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“Agora que sinto amor 

Tenho interesse nos perfumes. 

Nunca antes me interessou que uma flor tivesse cheiro. 

Agora sinto o perfume das flores como se visse uma coisa nova. 

Sei bem que elas cheiravam, como sei que existia. 

São coisas que se sabem por fora. 

Mas agora sei com a respiração da parte de trás da cabeça. 

Hoje as flores sabem-me bem num paladar que se cheira. 

Hoje às vezes acordo e cheiro antes de ver.” 

(Alberto Caeiro) 
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RESUMO GERAL 

 
A utilização de diversos biopolímeros é uma prática comum nas indústrias de alimentos, 

especialmente em produtos lácticos, embutidos e a base de soja. O objetivo geral deste 

trabalho foi estudar as interações entre proteínas e polissacarídeos em sistemas contendo, 

ou não, co-soluto, em solução aquosa (pH 7,0) ou géis acidificados. Dentre as proteínas e 

os polissacarídeos utilizados na indústria de alimentos, foram estudados mais 

profundamente a goma xantana, o caseinato de sódio e o isolado protéico de soja (tanto em 

solução quanto em géis). Os polissacarídeos jataí (LBG), gelana, Na-alginato e κ-carragena 

foram estudados apenas em soluções. As interações entre os componentes foram estudadas 

1) por microscopias confocal, de força atômica e de contraste de fases e rheo-SALS (“small 

angle light scattering”); 2) por reologia a baixas e altas deformações, em cisalhamento ou 

compressão; 3) por análises químicas para determinar o tipo de força das interações. Os 

estudos sobre as propriedades físicas de soluções puras de biopolímeros mostraram que 

soluções de proteína seguem um comportamento Newtoniano, enquanto que os 

polissacarídeos apresentam comportamento Newtoniano a baixa concentração e 

pseudoplástico com o aumento desta. O tratamento térmico de soluções de xantana bem 

como a adição de sacarose reduziram a elasticidade da solução, sendo que a adição de 

sacarose afetou as propriedades reológicas apenas de soluções anisotrópicas ou bifásicas 

(anisotropia e isotropia simultâneas). Um novo modelo baseado na equação de BST (Blatz, 

Sharda, Tschoegl, 1974) foi proposto para predizer um maior número de propriedades 

mecânicas dos géis biopoliméricos tendo sido observado um bom ajuste dos dados. Quanto 

mais lenta a acidificação promovida por GDL, mais interconectada e forte foi a rede 

protéica em géis puros de Na-caseinato e SPI. O aumento da tensão e deformação de 



 xx

ruptura de géis formados com GDL foi obtida pelo aumento da concentração de proteína 

em géis puros de SPI, pela adição de xantana ou pela redução do conteúdo de proteína em 

géis contendo xantana. Por outro lado, a adição de xantana enfraqueceu os géis térmicos de 

SPI, provavelmente devido a ligação deste polissacarídeo com a sub-unidade β-7S. Em 

soluções aquosas pH 7,0, a κ-carragena foi mais compatível com o Na-caseinato e com SPI 

do que o Na-alginato. No entanto, os resultados de “rheo-SALS” e CLSM mostraram que 

misturas de caseinato e alginato apresentaram maior capacidade de formar emulsões do tipo 

água-água do que sistemas com carragena. Além disto, o sistema com SPI e Na-alginato 

também formou emulsão, mas com a fase dispersa de proteína gelificada. Misturas com 

gelana apresentaram-se homogêneas devido a baixa tensão interfacial do sistema.  

Palavras-chave: proteína, polissacarídeo, interação, gel, emulsão, biopolímero, solução, 

reologia, separação de fases, CLSM, “rheo-SALS”. 
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ABSTRACT 

 
Biopolymers are widely used in dairy products, canned foods, bakery products, salad 

dressings, beverages, sauces, soups and other processed foodstuffs to improve textural 

characteristics, flavour and shelf life. The aim of the present Ph.D. thesis was to study the 

protein-polysaccharide interactions in aqueous systems (pH 7.0) or acidified gels. It was 

studied seven different biopolymers used in the food industry, being two proteins and five 

polysaccharides. Soy protein isolate (SPI), Na-caseinate and xanthan were studied in 

aqueous solutions and gels systems, while locust bean gum (LBG), gellan, Na-alginate and 

κ-carrageenan were studied only in aqueous solutions. The protein-polysaccharide 

interactions were evaluated as following: 1) microstructures – by using confocal (CLSM), 

atomic force and phase contrast microscopes and rheo-SALS (small angle light scattering); 

2) macrostructures, evaluated trough small- and large-strain rheology under shear or 

compression; 3) chemical analysis - in order to determine the kind of interaction forces that 

maintained the gels structure. The results on the physical properties of pure biopolymers 

solutions revealed that the proteins showed Newtonian behaviour, while the 

polysaccharides showed either Newtonian or non-Newtonian behaviour depending on its 

type and solution concentration. The annealing temperature of xanthan solutions and the 

addition of sucrose caused a reduction on the solution elasticity. It was observed that 

sucrose affected the rheological properties over all frequency range studied for initially 

anisotropic or biphasic xanthan solutions. It was proposed a new model based on BST 

(Blatz, Sharda, Tschoegl, 1974) equation to predict a great number of mechanical 

properties, which revealed a very good fit to the data. The slower the acidification by GDL 

(glucone-delta-lactone) it was observed a more interconnected and harder network in Na-
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caseinate and SPI pure gels. The increase of the breaking stress or strain was obtained by 

increasing the SPI concentration in pure gels, by adding xanthan or by increasing the 

protein concentration in gels made with xanthan. In another hand, the addtion of xanthan let 

to weaker heat-induced SPI gels, which was attributed to the electrostatic interactions 

between xanthan and the β-7S subunit of SPI. In mixed protein-polysaccharide solutions, 

the results indicated that κ-carrageenan was more compatible with both soy protein and Na-

caseinate than alginate. However, the Na-caseinate – Na-alginate mixture showed a greater 

capacity to form water-in-water emulsions than Na-caseinate - carrageenan system as 

observed by rheo-SALS and CLSM. In addition, the system with SPI and Na-alginate also 

formed emulsions but with a gelified protein dispersed phase. The interfacial tension of 

systems containing gellan was very low resulting in homogeneous mixtures. 

Keywords: proteins, polysaccharides, interaction, gel, emulsion, biopolymer solution, 

rheology, phase separation, CLSM, rheo-SALS. 
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1. Introdução 

As indústrias de alimentos vêm, cada vez mais, intensificando e diversificando suas 

linhas de produção. Além disto, tem-se observado que este ramo da indústria tem investido 

esforços em fabricar produtos com alto valor agregado, podendo-se destacar os produtos 

lácteos ou a base de soja. Produtos lácteos “light” ou “diet”, obtidos a partir da substituição 

total ou parcial de ingredientes como a gordura, apresentam uma textura diferente da do 

produto tradicional. Com o intuito de obter-se uma textura similar a este, as novas 

formulações vêm sendo adicionadas de polissacarídeos e/ou concentrados protéicos. A 

textura também é vista pelos fabricantes de tofu como fator determinante da aceitabilidade 

deste produto, ao lado da capacidade de retenção de água que aumenta o peso e 

consequentemente o valor econômico deste alimento (Abd Karim et al., 1999).  

A proteína de soja vem sendo encontrada cada vez mais em uma maior diversidade 

de produtos, sendo que sua aplicação varia desde substituinte de proteínas em produtos 

lácteos e em embutidos a diversos tipos de massas e bebidas (Embrapa, 2005). Esta 

proteína apresenta alto valor nutricional e propriedades funcionais interessantes como 

gelificante ou espessante, que contribuem para a modificação da textura do alimento 

(Kinsella, 1979). A soja é capaz de prevenir uma série de doenças como as 

cardiovasculares, além de auxiliar na prevenção de câncer e osteoporose. Aliada a esta 

grande aplicabilidade, a soja é importante para a economia nacional, visto que o Brasil é o 

segundo maior produtor mundial de soja, com 27% do mercado (Embrapa, 2005).  

A caseína é a proteína encontrada em maior abundância no leite (80%), tendo quatro 

frações principais (αS1-, αS2-, β- e κ-caseína) que apresentam-se ligadas na forma de micela 

no leite (Walstra e Jenness, 1984). O caseinato de sódio (Na-caseinato) é um importante 
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ingrediente lácteo que é obtido a partir da acidificação do leite até o ponto isoelétrico (pH 

4,6) da caseína. O precipitado é então lavado e re-suspenso em água com a adição de 

hidróxido de sódio para obter-se uma solução neutra a qual passa posteriormente por um 

processo de secagem (Kinsella, 1984). Este ingrediente é usado na indústria de alimentos, 

principalmente em produtos lácteos como em queijos tipo “cottage” e “cheddar”, bebidas e 

sobremesas. As proteínas do leite apresentam algumas propriedades funcionais importantes 

como agente espumante, emulsificante e gelificante (Sgarbieri, 1996).  

Os polissacarídeos são utilizados nos produtos para aumentar a viscosidade de 

formulações líquidas, como agentes gelificantes ou ainda para aumentar sua retenção de 

água (Syrbe et al., 1998, Abd Karim et al., 1999). Os polissacarídeos mais utilizados em 

alimentos são obtidos a partir de endosperma de plantas, de algas ou por fermentação 

microbiana. As gomas xantana e gelana são polissacarídeos aniônicos de origem 

microbiana. Outros dois polissacarídeos aniônicos são os alginatos e as carragenas, ambos 

obtidos a partir de algas marinhas. Tanto as carragenas quanto a gelana apresentam a 

capacidade particular de formar géis termo-reversíveis em soluções aquosas (Chaplin, 

2005). A xantana, a gelana e a carragena são conhecidas pela mudança da conformação 

ordenada em forma de hélices à desordenada com a variação da temperatura, concentração 

e força iônica do sistema (Paradossi e Brant, 1982; Lee e Brant, 2002; Ikeda et al., 2004). A 

goma jataí, ou locusta é uma galactomanana, representante das gomas neutras extraídas de 

plantas. As propriedades físico-químicas das galactomananas são fortemente dependentes 

do conteúdo de galactose no polissacarídeo (Morris, 1990). 

As interações que ocorrem entre proteínas e polissacarídeos são interessantes para 

melhorar algumas características funcionais das proteínas e estes sistemas são comumente 

encontrados em alimentos. Estudos sobre as interações das proteínas do leite com diferentes 
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polissacarídeos, utilizando as mais diversas técnicas, têm sido conduzidos por alguns 

grupos de pesquisa (Zhang e Foegeding, 2003; Braga e Cunha, 2004; Antonov et al., 2004; 

Moschakis et al., 2005). Não são menos importantes os estudos sobre as interações de 

proteína de soja com polissacarídeos, embora existam poucos trabalhos sobre este tema na 

literatura (Carp et al., 1999; Abd Karim et al., 1999; Chang et al., 2003) e um grande 

aumento na diversidade de produtos a base de soja. Soluções ou géis com mais de um 

biopolímero exibem comportamentos mais complexos do que misturas de polímeros 

sintéticos. Isto se deve ao fato de que os biopolímeros possuem um equilíbrio relacionado 

ao estado de ordem - desordem de conformação, além de apresentar transições e separações 

de fases em determinadas situações (Cèsaro et al., 1999). Interações entre polímeros 

resultam em incompatibilidade e formações complexas, sendo exceção a miscibilidade 

entre os componentes. 

As propriedades de um gel protéico, como textura e sinerese, podem ser alteradas 

não só pela adição de polissacarídeos como também pelas variações na força iônica e pH do 

sistema (Renkema et al., 2000). A formação de uma rede protéica é o resultado da 

agregação das moléculas de proteína, a partir da desnaturação prévia destas e/ou da 

acidificação do sistema. O processo de acidificação pode ser realizado de duas formas, 

sendo a tradicional através da ação de cultura bacteriana e a outra com o uso de reagentes 

químicos, como o glucona-delta-lactona (GDL). O uso de GDL apresenta a vantagem de 

causar um decréscimo lento do pH e evitar algumas dificuldades associadas com o uso de 

bactérias (Lucey et al., 1998). Utsumi e Kinsella (1985) relataram que as forças 

moleculares envolvidas na formação de géis térmicos de isolado protéico de soja são pontes 

de hidrogênio e interações hidrofóbicas, enquanto que o gel é mantido por pontes de 

hidrogênio e dissulfeto. As forças das interações entre frações protéicas vêm sendo 
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distinguidas e quantificadas através de solubilidade protéica em diferentes tampões e 

eletroforese em gel de poliacrilamida (Petruccelli e Añón, 1995). O tampão Tris é usado 

para romper as interações eletrostáticas, a uréia atua rompendo as pontes de hidrogênio e as 

interações hidrofóbicas, enquanto as pontes dissulfeto são reduzidas na presença de β-

mercaptoetanol (Cheftel et al., 1996). 

Misturas aquosas de proteínas e polissacarídeos são geralmente incompatíveis, 

apresentando separação de fases segregativa em pH 7,0. Em alguns casos, o sistema pode 

apresentar microseparação de fases com uma morfologia interessante, que pode variar 

desde estruturas elongadas até a forma de gota. Neste tipo de sistema, cada fase é rica em 

um dos dois biopolímeros e quando a estrutura formada é do tipo gota, a mistura é 

considerada uma emulsão água-água (Tolstogusov, 1986). Este tipo de estrutura apresenta 

características reológicas peculiares e vem sendo utilizada na indústria de alimentos na 

substituição de gorduras (Capron et al., 2001). Entretanto, algumas peculiaridades das 

emulsões água-água, como a miscibilidade limitada e os valores extremamente baixos de 

tensão interfacial, podem adicionar uma complicação extra para a descrição reológica do 

sistema bem como dos processos de mistura e dispersão dos dois biopolímeros (van 

Puyvelde et al., 2002).  

O estudo reológico de géis e soluções vem ganhando a atenção de vários grupos de 

pesquisa, visto que pode ser associado com a estrutura, a qual é consequência das 

interações entre os ingredientes, podendo levar à redução de custos de processos e 

auxiliando o desenvolvimento de novos materiais e produtos. As propriedades mecânicas 

obtidas em compressão uniaxial podem ser relacionadas com a textura sensorial e os dados 

obtidos têm sido ajustados por modelos empíricos ou fundamentais (Foegeding et al., 
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2003). Por outro lado, as propriedades reológicas determinadas em cisalhamento, como a 

viscosidade aparente, são importantes para o dimensionamento de equipamentos. Além 

destas propriedades reológicas, as obtidas em baixas deformações por compressão ou 

cisalhamento conferem informações relevantes sobre a estrutura de géis e soluções e sobre 

a conformação molecular de biopolímeros. O desenvolvimento de técnicas reológicas 

avançadas, como “rheo-SALS” (reologia em cisalhamento com “Small Angle Light 

Scattering”), para descrever os parâmetros reológicos de sistemas biopoliméricos são 

especialmente importantes para o desenvolvimento de produtos gelificados e líquidos. 

Além disto, diversas técnicas de microscopia têm sido empregadas para dar suporte ao 

entendimento das propriedades reológicas, cabendo ressaltar as microscopias confocal de 

varredura laser, de força atômica, de contraste de fases e eletrônica de varredura. 

Assim, o entendimento adequado dos comportamentos micro e macroscópicos de 

sistemas-modelo de alimentos é de grande importância para o desenvolvimento de novos 

produtos e pode ser obtido a partir do conhecimento da estrutura molecular dos 

ingredientes, das interações entre os componentes do alimento e das forças intermoleculares 

que determinam a consistência e a estabilidade física dos produtos (Heertje, 1993).  

 
2. Objetivos 

O objetivo geral desta tese de doutorado foi aprofundar o conhecimento sobre as 

interações entre proteínas e polissacarídeos em sistemas contendo, ou não, co-soluto em pH 

neutro ou ácido. Dentre as proteínas e os polissacarídeos, foram estudados mais 

profundamente o caseinato de sódio (Na), o isolado protéico de soja (SPI) e a goma 

xantana. Adicionalmente, as gomas gelana, jataí (LBG), Na-alginato e κ-carragena foram 

usadas com o intuito de explicar como as diferentes conformações dos polissacarídeos 
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afetam o comportamento de soluções contendo uma proteína e um polissacarídeo. O 

conhecimento das interações entre caseinato de sódio e xantana foi iniciado com a 

dissertação de mestrado defendida em 2002. Os resultados obtidos levaram ao interesse por 

estudar sistemas mais simples (contendo somente um biopolímero) e com a adição de outra 

fonte protéica. 

As interações entre os componentes foram estudadas tanto a nível microscópico 

quanto macroscópico, sendo os objetivos específicos da tese descritos a seguir: 

1. Para sistemas gelificados (termicamente e/ou acidificado) foram determinadas as 

propriedades reológicas a baixas (cisalhamento e compressão uniaxial) e altas 

deformações (compressão uniaxial), a capacidade de retenção de água dos géis e a 

microestrutura dos mesmos (microscopia confocal de varredura laser). O tipo de força 

de interação foi determinado por solubilidade do gel em diferentes tampões e 

eletroforese em gel de poliacrilamida (Capítulo 4).  

2. Para sistemas não-gelificados (mistos e puros) avaliou-se as propriedades reológicas 

sob cisalhamento, o comportamento das fases, as propriedades térmicas durante a 

desnaturação das proteínas e a densidade. A microestrutura destes sistemas foi 

observada em microscópio de contraste de fases, microscópio de força atômica e por 

“rheo-small angle light scattering” (rheo-SALS) (Capítulos 3 e 5 e Apêndice). 

 

3. Organização da tese em capítulos 

Como o objetivo geral da tese foi entender as interações entre proteínas e 

polissacarídeos em diferentes tipos de sistemas que podem ser encontrados em alimentos, 

inicialmente foi necessário um estudo sobre as propriedades físicas das soluções puras de 

biopolímeros (Capítulo 3). O estudo da gelificação (Capítulo 4) foi restringido a três 
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biopolímeros devido ao elevado número de análises necessárias para entender as interações 

ocorridas nos sistemas. Para tal, foram escolhidos o Na-caseinato e a xantana, para dar 

continuidade aos estudos do mestrado, e o SPI, por ser uma fonte de proteína de grande 

importância para a economia brasileira. O último capítulo da tese (Capítulo 5) descreve o 

estudo de outros quatro polissacarídeos (gelana, alginato de sódio, jataí e k-carragena) além 

da xantana.  

A seguir serão detalhados os conteúdos dos capítulos da tese: 

Capítulo 1: Introdução geral (em português). 

Capítulo 2: Revisão bibliográfica (em português). 

Capítulo 3: Rheological properties of biopolymers aqueous solutions (em inglês). 

Parte 1: Physical properties of pure proteins and polysaccharides aqueous solutions 

A densidade e as propriedades reológicas em estado estacionário de soluções de sete 

tipos de biopolímeros utilizados na indústria de alimentos foram determinadas em 

diferentes concentrações. Os polissacarídeos investigados foram xantana, jataí, gelana, κ-

carragena e Na-alginato, enquanto que foram utilizados como fonte de proteína o Na-

caseinato e isolado protéico de soja (SPI). Esta parte da tese foi realizada no Laboratory of 

Food Process Engineering (LMVT) – Eidgenössische Technische Hochschule Zürich 

(ETHZ) - Suíça pelo programa de estágio de doutorado no exterior financiado pela CAPES. 

Parte 2: Rheological behaviour and microstructure of xanthan solutions: annealing 

temperature and sucrose effects. 

Soluções de xantana submetidas a diferentes tratamentos térmicos e adicionadas ou 

não de sacarose foram avaliadas a partir de ensaios reológicos em cisalhamento a baixas 

deformações através de varreduras de temperatura e freqüência. Neste estudo, determinou-
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se as temperaturas de transição conformacional da molécula e outras transições 

relacionadas à anisotropia da solução. Além disto, foram realizadas micrografias 

(microscopia de contraste de fases e microscopia de força atômica) das diferentes amostras 

a fim de comprovar as transições estudadas. A microscopia de contraste de fases foi 

realizada no ETHZ-Suíça. 

Capítulo 4: Protein-polysaccharide interactions in acidified gels containing Na-

caseinate, SPI and/or xanthan (em inglês). 

O Na-caseinato e a xantana foram escolhidos para o estudo devido ao conhecimento 

prévio adquirido no mestrado. As proteínas de soja (SPI) também foram estudadas com o 

objetivo de adquirir maior informação sobre as interações entre outra proteína globular e a 

xantana. 

Parte 1: The effect of the GDL/caseinate ratio on sodium caseinate gelation. 

Diferentes quantidades de glucona-delta-lactona (GDL) foram adicionadas às 

soluções de caseinato de sódio puro sendo que o processo de gelificação foi acompanhado 

por medidas reológicas sob cisalhamento e compressão uniaxial. As propriedades 

reológicas, a capacidade de retenção de água e os tipos de forças de interação protéica do 

gel em equilíbrio foram determinadas. Este capítulo da tese não apresenta a adição de 

polissacarídeo por ser continuação dos estudos realizados no mestrado. 

