

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA DE ALIMENTOS DEPARTAMENTO DE ENGENHARIA DE ALIMENTOS

Extração supercrítica de macela, cravo-da-índia e vetiver: aspectos tecnológicos e econômicos

Thais Massue Takeuchi

Engenheira de Alimentos (2003 – UNICAMP) RA 992501

Orientadora: Profa. Dra. Maria Angela de Almeida Meireles

Tese apresentada à Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas para obtenção do Título de Doutor em Engenharia de Alimentos

Campinas, 2009

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA FEA – UNICAMP

Takeuchi, Thais Massue

T139e

Extração supercrítica de macela, cravo-da-índia e vetiver: aspectos tecnológicos e econômicos / Thais Massue Takeuchi. -- Campinas, SP: [s.n.], 2009.

Orientador: Maria Angela de Almeida Meireles Tese (doutorado) - Universidade Estadual de Campinas.Faculdade de Engenharia de Alimentos

Extração supercrítica.
 Compostos fenólicos.
 Flavonóides.
 Cravo-da-índia.
 Vetiver.
 Custo de manufatura.
 Meireles, Maria Angela de.

II. Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos. III. Título.

(cars/fea)

Titulo em inglês: Supercritical extraction of macela, clove and vetiver: technological and economical aspects

Palavras-chave em inglês (Keywords): Supercritical extraction, Phenolic compounds,

Flavonoids, Clove, Vetiver, Cost of manufacturing

Titulação: Doutor em Engenharia de Alimentos

Banca examinadora: : Maria Angela de Almeida Meireles

Carmen Lucia Queiroga Lucio Cardozo Filho

Paulo de Tarso Vieira e Rosa Silvânia Regina Mendes Moreschi

Programa de Pós Graduação: Programa em Engenharia de Alimentos

Banca Examinadora

Dra. Maria Angela de Almeida Meireles DEA – FEA / UNICAMP Orientador

> Dra. Carmen Lucia Queiroga CPQBA / UNICAMP Membro

Dr. Lucio Cardozo Filho DEQ / Universidade Estadual de Maringá Membro

> Dr. Paulo de Tarso Vieira e Rosa IQ / UNICAMP Membro

Dra. Silvânia Regina Mendes Moreschi Universidade Tecnológica Federal do Paraná - UTFPR Membro

Dr. Fernando Antonio Cabral DEA – FEA/ UNICAMP Suplente

Dra. Mara Elga Medeiros Braga Faculdade de Ciências e Tecnologia / Universidade de Coimbra Suplente

> Dr. Reinaldo Camino Bazito Instituto de Química / USP Suplente

"O amor de mãe é o combustível que permite a um ser humano fazer o impossível." Marion C. Garretty
Vivemos momentos de extrema dificuldade, temor e tristeza. Mas o que ficou de tudo isso foi sua grande lição de amor.
À minha mãe
Pelo imenso amor que me trouxe até aqui!

Agradecimentos

À minha orientadora Profa. Dra. Maria Angela de Almeida Meireles

Pela tão importante oportunidade a mim concedida de ter contato com sua valiosa experiência profissional durante estes cinco anos, dando-lhes um significado especial na minha busca por realização profissional. As repreensões e estímulos nos momentos oportunos foram essenciais para meu autoconhecimento e certamente contribuíram para que eu tivesse confiança para superar a maior parte dos desafios com que me deparei durante esta empreitada.

À Fundação de Amparo á Pesquisa do Estado de São Paulo

Pelas bolsas de estudo concedidas e pelo suporte financeiro, essenciais para a viabilização deste trabalho de pesquisa e para a minha formação profissional (Processos 03/11891-1 e 05/54544-5).

À Universidade Estadual de Campinas

Pelos dez maravilhosos anos de aprendizado de inquestionável qualidade. Pelo ambiente propício à integração de pessoas das mais diversas origens e opiniões. Pela dedicação de seus docentes, administradores e funcionários, sem a qual esta excelente instituição de ensino não seria possível.

Ao CPQBA - UNICAMP

Pela cooperação e pelo fornecimento da matéria-prima utilizada na etapa experimental do desenvolvimento deste trabalho.

À aluna de iniciação científica Maria Laura Rubano

Pela dedicação e competência com que assumiu as responsabilidades que lhe foram atribuídas. Pela descontração e amizade que tornaram nosso trabalho mais agradável. E pela oportunidade de conhecer o prazer e as dificuldades da árdua

tarefa de repassar conhecimento a um aluno. Tenha certeza de que também aprendi muito com você. Sua calma em todas as situações foi a mais importante das lições pra mim.

Aos meus queridos colegas Mara Elga Medeiros Braga e Paulo de Tarso Vieira Rosa

Por enriquecerem esta experiência com momentos preciosos. Sua amizade, generosidade e paciência em auxiliar a colega tão menos experiente foram uma lição e um estímulo.

Aos colegas do LASEFI

Pelo companheirismo e pela rica troca de idéias, além das festinhas de aniversário, amigos secretos de final de ano, e bate-papos durante os almoços e finais de tarde... Momentos tão simples e tão valiosos de descontração!

Aos funcionários do LASEFI Ariovaldo Astini e Taisa Andressa Almeida

Por sua dedicação aos alunos do LASEFI. Por sua paciência para lidar com o estresse do experimento mal sucedido, do equipamento quebrado, ou da falta de material. E pela amizade que tornou a convivência agradável, tão essencial aos dias de trabalho mais longos e cansativos.

Às minhas "roomates" Marcelle, Paula e Verena

Pelos três anos e meio de responsabilidades, confissões, desabafos e segredos divididos, regados por tantas risadas e piadas absurdas. Ao final de cada dia trabalhado, fomos capazes de voltar para casa e resolver todos os problemas, sem nunca nos esquecermos de que era necessário tornar esses momentos especiais apesar de tudo. Que sejamos capazes de tornar esta amizade duradoura e preciosa.

Ao meu amigo Rafael Resende Maldonado

Por me mostrar, além do politicamente correto, o que é a essência do ser humano acima de qualquer preconceito. Por ser essa pessoa que conquista meu respeito e meu afeto todos os dias. Pela companhia insubstituível dos momentos de crise existencial ou de pura descontração e, principalmente, pelo estreitamento dos laços de amizade que se tornaram um enorme apoio nos momentos mais difíceis.

À minha grande amiga Sandra Regina Yaginuma

Pelo ombro amigo e incansável de tantos anos. Por dividir comigo os inúmeros momentos de incerteza profissional entremeados de tantos problemas pessoais. Com certeza você foi essencial nos momentos mais difíceis. Com você aprendi que todos nós temos a família em que nascemos, mas que podemos ainda ter outra, que escolhemos. Você é dos membros mais importantes da família que escolhi. Essa idéia deu um colorido muito particular à minha vida, sem o qual teria sido muito mais difícil chegar até aqui tão segura das minhas escolhas.

Aos meus tios Jane e Toshio

Pelo auxílio imprescindível sem o qual os últimos meses da realização deste trabalho teriam sido inviáveis. Pela mão estendida em solidariedade e afeto à minha família no momento mais difícil de nossas vidas.

Ao meu companheiro Marcelo Machado

Pela falta de egoísmo com que apóia todas as minhas decisões profissionais. Pela enorme compreensão, que lhe é tão peculiar. Pela personalidade extrovertida, bem-humorada e, ao mesmo tempo, tão educada que o torna um ser humano tão especial e agradável a todos. Pelo exemplo de competência e dedicação ao trabalho. Por todas as lições de equilíbrio, sensatez, desapego, bondade e ternura que estão sempre contribuindo para que eu me torne um ser humano melhor. Por ser a voz da razão que me aponta alternativas sábias às resoluções mais desastrosas, e me devolve a serenidade que eu preciso para enfrentar o dia-a-dia. E, principalmente, por me admirar apesar de todos os defeitos e problemas e ser esse companheiro inabalável de todas as horas.

Aos meus pais Bernadete e Paulo

Por transformar a educação de seus filhos em seu principal objetivo de vida. Por todos os sacrifícios necessários à viabilização desta e de todas as minhas conquistas. À voz familiar, ao abraço acolhedor e ao amor incondicional com que minha mãe sempre me recebeu nos momentos de tristeza, desespero ou simples ternura. À personalidade extravagante e ao mesmo tempo racional de meu pai, que me ensinou que a convivência entre a espontaneidade e a sensatez é perfeitamente possível e pode dar uma leveza inestimável ao dia-a-dia. Através de caminhos diretos ou tortuosos, o amor de vocês me fez companhia todos os dias da minha vida.

Finalmente, a Deus.

ÍNDICE GERAL

ÍNDICE GERAL	xi
LISTA DE FIGURAS	xv
LISTA DE TABELAS	xix
NOMENCLATURA/ ABREVIAÇÕES	xxi
RESUMO	xxiii
ABSTRACT	xxv
Capítulo 1 – Introdução e Objetivos	1
1.1 Objetivos Gerais	1
1.1.1 Objetivos Específicos	2
Capítulo 2 - Revisão Bibliográfica	5
2.1 Macela (Achyrocline satureioides (D.C.))	5
2.2 Cravo-da-índia (Eugenia caryophyllus)	8
2.3 Vetiver (Vetiveria zizanoides)	10
2.4 Extração Supercrítica	13
2.4.1 Utilização de co-solventes ou modificadores	14
2.4.2 Experimentos cinéticos	15
2.4.3 Etapa de separação	18
2.4.4 Custo de manufatura	19
Capítulo 3 - Materiais e Métodos	21
3.1 Matéria-prima (inflorescências de macela)	21
3.1.1 Origem das amostras	21
3.1.2 Preparo da matéria-prima	22
3.1.3 Caracterização da matéria-prima	22
3.2 Obtenção dos extratos	24
3.2.1 Extração com solvente	24
3.2.2 Extração Supercrítica (ESC) - Isotermas de Rendimento Global (IRG)	28
3.2.3 ESC - Experimentos Cinéticos	32
$3.2.4$ Influência da geometria do leito de extração (relação H_B/d_B) e da vazão de	
solvente sobre a cinética de extração.	35
3.2.5 Estimativa de Custos	
3.3 Estudo da Etapa de Separação – Simulação	
3.3.1 Compilação dos dados para a simulação	
3.3.2 Simulação do destilador flash	
3.3.3 Impacto da operação do destilador flash sobre o custo de manufatura	42

3.4 Caracterização dos extratos	44
3.4.1 Determinação da atividade antioxidante	44
3.4.2 Determinação do teor de compostos fenólicos totais	
3.4.3 Determinação do teor de flavonóides totais	47
3.4.4 Determinação do Teor de Quercetina: monitoramento das cinéticas de el	xtração
supercrítica com a mistura CO ₂ + etanol	48
3.4.5 Cromatografia Gasosa - CG	48
3.4.6 Cromatografia em camada delgada - CCD	50
Capítulo 4 - Resultados e Discussão	53
4.1 Caracterização da matéria-prima	53
4.2 Obtenção dos extratos – Comparação dos métodos de extração	54
4.2.1 Extração com solvente a baixa pressão (ESBP)	54
4.2.2 Extração Supercrítica – Influências da pressão e da temperatura	55
4.2.3 Análises das composições e das propriedades funcionais dos extratos	67
4.2.4 Informações sobre rendimentos e resultados das análises para as técnica ESBP e ESC sem e com a utilização de etanol como co-solvente – Resumo	
4.3 Estudos envolvendo experimentos cinéticos	101
4.3.1 Influência da geometria do leito de extração (relação H _B /d _B) e da vazão solvente sobre a cinética de extração.	de
4.3.2 Estimativa do custo de manufatura do extrato de <i>Achyrocline satureioid</i> extração supercrítica com CO ₂ puro	_
4.3.3 Experimentos cinéticos com co-solvente	
4.4 Estudo da etapa de separação – Simulação	
4.4.1 Cravo da Índia (Eugenia caryophyllus)	
4.4.2 Vetiver (Vetiveria zizanoides)	
4.4.3 Impacto da operação do destilador flash sobre o custo de manufatura passistema óleo de cravo-da-índia + CO ₂	ra o
Capítulo 5 – Conclusões e Sugestões	
Capítulo 6 - Referências Bibliográficas	
Capítulo 7 - Anexos	
7.1 Resultados numéricos para atividade antioxidante dos extratos (Item 4.2.3.1)	
•	
7.2 Resultados numéricos para a análise de teor de compostos fenólicos totais no extratos (Item 4.2.3.2).	163
7.3 Resultados numéricos para a análise de teor de flavonóides totais (Item 4.2.3	
7.4 Curvas padrão utilizadas na quantificação de α-humuleno e trans-cariofileno extratos de macela	
7.5 Dados dos experimentos cinéticos relacionados ao estudo de influência de ge	
de leito (A. satureioides – Item 4 3 1)	169

7.6 SAS Learning Edition 1.0 – Programas e resultados referentes a estimativa dos
parâmetros t _{CER} , t _{FER} , M _{CER} , Y _{CER} , R _{CER} para os experimentos cinéticos relacionados ao estudo de influência de geometria de leito (Item 4.3.1)
7.6.1 Experimento de referência realizado na SFE-II (replicata 1)
7.6.2 Experimento de referência realizado na SFE-II (replicata 2)
7.6.3 Experimento realizado na unidade SFE-I com amostra de 15g (replicata 1)194
7.6.4 Experimento realizado na unidade SFE-I com amostra de 15g (replicata 2)203
7.6.4 Experimento realizado na unidade SFE-I com amostra de 13g (replicata 1)203 7.6.5 Experimento realizado na unidade SFE-I com amostra de 30g (replicata 1)212
7.6.6 Experimento realizado na unidade SFE-I com amostra de 30g (replicata 2)221
7.6.7 Experimento realizado na unidade SFE-I com amostra de 10g (reprodução da curva do experimento de referência)
•
7.6.8 Experimento realizado na unidade SFE-I com amostra de 10g (vazão de solvente 50 % maior)
7.7 Dados do experimento cinético realizado na SFE-I com CO ₂ puro para a estimativa
do custo de manufatura do extrato supercrítico de <i>A. satureioides</i> 249
7.7.1 SAS Learning Edition 1.0 – Programas e resultados referentes à estimativa dos
parâmetros t _{CER} , t _{FER} , M _{CER} , Y _{CER} , R _{CER} para o experimento cinético relacionado à
estimativa do COM para o extrato supercrítico de A. satureioides (Item 4.3.2)250
7.8 Dados dos experimentos cinéticos realizados na SFE-II com CO_2 + etanol (A . satureioides – Item 4.3.3)259
7.8.1 Dados da quantificação de quercetina nos extratos obtidos através dos
experimentos cinéticos realizados com CO ₂ + etanol
7.9 SAS Learning Edition 1.0 – Programas e resultados referentes à estimativa dos
parâmetros t _{CER} , t _{FER} , M _{CER} , Y _{CER} , R _{CER} para os experimentos cinéticos relacionados aos
experimentos cinéticos realizados com a mistura CO ₂ supercrítico + etanol como solvente de extração (Item 4.3.3 – <i>Achyrocline satureioides</i>)
7.9.1 Experimento cinético realizado utilizando-se 20 % de etanol como co-solvente e
aproximadamente 5 g de amostra
7.9.2 Experimento cinético realizado utilizando-se 20 % de etanol como co-solvente e aproximadamente 2 g de amostra
7.9.3 Experimento cinético realizado utilizando-se 20 % de etanol como co-solvente e
aproximadamente 30 g de amostra
7.9.4 Experimento cinético realizado utilizando-se 20 % de etanol como co-solvente, aproximadamente 30 g de amostra e aplicação de período estático (replicata 1)307
7.9.5 Experimento cinético realizado utilizando-se 20 % de etanol como co-solvente,
aproximadamente 30 g de amostra e aplicação de período estático (replicata 2)317
7.9.6 Experimento cinético realizado utilizando-se 5 % de etanol como co-solvente,
aproximadamente 30 g de amostra e aplicação de período estático (replicata 1)327
7.9.7 Experimento cinético realizado utilizando-se 5 % de etanol como co-solvente,
aproximadamente 30 g de amostra e aplicação de período estático (replicata 2)337

7.9.8 Experimento cinético realizado utilizando-se 20 % de etanol como co-solvent aproximadamente 30 g de amostra, aplicação de período estático e vazão reduzida o mistura de solventes de extração (replicata 1).	da
7.9.9 Experimento cinético realizado utilizando-se 20 % de etanol como co-solvent aproximadamente 30 g de amostra, aplicação de período estático e vazão reduzida o mistura de solventes de extração (replicata 2).	e, da
7.10 Simulação da etapa de separação do extrato de cravo-da-índia (Item 4.4.1 — Eugenia caryophyllus).	367
7.11 Simulação da etapa de separação do extrato de vetiver (Item 4.4.2 – <i>Vetiveria zizanoides</i>)	385
7.12 Estimativa do impacto da etapa de separação sobre o custo de manufatura do ólede cravo-da-índia por extração supercrítica (Item 4.4.3 – <i>Eugenia caryophyllus</i>)	

LISTA DE FIGURAS

- **Figura 3.1** Esquema do sistema de extração por percolação: 1 célula de extração, 2 Reservatório de solvente (etanol), 3 Bomba de solvente, 4 e 5 Placas de vidro poroso
- **Figura 3.2** Esquema simplificado do sistema de extração Spe-ed: 1 Reservatório de CO2, 2 Condensador, 3 Bomba de CO2, 4 Aquecimento, 5 Válvula de entrada, 6 Célula de extração, 7 Válvula de saída, 8 Válvula micrométrica, 9 Separador (recuperação de extrato), 10 Coluna de adsorção, 11 Medidor de vazão
- **Figura 3.3** Representação do destilador tipo flash produzido pelo software SuperPro Designs[®] 6.0.
- **Figura 4.1** Isotermas de rendimento global construídas a 30 (●), 45 (■) e 60 °C (▲), utilizando-se CO₂ supercrítico puro (*A. satureioides*).
- **Figura 4.2** Rendimento global em função da densidade do CO_2 para os extratos de *A. satureioides* obtidos sem co-solvente nas temperaturas de 30 (\bullet), 45 (\blacksquare) e 60 °C (\blacktriangle) (dados de densidade do CO_2 foram retirados no NIST Chemistry WebBook [61]).
- **Figura 4.3** Isotermas de rendimento global construídas a 30 (●) e 45 °C (■), utilizandose CO₂ supercrítico + (20 %) etanol (*A. satureioides*).
- **Figura 4.4 -** Estabilidade da atividade antioxidante em função do tempo de reação para as amostras de *A. satureioides* obtidas por ESBP: (●) percolação (20:1); (○) percolação (100:1); (■) centrifugação; e (▲) agitação.
- **Figura 4.5** Atividades antioxidantes dos extratos de *A. satureioides* obtidos por ESC com CO_2 puro a 30 (\bullet), 45 (\blacksquare) e 60 °C (\blacktriangle).
- **Figura 4.6** Atividades antioxidantes dos extratos de *A. satureioides* obtidos por ESC com CO_2 + etanol (20 %, vol.) a 30 (\bullet) e 45 °C (\blacksquare).
- **Figura 4.7** Concentração de compostos fenólicos totais nos extratos de *A. satureioides* obtidos por ESC com CO₂ puro a 30 (●), 45 (■) e 60°C (▲).
- **Figura 4.8** Concentração de compostos fenólicos totais nos extratos de *A. satureioides* obtidos por ESC com CO_2 + etanol a 30 (\bullet) e 45°C (\blacksquare).

- **Figura 4.9** Concentração de flavonóides totais nos extratos de *A. satureioides* obtidos por ESC a 30 (●), 45(■) e 60°C (▲).
- Figura 4.10 Concentrações de flavonóides totais nos extratos de *A. satureioides* obtidos por ESC com CO_2 + etanol a 30 (\bullet) e 45°C (\blacksquare).
- Figura 4.11 Estruturas químicas do (a) α-humuleno e (b) trans-cariofileno [80].
- **Figura 4.12** Placa de CCD de extratos de macela na seguinte ordem de aplicação: quercetina; extração a baixa pressão com etanol por percolação (relação 1:20 e 1:100), e por centrifugação; extração supercrítica a 45°C, a 150 bar e a 300 bar.
- **Figura 4.13** Placa de CCD dos extratos obtidos por SFE com co-solvente (revelador de anisaldeído).
- **Figura 4.14** Placa de CCD dos extratos obtidos por SFE com co-solvente (revelador de flavonóides).
- **Figura 4.15** CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz natural (2μL de amostra).
- **Figura 4.16** CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz UV (254 nm) (2μL de amostra).
- **Figura 4.17** CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz natural (8μL de amostra).
- **Figura 4.18** CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz UV (254 nm) (8μL de amostra).
- **Figura 4.19** Curvas de extração do experimento de referência realizado na SFE-II com a *A. satureioides*: replicatas 1 (♦) e 2 (♦).
- **Figura 4.20** Curvas cinéticas dos experimentos realizados na SFE-I com 15 g de matéria-prima (*A. satureioides*): replicatas 1 (●) e 2 (○).

- **Figura 4.21** Curvas cinéticas da extração supercrítica de 15 g de *A. satureioide*s em dois equipamentos distintos (média de dois experimentos): SFE-I (▲) e SFE-II (■).
- **Figura 4.22** Representação das curvas de extração supercrítica de *A. satureioides* em diferentes equipamentos com amostras de 30 g na SFE-I (replicatas 1(○) e 2 (●)), e de 15 g na SFE-I (▲) e na SFE-II (■)
- Figura 4.23 Curvas cinéticas dos experimentos realizados com 10 g de A. satureioides utilizando-se vazões diferentes: experimentos $1 (\blacktriangle) e 2 (\triangle)$.
- **Figura 4.24** Curva do experimento cinético (45 °C e 300 bar) utilizado como referência para a estimativa do custo de manufatura (COM) do extrato supercrítico de *A. satureioides*.
- **Figura 4.25** Ensaios cinéticos realizados com *A. satureioides* a 30 °C e 300 bar utilizando-se co-solvente: experimentos 1 (■) e 2 (□), realizados com 5 g e 2 g, respectivamente.
- Figura 4.26 Curvas cinéticas da extração supercrítica de A. satureioides com cosolvente: experimentos $3 (\bullet)$, $4 (\blacksquare)$, $5 (\blacktriangle)$ e $6 (\times)$.
- **Figura 4.27** Curvas cinéticas da extração supercrítica de *A. satureioides* com co-solvente em termos de rendimento de quercetina: experimentos $3 (\bullet)$, $4 (\blacksquare)$, $5 (\blacktriangle)$ e $6 (\times)$.
- **Figura 4.28** Fração de extrato perdida junto à saída da fase leve do separador (cravo-da-índia)
- **Figura 4.29** Fração de dióxido de carbono perdida junto à saída da fase pesada do separador (cravo-da-índia).
- **Figura 4.30** Fração de extrato perdida junto à fase leve (vetiver). Variação das ordenadas: (a) de 0 a 35 % e (b) de 0 a 3,5 %.
- **Figura 4.31** Fração de solvente perdida junto à fase pesada (vetiver).
- **Figura 4.32** Custo de manufatura com diferentes condições operação no separador calculado pelo Tecanalysis (cravo-da-índia).
- **Figura 4.33** Variações do custo da matéria-prima em função da pressão e da temperatura (cravo-da-índia).

Figura 4.34 – Variações do custo de utilidades em função da pressão e da temperatura (cravo-da-índia).

Figura 4.35 – Custo de operação do destilador flash através de processo isotérmico (cravoda-índia).

Figura 4.36 – Custo de utilidades corrigido para um separador isotérmico (cravo-da-índia).

Figura 4.37 – Custo de manufatura corrigido para um separador isotérmico (cravo-daíndia).

LISTA DE TABELAS

- **Tabela 3.1** Composição do óleo de cravo e propriedades físicas de suas substâncias [28].
- **Tabela 3.2** Substâncias presentes no extrato de vetiver e suas propriedades [38].
- **Tabela 3.3** Dados utilizados na estimativa do COM do óleo de cravo-da-índia [29].
- **Tabela 4.1** Dados de rendimento global de extração em diferentes condições de temperatura e pressão para a A. *satureioides**.
- **Tabela 4.2** Rendimentos globais obtidos em cada condição de processo utilizada para a *A. satureioides* representados como média ± amplitude calculados de acordo com a Equação 4.1.
- **Tabela 4.3** Resultados numéricos de rendimento global com utilização de co-solvente expressos como média ± amplitude (*A. satureioides*).
- **Tabela 4.4** Dados termodinâmicos experimentais da mistura etanol + CO₂ [79].
- **Tabela 4.5** Estabilidade da atividade antioxidante com o tempo dos extratos de A. *satureioides* obtidos por ESC com CO_2 + etanol.
- **Tabela 4.6** Concentração, em porcentagem, dos compostos α-humuleno e transcariofileno nos extratos obtidos a partir de extração supercrítica sem utilização de cosolvente.
- **Tabela 4.7** Concentração, em porcentagem, dos compostos α-humuleno e transcariofileno nos porapaks obtidos a partir de extração supercrítica sem utilização de cosolvente.
- **Tabela 4.8** Resumo dos resultados sobre rendimentos e análises dos extratos obtidos pelas técnicas de ESBP e ESC sem e com a utilização de etanol como co-solvente.
- **Tabela 4.9** Dados dos experimentos de referência realizados na SFE-II (*A. satureioides*).
- **Tabela 4.10** Valores calculados e experimentais referentes aos experimentos realizados na SFE-I com 15g de matéria-prima (*A. satureioides*).
- **Tabela 4.11** Valores calculados e experimentais referentes aos experimentos realizados na SFE-I com 30g de matéria-prima (*A. satureioides*).

- **Tabela 4.12** Dados calculados e experimentais para os experimentos cinéticos realizados na SFE-I com 10g de amostra (*A. satureioides*).
- **Tabela 4.13** Resultados dos ajustes de três retas através do software SAS Learning Edition 1.0 (*A. satureioides*).
- **Tabela 4.14** Dados utilizados na estimativa do COM do extrato supercrítico de *A. satureioides*.
- **Tabela 4.15** Dados da estimativa de custo fornecidos pelo software Tecanalysis.
- **Tabela 4.16** Parâmetros de extração dos ensaios cinéticos realizados com co-solvente (*A. satureioides*).
- **Tabela 4.17** Parâmetros cinéticos ajustados com o auxílio do software SAS Learning Edition 1.0 (*A. satureioides*).
- **Tabela 4.18** Dados calculados pelo software Termofis 1.1 utilizando-se o método de Joback & Reid [66] (cravo-da-índia).
- **Tabela 4.19** Equações que descrevem o comportamento das propriedades termodinâmicas dos compostos presentes no óleo de cravo-da-índia em função da temperatura.
- **Tabela 4.20** Valores estimados através do método de Joback & Reid para as temperaturas de fusão e de ebulição e para o calor específico das substâncias presentes no extrato supercrítico de vetiver.
- **Tabela 4.21** Equações obtidas através de dados para equilíbrio de fases de substâncias puras estimados pela equação de Peng-Robinson [69] (vetiver).
- **Tabela 4.22** Vazões do CO₂ e das substâncias presentes no extrato de vetiver na entrada do separador.

NOMENCLATURA/ABREVIAÇÕES

CER: taxa de extração constante (constant extraction rate)

CG: cromatografia gasosa

CM: custo de manufatura

COL: custo de mão-de-obra (cost of operational labor)

C_P: calor específico a pressão constante

CRM: custo de matéria-prima (cost of raw material)

CUT: custo de utilidades (cost of utilities)

CWT: custo de tratamento de resíduos (cost of waste treatment)

 d_a : densidade aparente

 $d_{\rm \it B}$: diâmetro do leito de extração

 d_r : densidade real

DIC: detector por ionização de chamas

EAG: equivalentes de ácido gálico

EM: espectrometria de massas

EQ: equivalentes de quercetina

ESBP: extração com solvente a baixa pressão

ESC: extração supercrítica

F : massa de alimentação

FCI: investimento de capital fixo (fixed capital investment)

FER: taxa de extração decrescente (falling extraction rate)

FSC: fluido supercrítico

GYI: global yield isoterms

 H_B : altura do leito de extração

IK: índice de Kovats

IRG: isoterma de rendimento global

LPSE: low pressure solvent extraction

m: massa

 M_{CER} : taxa de transferência de massa durante o período de taxa de extração constante (t_{CER})

MP: matéria-prima

 Q_{CO_2} : vazão de solvente

R_{CER}: rendimento de extração ao término do período de taxa de extração constante (t_{CER})

S/F: razão de massa de solvente sobre massa de alimentação

SFE-I: unidade de extração supercrítica I

SFE-II: unidade de extração supercrítica II

t_{CER}: tempo de extração determinado pelo término do período de taxa de extração constante

t_{FER}: tempo de extração determinado pelo término do período de taxa de extração

decrescente

tr: tempo de retenção

 $V_{\it B}$: volume do leito de extração

 Y_{CER} : concentração de soluto na fase supercrítica na saída do extrator durante o período de taxa de extração constante (t_{CER})

 ε : porosidade do leito de extração

TESE DE DOUTORADO

AUTOR: Thais Massue Takeuchi

TÍTULO: Extração supercrítica de macela, cravo-da-índia e vetiver: aspectos tecnológicos

e econômicos

ORIENTADORA: Profa. Dra. Maria Angela de Almeida Meireles – LASEFI – DEA/ FEA

- UNICAMP

RESUMO

Isotermas de rendimento global (IRG) foram construídas com o objetivo de avaliar as melhores condições de temperatura e pressão para a obtenção do extrato supercrítico da macela (Achyrocline satureioides). As extrações foram realizadas a 30, 45 e 60°C e 100, 150, 200, 250 e 300 bar utilizando-se CO₂ supercrítico puro, e a 30 e 45°C e 100, 200 e 300 bar utilizando-se a mistura CO₂ supercrítico + etanol (20 % v/v) como solvente de extração. Os extratos foram avaliados em relação às suas propriedades funcionais (atividade antioxidante, compostos fenólicos totais e flavonóides totais) e às suas composições (cromatografias gasosa e de camada delgada). Amostras de extrato de macela obtidas através de métodos de extração com solvente a baixa pressão (ESBP) também foram submetidos às mesmas análises e serviram como parâmetro de comparação. Os dados experimentais indicaram que, no caso da utilização do CO₂ puro, os melhores resultados, em termos de rendimento, composição e funcionalidade dos extratos, foram obtidos a 45°C e 200 bar. Por outro lado, a adição do etanol como co-solvente indicou uma elevação da polaridade do solvente supercrítico, facilitando a extração de compostos relativamente polares como os fenólicos e, mais especificamente, os flavonóides, com teores comparáveis aos dos extratos obtidos através de métodos de ESBP.

As inflorescências de macela também foram submetidas a experimentos cinéticos de extração supercrítica, sem e com a adição de etanol como co-solvente. Os experimentos realizados com CO₂ puro foram dedicados ao estudo da influência da geometria de leito sobre a cinética de extração e à estimativa do custo de manufatura do extrato supercrítico

de *A. satureioides*. Já os experimentos cinéticos realizados com co-solvente tiveram o objetivo de avaliar a influência da variação de parâmetros como o teor de co-solvente, a vazão de extração, e a aplicação de período estático sobre a cinética de extração.

Subsequentemente, foi realizado um estudo da etapa de separação dos processos de extração supercrítica do óleo de cravo-da-índia (*Eugenia caryophyllus*) e do extrato de vetiver (*Vetiveria zizanoides*) através de simulações do equilíbrio de fases que acontece dentro do separador, com o auxílio do software SuperPro® Designs 6.0. Para tanto, partiuse de dados encontrados da literatura em relação aos parâmetros de processo e às composições dos extratos de ambas as espécies. Esta investigação não pôde ser realizada tendo como base o extrato da macela em decorrência da dificuldade de identificação de seus compostos majoritários.

Adicionalmente, no caso do óleo de cravo-da-índia, os resultados obtidos através das simulações foram incorporados às estimativas de seu custo de manufatura, de forma a possibilitar a análise do impacto dos parâmetros de operação do separador sobre o custo de produção deste óleo. A análise dos resultados obtidos levou em consideração o fato de o sistema CO₂ supercrítico + óleo de cravo-da-índia apresentar diversas características extremamente favoráveis, não apenas à etapa extrativa, como também à etapa de separação, e que são praticamente exclusivas ao processo de extração supercrítica deste óleo.

Palavras-chave: extração supercrítica, macela, compostos fenólicos, flavonóides, cravo-da-índia, vetiver, etapa de separação, custo de manufatura.

DOCTORAL THESIS

AUTHOR: Thais Massue Takeuchi

TITLE: Supercritical extraction of macela, clove and vetiver: tecnological and economical aspects

MAJOR PROFESSOR: Dra. Maria Angela de Almeida Meireles – LASEFI – DEA/ FEA - UNICAMP

ABSTRACT

Global Yield Isotherms (GYI) have been built with the aim of evaluating the best temperature and pressure conditions for the obtaining of the macela's (Achyrocline satureioides) supercritical extract. The extraction experiments were performed at 30, 45 and 60°C and 100, 150, 200, 250, and 300 bar, using pure supercritical CO₂ as the extraction solvent, and at 30 and 45°C and 100, 200 and 300 bar, using the mixture supercritical CO₂ + ethanol (20 % v/v). The resulting extracts were evaluated in terms of their functional properties (antioxidant activity, total phenolic compounds and total flavonoids) and compositions (gas and thin layer chromatographies). Samples of macela extracts obtained through low pressure solvent extraction (LPSE) have also been subjected to the same analysis methods in order to make it possible to compare them to the supercritical extracts samples. The experimental data indicated that, in the case of the utilization of pure CO₂ as the extraction solvent, the best results, in terms of yield, composition and functional properties of the extracts, were obtained at 45°C and 200 bar. On the other hand, the addition of ethanol as a co-solvent probably increased the polarity of the supercritical solvent, enhancing the obtaining of relatively polar compounds as the phenolics and, more specifically, the flavonoids, with concentrations comparable to those of the LPSE extracts.

The macela flowers were also subjected to supercritical extraction kinetics experiments, with and without the addition of ethanol as co-solvent. The kinetic experiments performed with pure CO₂ had the purpose of evaluating the bed geometry

influence on the extraction kinetics and to serve as a database for the cost of manufacture estimation for the A. satureioides extract. In the case of the kinetic experiments performed with ethanol as co-solvent, the objective was the evaluate the influence of some process parameters variations as the ethanol/ CO_2 relation, the extraction solvent flow rate and the application of a static period on the extraction kinetics.

Subsequently, it was developed a study on the separation step of the clove (*Eugenia caryophyllus*) and vetiver (*Vetiveria zizanoides*) supercritical extraction processes through simulations of the phase equilibrium that takes place inside the separation vessel, with the aid of the software SuperPro® Designs 6.0. Experimental data such as process parameters and extracts' compositions (for both species) were obtained from literature. This investigation could not be performed for the separation step of the supercritical extraction of macela due to difficulties related to the extract's major compounds identification.

Additionally, in the clove oil case, the separation step simulation results have been incorporated to the cost of manufacturing estimations, in such a way that it was possible to analyze the impact of the separator performance on the production costs. Throughout the process of results analyses, the fact that the system supercritical CO_2 + clove oil presents several extremely favorable characteristics, not only related to extraction step, but also to the separation step, which are practically exclusively to the supercritical extraction of the clove oil, was taken into consideration.

Keywords: supercritical extraction, macela, phenolic compounds, flavonoids, clove, vetiver, separation step, cost of manufacturing.

Capítulo 1 – Introdução e Objetivos

No Brasil, o enorme potencial de cultivo de suas terras e o valor inestimável de sua famosa biodiversidade são características amplamente conhecidas e discutidas. Infelizmente, o aproveitamento destas qualidades têm sido negligenciado em decorrência do pouco conhecimento científico e do baixo investimento em desenvolvimento tecnológico.

O presente estudo se dedicou à abordagem da extração supercrítica: uma tecnologia ainda inutilizada em território brasileiro até o momento, porém já bastante conhecida no exterior. Para tanto, foram utilizadas como matéria-prima espécies que apresentam conhecidos potenciais de cultivo no país, aliando as qualidades de seu solo e clima favoráveis à agricultura à aplicação de uma tecnologia inovadora.

O trabalho do LASEFI com a tecnologia supercrítica já é conhecido tradicionalmente e persiste desde o início da carreira da Dra. M. Angela A. Meireles como professora na Faculdade de Engenharia de Alimentos da UNICAMP. Este estudo se dedicadou à continuidade e aprofundamento dos estudos previamente desenvolvidos no LASEFI e utiliza dados apresentados em trabalhos anteriores.

1.1 Objetivos Gerais

Avaliação da obtenção de extratos de *Achyrocline satureioides* utilizando-se tecnologia supercrítica (CO₂ e CO₂ + etanol) e processos de extração com solvente

orgânico (etanol) a baixa pressão. Comparação dos resultados em termos do rendimento e da composição dos extratos.

Avaliação da viabilidade econômica do emprego do processo supercrítico para obtenção de extratos de *A. satureioides* e de seus princípios ativos.

Estudo da etapa de separação visando a otimização de obtenção de extrato e a minimização da perda de solvente para os casos dos extratos supercríticos de cravo-daíndia e de vetiver.

Avaliação do impacto da eficiência da etapa de separação sobre o custo de manufatura do óleo de cravo-da-índia através de extração supercrítica.

1.1.1 Objetivos Específicos

- ❖ Inflorescências de macela (*Achyrocline satureioides*):
 - Determinar, para o sistema inflorescências de *A. satureioides* + CO₂, as isotermas de rendimento global (IRG) para extração nas temperaturas de 30, 45 e 60°C e nas pressões de 100, 150, 200, 250, 300 bar;
 - Determinar, para o sistema inflorescências de A. satureioides + CO₂ + etanol (20%, vol.) as isotermas de rendimento global (IRG) para as temperaturas de 30 e 45°C nas pressões de 100, 200 e 300 bar;
 - Estudar a extração a baixa pressão, para o sistema *A. satureioides* + etanol, por centrifugação, por percolação com recirculação do solvente e por maceração;
 - Determinar as composições químicas dos extratos;
 - Determinar as atividades antioxidantes dos extratos de *A. satureioides*;

- Determinar as concentrações de flavonóides e de fenóis totais nos extratos de A.
 satureioides;
- Comparar os diferentes processos de extração aplicados, tanto através dos resultados relacionados aos rendimentos totais dos extratos, quanto àqueles relacionados à composição dos mesmos.
- Determinar e avaliar a cinética de extração para o processo de extração supercrítica
 de *A. satureioides* utilizando-se as melhores condições de temperatura e pressão (de
 acordo com os resultados das isotermas de rendimento global), tanto em relação ao
 rendimento quanto às composições químicas dos extratos, em diferentes vazões de
 solvente e geometrias de leito (razão H_B/d_B, onde H_B é a altura do leito e d_B é o
 diâmetro do leito);
- Proceder a uma estimativa de custos classe 5¹ (relacionada a baixo grau de definição do projeto) de manufatura de extratos de A. satureioides por tecnologia supercrítica.

Cravo-da-índia (Eugenia caryophyllus)

Estudar o equilíbrio de fases do sistema óleo supercrítico de cravo-da-índia + CO₂.
 A partir de dados da literatura, analisar a eficiência da utilização de equações de estado aplicadas às propriedades termodinâmicas dos compostos majoritários do óleo na predição da solubilidade do mesmo em CO₂;

3

¹ A Association for the Advancement of Cost Engineering International (AACEI) classifica as estimativas de custos em 5 classes: Classe 5 (associada a baixo nível de definição do projeto) e Classe 1 (associada a alto nível de definição do projeto) [1].

 Avaliar o impacto da eficiência de operação do destilador flash utilizado na etapa de separação (entre solvente e extrato supercrítico) sobre a estimativa do custo de manufatura do óleo de cravo-da-índia.

❖ Vetiver (*Vetiveria zizanoides*)

Estudar o equilíbrio de fases do sistema extrato supercrítico de vetiver + CO₂. A
partir de dados da literatura, analisar a eficiência da utilização de equações de
estado aplicadas às propriedades termodinâmicas dos compostos majoritários do
extrato na predição da solubilidade do mesmo em CO₂.

Capítulo 2 - Revisão Bibliográfica

2.1 Macela (Achyrocline satureioides (D.C.))

A espécie *Achyrocline satureioides* (Lam) D.C. (Compositae) é uma planta nativa da América do Sul, usada pela medicina popular e conhecida pelo nome popular de "macela" que cresce em extensas regiões do Uruguai, Paraguai, Brasil e Argentina [2]. A maior parte destas plantas cresce em regiões secas, sendo que, enquanto algumas apresentam extensas áreas de distribuição, outras se mostram mais restritas a regiões específicas [3].

No trabalho desenvolvido por Broussalis *et al* [3], quatro espécies do gênero *Achyrocline* foram analisadas e avaliadas com relação ao seu conteúdo de flavonóides, flavonas, flavononas e ácido caféico. Em todos os casos, foram encontradas diversas substâncias com propriedades antioxidantes. Para a espécie *A. satureioides*, foram encontrados os seguintes compostos fenólicos entre flavonóides, ácidos caféicos e ésteres: quercetina, quercetina 3-metil-éter, quercetina 3,7-dimetil-éter, quercetina 3-metil-éter 7-diglicosídeo, tamarixetina, tamarixetina 7-glicosídeo, galangina, galangina 3-metil-éter, gnaphaliina, isognafaliina, quercetagetina, ácido caféico, ácido clorogênico, ácido isoclorogênico.

Dentre as diversas espécies conhecidas do gênero *Achyrocline*, a mais estudada é a *A. satureioides*. De Souza *et al* [4] estudaram as determinações qualitativa e quantitativa, através de cromatografia líquida, dos flavonóides quercetina (propriedades antioxidantes, antiinflamatórias, anti-ulcerativas, antihepatotóxicas e antiespasmódicas), luteonina (atividades antiplaquetárias e vasodilatatórias) e quercetina 3-metil-éter (atividade antiviral) devido à importância terapêutica destes compostos. Kadarian *et al* [5] também

estudaram a atividade hepatoprotetora do extrato da planta através de testes in vivo (utilizando-se roedores), além de relatarem a adição do mesmo em bebidas amargas, ou aperitivos, com a finalidade de auxiliar o processo digestivo. A atividade mutagênica sobre microorganismos como a Salmonella e a Escherichia coli explicariam a uso popular da A. satureioides no tratamento de disenterias, diarréias e infecções intestinais. A atividade citotóxica de extratos metanólicos de alguns vegetais, incluindo a A. satureioides, sobre células cancerosas foi testada e confirmada por Ruffa et al [6], apesar de sua atividade não ter sido a mais significativa entre as plantas estudadas. Polydoro et al [7] detectaram quantidades elevadas de flavonóides em extratos, tanto aquosos quanto etanólicos, desta planta e observaram atividade antioxidante significativa em testes com plasma humano. Gugliucci & Menini [8] empregaram três diferentes sistemas considerados importantes rotas de oxidação da LDL (lipoproteína de baixa densidade) na parede arterial, a fim de testar a atividade antioxidante do extrato da A. satureioides; os resultados indicaram atividade superior à do ácido ascórbico. Arredondo et al [2] testaram extratos de três diferentes plantas (Achyrocline satureioides, Gingko biloba and Epilobium parviflorum) e detectaram a presença de flavonóides em todos os extratos, mas apenas o da A. satureioides apresentou atividade citoprotetora. De acordo com Dickel et al [9], a espécie ainda pode estar relacionada a um potencial regulador dos níveis de glicose no sangue.

Em trabalho desenvolvido por De Souza *et al* [10], os autores citam que a limitada biodisponibilidade da aglicona da quercetina, quando administrada oralmente, já é bastante conhecida. Em relação a este ponto, o estudo indicou que mesmo utilizando-se diferentes proporções da mistura etanol + água (40 e 80 % de etanol) as concentrações observadas para os três flavonóides analisados (quercetina, luteolina e 3-O-metilquercetina) foram semelhantes em todos os extratos obtidos, porém com atividades antiinflamatórias

significativamente diferentes entre si. Inicialmente, os autores sugeriram que este resultado indicaria que os flavonóides não seriam os únicos compostos com propriedades antiinflamatórias presentes nos extratos, o que daria suporte à hipótese de que a presença simultânea de polissacarídeos e flavonóides (no extrato obtido com 40 % de etanol) teria efeito sinérgico sobre a propriedade antiinflamatória da amostra. Entretanto, experimentos posteriores mostraram que a adição do polisorbato como agente emulsificante causou um efeito de intensificação da propriedade antiinflamatória no caso do extrato obtido com 80% de etanol (menor polaridade), enquanto não foi observado efeito significativo no caso do extrato obtido com 40 % de etanol (maior polaridade). Este fenômeno indicaria que o polisorbato teria um efeito de elevação da solubilidade dos compostos ativos insolúveis presentes no extrato obtido com 80 % de etanol, sendo que estes mesmos compostos, em elevada concentração no caso anterior, não estariam presentes nas amostras obtidas com 40% de etanol. Desta forma, a elevação da solubilidade em água dos compostos ativos parece exercer papel fundamental na absorção da quercetina administrada oralmente, o que seria um progresso importante no entendimento desta questão e na melhoria das aplicações deste tido de composto.

Em Broussalis *et al* [3], foram encontradas diversas substâncias em comum entre as quatro espécies do gênero *Achyrocline* estudadas. O estudo de Bohlmann *et al* [11] com a *A. alata* indicou a presença de compostos que só haviam sido encontrados anteriormente em uma única espécie vegetal do gênero *Helichrysum*. Estes fatos, aliados aos resultados dos recentes estudos relacionados às atividades dos extratos da *A. satureioides*, têm motivado o desenvolvimento de trabalhos como o de Rodrigues *et al* [12] com a *A. alata*, e o de Hnatyszyn *et al* [13] com a *A. satureioides*. No entanto, até a data presente, o único estudo utilizando a tecnologia supercrítica como alternativa para a obtenção dos extratos de

A. satureioides é o de Leal et al [14]. Porém este estudo se dedicou à obtenção do extrato a partir das folhas de A. satureioides e A. alata, não contendo nenhuma informação sobre a utilização das flores destas espécies.

2.2 Cravo-da-índia (Eugenia caryophyllus)

O cravo-da-índia ou *Eugenia caryophyllus*, espécie pertencente à família Myrtaceae, é conhecida pela medicina popular por suas propriedades estimulantes no tratamento de desordens intestinais, dispepsias, gastrites agudas/ crônicas e diarréia [15]. Além disso, é considerado um aromatizante e conservante natural que não provoca efeitos prejudiciais ao ser humano quando consumido em produtos alimentícios [16].

Apesar de, tradicionalmente, o cravo-da-índia ser utilizado como especiaria culinária, o mesmo também é aplicado no tratamento tópico da dor de dente por conter elevada concentração de eugenol [17]. O eugenol é um líquido oleoso que tem sido utilizado na odontologia por suas propriedades analgésicas e anti-sépticas [17]. Segundo estudo realizado por Alqareer *et al* [17], o gel de cravo-da-índia apresentou potencial para substituir a benzocaína como agente tópico antes da inserção da agulha.

Em outro trabalho, os resultados indicaram que o eugenol não só inibe a ação da 5lipoxigenase através de mecanismo não competitivo como também inibe a formação do leucotrieno C₄ nos leucócitos polimorfonucleares humanos. Os leucotrienos agem como mediadores de diversas doenças incluindo a asma e outras patologias inflamatórias como a artrite reumatóide e a psoríase [18].

Ainda em relação a possíveis benefícios à saúde humana, Chae-Bin *et al* [19] estudaram a ação do eugenol sobre as células promielocíticas HL-60 relacionadas à

leucemia em seres humanos, resultando no primeiro relato sobre o mecanismo anticancerígeno do eugenol.

Vários estudos também têm sido realizados com o objetivo de avaliar os benefícios da adição do óleo de cravo-da-índia nos alimentos [20], [21], [22], [23], [24]. Em um deles, a inativação de microrganismos em suco de tomate através de aplicação de pulsação elétrica foi avaliada. Os autores concluíram que a presença de pequenas concentrações de agentes antimicrobianos como os presentes no óleo de cravo-da-índia e no extrato de menta, associados a aquecimento moderado, provocaram uma diminuição significativa da carga microbiana sem a necessidade de aplicação de pulsação elétrica [21]. Em outro trabalho, os autores concluíram que a associação de óleo de cravo ao ácido láctico proporcionou prolongamento expressivo da vida de prateleira da carne de búfalo quando comparada à amostra tratada apenas com ácido láctico [23].

A obtenção do óleo de cravo-da-índia através da extração supercrítica já foi intensamente estudada. Em publicação de 1997, Reverchon & Marrone [25] relataram resultados relacionados ao fracionamento do óleo de cravo obtido através de extração supercrítica e à influência de parâmetros como a altura do leito de extração e a vazão de dióxido de carbono sobre o processo, além da proposta de um modelo matemático de predição da cinética de extração. Em trabalho de 2002, Rodrigues *et al* [26] determinaram a solubilidade do óleo de cravo em CO₂ pressurizado utilizando-se a consideração de que a estrutura celular, o soluto (extrato) e o solvente (CO₂) formavam um sistema pseudoternário no interior do leito de extração. Em relação à solubilidade do extrato no dióxido de carbono pressurizado, Kong-Wei *et al* [27] estudaram o comportamento do sistema eugenol + CO₂, enquanto Souza *et al* [28] avaliaram o sistema óleo de cravo-da-índia + CO₂. Em 2005, Rosa & Meireles [29] propuseram um método rápido de estimativa de

custo de manufatura de extrato vegetal através de extração supercrítica, utilizando o óleo de cravo como exemplo. Outro estudo, de 2007, comparou o óleo de cravo obtido através de diferentes métodos de extração, entre eles a extração supercrítica, em termos de rendimento e composição [30].

No entanto, o impacto dos parâmetros pressão e temperatura no interior do destilador flash sobre a eficiência da etapa de separação, assim como sua influência sobre o custo de manufatura do óleo de cravo-da-índia ainda não haviam sido avaliados, o que levou ao desenvolvimento do estudo apresentado nos itens 4.4.1 e 4.4.3.

2.3 Vetiver (Vetiveria zizanoides)

O vetiver é uma planta da família Gramineae amplamente disseminada em regiões tropicais da Ásia, da África, da Oceania, e das Américas Central e Sul [31]. O fato de ser uma gramínea de rápido crescimento, com um sistema radicular maciço e complexo, associado à capacidade de crescer sob condições adversas, justifica sua utilização em processos de conservação de solo e estabilização de terras [32]. Singh *et al* [32], em trabalho relacionado à absorção dos átomos radioativos ¹³⁷Cs e ⁹⁰Sr por mudas de vetiver, concluíram que os elementos radioativos provenientes de resíduos nucleares de nível moderado puderam ser removidos com eficácia pelas raízes das plantas, sendo que o nível de radioatividade foi reduzido a níveis inferiores aos limites de detecção após 15 dias de exposição. De acordo com trabalho desenvolvido por Wilde *et al* [33], a utilização do vetiver associado a agentes quelantes apresenta potencial significativo como alternativa remediadora em casos de solos contaminados com chumbo em níveis semelhantes aos provocados por queimadas. Makris *et al* [34] avaliaram a eficácia do vetiver na remoção

do 2,4,6 – trinitrotolueno (TNT) de solos contaminados. Os experimentos realizados em meio hidropônico contendo TNT em solução indicaram que os níveis da substância foram reduzidos a valores inferiores ao do limite de detecção após 8 dias.

Propriedades inseticidas e herbicidas também são freqüentemente relacionadas a esta espécie. Maistrello *et al* [35], estudando o comportamento de cupins da espécie *Coptotermes formosanus* Shiraki, observaram que a adição de óleo de vetiver ou de nootkatona à areia provocou uma alteração no padrão de construção de túneis destes insetos, constituindo uma forma eficiente de controle de infestação pelos mesmos. Em trabalho desenvolvido por Mao *et al* [36], a fitotoxicidade do óleo de vetiver e da nootkatona (um dos compostos freqüentemente identificados no óleo de vetiver) sobre um legume (*Pisum sativum* L.) e uma espécie cítrica (*Citrus unshiu* Marcovitch), em laboratório e no campo, respectivamente, foi avaliada. O óleo de vetiver e a nootkatona não acarretaram efeitos adversos nas taxas de crescimento das plantas da espécie cítrica, sendo que este resultado proporciona embasamento para sua utilização ao redor de construções e de berçários de plantas com a finalidade de controlar sua infestação por cupins, formigas e ervas daninhas.

Das diversas aplicações do vetiver, a mais significativa para o estudo em questão é sua utilização como fonte de extratos aromáticos. Compostos oriundos de óleos voláteis podem apresentar, por exemplo, propriedades sensoriais valorizadas pela indústria de manufatura de perfumes e cosméticos, além da indústria alimentícia [31]. Algumas linhagens específicas da espécie *Vetiveria zizanoides* (L.) são tradicionalmente cultivadas em decorrência de suas raízes aromáticas que contêm o óleo de vetiver, largamente utilizado pela indústria de perfumes e cosméticos (Maffei (2002) citado por Massardo *et al* [37]), como agente fixador e contribuinte aromático de bases como a de rosa e de Chipre, e

de diversas fragrâncias masculinas (Chowdhury *et al* e Weyerstahl *et al* citados por Martinez *et al* [31]). De acordo com Arctander (1960) citado por Martinez *et al* [31], o óleo volátil extraído da raiz do vetiver é um líquido viscoso, cuja cor varia de âmbar a marrom escuro, e cujo odor possui notas doces, amadeiradas e da terra.

Em estudo realizado por Martinez *et al* [31], dois métodos de extração foram analisados: hidrodestilação e extração supercrítica. O processo de extração supercrítica teve duração de 2 horas e foi exaustivo, sendo que as condições de temperatura e pressão que apresentaram maior rendimento de extrato foram 40 °C e 200 bar, respectivamente. Apesar da extração supercrítica com dióxido de carbono ter proporcionado maior rendimento em um tempo significativamente mais curto, o óleo produzido a partir do vetiver brasileiro, quando comparado a marcas comerciais, apresentou um teor mais elevado de ácido zizanóico (indesejável). Este problema pôde ser solucionado submetendose o extrato a um processo químico em meio básico, que eliminou o ácido transformando-o quimicamente em um álcool de propriedades sensoriais desejáveis (khusimol).

Massardo *et al* [37] estudaram a produção de óleo pela raiz de vetiver em plantas em fase inicial de crescimento. Observou-se que a produção de óleo de vetiver permaneceu constante durante os primeiros seis meses de crescimento, sendo que nos dois meses seguintes essa produção dobrou, antecipando uma queda progressiva que ocorreria durante os meses frios. Estes resultados sugerem que a produção de óleo de vetiver está intimamente relacionada ao metabolismo das raízes das plantas, que é afetado por variações ambientais de temperatura.

Em trabalho apresentado por Takeuchi *et al* [38], o equilíbrio de fases formado pelo sistema óleo de vetiver + CO₂ foi analisado para diversas condições de temperatura e pressão. Concluiu-se que a estimativa do equilíbrio de fases utilizando-se a equação de

Peng-Robinson associada às regras de mistura de van der Waals (ajuste de dois parâmetros de interação binária) foi bastante eficiente. No entanto, foi necessário determinar parâmetros de interação específicos para cada temperatura estudada.

2.4 Extração Supercrítica

Um fluido supercrítico (FSC) é caracterizado quando uma substância apresenta pressão e temperatura superiores às suas propriedades críticas. Suas propriedades de transferência de massa são intermediárias entre as de um gás e as de um líquido [39], ou seja, sua difusividade mássica é próxima à de um gás e sua densidade é semelhante à de um líquido.

Recentemente, a extração supercrítica (ESC) tem sido considerada como alternativa para processos como a destilação a vapor e a extração com solventes orgânicos (percolação, maceração, método de Soxhlet, etc.) devido às desvantagens que estes processos apresentam em termos de degradação e perdas de compostos biologicamente ativos [40], [41], consumo de grandes quantidades de solventes altamente poluentes e necessidade elevada de energia e mão-de-obra [40]. Além disso, os fluidos supercríticos utilizados neste tipo de processo apresentam excelentes propriedades de transferência de massa que podem ser modificadas através da temperatura, pressão ou adição de cosolventes [42]. Pereira *et al* [43] ainda citam a fácil remoção do solvente do extrato final, a alta seletividade do processo e a possibilidade de utilização de temperaturas moderadas como vantagens significativas da ESC. Deve-se frisar também as restrições legislativas cada vez mais severas relacionadas à presença de solventes orgânicos considerados tóxicos em determinados produtos [44], [45] voltados para o consumo humano.

Neste contexto, no caso da ESC, o dióxido de carbono é considerado o solvente mais adequado para a extração de compostos a partir de matrizes de origem natural devido às suas características: é um gás inerte nas condições em que é utilizado; apresenta propriedades críticas consideradas amenas (aproximadamente 31,1 °C e 73,8 bar) e, portanto, facilmente atingíveis [46]; apresenta um baixo custo [47] (mesmo em elevados graus de pureza); é um gás atóxico [41], [48] e não inflamável [48]; representa um solvente ecologicamente correto [49].

2.4.1 Utilização de co-solventes ou modificadores

Apesar de todas as vantagens da utilização do dióxido de carbono em processos de extração supercrítica, nos casos em que os compostos que se pretende isolar são substâncias de maior polaridade, como acontece com boa parte das substâncias com propriedades antioxidantes, o fato de o CO₂ ser um composto apolar torna o processo pouco eficiente. Desta forma, modificadores de grau alimentício (mais comumente, o etanol), podem ser introduzidos com a finalidade de provocar um incremento de polaridade do solvente de extração [50]. Apesar de o uso de co-solvente acrescentar uma etapa ao processo de extração (remoção do solvente do extrato final), as quantidades de co-solvente utilizadas geralmente são reduzidas. Assim, todas as vantagens da extração supercrítica são mantidas [49]. Grigonis *et al* [48] concluíram que a adição de etanol a 20 % ao fluido de extração aumentou em 43 vezes a extração do composto de interesse em relação ao processo realizado com dióxido de carbono puro. No estudo realizado por Pereira *et al* [43], observou-se que, ao dobrar a porcentagem de co-solvente (etanol), obteve-se não só

maior rendimento de extrato, como uma maior concentração dos compostos de interesse (alcalóides) no mesmo.

2.4.2 Experimentos cinéticos

Apesar dos numerosos estudos confirmando a viabilidade técnica da extração supercrítica, sua viabilidade econômica ainda é bastante contestada. Segundo Moura *et al* [51], costuma-se comparar o custo de manufatura de extratos vegetais através de diversas técnicas sem que se faça uma análise suficientemente cuidadosa, que leve em consideração diferenças bastante significativas em relação à composição e às propriedades funcionais destes extratos, o que acaba colocando a ESC em uma posição desfavorável frente a outras tecnologias.

Neste contexto, a realização de experimentos cinéticos é de extrema importância não apenas para a otimização do processo como para a análise de viabilidade econômica da tecnologia em questão. Este tipo de ensaio viabiliza a estimativa de parâmetros de processo como o tempo de duração de um ciclo de extração e a relação massa de solvente/ massa de alimentação, sendo estas informações fundamentais para a estimativa de custo de manufatura do produto final.

2.4.2.1 Modelagem Matemática

Desta forma, Martinez *et al* [52] citam que, uma vez que os investimentos na construção de uma unidade de ESC são elevados, a otimização das condições operacionais do processo são essenciais no sentido de tornar a técnica economicamente atraente. Este é

o objetivo da modelagem matemática dos experimentos, através da qual as curvas cinéticas de extração são analisadas a fim de se determinar parâmetros relacionados ao desenvolvimento de processos. As curvas cinéticas de extração fornecem informações consistentes relacionadas à pressão, temperatura e vazão de solvente, auxiliando o desenvolvimento e aumento de escala de processos de extração supercrítica [51].

2.4.2.2 Influência da Geometria de Leito Sobre a Cinética de Extração

As relações entre processos realizados em escala experimental, piloto e industriais nem sempre podem ser abordadas ou previstas de forma simplificada. As diferenças observadas em procedimentos realizados em equipamentos de capacidades significativamente diferentes devem ser estudadas e avaliadas cuidadosamente a fim de evitar erros grosseiros de estimativa de custo de manufatura. Uma abordagem negligente deste tipo de fenômeno pode acarretar na construção de linhas de produção não lucrativas e levar à perda de grandes somas de capital.

Visando o entendimento da influência da geometria de leito sobre o processo de extração supercrítica, Moura *et al* [51], ao estudarem a extração supercrítica do funcho (*Foeniculum vulgare*), observaram que, apesar de a relação H_B/d_B = 2,21, quando comparada a H_B/d_B = 8,84, acarretar uma redução significativa no tempo de esgotamento do leito de extração, a relação massa de solvente/ massa de alimentação (S/F) foi de aproximadamente 35 e 10, respectivamente. Ou seja, no caso de utilização de uma relação H_B/d_B maior, para que fosse possível manter o tempo de extração ou a relação S/F constantes, seria necessário que também se utilizasse uma vazão de solvente maior. Desta forma, não obstante a possibilidade de reaproveitamento do solvente, ainda haveria

necessidade de maiores investimentos em equipamentos com capacidade de imprimir maior vazão de solvente, além do acréscimo de demanda energética que estaria relacionada. Carvalho Jr. *et al* [53] realizou análises semelhantes da influência da geometria de leito sobre a cinética de extração ao estudarem a extração supercrítica do alecrim (*Rosmarinus officinalis*). Através dos estudos destes dois sistemas, Moura *et al* [51] e Carvalho Jr. *et al* [53] desenvolveram as Equações 2.1 e 2.2:

$$\frac{Q_{CO_{2}}}{Q_{CO_{2}}} = \left(\frac{F_{2}}{F_{1}}\right)^{2} \times \frac{H_{B1}}{H_{B2}} \times \frac{d_{B1}}{d_{B2}}$$
 Eq. (2.1)

$$\frac{Q_{CO_{2_2}}}{Q_{CO_{2_1}}} = \left(\frac{F_2}{F_1}\right)^2 \times \frac{H_{B_1}}{H_{B_2}} \times \left(\frac{d_{B_1}}{d_{B_2}}\right)^3$$
 Eq.(2.2)

onde os índices 1 e 2 referem-se a unidades diferentes de extração, Q_{CO_2} é a vazão de solvente, F é a massa de alimentação, e H_B e d_B são a altura do leito e o diâmetro do leito de extração, respectivamente.

A utilização da Equação 2.1 é indicada para os casos em que se objetiva determinar o rendimento global em diferentes equipamentos, pois permite o cálculo da vazão de solvente para combinações específicas de massas de alimentação e geometrias de leito. Já a Equação 2.2 pode ser utilizada para estimar a vazão de solvente capaz de reproduzir o mesmo comportamento cinético em dois equipamentos distintos [53].

2.4.3 Etapa de separação

A etapa de separação consiste na despressurização da solução (solvente supercrítico + extrato) na saída do extrator. Para esta operação, a utilização de vários destiladores tipo flash, possibilitando o ajuste de diferentes condições de temperatura e pressão em cada um deles, permite que o extrato seja fracionado. Este fracionamento depende da solubilidade dos compostos que constituem o extrato no solvente em questão, em cada uma das condições aplicadas aos ciclones de separação. Desta forma, a etapa de separação pode ser analisada através do estudo do equilíbrio de fases que ocorre dentro do separador. O entendimento deste fenômeno permitiria a utilização de condições ótimas de operação nesta etapa do processo de extração supercrítica, sendo que a determinação dessas condições estaria relacionada a três fatores: i) minimização da perda de extrato junto à fração leve (solvente na forma gasosa) [54], que pode acarretar aumento do custo de manufatura tanto em decorrência do menor rendimento do processo quanto do incremento do custo de reciclagem do solvente; ii) minimização da perda de solvente junto à fração pesada (extrato), que pode também acarretar um incremento do custo de manufatura devido à necessidade de uma maior taxa de reposição de solvente ao processo; iii) minimização da demanda energética proveniente da necessidade de re-pressurização do solvente para que o mesmo possa ser reutilizado.

Portanto, a determinação de dados relacionados a sistemas reais, como os formados por extratos vegetais, são mais apropriados para a engenharia de processos. Entretanto, pouca informação referente a este assunto pode ser encontrada na literatura até o presente momento [55]. Souza *et al* [28] e Moura *et al* [55] estudaram os equilíbrios de fases formados pelos sistemas óleo de cravo + CO₂ e extrato de funcho + CO₂, respectivamente.

Em ambos os casos, dados estimados de equilíbrio de fases foram obtidos através da equação de estado de Peng-Robinson associada às regras de mistura quadráticas de van der Waals com dois parâmetros de interação binária, sendo que estes parâmetros foram determinados a partir de dados experimentais de equilíbrio líquido-líquido para o mesmo sistema. Carvalho Jr *et al* [54] utilizaram esta mesma metodologia para estudar os equilíbrios de fases dos sistemas cânfora + CO₂, cânfora + propano e cânfora + CO₂ + propano.

2.4.4 Custo de manufatura

De acordo com Rosa & Meireles [29], apesar de existirem diversas pesquisas relacionadas à extração supercrítica na América do Sul, não há nenhuma unidade de produção em escala industrial nesta região, fato decorrente, principalmente, do alto custo de investimento ligado a este tipo de instalação. Por este motivo, desenvolveram um método rápido de estimativa de custo de manufatura de extratos através da extração com fluido supercrítico que acreditam que possibilitará um incremento na utilização deste processo como alternativa aos diversos métodos de obtenção de extratos. Neste mesmo trabalho, a metodologia desenvolvida foi aplicada às estimativas de custo de obtenção do óleo de cravo-da-índia e da oleoresina de gengibre (extratos supercríticos brutos). No caso do óleo de cravo-da-índia (rico em eugenol) o custo estimado de manufatura ficou em torno de 25 % do seu valor de venda; já no caso da oleoresina de gengibre (rica em monoterpenos e sesquiterpenos conhecidos como gingeróis [52]), o valor estimado foi próximo do valor de mercado, em decorrência, principalmente, dos longos tempos de extração necessários para a obtenção do extrato no caso específico das condições de

extração nas quais os cálculos foram baseados. As estimativas de custo foram realizadas a partir de dados experimentais de rendimento de extrato bruto em função do tempo de processo.

Capítulo 3 - Materiais e Métodos

3.1 Matéria-prima (inflorescências de macela)

3.1.1 Origem das amostras

A matéria-prima utilizada neste estudo foi cultivada no Campo Experimental do Centro Pluridisciplinar de Pesquisas, Químicas, Biológicas e Agrícolas – CPQBA / Unicamp sob os cuidados do pesquisador Ílio Montanari Júnior; uma exsicata foi depositada no Herbário do CPQBA sob o número 1138. As flores foram secas a 35 °C em estufa com circulação forçada de ar.

Dois diferentes lotes da mesma espécie foram utilizados para a realização dos experimentos descritos neste estudo. O primeiro lote foi destinado à realização de todos os experimentos relacionados à construção das isotermas de rendimento global (tanto aqueles realizados apenas com CO₂ como solvente, quanto os que foram realizados adicionando-se etanol como co-solvente) e aos experimentos de extração com solvente a baixa pressão. Desta forma, foi possível isolar os efeitos dos parâmetros de processo (isotermas de rendimento global) e das diferentes tecnologias aplicadas (extração supercrítica e extração com solvente a baixa pressão) sobre o rendimento e a composição dos extratos. Uma vez determinadas as melhores condições de extração para o processo de extração supercrítica, outro lote foi utilizado para a realização dos estudos relacionados aos experimentos cinéticos. Apenas uma das curvas cinéticas foi construída utilizando-se o primeiro lote de matéria-prima. Esta curva foi utilizada na estimativa do custo de manufatura (COM).

3.1.2 Preparo da matéria-prima

As flores de macela foram moídas em moinho (Tecnal, modelo TE631, Piracicaba, SP) a 20500 rpm por 4 segundos em duas etapas, para que fosse possível a homogeneização do material no interior do equipamento entre as mesmas, a fim de garantir a eficiência do procedimento.

A matéria-prima moída foi colocada em bandejas com peneiras com diferentes tamanhos de malhas (mesh) (W.S. Tyler, ASTME-11, EUA). As bandejas foram agitadas em agitador de bandejas (Bertel, modelo N1868, Caieiras, SP) por 20 minutos para que houvesse a separação das partículas por tamanho. No entanto, observou-se que este procedimento não foi efetivo, pois as partículas se aderem umas nas outras. Desta forma, foi realizada apenas a separação das partículas mais finas (< 80 mesh) com o objetivo de evitar danos ao equipamento de extração.

3.1.3 Caracterização da matéria-prima

3.1.3.1 Umidade

O método mais adequado para os casos em que se deseja distinguir a água do material volátil presente na matéria-prima seria o método de Jacobs [56]. No entanto, a matéria-prima a ser estudada encontra-se com um teor de umidade muito reduzido, o que acarreta a necessidade de utilizar uma amostra de massa relativamente grande para que seja possível alcançar a precisão desejada na determinação da umidade. No caso das flores, o material é muito volumoso, impedindo que a quantidade necessária de amostra seja

colocada dentro do balão. Além disso, o material, por apresentar densidade aparente muito baixa, flutua na água, o que prejudica a confiabilidade da análise.

Desta forma, o teor de umidade foi determinado segundo método descrito por Leal [57], utilizando-se um analisador de umidade por microondas (CEM, Modelo Smart 5, Matthews, EUA) no Laboratório de Aplicação de Microondas no Processamento de Alimentos (DEA/FEA – Unicamp) para o qual são necessários aproximadamente 2 g de material em cada medição. O equipamento tem sua temperatura controlada através de um sensor de temperatura sensível ao calor da radiação infravermelha e uma balança interna que possibilita a leitura da variação de peso da amostra durante a aplicação das microondas

3.1.3.2 Densidade real, densidade aparente e porosidade do leito.

A densidade real (d_r) foi determinada por picnometria com gás hélio (densímetro Micrometrics, mod. Multivolume Pycometer 1305, EUA) na Central Analítica do Instituto de Química da Unicamp. A densidade aparente (d_a) foi calculada a partir dos valores referentes à massa de matéria-prima utilizada nas extrações e ao volume da célula de extração segundo a Equação 3.1.

$$d_a = \frac{m}{V_B}$$
 Eq. 3.1

Onde: *m* é a massa de matéria-prima que compõe o leito de extração;

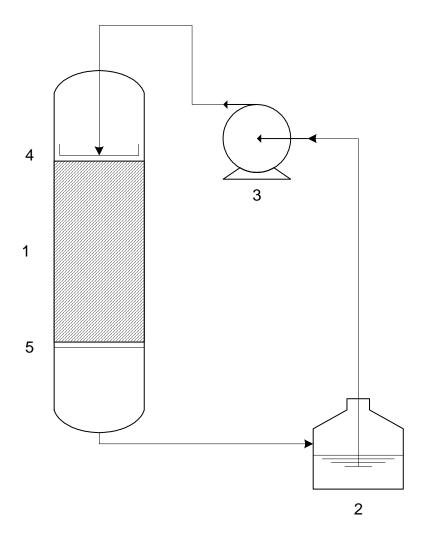
 $V_{\it B}$ é o volume interno da célula de extração.

A porosidade total do leito e das partículas (ε) foi calculada utilizando-se os valores obtidos para densidade real (d_r) das partículas e densidade aparente (d_a) do leito segundo a Equação 3.2.

$$\varepsilon = 1 - \frac{d_a}{d_r}$$
 Eq. 3.2

3.2 Obtenção dos extratos

3.2.1 Extração com solvente


O solvente selecionado para os experimentos de extração a baixa pressão com solvente orgânico foi o mesmo utilizado como co-solvente na extração supercrítica (etanol), como será descrito no Item 3.2.2.2.

A razão volume de solvente sobre massa de alimentação foi selecionada de acordo com a mínima quantidade de solvente necessária de forma a tornar a execução do experimento viável. Estas quantidades mínimas estão relacionadas a especificidades inerentes a cada metodologia estudada, como a possibilidade de compactação do leito de extração, a existência de tubulação no aparato experimental e seu comprimento, etc. Excepcionalmente, no caso da extração através de percolação, duas razões de solvente para massa de alimentação foram estudadas (20:1 e 100:1 (v/m)), a fim de tornar possível a avaliação do impacto deste parâmetro sobre a eficiência do processo.

Os experimentos de extração com solvente a baixa pressão foram realizados em duplicata.

3.2.1.1 Percolação

A Figura 3.1 representa um esquema simpificado do aparato utilizado nos experimentos de extração com solvente a baixa pressão por percolação.

Figura 3.1 – Esquema do sistema de extração por percolação: 1 – célula de extração, 2 – Reservatório de solvente (etanol), 3 – Bomba de solvente, 4 e 5 – Placas de vidro poroso

Neste método, amostras de aproximadamente 1,6 g (similares àquelas utilizadas nas extrações com processo supercrítico) foram colocadas em um cilindro vertical de base constituída de uma placa de vidro porosa, formando um leito fixo de extração. O solvente

era ministrado pela parte superior por um dispositivo posicionado bem próximo à matériaprima, cuja função era distribuir o solvente de forma uniforme por todo o leito. A base
deste dispositivo também era composta de placa porosa de vidro com diâmetro similar ao
do cilindro que continha o leito de extração. A mistura solvente + extrato era coletada em
um balão conectado à parte inferior do cilindro vertical. Uma bomba retirava o solvente do
balão e o recirculava para o topo do cilindro. Este processo foi mantido por 3 horas. Ao
final do processo, as amostras foram filtradas sob vácuo com o auxílio de papel Whatman
42 (Whatman, Lote 711823, Kent, Inglaterra). O filtrado foi colocado em evaporador
rotativo (Heidolph, Laborota 4001, Viertrieb, Alemanha) conectado a uma bomba a vácuo
(Heidolph, Rotavac, Viertrieb, Alemanha) para a eliminação do solvente.

