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ABSTRACT 

 

Consumption of extra-virgin olive oil (EVOO) is highly recommended for its benefits 

to human health. In Brazil, consumption of EVOO, which is imported from other 

countries, is increasing annually. In the last years, Brazil started to produce EVOO, 

although in an experimental way. In chapter 1, a literature review highlighting the 

most relevant studies on the chemical composition and the health benefits of the 

extra-virgin olive oil is presented. In chapter 2, the aim was to determine the total 

phenolic content (TPC) and the antioxidant capacity (AC), as well as the correlation 

between TPC and each one of the four AC methods, of 15 EVOO brands, each 

one in three batches, resulting in 45 samples. TPC was evaluated by Folin-

Ciocalteu reagent method, while the AC was assessed using FRAP, ABTS, DPPH• 

and ORAC assays. The TPC varied from 70 to 297 mg GAE kg-1, FRAP from 114 

to 1557 µmol TE kg-1, ABTS from 0.5 to 1.9 mmol TE kg-1, DPPH• from 72 to 1129 

µmol TE kg-1, and ORAC from 1.1 to 12.9 µmol TE g-1. High and significant 

correlation was found between the TPC and each one of the AC methods 

evaluated in this study (FRAP, r2 = 0.8904; p < 0.001; ABTS, r2 = 0.7837; p < 

0.001; DPPH•, r2 = 0.7908; p < 0.001; ORAC, r2 = 0.7431; p < 0.001). Therefore, 

most of the EVOO brands presented a considerable TPC and high AC values. In 

chapter 3, the aim was to optimize the separation of 17 phenolic compounds 

already detected in EVOO. A Doehlert matrix experimental design was used, 

evaluating the effects of pH and electrolyte concentration. Resolution, runtime and 

migration time relative standard deviation values were used as responses. 

Derringer’s desirability function was used to simultaneously optimize all 37 

responses. The 17 peaks were separated in 19 minutes using a fused-silica 

capillary (50 µm internal diameter, 72 cm of effective length) with an extended light 

path and 101.3 mmol.L-1 of boric acid electrolyte (pH 9.15, 30 kV). The method 

was validated and applied to 15 EVOO samples found in Brazilian supermarkets. 

In chapter 4, the aim was to determine the phenolic compounds, tocopherols and 

fatty acids contents of 17 monovarietal EVOOs produced in Minas Gerais state, 
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during two crop years. Compounds identified comprised palmitic acid (6-12.6%), 

palmitoleic acid (0.2-2.5%), stearic acid (1.6-2.2%), oleic acid (70.8-84.3%), linoleic 

acid (3.2-11.7%), α-linolenic acid (0.6-1.4), arachidic acid (0.4-0.8%), 9-eicosenoic 

acid (0.4-0.9%), tyrosol (NQ-155.21 mg kg-1), (+)-pinoresinol (2.89-22.64 mg kg-1), 

hydroxytyrosol (ND-37.74 mg kg-1), luteolin (ND-2.23 mg kg-1), α-tocopherol (28.92-

232.93 mg kg-1), β-tocopherol (ND-9.56 mg kg-1), γ-tocopherol (ND-18.75 mg kg-1). 

Some of these monovarietal EVOOs presented results similar to those described in 

the literature. The aim of chapter 5 was to determine the phenolic compound 

contents of Brazilian EVOO, using rapid-resolution liquid chromatography coupled 

to electrospray ionization time-of-flight mass spectrometry (RRLC-ESI-TOF-MS). A 

total of 25 EVOO samples from Rio Grande do Sul, Santa Catarina and Minas 

Gerais states and two crops, were analyzed. It was possible to identify and quantify 

20 phenolic compounds, belonging to the phenolic alcohol, secoiridoid, lignan and 

flavonoid classes. EVOOs from Coratina (364 mg kg-1), Arbosana (255 mg kg-1) 

and Grappolo (228 mg kg-1) varieties presented the highest total phenolic contents. 

The results showed that Brazilian EVOOs are promising concerning the total 

phenolic contents, since the values were comparable to those from high-quality 

EVOOs produced in other countries. 

 

Keywords: extra-virgin olive oil; chemical composition; phenolic compounds; 

capillary electrophoresis; RRLC-ESI-TOF-MS; optimization.  
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RESUMO 

 

O consumo de azeite de oliva extravirgem (EVOO) é altamente recomendado por 

seus benefícios à saúde humana. No Brasil, a ingestão de EVOO, o qual é 

importado de outros países, vem aumentando anualmente. Nos últimos anos, o 

Brasil começou a produzir EVOO, porém de maneira experimental. No capítulo 1 

foi apresentada uma revisão bibliográfica destacando os estudos mais relevantes 

acerca do composição química e dos benefícios à saúde do azeite de oliva 

extravirgem. No capítulo 2, o objetivo foi determinar o teor de fenólicos totais (TFT) 

e a capacidade antioxidante (CA), bem como a correlação entre o TFT e cada um 

dos quatro métodos de CA, de 15 marcas de EVOO, cada qual em três lotes, 

resultando em 45 amostras. O TFT foi avaliado pelo método do reagente de Folin-

Ciocalteu, enquanto a CA foi determinada pelos ensaios de FRAP, ABTS, DPPH• 

e ORAC. O TFT variou de 70 a 297 mg EAG kg-1, FRAP de 114 a 1557 µmol ET 

kg-1, ABTS de 0,5 a 1,9 mmol ET kg-1, DPPH• de 72 a 1129 µmol ET kg-1, e ORAC 

de 1,1 a 12,9 µmol ET g-1. Houve elevada e significativa correlação entre o TFT e 

cada um dos métodos de CA (FRAP, r2 = 0,8904; p < 0,001; ABTS, r2 = 0,7837; p 

< 0,001; DPPH•, r2 = 0,7908; p < 0,001; ORAC, r2 = 0,7431; p < 0,001). Portanto, a 

maioria das marcas de EVOO apresentaram considerável TFT e elevados valores 

de CA. No capítulo 3, o objetivo foi otimizar a separação de 17 compostos 

fenólicos previamente detectados em EVOO. Foi utilizado um planejamento 

experimental Doehlert, avaliando-se o pH e a concentração do eletrólito. 

Resolução, tempo de corrida e coeficientes de variação dos tempos de migração 

foram as respostas. A função de desejabilidade de Derringer foi utilizada para 

otimizar simultaneamente as 37 respostas. Os 17 picos dos compostos foram 

separados em 19 minutos em capilar de sílica fundida (50 µm diâmetro interno, 72 

cm comprimento efetivo) com bulbo estendido e eletrólito ácido bórico 101,3 mmol 

L-1 (pH 9,15, 30 kV). O método foi validado e aplicado em 15 amostras comerciais 

de EVOO. No capítulo 4, o objetivo foi determinar o teor de compostos fenólicos, 

tocoferóis e ácidos graxos de 17 EVOO monovarietais produzidos em Minas 
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Gerais, durante duas colheitas. Foram quantificados os ácidos palmítico (6-

12,6%), palmitoleico (0,2-2,5%), esteárico (1,6-2,2%), oleico (70,8-84,3%), 

linoleico (3,2-11,7%), α-linolênico (0,6-1,4), araquídico (0,4-0,8%), 9-eicosenoico 

(0,4-0,9%) e os compostos tirosol (NQ-155,21 mg kg-1), (+)-pinoresinol (2,89-22,64 

mg kg-1), hidroxitirosol (ND-37,74 mg kg-1), luteolina (ND-2,23 mg kg-1), α-tocoferol 

(28,92-232,93 mg kg-1), β-tocoferol (ND-9,56 mg kg-1) e γ-tocoferol (ND-18,75 mg 

kg-1). Em geral, os resultados foram similares aos descritos na literatura. O 

objetivo do capítulo 5 foi determinar o teor de compostos fenólicos em EVOO 

brasileiros por cromatografia líquida de rápida resolução acoplada à 

espectrometria de massas por tempo de voo com ionização por electrospray 

(RRLC-ESI-TOF-MS). Foram analisadas 25 amostras de EVOO do Rio Grande do 

Sul, Santa Catarina e Minas Gerais e duas colheitas. Foram identificados e 

quantificados 20 compostos fenólicos das classes dos alcoóis fenólicos, 

secoiridoides, lignanas e flavonoides. Os teores de compostos fenólicos totais nos 

EVOOs destacaram-se nas variedades Coratina (364 mg kg-1), Arbosana (255 mg 

kg-1) e Grappolo (228 mg kg-1). Desta forma, os EVOOs brasileiros são 

promissores no que se refere ao teor de compostos fenólicos totais, visto que os 

valores são comparáveis àqueles dos EVOOs de elevada qualidade produzidos 

em outros países.  

 

Palavras-chave: azeite de oliva extravirgem; composição química; compostos 

fenólicos; eletroforese capilar; RRLC-ESI-TOF-MS; otimização. 
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INTRODUÇÃO GERAL 

 

Estudos realizados ao longo das últimas décadas demonstraram que o 

azeite de oliva extravirgem (EVOO) proporciona diversos benefícios à saúde, de 

maneira que o seu consumo vem aumentando significativamente em vários 

países, inclusive no Brasil. Entre os principais responsáveis por estes efeitos 

destacam-se o elevado teor de ácido oleico (18:1n-9), a presença de ácido α-

linolênico (18:3n-3) e os compostos fenólicos, que agem como antioxidantes e 

sequestradores de radicais livres. O azeite de oliva extravirgem é obtido do fruto 

da oliveira (Olea europaea L.) somente por meios mecânicos, sem nenhum outro 

tratamento além de lavagem, filtração, decantação ou centrifugação. Desta forma, 

os componentes minoritários provenientes do fruto da oliveira, entre eles os 

compostos fenólicos, permanecem no produto final, ao contrário de outros óleos 

vegetais que foram submetidos aos processos de refino. 

O Brasil é um grande importador de azeite de oliva da Argentina e de 

países da Europa, sendo que, entre janeiro e setembro de 2013, o Brasil importou 

50 mil toneladas de azeite de oliva, o que resultou em gastos de US$259 milhões. 

De 2005/6 a 2011/2, o consumo de azeite de oliva no Brasil cresceu a uma taxa 

de 17,7% ao ano. Em relação aos azeites de oliva extravirgem importados para 

comercialização no Brasil, existem diversos trabalhos que avaliaram a qualidade, 

a ocorrência de adulterações, bem como a determinação de diferentes classes de 

compostos que constituem sua composição química, como triacilgliceróis, ácidos 
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graxos e fitosteróis. Entretanto, não foram encontrados estudos que avaliassem a 

capacidade antioxidante e o teor de compostos fenólicos destes azeites de oliva.  

Considerando-se os gastos bastante elevados para a importação do azeite 

de oliva extravirgem, bem como o fato de que isto resulta em um produto mais 

caro ao consumidor, surgiu o interesse de cultivar oliveiras no Brasil, de forma a 

produzir azeite de oliva genuinamente nacional, o qual inclusive poderá apresentar 

um preço inferior aos produtos importados encontrados no mercado interno. 

Existem hoje no Brasil algumas tentativas no que se refere ao cultivo experimental 

de oliveiras para a posterior produção de azeite de oliva nacional. A EMBRAPA - 

CPACT (Empresa Brasileira de Pesquisa Agropecuária - Centro de Pesquisa 

Agropecuária de Clima Temperado) em Pelotas, no Rio Grande do Sul, está 

desenvolvendo um projeto chamado “Introdução e Desempenho Agronômico de 

Cultivares de Oliveiras no Rio Grande do Sul e em Santa Catarina”. A área 

cultivada com oliveiras no Rio Grande do Sul é de aproximadamente 400 ha, onde 

as cultivares mais promissoras para extração de azeite são Arbequina, Koroneϊki, 

Arbosana e Picual. Em Santa Catarina, a EPAGRI (Empresa de Pesquisa 

Agropecuária e Extensão Rural de Santa Catarina) também está conduzindo 

estudos com oliveiras, nas regiões oeste e extremo oeste do estado. Em Minas 

Gerais, com o auxílio das pesquisas da EPAMIG (Empresa de Pesquisa 

Agropecuária de Minas Gerais), há a produção de azeitonas e azeite de oliva no 

estado. O cultivo está sendo conduzido em 400 ha, com 200.000 plantas 

cultivadas em 50 municípios 
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A produção experimental de azeite de oliva extravirgem no Brasil vem 

apresentando resultados promissores, de maneira que uma futura produção em 

escala industrial torna-se bastante provável. Com base nisso, é de fundamental 

importância caracterizar a composição química destes azeites nacionais, pois a 

qualidade dos mesmos está diretamente relacionada às diversas classes de 

componentes químicos que constituem o produto. Até o momento, não foram 

encontrados na literatura nenhum estudo apresentando dados a respeito dos 

teores de compostos fenólicos e tocoferóis dos azeites de oliva extravirgem 

produzidos a partir de diferentes cultivares e em diferentes regiões dos estados 

brasileiros do Rio Grande do Sul, Santa Catarina e Minas Gerais. Existem apenas 

alguns poucos trabalhos em revistas brasileiras da área de ciências agrárias com 

os resultados de análises de acidez, índice de peróxidos e composição em ácidos 

graxos para algumas amostras de azeite de oliva extravirgem do estado de Minas 

Gerais.  

Com base em todas estas informações, o objetivo deste trabalho 

inicialmente foi analisar a capacidade antioxidante e o teor de compostos fenólicos 

em amostras de EVOO disponíveis ao consumidor brasileiro, as quais são 

importadas principalmente de países da América do Sul e Europa. Para a 

determinação do teor de compostos fenólicos, foi otimizado um método de 

separação de 17 compostos fenólicos por eletroforese capilar de zona com 

detector de arranjo de diodos. A avaliação da capacidade antioxidante em EVOOs 

que são consumidos atualmente pela população brasileira será de grande valia, 

visto que será possível determinar se o EVOO disponível ao consumidor 
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apresenta valores para este parâmetro que sejam compatíveis com o que se 

espera deste tipo de produto. Os resultados da quantificação de compostos 

fenólicos em EVOOs comerciais serão importantes, considerando-se que estes 

compostos estão relacionados aos efeitos benéficos proporcionados pelo 

consumo regular de EVOO, bem como estão intimamente relacionados com a 

capacidade antioxidante total destes produtos. 

 Em seguida, de posse dos primeiros EVOOs produzidos no Brasil, o 

objetivo deste estudo foi ampliado para englobar a caracterização de compostos 

majoritários e minoritários dos azeites de oliva extravirgem brasileiros. Assim, 

foram analisados os teores de compostos fenólicos, ácido graxos e tocoferóis em 

EVOOs produzidos no estado de Minas Gerais, nos anos de 2010 e 2011, 

utilizando-se diferentes técnicas analíticas, como cromatografia em fase gasosa, 

cromatografia líquida de alta eficiência e eletroforese capilar. Finalmente, 

amostras de EVOOs de três estados brasileiros, Rio Grande do Sul, Santa 

Catarina e Minas Gerais, do anos de 2011 e 2012, foram analisadas para a 

determinação do perfil qualitativo e quantitativo de compostos fenólicos por 

cromatografia líquida acoplada à espectrometria de massas. A análise de 

compostos majoritários e minoritários nos EVOOs produzidos no Brasil será de 

fundamental importância para determinar de maneira mais abrangente a qualidade 

dos azeites brasileiros, permitindo avaliar se os resultados encontram-se de 

acordo com as diretrizes nacionais e internacionais, bem como para diferenciá-los 

dos azeites de oliva provenientes de outros países. Além disso, será o primeiro 

passo para a construção de uma identidade para os EVOOs produzidos nos 
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diferentes estados do Brasil, permitindo avaliar de que forma a localização 

geográfica, bem como as características climáticas e outros fatores locais, alteram 

a composição química dos EVOOs brasileiros. 
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1.1. Azeite de oliva extravirgem (EVOO)  

A oliveira (Olea europaea L.), conforme é conhecida atualmente, teve sua 

origem há cerca de 5.000 anos na região que hoje corresponde à antiga Pérsia e 

Mesopotâmia. Posteriormente, a oliveira se espalhou a partir destes países para 

os territórios mais próximos que hoje correspondem à Síria e à Palestina 

(HARWOOD & APARICIO, 2000). O azeite de oliva extravirgem, obtido a partir da 

prensagem a frio de azeitonas frescas, é um importante óleo comestível presente 

na dieta Mediterrânea, o qual é reconhecido atualmente pelos seus potenciais 

benefícios à saúde (FRANKEL, 2010).  

 O azeite de oliva extravirgem é único entre os diferentes tipos de óleos 

vegetais, pois é obtido do fruto das oliveiras (Olea europaea L.) somente por 

meios mecânicos. Este tipo de processamento retém os compostos minoritários 

originalmente presentes no fruto da oliveira, diferentemente de outros óleos 

vegetais, onde estes compostos geralmente são removidos durante as diferentes 

etapas de refino (CARRASCO-PANCORBO et al., 2004; CARRASCO-

PANCORBO et al., 2005). O fruto da oliveira (azeitona) é classificado como uma 

drupa, sendo que o mesocarpo responde por 70-90% do peso total, o endocarpo 

por 9-27% e a semente por 2-3%. O mesocarpo contém cerca de 30% de óleo, e a 

semente é constituída por 27% de óleo. O óleo proveniente do mesocarpo 

corresponde a mais de 95% do óleo total extraído do fruto (CONDE, DELROT & 

GERÓS, 2008). 

A legislação brasileira define azeite de oliva virgem como o produto obtido 

do fruto da oliveira (Olea europaea L.) somente por processos mecânicos ou 
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outros meios físicos, em condições térmicas que não produzam alteração do 

azeite e que não tenha sido submetido a outros tratamentos além de lavagem, 

decantação, centrifugação e filtração (BRASIL, 2005). Essa definição está de 

acordo com as diretrizes do Codex Alimentarius para o azeite de oliva (CODEX 

STAN 33, 2009). 

Atualmente, as cultivares de oliveiras mais comumente cultivadas para a 

produção do azeite de oliva extravirgem são Arbequina, Manzanilla e Picual 

(Espanha), Barnea (Israel), Koroneiki (Grécia) e Grappolo, Frantoio e Leccino 

(Itália). A cultivar Arbequina é, de longe, a mais universalmente cultivada 

(GARCÍA-GONZÁLEZ & APARICIO, 2010). 

 

1.2. Obtenção do azeite de oliva extravirgem 

 Depois de serem colhidas nos olivais, as azeitonas são depositadas em 

uma moega, a qual está conectado a uma esteira. É necessário realizar a 

remoção das folhas e uma etapa de lavagem, para remover todo material estranho 

às azeitonas que podem causar danos aos equipamentos ou contaminar o produto 

final. Em seguida, a prensagem é o primeiro passo principal no processamento da 

azeitona. O objetivo da prensagem é romper as células do mesocarpo para 

facilitar a liberação do óleo a partir dos vacúolos. A prensagem é realizada em um 

grande recipiente no qual duas ou três rodas muito pesadas giram em altas 

velocidades, esmagando as azeitonas. Depois que as azeitonas foram prensadas, 

a pasta resultante é homogeneizada. Homogeneização ou malaxação implica em 

agitar a pasta de azeitona devagar e constantemente por cerca de 30 min. O 
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objetivo desta operação é aumentar a porcentagem de óleo disponível. Ela 

também ajuda na coalescência das pequenas gotas de óleo para formar gotas 

maiores, facilitando assim a separação de fases entre o óleo e a água, bem como 

ajuda a desfazer as gotas de emulsão óleo/água. Os malaxadores diferem em 

tamanho e formato. São feitos de aço inoxidável, para evitar oxidação e reações 

indesejáveis. O aparato básico consiste em cubas cilíndricas com pás rotatórias e 

parede dupla. Uma hélice rotatória com múltiplas asas mistura a pasta, geralmente 

em baixa velocidade (19-20 rpm). Para azeitonas que atingiram o estádio de 

maturação, 20-30 min de malaxação são suficientes e, para maior eficiência, os 

malaxadores possuem parede dupla, para circulação de água quente. Um 

aumento na temperatura resulta em menor viscosidade do óleo e maior produção 

de azeite de oliva. Entretanto, a temperatura da água não deve ser superior a 

30ºC para prevenir a destruição de compostos voláteis, mudança na coloração do 

óleo para avermelhado e aumento da acidez. Os efeitos negativos são evitados 

através do acoplamento de termostatos aos malaxadores. A centrifugação é um 

processo relativamente novo para a separação do óleo da pasta de azeitona. É 

baseada nas diferenças de densidade entre os constituintes da pasta de azeitonas 

(azeite de oliva, água e sólidos insolúveis). A separação é obtida através de uma 

centrífuga horizontal. Após a prensagem e a malaxação, o azeite de oliva está ou 

completamente livre ou na forma de pequenas gotículas dentro de microgéis, ou 

emulsificado na fase aquosa. O azeite de oliva livre é separado pela centrífuga, 

enquanto o óleo preso nos microgéis é liberado pela adição de mais água. Após a 

separação do azeite de oliva, é necessário realizar mais uma centrifugação, agora 
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em uma unidade de centrifugação vertical que gira a baixas velocidades. A fase 

líquida é distribuída sobre a superfície total em finas camadas e a centrifugação 

resulta em uma separação final entre o óleo e a água e outras substâncias 

(KAPELLAKIS, TSAGARAKIS & CROWTHER, 2008). Na Figura 1.1 está 

representada esquematicamente uma planta moderna para extração de azeite de 

oliva extravirgem. 

 

 
Figura 1.1. Planta de extração de azeite de oliva extravirgem moderna. Fonte: 

Adaptado de Kapellakis, Tsagarakis & Crowther (2008). 

 

1.3. Azeite de oliva extravirgem e saúde 

Nos últimos 30 anos o interesse no uso culinário do azeite de oliva vem 

aumentando, principalmente pelas virtudes da dieta mediterrânea e seus efeitos 

benéficos à saúde (SERVILI & MONTEDORO, 2002; CARRASCO-PANCORBO et 

al., 2005). 

É importante mencionar, entretanto, que se deve tomar cuidado com o 

termo “dieta mediterrânea”, já que não há uma única, mas sim várias “dietas 

mediterrâneas”, visto que os países ao longo do Mediterrâneo possuem diferentes 
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religiões, tradições econômicas e culturais, e a dieta é afetada por todos estes 

fatores (SIMOPOULOS, 2001). Existe uma significativa correlação entre as dietas 

mediterrâneas e uma redução nas taxas de mortalidade por diversas causas, além 

dos efeitos favoráveis desta dieta sobre os níveis das lipoproteínas, vasodilatação, 

resistência à insulina, capacidade antioxidante e síndrome metabólica. Os estudos 

indicam que há nove componentes de grande importância nas dietas 

mediterrâneas: elevada razão de ácidos graxos monoinsaturados/saturados 

(derivada do alto consumo de azeite de oliva); consumo moderado de etanol 

(principalmente vinho); elevado consumo de legumes; alto consumo de cereais 

(principalmente cereais não refinados e pães); alto consumo de frutas; elevado 

consumo de vegetais; baixo consumo de carne e produtos cárneos; consumo 

moderado de leite e produtos lácteos; elevado consumo de peixe e produtos 

derivados (SAURA-CALIXTO & GOÑI, 2009). 

O consumo de azeite de oliva extravirgem pode contribuir para a menor 

incidência de doenças coronárias e câncer de cólon e de próstata (OWEN et al., 

2000a; BENKHALTI et al., 2002; MURKOVIC et al., 2004; PERONA, CABELLO-

MORUNO & RUIZ-GUTIERREZ, 2006; SÁNCHEZ et al., 2007; LEE et al., 2008). 

Uma das explicações para esse fato seria a sua capacidade de diminuir os efeitos 

deletérios dos radicais livres. Radicais livres e outros compostos reativos são 

gerados por substâncias químicas exógenas ou processos metabólicos 

endógenos em alimentos ou no corpo humano. Estes radicais podem causar 

danos oxidativos, os quais possuem um papel patológico importante em algumas 
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doenças humanas como aterosclerose, câncer e artrite (ZULLO & CIAFARDINI, 

2008). 

 

1.4. Produção e consumo do azeite de oliva extravirgem 

A produção mundial de azeite de oliva foi de aproximadamente 2,934 

milhões de toneladas por ano no período entre 2006/7 e 2011/12. A União 

Europeia foi responsável pela maior parte da produção mundial, com 73,6% de 

todo o azeite de oliva produzido no mundo neste período. Entre os países da 

União Europeia, no período entre 2006/7 e 2011/12 a Espanha foi a primeira 

colocada, com 1,297 milhões de toneladas por ano (60% da produção da UE), 

seguida por Itália, com 476,7 mil toneladas por ano (22,1% da produção da UE) e 

Grécia, com 319,7 mil toneladas por ano (14,8% da produção da UE) (IOC, 2013). 

Juntos, os países do Mediterrâneo produzem cerca de 98% de todo o azeite de 

oliva comercializado no mundo. Para alguns países como a Tunísia, apesar de a 

produção total ser menor que a de outros países, a importância econômica da 

exportação de azeite de oliva para a sua pauta de importações chega a 38% 

(HARWOOD & APARICIO, 2000). 

Em 2012, o Brasil importou 51 mil toneladas de azeite de oliva, a um custo 

de US$210 milhões. No período compreendido entre janeiro e setembro de 2013, 

o Brasil já importou 50 mil toneladas de azeite de oliva, o que resultou em gastos 

da ordem de US$259 milhões. Assim, houve um aumento nos gastos com 

importação de azeite de oliva de 23,7% em relação ao ano de 2012, sendo 

considerados apenas os nove primeiros meses de 2013 (CONAB, 2013). De 
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2005/6 a 2011/12, o consumo de azeite de oliva no Brasil aumentou em média 

17,7% ao ano, passando de 26 mil toneladas em 2005/6 para 68 mil toneladas em 

2011/12. A previsão para 2012/2013 é de um consumo de 70 mil toneladas de 

azeite de oliva. Entretanto, mesmo com estes números, o Brasil foi responsável 

por apenas 1,7% do consumo mundial e 7,3% da importação mundial de azeite de 

oliva por ano entre 2006/6 e 2011/12, enquanto que EUA, por exemplo, foram 

responsáveis por 9% do consumo mundial e 39% da importação mundial de azeite 

de oliva por ano neste mesmo período (IOC, 2013). 

Atualmente, todo o azeite de oliva comercializado no Brasil é proveniente 

de importações. Pontualmente, existem algumas experiências com a produção de 

oliveiras no Brasil, em microclimas favoráveis à cultura, como é o caso de algumas 

regiões da Serra da Mantiqueira, nos estados de Minas Gerais e São Paulo, e 

regiões do sul do Brasil, como nos estados do Rio Grande do Sul e Santa 

Catarina. Na maioria dos casos, a introdução do material genético ocorreu via 

imigrantes portugueses, sucedidos pelos imigrantes espanhóis e italianos 

(BERTONCINI, TERAMOTO & PRELA-PANTANO, 2010). 

No Rio Grande do Sul, a EMBRAPA - CPACT (Empresa Brasileira de 

Pesquisa Agropecuária - Centro de Pesquisa Agropecuária de Clima Temperado) 

aprovou, em 2005, o projeto “Introdução e desempenho agronômico de cultivares 

de oliveira no Rio Grande do Sul e em Santa Catarina”, que implantou 25 unidades 

experimentais de observação no estado. A área cultivada com oliveiras no Rio 

Grande do Sul é próxima a 400 ha, onde as cultivares mais promissoras para 

extração de azeite são Arbequina, Koroneiki, Arbosana e Picual. Em Santa 
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Catarina, os estudos com oliveiras estão sendo conduzidos pela EPAGRI 

(Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina). Em 

2005, houve aprovação de projeto para coleta do material genético já existente no 

estado e para compra de novo material genético. Atualmente, oito áreas tiveram 

sucesso para implantação da cultura, e estão situadas em municípios do oeste e 

extremo oeste de Santa Catarina, entre eles Chapecó, Campo Erê, São Lourenço 

e Caçador. Em Minas Gerais, a introdução das oliveiras iniciou-se em 1930, na 

cidade de Maria da Fé, por imigrantes portugueses. O cultivo de azeitonas passou 

por diversos insucessos mas, atualmente, com o auxílio das pesquisas da 

EPAMIG (Empresa de Pesquisa Agropecuária de Minas Gerais), há produção de 

azeitonas e azeite de oliva no estado. O cultivo está sendo conduzido em 400 ha, 

com 200.000 plantas cultivadas em 50 municípios, sendo 50% Arbequina; 20% 

Grappolo; 10% Maria da Fé; e outros 10% distribuídos entre Arbosana, Koroneiki e 

Ascolano (BERTONCINI, TERAMOTO & PRELA-PANTANO, 2010). 

 

1.5. Composição química do azeite de oliva extravirgem 

 

1.5.1. Componentes majoritários 

 

1.5.1.1. Triacilgliceróis 

Os triacilgliceróis respondem por 98% da composição do azeite de oliva 

extravirgem (CARRASCO-PANCORBO et al., 2005) e são formados a partir de 

uma única molécula de glicerol combinada com três ácidos graxos. A estrutura 
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molecular destes compostos, incluindo a distribuição dos ácidos graxos entre as 

diferentes posições estereoespecíficas do esqueleto de glicerol, controla a 

funcionalidade de óleos e gorduras como ingredientes dos alimentos, 

influenciando propriedades físicas como a estrutura cristalina e o ponto de fusão. 

Além disso, possuem importantes efeitos fisiológicos como componentes da dieta 

humana, sendo uma importante fonte de ácidos graxos essenciais. A falta de 

balanceamento dos triacilgliceróis pode conduzir a diversas desordens, como 

doenças coronárias, obesidade ou dislipidemia (LERMA-GARCÍA et al., 2011). 

Para se referir aos triacilgliceróis, os pesquisadores utilizam siglas 

constituídas por três letras, cada uma simbolizando qual o ácido graxo que está 

ligado em qual posição da molécula de glicerol. Por exemplo, POO é a sigla para o 

triacilglicerol composto por ácido Palmítico na posição 1, ácido Oleico na posição 

2 e outro ácido Oleico na posição 3. Assim, O se refere ao ácido oléico; P ao ácido 

palmítico; L ao ácido linoléico; S ao ácido esteárico; e Ln ao ácido linolênico. 

Os triacilgliceróis encontrados em maior quantidade no azeite de oliva são 

OOO (40-59%), POO (12-20%), OOL (12,5-20%), POL (5,5-7%) e SOO (3-7%). 

Pequenas quantidades de POP, POS, OLnL, LOL, OLnO, PLL, PLnO e LLL já 

foram detectadas. Triacilgliceróis constituídos apenas de ácidos graxos 

insaturados não foram relatados na literatura, bem como os tri-insaturados 

contendo três ácidos α-linolênicos (BOSKOU, 2006). 
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1.5.1.2. Ácidos graxos 

A principal característica do azeite de oliva é a abundância de ácido oleico 

(OA, 18:1n-9), que varia entre 55 e 83% do total de ácidos graxos (CARRASCO-

PANCORBO et al., 2005; SERVILI et al., 2009). Este elevado teor de OA é 

importante porque ele é menos susceptível à oxidação do que os ácidos graxos 

poli-insaturados que predominam em outros óleos, o que colabora para sua 

estabilidade (OWEN et al., 2000b). A elevada proporção de OA ajuda a reduzir os 

níveis de colesterol LDL (“low-density lipoprotein”) e aumentar os níveis de 

colesterol HDL (“high-density lipoprotein”) no sangue. Isto é extremamente 

importante, visto que as lipoproteínas HDL transportam o colesterol das artérias 

para o fígado, enquanto que as lipoproteínas LDL transportam o colesterol a partir 

do fígado, depositando-o nas artérias, onde pode causar aterosclerose e, assim, 

aumentar o risco de doenças cardiovasculares. Alguns compostos fenólicos e o 

ácido α-linolênico (LNA, 18:3n-3) colaboram para reduzir o risco de doenças do 

coração, diminuir a pressão sanguínea e proteger contra a formação de placas 

nas artérias (COVAS, 2007; CONDE, DELROT & GERÓS, 2008; CICERALE et al., 

2009). 

