UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

ESTIMATIVA DA EMISSIVIDADE PARA A DETERMINAÇÃO DA TEMPERATURA DO DOSSEL DE CANA-DE-AÇÚCAR (*Saccharum* spp.) UTILIZANDO DADOS AVHRR-NOAA

POR CARLOS ALBERTO SOARES DE ALMEIDA

> Campinas, SP Julho de 2001

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

ESTIMATIVA DA EMISSIVIDADE PARA A DETERMINAÇÃO DA TEMPERATURA DO DOSSEL DE CANA-DE-AÇÚCAR (*Saccharum* spp.) UTILIZANDO DADOS AVHRR–NOAA

POR CARLOS ALBERTO SOARES DE ALMEIDA

> Orientador: Prof. Dr. Hilton Silveira Pinto

Tese apresentada em cumprimento parcial aos requisitos para obtenção do título de Doutor em Engenharia Agrícola, Área de concentração: Água e Solo.

Campinas, SP Julho de 2001

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

AL64e	Almeida, Carlos Alberto Soares de Estimativa da emissividade para a determinação da temperatura do dossel da cana-de-açúcar (<i>Sccharum</i> spp.) utilizando dados AVHRR-NOAA / Carlos Alberto Soares de AlmeidaCampinas, SP: [s.n.], 2001.
	Orientador: Hilton Silveira Pinto. Tese (Doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola.
	1. Emissividade. 2. Temperatura. 3. Sensoriamento remoto. 4. Cana-de-açúcar. I. Pinto, Hilton Silveira. II. Universidade Estadual de Campinas. Faculdade de Engenharia Agrícola. III. Título.

Titulo em Inglês: Estimative of the emissivity to determinate the temperature of the sugarcane (*Sccharrum* spp.) canopy using AVHRR-NOAA data. Palavras-chave em Inglês: Emissivity, Surface temperature, Remote sensing, AVHRR-NOAA data, Sugarcane Área de concentração: Água e Solo Titulação: Doutor em Engenharia Agrícola Banca examinadora: Eduardo Assad, Pedro Luiz Donzelli, Jurandir Zullo Junior, Maria Angela Fagnani Data da defesa: 31/07/2001

Este trabalho é dedicado aos meus sobrinhos Maria Eugênia e Luiz Antonio, ao meu companheiro Nahim e aos amigos Paulo Ricardo e Giampaolo Ao meu orientador Prof. Dr. Hilton Silveira Pinto, não só por ter me dispensado uma valiosa parte de sua grande experiência acadêmica e científica, mas também pelo crédito, pela amizade e por toda segurança transmitida;

à FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo, não só pela "Bolsa de Doutorado no País" a mim concedida, mas também pelo fundamental apoio financeiro que possibilitou a plena concretização dos trabalhos relacionados a esta Tese;

à Feagri Faculdade de Engenharia Agrícola da Unicamp, pela oportunidade da realização deste trabalho e em especial à coordenadoria de Pós-Graduação por todo apoio recebido;

aos pesquisadores Eva Maria Rubio Caballero, discente Caselles e César Coll da "Universitat de Valéncia" em Valencia, Espanha, pela amizade e por todo apoio técnico e orientação a mim dispensados, não somente por ocasião do estágio feito por mim junto ao Departamento de Termodinâmica da Faculdade de Física dessa Universidade, mas também durante todo o transcorrer desta pesquisa;

à Usina São Martinho, à COOPERSUCAR e ao IAC, nas pessoas de seus diretores e pesquisadores científicos, pela grande ajuda durante toda a fase de coleta de dados no campo e de processamento de imagens;

ao Cepagri, Centro de Pesquisas Meteorológicas e Climáticas aplicadas à Agricultura da Unicamp, e a toda a sua equipe, pelas excelentes e privilegiadas condições de trabalho. Dentre os colaboradores deste centro, agradeço especialmente ao Prof. Dr.Jurandir Zullo Junior, Giampaolo Queiroz Pellegrino, Edilene Carneiro, Gustavo Coral, Claudir e Joaquim.

Finalmente aos colegas de "Pós" da Feagri, em particular a Emilia Hamada, Margarete e Adriana, também orientadas pelo Prof. Dr.Hilton Silveira Pinto.

Carlos Alberto Soares de Almeida, Julho de 2001.

SUMÁRIO

LISTA DE FIGURAS	3
LISTA DE TABELAS	6
RESUMO	10
CAPÍTULO 1. INTRODUÇÃO	11
1.1. Importância e objetivos do trabalho	11
1.2. Estrutura do documento e hipóteses.	12
CAPÍTULO 2. REVISÃO DE LITERATURA	15
2.1. O processamento de imagens para a estimativa da temperatura de super	fície. 15
2.2. O Sistema NOAA/AVHRR.	16
2.3. Detecção e eliminação de <i>pixels</i> contaminados por nuvens	20
2.4. A correção geométrica ou geo-referenciamento das imagens	22
2.5. A obtenção do valor de temperatura de superfície	23
2.6. As correções devido aos efeitos atmosféricos e de emissividade 2.6.1. A medida da emissividade in situ.	25 27
2.6.2. Interpretação da radiância registrada pelo sensor – A tempertura radiativa	31
2.6.3. Métodos de correção atmosférica e de emissividade.	34
CAPÍTULO 3. MATERIAL E MÉTODOS	41
CAPÍTULO 3. MATERIAL E MÉTODOS	<i> 41</i> 41
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 	41 41 44 44
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 	41 41 44 44 46
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 3.3.2. Medidas de umidade relativa e de pressão barométrica. 	41 41 44 44 46 47
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 3.3.2. Medidas de umidade relativa e de pressão barométrica. 3.3.3. Medidas da temperatura radiativa para a estimativa da emissividade da cultu Adaptação do Método de uma tampa para a Cana-de-açúcar. 	41 41 44 44 46 46 47 Jra – 48
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 3.3.2. Medidas de umidade relativa e de pressão barométrica. 3.3.3. Medidas da temperatura radiativa para a estimativa da emissividade da cultu Adaptação do Método de uma tampa para a Cana-de-açúcar. 3.4.1. Correções devido aos efeitos atmosféricos e de emissividade Cálculos para o de temperatura de superfície. 	41 41 44 46 46 47 Jra – 48 54 valor 59
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 3.3.2. Medidas de umidade relativa e de pressão barométrica. 3.3.3. Medidas da temperatura radiativa para a estimativa da emissividade da cultu Adaptação do Método de uma tampa para a Cana-de-açúcar. 3.4.1. Correções devido aos efeitos atmosféricos e de emissividade Cálculos para o de temperatura de superfície. 3.4.2. Aplicação da equação típica de 'split window' e a emissividade da superfície. 	41 41 44 46 46 47 Jra – 48 54 valor 59 60
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 3.3.2. Medidas de umidade relativa e de pressão barométrica. 3.3.3. Medidas da temperatura radiativa para a estimativa da emissividade da cultu Adaptação do Método de uma tampa para a Cana-de-açúcar. 3.4.1. Correções devido aos efeitos atmosféricos e de emissividade Cálculos para o de temperatura de superfície. 3.4.2. Aplicação da equação típica de 'split window' e a emissividade da superfície. 	41 41 44 44 46 46 47 Jra – Jra – Jra –
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 3.3.2. Medidas de umidade relativa e de pressão barométrica. 3.3.3. Medidas da temperatura radiativa para a estimativa da emissividade da culta Adaptação do Método de uma tampa para a Cana-de-açúcar. 3.4.1. Correções devido aos efeitos atmosféricos e de emissividade Cálculos para o de temperatura de superfície. 3.4.2. Aplicação da equação típica de 'split window' e a emissividade da superfície. 4.1. Introdução. 	41 41 44 46 46 47 Jra – Jra – Jra – Valor 59 60 63 63
 CAPÍTULO 3. MATERIAL E MÉTODOS. 3.1 Campo experimental. 3.2. Planejamento geral das campanhas. 3.2.1. definição das datas de ida ao campo. 3.3 Dados coletados. 3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento. 3.3.2. Medidas de umidade relativa e de pressão barométrica. 3.3.3. Medidas da temperatura radiativa para a estimativa da emissividade da culta Adaptação do Método de uma tampa para a Cana-de-açúcar. 3.4.1. Correções devido aos efeitos atmosféricos e de emissividade Cálculos para o de temperatura de superfície. 3.4.2. Aplicação da equação típica de 'split window' e a emissividade da superfície. 4.1. Introdução. 4.2 A Temperatura de superfície medida no campo e as temperatura e umidaboluta do ar. 	41 41 44 44 46 46 47 Jra – Jra – Jra – 54 valor 59 60 63 63 dade 65

	67
4.4. Comparação de emissividades estimadas por diferentes métodos	69
4.5. Temperatura de superfície corrigida pelo método split window antigo temperaturas do ar e medida no campo	e as 69
4.6. T _s corrigida pelo método <i>split window</i> atualizado, a T _{campo} e a U _{absoluta}	72
4.7 Comparações de médias: T _{ar} e T _{corrsw1} / T _{corrsw2} EM _{pvpg} - T _{corrsw2} EM _{caixa}	74
4.8 Comparações de médias: T _{campo} e T _{corrsw1} diurna e noturna	75
4.9 Comparações de médias: T _{corrsw} EM _{pvpg} e T _{corrsw2} EM _{caixa}	77
CAPÍTULO 5. CONCLUSÕES	79
REFERÊNCIAS BIBLIOGRÁFICAS	. 141
ABSTRACT	. 147

LISTA DE FIGURAS

Figura 1. Determinação das coordenadas geográficas de uma das parcelas pertencentes à área de trabalho, usando o aparelho de GPS modelo Pathfinder BasicTM Receivers, fabricado pela Trimble Navigation, Ltd 42
Figura 2. Parcelas escolhidas e limites da área de trabalho em mapeamento digital feito com o aparelho de GPS modelo Pathfinder BasicTM Receivers, fabricado pela Trimble Navigation, Ltd
Figura 3. Pluviômetro e abrigo meteorológico contendo termógrafo e higrógrafo instalados em local próximo à área de trabalho
Figura 4 Medida de T _{campo} sendo feita com o teletermômetro EVEREST modelo 112.2L sustentado por haste de metal
Figura 5. representação esquemática da caixa utilizada no presente trabalho, para "método de um tampa"
Figura 6. Termômetro infravermelho EVEREST posicionado no orifício central da tampa revestida da caixa numa das configurações do sistema "caixa-
amostra"
Figura 8. Medida de temperatura radiativa de uma amostra de cana rearranjada no
Figura 9. Medidas de proporção do solo descoberto (Ps) e da proporção da
cobertura pela vegetação (Pv) feitas com o equipamento LAI-205016 Optical Sensor
Figura 10. Localização espacial dos pontos de controle usados no geo-referenciamento. As coordenadas geográficas (latitude e longitude em
graus) dos pontos de controle estão especificadas na Tabela 5
Figura 12. Reta de ajuste de U _{absoluta} (g/m^3) x T _{campo} (°C)
Figura 14. Reta de ajuste de T _{corrsw1} (°C) x T _{campo} (°C)
Figura 16. Reta de ajuste de $T_{corrsw2} EM_{pvpg}$ (°C) x T_{campo} (°C)
Figura 17. Reta de ajuste de $T_{corrsw2} EM_{caixa}$ (°C) x T_{campo} (°C)
Ligura 19. Dados coletados durante o período de 29 de outubro a 14 de dezembro de 1996 pelo termógrafo instalado em abrigo meteorológico
Figura 20. Dados coletados durante o período de 29 de outubro a 14 de dezembro de 1996 pelo higrógrafo instalado em abrigo meteorológico 107
Figura 21 Dados coletados durante o período de 07 a 30 de abril de 1997 pelo termógrafo instalado em abrigo meteorológico
Figura 22. Dados coletados durante o período de 01 a 31 de maio de 1997 pelo termógrafo instalado em abrigo meteorológico.
Figura 23. Dados coletados durante o período de 01 a 30 de junho de 1997 pelo
Figura 24. Dados coletados durante o período de 01 de julho a 3 de agosto de 1997 pelo termógrafo instalado em abrigo meteorológico

Figura 25. Dados coletados durante o período de 01 de julho a 03 de agosto de Figura 26. Dados coletados durante o período de 18 de agosto a 28 de setembro de 1997 pelo termógrafo instalado em abrigo meteorológico...... 110 Figura 27. Dados coletados durante o período de 07 a 30 de abril de 1997 pelo Figura 28. Dados coletados durante o período de 01 a 31 de maio de 1997 pelo higrógrafo instalado em abrigo meteorológico. 111 Figura 29. Dados coletados durante o período de 01 a 30 de junho de 1997 pelo Figura 30. Dados coletados durante o período de 01 de julho a 03 de agosto de Figura 31. Dados coletados durante o período de 25 de agosto a 28 de setembro Figura 32. Dados de precipitação coletados durante o período de 07 de abril a 28 de setembro de 1996 pelo pluviômetro instalado em local próximo ao abrigo meteorológico......114 Figura 33. Dados de precipitação coletados durante o período de 29 de outubro a 14 de dezembro de 1997 pelo pluviômetro instalado em local próximo ao abrigo meteorológico......114 Figura 34. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 04h59 GMT do dia 30 de outubro de 1996. Figura 35. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita à 17h28 GMT do dia 30 de outubro de 1996. Figura 36. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h17 GMT do dia 31 de outubro de 1996. Figura 37. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h00 GMT do dia 15 de dezembro de Figura 38. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h30 GMT do dia 15 de dezembro de Figura 39. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h20 GMT do dia 16 de dezembro de Figura 40. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h37 GMT do dia 13 de abril de 1997. 121 Figura 41. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits para a imagem feita às 05h08 GMT do dia 13 de abril de 1997. 122 Figura 42. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h26 GMT do dia 14 de abril de 1997. 123 Figura 43. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h42 GMT do dia 19 de agosto de 1997.

Figura 44. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h10 GMT do dia 23 de junho de 1998. Figura 45. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h41 GMT do dia 23 de junho de 1998. Figura 46. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h30 GMT do dia 24 de junho de 1998. Figura 47. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h48 GMT do dia 25 de junho de 1998. Figura 48. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h04 GMT do dia 17 de agosto de 1998. Figura 49. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h22 GMT do dia 05 de novembro de Figura 50. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h42 GMT do dia 24 de novembro de Figura 51. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h11 GMT do dia 24 de novembro de Figura 52. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h23 GMT do dia 25 de janeiro de 1999. Figura 53. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h52 GMT do dia 28 de maio de 1999.134 Figura 54. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h32 GMT do dia 11 de julho de 1999.135 Figura 55. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h20 GMT do dia 12 de julho de 1999.136 Figura 56. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h27 GMT do dia 25 de agosto de 1999. Figura 57. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h56 GMT do dia 25 de agosto de 1999. Figura 58. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h44 (GMT) do dia 26 de agosto de 1999. Figura 59. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h13 GMT do dia 26 de agosto de 1999.

LISTA DE TABELAS

04 de outubro de 1997 às 05h07 GMT 89
Tabela 17. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
04 de outubro de 1997 às 17h40, GMT 89
Tabela 18. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
23 de junho de 1998 às 5h37 GMT90
Tabela 19. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo, na passagem NOAA-14 ocorrida no dia
23 de junho de 1998 às 18h10 GMT
Tabela 20. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
17 de agosto de 1998 às 18h05 GMT91
Tabela 21. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
5 de novembro 1998 às 5h49 GMT91
Tabela 22. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
5 de novembro de 1998 às 18h22 GMT92
Tabela 23. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (Vvento) coletados no campo na passagem NOAA-14 ocorrida no dia
24 de novembro de 1998 às 18h11 GMT92
Tabela 24. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (Vvento) coletados no campo na passagem NOAA-14 ocorrida no dia
25 de janeiro de 1999 às 5h50 GMT93
Tabela 25. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (Vvento) coletados no campo na passagem NOAA-15 ocorrida no dia
25 de janeiro de 1999 às 10h07 GMT
Tabela 26. Valores de temperatura radiativa da superfície (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-15 ocorrida no dia
27 de maio de 1999 às 10h14 GMT
Tabela 27. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-15 ocorrida no dia
11 de julho de 1999 às 10h19 GMT
Tabela 28. Valores de temperatura radiativa da superficie (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
12 de julho de 1999 as 6h16 GMT
Labela 29. Valores de temperatura radiativa da superficie (L _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
12 de juino de 1999 as 18049 GMT
Tabela 30. Valores de temperatura radiativa da superficie (T _{campo}) e de velocidade
do vento (V _{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia
Zo de agosio de 1999 as Tonto Givin
rabeia or. valores medios de pressão almosterida (r_{atm}) e da temperatura do ar modida polo tormômotro do bulbo soco (T \sim) do bulbo úmido (T \sim) hom
r_{umido} medida pelo termometro de pulpo seco (r_{seco}), de pulpo utilido (r_{umido}) perm
Tabola 22. Valoros do tomporaturo radiativo colotados durante a companho da 4 a
rabela 52. valores de temperatura radiativa coletados durante a campanna de 4 a

5 de novembro de 1998, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repetições (R1 a R5) por parcela.. 97 Tabela 33 Valores de temperatura radiativa coletados durante a campanha de 24 de novembro de 1998, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repeticões (R1 a R5) por parcela.. 97 Tabela 34. Valores de temperatura radiativa coletados durante a campanha de 25 a 26 de janeiro de 1999, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repetições (R1 a R5) por parcela.. 98 Tabela 35. Valores de temperatura radiativa coletados durante a campanha de 11 a 12 de julho de 1999, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repetições (R1 a R5) por parcela.. 98 Tabela 36 Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da Tabela 37. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da Tabela 38. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da Tabela 39. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ε). Medidas feitas em 14 de abril de 1999. 101 Tabela 40. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da Tabela 41. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da Tabela 42. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da Tabela 43. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da

RESUMO

Foram utilizadas séries de imagens diurnas e noturnas captadas pelos sensores AVHRR a bordo do satélite NOAA-14 para a obtenção dos valores finais de temperatura de superfície do dossel vegetativo. O processamento das imagens incluiu o geo-referenciamento e as correções quanto aos efeitos atmosféricos e de emissividade, para as quais se utilizou o método de correção *split window*. A equação de *split window* usada considerou o parâmetro de emissividade da superfície cultivada estimada diretamente no campo pelo método da caixa. Este método foi comparado a um método alternativo de estimativa de emissividade no campo baseado na proporção de cobertura vegetal e solo descoberto. Os dois métodos apresentaram resultados equivalentes quanto à estimativa de emissividade da superfície. A alta correlação entre a temperatura de superfície medida no campo e a obtida a partir das imagens indicou que as equações de *split window* usadas corrigiram satisfatoriamente as imagens quanto aos efeitos atmosféricos e de emissividade.

CAPÍTULO 1. INTRODUÇÃO.

1.1. Importância e objetivos do trabalho.

As metodologias derivadas e os modelos teóricos e as destinados à análise e a caracterização de extensas áreas de superfície terrestre desde satélites carecem fundamentalmente de medidas *in situ* de magnitudes tais como a temperatura e a emissividade. Para a obtenção de tais medidas, neste trabalho fez-se um estudo tanto teórico quanto experimental daqueles métodos que, por sua precisão e aplicação simples, são mais adequados a um trabalho de campo. Simultaneamente desenvolveu-se uma metodologia de trabalho de campo necessária à sua aplicação. Esses métodos devem ser capazes de quantificar, de forma exata e precisa, a magnitude física para cuja medida foi projetada. Além dessa característica imprescindível em todo bom método de medida, eles devem estar orientados a uma utilização rápida, simples e facilmente adaptável às condições do meio, podendo ser empregados em uma ampla variedade de situações.

É sabido que a forma de medir a temperatura de superfície terrestre no campo utilizando um radiômetro que trabalha no infravermelho termal cumpre esses requisitos. Entretanto, a medida direta que proporciona esse instrumento não é realmente a temperatura que se deseja medir. Como se verá nos seguintes capítulos desta tese, a temperatura termodinâmica ou radiativa está relacionada à temperatura medida. As propriedades radiativas da atmosfera atuam de forma decisiva nessa relação. Desta forma sabe-se que um método de campo, a principio adequado, pode se revelar como pouco eficaz se não oferece a possibilidade de que se corrija os dados brutos obtidos. Para tanto a medida converte-se em um objetivo de primeira ordem. Assim, os objetivos centrais deste trabalho são:

1) quantificar e analisar de que modo a atmosfera afeta as medidas de

campo da temperatura de superfície e;

 observar os efeitos provocados pela interação da radiação nela propagada com elementos superficiais como a vegetação.

A quantificação é dada pelos resultados obtidos a partir da aplicação da metodologia (tanto de trabalhos de campo quanto de processamento de imagens) aqui desenvolvida; a análise é feita a partir da interpretação desses resultados. Nesse sentido, é importante observar que a precisão das medidas a serem feitas depende da capacidade que se tenha para modelar o comportamento radiativo de um meio físico tão variável como é o da atmosfera. Essa é a razão da necessidade de que se faça um estudo específico desse meio e de sua interação com os elementos constituintes da superfície com os quais interage de forma contínua e dinâmica. Para atender tais objetivos, este trabalho:

- a) desenvolveu, testou e comprovou a eficiência de uma adaptação para a canade-açúcar, do "método da caixa" de medida da temperatura radiativa da superfície cultivada para a estimativa da emissividade da superfície vegetada;
- b) propôs, testou e comprovou a eficiência de um método alternativo ao "método da caixa adaptado" para a estimativa da emissividade de uma superfície cultivada com cana-de-açúcar a partir de dados coletados no campo; e
- c) propôs, testou e comprovou a eficiência de uma equação do tipo *split window* para a correção atmosférica de dados orbitais de temperatura de superfície na qual sejam considerados dados médios de emissividade estimada de uma determinada superfície cultivada.

1.2. Estrutura do documento e hipóteses.

Este documento se encontra dividido em mais cinco outros capítulos além deste de número 1, introdutório, no qual se busca definir a importância do presente trabalho bem como os seus objetivos e hipóteses. No capítulo de número 2 é feito um estudo por meio de revisão bibliográfica, de alguns dos principais

trabalhos desenvolvidos nas últimas décadas em correção atmosférica de dados orbitais termais para a estimativa de temperatura de superfície, com o objetivo de que se construa um panorama geral do tema em discussão. Essa revisão bibliográfica também objetiva oferecer um embasamento teórico para a metodologia aqui empregada, tanto nos trabalhos de campo como no processamento das imagens, para que seja facilitado o seu entendimento e também justificando-a. Essa metodologia, então como procedimento de trabalho de campo e de processamento de imagens, é detalhadamente descrita no capítulo 3. Essas descrições foram feitas com a preocupação de que tais procedimentos possam ser repetidos ou adaptados às mais amplas condições de relevo, tipo de cultivo e dimensões de terreno, entre outras. O capítulo 4 apresenta os principais resultados desta pesquisa e a discussão desses resultados comprovando as hipóteses estabelecidas de que:

1) o meio pode influenciar na medida de temperatura de superfície e de emissividade feitos no campo;

2) a exemplo de valores de temperatura radiativa da superfície, um valor de emissividade da superfície pode também ser estimado por métodos *in situ* de medida, com uma precisão satisfatória; e

3) esse valor de emissividade pode ser empregado como um dos parâmetros de entrada para uma equação de correção dos efeitos atmosféricos e de emissividade de dados captados por canais infravermelhos termais de um sensor orbital.

O capítulo 5 oferece um resumo desses resultados e discussões na forma de conclusões finais, comprovando que os objetivos aqui definidos foram plenamente atingidos. No capítulo 6 de anexos, são apresentados dados brutos coletados nas campanhas descritas bem como outros já processados e empregados tanto no processamento digital das imagens quanto na obtenção e análise dos dados finais que levaram à comprovação dos resultados esperados.

CAPÍTULO 2. REVISÃO DE LITERATURA.