Como já mencionado anteriormente, o solvente utilizado foi o etanol (Synth, > 99.5%, Lote 75474, Diadema, SP) em duas razões de solvente para massa de alimentação: 20:1 e 100:1 (v/m). A vazão de solvente através do leito foi determinada através da quantificação do volume de solução coletado à saída do cilindro que continha o leito por um período de tempo pré-determinado.

3.2.1.2 Centrifugação

No caso da extração a baixa pressão com etanol por centrifugação, foi seguida a metodologia de Pesek *et al* [58] descrita por Leal [57], onde as amostras, juntamente com o solvente, são centrifugadas por 5 minutos a 2000 rpm e, posteriormente, deixadas em repouso por 30 minutos.

No caso da *A. satureioides*, foram pesadas amostras de aproximadamente 1 g de flores de macela em frascos de 50 mL próprios para o modelo de centrífuga utilizado

(Marca Jouan, Modelo BR4i, St. Herblain, França). Foram adicionados 24 mL de etanol (Synth, Lote 75474, Pureza > 99,5 %, Diadema, SP) a cada frasco, sendo que esta foi a menor quantidade necessária para que toda a amostra ficasse submersa no solvente. Devese frisar que o fato de o material do frasco ser um plástico flexível impede que a matéria-prima seja compactada como no caso da célula do extrator supercrítico (aço inox), ocupando um volume significativamente maior.

Na rotação utilizada, o equipamento em questão não permitiu que a temperatura fosse controlada. Desta forma, a extração foi realizada a temperatura ambiente (aproximadamente 25 °C).

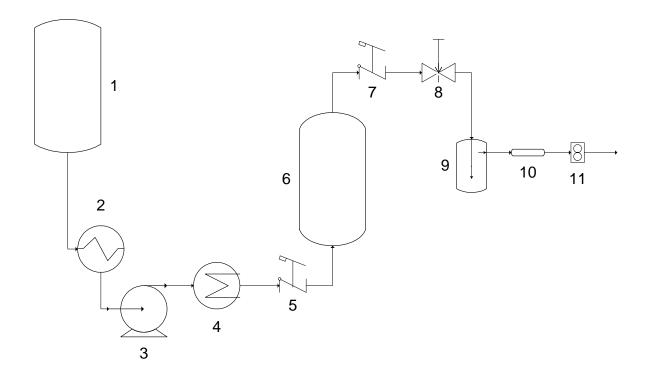
A eliminação do solvente foi executada seguindo-se a mesma metodologia descrita no item 3.2.1.1.

3.2.1.3 Agitação

Amostras de matéria-prima de aproximadamente 2 g foram imersas em etanol (> 99.5 %, Ecibra, Lote 16936, São Paulo, Brasil), numa proporção de volume de solvente para massa de alimentação de 25:1, em erlenmeyers. Os erlenmeyers foram mantidos sob agitação a 20 rpm por 30 minutos (leito agitado) a 45 °C em uma câmara incubadora com agitação (Marconi, MA 420, Piracicaba, SP). A separação da solução e a eliminação do solvente foram executadas conforme descrito no item 3.2.1.1.

3.2.2 Extração Supercrítica (ESC) - Isotermas de Rendimento Global (IRG)

3.2.2.1 IRG utilizando-se CO₂ supercrítico puro como solvente


Nesta etapa, foi determinada a quantidade total de material solúvel em CO₂ presente na matéria-prima (flores de *Achyrocline satureioides*) sob diferentes condições de pressão e temperatura.

Para tanto, foi utilizado o sistema de extração supercrítica Spe-ed (Applied Separations, Allentown, EUA) equipado com uma célula de extração de 5mL (Thar Designs, Pittsburgh, EUA). Um esquema simplificado deste sistema está representado na Figura 3.2.

Inicialmente, o banho termostático que controla a temperatura de entrada na bomba do dióxido de carbono era ligado com algumas horas de antecedência (aproximadamente 3 horas). O leito era então empacotado com a matéria-prima (flores de macela) dentro da célula de extração e, posteriormente, conectada às tubulações do sistema. Todas as válvulas eram mantidas fechadas. Após terem sido ajustadas pressão e temperatura, a válvula de entrada era aberta mantendo-se as demais válvulas fechadas por aproximadamente 10 minutos, a fim de garantir que o sistema atingisse uma pressurização uniforme. Após este período, a válvula de saída era aberta e a vazão desejada era ajustada através da válvula micrométrica, tendo início o processo de extração.

O extrato foi coletado em um frasco de vidro conectado à saída da válvula micrométrica, onde a mistura extrato de macela + CO₂ passava por uma despressurização que provocava a separação do CO₂, na forma de do gás, do extrato, em decorrência da sua mudança de fase. A fim de evitar que a fração de extrato composta pelas substâncias mais leves se perdesse por arraste através da tubulação de saída do gás do frasco coletor, um

sistema de adsorção, composto de uma coluna de vidro empacotada com Porapak Q (80/100 mesh, Lote 110, Supelco, Bellefonte, EUA), foi acoplada neste local.

Figura 3.2 – Esquema simplificado do sistema de extração Spe-ed: 1 – Reservatório de CO2, 2 – Condensador, 3 – Bomba de CO2, 4 – Aquecimento, 5 – Válvula de entrada, 6 – Célula de extração, 7 – Válvula de saída, 8 – Válvula micrométrica, 9 – Separador (recuperação de extrato), 10 – Coluna de adsorção, 11 – Medidor de vazão

Ao fim do processo de extração e despressurização, o sistema passou por uma limpeza, na qual se circulou etanol (Synth, Pureza > 99,5 %, lote 75474, Diadema, SP) pela tubulação de saída da célula de extração. O solvente foi eliminado em evaporador rotativo (Laborota 4001, Heidolph, Viertrieb, Alemanha) para a quantificação do extrato retido pela tubulação e removido da mesma no momento da limpeza. Considerando-se que a tubulação é muito longa frente ao reduzido tamanho da célula de extração, o extrato

retido neste local representa porcentagem significativa da quantidade total de material solúvel.

As isotermas de rendimento global (IRG) foram construídas nas temperaturas de 30, 45 e 60 °C. As pressões analisadas foram de 100, 150, 200, 250 e 300 bar. Os experimentos foram realizados em duplicata.

3.2.2.2 IRG utilizando-se a mistura CO₂ supercrítico + etanol como solvente

As extrações com a mistura CO₂ + etanol (20 %, vol.) foram realizadas em uma unidade de extração supercrítica com leito fixo (SFE-II) como descrito por Pasquel *et al* [59]. O leito contém uma célula de extração de aproximadamente 221 cm³ e suporta pressões de até 400 bar. Os banhos termostáticos, que controlam as temperaturas: i) do CO₂ líquido (-10 °C) na entrada da bomba (Marconi, Modelo MA-184, Piracicaba, SP) e; ii) do leito de extração (PolyScience, Modelo 9510, EUA), levam aproximadamente 3 horas e 1 hora, respectivamente, para atingir a temperatura de equilíbrio desejada, e, por isso, eram ligados com antecedência. O equipamento é provido de duas bombas de solvente, destinadas à circulação do dióxido de carbono (Thermo Separation Products, ConstaMetric® 3500, Fremont, EUA) e do modificador (Thermo Separation Products, ConstaMetric® 3200 P/F, Fremont, EUA). A porcentagem, em volume, de dióxido de carbono líquido e do modificador são ajustados na bomba destinada à circulação de dióxido de carbono, sendo que a mesma controla o funcionamento de ambas as bombas.

Para a determinação das IRG's, amostras de aproximadamente 33.1 ± 0.2 g de macela foram empacotadas em célula de nylon (de dimensões semelhantes às dimensões internas da célula de extração), ocupando um volume de 202 ± 15 cm³ o que corresponde a

uma densidade aparente de $170 \pm 10 \text{ kg/m}^3$. Estes valores foram mantidos em todos os experimentos relacionados às IRG's com utilização de co-solvente. O objetivo da utilização da célula de nylon foi facilitar o procedimento de empacotamento do leito e posterior limpeza do aparato. O espaço vazio foi preenchido com células de vidro de aproximadamente 5 mm de diâmetro alocadas na parte inferior do extrator, onde está localizada a entrada de solvente.

Após o acondicionamento da amostra dentro da célula de extração, as duas bombas de solvente (de etanol e de CO₂) e o misturador de solventes eram ligados, e o leito de extração era pressurizado até a pressão desejada. As válvulas de saída eram mantidas fechadas por 60 min (período estático) a fim de permitir que todo o leito atingisse pressão e temperatura uniformes. Ao fim do período estático, as válvulas de saída eram abertas dando início ao processo de extração.

Como será detalhado no item 4.2.2.2, nos testes preliminares notou-se que não seria possível determinar a influência dos parâmetros temperatura e pressão através do esgotamento do leito de extração. Dessa forma utilizou-se método descrito por Pereira [60], segundo o qual a influência destes parâmetros é determinada fixando-se a quantidade de solvente utilizada. Assim, a quantidade de solvente foi fixada em 1,0 kg de CO₂. Considerando-se que a mistura dos solventes é realizada automaticamente pelas bombas em proporção volumétrica de 20 % de etanol, e que as densidades do etanol (Pureza > 99.5 %, Ecibra, Lote 16936, São Paulo, SP) a temperatura ambiente e do CO₂ (99.0 %, GAMA Gases, Campinas, SP) líquido a -10 °C (condições dos solventes na entrada das bombas) são 787,6 kg/ m³ (informação do fabricante) e 1004 kg/ m³ [61], respectivamente, a proporção utilizada de CO₂: etanol, em base mássica, foi de 83,6: 16,4 (m/m). E, portanto, aproximadamente 0,196 kg de etanol foram utilizados em cada extração, o que resulta num

total aproximado de 1,196 kg de solvente por experimento de rendimento global e numa razão de S/F de 36,1, aproximadamente.

3.2.3 ESC - Experimentos Cinéticos

3.2.3.1 Cinéticas de extração utilizando-se CO₂ supercrítico puro como solvente

Foram realizados 8 ensaios, com replicação, para o estudo da influência da geometria do leito sobre a cinética de extração utilizando-se os equipamentos SFE-I (300 mL) e SFE-II (221 mL).

A unidade de extração SFE-I corresponde à descrita no Item 3.2.2.1 constituída de um sistema de extração supercrítica Spe-ed (Applied Separations, Allentown, EUA). No entanto, a célula de extração de 5 mL foi substituída por outra de 300 mL (Thar Designs, Pittsburgh, EUA) cujas dimensões internas são 0,1286 m de altura e 0,0545 m de diâmetro. Inicialmente, o banho termostático (PolyScience, Modelo 9510, Niles, EUA) que controla a temperatura de entrada do dióxido de carbono na bomba era ligado aproximadamente 3 horas antes do início do experimento. Após o empacotamento da matéria-prima dentro da célula de extração (os espaços vazios foram preenchidos com esferas de vidro de aproximadamente 5 mm de diâmetro), a mesma era conectada às tubulações do sistema

Inicialmente, o banho termostático (PolyScience, Modelo 9510, Niles, EUA) que controla a temperatura de entrada do dióxido de carbono na bomba era ligado com algumas horas de antecedência (aproximadamente 3 horas). O leito era então empacotado com a matéria-prima (flores de macela) dentro da célula de extração e, posteriormente, conectada às tubulações do sistema. Após abertura da válvula de entrada e do ajuste da temperatura e

da pressão, as válvulas de saída eram mantidas fechadas por mais 30 minutos (período estático), com a finalidade de permitir que as condições do leito fossem homogêneas. Ao fim deste período, as válvulas de saída eram abertas, sendo que vazão desejada era ajustada através da válvula micrométrica, dando início ao processo de extração.

No caso dos experimentos realizados na SFE-II, o procedimento de extração foi semelhante ao descrito no item 3.2.2.2. No entanto, as características do leito de extração e praticamente todos os parâmetros de processo foram modificados.

A bomba destinada à utilização de co-solvente foi mantida ligada apenas para viabilizar o funcionamento da bomba de CO₂, uma vez que o funcionamento de uma está condicionado ao da outra.

Para que o equipamento pudesse operar apenas com CO₂, foi ajustada uma porcentagem de 0 % de co-solvente na bomba de CO₂. Em todos os casos, os extratos foram coletados em frascos de vidro de 50 cm³ que eram substituídos em intervalos de tempo pré-determinados. As condições de temperatura e pressão foram selecionadas a partir dos resultados obtidos para os ensaios descritos no Item 3.2.2.2.

Os experimentos cinéticos sem utilização de co-solvente tiveram dois objetivos principais: i) estudar a influência da geometria de leito sobre a cinética de extração como será detalhado no Item 3.2.4 e ii) estimar o custo de manufatura da *Achyrocline satureoides* por extração supercrítica (Item 3.2.5).

Após análise dos resultados obtidos para as isotermas de rendimento global (IRG) em relação aos rendimentos e composições dos extratos, foram selecionadas as condições de 45 °C e 200 bar para a realização destes ensaios cinéticos.

3.2.3.2 Experimentos cinéticos realizados utilizando-se a mistura CO₂ supercrítico + etanol como solvente²

Para os experimentos cinéticos em que houve emprego de co-solvente, foram utilizadas amostras de 2, 5 e 30 g. As influências i) do tamanho da amostra, ii) da vazão de solvente, iii) da porcentagem de co-solvente (5 e 20 %, em volume) empregado e iv) da utilização de período estático foram avaliadas.

Peculiarmente, no caso do estudo da cinética de extração utilizando-se etanol como co-solvente, os experimentos cinéticos foram realizados antes da construção das isotermas de rendimento global. Tal alteração da seqüência lógica, segundo a qual, normalmente, primeiro se determina as condições ótimas de temperatura e pressão através das IRG's e, posteriormente, se estuda a cinética de extração, foi necessária em decorrência do fenômeno inesperado observado durante os testes preliminares. Estes testes consistiram em cinéticas de extração cuja finalidade seria determinar a quantidade aproximada de solvente necessária para o esgotamento do leito de extração. No entanto, os resultados indicaram, como será detalhado de forma mais cuidadosa no Item 4.2.2.2, que o esgotamento do leito não pôde ser atingido mesmo após 7 horas de extração.

Desta forma, o estudo da cinética de extração foi realizado anteriormente à construção das IRG's para o caso da extração supercrítica com utilização de etanol como co-solvente. E as IRG's foram construídas de acordo com os melhores resultados obtidos nos experimentos cinéticos em termos de porcentagem de etanol, vazão de solvente, tamanho de amostra e aplicação de período estático.

_

² Os dados experimentais relacionados ao item 3.2.3.2 foram obtidos pela aluna de iniciação científica Maria Laura Rubano. No entanto, as análises de parâmetros cinéticos e dos fenômenos observados, assim como as discussões descritas neste trabalho de doutorado, são independentes de seu trabalho de iniciação científica.

3.2.4 Influência da geometria do leito de extração (relação H_B/d_B) e da vazão de solvente sobre a cinética de extração.

Nesta etapa foram utilizadas 2 diferentes unidades de extração supercrítica:

- SFE I: unidade de extração descrita no Item 3.2.2.1 para estudo da cinética extração sem a utilização de co-solvente (célula de extração de 300 cm³).
- SFE II: unidade de extração descrita no Item 3.2.2.2 para estudo da cinética de extração com co-solvente (célula de extração de 221 cm³).

Os experimentos foram realizados nas unidades SFE-I e SFE-II variando-se a geometria de leito, a vazão de CO_2 , a massa de matéria-prima e a geometria do leito (relação H_B / d_B , onde H_B e d_B são a altura e o diâmetro do leito de extração, respectivamente), de forma a tentar reproduzir as curvas cinéticas de acordo com Equação 2.2 proposta por Moura *et al* [51] e Carvalho-Jr *et al* [53].

Um ponto importante a ser citado em relação à SFE-II é que a utilização da célula de nylon, por constituir material pouco resistente quando comparado ao material utilizado na fabricação da célula de extração em si (aço inox), não permite que o leito seja compactado de forma enérgica durante o processo de empacotamento. Esta limitação, aliada ao fato de que a densidade aparente do leito deveria ser a mesma para todos os experimentos relacionados ao estudo de influência de geometria de leito (o que implicaria na utilização de diferentes equipamentos de extração), levou à realização do experimento inicial (chamados experimentos de referência), em replicata, na SFE-II. Desta forma, a máxima densidade aparente possível de ser aplicada na SFE-II pôde ser estabelecida como padrão para todos os demais experimentos.

Todos os experimentos subsequentes foram realizados na SFE-I de forma que a massa de alimentação, a vazão de solvente e a relação H_B/d_B estivessem relacionados de

acordo com a Equação 2.2. Em todos os ensaios, o extrato foi coletado em frascos de vidro de 50 mL, que foram substituídos em intervalos de tempo pré-determinados.

As curvas cinéticas resultantes foram ajustadas a um spline de três retas com o auxílio do software SAS Learning Edition 1.0, utilizando-se os procedimentos PROC REG e PROC NILIN [62] como descrito por [63]. A primeira reta foi identificada como o período de taxa de extração constante (CER), a segunda com o período de taxa de extração decrescente (FER) e a terceira com o período limitado pela difusão dos compostos extraídos no interior das partículas de matéria-prima. Os valores t_{CER} e t_{FER}, que definem o término dos períodos CER e FER, correspondem aos pontos de intersecção entre a primeira e a segunda retas e entre a segunda e terceira retas, respectivamente. Através da inclinação da primeira reta e do t_{CER}, foi possível determinar a taxa de transferência de massa no período de taxa de extração constante (M_{CER}), a concentração de soluto na fase supercrítica na saída do extrator (Y_{CER}) e o rendimento da extração ao fim do período t_{CER} (R_{CER}) [64].

3.2.5 Estimativa de Custos

O ajuste das curvas de extração, obtidas conforme descrito no Item 3.2.3.1, a um spline de três retas possibilitou a obtenção dos parâmetros cinéticos necessários para a estimativa de custos. Foi realizada uma estimativa de classe 5, que está relacionada aos casos em que o projeto apresenta elevado grau de indefinição.

Assim, a análise se baseou no estudo desenvolvido por Rosa & Meireles [29], que utiliza metodologia descrita por Turton *et al* [1]. Neste procedimento, o custo de manufatura é composto por cinco elementos principais: matéria-prima (CRM), mão-de-

obra operacional (COL), utilidades (CUT), tratamento de resíduos (CWT) e investimento fixo (FCI). Cada um desses elementos apresenta um peso diferente sobre o custo final de manufatura (COM) segundo a Equação 3.3.

$$COM = 0.304FCI + 2.73COL + 1.23(CUT + CWT + CRM)$$
 Eq. (3.3)

3.3 Estudo da Etapa de Separação - Simulação

Em seu trabalho, Rosa & Meireles [29] procuram demonstrar que, quando parâmetros de processo como pressão, temperatura e tempo de extração, entre outros, são determinados de forma adequada e criteriosa, o processo de extração supercrítica pode se mostrar, não somente uma opção viável, como também vantajosa economicamente. Desta forma, a estimativa de custo seria de grande importância no sentido de acelerar o processo de adoção desta tecnologia entre as várias disponíveis atualmente.

Uma das aproximações utilizadas no trabalho de Rosa & Meireles [29] foi a consideração de que o tanque de destilação flash, onde ocorre a separação entre extrato e solvente, opera de forma próxima à ideal. Isto significa que a perda de extrato dissolvido na corrente gasosa ou por efeito de arraste da mesma seria nula. Além disso, a perda de solvente dissolvido ao extrato foi fixada em uma taxa de apenas 2 %.

Portanto, o trabalho realizado nesta etapa visou realizar a simulação de diversas condições de operação do tanque flash através da utilização do software SuperPro Designs[®] 6.0, de forma a dar um passo além na estimativa de custo apresentando pelo trabalho realizado anteriormente, fornecendo uma melhor aproximação entre valores estimados e reais.

3.3.1 Compilação dos dados para a simulação

O software SuperPro Designs[®] 6.0 conta com um banco de dados contendo diversas substâncias que podem ser utilizadas na simulação de vários processos diferentes. No entanto, com exceção do dióxido de carbono, nenhuma das substâncias a que este estudo se refere consta deste banco de dados.

Os dados necessários para a inserção de novas substâncias ao banco de dados compreendem propriedades físicas que podem variar com a temperatura ou que são independentes da mesma. As constantes físicas independentes da temperatura são: massa molar; os pontos normais de fusão e ebulição; fator de compressibilidade, pressão e temperatura críticas; e fator acêntrico. As propriedades que variam com a temperatura são: densidade do líquido, pressão de vapor (constantes de Antoine [65]), calor específico e entalpia de vaporização.

Tabela 3.1 – Composição do óleo de cravo e propriedades físicas de suas substâncias [28].

Substância	fração mássica	massa molar (kg/kmol)	fração molar	$T_{ebuli ilde{c} ilde{a}o}\ (K)$	$T_{crit}\left(K ight)$	$P_{crit}(bar)$	ω
eugenol	0,755	164,20	0,794	545,07	763,20	33,42	0,6545
acetato de eugenila	0,110	206,24	0,092	556,92	767,01	22,97	0,5735
trans-cariofileno	0,121	204,36	0,102	519,23	714,73	18,98	0,4799
α- humuleno	0,014	204,36	0,012	524,50	719,00	17,09	0,4502

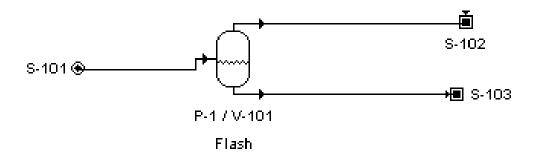
As propriedades independentes da temperatura, assim como as referentes à concentração de cada substância do extrato de cravo-da-índia (totalizando 100%) foram, em sua maioria, obtidas a partir de um trabalho sobre o equilíbrio de fases deste mesmo

extrato realizado anteriormente por Souza *et al* [28], e podem ser observados na Tabela 3.1.

No caso do vetiver, o ponto de partida foi a identificação dos principais compostos presentes no extrato supercrítico obtido a 40 °C e 200 bar, apresentada por Takeuchi *et al* [38]. Os compostos e algumas de suas propriedades estão na Tabela 3.2 e representam aproximadamente 70,2 % do extrato total.

Tabela 3.2 – Substâncias presentes no extrato de vetiver e suas propriedades [38].

Composto	Fração mássica	Fração molar	$^{a}T_{c}\left(K\right)$	$^{a}P_{c}$ (MPa)	$^{b}\omega$
Khusimeno	0,0080	0,0101	786,19	2,114	0,229
α-amorfeno	0,0048	0,0061	792,00	1,922	0,490
cis-β-guaieno	0,0032	0,0040	808,47	1,961	0,344
δ-amorfeno	0,0048	0,0061	802,71	1,953	0,422
γ-cadineno	0,0032	0,0040	785,80	1,919	0,437
Khusimona	0,0385	0,0484	854,01	2,473	0,305
Khusinol	0,0240	0,0281	859,08	2,022	0,822
Vetiselinenol	0,0128	0,0150	875,50	2,240	0,619
ciclocopacanfan-12-ol	0,0096	0,0112	837,76	2,274	0,499
Khusimol	0,1154	0,1348	890,61	2,422	0,625
biciclovetivenol	0,0192	0,0223	856,28	2,004	0,362
Nootkatona	0,0192	0,0227	863,51	2,118	0,470
β-vetivona	0,0128	0,0151	891,95	2,137	0,300
α-vetivona	0,0865	0,1020	891,95	2,137	0,492
Ácido zizanóico	0,5192	0,5702	940,67	2,298	0,659


^adados estimados através do método de Constantinou & Gani; ^bdados estimados através do método de Lee & Kessler; ω: fator acêntrico

O software Termofis 1.1, que calcula propriedades físicas através de métodos de contribuição de grupos, como, por exemplo, o de Joback & Reid [66], foi utilizado na obtenção do ponto normal de fusão e da equação referente ao calor específico em função da temperatura para cada composto do óleo de cravo-da-índia. No caso do extrato de vetiver, o Termofis 1.1 foi utilizado na obtenção dos pontos normais de fusão e de ebulição, e da equação referente ao calor específico em função da temperatura para cada composto do extrato. As estruturas moleculares das substâncias presentes no óleo de vetiver foram retiradas de Martínez [67].

As constantes de Antoine para as substâncias eugenol e acetato de eugenila foram calculadas a partir de dados experimentais [68]. As constantes de Antoine para as outras duas substâncias do óleo de cravo-da-índia e as demais constantes físicas dependentes da temperatura foram obtidas a partir de dados de equilíbrio líquido-vapor em várias temperaturas, os quais foram calculados segundo a equação de estado de Peng-Robinson [69], utilizando-se o software PR1 [70]. O mesmo software foi utilizado no cálculo dos pontos normais de fusão e de ebulição, e da equação referente ao calor específico em função da temperatura para cada composto do extrato de vetiver. As constantes de Antoine e as demais constantes físicas dependentes da temperatura para os compostos do óleo de vetiver foram obtidas a partir de dados de equilíbrio líquido-vapor em várias temperaturas, calculados segundo a equação de estado de Peng-Robinson, utilizando-se o software PR1, como descrito para o óleo de cravo-da-índia.

3.3.2 Simulação do destilador flash

Inicialmente, na tela inicial do software SuperPro Designs[®] 6.0, é necessário escolher o tipo de processo que se deseja simular através do ícone "Unit Procedures". A operação escolhida foi "Distillation → Flash", e as correntes de entrada e saída foram desenhadas. A Figura 3.3 mostra a representação do equipamento produzida pelo software, onde S-101 é a corrente de extrato diluído no solvente supercrítico, S-102 é a corrente de saída de solvente de extração na fase gasosa e S-103 é a corrente de extrato supercrítico na fase líquida.

Figura 3.3 – Representação do destilador tipo flash produzido pelo software SuperPro Designs[®] 6.0.

Posteriormente as substâncias envolvidas no processo foram adicionadas ao banco de dados através do ícone Edit Pure Components (Tasks).

A vazão mássica de CO₂ foi fixada em 90 kg/h, e as vazões das demais substâncias foram calculadas considerando-se que a solubilidade do óleo de cravo-da-índia a 15 °C e 100 bar é de 0,277 kg extrato/ kg CO₂ [29] e que as frações mássicas de cada uma são as mesmas fornecidas pela Tabela 3.1.

As simulações foram realizadas como processos isotérmicos utilizando-se a equação de Peng-Robinson para a estimativa da composição das fases em equilíbrio. As temperaturas avaliadas variaram entre 0 e 50 °C. Quanto às pressões, foram testados valores próximos àqueles observados em separadores de unidades reais de extração supercrítica (20 a 50 bar). No entanto, as pressões de 1 e 10 bar também foram simuladas a fim de proporcionar uma melhor visualização da influência da pressão sobre a eficiência do destilador flash na separação. Além disso, a pressão de 1 bar reflete a situação de separação que geralmente ocorre nos experimentos laboratoriais do LASEFI, pois apenas um dos equipamentos de extração possibilita o controle da pressão na fase de separação. Nos demais equipamentos a separação ocorre dentro do próprio frasco coletor, onde a pressão está próxima da atmosférica.

Dois tipos de perda que podem ocorrer no processo foram analisados: perda de extrato (óleo de cravo-da-índia) dissolvido no dióxido de carbono, ou fase leve; perda de dióxido de carbono (solvente) dissolvido no extrato, ou fase pesada.

3.3.3 Impacto da operação do destilador flash sobre o custo de manufatura

A simulação do equilíbrio de fases descrita no item 3.3.2 forneceu informações sobre as perdas de solvente e de extrato que podem ocorrer nesta etapa do processo. Levando-se em consideração estes dados e o modo como a equação foi proposta, as condições de operação do destilador flash acarretarão alterações nos valores de: CRM, pois este componente compreende o custo de todos os materiais diretamente relacionados à produção (matéria-prima e solvente); e CUT devido ao vapor saturado utilizado no

aquecimento do separador, assim como à alteração no funcionamento de outros equipamentos como a bomba e o condensador, que utilizam energia elétrica e água gelada.

Desta forma, o valor de 2 % de perda de solvente dissolvido no extrato foi substituído pelos valores encontrados na simulação. E as perdas de extrato dissolvido na corrente gasosa foram consideradas como uma redução no rendimento global da extração, sendo que o valor utilizado como rendimento global foi o correspondente a 70 min de extração (12,85 %) [71]. O tempo de 70 min foi estabelecido segundo trabalho de Rosa & Meireles [29] que concluíram, após análise da influência do tempo de extração sobre o custo de manufatura, que o tempo de 70 min corresponderia ao mínimo custo de produção do óleo de cravo por extração supercrítica.

Tabela 3.3 – Dados utilizados na estimativa do COM do óleo de cravo-da-índia [29].

Capacidade da unidade de SFE	$2 \times 400 L (US \$ 2 milhões)$		
Tempo total de operação	7920 h/ ano		
Cost of Operational Labor	US\$ 3,00/h		
Depreciação	10% ao ano		
Tempo de extração	70 min		
Densidade aparente do leito	520 kg/m^3		
Vazão mássica de CO ₂	90 kg/h		
Custo de matéria-prima	US\$ 505.00 /ton		
Custo de pré-processamento	US\$ 30.00 /ton		
Custo do CO ₂	US\$ 0.10/ kg		
Custo do vapor saturado	US\$ 0.0133/ Mcal		
Custo da água fria	US\$ 0.0837/ Mcal		
Custo da energia elétrica	US\$ 0.0703/ Mcal		

Neste estudo, a quantidade de CO₂ retido dentro do leito de extração junto à matriz sólida foi negligenciada. Como este valor é fixo qualquer que sejam as condições de operação utilizadas no separador, este fator não deve prejudicar a avaliação do impacto do funcionamento deste equipamento sobre o COM.

Os dados utilizados para a estimativa de custo (Tabela 3.3) foram os mesmos relatados por Rosa & Meireles [29], uma vez que o objetivo foi analisar o impacto da operação do destilador flash onde acontece a etapa de separação entre extrato e solvente.

3.4 Caracterização dos extratos

3.4.1 Determinação da atividade antioxidante

A atividade antioxidante dos extratos foi determinada de acordo com metodologia de Hammerschimidt e Pratt [72] com algumas modificações descritas por Leal *et al* [46] e Zancan *et al* [73]. O substrato foi preparado diluindo-se 60mg de ácido linolênico (Sigma, Lote 054K1214, Steinheim, Alemanha), 10mg de β-caroteno (Acros, Lote B0070864, Nova Jersey, EUA) e 200mg de Tween 40 (Sigma, Lote 032K0104, Steinheim, Alemanha) em 10 mL de clorofórmio (Merck, Lote K31503045 301, Darmstadt, Alemanha). Esta solução foi concentrada em evaporador rotativo (Heidolph, modelo Laborota 4001, Viertrieb, Alemanha). Após total eliminação do clorofórmio, a solução foi re-suspendida em 50 mL de água bidestilada.

Para esta análise, os extratos foram diluídos a 20mg/mL em etanol (Merck, Lote K34041783, Pureza > 99,9 %, Darmstadt, Alemanha). Em tubos codificados contendo 2

cm³ de água bidestilada, foi adicionado 0,05 mL de cada extrato já diluído, sendo que nos tubos de controle a solução de extrato foi substituída por etanol puro. Foi adicionado 1 cm³ de substrato a cada tubo e a reação foi mantida por 3 horas a 40 °C em banho termostático (Tecnal, TE 159, Piracicaba, SP). As leituras foram realizadas nos tempos de 0, 1, 2 e 3 horas em espectrofotômetro (HITACHI, modelo U-3010, Tóquio, Japão) a 470 nm. Os testes foram feitos em triplicata, com exceção da amostra correspondente à extração supercrítica a 60 °C e 100 bar sem co-solvente, que foi analisada em duplicata devido à quantidade reduzida de extrato.

A atividade antioxidante foi calculada segundo a Equação 3.4 abaixo.

% Atividade Antioxidante =
$$\left(1 - \frac{Abs_{amostra,t} - Abs_{amostra,0}}{Abs_{controle,t} - Abs_{controle,0}}\right) \times 100$$

Eq. (3.4)

Onde: Abs_{amostra,t} = absorbância da amostra no tempo t;

Abs $_{amostra,0}$ = absorbância da amostra no tempo inicial t = 0 min;

Abs_{controle,t} = absorbância do controle no tempo t;

Abs_{controle}, 0 = absorbância do controle no tempo inicial t = 0 min.

3.4.2 Determinação do teor de compostos fenólicos totais

O teor de compostos fenólicos totais foi determinado segundo metodologia de Singleton e Rossi (1965) com modificações descrita por Cheung *et al* [74]. Em balão volumétrico de 10 mL misturava-se 1mL da amostra (com concentração conhecida) a 1mL do reagente de Folin-Ciocalteau. Diferentes lotes do reagente de Folin-Ciocalteau foram utilizados para as amostras obtidas por ESC sem co-solvente e por ESBP por percolação e centrifugação (QEEL, Lote R080105, São Paulo, SP), e para as amostras obtidas por ESC com co-solvente e por ESBP por maceração (Dinâmica, Lote 23690, São Paulo, SP). Depois de três minutos, adicionava-se 1mL de solução saturada de Na₂CO₃ (aproximadamente 35 %) (Ecibra, > 99.5%, Lote 16.232, São Paulo, SP) e completava-se o volume do balão para 10 mL com água destilada. A reação era mantida no escuro por 90 minutos, ao final dos quais a absorbância da solução era lida a 725 nm em espectrofotômetro (HITACHI, modelo U-3010, Tóquio, Japão). A curva de calibração foi construída no intervalo de absorbância entre 0 e 1,0 utilizando-se diferentes concentrações de ácido gálico (0,01 – 0,1 mM) (Sigma, Lote 023K01171, St. Louis, EUA).

As amostras foram diluídas em etanol e água de forma que a porcentagem de etanol não ultrapassasse 10 % do total do solvente, e em concentrações cujas absorbâncias finais estivessem inseridas no intervalo da curva de calibração.

Os resultados foram expressos como mg de equivalentes de ácido gálico por mg de extrato (mg de EAG/ mg de extrato).

3.4.3 Determinação do teor de flavonóides totais

A análise do teor de flavonóides totais nos extratos foi realizada segundo metodologia de Zhishen, Mengcheng e Jianming (1999) descrita por Kim *et al* [75]. Uma alíquota de 1mL de amostra adequadamente diluída era adicionada a um balão volumétrico de 10 mL contendo 4 mL de água bidestilada. Foi preparado um branco substituindo-se a amostra por água bidestilada. Os reagentes eram adicionados na seguinte ordem: i) inicialmente adicionava-se 0,3 mL de NaNO₂ (Synth, > 97,0 %, Lote 76078, Diadema, SP); ii) após 5 minutos adicionava-se 0,3 mL de AlCl₃ (10%) (Synth, > 99,0 %, Lote 70399, Diadema, SP); iii) depois de 1 minuto adicionava-se 2 mL de NaOH (1M) (Ecibra, > 97,0 %, Lot 15720, São Paulo, SP) e iv) completava-se o volume do balão volumétrico com água bidestilada (2,4 mL). A absorbância das amostras foi lida a 510 nm contra o branco.

Como padrão, foi utilizado o flavonóide quercetina enão a catequina, como descrito pelo autor [75]. Uma curva padrão foi construída preparando-se diversos tubos como descrito acima, porém substituindo-se a solução de amostra por soluções de diferentes concentrações do flavonóide quercetina. Diferentes lotes do padrão de quercetina foram utilizados para as amostras obtidas por ESC sem co-solvente e por ESBP por percolação e centrifugação (PVP, Lote 0464, Parnaíba, Piauí), e para as amostras obtidas por ESC com co-solvente e por ESBP por maceração (Sigma, > 98 %, Lote 034K3482, Steinheim, Alemanha).

A diluição dos extratos foi realizada conforme descrito no Item 3.4.2.

Os resultados foram expressos como mg de equivalentes de quercetina por mg de extrato (mg de EQ/ mg de extrato).

3.4.4 Determinação do Teor de Quercetina: monitoramento das cinéticas de extração supercrítica com a mistura CO₂ + etanol³

A quantificação de quercetina foi realizada através de método espectrofotométrico. Para tanto, o primeiro passo foi medir a absorbância de uma solução do padrão de quercetina (98 % HPLC, lote 034K3482, Sigma, Steinheim, Alemanha) em vários comprimentos de onda diferentes a fim de verificar qual comprimento de onda seria mais adequado (371 nm - maior absorbância) para a quantificação deste composto.

Posteriormente, soluções de diferentes concentrações do padrão de quercetina foram utilizadas na construção de uma curva padrão.

Para a quantificação de quercetina, os extratos foram diluídos em metanol (Ecibra, Lote 16646, São Paulo, SP) a 50 μg/mL e as absorbâncias das soluções resultantes foram lidas em espectrofotômetro (HITACHI, U-3010, Tóquio, Japão) a 371 nm.

3.4.5 Cromatografia Gasosa - CG

A composição química da fração volátil (óleo essencial) dos extratos foi analisada com auxílio de cromatógrafo gasoso (Shimadzu, GC-17A, Quioto, Japão) equipado com detector por ionização de chama (DIC) e coluna capilar ZB-5 (30 m × 0,25 mm × 0,25 μm, Phenomenex, EUA). O equipamento foi ajustado de acordo com a programação de Kovats descrita por Adams [76]: a coluna foi aquecida a 60 °C por 3 minutos, após os quais foi programada uma rampa de aquecimento de 60 a 246 °C a uma taxa de 3 °C/ min. Foi

_

³ Os dados experimentais relacionados ao item 3.4.4 foram obtidos pela aluna de iniciação científica Maria Laura Rubano. No entanto, as análises de parâmetros cinéticos e dos fenômenos observados, assim como as discussões descritas neste trabalho de doutorado, são independentes de seu trabalho de iniciação científica.

utilizado gás hélio (99,99 %, White Martins, Campinas, SP) a 1,7 cm³/ min como gás de arraste, a razão de split foi de 1:20 e o volume de injeção da amostra foi de 1 μL. As amostras foram diluídas em acetato de etila (Merck, Lote K32703923 346, Darmstadt, Alemanha) a uma concentração de 5 mg/ cm³. Padrões de α-humuleno (Sigma, Lote 97H2505, Steinheim, Alemanha) e trans-cariofileno (Sigma, Lote 094K2642, Steinheim, Alemanha) foram utilizados para a identificação destas substâncias nos extratos através do método do padrão externo [77], e sua quantificação foi realizada através de curvas de calibração. Cada curva foi construída através do preparo de diferentes soluções de concentrações conhecidas de cada padrão que, ao serem injetadas no equipamento, forneciam a resposta do equipamento para cada concentração em termos de área de pico. Os extratos retidos no frasco e na coluna de adsorção foram analisados separadamente.

As mesmas condições descritas acima foram utilizadas na injeção de padrões de hidrocarboneto ($C_7 - C_{24}$) (Aldrich, > 99 %, Lote 01009HC, Milwaukee, EUA), cujos tempos de retenção foram utilizados no cálculo do índice de Kovats [76] de acordo com a Equação 3.5.

$$IK_i = 100 \times \left(\frac{tr_i - tr_n}{tr_{n+1} - tr_n} + n\right)$$
 Eq. (3.5)

Onde: tr_i é o tempo de retenção do pico correspondente ao composto i;

tr_n é o tempo de retenção do pico correspondente ao último hidrocarboneto observado antes do pico do composto i;

 tr_{n+1} é o tempo de retenção do pico correspondente ao primeiro hidrocarboneto observado depois do pico do composto i;

n é número de carbonos do hidrocarboneto cujo tempo de retenção é tr_n .

3.4.6 Cromatografia em camada delgada - CCD

A CCD foi escolhida como técnica adequada para a separação, visualização e possível identificação de compostos não-voláteis (grupo de substâncias em que se inserem os flavonóides), uma vez que a cromatografia gasosa (CG) não é eficaz na identificação dos compostos em questão.

Nesta etapa, os principais compostos de interesse eram os flavonóides. Neste caso, optou-se pela utilização do revelador NP (reagente produtos naturais - composto por 0,5 g do reagente aminoethyl-diphenylborinate (Sigma, lote 015K2600, Switzerland) em 50mL de metanol (Ecibra, Lote 15695, SP, Brasil)) e pela fase móvel clorofórmio (Merck, 99.0 – 99,4 %, Lote K31503045 301, Darmstadt, Alemanha) – acetona (Synth, > 99,5 %, Lote 76928, Diadema, SP) - ácido fórmico (Vetec, > 98 %, Lote 044755, Rio de Janeiro, RJ) (75: 16,5: 8,5), sendo que estes são, respectivamente, o revelador e a fase indicados para a visualização deste grupo de compostos [78]. Foram utilizadas cromatofolhas de sílica gel (GF254, Merck, Lote OB522724, Darmstadt, Alemanha) com F254, que é um indicador que proporciona fluorescência a determinados compostos. O revelador de anisaldeído, preparado com 50 mL de ácido acético glacial (Ecibra, Lote 15695, São Paulo, SP), 1 mL de ácido sulfúrico concentrado (Ecibra, São Paulo, SP) e 1 mL de anisaldeído (Vetec, Lote 993150, Rio de Janeiro, RJ), também foi aplicado, ocasionalmente, para a visualização de outros compostos.

Foram aplicados 10 µL de uma solução de aproximadamente 4 mg/mL de cada amostra analisada. As placas cromatográficas foram colocadas em cuba contendo a mistura de solventes escolhida para a eluição das amostras. Ao fim deste processo e após a

secagem das placas, foi aplicado o revelador NP sobre as mesmas. As cromatofolhas foram observadas e fotografadas sob radiação UV (365 nm).

Capítulo 4 - Resultados e Discussão

4.1 Caracterização da matéria-prima

Os experimentos foram realizados com dois diferentes lotes de inflorescências de *Achyrocline satureioides*, sendo que a principal diferença entre os mesmos seria unicamente o ano de colheita (2003 e 2005)

A mesma matéria-prima foi utilizada na construção das isotermas de rendimento global (sem e com utilização de co-solvente), no experimento cinético a partir do qual foi realizada a estimativa de custo, e na construção das curvas cinéticas com utilização de co-solvente (primeiro lote - 2003). Os resultados para a umidade e a densidade real para este lote de matéria-prima foram $6.5 \pm 0.1 \%$ (base úmida) e $1.10 \pm 0.01 \text{ g/cm}^3$, respectivamente. A porosidade e a densidade aparente do leito de extração foram mantidas a $0.7 \text{ e } 0.33 \pm 0.01 \text{ g/cm}^3$ e a $0.85 \text{ e } 0.17 \pm 0.01 \text{ g/cm}^3$, para as extrações realizadas sem e com a utilização de co-solvente, respectivamente.

Para a construção das curvas de extração relacionadas ao estudo de influência de geometria de leito, foi utilizado outro lote de flores de macela (segundo lote – 2005). Para este lote, a umidade e a densidade real não foram determinados uma vez que não representam valores necessários à verificação da aplicabilidade das Equações 2.1 e 2.2. Já no caso dos valores de densidade aparente e porosidade, a fim de esclarecer a dificuldade de se manter esses parâmetros em um valor fixo em todas as repetições, é importante citar que os mesmos foram monitorados cuidadosamente no decorrer desta etapa dos estudos. Além disso, a observação minuciosa dos dados experimentais constitui um facilitador no

sentido de viabilizar a identificação de possíveis influências dos mesmos sobre os resultados das extrações. Desta forma, estas informações serão relatadas mais adiante, no item em que será discutido o estudo sobre a influência da geometria de leito sobre a curva de extração (Item 4.3.1).

4.2 Obtenção dos extratos – Comparação dos métodos de extração

4.2.1 Extração com solvente a baixa pressão (ESBP)

Os rendimentos dos métodos de ESBP através de centrifugação e agitação foram 5.5 ± 0.2 e 3.9 ± 0.1 %, respectivamente. No caso do método de ESBP por percolação, a vazão de solvente através do leito fixo foi mantida a $(3.1 \pm 0.1) \times 10^{-4}$ kg/s, e as razões 20:1 e 100:1 de volume de solvente sobre massa de alimentação resultaram em 6.4 ± 0.4 e 6.2 ± 0.4 % de rendimento. Os resultados das extrações estão expressos como a média de dois experimentos e sua amplitude, e o da vazão como a média de três medidas e seu desvio padrão.

O menor rendimento dos extratos obtidos por centrifugação, em relação àqueles obtidos por percolação (leito fixo), pode estar relacionado ao menor tempo de contato entre o solvente e a matriz sólida. No entanto, comparando-se os resultados de rendimento das extrações por agitação (leito agitado) e por centrifugação, a diferença entre os tempos de contato entre solvente e matriz vegetal, que foram 30 e 35 minutos, respectivamente, parece não ser significativa a ponto de explicar a discrepância dos resultados de rendimento entre os métodos. Estes dados podem ser indicativos de que o processo de centrifugação favorece os fenômenos de transferência de massa da matéria-prima para o

solvente de extração. De qualquer forma, resultados conclusivos envolvendo a eficiência do processo em relação ao tempo só poderiam ser obtidos através do monitoramento do rendimento de cada método ao longo de sua execução, ou seja, seria necessário realizar experimentos de cinética de extração.

Observando-se os dados de rendimento da ESBP por percolação utilizando-se duas razões de volume de solvente sobre massa de alimentação, é importante notar que a quantidade de solvente não parece exercer influência significativa sobre o rendimento do método nas duas condições analisadas. Além disso, o rendimento levemente inferior obtido para a maior relação entre volume de solvente e massa de alimentação (100:1) sugere uma pequena perda de parte dos compostos durante o processo de eliminação da elevada quantidade de solvente por evaporação, embora a diferença entre os rendimentos seja pouco significativa para que esta afirmação possa ser feita de forma conclusiva. Estes resultados foram positivos uma vez que indicam que a utilização de uma quantidade significativamente menor de solvente seria mais vantajosa.

4.2.2 Extração Supercrítica – Influências da pressão e da temperatura

4.2.2.1 Isotermas de Rendimento Global – Solvente: CO₂ supercrítico

Nesta etapa, foi determinada a quantidade total de material solúvel em CO_2 presente na matéria-prima (flores de *Achyrocline satureioides*) sob diferentes condições de pressão e temperatura. A vazão de solvente foi mantida a 6.4×10^{-5} kg/s por 60 minutos em todos os experimentos relacionados ao estudo do rendimento global sem a utilização de co-solvente. Desta forma, em cada corrida experimental, em quantidades aproximadas,

0,23 kg de CO_2 supercrítico foram circulados por um leito fixo formado por $1,64 \pm 0,04$ g de matéria prima.

Na contabilização de extrato para o cálculo do rendimento global, foram levados em consideração o extrato retido no frasco coletor (Frasco 1), a variação de peso da coluna de adsorção (retenção de substâncias mais leves - Porapak) e o extrato obtido através da lavagem da tubulação com etanol (Frasco 2). Os cálculos de rendimento foram efetuados em base seca de acordo com a Equação 4.1. Os resultados podem ser observados na Tabela 4.1.

Rendimento total (%) =
$$\frac{(\Delta m_{frasco\ 1} + \Delta m_{frasco\ 2} + \Delta m_{Porapak\ Q})}{m_{mat\'eria-prima,base\ seca}} \times 100$$

Eq. (4.1)

Onde: $\Delta m_{frasco\ 1}$ é a variação de massa do frasco 1 entre o início e o fim do experimento;

 $\Delta m_{frasco\ 2}$ é a variação de massa do frasco 2 utilizado na coleta do extrato retido na tubulação do equipamento através da limpeza da mesma com etanol;

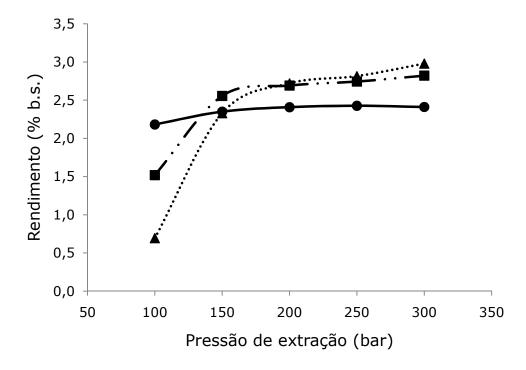
 $\Delta m_{Porapak\ Q}$ é a variação de massa da coluna de adsorção entre o início e o fim do experimento;

 $m_{mat\'eria-prima,base\ seca}$ é a massa inicial de matéria-prima em base seca.

Observando-se os dados da Tabela 4.1, é possível notar que a porcentagem de extrato retido pela coluna de adsorção e daquele obtido através do processo de limpeza variam bastante dependendo das condições de extração utilizadas. Provavelmente, estas

variações são decorrentes das diferentes temperaturas ajustadas na válvula micrométrica, cujo aquecimento tem a finalidade de evitar o congelamento da mesma pelo efeito de expansão do solvente na tubulação de saída (efeito Joule-Thomson). Neste caso, a temperatura ajustada era considerada satisfatória quando era possível atingir uma vazão estável do solvente. Simultaneamente, a tubulação de saída era monitorada através do tato, sendo que deveria estar sempre fria ao contato das mãos, de forma a garantir que o extrato não estivesse sendo degradado pelo excesso de temperatura.

Tabela 4.1 – Dados de rendimento global de extração em diferentes condições de temperatura e pressão para a A. *satureioides**.


Condições do Experimento		Rendimento (%)			
		Frasco 1	Frasco 2	Porapak	Total
	100bar	1,511	0,346	0,324	2,182
	150bar	1,910	0,269	0,171	2,351
30°C	200bar	1,851	0,259	0,299	2,409
	250bar	1,885	0,297	0,245	2,427
	300bar	1,933	0,163	0,316	2,412
45°C	100bar	0,674	0,723	0,122	1,520
	150bar	1,938	0,274	0,343	2,556
	200bar	2,032	0,365	0,295	2,693
	250bar	2,231	0,337	0,176	2,744
	300bar	2,334	0,261	0,227	2,822
60°C	100bar	0,206	0,300	0,186	0,692
	150bar	1,701	0,471	0,158	2,330
	200bar	2,209	0,319	0,193	2,722
	250bar	2,402	0,249	0,164	2,815
	300bar	2,468	0,348	0,161	2,978

^{*} médias de dois experimentos

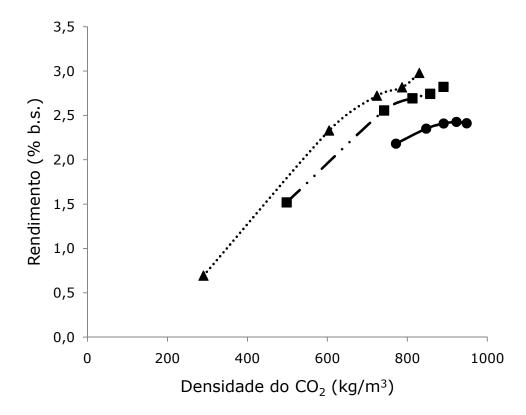
A Tabela 4.2 apresenta os dados dos rendimentos globais em cada condição de processo estudada, expressos como média de dois experimentos ± amplitude. A Figura 4.1 representa as isotermas de rendimento global obtidas através dos dados da Tabela 4.2.

Tabela 4.2 – Rendimentos globais obtidos em cada condição de processo utilizada para a *A. satureioides* representados como média ± amplitude calculados de acordo com a Equação 4.1.

Program (han)		Rendimentos (%)	
Pressão (bar)	30 °C	45 °C	60 °C
100	$2,2 \pm 0,3$	$1,52 \pm 0,04$	0.7 ± 0.2
150	$2,4 \pm 0,1$	$2,56 \pm 0,06$	$2,3 \pm 0,2$
200	$2,4 \pm 0,1$	$2,69 \pm 0,09$	$2,72 \pm 0,05$
250	$2,4 \pm 0,1$	$2,74 \pm 0,07$	$2,82 \pm 0,04$
300	$2,41 \pm 0,06$	$2,82 \pm 0,06$	$3,0 \pm 0,1$

Figura 4.1 – Isotermas de rendimento global construídas a 30 (●), 45 (■) e 60 °C (▲), utilizando-se CO₂ supercrítico puro (*A. satureioides*).

Pode-se observar que os experimentos realizados a 100 bar refletem o comportamento típico da dependência da solubilidade em relação à densidade do solvente. Ou seja, quanto menor a temperatura, maior a densidade do solvente e a quantidade de substâncias nele solúveis.

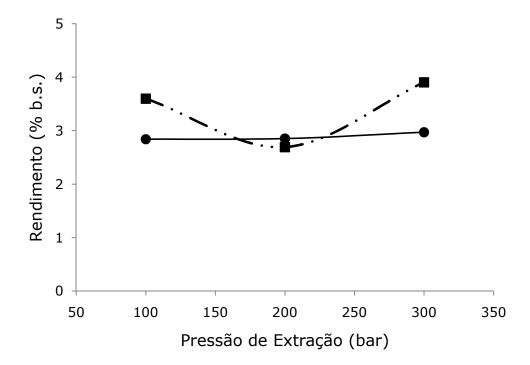

Nos experimentos realizados a 150 bar já é possível observar a ocorrência de intersecções das IRG's. A quantidade total de material solúvel foi maior a 45 °C do que a 30 °C. Isto significa que a elevação da pressão de vapor do soluto, decorrente do incremento de temperatura, de uma parcela das substâncias presentes na planta predomina sobre o efeito da densidade sobre o poder de solvatação do dióxido de carbono, resultando em um rendimento final superior a uma temperatura mais elevada. Este fenômeno também pode ser observado a 60 °C, pois o rendimento global a esta temperatura foi praticamente similar ao de 30 °C. Ou seja, a elevação da temperatura provocou um aumento da quantidade de compostos que passaram para a fase fluida dentro do sistema de extração, implicando num rendimento similar de extração, mesmo a uma densidade menor do solvente. O fato deste mesmo efeito não ser observado quando comparados os valores a 45 e 60 °C indica este fenômeno de inversão ocorre em uma faixa de pressão próxima a 150 bar.

Nos experimentos realizados a 200, 250 e 300 bar, o efeito da pressão de vapor já é bastante visível. No entanto, nota-se que o incremento do rendimento em decorrência da temperatura, em pressões superiores a 150 bar, é menor do que aquele provocado pela elevação da densidade do solvente em pressões inferiores.

Através da análise da Figura 4.2, que representa a variação do rendimento de extração em função da densidade do solvente, a influência da pressão de vapor fica

patente: se o rendimento de extração dependesse unicamente da densidade do solvente, valores iguais de densidade produziriam os mesmos valores de rendimento, qualquer que fosse a temperatura utilizada. No entanto, a disposição das curvas na Figura 4.2 indica claramente que maiores temperaturas estão associadas a maiores rendimentos. Além disso, as influências da pressão sobre o processo de extração, já discutidas anteriormente, podem ser corroboradas pela forma de representação dos dados apresentada na Figura 4.2: apesar de a influência da pressão ser mais expressiva em relação à da temperatura, sua importância se torna bem menos significativa a pressões superiores a 150 bar. Ou seja, além da variação da densidade do solvente se tornar menos expressiva conforme se aumenta a pressão, menores variações de rendimento de extrato são observadas conforme pressão e densidade do solvente se elevam.

Outro ponto importante a ser observado é que a 30 °C o dióxido de carbono se encontra em estado líquido (subcrítico). Nota-se que a variação da densidade do mesmo em função da elevação da pressão, além de ser relativamente pequena, parece não exercer influência expressiva sobre o rendimento de extração. Além disso, a Figura 4.2 indica que, para as demais temperaturas estudadas (45 e 60 °C), ainda existe uma tendência de elevação do rendimento como resultado do incremento da pressão até o máximo valor avaliado para este parâmetro (300 bar). Em contrapartida, a curva referente à temperatura de 30 °C indica uma tendência pouco favorável da elevação da pressão, embora não seja possível afirmar se valores superiores a 300 bar implicariam em valores semelhantes ou menores do que o obtido nesta pressão.


Figura 4.2 – Rendimento global em função da densidade do CO_2 para os extratos de *A. satureioides* obtidos sem co-solvente nas temperaturas de 30 (\bullet), 45 (\blacksquare) e 60 °C (\blacktriangle) (dados de densidade do CO_2 foram retirados no NIST Chemistry WebBook [61]).

4.2.2.2 Isotermas de Rendimento Global – Solvente: CO_2 supercrítico + etanol

Os dados de rendimento relativos às isotermas de rendimento global encontram-se na Tabela 4.3 e estão expressos como média ± amplitude. As influências da pressão e da temperatura de extração podem ser visualizadas e analisadas através da Figura 4.3.

Tabela 4.3 – Resultados numéricos de rendimento global com utilização de co-solvente expressos como média ± amplitude (*A. satureioides*).

D	Rendime	ntos (%)
Pressão (bar)	30 °C	45 °C
100	$2,84 \pm 0,09$	$3,6 \pm 0,1$
200	$2,85 \pm 0,06$	$2,69 \pm 0,02$
300	2.97 ± 0.09	$3,90 \pm 0,03$

Figura 4.3 – Isotermas de rendimento global construídas a 30 (\bullet) e 45 °C (\blacksquare), utilizandose CO₂ supercrítico + (20 %) etanol (*A. satureioides*).

Para cada experimento de rendimento global sem adição de co-solvente, apenas $1,64\pm0,04$ g de matéria prima foram utilizados. Já no caso dos IRG's com utilização de solvente modificador (etanol), cada experimento foi realizado com $33,1\pm0,2$ g de amostra. Em decorrência da aplicação de maiores quantidades de matéria-prima em cada

experimento, foi possível observar que as variações (amplitudes) entre os resultados das replicatas apresentaram uma tendência de redução em relação aos experimentos realizados com amostras menores (IRG's sem adição de co-solvente).

No caso específico da macela, inicialmente, tentou-se construir as isotermas (com adição de etanol) com amostras menores. No entanto, a necessidade de preencher o espaço vazio do leito com esferas de vidro (5 mm de diâmetro) acarretou uma perda de carga significativa que ocasionou uma redução proibitiva da vazão, uma vez que os experimentos se tornariam excessivamente longos, mesmo com amostras reduzidas. Nota-se, com maior freqüência, que o oposto é observado quando outros tipos de matéria-prima são utilizados. No caso da macela, as flores moídas apresentam comportamento semelhante ao de um "algodão", fazendo com que a compactação do leito seja limitada, acarretando em uma porosidade de leito relativamente elevada (0,85 no caso dos experimentos com cosolvente). Esta peculiaridade do leito formado pelas flores de macela fez com que a perda de carga relacionada ao leito de extração fosse menor em comparação com a perda de carga causada pelas esferas de vidro. De fato, este efeito foi tão significativo, que a utilização de amostras de maior massa (leito praticamente cheio) se mostrou mais vantajosa.

Outro ponto importante relativo à *A. satureioides* é que durante os testes preliminares que determinariam a quantidade de solvente (CO₂ + etanol) necessária para o esgotamento do leito de extração, observou-se que tal esgotamento não fora atingido após 7 horas de extração. Esta constatação levou à inversão da ordem lógica da realização dos experimentos, segundo a qual, para o estudo da extração supercrítica, inicialmente se definem as melhores condições de temperatura e pressão através da construção das IRG's,

e posteriormente realiza-se o estudo da cinética de extração. No caso da macela, o estudo do processo teve início pela realização de experimentos cinéticos que forneceram informações importantes em relação à porcentagem de co-solvente utilizado e à utilização de período estático. Estes experimentos serão detalhados no item referente ao estudo da cinética de extração com utilização de co-solvente (Item 4.3.3).

Através das Figuras 4.1 e 4.3, pode-se notar que, comparando-se as duas isotermas obtidas a 30 °C, a variação de rendimento em função da pressão empregada não foi significativa. Considerando-se apenas esta informação, pode-se dizer que a pressão não exerce influência significativa sobre o rendimento do extrato quando combinada a uma temperatura de extração de 30 °C. No entanto, a utilização do co-solvente na proporção de 20 % (vol.) parece influenciar no rendimento do extrato, pois nota-se que o mesmo sofre um incremento em função desta modificação. Portanto, é provável que o aumento de polaridade decorrente da adição do etanol ao solvente supercrítico tenha promovido a extração de compostos que apresentam afinidade por solventes de polaridade relativamente mais elevada, tendo como consequência um maior rendimento de extração. Porém, é importante acentuar que, em casos como este, em que as polaridades dos solventes de extração são muito diferentes, o maior rendimento não necessariamente indica que a mistura CO₂ + etanol simplesmente amplie a capacidade do processo extrativo. Pode-se afirmar apenas que a massa dos compostos extraíveis com um sistema de solventes de polaridade mais elevada é maior, o que não necessariamente significa que todos os compostos extraíveis com CO₂ supercrítico puro estejam presentes neste extrato.

Comparando-se as duas isotermas obtidas utilizando-se co-solvente, nota-se que existem pelo menos dois pontos de inversão: um entre 100 e 200 bar e outro entre 200 e 300 bar. Esta característica da curva indica que, a pressões inferiores à do primeiro ponto

de inversão e superiores à do segundo, a influência da pressão de vapor dos compostos extraídos é predominante sobre a influência da densidade do solvente. O efeito da densidade do solvente sobre o rendimento do extrato só pode ser observado entre os dois pontos de inversão.

Em relação às IRG's obtidas a 45 °C, os comportamentos das isotermas obtidas com e sem utilização de co-solvente foram bastante discrepantes. Nota-se que, utilizandose CO₂ puro, o rendimento global apresenta aumento significativo em função do incremento da pressão até aproximadamente 160 bar, sendo que, a partir deste valor, a pressão não exerce influência significativa sobre o rendimento global. Já no caso da isoterma relacionada à utilização de co-solvente, observou-se que o rendimento obtido a 100 bar foi elevado quando comparado com os demais experimentos realizados com a mesma pressão. Porém, a 200 bar o rendimento apresenta uma redução significativa, que chega a ser menor do que o valor encontrado a 30 °C utilizando-se co-solvente, e volta a aumentar quando se eleva a pressão a 300 bar. Uma das hipóteses para este fenômeno seria que parte do grupo de compostos extraídos a 100 bar tem sua solubilidade no solvente supercrítico adicionado de co-solvente reduzida em decorrência da elevação da pressão de extração para 200 bar. O fato de o rendimento voltar a aumentar quando se utiliza 300 bar poderia ser acarretado pela extração de um novo grupo de compostos que, por sua vez, apresentam maior solubilidade no solvente de extração quando o mesmo se encontra sob pressões mais elevadas.

Outra hipótese para o comportamento peculiar da IRG obtida a 45 °C seria a ocorrência de um equilíbrio do tipo líquido-líquido dentro da célula de extração. Por se tratar de uma mistura, não foi possível encontrar dados bibliográficos sobre a densidade do

sistema CO₂ + etanol quando o mesmo se encontra exatamente nas mesmas condições de proporção (83,6 % em massa de CO₂), temperatura (30 e 45 °C) e pressão (100, 200 e 300 bar) utilizadas neste estudo. Portanto, não foi possível analisar o rendimento de extração em função da densidade do solvente. No entanto, observando-se os dados experimentais apresentados na Tabela 4.4, obtidos por Yeo *et al* [79] em seu trabalho sobre as propriedades críticas do sistema CO₂ + etanol, é possível afirmar que, nas condições de pressão e temperaturas utilizadas nas extrações, a mistura de solventes se encontra sempre em condições subcríticas, Estes dados indicam a elevada probabilidade de ocorrência de separação de fases dentro do leito de extração, o que explicaria o comportamento peculiar da IRG.

Tabela 4.4 – Dados termodinâmicos experimentais da mistura etanol + CO₂ [79].

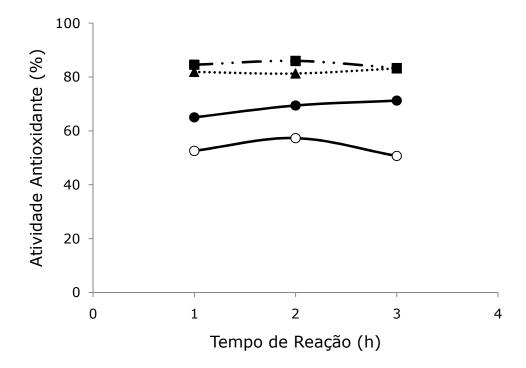
Fração mássica de CO ₂	Temperatura (K)	Pressão (bar)	Padrão da transição de fase
	40	78,42	Ponto de bolha
	50	93,38	Ponto de bolha
0,863	55,21	100,89	Ponto crítico
	60	107,64	Ponto de orvalho
	70	119,49	Ponto de orvalho
0,769	50	92,55	Ponto de bolha
	60	106,88	Ponto de bolha
	70	119,84	Ponto de bolha
	77,47	128,04	Ponto crítico
	80	130,59	Ponto de orvalho
	90	138,31	Ponto de orvalho

Finalmente, para todas as condições de pressão e temperatura em que a extração com co-solvente foi estudada, é possível afirmar que a utilização do etanol como modificador do solvente supercrítico causa incremento do rendimento do processo extrativo. Este ponto fica ainda mais evidente quando se leva em consideração que, no caso das extrações com co-solvente, o leito de extração não foi levado a esgotamento. Além disso, as razões massa de solvente/ massa de alimentação foram de aproximadamente 143 e 40 para as extrações sem e com utilização de co-solvente, respectivamente, indicando que, mesmo tendo sido utilizada uma maior quantidade de solvente nos experimentos com utilização de CO₂ supercrítico puro, os rendimentos das extrações com adição de co-solvente foram superiores.

4.2.3 Análises das composições e das propriedades funcionais dos extratos

4.2.3.1 Atividade Antioxidante

De todas as metodologias de extração estudadas, o extrato obtido por ESC com CO_2 + etanol a 30 °C e 300 bar foi o que apresentou a maior atividade antioxidante em relação ao β-caroteno (aproximadamente 95 % superior). A amostra que apresentou o menor valor para esta propriedade foi aquela obtida por ESC com CO_2 puro a 60 °C e 100 bar, que provocou a aceleração da oxidação do β-caroteno em relação à amostra controle. Todos os demais extratos analisados apresentaram atividade antioxidante mais que 40 % superiores à do β-caroteno.

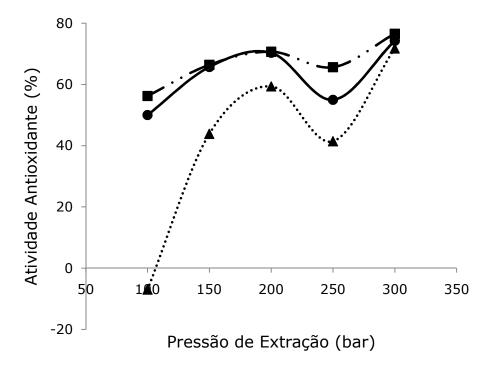

• Extratos obtidos por ESBP

As amostras obtidas através de centrifugação, agitação e percolação tiveram suas atividades antioxidantes analisadas. A Figura 4.4 apresenta a evolução dos resultados durante as três horas de reação.

Nota-se que as os extratos obtidos pelo método de ESBP por percolação, considerando-se ambas as razões de volume de solvente para massa de alimentação (S/F [=] v/m), apresentaram as menores atividades antioxidantes entre todos os métodos de ESBP. Também é interessante notar que, comparando-se os resultados referentes as duas S/F para as quais a percolação foi testada, o extrato obtido com uma maior quantidade de solvente apresentou menor atividade antioxidante. Este resultado é muito interessante no sentido de que indica que o excesso de solvente pode ser desvantajoso, não apenas no que se refere aos aspectos ambientais e econômicos relacionados à utilização de excesso de solvente e à produção de resíduos poluentes, como também pode acarretar na produção de um extrato de qualidade inferior.

Observa-se na Figura 4.4 que as amostras obtidas por centrifugação e agitação apresentaram atividades antioxidantes significativamente superiores às das amostras obtidas por percolação. Comparando-se os resultados dos dois métodos de ESBP que apresentaram atividade antioxidante mais elevada, os valores de atividade antioxidante obtidos para os extratos obtidos por centrifugação foram levemente superiores aos daqueles obtidos por agitação até a segunda hora de reação, sendo que os resultados para estes dois métodos foram bastante semelhantes na leitura realizadas após 3 horas de reação. De qualquer forma, as diferenças entre os valores para as atividades antioxidantes das

extrações por agitação e centrifugação foram muito pequenas, podendo não ser significativas.


Figura 4.4 - Estabilidade da atividade antioxidante em função do tempo de reação para as amostras de *A. satureioides* obtidas por ESBP: (●) percolação (20:1); (○) percolação (100:1); (■) centrifugação; e (▲) agitação.

Extratos obtidos por ESC com CO₂ supercrítico puro

A Figura 4.5 apresenta os resultados das atividades antioxidantes dos extratos obtidos por ESC com CO_2 puro em relação à do β -caroteno após 3 horas de reação, calculados de acordo com a Equação 3.3. Embora também tenham sido efetuadas leituras das soluções de reação após 1 e 2 horas do início da mesma (em anexo – Item 6.), as atividades antioxidantes das amostras se mantiveram praticamente constantes durante todo

o tempo de reação e, portanto, apenas os resultados correspondentes à leitura de 3 horas podem ser observados na Figura 4.5.

Através destes gráficos, é possível observar que os extratos analisados apresentam atividades antioxidantes bastante dependentes da pressão em que foram obtidos. Este comportamento pôde ser observado em todas as temperaturas, durante todo o período de reação. A oscilação da atividade apresenta dois pontos de máximo nas pressões de 200 e 300 bar, sendo este último levemente mais elevado, com exceção dos extratos obtidos a 60 °C, onde a disparidade entre os resultados é maior.

Figura 4.5 – Atividades antioxidantes dos extratos de *A. satureioides* obtidos por ESC com CO_2 puro a 30 (\bullet), 45 (\blacksquare) e 60 °C (\blacktriangle).

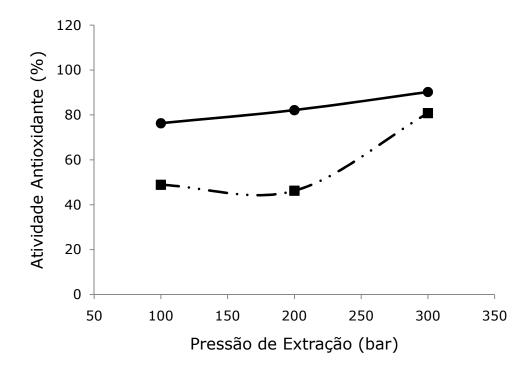
Nota-se também que, apesar de os extratos obtidos a 45 °C apresentarem atividade levemente superior em todas as pressões, os resultados alcançados com extratos de 30 e de 45 °C foram bastante semelhantes em todos os casos durante todo o período de reação. Já

no caso dos extratos obtidos a 60 °C, a única pressão que ofereceu atividade antioxidante comparável à das demais temperaturas foi a de 300 bar. Em todas as demais pressões a atividade foi menor, sendo que a 100 bar a atividade antioxidante foi menor até mesmo que a do β-caroteno; mostrando assim atividade pró-oxidante.

Considerando-se que foi utilizada a mesma concentração de extrato em todas as análises e repetições, é possível que a queda da atividade a 250 bar, em relação à de 200 bar, tenha ocorrido tanto por uma menor solubilidade do(s) agente(s) antioxidante a pressões superiores do dióxido de carbono, quanto pode ter sido acarretada por um aumento de solubilidade de outras substâncias, o que acaba elevando o rendimento global da extração e reduzindo a concentração dos compostos em questão, sem que necessariamente a quantidade absoluta extraída dos mesmos tenha sofrido redução.

O segundo ponto de máximo provavelmente foi provocado por alguma substância ou grupo de substâncias que apresentaram maior solubilidade em pressões superiores do solvente de extração. O aumento da atividade antioxidante pode ter ocorrido pela ação conjunta dos compostos relacionados ao ponto de máximo observado a 200 bar e de novas substâncias extraídas a 300 bar. O fato de os dois pontos de máximo serem atribuídos a grupos diferentes de substâncias explicaria o fenômeno ocorrido a 60 °C, em que as atividades antioxidante observadas em todas as pressões foram inferiores às das duas outras temperaturas, com exceção dos dados obtidos a 300 bar. Uma vez que a diferença de rendimento em temperaturas diferentes não seria suficiente para explicar a disparidade na atividade antioxidante dos extratos obtidos a 60 °C, seria possível supor que os compostos extraíveis a pressões inferiores (ponto de máximo em 200 bar) sejam parcialmente degradados pela temperatura relativamente elevada empregada no processo, enquanto que

as do segundo grupo não apresentariam a mesma característica. Outra possibilidade seria a de que a redução da densidade do solvente de extração em decorrência da elevação da temperatura acarretaria uma queda significativa da solubilidade dos compostos com atividade antioxidante de forma que os mesmos sequer sejam extraídos.


Finalmente, é importante notar que as oscilações observadas nas atividades antioxidantes estão relacionadas aos compostos de diferentes características que passam a ser extraídos conforme se aumenta a pressão de extração como resultado de uma redução da seletividade do processo a pressões elevadas.

• Extratos obtidos por ESC com CO₂ + etanol (20 %, vol.)

As absorbâncias das soluções de reação foram lidas após 1, 2 e 3 horas do início da reação. A Figura 4.6 contém os resultados das atividades antioxidantes dos extratos obtidos por ESC com CO₂ + etanol (20 %, vol.) na última leitura (3 horas), calculados de acordo com a Equação 3.3.