A composição em ácidos graxos do azeite de oliva é fortemente 

influenciada por diversos fatores, tais como a cultivar, o estágio de maturação do 

fruto e o local de origem, podendo ser utilizado para diferenciar azeites de oliva de 

diferentes variedades de azeitonas e conforme a origem geográfica 

(MONTEALEGRE, ALEGRE & GARCÍA-RUIZ, 2010). 
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1.5.2. Componentes minoritários 

 

1.5.2.1. Compostos fenólicos 

O clima distinto da bacia mediterrânea, caracterizado por tempo quente e 

irradiação prolongada de luz solar, permitiu o desenvolvimento de plantas, tais 

como as oliveiras, cujos frutos precisam de uma elevada proporção de moléculas 

antioxidantes. A síntese de compostos fenólicos como antocianinas, flavonoides e 

ácidos fenólicos, de fato, é ativada pela irradiação de luz branca, e resulta em 

frutos de coloração escura que, assim, protegem a si mesmos dos efeitos nocivos 

da prolongada exposição à luz solar (VISIOLI, BELLOMO & GALLI, 1998; VISIOLI 

& GALI, 2002). Os compostos fenólicos também agem nas plantas como 

antimicrobianos, fotorreceptores, atrativos visuais e repelentes de predadores, 

como herbívoros (PIETTA, 2000; NICHENAMETLA et al., 2006). 

Os compostos fenólicos possuem um importante papel na qualidade do 

azeite de oliva, visto que contribuem significativamente para a estabilidade 

oxidativa do mesmo. Além disso, os fenólicos são os principais responsáveis pelo 

sabor amargo, adstringência e pungência do azeite de oliva (RODRÍGUEZ-

MÉNDEZ, APETREI & DE SAJA, 2008; INAREJOS-GARCIA et al., 2009). Em 

geral, assume-se que os responsáveis pelo estímulo “pungente” e “amargo” do 

azeite de oliva virgem sejam os compostos tirosol, hidroxitirosol e seus derivados 

(ESTI et al., 2009; SERVILI, et al., 2009). O azeite de oliva virgem apresenta uma 

notável resistência à oxidação, a qual tem sido relacionada à sua composição em 
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ácidos graxos e aos elevados níveis de antioxidantes naturais, tais como os 

compostos fenólicos hidrofílicos e lipofílicos (PAPADIMITRIOU et al., 2006). 

Existem pelo menos 36 compostos fenólicos hidrofílicos estruturalmente 

distintos já identificados no azeite de oliva virgem. Nem todos os fenólicos estão 

presentes em cada azeite de oliva virgem, e há variação na concentração de 

fenólicos entre os azeites de oliva virgem (CICERALE et al., 2009). Basicamente, 

costuma-se agrupar os compostos fenólicos nas seguintes categorias: 1) fenóis, 

ácidos fenólicos e ácidos fenilacéticos; 2) ácidos cinâmicos, cumarinas, 

isocumarinas e cromonas; 3) lignanas; 4) flavonoides; 5) ligninas; 6) taninos; 7) 

benzofenonas, xantonas e estilbenos; 8) quinonas; 9) betacianinas. A maioria dos 

compostos fenólicos é encontrada na natureza em uma forma conjugada, 

principalmente com moléculas de açúcares (CARRASCO-PANCORBO et al., 

2005). 

Os compostos fenólicos já identificados e quantificados em azeite de oliva 

pertencem às classes de fenil-etil-álcoois (como hidroxitirosol e tirosol), ácidos 

fenólicos (como o ácido p-cumárico, ácido vanílico, etc.), lignanas [(+)-pinoresinol 

e (+)-1-acetoxipinoresinol], secoiridoides (vários derivados agliconas da 

oleuropeina e ligstrosídeo) e flavonoides (luteolina e apigenina) (CARRASCO-

PANCORBO et al., 2006). Entre os compostos fenólicos mencionados, aqueles 

pertencentes à classe dos secoiridoides são característicos dos frutos da oliveira e 

do azeite de oliva virgem produzido a partir destes (OBIED et al., 2008). A 

aglicona oleuropeina e seus derivados (o-difenóis) estão presentes em grande 

quantidade no azeite de oliva virgem e possuem uma comprovada atividade contra 
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radicais livres (GALLINA-TOSCHI et al., 2005; BENDINI et al., 2007; CONDE, 

DELROT & GERÓS, 2008). Hidroxitirosol e oleuropeina exibiram atividade 

antioxidante mais efetiva do que os tocoferóis e alguns antioxidantes sintéticos 

aprovados para uso em alimentos, como o butil hidroxitolueno (BHT) (MEDINA et 

al., 1999; BENDINI et al., 2007). 

Tirosol, hidroxitirosol e seus derivados secoiridoides respondem por cerca 

de 90% do teor total de fenólicos do azeite de oliva virgem. Hidroxitirosol é o 

fenólico antioxidante mais potente do azeite de oliva, cuja atividade biológica tem 

estimulado pesquisas sobre o seu provável papel na proteção cardiovascular 

(OWEN et al., 2000b; O’DOWD et al., 2004; DE LA TORRE, 2008; BROUK & 

FISHMAN, 2009; CHOE & MIN, 2009). As Figuras 1.2 a 1.5 apresentam as 

estruturas dos principais compostos fenólicos do EVOO. 
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Figura 1.2. Estrutura de compostos fenólicos previamente identificados em azeite 

de oliva extravirgem. 
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Figura 1.3. Estrutura de compostos fenólicos previamente identificados em azeite 

de oliva extravirgem (continuação). 



Capítulo I - Revisão Bibliográfica - Composição química do azeite de oliva extravirgem... 

25 

 

 
Figura 1.4. Estrutura de compostos fenólicos previamente identificados em azeite 

de oliva extravirgem (continuação). 
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Figura 1.5. Estrutura de compostos fenólicos previamente identificados em azeite 

de oliva extravirgem (continuação). 
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1.5.2.2. Tocoferóis 

Tocoferóis são componentes funcionais particularmente importantes em 

alimentos. Possuem propriedades de vitamina E e apresentam capacidade 

antioxidante, a qual protege os tecidos do corpo contra os efeitos negativos 

causados por radicais livres que resultam dos vários processos metabólicos. Entre 

todos os homólogos do tocoferol, o α-tocoferol apresenta o potencial biológico 

mais elevado (LÓPEZ ORTÍZ, PRATS MOYA & BERENGUER NAVARRO, 2006; 

HOUNSOME et al., 2008).  

O α-tocoferol é um nutriente essencial para os seres humanos, visto que é 

necessário para a prevenção dos sintomas de deficiência de vitamina E, incluindo 

neuropatia periférica e anemia hemolítica. Trata-se de um antioxidante lipofílico 

capaz de impedir a reação em cadeia de formação dos radicais livres em 

membranas e lipoproteínas, assim como nos alimentos. Devido a este potencial 

antioxidante e a diversas outras funções em nível molecular, acredita-se que ele 

diminua o risco de doenças cardiovasculares e de certos tipos de cânceres 

(SCHWARTZ, OLLILAINEN, PIIRONEN & LAMPI, 2008; TRABER & STEVENS, 

2011). 

Pesquisas relacionadas à ocorrência e aos níveis de tocoferóis em azeite 

de oliva extravirgem demonstraram que, dos oito isômeros conhecidos, o α-

tocoferol responde por cerca de 90% do teor total de tocoferóis, sendo encontrado 

na forma livre. Existe uma elevada amplitude na faixa de concentração do α-

tocoferol, sendo que os níveis dependem da cultivar e de fatores tecnológicos 
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(BOSKOU, 2006). Na Figura 1.6 pode ser visualizada a estrutura dos quatro 

principais isômeros de tocoferóis encontrados no azeite de oliva extravirgem. 

 

 
Figura 1.6. Estrutura dos quatro principais isômeros de tocoferóis presentes em 

azeite de oliva extravirgem. 
 

1.5.2.3. Fitosteróis 

Esteróis de plantas, também denominados de fitosteróis, compreendem a 

maior proporção da fração insaponificável dos óleos vegetais. Eles são derivados 

biossintéticos do esqualeno, formando o grupo dos triterpenos. São importantes 

constituintes das células vegetais, controlando a fluidez e a permeabilidade da 

membrana plasmática (AZADMARD-DAMIRCHI, 2010). Estruturalmente, os 

esteróis de plantas são similares ao colesterol, com pequenas diferenças na 

posição relativa dos grupos etil e metil. Os esteróis mais comuns na dieta são o β-

sitosterol, o campesterol e o estigmasterol (GUPTA et al., 2011). 

O teor total de fitosteróis em azeites de oliva extravirgem varia entre 1000 

mg kg-1 e 2000 mg kg-1. Podem ser encontrados na forma livre ou esterificados. 

Os principais componentes da fração esterólica do azeite são β-sitosterol, ∆5-

avenasterol e campesterol. Outros esteróis foram encontrados em menores 

quantidades ou em traços, entre eles o estigmasterol, brassicasterol, clerosterol, 
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ergosterol, sitostanol, campestanol, ∆7-avenasterol, ∆7-colestenol, ∆7-campestenol, 

∆7-estigmastenol, ∆5,23-estigmastadienol, ∆5,24-estigmastadienol, ∆7,22-

ergostadienol, 24-metileno-colesterol e 22,23-dihidrobrassicasterol. Estudos sobre 

a composição de esteróis demonstraram que o β-sitosterol responde por 75-90% 

da fração esterólica total do azeite, enquanto o ∆5-avenasterol varia entre 5 e 20%. 

Campesterol e estigmasterol foram quantificados em torno de 4% e 2% da fração 

de esteróis, respectivamente. Cerca de 10 a 40% do total de esteróis encontram-

se esterificados. A composição de esteróis e o teor total dos mesmos são afetados 

pela cultivar, época da colheita, grau de amadurecimento do fruto, tempo de 

estocagem dos frutos antes da extração do óleo, processamento e fatores 

geográficos (BOSKOU, 2006).  

 

1.5.2.4. Carotenoides 

Carotenoides são compostos isoprenoides que possuem uma estrutura 

hidrocarbônica com ligações duplas conjugadas, as quais determinam muitas das 

propriedades e atividades relacionadas a estes compostos. A maioria dos 

carotenoides descritos possui 40 átomos de carbono. Podem ser divididos em 

carotenos (carotenoides contendo somente carbono e hidrogênio) e xantofilas 

(carotenoides que também possuem funções oxigenadas, como grupos epóxido, 

hidroxila, acetato, carbonila e carboxila, entre outros). Na natureza, os 

carotenoides podem ser encontrados livres ou associados a outros compostos, 

tais como ácidos graxos, açúcares e proteínas (MELÉNDEZ-MARTÍNEZ, VICARIO 

& HEREDIA, 2007). 
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Os carotenoides não podem ser sintetizados pelos tecidos dos animais, 

embora as células animais possam modificá-los quimicamente para assimilação. 

Assim, estas moléculas devem ser obtidas por meio da dieta. Os potenciais 

benefícios de uma dieta rica em carotenoides estão sendo reportados por estudos 

recentes que demonstraram seus papéis como antioxidantes e como agentes que 

podem prevenir doenças cardiovasculares e patologias degenerativas do olho, 

bem como o valor de provitamina A dos carotenoides com um anel β-ionona. Sua 

presença em azeite de oliva depende de fatores genéticos dos frutos da oliveira 

(variedade), do estágio de maturação dos frutos, condições ambientais, ano da 

colheita, do processo de extração e das condições de estocagem. Os pigmentos 

da classe dos carotenoides respondem pela cor amarela do azeite, sendo que os 

compostos majoritários são a luteína e o β-caroteno. Os carotenoides, juntamente 

com os compostos fenólicos e com os tocoferóis, proporcionam uma elevada 

estabilidade oxidativa aos azeites de oliva, bem como possuem ações 

sinergísticas como antioxidantes e anticarcinogênicas, em concentrações 

fisiológicas (GIUFFRIDA et al., 2011). A fração de carotenoides pode também 

incluir diversas xantofilas (violaxantina, neoxantina, luteoxantina, anteraxantina, 

mutatoxantina e β-criptoxantina). A proporção entre os dois carotenoides 

majoritários (luteína e β-caroteno) está relacionada à cultivar da oliveira 

(BOSKOU, 2006).  

1.5.2.5. Clorofilas 

As clorofilas são complexos de magnésio derivados de porfina, que é uma 

estrutura macrocíclica completamente insaturada que contém quatro anéis 
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pirrólicos ligados por uma única ponte de carbono. As porfinas substituídas são 

chamadas de porfirinas, que se referem a qualquer pigmento tetrapirrólico 

macrocíclico no qual os anéis pirrólicos estão unidos por pontes metina e o 

sistema de ligações duplas forma uma configuração cíclica e conjugada 

(DAMODARAN, PARKIN & FENNEMA, 2010). 

As clorofilas (clorofilas a e b) são os pigmentos responsáveis pela cor verde 

característica da azeitona. Os pigmentos clorofilas, juntamente com os 

carotenoides, estão associados às membranas tilacoides dos cloroplastos, que por 

sua vez estão presentes nos tecidos fotossintéticos ativos da drupa, do epicarpo e 

da polpa, em quantidade proporcional à atividade de fotossíntese (ROCA & 

MÍNGUEZ-MOSQUERA, 2001). 

Quando o EVOO é extraído a partir das azeitonas, ocorre uma grande 

perda das clorofilas, sendo que menos de 20% do teor presente nos frutos 

realmente permanece no óleo após a extração (GALLARDO-GUERRERO et al. 

(2002). Do ponto de vista qualitativo, o perfil de clorofilas do EVOO é determinado 

pelos pigmentos que estavam presentes inicialmente nos frutos e pelos derivados 

formados durante a extração do óleo. As clorofilas a e b, presentes no fruto, são 

convertidas irreversivelmente em pigmentos mais estáveis, as feofitinas, onde o 

íon central de Mg2+ do anel porfirina foi substituído por dois átomos de H+. Estas 

alterações estruturais no cromóforo das clorofilas afeta a cor do óleo, a qual muda 

de verde brilhante para marrom, e finalmente para amarelo (GIULIANI, 

CERRETANI & CICHELLI, 2011). 
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As clorofilas são importantes não apenas por influenciarem a cor do EVOO, 

que é uma das principais características do azeite, mas também possuem alguns 

efeitos negativos. Clorofilas e feofitinas possuem ação pró-oxidante em presença 

de luz. Estes pigmentos agem como catalisadores na formação do oxigênio 

singlete, o qual pode reagir diretamente com as ligações duplas dos ácidos graxos 

oleico, linoleico e α-linolênico, produzindo espécies reativas de oxigênio (LANFER-

MARQUEZ, BARROS & SINNECKER, 2005). Em contrapartida, alguns estudos 

demonstram que as clorofilas podem exercer diversas atividades benéficas, como 

anti-inflamatória, antimutagênica, sequestradora de radicais livres e de inibição da 

cristalização do oxalato (HUA KAO,  JU CHEN & HUEI CHEN, 2011).  
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ABSTRACT 

Hydrophilic extracts of extra-virgin olive oil (EVOO) contain a large number of 

phenolic compounds, including simple phenols, lignans, flavonoids and 

secoiridoids, which exhibit antioxidant properties. In Brazil, the consumption of 

EVOO has increased in the last years, since its health benefits are now well known 

by the population. The aim of this study was to determine the total phenolic content 

and the total antioxidant capacity, as well as their correlations, of 15 EVOO brands 

available to Brazilian population, each one in three batches, resulting in a total of 

45 samples. Total phenolic content was evaluated by Folin-Ciocalteu reagent 

method, while the antioxidant capacities were assessed using FRAP, ABTS, 

DPPH• and ORAC assays. The total phenolic contents varied from 70.05 to 297.37 

mg GAE kg-1, FRAP results varied from 114.83 to 1557.35 µmol TE kg-1. In the 

ABTS assay, results ranged from 0.53 to 1.90 mmol TE kg-1. For DPPH•, results 

were in the range of 72.15 to 1129.46 µmol TE kg-1. The overall ORAC values 

were between 1.14 and 12.90 µmol TE g-1. It was found a high and significant 

correlation between the total phenolic content and each one of the four antioxidant 

capacity methods evaluated in this study (FRAP, r2 = 0.8904; p < 0.001; ABTS, r2 = 

0.7837; p < 0.001; DPPH•, r2 = 0.7908; p < 0.001; ORAC, r2 = 0.7431; p < 0.001). 

Therefore, most of the EVOO brands available to Brazilian population presented a 

high total phenolic content and strong antioxidant capacity. 

 

Keywords: extra-virgin olive oil; Folin-Ciocalteu; antioxidant capacity; correlation. 
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2.1. Introduction 

 The Mediterranean diet includes the consumption of noticeable amounts of 

extra-virgin olive oil (EVOO). To be an EVOO, it must be obtained from the fruit of 

the olive trees solely by mechanical or other physical means, under conditions that 

do not lead to alteration in the oil and without any treatment other than washing, 

decantation, centrifugation, or filtration (Baiano et al., 2009). As a result, EVOO 

contains a large number of phenolic compounds, including simple phenols, lignans, 

flavonoids and secoiridoids, which exhibit antioxidant properties (Carrasco-

Pancorbo et al., 2005). 

 Antioxidants are compounds or systems that delay autoxidation by inhibiting 

formation of free radicals or by interrupting propagation of the free radical by one 

(or more) of several mechanisms: (1) scavenging species that initiate peroxidation, 

(2) chelating metal ions so that they are unable to generate reactive species or 

decompose lipid peroxides, (3) quenching O2
•- preventing formation of peroxides, 

(4) breaking the autoxidative chain reaction and/or (5) reducing localized O2 

concentrations. The most effective antioxidants are those that interrupt the free 

radical chain reaction (Brewer, 2011). 

 Antioxidant capacities of samples might be influenced by several factors, 

such as test system, and could not be fully described by one single method. In 

addition, most natural antioxidants are multifunctional. Therefore, a reliable 

antioxidant evaluation protocol requires to perform different antioxidant capacity 

assessments to take into account various mechanisms of antioxidant action (Fu et 

al., 2011). Methods commonly used to determine the total antioxidant capacity fall 
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into two major groups: assays based on a single electron transfer (SET), monitored 

through a change in color as the oxidant is reduced, and assays based on a 

hydrogen atom transfer reaction (HAT), where the antioxidant and the substrate 

(probe) compete for free radical. Among the SET methods there are Trolox 

equivalent antioxidant capacity (TEAC) assay, also known as ABTS assay, the 

ferric reducing antioxidant power (FRAP), and the 2,2-diphenyl-1-picrylhydrazyl 

(DPPH•) radical scavenging capacity assay. The most employed HAT method is 

the oxygen radical absorbance capacity (ORAC) assay (Huang, Ou, & Prior, 2005; 

Tabart, Kevers, Pincemail, Defraigne, & Dommes, 2009). 

 In Brazil, the consumption of EVOO has increased in the last years, since its 

health benefits are now well known by the population. However, there are no 

studies about the antioxidant capacities of these EVOOs. The aim of this study was 

to determine the total phenolic content and the total antioxidant capacity of EVOO 

samples commercialized in Brazil. Four antioxidant capacity methods were chosen 

(FRAP, ABTS, DPPH• and ORAC), and their correlation with the total phenolic 

content of the EVOO samples were also determined.  

 

2.2. Material and methods 

 

2.2.1. Chemicals and apparatus 

Hexane and methanol p. a. (Synth, Brazil) were used for samples extraction. 

TPTZ (2,4,6-tripyridyl-s-triazine) (Fluka, USA), FeCl3.6H2O (Vetec, Brazil), HCl 

(Synth, Brazil), acetic acid (Qhemis, Brazil), sodium acetate (Synth, Brazil), Folin-



Chapter II - Antioxidant capacity and total phenolic content of EVOO... 

49 

 

Ciocalteu reagent (Dinâmica, Brazil), sodium carbonate (Synth, Brazil), ABTS [2,2’-

azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (Sigma-Aldrich, USA), potassium 

persulfate (Synth, Brazil), ethanol HPLC grade (J. T. Baker, USA), DPPH• (2,2-

diphenyl-1-picrylhydrazyl) (Sigma-Aldrich, USA), K2HPO4 (J. T. Baker, USA), 

phosphoric acid 85% p. a. (Ecibra, Brazil), AAPH [2,2’-azobis(2-amidino-propane) 

dihydrochloride] (Sigma-Aldrich, USA) and fluorescein disodium (Synth, Brazil) 

were the chemicals used for the antioxidant capacity assays. Gallic acid and 6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) standards were 

acquired from Sigma-Aldrich (USA). 

Spectrophotometric measurements for total phenolic content, FRAP, ABTS 

and DPPH• methods, all in the visible region of the electromagnetic spectrum, were 

performed using a UV-1600 spectrophotometer (Pro-Análise, Brazil), while the 

fluorescence monitoring for the ORAC assay was achieved using a NOVOstar 

microplate reader (BMG Labtech, Germany). 

 

2.2.2. Samples 

The samples of extra-virgin olive oil (EVOO) were acquired in supermarkets 

of Campinas (São Paulo, Brazil), in a total of 15 brands, each one in three different 

batches, resulting in 45 samples. Each batch was composed by mixing the content 

of two bottles of that batch. All the samples were from European or South 

American countries, Spain, Portugal, Greece, Italy and Argentina, and they were 

analyzed before their expiration dates. The maximum acidity, as described in the 

label, varied from 0.5 to 0.8%. Brands were coded using numbers from 1 to 15, 
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and the batch was coded adding numbers 01, 02 or 03 to the brand number. Thus, 

the sample with the code 101 refers to brand 1, batch 01, and so on. 

 

2.2.3. Preparation of EVOO polar extracts 

EVOO polar extracts were prepared according to Nakbi et al. (2010). Briefly, 

2.5 g of each EVOO were weighed in a centrifuge tube, and then 5 mL of hexane 

p. a. and 5 mL of methanol:water (60:40, v/v) were added. This mixture was 

vigorously vortexed for 2 min and, after that, the tubes were centrifuged for 5 min 

at 5,000 g. The polar phase (in the bottom) was removed, filtered through 0.45 μm 

membranes (Millipore, France), and then submitted to the total phenolic content 

analysis and to all the four antioxidant capacity methods. 

 

2.2.4. Total phenolic content by Folin-Ciocalteu reagent 

The analysis of the total phenolic content by the method of Folin-Ciocalteu 

reagent was realized according to the procedure described by Singleton, Orthofer, 

& Lamuela-Raventos (1999). In this procedure, 0.5 mL of EVOO polar extract was 

mixed with 2.5 mL of Folin-Ciocalteu reagent (diluted 1:10 in ultrapure water), 

being kept in the darkness during 5 min. Afterwards, 2 mL of sodium carbonate 

7.5% were added and the tubes were incubated in the dark for 2 hours. Then, the 

absorbance at 760 nm was measured. The quantitative results were calculated 

using an analytical curve of gallic acid and expressed as mg of gallic acid 

equivalents per kg of EVOO sample (mg GAE kg-1). 
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2.2.5. Antioxidant capacity assays 

 

2.2.5.1. Ferric-reducing antioxidant power (FRAP) assay 

The FRAP assay was realized according to Benzie, & Strain (1996). In a test 

tube, 320 μL of the EVOO polar extract and 2.4 mL of the FRAP reagent were 

mixed. The FRAP reagent consisted in a mixture of 300 mmol L-1 sodium acetate 

buffer solution (pH 3.6), 10 mmol L-1 of TPTZ solution in HCl 40 mmol L-1, and 20 

mmol L-1 of FeCl3.6H2O solution, in a volume ratio of 10:1:1, respectively. After 

adding the FRAP reagent, the tubes were placed into a water bath at 37ºC for 15 

min. The absorbance of the mixture was measured at 593 nm 4 min after the 

incubation period. For the quantification step, a Trolox analytical curve was 

constructed, and the results were expressed as µmol of Trolox equivalents per kg 

of EVOO sample (µmol TE kg-1). 

 

2.2.5.2. ABTS radical cation decolorization assay 

The ABTS method was performed according to the procedure described by 

Re et al. (1999). At first, ABTS was dissolved in water to a 7 mmol L-1 final 

concentration. This solution was mixed with a 2.45 mmol L-1 potassium persulfate 

solution, in a volume ratio of 1:1, and then incubated in the dark for 12-16 h at 

room temperature, in order to produce a stock solution of the radical cation 

(ABTS•+). ABTS•+ working solution was prepared by diluting the stock solution with 

ethanol HPLC grade until reaching an absorbance of 0.700 ± 0.020 at 734 nm and 

equilibrated to 30ºC. For the sample analysis, 30 μL of the EVOO polar extract was 
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added to a test tube and mixed with 3 mL of the ABTS•+ radical cation working 

solution (A734 nm = 0.700 ± 0.020). Absorbancec readings were taken at 734 nm 

after 6 min. Quantification was conducted using a Trolox analytical curve and the 

results were expressed as mmol of Trolox equivalents per kg of EVOO sample (mg 

TE kg-1). 

 

2.2.5.3. Radical scavenging activity by DPPH• assay 

 DPPH• assay was performed following the methodology described by Brand-

Williams, Cuvelier, & Berset (1995) and Nakbi et al. (2010). A 3.9 mL aliquot of a 6 

x 10-5 mol L-1 DPPH• methanolic solution was mixed with 100 μL of EVOO polar 

extract. DPPH• absorbance was monitored at 515 nm during one hour, at 25ºC. 

The quantification was made through a Trolox analytical curve, and the results 

were expressed as µmol of Trolox equivalents per kg of EVOO sample (µmol TE 

kg-1). 

 

2.2.5.4. Oxygen Radical Absorbance Capacity (ORAC) assay 

The antioxidant capacity measured by the ORAC assay followed the 

procedure presented by Ou, Hampsch-Woodill, & Prior (2001) and modified by 

Huang, Ou, Hampsch-Woodill, Flanagan, & Prior (2002) and Dávalos, Gómez-

Cordovés, & Bartolomé (2004). AAPH reagent (1.08 g) was completely dissolved in 

10 mL of 75 mmol L-1 phosphate buffer (pH 7.4), resulting in a final concentration 

of 400 mmol L-1. Fluorescein stock solution (10 mmol L-1) was prepared in 75 mmol 

L-1 phosphate buffer (pH 7.4) and was kept in the dark at 4ºC. Fluorescein working 



Chapter II - Antioxidant capacity and total phenolic content of EVOO... 

53 

 

solutions (0.1 mmol L-1) were daily prepared by diluting the stock solution with 75 

mmol L-1 phosphate buffer (pH 7.4). The reaction consisted in rapidly mixing 20 μL 

of the EVOO polar extract, 120 μL of fluorescein working solution and 60 μL of 

AAPH in a 96-well polypropylene plate, using a multichannel pipet. The microplate 

was immediately placed in the reader and the fluorescence recorded every minute 

for 80 min. Fluorescence readings were obtained at λEx = 485 nm and λEm = 520 

nm. Quantification was performed using a Trolox analytical curve. To construct the 

curves, it was necessary to plot the Trolox concentrations (X) against the net area 

under the fluorescence decay curve, net AUC (Y). The AUC was calculated as 

 

��� = 0.5 + � ��
����

���
/��  + 0.5(���

��
) 

 

where �� is the initial fluorescence reading at 0 min and �� is the fluorescence 

reading at time i. The net AUC corresponding to a standard or a sample was 

calculated by subtracting the AUC corresponding to the blank (AUCsample - 

AUCblank). The results were expressed as µmol of Trolox equivalents per g of 

EVOO sample (µmol TE g-1). 

 

2.2.6. Statistical analysis 

 The means obtained as the results of each analysis were compared using 

ANOVA and Tukey test, at 95% confidence level. A correlation analysis between 
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the total phenolic content and each one of the antioxidant capacity assays was 

also performed. All the statistical analysis was carried out using the software 

Statistica 7.0 (Statsoft, USA). 

 

2.3. Results and discussion  

 

2.3.1. Total phenolic content of EVOO polar extracts 

 The total phenolic content of EVOO polar extracts was estimated by the 

method of Folin-Ciocalteu reagent, using gallic acid as the standard for 

quantification. Data about the linear regression for the analytical curve used for 

total phenolic content quantification are summarized in Table 2.1. 

 

Table 2.1. Analytical curves used for determining the extra-virgin olive oil total 
phenolic content and antioxidant capacity. 
Methods Standard Linearity Equation r 2

Total Phenolic Content Gallic Acid 10 - 70 mg L-1 0.9993

FRAP Trolox 3 - 118 µmol L-1 0.9962

ABTS Trolox 378 - 1367 µmol L-1 0.9946

DPPH Trolox 68 - 942 µmol L-1 0.9990

ORAC Trolox 131 - 665 µmol L-1 0.9957

0244.00042.0 += xy

4176.31002.0 += xy

8235.20460.0 −= xy

7893.00349.0 += xy

0229.00134.0 −= xy

 

 

 All the results for the total phenolic content of the EVOO polar extracts can 

be seen in Table 2.2. The contents varied from 70.05 to 297.37 mg GAE kg-1, 

within a difference of 4-fold, while the mean value was 186.30 mg GAE kg-1. The 
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lowest content was found for sample 1401, from Argentina, and the highest content 

was for sample 203, from Spain. In Figure 2.1E is presented a graph with the 

comparison of the mean total phenolic content of each brand analyzed (obtained 

as the mean of the three batches). 