Parte 2: Small- and large-strain rheological properties of GDL-induced soy protein isolate 

gels: effect of gelation temperature and xanthan addition. 

Nesta etapa foi: 1) desenvolvido um modelo capaz de predizer todas as propriedades 

mecânicas de géis formados por biopolímeros baseado na equação proposta por Blatz et al. 

(1974); 2) estudado o efeito da concentração de SPI, da adição de xantana e da temperatura 
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de gelificação sobre as propriedades reológicas durante o processo de gelificação (em 

cisalhamento) e em equilíbrio (compressão) de sistemas com GDL e SPI. 

Parte 3: Interactions between soy protein isolate and xanthan in heat-induced gels: the 

effect of salt addition. 

A influência da adição de xantana e/ou KCl nas propriedades de géis térmicos (pH 

3,0) de isolado protéico de soja (SPI) foi estudada. Para tal, foram determinadas a 

solubilidade protéica dos géis e a composição das subunidades do extrato solúvel, bem 

como as propriedades mecânicas, a capacidade de retenção de água e a microestrutura dos 

géis mistos. 

Capítulo 5: Protein-polysaccharide interactions in aqueous systems pH 7.0. (em inglês) 

Parte 1: Rheological and phase-separation behaviours of protein-polysaccharide mixtures 

pH 7.0 

Nesta etapa foi estudado o papel da concentração e do tipo de biopolímero sobre o 

comportamento de fases de sistemas contendo proteína e polissacarídeo. Para tal foram 

feitos ensaios de separação de fases, sendo a mistura inicial e as fases ricas em 

biopolímeros avaliadas por microscopia confocal e reologia. Os polissacarídeos 

investigados foram gelana, κ-carragena e Na-alginato, enquanto que Na-caseinato e SPI 

foram as fontes de proteína. Esta etapa foi realizada no Laboratório de Engenharia de 

Processos (LEP) – Faculdade de Engenharia de Alimentos (FEA) - UNICAMP em conjunto 

com um aluno de graduação do ETHZ-Suíça como parte da colaboração entre os 

laboratórios situados no Brasil e na Suíça. 
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Parte 2: Morphology of protein-polysaccharides mixtures at rest and under shear. 

Estudou-se a obtenção de emulsões tipo água-água a partir dos comportamentos 

morfológicos em repouso por microscopia confocal (CLSM) e sob cisalhamento por “rheo-

Small Angle Light Scattering” (rheo-SALS). Os polissacarídeos investigados foram 

xantana, jataí, gelana, κ-carragena e Na-alginato, enquanto que Na-caseinato e SPI foram as 

fontes de proteína. A etapa de estudo do “rheo-SALS” foi realizada no LMVT-ETHZ-Suíça 

e as microscopias foram feitas no DCA-FEA-UNICAMP. 

Capítulo 6: Conclusão geral. (em português) 

Apêndice: Preliminary studies on the phase separation of biopolymers mixtures. (em 

inglês) 

Neste apêndice são apresentados os resultados preliminares de separação de fases, 

mostrando como foram escolhidos os sistemas estudados no capítulo 5. Esta etapa foi 

realizada no LMVT-ETHZ-Suíça. 

Anexo: Lista de trabalhos sobre biopolímeros apresentados em congressos ou 

publicados em revistas no período do doutorado (2002-2006). 
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1. Proteínas 

1.1. Caseínas 

O leite tem aproximadamente 3,5% de proteína, sendo 2,9% de caseína e 0,6% de 

proteínas do soro. A presença de fósforo (P) nas caseínas permite classificá-las como 

fosfoproteínas. Estas proteínas são ácidas, por serem ricas em ácido glutâmico e aspártico. 

A composição dos aminoácidos das caseínas lhes confere uma hidrofobicidade ligeiramente 

superior do que a maioria das proteínas globulares. Esta propriedade permite que as 

caseínas associem-se facilmente formando complexos de elevado peso molecular, 

denominados micelas. As caseínas são classificadas em quatro grupos principais de acordo 

com suas estruturas primárias: αs1, αs2, β e κ (Cheftel et al., 1989). 

As αs1-caseínas apresentam uma estrutura pouco ordenada. Além disto, esta fração é 

a que apresenta a maior carga iônica e, excluindo-se as αs2-caseínas, é a de menor 

hidrofobicidade. As αs2-caseínas são as mais hidrofílicas devido à maior fosforilação e 

maior quantidade de resíduos catiônicos, que resulta em elevada afinidade aos íons Ca2+. 

As β-caseínas são as que apresentam maior hidrofobicidade, sendo que sua molécula possui 

uma região N terminal muito polar e uma região C terminal hidrofóbica. Além disto, a 

baixas temperaturas (4 oC) a β-caseína se dissocia da micela. Já as κ-caseínas possuem a 

região N terminal hidrofóbica e a região C terminal hidrofílica (Cheftel et al., 1989). 

As proteínas do leite apresentam algumas propriedades funcionais importantes 

como agentes espumantes, emulsificantes e gelificantes, sendo muito utilizadas na 

formulação de produtos alimentícios (Sgarbieri, 1996). Estas propriedades estão 

relacionadas à natureza anfótera da micela de caseína. A atividade interfacial das caseínas é 
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mais notória nas β-caseínas por estas serem mais flexíveis e encontrarem-se desdobradas na 

interface. Já as κ-caseínas apresentam uma estrutura mais ordenada. 

1.2. Isolado protéico de soja (SPI) 

A soja é a mais importante fonte protéica de origem vegetal que é utilizada como 

ingrediente em formulações de alimentos, visto que este grão apresenta 40% de proteínas 

em sua composição (Sgarbieri, 1996). O isolado protéico de soja é a forma mais purificada 

das proteínas de soja, possuindo alto valor nutricional e apresentando diversas propriedades 

funcionais como emulsificante, espumante e espessante, sendo também caracterizado como 

agente gelificante. Aproximadamente 90% das proteínas de soja são globulinas e as que 

precipitam em pH 4,5 são tradicionalmente chamadas de glicininas (Kinsella, 1979). 

As frações da proteína de soja são caracterizadas de acordo com as suas 

propriedades de sedimentação ou peso molecular (Wolf et al, 1961), apresentando os 

seguintes coeficientes de Svedberg (S) 2S, 7S, 11S e 15S. Os componentes de baixo peso 

molecular (2S) são compostos inibidores de tripsina, citocromo e outras globulinas. As duas 

frações principais possuem pesos moleculares elevados, sendo que 20-35% das proteínas 

são referenciadas como globulina 7S (β-conglicinina) e 25-35% como globulina 11S 

(glicinina). Ambas são muito complexas, consistindo de diversas subunidades que 

facilmente se associam e dissociam sob diferentes condições de pH, força iônica e 

tratamento térmico (Badley et al., 1975; Kinsella, 1979; Hermansson, 1986). 

A glicinina (globulina 11S) consiste de doze cadeias polipeptídicas, sendo 6 ácidas 

(A) e 6 básicas (B) ligadas (AB) por pontes dissulfeto. Segundo, Badley et al. (1975) as 

sub-unidades AB são associadas dentro de dois anéis com seis sub-unidades (hexâmero), 

que são mantidos unidos por interações hidrofílicas, como pontes de hidrogênio e 
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interações eletrostáticas. Embora a estrutura quaternária da globulina 11S seja estável, é 

possível provocar uma dissociação seqüencial em sub-unidades obtendo-se os seguintes 

produtos (Sgarbieri, 1996): 

11S (A6B6)  ∼7S (A3B3)  ∼3S (6AB)  ∼2S (6A+6B) 

2. Polissacarídeos 

Os polissacarídeos são compostos solúveis em água e de elevado peso molecular. 

Estes ingredientes atuam como estabilizantes e espessantes, devido à sua capacidade de 

aumentar a viscosidade do sistema podendo, inclusive, formar géis (Syrbe et al, 1998). Os 

polissacarídeos podem ser utilizados como aditivos em produtos com a proposta de redução 

parcial ou total de gordura. Estes ingredientes atuam suprindo a perda de textura ocasionada 

pela falta de gordura e evitam a separação de fases em emulsões (Katzbauer, 1998). A 

seguir serão descritas algumas características dos polissacarídeos utilizados neste trabalho. 

2.1. Xantana 

A goma xantana é um polissacarídeo microbiano, extracelular, produzido pela 

bactéria Xanthomonas campestris. A estrutura primária da molécula de xantana é composta 

de uma cadeia principal com unidades de D-glucose ligadas em β (1→4), contendo cadeias 

ramificadas com duas unidades de manose e uma de ácido glucurônico (Figura 1). O 

primeiro resíduo de manose é normalmente acetilado no C6 e toda cadeia ramificada possui 

um grupamento carboxílico no resíduo de ácido glucurônico. O resíduo terminal de manose 

possui um grau variado de substituição por piruvato (Capron et al., 1997). 

A xantana, em solução, passa por uma transição conformacional irreversível de um 

estado ordenado e rígido para um estado mais desordenado e flexível (desnaturado), com o 

aumento da temperatura. Essa transição conformacional pode ser medida por algumas 
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técnicas analíticas como rotação óptica, reologia e calorimetria. A temperatura de transição 

é, ainda, função de alguns fatores como a concentração da goma e a força iônica do meio, 

mas geralmente ocorre até 50ºC (Urlacher & Noble, 1997). Além disto, Lee e Brant (2002) 

observaram uma outra transição que foi relacionada à transição de uma solução 

anisotrópica para uma isotrópica. Este último fenômeno mostrou-se dependente da 

temperatura e da concentração. 

 

Figura 1. Estrutura molecular da xantana. 

2.2. Alginato  

Os alginatos são polissacarídeos aniônicos produzidos por algas marrons do gênero 

Laminaria. A sua estrutura primária consiste de uma cadeia principal não ramificada, com 

unidades de D-ácido manurônico (M) ligados em β-(1→4) e unidades de L-ácido 

gulurônico (G) ligados em α-(1→4). As unidades M e G são encontradas em blocos e estes 

ligam-se alternadamente, sendo predominante a sequência de dois ácidos iguais juntos 

(GGMM) como apresentado na Figura 2 (Capron et al., 2001).  
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Figura 2. Estrutura molecular do alginato. 

 

2.3. Carragena 

Carragena é um termo utilizado para caracterizar um grupo de polissacarídeos 

extraídos alcalinamente de algas vermelhas, sendo os gêneros Chondrus, Eucheuma, 

Gigartina e Iridaea os mais utilizados para produção. As carragenas são biopolímeros 

lineares, sulfatados, com derivados de galactose na cadeia primária, sendo classificadas em 

três principais frações: λ-, ι- e κ-carragena. A κ-carragena é composta de unidades de D-

galactose-4-sulfato unidas em α-(1→3) e 3,6-anidro-D-galactose ligadas em β-(1→4), que 

se alternam na cadeia (Figura 3). As carragenas apresentam moléculas muito flexíveis, 

sendo que a altas concentrações podem formar uma estrutura mais ordenada na forma de 

duplas hélices, a qual pode levar à formação de géis. A κ-carragena forma géis 

termorreversíveis a partir do ordenamento molecular com o resfriamento. A presença dos 

cátions K+ e Ca2+ no sistema contribui tanto para induzir a gelificação a temperaturas mais 

elevadas, quanto para a formação de géis mais fortes (Chaplin, 2005). 
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Figura 3. Estrutura molecular da carragena. 

2.4. Gelana  

A gelana é um polissacarídeo obtido a partir da fermentação bacteriana, com 

Sphingomonas elodea, de forma similar à xantana. Este biopolímero apresenta quatro 

sacarídeos em sua cadeia principal: L-ramnose ligada em (α−1→3), D-glicose ligada em 

(β−1→4), e duas unidades de D-ácido glucurônico (Figura 4). Este polímero possui um 

grupo lateral carboxílico em cada unidade repetida. Soluções de gelana com concentração 

maior que 1% apresentam transição sol-gel ao redor de 50 °C. Géis termorreversíveis 

podem ser formados em concentrações muito baixas (0,005% p/p) na presença de cátions 

(Chaplin, 2005). 

 

Figura 4. Estrutura molecular da gelana. 
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2.5. Jataí ou locusta (LBG) 

Galactomananas, como a goma jataí (LBG) e goma guar, são biopolímeros 

hidrofílicos vastamente utilizados na indústria de alimentos como espessantes, 

estabilizantes e agentes de retenção de água. A goma jataí apresenta um alto peso molecular 

e é formada por uma cadeia principal de unidades de D-manose unidas por ligações β-(1-4), 

com diferentes graus de ramificações por grupos de D-galactose ligados em α-(1-6) (Figura 

5). Assim, este polissacarídeo é caracterizado por ser neutro e polidisperso, com razão 

galactose/manose (G/M) igual a ¼ (Fox, 1992).  

 

Figura 5. Estrutura molecular da LBG. 

Polissacarídeos neutros geralmente apresentam uma baixa solubilidade em água 

devido à existência de um elevado número de pontes de hidrogênio, que estabilizam as 

interações intra e intermoleculares. A razão de galactose/manose (G/M) da molécula de 

jataí tem um papel importante na solubilidade deste polissacarídeo e na dependência da 

viscosidade da solução com a concentração do polímero. As propriedades físicas em 

solução são devidas a algumas contribuições das interações das cadeias ramificadas, e 

principalmente relativas à pouca flexibilidade da cadeia principal de manose (Rinaudo, 

2001). 
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As galactomananas de baixo teor de D-galactose, como a goma jataí, são capazes de 

gelificar, sendo que as zonas de junção são formadas pela associação de segmentos não 

substituídos da cadeia principal. As regiões substituídas da molécula permanecem 

altamente hidratadas, o que impede a precipitação do polissacarídeo. A LBG é 

relativamente estável a variações de pH, força iônica e temperatura, sendo completamente 

hidratada entre 75 e 85oC e é capaz de conferir alta viscosidade ainda a baixas 

concentrações (Lundin e Hermansson, 1995). 

 
3. Géis ácidos 

Na indústria de laticínios, a acidificação é resultado da conversão da lactose em 

ácido lático pelas bactérias lácticas ou pela adição de reagentes químicos. No caso da 

acidificação direta, o reagente mais utilizado é a glucona-δ-lactona (GDL) que é um éster 

cíclico neutro produzido através da fermentação da glicose. O GDL é um cristal branco 

solúvel em água, com um leve sabor doce, e além de não ser tóxico é completamente 

metabolizado no organismo humano. Quando adicionado ao leite, o GDL se hidrolisa 

lentamente a ácido glucônico (Figura 6), seguindo uma cinética de primeira ordem (de 

Kruif, 1997): 

kt

0t e]GDL[]GDL[ −⋅=  (1) 

onde, [GDL]0 é a concentração inicial de GDL no momento da sua adição, [GDL]t é a 

concentração de GDL no tempo t e k é a velocidade de reação. 

O ácido glucônico encontra-se sempre em equilíbrio com o GDL em solução, sendo 

que a velocidade desta reação depende da temperatura de processo e do pH da solução 

aquosa, ou seja, o tempo necessário para a coagulação ou floculação das micelas será maior 

quanto menor a temperatura de gelificação (de Kruif, 1997). A concentração residual de 
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GDL atinge 50% em apenas 20min a 60ºC, enquanto que a 20ºC esta atividade decai 10% 

no mesmo período de tempo. 

 

 

 

 

 

 

Figura 6. Hidrólise do GDL a ácido glucônico. 

4. Interações entre Proteínas-Polissacarídeos 

As interações que ocorrem entre proteínas e polissacarídeos são interessantes para 

melhorar algumas características funcionais das proteínas e estes sistemas são comumente 

encontrados em alimentos. Sistemas com mais de um biopolímero exibem comportamentos 

mais complexos do que misturas de polímeros sintéticos. Isto se deve ao fato de que os 

biopolímeros possuem um equilíbrio relacionado ao estado de ordem - desordem de 

conformação, além de apresentar transições e separações de fases em determinadas 

situações (Cèsaro et al, 1999). Interações entre polímeros resultam em incompatibilidade e 

formações complexas, sendo exceção a miscibilidade entre os componentes. O 

comportamento de uma solução com dois biopolímeros é controlado pelo balanço entre os 

efeitos entálpicos e a entropia do sistema (Syrbe et al, 1998). 

Na presença de polissacarídeos, a temperatura de desnaturação de algumas proteínas 

é alterada ou a capacidade de formação dos géis é modificada. Em solução, as proteínas 

podem atrair e repelir os polissacarídeos dependendo da sua origem, do pH, da força iônica, 

da temperatura, da concentração ou do cisalhamento a que são submetidas (Delben e 

glucona-δδδδ-lactona 

+H2O 



Capítulo 2 
______________________________________________________________________________________________________________ 

 26

Stefancich, 1997). Em um sistema ternário pode-se distinguir três possíveis situações de 

equilíbrio: 

1. Incompatibilidade: ocorre a segregação dos biopolímeros. São formadas duas fases 

aquosas, imiscíveis, e cada espécie de biopolímero fica em uma das duas fases. 

2. Coacervação: uma forte atração entre moléculas de dois tipos de biopolímeros geram 

formações complexas. São formadas duas fases aquosas distintas, sendo que uma das 

fases contém os dois polímeros e a outra fica sem polímeros. 

3. Miscibilidade: ocorre quando a interação entre dois biopolímeros diferentes é similar à 

interação entre hidrocolóides de uma mesma espécie, ou seja, há uma miscibilidade 

instantânea (Syrbe et al, 1998). 

 

5. Propriedades Reológicas de Alimentos 

A reologia é definida como a ciência da deformação e do escoamento, que estuda a 

forma como os materiais respondem a uma tensão ou deformação aplicada. A reologia é 

amplamente usada na indústria de alimentos e exemplos de sua aplicação são: projetos de 

tubulações e equipamentos, determinação da funcionalidade de ingredientes no 

desenvolvimento de produtos, controle de qualidade, estudos de vida de prateleira e 

determinação da textura do alimento correlacionando ensaios de análise sensorial com 

medidas reológicas (Steffe, 1996). 

Todo material apresenta uma resposta a uma força externa entre as duas 

extremidades do comportamento ideal: um sólido elástico e um líquido viscoso. O primeiro 

é descrito pela lei de Hooke, enquanto que um líquido viscoso ideal obedece à lei de 

Newton. No entanto, a maior parte dos alimentos comporta-se como um material 

viscoelástico, ou seja, dependendo da tensão aplicada e da escala de tempo, um corpo 
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sólido pode apresentar propriedades da fase líquida e um material líquido pode mostrar 

propriedades de um corpo sólido. O comportamento viscoelástico de alimentos vem sendo 

largamente estudado em reômetros que cisalham a amostra (força tangencial), enquanto que 

parâmetros reológicos em tração ou compressão (força normal) vem sendo cada vez mais 

utilizados na caracterização da textura de produtos alimentícios. Além disto, é possível a 

caracterização do produto a baixas ou altas deformações independentemente do tipo de 

força aplicada. 

5.1. Ensaios em compressão uniaxial 

Em ensaios de compressão uniaxial, uma determinada deformação (ε) é imposta e a 

resposta tensão normal (σ) é tomada em função do tempo. Esta deformação pode ser 

suficientemente elevada para levar à ruptura do material. No ponto de ruptura, pode-se 

determinar as propriedades que fornecem informações sobre as características do material e 

correlacioná-las com a textura do produto. A tensão (σH) e a deformação de Hencky (εH), 

definidas respectivamente pelas Equações 2 e 3, devem ser utilizadas em ensaios de ruptura 

com altos valores de deformação, porque consideram as modificações que o material passa 

durante o experimento: 

( ) ( )[ ]00H AHtHtF ⋅⋅=σ  (2) 

( )[ ]0H HtHln−=ε  (3) 

onde F(t) é a força [N], A0
 [m2] e H0 [m] são respectivamente a área e a altura iniciais da 

amostra e H(t) é a altura no tempo t. As propriedades mecânicas do gel são determinadas 

através da curva de tensão versus deformação de Hencky, sendo o ponto de ruptura o valor 

máximo desta curva. A parte inicial da curva é linear, sendo o módulo de elasticidade, E, 

igual ao coeficiente angular. 
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Outro ensaio em compressão interessante é o de relaxação de tensões, no qual o 

material é submetido repentinamente a uma dada deformação (ε), ao mesmo tempo em que 

a tensão necessária para mantê-la constante ao longo do tempo é determinada. Como 

resultado obtém-se a função relaxação (E(t) em fluxo extensional), que é calculada como a 

razão entre a tensão e a deformação em qualquer instante t, enquanto a deformação 

permanece constante. Os materiais viscoelásticos relaxam sua estrutura ao longo do tempo 

chegando a uma tensão de equilíbrio, cujo valor depende da estrutura molecular do 

material. Alguns sólidos possuem um intervalo de viscoelasticidade linear muito pequeno 

e/ou apresentam muita sinerese, dificultando a análise do comportamento reológico nesta 

região. Assim, estes ensaios também podem ser realizados fora do intervalo de 

viscoelasticidade linear, porém a resolução matemática é bastante complexa ou é realizada 

através de relações empíricas (Peleg, 1979). 

