

$$\overline{T_s}(x) = \frac{3}{r^3} \int_0^r z^2 T_s(z, x) dx$$
 (25)

para $\psi = 1$

- perfil de temperatura do sólido:

$$T_{s}(z,x) = \left[-\frac{15 x}{r^{2} (1+5\xi)} - \frac{5r^{2}}{2r^{2} (1+5\xi)} + \frac{15}{14} \cdot \frac{(1+7\xi)}{(1+5\xi)} \right] (T_{s1} - T_{f1}) + T_{s1} - \frac{2r}{z} (T_{s1} - T_{f1}) \sum_{n=1}^{\infty} \frac{\sin \frac{zw_{n}}{r}}{g_{n} \sin w_{n}} \exp\left(-\frac{\gamma}{r^{2}} w_{n}^{2} x\right)$$
(26)

onde,

b

ļ

$$g'_{n} = -2\xi - 1 - \xi w_{n}^{2} + \frac{3 + (\xi - 1) w_{n}^{2}}{3 + \xi w_{n}^{2}} (1 + 2\xi)$$
(27)

e w_n são as raízes da equação (21), com ψ = 1.

- perfil de temperatura do gás:

$$\frac{T_f - T_{s1}}{T_{f1} - T_{s1}} = 1 + \frac{15 \,\gamma x}{r^2 \,(1 + 5\xi)} + 6 \,\sum_{n=1}^{\infty} \frac{1 - \exp\left(-\frac{\gamma}{r^2} \,w_n^2 \,x\right)}{(3 + \xi \,w_n^2)^2 - 3(3 + \xi \,w_n^2) + w_n^2 \,(1 + 2\xi)}$$
(28)

A determinação experimental do coeficiente h baseado neste método não é simples, pois existe muita dificuldade na medida da temperatura em diferentes posições no interior da partícula durante o escoamento.

VIOLLAZ e SUAREZ (1980) obtiveram outra solução numérica do problema formulado por LOVELL e KARNOFSKY (1943). Foi dado um tratamento diferente às equações diferenciais que descrevem o fenômeno, o qual evitou a integração numérica das equações diferenciais parciais. Usando a resposta a uma função degrau, na temperatura do gás, a solução do problema foi determinada por meio do teorema de DUHAMEL.

As variações de temperaturas do gás e do sólido foram obtidas através de um algoritmo, levando em consideração a resistência térmica no interior da partícula. Os resultados foram comparados com a solução analítica calculada por MUNRO e AMUNDSON (1950) e com a solução aproximada apresentada por LOVELL e KARNOFSKY (1943). Foi verificado que os dados de temperatura do gás obtidos por VIOLLAZ e SUAREZ (1980) são os que mais se aproximam da solução exata.

Ao longo das décadas, a pesquisa experimental não acompanhou a pesquisa teórica na configuração de escoamentos contracorrente. Os trabalhos existentes estudam o comportamento do gás sobre o sólido em função do leito, onde utilizam material sintético em forma granular, SARTORI(1986).

Para análise do tipo de escoamento, foram utilizados as equações desenvolvidas por FURNAS (1930), onde pode-se determinar a dependência de NUSSELT (Nu) em função de REYNOLDS (Re).

$$Nu = 0.018 \text{ Pr}^{1/3} \text{ Re}^{1,23}$$
(29)

O número de PRANDTL, Pr = 0,72 e o número de REYNOLDS variando de 10 a 50, foi obtido no estudo desenvolvido por SISSOM e JACKSON (1967).

Outra correlação foi desenvolvida por BOWERS e REINTJES (1961), onde foram analisados os dados obtidos de diversos autores, determinando a seguinte relação,

Nu = $0,626 \text{ Re}^{0,59}$ para Re variando no intervalo de 50 a 500.

Nos trabalhos desenvolvidos, os autores concluíram que para a utilização de um dos modelos são necessárias experiências em escala semi-industrial, visando a obtenção de parâmetros. Enquanto que os outros modelos, que podem prescindir dos resultados em escala semi-industrial, exigem ainda maior número de experiências para possibilitar o estabelecimento de correlações adequadas entre o coeficiente de troca térmica e as variáveis do sistema.

O leito deslizante na configuração de escoamento contracorrente pode ser tratado como sendo constituído pelos escoamentos de gás e de sólido, com perfis planos de velocidade. A suposição mais importante neste tratamento é a de que a convecção na superfície do sólido é o mecanismo predominante de troca térmica.

Podendo ser adotada também, as seguintes simplificações:

- perfis planos de temperatura nas regiões de entrada de ambas as fases;

- perda de calor através das paredes do sistema desprezível;

leito com propriedades homogêneas;

- escoamentos unidirecionais de gás e de sólido;

- propriedades físico-químicas constantes ao longo do leito.

Apresentando algumas correlações de coeficiente de transferência de calor, quadros 1 e 2.

AUTOR	EQUAÇÃO	CONSIDERAÇÕES	OBSERVAÇÕES
Gamson et alli, 1943	$\frac{h \operatorname{Pr}^{\frac{2}{3}}}{C_f G_f} = 3,26 \operatorname{Re}^{-0.65}$ 20 < Re < 1000	equação desenvolvida a partir de dados experiment. de transf. de calor e massa, camada fina, de catalisadores de celite	a temperatura de bulbo seco variou de 27 a 71°C, bulbo úmido de 15,5 a 52°C velocid, do ar 0,45 a 2,58 m/s
Ranz e Marshall, 1952	$\frac{h D_{p}}{k_{f}} = 2 + 0.6 \mathrm{Re}^{0.5} \mathrm{Pr}^{0.33}$	equação desenvolvida para transf.de calor entre uma esfera e um gás em escoamento	equação aplicada na simulação de secadores de trigo em cama- da fina e em leitos fixo e fluidiz
Boyce, 1965	$h_a = 4286,5 \left[\frac{G_f(T_f + 273)}{P} \right]^{0.6011}$	equação desenvolvida a partir de experiências de aquecimento e resfriamento de grãos secos	T_f dado em °C G_f dado em kg / m ² .min P dado em N / m ² ha dado em kJ / m ³ .min. K
Bakker-Arkema et alli,1982	$h = 0.263G_f^{0.59} G_f \le 500 kg / m^2 s$ $h = 0.69G_f^{0.49} G_f > 500 kg / m^2 s$	consideraram um diâmetro equivalente para o grão	G_f dado em lb / ft ² h h dado em BTU / ft ² h ° F
Gupta e Srinivason, 1982	$\frac{hD_p}{k_f} = 1.62 \mathrm{Re}^{0.25} \mathrm{Pr}^{0.33} \mathrm{Re} < 120$	equação desenvolvida para transf. de calor gás e partículas esféricas em leito fixo	

QUADRO 1- CORRELAÇÕES PARA O COEFICIENTE DE TRANSFERÊNCIA DE CALOR -LEITO FIXO.

FONTE: CALADO, 1993.

QUADRO 2- CORRELAÇÕES	PARA	0	COEFICI	ENTE	DE
TRANSFERÊNCIA	DE CAL	JOF	R -LEITO I	DESLIZA	NTE

AUTOR	EQUAÇÕES	CONSIDERAÇÕES
Sisson e Jackson, 1967	$C_{f}G_{f}\frac{dT_{f}}{dx} = hS(T_{s} - T_{f})$ $Nu = 0.018 \text{ Pr}^{\frac{1}{3}} \text{ Re}^{1.23} 10 < \text{Re} < 50$ $\text{Pr} = 0.72$	equação desenvolvida a partir de dados experimentais
Bowers e Reintjes, 1961	$q = hS(T_s - T_f)$ $Nu = 0.626 \mathrm{Re}^{0.59} 50 < \mathrm{Re} < 500$	equação desenvolvida a partir de dados experimentais

FONTE: SARTORI, 1986.

c. PERFIS DE TEMPERATURA DO GÁS E DO SÓLIDO

No escoamento em contracorrente, levando-se em conta a geometria cilíndrica do leito, conforme as coordenadas indicadas no esquema da Figura 1, e adotando as simplificações descritas anteriormente, as equações diferenciais que descrevem a transferência de calor em regime permanente no interior do sistema, de acordo com FURNAS (1930), temos:

- Fase fluida:

$$C_f G_f \frac{dT_f}{dx} + hS(T_f - T_s) = 0$$
(30)

- Fase sólida:

$$C_s G_s \frac{dT_s}{dx} + hS(T_f - T_s) = 0$$
(31)

sujeitas às condições na região de entrada do gás:

$$t_{f}(0) = T_{fo}$$
(32)

$$\mathsf{T}_{\mathsf{S}}(0) = \mathsf{T}_{\mathsf{SO}} \tag{33}$$

FURNAS (1930) obteve a solução do sistema de equações (30) e (31) para as condições de contorno $T_f(0)=T_{f0} e T_s (L)=T_{s1}$, conforme as equações (7) e (8).

A solução deste sistema de equações diferenciais com as condições de contorno (32) e (33) é demonstrado como segue:

Obtenção dos perfis de temperatura do gás e do sólido nos escoamentos em contracorrente, considerando as variáveis adimensionais:

(37)

$$X = \frac{hSx}{C_f G_f},\tag{34}$$

$$v = \frac{(T_f - T_{f0})}{T_{s0} - T_{f0}}$$
(35)

$$u = \frac{(T_s - T_{f_0})}{T_{s_0} - T_{f_0}}$$
(35a)

e o parâmetro adimensional

$$\psi = \frac{C_f G_f}{C_s G_s},\tag{36}$$

a troca térmica entre os constituintes na configuração de escoamentos

contracorrente é descrita pelas equações:

$$\psi \frac{dv}{dX} + v - u = 0 \tag{I}$$
$$\frac{du}{dX} + v - u = 0 \tag{II}$$

sujeitas às condições:

$$v(0) = 0$$

 $u(0) = 1$

levando em consideração as coordenadas do esquema da Figura 1.

Subtraindo da equação (37), (I) e (II), tem-se,

$$\psi \frac{dv}{dX} - \frac{du}{dX} = 0 \tag{38}$$

integrando em X de 0 a X , tem-se que

$$u(X) = -1 + v(X)$$
 (39)

logo,
$$\frac{v - u = (1 - \psi) [v(X) + 1/(1 - \psi)], \text{ para } \psi \neq 1}{v - u = 1, \text{ para } \psi = 1}$$
 (40)

da equação (I), tem-se

$$\frac{d}{dX}\left\{\exp\left[(1-\psi)X/\psi\right]\cdot\left[v(X)+1/(1-\psi)\right]\right\}=0$$
(41)

logo, para $\psi = 1$,

$$\frac{T_f - T_{fo}}{T_{so} - T_{f0}} = \frac{1 - \exp[(1 - \psi)X/\psi]}{1 - \psi}$$
(42a)

$$\frac{T_s - T_{fo}}{T_{so} - T_{f0}} = \frac{1 - \psi \exp[-(1 - \psi)X/\psi]}{1 - \psi}$$
(42b)

E para,

$$\psi = 1$$

$$v = -\frac{X}{\psi}$$

$$u = 1 - X$$
(42c)

E, para $\psi \neq 1$, obtém-se:

$$\frac{A + B.T_f(x)}{A + B.T_{f0}} = \exp(\lambda x)$$
(43)

$$\frac{A+B.T_s(x)}{A+B.T_{f0}} = \psi \exp(\lambda x)$$
(44)

onde,

.

$$A \equiv \psi T_{f0} - T_{so}$$

$$B \equiv 1 - \psi$$

$$\lambda \equiv -\frac{hS}{C_f G_f} (1 - \psi)$$
(45)

Para ψ = 1, tem-se que:

$$\frac{T_{f0} - T_f(x)}{T_{f0} - T_{s0}} = \frac{hS}{C_f G_f} x$$
(46)

$$\frac{T_{so} - T_s(x)}{T_{f0} - T_{s0}} = \frac{hS}{C_f G_f} x$$

d. PROMOTORES ESTACIONÁRIOS

PARK (1979) obteve o aumento na taxa de transferência de calor para o escoamento laminar de fluidos newtonianos e não-newtonianos em um trocador de calor, munido de promotores estacionários anulares de turbulência.

No trabalho de PARK, JARDINE e SUNDFIELD (1983), utilizaram o princípio do trocador de calor com promotores estacionários, que possibilitou a construção de um secador com aletas internas retas para avaliar as possíveis correlações de transferência de calor e massa. Foi obtida uma equação de secagem do tipo:

$$\frac{(Y - Yeq)}{(Yo - Yeq)} = a(L^b)$$
(47)

onde : Y umidade, kg de água/kg de matéria seca

Y_{ea} umidade de equilíbrio, kg de água/kg de matéria seca

Y_o umidade inicial, kg de água/kg de matéria seca

- a e b constantes da equação, adimensional
 - L comprimento do secador, m

Obtiveram um rápido aquecimento dos grãos num reduzido tempo de residência.

A maior resistência à transferência de calor entre as fronteiras do sólido e os fluidos turbulentos é a subcamada laminar adjacente à parede. A resistência dessa camada laminar é proporcional a sua espessura e, qualquer redução na espessura resulta num aumento da taxa de transferência de calor entre a parede e o fluido.

Um meio de reduzir a espessura da camada laminar é aumentar a intensidade e escala da turbulência do fluido. Isto é feito pela utilização de promotores de turbulência no duto. Estudos feitos por Royds, Siegel, Colburn e King, mostram que os promotores de turbulência aumentam a taxa de transferência de calor. Entretanto, os promotores de turbulência também têm o efeito de aumentar a resistência ao escoamento, o que faz com que o calor transferido por unidade de energia gasta talvez não seja alterado, KNUDSEN e KATZ (1958).

GODOI (1996), utilizando promotores anulares estáticos de mistura em um secador contínuo vertical, realizou um estudo do comportamento hidráulico e da transferência de calor e massa. Um bom índice de correlação foi obtido para o fator de atrito em função do número de Reynolds. As equações empíricas, descrevendo a transferência de calor no secador, foram as correlações do número de NUSSELT em função dos números Reynolds para cada regime de escoamento. Estas equações apresentaram uma grande semelhança com equações para transferência de calor em leitos deslizantes.

2.2) SECAGEM

O estudo da secagem de grãos depende do enfoque que se deseja dar. Nos estudos teóricos, a ênfase é dada nos mecanismos simultâneos de transferência de calor e massa entre o produto a ser seco e o meio utilizado, em outros casos a secagem de grãos é estudada como sendo o processo unitário que leva a redução de umidade contida nestes para atingir um nível seguro para sua armazenagem. Este nível de umidade reduz a atividade respiratória dos grãos, diminuindo seu metabolismo, dificultando um meio propício para o desenvolvimento de fungos e bactérias, DALPASQUALE (1983).

Secam-se produtos agrícolas desde os primórdios da civilização, o homem se tornou agricultor entre 9.000 e 8.000 a.c.. A prova disto é a existência de várias passagens nos escritos dos povos antigos, que indicam a preocupação que os

mesmos tinham com a preservação dos cereais. Se houvesse um registro de patentes, caberia aos egípcios a invenção dos silos, PIZA e NETO (1980).

A secagem era feita em condições naturais do ambiente, pela incidência da energia solar e o movimento do ar. Mais tarde, controlava-se parcialmente as condições de secagem em fogões especiais ou salas aquecidas.

No período entre a primeira e segunda guerras mundiais, várias unidades experimentais foram construídas, sendo que de maneira comercial, destinavam-se basicamente à desidratação de frutas, vegetais e a secagem de milho. Após a segunda guerra mundial, tornaram-se comuns grandes unidades comerciais de secagem de grãos nas fazendas.

O conhecimento das propriedades físicas dos grãos é de fundamental importância, pois é a partir delas que os artifícios para processar os grãos são criados.

A forma, o tamanho, a densidade real, a densidade aparente, a consistência, a elasticidade, a textura do tegumento, a velocidade terminal, a carga eletrostática induzida, a cor, são algumas dessas propriedades utilizadas, JORGE (1980).

O grão como um ser vivo, respira eliminando gás carbônico, água e calor, tem a capacidade de enfrentar as doenças (microorganismos), os ataques de insetos e aumentar a temperatura através da atividade respiratória mais intensa.

Dentre as principais qualidades desejáveis para um grão ter seu período de conservação aumentada, estão: teor de umidade apropriadamente baixo e uniforme; baixa porcentagem de grãos trincados, quebrados, danificados e de materiais estranhos; baixa susceptibilidade à quebra; alto peso específico; alta viabilidade das sementes; baixa infecção de fungos e bactérias e baixa infestação de pragas.

A secagem mecânica pode ser entendida como a atividade destinada a diminuir artificialmente o teor de umidade dos grãos, até um limite adequado, sem comprometer as sua propriedades.

As três formas de umidade nos grãos que interessam na secagem mecânica, são (figura 2):

- Umidade superficial, aderida externamente;
- Umidade intersticial, sem função biológica, existindo livremente entre as moléculas dos grãos, mantida por forças capilares e pelo diferencial da pressão osmótica;
- Umidade de constituição, existente nas moléculas dos grãos, quimicamente ligadas, possuindo função biológica.

Figura 2 -Apresentação de forma simplificada da umidade existente nos grãos.

Na secagem dos grãos, a umidade retirada diz respeito à umidade superficial e à umidade intersticial, estas umidades representam um percentual de 13% até 27% e a umidade de constituição em até 13%, LASSERAN (1981).

O processo de secagem não altera a umidade de constituição, mesmo quando se atinge teores de umidade em 11%, o que é difícil, pois nesta faixa a umidade se encontra fortemente adsorvida, ligada por forças de Van Der Waals.

Os grãos contêm uma proporção variável de água e matéria seca, conforme pode ser observado no desenho esquemático (figura 3):

Figura 3 - Desenho esquemático de um grão e sua proporção variável de água e matéria seca.

O teor de água em porcentagem referente a matéria úmida

$$u = \frac{m_{a}}{m_{u}} \ge 100 = \frac{m_{a}}{m_{a} + m_{se}} \ge 100$$
(48)

e a taxa de umidade (x):
$$x = \frac{u}{100 - u}$$
 (49)

Em trabalhos científicos, utiliza-se a taxa de umidade, grandeza sem dimensão. Com efeito após a definição do teor de água, observa-se que não há uma relação linear entre u e m_a, razão pela qual a variação de um ponto de umidade não representa uma variação constante da massa de água durante a secagem.

Os fisiologistas de cereais determinaram que a água do grão se apresenta sob quatro tipos diferentes, em função da natureza das ligações físico-químicas existentes entre os componentes da matéria e as moléculas de água, correspondentes aos diferentes níveis de hidratação do produto, conforme pode ser visto na figura 4.

A molécula de água se comporta na realidade, como um microímã, com um pólo positivo e um polo negativo H-OH⁺.

O primeiro tipo de água é constituído por uma monocamada de água ligada a certos agrupamentos moleculares da matéria biológica, fortemente polarizados, como o grupo das hidroxilas R-OH⁺.

A água do segundo tipo é representada por uma camada polimolecular de água, vindo a fixar-se sobre a camada monomolecular precedente.

Essas diferentes camadas moleculares, ligadas à matéria por meio de ligações eletromagnéticas, chamadas forças de Van Der-Waals, constituem a água pseudolíquida, não solvente e fortemente adsorvida.

O terceiro tipo de água que se encontra nos grãos é constituída de água líquida sob tensão osmótica. Trata-se de água solvente, que retém diferentes substâncias dissolvidas nas células (açúcares, ácidos, amidos, sais, etc.). Esse tipo de água fracamente adsorvida tem um papel biológico e pode permitir as reações enzimáticas, bem como o desenvolvimento de fungos.

O quarto tipo, é constituído por água de impregnação,denominada de água livre. Na realidade essa água não é realmente livre nem água de embebição,como numa esponja, uma vez que não existem vasos capilares no grão, ela é retida no grão mecanicamente, pelas paredes celulares, LASSERAN (1978).

Figura 4 - Representação esquemática da fixação da água no grão (milho a 15°C), Fonte: LASSERAN (1978).

Moléculas de água estão ligadas à matéria com certa energia, denominada energia de ligação, que se torna importante à medida que se trata de água de 3º, 2º e 1º tipo.

Para evaporar essa água, no momento da secagem é necessário fornecer um suplemento de energia térmica. Nessas condições, o calor total de vaporização de água do grão pode ser enunciado, como: $L_g = L_a + L_1$, onde L_g é o calor de vaporização de água do grão e L_1 calor de ligação de água adsorvida e L_a o calor de vaporização da água pura, sendo que L_g , depende não somente do teor de água, mas também da temperatura e estrutura do grão.

O avanço da secagem será maior ou menor dependendo da natureza do grão, cuja massa funciona como um bom ou mau condutor, grãos submetidos as mesmas condições de secagem respondem de forma diferente, devido a diferença de constituição e da natureza biológica.

2.2.1) ISOTERMAS

Na secagem, o sentido do avanço de umidade será de dentro para fora. Entretanto, os grãos podem ter o movimento da água nos dois sentidos. De fora para dentro, quando estiver diante do processo de umedecimento (adsorção), e de dentro para fora quando estiver no processo de secagem (dessorção), o que depende da pressão do vapor de água no ar e no produto, ocasionando a movimentação das moléculas de água, num ou noutro sentido, WEBER (1995).

Os fenômenos de sorção, são importantes para abordar e tentar entender a problemática da secagem.

Autores têm procurado determinar experimentalmente as curvas de equilíbrio ar - grão, ou curvas de sorção (dessorção e adsorção) para cada espécie, em função da temperatura, RODRIGUES (1956), CHUNG e PFOST(1967), NGODDY e BAKKER-ARKEMA (1972), PARK (1971).

Essas curvas são de grande importância para a conservação de todos os produtos vegetais, animais e dos grãos em particular, sendo também úteis para as técnicas de condicionamento dos grãos: aeração e secagem, conforme mostrado na figura 5.

Figura 5 - Representação gráfica de uma isotérma, fonte: BALABAN, 1984.

As isotermas de sorção, chamadas frequentemente de curvas de sorção, traduzem a higroscopicidade do produto definida pelas relações existentes entre a água e outros componentes. E ainda, num plano teórico, conhecendo o teor de água e a temperatura da superfície do produto será possível, graças a estas curvas, conhecer o valor da pressão parcial de vapor de água na superfície e por conseguinte auxiliar no cálculo da taxa de secagem, DAUDIN (1983). Uma isoterma é a curva que relaciona o conteúdo de umidade de equilíbrio de um produto com a umidade relativa. Costuma-se utilizar a atividade termodinâmica de água, definida como:

$$a_{w} = \frac{Pv}{Pv_{e}} = \frac{\% UR_{e}}{100}$$
(49)

onde:

 a_w - atividade termodinâmica de água

Pv - pressão de vapor de água no alimento

Pv_o - pressão de vapor de água saturada

UR_{eq}- umidade relativa de equilíbrio

Uma das primeiras definições de atividade de água, demonstram a relação entre a pressão do vapor de água no ar e a pressão do vapor de água no ar saturado, medidos na mesma temperatura, SCOTT (1957) e SALWIN e SLAWSON (1959).

As equações matemáticas das isotérmas de sorção de umidade que descrevem as relações entre a atividade de água e o conteúdo de umidade de equilíbrio para um produto, estão mostrados no quadro 3. As isotermas de sorção de umidade são utilizadas para vários propósitos, em pesquisa de alimentos que incluem: determinação do tempo de secagem, predições para misturar e embalar alimentos prevendo as mudanças de umidade que ocorrem durante a armazenagem e estabilidade do mesmo, LAMAURO et alii (1985).

AUTOR	EQUAÇAO	FAIXA OPERACIONAL	OBSERVAÇÕES
Harkins e Jura, 1944	$\ln UR = a - bY_{se}^{-2}$	$\begin{array}{c c} \text{milho} & UR \leq 30\% \\ & 4,4^{\circ}C \leq T_s \leq 60^{\circ}C \end{array}$	equação geral aplicada por Gustafson, 1972
Smith, 1947	$Y_{se} = a - b \ln(1 - UR)$	$\begin{array}{c} \text{trigo} 50\% \leq UR \leq 90\% \\ 25^{\circ}C \leq T_x \leq 50^{\circ}C \end{array}$	equaç.deduzida p/adsorç. em polímeros, mas aplic. ao trigo Becker et all,1956
Henderson, 1952	$1 - UR = \exp(-aT_{s}Y_{s}^{\flat})$	para grãos em geral faixa variável	parâmetros a e b são de- pendentes da temper.e do tipo de grão
Chung e Pfost, 1967	$\ln UR = \frac{d}{RT_r} \exp(-bY_{rr})$	milho $20\% \le UR \le 90\%$ $10^{\circ}C \le T_{h} \le 68.3^{\circ}C$	equação geral aplicada por Gustafson, 1972
Haynes,1961	$\ln P_{\rm v} = a + b \ln P_{\rm set} + c \ln Y_{\rm se} + + d \ln P_{\rm set}^{2} + c \ln (P_{\rm set} Y_{\rm se})$	para grãos em gerál faixa variável	

QUADRO 3- MODELOS DE ISOTERMAS DE SORÇÃO

Bakker-Arkema, 1974	$Y_{ss} = f(UR, T_s)$	$ \begin{array}{l} \text{milho} 0 \le U/R \le 100\% \\ 40^{\circ}C \le T_s \le 140^{\circ}C \end{array} $	função f polinom.de 3ºgrau em UR,coef.função da temp do gás e da faixa de U.Relat
Roa e Rossi, 1980	$ \begin{array}{l} Y_{ss} = (p_1 U R + p_2 U R^2 + p_3 U R^3). \\ \exp \!\! \left[\frac{(q_0 + q_1 U R + q_2 U R^2 + q_3 U R^3 + q_4 U R^4)(T + q_3)}{q_4 U R^4)(T + q_3)} \right] $	para grãos em geral faixa variável	os coeficientes dependem do tipo de grão
Aguerre,Suarez e Viollaz,1982	$T_s = a \exp(-bY_{se})$	arroz $0.036 \le a_v \le 0.823$ $10^{\circ}C \le T_s \le 70^{\circ}C$	os parâmetros são funções lineares da ativid. de água
Matsumoto e Pei, 1984	$Y_{se} = a \frac{UR P_{sat}}{P - UR P_{sat}} + b$	para vários grãos $40^{\circ}C \le T_s \le 80^{\circ}C$	
Benedetti e Jorge, 1987	$Y_{se} = a_0 UR + a_1 UR^2 + a_2 UR^3$	amendoim, feijão e soja $10\% \le UR \le 90\% - T_r = 20^{\circ}C$	parâmetros dependem do tipo de grão

FONTE: CALADO, 1993.

Também, define-se o teor de umidade de equilíbrio como sendo a umidade em que o produto atinge quando deixado por tempo suficientemente longo em determinada condição de temperatura e umidade relativa (ROA & ROSSI, 1980).

Para que haja secagem, é necessário que a umidade relativa do ar esteja inferior a atividade da água do produto. Sem esta condição quando se deseja desidratar produtos agrícolas com o ar atmosférico, torna-se necessário utilizar o ar aquecido.

2.2.2) Teoria de Secagem

CORNEJO (1987), apresentou revisão bibliográfica sobre os princípios fundamentais da secagem.

O modelo físico, demonstra que durante a secagem, é necessário fornecer calor para que haja evaporação de umidade no material devendo ao mesmo tempo existir um sorvedor de umidade que atue na remoção de vapor de água, formado a partir da superfície de secagem, conforme mostra a figura 6.

A aplicação quantitativa das relações de transferência de calor e de massa representa um objetivo da engenharia. A secagem não se restringe em termos da análise das condições externas, mas é altamente desejado estabelecer como a água é transportada do interior do sólido para a superfície de secagem, conforme mostrado na figura 7.

Figura 7 - Transporte da água do interior do sólido para surfície de secagem.

A secagem artificial do grão por aquecimento é obtida por convecção forçada de ar quente através da massa de grãos, sendo o fenômeno da secagem interpretado como o resultado da transferência (ou trocas) simultâneas de calor e de matéria.

A energia térmica necessária para a evaporação da água é trazida pelo ar, pela transferência de calor do fluido para o produto a ser seco.

A água evaporada do grão é em seguida absorvida e removida por esse ar, pela transferência de matéria do produto a ser seco.

O ar desempenha um duplo papel, o de fluido transportador de calor e vapor. O resfriamento sofrido pelo ar no curso da secagem é somente parcial, devendo este desempenhar seu papel de fluido vapor - transportador e permanecer, ainda eficientemente quente para poder conter a maior quantidade possível de água, uma vez que sua capacidade de absorção aumenta em função da temperatura.

Sob a ação de uma corrente de ar quente, o grão úmido cede sua umidade ao ar, pois ocorre uma pressão de vapor de água mais fraca no ar que na superfície do produto.

O mecanismo de migração da umidade no interior do grão por ocasião da secagem tem sido estudado por numerosos pesquisadores. O fluxo da água do interior para o exterior do grão seria ocasionado por um derramamento hidrodinâmico sob a ação da pressão total interna ou por um processo de difusão, resultante de gradientes internos de temperatura e do teor de água ou de um gradiente de pressão osmótica.

A água se evapora na superfície do grão, especialmente no início da secagem. Em seguida, quando a desidratação é mais avançada, a evaporação se processará no interior da matéria.

Uma secagem eficiente depende da transferência de calor para o produto e da transferência de água do produto para o ar de secagem sendo influenciadas por um fator de intensidade, que depende da velocidade do ar no grão e por um fator de potencialidade que depende do gradiente de pressão parcial do vapor de água entre a superfície e o ar de secagem.

Pode-se expressar matematicamente a velocidade de secagem, como:

$$v = \frac{dY}{dt} = s k_1 (T - T_d) = s k_2 (f_d - f)$$
(50)

v velocidade de secagem (kg água/kg mat. s)

dY/dt derivada de umidade em relação ao tempo

s superfície específica de evaporação (m²/kg mat.s)

 k_1 fator de intensidade de secagem (kg água/m² s K)

 k_2 fator de intensidade de secagem (kg água/m².Pa.s)

T temperatura do ar quente de secagem (K)

 T_d temperatura da superfície do grão (K)

f pressão do vapor de ar quente de secagem (Pa)

 f_d pressão do vapor na superfície do grão para temperatura T_d (Pa)

A superfície de evaporação, s está em primeira aproximação, próxima da superfície específica do grão. Os fatores de intensidade da secagem, $k_1 e k_2$, são funções da dinâmica de secagem, eles aumentam com a velocidade do ar e decrescem com a espessura da camada de grãos. Dependem portanto, do fluxo específico do ar, expresso em metros cúbicos de ar por metros cubicos de grãos e por hora ou em kg de ar / kg de matéria seca.

A pressão parcial do vapor de água do ar, f depende das condições higrométricas do ar exterior e do aquecimento (direto ou indireto); para temperaturas de secagem superiores a 80°C, as variações de f são insignificantes em sua incidência sobre a velocidade de secagem.

A pressão parcial do vapor na superfície do grão, f_d varia em função da temperatura do ar quente e em função do nível de dessecação do grão, onde: $f_d = f_{sa} \cdot a_w$, f_{sa} é a pressão de vapor saturante à temperatura de saturação isentálpica e a_w a atividade de água.

A temperatura na superfície do grão, T_d é superior ou igual a T_{sa} temperatura de saturação isentálpica.

A evolução das transferências simultâneas de calor e massa no curso da operação de secagem divide-se em três períodos; período 0: (onde o produto é geralmente mais frio do que o ar e a pressão parcial de vapor d'água na superfície do produto é débil). O calor chegando em excesso acarretará em uma elevação da temperatura do produto ocorrendo um aumento da velocidade de secagem, este fenômeno continua até que a transferência de calor compense a transferência de massa. Se a temperatura do ar for inferior a do produto esta última diminuirá até atingir o estado de equilíbrio; período 1: (período de secagem a velocidade constante) a água se evapora como água livre, a pressão de vapor d'água pura na superfície é constante e igual a pressão de vapor d'água pura à temperatura do produto, este período continua, enquanto a migração de água do interior até a superfície do produto seja suficiente para compensar a perda por evaporação de água na superfície; período 2: (período de secagem a velocidade decrescente) neste momento a água

começa a ser deficiente na superfície, o valor do teor de água do produto no ponto de transição entre o período 1 e o 2 é chamado de teor de água crítico, onde a troca térmica não é mais compensada, a temperatura do produto aumenta e tende assintoticamente à temperatura do ar. Durante todo este período o fator limitante é a migração interna de água, esta redução da velocidade de secagem é às vezes interpretada como uma diminuição da superfície molhada no começo do período 2, mas frequentemente pela diminuição da pressão parcial de vapor d'água na superfície. No final deste período o produto está em equilíbrio com o ar e a velocidade de secagem é nula, DAUDIN (1983).

NONHEBEL e MOSS (1971), consideraram que para um gás a temperatura e umidade constante, o processo de secagem ocorre em duas etapas: secagem a velocidade constante e secagem a velocidade decrescente, sendo a primeira expressão às vezes confusa, pois a velocidade só é constante se as condições externas são constantes, recomendando chamar a primeira etapa como "período de secagem de bulbo úmido", porém a primeira expressão é mais usada.

Para sólidos porosos não higroscópicos, KEEY (1975), considera duas etapas no período de secagem a velocidade decrescente identificadas como a umidade em estado funicular (fase contínua) e no estado pendular (fase descontínua) com o aparecimento de um segundo ponto de inflexão.

PARK (1987) recomenda o uso do termo "ponto de inflexão (ou transição)" da velocidade constante para decrescente em vez de ponto crítico, pois o ponto crítico séria o ponto de transição do estado fenicular para o estado pendular.

As razões para medir a cinética de secagem podem ser de dois tipos: fundamental, que tem por objetivo prover um suporte experimental para a modelagem dos fenômenos de transferência durante a secagem e prático, que visa prover um ponto inicial para o cálculo dos processos de secagem industrial, especialmente por simulação, BINBENET (1985).

NONHEBEL e MOSS (1971), descrevem a simplificação para o sistema ar - água no período 1 ou período de secagem a taxa constante, onde as temperaturas de

bulbo úmido e de saturação adiabática são praticamente idênticas para umidades e temperaturas moderadas (0 - 100°C). Mesmo com as simplificações no tratamento deste período, os coeficientes de secagem podem ser obtidos a partir dos valores quantitativos (experimentais) das relações das forças impulsoras, assumindo-se que o material é termicamente estável e com encolhimento desprezível. Além de poder se utilizar o coeficiente baseado na força impulsora de umidade, a faixa da utilização é mais ampla sem que seja necessária a correção por fluxo.

DAUDIN (1983), utilizou o seguinte método de cálculo para este período:

Fluxo de calor:
$$Q_q = h (T_f - T_{fh})$$
 (51)

Fluxo de massa : $Q_m = k_{mp}(P - P_a) = (dQ_m/dt) / S_p$ (52)

S_p- superfície específica do produto por unidade de massa em matéria seca, m²/kg

P - neste período é igual à pressão de vapor de saturação à tempertura de bulbo úmido do ar, Pa

h - coeficiente de transferência de calor, kJ/m² s K

 k_{mp} - coeficiente de transferência de massa, kg/Pa m² s

T_c temperatura do ar, K

T_{fh}- temperatura de bulbo umido do ar, K

Durante este período as duas transferências se compensam, podendo-se calcular o fluxo de massa Q_m e obter a taxa de secagem pela seguinte equação:

$$Q_m = h \cdot (T_{\infty} - T_d) / L_g$$
(52a)

onde:

 Q_m fluxo de massa, kg/m² s

- h coeficiente de transferência de calor, kJ/m² s K
- T_{∞} temperatura do meio, K

 T_d temperatura da superfície do grão, K

L_a calor latente de vaporização da água, kJ/kg

Para as transferências em convecção forçada, o coeficiente é obtido a partir de uma relação adimensional de semelhança tendo a seguinte forma: $Nu = a(Pr)^{b}(Re)^{c}$ Nu - número de Nusselt
Pr - número de Prandtl.
Re - número de Reynolds
(53)

As constantes a, b e c adquirem diferentes valores em função da geometria do produto, estas relações devem ser utilizadas com prudência segundo DAUDIN (1983), devido ao coeficiente α avaliado globalmente, uma vez que o escoamento do ar não é homogêneo sobre a superfície do produto e as transferências de calor são influenciadas pela evaporação da água na superfície do produto.

No período de velocidade decrescente ou período 2, é reconhecido como praticamente o único presente na secagem da maioria dos produtos agrícolas e alimentícios. Devido a complexidade dos fenômenos envolvidos durante a secagem, existem trabalhos científicos de várias teorias e múltiplas fórmulas empíricas para predizer a taxa de secagem.

DAUDIN (1983), concorda com a afirmação de NONHEBEL e MOSS (1971), quando estes apresentaram uma equação geral avaliando este período e demonstrando a impossibilidade de resolvê-las sem conhecer as funções específicas para cada processo, afirmando ser conveniente efetuar a integração por etapas ou graficamente baseado na curva de secagem a velocidade decrescente obtidos pelos dados experimentais.

Ainda que o computador tenha facilitado o tratamento dos dados experimentais, as dificuldades na escolha da função matemática apropriada para expressar os dados experimentais, tendo em vista desvendar e fundamentar conceitos fenomenológicos, continua sendo uma interrogação.

Os possíveis mecanismos de transporte de umidade em sólidos, são citados por FORTES e OKOS (1980) :

-Difusão líquida, devido ao gradiente de concentração;

-Difusão de vapor, devido aos gradientes de pressão parcial de vapor (causado por gradientes de temperatura);

-Movimento líquido, devido a forças capilares;

-Fluxo de líquido ou vapor, devido a diferenças na pressão total, causadas por pressão externa, encolhimento, altas temperaturas e capilaridade;

-Fluxo por efusão (Knudsen) ocorre quando o principal caminho livre das moléculas de vapor é da mesma magnitude que o diâmetro dos poros, sendo esta condição importante quando se trabalha com alto vácuo (liofilização);

-Movimento do líquido devido à força gravitacional, usualmente desprezível dado que não tem influência significativa na secagem de alimentos;

E os efeitos colaterais importantes durante a secagem, PARK (1987):

-Migração dos solutos: no caso dos açucares, estes se depositam na superfície formando uma camada que tem o efeito de diminuir a velocidade de secagem;

-Deformação do produto: a maioria dos produtos biológicos se retraem substancialmente durante a secagem gerando tensões que influenciam a taxa de secagem.

A teoria de migração de umidade por difusão se baseia na lei de Fick, que expressa o fluxo de massa como sendo proporcional ao gradiente de concentração:

$$Q_m = D_{ef} \text{ grad } C_{se}$$
(54)

 D_{ef} é o coeficiente de difusão e C_{se} representa a concentração de água.

Esta forma simplificada da lei de Fick, despreza a interdifusão, todavia esta hipótese é justificada uma vez que a água migra dentro de uma matriz fixa.

A equação descrita pela lei de Fick,

$$dY/dt = d / dx(k_1 dY/dx)dx$$
(55)

onde: Y conteúdo de umidade

t tempo

k₁ condutividade líquida

x sentido do movimento da umidade.

Os primeiros pesquisadores que fizeram referência a esta lei, na década de 20, trabalhavam na secagem de celulose e argila, interpretando este fenômeno como difusão de água líquida.

O uso desta teoria, teve sempre a preferência para calcular a secagem de produtos agrícolas. O coeficiente de difusão representa a difusividade efetiva, englobando os efeitos de todos os fenômenos, podendo intervir sobre a migração da água. O seu valor é sempre obtido pelo ajuste de curvas experimentais.

CHARM (1971), apresenta soluções desta equação para coeficiente de difusão constante. CRANK (1975), publicou as soluções desta equação para várias condições limite, coeficiente de difusão constante ou variável e condições isoentrópicas.

Esta teoria, teve preferência na interpretação da secagem de produtos agrícolas e alimentares, sendo formalizadas suposições na resolução desta equação,como:

- Coeficiente de difusão constante;

- O material não encolhe durante a secagem;

- A superfície de secagem está em equilíbrio com o ar de secagem;

- O conteúdo de umidade do material tende para a umidade de equilíbrio;

 O movimento de água resulta do gradiente destas umidades, onde o perfil linear de concentração de umidade do material é assumido.

A lei da difusão é aplicada mais por causa de sua forma matemática do que pelas razões teóricas relativas aos fenômenos físicos. Autores como WHITAKER (1969), complicaram ainda mais este modelo introduzindo dois coeficientes de difusão, o primeiro para a difusão de água líquida e o segundo para a difusão de vapor.

Devido a discrepância nos resultados apresentados das difusividades calculadas utilizando a 2º lei de FICK e considerando o escoamento de água no interior do sólido na forma líquida, VAN ARSDEL (1947) e KING (1968), teceram considerações, surgerindo a utilização da equação para escoamento da água na fase vapor.

LEWIS (1921), analisa a secagem com a equação da segunda lei de FICK, assumindo o perfil linear de concentração de umidade no material e expressando a razão da umidade livre removível inicial e umidade removível momentânea em função exponencial do tempo de secagem, onde a umidade livre é a umidade do material menos a umidade de equilíbrio. Sendo que durante a secagem, o estabelecimento do perfil de concentração da superfície ao centro do material, não é instantâneo, existindo um limite de separação da zona úmida (central) e zona seca (superficial). Este limite de separação move-se para o centro do material durante a secagem, consequentemente o perfil é do centro até a interface.

A espessura do material, onde existe perfil estabelecido, controla a secagem através da difusão, esta camada é denominada pelo autor como "efeito pelicular", sendo necessário a utilização de um fator de correção.

SHERWOOD (1929), classifica como sendo quatro os tipos de mecanismos de secagem em termos de resistência interna versos resistência externa:

- resistências em termos de movimento líquido;
- difusão de vapor;
- difusão na camada limite do ar externo;
- difusão no ar externo.

Utilizando a equação de FICK em sua análise, demonstrou que a equação com fator de correção obtida por LEWIS (1921), coincide com a solução da série de FOURIER durante os primeiros períodos até a remoção de sessenta porcento de umidade livre, nas condições de resistência externa desprezível.

Assim, LEWIS (1921) e SHERWOOD (1929), foram os primeiros que iniciaram o tratamento da secagem com a teoria difusional, expressando o fluxo de transferência de massa na secagem como sendo função do gradiente de concentração de água.

BECKER e SALLANS (1955), propuseram o mecanismo difusivo como responsável pela resistência à transferência de massa no interior do grão, considerando a partícula esférica.

No caso da secagem com sistemas de coordenadas esféricas a equação, pode ser escrita, em termos de z, α ' e β .

$$\frac{\partial \mathbf{Y}}{\partial \mathbf{t}} = \frac{1}{z^2} \left[\frac{\partial}{\partial z} \left(z^2 \mathbf{D}_{ef} \frac{\partial \mathbf{Y}}{\partial z} \right) + \frac{1}{\operatorname{sen} \alpha} \frac{\partial}{\partial \alpha} \left(D_{ef} \operatorname{sen} \alpha \frac{\partial \mathbf{Y}}{\partial \alpha} \right) + \frac{D_{ef}}{\operatorname{sen}^2 \alpha} \frac{\partial^2 \mathbf{Y}}{\partial \beta^2} \right]$$
(56)

Com uma esfera de raio r, difusão unidirecional e possuindo um conteúdo de umidade inicial uniforme Yo, e submetido a uma condição constante do ar de secagem, a equação fica reduzida a:

$$\frac{\partial \mathbf{Y}}{\partial \mathbf{t}} = \frac{1}{z^2} \left[\frac{\partial}{\partial z} \left(z^2 \mathbf{D}_{\text{ef}} \left(\frac{\partial \mathbf{Y}}{\partial z} \right) \right) \right]$$
(57)

sendo: Y - conteúdo de umidade, base seca

z - variável espacial (direção radial)

t - tempo, s

D_{ef} difusividade efetiva da água líquida no sólido

com as seguintes condições iniciais e de contorno

t=0	0 <z<r< th=""><th>Y=Yo</th><th></th></z<r<>	Y=Yo	
t>0	z=0	∂Y/∂z=0	(58)
t>0	z=r	Y=Yeq	

torna-se a equação em forma de série :

$$R = \frac{\overline{Y} - Yeq}{Yo - Yeq} = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \exp\left[\frac{-n^2 \pi^2 D_{ef} t}{r^2}\right]$$
(59)

R -conteúdo de umidade, adimensional

 \overline{Y} -conteúdo médio de umidade, kg água/kg de massa seca

Yeq -conteúdo de umidade de equilíbrio, kg água/kg de massa seca

Yo -conteúdo de umidade inicial, kg água/kg de massa seca

n -número de termos na série

D_{ef} -difusividade efetiva, m²/s

t -tempo, s

r -raio médio da amostra, m.

JASON (1958); DAUDIN (1983); KARATHANOS et alli (1990) e PARK et alii (1996), utilizaram este modelo, para ajustar dados de secagem de materiais biológicos.

Este modelo foi baseado na suposição de que se possa desprezar a transferência de calor e tratar os dados como uma difusão puramente controlada pelo fenômeno de transferência de massa. Esta suposição foi baseada em estudos experimentais que indicaram a existência de pequenos gradientes de temperaturas dentro dos alimentos durante o processo de secagem.

Alguns pesquisadores utilizaram os modelos, que levam em conta a influência da temperatura e do teor de água sobre a difusividade da água, SUZUKI, KEEY e MAEDA (1977).

As equações de modelos teóricos representam os fenômenos físicos de uma maneira generalizada. Estes modelos são facilmente resolvidos se não for levada em conta a complexidade dos fenômenos. Como isto não ocorre, vários pesquisadores conduziram suas observações no sentido de uma abordagem empírica na qual a lei da secagem é tirada diretamente de experiências de secagem em laboratório.

O tratamento do desenvolvimento teórico na secagem de sólidos, depende do mecanismo predominante que ocorre na transferência de calor por convecção, condução ou radiação.

A convecção é o mecanismo predominante na maioria dos secadores, onde o material é seco pelo contato direto de uma corrente de ar quente que passa através ou sobre este, ao passo que na condução o material é aquecido através do contato nas paredes. Em ambos os casos pode-se observar a transferência de calor por radiação.

Desta forma é conveniente tratar a teoria de secagem em termos de convecção pura ou condução, aplicando-se as correções pertinentes nas formas de transferência de calor.

Em um tratamento teórico rigoroso de secagem é necessário o conhecimento quantitativo dos fatores que afetam o movimento tanto do líquido como do vapor. Estes dados são necessários para a descrição da estrutura interna do sólido de modo que possa ser usado para calcular as velocidades das fases líquida e vapor a partir de suas propriedades físicas, NONHEBEL (1971).

O coeficiente de difusão, D_{ef} assim como a constante de secagem, K são determinados a partir de correlações válidas adotadas nas condições operacionais, mostradas nos quadros 4 e 5.

AUTOR	EQUAÇÃO	FAIXA OPERACIONAL	OBSERVAÇÕES
Becker e Sallans, 1955 Becker, 1959 Becker e Sallans, 1960	$D_{ef} = D_o \exp\left(-\frac{E}{R^*T_f}\right)$	SECAGEM DE TRIGO 14.8% $b.s \le Y_{w} \le 32\% b.s$ 36.3° $C \le T_{w} \le 80° C$ $v_{f} = 61 \text{ m/s } D_{e} = 4.5410° \text{ cm}^{2} / s$	D_{ef} dado em cm ² /s E dado em cal/mol T _f dado em Kelvin
Pabis e Henderson, 1961	$D_{ef} = D_o \exp\left(-\frac{E}{R^* T_f}\right)$ $D_0 = 5853.10^{-10} \ \text{m}^2 \ / h$	SECAGEM DE MILHO E/R*=6949 R*	D_{ef} dado em m ² /h T _f dado em Rankine
Misra e Young, 1980	$D_{ef} = D_o \exp\left(-\frac{E}{R^* T_f}\right)$	SECAGEM DE SOJA $D_0 = 4,694.10^{-2} \text{ m}^2 / h$ $E / R^* = 3437,16 \text{ K}$ $10^{\circ} \text{ C} \le \text{T}_{\text{f}}(b.u) \le 25^{\circ} C$ $35^{\circ} C \le T_f(b.u) \le 95^{\circ} C$	D _{ef} dado em m²/h T _f dado em Kelvin
Aguerre et alli, 1982	$D_{ef} = D_o \exp\left(-\frac{E}{R^* T_f}\right)$	SECAGEM DE ARROZ E = 9,9 kcal / mol $40^{\circ} C \le T_r \le 70^{\circ} C$ $12 \text{ m/s} \le v_r \le 18m/s$	D _{ef} dado em cm²/s T _f dado em Kelvin
Chu e Hustrulid, 1968	$D_{r} = 1,5134 \exp\left[\left(0,00045T_{r} - 0,05485\right)Y_{r} - \frac{2513}{T_{r}}\right]$	SECAGEM DE MILHO $12\% \le UR \le 70\%$ $25\% \text{ b. s} \le Y_{**} \le 35\% \text{ b. s}$ $T_r = 49^{\circ}C,60^{\circ}C \text{ c} 71^{\circ}C$	D _{ef} dado em m²/h T _f dado em Kelvin Y _s dado em % b.s.
Husain et alli, 1973	$D_{ef} = 94,88 \exp(\frac{-7730,65}{T_f}).$ $\exp[(8,833.10^{-4}T_f - 0,3788)Y_s]$	SECAGEM DE ARROZ UR:20% $Y_{s0}:26\%$ b.s. e 32% b.s. $T_{f_0} = 49^{\circ}C,66^{\circ}C$ e 82,2°C	D_{ef} dado em cm ² /h T _f dado em Rankine Y _s dado em % b.s.

QUADRO 4- EQUAÇÕES PARA DIFUSIVIDADE EFETIVA.

Parti e Dugmanics, 1990	$\frac{D_{ef}}{R^2} = 2,542 \exp(-\frac{4850}{T_f}).$ $\exp(5,5Y_e)$	SECAGEM DE MILHO $0 \le UR \le 80\%$ 21% b.s $\le Y_{s_0} \le 42\%$ b.s $0,10m / s \le v_r \le 0,80m / s$ $T_r = 32.2^{\circ}C,52^{\circ}C = 71^{\circ}C$	D_{ef} dado em m ² /s T_f dado em Kelvin Y_s dado em decimal R raio do grão em metros Troeger e Hukill, 1971
	$\frac{D_{e^{r}}}{R^{2}} = 4,886 \exp(-\frac{4850}{T_{r}}).$ $\exp(5,5Y_{r})$	SECAGEM DE MILHO mesmas condições	Misra e Brooker, 1980

FONTE: CALADO, 1992

AUTOR	EQUAÇÃO	FAIXA OPERACIONAL	OBSERVAÇÕES
,	$K = 139,3 \exp(-\frac{4426}{T_f + 273})$	CEVADA	o tempo é dado em seg.
O'Callaghan et alli, 1971	$K = 2000 \exp(-\frac{5094}{1.8T_f + 273})$	TRIGO	o tempo é dado em seg. T _r dado em °C
Ross e white, 1972	$K = a \exp(-\frac{b}{T_f})$	MILHO $25\%b. u \le Y_{so} \le 43\%b. u$ $23,5^{\circ}C \le T_{f} \le 90,2^{\circ}C$	o tempo é dado em horas
Bruce, 1985	$K = 234 \exp(-\frac{3086}{T_f + 273})$	CEVADA COM UMIDADE NATURAL $21,5\%b.s \le Y_{so} \le 41\%b.s$	o tempo é dado em minutos T _r dado em °C

QUADRO 5- CONSTANTE DE SECAGEM PARA O MODELO EXPONENCIAL.

FONTE: CALADO, 1992.

HUKILL e SCHMIDT (1960); HUSTRULID (1959); BAKKER e PATTERSON (1971); STRUMILLO e KUDRA (1986), desenvolveram teorias matemáticas de secagem de grãos em camadas finas monomoleculares e em camadas espessas onde deduzem modelos de simulações para cálculos de diferentes tipos de secadores.

As teorias buscam equações que permite o cálculo das cinéticas de secagem, que são estabelecidas a partir dos fenômenos físicos internos que governam a secagem no período da velocidade decrescente.

Embora, HUKILL (1954), tenha sido um dos primeiros a estudar a secagem em camada espessa, seu modelo está restrito à secagem a baixas temperaturas do gás.

O equacionamento apresentado foi utilizado para projetos de secadores em leito fixo, utilizando balanços de massa e energia para fases gasosa e sólida,

$$G_f C_f \frac{\partial T_f}{\partial z} = \rho_s (1 - \varepsilon) L_g \frac{\partial Y_s}{\partial t}$$
(60)

assumindo

- G_r velocidade massica do gás, kg/m²s
- C_r calor específico do gás, kJ/kgK
- T temperatura do gás, K
- z variável espacial, m
- ρ_s massa específica do sólido, kg/m³
- ε porosidade, adimensional
- L_a calor latente de vaporização da água, kJ/kg
- Y_s umidade do sólido em base seca, kg₁/kg₂
- t- tempo, s

As suposições assumidas são:

- o aumento do calor específico do gás devido ao vapor de água é desprezível;
- todo o calor cedido pelo gás é utilizado para evaporar a água contida no grão;
- o calor sensível para elevar a temperatura do vapor de água removido à temperatura do gás é muito pequeno;
- a massa específica do grão e o calor latente de vaporização da água não variam com a umidade e a temperatura do grão.

a solução da equação, tem a forma, de:

$$\frac{Y_{s} - Y_{seq}}{Y_{so} - Y_{seq}} = \frac{2^{D'}}{2^{D'} + 2^{\tau'} - 1}$$
(61)

$$\frac{T_f - T_{feq}}{T_{feq} - T_{feq}} = \frac{2^{\tau'}}{2^{\tau'} + 2^{D'} - 1}$$
(62)

 Y_s - umidade do sólido, base seca em um tempo qualquer t e a uma distância z,a partir da entrada do gás;

 Y_{∞} - umidade do sólido, base seca, no instante inicial;

 Y_{seq} - umidade do sólido, base seca, no equilíbrio (calculado por alguma isoterma de sorção);

 T_f - temperatura do gás em um tempo qualquer t e a uma distância z, a partir da região de entrada do gás;

 T_{fen} - temperatura do gás na entrada do leito;

 T_{feq} - temperatura do gás na saída do leito, quando atingido o equilíbrio térmico com o grão.

Os admensionais $D' \in \eta$, chamados de fator de profundidade do leito e unidade de tempo, nesta ordem são dados por:

$$D' = \frac{60 G_{\rm f} C_{\rm f} (T_{\rm f} - T_{\rm feq}) t_{1/2}}{L_{\rm g} \rho_{\rm s} H (Y_{\rm so} - Y_{\rm seq})}$$
(63)

$$\eta' = \frac{t}{t_{\gamma_2}}$$
(64)

onde: D' fator de profundidade do leito, referente ao modelo de Hukill, adimensional

- G_f velocidade massica do fluido, kg/m² s
- C_f calor específico (fluido), kJ/kg °K
- t_{1/2} tempo de meia resposta (tempo necessário para que a razão de umidade, seja reduzida a metade), s
- η fator de umidade de tempo, referente ao modelo de Hukill, adimensional
- H altura do leito, m

O modelo de THOMPSON et alii(1968), conforme figura 8, admite que o secador em camada espessa, seja formado por um conjunto de camadas finas (tempo de secagem t>0):

Os balanços macroscópicos de massa e energia são realizados em camada originando um conjunto de equações algébricas lineares. Em secadores em leito deslizante com fluxos contracorrentes, as equações são lineares, requerendo a solução, um processo iterativo.

MASSARANI (1992), descreve o modelo a duas fases, baseado na teoria das misturas, desenvolvida por TRUESDELL (1957), que trata o gás e o sólido úmido como uma mistura multicomponente, onde o processo de transferência de calor e massa se desenvolve entre uma fase gasosa e uma fase sólida, em que apenas um componente se transfere entre elas.

Para o desenvolvimento das equações de conservação de cada fase, a maioria dos pesquisadores, assumiram:

- fase gasosa formada apenas por ar e vapor de água, tendo o comportamento de um gás ideal;
- massas específicas do ar e do sólido seco constantes;
- viscosidade da fase gasosa constante;
- velocidades mássicas do sólido seco e do ar são constantes.

CALADO e MASSARANI (1990), descrevem a forma clássica do balanço de taxa de quantidade de movimento, considerando os termos de pressão, empuxo, campo gravitacional e força resistiva exercida pelo fluido sobre a matriz porosa.

A equação da taxa de secagem foi obtida através do pacote computacional desenvolvido por MEDEIROS e MASSARANI (1982), juntamente com uma modelagem preliminar para o transporte pneumático e através de dados simulados comparados com dados experimentais de secagem de milho, para um leito deslizante com fluxos cruzados e recirculação pneumática. E a umidade de equilíbrio foi obtida a partir de THOMPSON et alli. (1968). O coeficiente de transferência de calor foi obtido por SARTORI (1986).

QUEIROZ (1984), considerou o modelo para simular um secador em leito deslizante e fluxos concorrentes, onde a equação da difusão para a esfera foi utilizada para descrever a taxa de secagem do milho.

Para a secagem em camada fina, o equacionamento torna-se simples, uma vez que os balanços de massa e energia da fase gasosa não são considerados, devido ao curto espaço de tempo de residência do grão no secador, ou seja, a fase gasosa não manifesta alteração em sua umidade e temperatura ao passar pela camada de grãos.