 

Table 2.2. Total phenolic contents and antioxidant capacities of 45 extra-virgin 
olive oil samples (mean ± standard deviation, n = 3).a 

101 Greece 134 ± 1 b 388 ± 13 b 1.19 ± 0.02 b 312 ± 9 b 2 ± 1 b
102 Greece 119 ± 2 c 414 ± 41 b 1.18 ± 0.01 b 258 ± 10 c 3.1 ± 0.3 a,b
103 Greece 158 ± 6 a 713 ± 64 a 1.4 ± 0.1 a 355 ± 6 a 4 ± 1 a

201 Spain 226 ± 4 c 912 ± 14 c 1.5 ± 0.1 b 629 ± 30 c 7 ± 1 b
202 Spain 261 ± 15 b 1151 ± 43 b 1.8 ± 0.1 a 974 ± 63 b 9 ± 2 b
203 Spain 297 ± 11 a 1557 ± 20 a 1.89 ± 0.04 a 1129 ± 13 a 12.9 ± 0.4 a

301 Portugal 198 ± 3 a 864 ± 45 a 1.2 ± 0.1 b 573 ± 7 b 7 ± 1 a
302 Portugal 185 ± 3 a 828 ± 16 a,b 1.27 ± 0.02 b 625 ± 26 a 6.6 ± 0.5 a
303 Portugal 191 ± 11 a 785 ± 16 b 1.6 ± 0.1 a 542 ± 17 b 7 ± 1 a

401 Spain 237 ± 9 a 982 ± 51 a 1.69 ± 0.01 a 646 ± 34 a 10.4 ± 0.1 a
402 Spain 176 ± 9 b 699 ± 24 b 1.61 ± 0.03 b 545 ± 30 b 6 ± 1 b
403 Spain 160 ± 3 b 623 ± 24 b 1.37 ± 0.05 c 526 ± 11 b 5.7 ± 0.3 b

501 Portugal 141 ± 2 b 457 ± 17 c 1.03 ± 0.02 b 405 ± 14 b 4 ± 1 b
502 Portugal 182 ± 4 a 665 ± 20 a 1.17 ± 0.02 a 532 ± 35 a 7 ± 1 a
503 Portugal 142 ± 8 b 538 ± 18 b 1.20 ± 0.03 a 412 ± 20 b 5.3 ± 0.4 a,b

601 Portugal 222 ± 8 a 841 ± 48 a 1.47 ± 0.03 a 649 ± 26 a 7.6 ± 0.5 a
602 Portugal 186 ± 4 b 644 ± 19 b 1.55 ± 0.05 a 554 ± 35 b 5 ± 1 b
603 Portugal 166 ±  c 510 ± 35 c 1.3 ± 0.1 b 454 ± 18 c 5.3 ± 0.5 b

701 Portugal 257 ± 13 b 1077 ± 36 c 1.73 ± 0.04 a 857 ± 48 b 9 ± 1 a
702 Portugal 286 ± 2 a 1157 ± 27 b 1.7 ± 0.1 a 1004 ± 17 a 8.6 ± 0.4 a
703 Portugal 271 ± 9 a,b 1234 ± 14 a 1.8 ± 0.1 a 1035 ± 4 a 9 ± 2 a

801 Spain 118 ± 1 a 339 ± 24 b 0.53 ± 0.02 b 326 ± 15 a 2 ± 1 a
802 Spain 110 ± 2 b 426 ± 16 a 1.03 ± 0.01 a 183 ± 12 b 2 ± 1 a
803 Spain 110 ± 1 b 261 ± 3 c 1.05 ± 0.05 a 78 ± 4 c 1.8 ± 0.2 a

Samples Country
Total Phenolics Content FRAP ABTS DPPH• ORAC 

(mg GAE kg-1) (μmol TE kg-1) (mmol TE kg-1) (μmol TE kg-1) (μmol TE g-1)

 
a Means followed by the same letter in the column showed no significant difference 
(p < 0.05) by the Tukey test, for the comparison among the three batches of a 
same brand. 
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Table 2.2. Continued.a 

901 Greece 141 ± 4 b 353 ± 31 c 1.14 ± 0.03 b 297 ± 14 b 3.2 ± 0.4 a
902 Greece 146 ± 5 b 451 ± 8 b 1.2 ± 0.1 b 316 ± 19 b 3.3 ± 0.1 a
903 Greece 171 ± 3 a 678 ± 46 a 1.35 ± 0.04 a 453 ± 12 a 4.0 ± 0.9 a

1001 Portugal 255 ± 3 a 696 ± 9 c 1.49 ± 0.03 b 255 ± 10 b 4.6 ± 0.4 b
1002 Portugal 239 ± 6 b 766 ± 26 b 1.6 ± 0.1 a 555 ± 19 a 6 ± 1 a,b
1003 Portugal 218 ± 1 c 849 ± 9 a 1.7 ± 0.1 a 528 ± 23 a 6.2 ± 0.3 a

1101 Spain 218 ± 5 a 829 ± 27 a 1.73 ± 0.04 a 513 ± 9 a 5 ± 1 a
1102 Spain 215 ± 3 a 837 ± 10 a 1.6 ± 0.1 a 498 ± 13 a 5.3 ± 0.3 a
1103 Spain 205 ± 3 b 749 ± 13 b 1.6 ± 0.1 a 504 ± 34 a 5.2 ± 0.2 a

1201 Italy 271 ± 6 a 1270 ± 39 a 1.67 ± 0.03 b 874 ± 31 a 7.2 ± 0.5 a
1202 Italy 235 ± 2 c 1152 ± 31 a,b 1.5 ± 0.1 b 769 ± 34 b 5.8 ± 0.4 b
1203 Italy 253 ± 3 b 1019 ± 96 b 1.9 ± 0.1 a 849 ± 51 a,b 6.1 ± 0.5 a,b

1301 Portugal 197 ± 1 a 725 ± 15 b 1.35 ± 0.02 b 513 ± 8 a 5.0 ± 0.3 a,b
1302 Portugal 197 ± 2 a 785 ± 8 a 1.6 ± 0.1 a 526 ± 31 a 6 ± 1 a
1303 Portugal 184 ± 4 b 751 ± 22 a,b 1.6 ± 0.1 a 561 ± 16 a 4.1 ± 0.4 b

1401 Argentina 70 ± 1 c 115 ± 10 c 0.90 ± 0.03 b 72 ± 4 c 1.1 ± 0.3 b
1402 Argentina 140 ± 1 a 474 ± 6 a 1.1 ± 0.1 a 328 ± 14 a 3.2 ± 0.1 a
1403 Argentina 88 ± 3 b 266 ± 13 b 0.82 ± 0.01 b 133 ± 8 b 1.2 ± 0.2 b

1501 Spain 156 ± 7 a 516 ± 13 a 1.1 ± 0.1 a 388 ± 32 a 2.4 ± 0.5 a
1502 Spain 129 ± 3 b 428 ± 23 b 1.05 ± 0.04 a,b 327 ± 20 b 2 ± 1 a
1503 Spain 125 ± 2 b 330 ± 27 c 0.98 ± 0.03 b 300 ± 6 b 1.8 ± 0.2 a

Samples Country
Total Phenolics Content FRAP ABTS DPPH• ORAC 

(mg GAE kg-1) (μmol TE kg-1) (mmol TE kg-1) (μmol TE kg-1) (μmol TE g-1)

 
a Means followed by the same letter in the column showed no significant difference 
(p < 0.05) by the Tukey test, for the comparison among the three batches of a 
same brand. 
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Figure 2.1. Mean results of three batches for the 15 extra-virgin olive oil brands 

analyzed in this study. A) FRAP assay (µmol of Trolox equivalents per 
kg); B) ABTS assay (mmol of Trolox equivalent per kg); C) DPPH• 
assay (µmol of Trolox equivalent per kg); D) ORAC assay (µmol of 
Trolox equivalents per g); E) Total Phenolic Content (mg of gallic acid 
equivalents per kg). Bars followed by the same letters showed no 
significant difference (p < 0.05) by the Tukey test. 
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 Ninfali, Aluigi, Bacchiocca, & Magnani (2001) reported total phenolic 

contents for Italian EVOOs ranging from 50 to 236 mg GAE kg-1. Andjelkovic et al. 

(2008) reported total phenolic contents for several Spanish and French EVOOs 

ranging from 63 to 239 mg GAE kg-1. EVOOs from Chétoui and Chemlali varieties 

cultivated in Tunisia, presented total phenolic content between 158 and 395 mg kg-

1 (Nakbi et al., 2010). Loizzo, Di Lecce, Boselli, Menichini, & Frega (2012) studied 

EVOOs from Frantoio variety in Italy and found total phenolic contents between 

109 and 250 mg GAE kg-1. In the work from Fuentes, Báez, Bravo, Cid, & Labra 

(2012) a number of EVOOs samples from Chile, Spain, Italy and Argentine was 

assayed, and the results for total phenolic content were between 69 and 186 mg 

kg-1, but expressed as caffeic acid rather than gallic acid equivalents. The results 

obtained in all these studies agree with those obtained for the EVOOs 

commercialized in Brazil. However, it is possible to find ranges significantly 

different in the literature, as in the work from Samaniego Sánchez et  al. (2007), 

where total phenolic contents between 1085.0 and 1406.0 mg GAE kg-1 were 

found for 39 samples of Picual EVOO (Spain). There were also observed 

significant differences among the three batches of a same brand for almost all the 

brands analyzed, with exception of sample 3 (Table 2.2). The broad range found in 

literature for the total phenolic content of EVOOs can be understood since it is well 

known there are substantial variations in the composition and concentration of 

phenolic compounds that may be caused by factors such as variety, region grown, 

agricultural techniques, maturity of the fruit at harvest and processing (Cicerale, 

Lucas, & Keast, 2012). 
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2.3.2. Antioxidant capacity of EVOO samples 

 In Table 2.1, data about linearity range, equation and r2 of the analytical 

curves used to determine the antioxidant capacity by all the four methods are 

exhibited. In Table 2.2 it is possible to find the results for the four antioxidant 

capacity assays of the 45 EVOO samples analyzed in this study. 

 In summary, FRAP results varied from 114.83 to 1557.35 µmol TE kg-1. In 

the ABTS assay, results ranged from 0.53 to 1.90 mmol TE kg-1. For DPPH•, 

results were in the range of 72.15 to 1129.46 µmol TE kg-1. The overall ORAC 

values were between 1.14 and 12.90 µmol TE g-1. As previously seen for the total 

phenolic contents, the antioxidant capacities also varied among the batches of a 

same brand (Table 2.2). Mean results of the four antioxidant capacity methods, 

obtained from the three batches for each one of the 15 brands analyzed, are 

presented in Figure 2.1A-D. Observing the figures, it is possible to see that all the 

antioxidant capacity methods presented the same results profile. The EVOO 

extracts with the highest total phenolic contents also presented the highest 

antioxidant capacities, despite of the method employed.  

 FRAP, ABTS and DPPH• methods are classified as single electron transfer 

(SET) reaction based assays, as well as the previously discussed total phenolic 

content by the Folin-Ciocalteu reagent (FCR) method. The difference among Folin-

Ciocalteu, ABTS and FRAP methods rely in the pH. Total phenolics is carried out 

under basic conditions, in order to allow the phenolic proton to dissociate, leading 

to a phenolate anion, which is capable of reducing FCR. ABTS method is carried 

out at neutral pH, while FRAP assay under acidic (pH 3.6) conditions. DPPH• was 
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believed to involve hydrogen atom transfer reaction, since it was observed that the 

rate-determining step of its reaction consists  of a fast electron transfer process 

from the phenoxide anions to DPPH•. In this case, the hydrogen atom abstraction 

from a phenolic compound by DPH becomes a marginal reaction path, because it 

occurs very slowly in strong hydrogen-bond-accepting solvents, such as methanol 

and ethanol (Huang, Ou, & Prior, 2005). Thus, it is easy to understand why the 

results of all the SET methods presented the same behavior, despite of exhibiting 

different absolute values. This different absolute values originate from this 

differences in the reaction medium, and also because the structure of the 

compounds to be reduced by SET reaction are very different among the four SET 

methods. 

 In this way, the correlation between total phenolic content and each one of 

the four antioxidant capacity methods was calculated, to obtain experimental 

evidences of what was presented in the previously paragraph. The results are 

presented in Figure 2.2A-D. 
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 As expected, there was a high and significant correlation between total 

phenolic contents and FRAP (r2 = 0.8904; p < 0.001; Figure 2.2A); total phenolic 

contents and ABTS (r2 = 0.7837; p < 0.001; Figure 2.2B); and total phenolic 

contents and DPPH• (r2 = 0.7908; p < 0.001; Figure 2.2C). It is possible to say that 

the compounds present in EVOO polar extracts are efficient electron donors, 

despite of the reaction medium conditions and the compounds to be reduced. 

Similar correlations were observed between total phenolic contents and ABTS or 

DPPH• for EVOO polar extracts in the study of Samaniego Sánchez et al. (2007). 

 However, it is believed that the hydrogen atom transfer (HAT) is a key step 

in the radical chain reaction. Therefore, an extract with compounds that react by 

HAT will be more effective as radical chain-breaking antioxidant capacity. The 

ORAC method is classified as a hydrogen atom transfer (HAT) reaction based 

assay (Huang, Ou, & Prior, 2005). The EVOO polar extracts also presented high 

ORAC values, indicating that the polar compounds extracted from EVOO are able 

to react by the HAT mechanism. In addition, the total phenolic contents and the 

ORAC results presented a high an significant correlation (r2 = 0.7431; p < 0.001), 

as can be seen in Figure 2.2D. High and significant correlations between total 

phenolic contents and ORAC values, with similar r2 and p values, were already 

reported in the literature for EVOO extracts (Ninfali, Aluigi, Bacchiocca, & Magnani, 

2001; Ninfali, Bacchiocca, Biagiotti, Servili, & Montedoro, 2002; Samaniego 

Sánchez et al., 2007). As a result, it can be said that polar compounds from 

EVOOs, mostly phenolic compounds, are able to react by SET or HAT 

mechanisms, being this latter the most important for a real effect of scavenging 
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free radicals in a radical chain reaction. It was proved before that the phenolic 

compounds from EVOO mainly act as chain breakers by donating a radical 

hydrogen to alkylperoxyl radicals (ROO) formed during the initiation step of lipid 

oxidation, being hydroxytyrosol the phenolic compound from EVOO that exhibited 

the strongest antioxidant capacity in vitro (Carrasco-Pancorbo et al., 2005), which 

agrees with the ORAC results and with the correlation between total phenolics and 

ORAC observed in this study. 

 

2.4. Conclusions 

  Total phenolic contents and total antioxidant capacity of 45 EVOO samples 

commercialized in Brazil were determined and it was the first study to analyze 

antioxidant properties of the EVOO consumed by the Brazilian population. 

 The results indicated that the total phenolic content and the antioxidant 

capacities determined by different methods are comparable to those values 

previously described in the literature. It was possible to verify that there is a 

significant variation in the results among batches of a same brand for the total 

phenolic contents and antioxidant capacities. 

 Moreover, a high and significant correlation was found between the total 

phenolic content and each one of the four antioxidant capacity methods evaluated 

in this study. Thus, the phenolic compounds that compose the EVOO polar fraction 

possess a significant antioxidant effect in vitro. 

 Therefore, most of the EVOO brands available to Brazilian population 

presented high total phenolic content and, consequently, their antioxidant capacity 



C. A. Ballus et al. (2014) 

 

64 

 

was also very strong, and then, these EVOO can help providing several health 

benefits to those who consume them regularly. 
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ABSTRACT 

In Brazil, the consumption of extra-virgin olive oil (EVOO) is increasing annually, 

but there are no experimental studies concerning the phenolic compound contents 

of commercial EVOO. The aim of this work was to optimize the separation of 17 

phenolic compounds already detected in EVOO. A Doehlert matrix experimental 

design was used, evaluating the effects of pH and electrolyte concentration. 

Resolution, runtime and migration time relative standard deviation values were 

evaluated. Derringer’s desirability function was used to simultaneously optimize all 

37 responses. The 17 peaks were separated in  19 minutes using a fused-silica 

capillary (50 µm internal diameter, 72 cm of effective length) with an extended light 

path and 101.3 mmol.L-1 of boric acid electrolyte (pH 9.15, 30 kV). The method 

was validated and applied to 15 EVOO samples found in Brazilian supermarkets. 

 

Keywords: capillary zone electrophoresis; phenolic compounds; extra-virgin olive 

oil; Doehlert matrix; Derringer’s desirability function; method optimization. 
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3.1. Introduction 

It has been postulated that the components of extra-virgin olive oil (EVOO) 

in the Mediterranean diet, a diet which is largely vegetarian in nature, can 

contribute to a lower incidence of coronary heart disease and prostate and colon 

cancers (Murkovic, Lechner, Pietzka, Bratacos, & Katzogiannos, 2004). EVOO 

contains a significant if minor phenolic portion, which has been shown to possess 

anti-microbial, antioxidant and anti-inflammatory properties, in vivo and in vitro 

(Landete, 2012). Therefore, the phenolic components of EVOO are of particular 

interest for human health. At least 36 phenolic compounds have been identified in 

EVOO to date, and there are substantial variations in the composition and 

concentration of these phenolic compounds, which may be caused by any 

numbers of factors such as variety, region  grown, agricultural techniques, maturity 

of the fruit at harvest, and processing (Cicerale, Lucas, & Keast, 2012). 

In Brazil, the demand for EVOO is increasing every year, mostly due to the 

fact that the population has became aware of its health benefits with regular 

consumption. Nevertheless, there are no experimental studies concerning the 

phenolic compound content of commercial EVOO in Brazil. 

Food analysis always demand robust, efficient, sensitive and cost-effective 

analytical methods to ensure the safety, quality and, increasingly, the traceability of 

foods. There is also a growing need for research on nutritional and functional 

properties of foods, as a result of an increasing public concern about this subject 

(Castro-Puyana, García-Cañas, Simó, & Cifuentes, 2011). 
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Capillary electrophoresis (CE) is increasingly recognized as a versatile 

analytical tool for the routine determination of a wide variety of phenolic 

compounds in different samples due to its separation efficiency, resolution, 

analysis time and low consumption of samples and reagents (Ignat, Volf, & Popa, 

2011). Capillary zone electrophoresis (CZE) is the simplest of all the CE 

techniques. Analytes are separated inside a narrow bore capillary containing only a 

buffer solution across which a voltage is applied creating an electric field and 

different  migration velocities depending on charge and size. Buffer pH is crucial for 

the dissociation of analytes (Rabanes, Guidote Jr., & Quirino, 2012). Most of the 

CZE methods developed for phenolic compound separations use basic solutions 

as an electrolyte, controlled by a borate buffer. The borate buffer can form a 

complex with the phenolic compound hydroxyl groups altering the charge and size, 

and improving separation (Ballus, Meinhart, Oliveira, & Godoy, 2012; Bizzotto et 

al., 2012).  

In the development of a CE method, several factors affect the separation of 

the analytical signals. For food samples, which present a large number of analytical 

peaks, many of which must be separated, the optimization process must take into 

account all the critical separations simultaneously. As such, multi-criteria methods 

are very convenient to use, if accurate response surfaces have been determined 

from statistically designed experiments (Meinhart et al., 2010; Ballus, Meinhart, 

Bruns, & Godoy, 2011; Meinhart, Ballus, Bruns, Lima Pallone, & Godoy, 2011). In 

the literature, several studies have successfully separated food compounds by 

capillary electrophoresis using different combinations of factorial design, variables 
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and number of responses (Orlandini, Giannini, Pinzauti, & Furlanetto, 2008; Fukuji, 

Tonin, & Tavares, 2010; Hevia et al., 2010; Orlandini, Gotti, Giannini, Pasquini, & 

Furlanetto, 2011; Palabiyik, Caglayan, & Onur, 2011; Vignaduzzo, Vera-Candioti, 

Castellano, & Goicoechea, 2011; Hefnawy, Sultan, Al-Johar, Kassem, & Aboul-

Enein, 2012). 

In this work, a capillary electrophoresis method coupled to a diode array 

detector (CE-DAD) for the separation of 17 phenolic compounds already detected 

in the EVOO polar fraction was optimized. As the basis for this new study our 

previous laboratory work, Ballus et al. (2011), separating 13 phenolic compounds 

(tyrosol, oleuropein glycoside, hydroxytyrosol, cinnamic acid, luteolin, apigenin, 

ferulic acid, caffeic acid, p-coumaric acid, vanillic acid, 3,4-dihydroxybenzoic acid, 

gallic acid and p-hydroxybenzoic acid) was used. Our choice of adding four new 

compounds, (+)-pinoresinol, syringic acid, sinapinic acid and o-coumaric acid, to 

those previously studied was based on new literature data about phenolic 

composition of EVOO samples (Frankel, 2010; Riachy, Priego-Capote, León, 

Rallo, & Luque de Castro, 2011), and also with the aim of including all the main 

phenolic classes found in this matrix. A multi-criteria optimization, using the 

Doehlert matrix design and Derringer’s desirability function, was used to optimize 

this work. A Doehlert matrix was chosen because it allows the study of the various 

factors at a number of levels, and  is attractive for resolving problems where 

specific information about the system indicates some factors deserve more 

attention than others (Ferreira et al., 2007). This was exactly what was learned 

from our previous work (Ballus et al., 2011), where pH exhibited the most complex 
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behavior and had the greatest influence on peak-pair separation. Furthermore, it 

was decided to evaluate not just the peak-pair resolutions and runtime, but also the 

stability of each condition by measuring the relative standard deviation (RSD) of 

migration time for all compounds. As a result, this is the first optimization study 

simultaneously evaluating such a large number of experimental responses (37) 

including resolution (18), runtime, and stability (18). After optimization, the method 

was carefully validated and applied to 15 commercial EVOO samples from Brazil 

supermarkets.  

 

3.2. Material and methods 

 

3.2.1. Chemicals 

Hexane p.a. (Synth, Brazil), methanol p.a. (Synth, Brazil) and methanol 

HPLC grade (J. T. Baker, USA) were purchased as well as boric acid (Ecibra, 

Brazil) and sodium hydroxide p.a. (Nuclear, Brazil). Water was purified in a Milli-Q 

system (Millipore, USA). Standards of tyrosol (TYR), gallic acid (GAL), p-coumaric 

acid (p-CUM), p-hydroxybenzoic acid (p-HYD), caffeic acid (CAF), 3,4-

dihydroxybenzoic acid (3,4-D), cinnamic acid (CIN), vanillic acid (VAN), ferulic acid 

(FER), luteolin (LUT) and apigenin (API) were purchased from Sigma-Aldrich 

(USA). Hydroxytyrosol (HYD) was obtained from Cayman Chemical (USA), 

oleuropein glycoside (OLE) from Extrasynthèse (France), syringic acid (SYR), 

sinapinic acid (SIN) and o-coumaric acid (o-CUM) standards from Chem Service 

(USA), and (+)-pinoresinol (PIN) was purchased from Arbo Nova (Finland). 
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The standard stock solutions were prepared by dissolving the appropriate 

amount of each compound in methanol HPLC grade to a final concentration of 2 

g.L-1 for (+)-pinoresinol, 1 g.L-1 for hydroxytyrosol and also for luteolin, 0.4 g.L-1 for 

apigenin, and 5 g.L-1 for the other 13 compounds. Then the solutions were filtered 

through a 0.45 μm Millipore PVDF membrane (Millipore, USA), stored at –18ºC 

and protected from light.  

To execute the optimization experiments, a working methanol:water solution 

(30:70, v/v) containing 39.6 mg.L–1 of each analyte was prepared. The vials with 

the working solutions were placed under ultrasound for 5 min before injection to 

remove air bubbles. 

 

3.2.2. Equipment 

An Agilent G1600AX (Agilent Technologies, Germany) capillary 

electrophoresis system equipped with a diode array detector (DAD), automatic 

injector and temperature control system adjusted to 25ºC was used in this study. A 

fused-silica capillary of 50 µm internal diameter and 72 cm of effective length with 

extended light path (Agilent Technologies, Germany) was also used. Detection was 

at 210 nm and data treatment was performed with HP ChemStation software. 

New capillaries were activated and conditioned by washing under 1 bar 

pressure using 1 mol.L–1 NaOH for 30 min, followed by 10 min of ultra-pure water. 

At the end of the day, the capillary was washed for 5 min with 1 mol.L–1 NaOH and 
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5 min with ultra-pure water. The capillary was stored in ultra-pure water during the 

night. 

 

3.2.3. Experimental design and data treatment 

 To obtain an initial evaluation of compound separation, solutions were 

injected using the method previously described in Ballus et al. (2011). Co-elution 

among additional four compounds [(+)-pinoresinol, sinapinic acid, syringic acid and 

o-coumaric acid] occurred when the 17 compounds of interest were injected into 

this system; the other 13 separated as previous described (Ballus et al., 2011). So, 

a new multivariate optimization procedure to achieve separation of all 17 

compounds in the same run, with the lowest runtime and best stability was 

executed. 

Previously (Ballus et al., 2011), voltage had little impact on runtime and 

none on separation, whilst pH was the most significant variable affecting phenolic 

compound separation. The electrolyte concentration also had a significant effect on 

the peak-pair resolutions for some compounds. As a consequence, it was decided 

to use only the pH and the boric acid concentration (BOR) as variables for the new 

optimization procedure with the voltage fixed at the highest value (30 kV) allowed 

by the instrumentation. Moreover, a different kind of experimental design was 

chosen for this new optimization. Since the separation of the phenolic compounds 

in this system had a clear dependence on pH, this variable was examined more 

closely than, for example, the boric acid concentration. In this case, the Doehlert 

design is very useful, allowing one variable to be studied at more levels than the 
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other. So, since there were two variables to be optimized, the Doehlert design was 

constructed with five levels for pH and three for BOR. The levels varied from 40 to 

120 mmol.L-1 (BOR), and from 9 to 10.5 (pH), respectively. All subsequent analysis 

were at 0.5 Pa for 5 s (injection), 25ºC and 210 nm. The design center point was 

executed in triplicate resulting in a total of nine experiments, which were injected in 

random order. Before running an experimental design condition, the capillary was 

conditioned for five min with 1 mol.L–1 NaOH, five min with ultra-pure water and 10 

min with the running electrolyte corresponding to that condition. The conditioning 

among runs of a same experimental design condition consisted of 1 min of 1 

mol.L–1 NaOH +  a 1 min wait  + 1 min of ultra-pure water + 1 min of electrolyte + a 

1 min wait + 1 min of electrolyte, totaling six minutes conditioning between runs of 

a same experimental design condition. 

The phenolic standards mixture was injected twice followed by seven 

injections of a same EVOO polar extract containing all 17 compounds. The polar 

extract was obtained as described in section 3.2.6. Thus, nine injections were 

performed for each experimental design condition (n = 9). The first injection was 

used to calculate resolution and runtime, while all nine injections were used to 

determine migration time RSD.  
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Elementary resolution (Rs) was  chosen as one of the responses (Breitkreitz, 

Jardim & Bruns, 2009) and calculated between peak pairs, which co-eluted under 

at least one of the design conditions. Resolution values were calculated using: 

 

( )
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12
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tt2
R

+
−

=  

 

for which t1 and t2 are migration times and w1 and w2 are the corresponding widths 

of the bases of the pair of adjacent peaks.  

Run time was defined as migration time for the last compound plus one 

minute. Another set of responses consisted of the relative standard deviation 

(RSD, %) of the migration times for the 17 peaks and of the electrosmotic flow 

(solvent), with the objective of evaluating method stability after successive 

injections and also studying the matrix effect on the separation and stability.  

The models were validated by mean of the Analysis of Variance (ANOVA) at 

the 95% confidence level. Then, the optimum conditions to separate all 17 peaks 

were determined by examining response contour graphs and using the multi-

criteria response technique of Derringer and Suich. Desirability values were 

established for each individual response and they were combined into their 

recommended global desirability function (Derringer, & Suich, 1980). The individual 

desirabilities were defined to maximize the resolutions and to minimize the runtime 

and the migration time RSD values. Data treatment was carried out using the 
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Design Expert 6.0.10 (Minneapolis, USA) software. The predicted conditions were 

submitted to an experimental verification, carried out in triplicate. 

 

3.2.4. Capillary electrophoresis method validation 

The method was validated as prescribed by the Harmonized Guidelines for 

Single-Laboratory Validation of Methods of Analysis IUPAC/ISO/AOAC 

International (Thompson, Ellison, & Wood, 2002). The limit of detection (LOD) was 

determined through successive dilutions of the standard mixture, until peaks with a 

signal-to-noise ratio close to three were achieved. The limit of quantification (LOQ) 

was also determined through successive dilutions, being defined as the 

concentration that gives peaks with a signal-to-noise ratio close to six. The intra-

assay precision was also verified at the limit of quantification (n = 7). System 

linearity was studied individually for each compound with calibration curves made 

up of seven points, prepared in triplicate and injected randomly. A lack of fit test for 

each calibration curve was performed. The intra-assay precision was determined 

by injecting a solution containing the 17 phenolic compounds at three different 

concentrations. This procedure was carried out seven consecutive times in one 

day for each concentration. The inter-assay precision was determined by repeating 

this procedure on three consecutive days. The first concentration consisted of 10 

mg.L-1 of tyrosol and oleuropein glycoside, and 5 mg.L-1 of the other 15 

compounds. The second concentration consisted of 28 mg.L-1 of tyrosol and 

oleuropein glycoside, and 14 mg.L-1 of the other compounds. The third 
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concentration consisted of 42 mg.L-1 of tyrosol and oleuropein glycoside, and 21 

mg.L-1 for the remaining compounds.  

 

3.2.5. EVOO samples 

The EVOO samples were acquired in supermarkets of Campinas (São 

Paulo, Brazil) and comprised 15 different brands. They were coded by numbering 

them from 1 to 15, and these codes were used throughout this study when 

referring to the samples. The maximum acidity, as described on the label, varied 

from 0.2 to 0.8% in oleic acid. All the samples available were imported from other 

countries, Spain, Portugal, Italy, Greece and Chile, and they were analyzed before 

their expiration dates. Most of the labels did not display any information about the 

varieties of olives from which the olive oil had been extracted. Only sample nº 2 

(Hojiblanca) and samples nº 10 and nº 11 (Arbequina) presented the olive variety 

for the consumer. These three samples came from Spain. 

 

3.2.6. Phenolic compound extractions from the EVOO samples 

The procedure for phenolic compound extractions was based on the works 

of Pirisi, Cabras, Cao, Migliorini, & Muggelli (2000) and Bonoli, Montanucci, Gallina 

Toschi, & Lercker (2003). Hexane (1 mL) and methanol:water (60:40, v/v, 2 mL) 

were added to EVOO (2 g) in a centrifuge tube. This mixture was stirred for 2 min 

in a vortex apparatus, and the tube was centrifuged at 5,000 rpm for 5 min. The 

methanol:water layer was separated and the extraction repeated twice. The 

extracts were combined and evaporated to dryness at 39ºC under reduced 
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pressure. Samples were re-dissolved in methanol:water (30:70, v/v, 1 mL) and 

filtered through a 0.45 μm PVDF membrane (Millipore, USA) before capillary 

electrophoresis analysis. All the samples were extracted in triplicate (n = 3). Peak 

identification in the samples was achieved by comparing the migration time and the 

UV spectra to those obtained for the phenolic compound standards, as well as by 

spiking. 

A recovery assay was also performed at two concentration levels, to 

estimate the trueness of the extraction technique, since there are no certified 

reference materials (CRM) for these kinds of compounds in this matrix. The first 

level consisted of the addition of 14 mg.kg-1 of tyrosol and oleuropein glycoside, 

and 7 mg.kg-1 for the others compounds. For the second level, 18 mg.kg-1 of 

tyrosol and oleuropein glycoside, and 10 mg.kg-1 of the other compounds were 

added. The appropriate volume of standard mixture was added to EVOO samples 

and the tubes were stirred for five min. The whole extraction procedure was 

completed as described above. The results were calculated as the percentage of 

recovery (%) for each compound. The recovery assays were executed in triplicate, 

for each concentration level (n = 3). 
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3.3. Results and discussion 

 

3.3.1. Models calculation and validation 

Table 3.1 summarizes all the results obtained in the Doehlert design 

experiments for the large number of responses evaluated in this study. For 

resolution, 18 responses were investigated, considering all the peaks that co-

eluted at least once in the design experiments. It must be pointed out that this is 

the first work to deal with such a large number of resolutions to be optimized 

simultaneously. Among the 17 compounds, o-coumaric acid, apigenin and luteolin 

were the most susceptible to variations in the experimental conditions, each being 

involved in four co-elutions, followed by sinapinic acid, ferulic acid and p-coumaric 

acid, with three co-elutions each. Only cinnamic acid did not co-elute under any of 

the experimental conditions examined. Table 3.1 also contains the results for 

runtime and migration time RSD for the compounds, giving 37 responses to be 

considered in the optimization procedure. 