A relação empírica de Peleg (1979) é obtida a partir da normalização da curva de 

relaxação de tensões (Equação 4). 

 (4) 

 
em que k1 e k2 são constantes, τ é o tempo de relaxação e σ(t) é a tensão no tempo t. O 

parâmetro σ0 é o valor máximo de tensão medido no início do ensaio. 

O tempo de relaxação (τ0,75) para o momento em que στ=0,75σ0 é obtido pela 

relação abaixo (Equação 5): 

 (5) 
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Derivando-se a Equação 1 e resolvendo a equação diferencial para a solução de 

valor zero tem-se a tensão residual assintótica, SR, que equivale ao montante de tensão não 

relaxada ao final do ensaio (Equação 6): 

 (6) 

 

5.2. Ensaios em cisalhamento 

5.2.1. Propriedades reológicas a alta deformação 

Grande parte das caracterizações reológicas é realizada em escoamento em estado 

estacionário, já que convencionalmente, a viscosidade é vista como a propriedade mais 

importante do material. A viscosidade representa a medida da resistência ao escoamento 

quando uma tensão de cisalhamento é aplicada. Quando um fluido Newtoniano é submetido 

a um escoamento, a viscosidade (η) é a constante de proporcionalidade entre a tensão (σ) e 

a taxa de deformação (γ ) (Barnes et al., 1989), como apresentado na Equação 7. 

γησ ⋅=     (7) 

No entanto, em alimentos, diversos fluidos não seguem a lei de Newton, sendo 

então chamados de fluidos não-Newtonianos. A constante de proporcionalidade 

apresentada na Equação 7 passa a ser conhecida então como viscosidade aparente. No caso 

de fluidos não-Newtonianos a viscosidade é dependente da taxa de deformação, existindo 

diversos modelos reológicos para caracterizar tal fluido. Os tipos de curvas de escoamento 

obtidas pelos modelos mais simples e mais difundidos na literatura são apresentados na 

Figura 7. 

 

 

2

1
1

k
SR −=
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Figura 7. Curvas de escoamento para fluidos Newtonianos e não-Newtonianos. 

As soluções de proteínas geralmente apresentam comportamento newtoniano 

enquanto que grande parte dos polissacarídeos tem comportamento tipo pseudoplástico, 

especialmente em soluções concentradas. Quando um fluido é pseudoplástico a viscosidade 

diminui com o aumento da taxa de deformação devido à orientação das moléculas na 

direção do escoamento o que torna a resistência ao escoamento cada vez menor (Barnes et 

al., 1989). Fluidos que possuem algum tipo de estrutura, principalmente devido a formação 

de uma rede macromolecular podem mostrar regiões de viscosidade constante a baixas (ηo) 

e a altas (η∞) taxas de deformação (Figura 7). O aparecimento destas regiões está 

relacionado com as mudanças na estrutura do material em função da taxa de deformação 

aplicada. Outros fluidos com comportamento não-Newtoniano enquadram-se como 

dilatantes, plásticos de Bingham e Herschel–Bulkley, sendo que os dois últimos apresentam 

tensão inicial de escoamento. O comportamento físico de fluidos com tensão inicial de 

escoamento é usualmente explicado em termos de sua estrutura interna, a qual é capaz de 

η0 

η  
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impedir o movimento para valores de tensão de cisalhamento menores que um valor limite 

σo. Para σ maior que σo a estrutura interna colapsa, permitindo que haja escoamento. A 

estrutura interna pode recuperar-se quando σ passa a ser menor que σo (Barnes et al., 1989). 

Nos últimos anos, houve um grande desenvolvimento de reômetros a fim de obter-

se o comportamento reológico tanto a mais baixas quanto a mais altas tensões de 

cisalhamento. Com isto, alguns parâmetros de difícil determinação passaram a ser mais 

estudados, como o η0 e o η . Roberts et al. (2001) estudaram a expansão de modelos 

existentes a fim de que todo o espectro da curva de escoamento fosse modelado. 

 

5.2.2 Propriedades reológicas a baixa deformação 

A análise de um material viscoelástico é bastante simples quando a razão entre a 

tensão e a deformação, em qualquer instante ou freqüência, é independente da magnitude 

de tensão ou deformação aplicada, sendo apenas função do tempo. Nestas condições, o 

material encontra-se dentro do intervalo de viscoelasticidade linear, pois se trabalha com 

deformações muito pequenas e a estrutura molecular praticamente não é afetada (Barnes et 

al., 1989). Na caracterização da viscoelasticidade linear existem vários tipos de 

experimentos que determinam as relações entre tensão, deformação e tempo. Os mais 

importantes são os testes de fluência e recuperação (transiente), relaxação de tensões 

(transiente) e testes oscilatórios (dinâmicos).  

Os ensaios oscilatórios em cisalhamento são particularmente úteis para caracterizar 

a conformação macromolecular e interações intermoleculares em solução. Em um 

experimento dinâmico ou periódico, uma tensão ou deformação oscilatória senoidal, a uma 

freqüência ω, é aplicada ao material, sendo medidas a amplitude e a diferença de fase entre 
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a tensão e a deformação oscilatórias. Nesses ensaios, a deformação (γ) varia com o tempo 

de acordo com a Equação 8: 

t ωγγ sen0=  (8) 

onde γ0 é a amplitude máxima de deformação. A tensão correspondente (σ), definida na 

Equação 9, pode ser representada como a soma dos componentes que estão em fase e 90o 

fora de fase com a deformação. 

( )( ( ) )tGtG ωωωωγσ cossen0 ′′+′=  (9) 

onde G'(ω) e G''(ω) são, respectivamente, os módulos de armazenamento e de dissipação de 

energia. Em um sólido elástico perfeito toda a energia é estocada, ou seja, G'' é zero e a 

tensão e a deformação estão em fase. Entretanto, para um líquido perfeitamente viscoso, no 

qual toda energia é dissipada na forma de calor, G' é zero e a tensão e a deformação estão 

90o fora de fase. Portanto, G’ é uma propriedade relacionada a eventos moleculares de 

natureza elástica enquanto que G” refere-se a eventos moleculares de origem viscosa. 

Considerando o ângulo de fase (δ) entre a deformação e a tensão, a tensão correspondente à 

Equação 9, pode ser expressa da seguinte forma (Equação 10): 

( )δωσσ += tsen0  (10) 

onde σ0 é a amplitude máxima de tensão. As Equações 9 e 10 podem ser combinadas para 

obter-se os parâmetros reológicos G’ (Equação 11), G” (Equação 12) e tanδ (Equação 13): 

( ) ( ) δγσω cos00=′G  (11) 

( ) ( ) δγσω sen00=′′G  (12) 

( ) ( ) δωω tan=′′′ GG  (13) 
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Experimentos em reologia dinâmica são adequados para monitorar o processo de 

gelificação e definir a estrutura de um gel. Este método satisfaz várias condições: 1) não é 

destrutivo e não interfere na formação do gel; 2) o tempo envolvido nas medidas é 

relativamente pequeno e 3) os resultados são expressos em propriedades fundamentais. 

A descrição do processo de gelificação é entendida experimentalmente a partir de 

ensaios reológicos a baixas deformações e vem sendo realizada a partir de diferentes 

aproximações por diversos autores (Tobitani e Ross-Murphy, 1997; Clark et al., 2001). 

Uma controvérsia freqüentemente encontrada é com relação à definição de um critério 

reológico para a determinação do ponto de gel. Um dos critérios mais utilizados é o da 

igualdade dos módulos de armazenamento (G’) e de dissipação de energia (G”), porém 

outros critérios que vêm sendo adotados são: o momento em que o módulo de 

armazenamento começa a crescer rapidamente (Ikeda e Nishinari, 2001) ou em que a taxa 

de aumento deste módulo apresenta o primeiro decréscimo (Gosal e Ross-Murphy, 2000). 

Entretanto, um critério mais rigoroso formulado por Winter e Chambon (1986), no qual a 

razão G”/G’ independe da freqüência no ponto de gel, ainda é pouco aplicado em alimentos 

(Braga, 2002) por ser de difícil execução experimental (Tobitani e Ross-Murphy, 1997). 

Segundo este critério, o comportamento da relaxação de tensões de um sistema polimérico 

segue a lei da potência (Equação 14) no ponto de gel: 

nSttG −=)(  (14) 

onde S=G0λ0
n é a força do gel, que depende da flexibilidade das cadeias moleculares e das 

ligações (o módulo G0 e o menor tempo de relaxação λ0 são parâmetros característicos do 

material) e n é o expoente de relaxação, que possui valores entre 0 e 1. Os módulos 
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dinâmicos G’ e G” também podem ser deduzidos a partir da Equação 14 e correlacionados 

com o expoente de relaxação n (Equação 15): 

( )
)

2

n
cos()n1(S

tan

"G
)('G n π

−Γω=
δ

ω
=ω ,              0/1 0 >> ωλ  (15) 

na qual ω é a freqüência angular, Γ é a função gama de Euler, G' e G" são, respectivamente, 

os módulos de armazenamento e de dissipação e δ é o ângulo de fase. 

Assim, a gelificação coincide com o momento no qual a dependência das 

propriedades viscoelásticas com a freqüência segue uma relação do tipo lei da potência com 

o mesmo expoente n e tanδ possui o mesmo valor, independente da freqüência analisada 

(Equação 16). 

)
2

tan(tan
π

δ
n

=                    (16) 

A igualdade das curvas de tanδ pode ser obtida através de ensaios reológicos em 

função do tempo a diferentes freqüências ou de um ensaio de reologia de múltiplas 

freqüências (multi-wave), no qual uma tensão senoidal composta (Equação 17) é aplicada à 

amostra: 

( )
=

ωσ=σ
m

0i

ii tsen    (17) 

onde ω1 = ωf; ω2 = n2ωf; ω3 = n3ωf, sendo que o índice f refere-se à freqüência fundamental 

e i ao número de termos da somatória. 

A tensão aplicada é a soma da série de Fourier das tensões individuais, sendo que 

esta soma deve ser menor do que a amplitude crítica, σc, dada pelo intervalo de 

viscoelasticidade linear. A deformação a cada freqüência, e, portanto G' e G", são obtidos 

pela técnica conhecida como Espectroscopia Mecânica com Transformada de Fourier. 
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6. Difração de luz 

6.1. Ensaios reo-ópticos (Small angle light scattering– SALS) 

Há décadas sabe-se que durante o escoamento de um material as microestruturas 

dispersas neste são de alguma forma alteradas pelo cisalhamento. Como é grande a 

dificuldade de trabalhar-se com sistemas multifásicos, originalmente Taylor (1932) estudou 

a deformação de uma única gota em cisalhamento. Esse estudo mostrou que uma gota sob 

ação do cisalhamento foi extendida ao formato de um filamento até que esse quebrou-se em 

uma série de gotas de tamanhos iguais quando o cisalhamento foi interrompido. Um estudo 

teórico deste fenômeno foi realizado por Tomotika (1935), que demonstrou que um 

filamento líquido em uma matriz viscosa desintrega devido a ação da instabilidade de 

Rayleigh na interface. Tomotika (1935) também mostrou que a taxa de crescimento e o 

comprimento de onda da instabilidade são função apenas da razão de viscosidades entre as 

fases dispersa e contínua, da tensão interfacial e do raio inicial do filamento. Atualmente, 

os estudos conduzidos por Taylor (1932) e Tomotika (1935) vêm sendo utilizados para 

descrever as alterações morfológicas ocorridas na fase dispersa de sistemas biopoliméricos, 

bem como para quantificar sua tensão interfacial (van Puyvelde et al., 2002; Guido et al., 

2002). 

Grande parte dos estudos em soluções aquosas biopoliméricas são conduzidos 

através do cisalhamento de uma gota (Guido et al., 2002). Sistemas biopoliméricos 

multifásicos (por exemplo, emulsão água-água) têm sido investigados a partir do uso da 

técnica de “Small angle light scattering” (SALS) (van Puyvelde et al., 2002), a qual fornece 

informações sobre estruturas da ordem micrométrica. Desde a década de 90, esta técnica 

tem sido utilizada para o estudo de materiais poliméricos. Recentemente, alguns grupos de 
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pesquisa desenvolveram instrumentos a partir da combinação da técnica de SALS com um 

reômetro (Reo-SALS), tendo ainda em alguns casos um microscópio acoplado. Assim com 

um Reo-SALS é possível investigar, ao mesmo tempo, desde as propriedades reológicas do 

sistema, a tensão interfacial, o grau de anisotropia da estrutura deformada, o diâmetro 

médio da gota, os comportamentos de quebra e coalescência de gotas até a formação de 

estruturas complexas como micelas. O esquema de um Reo-SALS é mostrado na Figura 8. 

 

 

 

 

 

 

 

 

 

Figura 8. Desenho esquemático da técnica Reo-SALS. 

O instrumento Reo-SALS consiste de um reômetro modificado para passagem de 

um raio laser pela amostra. A geometria do reômetro é de quartzo e geralmente são 

utilizadas placas paralelas ou cilíndros concêntricos, sendo que a última aumenta em muito 

a complexidade do sistema pela necessidade do uso de lentes focalizadoras após a luz 

passar pela amostra. A luz é propagada pela amostra sendo, então, difratada e interceptada 

por uma tela feita de plástico semi-transparente com um papel preto no centro para absorver 

a luz transmitida no eixo principal (ângulo igual a 0). A imagem resultante é gravada por 
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uma câmera CCD localizada abaixo da tela de plástico e conectada a um computador. 

Assim, a intensidade de luz espalhada pode ser analisada em função do ângulo θ (entre a 

luz espalhada e o eixo principal). Em instrumentos com placas paralelas, a luz é propagada 

na direção da variação de velocidade (direção do “gap”), sendo que a estrutura é obtida no 

plano do escoamento (direção do cisalhamento) e neutro (direção do raio da geometria). 

Quando cilindros concêntricos são utilizados, a luz é propagada na direção neutra e a 

estrutura é observada no plano do escoamento e da variação de velocidade. 

A luz espalhada é analisada na faixa do ângulo θ entre 2o e 12o, o que significa uma 

faixa de valor absoluto do vetor q de espalhamento (vetor entre o ponto central e a borda da 

figura obtida, calculado em qualquer direção do plano e com sentido indicando para a borda 

da figura) entre 0,3 – 2 µm-1. O valor absoluto do vetor de espalhamento é definido na 

Equação 18: 

⋅=
2

sen
4 θ

λ

π
q    (18) 

onde λ é o comprimento de onda do laser e θ é o ângulo de espalhamento de luz. 

A Figura 9 mostra alguns exemplos de estrutura obtidos por SALS (Figura 9A) e o 

respectivo esquema microscópico (Figura 9B). Podem ser definidos cinco regimes de 

comportamento da fase dispersa com a aplicação de cisalhamento. O regime I (não 

apresentado) refere-se ao momento inicial da amostra em repouso e é similar ao regime II. 

No regime II, o perfil de espalhamento é circular, o que é típico de estruturas isotrópicas e 

neste regime o nível de cisalhamento é muito pequeno (valor dependente da amostra). No 

regime III, a luz espalhada assume uma forma similar a uma elipse com os tamanhos dos 

eixos sendo dependentes do cisalhamento empregado. A elipse apresenta-se com o eixo 

maior na direção perpendicular ao escoamento (Figura 9A), o que corresponde a uma fase 
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dispersa elongada na direção do escoamento (Figura 9B). No regime IV, o perfil de luz 

obtido apresenta-se como filamentos perpendiculares à direção do escoamento, sugerindo 

que a fase dispersa elongada (regime III) transformou-se em uma estrutura percolada 

orientada na direção do escoamento. Além disto, o tamanho lateral da fase elongada e o 

contraste entre as duas fases diminui com o aumento da taxa de deformação (Figura 9B, d). 

O regime V é caracterizado pela formação de uma fase / homogeneização do sistema 

induzida pelo alto cisalhamento. Neste caso, o perfil de SALS não apresenta nenhuma luz 

espalhada (Kume et al., 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 9. (A) Perfil de SALS e (B) esquema da microestrutura de sistemas poliméricos 

bifásicos sob cisalhamento. Os regimes II, III e IV são obtidos para taxa de deformação 

menor do que a crítica para mistura (Kume et al., 1995). 

(A) 

(B) 
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Abstract 

The aim of this work was to examine the physical properties of seven biopolymers (proteins 

and polysaccharides) aqueous solutions widely used in the food industry. The 

polysaccharides investigated were xanthan, LBG, gellan, κ-carrageenan and Na-alginate, 

while sodium caseinate and soy protein isolate (SPI) were the proteins source. The proteins 

solutions showed Newtonian behaviour for all concentrations studied, while the 

polysaccharides exhibited either Newtonian or non-Newtonian behaviour depending on its 

type and solution concentration. The biopolymers solutions showed different trends for 

density and apparent viscosity values depending on the biopolymer type (protein and 

polysaccharide) and of the biopolymer source. For a given concentration and shear rate, the 

increase of apparent viscosity and the reduction of density of the biopolymer solution 

followed the order: 1) proteins, 2) microbial polysaccharides (xanthan and gellan), 3) plant 

seeds polysaccharide (LBG) and 4) seaweeds polysaccharides (Na-alginate and κ-

carrageenan). The determined critical overlap concentration (C*) value was not observed 

for microbial polysaccharides, but increased in the following order for the others 

biopolymers studied: LBG<Na-alginate<κ-carrageenan<Na-caseinate<SPI.  

Key-words: proteins, polysaccharides, physical properties. 

 

1. Introduction 

Water-soluble high molecular weight polysaccharides or proteins are biopolymers 

that serve a variety of functions in food systems, such as enhancing viscosity, creating gel-

structures, formation of a film, control of crystallization, inhibition of syneresis, improving 

texture, encapsulation of flavors and lengthening the physical stability, etc. (Dickinson, 

2003). These functional ingredients are widely used in dairy products, canned foods, bakery 



Chapter 3 – 1st part 
______________________________________________________________________________________________________________ 

 46

products, salad dressings, beverages, sauces, soups and other processed foodstuffs to 

improve textural characteristics, flavour and shelf life. 

A variety of proteins used in food industry as ingredients can be obtained from 

animals or legume seeds. Soy proteins are the most important representative of legume 

proteins due to their high protein level and well-balanced amino-acid composition (Van 

Vliet et al., 2002). The soy protein fractions can be classified by their sedimentation 

constants, showing approximate Svedberg coefficients of 2S, 7S, 11S and 15S. The two 

major globulins in soybeans are β-conglycinin and glycinin, also called 7S and 11S, 

respectively. Milk is a colloidal emulsion of protein particles, with casein being the main 

protein (~80%). Four main types of casein, αS1-,αS2, β- and κ-casein, can be distinguished 

in milk and are present in a mass ratio of about 4:1:4:1.3. All casein in milk occurs in 

micelles, which are fairly large particles of colloidal size (Walstra and Jenness, 1984). 

However, the micellar structure of casein is destroyed during the manufacture of sodium 

caseinate (Kinsella, 1984). Na-caseinate is an ingredient widely used in a range of food 

formulations because of its nutritional value and functional properties. 

Many gums are extracted from plants, others from seaweeds or microbial 

fermentation. Locust bean gum (LBG) is a galactomannan extracted by grinding the 

endosperm portions of the seeds of the legume plant Ceretonia siliqua L. Galactomannans 

are neutral polysaccharides composed of linear main chains. Physico-chemical properties of 

galactomannans are strongly influenced by the galactose content (Morris, 1990) and the 

distribution of the galactose units along the main chain (Launay et al., 1986). LBG 

solutions are almost completely unaffected by pH or heat processing due to its neutral 

character (Glicksman, 1969).  
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The two most used seaweeds polysaccharides in the food industry are carrageenans 

and alginates. Carrageenans are a family of polymeric sulphated galactans extracted from 

various species of red seaweed and they are extensively used for their ability to form 

thermoreversible gels in water or aqueous salt solutions (Chaplin, 2005). Alginates are 

linear polysaccharides produced as a structural component in marine brown algae. The 

sequence of the alginate chain in terms of the sugar monomers β-D-mannuronate (M) and 

a-L-guluronate (G) influences the viscosity and also determines the ability of the molecule 

to form gels with divalent cations (Moe et al., 1995). 

Gellan gum is an anionic extracellular polysaccharide produced by fermentation of 

Sphingomonas elodea. It has been a subject of interest since its discovery in the 1980s 

(Kang et al., 1982). Gellan is well-known due to its gelling capacity at high concentrations 

or in the presence of cations. Different gel characteristics can be obtained by varying the 

degree of acylation, as well as the type and concentration of cations. Xanthan is also an 

anionic polysaccharide produced by the bacterium Xanthomonas campestris. In the 

majority of food applications, its primary function is as viscosity enhancer (Speers and 

Tung, 1986). The changes in composition, mainly the extent of acetylation and 

pyruvylation, affect properties of xanthan solutions (Sutherland, 1994). A wide range of 

different behaviours may be obtained for each biopolymer due to the variation of 

composition with the source or processing conditions.  