2.1. O processamento de imagens para a estimativa da temperatura de superfície.

Nas duas últimas décadas, vários esforços tem sido feitos por diversos autores no sentido da obtenção de medidas cada vez mais precisas de temperatura da superfície em escala regional. Desse modo, se tem buscado otimizar os algoritmos disponíveis ao uso de cada etapa do processamento digital das imagens. Nesse processamento, vários obstáculos ao aproveitamento dos dados disponíveis tem sido ultrapassados. Dentre esses obstáculos, os que tem merecido uma maior atenção dos pesquisadores da área são:

- a) a detecção e eliminação de *pixels* contaminados por nuvens (SAUNDERS, 1986; SAUNDERS & KRIEBEL,1988; ARTIGAO, 1994; BRASA et al. 1996);
- b) o correto geo-referenciamento das imagens, conforme destacam MEDEIROS et. al. (1986), SEGARRA (1991), ARTIGAO (1994) e ALMEIDA (1996), entre outros;
- c) a correção devido ao efeito atmosférico, destacando os trabalhos feitos por PRICE (1984), VIDAL (1991), OTTLÉ & VIDAL-MADJAR (1992) KERR et al. (1992), PRATA (1993), SOBRINO et al. (1994), BECKER & LI (1995) FRANÇOIS & OTLLÉ (1996), COLL & CASELLES (1997), CASELLES et al. (1997) entre outros, que propõem vários algoritmos a serem utilizados na correção desses efeitos, desenvolvidos para uma grande variedade de condições atmosféricas e para distintos tipos de superfícies; e
- d) a determinação de valores médios de emissividade para a correção devida também ao efeito introduzido pela variabilidade espectral desse

parâmetro, como pode ser observado nos trabalhor realizados por RUBIO (1994), VALOR & CASELLES (1996) e RUBIO et al. (1997).

Nos itens seguintes, é feita uma revisão de alguns desses trabalhos com os objetivos de: (1) apurar os avanços obtidos; e (2) fundamentar a metodologia empregada no presente trabalho, tanto para a tomada das medidas de emissividade *in situ* como para o processamento das imagens e demais dados.

2.2. O Sistema NOAA/AVHRR.

Os satélites da série NOAA fornecem produtos cujas resoluções temporal, espacial e radiométrica são apropriadas a estudos de estimativa da temperatura de superfície. Esses satélites foram projetados para operar numa órbita polar e heliossíncrona, para a qual o eixo maior tem 7.231,9 km, formando um campo de observação de pontos do globo compreendidos entre 78° de latitude Norte e 78° de latitude Sul. A órbita possui um ângulo de inclinação máximo de 98,9° e atinge uma altitude que vai de 845,67 Km no seu perigeu a 861,62 Km no seu apogeu. O período orbital, de aproximadamente 102 minutos, produz 14,1 órbitas por dia. (KIDWELL, 1995).

O horário solar local das passagens é essencialmente o mesmo para qualquer latitude. Entretanto, uma variação nesse horário é ocasionada pela derivação que a órbita do satélite vai sofrendo com o tempo (KIDWELL, 1995). A Tabela 1 mostra o horário solar local aproximado dos cruzamentos equatoriais ascendente e descendente para algumas das plataformas da série. Nela, é possível comparar os horários das passagens em duas diferentes datas: na época de lançamento do satélite e em março de 1995.

Satélite	Horário do Cruzamento Equatorial Ascendente (hs:min)		Horário do Cruza Descender	mento Equatorial nte (hs:min)
	no lançamento	em março / 95	no lançamento	em março / 95
NOAA -10	19:30	17:53	07:30	05:53
NOAA -11	13:30	17:23	01:30	05:23
NOAA -12	19:30	19:15	07:30	07:15
NOAA -14	13:30	13:30	01:30	01:30

Tabela 1. Comparação entre os horários de passagem dos satélites em duas datas diferentes.

Fonte: adaptado de KIDWELL (1995).

Cada uma das plataformas NOAA em órbita está programada para realizar duas passagens diárias (uma diurna e outra noturna) sobre um mesmo alvo terrestre, num ciclo de cobertura de nove dias, o que lhes garante uma alta freqüência de aquisição de imagens. Esse fato aliado à resolução espectral do sensor AVHRR na região do infravermelho distante e à baixa resolução espacial de seus produtos, torna as imagens oferecidas pelo sistema NOAA/AVHRR aptas à estimativa da temperatura de superfície dentro de curtos intervalos de tempo e em escalas regionais. Tais características podem ser consideradas como vantagens desse sistema de imageamento, sobre o de outras séries orbitais, também utilizadas em sensoriamento remoto ambiental. O sistema orbital completo inclui:

- o sondador TOVS (*TIROS Operational Vertical Sounder*), constituído por três instrumentos independentes que permitem a obtenção de perfis verticais de temperatura e vapor d'água, (NING et al., 1986), a saber:
 - o HIRS/2 (*High Resolution Infrared Radiation Sounder / 2*) ou sondador de alta resolução para radiação infravermelha, capacitado a medir a radiação incidente em 20 regiões do espectro;

- a SSU (*Stratospheric Sounding Unit*) ou Unidade de Sondagem Estratosférica que emprega uma técnica de absorção seletiva para tomar medidas em 3 canais. A unidade mede a radiação emitida pelo CO₂ no topo da atmosfera;
- e a MSU (*Microwave Sounding Unit*) ou Unidade de Sondagem de Microondas que realiza medidas por quatro canais na região de 5,5 mm, do oxigênio (ALLISON & SCHNAPF, 1983);
- e o sensor AVHRR oferecendo:
 - dados HRPT (*High Resolution Picture Transmition*) cuja gravação é feita do modo como são transmitidos pelo sensor em tempo real, digitalizados numa resolução radiométrica de 10 bits, portanto com 1.024 níveis digitais;
 - dados LAC/HRPT (*Large Area Coverage data High Resolution Recorded HRPT/AVHRR*) que são gravados a bordo do satélite com resolução de 1km², sendo transmitidos como dados HRTP também numa precisão de 10 bits;
 - e os dados GAC (*Global Area Coverage Reduced Resolution Recorded AVHRR*), com resolução de 16km², que são constituídos por uma média de quatro *pixels* de alta resolução consecutivos em linha, amostrados pelo processador a bordo do satélite a cada três linhas de varredura, tomadas a intervalos de uma coluna (KIDWELL, 1995).

Os dados produzidos pelo sensor AVHRR se notabilizam pelo baixo custo e facilidade operacional. Tais vantagens têm levado os usuários dos satélites NOAA a procurarem adquirir antenas de recepção e softwares de processamento de imagens que permitam a aquisição das imagens LAC e GAC, em tempo real (KIDWELL, 1995). Além dos canais 4 e 5 operando na região do infravermelho distante do espectro eletromagnético, a resolução espectral de alguns dos sensores AVHRR é dada por mais outras três bandas, conforme listado na Tabela 2.

Canais	Faixa espectral	Resolução (µm)
1	visível	0,58 a 0,68
2	infravermelho próximo	0,725 a 1,10
3	infravermelho médio	3,55 a 3,93
4	infravermelho distante 1	10,3 a 11,3
5	infravermelho distante 2	11,5 a 12,5

Tabela 2. Resolução espectral para cada um dos canais do sensorAVHRR a bordo do satélite NOAA -14.

Fonte: adaptado de KIDWELL (1995).

O sensor AVHRR trabalha com um ângulo de varredura que vai de +55,4 a -55,4 graus cobrindo, no solo, uma faixa de aproximadamente 2.700km de largura. O seu IFOV (*Instantaneous Field of View*), ou campo instantâneo de visada, alcança uma amplitude que vai de 1,39 a 1,51mrad, o que leva a uma resolução no solo de 1,1km ao nadir. Desse modo, as suas imagens contam com uma resolução de célula (ou *pixel*) de aproximadamente 1,2km². Estas são as características que garantem à imagem uma baixa resolução espacial e, conseqüentemente, um considerável volume de dados, o que é bastante apreciável no desenvolvimento de trabalhos em escalas regionais (EHRLICH et al., 1994).

2.3. Detecção e eliminação de *pixels* contaminados por nuvens.

A seleção de imagens a partir das quais são feitos os trabalhos de estimativa da temperatura de superfície está condicionada predominantemente à contaminação por nuvens nos produtos a serem utilizados. Assim, um dos maiores problemas dos cálculos de parâmetros de superfície usando imagens de satélite na banda do infravermelho termal é a correta identificação e eliminação de radiâncias contaminadas por nuvens.

Normalmente, 50% da superfície terrestre está coberta de nuvens num dado momento. Cada tipo de nuvem apresenta um problema diferente de detecção. Por exemplo, os cirrus não podem ser detectados facilmente na banda visível; os extratos baixos e a névoa são difíceis de detectar no infravermelho para imagens da superfície do mar, pois as suas temperaturas são próximas às temperaturas da superfície (PALTRIDGE & PLATT, 1976).

Os programas já utilizados para detectar contaminações por nuvens se baseiam em uma série de testes de identificação e classificação. Assim são identificados como *pixels* livres de nuvens somente aqueles que dão resultado negativo em todos os testes. Esses testes têm sido desenvolvidos por distintos autores tais como SAUNDERS (1986), possuindo uma especificidade de aplicação de acordo com a natureza da imagem, ou seja, se é uma imagem diurna ou noturna; se são aplicados a *pixels* puros de solo, água ou mistos. Pode-se dizer que cada teste empregado baseia-se no sinal radiométrico típico de cada cobertura de nuvens, identificando-a e procedendo à eliminação do *pixel* contaminado.

ARTIGAO (1994) descreve um procedimento para a detecção de *pixels* contaminados, na qual uma série de testes é aplicada classificando essas contaminações por tipo de nuvem ocorrente (com base na sua temperatura radiativa e na sua espessura ótica, para cada uma das bandas termais do sensor) e por percentual de contaminação num dado *pixel*.

Entretanto a decisão de que se deva ou não submeter uma dada série de imagens a algorítmos de correção deve ser principalmente tomada com base nas características das resoluções espacial e temporal dessa série e de sua aplicação final. Ou seja, caso disponha-se de uma série de alta resolução temporal é aconselhável que se opte pelo simples descarte de imagens cujos *pixels* de interesse encontrem-se contaminados por nuvens. Nesse caso, deve-se usar a imagem captada mais proximamente no tempo àquela descartada, caso a aplicação final permita esse tipo de procedimento.

Numa outra consideração, é menor a probabilidade que a informação referente ao ponto terrestre de interesse esteja contida num *pixel* contaminado por nuvens se as imagens da série forem captadas numa alta resolução espacial. Assim sendo, é possível que esse ponto esteja representado por um *pixel* minimamente contaminado por nuvens em relação aos seus adjacentes. Numa imagem de menor resolução espacial, a informação referente a esse mesmo ponto estaria contida num *pixel* maior, contendo também a contaminação por nuvens que numa imagem de maior resolução estaria isolada nos *pixels* adjacentes. Ainda que esse *pixel* esteja contaminado, essa contaminação pode ser menor que a dos adjacentes. Esse fato faz com que a aplicação dos algoritmos de correção seja mais indicada a imagens de maior resolução, pois quanto menos contaminado um *píxel*, menor a distorção da informação que dele é extraída após o seu submetimento a tais algorítmos.

Existe então o consenso entre vários autores, dentre eles ARTIGAO (1994) e SAUNDERS (1988), de que somente deve-se aplicar um algoritmo de correção de contaminação por nuvens em um *pixel* se o mesmo está contaminado em um máximo de 85% de sua área, situação não pouco freqüente, sobretudo em imagens de baixa resolução espacial. Assim que, para esse tipo de imagem, em muitos dos casos, torna-se mais aconselhável o descarte da mesma que a aplicação do algoritmo. Principalmente se dispõe-se de uma alta resolução temporal. Seguindo esse raciocínio, a idéia do descarte feito após uma análise visual das imagens, pode ser o mais indicado aos trabalhos com séries NOAA/AVHRR que contam com alta resolução temporal (duas imagens diárias por satélite da série), mas com imagens de baixa resolução espacial (*pixels* que representam áreas de aproximadamente 1km²).

Independente do método empregado de seleção de imagens captadas, se por aplicação de algoritmos de correção de contaminação por nuvens ou pelo simples descarte de imagens contaminadas, o passo seguinte nos trabalhos de processamento é o geo-referenciamento das imagens para a correta localização do *pixel* de interesse.

2.4. A correção geométrica ou geo-referenciamento das imagens.

Fatores como a baixa altitude de imageamento, grandes ângulos de varredura e a movimentação do satélite em relação à Terra levam a distorções na imagem que dificultam a identificação das coordenadas geográficas terrestres nela representadas. O chamado "efeito geométrico" (MEDEIROS et al., 1986; SEGARRA, 1991). Essa identificação é feita através do uso de processos de correção geométrica ou geo-referenciamento. O trabalho consiste, pois, em corrigir as coordenadas da imagem baseando-se num modelo de geometria orbital ou de pontos de controle no terreno.

No primeiro caso, utiliza-se um programa que atua em cada *pixel* da imagem, num processo analítico de determinação de parâmetros orbitais, necessários para gerar uma transformação matemática entre o sistema de referência do satélite e o de coordenadas terrestres. Dessa forma, o programa realiza um processo que "navega" cada *pixel* da imagem, produzindo novas informações que promoverão uma mudança nas posições destes *pixels* (SEGARRA, 1991), corrigindo-as.

A correção baseada em pontos de controle no terreno é feita quando se tem conhecimento das coordenadas geográficas de marcas terrestres visíveis na imagem. Assim, o ajuste é feito pela diminuição da diferença de quadrados mínimos existente entre a posição (X, Y) de um determinado *pixel* e as coordenadas geográficas da marca terrestre representada nesse mesmo *pixel*, fornecidas pelo usuário.

Alguns programas de processamento digital de imagens já incluem em seus pacotes, procedimentos para que se proceda ao geo-referenciamento baseado no segundo método descrito, como é o caso do METPRO[®], comercializado pela GSC (*General Science Corporation Inc.*). À medida que as coordenadas são registradas, esse programa vai criando um arquivo de marcas terrestres que são utilizadas na operação de ajuste (GSC, 1994). Esse arquivo pode ser editado de acordo com as necessidades de cada usuário, de modo que contenha informações de diferentes grupos de marcas terrestres visíveis em cada imagem de uma série.

Desse modo, o trabalho de entrada de dados torna-se mais fácil e mais rápido. ALMEIDA (1996) utilizou esse programa para corrigir seis imagens NOAA-14, obtendo erros da ordem de 1 *pixel* para cada imagem geo-referenciada. Erros da mesma magnitude foram encontrados por BRASA et. al (1996) e ARTIGAO (1994) utilizando em seus trabalhos, programas desenvolvidos por eles mesmos. Localizado o *pixel* de interesse, pode-se proceder diretamente à obtenção dos valores de temperatura de superfície, conforme se verá a seguir.

2.5. A obtenção do valor de temperatura de superfície.

Os valores dos níveis digitais da imagem produzida pelos canais 4 e 5 do sensor AVHRR são convertidos em valores de temperatura através de um processo de calibração. Os coeficientes de "Ganho" e de "Intercepto" para cada canal utilizados nesse processo vêm incluídos na base de dados gravada no formato "nível-1b" veiculada em cada imagem. Esses coeficientes permitem o desenvolvimento de uma calibração linear para os dados coletados e, desse modo, obtém-se um valor também linear para a radiância medida pelo sensor, conforme demonstrado pela Equação 1:

$$R_{lin} = G \cdot C + I \tag{1}$$

onde R_{lin} é a radiância linear medida, G representa o coeficiente de Ganho, I é o coeficiente de Intercepto e C (Tabela 46 – Anexos) é o numero de níveis digitais do *pixel* em operação que, para uma imagem de 10 bits, situa-se no intervalo que vai de 0 a 1023 (KIDWELL, 1995).

Uma segunda equação é utilizada para que se chegue a um valor corrigido de radiância (RAD), função apenas da radiação linear dada pela Equação 2:

$$RAD = A_i \cdot R_{lin} + B_i \cdot R_{lin}^2 + C_i$$
(2)

na qual A_i, B_i e C_i são coeficientes de correção específicos para cada um dos canais infravermelhos do sensor (Tabela 47 - Anexos).

Uma vez determinados os valores de RAD para os canais 4 e 5, a temperatura é calculada para cada um destes canais, usando a equação inversa da radiação de Planck (COLL et al., 1991; KIDWELL, 1995):

$$T(RAD) = \frac{C_2 \nu}{\ln(1 + \frac{C_1 \nu^3}{RAD})}$$
(3)

onde C₁ e C₂ são constantes, T é a temperatura (°K) e v é o número central de onda (cm⁻¹) captada dentro da resolução espectral do canal em estudo.

Entretanto, o valor de temperatura encontrado conta com um erro de leitura radiométrica provocado pelos efeitos de absorção e espalhamento atmosféricos como se verá mais detalhadamente no item 2.6. Esses erros ocorrem pois, é verificado um percentual de perturbação atmosférica na radiação transmitida, não devendo esse percentual ser desconsiderado mesmo nas regiões de mínima absorção da radiação, as chamadas regiões de janelas espectrais.

Além disso, a transformação das radiâncias medidas pelo satélite em temperatura pela equação inversa de Planck é feita supondo que a superfície observada é um corpo negro, cujo valor de emissividade é igual a 1 (SOBRINO et al., 1991).

Todavia, uma superfície vegetada não se comporta como um corpo negro perfeito, possuindo valores de emissividade sensivelmente menores que a unidade. Isso faz com que os valores de temperatura fornecidos pelo sensor sejam comprometidos também pelo efeito devido à emissividade, que leva a uma subestimação do valor de temperatura de superfície dado pela Equação 3 (SOBRINO et al., 1993). Assim, o valor de temperatura obtido até aqui passa a ser chamado de "temperatura aparente" da superfície (SOBRINO et al., 1993) e só pode ser considerado como representativo da realidade terrestre depois de corrigido quanto aos efeitos atmosféricos e de emissividade da superfície.

2.6. As correções devido aos efeitos atmosféricos e de emissividade.

O fluxo energético emitido pela superfície tem as suas características modificadas por perturbações promovidas por componentes do meio atmosférico. Essas perturbações podem ocorrer simultaneamente de duas formas: pelo espalhamento e pela absorção da radiação (MIRALLES, 1991).

Na absorção, a radiação é "atenuada", o que leva a uma diminuição na sua densidade de fluxo transmitido. No processo de espalhamento, a energia é refletida e refratada em todas as direções. A maior parte da radiação absorvida e emitida na região do infravermelho termal é atribuída ao vapor d'água e ao dióxido de carbono. Esses dois gases, principalmente o vapor d'água, são importantes determinadores da quantidade de energia tanto na atmosfera, quanto na superfície terrestre.

Os sensores térmicos operam nas "janelas atmosféricas" situadas nas regiões espectrais 3,5-4,1µm e 10,5-12,5µm. Essas regiões são assim

denominadas por apresentarem máxima transparência atmosférica. Entretanto, inclusive dentro dessas janelas, a absorção e a emissão devido aos gases atmosféricos são significativas. Fundamentalmente, o vapor d'água, o dióxido de carbono e o ozônio têm intensos espectros de absorção em todo o infravermelho termal, sendo sua contribuição dentro da janela, assim mesmo importante.

Por um lado, esses gases absorvem parte da radiação emitida pela superfície terrestre; por outro, emitem radiância térmica em direção ao satélite, determinada pela temperatura em que se encontra a atmosfera. Como geralmente a temperatura dos gases na atmosfera é menor que a da superfície terrestre, o efeito atmosférico global representa uma diminuição da radiância recebida pelo sensor. A magnitude dessa diminuição depende basicamente do conteúdo de vapor d'água e da temperatura da atmosfera (COLL, 1994).

O efeito da emissividade deve-se ao fato que as superfícies naturais diferem do comportamento de um corpo negro, apresentando valores distintos da unidade e espectralmente variáveis. O efeito da emissividade tem dois componentes de sinal contrário: por um lado, a emissividade modifica a radiação emitida pela superfície para cada comprimento de onda, de forma que esta é menor do que se tratasse de um emissor perfeito; por outro lado, a superfície reflete parte da radiação que a atmosfera emite em direção à superfície, a qual é uma contribuição positiva à radiação que chega ao satélite.

Novamente, devido ao fato que a temperatura da atmosfera é menor que a temperatura da superfície, o efeito da reflexão é menor que o efeito da emissão, e com isso o efeito total da emissividade significa uma diminuição da radiação medida pelo satélite, em comparação com a que seria medida caso se tratasse de um corpo negro (RUBIO, 1994; VALOR & CASELLES, 1996).

O efeito da emissividade da superfície é superposto à atenuação atmosférica no caso da temperatura da superfície terrestre. Ao contrário da superfície do mar, a emissão termal da superfície terrestre é altamente variável pois depende de um número muito grande de fatores relacionados à composição física do *pixel* (proporção e tipo de cobertura vegetal, tipo de solo aparente, e geometria da superfície, entre outros) caracterizando a variabilidade também espacial desse parâmetro (COLL & CASELLES ,1997).

Entretanto, deve-se considerar o efeito da reflexão, sobretudo para atmosferas úmidas onde a radiação atmosférica é maior. Dessa forma, o efeito total da emissividade, depende do tipo de atmosfera: na janela 10,5µm -12,5µm, para uma diminuição de 1% do valor de emissividade, o efeito em termos de temperatura é de 0,7K quando não se considera o termo de reflexão; 0,5K em uma atmosfera típica de latitudes médias de inverno e 0,2K em uma atmosfera tropical (COLL, et al. 1992).

CASELLES & SOBRINO (1989) avaliaram a importância da precisão nas medidas de emissividade, encontrando que a incerteza de 1% na determinação desse parâmetro leva a um erro de 0,5 °C para um valor de temperatura do solo em torno de 27°C (300K). Desse modo, torna-se importante a determinação precisa de valores de emissividade para a superfície cuja temperatura se deseja medir. Pode-se proceder a essa determinação, através de medidas experimentais de emissividade feitas no campo.

2.6.1. A medida da emissividade in situ.

Para a medida de emissividade a ser feita no campo, RUBIO et al. (1997) indicam o método denominado de "método da caixa", originalmente proposto por BUETNER & KERR (1965). Este método tem a dupla vantagem de (1) permitir a medida direta da temperatura de superfície e (2) permitir o controle da radiação ambiental, isolando a amostra e evitando a contaminação da radiação vinda de materiais distintos, situados nas proximidades de onde as medidas são feitas.

A caixa utilizada por estes autores, possui as dimensões de 0,8m de altura por 0,3m x 0,3m de base livre, ou seja, sem fundo. Cada lado da caixa deve ser confeccionado em um material que possua as mesmas propriedades físicas de uma superfície refletiva especular ou lambertiana, com valor de emissividade próximo de zero. Assim, as paredes da caixa são confeccionadas em alumínio polido, com valor de emissividade $\varepsilon \approx 0,03$. No topo da caixa, são usadas tampas intercambiáveis, chamadas de "tampa quente" e "tampa fria", com diferentes respostas espectrais.

Cada tampa tem uma abertura central, por onde é introduzido o sensor do radiômetro que faz as medidas. A tampa quente é uma cobertura feita de alumínio anodizado, pintado de negro. A resposta espectral desta cobertura é muito similar a de um difusor perfeito, com valor de emissividade $\varepsilon \approx 0,98$. A tampa fria é feita do mesmo material usado na confecção das paredes da caixa, portanto com valor de emissividade $\varepsilon \approx 0,03$.

As medidas de emissividade podem ser feitas por duas variações do método da caixa: pelo "método de duas tampas", no qual se utiliza tanto a tampa fria como a tampa quente; e pelo "método de uma tampa", no qual somente a tampa fria é utilizada. A seguir, é dada uma descrição pormenorizada dos dois métodos.

No "método de duas tampas", são feitas três medidas de radiância, em diferentes configuração do sistema "caixa-amostra". O primeiro consiste em situar a caixa sobre a amostra com a tampa fria na parte superior da caixa. Esta configuração deve ser mantida por um período de aproximadamente dois minutos, antes de se proceder à medida da radiância, até que um equilíbrio entre a temperaturas dos diferentes materiais componentes do sistema alumínio-amostra seja atingindo. Na segunda configuração, a tampa fria é rapidamente trocada pela quente e a medida é tomada imediatamente após a troca. Segundo RUBIO et al. (1997), esta segunda parte da operação não deve durar mais que cinco segundos. Desta forma impede-se que a temperatura da amostra mude significativamente devido à radiação da tampa quente.

Para a terceira medida, a caixa é posicionada (ainda com a tampa quente) sobre uma tampa fria confeccionada sem abertura. Esta medida não pode ser feita tão rapidamente como a segunda, pois o alumínio absorve a radiação vinda da tampa quente 30 vezes mais lentamente que a amostra (RUBIO et al. 1997). Entretanto, a tampa quente esfria um pouco durante o processo e, desse modo, é recomendado que esta medida não demore mais que 10 segundos.

No método de uma tampa, são feitas três medidas de radiância: a primeira delas é feita com a tampa fria, conforme descrito para a primeira medida do método anterior; na segunda, a caixa é removida e é medida a radiância da mesma amostra, em ambiente livre; é feita uma medida da radiância atmosférica, emitida em direção à superfície, apontando o sensor do radiômetro para o zênite.