From the results presented in Table 3.1, models for all 37 responses were 

calculated as well as verified for regression significance and possible significant 

model lack of fit to the experimental data. Complete linear and quadratic models 

were calculated for each of the 37 response values and applied in the optimization 

process. However, only the significant coefficients at the 95% confidence level are 

given in Table 3.2. The model for the electro-osmotic flow (solvent) migration time 

RSD was not significant indicating it did not depend on pH or BOR levels and could 

be removed from the optimization procedure. All the other models presented 
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significant regressions, but some of them also presented significant lack of fit 

(ANOVA, 95%). Five out of the 18 models for resolution  presented lack of fit 

(SYR/FER, syringic acid/ferulic acid; TYR/OLE, tyrosol/oleuropein glycoside; 

FER/LUT, ferulic acid/luteolin; LUT/o-CUM, luteolin/o-coumaric acid; and o-

CUM/VAN, o-coumaric acid/vanillic acid). The model for runtime (RTIM) also 

suffered from lack of fit, as did seven models for the migration time RSD values 

(HYD, hydroxytyrosol; CIN, cinnamic acid; API, apigenin; LUT, luteolin; CAF, 

caffeic acid; GAL, gallic acid; and 3,4-D, 3,4-dihydroxybenzoic acid). 
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Table 3.1. Doehlert design experiments and the results obtained for each one of the thirty seven responses. 

pH BOR (mmol L-1)

(x1) (x2) EOF/TYR SYR/FER p-CUM/API TYR/OLE o-CUM/p-CUM 3,4-D/GAL SIN/LUT p-HYD/3,4-D SIN/FER FER/LUT LUT/o-CUM o-CUM/API LUT/API SIN/API o-CUM/VAN SYR/CAF p-CUM/CAF PIN/HYD

1 0 0 26.77 2.30 29.52 20.20 5.39 7.01 2.61 3.57 25.04 26.15 40.52 27.98 14.59 12.78 13.11 17.87 0.00 28.05 21.06

2 0 0 21.20 2.04 31.90 21.60 7.22 6.83 -1.25 -1.24 26.40 27.70 41.11 24.01 16.92 16.52 13.73 25.56 4.68 33.41 20.09

3 0 0 23.92 2.29 37.31 21.68 7.03 7.78 1.99 3.77 26.31 27.01 41.73 28.33 15.28 14.01 13.99 21.68 1.46 30.94 20.94

4 1 0 43.41 6.11 57.16 -10.07 -3.36 -14.17 19.47 30.71 25.51 41.46 69.16 60.09 19.00 -1.21 2.08 -0.83 -30.21 -14.98 28.31

5 0.5 0.866 36.57 4.54 56.06 1.19 1.67 -1.93 19.96 33.91 31.22 48.72 79.40 58.48 24.85 5.58 7.43 6.74 -21.71 0.71 41.78

6 -1 0 3.56 -1.59 -1.32 28.25 9.46 -10.25 -48.24 -49.15 20.15 -28.61 -23.99 -10.12 -14.19 35.05 15.59 74.33 61.93 80.15 15.99

7 -0.5 -0.866 10.05 0.00 8.80 29.33 8.80 7.07 -22.56 -21.08 16.75 -2.13 1.91 0.00 1.91 21.62 14.98 35.75 25.58 45.86 13.22

8 0.5 -0.866 15.87 4.51 34.70 0.83 0.73 -0.68 9.64 9.57 19.53 26.59 47.79 38.16 12.97 3.81 7.49 7.12 -6.53 4.32 14.94

9 -0.5 0.866 8.94 -1.51 15.05 29.93 12.49 15.40 -34.73 -32.78 27.62 -0.81 7.67 1.63 6.30 33.12 20.13 58.07 35.56 73.34 23.63

pH BOR (mmol L-1)
(x1) (x2) EOF TYR PIN OLE HYD SIN CIN SYR FER o-CUM p-CUM API VAN LUT p-HYD CAF GAL 3,4-D

1 0 0 0.49 1.20 2.66 0.51 0.41 1.40 0.85 1.66 1.35 2.56 1.81 0.35 1.75 0.82 1.25 1.58 0.65 1.75

2 0 0 0.11 0.66 2.15 0.31 0.67 1.00 0.76 1.38 1.03 1.96 1.47 0.23 1.40 0.87 1.99 1.23 0.67 1.29

3 0 0 0.53 1.22 3.24 0.53 0.64 1.88 0.63 2.12 1.78 3.21 2.53 0.51 2.39 0.77 3.07 1.35 0.61 1.47

4 1 0 0.41 2.00 4.32 1.78 3.61 5.48 4.58 8.17 8.78 10.92 11.98 9.87 10.81 8.84 9.26 11.91 12.80 16.48

5 0.5 0.866 0.29 2.64 7.28 0.59 2.48 4.11 2.64 5.76 4.74 9.73 7.45 0.94 7.09 2.41 11.59 2.87 3.21 2.71

6 -1 0 0.22 0.31 0.07 0.41 0.61 0.40 0.77 0.45 0.42 0.51 0.55 0.52 0.49 0.88 0.54 1.27 1.32 1.40

7 -0.5 -0.866 0.29 0.35 1.08 0.52 0.85 0.30 1.07 0.25 0.48 0.27 0.31 0.87 0.32 1.46 0.32 1.87 1.84 2.24

8 0.5 -0.866 1.92 2.57 2.88 2.85 3.69 3.92 4.29 4.34 4.46 4.36 4.86 5.16 5.12 5.29 5.66 6.92 6.97 8.16

9 -0.5 0.866 0.56 0.93 1.27 0.46 0.54 1.27 0.68 1.53 1.42 1.77 1.89 0.74 1.80 0.85 2.03 0.96 0.79 0.97

RTIM (min) bExperiment
Variables a

Resolution (RS) b

Experiment
Variables a

Migration time RSD values (%) b

a Codified values of experimental factors: x1 = (pH – 9.75)/0.75; x2 = ([BOR] – 80)/46.2; BOR, boric acid concentration. 
b Responses: EOF/TYR, electroosmotic flow/tyrosol; SYR/FER, syringic acid/ferulic acid; p-CUM/API, p-coumaric acid/apigenin; TYR/OLE, 
tyrosol/oleuropein glycoside; o-CUM/p-CUM, o-coumaric acid/p-coumaric acid; 3,4-D/GAL, 3,4-dihydroxybenzoic acid/gallic acid; SIN/LUT, sinapinic 
acid/luteolin; p-HYD/3,4-D, p-hydroxybenzoic acid/3,4-dihydroxybenzoic acid; SIN/FER, sinapinic acid/ferulic acid; FER/LUT, ferulic acid/luteolin; LUT/o-
CUM, luteolin/o-coumaric acid; o-CUM/API, o-coumaric acid/apigenin; LUT/API, luteolin/apigenin; SIN/API, sinapinic acid/apigenin; o-CUM/VAN, o-coumaric 
acid/vanillic acid; SYR/CAF, syringic acid/caffeic acid; p-CUM/CAF, p-coumaric acid/caffeic acid; PIN/HYD, (+)-pinoresinol/hydroxytyrosol; RTIM, runtime; 
EOF, electroosmotic flow; TYR, tyrosol; PIN, (+)-pinoresinol; OLE, oleuropein glycoside; HYD, hydroxytyrosol; SIN, sinapinic acid; CIN, cinnamic acid; SYR, 
syringic acid; FER, ferulic acid; o-CUM, o-coumaric acid; p-CUM, p-coumaric acid; API, apigenin; VAN, vanillic acid; LUT, luteolin; p-HYD, p-hydroxybenzoic 
acid; CAF, caffeic acid; GAL, gallic acid; 3,4-D, 3,4-dihydroxybenzoic acid. RSD, relative standard deviation. 
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Table 3.2. Significant model coefficients, their standard errors, and ANOVA 
summary, considering the statistical significance of the regression and the lack of 
fit. a 

Regression Model 
Significance Fit

(p  < 0.05) (p  > 0.05)

Resolutions (RS)

EOF/TYR Linear 21.14 ± 2.02 18.86 ± 3.49 0.0040 0.1363

SYR/FER Linear 2.08 ± 0.20 4.32 ± 0.35 < 0.0001 0.0378

p-CUM/API Linear 29.91 ± 1.62 30.64 ± 2.81 7.97 ± 2.81 <0.0001 0.3986

TYR/OLE Linear 15.88 ± 2.10 -22.31 ± 3.64 0.0026 0.0117

o-CUM/p-CUM Linear 5.49 ± 0.69 -7.42 ± 1.20 0.0023 0.1496

3,4-D/GAL Quadratic 7.21 ± 0.26 -12.32 ± 0.26 2.05 ± 0.26 -9.17 ± 0.40 -5.53 ± 0.51 0.0001 0.6460

SIN/LUT Quadratic 37.05 ± 2.79 -15.50 ± 4.41 0.0063 0.0635

p-HYD/3,4-D 2FI -2.52 ± 2.21 42.84 ± 3.82 20.80 ± 7.64 0.0005 0.1079

SIN/FER Quadratic 25.92 ± 0.38 2.85 ± 0.38 6.51 ± 0.38 -3.08 ± 0.61 0.0024 0.6393

FER/LUT Quadratic 26.95 ± 1.17 36.40 ± 1.17 6.77 ± 1.17 -20.53 ± 1.85 12.01 ± 2.34 0.0004 0.0499

LUT/o-CUM Quadratic 41.12 ± 3.34 50.65 ± 3.34 10.79 ± 3.34 -18.53 ± 5.28 0.0041 0.0037

o-CUM/API Linear 25.40 ± 1.97 39.24 ± 3.42 < 0.0001 0.1069

LUT/API Quadratic 15.60 ± 0.75 16.00 ± 0.75 4.70 ± 0.75 -13.19 ± 1.18 0.0011 0.3482

SIN/API Linear 15.70 ± 0.99 -19.65 ± 1.71 < 0.0001 0.2561

o-CUM/VAN Linear 12.06 ± 0.90 -7.87 ± 1.55 0.0063 0.0187

SYR/CAF Quadratic 21.70 ± 1.93 -38.38 ± 1.93 6.33 ± 1.93 15.05 ± 3.05 -13.10 ± 3.85 0.0019 0.6603

p-CUM/CAF Quadratic 2.05 ± 1.19 -45.61 ± 1.19 13.81 ± 1.88 -14.53 ± 2.38 0.0003 0.6846

PIN/HYD 2FI 31.31 ± 1.33 -50.74 ± 2.30 6.89 ± 2.30 -17.95 ± 4.59 < 0.0001 0.2604

Runtime (min)

RTIM 2FI 22.22 ± 0.71 7.42 ± 1.23 10.75 ± 1.23 9.48 ± 2.45 0.0005 0.0368

Migration time RSD values (%)

EOF 2FI 0.0946 0.2140

TYR Linear 1.32 ± 0.18 1.22 ± 0.31 0.0221 0.2129

PIN Linear 2.77 ± 0.39 2.72 ± 0.68 0.0126 0.1377

OLE Quadratic 0.45 ± 0.16 0.86 ± 0.16 -0.67 ± 0.16 -1.27 ± 0.32 0.0249 0.0685

HYD Quadratic 0.57 ± 0.25 1.80 ± 0.25 1.54 ± 0.40 0.0243 0.0364

SIN Linear 2.19 ± 0.27 2.77 ± 0.47 0.0029 0.1879

CIN Quadratic 0.75 ± 0.19 2.13 ± 0.19 1.93 ± 0.30 1.25 ± 0.30 0.0068 0.0367

SYR Quadratic 1.72 ± 0.20 3.96 ± 0.20 0.78 ± 0.20 2.59 ± 0.31 0.0016 0.5795

FER Quadratic 1.39 ± 0.23 4.00 ± 0.23 3.21 ± 0.37 0.0023 0.3721

o-CUM Quadratic 2.58 ± 0.37 5.48 ± 0.37 1.98 ± 0.37 3.14 ± 0.58 0.0036 0.3980

p-CUM Quadratic 1.94 ± 0.31 5.50 ± 0.31 1.21 ± 0.31 4.32 ± 0.49 0.0021 0.4223

API Quadratic 0.36 ± 0.66 3.86 ± 0.66 4.84 ± 1.05 0.0324 0.0049

VAN Quadratic 1.85 ± 0.24 5.12 ± 0.24 1.00 ± 0.24 3.80 ± 0.38 0.0013 0.8747

LUT Quadratic 0.82 ± 0.35 3.55 ± 0.35 4.04 ± 0.55 0.0078 0.0026

p-HYD Linear 3.97 ± 0.72 5.39 ± 1.25 0.0102 0.1147

CAF Quadratic 1.39 ± 0.51 4.71 ± 0.51 5.20 ± 0.80 0.0102 0.0137

GAL Quadratic 0.64 ± 0.53 5.08 ± 0.53 6.42 ± 0.84 0.0085 0.0004

3,4-D Quadratic 1.51 ± 1.01 6.30 ± 1.01 7.43 ± 1.60 0.0297 0.0058
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Responses b Indicated Model
Significant coefficients ± standard error

Intercept A (pH) B (BOR) B2A2 AB

a Bold values in Regression Significance means this model does not present significant regression. Bold values in Model Fit 
means this model presents lack of fit. 
b Responses: EOF/TYR, electroosmotic flow/tyrosol; SYR/FER, syringic acid/ferulic acid; p-CUM/API, p-coumaric 
acid/apigenin; TYR/OLE, tyrosol/oleuropein glycoside; o-CUM/p-CUM, o-coumaric acid/p-coumaric acid; 3,4-D/GAL, 3,4-
dihydroxybenzoic acid/gallic acid; SIN/LUT, sinapinic acid/luteolin; p-HYD/3,4-D, p-hydroxybenzoic acid/3,4-
dihydroxybenzoic acid; SIN/FER, sinapinic acid/ferulic acid; FER/LUT, ferulic acid/luteolin; LUT/o-CUM, luteolin/o-coumaric 
acid; o-CUM/API, o-coumaric acid/apigenin; LUT/API, luteolin/apigenin; SIN/API, sinapinic acid/apigenin; o-CUM/VAN, o-
coumaric acid/vanillic acid; SYR/CAF, syringic acid/caffeic acid; p-CUM/CAF, p-coumaric acid/caffeic acid; PIN/HYD, (+)-
pinoresinol/hydroxytyrosol; RTIM, runtime; EOF, electroosmotic flow; TYR, tyrosol; PIN, (+)-pinoresinol; OLE, oleuropein 
glycoside; HYD, hydroxytyrosol; SIN, sinapinic acid; CIN, cinnamic acid; SYR, syringic acid; FER, ferulic acid; o-CUM, o-
coumaric acid; p-CUM, p-coumaric acid; API, apigenin; VAN, vanillic acid; LUT, luteolin; p-HYD, p-hydroxybenzoic acid; 
CAF, caffeic acid; GAL, gallic acid; 3,4-D, 3,4-dihydroxybenzoic acid.
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As with Ballus et al. (2011), pH was the strongest factor affecting peak-pair 

resolutions in the phenolic compound separations, presenting the most complex 

behavior. All the pH coefficients for the resolution models were significant and most 

of them had high values. The different algebraic signs of the pH coefficients mean 

that, while some peak-pair resolutions increased with increasing pH, other peak-

pairs lost resolution. This explains the difficulty in separating a large number of 

compounds in the same run using a single pH value. Also, the curvature effects 

given by the squared coefficients (Table 3.2) for pH were significant for the (3,4-

D/GAL, 3,4-dihydroxybenzoic acid/gallic acid), (SIN/LUT, sinapinic acid/luteolin), 

(SIN/FER, sinapinic acid/ferulic acid), (FER/LUT, ferulic acid/luteolin), (LUT/o-

CUM, luteolin/o-coumaric acid), (LUT/API, luteolin/apigenin), (SYR/CAF, syringic 

acid/caffeic acid) and (p-CUM/CAF, p-coumaric acid/caffeic acid) resolution 

models. 

Boric acid concentration displayed  simpler behavior with only positive 

coefficients. In all cases an increase in the boric acid concentration improved 

separation between the compound pairs within the design domain.  

The effects of the BOR and pH interaction were significant for some of the 

resolution models, also presenting different algebraic signs. This can be explained 

by the complex mechanism of the phenolic compound separations in borate 

buffers. In this system, pH and the formation of borate-hydroxyl groups had a role 

in the resolution of compounds being separated. 

The RSD of migration times increased at higher pH values, and this factor 

was significant for all the models of this response. Also, the curvature effect for pH 
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was significant for most of the migration time RSD models. So, in general, it was 

better to work at lower pH values to ensure greater stability for the phenolic 

compound migration times. The boric acid concentration had little effect on the 

migration time RSD values.  

 

3.3.2. Multi-criteria optimization using Derringer’s desirability function 

None of the Doehlert experimental conditions resulted in the separation of 

all 17 phenolic compounds. The next step was to use Derringer’s desirability 

function to optimize the separation, employing the models for the 37 responses 

simultaneously. All the models were combined to search for the maximum 

resolution between peak-pairs in the shortest runtime with the best migration time 

stabilities (lower migration time RSD values). 

Before searching for the optimum set of experimental conditions using the 

desirability function, it was necessary to evaluate the models that presented lack of 

fit. Two approaches were used. The first trial was carried out using all the models 

within the whole experimental region of the design (between -1.00 and 1.00 for the 

two variables). To define the desirability function, lower and upper limits for each 

response were specified, based on experimental data, respectively. With these 

parameters, only two possible conditions with maximum resolutions and minimum 

runtime and migration time RSD values were predicted. These were largely the 

same and one was chosen to perform an experimental verification in triplicate (pH 

= -0.25; BOR = 0.40). The global desirability for this condition was 0.70. The 

codified values obtained correspond to real values of pH = 9.56 and BOR = 98.5 
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mmol.L-1. On execution, the 17 phenolic compounds did not separate. 

Furthermore, there were huge discrepancies between predicted and observed 

values. This can easily be explained by the use of all models including those with a 

lack of fit leading to the erroneous prediction of  optimal conditions. Even though it 

corresponds to a high desirability value, these conditions did not work adequately 

when running real experiments in the laboratory. 

After this, another desirability search was performed but more detailed 

observations of the models with lack of fit were performed first. Of the 13 models 

suffering from lack of fit, eight presented a mean square lack of fit/mean square 

pure error ratio between one and four times higher than the critical F value at the 

95% confidence level. Just five models (LUT/o-CUM, luteolin/o-coumaric acid; API, 

apigenin; LUT, luteolin; GAL, gallic acid; and 3,4-D, 3,4-dihydroxybenzoic acid) 

showed a mean square lack of fit/mean square pure error ratio higher than the 

critical F value (between 9 and 132 times higher). All the electropherograms and 

resolution data were inspected to find the experimental region where responses 

presented attractive values for optimization. After this, desirability function 

optimization using all models was carried out restricting the experimental region to 

that sub-region (between -1.00 and 0.00 for pH and between 0.00 and 1.00 for 

BOR). Again, for all responses, lower and upper limits were defined as those 

obtained experimentally. However, optimization criteria for responses from the five 

models with lack of fit were chosen so the predicted values were "in range" since 

the "out of range" predictions were not expected to be accurate. As a result, 12 

sets of conditions were predicted. To select the best conditions among the 12, 
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those presenting poor predicted resolutions were eliminated. After inspection of all 

the predicted responses, just two conditions seemed promising. Both were 

basically the same, and one was chosen to perform  experimental verification in 

triplicate (pH = -0.80 and BOR = 0.46, with a desirability value of 0.45). These 

codified values correspond to the laboratory values of pH = 9.15 and BOR = 101.3 

mmol.L-1. These experiments confirmed the separation of all 17 phenolic 

compounds with good resolution, short runtime and the best stability. Table 3.3 

summarizes the optimization data using Derringer’s desirability function, and the 

predicted and observed response values for the optimal condition. Figure 3.1 

presents the resulting electropherogram with the 17 phenolic compounds 

separated in 19 min. 

The experimental values were very close to the predicted ones, with few 

exceptions (p-CUM/API, p-coumaric acid/apigenin; p-HYD/3,4-D, p-hydroxybenzoic 

acid/3,4-dihydroxybenzoic acid; o-CUM/API, o-coumaric acid/apigenin; SIN/API, 

sinapinic acid/apigenin; and RTIM, runtime), as can be seen in Table 3.3. These 

differences may have arisen from restrictions in the experimental region that could 

compromise the models, even for those that did not present lack of fit. 

Nevertheless, the observed values resulted in adequate compound separation with 

only some co-elution of syringic and ferulic acids. The resolution of this peak pair 

did not improve within this experimental region. However method applicability is not 

seriously affected, since both compounds are found in only a few EVOO samples. 

In summary, the separation of the 17 phenolic compounds from EVOO was 

performed in only 19 min, using a fused-silica capillary of 50 µm internal diameter 
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and 72 cm of effective length with extended light path, 101.3 mmol.L-1 of boric acid 

electrolyte at 9.15 pH, 30 kV, 25ºC, injection of 0.5 Pa for five seconds, and 

detection at 210 nm. 
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Table 3.3. Desirability criteria, predicted optimal variables and responses, and 
experimentally observed responses for the predicted variables. 
Variables and Predicted Predicted

Responses a Variables Responses
Goal Lower Limit Upper Limit (Codified)

Variables

pH is in range -1.00 0.00 -0.80

BOR is in range 0.00 1.00 0.46

Resolutions (RS)

EOF/TYR maximize 3.56 43.40 8.77 6.22 ± 0.12

SYR/FER maximize -1.59 6.10 -1.56 -1.94 ± 0.14

p-CUM/API maximize -1.31 57.20 9.24 3.67 ± 0.71

TYR/OLE maximize -10.06 29.92 33.75 34.66 ± 0.71

o-CUM/p-CUM maximize -3.36 12.49 12.01 11.51 ± 0.48

3,4-D/GAL maximize -14.17 15.40 14.21 13.95 ± 1.44

SIN/LUT maximize -48.24 19.95 -44.36 -44.11 ± 1.17

p-HYD/3,4-D maximize -49.15 33.91 -42.56 -48.89 ± 6.88

SIN/FER maximize 16.75 31.22 24.15 23.76 ± 1.29

FER/LUT maximize -28.61 48.72 -17.32 -19.83 ± 2.58

LUT/o-CUM is in range -23.99 79.40 -12.03 -14.85 ± 1.34

o-CUM/API maximize -10.12 60.10 -2.87 -8.47 ± 0.40

LUT/API maximize -14.20 24.85 -5.11 -6.91 ± 1.58

SIN/API maximize -1.21 35.05 33.09 38.49 ± 1.41

o-CUM/VAN maximize 2.07 20.13 19.00 18.74 ± 0.75

SYR/CAF maximize -0.83 74.30 69.90 74.49 ± 5.69

p-CUM/CAF maximize -30.20 61.90 52.48 54.53 ± 5.87

PIN/HYD maximize -14.98 80.14 81.45 81.49 ± 1.12

Runtime (min)

RTIM minimize 13.22 41.78 17.81 19.51 ± 0.11

Migration time RSD values (%)

EOF minimize 0.11 1.92 0.52 0.28 ± 0.19

TYR minimize 0.30 2.64 0.44 0.32 ± 0.20

PIN minimize 0.07 7.28 1.23 0.60 ± 0.33

OLE minimize 0.30 2.84 0.47 0.32 ± 0.18

HYD minimize 0.40 3.69 0.37 0.56 ± 0.20

SIN minimize 0.30 5.47 0.15 0.76 ± 0.35

CIN minimize 0.63 4.58 0.53 0.66 ± 0.18

SYR minimize 0.25 8.16 0.71 0.82 ± 0.42

FER minimize 0.42 8.77 0.71 0.85 ± 0.40

o-CUM minimize 0.27 10.92 0.49 0.78 ± 0.40

p-CUM minimize 0.30 11.97 0.82 0.95 ± 0.44

API is in range 0.22 9.86 0.74 0.62 ± 0.32

VAN minimize 0.31 10.80 0.76 1.00 ± 0.48

LUT is in range 0.76 8.83 0.76 0.68 ± 0.21

p-HYD minimize 0.31 11.59 0.71 1.11 ± 0.50

CAF minimize 0.96 11.90 1.07 1.05 ± 0.24

GAL is in range 0.60 12.79 0.86 1.05 ± 0.25

3,4-D is in range 0.96 16.47 1.23 1.15 ± 0.26

(Mean ± SD, n = 3) b
Desirability criteria for variables and responses Observed Responses

a BOR, boric acid concentration; EOF/TYR, electroosmotic flow/tyrosol; SYR/FER, syringic acid/ferulic acid; p-CUM/API, p-
coumaric acid/apigenin; TYR/OLE, tyrosol/oleuropein glycoside; o-CUM/p-CUM, o-coumaric acid/p-coumaric acid; 3,4-
D/GAL, 3,4-dihydroxybenzoic acid/gallic acid; SIN/LUT, sinapinic acid/luteolin; p-HYD/3,4-D, p-hydroxybenzoic acid/3,4-
dihydroxybenzoic acid; SIN/FER, sinapinic acid/ferulic acid; FER/LUT, ferulic acid/luteolin; LUT/o-CUM, luteolin/o-coumaric 
acid; o-CUM/API, o-coumaric acid/apigenin; LUT/API, luteolin/apigenin; SIN/API, sinapinic acid/apigenin; o-CUM/VAN, o-
coumaric acid/vanillic acid; SYR/CAF, syringic acid/caffeic acid; p-CUM/CAF, p-coumaric acid/caffeic acid; PIN/HYD, (+)-
pinoresinol/hydroxytyrosol; RTIM, runtime; EOF, electroosmotic flow; TYR, tyrosol; PIN, (+)-pinoresinol; OLE, oleuropein 
glycoside; HYD, hydroxytyrosol; SIN, sinapinic acid; CIN, cinnamic acid; SYR, syringic acid; FER, ferulic acid; o-CUM, o-
coumaric acid; p-CUM, p-coumaric acid; API, apigenin; VAN, vanillic acid; LUT, luteolin; p-HYD, p-hydroxybenzoic acid; 
CAF, caffeic acid; GAL, gallic acid; 3,4-D, 3,4-dihydroxybenzoic acid. 
b SD, standard deviation 
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Figure 3.1. Electropherogram for the optimal separation of seventeen phenolic compounds. Fused-silica capillary of 

50 µm internal diameter and 72 cm of effective length with extended light path, 101.3 mmol.L-1 of boric 
acid electrolyte at 9.15 pH, 30 kV, 25ºC, injection of 0.5 Pa for 5 seconds, and detection at 210 nm. Peak 
identification: 0, solvent; 1, tyrosol; 2, (+)-pinoresinol; 3, oleuropein glycoside; 4, hydroxytyrosol; 5, 
cinnamic acid; 6, sinapinic acid; 7, syringic acid; 8, ferulic acid; 9, o-coumaric acid; 10, apigenin; 11, p-
coumaric acid; 12, luteolin; 13, vanillic acid; 14, p-hydroxybenzoic acid; 15, caffeic acid; 16, gallic acid; 
17, 3,4-dihydroxybenzoic acid. 
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3.3.3. Method validation  

Before validation, it was noted that even though RSD migration time values 

for the nine injections were very low at the optimal condition, co-elution between 

cinnamic and sinapinic acids as well as between luteolin and vanillic acid occurred 

after just three injections. This is because separation of all 17 phenolic compounds 

was only achieved in a very narrow pH range, and even a small modification in 

electrolyte pH lead to variations in migration times. After a few injections, the high 

voltage applied promoted changes in electrolyte pH and, consequently, in 

migrations of the compounds. Since the peaks were very close, even a small 

change in migration time led to co-elution of some compounds. As injections were 

performed using the same electrolyte, the  sinapinic acid and luteolin peaks started 

to move towards each other resulting in co-elution after the third injection. So, all 

system vials (electrolyte, NaOH, water) were changed after three successive 

injections, avoiding the co-elution problem. Other conditioning protocols were also 

evaluated, but none eliminated undesired peak displacement.  

The results obtained after performing validation are presented in Tables 3.4 

and 3.5. All parameters were evaluated according to the Harmonized Guidelines 

for Single-Laboratory Validation of Methods of Analysis IUPAC/ISO/AOAC 

International (Thompson, Ellison, & Wood, 2002). 
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Table 3.4. Figures of merit for method validation for the separation of 17 phenolic compounds from extra-virgin olive 
oil. 

LOD LOQ Intra-assay Precision Linearity Lack of Fit Test

(mg.L-1) a (mg.L-1) a LOQ (n = 7) a (mg.L-1) (p  > 0.05)

Tyrosol 2.50 4.38 8.31 9.2 - 45.8 0.9902 0.216

(+)-Pinoresinol 0.60 1.20 10.57 4.4 - 22.0 0.9941 0.404

Oleuropein glycoside 2.37 4.14 9.41 8.7 - 43.4 0.9973 0.356

Hydroxytyrosol 1.20 2.10 6.86 4.4 - 22.0 0.9963 0.383

Cinnamic acid 1.19 2.08 9.63 4.4 - 21.8 0.9917 0.650

Sinapinic acid 1.19 2.09 7.69 4.4 - 21.9 0.9932 0.260

Syringic acid 1.18 2.07 9.77 4.3 - 21.7 0.9969 0.224

Ferulic acid 1.18 2.07 8.39 4.3 - 21.7 0.9962 0.337

o -Coumaric acid 1.19 2.08 8.07 4.4 - 21.8 0.9946 0.380

Apigenin 1.48 2.58 8.83 5.4 - 27.1 0.9835 0.176

p -Coumaric acid 1.21 2.11 7.81 4.4 - 22.1 0.9949 0.797

Luteolin 1.20 2.10 8.89 4.4 - 22.0 0.9810 0.147

Vanillic acid 1.20 2.10 5.63 4.4 - 22.0 0.9952 0.496

p -Hydroxybenzoic acid 1.23 2.16 5.89 4.5 - 22.6 0.9919 0.690

Caffeic acid 1.24 2.16 7.05 4.5 - 22.7 0.9952 0.158

Gallic acid 1.25 2.18 9.95 4.6 - 22.9 0.9953 0.051

3,4-Dihydroxybenzoic acid 0.66 1.32 10.83 4.8 - 24.2 0.9949 0.088

Compounds Equation r 2

40.2124.2 −= xy

77.1844.0 −= xy

00.2240.2 −= xy

82.0030.3 −= xy

58.1433.1 −= xy

39.3049.2 −= xy

45.1316.2 −= xy

93.1683.2 −= xy

24.5448.2 −= xy

71.1549.2 −= xy

44.2984.2 −= xy

80.3198.3 −= xy

15.0160.3 += xy

72.5380.5 −= xy

99.6362.7 −= xy

75.0772.0 −= xy

59.3617.3 −= xy

 
a LOD, limit of detection; LOQ, limit of quantification. 
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Table 3.5. Precision results for the separation method of 17 phenolic compounds from extra-virgin olive oil and 
recovery results for the liquid-liquid extraction method. 