Da mesma forma como foi descrito para as atividades antioxidantes das amostras de ESC obtidas com CO₂ puro, de forma geral, as influências da pressão e da temperatura sobre os resultados desta análise foram mantidas em todas as leituras de absorbância das soluções de reação (1, 2 e 3 horas). No entanto, no caso dos extratos obtidos com a utilização de etanol como modificador foram observadas diferenças em termos da estabilidade da atividade antioxidante com o tempo. As amostras obtidas a 30 °C, apesar de resultarem em atividades antioxidantes significativamente superiores, apresentaram uma queda de estabilidade desta propriedade na leitura de 2 horas, e um novo aumento da estabilidade após 3 horas de reação, para todas as pressões de extração analisadas. No caso

do extrato obtido a 45 °C e 300 bar, a atividade antioxidante apresentou uma queda de 92 para 81 % entre as leituras de 1 hora e de 3 horas. Já para as amostras correspondentes a 45 °C e 100 e 200 bar, a atividade antioxidante foi significativamente menor em relação às demais amostras, porém mais estável com o tempo. A Tabela 4.5 apresenta os dados referentes à estabilidade da atividade antioxidante com o tempo dos extratos obtidos por ESC com CO_2 + etanol.

Figura 4.6 - Atividades antioxidantes dos extratos de *A. satureioides* obtidos por ESC com CO_2 + etanol (20 %, vol.) a 30 (\bullet) e 45 °C (\blacksquare).

Tabela 4.5 – Estabilidade da atividade antioxidante com o tempo dos extratos de A. satureioides obtidos por ESC com CO_2 + etanol.

T (9C)	Pressão (bar)	Atividade Antioxidante (%)		
Temperatura (${\mathcal C}$)		1 h	2 h	3 h
	100	86	72	76
30	200	97	78	82
	300	107	86	90
	100	49	52	49
45	200	50	51	46
	300	92	83	81

É importante notar que, para as amostras de ESC obtidas com a utilização de etanol como co-solvente, as diferenças entre as atividades antioxidantes dos extratos obtidos a 30 e a 45 °C foram mais significativas, em todas as pressões de extração estudadas, quando os resultados são comparados com os dados de atividade antioxidante relativos às amostras de ESC obtidas nas mesmas condições de pressão e temperatura, porém sem a presença do etanol.

Em termos de influência da pressão, a 30 °C, seu incremento parece provocar um aumento da atividade antioxidante. Já para as amostras obtidas a 45 °C, esta propriedade apresentou uma pequena queda quando a pressão de extração foi elevada de 100 a 200 bar, e um aumento significativo quando a pressão foi novamente elevada a 300 bar. Desta forma, os resultados para a atividade antioxidante dos extratos obtidos por ESC com CO₂ + etanol são uma nova indicação de que o grupo de substâncias responsáveis pela atividade antioxidante do extrato obtido a 100 bar apresenta uma queda de solubilidade no solvente de extração quando a pressão é elevada para 200 bar, interferindo tanto no rendimento quanto na atividade antioxidante. Assim, o novo aumento desses dois valores, agora

bastante significativo, quando a pressão de extração é elevada de 200 a 300 bar, pode estar relacionada a um diferente grupo de compostos que tem sua solubilidade favorecida pela utilização de pressões mais elevadas.

Comparando-se os dados de atividade antioxidante para os extratos obtidos sem e com a utilização do etanol como co-solvente (Figuras 4.5 e 4.6), a 30 °C foi possível observar que as porcentagens de atividade foram superiores para todas as condições de pressão analisadas quando o etanol foi misturado ao solvente supercrítico. Já a 45 °C e 100 bar, o extrato obtido com CO₂ + etanol apresentou uma atividade antioxidante aproximadamente 49 % superior à do β-caroteno, enquanto a amostra obtida nas mesmas condições, com CO₂ puro, obteve um valor de 56 %. A elevação da pressão de extração para 200 bar acarretou um aumento da diferença entre as atividades antioxidantes das amostras obtidas sem e com co-solvente para 25 %, ao passo que a 300 bar a diferença entre as atividades dos extratos voltou a cair para aproximadamente 3 %.

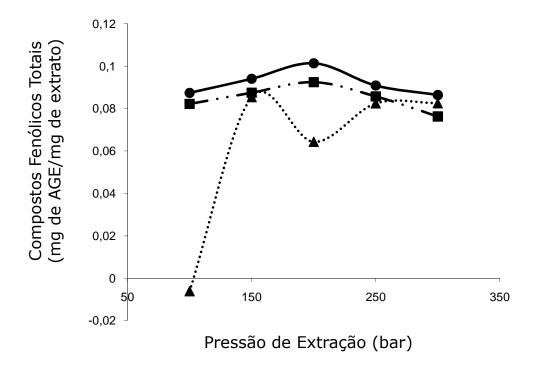
Analisando-se os resultados de atividade antioxidante para as amostras obtidas a 45°C, nota-se que a utilização do co-solvente acarretou uma queda desta propriedade para todas as três condições de pressão estudadas. Por outro lado, para as amostras obtidas a 30 °C a adição do etanol ao CO₂ supercrítico provocou o efeito oposto.

Outro ponto importante a ser observado é o fato de que, apesar de as extrações com co-solvente não terem sido realizados a 150 e a 250 bar, a influência da pressão sobre a atividade antioxidante dos extratos não parece ser a mesma quando as Figuras 4.5 (para as isotermas construídas com CO₂ puro) e 4.6 (para as isotermas construídas com CO₂ + etanol) são analisadas em conjunto.

4.2.3.2 Compostos Fenólicos Totais

Todos os extratos obtidos por ESBP apresentaram concentrações de compostos fenólicos totais significativamente superiores às dos extratos obtidos por ESC. A seguir, os resultados desta análise para os extratos obtidos por diferentes métodos serão descritos detalhadamente, assim como os efeitos da pressão, da temperatura e da utilização de cosolvente sobre a eficiência da ESC na obtenção destes compostos.

Extratos obtidos por ESBP


As concentrações de compostos fenólicos dos extratos obtidos por percolação, com proporção solvente (v): sólido (m) de 20:1 e 100:1, centrifugação e agitação foram 0,241, 0,246, 0,250 e 0,314 mg de EAG/ mg de extrato, respectivamente. A análise de compostos fenólicos totais resultou em valores bastante semelhantes para as amostras obtidas por percolação e centrifugação. Dentre os extratos de ESBP, apenas a amostra obtida por agitação apresentou concentração relativamente superior.

• Extratos obtidos por ESC com CO₂ supercrítico puro

A Figura 4.7 apresenta as concentrações de compostos fenólicos totais nos extratos de ESC obtidos com CO₂ puro, de acordo com as variações das condições de pressão e temperatura de extração.

É possível observar que a influência da pressão de extração sobre a concentração de compostos fenólicos foi bastante semelhante para os extratos obtidos a 30 e a 45 °C. A 60 °C, essa influência foi bastante discrepante da observada para as duas temperaturas mais amenas que foram estudadas.

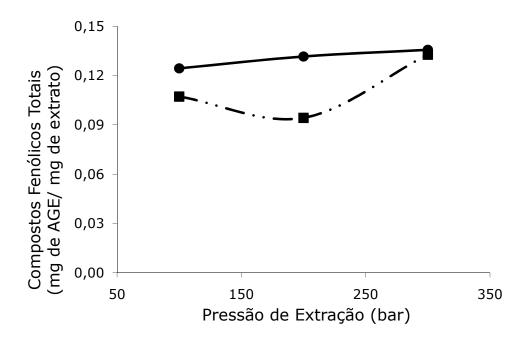
Comparando-se as curvas relacionadas aos dados obtidos a 30 e a 45 °C nas Figuras 4.5 e 4.7, é importante notar que, no caso dos extratos de *A. satureioides* obtidos por ESC com CO₂ puro, a concentração de compostos fenólicos totais não pode ser diretamente relacionada à atividade antioxidante. Na Figura 4.5, as curvas que representam as tendências da atividade antioxidante dos extratos com a variação da pressão de extração apresentam dois pontos de máximo (a 200 e a 300 bar) para as três temperaturas estudadas. Já as curvas relacionadas aos dados obtidos a 30 e a 45 °C na Figura 4.7, apesar de apresentarem tendências semelhantes entre si, possuem apenas um ponto de máximo na região de 200 bar.

Figura 4.7 – Concentração de compostos fenólicos totais nos extratos de *A. satureioides* obtidos por ESC com CO₂ puro a 30 (•), 45 (■) e 60°C (▲).

Outra discrepância entre os resultados destas duas análises é o fato de que a curva relacionada aos dados de concentração de compostos fenólicos dos extratos obtidos a 60 °C apresenta tendências bastante diferentes em relação às curvas obtidas nas outras duas temperaturas, o que não aconteceu na análise de atividade antioxidante. Além disso, comparando-se os perfis das curvas apresentadas nas Figuras 4.5 e 4.7, observa-se que apenas as curvas referentes aos resultados obtidos a 60 °C apresentaram tendências semelhantes na análise de atividade antioxidante e na quantificação de compostos fenólicos totais. Este fenômeno pode estar relacionado à degradação térmica decorrente da aplicação de uma temperatura de extração relativamente elevada. Neste caso, compostos que interferem nos resultados da análise de teor de compostos fenólicos totais de forma mais significativa, mas que não exercem influência de magnitude semelhante sobre a atividade antioxidante, podem ter sofrido degradação térmica. Desta forma, os compostos que foram quantificados como fenólicos totais (Figura 4.7) nos extratos obtidos a 60 °C seriam aqueles que influenciariam de forma significativa a atividade antioxidante dos extratos. Em contrapartida, parte dos compostos quantificados nos extratos obtidos a 30 e a 45 °C, conferindo um perfil expressivamente discrepante às curvas, não exerceria contribuição importante para esta propriedade, e estaria sujeita à degradação térmica.

Neste contexto, Leal *et al* [14], buscando relacionar a atividade antioxidante dos extratos aos compostos neles identificados, avaliaram as atividades antioxidantes de extratos de folhas e caules finos de A. *satureioides* e A. *alata* obtidos por extração supercrítica, extração a baixa pressão com etanol e hidrodestilação. Apesar de a análise das frações voláteis de todos os extratos por cromatografia gasosa ter indicado elevadas concentrações dos compostos α-humuleno e trans-cariofileno, as atividades antioxidantes

das amostras obtidas por extração supercrítica e por extração a baixa pressão com etanol foram aproximadamente 100 % maior do que a do óleo volátil obtido por hidrodestilação. Uma observação mais cuidadosa da composição dos extratos mostrou que a porcentagem de α-humuleno e trans-cariofileno era ainda maior no óleo volátil obtido por hidrodestilação, que, por outro lado, não apresentou compostos com tempo de retenção maior que 56 min. Assim, os autores atribuíram os resultados de atividade antioxidante à ação de compostos menos voláteis (ou com tempo de retenção maior que 56 min), nos quais poderiam ser incluídos os compostos fenólicos como os flavonóides, que foram detectados nos extratos de maior atividade antioxidante, mas não estavam presentes no óleo volátil obtido por hidrodestilação.


• Extratos obtidos por ESC com CO₂ + etanol (20 %, vol.)

A Figura 4.8 apresenta os resultados para a concentração de compostos fenólicos totais nos extratos obtidos por ESC com CO₂ + etanol.

Os resultados para a concentração de compostos fenólicos nos extratos de ESC obtidos a 30 °C com CO₂ + etanol indicam que, nesta temperatura de extração, a concentração deste grupo de compostos tende a aumentar com a elevação da pressão de extração. Além disso, esta temperatura, quando se compara seus resultados com os obtidos a 45 °C, apresentou concentrações superiores de compostos fenólicos para todas as pressões estudadas. Diferentemente do observado para os extratos obtidos a 30 °C, os resultados referentes às amostras obtidas a 45 °C indicam que a elevação da pressão de 100 para 200 bar provoca uma redução na concentração dos compostos fenólicos, enquanto um

novo aumento da pressão, de 200 para 300 bar, acarreta o incremento brusco de sua concentração a um valor bastante próximo daquele obtido a 30 °C e 300 bar.

Considerando-se os resultados para as isotermas de rendimento global apresentados na Figura 4.3, que indicam que os rendimentos de extração para as condições de 45 °C e 100 e 300 bar são superiores, é possível afirmar que a presença de outros grupos de compostos nos extratos contribuiu para a concentração relativamente inferior dos compostos fenólicos totais nestas amostras. O trabalho desenvolvido por Puhlmann *et al* [80] que relata o isolamento e a identificação de dois polissacarídeos pécticos contendo íons metálicos a partir de extratos aquosos de *A. satureioides* (sendo que um desses polissacarídeos teria apresentado atividade imunológica anteriormente atribuída unicamente aos flavonóides da espécie) reforça esta hipótese.

Figura 4.8 - Concentração de compostos fenólicos totais nos extratos de *A. satureioides* obtidos por ESC com CO₂ + etanol a 30 (●) e 45°C (■).

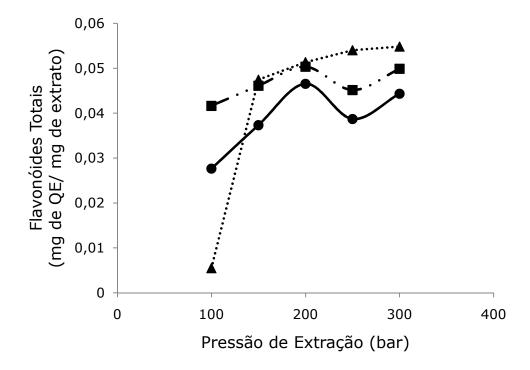
Diferentemente do descrito para os extratos de ESC obtidos com CO₂ puro, no caso dos extratos resultantes da utilização do etanol como co-solvente, as concentrações dos compostos fenólicos totais apresentadas na Figura 4.8 parecem seguir, aproximadamente, as mesmas tendências de variação observadas na Figura 4.6 para as atividades antioxidantes das mesmas amostras. Embora esta constatação ainda não seja suficiente para possibilitar uma afirmação conclusiva de que a atividade antioxidante e a concentração de compostos fenólicos estejam relacionadas, estes resultados não podem ser negligenciados.

Comparando-se os resultados obtidos para os extratos de ESC, sem e com a adição de co-solvente, nas mesmas condições de temperatura e pressão, nota-se que a utilização do co-solvente proporcionou incrementos significativos na concentração de compostos fenólicos para todas as condições analisadas. A máxima concentração obtida para estes compostos através de ESC sem a presença do modificador foi de aproximadamente 0,1 mg de EAG/ mg de extrato (a 30 °C e 200 bar). A adição do co-solvente possibilitou o incremento das concentrações de forma que este mesmo valor foi aproximadamente o mínimo observado (a 45 °C e 100 bar) quando o etanol foi misturado ao solvente supercrítico. Estes resultados indicam que o etanol proporciona o aumento de polaridade do solvente de extração, intensificando a obtenção dos compostos fenólicos, que são relativamente mais polares do que o dióxido de carbono.

4.2.3.3 Flavonóides Totais

Extratos obtidos por ESBP

As concentrações de flavonóides totais dos extratos obtidos por percolação, com proporção solvente (v): sólido (m) de 20:1 e 100:1, centrifugação e agitação foram 1,17; 1,30; 1,29 e 1,54 mg de EQ/ mg de extrato, respectivamente.


Para os extratos obtidos por percolação, não é possível afirmar que a diferença observada entre os dois resultados, referentes às duas diferentes proporções de solvente (v): sólido (m), foi decorrente da maior quantidade de solvente utilizada. Entretanto, é notável que o extrato obtido por centrifugação tenha apresentado resultado tão semelhante ao do extrato obtido por percolação (proporção sólido: solvente = 100:1) em termos de teor de flavonóides totais, uma vez que a quantidade de solvente utilizada foi significativamente menor (24:1) e o tempo de processo foi consideravelmente menor (35 min). Ainda mantendo em mente estes dois parâmetros de processo, o resultado obtido para a amostra obtida por agitação foi ainda mais relevante, pois valores similares aos da centrifugação para tempo de processo (30 min) e quantidade de solvente (25:1) produziram o melhor resultado em termos de teor de flavonóides entre os extratos de ESBP. No entanto, um estudo mais cuidadoso da cinética de extração seria necessário para avaliar a real capacidade de cada metodologia em termos de tempo de processo.

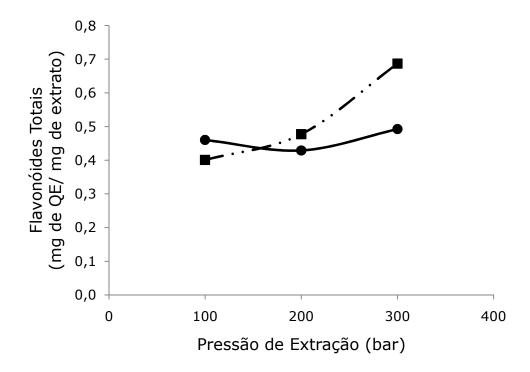
As concentrações de flavonóides totais nos extratos de ESBP também não parecem estar relacionadas às suas atividades antioxidantes. Analisando-se a Figura 4.4 e os dados de flavonóides totais para as amostras obtidas por percolação (100:1) e por centrifugação, observa-se que as mesmas apresentaram teores bastante semelhantes deste tipo de

compostos, porém as atividades antioxidantes das amostras de percolação foram menores que a de centrifugação.

Extratos obtidos por ESC com CO₂ supercrítico puro

A Figura 4.9 apresenta a variação da concentração de flavonóides nos extratos obtidos via extração supercrítica com CO₂ puro em função da pressão e da temperatura de processo. As curvas correspondentes a 30 e 45 °C apresentaram configurações semelhantes às da Figura 4.5 para as mesmas temperaturas, indicando que a concentração de flavonóides e a atividade antioxidante podem estar relacionadas no caso deste método de extração.

Figura 4.9 – Concentração de flavonóides totais nos extratos de *A. satureioides* obtidos por ESC a 30 (●), 45(■) e 60°C (▲).


Entretanto, para as amostras obtidas a 60 °C, foi observada uma tendência de aumento da concentração de flavonóides com o aumento da pressão de operação, sendo que a partir de 150 bar as concentrações destes compostos foram superiores às dos extratos obtidos nas duas outras temperaturas (30 e 45 °C). Ainda em relação aos resultados referentes à temperatura de extração de 60°C, comparando-se as Figuras 4.5, 4.7 e 4.9, nota-se que o resultado significativamente inferior obtido para a pressão de 100 bar em relação às demais pressões estudadas foi comum às análises de atividade antioxidante, compostos fenólicos totais e flavonóides totais, respectivamente. Embora, para pressões superiores a 150 bar, a curva referente à temperatura de 60 °C da Figura 4.9 apresente alguma disparidade em relação às curvas correspondentes das Figuras 4.5 e 4.7, os resultados destas análises parecem estar relacionados.

Embora tenham sido observadas semelhanças entre as influências da pressão de operação sobre a concentração de flavonóides e a atividade antioxidante, as magnitudes dos resultados não parecem estar relacionadas, o que indica que a presença de outras substâncias pode estar interferindo nos resultados das análises.

Extratos obtidos por ESC com CO₂ + etanol

As concentrações de flavonóides totais nos extratos obtidos por ESC com CO₂ + etanol podem ser observadas na Figura 4.10.

Os resultados indicaram que a 30 °C não houve diferenças significativas entre os extratos obtidos nas três diferentes pressões estudadas. Por outro lado, a 45 °C, observouse uma tendência relativamente intensa de aumento da concentração de flavonóides totais com a elevação da pressão.

Figura 4.10 – Concentrações de flavonóides totais nos extratos de *A. satureioides* obtidos por ESC com CO_2 + etanol a 30 (\bullet) e 45°C (\blacksquare).

Ao contrário do que se observou no caso da ESC com CO_2 puro, comparando-se as Figuras 4.6 e 4.10, para a atividade antioxidante e a concentração de flavonóides dos extratos de ESC obtidos com CO_2 + etanol, respectivamente, não parece haver relação entre os resultados destas duas análises.

4.2.3.4 Cromatografia gasosa

Os resultados das análises cromatográficas dos extratos e dos porapaks encontramse nas Tabelas 4.6 e 4.7, respectivamente. Cada condição de pressão e temperatura foi analisada em duplicata.

Tabela 4.6 – Concentração, em porcentagem, dos compostos α-humuleno e transcariofileno nos extratos obtidos a partir de extração supercrítica sem utilização de cosolvente.

C 1	α	-humuleno (%	(i)	Trans-cariofileno (%)		
Substância	30°C	45°C	60°C	30°C	45°C	60°C
100 bar	0,1866			0,3230		
150 bar		0,1042			0,2644	
200 bar		0,1574			0,3119	
250 bar	0,0908			0,2791	0,2703	
300 bar	0,2252			0,3461		0,2608

Tabela 4.7 – Concentração, em porcentagem, dos compostos α-humuleno e transcariofileno nos porapaks obtidos a partir de extração supercrítica sem utilização de cosolvente.

C 1	α	-humuleno (%	%)	Trans-cariofileno (%)			
Substância	30°C	45°C	60°C	30°C	45°C	60°C	
100 bar	4,0976	2,3976	0,0600	3,8936	2,0912	0,4496	
150 bar		1,4356	0,3848		1,3999	0,6836	
200 bar	0,3512	1,0528	0,3984	0,3232	0,9056	0,5712	
250 bar							
300 bar	1,4808	0,7240	0,7056	2,4056	1,0068	1,0032	

Através dos dados apresentados na Tabela 4.6, pode-se observar que o transcariofileno foi detectado em todos os extratos em que o α-humuleno está presente, e em mais alguns extratos onde este último não foi registrado pelo cromatógrafo gasoso. Além disso, a concentração do trans-cariofileno é superior à do α-humuleno em todos os casos, chegando a ser mais do que duas vezes superior em algumas condições de extração avaliadas.

No entanto, verifica-se que, em todas as condições avaliadas, os compostos quantificados apresentam-se em concentração bastante reduzida ou nem mesmo são detectados. Desta forma, é possível concluir que, considerando-se tanto sua baixa concentração nos extratos supercríticos de *A. satureioides*, quanto o fato de que aparentemente a atividade antioxidante destes mesmos extratos não está relacionada à sua concentração, pode-se afirmar que o α-humuleno e o trans-cariofileno, ao contrário do que ocorre com óleo essencial da *A.alata* [12], não são substâncias que representem importância significativa para a obtenção dos extratos. Ou seja, nem esta espécie pode ser considerada como fonte destas duas substâncias, nem sua atividade antioxidante, já constatada em fase anterior deste trabalho, pode ser atribuída às mesmas.

As diferenças encontradas entre os resultados aqui obtidos e aqueles descritos por Rodrigues *et al* [12] podem ser explicadas por dois fatores: os estudos foram realizados com duas espécies diferentes de macela; as técnicas de extração utilizadas são completamente diferentes (no caso do trabalho citado, hidrodestilação).

A Tabela 4.7 mostra as concentrações de α-humuleno e trans-cariofileno nas frações de extrato que ficaram retidas nas colunas de adsorção empacotadas com porapak em cada condição de temperatura e de pressão avaliadas. É interessante notar que os teores de α-humuleno e trans-cariofileno são quase sempre significativamente superiores nas frações retidas nos porapaks do que nos extratos retidos nos frascos (exceção aos extratos obtidos a 250 bar). Este resultado indica que a perda de compostos voláteis por arraste na etapa de separação pode exercer impacto expressivo sobre o rendimento e a composição dos extratos.

Em relação aos efeitos das variações de pressão e temperatura de extração sobre os teores destes compostos nas frações de extrato retidas na coluna de adsorção, pode-se afirmar que tanto α -humuleno quanto trans-cariofileno apresentaram, não apenas concentrações relativamente semelhantes em todas as amostras, como seu padrão de variação em função destes parâmetros de processo foram significativamente semelhantes. Este fenômeno pode estar relacionado ao fato de que, além de possuírem fórmulas moleculares iguais ($C_{15}H_{24}$), suas estruturas químicas também são semelhantes (Figura 4.11).

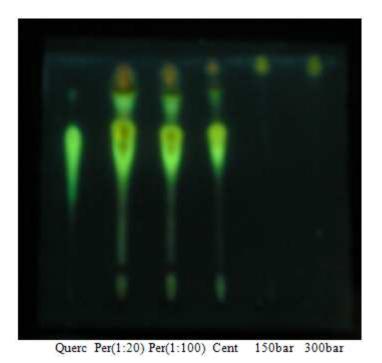
$$H_3C$$
 CH_3
 H_2C
 H_2C
 CH_3
 CH_3

Figura 4.11 – Estruturas químicas do (a) α-humuleno e (b) trans-cariofileno [81].

Os índices de Kovats foram calculados para todos os picos observados nos cromatogramas. No entanto, uma vez que os valores relacionados ao α-humuleno e ao trans-cariofileno não foram compatíveis com os informados por Adams [76], não foi dado prosseguimento à identificação dos demais compostos presentes nos extratos através deste método.

4.2.3.5 Cromatografia em Camada Delgada

 Amostras obtidas através de extração supercrítica com CO₂ puro e de ESBP através de percolação (1:20) e centrifugação.


A CCD foi escolhida como técnica adequada para a separação, visualização e possível identificação de compostos não-voláteis (grupo de substâncias em que se inserem os flavonóides), uma vez que a cromatografia gasosa (CG) não é eficaz na identificação dos compostos em questão.

Nesta etapa, os principais compostos de interesse são os flavonóides. Neste caso, optou-se pela utilização do revelador NP (Reagente produtos naturais) e pela fase móvel clorofórmio- acetona- ácido fórmico (75: 16,5: 8,5), ambos indicados para a visualização deste grupo de compostos [78]. Foram aplicados 10µL de uma solução de aproximadamente 4mg/mL de cada amostra analisada. As placas cromatográficas foram colocadas em cuba contendo a mistura de solventes escolhida para a eluição das amostras. Ao fim deste processo e após a secagem das placas, foi aplicado o revelador NP sobre as mesmas. As cromatofolhas foram observadas e fotografadas em radiação UV (365nm).

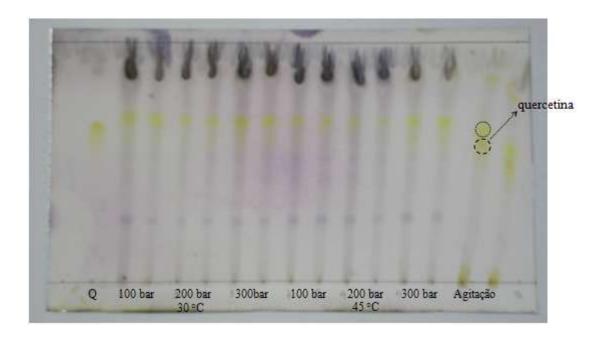
A técnica de análise por CCD é uma técnica qualitativa e não conseguiu detectar a presença de quercetina nos extratos supercríticos obtidos com CO₂ puro. Este resultado pode ser explicado pelos teores de flavonóides totais relativamente reduzidos encontrados nestas amostras (Tabela 4.8) e indica que o processo supercrítico com CO₂ puro não é o mais apropriado para extrair compostos de natureza hidrofílica.

A Figura 4.12 mostra a configuração obtida através da análise por CCD das amostras obtidas por processos a baixa pressão com etanol. Na mesma placa

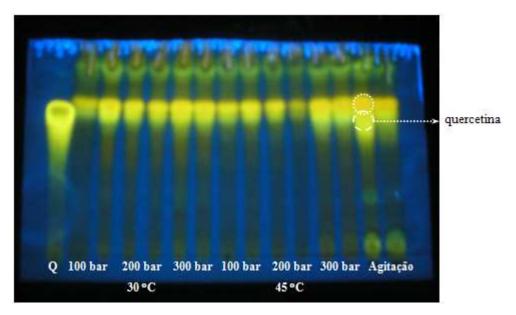
cromatográfica foram aplicados os extratos supercríticos obtidos: a 45 °C e 150 bar e a 45°C e 300 bar (sendo que este foi o extrato supercrítico que apresentou maior atividade antioxidante) sem a utilização de co-solvente. No caso dos extratos supercríticos, o eluente utilizado provocou o arraste de todas as amostras para o topo das placas em região bastante distante da do padrão utilizado (região central). Este é um indicativo de que estas substâncias são de natureza hidrofóbica, não apresentando afinidade com a fase estacionária, mais polar. A coloração do padrão apresentou-se de acordo com o esperado [78] tanto no que diz respeito à sua coloração quanto à sua localização. Os resultados obtidos indicam a possibilidade de quantidades significativas de flavonóides serem extraídas em processos que utilizaram etanol em baixa pressão. Ou seja, como era de se esperar, a aplicação de um solvente de extração mais hidrofílico apresenta melhores resultados na extração de compostos como os flavonóides, também hidrofílicos.

Figura 4.12 - Placa de CCD de extratos de macela na seguinte ordem de aplicação: quercetina; extração a baixa pressão com etanol por percolação (relação 1:20 e 1:100), e por centrifugação; extração supercrítica a 45 °C, a 150 bar e a 300 bar.

Em relação às amostras de ESBP, os resultados obtidos através de CCD parecem não corresponder àqueles observados na análise do teor de flavonóides através da metodologia de Zhishen, Mengcheng e Jianming (1999) descrita por Kim *et al* [75]. Os resultados descritos no item 4.2.3.3 indicam que os teores de flavonóides das amostras obtidas por centrifugação e por percolação (1:100) não apresentam diferença significativa entre si (1,30 e 1,29 mg EQ/ mg extrato, respectivamente), enquanto na cromatofolha apresentada na Figura 4.12 é possível observar uma diferença expressiva de intensidade de coloração das bandas entre estas duas amostras. Apesar de a técnica de CCD ser essencialmente qualitativa, este é um resultado interessante uma vez que as amostras se encontravam na mesma concentração e volumes iguais de amostra foram aplicados em ambos os casos.


Portanto, segundo a CCD, se os flavonóides estiverem presentes nos extratos supercríticos obtidos sem co-solvente, sua concentração é tão reduzida que a análise é insensível à sua visualização. Simultaneamente, a concentração observada de flavonóides para as amostras obtidas através de processos a baixa pressão foi bastante elevada.

Amostras obtidas através de extração supercrítica com a mistura CO₂ + etanol (identificação de flavonóides).


A presença do flavonóide quercetina nos extratos obtidos por extração supercrítica utilizando-se etanol como co-solvente foi verificada através de cromatografia em camada delgada. As Figuras 4.13 e 4.14 são fotografias das placas cromatográficas visualizadas com os reveladores de anisaldeído e NP, respectivamente, nas quais as amostras foram aplicadas na seguinte seqüência: padrão de quercetina, amostras obtidas a 30 °C e 100, 200

e 300 bar e amostras obtidas a 45 °C e 100, 200 e 300 bar em replicata. A eluição foi realizada com a fase móvel clorofórmio - acetona-ácido - fórmico (75: 16,5: 8,5), indicada para a visualização deste grupo de compostos.

Na Figura 4.13, é possível observar, para todas as amostras analizadas, nos locais onde deveriam estar as bandas de quercetina, apenas manchas amareladas muito claras. Já na região localizada imediatamente acima do ponto onde deveriam estar as bandas de quercetina, nota-se bandas amarelas bastante nítidas. Apenas para as amostras obtidas a 45°C e 300 bar, o revelador de anisaldeído possibilitou visualização de bandas de quercetina de coloração intensa.

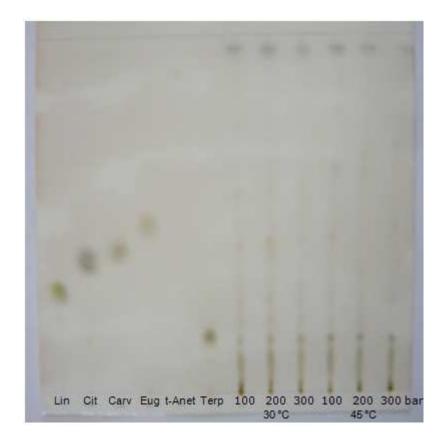
Figura 4.13 - Placa de CCD dos extratos obtidos por SFE com co-solvente (revelador de anisaldeído).

Figura 4.14 - Placa de CCD dos extratos obtidos por SFE com co-solvente (revelador de flavonóides).

Já na Figura 4.14, ambos os conjuntos de bandas, da quercetina e do composto cuja banda está localizada imediatamente acima da quercetina, podem ser visualizados como manchas amarelas fluorescentes muito intensas. Este resultado corrobora a informação da literatura [78] de que o revelador NP é mais apropriado para a detecção de compostos do grupo dos flavonóides. Desta forma, a fluorescência expressiva das bandas localizadas próximas às da quercetina podem indicar que também se trate de um outro flavonóide. Embora este dado demande análises adicionais que confirmem esta informação de forma conclusiva, trabalhos realizados anteriormente [3], [4] documentaram a identificação de outros compostos do grupo dos flavonóides na espécie *Achyrocline satureioides*.

A identificação dos compostos relacionados às demais bandas fluorescentes também demandam análises que confirmem que os mesmos pertenceriam ao grupo dos flavonóides. No entanto, os resultados obtidos através da CCD apresentada na Figura 4.14 já representam uma indicação da presença, nos extratos, não apenas da quercetina, como

também de outros flavonóides, o que justificaria a continuidade do processo de identificação dos mesmos, dada a provável importância deste grupo de compostos.


Adicionalmente, é importante observar que a utilização do etanol como co-solvente no processo de extração supercrítica proporciona uma elevação de polaridade do solvente de extração que possibilita a obtenção de compostos de natureza hidrofílica como os flavonóides, o que não acontece quando se utiliza CO₂ puro, como pôde ser observado na CCD da Figura 4.12.

Amostras obtidas através de extração supercrítica com a mistura CO₂ + etanol (identificação de compostos voláteis).

A CCD foi selecionada como método de identificação dos compostos voláteis presentes nestes extratos devido à grande quantidade de substâncias de natureza não-volátil que os mesmos continham, em decorrência da utilização do etanol como co-solvente. Desta forma, a elevada concentração dos compostos não-voláteis poderia acarretar danos ao equipamento de análise por CG.

As Figuras 4.15 e 4.16 apresentam a CCD dos mesmos extratos obtidos por ESC com co-solvente, porém com eluição realizada utilizando-se uma mistura 97:3 de tolueno (Ecibra, Lote 17.022, São Paulo, SP) e acetato de etila (≥ 99,5 %, Merck, Lote K36960323, Darmstadt, Alemanha), apropriada para a separação de compostos voláteis e visualizada sob luz natural e UV (254 nm), respectivamente. Nesta CCD foram aplicados 2 μL dos padrões de (±)-linalool (95-97 %, Sigma, Lote 68H3489, Steinheim, Alemanha), citral (95%, Aldrich, Lote 12405DY, Milwaukee, EUA), (R)-(-)-carvona (98 %, Aldrich, Lote 24627PI-303, Steinheim, Alemanha), eugenol (Sigma, Lote 17H0239, Steinheim,

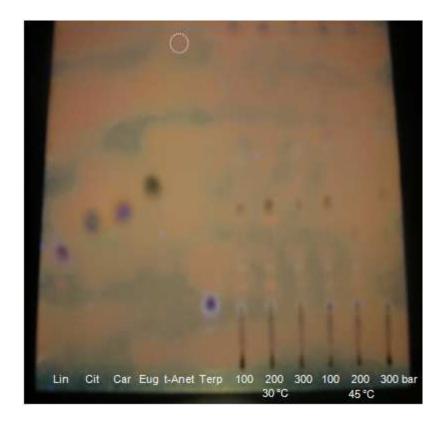

Alemanha), trans-anetol (99 %, Aldrich, Lote HU06605HR, Milwaukee, EUA) e terpineol (95 %, Sigma, Lote 68H2517, Steinheim, Alemanha) diluídos a 5mg/mL em acetato de etila (≥ 99,5 %, Merck, Lote K36960323, Darmstadt, Alemanha), nesta seqüência. O volume de 2 μL de solução de extrato diluído a 20 mg/mL em acetato de etila foi aplicado para cada amostra na seguinte ordem: 30 °C e 100, 200 e 300 bar; e 45 °C e 100, 200 e 300 bar.

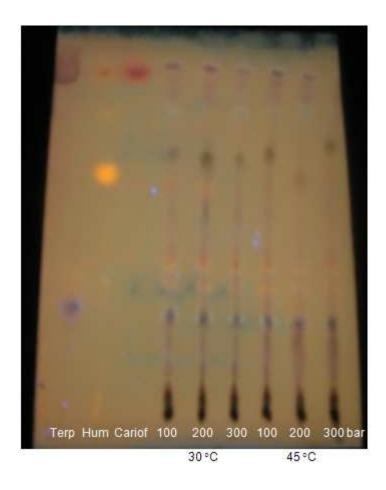
Figura 4.15 – CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz natural (2 μL de amostra).

Um ponto importante a ser observado nas Figuras 4.15 e 4.16 é que, dos seis padrões aplicados à cromatofolha, apenas o terpineol (Rf = 0,16) parece estar presente nos extratos.

Porém, a coloração excessivamente clara das bandas não permite fazer afirmações conclusivas a respeito da presença de outros compostos.

Figura 4.16 – CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz UV (254 nm) (2 μL de amostra).

As Figuras 4.17 e 4.18 apresentam outra CCD dos extratos obtidos por ESC com cosolvente e eluídos com a mistura 97:3 de tolueno (Ecibra, Lote 17.022, São Paulo, SP) e acetato de etila (≥ 99,5 %, Merck, Lote K36960323, Darmstadt, Alemanha), visualizada sob luz natural e UV (254 nm), respectivamente. Nesta CCD foram aplicados 2 μL do padrão terpineol (95 %, Sigma, Lote 68H2517, Steinheim, Alemanha) diluído a 5mg/mL em acetato de etila (≥ 99,5 %, Merck, Lote K36960323, Darmstadt, Alemanha) e 1 μL dos padrões de α-humuleno e de trans-cariofileno diluídos em acetato de etila a concentração desconhecida. A subseqüente ordem de aplicação das soluções dos extratos e suas


concentrações foram as mesmas utilizadas na CCD apresentada nas Figuras 4.15 e 4.16, porém o volume de aplicação foi de $8~\mu L$.

Pode-se notar que a aplicação de um volume maior das soluções dos extratos possibilitou a observação de bandas de coloração mais intensa. Em concentrações mais elevadas, os extratos apresentaram bandas com características muito semelhantes às do terpineol, o que confirma a forte indicação de sua presença já observada na análise por CCD anterior.

Figura 4.17 – CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz natural (8 μL de amostra).

O padrão de trans-cariofileno subiu quase até o topo da placa, ficando apenas pouco abaixo do limite da eluição. Como a visualização de compostos nas extremidades da placa não teve boa separação cromatográfica, uma vez que a separação dos compostos não foi eficiente, conclui-se que a análise dos extratos por CCD não indicou a presença de transcariofileno. Porém, somente a análise por CG/EM (DIC) poderia confirmar este resultado.

Figura 4.18 – CCD dos extratos supercríticos obtidos com co-solvente, eluída para visualização de compostos voláteis e revelada com anisaldeído, observada sob luz UV (254 nm) (8 μL de amostra).

Já em relação ao α-humuleno, bandas de coloração semelhante ao do padrão, porém pouco intensas, podem ser visualizadas nas amostras de extrato; no entanto, não é possível

concluir se as mesmas estão realmente relacionadas à presença do α -humuleno. A banda localizada à esquerda da do trans-cariofileno, de cor marrom escuro sob luz natural e laranja escura sob luz UV, localizada na região superior da placa está provavelmente relacionada à presença de um contaminante ou de um produto de degradação no padrão de α -humuleno.

4.2.4 Informações sobre rendimentos e resultados das análises para as técnicas de ESBP e ESC sem e com a utilização de etanol como cosolvente – Resumo

Tabela 4.8 – Resumo dos resultados sobre rendimentos e análises dos extratos obtidos pelas técnicas de ESBP e ESC sem e com a utilização de etanol como co-solvente.

	Técnica		Rendimento (%) ^a	Atividade antioxidante (%) ^b	Fenóis (mg EAG/ mg extrato)	Flavonóides (mg EQ/ mg extrato)
		100 bar	$2,2 \pm 0,3$	50	0,087	0,0276
		150 bar	$2,4 \pm 0,1$	66	0,094	0,0373
	30 °C	200 bar	$2,4 \pm 0,1$	70	0,101	0,0465
		250 bar	$2,4 \pm 0,1$	55	0,091	0,0387
		300 bar	$2,41 \pm 0,06$	74	0,086	0,0443
		100 bar	$1,52 \pm 0,04$	56	0,082	0,0416
FGG		150 bar	$2,56 \pm 0,06$	66	0,088	0,0461
ESC com CO ₂ puro	45 °C	200 bar	$2,69 \pm 0,09$	71	0,093	0,0503
CO ₂ puro		250 bar	$2,74 \pm 0,07$	66	0,086	0,0452
		300 bar	$2,82 \pm 0,06$	77	0,076	0,0499
	150 60 °C 200	100 bar	0.7 ± 0.2	-7	-0,006	0,0055
		150 bar	$2,3 \pm 0,2$	44	0,086	0,0475
		200 bar	$2,72 \pm 0,05$	59	0,064	0,0514
		250 bar	$2,82 \pm 0,04$	41	0,082	0,0540
		300 bar	$3,0 \pm 0,1$	72	0,083	0,0549
		100 bar	$2,84 \pm 0,09$	76	0,124	0,4603
	30 °C	200 bar	$2,85 \pm 0,06$	82	0,132	0,4289
ESC com		300 bar	$2,97 \pm 0,09$	90	0,136	0,4924
co-solvente		100 bar	$3,6 \pm 0,1$	49	0,107	0,4012
	45 °C	200 bar	$2,69 \pm 0,02$	46	0,094	0,4776
		300 bar	$3,90 \pm 0,03$	81	0,133	0,6869
	Percola	ção (1:20)	$6,4 \pm 0,4$	71	0,241	1,17
ECDD	Percola	ção (1:100)	$6,2 \pm 0,4$	51	0,246	1,30
ESBP	Centr	ifugação	$5,5 \pm 0,2$	83	0,250	1,29
	Ag	itação	$3,9 \pm 0,1$	83	0,314	1,54

^a Resultados de rendimento de extração calculados em base seca e expressos como média de dois experimentos ± amplitude.

 $^{^{\}text{b}}$ Resultados de atividade antioxidante expressos em porcentagem de atividade superior à do β -caroteno calculados de acordo com a Equação 3.4.

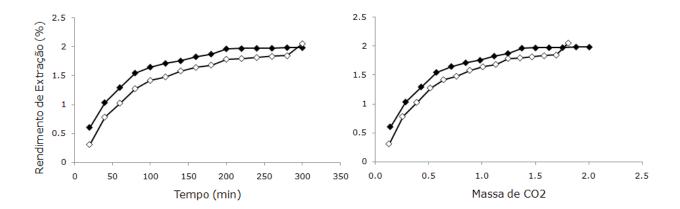
4.3 Estudos envolvendo experimentos cinéticos

4.3.1 Influência da geometria do leito de extração (relação H_B/d_B) e da vazão de solvente sobre a cinética de extração.

Nesta etapa do desenvolvimento do projeto, teve-se como objetivo a verificação da adequação da utilização da Equação 2.2 apresentada por Moura *et al* [51] e Carvalho Jr. *et al* [53]. Para tanto, inicialmente, um experimento foi realizado na SFE-II em replicata a 45°C e 200 bar. A curva cinética resultante foi utilizada como referência, uma vez que os experimentos seguintes, todos realizados na SFE-I também a 45 °C e 200 bar, tiveram como objetivo a reprodução de seu comportamento através da utilização da Equação 2.2. As informações relacionadas a este experimento encontram-se na Tabela 4.9.

Tabela 4.9 – Dados dos experimentos de referência realizados na SFE-II (*A. satureioides*).

Parâmetros	Replicata 1	Replicata 2	Média
F (massa de alimentação - g)	15,0001	15,0530	15,02655
Vazão de CO ₂ (kg.s ⁻¹)	$1,11385 \times 10^{-4}$	$1,00363 \times 10^{-4}$	$1,05553 \times 10^{-4}$
d_{ap} (kg.m ⁻³)	112,685	119,384	116,105
$H_{B}(m)$	0,165	0,163	0,164
$d_{B}(m)$	0,03205	0,03138	0,03194


F= massa de alimentação; $d_{ap}=$ densidade aparente; $H_B=$ altura do leito de extração; $d_B=$ diâmetro do leito de extração.

As unidades de extração SFE-I e SFE-II contam com bombas de CO₂ de capacidades diferentes. Esta diferença reside no fato de que, fazendo-se uma comparação grosseira, o limite superior da bomba da SFE-II corresponde ao limite inferior da bomba da

SFE-I. Portanto, para que fosse possível reproduzir a curva cinética construída na SFE-II em extração realizada na SFE-I, ajustou-se a bomba de forma que fosse possível utilizar sua capacidade máxima, sendo que esta característica varia de acordo com a perda de carga decorrente das características específicas de cada leito de extração. Tendo em vista que estes experimentos tinham uma duração de 5 horas, foram realizadas medições de vazão a cada intervalo de 5 minutos a fim de rastrear eventuais anormalidades nos resultados. Este procedimento possibilitou detectar que, além das características do leito de extração, a pressão do cilindro de CO₂ também tem relação com o desempenho da bomba da SFE-II. Este efeito pode ser visualizado através dos dados de vazão que constam da Tabela 4.9, que foram obtidos a partir da quantidade total de CO₂ utilizada (quantificada através de um totalizador de vazão) durante as 5 horas de extração. Apesar de, nos dois experimentos, a mesma vazão ter sido ajustada na bomba, o segundo experimento apresentou uma vazão aproximadamente 10 % menor que a do primeiro.

O desvio entre as curvas das replicatas observado na Figura 4.19 levanta a hipótese de que esta diferença encontrada entre as vazões de CO₂ dos dois experimentos, mesmo que relativamente pequena (10 %), pode ter influenciado no comportamento cinético da curva de extração. No entanto, é importante notar que o comportamento não foi alterado, tendo havido apenas um deslocamento da curva para cima no caso do experimento realizado com maior vazão. Pode-se observar, pela curva de rendimento em função da massa de solvente (CO₂), que a manutenção da razão massa de solvente sobre massa de alimentação (S/F) não foi capaz de reproduzir as curvas, ou seja, que a utilização de mesmas quantidades de solvente de extração não proporcionou a obtenção de rendimentos correspondentes de extrato. Este resultado indica uma elevada sensibilidade do sistema

CO₂ + extrato de macela + matriz sólida a variações relativamente pequenas de vazão do solvente de extração.

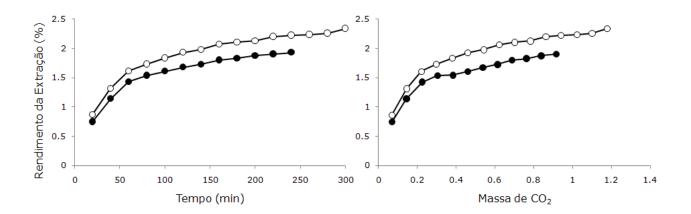
Figura 4.19 – Curvas de extração do experimento de referência realizado na SFE-II com a *A. satureioides*: replicatas $1 (\blacklozenge)$ e $2 (\diamondsuit)$.

Tabela 4.10 – Valores calculados e experimentais referentes aos experimentos realizados na SFE-I com 15g de matéria-prima (*A. satureioides*).

Parâmetros	Valores	Valores experimentais					
Farametros	calculados	Replicata 1	Replicata 2	Média			
F (g)	15,02655	15,0174	15,0143	15,01585			
Vazão de CO ₂ (kg.s ⁻¹)	$0,62918 \times 10^{-4}$	$0,63457 \times 10^{-4}$	$0,65300 \times 10^{-4}$	$0,64384 \times 10^{-4}$			
$\rho_{ap}~(kg.m^{-3})$	116,105	116,414	116,118	116,266			
$H_{B}(m)$	0,05548	0,05530	0,05530	0,05530			
$d_{B}\left(m\right)$	0,05450	0,05450	0,05450	0,05450			

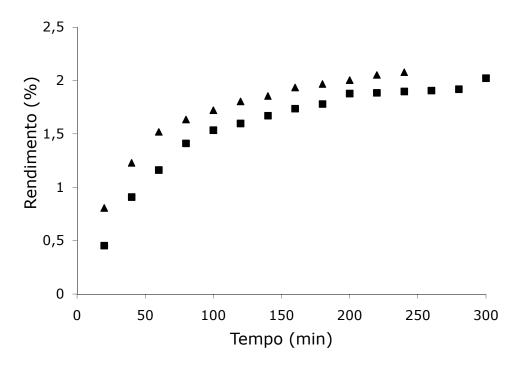
F= massa de alimentação; $d_{ap}=$ densidade aparente; $H_B=$ altura do leito de extração; $d_B=$ diâmetro do leito de extração.

O estudo teve continuidade através do cálculo das médias dos parâmetros das replicatas apresentados na Tabela 4.9. Os valores resultantes foram aplicados à Equação 2.2 para a estimativa dos parâmetros que deveriam ser utilizados para a reprodução do


comportamento cinético para o experimento realizado na SFE-I. A Tabela 4.10 contém os valores calculados, os valores experimentais para cada replicata e as médias das replicadas para os experimentos realizados na SFE-I com 15 g de matéria-prima.

Através dos dados da Tabela 4.10, é possível observar as diferenças entre valores calculados e experimentais. A vazão experimental média é aproximadamente 2,33 % superior à vazão calculada, sendo que as diferenças entre valores calculados e valores experimentais são provenientes da dificuldade de se controlar um experimento tão longo quanto um estudo de cinética em um equipamento que está operando no limite (mínimo) de seu funcionamento.

Na Figura 4.20 estão representadas as curvas cinéticas referentes aos ensaios realizados na SFE-I com 15 g de matéria-prima. Nesse caso, a vazão aplicada ao segundo ensaio foi aproximadamente 2,9 % maior que a do primeiro e, embora ainda não existam informações conclusivas sobre as causas da ocorrência do desvio entre as curvas mostradas no diagrama da Figura 4.20, mais uma vez, uma pequena diferença entre as vazões utilizadas nas replicatas parece ter acarretado o fenômeno observado. De qualquer forma, as diferenças entre as vazões calculadas e as experimentais (Tabela 4.10) são demasiadamente pequenas, impossibilitando relacioná-las aos perfis das curvas (Figura 4.20) de forma conclusiva.


As médias dos dados de rendimento foram calculadas ponto a ponto para as curvas cinéticas obtidas nos dois equipamentos. Estes dados podem ser observados na Figura 4.21, possibilitando a comparação dos experimentos realizados nos dois diferentes equipamentos. A curva referente aos dados da SFE-I se encontra levemente deslocada para cima. No entanto, considerando-se os possíveis desvios decorrentes do fato das bombas estarem operando próximas de seus limites (mínimo para a SFE-I e máximo para a SFE-I

II), de a matéria-prima ser extremamente leve e de difícil manuseio (compactação limitada) e das variações inerentes ao fato de se estar trabalhando com um produto natural, é possível afirmar que as curvas representadas pela Figura 4.21 apresentam um formato bastante próximo do esperado. Este resultado indica que a Equação 2.2 foi eficiente na estimativa dos parâmetros necessários para a reprodução do comportamento cinético da extração supercrítica em dois equipamentos distintos.

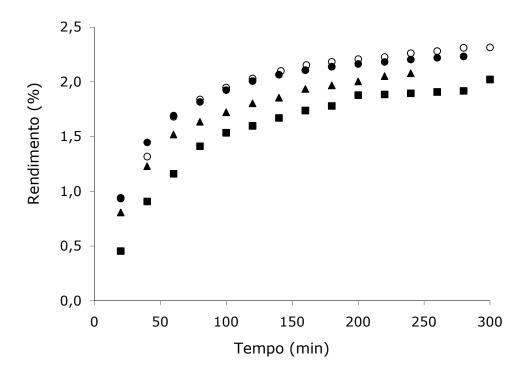
Figura 4.20 – Curvas cinéticas dos experimentos realizados na SFE-I com 15 g de matéria-prima (*A. satureioides*): replicatas 1 (●) e 2 (○).

Após constatar que a Equação 2.2 reproduziu eficientemente o comportamento cinético de extração da mesma quantidade de matéria-prima em dois equipamentos diferentes, foram realizados mais dois ensaios com 30 g de amostra na SFE-I cujo objetivo foi avaliar o desempenho da mesma equação nos casos em que são utilizadas massas de amostra distintas. Dados calculados e experimentais se encontram na Tabela 4.11 e a representação gráfica das curvas pode ser observada na Figura 4.22. Para fins de comparação, as curvas médias dos experimentos que utilizaram 15 g de amostra foram incluídas no mesmo diagrama.

Figura 4.21 – Curvas cinéticas da extração supercrítica de 15 g de *A. satureioide*s em dois equipamentos distintos (média de dois experimentos): SFE-I (▲) e SFE-II (■).

Tabela 4.11 – Valores calculados e experimentais referentes aos experimentos realizados na SFE-I com 30 g de matéria-prima (*A. satureioides*).

Parâmetros	Valores	Valores experimentais					
Parametros	calculados	Replicata 1	Replicata 2	Média			
F (g)	30,0531	30,0165	29,9946	30,00555			
Vazão de CO ₂ (kg.s ⁻¹)	$1,25836 \times 10^{-4}$	$1,26623 \times 10^{-4}$	$1,25484 \times 10^{-4}$	$1,26054 \times 10^{-4}$			
$\rho_{ap}~(kg.m^{\text{-}3})$	116,105	116,118	116,033	116,076			
$H_{B}(m)$	0,11096	0,11081	0,11081	0,11081			
d _B (m)	0,05450	0,05450	0,05450	0,05450			


F= massa de alimentação; $d_{ap}=$ densidade aparente; $H_B=$ altura do leito de extração; $d_B=$ diâmetro do leito de extração.

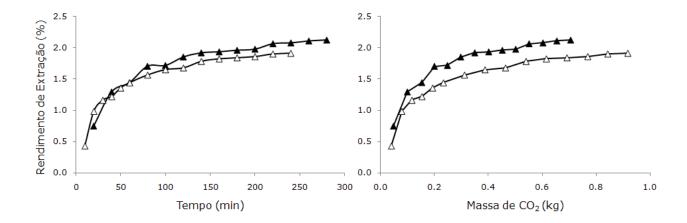
Dois pontos importantes a serem notados são: i) a média das vazões experimentais foi apenas 0,2 % superior à calculada, aproximadamente; ii) as curvas

referentes às replicatas dos experimentos realizados com 30 g de amostra ficam praticamente sobrepostas quando representadas graficamente (Figura 4.22). Estes resultados indicam que, fora de seu limite de operação, a unidade SFE-I permite elevado grau de repetibilidade. Este fato pode ser evidenciado tanto pela sobreposição das curvas cinéticas referentes às replicatas quanto pela diferença de apenas 0,9 % entre as vazões de solvente utilizadas em cada um dos ensaios. Nota-se também que o deslocamento da curva em relação à dos experimentos realizados na SFE-II já não pode ser considerado desprezível, colocando em questionamento a eficácia da Equação 2.2 para reproduzir o comportamento cinético quando diferentes massas de amostra são utilizadas. Por outro lado, também não é possível afirmar de forma definitiva que o deslocamento dos pontos da curva de 30 g para valores superiores aos dos pontos do ensaio de referência (SFE-II) não pode ter sido decorrente de outros fatores, como, por exemplo, as próprias variações inerentes aos produtos naturais.

A fim de confirmar o fenômeno observado, dois experimentos cinéticos adicionais foram realizados na SFE-I com 10 g de amostra, utilizando-se duas vazões diferentes. Através da Equação 2.2, estimou-se a vazão de solvente necessária para a reprodução do comportamento cinético, conforme procedimento aplicado para os ensaios anteriores, sendo que o primeiro e o segundo experimentos foram realizados com esta vazão e com outra 50 % maior, respectivamente. Não há replicatas para estes ensaios.

Na Tabela 4.12 são apresentados os parâmetros calculados e experimentais para os ensaios cinéticos realizados com 10 g de amostra.

Figura 4.22 — Representação das curvas de extração supercrítica de *A. satureioides* em diferentes equipamentos com amostras de 30 g na SFE-I (replicatas 1(○) e 2 (●)), e de 15g na SFE-I (▲) e na SFE-II (■)


Tabela 4.12 – Dados calculados e experimentais para os experimentos cinéticos realizados na SFE-I com 10 g de amostra (*A. satureioides*).

	Experi	mento 1	Experimento 2		
Parâmetros	Valores calculados	Valores experimentais	Valores calculados	Valores experimentais	
F (g)	10,0177	10,0045	10,0177	9,9985	
Vazão de CO ₂ (kg.s ⁻¹)	$4,19455 \times 10^{-5}$	$4,20427 \times 10^{-5}$	$6,29182 \times 10^{-5}$	$6,39223 \times 10^{-5}$	
ρ_{ap} (kg.m ⁻³)	116,105	116,158	116,105	116,089	
$H_{B}(m)$	0,03699	0,03692	0,03699	0,03692	
d _B (m)	0,05450	0,05450	0,05450	0,05450	

F= massa de alimentação; $d_{ap}=$ densidade aparente; $H_B=$ altura do leito de extração; $d_B=$ diâmetro do leito de extração.

Comparando-se as curvas apresentadas na Figura 4.23 com as curvas dos demais experimentos da Figura 4.22, nota-se que a quantidade significativamente menor de

matéria-prima empregada na execução do experimento ocasionou uma menor definição das curvas cinéticas referentes aos dois últimos experimentos.

Figura 4.23 – Curvas cinéticas dos experimentos realizados com 10 g de *A. satureioides* utilizando-se vazões diferentes: experimentos $1 (\Delta) e 2 (\triangle)$.

Outro ponto que deve ser observado no diagrama de rendimento de extração em função do tempo da Figura 4.23 é que, apesar de terem sido utilizadas vazões significativamente diferentes nos dois ensaios, as curvas referentes aos mesmos parecem estar praticamente sobrepostas. Apenas nos primeiros minutos do processo, pode-se notar que a curva do experimento 2, cuja vazão foi mais elevada, apresenta uma inclinação mais acentuada. Como a fase inicial de extração é predominantemente influenciada pelo efeito de convecção do solvente de extração sobre a fração de soluto mais disponível na superfície do material cujo extrato se deseja obter, a inclinação mais acentuada da fase inicial da curva para o experimento de maior vazão corresponde às expectativas iniciais.

Retornando-se à discussão da Figura 4.22, uma das hipóteses para o desvio das curvas correspondentes aos ensaios realizados com 30 g para pontos de rendimento mais elevado seria a utilização de uma maior vazão de solvente. O deslocamento da curva seria

decorrente do fato de que quanto maior a vazão aplicada, maior seria a fração de material extraída pela ação do arraste do solvente, sem que as mesmas estivessem necessariamente dissolvidas no mesmo. Ou seja, um solvente sob velocidade relativamente elevada seria capaz de arrastar uma fração de material não poderiam ser extraídas com vazões menores de solvente. Dessa forma, considerando-se um tempo infinito de extração para o qual o leito estaria completamente esgotado, o incremento da vazão de extração implicaria num aumento do rendimento final da mesma. Entretanto, as curvas apresentadas no diagrama da Figura 4.23 indicam que esta hipótese pode não ser verdadeira. Em ambos os diagramas da Figura 4.23, as curvas correspondentes ao experimento realizado com a maior vazão de solvente (Exp 2) apresentam um comportamento que parece indicar o fenômeno oposto: o incremento da vazão levaria a um menor rendimento. Por outro lado, a diferença constatada entre o comportamento esperado e o observado para estas curvas também pode ser atribuída a outros fatores, como a pequena quantidade de amostra empregada, que, por sua vez, pode acentuar significativamente a influência dos erros experimentais.

A Tabela 4.13 apresenta os resultados do ajuste do spline de três retas. No caso em que os ensaios foram feitos em duplicata, os dados apresentados são as médias dos ajustes para cada uma das repetições.

Comparando-se os valores de M_{CER} e Y_{CER} para os dois experimentos de 15 g, percebe-se que, para uma menor relação H_B/d_B (SFE-I), a taxa de transferência de massa (M_{CER}) quanto a concentração de soluto na fase supercrítica (Y_{CER}) durante a etapa CER foram maiores. Devido a este fenômeno, o ensaio realizado na SFE-I apresentou maior R_{CER} , mesmo tendo apresentado t_{CER} de menor duração.

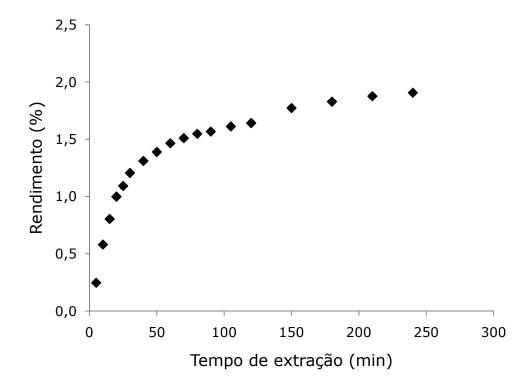
Tabela 4.13 –	Resultados	dos	ajustes	de	três	retas	através	do	software	SAS	Learning
Edition 1.0 (A.	satureioides)).									

Experimento	t_{CER} (min)	$t_{FER} (min)$	M_{CER} (kg/s)	$Y_{CER}(kg/kg)$	R_{CER} (%)
SFE-II – 15g	76,0273	200,7000	$4,468 \times 10^{-8}$	$3,923 \times 10^{-4}$	1,363
SFE-I – 15g	62,3209	170,5500	$6,414 \times 10^{-8}$	$1,033 \times 10^{-3}$	1,595
SFE-I-30g	64,3865	146,3500	$1,335 \times 10^{-7}$	$1,078 \times 10^{-3}$	1,717
SFE-I – 10g	33,9760	110,4	$5,060 \times 10^{-8}$	$1,210 \times 10^{-3}$	1,318
SFE-I – 10g *	22,0612	87,8192	$1,182 \times 10^{-7}$	$1,182 \times 10^{-3}$	1,021

^{*} vazão 50 % maior do que a calculada para a reprodução da curva de acordo com a Equação 2.2.

Quando se aumentou a quantidade de matéria-prima em 100 % (de 15 para 30 g), nota-se que todos os valores apresentados na Tabela 4.13 se mantêm semelhantes, com exceção do M_{CER}, para o qual o valor encontrado também foi aproximadamente 100 % superior no caso do ensaio realizado com maior massa de amostra. Desta forma, este resultado está de acordo com o objetivo de reprodução das curvas cinéticas, uma vez que as curvas estão expressas em termos de rendimento em relação à massa de alimentação inicial.

Em relação aos dois ensaios com 10 g de amostra, percebe-se que o incremento de 50 % na vazão de extração provocou uma elevação de cerca de 100 % para M_{CER} , enquanto os valores encontrados para Y_{CER} foram praticamente iguais, provocando uma redução de aproximadamente 50 % na duração da etapa CER no segundo experimento.


Considerando-se a análise dos dados da Tabela 4.13 e o fato de que os perfis de todas as curvas obtidas (Figuras 4.22 e 4.23) são bastante semelhantes quando analisadas visualmente, é possível afirmar que a variação da vazão do solvente de extração exerce influência praticamente exclusiva sobre a fase inicial do processo. Este resultado era

esperado pelo fato de que inicialmente o processo de extração é governado por fenômenos convectivos que perdem a intensidade nas etapas posteriores.

Portanto, mesmo tendo sido avaliados através, tanto de análise visual das curvas, quanto da determinação dos parâmetros cinéticos apresentados na Tabela 4.13, os ensaios cinéticos realizados até o momento não permitem delinear conclusões definitivas sobre a eficácia da Equação 2.2 para reproduzir comportamentos cinéticos de extração supercrítica em equipamentos providos de leitos de diferentes geometrias. Essa afirmação é decorrente do fato de que não foi possível realizar experimentos com diferenças significativas de escala. Idealmente, seria necessário adquirir dados de ensaios cinéticos em um equipamento de dimensões comparáveis às de uma unidade piloto, pois somente um aumento de escala significativo forneceria resultados conclusivos sobre o efeito da utilização de maiores quantidades de matéria-prima.

4.3.2 Estimativa do custo de manufatura do extrato de *Achyrocline* satureioides por extração supercrítica com CO₂ puro.

A curva do experimento cinético realizado para a estimativa do custo de manufatura do extrato de *Achyrocline satureioides* por extração supercrítica com dióxido de carbono puro encontra-se na Figura 4.24.

Figura 4.24 – Curva do experimento cinético (45 °C e 300 bar) utilizado como referência para a estimativa do custo de manufatura (COM) do extrato supercrítico de *A. satureioides*.

O experimento foi realizado na unidade de extração SFE-I com uma amostra de 15,0232 g de inflorescências de macela moídas, sendo que a densidade do leito era de aproximadamente 327 kg/m³e a vazão de CO₂ foi mantida a aproximadamente 6,45 × 10⁻⁵ kg/s. A pressão e a temperatura do leito foram ajustadas a 300 bar e 45 °C, respectivamente. Previamente à abertura das válvulas de saída da célula, foi aplicado um período estático de 30 min, cuja finalidade foi homogenizar as condições de pressão e temperatura do leito de extração. As condições ambientais eram de 0,948 bar e 25 °C.

A curva cinética resultante (Figura 4.24) foi ajustada a um spline de três retas com o auxílio do software SAS Learning Edition 1.0, utilizando-se os procedimentos PROC REG

e PROC NILIN [62] como descrito por Rodrigues *et al* [63]. Desta forma, os valores estimados de t_{CER} e R_{CER} foram 21,29 min e 1,023 %, respectivamente.

Os dados da Tabela 4.14 foram utilizados na estimativa do custo de manufatura de acordo com a Equação 3.3 proposta por Turton et al [1]. O custo de aproximadamente US\$ 12,00/ kg para a matéria-prima foi obtido junto a produtores locais (Dez/2006). O tempo de extração, a densidade aparente do leito e a vazão mássica de CO₂ foram estimados de acordo com o experimento da Figura 4.24. As demais informações foram extraídas de trabalho publicado por Rosa & Meireles [29].

Tabela 4.14 – Dados utilizados na estimativa do COM do extrato supercrítico de *A. satureioides*.

Capacidade da unidade de SFE	2 × 400 L (US\$ 2 milhões)
Tempo total de operação	7920 h/ ano
Cost of Operational Labor	US\$ 3,00/h
Depreciação	10% ao ano
Tempo de extração	25 min
Densidade aparente do leito	$327 kg/m^3$
Vazão mássica de CO ₂	0,23 kg/h
Custo de matéria-prima	US\$ 12.000,00 /ton
Custo de pré-processamento	US\$ 30,00 /ton
Custo do CO ₂	US\$ 0,10/ kg
Custo do vapor saturado	US\$ 0,0133/ Mcal
Custo da água fria	US\$ 0,0837/ Mcal
Custo da energia elétrica	US\$ 0,0703/ Mcal
Pressão do separador	40 bar

Através da Tabela 4.15, é possível observar que o custo de manufatura do extrato supercrítico da macela é significativamente superior ao do óleo de cravo-da-índia (Item

4.4.3). Esta discrepância entre os valores de COM encontrados para os extratos de macela e de cravo-da-índia pode ser atribuído tanto ao custo extremamente mais elevado da *A. satureioides* (US\$ 12.000,00/ ton para a macela e US\$ 505,00/ ton para o cravo-da-india), quanto ao rendimento significativamente inferior da mesma.

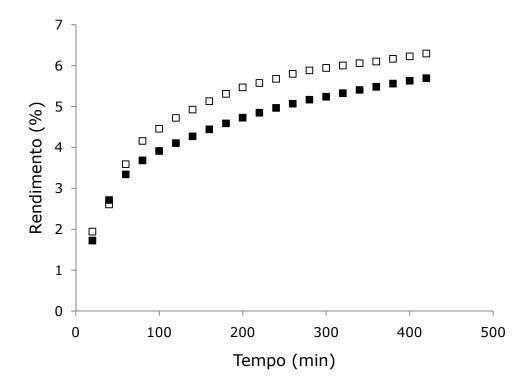
Também é importante observar que, ao contrário do que diz a crença tradicional em relação à contribuição do elevado investimento fixo (FI) para o aumento do custo de manufatura do extrato supercrítico, o fator que contribui predominantemente para o altíssimo custo do produto final é o custo da matéria-prima (CRM), responsável por aproximadamente 98 % do custo de manufatura (COM).

Tabela 4.15 – Dados da estimativa de custo fornecidos pelo software Tecanalysis.

Variável	Valor (US\$)	Valor no COM* (US\$)	% do COM
Investimento Fixo (FI)	2.000.000,00	608.000,00	1,61
Custo de matéria-prima (CRM)	29.909.546,71	36.938.290,62	98,07
Custo de mão-de-obra (COL)	43.956,00	120.219,70	0,32
Custo de utilidades (CUT)	10,13	12.51	0
Custo de Tratamento de Resíduos (CWT)	0	0	0
Custo de manufatura (COM)	37.666.522,75		
Massa de extrato (kg)	25.437,04		
Custo específico do extrato (US\$/kg)	1.480,78		

^{*} valor do item após multiplicado pelo fator correspondente da equação de Turton (Eq. 3.3)

4.3.3 Experimentos cinéticos com co-solvente⁴


Inicialmente, como já mencionado no item 3.2.2.2, os dois experimentos cinéticos que serão apresentados a seguir tinham como objetivo determinar a quantidade de solvente (neste caso, CO₂ + etanol) e, conseqüentemente, o tempo de extração, necessários para que o período difusional fosse atingido, garantindo que os ensaios de rendimento global apresentassem resultados bastante próximos do esgotamento real do leito de extração.

Após a realização de um primeiro ensaio com aproximadamente 5 g e duração de 7 horas, um novo teste com 2 g (redução do tamanho da amostra) de matéria-prima e mesma duração foi efetuado. No entanto, como é possível observar na Figura 4.25, as curvas ainda apresentam uma tendência bastante acentuada de crescimento após 7 horas.

A partir dos resultados destas duas primeiras extrações, concluiu-se que não seria possível atingir o esgotamento do leito e, por este motivo, este não seria o método mais adequado para o estudo da influência dos parâmetros temperatura e pressão. Sendo assim, determinou-se que a influência de fatores como o tamanho da amostra utilizada, a aplicação de período estático e a porcentagem de co-solvente ou modificador adicionada ao solvente supercrítico, seria estudada através de experimentos cinéticos. Posteriormente, como citado no Item 3.2.2.2, a determinação das melhores condições de pressão e temperatura seriam determinadas através de metodologia de Pereira [60], segundo a qual a razão massa de solvente/ massa de alimentação (S/F) deve ser mantida para todos os experimentos dedicados a esta finalidade. Desta forma, as informações em relação às

⁴ Os dados experimentais apresentados no Item 4.3.3 foram obtidos pela aluna de iniciação científica Maria Laura Rubano. No entanto, as análises de parâmetros cinéticos e dos fenômenos observados, assim como as discussões descritas neste trabalho de doutorado, são independentes de seu trabalho de iniciação científica.

melhores condições para concentração de co-solvente, aplicação de período estático e quantidade de amostra utilizada já haviam sido incorporadas aos experimentos relacionados à otimização das condições de temperatura e pressão descritas no Item 3.2.2.2.

Figura 4.25 – Ensaios cinéticos realizados com *A. satureioides* a 30 °C e 300 bar utilizando-se co-solvente: experimentos 1 (\blacksquare) e 2 (\square), realizados com 5 g e 2 g, respectivamente.

A Tabela 4.16 apresenta os parâmetros de extração referentes à sequência de ensaios cinéticos realizados com co-solvente, incluindo os dois testes preliminares representados na Figura 4.25.

Uma vez que um novo objetivo foi estabelecido, os experimentos cinéticos seguintes (3, 4, 5 e 6) foram realizados com amostras de aproximadamente 30 g, e os parâmetros temperatura e pressão foram alterados para 45 °C e 200 bar. Esta modificação está de acordo com o resultado das isotermas obtidas sem utilização de co-solvente (as isotermas resultantes da aplicação de co-solvente ainda não haviam sido obtidas), uma vez que na Figura 4.1 pode-se observar que não há incremento significativo de rendimento a temperaturas e pressões superiores a 45 °C e 200 bar, respectivamente. Todos os experimentos cinéticos subseqüentes foram monitorados através de uma quantificação espectrofotométrica de quercetina.

Tabela 4.16 – Parâmetros de extração dos ensaios cinéticos realizados com co-solvente (*A. satureioides*).

Ensaio	Massa (g)	Temperatura (°C)	Pressão (bar)	CO ₂ : etanol (m:m)	Vazão de CO ₂ (kg.s ⁻¹)	Vazão de etanol (kg.s ⁻¹)
1	5,0252	30	300	83,6 : 16,4	$2,7586 \times 10^{-4}$	$5,4116 \times 10^{-5}$
2	2,1509	30	300	83,6 : 16,4	$2,5811 \times 10^{-4}$	$5,0812 \times 10^{-5}$
3	31,81	45	200	83,6 : 16,4	$1,1360 \times 10^{-4}$	$2,2364 \times 10^{-5}$
4*	31,52	45	200	83,6:16,4	$8,6062 \times 10^{-5}$	$1,6883 \times 10^{-5}$
5*	33,48	45	200	96,0:4,0	$8,4778 \times 10^{-5}$	$3,5324 \times 10^{-6}$
6^*	33,25	45	200	83,6 : 16,4	$1,0196 \times 10^{-5}$	$8,0006 \times 10^{-6}$

Dados expressos como médias de dois experimentos (duplicatas)

Os diagramas das Figuras 4.26 e 4.27 contêm as curvas cinéticas de extrato total e de quercetina relacionadas aos ensaios 3, 4, 5 e 6, e a Tabela 4.17 contêm todos os parâmetros cinéticos ajustados com o auxílio do software SAS Learning Edition 1.0. Tanto nos diagramas, quanto na tabela, os dados referentes aos ensaios 4, 5 e 6 são expressos como a média de dois experimentos.