As equações utilizadas são as da camada espessa, reduzidas a:

$$\frac{dY_s}{dt} = -\frac{f}{(1-\varepsilon)\rho_s}$$
(65)

$$(1 - \varepsilon)\rho_{S_s}(C_{S_s} + Y_S C_t)\frac{dT_s}{dt} = h a' (T_f - T_S) - f < H > +fC_t(T_S - T_r)$$
(66)

considerando a umidade e a temperatura do gás de entrada na camada constantes e supondo ser o estado de referência a água líquida a uma temperatura qualquer e desprezando a variação com a pressão, a entalpia associada ao vapor que atravessa a superfície expressa para camada espessa é:

$$< H > = L_{gr} + C_v (T - T_r)$$
 (67)

se, T=T_s, a equação, torna-se

$$(1-\varepsilon)\rho_{S_s}(C_{S_s} + Y_S C_I)\frac{dT_s}{dt} = h a' (T_f - T_s) - f \Big[L_{g_r} + C_v (T_f - T_s) \Big]$$
(68)

estas equações descrevem a secagem em camada fina. Portanto podemos perceber que: o estudo da secagem de grãos em camadas espessas fundamenta-se nas características da secagem em camada fina, VAN REST e ISAACS (1968).

Utilizando a expressão da taxa de secagem de LEWIS (1921),

$$\frac{\mathrm{d}\,\mathbf{Y}_{s}}{\mathrm{d}\,\mathbf{t}} = -K(Y_{s} - Y_{se}) \tag{69}$$

que integrando, fica

$$\frac{Y_s - Y_{se}}{Y_{so} - Y_{se}} = \exp(-Kt)$$
(70)

sendo K a constante de secagem. Esta equação é empírica e supõe que há resistência interna à transferência de massa, em que Y_s representa, em base seca, o teor médio volumétrico da umidade existente no grão.

Na abordagem experimental, se não levar em conta a complexidade dos fenômenos envolvidos durante a secagem, as equações de modelos teóricos são de fácil resolução. Caso contrário, a resolução destas exige cálculos complexos, devido
à dependência da difusividade da água com o teor de água, além das outras medidas das constantes físicas indispensáveis para o cálculo.

Em função disto, numerosos pesquisadores tendenciaram para uma abordagem empírica, com os resultados retirados diretamente de experiencias de secagem realizadas em laboratório.

Como exemplo das equações empíricas, largamente utilizadas para secagem de grãos, tem-se as variações do modelo exponencial ou logarítmicas propostas na literatura nas formas de:

PAGE, 1949
$$\frac{Y_s - Y_{se}}{Y_{so} - Y_{ve}} = \exp(-Kt^n)$$
 (71)

OVERHULTS, 1973
$$\frac{Y_{s} - Y_{se}}{Y_{so} - Y_{se}} = \exp(-(Kt)^{n})$$
 (72)

Os quadros 6 e 7, citam algumas correlações para determinação da constante K e do parâmetro n, dos modelos de PAGE e OVERHULTS, como função da umidade relativa e da temperatura do gás de secagem.

AUTOR	EQUAÇÃO	FAIXA OPERACIONAL	OBSERVAÇÕES
Sabbah, 1968	$K = \exp(-a t^{b})$ $a = (6,0142 + 0,0001UR^{2})^{1/2} - 0,01(1,8T_{f} + 32) (3,352 + 0,001UR^{1/2})$ $b = -3,5.10^{-5}(1,8T_{f} + 32) + 0,1245 - 0,0022UR$ $n = 0,664$	Milho $3^{\circ}C \leq T_f \leq 21^{\circ}C$	tempo dado em horas T _f dado em °C UR dado em %
White et alli, 1973	$K = \exp(-2,794 + 0,0113(1,8T_f + 32) + 0,00397(1,8T(b.u) + 32))$ n = 0,464 + 0,000778(1,8T_f + 32) (0,00169 + (1,8T(b.u) + 32))	Milho $37,8^{\circ}C \le T_{f} \le 104,4^{\circ}C$ $2,2^{\circ}C \le T(b.u) \le 18,9^{\circ}C$ $Y_{su} = 21,7\% b.s.$	Tf dado em °C T(b.u) em °C
Misra e Brooker, 1980	$K = \exp(-7,1735 + 0,1378v_f + 1,2793\ln(1,8+32))$ $n = 0,0811\ln UR + 0,78Y_{so}$	$\begin{array}{l} \text{Milho} \\ 2,2^{\circ}C \leq T_{f} \leq 71,1^{\circ}C \\ 0,025m/s \leq v_{f} \leq 2,3m/s \\ 0,18\%b.s \leq Y_{m} \leq 0,6\%b.s \\ 3\% \leq UR \leq 83\% \end{array}$	tempo dado em horas Tf dado em °C vf dado em m/s Y _{SO} dado em % b.s. UR em decimal

QUADRO 6 - PARÂMETROS DO MODELO DE PAGE

Hutchinson e Otten, 1982	$K = 0,0466 - 0,0104UR$ $n = 0,4002 + 0,00728T_fUR$ $K = 0,0333 + 0,0003T_f$ $n = 0,3744 + 0,00916T_fUR$	Feijão branco $32^{\circ}C \le T_f \le 49^{\circ}C$ Soja $34\% \le UR \le 65\%$	tempo dado em minutos T _f dado em °C UR em decimal
Sokhansanj et alli, 1984	K = 0,0888 n = 0,6717 K = 0,0771 n = 0,6586 K = 0,1833 n = 0,5720	Trigo Cevada Canola	grãos:umidade natur tempo em minutos $T_f = 70 \ ^{\circ}C$
Bruce, 1985	$K = 0,0462 \exp(0,0154T_f)$ $n = 0,492 + 3,84.10^{-5}(T_f - 123)^2$	$Cevada$ $50^{\circ} C \leq T_{f} \leq 150^{\circ} C$ $21,5\% \leq Y_{so} \leq 65\%$	grãos:umidade natur tempo em minutos T _f dado em °C

FONTE: CALADO, 1992.

QUADRO 7- PARÂMETROS DO MODELO DE OVERHULTS

Overhults et alli, 1973	$K = \exp(a + b / T_f)$ n = 0,3529 + 0,00136(1,8T_f + 32)	Soja 20% $b.s \le Y_{ss} \le 33\% b.s$ 37,7° $C \le T_f \le 104,4°C$	tempo dado em horas a e b são constantes T _f dado em °C
White et alli, 1978	$K = -0,207 + 3,57.10^{-3} T_f + 2,16.10^{-3} Y_{so} + + 2,613.10^{-3} UR + 3,202.10^{-6} Y_{so} T_f^2$ $n = 0,33 + 0,0025UR + 0,003T_f$	$\begin{aligned} \text{Milho} \\ 16\%b.s &\leq Y_{so} \leq 24\%b.s \\ 30^\circ C &\leq T_f \leq 70^\circ C \\ 8^\circ C &\leq T(b.u) \leq 38^\circ C \end{aligned}$	tempo dado em horas Y _{SO} dado em % b.s. UR em % T _f dado em °C

FONTE: CALADO, 1992.

No estudo da secagem, torna-se fundamental considerar os balanços de taxa de quantidade de movimento, de massa e de energia nas fases envolvidas, as equações constitutivas de transferência de calor e massa e a isoterma de sorção do material a ser seco.

Na literatura, encontram-se ainda vários modelos empíricos da predição da taxa de perda de umidade durante a secagem de produtos agrícolas, conforme são mostrados no quadro 8.

EXPRESSÃO	PRODUTO	PECULIARIDADES	REFERÊNCIA
R = exp (-Kt") R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	semente de girassol	camada fina K = 5,16 10 ⁻⁵ (T) ^{1,8387} n = 1,009 - 0,0049 T	Syarief, Morey, Gustafson (1984)
R = exp (-Kt ⁿ) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	pecă armazenada	camada fina K = 3,349 10^{-1} +1,010 10^{-2} +1,803 10^{-4} T ² +3,45 10^{-5} UR ² n = 0,6996	Chhinnan (1984)
R = exp (-Kt ⁿ) R={Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	milho	camada fina K = 1,091 $10^{-2}+2,767 10^{-6} T^{2}+$ 7,286 $10^{-6} T+m_0$ n = 0,5375+1,141 $10^{-5} m_0^{-2}+5,183$ $10^{-5} T^{2}$	Li, Morey (1984)
R = exp (-Kt ⁿ) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	semente de girassol	camada fina K = 5,66 10 ⁻⁴ T ¹ ,271 n = 0,8281 - 0,004 T + 0,000091 T m _o	Li, Morey, Afinrud (1987)
R = exp (-Kt ⁿ) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	soja	camada fina K = -0,2625 + 0,004916 T + 0,003033 UR n = 0,8267	Osborn, White, Walton (1991)
R = exp (-Kt ⁿ) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	canola	camada fina K = 0,1153 n = 0,733 - 2,13 10 ⁻³ T + 4,9 10 ⁻⁵ T ²	Pathak, Agrawal, Singh (1991)
R = exp (-Kt ⁿ) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	arroz cru parabolizado	camada fina estacionária, fluidizada e semi-fluidizada n = 0,812 K = -0,013828 + 0,001135 T -0,000922 h - 0,000233 v + 0,003895 UR h = altura da camada v = velocidade do ar	Prasad, Chandra, Bal (1994)
R = exp (-Kt) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	alfafa	solar em ambiente protegido K = [71,2 (SI) + 0,660 (VPD)] / [5750 (DEN) - 3170] SI = radiação solar VPD = déficit de P de vapor DEN = densidade	Firestone, Walker, Puri (1988)
R = exp (-Kt) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	espiga de trigo	imersa em água por 48 horas K = 0,641 + 0,044 $(m_0-m_e) - 0,043$ m ₀ spray de água por 1 hora K = 0,086 + 0,00249 (m_0-m_e) spray de água por 5 horas K = 0,099 + 0,000975 (m_0-m_e)	Versavel, Muir (1988a)
R = exp (-Kt) R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	cerne do arroz	monocamada K = -0,013261538(IMC) + 0,0417326557 (L2/L3) IMC = umidade inicial (%b.s.) L2/L3 = razão entre largura e espessura do cerne	Banaszek, Siebenmorgen (1993)

QUADRO 8 - TAXA DA PERDA DE UMIDADE DURANTE A SECAGEM DE PRODUTOS AGRÍCOLAS

÷

P

.

R = exp (-Kt)	folha e talo da	$k = 0.133 L^{-0.48}$	Patil et alii
R=(Y-Yeq)/(Yo-Yeq)	alfafa	L = comprimento do talo (mm)	(1992)
R- adimensional de umidade			
$R = \exp(-Kt)$	*	camada fina	Jayas,
R=(Y-Yeq)/(Yo-Yeq)	cevada	$k = 0,002541 + 4,0130 \ 10^{-6} \ T^2$ -	Sokhansani
R- adimensional de umidade		1,78447 10 ⁻⁵ UR	(1090)
			(1969)
		ambiente simulando secagem no	
R = exp(-Kt)	espigas de milho	campo K = -1.660 + 0.000833 rad +	Versavel, Muir
R=(Y-Yeq)/(Yo-Yeq)	reumidificadas	0.000454 Pd T + 0.0766 ln(UR) +	(1988b)
R- adimensional de umidade		488/T	、 ,
		rad = radiação total	
		Pd = deficit de P de vapor	
	1	p mono camada, baixa temp. a = 0.07135 + 0.0081998 m	
		+0,0013924 T - 0,000151 UR -	
	ļ	0,000163 Q	
		b = -0.013244 - 0.000654 m	
		c = 0.001952 + 0.0002630R	
$t = \frac{\ln d - \ln K}{1 + 1 + 1 + 1 + 1}$	07707	0,00006043 T -0,00003546 UR	Naamborm
bR+c	anoz	p/ monocamada, alta temp.	NUUMINUTIII,
R≈(Y-Yeq)/(Yo-Yeq)		a = 0,30545 + 0,0254 m -0,01773 T	Verma (1986 ^a)
R- adimensional de umidade		+ 0,00031 UR - 0,000265 m ² +	
		0,000144 T ²	
		b = 1,2295 - 0,04293 + 0,00135	
		UR + 0,000368 T ²	
		c = 0,01008 = 0,000204 OK	
		p/ camada profunda	
		a = 0.07135 + 0.0081998 m	
$\ln a - \ln R$		+0,0013924 T - 0,000151 UR -	Noomnorm,
$t = \frac{ma}{lp}$	arroz	0,000163 Q	Verma
bR + c		D = -0.013244 - 0.000654 m +0.0017915 T -0.000263 UR	(1986b)
R-adimensional de umidade		c = 0.001952 + 0.0000386 m -	
		0,00006043 T -0,00003546 UR	
		secagem com bentonita	
$R = \sum_{n=1}^{\infty} \frac{6(1+\chi)\chi}{e^{-F_0q_n^2}}$		$\chi^{2} (m_{o} m_{e})/m_{e}$	Graham,
$\int_{1}^{1} 9 + 9\chi + q_{n}^{2}\chi^{2}$	milho	$\tan q = \frac{3q_n}{3}$	Bilanski
R=(Y-Yeq)/(Yo-Yeq)		$\int \frac{ddd}{dt} q_n - 3 + \chi \cdot q_n^2$	(1986)
R- adimensional de umidade		$F_0 = Dt/a^2$	
<u>~</u> 2		$_{\rm vn}$ L = (2n +1) π /2	
$R = \sum \frac{2}{(n-L)^2} e^{-(D/L^2)(\chi_R L)^2 \cdot t}$	tabaco Burley	D = coef. Difusão massa	
$0 (\chi_n L)$	Labado Duncy,	$\beta_n R$ =raiz positiva de $J_{\Omega}(\beta_n R) = 0$	
$P = \sum_{n=1}^{\infty} \frac{4}{2^{-(D/R^2)}(\beta_n R)^2}$	respectivamente	$J_{\Omega}(\beta_n, R) = Função de Bessel de$	vvaiton et alli
$\int_{-1}^{1} \frac{1}{\left(\beta_{n}R\right)^{2}} e^{-R - X}$	p/ lâmina e caule	ordem 0	(1984)
R=(Y-Yeo)/(Yo-Yeo)			1
R- adimensional de umidade		1	
	<u> </u>	**************************************	

۰.

i •

. .

$R = 6\sum_{1}^{\infty} \frac{\left((\sin\chi_n R - \chi_n R \cos\chi_n R)^2 \right)}{\left((\chi_n R)^3 (\chi_n R - \sin\chi_n R \cos\chi_n R) \right)}$ $e^{(-D'/R^2)(\chi_n R)^2 t}$ R=(Y-Yeq)/(Yo-Yeq) R- adimensional de umidade	milho	$\chi_{n}R\cos\chi_{n}R = \left(1 - \frac{R/D'\rho_{s}\beta}{R_{ps} + R_{p} + R_{bl}}\right)sin\chi_{n}R^{D'} = coef. difusãoRps = resistencia dos porosRp = resistência do pericarpoRbl = resistência da camada limite$	Walton, White, Ross (1988)
$\begin{split} \mathbf{m}_{k2} &= -\mathbf{K}_{L} \ \mathbf{t} \ (\mathbf{m}_{k1}\text{-}\mathbf{m}_{ke}) \ - \ \mathbf{K}_{V} \ \mathbf{t} \ (\mathbf{rh}_{k}\text{-}\\ \mathbf{rh}_{h}) \ + \ \mathbf{m}_{k1} \\ \mathbf{M}_{h2} &= -\mathbf{H}_{L} \ \mathbf{t} \ (\mathbf{m}_{h1}\text{-}\mathbf{m}_{he}) \ - \ \mathbf{H}_{V} \ \mathbf{t} \ (\mathbf{rh}_{h}\text{-}\\ \mathbf{rh}) \ + \ \mathbf{m}_{h1} \ - \ (\mathbf{m}_{k2}\text{-}\mathbf{m}_{k1}) \ \mathbf{D}_{k}/\mathbf{D}_{h} \end{split}$	amendoim	camada fina $K_L = 0.035 h^{-1}$ $H_L = 0.116 h^{-1}$ $K_V = 0.009 h^{-1}$ $H_V = 0.291 h^{-1}$	Colson, Young (1990)
$R = \frac{8}{l^2} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{\alpha_n^2 \beta_m^2}$ $\frac{e^{-(\alpha_n^2 \beta_m^2)t}}{R^{-(Y-Yeq)/(Yo-Yeq)}}$	arroz cru	αn = raizes de J0(x) l = L/R βm = [(2m-1)π]/2l	Ece, Cihan (1993)
$\rho C \frac{\partial T}{\partial t} = div (K \text{ grad } T)$ $\frac{\partial m}{\partial t} = div (D \text{ grad } m)$	cevada	camada fina $-D\frac{\partial m}{\partial n} = h_m(m - m_e)$ $-K\frac{\partial \Gamma}{\partial n} = h_T(T - T_a) - k\rho [h_{ig} + C_V(T_a + T)]h_m(m - m_e)$ Wm ⁻² K ⁻¹ h _m = 1,08 10 ⁻⁶ ms ⁻¹ k = 1,32	Miketinac, Sokhansanj, Tutek 1992)

FONTE: GODOI, 1996.

ţ

2.3) SISTEMAS DE SECAGEM PARA GRÃOS 2.3.1) SECADORES

Os sistemas comerciais de secagem para grãos são classificados quanto a:

Quanto:

ao tipo de fabricação:

Móveis ou Fixos(silos secadores, de torre)

ao sistema de carga:

Intermitente ou Contínuos

a ventilação:

Insuflação de ar ou Aspiração de ar

ao fluxo de ar:

Concorrente, Contracorrente, Cruzado ou Misto

a torre de secagem:

Calhas paralelas, Calhas cruzadas, de Colunas e com Câmara de

descanso

ao sistema de descarga:

Descarga de bandeja mecânica, Descarga pneumática, Descarga de eclusas rotativas

ao combustível:

Líquido, Sólido ou Gasoso

ao ar da fornalha:

Direto e Indireto

ao grau de automatização:

Secagem com controle manual e secagem automatizada

Esta classificação foi descrita por WEBER (1995). Se fizermos uma análise desta classificação, chegaremos à conclusão da existência comercial de apenas três

b - Secador móvel com sistema de carga contínuo

Sua característica de construção sobre rodas e utilizando combustíveis tanto líquido como gasoso o torna extremamente versátil. Este trabalha pelo sistema contínuo ou intermitente, conforme é mostrado na figura 10.

Possui dois ventiladores axiais; um para a insuflação do ar aquecido na massa de grãos e outro para o seu resfriamento. Dependendo de sua utilização também pode ser utilizado para o aquecimento da massa de grãos.

O controle da descarga permite secar os grãos até o grau da umidade desejada, podendo ser operado através de energia elétrica ou da tomada de força do trator.

Figura 10 - Secador móvel com sistema de carga contínuo.

c - Secador de torre - Este sem duvida é o mais utilizado comercialmente, tanto pela faixa de capacidade em que opera, quanto pelas suas características técnicas.

São secadores verticais, estáticos, que operam de forma intermitente ou contínua, com os grãos em movimento, conforme mostrado na figura 11.

z, i

Figura 11 - Secador de torre.

Este secador tem sua concepção nos dispositivos internos da torre, calhas ou dutos de ar montados de forma paralela, onde o ar entra pelo lado da fornalha e sai pelo lado do ventilador, que se encontra no lado oposto, calhas cruzadas, formando ângulo de 90° entre si, fazendo com que o ar quente entre por um lado e saia formando um ângulo reto. Neste caso, a fornalha e o ventilador não se encontram em linha. Este sistema oferece dificuldade na limpeza da torre, comprometendo o desempenho e colocando-o em risco de incêndio, além de não oferecer uma secagem uniforme em toda a seção.

O secador de coluna, não possui calhas, mas colunas de chapa perfurada. Os grãos descem entre chapas perfuradas através das quais o ar atravessa a massa de grãos, de forma cruzada. E os com câmara de descanso, dispositivo instalados em algumas torres que tem como objetivo homogeneizar a massa de grãos em secagem pelo sistema intermitente, são indicados principalmente para o arroz.

Quanto ao sistema de carregamento de grão, pode ser intermitentes, trabalhando por carga. Não possuindo zonas de resfriamento, recebem uma carga de grãos que circula na torre até a completa secagem. Indicado para secagem de arroz, pois evita o choque térmico e o surgimento de trincas. Os contínuos são, por sua vez, constituído por zona de aquecimento e de resfriamento.

O sistema de ventilação pode ser por insuflação de ar. Neste caso o ar quente passa pelo rotor do ventilador e insuflado na massa de grãos. Para este sistema são necessários dois ventiladores, sendo o segundo utilizado para a insuflação do ar de resfriamento. Outra forma é pela aspiração do ar. Neste caso a torre fica entre a fornalha e o ventilador, fazendo com que um único ventilador movimente o ar aquecido e o de resfriamento, sendo este o mais utilizado.

Quanto ao fluxo de ar, são utilizados em fluxo concorrente, contracorrente, cruzado ou misto, conforme é mostrado na figura 12.

Figura 12 - Caracterização do fluxo.

Nas quatro situações os grãos, entram pela parte superior da torre e descem através do corpo do secador, enquanto o ar entra na torre de secagem, pelas calhas (dutos), como demonstrado na figura com o fluxo concorrente, contracorrente, cruzado ou misto (neste caso existindo dois ou mais fluxos de ventilação).

As primeiras unidades construídas no Brasil, remontam à década de 60 e cuja capacidade estava na ordem de 2 ton/hora. Estes equipamentos operavam em ambientes fechados.

Em poucos anos esta capacidade triplicaria, chegando hoje a capacidades de até 100 ton/hora.

Os secadores de torre hoje construídos utilizam basicamente os mesmos princípios dos da década de 60, operando pelo sistema intermitente ou contínuo. Trabalham por aspiração e secam qualquer tipo de sementes e de grãos, conforme mostrado na figura 13.

Figura 13 - Secador de torre utilizado para secagem de sementes (1) e secador torre para secagem de grãos (2).

Os principais componentes são: A torre, dividida em duas zonas. Na parte superior, a zona por onde o ar entra aquecido, também chamada de câmara de secagem. A segunda zona, na parte inferior, a de resfriamento da massa de grãos. Torres de secagem com mais que duas zonas já estão sendo testadas.

A torre é formada por quadros laterais. Estas fazem o fechamento e a estrutura lateral da torre de secagem, são aparafusados entre si e sustentam os difusores de entrada e saída do ar. Espelhos e dutos ou calhas são dispositivos montados que permite a entrada do ar, sendo os do lado da fornalha abertos e do lado do ventilador fechados. Este procedimento auxilia no direcionamento do fluxo do ar em contracorrente ou concorrente, possibilitando que o ar atravesse uma camada de grão da ordem de 210 mm. Neste momento é que se dá a troca de calor do ar com a massa de grãos e a umidade do grão com o ar. Na câmara de resfriamento, os grãos trocam calor com o ar se resfriando.

Os detalhes do secador estão mostrados na figura 14.

Figura 14 - Detalhe da secador de torre, (a, b, c e d).

Como foi descrito anteriormente, este sistema de secagem permite quatro possibilidades de utilização: a secagem contínua, a secagem intermitente, a secagem do corpo inteiro e a secagem em lotes.

Na secagem contínua, a faixa recomendada de umidade para introdução no secador é da ordem de 22% de umidade.

Para cada tipo de grão, recomenda-se uma determinada temperatura do ar de aquecimento. Utilizou-se faixas de temperatura entre 55°C à 65°C para o arroz, de 80°C à 100°C para o milho e de 100°C à 110°C para soja e trigo. Torna-se importante frisar que esta é a temperatura de entrada do ar aquecido, mas o controle é efetuado pela temperatura da massa de grão, onde no caso do arroz, fica ao redor dos 40°C, no milho em 55°C e na soja e no trigo em 48°C, PUZZI (1977).

Os procedimentos, para utilização da torre, tornam-se de fundamental importância para se obter a maior eficiência na operação, uma vez que se trata de um volume de grãos muito elevado, chegando a 100 ton/hora.

Os fabricantes justificam, como as principais vantagens deste sistema, a umidade de saída praticamente constante. Nas indústriais de óleo, o sistema oferece grãos com melhor qualidade, aumentando o rendimento do solvente na extração.

A secagem é efetuada a um mínimo custo, pois os grãos não secam acima do necessário.

2.3.2) SECA-AERAÇÃO

Em 1962, pesquisas sobre um novo processo de secagem de cereais denominado seca-aeração teve início. Este processo foi desenvolvido pelo Sistema de Pesquisa Agrícola (USDA), em cooperação com a Universidade de Purdue.

A seca-aeração elimina o resfriamento quando na secagem de fluxo contínuo, os grãos ainda aquecidos são transferidos para o interior do silo de seca-aeração, onde serão resfriados. O material colocado no silo permanece em repouso por um período de 8 a 12 horas, sendo resfriados então muito lentamente, com um fluxo de ar de 0,5 m³/min.m³.

Outro aspecto importante a ser considerado neste processo é a redução de rachaduras por tensão e quebra dos grãos.

Colocando-se um produto úmido em contato com o ar à mesma temperatura, o efeito observado geralmente é a secagem do tipo isentálpica, ou seja, produz-se uma troca de umidade e de calor entre o ar e o produto, cujo equilíbrio produz a entalpia constante. O ponto máximo de evolução possível de uma reta isentálpica é a curva de saturação. O ar absorve uma quantidade de vapor de água suplementar e sua temperatura de bulbo seco se reduz até a temperatura de bulbo úmido, atingindo a saturação. Esta temperatura de resfriamento é denominada "temperatura isentálpica de equilíbrio".

3) MATERIAL E MÉTODOS

O desenvolvimento do equipamento teve início na concepção da patente industrial no.8700583, intitulada de "Equipamento para Secagem de Materiais Granulares".

O primeiro protótipo foi construído em escala laboratorial, com a finalidade de se conhecer na prática a sua operacionalidade, uma vez que se trata de um sistema inédito. Os mecanismo mais próximos existentes e parecidos com a patente são os sistemas transportadores de materiais granulares ou os promotores de mistura (static mixer).

Como foi abordado na introdução e na revisão bibliográfica, os mecanismos atualmente existentes para secagem de grãos/sementes utilizam três tipos clássicos de secadores que utilizam escoamentos em contracorrente, cocorrente e cruzados.

A indústria nacional fabrica dois tipos básicos de secadores: o de torre, também denominado de secador de cascata ou de calhas, tanto utilizado para grãos como para sementes, e o secador estático constituído de um silo e dispositivos colocados em seu interior para insuflamento de ar por entre a massa de grãos.

A indústria tem desenvolvido outros tipos de secadores. Todavia, devido a problemas técnicos e operacionais, estes sistemas não têm motivado a industria de beneficiamento para sua efetiva implantação.

Os sistemas desenvolvidos e fabricados pela indústria nacional e internacional, são baseados no insuflamento do ar aquecido por entre a massa de grãos.

O equipamento em questão, figura 15, trabalha com o deslocamento do material, onde os grãos escorrem por gravidade em chicanas torcidas e inclinadas em sentidos alternados, permitindo uma maior mistura dos grãos durante o trajeto e maior troca térmica.

a) unidade laboratorial

b) unidade piloto

Figura 15 - Desenho das unidades construidas para os testes experimentais.

3.1) MATÉRIA PRIMA

Foi utilizada a soja <u>Glycine max.I.Merril</u>, variedade IAC 14, com teor de umidade de 17% BU conseguido através da reumidificação.

Os resultados da secagem não são alterados apesar das modificações sofridas nos grãos pelas umidificação e desumidificação, CALADO (1992).

É prática comum nas experiências de secagem, a reumidificação dos grãos com teor muito baixo de umidade (8% a 10% BU). Dentre algumas técnicas mais usuais, podemos citar :

mistura dos grãos com água líquida:

sacos plásticos, durante 2 horas, a 25ºC, BARROZO et alli. (1991).

- aspersão periódica (5 dias a 25°C) de água líquida nos grãos acondicionados em sacos plásticos, BARROZO et alli. (1991).
- ambiente fechado em atmosfera de vapor saturado de água , AGUERRE et alli. (1982) e NOVAIS (1990).

• fluxo de ar com umidade relativa de 95% MANTOVANI (1976).

No presente trabalho, para se obter grãos úmidos, foi utilizada a umidificação lenta; água borrifada diariamente na superfície do grão, acondicionado em saco plástico e colocado em um ambiente com uma temperatura de 25°C.

Os grãos com teor de umidade inicial ao redor de 17% BU eram colocados no sistema de secagem sendo coletados dados da perda de umidade em função do tempo.

3.2) TERMOMETRIA

As medidas de temperaturas foram realizadas em regime permanente, conforme descritos por HEERTJES (1956) e LEVA (1949). Estas técnicas são aplicadas em experiências conduzidas em leito de jorro, fluidizado, transporte pneumático, leito fixo e deslizante. As medidas de temperatura podem ser tomadas diretamente no leito utilizando termopar sem proteção, termopar com proteção na extremidade ou termômetro de resistência elétrica.

Inicialmente realizaram-se os testes de calibração dos termopares e dos medidores de vazão.

3.3) EQUIPAMENTOS DE APOIO

- balança analítica, marca Oertling, modelo LA164, com quatro casas decimais em gramas; precisão de \pm 0,0001g

- balança semi-analítica, marca Marte, modelo A10K; precisão de ± 0,01g

- estufa com aeração forçada, marca Fabbe-Primar com controlador de temperatura;

- estufa sem aeração, marca Fabbe-Primar, modelo 119 com termostato;
- anemômetro, marca Lambrecht, modelo 1405; precisão de \pm 5%

- anemômetro térmico, marca Dwyer, modelo 470-1: precisão de $\pm 2\%$

- termohigrógrafo, marca Haenni, modelo 564; precisão de \pm 3%

- maquina fotográfica, marca Pentax;

- cronômetro, marca Seiko;

Ľ

- termômetro digital com 12 pontos, com duas casas decimais, marca lope, modelo TDB40C12; precisão de $\pm 2\%$
- variador de tensão, marca Italvolt, série B, 1,6 KVA;
- controlador de temperatura, marca Digi-mec, mod. SH1;
- alimentador vibratório, fabricado por Norma Automação;
- ventilador centrífugo, marca Ibram, modelo VC1350M;
- vidrarias (dessecador a vácuo, com bandeja em porcelana, diâmetro 160 mm, marca Pirex; proveta, pesa filtro.).

3.4) CONSTRUÇÃO DE UMA UNIDADE LABORATORIAL DE SECAGEM

Para se chegar à consolidação deste trabalho de pesquisa e aos materiais e métodos necessários para averiguações experimentais, foi construída unidade laboratorial que permitiu viabilizar os métodos para o melhor aproveitamento do processo de secagem no interior do secador.

Como pode ser observado em trabalhos revisados, um fator de muita importância na secagem de grãos, além da temperatura e da velocidade do ar de secagem, é o fluxo de massa que também pode ser denominado como "tempo de residência".

Os dispositivos testados, são constituídos basicamente de placas torcidas e inclinadas em sentidos opostos instaladas no interior de uma torre de secagem, permitindo que a massa de grãos escorra com uma velocidade estabelecida em função da inclinação e da torção.

A construção da unidade laboratorial teve como premissa a averiguação da análise de todos os problemas que poderiam ocorrer na construção de uma unidade piloto, uma vez que se trata de um equipamento ainda não utilizado para secagem.

A primeira peça construída, foi o sistema por onde a matéria prima iria se deslocar por gravidade, caracterizadas como chicanas. Trata-se de uma estrutura construída a partir de material metálico, na forma de chapas torcidas e inclinadas em

sentidos opostos. Confeccionou-se uma maquete com a intenção de se prever as formas de fixação e modelamento destas rampas.

Na oficina mecânica, iniciou-se a construção utilizando chapas de alumínio. Este material foi recortado na forma de discos de acordo com um gabarito e foram montados em um tubo de ferro. Esta estrutura foi fixada em uma base, construída em madeira, revestida com fórmica. Nesta base, além do dispositivo para o escoamento da matéria prima, montou-se também o sistema de aquecimento, constituído de resistências elétricas e painel eletrônico dotado com um controlador de temperatura para as resistências e um ventilador centrífugo.

Até se conseguir definitivamente o melhor conjunto de dispositivos para o início dos levantamentos experimentais, na fase laboratorial, foram construídos três tipos de modelos de dispositivos de escoamento e duas estruturas de suporte, com mecanismos de aquecimento e ventilação.

Não se conseguiu uma boa dinâmica de escoamento, utilizando as chicanas construídas com alumínio, pois embora tenha uma boa maleabilidade encontrou-se dificuldade na fixação devido ao ângulo de inclinação.

O segundo material utilizado foi tela de arame de ferro galvanizado. Esta foi moldada em hastes soldadas ao longo do tubo de ferro. Este material foi escolhido devido a facilidade com que o ar passaria pelas telas e aparentemente parecia simples sua fixação nas hastes. Isto não ocorreu, tendo sido bem trabalhosa sua fixação. Além disso, a tela aumentou o atrito da matéria prima na superfície ocasionando também um péssimo escoamento.

O terceiro material empregado foi a chapa de ferro galvanizado perfurada. Esta apresentou as melhores características (fig.16). Foi recortada na forma de discos e soldadas conforme inclinação e torção pré-definidas. Nos testes preliminares esta escolha demonstrou ter sido a ideal. Todavia, os mecanismos para obtenção de um ar aquecido, que seria insuflado para dentro deste sistema teve que ser trocado pela grande perda de carga introduzida pela chapa perfurada. Assim, foi montada uma nova estrutura utilizando um novo sistema de aquecimento e ventilação.

Figura 16- Representação esquemática dos dispositivos instalados no interior da torre.

Utilizou-se um alimentador vibratório (fig.17) no topo da torre para alimentação da matéria prima para o interior do sistema de secagem. O sistema é constituído de um silo, construído em chapa de aço carbono com capacidade para aproximadamente 0,05 m³ de sólidos, caindo numa calha vibratória e desta para a torre de aquecimento, garantindo assim uma alimentação com vazão constante.

Figura 17 - Alimentador vibratório.

As paredes do secador foram construídas de acrílico para visualização do escoamento.

O alimentador vibratório introduzia a soja para a torre de aquecimento e os dispositivos instalados no interior da torre (as chicanas) permitiam o deslizamento dos grãos, com a reversão nos seus movimentos.

Com os testes preliminares nesta escala laboratorial, construiu-se uma unidade piloto, mantendo-se o sistema de alimentação por intermédio do alimentador vibratório. Na saída da torre foi acoplado um silo, onde era captada a soja aquecida para efetuar seu resfriamento. O aquecimento do ar ambiente foi feito por meio de um conjunto de resistências totalizando 4000 watts de potência, ligado a um controlador de temperatura montado em um circuito eletrônico com relês e chave contatora.

Descrevendo as unidades que compõem o sistema laboratorial, temos (fig. 18): alimentador vibratório instalado na parte superior do sistema, constituído de silo armazenador (1) e calha (2) dotados de vibrador eletromagnético, dosando a quantidade de grãos que alimentará a torre de aquecimento (3). A torre (3) montada em escala laboratorial tem 1000 mm de altura e 400 mm de diâmetro. No interior da torre (3) foram fixadas a um eixo (4) as chapas torcidas e inclinadas (5) por onde os grãos deslizaram. Esta unidade foi montada em uma base (6). Nesta base (6) foi montado também o sistema de ventilação, utilizando um ventilador centrífugo (7), e um conjunto de resistências elétricas (8), acopladas a dutos (9). O controle de ventilação e o aquecimento foram obtidos por um painel eletro-eletrônico (10) montado na base (6).

4

ł

.

.

Figura 18 - Detalhamento da Unidade Laboratorial

UNICANP BOR 10 TECA CENTRAL

3.5) UNIDADE EM ESCALA PILOTO

A principal modificação foi o comprimento da torre de aquecimento para cinco metros de altura, modificação do sistema de alimentação do ar e um novo dimensionamento do sistema de aquecimento. (figuras 19 e 20).

A torre piloto foi construída numa escala que permitisse um maior tempo de residência da matéria prima no interior desta, com uma altura de 5000 mm e diâmetro interno de 400 mm.

Os desenhos esquemáticos apresentados, representam a unidade de secagem em escala piloto, construído para o levantamento dos dados experimentais.

A torre (3) foi construída com uma altura de 5000 mm e um diâmetro de 400 mm, esta torre foi confeccionada em acrílico para melhor visualização do escoamento. Em seu interior foi montado um duto de ferro (3b) e neste, soldada uma série de chapas perfuradas de ferro galvanizado (3a) torcidas e inclinadas em sentidos opostos, permitindo que a massa de grãos no momento do escoamento deslize por estas chapas no sentido horário e anti-horário. Este movimento implica em velocidades alternadas durante o escoamento.

Como na unidade laboratorial, o grão foi introduzido na torre por intermédio de um alimentador vibratório, constituído de silo(1) e rampa vibratória(2) que regula a vazão da massa de grãos para o interior da torre. A alimentação do silo(1), foi manual.

O grão percorre a torre, alcançando um duto (4) no final desta que direciona a massa de grãos para um silo (5) onde sofrerá resfriamento.

Este silo (5) recebe uma quantidade de ar, proveniente do ambiente através de um duto (6) deslocado por intermédio de um ventilador centrífugo (7), acionado por um motor elétrico (8). Após cada resfriamento o grão era transportado manualmente para o silo(1), onde se repetia o processo até completar sua secagem.

O ventilador centrífugo (7), desloca o ar ambiente através de dutos (6)(13) com derivações, tanto para o silo como para a torre. Na entrada da torre instalou-se um

conjunto de resistências elétricas (10) para aquecimento do ar, um conjunto de termopares (12) emite um sinal para um controlador de temperatura (11a).

ŧ

Um painel eletrônico (11) comanda a unidade piloto, acionando o sistema de ventilação, aquecimento, controladores de temperatura, vazão e vibração eletromagnética, além dos sistemas de monitoramento.

Figura 19 - Detalhamento da unidade piloto (Vista lateral).

F

.

٨.

Figura 20 - Detalhamento da unidade piloto (Vista frontal).

3.5.1) CONTROLE OPERACIONAL E EXPERIMENTAL DA UNIDADE PILOTO

Após a construção da unidade piloto, iniciaram-se a construção e montagem dos sistemas de comando, constituídos de painel eletro-eletrônico e os sistemas de monitoramento (controladores de temperatura, vazão e vibração eletro-magnética). A figura 21 mostra os sistemas que comandam e monitoram a unidade piloto.

r

Figura 21 - Esquema do controle operacional e experimental da unidade piloto.

Através do painel elétrico, aciona-se um variador de tensão que controla um vibrador eletromagnético, fixado na base de uma rampa e silo denominado de "alimentador vibratório" que alimenta a torre com os grãos. Neste momento um ventilador centrífugo controlado por um variador de tensão desloca uma massa de ar para o interior da torre. Este ar passa por um aquecedor, constituído de resistências elétricas, controlado por um sistema eletrônico denominado de "controlador de temperatura", que regula a temperatura de entrada da torre por intermédio de termopares.

O sistema é monitorado por termopares ligados a registrador de temperatura de 12 pontos e anemômetros.

3.6) INSTRUMENTAÇÃO

As variáveis operacionais medidas no decorrer das experiências foram:

• vazão de gás

ł

É.

- velocidade do sólido
- temperaturas do ar e do grão
- umidade do ar e do grão

São as seguintes as metodologias experimentais adotadas para medição destas variáveis.

3.6.1) VAZÃO DE GÁS

A vazão de gás insuflada pelo ventilador centrifugo na torre de aquecimento era medida da seguinte forma:

- através de anemômetro de fio quente, calibrado, inserido em diversos pontos de tomada ao longo dos dutos;

- através de anemômetro de ventoinha com adaptador construído, para tomadas de velocidade do gás na saída da torre.

Estas duas medidas permitiram a verificação dos resultados experimentais.

3.6.2) VELOCIDADE MÉDIA DAS PARTÍCULAS SÓLIDAS

A velocidade média das partículas sólidas na torre de aquecimento (leito deslizante) onde estão montados os sistemas de deslizamento do sólido, era medida pelo método clássico: cronometrava-se o tempo que uma determinada carga de sólido levava para percorrer uma distância conhecida.

3.6.3) TEMPERATURAS

ľ

Foi utilizado um calorímetro adiabático para a determinação das temperatura do grão. As amostras coletadas no final da torre eram colocadas neste aparelho, onde a temperatura era medida por um termômetro calibrado (0^o-100^oC) introduzido na massa de grãos.

As temperaturas do gás foi medida em vários pontos do sistema através de termopares de Fe-Constant, ligados a uma chave comutadora modelo TDB4012, com 12 canais.

3.6.4) UMIDADES

A umidade dos gases de alimentação na torre de aquecimento era medida, utilizando-se um psicrômetro de termômetro de bulbos úmido e seco.

A umidade dos grãos era determinada pelo método de estufa a 105ºC, por 24 horas .

3.7) **RESFRIAMENTO**

Foi efetuada a aeração com o objetivo essencial de resfriar os grãos aquecidos na torre.

Foram determinados as temperaturas e conteúdos de umidade do grão durante o resfriamento.

3.8) - CONDIÇÕES EXPERIMENTAIS

Com a unidade piloto construída e os sistemas de monitoramento instalados iniciou-se os levantamentos experimentais.

O objetivo do presente trabalho é avaliar os coeficientes da transferência de calor e secagem utilizando os promotores estáticos de mistura de sólidos. As sete corridas experimentais com as condições operacionais estão definidas no quadro 9. QUADRO 9 - CONDIÇÕES OPERACIONAIS DA UNIDADE PILOTO

Condições Operacionais	Unidade	Exper.1	Exper.2	Exper.3	Exper.4	Exper.5	Exper.6	Exper.7
Temperatura na entrada da Torre	(K)	353,15	333,15	366,05	366,15	335,95	354,65	329,15
Temperatura na saída da Torre	(K)	333,15	318,15	343,15	343,15	325,15	333,15	313,15
Velocidade do ar na entrada da Torre	(m/s)	8,3	8,3	8,3	8,3	8,3	8,3	8,3
Velocidade do ar na saída da Torre	(m/s)	0,54	0,54	0,54	0,54	0,54	0,54	0,54
Velocidade do ar de resfriamento	(m/s)	0,27	0,27	0,27	0,27	0,27	0,27	0,27
Temperatura do ar de resfriamento	(K)	308,15	307,15	307,15	308,65	309,15	308,15	308,15

Os grãos recirculam pela torre de aquecimento e pelo sistema de resfriamento, de quatro a sete vezes para obtenção de uma umidade ao redor de 12%. Os parâmetros avaliados para cada condição experimental estão mostrados no quadro 10.

QUADRO 10 - VARIÁVEIS EXPERIMENTAIS

Variáveis	Unidade
Temperatura da matéria prima na entrada	(K)
Umidade da matéria prima (base Seca)	(%)
Tempo de escoamento	(s)
Temperatura da matéria prima na saída da Torre	(K)
Tempo de resfriamento	(s)
Temperatura da matéria prima após o resfriamento	(K)
Temperatura ambiente	(K)
Peso da matéria prima	(kg)
Umidade relativa	(%)

A seguir serão descritas as metodologias utilizadas para análise dos dados experimentais.

3.9) - TRANSFERÊNCIA DE CALOR

Para a determinação do fluxo de calor entre a partícula submetida a secagem e o fluxo gasoso no secador, torna-se necessário, determinar o coeficiente convectivo de transferência de calor gás-partícula.

Este coeficiente de transferência de calor depende das propriedades das partículas e do meio de secagem, sendo calculado a partir das equações de conservação de energia.

As condições de processo que afetam a velocidade da partícula (velocidade relativa gás-partícula) e consequentemente o número de Reynolds, influenciam o coeficiente convectivo.

Os coeficientes convectivos estão relacionados com a geometria e diâmetro do leito de secagem, razão entre as vazões de sólidos e gás, tamanho, forma e densidade das partículas entre outras.

Utilizando a equação: $q = mc\Delta T$, (73)

calculou-se as energias envolvidas, sendo:

a. Cálculo da energia absorvida pelo grão

 $q(grao) = (\dot{m}_{gr}).(C_{gr}).(\Delta T)$

 $\bar{m}_{_{\rm gr}}\,$ - vazão mássica (média da variação da massa em relação ao tempo de escoamento), kg/s

C_{gr} - calor específico do grão, kJ/kg K

ΔT - variação da temperatura do grão, K

b. Cálculo da energia fornecida pelo ar

 $q(ar) = (\dot{m}_{f}).(C_{f}).(\Delta T)$

m, - vazão mássica, kg ar/s

C_r - calor específico do ar, kJ/kg K

∆T- variação da temperatura do ar, K

A vazão volumétrica é obtida multiplicando-se a velocidade do fluxo de ar pela área da seção transversal da torre de aquecimento.

A vazão mássica é obtida pela multiplicação da vazão volumétrica pela densidade.

A densidade é obtida através do inverso do volume específico, utilizando a expressão:

$$Ve = \frac{287 \text{ x T}}{Patm - Pv} \qquad \text{ASAE STANDARDS (1990).}$$
(74)

onde: Ve volume específico, m³/kg Pvs pressão de vapor saturado, Pa Patm pressão atmosférica, Pa T temperatura, K

c. Energia perdida para o ambiente.

}

Calcula-se a energia perdida para o ambiente, utilizando:

$$q_{ar} = q_{gr} + q(\text{perdida}) \implies q(\text{perdida}) = q_{ar} - q_{gr}$$
 (75)

3.9.1) DETERMINAÇÃO DOS COEFICIENTES DE TROCA TÉRMICA, UTILIZANDO O CONCEITO DE TROCADORES DE CALOR.

Através da energia fornecida para o grão, calculou-se o coeficiente convectivo de transferência de calor utilizando o conceito de Trocadores de Calor.

A unidade piloto foi tratada como um trocador de calor, calculando-se os balanços de energia no gás e no sólido determinando os coeficientes de troca térmica.

O cálculo do coeficiente convectivo de transferência de calor, equação (76) foram determinados para cada passagem do grão pela torre de aquecimento, para a condição experimental correspondente. Os cálculos estão mostrados no anexo 2.

$$U = \frac{q_{g_{r}}}{\frac{A(T_{sd} - T_{en})}{\ln(T_{sd} - T_{en})}}$$
(76)

onde T_{sd} é a temperatura da saída do grão na torre T_{grsd} menos temperatura de entrada do ar T_{fen} , e T_{engr} é a temperatura de entrada do grão menos a temperatura de saída do ar T_{fsd} .

Utilizou-se a área da seção transversal do secador A_{sts}, calculada pela equação (77a),

$$A_{\rm sts} = \frac{\pi \,\mathrm{D}^2}{4} \tag{77a}$$

e a área de um trocador de calor A_{tc}, calculada pela equação (77b).

$$A_{tc} = \frac{2\pi r^{\circ} L - 2\pi r^{1} L}{Ln\left(\frac{2\pi r^{\circ} L}{2\pi r^{1} L}\right)}$$
(77b)

3.9.2) UTILIZAÇÃO DA EQUAÇÃO DE SARTORI (1986), PARA OBTENÇÃO DO COEFICIENTE CONVECTIVO DE TRANSFERÊNCIA DE CALOR.

SARTORI (1986), determinou experimentalmente o coeficiente de transmissão de calor entre o sólido e o fluido em leito deslizante nas configurações de escoamentos contracorrente, cocorrente e cruzados em situações de aquecimento e resfriamento do sólido. Este utilizou os conceitos formulados por FURNAS (1930).

Com os conceitos e proposições de SARTORI (1986), utilizou-se as equações desenvolvidas em seu trabalho para a obtenção de valores do coeficiente convectivo de transferência de calor :

Para y≠1

$$\frac{T_f - T_{fo}}{T_{so} - T_{f0}} = \frac{1 - \exp[(1 - \psi)X / \psi]}{1 - \psi}$$
(42a)

$$\frac{T_{S} - T_{f_{0}}}{T_{s_{0}} - T_{f_{0}}} = \frac{1 - \psi \exp\left[-(1 - \psi)X/\psi\right]}{1 - \psi}$$
(42b)

$$para \quad \psi = 1$$

$$v = -\frac{X}{\psi}$$

$$u = 1 - X$$
(42c)

3.9.3) OBTENÇÃO DOS NÚMEROS ADIMENSIONAIS DE NUSSELT, REYNOLDS E PRANDTL.

O número de Reynolds foi calculado para o fluido e para as partículas, conforme mostrado no anexo 9.

O número de Nusselt, foi determinado para os coeficientes convectivos de transferência de calor obtidos pelas equações (42a) e (42b), conforme descrito no item 3.9.2.

3.10) SECAGEM

3.10.1) DETERMINAÇÃO DA ADIMENSIONAL DE UMIDADE.

As curvas de secagem foram obtidas graficando a adimensional de umidade em função do tempo de secagem. Adimensional de umidade (R) foi calculado pela equação (78).

$$R = \frac{Y - Yeq}{Y_0 - Yeq} \quad \text{onde,} \tag{78}$$

R - adimensional de umidade

Y - umidade média (kg H_2O / kg de massa seca)

Yeq - umidade de equilíbrio (kg H_2O / kg de massa seca)

Yo - umidade no instante inicial (kg H_2O / kg de massa seca)

A umidade de equilíbrio foi calculada segundo ROSSI e ROA (1980), mostrado no quadro 20 pela equação (79)

 $Y_{eq} = (p_1RH + p_2RH^2 + p_3RH^3) \exp [(q_0 + q_1RH + q_2RH^2 + q_3RH^3 + q_4RH^4)(T + q_5)]$ (79) **3.10.2) MODELO DE DIFUSÃO LÍQUIDA DE FICK.**

O modelo de FICK expressa que o fluxo de massa por unidade de área é proporcional ao gradiente de concentração de água.

$$\frac{\partial \mathbf{Y}}{\partial t} = \nabla \cdot \left(D_{ef} \nabla Y \right) \tag{56}$$

Onde:

Def - é a difusividade efetiva

Y - representa o conteúdo de umidade

No caso da secagem, utilizando sistemas de coordenadas esféricas, assumindo que no interior da esfera de raio r, ocorre difusão somente na direção radial, a equação reduz para:

$$\frac{\partial \mathbf{Y}}{\partial t} = \frac{1}{z^2} \left[\frac{\partial}{\partial z} \left(z^2 \mathbf{D}_{ef} \left(\frac{\partial \mathbf{Y}}{\partial z} \right) \right) \right]$$
(57)

a umidade Y, deve obedecer as seguintes condições inicial e de contorno:

t = 0	0 < z< r	Y = Yo
t > 0	z = 0	$\frac{\partial \mathbf{Y}}{\partial z} = 0$
t > 0	z = r	Y = Yeq

temos:

۲°

r

$$R = \frac{\overline{Y} - Y_{eq}}{Y_o - Y_{eq}} = \frac{6}{\pi^2} \cdot \sum_{n=1}^{\infty} \cdot \frac{1}{n^2} \cdot Exp\left[\frac{-n^2 \cdot \pi^2 \cdot D_{ef} \cdot t}{r^2}\right]$$

Onde:

R = adimensional de umidade;

 \overline{Y} = conteúdo médio de umidade (kg H₂0 / kg Massa Seca);

 Y_{eq} = conteúdo de umidade de equilíbrio (kg H₂0 / kg Massa Seca);

= conteúdo de umidade no instante inicial (kg H₂0 / kg Massa Seca);

n = número de termos na série de Fourier;

 D_{ef} = difusividade efetiva (m²/s);

t = tempo (s);

= raio médio da amostra (m).

A difusividade efetiva foi calculada para cada passagem pela torre de secagem, ajustando as curvas experimentais à curva dada pela equação baseada no modelo de FICK.

Os cálculos foram efetuados utilizando-se o procedimento de regressão não linear do pacote estatístico SAS (1985).

3.10.3) DETERMINAÇÃO DO CONTEÚDO ADIMENSIONAL DE UMIDADE PELO MODELO DE PAGE (1949).

Utilizando o procedimento de regressão não linear do pacote estatístico SAS, foram calculados os termos da equação de PAGE (1949) para obtenção das constantes, k e n. Utilizando a equação estendida, PAGE modificado, foram obtidas as constantes A,k e n, conforme as equações (71).

$$\frac{Y - Y_{eq}}{Y_0 - Y_{eq}} = \exp(-kt^n) \qquad \qquad \frac{Y - Y_{eq}}{Y_0 - Y_{eq}} = A_p \exp(-kt^n)$$
(71)
(PAGE) (PAGE modificado)

3.10.4) DETERMINAÇÃO DO CONTEÚDO DE UMIDADE DO GRÃO DURANTE O AQUECIMENTO E O RESFRIAMENTO.

Utilizando os valores de difusividade efetiva obtida por GODOI (1996), durante o aquecimento no secador munido de promotores estacionários obteve-se a equação do tipo Arrhenius relacionando as difusividades efetivas com as temperaturas de secagem, $D = D_0 \exp(-\frac{b}{RT})$. Utilizou-se o pacote estatístico SAS para o cálculo de Do e b. Com os parâmetros estimados, calculou-se as difusividades em função das temperaturas médias do ar de secagem para cada condição experimental do presente trabalho, utilizando uma série de 20 termos. Com as difusividades efetivas obtidas, calculou-se o adimensional do conteúdo de umidade correspondente ao período de aquecimento.

4) RESULTADOS E DISCUSSÃO

4.1) UMIDIFICAÇÃO DOS GRÃOS

Apesar das modificações sofridas nos grãos pelas umidificação e desumidificação sucessivas, este procedimento não altera os resultados da secagem, CALADO (1992).

4.2) TRANSFERÊNCIA DE CALOR

4.2.1) DETERMINAÇÃO DO FLUXO DE CALOR ENTRE A PARTÍCULA SUBMETIDA A SECAGEM E O FLUXO DO AR NO SECADOR

Utilizando a equação (73), calcula-se as energias envolvidas. O resultado dos valores obtidos para cada corrida experimental utilizando a equação(73), estão mostrados no quadro 11. Os cálculos estão mostrados no anexo 1.

Experimento	q(ar) kJ/s	q(grão) kJ/s	q(perdida) kJ/s	% de perda
1	1,51	0,22	1,29	85
2	1,13	0,11	1,02	90
3	1,74	0,34	1,41	81
4	1,73	0,34	1,40	81
5	0,81	0,21	0,60	74
6	1,62	0,30	1,32	81
7	1,20	0,14	1,06	88

Quadro 11 - Cálculo dos balanços de energia.

Os altos valores de perda de calor para o ambiente é resultado do secador não ser isolado termicamente (o isolamento afetaria a visualização do escoamento).

As propriedades físicas da soja foram determinadas por GODOI (1996) obtendo dados do diâmetro médio das partículas, esfericidade, densidade real e densidade aparente segundo MOHSENIN (1986), conforme quadro 12 e 13.

Quadro 12- Caracterização do grão de soja.

Propriedades Físicas	Soja
Diâmetro da esfera de igual volume que o grão, calculado por picnometria numa	
população de partículas, dp	0,0058 m
Esfericidade média dos grãos, calculada por permeametria, através da fórmula de	
Kozeny- Cármán, ϕ	0,85
Porosidade média do leito, e	0,887

Quadro 13- Propriedades do ar.

Gás	μ	k _f	ρ _f	C _f
	(kg/m s)	(kW/m K)	(kg/m³)	(kJ/kg K)
ar	1,85 . 10 ⁻⁵	2,67 . 10 ⁻⁵	1,15	1,007

4.2.2) DETERMINAÇÃO DOS COEFICIENTES DE TROCA TÉRMICA, UTILIZANDO O CONCEITO DE TROCADORES DE CALOR.

O cálculo do coeficiente de transmissão de calor, utilizando a equação (76) foram determinados para cada passagem do grão pela torre de aquecimento, para determinada condição experimental. Os cálculos: estão mostrados no anexo 2 e os resultados estão mostrados no quadro 14.

Utilizando A_{sts} (área) como a seção transversal do secador, equação (77a)

A_{sts}= 0,1256 m², temos **U**_(sts) onde (sts) significa seção transversal do secador.

Os erros relativos dos coeficientes em relação às médias estão mostrados no quadro 14b.

Quadro 14a	- Coefficientes de	transferencia de	e calor,considerand	o a area da seç	ao transversal do	secador.

N.de passag. pela torre	Experimento 1 U(sts) kJ/m ² sK	Experimento 2 U(sts) kJ/m ² s K	Experimento 3 U(sts) kJ/m ² s K	Experimento 4 U(sts) kJ/m ² s K	Experimento 5 U(sts) kJ/m ² s K	Experimento 6 U(sts) kJ/m ² s K	Experimento 7 U(sts) kJ/m ² s K
1	0,2245	0,1935	0,3224	0,2618	0,2561	0,3154	0,1924
2	*	0,1704	0,3397	0,3253	0,2611	0,3100	0,1496
3	0,2554	0,1915	0,3606	0,3242	0,2748	0,2937	0,1518
4	0,2562	0,2105	0,3784	0,3569	0,2921	0,3388	0,1872
5	0,2687	0,1766	0,3627		0,2355	0,3157	0,1843
6	0,2613					0,2842	
Média	0,2532	0,1885	0,3528	0,3171	0,2639	0,3096	0,1731

* Devido a erro experimental não foi considerado os valores obtidos na 2º passagem pela torre.
| N.de passag. | Experimento 1 | Experimento 2 | Experimento 3 | Experimento 4 | Experimento 5 | Experimento 6 | Experimento 7 |
|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| pela torre | Erro (%) | Erre (%) | Erro (%) | Erro (%) | Erro (%) | Erre (%) | Erro (%) |
| 1 | 11,34 | 2,65 | 8,61 | 17,43 | 2,95 | 1,87 | 11,15 |
| 2 | | 9,60 | 3,71 | 2,58 | 1,06 | 0,13 | 13,57 |
| 3 | 0,86 | 1,59 | 2,21 | 2,23 | 4,13 | 5,13 | 12,30 |
| 4 | 1,18 | 11,67 | 7,26 | 12,55 | 10,68 | 9,43 | 8,15 |
| 5 | 6,11 | 6,31 | 2,80 | | 10,76 | 1,97 | 6,47 |
| 6 | 3,19 | | | | | 8,20 | |

QUADRO 14b - Erros relativos dos coeficientes convectivos de transferência de calor, considerando a área da seção transversal do secador (sts).