First Level Second Level Third Level First Level Second Level Third Level

Tyrosol 2.75 2.38 2.79 2.11 0.93 2.79 82.20 ± 7.61 76.68 ± 0.09

(+)-Pinoresinol 2.66 2.15 1.90 3.89 5.03 5.17 78.99 ± 1.69 78.51 ± 3.56

Oleuropein glycoside 3.19 2.42 1.85 9.74 10.02 1.45 95.37 ± 0.64 91.20 ± 3.12

Hydroxytyrosol 4.30 2.04 2.31 5.55 8.62 0.99 80.93 ± 1.16 83.98 ± 4.81

Cinnamic acid 3.30 2.08 1.80 6.78 8.90 0.39 67.06 ± 0.36 59.87 ± 2.66

Sinapinic acid 2.91 3.12 2.08 3.03 10.88 8.95 88.52 ± 1.32 90.31 ± 6.32

Syringic acid 4.80 3.23 2.11 13.50 8.59 0.98 95.97 ± 0.66 92.92 ± 6.34

Ferulic acid 2.94 2.85 2.11 6.66 6.03 0.85 98.53 ± 4.10 87.08 ± 3.03

o -Coumaric acid 3.75 2.19 2.70 8.18 11.13 0.59 91.43 ± 1.01 87.06 ± 5.09

Apigenin 3.84 3.30 4.68 5.82 8.41 16.45 102.06 ± 1.33 99.44 ± 5.99

p -Coumaric acid 2.42 2.63 2.24 5.47 6.54 4.73 91.42 ± 2.92 88.69 ± 3.78

Luteolin 2.38 3.12 2.30 12.78 4.25 3.25 77.60 ± 4.07 79.37 ± 3.67

Vanillic acid 3.93 2.30 1.83 7.96 8.51 0.69 96.43 ± 0.34 90.71 ± 4.56

p -Hydroxybenzoic acid 4.13 2.46 2.43 5.48 5.09 1.33 90.35 ± 0.74 85.79 ± 4.17

Caffeic acid 3.23 2.32 1.99 6.77 9.56 1.01 92.54 ± 1.22 88.05 ± 3.07

Gallic acid 3.60 1.94 1.89 11.64 13.44 1.25 90.78 ± 0.05 84.67 ± 3.96

3,4-Dihydroxybenzoic acid 3.00 2.30 1.87 5.87 10.54 1.17 92.03 ± 0.13 88.29 ± 2.96

Compounds Intra-assay Precision (%, n = 7) a Inter-assay Precision (%, n = 3) a

First Level Second Level
Recovery (%, mean ± SD, n = 3) b

 a Concentration of the standards. First Level: tyrosol and oleuropein glycoside: 10.0 mg.L-1; others compounds: 5.0 mg.L-1; Second Level: 
tyrosol and oleuropein glycoside: 28.0 mg.L-1; others compounds: 14.0 mg.L-1; Third Level: tyrosol and oleuropein glycoside: 42.0 mg.L-1; 
others compounds: 21.0 mg.L-1. 
b Concentration of the standards added to the sample: First Level: 14.0 mg.kg-1 of tyrosol and oleuropein glycoside; 7.0 mg.kg-1 for the 
others compounds; Second Level: 18.0 mg.kg-1 of tyrosol and oleuropein glycoside; 10.0 mg.kg-1 for the others compounds. SD, standard 
deviation. 
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The limits of detection were between 0.66 mg.L-1 [(+)-pinoresinol] to 1.25 

mg.L-1 (gallic acid). The exceptions were tyrosol (2.5 mg.L-1) and oleuropein 

glycoside (2.37 mg.L-1), which had higher limits of detection arising from lower 

molar absorptivity at 210 nm. The values for intra-assay precision at the limit of 

quantification were below 10% facilitating precision even at low concentrations. It 

was not possible to employ the on-line pre-concentration used in our previous work 

(Ballus et al., 2011). Increasing injection volume (large-volume sample stacking, 

LVSS), caused the tyrosol peak to split. So, reverse electrode polarity stacking 

mode (REPSM) was attempted. However, all combinations of reverse voltage 

values and times led to a reduction in tyrosol. It is possible that any reverse voltage 

application would be enough to push some of the tyrosol molecules out of the 

capillary, back to the injection vial. In this case, ionic strength-mediated stacking 

was used, since it naturally occurs in this system, given that the standards and 

samples were dissolved in methanol:water (30:70). 

After determining the linear range for each compound, residual plots and 

lack of fit tests were used to demonstrate the data were not heteroscedastic and 

presented and adequate fit. 

The inter-assay precision, evaluated at three different concentrations, was 

below 5% for all compounds and levels examined. For the inter-assay precision, 

also assessed at three levels, most compounds had RSD values below 5%, while 

some fell in the 5-10% range, and a few between 10 and 15%. Most of the values 

with more than 10% variation were from lower concentrations where greater 

variations would be expected to occur. 
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Recovery assays, at two concentration levels, presented adequate values 

for most compounds, in the 90 to 102% range. Tyrosol, (+)-pinoresinol, 

hydroxytyrosol, luteolin and cinnamic acid, with recoveries between 60 and 80%, 

were exceptions. Bendini, Bonoli, Cerretani, Biguzzi, Lercker, & Gallina Toschi 

(2003), using exactly the same LLE extraction procedure, obtained similar recovery 

values. Cinnamic acid, with the poorest recovery (67.1%) of the 17 compounds, 

also had a low recovery value in the previous study (73.6%). Carrasco Pancorbo, 

Cruces-Blanco, Segura-Carretero, & Fernández-Gutiérrez (2004) and Hrncirik, & 

Fritsche (2004), using a LLE method slightly different from the one used here but 

with the same solvent (methanol:water 60:40, v/v), obtained similar recoveries to 

those observed here. 

 

3.3.4. Phenolic compound contents of EVOO samples 

The optimized and validated separation method was applied to the analysis 

of 15 EVOO brands commercialized in Brazil. Table 3.6 presents the results. Using 

the optimized extraction method, and despite the LOQ for some compounds, it was 

possible to quantify tyrosol, (+)-pinoresinol, hydroxytyrosol, apigenin and luteolin in 

these samples. Apigenin was above the limit of quantification in just two samples 

(11 and 15), being detected but not quantified in all other samples. Luteolin was 

not quantified in only three samples (1, 3 and 7). The other three compounds were 

quantified in all samples. Figure 3.2 presents representative electropherograms for 

the polar extracts of the EVOO samples. The electropherogram for sample nº 1 

can be seen in Figure 3.2A, while the one for the same extract spiked with the 17 
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phenolic compound standards is shown in Figure 3.2B, which also shows the 

selectivity of the method in a polar extract. In Figure 3.2C, the electropherogram 

for sample nº 15 is presented and shows the greater quantities of luteolin and 

apigenin found. The (+)-pinoresinol capillary elution region has been enlarged in all 

the figures to show the good resolution with closely eluting compounds. 

In this study, tyrosol was determined in the 5.69 and 23.81 mg.kg-1 range, 

while (+)-pinoresinol occurred in concentrations from 1.77 to 6 mg.kg-1. For 

hydroxytyrosol, concentrations ranged from 3.87 to 36.3 mg.kg-1, apigenin between 

an unquantified lower level and 4.1 mg.kg-1 and luteolin from unquantified to 5.73 

mg.kg-1. Bendini et al. (2003) found a tyrosol contents of 49.2 mg.kg-1 and 62.8 

mg.kg-1 for hydroxytyrosol in virgin olive oil, using the same LLE extraction, and a 

CE-DAD separation method. Gómez Caravaca, Carrasco Pancorbo, Cañabate 

Díaz, Segura Carretero, & Fernández Gutiérrez (2005) found 2.62 mg.kg-1 of 

tyrosol and 10 mg.kg-1 of (+)-pinoresinol in Spanish Arbequina EVOO, and also 

3.78 mg.kg-1 of tyrosol and 6.97 mg.kg-1 of (+)-pinoresinol in Spanish Hojiblanca 

EVOO, using CE-DAD and a different LLE procedure. Carrasco-Pancorbo, Gómez-

Caravaca, Cerretani, Bendini, Segura-Carretero, & Fernández-Gutiérez (2006), 

employing solid-phase extraction (SPE) and CE-DAD, determined 7.3 mg.kg-1 for 

tyrosol, 3 mg.kg-1 for (+)-pinoresinol, 0.66 mg.kg-1 for luteolin and 2.2 mg.kg-1 for 

apigenin, in Spanish Hojiblanca EVOO, as well as 7.7 mg.kg-1 for tyrosol, 4.95 

mg.kg-1 for (+)-pinoresinol, 2.45 mg.kg-1 for luteolin and 1.26 mg.kg-1 for apigenin in 

Spanish Arbequina EVOO. Carrasco-Pancorbo, Gómez-Caravaca, Segura-

Carretero, Cerretani, Bendini, & Fernández-Gutiérrez (2009) analyzed Italian and 
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Spanish extra-virgin olive oil using SPE and CE-DAD. Italian samples contained 

0.47-49.61 mg.kg-1 tyrosol; 0.01-11.78 mg.kg-1 (+)-pinoresinol; and 4.52-84.34 

mg.kg-1 hydroxytyrosol. Spanish EVOO contained 3.42-13.45 mg.kg-1 tyrosol; 

unquantified-14.09 mg.kg-1 (+)-pinoresinol, and 1.28-16.57 mg.kg-1 hydroxytyrosol. 

All these literature results are consistent with those described in this study, despite 

differences in the extraction methods employed by each. 
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Table 3.6. Phenolic compound contents in extra-virgin olive oil samples (mean ± standard deviation, n = 3). 

1 Portugal 9.01 ± 0.34 2.99 ± 0.16 7.62 ± 0.19

2 Spain 16.29 ± 0.82 2.28 ± 0.16 22.26 ± 3.38 3.76 ± 0.46

3 Spain 14.21 ± 1.03 3.51 ± 0.27 8.64 ± 1.18

4 Chile 5.69 ± 0.09 1.99 ± 0.08 4.47 ± 0.11 3.08 ± 0.10

5 Italy 19.71 ± 0.83 2.52 ± 0.24 17.94 ± 2.25 2.25 ± 0.25

6 Greece 6.53 ± 0.65 2.95 ± 0.20 3.87 ± 0.32 2.50 ± 0.26

7 Italy 23.81 ± 1.60 2.87 ± 0.19 17.35 ± 0.79

8 Greece 17.76 ± 0.18 4.31 ± 0.05 11.38 ± 0.23 2.74 ± 0.12

9 Portugal 16.12 ± 1.07 2.84 ± 0.23 10.28 ± 0.87 2.07 ± 0.19

10 Spain 8.87 ± 0.31 3.14 ± 0.03 6.91 ± 0.08 3.82 ± 0.14

11 Spain 11.86 ± 1.32 1.77 ± 0.20 15.54 ± 2.08 2.36 ± 0.28 4.15 ± 0.76

12 Italy 19.27 ± 3.39 2.86 ± 0.30 17.65 ± 0.48 2.13 ± 0.28

13 Spain 16.71 ± 1.53 3.25 ± 0.32 10.61 ± 0.86 2.45 ± 0.23

14 Portugal 23.52 ± 0.79 2.98 ± 0.06 25.38 ± 0.33 1.84 ± 0.04

15 Chile 15.19 ± 0.88 6.00 ± 0.45 36.30 ± 0.30 4.10 ± 0.28 5.73 ± 0.27

Samples Country Phenolic Compounds Content (mg.kg-1)
Tyrosol (+)-Pinoresinol Hydroxytyrosol Apigenin Luteolin

nq

nq

nq

nq a nq

nq

nq nq

nq

nq

nq

nq

nq

nq

nq

nq

 
a nq, below the limit of quantification. 



Chapter III - Doehlert design-desirability function multi-criteria optimal separation... 

 

103 

 

 
Figure 3.2. Representative electropherograms obtained for the polar extracts of the 

extra-virgin olive oil samples. A) Electropherogram for the polar extract 
of sample nº 1. B) Electropherogram for the polar extract of sample nº 1 
spiked with the seventeen phenolic compound standards. C) 
Electropherogram for the polar extract of sample nº 15. Some regions of 
the electropherograms were enlarged to better visualize some of the 
compounds detected in the samples. Electrophoretic conditions and 
peak identification can be seen in Figure 3.1. 
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3.4. Conclusions 

A nine experiment Doehlert design used with Derringer’s desirability function 

resulted in the separation of the 17 phenolic compounds previously detected in 

EVOO, in only 19 minutes. The Doehlert design with more pH levels than boric 

acid electrolyte solution concentrations permitted accurate response surface 

analyses. This proved to be very important since the peak separations were very 

sensitive to pH. Although the optimal pH value found here (pH 9.15) was close to 

the value used to separate 13 peaks previously (pH 10.2), the difference (pH 1.05) 

is two third of the range investigated (i.e. proportionally large) and demonstrates 

this sensitivity to pH. On the other hand, the optimal boric acid electrolyte 

concentration (101.3 mmol L-1) is twice the concentration used previously (50 mmol 

L-1). 

This approach appears to be useful for dealing with optimization of peak 

separation, saving time and reagents as well as allowing mathematical analysis of 

the influence of each factor. Moreover, this is the first time this group of phenolic 

compounds has been separated using capillary electrophoresis and multivariate 

optimization. Furthermore, simultaneous evaluation of 37 responses, optimal peak 

resolution, run time and migration time stability has not previously been subjected 

to multivariate analysis and optimization such as described here. 

The method was successfully validated and applied to 15 EVOOs 

commercialized in Brazil. This is the first study to quantify these phenolic 

compounds in EVOO, which is becoming an important part of the Brazilian diet. 
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ABSTRACT 

Consumption of extra-virgin olive oil (EVOO) is highly recommended due to its 

human health benefits. Brazil is now beginning to experimentally produce EVOO, 

and there are no data on its chemical profile. The aim of this work was to 

determine the phenolic compound, tocopherol and fatty acid contents of 17 

monovarietal EVOOs produced from olive varieties cultivated in the southeast 

region of Brazil during two crop years. The chemical composition of Brazilian 

EVOO resembles that found in the literature for well-established EVOOs. The 

analyzed compounds comprised palmitic acid (6-12.6%), palmitoleic acid (0.2-

2.5%), stearic acid (1.6-2.2%), oleic acid (70.8-84.3%), linoleic acid (3.2-11.7%), α-

linolenic acid (0.6-1.4), arachidic acid (0.4-0.8%), 9-eicosenoic acid (0.4-0.9%), 

tyrosol (NQ-155.21 mg kg-1), (+)-pinoresinol (2.89-22.64 mg kg-1), hydroxytyrosol 

(ND-37.74 mg kg-1), luteolin (ND-2.23 mg kg-1), α-tocopherol (28.92-232.93 mg kg-

1), β-tocopherol (ND-9.56 mg kg-1), and γ-tocopherol (ND-18.75 mg kg-1). There 

was a significant difference in the contents of almost all of the analyzed 

compounds between the two crop years. Principal component analysis 

demonstrated that some varieties can be differentiated from one another by 

chemical composition. The results indicated that some Brazilian monovarietal 

EVOOs are promising and that further studies will help to improve the quality of 

Brazilian EVOO. 

 

Keywords: extra-virgin olive oil; phenolic compounds; tocopherols; fatty acids; 

principal component analysis. 
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4.1. Introduction 

 Extra-virgin olive oil (EVOO) is a product of the extraction of olive fruit and is 

considered to be one of the best sources of fatty acids and natural antioxidants 

such as phenolic compounds and tocopherols. Its nutritional properties are highly 

valued for their positive effects on human health. The chemical composition of 

EVOO consists primarily of monounsaturated (MUFA), polyunsaturated (PUFA) 

and saturated fatty acids (SFA), mainly in the form of esters with glycerol 

(triacylglycerols), which represents more than 98% of its total content. Important 

minor components in olive oil are sterols, hydrocarbons, phenolic compounds, 

tocopherols, volatile compounds, terpenols, terpenic acids, free glycerol, free fatty 

acids, and mono and diacylglycerols. As a result, olive oil constitutes a complex 

multi-component matrix and its analysis is not an easy task (Dais, & Hatzakis, 

2013; Del Coco et al., 2013). 

 Because the olive tree has been cultivated for thousands of years in the 

Mediterranean, EVOO is one of the main components of the Mediterranean diet. It 

is highly appreciated all over the world for its taste and aroma, as well as for its 

nutritional properties (López-Cortés, Salazar-García, Veláquez-Martí, & Salazar, 

2013). Different cultivars, pedoclimatic conditions of the orchards, and varying 

agricultural practices, together with olive ripeness and olive oil extraction 

techniques, result in a great diversity of olive oil chemical profiles (García-

González, & Aparicio, 2010). 

 All of the EVOO consumed in Brazil is imported from European (Portugal, 

Spain, Italy and Greece) and South American (Argentina and Chile) countries. As a 
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result, the price of EVOO in Brazil is relatively high, and a considerable part of the 

population does not have access to this important and healthy vegetable oil. Brazil 

is beginning to cultivate olives and to produce olive oils to offer a product with 

lower prices to the consumer in the near future and to create new opportunities for 

Brazilian agribusiness. However, it is of great importance to determine if the 

chemical composition of the Brazilian EVOO is similar to high quality EVOO 

produced in European, South American and other countries that possess more 

experience in this field. 

 Thus, the aim of this work is to provide the first data on the phenolic 

compound, tocopherol and fatty acid contents of Brazilian EVOOs produced in the 

southeast region of Brazil. In fact, these were the first EVOOs extracted in the 

country, and the results of this work will be helpful to agronomists in their search 

for the best-adapted and optimal EVOO-producing olive varieties.   

  

4.2. Material and methods 

 

4.2.1. Chemicals and standards 

Hexane p.a. and methanol p.a. were purchased from Synth (Brazil). 

Methanol, acetic acid and isopropanol were all of HPLC grade and were purchased 

from J. T. Baker (USA), while HPLC grade hexane was from Mallinckrodt (USA). 

Boric acid (Ecibra, Brazil), sodium chloride p.a. (Nuclear, Brazil), sodium hydroxide 

p.a. (Nuclear, Brazil), butylated hydroxytoluene, BHT, (Sigma-Aldrich, USA) and 

boron trifluoride-methanol complex (20% solution in methanol) (Merck, Germany) 
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were also used in these studies. Water was purified in a Milli-Q system (Millipore, 

USA). Standards of tyrosol, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, 

caffeic acid, 3,4-dihydroxybenzoic acid, cinnamic acid, vanillic acid, ferulic acid, 

luteolin and apigenin were acquired from Sigma-Aldrich (USA). The hydroxytyrosol 

standard was obtained from Cayman Chemical (USA). The oleuropein standard 

was purchased from Extrasynthèse (France). The syringic acid, sinapinic acid and 

o-coumaric acid standards were acquired from Chem Service (USA). The (+)-

pinoresinol standard was purchased from Arbo Nova (Finland). Standards of α-, β-, 

γ-, and δ-tocopherols, and the standards of C4 to C24 methyl esters (FAME Mix), 

were acquired from Supelco (USA). 

Standard stock solutions of phenolic compounds were prepared by 

dissolving the appropriate amount of each compound in HPLC grade methanol to a 

final concentration of 2 g L-1 for (+)-pinoresinol, 1 mg L-1 for hydroxytyrosol and 

luteolin, 0.4 g L-1 for apigenin, and 5 g L-1 for the other 13 compounds. Tocopherol 

standard stock solutions were prepared by dissolving them in HPLC grade hexane 

containing 0.01% BHT, at the concentrations of 25 g L-1 for the α, γ-, and δ-

tocopherol isomers, and 50 g L-1 for the β-tocopherol isomer. The fatty acid methyl 

ester standard stock solution was prepared in HPLC grade hexane. Standard stock 

solutions were filtered through a 0.45 μm Millipore PVDF membrane (Millipore, 

USA), stored at –18ºC and protected from light. Vials containing working solutions 

were placed under ultrasound for five min before injection. 
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4.2.2. EVOO Samples 

A total of 17 EVOO samples were obtained from Maria da Fé Experimental 

Farm of the Agricultural and Livestock Research Corporation of the State of Minas 

Gerais (EPAMIG). Maria da Fé is a city situated in the micro-region of Serra da 

Mantiqueira in the south of Minas Gerais state (latitude: 22º 18’ 28” S; longitude: 

45º 22’ 30” W; altitude: 1276 m above sea level). Using the Köppen-Geiger climate 

classification system, Maria da Fé has a temperate highland tropical climate with 

dry winters (Cwb). The mean annual temperature is 17ºC and fluctuates between 

10.1ºC (minimum) and 23.3ºC (maximum), while the mean annual rainfall is 

approximately 1738.6 mm. 

The samples consisted of EVOOs produced from different olive varieties 

during two different years. From the 2010 crop, samples of MGS Grap 561 

(Grappolo 561), Cornicabra, Tafahi 390, Grappolo 575, Arbequina, Alto D’Ouro, 

Negroa, MGS Neblina and JB1 varieties were available. From the 2011 crop, 

samples of MGS Mariense (Maria da Fé), Mission, Grappolo 575, Arbequina, Alto 

D’Ouro, Negroa, MGS Neblina and JB1 varieties were evaluated. 

An Abencor® system (Suárez, Aranda, Mendoza, & Rey, 1975) adapted for 

obtaining sufficient olive oil to perform the chemical analysis was employed for 

olive oil extraction. Olives from each variety (10 kg) were washed with water to 

remove impurities and leaves prior being milled in a metallic mill. The olive paste 

was heated to 28ºC (Sánchez, Pacheco, Rubia, Sánchez, & Pereira, 2005) during 

the homogenizing process, which was performed in a domestic mixer using two 

types of movements, translation and rotation, during an interval of 50-60 minutes. 
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Using an analytical balance, 450 g of the olive paste were transferred to a high 

rotation centrifuge and subjected to centrifugation at 4200 rpm, allowing EVOO 

separation. The EVOO phase was separated and placed into plastic packages, 

where remained for 60 minutes to allow residual sedimentation. Finally, EVOOs 

were transferred to amber glass bottles. 

After arriving at the laboratory, all samples were maintained under 

refrigeration (4ºC) and protected from light until analysis. 

 

4.2.3. Sample preparation and extraction procedures 

 

4.2.3.1. Fatty acids 

Approximately 100 mg of each extra-virgin olive oil sample was weighed into 

test tubes, with the subsequent addition of 4 mL of 0.5 mol L–1 NaOH solution in 

methanol. The tubes were heated in a 100ºC water bath for approximately 8 min 

until a transparent solution was obtained. After cooling, 3 mL of a 12% BF3 solution 

in methanol was added and the tubes were heated again in a 100ºC water bath for 

3 min. After cooling, 4 mL of saturated NaCl solution was added with agitation. 

Next, 4 mL of hexane was added with vigorous agitation. Then, the tubes were left 

to rest to allow phase separation, and 1 µL from the upper layer was injected into 

the gas chromatograph. Each sample was prepared in triplicate (n = 3). This 

procedure was adapted from the work of Joseph, & Ackman (1992). 
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4.2.3.2. Phenolic compounds 

The phenolic compound extraction procedure was based on the work of 

Pirisi, Cabras, Cao, Migliorini, & Muggelli (2000) and Bonoli, Montanucci, Gallina 

Toschi, & Lercker (2003). Approximately 2 g of EVOO was weighed into a 

centrifuge tube and 1 mL of hexane and 2 mL of methanol:water (60:40, v/v) were 

added. This mixture was stirred for 2 min in a vortex apparatus, and the tube was 

then centrifuged at 5000 rpm for five minutes. The methanol:water layer was 

separated and the extraction was repeated twice. The extracts were combined and 

evaporated to dryness at 39ºC under reduced pressure. Samples were 

resuspended in 1 mL of methanol:water (30:70, v/v) and filtered through a 0.45 μm 

PVDF membrane (Millipore, USA) before analysis by capillary electrophoresis. All 

samples were extracted in triplicate (n = 3).  

 

4.2.3.3. Tocopherols 

For the tocopherol analysis, extra-virgin olive oil samples were diluted in 

hexane (0.1 g in 10 mL of hexane containing 0.01% BHT), filtered through a 0.22 

µm PVDF membrane (Millipore, USA), and then directly injected into the column in 

the HPLC system. This sample preparation was based on the work of Dionisi, 

Prodolliet, & Tagliaferri (1995), Guinazi, Milagres, Pinheiro-Santa'Ana, & Chaves 

(2009) and Pinheiro-Sant’Ana et al. (2011). Samples were prepared in triplicate (n 

= 3). 
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4.2.4. Separation methods 

 

4.2.4.1. Fatty acids 

A Varian 3800 Gas Chromatograph (Varian Inc., USA) equipped with a 

flame ionization detector (FID), a split/splitless injector (split ratio 1/80) and a 

fused-silica capillary column with 90% cyanopropyl-modified polysiloxane (100 m 

length, 0.25 mm i.d., 0.25 µm film thickness) (NST BIS-6025025, Nano Separation 

Technologies, Brazil) was used for the determination of fatty acid methyl esters 

(FAMEs). The optimized parameters were: injector temperature (240°C); detector 

temperature (240°C); carrier gas, hydrogen, flow rate 1.4 mL min-1; detector gases 

flow rate (H2 / N2 / Synthetic Air – 30 / 30 / 300 mL min–1); oven temperature 

program (197°C for 23 min, increasing to 225ºC at a rate of 20ºC per min, and kept 

at the final temperature for 15 min). Peak identification was accomplished by 

comparing the retention time of the standards with those of the peaks observed in 

the samples separated under the same conditions. The peak area results are 

expressed as the percentage of the total FAME peak area. Chromatographic 

conditions were adapted from Tanamati et al. (2010). Samples were injected in 

triplicate. 

 

4.2.4.2. Phenolic compounds 

An Agilent G1600AX (Agilent Technologies, Germany) capillary 

electrophoresis system equipped with a diode array detector (DAD) and an 
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automatic injector and temperature control system adjusted to 25ºC was used in 

this study. The method used for the analysis of phenolic compounds by capillary 

zone electrophoresis with diode array detection was optimized in the work from 

Ballus, Meinhart, Campos Jr., Bruns, & Godoy (2014). A fused-silica capillary with 

a 50 µm internal diameter and 72 cm of effective length with an extended light path 

(Agilent Technologies, Germany) was used, as well as an electrolyte consisting in 

101.3 mmol L-1 boric acid solution at pH 9.15, a voltage of 30 kV and an injection of 

50 mbar for 5 s. Detection was performed at 210 nm and data analysis was 

performed with the HP ChemStation software. New capillaries were activated and 

conditioned by washing under 1 bar of pressure with 1 mol L–1 NaOH for 30 min 

followed by 10 min of water. At the end of each day, the capillary was washed for 5 

min with 1 mol L–1 NaOH and then for 5 min with water. The capillary was stored in 

water overnight. Peak identification was achieved by comparing the migration time 

and the UV spectra of each peak to those obtained for the phenolic compound 

standards, as well as by co-chromatography. Samples were injected in triplicate. 

 

4.2.4.3. Tocopherols 

Separation of tocopherols was achieved using an Agilent 1100 HPLC 

(Agilent Technologies, Germany) coupled to a fluorescence detector, quaternary 

pump system, automatic injector and oven to control the column temperature. 

Method conditions were based on the work of Pinheiro-Sant’Ana et al. (2011). A 

150 mm x 4.6 mm x 3.0 µm normal phase column (Hypersil Silica, Thermo, 
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Germany) was used. The mobile phase consisted of an isocratic system composed 

of hexane:isopropanol:acetic acid (98.9:0.6:0.5) with a flow rate of 1.0 mL min-1. 

The temperature was maintained at 30ºC, and the injection volume was 100 µL. 

Fluorescence detection was performed at λEx 290 nm and λEm 330 nm. Compounds 

were identified by comparing the retention times of the compounds found in the 

samples to those in the tocopherol standards separated under the same 

conditions, as well as by co-chromatography. Samples were injected in triplicate. 

 

4.2.5. Method validation 

 

4.2.5.1. Fatty acids 

The method precision for the separation of fatty acid methyl esters was 

evaluated through intra- (n = 7) and inter-day (n = 3) instrumental precisions by 

injecting a methylated EVOO sample. 

 

4.2.5.2. Phenolic compounds and tocopherols 

Both methods were validated as prescribed by the Harmonized Guidelines 

for Single-Laboratory Validation of Methods of Analysis IUPAC/ISO/AOAC 

International (Thompson, Ellison, & Wood, 2002). The limit of detection (LOD) was 

determined through successive dilutions of the standard mixture until peaks with a 

signal-to-noise ratio near three were reached. The limit of quantification (LOQ) was 

also determined through successive dilutions, being defined as the concentration 

that resulted in peaks with a signal-to-noise ratio near six. The intra-day 
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instrumental precision was verified at the limit of quantification (n = 7 for phenolic 

compounds and n = 10 for tocopherols). System linearity was studied individually 

for each compound with calibration curves consisting of seven points, in which 

standards were prepared in triplicate and injected randomly. A lack of fit test for 

each calibration curve was performed. The intra-day instrumental precision was 

determined by injecting a solution containing the 17 phenolic compounds or the 4 

tocopherols, at three different concentration levels. This procedure was performed 

7 consecutive times in one day (phenolic compounds) and 10 consecutive times in 

one day (tocopherols) for each concentration level. The inter-day instrumental 

precision was determined by repeating this procedure on three consecutive days. 

For the phenolic compounds, the first concentration level consisted of 10 mg L-1 of 

tyrosol and oleuropein, and 5 mg L-1 of the other 15 compounds. The second level 

consisted of 28 mg L-1 of tyrosol and oleuropein, and 14 mg L-1 of the other 

compounds. The third level consisted of 42 mg L-1 of tyrosol and oleuropein, and 

21 mg L-1 of the remaining compounds. For tocopherols, the first level consisted of 

75 ng of α-tocopherol, 11.3 ng of β-tocopherol, 9.9 ng of γ-tocopherol, and 2.6 ng 

of δ-tocopherol. The second level consisted of 250 ng of α-tocopherol, 37.5 ng of 

β-tocopherol, 33.1 ng of γ-tocopherol, and 8.8 ng of δ-tocopherol. The third level 

consisted of 425 ng of α-tocopherol, 63.8 ng of β-tocopherol, 56.3 ng of γ-

tocopherol, and 14.9 ng of δ-tocopherol. 

A recovery assay was also performed at two concentration levels to 

estimate the validity of the extraction technique because there are no certified 

reference materials (CRM) for both compound classes in EVOO. The first level 
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consisted of the addition of 13 mg kg-1 of tyrosol and oleuropein, and 6 mg kg-1 for 

the other phenolic compounds. For the second level, 20 mg kg-1 of tyrosol and 

oleuropein, and 10 mg kg-1 of the other phenolic compounds were added. For 

analysis of tocopherol recovery, the first level consisted of 70 mg kg-1 of α-

tocopherol, 10 mg kg-1 of β- and γ-tocopherols, and 2.5 mg kg-1 of δ-tocopherol. 

The second level consisted of 200 mg kg-1 of α-tocopherol, 30 mg kg-1 of β-

tocopherol, 25 mg kg-1 of γ-tocopherol, and 7 mg kg-1 of δ-tocopherol. When 

determining the phenolic compound or tocopherol recovery, the required volume of 

each of the compound standard solution at each concentration level was added to 

the EVOO samples and the tubes were stirred for 5 min. Then, the whole sample 

preparation procedure was executed as described in section 4.2.3.2 or 4.2.3.3. The 

percentage of recovery (%) was calculated for each compound, taken into account 

and subtracting the original content of the compounds that were found in the 

EVOO samples. The recovery assays were executed in triplicate for each 

concentration level (n = 3). 

 

4.2.6. Statistical analysis and chemometrics 

The means obtained for each compound determined in the extra-virgin olive 

oil samples were compared using ANOVA and Tukey tests at a 95% confidence 

level. In the cases where samples from two crop years were analyzed, the results 

were compared between years and between different varieties from the same crop 

year. The statistical analysis was performed using the Statistica 7.0 (Statsoft, USA) 

software. A Principal Component Analysis (PCA) was also performed to better 
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visualize the differences in the analyzed compounds between samples as well as 

any correlations between variables. PCA was carried out using Pirouette 3.11 

(Infometrix, USA).  