Comparando-se as curvas 3 e 4 das Figuras 4.26 e 4.27, é possível perceber que o período estático de 60 minutos acarretou uma diferença significativa no rendimento tanto de extrato bruto quanto de quercetina durante as primeiras 7 horas de processo, sendo que no caso da obtenção de quercetina (Figura 4.27) este efeito é mais acentuado. Os dados da Tabela 4.17 relacionados aos mesmos experimentos corroboram esta informação. Além disso, o fato de o aumento da quercetina obtida no tempo t_{CER} ter sido de aproximadamente 103 %, enquanto o do extrato total foi de apenas cerca de 17 %, indica que o período estático favorece a obtenção de quercetina de forma que sua concentração no extrato final é mais elevada do que quando esta etapa não é efetuada. Desta forma, o período estático de 60 minutos foi incluído em todos os experimentos subseqüentes.

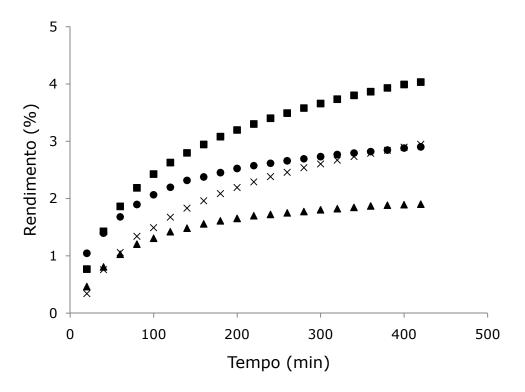
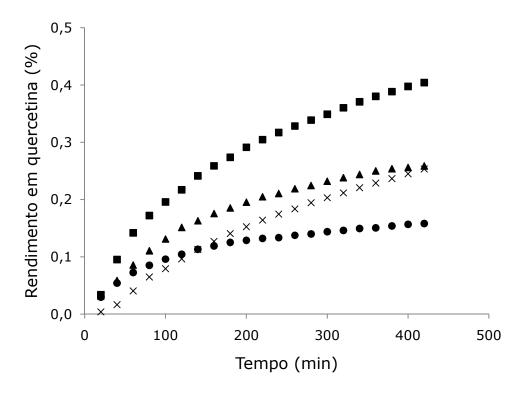



Figura 4.26 – Curvas cinéticas da extração supercrítica de A. satureioides com cosolvente: experimentos $3 (\bullet)$, $4 (\blacksquare)$, $5 (\blacktriangle)$ e $6 (\times)$.

A próxima etapa do estudo da cinética de extração de A. satureioides com cosolvente foi a avaliação da influência da porcentagem de co-solvente utilizada sobre o comportamento das curvas. Para tanto, a porcentagem de etanol adicionado ao fluido supercrítico foi reduzida de 20 % (vol.) para 5 % (vol.), o que corresponde, em base mássica, a aproximadamente 4 % de etanol. Através das Figuras 4.26 e 4.27, nota-se que, ao final de 7 horas, os rendimentos de extrato total e de quercetina para o Ensaio 5 são bastante próximos daqueles obtidos com 20 % (vol.) de etanol sem aplicação de período estático (Ensaio 3), indicando que a redução da proporção do co-solvente acarretou uma redução significativa da velocidade do processo em relação ao observado para o Ensaio 4. Por outro lado, os rendimentos de extrato total e quercetina, no tempo t_{CER} , foram reduzidos a aproximadamente 54,5 e 69,3 % daqueles obtidos no Ensaio 4, respectivamente. Portanto, apesar de ter tornado o processo mais lento, a redução da porcentagem de co-solvente empregado, assim como a utilização do período estático, proporcionou uma elevação da concentração da quercetina no extrato bruto no tempo t_{CFR}, indicando uma maior seletividade com a utilização de uma proporção menor de cosolvente. Dessa forma, uma conclusão definitiva da melhor combinação de fatores para este processo só seria possível através de uma cuidadosa avaliação do custo de purificação do extrato bruto e de seu impacto sobre o custo do produto final.

Quanto à redução da vazão do Ensaio 6, pode-se dizer que, mesmo mantendo-se a proporção de 20 % (vol.) de co-solvente, não só o processo extrativo se tornou mais lento em relação ao Ensaio 4, como a concentração de quercetina no extrato no tempo t_{CER} foi reduzida, indicando que seria desvantajoso utilizar vazões de solvente relativamente baixas.

Tabela 4.17 – Parâmetros cinéticos ajustados com o auxílio do software SAS Learning Edition 1.0 (*A. satureioides*).

Ensaio	CO ₂ : etanol (m : m)	$t_{CER}\left(min\right)$	M_{CER} (kg/s)	$Y_{CER}(kg/kg)$	$R_{CER} \ (\%)$	$R_{CERquercet} \ (\%)$
1	83,6 : 16,4	72,0441	$4,126 \times 10^{-8}$	$2,219 \times 10^{-3}$	3,549	-
2	83,6 : 16,4	94,0264	$1,666 \times 10^{-8}$	$5,393 \times 10^{-4}$	4,370	-
3	83,6 : 16,4	113,2000	$1,008 \times 10^{-7}$	$7,377 \times 10^{-3}$	2,153	0,101
4	83,6 : 16,4	108,9500	$1,271 \times 10^{-7}$	$1,234 \times 10^{-2}$	2,518	0,205
5	96,0:4,0	110,5500	$6,939 \times 10^{-8}$	$7,753 \times 10^{-3}$	1,372	0,142
6	83,6 : 16,4	131,6000	$7,874 \times 10^{-8}$	$6,183 \times 10^{-2}$	1,777	0,108

Finalmente, deve-se frisar que a metodologia utilizada pela aluna de iniciação científica Maria Laura Rubano para a quantificação de quercetina nos extratos apresenta

algumas limitações. Este procedimento consistiu na verificação do comprimento de onda que era absorvido com mais intensidade pelo padrão de quercetina utilizado e posterior medição da absorbância desse mesmo comprimento de onda nas amostras de extrato. No entanto, este método está sujeito à interferência de outras substâncias que apresentem a característica de absorver o mesmo comprimento de onda, e que possam eventualmente estar presentes nas soluções de amostras analisadas. Por outro lado, a quantificação de quercetina por espectrofotometria consiste de uma metodologia simples que permitiu a análise de todos os pontos de cada curva cinética construída nesta etapa do desenvolvimento do projeto.

4.4 Estudo da etapa de separação – Simulação

4.4.1 Cravo da Índia (Eugenia caryophyllus)

4.4.1.1 Compilação dos dados para a simulação do sistema CO_2 + óleo de cravo-da-índia

Apesar de o software permitir a inserção de novas substâncias, esta operação é trabalhosa, uma vez que exige a aquisição de um grande número de informações sobre cada composto a ser inserido. Desta forma, apenas os dados necessários para a simulação do equilíbrio de fases que ocorre durante a destilação flash foram reunidos. Mesmo existindo a possibilidade de inserção de outros dados, importantes para a simulação de outros tipos de processo, não houve uma preocupação em adquiri-los.

Os resultados para os cálculos do ponto normal de fusão e da equação referente ao calor específico em função da temperatura para cada composto do óleo de cravo através do método de contribuição de grupos de Joback & Reid [66] podem ser observados na Tabela 4.18.

As constantes de Antoine para o trans-cariofileno e o α-humuleno e as demais constantes físicas dependentes da temperatura foram obtidas através da equação de estado de Peng-Robinson [69], utilizando-se o software PR1 e se encontram na Tabela 4.19.

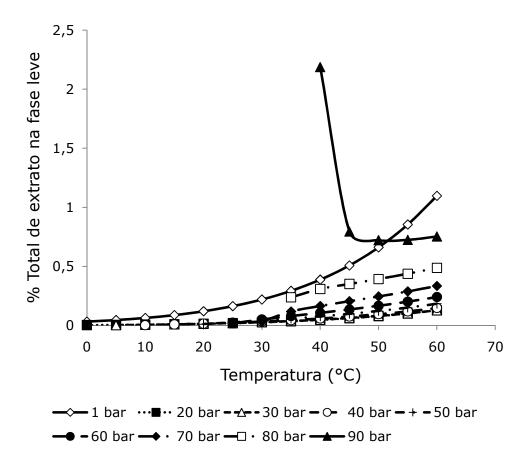
Tabela 4.18 – Dados calculados pelo software Termofis 1.1 utilizando-se o método de Joback & Reid [66] (cravo-da-índia).

Composto	Calor específico $(C_p)[=] J/mol.K;T[=] K$	$T_{fus ilde{a}o}\left(K ight)$
eugenol	$C_p = (2.10^{-7}) T^3 - (7.10^{-4}) T^2 + (0.8867) T - 12.2$	373,59
acetato de eugenila	$C_p = (7.10^{-9}) T^3 - (3.10^{-4}) T^2 + (0,772) T + 41,986$	369,09
trans-cariofileno	$C_p = (4.10^{-7}) \text{ T}^3 - (13.10^{-4}) \text{ T}^2 + (1,7147) \text{ T} - 136,48$	323,71
α- humuleno	$C_p = (3.10^{-7}) T^3 - (0,001) T^2 + (1,5074) T - 99,95$	299,81

Tabela 4.19 – Equações que descrevem o comportamento das propriedades termodinâmicas dos compostos presentes no óleo de cravo-da-índia em função da temperatura.

Composto	$\rho_L(g/L)$	Eq. Antoine (mmHg)	$\Delta H_{v}\left(J/mol\right)$	
eugenol	$\rho_L = -0.715T + 1188.3$	$\log_{10} P = 5,08897 - \frac{2463,351}{T - 42,226}$	$\Delta H_V = 40349(1 - T_r)^{0.2536}$	
acetato de eugenila	$\rho_L = -0.58T + 984,66$	$\log_{10} P = 5,36989 - \frac{2782,976}{T - 36,986}$	$\Delta H_V = 40518(1 - T_r)^{0.2521}$	
Trans-cariofileno	$\rho_L = -0.5723T + 867.28$	$\log_{10} P = 3,30926 - \frac{1443,925}{T - 26,564}$	$\Delta H_V = 37391(1 - T_r)^{0.2613}$	
α-humuleno	$\rho_L = -0.5324T + 813.36$	$\log_{10} P = 3,29014 - \frac{1459,619}{T - 25,857}$	$\Delta H_V = 38176(1 - T_r)^{0.2600}$	

4.4.1.2 Simulação do equilíbrio de fases para o sistema CO_2 + óleo de cravo-da-índia


Dois tipos de perda que podem ocorrer durante a etapa de separação foram analisados: perda de extrato (óleo de cravo-da-índia) dissolvido no dióxido de carbono, ou fase leve (Figura 4.28); perda de dióxido de carbono (solvente) dissolvido no extrato, ou fase pesada (Figura 4.29).

Para valores de pressão iguais ou superiores a 30 bar, sob temperaturas reduzidas, o programa indicou que a mistura se encontrava abaixo do seu ponto de bolha, o que provocaria a perda de todo o CO₂ junto à fase pesada, ou seja, ocorreria uma perda de 100% do solvente. Este fenômeno foi observado a: 0 °C e 30 bar; a 0 e 5 °C e 40 bar; a 0, 5, 10 e 15 °C e 50 bar; a 0, 5, 10, 15 e 20 °C e 60 bar; a 0, 5, 10, 15, 20 e 25 °C e 70 bar; a 0, 5, 10, 15, 20, 25 e 30 °C e 80 bar; e a 0, 5, 10, 15, 20, 25, 30 e 35 °C e 90 bar.

Através da Figura 4.28, pode-se observar que existe uma tendência de ocorrer redução na perda de extrato com o aumento da pressão até 20 bar, e que, a pressões superiores a esta, esta tendência se inverte. Outro ponto a ser observado é que a perda de extrato tende a se acentuar com o aumento da temperatura, mas que, até 20 bar, esta tendência se torna menos significativa conforme aumenta a pressão, e a partir deste valor esta tendência também se inverte.

No entanto, no caso específico do óleo de cravo-da-índia, variações de pressão ou de temperatura no separador não exercem influência significativa sobre a porcentagem de extrato perdido, uma vez que a pior condição de recuperação de extrato (a 40 °C e 90 bar) resulta em uma perda do mesmo de aproximadamente 2,19 %. Valor ainda bastante próximo daquele utilizado como aproximação no estudo anterior realizado por Rosa & Meireles [29]. No entanto, nota-se que a curva relacionada à pressão de 90 bar já apresenta

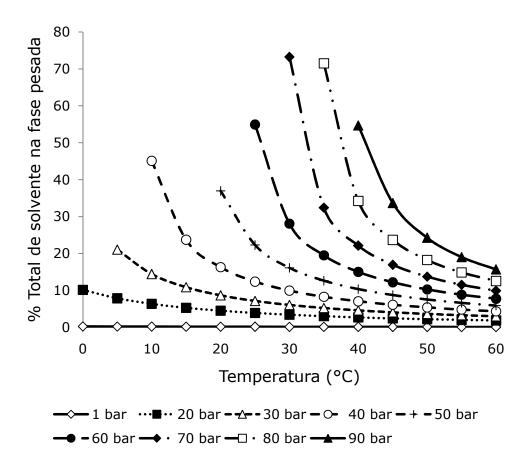

um comportamento discrepante das demais curvas representadas pela Figura 4.28, indicado a ocorrência de uma modificação do equilíbrio de fases entre as pressões de 80 e 90 bar. Desconsiderando-se, portanto, os pontos obtidos para o equilíbrio de fases a 90 bar, as condições de pressão e temperatura que resultaram em maior perda de extrato (aproximadamente 1,10 %) foram 1 bar e 60 °C, respectivamente.

Figura 4.28 – Fração de extrato perdida junto à saída da fase leve do separador (cravo-da-índia)

Já no caso do CO₂ (Figura 4.29), é possível observar influências significativas tanto da pressão quanto da temperatura sobre a porcentagem de solvente que é perdida, dissolvida na fase pesada. O incremento da temperatura provoca uma redução na perda de

solvente, e este efeito se torna mais intenso com o aumento da pressão, sendo de pouca importância em pressões reduzidas (1 e 10 bar). Quanto à pressão, o efeito é contrário, um aumento de pressão acarreta numa maior perda de solvente, e este efeito se torna mais intenso com a redução da temperatura.

Figura 4.29 – Fração de dióxido de carbono perdida junto à saída da fase pesada do separador (cravo-da-índia).

A 1 bar, a maior perda de solvente é observada a 60 °C e é de aproximadamente 1,10 %, sendo que a influência da temperatura é praticamente imperceptível na Figura 4.29. Apesar disso, não é comum a utilização de pressões tão baixas na operação do separador devido ao aumento de custo relacionado à energia necessária para a

recompressão do gás antes de ser recirculado no sistema de extração. Portanto, pressões mais elevadas, iguais ou superiores a 20 bar, devem ser consideradas. Entre as condições analisadas, a menor perda de CO₂ observada, obtida a 60 °C e 20 bar, foi de 1,84 %, que já um valor bastante próximo daquele àquele utilizado na avaliação econômica realizada por Rosa & Meireles [29], na qual este estudo foi baseado. A perda mais significativa de solvente foi de aproximadamente 73,23 %, obtida a 30 °C e 70 bar.

Desta forma, conclui-se que, no caso do óleo de cravo-da-índia, a determinação das condições de operação do separador deve se basear na avaliação das porcentagens de perda de CO₂, uma vez que os dados indicam que a mesma seja acentuadamente influenciada tanto pela pressão quanto pela temperatura.

4.4.2 Vetiver (Vetiveria zizanoides)

4.4.2.1 Compilação dos dados para a simulação do sistema CO_2 + extrato de vetiver

Os dados da Tabela 4.20 foram estimados utilizando-se o software Termofis 1.1 para calcular as temperaturas normais de fusão e ebulição e os valores de C_p em função da temperatura (em Kelvins) através do método de contribuição de grupos de Joback e Reid [66]. As fórmulas estruturais das substâncias presentes no óleo de vetiver foram obtidas na Tese de Doutorado de Martínez [67].

As equações apresentadas na Tabela 4.21 foram ajustadas no Microsoft Excel[®] 2007 a partir de dados estimados pela equação de Peng-Robinson [69] para o equilíbrio de fases de substâncias puras, utilizando-se o software PR1 [70].

As Tabelas 3.2, 4.20 e 4.21 contêm todos os dados necessários para a adição dos compostos do óleo de vetiver ao banco de dados do software SuperPro[®] Designs 6.0.

Tabela 4.20 – Valores estimados através do método de Joback & Reid para as temperaturas de fusão e de ebulição e para o calor específico das substâncias presentes no extrato supercrítico de vetiver.

Composto	T _{ebulição} (K)	T _{fusão} (K)	$C_p(kJ.mol^{-1}.K^{-1})$	
Khusimeno	561,86	358,59	$C_p = 9 \times 10^{-7} T^3 - 0.002 T^2 + 2.275 T - 237.5$	
α-amorfeno	576,53	287,93	$C_p = 2 \times 10^{-7} T^3 + 1,444T - 83,8$	
cis-β-guaieno	589,00	302,81	$C_p = 2 \times 10^{-7} T^3 + 1,439T - 83,89$	
δ-amorfeno	586,18	304,69	$C_p = 2 \times 10^{-7} T^3 + 1{,}407T - 74{,}9$	
γ-cadineno	571,55	288,33	$C_p = 2 \times 10^{-7} T^3 + 1,438T - 83,08$	
Khusimona	611,47	419,78	$C_p = 8 \times 10^{-7} T^3 - 0.002 T^2 + 2.038 T - 206.1$	
Khusinol	659,06	344,91	$C_p = 1 \times 10^{-7} T^3 + 1,446T - 71,83$	
Vetiselinenol	668,64	377,29	$C_p = 5 \times 10^{-7} T^3 - 0.001 T^2 + 1.791 T - 133.7$	
ciclocopacanfan-12-ol	639,43	418,51	$C_p = 1 \times 10^{-6} T^3 - 0,002 T^2 + 2,596 T - 280,0$	
Khusimol	649,37	415,17	$C_p = 9 \times 10^{-7} T^3 - 0.002 T^2 + 2.283 T - 226.3$	
biciclovetivenol	652,13	349,05	$C_p = 2 \times 10^{-7} T^3 - 0.001 T^2 + 1.681 T - 116.7$	
Nootkatona	628,64	348,53	$C_p = 4 \times 10^{-7} T^3 - 0.001 T^2 + 1.742 T - 136.1$	
β-vetivona	652,08	382,41	$C_p = 4 \times 10^{-7} T^3 - 0.001 T^2 + 1.623 T - 111.8$	
α-vetivona	652,08	382,41	$C_p = 4 \times 10^{-7} T^3 - 0.001 T^2 + 1.623 T - 111.8$	
Ácido zizanóico	707,37	519,19	$C_p = 9 \times 10^{-7} T^3 - 0.002 T^2 + 2.326 T - 232.9$	

Tabela 4.21 – Equações obtidas através de dados para equilíbrio de fases de substâncias puras estimados pela equação de Peng-Robinson [69] (vetiver).

Composto	$\rho_L(g/L)$	Eq. Antoine (mmHg)	ΔH_{v} (J/mol)
Khusimeno	$\rho_L = -0.5864T + 964.39$	$\log_{10} P = 6,3928 - \frac{1627,7772}{T - 76,0516}$	$\Delta H_V = 65476(1 - T_r)^{0.4137}$
α-amorfeno	$\rho_L = -0.6238T + 941,20$	$\log_{10} P = 5,4028 - \frac{985,1743}{T - 190,9803}$	$\Delta H_V = 89389(1 - T_r)^{0.4391}$
cis-β-guaieno	$\rho_L = -0.5860T + 916.31$	$\log_{10} P = 5,4168 - \frac{1035,6809}{T - 168,1949}$	$\Delta H_V = 77399(1 - T_r)^{0.4203}$
δ-amorfeno	$\rho_L = -0,6014T + 930,46$	$\log_{10} P = 6,3788 - \frac{1616,9280}{T - 117,1644}$	$\Delta H_V = 86486(1 - T_r)^{0.4488}$
γ-cadineno	$\rho_L = -0,6382T + 945,56$	$\log_{10} P = 6,4893 - \frac{1655,3132}{T - 110,6290}$	$\Delta H_V = 84000(1 - T_r)^{0.4342}$
Khusimona	$\rho_L = -0.5809T + 1046.9$	$\log_{10} P = 6,6123 - \frac{1856,8274}{T - 89,7653}$	$\Delta H_V = 77398(1 - T_r)^{0.4134}$
Khusinol	$\rho_L = -0.5208T + 960.79$	$\log_{10} P = 7,3243 - \frac{2338,2964}{T - 126,6903}$	$\Delta H_V = 123679(1 - T_r)^{0,4369}$
Vetiselinenol	$\rho_L = -0.5768T + 1042.4$	$\log_{10} P = 6,7590 - \frac{1940,4565}{T - 143,5224}$	$\Delta H_V = 106457(1 - T_r)^{0,4208}$
ciclocopacanfan -12-ol	$\rho_L = -0.6072T + 1080.2$	$\log_{10} P = 5,6434 - \frac{1148,9406}{T - 188,1962}$	$\Delta H_V = 91416(1 - T_r)^{0.4136}$
Khusimol	$\rho_L = -0.5506T + 1036.9$	$\log_{10} P = 6,9977 - \frac{2098,3253}{T - 120,9884}$	$\Delta H_V = 105328(1 - T_r)^{0,4259}$
biciclovetivenol	$\rho_L = -0.5066T + 924.35$	$\log_{10} P = 5,9905 - \frac{1468,4069}{T - 138,2925}$	$\Delta H_V = 81783(1 - T_r)^{0,4090}$
Nootkatona	$\rho_L = -0.5146T + 965.53$	$\log_{10} P = 6,5103 - \frac{1800,1633}{T - 127,4723}$	$\Delta H_V = 94873(1 - T_r)^{0.4365}$
β-vetivona	$\rho_L = -0.4661T + 912.85$	$\log_{10} P = 6,0844 - \frac{1592,4265}{T - 125,4030}$	$\Delta H_V = 80446(1 - T_r)^{0,4140}$
α-vetivona	$\rho_L = -0.5076T + 948.79$	$\log_{10} P = 5,6131 - \frac{1203,1306}{T - 205,8349}$	$\Delta H_V = 98325(1 - T_r)^{0.4254}$
Ácido zizanóico	$\rho_L = -0.5384T + 1057.2$	$\log_{10} P = 6,2200 - \frac{1636,6411}{T - 203,7400}$	$\Delta H_V = 119642(1 - T_r)^{0,4317}$

4.4.2.2 Simulação do equilíbrio de fases para o sistema CO_2 + extrato de vetiver

A cinética de extração para do extrato de vetiver apresentada por Takeuchi *et al* [38] foi utilizada como base para o aumento de escala para um destilador flash de 400 L. O

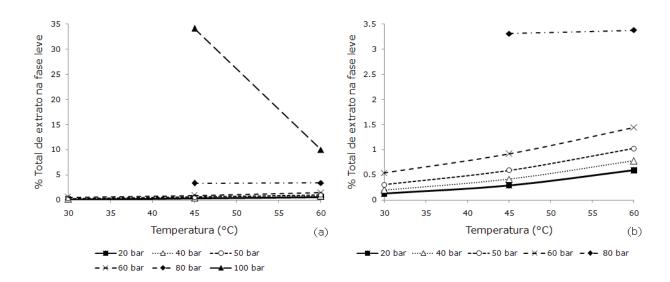
equipamento utilizado para a obtenção da curva cinética era provido de uma célula de extração de 3×10^{-4} m³ e foi preenchido com 0,11 kg de partículas de vetiver moídas. A partir desta informação, foi possível calcular a densidade aparente do leito e, conseqüentemente, a quantidade de matéria-prima que poderia ser alocada em um extrator com capacidade de 400 L (mesmo volume interno do separador flash). Sabendo-se a quantidade de massa de vetiver que seria processada em cada ciclo do processo, foi possível calcular a vazão de CO₂ mantendo-se a relação massa_{solvente}/ massa_{alimentação}. Os valores das vazões individuais de cada composto do extrato foi calculada considerando-se os valores de R_{CER} e t_{CER} e que a taxa de extração durante o período t_{CER} foi constante. Também foi considerado que os compostos listados na Tabela 3.2 representam 70,2 % do extrato total obtido, sem que haja interferências dos demais compostos na formação do equilíbrio de fases. Na Tabela 4.22 estão as vazões calculadas para cada composto na entrada do separador.

As simulações foram realizadas às temperaturas de 30, 45 e 60 °C, para as quais as pressões de separação do destilador flash foram 20, 30, 40, 50, 60, 80, 100, 200 e 300 bar. As Figuras 4.30 e 4.31 representam as perdas decorrentes da etapa de separação em função da temperatura e da pressão de operação do separador. Estas perdas correspondem à fração de extrato que é eliminada junto à fase leve (Figura 4.30) e à fração do solvente que é perdida junto à fase pesada (Figura 4.31).

Para algumas combinações de pressão e temperatura, (80 e 100 bar a 30 °C e 200 e 300 bar a todas as temperaturas avaliadas) o software acusou que a mistura estaria abaixo de seu ponto de bolha, fazendo com que o solvente fosse completamente eliminado junto à fase pesada. Este resultado estaria de acordo com os dados experimentais obtidos para o

sistema extrato de vetiver + CO₂ [38], segundo os quais a separação de fases observada sob pressões de 100, 200 e 300 bar e temperaturas de 30, 45 e 60 °C é formada por duas fases líquidas. Para as demais condições analisadas, é possível observar as perdas de extrato e de solvente nas Figuras 4.30 e 4.31, respectivamente. A Figura 4.30 é apresentada em duas escalas com a finalidade de possibilitar uma melhor visualização dos dados obtidos entre 20 e 80 bar.

Tabela 4.22 – Vazões do CO₂ e das substâncias presentes no extrato de vetiver na entrada do separador.


Composto	Vazão (kg/h)	
Khusimeno	0,03933	
α-amorfeno	0,02360	
cis-β-guaieno	0,01574	
δ-amorfeno	0,02360	
γ-cadineno	0,01574	
Khusimona	0,18883	
Khusinol	0,11802	
Vetiselinenol	0,06294	
ciclocopacanfan-12-ol	0,04721	
Khusimol	0,56648	
biciclovetivenol	0,09441	
Nootkatona	0,06294	
β-vetivona	0,42486	
α-vetivona	0,58221	
Ácido zizanóico	2,54916	

Considerando-se os dados relativos às pressões entre 20 e 60 bar, nota-se que a perda de extrato se mantém praticamente constante e inferior a 2,00 % (máximo: 1,44 %, a 60 °C e 60 bar). Porém, a 80 bar, observa-se um incremento significativo de porcentagem de perda de extrato (3,31 % e 3,38 %, a 45 e 60 °C, respectivamente), sendo que a 100 bar este efeito se intensifica (34,13 e 9,99 %, a 45 e 60 °C, respectivamente). O decréscimo da porcentagem de perda de extrato quando temperaturas mais elevadas são aplicadas, pode estar indicando que as propriedades termodinâmicas da mistura estão próximas à região de mudança de fase. Fenômeno semelhante foi observado para o sistema óleo de cravo-da-índia + CO₂ para dados de simulação obtidos a 90 bar.

Em termos da influência da pressão e da temperatura sobre a porcentagem de perda de extrato junto à fase leve, pode-se afirmar que, para os intervalos de pressão e temperatura analisados, o incremento, tanto de um parâmetro, quanto de outro promove perdas mais significativas de extrato, exceto quando os resultados se referem à simulação do sistema extrato de vetiver + CO₂ a 100 bar, para os quais a 30 °C não há formação de equilíbrio líquido-vapor e ocorre uma redução súbita da perda de extrato quando a temperatura é elevada de 45 a 60 °C, como já mencionado anteriormente.

Os resultados da simulação relacionados à perda de solvente junto à fase pesada (extrato) podem ser observados na Figura 4.31, onde se pode notar que, qualitativamente, as influências da pressão e da temperatura são as mesmas observadas para o sistema óleo de cravo-da-índia + CO₂. Ou seja, a elevação da temperatura do separador tende a reduzir a perda de solvente junto à fase leve, sendo que este efeito se torna mais significativo conforme se eleva a pressão, enquanto o efeito da pressão se torna mais intenso conforme se reduz a temperatura. Por outro lado, quantitativamente, no caso da formação de

equilíbrio de fases para o sistema extrato de vetiver + CO₂, tanto pressão quanto temperatura exercem efeitos poucos significativos sobre a quantidade de solvente eliminada junto à fase pesada, enquanto o oposto foi observado para o sistema óleo de cravo-da-índia + CO₂. No entanto, para uma das temperaturas avaliadas 100 bar e para todos os pontos analisados a 200 e 300 bar, os dados de simulação indicaram não mais haver formação de uma fase gasosa, fazendo com que o solvente seja completamente eliminado junto à fase pesada, fazendo com que estas condições sejam consideradas impróprias para a operação do separador.

Figura 4.30 – Fração de extrato perdida junto à fase leve (vetiver). Variação das ordenadas: (a) de 0 a 35 % e (b) de 0 a 3,5 %.

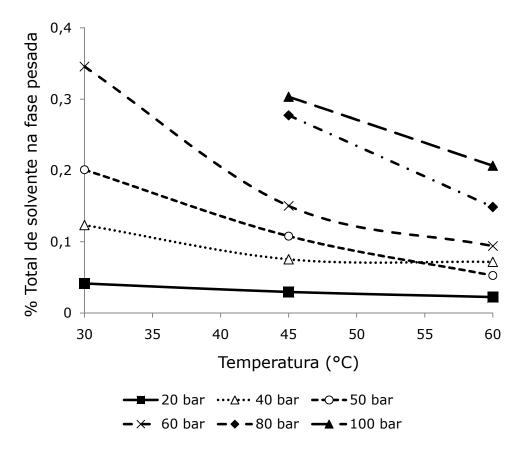
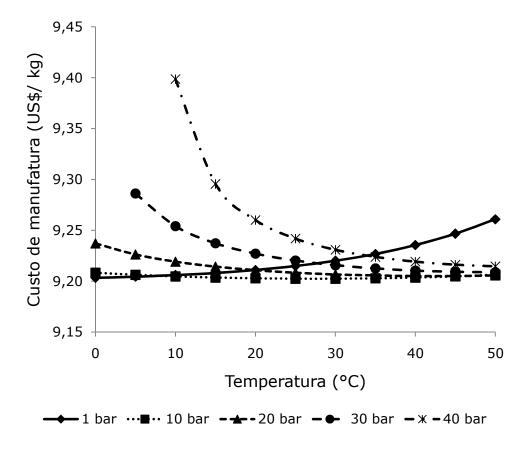


Figura 4.31 – Fração de solvente perdida junto à fase pesada (vetiver).

4.4.3 Impacto da operação do destilador flash sobre o custo de manufatura para o sistema óleo de cravo-da-índia + CO₂

Para a estimativa do custo de manufatura (COM) foi utilizado o software Tecanalysis, que realiza este cálculo de acordo com a Equação 3.3 proposta por Turton *et al* [1].


A simulação do equilíbrio de fases discutida no Item 4.4.1 forneceu informações sobre as perdas de solvente e de extrato que podem ocorrer nesta etapa do processo. Levando-se em consideração estes dados e o modo como a equação foi proposta, as

condições de operação do destilador flash acarretarão alterações nos valores de: CRM, pois esta componente compreende o custo de todos os materiais diretamente relacionados à produção (matéria-prima e solvente); e CUT devido ao vapor saturado utilizado no aquecimento do separador, assim como à alteração no funcionamento de outros equipamentos como a bomba e o condensador, que utilizam energia elétrica e água gelada.

Desta forma, o valor de 2 % de perda de solvente dissolvido no extrato foi substituído pelos valores encontrados na simulação. E as perdas de extrato dissolvido na corrente gasosa foram consideradas como uma redução no rendimento global da extração. O valor utilizado como rendimento global foi o correspondente a 70 min de extração (12,85 %) [71].

Neste estudo, a quantidade de CO₂ retido dentro do leito de extração junto à matriz sólida foi negligenciada. Como este valor é fixo qualquer que sejam as condições de operação utilizadas no separador, este fator não deve prejudicar a avaliação do impacto do funcionamento deste equipamento sobre o COM.

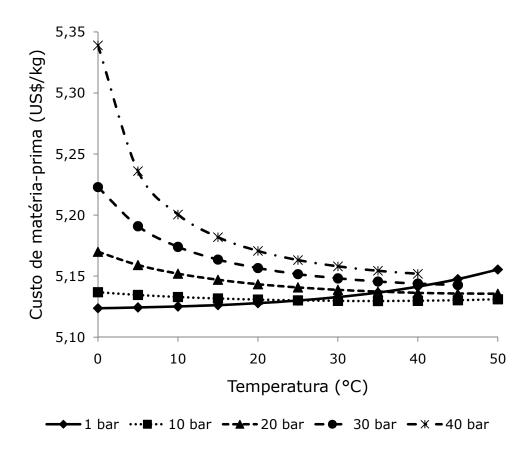

O diagrama da Figura 4.32 mostra a variação do custo de manufatura (COM) do óleo de cravo em várias pressões e temperaturas com valores calculados pelo software Tecanalysis. As tendências observadas neste gráfico, com exceção dos valores referentes à pressão de 1 bar, são bastante semelhantes às observadas na Figura 4.29, o que indica que o impacto da perda de solvente sobre o COM é predominante quando comparado ao efeito gerado pela perda de extrato. Este resultado corrobora a afirmação feita no Item 4.4.1 que diz que a determinação das condições de operação do separador deve ser baseada na porcentagem de CO₂, uma vez que a perda de extrato foi relativamente muito baixa em todos os casos.

Figura 4.32 – Custo de manufatura com diferentes condições operação no separador calculado pelo Tecanalysis (cravo-da-índia).

No caso dos dados referentes à pressão de 1 bar, ocorre o oposto, ou seja, o impacto da perda de extrato predomina sobre o da perda de solvente. Isso pode ser atribuído ao fato de que, nesta pressão, além das porcentagens de perda de CO_2 serem extremamente baixas (inferiores a 0,25 %), as mesmas se mantêm praticamente constantes. Desta forma, a perda de extrato, que para os valores observados a 1 bar é relativamente superior à das demais pressões em boa parte das temperaturas testadas (como pode ser observado na Figura 4.28), apresenta um efeito predominante sobre o COM.

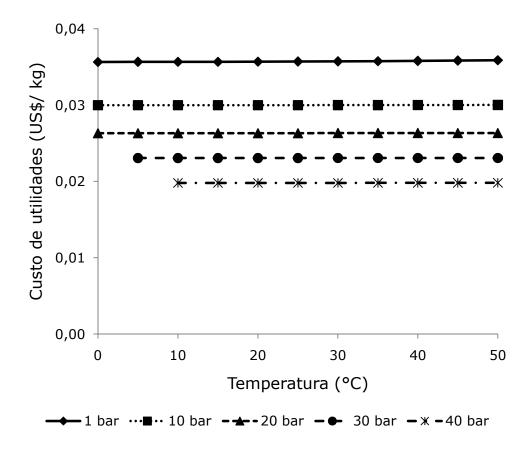
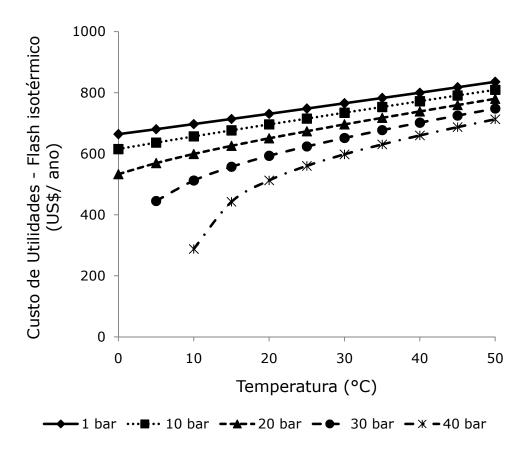

Comparando-se os dados obtidos com o calculado por Rosa & Meireles [29] (US\$ 9,20/ kg extrato), a condição de operação que apresentou o maior incremento no custo de operação foi 10 °C e 40 bar (US\$ 9,40/ kg extrato).

Figura 4.33 – Variações do custo da matéria-prima em função da pressão e da temperatura (cravo-da-índia).

Outro ponto a ser notado, é que, quando consideradas apenas condições de pressão iguais ou superiores a 20 bar, o custo de manufatura parece atingir um valor mínimo e que se mantém praticamente constante (US\$ 9,21/ kg extrato) nas seguintes condições: 20 bar e temperaturas iguais ou superiores a 15 °C; 30 bar e temperaturas iguais ou superiores a 35°C; e 40 bar e 50 °C.

As Figuras 4.33 e 4.34 mostram a variação das componentes CRM e CUT para diferentes condições de operação do separador com os valores fornecidos pelo software Tecanalysis.

Figura 4.34 – Variações do custo de utilidades em função da pressão e da temperatura (cravo-da-índia).


É possível observar que existem tendências semelhantes nas Figuras 4.32 e 4.33. A partir desta constatação, pode-se concluir que o custo de manufatura está intimamente relacionado ao custo da matéria-prima. De fato, a representação do custo da matéria-prima no custo final de manufatura varia de 55,90 % (1 bar) a 57,04 % (40 bar e 10 °C), enquanto a representação do custo de utilidades varia de 0,26 % (40 bar e 10 °C) a 0,48 % (1 bar).

Outro ponto a ser discutido é que o aumento de pressão acarreta um aumento no custo da matéria-prima, enquanto o oposto é observado em relação ao custo de utilidades. Desta forma, o custo de utilidades proporciona uma atenuação do efeito do aumento de pressão sobre o custo da matéria-prima. O que fica evidente ao se analisar os pontos referentes a 50 °C e 20, 30 e 40 bar nas Figuras 4.32 e 4.33. É possível que este efeito provocado pelo custo de utilidades sobre o custo de manufatura possa se inverter em temperaturas superiores a 50 °C.

Na Figura 4.34, também se pode notar que, ao observarmos os dados referentes a cada pressão individualmente, o custo de utilidades se mantém constante em todas as temperaturas. Considerando-se que a única condição de operação que o software Tecanalysis permite ajustar para o separador é a pressão, é provável que o programa desenvolva a estimativa de custo baseando-se em um separador que opere adiabaticamente. Ou seja, trata-se de um equipamento possivelmente isolado termicamente, que permite apenas o controle de sua pressão interna. O gasto energético atribuído ao destilador flash pelo programa deve estar relacionado a algum dispositivo de aquecimento de válvulas cuja função seria impedir entupimentos provocados por congelamentos da mistura dentro do sistema. Este fenômeno pode ser observado em pontos do sistema onde ocorrem expansões rápidas, provocando uma queda, também brusca, de temperatura, conhecida como fenômeno de Joule-Thomson ou expansão isoentálpica.

Assim, concluiu-se que os dois softwares (SuperPro Designs[®] 6.0 e Tecanalysis) utilizados neste estudo consideram separadores que não operam da mesma forma em termos de processo termodinâmico. Partindo desta constatação, foi realizado um novo cálculo de custo de utilidades. Para tanto, foi considerado o calor necessário para a

operação isotérmica do separador fornecido pelo SuperPro Designs[®] 6.0. Como a unidade do valor dado pelo programa é kcal/h, o mesmo foi multiplicado pelo número de horas de operação (7920h/ ano) e dividido por 1000. O resultado, em Mcal/ano, foi multiplicado por US\$ 0,0133/ Mcal, que é o custo do vapor saturado utilizado pelo Tecanalysis para realizar a estimativa de custo. Os dados assim obtidos podem ser observados na Figura 4.35. Notase que, a princípio, o efeito da temperatura sobre o custo de operação do separador não deve ser negligenciado.

Figura 4.35 – Custo de operação do destilador flash através de processo isotérmico (cravoda-índia).

Considerando-se os valores de custo de operação do separador da Figura 4.35, o cálculo do custo de utilidades fornecido pelo Tecanalysis foi corrigido. Esta correção consistiu na substituição do custo do flash fornecido por este programa pelo valor correspondente ao custo de operação isotérmica do mesmo, obtido através dos dados calculados pelo SuperPro Designs[®] 6.0. Os diagramas das Figuras 4.36 e 4.37 mostram, respectivamente, os resultados de custo de utilidades e de manufatura corrigidos desta forma.

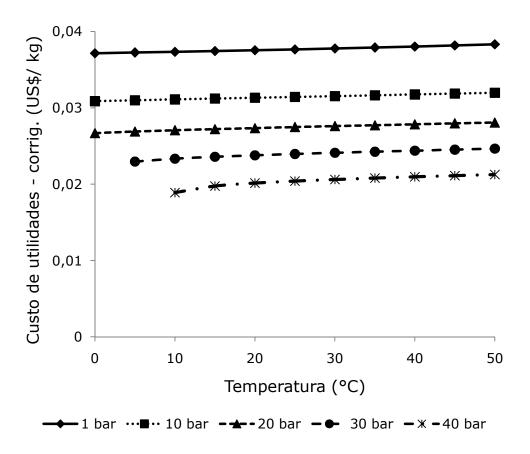
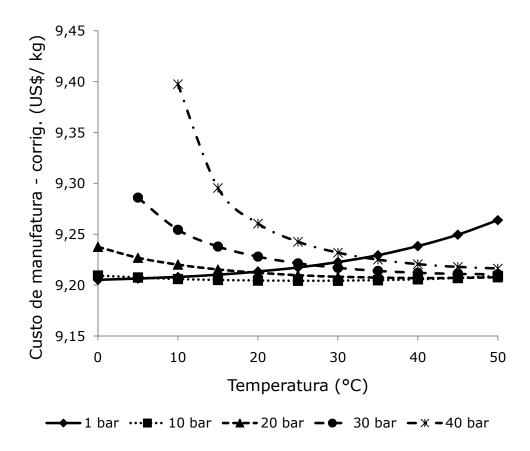



Figura 4.36 – Custo de utilidades corrigido para um separador isotérmico (cravo-da-índia).

Nota-se que a variação do custo de utilidades em função da temperatura é pequena (Figura 4.36). No entanto, esta variação é suficiente para promover uma redução nos custos de manufatura em todas as condições avaliadas. Deve-se frisar que é possível que o controle da temperatura do separador possa exercer influência sobre o funcionamento de outros equipamentos do sistema de extração, principalmente se for levado em consideração o fato de que o CO₂ é recirculado dentro do sistema, o que permite que sua perda para o ambiente seja a menor possível. Os demais equipamentos não foram levados em consideração no momento da realização dos cálculos. Porém, os resultados referentes ao separador sugerem que uma avaliação econômica do impacto do mesmo sobre os demais equipamentos poderia ser útil. Além disso, estes resultados se referem exclusivamente ao caso do cravo-da-índia. Para outros tipos de matéria-prima, o efeito econômico das condições de operação do separador pode ser ainda mais visível.

Concluindo, a única condição de pressão que proporciona uma perda de CO₂ menor que 2 % (valor usualmente considerado ideal pela indústria) é 1 bar. Porém, apenas nas menores temperaturas estudadas, esta pressão resulta nos menores valores de custo de manufatura. Além disso, se os custos relacionados à recompressão do CO₂ para sua recirculação no sistema de extração forem levados em consideração, a utilização de pressões muito baixas na etapa de separação pode ser ainda mais desvantajosa. Diante disso, porcentagens um pouco maiores de perda do gás deveriam ser consideradas.

Figura 4.37 – Custo de manufatura corrigido para um separador isotérmico (cravo-daíndia).

Por outro lado, como a pressão do reservatório de CO₂ geralmente permanece em torno de 50 bar, a utilização de pressões próximas a essa no separador poderiam ser traduzidas em redução de custos na etapa de recompressão. Além disso, no caso do cravoda-índia, considerando-se a melhor condição de temperatura a 40 bar (50 °C), a solubilidade do extrato no CO₂ na saída do separador é de aproximadamente 0,0003 kg extrato/ kg CO₂, de acordo com dados fornecidos pelo software SuperPro[®] Designs. Como a solubilidade do extrato no solvente nas condições do leito de extração é 0,277 kg extrato/ kg CO₂, não haveria necessidade de um sistema de purificação do CO₂ antes de sua reutilização. Isto pode ser atribuído ao fato de que a solubilidade do extrato no solvente nas

condições do leito de extração é muitas vezes superior quando comparada à solubilidade do mesmo extrato nas condições do separador. Portanto, a ausência de um sistema de purificação não seria prejudicial ao processo de transferência de massa que ocorre dentro do leito de extração. Desta forma, os sistemas constituídos pelo óleo de cravo-da-índia e o CO₂ dentro do extrator e pelos mesmos compostos dentro do separador pode ser considerada praticamente ideal.

Além disso, outro ponto específico ao óleo de cravo-da-índia deve ser analisado: o funcionamento do destilador flash exerce influência significativa apenas sobre a perda de CO₂, sendo que seu efeito sobre a perda de extrato é praticamente imperceptível. No entanto, o custo da matéria-prima (US\$ 0,505/ kg) é significativamente superior ao do CO₂ (US\$ 0,10/ kg). Por isso, nos casos de sistemas de extração em que as condições de operação do separador exercem grande impacto sobre a perda de extrato dissolvido na fase gasosa, este tipo de estudo pode ser determinante na análise de viabilidade econômica do processo.

Capítulo 5 – Conclusões e Sugestões

Em relação aos experimentos de rendimento global com a macela, da análise dos dados de concentração de compostos fenólicos totais e flavonóides para os extratos de ESBP, das Figuras 4.7 a 4.10 e da Tabela 4.8, que apresentam as influências da pressão e da temperatura sobre as concentrações destes mesmos grupos de compostos nos extratos de ESC (Itens 4.2.3.2 e 4.2.3.3), é possível afirmar que, uma vez que estas substâncias apresentam polaridade relativamente elevada, a utilização de um solvente de maior afinidade química com as mesmas favoreceu sua extração. Portanto, comparando-se as Figuras 4.7 e 4.8 e as Figuras 4.9 e 4.10, para as quantificações de compostos fenólicos e flavonóides, respectivamente, nota-se que a presença do etanol misturado ao CO₂ supercrítico proporcionou incrementos significativos nos teores destes compostos nos extratos supercríticos. Estes resultados estão de acordo com a suposição feita por Murga et al [82], que diz que, pelo fato de o etanol ser uma substância com capacidade para estabelecer ligações do tipo ponte de hidrogênio e dipolo-dipolo com os compostos fenólicos, o mesmo provavelmente constituiria um co-solvente adequado para a obtenção dos compostos fenólicos presentes nas sementes de uva através de ESC. No mesmo estudo, esta suposição foi confirmada através de resultados experimentais que mostraram que quanto maior a porcentagem de etanol misturada ao solvente supercrítico, maior foi concentração dos compostos fenólicos nos extratos.

As amostras obtidas por ESBP apresentaram concentrações ainda maiores de compostos fenólicos e flavonóides do que as observadas para as obtidas por ESC com CO₂ + etanol. Entre os três métodos utilizados, o extrato obtido por agitação apresentou os

melhores resultados tanto para a atividade antioxidante quanto para as concentrações de compostos fenólicos e flavonóides, apesar de ter sido o método de ESBP de menor rendimento. Esta observação indica que, mesmo tendo sido empregados uma quantidade moderada de solvente e um tempo de extração relativamente curto, este foi o método de ESBP mais seletivo para a obtenção dos compostos fenólicos.

Quanto às atividades antioxidantes das amostras, o extrato que apresentou o melhor resultado foi o obtido por ESC com CO_2 + etanol, a 30 °C e 300 bar. O extrato de menor atividade antioxidante foi o obtido por ESC com CO_2 puro, a 60 °C e 100 bar. Todas as demais amostras apresentaram atividades mais que 40 % superiores à do β -caroteno.

Finalmente, as metodologias de extração estudadas para o caso da macela (*A. satureioides*) podem ser listadas ordenadamente, dos maiores para os menores valores obtidos, em termos de rendimento de extração: ESBP por percolação (20:1 e 100:1) > ESBP por centrifugação > ESBP por agitação > ESC com CO₂ + etanol > ESC com CO₂ supercrítico puro. No entanto, é importante citar que o fato de um determinado método proporcionar maior rendimento de extração não necessariamente significa que este contenha todos os compostos presentes na planta de origem e que os mesmos são bioativos; outro extrato obtido através de um processo associado a um menor rendimento pode apresentar maior atividade. Em relação a este tipo de fenômeno, a análise das composições de extratos de casca de bacuri obtidos através de diferentes métodos realizada por Monteiro *et al* [83] constitui um exemplo muito representativo. Neste estudo, apesar de os dois métodos de ESBP, realizados a quente e a frio, ambos com etanol, terem apresentado rendimentos significativamente mais elevados (21,64 e 28,56 %, respectivamente) do que as extrações com CO₂ Ifquido (0,31 %) e com CO₂ supercrítico

(1,21 %), a análise por cromatografia gasosa indicou a presença de 8 e 9 compostos, respectivamente, nos extratos obtidos com dióxido de carbono, enquanto apenas 2 compostos foram identificados nos extratos obtidos com etanol, em concentrações diferentes em cada um deles. Estes resultados refletem a importância da escolha da melhor tecnologia, assim como do solvente mais adequado à obtenção de determinados grupos de compostos, o que corrobora a afirmação de que o processo de extração deve ser desenvolvido e otimizado especificamente, de acordo com fatores que englobem tanto aspectos econômicos quanto a qualidade do produto final e a aplicação futura do extrato.

Quanto ao estudo da influência da geometria de leito sobre a cinética de extração da A. satureioides sem utilização de co-solvente, os resultados obtidos indicam que existe a possibilidade de a Equação 2.2 não ser eficaz na reprodução do comportamento cinético quando aumentos de escala significativos como da escala experimental para escala piloto, ou até mesmo industrial, forem necessárias. No entanto, os equipamentos utilizados até o momento para este estudo, não permitiram aumentar a massa de alimentação de forma que os resultados fossem conclusivos. A realização de experimentos em equipamento de extração que possibilite esta modificação é recomendável.

Os experimentos cinéticos de extração supercrítica de macela (*A. satureioides*) utilizando-se a mistura CO₂ supercrítico + etanol como solvente de extração mostraram que os rendimentos tanto de extrato bruto quanto de quercetina foram favorecidos pela aplicação do período estático de 60 min. Por outro lado, não foi possível chegar a uma conclusão definitiva sobre as influências da vazão e da porcentagem de co-solvente. Apesar de o esgotamento do leito de extração não ter sido atingido, notou-se que a redução tanto do teor de etanol na mistura de solventes quanto da vazão de solvente acarretaram uma desaceleração no processo de extração. No entanto, não foi possível determinar se a

utilização de períodos de extração mais longos não contrabalançariam o efeito da redução destes parâmetros sobre os rendimentos de extração ou de quercetina. Desta forma, o estudo da viabilidade econômica e os efeitos das variações dos parâmetros de extração sobre o custo de manufatura auxiliariam na otimização do processo de forma decisiva.

No que diz respeito aos resultados das simulações da etapa de separação com o software SuperPro[®] Designs, as influências das variações de pressão e temperatura foram semelhantes para os dois sistemas estudados (óleo de cravo-da-índia + CO₂ e extrato de vetiver + CO₂). No entanto, foi possível observar que as características dos compostos que compõem o extrato influenciam de forma significativa a seleção das condições de operação do separador. Desta forma, seria recomendável analisar cada caso de forma específica.

No caso do óleo de cravo-da-índia, notou-se que a variação das condições de operação do destilador flash utilizado como separador não influenciou o rendimento de extração de forma expressiva. Porém, foi possível observar variações significativas nas taxas de perda de CO₂ diluído junto à fase pesada (extrato). Além disso, as taxas de perda de CO₂ afetaram o custo de matéria-prima e, conseqüentemente, o de manufatura, de forma predominante. Entretanto, a elevação do custo foi reduzida (aproximadamente US\$ 0,20).

Por outro lado, a combinação dos equilíbrios de fases formados dentro do leito de extração e do separador pelo sistema cravo-da-índia + CO₂ pode ser considerada praticamente ideal ao funcionamento do sistema com recirculação de solvente, uma vez que as solubilidades do extrato no solvente em cada uma destas etapas apresentam ordens de grandeza extremamente discrepantes.

Portanto, o impacto das condições de operação do separador sobre a eficiência do processo de extração é específico a cada sistema ou tipo de matéria-prima empregado.

Ainda sobre a utilização do software SuperPro® Designs 6.0, de acordo com Takeuchi et al [38], a comparação dos dados de equilíbrio obtidos através do software com aqueles estimados através modelagem pela equação de Peng-Robinson e da regra quadrática de mistura de van der Waals mostrou que os resultados não foram suficientemente próximos. Assim, uma vez que o software apenas permite a utilização da equação de Peng-Robinson sem que os parâmetros de mistura possam ser ajustados, concluiu-se que este fator foi determinante para a baixa precisão dos dados de equilíbrio fornecidos pela ferramenta de simulação. Por outro lado, os mesmos autores comentam que este software constitui uma ferramenta de importância relevante à área de desenvolvimento de processos, uma vez que é de utilização relativamente simples e poderia facilitar, e até mesmo acelerar, a comunicação entre a comunidade científica e o setor industrial de forma significativa. Portanto, tornar possível o ajuste dos parâmetros de mistura através desta ferramenta representaria uma modificação simples e valiosa frente aos possíveis benefícios decorrentes da mesma.

5.1 Sugestões para continuidade dos estudos

 O aprofundamento dos estudos em relação à identificação dos compostos majoritários dos extratos de macela (tanto por ESC quanto por ESBP) possibilitaria vislumbrar e avaliar empregos mais objetivos para os produtos obtidos, assim como viabilizaria o estudo de métodos de aumento de escala e de estimativa de custos de manufatura.

- Para que fosse possível chegar a conclusões definitivas em relação à eficiência da Equação 2.2 em reproduzir a cinética de extração em diferentes equipamentos, seria necessário testá-la utilizando dois equipamentos com escalas de processo significativamente mais discrepantes (ex.: laboratorial e piloto) do que os utilizados no presente estudo (SFE-I e SFE-II).
- Em relação ao estudo da cinética de extração supercrítica de macela com utilização de etanol como co-solvente, a estimativa do custo de manufatura do produto, assim como a avaliação do impacto de parâmetros de operação (como a vazão de solvente e a porcentagem de co-solvente utilizado) sobre este custo, possibilitaria chegar a resultados mais conclusivos sobre a otimização do processo de extração.
- A avaliação da possibilidade de melhoria do software SuperPro Designs[®] 6.0 de forma a disponibilizar a opção de introduzir parâmetros de interação binária em processos envolvendo equilíbrios de fases tem o potencial de colocar à disposição dos profissionais de desenvolvimento de processos uma ferramenta prática e economicamente acessível para a avaliação da incorporação de novas tecnologias à industria. No caso específico da extração supercrítica, alternativa tradicionalmente descartada na etapa inicial por ser comumente relacionada a elevados custos de investimento, seria possível avaliar a viabilidade econômica do processo de forma criteriosa e detectar os casos onde a aplicação desta tecnologia seria vantajosa tanto em termos de qualidade do produto final quanto em relação aos custos de manufatura.

Capítulo 6 - Referências Bibliográficas

- [1]. Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A. Analysis, Synthesis, and Design of Chemical Process, Prentice Hall-PTR, New Jersey, 2003, pp. 187-218.
- [2]. Arredondo, M.F.; Blasina, F.; Echeverry, C.; Morquio, A.; Ferreira, M.; Abin-Carriquiry, J.A.; Lafon, L.; Dajas, F. Cytoprotection by *Achyrocline satureioides* (Lam) D.C. and some of its main flavonoids against oxidative stress. *Journal of Ethnopharmacology*, **2004**, 91, 13-20.
- [3]. Broussalis, A.M.; Ferraro, G.E.; Gurni, A.; Coussio, J.D. Phenolic Constituents of Four *Achyrocline* Species. *Biochemical Systematics and Ecology* **1988**, 10, 401-402.
- [4]. De Souza, K.C.B.; Schapoval, E.E.S.; Bassani, V.L. LC Determination of Flavonoids: Separation of Quercetin, Luteolin e 3-O-Methylquercetin in *Achyrocline satureoides* Preparations. *J. of Pharmaceutical and Biomedical Analysis* **2002**, 28, 771-777.
- [5]. Kadarian, C.; Broussalis, A.M.; Miño, J.; Lopez, P.; Gorzalczany, S.; Ferraro, G.; Acevedo, C. Hepatoprotective Activity of *Achyrocline satureoides* (LAM) D.C. *Pharmacological Research* **2002**, 45, 57-61.
- [6]. Ruffa, M.J.; Ferraro, G.; Wagner, M.L.; Calcagno, M.L.; Campos, R.H.; Cavallaro, L. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. *Journal of Ethnopharmacology* **2002**, 79, 335-339.
- [7]. Polydoro, M.; De Souza, K.C.B.; Andrades, M.E.; Da Silva, E.G.; Bonatto, F.; Heydrich, J.; Dal-Pizzol, F.; Schapoval, E.E.S.; Bassani, V.L.; Moreira, J.C.F. Antioxidant, a pro-oxidant and cytotoxic effects of *Achyrocline saturioides* extracts. *Life Sciences*, **2004**, 74, 2815-2826.
- [8]. Gugliucci, A.; Menini, T. Three different pathways for human LDL oxidation are inhibited in vitro by water extracts of the medicinal herb *Achyrocline satureioides*. *Life Sciences*, **2002**, 71, 693-705.
- [9]. Dickel, M.L.; Rates, S.M.K.; Ritter, M.R. Plants popularly used for losing weight purposes in Porto Alegre, South Brazil. *Journal of Ethnopharmacology*, **2007**, 60.71.
- [10]. De Souza, K.C.B.; Bassani, V.L.; Schapoval, E.E.S. Influence of excipients and technological process on anti-inflammatory activity of quercetin and *Achyrocline satureioides* (Lam.) D.C. extracts by oral route. *Phytomedicine*, **2007**, 102-108.
- [11]. Bohlmann, F.; Abraham, W.R.; Robinson, H.; King, R.M. A new labdane derivative and geranylphloroglucinols from *Acryrocline alata*. *Phytochemistry*, **1980**, 19, 2475-2477.
- [12]. Rodrigues, R.A.F.; Queiroga, C.L.; Rodrigues, M.V.N.; Foglio, M.A.; Sartoratto, A.; Montanari, I. Study of the variation of the composition of the essential oil of leaves and flowers of *Achyrocline alata* (D.C.) along a period of the day. *Journal of Essential Oil Research*, **2002**, 14 (4), 280-281.

- [13]. Hnatyszyn, O.; Moscatelli, V.; Rondina, R.; Costa, M.; Arranz, C.; Balaszczuk, A.; Coussio, J.; Ferraro, G. Flavonoids from *Achyrocline satureioides* with relaxant effects on the smooth muscle of Guinea pig *corpus cavernosum*. *Phytomedicine*, **2004**, 11, 366-369.
- [14]. Leal, P.F.; Queiroga, C.L.; Rodrigues, M.V.N.; Montanari Jr, I.; Meireles, M.A.A. Global Yields, Chemical Compositions, and Antioxidant activities of extracts from *Achyrocline alata* and *Achyrocline satureioides*. *PHCOG MAG*, **2006**, 2(7), 153-159.
- [15]. Young-Cheol, Y.; Si-Hyeock, L.; Won-Ja, L.; Don-Ha, C.; Young-Joon, A. Ovicidal and adulticidal effects of *Eugenia caryophyllata* bud and leaf oil compounds on *Pediculus capitis*. *Journal of Agricultural and Food Chemistry*, **2003**, 51, 4884-4888.
- [16]. Matan, N.; Rimkeree, H.; Mawson, A.J.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. *International Journal Food Microbiology*, **2006**, 107, 180-185.
- [17]. Alqareer, A.; Alyahya, A.; Andersson, L. The effect of clove and benzocaine versus placebo as topical anesthesics. *Journal of Densitry*, **2006**, 34, 747-750.
- [18]. Raghavenra, H.; Diwakr, B.T.; Lokesh, B.R.; Naidu, K.A. Eugenol The active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells. *Prostaglandins, Leukotrienes and Essential Fatty Acids*, **2006**, 74, 23-27.
- [19]. Chae-Bin, Y.; Ki-Tae, H.; Kyu-Seok, C.; Joohun, H.; Hee-Juhn, P.; Jung-Hwan, N.; Uk-Hyun, K.; Kyung-Tae, L. Eugenol isolated from the essential oil of *Eugenia caryophyllata* induces a reactive oxygen species-mediated apoptosis in Hl-60 human promyelocytic leukemia cells. *Cancer Letters*, **2005**, 225, 41-52.
- [20]. Jayathilakan, K.; Sharma, G.K.; Radhakrishna, K.; Bawa, A.S. Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. *Food Chemistry*, **2007**, 105 (3), 908-916.
- [21]. Nguyen, P.; Mittal, G.S. Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials. *Chemical Engineering and Processing*, **2007**, 46, 360-365.
- [22]. Omidbeygi, M.; Barzegar, M.; Hamidi, Z.; Naghdibadi. Antifugal activity of thyme, summer savory and clove essential oils against *Aspergillus flavus* in liquid medium and tomato paste. *Food Control*, **2007**, 18, 1518-1523.
- [23]. Naveena, B.M.; Muthukumar, M.; Sen, A.R.; Babji, Y.; Murthy, T.R.K. Improvement of shelf-life of buffalo meat using lactic acid, clove oil and vitamin C during retail display. *Meat Science*, **2006**, 74, 409-415.
- [24]. Tomaino, A.; Cimino, F.; Zimbalatti, V.; Venuti, V.; Sulfaro, V.; De Pasquale, A.; Saija, A. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. *Food Chemistry*, **2005**, 89, 549-554.
- [25]. Reverchon, E.; Marrone, C. Supercritical extraction of clove bud essential oil: isolation and mathematical modeling. *Chemical Engineering Science*, **1997**, 52 (20), 3421-3428.

- [26]. Rodrigues, V.M.; Sousa, E.M.B.D.; Monteiro, A.R.; Chiavone-Filho, O.; Marques, M.O.M.; Meireles, M.A.A. Determination of the solubility of extracts from vegetable raw material in pressurized CO₂: a pseudo-ternary mixture formed by cellulosic structure + solute + solvent. *Journal of Supercritical Fluids*, **2002**, 22, 21-36.
- [27]. Kong-Wei, C.; Shin-Jien, K.; Muoi, T.; Yan-Ping, C. Vapor-liquid equilibria at elevated pressures of binary mixtures of carbon dioxide with methyl salicylate, eugenol, and diethyl phthalate. *Journal of Supercritical Fluids*, **2000**, 18, 87-99.
- [28]. Souza, A.T.; Corazza, M.L.; Cardozo-Filho, L.; Guirardello, R.; Meireles, M.A.A. Phase Equilibrium Measurements for the System Clove (*Eugenia caryophyllus*) Oil + CO₂. *Journal of Chemical & Engineering Data*, **2004**, 49, 352-356.
- [29]. Rosa, P.T.V.; Meireles, M.A.A. Rapid estimation of the manufacturing cost of extracts obtained by supercritical fluid extraction. *Journal of Food Engineering*, **2005**, 67, 235-240.
- [30]. Wenqiang, G.; Shufen, L.; Ruixiang, Y.; Shaokun, T.; Can, Q. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. *Food Chemistry*, **2007**, 101, 1558-1564.
- [31]. Martinez, J.; Rosa, P.T.V.; Menut, C.; Leydet, A.; Brat, P.; Pallet, D.; Meireles, M.A.A. Valorization of Brazilian vetiver (*Vetiveria zizanoides* (L.) Nash ex Small) Oil. *J. Agric. Food. Chem.*, **2004**, 52, 6578-6584.
- [32]. Singh, S.; Eapen, S.; Thorat, V.; Kaushik, C.P.; Raj, K.; D'Souza, S.F. Phytoremediation of ¹³⁷cesium and ⁹⁰strontium from solutions and low-level nuclear waste by *Vetiveria zizanoides*. *Ecotoxicology and Environmental Safety*, Article in Press, **2007**.
- [33]. Wilde, E.W.; Brigmon, R.L.; Dunn, D.L.; Heitkamp, M.A.; Dagnan, D.C. Phytoextraction of lead from firing range soil by Vetiver grass. *Chemosphere*, **2005**, 61, 1451-1457.
- [34]. Makris, K.C.; Shakya, K.M.; Datta, R.; Sarkar, D.; Pachanoor, D. High uptake of 2,4,6 trinitrotoluene by vetiver grass Potential for phytoremediation? *Environmental Pollution*, **2007**, 146, 1-4.
- [35]. Maistrello, L.; Henderson, G.; Laine, R.A. Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite (Isoptera: Rhinotermitidae). *Journal of Economic Entomology*, **2001**, 94 (6), 1532-1537.
- [36]. Mao, L.; Henderson, G.; Bourgeois, W.J.; Vaughn, J.A.; Laine, R.A. Vetiver oil and nootkatone effects on the growth of pea and citrus. *Industrial Crops and Products*, **2006**, 23, 327-332.
- [37]. Massardo, D.R.; Senatore, F.; Alifano, P.; Giudice, L.D.; Pontieri, P. Vetiver oil production correlates with early root growth. *Biochemical Systematics and Ecology*, **2006**, 34, 376-382.
- [38]. Takeuchi, T.M.; Leal, P.F.; Favareto, R.; Cardozo-Filho, L.; Corazza, M.L.; Rosa, P.T.V.; Meireles, M.A.M. Study of the phase equilibrium formed inside the flash tank used at the separation step of a supercritical fluid extraction unit. *Journal of Supercritical Fluids*, **2008**, 43, 447-459.

- [39]. Vedamaran, N.; Brunner, G.; Srinivasa Kannan, C.; Ramabrahmam, B.V.; Rao, P.G. Solubility of *N*-CBZ derivatised amino acids in supercritical carbon dioxide. *J. Supercrit. Fluids*, **2004**, 30, 119-125.
- [40]. Sovová, H.; Sajfrtová, M.; Bártlová, M.; Opletal, L. Near-critical extraction of pigments and oleoresin from stinging nettle leaves. *Journal of Supercritical Fluids*, **2004**, 30, 213-224.
- [41]. Sarmento, L.A.V.; Machado, R.A.F.; Bolzan, A.; Spricigo, C.B.; Petrus, J.C.C. Use of Reverse Osmosis Membranes for the Separation of Lemongrass Essential Oil and Supercritical CO₂. *Brazilian Journal of Chemical Engineering*, **2004**, 21 (2), 285-291.
- [42]. Tonthubthimthong, P.; Douglas, P.L.; Douglas, S.; Luewisutthichat, W.; Teppaitoon. W.; Pengsopa, L. Extraction of nimbin from neem seed using supercritical CO₂ and a supercritical CO₂- methanol mixture. *Journal of Supercritical Fluids*, **2004**, 30, 287-301.
- [43]. Pereira, C.G.; Marques, M.O.M.; Barreto, A.S.; Siani, A.C.; Fernandes, E.C.; Meireles, M.A.M. Extraction of índole alkaloids from *Tabernaemontana* catharinensis using supercritical CO₂ + ethanol: An evaluation of the process variablesand the raw material origin. *Journal of Supercritical Fluids*, **2004**, 30, 51-61.
- [44]. Mendes, R.L.; Nobre, B.P.; Cardoso, M.T.; Pereira, A.P.; Palavra, A.F. Supercritical carbon Dioxide extraction of compounds with pharmaceutical importance from microalgae. *Inorganica Chimica Acta*, **2003**, 356, 328-334.
- [45]. Esmelindro, A.A.; Girardi, J.D.S.; Mossi, A.; Jacques, R.S.; Dariva, C. Influence of Agronomic Variables on the Composition of Mate Tea Leaves (*Ilex paraguariensis*) Extracts Obtained from CO₂ Extraction at 30°C and 175 bar. *Journal of Agricultural and Food Chemistry*, **2004**, 52, 1990-1995.
- [46]. Leal, P. F., Braga, M. E., Sato, D. N., Carvalho, J. E., Marques, M. O. M., Meireles, M. A. A., Functional Properties of Spice Extracts Obtained via Supercritical Fluid Extraction *Journal of Agricultural and Food Chemistry*, **2003**, 51(9), 2520-2525.
- [47]. Yang, H.; Zhong, C. Modeling of the solubility of aromatic compounds in supercritical carbon dioxide- cosolvent systems using SAFT equation of state. *Journal of Supercritical Fluids*, **2005**, 33, 99-106.
- [48]. Grigonis, D.; Venskutonis, P.R.; Sivik, B.; Sandahl, M.; Eskilsson, C.S. Comparison of different extraction techniques for isolation of antioxidants from sweet grass (*Hierchloë odorata*). *Journal of Supercritical Fluids*, **2005**, 33, 223-233.
- [49]. Braga, M.E.M.; Leal, P.F.; Carvalho, J.E.; Meireles, M.A.M. Comparison of Yield, Composition, and Antioxidant Activity of Turmeric (*Curcuma longa L.*) Extracts Obtained Using Various Techniques. *Journal of Agricultural and Food Chemistry*, **2002**, 51, 6604-6611.
- [50]. Ko, T.F.; Weng, Y.M.; Chiou, R.Y.Y. Squalene Content and Antioxidant Activity of *Terminalia catappa* Leaves and Seeds. *Journal of Agricultural and Food Chemistry*, **2002**, 50, 5343-5348.

- [51]. Moura, L.S.; Carvalho Jr., R.N.; Stefanini, M.B.; Ming, L.C.; Meireles, M.A.M. Supercritical fluid extraction from fennel (*Foeniculum vulgare*): global yield, composition and kinetic data. *Journal of Supercritical Fluids*, **2005**, 35, 212-219.
- [52]. Martinez, J.; Monteiro, A.R.; Rosa, P.T.V.; Marques, M.O.M.; Meireles, M.A.M. Multicomponent Model To Describe Extraction of Ginger Oleoresin with Supercritical Carbon Dioxide. *Industrial and Engineering Chemistry Research*, **2003**, 42, 1057-1063.
- [53]. Carvalho-Jr., R.N.; Moura, L.S.; Rosa, P.T.V.; Meireles, M.A.A. Supercritical fluid extraction from Rosemary (*Rosmarinus officinalis*): Kinetic data, extract's global yield, composition, and antioxidant activity. *Journal of Supercritical Fluids*, **2005**, 35, 197-204.
- [54]. Carvalho-Jr, R.N.; Corazza, M.L.; Cardozo-Filho, L.; Meireles, M.A.A. Phase equilibrium for (camphor + CO₂), (camphor + propane), and (camphor + CO₂ + propane). *Journal of Chemical Engineering Data*, **2006**, 51, 997-1000.
- [55]. Moura, L.S.; Corazza, M.L.; Cardozo-Filho, L.; Meireles, M.A.A. Phase equilibrium measurements for the system fennel (*Foeniculum vulgare*) extract + CO₂. *Journal of Chemical Engineering Data*, **2005**, 50, 1657-1661.
- [56]. Jacobs, M. The chemical analysis of food and food products. 3a ed. Robert Krieger Publishing Co. inc., p.22-23, 1973.
- [57]. Leal, P.F. Obtenção de extratos vegetais com propriedades funcionais via tecnologia supercrítica: uso de CO₂ e CO₂ + H₂O. Tese de Mestrado em Engenharia de Alimentos. Faculdade de Engenharia de Alimentos Unicamp **2005**.
- [58]. Pesek, C.A.; Wilson, L.A.; Hammond, E.G.; Spice Quality: effect of cryogenic and ambient granging on volatile. *Journal of Food Science*, **1985**, 50(3), 599-601.
- [59]. Pasquel, A.; Meireles, M.A.A.; Marques, M.O.M.; Petenate, A.J. Extraction of stevia glycosides with CO₂ + water, CO₂ + ethanol, and CO₂ + water + ethanol. *Brazilian Journal of Chemical Engineering*, **2000**, 17, 271-279.
- [60]. Pereira, C.G. Obtenção de extratos de leiteira de dois irmãos (*Tabernaemontana catharinensis* A.D.C.), cidrão (*Aloysia triphylla* L'Herit Britton) e manga (*Mangifera indica* L.) por extração supercrítica: estudo dos parâmetros de processo, caracterização e atividade antioxidante dos extratos. Tese de Doutorado em Engenharia de Alimentos, DEA FEA Unicamp, Campinas, SP, 2005.
- [61]. NIST Chemistry Webbook (http://webbook.nist.gov/chemistry/ properties for fluid systems (http://webbook.nist.gov/chemistry/fluid/) for carbon dioxide. NIST (National Institute of Standards and Technology) Standard Reference Database Number 69, June 2005 Release.
- [62]. Freud, R. J.; Little, R. C. SAS System for Regression. SAS Series in Statistical applications, 2nd ed.; SAS Institute: Cary, NC, 1995; p 211.
- [63]. Rodrigues, V.M.; Rosa, P.T.V.; Marques, M.O.M.; Petenate, A.J.; Meireles, M.A.A. Supercritical Extraction of Essential Oil from Aniseseed (*Pimpinella anisum* L.) using CO₂: Solubility, Kinetics, and Composition Data. *Journal of Agricultural and Food Chemistry* **2003**, 1518–1523.