The rheological properties of fluid food should be carefully taken into account for 

designing and modeling purposes. Calculations in the processes involving fluid flows such 

as pump sizing, extraction or filtration requires the knowledge of large strain-rheological 

data (Marcotte et al., 2001). Polysaccharide solutions are generally non-Newtonian shear-
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thinning fluids as the apparent viscosity decreases with increasing shear rate. Several 

models have been used to characterize the flow behavior of gum solutions and among them 

power law model has been frequently used for the determination of rheological properties 

of the fluid food. The knowledge of the viscous properties of biopolymer solutions in the 

low shear rate Newtonian domain is of practical value for predicting their efficiency as 

thickeners in liquid foods or as stabilizers in dispersed systems. Such characteristics could 

be obtained from the relation between the Newtonian viscosity data and the biopolymer 

concentration in order to predict a diluted (C*) and semi-diluted (C**) critical 

concentration regions (Launay et al., 1997). 

The concentration of the biopolymer, and consequently the existence of 

entanglements is of particular importance on the rheological behaviour and other physical 

properties of the systems, as density. The aim of this work was to determine the rheological 

properties and density of seven biopolymers aqueous solutions of great application in the 

food industry. The polysaccharides investigated were xanthan, LBG, gellan, κ-carrageenan 

and Na-alginate, while sodium caseinate and soy protein isolate (SPI) were the proteins 

source.  

 

2. Material and methods 

2.1. Material 

The proteins used to prepare the model systems were casein (Sigma Chemical Co., 

USA) and soy protein isolate (SPI) obtained from defatted soy flour (Bunge Alimentos 

S.A., Brazil). The polysaccharides used were sodium (Na)-alginate, κ-carrageenan, and 

gellan obtained from CP Kelco (USA) and xanthan and LBG purchased from Sigma 

Chemical Co. (USA). The moisture contents (% w/w) of casein, SPI, xanthan, LBG, Na-
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alginate, κ-carrageenan, gellan were, respectively, 6.51 ± 0.10, 6.44 ± 0.07, 8.36 ± 0.23, 

5.44 ± 0.01, 5.75 ± 0.21, 7.84 ± 0.07 and 6.42 ± 0.12. 

The soy proteins isolation procedure followed the method described by Petruccelli and 

Añón (1995). Defatted soy flour was dispersed in distilled water (1:10 w/w) and the pH was 

adjusted to 8.0 with 2N NaOH. The dispersion was gently stirred for 2h at room 

temperature and then centrifuged at 10,000 x g for 30 min at 4ºC in a Sorvall RC5 Plus 

centrifuge (GSA-rotor, Dupont, UK). The supernatant was adjusted to pH 4.5 with 2N HCl 

and centrifuged at 5,000 x g (Sorvall GSA-rotor) for 15 min at 4ºC. The precipitate was 

then suspended in water and the pH adjusted to 8.0 with 2N NaOH, followed by freeze-

drying of the suspension. The protein (N x 6.25) and ash contents of the powder were, 

respectively, 91.25 ± 0.45 and 3.45 ± 0.04. 

2.2. Preparation of biopolymers stock solutions 

The Na-caseinate solution was prepared by dispersing casein powder in milli-Q 

water using magnetic stirring for 2 h at a maximum temperature of 50°C. The pH was 

constantly adjusted to 7.0 with 10M NaOH. The soy protein isolate (SPI) solution (milli-Q 

water) was prepared at room temperature by magnetic stirring until the complete powder 

hydration and the pH was adjusted to 7.0 with 1M HCl. The polysaccharide solutions were 

prepared by dispersing the powders in milli-Q water at room temperature by magnetic 

stirring, then heating in a water bath with a fixed temperature and time (Table 1). The 

prepared solutions were immediately cooled down to room temperature in an ice bath, and 

none of them gelified after this process. The insoluble particles of proteins and 

polysaccharides solutions were separated by centrifugation in a Sigma centrifuge 3K30 

(rotor no 33310 – Sigma Laborzentrifugen GmbH, Germany) at 60,000 x g for 60 minutes 
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at 25°C (Antonov et al., 2004), except for κ-carrageenan and gellan solutions that were 

already purified (without any insoluble particles). The pH of all solutions were adjusted to 

7.0. The concentration of proteins solutions varied in the range of 1-10% (w/w), while the 

range of polysaccharides concentrations was 0.1-4% (w/w). 

Table 1. Temperature and time used to prepare the polysaccharide solutions. 

Polysaccharide Temperature (°C) Time (min) 

Xanthan (Braga and Cunha, 2004) 25 60 

Na-Alginate (Capron et al., 2001) 70 30 

LBG (Schorsch et al., 1999) 80 30 

Gellan (Ikeda et al., 2004) 90 60 

κ-carrageenan (Hemar et al., 2002) 90 60 

 

2.3. Physical properties 

The density and the steady state rheological properties were obtained for each 

biopolymer solution at different concentrations at 25°C. Density data were obtained in 

triplicate in an oscillating tube densimeter DM38 (Anton Paar, Austria). 

The apparent viscosity (η) as a function of shear stress was determined in triplicate 

using a stress-controlled rheometer (MCR 300, Paar Physica, Austria). A double wall 

concentric cylinder was used and the external diameter of the rotating bob was 13.3 mm, 

while the internal diameter was 12.8 mm. The stationary cylinder had an internal diameter 

of 12.3 mm and an external diameter of 13.8 mm. The measurements were done at 25°C in 

duplicate. Flow curves were obtained by an up-down-up steps program using different 

shear stress range to each sample. This range was determined from a shear rate-control 

experiment, in which the maximum shear rate was 300 s-1. The last step (steady state flow) 
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was taken for further data analysis. Flow properties were described by the power-law fitting 

to rheological data (Equation 1).  

n
kγσ =  (1) 

where γ  is the shear rate (s-1); s is the shear stress (Pa); k is the consistency index (Pa.sn) 

and n is the flow behavior index. The latter allows to distinguish whether the solution 

behaves as a Newtonian (n = 1) or non-Newtonian liquid (n<1). 

The critical overlap concentration (C*) was determined by plotting specific 

viscosity (ηsp) as a function of concentration on logarithmic axes as described by Morris et 

al. (1981). The inflection point of the curve was taken as an indicative of C*. The specific 

viscosity was determined by the ratio of the Newtonian viscosities of the solution and 

solvent as described by Equation 2. 

1−=
solv

sp
η

η
η  (2) 

where ηsolv is the solvent viscosity, which is 0.001 Pa.s for water at 25 oC. 

 

3. Results and discussion 

3.1. Density  

The knowledge of the physical properties is important in order to characterize the 

biopolymer solution and to predict and gain information of the mixed solution behaviour. 

Antonov et al. (2004) and Scholten et al. (2002) have shown that the density difference 

between two coexisting phases of a protein-polysaccharide mixture give information about 

the interfacial tension of the mixture. The density of pure biopolymer solutions as a 

function of concentration is shown in Equations 3 (R2=0.999), 4 (R2=0.986) and 5 
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(R2=0.996). It was found three behaviours for the different kind of biopolymers, such that 

the density of all proteins could be represented by Equation 3 and the density of microbial 

polysaccharide followed the relation described in Equation 4, while the density of plant and 

seaweeds polysaccharides are described by Equation 5. The different slopes observed by 

comparing Equations 3-5 could be attributed to two possible factors working either 

separately or concomitantly: (i) the differences in the molecular weight; (ii) a different 

reduction of the solution volume with the increase of the concentration, as a result of the 

molecular structures at low concentration and molecular assemblies/network formed in 

concentrated solutions. Regarding the polysaccharides, the second factor seemed to 

influence more the concentration dependence of density, since carrageenan (Equation 5) 

and xanthan (Equation 4) have the two greater molecular weights and they showed different 

behaviour. From the slope of Equations 4 and 5 it can be supposed that microbial 

polysaccharides entrap less solvent than plant and seaweeds biopolymers at the studied 

concentrations. This is in agreement with the non-gelling ability of xanthan and also of 

gellan at concentrations less than 10 g/L, instead they show assemblies formation (Miyoshi 

et al., 1996). 

9963 +⋅= PRPR Cρ     , LgCPR /10010 <<  (3) 

9964 ,, +⋅= GXGX Cρ  , LgC X /201 <<  and LgCG /82 <<   (4) 

9965 ,,,, +⋅= LBGACLBGAC Cρ , LgCC /401 << , LgC A /301 <<  and LgCLBG /201 <<  (5) 

where ρ is the density, C is the concentration (g/L) and the subscripts PR, X, LBG, A, C 

and G correspond to, respectively, protein, xanthan, locust bean gum, alginate, κ-

carrageenan and gellan.  
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3.2. Rheological properties 

The flow curves, at 25°C, of the seven studied biopolymers are shown in Figure 1. 

The two proteins (Figure 1a) showed Newtonian behaviour for all concentrations studied 

(1-10%). At low concentration, the viscosities of both proteins solutions were similar, but 

for a 10% protein solution the Na-caseinate sample showed a 10 fold greater viscosity as 

compared to SPI sample. The polysaccharides showed either Newtonian or non-Newtonian 

behaviour depending on its type and solution concentration. Figures 1B-1C show that at 

low concentration, κ-carrageenan, Na-alginate and LBG behaved as Newtonian fluids. The 

transition to the non-Newtonian behaviour for κ-carrageenan (Figure 1b), Na-alginate 

(Figure 1c) and LBG (Figure 1d) occurred, respectively, at 2.5%, 1.5% and 0.5%. In 

contrast, gellan (Figure 1e) and xanthan (Figure 1f) showed non-Newtonian behaviour even 

for the lowest concentration studied, 0.2% and 0.1%, respectively. The apparent viscosities 

(η) of microbial polysaccharides (xanthan and gellan) were higher than those obtained for 

plant or seaweeds biopolymers at a given concentration and shear rate. The η values for κ-

carrageenan and Na-alginate, both seaweed biopolymers, were very similar for the same 

shear rates and concentration. LBG seemed to have an intermediate behaviour between 

seaweeds and microbial polysaccharides. For all samples the η values increased with 

increasing biopolymers concentration as expected. 

In non-Newtonian solutions the apparent viscosity decreased with increasing shear 

rate, which is typical of a shear thinning behavior. For those samples it was observed a 

Newtonian region in the low shear rate range before the shear thinning behavior. The power 

law model (Equation 1) was used to describe the rheological properties of those solutions. 

To evaluate the zero shear viscosity, η0, the initial slope of the shear stress–shear rate curve 
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was determined. The critical shear rate obtained from the intersection of the power-law and 

the constant viscosity region, η0, moved to lower values with the increase of concentration 

for each polysaccharide. Moreover, regarding the polysaccharide type the increase of the 

critical shear rate followed the order: microbial < plant < seaweeds. The different values of 

this critical point are associated with the formation and disruption of entanglements. For 

higher shear rates, disruption predominates over formation of new entanglements; 

molecules align in the direction of flow and the apparent viscosity decreases with 

increasing shear rate (Sittikijyothin et al., 2005). 
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Figure 1. Flow curves of proteins (Na-caseinate and SPI) and polysaccharides at different 

concentrations (wt%), at 25 oC. a) Na-caseinate (closed symbols) and SPI (open symbols): 

1% ( ), 5% ( ), 10% ( ); b) κ-carrageenan: 0.1% ( ), 0.5% ( ), 1% ( ), 2.5%( ), 

4% (×); c) Na-alginate: 0.1% ( ), 0.5% ( ), 1% ( ), 2%( ), 3% ( ); d) LBG: 0.1% 

( ), 0.5% ( ), 1% ( ); e) gellan: 0.2% ( ), 0.4% ( ), 0.6% ( ), 0.8% ( ), 1% ( ); f) 

xanthan: 0.1% ( ), 0.5% ( ), 1% ( ), 2%( ). 

Figure 2 shows that the concentration dependence of the flow behaviour index n 

followed an exponential decay for the different polysaccharides, except for κ-carrageenan 

that could not be evaluated due to few data in the shear-thinning region. Xanthan showed 

the lowest n values followed by gellan and LBG, which were very similar. Some authors 

(López et al. 2004, Martínez-Padilla et al. 2004) had previously reported similar n values 

for xanthan solutions. Xanthan and Na-alginate showed an initial steeper decrease of n 

followed by a plateau region with the increase of concentration. This indicate that the 

capacity of molecular organization under shear did not increased after a given 

polysaccharide concentration. It could be suggested that xanthan and Na-alginate formed an 

anisotropic ordered aggregates at higher concentrations. 
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Figure 2. Variation of the flow behavior index, n, as a function of polysaccharide 

concentration. Na-alginate ( ), gellan ( ), LBG ( ), xanthan ( ). 

Different solution regimes can be distinguished by plotting the specific viscosity 

(Equation 2) versus concentration on a log-log scale (Morris et al., 1981), as shown in 

Figure 3 for the different biopolymers studied here. Launay et al. (1997) have suggested 

that some polysaccharides show two critical concentrations: C*, the point at which reduced 

viscosity first departs from linearity, and C**, where a second departure occurs. These two 

points delimit three regions: dilute (C<C*), semi-dilute (C*<C<C**) and concentrated 

(C>C*) as follows: 

• In the dilute regime (C<C*): polymer coils have “infinite dilution” dimensions; 

• In the semi-dilute regime (C*<C<C**): polymer coils are in contact and progressively 

shrink as concentration increases; 

• In the concentrated regime (C>C**): polymer coils have reached their limiting size 

(unperturbed or q-dimensions). In this regime, polymer chains entangles more. 

Among the polysaccharides studied, the lower C* value was found for LBG, 

C*=0.25% (see below), followed by Na-alginate (Figure 3a), C*=0.7%, and κ-carrageenan 
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(Figure 3b), C*=0.9%. In the case of κ-carrageenan it was observed a second deviation of 

the curve from the linearity, in which C** was equal 1.8%. It was not possible to determine 

C* for gellan (Figure 3b) and xanthan (Figure 3c). However, Martínez-Padilla et al. (2004) 

reported a specific viscosity equal to 2 for 0.1% gellan, which indicates that gellan had one 

critical point between 0.1 and 0.2%. Launay et al. (1997) reported a C** value equal to 

0.1% for xanthan aqueous solutions, while Milas et al. (1990) observed other two regions, 

C*=0.0126 and C**=0.078%, for xanthan in water. Probably because of the helical chains 

of xanthan and gellan, there is a tendency to entangle at a very low concentration (Wang et 

al., 2001). This would not happen with the used κ-carrageenan, since it had low salt 

concentration showing helix formation at temperatures below 25 oC. 

Below C*, Na-alginate and κ-carrageenan showed the same concentration 

dependence of ηsp (C0.9), which resembled that expected for random coil polymers, C1.3 

(Morris et al., 1981). For LBG (Figure 3b), it was observed a discontinuity between 0.1% 

and 0.5%, but there was not sufficient data to quantify exactly the correct concentration. 

Thus, for low concentrations, it was plotted a power law dependence of viscosity on 

concentration with the exponent equal to 1.16 as found by Richardson et al. (1998) for 

LBG. The C* for LBG was then determined and a value equal to 0.25% was obtained, 

which was very close to that reported by Richardson et al. (1998) work. 

The concentrated regime (C>C**) was characterized by a power law dependence of 

viscosity on concentration. For typical polymers, the exponent is usually found to be in the 

range 3.3–5 (Launay et at., 1986). In the present case, the slopes found for Na-alginate 

(3.1), xanthan (3.7), LBG (4.2), gellan (4.2) and κ-carrageenan (4.9) were well within the 
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usual range. It has been claimed that slopes higher than 3.3 could be explained by the 

creation of “hyperentanglements” (Morris et al., 1981).  

Figure 3c shows that after 1% xanthan the specific viscosity of the solution deviates 

from the expected trend. Harding (1997) reported that for some polyanionic 

polysaccharides in a salt-free aqueous solution the conventional reduced viscosity versus 

concentration plot can depart from its positive slope. Moreover, the reduced viscosity can 

show a maximum value and then decrease with the increase in biopolymer concentration. 

For the proteins the concentrations regimes were different from those found for the 

polysaccharides. Only C* was observed, independent on the protein type. Na-caseinate 

showed a lower C*, equal 3%, as compared to the value obtained for SPI, 6.5%. This shows 

that SPI is more hydrophobic than caseinate as reported previously by Grinberg and 

Tolstoguzov (1997) and that it is more compacted and entangles less, although soy proteins 

have a higher molecular weight than that of the caseins. The slope of the power relations 

before and after C* were similar for both proteins. 
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Figure 3. Concentration dependence of specific viscosity ηsp for polysaccharides and 

proteins. a)Na-alginate ( ), κ-carrageenan ( ); b LBG ( ),gellan ( ); c) xanthan ( ); d) 

SPI ( ), Na-caseinate ( ). The long dashed line (b) represents the power law found by 

Richardson et al. (1981) for LBG. 

 

4. Conclusion 

The biopolymers solutions showed different trends for density, apparent viscosity 

and critical overlap concentration depending on the biopolymer type (protein and 

polysaccharide) and of the biopolymer source. The concentration dependences of density 

were the same for the two proteins studied. In addition, Na-caseinate showed a lower 

overlap concentration (C*) than SPI, which was attributed to the more hydrophobic 

character of SPI that tend to be more compacted. The proteins showed Newtonian 

behaviour for all concentrations studied, while the polysaccharides showed either 

Newtonian or non-Newtonian behaviour depending on its type and solution concentration. 

For a given concentration and shear rate, the increase of apparent viscosity and the 

reduction of density of the polysaccharide solution followed the order: 1) microbial 

polysaccharides (xanthan and gellan), 2) plant seeds polysaccharide (LBG) and 3) seaweeds 
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polysaccharides (Na-alginate and κ-carrageenan). The density trend was attributed to a 

lower capacity of microbial polysaccharides to entrap solvent than plant and seaweeds 

biopolymers. It was not possible to observe a C* for xanthan and gellan, while the increase 

of C* for the others polysaccharides followed the above order.  
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2nd PART: Rheological behaviour and microstructure of xanthan solutions: 

annealing temperature and sucrose effects 
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Abstract 

The rheology of annealed xanthan solutions (between 10 - 90ºC during 1h) added by 

sucrose was studied in oscillatory shear experiments. Xanthan solutions showed three 

different transitions passing through anisotropic, biphasic and isotropic regions. It was 

observed many birefringence aggregates by light microscope in the anisotropic and 

biphasic regions. The temperature of annealing affected the elasticity of the solution for all 

xanthan concentrations studied, but the duration of the annealing (heat-cooling scan or 1h at 

a fixed temperature) was important only for the highly anisotropic solution. The addition of 

sucrose affected the rheological properties over all frequency range studied but only for 

initially anisotropic or biphasic xanthan solutions. Sucrose probably played a role of 

promoting biopolymer intra-molecular aggregation for less concentrated solutions and by 

reducing the intermolecular junction zones in more concentrated solutions. 

Keywords: xanthan, sucrose, annealing temperature, isotropy / anisotropy 

 

1. Introduction 

Xanthan is a high-molecular-weight anionic polysaccharide produced from the 

fermentation broths of the bacterium Xanthomonas campestris. This polysaccharide is used 

in wide variety of applications and it is a good stabilizer for food products (Capron et al., 

1998). The structure of this polymer consists of a linear (1-4)-β-D glucose backbone with a 

charged trisaccharide side chain on every second glucose residue (Jansson et al., 1975). The 

secondary conformation of xanthan molecule is known to undergo a conformational 

transition (Tm) from helix to coil as the temperature is raised, which is also a function of 

ionic strength of the solution, the nature of the electrolyte and the pH (Paradossi et al., 

1982). In addition, Lee and Brant (2002) observed a second transition that was attributed to 
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an anisotropic-isotropic transition, which was dependent on solution temperature and 

polysaccharide concentration. 

Although xanthan is considered as a non-gelling hydrocolloid, some authors 

(Yoshida et al., 1998, Iseki et al., 2001) obtained hydrogels in solutions that were annealed 

at high temperature and subsequently cooled. It was suggested that the gelation phenomena 

takes place after the formation of stable junction zones during heat treatment. Extensive 

work has already been done to elucidate the temperature-induced transition of xanthan 

molecules. Studies on the native and renatured structure have been mainly conducted by 

using atomic force microscopy (AFM). The AFM sample preparation requires a dilute 

solution and a drying step that proved to be good to elucidate the coil-helix transition 

(melting transition). However, few works were done with systems in the concentrated 

regime (Lee and Brant, 2002, Capron et al., 1998, Lim et al., 1984).  

The effect of the addition of some co-solutes, such as NaCl, on xanthan solutions is 

known to strength the elastic characteristic of this polysaccharide (Lee and Brant, 2002). 