 

4.3. Results and discussion 

 

4.3.1. Method validation results 

 Figure 4.1 displays representative electropherogram and chromatographic 

profiles obtained for Brazilian EVOO samples. For the fatty acid separation 

method, the values for intra-day instrumental precision were approximately 5% for 

the major compounds (palmitic acid, 16:0 – 5.7%; stearic acid, 18:0 – 2%; oleic 

acid, 18:1n-9 – 0.8%; and linoleic acid, 18:2n-6 – 1%). For the minor fatty acids, 

the values were higher than 5%, but this was expected because the concentrations 

were very low and the instrumental precision is generally worse in this range 

(palmitoleic acid, 16:1n-7 – 7.8%; α-linolenic acid, 18:3n-3 – 6.2%; arachidic acid, 

20:0 – 7.9%; and 9-eicosenoic acid, 20:1n-11 – 14.4%). The inter-day values for all 

analyzed fatty acids were satisfactory (palmitic acid, 16:0 – 3.4%; palmitoleic acid, 

16:1n-7 – 9.5%; stearic acid, 18:0 – 1.3%; oleic acid, 18:1n-9 – 0.6%; linoleic acid, 

18:2n-6 – 0.4%; α-linolenic acid, 18:3n-3 – 2.3%; arachidic acid, 20:0 – 3.8%; and 

9-eicosenoic acid, 20:1n-11 – 6.7%). 

 Tables 4.1 and 4.2 present the results for the parameters evaluated during 

the method validation for the separation and quantification of phenolic compounds 

and tocopherols. 
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 The intra- and inter-day instrumental precisions were below 5% for both 

separation methods, with the exception of some phenolic compounds in the first 

concentration level assayed, which were between 5% and 10%, as is expected for 

this concentration range. All intra-day instrumental precision results conducted at 

the limit of quantification were below 10%. The calibration equations presented 

adequate fits (p > 0.05) in the concentration ranges used in this work. In addition, 

both extraction procedures presented good recovery results. For phenolic 

compounds, the recovery ranged from 70 to 130%, while for tocopherols it was 

between 92 and 118%. All of these results are comparable to those obtained in the 

validation carried out by the authors that originally developed both methods 

(Pinheiro-Sant’Ana et al., 2011; Ballus, Meinhart, Campos Jr., Bruns, & Godoy, 

2014). 

In summary, the results for the method and extraction validations indicate 

that all three separation and detection methods can be efficiently and confidently 

used to separate and quantify the compounds under assay in this study. 
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Figure 4.1. Representative electropherogram for the analysis of phenolic 

compounds (A), and representative chromatographic profiles for the 
analysis of fatty acids (B) and tocopherols (C) in Brazilian extra-
virgin olive oil (Negroa variety, 2011 crop). Peak identification: Tyr, 
tyrosol; (+)-pin, (+)-pinoresinol; Hyty, hydroxytyrosol; Api, apigenin; 
Lut, luteolin; 16:0, palmitic acid; 16:1n-7, palmitoleic acid; 18:0, 
stearic acid; 18:1n-9, oleic acid; 18:2n-6, linolenic acid; 18:3n-3, α-
linolenic acid; 20:0, arachidic acid; 20:1n-11, 9-eicosenoic acid; α-
toc, α-tocopherol; β-toc, β-tocopherol; γ-toc, γ-tocopherol. 
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Table 4.1. Figures of merit for the validation of the phenolic compound and tocopherol separation methods. 
LOD LOQ Intra-day Precision Linearity Lack of Fit Test

(mg.L-1) 
a

(mg.L-1) 
a

LOQ (n = 7) 
a

(mg.L-1) (p  > 0.05)

Tyrosol 2.50 4.38 5.53 8.3 - 41.7 0.9907 0.136

(+)-Pinoresinol 0.60 1.20 9.78 4.0 - 24.0 0.9910 0.743

Oleuropein glycoside 2.37 4.14 4.87 7.9 - 47.4 0.9932 0.234

Hydroxytyrosol 1.20 2.10 5.67 4.0 - 24.0 0.9902 0.474

Cinnamic acid 1.19 2.08 5.20 4.0 - 19.8 0.9911 0.316

Sinapinic acid 1.19 2.09 8.60 4.0 - 19.9 0.9911 0.121

Syringic acid 1.18 2.07 9.63 3.9 - 19.7 0.9955 0.104

Ferulic acid 1.18 2.07 1.36 3.9 - 23.7 0.9905 0.531

o -Coumaric acid 1.19 2.08 3.57 4.0 - 19.8 0.9937 0.546

Apigenin 1.48 2.58 6.06 4.9 - 24.6 0.9919 0.383

p -Coumaric acid 1.21 2.11 9.18 4.0 - 20.1 0.9956 0.092

Luteolin 1.20 2.10 4.77 4.0 - 20.0 0.9952 0.286

Vanillic acid 1.20 2.10 6.35 4.0 - 20.0 0.9967 0.084

p -Hydroxybenzoic acid 1.23 2.16 4.23 4.1 - 20.5 0.9952 0.414

Caffeic acid 1.24 2.16 9.79 4.1 - 20.6 0.9961 0.465

Gallic acid 1.25 2.18 8.89 4.2 - 20.8 0.9946 0.362

3,4-Dihydroxybenzoic acid 0.66 1.32 4.75 4.4 - 22.0 0.9941 0.560

LOD LOQ Intra-day Precision Linearity Lack of Fit Test

(µg.L-1) a (µg.L-1) a LOQ (n = 10) a (ng) (p  > 0.05)

α-Tocopherol 40.20 80.40 6.11 75.00 - 375.00 0.9990 0.247

β-Tocopherol 18.75 37.50 5.15 11.25 - 48.75 0.9992 0.051

γ-Tocopherol 16.55 33.10 8.40 16.54 - 49.63 0.9993 0.295

δ-Tocopherol 4.40 8.80 8.28 4.39 - 13.18 0.9995 0.469

Phenolic Compounds Equation r 2

Tocopherols Equation r 2

65.63168.2 −= xy

88.3438.1 −= xy

35.8903.1 −= xy

53.8599.8 −= xy

40.1284.2 −= xy

17.1862.0 −= xy

71.0212.2 −= xy

08.1283.3 += xy

11.1154.2 −= xy

82.2553.2 −= xy

79.0609.2 −= xy

55.0968.2 −= xy

72.0312.3 −= xy

16.0912.2 −= xy

40.1745.3 −= xy

91.1665.3 −= xy

00.1383.3 += xy

23.4035.6 −= xy

63.3552.8 −= xy

81.0820.0 −= xy

84.1050.4 −= xy

a LOD, limit of detection; LOQ, limit of quantification. 
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Table 4.2. Instrumental precision results for the separation of phenolic compounds and tocopherols from extra-virgin 
olive oil and recovery results for both extraction methods. 

First Level Second Level Third Level First Level Second Level Third Level

Tyrosol 5.28 4.62 3.32 2.27 2.88 2.85 70 ± 6 83.8 ± 0.4

(+)-Pinoresinol 6.03 2.93 1.58 3.76 2.12 0.73 86 ± 6 73 ± 5

Oleuropein glycoside 4.78 2.52 2.11 4.12 1.30 0.12 91 ± 5 79 ± 5

Hydroxytyrosol 5.36 2.47 2.29 5.67 2.03 1.18 81 ± 1 86 ± 8

Cinnamic acid 6.55 3.53 2.40 2.61 1.77 0.93 72 ± 11 75 ± 4

Sinapinic acid 9.12 4.48 2.39 2.84 1.96 1.76 86 ± 7 84 ± 2

Syringic acid 8.92 3.59 3.27 6.65 2.05 1.15 96 ± 7 90 ± 2

Ferulic acid 7.24 3.84 2.85 5.12 1.57 0.86 86 ± 4 101 ± 3

o -Coumaric acid 8.11 3.27 2.99 4.97 2.39 0.38 92 ± 8 90 ± 3

Apigenin 7.50 3.40 7.15 7.83 0.84 4.80 121 ± 1 130 ± 11

p -Coumaric acid 8.77 2.84 2.39 3.28 2.04 1.73 99 ± 8 93 ± 2

Luteolin 7.46 3.07 5.02 7.18 5.35 6.23 82 ± 8 76 ± 6

Vanillic acid 8.94 3.18 2.93 5.02 2.35 1.33 99 ± 8 95 ± 3

p -Hydroxybenzoic acid 6.49 3.47 2.76 2.26 2.50 1.30 94 ± 9 90 ± 2

Caffeic acid 8.26 2.97 2.71 3.36 1.86 0.58 96 ± 9 89 ± 4

Gallic acid 7.16 2.79 2.61 6.42 1.94 1.06 88 ± 7 78 ± 6

3,4-Dihydroxybenzoic acid 7.30 3.25 2.34 4.02 1.60 0.79 96 ± 9 89 ± 4

First Level Second Level Third Level First Level Second Level Third Level

α-Tocopherol 3.06 0.89 0.64 6.68 0.49 1.93 114 ± 14 111 ± 4

β-Tocopherol 1.76 1.32 0.69 1.98 0.50 2.33 92 ± 5 95 ± 2

γ-Tocopherol 3.43 1.25 0.51 8.29 2.72 4.09 102 ± 8 102 ± 2

δ-Tocopherol 3.54 0.66 0.43 9.63 4.09 3.84 118.2 ± 0.5 114 ± 0.4

Tocopherols Intra-day Precision (%, n = 10) a Inter-day Precision (%, n = 3) a Recovery (%, mean ± SD, n = 3) b

First Level Second Level

Phenolic Compounds Intra-day Precision (%, n = 7) a Inter-day Precision (%, n = 3) a

First Level Second Level
Recovery (%, mean ± SD, n = 3) b

a Concentration of the standards. First level: tyrosol and oleuropein: 10.0 mg L-1; other phenolic compounds: 5.0 mg L-1; α-tocopherol: 75 ng; β-tocopherol: 
11 ng; γ-tocopherol: 10 ng; δ-tocopherol: 3 ng; Second level: tyrosol and oleuropein: 28.0 mg L-1; other phenolic compounds: 14.0 mg L-1; α-tocopherol: 250 
ng; β-tocopherol: 38 ng; γ-tocopherol: 33 ng; δ-tocopherol: 9 ng; Third level: tyrosol and oleuropein: 42.0 mg L-1; other phenolic compounds: 21 0 mg.L-1; α-
tocopherol: 425 ng; β-tocopherol: 64 ng; γ-tocopherol: 56 ng; δ-tocopherol: 15 ng. 
b Concentration of the standards added to samples: First level: 14.0 mg kg-1 of tyrosol and oleuropein; 7.0 mg kg-1 for the other phenolic compounds; α-
tocopherol: 70 mg kg-1; β-tocopherol and γ-tocopherol: 10 mg kg-1; δ-tocopherol: 2.5 mg kg-1; Second level: 18.0 mg kg-1 of tyrosol and oleuropein; 10.0 mg 
kg-1 for the other phenolic compounds; α-tocopherol: 200 mg kg-1; β-tocopherol: 30 mg kg-1; γ-tocopherol: 25 mg kg-1; δ-tocopherol: 7.0 mg kg-1. SD, 
standard deviation. 
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4.3.2. Fatty acid composition 

Eight fatty acids were identified in the samples of Brazilian EVOO: palmitic 

acid (16:0), palmitoleic acid (16:1n-7), stearic acid (18:0), oleic acid (18:1n-9), 

linoleic acid (18:2n-6), α-linolenic acid (18:3n-3), arachidic acid (20:0) and 9-

eicosenoic acid (20:1n-11). The quantitative results are presented in Table 4.3. 

Some of the varieties were only analyzed for one crop year (MGS Grap 561, 

Cornicabra, Tafahi 390, MGS Mariense and Mission) because EVOO production is 

still experimental and the yield of extracted EVOO was sometimes very low and 

thus not available for this study. 

The overall ranges observed in this study, 6-12.6% for palmitic acid (16:0), 

0.2-2.5% for palmitoleic acid (16:1n-7), 1.6-2.2% for stearic acid (18:0), 70.8-84.3% 

for oleic acid (18:1n-9), 3.2-11.7% for linoleic acid (18:2n-6), 0.6-1.4 for α-linolenic 

acid (18:3n-3), 0.4-0.6% for arachidic acid (20:0), and 0.4-0.8% for 9-eicosenoic 

acid (20:1n-11), are compatible with those specified for an EVOO by the Codex 

Alimentarius (Codex Stan 33, 2003). In general, it was noted that, as the content of 

palmitic acid (16:0) increased, the content of oleic acid (18:1n-9) decreased. One 

hypothesis to explain this correlation is that, after the production of palmitoyl-ACP 

(16:0 linked to an acyl carrier protein) during fatty acid synthesis in olives, two 

pathways could be followed: hydrolysis to palmitate (16:0) and ACP, or a further 

condensation reaction producing stearoyl-ACP (18:0-ACP). Stearoyl-ACP can then 

be converted to oleoyl-ACP (18:1n-9-ACP) by action of a desaturase. The 

transcription of desaturase increases during ripening. Thus, in general, more oleic 

acid is produced as the olive matures, resulting in less palmitic acid because it is 
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the substrate for oleic acid production (Conde, Delrot, & Gerós, 2008). Another 

inverse correlation occurred between the oleic (18:1n-9) and linoleic (18:2n-6) acid 

contents. This was also observed in the work of Rondanini, Castro, Searles, & 

Rousseaux (2014) for Arbequina and Arauco varieties cultivated in Argentina. 

During ripening, these varieties presented a linear increase in the linoleic acid 

(18:2n-6) concentration and a linear decrease in the oleic acid (18:1n-9) content of 

the olives. Something similar may have happened to the Arbequina and MGS 

Neblina olives varieties because the EVOO extracted from them presented higher 

linoleic acid contents than was observed for the other varieties. 

Figure 4.2 presents a comparison of the fatty acid results between the two 

crop years for the varieties for which samples were available (Grappolo 575, 

Arbequina, AltoD’Ouro, Negroa, MGS Neblina and JB1).  

 In general, the fatty acid composition did not change significantly between 

crops. The fatty acids most affected by the crop year were linoleic acid (18:2n-6) 

and α-linolenic acid (18:3n-3), while arachidic acid (20:0) and 9-eicosenoic acid 

(20:1n-11) were not affected. There was also a significant difference between the 

different varieties from the same crop year for all eight fatty acids analyzed. 
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Table 4.3. Fatty acid contents of Brazilian extra-virgin olive oil samples (mean ± standard deviation, n = 3). 

Grappolo 575 11.1 ± 0.2 A a b 9.8 ± 0.2 B a 0.6 ± 0.1 A c 0.69 ± 0.04 A d 2.06 ± 0.01 A a,b 2.02 ± 0.02 B a,b 77.8 ± 0.2 B c,d 81.0 ± 0.1 A a

Arbequina 11 ± 1 A a 9.8 ± 0.2 A a 1.4 ± 0.2 A b 1.2 ± 0.1 A c,d 1.63 ± 0.04 A e 1.69 ± 0.05 A c 75 ± 1 A e 75.7 ± 0.1 A c

Alto D`Ouro 12 ± 1 A a 11 ± 1 A a 2.3 ± 0.2 A a 2.0 ± 0.2 A a,b 1.61 ± 0.03 A e 1.59 ± 0.05 A c 79 ± 1 A c 80 ± 1 A a,b

Negroa 13 ± 1 A a 11 ± 1 A a 2.5 ± 0.2 A a 2.2 ± 0.2 A a,b 1.66 ± 0.04 A e 1.58 ± 0.01 B c 78 ± 1 A c,d 79 ± 1 A a,b

MGS Neblina 11.15 ± 1 A a 12 ± 1 A a 1.1 ± 0.1 A b 1.1 ± 0.1 A c,d 2.0 ± 0.1 A b 1.87 ± 0.05 A b 74 ± 1 A e 70.8 ± 0.5 B d

JB1 12.0 ± 0.4 A a 1 ± 1 A a 2.4 ± 0.1 A a 2.0 ± 0.2 B a,b 1.67 ± 0.03 A d,e 1.64 ± 0.04 A c 79.3 ± 0.4 A c 80 ± 1 A a,b

MGS Grap 561 7.0 ± 0.5 b 0.16 ± 0.03 d 1.88 ± 0.03 c 82.0 ± 0.3 b

Cornicabra 12 ± 1 a 2.2 ± 0.1 a 1.80 ± 0.05 c,d 77 ± 1 d

Tafahi 390 5.9 ± 0.4 b 0.33 ± 0.01 c,d 2.20 ± 0.02 a 84.3 ± 0.3 a

MGS Mariense 12 ± 2 a 1.6 ± 0.4 b,c 2.2 ± 0.1 a 78 ± 2 b,c

Mission 12 ± 1 a 2.5 ± 0.3 a 1.55 ± 0.04 c 79 ± 1 a,b

Grappolo 575 6.78 ± 0.02 A d 4.65 ± 0.01 B c 0.60 ± 0.01 B d,e 0.65 ± 0.01 A d,e 0.54 ± 0.01 A a,b 0.56 ± 0.04 A a,b 0.59 ± 0.04 A a,b,c 0.7 ± 0.1 A a

Arbequina 9.6 ± 0.1 A b 9.71 ± 0.05 A b 0.68 ± 0.01 A c 0.7 ± 0.1 A b,c 0.53 ± 0.03 A a,b 0.58 ± 0.03 A a,b 0.6 ± 0.1 A a,b 0.6 ± 0.1 A a,b

Alto D`Ouro 3.57 ± 0.03 B g 4.0 ± 0.1 A d 0.56 ± 0.01 B e,f 0.74 ± 0.01 A b,c 0.43 ± 0.03 A b 0.48 ± 0.05 A b,c 0.5 ± 0.1 A b,c 0.45 ± 0.05 A b,c

Negroa 3.50 ± 0.02 B g 3.98 ± 0.05 A d 0.55 ± 0.05 B e,f 0.76 ± 0.03 A b 0.42 ± 0.04 A b 0.44 ± 0.02 A b,c 0.37 ± 0.04 A c 0.5 ± 0.1 A b,c

MGS Neblina 9.8 ± 0.3 B a 11.7 ± 0.1 A a 0.87 ± 0.02 B a 1.36 ± 0.01 A a 0.6 ± 0.1 A a 0.6 ± 0.1 A a 0.6 ± 0.1 A a,b 0.51 ± 0.05 A a,b,c

JB1 3.23 ± 0.02 B h 3.76 ± 0.04 A e 0.51 ± 0.01 B f 0.68 ± 0.01 A c,d 0.43 ± 0.04 A b 0.47 ± 0.02 A b,c 0.46 ± 0.01 A b,c 0.44 ± 0.03 A b,c

MGS Grap 561 7.37 ± 0.04 c 0.79 ± 0.01 b 0.45 ± 0.04 a,b 0.8 ± 0.1 a

Cornicabra 5.59 ± 0.02 e 0.72 ± 0.01 c 0.49 ± 0.03 a,b 0.47 ± 0.05 b,c

Tafahi 390 5.26 ± 0.01 f 0.62 ± 0.02 d 0.57 ± 0.02 a 0.8 ± 0.1 a

MGS Mariense 4.7 ± 0.1 c 0.67 ± 0.02 c,d,e 0.5 ± 0.1 a,b,c 0.4 ± 0.1 b,c

Mission 3.56 ± 0.04 f 0.61 ± 0.02 e 0.39 ± 0.02 c 0.38 ± 0.02 c

16:0. 16:1n-7. 18:0. 18:1n-9.

18:2n-6. 18:3n-3. 20:0. 20:1n-11.

2010 20112010 2011

NA NA

NA

NA

2011 2010 2011

NA NA

NA NA

NA NA

NA NA NA NA

NA NA

NA NA

NA

NA

NA

NA

NA

2010 2011 2010 20112010 2011

Fatty Acid Contents (% of relative area) per crop year a

Varieties

Fatty Acid Contents (% of relative area) per crop year

Varieties

NA NA

NA c

NA

NA

NA NA NA

NA

2010 2011

2010

NA

NA

NA

NA

NA

NA

NA

NA

a Fatty acid nomenclature: 16:0, palmitic acid; 16:1n-7, palmitoleic acid; 18:0, stearic acid; 18:1n-9, oleic acid; 18:2n-6, linoleic acid; 18:3n-3, 
α-linolenic acid; 20:0, arachidic acid; 20:1n-11, 9-eicosenoic acid. 
b Significant differences in the same column are indicated with different lowercase letters (comparison among varieties, p < 0.05). 
  Significant differences in the same row are indicated with different uppercase letters (A-B) (comparison between crop years, p < 0.05).  
c NA, not available. 
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Figure 4.2. Comparison between the fatty acid contents (% of relative area) of 

Brazilian extra-virgin olive oil from two different varieties over two crop 
years. Bars followed by the same uppercase letters showed no 
significant difference (p < 0.05) by the Tukey test, for the crop year 
comparisons.
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4.3.3. Phenolic compound composition 

The phenolic compounds presented high variation among the different 

varieties and between crop years. This class of compounds is strongly affected by 

a large number of agronomical and technological factors, which explains the 

pronounced variability in the phenolic compound contents. 

Table 4.4 contains the data for phenolic compounds from all EVOO 

samples. Four phenolic compounds were quantified in the samples of Brazilian 

EVOO, tyrosol, (+)-pinoresinol, hydroxytyrosol and luteolin. (+)-Pinoresinol was 

quantified in all 17 samples. Tyrosol was quantified in all except for three samples. 

Hydroxytyrosol was quantified in six samples, while luteolin was quantified in just 

two samples. The ranges were from NQ to 155.21 mg kg-1 for tyrosol, from 2.89 to 

22.64 mg kg-1 for (+)-pinoresinol, from ND to 37.74 mg kg-1 for hydroxytyrosol, and 

from ND to 2.23 mg kg-1 for luteolin. Several papers have reported the content of 

phenolic compounds in EVOO from around the world, and the contents found for 

Brazilian EVOOs were similar to those from the literature. Some of the authors 

consulted were Bendini et al. (2003), Gómez-Caravaca, Carrasco-Pancorbo, 

Cañabate Díaz, Segura-Carretero, & Fernández Gutiérrez (2005), Carrasco-

Pancorbo et al. (2006), Carrasco-Pancorbo et al. (2009), Flores, Romero-

González, Frenich, & Vidal (2012), Godoy-Caballero, Acedo-Valenzuela, & 

Galeano-Díaz (2012), Godoy-Caballero, Galeano-Díaz, & Acedo-Valenzuela 

(2012), and Monasterio, Fernández, & Silva (2013). The only value that was not 

comparable to the literature, and thus is most likely an outlier, was the 

concentration of 155.21 mg kg-1 for tyrosol in the MGS Neblina (2010 crop) 
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sample. Such a content of tyrosol could be explained, for example, if extensive 

hydrolysis of the phenolic compound ligstroside aglycone had occurred because it 

is an ester of elenolic acid with tyrosol (El Riachy, Priego-Capote, León, Rallo, & 

Luque de Castro, 2011). There is no commercially available standard for ligstroside 

aglycone, so it was not possible to evaluate its content in the EVOO samples to 

test this hypothesis. However, the same sample from the following year (MGS 

Neblina, 2011 crop) presented a lower tyrosol concentration of 7.51 mg kg-1, which 

further suggests that the value from the 2010 crop must be an outlier. 

There was a significant difference between the two crops, as seen in Figure 

4.3. Almost all phenolic compound contents were significantly affected by the crop 

year. This pronounced sensitivity is easy to understand because, while the content 

of phenolic compounds in olives has a strong genetic base, it is also strongly 

affected by pedoclimatic production conditions, agronomic techniques and fruit 

ripening. Moreover, technological factors, mainly milling and malaxation, have a 

critical influence on the final content of phenolic compounds in EVOO (Conde, 

Delrot, & Gerós, 2008; El Riachy, Priego-Capote, León, Rallo, & Luque de Castro, 

2011). 
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Table 4.4. Phenolic compound and tocopherol contents of Brazilian extra-virgin olive oil samples (mean ± standard 
deviation, n = 3). 

Grappolo 575 15 ± 2 A b a 11.3 ± 0.3 B c,d 3.1 ± 0.2 B d 5.3 ± 0.4 A c

Arbequina 6 ± 1 B b 9.4 ± 0.7 A c,d,e 3.3 ± 0.5 B d 5.9 ± 0.3 A c 14 ± 1 c

Alto D`Ouro 5.4 ± 0.3 B b 27 ± 3 A b 13 ± 2 B a 22 ± 2 A a 5.7 ± 0.1 B 21 ± 2 A b

Negroa 4.45 ± 0.05 B b 14.6 ± 0.2 A c 7.9 ± 0.1 B b 22 ± 2 A a 38 ± 5 a

MGS Neblina 155 ± 16 A a 7 ± 4 B d,e 7 ± 1 A b,c 7 ± 1 A c 2.2 ± 0.2 A 1.8 ± 0.1 B

JB1 4.9 ± 0.2 A b 5.3 ± 0.2 A e 15 ± 2 B a 23 ± 3 A a 21 ± 2 b,c

MGS Grap 561 8.3 ± 0.6 b 2.9 ± 0.1 d

Cornicabra 9 ± 1 b

Tafahi 390 3.6 ± 0.3 c,d

MGS Mariense 37 ± 1 a 8.1 ± 0.3 c

Mission 10 ± 1 c,d,e 17 ± 1 b 18 ± 1 b,c

Grappolo 575 69 ± 1 A d 31 ± 1 B e 9.5 ± 0.4 A a 8.3 ± 0.4 B b 9.6 ± 0.3 A e 7.9 ± 0.4 B b

Arbequina 62.0 ± 0.3 B e 201 ± 7 A b 5.1 ± 0.1 B e 7.6 ± 0.1 A b 3.9 ± 0.3 B f 5.4 ± 0.2 A d

Alto D`Ouro 108 ± 2 B b 205 ± 3 A b 5.2 ± 0.1 B d,e 6.1 ± 0.2 A c,d 11.4 ± 0.3 A b,c,d 11.63 ± 0.04 A a

Negroa 96 ± 4 B c 233 ± 5 A a 5.84 ± 0.02 A c,d 6.2 ± 0.3 A c 11.0 ± 0.1 A c,d 11.3 ± 1 A a

MGS Neblina 29 ± 2 B g 140 ± 4 A c 7.0 ± 0.4 a

JB1 93 ± 5 B c 201 ± 2 A b 5.9 ± 0.3 A b,c 5.4 ± 0.3 A d 12 ± 1 A b,c 11.0 ± 0.3 A a

MGS Grap 561 137 ± 2 a 9.6 ± 0.2 a 12.5 ± 0.3 b

Cornicabra 59 ± 1 e 6.5 ± 0.2 b 10.1 ± 0.2 d,e

Tafahi 390 51 ± 3 f 5.8 ± 0.2 c,d 19 ± 1 a

MGS Mariense 31 ± 2 e 6.5 ± 0.2 c 6.6 ± 0.2 c

Mission 127 ± 3 d 5.9 ± 0.1 c,d 11.1 ± 0.5 a

NQ NQ

ND

NA

Varieties

Varieties

Phenolic Compound Contents (mg kg-1) per crop year

Tocopherol Contents (mg kg-1) per crop year

NA

NA

NA

2011 2010 2011

2010 2011 2010

NQ

ND NQ

2011

NQ

20112010
Tyrosol

2010

NA c NA

2011
(+)-Pinoresinol Hydroxytyrosol Luteolin

α-Tocopherol β-Tocopherol γ-Tocopherol

ND NQ

ND d

NQ b ND NQ

NQ NQ NQ

2011

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

ND

NQ

ND ND

ND NQ NQ

ND ND

ND

NA

NA

NA

2010

NQ

NQ

NQ

ND

NA

NA

NQ

NA

NA

NA

NA

NA

NA

NA

NA

NA

2010

NA

a Significant differences in the same column are indicated with different lowercase letters (comparison among varieties, p < 0.05). 
  Significant differences in the same row are indicated with different uppercase letters (A-B) (comparison between crop years, p < 0.05). 
b NQ, below the limit of quantification. 
c NA, not available. 
d ND, below the limit of detection. 
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Figure 4.3. Comparison between the phenolic compound and tocopherol contents 

of Brazilian extra-virgin olive oil obtained from different varieties over 
two crop years. Bars followed by the same uppercase letters showed 
no significant difference (p < 0.05) by the Tukey test, for the crop year 
comparisons.
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Some of the other phenolic compounds assayed were detected, but they 

were present below the limit of quantification. Apigenin was detected in the 

samples of Grappolo 575 (2010 and 2011 crops), Arbequina (2010 and 2011 

crops), Negroa (2010 and 2011 crops), MGS Neblina (2010 and 2011 crops), JB1 

(2010 and 2011 crops), Cornicabra (2010 crop), Tafahi 390 (2010 crop), Alto 

D’Ouro (2011 crop), MGS Mariense (2011 crop) and Mission (2011 crop). p-

Coumaric acid was detected in the samples of MGS Neblina (2010 and 2011 

crops), Arbequina (2011 crop) and Grappolo 575 (2011 crop). Vanillic acid was 

detected in the samples of Alto D’Ouro (2010 crop), MGS Neblina (2010 and 2011 

crops), JB1 (2010 and 2011 crops), Mission (2011 crop), Arbequina (2011 crop) 

and Grappolo 575 (2011 crop). p-Hydroxybenzoic acid was detected only in the 

Arbequina (2010 crop) sample, while 3,4-dihydroxybenzoic acid was detected in 

the MGS Neblina (2010 crop) and JB1 (2011 crop) samples. 

 

4.3.4. Tocopherol composition 

Three tocopherol isomers were detected and quantified in the samples of 

Brazilian EVOO, α-tocopherol, β-tocopherol and γ-tocopherol. Table 4.4 presents 

the results for all EVOO samples, while Figure 4.3 displays a comparison between 

the crop years for the six varieties for which the two years were available. 

The α-tocopherol isomer was quantified in all 17 samples ranging from 

28.92 to 232.93 mg kg-1, while β-tocopherol ranged from 5.07 to 9.56 mg kg-1, but 

was not detected in the MGS Neblina (2010 crop) sample. γ-Tocopherol ranged 

from 3.87 to 18.75 mg kg-1 and was only undetectable in the MGS Neblina (2010 
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and 2011 crops) sample. These contents are compatible with those from the 

literature because α-tocopherol varies from trace up to 300 mg kg-1 and the 

concentrations of β- and γ-tocopherols vary from trace to 25 mg kg-1 (Ghanbari, 

Anwar, Alkharfy, Gilani, & Saari, 2012). Because α-tocopherol is the main 

tocopherol isomer found in EVOOs, the most promising Brazilian varieties with 

respect to its content were Arbequina, Alto D'Ouro, Negroa and JB1, which had 

contents of greater 200 mg kg-1 (2011 crop). From Figure 4.3 it is clear that the 

tocopherol contents of each of the three detected isomers were significantly 

different between crop years. When studying the Arbequina variety, Benito et al. 

(2013) reported that the content of α-tocopherol significantly decreased in EVOO 

as olive ripening progressed. 