Para o método de duas tampas, a emissividade da amostra é dada pela seguinte expressão (CONWAY & van BAVEL, 1967):

$$\varepsilon_0 = \frac{L_3 - L_1}{L_3 - L_2} \tag{4}$$

onde ε_0 é o valor de emissividade obtido e L_i (com i = 1, 2, 3,) é o valor da radiância efetiva medida para as seguintes configurações:

- L₁ é a medida da radiância quando a caixa é situada sobre a amostra e a tampa quente é utilizada;
- 2) L_2 é feita com a tampa fria, no lugar da tampa quente; e
- 3) L_3 é a medida feita quando a caixa, com a tampa quente, é posicionada sobre a tampa de alumínio polido, sem abertura.

Na prática, a caixa usada não apresenta condições "ideais" de medida. Isso por que os valores requeridos para a emissividade ε tanto da tampa quente quanto da tampa fria, diferem de 1 e 0, respectivamente. Numa tentativa de quantificar esse efeito, RUBIO et al (1997) fizeram um estudo teórico do balanço radiativo dentro da caixa, entre cada uma de suas partes. Como resultado desse estudo, sugerem que um termo de correção desse efeito seja adicionado à equação proposta por CONWAY & van BAVEL (1967). Esse termo é dado por:

$$\varepsilon_a = \varepsilon_0 + \delta \varepsilon$$

onde ε_a é a emissividade da amostra e $\delta\varepsilon$ é um fator de correção que depende da geometria interna do dossel, ou seja, da altura e da proporção de cobertura da vegetação com relação ao solo na qual se considera a distância das plantas entre fileiras e da distância entre fileiras (RUBIO et al., 1997) o valor de $\delta\varepsilon$ pode ser assumido como igual a 1 e ε_a se iguala a ε_0 (RUBIO, 1994).

Para o método de uma tampa, a seguinte equação é proposta por COMBS et al. (1965):

$$\varepsilon_0^* = 1 - \frac{L_2 - L_b}{L_2 - L_a^{\downarrow}} \tag{6}$$

onde ε_0^* é o valor de emissividade obtido, L_a^{\downarrow} é a radiância atmosférica emitida em direção à superfície e L_b é a radiância medida em ambiente livre, ou seja, sem a caixa. À Equação 6 também deve ser adicionado um termo para a correção do efeito devido às propriedades físicas do material usado na confecção da caixa, conforme sugerido para a Equação 4. Esse termo é dado pela seguinte equação:

$$\varepsilon_a = \varepsilon_0^* + \delta \varepsilon^* \tag{7}$$

onde $\delta \varepsilon^*$ é o fator de correção que também é dependente da geometria interna do dossel; para o caso de uma superfície totalmente coberta pela vegetação, o valor de $\delta \varepsilon^*$ pode ser assumido como igual a 1. O método de uma tampa apresenta duas restrições com relação à sua aplicação:

- a atmosfera deve apresentar uma distribuição uniforme quanto à presença de nuvens, ou seja, as medidas devem ser feitas em situação de céu totalmente livre ou totalmente coberto por nuvens; e
- se a superfície amostrada é heterogênea, ou seja, composta por dois ou mais tipos de materiais, o método não pode ser aplicado.

Entretanto este método possui a vantagem de ser mais fácil de operar, possibilitando que as medidas sejam tomadas com maior rapidez. Isso é desejável, não somente pelas próprias características físicas do método em si, mas também por uma questão de operacionalidade do trabalho de campo. Independentemente do método utilizado, o valor de ε médio obtido poderá ser utilizado no algoritmo de correção dos efeitos atmosférico e de emissividade.

Utilizando os métodos descritos, RUBIO et al (1977) obtiveram 72 medidas de emissividade média para distintos campos experimentais. A partir desses dados, valores máximos e mínimos de emissividade foram estabelecidos para diferentes tipos de materiais (vegetação, solo e rochas), compondo um banco de dados de valores de emissividade ε . Esse banco de dados foi utilizado por VALOR & CASELLES (1997) na confecção de mapas de emissividade, a partir de imagens TM, obtendo um erro da ordem de 0,01 para os valores de emissividade ε mapeados.

2.6.2. Interpretação da radiância registrada pelo sensor – A tempertura radiativa.

O termo temperatura radiativa é aqui empregado para referir-se à temperatura lida diretamente pelo radiômetro. Cabe esclarecer o significado dessa temperatura e, sobretudo, o interesse físico que possa representar. Com esse objetivo, busca-se discutir, nesse item, a relação entre essa temperatura, o sinal registrado e a radiância de corpo negro equivalente. Também será estabelecida uma conexão entre a radiância e a temperatura, em forma de expressão analítica, como se verificará a seguir.

Em primeiro lugar, o sinal registrado pelos sensores tem dimensões de radiância, isto é, Wm⁻²sr⁻¹µm⁻¹. Esse sinal resulta da convolução da função de resposta espectral do canal com a radiância espectral que alcança o sensor num sentido ascendente, ou seja:

$$S_{i}(\theta) = \int_{0}^{\infty} f_{i}(\lambda) L_{\lambda}(\theta) d\lambda$$
(8)

onde supõe-se que a função filtro $f_i(\lambda)$ do radiômetro está normalizada, isto é, que se cumpra a relação $\int_0^{\infty} f_i(\lambda)d\lambda = 1$.

A temperatura radiativa T_i medida pelo sensor do canal i, para um ângulo de inclinação θ , é a temperatura à qual a superfície observada estaria emitindo radiação se fosse um emissor perfeito. Ou seja, com resposta espectral coincidindo com a função de radiação espectral de Planck. Igualando a radiação assim medida àquela dada pela função da radiação de Planck tem-se que:

$$S_{i}(\theta) = B_{i}(T_{i})$$
(9)

com B_i(T_i) sendo a função de Planck ponderada para o canal i a uma temperatura T, que define-se como:

$$B_{i}(T) = \int_{0}^{\infty} f_{i}(\lambda) B_{\lambda}(T) d\lambda$$
(10)

Para que se obtenha a radiância captada pelo sensor é necessário conhecer a dependência da radiação de Planck ponderada no intervalo de trabalho com a temperatura. Essa dependência é dada aproximando-a mediante uma expressão analítica. Assim resolve-se exatamente a integral da Equação 10 para a função filtro do radiômetro EVEREST modelo 210 que opera na banda 8μ m-13 μ m. O resultado é dado numa tabela na qual tem-se o valor de B_i em função de T para os seus valores compreendidos entre 200K e 300K, a intervalos de 0,1K.

Entretanto, em determinadas ocasiões, é mais prático e imediato dispor de uma relação matemática para passar de temperatura radiativa a radiância registrada. Por esse motivo, também foi deduzida uma expressão analítica do tipo potencial, seguindo o método proposto por RUBIO et al. (1997). Assim, para um dado canal, a função de Planck pode aproximar-se segundo:

$$B_{i}(T) \approx a \left(T/T_{0}\right)^{b}$$
(11)
onde a e b são dois coeficientes que dependem do intervalo espectral considerado e do intervalo de temperaturas, e T_0 é uma temperatura de referência que neste caso foi considerada como igual a 300K.

Para utilizar os valores dos coeficientes a e b mais apropriados, isto é, que sejam válidos para os valores de temperatura medidos e que ao mesmo tempo tenham um erro mínimo, os mesmos devem ser estimados restringindo o intervalo de temperaturas ao mínimo necessário para caracterizar a superfície observada.

Assim, para a atmosfera, o intervalo de temperaturas típicas considerado é de 230K a 290k; para uma amostra de solo em conjunto, os valores de temperatura se encontram entre 230K e 320K. Os resultados são mostrados na Tabela 3. Como esperado, conforme aumenta-se a largura do intervalo de temperaturas, também incrementa-se o seu erro.

Tabela 3. Valores dos coeficientes a e b estimados na banda 8-13µm tendo em conta a função filtro do radiômetro EVEREST, para três intervalos de temperatura diferentes. Também apresentam-se os erros médio e máximo que se produz ao utilizar a aproximação de potência para a função de Planck.

Intervalo de T(K)	A [mW/(m ² sr cm ⁻¹)]	b	ε(Κ)	ε _{máx} (K)
290-320	95,026	4,7647	0,1	0,22
230-290	99,208	5,5248	0,5	1,1
230-320	95,258	5,28260	1,0	2,4

2.6.3. Métodos de correção atmosférica e de emissividade.

Os métodos de aproximação ao problema da correção atmosférica dependem do número de medidas de temperaturas disponíveis simultaneamente para um mesmo *pixel*. Quando somente dispõe-se de um canal, como é o caso do sensor TM, o procedimento mais usual seria determinar a transmissividade e a radiância atmosféricas utilizando perfis verticais de pressão, temperatura e densidade de vapor d'água como dados de entrada de um modelo de transferência radiativa (PRICE, 1983; SCHMETZ, 1986; LI & McDONNEL, 1988).

A aplicação de métodos monocanais requer uma correta especificação dos perfís atmosféricos para a região estudada e no horário da passagem do satélite, o que não é possível na maioria das ocasiões. Além disso, o cálculo da correção atmosférica dependerá do modelo radiativo empregado, de como o mesmo inclui os distintos coeficientes de absorção e da sua dependência com a concentração dos constituintes atmosféricos.

Assim, uma solução para o problema da correção atmosférica no termal consiste na utilização de várias medidas de radiância do mesmo *píxel*. Isto é possível com os canais 4 e 5 dos sensores AVHRR. Dentro da janela 10,5µm-12,5µm, o espectro de absorção do vapor d'água é mais expressivo para longos comprimentos de onda, devido à maior contribuição da absorção do tipo contínuo. Por isso, a atenuação atmosférica resultante no canal 5 é maior que a absorção diferencial com respeito ao canal 4, sendo então uma medida do conteúdo de vapor d'água atmosférico. Dessa forma, a correção atmosférica em um canal pode ser determinada a partir da diferença entre as temperaturas medidas pelos canais 4 e 5, T_4 - T_5 .

Esta é a base física do modelo *split-window*, assim denominado, por utilizar os dois canais mencionados dentro da janela atmosférica (COLL,1994). Em uma primeira aproximação, a diferença de temperatura evita a utilização de perfís atmosféricos e podendo-se estabelecer uma relação linear entre a correção atmosférica e T_4 - T_5 . O método *split-window* pode estender-se para incluir outros

canais térmicos, como os da janela 3,5-4,1 μ m. Assim, temos os métodos multicanais em geral, que expressam a temperatura corrigida como combinação linear das temperaturas T_i medidas em "n" canais distintos (DESCHAMPS & PHULPIN, 1980).

O método de absorção diferencial também pode ser aplicado a medidas de radiância em um só canal, entretanto com ângulos de observação distintos. Este é o denominado método biangular, proposto pela primeira vez por SAUNDERS (1970), com medidas de temperatura do mar realizadas desde um avião para dois ângulos de observação zenital θ de 0° e 60°, aproximadamente. A absorção diferencial é conseguida, neste caso, por "aumentar" o caminho percorrido pelo sinal, em vez de diferenças do espectro de absorção em função do comprimento de onda. Segundo COLL (1994), o fundamento físico dos métodos de *split-window* e bi-angulares é o mesmo. Entretanto, indica duas desvantagens substanciais do método bi-angular: (1) a variação da emissividade da superfície com o ângulo de observação; (2) as diferentes dimensões dos *pixels* nos modos de operação.

O modelo de *split-window* proposto por COLL & CASELLES (1997) tem a mesma estrutura básica do modelo apresentado por COLL et al. (1994). Os parâmetros de entrada requeridos são a emissividade média da superfície medida pelos canais 4 e 5 do sensor AVHRR, e a diferença espectral de emissividade nesses canais. A expressão vem escrita como:

$$T = T_4 + A \left(T_4 - T_5 \right) + \varDelta + B(\varepsilon) \tag{12}$$

onde *T* é a temperatura da superfície corrigida devido aos efeitos atmosféricos e de emissividade. T_4 e T_5 são as temperaturas aparentes ou não-corrigidas fornecidas pelos canais 4 e 5, respectivamente; e

$$A = \frac{1 - \tau_4(\theta)}{\tau_4(\theta) - \tau_5(\theta)} \tag{13}$$

$$\Delta = -\left[I - \tau_5(\theta)\right] \cdot A \cdot \left(T_{a4}^{\uparrow} - T_{a5}^{\uparrow}\right)$$
(14)

$$B(\varepsilon) = \alpha . (1 - \varepsilon) - \beta . \Delta. \varepsilon$$
⁽¹⁵⁾

$$\alpha = (b_4 - b_5) \cdot A \cdot \tau_5(\theta) + b_4 \tag{16}$$

$$\beta = A \cdot \tau_5(\theta) \cdot b_5 + \alpha/2 \tag{17}$$

$$b_{i} = \frac{T_{i}}{n_{i}} + \gamma_{i} \cdot \left(\frac{n_{i} - 1}{n_{i}} \cdot T_{i} - T_{ai}^{\downarrow}\right) \cdot \left[1 - \tau_{i}(0^{\circ})\right] \qquad i = 4;5$$
(18)

com $\tau_i(\theta)$ sendo a transmitância atmosférica para o canal *i* (*i* = 4, 5) num ângulo de observação zenital θ ; $T_{ai}^{\uparrow}(T_{ai}^{\downarrow})$ sendo as temperaturas atmosféricas efetivas para o canal *i* na direção ascendente (descendente); $n_4 = 4,667$, $n_5 = 4,260$ para NOAA 11 AVHRR (SOBRINO et al., 1991); e γ_i é aproximadamente igual a 1,6 sendo a razão da radiância hemisférica emitida em direção à superfície para π vezes a radiância direcional ao nadir (SCHMUGGE et al. 1991).

As Equações 13 e 14 são os coeficientes clássicos derivados para uma superfície corpo negro (McMILLIN, 1975; MAUL & SIDRAN, 1973). Se a emissividade é alta, como é o caso da maioria das superfícies naturais na janela do 10µm -12,5µm, os coeficientes $A e \Delta$ somente dependerão das propriedades atmosféricas e não da emissividade da superfície. Desse modo, esses coeficientes podem ser chamados de "coeficientes atmosféricos" da equação de *split-window*. Como consequência, $A e \Delta$ podem ser aplicados a qualquer tipo de superfície pois o efeito de emissividade será compensado pelo termo $B(\varepsilon)$ dado pela Equação 15. Este termo é uma função linear da emissividade média ε e da diferença espectral $\Delta \varepsilon$.

 lineares no conteúdo de vapor d'água (ou água precipitável W) e as temperaturas aparentes fornecidas pelo satélite T_i tem sido derivadas.

Assim, na aplicação da equação de *split-window* para obter a temperatura de superfície da terra, o termo $B(\varepsilon)$ de correção de emissividade deve ser calculado. Para proceder a esse cálculo, os coeficientes α e β podem ser otimizados de acordo com as propriedades atmosféricas e a temperatura de superfície. COLL & CASELLES (1997) sugerem uma nova parametrização em termos de *W* e *T_i* para que estes coeficientes sejam obtidos com uma maior precisão. Para tanto, é considerada a possibilidade que o coeficiente *b_i* (Equação 18) possa ser expresso como uma função linear de *T_i*:

$$b_i = c_i (W) T_i - d_i (W) \tag{19}$$

estando os termos c_i e d_i em função linear de W. Para o conjunto de dados de α , β e W usado por COLL, 1997, o autor chegou às seguintes expressões:

$$b_4 = (0,198 + 0,167. W) \cdot T_4 - (62,3 \cdot W - 10)$$
⁽²⁰⁾

$$b_5 = (0,234 + 0,206 . W) . T_5 - (78,9 . W - 5)$$
(21)

com W dado em g/cm², chegando a estimar um erro de 3 K para b_i .

Conforme observado nas Equações 13 e 14, a transmitância atmosférica τ_5 no canal 5 e o coeficiente atmosférico *A* são requeridos na formulação. Transmitâncias atmosféricas decrescem com a umidade do ar e uma relação linear aproximada poderia ser usada para τ_5 . A seguir, será mostrado como o coeficiente *A* pode ser calculado. Entretanto, $\alpha \in \beta$ podem ser estimados para uma área em particular como função da temperatura aparente se uma medida de conteúdo de vapor d'água ou dados climatológicos estão disponíveis. Caso não o estejam, valores climatológicos médios podem ser usados para $\alpha \in \beta$. É sabido que o valor de β não costuma variar muito para superfícies vegetais, podendo, em muitos desses casos, esse valor ser desprezado, o que torna o coeficiente *B*(ε) da Equação 15, dependente basicamente do coeficiente α .

COLL & CASELLES (1997) utiliza uma extensa série de dados compilada pelo *NOAA-NASA Pathfinder Machup Database*, publicado por PODESTÁ et al. (1995) para calcular os coeficientes $A e \Delta$. Esta base de dados, denominada pelo autor como *machup*, consiste de arquivos separados contendo informações de temperatura de superfície do mar feitas por satélite e suas medidas simultâneas tomadas *in situ*, e organizadas por satélite e ano. A distribuição geográfica e temporal dos dados inclui uma grande extensão de condições oceânicas e atmosféricas distribuídas por todo o globo terrestre, dentro da faixa de latitudes que vai de 60°N a 60°S.

Utilizando critérios específicos, selecionou um conjunto de dados extraídos do banco de dados original. Tomou os dados coletados pelo satélite NOAA 11 nos anos de 1983 a 1993, utilizando os valores de temperatura medida *in situ T*, a diferença $T - T_4$ e a diferença de temperaturas aparentes $T_4 - T_5$. Para os dados selecionados do banco de dados original, os valores de temperatura de superfície compreendem uma extensão que vai de 0° a 30°C, aproximadamente, onde $T - T_4$ (que basicamente representa a atenuação atmosférica) toma valores que vão de 0° a 8°C. A diferença $T_4 - T_5$ mostra uma variabilidade muito menor, indo de 0° a 3° C.

Os valores dos coeficientes foram determinados a partir de uma análise de regressão de $T - T_4$ contra $T_4 - T_5$. Para esta análise, o coeficiente A foi dado pelo valor *slope* da equação obtida e o coeficiente Δ pelo valor *intercept* "ou intercepto". Entretanto, COLL & CASELLES (1997) observou uma não-linearidade na distribuição dos dados para essa análise de regressão. Assim, conforme sugerido em COLL (1994), é introduzida a dependência atmosférica dos coeficientes de *split-window* simplesmente assumindo um algoritmo quadrático de *split-window* em $T_4 - T_5$. Desse modo, procedeu a uma análise de regressão não-linear para derivar os coeficientes A e Δ . Para tanto utilizou a maior série de dados disponível, a do ano de 1993, obtendo:

$$A = 1,34 + 0,39 \cdot (T_4 - T_5); e$$
 (22)

$$\Delta = 0,56 \text{ K.}$$
 (23)

com um erro estimado em 0,3 K e um coeficiente de determinação de r^2 = 0,948. Assim, a equação de *split-window* assume a forma:

$$T = T_4 + [1,34 + 0,39 . (T_4 - T_5)] . (T_4 - T_5) + 0,56 + \alpha . (1 - \varepsilon) - \beta . \Delta. \varepsilon$$
(24)

Os dados restantes da série selecionada foram usados para comprovar a consistência dos coeficientes derivados. Esta Equação 24 foi também aplicada à série de dados correspondentes aos anos de 1988 a 1992, encontrando valores de erros médios que variaram de $-0,1 \pm 0,3$ °C a $0,0 \pm 0,3$ °C.

O algoritmo representado pela Equação 24 foi validado usando diferentes séries de dados de temperatura de superfície coletados *in situ* e dados AVHRR coincidentes. Para tanto, os autores usaram duas diferentes séries de dados: (a) o banco de dados de valores de temperatura de superfície do mar coletado pelo *Centre de Météorologie Spatiale* (CMS), em *Lannion*, França, compreendendo 347 situações coletadas sobre mares europeus, os quais tem sido usados como uma fonte independente para testar a parte de correção atmosférica do algoritmo; e (b) a base de dados de temperatura de superfície coletada por PRATA (1994) sobre diferentes tipos de superfícies terrestres que não a do mar, com um total de 358 medidas *in situ* e AVHRR; coincidentes. Este último permitiu a validação tanto do efeito atmosférico quanto do de emissividade. A validação para ambos os bancos de dados apresentou erros que variaram dentro da amplitude de \pm 1,0 a 1,5 K.

Entretanto estes resultados estão limitados a atmosferas secas. Em condições de atmosferas úmidas, erros maiores são esperados. Essa expectativa é confirmada pelo trabalho de CASELLES (1997) que aplicando uma versão prévia do algoritmo representado pela Equação 24 a um banco de dados reduzido, composto por medidas feitas em HAPEX-Sahel de atmosfera mais úmidas, obteve erros da ordem de $\pm 2K$. Assim sendo, mais trabalhos de validação para

atmosferas úmidas e tropicais são requeridos. Uma solução para esse problema seria o desenvolvimento de uma versão para essa equação, nas quais os coeficientes α e β seriam determinados para condições de atmosfera mais úmida e tropical, caracterizando uma versão desse algoritmo para aplicação regional em latitudes tropicais.

CAPÍTULO 3. MATERIAL E MÉTODOS.

3.1 Campo experimental.

O campo experimental deveria conter uma área com um tamanho de 9km², considerando a resolução espacial dos produtos NOAA-AVHRR, com *pixel* de aproximadamente 1,1km². Isso para que se pudesse dispor de uma bordadura de aproximadamente 1km de largura ao redor da área terrestre que representasse o *pixel* de trabalho. Essa área deveria ainda atender ao máximo os seguintes critérios:

- mesma variedade e plantio;
- topografia plana;
- bordadura com a mesma cultura; e
- mesmo tipo de solo.

Uma área total de 694,41ha, cultivada com cana-de-açúcar (*Saccharum* sp, variedade RB83-5486), em Latossolo-roxo, foi escolhida na fazenda São Bento Velho, de propriedade da Usina São Martinho, no Município de Guariba - SP.

Foram escolhidas cinco parcelas de amostragem consideradas como representativas de toda a área de trabalho, de acordo com os critérios de relevo plano, uniformidade de cultivo, fácil acesso e distribuição uniforme. As coordenadas geográficas de cada uma das regiões de amostragem, aqui chamadas de parcelas, foram determinadas usando um aparelho de GPS modelo *Pathfinder BasicTM Receivers*, fabricado pela *Trimble Navigation, Ltd.* (Figura 1). A Tabela 4 apresenta os valores dos pares de coordenadas UTM para cada parcela.

Figura 1. Determinação das coordenadas geográficas de uma das parcelas pertencentes à área de trabalho, usando o aparelho de GPS modelo Pathfinder BasicTM Receivers, fabricado pela Trimble Navigation, Ltd.

Parcela	X (UTM)	Y (UTM)
1	796551,06	7631608,64
2	796879,29	7630926,93
3	796498,01	7630681,83
4	796975,54	7630255,35
5	795501,54	7630607,63

Tabela 4. Valores dos pares de coordenadas UTM, fuso 22 Sul (projeção "Universal Transversa de Mercator") para cada parcela pertencente à área de trabalho.

Fez-se o mapeamento digital da área de trabalho percorrendo-a em todo o seu perímetro, com o mesmo aparelho de GPS usado para a determinação das coordenadas geográficas das parcelas. Foram definidos os limites da área e as coordenadas geográficas de seus quatro vértices principais, que estão representadas na Figura 2 em valores UTM para o fuso 22 - hemisfério Sul. A mesma figura mostra ainda o mapa digital obtido, bem como a localização de cada uma das cinco parcelas escolhidas.

Figura 2. Parcelas escolhidas e limites da área de trabalho em mapeamento digital feito com o aparelho de GPS modelo Pathfinder BasicTM Receivers, fabricado pela Trimble Navigation, Ltd.

Foram instalados no campo, em local próximo à área de trabalho, um pluviômetro do tipo "Vile de Paris" e um abrigo meteorológico contendo um termógrafo e um higrógrafo, ambos da marca "Fishen" (Figura 3). Esses equipamentos permaneceram em funcionamento contínuo no campo, durante todo o tempo previsto para a coleta de dados. As Figuras 19 a 33 (Anexos) mostram os dados meteorológicos coletados pelo termógrafo, pelo higrógrafo e pelo pluviômetro.

Figura 3. Pluviômetro e abrigo meteorológico contendo termógrafo e higrógrafo instalados em local próximo à área de trabalho.

3.2. Planejamento geral das campanhas.

3.2.1. definição das datas de ida ao campo.