- [64]. Povh, N.P.; Marques, M.O.M.; Meireles, M.A.A. Supercritical CO₂ extraction of essential oil and oleoresin from chamomile (*Chamomilla recutita* [L.] Rauschert). *Journal of Supercritical Fluids*, **2001**, 21, 245-256.
- [65]. Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids. 4th Ed., McGraw-Hill Book Company, USA, 1987.
- [66]. Joback, K.G.; Reid, R.C. Estimation of pure-component properties from group-contributions. *Chemical Engineering Communications*, **1987**, 57, 233-243.
- [67]. Martínez, J. Extração de óleos voláteis e outros compostos com CO₂ supercrítico: desenvolvimento de uma metodologia de aumento de escala a partir da modelagem matemática do processo e avaliação dos extratos obtidos. Tese de Doutorado em Engenharia de Alimentos, DEA FEA UNICAMP, Campinas, SP, 2005.
- [68]. Stull, D.R. Vapor Pressure of Pure Substances. *Industrial & Engineering Chemistry*, **1947**, 39, 517-540.
- [69]. Peng, D.; Robinson, D.B. A New Two-Constant Equation of State. *Industrial and Engineering Chemistry Fundamentals* **1976**, 15 (1), 59-64.
- [70]. Sandler, S.I. Chemical and Engineering Thermodynamics, John Wiley & Sons, Inc., USA, 1999.
- [71]. Rodrigues, V.M. Determinação da Solubilidade em Sistemas Pseudo-Ternários: Cravo da Índia (*Eugenia caryophyllus*) + CO₂, Gengibre (*Zingiber officinale*) + CO₂ e Erva Doce (*Pimpinella anisum*) + CO₂. Tese de Doutorado da Faculdade de Engenharia de Alimentos FEA/ Unicamp.
- [72]. Hammerschmidt P. A.; Pratt, D. E. Phenolic antioxidants of dried soybeans. Journal of Food Science 1978, 43, 556-559.
- [73]. Zancan, K. C., Marques, M.O.M., Petenate, A. J., Meireles, M. A. A. Extraction of ginger (*Zingiber officinale* Roscoe) oleoresin with CO₂ and co-solvents: a study of the antioxidant action of the extracts. *Journal of Supercritical Fluids* **2002**, 24, 57–76.
- [74]. Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolic of edible mushroom extracts. *Food Chemistry*, **2003**, 81, 249-255.
- [75]. Kim, D.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. *Food Chemistry*, **2003**, 81, 321-326.
- [76]. Adams, R.P. Identification of Essential Oil Components by Gas Spectroscopy. Chromatography/ Mass 1^{st} Edition, Allured **Publishing** Corporation. Illinois, EUA, 1995, 456p.
- [77]. Novák, J.P. Quantitative Analysis by Gas Chromatography. Marcel Dekker Inc., 2nd Edition, New York, 1988.
- [78]. Wagner, H.; Bladt, S.; Zgainski, E.M. Plant Drug Analysis A Thin Layer Chromatography Atlas. Springer- Verlag Berlin heidelberg, Alemanha, **1984**.
- [79]. Yeo, S.-D.; Park, S.-J.; Kim, J.-W.; Kim, J.-C. Critical properties of carbon dioxide + methanol, + ethanol, + 1-propanol, and + 1-butanol. *Journal of Chemical Engineering Data*, **2000**, 45, 932-935.

- [80]. Puhlmann, J.; Knaus, U.; Tubaro, L.; Schaefer, W.; Wagner, H. Immunologically active metallic ion-containing polysaccharides of *Achyrocline satureioides*. *Phytochemistry*, **1992**, 31 (8), 2617-2621.
- [81]. Wikipedia The Free Enciclopedia (http://en.wikipedia.org/wiki/Humulene e http://en.wikipedia.org/wiki/Caryophyllene acessados em 10 Dez de 2008)
- [82]. Murga, R.; Ruiz, R.; Beltrán, S.; Cabezas, J.L. Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. *Journal of Agricultural and Food Chemistry*, **2000**, 48, 3408-3412.
- [83]. Monteiro, A.R.; Meireles, M.A.A.; Marques, M.O.M.; Petenate, A.J. Extraction of the soluble material from the shells of the bacuri fruit (*Platonia insignis* Mart) with pressurized CO₂ and other solvents. *Journal of Supercritical Fluids*, **1997**, 11, 91-102.

Capítulo 7 - Anexos

7.1 Resultados numéricos para atividade antioxidante dos extratos (Item 4.2.3.1).

Tabela 7.1 – Dados de leitura de absorbância das amostras controle utilizados no cálculo das atividades antioxidantes das amostras de *A. satureioides* após cada hora de reação.

Amostus	Domlinata	Absorbância (470 nm)			
Amostra	Replicata	0 hora	1 hora	2 horas	3 horas
Controle amostras SFE c/ CO ₂ puro a 30 e	1	1.6284	1.0338	0.7722	0.6664
45°C em todas as pressões	2	1.4680	0.9719	0.7256	0.6252
	3	1.8925	1.1973	0.9045	0.7773
Controle amostras SFE c/ CO ₂ puro a 60°C	1	1.1469	0.8105	0.6610	0.5692
em todas as pressões e ESBP por Percolação (1:20) e Centrifugação	2	1.1203	0.8111	0.6470	0.5526
rercolação (1.20) e Celitifugação	3	1.1844	0.8413	0.6803	0.5933
Controle amostras SFE c/ CO ₂ + etanol e	1	0.8129	0.5564	0.4560	0.3947
ESPB (Percolação (1:100) e Agitação)	2	0.8473	0.5392	0.4107	0.3516
	3	0.8817	0.6403	0.4857	0.4196

Tabela 7.2 – Dados de leitura de absorbância das amostras diluídas de *A. satureioides* obtidas por ESPB utilizados no cálculo da atividade antioxidante.

Máto do do Entração	Danlingta	Absorbância (470 nm)			
Método de Extração	Replicata	0 hora	1 hora	2 horas	3 horas
Percolação (1:20)	1	1.9281	1.8156	1.7716	1.7409
-	2	2.2520	2.1164	2.0774	2.0519
	3	1.7946	1.6971	1.6783	1.6831
Percolação (1:100)	1	0.6531	0.5431	0.5256	0.4906
	2	0.6681	0.5668	0.5266	0.4675
Centrifugação	1	0.8956	0.8483	0.8272	0.7954
	2	1.2387	1.1861	1.1670	1.1362
	3	1.0568	1.0044	0.9917	0.9704
Agitação	1	0.8700	0.7988	0.7713	0.7689
	2	0.6775	0.6512	0.6278	0.6247

Tabela 7.3 – Dados de leitura de absorbância das amostras diluídas de *A. satureioides* obtidas por SFE com CO₂ puro para o cálculo da atividade antioxidante.

Town andtung	Pugga ~ (han)	Danlingta		Absorbânc	ia (470 nm)	
Temperatura	Pressão (bar)	Replicata	0 hora	1 hora	2 horas	3 horas
30°C	100	1	2.3175	2.0157	1.9044	1.8248
		2	2.9052	2.5010	2.3718	2.3105
		3	2.1184	1.9034	1.8143	1.7463
	150	1	2.3593	2.1058	1.9929	1.9068
		2	1.7673	1.6088	1.5431	1.5238
		3	1.9348	1.7633	1.6828	1.6293
	200	1	1.6574	1.5465	1.4538	1.4043
		2 3	2.1194	1.9171	1.8208	1.7882
		3	2.0095	1.8390	1.7654	1.7283
	250	1	1.7660	1.6323	1.5460	1.4968
		2	2.7553	2.4742	2.3780	2.3081
		3	3.5054	3.1933	3.0153	2.9075
	300	1	2.2033	2.0344	1.9492	1.8708
		2	1.7591	1.6489	1.6155	1.5830
		3	2.0742	1.9306	1.8719	1.8312
45°C	100	1	1.8434	1.5593	1.4342	1.3566
		2	1.9283	1.6496	1.5374	1.4711
		3	1.5423	1.3195	1.2439	1.2086
	150	1	1.7344	1.5668	1.4915	1.4301
		2	2.0051	1.8329	1.7397	1.6872
		2 3	1.9372	1.6861	1.6170	1.5796
	200	1	1.9863	1.8297	1.7321	1.6516
		2 3	2.0577	1.9115	1.8448	1.7892
		3	2.1243	1.9982	1.9253	1.8716
	250	1	1.9615	1.7622	1.6713	1.5973
		2	2.3837	2.1736	2.0637	2.0023
		3	1.9472	1.7947	1.7343	1.6895
	300	1	1.9094	1.7958	1.7060	1.6372
		2	2.1903	2.0834	2.0233	1.9752
		3	2.1622	2.0450	1.9927	1.9649
60°C	100	1	1.5176	1.0743	0.9503	0.8771
		2	1.4336	1.0518	0.9189	0.8351
	150	1	2.0943	1.8620	1.7809	1.7319
		2	1.9295	1.7185	1.6671	1.6277
		3	2.0175	1.8119	1.7530	1.7064
	200	1	1.6880	1.5200	1.4675	1.4171
		2	1.5258	1.3688	1.3416	1.3092
		3	1.6183	1.4529	1.4206	1.4003
	250	1	2.2721	2.0971	2.0494	1.9989
		2	2.8814	2.6576	2.6109	2.5456
		3	3.2576	2.9867	2.9287	2.8495
	300	1	1.7601	1.6717	1.6244	1.5783
		2	1.8262	1.7475	1.7168	1.6727
		3	1.7340	1.6483	1.6091	1.5789

Tabela 7.4 - Dados de leitura de absorbância dos extratos de *A. satureioides* obtidas por SFE com CO₂ + etanol para o cálculo da atividade antioxidante.

Townsatura	Duaga ão (hau)	Donlingta		Absorbânci	ia (470 nm)	
Temperatura	Pressão (bar)	Replicata	0 hora	1 hora	2 horas	3 horas
		1	1.0191	0.9916	0.9343	0.9293
	100	2	1.3218	1.2243	1.1585	1.1644
	100	3	1.4384	1.3823	1.2733	1.2670
		4	0.8081	0.8420	0.7797	0.7919
		1	1.0157	1.0115	0.9422	0.9557
30°C	200	2	0.8439	0.8470	0.7802	0.7909
	200	3	1.2583	1.2343	1.1062	1.1007
		4	1.0174	1.0134	0.9513	0.9602
		1	0.9382	0.9558	0.8991	0.9113
	300	2	0.9929	1.0101	0.9485	0.9618
		3	0.9113	0.9806	0.8599	0.8684
		4	1.1341	1.1050	1.0535	1.0558
		1	0.7721	0.6667	0.6351	0.5928
	100	2	0.8764	0.7548	0.7089	0.6790
		3	1.0733	1.0491	0.9861	0.9771
		4	1.4213	1.3859	1.2869	1.2668
		1	1.1814	1.0749	0.9969	0.9375
45°C	200	2	1.1234	1.0439	1.0013	0.9603
	200	3	0.9956	0.8812	0.8405	0.7975
		4	1.0622	0.9558	0.9086	0.8641
		1	1.1069	1.0791	1.0395	1.0186
	300	2 3	1.0801	1.0366	0.9865	0.9726
		3	1.0955	1.0694	1.0178	0.9739
			1.9690	1.0771	1.0321	1.0314

Tabela 7.5 – Dados numéricos das atividades antioxidantes dos extratos de *A. satureioides* obtidos através de diferentes métodos de extração com solvente a baixa pressão (ESBP).

Mátodo do Extugação	A	tividade Antioxidante (%)
Método de Extração	1 hora	2 hora	3 hora
Percolação (1:20)	65	69	71
Percolação (1:100)	53	57	51
Centrifugação	85	86	83
Agitação	82	81	83

Tabela 7.6 – Dados numéricos das atividades antioxidantes dos extratos de *A. satureioides* obtidos através de extração supercrítica com CO₂ puro.

T. (2C)	D	Ati	vidade Antioxidante	(%)
Temperatura ($^{\circ}\!\!C$)	Pressão (bar)	1 hora	2 horas	3 horas
	100	48	52	50
	150	67	67	66
30	200	73	71	70
	250	59	58	55
	300	76	77	74
	100	56	58	56
	150	67	68	66
45	200	75	74	71
	250	69	68	66
	300	81	79	77
	100	-25	-11	-7
60	150	34	43	44
	200	50	59	59
	250	32	44	41
	300	74	75	72

Tabela 7.7 – Dados numéricos das atividades antioxidantes dos extratos de A. satureioides obtidos através de extração supercrítica com CO_2 + etanol.

Taum anatuma (OC)	Progrão (bar)	Ati	(%)	
Temperatura ($^{\circ}\!$	Pressão (bar)	1 hora	2 horas	3 horas
	100	86	72	76
30	200	97	78	82
	300	107	86	90
	100	49	52	49
45	200	50	51	46
	300	92	83	81

7.2 Resultados numéricos para a análise de teor de compostos fenólicos totais nos extratos (Item 4.2.3.2).

Tabela 7.8 – Dados numéricos resultantes das análises com diferentes concentrações de padrão de ácido gálico para a construção da curva padrão (extratos obtidos por SFE com CO₂ puro e por ESBP por percolação (1:20) e centrifugação).

Concentração da solução de padrão de ácido gálico (mg/mL)	Abs ⁵ (725nm)
0.3880	2.1876
0.1940	1.9122
0.0970	1.0141
0.0728	0.7682
0.0485	0.5420
0.0379	0.4819
0.0121	0.1364
0.0243	0.2811
0.0161	0.1659
0.0081	0.0767
0.3880	2.1876
0.1940	1.9122

Tabela 7.9 – Dados numéricos resultantes das análises com diferentes concentrações de padrão de ácido gálico para a construção da curva padrão (extratos obtidos por SFE com CO_2 + etanol e por ESBP por percolação (1:100) e agitação).

Concentração da solução de padrão de ácido gálico (mg/mL)	Abs ⁶ (725 nm)
0.3880	2.1876
0.1940	1.9122
0.0970	1.0141
0.0728	0.7682
0.0485	0.5420
0.0379	0.4819
0.0121	0.1364
0.0243	0.2811
0.0161	0.1659
0.0081	0.0767
0.3880	2.1876
0.1940	1.9122

⁵ Média de três medidas (da mesma amostra) realizadas pelo equipamento.

⁶ Média de três medidas (da mesma amostra) realizadas pelo equipamento.

Tabela 7.10 – Resultados numéricos para a análise de teor de compostos fenólicos totais nos extratos de *A. satureioides* obtidos por extração com solvente a baixa pressão.

Método de Extração	Concentração de compostos fenólicos totai (mg EAG/ mg extrato)	
Percolação (1:20)	0,241	
Percolação (1:100)	0,246	
Centrifugação	0,250	
Agitação	0,314	

Tabela 7.11 – Dados numéricos para os resultados de teor de compostos fenólicos totais para os extratos de *A. satureioides* obtidos através de extração supercrítica com CO₂ puro.

	Concentração de compostos fenólicos totais (mg EAG/ mg extrato)					
Pressão (bar)	100	150	200	250	300	
30°C	0.087	0.094	0.101	0.091	0.086	
45°C	0.082	0.088	0.093	0.086	0.076	
60°C	-0.006	0.086	0.064	0.082	0.083	

Tabela 7.12 – Resultados numéricos para a análise de teor de compostos fenólicos totais nos extratos de *A. satureioides* obtidos por extração supercrítica com CO₂ + etanol.

	Concentração de compostos fenólicos totais (mg EAG/ mg extrato)			
Pressão (bar)	100	200	300	
30°C	0.124	0.132	0.136	
45°C	0.107	0.094	0.133	

7.3 Resultados numéricos para a análise de teor de flavonóides totais (Item 4.2.3.3).

Tabela 7.13 – Dados numéricos resultantes das análises com diferentes concentrações de padrão de quercetina para a construção da curva padrão (extratos obtidos por SFE com CO₂ puro e por ESBP por percolação (1:20) e centrifugação).

Concentração da solução de padrão de quercetina (mg/L)	Abs^7 (510 nm)
107.20	0.03396
85.76	0.03525
68.61	0.02462
54.89	0.02205
43.91	0.02029
35.13	0.01189
28.10	0.00853
243.00	0.10582
194.40	0.07501
116.64	0.04851

Tabela 7.14 – Dados numéricos resultantes das análises com diferentes concentrações de padrão de quercetina para a construção da curva padrão (extratos obtidos por SFE com CO_2 + etanol e por ESBP por percolação (1:100) e agitação).

Concentração da solução de padrão de quercetina (mg/L)	Abs^{8} (510 nm)
124.00	0.0427
99.20	0.0391
74.40	0.0314
49.60	0.0254
24.80	0.0159
12.40	0.0099

⁷ Média de três medidas (da mesma amostra) realizadas pelo equipamento.

⁸ Média de três medidas (da mesma amostra) realizadas pelo equipamento.

Tabela 7.15 – Resultados numéricos para a análise de teor de flavonóides totais nos extratos de *A. satureioides* obtidos por extração com solvente a baixa pressão.

Método de Extração	Concentração de compostos fenólicos totais (mg EQ/ mg extrato)	
Percolação (1:20)	1,17	
Percolação (1:100)	1,30	
Centrifugação	1,29	
Agitação	1,54	

Tabela 7.16 – Dados numéricos para os resultados de teor de flavonóides totais para os extratos de *A. satureioides* obtidos através de extração supercrítica com CO₂ puro.

	Concentração de compostos fenólicos totais (mg EQ/ mg extrato)					
Pressão (bar)	100	150	200	250	300	
30°C	0.0276	0.0373	0.0465	0.0387	0.0443	
45°C	0.0416	0.0461	0.0503	0.0452	0.0499	
60°C	0.0055	0.0475	0.0514	0.0540	0.0549	

Tabela 7.17 – Resultados numéricos para a análise de teor de flavonóides totais nos extratos de A. satureioides obtidos por extração supercrítica com CO_2 + etanol.

	Concentração de compostos fenólicos totais (mg EQ/ mg extrato)			
Pressão (bar)	100	200	300	
30°C	0.4603	0.4289	0.4924	
45°C	0.4012	0.4776	0.6869	

7.4 Curvas padrão utilizadas na quantificação de α-humuleno e trans-cariofileno nos extratos de macela

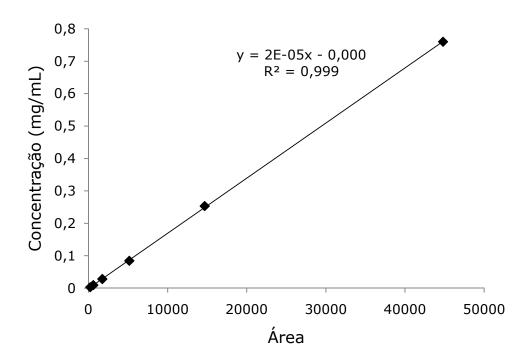


Figura 7.1 – Curva de calibração do α-humuleno.

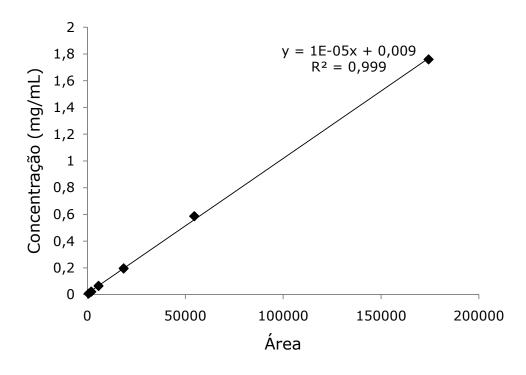


Figura 7.2 – Curva de calibração do trans-cariofileno.

As Figuras 7.1 e 7.2 apresentam as curvas de calibração do α-humuleno e do transcariofileno, respectivamente. Cada curva foi construída através do preparo de diferentes soluções de concentrações conhecidas de cada padrão que, ao serem injetadas no equipamento, forneciam a resposta do equipamento para cada concentração em termos de área de pico.

7.5 Dados dos experimentos cinéticos relacionados ao estudo de influência de geometria de leito (*A. satureioides* – Item 4.3.1)

Tabela 7.18 – Parâmetros dos experimentos cinéticos de referência realizados na SFE-II.

Replicata	1	2
Massa de amostra (g)	15,0001	15,0230
Pressão do leito (bar)		200
Temperatura do leito (${^{\circ}\!\!\!C}$)		45
Pressão ambiente (mbar)	939	938
Temperatura ambiente (${}^{\circ}\!$	30	33
$H_{B}\left(cm\right)$	16,5	16,3
$D_{B}\left(cm ight)$	3,205	3,138

Tabela 7.19 – Dados do primeiro experimento cinético (replicata 1) realizado na SFE-II⁹.

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	0.0909	0.6060	0.0909	0.6060	0.141928
40	0.0646	0.4307	0.1555	1.0367	0.286393
60	0.0391	0.2607	0.1946	1.2973	0.431390
80	0.0378	0.2520	0.2324	1.5493	0.574280
100	0.0153	0.1020	0.2477	1.6513	0.713958
120	0.0096	0.0640	0.2573	1.7153	0.848877
140	0.0066	0.0440	0.2639	1.7593	0.983612
160	0.0107	0.0713	0.2746	1.8307	1.115339
180	0.0069	0.0460	0.2815	1.8767	1.243574
200	0.0137	0.0913	0.2952	1.9680	1.374193
220	0.0007	0.0047	0.2959	1.9727	1.501790
240	0.0006	0.0040	0.2965	1.9767	1.628865
260	0.0002	0.0013	0.2967	1.9780	1.754829
280	0.0016	0.0107	0.2983	1.9887	1.881413
300	-0.0003	-0.0020	0.2980	1.9867	2.004937
Desp	0.0524	0.3493	0.3504	2.3360	

⁹ A média das duas replicatas realizadas na SFE-II foi utilizada como base de cálculo para a realização dos experimentos realizados na SFE-I, cujo objetivo era reproduzir o perfil obtido nos experimentos de referência.

169

 $\textbf{Tabela 7.20} \textbf{ -} \textbf{ Dados do segundo experimento cinético (replicata 2) realizado na SFE-II^{10}.}$

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	0.0458	0.3043	0.0458	0.3043	0.1303
40	0.0716	0.4757	0.1174	0.7799	0.2572
60	0.0369	0.2451	0.1543	1.0250	0.3897
80	0.0377	0.2504	0.1920	1.2755	0.5162
100	0.0215	0.1428	0.2135	1.4183	0.6409
120	0.0093	0.0618	0.2228	1.4801	0.7618
140	0.0155	0.1030	0.2383	1.5831	0.8856
160	0.0092	0.0611	0.2475	1.6442	1.0087
180	0.0062	0.0412	0.2537	1.6854	1.1293
200	0.0154	0.1023	0.2691	1.7877	1.2446
220	0.0017	0.0113	0.2708	1.7990	1.3560
240	0.0026	0.0173	0.2734	1.8162	1.4674
260	0.0029	0.0193	0.2763	1.8355	1.5815
280	0.0018	0.0120	0.2781	1.8475	1.6945
300	0.0314	0.2086	0.3095	2.0561	1.8065
Desp	0.0478	0.3175	0.3573	2.3736	

170

¹⁰ A média das duas replicatas realizadas na SFE-II foi utilizada como base de cálculo para a realização dos experimentos realizados na SFE-I, cujo objetivo era reproduzir o perfil obtido nos experimentos de referência.

Tabela 7.21 - Parâmetros dos experimentos cinéticos de realizados na SFE-I com aproximadamente 15 g de matéria-prima.

Replicata	1	2
Massa de amostra (g)	15,0174	15,0143
Pressão do leito (bar)		200
Temperatura do leito (${\mathcal C}$)		45
Pressão ambiente (mbar)	936	937
Temperatura ambiente (${^{\circ}\!$	26	25
$H_{B}\left(cm\right)$	5,53	5,53
$D_{B}\left(cm ight)$	5,45	5,45

Tabela 7.22 – Dados do primeiro experimento cinético (replicata 1) realizado na SFE-I com aproximadamente 15 g de matéria-prima.

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	0.1120	0.7458	0.1120	0.7458	0.0713
40	0.0592	0.3942	0.1712	1.1400	0.1449
60	0.0431	0.2870	0.2143	1.4270	0.2252
80	0.0168	0.1119	0.2311	1.5389	0.3042
100	0.0008	0.0053	0.2319	1.5442	0.3833
120	0.0097	0.0646	0.2416	1.6088	0.4590
140	0.0103	0.0686	0.2519	1.6774	0.5370
160	0.0076	0.0506	0.2595	1.7280	0.6132
180	0.0109	0.0726	0.2704	1.8006	0.6862
200	0.0042	0.0280	0.2746	1.8285	0.7610
220	0.0072	0.0479	0.2818	1.8765	0.8369
240	0.0040	0.0266	0.2858	1.9031	0.9138

Tabela 7.23 - Dados do segundo experimento cinético (replicata 2) realizado na SFE-I com aproximadamente 15 g de matéria-prima.

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	0.1301	0.8665	0.1301	0.8665	0.0715
40	0.0677	0.4509	0.1978	1.3174	0.1472
60	0.0439	0.2924	0.2417	1.6098	0.2217
80	0.0181	0.1206	0.2598	1.7304	0.2976
100	0.0157	0.1046	0.2755	1.8349	0.3816
120	0.0142	0.0946	0.2897	1.9295	0.4605
140	0.0078	0.0520	0.2975	1.9814	0.5416
160	0.0130	0.0866	0.3105	2.0680	0.6226
180	0.0057	0.0380	0.3162	2.1060	0.7015
200	0.0037	0.0246	0.3199	2.1306	0.7815
220	0.0105	0.0699	0.3304	2.2006	0.8611
240	0.0037	0.0246	0.3341	2.2252	0.9382
260	0.0018	0.0120	0.3359	2.2372	1.0204
280	0.0031	0.0206	0.3390	2.2578	1.0991
300	0.0121	0.0806	0.3511	2.3384	1.1757
Desp	0.0170	0.1132	0.3681	2.4517	

Tabela 7.24 - Parâmetros dos experimentos cinéticos de realizados na SFE-I com aproximadamente 30 g de matéria-prima.

Replicata	1	2
Massa de amostra (g)	30,0165	29,9946
Pressão do leito (bar)		200
Temperatura do leito (${}^{\circ}\!$		45
Pressão ambiente (mbar)	937	937
Temperatura ambiente (${}^{\circ}\!$	25	25
$H_B(cm)$	11,08	11,08
$D_{B}\left(cm ight)$	5,45	5,45

Tabela 7.25 – Dados do primeiro experimento cinético (replicata 1) realizado na SFE-I com aproximadamente 30 g de matéria-prima.

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	0.2803	0.93382	0.2803	0.9338	0.1501
40	0.1149	0.382789	0.3952	1.3166	0.3001
60	0.1094	0.364466	0.5046	1.6811	0.4420
80	0.0478	0.1592	0.5524	1.8403	0.5942
100	0.0326	0.1086	0.5850	1.9489	0.7417
120	0.0243	0.0810	0.6093	2.0299	0.9000
141.5	0.0213	0.0710	0.6306	2.1008	1.0562
160.68	0.0154	0.0513	0.6460	2.1521	1.2109
180	0.0096	0.0320	0.6556	2.1841	1.3631
200	0.0068	0.0227	0.6624	2.2068	1.5058
220	0.0057	0.0190	0.6681	2.2258	1.6721
240	0.0104	0.0346	0.6785	2.2604	1.8323
260	0.0064	0.0213	0.6849	2.2817	1.9895
280	0.0085	0.0283	0.6934	2.3101	2.1389
300	0.0016	0.0053	0.6950	2.3154	2.2936
Desp	0.0293	0.0976	0.7243	2.4130	

Tabela 7.26 - Dados do segundo experimento cinético (replicata 2) realizado na SFE-I com aproximadamente 30 g de matéria-prima.

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	0.2818	0.9395	0.2818	0.9395	0.1501
40	0.1523	0.5078	0.4341	1.4473	0.3046
60	0.0731	0.2437	0.5072	1.6910	0.4490
80	0.0378	0.1260	0.5450	1.8170	0.5967
100	0.0325	0.1084	0.5775	1.9253	0.7350
120	0.0242	0.0807	0.6017	2.0060	0.8869
140	0.0176	0.0587	0.6193	2.0647	1.0451
160	0.0123	0.0410	0.6316	2.1057	1.2063
180	0.0098	0.0327	0.6414	2.1384	1.3598
200	0.0073	0.0243	0.6487	2.1627	1.5168
220	0.0060	0.0200	0.6547	2.1827	1.6632
240	0.0066	0.0220	0.6613	2.2047	1.8110
260	0.0048	0.0160	0.6661	2.2207	1.9589
280	0.0033	0.0110	0.6694	2.2317	2.1067
Desp	0.0279	0.0930	0.6973	2.3248	

Tabela 7.27 - Parâmetros dos experimentos cinéticos de realizados na SFE-I com aproximadamente 10 g de matéria-prima.

Replicata	1	2
Massa de amostra (g)	10,0045	9,9985
Pressão do leito (bar)		200
Temperatura do leito (${\mathcal C}$)		45
Pressão ambiente (mbar)	936	940
Temperatura ambiente ($^{\circ}\!$	27	25
$H_{B}\left(cm\right)$	3,692	3,692
$D_{B}\left(cm ight)$	5,45	5,45
Vazão de CO ₂ (kg/s)	$4,20427 \times 10^{-5}$	$6,39223 \times 10^{-5}$

Tabela 7.28 – Dados do primeiro experimento cinético (menor vazão) realizado na SFE-I com aproximadamente 10 g de matéria-prima.

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	0.0743	0.7427	0.0743	0.7427	0.0480
40	0.0550	0.5498	0.1293	1.2924	0.0997
60	0.0149	0.1489	0.1442	1.4414	0.1536
80	0.0264	0.2639	0.1706	1.7052	0.2001
100	0.0013	0.0130	0.1719	1.7182	0.2485
120	0.0135	0.1349	0.1854	1.8532	0.2982
140	0.0068	0.0680	0.1922	1.9211	0.3500
160	0.0016	0.0160	0.1938	1.9371	0.4019
180	0.0025	0.0250	0.1963	1.9621	0.4524
200	0.0017	0.0170	0.1980	1.9791	0.5021
220	0.0088	0.0880	0.2068	2.0671	0.5518
240	0.0013	0.0130	0.2081	2.0801	0.6033
260	0.0031	0.0310	0.2112	2.1111	0.6548
280	0.0015	0.0150	0.2127	2.1260	0.7063
Desp	0.0189	0.1889	0.2316	2.3150	

Tabela 7.29 - Dados do segundo experimento cinético (maior vazão) realizado na SFE-I com aproximadamente 10 g de matéria-prima.

Tempo (min)	Massa de Extrato (g)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
10	0.0431	0.4311	0.0431	0.4311	0.039938
20	0.0553	0.5531	0.0984	0.9841	0.078542
30	0.0178	0.1780	0.1162	1.1622	0.116273
40	0.0058	0.0580	0.1220	1.2202	0.153466
50	0.0137	0.1370	0.1357	1.3572	0.193115
60	0.0083	0.0830	0.1440	1.4402	0.232947
80	0.0124	0.1240	0.1564	1.5642	0.311364
100	0.0085	0.0850	0.1649	1.6492	0.387495
120	0.0028	0.0280	0.1677	1.6773	0.463722
140	0.0105	0.1050	0.1782	1.7823	0.539844
160	0.0040	0.0400	0.1822	1.8223	0.615358
180	0.0017	0.0170	0.1839	1.8393	0.691779
200	0.0019	0.0190	0.1858	1.8583	0.768789
220	0.0042	0.0420	0.1900	1.9003	0.843221
240	0.0011	0.0110	0.1911	1.9113	0.917654

7.6 SAS Learning Edition 1.0 – Programas e resultados referentes à estimativa dos parâmetros t_{CER} , t_{FER} , M_{CER} , Y_{CER} , R_{CER} para os experimentos cinéticos relacionados ao estudo de influência de geometria de leito (Item 4.3.1).

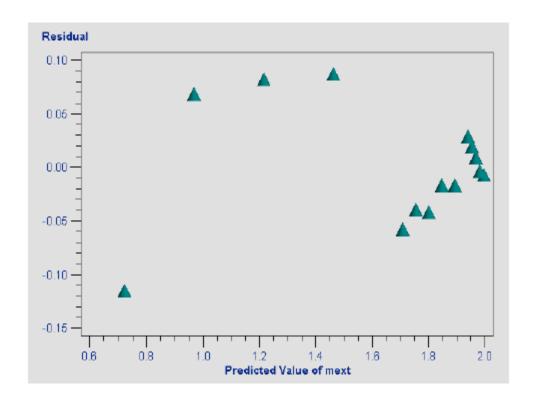
7.6.1 Experimento de referência realizado na SFE-II (replicata 1)

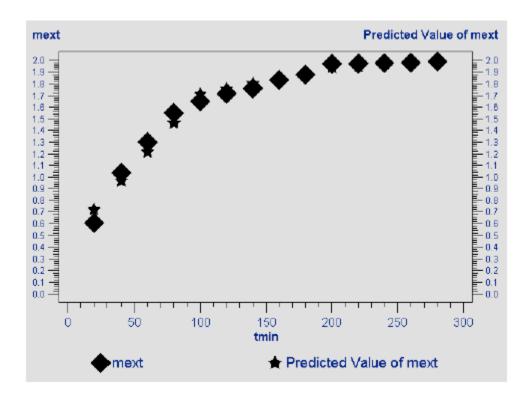
• Programa para ajuste linear de 3 retas

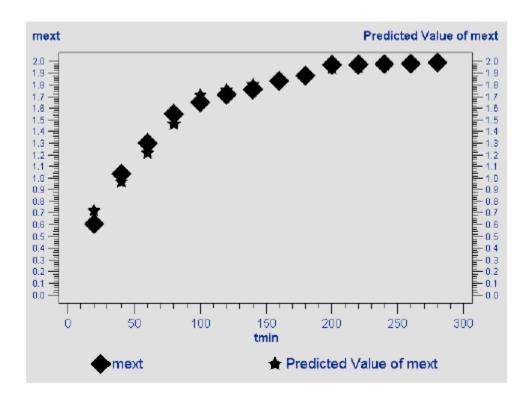
```
options ls=80 ps=50;
Title 'SFEII-a 3retas-linear';
data SFEIIa_Linear;
input tmin mext;
AL1=max(tmin-100,0);
AL2=max(tmin-200,0);
Cards;
20 0.6060
40 1.0367
60 1.2973
80 1.5493
100 1.6513
120 1.7153
140 1.7593
160 1.8307
180 1.8767
200 1.9680
220 1.9727
240 1.9767
260 1.9780
280 1.9887
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

• Saída do programa para o ajuste linear de 3 retas

SFEII-a 3retas-linear


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	3	2.19346	0.73115	178.83	<.0001	
Error	10	0.04089	0.00409			
Corrected Total	13	2.23435				


Root MSE	0.06394	R-Square	0.9817
Dependent Mean	1.65762	Adj R-Sq	0.9762
Coeff Var	3.85746		

	Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	0.47374	0.06399	7.40	<.0001		
tmin	1	0.01235	0.00087770	14.07	<.0001		
AL1	1	-0.01005	0.00135	-7.44	<.0001		
AL2	1	-0.00159	0.00135	-1.18	0.2654		

Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	20	0,6060	0	0	0.72077	-0.11477
2	40	1.0367	0	0	0.96780	0.06890
3	60	1,2973	0	0	1.21483	0.08247
4	80	1,5493	0	0	1.46186	0.08744
5	100	1,6513	0	0	1.70889	-0.05759
6	120	1,7153	20	0	1.75492	-0.03962
7	140	1,7593	40	0	1.80095	-0.04165
8	160	1.8307	60	0	1.84698	-0.01628
9	180	1.8767	80	0	1.89301	-0.01631
10	200	1,9680	100	0	1.93904	0.02896
11	220	1,9727	120	20	1.95319	0.01951
12	240	1,9767	140	40	1.96734	0.00936
13	260	1,9780	160	60	1.98149	-0.00349
14	280	1.9887	180	80	1.99564	-0.00694

• Programa para ajuste não-linear de 3 retas

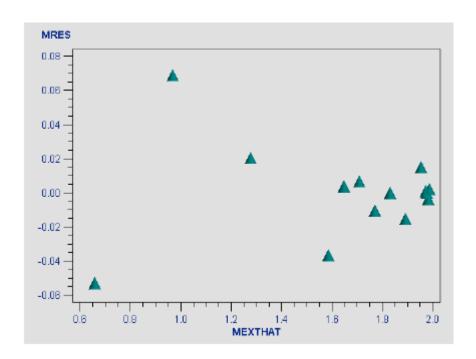
```
options ls=120 ps=70;
Title 'SFEIIa 3retas-nlinear';
data SFEIIaNlinear;
input tmin mext;
AL1=max(tmin-100,0);
AL2=max(tmin-200,0);
Cards;
20 0.6060
40 1.0367
60 1.2973
80 1.5493
100 1.6513
120 1.7153
140 1.7593
160 1.8307
180 1.8767
200 1.9680
220 1.9727
240 1.9767
260 1.9780
280 1.9887
Proc Nlin;
Parms
b0=0.47374
b1=0.01235
b2 = -0.01005
b3 = -0.00159
knot1=100
knot2=200;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

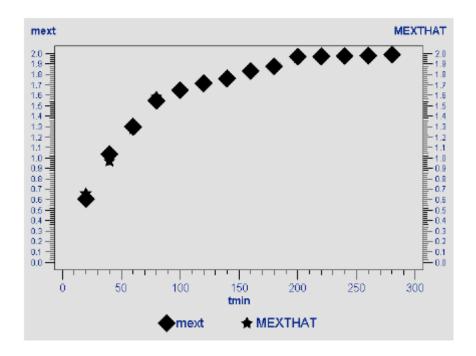
• Saída do programa para o ajuste não-linear de 3 retas

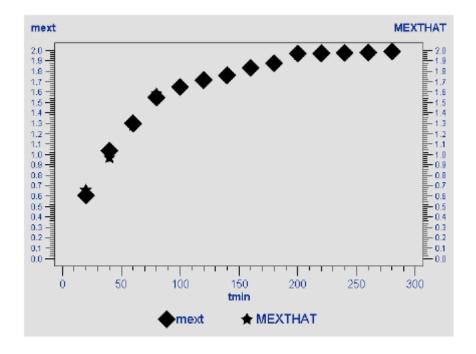
SFElla 3retas-nlinear

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase						
Iter	b0	b1	b2	b 3	knot1	knot2	Sum of Squares
0	0.4737	0.0124	-0.0101	-0.00159	100.0	200.0	0.0409
1	0.4117	0.0139	-0.0113	-0.00209	87.9836	209.7	0.0184
2	0.3548	0.0153	-0.0123	-0.00275	80.0065	203.7	0.0110
3	0.3498	0.0155	-0.0124	-0.00281	80.0327	204.9	0.00993
4	0.3497	0.0155	-0.0124	-0.00281	80.0328	204.9	0.00993


NOTE: Convergence criterion met.


Estimation Summary				
Method	Gauss-Newton			
Iterations	4			
Subiterations	1			
Average Subiterations	0.25			
R	5.185E-6			
PPC(b3)	4.357E-7			
RPC(b3)	0.000225			
Object	6.94E-6			
Objective	0.00993			
Observations Read	14			
Observations Used	14			
Observations Missing	0			


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	6	40.6923	6.7821	358.43	<.0001
Residual	8	0.00993	0.00124		
Uncorrected Total	14	40.7023			
Corrected Total	13	2.2343			

Parameter	Estimate	Approx Std Error	Approximate 95 Limi	
ь0	0.3497	0.0431	0.2502	0.4492
b1	0.0155	0.000788	0.0136	0.0173
b2	-0.0124	0.000893	-0.0145	-0.0103
b3	-0.00281	0.000893	-0.00487	-0.00075
knot1	80.0328	3.5575	71.8290	88.2366
knot2	204.9	17.1261	165.4	244.4

	Approximate Correlation Matrix							
	ь0	b1	b2	b3	knot1	knot2		
ь0	1.0000000	-0.9128709	0.8050765	-0.0000000	0.3266647	-0.0000000		
b1	-0.9128709	1.0000000	-0.8819171	0.0000000	-0.5364720	0.0000000		
b2	0.8050765	-0.8819171	1.0000000	-0.2222222	0.1582001	-0.2263923		
b3	-0.0000000	0.0000000	-0.2222222	1.0000000	0.3149237	-0.4252422		
knot1	0.3266647	-0.5364720	0.1582001	0.3149237	1.0000000	0.2233407		
knot2	-0.0000000	0.0000000	-0.2263923	-0.4252422	0.2233407	1.0000000		

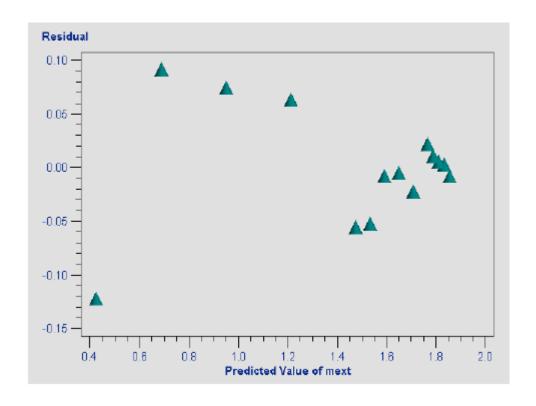
7.6.2 Experimento de referência realizado na SFE-II (replicata 2)

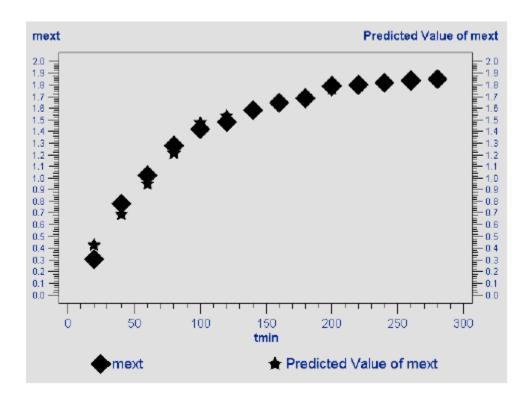
• Programa para ajuste linear de 3 retas

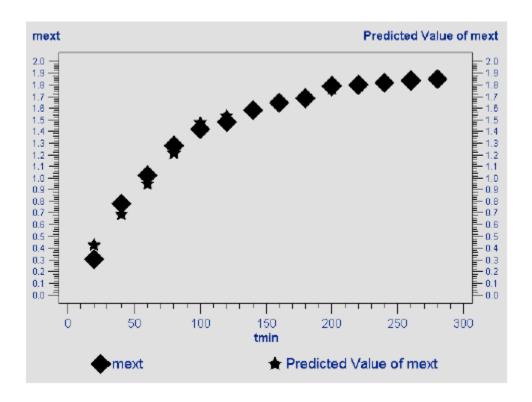
```
options ls=80 ps=50;
Title 'SFEIIb-3RetasLinear';
data SFEIIb3RetasLinear;
input tmin mext;
AL1=max(tmin-100,0);
AL2=max(tmin-200,0);
Cards:
20 0.3043
40 0.7799
60 1.0250
80 1.2755
100 1.4183
120 1.4801
140 1.5831
160 1.6442
180 1.6854
200 1.7877
220 1.7990
240 1.8162
260 1.8355
280 1.8474
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

• Saída do programa para o ajuste linear de 3 retas

SFEIIb-3RetasLinear


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	2.72194	0.90731	226,76	<.0001		
Error	10	0.04001	0.00400				
Corrected Total	13	2.76195					


Root MSE	0.06326	R-Square	0.9855
Dependent Mean	1.44869	Adj R-Sq	0.9812
Coeff Var	4.36639		

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	0.16451	0.06330	2.60	0.0265			
tmin	1	0.01309	0.00086827	15.08	<.0001			
AL1	1	-0.01017	0.00134	-7.61	<.0001			
AL2	1	-0.00180	0.00134	-1,35	0.2076			

Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	20	0.3043	0	0	0.42637	-0.12207
2	40	0.7799	0	0	0.68824	0.09166
3	60	1,0250	0	0	0.95011	0.07489
4	80	1,2755	0	0	1.21197	0.06353
5	100	1,4183	0	0	1.47384	-0.05554
6	120	1,4801	20	0	1.53221	-0.05211
7	140	1,5831	40	0	1.59058	-0.00748
8	160	1,6442	60	0	1.64895	-0.00475
9	180	1,6854	80	0	1.70732	-0.02192
10	200	1,7877	100	0	1.76570	0.02200
11	220	1,7990	120	20	1.78805	0.01095
12	240	1,8162	140	40	1.81040	0.00580
13	260	1,8355	160	60	1.83275	0.00275
14	280	1.8474	180	80	1.85510	-0.00770

• Programa para o ajuste não-linear de 3 retas

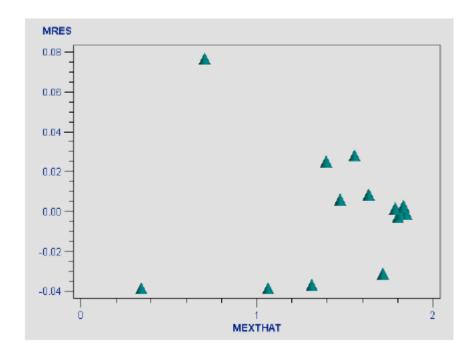
```
options ls=120 ps=70;
Title 'SFEIIb_3RetasNLinear';
data SFEIIb3RetasNLinear;
input tmin mext;
AL1=max(tmin-100,0);
AL2=max(tmin-200,0);
Cards;
20 0.3043
40 0.7799
60 1.0250
80 1.2755
100 1.4183
120 1.4801
140 1.5831
160 1.6442
180 1.6854
200 1.7877
220 1.7990
240 1.8162
260 1.8355
280 1.8474
Proc Nlin;
parms
b0=0.16451
b1=0.01309
b2 = -0.01017
b3 = -0.00180
knot1=100
knot2=200;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis1 order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

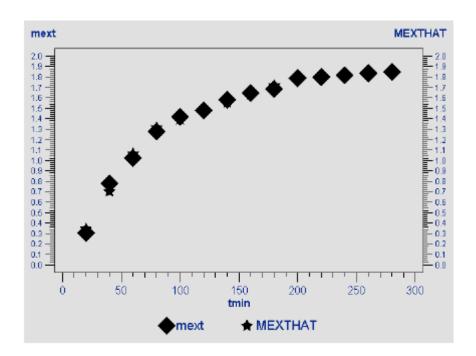
• Saída do programa para o ajuste não-linear de 3 retas

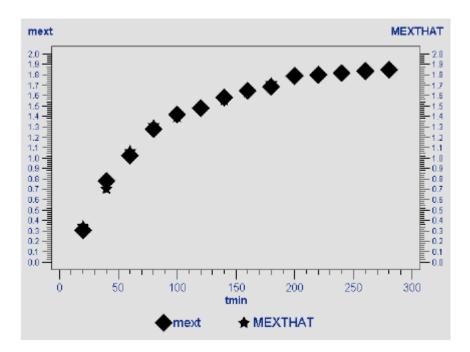
SFEIIb_3RetasNLinear

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase						
Iter	ь0	b1	b2	b3	knot1	knot2	Sum of Squares
0	0.1645	0.0131	-0.0102	-0.00180	100.0	200.0	0.0400
1	0.0565	0.0158	-0.0123	-0.00271	79.0275	207.9	0.0347
2	-0.0176	0.0180	-0.0140	-0.00317	71.2151	195.2	0.0160
3	-0.0176	0.0180	-0.0140	-0.00326	72.0188	196.5	0.0127
4	-0.0176	0.0180	-0.0140	-0.00326	72.0218	196.5	0.0127


NOTE: Convergence criterion met.


Estimation Summary					
Method	Gauss-Newton				
Iterations	4				
R	0				
PPC	0				
RPC(knot2)	0.000204				
Object	3.91E=6				
Objective	0.012739				
Observations Read	14				
Observations Used	14				
Observations Missing	0				

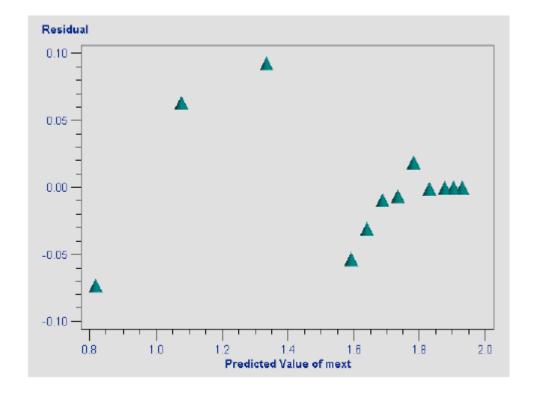

Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	6	32.1309	5.3551	345.31	<.0001
Residual	8	0.0127	0.00159		
Uncorrected Total	14	32.1436			
Corrected Total	13	2.7619			

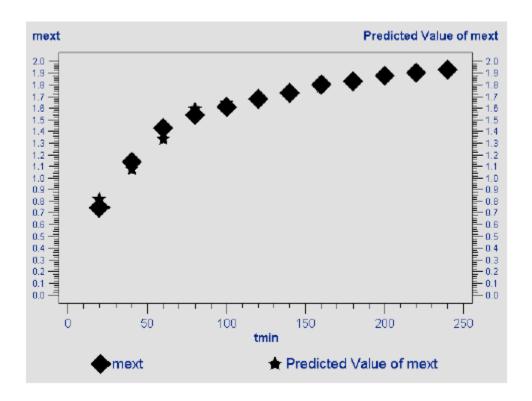
Parameter	Estimate	Approx Std Error	Approximate 95% Confidence Limits		
ь0	-0.0176	0.0610	-0.1582	0.1229	
b1	0.0180	0.00141	0.0148	0.0213	
b2	-0.0140	0.00149	-0.0174	-0.0105	
b3	-0.00326	0.000791	-0.00509	-0.00144	
knot1	72.0218	4.2946	62.1183	81.9253	
knot2	196.5	14.8319	162.3	230.7	

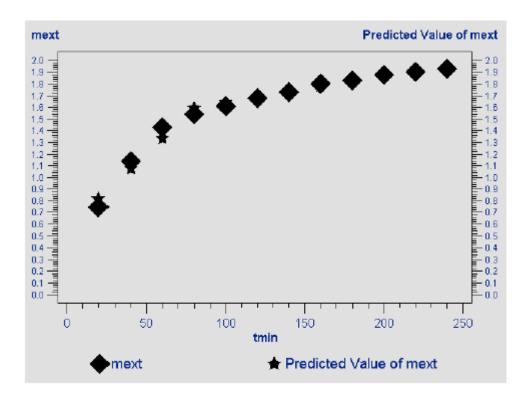
	Approximate Correlation Matrix								
	b0	b1	b2	b3	knot1	knot2			
b0	1.0000000	-0.9258201	0.8770580	-0.0000000	0.5518300	-0.0000000			
b1	-0.9258201	1.0000000	-0.9473309	0.0000000	-0.7527637	0.0000000			
b2	0.8770580	-0.9473309	1.0000000	-0.1931218	0.5655553	-0.2097905			
b3	-0.0000000	0.0000000	-0.1931218	1.0000000	0.2778482	-0.0574409			
knot1	0.5518300	-0.7527637	0.5655553	0.2778482	1.0000000	0.2104766			
knot2	-0.0000000	0.0000000	-0.2097905	-0.0574409	0.2104766	1.0000000			

7.6.3 Experimento realizado na unidade SFE-I com amostra de 15g (replicata 1)

```
options ls=80 ps=50;
Title 'SFEIa 15gLinear';
data SFEIa_15gLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-200,0);
Cards;
20 0.7458
40 1.1400
60 1.4270
80 1.5389
100 1.6088
120 1.6774
140 1.7280
160 1.8006
180 1.8285
200 1.8765
220 1.9031
240 1.9291
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```



SFEIa_15gLinear


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	1.34425	0.44808	161,47	<.0001		
Error	8	0.02220	0.00277				
Corrected Total	11	1.36645					


Root MSE	0.05268	R-Square	0.9838
Dependent Mean	1.60031	Adj R-Sq	0.9777
Coeff Var	3.29175		

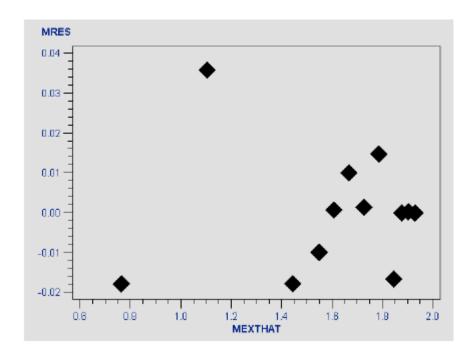
Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	0.56104	0.06094	9.21	<.0001			
tmin	1	0.01289	0.00099185	13.00	<.0001			
AL1	1	-0.01052	0.00131	-8.06	<.0001			
AL2	1	-0.00106	0.00184	-0.57	0.5815			

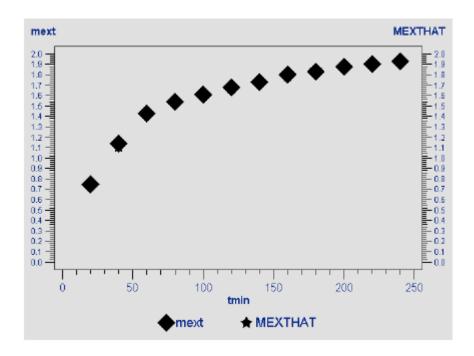
Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	20	0.7458	0	0	0.81886	-0.073057
2	40	1.1400	0	0	1.07667	0.063328
3	60	1,4270	0	0	1.33449	0.092514
4	80	1.5389	0	0	1.59230	-0.053401
5	100	1.6088	20	0	1.63970	-0.030904
6	120	1.6774	40	0	1.68711	-0.009706
7	140	1,7280	60	0	1.73451	-0.006509
8	160	1.8006	80	0	1.78191	0.018689
9	180	1.8285	100	0	1.82931	-0.000814
10	200	1.8765	120	0	1.87672	-0.000217
11	220	1,9031	140	20	1.90295	0.000153
12	240	1.9291	160	40	1.92918	-0.000077

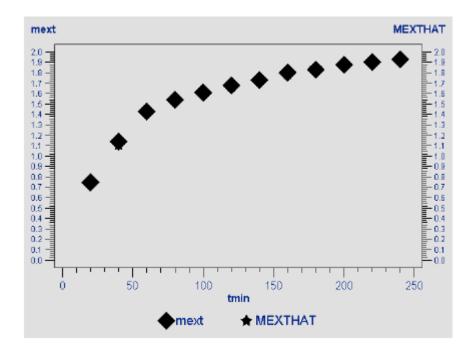

```
options ls=120 ps=70;
Title 'SFEIa_15gNLinear';
data SFEIa15gNLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-200,0);
Cards:
20 0.7458
40 1.1400
60 1.4270
80 1.5389
100 1.6088
120 1.6774
140 1.7280
160 1.8006
180 1.8285
200 1.8765
220 1.9031
240 1.9291
Proc Nlin;
parms
b0=0.56104
b1=0.01289
b2 = -0.01052
b3 = -0.00106
knot1=80
knot2=200;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis1 order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

SFEIa_15gNLinear

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


	Iterative Phase								
Iter	b0	b1	b2	b3	knot1	knot2	Sum of Squares		
0	0.5610	0.0129	-0.0105	-0.00106	80.0000	200.0	0.0222		
1	0.4921	0.0150	-0.0123	-0.00135	68.7559	186.9	0.00996		
2	0.4287	0.0169	-0.0139	-0.00162	62.9033	182.7	0.00379		
3	0.4231	0.0170	-0.0141	-0.00165	63.1834	183.1	0.00261		
4	0.4231	0.0170	-0.0141	-0.00165	63.1824	183.1	0.00261		


Estimation Summary					
Method	Gauss-Newton				
Iterations	4				
Subiterations	1				
Average Subiterations	0.25				
R	1.988E-6				
PPC(b3)	9.368E-8				
RPC(b3)	0.0001				
Object	4.178E-6				
Objective	0.002611				
Observations Read	12				
Observations Used	12				
Observations Missing	0				

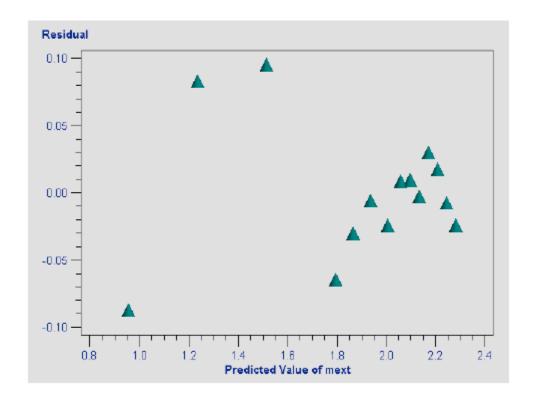

Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	6	32.0957	5.3493	626.83	<.0001
Residual Uncorrected Total	6 12	0.00261 32.0983	0.000435		
Corrected Total	11	1.3665			

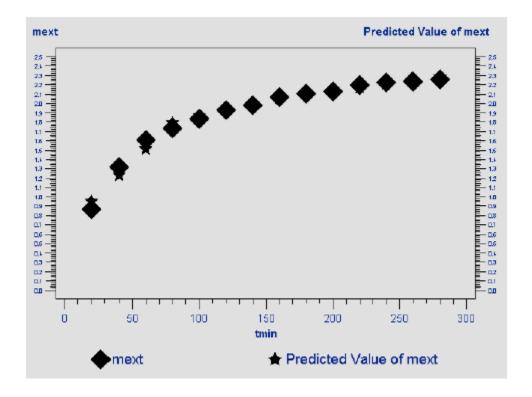
Parameter	Estimate	Approx Std Error	Approximate 95% Confiden Limits	
ь0	0.4231	0.0319	0.3451	0.5010
b1	0.0170	0.000738	0.0152	0.0188
b2	-0.0141	0.000779	-0.0160	-0.0122
ь3	-0.00165	0.000779	-0.00355	0.000257
knot1	63.1824	1.9948	58.3012	68.0635
knot2	183.1	20.4282	133.1	233.1

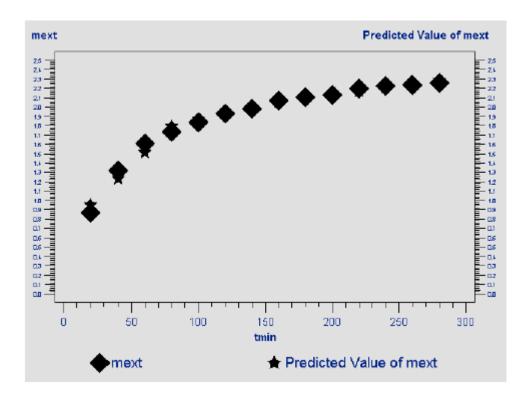
	Approximate Correlation Matrix								
	ь0	b1	b2	b3	knot1	knot2			
b0	1.0000000	-0.9258201	0.8770580	-0.0000000	0.4018739	0.0000000			
b1	-0.9258201	1.0000000	-0.9473309	0.0000000	-0.6092901	-0.0000000			
b2	0.8770580	-0.9473309	1.0000000	-0.1025641	0.3870690	-0.1259772			
b 3	-0.0000000	0.0000000	-0.1025641	1.0000000	0.1901303	-0.6396981			
knot1	0.4018739	-0.6092901	0.3870690	0.1901303	1.0000000	0.1567555			
knot2	0.0000000	-0.0000000	-0.1259772	-0.6396981	0.1567555	1.0000000			

7.6.4 Experimento realizado na unidade SFE-I com amostra de 15g (replicata 2)

```
options ls=80 ps=50;
Title 'SFEIb 15gLinear';
data SFEIb15gLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-150,0);
Cards;
20 0.8665
40 1.3174
60 1.6098
80 1.7304
100 1.8349
120 1.9295
140 1.9814
160 2.0680
180 2.1060
200 2.1306
220 2.2006
240 2.2252
260 2.2372
280 2.2578
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```



SFEIb_15gLinear


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	2.06181	0.68727	219,28	<.0001		
Error	10	0.03134	0.00313				
Corrected Total	13	2.09315					


Root MSE	0.05598	R-Square	0.9850
Dependent Mean	1.89252	Adj R-Sq	0.9805
Coeff Var	2.95816		

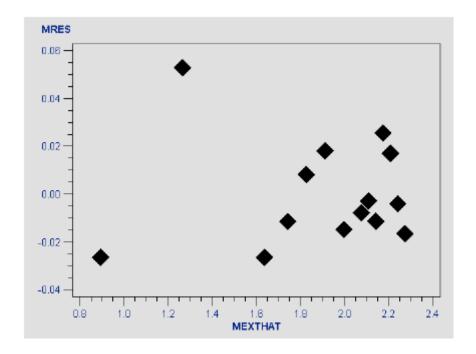
Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t			
Intercept	1	0.67361	0.06611	10.19	<.0001			
tmin	1	0.01401	0.00113	12.44	<.0001			
AL1	1	-0.01050	0.00176	-5.98	0.0001			
AL2	1	-0.00166	0.00115	-1.44	0.1813			

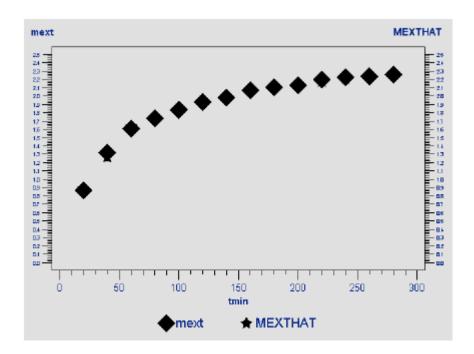
Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	20	0.8665	0	0	0.95385	-0.087354
2	40	1.3174	0	0	1.23410	0.083302
3	60	1.6098	0	0	1.51434	0.095458
4	80	1.7304	0	0	1.79459	-0.064185
5	100	1.8349	20	0	1.86485	-0.029948
6	120	1.9295	40	0	1.93511	-0.005611
7	140	1.9814	60	0	2.00537	-0.023974
8	160	2.0680	80	10	2.05907	0.008933
9	180	2.1060	100	30	2.09619	0.009808
10	200	2.1306	120	50	2,13332	-0.002717
11	220	2,2006	140	70	2.17044	0.030159
12	240	2,2252	160	90	2.20757	0.017634
13	260	2,2372	180	110	2.24469	-0.007491
14	280	2.2578	200	130	2.28182	-0.024015

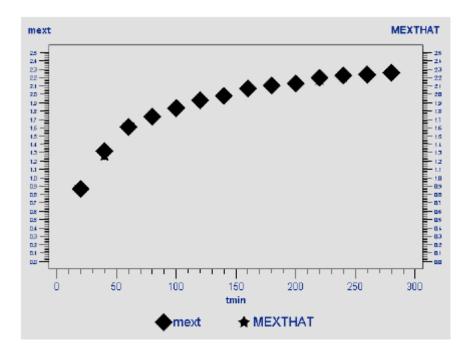

```
options ls=120 ps=70;
Title 'SFEIb_15gNlinear';
data SFEI15gNLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-150,0);
Cards;
20 0.8665
40 1.3174
60 1.6098
80 1.7304
100 1.8349
120 1.9295
140 1.9814
160 2.0680
180 2.1060
200 2.1306
220 2.2006
240 2.2252
260 2.2372
280 2.2578
Proc Nlin;
parms
b0=0.67361
b1=0.01401
b2 = -0.01050
b3 = -0.00166
knot1=80
knot2=150;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis1 order=(0 \text{ to } 2.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


SFEIb_15gNlinear

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


	Iterative Phase								
Iter	b0	b1	b2	b3	knot1	knot2	Sum of Squares		
0	0.6736	0.0140	-0.0105	-0.00166	80.0000	150.0	0.0313		
1	0.5974	0.0163	-0.0124	-0.00212	67.3354	156.2	0.0160		
2	0.5283	0.0184	-0.0142	-0.00254	61.1799	158.2	0.00798		
3	0.5213	0.0186	-0.0143	-0.00258	61.4600	158.0	0.00636		
4	0.5213	0.0186	-0.0143	-0.00258	61.4593	158.0	0.00636		


Estimation Summary					
Method	Gauss-Newton				
Iterations	4				
Subiterations	1				
Average Subiterations	0.25				
R	5.355E-6				
PPC(b3)	2.71E=7				
RPC(b3)	0.000167				
Object	0.000011				
Objective	0.006363				
Observations Read	14				
Observations Used	14				
Observations Missing	0				

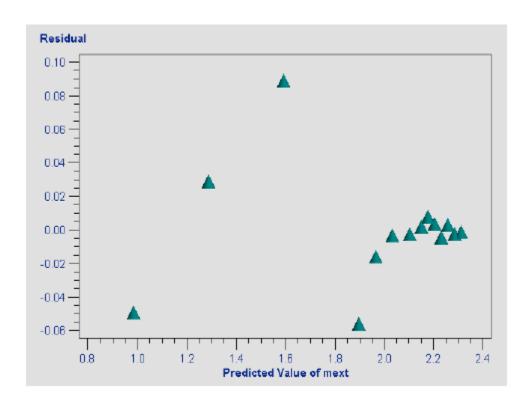

Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	6	52.2297	8.7050	524.70	<.0001
Residual	8	0.00636	0.000795		
Uncorrected Total	14	52.2361			
Corrected Total	13	2.0932			

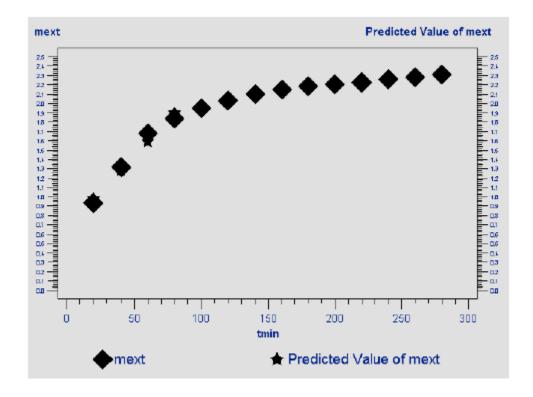
Parameter	Estimate	Approx Std Error	Approximate 95% Confide Limits	
ь0	0.5213	0.0431	0.4219	0.6206
b1	0.0186	0.000997	0.0163	0.0209
b2	-0.0143	0.00118	-0.0171	-0.0116
b3	-0.00258	0.000685	-0.00416	-0.00100
knot1	61.4593	3.0057	54.5281	68.3906
knot2	158.0	15.0000	123.4	192.6

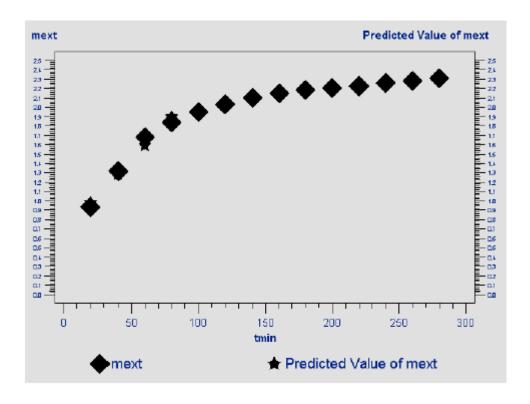
	Approximate Correlation Matrix								
	b0	b1	b2	b3	knot1	knot2			
ь0	1.0000000	-0.9258201	0.7824608	0.0000000	0.3167328	0.0000000			
b1	-0.9258201	1.0000000	-0.8451543	-0.0000000	-0.4962908	-0.0000000			
b2	0.7824608	-0.8451543	1.0000000	-0.4923660	0.0399335	-0.4175566			
b3	0.0000000	-0.0000000	-0.4923660	1.0000000	0.6540002	0.5536371			
knot1	0.3167328	-0.4962908	0.0399335	0.6540002	1.0000000	0.4356268			
knot2	0.0000000	-0.0000000	-0.4175566	0.5536371	0.4356268	1.0000000			

7.6.5 Experimento realizado na unidade SFE-I com amostra de 30g (replicata 1)

```
options ls=80 ps=50;
Title 'SFEIa 30gLinear';
data SFEIa30gLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-150,0);
Cards;
20 0.9338
40 1.3166
60 1.6811
80 1.8403
100 1.9489
120 2.0299
140.5 2.1008
160.6833333 2.1521
180 2.1841
200 2.2068
220 2.2258
240 2.2604
260 2.2817
280 2.3101
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```



SFEIa_30gLinear


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	2.10415	0.70138	475,45	<.0001		
Error	10	0.01475	0.00148				
Corrected Total	13	2.11891					

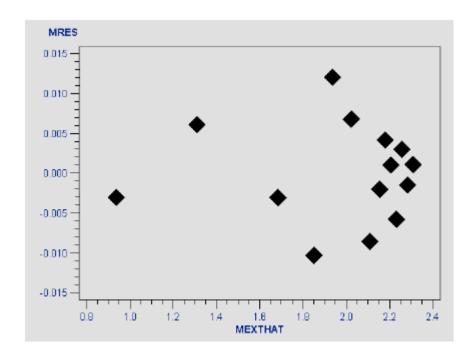

Root MSE	0.03841	R-Square	0.9930
Dependent Mean	1.96231	Adj R-Sq	0.9909
Coeff Var	1.95729		

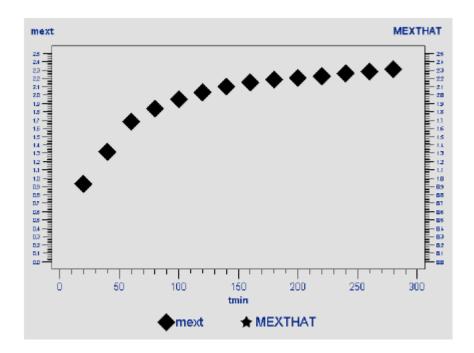
Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	0.67849	0.04535	14.96	<.0001			
tmin	1	0.01522	0.00077284	19.70	<.0001			
AL1	1	-0.01180	0.00120	-9.81	<.0001			
AL2	1	-0.00207	0.00079061	-2,62	0.0256			

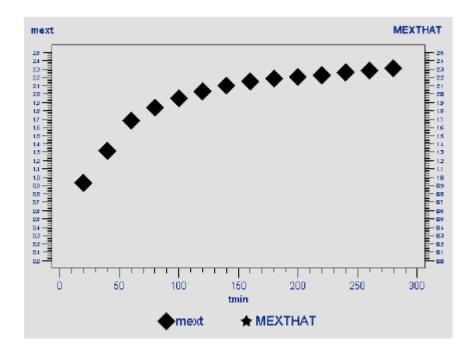
Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	20.000	0.9338	0.000	0.000	0.98297	-0.049167
2	40.000	1,3166	0.000	0.000	1.28744	0.029159
3	60.000	1.6811	0.000	0.000	1.59192	0.089185
4	80.000	1.8403	0.000	0.000	1.89639	-0.056089
5	100.000	1.9489	20.000	0.000	1.96478	-0.015884
6	120.000	2.0299	40.000	0.000	2.03318	-0.003278
7	140.500	2.1008	60.500	0.000	2.10328	-0.002482
8	160.683	2.1521	80.683	10.683	2.15018	0.001916
9	180.000	2.1841	100.000	30.000	2.17625	0.007853
10	200.000	2.2068	120.000	50.000	2.20323	0.003568
11	220.000	2.2258	140.000	70.000	2.23022	-0.004417
12	240.000	2.2604	160.000	90.000	2.25720	0.003198
13	260.000	2.2817	180.000	110.000	2.28419	-0.002487
14	280.000	2.3101	200.000	130.000	2.31117	-0.001072


```
options ls=120 ps=70;
Title 'SFEIa_30gNLinear';
data SFEIa30gNLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-150,0);
Cards;
20 0.9338
40 1.3166
60 1.6811
80 1.8403
100 1.9489
120 2.0299
140 2.1008
160 2.1521
180 2.1841
200 2.2068
220 2.2258
240 2.2604
260 2.2817
280 2.3101
Proc Nlin;
parms
b0=0.67858
b1=0.01522
b2 = -0.01179
b3 = -0.00209
knot1=80
knot2=150;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis1 order=(0 \text{ to } 2.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


	Iterative Phase						
lter	b0	b1	b2	b 3	knot1	knot2	Sum of Squares
0	0.6786	0.0152	-0.0118	-0.00209	80.0000	150.0	0.0147
1	0.6209	0.0170	-0.0131	-0.00256	71.2129	147.3	0.00495
2	0.5668	0.0186	-0.0143	-0.00299	65.4146	146.2	0.00120
3	0.5632	0.0187	-0.0144	-0.00302	65.5815	146.3	0.000495
4	0.5632	0.0187	-0.0144	-0.00302	65.5811	146.3	0.000495


Estimation Summary					
Method	Gauss-Newton				
Iterations	4				
Subiterations	1				
Average Subiterations	0.25				
R	4.455E-7				
PPC	8.417E-9				
RPC(b3)	0.000031				
Object	2.495E=6				
Objective	0.000495				
Observations Read	14				
Observations Used	14				
Observations Missing	0				

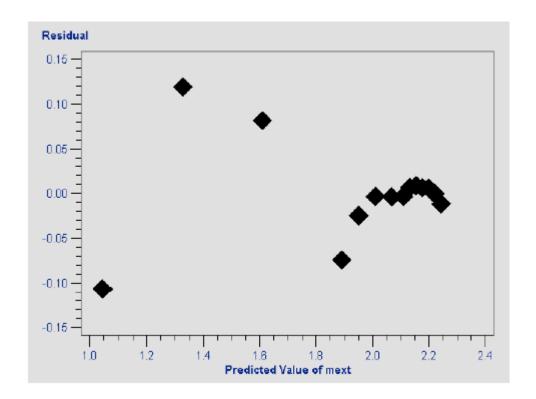

Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	6	56.0279	9.3380	6850.73	<.0001
Residual	8	0.000495	0.000062		
Uncorrected Total	14	56.0284			
Corrected Total	13	2.1189			

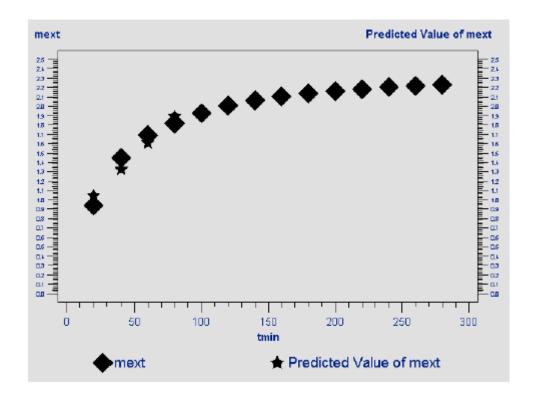
Parameter	Estimate	Approx Std Error	Approximate 95 Lim	
ь0	0.5632	0.0120	0.5355	0.5909
b1	0.0187	0.000278	0.0180	0.0193
b2	-0.0144	0.000329	-0.0151	-0.0136
b3	-0.00302	0.000191	-0.00346	-0.00258
knot1	65.5811	0.8457	63.6309	67.5312
knot2	146.3	3.2255	138.8	153.7