Os valores ficaram compreendidos entre 0,13 e 17,34 %. Estes valores mostram uma boa concordância com os resultados experimentais.

Utilizando o cálculo da área como a de um trocador de calor, equação (77b).

$$A = \frac{2\pi r^{\circ} L - 2\pi r^{1} L}{Ln\left(\frac{2\pi r^{\circ} L}{2\pi r^{1} L}\right)}$$
(77b)

A= 1,42907559 m², temos **U(tc)** onde (tc) significa trocador de calor.

Os resultados estão mostrados no quadro 15a e os erros relativos dos coefiientes em relação às médias estão mostrados no quadro 15b.

Quadro 15a- Coeficientes de transferência de calor, considerando a área de um trocador de calor.

N.de passag.	Experimento 1	Experimento 2	Experimento 3	Experimento 4	Experimento 5	Experimento 6	Experimento 7
pela torre	U(tc)	U(tc)	U(tc)	U(tc)	U(tc)	U(tc)	U(tc)
	kJ/m ² sK	kJ/m ² s K					
1	0,0197	0,0170	0,0283	0,0230	0,0225	0,0277	0,0169
2	*	0,0150	0,0299	0,0286	0,0229	0,0272	0,0131
3	0,0224	0,0168	0,0317	0,0285	0,0242	0,0258	0,0133
4	0,0225	0,0185	0,0333	0,0314	0,0257	0,0298	0,0164
5	0,0236	0,0155	0,0319		0,0207	0,0277	0,0162
6	0,0230					0,0250	
Média	0,0222	0,0166	0,0310	0,0279	0,0232	0,0272	0,0152

* Devido a erro experimental não foi considerado os valores obtidos na 2º passagem pela torre.

N.de passag.	Experimento I	Experimento 2	Experimento 3	Experimento 4	Experimento 5	Experimento 6	Experimento 7
pela torre	Erro (%)	Erro (%)	Erre (%)	Erro (%)	Erro (%)	Erro (%)	Erre (%)
1	11,42	2,66	8,71	17,56	3,02	1,84	11,18
2		9,42	3,55	2,50	1,29	0	13,82
3	0,72	1,45	2,26	2,15	4,31	5,15	12,50
4	1,17	11,72	7,42	12,54	10,78	9,56	7,89
5	6,12	6,40	2,90		10,78	1,84	6,58
6	3,41					8,08	

QUADRO 15b - Erros relativos dos coeficientes convectivos de transferência de calor, considerando a área de um trocador de calor (tc).

Os valores ficaram compreendidos entre 0 e 17,56%. Estes valores mostram uma boa concordância com os resultados experimentais.

Estes cálculos foram determinados para possibilitar a sua utilização no dimensionamento deste secador.

4.2.3) UTILIZAÇÃO DA EQUAÇÃO DE SARTORI (1986), PARA OBTENÇÃO DO COEFICIENTE CONVECTIVO DE TRANSFERÊNCIA DE CALOR.

Utilizando as equações 42a,42b e 42c estabeleceu-se os adimensionais de temperatura e ψ no aquecimento do grão, os resultados obtidos estão mostrados no quadro 16.

Passagens p/torre						
Experimento 1	1	2	3	4	5	6
$\frac{T_f - T_{fo}}{T_{So} - T_{fo}}$	0,3333	0,4386	0,4166	0,4474	0,4464	0,4347
$\frac{T_{S} - T_{fo}}{T_{So} - T_{fo}}$	0,5833	0,5921	0,5042	0,5212	0,4799	0,4782
Ψ	13,5896	12,7121	6,5666	8,3730	7,7138	7,8388
Experimento 2	1	2	3	4	5	
$\frac{T_f - T_{fo}}{T_{So} - T_{fo}}$	0,4054	0,5172	0,5454	0,4412	0,5300	
$\frac{T_S - T_{fo}}{T_{So} - T_{fo}}$	0,5351	0,6379	0,6836	0,5911	0,6148	
Ψ	10,5349	9,7180	7,7461	7,9453	6,9791	

Quadro 16 - Adimensionais de temperatura durante o aquecimento do grão, a cada passagem pela torre.

Experimento 3	1	2	3	4	5	
$\frac{T_f - T_{fo}}{T_{So} - T_{fo}}$	0,3423	0,3584	0,3760	0,3760	0,3888	
$\frac{T_{S} - T_{fo}}{T_{So} - T_{fo}}$	0,7010	0,6557	0,6190	0,5895	0,6553	
Ψ	6,0383	6,2793	5,1975	5,2985	5,4279	
Experimento 4	1	2	3	4		
$\frac{T_f \sim T_{fo}}{T_{So} - T_{fo}}$	0,3651	0,3651	0,3965	0,4035		
$\frac{T_S - T_{fo}}{T_{So} - T_{fo}}$	0,7127	0,6000	0,5690	0,5438		
Ψ	6,0427	6,1684	6,3110	5,7994		
Experimento 5	1	2	3	4	5	
$\frac{T_f - T_{fo}}{T_{So} - T_{fo}}$	0,2584	0,3293	0,3624	0,3354	0,3750	
$\frac{T_S - T_{fo}}{T_{So} - T_{fo}}$	0,4210	0,6097	0,5403	0,6273	0,6180	
Ψ	10,9739	6,5831	5,8101	4,9965	6,1352	
Experimento 6	1	2	3	4	5	6
$\frac{T_f - T_{fo}}{T_{So} - T_{fo}}$	0,3675	0,4517	0,4725	0,4057	0,4584	0,4831
$\frac{T_S - T_{fo}}{T_{So} - T_{fo}}$	0,6051	0,6239	0,6352	0,6151	0,6077	0,6450
Ψ	6,6817	5,0665	5,1151	5,1786	5,2541	5,3105
Experimento 7	1	2	3	4	5	
$\frac{T_f - T_{fo}}{T_{So} - T_{fo}}$	0,4324	0,5926	0,6956	0,5424	0,7239	
$\frac{T_S - T_{fo}}{T_{So} - T_{fo}}$	0,5243	0,5481	0,6869	0,5864	0,7104	
Ψ	8,5744	10,9509	6,7334	6,8584	7,0380	

Com estes valores obtidos, utilizou-se o pacote estatístico SAS (1985) para determinação da adimensional X= hSx/C_fG_f , conforme mostrado no anexo 4. Com os valores determinados, calculou-se os coeficientes convectivos de transferência de calor (h) durante o aquecimento do grão, conforme mostrado no anexo 4a.

Utilizando as equações 42b e 42c estabeleceu-se os adimensionais de temperatura e ψ no resfriamento do grão. Os resultados obtidos estão mostrados no quadro 17.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Passagens p/torre						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimento 1	1	2	3	4	5	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{T_S - T_{fo}}{T_{So} - T_{fo}}$	0,5138	0,3857	0,3574	0,3385	0,3314	0,3343
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ψ	1,8958	3,0481	1,8894	1,7521	2,6903	3,2807
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimento 2	1	2	3	4	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{T_{S} - T_{fo}}{T_{So} - T_{fo}}$	0,4972	0,5393	0,5737	0,5367	0,4904	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ψ	2,2056	2,2606	2,3168	2,3763	2,4352	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimento 3	1	2	3	4	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{T_{S} - T_{fo}}{T_{So} - T_{fo}}$	0,4192	0,4133	0,4093	0,4944	0,3498	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ψ	3,7593	3,9093	4,0448	4,1234	4,2241	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimento 4	1	2	3	4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{T_S - T_{fo}}{T_{S\sigma} - T_{fo}}$	0,4476	0,4794	0,4221	0,3735		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ψ	3,6195	3,6948	3,7803	4,0496		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimento 5	1	2	3	4	5	
$\begin{array}{c c c c c c c c c c c c } \hline \psi & 1,5377 & 1,9767 & 3,0529 & 3,1505 & 2,1492 \\ \hline Experimento 6 & \mathbf{l} & 2 & 3 & 4 & 5 & 6 \\ \hline \hline \frac{T_S - T_{f_0}}{T_{S_0} - T_{f_0}} & 0,4480 & 0,4216 & 0,4474 & 0,4163 & 0,4377 & 0,4007 \\ \hline \psi & 5,2588 & 5,3168 & 3,5785 & 3,6229 & 3,6757 & 2,9722 \\ \hline \hline \Psi & 5,2588 & 5,3168 & 3,5785 & 3,6229 & 3,6757 & 2,9722 \\ \hline Experimento 7 & \mathbf{l} & 2 & 3 & 4 & 5 \\ \hline \frac{T_S - T_{f_0}}{T_{S_0} - T_{f_0}} & 0,3968 & 0,4736 & 0,6363 & 0,6220 & 0,6470 \\ \hline \psi & 2,9339 & 2,3059 & 2,3631 & 2,4069 & 2,4699 \end{array}$	$\frac{T_{S}^{\prime} - T_{fo}}{T_{So} - T_{fo}}$	0,4327	0,5934	0,2222	0,4557	0,4624	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ψ	1,5377	1,9767	3,0529	3,1505	2,1492	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimento 6	1	2	3	4	5	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{T_S - T_{fo}}{T_{S\sigma} - T_{fo}}$	0,4480	0,4216	0,4474	0,4163	0,4377	0,4007
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ψ	5,2588	5,3168	3,5785	3,6229	3,6757	2,9722
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimento 7	1	2	3	4	5	
ψ 2,9339 2,3059 2,3631 2,4069 2,4699	$\frac{T_S - T_{fo}}{T_{So} - T_{fo}}$	0,3968	0,4736	0,6363	0,6220	0,6470	
	Ψ	2,9339	2,3059	2,3631	2,4069	2,4699	

Quadro 17 -Adimensionais de temperatura durante o resfriamento do grão, a cada passagem pela torre.

Com os valores obtidos, utilizou-se o pacote estatístico SAS (1985), para determinação da adimensional $X = \frac{h \cdot S}{C_s G_s} x$, *para* o solido e $\frac{h \cdot S}{C_f G_f} x$, para o fluido, conforme mostrado no anexo 4. Com os valores determinados, calculou-se os coeficientes convectivos de transferência de calor (h) durante o resfriamento do grão, conforme mostrado no anexo 4a.

No **aquecimento**, utilizando a equação (42a) $\frac{T_f - T_{fo}}{T_{So} - T_{fo}}$ para os valores de x=5 m, ϵ =0,887 , $D_p = 0,0058$ m , $\phi = 0,85$, S= 137,53 , temos os resultados no quadro 18.

n° de passag. pela	Experimento 1	Experimento 2	Experimento 3	Experimento 4	Experimento 5	Experimento 6	Experimento 7
torre	h ₁	h _i	h _i	h ₁	h _l	h ₁	h ₁
	(KJ/M [*] SK)	(KJ/M [*] SK)	(KJ/m*sK)	(KJ/m ⁻ sK)	(kJ/m ² sK)	(kJ/m ⁻ sK)	(kJ/m ² sK)
1	0,0016	0,0015	0,0011	0,0011	0,0012	0,0012	0,0014
2	0,0017	0,0017	0,0011	0,0011	0,0011	0,0011	0,0019
3	0,0012	0,0016	0,0010	0,0012	0,0011	0,0012	0,0017
4	0,0015	0,0014	0,0011	0,0011	0,0010	0,0011	0,0015
5	0,0014	0,0015	0,0011		0,0011	0,0012	0,0017
6	0,0014					0,0012	

Quadro 18 - Coeficientes convectivo de transferência de calor, utilizando a temperatura média do fluido durante o aquecimento.

No **aquecimento**, utilizando a equação (42b) $\frac{T_s - T_{fo}}{T_{so} - T_{fo}}$ com os valores de

x=5 m, ϵ =0,887 , D_{p} = 0,0058 m , ϕ = 0,85 , S= 137,53, temos os resultados no

quadro 19.

Quadro 19 -Coeficientes convectivo de transferência de calor, utilizando a temperatura média do sólido durante o aquecimento.

n° de	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento
passag.	1	2	3	4	5	6	7
	h ₂	h ₂	h ₂	h ₂	h ₂	h ₂	h ₂
	(kJ/m ² sK)	(kJ/m ² sK)	(kJ/m²sK)	(kJ/m²sK)	(kJ/m²sK)	(kJ/m ² sK)	(kJ/m²sK)
1	0,0020	0,0018	0,0016	0,0016	0,0016	0,0015	0,0016
2	0,0020	0,0018	0,0016	0,0015	0,0015	0,0014	0,0018
3	0,0014	0,0017	0,0014	0,0015	0,0014	0,0014	0,0016
4	0,0016	0,0016	0,0014	0,0014	0,0014	0,0014	0,0015
5	0,0015	0,0016	0,0015		0,0015	0,0014	0,0017
6	0,0015					0,0014	

Os erros relativos obtidos conforme equação (80) obtidos para os coeficientes convectivos avaliados nas equações (42a) e (42b), estão mostrados no quadro 20.

$$\frac{h_2 - h_1}{h_2} x \ 100 \tag{80}$$

onde h1- coeficiente convectivo menor

h2- coeficiente convectivo maior

Experimento 1	Experimento 2	Experimento 3	Experimento 4	Experimento 5	Experimento 6	Experimento 7
Erro (%)						
20,00	16,66	31,25	31,25	25,00	20,00	13,98
15,00	5,56	31,25	26,67	26,67	21,43	5,55
14,29	5,88	28,57	20,00	21,43	14,29	6,25
6,25	12,50	21,42	21,42	28,57	21,43	0
6,67	6,25	26,67		26,67	14,29	0
6,67					14,29	

Quadro 20 - Erros relativos dos coeficientes convectivos obtidos utilizando as temperaturas médias do sólido e do fluido.

Os valores ficaram compreendidos entre 0 e 31,25 %. Esta variação é proveniente da perda de calor para o ambiente, conforme mostrado no guadro 11

No **resfriamento**, utilizando a equação (42b) $\frac{T_s - T_{fo}}{T_{so} - T_{fo}}$ com os valores de

x=0,3 m , ϵ =0,841, $D_p = 0,0058$ m , $\phi = 0,85$, S= 193,51, temos os resultados no

quadro 21.

Quadro 21 - Coeficientes de transferência de calor, utilizando a temperatura média do sólido no resfriamento.

n° de	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento
passagens	1	2	3	4	5	6	7
pelo silo de	h3	h ₃	h ₃	h3	h3	h3	h ₃
resfriamento	(kJ/m²sºK)	(kJ/m ² s ^o K)	(kJ/m²s°K)	(kJ/m²s°K)	(kJ/m²s°K)	(kJ/m²s⁰K)	(kJ/m²s°K)
1	0,0018	0,0019	0,0023	0,0023	0,0013	0,0029	0,0019
2	0,0019	0,0020	0,0023	0,0025	0,0020	0,0028	0,0019
3	0,0013	0,0022	0,0024	0,0023	0,0012	0,0023	0,0024
4	0,0012	0,0021	0,0027	0,0022	0,0022	0,0022	0,0025
5	0,0015	0,0029	0,0022		0,0017	0,0023	0,0025
6	0,0018					0,0019	

A regressão não linear do SAS mostrou um bom ajuste da equação de SARTORI (1986), tanto para o aquecimento quanto para o resfriamento, conforme o erro assintótico da regressão.

4.2.4) OBTENÇÃO DOS NÚMEROS ADIMENSIONAIS DE NUSSELT e REYNOLDS e PRANDTL.

O número de Reynolds foi calculado para o fluido e para as partículas, conforme mostrados no anexos 9 e10.

O motivo da apresentação do número de Reynolds para as partículas deve-se ao fato do número de Reynolds para o fluido ser constante para as condições experimentais, não mostrando assim a sua influência para o presente trabalho.

O número de Nusselt, foi determinado para os coeficientes de transferência de calor, e a sua correlação, em função de Reynolds, obtidas, uma vez que o numero de Prandtl é constante nas condições do experimento, (anexo 10).

Os resultados da correlação do número de Nusselt em função do número de Reynolds estão mostrados nas figuras 22 a 24.

Figura 22 - Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela equação 42a.

Figura 22a - Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela equação 42a, considerando Re(partícula).

Figura 23 - Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela equação 42b.

Figura 23a - Ln de Nusselt x Ln de Reynolds para aquecimento utilizando o coeficiente de transferência de calor calculado pela equação 42b, considerando Re (p).

Os valores dos expoentes do número de Reynolds de -0,5163 utilizando a equação (42a) e -0,3357 utilizando a equação (42b) de SARTORI (1986), estão de

acordo com os valores apresentados na condição adimensionalizada para coluna de recheio, BIRD (1960). O número de Reynolds é calculado baseado na velocidade do sólido.

Os valores médios dos coeficientes convectivos globais, utilizando o conceito de trocadores de calor são 0,0233 utilizando a área de um trocador de calor e 0,2655 utilizando a área da seção transversal estes valores são 10 a 100 vezes superiores com relação aos valores de h calculados pela equação de SARTORI (1986).

Os coeficientes calculados pelos conceitos de trocadores de calor só tem validade para o dimensionamento do presente equipamento, isto é, a transferência de calor deve ser analisada baseado nos valores dos coeficientes convectivos de calor.

4.3) SECAGEM

4.3.1) DETERMINAÇÃO DA ADIMENSIONAL DE UMIDADE.

A umidade de equilíbrio foi calculada segundo ROSSI e ROA (1980), mostrado no quadro 22 pela equação (79), mostrado no anexo 5.

para cada	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento
passagem	1	2	3	4	5	6	7
nela forre	-	-		-	-	-	-
pena corre							
1	Yo - 0,2048	Yo - 0,2048	Yo - 0,1848	Yo - 0,2048	Yo - 0,2048	Yo - 0,2048	Yo -0,1947
•	Y - 0,2048	Y - 0,2048	Y - 0,1848	Y - 0,2048	Y - 0,2048	Y - 0,2048	Y - 0,1947
	Yeq- 0,0250	Yeq- 0,0438	Yeq- 0,0250	Yeq- 0,0116	Yeq- 0,0430	Yeq- 0,0206	Yeq- 0,0549
2	Yo - 0,2048	Yo - 0.2048	Yo - 0,1848	Yo - 0.2048	Yo - 0.2048	Yo - 0.2048	Yo - 0,1947
-	Y - 0.1723	Y - 0,1737	Y - 0.1325	Y -0.1710	Y - 0.1628	Y -0.1792	Y - 0,1628
	Yea- 0.0250	Yea- 0.0438	Yeg- 0.0250	Yea- 0.0116	Yeg- 0.0430	Yeg- 0.0206	Yea- 0.0549
3	Yo -0,2048	Yo - 0,2048	Yo - 0,1848	Yo - 0,2048	Yo - 0,2048	Yo - 0,2048	Yo - 0,1947
	Y - 0,1455	Y - 0,1669	Y - 0,1312	Y - 0,1587	Y - 0,1614	Y - 0,1751	Y -0,1561
	Yeq- 0,0250	Yeq- 0,0438	Yeq- 0,0250	Yeq- 0,0116	Yeq- 0,0430	Yeq- 0,0206	Yeq- 0,0549
1	Yo - 0,2048	Yo - 0.2048	Yo - 0.1848	Yo - 0,2048	Yo - 0.2048	Yo - 0.2048	Yo - 0,1947
	Y - 0,1429	Y - 0,1601	Y -0,1136	Y -0.1481	Y - 0.1494	Y - 0,1669	Y - 0.1534
	Yeq- 0.0250	Yea- 0.0438	Yea- 0.0250	Yea- 0.0116	Yea- 0.0430	Yea- 0.0206	Yea- 0.0549
5	Yo - 0,2048	Yo - 0,2048	Yo - 0,1848	Yo - 0,2048	Yo - 0,2048	Yo - 0,2048	Yo - 0,1947
	Y - 0,1325	Y - 0,1494	Y - 0,1111	Y -0,1377	Y - 0,1377	Y - 0,1534	Y -0,1416
	Yeq- 0,0250	Yeq- 0,0438	Yeq- 0,0250	Yeq- 0,0116	Yeq- 0,0430	Yeq- 0,0206	Yeq- 0,0549
6	Yo - 0 2048	Yo - 0 2048	Yo - 0 1848		Yo - 0 2048	Yo - 0 2048	Yo - 0 1947
0	Y -0.1161	Y .0 1442	Y - 0 1086		Y _ 0 1364	Y - 0 1455	Y 0 1364
	Yeo. 0.0250	Yen- 0 0438	Yen. 0.0250		Yeg- 0.0430	Veg. 0.0206	Yen. 0.0549
		104-0,0400		<u> </u>		- CQ- 0,0200	
7	Yo - 0,2048					Yo - 0,2048	
*	Y - 0,1148					Y - 0,1377	
	Yeq- 0,0250					Yeq- 0,0206	
		1	1	1			

Quadro 22 - Umidades de equilíbrio.

Os valores de adimensionais de umidade calculados para a secagem de soja durante o aquecimento e posterior resfriamento estão mostrados no guadro 23.

Experimentos	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento	Experimento
R para cada passagem pela torre	1 R ₁	2 R ₂	3 R3	4 R4	5 R5	6 R ₆	7 R ₇
1	1	1	1	1	1	1	1
2	0,8167	0,8078	0,6751	0,8242	0,7408	0,8590	0,7716
3	0,6667	0,7643	0,6626	0,7622	0,7285	0,8373	0,7217
4	0,6556	0,7209	0,5564	0,7053	0,6544	0,7940	0,7002
5	0,6001	0,6527	0,5376	0,6536	0,5865	0,7181	0,6217
6	0,5057	0,6217	0,5251		0,5742	0,6747	0,5789
7	0,5001					0,6367	

Quadro 23 - Adimensional de umidade durante o aquecimento e resfriamento.

4.3.2) MODELO DE DIFUSÃO LÍQUIDA DE FICK.

4

Conforme podem ser observados no anexo 6a. A equação foi ajustada para 3,

5, 10, 14 e 20 termos da série e os resultatdos estão mostrados no anexo 6b.

O erro assintótico demonstra que o melhor resultado foi obtido para 20 termos.

Os valores de difusividade efetiva assim como a comparação dos valores das adimensionais do conteúdo de umidade experimental e calculado estão mostrados no anexo 6. Os valores de difusividade efetiva calculados para 20 termos da série com os erros relativos estão mostrados no quadro 24.

Os erros relativos de 0,24% a 9,48% mostram um exelente ajuste.

EXPERIMENT	TO 1 - FICK PA	ARA 20 TERM	os			
n passag	tempo	Def	Rexp	Rcalc	erro	ERRO %
0	0	1,91E-11	1,000	0,970	0,0309	3,09
1	1800	1,91E-11	0,817	0,797	0,0251	2,51
2	6360	1,91E-11	0,666	0,639	0,0423	4,23
3	7500	1,91E-11	0,655	0,612	0,0703	7,03
4	8700	1,91E-11	0,600	0,587	0,0221	2,21
5	10140	1,91E-11	0,506	0,559	0,0948	9,48
6	11760	1,91E-11	0,500	0,530	0,0566	5,66
EXPERIMENT	TO 2 - FICK P/	ARA 20 TERM	0 S			
n passag	tempo	Def	Rexp	Rcalc	erro	ERRO %
0	0	2,36E-11	1,000	0,970	0,0309	3,09
1	1200	2,36E-11	0,808	0,815	0,0086	0,86
2	2340	2,36E-11	0,764	0,748	0,0214	2,14
3	3360	2,36E-11	0,721	0,702	0,0271	2,71
4	4380	2,36E-11	0,653	0,665	0,0180	1,80
5	5340	2,36E-11	0,621	0,634	0,0205	2,05
						}
EXPERIMENT	TO 3 - FICK PA	ARA 20 TERM	0 5			5
n passag	tempo	Def	Rexp	Rcalc	erro	ERRO %
1	0	4,85E-11	1,000	0,970	0,0309	3,09
2	1200	4,85E-11	0,675	0,742	0,0903	9,03
3	2400	4,85E-11	0,662	0,646	0,0248	2,48
4	3540	4,85E-11	0,556	0,581	0,0430	4,30
5	4680	4,85E-11	0,537	0,529	0,0151	1,51
6	5820	4,85E-11	0,525	0,485	0,0825	8,25
EXPERIMENT	TO 4 - FICK P/	ARA 20 TERM	0 5			
n passag	tempo	Def	Rexp	Rcalc	erro	ERRO %
1	0	1,62E-11	1,000	0,970	0,0309	3,09
2	1620	1,62E-11	0,824	0,822	0,0024	0,24
3	3240	1,62E-11	0,762	0,753	0,0120	1,20
4	4860	1,62E-11	0,705	0,703	0,0028	0,28
5	6420	1,62E-11	0,653	0,664	0,0166	1,66
EXPERIMENT	TO 5 - FICK PI	ARA 20 TERM	0 5			
n passag	tempo	Def	Rexp	Rcalc	erro	ERRO %
1	0	1,60E-11	1,000	0,970	0,0309	3,09
	1200	1,60E-11	0,741	0,782	0,0524	5,24
3	2220	1,60E-11	0,728	0,710	0,0254	2,54
4	3480	1,60E-11	0,654	0,645	0,0140	1,40
5	4680	1,60E-11	0,586	0,596	0,0168	1,68
6	5640	1,60E-11	0,574	0,563	0,0195	1,95
		<u> </u>	<u> </u>		ļ	L
EXPERIMEN	IO 6 - FICK PI	ARA 20 TERM	05	D = = 1 =	1141 ⁻⁰⁰ 000-00	5000
n passag	iempo	Uet	ĸexp	K Calc	erro	ERRO %
1	0	3,37E-11	1	0,97	0,0309	3,09
2	1440	3 37E-11	0,859	0 839	0,0238	2,38
3	2520	3,376-11	0,837	0.782	0,0703	7.03
4	3300	3,37E-11	0./94	0,753	0,0544	5,44
5	4080	3 3/E-11	0,/18	0,728	0,0137	1,37
0	4860	3,3/E-11	0,0/4	0,705	0,0440	4,40
/	5520	3,3/12-11	0,637	0,088	v,u/41	7,41
EVBEDIMENT		ABA 20 TERM	0.0	ļ	<u> </u>	<u> </u>
EAPERIMEN	IO 7 - FICK PA	HRAZUIEKM	V 3	Baala	0.000	
n hassað	lieiii pu		1 0 0 0	n calc 0 070	0110	LENRU 70
······	U 1000	2,902-11	1,000	0,870	0,0009	3,09
2	1260	2,902-11	0,//1	0,790	0,0241	2,41
3	2460	2.902-11	0,/21	0,713	0,0112	1,12
4	3420	2,900-11	0,700	0,008	0,0479	4,/9
5	4380	2,902-11	0,622	0,629	0,0111	1,31
6	5340	2,902-11	<u>i</u> 0,579	U,596	0,0285	∠,85

Quadro 24 - Valores de difusividade adimensionais de conteúdo de umidade, experimental e calculado, erro relativo utilizando 20 termos da série.

.

`.

•

ч

*

4.3.3) DETERMINAÇÃO DO CONTEÚDO ADIMENSIONAL DE UMIDADE PELO MODELO DE PAGE (1949).

Conforme pode ser observado no anexo 7, a equação de PAGE e PAGE modificado apresentam excelente ajuste dos dados experimentais. Os valores próximos de 1 da constante A do modelo de PAGE modificado, sugere a utilização do modelo de PAGE para o presente trabalho.

A comparação dos resultados do ajuste pelos modelos de Fick, PAGE e PAGE modificado estão mostrados nas figuras 25 a 31.

Figura 25 - Curvas de secagem: valores experimentais e calculados para o experimento 1.

*

Figura 28 - Curvas de secagem: valores experimentais e calculados para o experimento 4.

Figura 29 - Curvas de secagem: valores experimentais e calculados para o experimento 5.

Figura 30 - Curvas de secagem: valores experimentais e calculados para o experimento 6.

*

Figura 31 - Curvas de secagem: valores experimentais e calculados para o experimento 7.

4.3.4) DETERMINAÇÃO DO CONTEÚDO DE UMIDADE DO GRÃO DURANTE O AQUECIMENTO E O RESFRIAMENTO.

Os cálculos dos parâmetros da equação do tipo Arrhenius para os valores de difusividade efetivas, assim como do cálculo dos adimensionais do conteúdo de umidade, durante o aquecimento e resfriamento, estão mostrados nos anexos (8a) e (8) respectivamente.

A faixa de temperatura proposta por GODOI (1996), foi utilizada no presente trabalho para a obtenção de suas difusividades para o cálculo da equação do tipo Arrhenius, que relaciona as difusividades efetivas com as temperaturas de secagem.

Com os valores de difusividades correspondentes a seção de aquecimento do equipamento, calculou-se o decréscimo do conteúdo de umidade.

O decréscimo do conteúdo de umidade corresponde ao aquecimento e ao resfriamento, estão mostrados no quadro 25a.

QUADRO 25a - Percentual de decréscimo de umidade no aquecimento e no resfriamento.

	Experimento 1	Experimento 2	Experimento 3	Experimento 4	Experimento 5	Experimento 6	Experimento 7
Aquecimento	68,58	77,64	42,44	59,61	66,16	50,54	73,07
Resfriamento	31,42	22,35	57,55	40,38	33,83	49,46	26,92

O quadro 25a apresenta a perda do conteúdo de umidade em porcentagem, correspondente a seção de aquecimento e resfriamento.

Os correspondentes ao aquecimento e resfriamento estão mostrados no quadro 25b.

QUADRO 25b - Variação do conteúdo de umidade durante o aquecimento e resfriamento.

Condição	Experimento 1		Experimento 2		Experimento 3		Experimento 4	
	Ui	Uf	Ui	Uf	Ui	Uf	Ui	Uf
Aquecimento	0,2048	0,1431	0,2048	0,1634	0,1848	0,1325	0,2048	0,1588
Resfriamento	0,1431	0,1148	0,1634	0,1442	0,1325	0,1086	0,1588	0,1377

Condição	Experir	nento 5	Experir	nento 6	Experimento 7	
	Ui	Uf	Ui	Uf	Ui	Uf
Aquecimento	0,2048	0,1579	0,2048	0,1588	0,1947	0,1547
Resfriamento	0,1579	0,1364	0,1588	0,1377	0,1547	0,1364

O estudo comparativo dos gastos energéticos, análogo ao apresentado por GODOI (1996), não foi efetuado pois a alta perda de energia para o ambiente inviabilizou a comparação.

4.3.5) SUGESTÕES

Com os resultados alcançados na unidade piloto, torna-se possível visualizar a construção de uma unidade industrial, conforme pode ser observado no desenho (figuras 32a e 32b). Trata-se da montagem de unidades comercialmente já existentes, associada a montagem da torre de aquecimento dotada dos dispositivos internos (chianas torcidas e inclinadas).

SECADOR INDUSTRIAL

1º) Descrição detalhada da unidade

O sistema projetado em escala industrial, utilizando os dispositivos relatados através da patente nº 8700583 é constituído de: Fornalha industrial (1) construída com estrutura de ferro fundido. Possuindo em seu interior um trocador de calor tubular aquecido através da queima de resíduo agrícola ou lenha. Um motor elétrico (2) aciona dois ventiladores centrífugos (3a)(3b). O ventilador (3a) aspira o ar aquecido no trocador tubular e insufla este ar através de dutos (4) isolados térmicamente para a torre (5) objeto da patente, instalada no topo do silo (6) com capacidade para 15 toneladas de grãos. O ventilador centrífugo (3b) com a utilização de dutos, insufla ar ambiente para o silo (6) pela extremidade inferior. Um transportador elicoidal (7) acionado por um motor elétrico é instalado na extremidade inferior do silo (6), direcionado para a abertura inferior de um elevador de caçamba (8),permitindo assim recirculação de grãos.

2°) Funcionamento

O silo (6) é alimentado de grãos por intermédio do elevador de caçamba (8). Completada sua carga, inicia-se a secagem dos grãos. A fornalha (1) é previamente aquecida. Sua capacidade calorífica é regulada através da quantidade estipulada de lenha ou resíduo que transmite aquecimento para o trocador de calor tubular. O motor elétrico (2) é acionado transmitindo potência para os ventiladores centrífugos (3a)(3b). O ventilador (3a) aspira o ar aquecido no trocador e insufla este ar para a torre (5) por sua extremidade inferior.

Como descrito na patente de invenção, no interior desta torre é instalado um duto central que possui uma série de chicanas (placas torcidas e inclinadas) com torções em sentidos opostos, fazendo com que os grãos que serão alimentados pela parte superior da torre pelo elevador de caçamba (8) deslizem por estas chicanas. Estes movimentos de grãos, com reversões sucessivas pelas chicanas, permitem uma melhor homogeneidade da massa de grãos, além de permitir uma melhor transferência de calor.

O silo (6) onde estão depositadas as 15 toneladas de grãos, esta recebendo por intermédio do ventilador centrífugo (3b).

Estando estabilizada a temperatura na torre (5), aciona-se o motor do transportador elicoidal (7) e o transportador de caçamba (8), abrindo a seguir o registro instalado na extremidade do silo para a saída dos grãos. A velocidade do elevador de caçamba (8) regula a entrada de grãos para a torre.

Os grãos aquecidos escorrem para o silo, onde serão resfriados pelo sistema de aeração, completando assim o processo de secagem.

~

4

•

.

.....

Figura 32a - Representação esquemática de uma unidade industrial (vista lateral).

Figura 32b - Representação esquemática de uma unidade industrial (vista frontal).

Dentre as vantagens que este sistema poderá oferecer estão, maior homogeneidade da umidade final e fácil construção, devido a maioria de seus componentes já serem produzidos comercialmente, além da economia de energia que o sistema de promotores estacionários promovem, GODOI (1996).

5) CONCLUSÕES

1 - A patente industrial nº 8700583, pode perfeitamente ser utilizada para secagem de grãos.

2 - Este equipamento por não ter sido isolado térmicamente, apresentou perda de energia para o ambiente na ordem de 74% a 90% do total de energia transferido para o ar de secagem.

3 - Os coeficientes de transferência de calor, baseados nos conceitos de trocadores de calor situaram entre 0,1496 kJ/m²sK a 0,3784 kJ/m²sK , utilizando a área da seção transversal do secador e 0,0131 kJ/m²sK a 0,0333 kJ/m²sK, utilizando a área média logarítmica do trocador de calor. Estes valores superestimam o coeficiente de troca térmica comparados aos valores dos coeficientes convectivos calculados.

4 - A equação de SARTORI (1986) utilizada para avaliar os coeficientes convectivos mostraram um bom ajuste com os dados experimentais. Os erros relativos oscilaram entre 1% e 40%. Esta variação ocorreu devido a perda de calor para o ambiente, apresentado no item 2.

5 - Os coeficientes convectivos avaliados para o aquecimento situaram entre 10 x10⁻⁴ kJ/m²sK a 20 x10⁻⁴ kJ/m²sK. Os coeficientes convectivos avaliados para o resfriamento situaram entre 12 x10⁻⁴ kJ/m²sK a 29 x10⁻⁴ kJ/m²sK.

6 - As equações adimensionais obtidas para a transferência de calor foram do tipo: $Nu = A (Re^b)$, sendo b= -0,5163 utilizando a temperatura média do fluido e b= -0,3357 utilizando a temperatura média do sólido.

7 - As difusividades mássicas efetivas obtidas, situaram entre $1,60x10^{-11}$ m²/s a $4,85x10^{-11}$ m²/s. Estes valores de difusividade efetiva foram calculados considerando a secagem durante o aquecimento e resfriamento.

8 - As curvas experimentais de secagem apresentaram um exelente ajuste com as equações utilizadas do tipo Page e Page modificado, apresentando valores de k entre 0,0001 e 0,0273 e c entre 0,3663 e 1,0829 e os valores de A entre 0,9803 e 0,9954, k entre 0 e 0,0086 e c entre 0,3669 e 1,0829 respectivamente.

9 - Utilizando a soja (<u>*Glycine max. I. Merril*</u>), o presente sistema obteve 42,44% a 77,65% na secagem durante o aquecimento e 22,35% a 57,56% na secagem durante o resfriamento. O decréscimo de umidade durante o aquecimento foi de 0,2005 para 0,1527 kg_{H20}/kg_{ms} e durante o resfriamento de 0,1527 para 0,1308 kg_{H20} / kg_{ms}.

REFERÊNCIAS BIBLIOGRÁFICAS

- AGUERRE, R.; SUAREZ, C. ; VIOLLAZ, P.E. Drying kinetics of rough rice grain. J. Food Technology, v.17, p.679-686, 1982.
- ASAE. Psychometric data. *STANDARDS OF THE ASAE D 271.2.* AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS ASAE, p.4-6., p.350. St.Joseph, MI. 1990.
- BANASZEK, M.M.; SIEBENMORGEN, T.J. Individual rice kernel drying curves. *Trans.of the ASAE*, v.36, n.2, p.521-8, 1993.
- BAKKER-ARKEMA, F.W.; FONTANA, C.; BROOK, R.C.; WESTELAKEN, C.M. Secagem de arroz através de fluxo concorrente. Madison : ASAE, 1982. 9p. (ASAE, 82-3068). Tradução. Datilografado.
- BAKKER-ARKEMA, F.W.; PATTERSON, R.J. *Multiple zone drying in stationnary and moving bed dryers*. Amer. Soc. Agr. Eng. Paper 71-302, 1971.
- BAKKER-ARKEMA, F.W.; LEREW, L.E.; DeBOER, S.F.; ROTH, M.G. Grain drying simulation. East Lasing: Michigan State University - Agriculture Experiment Station, Res. Rep. 224, 1974.
- BALABAN, M.O. Mathematical model for air drying applied to fish. Ann Arbor: University Microfils International, 1984. 437p. (Dissertação-Ph.D.), University of Washington.
- BARROZO, M.A.S.; CALADO, V.M.A.; CALÇADA, L.A.; MASSARANI, G. Secagem de soja em leito deslizante e recirculação pneumática : influência da umidificação artificial, IN: ENCONTRO SOBRE ESCOAMENTO EM MEIOS POROSOS, 19., 1991, Campinas. <u>Anais</u>, Campinas, 1991. v. I, p.327-337.
- BECKER, H.A.; SALLANS, H.R. A study of internal moisture movement in the wheat kernel. <u>Cereal Chemistry</u>, v.32, p.212-226, 1955.
- BECKER, H.A. A study of diffusion in solids of arbitrary shape, with application to the drying of the wheat kernel. *Journal of Applied Polimer Science*, v.1, n.2, p.212-226, 1959.

- BECKER, H.A.; SALLANS, H.R. Drying wheat in spouted bed . Chem. Eng. Sci., v.13,n.3, p.97-112, 1960.
- BENEDETTI, B.C. ; JORGE, J.T. Curvas de umidade de equilíbrio de vários grãos, *Ciênc. Tecnol. Aliment.*, v.7, n.2, p.172-188, 1987.
- BINBENET, J.J. Air drying kinetics of biological particles. In: TOEY,R; MUJUNDAR, A. ed. *Drying'85'*. Washington: Hemisphere. 1985. p. 178-85.
- BIRD, R.B.; STEWART, W.E.; LIGHTFOOT, E.N. Transport Phenomena, John Wiley & Sons, Inc. 1960.
- BOYCE, D.S. Grain moisture and temperature changes with position and time during through drying . <u>J. Agric. Res.</u>, v.10, v.4, p.333-341.1965.
- BOWERS, T.G.; REINTJES, H., A review of fluid-to-particle heat transfer in packed and moving beds. *Chem. Eng. Progr. Symposium Ser.*, v.57,n 32, p.69-74, 1961.
- BRUCE, D.M. Exposed-layer barley drying: three models fitted to new data up to 150°C. *J. Agric. Eng. Res.*, v.32, n.4, p.337-347, 1985.
- CALADO, V.M.A.; MASSARANI, G. Secagem de material sólido granular. In: ENEMP, 18., 1990, Nova Friburgo. Anais. v.1, p. 335-351.
- CALADO, V.M.A. Modelagem e simulação de secadores em leito fixo e deslizante. Rio de Janeiro, COPPE/UFRJ, 1993, Tese de Doutorado.
- CARSLAW, H.S.; JAEGER, J.C. Conduction of heat in solids. London, Oxford University Press, 1959, 510p
- COLSON, K.H. & YOUNG, J.H. Two-component thin-layer drying model for unshelled peanuts. *Trans.of the ASAE*, v.33, n.1, p.241-246, 1990.
- CHARM, S.E. Dehydratation of foods. In: *The fundamentals of food engineering*. 2.ed. The AVI Publishing, 1971. p.294-404.
- CHHINNAN, M.S. Evaluation of selected mathematical models for describing thinlayer drying of in-shell pecans. *Trans. of the ASAE*, v.27,p.610-5, 1984.
- CHU, S.T.; HUSTRULID, A. Numerical solution of diffusion equations. *Trans. of the ASAE*, v.11,n.5, p.705-708, 1968.

- CHUNG, D.S.; PFOST, H.B. Adsorption and desorption of water vapor by cereal grains and their products. *Trans.of the ASAE*, v.10, p.552-575, 1967.
- CORNEJO, F.E.P. Estudo dos parâmetros de secagem e construção de um secador de baixo custo para filés salgados de pescado. Campinas: UNICAMP-FEA/DEA, 1987. 86 p., Tese de Mestrado.
- CRANK, J. The mathematics of diffusion. 2.ed. Clarendon: Oxford, 1975.
- DALPASQUALE, V.A. Sistemas de secagem para grãos, que utilizam altas temperaturas. Viçosa : CENTREINAR, 1983. 21p.
- DAUNDIN, J.D. Calcul des cinétiques de séchage par 1'air chaud des produits biologiques solides. *Sciences de Aliments*, Paris, v.3, n.1, p.1-38, 1983.
- ECE, M.C.; CIHAN, A. A liquid diffusion model for drying rough rice. *Trans.of the ASAE*, v.36, n.3, p.837-40, 1993.
- FIRESTONE, R.L.; WALKER, P.N.; PURI, V.M. Drying rate of alfafa in a protective structure. *Trans.of the ASAE*, v.31, p.52-57, 1988.
- FORTES, M. ; OKOS, M.R. Drying Theories: their bases and limitations as applied to food and grains. In: MUJUNDAR, A.S., ed. *Advances in drying*, Washington: Hemisphere, 1980, v.1, p.119-50.
- FURNAS, C.C. Heat transfer from a gas stream to a bed of broken solids-II. Ind. Eng. Chem., v.22, n.7, p.721-731, 1930.
- GAMSON, B.W.;THODOS, G. ; HOUGEN, O.A. Heat, mass and momentum transfer in the flow of gases through granular solids. *Trans. Am. Inst. Chem. Engrs.*, v.39, p.1-35, 1943.
- GODOI, L.F. *Estudo de um secador com promotores estáticos anulares de mistura.* Campinas: UNICAMP-FEA, 1996. Tese de Mestrado.
- GRAHAM, V.A.; BILANSKI, W.K. Simulation of grain drying in intimate contact with adsorbents. *Trans.of the ASAE*, v.29, n.6, p.1776-83, 1986.
- GUPTA, V. ; SRINIVASON, J. Heat and Mass Transfer, New Delhi: Tata Mcgraw Hill.1982.

- HARKINS, W.D.; JURA, G. A vapor adsorption method for determination of the area of a solid. *J. Am. Chem. Soc.*, v.66, p.1366-1371, 1944.
- HAYNES, B.C. Vapor pressure determination of seed hygroscopicity. citado por BROOKER, D.B., BAKKER-ARKEMA, F.W. ; HALL, C.W., *Drying cereal grains*, Westport The Avi Publishing, 1961.
- HEERTJES, P.M. ; McKIBBINS, S.W., The partial coefficient of heat transfer in a drying fluidized bed. <u>Chem. Eng. Sci.</u>, v.5, p.161-167, 1956.
- HENDERSON, S.M. A basic concept of equilibrium moisture. *Agricultural Engineering*, v.33, p.29-32, 1952.
- HOLMAN, J.P. Heat transfer. New York, McGgraw-Hill Book, 1972, 462p.
- HUKILL, W.V. *Grain drying: in storage of cereal grains and their products.* St. Paul: Amer. Ass. Cereal Chem, 1954.
- HUKILL, W.V.; SCHMIDT, J.L. Drying rate of fully exposed grain kernels. *Trans.of the ASAE* v.3, n.1,1960.
- HUSAIN, A,; CHEN, C.S.; CLAYTON, J.T. Simultaneous heat and mass diffusion in biological materials. *J. Agric. Eng. Res.*, v.18, p. 343-354, 1973.
- HUSTRULID, A. Theoretic drying curve for shelled corn. *Trans.of the ASAE* ,n.2, 1959.
- HUSTRULID, A. Comparative drying rates of naturally moist, remoistened, and frozen shelled corn. *Trans. of the ASAE*, p.64-67, 1962.
- JASON, A.C. A study of evaporation and diffusion process in the drying of fish muscle. Fundamentals aspects of dehydration of foodstuffs. New York:The Society of Chemical Industry, 1958, p.103-135.
- JAYAS, D.S.; SOKHANSANJ, S. Thin-layer drying of barley at low temperatures. *Can. Agric. Eng.*, v.31, p.21-3, 1989.
- JORGE, J.T. Utilização de uma propiedade física, como método de avaliação dos teores dos componentes químicos de sementes de soja, sem destruição de seu valor biológicos. Campinas:UNICMP-FEA/FEAGRI, 1980.125p. Tese Doutorado.

KARATHANOS, V.T., VILLALOBOS, G., SARAVACOS, G.D. Comparision of two methosd of estimation of the effective moisture diffusivity from drying data. *Journal of Food Sience*, v.55 n1,p. 218-223, 1990.

KEEY, R.B. Drying - principles and practice. Oxford: Pergamon Press 1975.

- KING, C.J. Rates of moisture sorption and desorption in porous, dried foodstuffs. *Food Technol.* v.22 n.4,p.165-171, 1968.
- KNUDSEN, J.G.; KATZ, D.L. *Fluid dynamics and heat transfer*. New York: McGraw-Hill Book, 1958. 576p.
- KREITH, F. *Princípios de transmissão de calor.* São Paulo: Editora Edgard Blücher, 1969. 641p.
- LASSERAN, J.C. Princípios gerais de secagem. *Revista Brasileira de Armazenamento*, Viçosa, v.3, n.3, p.17-46, jul. 1978.

LASSEREAN, J.C. Aeração de grãos. Viçosa: CENTREINAR, 1981.

- LEVA, M., WEINTRAUB, M.; GRUMMER, M. Heat tranfer in fluidized bed. *Chem. Eng. Progr.*, v.3, p.563-572, 1949.
- LEWIS, W.K. The rate drying of solid material. *J. Ind. & Eng. Chem.* v.13, n.5, p.427-432, 1921.
- LI, H.; MOREY, R.V. Thin-layer drying of yellow dent corn. *Trans. of the ASAE*, v.27, p.581-585, 1984.
- LI, Y., MOREY, R.V.; AFINRUD, M. Thin-layer drying rates of oilseed sunflower. *Trans.of the ASAE*, n.30, p.1172-5, 1987.
- LOMAURO, C.J. Evaluation of food moisture sorption isoterm equation Part 1: *Fruit,* vegetable and meat products. International Journal for Food Chemistry, Biochemistry, Microbiology and Engineering, v. 18, p.111-24, 1985.
- LOVELL, C.L. ; KARNOFSKY, G. Design of solid-fluid heat exchangers. *Ind. Eng. Chem.*, v.35, n.4, p.391-397. 1943.

McADAMS, W.H. Heat Transmission. New York:McGraw-Hill Book, 532p., 1954.

MASSARANI,G. Secagem de material sólido particulado Apostila UFRJ-Escola de Química, 1992. 32p.

- MATSUMOTO, S. ; PEI, D.C.T. A mathematical analysis of pneumatic drying of grains-II. Falling rate drying. *Int. J. Heat Mass Transfer*, v.27,n.6, p.851-855, 1984.
- MEDEIROS, J.L.; MASSARANI, G. Secagem de bagaço de cana III. In: ENEMP, 10., 1982, São Carlos. Anais. v. 1, p. 222-241, São Carlos SP.
- MEYER, J.A.; VILA, L.G.; ROA, G. ; ROSSI, S.J. Energia para a secagem de produtos agropecuários. *Revista Brasileira de Armazenamento*, Viçosa, v.3, n.4, p.4-14, dez. 1978.
- MIKETINAC, M.J.; SOKHANSANJ, S. ; TUTEK, Z. Determination of Heat and Mass Transfer Coefficients inThin-Layer Drying of Grain. Trans.of the ASAE, v.35, n.6, p.1853-8, 1992.
- MISRA, M.K.; BROOKER, D.B. Thin-layer drying and rewetting equations for shelled corn. *Trans. of the ASAE*, v.23, n.5, p.1254-1260, 1980.
- MISRA, R.N.; YOUNG, J.H. Numerical solution of simultaneous moisture diffusion and shrinkage during drying. *Trans. of the ASAE*, v.23, n.3, p.1277-1282.
- MOHSENIN, N.N. Physical properties of plant and animal materials. New York: Gordon and Breach Science, 1986. 890p.
- MONTAVANI, B.H.M. Análise e simulação de secagem de grãos de milho em camadas espessas. Viçosa: UFV-DEA, 1976. Viçosa,MG.Tese de Mestrado.
- MUNRO, W.D.; AMUNDSON, N.R. Solid-fluid heat exchangers in moving beds. Ind. Eng. Chem., v.42, n.8, p.1481-1489, 1950.

e t

- NGODDY, P.O. ; BAKKER-ARKEMA, F.W. A generalization theory of sorption phenomena in biological products. Part III. *Trans.of the ASAE* v.15, p.1160-1164, 1972.
- NONHEBEL, M.A.; MOSS, A.A. Drying of solids in the chemical industry. London: Butterworth , 1971, p.33-43.
- NOOMHORM, A. ; VERMA, L.R. Generalized single-layer rice drying models. *Trans.of the ASAE*, v.29, n.2: p.587-91, 1986.

- NOOMHORM, A.; VERMA, L.R. Deep-bed rice drying simulation using two generalized single-layer models. v.29, n.5, p.1456-61, 1986.
- NOVAIS, A.F. Análise da aplicação do leito deslizante e escoamentos cruzados na secagem de sementes de soja. São Carlos:UFSCar-EQ, 1990. 95p. Tese de Mestrado.
- O'CALLAGHAN, J.R.; MENZIES, D.J.; BAILEY, P.H. Digital simulation of agricultural dryer performace. *J. Agric. Eng. Res.*, v.16, p.223-224, 1971.
- OVERHULTS, D.G.; WHITE, G.M.; HAMILTON, H.E.; ROSS, I.J. Drying soybeans with heated air. *Trans. of the ASAE*, v.16, p.112-113, 1973.
- OSBORN, G.S.; WHITE, G.M.; WALTON, L.R. Thin-Layer Moisture Adsorption Equation for Soybeans. *Trans.of the ASAE*, v.34,n.1, p.201-4, 1991.
- PABIS, S; HENDERSON, S.M. Grain drying theory. J. Agric. Eng. Res., v.6, n.4, p.272-277, 1961.
- PAGE, G.E. Factors Influencing the Maximum of Air Drying Shelled Corn in Thin-Layer. Indiana:Purdue University, 1949. Tese de M.Sc., U.S.A.
- PARK, K. J. Obtenção de correlação para transferência de calor e de quantidade de movimento, para fluidos newtonianos e não-newtonianos, em um trocador munido de promotores estacionários anulares de turbulência. Campinas:UNICAMP/FEM, 1979. 102p. Tese Doutorado.
- PARK, K. J., JARDINE, J. G. and SUNDFIELD, E. Desenvolvimento e avaliação de um secador contínuo de grãos. In: *IV Encontro Nacional de Secagem*, Viçosa, p.55-8, 1983.
- PARK, K.J. Estudo comparativo do coeficiente de difusão sem e com encolhimento durante a secagem. Campinas:UNICAMP-FEA/DEA, 1987. 53p. Tese Livre Docência.
- PARK, K. J., ALONSO, L. F. T. and GODOI, L. F. G. Beans (*Phaseolus vulgaris L.*) characteristic drying curve. In: *Proceedings of the 10th International Drying Symposium*. Krakow, Poland, 1001-8, 1996.

- PARK, S.W.; CHUNG, D.S. ; WATSON, C.A. Absorption kinetics of water vapor by yellow corn. I. Analysis of kinetic data for sound corn. *Cereal Chem.* v.48, p.14-22, 1971.
- PATENTE INDUSTRIAL, PI8700583, IPT/EMBRAPA/UNICAMP. Equipamentp para secagem de materiais granulares. Inventores: Kil Jin Park, Felix Emilio Prado Cornejo e Song Won Park. 1987.
- PATHAK, P.K.; AGRAWAL, Y.C.; SINGH, B.P.N. Thin-layer drying model for rapeseed. *Trans.of the ASAE*, v.34, n.6, p.2505-8, 1991.
- PARTI, M.; DUGMANICS, I. Diffusion coefficient for corn drying. *Trans. of the ASAE*, v.33, n. 5, p. 1652-1656, 1990.
- PATIL, R.T.; SOKHANSANJ, S.; ARINZE, E.A.; SCHOENAU, G. Thin layer drying of components of fresh alfafa. *Can. Agric. Eng.*, v.34, n.4, p.343-6, 1992.
- PELIANO, A.M.T.M. O mapa da fome: subsídios à formulação de uma política de segurança alimentar. *IPEA*, *doc. de política*, n.14, março 1993.
- PIZA, J.T.; NETO, A. Curso: Armazenista II, Assunto: Equipamentos. Viçosa-CENTREINAR, 46p. 1980.
- PRASAD, B.V.S.; CHANDRA, P.K.; BAL, S. Drying parboiled rough rice in stationary, semi-fluidized, and fluidized conditions. *Trans.of the ASAE*, v.37, n.2. p.589-94, 1994.
- PUZZI, D. Manual de armazenamento de grãos armazens e silos. São Paulo, Ed.Agronômica Ceres, 403p., 1977.
- QUEIROZ, D.M. Simulação de secagem de milho (Zea mays L.) em secadores de fluxos concorrentes. Viçosa:UFV/DEA, 1984. Tese Mestrado.
- RANZ, W.E.; MARSHALL, W.R. Evaporation from drops: part II. *Chem. Eng. Prog.*, v.48,n.3, p.173-180, 1952.
- RODRIGUES-ARIAS, J.H. *Desorption isotherms and drying rates of shelled corn in the temperature range of 40^o to 140^oF.* Mich. State Univ. Microfilms: Ann Arbor, Mich. 1956. Ph.D. Thesis.

ROSS, J.I.; WHITE, G.M. Trans. of the ASAE, v.15, p.175-176,179. 1972.

- ROSSI, S.J. ; ROA, G. Secagem e armazenamento de produtos agropecuários com uso de energia solar e ar natural. Academia de Ciências, Publicação ACIESP, São Paulo, SP. 1980, 295p.
- SALWIN, H. ; SLAWSON, V. Moisture transfer in combinations of dehidrated foods. Food Technology, v.13, p.715-718, 1959.
- SARTORI, D.J.M. Transferência de calor em leito deslizante. Rio de Janeiro:UFRJ-COPPE/FEQ, 1986. 219p. Tese Doutorado.
- SCOTT, W.J. Water relations of food spoilage microorganisms. Advances in Food Research, v.7, p.83-127, 1957.
- SHERWOOD, T.K. The drying of solids. Ind. Eng. Chem. v.21, n.1, p.12-16, 1929.
- SMITH, J.E. The sorption of water vapor by high polymers. J. of Am. Chem. Soc., v.69, p.646-651, 1947.
- SOKHANSANJ, S., SINGH, D. ; WASSERMAN, J.D. *Trans. of the ASAE*, p.903-906,914, 1984.
- SISSON, L.E.; JACKSON, T.W., Heat exchange in fluid-dense particle moving beds. *Trans. ASME: Journal of Heat Transfer*, v.89, p.1-6, 1967.
- STATISTICAL ANALYSIS SAS. SAS user's guide: Statistics. 5 ed. Cary, NC, SAS Institute Inc., 956p., 1985.
- STRUMILLO, C. ; KUDRA, T. Drying : principles, applications and design. Poland, ed. R. Hughes, University of Salford, 448 p. 1986.
- SUZUKI, M.; KEEY, R.B.; MAEDA, S. On the characteristic drying curve. AICHE Symp. Series, v.73, n.163, p.47-56, 1977.

- SYARIEF, A.M.; MOREY, R.V. ; GUSTAFSON, R.J. Thin-layer drying rates of sunflower seed. Trans.of the ASAE, v.27, p.195-200, 1984.
- THOMPSON, T.L.; PEART,R.M.; FORSTER, G.H. Mathematical simulation of corn drying A new model. *Trans. of the ASAE*, v.11, n.4, p.582-586. 1968.
- TRUESDELL, C. Sulle basi della termodinamica (1957) citado por SILVA TELLES, A.C.S. ; MASSARANI, G. (1991), Sistemas particulados a duas fases multicomponentes. Anais do XIX ENEMP, v.I, p.91-101, Campinas, SP.