 

4.3.5. Chemometrics 

A data matrix for PCA was constructed using all of the replicates (n = 51) 

and all 14 variables. The variables comprised the eight fatty acids (palmitic, 

palmitoleic, stearic, oleic, linoleic, α-linolenic, arachidic and 9-eicosenoic acids), the 

three tocopherols (α-, β-, and γ-tocopherol), and the phenolic compounds tyrosol, 

(+)-pinoresinol and hydroxytyrosol. Luteolin was not considered because it was 

only quantified in one sample. When the samples presented values below the limit 

of quantification but above the limit of detection for tyrosol, hydroxytyrosol, β-

tocopherol and γ-tocopherol, the value of the limit of quantification (calculated in 

mg kg-1 of sample) was used in the matrix, while in cases where the sample 
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presented values below the limit of detection, the limit of detection itself (also 

calculated in mg kg-1 of sample) was used in the matrix for PCA.  

The main PCA results are illustrated in Figure 4.4. Seven principal 

components were sufficient to explain 96.7% of the data variation. Together the 

first and second principal components accounted for 63.0% of the explained 

variance. When plotting the scores graph for these two principal components, it 

was possible to visualize the behavior depicted in Figure 4.4-B. Some varieties 

grouped separately from the others, as seen for Grappolo, Arbequina, Tafahi and 

MGS Neblina. Arbequina also exhibited the smallest difference between crops 

because all values are very close, while there is a large separation between crop 

years for MGS Neblina. Cornicabra and MGS Mariense grouped together, which 

indicates that they possess a very similar chemical composition with respect to the 

compounds used in the PCA. The last group visible in the scores graph contains 

the Negroa, Alto D'Ouro, JB1 and Mission varieties, and it was not possible to 

differentiate them based on the contents of the compounds analyzed in this work. 

The profile of variables shown in the loadings graph (Figure 4.4-A) can help to 

explain this behavior. MGS Neblina presented high levels of 18:3n-3, 18:2n-6 and 

tyrosol, and this lead to its separation from the other samples. Arbequina also 

exhibited high contents of 18:2n-6. Tafahi contains the highest quantities of 18:1n-

9 and γ-tocopherol. The Negroa, Alto D'Ouro, JB1 and Mission samples are 

correlated with the compound 16:0, 16:1n-7, (+)-pinoresinol, hydroxytyrosol and α-

tocopherol. The loading graph also shows an inverse correlation between the 
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variables 16:0 and 18:1n-9 and between 18:1n-9 and 18:2n-6, as previously 

observed in section 4.3.2 for the fatty acid results. 

 Figure 4.4-C is a Mahalanobis distance graph, which is normally used to 

verify the presence of outliers. In fact, the MGS Neblina variety must be considered 

differently from the others varieties studied, as it is clearly outlier because it is 

outside the normality region for this set of evaluated samples. This suggests that 

the chemical composition of MGS Neblina is completely different from the other 

Brazilian EVOOs, mostly because this variety was the only sample that did not 

contain β-tocopherol in the 2010 crop year and was also the only sample that did 

not contain γ-tocopherol for both crop years. Moreover, it was the only sample to 

possess a luteolin content above the limit of quantification. As such, in the future it 

would be interesting to conduct experiments to understand what changes in its 

metabolism lead to these significant differences. Additionally, it seems that, when 

considering the tocopherol content of Brazilian EVOOs, MGS Neblina would not be 

the best choice of variety to be used in large scale EVOO production. 
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Figure 4.4. Results of the principal component analysis, showing the first and the second principal components for 

the response values. (A) Loadings graph; (B) Scores graph; (C) Mahalanobis distance graph. 
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4.4. Conclusions 

 In this work, the phenolic compound, tocopherol and fatty acid contents of 

monovarietal Brazilian EVOOs were evaluated using different analytical techniques 

that were validated to obtain reliable data. This study is the first report on the 

chemical composition of Brazilian EVOOs, and it will be of paramount importance 

for everyone involved in EVOO research in Brazil and other countries.  

 The results indicated that the fatty acid composition of all EVOOs is in 

accordance with the internationally accepted ranges for this type of product and 

that the phenolic compound and tocopherol isomer contents are also compatible 

with literature data. Some varieties, such as Arbequina, Alto D'Ouro, Negroa and 

JB1 are promising candidates for good quality EVOO with respect to the overall 

chemical composition as analyzed in this work. For the Grappolo, Cornicabra, 

Tafahi, MGS Mariense and Mission varieties, more samples should be analyzed 

because only one crop year was available for this study, and it is difficult to make a 

reliable evaluation with this amount of data. The MGS Neblina variety should be 

given more attention to understand why it was so different from the other Brazilian 

EVOOs in this study. The significant differences found between the two crops are 

also a reminder that it is important to control all of the factors that affect EVOO 

chemical composition. 

 As a matter of fact, this work was only the beginning. More research is 

needed to improve the chemical quality of Brazilian EVOO, including sensorial 

evaluation, leading to a product that will genuinely attract consumers’ attention. 
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ABSTRACT 

In recent years, agronomical researchers started to cultivate several olive (Olea 

europaea L.) varieties in different regions of Brazil, aiming to produce extra-virgin 

olive oil (EVOO). As there is no data about phenolic profile of the first Brazilian 

EVOO samples, the aim of this work was to determine the phenolic compound 

contents of these samples, using rapid-resolution liquid chromatography coupled to 

electrospray ionization time-of-flight mass spectrometry (RRLC-ESI-TOF-MS). A 

total of 25 EVOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, 

Manzanilla, Coratina, Frantoio and MGS Mariense varieties, from three different 

Brazilian states (Rio Grande do Sul, Santa Catarina and Minas Gerais) and two 

crops (2011 and 2012), were analyzed. It was possible to identify and quantify 20 

phenolic compounds, belonging to the phenolic alcohol, secoiridoid, lignan and 

flavonoid classes. The results showed that Brazilian EVOOs are promising 

concerning the total phenolic contents, since the values were comparable to those 

from high-quality EVOOs produced in other countries. Coratina (364 mg kg-1), 

Arbosana (255 mg kg-1) and Grappolo (228 mg kg-1) presented the highest total 

phenolic contents. New studies will be necessary, since the EVOO production in 

Brazil is still experimental, and this data will be useful to the Brazilian EVOO 

development and improvement. 

 

Keywords: EVOO; phenolic compounds; RRLC-ESI-TOF-MS; principal 

component analysis. 
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5.1. Introduction 

Extra-virgin olive oil (EVOO) is obtained from the olive (Olea europaea L.) 

fruits, only by mechanical extraction. It is edible without previous physical-chemical 

treatments and, for its nutritional and sensory qualities, it is a prime component of 

the Mediterranean diet (Baiano, Terracone, Viggiani, & Del Nobile, 2013).  

Chemical composition of EVOO consists of approximately 98% of 

triacylglycerols and 2% of minor components, that include more than 230 

compounds such as aliphatic and triterpenic alcohols, sterols, hydrocarbons, 

volatile compounds and antioxidants (Servili et al., 2009). Antioxidants in EVOO 

are represented by tocopherols, pigments and phenolic compounds. Hydrophilic 

phenolic compounds such as phenolic acids, phenolic alcohols, hydroxy-

isochromans, flavonoids, secoiridoids and lignans are especially important in 

EVOO quality. Among these secondary metabolites, secoiridoids and lignans are 

present in the highest contents (El Riachy et al., 2011). 

EVOO has a well-balanced composition of fatty acids, with small amounts of 

palmitate, and it is highly enriched in oleic acid. This makes it both fairly stable 

against auto-oxidation and suitable for human health (Conde, Delrot, & Gerós, 

2008). Caramia, Gori, Valli, & Cerretani (2012) reviewed the main effects of a diet 

rich in EVOO on the human health and which are the compounds responsible for 

those effects. It has been shown that EVOO acts in the prevention and/or reduction 

of hypercholesterolaemia, serum lipoprotein levels and atherosclerosis (by its 

phenolic compounds content); hypertension, cardiovascular diseases and 

thrombotic risk (by its tyrosol, hydroxytyrosol, oleic acid and hydroxyl-oleic acid 
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contents); oxidation and oxidative stress (by its high level of oleic acid and lack of 

excess of linoleic acid as well as by its α-linolenic acid, phenolic compounds and 

tocopherols contents); obesity and type 2 diabetes (by its oleic acid, α-linolenic 

acid, phenolic compounds, carotenoids and tocopherols contents); inflammatory 

processes (by its oleocanthal content, also known as decarboxymethyl ligstroside 

aglycone), and cancer (by its oleuropein and oleic acid contents). 

EVOO production is concentrated in the Mediterranean countries, being 

Spain, Italy and Greece those that present the highest production volume. 

Nevertheless, today the production and consumption of olive oil are moving slowly 

but inexorably beyond the Mediterranean countries, and olive trees are being 

planted in countries as far from the Mediterranean basin as New Zealand and 

Argentina (García-González, & Aparicio, 2010). Following this trend, Brazil started 

to experimentally cultivate olive trees from different varieties, in order to study the 

effects of its edapho-climatological conditions on the olive productivity, and then 

find the varieties that best adapt to them. All the EVOO found in Brazil is imported 

from European and South American countries, because there is no commercial 

EVOO production in Brazil nowadays, even though its consumption is increasing 

annually. Since there is a large market to be explored with the EVOO business, 

Brazil now has its first extra-virgin olive oils, obtained from those olive trees 

recently cultivated in different regions of the country. However, there is a lack of 

knowledge about its chemical composition. 

With all these in mind, the main goal of this work was to determine the 

phenolic compounds profile of the Brazilian EVOOs already available in the 
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country, which were experimentally obtained from several olive varieties cultivated 

in different regions of Brazil. To reach this objective, it was used rapid-resolution 

liquid chromatography coupled to electrospray ionization time-of-flight mass 

spectrometry (RRLC-ESI-TOF-MS) to separate, identify and quantify the phenolic 

compounds profile. To the best of our knowledge, this is the first study carried out 

about the phenolic composition of Brazilian EVOOs from different regions of the 

country using such a powerful analytical tool. 

  

5.2. Material and methods 

 

5.2.1. Chemicals and standards 

Methanol p.a., hexane p.a., sodium hydroxide p.a. and sodium acetate p. a. 

were purchased from Panreac (Barcelona, Spain). Acetic acid p.a., methanol and 

isopropanol LC-MS grade were from Fischer Scientific (Leicestershire, UK). Water 

was purified in a Milli-Q system (Millipore, Bedford, MA, USA). The standards of 

tyrosol and apigenin were purchased from Sigma-Aldrich (St. Louis, MO, USA), 

while oleuropein, luteolin, hydroxytyrosol and dihydrocaffeic acid were from 

Extrasynthèse (Lyon, France), (+)-pinoresinol was from Arbo Nova (Turku, 

Finland), and quinic acid was from Acros Organics (New Jersey, USA). 

The phenolic and other polar compounds standard stock solutions were 

prepared by dissolving the appropriate amount of each compound in methanol LC-

MS grade to a final concentration of 1 g L-1. The solutions were filtered through a 
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0.22 μm Fisherbrand cellulose membrane (Fisher Scientific, Pittsburgh, PA, USA), 

stored at –80ºC and protected from light. 

 

5.2.2. EVOO Samples 

Samples consisted of 25 EVOOs produced from different olive varieties 

cultivated in three Brazilian states, Rio Grande do Sul (RS), Santa Catarina (SC) 

and Minas Gerais (MG). Rio Grande do Sul and Santa Catarina are located in the 

South region of Brazil, while Minas Gerais is located in the Southeast region. From 

Rio Grande do Sul and Santa Catarina states, EVOOs from olives cultivated in two 

different crop years (2011 and 2012) were available, while from Minas Gerais there 

were samples only from 2012 crop. After arriving at the laboratory, all the samples 

were maintained under cold refrigeration (4ºC) and protected from light, until the 

moment of the analysis. 

 

5.2.2.1. EVOO samples from Rio Grande do Sul (RS) 

The EVOO samples from Rio Grande do Sul state were provided by the 

Brazilian Agricultural Research Corporation - Agricultural Research Center for 

Temperate Climate (EMBRAPA - CPACT). Olive trees from Manzanilla, Grappolo, 

Arbequina and Koroneiki varieties (2011 crop) were cultivated in Dom Pedrito, a 

city located near to the border with Uruguay (latitude: 31º 19' 53" S; longitude: 54º 

06' 25" W; altitude: 212 m above sea level). The annual mean temperature in Dom 

Pedrito is 19.5ºC, while the annual mean rainfall was 95.4 mm. The soil class was 

orthic hypochromic luvisol. All the olive trees were about seven years old. Olive 
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trees from Arbequina and Koroneiki varieties (2011 and 2012 crops) and from 

Coratina and Frantoio varieties (2012 crop) belonged to the Active Germplasm 

Bank of EMBRAPA - CPACT and were cultivated in the city of Pelotas (latitude: 31º 

40' 48.48" S; longitude: 52º 26' 42.71" W; altitude: 57 m above sea level). For 2011 

crop, the annual mean rainfall was 104 mm, the annual mean temperature was 

18ºC, while for 2012 crop, the annual mean rainfall was 124 mm and the annual 

mean temperature was 19ºC. The soil class was red-yellow argisol. The olive trees 

were five years old in 2011 crop and, consequently, six years old in 2012. For the 

oil extraction, all the olives were processed within approximately 14 h after having 

been collected. Moments before starting the process, the olives that presented 

visible damages originated from plagues or diseases were removed and discarded 

and, then, the olive fruits were washed with water. The oil extraction was 

performed using a TEM SPREMOLIVA 10 mill (Toscana Enologica Mori, 

Tavarnelle Val di Pesa, FI, Italy), that employs a cold extraction in two phases. 

About 30 days after extraction, the EVOOs were filtered to eliminate impurities. 

 

5.2.2.2. EVOO samples from Santa Catarina (SC) 

 EVOO samples from Santa Catarina state were obtained from the 

Agricultural Research and Rural Extension Corporation of the State of Santa 

Catarina (EPAGRI). From 2011 crop, EVOOs from Grappolo, Arbequina, Arbosana 

and Koroneiki varieties were available, as well as an EVOO consisting of a mixture 

of Arbequina/Arbosana varieties (50:50, v/v), here named "Mixture of varieties". 

From 2012 crop, EVOOs from Arbequina, Arbosana, Koroneiki and the Mixture of 
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varieties were studied. In 2011, the olive trees were 4.3 years old. The olive trees 

were cultivated in the city of Chapecó (latitude: 27º 05' 45" S; longitude: 52º 37' 04" 

W; altitude: 670 m above sea level). The annual mean temperature in Chapecó 

was 19.6ºC (ranging from 19.4 to 24.1ºC)  in 2011 and 20.6ºC (ranging from 20.6 

to 25.6ºC) in 2012. The annual mean rainfall was 2243 mm in 2011 and 1364 mm 

in 2012. Before the oil extraction, all the solid dirt was removed manually and the 

olives were washed with water. The oil extraction was performed using a TEM 

SPREMOLIVA 10 mill (Toscana Enologica Mori, Tavarnelle Val di Pesa, FI, Italy), 

that employs a cold extraction in two phases. 

 

5.2.2.3. EVOO samples from Minas Gerais (MG) 

A total of six EVOO samples were obtained from olive trees cultivated by the 

Maria da Fé Experimental Farm of the Agricultural and Livestock Research 

Corporation of the State of Minas Gerais (EPAMIG). Maria da Fé is a city situated 

into the micro-region of Serra da Mantiqueira, in the south of Minas Gerais (MG) 

state (latitude: 22º 18’ 28” S; longitude: 45º 22’ 30” W; altitude: 1276 m above sea 

level). Considering the Köppen-Geiger climate classification system, Maria da Fé 

has a temperate highland tropical climate, with dry winters (Cwb). The annual 

mean temperature is 17ºC, ranging from 10.1ºC (minimum) to 23.3ºC (maximum), 

while the annual mean rainfall is about 1738.6 mm. From EPAMIG were available 

the monovarietal EVOOs Grappolo 575, Grappolo 541, Koroneiki, Arbequina, 

Arbosana and MGS Mariense, all from 2012 crop. 
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For the olive oil extraction, it was employed an Abencor® system (Suárez, 

Aranda, Mendoza, & Rey, 1975), adapted for obtaining sufficient olive oil to 

perform the chemical analysis. Olives from each variety (10 kg) were washed with 

water in order to remove impurities and leaves prior to being milled into a metallic 

mill. The olive oil was heated up to 28ºC (Sánchez, Pacheco, Rubia, Sánchez, & 

Pereira, 2005) during the homogenizing process, that was realized into a domestic 

mixer, using two types of movements, translation and rotation, during an interval of 

50-60 minutes. By using an analytical balance, 450 g of EVOO sample was 

transferred to a high rotation centrifuge and submitted to a centrifugation process 

under 4200 rpm, allowing the EVOO separation. The EVOO samples were packed 

into plastic packages, where it has remained during 60 minutes for an eventual 

residual sedimentation. In the end, the EVOOs were transferred to amber glass 

bottles. 

  

5.2.3. Phenolic compounds extraction procedure 

 Phenolic compounds were extracted from the EVOO samples based on a 

liquid-liquid extraction procedure described in the work from Taamalli, Román, 

Zarrouk, Segura-Carretero, & Fernández-Gutiérrez (2012). Firstly, 2.5 g of EVOO 

sample were weighed in a centrifuge tube, and then 50 µL of internal standard 

(dihydrocaffeic acid, 25 mg L-1) was added, with subsequent agitation during 2 min, 

addition of 5 mL of hexane and then agitation for 1 min more. After, 5 mL of 

methanol:water (60:40, v/v) was added, and this mixture was vortexed during 2 min 

and centrifuged at 3500 rpm during 10 min. The resulting polar extract (bottom 
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phase) was evaporated to dryness in a rotary evaporator under reduced pressure 

and temperature of 39ºC. The residue was re-dissolved in 0.25 mL of 

methanol:water (50:50, v/v) and filtered through a 0.22 µm Fisherbrand cellulose 

membrane (Fisher Scientific, Pittsburgh, PA, USA) before injection into the 

chromatographic system. All the samples were extracted in triplicate (n = 3).  

 

5.2.4. Experimental conditions for separation, identification and quantification of 

EVOO phenolic and other polar compounds 

 An Agilent 1200 Series Rapid Resolution LC system (RRLC) (Agilent 

Technologies, Waldbronn, Germany), equipped with a vacuum degasser, a binary 

pump, an autosampler and a diode-array detector (DAD) was used to perform 

phenolic and other polar compounds separation. Analysis was carried out in a 

Zorbax Eclipse Plus C18 column (Agilent Technologies, Palo Alto, CA, USA) with 

150 mm x 4.6 mm i.d. x 1.8 µm particle diameter employing a gradient of water 

with 0.25% acetic acid as eluent A and methanol as eluent B in the following steps: 

0 min, 5% B; 7 min, 35% B; 12 min, 45% B; 17 min, 50% B; 22 min, 60% B; 25 

min, 95% B; 27 min, 5% B, and then a conditioning cycle of 5 min with the same 

conditions for the following analysis. The flow rate was 0.80 mL min-1, and the 

column temperature was maintained at 25ºC. The injection volume into the 

chromatographic system was 10 µL. 

 Separated compounds were monitored using a micrOTOFTM orthogonal-

accelerated time-of-flight mass spectrometer (TOF-MS) (Bruker Daltonik, Bremen, 

Germany) equipped with an electrospray ionization (ESI) interface (model G1607A, 
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Agilent Technologies, Palo Alto, CA, USA), working in negative ion mode. The 

adjusted parameters for the ESI interface comprised capillary voltage, +4 kV; 

drying gas temperature, 190ºC; drying gas flow, 9 L min-1; nebulizing gas pressure, 

2 bar; and end plate offset, -0.5 kV. For ion transfer, the adjusted values were 

capillary exit voltage, -120 V; skimmer 1, -40 V; hexapole 1, -23 V; RF hexapole, 

50 Vpp; and skimmer 2, -22.5 V. All spectra were acquired into 50-1000 m/z mass 

range. 

 The flow coming from the RRLC into the MS detector was split in a 1:3 ratio 

with a flow splitter, in order to achieve stable electrospray ionization and 

reproducible results. External calibration of TOF-MS was performed using a 

syringe pump (74900-00-05 Cole Palmer, Vernon Hills, Illinois, USA) equipped with 

a Hamilton syringe (Reno, NV, USA) and directly connected to the interface. The 

sodium acetate clusters calibration solution, prepared using 5 mmol L-1 sodium 

hydroxide and water:isopropanol 1:1 (v/v) with 0.2% of acetic acid, was injected  

into the TOF-MS at the beginning of the run, and all the spectra were calibrated 

prior to phenolic compounds identification, in the high precision calibration (HPC) 

regression mode. By using this method, an exact calibration curve based on 

numerous cluster masses, each differing by 82 Da (NaC2H3O2), was obtained. Due 

to the compensation of temperature drift in the micrOTOFTM, this external 

calibration provided accurate mass values for a complete run, without the need for 

a dual sprayer set-up for internal mass calibration. 

 The accurate mass data for the molecular ions were processed using the 

software Data Analysis 4.0 (Bruker Daltonik, Germany), which provided a list of 
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possible elemental formulae by using the GenerateMolecularFormula Editor. This 

latter uses a CHNO algorithm providing standard functionalities such as 

minimum/maximum elemental range, electron configuration, and ring-plus double 

bonds equivalent, as well as a sophisticated comparison of the theoretical with the 

measured isotopic pattern (Sigma Value) to increase confidence in the suggested 

molecular formula. The widely accepted accuracy threshold for confirmation of 

elemental compositions was established at 5 ppm (Bringmann et al., 2005). The 

tolerance in the mSigma value is usually established at 50, although it is influenced 

by co-eluting analytes or matrix compounds, so it may be higher in some cases 

(Peters, Bolck, Rutgers, Stolker, & Nielen, 2009). 

 All these experimental conditions for the separation and identification of 

EVOO phenolic compounds were obtained from the study carried out by Lozano-

Sánchez et al. (2010). 

 

5.2.5. Method validation 

 In order to obtain better reproducibility in the phenolic compounds 

quantification, it was decided to use an internal standard (IS) early in the extraction 

phase. The compound that was chosen as IS was dihydrocaffeic acid, since it was 

not present in EVOO samples, and did not co-elute with the other phenolic 

compounds. The volume necessary to obtain a dihydrocaffeic acid final 

concentration of 5 mg L-1 was added to the standards and to the EVOO samples. 

Seven phenolic and other polar compounds standards were used for the 
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quantification step, namely quinic acid, hydroxytyrosol, tyrosol, (+)-pinoresinol, 

oleuropein, luteolin and apigenin. 

 Limits of detection (LOD) and quantification (LOQ) of the RRLC-ESI-TOF-

MS method were estimated as being 3 and 10 times the signal to noise ratio, 

respectively. Intra-day instrumental precision was determined injecting a solution 

containing the seven phenolic standards 10 consecutive times in one day. Inter-

day instrumental precision was determined repeating the inter-assay procedure in 

three consecutive days. The linearity was verified individually for each compound, 

with analytical curves made up of five equally spaced points. A lack of fit test for 

each analytical curve was performed as recommended by Danzar, & Currie (1998). 

 

5.2.6. Statistical analysis 

 Means obtained for the sum of each phenolic compound class (phenolic 

alcohols, secoiridoids, lignans and flavonoids), as well as for the total phenolic 

content, were compared using ANOVA and Tukey test, at 95% confidence level. 

The statistical analysis was done using the software Statistica 7.0 (Statsoft, USA). 

In addition, it was performed a Principal Component Analysis (PCA) in order to 

better visualize the samples behavior towards the analyzed compounds as well as 

their correlations. PCA was carried out using Pirouette 3.11 (Infometrix, USA). 
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5.3. Results and discussion 

  

5.3.1. Results for the method validation 

 In Table 5.1 are presented the figures of merit evaluated during the 

chromatographic method validation. The results for intra-day and inter-day 

instrumental precisions were very satisfactory, since they remained in the range of 

5-10%. The analytical curves presented an adequate fit when submitted to the lack 

of fit test (p > 0.05) and can reliably be used for the phenolic compounds 

quantification. Both limits of detection and quantification were very low, and 

comparable to those obtained by Lozano-Sánchez et al. (2010) when they first 

optimized this chromatographic separation. 

 

5.3.2. Phenolic and other polar compounds identification in the Brazilian EVOO 

samples 

 Phenolic and other polar compounds identification was carried out by 

comparing the retention times and the MS spectral data from EVOO samples to 

those obtained for the standards. Concerning the compounds for which there were 

not commercial standards available, they were identified by the interpretation of 

their mass spectrum provided by the TOF-MS and also by using information 

previously reported in the literature for EVOO phenolic compounds (Lozano-

Sánchez et al., 2010; Lozano-Sánchez et al. 2011; Bakhouche et al., 2013). In 

Table 5.2 are summarized the 20 phenolic and other polar compounds tentatively 
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identified in the Brazilian EVOO samples, including retention times, molecular 

formula, experimental and calculated m/z, error and mSigma values. In Figure 5.1 

are presented the base-peak chromatograms (BPC) for six Brazilian EVOOs. 



C. A. Ballus et al. (2014) 

 

168 

 

Table 5.1. Figures of merit for the RRLC-ESI-TOF-MS method validation. 

LOD a LOQ a Intra-day Precision Inter-day Precision Linearity Range Lack of Fit Test

(µg mL-1) (µg mL-1) (%, n = 10) (%, n = 3) (µg mL-1) (p  > 0.05)

Quinic acid 0.018 0.060 3.48 5.18 0.36 - 16.43 0.9938 0.090

Hydroxytyrosol 0.032 0.106 2.33 7.65 6.79 - 19.64 0.9955 0.118

Tyrosol 0.020 0.066 4.70 4.05 6.79 - 19.64 0.9865 0.274

(+)-Pinoresinol 0.008 0.027 2.46 6.93 0.36 - 19.64 0.9920 0.618

Oleuropein 0.002 0.008 2.81 2.18 0.36 - 19.64 0.9913 0.133

Luteolin 0.007 0.022 4.31 4.43 0.36 - 19.64 0.9924 0.175

Apigenin 0.001 0.004 3.07 3.47 0.36 - 16.43 0.9878 0.140

Compounds Equation r 2

08.0371.0 += xy

50.0272.0 −= xy

07.0278.0 −= xy

49.0749.0 += xy

34.0436.0 += xy

01.1620.2 −= xy

04.0014.0 += xy

 
a LOD, limit of detection; LOQ, limit of quantification. 
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Table 5.2. Main phenolic compounds identified in a representative extract of Grappolo EVOO variety by RRLC-ESI-
TOF-MS. 

Peak Compound Retention Time (min) Molecular Formula m/z  calculated m/z  experimental Error (ppm) mSigma

1 Quinic acid 2.0 C7H12O6 191.0561 191.0562 0.4 4.0

2 Hydroxytyrosol 7.7 C8H10O3 153.0557 153.0560 -1.5 6.2

3 Tyrosol 9.6 C8H10O2 137.0608 137.0602 4.5 7.5

4 Hydroxytyrosol acetate 14.2 C10H12O4 195.0663 195.0662 0.2 13.1

5 Elenolic acid 14.8 C11H14O6 241.0718 241.0722 -1.6 21.1

6 Hydroxy elenolic acid 15.5 C11H14O7 257.0667 257.0669 -0.9 3.5

7 Decarboxymethyl oleuropein aglycone 16.1 C17H20O6 319.1187 319.1185 0.6 4.1

8 Hydroxy decarboxymethyl oleuropein aglycone 16.4 C17H20O7 335.1136 335.1138 -0.5 7.2

9 Syringaresinol 17.9 C22H26O8 417.1555 417.1549 1.5 8.4

10 (+)-Pinoresinol 18.6 C20H22O6 357.1344 357.1340 1.0 10.2

11 Acetoxypinoresinol 19.1 C22H24O8 415.1398 415.1413 -3.6 4.1

12 Decarboxymethyl ligstroside aglycone 19.0 C17H20O5 303.1238 303.1236 0.7 11.4

13 Hydroxy decarboxymethyl ligstroside aglycone 19.6 C17H20O6 319.1187 319.1186 0.4 11.6

14 10-Hydroxy oleuropein aglycone 23.0 C19H22O9 393.1191 393.1207 -4.0 3.3

15 Oleuropein aglycone 22.9 C19H22O8 377.1242 377.1252 -2.7 2.7

16 Luteolin 23.4 C15H10O6 285.0405 285.0409 -1.7 3.2

17 Hydroxypinoresinol 24.7 C20H22O7 373.1293 373.1282 2.8 9.8

18 Ligstroside aglycone 25.4 C19H22O7 361.1293 361.1297 -1.2 3.0

19 Apigenin 25.6 C15H10O5 269.0455 269.0458 -1.0 2.6

20 Methyl oleuropein aglycone 26.2 C20H24O8 391.1398 391.1385 3.3 44.3
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Figure 5.1. Base-peak chromatogram (BPC) of a representative Grappolo (Dom Pedrito, RS, 2011 crop) EVOO 

polar extract, obtained by RRLC-ESI-TOF-MS. Peak identification is the same as provided in Table 5.2. 
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 Among the phenolic alcohols, it was possible to identify hydroxytyrosol and 

tyrosol, as well as a hydroxytyrosol derivative known as hydroxytyrosol acetate. 

From the secoiridoid group, oleuropein and ligstroside aglycones were identified, 

as well as their decarboxymethylated and hydroxylated derivatives 

(decarboxymethyl oleuropein aglycone, decarboxymethyl ligstroside aglycone, 

hydroxy decarboxymethyl oleuropein aglycone, hydroxy decarboxymethyl 

ligstroside aglycone and 10-hydroxy oleuropein aglycone). Elenolic acid and its 

hydroxylated derivative, hydroxy elenolic acid, were also detected in the EVOO 

samples. Regarding the lignans, (+)-pinoresinol and its derivatives, 

hydroxypinoresinol and acetoxypinoresinol, were identified. Moreover, the 

compound syringaresinol, another lignan, was identified in all the EVOO samples. 

The flavones luteolin and apigenin, belonging to the flavonoids group, were present 

in all the EVOO samples analyzed in this study. It was also possible to identify 

another polar compound, quinic acid, in a large number of Brazilian EVOOs. 

 

5.3.3. Phenolic and other polar compounds quantification in Brazilian EVOO 

samples 

 Quantification of the phenolic and other polar compounds was carried out by 

RRLC-ESI-TOF-MS, using internal calibration with dihydrocaffeic acid (DCA) as 

the internal standard (IS). Quinic acid, hydroxytyrosol, tyrosol, (+)-pinoresinol, 

luteolin and apigenin were quantified by their own analytical curves, obtained from 

their commercial standards. Other phenolic compounds tentatively identified in the 

samples and which do not present commercial standards available had their 
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content estimated by using the analytical curves of the compounds with similar 

chemical structure. Hydroxytyrosol acetate content was estimated by using the 

analytical curve for hydroxytyrosol, while the analytical curve for (+)-pinoresinol 

was employed to estimate the concentrations of the other lignans 

(acetoxypinoresinol, syringaresinol and hydroxypinoresinol). Oleuropein analytical 

curve was used to estimate the contents of all secoiridoids (elenolic acid, hydroxy 

elenolic acid, decarboxymethyl oleuropein aglycone, hydroxy decarboxymethyl 

oleuropein aglycone, decarboxymethyl ligstroside aglycone, hydroxy 

decarboxymethyl ligstroside aglycone, 10-hydroxy oleuropein aglycone, oleuropein 

aglycone, ligstroside aglycone and methyl oleuropein aglycone). 