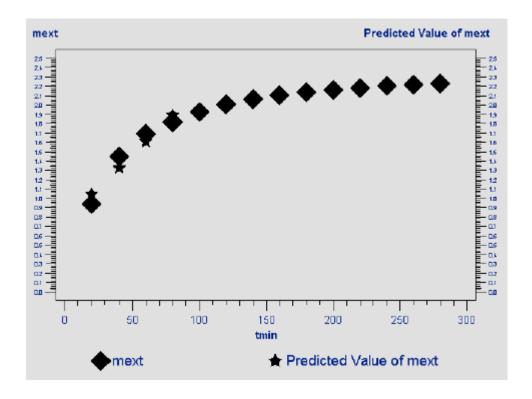
	Approximate Correlation Matrix							
	b0	b1	b2	b3	knot1	knot2		
b0	1.0000000	-0.9258201	0.7824608	0.0000000	0.4006558	0.0000000		
b1	-0.9258201	1.0000000	-0.8451543	-0.0000000	-0.5852897	-0.0000000		
b2	0.7824608	-0.8451543	1.0000000	-0.4923660	0.1510893	-0.3498296		
b3	0.0000000	-0.0000000	-0.4923660	1.0000000	0.5920689	0.3840701		
knot1	0.4006558	-0.5852897	0.1510893	0.5920689	1.0000000	0.2901349		
knot2	0.0000000	-0.0000000	-0.3498296	0.3840701	0.2901349	1.0000000		

7.6.6 Experimento realizado na unidade SFE-I com amostra de 30g (replicata 2)

```
options ls=80 ps=50;
Title 'SFEIb 30gLinear';
data SFEIb30gLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-150,0);
Cards;
20 0.9395
40 1.4473
60 1.6910
80 1.8170
100 1.9253
120 2.0060
140 2.0647
160 2.1057
180 2.1384
200 2.1627
220 2.1827
240 2.2047
260 2.2207
280 2.2317
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```



SFEIb_30gLinear


Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	3	1.71144	0.57048	147.06	<.0001	
Error	10	0.03879	0.00388			
Corrected Total	13	1.75023				


Root MSE	0.06228	R-Square	0.9778
Dependent Mean	1.93839	Adj R-Sq	0.9712
Coeff Var	3.21315		

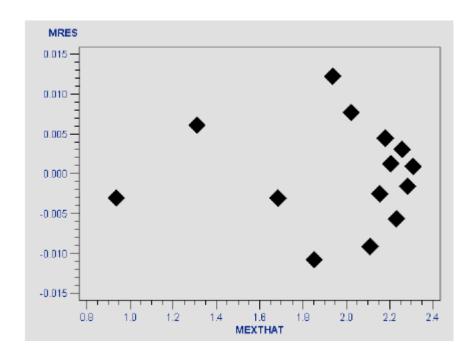
	Parameter Estimates						
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	0.76456	0.07354	10.40	<.0001		
tmin	1	0.01408	0.00125	11.24	<.0001		
AL1	1	-0.01113	0.00195	-5.70	0.0002		
AL2	1	-0.00183	0.00128	-1.43	0.1838		

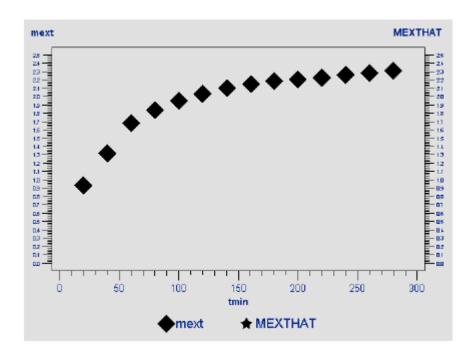
Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	20	0,9395	0	0	1.04623	-0.10673
2	40	1,4473	0	0	1.32791	0.11939
3	60	1,6910	0	0	1.60958	0.08142
4	80	1.8170	0	0	1.89126	-0.07426
5	100	1,9253	20	0	1.95030	-0.02500
6	120	2.0060	40	0	2.00935	-0.00335
7	140	2.0647	60	0	2.06839	-0.00369
8	160	2,1057	80	10	2.10912	-0.00342
9	180	2,1384	100	30	2.13153	0.00687
10	200	2,1627	120	50	2.15393	0.00877
11	220	2,1827	140	70	2.17634	0.00636
12	240	2,2047	160	90	2.19875	0.00595
13	260	2,2207	180	110	2.22115	-0.00045
14	280	2,2317	200	130	2.24356	-0.01186

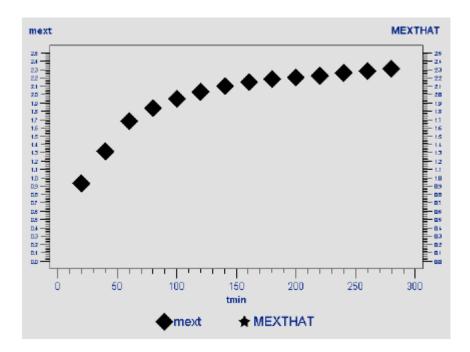

```
options ls=120 ps=70;
Title 'SFEIb_30gNLinear';
data SFEIb30gNLinear;
input tmin mext;
AL1=max(tmin-80,0);
AL2=max(tmin-150,0);
Cards;
20 0.9338
40 1.3166
60 1.6811
80 1.8403
100 1.9489
120 2.0299
140.5 2.1008
160.68333333 2.1521
180 2.1841
200 2.2068
220 2.2258
240 2.2604
260 2.2817
280 2.3101
Proc Nlin;
parms
b0=0.67849
b1=0.01522
b2 = -0.01180
b3 = -0.00207
knot1=80
knot2=150;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis1 order=(0 \text{ to } 2.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


SFEIb_30gNLinear

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


			Iter	ative Phase			
lter	b0	b1	b2	b3	knot1	knot2	Sum of Squares
0	0.6785	0.0152	-0.0118	-0.00207	80.0000	150.0	0.0148
1	0.6208	0.0170	-0.0131	-0.00253	71.2414	147.6	0.00496
2	0.5668	0.0186	-0.0143	-0.00295	65.4812	146.6	0.00124
3	0.5632	0.0187	-0.0144	-0.00298	65.6503	146.7	0.000537
4	0.5632	0.0187	-0.0144	-0.00298	65.6499	146.7	0.000537


Estimation Summary					
Method	Gauss-Newton				
Iterations	4				
Subiterations	1				
Average Subiterations	0.25				
R	4.897E-7				
PPC	9.351E-9				
RPC(b3)	0.000032				
Object	2.599E-6				
Objective	0.000537				
Observations Read	14				
Observations Used	14				
Observations Missing	0				


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	6	56.0279	9.3380	6314.88	<.0001
Residual	8	0.000537	0.000067		
Uncorrected Total	14	56.0284			
Corrected Total	13	2.1189			

Parameter	Estimate	Approx Std Error	Approximate 95% Confider Limits	
ь0	0.5632	0.0125	0.5343	0.5921
b1	0.0187	0.000290	0.0180	0.0194
b2	-0.0144	0.000342	-0.0152	-0.0136
b3	-0.00298	0.000198	-0.00344	-0.00253
knot1	65.6499	0.8773	63.6269	67.6729
knot2	146.7	3.4041	138.9	154.6

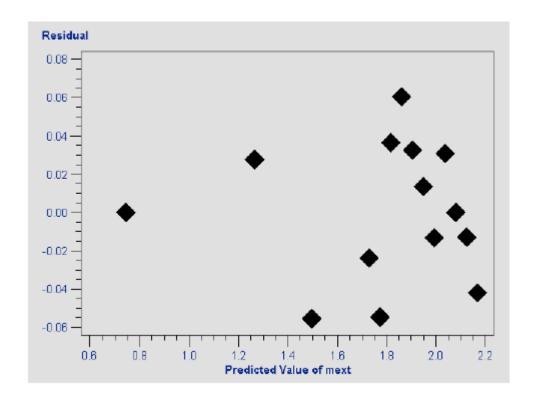
	Approximate Correlation Matrix									
	b0	b1	b2	b3	knot1	knot2				
ь0	1.0000000	-0.9258201	0.7841282	-0.0000000	0.4027727	0.0000000				
b1	-0.9258201	1.0000000	-0.8469553	0.0000000	-0.5878260	-0.0000000				
b2	0.7841282	-0.8469553	1.0000000	-0.4888988	0.1576941	-0.3483084				
b 3	-0.0000000	0.0000000	-0.4888988	1.0000000	0.5883529	0.3818390				
knot1	0.4027727	-0.5878260	0.1576941	0.5883529	1.0000000	0.2884397				
knot2	0.0000000	-0.0000000	-0.3483084	0.3818390	0.2884397	1.0000000				

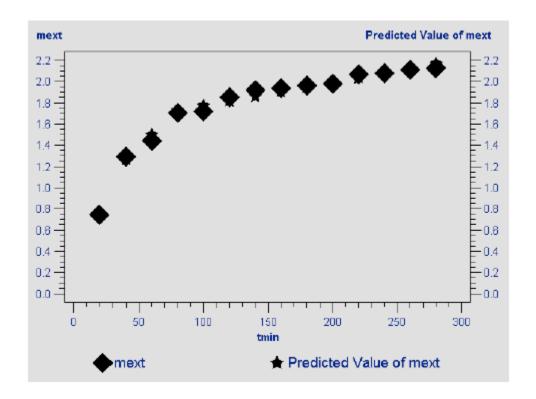
7.6.7 Experimento realizado na unidade SFE-I com amostra de 10g (reprodução da curva do experimento de referência)

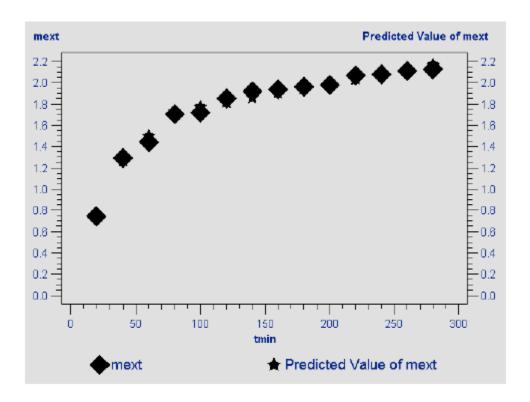
• Programa para o ajuste linear de 3 retas

```
options ls=80 ps=50;
Title 'SFEI 10gRepVazaoLinear';
data SFEI10gRepVazaoLinear;
input tmin mext;
AL1=max(tmin-40,0);
AL2=max(tmin-80,0);
Cards;
20 0.7427
40 1.2924
60 1.4414
80 1.7052
100 1.7182
120 1.8532
140 1.9211
160 1.9371
180 1.9621
200 1.9791
220 2.0671
240 2.0801
260 2.1111
280 2.1260
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.2 \text{ by } 0.2);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


SFEI_10gRepVazaoLinear


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	1.94569	0.64856	388,98	<.0001		
Error	10	0.01667	0.00167				
Corrected Total	13	1.96237					


Root MSE	0.04083	R-Square	0.9915
Dependent Mean	1.78120	Adj R-Sq	0.9890
Coeff Var	2.29244		

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t			
Intercept	1	0.22071	0.08957	2.46	0.0334			
tmin	1	0.02610	0.00275	9.50	<.0001			
AL1	1	-0.01449	0.00353	-4.10	0.0021			
AL2	1	-0.00941	0.00124	-7.60	<.0001			

Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	20	0.7427	0	0	0.74270	-0.0000000
2	40	1.2924	0	0	1.26469	0.027705
3	60	1.4414	20	0	1.49681	-0.055410
4	80	1.7052	40	0	1.72893	-0.023726
5	100	1.7182	60	20	1.77282	-0.054624
6	120	1.8532	80	40	1.81672	0.036478
7	140	1.9211	100	60	1.86062	0.060479
8	160	1.9371	120	80	1.90452	0.032581
9	180	1.9621	140	100	1.94842	0.013682
10	200	1.9791	160	120	1.99232	-0.013216
11	220	2.0671	180	140	2.03621	0.030885
12	240	2.0801	200	160	2.08011	-0.000013
13	260	2.1111	220	180	2.12401	-0.012911
14	280	2.1260	240	200	2,16791	-0.041910

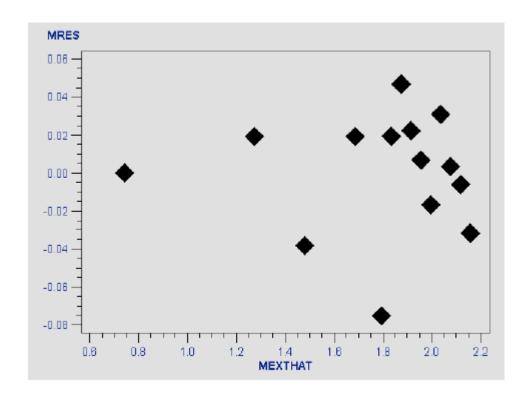
• Programa para ajuste não-linear de 3 retas

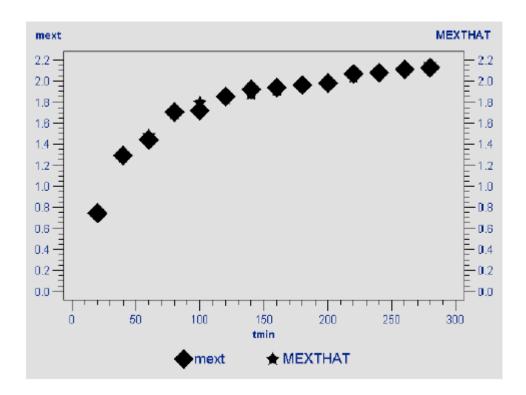
```
options ls=120 ps=70;
Title 'SFEI_10gRepVazaoNLinear';
data SFEI10gRepVazaoNLinear;
input tmin mext;
AL1=max(tmin-50,0);
AL2=max(tmin-100,0);
Cards;
20 0.7427
40 1.2924
60 1.4414
80 1.7052
100 1.7182
120 1.8532
140 1.9211
160 1.9371
180 1.9621
200 1.9791
220 2.0671
240 2.0801
260 2.1111
280 2.1260
Proc Nlin;
Parms
b0=0.22071
b1=0.02610
b2 = -0.01449
b3 = -0.00941
knot1=50
knot2=100;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 2.2 \text{ by } 0.2);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

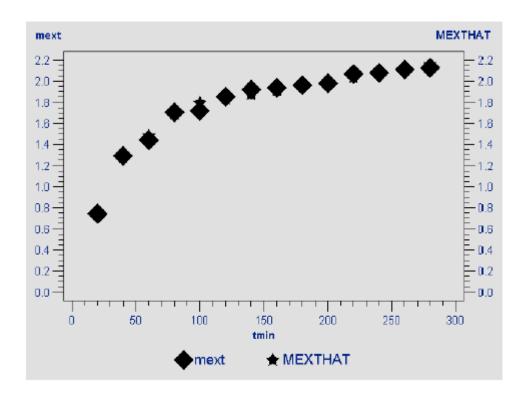

SFEI_10gRepVazaoNLinear

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase							
Iter	b0	b1	b2	b3	knot1	knot2	Sum of Squares	
0	0,2207	0.0261	-0.0145	-0.00941	50.0000	100.0	1.1619	
1	0.1930	0.0275	-0.0143	-0.0112	32.2119	81.3386	0.0320	
2	0,1930	0.0275	-0.0172	-0.00830	40.2252	86.3316	0.0156	
3	0,1930	0.0275	-0.0157	-0.00973	36.7874	84.9470	0.0154	
4	0,1930	0.0275	-0.0169	-0.00853	38.6977	87.1607	0.0133	
5	0,1930	0.0275	-0.0172	-0.00830	38.8817	88.0049	0.0132	
6	0,1930	0.0275	-0.0172	-0.00830	38.8853	88.0584	0.0132	
7	0,1930	0.0275	-0.0172	-0.00830	38.8853	88.0588	0.0132	


NOTE: Convergence criterion met.


Estimation Su	mmary
Method	Gauss-Newton
Iterations	7
Subiterations	1
Average Subiterations	0.142857
R	5.182E-8
PPC	8.696E-9
RPC(b3)	6.398E-6
Object	1.425E-9
Objective	0.013235
l	
Observations Read	14
Observations Used	14
Observations Missing	0


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	5	46.3666	9,2733	331.37	<.0001
Residual	9	0.0132	0.00147		
Uncorrected Total	14	46.3798			
Corrected Total	13	1,9624			

Parameter	Estimate	Approx Std Error	Approximate 95% Confidence Limits		
b0	0.1930	0.0383	0.1063	0.2797	
b1	0.0275				
b2	-0.0172	0.00136	-0.0202	-0.0141	
b3	-0.00830	0.00137	-0.0114	-0.00519	
knot1	38.8853	3.0718	31.9364	45.8343	
knot2	88.0588	6.0836	74.2967	101.8	

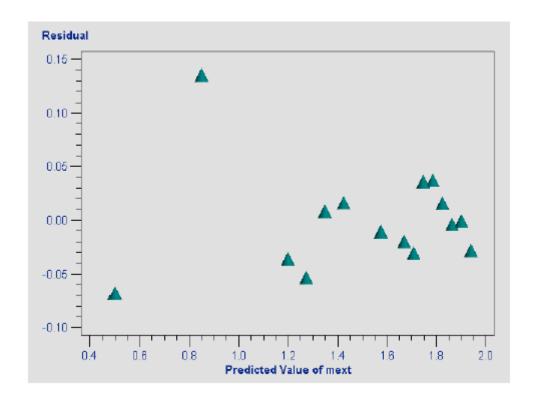
	Approximate Correlation Matrix							
	b0	b1	b2	b3	knot1	knot2		
b0	1.0000000		-0.00000000	0.0000000	-0.7272737	0.0000000		
b1								
b2	-0.0000000		1.0000000	-0.9880948	-0.5429217	-0.7537107		
b3	0.0000000		-0.9880948	1.0000000	0.5364581	0.6791443		
knot1	-0.7272737		-0.5429217	0.5364581	1.0000000	0.2250197		
knot2	0.0000000		-0.7537107	0.6791443	0.2250197	1.0000000		

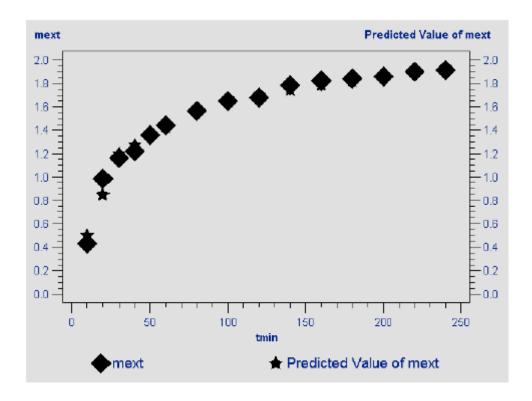
7.6.8 Experimento realizado na unidade SFE-I com amostra de 10g (vazão de solvente 50 % maior)

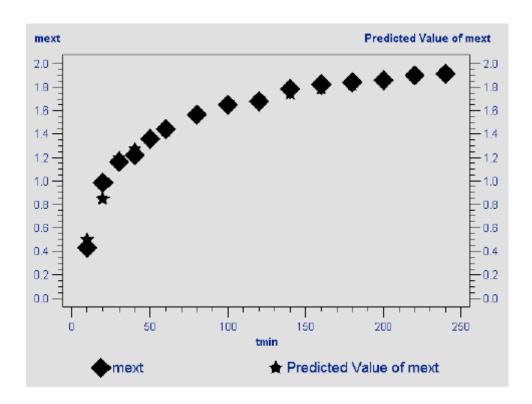
• Programa para o ajuste linear de 3 retas

```
options ls=80 ps=50;
Title 'SFEIa 10gVazao50MaiorLinear';
data SFEIa10gVazao50MaiorLinear;
input tmin mext;
AL1=max(tmin-30,0);
AL2=max(tmin-90,0);
Cards;
10 0.4311
20 0.9841
30 1.1622
40 1.2202
50 1.3572
60 1.4402
80 1.5642
100 1.6492
120 1.6773
140 1.7823
160 1.8223
180 1.8393
200 1.8583
220 1.9003
240 1.9113
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.0 \text{ by } 0.2);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


SFEIa_10gVazao50MaiorLinear


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	2.40610	0.80203	270,56	<.0001		
Error	11	0.03261	0.00296				
Corrected Total	14	2.43870					


Root MSE	0.05445	R-Square	0.9866
Dependent Mean	1.50663	Adj R-Sq	0.9830
Coeff Var	3.61374		

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t			
Intercept	1	0.14938	0.07820	1.91	0.0825			
tmin	1	0.03495	0.00321	10.88	<.0001			
AL1	1	-0.02743	0.00376	-7.29	<.0001			
AL2	1	-0.00560	0.00116	-4.82	0.0005			

Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	10	0,4311	0	0	0.49892	-0.06782
2	20	0,9841	0	0	0.84846	0.13564
3	30	1,1622	0	0	1.19800	-0.03580
4	40	1,2202	10	0	1.27329	-0.05309
5	50	1,3572	20	0	1.34857	0.00863
6	60	1,4402	30	0	1.42386	0.01634
7	80	1,5642	50	0	1.57443	-0.01023
8	100	1,6492	70	10	1.66903	-0.01983
9	120	1,6773	90	30	1.70766	-0.03036
10	140	1,7823	110	50	1.74630	0.03600
11	160	1,8223	130	70	1.78493	0.03737
12	180	1,8393	150	90	1.82356	0.01574
13	200	1,8583	170	110	1.86220	-0.00390
14	220	1,9003	190	130	1.90083	-0.00053
15	240	1,9113	210	150	1.93947	-0.02817

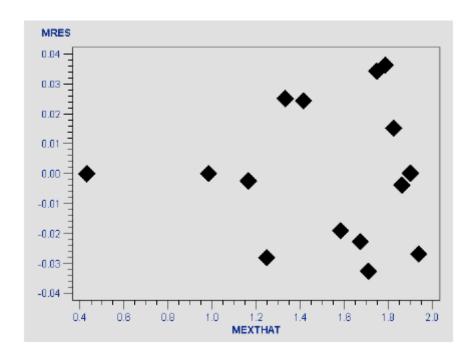
• Programa para o ajuste não-linear de 3 retas

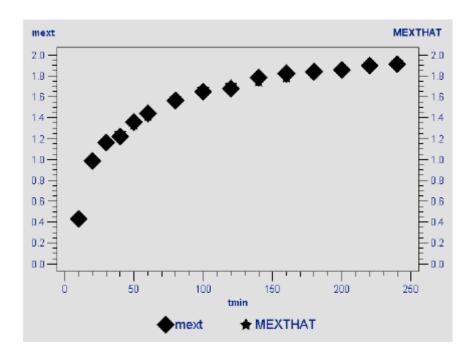
```
options ls=120 ps=70;
Title 'SFEIa_10gVazao50MaiorNLinear';
data AFEIa10gVazao50MaiorNLinear;
input tmin mext;
AL1=max(tmin-30,0);
AL2=max(tmin-90,0);
Cards;
10 0.4311
20 0.9841
30 1.1622
40 1.2202
50 1.3572
60 1.4402
80 1.5642
100 1.6492
120 1.6773
140 1.7823
160 1.8223
180 1.8393
200 1.8583
220 1.9003
240 1.9113
Proc Nlin;
Parms
b0=0.14938
b1=0.03495
b2 = -0.02743
b3 = -0.00560
knot1=30
knot2=90;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 2.0 \text{ by } 0.2);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

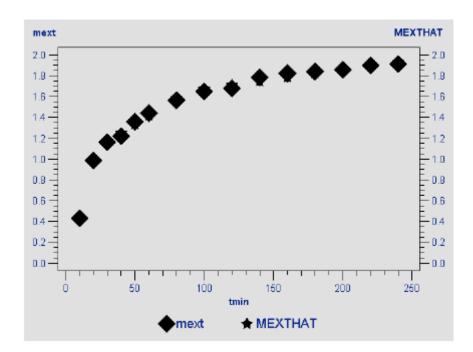

SFEIa_10gVazao50MaiorNLinear

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase									
lter	b0	b1	b2	b 3	knot1	knot2	Sum of Squares			
0	0.1494	0.0350	-0.0274	-0.00560	30.0000	90.0000	0.0326			
1	0.0816	0.0400	-0.0323	-0.00582	26.6047	89.3698	0.0239			
2	0.0109	0.0453	-0.0374	-0.00605	24.3113	88.7704	0.0189			
3	-0.0914	0.0530	-0.0447	-0.00637	22.1349	87.9857	0.0134			
4	-0.1207	0.0552	-0.0468	-0.00647	22.0607	87.8235	0.00745			
5	-0.1219	0.0553	-0.0469	-0.00647	22.0612	87.8193	0.00743			
6	-0.1219	0.0553	-0.0469	-0.00647	22.0612	87.8192	0.00743			


NOTE: Convergence criterion met.


Estimation Summary						
Method	Gauss-Newton					
Iterations	6					
Subiterations	3					
Average Subiterations	0.5					
R	1.867E-7					
PPC(b0)	4.412E-8					
RPC(b0)	0.000047					
Object	3.993E-8					
Objective	0.007432					
Observations Read	15					
Observations Used	15					
Observations Missing	0					


					Approx
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Regression	6	36.4804	6.0801	588.86	<.0001
Residual	9	0.00743	0.000826		
Uncorrected Total	15	36.4879			
Corrected Total	14	2.4387			

Parameter	Estimate	Approx Std Error	Approximate 95 Lim	
ь0	-0.1219	0.0643	-0.2673	0.0235
b1	0.0553	0.00406	0.0461	0.0645
b2	-0.0469	0.00413	-0.0563	-0.0376
b3	-0.00647	0.000779	-0.00824	-0.00471
knot1	22.0612	0.9293	19.9590	24.1634
knot2	87.8192	5.6050	75.1399	100.5

	Approximate Correlation Matrix								
	b0	b1	b2	b3	knot1	knot2			
b0	1.0000000	-0.9486833	0.9330532	-0.0000000	0.4769318	-0.0000000			
b1	-0.9486833	1.0000000	-0.9835244	0.0000000	-0.6580521	0.0000000			
b2	0.9330532	-0.9835244	1.0000000	-0.1733029	0.5545034	-0.1333193			
b3	-0.0000000	0.0000000	-0.1733029	1.0000000	0.4916312	0.5641035			
knot1	0.4769318	-0.6580521	0.5545034	0.4916312	1.0000000	0.2738125			
knot2	-0.0000000	0.0000000	-0.1333193	0.5641035	0.2738125	1.0000000			

7.7 Dados do experimento cinético realizado na SFE-I com CO₂ puro para a estimativa do custo de manufatura do extrato supercrítico de *A. satureioides*

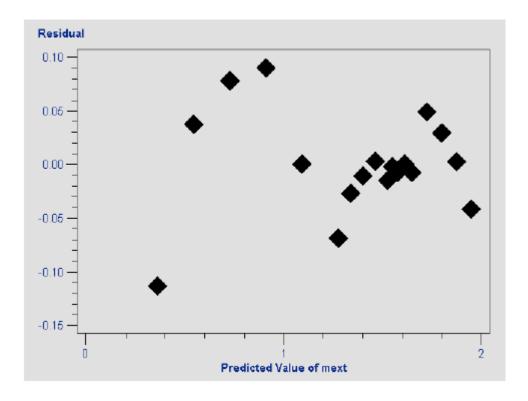
Tabela 7.30 – Dados do experimento cinético realizado na SFE-I com CO₂ puro para a estimativa de custo de manufatura do extrato supercrítico de macela.

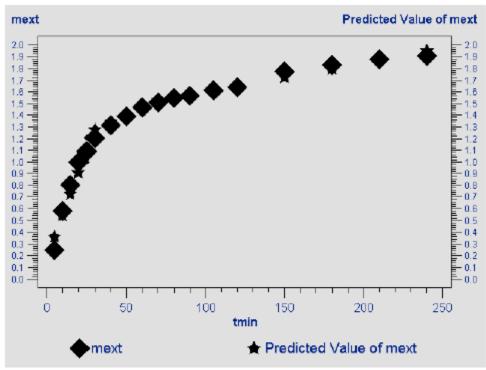
Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
5	37.1	0.2470	37.1	0.2470	0.0194
10	50.1	0.3335	87.2	0.5804	0.0387
15	33.6	0.2237	120.8	0.8041	0.0581
20	29.3	0.1950	150.1	0.9991	0.0774
25	14.0	0.0932	164.1	1.0923	0.0968
30	17.1	0.1138	181.2	1.2061	0.1161
40	15.7	0.1045	196.9	1.3106	0.1548
50	11.8	0.0785	208.7	1.3892	0.1935
60	11.4	0.0759	220.1	1.4651	0.2322
70	6.7	0.0446	226.8	1.5097	0.2709
80	5.7	0.0379	232.5	1.5476	0.3096
90	2.9	0.0193	235.4	1.5669	0.3483
105	6.8	0.0453	242.2	1.6122	0.4064
120	4.4	0.0293	246.6	1.6415	0.4644
150	19.7	0.1311	266.3	1.7726	0.5805
180	8.3	0.0552	274.6	1.8278	0.6967
210	7.2	0.0479	281.8	1.8758	0.8128
240	4.6	0.0306	286.4	1.9064	0.9289

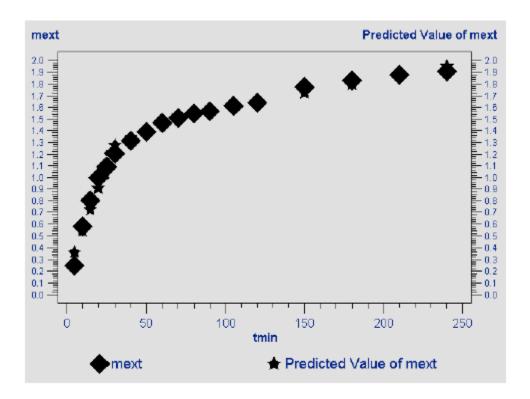
- 7.7.1 SAS Learning Edition 1.0 Programas e resultados referentes à estimativa dos parâmetros t_{CER}, t_{FER}, M_{CER}, Y_{CER}, R_{CER} para o experimento cinético relacionado à estimativa do COM para o extrato supercrítico de A. satureioides (Item 4.3.2)
- Programa para o ajuste linear de 3 retas

```
options ls=80 ps=50;
Title 'EstimativaCusto_3RetasLinear';
data EstimativaCustoLinear;
input tmin mext;
AL1=max(tmin-30,0);
AL2=max(tmin-70,0);
Cards:
5 0.24695
10 0.58044
15 0.80409
20 0.99912
25 1.09231
30 1.20613
40 1.31064
50 1.38918
60 1.46507
70 1.50967
80 1.54761
90 1.56691
105 1.61217
120 1.64146
150 1.77259
180 1.82784
210 1.87577
240 1.90638
Proc Reg;
Model mext=tmin AL1 AL2;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


EstimativaCusto_3RetasLinear


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	3.55223	1.18408	421.87	<.0001		
Error	14	0.03929	0.00281				
Corrected Total	17	3.59152					


Root MSE	0.05298	R-Square	0.9891
Dependent Mean	1,35302	Adj R-Sq	0.9867
Coeff Var	3.91559		

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	0.17699	0.04752	3.72	0.0023		
tmin	1	0.03660	0.00227	16.15	<.0001		
AL1	1	-0.03036	0.00310	-9.81	<.0001		
AL2	1	-0,00374	0.00128	-2.92	0.0112		

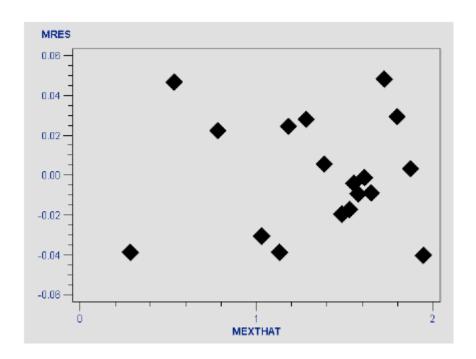
Obs	tmin	mext	AL1	AL2	mexthat	Mres
1	5	0.24695	0	0	0.35997	-0.11302
2	10	0.58044	0	0	0.54296	0.03748
3	15	0.80409	0	0	0.72595	0.07814
4	20	0.99912	0	0	0.90893	0.09019
5	25	1.09231	0	0	1.09192	0.00039
6	30	1.20613	0	0	1.27490	-0.06877
7	40	1.31064	10	0	1.33726	-0.02662
8	50	1.38918	20	0	1.39962	-0.01044
9	60	1.46507	30	0	1.46197	0.00310
10	70	1.50967	40	0	1.52433	-0.01466
11	80	1.54761	50	10	1.54924	-0.00163
12	90	1.56691	60	20	1.57415	-0.00724
13	105	1.61217	75	35	1.61151	0.00066
14	120	1.64146	90	50	1.64887	-0.00741
15	150	1.77259	120	80	1.72360	0.04899
16	180	1.82784	150	110	1.79833	0.02951
17	210	1.87577	180	140	1.87305	0.00272
18	240	1.90638	210	170	1.94778	-0.04140

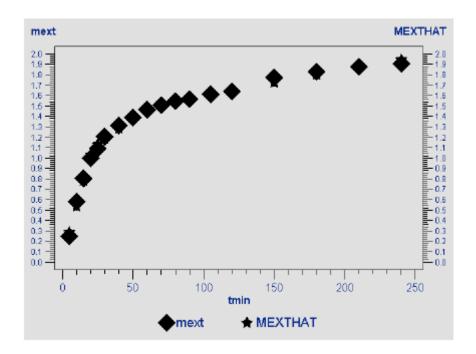
• Programa para o ajuste não-linear de 3 retas

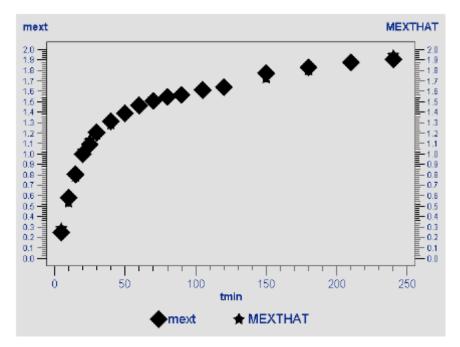
```
options ls=120 ps=70;
Title 'SFEIIa 3retas-nlinear';
data SFEIIaNlinear;
input tmin mext;
AL1=max(tmin-30,0);
AL2=max(tmin-70,0);
Cards;
5 0.24695
10 0.58044
15 0.80409
20 0.99912
25 1.09231
30 1.20613
40 1.31064
50 1.38918
60 1.46507
70 1.50967
80 1.54761
90 1.56691
105 1.61217
120 1.64146
150 1.77259
180 1.82784
210 1.87577
240 1.90638
Proc Nlin;
Parms
b0=0.17699
b1=0.03660
b2 = -0.03036
b3 = -0.00374
knot1=30
knot2=70;
AL1=max(tmin-knot1,0);
AL2=max(tmin-knot2,0);
Model mext=b0+b1*tmin+b2*AL1+b3*AL2;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 2.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase							
Iter	b0	b1	b2	b 3	knot1	knot2	Sum of Squares	
0	0.1770	0.0366	-0.0304	-0.00374	30.0000	70.0000	0.0393	
1	0.1118	0.0422	-0.0336	-0.00609	24.6327	62.0646	0.0357	
2	0.0376	0.0496	-0.0395	-0.00763	20.7036	62.3703	0.0210	
3	0.0376	0.0496	-0.0395	-0.00763	21.2871	62.3083	0.0137	


NOTE: Convergence criterion met.


Estimation Summary					
Method	Gauss-Newton				
Iterations	3				
R	0				
PPC	0				
RPC(knot1)	0.028185				
Object	0.345509				
Objective	0.013721				
Observations Read	18				
Observations Used	18				
Observations Missing	0				


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	6	36.5297	6.0883	625.82	<.0001
Residual	12	0.0137	0.00114		
Uncorrected Total	18	36.5434			
Corrected Total	17	3.5915			

Parameter	Estimate	Approx Std Error		
b0	0.0376	0.0414	-0.0526	0.1278
b1	0.0496	0.00302	0.0430	0.0562
b2	-0.0395	0.00325	-0.0466	-0.0324
b3	-0.00763	0.00120	-0.0102	-0.00503
knot1	21.2871	1.0629	18.9713	23.6029
knot2	62.3083	4.5664	52.3589	72.2576

	Approximate Correlation Matrix							
	b0	b1	b2	b3	knot1	knot2		
b0	1.0000000	-0.9128709	0.8503553	-0.0000000	0.4134471	-0.0000000		
b1	-0.9128709	1.0000000	-0.9315175	0.0000000	-0.6330020	0.0000000		
b2	0.8503553	-0.9315175	1.0000000	-0.3586949	0.3880040	-0.2625202		
b3	-0.0000000	0.0000000	-0.3586949	1.0000000	0.5468169	0.6405585		
knot1	0.4134471	-0.6330020	0.3880040	0.5468169	1.0000000	0.2439503		
knot2	-0.0000000	0.0000000	-0.2625202	0.6405585	0.2439503	1.0000000		

7.8 Dados dos experimentos cinéticos realizados na SFE-II com CO₂ + etanol (*A. satureioides* – Item 4.3.3)

Tabela 7.31 – Dados do Exp 1 realizado com 5 g de matéria-prima.

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	86.7	1.7253	86.7	1.7253	0.3310
40	49.9	0.9930	136.6	2.7183	0.6621
60	31.4	0.6249	168.0	3.3432	0.9931
80	17.2	0.3423	185.2	3.6854	1.3241
100	11.6	0.2308	196.8	3.9163	1.6552
120	9.6	0.1910	206.4	4.1073	1.9862
140	8.4	0.1672	214.8	4.2745	2.3172
160	8.6	0.1711	223.4	4.4456	2.6482
180	7.3	0.1453	230.7	4.5909	2.9793
200	7.0	0.1393	237.7	4.7302	3.3103
220	6.1	0.1214	243.8	4.8515	3.6413
240	5.9	0.1174	249.7	4.9690	3.9724
260	5.2	0.1035	254.9	5.0724	4.3034
280	4.9	0.0975	259.8	5.1699	4.6344
300	3.6	0.0716	263.4	5.2416	4.9655
320	4.4	0.0876	267.8	5.3291	5.2965
340	4.0	0.0796	271.8	5.4087	5.6275
360	3.8	0.0756	275.6	5.4844	5.9585
380	4.0	0.0796	279.6	5.5640	6.2896
400	3.4	0.0677	283.0	5.6316	6.6206
420	3.3	0.0657	286.3	5.6973	6.9516

Tabela 7.32 – Dados do Exp 2 realizado com 2 g de matéria-prima.

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	41.8	1.9434	41.8	1.9434	0.3097
40	14.3	0.6648	56.1	2.6082	0.6195
60	21.2	0.9856	77.3	3.5938	0.9292
80	12.2	0.5672	89.5	4.1610	1.2389
100	6.4	0.2975	95.9	4.4586	1.5487
120	5.7	0.2650	101.6	4.7236	1.8584
140	4.4	0.2046	106.0	4.9282	2.1681
160	4.4	0.2046	110.4	5.1327	2.4779
180	3.9	0.1813	114.3	5.3141	2.7876
200	3.4	0.1581	117.7	5.4721	3.0973
220	2.3	0.1069	120.0	5.5791	3.4070
240	2.2	0.1023	122.2	5.6813	3.7168
260	2.6	0.1209	124.8	5.8022	4.0265
280	1.8	0.0837	126.6	5.8859	4.3362
300	1.3	0.0604	127.9	5.9463	4.6460
320	1.3	0.0604	129.2	6.0068	4.9557
340	1.2	0.0558	130.4	6.0626	5.2654
360	0.9	0.0418	131.3	6.1044	5.5752
380	1.4	0.0651	132.7	6.1695	5.8849
400	1.3	0.0604	134.0	6.2300	6.1946
420	1.5	0.0697	135.5	6.2997	6.5044

Tabela 7.33 – Dados do Exp 3 realizado com 30 g de matéria-prima.

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (g)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	331.9	1.0434	331.9	1.0434	0.1363
40	111.9	0.3518	443.8	1.3952	0.2726
60	90.8	0.2854	534.6	1.6806	0.4090
80	68.8	0.2163	603.4	1.8969	0.5453
100	53.9	0.1694	657.3	2.0663	0.6816
120	41.8	0.1314	699.1	2.1977	0.8179
140	38.4	0.1207	737.5	2.3185	0.9543
160	18.9	0.0594	756.4	2.3779	1.0906
180	23.9	0.0751	780.3	2.4530	1.2269
200	23.3	0.0732	803.6	2.5262	1.3632
220	15.5	0.0487	819.1	2.5750	1.4996
240	13.3	0.0418	832.4	2.6168	1.6359
260	13.9	0.0437	846.3	2.6605	1.7722
280	11.3	0.0355	857.6	2.6960	1.9085
300	12	0.0377	869.6	2.7337	2.0449
320	11.6	0.0365	881.2	2.7702	2.1812
340	8.2	0.0258	889.4	2.7960	2.3175
360	8.2	0.0258	897.6	2.8218	2.4538
380	8.6	0.0270	906.2	2.8488	2.5902
400	11	0.0346	917.2	2.8834	2.7265
420	6.7	0.0211	923.9	2.9044	2.8628

Tabela 7.34 – Dados do Exp 4 realizado com 30 g de matéria-prima e aplicação de período estático (replicata 1).

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (mg)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	219.9	0.6664	219.9	0.6664	0.1130
40	223.2	0.6764	443.1	1.3427	0.2261
60	147.5	0.4470	590.6	1.7897	0.3391
80	106.9	0.3239	697.5	2.1136	0.4521
100	74.6	0.2261	772.1	2.3397	0.5652
120	65.0	0.1970	837.1	2.5367	0.6782
140	54.4	0.1648	891.5	2.7015	0.7912
160	47.2	0.1430	938.7	2.8445	0.9042
180	44.1	0.1336	982.8	2.9782	1.0173
200	36.7	0.1112	1019.5	3.0894	1.1303
220	32.0	0.0970	1051.5	3.1864	1.2433
240	29.5	0.0894	1081.0	3.2758	1.3564
260	25.5	0.0773	1106.5	3.3530	1.4694
280	25.1	0.0761	1131.6	3.4291	1.5824
300	22.5	0.0682	1154.1	3.4973	1.6955
320	20.8	0.0630	1174.9	3.5603	1.8085
340	16.7	0.0506	1191.6	3.6109	1.9215
360	18.0	0.0545	1209.6	3.6655	2.0346
380	18.1	0.0548	1227.7	3.7203	2.1476
400	16.5	0.0500	1244.2	3.7703	2.2606
420	6.0	0.0182	1250.2	3.7885	2.3736

Tabela 7.35 – Dados do Exp 4 realizado com 30 g de matéria-prima e aplicação de período estático (replicata 2).

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (mg)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	287.1	0.8700	287.1	0.8700	0.0935
40	213.4	0.6467	500.5	1.5167	0.1870
60	138.7	0.4203	639.2	1.9370	0.2806
80	107.6	0.3261	746.8	2.2630	0.3741
100	84.0	0.2545	830.8	2.5176	0.4676
120	67.0	0.2030	897.8	2.7206	0.5611
140	57.5	0.1742	955.3	2.8948	0.6546
160	50.2	0.1521	1005.5	3.0470	0.7481
180	45.7	0.1385	1051.2	3.1855	0.8417
200	40.1	0.1215	1091.3	3.3070	0.9352
220	37.6	0.1139	1128.9	3.4209	1.0287
240	36.3	0.1100	1165.2	3.5309	1.1222
260	33.9	0.1027	1199.1	3.6336	1.2157
280	32.4	0.0982	1231.5	3.7318	1.3092
300	30.1	0.0912	1261.6	3.8230	1.4028
320	29.1	0.0882	1290.7	3.9112	1.4963
340	27.8	0.0842	1318.5	3.9955	1.5898
360	24.4	0.0739	1342.9	4.0694	1.6833
380	24.8	0.0752	1367.7	4.1445	1.7768
400	23.1	0.0700	1390.8	4.2145	1.8704
420	22.3	0.0676	1413.1	4.2821	1.9639

Tabela 7.36 – Dados do Exp 5 realizado com 30 g de matéria-prima e 5 % de co-solvente (v/v) (replicata 1).

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (mg)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	121.8	0.3640	121.8	0.3640	0.0101
40	112.8	0.3371	234.6	0.7011	0.0202
60	71.7	0.2143	306.3	0.9154	0.0303
80	57.3	0.1712	363.6	1.0867	0.0405
100	34.7	0.1037	398.3	1.1904	0.0506
120	45.8	0.1369	444.1	1.3273	0.0607
140	15.8	0.0472	459.9	1.3745	0.0708
160	32.1	0.0959	492.0	1.4704	0.0809
180	16.3	0.0487	508.3	1.5191	0.0910
200	12.8	0.0383	521.1	1.5574	0.1011
220	15.8	0.0472	536.9	1.6046	0.1112
240	3.6	0.0108	540.5	1.6154	0.1214
260	8.3	0.0248	548.8	1.6402	0.1315
280	7.2	0.0215	556.0	1.6617	0.1416
300	10.4	0.0311	566.4	1.6928	0.1517
320	8.3	0.0248	574.7	1.7176	0.1618
340	7.6	0.0227	582.3	1.7403	0.1719
360	9.9	0.0296	592.2	1.7699	0.1820
380	3.9	0.0117	596.1	1.7815	0.1921
400	1.2	0.0036	597.3	1.7851	0.2023
420	1.6	0.0048	598.9	1.7899	0.2124

Tabela 7.37 – Dados do Exp 5 realizado com 30 g de matéria-prima e 5 % de co-solvente (v/v) (replicata 2).

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (mg)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	187.9	0.5609	187.9	0.5609	0.1024
40	117.5	0.3507	305.4	0.9116	0.2047
60	76.1	0.2272	381.5	1.1388	0.3071
80	61.0	0.1821	442.5	1.3209	0.4095
100	34.8	0.1039	477.3	1.4248	0.5118
120	30.8	0.0919	508.1	1.5167	0.6142
140	24.8	0.0740	532.9	1.5907	0.7166
160	19.0	0.0567	551.9	1.6475	0.8190
180	19.2	0.0573	571.1	1.7048	0.9213
200	15.2	0.0454	586.3	1.7501	1.0237
220	15.4	0.0460	601.7	1.7961	1.1261
240	10.7	0.0319	612.4	1.8281	1.2284
260	10.9	0.0325	623.3	1.8606	1.3308
280	8.9	0.0266	632.2	1.8872	1.4332
300	8.4	0.0251	640.6	1.9122	1.5355
320	6.2	0.0185	646.8	1.9307	1.6379
340	7.2	0.0215	654.0	1.9522	1.7403
360	6.2	0.0185	660.2	1.9707	1.8427
380	5.4	0.0161	665.6	1.9869	1.9450
400	5.0	0.0149	670.6	2.0018	2.0474
420	4.5	0.0134	675.1	2.0152	2.1498

Tabela 7.38 – Dados do Exp 6 realizado com 30 g de matéria-prima, 20 % de etanol (v/v) e vazão de solvente reduzida (replicata 1).

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (mg)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	95.1	0.2860	95.1	0.2860	0.0125
40	129.5	0.3895	224.6	0.6755	0.0250
60	86.0	0.2586	310.6	0.9341	0.0374
80	77.2	0.2322	387.8	1.1663	0.0499
100	62.3	0.1874	450.1	1.3537	0.0624
120	62.8	0.1889	512.9	1.5426	0.0749
140	62.6	0.1883	575.5	1.7308	0.0874
160	44.7	0.1344	620.2	1.8653	0.0999
180	45.3	0.1362	665.5	2.0015	0.1123
200	36.7	0.1104	702.2	2.1119	0.1248
220	32.7	0.0983	734.9	2.2102	0.1373
240	31.4	0.0944	766.3	2.3047	0.1498
260	25.5	0.0767	791.8	2.3814	0.1623
280	30.5	0.0917	822.3	2.4731	0.1748
300	24.1	0.0725	846.4	2.5456	0.1872
320	22.9	0.0689	869.3	2.6144	0.1997
340	24.3	0.0731	893.6	2.6875	0.2122
360	19.4	0.0583	913.0	2.7459	0.2247
380	19.1	0.0574	932.1	2.8033	0.2372
400	16.4	0.0493	948.5	2.8526	0.2497
420	16.1	0.0484	964.6	2.9011	0.2621

Tabela 7.39 – Dados do Exp 6 realizado com 30 g de matéria-prima, 20 % de etanol (v/v) e vazão de solvente reduzida (replicata 2).

Tempo (min)	Massa de Extrato (mg)	Rendimento (%)	Massa Acumulada (mg)	Rendimento Acumulado (%)	Massa de CO ₂ Acumulado (kg)
20	130.9	0.3937	130.9	0.3937	0.0120
40	148.5	0.4466	279.4	0.8403	0.0240
60	113.7	0.3420	393.1	1.1823	0.0360
80	109.7	0.3299	502.8	1.5122	0.0479
100	38.8	0.1167	541.6	1.6289	0.0599
120	58.7	0.1765	600.3	1.8054	0.0719
140	41.8	0.1257	642.1	1.9311	0.0839
160	41.2	0.1239	683.3	2.0550	0.0959
180	38.3	0.1152	721.6	2.1702	0.1079
200	33.6	0.1011	755.2	2.2713	0.1199
220	32.8	0.0986	788.0	2.3699	0.1319
240	29.2	0.0878	817.2	2.4577	0.1438
260	24.9	0.0749	842.1	2.5326	0.1558
280	24.1	0.0725	866.2	2.6051	0.1678
300	19.1	0.0574	885.3	2.6626	0.1798
320	20.2	0.0608	905.5	2.7233	0.1918
340	18.1	0.0544	923.6	2.7777	0.2038
360	17.4	0.0523	941.0	2.8301	0.2158
380	16.5	0.0496	957.5	2.8797	0.2278
400	19.8	0.0595	977.3	2.9392	0.2397
420	17.5	0.0526	994.8	2.9919	0.2517

7.8.1 Dados da quantificação de quercetina nos extratos obtidos através dos experimentos cinéticos realizados com CO₂ + etanol.

Tabela 7.40 – Dados utilizados para a construção da curva padrão de quercetina.

Concentração de		Absorbância (371 nm)	
quercetina (mg/mL)	Leitura 1	Leitura 2	Média
0.0105	1.1032	1.1019	1.1026
0.0095	0.9823	0.9806	0.9815
0.0084	0.8688	0.8694	0.8691
0.0074	0.7782	0.7732	0.7757
0.0063	0.6321	0.6332	0.6327
0.0053	0.6014	0.6026	0.6020
0.0042	0.4484	0.4467	0.4476
0.0032	0.3692	0.3688	0.3690
0.0021	0.2649	0.2631	0.2640
0.0011	0.1208	0.1203	0.1206

Tabela 7.41 – Dados de quantificação de quercetina para o experimento cinético Exp 2 realizado com 2 g de amostra.

Tempo (min)		Absor	bâncias (37	⁷ 1 nm)		Quercetina - (mg/mL)	Massa de quercetina (mg)		% No Extrato
(min)	Leit.1	Leit.2	Leit.3	Leit.4	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.1986	0.2025	0.2051	0.2055	0.2029	0.0017	2.7579	2.7579	0.1282
40	0.3705	0.3712	0.3710	0.3712	0.3710	0.0033	1.8964	4.6544	0.2164
60	0.3643	0.3644	0.3640	0.3641	0.3642	0.0033	2.7576	7.4120	0.3446
80	0.4345	0.4341	0.4340	0.4351	0.4344	0.0040	1.9244	9.3364	0.4341
100	0.5754	0.5781	0.5783	0.5807	0.5781	0.0054	1.3697	10.7061	0.4978
120	0.4717	0.4722	0.4726	0.4747	0.4728	0.0043	0.9814	11.6875	0.5434
140	0.5535	0.5541	0.5587	0.5586	0.5562	0.0052	0.9003	12.5878	0.5852
160	0.4583	0.4580	0.4575	0.4577	0.4579	0.0042	0.7297	13.3175	0.6192
180	0.5245	0.5238	0.5246	0.5257	0.5247	0.0049	0.7483	14.0659	0.6540
200	0.4447	0.4496	0.4542	0.4552	0.4509	0.0041	0.5527	14.6185	0.6796
220	0.6766	0.6783	0.6771	0.6758	0.6770	0.0064	0.5740	15.1925	0.7063
240	0.6558	0.6523	0.6543	0.6541	0.6541	0.0062	0.5289	15.7215	0.7309
260	0.5414	0.5409	0.5400	0.5407	0.5408	0.0050	0.5120	16.2335	0.7547
280	0.6539	0.6417	0.6408	0.6413	0.6444	0.0061	0.4238	16.6573	0.7744
300	0.8625	0.8634	0.8635	0.8644	0.8635	0.0082	0.4119	17.0692	0.7936
320	0.7555	0.7554	0.7548	0.7546	0.7551	0.0072	0.3578	17.4270	0.8102
340	0.6540	0.6568	0.6577	0.6577	0.6566	0.0062	0.2840	17.7110	0.8234
360	0.9175	0.9171	0.9162	0.9153	0.9165	0.0088	0.2981	18.0091	0.8373
380	0.3638	0.3649	0.3665	0.3666	0.3655	0.0033	0.1767	18.1858	0.8455
400	0.7281	0.7291	0.7299	0.7297	0.7292	0.0069	0.3449	18.5307	0.8615
420	0.5509	0.5507	0.5507	0.5509	0.5508	0.0051	0.2970	18.8277	0.8753

Tabela 7.42 – Dados de quantificação de quercetina para o experimento cinético Exp 3 realizado com 30 g de amostra.

Tempo		Absor	bâncias (37	71 nm)	Quercetina	Massa de quercetina (mg)		% No Extrato	
(min)	Leit.1	Leit.2	Leit.3	Leit.4	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.1900	0.1919	0.1664	0.1663	0.1787	0.0014	9.3557	9.3557	0.0294
40	0.3903	0.3887	0.3887	0.3888	0.3891	0.0035	7.8511	17.2068	0.0541
60	0.3825	0.3491	0.3550	0.3590	0.3614	0.0032	5.8686	23.0754	0.0725
80	0.3285	0.3292	0.3302	0.3283	0.3291	0.0029	4.0029	27.0783	0.0851
100	0.3499	0.3542	0.3556	0.3587	0.3546	0.0032	3.4106	30.4889	0.0958
120	0.3591	0.3599	0.3601	0.3600	0.3598	0.0032	2.6881	33.1770	0.1043
140	0.4027	0.3968	0.3954	0.3976	0.3981	0.0036	2.7631	35.9401	0.1130
160	0.5556	0.5365	0.5277	0.5241	0.5360	0.0050	1.8795	37.8196	0.1189
180	0.4584	0.4509	0.4505	0.4507	0.4526	0.0041	1.9795	39.7991	0.1251
200	0.2840	0.2850	0.2854	0.2851	0.2849	0.0025	1.1504	40.9495	0.1287
220	0.3814	0.3799	0.3801	0.3823	0.3809	0.0034	1.0622	42.0117	0.1321
240	0.1892	0.1907	0.1917	0.1931	0.1912	0.0015	0.4081	42.4198	0.1334
260	0.5118	0.5129	0.5135	0.5138	0.5130	0.0047	1.3186	43.7384	0.1375
280	0.3762	0.3765	0.3765	0.3765	0.3764	0.0034	0.7642	44.5026	0.1399
300	0.6004	0.5216	0.5155	0.5140	0.5379	0.0050	1.1979	45.7005	0.1437
320	0.3681	0.3679	0.3680	0.3679	0.3680	0.0033	0.7649	46.4655	0.1461
340	0.6740	0.6767	0.6771	0.6784	0.6766	0.0064	1.0453	47.5108	0.1494
360	0.2425	0.2429	0.2430	0.2428	0.2428	0.0020	0.3360	47.8469	0.1504
380	0.6584	0.6595	0.6606	0.6609	0.6599	0.0062	1.0677	48.9145	0.1538
400	0.4479	0.4485	0.4488	0.4487	0.4485	0.0041	0.9020	49.8165	0.1566
420	0.3789	0.3801	0.3799	0.3795	0.3796	0.0034	0.4574	50.2739	0.1580

Tabela 7.43 – Dados de quantificação de quercetina para o experimento cinético Exp 4 realizado com 30 g de amostra e aplicação de período estático (replicata 1).

Tempo (min)		Absorbânci	as (371 nm)		Quercetina	Massa de quercetina (mg)		% No Extrato
(min)	Leit.1	Leit.2	Leit.3	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.2630	0.2626	0.2633	0.2630	0.0023	12.0113	12.0113	0.0364
40	0.5734	0.5730	0.5731	0.5732	0.0053	24.0870	36.0983	0.1094
60	0.7167	0.7167	0.7163	0.7166	0.0068	19.9533	56.0516	0.1699
80	0.5542	0.5516	0.5509	0.5522	0.0051	10.9877	67.0393	0.2031
100	0.5848	0.5840	0.5839	0.5842	0.0055	8.1476	75.1869	0.2278
120	0.6046	0.6046	0.6042	0.6045	0.0057	7.5215	82.7084	0.2506
140	0.9415	0.9410	0.9411	0.9412	0.0090	9.8060	92.5144	0.2803
160	0.6496	0.6490	0.6487	0.6491	0.0061	5.8319	98.3463	0.2980
180	0.6242	0.6240	0.6236	0.6239	0.0058	5.2527	103.5990	0.3139
200	0.9798	0.9792	0.9792	0.9794	0.0094	7.0829	110.6819	0.3354
220	0.7617	0.7615	0.7611	0.7614	0.0072	4.7077	115.3896	0.3497
240	0.7939	0.7936	0.7937	0.7937	0.0075	4.5255	119.9151	0.3634
260	0.7090	0.7084	0.7077	0.7084	0.0067	3.4125	123.3276	0.3737
280	0.7137	0.7133	0.7131	0.7134	0.0067	3.0200	126.3476	0.3829
300	0.8548	0.8546	0.8546	0.8547	0.0082	3.4719	129.8195	0.3934
320	1.0986	1.0985	1.0981	1.0984	0.0106	3.9994	133.8189	0.4055
340	1.0173	1.0169	1.0174	1.0172	0.0098	3.6347	137.4536	0.4165
360	0.9926	0.9917	0.9911	0.9918	0.0095	3.4834	140.9370	0.4271
380	0.7920	0.7920	0.7924	0.7921	0.0075	2.6493	143.5863	0.4351
400	1.0613	1.0562	1.0562	1.0579	0.0102	3.3175	146.9038	0.4452
420	3.5685	3.5479	3.5685	3.5616	0.0351	2.1788	149.0826	0.4518

Tabela 7.44 – Dados de quantificação de quercetina para o experimento cinético Exp 4 realizado com 30 g de amostra e aplicação de período estático (replicata 2).

Tempo		Absorbânci	as (371 nm)		Quercetina - (mg/mL)		Massa de quercetina (mg)	
(min)	Leit.1	Leit.2	Leit.3	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.2165	0.2160	0.2158	0.2161	0.0018	10.2370	10.2370	0.0310
40	0.4270	0.4265	0.4261	0.4265	0.0039	16.5644	26.8015	0.0812
60	0.4284	0.4280	0.4278	0.4281	0.0039	10.8085	37.6100	0.1140
80	0.4547	0.4542	0.4541	0.4543	0.0042	8.9486	46.5586	0.1411
100	0.4839	0.4840	0.4839	0.4839	0.0045	7.4817	54.0403	0.1638
120	0.5219	0.5218	0.5215	0.5217	0.0048	6.4726	60.5130	0.1834
140	0.6012	0.5664	0.5664	0.5780	0.0054	6.2001	66.7130	0.2022
160	0.6135	0.6134	0.6135	0.6135	0.0057	5.7680	72.4810	0.2196
180	0.5465	0.5465	0.5464	0.5465	0.0051	4.6403	77.1213	0.2337
200	0.5838	0.5836	0.5843	0.5839	0.0055	4.3709	81.4923	0.2469
220	0.5916	0.5906	0.5894	0.5905	0.0055	4.1483	85.6406	0.2595
240	0.5451	0.5452	0.5456	0.5453	0.0051	3.6774	89.3180	0.2707
260	0.6392	0.6396	0.6398	0.6395	0.0060	4.0713	93.3893	0.2830
280	0.6200	0.6202	0.6204	0.6202	0.0058	3.7663	97.1556	0.2944
300	0.5918	0.5922	0.5923	0.5921	0.0055	3.3302	100.4858	0.3045
320	0.6263	0.6263	0.6258	0.6261	0.0059	3.4171	103.9029	0.3149
340	0.6241	0.6228	0.6230	0.6233	0.0058	3.2487	107.1517	0.3247
360	0.6295	0.6299	0.6296	0.6297	0.0059	2.8824	110.0341	0.3334
380	0.5840	0.5846	0.5843	0.5843	0.0055	2.7053	112.7393	0.3416
400	0.6156	0.6154	0.6155	0.6155	0.0058	2.6636	115.4029	0.3497
420	0.5574	0.5574	0.5570	0.5573	0.0052	2.3123	117.7152	0.3567

Tabela 7.45 – Dados de quantificação de quercetina para o experimento cinético Exp 5 realizado com 30 g de amostra e quantidade reduzida de co-solvente (replicata 1).

Tempo		Absorbânci	as (371 nm)		Quercetina	Massa de quercetina (mg)		% No Extrato
(min)	Leit.1	Leit.2	Leit.3	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.0908	0.0903	0.0905	0.0905	0.0005	1.2930	1.2930	0.0386
40	0.0807	0.0804	0.0804	0.0805	0.0004	0.9718	2.2648	0.0677
60	0.0857	0.0858	0.0852	0.0856	0.0005	0.6901	2.9549	0.0883
80	0.0962	0.0958	0.0955	0.0958	0.0006	0.6689	3.6238	0.1083
100	0.1030	0.1027	0.1027	0.1028	0.0007	0.4533	4.0770	0.1218
120	0.1275	0.1270	0.1279	0.1275	0.0009	0.8235	4.9006	0.1465
140	0.1183	0.1179	0.1179	0.1180	0.0008	0.2544	5.1550	0.1541
160	0.1049	0.1045	0.1040	0.1045	0.0007	0.4299	5.5848	0.1669
180	0.1304	0.1310	0.1307	0.1307	0.0009	0.3036	5.8884	0.1760
200	0.1780	0.1786	0.1778	0.1781	0.0014	0.3595	6.2479	0.1867
220	0.1287	0.1286	0.1290	0.1288	0.0009	0.2882	6.5361	0.1953
240	0.2103	0.2098	0.2098	0.2100	0.0017	0.1240	6.6601	0.1990
260	0.2205	0.2184	0.2164	0.2184	0.0018	0.2998	6.9599	0.2080
280	0.1974	0.1968	0.1960	0.1967	0.0016	0.2289	7.1888	0.2148
300	0.1774	0.1762	0.1756	0.1764	0.0014	0.2885	7.4773	0.2235
320	0.1887	0.1901	0.1903	0.1897	0.0015	0.2523	7.7295	0.2310
340	0.1834	0.1830	0.1831	0.1832	0.0015	0.2211	7.9506	0.2376
360	0.1771	0.1780	0.1777	0.1776	0.0014	0.2770	8.2276	0.2459
380	0.1997	0.1993	0.1986	0.1992	0.0016	0.1259	8.3535	0.2497
400	0.0468	0.0464	0.0462	0.0465	0.0001	0.0022	8.3557	0.2497
420	0.1516	0.1540	0.1538	0.1531	0.0012	0.0370	8.3927	0.2508

Tabela 7.46 – Dados de quantificação de quercetina para o experimento cinético Exp 5 realizado com 30 g de amostra e quantidade reduzida de co-solvente (replicata 2).

Tempo		Absorbânci	as (371 nm)		Quercetina - (mg/mL)	Massa de quercetina (mg)		% No Extrato
(min)	Leit.1	Leit.2	Leit.3	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.0594	0.0593	0.0593	0.0593	0.0002	0.8256	0.8256	0.0246
40	0.0853	0.0851	0.0850	0.0851	0.0005	1.1208	1.6512	0.0493
60	0.1041	0.1036	0.1037	0.1038	0.0007	1.0092	2.7721	0.0827
80	0.1139	0.1125	0.1121	0.1128	0.0008	0.9188	3.7813	0.1129
100	0.1144	0.1144	0.1143	0.1144	0.0008	0.5348	4.7001	0.1403
120	0.1236	0.1229	0.1219	0.1228	0.0009	0.5252	5.2349	0.1563
140	0.1216	0.1218	0.1223	0.1219	0.0008	0.4184	5.7601	0.1719
160	0.132	0.1316	0.1320	0.1319	0.0009	0.3583	6.1785	0.1844
180	0.1185	0.1183	0.1182	0.1183	0.0008	0.3103	6.5368	0.1951
200	0.1507	0.1489	0.1477	0.1491	0.0011	0.3389	6.8471	0.2044
220	0.1232	0.1232	0.1231	0.1232	0.0009	0.2637	7.1860	0.2145
240	0.1607	0.1599	0.1595	0.1600	0.0012	0.2619	7.4497	0.2224
260	0.1058	0.1057	0.1055	0.1057	0.0007	0.1486	7.7116	0.2302
280	0.1551	0.1548	0.1545	0.1548	0.0012	0.2085	7.8602	0.2346
300	0.1301	0.1296	0.1303	0.1300	0.0009	0.1553	8.0687	0.2409
320	0.1683	0.1680	0.1680	0.1681	0.0013	0.1617	8.2240	0.2455
340	0.1341	0.1334	0.1331	0.1335	0.0010	0.1382	8.3857	0.2503
360	0.1393	0.1392	0.1389	0.1391	0.0010	0.1259	8.5239	0.2544
380	0.1728	0.1726	0.1724	0.1726	0.0013	0.1457	8.6498	0.2582
400	0.185	0.1828	0.1812	0.1830	0.0015	0.1453	8.7955	0.2626
420	0.1764	0.1759	0.1751	0.1758	0.0014	0.1243	8.9408	0.0267

Tabela 7.47 – Dados de quantificação de quercetina para o experimento cinético Exp 6 realizado com 30 g de amostra e vazão reduzida de solvente de extração (replicata 1).

Tempo (min)		Absorbâncias (371 nm)				Massa de quercetina (mg)		% No Extrato
(min)	Leit.1	Leit.2	Leit.3	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.0882	0.0887	0.0874	0.0881	0.0005	0.9634	0.9634	0.0029
40	0.1755	0.1749	0.1750	0.1751	0.0014	3.5596	4.5230	0.0136
60	0.4353	0.4348	0.4352	0.4351	0.0040	6.8224	11.3454	0.0341
80	0.4355	0.4347	0.4341	0.4348	0.0040	6.1191	17.4645	0.0525
100	0.5125	0.5128	0.5132	0.5128	0.0047	5.9080	23.3725	0.0703
120	0.5027	0.5029	0.5029	0.5028	0.0046	5.8302	29.2027	0.0878
140	0.5827	0.5818	0.5824	0.5823	0.0054	6.8037	36.0064	0.1083
160	0.6066	0.6062	0.6060	0.6063	0.0057	5.0719	41.0782	0.1235
180	0.5968	0.5950	0.5928	0.5949	0.0056	5.0369	46.1152	0.1387
200	0.5977	0.5981	0.5980	0.5979	0.0056	4.1031	50.2183	0.1510
220	0.6882	0.6891	0.6888	0.6887	0.0065	4.2478	54.4662	0.1638
240	0.6106	0.6103	0.6111	0.6107	0.0057	3.5903	58.0565	0.1746
260	0.6461	0.6461	0.6466	0.6463	0.0061	3.0967	61.1532	0.1839
280	0.7186	0.7185	0.7187	0.7186	0.0068	4.1439	65.2972	0.1964
300	0.7188	0.7178	0.7169	0.7178	0.0068	3.2707	68.5678	0.2062
320	0.7555	0.7552	0.7548	0.7552	0.0072	3.2783	71.8462	0.2161
340	0.7936	0.7940	0.7945	0.7940	0.0075	3.6671	75.5132	0.2271
360	0.7820	0.7816	0.7812	0.7816	0.0074	2.8795	78.3928	0.2358
380	0.7969	0.7965	0.7976	0.7970	0.0076	2.8937	81.2864	0.2445
400	0.8861	0.8852	0.8859	0.8857	0.0085	2.7748	84.0613	0.2528
420	0.8655	0.8657	0.8666	0.8659	0.0083	2.6605	86.7217	0.2608

Tabela 7.48 – Dados de quantificação de quercetina para o experimento cinético Exp 6 realizado com 30 g de amostra e vazão reduzida de solvente de extração (replicata 2).