However, few works have studied the influence of low molecular weight sugars upon the 

properties of hydrocolloids solutions (Richardson et al., 1998), although sucrose is widely 

used in the food industry. Basaran et al. (1999) studied the diffusion of sucrose (10-40 wt 

%) in xanthan solutions showing that xanthan did not affect this property. However, the 

rheological properties at high frequencies of a mixture of xanthan and a high sugar content 

(74-78 wt %) solutions showed that the polysaccharide acted retarding the mobility of 

sucrose molecules causing them to behave as in glassy state (Saggin and Coupland, 2004). 

However, for our knowledge there is no work that focuses on the effect of sucrose 

molecules on the rheological behaviour of concentrated xanthan solutions. 
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The aim of this work was to understand the effect of annealing temperature and 

sucrose addition on the rheological properties of concentrated xanthan solutions. In 

addition, the morphologies of such solutions were observed under light and atomic force 

microscopes in order to relate them to the temperature induced rheological transitions. 

 

2. Materials and Methods 

2.1. Material 

Sucrose (Synth, Brazil) and xanthan gum, (Sigma-Aldrich Co., USA) were used to 

prepare the mixed systems. The xanthan powder showed moisture content of 8.36 ± 0.23% 

(wt% wet basis), an average molecular weight (gel permeation chromatography) of 1795.4 

kDa and the following cations content (atomic absorption spectroscopy): 2.6% Na+, 0.4% 

Ca2+ and 4.0% K+. 

2.2. Preparation of Solutions 

Xanthan solutions at different concentrations (Table 1) were prepared under 

mechanical stirring during 1 hour at different temperatures (10, 20, 50, 75, 80 and 90 ºC) 

and subsequently cooled to 10 ºC. An appropriate amount of sucrose (0, 7.5, 15% w/v) was 

gently mixed to xanthan solutions at 10 ºC. 

Table 1. Nomenclature used for xanthan solutions at different concentrations. 

Xanthan concentration (%) 0.05 0.1 0.5 1 3.5 

Sample nomenclature  X005 X01 X05 X1 X35 

 

2.3. Rheological Measurements 

Oscillatory shear measurements were done using a stress-controlled rheometer 

(Carri-Med CSL2500, TA Instruments, England). Stainless steel cone and plate geometry of 
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60 mm diameter was used and two types of experiments were performed. 1) Temperature 

sweeps were done at frequency of 0.1 Hz for solutions without sucrose and annealed at 

10ºC. The temperature was raised to 82 ºC at 1ºC/min and then lowered to 10ºC at the same 

rate. For the 0.05 and 0.1% xanthan concentrations, a frequency of 0.3 Hz and a rate of 3 

ºC/min were used to improve the measurement sensibility. 2) Frequency sweeps were 

carried out for all xanthan solutions and xanthan-sucrose mixtures, from 0.01 to 10 Hz at 

0.15 Pa and 10 ºC. The Lissajous figures at each temperature or frequency were plotted to 

ensure that G’ (storage modulus) and G” (loss modulus) were always measured within the 

linear viscoelastic regime. To prevent evaporation, samples were covered with a Newtonian 

oil. 

Three different regions were observed in the complex viscosity (η*) – temperature 

curve, being the transitions of the regions determined as following:  

1) First transition (Ta): occurred at the end of the initial constant value of η*, identified as 

anisotropic-biphasic temperature-induced transition; 

2) Second transition (Ti): at the sharp deflection of the slope of complex viscosity – 

temperature curve. This temperature characterizes the transition between the biphasic to 

fully isotropic region. 

3) Third transition (Tm): it was associated to the helix-coil (melting) transition. It was 

adopted a criterium in which the temperature was determined from the interception of 

the maximum slope of the curve with the second region with finite constant η* level 

(see Figure 1a). 

2.4. Differential interference contrast (DIC) microscopy 
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A Zeiss Axioplan microscope (Zeiss Ltd., D-Oberkochen) under DIC and polarized 

light modes was used to photograph the xanthan solutions at 100x. A drop of xanthan 

solution (0.1, 1 and 3.5%) was placed onto a clean glass slide, covered with glass cover-slip 

and sealed with nail polish to prevent evaporation.  

2.5. Atomic force microscopy (AFM) 

A piece of freshly cleaved mica was placed into a 0.05% xanthan solution (X005) 

and the polysaccharide was allowed to adsorb onto the mica. After 1min, the mica was 

removed and air dried at room temperature in small covered Petri dishes. Specimens were 

examined using an Autoprobe CPAFM from Thermomicroscopes (USA) operating in non-

contact mode. 

 
3. Results and Discussion 

3.1. Xanthan behaviour in water 

It is known that xanthan molecule undergoes a temperature transition from double 

helical form to a disordered form that is a function of ionic strength. The characteristic 

temperature Tm is near room temperature for salt-free aqueous xanthan at low polymer 

concentrations and increases to values well above 100°C in the presence of salt (Paradossi 

et al., 1982, Paoletti et al., 1983, Capron et al., 1997). Figures 1a, 2a and 3a show the 

rheological behaviour of xanthan solutions in a temperature range of 10-80 °C for different 

solution concentrations, such that Tm could be determined for a great range of polymer 

concentration. The rheological behaviour was related to solutions micrographs shown in 

Figures 1b, 2b, 3b and 3c. The X005 sample showed a linear dependence of η*(ω) on 

temperature over all range measured (Figure 1a), indicating that any temperature-induced 

transition took place at concentrations lower than 0.05%. Figures 1c, 1d and 1e show the 
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AFM micrographs of xanthan molecules present in X005 sample. It was observed flexible 

molecules at 25 oC (Figures 1c and 1d) as well as molecular aggregates (Figure 1e). Similar 

loop-like and flexible structures were previously observed by Capron et al., 1998 for native 

xanthan solutions. It was difficult to observe isolated xanthan molecules, being more 

common the visualization of aggregates, which were formed during the drying process. 

Thus, it was not possible to do a more accurate statistical quantitative analysis revealing the 

dimensions of the molecules.  

 

 

 

 

 

 

 

 

 

 

Figure 1. a) Temperature dependence of η*(ω) for X005 ( ) and X01 ( ) on heating 

(closed symbols) and cooling (open symbols). Dashed line represents the method used to 

determine Tm. b) DIC micrograph of the X01 sample at 25oC. Scale bar = 50 µm. c, d and 

e) AFM micrographs at 25 oC of native xanthan molecule diluted in water. 
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For X01 the η*(ω) value drops as the temperature increased approaching 

asymptotically a finite constant level. This solution did not emit any light when observed 

through polarized light (PL) microscopy indicating that it was fully isotropic. So, the only 

transition that could take place at such concentration is the helix-coil one (Tm). Helix 

xanthan solutions have a higher relative viscosity than the more flexible disordered form 

(Lee and Brant, 2002). For X01 the complex viscosity decreases from 10°C to 60°C 

showing that the helix-coil transition is a wide process over a range of 50°C (Figure 1a). 

The increase of temperature cause a continuously change of the ordered form of the 

molecule to a disordered form resulting in an intermediate conformation that consist of 

disordered regions held together by a segment of ordered chains (Bordi et al., 1996, Capron 

et al., 1997). From that behaviour the melting point was considered as a midpoint transition 

and determined to be 32 ºC. This value is in very good agreement with the value of 33 oC 

found by Jones et al. (1987) and 35 oC reported by Bordi et al. (1996) for a 0.1% xanthan 

solution. Figure 1b shows the DIC micrograph of X01 solution at 25 oC prior to the heating 

step. It could be observed few small aggregates (<12.5 µm) probably formed by the double 

helix molecules, being the solution quite homogeneous. 

Figure 2a shows the variation of η*(ω) with temperature for X05 and X1 samples, 

which were not anisotropic at 25°C as observed by a completely dark PL micrographs. For 

those samples it was possible to observe three temperature-induced transitions. Lee and 

Brant (2002) also reported three transitions for more concentrated samples, being the 

transition occurring at high temperature related to the well-known helix-coil transition. The 

first transition was referred as an anisotropic to biphasic transition (Ta), in which the 

solution had initially a lyotropic characteristic and became a dispersion of anisotropic phase 
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within an isotropic phase. The second was associated to the transition between the biphasic 

region and the fully isotropic region (Ti). All transition temperatures (Ta, Ti and Tm) 

increased with xanthan concentration, being the melting temperature calculated to be 52ºC 

and 68ºC for X05 and X1, respectively. The anisotropic transition (Ta) was associated with 

the end of the first flat part of the curve, as will be discussed later, being the values for X05 

and X1, respectively, 17ºC and 19ºC. The isotropic transition temperatures (Ti) were 33°C 

and 46°C, respectively, for X05 and X1. Figure 2b shows the DIC micrograph for X1 

solution at 25°C, being observed a higher amount of aggregates then those revealed in 

Figure 1b. However, most of the aggregates had the same size and some of them could 

reach up to 21 µm length.  

  
 

Figure 2. a) Temperature dependence of η*(ω) for X05 ( ) and X1 ( ) on heating (closed 

symbols) and cooling (open symbols). b) DIC micrograph of the X1 sample at 25oC. Scale 

bar = 50 µm. 

Figure 3 shows the variation of complex viscosity with the temperature for X35 as 

well as the corresponding DIC and PL micrographs at 25 oC. The X35 sample was 

anisotropic at 25°C even without the application of shear (Figure 3c). The PL micrograph 

showed birefringence as the light was transmitted through two crossed polarizer disks. This 

(b) 
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behaviour was checked by rotating one of the polar by 45°, but maintaining them crossed. It 

was observed a micrograph similar to that of Figure 3c but the black areas became white, 

while the white areas of Figure 3c became black. From that behaviour it could be 

established that the initial flat part of η* curve (Figure 3a) is referred to the anisotropic 

domain, being Ta for X35 equal 48°C. For that sample the isotropic transition (Ti) was 

determined to be 73°C. Lim et al. (1984) observed permanent birefringence in concentrated 

xanthan solutions (1 and 3%) under shear. However, in the present work the X1 sample did 

not show birefringence probably because of the different xanthan sources. 

 

  

Figure 3. a) Temperature dependence of η*(ω) for X35. b) DIC micrograph of the X35 

sample at 25oC. c) Polarized (PL) micrographs of the X35 sample at 25oC. Scale bars = 50 

µm. 

(c) (b) 
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Figure 3b shows the DIC micrograph for X35 sample, being observed that the 

aggregates had the same size of those verified in Figure 2b, although the concentration of 

aggregates increased. Comparing the three DIC micrographs (Figures 1b, 2b and 3b) it is 

possible to observe that the amount of aggregates is only a function of the polymer 

concentration. The optical birefringence was probably governed by the amount of those 

aggregates, resulting in an anisotropic solution (Figure 3c). In addition, it was observed that 

at a fixed polymer concentration the aggregate size reduced as the temperature increased 

and they recovered their original size after cooling back to room temperature (result not 

shown). Thus, it could be suggested that the solution domain was a function of the amount 

and size of the aggregates. 

The cooling curve showed a small thermal hysteresis for X01 and X005, which 

were initially fully isotropic. At 10°C, the complex viscosity had the same value of the 

initial solution (native). Thus, it could be supposed that the renatured form was the same of 

the native one or that the solution concentration was not high enough to promote a network 

formation after the heating step. For X05 and X1 the complex viscosity values were smaller 

at the cooling cycle than on heating cycle. Thus, the isotropic transition caused some 

irreversible rearrangements on xanthan molecules that produced a less elastic solution at 

10°C than the initial anisotropic sample. On cooling below Tm the reassembly of chains 

generates an architecture which differs from the original one and depends on whether the 

heat treatment was performed on dilute or concentrated solution (Smith et al, 1981). For 

X35, the transition to isotropic domain occurred near the final temperature (82°C), being 

the only sample where the final temperature of the sweep was lower than Tm. Thus, the 

molecular rearrangements occurred mainly in the biphasic domain and the new 

entanglements were probably formed with double helix molecules. This kind of 
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rearrangements (between helix molecules) revealed to be stronger than those that occurred 

from coil molecules. Capron et al. (1998) observed the same behaviour for a 2% xanthan 

solution. These authors verified from AFM micrographs that at high polymer concentration 

the double strands can form permanent associations with neighbouring molecules. 

However, dilute solutions showed mainly intramolecular associations instead of 

intermolecular organization. 

Braga and Cunha (2004) showed that xanthan solutions (0.1 to 1%) that were 

annealed at 20, 50 or 80°C and then cooled to 10°C presented different rheological 

behaviour. In the present work the same behaviour was also observed for X35 (Figure 4d), 

such that the G* curve was shifted to lower values as the annealing temperature increased. 

Bordi et al. (1996) did not observed any effect of the annealing performed at 50oC during 

1h of xanthan solutions (semi-diluted and concentrated regimes) on its conductomeric 

behaviour. Such differences between the results could be attributed to the different 

techniques used. Comparing the rheological results of Braga and Cunha (2004) for 0.5 and 

1% annealed xanthan solution with those of Figure 2a it can be seen a similar reduction of 

complex viscosity value at 10 oC between heating and cooling cycles. From such results it 

is possible to affirm that the less concentrated solutions have a renatured conformation 

different to the native one just by increasing the temperature and cooling back, such that the 

annealing during 1h did not affect the rheological properties. However, for X35 the η* of 

non-annealed solution increased almost 2-fold after the cooling cycle (Figure 3a), while the 

annealed solution (Figure 4d) had a η* value half of that found for native solution at 10°C. 

Thus, the annealing up to 80°C during 1h hour modifies the renatured conformation for the 

highly anisotropic xanthan solution (Figures 3c and 4d).  
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3.2. Xanthan behaviour in sucrose solutions 

Figure 4 shows the effect of sucrose on the rheological properties (at 10°C) of 

xanthan solutions annealed at different temperatures during 1h. For samples with low 

polymer concentration (X01) the addition of sucrose did not affect the rheological 

properties of the aqueous solution independent on the annealing temperature (Figure 4a). 

Similar behaviour was observed for X05 when the solutions were annealed at 50ºC or 

80ºC/1h (Figure 4b). However, as sucrose concentration increased up to 15% the elastic 

character of solutions annealed at 20ºC decreased by 15-20%. It is interesting to note that at 

20ºC xanthan solution was in the anisotropic region, at 50ºC the isotropic transition had 

already occurred and at 80ºC the molecule had a coil conformation (Figure 2a). 
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Figure 4. Temperature dependence of G*(ω) for different concentrations of the xanthan 

solutions at 10oC. The solutions were prepared at different annealing temperatures (AT) 

and added by 15% of sucrose (S). a) X01, b) X05, c) X1, d) X35. 

Figure 4c shows that for the X1 solution annealed at 20°C and 50°C the addition of 

sucrose led to a negative effect on complex modulus. Nevertheless, sucrose did not 

influence the rheological properties when solutions were annealed at 80°C, which 

corresponded to a coil conformation in a fully isotropic domain (Figure 2a). The 1% 

xanthan solutions annealed at 20°C and 50°C were so affected by sucrose that their 

rheological properties became similar of those of a solution annealed at 80°C. Figure 4d 

shows that for X35 the addition of sucrose decreased the rheological properties of solutions 

annealed in a very broad range of temperature (10-75°C) and then cooled to 10°C. 

However, at a higher annealing temperature (90°C), in which the solution was in isotropic 

domain, sucrose did not influenced G* at 10°C. From the above results it is possible to 

suggest that sucrose only affected the rheological properties of solutions that were annealed 

at temperatures in which the solution was in the anisotropic or biphasic domain. 

Table 2 shows the magnitude (%) of the negative effect of sucrose on G* at two 

different frequencies, 0.02 Hz and 1 Hz. The sucrose effect could be divided in four groups 

10

100

1000

0.01 0.1 1 10
ω (Hz)

G
* 

( ω
) 

 (
P

a
)

 S0%- AT10ºC

S15%-AT10ºC

 S0% -AT75ºC

S15%-AT75ºC

(d)

10

100

1000

0.01 0.1 1 10
ω (Hz)

G
* 

( ω
) 

 (
P

a
)

 S0% -AT90ºC

S15%-AT90ºC



Chapter 3 – 2nd part 
______________________________________________________________________________________________________________ 

 78

(Table 2), namely, 1) no sucrose effect as observed for X01 solutions and for xanthan 

solutions well within the isotropic domain; 2) a small sucrose effect (14-19%) was seen for 

X05 solution annealed at 20 oC; 3) an intermediate sucrose effect (21-27%) was observed 

for more concentrated xanthan solutions (X1 and X35) annealed at the biphasic/isotropic 

transition domain; 4) a high sucrose effect (24-35%) was checked for more concentrated 

xanthan solutions (X1 and X35) that were annealed in the anisotropic or biphasic domain. 

In general it was observed a higher sucrose effect on G* values obtained at lower 

frequencies, as the molecular structures has sufficient time to rearrange. Thus, the sucrose 

seems to affect the dissociation/formation of xanthan assemblies. Launay et al. (1997) and 

Garcia et al. (2000) observed that the Huggins coefficient found for xanthan in 10% sucrose 

aqueous solution were higher (>1) than those obtained in water. This means that 10% 

aqueous sucrose solution is a bad solvent for xanthan and the molecule can be in a more 

compacted form for the less concentrated systems, resulting in lower G* values. 

Table 2. Percentage of reduction on G* at 10 oC after 15% sucrose addition at 0.02 Hz and 

1 Hz for different annealed xanthan samples. 

Percentage of reduction on G* after 

15% sucrose addition Sample 
Solution domain at the annealing 

temperature 
at 0.02 Hz at 1 Hz 

X05-AT20 Anisotropic/biphasic transition 19 14 

X1-AT50 Biphasic/isotropic transition 27 22 

X35-AT75 Biphasic/isotropic transition 27 21 

X1-AT20 Anisotropic/biphasic transition 32 32 

X35-AT10 Anisotropic 35 24 

 
The mechanism that could be associated with the lowering of the elasticity for the 

more concentrated xanthan-sucrose solutions (X1 and X35) is the kosmotropic effect of 
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sucrose in aqueous systems. In more concentrated polysaccharide solutions the amount of 

free water is reduced due to the well-known water binding capacity of xanthan. Thus, a 

fixed amount of added sucrose (eg. 15%) seems to act effectively as a more concentrated 

sucrose solution. In the presence of excess sucrose, the amount of free water necessary to 

form junction zones is reduced (Nishinari et al., 1990). The junction zones formed by the 

dissociation of the assemblies during the annealing could break more easily, resulting in a 

lower elasticity of the xanthan-sucrose solution as compared with the one without sucrose.  

 

4. Conclusion 

Xanthan solutions showed three different transitions from anisotropic-biphasic 

domain, biphasic-isotropic region and helix-coil conformation that were dependent on 

temperature and solution concentration. The latter was reversible only for concentrations 

lower than 0.1%. It was observed many birefringence aggregates by light microscope in the 

anisotropic and biphasic regions. The size and amount of those aggregates reduced with the 

temperature increase and the concentration decrease, respectively. The temperature of 

annealing affected the elasticity of the solution for all xanthan concentrations, but the 

duration of the annealing (heat-cooling scan or 1h at a fixed temperature) was important 

only for the highly anisotropic solution. The addition of sucrose affected the rheological 

properties over all frequency range studied but only for initially anisotropic or biphasic 

xanthan solutions. Sucrose probably played a role of promoting biopolymer intra-molecular 

aggregation for less concentrated solutions and by reducing the intermolecular junction 

zones in more concentrated solutions. 
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Abstract 

The influence of the acidification rate and of final pH on the properties of sodium caseinate 

gels (2-6% w/v) prepared by acidification with glucono-δ-lactone (GDL) at 10ºC was 

investigated. The rheological properties of the systems were analysed under shear at 

incipient gelation and under uniaxial compression throughout the entire gelation process. 

The water holding capacity (WHC) of these gels and their amount of soluble protein in 

different media were also evaluated. Up to ~50% of the total κ-casein content was soluble 

in gels with higher amount of GDL, and this contributed to the high WHC observed under 

this condition. The acidification rate did not affect the rheological properties measured 

under shear, but the GDL/caseinate ratio used had a significant effect on the steady state 

properties. Fast acidification resulted in lower Young modulus and stress at fracture values, 

but higher residual stress values and relaxation times. In contrast, slow acidification 

produced a more interconnected network, probably because of the extensive reorganization 

or rearrangement within the segments near the isoelectric point. 

Keywords: acidification rate, gel, glucono-δ-lactone, sodium caseinate. 

 

1. Introduction 

Milk is a colloidal emulsion of protein particles, with casein being the main protein 

(~80%). Four main types of casein, αS1-,αS2-, β- and κ-casein, can be distinguished in milk 

and are present in a mass ratio of about 4:1:4:1.3. All casein in milk occurs in micelles, 

which are fairly large particles of colloidal size (Walstra & Jenness, 1984). However, the 

micellar structure of casein is destroyed during the manufacture of sodium caseinate 
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(Kinsella, 1984). Na-caseinate is an ingredient widely used in a range of food formulations 

because of its nutritional value and functional properties, such as its gelling capacity. 