- VAN ARSDEL, W.B. Approximate diffusion calculations for the falling-rate phase of drying. *Trans. Am. Inst. Chem. Eng.*, v.43, n.1, p.13-24, 1947.
- VAN REST, D.J.; ISAACS, G.W. Exposed layer drying rates of grain. *Trans.of the* ASAE, v.11, n.2, p.236-239, 1968.
- VERSAVEL, P.A. & MUIR, W.E. Drying behavior of high-moisture-content wheatspikes. *Trans.of the ASAE*, v.31, p.1260-3, 1988.
- VERSAVEL, P.A.; MUIR, W.E. Drying of rewetted wheat spikes. *Can. Agric. Eng.*, v.30: p.57-60, 1988.
- VIOLLAZ, P.E. ; SUAREZ, C., Transferência de calor sólido-gás en lecho movil: solucion mediante el teorema de Duhamel. *Rev. Latinoam. Transf. Cal. Mat.*, v.4, p.47-54, 1980.
- WALTON, L.R.; WHITE, G.M.; ROSS, I.J. A cellular diffusion-based model for corn. *Trans.of the ASAE*, v.31, n.1, p.279-83, 1988.
- WEBER, E.A. Armazenagem agrícola. Porto Alegre: Kepler Weber Industrial, 400p. 1995.
- WHITE, G.M.; ROSS, I.J. ; WESTERMAN, P.W. Drying rate and quality of white shelled corn as influenced by dew point temperature. *Trans. of the ASAE*, v.16, p.118-120, 1973.
- WHITAKER, T.; BARRE, H.J.; HAMDY, M.Y. Theoretical and experimental studies of diffusion in spherical bodies with a variable diffusion coefficient. *Trans.of the ASAE*, v.12, n.11, p.668-672, 1969.

ANEXOS

*

٠

ţ

ANEXO 1) Determinação dos balanços de energia.

r

*

£ ·

-

.

;

¥

.

PLANILHA 1	I [1		0	<u> </u>				
Condições p	oré-fixadas								
Tet-temperat	ura na entrada	da torre (K)	353,0		vs-velocidade	do ar na saida	a da torre (m/s	0.54	
Tst-temperat	ura na saída d	a torre (K)	333.0		vr-velocidade	do ar de resfri	amento (m/s)	0.27	
ve-velocidad	e do ar na entr	ada (m/s)	83		Tr-temperatur	a do ar de rest	riemento (K)	308.0	
		1		·	in temperata		namente (ny	000,0	
					Número de n	accauone			
Variávoje			1	2	2	A 33495113	5	6	77
temperatura	da min antes d	a entrado(K)	202.0	202.0	307.4		9 0000	208.2	1 207 0
			283,0	293,0	307,4	305,0	300,3	306,2	307,0
umoaue ua r	1.p.(76 B3)		0,2040	0,1723	0,1455	0,1429	0,1325	0,1161	0,1148
tempo de esc	coamento(s)	1		1080	960	480	600	540	54(
temperatura	da m.p. saida (da torre(K)		318,0	326,0	328,8	329,7	331,5	331,0
tempo de res	friamento(s)			720	3600	660	600	900	1080
temperatura	da m.p. àpos re	esfriam.(K)		307,4	308,0	308,3	308,2	308,5	308,3
temperatura	ambiente(K)		295,8	296,2	296,7	296,9	297,2	297,1	296,9
peso da m.p.	(kg)		3,012	2,897	2,718	2,717	2,611	2,594	2,528
umidade rela	tiva(%)		0,7	0,71	0,7	0,72	0,72	0,72	0,72
q(grão)=(mc)(Cp)(T)	0,22	(kJ/s)		q(ar)=(m)(Cp)(T)		1,51	(kJ/s)
mc=M(18/13))=	0,004	(kg/s)		media da tem	p.ambiente		296,84	(K)
Ср		2,05	(kJ/kgK)		media da umi	d.relat.		0,71	(%)
T=M(14-11)		25,0	(K)		area(duto)			0,0079	(m2)
		<u> </u>	1.		m=vazão den	sidade		0.0749	(ka/s)
			1		vazão=			0.0652	(m3/s)
			+		densidade=1/	Veso	<u>.</u>	1 15	(kg/m3)
					Pu=/Pue v IIr	100		1974 61	(Rginio) (Pa)
Tm(ar)	343.0	(K)	-		Pue(tab)	<i>µ</i> 100		2770.00	(1 a) (Pa)
Tm(ar)	227.5				1 vs((ab)			2770,00	(га)
mi(gr)salua	521,5				Vesp-(207 x	i)/(ratin - rv)		0.07	(
					vesp-			0,07	(ma/kg)
					Cp=			1,01	('KJ/Kg*K)
	<u> </u>				1=1e-1s			20	('K)
q(ar)=q(g)+q	(pera)	<u></u>			Patm			100000	(Pa)
q(ar)-q(g)=	1,29	(kJ/s)	q(perd)=0,85%		a			287	
·····									
PLANILHA 2									
Condições p	ré-fixadas								
temperatura r	na entrada da t	orre (K)	333,0		velocidade do	ar na saída da	a torre (m/s)	0,54	
temperatura r	na saída da tor	re (K)	318,0		velocidade do	ar de resfriam	ento (m/s)	0,27	
velocidade do	o ar na entrada	(m/s)	8,3		temperatura c	lo ar de resfria	mento (K)	307.0	
		Í.	· · · · · · · · · · · · · · · · · · ·			[
					Número de p	assagens			
Variáveis		······································	1	2	3	4	5	6	
temperatura r	l la miniantes d	a entrada(K)	296.0	- 296.0	304.0	305.5	200 0	304.7	· · · · · · · · · · · · · · · · · · ·
umidade da n	n n (% BS)		0.2048	n 1737	0,+00	0.1601	0 1/0/	0,7,7 0,1440	
tompo do opo	n.p.(70 DO)		0,2040	0,1707 600	0,1003	400	0,1434	200	
tempo de esc				242.0	040	420	420	300	ļ.,
	ia m.p. salua d friomonto/o)			313,2	314,5	314,2	312,9	313,6	
tempo de resi	mamento(s)	- (IC)		000	600	500	600	600	
temperatura d	a m.p. apos re	smam.(K)		304,3	305,7	306,1	304,7	305,0	
temperatura a	ampiente(K)		295,3	295,5	295,4	295,2	295,2	294,8	
peso da m.p.((Kg)		2,142	2,089	2,039	1,989	1,938	1,894	
umidade relat	liva(%)		0,7	0,7	0,7	0,8	0,73	0,75	·
	<u> </u>					<u> </u>			
q(grāo)=(mc))(Cp)(T)	0,11	(kJ/s)		q(ar)=(m)(Cp)(T)		1,13	(kJ/s)
mc=M(18/13)	=	0,004	(kg/s)		media da tem	p.ambiente		295,38	(K)
Ср		2,05	(kJ/kg K)		media da umi	d.relat.		0,73	(%)
T=M(14-11)		14,0	(K)		area(duto)	1		0,0079	(m2)
******	1				m=vazão.den	sidade		0,0749	(kg/s)
		1	1		vazão=	I		0,0652	(m3/s)
			†		densidade=1/	Vesp		1,15	(kg/m3)
					Py=(Pvs x I Ir)	/100		1897.27	(Pa)
Tm(ar)	325.5	(K)			Vesp=(287 v	T)/(Patm - Pv)			· -/
Tm(ar)eeide	314 1	(K)	+		Pvs(tah)	· /· (· · · · · · · · · · · · · · · · ·		2599	(Pa)
(gi/saiud		<u>× </u>	-		Vesn=			0.87	(m3/km)
		1						1 007	(III VIL)
								1,007 4E	
	(ł			1-10-18 Data	Į		10	(N) (Da)
u(ar)=q(g)+q	(peru)	(A. 1/-)			F 8011			100000	(ra)
q(ar)-q(g)=	1,02	(KJ/S)	_q(pera)=0,90%		а	ł	i	201	

Condições p	ré-fixadas		1					
temperatura i	na entrada da	torre (K)	365.9		velocidade do	ar na saída da	a torre (m/s)	0.54
temperatura i	na saída da to	rre (K)	343.0		velocidade do	ar de resfriam	ento (m/s)	0.27
velocidade do	o ar na entrada	a (m/s)	8,3		temperatura d	lo ar de resfria	mento (K)	307,0
					Número de p	assagens		
Variáveis			1	2	3	4	5	6
temperatura d	da m.p.antes d	ia entrada(K)	296,0	299,0	302,0	305,0	305,0	307,0
umidade da n	n.p.(% BS)		0,1848	0,1325	0,1312	0,1136	0,1111	0,1086
tempo de esc	oamento(s)			300	300	240	240	240
temperatura d	da m.p. saída	da torre(K)		319,0	324,0	328,2	330,0	327,3
tempo de res	friamento(s)		[900	900	900	900	900
temperatura o	da m.p. ápos r	esfriam.(K)		303,9	306,4	308,0	311,8	306,3
temperatura a	ambiente(K)		292,8	293,0	294,0	294,0	294,0	295,0
peso da m.p.	(kg)		1,885	1,841	1,742	1,721	1,676	1,64
umidade relat	tiva(%)		75	75	72	70	70	70
q(grão)=(mc)(Cp)(T)	0,34	(kJ/s)		q(ar)=(m)(Cp)(T)	1,74	kJ/s
nc=M(18/13)		0,007	(kg/s)		media da tem	p.ambiente	293,95	(K)
Ср		2,05	(kJ/kg K)		media da umio	d.relat.	0,73	(%)
Г=М(14-11)		24,3	(K)		area(duto)	L	0,00785	(m2)
					m≕vazão.den	sidade	0,0756	(kg/s)
		-			vazäo=		0,0652	(m3/s)
	1.4 100				densidade=1/	Vesp	1,16	(kg/m3)
					Pv=(Pvs x Ur)	/100	2022,1	(Pa)
ſm(ar)	354,6	(K)			Vesp=(287 x]	T)/(Patm - Pv)		
ſm(gr)saida	325,7	(K)			Pvs(tab)		2770	(Pa)
					Vesp=		0,844	(m3/kg)
					Cp=		1,007	(kJ/kgK)
					T=Te-Ts		22,9	(K)
q(ar)=q(g)+q	(perd)				Patm		100000	(Pa)
q(ar)-q(g)=	1,41	(kJ/s)	q(perd)=0,80%	,	а		287	
			2					
			ļ				·····	
PLANILHA 4								
Condições p	ré-fixadas						İ	
emperatura r	na entrada da	torre (K)	366,0		velocidade do	ar na saida da	a torre (m/s)	0,54
temperatura r	na saída da to	rre (K)	343,0		velocidade do	ar de resfriam	ento (m/s)	0,27
velocidade do	ar na entrada	a (m/s)	8,3		temperatura d	lo ar de resfria	mento (K)	308,5
						L		
				Núrr	ero de passa	gens		
				_				
/ariáveis			1	2	3	4	5	
emperatura c	la m.p.antes c	la entrada(K)	298,0	303,0	303,0	308,0	309,0	
umidade da m	1.p.(% BS)		0,2048	0,1710	0,1587	0,1481	0,1377	
empo de esc	oamento(s)			420	420	420	360	
emperatura c	a m.p. saida	da torre(K)		321,1	328,2	333,0	335,0	
empo de resi	riamento(s)			1200	1200	1200	1200	
emperatura c	a m.p. apos r	estriam.(K)		307,4	313,0	313,7	313,7	
emperatura a	imbiente(K)		295,3	296,3	299,0	299,6	301,0	
peso da m.p.(Kg)		2,599	2,551	2,494	2,437	2,166	
umidade relat	iva(%)		0,66	0,66	0,52	0,5	0,5	
							4 70	t. Tr.
q(grāo)=(mc)	(Cp)(T)	0,34	(KJ/S)		q(ar)=(m)(Cp	<u>)(1)</u>	1,/3	KJ/S
nc=M(18/13)		0,006	(kg/s)		media da tem	p.ambiente	298,39	(K)
Эр		2,05	(KJ/kg K)		media da umio	d.relat.	0,57	(%)
=M(14-11)	Ļ	26,3	(K)		area(duto)	<u> </u>	0,00785	(m2)
					m≈vazāo.den	sidade	0,0748	(Kg/s)
					vazāo=		0,0652	(m3/s)
				·	densidade=1/	Vesp	1,148	(kg/m3)
					Pv=(Pvs x Ur)	/100	1676,6	(Pa)
Tm(ar)	354,5	(K)			Vesp=(287 x ⁻	T)/(Patm - Pv)		
	329,3	(K)			Pvs(tab)		2951,8	(Pa)
ſm(gr)saida			1		Veen=		0.856	(m3/ka)
Tm(gr)saida					vcap-			((((0))))
Tm(gr)saida				······································	Cp=		1,007	(kJ/kgK)
Tm(gr)saida					Cp= T=Te-Ts		1,007 23	(kJ/kgK) (K)
Tm(gr)saida 7(ar)=q(g)+q	(perd)				Cp= T=Te-Ts Patm		1,007 23 100000	(kJ/kgK) (K) (Pa)
`m(gr)saida (ar)=q(g)+q((ar)-q(g)=	(perd) 1,40	(kJ/s)	q(perd)=0,80%		Cp= T=Te-Ts Patm a		1,007 23 100000 287	(kJ/kgK) (K) (Pa)

ANEXO 1 - Continuação.

¥

F -

*

•

ť

e

æ
₹

r -

¥

٠.

ŕ

٠

.

PLANILHA S	5		Í						
Condições p	oré-fixadas		+						
temperatura	na entrada da	torre (K)	335.8		velocidade do	ar na saida da	torre (m/s)	0.54	·
temperatura	na saída da to	rre (K)	325.0		velocidade do	ar de reefriam		0,07	
volocidado d	na salua ua to		323,0		velocidade do			0,27	
velocidade d			0,3		temperatura d	lo ar de restrial	mento (K)	309,0	
					Ni dana ang ata a				1
					Numero de p	assagens			
				-44	-				
Variaveis			1	2	3	4	5	6	
temperatura	da m.p.antes d	la entrada(K)	294,0	294,0	303,0	306,0	303,6	307,0	
umidade da r	n.p.(% BS)		0,2048	0,1628	0,1614	0,1494	0,1377	0,1364	
tempo de eso	coamento(s)			720	420	360	300	360	
temperatura -	da m.p. saida (da torre(K)		318,2	315,8	319.7	315,6	318	· · · · · · · · · · · · · · · · · · ·
tempo de res	friamento(s)	1		480	600	900	900	600	······································
temperatura	da m.p. ápos r	esfriam.(K)		306.4	308.4	303.6	307.0	308.0	
temperatura	amhiente(K)	1	296.8	297 4	297.6	299.0	200 8	200 4	
neso da min	(ka)		2 452	2 402	201,0	200,0	2,00,0	0 466	19-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
peso da m.p.	(197 Histo (177)		2,432	2,400	2,310	2,207	2,170	2,100	11,4111,411,71,11,11,11,11,11,11,11,11,11,11,11,1
unnuaue reia	(IVA(70)		U,12	V,00	0,04	0,62	0,62	0,62	
q(grao)=(mc)(Cp)(T)	0,21	(kJ/s)		q(ar)=(m)(Cp	<u>)(T)</u>	0,81	kJ/s	
[mc=M(18/13)	=	0,006	(kg/s)		media da tem	p.ambiente	298,3	(K)	
Ср		2,05	(kJ/kg K)		media da umi	d.relat	0,65	(%)	
T=M(14-11)		17,3	(K)		area(duto)		0,00785	(m2)	
					m=vazão.den	sidade	0,0746	(kg/s)	
			****		vazão=		0.0652	(m3/s)	
					densidade=1/	Vesn	1 145	(ka/m3)	
					Durr/Due y Hr)	/100	1010 7	(Rg)	
Tm/ar)	220 4	(01/2)			FV-(FVSX0)		1910,7	(Га)	
Tin(ai)	047.5	('N)			vesp-(20/ x	i)/(Paun - PV)		(5.)	
i m(gr)salda	317,5	(°K)			Pvs(tab)		2962,3	(Pa)	
	-				Vesp=		0,857	(m3/kg)	
					Cp=		1,007	(kJ/kg°K)	
					T=Te-Ts		10,8	(K)	
q(ar)=q(g)+q	(perd)				Patm		100000	(Pa)	
q(ar)-q(g)=	0,60	(kJ/s)	q(perd)=0,74%	······	а		287		
		1							
	1		+						
Condiçãos n	ró fixadae								
condições p	ne-mada da i	(IC)	254.5	······		<u> </u>	A	0.54	
temperatura	la envaua ua i		304,0		velocidade do	ar na saioa da	a torre (m/s)	0,54	
temperatura r	ha salda da tor	re (K)	333,0		velocidade do	ar de restriam	ento (m/s)	0,27	
velocidade do	ar na entrada	(m/s)	8,3		temperatura d	o ar de resfriai	mento (K)	308,0	
	ļ								
						Número de p	assagens		
Variáveis			1	2	3	4	5	6	7
temperatura d	la m.p.antes d	a entrada(K)	296,0	296,0	306,9	309,0	301,5	307,6	310,0
umidade da n	n.p.(% BS)	1	0.2048	0.1792	0.1751	0.1669	0.1534	0.1455	0.137
tempo de esc	namento(s)		· · · · · · · · · · · · · · · · · · ·	, 240	180	180	180	180	18
temperatura (lamn eaida r	ia torre(K)	-	310.1	304 8	325.6	371 0	326.0	325
tempo do rec	friamento/s)	···· ·································		4200	000	enn	φε 1,0 ΩΛΛ	20,0	401
tomporature	numentu(a) Ia mie áctor	ofriam (K)		1200	300	000	000	000	40
temperatura (a m.p. apos re	sinam.(K)		306,9	309,3	310,9	307,6	310,2	309,2
temperatura a	ambiente(K)		296,7	297,0	298,0	299,0	297,4	297,9	298,1
peso da m.p.	Kg)		1,336	1,326	1,307	1,301	1,275	1,264	1,24
umidade relat	iva(%)		0,7	0,65	0,6	0,58	0,7	0,72	0,7:
q(gräo)=(mc)	(Cp)(T)	0,30	(kJ/s)	***		media da tem	p.ambiente	297,7	(K)
mc=M(18/13)		0,007	(kg/s)		······································	media da umi	d.relat.	0,67	(%)
Cp		2.05	(kJ/ka K)	P		area(duto)		0.0079	(m2)
-~ T=M(14.11)		21.0	(K)			(ar)=(m)(Cn	L WT)	1.62	k.l/s
			1 V V			m=vazão den	n · / sidade	0.0747	(kn/e)
						11-VB2.00.0018	012046	0.0650	(~9/3)
			-			vazau-		0,0002	(110/5)
			<u> </u>			derisidade=1/	vesp	1,10	(Kg/m3)
			-			Pv=(Pvs x Ur)	/100	1929,5	(Pa)
Tm(ar)	343,9	(K)				Vesp≂(287 x ⊺	F)/(Patm - Pv)		
Tm(gr)saida	323,9	(K)				Pvs(tab)		2892,2	(Pa)
]				Vesp=		0,854	(m3/kg)
	<u> </u>		+			Cp≕		1,007	(kJ/kgK)
		<u> </u>	++			T≕Te-Ts		21,5	(K)
n(ar)=n(n)+n	perd)		t			Patm		100000	(Pa)
419/-4	1 22	(k lie)	a(perd)=0.91			 9		287	····
<u>414"/"419/""</u>	* 5 4 56	lunual	4(poid)_01		L	14			<u></u>

ж

r

+

ية ه.

e 4

÷

.

PLANILHA7								
Condições p	oré-fixadas			······································			· ····	
temperatura	na entrada da te	orre (K)	329,0		velocidade do	ar na saida da	a torre (m/s)	0,54
temperatura	na saída da torr	e (K)	313,0		velocidade do	ar de resfriam	ento (m/s)	0,27
velocidade do	o ar na entrada	(m/s)	8,3		temperatura d	o ar de resfria	mento (K)	308,0
			· · · · · · · · · · · · · · · · · · ·					
					Número de p	assagens		
Variáveis			1	2	3	4	5	6
temperatura	da m.p.antes da	a entrada(K)	292,0	292,0	302,0	306,0	299.5	306,9
umidade da r	n.p.(% BS)	<u>, , , , , , , , , , , , , , , , , , , </u>	0,1947	0,1628	0,1561	0,1534	0,1416	0,1364
tempo de escoamento(s)				480	600	360	360	360
temperatura da m.p. saída da torre(K)		a torre(K)		309,6	314,2	313,2	311,7	313,3
tempo de resfriamento(s)				780	600	600	600	600
temperatura	da m.p. ápos re	sfriam.(K)	***	302	306,2	308,4	306,9	307,9
temperatura :	ambiente(K)		297,0	297,0	299,0	300,0	299,0	298,0
peso da m.p.	(kg)		2,084	2,054	1,996	1,956	1,924	1,857
umidade rela	tiva(%)		0,73	0,7	0,67	0,64	0,71	0,71
		······································	7,05					,
q(grão)=(mc)(Cp)(T)	0,14	(kJ/s)		q(ar)=(m)(Cp))(T)	1,20	kJ/s
mc=M(18/13)) Z	0,005	(kg/s)		media da temp	o.ambiente	298,3	(K)
Ср		2,05	(kJ/kg K)		media da umio	1.relat.	0,69	(%)
T=M(14-11)		14,10	(K)		area(duto)		0,0079	(m2)
					m=vazão.dens	sidade	0,0745	(kg/s)
					vazão=		0,0652	(m3/s)
					densidade=1A	√esp	1,1428	(kg/m3)
					Pv=(Pvs x Ur)	/100	2053,9	(Pa)
Tm(ar)	321,0	(K)			Vesp=(287 x 7	Γ)/(Patm - Pv)		
Tm(gr)saida	312,4	(K)			Pvs(tab)		2962,34	(Pa)
					Vesp=		0,857	(m3/kg)
					Cp=		1,007	(kJ/kgK)
					T=Te-Ts		16	(K)
q(ar)=q(g)+q	(perd)				Patm		100000	(Pa)
q(ar)-q(g)=	1,06	(kJ/s)	q(perd)=0,88%		а		287	

Planilha 1									
						Numero de passagens			
Condições exp	erimentais			. 1	2	3	4	5	6
Tet-temperatur	a na entrada da	a torre (K)	353,0						
Tst-temperatura	a na saída da t	orre (K)	333,0						
temperatura da	m.p.antes da	entrada(K)	293,0	293,0	307,4	305,0	308,3	308,2	307,0
temperatura da	m.p. saida da	torre(K)		318,0	326,0	328,8	329,7	331,5	331,0
peso da m.p.(k	g)		3,012	2,897	2,718	2,717	2,611	2,594	2,528
tempo de esco	amento(s)			1080	960	480	600	540	540
C=(kJ/kgK)			2,05				*******		,,
1* passagem				*****	2ª passagem				····
Te-Te=			25	(K)	Te-To=			18.6	//6)
a(ar 1)=m c (Te	-Te)	n ve A	0 205	(k.l/s)	$\alpha(ar 2) = m c / 1$	(k.l/s)		0 152	(k) (k)(s)
q(gr. r)=m.c.(ra		ka/e)	0,200	(10/5)	q(gi.2)~iii.0.(0.004		0,100	(600)
$I = \alpha(\alpha r 1)/\Delta T e$	Te)/In(Te/Te)	ngraj			$II=\alpha(\alpha r^2)/\Delta(T)$	ear-Tear\/In/Te/	To)		
Te=Te(nr)-Te(a	r)		312.6	(K)	Private at a second sec	(ar)	****	320.2	(K)
Ts=Ts(ar)-Te(a	r)		335.3	(K)	Ts=Ts(ar)-Te	(ar)		339.5	(K)
Δ(sts)≡	., 0.1256	l l(sts)	0 2245	(k.l/m2sK)	A(sts)=	0 1256	l l(sts)	0 1869	(k.l/m2sK)
A(tc)	1,4291	U(tc)	0,0197	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0164	(kJ/m2sK)
3* passagem					4ª passagem				
Ts-Te=			18.5	(K)	Ts-Te=			21.4	(K)
a(ar.3)=m.c.(Ts	-Te)	1999-1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997	0.228	(kJ/s)	a(ar.4)=m.c.((s-Te)		0.220	(kJ/s)
m=(ka/s)	0.006		- 1	<u>(/</u>	m=(ka/s)	0.005			<u>, , , , , , , , , , , , , , , , , , , </u>
U=a(ar3)/A(Ts	ar-Tear)/In(Ts/	/Te)			U=q(qr4)/A(T	sar-Tear)/in(Ts/	Te)		
Te=Te(or)-Ts(a	r)		318,9	(K)	Te=Te(gr)-Ts	(ar)	· · · · · · · · · · · · · · · · · · ·	320,6	(K)
Ts=Ts(gr)-Te(a	r)		340,9	(K)	Ts=Ts(gr)-Te	(ar)		341,4	(K)
A(sts)=	0,1256	U(sts)	0,2554	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,2562	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0224	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0225	(kJ/m2sK)
5ª passagem					6ª passagem				
Ts-Te=			23,2	(K)	Ts-Te=			22,8	(К)
q(gr.5)≕m.c.(Ts	-Te)		0,238	(kJ/s)	q(gr.6)=m.c.(rs-Te)		0,234	(kJ/s)
m=(kg/s)	0,005				m≃(kg/s)	0,005			
U=q(gr5)/A(Ts	ar-Tegr)/In(Ts/	/Те)		N 4 4 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	U=q(gr6)/A(T	sar-Tegr)/In(Ts/	Te)		
Te=Te(gr)-Ts(a	r)		320,6	(K)	Te=Te(gr)-Ts	(ar)		320,0	(K)
Ts=Ts(gr)-Te(a	r)		342,3	(K)	Ts=Ts(gr)-Te	(ar)		342,0	(K)
A(sts)=	0,1256	U(sts)	0,2687	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,2613	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0236	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0230	(kJ/m2sK)

ANEXO 2) Determinação dos coeficientes de transferência de calor (Usts e Utc).

*

.

*

.

:

*

#

.

۲

•

÷

Planilha 2									
						Numero de passa	agens		
Condições ex	perimentais			1	. 2	3	4	5	
temperatura n	a entrada da torr	re (K)	333,0						
temperatura n	a saída da torre	<u>(K)</u>	318,0	ļ					
temperatura d	la m.p.antes da e	entrada(K)	296,0	296,0	301,5	303,0	299,0	304,7	
temperatura d	la m.p. saída da l	torre(K)	***	313,2	314,5	314,2	312,9	315,6	
peso da m.p.(kg)		2,142	2,089	2,039	1,989	1,938	1,894	
tempo de esco	oamento(s)			600	540	420	420	360	
C=(kJ/kgK)			2,05						
1ª passagem					2ª passagem				
Ts-Te=			17,2	(K)	Ts-Te=			13,0	(K)
q(gr.1)=m.c.(T	s-Te)		0,141	(kJ/s)	q(gr.2)=m.c.([s-Te)		0,107	(kJ/s)
m=(kg/s)	0,004				m≈(kg/s)	0,004			
U=q(gr1)/A(T	s-Te)/In(Ts/Te)				U=q(gr2)/A(T	sar-Tegr)/In(Ts/T	e)		
Te=Te(gr)-Ts(ar)		307,0	(K)	Te=Te(gr)-Ts	(ar)		311,1	(K)
Ts=Ts(gr)-Te(аг)		323,1	(K)	Ts=Ts(gr)-Te	(ar)		323,8	(K)
A(sts)=	0,1256	U(sts)	0,1935	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,1704	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0170	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0150	(kJ/m2sK)
<u></u>						ور ور رو رو به المان و رو المان الم			
3" passagem	an ¹⁹⁴⁹ (¹⁹⁴⁹ (¹⁹⁴), ¹⁹ (194), ¹⁹ (19 ⁴), ¹⁹ (,,			4° passagem				
						ļ			
To Tom			11.0	(12)	To To-			12 0	^(K)
$\alpha(ar 3) = m c (T)$	eTe)		۵.115 115 م	(k) (k.l/e)	(ar 4)=m c (([e.Te)		0 143	(15) (k.]/e)
q(g1.3)=;;;.c.()	0.005		0,110	(10) 5)	q(g(.4)=m.c.(0.005		0,140	(Kuraj
H=((q,3))	\eTon;0	Το			$l = \alpha (\alpha r A) / \Delta (T$	ear-Teor)/in(Te/T	(a)		
Te=Te/nr), Ts/	ar)	16/	311.9	(K)		ar)	~)	308.6	(K)
Te=Te(gr)-Te(ar)		323.7	(K)	Ts=Ts(ar)-Te	(ar)		323.0	(K)
A(sts)=	0 1256	U(sts)	0.1915	(k.l/m2sK)	A(sts)=	0 1256	U(sts)	0.2105	(k.l/m2sK)
A(tc)	1,4291	U(tc)	0,0168	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0185	(kJ/m2sK)
5ª passagem									
Ts-Te=			10,9	(K)	<u> </u>				
q(gr.5)=m.c.(T	s-Te)		0,112	(kJ/s)	1				
m=(kg/s)	0,005			· · · ·	• · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
U=q(gr5)/A(Te	sar-Tegr)/In(Ts/	Te)							
Te=Te(gr)-Ts(ar)		311,5	(K)					
Ts=Ts(gr)-Te(a	ar)		324,4	(K)	· · · · · · · · · · · · · · · · · · ·				
A(sts)=	0,1256	U(sts)	0,1766	(kJ/m2sK)		1			
A(tc)	1,4291	U(tc)	0,0155	(kJ/m2sK)					

à

*

4

4

Planilha 3									
						Numero de pass	agens		
Condições ex	perimentais			1	2	3	. 4	5	· · ·
temperatura n	a entrada da tor	rre (K)	365,9						
temperatura n	a saída da torre	9 (K)	343,0				-		
temperatura d	la m.p.antes da	entrada(K)	296,0	299,0	302,0	305,0	305,0	307,0	
temperatura d	la m.p. saída da	torre(K)		319,0	324,0				
peso da m.p.(kg)		1,885	1,841	1,742	1,721	1,676	1,64	
tempo de esco	oamento(s)			300	300	240	240	240	
C=(kJ/kgºK)			2,05						
1ª passagem					2ª passagem				
Ts-Te=			23	(K)	Ts-Te=			25	(K)
q(gr.1)=m.c.(T	īs-Te)		0,283	(kJ/s)	q(gr.2)=m.c.(Ts-Te)		0,308	(kJ/s)
m≈(kg/s)	0,006				m=(kg/s)	0,006			
U=q(gr1)/A(T	s-Te)/In(Ts/Te)				U=q(gr2)/A(T	ˈsar-Tegr)/ln(Ts/1	ſe)		
Te=Te(gr)-Ts(ar)		320,6	(K)	Te=Te(gr)-Ts	(ar)		322,2	(K)
Ts=Ts(gr)-Te(ar)		342,1	(K)	Ts≔Ts(gr)-Te	(ar)		344,7	(K)
A(sts)=	0,1256	U(sts)	0,3224	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,3397	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0283	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0299	(kJ/m2sK)
3 ^e passagem					4 ^e passagem				
.			~~ ~	40	T- T				///
IS-1e≖ =(==0)====(T			23,2	(K) (k.)	15-1e=	ί Γ- Τ-\		20	(N)
q(gr.3)=m.c.(1	S-10)		0,333	(KJ/S)	q(gr.4)=m.c.(1S-10)		0,359	(KJ/S)
m=(kg/s)	0,007	(T -)			m=(kg/s)	0,007	r_)		
U=q(gr3)/A(1	sar-regr)/in(rs	/ie)	000.0	40	U=q(gr4)/A(T	sar-regr)/m(rs/	le)	202.0	
Te=Te(gr)-Ts(ar)		323,8	(K) (K)	1e=1e(gr)-1s	(ar)		3∠3,0 247.9	(N) (K)
IS=IS(gr)-re(ar) 0.4050	11(-4-)	345,9	(N) (I) 1/01/0	15=15(gr)-1e	(ar) 0.1050	LI/ata)	0,047,0	(N)
A(sis) =	0,1200	U(SIS)	0,0000	(KJ/MZSK)	A(SIS)-	0,1230	U(SIS)	0,3764	(KJ/IIIZSK)
A(IC)	1,4291	U(IC)	0,0317	(KJ/IIIZSK)	A(IC)	1,4251	0(10)	0,0355	(KJ/IIIZSK)
5ª passagem						<u> </u>			
To Tom			22.3	(16)					
$\alpha(ar, 5) = m \alpha (T)$	e-Te)		0.320	(k.l/s)		<u>}</u>			1
q(g(0) - 0) = 0	- τ ο) Δ ΔΔ7		0,020	(1010)		\$			
	o,oo7	/Te)							
Te=Te(gr), Te	an, teði hur i si atl	(13)	324 8	(K)		ł		······	
Te=Te(gr) To(er)		24.0	(K)		a a			
$\Delta(ete) =$	0 1256	/ete)	0 3627	(k.l/m2eK)	······································				
A(tc)	1 4201	U(te)	0,0027	(k.l/m2sK)					
(13400)	1,74.01		0,0010	(1.0711 <i>2.093)</i>	1	2			

r

4

*

*

*

٠

•

Planilha 4									
					Numero de pass	agens			
Condições ex	perimentais			1	2	3			
temperatura n	a entrada da tor	re (K)	366,0						
temperatura n	a saída da torre	(K)	343,0						
temperatura d	a m.p.antes da e	entrada(K)	298,0	303,0	303,0	308,0	309,0		
temperatura d	a m.p. saída da	torre(K)			328,2				
peso da m.p.(kg)		2,599	2,551	2,494	2,437	2,166		
tempo de esc	camento(s)			420	420	420	360		
C=(kJ/kgK)			2,05						
1ª passagem					2ª passagem				
				· · · · · · · · · · · · · · · · · · ·					
Ts-Te=			18,1	(K)	Ts-Te=			25,2	(K)
q(gr.1)=m.c.(T	s-Te)		0,223	(kJ/s)	q(gr.2)=m.c.(Ts-	Te)		0,310	(kJ/s)
m=(kg/s)	0,006				m=(kg/s)	0,006			
U=q(gr1)/A(T	s-Te)/In(Ts/Te)				U=q(gr2)/A(Tsa	r-Tegr)/In(Ts/T	e)		
Te=Te(gr)-Ts(ar)		322,7	(K)	Te=Te(gr)-Ts(ar)		322,7	(K)
Ts=Ts(gr)-Te(ar)		343,2	(K)	Ts=Ts(gr)-Te(ar)		346,9	(K)
A(sts)=	0,1256	U(sts)	0,2618	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,3253	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0230	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0286	(kJ/m2sK)
3* passagem					4ª passagem				
Ts-Te=			25	(K)	Ts-Te=			24	(K)
q(gr.3)=m.c.(T	s-Te)		0,308	(kJ/s)	q(gr.4)=m.c.(Ts-	Te)		0,344	(kJ/s)
m=(kg/s)	0,006				m≃(kg/s)	0,007			
U=q(gr3)/A(T	sar-Tegr)/In(Ts/	Te)			U=q(gr4)/A(Tsa	r-Tegr)/In(Ts/T	e)		
Te=Te(gr)-Ts(ar)		325,3	(K)	Te=Te(gr)-Ts(ar)		325,9	(K)
Ts=Ts(gr)-Te(ar)		349,4	(K)	Ts=Ts(gr)-Te(ar)		350,4	(K)
A(sts)=	0,1256	U(sts)	0,3242	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,3569	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0285	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0314	(kJ/m2sK)

a.

٠.

i t

.

.

Planilha 5									
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Numero de pa	ssagens		
Condições exp	perimentais				2			5	
temperatura na	a entrada da te	orre (K)	335,8						······································
temperatura na	a saída da tori	re (K)	325,0		······································		******		
temperatura da	a m.p.antes da	a entrada(K)	294,0	294,0	303,0	306,0	303,6	307,0	
temperatura di	a m.p. saída d	a torre(K)		318,2			315,6		
peso da m.p.(k	(g)		2,452	2,403	2,318	2,267	2,176	2,166	
tempo de esco	amento(s)			720	420	360	300	360	
C=(kJ/kgK)			2,05						
1ª passagem					2ª passagem				
Ts-Te=			24,2	(K)	Ts-Te≕			12,8	(K)
q(gr.1)=m.c.(T	s-Te)	4	0,198	(kJ/s)	q(gr.2)=m.c.(1	(s-Te)		0,157	(kJ/s)
m=(kg/s)	0,004				m=(kg/s)	0,006			
U=q(gr1)/A(Ts	s-Te)/In(Ts/Te)			U=q(gr2)/A(T	sar-Tegr)/ln(T	s/Te)		
Te=Te(gr)-Ts(a	аг)		309,4	(K)	Te=Te(gr)-Ts	(ar)		314,0	(K)
Ts=Ts(gr)-Te(a	ar)		327,1	(K)	Ts=Ts(gr)-Te((ar)		325,8	(K)
A(sts)=	0,1256	U(sts)	0,2561	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,2611	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0225	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0229	(kJ/m2sK)
3ª passagem					4ª passagem				
Ts-Te=			13,7	(К)	Ts-Te=			12,0	(K)
q(gr.3)=m.c.(T	s-Te)		0,169	(kJ/s)	q(gr.4)=m.c.(1	rs-Te)		0,172	(kJ/s)
m=(kg/s)	0,006				m=(kg/s)	0,007			
U=q(gr3)/A(Ts	sar-Tegr)/ln(T	s/Te)			U=q(gr4)/A(T	sar-Tegr)/In(T	s/Te)		
Te=Te(gr)-Ts(a	ar)		315,6	(K)	Te=Te(gr)-Ts	(ar)		314,3	(K)
Ts=Ts(gr)-Te(a	ar)		327,8	(K)	Ts=Ts(gr)-Te((аг)		325,7	(K)
A(sts)=	0,1256	U(sts)	0,2748	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,2921	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0242	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0257	(kJ/m2sK)
5* passagem									
Ts-Te=			11,0	(K)					
q(gr.5)=m.c.(T	s-Te)		0,135	(kJ/s)					
m=(kg/s)	0,006								
U=q(gr5)/A(Ts	ar-Tegr)/In(T	s/Te)							
Te=Te(gr)-Ts(a	ar)		316,1	(K)					
Ts=Ts(gr)-Te(a	ar)		327,0	(K)					
A(sts)=	0,1256	U(sts)	0,2355	(kJ/m2sK)		,			
A(tc)	1,4291	U(tc)	0,0207	(kJ/m2sK)					

F

4

4

۰.

•

Planilha 6									
						Numero de pas	ssagens		
Condições ex	perimentais			1	2	3	4	5	6
temperatura n	a entrada da torre	e (K)	354,5						
temperatura n	a saída da torre (K)	333,0						
temperatura d	a m.p.antes da ei	ntrada(K)	296,0	296,0	306,9	309,0	301,5	307,6	310,0
temperatura d	a m.p. saída da ti	orre(K)					321,9		325,8
peso da m.p.(i	kg)		1,336	1,326	1,307	1,301	1,275	1,264	1,248
tempo de esco	pamento(s)			240	180	180	180	180	180
C≃(kJ/kgK)			2,05						
1ª passagem					2ª passagem				
Ts-Te=			23,1	(K)	Ts-Te=			17,9	(K)
q(gr.1)=m.c.(T	s-Te)		0,285	(kJ/s)	q(gr.2)≈m.c.(1	Ts-Te)		0,257	(kJ/s)
m=(kg/s)	0,006				m=(kg/s)	0,007			
U=q(gr1)/A(T	s-Te)/In(Ts/Te)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		U=q(gr2)/A(T	sar-Tegr)/In(Ts	/Te)		
Te=Te(gr)-Ts(аг)		314,3	(K)	Te=Te(gr)-Ts	(ar)		319,9	(K)
Ts=Ts(gr)-Te(ar)		336,6	(K)	Ts=Ts(gr)-Te((ar)		339,6	(K)
A(sts)=	0,1256	U(sts)	0,3154	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,3100	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0277	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0272	(kJ/m2sK)
3ª passagem				1997 - Carlos Martines (1997) - Carlos (1997)	4ª passagem		******		
Ts-Te=			16,6	(K)	Ts-Te=			20,4	(K)
q(gr.3)=m.c.(T	is-Te)		0,238	(kJ/s)	q(gr.4)=m.c.(1	ſs-Te)		0,293	(kJ/s)
m=(kg/s)	0,007			/	m=(kg/s)	0,007			
U=q(gr3)/A(Ts	sar-Tegr)/In(Ts/T	e)			U=q(gr4)/A(T	sar-Tegr)/In(Ts	/Te)		
Te=Te(gr)-Ts(ar)		321,0	(K)	Te=Te(gr)-Ts	(ar)		317,1	(K)
Ts=Ts(gr)-Te(a	ar)		340,0	(K)	Ts=Ts(gr)-Te(ar)		338,1	(K)
A(sts)=	0,1256	U(sts)	0,2937	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,3388	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0258	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0298	(kJ/m2sK)
5* passagem					6ª passagem				
Ts-Te=			18.4	(K)	Ts-Te=			15.8	(K)
a(ar.5)=m.c.(T	s-Te)		0.264	(kJ/s)	a(ar.5)≃m.c.(1	s-Te)		0.227	(kJ/s)
m=(kg/s)	0.007		-,		m≂(ka/s)	0.007		-,	<u>,</u>
U=g(gr5)/A(Te	sar-Teor)/In(Ts/T	'e)			U=a(ar5)/A(T	sar-Teor)/In/Ts	/Te)		
Te=Te(ar)-Ts(ar)		320 3	(K)	Te=Te(ar)-Ts	(ar)		321.4	(K)
Ts=Ts(ar)-Te(ar)		340.2	(K)	Ts=Ts(ar)-Te(ar)		339.9	(K)
A(sts)=	0,1256	U(sts)	0.3157	(kJ/m2sK)	A(sts)=	0.1256	U(sts)	0.2842	(kJ/m2sK)
A(tc)	1.4291	U(tc)	0.0277	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0.0250	(kJ/m2sK)

٠

۶,

٠.

1

ь.

Planilha 7									
						Numero de pa	ssagens		
Condições ex	perimentais		,,	1	2	3	4	5	
temperatura n	a entrada da torr	re (K)	329,0		·····				
temperatura n	a saída da torre	(K)	313,0					2 ⁴ - 1	
temperatura d	la m.p.antes da ε	entrada(K)	292,0	292,0	302,0	306,0	299,5	302,9	
temperatura d	la m.p. saida da l	torre(K)		309,6					
peso da m.p.(kg)		2,084	2,054	1,996	1,956	1,924	1,857	
tempo de esc	oamento(s)			480	600	360	360	360	
C=			2,05						
1* passagem					2ª passagem				
Ts-Te=			17,6	(K)	Ts-Te=			12,2	(°K)
q(gr.1)=m.c.(1	(s-Te)		0,144	(kJ/s)	q(gr.2)=m.c.(1	Fs-Te)		0,100	(kJ/s)
m=(kg/s)	0,004				m=(kg/s)	0,004			
U=q(gr1)/A(T	s-Te)/In(Ts/Te)				U=q(gr2)/A(T	sar-Tegr)/In(T	s/Te)		
Te=Te(gr)-Ts((ar)		302,5	(K)	Te=Te(gr)-Ts	(ar)		307,6	(K)
Ts=Ts(gr)-Te(ar)		319,4	(K)	Ts=Ts(gr)-Te	(ar)		321,7	(K)
A(sts)=	0,1256	U(sts)	0,1924	(kJ/m2sK)	A(sts)=	0,1256	U(sts)	0,1496	(kJ/m2sK)
A(tc)	1,4291	U(tc)	0,0169	(kJ/m2sK)	A(tc)	1,4291	U(tc)	0,0131	(kJ/m2sK)
3ª passagem					4ª passagem			1,000 1,014,00,000 100 100,000 40,040,000,000 100,000,000	
* + T +			44.0	(14)				40.0	44
1S-10=	- T-\		0.000	(K)	1S-1e=	[- T -)		12,2	(K) 8-1(-)
q(gr.3)=rrr.c.(1)	S-10)		0,090	(KJ/S)	q(gr.4)=m_c.(1	(S-10)		0,125	(KJ/S)
111(KU/S)		r			m=(kg/s)	0,005			
	sal-regr/m(rs/	16)	200 6			sar-regr/m(r:	sriej	306.4	71/23
TerTe(gr) To	ar)		308,0		Te-Te(gr)-Ts	(ar)		200,4	
13-13(gr)-16(0 1256	(licete)	021,2	(N) (k l/m2ek/)	A(ete)=	0 1256	/ete)	0 1972	(IN) (k. //m2ek/)
$\Delta(tc)$	1 4291	U(tc)	0,1010	(kilm2sK)		1 4291	U(sts)	0,1072	(k 1/m2sK)
~()	1,-12.01	0(10)	0,0100	(((0))))	~()	1,4201	0(10)	0,0104	(Nonizoly)
5ª passagem	·····		~~~~~						
- puttigui				{					
Ts-Te=			10,4	(K)					
q(qr.5)=m.c.(T	s-Te)		0,107	(kJ/s)					*****
m=(kg/s)	0.005		-,	· · · ·	<u></u>				
U=q(qr5)/A(T	sar-Tegr)/In(Ts/	Te)			<u></u>				
Te=Te(gr)-Ts(ar)	· ·	310.1	(K)					
Ts=Ts(gr)-Te(ar)		321,2	(K)					
A(sts)=	0,1256	U(sts)	0,1843	(kJ/m2sK)					
A(tc)	1,4291	Ú(tc)	0,0162	(kJ/m2sK)		Ś			

PLANILHA 1- AQUECIMEN	ТО		1			1		
			~					
temperatura na entrada da te	orre-Tfo (K)	353,0	353,0	353,0	353,0	353,0	353,0	353,0
temperatura na saída da torr	re-Tf(K)	333.0	333.0	333.0	333.0	333.0	333.0	333.0
temp, da m.p.antes da entra	da- Tso(K)	293.0	293.0	307.4	305.0	308.3	308.2	307.0
temp da m p saída da torre	- Ts (K)		318.0	326.0	328.8	329.7	331.5	331.0
tempo de escoamento(s)		·	1080	960	480	600	540	5/100
The Triller The			1060	960	460	600	540	040
110-11/150-110			0,33	0,44	Ų,42	0,45	0,45	0,43
Tfo-Ts/Tso-Tfo			0,58	0,59	0,50	0,52	0,48	0,48
peso da m.p.(kg)		3,012	2,897	2,718	2,717	2,611	2,594	2,528
Cf.Gf/Cs.Gs			13.59	12.71	6.58	8.39	7 73	7.85
Cf- varia para cada planilha	1.03		1.03	1.03	1 03	1 03	1.03	1 03
Ce- constante	2.05		2.05	2.05	2.05	2.05	2.05	2 05
Cf yaria para cada planilha	2,00		2,00	2,00 A EA	2,00	2,00	2,03	2,00
Gi- varia para cada pianina			80,0	0,59	0,09	0,59	0,59	0,08
GS- varia para cada corrida	······		0,02	0,02	0,05	0,04	0,04	0,04
umidade absoluta-H				······				
H-0.6210 Du/Datm Du	0.01	········						
donaidade/(-/-2)	0,01	······································						
Gensidade(kg/m3)	1,15							
GT=((vazao ar/1+H).densid)/	0,59							
PLANILHA 2- AQUECIMEN	ТО			1111 ₁₁₁₁₁₁ 1111			ar"-an'	
40mnorotus		~~~ ~	000 0			000 0	~~~~	
temperatura na entrada da to	une-Ito (K)	333,0	333,0	333,0	333,0	333,0	333,0	
temperatura na saida da torr	re- Tf (K)	318,0	318,0	318,0	318,0	318,0	318,0	
temp. da m.p.antes da entra	da- Tso (K)	296,0	296,0	304,0	305,5	299,0	304,7	
temp. da m.p. saida da torre	- Ts(K)		313,2	314,5	314,2	312,9	315,6	
tempo de escoamento(s)			600	540	420	420	360	
Tfo-Tf/Tso-Tfo		·····	0,41	0,52	0,55	0,44	0,53	
Tfo-Ts/Tso-Tfo	····,·····		0,54	0,64	0,68	0,59	0,61	
peso da m.p.(kg)	· · · · · · · · · · · · · · · · · · ·	2,142	2,089	2,039	1,989	1,938	1,894	
Cf.Gf/Cs.Gs			10.53	9,72	7,75	7,95	6.98	
Cf- varia nara cada planilha	1 03		1.03	1 03	1 03	1.03	1.03	
Ce- constante	2.05		2.05	2.05	2 05	2.05	2.05	······
Cf varia para cada planilha	2,00		2,00	2,00	2,00	2,00	2,00	
Gi- varia para cada planina			0,08	0,03	0,03	0,08	0,35	
OS- Valla para caua comua			0,03	0,03	0,04	0,04	0,04	
umidade absoluta-H	<u> </u>							
H=0.6219 Pv/Patm Pv	0.01							
densidade(ka/m3)	1 15							
Cf=((ve=õe os(1) Li) dopoid)/	1,10							
GI-((Vaza0 al/ I+A).0ensi0)/	0,08							
PLANILHA 3- AQUECIMEN	то							
	TEA (14)	000.0	000.0	000.0	260.0	262.0	000.0	
temperatura na entrada da to	UITE-110 (K)	300,0	366,0	0,000	0,000	0,006	0,000	
temperatura na salda da torr	re- IT (K)	343,0	343,0	343,0	343,0	343,0	343,0	
temp. da m.p.antes da entra	da- ISO(K)	296,0	299,0	302,0	305,0	305,0	307,0	
temp. da m.p. saída da torre	- T s (K)		319,0	324,0	328,2	330,0	327,3	
tempo de escoamento(s)	ļ		300	300	240	240	240	
Tfo-Tf/Tso-Tfo			0,34	0,36	0,38	0,38	0,39	
Tfo-Ts/Tso-Tfo			0,70	0,66	0,62	0,59	0,66	
peso da m.p.(kg)		1,885	1,841	1,742	1,721	1,676	1,640	

Ct.Gf/Cs.Gs			6,04	6,28	5,20	5,30	5,43	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ct- varia para cada planiha	1,03		1,03	1,03	1,03	1,03	1,03	
Cs- constante	2,05		2,05	2,05	2,05	2,05	2,05	
Gf- varia para cada planilha			0,59	0,59	0,59	0,59	0,59	
Gs- varia para cada corrida			0,05	0,05	0,06	0,06	0,06	
umidada abaatuta Li	0.01				arreas and a second second second			
H=0.6219 PV/Patm Pv	0.01							
densidade/ko/m3)	1 16							
ucinsidade(ky/IIIa)	1,10		1.2		I			

ANEXO 3) - Base de cálculo para obtenção do coeficiente convectivo de transferência de calor.

¥

.

4

4

÷

٤

ie:

N.

4

,

 $\boldsymbol{w}_{t'}$

*

ŧ

L

æ

temperatura na entrada da t	orre-Tfo (K)	366,0	366.0	366,0	366.0	366.0	* A	
temperatura na saída da tor	re- Tf (K)	343,0	343.0	343.0	343.0	343.0		
temp, da m.p.antes da entra	da- Tso(K)	298.0	303.0	303.0	308.0	309.0		
temp, da m.p. saída da torre	- Ts (K)		321.1	328.2	333.0	335.0		
tempo de escoamento(s)			420	420	420	360		
Tfo-Tf/Tso-Tfo			0.37	0.37	0.40	0.40		
110-11/130-110			10,01	0,01	0,40	0,40		
74- T-17 74-								
110-15/150-110		~~	0,71	0,60	0,57	0,54		
<u></u>								
peso da m.p.(kg)		2,599	2,551	2,494	2,437	2,166		
Cf.Gf/Cs.Gs			6,04	6,17	6,31	5,79		
Cf- varia para cada planilha	1,02		1,02	1,02	1,02	1,02		
Cs- constante	2,05		2.05	2.05	2.05	2.05		
Gf- varia para cada planilha		<u>_</u>	0.59	0.59	0.59	0.59		
Gs- varia para cada corrida	·		0.05	0.05	0.05	0.05		
			0,00		0,00	0,00		
umidada absoluta H								
	0.04							
H=0,0219. PV/Pa(m - PV	0,01							
densidade(kg/m3)	1,15							
Gf=(vazão ar/1+H).densid	0,59							
PLANILHA 5- AQUECIMEN	ITO							
	1							
temperatura na entrada da t	orre-Tfo (K)	335.8	335.8	335.8	335.8	335.8	335.8	
temperatura na saída da torr	re- Tf (K)	325.0	325.0	325.0	325.0	325.0	325.0	
temp da miniante da entra	da. Teo/K)	2010	201.0	202 0	206.0	303 6	207 0	
tomp do m p coldo do torre		234,U	209,0	245.0	210.7	0,000	307,0	
temp. da m.p. saida da torre			310,2	310,0	319,7	310,0	318	
tempo de escoamento(s)			/20	420	360	300	360	
Tfo-Tf/Tso-Tfo			0,26	0,33	0,36	0,34	0,38	
Tfo-Ts/Tso-Tfo			0,42	0,61	0,54	0,63	0,62	
peso da m.p.(kg)		2,452	2,403	2,318	2,267	2,176	2,166	
		· · · · ·			·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	
Cf Gf/Cs Gs	1		10 97	6.58	5 81	5 00	6 14	
Cf.Gf/Cs.Gs	1 02		10,97	6,58	5,81	5,00	6,14	
Cf.Gf/Cs.Gs Cf- varia para cada planilha	1,03		10,97 1,03	6,58 1,03	5,81 1,03	5,00 1,03	6,14 1,03	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante	1,03 2,05		10,97 1,03 2,05	6,58 1,03 2,05	5,81 1,03 2,05	5,00 1,03 2,05	6,14 1,03 2,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha	1,03 2,05		10,97 1,03 2,05 0,59	6,58 1,03 2,05 0,59	5,81 1,03 2,05 0,59	5,00 1,03 2,05 0,59	6,14 1,03 2,05 0,59	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida	1,03 2,05		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida	1,03 2,05		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H	1,03 2,05 0,01		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Cs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv	1,03 2,05 0,01 0,01		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3)	1,03 2,05 0,01 0,01 1,15		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazêo ar/1+H).densid	1,03 2,05 0,01 0,01 1,15 0,59		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid	1,03 2,05 0,01 0,01 1,15 0,59		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6. AQUECIMEN	1,03 2,05 0,01 0,01 1,15 0,59		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN	1,03 2,05 0,01 0,01 1,15 0,59 TO		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN	1,03 2,05 0,01 0,01 1,15 0,59 TTO		10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da te	1,03 2,05 0,01 0,01 1,15 0,59 ITO	354,5	10,97 1,03 2,05 0,59 0,03	6,58 1,03 2,05 0,59 0,04	5,81 1,03 2,05 0,59 0,05	5,00 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05	354,5
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torri	1,03 2,05 0,01 0,01 1,15 0,59 TTO Dorre-Tfo (K) re- Tf (K)	354,5 333,0	10,97 1,03 2,05 0,59 0,03 354,5 333,0	6,58 1,03 2,05 0,59 0,04 	5,81 1,03 2,05 0,59 0,05 0,05 354,5 3354,5 333,0	5,00 1,03 2,05 0,59 0,06 354,5 333,0	6,14 1,03 2,05 0,59 0,05 354,5 333,0	354,5 333,0
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torri temperatura na saida da torri temp. da m.p.antes da entra	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5	6,14 1,03 2,05 0,59 0,05 354,5 3354,5 333,0 307,6	354,5 333,0 310,0
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torri temperatura na saída da torri temp. da m.p. antes da entra temp. da m.p. saída da torri	1,03 2,05 0,01 0,01 1,15 0,59 TTO TTO TTO Corre-Tfo (K) e- Tf (K) da- Tso(K) - Ts(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0	354,5 333,0 310,0 325,8
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da to temperatura na saída da torri temp. da m.p. saída da torri temp. da m.p. saída da torri tempo de escoamento(s)	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) i- Ts(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180	354,6 333,0 310,0 325,8 180
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazåo ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torri temperatura na saida da torri tempe da m.p. asida da torri tempo da escoamento(s) Tfo-Tf/Tso-Tfo	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46	354,5 333,0 310,0 325,8 180 0,48
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torri temp. da m.p. saida da torri temp. da m.p. saida da torri tempo de escoamento(s) Tfo-Tf/Tso-Tfo	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) ce- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46	354,5 333,0 310,0 325,8 180 0,48
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temp. da m.p. antes da entra temp. da m.p. saída da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo	1,03 2,05 0,01 0,01 1,15 0,59 TTO Dorre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0.64	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0.62	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61	354,5 333,0 310,0 325,8 180 0,48 0,644
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saida da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo Tfo-Ts/Tso-Tfo	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61	354,5 333,0 310,0 325,8 180 0,48 0,64
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saida da torre tempe da m.p. saida da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo peso da m.p. (kn)	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,61 1,264	354,5 333,0 310,0 325,8 180 0,48 0,64
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazåo ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saida da torre tempe da m.p. asida da torre tempo da escoamento(s) Tfo-Tf/Tso-Tfo Tfo-Ts/Tso-Tfo peso da m.p.(kg)	1,03 2,05 0,01 0,01 1,15 0,59 TTO Intre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temp. da m.p. antes da entra temp. da m.p. saída da torre tempo de escoamento(s) Tfo-Tf/Tso-Tfo peso da m.p.(kg) Cf Cf/Co.Ca	1,03 2,05 0,01 0,01 1,15 0,59 ITO orre-Tfo (K) ce- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,62	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 6,07	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 6,42	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,42	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saida da torre temperatura na saida da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K)	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 4,00	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,00	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 4,22	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 4,00	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo Tfo-Ts/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha	1,03 2,05 0,01 0,01 1,15 0,59 TTO Drife-Tfo (K) re- Tf (K) da- Tso(K) r- Ts(K)	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torri temperatura na saida da torri tempe da m.p. antes da entra tempo de escoamento(s) Tfo-Ts/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) - Ts(K) 1,03 2,05	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 Pv/Patm - Pv densidade(kg/m3) Gf=(vazào ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saida da torre temperatura na saida da torre tempe da m.p. antes da entra tempo da escoamento(s) Tfo-Ts/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha	1,03 2,05 0,01 0,01 1,15 0,59 TTO Intre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K) 1,03 2,05	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05 0,59	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05 0,59
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temp. da m.p. asída da torre temp. da m.p. asída da torre temp. da m.p. asída da torre tempo de escoamento(s) Tfo-Tf/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Cs- varia para cada corrida	1,03 2,05 0,01 0,01 1,15 0,59 TO orre-Tfo (K) e- Tf (K) da- Tso(K) Ts(K) 1,03 2,05	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59 0,04	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59 0,06	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59 0,06	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05 0,59 0,06	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05 0,59 0,06
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre tempo da m.p. saída da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) ce- Tf (K) da- Tso(K) Ts(K) Ts(K)	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59 0,04	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59 0,06	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59 0,06	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05 0,59 0,06	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05 0,59 0,06
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre tempo da m.p. antes da entra temp. da m.p. antes da entra temp. da m.p. antes da entra tempo de escoamento(s) Tfo-Tf/Tso-Tfo Tfo-Ts/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K) 1,03 2,05	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59 0,04	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59 0,06	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59 0,06	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,61 1,264 5,25 1,03 2,05 0,59 0,06	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05 0,59 0,06
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saída da torre temperatura na saída da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo Tfo-Ts/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) re- Tf (K) da- Tso(K) Ts(K) 1,03 2,05 0,01	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59 0,04	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59 0,06	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59 0,06	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05 0,59 0,06	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05 0,59 0,06
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 Pv/Patm - Pv densidade(kg/m3) Gf=(vazào ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da to temperatura na saida da torre temp. da m.p. antes da entra temp. da m.p. asida da torre tempo de escoamento(s) Tfo-Ts/Tso-Tfo Ffo-Ts/Tso-Tfo Deso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Cs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3)	1,03 2,05 0,01 0,01 1,15 0,59 TO ITO ITO ITO ITO ITO ITO ITO ITO ITO	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59 0,04	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59 0,06	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59 0,06	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05 0,59 0,06	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05 0,59 0,06
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saída da torre tempe da m.p. asída da torre tempo de escoamento(s) Tfo-Tf/Tso-Tfo Tfo-Tf/Tso-Tfo peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/14H) densid	1,03 2,05 0,01 0,01 1,15 0,59 TO orre-Tfo (K) e- Tf (K) da- Tso(K) Ts(K) 1,03 2,05 1,03 2,05	354,5 333,0 296,05	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59 0,04	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59 0,06	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59 0,06	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05 0,59 0,06	354,5 333,0 310,0 325,8 180 0,48 0,64 1,248 5,31 1,03 2,05 0,59 0,06
Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid PLANILHA 6- AQUECIMEN temperatura na entrada da torre temperatura na saida da torre tempo de escoamento(s) Tfo-Tf/Tso-Tfo Peso da m.p.(kg) Cf.Gf/Cs.Gs Cf- varia para cada planilha Cs- constante Gf- varia para cada planilha Gs- varia para cada planilha Gs- varia para cada corrida umidade absoluta-H H=0,6219 . Pv/Patm - Pv densidade(kg/m3) Gf=(vazão ar/1+H).densid	1,03 2,05 0,01 0,01 1,15 0,59 TTO orre-Tfo (K) ce-Tf (K) da-Tso(K) Ts(K) Ts(K) 1,03 2,05 0,01 1,15 0,59	354,5 333,0 296,05 1,336	10,97 1,03 2,05 0,59 0,03 354,5 333,0 296,0 319,1 240 0,37 0,61 1,326 6,68 1,03 2,05 0,59 0,04	6,58 1,03 2,05 0,59 0,04 354,5 333,0 306,9 324,8 180 0,45 0,62 1,307 5,07 1,03 2,05 0,59 0,06	5,81 1,03 2,05 0,59 0,05 354,5 333,0 309 325,6 180 0,47 0,64 1,301 5,12 1,03 2,05 0,59 0,06	5,00 1,03 2,05 0,59 0,06 354,5 333,0 301,5 321,9 180 0,41 0,62 1,275 5,18 1,03 2,05 0,59 0,06	6,14 1,03 2,05 0,59 0,05 354,5 333,0 307,6 326,0 180 0,46 0,61 1,264 5,25 1,03 2,05 0,59 0,06	354,5 333,0 310,0 325,8 180 0,48 0,48 1,248 5,31 1,03 2,05 0,59 0,066

a

4

•

٠

۰,

Ş

.