A definição das datas de ida ao campo foi feita de acordo com as datas programadas para as passagens do satélite. As mesmas foram selecionadas de modo a escolher aquelas que ocorressem num ângulo de inclinação próximo ao nadir, tomando como referência a área de trabalho. Dessa forma puderam ser obtidas imagens minimamente distorcidas, diminuindo as amplitudes dos erros geométricos. Cada ida ao campo experimental foi feita nos dias em que ocorressem tais passagens e nos quais se tivesse condição de céu limpo sobre a região estudada, evitando assim a obtenção de imagens provavelmente contaminadas por nuvens no *pixel* de interesse. Desse modo, foram realizadas 14 campanhas para coleta de dados no campo, de outubro de 1996 a agosto de 1999, totalizando 47 passagens, conforme listado na Tabela 7.

3.2.2. Dinâmica dos trabalhos no campo.

As medidas foram feitas em ordem crescente do número da parcela, começando pela de número 1 e finalizando com a parcela de número 5. O planejamento de coleta de dados foi feito de tal modo que as medidas na parcela 3 fossem feitas simultaneamente à passagem do satélite. Assim, em todas as campanhas e para cada uma das cinco parcelas de amostragem, a coleta de dados procurou seguir a forma descrita na seqüência abaixo:

- 1) Chegada à Usina São Martinho por volta das 13h;
- Visita ao campo para checagem do estado da cultura e do trajeto a ser percorrido durante a coleta noturna (15h-17h);
- 3) Volta à Usina para a preparação do equipamento (18h-19h);
- 4) Coleta de dados nas passagens noturnas (0h-4h30), a saber:
 - (a) temperatura da superfície,
 - (b) velocidade do vento,
 - (c) umidade relativa,
 - (d) pressão barométrica;
- 5) Preparação do equipamento para a passagem diurna (10h-11h);
- 6) Coleta de dados nas passagens diurnas (12h30min-17h30min), a saber, todos os dados já citados para as passagens noturnas mais a temperatura radiativa da superfície para a estimativa da emissividade da cultura:
- 7) Repetição da coleta das passagens noturnas;
- 8) Repetição das coletas das passagens diurnas no dia seguinte.

As medidas na parcela 1 iniciavam-se por volta de duas horas antes do horário previsto para a primeira medida na parcela 3 e as medidas na parcela 5

eram feitas aproximadamente duas horas após a última medida naquela parcela. Assim, a parcela 3 foi considerada como ponto central na amostragem e representativa das condições médias da cultura naquela fase, principalmente para o caso da estimativa da temperatura da superfície, cujas medidas foram feitas somente para essa parcela. Isso porque essas medidas representavam uma situação instantânea, devendo ser realizadas concomitantemente à passagem do satélite. Nas demais parcelas foram feitas repetições das medições da radiação emergente para fins de estimativa da emissividade da cultura, não necessitando que fossem medidas exatamente no horário da passagem do satélite.

3.3 Dados coletados.

3.3.1. Medidas de temperatura radiativa da superfície e de velocidade do vento.

Para as campanhas de número 01 a 06^1 (Tabela 7 – Anexos) as medidas de temperatura radiativa da superfície (T_{campo} em °C) foram tomadas por um radiômetro espectral portátil da marca PYROVAR-USATHERM, modelo HPR-50, fabricado pela VEB MESSGERATEWER que opera numa única banda espectral que vai de 8,0µm a 35,0µm. Na parcela 3, os dados de T_{campo} foram tomados em nove repetições. Dessas nove repetições, as três primeiras foram feitas dez minutos antes do horário previsto para a passagem do satélite; três intermediárias, no horário da passagem; e três últimas, dez minutos depois.

A partir da sétima campanha, realizada em junho de 1998, a medida da temperatura da superfície passou a ser realizada com o teletermômetro fabricado pela EVEREST INTERSCIENCE INC., modelo 112.2L - *Natural Environment Infrared Thermometer* que opera numa banda espectral de 8,0µm a 14,0µm, mais reduzida que a do aparelho PYROVAR USATHERM e portanto, mais adequado para os trabalhos de campo que o anterior. As medidas com o teletermômetro

¹ Das passagens citadas na Tabela 7, apenas a do dia 16 de dezembro de 1996 não possui dados de campo, devido às más condições do tempo ocorridas. Desse modo, os dados de temperatura de superfície não puderam ser estimados para essa passagem.

EVEREST foram feitas seguindo o mesmo procedimento descrito para o radiômetro PYROVAR. A Figura 4 mostra uma das medidas feitas com o teletermômetro EVEREST durante o dia. Na ocasião representada por essa figura, a vegetação tinha uma altura superior a de 3,0m. Assim, para que o teletermômetro pudesse ser posicionado acima do topo da mesma, foi sustentado por uma haste de metal e controlado remotamente da superfície do solo.

Figura 4 Medida de T_{campo} sendo feita com o teletermômetro EVEREST modelo 112.2L sustentado por haste de metal.

As medidas de velocidade do vento V_{vento} (m/min) foram feitas simultaneamente às medições de T_{campo} . Fez-se uma medida de V_{vento} para cada três medidas de T_{campo} , a saber, a medida central, realizada na hora da passagem do satélite. Para tanto se utilizou um anemômetro de paletas. Os dados de T_{campo} e V_{vento} são apresentados nas Tabelas 8 a 30 (Anexos).

3.3.2. Medidas de umidade relativa e de pressão barométrica.

As temperaturas de bulbo seco " T_{seco} " e de bulbo úmido " $T_{úmido}$ " ($^{\circ}C$) foram tomadas uma única vez por passagem, na altura do topo da cobertura vegetal, utilizando um psicrômetro de aspiração fabricado pela RÖSSEL MESSTECHNIK.

Foram calculados os valores médios desses parâmetros, para utilização nos cálculos dos valores de umidade absoluta "U_{absoluta}" (g/m³) e relativa "U_{relativa}" (%) do ar. Foi usado o método analítico para o cálculo desses parâmetros, conforme descrito em VIANELLO & ALVES (1991). A pressão atmosférica do ar "P" (mbar, mmhg) foi também medida uma única vez por passagem utilizando um barômetro da marca "FISHER". Esses dados estão apresentados na Tabela 31 (Anexos).

3.3.3. Medidas da temperatura radiativa para a estimativa da emissividade da cultura – Adaptação do Método de uma tampa para a Cana-de-açúcar.

A caixa projetada para a adaptação do método de uma tampa à cultura da cana-de-açúcar tinha 1,10m de altura e 0,4m x 0,4m de base, e foi feita em alumínio polido, material que possui as mesmas propriedades físicas de uma superfície refletiva especular ou lambertiana, com valor de emissividade próximo de zero (ε do alumínio polido \approx 0,03), característica essencial à utilização do método. Toda a caixa foi revestida externamente por manta isolante térmica. A Figura 5 é uma representação esquemática dessa caixa obedecendo às configurações descritas no item 2.6.1.

Figura 5. representação esquemática da caixa utilizada no presente trabalho, para "método de um tampa".

O conjunto da caixa é completado por uma tampa e um fundo removíveis, confeccionados no mesmo material da caixa e igualmente revestidos. (representadas, respectivamente, pelas faces número 1 e 2 da Figura 5. As laterais revestidas pela manta isolante térmica são representadas pelas faces 3 a 6 do mesmo esquema). Havia um orifício central na tampa, no qual era posicionado o termômetro infravermelho *EVEREST* para coletar as medidas. Esse orifício tinha a mesma forma da sessão do termômetro para que este se ajustasse adequadamente ao orifício evitando, assim, a passagem da radiação do exterior para dentro da caixa. A Figura 6 mostra o termômetro infravermelho *EVEREST* sendo posicionado no orifício central da tampa revestida da caixa.

Figura 6. Termômetro infravermelho EVEREST posicionado no orifício central da tampa revestida da caixa numa das configurações do sistema "caixa-amostra".

Quando a altura da vegetação ultrapassava a altura da caixa, uma amostra do topo da cobertura vegetal era coletada e rearranjada no solo, à altura da caixa. Desse modo, a caixa poderia ser posicionada sobre a amostra de modo a contê-la e a medida poderia ser feita normalmente. A Figura 7 apresenta como a amostra de cana era posicionada dentro da caixa e a Figura 8 mostra essa medida então sendo feita. Esse foi o procedimento para cada amostragem do "método de uma tampa" com a obtenção de três medidas da radiância, em diferentes configurações do sistema "caixa-amostra", também conforme descrito no item 2.6.1.

Figura 7. Amostra de cana posicionada dentro da caixa de alumínio polido.

Figura 8. Medida de temperatura radiativa de uma amostra de cana rearranjada no solo sendo feita com a caixa pelo "método de uma tampa".

A partir da campanha 07 (Tabela 7 – Anexos) iniciaram-se as medidas da temperatura da cobertura vegetal para a estimativa de emissividade *ε*. Essas medidas foram tomadas nas campanhas 8, 9 10 e 13 (Tabela 7 – Anexos) em cinco repetições por parcela, perfazendo um total de 25 repetições por campanha. As Tabelas 32 a 35 (Anexos) apresentam os valores de temperatura radiativa coletadas no campo em cada uma das configurações caixa-amostra.

Os valores de temperatura radiativa da superfície foram convertidos em radiância a partir da Equação 11. A partir desses valores de radiância foram encontrados valores médios de emissividade medidos no campo, aplicando aqueles valores de radiância à Equação 6.

Considerando a dificuldade de aplicação do método de uma tampa, propôsse um método alternativo de estimativa dos valores de emissividade da superfície a partir das medidas de proporção do solo descoberto (P_S) e da proporção da cobertura pela vegetação (P_V), feitas com o equipamento LAI-205016 Optical Sensor.

A Figura 9 mostra uma das medidas sendo feita com esse aparelho que nada mais é que um radiômetro que mede a radiação que chega ao topo do dossel e também a que passa por ele e chega ao solo. Pela diferença entre as duas são calculadas as proporções de vegetação e de solo descoberto.

52

Figura 9. Medidas de proporção do solo descoberto (Ps) e da proporção da cobertura pela vegetação (Pv) feitas com o equipamento LAI-205016 *Optical Sensor*.

Os valores das medidas feitas com o feitas com o equipamento LAI-205016 *Optical Sensor* foram aplicados na equação de estimativa:

$$\varepsilon = \varepsilon_{v} P_{v} + \varepsilon_{s} (1 - P_{v}) + d\varepsilon$$
⁽²⁵⁾

onde ε é o valor estimado de emissividade da superfície, ε_v é o valor de emissividade típico de vegetação herbácea verde (ε =0,985±0,007) (RUBIO, 1994), ε_s é o valor de emissividade típica de solos siltosos (ε_s =0,948±0,005) (RUBIO, 1994) e d ε um fator de correção. As Tabelas 36 a 43 (Anexos) mostram os valores de medidas de proporção do solo descoberto (P_s) feitas com o equipamento LAI-205016 *Optical Sensor*, desvio padrão dessas medidas (STDDEV), a proporção de cobertura pela vegetação (P_v) e a emissividade estimada da superfície (ε). A Tabela 44 (Anexos) apresenta os valores médios de emissividade estimada a partir das medições de temperatura radiativa feitas pelo método da caixa (ε_{caixa}).

3.4. Processamento das imagens.

As imagens referentes ao período de abrangência das coletas de campo foram captadas por uma estação de recepção NOAA e armazenadas em um banco de imagens, ambos pertencentes ao CEPAGRI –Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura, situado no Campus da Unicamp – Universidade Estadual de Campinas. Foi avaliada a qualidade das imagens para a sua utilização na obtenção de dados regionais de temperatura de superfície. Essa avaliação foi feita por uma análise visual na qual foi observada principalmente a presença de nuvens em cada uma das imagens, descartando-se aquelas que apresentassem intensa contaminação por nuvens, sobretudo se essa contaminação pudesse estar situada sobre *pixels* que pudessem referir-se à região de interesse na imagem.

Os trabalhos de geo-referenciamento das imagens foram feitos usando um procedimento disponível no METPRO[®], software específico para o processamento de imagens NOAA. Este procedimento faz a correção geométrica baseando-se nas posições de marcas terrestres visíveis na imagem e definidas pelo usuário. Este procedimento é conhecido como "Método dos Pontos de Controle no Terreno". O programa requer que um número mínimo de três marcas terrestres (pontos de controle) seja registrado. Entretanto, considerando a natureza da operação matemática usada, sabe-se que o resultado será tanto melhor quanto maior for o número de marcas terrestres corretamente registradas. Melhores soluções podem ser obtidas para uma área de interesse especial na imagem, quando um número maior de marcas terrestres é concentrado em torno dessa área (ALMEIDA, 1996)

As imagens captadas pelo canal 2 (visível) de cada produto NOAA-14/AVHRR referente às campanhas já realizadas foram observadas na busca de marcas terrestres identificáveis em todas elas. Essas marcas foram identificadas em cartas topográficas elaboradas com escala 1:50.000 utilizadas as folhas de Cerqueira César, Itaí, Ibitinga, Jurumirim e Paranapanema.

A folha de Araraquara, na escala 1:250.000, de 1979, bem como as de Bauru, Franca, Ribeirão Preto e de São José do Rio Preto também foram utilizadas para a localização de marcas terrestres mais afastadas da área de interesse. Foram assim tomados pontos pertencentes à Represa de Promissão; dada a sua larga extensão, os *pixels* referentes à represa são facilmente identificáveis em produtos NOAA, considerando a resolução espacial de 1,1km x 1,1km.

Para que as imagens pudessem ser mais facilmente observadas, elas foram submetidas ao processo de setorização que constitui no "recorte" da imagem, selecionando uma região de interesse ("setor") dentro da mesma. Procedeu-se então à setorização para o Estado de São Paulo tendo sido esta região fixada como setor de trabalho em todas as imagens. Esse recorte foi denominado como "setor do Estado de São Paulo" (ssp). Das 47 imagens então disponíveis foi escolhida a de número 14 (Tabela 7 - Anexos), captada pelo canal 2 do sensor AVHRR / NOAA-14 em 04 de outubro de 1997 às 17h40 GMT. Essa imagem serviu como padrão para a escolha de marcas terrestres mais facilmente identificáveis tanto nas demais imagens quanto nas cartas IBGE.

Nos trabalhos de observação da imagem padrão notou-se que, provavelmente, um número de marcas terrestres superior ao mínimo de três poderia ser concentrada na região do Estado de São Paulo compreendida entre os rios Grande e Mogi-Guaçú, região esta que inclui a área de trabalho pertencente à Fazenda São Bento no Município de Guariba.

Assim, decidiu-se por submeter as imagens a um novo trabalho de setorização feito a partir daquele definido para o Estado de São Paulo (ssp) no qual foi selecionada apenas a região mencionada, de provável concentração de uma quantidade ótima de marcas terrestres. Esse novo setor foi denominado de "setor da Usina São Martinho" (ssm). A redução do tamanho do setor de trabalho conferiu uma maior velocidade aos trabalhos de processamento das imagens. Este fato, por si só, já justificam a decisão pela segunda setorização mostrando uma considerável vantagem deste procedimento.

Terminado o trabalho de setorização das 47 imagens selecionadas, foi definido um total de 45 marcas terrestres pertencentes ao "ssm". Desse total de marcas, apenas foram empregadas no processo de geo-referenciamento aquelas de melhor visibilidade em cada uma das imagens, respeitando então um número mínimo arbitrariamente estabelecido de seis marcas por imagem e considerando que quanto maior o número de marcas empregadas, melhor seria o resultado final dessa parte do processamento. Assim sendo, foi definido um número médio de 20 marcas por imagem, tendo sido descartadas aquelas cuja identificação era prejudicada pela pouca visibilidade devida a eventuais contaminações por nuvens. A Figura 10 mostra a localização espacial dos pontos de controle usados no geo-referenciamento. As coordenadas geográficas (latitude e longitude em graus) dos pontos de controle estão especificadas na Tabela 5.

Após o geo-referenciamento, identificou-se o pixel de trabalho em cada uma das imagens feitas pelos canais 4 e 5 do sensor. O valor do nível de cinza de cada um desses *pixels* foi anotado. Considerando que as soluções de navegação obtidas não apresentavam erros maiores que três pixels em qualquer direção, os valores de nível de cinza de 120 pixels em torno do pixel de trabalho também foram anotados. Dessa forma, obteve-se, para cada imagem, uma matriz de 11x11 valores de nível de cinza, na qual o valor central era representado pelo valor nível de cinza do pixel de trabalho. Os valores de cada matriz foram submetidos a uma análise estatística para a verificação da variabilidade desses dados. Essas matrizes, que representam as regiões de interesse em cada imagem, são mostradas nas Figuras 34 a 59 (Anexos). Cada uma dessas figuras tem um rótulo de identificação, como 9908260613C5V, no qual os algarismos representam a data, horário e canal a que se refere à imagem, da seguinte maneira: AAMMDDHHHHCCC, sendo A para ano, M para mês, H para horário local e C para o canal do sensor. Assim sendo, para o exemplo citado, a imagem foi captada pelo canal 5 do sensor, às 6h13min do dia 26 do mês de agosto do ano de 1999.

Figura 10. Localização espacial dos pontos de controle usados no geo-referenciamento. As coordenadas geográficas (latitude e longitude em graus) dos pontos de controle estão especificadas na Tabela 5.

Tabela 5. Pontos utilizados no geo-referenciamento das imagens NOAA/AVHRR. Identificadores (ID) de acordo com a Figura 5.

ID	graus	min	seg	graus	min	seg	long graus,dec	lat graus,dec
1	-48	56	12.0000	-23	17	52.0000	-48.93666667	-23.29777778
2	-49	11	30.0000	-23	14	48.0000	-49.19166667	-23.24666667
3	-49	10	8.0000	-23	28	5.0000	-49.16888889	-23.46805556
4	-48	40	54.0000	-23	20	38.0000	-48.68166667	-23.34388889
5	-48	39	27.0000	-23	19	23.0000	-48.65750000	-23.32305556
6	-48	51	54.0000	-23	23	36.0000	-48.86500000	-23.39333333
8	-49	3	35.0000	-23	13	24.0000	-49.05972222	-23.22333333
9	-49	12	32.0000	-23	16	7.0000	-49.20888889	-23.26861111
10	-48	47	45.0000	-23	16	57.0000	-48.79583333	-23.28250000
11	-48	53	29.0000	-21	54	34.0000	-48.89138889	-21.90944444
12	-48	45	30.0000	-21	53	12.0000	-48.75833333	-21.88666667
13	-49	12	46.0000	-21	40	3.0000	-49.21277778	-21.66750000
14	-49	28	34.0000	-21	26	20.0000	-49.47611111	-21.43888889
23	-46	49	1.4634	-20	27	48.2927	-46.81707317	-20.46341463
24	-46	42	24.0000	-20	29	32.0000	-46.70666667	-20.49222222
25	-46	34	3.0000	-20	33	54.0000	-46.56750000	-20.56500000
26	-46	37	8.5714	-21	34	24.3567	-46.61904762	-21.57343242
27	-46	35	17.1429	-21	35	18.2432	-46.58809524	-21.58840090
28	-46	33	21.4286	-21	38	16.2162	-46.55595238	-21.63783784
29	-49	7	45.0718	-20	17	26.4115	-49.12918660	-20.29066986
30	-48	53	14.0499	-20	25	41.1071	-48.88723608	-20.42808530
31	-48	49	14.0670	-20	10	8.0383	-48.82057416	-20.16889952
32	-48	32	30.7177	-20	8	10.9091	-48.54186603	-20.13636364
33	-48	4	44.2105	-20	9	22.3924	-48.07894737	-20.15622010
34	-48	57	12.0652	-21	46	19.0761	-48.95335145	-21.77196558
35	-48	56	6.8478	-21	51	13.3696	-48.93523551	-21.85371377
36	-48	25	12.1622	-22	34	16.2162	-48.42004505	-22.57117117
37	-48	21	4.0541	-22	40	4.0540	-48.35112613	-22.66779279
38	-48	8	24.3243	-22	42	20.2703	-48.14009009	-22.70563063
39	-46	54	22.5000	-20	22	11.2839	-46.90625000	-20.36980108
40	-46	58	22.9580	-20	20	9.2224	-46.97304389	-20.33589512
41	-48	42	48.5294	-22	10	56.0000	-48.71348039	-22.18222222
42	-48	50	42.3529	-22	7	44.0000	-48.84509804	-22.12888889
43	-48	46	44.1176	-22	14	32.0000	-48.77892157	-22.24222222
44	-49	4	0.4580	-20	8	53.5135	-49.06679389	-20.14819820
45	-47	36	27.0000	-20	2	16.0000	-47.60750000	-20.03777778
USM	-48	8	26.476	-21	24	6.994	-48.14068778	-21.40194278

3.4.1. Correções devido aos efeitos atmosféricos e de emissividade.Cálculos para o valor de temperatura de superfície.

Os valores de nível de cinza dos *pixels* correspondentes à área de trabalho foram usados numa equação linear de calibração, Equação 1, que fornece valores de radiância medida pelo sensor (Rlin). Essa equação linear de calibração considera os valores dos coeficientes de correção "G" de Ganho e "I" Intercepto incluídos na base de dados gravada no formato "nível-1b", veiculada em cada imagem, conforme descrito no item 2.5. Os valores desses coeficientes de ganho e Intercepto são apresentados na Tabela 46 (Anexos). A esses valores de radiância foi aplicado um fator de correção, Equação 2, chegando-se aos valores de radiância corrigida (RAD). Os valores de RAD para cada canal foram usados na equação inversa de Planck (Equação 3) e dessa forma chegou-se a um valor de temperatura T(RAD) para o *pixel* de trabalho em cada uma das bandas.

O método *split window* utilizado por ALMEIDA (1996), e aqui denominado "método de split window antigo", foi utilizado para combinar os valores de temperatura T(RAD) obtidos nas bandas 4 e 5, levando a um único valor de temperatura da superfície para o *pixel* de trabalho de cada imagem, já corrigido quanto ao efeito produzido pelas perturbações atmosféricas. Ou seja, os valores de temperatura corrigidos pelo "método de *split window* antigo" (T_{corrsw1}) é representado pela equação:

$$T_{corrsw1} = T_4 + [1,17 + 0,52 . (T_4 - T_5)] . (T_4 - T_5) + 1,16$$
(26)

onde T4 e T5 representam os valores de T(RAD) encontrados, respectivamente, para os canais 4 e 5 do sensor. Apesar de considerar o efeito produzido pelas perturbações atmosféricas, a Equação 26 não considera o efeito de emissividade conforme proposto para este trabalho, isto é, com a aplicação de um valor estimado a partir de medidas *in situ*. Entretanto, assume para o mesmo, o valor de 0,98 indicado em literatura como valor genérico de emissividade para superfícies vegetadas (RUBIO,1994). A Tabela 6 apresenta os valores de T_{corrsw1} calculados para cada *pixel* de interesse bem como os valores intermediários NC (nível de

cinza) R(lin), RAD e T(RAD) encontrados para cada um dos canais 4 e 5 de cada imagem.

Foram calculados a média, o desvio padrão e o coeficiente de variação para os valores de nível de cinza da matriz 11x11 de cada imagem. Para cada um desses valores foi calculada a temperatura de superfície corrigida. Foi observada a variabilidade desses valores em relação ao valor de temperatura de superfície calculado para o *pixel* de trabalho.

3.4.2. Aplicação da equação típica de 'split window' e a emissividade da superfície.

A equação empregada para a correção dos efeitos atmosféricos e de emissividade foi a seguinte:

 $T_{corrsw2} = T_4 + [1,17 + 0,52 . (T_4 - T_5)] . (T_4 - T_5) + 58 . (1 - \varepsilon).$ (27)

Onde T4 e T5 representam os valores de T(RAD) encontrados, respectivamente, para os canais 4 e 5 do sensor. Foram encontrados valores de emissividade ε estimados pelo método da caixa (T_{corrsw2} EM_{caixa}) e também pelo método de proporção de vegetação/proporção d solo descoberto (T_{corrsw2} EM_{pgpv}). Esses valores foram comparados aos obtidos com a Equação 26 e também entre si. Os resultados dessas comparações são apresentados no capítulo seguinte.