A gel structure is formed during milk/caseinate acidification as a result of the 

dissociation and aggregation of casein fractions. The two acidification processes used in the 

dairy industry result in a slow reduction of pH that can require more than 15 h (Lucey, 

Tamehana, Singh & Munro, 1998). In the traditional process, milk is acidified by bacteria, 

which ferment lactose to lactic acid. A second process that has gained the attention of food 

industry is direct acidification by the addition of lactone, such as glucono-δ-lactone (GDL). 

GDL is an internal ester that spontaneously hydrolyzes to form gluconic acid and has first-

order reaction hydrolysis kinetics (de Kruif, 1997). The use of GDL avoids some of the 

difficulties associated with starter bacteria, such as variable activity and variation with the 

type of culture used. In addition, during gelation with GDL, the final pH of the system is a 

function of the amount of lactone added, whereas starter bacteria produce acid until they 

are inhibited by the low pH (Lucey et al., 1998). 

Rheology is a powerful tool for analyzing the different steps involved in milk 

clotting and in gel formation, and for assessing the texture of the final product. Mechanical 

properties may be related to sensory texture and have been determined by empirical or 

fundamental methods. The benefit of using fundamental rheological methods to evaluate 

the mechanical elements of texture is that they can be linked to theories that explain 

molecular mechanisms. These theories could describe the food and predict the influence of 

various elements of the food or process conditions on the final product. However, models to 

predict complex systems, such as dairy foods, need to be modified continuously in order to 

fit the food texture more closely. The use of simplified model systems is very important for 
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providing a scientific framework (Foegeding, Brown, Drake & Daubert, 2003). The most 

important factors controlling the rheological properties of acid-induced caseinate gels are 

the protein content, the pH, the ionic strength and the presence of other components (de 

Kruif, 1997; Chen, Dickinson & Edwards, 1999). 

The purpose of this work was to evaluate the effect of the acidification rate and of 

the final pH on sodium caseinate gelation and the gel properties at steady state. Different 

amounts of glucono-δ-lactone was added to Na-caseinate solutions and the rheological 

properties were measured under shear and compression during gelation. In addition, the 

effect of the amount of GDL on the steady state gel network properties was assessed by the 

water holding capacity (WHC), uniaxial compression, protein solubility and gel 

electrophoresis. 

 

2. Material and methods 

2.1. Material 

The ingredients used to prepare the model systems were casein and glucono-δ-

lactone (Sigma Chemical Co., St Louis, MO). The casein powder was characterized by 

atomic absorption (AA) spectroscopy in the Institute of Chemistry at UNICAMP, and the 

following composition of ions was obtained: Na=0.16%, Ca=0.14% e K=0.08%. The 

protein (N x 6.38), ash and moisture content of the casein powder were 88.2 ± 0.9%, 0.84 ± 

0.08% and 6.5 ± 0.1% (wet basis), respectively. 

2.2. Preparation of solutions and gels 

Sodium caseinate solutions were prepared by dissolving the casein powder in 

deionised water at a maximum temperature of 50oC, with magnetic stirring for 2 h. Sodium 
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hydroxide (10 M) was added to keep the pH at 6.7. Different amounts of GDL were added 

to the sodium caseinate solutions at 10ºC and the mixture then poured into the rheometer or 

into cylindrical plastic tubes (30 mm in diameter and 30 mm height) for gel formation. The 

rheological properties during gelation at 10ºC were obtained by oscillatory shear 

measurements up to the gel point, and by compression tests up to steady state (~3 days). In 

addition, the WHC, protein solubility, electrophoresis and compression tests were done 4 

days after the addition of GDL. The pH of the gels was monitored during the entire process. 

The caseinate concentrations used to prepare the gels ranged from 2 to 6%. The 

concentration of GDL used in each formulation depended on GDL/caseinate ratio, which 

was 0.14, 0.16 or 0.18. For rheological oscillatory measurements, a ratio of 0.36 was also 

used to obtain faster acidification. 

2.3. Gel properties measurements 

2.3.1. Rheological oscillatory measurements 

The oscillatory shear measurements were done using a stress-controlled rheometer 

(Carri-Med CSL2500, TA Instruments, England). Time sweep measurements were done 

during the gelation process at 10ºC, 0.1 Hz and 0.1 Pa. A double wall concentric cylinder 

was used and the external diameter of the rotating bob was 21.96 mm, while the internal 

diameter was 20.38 mm. The stationary cylinder had an internal diameter of 20 mm and an 

external diameter of 22.38 mm. The Lissajous figures at various times were plotted to 

ensure that the measurements of G’ (storage modulus) and G” (loss modulus) were always 

obtained within the linear viscoelastic region. 
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2.3.2. Mechanical properties and pH 

The decay in pH caused by GDL hydrolysis was measured using a Sentron 2001 pH 

meter (Sentron Inc., USA) equipped with an electrode calibrated at the reaction temperature 

over the pH range from 7.0 to 4.0. Uniaxial compression experiments were done using a 

TA-XT2i texture analyser (Stable Microsystems Ltd., England) equipped with an acrylic 

cylindrical plate (35 mm diameter). All measurements were done in triplicate at 10ºC and 

the fracture test was done throughout all the gelation process up to the steady state. The 

stress relaxation test was done only at steady state (4 days after the addition of GDL). 

For rupture tests, gels were compressed to 80% of their original height using a 

crosshead speed of 1 mm/s. The force and height values were transformed into Hencky 

stress (σH) – Hencky strain (εH) curves (Steffe, 1996). The rupture properties (stress and 

strain) were obtained from the maximum point of the stress-strain curve, while the Young 

modulus was the slope of the initial linear region of this curve. The stress relaxation 

measurements were done within the non-linear viscoelastic region because the gels showed 

some syneresis during the test. These measurements were done during 7 min with an initial 

crosshead speed of 7 mm/s. The Peleg empirical correlation (Peleg, 1979) was used to fit 

the experimental data, with the relaxation time and the residual stress being obtained as 

responses. 

2.3.3. Water holding capacity of gels 

A disc of gel (1.5-2.0 g), equilibrated at room temperature, was cut into two pieces. 

Each piece was placed on a disc of Whatmann # 1 filter paper (Maidstone, U.K.) and 

positioned in the middle position of a 50 mL centrifuge tube. Water loss was determined in 

triplicate by weighing the gel before and after centrifugation at 173 g for 10 min (Ikeda & 
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Foegeding, 1999) in a T62.1 centrifuge (VEB MLW Medizintechnik Leipzig, Germany). 

The WHC values were calculated using Equation 1:  

( )
( )
( )

−⋅=
ggelWater

glossWater
1100%WHC  (1) 

where Watergel is the amount of water in the gel before centrifugation. 

2.3.4. Protein solubility of gels 

Samples were dispersed either in distilled water (pH 8.0) or in a pH 8.0 buffer 

(0.086 M Tris, 0.09 M glycine and 4 mM Na2EDTA) (Lupano, Dumay & Cheftel 1992; 

Shimada & Cheftel, 1988). Samples (8.5 mg protein/mL) were homogenized at room 

temperature with an Ultra Turrax model T18 basic homogenizer (IKA, Germany) for 2 min 

and then centrifuged (F0850-rotor, AllegraTM 64R Beckman, USA) at 20,000 x g for 15 

min at 25°C. Protein solubility was determined in triplicate from supernatants and 

expressed as 100 x protein content in the supernatant / total protein content. Three 

independent extractions were done with each solvent. Protein concentrations were 

determined at 280 nm in a Beckmann Du-70 spectrophotometer (Beckmann, USA) using an 

apparent extinction coefficient ( mLmg

cm
E

/1
1 ) of 0.947 for proteins dispersed in water and 

0.942 for Tris buffer. The extinction coefficients were obtained by measuring the 

absorbance at 280 nm of a 1 mg/mL soy protein solution, the concentration of which was 

determined by the Kjeldhal method. 

2.3.5. Electrophoresis of proteins 

Urea polyacrylamide gel electrophoresis (PAGE) was done using the method of 

Andrews (1983) with minor modifications. Solutions with soluble proteins from gels 

(extracted in water and Tris buffer) were diluted with an equal volume of a pH 6.0 buffer [3 
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mL of stacking buffer (pH 6.7; 0.062 M Tris-HCl + 7 M urea); 2 mL of 87% glycerol; and 

0.1 mL of β-mercaptoethanol]. Samples (10 µL of a solution at 1.5 mg/mL) were loaded 

onto the gel. The gels were run at 200 V in a Mini Cell Protean electrophoresis unit (Biorad 

Laboratories, USA) and then stained with 0.25% (v/v) Comassie Brilliant Blue, in 

ethanol:acetic acid:water (45:10:45, v/v) followed by distaining with acetic 

acid:ethanol:water (5:10:85, v/v). 

2.4. Statistical analysis 

The results were evaluated by analysis of variance (ANOVA) using the software 

Statistica (5.0 version, USA), with the sources of variation being the caseinate 

concentration and the GDL/caseinate ratio. 

2.4.1. Mechanical properties and pH during gelation 

A full factorial design was used to evaluate the influence of caseinate and GDL on 

gelation. Table 1 shows the range of concentrations used in the 22 factorial design, as well 

as the abbreviations that will be used in the Results and Discussion sections. The most 

important effects associated with the response variables (pH, Young modulus and stress 

and strain at fracture) were evaluated. The mathematical models that predicted the gel 

properties as a function of the variables studied were considered valid if Fcalc/Ftab>1. 
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Table 1. Coded levels and real values (in parentheses) for the factorial design, as well as the 
abbreviations of the formulations used. C is the caseinate concentration, G is the 
GDL/caseinate ratio, p is the positive level (+1), n is the negative level (-1) and c is the 
intermediate level (0). 

Abbreviation of formulations C (wt/v) G (wt/wt) 

CnGn -1 (2) -1 (0.14) 

CnGp -1 (2) +1 (0.18) 

CpGn +1 (6) -1 (0.14) 

CpGp +1 (6) +1 (0.18) 

CcGc 0 (4) 0 (0.16) 

 
A first-order kinetics equation (Equation 2) was used to fit the mechanical 

properties and pH data as a function of time, with the reaction constant (k) values also 

being a response variable of the factorial design. The other response variable was the final 

pH (pHf). 

)exp( ktCXX ss −⋅+=  (2) 

where X is the measured property, Xss is its steady state value, k is the reaction constant, t is 

the time after GDL addition and C is a fitting parameter. 

2.4.2. Protein solubility and steady state properties 

The differences between the means of several treatments were assessed using the 

Tukey procedure (software Statistica, 5.0 version, USA), with p<0.05 for protein solubility 

and p<0.15 for the water holding capacity, stress relaxation properties and mechanical 

properties of the gels. 
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3. Results 

3.1. Gelation process 

The G’-G” crossover times (tg) of acidified Na-caseinate systems (Table 2) were 

considered here as the gel time since most studies of milk/caseinate gelation have adopted 

this criterion (Curcio, Gabriele, Giordano, Calabrò, de Cindio & Iorio, 2001) or similar 

ones (Lucey, van Vliet, Grolle, Geurts & Walstra, 1997; Horne, 2003). The gelation time 

varied from ~100 to ~710 min, depending on the system (Table 2). The variation 

coefficient of the gel time was about 15% for gels with GDL/caseinate ratio of 0.18 and 

0.36 and lower than 10%, when the ratio was 0.14 or 0.16. The pH at this point (pHg) was 

about 5.0–5.1 for all systems. A similar pH was reported by Lucey et al. (1997) for 

acidified Na-caseinate gels (pH ~5.1) and by Roefs and van Vliet (1990) for the gelation of 

milk (pH ~5.0). The gel time (tg) decreased by about 80-85% as the GDL/protein ratio 

increased from 0.14 to 0.36, for a given amount of caseinate. This marked variation can be 

attributed mainly to the first order degradation kinetics of GDL, in which gluconic acid 

(weak acid) is constantly produced and the back-reaction is negligible (de Kruif, 1997). 

Because the same amount of H+ is needed to attain the caseinate clotting in all samples 

(similar pHg), an increase in the GDL concentration reduced the gel time. A similar trend 

towards a reduction in gel time was observed as the protein concentration increased from 

2% to 6% and the acidogen/protein ratio was maintained constant. However, in this case, 

the decrease in gelation time was 20-35%, indicating that the gel time was also governed by 

the association/dissociation of casein particles, which depends on the change in the ionic 

and solubility characteristics of the casein molecules (de Kruif, 1997). 
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Table 2. The G’-G” crossover times (min) for formulations with different amounts of 
caseinate and different GDL/caseinate ratios. 

Caseinate (w/v) GDL/caseinate 

ratio (wt/wt)  2% 4% 6% 

0.14 711 671 573 

0.16 564 437 370 

0.18 424 363 339 

0.36 130 105 99 

 

The development of the gel network structure in Na-caseinate solutions acidified at 

different rates is shown in Figure 1. The gelation profile in Figure 1A was plotted against 

the reduced time, t/tg, shifting the data along the horizontal axis in order to eliminate the 

effect of the kinetics of GDL hydrolysis. At the gel point, the values of G* were similar 

(around 0.1 Pa) and thereafter all curves showed a monotonic increase in G* with time 

(Figure 1A). Reducing the caseinate concentration resulted in a slower initial rate of G* 

growth, such that at a given reduced time (t/tg = 1.075) G* was ~10 Pa, ~30 Pa and ~70 Pa 

for 2%, 4% and 6% caseinate gels, respectively. For each caseinate concentration, the plots 

fell on a single master curve. Figure 1B shows the changes in tan δ as a function of the 

reduced time for sodium caseinate solutions acidified with GDL. Two systems for each Na-

caseinate concentration (GDL/caseinate ratios of 0.14 and 0.18) were chosen to illustrate 

the tan δ profile since the other formulations showed the same pattern. The profile shows an 

initial fast reduction in the tan δ values (up to t/tg = 1.01), followed by a steady decrease to 

about 0.25 at the end of the oscillatory tests. 
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Figure 1. Rheological properties of acidified sodium-caseinate solutions as a function of the 
reduced time, t/tg. A) Complex modulus (G*) B) Loss tangent (tan δ). The oscillatory tests 
were done at 10ºC and 0.1 Hz for solutions with different GDL/caseinate ratios for each 
sodium-caseinate content (Cp = 6%, Cc = 4%, Cn = 2%). 

A 22 factorial experimental design was used to evaluate the effect of the caseinate 

concentration and of the amount of GDL (GDL/caseinate ratio) on the final pH and the rate 

of variation of the gel properties. Figure 2 shows the changes in pH as a function of time 

for sodium caseinate solutions acidified with GDL. GDL was rapidly hydrolysed to 

gluconic acid and resulted in a fast reduction of the pH during the first 1,000 min, after 

which the pH decreased steadily. 

 

 

 

 

 

 

Figure 2. Changes in the pH of sodium-caseinate solutions during acidification with 
different concentrations of GDL. Formulations: ( ) CnGn, ( ) CnGp, ( ) CcGc, ( ) 
CpGn, ( ) CpGp. 
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The mechanical properties under uniaxial compression during gel formation (Figure 

3) were analysed after the G’-G” crossover for each sample (Table 2 and Figure 3). At this 

time, all gels were self-supporting. The Young modulus values increased as a function of 

time (Figure 3A), in a manner similar to the profile for stress at fracture (results not shown), 

whereas the strain at fracture (Figure 3B) decreased with time. For each property, the 

profiles could be divided into three groups of formulations (Cn, Cc, Cp) that were 

dependent on the caseinate concentration. A positive correlation was observed between the 

caseinate content and gel properties at all times, thus indicating that these samples were 

more elastic, hard and firm. In addition, the higher the caseinate content the greater the 

changes in the Young modulus (Figure 3A) and stress at fracture values (data not shown) as 

a function of time. Such behaviour was not observed for strain at fracture (Figure 3B). The 

values of samples with a low GDL content (CnGn and CpGn) became greater than those 

with a high GDL/caseinate ratio during gelation, which indicated the formation of a harder 

and firmer structure. The properties of all gels still changed after periods >30 h (1,800 min). 

In addition, the Young modulus and stress at fracture reached the steady state faster as the 

GDL/caseinate ratio increased.  

 

 

 

 

 

 

 0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

Y
o

u
n

g
 m

o
d

u
lu

s
 (

k
P

a
)

Time (min)

(A) 

Cp 

Cc 

Cn 



Chapter 4– 1st part 
______________________________________________________________________________________________________________ 
 

 97

 

 

 

 

 

 

 

 

Figure 3. Mechanical properties of caseinate gels as a function of the acidification time. A) 
Young modulus, B) Strain at fracture. Gels were prepared with different amounts of protein 
and GDL. Formulations: ( ) CnGn, ( ) CnGp, ( ) CcGc, ( ) CpGn, ( ) CpGp. 

Only the caseinate concentration affected the rate of variation of the Young 

modulus, while both the caseinate concentration and the GDL/caseinate ratio had a positive 

effect on the rate by which the stress at fracture increases with ageing time (Figure 4). 

However, the rate of the variation of the strain at fracture with time was not significantly 

(p<0.1) affected by either variable. The rate of decrease in pH (k-pH) was dependent on the 

caseinate concentration and the GDL/caseinate ratio. Both variables had a positive 

influence on the rate of acidification, although the effect of GDL was more pronounced in 

systems with a low caseinate concentration (Figure 2). The codified mathematical model 

described in Equation 3 was obtained to predict the pHf
 as a function of the GDL/caseinate 

ratio.  

( )caseinateGDLpH f 135.042.4 −=  (3) 

This model could be used from levels –1 to +1 of the factorial design. The 

correlation coefficient (0.955) and the F-test (Fcalc/Ftab=1.93) showed that the model was 
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reliable (Fcalc/Ftab> 1). The final pH was affected only by the GDL/caseinate ratio, and 

values between 4.1 and 4.5 were obtained for all of the GDL/caseinate ratios used. 

 

 

 

 

 

 

 

Figure 4. Effect of caseinate concentration and GDL/caseinate ratio on the reaction constant 

(k) obtained by varying the pH, stress at fracture and Young modulus with time. 

 
3.2. Gel properties at steady state 

The steady state properties of acid gels as a function of the GDL/caseinate ratio used 

are shown in Figure 5. No stress relaxation behaviour was observed for 2% Na-caseinate 

gels because of the spontaneous syneresis within the measurement cell after the initial fast 

uniaxial compression required for this test. Consequently, the gel lost its mechanical 

contact with the cell wall and the measured force dropped to zero (Merino, Lau & 

Dickinson, 2004). The residual stress (Figure 5A) was positively influenced by the GDL 

concentration in high protein gels. These values ranged between 0.08-0.12, but were about 

0.04 for 4% protein gels, thus showing that the caseinate concentration affected this 

response. The GDL concentration had a positive effect on the relaxation time (Figure 5B) 

of 4% protein gels, with values ranging from 6 s to 10 s. 
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The mechanical properties of the gels (Figure 5C, 5D and 5E) were significantly 

influenced by the caseinate concentration. The stress at fracture (Figure 5C), Young 

modulus (Figure 5D) and the strain at fracture (Figure 5E) showed values of 500-5,000 Pa, 

1,500-6,500 Pa and 0.2-0.5, respectively; the strain at fracture was the property least 

affected by the caseinate concentration. However, the effect of the GDL/caseinate ratio 

used was dependent on the response and on the amount of protein. The strain at fracture 

(Figure 5E) was not influenced by the GDL concentration at all protein concentrations. An 

increase in the GDL concentration tended to reduce the Young modulus and the stress at 

fracture of caseinate gels. However, the mechanical property obtained at small deformation 

(Figure 5D) showed large deviations for high protein gels and resulted in statistically 

similar values for 2% and 6% caseinate concentrations. The WHC increased from 10% to 

50% as the caseinate concentration increased from 2% to 6%. An increase in the amount of 

GDL/g of protein also increased the capacity of 4% and 6% caseinate gels to retain water 

within the network. However, the effect of the amount of GDL was not as strong as that 

obtained with variations in the protein content since of the WHC values increased from 

25% to 30% for 4% protein gels and from ~40 to 50% for 6% protein gels (Figure 5F). 
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Figure 5. Steady state properties of sodium-caseinate gels acidified with different amounts 
of GDL. A) Residual stress, B) Relaxation time, C) Stress at fracture, D) Young modulus, 
E) Strain at fracture, F) Water holding capacity (WHC). Different letters indicate 
significant differences at p<0.15 (small letters: variation of the property with the 
GDL/caseinate ratio at a fixed caseinate concentration; capital letters: variation of the 
property with caseinate concentration at a fixed GDL/caseinate ratio). 
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The amount of soluble protein in different solutions and the electrophoretic profile 

can provide useful information on the network structure and on the composition and types 

of bonds involved. These measurements were done only for 4% and 6% Na-caseinate gels 

since these gels differed significantly differences in their steady state properties as a 

function of their content of GDL. Figure 6A shows the solubility of 4% and 6% Na-

caseinate gels in two extraction media (deionised water and Tris buffer, pH 8.0) and the 

effect of different GDL/caseinate ratios used in the solution acidification. The solubility of 

proteins in Tris buffer was about 100% and did not vary significantly with the caseinate 

concentration or GDL/protein ratio. In contrast, the solubility of proteins in water was low 

(2-6%) and depended significantly (p<0.05) on the amount of acidulant added at all 

caseinate concentrations. 