*

	PLANILHA 7	- AQUECIMENTO)					
			······		····			
temperatura r	ha entrada da ti	orre-Tfo (K)	329.0	329.0	329.0	329.0	329.0	329.0
temperatura r	na saida da tori	re- Tf (K)	313.0	313.0	313.0	313.0	313.0	313.0
temp damn	antes da entra	da Tso(K)	292	292	302	306	200.5	306.0
temp damp	saída da torre			200 6	314.2	313.2	2117	242.2
tempo de esc	namento(s)	19(17)		480	600	260	260	310,0
Tfo Tf/Teo T	fo			400	000	0.70	300	300
110-11/150-1				U,43	บ,อง		. U,54	0,72
Tfo-Ts/Tso-T	fo	,		0,52	0,55	0,69	0,59	0,71
	(1)							
peso da m.p.((kg)		2,084	2,054	1,996	1,956	1,924	1,857
Cf.Gf/Cs.Gs				8,57	10,95	6,73	6,86	7.04
Cf- varia para	cada planilha	1,03	····	1.03	1,03	1.03	1.03	1.03
Cs- constante)	2,05		2.05	2.05	2.05	2.05	2.05
Gf- varia para	cada olanilha			0.59	0.59	0.59	0.59	0.59
Gs- varia para	e cada corrida			0,00	0,00	0.04	0.04	0,00
				0,00	0,00		0,07	0,04
umidade abso	oluta-H							
H=0,6219 . P	v/Patm - Pv	0,01						
densidade(kg	/m3)	1,14						
Gf=((vazão ar	/1+H).densid)/	0,59						
		· · · · ·	No. 27 - 111					
								····
PLANILHA 1	RESFRIAMEN	то						
temperatura a	mbiente(°K)	Tfo		296,2	296,7	296,9	297,2	297,1
temperatura d	a m.p. saída d	a torre(°K)-Tso		318,0	326,0	328,8	329,7	331,5
temperatura d	a m.p. ápos re	sfriam.(°K) Ts	·····	307,4	308,0	308,3	308,2	308,5
tempo de resf	riamento(s)			720	3600	660	600	900
peso da m.p.(ka)		3.012	2.897	2,718	2.717	2.611	2.594
1			- /					
Tfo-Ts/Tso-T	fo			0,51	0,39	0,36	0,34	0,33
				· · · ·				
Cf.Gf/Cs.Gs				1,90	9,98	1,89	1,75	2,69
H-	0,13			· · · · ·	-			
Cf-	1.03	······································		1.03	1.03	1.03	1.03	1.03
Gf-	0.12			0.12	0.12	0.12	0.12	0.12
Cs-	2.05			2 05	2 05	2 05	2 05	2 05
Gs-				0.03	0.01	0.03	0.04	0.02
				-,		0,00	V, V	0,02
PLANILHA 2-	RESFRIAMEN	то						
tana	nabia cá - (014)	·····	005.0	005 5	005 4		000 0	~~
temperatura a			290,3	295,5	290,4	295,2	295,2	294,8
temperatura d	a m.p. salda da			313,2	514,5	314,Z	312,9	315,6
temperatura d	a m.p. apos re	siriam.(~K) Is		304,3	305,7	306,1	304,7	305,0
tempo de resf	riamento(s)			600	600	600	600	600
peso da m.p.(kg)		2,142	2,089	2,039	1,989	1,938	1,894
Tfo-Ts/Tso-Ti	fo			0,50	0,54	0,57	0,54	0,49
CE CEIC= 0-				2 24	2.00	2 2 2	0.00	9.44
GT.GT/CS.GS	0.04			∠,21	2,25	2,32	2,38	2,44
n-	0,01			4 00		4 00	4 00	4 ~~
	1,03			1,03	1,03	1,03	1,03	1,03
Gf-	***			0,12	0,12	0,12	0,12	0,12
Cs-	2,05			2,05	2,05	2,05	2,05	2,05
Gs-				0,03	0,03	0,03	0,03	0,03

.

.....

•

۰,

i,

۴

*

PLANILHA 3	RESFRIAMEN	ITO							
temperatura a	mpiente(°K)	Ito	292,8	293,0	294,0	294,0	294,0	295,0	
temperatura d	a m.p. saida d	a torre(°K)-Tso		319,0	324,0	328,2	330,0	327,3	
temperatura d	a m.p. ápos re	sfriam.(ºK) Ts		303,9	306,4	308,0	311,8	306,3	
tempo de resf	riamento(s)			900	900	900	900	900	
peso da m.p.(kg)		1,885	1,841	1,742	1,721	1,676	1,640	
Tfo-Ts/Tso-T	fo	·······	······································	0,42	0,41	0,41	0,49	0,35	
Cf.Gf/Cs.Gs				3.76	3.91	4 04	4 12	4 22	
H-	0,01	N		0,10	0,01				
Cf-	1,03	······································		1.03	1.03	1.03	1.03	1.03	
Gf-	0.12			0.12	0.12	0.12	0.12	0.12	
Cs-	2.05			2.05	2.05	2.05	2.05	2.05	
Gs-				0,02	0,02	0,02	0,02	0,01	
PLANILHA 4-	RESFRIAMEN	ITO						······	
temperatura a	mblente("K)	Tto	295,3	296,3	299,0	299,6	301,0		
temperatura d	a m.p. saida d	a torre("K)-Tso		321,1	328,2	333,0	335,0		
temperatura d	a m.p. apos re	smam.(°K) Ts		307,4	313	313,7	313,7		
tempo de resf	namento(s)			1200	1200	1200	1200		
peso da m.p.(kg)		2,599	2,551	2,494	2,437	2,166		
Tfo-Ts/Tso-T	fo	·······		0,45	0,48	0,42	0,37		
Cf.Gf/Cs.Gs				0.02	0.02	0,02	0,02		
H-	0,01								
Cf-	1,02			1,02	1,02	1,02	1,02		
Gf-	0,12		İ	0,12	0,12	0.12	0,12		
Cs-	2,05			2,05	2,05	2,05	2,05		
Gs-	<u>.</u>			3,99	3,99	3,99	3,99		
PLANIE HA 5.	RESERIAMEN	το							
r LANILIA J-				·					
temperatura a	mbiente(°K)	Tfo	296,8	297,4	297,6	299,0	299,8	299,4	
temperatura d	a m.p. saída d	a torre(°K)-Tso		318,2	315,8	319,7	315,6	318,0	
temperatura d	a m.p. ápos re	sfriam.(°K) Ts		306,4	308,4	303,6	307,0	308,0	
tempo de resfi	riamento(s)			480	600	900	900	600	
peso da m.p.(l	(g)		2,452	2,403	2,318	2,267	2,176	2,166	
Tfo-Ts/Tso-T	ło	······		0,43	0,59	0,22	0,46	0,46	
Cf.Gf/Cs.Gs				1.54	1.98	3.05	3.15	2.15	
H-	0.01					- 1	-,	_,	
Cf-	1.03			1 03	1.03	1.03	1.03	1.03	
Gf-	0.12	······		0 12	0.12	0.12	0.12	0.12	
Cs-	2.05			2.05	2.05	2.05	2.05	2.05	
Gs-	_,			0,04	0,03	0,02	0,02	0,03	
PLANILHA 6-	RESFRIAMEN	то							
		*** # _	000.7		002.0	000.0	007 1	007.0	000.4
temperatura a	mpiente(°K)	Ito	296,7	297,0	298,0	299,0	297,4	297,9	298,1
temperatura d	a m.p. saida di	a torre("K)-Tso		319,1	324,8	325,6	321,9	326,0	325,8
temperatura d	a m.p. apos re	striam.(°K) Ts		306,9	309,3	310,9	307,6	310,2	309,2
tempo de resfr	iamento(s)			1200	900	000	600	600	480
peso da m.p.(I	(g)		1,336	1,326	1,307	1,301	1,2/5	1,264	1,248
Tfo-Ts/Tso-Tl	0			0,45	0,42	0,45	0,42	0,44	0,40
Cf.Gf/Cs.Gs				7,01	5,32	3,58	3,62	3,68	2,97
H-	0,01								
Cf-	1,03			1,03	1,03	1,03	1,03	1,03	1,03
Gf-	0,12			0,12	0,12	0,12	0,12	0,12	0,12
Cs-	2,05			2,05	2,05	2,05	2,05	2,05	2,05
Gs-			ļ	0,01	0,01	0,02	0,02	0,02	0,02

4

•

•,

4

£.

.

PLANILHA 7	RESFRIAMEN	то						
	<u> </u>							
temperatura a	ambiente(°K)	Tfo	297,0	297,0	299,0	300,0	299,0	298,0
temperatura c	la m.p. saída da	a torre(°K)-Tso		309,6	314,2	313,2	311,7	313,3
temperatura c	la m.p. ápos res	sfriam.(°K) Ts		302,0	306,2	308,4	306,9	307,9
tempo de resi	riamento(s)			780	600	600	600	600
peso da m.p.((kg)		2,084	2,054	1,996	1,956	1,924	1,857
Tfo-Ts/Tso-T	fo			0,40	0,47	0,64	0,62	0,65
Cf.Gf/Cs.Gs				2,93	2,31	2,36	2,41	2,47
H-	0,01							
Cf-	1,03			1,03	1,03	1,03	1,03	1,03
Gf-	0,12			0,12	0,12	0,12	0,12	0,12
Cs-	2,05			2,05	2,05	2,05	2,05	2,05
Gs-				0,02	0,03	0,03	0,03	0,03

Anexo 4) PROGRAMA DE ENTRADA DE DADOS DO SAS

۲

•.

Ļ

ŧ

No aquecimento

OBS	Ρ	Y1	Y2	ł	X1	X2
1	1	0.3333	0.5833	13.5896	1.77881	2.29000
2	1	0.4386	0.5921	12.7121	1.96923	2.24810
3	1	0.4166	0.5042	6.5666	1.41519	1.57690
4	1	0.4474	0.5212	8.3730	1.65610	1.79145
5	1	0.4464	0.4799	7.7138	1.59193	1.65483
6	1	0.4347	0.4782	7.8388	1,58119	1.66396
7	2	0.4054	0.5351	10.5349	1.74809	1.99832
8	2	0.5172	0.6379	9.7180	1.90210	2.09696
9	2	0.5454	0.6836	7.7461	1.77190	1.98052
10	2	0.4412	0.5911	7.9453	1.60413	1.86503
11	2	0.5300	0.6148	6.9791	1.66643	1.80040
12	3	0.3423	0.7010	6.0383	1.20127	1.81106
13	3	0.3584	0.6557	6.2793	1.26314	1.77879
14	3	0.3760	0.6190	5.1975	1,17275	1.58550
15	3	0.3760	0.5895	5.2985	1.18547	1.55611
16	3	0.3888	0.6553	5.4279	1.22732	1.66884
17	4	0.3651	0.7127	6.0427	1.25126	1.82710
18	4	0.3651	0.6000	6.1684	1.26535	1.68429
19	4	0.3965	0.5690	6.3110	1.34666	1.65382
20	4	0.4035	0.5438	5.7994	1.30169	1.55115
21	5	0.2584	0.4210	10.9739	1.40239	1.81375
22	5	0.3293	0.6097	6.5831	1.23015	1.74805
23	5	0.3624	0.5403	5.8101	1.21891	1.54686
24	5	0.3354	0.6273	4.9965	1.06310	1.56873
25	5	0.3750	0.6180	6.1352	1.28259	1.70700
26	6	0.3675	0.6051	6.6817	1.32598	1.75248
27	6	0.4517	0.6239	5.0665	1.29910	1.57397
28	6	0.4725	0.6352	5.1151	1.34232	1.59700
29	6	0.4057	0.6151	5.1786	1.22877	1.57720
30	6	0.4584	0.6077	5.2541	1.33614	1.57696
31	6	0.4831	0.6450	5.3105	1.38686	1.63830
32	7	0.4324	0.5243	8.5744	1.64463	1.81540
33	7	0.5926	0.5481	10.9509	2.12513	2.05211
34	7	0.6956	0.6869	6.7334	1.88736	1.87556
35	7	0.5424	0.5864	6.8584	1.67378	1.74388
36	7	0.7239	0.7104	7.0380	1.95940	1.94157

No resfriamento

ŵ

-9

٩

٠.

,

.

OBS	PF	YR	Т	XR
1	1	0.5138	1.8958	0.80127
2	1	0.3857	3.0481	0.86645
. 3	. 1	0.3574	1.8894	0.58636
4	1	0.3385	1.7521	0.52837
5	1	0.3314	2.6903	0.70794
6	1	0.3343	3.2807	0.81517
7	2	0.4972	2.2056	0.85920
8	2	0.5393	2.2606	0.93017
9	2	0.5737	2.3168	0.99007
10	2	0.5367	2.3763	0.95500
11	2	0.4904	2.4352	0.90416
12	3	0.4192	3.7593	1.04712
13	3	0.4133	3.9093	1.06094
14	3	0.4093	4.0448	1.07504
15	3	0.4944	4.1234	1.23280
16	3	0.3498	4.2241	0.98928
17	4	0.4476	3.6195	1.07206
18	4	0.4794	3.6948	1.13714
19	4	0.4221	3.7803	1.05561
20	4	0.3735	4.0496	1.00968
21	5	0.4327	1.5377	0.59820
22	5	0.5934	1.9767	0.92522
23	5	0.2222	3.0529	0.55886
24	5	0.4557	3,1505	1.00073
25	5	0.4624	2.1492	0.79702
26	6	0.4480	5.2588	1.31809
27	6	0.4216	5.3168	1.27688
28	6	0.4474	3.5785	1.06467
29	6	0.4163	3.6229	1.01948
30	6	0.4377	3.6757	1.06500
31	6	0.4007	2.9722	0.87765
32	7	0.3968	2.9339	0.86397
33	7	0.4736	2.3059	0.85018
34	7	0.6363	2.3631	1.08267
35	7	0.6220	2.4069	1.07550
36	7	0.6470	2.4699	-1,12305

Anexo 4) - PROGRAMA DE ENTRADA DE DADOS NO SAS,

4

٠

۰.

¥

\$

data p1; p=1; input y1 y2 T @@; cards; -0.3333 -0.5833 13.5896 -0.4386 -0.5921 12.7121 -0.4166 -0.5042 6.5666 -0.4474 -0.5212 8.373 -0.4464 -0.4799 7.7138 -0.4347 -0.4782 7.8388 ; run; data p2; p=2; input y1 y2 T @@; cards; -0.4054 -0.5351 10.5349 -0.5172 -0.6379 9.718 -0.5454 -0.6836 7.7461 -0.4412 -0.5911 7.9453 -0.53 -0.6148 6.9791 ; run; data p3; p=3; input y1 y2 T @@; cards; -0.3423 -0.701 6.0383 -0.3584 -0.6557 6.2793 5.1975 -0.376 -0.619 -0.5895 5.2985 -0.376 -0.3888 -0.6553 5.4279 ì run; data p4; p=4; input y1 y2 T @@; cards; -0.7127 6.0427 -0.3651 -0.6 6.1684 -0.3651 -0.3965 -0.569 6.311 -0.4035 -0.5438 5.7994

```
;
run;
data p5;
p=5;
input y1 y2 T @@;
cards;
              -0.2584 -0.421 10.9739
              -0.3293 -0.6097 6.5831
              -0.3624 -0.5403 5.8101
              -0.3354 -0.6273 4.9965
              -0.375 -0.618
                               6.1352
run;
data p6;
p=6;
input y1 y2 T @@;
cards;
              -0.3675 -0.6051
                               6.6817
              -0.4517 -0.6239
                               5.0665
              -0.4725 -0.6352
                               5.1151
              -0.4057 -0.6151
                               5.1786
              -0.4584 -0.6077
                               5.2541
              -0.4831 -0.645
                               5.3105
;run;
data p7;
p=7;
input y1 y2 T @@;
cards;
              -0.4324 -0.5243 8.5744
              -0.5926 -0.5481 10.9509
              -0.6956 -0.6869
                               6.7334
              -0.5424 -0.5864
                               6.8584
              -0.7239 -0.7104 7.038
;run;
data pf1;
pf=1;
input yr T @@;
cards;
                 -0.5138 1.8958
                 -0.3857
                         3.0481
                 -0.3574
                         1.8894
                 -0.3385
                          1.7521
                 -0.3314
                         2.6903
                 -0.3343 3.2807
;
run;
data pf2;
pf=2;
input yr T @@;
```

ŧ

۴.

\$

cards;	-0.4972 -0.5393 -0.5737 -0.5367 -0.4904	2.2056 2.2606 2.3168 2.3763 2.4352	
, run;			
 data pf3; pf=3; input yr T @@; cards:			
	-0.4192 -0.4133 -0.4093 -0.4944	3.7593 3.9093 4.0448 4.1234	
; run; data pf4; pf=4;	-0.3498	4.2241	
input yr T @@; cards;	0.4 (70	0.0405	
	-0.4776 -0.4794 -0.4221 -0.3735	3.6195 3.6948 3.7803 4.0496	
; run; data pf5; pf=5; input yr T @@; cards;			
	-0.4327 -0.5934 -0.2222 -0.4557 -0.4624	1.5377 1.9767 3.0529 3.1505 2.1492	
; run;			
data pf6; pf=6; input yr T @@; cards:			
uarus,	-0.448 -0.4216 -0.4474 -0.4163 -0.4377 -0.4007	5.2588 5.3168 3.5785 3.6229 3.6757 2.9722	
; run;			

÷

.

٠

۰.

4

F

٠

data pf7; pf=7; input yr T @@; cards; -0.3968 2.9339 -0.4736 2.3059 -0.6363 2.3631 -0.622 2.4069 -0.647 2.4699 ; run;

4

۰. ج

Ļ

4

data p; set p1 p2 p3 p4 p5 p6 p7; y1=-y1; y2=-y2;

 $x1=(T^{1}\log(1-y1^{1}(1-T)))/(1-T);$ $x2=(T^{1}\log(1-y2^{1}(1-T)))/(1-T);$

proc print; data pf; set pf1 pf2 pf3 pf4 pf5 pf6 pf7; yr=-yr; xr=(T*log(1-yr*(1-T)))/(1-T); proc print; run; quit;

ANEXO 4a) - Determinação do coeficiente convectico de transferência de calor, segundo SARTORI.

4

.

٠

٠,

٠

,

a.

assumindo x=L (como comprimento linear do secador) X=h.S/Cf.Gf (adimensional) h=(X.(Cf.Gf))/(S.x)	aquecimento	equaç.1
X=h.S/Cf.Gf (adimensional) h=(X.(Cf.Gf))/(S.x)		
, , , , , , , , , , , , , , , , , , , ,		
S=6(1-ε)/φ.Dp Dp=0,0058 m		
S=6(1-0,887)/(0,85.0,0058) ε=0,887	1	
S= 137,5254		
x=(m) 5		
Cf-(kJ/kgK) varia para cada planilha		
Gf-(kg/m^2s) varia para cada planilha		
X- calculado pela equação de SARTORI, através do pacote SAS		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	4 5	6
	4 3	0
		1,03
		0,09
		1,0612
	0,0014	0,0014
Planilha 2 1 2 3	4 5	
Cf 1,03 1.03 1.03 1	.03 1.03	
Gf 0,59 0,59 0,59 0	.59 0.59	
X 1,7481 1,9021 1,7719 1,60	1.6664	·······
h 0,0015 0,0017 0,0016 0,00	0,0015	
Planilha 3 1 2 3	4 5	
Cf 1,03 1,03 1,03 1	03 1,03	
Gf 0,59 0,59 0,59 0	59 0,59	
X 1,2013 1,2631 1,1728 1,18	1,2273	
h 0,0011 0,0011 0,0010 0,00	0,0011	
Planilha 4 1 2 3	4	
Cf 1.02 1.02 1.02 1	.02	
Gf 0.59 0.59 0.59 0	59	
X 1.2513 1.2654 1.3467 1.30	17	
h 0,0011 0,0011 0,0012 0,00	11	
Planilha 5 1 2 3	4 5	
Cf 1,03 1,03 1,03 1,	03 1,03	
Gf 0,59 0,59 0,59 0,	59 0,59	2
X 1,4024 1,2302 1,2189 1,06	31 1,2826	
h 0,0012 0,0011 0,0011 0,00	0,0011	
	A =	6
		4 02
		1,03
GI 0,59 0,59 0,59 0	0,09 0,09	0,09
		1,3009
	0,0012	0,0012
Planilha 7 1 2 3	4 5	
Cf 103 103 103 1	03 1 03	
Gf 0.59 0.59 0.59 0	59 0.59	
X 1.6446 2.1251 1.8874 1.67	38 1 9594	
h 0.0014 0.0019 0.0017 0.00	15 0.0017	

ANEXO 4a) - Continuaçã	ão.				
Planilhas para	a calculo de h u	utilizando a equ	lação de SART	ORI	p/Ts-Tfo/Tso-	Tfo
assumindo x	=L (como com	primento linear	do secador)		aquecimento	equaç. 2
X=h.S/Cf.Gf (adimensional)	h=(X.(Cf.Gf))/	(S.x)			
S=6(1-ε)/φ.Dp)		Dp=0,0058 m			
S=6(1-0,887)	/(0,85.0,0058)		ε=0.887			
S=	137,5254					
x=(m)	5					
Cf-(kJ/kaK)	varia para ca	da planilha				
Gf-(ka/m^2s)	varia para ca	da planilha				
X- calculado i	oela equação d	e SARTORI, a	través do paco	te SAS	- 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Aquecimento	5					
Planilha 1	1	2	3	4	5	6
Cf	1 03	1 03	1 03	1 03	1 03	1 03
Gf	n 50	0.50	0.50	0.50	1,00	0.50
Y	2 2000	2 2404	1 5760	1 7015	1 6540	4 6640
^ h	2,2,300	2,2401	0.0014	0,0016	1,0040	0.0040
<u> </u>	0,0020	0,0020	0,0014	0,0016	0,0015	0,0015
Dianilha 2	4	~	- -			n, , , ,
	1 00	Z	3	4	C t co	······
	1,03	1,03	1,03	1,03	1,03	
GT	0,59	0,59	0,59	0,59	0,59	
X	1,9983	2,0970	1,9805	1,8650	1,8004	y
<u>h</u>	0,0018	0,0018	0,0017	0,0016	0,0016	
Planilha 3	1	2	3	4	5	
Cf	1,03	1,03	1,03	1,03	1,03	
Gf	0,59	0,59	0,59	0,59	0,59	
X	1,8111	1,7788	1,5855	1,5561	1,6688	
h	0,0016	0,0016	0,0014	0,0014	0,0015	
Planilha 4	1	2	3	4		
Cf	1,02	1,02	1,02	1,02		
Gf	0,59	0,59	0,59	0,59		
X	1,8271	1,6843	1,6538	1,5512		
h	0,0016	0.0015	0,0015	0,0014		
			······································			
Planilha 5	1	2	3	4	5	
Cf	1.03	1.03	1.03	1.03	1.03	
Gf	0.59	0.59	0.59	0.59	0.59	
X	1 8138	1 7481	1 5469	1 5687	1 7070	
<u>h</u>	0.0016	0.0015	0 0014	0.0014	0.0015	
••	0,0010	0,0010	0,0017	0,0014	0,0010	
Planilha 6	1	· · · · · · · · · · · · · · · · · · ·	2	A	5	a
Cf	1 03	1 03	1 03	1 03	1 03	1 03
<u>Cf</u>	1,00	1,00 0 E0	1,00 0 F0	0.50	1,00	0.50
Y	1 7525	1 5740	1 5070	1 5770	1 5770	1 6202
<u>^</u>	1,7020	1,5740	1,0870	0.0014	1,0770	0.0014
H	0,0015	0,0014	0,0014	0,0014	0,0014	0,0014
		~				
rianina /	1	2	3	4	5	
	1,03	1,03	1,03	1,03	1,03	
Gt	0,59	0,59	0,59	0,59	0,59	
X	1,8154	2,0521	1,8756	1,7439	1,9416	
h	0,0016	0,0018	0,0016	0,0015	0,0017	

÷

-

ŧ

٠,

Ļ

8

ANEXO 4a) - Continuaçã	0.					
Planilhas par	a calculo de hι	itilizando a equ	lação de SART	ORI	p/Ts-Tfo/Tso-	-Tfo	
assumindo x	=L (como comp	primento linear	do secador)		resfriamento	equaç. 2	
X=h.S/Cf.Gf	(adimensional)	h=(X.(Cf.Gf))/	(S.x)	·····			
S=6(1-ε)/φ.Dp			Dp=0,0058 m				
S=6(1-0,841)	/(0,85.0,0058)	·····	ε=0,841				
S=	193,5091						
x=(m)	0,3						
Cf-(kJ/kgK)	varia para ca	da planilha					
Gf-(kg/m^2s)	varia para ca	da planilha					
X- calculado	pela equação d	e SARTORI, a	través do paco	te SAS			
Deefriement							
Resinament	0	<u>^</u>	<u>^</u>		F	~	
Planina I	1 00	4.00	3	4	5	6	
	1,03	1,03	1,03	1,03	1,03	1,03	
GT	0,12	0,12	0,12	0,12	0,12	0,12	
X	0,8013	0,8665	0,5864	0,5284	0,7079	0,8152	
n	0,0018	0,0019	0,0013	0,0012	0,0015	0,0018	
Planilha 2	1	2	3	4	5		
Cf	1 03	1 03	1 በ3	1 03	1 03		
Gf	0.12	0.12	0.12	n 12	0.12		
X	0.8592	0,12	0,12	0,12	0,12		
h	0,0002	0,0002	0,0001	0,0000	0,0012		······································
	0,0010	0,0020	0,0022	0,0021	0,0020		
Planilha 3	1	2	3	4	5		
Cf	1,03	1,03	1,03	1,03	1,03	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
Gf	0,12	0,12	0,12	0,12	0,12		5
Х	1,0471	1,0609	1,0750	1,2328	0,9893		·····
h	0,0023	0,0023	0,0024	0,0027	0,0022		
,		V.10.//					
Planilha 4	1	2	3	4		·······	
Cf	1,02	1,02	1,02	1,02		· · · · · · · · · · · · · · · · · · ·	
Gf	0,12	0,12	0,12	0,12		1	
Х	1,0721	1,1371	1,0556	1,0097	······································		
h	0,0023	0,0025	0,0023	0,0022	······································		
1,4			······	· · · · · ·		£	100000000 44 hadden on one
Planilha 5	1	2	3	4	5		
Cf	1,03	1,03	1,03	1,03	1,03		
Gf	0,12	0,12	0,12	0,12	0,12		
Х	0,5982	0,9252	0,5589	1,0007	0,7970	V [*]	
h	0,0013	0,0020	0,0012	0,0022	0,0017		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	*	······································	~	
		4.00	3	4 00	0	0	
	1,03	1,03	1,03	1,03	1,03	1,03	
ডা V	0,12	0,12	0,12	0,12	0,12	0,12	
<u>^</u>	1,3181	1,2769	1,0647	1,0195	1,0650	0,8777	
n	0,0029	0,0028	0,0023	0,0022	0,0023	0,0019	
Planilha 7	1	2	3	4	5		······································
Cf	1 03	1 03	1 03	1 03	1 03		
Gf	0.12	0.12	0 12	0 12	0.12	4	
X	0,12	0,12	1 0827	1 0755	1 1221		
<u>^</u> h	0,0040	0,0002	1,0027 0,0024	1,0700 ACAA A	0 0025		
F F	0,0019	0,0019	0,0024	0,0024	0,0020		

×

ra∎

٠

k

`.

-

ı

.

Planilhas par	a calculo de h ι	utilizando a equ	lação de SART	FORI	p/Ts-Tfo/Tso	-Tfo
assumindo x	=L (1+(λ)^2)^1	/2 λ=0,5, x=L(1	,8621), <b>x=0,3*1</b>	,8621	resfriamento	equaç. 2
X=h.S/Cf.Gf (	(adimensional)	h=(X.(Cf.Gf))/	/(S.x)			
S=6(1-ε)/φ.Dp	>		Dp=0,0058 m			
S=6(1-0,0,84	1)/(0,85.0,0058	3)	ε=0,841			· · · · · · · · · · · · · · · · · · ·
S=	193,5091	1				4
x=(m)	0,559			· · · · · · · · · · · · · · · · · · ·		1
Cf-(kJ/kgK)	varia para ca	da planilha				
Gf-(kg/m^2s)	varia para ca	da planilha				
X- calculado	pela equação d	le SARTORI, a	través do paco	ote SAS		
		<u>.</u>	••			
Resfriament	0		<u></u>			
Planilha 1	1	2	3	4	5	6
Cf	1.03	1.03	1.03	1.03	1 03	1.03
Gf	0.12	0.12	0.12	0.12	0.12	0.12
X	0.8013	0.8665	0 5864	0.5284	0 7079	0.8152
h	0,000	0,0000	0,0007	0,0201	0,1010	0,010
F1	0,0000	0,0010	0,0001	0,0000	0,0000	0,0010
Planilha 2	1	2	3	A	5	
Cf	1 03	1 03	1 03	1 03	1 03	
Cf	0.12	0.12	0.12	0.12	1,00	,,
V	0,12	0,12	0,12	0,12	0,12	
<u>∧</u>	0,0092	0,9302	0,0001	0,9000	0,9042	
*1	0,0010	0,0011	0,0012	0,0011	0,0011	······································
Planilha 3	1	2	3	A	5	
Cf	1.02	4 1 02	1 03	1 03	1 03	
	1,00	1,00	1,00	1,00	1,00	
V	0,12	1 0600	1.0750	0,12	0,12	
<u>^</u>	1,0471	1,0009	1,0750	1,2320	0,9093	······································
<u>n</u>	0,0012	0,0012	0,0013	0,0014	0,0012	
Dispille 4			2			
Planiina 4	4 00	<u>ک</u>	3	. 4	1	
	1,02	1,02	1,02	1,02		
GT	0,12	0,12	0,12	0,12		
X	1,0721	1,13/1	1,0556	1,0097		
h	0,0013	0,0013	0,0012	0,0012		
Planiha 5	1	2	3	4	5	
Ct	1,03	1,03	1,03	1,03	1,03	
Gt	0,12	0,12	0,12	0,12	0,12	
X	0,5982	0,9252	0,5589	1,0007	0,7970	
h	0,0007	0,0011	0,0007	0,0012	0,0009	
Planiha 6	1	2	3	4	5	6
Cf	1,03	1,03	1,03	1,03	1,03	1,03
Gf	0,12	0,12	0,12	0,12	0,12	0,12
X	1,3181	1,2769	1,0647	1,0195	1,0650	0,8777
h	0,0015	0,0015	0,0013	0,0012	0,0013	0,0010
·····						
Planilha 7	1	2	3	4	5	
Cf	1,03	1,03	1,03	1,03	1,03	
Gf	0,12	0,12	0,12	0,12	0,12	
X	0,8640	0,8502	1,0827	1,0755	1,1231	
h	0.0010	0.0010	0,0013	0.0013	0.0013	

٠

*

.

٠

L

۰,

L W

1

Planilhas pai	ra calculo de h ut	ilizando a equ	lação de SART	ORI	p/Ts-Tfo/Tso	-Tfo
assumindo 🤉	x=L (1+(λ)^2)^1/2	$\lambda = 0, 5, x = L(1)$	,8621), <b>x=5*1,8</b>	621	aquecimento	equaç. 2
X=h.S/Cf.Gf	(adimensional)	n=(X.(Cf.Gf))/	/(S.x)		•	
S=6(1-ε)/φ.D	p		Dp=0,0058 m			
S=6(1-0,887)	)/(0,85.0,0058)		ε=0,887			1,1,1,1,0,0,0, and a second second second second second second second second second second second second second
S=	137,5254					·······
x≕(m)	9,3105					
Cf-(kJ/kgK)	varia para cad	a planilha				
Gf-(kg/m^2s)	varia para cad	a planilha			· · ·	
X- calculado	pela equação de	SARTORI, a	través do paco	te SAS		
979.9°.1.1.1999941	<u> </u>					
Aqueciment	to					
Planilha 1	1	2	3	4	5	6
Cf	1.03	1 03	1 03	1 03	1 03	1 03
Gf	0.59	0.59	0.59	0.59	0.59	0.59
X	2 2900	2 2481	1 5769	1 7015	1 6548	1 6640
h	0.0011	0 0011	0.0007	0,0008	0,0008	0,0040
	0,0011	0,0011	0,0007	0,0000	0,0000	0,0000
Planilha 2	1	· · · · · · · · · · · · · · · · · · ·	3			
Cf	1 02	1 02	3 1 /1 2	4 109	1 02	
Gf	1,00	1,00	1,03	1,03	1,03	·····
v	4 0002	0,08	0,09	1 0050	1 2004	
^ L	0,0000	2,0970	1,9000		1,6004	
II	0,0009	0,0010	0,0009	0,0009	0,0009	
Dianilha 2		<b>^</b>	<u> </u>			
Planina 3	1 00	2	3	4	5	
	1,03	1,03	1,03	1,03	1,03	
GI	0,59	0,59	0,59	0,59	0,59	
<u>×</u>	1,8111	1,7788	1,5855	1,5561	1,6688	
n	0,0009	0,0009	0,0008	0,0007	0,0008	
Planiha 4	1	2	3	4		
Cf	1,02	1,02	1,02	1,02		
Gf	0,59	0,59	0,59	0,59		
X	1,8271	1,6843	1,6538	1,5512		
h	0,0009	0,0008	0,0008	0,0007		······································
Planilha 5	1	2	3	4	5	
Cf	1,03	1,03	1,03	1,03	1,03	
Gf	0,59	0,59	0,59	0,59	0,59	
X	1,8138	1,7481	1,5469	1,5687	1,7070	
h	0,0009	0,0008	0,0007	0,0007	0,0008	
Planilha 6	1	2	3	4	5	6
Cf	1,03	1,03	1,03	1,03	1,03	1,03
Gf	0,59	0,59	0,59	0,59	0,59	0,59
X	1,7525	1,5740	1,5970	1,5772	1,5770	1,6383
h	0,0008	0,0007	0,0008	0,0007	0,0007	0,0008
Planilha 7	1	2	3	4	5	
Cf	1,03	1,03	1,03	1,03	1,03	
Gf	0,59	0,59	0,59	0.59	0,59	
X	1.8154	2,0521	1,8756	1,7439	1.9416	
h	0,0009	0.0010	0.0009	0.0008	0,0009	

*

*

۲

₹

÷

٠,

2

¥

*

Planilhas par	a calculo de h	utilizando a eq	uação de SAR	p/Tf-Tfo/Tso-Tfo		
assumindo >	κ=L (1+(λ)^2)^1	/2 λ=0,5, x=L(	1,8621), <b>x=5*1,8</b>	3621	aquecimento	equaç.1
X=h.S/Cf.Gf	(adimensional)	h=(X.(Cf.Gf))	/(S.x)			
S=6(1-ε)/φ.D	p		Dp=0,0058 m			
S=6(1-0,887)	)/(0,85.0,0058)		ε=0,887			·······
S=	137,5254	· · · · · · · · · · · · · · · · · · ·				
x=(cm)	9,3105	······				
Cf-(kJ/kgK)	varia para ca	da planilha				<i>****</i> ********************************
Gf-(kg/m^2s)	varia para ca	da planilha				
X- calculado	pela equação o	le SARTORI, a	através do paco	ote SAS		
Agussimont						
Aqueciment Planiba 1	1	<b>`</b>	3		E	6
	1 0285	1 0285	1 0285	1 0285	1 0285	1 0285
	0 59007	0 59007	0.59007	0 59007	0 59007	0 59007
V V	1 2009	0,00997	0,00997	0,00997	0,50997	1 50410
^ b	1,77001	1,90923	1,41019	0.0001	0.00075	1,00119
<u>A</u>	0,00084	0,00093	0,00067	0,00078	0,00075	0,00075
Planilha 2	1	2	3	4	5	
Cf	1.0276	1.0276	1.0276	1.0276	1.0276	······································
Gf	0,58997	0.58997	0.58997	0.58997	0.58997	
X	1,74809	1.9021	1,7719	1.60413	1,66643	
h	0.00083	0.00090	0.00084	0.00076	0.00079	
		······································				
Planilha 3	1	2	3	4	5	
Cf	1,0291	1,0291	1,0291	1,0291	1,0291	
Gf	0,5947	0,5947	0,5947	0,5947	0,5947	······································
Х	1,20127	1,26314	1,17275	1,18547	1,22732	
h	0,00057	0,00060	0,00056	0,00057	0,00059	
Planilha 4	1	2	3	4		
Cf	1,0249	1,0249	1,0249	1,0249		
Gf	0,58997	0,58997	0,58997	0,58997		
X	1,25126	1,26535	1,34666	1,30169		
h	0,00059	0,00060	0,00064	0,00061		
Planilha 5	1	2	3	<u> </u>	5	
Cf	1 0277	1 0277	1 0277	1 0277	1 0277	
Gf	0 58758	0 58758	0.58758	0 58758	0.58758	
X	1 40239	1 23015	1 21891	1 0631	1 28259	······································
h	0,00066	0.00058	0.00057	0 00050	0 00060	
	0,00000	0,00000				
Planilha 6	1	2	3	4	5	6
Cf	1,0279	1,0279	1,0279	1,0279	1,0279	1,0279
Gf	0,58837	0,58837	0,58837	0,58837	0,58837	0,58837
Х	1,32598	1,2991	1,34232	1,22877	1,33614	1,38686
h	0,00063	0,00061	0,00063	0,00058	0,00063	0,00066
<b></b>					ļ	
Planilha 7	1	2	3	4	5	
Ut	1,0294	1,0294	1,0294	1,0294	1,0294	¥11,42,51,1
Gf	0,58599	0,58599	0,58599	0,58599	0,58599	
X	1,64463	2,12513	1,88736	1,67378	1,9594	
h	0,00077	0,00100	0,00089	0,00079	0,00092	

æ

.

-

۰,

÷

٢

PLANILHA 1		<u> </u>	1						<u> </u>
Condições pr	é-fixadas								
temperatura na	a entrada da te	orre	353,0	(K)	velocidade do	ar na saída da	a torre	0,54	(m/s)
temperatura na	a saida da torr	e	333.0	(K)	velocidade do ar de resfriamento		0.27	(m/s)	
velocidade do	ar na entrada		8.3	(m/s)	temperatura d	o ar de restriar	mento	308.0	(K)
p/área de entra	ada do secado	or =0,00785		velocidade da	saída do ar de	e resfria, p/área	a=0.0139,	v=0.27(m/s)	<u></u>
						,		· · · · · · · · · · · · · · · · · · ·	
Variáveis			Número de p	assagens					
temperatura da	a mio antes da	entrada(K)	293.0	293.0	307.4	305.0	308.3	308.2	3
tempo de esco	amento(s)			1080	960	480	600	540	
temperatura da	amo saída d	a torre(K)	1	318.0	326.0	328.8	320 7	331 5	3
tempo de restr	iomonto(e)			790	3800	020,0	020,1 enn	900	
tempo de resil		ofriam (K)		207 4	2000	2000	200	200 5	
temperatura ua	a m.p. apos re	sinam.(n)	005.0	307,4	306,0	308,3	308,2	308,5	C
temperatura ar	mbiente(K)		295,8	290,2	290,7	296,9	297,2	297,1	4
peso da m.p.(k	(g)		3,012	2,897	2,718	2,717	2,611	2,594	2
umidade relativ	va(%)		70	<u>[]</u>	/0	/2	12	(2	
umidade da m	.p.(% BS)		0,2048	0,1723	0,1455	0,1429	0,1325	0,1161	0,
Tamb(M)=	296,7	23,5							
UR(M)=	71,29		R1=(Y-Yeq)/(Ye	o-Yeq)	1,000		R2=(Y-Yeq)/(Ye	o-Yeq)	0,
RH=	0,055		Yo=		0,2048		Yo=		0,:
Tent(ar)=	353,0	79,9	Y=		0,2048		Y=		0,
o1=	0,4694		Yeq=		0,0250		Yeq≕		0,
)2=	-0,2952					<u> </u>			
03=	0.1705		R3=(Y-Yea)/(Yea)	o-Yeq)	0.6703		R4=(Y-Yea)/(Y	p-Yeq)	0.
-0=	0 0022		Yo=		0 2048		Yo=		0,
11=	-0 0060		Y=		0 1455	1	Y==		
1.7=	-0,0008		Ver		0,1-+30		Yea=		ν, Δ
1~~	-0,2242		104-		0,0230		104-		<u> </u>
10-	0,4054	ļ		<u>}</u>	A FA44	4			
4=	-0,2479		R5=(Y-Yeq)/(Ye	p-Yeq)	0,5980		R6=(Y-Yeq)/(Y	o-Yeq)	υ,
12≓	32,08		Yo=		0,2048		Yo=		0,
(eq=	0,0250		Y=		0,1325		Y=		0,
			Yeq=		0,0250		Yeq=		0,
	,,,,,	[			R7=(Y-Yeq)/(Y	o-Yeq)	0,4995		
eferencia da c	carta psicromé	trica			Yo=		0,2048		
nanual técnico	o do ITAL nº 1	2			Y=		0,1148		
					Yea≕		0,0250		
						1			
Onndiañas na	6 Bundan								
condições pr	e-lixadas			(10)	المعام والمعام والم				( ( )
emperatura na	a entrada da ti	orre	333,0	(K)	velocidade do	ar na salda da	atorre	2,9	(m/s)
emperatura na	a saida da tori	e	318,0	(K)	velocidade do	ar de restriam	ento	3	(m/s)
velocidade do	ar na entrada		8,3	(m/s)	temperatura d	lo ar de resfriai	mento	307,0	(K)
p/área de entra	ada do secado	or =0,00785		velocidade da	saída do ar de	e resfria. p/área	a=0,0139,	v=0,41(m/s)	
				<u> </u>					
/ariáveis			Número de p	assagens					
emperatura da	a m.p.antes da	a entrada(K)	296.0	296,0	304,0	305,5	299	304,7	
empo de esco	amento(s)			600	540	420	420	360	
emperatura da	a m.p. saida d	a torre(K)	-	313 2	314 5	314 2	312.9	315.6	
empo de resfr	iamento(s)	······································		600	600	600	600	600	
emnerature de	amn ánns ro	sfriam (K)	i	000 8 MAR	305 7	306 1	304 7	305.0	L
emperature er	nhionto/14)	sinsin (A)	205.2	204,2	200,7	200,1		200,0	
emperatura ar	noncente(N)		280,3	280,0	200,4	200,2	4 000	1 004	
000 do "	(-)		2,142	∠,∪89	∠,039	1,988	1,938	1,094	
eso da m.p.(k	(g)						, 73	/5	
peso da m.p.(k umidade relativ	(g) va(%)		70	70	70	80		A	
eso da m.p.(k imidade relativ imidade da m	(g) va(%) .p.(% BS)		70 0,2048	70 0,1737	70 0,1669	0,1601	0,1494	0,1442	
eso da m.p.(k midade relativ midade da m amb(M)=	(g) va(%) .p.(% BS) 295,2	22,1	70 0,2048	70 0,1737	70 0,1669	0,1601	0,1494	0,1442	
eso da m.p.(k midade relativ midade da m. 'amb(M)= JR(M)=	(g) va(%) .p.(% BS) 295,2 73,00	22,1	70 0,2048 R1=(Y-Yeq) /(Y	70 0,1737 ′o-Yeq)	70 0,1669 <b>1,0000</b>	0,1601	0,1494 R2=(Y-Yeq)/(Y	0,1442 'o-Yeq)	0,
eso da m.p.(k midade relativ midade da m. 'amb(M)= JR(M)= RH=	(g) va(%) .p.(% BS) 295,2 73,00 0,10	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo=	70 0,1737 ′o-Yeq)	70 0,1669 <b>1,0000</b> 0,2048	0,1601	0,1494 R2=(Y-Yeq) /(Y Yo=	0,1442 'o-Yeq)	<b>0</b> , 0,
eso da m.p.(k midade relatin midade da m. amb(M)= IR(M)= IH= ent(ar)=	kg) va(%) 295,2 73,00 0,10 333,0	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y=	70 0,1737 ′o-Yeq)	70 0,1669 1,0000 0,2048 0,2048	0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y=	0,1442 'o-Yeq)	<b>0</b> , 0, 0,
eso da m.p.(k midade relativ midade da m. amb(M)= JR(M)= RH= ent(ar)= 1=	<pre>(g) va(%) .p.(% BS)</pre>	22,1 59,9	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq=	70 0,1737 o-Yeq)	70 0,1669 1,0000 0,2048 0,2048 0,0438	0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq=	0,1442 'o-Yeq)	<b>0</b> , 0, 0,
eso da m.p.(k midade relativ midade da m. amb(M)= JR(M)= KH= ent(ar)= 1= 2=	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952</pre>	22,1 59,9	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq=	70 0,1737 o-Yeq)	70 0,1669 1,0000 0,2048 0,2048 0,2048	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq=	0,1442 'o-Yeq)	<b>0</b> , 0, 0,
eso da m.p.(k midade relativ midade da m. amb(M)= JR(M)= KH= ent(ar)= 1= 2= 3=	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705</pre>	22,1 59,9	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= B3=(Y-Yeq) //Y	70 0,1737 o-Yeq) o-Yeq)	70 0,1669 1,0000 0,2048 0,2048 0,0438	0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y	0,1442 o-Yeq) o-Yeq)	0, 0, 0, 0,
eso da m.p. (k midade relatii midade da m 'amb(M)= IR(M)= IH= ent(ar)= 1= 2= 3= 0=	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022</pre>	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= R3=(Y-Yeq) /(Y	70 0,1737 'o-Yeq) 'o-Yeq)	70 0,1669 1,0000 0,2048 0,2048 0,2048 0,2048 0,0438	0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= R4=(Y-Yeq) /(Y Yo=	0,1442 'e-Yeq) 'o-Yeq)	0, 0, 0, 0, 0,
eso da m.p. (k midade relatii midade da m 'amb(M)= JR(M)= XH= 'ent(ar)= 1= 2= 3= 0= 0=	(g) va(%) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= R3=(Y-Yeq) /(Y Yo= Y=	70 0,1737 'o-Yeq) 'o-Yeq)	70 0,1669 1,0000 0,2048 0,2048 0,2048 0,2048 0,7647 0,2048	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y Yo= V=	0,1442 'o-Yeq) 'o-Yeq)	0, 0, 0, 0, 0,
eso da m.p. (k midade relatin midade da m amb(M)= JR(M)= RH= ent(ar)= 1= 2= 2= 3= 0= 1=	g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022 -0,0069	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= R3=(Y-Yeq) /(Y Yo= Y=	70 0,1737 'o-Yeq) 'o-Yeq)	70 0,1669 0,2048 0,2048 0,0438 0,7647 0,2048 0,7647	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y Yo= Y= Y==	0,1442 o-Yeq) o-Yeq)	0, 0, 0, 0, 0, 0, 0,
eeso da m.p. (k imidade relativ imidade da m 'amb(M)= JR(M)= KH= ent(ar)= it= it= it= it= it= it= it= it= it= it	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022 -0,0069 -0,2242</pre>	22,1 59,9	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= R3=(Y-Yeq) /(Y Yo= Y= Yeq=	70 0,1737 o-Yeq) o-Yeq)	70 0,1669 0,2048 0,2048 0,0438 0,0438 0,7647 0,2048 0,1669 0,0438	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y Yo= Y= Yeq=	0,1442 o-Yeq) o-Yeq)	0, 0, 0, 0, 0, 0, 0,
peso da m.p. (k imidade relativ imidade da m. Tamb(M)= JR(M)= XH= Tent(ar)= 01= 02= 03= 00= 11= 12= 13=	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022 -0,0069 -0,2242 0,4654</pre>	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= R3=(Y-Yeq) /(Y Yo= Y= Yeq=	70 0,1737 o-Yeq) o-Yeq)	70 0,1669 0,2048 0,2048 0,2048 0,0438 0,7647 0,2048 0,1669 0,0438	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y Yo= Y= Yeq=	0,1442 o-Yeq) o-Yeq)	0, 0, 0, 0, 0, 0, 0, 0,
peso da m.p. (k imidade relativ imidade da m. Tamb(M)= UR(M)= RH= Tent(ar)= 01= 02= 02= 03= 11= 12= 13= 14=	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022 -0,0069 -0,2242 0,4654 -0,2479</pre>	22,1 59,9	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= Yo= Y= Ye= Yeq= R3=(Y-Yeq) /(Y R5=(Y-Yeq) /(Y	70 0,1737 o-Yeq) 'o-Yeq) 'o-Yeq)	70 0,1669 0,2048 0,2048 0,2048 0,0438 0,7647 0,2048 0,1669 0,0438 0,06560	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y Yo= Y= Yeq= R6=(Y-Yeq) /(Y	0,1442 o-Yeq) o-Yeq) o-Yeq)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
peso da m.p. (k umidade relativ umidade da m. Famb(M)= JR(M)= RH= fent(ar)= p1= p2= p3= p3= p3= p3= p3= p3= p3= p3= p3= p3	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022 -0,0069 -0,2242 0,4654 -0,2479 32,08</pre>	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= X3=(Y-Yeq) /(Y Yo= Yeq= R3=(Y-Yeq) /(Y Yo=	70 0,1737 'o-Yeq) 'o-Yeq) 'o-Yeq)	70 0,1669 0,2048 0,2048 0,2048 0,2048 0,0438 0,7647 0,2048 0,1669 0,0438 0,1669 0,0438	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y Yeq= R6=(Y-Yeq) /(Y Yo=	0,1442 'e-Yeq) 'o-Yeq) 'o-Yeq)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
peso da m.p. (k umidade relativ umidade da m ramb(M)= JR(M)= TH= fent(ar)= 11= 02= 03= 10= 11= 12= 13= 13= 14= 15= req=	<pre>(g) va(%) .p.(% BS) 295,2 73,00 0,10 333,0 0,4694 -0,2952 0,1705 0,0022 -0,0069 -0,2242 0,4654 -0,2479 32,08 0,0438</pre>	22,1	70 0,2048 R1=(Y-Yeq) /(Y Yo= Y= Yeq= Yeq= Y= Yeq= R5=(Y-Yeq) /(Y Yo= Y=	70 0,1737 'o-Yeq) 'o-Yeq)	70 0,1669 0,2048 0,2048 0,2048 0,0438 0,0438 0,7647 0,2048 0,1669 0,0438 0,6560 0,2048 0,1494	80 0,1601	0,1494 R2=(Y-Yeq) /(Y Yo= Y= Yeq= R4=(Y-Yeq) /(Y Y= Yeq= R6=(Y-Yeq) /(Y Yo= Y=	0,1442 'o-Yeq) 'o-Yeq) 'o-Yeq)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

ANEXO 5) - Base de cálculo para obtenção das adimensionais de umidade, segundo ROSSI e ROA (1980).

....

4

.

•.

1

1

.

....