Imagens	canais	NC	Rlin	Rlin RAD		T _{corrsw1} (K)
1	4	264	110.091168 110.0523082 298.75		298.751102	299.2784648
9908261844	5	268	128.1344323	128.1177268	299.6547089	
2	4	456	84.23363566	84.24517367	282.0782853	283.0862047
9908260613	5	432	99.65880752	99.59592643	282.2167954	
3	4	272	113.0984609	113.0869165	300.5566083	304.5489485
9908251856	5	272	127.1579432	127.1349766	299.090772	
4	4	448	85.48954201	85.48682321	282.9438974	283.887293
9908250627	5	424	101.0873004	101.0200053	283.147443	
5	4	440	84.02972066	84.04368724	281.9371111	282.8831999
9907120620	5	420	99.53811294	99.47563738	282.1378508	
6	4	432	86.37540793	86.36335812	283.5505168	286.8116455
9907110632	5	412	107.0782819	107.0002176	286.9790482	
7	4	324	105.9743233	105.9092793	296.2396859	307.1223994
9905281852	5	336	116.6742671	116.6050089	292.8966717	
8	4	296	105.7243718	105.6581552	296.0856686	305.4288112
9901251823	5	316	116.9901975	116.9217748	293.0872673	
9	4	320	106.9886808	106.9288856	296.8628842	310.5229984
9811241811	5	328	116.7751251	116.70613	292.9575456	
10	4	388	97.39842218	97.32043664	290.8473865	291.4293318
9811240542	5	372	115.7948765	115.723476	292.364791	
11	4	248	118.5131296	118.5681962	303.7494854	324.6197307
9811051822	5	280	126.3384984	126.3105338	298.6158958	
12	4	452	84.03689635	84.05077693	281.942082	299.2949999
9808171804	5	464	92.39548993	92.36605019	277.3744682	
13	4	356	96.91375321	96.83671466	290.5356637	291.4686988
9806251748	5	352	113.1455498	113.0693238	290.7500847	
14	4	416	90.29740858	90.25125443	286.1984795	288.9454466
9806240530	5	400	104.3461492	104.2714451	285.2456237	
15	4	324	105.1690127	105.1003618	295.7428152	303.1597487
9806231810	5	328	117.2123702	117.1445558	293.221147	
16	4	448	84.11889648	84.13179709	281.998871	287.5335105
9806230541	5	440	96.3176595	96.26787872	280.0128594	
17	4	212	121.8280277	121.934934	305.6695005	308.3265513
9708191742	5	216	137,1370004	137.1936684	304.7586791	
18	4	276	114.4996151	114.5031583	301.3898176	313.5911062
9704141726	5	280	124.8878514	124.8516129	297.77152	
19	4	284	108.7423332	108.6934675	297.9334447	300.1657227
9704131737	5	288	123.9690876	123.927988	297.2342467	
20	4	480	79.54220963	79.61766771	278.7839878	279.6070723
9704130508	5	452	94.98540401	94.94193148	279.1230421	
21	4	280	112.1894717	112.1689419	300.0133758	312.9171274
9612161720	5	304	122.3026915	122.2535256	296.2547539	
22	4	404	93.38729656	93.32255455	288.2434066	294.6053121
9612151730	5	388	105.5487428	105.4722392	286.0114303	
23	4	436	85.16587245	85.16671257	282.7214466	297.0500093
9612150500	5	432	94.34040642	94.30021011	278.6899183	
24	4	556	67.90279192	68.20948473	270.1403941	270.6446667
9610311717	5	516	83.54639423	83.58253446	271.197492	
25	4	224	166.4924421	168.1168703	329.5028092	339.2336696
9610301728	5	252	178.5186075	179.2757505	326.4149659	
26	4	380	93.2825048	93.21827362	288.174624	289.0265457
9610300459	5	364	109.4716102	109.3927394	288.4791567	

Tabela 6. Valores de "T_{corrsw1}", calculados para cada *pixel* de interesse e valores intermediários.

CAPÍTULO 4. RESULTADOS E DISCUSSÃO.

4.1. Introdução.

Através da análise dos dados obtidos, comprovou-se:

- a) a eficiência de uma adaptação para a cana-de-açúcar, do "método da caixa" de medida de temperatura radiativa da superfície cultivada para a estimativa da emissividade da vegetação;
- b) a eficiência de um método alternativo ao "método da caixa adaptado" para a estimativa da emissividade de uma superfície cultivada com cana-de-açúcar a partir de dados coletados no campo; e
- c) a eficiência de uma equação do tipo *split window* para a correção atmosférica de dados orbitais de temperatura de superfície na qual sejam considerados dados médios de emissividade estimada de uma determinada superfície cultivada.

A eficiência de uma equação de correção atmosférica se comprovará com a aproximação dos valores de temperatura de superfície fornecido por elas a um valor tomado como referência, também chamado de "verdade terrestre". ALMEIDA (1996) tomou como valor de referência ou "verdade terrestre" os valores de medidas de temperatura tomadas por contato direto do sensor com folhas de um dossel vegetativo de trigo. O autor encontrou um alto coeficiente de correlação entre esses valores de referência, sua então "verdade terrestre", e valores de temperatura do ar medidos por um psicrômetro de aspiração (bulbo seco) e por um termógrafo instalado em abrigo meteorológico situado próximo ao local das medidas de campo. A partir daí, assumiu esses valores como representativos de sua "verdade terrestre" e os correlacionou a valores de temperatura radiativa da superfície medidos com um teletermômetro de radiação infravermelha. Estando também esses valores altamente correlacionados, pôde inferir a respeito da boa

qualidade dos dados de temperatura de superfície medidos com o teletermômetro.

Valores de temperatura do ar medidos por um termômetro de bulbo seco de um psicrômetro de aspiração (T_{ar}) foram considerados como de referência ou "verdade terrestre" e, a exemplo de ALMEIDA (1996), correlacionados a valores de temperatura radiativa da superfície, medidos também com um teletermômetro de radiação infravermelha (T_{campo}). Esses valores são apresentados nas Tabelas 8 a 30 (Capítulos 6 - Anexos). A partir deles, para cada passagem, foi calculado um valor médio de temperatura radiativa da superfície (T_{campo}) e esse valor foi utilizado nas correlações com os valores de T_{ar} (ou T_{seco}). Os valores de T_{ar} são apresentados na Tabela 31 (Anexos). A cada valor médio de T_{campo} correlacionou-se o seu respectivo valor de T_{ar} , medidos na mesma passagem. Para essa correlação foram usados os dados referentes às passagens 01, 07, 09, 12, 16 e 19 (Tabela 7 – Anexos). O coeficiente encontrado para essa correlação de 0,81 permite então assumir T_{campo} como representativa da "verdade terrestre". A dispersão desses pontos, bem como a reta que melhor se ajusta a eles, pode ser observada na Figura 11.

Figura 11. Reta de ajuste de T_{ar} (°C) x T_{campo} (°C).

O resultado da correlação de T_{ar} com T_{campo} é reiterado pelo teste de médias "teste t" no qual se busca a comprovação de que as médias de dois parâmetros são estatisticamente iguais. Assim, os valores emparelhados das médias de T_{ar} e T_{campo} foram submetidos a um "teste t" para amostras em par para médias, ou seja, sem a necessidade de supor que as variâncias de cada conjunto de médias são diferentes entre si. Submetidas as médias ao tratamento, chegouse ao valor de "t-calculado" de -1,015832705. Com quatro graus de liberdade, os limite de "t" são: 2,78 para o nível de 5%, e 4,60para o de 1%,. Como o valor de "t" obtido sequer atinge o limite de 10%, que é de 2,13, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero. Isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatísticamente iguais entre si. Isso nos leva a inferir a respeito da igualdade estatística das médias de T_{ar} e T_{campo}.

O restante dos dados foram então tratados partindo-se da hipótese comprovada de que T_{campo} representa a "verdade terrestre". O objetivo final do tratamento dos dados foi o de comparar os valores obtidos de temperatura por uma equação do tipo *split window* para a correção atmosférica de dados orbitais de temperatura de superfície na qual foram considerados dados médios de emissividade estimada de uma determinada superfície cultivada, comprovando assim a sua eficiência. Para tanto, outras análises de dados intermediárias se fizeram necessárias. Essas análises bem como os seus resultados são apresentados e discutidos a seguir.

4.2 A Temperatura de superfície medida no campo e as temperatura e umidade absoluta do ar.

Diversos autores, dentre eles OMETTO (1986), afirmam existir uma dependência dos valores de temperatura de superfície (T_s) com a temperatura do ar próximo a ela (T_{ar}). Essa dependência foi verificada pelo resultado da correlação entre esses dois parâmetros (Figura 11). Os valores observados de T_{campo} e de umidade absoluta do ar ($U_{absoluta}$) medidos nas passagens 10, 07, 08,

12, 13 e 16 (Tabela 7 – Anexos) apresentaram coeficiente de correlação de 0,62. Isso indica pequena dependência da umidade absoluta do ar nos valores observados para a temperatura de superfície medida no campo. A Figura 12 ilustra esse ajuste, bem como a dispersão dos pontos em relação à reta. Feita a análise de regressão entre essas variáveis, foi verificada a não-significância ao nível de 5% para a reta de ajuste entre os pontos representativos das observações.

Figura 12. Reta de ajuste de U_{absoluta} (g/m³) x T_{campo} (°C).

Apesar da associação entre T_{campo} e $U_{absoluta}$, a não-significância do coeficiente de regressão encontrado pode estar indicando a pouca influência que a quantidade de vapor d'água presente entre o sensor do aparelho e o topo das plantas teve nas medidas de T_{campo} .

4.3. A T_{campo} , a T_{ar} , as umidades relativa e absoluta do ar e a velocidade do vento.

Esperava-se que os valores de temperatura de superfície medida no campo (T_{campo}) e os seus respectivos valores de velocidade do vento (V_{vento}) (medidos simultaneamente em três das nove repetições das medidas de T_{campo}) estivessem forte e negativamente correlacionados. Entretanto não é o que se pôde observar quando todos os dados disponíveis de T_{campo} e V_{vento} (Tabelas 8 a 30 – Anexos) foram submetidos a uma análise de correlação, pois a mesma apresenta um valor positivo de 0,64 (Figura 13).

Figura 13. Reta de ajuste de V_{vento} (m/min) x T_{campo} (°C).

Como esse resultado pode estar indicando a influência de algum parâmetro na correlação de T_{campo} com V_{vento} , foram então feitas outras análises, nas quais os valores diurnos foram separados dos noturnos. Assim, para a análise em separado dos dados noturnos, a correlação encontrada de T_{campo} com V_{vento} foi baixa entretanto negativa conforme esperado, com coeficiente de -0,25.

Os dados diurnos correlacionados separadamente mantiveram o mesmo coeficiente quando correlacionados conjuntamente com os dados noturnos. Quando correlacionada à umidade relativa do ar U_{relativa}, a V_{vento} apresentou coeficiente baixo, porém negativo, próximo a -0,2, ou seja, quanto maior a V_{vento} menor a U_{relativa} e quanto menor U_{relaiva} maior a T_{campo}. Assim, por essa análise, quanto maior a V_{vento} maior a T_{campo}. Entretanto foi observado o coeficiente negativo de -0,51 quando V_{vento} foi correlacionada à umidade absoluta do ar (U_{absoluta}), ou seja, quanto maior a V_{vento} menor a U_{absoluta} e quanto menor a U_{absoluta} menor a T_{campo}. Esses resultados reiteram o comportamento esperado para os dados de T_{campo} frente aos de V_{vento} tanto para as análises de dados noturnos como para as de dados diurnos. A diferença observada entre os valores dessas correlações simples pode ter duas explicações:

a) uma baixa representatividade dos dados coletados para as medidas diurnas. Isso, considerando a grande necessidade de que esses dados fossem coletados em condições de rigorosa simultaneidade Essa condição não pode ser obtida, pois o radiômetro usado media a temperatura radiativa em caráter instantâneo e o anemômetro usado media a velocidade do vento transcorrida durante o período de um minuto. Ou seja, a velocidade média nesse intervalo de tempo. Como a velocidade do vento variava grandemente dentro do intervalo de um minuto, sua medida não possuía o mesmo caráter pontual que a medida de temperatura radiativa, não podendo ser estabelecida a condição de rigorosa simultaneidade entre as mesmas. Essa condição somente poderia ser obtida se o aparelho usado nas medidas de velocidade do vento pudesse oferecer também um valor instantâneo medido no exato momento em que o valor da temperatura radiativa da superfície fosse medida, pois a mesma varia muito rápida e sensivelmente à menor variação na velocidade do vento. Assim, podese concluir que essas medidas foram obtidas sofrendo o erro sistemático de não terem sido rigorosamente simultâneas e daí terem apresentado um coeficiente de correlação positivo tanto para a correlação simples de dados conjuntos (diurnos e noturnos) como para aquele obtido para os dados diurnos em separado.

b) Uma melhor representatividade dos dados coletados para as medidas noturnas. Isso, considerando a observação de que durante a noite, a velocidade do vento variava menos entre as repetições de medidas, com um valor médio provavelmente mais próximo de um valor pontual que seria correspondente ao valor da temperatura radiativa lida. Esse fato pode ter conferido às mesmas uma melhor condição de simultaneidade. Assim, a correlação de T_{campo} noturno com os seus respectivos valores de V_{vento}, apesar de pequena, foi negativa confirmando o resultado esperado. O valor pequeno de correlação pode ter sido obtido pelo mesmo erro sistemático mencionado para as medidas diurnas.

4.4. Comparação de emissividades estimadas por diferentes métodos.

Calculados os valores médios das emissividades estimadas pelo método da caixa (EM_{caixa}) e pelo método da proporção de cobertura vegetal/proporção de solo descoberto (EM_{pvpg}), os mesmos foram submetidos a um teste "t" de médias para que fosse verificado se as mesmas diferem entre si. Submetidas as médias ao tratamento, chegou-se ao valor de "t-calculado" de 1,68078. Com três graus de liberdade, os limite de "t" são: para o nível de 5%, 3,18 e para o de 15, 5,84. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,25, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da equivalência de uso tanto de um método como de outro para que se chegue a um valor estimado de emissividade da superfície cultivada.

4.5. Temperatura de superfície corrigida pelo método split window antigo e as temperaturas do ar e medida no campo.

Os valores estimados de T_{corrsw1} foram comparados aos valores médios dos
valores de T_{campo} e aos valores médios de T_{ar} . Foi feita uma medida do grau de dispersão dos valores medidos de T_{campo} em relação ao seu valor médio. Para nenhum dos conjuntos de valores médios de medidas de T_{campo} foi observado um coeficiente de variação maior que 19,8 %. Entretanto foi verificado que alguns dos valores de $T_{corrsw1}$ se situavam fora dos intervalos de medidas de T_{campo} relacionados a ele. Desse modo, os valores médios de T_{campo} medidos nas passagens 04, 07, 08, 09, 11, 14, 16 e 19 (Tabela 7 – Anexos) foram correlacionados aos valores de $T_{corrsw1}$ e uma análise de regressão linear simples foi feita com esses parâmetros.

Ainda que alguns valores de $T_{corrsw1}$ se situassem fora do intervalo estabelecido pelo grau de dispersão dos valores médios de T_{campo} , foi observado entre esses valores um coeficiente de correlação de 0,97 com r² de 0,94, altamente significativo ao nível de 5% de probabilidade, indicando a alta correlação ente os dados de $T_{corrsw1}$ e T_{campo} . Esse resultado foi confirmado pela correlação entre $T_{corrsw1}$ e T_{ar} medidos nas passagens 01, 07, 08, 12 e 13 (Tabela 7 – Anexos), com coeficiente de 0,93 e r² de 0,86 significativo ao nível de 5% de probabilidade. Os gráficos com as dispersãoes desses dados são mostrados respectivamente nas Figuras 14 e 15.

Figura 14. Reta de ajuste de $T_{corrsw1}$ (°C) x T_{campo} (°C)

Figura 15. Reta de ajuste de $T_{corrsw1}$ (°C) x T_{ar} (°C)

4.6. T_s corrigida pelo método *split window* atualizado, a T_{campo} e a $U_{absoluta}$.

Os valores estimados de Ts $T_{corrsw2}$ foram comparados aos valores médios dos valores de T_{campo} e aos valores médios de T_{ar} . Foi feita uma medida do grau de dispersão dos valores medidos de T_{campo} em relação ao seu valor médio.

Para nenhum dos conjuntos de valores médios de medidas de T_{campo} foi observado um coeficiente de variação maior que 19,8 %. Também foi verificado que alguns dos valores de T_{corrsw2} se situavam fora dos intervalos de medidas de T_{campo} relacionados a ele. Desse modo os valores médios de T_{campo} medidos nas passagens 04, 07, 08, 09, 11, 14, 16 e 19 (Tabela 7 - Anexos) foram correlacionados aos valores de T_{corrsw2} e uma análise de regressão linear simples foi feita para esses parâmetros. Ainda que alguns valores de T_{corrsw2} se situarem fora do intervalo estabelecido pelo grau de dispersão dos valores médios de T_{campo}, foi observado entre esses valores um coeficiente de correlação de 0,97 com r² de 0,94, altamente significativo ao nível de 5% de probabilidade. Isso indica a alta correlação entre os dados de T_{corrsw2} e T_{campo}. Esse resultado foi confirmado pela correlação entre T_{corrsw2} e T_{ar} com coeficiente de 0,93 e r² de 0,86, significativo ao nível de 5% de probabilidade. Os gráficos com as dispersãoes desses dados, para cada método de estimativa de emissividade (EM_{pgpv} e EM_{caixa}), são mostrados nas Figuras 16 e 17. A igualdade nos valores de T_{corrsw2} já era esperada devido aos resultados de comparação de médias para a emissividade encontrada tanto por um método como pelo outro.

Figura 16. Reta de ajuste de T_{corrsw2} EM_{pvpg} (°C) x T_{campo} (°C)

Figura 17. Reta de ajuste de $T_{corrsw2} EM_{caixa}$ (°C) x T_{campo} (°C)

Os valores de Ts corrigida tanto pelo método EM_{caixa} ($T_{corrsw2} EM_{caixa}$) como pelo método EM_{pvpg} ($T_{corrsw2} EM_{pgpv}$), quando correlacionados aos valores de U_{absoluta} medidos nas passagens 01, 07, 08, 12 e 13 (Tabela 7 – Anexos) apresentam também um alto valor, de 0,93. A dispersão desses pontos, bem como a reta que melhor se ajusta a eles ($U_{absoluta} \times T_{corrsw2} EM_{caixa}$), podem ser observadas na Figura 18. O alto valor do coeficiente de correlação simples encontrado para esses dois parâmetros indica um alto grau de associação existente entre a quantidade de vapor d'água e a temperatura medida pelo satélite. Entretanto a não significância dada pelo valor de r² obtido da análise de regressão linear entre esses parâmetros pode estar indicando a pouca influência da umidade absoluta do ar nos valores observados de $T_{corrsw2}$.

Figura 18. Reta de ajuste de $T_{corrsw2} EM_{caixa}$ (°C) x $U_{absoluta}$ (g/m³)

4.7 Comparações de médias: $T_{ar} e T_{corrsw1} / T_{corrsw2} EM_{pvpg} - T_{corrsw2} EM_{caixa}$.

Submetidas as médias de T_{ar} e $T_{corrsw2}$ EM_{caixa} ao tratamento, chegou-se ao valor de "t-calculado" de -1,07387. Com cinco graus de liberdade, os limite de "t" são: 2,57 para o nível de 5%, e 4,03 para o de 1%. Como o valor de "t" obtido

sequer atinge o limite de 10%, que é de 2,02, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade do método T_{corrsw2} EM_{caixa} para a estimativa da temperatura da superfície cultivada.

Submetidas as médias de T_{ar} e T_{corrsw2} EM_{pvpg} ao tratamento, chegou-se ao valor de "t-calculado" de -1,21928. Com quatro graus de liberdade, os limite de "t" são: 2,78 para o nível de 5% e 4,6 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,13, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade também do método T_{corrsw2} EM_{pgpv} para a estimativa da temperatura da superfície cultivada.

Submetidas as médias de T_{ar} e $T_{corrsw1}$ ao tratamento, chegou-se ao valor de "t-calculado" de -1,13566. Com quatro graus de liberdade, os limite de "t" são: para o nível de 5%, 2,78 e para o de 1%, 4,60. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,13, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir igualmente a respeito da viabilidade do método $T_{corrsw1}$ para a estimativa da temperatura da superfície cultivada.

4.8 Comparações de médias: T_{campo} e T_{corrsw1} diurna e noturna.

Considerando a possível influência de fontes de erro sistemático conforme verificado para o caso das análises de dados de V_{vento} quando comparada à T_{campo} optou-se por analisar os dados diurnos de T_{campo} separadamente dos noturnos quando comparados aos valores de temperatura corrigida, para os testes de médias.

Submetidas as médias de T_{campo} e $T_{corrsw1}$ diurnas ao tratamento, chegou-se ao valor de "t-calculado" de 2,1358. Com três graus de liberdade, os limites de "t" são: 3,18 para o nível de 5% e 5,84 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10%, que é de 2,35, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade do método $T_{corrsw1}$ para a estimativa da temperatura da superfície cultivada.

Submetidas as médias de T_{campo} e $T_{corrsw1}$ noturnas ao tratamento, chegou-se ao valor de "t-calculado" de -1,0158. Com três graus de liberdade, os limite de "t" são: 3,18 para o nível de 5% e 5,84 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,35, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade do método $T_{corrsw1}$ para a estimativa da temperatura noturna da superfície cultivada.

Submetidas as médias de T_{campo} e $T_{corrsw2}$ EM_{pvpg} diurnas ao tratamento, chegou-se ao valor de "t-calculado" de 2,1849. Com três graus de liberdade, os limite de "t" são: 3,18 para o nível de 5% e 5,84 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,35, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade do método $T_{corrsw2}$ EM_{pvpg} para a estimativa da temperatura diurna da superfície cultivada.

Submetidas as médias de T_{campo} e $T_{corrsw2}$ EM_{pvpg} noturnas ao tratamento, chegou-se ao valor de "t-calculado" de -0,8829. Com três graus de liberdade, os limite de "t" são: 3,18 para o nível de 5% e 5,84 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,35, diz-se que não é significativo e

conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade do método $T_{corrsw2} EM_{pvpg}$ para a estimativa da temperatura noturna da superfície cultivada.

Submetidas as médias de T_{campo} e $T_{corrsw2}$ EM_{caixa} diurnas ao tratamento, chegou-se ao valor de "t-calculado" de 2,1103. Com três graus de liberdade, os limite de "t" são: 3,18 para o nível de 5% e 5,84para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,35, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade do método $T_{corrsw2}$ EM_{caixa} para a estimativa da temperatura diurna da superfície cultivada.

Submetidas as médias de T_{campo} e $T_{corrsw2}$ EM_{caixa} noturnas ao tratamento, chegou-se ao valor de "t-calculado" de -1,0847. Com três graus de liberdade, os limites de "t" são: 3,18 para o nível de 5%, e 5,84 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 2,35, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da viabilidade do método $T_{corrsw2}$ EM_{caixa} para a estimativa da temperatura noturna da superfície cultivada.

4.9 Comparações de médias: T_{corrsw} EM_{pvpg} e T_{corrsw2} EM_{caixa}.

Submetidas as médias de $T_{corrsw2}$ EM_{caixa} e $T_{corrsw2}$ EM_{pvpg} diurnas ao tratamento, chegou-se ao valor de "t-calculado" de 0,028. Com seis graus de liberdade, os limite de "t" são: 2,45 para o nível de 5% e 3,71 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 1,94, diz-se que não é

significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da igualdade dos método $T_{corrsw2}$ EM_{caixa} e $T_{corrsw2}$ EM_{pvpg} para a estimativa da temperatura diurna da superfície cultivada.

Submetidas as médias de $T_{corrsw2}$ EM_{caixa} x $T_{corrsw2}$ EM_{pvpg} noturnas ao tratamento, chegou-se ao valor de "t-calculado" de 0,0697. Com seis graus de liberdade, os limite de "t" são: 2,45 para o nível de 5% e 3,71 para o de 1%. Como o valor de "t" obtido sequer atinge o limite de 10% que é de 1,94, diz-se que não é significativo e conclui-se que o contraste entre as médias não difere de zero, isto é, podemos aceitar a hipótese de nulidade, ou seja, de que as médias testadas são estatisticamente iguais entre si. O que nos leva a inferir a respeito da igualdade dos métodos $T_{corrsw2}$ EM_{caixa} e $T_{corrsw2}$ EM_{pvpg} também para a estimativa da temperatura noturnas da superfície cultivada.

CAPÍTULO 5. CONCLUSÕES.

A análise dos dados finais levou à comprovação dos resultados esperados estabelecidos no capitulo de introdução desta tese com as seguintes conclusões principais:

A) Os valores de temperatura do ar medidos por um termômetro de bulbo seco de um psicrômetro de aspiração (T_{ar}) , considerados como de referência ou "verdade terrestre", são equivalentes aos valores de temperatura radiativa da superfície medidos com um teletermômetro de radiação infravermelha (T_{campo}) , pois foi verificada uma dependência dos valores de temperatura de superfície (T_{campo}) com a temperatura do ar próximo a ela (T_{ar}) .