Tempo		Absorbânci	as (371 nm)		Quercetina		Massa de quercetina (mg)	
(min)	Leit.1	Leit.2	Leit.3	Média	- (mg/mL)	Na fração	Acumul.	(acuml.)
20	0.1003	0.1002	0.1003	0.1003	0.0006	1.6437	1.6437	0.0049
40	0.2001	0.1999	0.2000	0.2000	0.0016	4.8182	6.4619	0.0194
60	0.4646	0.4385	0.4288	0.4440	0.0041	9.2209	15.6828	0.0472
80	0.4980	0.4957	0.4946	0.4961	0.0046	10.0370	25.7197	0.0774
100	0.5121	0.5122	0.5118	0.5120	0.0047	3.6733	29.3930	0.0884
120	0.5162	0.5124	0.5087	0.5124	0.0047	5.5619	34.9550	0.1051
140	0.5335	0.5337	0.5341	0.5338	0.0050	4.1385	39.0934	0.1176
160	0.5623	0.5629	0.5628	0.5627	0.0052	4.3165	43.4099	0.1306
180	0.5665	0.5662	0.5660	0.5662	0.0053	4.0399	47.4498	0.1427
200	0.5991	0.5987	0.5982	0.5987	0.0056	3.7615	51.2113	0.1540
220	0.5777	0.5768	0.5769	0.5771	0.0054	3.5311	54.7424	0.1646
240	0.6063	0.6065	0.6061	0.6063	0.0057	3.3134	58.0557	0.1746
260	0.6378	0.6374	0.6372	0.6375	0.0060	2.9802	61.0359	0.1836
280	0.6574	0.6576	0.6577	0.6576	0.0062	2.9810	64.0170	0.1925
300	0.7221	0.7220	0.7211	0.7217	0.0068	2.6070	66.6239	0.2004
320	0.6143	0.6138	0.6136	0.6139	0.0057	2.3227	68.9467	0.2074
340	0.7024	0.7036	0.7041	0.7034	0.0066	2.4042	71.3508	0.2146
360	0.7427	0.7431	0.7430	0.7429	0.0070	2.4485	73.7993	0.2220
380	0.7413	0.7415	0.7414	0.7414	0.0070	2.3168	76.1162	0.2289
400	0.7391	0.7392	0.7392	0.7392	0.0070	2.7714	78.8875	0.2373
420	0.8936	0.8932	0.8929	0.8932	0.0085	2.9871	81.8746	0.2462

- 7.9 SAS Learning Edition 1.0 Programas e resultados referentes à estimativa dos parâmetros t_{CER} , t_{FER} , M_{CER} , Y_{CER} , R_{CER} para os experimentos cinéticos relacionados aos experimentos cinéticos realizados com a mistura CO_2 supercrítico + etanol como solvente de extração (Item 4.3.3 *Achyrocline satureioides*).
- 7.9.1 Experimento cinético realizado utilizando-se 20 % de etanol como cosolvente e aproximadamente 5 g de amostra.
- Programa para o ajuste linear de 2 retas

```
options ls=80 ps=50;
Title 'Laura20Ensaio1';
data Laura20Ensaio1;
input tmin mext;
AL1=max(tmin-100,0);
Cards;
20 0.0867
40 0.1366
60 0.1680
80 0.1852
100 0.1968
120 0.2064
140 0.2148
160 0.2234
180 0.2307
200 0.2377
220 0.2438
240 0.2497
260 0.2549
280 0.2598
300 0.2634
320 0.2678
340 0.2718
360 0.2756
380 0.2796
400 0.2830
420 0.2863
Proc Reg;
Model mext=tmin AL1;
```

Output out=a p=mexthat r=Mres;

Proc print;

Axis1 order=(0 to 0.3 by 0.03);

Proc gplot; Plot Mres*mexthat;

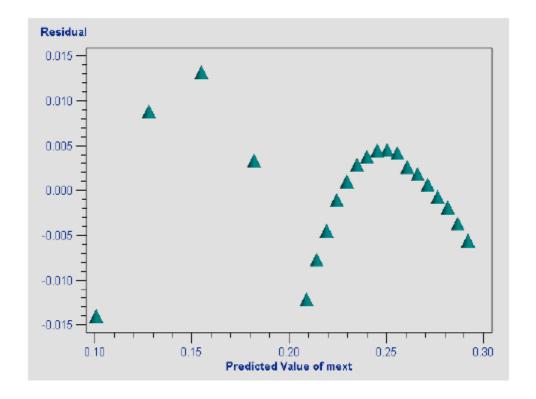
Proc gplot;

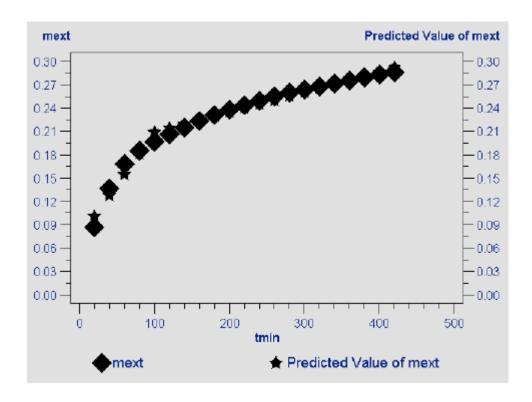
Symbol1 value=diamond color=black; Symbol2 value=star color=black;

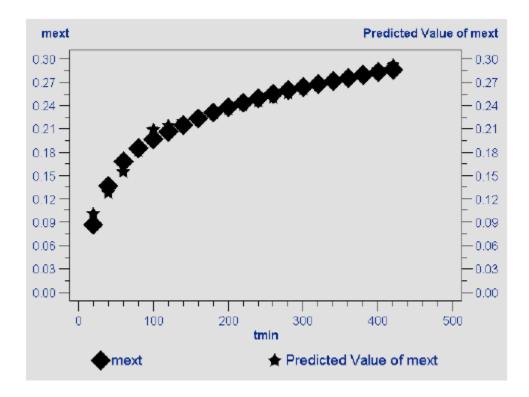
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=

axis1; Run;

• Saída do programa para o ajuste linear de 2 retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	0.05317	0.02658	577.77	<,0001		
Error	18	0.00082820	0.00004601				
Corrected Total	20	0.05400					


Root MSE	0.00678	R-Square	0.9847
Dependent Mean	0.22962	Adj R-Sq	0.9830
Coeff Var	2.95410		

Parameter Estimates									
Parameter Standard Variable DF Estimate Error t Value Pr > t									
Intercept	1	0.07369	0.00650	11.34	<.0001				
tmin	1	0.00135	0.00007902	17.11	<.0001				
AL1	1	-0.00109	0.00008840	-12,36	<.0001				

Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.0867	0	0.10073	-0.014035
2	40	0.1366	0	0.12778	0.008820
3	60	0.1680	0	0.15483	0.013175
4	80	0.1852	0	0.18187	0.003330
5	100	0.1968	0	0,20892	-0,012115
6	120	0.2064	20	0.21410	-0.007701
7	140	0.2148	40	0.21929	-0.004486
8	160	0.2234	60	0.22447	-0.001072
9	180	0.2307	80	0.22966	0.001043
10	200	0.2377	100	0.23484	0.002857
11	220	0.2438	120	0.24003	0.003772
12	240	0.2497	140	0.24521	0.004486
13	260	0.2549	160	0.25040	0.004501
14	280	0.2598	180	0.25558	0.004215
15	300	0.2634	200	0.26077	0.002630
16	320	0.2678	220	0.26596	0.001844
17	340	0.2718	240	0.27114	0.000659
18	360	0.2756	260	0.27633	-0.000727
19	380	0.2796	280	0.28151	-0.001912
20	400	0.2830	300	0.28670	-0.003698
21	420	0.2863	320	0.29188	-0.005583

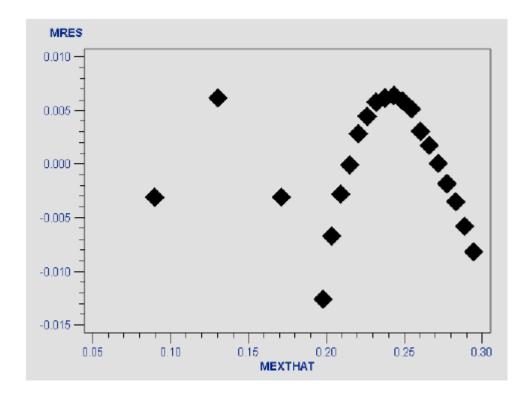
• Programa para o ajuste não-linear de 2 retas

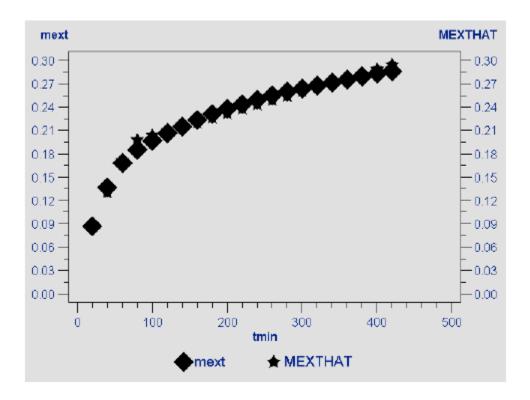
```
options ls=120 ps=70;
Title 'LauraCinNL';
data AchyroLaura1;
input tmin mext;
AL1=max(tmin-100,0);
Cards:
20 0.0867
40 0.1366
60 0.1680
80 0.1852
100 0.1968
120 0.2064
140 0.2148
160 0.2234
180 0.2307
200 0.2377
220 0.2438
240 0.2497
260 0.2549
280 0.2598
300 0.2634
320 0.2678
340 0.2718
360 0.2756
380 0.2796
400 0.2830
420 0.2863
Proc Nlin;
Parms
b0=0.07369
b1=0.00135
b2 = -0.00109
knot1=80;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 0.3 \text{ by } 0.03);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

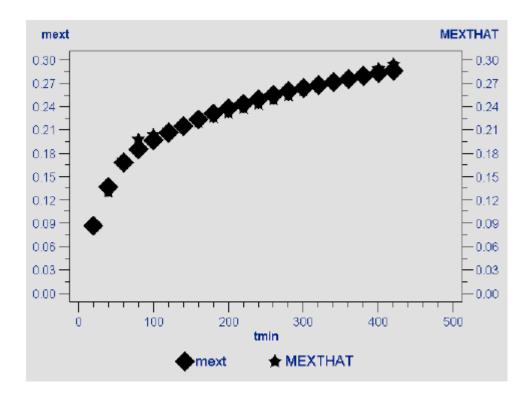
• Saída do programa para o ajuste não-linear de 2 retas.

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase									
Iter	ь0	b1	b2	knot1	Sum of Squares					
0	0.0737	0.00135	-0.00109	80.0000	0.00850					
1	0.0491	0.00203	-0.00175	67.2397	0.00187					
2	0.0491	0.00203	-0.00175	72.0441	0.000599					


NOTE: Convergence criterion met.


Estimation Summary						
Method	Gauss-Newton					
Iterations	2					
R	0					
PPC	0					
RPC(knot1)	0.071452					
Object	0.679223					
Objective	0.000599					
Observations Read	21					
Observations Used	21					
Observations Missing	0					


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	1.1606	0.2902	505.39	<.0001
Residual	17	0.000599	0.000035		
Uncorrected Total	21	1.1612			
Corrected Total	20	0.0540			

Parameter	Estimate	Approx Std Error	Approximate 95% Confider Limits	
b0	0.0491	0.00907	0.0300	0.0683
b1	0.00203	0.000210	0.00159	0.00248
b2	-0.00175	0.000210	-0.00219	-0.00130
knot1	72.0441	4.5994	62.3402	81,7480

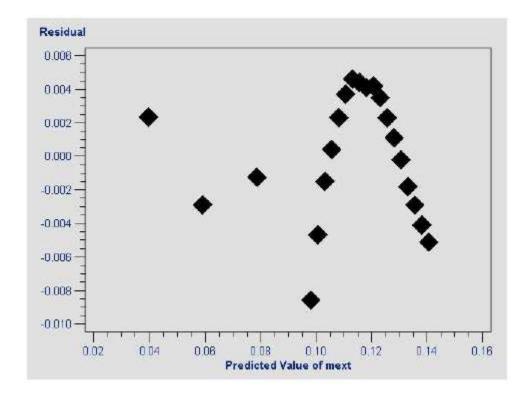
	Approximate Correlation Matrix							
	b0	b1	b2	knot1				
b0	1.0000000	-0.9258201	0.9239151	0.6130748				
b1	-0.9258201	1.0000000	-0.9979424	-0.8361559				
b2	0.9239151	-0.9979424	1.0000000	0.8153064				
knot1	0.6130748	-0.8361559	0.8153064	1.0000000				

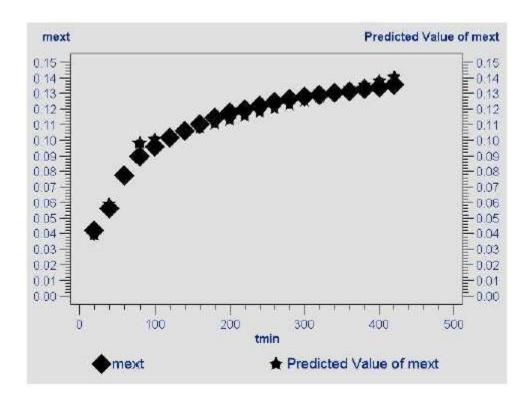
- 7.9.2 Experimento cinético realizado utilizando-se 20 % de etanol como cosolvente e aproximadamente 2 g de amostra.
- Programa para o ajuste linear de 2 retas.

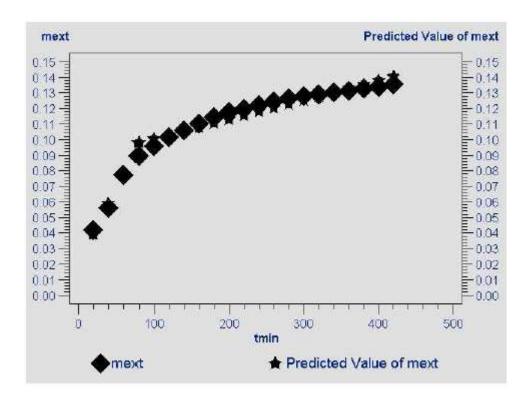
```
options ls=80 ps=50;
Title 'LauraCinNL1';
data AchyroLaura;
input tmin mext;
AL1=max(tmin-80,0);
Cards;
20 0.0418
40 0.0561
60 0.0773
80 0.0895
100 0.0959
120 0.1016
140 0.1060
160 0.1104
180 0.1143
200 0.1177
220 0.1200
240 0.1222
260 0.1248
280 0.1266
300 0.1279
320 0.1292
340 0.1304
360 0.1313
380 0.1327
400 0.1340
420 0.1355
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 0.15 \text{ by } 0.01);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star
color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2
mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

• Saída do programa para o ajuste linear de 2 retas

LauraCinNL1


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	0.01316	0.00658	421.28	<.0001		
Error	18	0.00028116	0.00001562				
Corrected Total	20	0.01344					


Root MSE	0.00395	R-Square	0.9791
Dependent Mean	0.11072	Adj R-Sq	0.9768
Coeff Var	3.56945		

Parameter Estimates							
Variable	Parameter Standard le DF Estimate Error t Value Pr >						
Intercept	1	0.01991	0.00440	4.53	0.0003		
tmin	1	0.00097706	0.00006433	15.19	<.0001		
AL1	1	-0.00085197	0.00006895	-12.36	<.0001		

Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.0418	0	0.03946	0.002344163
2	40	0.0561	0	0.05900	002897081
3	60	0.0773	0	0.07854	001238326
4	80	0.0895	0	0.09808	008579570
5	100	0.0959	20	0.10058	004681377
6	120	0.1016	40	0.10308	001483184
7	140	0.1060	60	0.10558	0.000415009
8	160	0.1104	80	0.10809	0.002313201
9	180	0.1143	100	0.11059	0.003711394
10	200	0.1177	120	0.11309	0.004609587
11	220	0.1200	140	0.11559	0.004407780
12	240	0.1222	160	0.11809	0.004105973
13	260	0.1248	180	0.12060	0.004204166
14	280	0.1266	200	0.12310	0.003502358
15	300	0.1279	220	0.12560	0.002300551
16	320	0.1292	240	0.12810	0.001098744
17	340	0.1304	260	0.13060	000203063
18	360	0.1313	280	0.13310	001804870
19	380	0.1327	300	0.13561	002906678
20	400	0.1340	320	0.13811	004108485
21	420	0.1355	340	0.14061	005110292

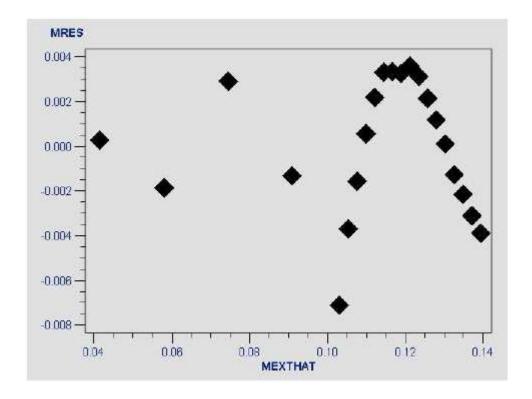
• Programa para o ajuste não-linear de 2 retas.

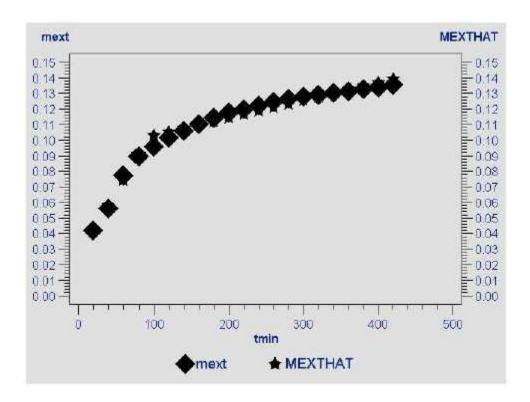
```
options ls=120 ps=70;
Title 'LauraCinNL';
data AchyroLaura1;
input tmin mext;
AL1=max(tmin-100,0);
Cards;
20 0.0418
40 0.0561
60 0.0773
80 0.0895
100 0.0959
120 0.1016
140 0.1060
160 0.1104
180 0.1143
200 0.1177
220 0.1200
240 0.1222
260 0.1248
280 0.1266
300 0.1279
320 0.1292
340 0.1304
360 0.1313
380 0.1327
400 0.1340
420 0.1355
Proc Nlin;
Parms
b0=0.01991
b1=0.000977706
b2 = -0.00085197
knot1=100;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 0.15 \text{ by } 0.01);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star
color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2
mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

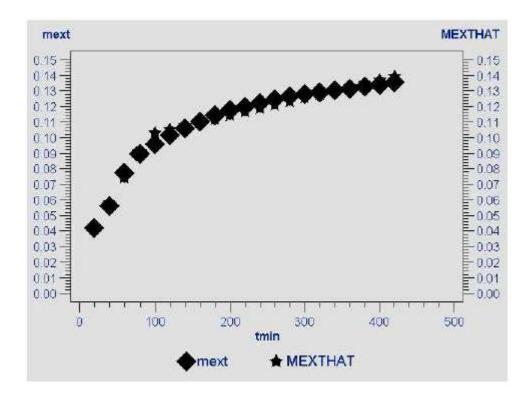
• Saída do programa para o ajuste não-linear de 2 retas.

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase								
Iter	b0	Sum of Squares							
0	0.0199	0.000978	-0.00085	100.0	0.00496				
1	0.0251	0.000821	-0.00071	95.0369	0.000187				
2	0.0251	0.000822	-0.00071	94.0264	0.000178				


NOTE: Convergence criterion met.


Estimation Summary				
Method	Gauss-Newton			
Iterations	2			
R	0			
PPC	0			
RPC(knot1)	0.010633			
Object	0.046292			
Objective	0.000178			
Observations Read	21			
Observations Used	21			
Observations Missing	0			


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	0.2707	0.0677	421.80	<.0001
Residual	17	0.000178	0.000010		
Uncorrected Total	21	0.2709			
Corrected Total	20	0.0134			

Parameter	Estimate	Approx Std Error	Approximate 99	
b0	0.0251	0.00397	0.0167	0.0335
b1	0.000822	0.000072	0.000669	0.000974
b2	-0.00071	0.000073	-0.00086	-0.00055
knot1	94.0264	5.5016	82.4192	105.6

	Approximate Correlation Matrix						
	b0 b1 b2 knot1						
b0	1.0000000	-0.9128709	0.9073282	0.5774427			
b1	-0.9128709	1.0000000	-0.9939283	-0.8184588			
b2	0.9073282	-0.9939283	1.0000000	0.7759066			
knot1	0.5774427	-0.8184588	0.7759066	1.0000000			

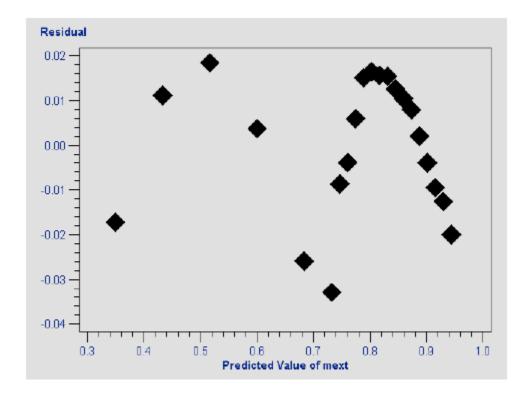
7.9.3 Experimento cinético realizado utilizando-se 20 % de etanol como cosolvente e aproximadamente 30 g de amostra.

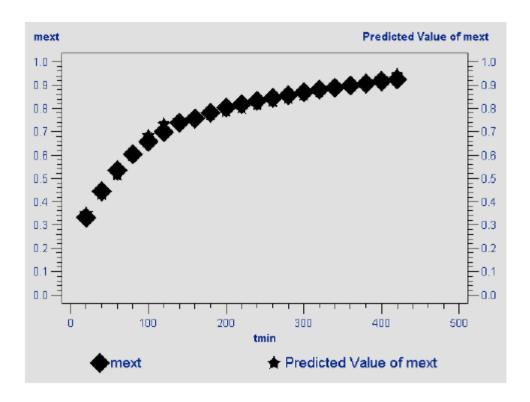
• Programa para o ajuste linear de 2 retas

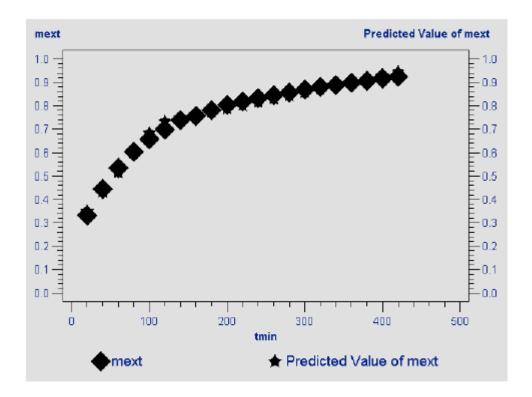
```
options ls=80 ps=50;
Title 'Ens3Etanol20Lin2Retas';
data Ensaio3;
input tmin mext;
AL1=max(tmin-110,0);
Cards:
20 0.3319
40 0.4438
60 0.5346
80 0.6034
100 0.6573
120 0.6991
140 0.7375
160 0.7564
180 0.7803
200 0.8036
220 0.8191
240 0.8324
260 0.8463
280 0.8576
300 0.8696
320 0.8812
340 0.8894
360 0.8976
380 0.9062
400 0.9172
420 0.9239
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 1.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

• Saída do programa para o ajuste linear de 2 retas

Ens3Etanol20Lin2Retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	0.53204	0.26602	1034.05	<.0001
Error	18	0.00463	0.00025726		
Corrected Total	20	0.53667			


Root MSE	0.01604	R-Square	0.9914
Dependent Mean	0.76135	Adj R-Sq	0.9904
Coeff Var	2.10668		

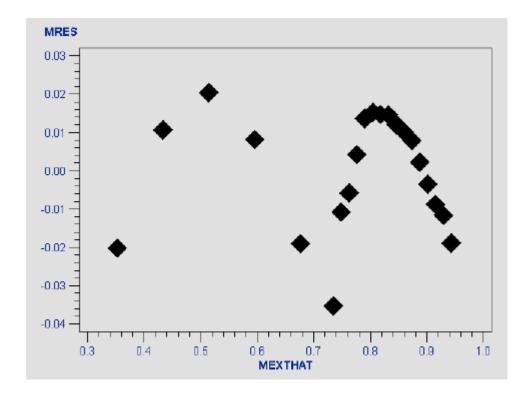
Parameter Standard Variable DF Estimate Error t Value							
Intercept	1	0.26563	0.01451	18,30	<.0001		
tmin	1	0.00418	0.00016416	25,44	<.0001		
AL1	1	-0.00347	0.00018853	-18,40	<,0001		

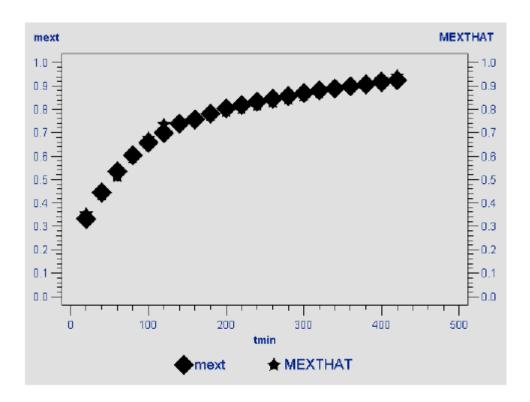
Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.3319	0	0.34915	-0.017246
2	40	0.4438	0	0.43266	0.011136
3	60	0.5346	0	0.51618	0.018418
4	80	0.6034	0	0.59970	0.003700
5	100	0.6573	0	0.68322	-0.025918
6	120	0.6991	10	0.73204	-0.032939
7	140	0.7375	30	0.74616	-0.008663
8	160	0.7564	50	0.76029	-0.003887
9	180	0.7803	70	0.77441	0.005889
10	200	0.8036	90	0.78853	0.015065
11	220	0.8191	110	0.80266	0.016442
12	240	0.8324	130	0.81678	0.015618
13	260	0.8463	150	0.83091	0.015394
14	280	0.8576	170	0.84503	0.012570
15	300	0.8696	190	0.85915	0.010446
16	320	0.8812	210	0.87328	0.007922
17	340	0.8894	230	0.88740	0.001999
18	360	0.8976	250	0.90153	-0.003925
19	380	0.9062	270	0.91565	-0.009449
20	400	0.9172	290	0.92977	-0.012573
21	420	0.9239	310	0.94390	-0.019997

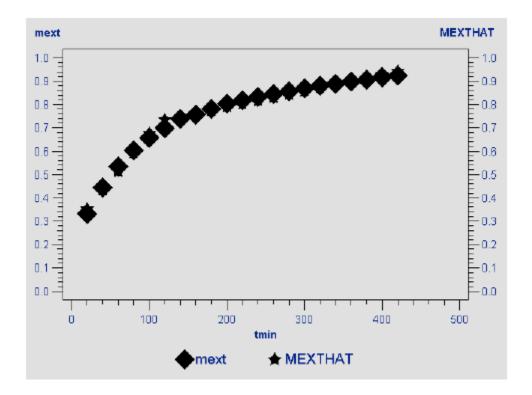
• Programa para o ajuste não-linear de 2 retas

```
options ls=120 ps=70;
Title 'Ens3Etanol20NLin2Retas';
data Ensaio3;
input tmin mext;
AL1=max(tmin-110,0);
Cards:
20 0.3319
40 0.4438
60 0.5346
80 0.6034
100 0.6573
120 0.6991
140 0.7375
160 0.7564
180 0.7803
200 0.8036
220 0.8191
240 0.8324
260 0.8463
280 0.8576
300 0.8696
320 0.8812
340 0.8894
360 0.8976
380 0.9062
400 0.9172
420 0.9239
Proc Nlin;
Parms
b0=0.26563
b1=0.00418
b2 = -0.00347
knot1=110;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 1.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


	Iterative Phase						
Iter	ь0	b1	b2	knot1	Sum of Squares		
0	0,2656	0.00418	-0.00347	110.0	0.00465		
1	0.2711	0.00405	-0.00336	113.1	0.00453		
2	0.2711	0.00405	-0.00336	113.2	0.00452		


Estimation Summary			
Method	Gauss-Newton		
Iterations	2		
R	0		
PPC	0		
RPC(knot1)	0.000911		
Object	0.000423		
Objective	0.004525		
Observations Read	21		
Observations Used	21		
Observations Missing	0		


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	12.7049	3,1762	666,41	<.0001
Residual	17	0.00452	0.000266		
Uncorrected Total	21	12.7095			
Corrected Total	20	0.5367			

Parameter	Estimate	Approx Std Error	Approximate 98	
b0	0.2711	0.0171	0.2350	0,3072
b1 b2	0.00405	0.000258	0,00351	0.00460
b2	-0.00336	0.000262	-0,00391	-0.00281
knot1	113.2	5.2116	102.2	124.2

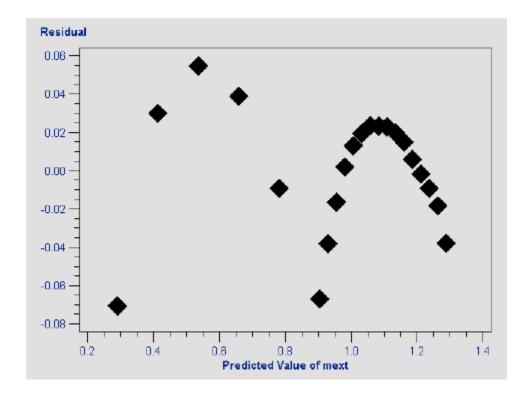
	Approximate Correlation Matrix					
	b0 b1 b2 knot1					
b0	1.0000000	-0.9045340	0.8915185	0.5313059		
b1	-0.9045340	1.0000000	-0.9856108	-0.7839483		
b2	0.8915185	-0.9856108	1,0000000	0.7056466		
knot1	0.5313059	-0.7839483	0.7056466	1.0000000		

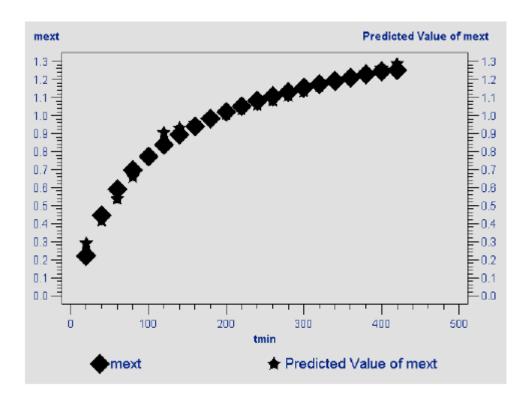
- 7.9.4 Experimento cinético realizado utilizando-se 20 % de etanol como cosolvente, aproximadamente 30 g de amostra e aplicação de período estático (replicata 1).
- Programa para o ajuste linear de 2 retas

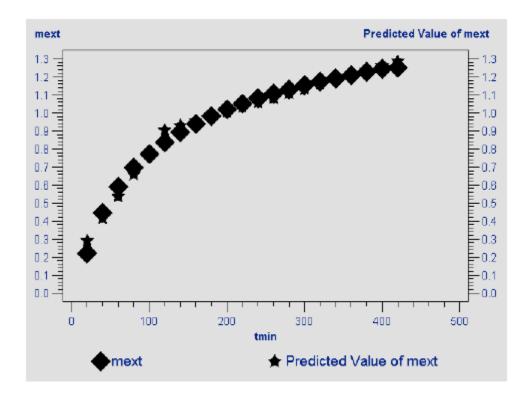
Run;

```
options ls=80 ps=50;
Title 'Ens4Etanol20Lin2Retas';
data Ensaio4;
input tmin mext;
AL1=max(tmin-120,0);
Cards;
20 0.2199
40 0.4431
60 0.5906
80 0.6975
100 0.7721
120 0.8371
140 0.8915
160 0.9387
180 0.9828
200 1.0195
220 1.0515
240 1.0810
260 1.1065
280 1.1316
300 1.1541
320 1.1749
340 1.1916
360 1.2096
380 1.2277
400 1.2442
420 1.2502
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 1.3 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
```


Ens4Etanol20Lin2Retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1.56881	0.78440	662.08	<.0001
Error	18	0.02133	0.00118		
Corrected Total	20	1.59013			


Root MSE	0.03442	R-Square	0.9866
Dependent Mean	0.96265	Adj R-Sq	0.9851
Coeff Var	3.57555		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	0.16772	0.02943	5.70	<.0001	
tmin	1	0.00614	0.00030895	19.86	<.0001	
AL1	1	-0,00486	0.00036414	-13,33	<.0001	

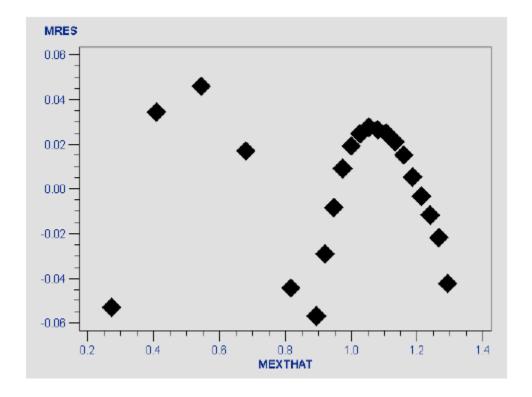
Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.2199	0	0.29043	-0.070534
2	40	0.4431	0	0.41315	0.029951
3	60	0.5906	0	0.53586	0.054737
4	80	0.6975	0	0.65858	0.038923
5	100	0.7721	0	0.78129	-0.009192
6	120	0.8371	0	0.90401	-0.066906
7	140	0.8915	20	0.92961	-0.038109
8	160	0.9387	40	0.95521	-0.016511
9	180	0.9828	60	0.98081	0.001987
10	200	1.0195	80	1.00642	0.013084
11	220	1.0515	100	1.03202	0.019482
12	240	1.0810	120	1.05762	0.023379
13	260	1.1065	140	1,08322	0.023277
14	280	1.1316	160	1,10883	0.022775
15	300	1.1541	180	1.13443	0.019672
16	320	1.1749	200	1.16003	0.014870
17	340	1.1916	220	1.18563	0.005968
18	360	1.2096	240	1.21123	-0.001635
19	380	1.2277	260	1,23684	-0.009137
20	400	1.2442	280	1.26244	-0.018240
21	420	1.2502	300	1.28804	-0.037842

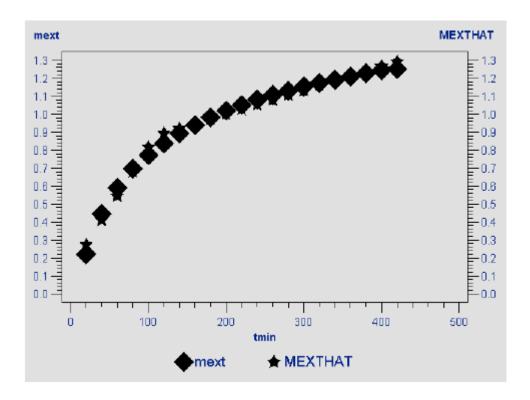
• Programa para o ajuste não-linear de 2 retas.

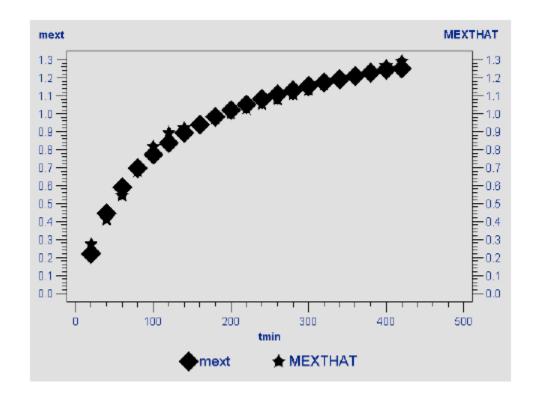
```
options ls=120 ps=70;
Title 'Ens4Etanol20NLin2Retas';
data Ensaio4;
input tmin mext;
AL1=max(tmin-120,0);
Cards:
20 0.2199
40 0.4431
60 0.5906
80 0.6975
100 0.7721
120 0.8371
140 0.8915
160 0.9387
180 0.9828
200 1.0195
220 1.0515
240 1.0810
260 1.1065
280 1.1316
300 1.1541
320 1.1749
340 1.1916
360 1.2096
380 1.2277
400 1.2442
420 1.2502
Proc Nlin;
Parms
b0=0.16772
b1=0.00614
b2 = -0.00486
knot1=120;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 1.3 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


Ens4Etanol20NLin2Retas

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


	Iterative Phase						
Iter	b0	b1	b2	knot1	Sum of Squares		
0	0.1677	0.00614	-0.00486	120.0	0.0213		
1	0.1370	0.00679	-0.00547	108.0	0.0196		
2	0.1370	0.00679	-0.00547	109.3	0.0188		


Estimation Summary			
Method	Gauss-Newton		
Iterations	2		
R	0		
PPC	0		
RPC(knot1)	0.012299		
Object	0.043004		
Objective	0.018768		
Observations Read	21		
Observations Used	21		
Observations Missing	0		


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	21,0321	5.2580	474.45	<.0001
Residual	17	0.0188	0.00110		
Uncorrected Total	21	21.0508			
Corrected Total	20	1,5901			

Parameter	Approx Estimate Std Error		Approximate 98	
b0	0.1370	0.0348	0.0635	0,2105
b1	0.00679	0.000525	0.00569	0.00790
b2	-0.00547	0.000533	-0.00659	-0.00434
knot1	109.3	6.2615	96.1266	122.5

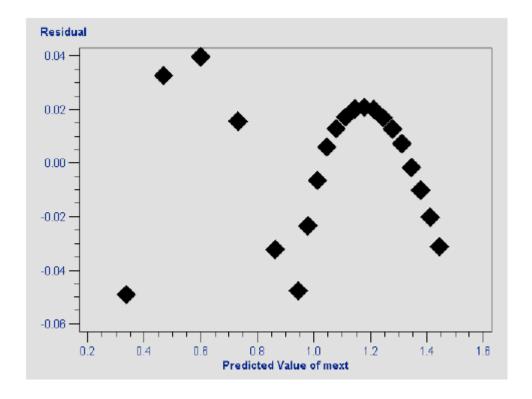
Approximate Correlation Matrix					
b0 b1 b2 knot1					
b0	1.0000000	-0.9045340	0.8915185	0.4999423	
b1	-0.9045340	1.0000000	-0.9856108	-0.7573911	
b2	0.8915185	-0.9856108	1.0000000	0.6749959	
knot1	0.4999423	-0.7573911	0.6749959	1.0000000	

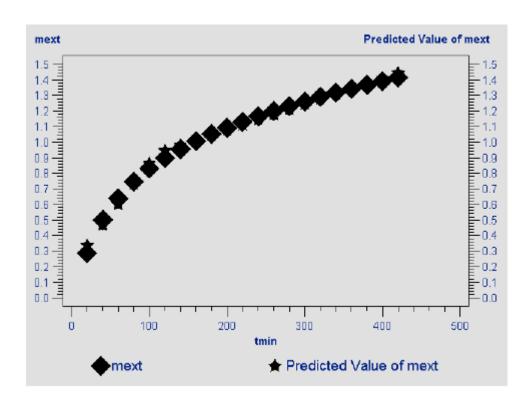
- 7.9.5 Experimento cinético realizado utilizando-se 20 % de etanol como cosolvente, aproximadamente 30 g de amostra e aplicação de período estático (replicata 2).
- Programa para o ajuste linear de 2 retas

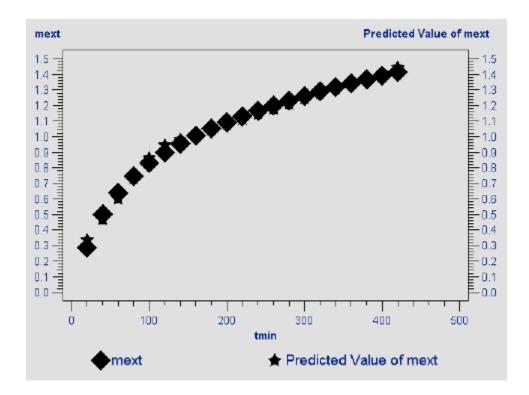
Run;

```
options ls=80 ps=50;
Title 'Ens4RepEtanol20Lin2Retas';
data Ensaio4Rep;
input tmin mext;
AL1=max(tmin-110,0);
Cards;
20 0.2871
40 0.5005
60 0.6392
80 0.7468
100 0.8308
120 0.8978
140 0.9553
160 1.0055
180 1.0512
200 1.0913
220 1.1289
240 1.1652
260 1.1991
280 1.2315
300 1.2616
320 1.2907
340 1.3185
360 1.3429
380 1.3677
400 1.3908
420 1.4131
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 1.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
```


Ens4RepEtanol20Lin2Retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	2	1.89960	0.94980	1325.12	<.0001	
Error	18	0.01290	0.00071676			
Corrected Total	20	1.91250				


Root MSE	0.02677	R-Square	0.9933
Dependent Mean	1.05312	Adj R-Sq	0.9925
Coeff Var	2.54220		

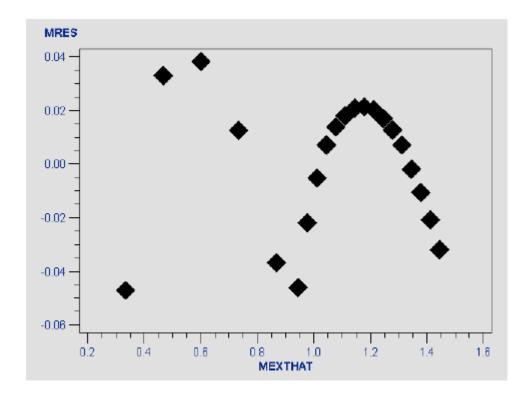
Parameter Estimates							
Parameter Standard Variable DF Estimate Error t Value Pr > t							
Intercept	1	0.20444	0.02423	8.44	<.0001		
tmin	1	0.00659	0.00027401	24.03	<.0001		
AL1	1	-0.00492	0.00031468	-15,64	<.0001		

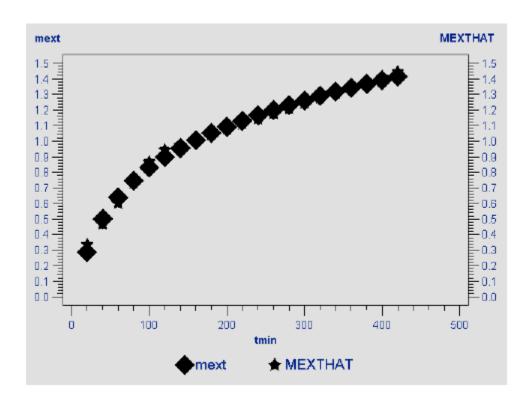
Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.2871	0	0.33614	-0.049040
2	40	0.5005	0	0.46784	0.032657
3	60	0.6392	0	0.59955	0.039654
4	80	0.7468	0	0.73125	0.015551
5	100	0.8308	0	0.86295	-0.032152
6	120	0.8978	10	0.94543	-0.047632
7	140	0.9553	30	0.97869	-0.023390
8	160	1.0055	50	1.01195	-0.006447
9	180	1.0512	70	1.04520	0.005996
10	200	1.0913	90	1.07846	0.012839
11	220	1.1289	110	1.11172	0.017182
12	240	1.1652	130	1.14497	0.020225
13	260	1.1991	150	1.17823	0.020868
14	280	1.2315	170	1,21149	0.020011
15	300	1.2616	190	1.24475	0.016854
16	320	1.2907	210	1.27800	0.012697
17	340	1.3185	230	1.31126	0.007240
18	360	1.3429	250	1.34452	-0.001617
19	380	1.3677	270	1.37777	-0.010074
20	400	1.3908	290	1.41103	-0.020231
21	420	1.4131	310	1.44429	-0.031189

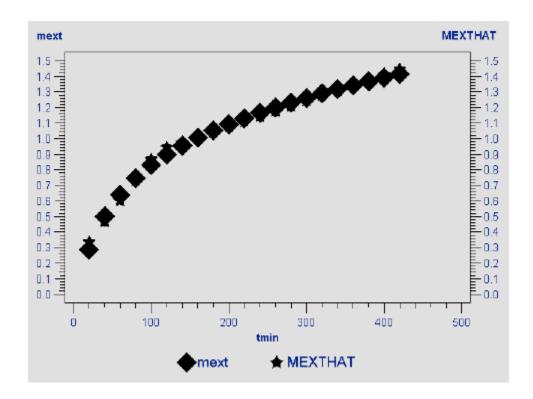
• Programa para o ajuste não-linear de 2 retas.

```
options ls=120 ps=70;
Title 'Ens4RepEtanol20NLin2Retas';
data Ensaio4Rep;
input tmin mext;
AL1=max(tmin-110,0);
Cards:
20 0.2871
40 0.5005
60 0.6392
80 0.7468
100 0.8308
120 0.8978
140 0.9553
160 1.0055
180 1.0512
200 1.0913
220 1.1289
240 1.1652
260 1.1991
280 1.2315
300 1.2616
320 1.2907
340 1.3185
360 1.3429
380 1.3677
400 1.3908
420 1.4131
Proc Nlin;
Parms
b0=0.20444
b1=0.00659
b2 = -0.00492
knot1=110;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 1.5 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


	Iterative Phase							
Iter	b0	b1	b2	knot1	Sum of Squares			
0	0.2044	0.00659	-0.00492	110.0	0.0130			
1	0,2008	0.00667	-0.00500	108.5	0.0129			
2	0.2008	0.00667	-0.00500	108.6	0.0129			


Estimation Summary				
Method	Gauss-Newton			
Iterations	2			
R	0			
PPC	0			
RPC(knot1)	0.000209			
Object	0.000016			
Objective	0.012854			
Observations Read	21			
Observations Used	21			
Observations Missing	0			


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	25.1899	6.2975	837,46	<.0001
Residual	17	0.0129	0.000756		
Uncorrected Total	21	25,2028			
Corrected Total	20	1.9125			

Parameter	Estimate	Approx Std Error	Approximate 98	
b0	0.2008	0.0288	0.1399	0.2616
b1	0.00667	0.000435	0.00575	0.00759
b2	-0.00500	0.000441	-0,00593	-0.00407
knot1	108.6	5,6210	96.7055	120.4

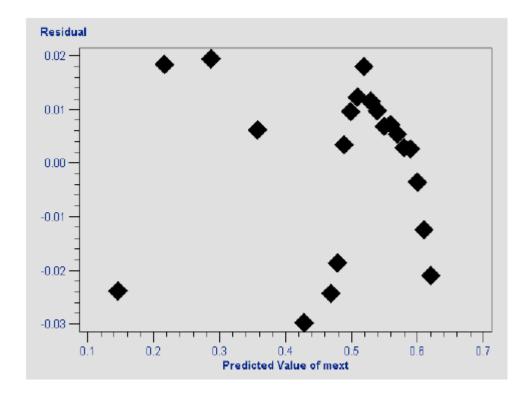
	Approximate Correlation Matrix					
	b0 b1 b2 knot1					
b0	1.0000000	-0.9045340	0.8915185	0.4932017		
b1	-0.9045340	1.0000000	-0,9856108	-0.7516067		
b2	0.8915185	-0.9856108	1.0000000	0.6683657		
knot1	0.4932017	-0.7516067	0,6683657	1,0000000		

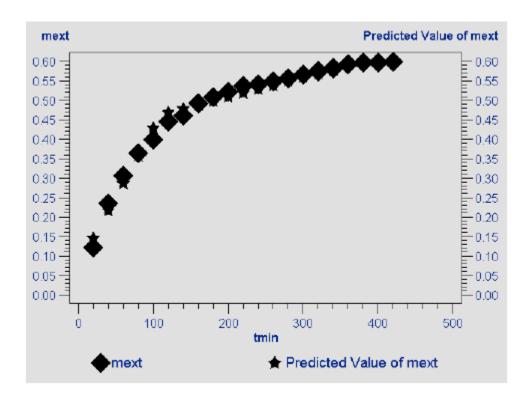
- 7.9.6 Experimento cinético realizado utilizando-se 5 % de etanol como cosolvente, aproximadamente 30 g de amostra e aplicação de período estático (replicata 1).
- Programa para o ajuste linear de 2 retas

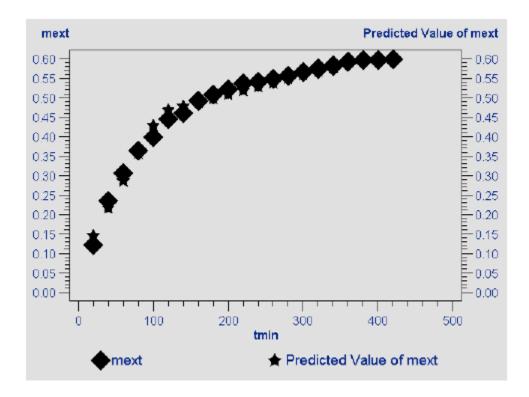
Run;

```
options ls=80 ps=50;
Title 'Ens5Etanol20Lin2Retas';
data Ensaio5;
input tmin mext;
AL1=max(tmin-110,0);
Cards;
20 0.1218
40 0.2346
60 0.3063
80 0.3636
100 0.3983
120 0.4441
140 0.4599
160 0.4920
180 0.5083
200 0.5211
220 0.5369
240 0.5405
260 0.5488
280 0.5560
300 0.5664
320 0.5747
340 0.5823
360 0.5922
380 0.5961
400 0.5973
420 0.5989
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 0.6 \text{ by } 0.05);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
```


Ens5Etanol20Lin2Retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	2	0.33665	0.16833	644.92	<.0001	
Error	18	0.00470	0.00026100			
Corrected Total	20	0.34135				


Root MSE	0.01616	R-Square	0.9862
Dependent Mean	0.48286	Adj R-Sq	0.9847
Coeff Var	3.34580		

Parameter Estimates							
Parameter Standard Variable DF Estimate Error t Value Pr >							
Intercept	1	0.07503	0.01462	5,13	<.0001		
tmin	1	0.00353	0.00016535	21,35	<,0001		
AL1	1	-0.00303	0.00018989	-15,93	<.0001		

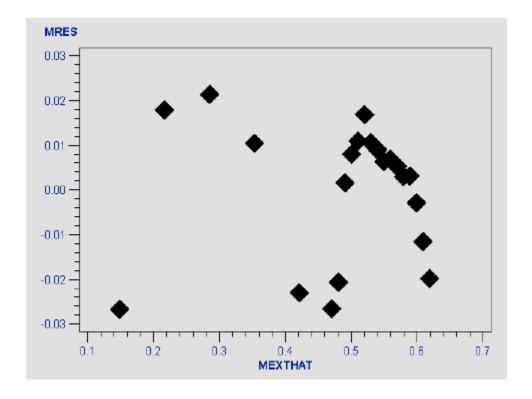
Obs	tmin	mext	AL1	mexthat	Mres
1	20	0,1218	0	0.14563	-0.023834
2	40	0.2346	0	0.21624	0.018361
3	60	0.3063	0	0.28684	0.019456
4	80	0.3636	0	0.35745	0.006151
5	100	0.3983	0	0.42805	-0.029754
6	120	0.4441	10	0.46840	-0.024305
7	140	0.4599	30	0.47850	-0.018600
8	160	0.4920	50	0.48859	0.003405
9	180	0.5083	70	0.49869	0.009610
10	200	0.5211	90	0.50878	0.012315
11	220	0.5369	110	0.51888	0.018020
12	240	0.5405	130	0.52897	0.011525
13	260	0.5488	150	0.53907	0.009730
14	280	0.5560	170	0.54916	0.006835
15	300	0.5664	190	0.55926	0.007140
16	320	0.5747	210	0.56936	0.005345
17	340	0.5823	230	0.57945	0.002850
18	360	0.5922	250	0.58955	0.002655
19	380	0.5961	270	0.59964	-0.003540
20	400	0.5973	290	0.60974	-0.012435
21	420	0.5989	310	0.61983	-0.020930

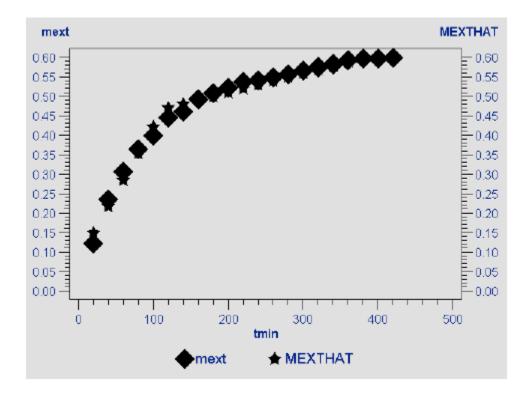
• Programa para o ajuste não-linear de 2 retas.

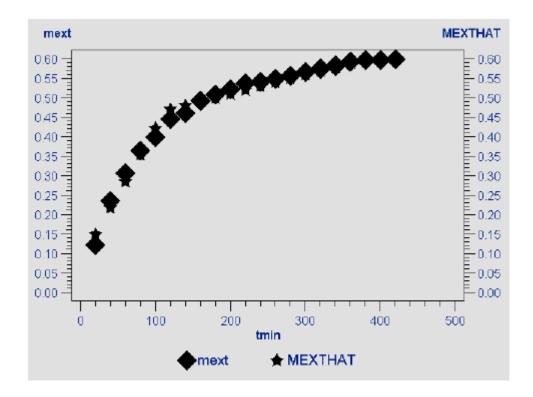
```
options ls=120 ps=70;
Title 'Ens5Etanol20NLin2Retas';
data Ensaio5;
input tmin mext;
AL1=max(tmin-110,0);
Cards:
20 0.1218
40 0.2346
60 0.3063
80 0.3636
100 0.3983
120 0.4441
140 0.4599
160 0.4920
180 0.5083
200 0.5211
220 0.5369
240 0.5405
260 0.5488
280 0.5560
300 0.5664
320 0.5747
340 0.5823
360 0.5922
380 0.5961
400 0.5973
420 0.5989
Proc Nlin;
Parms
b0=0.07503
b1=0.00353
b2 = -0.00303
knot1=110;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 0.6 \text{ by } 0.05);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```


Ens5Etanol20NLin2Retas

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton


	Iterative Phase						
Iter	Silter b0 b1 b2 knot1 Squ						
0	0.0750	0.00353	-0.00303	110.0	0.00471		
1	0.0803	0.00341	-0.00292	113.4	0.00460		
2	0.0803	0.00341	-0.00292	113.5	0.00460		


Estimation Summary				
Method	Gauss-Newton			
Iterations	2			
R	0			
PPC	0			
RPC(knot1)	0.001171			
Object	0.000522			
Objective	0.004598			
Observations Read	21			
Observations Used	21			
Observations Missing	0			


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	5,2330	1,3083	414.97	<.0001
Residual	17	0.00460	0.000270		
Uncorrected Total	21	5.2376			
Corrected Total	20	0.3413			

Parameter	Estimate	Approx Std Error	Approximate 95% Confident	
b0	0.0803	0.0172	0.0439	0.1167
b1	0.00341	0.000260	0.00286	0.00396
b2	-0.00292	0.000264	-0.00347	-0.00236
knot1	113.5	6.0718	100.7	126.4

	Approximate Correlation Matrix					
	b0 b1 b2 knot1					
b0	1.0000000	-0.9045340	0.8915185	0.5341699		
b1	-0.9045340	1.0000000	-0.9856108	-0.7863429		
b2	0.8915185	-0.9856108	1.0000000	0.7084285		
knot1	0.5341699	-0.7863429	0.7084285	1.0000000		

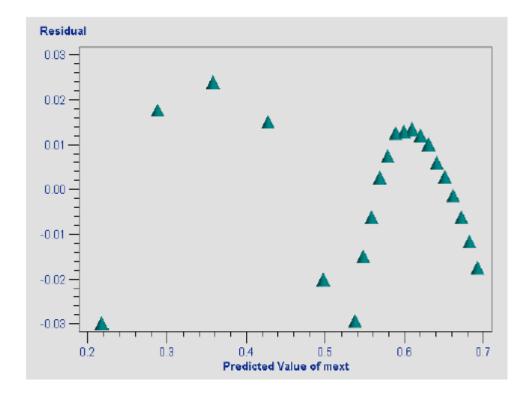
- 7.9.7 Experimento cinético realizado utilizando-se 5 % de etanol como cosolvente, aproximadamente 30 g de amostra e aplicação de período estático (replicata 2).
- Programa para o ajuste linear de 2 retas.

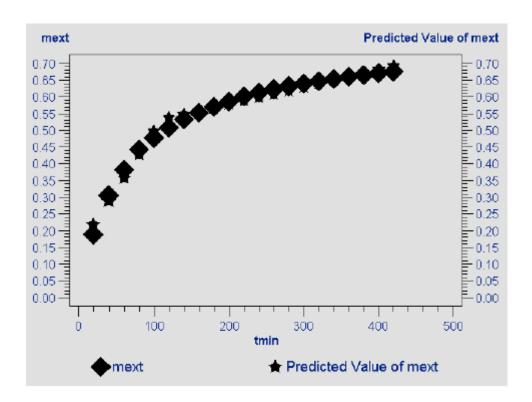
Run;

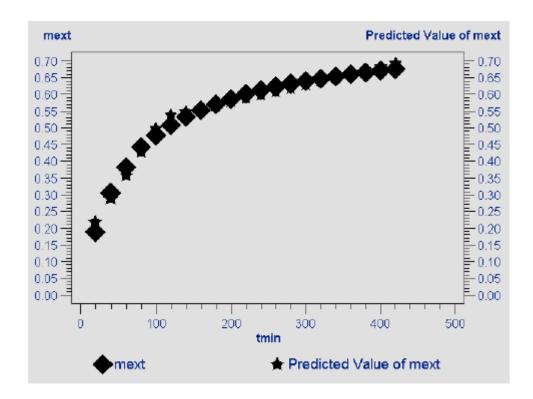
```
options ls=80 ps=50;
Title 'Ens5RepEtanol5Lin2Retas';
data Ensaio5Rep;
input tmin mext;
AL1=max(tmin-110,0);
Cards;
20 0.1879
40 0.3054
60 0.3815
80 0.4425
100 0.4773
120 0.5081
140 0.5329
160 0.5519
180 0.5711
200 0.5863
220 0.6017
240 0.6124
260 0.6233
280 0.6322
300 0.6406
320 0.6468
340 0.6540
360 0.6602
380 0.6656
400 0.6706
420 0.6751
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 0.7 \text{ by } 0.05);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
```

• Saída do programa para o ajuste linear de 2 retas.

Ens5RepEtanol5Lin2Retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	2	0.33763	0.16882	624.06	<.0001	
Error	18	0.00487	0.00027051			
Corrected Total	20	0.34250				


Root MSE	0.01645	R-Square	0.9858
Dependent Mean	0.55369	Adj R-Sq	0.9842
Coeff Var	2.97051		

Parameter Estimates							
Variable	DF	Parameter Estimate	t Value	Pr > t			
Intercept	1	0.14791	0.01488	9,94	<.0001		
tmin	1	0.00349	0.00016833	20,76	<.0001		
AL1	1	-0.00298	0.00019332	-15.40	<.0001		

Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.1879	0	0.21779	-0,029890
2	40	0.3054	0	0.28767	0.017728
3	60	0.3815	0	0.35755	0,023947
4	80	0.4425	0	0.42743	0.015066
5	100	0.4773	0	0.49732	-0.020016
6	120	0.5081	10	0.53743	-0.029327
7	140	0.5329	30	0.54777	-0.014867
8	160	0.5519	50	0.55811	-0.006207
9	180	0.5711	70	0.56845	0.002653
10	200	0.5863	90	0.57879	0.007513
11	220	0.6017	110	0.58913	0.012573
12	240	0.6124	130	0.59947	0.012933
13	260	0.6233	150	0.60981	0.013493
14	280	0.6322	170	0.62015	0.012053
15	300	0.6406	190	0.63049	0.010113
16	320	0.6468	210	0.64083	0.005973
17	340	0.6540	230	0.65117	0.002833
18	360	0.6602	250	0.66151	-0.001307
19	380	0.6656	270	0.67185	-0.006248
20	400	0.6706	290	0.68219	-0.011588
21	420	0.6751	310	0.69253	-0.017428

• Programa para o ajuste não-linear de 2 retas.

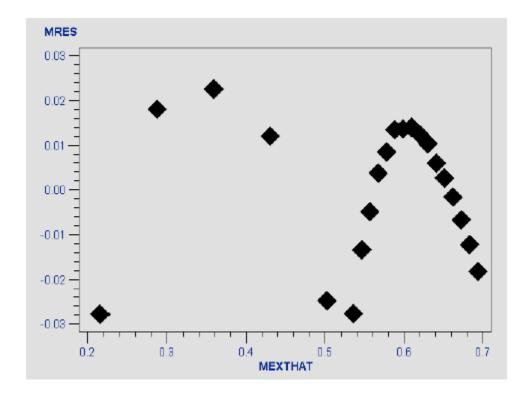
```
options ls=120 ps=70;
Title 'Ens5RepEtanol20NLin2Retas';
data Ensaio5Rep;
input tmin mext;
AL1=max(tmin-110,0);
Cards:
20 0.1879
40 0.3054
60 0.3815
80 0.4425
100 0.4773
120 0.5081
140 0.5329
160 0.5519
180 0.5711
200 0.5863
220 0.6017
240 0.6124
260 0.6233
280 0.6322
300 0.6406
320 0.6468
340 0.6540
360 0.6602
380 0.6656
400 0.6706
420 0.6751
Proc Nlin;
Parms
b0=0.14791
b1=0.00349
b2 = -0.00298
knot1=110;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 0.7 \text{ by } 0.05);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

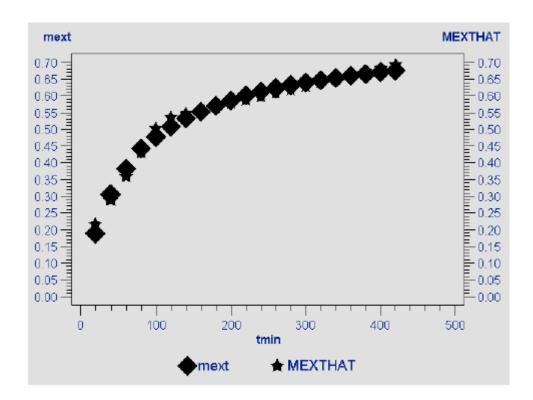
• Saída do programa para o ajuste não-linear de 2 retas.

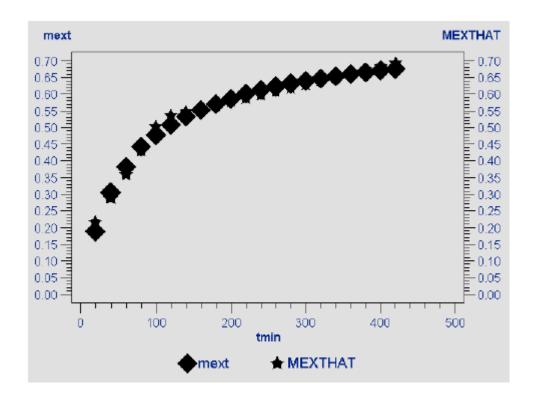
Ens5RepEtanol20NLin2Retas

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase							
Iter	ь0	b1	b2	knot1	Sum of Squares			
0	0.1479	0.00349	-0.00298	110.0	0.00492			
1	0.1441	0.00358	-0.00305	107.5	0.00482			
2	0.1441	0.00358	-0.00305	107.6	0.00482			


NOTE: Convergence criterion met.


Estimation Summary				
Method	Gauss-Newton			
Iterations	2			
R	0			
PPC	0			
RPC(knot1)	0.000559			
Object	0.000112			
Objective	0.004819			
Observations Read	21			
Observations Used	21			
Observations Missing	0			


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	6,7756	1.6939	397,08	<.0001
Residual	17	0.00482	0.000283		
Uncorrected Total	21	6.7804			
Corrected Total	20	0,3425			

Parameter	Estimate	Approx Std Error	Approximate 95% Confident	
b0	0.1441	0.0177	0.1069	0.1814
b1	0.00358	0.000266	0,00302	0.00414
b2	-0.00305	0.000270	-0,00362	-0.00248
knot1	107.6	5.5744	95.8322	119.4

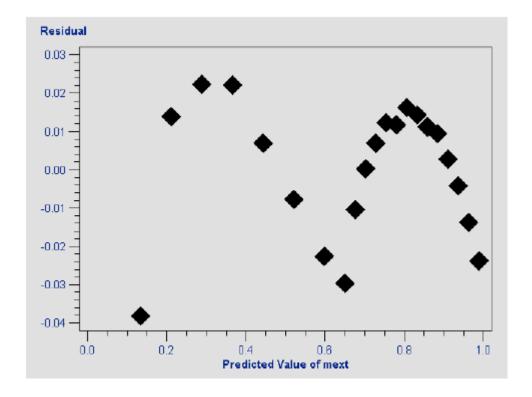
	Approximate Correlation Matrix						
	b0 b1 b2 knot1						
b0	1.0000000	-0.9045340	0.8915185	0.4845078			
b1	-0.9045340	1.0000000	-0.9856108	-0.7441078			
b2	0.8915185	-0.9856108	1.0000000	0.6597928			
knot1	0.4845078	-0.7441078	0.6597928	1.0000000			

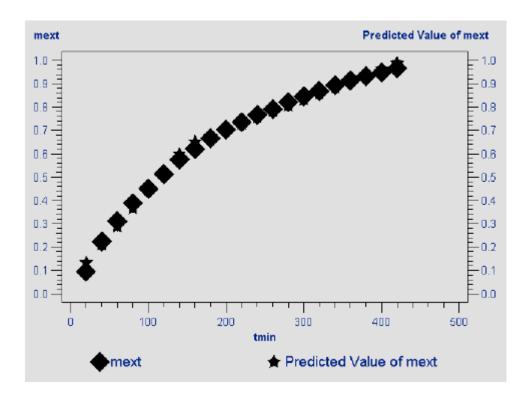
- 7.9.8 Experimento cinético realizado utilizando-se 20 % de etanol como cosolvente, aproximadamente 30 g de amostra, aplicação de período estático e vazão reduzida da mistura de solventes de extração (replicata 1).
- Programa para o ajuste linear de 2 retas

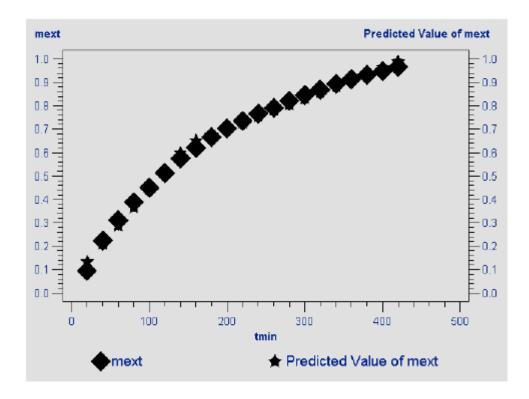
```
options ls=80 ps=50;
Title 'Ens6LowSolventFlowLin2Retas';
data Ensaio6;
input tmin mext;
AL1=max(tmin-150,0);
Cards;
20 0.0951
40 0.2246
60 0.3106
80 0.3878
100 0.4501
120 0.5129
140 0.5755
160 0.6202
180 0.6655
200 0.7022
220 0.7349
240 0.7663
260 0.7918
280 0.8223
300 0.8464
320 0.8693
340 0.8936
360 0.9130
380 0.9321
400 0.9485
420 0.9646
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 1.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

• Saída do programa para o ajuste linear de 2 retas.

Ens6LowSolventFlowLin2Retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1.28152	0.64076	1908.91	<.0001
Error	18	0.00604	0.00033567		
Corrected Total	20	1.28756			


Root MSE	0.01832	R-Square	0.9953
Dependent Mean	0.66797	Adj R-Sq	0.9948
Coeff Var	2.74283		

Parameter Estimates							
Parameter Standard Variable DF Estimate Error t Value Pr >							
Intercept	1	0.05584	0.01380	4.05	0.0008		
tmin	1	0.00387	0.00012186	31.79	<.0001		
AL1	1	-0.00257	0.00015832	-16.24	<.0001		

Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.0951	0	0.13331	-0.038208
2	40	0.2246	0	0.21077	0.013825
3	60	0.3106	0	0.28824	0.022358
4	80	0.3878	0	0.36571	0.022090
5	100	0.4501	0	0.44318	0.006923
6	120	0.5129	0	0.52064	-0.007744
7	140	0.5755	0	0.59811	-0.022612
8	160	0.6202	10	0.64986	-0.029663
9	180	0.6655	30	0.67590	-0.010399
10	200	0.7022	50	0.70193	0.000265
11	220	0.7349	70	0.72797	0.006930
12	240	0.7663	90	0.75401	0.012294
13	260	0.7918	110	0.78004	0.011758
14	280	0,8223	130	0.80608	0.016223
15	300	0.8464	150	0.83211	0.014287
16	320	0.8693	170	0.85815	0.011151
17	340	0.8936	190	0.88418	0.009416
18	360	0.9130	210	0.91022	0.002780
19	380	0.9321	230	0.93626	-0.004156
20	400	0.9485	250	0.96229	-0.013792
21	420	0.9646	270	0.98833	-0,023727

• Programa para o ajuste não-linear de 2 retas.