*

.

r

PLANILHA 3									
Condições pi	ré-fixadas			· · · · · · · · · · · · · · · · · · ·					
temperatura na entrada da torre		365,9	(K)	velocidade do	velocidade do ar na saída da torre		0,54	(m/s)	
temperatura na saida da torre			343,0	(K)	velocidade do ar de resfriamento			0,27	(m/s)
velocidade do ar na entrada			8,3	(m/s)	temperatura do ar de resfriamento			307,0	(K)
p/área de entrada do secador =0,00785			velocidade da	saída do ar de	e resfria. p/área	a=0,0139,	v=0,27(m/s)		
Variáveis			Número de p	assagens					
temperatura d	a m.p.antes da	a entrada(K)	296,0	299,0	302,0	305,0	305,0	307,0	
tempo de escoamento(s)				300	300	240	240	240	
temperatura da m.p. saída da torre(K)				319,0	324,0	328,2	330,0	327,3	
tempo de resfriamento(s)			900	900	900	900	900		
temperatura da m.p. ápos resfriam.(K)			303,9	306,4	308,0	311,8	306,3		
temperatura ambiente(K)		292,8	293	294,0	294,0	294,0	295,0		
peso da m.p.(l	kg)		1885,8	1841,7	1742,5	1720,4	1676,3	1639,7	
umidade relati	va(%)		75	75	72	70	70	70	
umidade da m	.p.(% BS)		0,1848	0,1325	0,1312	0,1136	0,1111	0,1086	
Tamb(M)=	293,8	20,7							
UR(M)=	72,00		R1=(Y-Yeq)/(	Yo-Yeq)	1,0000		R2=(Y-Yeq)/(	Yo-Yeq)	0,6728
RH=	0,055		Yo=		0,1848		Yo=		0,1848
l ent(ar)=	365,9	92,8	Y=		0,1848		Υ= \		0,1325
p1=	0,4694	1	Yeq=		0,0250		Yeq=		0,0250
p2=	-0,2952						<b>D</b> I 000		
p3=	0,1705	1	K3=(Y-Yeq)/(	ro-Yeq)	0,6647		K4=(Y-Yeq)/(	Yo-Yeq)	0,5545
	0,0022		10=		0,1848		10=	}	0,1848
q1=  -2-	-0,0069	1	Υ= 		0,1312		T =	1	0,1136
q2=	-0,2242		Yeq=		0,0250		Yeq=		0,0250
q3=	0,4654		DE-WY V		0 5000		DC-(V V)(0	 	0 5222
q4= 	-0,2479		R5=(1-1eq)/(	ro-req)	0,5389		K6=(1-1eq)/(	to-ted)	0,5233
45	32,00		10-		0,1040		10-		0,1040
req-	0,0250		Y=		0,1111		T= Vaa=		0,1000
····			req-		0,0250	~~~~	rey-		0,0250
	······		2		1	· 		******	
Condicãos pr	á fivadao								
temperatura pr	e entrado do tr	j nrra	366.0	(K)	velocidade do	ar na saída da		29	(m/s)
temperatura na chida da terro		3/3 0	(K) (K)	velocidade do	ar de resfriam	ento	2,3	(m/s)	
velocidade do	uelesidado de er pe entrada		83	(m/s)	temperatura d	o ar de resfriei	mento	308.5	(K)
n/área de entra	ada do secado	r = 0.00785		velocidade da	saída do ar de	restria n/área	a=0 0139	v=0.27(m/s)	<u></u>
pidiod do ond		0,00700						,	······································
Variáveis	~~~~~~~~~~~		Número de p	assadens					
temperatura d	a m o antes da	i entrada(K)	298.0	303.0	303.0	308.0	309.0	,	
tempo de esco	amento(s)			420	420	420	360		······
temperatura di	a m.p. saída d	a torre(K)		321.1	328.2	333.0	335.0		
tempo de resfr	riamento(s)			1200	1200	1200	1200		
temperatura di	a m.p. ápos re	sfriam.(K)		307.4	313.0	313.7	313.7	-	
temperatura a	mbiente(K)		295.3	296.3	299.0	299.6	301	1	
peso da m.p.(k	(g)	<u>.</u>	2.599	2,551	2,494	2,437	2,166		
umidade relati	va(%)		66	66	52	50	50		
umidade da m	.p.(% BS)		0,2048	0,1710	0,1587	0,1481	0,1377		
Tamb(M)=	298,2	25,1	· · · · · · · · · · · · · · · · · · ·	······································		· · · · · · · · · · · · · · · · · · ·			
UR(M)=	56,80		R1=(Y-Yeq) /(	Yo-Yeq)	1,0000		R2=(Y-Yeq) /(	(Yo-Yeq)	0,8251
RH=	0,025		Yo=		0,2048		Yo=		0,2048
Tent(ar)=	366,0	92,9	Y=		0,2048	· · · · · · · · · · · · · · · · · · ·	Y=		0,1710
p1=	0,4694		Yeq=		0,0116		Yeq=		0,0116
p2=	-0,2952							L	
p3=	0,1705		R3=(Y-Yeq) /(	Yo-Yeq)	0,7614		R4=(Y-Yeq) /(	(Yo-Yeq)	0,7066
q0=	0,0022		Yo=		0,2048		Yo=		0,2048
q1=	-0,0069		Y=		0,1587		Y=	ļ	0,1481
q2=	-0,2242		Yeq=		0,0116		Yeq=	L	0,0116
q3=	0,4654								
q4=	-0,2479		R5=(Y-Yeq) /(	Yo-Yeq)	0,6527				
q5=	32,08		Yo=		0,2048	L			
Yeq=	0,0116		Y=		0,1377				
			Yeq=		0,0116	<u> </u>	<u> </u>	[	

.

٠.

PLANILHA 5	l					{			
Condições p	ré-fixadas								
temperatura r	ia entrada da t	orre	335,8	(K)	velocidade do	ar na saída da	a torre	0,54	(m/s)
temperatura na saída da torre			325,0	(K)	velocidade do	ar de resfriam	ento	0,27	(m/s)
velocidade do ar na entrada			8,3	(m/s)	temperatura d	lo ar de resfria	mento	309,0	(K)
p/área de ent	ada do secado	or =0,00785		velocidade da	saída do ar de	e resfria. p/área	a=0,0139,	v=0,41(m/s)	
ļ				ļ	L				
Variáveis	<u> </u>		Número de p	assagens	<u> </u>				
temperatura c	a m.p.antes da	a entrada(K)	294,0	294,0	303,0	306,0	303,6	307,0	
tempo de esc	oamento(s)			720	420	360	300	360	
temperatura c	a m.p. saida d	a torre(K)		318,2	315,8	319,7	315,6	318,0	
tempo de rest	riamento(s)	<u>}</u>		480	600	900	900	600	
temperatura da m.p. ápos resfriam.(K)			306,4	308,4	303,6	307,0	308,0		
temperatura ambiente(K)		296,8	297,4	297,6	299,0	299,8	299,4		
peso da m.p.(	kg)		2,452	2,403	2,318	2,267	2,176	2,166	ļ
umidade relat	iva(%)		72	65	64	62	62	62	ļ
umidade da n	1.p.(% BS)		0,2048	0,1628	0,1614	0,1494	0,1377	0,1364	
Tamb(M)=	298,3	25,2						<u> </u>	
UR(M)=	64,50		R1=(Y-Yeq)/(	Yo-Yeq)	1,0000	ļ	R2=(Y-Yeq)/(	ro-Yeq)	0,7405
RH=	0,098		Yo=	[	0,2048	ļ	Yo=		0,2048
Tent(ar)=	335,8	62,7	Y=	ļ	0,2048	~	Y=		0,1628
p1=	0,4694		Yeq=	7	0,0430	<u></u>	Yeq=		0,0430
p2=	-0,2952			<u>.</u>					
p3=	0,1705		R3=(Y-Yeq)/(	Yo-Yeq)	0,7318		R4=(Y-Yeq)/(	Yo-Yeq)	0,6577
q0=	0,0022		Yo=		0,2048	<u></u>	Y0=	ļ	0,2048
q1=	-0,0069	l	Y==	<u> </u>	0,1614		Y=		0,1494
q2=	-0,2242		Yeq=		0,04295844		Yeq=		0,0430
ld3≕	0,4654							<u> </u>	
q4=	-0,2479	<u>.</u>	R5=(Y-Yeq)/(	Yo-Yeq)	0,5854		R6=(Y-Yeq)/(	ro-req)	0,5//4
q5=	32,08	· · · · · · · · · · · · · · · · · · ·	Xo=		0,2048		Yo=		0,2048
Yeq=	0,0430		Y=		0,1377		Υ= 		0,1364
			Yeq=		0,0430		Yeq=		0,0430
PLANILHA 6									
Conaições p	re-fixadas			40		) 			(
temperatura na entrada da torre		354,5	(K)	velocidade do	ar na saida da		2,9	(m/s)	
temperatura n	a saloa da tori	e	333,0	( <b>K</b> )	velocidade do	ar de resinam	ento	209.0	(11/5)
velocidade do	ar na entrada		6,3	(m/s)	temperatura o	lo ar de resina		300,0	(N)
p/area de enu	aua uo secalu	-v,00765		velocidade da	Salua uo al ut	e resina, prarec	a-0,0135,	v=0,27 (m/s)	
Variánoje			Númoro do n	20020000					
Vallavelo			Numero de p	assagens			·····	1	
temperatura d	a m n antes d:	entrada(K)	296 0	296.0	306.9	309.0	301 5	307.6	310 0
temperatura d	a m.p. saida d	a torre(K)		319.1	324.8	325.6	321.9	326.0	325 8
tempo de rest	riamento(s)			1200	9,0	600	600	600	480
temperatura d	a mini ános re	sfriam (K)		306.9	309.3	310.9	307.6	310.2	309.2
temperatura a	mhiente(K)	Smannary	296 7	297.0	298.0	299.0	297.4	297.9	298.1
neso da min (	kσ)		1 336	1.326	1.307	1.301	1.275	1.264	1,248
umidade relat	va(%)		70	65	60	58	70	72	72
umidade da m	.p.(% BS)		0.2048	0.1792	0.1751	0.1669	0.1534	0.1455	0,1377
Tamb(M)=	297 7	24.6							
UR(M)=	66.71		R1=(Y-Yea)/(	Yo-Yeg)	1,0000		R2=(Y-Yeq)/(	Yo-Yeq)	0,8610
RH=	0.045		Yo=	•/	0,2048	······································	Yo=		0,2048
Tent(ar)=	354.5	81,4	Y=		0,2048		Y=		0,1792
p1=	0,4694		Yea=	a	0,0206		Yeq=		0,0206
p2=	-0.2952								1
p3=	0.1705		R3=(Y-Yeg)/()	Yo-Yeq)	0,8388		R4=(Y-Yeq)/(	Yo-Yeq)	0,7943
r a0=	0.0022		Yo=		0,2048		Yo=	[	0,2048
q1≈	-0,0069		Y=		0,1751		Y=		0,1669
q2=	-0,2242		Yeq=		0,0206		Yeq=		0,0206
q3=	0,4654		······································				-		
q4=	-0.2479		R5=(Y-Yeq)/(	Yo-Yeg)	0,7210		R6=(Y-Yeq)/(	Yo-Yeq)	0,6781
q5=	32.08		Yo=		0,2048		Yo=		0,2048
Yeq=	0,0206		Y=	······································	0,1534		Y=		0,1455
······································	·	a	Yeq=		0,0206		Yeq=		0,0206
		······································			R7=(Y-Yeq)/(	Yo-Yeq)	0,6358		
·					Yo=		0,2048		
					Y=	J	0,1377		
					Yeq=		0,0206		
	A		and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec						

.....

•

		· · · · · · · · · · · · · · · · · · ·							
PLANILHA 7	•								
Condições p	pré-fixadas								
temperatura na entrada da torre			329,0	(K)	velocidade do ar na saída da torre			0,54	(m/s)
temperatura na saída da torre			313,0	(K)	velocidade do ar de resfriamento 0			0,27	(m/s)
velocidade do	o ar na entrada		8,3	(m/s)	temperatura do ar de resfriamento			308,0	(°K)
p/área de ent	trada do secado	or =0,00785		velocidade da	a saída do ar de resfria. p/área=0,0139,		v=0,41(m/s)		
				[					
Variáveis			Número de p	assagens					
temperatura o	da m.p.antes da	a entrada(K)	292,0	292,0	302,0	306,0	299,5	306,9	
tempo de esc	coamento(s)			480	600	360	360	360	
temperatura o	da m.p. saida d	a torre(K)		309,6	314,2	313,2	311,7	313,3	
tempo de res	friamento(s)			780	600	600	600	600	
temperatura o	da m.p. ápos re	sfriam.(K)		302,0	306,2	308,4	306,9	307,9	
temperatura a	temperatura ambiente(K)		297,0	297,0	299,0	300,0	299,0	298,0	
peso da m.p.(kg)		2,084	2,054	1,996	1,956	1,924	1,857		
umidade rela	tiva(%)	}	73	70	67	64	71	71	· · · · · · · · · · · · · · · · · · ·
umidade da r	n.p.(% BS)		0,1947	0,1628	0,1561	0,1534	0,1416	0,1364	
Tamb(M)=	298,3	25,2							
UR(M)=	69,33		R1=(Y-Yeq)/(	Yo-Yeq)	1,0000		R2=(Y-Yeq)/(	Yo-Yeq)	0,7718
RH=	0,13		Yo=		0,1947		Yo=		0,1947
Tent(ar)=	329,0	55,9	Y=		0,1947		Y=		0,1628
p1=	0,4694		Yeq=		0,0549		Yeq=		0,0549
p2=	-0,2952								
p3=	0,1705		R3=(Y-Yeq)/(	Yo-Yeq)	0,7239		R4=(Y-Yeq)/(	Yo-Yeq)	0,7046
q0=	0,0022		Yo=		0,1947		Yo=		0,1947
q1=	-0,0069		Y≃		0,1561		Y=		0,1534
q2=	-0,2242		Yeq=		0,0549		Yeq=		0,0549
q3=	0,4654			1	]				
q4=	-0,2479		R5=(Y-Yeq)/(	Yo-Yeq)	0,6202		R6=(Y-Yeq)/(	Yo-Yeq)	0,5830
q5=	32,08		Yo=	······································	0,1947		Yo=		0,1947
Yeq=	0,0549		Y=	1, · · · ·	0,1416		Y=	· · · · · · · · · · · · · · · · · · ·	0,1364
			Yeq=	1	0,0549		Yeq=		0,0549

### ANEXO 6) - TABELA DOS VALORES DETERMINADOS PELO PACOTE ESTATÍSTICO SAS

				· · · · · · · · · · · · · · · · · · ·			
	3 termos						
∆k	4,63E-07	8,48E-07	1,23E-06	8,04E-07	9,59E-07	7,03E-07	9,22E-07
k	2,19E-06	2,47E-06	5,46E-03	1,62E-06	3,70E-06	1,58E-06	3,22E-06
∆k/k	0,2115	0,3437	0,0002	0,4973	0,2591	0,4456	0,2863
r	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03
D*r^2	1,8801E-11	2,1179E-11	4,6848E-08	1,3882E-11	3,1773E-11	1,3538E-11	2,7643E-11
	5 termos						
Δk	3,11E-07	4,88E-07	8,91E-07	4,45E-07	6,14E-07	4,18E-07	5,64E-07
k	2,23E-06	2,71E-06	5,62E-06	1,86E-06	3,89E-06	1,84E-06	3,42E-06
∆k/k	0,1396	0,1798	0,1586	0,2392	0,1578	0,2272	0,1649
r	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03
D*r^2	1,9119E-11	2,3299E-11	4,8247E-11	1,5968E-11	3,3395E-11	1,5796E-11	2,936E-11
	10 termos						
Ak	2 24E_07	2 73E-07	6 58E-07	2 29F-07	3 85E-07	2 94E-07	3415-07
<u>ш</u> т Г	2,240-07	2,75E-06	5,55E-06	1.895.06	3 935-01	1.86E_06	3 45 - 06
N A 1/4	2,020-00	2,700-00	0.1165	0 1212	0,000-00	0 1581	0,400-00
/3N/N	2 025 02	2 02 02	2 03 - 03	2 02 02	2 035 03	2 03 - 03	2 03E 03
ne_	2,93E-03		2,93E-03	2,935-03	2,950-05	1 EOGOE 11	2,930-03
0.12	1,99176-11	2,3000E-11	4,0000E-11	1,0225E-11	3,3739E-11	1,5900E-11	2,90100-11
······	14 termos						
Δk	2,06E-07	2,17E-07	6,05E-07	1,69E-07	3,26E-07	2,74E-07	2,83E-07
k	2,23E-06	2,75E-06	5,65E-06	1,89E-06	3,93E-06	1,86E-06	3,46E-06
∆k/k	0,0924	0,0789	0,1071	0,0894	0,0830	0,1473	0,0818
r	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03
D*r^2	1,9144E-11	2,3608E-11	4,8505E-11	1,6225E-11	3,3739E-11	1,5968E-11	2,9704E-11
	20 tormoo			······································	······································		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		4 705 07	E 74E 07	4 200 07	2 90E 07	2 625 07	2 455 07
Δ <b>K</b>	1,900-07	1,700-07	5,740-07	1,200-07	2,090-07	1 965 06	2,400-07
K	2,232-06	2,755-00	0,000-00	1,095-00	3,935-00	1,000-00	3,40E~00
∆к/к	0,08/4	0,0647	0,1016	0,0667	0,0735	0,1409	0,0/10
Г П + 10	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03	2,93E-03
U*r^2	1,9144E-11	2,3608E-11	4,8505E-11	1,6225E-11	3,3739E-11	1,5968E-11	2,9618E-11

Parâmetro k e difusividade efetiva calculados com 3, 5, 10, 14 e 20 termos da série.

# ANEXO 6a) - Cálculo da difusividade efetiva, utilizando o procedimento de regressão não linear do pacote estatístico sas.

# CÁLCULO DO PARÂMETRO K 3 TERMOS

----- PLANILHA=1 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

K	Sum of Squares
1E-9	0.347569
0.0000015241	0.056426
0.0000021439	0.039769
0.0000021908	0.039701
0.0000021901	0.039701
0.0000021901	0.039701
	K 1E-9 0.0000015241 0.0000021439 0.0000021908 0.0000021901 0.0000021901

NOTE: Convergence criterion met.

### CÁLCULO DO PARÂMETRO K 3 TERMOS

----- PLANILHA=1 ------Non-Linear Least Squares Summary Statistics **Dependent Variable** Source DF Sum of Squares Mean Square 3.3664047291 1 3.3664047291 Regression Residual 6 0.0397012709 0.0066168785 Uncorrected Total 7 3.4061060000 (Corrected Total) 6 0.1910294286 Asymptotic 95 % Parameter Estimate Asymptotic Std. Error Confidence Interval Lower Upper K 2.1901038E-6 4.63231561E-7 1.05661614E-6 3.32359137E-6 CÁLCULO DO PARÂMETRO K 3 TERMOS



# CÁLCULO DO PARÂMETRO K 3 TERMOS

------ PLANILHA=2 -----

 Non-Linear Least Squares Iterative Phase

 Dependent Variable R
 Method: Gauss-Newton

 Iter
 K Sum of Squares

 0
 1E-9
 0.118479

 1
 0.0000020202
 0.034767

 2
 0.0000024607
 0.032781

 3
 0.0000024675
 0.032781

 4
 0.0000024674
 0.032781

 NOTE: Convergence criterion met.
 NOTE:

### CÁLCULO DO PARÂMETRO K 3 TERMOS

----- PLANILHA=2 -----

Non-Linear Least Squares Summary Statistics Dependent Variable

DF Sum of Squares Mean Square Source 3.5356702234 Regression 1 3.5356702234 Residual 5 0.0327807766 0.0065561553 Uncorrected Total 6 3.5684510000 (Corrected Total) 5 0.0922028333 Parameter Estimate Asymptotic Asymptotic 95 % Std. Error Confidence Interval Lower Upper

K 2.4673728E-6 8.4819192E-7 2.87057636E-7 4.64768792E-6

# CÁLCULO DO PARÂMETRO K 3 TERMOS

ANEXO 6a

C	ÁLCULO DO PARÂI	METRO K 3 TERM	MOS
· · · ·	PLANILI	HA=3	
Ν	on-Linear Least Squ	ares Iterative Pha	ISE
De	pendent Variable R	Method: Gauss-	Newton
I	ter K	Sum of Squares	
	0 1E-9	0.329748	
	1 0.0000034299	0.057895	
	2 0.0000051892	0.034838	
	3 0.0000054493	0.034507	
	4 0.0000054572	0.034507	
	5 0.0000054573	0.034507	
NOTE:	Convergence criteri	on met.	
	CÁLCULO E	O PARÂMETRO	K 3 TERMOS
	P	LANILHA=3	
Non-Linea	r Least Squares Sur	nmary Statistics	Dependent Variable
Source	DF Sum of S	Squares Mean	Square
Regressio	on 1 2.7324	924680 2.7324	924680
Residual	5 0.0345	065320 0.0069	013064
Uncorrect	ted Total 6 2.766	9990000	
(Correcte	d Total) 5 0.1599	948333	
Paramete	er Estimate Asvi	mototic As	vmptotic 95 %
i ulunou	Std Frror	Confidence Inte	erval
		ower Upper	, • a.
K 5.4	4572984E-6 1.2326	5125E-6 2.28871	339E-6 8.62588335E-6
	CÁLCULO DO F	PARÂMETRO K 3	TERMOS
	P	LANILHA=3	
	Asymptotic (	<b>Correlation Matrix</b>	
	Corr	К	
	ĸ	1	
		156	

h

ŧ

ANEXO 6a

------ PLANILHA=4 ------

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0 1E-9 0.079427 1 0.0000013777 0.033131 2 0.0000016165 0.032363 3 0.0000016174 0.032363 4 0.0000016174 0.032363

NOTE: Convergence criterion met.

# CÁLCULO DO PARÂMETRO K 3 TERMOS

------ PLANILHA=4 -----

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square 1 3.1506913833 3.1506913833 Regression Residual 4 0.0323626167 0.0080906542 Uncorrected Total 5 3.1830540000 (Corrected Total) 4 0.0720268000 Estimate Asymptotic Asymptotic 95 % Parameter Std. Error **Confidence Interval** Lower Upper

K 1.6174087E-6 8.04273064E-7 -6.1558109E-7 3.8503985E-6

# CÁLCULO DO PARÂMETRO K 3 TERMOS

PLANILHA=4						
Asymptotic Correlation Matrix						
Corr	К					
<b>N</b> ####################################						
К	1					

### CÁLCULO DO PARÂMETRO K 3 TERMOS

------ PLANILHA=5 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter Κ Sum of Squares 0 1E-9 0.199635 0.038966 1 0.0000026845 2 0.000036340 0.030968 3 0.0000037010 0.030938 4 0.0000037011 0.030938 NOTE: Convergence criterion met.

## CÁLCULO DO PARÂMETRO K 3 TERMOS

------ PLANILHA=5 -----

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square 1 3.1487153854 3.1487153854 Regression Residual 5 0.0309376146 0.0061875229 Uncorrected Total 6 3.1796530000 (Corrected Total) 5 0.1223048333 Asymptotic 95 % Parameter Estimate Asymptotic Std. Error Confidence Interval Lower Upper K 3.7010807E-6 9.58818456E-7 1.23639515E-6 6.16576632E-6

### CÁLCULO DO PARÂMETRO K 3 TERMOS
----- PLANILHA=6 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0 1E-9 0.103696 1 0.0000014097 0.048334 2 0.0000015820 0.047845 3 0.0000015778 0.047845 4 0.0000015780 0.047845

NOTE: Convergence criterion met.

## CÁLCULO DO PARÂMETRO K 3 TERMOS

----- PLANILHA=6 -----

Non-Linear Least Squares Summary Statistics **Dependent Variable** DF Sum of Squares Source Mean Square 1 4.3966098096 4.3966098096 Regression 6 0.0478451904 0.0079741984 Residual Uncorrected Total 7 4.4444550000 (Corrected Total) 6 0.0931177143 Estimate Asymptotic Parameter Asymptotic 95 % Confidence Interval Std. Error Lower Upper K 1.5779524E-6 7.02706356E-7 -1.4150936E-7 3.29741415E-6 CÁLCULO DO PARÂMETRO K 3 TERMOS ----- PLANILHA=6 ------

Asymptotic Correlation Matrix

Corr K ------K 1

-----PLANILHA=7 -----

Non-Linear Least Squares Iterative PhaseDependent Variable RMethod: Gauss-NewtonIterKSum of Squares01E-90.16436710.00000248300.036510

2 0.0000031958 0.031884 3 0.0000032251 0.031878

4 0.0000032248 0.031878

5 0.0000032248 0.031878

NOTE: Convergence criterion met.

## CÁLCULO DO PARÂMETRO K 3 TERMOS

------ PLANILHA=7 -----

**Dependent Variable** Non-Linear Least Squares Summary Statistics DF Sum of Squares Source Mean Square Regression 1 3.2945291041 3.2945291041 5 0.0318778959 0.0063755792 Residual Uncorrected Total 6 3.3264070000 (Corrected Total) 5 0.1099988333 Parameter Estimate Asymptotic Asymptotic 95 % Confidence Interval Std. Error Lower Upper K 3.2247605E-6 9.21975665E-7 8.54781002E-7 5.59474009E-6

#### CÁLCULO DO PARÂMETRO K 3 TERMOS

------ PLANILHA=7 ------Asymptotic Correlation Matrix

> Corr K K 1

# ANEXO 6a) - Cálculo da difusividade efetiva, utilizando o procedimento de regressão não linear do pacote estatístico SAS.

## CÁLCULO DO PARÂMETRO K 5 TERMOS

------ PLANILHA=1 ------Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0.497282 0 0.000000100 0.075235 1 0.0000011566 2 0.0000020374 0.020568 3 0.000022242 0.019282 4 0.000022280 0.019281 5 0.0000022279 0.019281

NOTE: Convergence criterion met.

#### CÁLCULO DO PARÂMETRO K 5 TERMOS

----- PLANILHA=1 -----Non-Linear Least Squares Summary Statistics **Dependent Variable** DF Sum of Squares Mean Square Source 1 3.3868245536 3.3868245536 Regression 6 0.0192814464 0.0032135744 Residual Uncorrected Total 7 3.4061060000 (Corrected Total) 6 0.1910294286 Estimate Asymptotic Parameter Asymptotic 95 % Confidence Interval Std. Error Upper Lower K 2.2279444E-6 3.11298917E-7 1.46622283E-6 2.98966595E-6 CÁLCULO DO PARÂMETRO K 5 TERMOS



CALCULU DU FARAIMETRUR 5 TERIMUS	CÁLCULO	DO F	PARÂMETRO K 5 TERMOS
----------------------------------	---------	------	----------------------

PLANILHA=2
Non-Linear Least Squares Iterative Phase
Dependent Variable R Method: Gauss-Newton
Iter K Sum of Squares
0 0.000000100 0.189379
1 0.0000017440 0.026177
2 0.0000026162 0.013274
3 0.0000027139 0.013165
4 0.0000027143 0.013165
5 0.0000027143 0.013165
NOTE: Convergence criterion met.
CÁLCULO DO PARÂMETRO K 5 TERMOS
PLANILHA=2
Non-Linear Least Squares Summary Statistics Dependent Variable
Source DF Sum of Squares Mean Square
Regression 1 3.5552858158 3.5552858158
Residual 5 0.0131651842 0.0026330368
Uncorrected Total 6 3.5684510000
(Corrected Total) 5 0.0922028333
Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval
Lower Upper
K 2.7143082E-6 4.87977951E-7 1.45993916E-6 3.96867731E-6
CÁLCULO DO PARÂMETRO K 5 TERMOS
Asymptotic Correlation Matrix
Corr K
K 1

A

Þ

Þ

ķ

Ŀ

÷

Ł

ł

*

CÁLCULO DO PARÂMETRO K 5 TERMOS
PLANILHA=3
Non-Linear Least Squares Iterative Phase
Dependent Variable R Method: Gauss-Newton
Iter K Sum of Squares
0 0.000000100 0.475607
1 0.0000025566 0.088190
2 0.0000048981 0.021595
3 0.0000055849 0.018876
4 0.0000056267 0.018867
5 0.0000056274 0.018867
6 0.0000056274 0.018867
NOTE: Convergence criterion met.
CÁLCULO DO PARÂMETRO K 5 TERMOS
PLANILHA=3
Non-Linear Least Squares Summary Statistics Dependent Variable Source DF Sum of Squares Mean Square
Regression 1 2 7481315410 2 7481315410
Residual 5 0.0188674590 0.0037734918
Uncorrected Total 6 2 7669990000
(Corrected Total) 5 0.1599948333
Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval
Lower Upper
K 5.6273674E-6 8.91130729E-7 3.33667618E-6 7.91805871E-6
CÁLCULO DO PARÂMETRO K 5 TERMOS
PLANILHA=3
Asymptotic Correlation Matrix
Corr K
K 1

Ł

b

----- PLANILHA=4 -----

 Non-Linear Least Squares Iterative Phase

 Dependent Variable R
 Method: Gauss-Newton

 Iter
 K
 Sum of Squares

 0
 0.0000000100
 0.121245

 1
 0.0000012638
 0.019281

 2
 0.0000018103
 0.012588

 3
 0.000018583
 0.012551

 4
 0.000018583
 0.012551

NOTE: Convergence criterion met.

## CÁLCULO DO PARÂMETRO K 5 TERMOS

------ PLANILHA=4 -----

Non-Linear Least Squares Summary StatisticsDependent VariableSourceDF Sum of SquaresMean Square

Regression13.17050290863.1705029086Residual40.01255109140.0031377729

Uncorrected Total 5 3.1830540000

(Corrected Total) 4 0.0720268000

Unecleu Tolai) 4 0.0720200000

Parameter Estimate Asymptotic Asymptotic 95 %

Std. Error Confidence Interval

Lower Upper

K 1.8582926E-6 4.45375522E-7 6.21748681E-7 3.09483659E-6

## CÁLCULO DO PARÂMETRO K 5 TERMOS

----- PLANILHA=5 -----Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0 0.000000100 0.305293 1 0.0000021168 0.046632 2 0.0000035961 0.014780 3 0.000038872 0.014080 4 0.0000038959 0.014080 5 0.0000038960 0.014080 NOTE: Convergence criterion met. CÁLCULO DO PARÂMETRO K 5 TERMOS ----- PLANILHA=5 ------Non-Linear Least Squares Summary Statistics Dependent Variable Source DF Sum of Squares Mean Square Regression 1 3.1655731432 3.1655731432 Residual 5 0.0140798568 0.0028159714 Uncorrected Total 6 3.1796530000 (Corrected Total) 5 0.1223048333 Parameter Estimate Asymptotic Asymptotic 95 % Confidence Interval Std. Error Lower Upper K 3.8960031E-6 6.14454909E-7 2.31651938E-6 5.47548685E-6 CÁLCULO DO PARÂMETRO K 5 TERMOS ------ PLANILHA=5 ------Asymptotic Correlation Matrix Corr K

K

------ PLANILHA=6 ------Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0 0.000000100 0.162832 1 0.0000013529 0.028893 2 0.0000018258 0.022728 3 0.0000018453 0.022720 4 0.0000018448 0.022720 5 0.0000018448 0.022720 NOTE: Convergence criterion met. CÁLCULO DO PARÂMETRO K 5 TERMOS ------ PLANILHA=6 ------Non-Linear Least Squares Summary Statistics Dependent Variable DF Sum of Squares Mean Square Source 1 4.4217351830 4.4217351830 Regression Residual 6 0.0227198170 0.0037866362 Uncorrected Total 7 4.4444550000 (Corrected Total) 6 0.0931177143 Estimate Asymptotic Asymptotic 95 % Parameter Std. Error Confidence Interval Lower Upper K 1.8448169E-6 4.18552202E-7 8.20655814E-7 2.86897798E-6 CÁLCULO DO PARÂMETRO K 5 TERMOS ----- PLANILHA=6 -----Asymptotic Correlation Matrix Corr K

K 1

b

ľ.

٩.

ß

	PLA	ANILHA=	-7			
Non-Linear Least Squares Iterative Phase						
Dependent Variable R Method: Gauss-Newton						
lter	K Si	um of Sq	luares			
0	0.000000100	0.2566	06			
1	0.0000020216	0.0362	35			
2	0.0000032363	0.0141	02			
3	0.0000034237	0.0137	78			
4	0.0000034267	0.0137	/8 70			
5 0.0000034267 0.013778						
NOTE: Convergence chienon met.						
C	CÁLCULO DO PAI	RÂMETF	RO K 5 TI	ERMOS		
	PL4	ANILHA=	=7			
Non-Linear Lea Source	ast Squares Sumn DF Sum of Sq	nary Stat Juares	tistics Mean So	Dependent Variable quare		
Regression	1 3.31262	93614	3.312629	93614		
Residual	5 0.01377	76386	0.002755	55277		
Uncorrected ⁻	Гotal 6 3.32640	70000				
(Corrected To	otal) 5 0.109998	88333				
Parameter Estimate Asymptotic Asymptotic 95 %						
Std. Error Confidence Interval						
	Lo	wer	Upper			
K 3.426	741E-6 5.6496496	65E-7 1.	9744734	2E-6 4.87900867E-6		
C	CÁLCULO DO PA	RÂMETF	RO K 5 T	ERMOS		
	PL/	ANILHA=	=7			
	Asymptotic C	Correlatio	on Matrix			
	Corr	ł	K			
 K 1						

ANEXO 6a) - Cálculo da difusividade efetiva, utilizando o procedimento de regressão não linear do pacote estatístico SAS.
 CÁLCULO DO PARÂMETRO K 10 TERMOS
PLANILHA=1
Non-Linear Least Squares Iterative Phase
 Dependent Variable R Method: Gauss-Newton
Iter K Sum of Squares
0 1E-9 0.678478
1 0.000006717 0.167889
2 0.0000017149 0.020834
3 0.0000021914 0.010202
4 0.0000022324 0.010144
5 0.0000022324 0.010144
NOTE: Convergence criterion met.
CÁLCULO DO PARÂMETRO K 10 TERMOS
PLANILHA=1
Non-Linear Least Squares Summary Statistics Dependent Variable R
Source DF Sum of Squares Mean Square
Regression 1 3.3959616918 3.3959616918
Residual 6 0.0101443082 0.0016907180
Uncorrected Total 7 3.4061060000
(Corrected Total) 6 0.1910294286
Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval
Lower Upper
K 2.2324112E-6 2.24327684E-7 1.68350071E-6 2.78132165E-6
CÁLCULO DO PARÂMETRO K 10 TERMOS
PLANILHA=1
Asymptotic Correlation Matrix
Corr K
 К 1

.

F

é

۲.

•

Ł

*

×

ANEXO 6a

## CÁLCULO DO PARÂMETRO K 10 TERMOS

----- PLANILHA=2 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0 1E-9 0.288198 1 0.0000010898 0.056146 2 0.000023351 0.006519 3 0.000027308 0.004318 4 0.000027506 0.004313 5 0.0000027507 0.004313

NOTE: Convergence criterion met.

#### CÁLCULO DO PARÂMETRO K 10 TERMOS

------ PLANILHA=2 -----

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square

 Regression
 1
 3.5641377715
 3.5641377715

Residual 5 0.0043132285 0.0008626457

Uncorrected Total 6 3.5684510000

(Corrected Total) 5 0.0922028333 Parameter Estimate Asymptotic Asymptotic 95 %

Std. Error Confidence Interval

Lower Upper

K 2.7506599E-6 2.72922316E-7 2.04910093E-6 3.45221889E-6 CÁLCULO DO PARÂMETRO K 10 TERMOS

----- PLANILHA=2 -----

Asymptotic Correlation Matrix

Corr K ------ K 1

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton Iter K Sum of Squares

liel	K Sum	or Squares
0	1E-9	0.639642
1	0.0000014781	0.181610
2	0.0000040752	0.024906
3	0.0000054754	0.010496
4	0.0000056491	0.010344
5	0.0000056523	0.010344
6	0.0000056523	0.010344
-	•-	

NOTE: Convergence criterion met.

CÁLCULO DO PARÂMETRO K 10 TERMOS

------ PLANILHA=3 -----

Non-Linear Least Squares Summary Statistics Dependent Variable DF Sum of Squares Mean Square Source 2.7566548166 Regression 1 2.7566548166 Residual 5 0.0103441834 0.0020688367 Uncorrected Total 6 2.7669990000 (Corrected Total) 5 0.1599948333 Asymptotic 95 % Estimate Asymptotic Parameter Std. Error **Confidence Interval** Upper Lower K 5.6523382E-6 6.58137124E-7 3.96056743E-6 7.34410906E-6 CÁLCULO DO PARÂMETRO K 10 TERMOS ------ PLANILHA=3 ------Asymptotic Correlation Matrix Corr Κ K 1

----- PLANILHA=4 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton Iter K Sum of Squares 0 1E-9 0.189141 1 0.0000008106 0.034412

2 0.0000016498 0.004642

3 0.0000018852 0.003541

4 0.0000018948 0.003540

5 0.0000018948 0.003540

NOTE: Convergence criterion met.

ł

CÁLCULO DO PARÂMETRO K 10 TERMOS

------ PLANILHA=4 -----Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square

Regression13.17951433393.1795143339Residual40.00353966610.0008849165

Residual 4 0.0035396661 0.0006649165

Uncorrected Total 5 3.1830540000 (Corrected Total) 4 0.0720268000

Parameter Estimate Asymptotic Asymptotic 95 %

Std. Error Confidence Interval

Lower Upper

K 1.8948049E-6 2.28668739E-7 1.25992724E-6 2.52968246E-6 CÁLCULO DO PARÂMETRO K 10 TERMOS

------ PLANILHA=4 ------

Asymptotic Correlation Matrix

------ PLANILHA=5 ------

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

lter	K Sum	n of Squares
0	1E-9	0.434398
1	0.000001263	5 0.103997
2	0.000003090	3 0.011831
3	0.000003865	7 0.005669
4	0.000003929	7 0.005637
5	0.000003930	2 0.005637
6	0.000003930	2 0.005637

NOTE: Convergence criterion met.

#### CÁLCULO DO PARÂMETRO K 10 TERMOS

----- PLANILHA=5 -----

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square

 Regression
 1
 3.1740160836
 3.1740160836

Residual 5 0.0056369164 0.0011273833

Uncorrected Total 6 3.1796530000

(Corrected Total) 5 0.1223048333

Parameter Estimate Asymptotic Asymptotic 95 %

Std. Error Confidence Interval

Lower Upper

K 3.9301757E-6 3.85416379E-7 2.93944573E-6 4.92090569E-6 CÁLCULO DO PARÂMETRO K 10 TERMOS

PLANILHA=5				
Asymptotic Correlation Matrix				
Corr K				
드 강경 가 M 수 약 수 약 수 약 수 약 수 약 수 약 수 약 수 약 가 가 가 수 약 이 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가				
K 1				

----- PLANILHA=6 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton K Sum of Squares lter 0 0.257939 1E-9 1 0.000008854 0.046360 2 0.000016800 0.013246 3 0.0000018616 0.012366 4 0.0000018659 0.012365 5 0.0000018659 0.012365 NOTE: Convergence criterion met.

Þ

CÁLCULO DO PARÂMETRO K 10 TERMOS ----- PLANILHA=6 -----

Dependent Variable Non-Linear Least Squares Summary Statistics DF Sum of Squares Mean Square Source Regression 1 4.4320897538 4.4320897538 Residual 6 0.0123652462 0.0020608744 Uncorrected Total 7 4.4444550000 (Corrected Total) 6 0.0931177143 Asymptotic 95 % Parameter Estimate Asymptotic Std. Error Confidence Interval Lower Upper K 1.8659032E-6 2.94118839E-7 1.14621978E-6 2.58558657E-6 CÁLCULO DO PARÂMETRO K 10 TERMOS ----- PLANILHA=6 ------



CÁ	LCULO DO PAR	ÂMETRO	K 10 TERMOS
độnh định thức định thức tinh thức tinh thức tinh thức tinh thức tinh thức tinh t	PL	.ANILHA:	=7
Non-	Linear Least Squa	ares Itera	tive Phase
Deper	ident Variable R	Method:	Gauss-Newton
lter	K Sum of	⁻ Squares	;
0	1E-9 0.3	373944	
1	0.0000012276	0.0811	158
2	0.0000028223	0.0091	159
3	0.0000034172	0.005	147
4	0.0000034561	0.005	134
5	0.0000034562	0.005	134
6	0.0000034562	0.005	134
NOTE: Co	invergence criterio	on met.	
	CÁLCULO DO PA	ARÂMET	RO K 10 TERMOS
المحمد الجمع المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد	PL	ANILHA	=7
Non-Linear Le	ast Squares Sum	mary Sta	atistics Dependent Variable
Source	DF Sum of S	quares	Mean Square
Regression	1 3.3212	731808	3.3212731808
Residual	5 0.00513	338192	0.0010267638
Uncorrected	Total 6 3.3264	070000	
(Corrected T	otal) 5 0.1099	988333	
Parameter	Estimate Asym	nptotic	Asymptotic 95 %
	Std. Error	Confide	ence Interval
	L	ower	Upper
K 3.456	2116E-6 3.40499	055E-7 2	2.58094365E-6 4.33147965E-6
			=7
ann ann ann ann ann ann ann ann ann ann	Asymptotic C	Correlatio	n Matrix
	Corr	- on ciulio	K
	К	1	



CÁLCULO DO PARÂMETRO K 14 TERMOS
Non-Linear Least Squares Iterative Phase
Dependent Variable R Method: Gauss-Newton
Iter K Sum of Squares
0 1E-9 0.324101
1 0.000008277 0.081546
2 0.0000021338 0.007861
3 0.0000027053 0.002749
4 0.0000027511 0.002725
5 0.0000027512 0.002725
6 0.0000027512 0.002725
NOTE: Convergence criterion met.
CÁLCULO DO PARÂMETRO K 14 TERMOS
PLANILHA=2
Non-Linear Least Squares Summary Statistics Dependent Variable
Source DF Sum of Squares Mean Square
Regression 1 3.5657264248 3.5657264248
Residual 5 0.0027245752 0.0005449150
Uncorrected Total 6 3.5684510000
(Corrected Total) 5 0.0922028333
Parameter Estimate Asymptotic Asymptotic 95 %
Std Error Confidence Interval
K 2.7512397E-6 2.16788501E-7 2.19397522E-6 3.30850423E-6
CÁLCULO DO PARÂMETRO K 14 TERMOS
PLANILMA=2
Corr K
K 1
177

.

Þ

1

L

CÁLCULO DO PARÂMETRO K 14 TERMOS PLANILHA=3
Non-Linear Least Squares Iterative Phase
Dependent Variable R Method: Gauss-Newton
Iter K Sum of Squares
0 1E-9 0.694944
1 0.0000011021 0.238357
2 0.000036381 0.034187
3 0.0000053586 0.009178
4 0.0000056449 0.008754
5 0.0000056523 0.008754
6 0.0000056524 0.008754
NOTE: Convergence criterion met.
5
CÁLCULO DO PARÂMETRO K 14 TERMOS
PLANILHA=3
Non-Linear Least Squares Summary Statistics Dependent Variable
Source DF Sum of Squares Mean Square
Regression 1 2.7582454133 2.7582454133
Residual 5 0.0087535867 0.0017507173
Uncorrected Total 6 2.7669990000
(Corrected Total) 5 0.1599948333
Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval
Lower Upper
K 5.6523849E-6 6.05422374E-7 4.09611969E-6 7.20865009E-6
CÁLCULO DO PARÂMETRO K 14 TERMOS
PLANILHA=3
Corr K
K 1

•

\$

.

1

Ł

------ PLANILHA=4 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0 1E-9 0.214639 1 0.000006196 0.050451 2 0.0000015160 0.004727 3 0.000018708 0.001958 4 0.0000018952 0.001948 5 0.000018953 0.001948 6 0.0000018953 0.001948

NOTE: Convergence criterion met.

#### CÁLCULO DO PARÂMETRO K 14 TERMOS

------ PLANILHA=4 -----

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square

Regression 1 3.1811062953 3.1811062953

Residual 4 0.0019477047 0.0004869262

Uncorrected Total 5 3.1830540000 (Corrected Total) 4 0.0720268000

Parameter Estimate Asymptotic Asymptotic 95 %

Std. Error Confidence Interval

Lower Upper

K 1.8952993E-6 1.69437346E-7 1.42487221E-6 2.36572646E-6

#### CÁLCULO DO PARÂMETRO K 14 TERMOS

------PLANILHA=4 ------Asymptotic Correlation Matrix Corr K

K

	RIVIOS
--	--------

------ PLANILHA=5 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton lter K Sum of Squares 0 1E-9 0.479300 1 0.000009494 0.143115 2 0.0000027889 0.016209 3 0.0000038084 0.004163 4 0.000039290 0.004048 5 0.0000039305 0.004048 6 0.0000039305 0.004048

NOTE: Convergence criterion met.

CÁLCULO DO PARÂMETRO K 14 TERMOS

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square

Regression13.17560490933.1756049093Residual50.00404809070.0008096181

Uncorrected Total 6 3.1796530000

(Corrected Total) 5 0.1223048333

Std. Error

Parameter Estimate Asymptotic Asymptotic 95 %

Confidence Interval

Lower Upper

K 3.9304654E-6 3.26585935E-7 3.09096174E-6 4.76996915E-6

## CÁLCULO DO PARÂMETRO K 14 TERMOS

-----PLANILHA=5 -----Asymptotic Correlation Matrix Corr K ------K 1

PLANILHA=6					
Non-Linear Least Squares Iterative Phase					
Dependent Variable R Method: Gauss-Newton					
Iter K Sum of Squares					
0 1E-9 0.293745					
1 0.000006793 0.067101					
2 0.0000015513 0.013391					
3 0.0000018504 0.010758					
4 0.0000018657 0.010752					
5 0.0000018656 0.010752					
NOTE: Convergence criterion met.					
CÁLCULO DO PARÂMETRO K 14 TERMOS					
PLANILHA=6					
Non-Linear Least Squares Summary Statistics Dependent Variable					
Source DF Sum of Squares Mean Square					
Regression 1 4.4337025076 4.4337025076					
Residual 6 0.0107524924 0.0017920821					
Uncorrected Total 7 4.4444550000					
(Corrected Total) 6 0.0931177143					
Parameter Estimate Asymptotic Asymptotic 95 %					
Std. Error Confidence Interval					
Lower Upper					
K 1.8656253E-6 2.73845663E-7 1.19554863E-6 2.53570199E-6					
CÁLCULO DO PARÂMETRO K 14 TERMOS					
PLANILHA=6					
Asymptotic Correlation Matrix					
Corr K					
 K 1					
181					

ł

CÁLCULO DO PARÂMETRO K 14 TERMOS								
	PLANILHA=7							
Non	Non-Linear Least Squares Iterative Phase							
Iter	Iter K Sum of Squares							
	$1E_{-9} \qquad 0.215365$							
0		0.114476						
1	0.0000009201	0.012049						
2	0.0000023010	0.002602						
3	0.0000033757	0.003544						
4	0.0000034559	0.003544						
5	0.0000034565	0.003544						
		0.003344						
NOTE: C	onvergence criter	non met.						
Ľ								
	PLANIL							
Non-Linear L	Non-Linear Least Squares Summary Statistics Dependent Variable							
Source	DF Sum of	Squares Mean Square						
Regression	1 3.322	8625523 3.3228625523						
Residual	5 0.003	5444477 0 0007088895						
Uncorrecter	Total 6 3 326	4070000						
(Corrected )	Total) 5 0.109	9988333						
Parameter	Estimate Asv	mptotic Asymptotic 95 %						
i arameter	Std Error	Confidence Interval						
	Old. Entry							
K 3.45	64741E-6 2.8287	78336E-7 2.72932277E-6 4.18362552E-6						
C	ÁLCULO DO PA	RÂMETRO K 14 TERMOS						
	PLANIL	HA=7						
	Asymptotic Co	rrelation Matrix						
	Corr	K						
	K	1						

ł



## ANEXO 6a) - Cálculo da difusividade efetiva, utilizando o procedimento

## de regressão não linear do pacote estatístico SAS.

CÁLCULO DO PARÂMETRO K 20 TERMOS							
PLANILHA=1							
Non-Linear Least Squares Iterative Phase							
Dependent Variable R Method: Gauss-Newton							
Iter K Sum of Squares							
0 1E-9 0.786170							
1 0.0000003657 0.294809							
2 0.0000013577 0.042683							
3 0.0000021017 0.008274							
4 0.0000022304 0.007674							
5 0.0000022324 0.007674							
6 0.0000022324 0.007674							
NOTE: Convergence criterion met.							
CÁLCULO DO PARÂMETRO K 20 TERMOS							
PLANILHA=1							
Non-Linear Least Squares Summary Statistics Dependent Variable							
Source DF Sum of Squares Mean Square							
Regression 1 3.3984323802 3.3984323802							
Residual 6 0.0076736198 0.0012789366							
Uncorrected Total 7 3.4061060000							
(Corrected Total) 6 0.1910294286							
Parameter Estimate Asymptotic Asymptotic 95 %							
Std. Error Confidence Interval							
Lower Upper							
K 2.2324048E-6 1.95070416E-7 1.75508436E-6 2.70972527E-6							
CÁLCULO DO PARÂMETRO K 20 TERMOS							
Corr K							
 K 1							

.....

ł

------ PLANILHA=2 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton Iter K Sum of Squares

0	1E-9	0.353599
1	0.0000006071	0.112545
2	0.0000019082	0.012037
3	0.0000026616	0.001942
4	0.0000027505	5 0.001847
5	0.0000027513	0.001847
6	0.0000027513	0.001847

NOTE: Convergence criterion met.

CÁLCULO DO PARÂMETRO K 20 TERMOS

-----PLANILHA=2 ------

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square 3.5666038231 Regression 1 3.5666038231 5 0.0018471769 0.0003694354 Residual Uncorrected Total 6 3.5684510000 (Corrected Total) 5 0.0922028333 Parameter Estimate Asymptotic Asymptotic 95 % Std. Error **Confidence Interval** Lower Upper K 2.7512514E-6 1.78498078E-7 2.29241412E-6 3.21008865E-6 CÁLCULO DO PARÂMETRO K 20 TERMOS ----- PLANILHA=2 ------Asymptotic Correlation Matrix Corr Κ

K

------ PLANILHA=3 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

lter	K	Sum of Squares
0	1E-9	0.739275
1	0.000007983	0.301265
2	0.0000031882	0.048935
3	0.0000051996	0.008904
4	0.0000056363	0.007877
5	0.0000056522	0.007876
6	0.0000056524	0.007876

#### CÁLCULO DO PARÂMETRO K 20 TERMOS

----- PLANILHA=3 ------Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton K Sum of Squares Iter 7 0.000056524 0.007876 NOTE: Convergence criterion met. Non-Linear Least Squares Summary Statistics Dependent Variable DF Sum of Squares Mean Square Source 2.7591228495 1 2.7591228495 Regression Residual 5 0.0078761505 0.0015752301 Uncorrected Total 6 2.7669990000 (Corrected Total) 5 0.1599948333 CÁLCULO DO PARÂMETRO K 20 TERMOS ----- PLANILHA=3 ------Asymptotic 95 % Parameter Estimate Asymptotic Std. Error **Confidence Interval** Lower Upper K 5.6523854E-6 5.7427839E-7 4.1761772E-6 7.12859361E-6 Asymptotic Correlation Matrix

Corr K ----- K K 1

PLANILHA=4							
Non-Linear Least Squares Iterative Phase							
Dependent Variable R Method: Gauss-Newton							
Iter K Sum of Squares							
0 1E-9 0.235810							
1 0.0000004567 0.070832							
2 0.0000013624 0.006890							
3 0.0000018447 0.001114							
4 0.0000018949 0.001070							
5 0.0000018953 0.001070							
6 0.0000018953 0.001070							
NOTE: Convergence criterion met.							
CÁLCULO DO PARÂMETRO K 20 TERMOS							
PI ANII HA=4							
Non-Linear Least Squares Summary Statistics Dependent Variable							
Source DF Sum of Squares Mean Square							
Regression 1 3 1819837527 3 1819837527							
Residual 4 0.0010702473 0.0002675618							
Uncorrected Total 5 3 1830540000							
(Corrected Total) 4 0.0720268000							
Parameter Estimate Asymptotic Asymptotic 95 %							
Std. Error Confidence Interval							
Lower Upper							
K 1.8953086E-6 1.25594723E-7 1.54660648E-6 2.24401075E-6							
CÁLCULO DO PARÂMETRO K 20 TERMOS							
PLANILHA=4							
Asymptotic Correlation Matrix							
Corr K							
K 1							

186

ł.

#### ------ PLANILHA=5 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

lter	K Sum	of Squares
0	1E-9	0.515676
1	0.000006914	4 0.188139
2	0.0000024670	0.024587
3	0.0000037224	4 0.003510
4	0.000003926	5 0.003171
5	0.000003930	5 0.003171
6	0.000003930	5 0.003171

NOTE: Convergence criterion met.

## CÁLCULO DO PARÂMETRO K 20 TERMOS

----- PLANILHA=5 ------

Non-Linear Least Squares Summary Statistics Dependent Variable

DF Sum of Squares Mean Square Source

1 3.1764823378 3.1764823378 Regression 0.0006341324

5 0.0031706622 Residual

Uncorrected Total 6 3.1796530000

(Corrected Total) 5 0.1223048333 Parameter Estimate Asymptotic Asymptotic 95 %

Std. Error

Confidence Interval

Lower Upper

K 3.9304672E-6 2.89032766E-7 3.18749557E-6 4.67343879E-6

CÁLCULO DO PARÂMETRO K 20 TERMOS ----- PLANILHA=5 -----Asymptotic Correlation Matrix Corr Κ Κ 1

	CÁLCULO DO PARÂMETRO K 20 TERMOS									
PLANILHA=6										
	Non-Linear Least Squares Iterative Phase									
	Dependent Variable R Method: Gauss-Newton									
	Iter K Sum of Squares									
	0 1E-9 0.323489 1 0.000005018 0.004220									
	2 0.0000014014 0.015961 3 0.0000018295 0.000006									
	4 0 0000018656 0 009874									
	5 0 0000018656 0 009874									
	NOTE: Convergence criterion met.									
	CÁLCULO DO PARÂMETRO K 20 TERMOS									
	PLANILHA=6									
	Non-Linear Least Squares Summary Statistics Dependent Variable									
	Source DF Sum of Squares Mean Square									
	Regression 1 4.4345805413 4.4345805413									
	Residual 6 0.0098744587 0.0016457431									
	Uncorrected Total 7 4.4444550000									
	(Corrected Total) 6 0.093117/143									
Parameter Estimate Asymptotic Asymptotic 95 %										
	Std. Error Confidence Interval									
N 1.0000U21E-0 2.024U0309E-7 1.22301030E-0 2.0U700778E-0										
CÁLCULO DO PARÂMETRO K 20 TERMOS										
PLANILHA=6										
	Asymptotic Correlation Matrix									
	Corr K									
	K 1									

۴.

P

٠.

r

Ś

ł

ŀ

----- PLANILHA=7 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

lter	K Sum	of Squares
0	1E-9	0.449084
1	0.000006762	0.153793
2	0.000002276	0.018446
3	0.000003310	0.002863
4	0.0000034540	6 0.002667
5	0.000003456	5 0.002667
6	0.000003456	5 0.002667

NOTE: Convergence criterion met.