B) Existe entretanto uma pequena dependência da umidade absoluta do ar, nos valores observados para T_{campo} , indicando a pouca influência que a quantidade de vapor d'água presente entre o sensor do aparelho e o topo das plantas pode apresentar nessas medidas.

C) Somente pode-se esperar uma forte e negativa correlação entre os valores de T_{campo} e os seus respectivos valores de velocidade do vento (V_{vento}) quando medidos em condição de "rigorosa simultaneidade". Isto é, com dados pontuais medidos simultânea e instantaneamente para os dois parâmetros.

D) Os valores médios de emissividade da superfície cultivada podem igualmente ser estimados tanto pelo método da caixa (EM_{caixa}) como pelo método da proporção de cobertura vegetal/proporção de solo descoberto (EM_{pvpg}). A decisão quanto ao uso de um método ou de outro deve depender principalmente da disponibilidade de equipamentos necessários ao emprego de quaisquer dos métodos, representados respectivamente pelas Equações 6 e 25:

$$\varepsilon_0^* = I - \frac{L_2 - L_b}{L_2 - L_a^{\downarrow}}$$
(6)

$$\varepsilon = \varepsilon_{v} P_{v} + \varepsilon_{s} (1 - P_{v}) + d\varepsilon$$
⁽²⁵⁾

E) O método *split window* antigo $(T_{corrsw1})$ de correção de temperatura de superfície (tanto diurna quanto noturna) obtida a partir de dados orbitais (T_s) , a exemplo do observado em ALMEIDA (1996) teve a viabilidade da sua aplicação comprovada, estando representada pela equação:

 $T_{corrsw1} = T_4 + [1,17 + 0,52 . (T_4 - T_5)] . (T_4 - T_5) + 1,16$ (26)

F) O método *split window* atualizado ($T_{corrsw2}$) de correção da temperatura de superfície (tanto diurna quanto noturna) obtida a partir de dados orbitais teve a viabilidade da sua aplicação comprovada com a aplicação de valores de emissividade da superfície estimados tanto pelo método EM_{caixa} como pelo método EM_{pvpg}. A Equação 27 representa a etapa final desse método de correção e é indicada como sendo a principal conclusão deste trabalho, sendo apresentada a seguir:

$$T_{corrsw2} = T_4 + [1,17 + 0,52 . (T_4 - T_5)] . (T_4 - T_5) + 58 . (1 - \varepsilon).$$
(27)

Assim, pode-se afirmar que foi desenvolvida, testada e comprovada a eficiência de uma adaptação para a cana-de-açúcar, do "método da caixa" de medida de temperatura radiativa da superfície cultivada para a estimativa da emissividade da vegetação. Também foi testada e comprovada a eficiência de um método alternativo ao "método da caixa adaptado" para a estimativa da emissividade de uma superfície cultivada com cana-de-açúcar a partir de dados coletados no campo, sendo aqui recomendada a sua utilização quando em condições de campo adversas à execução plena do método da caixa em quaisquer de suas variantes tal qual descrito nesta tese.

Foi ainda testada e comprovada a eficiência de uma equação do tipo *split window* para a correção atmosférica de dados orbitais de temperatura de superfície na qual sejam considerados dados médios de emissividade estimada de uma determinada superfície cultivada, podendo esses dados de estimativa ser usados como subsidio a estudos de emissividade usando dados NOAA-AVHRR em séries diurnas e noturnas. Desse modo, tem-se aqui cumpridos os objetivos principais estabelecidos para o presente trabalho.

CAPÍTULO 6. ANEXOS.

Campanha	Passagem	Satélite	Data	Hora GMT	Ângulo (º)	Sentido
	01	NOAA-14	30/10/96	04h54	87,2	DW
01	02	NOAA-14	30/10/96	17h28	76,9	AW
	03	NOAA-14	31/10/96	17h16	81,9	AE
	04	NOAA-14	15/12/96	04h56	88.8	DW
02	05	NOAA-14	15/12/96	17h29	79,2	AW
	06	NOAA-14	16/12/96	17h17	79.6	AF
	07	NOAA-14	13/04/97	05h03	88.8	DW
03	08	NOAA-14	13/04/97	17h36	78,5	AW
	09	NOAA-14	14/04/97	17h25	80.3	AE
04	10	NOAA-14	19/08/97	17h42	82,9	AW
	11	NOAA-14	03/10/97	05h18	81.4	DW
	12	NOAA-14	03/10/97	17h51	71,6	AW
05	13	NOAA-14	04/10/97	05h07	77,3	DE
	14	NOAA-14	04/10/97	17h40	87,0	AE
	15	NOAA-14	23/06/98	05h37	86.9	DW
	16	NOAA-14	23/06/98	18h10	77,3	AW
06	17	NOAA-14	24/06/98	05h25	72,0	DE
	18	NOAA-14	24/06/98	17h59	81,1	AE
07	19	NOAA-14	17/08/98	05h32	73.1	DE
	20	NOAA-14	17/08/98	18h05	82.5	AE
	21	NOAA-14	04/11/98	06h00	67.5	DW
09	22	NOAA-15	04/11/98	10h15	73,1	DE
00	23	NOAA-14	05/11/98	05h49	88,0	DW
	24	NOAA-14	05/11/98	18h22	78 7	AW
09	25	NOAA-14	24/11/98	05h39	78.3	AE
	20		24/11/90	05650	70.0	
	27		25/01/99	10607	79.2 60.0	DE
10	20		25/01/99	10107	00,0	
	29		25/01/99	101124	00,0	AE
	30		26/01/99	18012 06601	<u> </u>	
	20		20/03/99	10640	60.0	
	32		20/03/99	101140	00,2	
11	33		20/03/99	101134 05650	03,0 65.0	
	34	NOAA-14	29/03/99	001100	05,9	DE
	35 36	NOAA-15 NOAA-14	29/03/99	10018 18h23	77,4 74.3	DE
	27		26/05/00	10626	66.2	
12	37	NOAA-15	20/05/99	101130	70.0	
	20		11/07/09	06629	65.9	
13	39		11/07/99	10610	70.5	
	-+U / -1		12/07/00	06616	73,5 96 7	
	41	NOAA-14 NOAA-14	12/07/99	18h49	77.5	AW
1	12		25/09/00	06622	83.0	<u>۱</u> ۳۹
	40 11		25/00/99	106020	86.7	
	44 15		25/00/99	10/120	74 4	
14	40		20/08/99		74,4	
	46	NOAA-14	26/08/99	06h12	/4,/	DE
	47	NOAA-14	26/08/99	18h45	83,7	AE

Tabela 7. Especificações das passagens do satélite NOAA, selecionadas para as campanhas realizadas.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	19,0	
4h44	2	19,7	107
	3	19,6	
	4	18,8	
4h54	5	18,0	029
	6	18,3	
	7	16,9	
5h04	8	16,9	010
	9	17,0	

Tabela 8. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo, na passagem NOAA-14 ocorrida no dia 30 de outubro de 1996 às 4h54 GMT.

Tabela 9. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 31 de outubro de 1996 às 17h16 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	36,0	
17h06	2	53,7	177
	3	46,5	
	4	39,1	
17h16	5	58,0	118
	6	33,6	
	7	36,1	
17h26	8	52,4	149
	9	45,8	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	21,5	
4h46	2	21,4	016
	3	22,1	
	4	23,2	
4h56	5	21,7	030
	6	21,6	
	7	22,3	
4h06	8	21,8	007
	9	21,2	

Tabela 10. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 15 de dezembro de 1996 às 4h56 GMT.

Tabela 11. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 13 de abril de 1997 às 5h03 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	12,9	
4h53	2	13,3	003
	3	13,1	
	4	11,8	
5h03	5	12,2	001
	6	12,6	
	7	11,2	
5h13	8	11,9	003
	9	12,1	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	23,6	
17h26	2	21,6	034
	3	19,3	
	4	26,9	
17h36	5	25,2	078
	6	26,0	
	7	29,2	
17h46	8	28,5	081
	9	27,6	

Tabela 12. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento})coletados no campo na passagem NOAA-14 ocorrida no dia 13 de abril de 1997 às 17h36 GMT.

Tabela 13. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo, na passagem NOAA-14 ocorrida no dia 14 de abril de 1997 às 17h25 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	27,0	
17h15	2	26,3	014
	3	25,6	
	4	21,4	
17h25	5	21,0	023
	6	23,1	
	7	28,2	
17h35	8	28,4	087
	9	27,7	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	14,4	
5h08	2	14,7	029
	3	13,9	
	4	14,6	
5h18	5	14,5	016
	6	13,7	
	7	12,5	
5h28	8	13,2	047
	9	13,4	

Tabela 14. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 03 de outubro de 1997 às 05h18 GMT.

Obs: Coleta na parcela 4 feita antes da coleta na parcela 3.

Tabela 15. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 03 de outubro de 1997 às 17h51 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	30,2	
17h41	2	42,2	147
	3	32,0	
	4	32,2	
17h51	5	42,0	169
	6	34,1	
	7	33,5	
18h01	8	35,2	228
	9	40,5	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	14,1	
04h57	2	14,9	124
	3	14,3	
	4	12,7	
05h07	5	13,5	153
	6	14,7	
	7	12,3	
05h17	8	14,4	174
	9	15,2	

Tabela 16. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 04 de outubro de 1997 às 05h07 GMT.

Tabela 17. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 04 de outubro de 1997 às 17h40, GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	42,2	
17h30	2	51,3	185
	3	52,4	
	4	38,0	
17h40	5	47,7	151
	6	45,5	
	7	39,1	
17h50	8	51,3	130
	9	50,6	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	13,8	
5h27	2	13,6	
	3	13,9	
	4	14,0	
5h37	5	14,0	
	6	13,9	
	7	13,8	
5h47	8	13,9	
	9	13,8	

Tabela 18. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 23 de junho de 1998 às 5h37 GMT.

Tabela 19. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo, na passagem NOAA-14 ocorrida no dia 23 de junho de 1998 às 18h10 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	29,0	
18h00	2	28,7	
	3	28,4	
	4	25,4	
18h10	5	24,9	
	6	25,3	
	7	25,1	
18h20	8	25,1	
	9	26,2	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	30,5	
17h55	2	31,1	037
	3	31,0	
	4	31,2	
18h05	5	30,0	020
	6	32,5	
	7	34,3	
18h10	8	34,4	000
	9	32,3	

Tabela 20. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 17 de agosto de 1998 às 18h05 GMT.

Tabela 21. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 5 de novembro 1998 às 5h49 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	18,3	
5h39	2	18,5	069
	3	17,5	
	4	17,6	
5h49	5	17,5	073
	6	17,7	
	7	17,7	
5h59	8	17,3	064
	9	17,6	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	42,0	
18h12	2	41,7	127
	3	34,8	
	4	37,6	
18h22	5	42,1	246
	6	34,6	
	7	48,1	
18h02	8	40,4	167
	9	39,3	

Tabela 22. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 5 de novembro de 1998 às 18h22 GMT.

Tabela 23. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 24 de novembro de 1998 às 18h11 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	48,5	
18h02	2	43,8	095
	3	34,1	
	4	35,0	
18h12	5	34,3	172
	6	37,2	
	7	40,9	
18h22	8	46,9	133
	9	41,2	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	21,3	
5h40	2	21,5	002
	3	21,3	
	4	21,5	
5h50	5	22,2	009
	6	21,5	
	7	21,6	
6h00	8	21,3	016
	9	21,7	

Tabela 24. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 25 de janeiro de 1999 às 5h50 GMT.

Tabela 25. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-15 ocorrida no dia 25 de janeiro de 1999 às 10h07 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	22,4	
9h57	2	21,6	029
	3	21,9	
	4	22,5	
10h07	5	22,6	027
	6	24,2	
	7	23,4	
10h17	8	23,4	009
	9	22,8	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	15,2	
10h04	2	15,2	
	3	15,4	
	4	14,7	
10h14	5	14,9	
	6	14,9	
	7	15,7	
10h24	8	15,7	
	9	15,8	

Tabela 26. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-15 ocorrida no dia 27 de maio de 1999 às 10h14 GMT.

Tabela 27. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-15 ocorrida no dia 11 de julho de 1999 às 10h19 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	12,5	
10h09	2	12,5	
	3	12,6	
	4	13,2	
10h19	5	13,2	
	6	13,3	
	7	13,1	
10h29	8	13,8	
	9	14,3	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	11,9	
6h06	2	11,8	
	3	12,1	
	4	11,6	
6h16	5	11,7	
	6	11,9	
	7	11,4	
6h26	8	11,5	
	9	11,5	

Tabela 28. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 12 de julho de 1999 às 6h16 GMT.

Tabela 29. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 12 de julho de 1999 às 18h49 GMT.

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	27,1	
18h39	2	26,9	
	3	27,1	
	4	25,5	
18h49	5	25,6	
	6	25,4	
	7	27,8	
18h59	8	27,2	
	9	27,3	

Horário	Medida	T _{campo} (°C)	V _{vento} (m/min)
	1	29,8	
18h35	2	29,5	056
	3	29,2	
	4	29,2	
18h45	5	29,0	002
	6	28,9	
	7	29,5	
18h55	8	29,3	800
	9	28,8	

Tabela 30. Valores de temperatura radiativa da superfície (T_{campo}) e de velocidade do vento (V_{vento}) coletados no campo na passagem NOAA-14 ocorrida no dia 26 de agosto de 1999 às 18h45 GMT.

Tabela 31. Valores médios de pressão atmosférica (P_{atm}) e da temperatura do ar medida pelo termômetro de bulbo seco (T_{seco}), de bulbo úmido (T_{úmido}) bem como da diferença entre eles (T_{seco}-T_{úmido}).

Passagem	P _{atm} (mbar)	T _{seco} (°C)	T _{úmido} (°C)	T _{seco} -T _{úmido} (°C)
01	953,0	17,84	16,48	1,36
03	956,6	21,96	21,40	0,56
07	956,4	27,70	20,00	7,70
08	952,0	19,26	17,38	1,88
09	951,5	34,12	25,22	8,90
12	950,7	33,24	23,32	9,92
13	955,5	14,60	13,90	0,70
16	954,8	28,70	21,30	7,40
17	952,4	16,54	14,32	2,22
19	953,2	31,36	22,20	9,16

Tabela 32. Valores de temperatura radiativa coletados durante a campanha de 4 a 5 de novembro de 1998, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repetições (R1 a R5) por parcela.

Parcela		R1			R2			R3			R4			R5	
	сс	Sc	atm	Cc	SC	atm									
1	35,2	38,6	-12,3	36,5	39,1	-12,8	32,1	36,6	-9,3	33,3	37,5	-11,3	30,2	31,5	-10,2
2	33,8	33,5	-10,6	35,0	45,8	-12,9	35,6	40,9	-10,6	33,7	45,5	-10,2	34,1	37,2	-11,6
3	29,8	42,3	-9,5	41,7	50,4	-9,8	37,6	40,7	-10,0	38,4	43,2	-6,0	38,5	49,4	-8,2
4	31,7	36,2	-11,2	40,2	41,3	-16,7	30,6	33,1	-11,5	34	43,6	-13,5	34,5	41,1	-9,3
5	30,1	32,4	-12,7	30,4	33,7	-10,5	33,9	34,5	-11,7	29,9	30,8	-10,0	30,0	32,2	-7,3

Tabela 33 Valores de temperatura radiativa coletados durante a campanha de 24 de novembro de 1998, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repetições (R1 a R5) por parcela.

Parcola		R1			R2			R3			R4			R5	
	сс	Sc	atm	сс	SC	atm	cc	Sc	atm	Cc	SC	atm	Cc	SC	atm
1	30,9	32,3	-22,3	32,3	32,9	-23,8	33,5	31,0	-22,8	33,9	35,4	-22,2	32,6	31,7	-21,1
2	30,5	28,6	-18,2	27,3	28,2	-19,9	28,3	29,2	-17,5	27,5	28,4	-17,1	30,5	30,6	-18,4
3	38,8	40,2	-26,7	38,3	43,8	-26,1	32,7	42,5	-23,3	34,6	49,0	-21,3	35,8	41,6	-24,3
4	26,1	25,4	-18,4	24,8	25,4	-17,4	25,7	27,1	-16,8	24,5	26,4	-18,7	26,9	25,8	-15,7
5	39,1	40,2	-25,1	39,7	34,5	-26,9	38,6	41,9	-20,8	34,2	37,3	-23,4	34,1	38,4	-24,8

Tabela 34. Valores de temperatura radiativa coletados durante a campanha de 25 a 26 de janeiro de 1999, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repetições (R1 a R5) por parcela.

Parcela		R1			R2			R3			R4			R5	
	сс	Sc	atm	Cc	SC	atm									
1	34,3	40,1	-4,1	35,7	49,4	-1,8	35,0	37,6	-0,4	41,7	47,9	-1,1	40,8	51,6	-2,3
2	38,1	46,5	-2,5	39,8	35,3	-5,0	33,3	34,1	-3,6	35,5	38,9	-2,1	35,6	35,8	-0,9
3	38,1	36,8	-3,4	38,6	47,0	-4,5	38,9	43,1	-3,0	38,4	40,1	-3,3	40,1	42,1	-2,9
4	36,0	47,6	-2,5	36,7	35,0	-5,2	33,4	39,0	-3,9	34,1	35,0	-3,6	34,5	38,9	-1,3
5	35,2	34,6	-5,0	33,6	33,8	-5,3	34,8	44,3	-3,6	35,6	35,8	-1,1	33,1	33,4	-2,2

Tabela 35. Valores de temperatura radiativa coletados durante a campanha de 11 a 12 de julho de 1999, para a obtenção dos valores de emissividade da cultura. Medidas feitas nas configurações "cc" com a caixa, "sc" sem a caixa e "atm" da radiância atmosférica, em cinco repetições (R1 a R5) por parcela.

Parcela		R1			R2			R3			R4			R5	
	сс	SC	atm	Cc	SC	atm	сс	SC	atm	Cc	SC	atm	сс	SC	atm
1	19,1	16,7	-27,9	18,1	16,3	-27,8	18,5	16,9	-27,9	18,5	16,6	-28,1	17,9	16,4	-28,0
2	23,1	22,3	-23,9	22,1	21,2	-28,7	21,3	22,0	-29,4	22,3	21,9	-30,0	22,2	21,0	-29,5
3	27,7	26,8	-32,6	25,5	22,1	-31,1	27,1	26,5	-31,6	26,1	21,8	-34,2	22,5	24,4	-31,3
4	29,9	23,5	-34,7	22,9	23,2	-34,1	25,5	23,1	-34,1	28,2	23,5	-33,9	23,9	23,3	-33,4
5	30,6	30,8	-32,7	30,2	30,4	-32,6	30,6	33,5	-33,5	30,7	31,5	-30,3	29,9	31,2	-32,4

Tabela 36 Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ϵ). Medidas feitas em 16 de dezembro de 1998.

PG	STDDEV	PV	3
0,379	0,688	0,621	0,9765
0,603	0,369	0,397	0,9715
0,458	0,698	0,542	0,9748
0,464	0,362	0,536	0,9746
0,389	0,391	0,611	0,9763
0,619	0,462	0,381	0,9712
0,649	0,337	0,351	0,9705

Tabela 37. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ϵ). Medidas feitas em 17 de março de 1999.

PG	STDDEV	PV	3
0	0	1	0,9850

Tabela 38. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ϵ). Medidas feitas em 13 de abril de 1999.

PG	STDDEV	PV	3
0,193	0,327	0,807	0,9807
0,232	0,197	0,768	0,9798
0,323	0,396	0,677	0,9778
0,381	0,92	0,619	0,9765

Tabela 39. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ϵ). Medidas feitas em 14 de abril de 1999.

PG	STDDEV	PV	3
0,432	0,337	0,568	0,9753
0,000	3,496	1,000	0,9850
0,375	0,35	0,625	0,9766
0,485	0,416	0,515	0,9742
0,358	0,353	0,642	0,9770
0,000	0,937	1,000	0,9850
0,372	0,423	0,628	0,9767
0,358	0,401	0,642	0,9770
0,326	0,502	0,674	0,9777
0,210	0,488	0,790	0,9803
0,284	0,33	0,716	0,9786
0,285	0,702	0,715	0,9786

Tabela 40. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ϵ). Medidas feitas em 19 de agosto de 1999.

PG	STDDEV	PV	3
0,000	0,387	1,000	0,9850
0,684	0,253	0,316	0,9697
0,672	0,253	0,328	0,9700
0,762	0,124	0,238	0,9680
0,846	0,193	0,154	0,9661

Tabela 41. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ϵ). Medidas feitas em 3 de outubro de 1999.

PG	STDDEV	PV	3
0,728	0,136	0,272	0,9688
0,654	0,548	0,346	0,9704
0,668	0,246	0,332	0,9701
0,748	0,127	0,252	0,9683
0,656	0,191	0,344	0,9704
0,549	0,199	0,451	0,9727
0,79	0,700	0,210	0,9674
0,534	0,267	0,466	0,9731
0,678	0,128	0,322	0,9699

Tabela 42. Valores de medidas de proporção do s	solo
descoberto (PG) feitas com o equipamento LAI-2050	016
Optical sensor, desvio padrão dessas medio (STDDEV) proporção de cobertura pela vegetação e	das da
emissividade da superfície (ϵ). Medidas feitas em 4 outubro do 1990	de

PG	STDDEV	PV	3
0,509	0,467	0,491	0,9736
0,384	0,58	0,616	0,9764
0,352	0,780	0,648	0,9771
0,391	0,667	0,609	0,9763

Tabela 43. Valores de medidas de proporção do solo descoberto (PG) feitas com o equipamento LAI-205016 Optical sensor, desvio padrão dessas medidas (STDDEV), proporção de cobertura pela vegetação e da emissividade da superfície (ϵ). Medidas feitas em 24 de junho de 1999.

PG	STDDEV	PV	3
0,000	2,896	1,000	0,9850
0,466	0,401	0,534	0,9746
0,506	0,201	0,494	0,9737
0,311	0,581	0,689	0,9780
0,305	0,408	0,695	0,9782
0,407	0,704	0,593	0,9759
0,422	0,448	0,578	0,9756

data	Encorr	8corr
16/12	0,9661	0,9736
17/03	0,9850	0,9750
13/04	0,9745	0,9787
14/04	0,9742	0,9785
19/08	0,9785	0,9718
03/10	0,9630	0,9751
04/10	0,9603	0,9759
24/06	0,9698	0,9773

Tabela 44. Valores médios não corrigidos (εncorr) e corrigidos (εcorr) de emissividade estimados a partir do valores de PG (proporção de solo descoberto) com o aparelho LAI-1250 Optical sensor.

Tabela 45. Valores médios de emissividade estimada a partir das medições de temperatura radiativa medida pelo método da caixa (ɛcaixa).