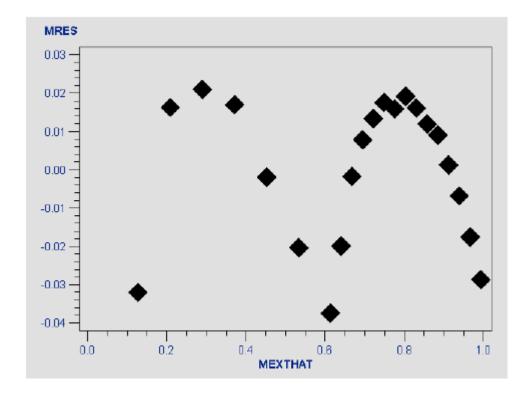
```
options ls=120 ps=70;
Title 'Ens6LowSolventFlowNLin2Retas';
data Ensaio6;
input tmin mext;
AL1=max(tmin-130,0);
Cards:
20 0.0951
40 0.2246
60 0.3106
80 0.3878
100 0.4501
120 0.5129
140 0.5755
160 0.6202
180 0.6655
200 0.7022
220 0.7349
240 0.7663
260 0.7918
280 0.8223
300 0.8464
320 0.8693
340 0.8936
360 0.9130
380 0.9321
400 0.9485
420 0.9646
Proc Nlin;
Parms
b0=0.05584
b1=0.00387
b2 = -0.00257
knot1=130;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 1.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

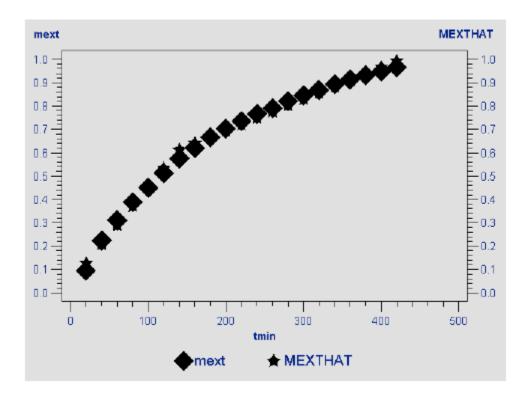
• Saída do programa para o ajuste não-linear de 2 retas.

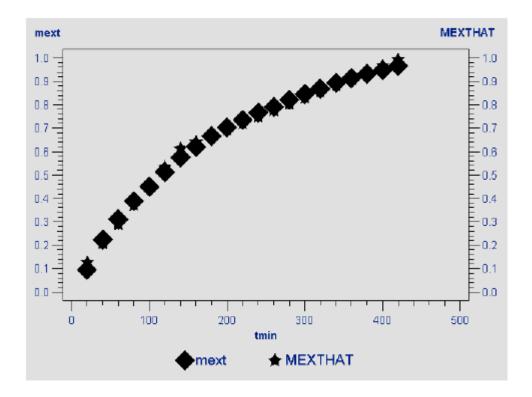
Ens6LowSolventFlowNLin2Retas

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase						
Iter	ь0	b1	b2	knot1	Sum of Squares		
0	0.0558	0.00387	-0.00257	130.0	0.0440		
1	0.0459	0.00406	-0.00270	139.9	0.00709		
2	0.0459	0.00406	-0.00270	139.4	0.00707		


NOTE: Convergence criterion met.


Estimation Summary				
Method	Gauss-Newton			
Iterations	2			
R	0			
PPC	0			
RPC(knot1)	0.003481			
Object	0.003665			
Objective	0.007066			
Observations Read	21			
Observations Used	21			
Observations Missing	0			


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	10.6503	2.6626	1026.94	<.0001
Residual	17	0.00707	0.000416		
Uncorrected Total	21	10.6573			ĺ
Corrected Total	20	1.2876			

Parameter	Estimate	Approx Std Error	Approximate 95 Lim	
b0	0.0459	0.0190	0.00587	0.0860
b1	0.00406	0.000244	0.00355	0.00458
b2	-0.00270	0.000251	-0.00323	-0.00217
knot1	139.4	7.9058	122.8	156.1

Approximate Correlation Matrix						
	b0 b1 b2 knot1					
b0	1.0000000	-0.8987170	0.8718836	0.5408007		
b1	-0.8987170	1.0000000	-0.9701425	-0.7918154		
b2	0.8718836	-0.9701425	1,0000000	0.6709751		
knot1	0.5408007	-0.7918154	0.6709751	1.0000000		

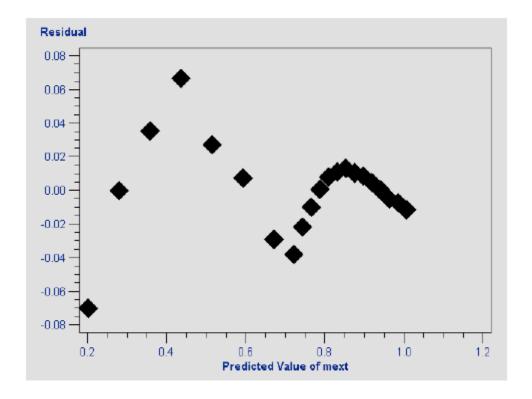
- 7.9.9 Experimento cinético realizado utilizando-se 20 % de etanol como cosolvente, aproximadamente 30 g de amostra, aplicação de período estático e vazão reduzida da mistura de solventes de extração (replicata 2).
- Programa para o ajuste linear de 2 retas.

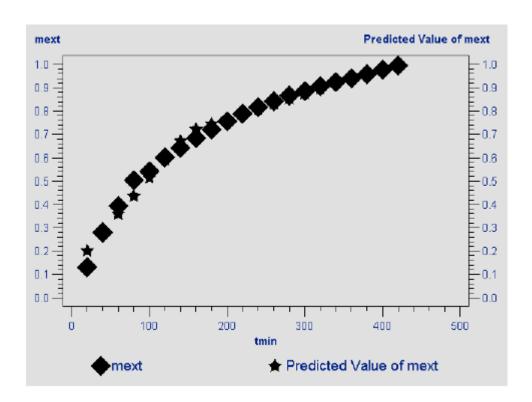
Run;

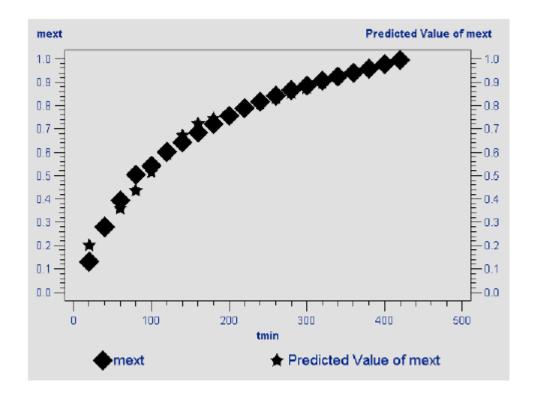
```
options ls=80 ps=50;
Title 'Ens6RepLowSolventFlowLin2Retas';
data Ensaio6Rep;
input tmin mext;
AL1=max(tmin-150,0);
Cards;
20 0.1309
40 0.2794
60 0.3931
80 0.5028
100 0.5416
120 0.6003
140 0.6421
160 0.6833
180 0.7216
200 0.7552
220 0.7880
240 0.8172
260 0.8421
280 0.8662
300 0.8853
320 0.9055
340 0.9236
360 0.9410
380 0.9575
400 0.9773
420 0.9948
Proc Reg;
Model mext=tmin AL1;
Output out=a p=mexthat r=Mres;
Proc print;
Axis1 order=(0 \text{ to } 1.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
```

• Saída do programa para o ajuste linear de 2 retas.

Ens6RepLowSolventFlowLin2Retas


The REG Procedure Model: MODEL1 Dependent Variable: mext


Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1.13543	0.56771	678.61	<.0001
Error	18	0.01506	0.00083658		
Corrected Total	20	1.15049			


Root MSE	0.02892	R-Square	0.9869
Dependent Mean	0.72137	Adj R-Sq	0.9855
Coeff Var	4.00955		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	0.12268	0.02178	5,63	<.0001	
tmin	1	0.00392	0.00019238	20,37	<.0001	
AL1	1	-0.00282	0.00024994	-11,29	<.0001	

Obs	tmin	mext	AL1	mexthat	Mres
1	20	0.1309	0	0.20106	-0.070156
2	40	0.2794	0	0.27943	-0.000028
3	60	0.3931	0	0.35780	0.035300
4	80	0.5028	0	0.43617	0.066628
5	100	0.5416	0	0.51454	0.027056
6	120	0.6003	0	0,59292	0.007384
7	140	0.6421	0	0.67129	-0.029188
8	160	0.6833	10	0.72144	-0.038139
9	180	0.7216	30	0.74337	-0.021767
10	200	0.7552	50	0.76529	-0.010095
11	220	0.7880	70	0.78722	0.000777
12	240	0.8172	90	0.80915	0.008049
13	260	0.8421	110	0.83108	0.011021
14	280	0.8662	130	0.85301	0.013193
15	300	0.8853	150	0.87494	0.010365
16	320	0.9055	170	0.89686	0.008637
17	340	0.9236	190	0.91879	0.004809
18	360	0.9410	210	0.94072	0.000281
19	380	0.9575	230	0.96265	-0.005147
20	400	0.9773	250	0.98458	-0.007275
21	420	0.9948	270	1.00650	-0.011704

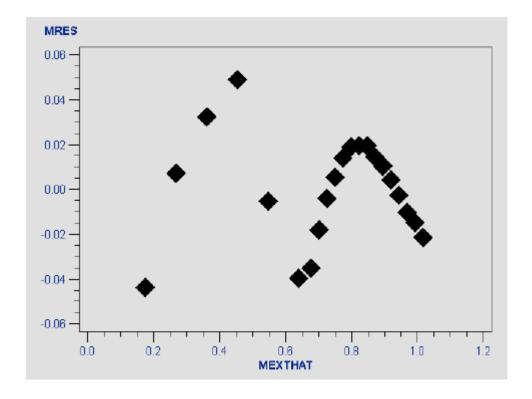
• Programa para o ajuste não-linear de 2 retas.

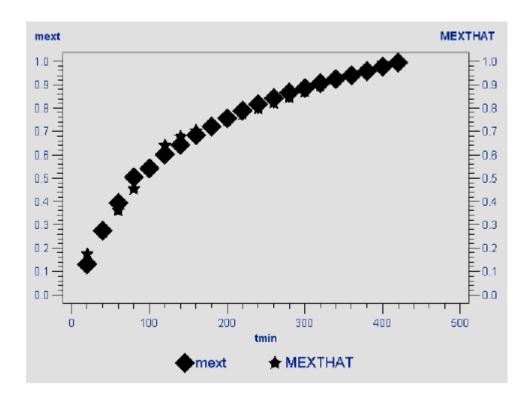
```
options ls=120 ps=70;
Title 'Ens6RepLowSolventFlowNLin2Retas';
data Ensaio6Rep;
input tmin mext;
AL1=max(tmin-125,0);
Cards:
20 0.1309
40 0.2749
60 0.3931
80 0.5028
100 0.5416
120 0.6003
140 0.6421
160 0.6833
180 0.7216
200 0.7552
220 0.7880
240 0.8172
260 0.8421
280 0.8662
300 0.8853
320 0.9055
340 0.9236
360 0.9410
380 0.9575
400 0.9773
420 0.9948
Proc Nlin;
Parms
b0=0.12268
b1=0.00392
b2 = -0.00282
knot1=125;
AL1=max(tmin-knot1,0);
Model mext=b0+b1*tmin+b2*AL1;
Output out=a p=mexthat r=Mres;
Axis order=(0 \text{ to } 1.0 \text{ by } 0.1);
Proc gplot; Plot Mres*mexthat;
Proc gplot;
Symbol1 value=diamond color=black; Symbol2 value=star color=black;
Plot mext*tmin/legend overlay vaxis=axis1; Plot2 mexthat*tmin/legend overlay vaxis=
axis1;
Run;
```

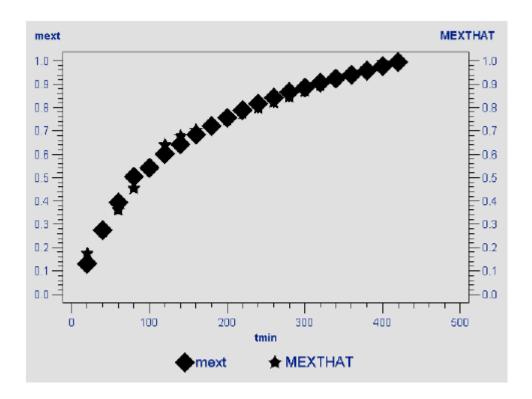
• Saída do programa para o ajuste não-linear de 2 retas.

The NLIN Procedure Dependent Variable mext Method: Gauss-Newton

	Iterative Phase						
Iter	b0	b1	b2	knot1	Sum of Squares		
0	0.1227	0.00392	-0.00282	125.0	0.0774		
1	0.0816	0.00465	-0.00344	123.5	0.0111		
2	0.0816	0.00465	-0.00344	123.8	0.0111		


NOTE: Convergence criterion met.


Estimation Summary			
Method	Gauss-Newton		
Iterations	2		
R	0		
PPC	0		
RPC(knot1)	0.00216		
Object	0.001143		
Objective	0.01105		
Observations Read	21		
Observations Used	21		
Observations Missing	0		


Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Regression	4	12.0649	3.0162	586.37	<.0001
Residual	17	0.0111	0.000650		
Uncorrected Total	21	12.0759			
Corrected Total	20	1.1545			

Parameter	Estimate	Approx Std Error	Approximate 95% Confidence Limits		
b0	0.0816	0.0237	0.0315	0.1317	
b1	0.00465	0.000305	0.00401	0.00530	
b2	-0.00344	0.000314	-0.00410	-0.00278	
knot1	123.8	6.8882	109.3	138.3	

	Approximate Correlation Matrix								
	b0 b1 b2 knot1								
b0	1.0000000	-0.8987170	0.8718836	0.4288667					
b1	-0.8987170	1.0000000	-0.9701425	-0.6914429					
b2	0.8718836	-0.9701425	1.0000000	0.5490433					
knot1	0.4288667	-0.6914429	0.5490433	1.0000000					

7.10 Simulação da etapa de separação do extrato de cravo-da-índia (Item 4.4.1 – *Eugenia caryophyllus*).

Tabela 7.49 – Dados de saída do software para a corrente S-102 (fase leve) – vazões totais, dióxido de carbono e acetato de eugenila.

P	T	Vazã	o Total	Di	óxido de carbon	10	Acetato de Eugenila			
(bar)	(°C)	kg/h	L/h	Vazão (kg/h)	% em massa	Concent. (g/L)	Vazão (kg/h)	% em massa	Concent. (g/L)	
	0	89.787	46329.572	89.77955	99.99120	1.93785	0.00002	0.00000	0.00000	
	5	89.816	47190.661	89.80433	99.98750	1.90301	0.00004	0.00000	0.00000	
	10	89.841	48050.191	89.82533	99.98260	1.86941	0.00007	0.00010	0.00000	
	15	89.865	48908.441	89.84323	99.97580	1.83697	0.00012	0.00010	0.00000	
	20	89.888	49765.626	89.85860	99.96680	1.80564	0.00019	0.00020	0.00000	
	25	89.912	50621.924	89.87187	99.95490	1.77536	0.00031	0.00030	0.00001	
	30	89.938	51477.478	89.88339	99.93930	1.74607	0.00050	0.00060	0.00001	
	35	89.966	52332.404	89.89346	99.91900	1.71774	0.00077	0.00090	0.00002	
1	40	89.999	53186.801	89.90229	99.89290	1.69031	0.00130	0.00002	0.00002	
	45	90.037	54040.750	89.91008	99.85950	1.66375	0.00181	0.00200	0.00003	
	50	90.082	54894.320	89.91700	99.81710	1.63800	0.00270	0.00300	0.00005	
	55	90.136	55747.571	89.92316	99.76370	1.61304	0.00397	0.00440	0.00007	
	60	90.202	56600.554	89.92868	99.69690	1.58883	0.00578	0.00640	0.00010	
	65	90.282	57453.314	89.93367	99.61390	1.56534	0.00831	0.00920	0.00015	
	70	90.380	58305.893	89.93818	99.51160	1.54252	0.01182	0.01310	0.00020	
	75	90.498	59158.292	89.94225	99.38620	1.52037	0.01662	0.01840	0.00028	
	80	90.640	60010.597	89.94601	99.23380	1.49884	0.02313	0.02550	0.00039	

	0	80.891	2087.130	80.89068	99.99910	38.75690	0.00000	0.00000	0.00000
	5	82.933	2178.956	82.93150	99.99860	38.06020	0.00001	0.00000	0.00000
	10	84.285	2254.292	84.28368	99.99790	37.38810	0.00001	0.00000	0.00000
	15	85.245	2320.206	85.24280	99.99700	36.73932	0.00002	0.00000	0.00001
	20	85.959	2380.215	85.95590	99.99590	36.11267	0.00003	0.00000	0.00001
	25	86.510	2436.276	86.50491	99.99430	35.50703	0.00004	0.00010	0.00002
20	30	86.946	2489.565	86.93900	99.99240	34.92136	0.00007	0.00010	0.00003
	35	87.298	2540.834	87.28958	99.98990	34.35469	0.00011	0.00010	0.00004
	40	87.589	2590.586	87.57764	99.98670	33.80611	0.00016	0.00020	0.00006
	45	87.833	2639.171	87.81775	99.98270	33.27475	0.00023	0.00030	0.00009
	50	88.040	2686.838	88.02034	99.97780	32.75983	0.00033	0.00040	0.00013
	55	88.218	2733.772	88.19308	99.97160	32.26058	0.00048	0.00050	0.00018
	60	88.374	2780.113	88.34171	99.96400	31.77630	0.00067	0.00080	0.00024
	0	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	5	71.034	1244.223	71.03306	99.99900	57.09029	0.00001	0.00000	0.00000
	10	77.034	1373.562	77.03226	99.99810	56.08213	0.00001	0.00000	0.00001
	15	80.217	1455.571	80.21499	99.99710	55.10894	0.00002	0.00000	0.00001
	20	82.204	1517.475	82.20001	99.99570	54.16894	0.00003	0.00000	0.00002
	25	83.563	1568.850	83.55766	99.99390	53.26045	0.00005	0.00010	0.00003
30	30	84.551	1613.987	84.54374	99.99180	52.38192	0.00008	0.00010	0.00005
	35	85.300	1655.110	85.29093	99.98910	51.53187	0.00012	0.00010	0.00008
	40	85.887	1693.493	85.87528	99.98580	50.70896	0.00018	0.00020	0.00011
	45	86.359	1729.921	86.34359	99.98170	49.91188	0.00026	0.00030	0.00015
	50	86.747	1764.902	86.72632	99.97670	49.13944	0.00037	0.00040	0.00021
	55	87.070	1798.786	87.04419	99.97060	48.39051	0.00052	0.00060	0.00029
	60	87.344	1831.817	87.31174	99.96330	47.66402	0.00073	0.00080	0.00040
40	0	0.000	0.004	0.00029	99.99950	77.51380	0.00000	0.00000	0.00000

	5	0.000	0.004	0.00029	99.99960	76.12042	0.00000	0.00000	0.00000
	10	49.416	660.847	49.41561	99.99890	74.77619	0.00001	0.00000	0.00001
	15	68.646	934.211	68.64443	99.99720	73.47854	0.00002	0.00000	0.00003
	20	75.344	1043.133	75.34045	99.99510	72.22513	0.00004	0.00010	0.00004
	25	78.868	1110.527	78.86270	99.99270	71.01374	0.00007	0.00010	0.00007
	30	81.067	1160.602	81.05906	99.98990	69.84228	0.00011	0.00010	0.00010
	35	82.576	1201.665	82.56498	99.98660	68.70880	0.00017	0.00020	0.00014
	40	83.677	1237.399	83.66238	99.98250	67.61149	0.00025	0.00030	0.00020
	45	84.516	1269.702	84.49694	99.97780	66.54862	0.00035	0.00040	0.00027
	50	85.176	1299.662	85.15203	99.97210	65.51860	0.00048	0.00060	0.00037
	55	85.709	1327.947	85.67899	99.96530	64.51991	0.00066	0.00080	0.00050
	60	86.148	1354.992	86.11130	99.95730	63.55113	0.00090	0.00100	0.00066
	0	0.000	0.003	0.00028	84.44140	94.95955	0.00001	2.04540	2.30015
	5	0.000	0.003	0.00028	85.98200	93.47765	0.00001	1.85510	2.01681
	10	0.000	0.003	0.00029	99.99790	93.47009	0.00000	0.00000	0.00000
	15	0.000	0.003	0.00029	99.99840	91.84827	0.00000	0.00000	0.00000
	20	56.745	628.500	56.74184	99.99510	90.28130	0.00005	0.00010	0.00009
	25	69.946	787.901	69.93946	99.99090	88.76680	0.00011	0.00020	0.00014
50	30	75.498	864.668	75.48747	99.98650	87.30225	0.00018	0.00020	0.00021
	35	78.650	915.592	78.63584	99.98180	85.88520	0.00026	0.00030	0.00029
	40	80.705	954.716	80.68622	99.97650	84.51336	0.00037	0.00050	0.00039
	45	82.157	987.358	82.13295	99.97040	83.18459	0.00051	0.00060	0.00052
	50	83.240	1016.029	83.20954	99.96350	81.89685	0.00069	0.00080	0.00068
	55	84.079	1042.076	84.04166	99.95540	80.64828	0.00092	0.00110	0.00089
	60	84.749	1066.296	84.70343	99.94610	79.43709	0.00122	0.00140	0.00114
60	0	0.000	0.002	0.00028	84.00000	113.41631	0.00001	2.09250	2.82523
00	5	0.000	0.003	0.00028	85.36890	111.67074	0.00001	1.92680	2.52049

	10	0.000	0.003	0.00028	87.12060	110.04146	0.00001	1.70350	2.15171
	15	0.000	0.003	0.00029	89.40660	108.54128	0.00000	1.39760	1.69675
	20	0.000	0.003	0.00029	99.99110	108.33680			
	25	40.562	380.754	40.55778	99.98960	106.51974	0.00013	0.00030	0.00035
	30	64.734	617.802	64.72186	99.98050	104.76141	0.00031	0.00050	0.00051
	35	72.459	702.879	72.43898	99.97280	103.06041	0.00046	0.00060	0.00066
	40	76.510	754.175	76.48374	99.96530	101.41378	0.00063	0.00080	0.00084
	45	79.054	791.634	79.02001	99.95730	99.81888	0.00084	0.00110	0.00106
	50	80.813	821.908	80.77158	99.94850	98.27326	0.00109	0.00130	0.00132
	55	82.108	847.921	82.05728	99.93870	96.77464	0.00139	0.00170	0.00165
	60	83.102	871.182	83.04183	99.92770	95.32087	0.00178	0.00210	0.00204
	0	0.000	0.002	0.00028	83.60840	131.68073	0.00001	2.13280	3.35912
	5	0.000	0.002	0.00028	84.83550	129.67752	0.00001	1.98710	3.03748
	10	0.000	0.002	0.00028	86.37870	127.80609	0.00001	1.79450	2.65508
	15	0.000	0.002	0.00028	88.34210	126.07688	0.00000	1.53750	2.19422
	20	0.000	0.002	0.00029	90.87580	124.50596	0.00000	1.19210	1.63329
	25	0.000	0.002	0.00029	94.24390	123.12700	0.00000	0.72200	0.94324
70	30	24.101	197.133	24.09336	99.96740	122.21849	0.00038	0.00160	0.00190
	35	60.849	505.855	60.82002	99.95200	120.23208	0.00099	0.00160	0.00195
	40	70.136	592.472	70.09553	99.94160	118.31034	0.00126	0.00180	0.00212
	45	74.818	642.060	74.76737	99.93180	116.44918	0.00154	0.00210	0.00240
	50	77.712	677.310	77.65063	99.92140	114.64558	0.00188	0.00240	0.00277
	55	79.697	705.296	79.62570	99.91010	112.89683	0.00228	0.00290	0.00324
	60	81.152	729.033	81.06880	99.89740	111.20039	0.00277	0.00340	0.00381
	30	0.000	0.002	0.00029	95.76940	138.62224	0.00000	0.51200	0.74112
80	35	25.685	186.559	25.62578	99.76900	137.35985	0.00403	0.01570	0.02162
	40	59.258	437.760	59.18148	99.87010	135.19154	0.00341	0.00580	0.00779

	45	68.772	516.161	68.68434	99.87270	133.06772	0.00343	0.00500	0.00664
	50	73.669	561.578	73.57107	99.86710	131.00772	0.00368	0.00500	0.00656
	55	76.726	593.883	76.61668	99.85780	129.00971	0.00410	0.00530	0.00691
	60	78.837	619.457	78.71512	99.84590	127.07115	0.00466	0.00590	0.00752
'	30	0.000	0.002	0.00029	93.67250	155.13963	0.00000	0.80010	1.32504
	35	0.000	0.002	0.00029	96.87590	153.63610	0.00000	0.36490	0.57873
	40	41.312	268.706	40.76668	98.68030	151.71488	0.05013	0.12130	0.18656
90	45	59.894	398.949	59.69589	99.66920	149.63295	0.01114	0.01860	0.02792
	50	68.354	462.701	68.17398	99.73690	147.33907	0.00875	0.01280	0.01892
	55	73.060	502.275	72.88001	99.75300	145.09968	0.00830	0.01140	0.01652
	60	76.096	531.114	75.90834	99.75330	142.92293	0.00849	0.01120	0.01599

Tabela 7.50 – Dados de saída do software para a corrente S-102 (fase leve) – β -cariofileno, eugenol e α -humuleno.

P	T	β-cariofileno				eugenol		α-humuleno			
(bar)	(°C)	Vazão	% em	Concent.	Vazão	% em	Concent.	Vazão	% em	Concent.	
		(kg/h)	massa	(g/L)	(kg/h)	massa	(g/L)	(kg/h)	massa	(g/L)	
	0	0.00231	0.00260	0.00005	0.00006	0.00010	0.00000	0.00550	0.00610	0.00012	
	5	0.00354	0.00390	0.00008	0.00012	0.00010	0.00000	0.00748	0.00830	0.00016	
	10	0.00535	0.00600	0.00011	0.00021	0.00020	0.00000	0.01004	0.01120	0.00021	
1	15	0.00795	0.00880	0.00016	0.00037	0.00040	0.00001	0.01329	0.01480	0.00027	
1	20	0.01162	0.01290	0.00023	0.00064	0.00070	0.00001	0.01737	0.01930	0.00035	
	25	0.01675	0.01860	0.00033	0.00108	0.00120	0.00002	0.02240	0.02490	0.00044	
	30	0.02379	0.02650	0.00046	0.00179	0.00200	0.00004	0.02851	0.03170	0.00055	
	35	0.03334	0.03710	0.00064	0.00290	0.00320	0.00006	0.03583	0.03980	0.00069	

		•			•			•		
	40	0.04613	0.05130	0.00087	0.00462	0.00510	0.00009	0.04445	0.04940	0.00084
	45	0.06303	0.07000	0.00117	0.00723	0.00800	0.00013	0.05445	0.06050	0.00101
	50	0.08510	0.09450	0.00155	0.01113	0.01240	0.00020	0.06585	0.07310	0.00120
	55	0.11354	0.12600	0.00204	0.01688	0.01870	0.00030	0.07862	0.08720	0.00141
	60	0.14973	0.16600	0.00265	0.02524	0.02800	0.00045	0.09268	0.10270	0.00164
	65	0.19518	0.21620	0.00340	0.03721	0.04120	0.00065	0.10787	0.11950	0.00188
	70	0.25148	0.27820	0.00431	0.05415	0.05990	0.00093	0.12400	0.13720	0.00213
	75	0.32019	0.35380	0.00541	0.07783	0.08600	0.00132	0.14079	0.15560	0.00238
	80	0.40277	0.44440	0.00671	0.11057	0.12200	0.00184	0.15798	0.17430	0.00263
	0	0.00023	0.00030	0.00011	0.00001	0.00000	0.00000	0.00046	0.00060	0.00022
	5	0.00039	0.00050	0.00018	0.00001	0.00000	0.00001	0.00073	0.00090	0.00033
	10	0.00062	0.00070	0.00028	0.00003	0.00000	0.00001	0.00107	0.00130	0.00047
	15	0.00096	0.00110	0.00041	0.00005	0.00010	0.00002	0.00150	0.00180	0.00065
	20	0.00142	0.00170	0.00060	0.00008	0.00010	0.00003	0.00203	0.00240	0.00085
	25	0.00205	0.00240	0.00084	0.00013	0.00020	0.00006	0.00268	0.00310	0.00110
20	30	0.00289	0.00330	0.00116	0.00022	0.00030	0.00009	0.00347	0.00400	0.00139
	35	0.00399	0.00460	0.00157	0.00035	0.00040	0.00014	0.00441	0.00500	0.00173
	40	0.00543	0.00620	0.00210	0.00054	0.00060	0.00021	0.00552	0.00630	0.00213
	45	0.00729	0.00830	0.00276	0.00082	0.00090	0.00031	0.00683	0.00780	0.00259
	50	0.00965	0.01100	0.00359	0.00123	0.00140	0.00046	0.00836	0.00950	0.00311
	55	0.01262	0.01430	0.00462	0.00182	0.00210	0.00067	0.01012	0.01150	0.00370
	60	0.01633	0.01850	0.00587	0.00265	0.00300	0.00095	0.01215	0.01380	0.00437
	0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	5	0.00027	0.00040	0.00022	0.00001	0.00000	0.00001	0.00042	0.00060	0.00034
30	10	0.00055	0.00070	0.00040	0.00003	0.00000	0.00002	0.00083	0.00110	0.00061
	15	0.00095	0.00120	0.00065	0.00005	0.00010	0.00004	0.00134	0.00170	0.00092
	20	0.00148	0.00180	0.00097	0.00009	0.00010	0.00006	0.00196	0.00240	0.00129

	25	0.00218	0.00260	0.00139	0.00015	0.00020	0.00010	0.00268	0.00320	0.00171
	30	0.00310	0.00370	0.00192	0.00025	0.00030	0.00015	0.00353	0.00420	0.00219
	35	0.00428	0.00500	0.00259	0.00038	0.00040	0.00023	0.00452	0.00530	0.00273
	40	0.00579	0.00670	0.00342	0.00058	0.00070	0.00035	0.00566	0.00660	0.00334
	45	0.00769	0.00890	0.00445	0.00088	0.00100	0.00051	0.00697	0.00810	0.00403
	50	0.01007	0.01160	0.00570	0.00129	0.00150	0.00073	0.00847	0.00980	0.00480
	55	0.01300	0.01490	0.00723	0.00187	0.00220	0.00104	0.01017	0.01170	0.00565
	60	0.01660	0.01900	0.00906	0.00268	0.00310	0.00147	0.01208	0.01380	0.00660
	0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	5	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	10	0.00025	0.00050	0.00038	0.00003	0.00010	0.00004	0.00027	0.00050	0.00041
	15	0.00085	0.00120	0.00091	0.00007	0.00010	0.00007	0.00100	0.00150	0.00107
	20	0.00161	0.00210	0.00155	0.00013	0.00020	0.00012	0.00188	0.00250	0.00180
	25	0.00257	0.00330	0.00232	0.00021	0.00030	0.00019	0.00287	0.00360	0.00259
40	30	0.00376	0.00460	0.00324	0.00033	0.00040	0.00028	0.00397	0.00490	0.00342
	35	0.00524	0.00630	0.00436	0.00050	0.00060	0.00042	0.00520	0.00630	0.00432
	40	0.00706	0.00840	0.00571	0.00075	0.00090	0.00060	0.00655	0.00780	0.00529
	45	0.00929	0.01100	0.00732	0.00109	0.00130	0.00086	0.00805	0.00950	0.00634
	50	0.01201	0.01410	0.00924	0.00157	0.00180	0.00121	0.00971	0.01140	0.00747
	55	0.01528	0.01780	0.01151	0.00224	0.00260	0.00168	0.01154	0.01350	0.00869
	60	0.01922	0.02230	0.01418	0.00314	0.00360	0.00231	0.01356	0.01570	0.01001
	0	0.00001	3.45330	3.88350	0.00003	9.50030	10.68370	0.00000	0.55960	0.62928
	5	0.00001	3.35030	3.64242	0.00003	8.24260	8.96121	0.00000	0.56990	0.61957
50	10	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
30	15	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	20	0.00134	0.00240	0.00214	0.00017	0.00030	0.00027	0.00121	0.00210	0.00193
	25	0.00303	0.00430	0.00385	0.00032	0.00050	0.00041	0.00289	0.00410	0.00367

	30	0.00488	0.00650	0.00564	0.00050	0.00070	0.00058	0.00460	0.00610	0.00532
	35	0.00698	0.00890	0.00762	0.00074	0.00090	0.00081	0.00633	0.00810	0.00692
	40	0.00941	0.01170	0.00986	0.00108	0.00130	0.00113	0.00813	0.01010	0.00851
	45	0.01226	0.01490	0.01242	0.00153	0.00190	0.00155	0.01000	0.01220	0.01013
	50	0.01560	0.01870	0.01535	0.00213	0.00260	0.00210	0.01198	0.01440	0.01179
	55	0.01952	0.02320	0.01873	0.00295	0.00350	0.00283	0.01408	0.01670	0.01351
	60	0.02410	0.02840	0.02260	0.00402	0.00470	0.00377	0.01633	0.01930	0.01531
	0	0.00001	3.44460	4.65083	0.00003	9.91560	13.38795	0.00000	0.54740	0.73912
	5	0.00001	3.36200	4.39782	0.00003	8.78510	11.49174	0.00000	0.55710	0.72880
	10	0.00001	3.20750	4.05138	0.00002	7.40720	9.35596	0.00000	0.56110	0.70877
	15	0.00001	2.92470	3.55070	0.00002	5.72000	6.94420	0.00000	0.55110	0.66900
	20	0.00000	0.00450	0.00491						
	25	0.00216	0.00530	0.00567	0.00045	0.00110	0.00119	0.00147	0.00360	0.00386
60	30	0.00637	0.00980	0.01032	0.00090	0.00140	0.00146	0.00501	0.00770	0.00811
	35	0.00996	0.01370	0.01417	0.00129	0.00180	0.00184	0.00797	0.01100	0.01134
	40	0.01356	0.01770	0.01799	0.00177	0.00230	0.00234	0.01062	0.01390	0.01408
	45	0.01744	0.02210	0.02203	0.00238	0.00300	0.00301	0.01313	0.01660	0.01659
	50	0.02174	0.02690	0.02646	0.00318	0.00390	0.00387	0.01560	0.01930	0.01898
	55	0.02659	0.03240	0.03136	0.00422	0.00510	0.00498	0.01809	0.02200	0.02134
	60	0.03210	0.03860	0.03684	0.00557	0.00670	0.00640	0.02065	0.02480	0.02370
	0	0.00001	3.43340	5.40757	0.00003	10.28900	16.20482	0.00000	0.53640	0.84477
	5	0.00001	3.36620	5.14544	0.00003	9.26580	14.16342	0.00000	0.54550	0.83379
	10	0.00001	3.24300	4.79833	0.00003	8.03370	11.88663	0.00000	0.55020	0.81413
70	15	0.00001	3.02650	4.31929	0.00002	6.54860	9.34586	0.00000	0.54520	0.77813
	20	0.00001	2.64700	3.62655	0.00002	4.76690	6.53092	0.00000	0.51820	0.70998
	25	0.00001	1.95050	2.54832	0.00001	2.64750	3.45892	0.00000	0.43600	0.56967
	30	0.00406	0.01680	0.02058	0.00132	0.00550	0.00670	0.00211	0.00880	0.01070

	35	0.01538	0.02530	0.03040	0.00281	0.00460	0.00555	0.01006	0.01650	0.01990
	40	0.02154	0.03070	0.03636	0.00345	0.00490	0.00582	0.01467	0.02090	0.02477
	45	0.02700	0.03610	0.04206	0.00424	0.00570	0.00661	0.01825	0.02440	0.02843
	50	0.03255	0.04190	0.04806	0.00528	0.00680	0.00779	0.02137	0.02750	0.03156
	55	0.03851	0.04830	0.05460	0.00660	0.00830	0.00936	0.02429	0.03050	0.03444
	60	0.04506	0.05550	0.06180	0.00830	0.01020	0.01138	0.02713	0.03340	0.03722
	30	0.00000	1.50840	2.18332	0.00001	1.85520	2.68540	0.00000	0.35500	0.51379
	35	0.03017	0.11750	0.16171	0.01266	0.04930	0.06785	0.01246	0.04850	0.06680
	40	0.04149	0.07000	0.09477	0.00939	0.01580	0.02144	0.02270	0.03830	0.05185
80	45	0.04741	0.06890	0.09185	0.00922	0.01340	0.01786	0.02748	0.04000	0.05324
	50	0.05324	0.07230	0.09481	0.01000	0.01360	0.01781	0.03100	0.04210	0.05520
	55	0.05958	0.07770	0.10033	0.01140	0.01490	0.01920	0.03403	0.04440	0.05731
	60	0.06663	0.08450	0.10757	0.01335	0.01690	0.02156	0.03686	0.04680	0.05950
	30	0.00001	1.99480	3.30378	0.00001	3.11370	5.15694	0.00000	0.41890	0.69377
	35	0.00000	1.14520	1.81625	0.00000	1.33550	2.11797	0.00000	0.27840	0.44157
	40	0.27018	0.65400	1.00549	0.14185	0.34340	0.52791	0.08301	0.20090	0.30891
90	45	0.10824	0.18070	0.27131	0.02966	0.04950	0.07435	0.04908	0.08190	0.12302
	50	0.09924	0.14520	0.21449	0.02318	0.03390	0.05010	0.04869	0.07120	0.10523
	55	0.09994	0.13680	0.19897	0.02232	0.03060	0.04445	0.04993	0.06830	0.09941
	60	0.10417	0.13690	0.19614	0.02347	0.03080	0.04419	0.05159	0.06780	0.09714

Tabela 7.51 – Dados de saída do software para a corrente S-103 (fase pesada) – vazões totais, dióxido de carbono e acetato de eugenila.

P	T	Vazão Total		Di	óxido de carbo	no	Acetato de Eugenila			
(bar)	(°C)	kg/h	L/h	Vazão (kg/h)	% em massa	Concent. (g/L)	Vazão (kg/h)	% em massa	Concent.	
	0	25 142	140.700	0.22045	0.07600			10.00600	(g/L)	
	0	25.143	140.788	0.22045	0.87680	1.56583	2.74228	10.90690	19.47811	
	5	25.114	129.941	0.19567	0.77910	1.50580	2.74226	10.91900	21.10381	
	10	25.089	120.654	0.17467	0.69620	1.44773	2.74223	10.93000	22.72800	
	15	25.065	112.649	0.15677	0.62540	1.39166	2.74218	10.94030	24.34272	
	20	25.042	105.708	0.14140	0.56470	1.33765	2.74211	10.95020	25.94036	
	25	25.018	99.965	0.12813	0.51220	1.28573	2.74199	10.96020	27.51461	
	30	24.992	94.349	0.11661	0.46660	1.23591	2.74180	10.97070	29.06038	
	35	24.964	89.669	0.10654	0.42680	1.18819	2.74153	10.98200	30.57379	
1	40	24.931	85.520	0.09771	0.39190	1.14255	2.74111	10.99460	32.05220	
	45	24.893	81.820	0.08992	0.36120	1.09897	2.74049	11.00890	33.49425	
	50	24.848	78.499	0.08300	0.33400	1.05739	2.73960	11.02530	34.89977	
	55	24.794	75.499	0.07684	0.30990	1.01777	2.73833	11.04440	36.26983	
	60	24.728	72.767	0.07132	0.28840	0.98005	2.73652	11.06650	37.60661	
	65	24.648	70.258	0.06633	0.26910	0.94415	2.73399	11.09220	38.91337	
	70	24.550	67.932	0.06182	0.25180	0.90998	2.73048	11.12200	40.19429	
	75	24.432	65.787	0.05775	0.23640	0.87781	2.72568	11.15610	41.43212	
	80	24.290	63.736	0.05399	0.22230	0.84705	2.71917	11.19480	42.66269	
	0	34.039	262.076	9.10932	26.76170	34.75837	2.74230	8.05640	10.46376	
20	5	31.997	212.856	7.06850	22.09090	33.20791	2.74229	8.57040	12.88334	
20	10	30.645	180.128	5.71632	18.65360	31.73483	2.74229	8.94870	15.22414	
	15	29.685	156.821	4.75720	16.02580	30.33519	2.74228	9.23800	17.48668	

	20	28.971	139.422	4.04410	13.95930	29.00626	2.74227	9.46570	19.66893
	25	28.420	125.970	3.49509	12.29790	27.74539	2.74226	9.64900	21.76911
	30	27.984	115.291	3.06100	10.93820	26.55020	2.74223	9.79920	23.78532
	35	27.632	106.633	2.71042	9.80910	25.41827	2.74219	9.92410	25.71626
	40	27.341	99.493	2.42236	8.85990	24.34714	2.74214	10.02950	27.56125
	45	27.097	93.521	2.18225	8.05350	23.33431	2.74207	10.11940	29.32030
	50	26.890	88.468	1.97966	7.36200	22.37723	2.74197	10.19690	30.99402
	55	26.712	84.147	1.80692	6.76450	21.47331	2.74182	10.26440	32.58362
	60	26.556	80.421	1.65829	6.24440	20.62001	2.74163	10.32380	34.09079
	0	114.930	1575.150	90.00000	78.30850	57.13741	2.74230	2.38610	1.74098
	5	43.896	359.365	18.96694	43.20860	52.77911	2.74229	6.24720	7.63096
	10	37.896	258.464	12.96774	34.21900	50.17229	2.74229	7.23630	10.60994
	15	34.713	204.894	9.78501	28.18860	47.75656	2.74228	7.89990	13.38393
	20	32.726	171.429	7.79999	23.83390	45.49968	2.74227	8.37940	15.99647
	25	31.367	148.495	6.44234	20.53840	43.38421	2.74225	8.74240	18.46694
30	30	30.379	131.799	5.45626	17.96050	41.39828	2.74222	9.02660	20.80602
	35	29.630	119.118	4.70907	15.89300	39.53273	2.74218	9.25480	23.02064
	40	29.043	109.178	4.12472	14.20240	37.77980	2.74212	9.44170	25.11603
	45	28.571	101.194	3.65641	12.79780	36.13258	2.74204	9.59740	27.09673
	50	28.183	94.657	3.27368	11.61560	34.58467	2.74193	9.72880	28.96701
	55	27.860	89.218	2.95581	10.60940	33.13011	2.74178	9.84120	30.73109
	60	27.586	84.634	2.68826	9.74500	31.76327	2.74157	9.93820	32.39323
	0	114.930	1188.119	89.99971	78.30850	75.74977	2.74230	2.38610	2.30810
	5	114.930	1209.472	89.99971	78.30850	74.41242	2.74230	2.38610	2.26735
40	10	65.514	569.982	40.58439	61.94780	71.20290	2.74229	4.18580	4.81119
	15	46.284	317.973	21.35557	46.14070	67.16159	2.74228	5.92490	8.62424
	20	39.586	230.405	14.65955	37.03230	63.62506	2.74226	6.92740	11.90187

	25	36.062	184.367	11.13730	30.88410	60.40820	2.74223	7.60430	14.87371
	30	33.863	155.650	8.94094	26.40340	57.44263	2.74219	8.09790	17.61766
	35	32.354	135.944	7.43502	22.98030	54.69185	2.74213	8.47540	20.17106
	40	31.253	121.569	6.33762	20.27840	52.13210	2.74205	8.77370	22.55562
	45	30.414	110.624	5.50306	18.09370	49.74555	2.74195	9.01530	24.78619
	50	29.754	102.024	4.84797	16.29340	47.51772	2.74182	9.21490	26.87412
	55	29.221	95.101	4.32101	14.78720	45.43621	2.74164	9.38230	28.82882
	60	28.782	89.416	3.88870	13.51090	43.48987	2.74140	9.52470	30.65885
	0	114.930	955.903	89.99972	78.30850	94.15154	2.74229	2.38610	2.86880
	5	114.930	973.005	89.99972	78.30850	92.49666	2.74229	2.38610	2.81838
	10	114.930	990.108	89.99971	78.30850	90.89889	2.74230	2.38610	2.76970
	15	114.930	1007.212	89.99971	78.30850	89.35531	2.74230	2.38610	2.72267
	20	58.185	395.819	33.25816	57.15900	84.02369	2.74225	4.71290	6.92803
	25	44.984	253.524	20.06054	44.59470	79.12695	2.74219	6.09590	10.81631
50	30	39.432	193.863	14.51253	36.80360	74.85989	2.74212	6.95400	14.14467
	35	36.280	160.045	11.36416	31.32360	71.00600	2.74204	7.55800	17.13291
	40	34.225	138.030	9.31378	27.21350	67.47672	2.74193	8.01150	19.86479
	45	32.773	122.496	7.86705	24.00490	64.22311	2.74179	8.36610	22.38273
	50	31.690	110.934	6.79046	21.42770	61.21164	2.74161	8.65130	24.71382
	55	30.851	101.996	5.95834	19.31340	58.41716	2.74138	8.88590	26.87717
	60	30.181	94.888	5.29657	17.54940	55.81931	2.74108	9.08220	28.88761
	0	114.930	801.092	89.99972	78.30850	112.34626	2.74229	2.38610	3.42319
	5	114.930	815.361	89.99972	78.30850	110.38026	2.74229	2.38610	3.36329
60	10	114.930	829.630	89.99972	78.30850	108.48178	2.74229	2.38610	3.30544
00	15	114.930	843.900	89.99971	78.30850	106.64741	2.74230	2.38610	3.24955
	20	114.930	858.170	89.99971	78.30850	104.87395	2.74230	2.38610	3.19552
	25	74.368	491.691	49.44222	66.48320	100.55551	2.74217	3.68730	5.57702

		i		i			i		
	30	50.196	268.914	25.27814	50.35930	94.00075	2.74199	5.46260	10.19651
	35	42.471	198.111	17.56102	41.34790	88.64238	2.74184	6.45570	13.83991
	40	38.420	161.089	13.51626	35.18060	83.90582	2.74167	7.13610	17.01963
	45	35.876	137.904	10.97999	30.60520	79.62043	2.74146	7.64150	19.87948
	50	34.117	121.906	9.22842	27.04950	75.70143	2.74121	8.03480	22.48639
	55	32.822	110.168	7.94272	24.19910	72.09618	2.74091	8.35070	24.87923
	60	31.828	101.185	6.95817	21.86170	68.76702	2.74052	8.61040	27.08435
	0	114.930	690.513	89.99972	78.30850	130.33743	2.74229	2.38610	3.97138
	5	114.930	702.758	89.99972	78.30850	128.06653	2.74229	2.38610	3.90219
	10	114.930	715.003	89.99972	78.30850	125.87328	2.74229	2.38610	3.83536
	15	114.930	727.248	89.99972	78.30850	123.75377	2.74230	2.38610	3.77078
	20	114.930	739.495	89.99971	78.30850	121.70432	2.74230	2.38610	3.70834
	25	114.930	751.742	89.99971	78.30850	119.72153	2.74230	2.38610	3.64792
70	30	90.829	566.859	65.90664	72.56140	116.26638	2.74192	3.01880	4.83705
	35	54.081	270.386	29.17998	53.95630	107.91965	2.74131	5.06890	10.13851
	40	44.794	196.019	19.90447	44.43600	101.54343	2.74104	6.11930	13.98353
	45	40.112	158.681	15.23263	37.97560	95.99509	2.74076	6.83280	17.27209
	50	37.218	135.682	12.34937	33.18090	91.01675	2.74042	7.36310	20.19734
	55	35.233	119.949	10.37430	29.44520	86.48960	2.74002	7.77690	22.84328
	60	33.778	108.464	8.93120	26.44090	82.34243	2.73953	8.11040	25.25742
	30	114.930	671.947	89.99971	78.30850	133.93866	2.74230	2.38610	4.08112
	35	89.245	496.121	64.37422	72.13210	129.75519	2.73827	3.06830	5.51936
	40	55.672	255.651	30.81852	55.35780	120.54903	2.73889	4.91970	10.71338
80	45	46.158	187.983	21.31566	46.17960	113.39136	2.73887	5.93370	14.56979
	50	41.261	153.299	16.42893	39.81710	107.16927	2.73862	6.63730	17.86455
	55	38.204	131.728	13.38332	35.03100	101.59820	2.73820	7.16730	20.78677
	60	36.093	116.889	11.28488	31.26580	96.54384	2.73764	7.58490	23.42093

	30	114.930	600.358	89.99971	78.30850	149.91000	2.74230	2.38610	4.56777
	35	114.930	609.908	89.99971	78.30850	147.56270	2.74230	2.38610	4.49625
	40	73.618	350.755	49.23332	66.87660	140.36382	2.69217	3.65690	7.67536
90	45	55.036	230.064	30.30411	55.06230	131.72054	2.73116	4.96250	11.87133
	50	46.576	175.864	21.82602	46.86090	124.10768	2.73355	5.86900	15.54357
	55	41.870	145.843	17.11999	40.88890	117.38677	2.73400	6.52980	18.74627
	60	38.834	126.558	14.09166	36.28700	111.34525	2.73381	7.03970	21.60119

Tabela 7.52 – Dados de saída do software para a corrente S-103 (fase pesada) – β -cariofileno, eugenol e α -humuleno.

P	T	β-cariofileno				eugenol		α-humuleno			
(bar)	(°C)	Vazão	% em	Concent.	Vazão	% em	Concent.	Vazão	% em	Concent.	
		(kg/h)	massa	(g/L)	(kg/h)	massa	(g/L)	(kg/h)	massa	(g/L)	
	0	3.01422	11.98850	21.40972	18.82209	74.86140	133.69129	0.34352	1.36630	2.44002	
	5	3.01299	11.99700	23.18726	18.82203	74.94490	144.85009	0.34154	1.35990	2.62841	
	10	3.01118	12.00200	24.95707	18.82194	75.02070	155.99889	0.33898	1.35110	2.80951	
	15	3.00858	12.00310	26.70756	18.82178	75.09180	167.08335	0.33573	1.33940	2.98029	
	20	3.00491	11.99970	28.42643	18.82151	75.16100	178.05158	0.33165	1.32440	3.13743	
	25	2.99978	11.99070	30.10147	18.82107	75.23130	188.86088	0.32662	1.30560	3.27752	
1	30	2.99274	11.97480	31.72006	18.82036	75.30550	199.47696	0.32051	1.28250	3.39709	
	35	2.98319	11.95010	33.26885	18.81925	75.38650	209.87428	0.31319	1.25460	3.49274	
	40	2.97040	11.91430	34.73336	18.81753	75.47750	220.03627	0.30457	1.22160	3.56134	
	45	2.95350	11.86460	36.09758	18.81492	75.58200	229.95545	0.29457	1.18330	3.60018	
	50	2.93143	11.79740	37.34351	18.81102	75.70370	239.63339	0.28317	1.13960	3.60727	
	55	2.90299	11.70850	38.45091	18.80527	75.84660	249.08067	0.27040	1.09060	3.58147	
	60	2.86680	11.59340	39.39705	18.79691	76.01500	258.31680	0.25634	1.03660	3.52276	

		ı			ı		ı			
	65	2.82135	11.44670	40.15684	18.78494	76.21360	267.36985	0.24115	0.97840	3.43230
	70	2.76505	11.26280	40.70313	18.76800	76.44690	276.27581	0.22502	0.91660	3.31249
	75	2.69634	11.03600	40.98606	18.74432	76.71940	284.92554	0.20823	0.85230	3.16521
	80	2.61376	10.76090	41.00887	18.71158	77.03550	293.57718	0.19104	0.78650	2.99738
	0	3.01630	8.86140	11.50929	18.82214	55.29640	71.81950	0.34856	1.02400	1.33000
	5	3.01614	9.42620	14.16988	18.82214	58.82400	88.42664	0.34829	1.08850	1.63629
	10	3.01591	9.84160	16.74316	18.82212	61.42070	104.49322	0.34795	1.13540	1.93169
	15	3.01557	10.15870	19.22937	18.82210	63.40680	120.02267	0.34752	1.17070	2.21603
	20	3.01511	10.40750	21.62586	18.82207	64.96970	135.00114	0.34699	1.19770	2.48877
	25	3.01448	10.60680	23.93017	18.82202	66.22760	149.41661	0.34634	1.21860	2.74937
20	30	3.01364	10.76900	26.13949	18.82193	67.25880	163.25603	0.34555	1.23480	2.99723
	35	3.01254	10.90250	28.25153	18.82180	68.11700	176.51057	0.34461	1.24720	3.23178
	40	3.01110	11.01320	30.26451	18.82161	68.84100	189.17585	0.34350	1.25640	3.45251
	45	3.00924	11.10540	32.17712	18.82133	69.45890	201.25206	0.34219	1.26280	3.65897
	50	3.00688	11.18210	33.98854	18.82092	69.99200	212.74376	0.34066	1.26690	3.85073
	55	3.00391	11.24560	35.69824	18.82033	70.45680	223.65948	0.33890	1.26870	4.02744
	60	3.00020	11.29740	37.30601	18.81950	70.86590	234.01133	0.33687	1.26850	4.18879
	0	3.01653	2.62470	1.91508	18.82215	16.37710	11.94943	0.34902	0.30370	0.22158
	5	3.01626	6.87130	8.39331	18.82214	42.87870	52.37616	0.34860	0.79410	0.97004
	10	3.01598	7.95850	11.66883	18.82212	49.66740	72.82293	0.34819	0.91880	1.34714
	15	3.01558	8.68730	14.71781	18.82210	54.22260	91.86280	0.34768	1.00160	1.69687
20	20	3.01505	9.21290	17.58772	18.82206	57.51330	109.79476	0.34706	1.06050	2.02454
30	25	3.01435	9.60990	20.29934	18.82200	60.00520	126.75175	0.34634	1.10410	2.33233
	30	3.01343	9.91940	22.86380	18.82190	61.95630	142.80737	0.34549	1.13730	2.62133
	35	3.01225	10.16630	25.28789	18.82177	63.52320	158.00919	0.34450	1.16270	2.89209
	40	3.01074	10.36670	27.57642	18.82157	64.80700	172.39337	0.34336	1.18230	3.14494
	45	3.00884	10.53120	29.73323	18.82127	65.87640	185.99127	0.34205	1.19720	3.38009
		•			•					

					l					
	50	3.00646	10.66750	31.76170	18.82086	66.77980	198.83251	0.34055	1.20830	3.59773
	55	3.00353	10.78070	33.66493	18.82028	67.55240	210.94638	0.33885	1.21630	3.79802
	60	2.99993	10.87480	35.44584	18.81947	68.22070	222.36248	0.33694	1.22140	3.98110
	0	3.01653	2.62470	2.53891	18.82215	16.37710	15.84198	0.34902	0.30370	0.29376
	5	3.01653	2.62470	2.49409	18.82215	16.37710	15.56229	0.34902	0.30370	0.28857
	10	3.01628	4.60400	5.29188	18.82212	28.73000	33.02230	0.34875	0.53230	0.61186
	15	3.01568	6.51570	9.48407	18.82208	40.66680	59.19396	0.34802	0.75190	1.09450
	20	3.01492	7.61610	13.08527	18.82202	47.54730	81.69092	0.34714	0.87690	1.50665
	25	3.01396	8.35780	16.34758	18.82194	52.19390	102.08936	0.34615	0.95990	1.87750
40	30	3.01277	8.89700	19.35605	18.82182	55.58270	120.92414	0.34505	1.01900	2.21681
	35	3.01129	9.30730	22.15098	18.82165	58.17430	138.45171	0.34382	1.06270	2.52917
	40	3.00947	9.62940	24.75531	18.82140	60.22270	154.82132	0.34247	1.09580	2.81710
	45	3.00724	9.88760	27.18426	18.82106	61.88230	170.13512	0.34097	1.12110	3.08224
	50	3.00452	10.09780	29.44907	18.82058	63.25350	184.47132	0.33931	1.14040	3.32579
	55	3.00125	10.27080	31.55866	18.81991	64.40480	197.89493	0.33748	1.15490	3.54865
	60	2.99731	10.41390	33.52085	18.81901	65.38490	210.46513	0.33546	1.16550	3.75166
	0	3.01652	2.62470	3.15568	18.82212	16.37710	19.69041	0.34902	0.30370	0.36512
	5	3.01652	2.62470	3.10021	18.82212	16.37710	19.34432	0.34902	0.30370	0.35870
	10	3.01653	2.62470	3.04667	18.82215	16.37710	19.01020	0.34902	0.30370	0.35251
	15	3.01653	2.62470	2.99493	18.82215	16.37710	18.68738	0.34902	0.30370	0.34652
	20	3.01519	5.18200	7.61759	18.82198	32.34830	47.55200	0.34781	0.59780	0.87871
50	25	3.01350	6.69900	11.88647	18.82183	41.84100	74.24096	0.34613	0.76940	1.36527
	30	3.01165	7.63750	15.53500	18.82165	47.73150	97.08760	0.34442	0.87340	1.77662
	35	3.00955	8.29540	18.80442	18.82141	51.87840	117.60070	0.34269	0.94460	2.14118
	40	3.00712	8.78640	21.78605	18.82107	54.99250	136.35541	0.34089	0.99600	2.46972
	45	3.00427	9.16700	24.52552	18.82062	57.42760	153.64316	0.33902	1.03450	2.76763
	50	3.00093	9.46960	27.05145	18.82002	59.38780	169.65033	0.33704	1.06360	3.03823
		1			•					

	55	2.99701	9.71450	29.38350	18.81920	61.00060	184.50840	0.33494	1.08570	3.28383
	60	2.99243	9.91500	31.53650	18.81813	62.35110	198.31976	0.33269	1.10230	3.50616
	0	3.01652	2.62470	3.76551	18.82212	16.37710	23.49557	0.34902	0.30370	0.43568
	5	3.01652	2.62470	3.69961	18.82212	16.37710	23.08441	0.34902	0.30370	0.42805
	10	3.01652	2.62470	3.63598	18.82213	16.37710	22.68738	0.34902	0.30370	0.42069
	15	3.01652	2.62470	3.57450	18.82213	16.37710	22.30376	0.34902	0.30370	0.41358
	20	3.01653	2.62470	3.51507	18.82215	16.37710	21.93288	0.34902	0.30370	0.40670
	25	3.01437	4.05330	6.13062	18.82170	25.30890	38.27954	0.34755	0.46730	0.70685
60	30	3.01016	5.99690	11.19374	18.82125	37.49590	69.98978	0.34401	0.68530	1.27925
	35	3.00657	7.07910	15.17620	18.82086	44.31430	95.00164	0.34105	0.80300	1.72152
	40	3.00297	7.81620	18.64171	18.82038	48.98630	116.83256	0.33840	0.88080	2.10071
	45	2.99909	8.35960	21.74763	18.81977	52.45750	136.46987	0.33589	0.93620	2.43566
	50	2.99479	8.77800	24.56646	18.81897	55.16040	154.37339	0.33342	0.97730	2.73505
	55	2.98994	9.10940	27.13970	18.81793	57.33250	170.81055	0.33093	1.00820	3.00383
	60	2.98443	9.37670	29.49490	18.81658	59.11940	185.96257	0.32837	1.03170	3.24529
	0	3.01652	2.62470	4.36852	18.82212	16.37710	27.25815	0.34902	0.30370	0.50545
	5	3.01652	2.62470	4.29240	18.82212	16.37710	26.78323	0.34902	0.30370	0.49664
	10	3.01652	2.62470	4.21889	18.82212	16.37710	26.32456	0.34902	0.30370	0.48814
	15	3.01652	2.62470	4.14786	18.82213	16.37710	25.88130	0.34902	0.30370	0.47992
	20	3.01652	2.62470	4.07917	18.82213	16.37710	25.45270	0.34902	0.30370	0.47197
70	25	3.01652	2.62470	4.01271	18.82214	16.37710	25.03803	0.34902	0.30370	0.46428
70	30	3.01247	3.31670	5.31433	18.82083	20.72120	33.20196	0.34691	0.38190	0.61199
	35	3.00115	5.54940	11.09950	18.81934	34.79860	69.60173	0.33896	0.62680	1.25360
	40	2.99499	6.68620	15.27904	18.81870	42.01210	96.00433	0.33435	0.74640	1.70568
	45	2.98953	7.45300	18.83981	18.81791	46.91390	118.58927	0.33077	0.82460	2.08449
	50	2.98398	8.01750	21.99238	18.81687	50.55810	138.68323	0.32765	0.88030	2.41481
	55	2.97802	8.45250	24.82751	18.81555	53.40380	156.86349	0.32473	0.92170	2.70725

	60	2.97147	8.79710	27.39590	18.81385	55.69860	173.45680	0.32189	0.95300	2.96770
	30	3.01653	2.62470	4.48923	18.82214	16.37710	28.01134	0.34902	0.30370	0.51941
	35	2.98636	3.34630	6.01943	18.80949	21.07630	37.91314	0.33656	0.37710	0.67838
	40	2.97504	5.34390	11.63712	18.81276	33.79240	73.58758	0.32632	0.58620	1.27643
80	45	2.96912	6.43250	15.79463	18.81293	40.75760	100.07780	0.32154	0.69660	1.71048
	50	2.96329	7.18180	19.33014	18.81215	45.59300	122.71546	0.31802	0.77070	2.07450
	55	2.95695	7.73980	22.44738	18.81075	49.23740	142.79997	0.31499	0.82450	2.39120
	60	2.94990	8.17300	25.23680	18.80880	52.11150	160.91207	0.31216	0.86490	2.67058
	30	3.01652	2.62470	5.02454	18.82214	16.37710	31.35151	0.34902	0.30370	0.58135
	35	3.01653	2.62470	4.94587	18.82215	16.37710	30.86062	0.34902	0.30370	0.57225
	40	2.74635	3.73050	7.82982	18.68030	25.37460	53.25738	0.26601	0.36130	0.75840
90	45	2.90829	5.28430	12.64125	18.79249	34.14580	81.68386	0.29994	0.54500	1.30373
	50	2.91729	6.26350	16.58835	18.79897	40.36180	106.89520	0.30033	0.64480	1.70775
	55	2.91659	6.96590	19.99821	18.79983	44.90100	128.90490	0.29909	0.71430	2.05078
	60	2.91236	7.49950	23.01200	18.79868	48.40790	148.53777	0.29743	0.76590	2.35014

7.11 Simulação da etapa de separação do extrato de vetiver (Item 4.4.2 – Vetiveria zizanoides).

Tabela 7.53 – Dados de saída do software para a corrente S-102 (fase leve) – vazões totais, dióxido de carbono, α-amorfeno, α-vetivona, β-vetivona, biciclovetivenol, cis-β-guaieno.

T	P	Vazão	o Total			Vazões más	sicas (kg/h)		
(°C)	(bar)	kg/h	L/h	dióxido de carbono	α-amorfeno	α-vetivona	β-vetivona	biciclovetivenol	cis-β-guaieno
<u> </u>	20	939.614	26906.323	939.60891	0.00006	0.00003	0.00011	0.00020	0.00019
	40	938.847	13442.145	938.83902	0.00013	0.00009	0.00025	0.00045	0.00035
	50	938.121	10745.366	938.10943	0.00024	0.00020	0.00046	0.00084	0.00057
30	60	936.771	8941.513	936.75036	0.00052	0.00057	0.00104	0.00187	0.00108
30	80	0.003	0.021	0.00287	0	0	0	0	0
	100	0.003	0.016	0.00287	0	0	0	0	0
	200	0.003	0.008	0.00287	0	0	0	0	0
	300	0.003	0.005	0.00287	0	0	0	0	0
	20	939.733	28241.065	939.72197	0.00020	0.00012	0.00033	0.00059	0.00049
	40	939.308	14114.084	939.29191	0.00035	0.00027	0.00061	0.00112	0.00079
	50	939.008	11287.598	938.98569	0.00057	0.00051	0.00101	0.00185	0.00118
45	60	938.622	9402.356	938.58670	0.00101	0.00110	0.00186	0.00340	0.00190
43	80	937.520	7042.520	937.39236	0.00459	0.00915	0.00946	0.01669	0.00589
	100	938.460	5634.316	937.14749	0.01893	0.23072	0.04895	0.07515	0.01310
	200	0.003	0.009	0.00287	0	0	0	0	0
	300	0.003	0.006	0.00287	0	0	0	0	0
	20	939.812	29574.712	939.78981	0.00053	0.00040	0.00083	0.00153	0.00110
	40	939.534	14782.885	939.50412	0.00081	0.00075	0.00133	0.00246	0.00154
	50	939.364	11824.069	939.32466	0.00117	0.00122	0.00197	0.00364	0.00208
60	60	939.171	9851.229	939.11585	0.00180	0.00218	0.00313	0.00576	0.00293
00	80	938.732	7384.493	938.60227	0.00481	0.00896	0.00923	0.01655	0.00601
	100	938.442	5904.515	938.05753	0.01214	0.05117	0.02748	0.04568	0.01047
	200	0.003	0.009	0.00287	0	0	0	0	0
	300	0.003	0.006	0.00287	0	0	0	0	0

Tabela 7.54 - Dados de saída do software para a corrente S-102 (fase leve) – ciclopacanfan-12-ol, δ-amorfeno, γ-amorfeno, khusimeno, khusimol, khusimol, khusimol, khusimol, nootkatona, vetiselinenol, ácido zizanóico.

T	Р				,	Vazões mássio	cas (kg/h)				
(°C)	(bar)	ciclocopacamfan -12-ol	δ-amorfeno	γ-cadieno	khusimeno	khusimol	khusimono	khusinol	nootkatona	vetiselinenol	ácido zizanóico
·	20	0.00002	0.00011	0.00011	0.00324	0.00002	0.00066	0	0.00003	0	0
	40	0.00004	0.00022	0.00020	0.00455	0.00005	0.00117	0	0.00006	0	0.00001
	50	0.00008	0.00039	0.00035	0.00624	0.00012	0.00196	0	0.00013	0.00001	0.00002
30	60	0.00019	0.00080	0.00069	0.00915	0.00036	0.00395	0.00001	0.00034	0.00003	0.00010
30	80	0	0	0	0	0	0	0	0	0	0.00001
	100	0	0	0	0	0	0	0	0	0	0.00001
	200	0	0	0	0	0	0	0	0	0	0.00001
	300	0	0	0	0	0	0	0	0	0	0.00001
	20	0.00006	0.00032	0.00030	0.00654	0.00008	0.00186	0	0.00009	0.00001	0.00001
	40	0.00012	0.00055	0.00050	0.00833	0.00018	0.00292	0	0.00019	0.00001	0.00004
	50	0.0002	0.00086	0.00077	0.01056	0.00034	0.00440	0.00001	0.00033	0.00002	0.00008
45	60	0.00038	0.00149	0.00129	0.01385	0.00074	0.00735	0.00002	0.00066	0.00005	0.00020
43	80	0.00232	0.00596	0.00466	0.02417	0.00635	0.02998	0.00027	0.00451	0.00049	0.00283
	100	0.02949	0.01937	0.01288	0.03394	0.23217	0.14210	0.02560	0.06146	0.02256	0.34655
	200	0	0	0	0	0	0	0	0	0	0.00001
	300	0	0	0	0	0	0	0	0	0	0.00001
	20	0.0002	0.0008	0.00074	0.01122	0.0003	0.00465	0.00001	0.00028	0.00002	0.00005
	40	0.00031	0.00119	0.00107	0.01286	0.00056	0.00638	0.00001	0.00048	0.00004	0.00013
	50	0.00047	0.00169	0.00147	0.01501	0.00091	0.00874	0.00003	0.00075	0.00006	0.00023
60	60	0.00076	0.00252	0.00215	0.01784	0.00161	0.01277	0.00005	0.00127	0.00011	0.00048
00	80	0.00247	0.00617	0.00486	0.02474	0.00661	0.03161	0.00027	0.00454	0.00050	0.00270
	100	0.01014	0.01359	0.00962	0.03094	0.04001	0.08154	0.00237	0.02046	0.00328	0.02524
	200	0	0	0	0	0	0	0	0	0	0.00001
	300	0	0	0	0	0	0	0	0	0	0.00001

Tabela 7.55 – Dados de saída do software para a corrente S-103 (fase pesada) – vazões totais, dióxido de carbono, α -amorfeno, α -vetivona, β -vetivona, biciclovetivenol, cis- β -guaieno.

T	Р	Vazão	o Total			Vazões más	ssicas (kg/h)		
(°C)	(bar)	kg/h	L/h	dióxido de carbono	α-amorfeno	α-vetivona	β-vetivona	biciclovetivenol	cis-β-guaieno
	20	4.233	15.639	0.39109	0.02107	0.37758	0.05579	0.08387	0.01367
	40	5.000	21.059	1.16098	0.02100	0.37752	0.05565	0.08362	0.01351
	50	5.725	26.087	1.89057	0.02089	0.37741	0.05544	0.08323	0.01329
30	60	7.075	35.439	3.24964	0.02061	0.37704	0.05486	0.08220	0.01278
30	80	943.844	6733.805	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386
	100	943.844	5387.933	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386
	200	943.844	2696.190	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386
	300	943.844	1798.942	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386
	20	4.113	12.830	0.27803	0.02093	0.37749	0.05557	0.08348	0.01337
	40	4.539	15.108	0.70809	0.02078	0.37734	0.05529	0.08295	0.01307
	50	4.838	16.653	1.01431	0.02056	0.37710	0.05489	0.08222	0.01268
45	60	5.224	18.601	1.41330	0.02012	0.37651	0.05404	0.08067	0.01196
43	80	6.327	23.920	2.60764	0.01654	0.36846	0.04644	0.06738	0.00797
	100	5.368	20.053	2.85251	0.00220	0.14689	0.00695	0.00892	0.00076
	200	943.844	2829.420	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386
	300	943.844	1887.776	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386
	20	4.034	11.117	0.21019	0.02060	0.37721	0.05507	0.08254	0.01276
	40	4.482	12.982	0.67534	0.01996	0.37639	0.05393	0.08043	0.01178
	50	4.312	12.295	0.49588	0.02032	0.37686	0.05457	0.08161	0.01232
60	60	4.675	13.735	0.88415	0.01933	0.37543	0.05277	0.07831	0.01093
00	80	5.114	15.362	1.39773	0.01632	0.36865	0.04667	0.06752	0.00785
	100	5.405	16.276	1.94247	0.00899	0.32644	0.02842	0.03839	0.00339
	200	943.844	2962.652	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386
	300	943.844	1976.612	939.99713	0.02113	0.37761	0.05590	0.08407	0.01386

Tabela 7.56 - Dados de saída do software para a corrente S-103 (fase pesada) – ciclopacanfan-12-ol, δ-amorfeno, γ-amorfeno, khusimeno, khusimol, khusimol, khusimol, khusimol, nootkatona, vetiselinenol, ácido zizanóico.

T	Р	Vazões mássicas (kg/h)									
(°C)	(bar)	ciclocopacamfan -12-ol	δ-amorfeno	γ-cadieno	khusimeno	khusimol	khusimono	khusinol	nootkatona	vetiselinenol	ácido zizanóco
	20	0.04182	0.02102	0.01375	0.03175	0.50359	0.16701	0.10498	0.08401	0.05604	2.26570
	40	0.04180	0.02091	0.01366	0.03044	0.50356	0.16650	0.10498	0.08398	0.05604	2.26569
	50	0.04176	0.02074	0.01351	0.02875	0.50349	0.16571	0.10498	0.08391	0.05603	2.26568
30	60	0.04165	0.02033	0.01317	0.02584	0.50325	0.16372	0.10497	0.08370	0.05601	2.26560
30	80	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569
	100	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569
	200	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569
	300	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569
	20	0.04178	0.02081	0.01356	0.02845	0.50353	0.16581	0.10498	0.08395	0.05603	2.26569
	40	0.04172	0.02058	0.01336	0.02666	0.50343	0.16475	0.10498	0.08385	0.05603	2.26566
	50	0.04164	0.02027	0.01309	0.02443	0.50327	0.16327	0.10497	0.08371	0.05602	2.26562
45	60	0.04146	0.01964	0.01257	0.02114	0.50287	0.16032	0.10496	0.08338	0.05599	2.26550
43	80	0.03952	0.01517	0.00920	0.01082	0.49726	0.13769	0.10471	0.07953	0.05555	2.26287
	100	0.01235	0.00176	0.00098	0.00105	0.27144	0.02557	0.07938	0.02258	0.03348	1.91915
	200	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569
	300	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569
	20	0.04164	0.02033	0.01312	0.02377	0.50331	0.16302	0.10497	0.08376	0.05602	2.26565
	40	0.04137	0.01944	0.01239	0.01998	0.50270	0.15893	0.10495	0.08329	0.05598	2.26547
	50	0.04153	0.01994	0.01279	0.02213	0.50305	0.16129	0.10497	0.08356	0.05600	2.26557
60	60	0.04108	0.01861	0.01171	0.01715	0.50200	0.15490	0.10493	0.08277	0.05593	2.26522
00	80	0.03937	0.01496	0.00900	0.01025	0.49700	0.13606	0.10471	0.07950	0.05554	2.26300
	100	0.03170	0.00754	0.00424	0.00405	0.46360	0.08613	0.10261	0.06358	0.05276	2.24046
	200	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569
	300	0.04184	0.02113	0.01386	0.03499	0.50361	0.16767	0.10498	0.08404	0.05604	2.26569

7.12 Estimativa do impacto da etapa de separação sobre o custo de manufatura do óleo de cravo-da-índia por extração supercrítica (Item 4.4.3 – *Eugenia caryophyllus*).

Tabela 7.57 – Dados numéricos da estimativa do impacto da etapa de separação sobre o custo de manufatura do óleo de cravoda-índia por extração supercrítica.

		SuperPro	® Designs			Custos	Tecanalysis					Custos Cor	rigidos	
		Consumo	Custo		US	\$/ano			USS	\$/kg	US	S\$/ano	USS	\$/kg
P (bar)	T (\mathcal{C})	energético do separador (kcal/h)	operaciona l do separador (US\$/ano)	Custo operaciona l do separador	CUT	СОМ	CRM	Extrato (ton/ ano)	CUT (US\$/k g)	COM (US\$/ kg)	CUT	СОМ	CUT	СОМ
	0	6303.7	664.0	392.42	6467.63	1669377.24	755603.30	181.39	0.0357	9.2034	6739.22	1669648.83	0.0372	9.2049
	5	6461.1	680.6	392.42	6467.63	1669359.63	755589.04	181.36	0.0357	9.2045	6755.80	1669647.80	0.0373	9.2061
	10	6619.4	697.3	392.42	6467.63	1669333.22	755567.66	181.33	0.0357	9.2060	6772.47	1669638.06	0.0373	9.2077
	15	6778.7	714.0	392.42	6467.63	1669315.61	755553.40	181.29	0.0357	9.2081	6789.25	1669637.23	0.0375	9.2099
	20	6939.2	730.9	392.42	6467.63	1669306.81	755546.28	181.23	0.0357	9.2111	6806.16	1669645.34	0.0376	9.2130
1	25	7100.9	748.0	392.42	6467.63	1669289.20	755532.02	181.15	0.0357	9.2150	6823.19	1669644.76	0.0377	9.2169
	30	7263.8	765.1	392.42	6467.63	1669280.40	755524.89	181.05	0.0357	9.2201	6840.35	1669653.12	0.0378	9.2222
	35	7428.2	782.5	392.42	6467.63	1669271.60	755517.76	180.91	0.0357	9.2268	6857.67	1669661.64	0.0379	9.2290
	40	7594.0	799.9	392.42	6467.63	1669262.80	755510.64	180.74	0.0358	9.2356	6875.13	1669670.30	0.0380	9.2378
	45	7761.3	817.5	392.42	6467.63	1669253.99	755503.51	180.52	0.0358	9.2467	6892.75	1669679.11	0.0382	9.2491
	50	7930.4	835.4	392.42	6467.63	1669245.19	755496.38	180.25	0.0359	9.2609	6910.57	1669688.13	0.0383	9.2634
	0	5842.0	615.4	453.77	5441.00	1670750.27	757741.70	181.44	0.0300	9.2084	5602.60	1670911.87	0.0309	9.2093
	5	6042.8	636.5	453.77	5441.00	1670327.72	757399.56	181.43	0.0300	9.2063	5623.75	1670510.47	0.0310	9.2073
	10	6236.0	656.9	453.77	5441.00	1669993.21	757128.69	181.43	0.0300	9.2047	5644.11	1670196.32	0.0311	9.2058
	15	6424.2	676.7	453.77	5441.00	1669729.11	756914.85	181.42	0.0300	9.2036	5663.93	1669952.04	0.0312	9.2049
10	20	6608.7	696.1	453.77	5441.00	1669517.84	756743.78	181.41	0.0300	9.2029	5683.36	1669760.20	0.0313	9.2043
10	25	6790.8	715.3	453.77	5441.00	1669332.98	756594.09	181.40	0.0300	9.2025	5702.55	1669594.53	0.0314	9.2040
	30	6971.2	734.3	453.77	5441.00	1669183.32	756472.92	181.38	0.0300	9.2025	5721.55	1669463.87	0.0315	9.2041
	35	7150.6	753.2	453.77	5441.00	1669060.08	756373.12	181.36	0.0300	9.2029	5740.45	1669359.53	0.0317	9.2045
	40	7329.3	772.0	453.77	5441.00	1668954.44	756287.59	181.34	0.0300	9.2036	5759.27	1669272.71	0.0318	9.2054
	45	7507.7	790.8	453.77	5441.00	1668857.61	756209.18	181.30	0.0300	9.2048	5778.06	1669194.67	0.0319	9.2067

	50	76060	900 (450.77	5441.00	1//0770 20	756145.00	101.26	0.0200	0.0066	5706.04	166012422	0.0220	0.2005
	50	7686.0	809.6	453.77	5441.00	1668778.38	756145.03	181.26	0.0300	9.2066	5796.84	1669134.22	0.0320	9.2085
	0	5063.0	533.3	464.36	4776.07	1675985.60	762645.76	181.44	0.0263	9.2371	4845.03	1676054.56	0.0267	9.2375
	5	5404.2	569.3	464.36	4776.07	1673987.30	761027.71	181.44	0.0263	9.2263	4880.97	1674092.20	0.0269	9.2269
	10	5689.5	599.3	464.36	4776.07	1672666.84	759958.51	181.43	0.0263	9.2192	4911.02	1672801.79	0.0271	9.2200
	15	5942.9	626.0	464.36	4776.07	1671733.71	759202.94	181.43	0.0263	9.2144	4937.71	1671895.35	0.0272	9.2153
	20	6176.5	650.6	464.36	4776.07	1671029.47	758632.70	181.42	0.0263	9.2109	4962.32	1671215.72	0.0274	9.2119
20	25	6396.8	673.8	464.36	4776.07	1670492.48	758197.89	181.41	0.0263	9.2084	4985.52	1670701.93	0.0275	9.2096
	30	6608.2	696.1	464.36	4776.07	1670069.93	757855.75	181.40	0.0263	9.2067	5007.79	1670301.65	0.0276	9.2080
	35	6813.2	717.7	464.36	4776.07	1669726.61	757577.76	181.38	0.0263	9.2057	5029.39	1669979.93	0.0277	9.2071
	40	7013.5	738.8	464.36	4776.07	1669444.91	757349.66	181.36	0.0263	9.2051	5050.48	1669719.32	0.0278	9.2066
	45	7210.6	759.5	464.36	4776.07	1669207.23	757157.20	181.33	0.0263	9.2051	5071.25	1669502.41	0.0280	9.2068
	50	7405.2	780.0	464.36	4776.07	1669013.56	757000.39	181.30	0.0263	9.2057	5091.74	1669329.23	0.0281	9.2074
	0	_	_	_	_	_	_	_	_	_	_	_	_	
	5	4228.0	445.4	461.49	4183.91	1684893.66	770450.92	181.44	0.0231	9.2862	4167.78	1684877.53	0.0230	9.2862
	10	4863.4	512.3	461.49	4183.91	1679030.81	765703.68	181.43	0.0231	9.2542	4234.71	1679081.61	0.0233	9.2545
	15	5292.5	557.5	461.49	4183.91	1675914.52	763180.36	181.43	0.0231	9.2374	4279.91	1676010.52	0.0236	9.2379
	20	5631.8	593.2	461.49	4183.91	1673977.84	761612.20	181.42	0.0231	9.2271	4315.65	1674109.58	0.0238	9.2279
30	25	5923.5	624.0	461.49	4183.91	1672648.57	760535.88	181.41	0.0231	9.2204	4346.38	1672811.04	0.0240	9.2213
	30	6186.5	651.7	461.49	4183.91	1671680.23	759751.80	181.39	0.0231	9.2157	4374.08	1671870.40	0.0241	9.2168
	35	6430.9	677.4	461.49	4183.91	1670949.58	759160.17	181.38	0.0231	9.2126	4399.83	1671165.50	0.0243	9.2138
	40	6662.6	701.8	461.49	4183.91	1670377.38	758696.85	181.36	0.0231	9.2105	4424.23	1670617.70	0.0244	9.2118
	45	6885.3	725.3	461.49	4183.91	1669919.62	758326.20	181.33	0.0231	9.2093	4447.69	1670183.40	0.0245	9.2107
	50	7101.5	748.0	461.49	4183.91	1669549.89	758026.82	181.30	0.0231	9.2089	4470.46	1669836.44	0.0247	9.2105
	0	_	_	_	_	_	_	_	_	_	_	_	_	_
	5	_	_	_	_	_	_	_	_	_	_	_	_	_
	10	2733.7	288.0	450.27	3592.63	1705308.43	787572.38	181.33	0.0198	9.2060	3430.32	1705146.12	0.0189	9.3978
	15	4202.5	442.7	450.27	3592.63	1686505.05	772346.97	181.29	0.0198	9.2081	3585.03	1686497.45	0.0198	9.2955
	20	4867.3	512.7	450.27	3592.63	1679955.55	767043.74	181.23	0.0198	9.2111	3655.06	1680017.98	0.0201	9.2605
40	25	5318.8	560.3	450.27	3592.63	1676504.75	764249.56	181.15	0.0198	9.2150	3702.62	1676614.74	0.0204	9.2425
	30	5677.8	598.1	450.27	3592.63	1674356.80	762510.33	181.05	0.0198	9.2201	3740.44	1674504.61	0.0206	9.2317
	35	5987.1	630.7	450.27	3592.63	1672886.68	761319.96	180.91	0.0198	9.2268	3773.02	1673067.07	0.0208	9.2249
	40	6266.1	660.0	450.27	3592.63	1671812.70	760450.34	180.74	0.0198	9.2356	3802.41	1672022.48	0.0210	9.2204
	45	6525.1	687.3	450.27	3592.63	1670994.02	759787.44	180.52	0.0198	9.2467	3829.69	1671231.08	0.0211	9.2176
	50	6770.4	713.2	450.27	3592.63	1670360.20	759274.22	180.25	0.0198	9.2609	3855.53	1670623.10	0.0213	9.2161