CÁLCULO DO PARÂMETRO K 20 TERMOS

------ PLANILHA=7 -----

Non-Linear Least Squares Summary Statistics Dependent Variable

Source DF Sum of Squares Mean Square

 Regression
 1
 3.3237399803
 3.3237399803

 Residual
 5
 0.0026670197
 0.0005334039

 Uncorrected Total
 6
 3.3264070000

 (Corrected Total)
 5
 0.1099988333

 Parameter
 Estimate
 Asymptotic

 Std. Error
 Confidence

 Lower
 Upper

K 3.4564762E-6 2.45379216E-7 2.82571799E-6 4.08723442E-6

#### CÁLCULO DO PARÂMETRO K 20 TERMOS



#### ANEXO 6b) - Programa de entrada de dados no SAS.

#### Programa para 3 têrmos

OPTIONS LS=80;

PROC NLIN;

by Planilha;

PARMS K=0.01;

MODEL r =  $(6^{(1/(9 \exp(9^{k^{3}.1416^{**}2^{t}))} + 1/(4^{\exp}(4^{k^{3}.1416^{**}2^{t})) + 1/(4^{(k^{3}.1416^{**}2^{t})) + 1/(4$ 

exp(-(k*3.1416**2*t))))/3.1416**2;

DER.K=(-6*(1+exp(5*k*3.1416**2*t)+ exp(8*k*3.1416**2*t))*t)/exp(9*k*3.1416**2*t);

DER.K.K=(6*(9+4*exp(5*k*3.1416**2*t)+ exp(8*k*3.1416**2*t))*3.1416**2*t**2)/exp(9*k*3.1416**2*t);

TITLE ' CÁLCULO DO PARÂMETRO K 3 TERMOS';

RUN;

#### Programa para 5 têrmos

OPTIONS LS=80;

PROC NLIN;

by Planilha;

PARMS K=0.01;

Model  $r = (6^{(1/(25^{exp}(25^{k*3.1416^{**2*T}))+})))$ 

1/(16*exp(16*k*3.1416**2*T))+

1/(9*exp(9*k*3.1416**2*T))+

1/(4*exp(4*k*3.1416**2*T))+

exp(-(k*3.1416**2*T))))/3.1416**2;

DER.K =  $(-6^{(1+\exp(9^{k^{3}.1416^{**}2^{T})}))$ 

exp(16*k*3.1416**2*T)+

exp(21*k*3.1416**2*T)+

exp(24*k*3.1416**2*T))*T)/exp(25*k*3.1416**2*T);

DER.K.K = (6*(25+16*exp(9*k*3.1416**2*T)+

9*exp(16*k*3.1416**2*T)+

4*exp(21*k*3.1416**2*T)+

exp(24*k*3.1416**2*T))*3.1416**2*T**2)/exp(25*k*3.1416**2*T);

TITLE'CÁLCULO DO PARÂMETRO K 5 TERMOS';

RUN;

#### Programa para 10 têrmos

OPTIONS LS=80;

PROC NLIN;

by Planilha;

PARMS K=0.00000001;

MODEL r= (6*(1/(100*exp(100*k*3.1416**2*t)) + 1/(81*exp(81*k*3.1416**2*t)) +

 $1/(64*\exp(64*k*3.1416**2*t)) + 1/(49*\exp(49*k*3.1416**2*t)) +$ 

 $1/(36^{exp}(36^{k*3.1416^{*2*t}})) + 1/(25^{exp}(25^{k*3.1416^{*2*t}})) +$ 

 $1/(16^{*}exp(16^{*}k^{*}3.1416^{**}2^{*}t)) + 1/(9^{*}exp(9^{*}k^{*}3.1416^{**}2^{*}t)) +$ 

 $1/(4^{*}\exp(4^{*}k^{*}3.1416^{**}2^{*}t)) + \exp(-(k^{*}3.1416^{**}2^{*}t)))/3.1416^{**}2;$ 

```
\begin{aligned} \mathsf{DER.K.K} &= (6^*(100 + 81^*\exp(19^*k^*3.1416^{**2^*t}) + 64^*\exp(36^*k^*3.1416^{**2^*t}) \\ &+ 49^*\exp(51^*k^*3.1416^{**2^*t}) + 36^*\exp(64^*k^*3.1416^{**2^*t}) + 25^*\exp(75^*k^*3.1416^{**2^*t}) + \\ &16^*\exp(84^*k^*3.1416^{**2^*t}) + 9^*\exp(91^*k^*3.1416^{**2^*t}) + 4^*\exp(96^*k^*3.1416^{**2^*t}) + \end{aligned}
```

exp(99*k*3.1416**2*t))*3.1416**2*t**2)/exp(100*k*3.1416**2*t);

TITLE ' CÁLCULO DO PARÂMETRO K 10 TERMOS';

RUN;

#### Programa para 20 têrmos

OPTIONS LS=80;

PROC NLIN;

by Teste;

PARMS K=0.01;

exp(144*k*3.1416**2*T) + exp(175*k*3.1416**2*T) + exp(204*k*3.1416**2*T) + exp(231*k*3.1416**2*T) + exp(256*k*3.1416**2*T) + exp(279*k*3.1416**2*T) + exp(300*k*3.1416**2*T) + exp(319*k*3.1416**2*T) + exp(336*k*3.1416**2*T) + exp(351*k*3.1416**2*T) + exp(364*k*3.1416**2*T) + exp(375*k*3.1416**2*T) + exp(384*k*3.1416**2*T) + exp(391*k*3.1416**2*T) + exp(396*k*3.1416**2*T) + exp(399*k*3.1416**2*T)) + exp(400*k*3.1416**2*T);

DER.K.K = (6*(400 + 361*exp(39*k*3.1416**2*T) + 324*exp(76*k*3.1416**2*T) +

289*exp(111*k*3.1416**2*T) + 256*exp(144*k*3.1416**2*T) + 225*exp(175*k*3.1416**2*T) +

196*exp(204*k*3.1416**2*T) + 169*exp(231*k*3.1416**2*T) + 144*exp(256*k*3.1416**2*T) +

121*exp(279*k*3.1416**2*T) + 100*exp(300*k*3.1416**2*T) + 81*exp(319*k*3.1416**2*T) +

64*exp(336*k*3.1416**2*T) + 49*exp(351*k*3.1416**2*T) + 36*exp(364*k*3.1416**2*T) + 25*exp(375*k*3.1416**2*T) + 16*exp(384*k*3.1416**2*T) + 9*exp(391*k*3.1416**2*T) + 4*exp(396*k*3.1416**2*T) + exp(399*k*3.1416**2*T))*3.1416**2*T**2)/exp(400*k*3.1416**2*T); TITLE ' CÁLCULO DO PARÂMETRO K 20 TERMOS'; RUN;

Tempo	Royn	Pcal	(Peyn Peale)/	orro%	k	<u> </u>
rempo	r exh	Rudi		erro 70	<u> </u>	<u> </u>
		exp(-kt(c))	Reale			
		4 0000	f		0 0000	0.0470
0	1	1,0000	0.0545		0,0003	0,8179
1800	0,8167	0,8614	0,0515	5,1501	0,0003	0,8179
6360	0,6667	0,6577	0,0127	1,2653	0,0003	0,8179
/500	0,6556	0,6191	0,0580	5,8036	0,0003	0,8179
8700	0,6001	0,5819	0,0311	3,1075	0,0003	0,8179
10140	0,5056	0,5414	0,0653	6,5302	0,0003	0,8179
11/60	0,5001	0,5002	0,0004	0,0368	0,0003	0,8179
	······································	4 0000	1			<u> </u>
0	1	1,0000			0,0027	0,6021
1200	0,8078	0,8269	0,0229	2,2892	0,0027	0,6021
2340	0,7643	0,7527	0,0150	1,5024	0,0027	0,6021
3360	0,7209	0,7024	0,0265	2,6475	0,0027	0,6021
4380	0,6527	0,6607	0,0117	1,1724	0,0027	0,6021
5340	0,6217	0,6269	0,0095	0,9476	0,0027	0,6021
		2				
0	1	1,0000			0,0274	0,3663
1200	0,6751	0,6917	0,0242	2,4211	0,0274	0,3663
2400	0,6626	0,6218	0,0646	6,4574	0,0274	0,3663
3540	0,5564	0,5782	0,0385	3,8473	0,0274	0,3663
4680	0,5376	0,5451	0,0149	1,4908	0,0274	0,3663
5820	0,5251	0,5183	0,0129	1,2903	0,0274	0,3663
0	1	1,0000			0,0023	0,5918
1620	0,8242	0,8309	0,0083	0,8275	0,0023	0,5918
3240	0,7622	0,7564	0,0075	0,7454	0,0023	0,5918
4860	0,7053	0,7012	0,0054	0,5420	0,0023	0,5918
6420	0,6536	0,6580	0,0076	0,7614	0,0023	0,5918
0	1	1,0000			0,0089	0,4781
1200	0,741	0,7670	0,0339	3,3871	0,0089	0,4781
2220	0,7285	0,7005	0,0393	3,9323	0,0089	0,4781
3480	0,6544	0,6431	0,0169	1,6887	0,0089	0,4781
4680	0,5865	0,6014	0,0255	2,5537	0,0089	0,4781
5640	0,5742	0,5735	0,0009	0,0898	0,0089	0,4781
0	1	1,0000			0,0001	1,0339
1440	0,8590	0.8953	0,0405	4.0494	0,0001	1,0339
2520	0.8373	0,8209	0,0196	1,9604	0,0001	1,0339
3300	0,7940	0.7704	0,0306	3,0589	0.0001	1,0339
4080	0.7181	0.7227	0.0065	0.6490	0.0001	1,0339
4860	0.6747	0.6776	0.0053	0.5346	0.0001	1,0339
5520	0.6367	0.6415	0.0070	0.7034	0.0001	1.0339
					_,	
0	1	1.0000			0.0037	0.5785
1260	0.7716	0 7967	0 0322	3,2230	0.0037	0.5785
2460	0 7217	0 7155	0.0076	0 7647	0.0037	0 5785
3420	0,7217	0 6670	0.0495	4 9533	0 0037	0.5785
4380	0 6217	0,0070	0,0400	0 7445	0.0037	0,5785
5340	0,0217	0,0207	0,0074	2 2002	0,0007	0,0700
0.040	0,0709	0,0321	0,0221	2,2000	0,0007	0,0700

ANEXO 7) Determinação do conteúdo adimensional de umidade pelo modelo de PAGE (1949).

k

ŀ

ľ

	D	D .	initalisional at l	amidude pero	anoucio de 174	GE mountedu	
Tempo	кехр	R Calc	(Rexp-Rcalc)/	erro%	A	ĸ	C
		A exp(-kt^c)	Rcaic			·	
		· · · · · · · · · · · · · · · · · · ·				, ¹¹	100 mm
0	1	1,0000	0,0000		0,9803	0,0002	0,8727
1800	0,8167	0,8595	0,0494	4,9429	0,9803	0,0002	0,8727
6360	0,6667	0,6600	0,0091	0,9103	0,9803	0,0002	0,8727
7500	0,6556	0,6208	0,0551	5,5086	0,9803	0,0002	0,8727
8700	0,6001	0,5828	0,0295	2,9511	0,9803	0,0002	0,8727
10140	0,5056	0,5410	0,0648	6,4759	0,9803	0,0002	0,8727
11760	0,5001	0,4984	0,0032	0,3191	0,9803	0,0002	0,8727
	· · · · · · · · · · · · · · · · · · ·			·		·····	
0	1	1,0000	0.0000		0.9966	0,0025	0.6091
1200	0.8078	0.8268	0.0228	2.2778	0.9966	0.0025	0.6091
2340	0.7643	0.7528	0.0148	1,4836	0.9966	0.0025	0 6091
3360	0 7209	0 7025	0.0263	2 6306	0,9966	0.0025	0 6091
4380	0,6527	0,6608	0,0200	1 1738	0,0000	0,0025	0,0001
5340	0.6217	0,0000	0,0111	0.9278	0,0000	0,0020	0,0001
00-10	0,02 11	0,0200	0,0000	0,0210	0,0000	0,0020	0,0001
	1	1 0000	0 0000		0 0003	0.0272	0 3660
1200	0 6764	1,0000	0,0000	<u> 14100</u>	0,0000	0,0273	0,3009
2400	0,0731	0,0317	0,0242	2,4199	0,9993	0,0273	0,3009
2400	0,0020	0,0219	0,0040	0,4007	0,9993	0,0273	0,3009
3040	0,0004	0,5763	0,0365	3,0407	0,9993	0,0273	0,3009
4680	0,5376	0,5451	0,0149	1,4910	0,9993	0,0273	0,3669
5820	0,5251	0,5183	0,0129	1,2919	0,9993	0,0273	0,3669
······							
0	1	1,0000	0,0000		0,9901	0,0023	0,5939
1620	0,8242	0,8235	0,0007	0,0662	0,9901	0,0023	0,5939
3240	0,7622	0,7497	0,0165	1,6453	0,9901	0,0023	0,5939
4860	0,7053	0,6950	0,0144	1,4423	0,9901	0,0023	0,5939
6420	0,6536	0,6521	0,0013	0,1337	0,9901	0,0023	0,5939
0	1	1,0000	0,0000	ر ب _ا ر م	0,9973	0,0086	0,4816
1200	0,7408	0,7669	0,0338	3,3818	0,9973	0,0086	0,4816
2220	0,7285	0,7005	0,0392	3,9219	0,9973	0,0086	0,4816
3480	0,6544	0,6432	0,0168	1,6794	0,9973	0,0086	0,4816
4680	0,5865	0,6014	0,0255	2,5535	0,9973	0,0086	0,4816
5640	0,5742	0,5734	0,0010	0,1007	0,9973	0,0086	0,4816
0	1	1,0000	0,0000		0,9896	0,0000	1,0829
1440	0,8590	0,8941	0,0392	3,9226	0,9896	0,0000	1,0829
2520	0,8373	0,8216	0,0188	1,8752	0,9896	0,0000	1,0829
3300	0,7940	0,7714	0,0293	2,9343	0,9896	0,0000	1,0829
4080	0,7181	0,7233	0,0073	0,7324	0,9896	0,0000	1,0829
4860	0,6747	0,6775	0,0052	0.5199	0,9896	0,0000	1,0829
5520	0.6367	0.6406	0.0056	0.5647	0.9896	0.0000	1.0829
· · · · · · · · · · · · · · · · · · ·			·····				·····,
0	1	1.0000	0.0000		0.9954	0.0034	0.5866
1260	0 7716	0 7966	0 0322	3 2156	0 9954	0 0034	0.5866
2460	0 7217	0 7157	0 0074	0 7389	0 9954	0 0034	0 5866
3420	0,7217	0 6671	0,0074	4 9326	0 9954	0.0034	0,5866
4380	0 6217	0 6267	0 0074	0 7445	0 9954	0,0004	0 5866
5240	0,0217	0,0207	0,0074 0.0219	2 121C	0.0004	0,0004	0,0000
<u>JJ40</u>	0,0709	0,0313	0,0210	2,1010	0,5504	0,0034	0,0000

ANEXO 7) Determinação do conteúdo adimensional de umidade pelo modelo de PAGE modificado.

Yes is

## ANEXO 7a) - Programa de entrada de dados
; proc print; title 'Analise para Planilhas de 1 a 7'; run; proc sort; by planilha; proc nlin; by planilha; parms a=1 s=1 c=1, tc=t**c; model r=a-s*tc; der.a=1; der.s=-tc; der.c=-s*tc*log(t); output out=saida p=rhat r=rresid; run; proc plot data=saida; by planilha; plot r*t='A' rhat*t='P' /overlay vpos=25; plot rresid*t / vref=0 vpos=25; run; quit;

Þ

ź

Ì

ŧ

# ANEXO 7a) - Programa de entrada de dados no SAS

Ì

Þ

# Analise para Planilhas de 1 a 7

OBS	PLANILHA	Т	R
1	1	0.00	0.000
2	1	1800.00	-0.202
3	1	6360.00	-0.405
4	1	7500.00	-0.422
5	1	8700.00	-0.511
6	1	10140.00	-0.682
7	1	11760.00	-0.693
8	2	0.00	0.000
9	2	1200.00	-0.214
10	2	2340.00	-0.269
11	2	3360.00	-0.327
12	2	4380.00	-0.427
13	2	5340.00	-0.475
14	3	0.00	0.000
15	3	1200.00	-0.393
16	3	2400.00	-0.412
17	3	3540.00	-0.586
18	3	4680.00	-0.621
19	3	5820.00	-0.644
20	4	0.00	0.000
21	4	1620.00	-0.193
22	4	3240.00	-0.272
23	4	4860.00	-0.349
24	4	6420.00	-0.425
25	5	0.00	0.000
26	5	1200.00	-0.300
27	5	2220.00	-0.317
28	5	3480.00	-0.424
29	5	4680.00	-0.534
30	5	5640.00	-0.555
31	6	0.00	0.000
32	6	1440.00	-0.152
33	6	2520.00	-0.178
34	6	3300.00	-0.231
35	6	4080.00	-0.331
36	6	4860.00	-0.394
37	6	5520.00	-0.451
38	7	0.00	0.000
39	7	1260.00	-0.259
40	7	2460.00	-0.326
41	7	3420.00	-0.356
42	7	4380.00	-0.475
43	7	5340.00	-0.547

PLANILHA=1							
Non-Linear Least Squares Iterative Phase							
	Dependent \	/ariable R Me	ethod: Gauss	-Newton			
lter	А	k	n S	um of Squares			
0	1.000000	1.000000	1.000000	416603064			
1	-0.024939	0.000112	0.999994	1.192173			
2	-0.024939	0.000112	0.948007	0.060963			
3	-0.022821	0.000145	0.898770	0.012347			
4	-0.020916	0.000176	0.878275	0.012065			
5	-0.020153	0.000187	0.873919	0.011501			
6	-0.019993	0.000189	0.872966	0.011498			
7	-0.019958	0.000190	0.872739	0.011498			
8	-0.019949	0.000190	0.872684	0.011498			
9	-0.019947	0.000190	0.872671	0.011498			
NOTE: 0	Convergence o	riterion met.					

i

Ì.

Non-Linear Least Squares Summary Statistics Dependent Variable R

 Source
 DF Sum of Squares
 Mean Square

 Regression
 3
 1.5779092965
 0.5259697655

 Residual
 4
 0.0114977035
 0.0028744259

 Uncorrected Total
 7
 1.5894070000
 0.0028744259

 (Corrected Total)
 6
 0.3755177143
 0.0028744259

Param	eter	Estimate	e Asymptoti	c	Asymptotic	95 %
			Std. Error		Confidence	Interval
					Lower	Upper
А	019	9473027	0.051347192	222	16250803420	0.1226134289
k	0.000	1897579	0.000368927	768	00083453572	0.0012140515
n	0.872	6711721	0.206233242	64 (	.30008364260	1.4452587017

Corr	А	k	n
A	1	0.6418292156	-0.61110682
k	0.6418292156	1	-0.998954943
n	-0.61110682	-0.998954943	1

Non-Linear Least Squares Iterative Phase							
	Dependent Variable R Method: Gauss-Newton						
Iter	А	k	n	Sum of Squares			
0	1.000000	1.000000	1.000000	65859187			
1	-0.010366	0.000405	0 999963	6.356743			
2	-0.010365	0.000405	0.908045	0.583076			
3	-0.008080	0.000710	0.758278	0.003284			
4	-0.007729	0.000818	0.740197	0.003069			
5	-0.007389	0.000928	0.724221	0.002947			
6	-0.007062	0.001040	0.710158	0.002850			
7	-0.006751	0.001150	0.697809	0.002752			
8	-0.006459	0.001259	0.686984	0.002645			
9	-0.006186	0.001363	0.677504	0.002534			
10	-0.005678	0.001562	0.660903	0.002478			
11	-0.005246	0.001738	0.648362	0.002326			
12	-0.004525	0.002039	0.629466	0.002197			
13	-0.003591	0.002429	0.610022	0.001856			
14	-0.003382	0.002486	0.609187	0.001705			
15	-0.003374	0.002487	0.609137	0.001705			
16	-0.003373	0.002487	0.609133	0.001705			
IOTE.	<u></u>	without on the set					

----- PLANILHA=2 ------

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary StatisticsDependent Variable RSourceDFSum of SquaresMean SquareRegression30.631335312430.21044510414Residual30.001704687570.00056822919Uncorrected Total60.63304000000

(Corrected Total) 5 0.14454933333

Parame	ter Estima	ate Asymptotic	: Asymptoti	c 95 %
Std. Error Confidence Int		ence Interval		
		Lower	Upper	
Α	0033730214	0.0237307845	7 - 07889624330	0.07215020047
k (	0.0024871277	0.0019476009	200371111221	0.00868536765
n i	0.6091330338	0.0905415991	1 0.32098439464	0.89728167298

Corr	А	k	n
A	1	0.5785251488	-0.519856268
k	0.5785251488	1	-0.996751133
n	-0.519856268	-0.996751133	1
	Analise para Pl	anilhas de 1 a 7	

	PLANILHA=3						
			_				
	Non-Linear Least Squares Iterative Phase						
	D	ependent Va	riable R Met	hod: Gauss-	Newton		
lte	er	A	k	n S	Sum of Squares		
	01	.000000	1.000000	1.000000	75450754		
	1 -0	.014929	0.000963	0.999901	52.248254		
• •	20	.014923	0.000964	0.897341	5.731590		
	3-0	.009895	0.001948	0.696020	0.053664		
	4 -0	.008371	0.003209	0.615524	0.027321		
	5 -0	.008004	0.003697	0.597804	0.026525		
	6 -0	.007646	0.004223	0.581325	0.025742		
	7 -0	.007298	0.004784	0.566024	0.024929		
	8 -0	0.006962	0.005375	0.551835	0.024067		
	9 -0	.006639	0.005994	0.538688	0.023156		
1	0 -0	.006328	0.006635	0.526515	0.022204		
1	1 -0	0.005733	0.007954	0.503980	0.022048		
1	2 -0	.005192	0.009330	0.484637	0.021232		
1	3 -0	.004702	0.010729	0.468098	0.019927		
1	4 -0	.003820	0.013505	0.439873	0.019837		
1	5 -0	.003121	0.016122	0.419610	0.017248		
1	6 -0	.002027	0.020726	0.390778	0.014310		
1	7 -0	.000816	0.026776	0.365190	0.007914		
1	8 -0	.000726	0.027291	0.366900	0.006415		
1	9 -0	.000731	0.027287	0.366874	0.006415		
2	0 -0	.000731	0.027287	0.366873	0.006415		

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics	Dependent Variable R

Source	DF S	um of Squares	Mean Square
Regression Residual	3 3	1.4615509509 0.0064150491	0.4871836503 0.0021383497
Uncorrected Tota	al 6	1.4679660000	

(Corrected Total) 5 0.2922433333

 Parameter
 Estimate
 Asymptotic
 Asymptotic 95 %

 Std. Error
 Confidence
 Interval

 Lower
 Upper

 A -.0007312005 0.04621008015 -.14779478057 0.14633237961

 k 0.0272873358 0.02083040157 -.03900541718 0.09358008881

 n 0.3668731098 0.08822974923 0.08608193291 0.64766428676

Corr	А	k	n
A	1	0.4770471736	-0.38580588
k	0.4770471736	1	-0.993560218
n	-0.38580588	-0.993560218	1

PLANILHA=4							
	Non-Linear Least Squares Iterative Phase						
	Dependent Variable R Method: Gauss-Newton						
iter	А	k	n S	um of Squares			
0	1.000000	1.000000	1.000000	77914491			
1	-0.004356	0.000337	0.999969	5.509691			
2	-0.004356	0.000337	0.907639	0.526301			
3	-0.003106	0.000601	0.753252	0.001756			
4	-0.002765	0.000801	0.713676	0.001359			
5	-0.002608	0.000909	0.698194	0.001290			
6	-0.002460	0.001018	0.684708	0.001208			
7	-0.002322	0.001124	0.672984	0.001110			
8	-0.002195	0.001227	0.662803	0.001002			
9	-0.001960	0.001423	0.645130	0.000946			
10	-0.001766	0.001595	0.632029	0.000787			
11	-0.001448	0.001887	0.612668	0.000632			
12	-0.001058	0.002253	0.593797	0.000293			
13	-0.000993	0.002287	0.593930	0.000188			
14	-0.000993	0.002287	0.593932	0.000188			
15	-0.000993	0.002287	0.593932	0.000188			
OTE.	<b>O</b>	alterion mod					

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares	Mean Square
Regression Residual Uncorrected Tota	3 0.41347061670 2 0.00018838330 1 5 0.41365900000	0.13782353890 0.00009419165

(Corrected Total) 4 0.10663480000

Parameter Estimate Asymptotic Asymptotic 95 % Std. Error Confidence Interval Lower Upper A -.0009933173 0.00967954168 -.04264148129 0.04065484670 k 0.0022873048 0.00086024242 -.00141406031 0.00598866981 n 0.5939319089 0.04279421220 0.40980125208 0.77806256572

Corr	А	k	n
A	1	0.5314242095	-0.472914699
k	0.5314242095	1	-0.996867158
n	-0.472914699	-0.996867158	1

PLANILHA=5					
	Non-Linear I	_east Squares	Iterative Pha	ase	
	Dependent V	ariable R Me	ethod: Gauss	-Newton	
lter	А	k	n	Sum of Squares	
0	1.000000	1.000000	1.000000	72140034	
1	-0.014850	0.000629	0.999938	19.476596	
2	-0.014847	0.000629	0.901665	1.999106	
3	-0.011144	0.001200	0.722234	0.013528	
4	-0.009938	0.001775	0.663744	0.010862	
5	-0.009642	0.001960	0.651714	0.010475	
6	-0.009351	0.002151	0.640499	0.010086	
7	-0.008783	0.002543	0.619596	0.010050	
8	-0.008244	0.002952	0.601419	0.009799	
9	-0.007739	0.003367	0.585672	0.009353	
10	-0.007269	0.003781	0.572059	0.008777	
11	-0.006399	0.004592	0.548543	0.008587	
12	-0.005671	0.005341	0.531227	0.007615	
13	-0.004472	0.006653	0.505863	0.006619	
14	-0.002980	0.008406	0.481469	0.004378	
15	-0.002717	0.008637	0.481622	0.003670	
16	-0.002719	0.008636	0.481627	0.003670	
17	-0.002719	0.008636	0.481627	0.003670	

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares	Mean Square
Regression	3 0.95977567735	0.31992522578
Residual	3 0.00367032265	0.00122344088
Uncorrected Total	6 0.96344600000	
(Corrected Total)	5 0.20729600000	

 Parameter
 Estimate
 Asymptotic
 Asymptotic 95 %

 Std.
 Error
 Confidence
 Interval

 Lower
 Upper

 A -.0027190117
 0.03490971521
 -.11381918041
 0.10838115692

 k 0.0086363692
 0.00686485266
 -.01321102438
 0.03048376280

 n
 0.4816273928
 0.09141149688
 0.19071030402
 0.77254448168

Corr	А	k	n
A	1	0.5439793645	-0.469942171
k	0.5439793645	1	-0.995233972
n	-0.469942171	-0.995233972	1

------ PLANILHA=6 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

	Dependent			NOW CON
Iter	A	k	n	Sum of Squares
0	1.000000	1.000000	1.000000	89992602
1	-0.009303	0.00003270	57 1.000005	0.184209
2	-0.009304	0.00003270	64 1.081805	0.017308
3	-0.010479	0.00003861	31 1.082915	0.002978
4	-0.010496	0.00003855	65 1.082910	0.002977
5	-0.010496	0.00003855	68 1.082909	0.002977
ATE. (		authorized mode		

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares Mean Square
Regression	3 0.57337022639 0.19112340880
Residual	4 0.00297677361 0.00074419340
Uncorrected Total	7 0.57634700000

(Corrected Total) 6 0.14532285714

 Parameter
 Estimate
 Asymptotic
 Asymptotic
 95 %

 Std. Error
 Confidence Interval
 Lower
 Upper

 A -0.010495654
 0.02653750394 - .08417458043
 0.0631832716

 k
 0.000038557
 0.00006027486 - .00012879075
 0.0002059044

 n
 1.082909093
 0.17968124773
 0.58404072221
 1.5817774637

#### Asymptotic Correlation Matrix

Corr	А	k	n
A	1	0.6848200743	-0.655572989
k	0.6848200743	1	-0.998929781
n	-0.655572989	-0.998929781	1

----- PLANILHA=7 -----

#### Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

Iter	A	k	n	Sum of Squares
0	1.000000	1.000000	1.000000	66987196
1	-0.014926	0.000460	0.999958	8.401830
2	-0.014924	0.000460	0.907688	0.776931
3	-0.011792	0.000820	0.753806	0.006516
4	-0.011280	0.000958	0.733938	0.006363
5	-0.010778	0.001102	0.716311	0.006290
6	-0.010292	0.001250	0.700741	0.006203
7	-0.009827	0.001400	0.687032	0.006072

8	-0.009387	0.001548	0.674986	0.005901
9	-0.008973	0.001693	0.664414	0.005704
10	-0.008200	0.001972	0.645868	0.005638
11	-0.007537	0.002226	0.631779	0.005343
12	-0.006422	0.002668	0.610450	0.005098
13	-0.004952	0.003267	0.588139	0.004398
14	-0.004600	0.003377	0.586768	0.004046
15	-0.004579	0.003381	0.586655	0.004046
16	-0.004578	0.003382	0.586644	0.004046

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares	Mean Square
Regression	3 0.82088119615	0.27362706538
Residual	3 0.00404580385	0.00134860128
Uncorrected Total	6 0.82492700000	
(Corrected Total)	5 0.18269883333	

Parameter Estimate Asymptotic Asymptotic 95 % Std. Error Confidence Interval Lower Upper A -.0045775711 0.03659621806 -.12104503507 0.11188989285 k 0.0033815207 0.00358609719 -.00803123365 0.01479427496

C 0.5866438554 0.12285996139 0.19564202825 0.97764568248

Corr	А	k	n
A	1	0.5566896714	-0.495611105
k	0.5566896714	1	-0.99663834
n	-0.495611105	-0.99663834	1





--+----

6000

А

-+-----

8000

---+-----+ 10000 12000

-0.10 +

0

2000

----+----

4000

т



1

•





•

.

-4

۴

4

٨

-+-

3000

-0.050 +

0

...+...

1000

...+...

2000

Ţ

-+----

4000

-+



ŧ

.

24

٤

k

b

Т







- 46

# ANEXO 7a) - Programa de entrada de dados no SAS

Analise para Planilhas de 1 a 7 sem o parametro A OBS PLANILHA T R

4	4	0.00	0.000
י ר	1	1900.00	0.000
2	1	6260.00	-0.202
С И	1	7500.00	-0.403
4 E	1	7500.00	-0.422
5	1	8700.00	-0.511
р 7	1	10140.00	-0.682
(	1	11760.00	-0.693
8	2	0.00	0.000
9	2	1200.00	-0.214
10	2	2340.00	-0.269
11	2	3360.00	-0.327
12	2	4380.00	-0.427
13	2	5340.00	-0.475
14	3	0.00	0.000
15	3	1200.00	-0.393
16	3	2400.00	-0.412
17	3	3540.00	-0.586
18	3	4680.00	-0.621
19	3	5820.00	-0.644
20	4	0.00	0.000
21	4	1620.00	-0.193
22	4	3240.00	-0.272
23	4	4860.00	-0.349
24	4	6420.00	-0.425
25	5	0.00	0.000
26	5	1200.00	-0.300
27	5	2220.00	-0.317
28	5	3480.00	-0.424
29	5	4680.00	-0.534
30	5	5640.00	-0.555
31	6	0.00	0.000
32	6	1440.00	-0.152
33	6	2520.00	-0.178
34	6	3300.00	-0.231
35	6	4080.00	-0.331
36	6	4860.00	-0.394
37	6	5520.00	-0.451
38	7	0.00	0,000
39	7	1260.00	-0.259
40	7	2460.00	-0.326
0 ⊿1	7	3420.00	-0.356
42	7	4380.00	-0.475
4 <u>7</u> 12	7	5340.00	-0.47
40	1	0040.00	-U.U <del>4</del> 7

Analise para Planilhas de 1 a 7 sem o parametro A

# ----- PLANILHA=1 ------

Non-Linear Least Squares Iterative PhaseDependent Variable RMethod: Gauss-NewtonIterkn01.0000001.000000416695571009999010.0001530.9999903486495

	0.000100	0.00000	0.100100
2	0.000153	0.934648	0.225129
3	0.000216	0.859737	0.012960
4	0.000236	0.850544	0.012731
5	0.000269	0.836273	0.012534
6	0.000314	0.820314	0.012115
7	0.000323	0.818247	0.011884
8	0.000324	0.817957	0.011883
9	0.000325	0.817912	0.011883
10	0.000325	0.817906	0.011883

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source [	DF S	Sum of Squares	Mean Square
Regression Residual Uncorrected Total	2 5 7	1.5775236345 0.0118833655 1.5894070000	0.7887618173 0.0023766731
	~	0 0755477440	

(Corrected Total) 6 0.3755177143

Parameter Estimate Asymptotic Asymptotic 95 % Std. Error Confidence Interval Lower Upper k 0.0003246286 0.00040658794 -.00072052383 0.0013697810 n 0.8179055198 0.13725762534 0.46507867523 1.1707323644

## Asymptotic Correlation Matrix

Corr	k	n	
k	1	-0.999519678	
n	-0.999519678	1	
Analise	para Planilhas de	1 a 7 sem o parametro A	١

þ

#### ----- PLANILHA=2 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton ter **k n** Sum of Squares

k	n	Sum of Square
1.000000	1.000000	65892417
0.000437	0.999959	7.630055
0.000437	0.906692	0.715405
0.000765	0.754826	0.003876
0.000996	0.717863	0.003257
0.001118	0.703393	0.003126
0.001239	0.690734	0.002994
0.001358	0.679676	0.002853
0.001585	0.660371	0.002821
0.001790	0.645882	0.002627
0.002141	0.624232	0.002476
0.002600	0.602500	0.001951
0.002659	0.602139	0.001716
0.002659	0.602126	0.001716
0.002659	0.602125	0.001716
	k 1.000000 0.000437 0.000765 0.000996 0.001118 0.001239 0.001358 0.001585 0.001585 0.001790 0.002141 0.002600 0.002659 0.002659 0.002659	kn1.0000001.0000000.0004370.9999590.0004370.9066920.0007650.7548260.0009960.7178630.0011180.7033930.0012390.6907340.0013580.6796760.0015850.6603710.0017900.6458820.0021410.6242320.0026590.6021390.0026590.6021390.0026590.6021260.0026590.602125

NOTE: Convergence criterion met.

â

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares	Mean Square
Regression Residual Uncorrected Total	2 0.63132408495 4 0.00171591505 6 0.63304000000	0.31566204247 0.00042897876

(Corrected Total) 5 0.14454933333

Parameter Estimate Asymptotic Asymptotic 95 % Std. Error Confidence Interval Lower Upper k 0.0026593837 0.00145608382 -.00138329843 0.00670206578 n 0.6021252106 0.06631873857 0.41799736493 0.78625305632

#### . . . . . . .

Asymptotic Correlation Matrix

Corr k n

k 1 -0.998866063 n -0.998866063 1 Analise para Planilhas de 1 a 7 sem o parametro A

# ----- PLANILHA=3 -----

No	n-Linear Leas	t Squares Iter	rative Phase
Dej	pendent Varia	ble R Metho	d: Gauss-Newton
Iter	k	n Su	im of Squares
0	1.000000	1.000000	75486023
1	0.001007	0.999896	57.461129
2	0.001008	0.897037	6.330192
3	0.002014	0.697532	0.069740
4	0.003267	0.618985	0.025281
5	0.003746	0.601606	0.023934
6	0.004261	0.585378	0.022806
7	0.004809	0.570249	0.021807
8	0.005388	0.556160	0.020882
9	0.005993	0.543055	0.019999
10	0.007250	0.518691	0.019916
11	0.008584	0.497588	0.019485
12	0.009962	0.479413	0.018630
13	0.011351	0.463812	0.017458
14	0.014090	0.437075	0.017220
15	0.016646	0.417729	0.015110
16	0.021118	0.389970	0.012799
17	0.026958	0.364866	0.007692
18	0.027449	0.366350	0.006416
19	0.027446	0.366328	0.006416

NOTE: Convergence criterion met.

0.027447

20

4

•

Þ

Non-Linear Least Squares Summary Statistics Dependent Variable R

0.366328

0.006416

Source	DF Sum of Squares	Mean Square
Regression	2 1.4615504169 0	.7307752084
Residual	4 0.0064155831 0	.0016038958
Uncorrected Total	6 1.4679660000	
(Corrected Total)	5 0.2922433333	
Parameter Estin St	nate Asymptotic d. Error Confiden	Asymptotic 95 % ce Interval
	Lower l	Jpper
k 0.02744655	83 0.015921378060	1675767578
0.07165079237		
n 0.36632760	18 0.07038160555 0.1	17091958158
0.56173562202		

Corr	k	n
k	1	
n	-0.998368071	1

Analise para Planilhas de 1 a 7 sem o parametro A

------ PLANILHA=4 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

Iter	k	n	Sum of Squares
0	1.000000	1.000000	77946763
1	0.000348	0.999968	5.951544
2	0.000348	0.907134	0.573253
3	0.000619	0.752483	0.002214
4	0.000822	0.712836	0.001232
5	0.000933	0.697267	0.001132
6	0.001043	0.683679	0.001046
7	0.001151	0.671847	0.000958
8	0.001256	0.661558	0.000868
9	0.001456	0.643674	0.000831
10	0.001632	0.630392	0.000706
11	0.001930	0.610739	0.000594
12	0.002303	0.591590	0.000294
13	0.002336	0.591810	0.000189
14	0.002336	0.591811	0.000189
15	0.002336	0.591811	0.000189

NOTE: Convergence criterion met.

2

Þ

þ

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares	Mean Square
Regression	2 0.41346963181	0.20673481591
Residual	3 0.00018936819	0.00006312273
Uncorrected Total	5 0.41365900000	
(Corrected Total)	4 0.10663480000	
Parameter Estim	ate Asymptotic	Asymptotic 95 %
Sto	I. Error Confider	nce Interval
	Lower	Upper
k 0.002335550	03 0.00060656008 0.	00040517288
0.00426592778		
n 0.59181148	34 0.03073961097 0.	49398267148
0.68964029533		
Asympto	tic Correlation Matrix	
Corr	k r	١
	4 0.000	007000

k	1	-0.998867629	
n	-0.998867629	1	
Analise	para Planilhas de	1 a 7 sem o parametro /	Ą

### ----- PLANILHA=5 -----

Non-Linear Least Squares Iterative Phase									
Dep	pendent Varial	ble R Method	: Gauss-Newton						
lter	k	n Su	um of Squares						
0	1.000000	1.000000	72174464						
1	0.000674	0.999933	22.729128						
2	0.000674	0.900891	2.359911						
3	0.001275	0.721600	0.019077						
4	0.001869	0.663553	0.009900						
5	0.002249	0.639507	0.009564						
6	0.002655	0.618418	0.009364						
7	0.003078	0.600030	0.009088						
8	0.003508	0.584062	0.008689						
9	0.003937	0.570228	0.008193						
10	0.004777	0.546287	0.008103						
11	0.005554	0.528607	0.007286						
12	0.006914	0.502672	0.006492						
13	0.008725	0.477768	0.004394						
14	0.008943	0.478141	0.003678						
15	0.008942	0.478147	0.003678						
16	0.008942	0.478148	0.003678						

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares	Mean Square	

 Regression
 2
 0.95976835515
 0.47988417757

 Residual
 4
 0.00367764485
 0.00091941121

 Uncorrected Total
 6
 0.96344600000

(Corrected Total) 5 0.20729600000

ĺ

Þ

Parameter Estimate Asymptotic Asymptotic 95 % Std. Error Confidence Interval Lower Upper k 0.0089418754 0.00512771233 -.00529474373 0.02317849461 n 0.4781476960 0.06938482967 0.28550713184 0.67078826011

# Asymptotic Correlation Matrix

Analise para Planilhas de 1 a 7 sem o parametro A

# ----- PLANILHA=6 -----

Non-Linear Least Squares Iterative PhaseDependent Variable RMethod: Gauss-NewtonIterknSum of Squares

0	1.000000	1.000000	90036031
1	0.0000593278	1.000002	0.040810
2	0.0000593280	1.041152	0.004511
3	0.0000596432	1.034856	0.003085
4	0.0000600086	1.033988	0.003084
5	0.0000600494	1.033909	0.003084
6	0.0000600529	1.033902	0.003084

NOTE: Convergence criterion met.

Þ

ŧ

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squar	res Mean Square
Regression Residual Uncorrected Total	2 0.573262544 5 0.0030844552 7 0.5763470000	78 0.28663127239 22 0.00061689104 00
(Corrected Total)	6 0.1453228571	4
Parameter Estima Std. k 0.000060053 0.0002112955 n 1.033902127	te Asymptotic Error Confide Lower 0.00005883679 0.11679604426 0	Asymptotic 95 % ence Interval Upper 00009118965 .73367268893
1.3341315655		
Asymptoti	c Correlation Matri	ix
Corr	k	n
k n -0.999	1 -0.999 9439317	- 9439317 1

Analise para Planilhas de 1 a 7 sem o parametro A

### ----- PLANILHA=7 -----

Non-Linear Least Squares Iterative Phase Dependent Variable R Method: Gauss-Newton

lter	k	n Su	m of Squares
0	1.000000	1.000000	67020906
1	0.000505	0.999953	10.515308
2	0.000506	0.906070	0.997507
3	0.000899	0.749678	0.007223
4	0.001199	0.709022	0.006839
5	0.001364	0.692901	0.006699
6	0.001531	0.678767	0.006513
7	0.001696	0.666400	0.006284
8	0.001856	0.655590	0.006031
9	0.002166	0.636701	0.005900
10	0.002444	0.622478	0.005530
11	0.002924	0.601131	0.005186
12	0.003559	0.579345	0.004385
13	0.003654	0.578543	0.004066
14	0.003656	0.578497	0.004066
15	0.003657	0.578494	0.004066

NOTE: Convergence criterion met.

.

Non-Linear Least Squares Summary Statistics Dependent Variable R

Source	DF Sum of Squares	Mean Square
Regression Residual Uncorrected Total	<ol> <li>0.82086067754</li> <li>0.00406632246</li> <li>0.82492700000</li> </ol>	0.41043033877 0.00101658062
(Corrected Total)	5 0.18269883333	

Parameter Estimate Asymptotic Asymptotic 95 % Std. Error Confidence Interval Lower Upper k 0.0036565015 0.00275292817 -.00398674902 0.01129975202 n 0.5784936892 0.09121983110 0.32523026252 0.83175711598

## Asymptotic Correlation Matrix

 Corr
 k
 n

 k
 1
 -0.998906997

 n
 -0.998906997
 1

Analise para Planilhas de 1 a 7 sem o parametro A



Analise para Planilhas de 1 a 7 sem o parametro A





4

4

Ì

Analise para Planilhas de 1 a 7 sem o parametro A



Analise para Planilhas de 1 a 7 sem o parametro A



Analise para Planilhas de 1 a 7 sem o parametro A



F

k

Analise para Planilhas de 1 a 7 sem o parametro A



----

DI ANUI LIA A		2 59470 44		,	0.000 00							
TLANILMA 1		∠,304/E-11		<u><u> </u></u>	≤7,83E-03		~	Į				
1	R	0.000074.00	2	3	4	5	6		1/	18	19	20
4200	0,65724348	0,88267105	0,15175239	0,03613661	0,0084852	0,00176617	0,00031078		7,4986E-19	8,4/8E-21	7,5143E-23	5,2179E-25
	0.0000			0.005								
K≈	0,6573	L,	U1=	0,205								
R=Ua-Ue/Uo-	Ue		Ue≃	0,0249								
Ua=R.(Ui-Ue)	+Ue		Uf=	0,115								
Ua≃	0,1433	L	<i></i>		<u> </u>				~			
após o aquec	imento Ui-Ua/	Ji-Uf=	0,6858	68,58								
após o resfria	mento Ua-Uf/U	Ji-Uf=	0,3142	31,42	%	%						
	]											
PLANILHA 2	d=	2,2954E-11		r=	2,93E-03							
Т	R	1	2	3	4	5	6		17	18	19	. 20
2340	0,73644641	0,93282942	0,18929927	0,05942615	0,02054545	0,0070326	0,00227289		6,4856E-12	5,0743E-13	3,4762E-14	2,0837E-15
R=	0,7370	-	Ui=	0,205		1						
R=Ua-Ue/Uo-	Ue	······ /	Ue≖	0,0249	······································							·····
Ua=R.(Ui-Ue)	+Ue		Uf=	0.144		1						
Ua=	0 1576				·····	<u>}</u>						
anós o aquiec	imento Lli-Lla/I	li-1 Jf=	0 7765	77 65	%						·	
após o resfria	mento Lla-Llf/	li-i If=	0 2235	22 35	9 <u>/</u>							
		· · · · ·	0,2200	UU								
	d=	2 77585.++		r=	2 035.03							
r landilina o T	D	2,11JOE-11	~ ~		2,935-03	<i>*</i>	~		4-4	40	40	
1	0 705 40000	0.06453550	A 04000840	0.07000000	4	5	0.00070707		17	0 20755 00	19	20
1320	0,79543388	0,90103009	0,21309049	0,07606309	0,0335/6/	0,01500355	0,000/6/85		4,1314E-08	3,3375E-09	1,90332-09	3,03/6E-10
				<u> </u>		[	·····					
R≖	0,7985		U⊫	0,185								
R=Ua-Ue/Uo-	Ue		Ue=	0,0249								
Ua=R.(Ui-Ue)	+Ue		=tJ	0,109								
Ua=	0,1527											
após o aqueci	imento Ui-Ua/U	ji-Uf≕	0,4244	42,44	%							
após o resfria	mento Ua-Uf/L	Ji-Uf=	0,5756	57,56	%				}			
									;			
PLANILHA 4	d=	2,7766E-11		r≖	2,93E-03				····			·····
τ	R	1	2	3	4	5	6		17	18	19	20
1620	0.77638851	0.95300209	0.20621271	0.07204472	0.02893222	0.01200622	0.00490994		3.1421E-09	5 1983E-10	7.8591E-11	1.0851E-11
	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0,00000		-,					.1
R=	0 7782		1 li=	n 205		······································		••••••••••••••••••••••••••••••••••••••				
P-Halle/Ha	0,7702		م. حما ا	0,200							······	
			18-	0,0249	·····							
Ua=R.(UI-Ue)	100		01	0,130	<u>.</u>		······································			<u></u>		
Ua=	0,1001	·· 1 •Z	0 5000	** **								
apos o aqueci	mento UI-Ua/U	/i-Uf=	0,5962	59,62	%		.,					
apos o restrial	mento Ua-Uf/L	II-Uf=	0,4038	40,38	%							
						······						
PLANILHA 5	d=	2,3759E-11		r=	2,93E-03							
т	R	1	2	3	4	5	6		17	18	19	20
2160	0,74577902	0,9378322	0,19339292	0,06235679	0,02238114	0,00803875	0,00275551		3,0428E-11	2,8708E-12	2,397E-13	1,7701E-14
				L								
R=	0,7465		Ui=	0,205								
R=Ua-Ue/Uo-	Ue		Űe=	0,0249								
Ua=R.(Ui-Ue)	+Ue		Uf=	0,136								
Ua≃	0,1593		·····				•.•					
após o aqueci	mento Ui-Ua/L	li-Uf=	0,6616	66,16	%			`	·			
após o restria	mento Ua-LIf/I	i-Uf=	0 3384	33.84	%			·			······	
			2,0-31						{			
PLANIE HA S	d=	2 5971E-11		r=	2 935-03							
T	9- 0		<u>ث</u>	, ,	A., 000-00		¢	<u>+</u>	17	10	10	20
11/0	0 8077007	0.06660722	0 21924079	0.08101393	0.03624900	0.0171504	0 00820402		1 93835 07	6 2827E.09	1 35385 09	3 26025-00
1 140	0,0011097	0,30003232	0,21001370	0,00131202	0,000-000	0,0171001	0,00020433		1,30032-07	0,2027 - 400	1,00000-00	012002C-00
	0.0400			0.000	l							
K=	0,8120		UI=	0,205								
R=Ua-Ue/Uo-	Ue		Ue=	0,0249								
Ua=R.(Ui-Ue)	+Ue		Uf=	0,138								
Ua=	0,1711							l		·····		
após o aqueci	mento Ui-Ua/L	li-Uf=	0,5054	50,54	%	,			<i></i>			
após o resfriar	mento Ua-Uf/U	i-Uf=	0,4946	49,46	%							
					,			[				
		2 2217E-11		r=	2,93E-03						l	
PLANILHA 7	<b>a</b> =											
PLANILHA 7 T	o= R	1	2	3	4	5	6		17	18	19	20
PLANILHA 7 T 2160	0= R 0 74577902	1	2	3 0.06235679	4	5 0.00803875	6 0.00275551		17 3.0428E-11	18 2.8708E-12	19 2.397E-13	20 1,7701E-14

•

k

# Anexo 8a) Programa de entrada de dados

1- ACHAR A EQUAÇÃO  $D = D_o \exp b \frac{1}{RT}$  $D_o - const.$ b - const. R - 8,314  $T_{m1}$ -343,15  $T_{m2}$ -325,65  $D_1$  $D_2$ T_{m3}-354,60  $D_3$ T_{m4}-354,65 D₄ T_{m5}-330,55  $\mathsf{D}_5$ T_{m6}-343,90  $D_6$ T_{m7}-321,15  $D_7$ 2,93.10-3 r= raio médio

$$R = \frac{6}{\pi^2} \sum_{n=1}^{n=20} \frac{1}{n^2} \exp\left[\frac{-n^2 \cdot \pi^2 \cdot D \cdot t}{r^2}\right]$$

PLANILHAS	TEMPO (s)
1	1080 960 480 600 540 540
2	600 540 420 420 360
3	300 300 240 240 240
4	420 420 420 360
5	720 420 360 300 360
6	240 180 180 180 180 180
7	480 600 360 360 360

²⁻ ACHAR AS EQUACÕES

,

$$1 - D = D_{o} \exp \left(b\left(\frac{1}{8,314,343,15}\right)\right)$$

$$2 - D = D_{o} \exp \left(b\left(\frac{1}{8,314,325,65}\right)\right)$$

$$3 - D = D_{o} \exp \left(b\left(\frac{1}{8,314,354,60}\right)\right)$$

$$4 - D = D_{o} \exp \left(b\left(\frac{1}{8,314,354,65}\right)\right)$$

$$5 - D = D_{o} \exp \left(b\left(\frac{1}{8,314,330,55}\right)\right)$$

$$6 - D = D_{o} \exp \left(b\left(\frac{1}{8,314,343,90}\right)\right)$$

$$7 - D = D_{o} \exp \left(b\left(\frac{1}{8,314,321,15}\right)\right)$$

3- Com o D calculado para cada equação entrar na série de fourier para 20 termos para calcularR

 $R = \frac{6}{\pi^2} \sum_{n=1}^{n=20} \frac{1}{n^2} \exp\left[\frac{-n^2 \cdot \pi^2 \cdot D \cdot t}{r^2}\right]$ 

D	RT	1/'RT
2,28 E-11	2686,6691	0,00037221
3,57 E-11	2769,8091	0,00036104
2,89 E-11	2852,9491	0,00035051
2,48 E-11	2686,6691	0,00037221
3,31 E-11	2769,8091	0,00036104
2,96 E-11	2852,9491	0,00035051

options ps=600; data a: input tm @@; d0=2.3538e-10; b=-6302.22209529215; r=8.314; d=d0*exp(b*(1/(r*tm)));cards; 343.15 325.65 354.60 354.65 330.55 343.90 321.15 ; proc print; run; quit;

## Analise 1a. equacao

ji.

wi.

4

P

ħ

ş

OF	IS D	т	ы	R	N	MR
1	2.5847E-11	1080	3.14159	.00293	1	0.96842
2	2.5847E-11	1080	3 14159	00293	2	0.21988
3	2.5817E-11	1080	3 14159	00293	ĩ	0.08324
4	2.5847E-11	1080	3 14159	00293	4	0.03740
5	2.5847E-11	1080	3 14159	00293	5	0.01793
6	2.5047E-11	1080	3 14159	00293	6	0.00875
7	2.5847E-11	1080	3 14159	00293	7	0.00474
8	2.5847E-11	1080	3 14159	00293	8	0.00720
Q.	2.5817E-11	1080	3 14159	00293	ő	0.00200
10	2.5017E 11	1080	3 14159	00293	10	0.00040
11	2.5847E-11	1080	3 14159	00293	11	0.00017
12	2.5847E-11	1080	3 14159	00293	12	0.00017
13	2.5047E-11	1080	3 14159	00293	13	0.00007
14	2.5047E-11	1080	3 14159	00293	14	0.000000
15	2.5047E-11	1080	3 14159	00293	15	0.00001
16	2.5047E-11	1080	3 14159	00293	16	0.00000
17	2.5847E-11	1080	3 14159	00293	17	0.00000
12	2.5847E-11	1080	3 14150	00293	1.2	0.00000
10	2.5847E-11	1080	3 14159	00293	10	0.00000
20	2.5847E-11	1080	3 14159	00293	20	0.00000
20	2.5847E-11	060	3 14150	00295	1	0.00000
21	2.5847E-11	060	2 1/150	00293	2	0.22204
22	2.38476-11 2.5947E 11	060	2 1/150	00293	2	0.22304
25	2.3647E-11	900	2 1/150	00293	2	0.06355
24	2.5047E*11	900	2 1/150	00295	5	0.03300
25	2.30476-11	900	2 14150	00293	5	0.01200
20	2.38470-11	900	2 1/150	00233	7	0.00775
27	2.J04/E-11	900	2 14150	00293	/ Q	0.00304
20	2.304/E-11	900	2 1/150	00293	0 6	0.00202
29	2.30476-11	900	2 14150	00233	10	0.00122
21	2.J04/E-11	900	2 14150	00293	10	0.00036
21	2.364/E-11	900	2 14150	00293	10	0.00020
22	2.3647E-11 2.5847E-11	900	2 1/1150	00293	12	0.00011
33	2.36476-11	900	3 14150	00233	14	0.00000
25	2,5847E-11	900	3 14159	00293	15	0.00002
36	2.5847E-11	900	3 14159	00293	16	0.00001
27	2.5047E-11	060	3.14150	00223	17	0.00000
38	2.5847E-11	900	3 14159	00293	18	0.00000
30	2.5847E-11	960	3 14159	00293	10	0.00000
40	2.3647E-11	900	3 14150	00293	20	0.00000
40	2.3847E-11	100	2 1/150	00200	20	0.00000
42	2.5847E-11	480	3 14159	00293	2	0.20504
43	2.5847E-11	480	3 14150	00293	3	0.00773
40	2.30476-11	480	3 14150	00293	4	0.02775
44	2.58476-11	480	3.14150	00293	5	0.07800
45	2.384715-11 2.5947E.11	480	2 1/150	00293	6	0.02.000
40	2.5847E-11	480	3 14159	00293	7	0.01002
48	2.5847E-11	480	3 14159	00293	Ŕ	0.01015
40	2.5847E-11	480	3 14159	00293	9	0.00027
50	2.5847E-11	480	3 14159	00293	10	0.00240
51	2.5847E-11	480	3 14159	00293	11	0.00240
52	2.5847E-11	480	3 14159	00293	12	0.000119
53	2.5847E-11	480	3 14159	00293	13	0.00003
54	2.5847E-11	480	3 14159	00293	14	0.00033
55	2.5047E-11	480	3 14159	00293	15	0.00018
56	2.5847E-11	480	3 14159	00293	16	0.00010
57	2.5847E-11	480	3 14150	00293	17	0.00006
52	2.50478-11	480	3 14150	00203	12	0.00000
50	2.5847F_11	480	3 14150	.00223	10	0.00000
60	2 5847F-11	480	3 14159	.00293	20	0.00001
61	2.5847E-11	600	3 14159	.00293	1	0.98233
62	2.5847E-11	600	3.14159	.00293	2	0.23279
63	2.5847E-11	600	3,14159	.00293	3	0.09464

64	2.5847E-11	600	3.14159	.00293	4	0.04699
65	2.5847E-11	600	3.14159	.00293	5	0.02561
66	2.5847E-11	600	3.14159	.00293	6	0.01462
67	2.5847E-11	600	3.14159	.00293	7	0.00852
68	2.5847E-11	600	3.14159	.00293	8	0.00499
69	2.5847E-11	600	3.14159	.00293	9	0.00291
70	2.5847E-11	600	3.14159	.00293	10	0.00168
71	2.5847E-11	600	3.14159	.00293	11	0.00096
	2.5847E-11	. 600	3.14159	.00293	. 12	0.00053
73	2.5847E-11	600	3.14159	.00293	13	0.00029
74	2.5847E-11	600	3.14159	.00293	14	0.00015
/5	2.5847E-11	600	3.14159	.00293	15	800000
/0	2.5847E-11	600	3.14159	.00293	10	0.00004
11	2.384/E-11	600	3.14159	.00293	1/	0.00002
70	2.384/E-11	600	3.14159	.00293	18	0.00001
90	2.304/E-11	600	2.14159	.00293	19	0.00000
00	2.364/E-11	000 640	2 14159	.00295	20	0.00000
87	2.38476-11	540	2 1/150	00293	2	0.90400
82	2.5847E-11	540	2 14150	00293	2	0.23440
83 84	2.5847E-11	540	3 14159	00293	4	0.09017
85	2.5847E-11	540	3 14159	00293	5	0.07678
86	2.5847E-11	540	3 14159	00293	6	0.01559
87	2.5847E-11	540	3.14159	.00293	7	0.00930
88	2.5847E-11	540	3.14159	.00293	8	0.00560
89	2.5847E-11	540	3.14159	.00293	9	0.00337
90	2.5847E-11	540	3.14159	.00293	10	0.00201
91	2.5847E-11	540	3.14159	.00293	11	0.00119
92	2.5847E-11	540	3.14159	.00293	12	0.00069
93	2.5847E-11	540	3.14159	.00293	13	0.00039
94	2.5847E-11	540	3.14159	.00293	14	0.00022
95	2.5847E-11	540	3.14159	.00293	15	0.00012
96	2.5847E-11	540	3.14159	.00293	16	0.00006
97	2.5847E-11	540	3.14159	.00293	17	0.00003
98	2.5847E-11	540	3.14159	.00293	18	0.00002
99	2.5847E-11	540	3.14159	.00293	19	0.00001
100	2.5847E-11	540	3.14159	.00293	20	0.00000
101	2.2954E-11	600	3.14159	.00293	1	0.98429
102	2.2954E-11	600	3.14159	.00293	2	0.23466
103	2.2954E-11	600	3.14159	.00293	3	0.09635
104	2.2954E-11	600	3.14159	.00293	4	0.04851
105	2.2954E-11	600	3.14159	.00293	5	0.02692
105	2.2954E-11	600	3.14159	.00293	6	0.015/1
107	2.2954E-11	600	3.14159	.00293	0	0.00939
108	2.2954E-11	600	3.14159	.00293	8	0.00007
109	2.2934E-11	000	2.14159	.00293	10	0.00342
110	2.2934E-11	600	2 14159	00293	10	0.00203
112	2.2954E-11 2.2954E-11	600	3.14159	00293	11	0.00122
112	2.2954E-11	600	3 14150	00293	12	0.00071
114	2.2254E-11	600	3 14150	00293	14	0.00041
115	2.2954E-11	600	3 14159	00293	15	0.00023
116	2 2954E-11	600	3 14159	00293	16	0.00007
117	2.2954E-11	600	3.14159	.00293	17	0.00004
118	2.2954E-11	600	3.14159	.00293	18	0.00002
119	2.2954E-11	600	3.14159	.00293	19	0.00001
120	2.2954E-11	600	3.14159	.00293	20	0.00000
121	2.2954E-11	540	3.14159	.00293	1	0.98585
122	2.2954E-11	540	3.14159	.00293	2	0.23615
123	2.2954E-11	540	3.14159	.00293	3	0.09774
124	2.2954E-11	540	3.14159	.00293	4	0.04976
125	2.2954E-11	540	3.14159	.00293	5	0.02801
126	2.2954E-11	540	3.14159	.00293	6	0.01663
127	2.2954E-11	540	3.14159	.00293	7	0.01015
128	2.2954E-11	540	3.14159	.00293	8	0.00628
129	2.2954E-11	540	3.14159	.00293	9	0.00389
130	2.2954E-11	540	3.14159	.00293	10	0.00241

1

100

- 8

.

۴.