Data	Ecaixa		
05/11/98	0,9916		
24/11/98	0,9802		
12/01/99	0,9746		
26/01/99	0,9819		

Imagens	Canais	G	gcorr	i	lcorr
1	4	-162286512	-0.151141092	629113792	149.9924164
9908261844	5	-190780544	-0.177678227	737158144	175.7521973
2	4	-168564896	-0.156988293	653557696	155.8202972
9908260613	5	-191729072	-0.178561613	741542144	176.7974243
3	4	-178607120	-0.166340843	664139392	158.3431702
9908251856	5	-201706016	-0.187853366	747651712	178.2540588
4	4	-168564896	-0 156988293	653557696	155 8202972
9908250627	5	-191729072	-0 178561613	741542144	176 7974243
5	4	-171545776	-0 159764454	647290496	154 3260803
9907120620	5	-189607984	-0 176586196	728568704	173 7043152
6	4	-165391408	-0 154032752	641382720	152 9175568
9907110632	5	-198903936	-0 185243726	769229888	183 3986969
7	4	-172465152	-0 160620689	662764736	158 0154266
9905281852	5	-192539952	-0 179316804	742076032	176 9247131
8	4	-163020112	-0 15182431	631932160	150 6643677
9901251823	5	-186552912	-0 173740938	720968704	171 892334
9	4	-170868368	-0 159133568	662328512	157 9114227
9811241811	5	-194838448	-0 181457445	739427136	176 2931671
10	4	-218925584	-0 203800330	740327680	176 5078735
9811240542	5	-253711392	-0 236287147	854353280	203 6936951
11	4	-171305392	-0 159540579	663032192	158 0791931
9811051822	5	-191219488	-0 178087026	739048384	176 2028656
12	4	-168990048	-0 157384247	650849344	155 1745758
9808171804	5	-194595952	-0.181231603	740239936	176 4869537
13	4	-163802320	-0 152552798	634273344	151 2225494
9806251748	5	-190984576	-0 177868247	737170624	175 7551727
14	4	-170122320	-0 158438757	655183552	156 2079315
9806240530	5	-190338448	-0 177266493	735063296	175 2527466
15	4	-181055568	-0 168621138	670259264	159 8022614
9806231810	5	-198235616	-0 184621304	745613696	177 768158
16	4	-171103232	-0 159352303	652250880	155 508728
9806230541	5	-198168720	-0 184559003	744588032	177 5236206
17	4	-167931392	-0 156398296	650051968	154 9844666
9708191742	5	-190441968	-0 177362904	735879680	175 4473877
18	4	-171664976	-0 159875467	665322496	158 6252441
9704141726	5	-192519184	-0 179297462	734385472	175 0911407
19	4	-169568080	-0 157922581	644212992	153 5923462
9704131737	5	-198672832	-0 185028493	743470976	177 2572937
20	4	-167060096	-0.155586839	646861888	154.2238922
9704130508	5	-190613760	-0.177522898	734950080	175.2257538
21	4	-169141440	-0.157525241	655555200	156.2965393
9612161720	5	-191648704	-0.178486764	740557504	176.5626678
22	4	-170481568	-0.158773333	660735936	157.531723
9612151730	5	-188447104	-0.175505042	728318656	173.6446991
23	4	-169069216	-0.157457978	645157568	153.8175507
9612150500	5	-194525568	-0.181166053	723954240	172.6041412
24	4	-168640560	-0.157058761	651071168	155.2274628
9610311717	5	-189511712	-0.176496536	732403520	174.6186066
25	4	-363797088	-0.338812441	1016642368	242.3864288
9610301728	5	-426872672	-0.397556156	1168964096	278,7027588
26	4	-164166592	-0.152892053	634939968	151.381485
9610300459	5	-191091568	-0.177967891	730865536	174.2519226

Tabela 46. Valores dos coeficientes de correção "g" e "i" usados na obtenção dos valores de Rlin.

Tabela 47. Coeficiente de correção do valor de Rlin, específicos para cada um doscanais infravermelhos do sensor AVHRR.

	Canal 3	Canal 4	Canal 5
Coeficiente A	1,00359	0,92378	0,96194
Coeficiente B	0	0,0003822	0,0001742
Coeficiente C	-0,0031	3,72	2,00

Figura 19. Dados coletados durante o período de 29 de outubro a 14 de dezembro de 1996 pelo termógrafo instalado em abrigo meteorológico.

Figura 20. Dados coletados durante o período de 29 de outubro a 14 de dezembro de 1996 pelo higrógrafo instalado em abrigo meteorológico.

Figura 21. Dados coletados durante o período de 07 a 30 de abril de 1997 pelo termógrafo instalado em abrigo meteorológico.

Figura 22. Dados coletados durante o período de 01 a 31 de maio de 1997 pelo termógrafo instalado em abrigo meteorológico.

Figura 23. Dados coletados durante o período de 01 a 30 de junho de 1997 pelo termógrafo instalado em abrigo meteorológico.

Figura 24. Dados coletados durante o período de 01 de julho a 3 de agosto de 1997 pelo termógrafo instalado em abrigo meteorológico.

Figura 25. Dados coletados durante o período de 01 de julho a 03 de agosto de 1997 pelo termógrafo instalado em abrigo meteorológico.

Figura 26. Dados coletados durante o período de 18 de agosto a 28 de setembro de 1997 pelo termógrafo instalado em abrigo meteorológico.

Figura 27. Dados coletados durante o período de 07 a 30 de abril de 1997 pelo higrógrafo instalado em abrigo meteorológico.

Figura 28. Dados coletados durante o período de 01 a 31 de maio de 1997 pelo higrógrafo instalado em abrigo meteorológico.

Figura 29. Dados coletados durante o período de 01 a 30 de junho de 1997 pelo higrógrafo instalado em abrigo meteorológico.

Figura 30. Dados coletados durante o período de 01 de julho a 03 de agosto de 1997 pelo higrógrafo instalado em abrigo meteorológico.

Figura 31. Dados coletados durante o período de 25 de agosto a 28 de setembro de 1997 pelo higrógrafo instalado em abrigo meteorológico.

Figura 32. Dados de precipitação coletados durante o período de 07 de abril a 28 de setembro de 1996 pelo pluviômetro instalado em local próximo ao abrigo meteorológico.

Figura 33. Dados de precipitação coletados durante o período de 29 de outubro a 14 de dezembro de 1997 pelo pluviômetro instalado em local próximo ao abrigo meteorológico.

388	388	388	384	388	392	388	376	376	376	380
388	388	384	384	384	384	388	380	380	380	384
384	384	384	384	388	388	384	384	384	380	380
384	384	384	388	388	388	392	392	396	392	380
384	380	380	384	384	384	384	384	388	388	384
380	384	384	380	380	380	380	384	384	384	384
384	384	384	380	384	384	392	396	392	388	388
384	388	388	384	388	392	396	400	400	396	396
396	392	388	392	400	408	404	400	408	400	392
392	392	388	392	404	412	412	416	420	412	392
384	384	388	388	396	404	412	424	436	424	400
				961	0300459	C4V				
368	368	368	364	364	372	368	360	360	360	364
368	368	364	364	364	364	368	364	360	360	364
364	364	364	364	368	368	368	364	364	364	364
364	364	364	368	368	368	372	372	372	372	364
364	360	364	364	364	364	364	364	368	368	364
360	364	364	364	364	364	364	368	368	368	368
364	364	364	364	364	368	372	376	376	372	372
368	368	368	368	368	376	376	380	380	376	376
376	376	368	372	380	388	388	384	388	384	376
372	372	368	372	380	392	392	396	400	392	376
364	368	368	372	376	384	392	404	416	404	384
				961	0300459	C5V				

Figura 34. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 04h59 GMT do dia 30 de outubro de 1996.

236	236	236	228	208	220	256	236	232	244	260
300	272	216	208	228	244	252	232	224	220	268
244	228	216	204	228	248	252	252	236	220	244
264	232	236	216	232	248	272	344	380	320	252
392	400	356	280	244	224	252	304	344	332	272
300	352	304	260	224	224	244	248	232	228	240
308	296	248	224	212	212	232	244	252	264	260
336	300	244	208	188	184	224	296	352	416	384
300	268	224	192	192	196	220	308	392	396	336
208	212	224	208	196	196	212	248	260	260	304
212	188	192	188	172	180	220	260	248	232	260
				961	0301728	C4V				
260	260	260	256	240	252	276	268	268	272	280
304	284	248	244	256	264	272	260	256	256	288
276	256	244	240	252	268	272	276	264	256	272
280	260	260	248	256	268	284	340	360	316	272
368	372	344	288	264	252	272	308	340	328	284
320	348	308	276	252	252	264	272	264	264	268
316	308	272	256	248	248	260	268	276	284	280
340	304	264	240	232	232	260	304	348	384	364
312	284	252	228	228	232	256	316	372	376	336
256	248	248	240	232	232	244	272	284	284	316
248	232	232	228	220	228	252	276	268	260	284
				961	0301728	C5V				

Figura 35. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita à 17h28 GMT do dia 30 de outubro de 1996.

336	424	392	340	304	288	288	268	256	268	276
320	388	432	380	292	276	296	272	268	296	292
240	248	272	312	364	360	408	420	360	368	320
232	212	248	332	468	520	512	520	476	364	296
268	268	304	444	552	568	568	556	520	412	308
256	228	268	440	536	556	536	516	532	452	336
236	228	248	308	416	456	384	364	376	328	288
216	224	284	412	484	424	344	292	268	256	252
208	220	260	368	464	404	304	288	288	244	224
228	236	296	416	452	424	356	308	296	264	240
184	200	296	400	448	504	496	392	308	280	264
				961	03117170	C4V				
344	400	384	356	328	320	320	308	304	312	320
340	384	412	376	320	312	324	312	312	328	324
284	296	312	340	368	372	412	412	372	384	340
272	264	296	360	448	484	484	492	460	376	328
292	304	336	436	508	520	524	516	492	408	336
288	272	316	444	500	516	504	496	500	436	356
276	276	292	344	424	456	404	392	396	352	316
264	272	320	412	456	412	364	324	308	296	288
260	268	296	376	440	400	332	316	312	284	268
272	280	324	404	432	412	364	328	316	292	276
248	260	328	396	428	468	460	384	324	304	288
				961	03117170	C5V				

Figura 36. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h17 GMT do dia 31 de outubro de 1996.

416	416	408	404	400	396	396	396	396	396	396
408	412	412	408	404	408	412	408	400	396	396
412	416	416	412	416	420	424	416	408	404	404
408	412	420	424	428	432	432	424	416	408	408
404	412	420	424	432	440	440	436	428	420	416
404	408	416	420	428	436	440	440	432	424	416
404	408	408	412	412	424	432	436	432	428	428
404	408	408	404	404	412	420	428	428	436	444
404	408	408	404	400	404	408	416	424	428	440
404	404	404	400	400	396	404	412	416	424	432
404	404	404	400	400	396	400	404	412	412	420
				961	2150500	C4V				
416	412	408	400	396	396	396	396	396	396	396
408	408	408	404	404	404	408	404	400	396	396
412	412	412	412	412	416	420	416	408	404	404
404	412	416	424	428	432	432	424	416	408	408
404	412	416	424	428	436	436	432	424	420	416
404	408	416	420	424	432	436	436	428	424	420
404	408	408	408	412	420	432	432	432	428	428
404	408	408	404	404	408	420	424	424	432	440
404	404	404	404	400	404	408	416	420	424	436
404	404	404	400	396	396	400	408	416	424	432
404	404	404	400	400	396	396	404	408	412	420
				961	2150500	C5V				

Figura 37. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h00 GMT do dia 15 de dezembro de 1996.

300	396	444	452	432	384	348	372	372	356	372
304	340	372	396	400	388	392	432	456	436	388
264	256	256	292	316	352	352	348	400	432	424
228	232	240	268	296	304	292	280	336	408	440
252	272	280	292	308	304	284	276	276	304	360
316	368	388	412	436	404	348	312	292	280	280
328	380	404	404	428	448	412	364	340	308	288
276	280	300	332	356	348	336	348	348	312	292
264	252	260	276	280	288	300	336	372	380	352
264	260	260	256	248	268	296	308	320	384	412
252	264	256	240	240	272	280	272	292	336	360
				961	2151730	C4V				
324	388	416	424	412	376	356	372	368	356	368
324	352	372	388	392	384	388	412	428	416	384
296	292	296	320	336	360	364	364	400	416	412
272	276	280	300	320	332	324	320	360	404	420
288	300	308	316	324	324	320	312	312	336	372
328	360	376	392	412	388	356	332	320	316	316
336	372	392	392	412	424	404	372	360	332	316
300	304	324	348	364	360	356	364	364	332	320
288	284	292	304	308	312	324	352	376	376	356
288	284	288	284	284	296	320	328	340	388	404
280	288	284	276	276	296	304	300	316	348	364
				961	2151730	C5V				

Figura 38. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h30 GMT do dia 15 de dezembro de 1996.

264	248	264	268	264	272	284	272	252	248	272
268	248	236	232	232	272	284	280	256	240	244
260	248	232	228	228	268	284	272	248	236	232
236	228	232	240	252	272	280	272	248	236	236
236	240	252	264	272	276	280	276	260	244	244
244	268	280	276	280	280	284	276	256	236	244
272	280	280	272	268	264	268	276	264	240	244
280	284	276	264	268	276	272	280	280	264	264
248	268	280	276	288	284	272	284	300	296	272
236	260	276	284	288	276	280	304	288	276	272
240	252	276	268	268	260	272	292	288	288	284
				961	2161720	C4V				
296	288	296	300	296	300	304	296	284	284	296
296	288	280	276	276	296	304	300	288	280	280
292	284	276	272	272	296	304	296	280	276	272
280	276	276	280	288	300	300	296	280	276	272
280	280	288	296	296	300	300	300	288	280	276
284	296	304	304	304	304	304	300	284	276	280
304	308	304	300	300	292	296	300	292	280	284
308	308	304	304	304	304	304	304	304	296	296
292	304	312	312	320	316	304	308	320	316	300
284	300	308	316	324	312	312	324	312	304	300
284	300	316	308	308	304	308	316	312	312	308
				961	2161720	C5V				

Figura 39. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h20 GMT do dia 16 de dezembro de 1996.

276	276	280	288	292	288	272	260	240	260	276
272	276	272	264	280	280	272	260	252	260	272
284	284	256	260	272	280	280	264	248	260	264
316	316	280	280	312	300	276	264	256	248	240
300	288	288	292	304	292	276	264	248	252	248
300	288	288	280	272	284	288	268	244	248	256
276	272	276	264	236	236	264	272	248	244	248
280	280	276	264	224	212	252	272	256	236	224
272	276	272	272	268	264	272	272	260	248	248
272	272	272	276	272	272	280	276	272	272	280
268	260	268	276	280	300	312	324	328	328	344
				970 /	4131737	C4V				
284	284	288	288	292	288	280	272	260	276	288
284	284	280	276	284	284	280	272	268	272	284
296	300	276	280	284	288	288	276	264	268	272
328	328	292	292	312	304	284	276	268	264	256
304	296	296	300	308	296	280	272	264	264	264
304	292	292	288	280	288	288	272	260	264	268
284	280	280	276	260	256	272	276	264	260	264
284	284	280	272	244	236	268	276	264	256	248
276	280	280	280	276	272	280	280	272	264	268
280	276	280	284	284	284	288	288	284	288	292
276	272	280	284	292	312	320	328	336	336	348
				970	4131737	C5V				

Figura 40. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h37 GMT do dia 13 de abril de 1997.

472	448	432	440	452	424	416	416	424	420	400
484	452	436	432	460	440	416	412	416	416	404
484	444	416	420	424	424	416	416	416	416	408
428	420	420	424	420	420	420	416	416	412	412
424	424	420	424	436	436	424	424	420	420	416
428	424	424	428	452	480	452	428	424	416	416
428	428	424	424	428	444	440	424	420	416	420
424	424	432	448	436	424	424	428	428	428	424
424	428	440	460	448	432	432	432	428	428	428
428	428	428	432	436	436	436	436	432	428	424
424	428	432	428	428	428	436	436	432	436	432
				970 /	41305080	C4V				
452	432	416	420	432	408	400	400	404	404	388
460	436	420	416	436	420	400	400	400	400	392
456	428	404	404	408	408	400	396	396	400	396
412	408	408	408	408	404	404	400	396	396	396
408	408	404	408	420	420	408	404	404	404	400
408	404	408	408	432	452	432	412	408	404	404
412	412	408	408	412	424	420	408	404	404	404
408	408	412	428	420	408	408	408	408	412	412
408	408	420	436	428	416	416	412	408	412	412
408	412	412	416	416	416	416	416	412	412	408
408	412	412	412	412	412	416	416	416	416	416
				970 [,]	4130508	C5V				

Figura 41. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits para a imagem feita às 05h08 GMT do dia 13 de abril de 1997.

276	272	272	268	264	272	272	248	224	244	256
268	268	268	264	272	276	272	260	240	248	260
268	268	260	252	268	276	276	272	248	248	256
264	248	240	256	268	276	276	260	252	252	244
272	272	272	276	280	280	272	260	252	252	244
284	280	276	276	276	276	276	260	244	244	252
272	268	268	264	244	240	260	268	248	240	244
268	272	272	260	224	204	236	272	256	236	228
264	272	268	268	252	240	260	272	260	240	228
268	268	268	268	268	264	268	264	252	256	260
268	260	264	268	264	260	268	280	276	272	280
				970	4141726	C4V				
284	280	280	276	272	276	276	260	244	260	264
280	276	276	276	280	280	276	272	260	264	268
280	280	272	264	276	280	284	280	264	260	264
276	264	260	268	276	284	280	272	264	264	260
280	280	280	280	284	284	280	272	264	264	256
292	284	280	280	280	280	276	268	260	260	264
280	276	276	272	260	260	272	272	260	256	260
272	276	276	268	244	236	256	276	264	252	248
272	276	272	272	264	256	268	276	268	252	244
272	272	272	272	272	268	272	272	260	264	268
272	268	272	272	272	268	276	280	280	276	284
				970	4141726	C5V				

Figura 42. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h26 GMT do dia 14 de abril de 1997.

204	216	212	196	200	236	220	196	184	188	184
212	224	228	236	244	228	200	188	184	192	204
212	208	200	216	236	224	200	180	172	188	208
228	192	172	180	184	224	232	192	196	212	192
232	216	200	204	208	208	220	200	196	192	188
212	176	200	220	208	212	212	192	184	184	200
196	176	184	208	208	220	228	216	200	200	204
200	204	220	240	228	224	236	236	200	184	168
212	192	208	228	216	224	244	248	212	188	184
244	216	180	160	180	228	248	248	216	204	188
236	212	168	152	176	208	224	252	256	244	240
				970	8191742	C4V				
216	224	220	208	212	236	228	208	200	204	200
220	228	232	236	240	232	212	204	200	208	212
220	220	212	220	236	228	208	196	188	200	212
228	204	192	200	200	228	228	204	204	216	204
236	220	208	212	216	216	224	208	204	200	200
220	196	212	228	216	216	216	204	196	192	212
208	192	200	216	216	228	232	220	208	208	216
212	216	224	240	232	228	236	236	212	200	188
220	204	216	232	224	228	244	244	220	204	200
240	220	196	184	200	232	244	244	224	216	204
236	216	188	176	192	216	232	248	252	244	240
				970	8191742	C5V				

Figura 43. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h42 GMT do dia 19 de agosto de 1997.

460	504	500	476	400	328	288	284	300	304	308
440	460	448	448	396	320	280	288	304	308	312
396	392	352	352	352	328	300	292	300	308	308
332	328	324	324	332	332	324	308	308	308	300
320	324	324	328	332	328	324	308	304	300	296
308	308	316	328	328	324	324	312	296	292	292
316	312	312	320	324	320	324	316	300	296	292
316	308	296	300	316	320	320	316	292	280	288
320	316	308	308	312	312	312	316	304	308	316
320	320	316	316	316	296	304	320	312	328	328
320	328	328	320	308	304	316	324	320	328	328
				980	62318100	C4V				
436	468	468	448	396	340	308	304	312	316	316
424	440	436	432	388	328	304	304	312	312	316
392	392	360	364	356	336	312	308	312	316	316
340	340	332	336	336	336	328	316	316	316	308
328	328	328	332	336	328	324	320	316	308	308
320	320	324	332	332	328	324	316	308	304	304
324	320	320	328	328	324	324	320	312	308	304
324	316	312	312	324	324	324	320	304	300	300
324	324	316	316	320	320	320	324	316	320	324
324	324	324	324	320	312	316	324	320	332	328
324	336	332	328	320	316	324	328	328	332	332
				980	62 <mark>31810</mark> 0	C5V				

Figura 44. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h10 GMT do dia 23 de junho de 1998.

452	452	452	456	456	456	452	448	444	444	444
444	444	444	448	456	460	456	448	444	440	440
444	440	444	448	452	456	456	448	444	440	444
444	444	440	444	448	452	456	456	448	444	448
444	444	444	440	444	444	448	456	456	444	444
448	448	448	448	448	448	448	448	456	448	444
448	452	456	452	448	448	448	448	448	448	448
448	448	448	448	448	448	448	448	448	448	444
448	452	452	452	452	448	448	448	448	440	440
452	452	448	448	452	452	452	448	444	440	440
448	448	444	444	448	448	448	444	440	436	436
				980	6230541	C4V				
444	444	444	448	448	448	440	440	436	436	436
440	440	440	440	444	448	444	440	436	436	436
436	436	436	440	440	444	444	440	436	432	436
436	436	436	436	440	440	444	444	440	436	436
436	436	436	436	436	436	440	444	444	436	436
440	440	440	440	440	440	436	440	444	440	436
440	444	444	444	440	440	440	440	440	440	436
440	440	440	440	440	436	440	436	440	440	436
440	440	440	440	440	436	436	436	436	432	432
440	440	440	440	440	436	440	436	436	432	432
440	440	436	436	436	436	436	436	432	428	428
				980	62 <mark>30541</mark>	C5V				

Figura 45. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h41 GMT do dia 23 de junho de 1998.

416	420	420	420	412	412	412	412	408	408	408
412	416	416	420	424	416	412	408	408	412	416
404	408	412	416	424	424	416	412	408	408	412
404	400	408	416	420	424	420	412	408	412	412
404	404	408	416	420	420	420	416	412	412	412
400	404	404	408	412	416	420	424	416	412	416
404	408	408	412	416	416	420	420	416	416	416
408	408	412	416	416	420	420	420	416	420	416
408	412	412	416	416	420	420	420	420	416	416
416	416	420	420	420	420	424	420	416	412	416
420	420	420	420	424	424	424	420	416	412	412
				980	6240530	C4V				
400	400	404	400	396	396	396	396	396	392	392
396	400	400	404	404	400	396	396	396	396	400
392	392	396	400	404	404	400	396	396	396	396
392	388	396	400	404	404	400	396	396	396	400
392	392	392	396	400	404	404	400	396	400	400
388	388	392	396	396	400	404	404	400	400	400
392	396	396	396	400	400	400	400	400	400	400
392	396	396	400	400	404	404	400	400	400	400
392	396	400	400	400	404	404	404	404	400	400
400	400	400	404	404	400	404	404	400	400	400
404	404	400	404	404	408	404	400	400	396	400
				980	6240530	C5V				

Figura 46. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h30 GMT do dia 24 de junho de 1998.

348	348	348	344	352	348	340	340	328	324	328
332	352	360	348	352	352	344	344	328	332	344
340	344	352	348	356	352	352	356	348	352	360
336	344	344	344	352	348	352	356	356	360	364
388	360	348	340	332	332	352	352	356	368	364
364	356	352	340	340	356	348	328	336	352	348
404	380	348	348	368	376	336	324	340	348	352
412	400	364	348	360	376	352	344	348	348	344
392	388	376	356	348	356	360	364	352	348	340
384	380	368	360	352	352	352	352	340	352	376
380	368	352	348	360	360	348	332	336	340	356
				980	62517480	C4V				
340	340	340	344	348	344	340	336	328	328	328
332	344	352	344	348	344	340	340	328	332	340
336	340	344	344	348	344	344	348	340	348	352
336	344	340	340	344	344	348	348	348	352	360
376	356	344	340	332	336	348	348	352	360	356
360	352	344	340	336	352	344	332	336	348	348
392	368	344	344	360	368	336	328	340	344	348
400	388	360	344	356	368	348	344	344	344	344
384	376	364	352	348	352	356	356	348	344	340
376	368	364	356	348	348	348	344	340	348	372
372	360	348	344	352	352	344	332	336	344	356
				980	62517480	C5V				

Figura 47. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 17h48 GMT do dia 25 de junho de 1998.

440	444	444	444	460	468	448	432	428	420	416
488	508	492	480	480	452	428	428	432	424	424
492	492	480	480	472	444	424	424	424	428	432
476	456	428	440	460	464	448	428	428	432	424
456	440	424	432	452	460	452	428	416	416	416
432	420	432	444	456	452	436	416	404	404	408
404	412	424	448	456	456	444	416	400	400	412
388	404	416	428	440	444	444	432	404	384	392
388	404	408	408	424	424	424	416	392	380	384
384	392	404	416	420	404	388	380	372	380	392
372	376	388	404	412	400	396	396	396	396	408
				980	8171804	C4V				
448	456	456	460	472	476	460	452	448	440	436
492	508	496	484	484	464	448	448	448	440	440
496	500	492	488	480	456	444	440	444	444	444
480	468	448	456	472	476	460	444	444	448	440
464	452	440	448	464	472	464	448	436	436	436
444	440	444	456	464	464	452	436	424	424	432
424	428	440	456	464	464	456	432	420	424	432
408	420	432	440	452	452	452	444	424	408	416
404	420	424	424	436	436	436	428	412	404	408
396	404	416	428	432	416	408	400	396	400	408
384	392	404	416	424	412	408	408	408	408	420
				980	8171804	C5V				

Figura 48. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h04 GMT do dia 17 de agosto de 1998.