 

 

 

 

 

 

 

 

 

Figure 6. Protein solubility of 4% and 6% sodium-caseinate gels acidified with different 
amounts of GDL in water and Tris buffer. A) Total protein content (different letters 
indicate significant differences at p<0.05), B) Electrophoretic profiles of casein: Lane 1) 
Sodium-caseinate solution pH 6.7, Lanes 2 and 4) 4% caseinate and GDL/caseinate = 0.18, 
Lanes 3 and 5) 6% caseinate and GDL/caseinate = 0.18. Extraction solutions: Lanes 2 and 
3) deionised water, Lanes 4 and 5) Tris buffer, pH 8.0. 

The composition of the water-soluble and Tris-soluble protein fractions from 

different Na-caseinate gels was determined by urea-PAGE (Figure 6B). Electrophoresis 
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with urea was better than SDS-PAGE for separating the casein fractions because the 

distance between the bands was greater. Lane 1 (control) shows the typical electrophoretic 

profile of a sodium-caseinate solution (pH 6.7) with three major casein bands (κ, β and α-

casein). The low intensity κ-casein band was difficult to observe, while α and β-casein 

showed diffuse bands. This variation in intensity reflected the different proportion of each 

fraction present in the sodium-caseinate solution, and it was necessary to load concentrated 

samples in order to observe the κ-casein band. The electrophoretic profile of the water-

soluble protein (lanes 2 and 3) differed from that of the Tris-soluble protein (lanes 4 and 5) 

in that only the κ-casein band was seen, whereas lanes 4 and 5 showed all of the bands seen 

with the sodium caseinate solution (pH 6.7). These findings agreed with the absorbance 

results that indicated 100% protein solubility in Tris buffer. The distribution of the κ-casein 

band seen in lanes 2 and 3 was very broad. Pepper and Farrell (1982) and Farrell et al. 

(1996) reported that κ-casein in whole casein exists as disulfide-bonded polymers with a 

wide size distribution. The pattern of κ-casein band observed here probably resulted from 

the dissociation of this casein fraction into lower molecular weight aggregates because of 

the β-mercaptoethanol used in the electrophoresis buffer. 

 

4. Discussion 

In this study, different GDL/caseinate ratios were used in order to obtain fast and 

low rates of acidification and also different gel pH values at steady state. Figures 1 and 3 

indicate that the gelation profile was more sensitive to the caseinate concentration than to 

the GDL/caseinate ratio used. Two distinct stages were involved in the gelation process 

promoted by GDL (Chen & Dickinson, 2000): the initial setting up of the gel network 
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(Figure 1), and subsequent development through bond strengthening and/or local 

rearrangements (Figure 3).  

At the start of gelation ( tg), the increase in G* probably reflected the increased 

contact between the caseins mediated by particle fusion and interparticle rearrangements 

that can occur even before gelation (Mellema, Walstra, van Opheusden & van Vliet, 

2002b). The structural characteristics of the gels were very similar for the different 

GDL/caseinate ratios used at each caseinate concentration since all of the G* versus t/tg 

plots fell on a single master curve (Figure 1A). However, the presence of different amounts 

of protein affected the rate of gelation (as indicated by the slope of the G* curves) and the 

gel elasticity (as indicated by the values of G* at a given reduced time). During the initial 

stage of the acidification process, a substantial repulsive force remains between particles so 

that particles may collide many times before sticking (Martin & Adolf, 1991). Thus, the 

protein effect was observed probably because the contact between particles was favoured 

due to a great number of molecules. All gels had similar values of loss tangent as a function 

of reduced time (Figure 1B). This means that the ratio of the amount of energy dissipated 

by relaxation of the protein-protein bonds relative to the amount of elastic energy stored in 

small distortions of the protein-protein bonds was independent of the protein content and 

the GDL/caseinate ratio. The different effects of the amount of protein on the G* and tan δ 

values indicated that the dynamics of the casein strands were similar (similar tan δ), but that 

there was a greater number of strands (network connections) in more concentrated protein 

gels, such that the network elasticity was dependent on the amount of protein present. 

The rate of acidification of caseinate solutions may affect the dissociation of 

caseins, the rate of aggregation, and the time available for rearrangement of the aggregating 
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protein particles (Lucey et al., 1998), thereby resulting in different gel steady state 

properties. A high GDL/protein ratio reduces the gelation time, but also causes “over-

acidification” (pH<pI) (Chen et al., 1999; Dickinson & Merino, 2002). In the present work 

the final pH ranged from 4.1 to 4.5 for GDL/caseinate ratio of 0.18 to 0.14, respectively. 

Figure 6A shows that a small amount of proteins was not bound in the caseinate network, 

and corresponded to κ-casein (Figure 6B). Because of its higher isoelectric point (pI 5.3-

5.8), κ-casein would be more soluble at pH ~4.1-4.5 than α- or β- casein (pI 4.2 and 4.7 

respectively; Hudson, 1984). This soluble fraction was present in a small amount because 

of its low concentration (12.7%) in the original sodium-caseinate (Walstra & Jenness, 

1984). However, a dissociation of 46.7% of the total κ-casein was obtained in 6% caseinate 

gels acidified with the highest amount of GDL. This amount was determined by the 

absorbance analysis, considering that all soluble protein in water extract was κ-casein 

(lanes 2-3 of Figure 6B). Thus, this “over-acidification” and consequently different degrees 

of κ-casein dissociation and final gel pH is another point to be affecting the gel steady state 

properties. 

By analysing more than one property, it was easier to understand the overall 

structural characteristics of the gel. The significant (p<0.15) differences associated with the 

amount of GDL used were not observed for all caseinate concentrations partly because of 

variations in the accuracy of the different techniques employed (Figure 5). The mechanical 

properties were explored by investigating the change in stress as a function of the strain 

under uniaxial compression. A gradual increase in strain resulted in a proportional increase 

in sample stress (linear viscoelastic range) during the initial stages. In general, particulated 

gels have a much shorter linear region than cross-linked polymer gels, and this complicates 
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the measurement of Young modulus. Because of the high deviations associated with this 

analysis, a negative effect of GDL concentration on this property was observed only for 4% 

caseinate gels, while the stress at fracture showed the same tendency for 4% and 6% protein 

gel. The shorter ageing time near the isoelectric point of casein, when a high amount of 

GDL was used, could partly explain the lower mechanical properties of the gels (Figures 

5C and 5D). The longer ageing time seen near the isoelectric point when using low amounts 

of GDL may contribute to the continued fusion and rearrangement of casein particles and 

result in a highly interconnected network (Lucey et al., 1997). The weaker network could 

also be attributed to the lower pH (Figure 3), since beyond the isoelectric point (pI) the 

repulsive electrostatic forces overcome the net attractive forces and some κ-casein was 

dissociated of the network. However, those properties might have been more affected by 

the rate of acidification. 

The relaxation properties of the gels as a function of the amount of GDL showed a 

response that was opposite to that of the Young modulus and stress at fracture. Both the 

residual stress and relaxation time showed a general tendency to increase with increasing 

amounts of GDL, thus indicating that this network was more elastic. One possible 

explanation for this contradictory effect of the amount of GDL on the network properties 

could be because of the time scale of the applied deformation taking also into consideration 

the geometry of the network (straight or a curved strand) (Bremer, Bijsterbosch, Schrijvers, 

van Vliet & Walstra, 1990; Mellema, van Opheusden & van Vliet, 2002a). Gels with 

curved strands may have a higher residual stress than those with less curved strands 

because they can support greater deformations for long time or store a higher amount of 
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elastic energy. However, when applying a continuous deformation until the fracture some 

fragile points of the curved strands can be responsible for the low stress at fracture. 

The increase in the WHC of the gels with increasing amount of GDL was apparently 

more related to the amount of dissociated κ-casein than to the network dynamics. Slow 

gelation produced gels with a lower capacity to retain water. Although, faster acidification 

is often considered to lead to the formation of coarser networks (Lucey et al., 1998). The 

increased dissociation of κ-casein as the pH was lower than pI could also be contributing to 

the high WHC. The dissociated fraction increased by about 2-fold (from 14.1% to 29.5%) 

for gels with 4% protein and by about 3-fold (from 15.7% to 46.7%) for 6% caseinate gels 

as the GDL/caseinate ratio increased from 0.14 to 0.18. Thus, the positive effect of the 

amount of GDL on the WHC could also be explained by an increase in protein-water 

affinity. 

 

5. Conclusions 

The results of this study show that an adequate interpretation of the dynamics of the 

caseinate network requires the use of different techniques. In general, all of the properties 

associated with gelation were affected by the caseinate concentration, whereas the effect of 

the GDL/caseinate ratio depended on the time scale analysed. At the start of gelation, the 

GDL/caseinate ratio did not influence the rheological properties obtained under shear, but 

affected the rate of change in pH and in stress at fracture after the gel point. The steady 

state mechanical and relaxation properties seemed to be governed by the rate of 

acidification. The gel obtained with fast acidification was weaker at rupture but had a 

higher capacity to store elastic energy. In contrast, slow acidification yielded a hard, firm 
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network, probably because of extensive reorganization or rearrangement within the 

segments. The addition of high GDL/caseinate ratio produced gels with a greater capacity 

to retain water that was mainly attributed to the high degree of κ-casein dissociation at the 

lower pH. 
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CHAPTER 4. Protein-polysaccharide interactions in acidified gels 

containing Na-caseinate, SPI and/or xanthan 

2nd PART: Small- and large-strain rheological properties of GDL-induced soy 

protein isolate gels: effect of gelation temperature and xanthan addition.
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Abstract 

The linear, non-linear and fracture properties of GDL (glucono-δ-lactone)-induced tofu 

model systems were studied as a function of protein content, xanthan addition and 

acidification temperature. The decrease of the breaking stress or strain could be obtained by 

decreasing the SPI concentration in pure gels or by increasing the protein concentration in 

gels made with xanthan. Another option for the latter gels would be the increase of 

acidification temperature. It was proposed a new equation based on BST-equation (Blatz et 

al., Trans. Soc. Rheol. 18, (1974) 145) to obtain a greater number of mechanical properties 

of gels. Two more parameters could be predicted as compared to BST equation namely, 1) 

stress at fracture, 2) strain at fracture. In addition, the Young modulus (E) and the elasticity 

parameter (n) were also predicted. The behaviour of SPI gels under compression was well 

described by the proposed equation and the predicted mechanical properties did not showed 

significantly (p<0.05) differences from the experimental true stress and Hencky strain at 

fracture. In addition, the correlation between n and fracture parameters was very 

interesting, since it enables the manipulation of the breaking stress and strain of the gel.  

 

1. Introduction 

Typical food proteins of interest for the industry include those derived from milk, 

soy, fish and egg, which are used in a number of food products. Soy proteins are the most 

important representative of legume proteins due to their high protein level and well-

balanced amino-acid composition (Van Vliet et al., 2002). The most recognized soy food 

product in the world is tofu and the manufacturers are concerned with the yield, which is of 

economic importance, and texture that determines its acceptability (Abd Karim et al., 
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1999). Tofu is traditionally made by the addition of calcium sulphate or glucono-δ-lactone 

(GDL), which are used as coagulants (Abd Karim et al., 1999). 

The functional properties of soy protein isolates (SPI) reflect the composition and 

structure of their globulins, which correspond to 50 – 90% of the total proteins (Utsumi, et 

al., 1984). The soy protein fractions can be classified by their sedimentation constants, 

showing approximate Svedberg coefficients of 2S, 7S, 11S and 15S. The two major 

globulins in soybeans are β-conglycinin and glycinin, also called 7S and 11S, respectively. 

The glycinin subunits consist of two polypeptide components linked via disulfide bonds 

(AB), one with acidic (A) and the other with basic (B) isoelectric points (Staswick et al., 

1984). β-conglycinin is a trimeric glycoprotein consisting of at least six combinations of 

three subunits: α, α’ and β (Thanh & Shibasaki, 1977). 

In spite of the increasing demand for food products containing soy protein, very 

little is known about the interactions of soy proteins with other ingredients in foods. Some 

studies have been conducted on the addition of polysaccharides to tofu in order to enhance 

the gel properties. The addition of both, carrageenan (Abd Karim et al., 1999) and chitosan 

(Chang et al., 2003) increased the water holding capacity, although they had different 

effects on the mechanical properties of tofu made with GDL. However, the studies about 

the interactions between soy protein and xanthan were done only for heat-induced gels 

(Hua et al., 2003, Braga et al., 2006a) or foams (Carp et al., 1999). The application of heat-

induced gelation on globular proteins has limitations or is not always desired (Barbut and 

Foegeding, 1993). In contrast, cold gelation is easier to control, more efficient and an 

advantage might be that heat-labile or volatile compounds can be added (in the gelation 

step) without any losses or off-flavor occurring. However, this process is more complex 
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than the heat-induced gelation one and also results in new attractive textures (Weijers et al., 

2006).  

When a gel-type food is consumed, the perception of texture can be in part 

explained by its mechanical properties (Li et al., 1999). The mechanical properties have 

been determined by empirical or fundamental methods and the use of simplified model 

systems is very important for providing a scientific framework (Foegeding et al., 2003). 

Uniaxial compression measurements up to rupture can provide information about the 

mechanical properties at small and large deformations. The former gives the elasticity 

modulus (Young modulus) that is obtained from the slope of the initial linear region of the 

stress-strain curve. The latter is associated to the fracture properties, being the fracture 

stress and strain that reflect, respectively, hardness and deformability of gels.  

However, the non-linear region, between the linear region and fracture, is still 

relatively ill understood. Phenomenological models have been applied to large-strain 

behavior in attempts to quantify the extent of non-linearity, or deviation from ideal elastic 

behavior (Blatz et al., 1974; Peleg, 1984). The BST equation (Blatz et al., 1974) has been 

most recently applied to biopolymer gels to describe and quantify non-linear behavior, but 

the interpretation of the parameters estimated from this model have varied (Bot et al., 1996; 

Groot et al., 1996). Recently, Barrangou et al. (2006) suggested a new polynomial equation 

to describe the non-linear region of gels and reported a better data fit for agarose gels than 

the one obtained by using BST equation. However, both models describe the linear and 

non-linear behaviours only up to the fracture point, but the mechanical properties at fracture 

can not be predicted. 

The objectives of this work were (1) to develop a model that could predict a greater 

number of mechanical properties, including the linear, non-linear and fracture properties. 
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For that purpose, it was used the BST equation that describes two parameters (Young 

modulus and non-linear elasticity); (2) to evaluate the effects of xanthan addition and 

acidification temperature (reaction rate) on the mechanical properties of GDL-SPI gels. 

 
2. Material and methods 

2.1. Materials 

The ingredients used to prepare the model systems were xanthan and glucono-δ-

lactone (GDL) obtained from Sigma Chemical Co. (USA) and soy protein isolate (SPI) 

produced from defatted soy flour (Bunge Alimentos S.A., Brazil). The protein, ash and 

moisture content of the SPI and xanthan powder are shown in Table 1. 

Table 1. Characterization of the biopolymers used to prepare the model systems. 

Biopolymer Moisture [%] 

(wet basis) 

Protein [N% x 6.25] 

(wet basis) 

Ash [%] 

(wet basis) 

SPI 6.44 ± 0.07 91.25 ± 0.45 3.45 ± 0.04 

Xanthan 8.36 ± 0.23 4.13 ± 0.08 11.93± 0.29 

 

2.2. Preparation of soy protein isolate 

Defatted soy flour was dispersed in distilled water (1:10 w/w) and the pH adjusted 

to pH 8.0 with 2N NaOH. The dispersion was gently stirred for 2h at room temperature and 

then centrifuged at 10,000 x g for 30 min at 4ºC in a Sorvall RC5 Plus centrifuge (GSA-

rotor, Dupont, UK). The supernatant was adjusted to pH 4.5 with 2N HCl and centrifuged 

at 5,000 x g (Sorvall GSA-rotor) for 15 min at 4ºC. The precipitate was then suspended in 

water and the pH adjusted to 8.0 with 2N NaOH, followed by freeze-drying of the 

suspension (Petruccelli and Añón, 1995). 
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2.3. Preparation of biopolymer solutions and gels 

Soy protein isolate and xanthan stock solutions were prepared at ambient 

temperature by magnetic stirring and the pH was adjusted to 7.0. These stock solutions 

were mixed at different concentrations and temperatures (10 and 25 oC) as shown in Table 

2 before the addition of glucono-delta-lactone. The concentration of GDL used in each 

formulation depended on GDL/SPI ratio, which was defined experimentally (Results and 

Discussion section) in order to obtain a steady state final pH (pHf) equal to 4.5 (SPI 

isoelectric point). The levels of GDL/SPI ratio used in the screening to obtain the adequate 

GDL concentration to achieve the isoelectric point at steady state varied from 0.13-0.3 and 

it was according to previous works in the literature (Dybowska and Fujio, 1998, Roesch et 

al., 2004, Tay et al., 2005). 

Table 2. Concentrations of SPI and xanthan used to prepare the model systems. 

SPI (%) Xanthan (%) Acidification temperature (oC) 

4 0.0 25 

6 0.0 25 

8 0.0 25 

4 0.2 25 

6 0.2 25 

8 0.2 25 

4 0.2 10 

6 0.2 10 

8 0.2 10 

After GDL addition, the mixture was poured into the rheometer or into cylindrical 

plastic tubes (20 mm diameter and 20 mm height) for gel formation. The small deformation 

rheological properties during gelation at 25 ºC were obtained by oscillatory shear 
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measurements. In addition, the samples were kept at 25 ºC for 24 h or 10 oC for 3 days after 

GDL addition before performing the uniaxial compression measurements. 

2.4. Gel properties measurements 

2.4.1. pH 

The pH of the gels was monitored during the entire gelation process. The decay in 

pH caused by GDL hydrolysis was measured using a Sentron 2001 pH meter (Sentron Inc., 

USA) equipped with an electrode calibrated at the reaction temperature over the pH range 

from 7.0 to 4.0. 

2.4.2. Rheological oscillatory measurements 

The oscillatory shear measurements were done using a stress-controlled rheometer 

(Carri-Med CSL2500, TA Instruments, England). Time sweep measurements were done 

during the gelation process at 25 ºC, 0.1 Hz and 0.1 Pa. A double wall concentric cylinder 

was used for systems without polysaccharide. The external diameter of the rotating bob was 

21.96 mm, while the internal diameter was 20.38 mm. The stationary cylinder had an 

internal diameter of 20 mm and an external diameter of 22.38 mm. Cone and plate 

geometry (angle 2o, diameter 60 mm) was used for samples containing xanthan. The 

Lissajous figures at various times were plotted to ensure that the measurements of G’ 

(storage modulus) and G” (loss modulus) were always obtained within the linear 

viscoelastic region. 

2.4.3. Compression measurements 

Compression measurements were done using a TA-XT2i texture analyser (Stable 

Microsystems Ltd., England) equipped with an acrylic cylindrical plate (30 mm diameter). 

All measurements were done in triplicate at 25 ºC when the gels attained the steady state 
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properties. The gels were compressed to 80% of their original height using a crosshead 

speed of 1 mm/s.  

The force (F) and height (H) values were transformed into true stress (σ) and 

Hencky strain (εH), Equations 1 and 2 respectively, in order to account the increase in 

surface area during compression (Steffe, 1996). The rupture properties (stress and strain at 

fracture) were obtained from the maximum point of the stress-strain curve, while the Young 

modulus (Elinear) was the slope of the initial linear region of this curve.  
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where A0, H0 are the initial cross sectional area and initial height of the sample, respectively 

and t is the time during the compression test. 

The compression behaviour of each gel was modeled using Equation 3, which is a 

modification of BST equation (Blatz et al., 1974). 
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where λ is the stretch ratio, R0 is the initial gel radius, R(t) is the gel radius at each 

compression time, σ0 is the initial stress of the sample, E is the Young modulus that 

characterizes the linear elastic behaviour at small deformations, and n is regarded as an 

empirical measure of the non-linear elastic behaviour at large deformations. Non-linear 

least squares regression was used to fit the Equation 3 to stress (Equation 1) and stretch 
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(Equation 4) data, where E and n were fitting parameters. Equation 3 was used to fit the 

data up to just after the fracture point.  

The stress (Equation 5), stretch (Equation 6) and strain (Equation 7) at fracture can 

be obtained by the zero response of the derivative of Equation 3 (dσ/dλ). The strain at 

fracture was calculated from the stretch at fracture value considering an incompressible gel 

(constant volume). 

n

E
f 20 += σσ  (5) 

n

f 2=λ  (6) 

−=
2

1
ln

λ
ε f  (7) 

where the subscript f is referred to the fracture point. 