,

ŝ,

¥
	171	3 3064E 11	540	1 14160	00202	11	0.00147
	131	2.2934E-11	340	5.14159	.00293	11	0.00147
<b>*</b>	132	2.2954E-11	540	3.14159	.00293	12	0.00089
<b>*</b>	133	2.2954E-11	540	3.14159	.00293	13	0.00053
	134	2.2954E-11	540	3.14159	.00293	14	0.00031
· · · · · · · · · · ·	135	2.2954E-11	540	3.14159	.00293	15	0.00018
	136	2.2954E-11	540	3.14159	.00293	16	0.00010
	137	2.2954E-11	540	3.14159	.00293	17	0.00006
	138	2.2954E-11	540	3.14159	.00293	18	0.00003
	139	2.2954E-11	540	3.14159	.00293	19	0.00002
	140	2.2954E-11	540	3 14159	.00293	20	0.00001
~	141	2 2954E-11	420	3 14159	00293	1	0 98898
	142	2 2954E-11	420	3 14159	00293	2	0.23916
	143	2.2954E-11	420	3 1/150	00203	3	0.10056
	143	2.22246-11	420	2 1/160	00223	J	0.10030
*	144	2.2934E*11	420	2 14150	.00293	-	0.03234
	145	2.2934E-11	420	3.14139	.00293	3	0.03032
	146	2.2954E-11	420	3.14139	.00293	0	0.01864
	147	2.2954E-11	420	3.14159	.00293	7	0.01186
	148	2.2954E-11	420	3.14159	.00293	8	0.00769
	149	2.2954E-11	420	3.14159	.00293	9	0.00503
	150	2.2954E-11	420	3.14159	.00293	10	0.00330
	151	2.2954E-11	420	3.14159	.00293	11	0.00216
	152	2.2954E-11	420	3.14159	.00293	12	0.00141
	153	2.2954E-11	420	3.14159	.00293	13	0.00091
	154	2.2954E-11	420	3.14159	.00293	14	0.00058
-*	155	2.2954E-11	420	3.14159	.00293	15	0.00037
	156	2 2954E-11	420	3 14159	00293	16	0.00023
	157	2 2954E-11	420	3 14159	00293	17	0.00014
	158	2.2954E-11	420	3 1/150	00203	18	0.000014
4	150	2.2954E-11	420	2 1/150	00293	10	0.00009
	109	2.2934E-11	420	3,14139	.00293	12	0.00003
	100	2.2954E-11	420	3.14139	.00293	20	0.00003
	161	2.2954E-11	360	3.14159	.00293	1	0.99054
	162	2.2954E-11	360	3.14159	.00293	2	0.24068
	163	2.2954E-11	360	3.14159	.00293	3	0.10201
	164	2.2954E-11	360	3.14159	.00293	4	0.05369
	165	2.2954E-11	360	3.14159	.00293	5	0.03154
	166	2.2954E-11	360	3.14159	.00293	6	0.01973
	167	2.2954E-11	360	3.14159	.00293	7	0.01281
	168	2.2954E-11	360	3.14159	.00293	8	0.00851
	169	2 2954E-11	360	3.14159	00293	9	0.00572
	170	2 2954E-11	360	3 14159	00293	10	0.00387
	171	2 2954E-11	360	3 14159	00293	11	0.00262
	173	2.2954E-11	260	2 1/150	00293	12	0.00177
	172	2.29546-11	260	2 14150	00220	12	0.00110
*	173	2.2734E-11	200	2 14150	00295	1.4	0.00119
	174	2.29346-11	200	3.14139	.00295	14	0.00079
	175	2.2954E-11	360	3.14139	.00293	10	0.00052
	176	2.2954E-11	360	3.14159	.00293	10	0.00034
F	177	2.2954E-11	360	3.14159	.00293	17	0.00022
	178	2.2954E-11	360	3.14159	.00293	18	0.00014
	179	2.2954E-11	360	3.14159	.00293	19	0.00009
	180	2.2954E-11	360	3.14159	.00293	20	0.00006
	181	2.7758E-11	300	3.14159	.00293	1	0.99047
	182	2.7758E-11	300	3.14159	.00293	2	0.24061
	183	2.7758E-11	300	3.14159	.00293	3	0.10194
	184	2.7758E-11	300	3.14159	.00293	4	0.05362
	185	2.7758E-11	300	3.14159	.00293	5	0.03149
	186	2.7758E-11	300	3.14159	.00293	6	0.01968
	197	2 7758F-11	300	3 14159	00293	7	0 01277
	107	27758E.11	300	3 14150	00203	2 2	0 00847
	100	2.7720E*11 77750E 11	200	2 1/150	002220	0 0	0.00047
	100	2.1130E-11	300 200	2.14150	00293	7	0.00309
	190	2.//J&E-11	300 200	3.14139	.00293	10	0.00364
*	191	2.7758E-11	300	3.14159	.00293	11	0.00259
	192	2.7758E-11	300	3.14159	.00293	12	0.00175
	193	2.7758E-11	300	3.14159	.00293	13	0.00117
	194	2.7758E-11	300	3.14159	.00293	14	0.00078
	195	2.7758E-11	300	3.14159	.00293	15	0.00052
	196	2.7758E-11	300	3.14159	.00293	16	0.00034
	197	2.7758E-11	300	3.14159	.00293	17	0.00022

Ť.

198	2.7758E-11	300	3.14159	.00293	18	0.00014
199	2.7758E-11	300	3.14159	.00293	19	0.00009
200	2.7758E-11	300	3.14159	.00293	20	0.00005
201	2.7758E-11	240	3.14159	.00293	1	0.99237
202	2.7758E-11	240	3.14159	.00293	2	0.24246
203	2.7758E-11	240	3.14159	.00293	3	0.10371
204	2.7758E-11	240	3.14159	.00293	4	0.05529
205	2.7758E-11	240	3.14159	.00293	5	0.03303
206	2.7758E-11	240	3.14159	.00293	6	0.02108
207	2.7758E-11	240	3.14159	.00293	7	0.01402
208	2.7758E-11	240	3.14159	.00293	8	0.00957
209	2.7758E-11	240	3.14159	.00293	9	0.00664
210	2.7758E-11	240	3.14159	.00293	10	0.00465
211	2.7758E-11	240	3.14159	.00293	11	0.00327
212	2.7758E-11	240	3.14159	.00293	12	0.00230
213	2.7758E-11	240	3.14159	.00293	13	0.00162
214	2.7758E-11	240	3.14159	.00293	14	0.00114
215	2.7758E-11	240	3.14159	.00293	15	0.00079
216	2.7758E-11	240	3.14159	.00293	16	0.00055
217	2.7758E-11	240	3.14159	.00293	17	0.00038
218	2.7758E-11	240	3.14159	.00293	18	0.00026
219	2.7758E-11	240	3.14159	.00293	19	0.00017
220	2.7758E-11	240	3.14159	.00293	20	0.00012
221	2.7766E-11	420	3.14159	.00293	1	0.98668
222	2.7766E-11	420	3.14159	.00293	2	0.23695
223	2.7766E-11	420	3.14159	.00293	3	0.09848
224	2.7766E-11	420	3.14159	.00293	4	0.05043
225	2.7766E-11	420	3.14159	.00293	5	0.02861
226	2.7766E-11	420	3.14159	.00293	6	0.01714
227	2.7766E-11	420	3.14159	.00293	7	0.01058
228	2.7766E-11	420	3.14159	.00293	8	0.00662
229	2.7766E-11	420	3.14159	.00293	9	0.00417
230	2.7766E-11	420	3.14159	.00293	10	0.00262
231	2.7766E-11	420	3.14159	.00293	11	0.00163
232	2.7766E-11	420	3.14159	.00293	12	0.00101
233	2.7766E-11	420	3.14159	.00293	13	0.00061
234	2.7766E-11	420	3.14159	.00293	14	0.00037
235	2.7766E-11	420	3.14159	.00293	15	0.00022
230	2.7700E-11	420	3.14139	.00293	10	0.00013
237	2.7700E-11	420	2 14159	.00293	17	0.00007
238	2.//00E-11	420	2 14159	.00293	10	0.00004
239	2.7700E-11	420	2 14159	.00293	19	0.00002
240	2,7700E-11	420	2 14150	.00293	20	0.00001
241	2.7700E-11	260	2 14150	.00293	1	0.900.27
242	2.7700E-11	240	2 14150	.00293	2	0.23677
243	2.7700E-11	240	2 1/150	.00295	3	0.10019
244	2.7766E-11	360	3 14150	00293	4	0.03200
245	2.7766E_11	360	3 14150	00273	6	0.03001
240	2.7766E-11	360	3 14159	00293	7	0.01167
247	2.7766E-11	360	3 14150	00293	8	0.01102
240	2.7766E-11	360	3 14159	00293	Q Q	0.00749
250	2.7766E-11	360	3 14159	00293	10	0.00317
251	2 7766E-11	360	3 14159	00293	11	0.00206
252	2.7766E-11	360	3 14159	00293	12	0.00133
253	2 7766E-11	360	3 14159	00293	13	0.00085
254	2 7766E-11	360	3 14159	00293	14	0.00054
255	2 7766E-11	360	3.14159	00293	15	0.00033
256	2 7766E-11	360	3.14159	.00293	16	0.00021
257	2.7766E-11	360	3 14159	.00293	17	0.00012
2.58	2.7766E-11	360	3 14159	.00293	18	0.00007
259	2.7766E-11	360	3 14159	.00293	19	0.00004
260	2.7766E-11	360	3.14159	.00293	20	0.00003
261	2.3759E-11	720	3.14159	.00293	1	0.98053
262	2.3759E-11	720	3.14159	.00293	2	0.23109
263	2.3759E-11	720	3.14159	.00293	3	0.09309
264	2.3759E-11	720	3.14159	.00293	4	0.04563

b

ς.

k

265	2.3759E-11	720	3.14159	.00293	5	0.02446
266	2.3759E-11	720	3.14159	.00293	6	0.01368
267	2.3759E-11	720	3.14159	.00293	7	0.00779
268	2.3759E-11	720	3.14159	.00293	8	0.00444
269	2.3759E-11	720	3.14159	.00293	9	0.00251
270	2.3759E-11	720	3.14159	.00293	10	0.00140
271	2.3759E-11	720	3.14159	.00293	11	0.00077
272	2.3759E-11	720	3.14159	.00293	12	0.00041
273	2.3759E-11	720	3.14159	.00293	13	0.00021
274	2.3759E-11	720	3.14159	.00293	14	0.00011
275	2.3759E-11	720	3.14159	.00293	15	0.00005
276	2.3759E-11	720	3.14159	.00293	16	0.00003
277	2.3759E-11	720	3,14159	00293	17	0.00001
278	2 3759E-11	720	3 14159	00293	18	0.00001
279	2.3759E-11	720	3 14159	00293	19	0.00000
280	2.3759E-11	72.0	3 141 59	00293	20	0.00000
281	2.3759E-11	420	3 14159	00293	1	0.000000
282	2.3759E-11	420	3 14159	00293	2	0.23879
283	2.3759E-11	420	3 14150	00293	3	0.10021
285	2.3759E-11	420	3 14150	002203	Δ	0.10021
285	2.3759E-11	420	3 14150	00293	Ś	0.03202
205	2.3759E-11	420	3 14159	00293	6	0.05005
287	2.3759E-11	470	3 14150	002003	7	0.01163
287	2.3759E-11	470	3 14159	00293	8	0.01105
200	2.3759E-11	420	3 14159	00293	0	0.00750
200	2.3759E-11	420	3 14150	00293	10	0.00407
290	2.3759E-11	420	3 1/1150	002.93	10	0.00318
291	2.37598-11	420	3.14150	00293	12	0.00200
292	2.3759E-11	420	3.14159	00293	12	0.00133
293	2.3759E-11	42.0	3 1/1150	00293	13	0.00085
295	2.3759E-11	420	3 14150	00293	15	0.00034
295	2.3759E-11	420	3 14150	00293	16	0.00034
200	2.3759E-11	420	3 1/150	00293	17	0.00021
208	2.3759E-11	420	3 14150	00293	19	0.00013
220	2.3759E-11	420	3 1/150	00233	10	0.00008
300	2.3759E-11	420	3 1/150	00293	20	0.00004
301	2.3759E-11	360	3.14150	00295	20	0.000000
307	2.3759E-11	360	3 14159	00295	2	0.24036
302	2.3759E-11	360	3 14150	00293	2	0.10170
304	2.3750E-11	360	3 1/150	00293	Д	0.05340
305	2.3759E-11	360	3 1/150	00203	-7 -5	0.03340
305	2.3759E-11	360	3 1/150	00293	5	0.03120
307	2.3759E-11	360	3.14159	00293	7	0.01950
308	2.3759E-11	360	3 1/150	002.93	2 2	0.01201
200	2.37396-11	260	2 14150	00293	0	0.006557
210	2.37396-11 2.2750E-11	260	2 14150	00293	10	0.00337
211	2.37396-11	260	2 14150	00295	10	0.00374
212	2.3759E-11	260	2 1/150	00293	11	0.00251
312	2.3759E-11	360	3 1/150	00293	12	0.00109
214	2.3739E-11	360	3 14150	00233	12	0.00112
215	2.3739E-11	260	2 14150	00293	14	0.00074
216	2.3739E-11	260	2 14150	00293	15	0.00049
217	2.3739E-11	260	2 14150	00293	10	0.00032
210	2.37396-11	260	2 14150	.00293	10	0.00020
210	2.3739E-11	260	2 14150	.00293	10	0.00013
217	2.3/37E-11	260	2 14150	.00293	19	0.00008
320	2.3739E-11	200	2.14139	.00293	20	0.00003
221	2.3739E-11	200	2 14150	.002.93	1	0.99104
222	2.2/27E-11	200	3.14139	00293	2	0.24194
323 234	2.3739E-11 7 2740E 11	200	2 1/11/0	00293	) A	0.10321
224 225	2.3739E-11 3 2750E 11	300 200	2 1/11/0	.00293 00202	4	0.03484
323	2.3739E-11	200	2 14140	.00293	ې د	0.03239
320 337	2.3737E-11	200	3 1/120	00293	0 7	0.02000
321 970	2.3/37E-11 3 2750E 11	200	2 1/140	00293	/ 0	0.01200
320	4.3737E-11	200	2 1/140	00293	0	0.00923
329	2.3/39E-11	200	3.14139	.00293	10	0.00030
330	2.3/398-11	200	3.14139	.00293	10	0.00441
221	2.3/39E-11	300	3.14139	.00293	11	0.00507

222	2 27605 11	200	2 14150	00202	10	0.00010
332	2,37396-11	300	3.14139	.00293	12	0.00215
333	2.3759E-11	300	3.14159	.00293	13	0.00148
334	2.3759E-11	300	3.14159	.00293	14	0.00102
335	2.3759E-11	300	3.14159	.00293	15	0.00070
336	2 3759E-11	300	3 14159	00293	16	0.00048
337	2.3759E_11	300	3 14150	00202	17	0.00032
221	2.37591-11	200	2 14150	.00293	10	0.00032
338	2.3739E-11	300	3.14159	.00293	18	0.00022
339	2.3759E-11	300	3.14159	.00293	19	0.00014
340	2.3759E-11	300	3.14159	.00293	20	0.00009
 341	2.5971E-11	240	3.14159	.00293	1	0.99286
342	2 5971E-11	240	3.14159	00293	2	0.24294
343	2 5971E-11	240	3 14159	00203	3	0 10417
244	2.5971E 11	240	3 14150	00202	A	0.05572
245	2.3771L*11	240	2.14160	.00295	2	0.03373
343	2.3971E-11	240	3.14139	.00293	3	0.03344
346	2.59/1E-11	240	3.14159	.00293	0	0.02146
347	2.5971E-11	240	3.14159	.00293	7	0.01437
348	2.5971E-11	240	3.14159	.00293	8	0.00988
349	2.5971E-11	240	3.14159	.00293	9	0.00691
350	2.5971E-11	240	3.14159	.00293	10	0.00488
351	2 5971E-11	240	3 14159	00293	11	0.00347
352	2 5971E-11	240	3 14150	00203	12	0.00247
252	2.5771E-11	240	2 14150	00275	12	0.00247
333	2.39716-11	240	3.14139	.00293	1.2	0.00176
354	2.59/IE-II	240	3.14159	.00293	14	0.00125
355	2.5971E-11	240	3.14159	.00293	15	0.00089
356	2.5971E-11	240	3.14159	.00293	16	0.00062
357	2.5971E-11	240	3.14159	.00293	17	0.00044
358	2.5971E-11	240	3.14159	.00293	18	0.00030
359	2 5971E-11	240	3 14159	00293	19	0.00021
360	2 5971E-11	240	3 14159	00293	20	0.00014
200	2.3971E-11	190	2 14150	00290	20	0.00014
201	2.39716-11	100	3.14139	.00293	1	0.99464
362	2.59/IE-II	180	3.14159	.00293	2	0.24468
363	2.5971E-11	180	3.14159	.00293	3	0.10586
364	2.5971E-11	180	3.14159	.00293	4	0.05735
365	2.5971E-11	180	3.14159	.00293	5	0.03497
366	2.5971E-11	180	3.14159	.00293	6	0.02289
367	2.5971E-11	180	3.14159	.00293	7	0.01568
368	2 5971E-11	180	3 14159	00293	8	0.01108
360	2.57716.11	190	3 1/150	00200	ŏ	0.01700
270	2.39710-11	100	2 14150	.00293	10	0.00799
370	2.3971E-11	180	3.14159	.00293	10	0.00584
371	2.5971E-11	180	3.14159	.00293	11	0.00431
372	2.5971E-11	180	3.14159	.00293	12	0.00320
373	2.5971E-11	180	3.14159	.00293	13	0.00239
374	2.5971E-11	180	3.14159	.00293	14	0.00178
375	2.5971E-11	180	3.14159	.00293	15	0.00133
376	2 5971E-11	180	3 14159	00293	16	0.00099
377	2.5971E-11	180	3 14159	00202	17	0.00073
277	2.55710-11	100	2 14150	00222	10	0.00073
270	2.39/16-11	100	3.14139	.00293	10	0.00034
379	2.59/1E-11	180	3.14159	.00293	19	0.00040
380	2.5971E-11	180	3.14159	.00293	20	0.00029
381	2.2217E-11	480	3.14159	.00293	1	0.98781
382	2.2217E-11	480	3.14159	.00293	2	0.23804
383	2.2217E-11	480	3.14159	.00293	3	0.09950
384	2.2217E-11	480	3.14159	.00293	4	0.05137
385	2 2217E-11	480	3 14159	00293	5	0 02944
386	2.22176 11	480	2 1/150	00203	ě	0.01797
200	2.22175-11	400	2 14150	00293	~	0.01787
38/	2.2217E-11	480	3.14139	.00293		0.01119
388	2.2217E-11	480	5.14159	.00293	8	0.00/13
389	2.2217E-11	480	3.14159	.00293	9	0.00457
390	2.2217E-11	480	3.14159	.00293	10	0.00293
391	2.2217E-11	480	3.14159	.00293	11	0.00187
392	2.2217E-11	480	3.14159	.00293	12	0.00119
393	2.2217F-11	480	3 14159	.00293	13	0.00075
304	2 2217F-11	480	3.14150	00293	14	0.00046
304	) ))17E 11	100	3 1/150	002222	15	0.00010
373 207	2.24176-11	40V 404	3.14137 2.14160	.00493	13	0.00020
390 207	2.2217E-11	460	3.14139	.00293	30 17	0.00017
397	2.2217E-11	480	3.14159	.00293	17	0.00010
398	2.2217E-11	480	3.14159	.00293	18	0.00006

¥

.

.

.

Þ

4

)e

399	2.2217E-11	480	3.14159	.00293	19	0.00003
400	2.2217E-11	480	3.14159	.00293	20	0.00002
401	2.2217E-11	600	3.14159	.00293	1	0.98479
402	2.2217E-11	600	3.14159	.00293	2	0.23514
403	2.2217E-11	600	3.14159	.00293	3	0.09680
404	2.2217E-11	600	3.14159	.00293	4	0.04891
405	2.2217E-11	600	3.14159	.00293	5	0.02727
406	2.2217E-11	600	3.14159	.00293	6	0.01600
407	2.2217E-11	600	3.14159	.00293	. 7	0.00963
408	2.2217E-11	600	3.14159	.00293	8	0.00586
409	2.2217E-11	600	3.14159	.00293	9	0.00357
410	2.2217E-11	600	3.14159	.00293	10	0.00216
411	2.2217E-11	600	3.14159	.00293	11	0.00129
412	2.2217E-11	600	3.14159	.00293	12	0.00076
413	2.2217E-11	600	3.14159	.00293	13	0.00044
414	2.2217E-11	600	3.14159	.00293	14	0.00025
415	2.2217E-11	600	3.14159	.00293	15	0.00014
416	2.2217E-11	600	3.14159	.00293	16	0.00008
417	2.2217E-11	600	3.14159	.00293	17	0.00004
418	2.2217E-11	600	3.14159	.00293	18	0.00002
419	2.2217E-11	600	3.14159	.00293	19	0.00001
420	2.2217E-11	600	3.14159	.00293	20	0.00001
421	2.2217E-11	360	3.14159	.00293	1	0.99085
422	2.2217E-11	360	3.14159	.00293	2	0.24097
423	2.2217E-11	360	3.14159	.00293	3	0.10229
424	2.2217E-11	360	3.14159	.00293	4	0.05395
425	2.2217E-11	360	3.14159	.00293	5	0.03179
426	2.2217E-11	360	3.14159	.00293	6	0.01995
427	2.2217E-11	360	3.14159	.00293	7	0.01301
428	2.2217E-11	360	3.14159	.00293	8	0.00867
429	2.2217E-11	360	3.14159	.00293	9	0.00586
430	2.2217E-11	360	3.14159	.00293	10	0.00399
431	2.2217E-11	360	3.14159	.00293	11	0.00272
432	2.2217E-11	360	3.14159	.00293	12	0.00185
433	2.2217E-11	360	3.14159	.00293	13	0.00125
434	2.2217E-11	360	3.14159	.00293	14	0.00084
435	2.2217E-11	360	3.14159	.00293	15	0.00056
436	2.2217E-11	360	3.14159	.00293	16	0.00037
437	2.2217E-11	360	3.14159	.00293	17	0.00024
438	2.2217E-11	360	3.14159	.00293	18	0.00016
439	2.2217E-11	360	3.14159	.00293	19	0.00010
440	2.2217E-11	360	3.14159	.00293	20	0.00006

*

¥

þ

•

¥

OBS	D T T	<b>FYPE FREQ</b>	RSUM PI	RR	
1	2.2217E-11 360	0 20	1.47947 3.14159	0.89941	
2	2.2217E-11 480	0 20	1.45479 3.14159	0.88440 D7	T Contraction of the second second second second second second second second second second second second second
3	2.2217E-11 600	0 20	1.43317 3.14159	0.87126	
	2.2954E-11 360	0 20	1.47684 3.14159	0.89781	
5	2.2954E-11 420	0 20	1.46384 3.14159	0.88991	
6 7	2.2954E-11 540	0 20	1.44047 3.14159	0.87570 D2	
8	2.2954E-11 000	0 20	1.42962 3.14139	0.80922	
9	2.3759E-11 360	0 20	1.47402 3.14159	0.89610	
* 10	2.3759E-11 420	0 20	1.46079 3.14159	0.88806 D5	;
11	2.3759E-11 720	0 20	1.40620 3.14159	0.85487	
12	2.5847E-11 480	0 20	1.44038 3.14159	0.87564	
13	2.5847E-11 540	0 20	1.42843 3.14159	0.86838	
- 14	2.5847E-11 600	0 20	1.41718 3.14159	0.86154 D1	
15	2.5847E-11 960	0 20	1.35983 3.14159	0.82668	
16	2.584/E-11 1080	0 20	1.34346 3.14139	0.815/2	
1/ 10	2.59/1E-11 180 2.5971E 11 240	0 20	1.51095 5.14159	0.92219	<pre>4</pre>
10	2.3371E-11 240	0 20	1.49820 3.14139	0.910790	2
20	2.7758E-11 300	0 20	1 47621 3 14159	0.89743 D3	1
21	2.7766E-11 360	0 20	1.46064 3.14159	0.88796	
22	2.7766E-11 420	0 20	1.44640 3.14159	0.87930 D4	i i
•					
opti	ons ps=600;				
data	a;				
inpu	ıt d t @@;				
pi=3	3.1415926535:				
r=0.	00293:				
card	le.				
2 59					
2.30					
2.58	94/e-11 960	<b>D</b> 1			
2.58	647e-11 480	DI			
2.58	147e-11 600				
2.58	847e-11 540				
2.29	54e-11 600				
2.29	54e-11 540				
2.29	54e-11 420	D2			
2.2	540 11 420	L. 2 600			
*	-546-11 500				
2.//	586-11 300				
2.77	58e-11 240	D3			
2.77	'66e-11 420				
2.77	66e-11 360	D4			
2.37	/59e-11 720				
2.37	59e-11 420				
2.27 7 27	50e-11 360	D5			
2.37	570-11 300 120a 11 300	00			
2.37	37C-11 300				
2.59	//ie-11/240				
2.59	971e-11 180	D6			
. 2.22	17e-11 480				
2.22	17e-11 600				
2.22	17e-11 360	<b>D</b> 7			

à

```
data b; set a;
do n=1 to 20;
     mr=(1/(n^{**2}))^{*}exp(((-n^{**2})^{*}(pi^{**2})^{*}d^{*}t)/(r^{**2}));
     output;
end;
proc print;
run;
proc sort; by d t;
proc means noprint; by d t; var mr;
output out=fim sum=rsum;
data final; set fim;
pi=3.1415926535;
rr=(6/(pi^{*}2))^{*}rsum;
proc print;
quit;
options ps=600;
data a;
input d rrt @@;
cards;
2.28e-11 0.00037221
2.48e-11 0.00037221
1.25e-11 0.00037221
4.17e-11 0.00037221
3.57e-11 0.00036104
3.31e-11 0.00036104
3.10e-11 0.00036104
2.89e-11 0.00036104
2.89e-11 0.00035051
2.96e-11 0.00035051
4.09e-11 0.00035051
3.70e-11 0.00035051
proc print;
title 'Analise 2a. equacao';
run;
proc nlin outest=uuu; parms d0=0.000000001 b=-1000 ;
model d=d0*exp(b*rrt);
der.d0=exp(b*rrt);
der.b=d0*rrt*exp(b*rrt);
output out=saida p=rhat r=rresid;
proc print data=uuu; format d0 20.15 b 20.15;
run;
proc plot data=saida;
plot d*rrt='A' rhat*rrt='P' /overlay vpos=25;
plot rresid*rrt / vref=0 vpos=25;
run;
quit;
```

Cálculo de Re	eynolds							
Adimensionai	s para escoam	iento em queda	a livre (Re p/flu	ido e Re p/par	tícula)			
						densidade da par	t.(kg/m3)	1204
	$R_{\rho} = \frac{V_{\rho} \rho_{f} D}{V_{\rho}}$	p				densidade do fluid	lo(kg/m3)	1,15
	$\mu_{\rm f}$					viscosidade do flu	iido(kg/ms)	1,85E-05
	<u></u>			· · · · · · · · · · · · · · · · · · ·		diâmetro da partic	ula(m)	5,86E-03
	Calculo da ve	locidade da pa	rtícula para ca	da passagem	pela torre	velocidade do flui	do(m/s)	0,52
1º passo	peso / tempo	= vazão massi	Ca					
2º passo	vazão massic	a / densidade (	da part =vazão	volumétrica				
3º passo	vazão volumé	trica / área = v	elocidade do s	ólido				
4º passo	velocidade do	sólido * fator o	de correção = \	Vp				
******	 	T						
Experimento	1							
peso da m.p.	(kg)	3,012	2,897	2,718	2,717	2,611	2,594	2,528
tempo de esc	oamento (s	)	1080	960	480	600	540	540
·····					L			
	1º passagem	2º passagem	3º passagem	4º passagem	5° passagem	6º passagem		
1º passo	2,79E-03	3,02E-03	5,66E-03	4,53E-03	4,84E-03	4,80E-03		
2º passo	2,32E-06	2,51E-06	4,70E-06	3,76E-06	4,02E-06	3,99E-06		
3º passo	1.84E-05	2.00E-05	3,74E-05	2,99E-05	3,20E-05	3,18E-05		
4º passo	3,43E-05	3,72E-05	6,97E-05	5,58E-05	5.95E-05	5,92E-05		
				-,				
Re (part)=	0.0125	0 0135	0 0254	0 0203	0 0217	0.0215		
	0,0120	0,0.00		010200				
Re (fluido)=	189 42							
	,,							
				<u>}</u>				
Experimento 2	2			<u>.</u>	<u> </u>			
peso da m.o.	(ka)	2 142	2.089	2 039	1,989	1.938	1.894	
tempo de esc	oamento (s)	L	600	540	420	420	360	
Compo do oco					,			
	1º passagem	2º passagem	3º passagem	4º passagem	5º passagem			
1º nasso	3.57E-03	3 87E-03	4 85E-03	4 74F-03	5 38F-03			
2º passo	2 97E-06	3 21E-06	4 03E-06	3 93E-06	4 47E-06			
3º passo	2 36E-05	2.56E-05	3,00E-00	3 13 - 05	3.565-05			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4º passo	4 40E-05	4 76E-05	5 98 - 05	5.83E-05	6 63E-05			
- passo	4,402.00	4,702.00	0,002-00	0,002.00	0,002.00			
Re (nart)=	0.0160	0.0174	0.0218	0.0212	0.0241			
	0,0100	0,017-4	0,0210	0,0212	0,02.41			
Re (fluido)=	189 42							
	103,72							
			1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		,, 1,	
Evnerimento 3	L			· · · · · · · · · · · · · · · · · · ·				
neso da min	(ka)	1 885	1 8/1	1 740	1 724	1 676	1 640	
tompo do oso	(ry)	1,000	1,0~1	300	240	7,070	240	
tempo de esco			500	500	240	240	240	
	1 ⁰ nassagem	2º nassadem	2º noceanam	4º naccadem	5º passagem			
10 00000	6 28E_02	6 1/E_02	7 28E_02	- passayem 7 17E_02	6 08E_D2			
2º nasso	5 225.04	5 100 00	6 03E-06	5 065 00	5 205-03			
2º 00000	J,22E-00	J, IUE-00	4 205 05	J, 50E-00	1 62E 05			
5 passo	4,100-00	4,00E-05	4,000-00	4,740-00	4,02E-05			
4⁻ passo	/,/4⊏-05	1,002-05	0,94⊏-05	0,035-05	0,000-00			
	0.0000	<u>^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	0 0000	0.0000	0.0240			
re (par)=	U,U282	0,0275	0,0326	0,0322	0,0313	, , , , , , , , , , , , , , , , , , ,	1	ang 11 year of 11 year of 11 year of 11 year of 11 year of 11 year of 11 year of 11 year of 11 year of 11 year
ke (tiuldo)=	189,42		L	[	L	<u> </u>		

ANEXO 9) - Base de cálculo para determinação do número de Reynolds.

٠

×

đ

-

h

₽

ŧ

×

#### ANEXO 9) - Continuação

62

1

.

-)

þ

×

4

×

Experimento -	4							
peso da m.p.	(kg)	2,599	2,551	2,494	2,437	2,166		
tempo de esc	oamento (s)	)	420	420	420	360		
	1							
	1º passagem	2° passagem	3º passagem	4° passagem				
1º 03550	6 19E-03	6 07E-03	5 94F-03	6 77E-03				
2º passo	5 14E-06	5.04E-06	4 93E-06	5.62E-06		······································		
30 03000	4 00E 05	4 02E 05	3 035 05	4 495-05				
5 µasso	7,030-05	7 495 05	3,330-03	4,400-00				
4- passo	7,02E-U3	6030 <del>7</del> , 1	/,31E-UD	0,34E-03				
	0 0070	0.0070						
Re (pan)=	0,0278	0,0272	0,0266	0,0304				
Re (fluido)=	189,42							
				··				***
Experimento 4	5							
peso da m.p.	(kg)	2,452	2,403	2,318	2,267	2,176	2,166	
tempo de esc	oamento (s)	ŀ	720	420	360	300	360	
	1° passagem	2º passagem	3º passagem	4º passagem	5° passagem			
1º passo	3,41E-03	5,72E-03	6,44E-03	7,56E-03	6,04E-03			
2° passo	2,83E-06	4,75E-06	5,35E-06	6,28F-06	5.02E-06	******		
3º passo	2.25E-05	3.78E-05	4 26E-05	5 00E-05	4,00F-05			
4º passo	A 19E-05	7.055.05	7.03E.05	0,002 00	7.445-05			
+ passo	4,182-00	7,032-03	7,850-05	8,510-00	7,446-00			
	0.0452	0.0257	0 0290	0 0220	0.0074			
rke (part)-	0,0100	0,0207	0,0209	0,0559	0,027 1			
	100.00							
Re (fluido)=	189,42					****		
				ļ				,
Experimento 6	3							
peso da m.p.	(kg)	1,336	1,326	1,307	1,301	1,275	1,264	1,248
tempo de esc	oamento (s)	)	240	180	180	180	180	180
								and a second and a second second second second second second second second second second second second second s
	1º passagem	2° passagem	3° passagem	4º passagem	5º passagem	6º passagem		
1º passo	5.57E-03	7.37E-03	7.26E-03	7.23E-03	7.08E-03	7.02E-03		
2º passo	4.62E-06	6.12E-06	6.03E-06	6.00E-06	5.88E-06	5.83E-06	<	
3º nasso	3.68E-05	4 87E-05	4 80E-05	4 78F-05	4 68E-05	4 64E-05		
4º pasco	6 85E-05	9.075-05	8.945-05	8 00 = 05	8 72 - 05	8.65E-05		
- passo	0,000-00	0,01	0,04100	0,002 00	0,720.00	0,002-00		
Do (nort)-	0.0250	0.0220	0.0206	0.0224	0.0218	0.0245		
rte (part)-	0,0250	0,0330	0,0320	0,0324	0,0310	0,0315		
	400.40			,				
Re (tiuldo)=	189,42							
				······································		****		
	<u></u>					*****		
Experimento	f ****							
peso da m.p.	(kg)	2,084	2,054	1,996	1,956	1,924	1,857	
tempo de esc	oamento (s)	l .	480	600	360	360	360	
	1º passagem	2º passagem	3° passagem	4° passagem	5° passagem			
1º passo	4,34E-03	3,42E-03	5,54E-03	5,43E-03	5,34E-03			
2º passo	3.61E-06	2.84E-06	4.61E-06	4.51E-06	4,44E-06			
3º passo	2.87F-05	2,26F-05	3.67F-05	3 59E-05	3.53F-05			
4º naseo	5355-05	4 225-05	6 83E-05	6 605-05	6.58E-05	······		
r pasov	0,000-00	−7,££L-UU	0,000-00	0,032-00	0,000.00			
Do (nort)-	0.0405	0.0154	0.0240	0.0244	0.0240	······,		**************************************
rve (hait)=	0,0190	0,0104	0,0249	U,U <u>2</u> 44	0,0240			
D- (8-14)	400.10			ļ,				
Re (fluido)=	189,42			ļ				
					ł			<u> </u>

		Adimensionais para escoamento em queda livre(Re p/fluido e Re p/fluido+partic.)									
			$V \infty \rho D_{\rho}$		//	1 D _p		$\mu$ C			
		K	e=		= -	k,	Pr = -	<u>p</u>			
			144					k _í			
		L									
		Re				Nu		, and , 19, 1 , and 1 , and 1 , and 1 , and 1 , and 1 , and 1 , and 1 , and 1 , and 1 , and 1 , and 1 , and 1 ,			
		Va - velocidad	de do ar	m/s	0,52	h - coef. de tra	insm. de calor	(SARTORI)			
		ro - densidade	9	kg/m3	1,15	U(tc)- coef. glo	bai transm.ca	lor (troc.calor)			
		Dp- diåmetro	da partícula	m	5,86E-03	U(as)- coef. gl	obal transm.ca	ilor (secador)			
		mi-viscosidad	le	kg/m.s	1,85E-05	U(s)- coef. glo	bal transm.cal	or (raio/3)			
		Cp-calor espe	ec.ar	kJ/kgºK	1,007	Do- diâmetro o	la seç.transv.s	ecador	m	0,4	
		Vp-velocidad	e da partícula	m/s		k- condutividad	de térmica do a	ar	kJ/m.s.⁰K	2,67E-05	
		Vazão-		m3/s							
		Area-		m2		h(1)-aquecime	nto equação 1				
······································		fator de corr.	(static mixer)	1,86210		h(2)-aquecime	nto equação 2				
			·······		4	h(3)-resfriame	nto equação 2				
,	5 / 1	m. (8.11.)	54.1.50						<b>N</b> 0.00		
~	Ke(part)	Ke(tiuido)	K(p)+K(t)	LN(Re)	(n1)	Nu (h1)	LN NU (h1)	(n2)	Nu(h2)	LN NU(h2)	<u> </u>
1	0,0125	189,40	189,41	5,24393	0,0016	0,3512	-1,04651	0,0021	0,4609	-0,//46	0,69773
2	0,0135	109,40	189,41	5,24393	0,0017	0,3731	-0,98089	0,0020	0,4390	-0,8234	0,69773
3	0,0209	189,40	189,43	5,24400	0,0012	0,2034	-1,33419	0,0014	0,3073	-1,1800	0,69773
4	0,0203	109,40	109,42	5,24397	0,0015	0,3292	-1,11100	0,0016	0,3012	-1,0400	0,09773
5	0,0217	189,40	109,42	5,24398	0,0014	0,3073	-1,18004	0,0015	0,3292	-1,1110	0,69773
0	0,0215	109,40	109,42	5,24397	0,0014	0,3073	-1,18004	0,0015	0,3292	-1,1110	0,69773
1	0,0160	189,40	109,42	5,24390	0,0015	0,3292	-1,11105	0,0018	0,3951	-0,9287	0,69773
2	0,0174	109,40	109,42	0,24390	0,0017	0,3/31	-0,96569	0,0018	0,3951	~0,9287	0,69773
3	0,0218	109,40	109,42	5,24396	0,0016	0,3512	-1,04051	0,0017	0,3731	-0,9659	0,69773
4 F	0,0212	109,40	109,42	5,24397	0,0014	0,3073	-1,10004	0,0016	0,3012	-1,0400	0,09773
2	0,0241	109,40	109,42	5,24399	0,0010	0,3292	-1,11100	0,0016	0,3012	-1,0400	0,09773
1	0,0202	109,40	100,40	5,24401	0,0011	0,2414	-1,42120	0,0010	0,3012	-1,0400	0,09773
<u>~</u>	0,0270	109,40	109,40	5,24401	0,0011	0,2414	4 54054	0,0010	0,0012	-1,0400	0,09773
ۍ ء	0,0020	109,40	100,40	5,24403	0,0010	0,2190	1,01001	0,0014	0,3073	-1,1000	0,09773
4 F	0,0022	109,40	109,40	5,24403	0,0011	0,2414	1,42120	0,0014	0,3073	-1,1000	0,09773
	0,0313	103,40	100,40	5,24403	0,0011	0,2414	-1,42120	0,0010	0,3292	-1,1110	0,09773
י י	0,0270	105,40	190 /3	5,24400	0,0011	0,2414	-1,42120	0,0010	0,3312	-1,0400	0,09773
2	0,0272	189,40	189,43	5,24400	0,0011	0,2414	-1 33419	0,0013	0,3292	-1,1110	0,09773
1	0,0200	189,40	180 43	5 24402	0,0012	0,2004	-1,00410	0,0010	0,0202	-1,1110	0,03770
	0,0304	189.40	189.42	5 24304	0,0011	0.2634	-1,42120	0,0014	0,0070	-1,1000	0,00773
2	0,0155	189.40	189.43	5 24400	0,0012	0,2004	-1,00470	0,0015	0,0012	-1,0400	0,69773
3	0,02.07	189.40	180.40	5 24401	0,0011	0.2414	-1 42120	0,0010	0,0202	_1 1800	0.69773
4	0,0203	180,40	180,40	5 24404	0,0011	0,2-74	-1 62187	0,0014	0,0073	_1 1800	0.60775
-7 5	0,0000	189.40	180.43	5 24400	0,0009	0,1070	-1 42120	0,0014	0,0073	-1 1110	0.69775
1	0,0271	180,40	180 43	5 24300	0,0011	0,2474	-1 33410	0,0010	0,0202	_1,1110 _1 1110	0,00770
י י	0,0200	189.40	180 43	5 24404	0,0012	0,2004	-1 42120	0,0010	0,0202	-1 1800	0,00710
3	0,0000	180,40	180 43	5 24403	0,0011	0,2414	.1 33410	0,0014	0,0070	-1 1800	0,00772
	0,0020	180 /0	180.40	5,24403	0,0012	0,2004 0.241A	-1 42120	0,0014	0,0073	-1 1800	0.6077
	0,0024	180,40	180.43	5 24403	0,0011	0,2-314	-1 33410	0,0014	0,0070	_1 1800	0,00770
6	0,0010	180,40	180,40	5 24403	0,0012	0.2634	-1 32410	0,0014	0,0073	-1 1800	0.6977
1	0,0010	180 /0	180 40	5 24306	0,0012	0,2004	-1 18004	0,0014	0,0073	1,1000 _1 0465	0.6077:
2	0,0155	180 40	180 42	5 24304	0,0014	0,3073	-1,10004	0,0010	0,0012	-0 9287	0.6977
2	0,0104	180.40	180,42	5 24300	0,0019	0,7170	-0,07-100	0,0010	0,0501	-0,02.07	0.6077
ى م	0,0249	103,40	103,42	0,24399	0,0017	0,0701	-0,90009	0,00,0	0,0012	CO+0,1- 01111_	0,09770
4 E	0,0244	190,40	100,42	5,24355	0,0010	0,3232	-1,11100	0,0010	0.3292	-1,1110	0,03770
3	0,0240	109,40	109,42	0,24099	0,0017	0,3/31	-0,30009	0,0017	0,3/31	-0,9009	0,09/10

## ANEXO 10) - Base de cálculo para determinação do número de Nusselt e Prandtl.

.

ŧ

*

.

÷

篦

٧

Ŧ

.

á

۴

 $\hat{\boldsymbol{\varphi}}$ 

*

×

ø

Ŧ

.

*

	Adimensional	s para escoamer	nto em queda l	ivre consider	ando o Reynold	s da partícula		
	Re(part)	LN Re(part)	(h1)	Nu (h1)	LN Nu (h1)	(h2)	Nu(h2)	LN Nu(h2)
1	0,0125	-4,3820	0,0016	0,3512	-1,04651	0,0021	0,4609	-0,7746
2	0,0135	-4,3051	0,0017	0,3731	-0,98589	0,0020	0,4390	-0,8234
3	0,0254	-3,6730	0,0012	0,2634	-1,33419	0,0014	0,3073	-1,1800
4	0,0203	-3,8971	0,0015	0,3292	-1,11105	0,0016	0,3512	-1,0465
5	0,0217	-3,8304	0,0014	0,3073	-1,18004	0,0015	0,3292	-1,1110
6	0,0215	-3,8397	0,0014	0,3073	-1,18004	0,0015	0,3292	-1,1110
1	0,0160	-4,1352	0,0015	0,3292	-1,11105	0,0018	0,3951	-0,9287
2	0,0174	-4,0513	0,0017	0,3731	-0,98589	0,0018	0,3951	-0,9287
3	0,0218	-3,8258	0,0016	0,3512	-1,04651	0,0017	0,3731	-0,9859
4	0,0212	-3,8538	0,0014	0,3073	-1,18004	0,0016	0,3512	-1,0465
5	0,0241	-3,7255	0,0015	0,3292	-1,11105	0,0016	0,3512	-1,0465
1	0,0282	-3,5684	0,0011	0,2414	-1,42120	0,0016	0,3512	-1,0465
2	0,0275	-3,5936	0,0011	0,2414	-1,42120	0,0016	0,3512	-1,0465
3	0,0326	-3,4234	0,0010	0,2195	-1,51651	0,0014	0,3073	-1,1800
4	0,0322	-3,4358	0,0011	0,2414	-1,42120	0,0014	0,3073	-1,1800
5	0,0313	-3,4641	0,0011	0,2414	-1,42120	0,0015	0,3292	-1,1110
1	0,0278	-3,5827	0,0011	0,2414	-1,42120	0,0016	0,3512	-1,0465
2	0,0272	-3,6045	0,0011	0,2414	-1,42120	0,0015	0,3292	-1,111C
3	0,0266	-3,6268	0,0012	0,2634	-1,33419	0,0015	0,3292	-1,111C
4	0,0304	-3,4933	0,0011	0,2414	-1,42120	0,0014	0,3073	-1,1800
1	0,0153	-4,1799	0,0012	0,2634	-1,33419	0,0016	0,3512	-1,0465
2	0,0257	-3,6613	0,0011	0,2414	-1,42120	0,0015	0,3292	-1,1110
3	0,0289	-3,5439	0,0011	0,2414	-1,42120	0,0014	0,3073	-1,1800
4	0,0339	-3,3843	0,0009	0,1975	-1,62187	0,0014	0,3073	-1,1800
5	0,0271	-3,6082	0,0011	0,2414	-1,42120	0,0015	0,3292	-1,1110
1	0,0250	-3,6889	0,0012	0,2634	-1,33419	0,0015	0,3292	-1,1110
2	0,0330	-3,4112	0,0011	0,2414	-1,42120	0,0014	0,3073	-1,1800
3	0,0326	-3,4234	0,0012	0,2634	-1,33419	0,0014	0,3073	-1,1800
4	0,0324	-3,4296	0,0011	0,2414	-1,42120	0,0014	0,3073	-1,1800
5	0,0318	-3,4483	0,0012	0,2634	-1,33419	0,0014	0,3073	-1,1800
6	0,0315	-3,4578	0,0012	0,2634	-1,33419	0,0014	0,3073	-1,180(
1	0.0195	-3,9373	0,0014	0,3073	-1,18004	0,0016	0,3512	-1,0465
2	0.0154	-4.1734	0,0019	0.4170	-0,87466	0.0018	0,3951	-0.9287
3	0.0249	-3.6929	0,0017	0.3731	-0,98589	0,0016	0,3512	-1.046
- 4	0.0244	-3.7132	0,0015	0.3292	-1,11105	0.0015	0,3292	-1.111(
5	0.0240	-3 7297	0.0017	0 3731	-0.98589	0.0017	0 3731	-0.9859

#### ANEXO 11) Patente Industrial nº8700583

Relatório Descritivo da Patente de In venção: "EQUIPAMENTO PARA SECAGEM DE MATERIAIS GRANULA-RES".

Refere-se a presente invenção a um con 5 junto de dispositivos destinados a secagem de grãos ou de outros materiais granulares que, utilizando promotores de mistura de sólidos, aumenta o contato do material a ser seco com ar de secagem, durante o seu percurso no interior do secador.

10 A secagem de grãos, especificamente, é uma etapa do pré-processamento mais importante, sob o pon to de vista de um armazenamento que não acarrete prejuízos na qualidade do produto, pois dependendo dos altos níveis de umidade nos grãos e das condições ambientais ad 15 versas, acarretará a deterioração dos grãos.

Existem, também, tipos de grãos, como os oleaginosos, que devem sofrer uma secagem antes de en trarem no processo industrial de extração de óleos.

Para os grãos que serão secos, tanto

- 20 para o armazenamento quanțo para o processamento industrial, o problema maior dos secadores é o seu consumo energético. É sabido que na tentativa de melhorar a eficiência de secagem e, consequentemente, a redução no con sumo energético, têm surgido várias formas de otimizar es
- 25 te processo de secagem, como a introdução de modificação dos equipamentos para obter diferentes maneiras de contacto com o ar como fluxo paralelo, fluxo cruzado e fluxo intermitente. Também recorre-se a diferentes princípios de secagem, tais como leito de jorro, leito agitado,
- 30 leito agito-fluidizado, leito fluidizado, leito vibrado,



- 3 ção alternados para permitir uma maior mistura de sólidos durante o escoamento pela ação da gravidade. Assim, au menta-se a eficiência de secagem pela homogeneidade no contato sólido-ar. Uma construção mais simples, indíscu 5 tivelmente, seria utilizando placas retas, no 'entanto, não são tão eficientes como as torcidas. A perfuração nas placas torcidas é pa ra permitir uma melhor distribuição do ar de secagem no interior do secador. A inclinação necessária para estas pla 10 cas deve obedecer às limitações de cada material granular a ser seco, isto é, a inclinação referencial do ângu lo de talude. O ângulo de talude é o ângulo formado pelos materiais granulares em repouso em relação à superfí 15 cie horizontal, onde a partir deste ângulo, o material co meça a escoar. O dimensionamento da capacidade do s $\underline{e}$ cador é determinado pelo nível de umidade inicial e final, e pela quantidade de material a ser seco, assim co-20 mo pelos outros parâmetros importantes para o dimensiona mento de qualquer secador. No entanto, para se ter uma idéia clara, podemos recorrer à alguns valores numéricos. O ângulo de talude correspondente à ervilha é de 25º e para "pelets" de difícil escoamento é de 45º. Isto é, para maio 25 ria dos materiais de interesse, a inclinação normalmente se situară entre 25º a 40º. É evidente que a variação teo rica ocorre de 0º (repouso em secadores estáticos) até 90º (queda livre em secadores convencionais). Por outro lado, a variação teórica na velocidade de escoamento se situa 30 entre 0 m/s até a velocidade terminal, sendo que é prati camente impossível de se construir um secador com dimensões que desenvolvam estas velocidades, pois pela própria definição, a velocidade terminal é a velocidade máxima constante atingida pelo grão em queda livre. Como ilustração, temos para materiais 35 leves como alfafa uma velocidade terminal de 5,3 m/s, e

para un material como soja, velocidade terminal de 13,3 m/s. Para materiais biológicos, por exemplo, temos o pôssego que apresenta uma velocidade terminal de 41 m/s. Portanto, ressalta-se que estes dois 5 parametros, ângulo de talude e velocidade terminal, são os parâmetros importantes para a concepção adotada na pre sente invenção, no tocante à variação do escoamento do material a ser seco. Isto é, através da variação da incli nação das placas colocadas no interior do secador, temos 10 a variação no escoamento conjugado à velocidade terminal do material, obtendo-se assim, o ajuste desejado na vazão do sólido, além do efeito da mistura durante o seu percurso. Inclui-se ainda, para permitir maior flexibilidade operacional, uma regulagem do escoamento do sólido na 15 saída do secador. Todos estes efeitos no escoamento do sólido apresentam vantagens operacionais sem causar danos mecânicos no material. Outro efeito importante, resultante des 20 tes já mencionados, é o efeito combinado de velocidade do ar de secagem e a velocidade do escoamento do material, que através do seu contato Intimo e homogêneo, diminui a necessidade de altas vazões do ar. Em outras palavras, resulta numa economia em potência do ventilador emprega-25 do, um tempo de secagem reduzido e uma redução da energia para aquecer o ar de secagem. Para uma melhor compreensão do funcio namento e composição do equipamento para secagem de mate riais granulares, objeto da presente invenção, é descri-30 to pormenorizadamente o único desenho em anexo, que representa um esquema do equipamento, mostrando seus compo nentes principais. De acordo com a figura 1, verifica-se que o equipamento desenvolvido é constituído de um venti 35 lador (1) para insuflar o ar ambiente, sendo este ar dis tribuído de acordo com as vazões exigidas para a secagem

5 e transporte pneumático do material, através da regulagem de dispositivos como válvulas. Uma parte do ar utilizado para a seca gem é aquecida através de resistências elétricas (3) ou ou 5 tra fonte que forneça o mesmo efeito com temperatura variável de acordo com as exigências do processo. Outra parte do ar, regulada pela válvu la (2), sem aquecimento é utilizada para o transporte pneu mático do material até o topo (4) do secador, através de 10 tubulação de transporte (5), que além de efetuar o trans porte, promove um resfriamento do material e separação de impurezas pesadas que irão se depositar no fundo da tubu lação de transporte, sendo descarregadas através de uma abertura (6) ali instalada. 15 Os materiais úmidos transportados serão realimentados no topo (4) do secador, onde a umidade desejada no material será obtida pela variação da veloci dade do ar na seção (7), que é obtida pela abertura ou fechamento de uma válvula (8) instalada para esta função. 20 O material que atingir a umidade dese jada, será arrastado pelo ar, por diferença de peso, através da tubulação de descarga (9) e é recolhido na aber tura (10), sendo que o material que ainda não apresenta a umidade desejada (material mais pesado), circula nova-25 mente pelo interior do secador através do tubo (11) alimentador, saindo pelo tubo (14) de fundo, após passar por um conjunto de placas torcidas e perfuradas (15) instala das no interior do secador. Numa operação descontínua, o material 30 seco ao sair do tubo (14) poderá ser retirado pela abertura (6) ou insuflado através da tubulação (5) para sair pela abertura (10). O ar de descarga sai pela abertura (13), arrastando impurezas leves, completando assim a limpeza 35 durante o processo. Caso apresente vantagens, poderá este ar de descarga ser reaproveitado através de junção da

6 seção (13) com o ventilador (1). A alimentação inicial, assim como a <u>a</u> limentação necessária durante a secagem para manter a operação contínua, é feita através do silo alimentador com 5 dispositivo de alimentação (12) localizado na parte infe rior do silo (17), onde a taxa de alimentação é regulada pela velocidade criada neste alimentador. Observa-se ainda na citada figura que o escoamento do material para baixo, assimicomo o escoa-10 mento do ar ascendente, é realizado no espaço formado en tre as placas torcidas e perfuradas (15) e que apresentam torções alternadas. Dependendo principalmente da quan tidade e do tipo de material a ser seco, o secador admitira uma quantidade variavel de placas (15) no seu inte-15 rior, para não prejudicar a flexibilidade operacional, per mitindo inclusive a facilidade de ampliação de uma insta lação deste tipo de secador já existente. Nos secadores industriais de grande porte, o ar de secagem serã admiti do inclusive no interior do duto (16) que neste caso se-20 rá perfurado para conjugar os fluxos de ar de secagem em várias direções no interior do secador. As placas torcidas e perfuradas (15)são instaladas de forma envolvente no tubo (16) que pode ser perfurado ou não. Ditas placas (15) têm suas incli-25 nações reguláveis, através de um direcionador (18) para permitir variações na velocidade descendente do material. É de conhecimento geral de que os materiais biológicos, como grãos, apresentam a vantagem da aplicação da relação aquecimento e resfriamento durante a 30 secagem. No entanto, para os materiais ou processos que não apresentam uma economia significativa de conjugar e<u>s</u> tes efeitos, o transporte pneumático pode ser substituído por outros tipos de transporte. Nos experimentos realizados com o e-35 quipamento da invenção, utilizando a soja como material a ser seco, obteve-se secagem partindo de 25% de umidade

7 na base seca até 16% de umidade na base seca, utilizando -se somente 20% da vazão do ar de secagem atualmente empregado nos secadores industriais.



#### ANEXO 11) Continuação

- 1 -

#### REIVINDICAÇÕES

1 - EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, caracterizado por consistir de um ventilador (1) para insuflar o ar ambiente, sendo que uma 5 parte deste ar é aquecida ao entrar no secador, através de resistências elétricas (3) e sua velocidade controlada na seção (7), pela abertura ou fechamento de uma válvula (8) e a outra parte do ar, sem aquecimento e com ve locidade controlada pela válvula (2), transporta o mate-

- 10 rial a ser seco, proveniente do silo alimentador (17) pa ra o topo (4) do secador, através de uma tubulação (5), e daí, para a tubulação de descarga (9) e recolhimento na abertura (10), para o material que jã atingir a umidade desejada, ou, novamente para o interior do secador, atr<u>a</u>
- 15 vés do tubo alimentador (11), saindo pelo tubo (14) de fundo, dito secador provido de um conjunto de placas (15) torcidas, perfuradas e com inclinações reguláveis através de um direcionador (18), sendo este conjunto instalado de forma envolvente no duto (16).
- 20 2 EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, de acordo com a reivindicação 1, cara<u>c</u> terizado por ser o duto (16) perfurado ou não, dependendo do volume de material a ser seco.

3 - EQUIPAMENTO PARA SECAGEM DE MATE-25 RIAIS GRANULARES, de acordo com a reivindicação 1, cara<u>c</u> terizado por serem as placas (15) torcidas e perfuradas, colocadas no duto (16) com os sentidos de torção altern<u>a</u> dos e espaçadas entre si, para permitir uma maior mistura de sólidos durante o escoamento pela ação da gravida-30 de.

- 2 -

4 - EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, de acordo com a reivindicação 3, carac terizado por ser a inclinação do conjunto de placas (15) torcidas e perfuradas, determinada pelo ângulo de talude 5 do material granular a ser seco. 5 - EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, de acordo com a reivindicação 1, carac terizado por ser o silo alimentador (17) provido de um dispositivo de alimentação (12), na sua parte inferior, 10 para controlar a velocidade de admissão do material na tubulação (5). 6 - EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, de acordo com a reivindicação 1, carac terizado por ser a tubulação (5) dotada de uma abertura 15 (6), na parte inferior, para retirada de impurezas pesadas, durante a operação de transporte. 7 - EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, de acordo com a reivindicação 1, carac terizado por retirar o ar de descarga, juntamente com im 20 purezas leves, através da abertura (13). 8 - EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, de acordo com a reivindicação 1, carac terizado por ser o material seco recolhido ao sair do tu bo (14) pela abertura (6), numa operação descontínua ou 25 pela abertura (10) após ser insuflado através da tubulação (5). 9 - EQUIPAMENTO PARA SECAGEM DE MATE-RIAIS GRANULARES, de acordo com a reivindicação l, carac terizado por se fazer, opcionalmente, uma conexão entre 30 a abertura (13) e o ventilador (1), para reaproveitamento do ar de descarga no sistema.

# 

#### RESUMO

Patente de Invenção: "EQUIPAMENTO PARA SECAGEM DE MATE-. RIAIS GRANULARES".

A presente invenção refere-se a um e-5 quipamento destinado a secagem de grãos ou de outros materiais granulares que, utilizando promotores de mistura

de sólidos, aumenta o contato do material a ser seco com o ar de secagem, no interior do secador. O equipamento consiste basicamente de

10 um ventilador (1)para insuflar o ar ambiente, sendo que uma parte deste ar é aquecida ao entrar no secador, atra vés de resistências elétricas (3) e sua velocidade controlada na seção (7), pela abertura ou fechamento de uma válvula (8) e a outra parte do ar, sem aquecimento e com 15 velocidade controlada pela válvula (2), transporta o material a ser seco, proveniente do silo alimentador (17) para o topo (4) do secador, através de uma tubulação (5), e daí, para a tubulação de descarga (9) e recolhimento na abertura (10), para o material que já atingiu aumidade de

20 sejada, ou, novamente para o interior do secador, através do tubo alimentador (11), saindo pelo tubo (14) do fundo, dito secador provido de um conjunto de placas (15) torci das, perfuradas e com inclinações reguláveis através de um direcionador (18), sendo este conjunto instalado de 25 forma envolvente no duto (16).