 Quantitative results for the individual phenolic and other polar compounds of 

the Brazilian EVOOs are summarized in Table 5.3. 
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Table 5.3. Phenolic compound contents in Brazilian extra-virgin olive oil samples 
(mean ± standard deviation, n = 3). 

Quinic acid 0.2 ± 0.1 0.02 ± 0.01 0.03 ± 0.01 0.10 ± 0.02 0.05 ± 0.01

Hydroxytyrosol 1.4 ± 0.1 1.6 ± 0.1 0.48 ± 0.03 0.20 ± 0.01 0.33 ± 0.01 1.5 ± 0.1 3.0 ± 0.1

Tyrosol 2.2 ± 0.2 1.5 ± 0.2 2.4 ± 0.2 1.2 ± 0.1 5.4 ± 0.4

Hydroxytyrosol acetate 1.8 ± 0.1 1.6 ± 0.1 0.75 ± 0.04 0.26 ± 0.01 0.45 ± 0.01 1.29 ± 0.05 0.74 ± 0.02

Elenolic acid 8 ± 1 6 ± 2 1.8 ± 0.1 0.27 ± 0.03 0.13 ± 0.04 1.40 ± 0.1 2.4 ± 0.2

Hydroxy elenolic acid 0.76 ± 0.03 2.7 ± 0.2 0.08 ± 0.01 0.10 ± 0.01 0.03 ± 0.01 0.27 ± 0.02

Decarboxymethyl oleuropein aglycone 14 ± 1 20 ± 3 0.06 ± 0.01 29 ± 1 0.61 ± 0.04

Hydroxy decarboxymethyl oleuropein aglycone 2.7 ± 0.1 15 ± 2 0.96 ± 0.04 0.11 ± 0.01

Syringaresinol 1.17 ± 0.05 1.2 ± 0.1 1.5 ± 0.1 2.0 ± 0.1 2.5 ± 0.4 1.8 ± 0.1 1.08 ± 0.05

(+)-Pinoresinol 1.7 ± 0.1 1.6 ± 0.2 3.0 ± 0.4 4.0 ± 0.3 3.3 ± 0.4 3.8 ± 0.1 1.35 ± 0.05

Acetoxypinoresinol 11.4 ± 0.5 10 ± 1 16 ± 2 27 ± 2 21 ± 4 11 ± 1 8.4 ± 0.4

Decarboxymethyl ligstroside aglycone 1.4 ± 0.1 1.6 ± 0.1 0.24 ± 0.03 0.57 ± 0.04 0.91 ± 0.02

Hydroxy decarboxymethyl ligstroside aglycone 5 ± 1 10 ± 2 0.09 ± 0.01 1.2 ± 0.1

10-Hydroxy oleuropein aglycone 0.09 ± 0.01 0.5 ± 0.1 2.2 ± 0.1

Oleuropein aglycone 1.7 ± 0.1 2.9 ± 0.3 1.0 ± 0.1 0.5 ± 0.1 2.5 ± 0.1 22 ± 1

Luteolin 4.6 ± 0.2 6.0 ± 0.4 10 ± 2 2.4 ± 0.3 6.8 ± 0.5 11 ± 1 4.29 ± 0.02

Hydroxypinoresinol 0.51 ± 0.02 0.43 ± 0.04 0.57 ± 0.05 0.32 ± 0.03 1.2 ± 0.1 0.36 ± 0.02 0.46 ± 0.02

Ligstroside aglycone 0.27 ± 0.02 0.4 ± 0.1 0.23 ± 0.03 0.10 ± 0.03 0.12 ± 0.01 1.9 ± 0.1

Apigenin 0.30 ± 0.01 0.44 ± 0.03 0.8 ± 0.1 0.22 ± 0.02 0.88 ± 0.05 0.8 ± 0.1 0.35 ± 0.01

Methyl oleuropein aglycone

Quinic acid 0.19 ± 0.02 0.41 ± 0.03 0.13 ± 0.01 0.03 ± 0.01 0.08 ± 0.01

Hydroxytyrosol 0.43 ± 0.02 0.62 ± 0.04 1.2 ± 0.1 4.9 ± 0.1 3.3 ± 0.2 4.6 ± 0.2 12.3 ± 0.5

Tyrosol 10 ± 1 4.7 ± 0.5 4.3 ± 0.2 4.2 ± 0.3 2.1 ± 0.3 3.1 ± 0.2 10.5 ± 0.3

Hydroxytyrosol acetate 0.26 ± 0.01 0.47 ± 0.01 0.39 ± 0.02 1.0 ± 0.1

Elenolic acid 7 ± 1 10 ± 2 26 ± 2 2.9 ± 0.1 6 ± 1 45 ± 2 37 ± 3

Hydroxy elenolic acid 0.58 ± 0.04 1.6 ± 0.2 0.39 ± 0.03 0.7 ± 0.1 0.63 ± 0.03 0.80 ± 0.04 1.0 ± 0.1

Decarboxymethyl oleuropein aglycone 0.05 ± 0.01 0.11 ± 0.02 2.7 ± 0.2 33 ± 6 28 ± 1 91 ± 3

Hydroxy decarboxymethyl oleuropein aglycone 0.09 ± 0.01 0.09 ± 0.01 2.9 ± 0.3 1.03 ± 0.05 4.6 ± 0.4

Syringaresinol 0.77 ± 0.04 0.7 ± 0.1 1.5 ± 0.1 1.29 ± 0.02 0.9 ± 0.1 0.47 ± 0.01 0.6 ± 0.1

(+)-Pinoresinol 1.1 ± 0.1 0.7 ± 0.1 1.7 ± 0.1 2.47 ± 0.05 1.2 ± 0.1 2.1 ± 0.1 0.9 ± 0.1

Acetoxypinoresinol 6.0 ± 0.5 3.8 ± 0.3 12 ± 1 17 ± 1 5.4 ± 0.4 6.4 ± 0.3 4.7 ± 0.3

Decarboxymethyl ligstroside aglycone 1.4 ± 0.2 1.5 ± 0.2 2.6 ± 0.3 1.9 ± 0.2 0.98 ± 0.03 39 ± 3

Hydroxy decarboxymethyl ligstroside aglycone 1.8 ± 0.1 8 ± 2 0.8 ± 0.1 0.09 ± 0.01 1.5 ± 0.1 0.34 ± 0.02 6 ± 1

10-Hydroxy oleuropein aglycone 0.07 ± 0.01 0.5 ± 0.1 0.69 ± 0.04 7 ± 1 5.5 ± 0.8 2.04 ± 0.05 2.7 ± 0.3

Oleuropein aglycone 0.8 ± 0.1 1.7 ± 0.1 40 ± 3 12 ± 1 50 ± 4 54 ± 2 115 ± 9

Luteolin 5 ± 1 5 ± 1 10 ± 2 5 ± 1 4 ± 1 8.8 ± 0.5 5 ± 1

Hydroxypinoresinol 0.07 ± 0.01

Ligstroside aglycone 1.6 ± 0.2 1.9 ± 0.2 2.6 ± 0.3 1.2 ± 0.1 2.4 ± 0.2 1.3 ± 0.1 35 ± 3

Apigenin 0.6 ± 0.1 0.7 ± 0.1 1.7 ± 0.2 0.7 ± 0.2 0.5 ± 0.1 0.49 ± 0.04 0.31 ± 0.04

Methyl oleuropein aglycone

Arbequina Manzanilla
Dom Pedrito, RS Pelotas, RS Pelotas, RS Chapecó, SC Chapecó, SC Maria da Fé, MG Dom Pedrito, RS

2011 2011 2012 2011 2012

ND NQ

2011

NQ b NQ

ND NQ

NQ

2012

ND NQ

NQ ND NQ

ND ND ND

ND ND NQ ND

ND

ND

ND a ND NQ ND ND ND ND

Koroneiki Coratina
Maria da Fé, MG Pelotas, RS

2011 2011 2012 2011 2012 2012 2012
Dom Pedrito, RS Pelotas, RS Pelotas, RS Chapecó, SC Chapecó, SC

NQ

ND ND ND

NQ NQ

NQ

NQ

NQ

ND ND ND ND ND ND

ND ND ND ND ND ND NQ

a ND, below the limit of detection. 
b NQ, between the limit of detection and the limit of quantification. 
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Table 5.3. (Continued)  

Quinic acid 0.9 ± 0.1 0.03 ± 0.01 0.3 ± 0.1 0.10 ± 0.01 0.03 ± 0.01

Hydroxytyrosol 0.8 ± 0.1 2.19 ± 0.05 0.32 ± 0.01 3.34 ± 0.03 0.29 ± 0.01

Tyrosol 7 ± 1 4.7 ± 0.4 0.89 ± 0.02 3.4 ± 0.1 2.4 ± 0.1

Hydroxytyrosol acetate 1.5 ± 0.1 2.33 ± 0.03 0.27 ± 0.01 0.61 ± 0.02 0.69 ± 0.02 0.25 ± 0.01

Elenolic acid 7.0 ± 0.1 0.5 ± 0.1 0.04 ± 0.01 3.1 ± 0.2 0.12 ± 0.02

Hydroxy elenolic acid 0.16 ± 0.02 0.58 ± 0.04 1.1 ± 0.1

Decarboxymethyl oleuropein aglycone 0.60 ± 0.05 26 ± 1

Hydroxy decarboxymethyl oleuropein aglycone 0.03 ± 0.01 2.6 ± 0.1

Syringaresinol 13 ± 1 2.9 ± 0.1 3.0 ± 0.2 2.3 ± 0.1 0.67 ± 0.01 1.35 ± 0.05

(+)-Pinoresinol 16.7 ± 0.5 4.0 ± 0.1 5.3 ± 0.3 7.0 ± 0.1 0.56 ± 0.01 2.5 ± 0.1

Acetoxypinoresinol 196 ± 4 29.1 ± 0.5 21 ± 1 26 ± 1 1.86 ± 0.04 31.5 ± 0.3

Decarboxymethyl ligstroside aglycone 0.05 ± 0.01 8.9 ± 0.5

Hydroxy decarboxymethyl ligstroside aglycone 0.04 ± 0.01 8 ± 1

10-Hydroxy oleuropein aglycone 1.0 ± 0.1 14 ± 1

Oleuropein aglycone 15 ± 1 55 ± 1

Luteolin 16 ± 1 5.4 ± 0.3 4 ± 1 5.9 ± 0.1 2.7 ± 0.3 4.2 ± 0.3

Hydroxypinoresinol 1.07 ± 0.01

Ligstroside aglycone 2.10 ± 0.05 0.05 ± 0.01 13.3 ± 0.2 0.63 ± 0.02

Apigenin 4.0 ± 0.2 0.9 ± 0.1 0.7 ± 0.1 0.98 ± 0.05 0.21 ± 0.02 0.48 ± 0.02

Methyl oleuropein aglycone

Quinic acid 0.03 ± 0.01 1.40 ± 0.05 1.2 ± 0.1 0.09 ± 0.01

Hydroxytyrosol 4.1 ± 0.2 0.67 ± 0.03 0.53 ± 0.01 2.4 ± 0.2 2.4 ± 0.1

Tyrosol 6 ± 1 6 ± 1 2.0 ± 0.3 2.9 ± 0.4

Hydroxytyrosol acetate 0.49 ± 0.02

Elenolic acid 14 ± 3 9 ± 1 7.3 ± 0.1 71 ± 5 10 ± 1

Hydroxy elenolic acid 0.80 ± 0.04 0.52 ± 0.02 0.26 ± 0.01 2.1 ± 0.1 0.06 ± 0.01

Decarboxymethyl oleuropein aglycone 1.0 ± 0.1 0.69 ± 0.03 0.22 ± 0.01 36 ± 3 8 ± 1

Hydroxy decarboxymethyl oleuropein aglycone 0.15 ± 0.01 0.04 ± 0.01 2.0 ± 0.1 0.09 ± 0.01

Syringaresinol 0.59 ± 0.03 0.78 ± 0.02 0.54 ± 0.02 0.33 ± 0.03 0.85 ± 0.04

(+)-Pinoresinol 1.0 ± 0.1 0.87 ± 0.04 2.4 ± 0.1 1.5 ± 0.2 3.4 ± 0.1

Acetoxypinoresinol 7.6 ± 0.5 3.15 ± 0.05 14 ± 1 1.4 ± 0.2 10.6 ± 0.3

Decarboxymethyl ligstroside aglycone 0.66 ± 0.04 1.5 ± 0.1 0.08 ± 0.01 2.0 ± 0.2 0.47 ± 0.03

Hydroxy decarboxymethyl ligstroside aglycone 0.67 ± 0.03 2.8 ± 0.1 0.07 ± 0.01 1.1 ± 0.1

10-Hydroxy oleuropein aglycone 3.0 ± 0.1 0.33 ± 0.01 0.37 ± 0.01 12 ± 2 0.67 ± 0.04

Oleuropein aglycone 35 ± 4 1.30 ± 0.02 8.8 ± 0.4 87 ± 8 27 ± 2

Luteolin 2.2 ± 0.2 1.01 ± 0.03 8 ± 1 4 ± 1 5 ± 1

Hydroxypinoresinol 0.25 ± 0.01 0.29 ± 0.02 0.07 ± 0.01

Ligstroside aglycone 3.0 ± 0.1 2.9 ± 0.1 0.59 ± 0.02 3.1 ± 0.3 1.08 ± 0.04

Apigenin 0.15 ± 0.01 0.12 ± 0.01 0.52 ± 0.04 0.18 ± 0.03 0.25 ± 0.02

Methyl oleuropein aglycone 0.12 ± 0.01 0.04 ± 0.01 0.09 ± 0.01

2012

Arbosana Mixture Arbequina/Arbosana Frantoio
Chapecó, SC Chapecó, SC Maria da Fé, MG Chapecó, SC Chapecó, SC Pelotas, RS

2011 2012 2012 2011 2012

ND ND ND ND

NQ

ND

ND

ND a

NQ b NQ NQ

ND NQ ND ND

ND NQ ND ND

ND ND ND NQ

ND ND ND ND

ND NQ NQ NQ

ND

ND ND ND ND ND

ND ND

ND ND NQ ND ND

Grappolo MGS Mariense
Dom Pedrito, RS Chapecó, SC Maria da Fé, MG Maria da Fé, MG Maria da Fé, MG

ND

2011 2011 2012 c 2012 d 2012

NQ

ND

ND ND ND

NQ

ND

ND ND

ND ND

a ND, below the limit of detection. 
b NQ, between the limit of detection and the limit of quantification. 
c Grappolo 575, Maria da Fé, MG, 2012 crop. 
d Grappolo 541, Maria da Fé, MG, 2012 crop. 
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 Siringaresinol, (+)-pinoresinol, acetoxypinoresinol, luteolin and apigenin 

were the only compounds quantified in all the Brazilian EVOO samples assayed in 

this study. The overall content, in mg kg-1, for the individual phenolic or other polar 

compounds was in the range of NQ-1.40 for quinic acid; ND-12.15 for 

hydroxytyrosol; ND-10.46 for tyrosol; ND-2.33 for hydroxytyrosol acetate; ND-71.13 

for elenolic acid; NQ-2.65 for hydroxy elenolic acid; ND-90.58 for decarboxymethyl 

oleuropein aglycone; ND-15.08 for hydroxy decarboxymethyl oleuropein aglycone; 

0.33-13.02 for siringaresinol; 0.56-16.68 for (+)-pinoresinol; 1.38-195.98 for 

acetoxypinoresinol; ND-38.69 for decarboxymethyl ligstroside aglycone; ND-9.58 

for hydroxy decarboxymethyl ligstroside aglycone; ND-14.10 for 10-hydroxy 

oleuropein aglycone; ND-114.94 for oleuropein aglycone; 1.01-16.10 for luteolin; 

ND-1.22 for hydroxypinoresinol; ND-34.80 for ligstroside aglycone; 0.12-3.95 for 

apigenin; ND-0.12 for methyl oleuropein aglycone. These results agree with data of 

a number of recent papers on phenolic compounds of EVOOs varieties cultivated 

in different countries as Spain, Italy, Australia and USA (Lozano-Sánchez et al., 

2010; Bayram et al., 2012; Loizzo, Di Lecce, Boselli, Menichini, & Frega, 2012; 

Bakhouche et al., 2013). For Arbequina variety, there is more available data about 

phenolic compounds than for others varieties, and Brazilian Arbequina EVOOs, in 

general, presented lower contents of secoiridoids like elenolic acid, 

decarboxymethyl oleuropein aglycone and decarboxymethyl ligstroside aglycone 

than those from Spain, for example. Servili et al. (2004) reported that, due to the 

agronomic and technological aspects of olive production, that strongly affect their 

occurrence, the definition of the average concentration of hydrophilic phenols in 
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EVOO is rather difficult, and their concentration may range between 40 and 900 

mg kg-1. 

 In Figure 5.2 the results obtained for the four main phenolic compound 

classes found in the EVOOs, phenolic alcohols, lignans, secoiridoids and 

flavonoids are presented. To build those graphs, the sum of the individual 

compounds that belongs to each of the evaluated classes was employed. Also, the 

total phenolic content was calculated by summing the contents of all the individual 

phenolic ompounds, with exception of quinic acid, for each sample. 

 EVOO from Coratina variety (Pelotas, RS, 2012 crop) showed the highest 

phenolic alcohols content, 22.72 mg kg-1, followed by Grappolo (Dom Pedrito, RS, 

2011 crop) with 10.77 mg kg-1 and Koroneiki (Dom Pedrito, RS, 2011 crop) with 

10.50 mg kg-1, as seen in Figure 5.2-A. The lowest phenolic alcohols contents 

were found in Arbequina (Chapecó, SC, 2011 and 2012 crops) and Arbosana 

(Maria da Fé, MG, 2012 crop). 

 Regarding the lignans (Figure 5.2-B), EVOO from Arbosana variety 

(Chapecó, SC, 2012 crop) contained 225.68 mg kg-1, which was far beyond the 

ones that had been found for the other samples. The second highest value was 

37.06 mg kg-1, also for Arbosana variety (Chapecó, SC, 2011). The main 

responsible for this high lignans content of Arbosana (Chapecó, SC, 2012 crop) 

was the compound acetoxypinoresinol, detected in a concentration of 195.98 mg 

kg-1. Alagna et al. (2012) observed acetoxypinoresinol contents approximately ten 

times higher than those of pinoresinol in a minor Italian olive variety, Dolce 

d'Andria. The lowest lignans contents were detected in the samples Mixture of 
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Arbequina/Arbosana (Chapecó, SC, 2012 crop), Grappolo 571 (Maria da Fé, MG, 

2012 crop) and Grappolo (Chapecó, SC, 2011 crop). 

 It is possible to see in Figure 5.2-C that Coratina variety (Pelotas, RS, 2012 

crop) showed the highest secoiridoids content, 329.84 mg kg-1. Grappolo 571 

(Maria da Fé, MG, 2012 crop) and Koroneiki (Maria da Fé, MG, 2012 crop) also 

presented high concentration of secoiridoids, 215.99 and 135.57 mg kg-1, 

respectively. On the other hand, the secoiridoids of the samples Mixture of 

Arbequina/Arbosana (Chapecó, SC, 2011 crop), Arbosana (Chapecó, SC, 2011 

crop), Arbequina (Chapecó, SC, 2011 and 2012 crops), Arbosana (Maria da Fé, 

MG, 2012 crop) and Frantoio (Pelotas, RS, 2012 crop) were present in 

concentrations lower than 1 mg kg-1. 

 Flavonoid total contents are exhibited in Figure 5.2-D. Arbosana (Chapecó, 

SC, 2011 crop) clearly had the highest flavonoids concentration, 20.04 mg k-1. 

Other significant flavonoid contents were detected in Arbequina (Maria da Fé, MG, 

2012 crop), 11.73 mg kg-1; Koroneiki (Pelotas, RS, 2012 crop), 11.70 mg kg-1; and 

Arbequina (Pelotas, RS, 2012 crop), 10.67 mg kg-1. In opposition, samples of 

Grappolo (Chapecó, SC, 2011 crop) and Grappolo (Dom Pedrito, RS, 2011 crop) 

were the samples with the lowest flavonoid contents 1.13 and 2.31 mg kg-1, 

respectively. 
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 It seems to exist an inverse correlation between secoiridoid and lignan 

contents. The samples of Arbosana (Chapecó, SC, 2011 crop) and Frantoio 

(Pelotas, RS, 2012 crop), which presented some of the lowest secoiridoid contents, 

contained some of the highest lignan concentrations. For Grappolo 571 (Maria da 

Fé, MG, 2012 crop), its high secoiridoids value was opposite to its low 

concentration of lignans. For Coratina variety (Pelotas, RS, 2012 crop), that was 

responsible for the highest secoiridoids value, only a few mg kg-1 of lignans 

concentration was detected. 

 Finally, the highest total phenolic content was found for the EVOO from 

Coratina variety (Pelotas, RS, 2012 crop), 364 mg kg-1 (Figure 5.2-E). In fact, 

Coratina EVOOs are known for their high phenolic content, that also gives a 

marked "bitter and pungent" taste (Gambacorta et al., 2010). Other promising 

Brazilian monovarietal EVOOs concerning to the total phenolic content were 

Arbosana (Chapecó, SC, 2011 crop), with 255 mg kg-1; Grappolo 571 (Maria da 

Fé, MG, 2012 crop), with 228 mg kg-1; Koroneiki (Maria da Fé, MG, 2012 crop), 

with 159 mg kg-1; Koroneiki (Chapecó, SC, 2012), with 121 mg kg-1; and Koroneiki 

(Pelotas, RS, 2012), with 108 mg kg-1. In this case, each Brazilian state has at 

least two varieties capable to produce an EVOO with appreciable contents of 

phenolic compounds. However, as the EVOO production in Brazil is still done in an 

experimental scale, phenolic compound contents observed in this study showed 

great variation between crops, and new studies will be necessary to reach a better 

control of agronomical conditions that affects phenolic compound contents, and 

also when the EVOO extraction migrates to the industrial scale in the future. 
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5.3.4. Chemometrics 

 Before applying the Principal Component Analysis (PCA) to the EVOO 

phenolic compound data, it was decided to execute one PCA for each Brazilian 

state separately, since the production and extraction conditions of the samples 

were not the same for the three states. In effect, when the PCA was performed 

with all the samples at the same time, the only samples that classified separately 

were the three with the highest total phenolic contents, Coratina (Pelotas, RS, 

2012 crop), Arbosana (Chapecó, SC, 2011 crop) and Grappolo 571 (Maria da Fé, 

MG, 2012 crop). In this case, useful information obtained from the PCA was limited 

and difficult to be interpreted.   

 Thus, three data matrix [(I,J), where I is the number of lines and J is the 

number of columns] for PCA were constructed, using all the replicates as the 

samples and 17 variables (phenolic compounds contents, in mg kg-1): RS matrix 

(30,17); SC matrix (27,17); and MG matrix (18,17). Even though 20 phenolic or 

other polar compounds were identified, the compounds quinic acid, 

hydroxypinoresinol and methyl oleuropein aglycone were not included in the PCA 

analysis, since quinic acid is not considered a phenolic compound and 

hydroxypinoresinol and methyl oleuropein aglycone were not detected in most of 

the samples. When the sample presented values below the limit of quantification 

but above the limit of detection, the value of the limit of quantification (calculated  in 

mg kg-1 of sample) was used in the matrix, while in those cases where the sample 

presented values below the limit of detection, the limit of detection itself (also 



Chapter V - Phenolic compounds profile of Brazilian EVOOs by RRLC-ESI-TOF-MS 

 

181 

 

calculated  in mg kg-1 of sample) was used in the matrix for the PCA. The results of 

the PCA for each Brazilian state are presented in Figure 5.3. 

 For RS state PCA, seven principal components were used into the model, 

which explained 97.7% of the variance. The score and loading plots for the two first 

principal components (PCs) are showed in the Figures 5.3a and 5.3b, 

respectively. With these two PCs, 64.2% of variance was explained, and it was 

possible to visualize a clear separation between almost all the samples, with the 

exception of Arbequina (Pelotas, 2012 crop) and Frantoio (Pelotas, 2012 crop) as 

well as Manzanilla (Dom Pedrito, 2011 crop) and Koroneiki (Dom Pedrito, 2011 

crop). The phenolic composition of these two sets of samples resulted similar, and 

then the samples were grouped together. Coratina (Pelotas, 2012 crop) was 

separated by its correlation with high contents of some secoiridoids and phenolic 

alcohols, while Arbequina (Pelotas, 2011 crop) was grouped separately by its high 

hydroxylated derivatives of decarboxymethyl oleuropein aglycone, elenolic acid 

and decarboxymethyl ligstroside aglycone. The other samples were more 

correlated to high contents of lignans and flavonoids, being pushed to the left and 

below in the scores graph. PCA results also reassure the significant difference in 

the phenolic contents between the two crops, considering the same variety in the 

same city, since these samples did not group together.   
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Figure 5.3. Results of the Principal Component Analysis, showing the first and the 

second principal components for the responses values. a) scores 
graph, Rio Grande do Sul state; b) loadings graph, Rio Grande do Sul 
state; c) scores graph, Santa Catarina state; d) Loadings graph, Santa 
Catarina state; e) scores graph, Minas Gerais state; f) loadings graph, 
Minas Gerais state. 
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 Scores and loadings graphs for the PCA of SC state can be seen in Figures 

5.3c and 5.3d, respectively. The model used was constructed with seven PCs, 

explaining 99.7% of the variance. For the two first PCs, used to plot the score and 

loading graphs, the explained variance was of 77.1%. It was possible to visualize 

that almost all the samples presented an unique phenolic compounds profile, since 

they grouped separately from each other, with exception of Arbequina (Chapecó, 

2011 and 2012 crops) and the Mixture of varieties (Chapecó, 2011 crop), that were 

located very close to each other in the scores graph. This behavior can be 

explained since these samples did not present or present low contents of tyrosol, 

and they are inversely correlated to the tyrosol concentration, as can be seen in 

the loadings graph, where tyrosol is located in the region of higher loading values. 

Also, the absence of tyrosol and the high content of elenolic acid were the 

responsible for Grappolo (Chapecó, 2011 crop) position in the scores graph. 

Arbosana (Chapecó, 2011 crop) was classified separately by its high lignans and 

low secoiridoids contents, while the Mixture of varieties can be differentiated by its 

high secoiridoids and low lignans contents. Here it was also observed a significant 

difference between the two crops, as it has happened to the RS samples. 

 Considering the PCA results for MG state (Figures 5.3e and 5.3f), it was 

possible to see that all the samples classified separately. The model was 

composed by five PCs, explaining 99.5% of data variance. PCs one and two were 

responsible for 79.9% of variance explanation. Main results observed from the 

score and loading graphs are that Grappolo 575 (Maria da Fé, 2012 crop) and 

MGS Mariense (Maria da Fé, 2012 crop) were positioned very close, meaning that 
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they possess a similar phenolic compounds profile. Grappolo 571 (Maria da Fé, 

2012 crop) was very different from the other MG EVOOs thanks to its high 

secoiridoids content, while Arbosana (Maria da Fé, 2012 crop) can be recognized 

by its high lignans concentration. Arbequina (Maria da Fé, 2012) was characterized 

by a high flavonoids concentration in opposition to low levels of almost all the other 

phenolics. 

 

5.4. Conclusions 

 Rapid-resolution liquid chromatography coupled to electrospray ionization 

time-of-flight mass spectrometry (RRLC-ESI-TOF-MS) was successfully employed 

in the first characterization of the Brazilian EVOO phenolic compounds. It was 

possible to detect and quantify or estimate the concentrations of 20 phenolics 

belonging to the main class of those compounds already described for EVOO 

samples. Coratina variety, cultivated in Rio Grande do Sul state, showed the 

highest phenolic compounds content, comparable to high-quality EVOOs from 

countries with more experience in its production. 

 In general, Brazilian EVOOs presented phenolic profiles significantly 

different, as well as between the two crops assayed in this study. Even though 

some variation is expected, since phenolic compounds are affected by a large 

number of edapho-climatic and extraction conditions, it is possible that this 

fluctuation can also be related to the fact that both olives and EVOO production in 

Brazil are still experimental and need to be improved. 
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 In this way, data generated by this study will be very useful, helping the 

agronomists in their work towards the obtainment of high-quality Brazilian genuine 

EVOO. Moreover, the results presented here for the Brazilian EVOO phenolic 

composition will be available to all those researchers involved in the EVOO 

chemical characterization in different parts of the world, considering that its 

production is spreading to several new places and the work into EVOO phenolics 

characterization is still far from conclusion.     
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CONCLUSÃO GERAL 

  

 Após a avaliação do teor de compostos fenólicos totais e da capacidade 

antioxidante total de 45 amostras de EVOO comerciais, distribuídas por 15 

marcas, com três lotes analisados de cada uma delas, foi possível concluir que 

muitas delas são comparáveis aos EVOOs de outras partes do mundo em relação 

a estes parâmetros analíticos. Houve correlação entre o teor de compostos 

fenólicos totais e os quatro métodos de capacidade antioxidante utilizados neste 

trabalho, indicando que quanto maior o teor de compostos fenólicos, maior será a 

capacidade antioxidante do EVOO, independente do método utilizado para realizar 

as medições. 

 O emprego de técnicas estatísticas multivariadas permitiu atingir a 

separação de 17 compostos fenólicos previamente descritos em amostras de 

EVOO por eletroforese capilar com detector de arranjo de diodos. Foi a primeira 

vez que um número elevado de respostas, 37 ao total, foram avaliadas 

simultaneamente, com o objetivo de alcançar a maior resolução entre os pares de 

picos que sofreram coeluição nas diferentes condições experimentais, bem como 

o menor tempo de corrida e o menor coeficiente de variação nos tempos de 

migração dos compostos fenólicos. O método foi validado e aplicado com sucesso 

a 15 marcas comerciais de EVOOs, fornecendo os primeiros dados a respeito do 

teor de compostos fenólicos de alguns dos azeites de oliva consumidos pelos 

brasileiros. 
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 De posse dos resultados para as análises de compostos fenólicos, 

tocoferóis e ácidos graxos em amostras de EVOO produzidas no Brasil, mais 

precisamente no estado de Minas Gerais, pode-se afirmar que muitas das 

variedades de oliveiras cultivadas neste Estado são bastante promissoras e 

resultaram em EVOOs de excelente qualidade, quando comparados aos azeites 

de oliva produzidos em países com uma longa e comprovada experiência neste 

assunto. Foi detectada uma grande variação entre a composição química dos 

EVOOs provenientes de duas colheitas diferentes, sendo que novos estudos 

serão necessários para que os agrônomos envolvidos no cultivo das oliveiras e na 

extração do azeite de oliva possam definir e estabelecer as melhores condições 

agronômicas e tecnológicas envolvidas na produção do EVOO de Minas Gerais. 

 A cromatografia líquida de rápida resolução acoplada à espectrometria de 

massas foi aplicada com sucesso na identificação e quantificação de 

aproximadamente 20 compostos fenólicos em EVOOs provenientes de três 

estados brasileiros, Rio Grande do Sul, Santa Catarina e Minas Gerais. Este 

trabalho foi o primeiro a determinar o teor de todas as principais classes de 

compostos fenólicos do EVOO, alcoóis fenólicos, secoiridoides, lignanas e 

flavonoides, em amostras oriundas de diferentes regiões do Brasil, sendo mais um 

passo importante para a caracterização química deste produto que pode vir a ser 

muito importante para o país em um futuro não muito distante. 