268	264	248	224	220	248	312	404	436	380	356
268	264	264	248	232	308	432	524	532	520	484
252	268	264	244	260	340	440	528	544	536	468
236	252	248	252	372	456	480	532	548	492	368
224	220	240	264	332	404	452	420	396	324	276
232	236	232	232	232	248	284	260	232	224	216
264	316	292	240	232	236	248	208	200	204	204
260	284	268	236	240	236	260	260	228	224	228
276	248	248	260	260	248	276	316	376	428	356
264	260	252	244	272	300	352	436	504	504	416
288	284	252	272	384	364	396	512	536	512	432
				981	1051822	C4V				
280	280	268	256	256	276	328	396	420	376	360
280	276	276	268	264	324	420	480	492	484	460
272	280	280	268	280	348	424	488	500	496	444
260	272	268	276	372	428	452	492	504	464	368
252	252	268	288	348	396	428	412	392	336	300
260	268	260	264	264	280	304	284	264	264	256
292	336	304	268	260	264	272	244	244	244	244
280	308	292	264	264	264	280	280	264	260	264
292	272	272	280	280	276	300	332	380	412	360
280	276	272	272	292	320	364	424	472	472	420
296	292	276	296	376	364	400	476	496	484	436
				981	1051822	C5V				

Figura 49. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h22 GMT do dia 05 de novembro de 1998.

384	384	388	392	400	396	388	392	392	388	384
384	380	384	388	396	400	388	388	388	388	388
384	384	384	384	392	400	392	384	384	384	384
384	384	384	384	388	396	396	388	384	384	384
384	384	388	384	388	396	400	396	388	380	384
384	384	384	384	388	388	388	396	392	384	384
388	384	384	384	388	388	388	392	392	388	384
384	388	388	396	396	396	396	396	396	392	388
380	384	392	396	396	392	392	396	396	392	388
384	392	392	392	392	392	392	392	392	388	384
384	388	388	392	388	396	396	388	388	388	384
				981	1240542	C4V				
368	368	372	376	380	376	372	376	376	372	368
368	368	368	372	380	380	376	372	372	372	372
372	368	372	372	376	380	376	372	372	372	372
368	372	372	372	376	380	380	376	368	368	372
368	368	372	372	372	376	380	380	372	368	368
368	368	372	372	372	372	376	380	376	372	372
372	372	372	372	372	376	376	376	376	376	372
372	372	372	376	380	380	380	380	380	376	376
368	372	376	380	380	376	376	380	380	376	372
372	376	376	376	376	376	376	376	376	372	372
372	372	376	376	376	380	380	376	372	372	372
				981	1240542	C5V				

Figura 50. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 05h42 GMT do dia 24 de novembro de 1998.

224	244	260	244	212	236	252	232	196	176	188
196	228	228	200	192	232	248	240	204	180	188
180	196	212	204	192	220	252	244	204	188	208
200	196	196	212	216	212	248	256	216	204	192
212	208	228	228	224	232	288	300	212	180	180
220	208	224	240	288	320	276	240	204	200	180
212	208	212	236	272	296	268	244	228	208	188
228	216	196	276	376	320	252	252	256	208	176
236	252	228	204	208	212	220	232	216	196	208
244	252	220	168	160	192	228	244	236	208	236
232	248	220	176	168	192	220	228	244	256	268
				981	1241811	C4V				
244	256	268	256	240	252	260	244	224	212	220
228	248	244	228	224	248	256	252	224	212	220
216	224	236	228	224	240	260	256	228	220	232
224	220	224	236	236	236	264	264	240	228	216
232	232	252	248	244	256	300	304	236	212	212
244	232	244	264	308	328	296	264	232	224	208
240	236	244	260	288	316	292	260	244	232	216
244	236	228	296	364	324	272	264	264	228	208
256	268	248	236	244	240	244	248	236	224	236
260	264	244	212	204	228	244	260	248	240	272
256	264	248	216	212	224	240	248	260	272	288
				981	12418110	C5V				

Figura 51. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h11 GMT do dia 24 de novembro de 1998.

280	280	288	276	280	304	296	280	264	256	260
292	300	296	292	296	304	296	284	260	252	256
272	284	280	284	296	304	300	284	256	256	272
260	272	288	296	296	300	300	280	264	264	252
296	292	292	296	300	300	292	264	244	244	236
296	296	300	300	296	296	276	232	236	232	244
292	292	292	292	288	284	292	288	260	248	252
276	260	256	276	292	300	296	296	280	248	248
244	240	252	268	276	268	284	300	288	276	276
232	232	244	256	252	248	288	308	296	288	288
244	268	268	260	260	272	292	300	304	304	304
				990	1251823	C4V				
308	308	312	308	312	324	316	308	296	292	296
316	320	316	316	320	324	316	308	296	292	292
308	312	308	312	320	324	320	308	292	292	300
296	304	312	320	320	320	320	308	296	300	288
316	316	316	320	320	320	316	300	288	288	284
316	320	320	320	320	316	304	280	284	284	288
316	316	316	316	312	312	316	308	296	288	292
308	296	296	308	316	320	316	316	304	288	288
288	284	292	300	304	300	312	320	312	304	304
280	280	288	292	292	292	312	324	316	312	312
288	300	300	296	296	304	312	320	320	324	324
				990	1251823	C5V				

Figura 52. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h23 GMT do dia 25 de janeiro de 1999.

336	332	324	324	332	328	328	332	328	328	328
336	336	332	332	328	316	320	324	320	312	316
336	332	332	336	324	320	324	328	328	324	316
336	332	332	336	336	324	324	332	328	320	312
340	340	336	336	332	328	328	328	324	320	320
332	332	336	336	332	324	324	324	324	324	320
336	332	332	332	332	328	324	324	328	324	324
336	332	328	332	336	336	328	324	324	324	324
336	328	324	332	340	340	328	320	320	320	324
340	336	336	336	340	344	336	332	332	328	328
340	340	340	340	340	344	340	336	340	332	324
				990	5281852	C4V				
344	340	336	336	340	336	336	340	340	336	340
344	340	340	340	336	332	336	336	336	328	332
344	344	340	340	336	332	336	336	336	336	328
344	340	340	344	344	336	336	340	340	332	328
348	344	344	344	340	340	336	340	336	332	332
340	340	344	344	340	336	336	336	336	336	336
344	340	340	344	340	340	336	336	336	336	332
344	344	340	344	344	344	340	336	336	336	336
344	340	336	344	348	348	340	336	332	332	336
348	344	344	344	348	348	344	340	340	340	336
348	348	348	348	348	352	348	344	344	340	336
				990	5281852	C5V				

Figura 53. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h52 GMT do dia 28 de maio de 1999.

432	428	432	436	436	436	436	440	448	444	444
432	432	428	432	432	436	440	436	440	440	436
428	428	424	424	428	436	440	440	436	436	428
428	428	428	428	428	436	444	444	436	432	424
432	428	432	432	432	436	444	448	440	428	432
428	432	432	432	432	432	436	444	448	440	436
432	432	432	432	432	432	432	436	440	436	436
436	440	444	444	444	440	440	436	436	436	436
436	440	444	444	440	436	436	436	432	432	432
432	432	440	440	440	440	436	436	432	428	428
444	440	436	440	440	436	432	432	428	428	424
				990	71106320	C4V				
412	412	412	416	416	416	416	420	420	420	420
412	412	412	412	412	416	416	416	420	416	416
408	408	408	408	408	416	420	416	416	416	412
408	408	408	408	408	416	420	420	416	412	408
412	408	408	412	412	416	420	420	420	412	412
412	412	412	412	412	412	412	420	424	416	412
412	412	412	416	416	412	412	416	420	416	416
416	420	420	420	420	420	420	416	416	412	416
416	416	420	420	416	416	416	412	412	412	412
412	416	416	416	416	416	416	412	412	412	408
420	416	416	416	420	416	412	412	408	408	408
				990	71106320	C5V				

Figura 54. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h32 GMT do dia 11 de julho de 1999.

440	440	444	444	440	448	452	448	448	452	448
432	432	432	432	436	448	452	448	448	448	440
432	432	432	432	432	448	456	456	448	440	428
432	436	436	436	436	440	448	452	456	444	436
432	432	436	436	436	436	436	440	452	452	444
436	436	440	440	444	440	440	436	440	440	444
444	448	448	452	448	448	444	444	440	440	444
440	444	448	448	444	440	436	436	436	436	436
436	440	440	444	444	444	440	440	436	432	432
448	444	444	440	436	436	436	436	432	428	432
440	440	436	432	428	432	436	436	428	424	428
				990	7120620	C4V				
420	420	420	420	420	424	428	424	424	428	424
412	412	412	412	416	424	428	424	424	424	420
412	412	412	412	416	424	432	432	424	420	412
412	412	416	416	416	420	424	428	428	420	416
416	416	416	416	416	416	416	420	428	424	420
416	416	420	420	420	420	420	416	416	420	420
424	424	424	428	428	424	424	420	420	420	420
420	420	428	428	420	416	416	416	416	416	416
416	416	420	420	420	420	416	416	416	412	412
424	424	420	420	416	416	416	416	412	412	412
420	420	416	412	408	412	416	412	408	408	408
				990	7120620	C5V				

Figura 55. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h20 GMT do dia 12 de julho de 1999.

444	444	448	464	468	460	460	468	468	468	468
448	448	456	460	460	460	468	468	460	456	456
440	440	444	444	448	456	476	476	464	456	456
448	440	440	440	448	460	472	472	468	460	448
444	440	440	444	444	452	464	468	472	468	452
440	444	444	444	444	448	448	456	464	476	464
444	444	444	448	448	452	456	460	460	456	456
452	456	456	460	468	472	472	472	468	464	464
452	456	460	464	472	472	472	468	468	468	468
456	460	464	464	468	468	464	460	460	464	464
464	464	464	468	468	464	460	464	468	464	460
				990	8250627	C4V				
424	424	428	436	440	436	436	440	440	440	440
424	428	432	436	436	436	444	444	436	432	432
420	420	420	424	428	436	448	448	440	432	432
428	424	420	420	424	436	444	448	444	436	428
424	420	420	424	424	428	440	444	444	444	432
420	424	424	424	424	424	428	432	440	448	440
424	424	424	428	428	432	436	436	436	436	436
428	432	432	436	440	444	444	444	444	440	440
428	432	436	440	444	448	444	444	444	440	440
432	436	440	440	444	444	440	436	436	440	440
440	436	440	444	444	440	436	440	444	436	436
				990	8250627	C5V				

Figura 56. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h27 GMT do dia 25 de agosto de 1999.

280	292	296	300	296	304	296	292	292	268	264
272	280	292	304	304	296	280	292	296	272	268
276	276	272	280	284	292	296	300	280	264	248
296	292	272	264	268	280	292	292	276	268	252
300	304	296	276	264	268	280	296	284	264	252
300	300	296	284	264	272	288	292	292	264	260
296	288	284	272	276	292	296	288	284	252	232
280	276	288	284	276	284	284	284	288	264	228
272	268	276	280	276	280	284	284	292	280	252
272	284	292	292	272	264	284	296	300	288	256
268	280	292	296	292	276	272	288	296	276	248
				990	8251856	C4V				
280	284	292	296	292	296	292	288	284	268	268
272	280	288	292	296	292	280	288	288	272	272
276	276	276	280	284	288	288	292	276	268	252
292	288	276	268	272	280	288	288	276	268	256
292	296	288	272	268	272	280	292	280	264	256
292	292	292	280	268	272	284	288	288	268	264
288	284	280	272	276	288	288	284	280	260	244
280	276	284	284	276	284	284	284	284	264	244
272	268	276	280	276	280	280	280	284	276	256
272	280	288	284	272	268	280	288	292	284	260
268	280	288	288	284	276	272	284	292	276	260
				990	8251856	C5V				

Figura 57. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h56 GMT do dia 25 de agosto de 1999.

276	272	268	260	260	268	268	284	264	244	244	
264	268	268	260	260	264	272	296	276	256	256	
252	256	264	264	268	268	280	288	268	244	236	
260	240	228	236	260	280	288	276	268	256	244	
288	276	256	248	248	256	276	280	268	260	264	
288	292	280	260	252	264	280	292	284	268	280	
276	272	268	260	264	280	288	288	284	260	252	
276	268	272	268	276	288	288	288	284	264	252	
236	244	264	260	260	272	276	284	292	284	264	
256	260	268	272	260	260	280	288	300	296	268	
244	268	280	276	264	260	272	288	296	284	264	
9908261844C4V											
276	272	272	264	268	272	272	284	268	256	256	
268	272	272	264	268	268	276	288	276	264	264	
260	264	268	268	268	268	280	284	272	256	252	
264	248	244	248	268	280	284	280	272	264	256	
280	272	264	260	260	264	280	280	272	268	268	
284	288	280	264	260	268	280	288	284	272	280	
276	276	272	268	268	280	284	288	280	268	260	
276	272	272	272	276	284	284	288	284	268	260	
248	256	268	264	264	276	276	284	288	280	268	
264	264	268	276	264	268	280	288	296	292	272	
256	272	280	276	268	268	276	288	292	284	268	
9908261844C5V											

Figura 58. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 18h44 (GMT) do dia 26 de agosto de 1999.

436	432	440	440	448	460	464	456	452	448	440
432	432	428	432	448	460	468	460	452	444	436
432	428	432	432	440	456	460	460	456	444	440
432	428	432	432	436	444	452	456	464	456	448
436	432	436	440	440	444	444	448	452	452	448
440	444	448	452	456	456	460	460	456	452	452
444	448	452	456	456	456	456	460	460	460	452
444	452	452	452	456	460	456	452	456	456	452
456	456	460	460	456	456	452	456	452	452	452
452	452	452	464	456	452	456	460	456	452	448
440	444	456	464	452	448	452	452	452	444	436
9908260613C4V										
416	412	420	420	424	432	440	432	428	428	420
412	412	412	416	424	432	436	436	428	424	416
412	408	412	416	420	432	436	436	432	424	420
412	412	412	416	416	424	428	432	440	432	424
420	416	416	420	420	420	424	428	428	428	424
420	420	424	428	432	432	432	432	432	432	428
424	428	428	432	432	432	432	436	436	436	428
424	428	428	428	432	432	432	428	428	432	428
428	432	432	436	432	432	432	432	432	428	428
428	428	428	436	432	428	432	432	432	428	424
420	424	432	436	428	424	428	428	428	420	416
				990	8260613	C5V				

Figura 59. Matrizes 11x11 de valores de nível de cinza em resolução radiométrica de 10-bits, para a imagem feita às 06h13 GMT do dia 26 de agosto de 1999.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALMEIDA. C. S. A., Estimativa da temperatura de superfície cultivada com trigo (*triticum aestivum* I.) usando dados NOAA-14/AVHRR. Campinas : Unicamp, 1996. 102 p. Dissertação (Mestrado).
- ARTIGAO. M. M. Determinación da evapotranspiración real en la zona de Barrax (Albacete) mediante el uso combinado de imágenes Landsat TM y NOAA/ AVHRR. Valencia - España: Universidad de Valencia - Faculdad de Física - Departamento de Termodinámica. 1994. 92 p. (Trabajo de investigación)
- BECKER, F. & LI, Z.-L. Surface temperature and emissivity at various scales: Definition, measurement and related problems. **Rem. Sens. Rev.** n. 12. p. 225-253. 1995.
- BRASA. R. A.; MARTÍN de SANTA OLALLA. F. & CASELLES. V. Maximal and Actual Evapotranspiration for Barley (*Hordeum vulgare* L.) through NOAA Satellite Images in Castilla-La Mancha. Spain. J. Agric. Eng. Res. n. 63. p. 283 – 294. 1996.
- BUETNER, K. J. K. & KERR, C. D. The determination of infrared emissivities of terrestrial surfaces. J. Geophys. Res. n. 70. p. 1329-1337. 1965.
- CASELLES. C.; COLL, C. & VALOR, E. Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data. Int. J. Rem. Sens. no prelo. 1997.
- CASELLES. V. & SOBRINO. J. A. Determination of frosts in orange groves from NOAA-9 AVHRR data. **Rem. Sens. Environ.** n. 29. p. 135-146. 1989.
- COLL, C.; CASELLES, v. & SOBRINO, J. A. La Corrección Atmosférica en el espectro térmico. In: Gandia, S. & Meliá, J. La teledetección en el seguimiento de los fenómenos naturales. Recursos renovables: agricultura. Curso de postgrado. Valencia España: Universitat de València, 1991. p. 149-182.
- COLL. C. & CASELLES. V. A split window algorithm for land surface temperature from advanced very hight resolution radiometer data : validation and algorithm comparison. **J.Geoph.Res.** no prelo. 1997.

- COLL. C. Un modelo operativo para la determinación de la temperatura de la superfície terrestre desde satélites. Valencia - España: Universidad de Valencia - Faculdad de Física - Departamento de Termodinámica. 1994. 254p.(Tese de Doutorado)
- COLL. C.; CASELLES. V. & SOBRINO. J. A. Desarollo de un modelo de corrección atmosférica en el térmico. I.- Aplicación al canal 6 del Landsat. **Anales de Física**. 88 : 107-119.1992.
- COMBS, A. C.; WEICKMANN, H.K.; MADER, C. & TEBO, A. Application of infrared radiometers to meteorology. J. Appl. Meteorol. n. 4. p. 253-262. 1965.
- CONWAY J., & van BAVEL.C. H. M. evaporation from a wet surface calculated from radiometrically determinade surface temperatures. **J. Appl. Meteorol.** n. 6. p. 650-655. 1967.
- DESCHAMPS, P. Y. & PHULPIN, T. Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12μm. **Bound. Lay. Meteor.** n. 18. p. 131-143. 1980.
- EHRLICH, D; ESTES, J. E.; SINGH, A. Application of NOAA-AVHRR 1km data for environmental monitoring. **Int J. Rem. Sens.**, v. 15, n.1, p. 145-161, 1994.
- FRANÇOIS, C. & OTLLÉ, C. Atmospheric corrections in the thermal infrared Global and water vapour dependent split-window algorithms - Applications to ATSR and AVHRR data. I.E.E.E. Trans. Geosci. Rem. Sens. n. 34. p. 457-469. 1996.
- GSC General Sciences Corporation. **METPRO Worktation User's Guide. Version 3.1.** Laurel. Maryland. USA : GSC. 1994. 288 p.
- KIDWELL, K. B. **NOAA polar orbiter data. Users Guide.** Washington, D.C., USA: NOAA / NESDIS /OSDPD, 1995. 287p.
- KERR, Y. H.; LAGOUARDE, J. P. & IMBERNON, J. Accurate land surface temperature retrieval from AVHRR with the use of an improved split-window algorithm. **Rem. Sens. Env.** n. 41. p. 197-209. 1992.
- LI, Z.-R. & McDONNEL, M. J. Atmospheric correction of thermal infrared images. Int. J. Rem. Sens. n. 9. p. 107-121. 1988.

MAUL. G. A. & SIDRAN, M. Atmospherics effects on ocean surface temperature
from the NOAA satellite scanning radiometer. **J. Geophys. Res.** n. 78. p. 1909-1916. 1973.

- McMILLIN, L. M. Estimation of sea surface temperatures from two infrared windows measurements with different absorption. J. Geophys. Res. n. 80. p. 5113-5117. 1975.
- MEDEIROS. V. M.; TANAKA. K. & YAMAZAKI. Y. Sistema de navegação dos dados AVHRR dos satélites da série NOAA. In : Simpósio Latino Americano de Sensoriamento Remoto. 4.. Gramado. RS. 10 - 15 ago. 1986. Anais. São José dos Campos : INPE. 1986. p. 464 - 471.
- MIRALLES, J. M. Fundamentos físicos de la teledetección: leyes e principios básicos IN: Gandia, S. & Meliá, J. La teledetección en el seguimiento de los fenómenos naturales. Recursos renovables : agricultura. Curso de postgrado. Valencia, España : Universitat de València, 1991. p. 50-83.
- NING, C. H. S.; TANAKA, K.; CABRAL, R. M.; YAMAZAKI, Y.; NAKAMURA, Y. Processamento dos Dados HRPT dos satélites da série NOAA. São José dos Campos: INPE, 1987. 19p.
- OTTLÉ, C. & VIDAL-MADJAR, D. Estimation of land surface temperature with NOAA-9 data. **Rem. Sens. env.** n. 40. p. 27-41. 1992.
- PALTRIDGE, G.W. & PLATT, C. M. R. Radiative processes in Meteorology and Climatology. (New York: Elsevier), p.33. 1976.
- PODESTÁ, G.; SHENOI, S.; J. M. BROWN & EVANS, R. H. AVHRR pathfinder oceans matchup database 1985-1993 (version 18). Rosentiel Sch. of Mar. and Atmos. Sci. Miami, Florida State-U.S:A. : University of Miami, 1995.
- PRATA, A. J. Land surface temperatures derivade from the advanced very hight resolution radiometer and the along track scanning radiometer, 1, Theory. J. Geophys. Res. n. 98. p. 16.689-16.702. 1993.
- PRICE, J. C. Estimating surface temperatures from satellite thermal infrared data -A simple formulation of the atmospheric efect. **Rem. Sens. Env.** n. 13. p. 353-361. 1983.
- PRICE, J. C. Land surface temperature measurements from the split-window channels of the NOAA-7 AVHRR. J. Geophys. Res. n. 89. p. 7231-7237. 1984.

- RUBIO, E. Influencia de la radiancia atmosférica descendente en las medidas de emissividade y temperatura de la superfície del suelo. Valencia - España: Universidad de Valencia - Faculdad de Física - Departamento de termodinámica., 1994. 114p. (trabajo de investigación).
- RUBIO, E.; CASELLES, C. & BADENAS, C. Emissivity measurements of several soils and vegetation types in the 8-14µm wave band: analysis of two field methods. **Rem. Sens. Env.** n. 59. p. 490-521. 1997.
- SAUNDERS, P. M. Corrections for airbone radiation thermometry. J. Geophys. Res. n. 75. p. 7596-7601. 1970.
- SAUNDERS. R. W & KRIEBEL. K. T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. **Int. J. Rem. Sens.** v. 1. n. 9. p. 123 -150. 1988.
- SAUNDERS. R. W. An automated scheme for the removal of cloud contamination from AVHRR radiances over western Europe. Int. J. Rem. Sens. v. 7. n. 7. p. 867 886. 1986.
- SCHMETZ, J. An atmospheric-correction schem for operational application to Meteosat infrared measurements. **E. S. A. J.** n. 10. p. 145-159.1986.
- SEGARRA. D. Introducción al tratamento digital de imágenes. In : Gandia. S. & Meliá. J. La teledetección en el seguimiento de los fenómenos naturales. Recursos renovables: agricultura. Curso de postgrado. Valencia. España: Universidad de Valencia. 1991. p. 217 - 240.
- SOBRINO, J. A.; COLL, C. & CASELLES, V. Atmospheric correction for landsurface temperature using NOAA-11 AVHRR channels 4 and 5.**Rem. Sens. Env.** n. 38. p. 19-34. 1991.
- SOBRINO. J. A.; COLL. C. & CASELLES. V. La medida de temperatura desde satélites. In: La teledetección en el seguimiento de los fenómenos naturales. Recursos renovables: climatología y desertificación. Valencia. España: Faculdad de Física. Universidad de Valencia. 1993. p. 153 - 181.
- SOBRINO. J. A.; LI, Z.-L.; STOLL, M.-P. & BECKER, F. Improvement in the splitwindow technique for land surface temperature determination. **I.E.E.E. Trans. Geosci. Rem. Sens.**, n. 32. p. 243-253. 1994.
- VALOR, E. & CASELLES, C. Mapping land surface emissivity from NDVI: application to european, african, and south american areas. **Rem. Sens. Env.** n. 57. p. 167 184. 1996.

- VIANELLO. R.L. & ALVES. A. R. Meteorologia básica e aplicações. Viçosa : UFV. Impr. Univ.. 1991. 449 p.
- VIDAL, A. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data. Int. J. Rem. Sens. n. 12. p. 2449-2460. 1991.

ABSTRACT

Diurnal and nocturnal image series have been used in this work. These images were processed on suitable software to the treatment of NOAA-AVHRR products, for Surface temperature final value obtaining. The processing work includes both the images geo-referencing and their atmospheric correction applying the "split window method". The split window equation used takes into account the crop surface emissivity parameter, estimated directly on the field by the "box method". This one was compared to an alternative emissivity estimate on the field method, which is based on the crop covering/bared soil relation. Both methods when compared presented similar results. A terrestrial radiometer was used to the surface temperature measurements carried out *in situ*, during the satellite passes. The correct surface temperature satellite data were submitted to a regression analysis against the terrestrial data about the same parameter. High association level between surface temperature measured at the field and the near air temperature was observed. The high correlation between surface temperature measured at the field and that one from the images shown that the split window equation corrected satisfactorily the atmosphere effects over the images.