2.5. Statistical analysis 

Values reported for compression properties represent the mean of three replicates, 

and the error is reported as standard deviation. The results were evaluated by analysis of 

variance (ANOVA) using the software Statistica (5.0 version, USA), with the sources of 

variation being the SPI concentration and the gel type (xanthan addition and gelation 

temperature). The differences between the means of several treatments were assessed using 

the Tukey procedure with p<0.05. 

 
3. Results and discussions 

3.1. Determination of GDL/SPI ratio 

In previous works, the range of GDL/SPI ratio used to induce the gelation of SPI, 

tofu or SPI fractions varied from 0.1 (Tay et al., 2005) up to 0.3 (Dybowska and Fujio, 

1998). Thus, a screening of GDL/SPI ratio was carried out to determine a suitable 
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concentration of GDL required to attain the SPI isoelectric point (pH 4.5) at steady state. 

Figure 1 shows the steady state pH achieved in SPI (2-8%) solutions after the addition of 

different amount of GDL. During gelation with GDL, the final pH of the system was a 

function of the amount of lactone added (Lucey et al., 1998). GDL was rapidly hydrolysed 

to gluconic acid and resulted in a fast reduction of the pH during the first 200 min, after 

which the pH decreased steadily (results not shown). The optimum GDL/SPI ratio to reach 

the isoelectric point at steady state depended on the SPI concentration, being 0.17% for 2 

and 4% SPI solutions and 0.14% for samples containing 6 and 8% of SPI. It means that the 

suitable GDL concentration for 2, 4, 6 and 8% SPI solutions would be, respectively, 0.34, 

0.68, 0.84 and 1.12% (w/w). The increment in the GDL concentration as a function of SPI 

content took into account the buffering capacity of the soy proteins and keeps the 

acidification rates comparable to one another (Roesch et al., 2004). 
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Figure 1. Steady state final pH (pHf) of GDL-SPI gels at 25°C using different values of 
GDL/SPI ratio. SPI concentrations: 2% ( ), 4% ( ), 6% ( ), 8 ( ). 

3.2. Small-strain oscillatory rheological properties 

The development of the gel network structure at 25°C for GDL acidified SPI and 

SPI-xanthan solutions is shown in Figure 2. The G’-G” crossover times (tg) of systems was 
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the criterion considered to determine the gel time. The gelation profile in Figure 2 was 

plotted against the reduced time, t/tg, shifting the data along the horizontal axis in order to 

eliminate the effect of the kinetics of GDL hydrolysis. At the gel point, the values of G* 

were very low (up to 1.5 Pa) and thereafter all curves showed a monotonic increase in G* 

with time. The reduction in SPI concentration or the addition of xanthan resulted in a 

slower initial rate of G* growth, such that at a given reduced time (t/tg = 1.6) G* was ~30 

Pa, ~120 Pa and ~220 Pa for 8% SPI-xanthan, 4% SPI and 8% SPI gels, respectively.  

The gelation time for all concentrations studied of pure SPI systems was ~80 min 

and the pH at this point (pHg) was near 5.6 at 25°C (Figure 2). Similar pH was reported by 

Roesch et al. (2004) for acidified SPI/milk gels (pH ~5.8). However, these authors 

observed a decrease of the gel time with the increase of the percentage of SPI content in 

skim milk-SPI mixtures. Braga et al. (2006b) showed that the gel time of GDL-induced Na-

caseinate systems was dependent on the protein concentration. Thus, the variation of gel 

time found by Roesch et al. (2004) could be attributed to the presence of milk proteins. 

 
Figure 2. Complex modulus (G*) and pH evolution during the acidification of SPI solutions 
as a function of the reduced time (t/tg). Systems: 4% SPI- G* ( ), pH (dashed line); 8% 
SPI- G* ( ), pH (dotted line); 8% SPI + 0.2% xanthan- G* ( ), pH (dot/dashed line). 
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Figure 2 also shows that the addition of 0.2% xanthan in 8% SPI sample reduced the 

G’-G” crossover time to ~50 min, while the pHg was almost the same, 5.7. In the presence 

of milk proteins or xanthan the gel time and network strength of SPI systems changed, 

although the pHg was kept almost the same. SPI is highly unstable in the pH range from 5-

6, since most of the fractions isoelectric points occur within this range of pH, 4.8-5.4 for A-

11S, 4.9 for α-7S, 5.2 for α’-7S and 5.7-6.0 for β-7S (Hermansson, 1986). Thus, the 

decrease of the gel time with the addition of xanthan could be explained by an increase of 

SPI instabilities caused by the screening of the excluded volume effect when another 

biopolymer is also present. On the other hand, the decrease of the network strength at the 

beginning of gelation could be related to SPI-xanthan specific interactions. Figure 2 shows 

that from the pH 5.7 (gel point and isoelectric point of β-7S) to 5.4 (isoelectric point of A-

11S) the network strength is higher for 8%SPI gel than for 8%SPI-xanthan gel. Mohamad 

Ramlan et al., (2004) observed that the α-7S and β-7S subunits contribute to the increase of 

gel hardness relative to the complete 7S protein. In addition, Braga et al. (2006a) reported 

that xanthan preferentially interacts with the β-7S fraction of SPI in acid heat-induced gels. 

These indicate that the lower strength observed for SPI-xanthan gel could be attributed to a 

linkage between the β-7S with xanthan such that this fraction was not corroborating to the 

network strength. 

3.3. Compression rheological properties 

The difference between the model described in Equation 3 and BST equation is the 

addition of an initial stress parameter (σ0) and a change on the first power exponent from n 

to –n. The insert of the initial stress parameter was necessary because the data aquired did 

not started from zero, as previously observed for agarose gels (Barrangou et al., 2006). The 
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change in the exponent signal modified the behaviour of the stress-stretch curve enabling 

the prediction of two more parameters as compared to BST equation, namely, 1) stress at 

fracture and 2) strain at fracture. These two parameters could be obtained by making the 

first derivative of stress in relation to stretch equal to zero. In addition, the present equation 

also predicts the two parameters previously obtained from BST equation, namely, 1) Young 

modulus, E and 2) elasticity parameter in the non-linear region, n. The schematic 

representation of Equation 3 is shown in Figure 3 in order to discuss the meaning of the 

parameter E and the exponent n. 

 

Figure 3. Schematic representation of Equation 3 for different values of n, n>0. The dashed 
line represents the ideal elastic behaviour obtained for very low n values (n~0). The solid 
lines represent the behaviour for higher n values (n>0, n>>0). 

The BST equation was originally proposed to provide a good fit to data for 

elastomers obtained in various deformation fields up to the point of rupture (Blatz et al., 

1974). The estimated parameter E (or 3G in shear) is usually interpreted as the elasticity 

modulus in the linear region and it is obtained from the initial slope of the stress/strain 

curve. The same meaning can be used for the model proposed here. As mentioned above, 

the negative signal in the first exponent of Equation 3 resulted in the observation of a 
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maximum in the stress-stretch curve, which can be physically related to the fracture point 

of the gel under uniaxial compression. Figure 3 shows an inverse correlation between 

positive n values and the fracture stress and strain values. The value of n is also associated 

with the variation of the slope of the curve before the fracture point. This rate of slope 

change (n) can be regarded as a measure of deviation from ideal Hookean behaviour. When 

the material is deformed a strain-weakening phenomenon can arise resulting in an increase 

of the stress with the deformation slower than in the ideal case. Figure 3 shows that the 

strain-weakening effect become more pronounced as n values increase from n 0 to n>>0. 

This means that a more fragile gel will also present a shorter linear interval and a high n 

value  

An example of data modelling for SPI systems at 25°C is shown in Figure 4 and 

Equation 3 provided a good fit to the raw data. Equation 3 could describe well the data 

from the beginning up to just after the maximum of the stress-stretch curve, beyond that the 

model deviates from the experimental data. The gel with lowest SPI concentration had the 

poorest fit, which was a result of the difficulties associated with the experimental 

compression of a very fragile gel resulting in a high dispersion of the data. The model also 

showed a good fit to experimental data of SPI-xanthan gels made at 10 oC, with exception 

for the sample containing 4% SPI. However, the latter system and those of SPI-xanthan 

made at 25 oC could be fitted up to the fracture point, as the previous models described in 

the literature (Blatz et al., 1974, Barrangou et al., 2006). 
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Figure 4. Stress-stretch profile of GDL-SPI gels at 25 oC. Systems: 4% SPI ( ), 6% SPI 
( ), 8% SPI ( ). The lines represent fits according to the model of Equation 3. 

Figure 5 shows the effect of SPI concentration on the non-linear elastic parameter n. 

A gradual decrease of n with the increase of protein content was observed for the GDL-SPI 

gels. In contrast, an increase of this parameter was found for systems containing xanthan, 

independent of the gelation temperature. On gelation at lower temperature, the curve of the 

dependence of n on SPI concentration shifts to a lower n level. The original work of Blatz 

et al. (1974) suggested that the parameter n is a material constant and is therefore 

independent of concentration. However, it was found here that n changed with the protein 

concentration for SPI and SPI-xanthan gels that. Bot et al. (1996) and Barrangou et al. 

(2006) also reported a dependence of n on gel concentration when studying, respectively, 

gelatin and agarose gels. 

The specific effects of xanthan addition and acidification temperature on the 

dependence of SPI concentration (C) on n were evaluated. The knowledge of the way that a 

large-deformation parameter depends on protein concentration is of particular importance 

for new products development. The dependence of n on SPI concentration was estimated by 



Chapter 4– 2nd part 
______________________________________________________________________________________________________________ 

 127

fitting a first order exponential equation to data using non-linear least squares regression. 

The following exponential equations were obtained for the SPI gels (Equation 7), SPI-

xanthan gels at 25°C (Equation 8) and SPI-xanthan gels at 10°C (Equation 9): 

Cen 16.04.882.16 −⋅+−=  (7) 

Cen 31.0454.14 −⋅−=  (8) 

Cen 76.07.1284.6 −⋅+=  (9) 
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Figure 5. Variation of n as a function of SPI concentration for GDL-induced gels: SPI at 25 
oC ( ), SPI + 0.2% xanthan at 25 oC ( ), SPI + 0.2% xanthan at 10 oC ( ). The solid 
lines represent the exponential fit to n values. 

The velocity of variation of n with the SPI concentration was greater for gels with 

xanthan as compared with those without the polysaccharide. As mentioned before, the 

former gels showed exponential growth n dependence, while the latter systems showed 

exponential decrease. This approach revealed that the mechanism for strain-weakening is 

not the same for SPI and SPI-xanthan gels. The former group of gels will probably show 

strain-hardening at very high protein content. However, the protein-polysaccharide 

interactions in SPI-xanthan gels could not lead to the observation of strain-hardening 

phenomenon. Regarding the gelation temperature, the faster n variation was found for the 
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lowest gelation temperature. This indicates that for the latter systems the n value attained 

faster the steady state, such that beyond ~12% SPI the gels would show similar large-

deformation behaviour. The change of the gelation temperature did not affect very much 

the strain-weakening mechanism found out for gels containing xanthan. 

In order to check if the model from Equation 3 gives reliable parameters, the Young 

modulus obtained from Equation 3 (Emodel) was compared to those obtained from the linear 

regression (Elinear) of the initial part of the stress-strain curve (Figure 6). There was no 

significant difference at p<0.05 between Emodel and Elinear except for the gels containing 4% 

SPI (Figure 6A) and 4% SPI-xanthan 0.2% acidified at 10 oC. Previous works on gelatine 

and agarose gels (Barrangou et al., 2006) showed, respectively, a higher and lower value of 

the estimated modulus as compared to the modulus obtained from the linear fit.  

 

Figure 6. Variation of Young modulus (E) as a function of SPI concentration for GDL-
induced gels: SPI at 25 °C (a), SPI + 0.2% xanthan at 25 °C (b), SPI + 0.2% xanthan at 10 
°C (c). Different letters indicate significant differences at p<0.05 (small letters: variation of 
Emodel with SPI concentration for each type of GDL-gel; capital letters: comparisson 
between Emodel and Elinear for each concentration and GDL-gel type). 

The model also showed a good prediction for stress at fracture as compared with the 

values from the true stress-Hencky strain curve (Figure 7). All samples were not 

statistically significantly different p<0.05, except the gel with 4% SPI and xanthan at 10°C. 
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As the value of Emodel was in good agreement with Elinear, the poor prediction of stress at 

fracture was attributed to the n value (Equation 5). 

 

Figure 7. Variation of stress at fracture as a function of SPI concentration for GDL-induced 
gels: SPI at 25°C (a), SPI + 0.2% xanthan at 25°C (b), SPI + 0.2% xanthan at 10°C (c). 
Different letters and numbers indicate significant differences at p<0.05 (letters: variation of 
the property with SPI concentration for each type of GDL-gel; numbers: variation of the 
property with type of GDL-gel for each SPI concentration). * Value divided by 6. 

 

The prediction of the strain at fracture values (Figure 8) was very good for systems 

that the data was fitted beyond the fracture point. However, a poor correlation between the 

model prediction and experimental strain at fracture was observed when the data was fitted 

up to the fracture point (4% SPI of Figure 8c). It is interesting to note that the tendency 

shown by the strain at fracture predicted from the model for gels with xanthan was the same 

for both gelation temperatures (Figures 8b and 8c). However, it was not observed a clear 

fracture point for SPI-xanthan gels acidified at 25 oC, such that only the predicted values 

were shown in Figure 8b. Those gels showed a sponge-like visual appearance and at large 

deformation and it was observed a stress flat part followed by a continuous non-linear 

increase of the stress. All the above comparisons showed that the present model could be 

used as a good predictor for all compression parameters. 
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Figure 3 and Equations 5 and 6 show that the non-linear elastic parameter affects 

not only the curve appearance, but also the stress and strain at fracture values. This 

correlation between n and fracture parameters is very interesting, since it enables the 

manipulation of the breaking stress and strain of the gel: for example by enhancing the 

elasticity parameter n it would be possible to decrease the breaking stress or strain of a gel 

in a very elegant way. This could be obtained by decreasing the SPI concentration in pure 

gels or by increasing the protein concentration in gels made with xanthan. Another option 

for the latter gels would be the increase of gelation temperature. 

 

Figure 8. Variation of Hencky strain at fracture as a function of SPI concentration for GDL-
induced gels: SPI at 25°C (a), SPI + 0.2% xanthan at 25°C (b), SPI + 0.2% xanthan at 10°C 
(c). Different letters and numbers indicate significant differences at p<0.05 (letters: 
variation of the property with SPI concentration for each type of GDL-gel; numbers: 
variation of the property with type of GDL-gel for each SPI concentration). * Value divided 
by 15. 

3.4. Interactions between SPI and xanthan 

The effects of SPI concentration, xanthan addition and gelation temperature on gel 

properties are shown in Figure 6 for Young modulus, Figure 7 for stress at fracture and 

Figure 8 for strain at fracture. The addition of 0.2% xanthan reduced the visual syneresis of 

SPI gels and increased significantly the stress at fracture (p<0.05), which was more 

pronounced for systems containing low amount of SPI (Figure 7). However, SPI and SPI-
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xanthan gels with 8% of protein showed statistically similar properties. Carrageenan at 

relatively low concentration (0.2%) has shown to enhance the water holding capacity of a 

10% soybean protein gel without affecting its hardness (Abd Karim et al., 1999). These two 

anionic polysaccharides seem to have similar effects on the gel hardness of high protein 

content gels. The addition of xanthan resulted in more deformable gels as compared to pure 

SPI samples (Figure 8), but the Young modulus was only affected (decreased) for the 6% 

SPI gel (Figure 6). The lower acidification temperature increased significantly the stress at 

fracture of SPI-xanthan gels (Figures 7b and 7c), but did not affected the Young modulus 

(p<0.05). As 6 and 8% SPI-xanthan gels at 25°C showed a sponge-like visual appearance 

the strain at fracture behaviour could not be compared to those of the gels prepared at 10°C.  

The increase of the protein content in SPI pure gels resulted in harder, firmer and 

more deformable gels.  SPI-xanthan gels showed a trend of decreasing the stress and strain 

at fracture with the increase of SPI concentration (Figures 7 and 8), but the Young modulus 

increased with the protein content. Thus, xanthan seems to interact with soy proteins in 

different ways, depending on the amount of protein present in the gel. As mentioned before, 

the gels with more than 6% protein showed a sponge-like appearance. The presence of 

holes could explain the lower stress at fracture found as compared to 4% SPI-xanthan gels. 

In general, xanthan seems to assist the protein aggregation and network formation. At high 

protein concentration and acidification temperature, the aggregation happened faster 

(Figure 2) and in a random way, such that the sponge-like appearance was formed. In 

addition, the strands formed in that process were more elastic than those for the systems 

with lower protein content.  

 
 
 



Chapter 4– 2nd part 
______________________________________________________________________________________________________________ 

 132

4. Conclusions 

The model proposed enabled the prediction of two more parameters, the stress and 

strain at fracture, as compared to the BST equation. In addition, the Young modulus and 

non-elastic parameter (n) could also be predicted as was previous possible with BST 

equation. It was observed a good fit of the model equation to the raw data from the linear 

region up to and beyond the fracture point. The estimated Young modulus, stress and strain 

at fracture showed a good correlation with the linear Young modulus, true stress and 

Hencky strain at fracture, validating the model. An exponential fit was used to determine 

the dependence of n on SPI concentrations, which may be useful in predicting the 

rheological properties of tofu model systems (SPI and SPI-xanthan gels). This has future 

commercial advantages as the mechanical properties are related to sensory texture and 

consequently product acceptability. The addition of xanthan reduced the gel time, but 

resulted in a less elastic network in the beginning of the gelation process. However, at 

steady state, xanthan reduced the visual syneresis of SPI gels and increased both the stress 

and strain at fracture, although the Young modulus was statistically similar to SPI gels. The 

lower gelation temperature increased significantly the stress at fracture of SPI-xanthan gels. 
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Abstract 

The influence of xanthan and/or KCl addition on the properties of heat-induced soy protein 

isolate (SPI) gels at pH 3.0 was studied. Changes in protein solubility and subunit 

composition as well as in the mechanical properties, microstructure and water holding 

capacity of the gels were determined. The effect of KCl addition on each biopolymer 

solution was also investigated. The results indicated that SPI-xanthan gels prepared without 

KCl were mainly stabilized by non-covalent (H-bonding and hydrophobic) and SS bond 

interactions, whereas in gels containing KCl, electrostatic interactions were also involved in 

maintaining the gel structure. The β-7S subunit was probably the fraction electrostatically 

linked to the xanthan. The different values found for the mechanical properties after the 

addition of xanthan and/or KCl, were associated with the coarseness of the gel. Xanthan 

and KCl probably showed a synergistic effect on the Young modulus because KCl induced 

a conformation transition of the xanthan molecules. 

Keywords: heat-induced gel, interactions, salt, soy protein isolate, xanthan. 

 

1. Introduction 

Soy proteins are the most important representative of legume proteins due to their 

high protein level and well-balanced amino-acid composition, showing great potential in 

the substitution of meat and dairy proteins (Van Vliet, Martin & Bos, 2002). They are 

applied in a wide range of food products especially because of their ability to form gels 

with good water holding capacity on heating. The functional properties of soy protein 

isolates reflect the composition and structure of their globulins, which correspond to 50 – 

90% of the total proteins (Utsumi, Damodaran & Kinsella, 1984). The soy protein fractions 

can be classified by their sedimentation constants, showing approximate Svedberg 
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coefficients of 2S, 7S, 11S and 15S. The two major globulins in soybeans are β-conglycinin 

and glycinin, also called 7S and 11S, respectively. The glycinin subunits consist of two 

polypeptide components linked via disulfide bonds (AB), one with acidic (A) and the other 

with basic (B) isoelectric points (Staswick, Hermodson & Nielsen, 1984). At ambient 

temperature and pH 7.6, glycinin forms hexameric complexes (11S) with two rings each 

containing three hydrophobically associated subunits. At pH 3.8 this protein is mainly 

present in the form of trimeric complexes (7S-form), while at pH 3.0 glycinin may be 

dissociated into the 3S form (1AB) (Wolf, Rackis, Smith, Sasame & Babcock, 1958). β-

conglycinin is a trimeric glycoprotein consisting of at least six combinations of three 

subunits: α, α’ and β (Thanh & Shibasaki, 1977). 

The formation of protein networks is considered to be a result of the balance 

between protein-protein and protein-water interactions and of the attraction and repulsion 

forces occurring between adjacent polypeptide chains (Cheftel, Cuq & Lorient, 1996). The 

molecular forces involved in the formation of heat-induced soy protein gels are probably 

hydrogen bonds and hydrophobic interactions, whereas in gel maintenance the forces 

involved are disulfide and hydrogen bonds (Utsumi & Kinsella, 1985). The gel formation 

process and network structure could be affected by the addition of salts (increasing ionic 

strength) and changes in pH (Lakemond, de Jongh, Hessing, Gruppen & Voragen, 2000). 

Generally the pH of food products ranges from pH 3 to 7 and the ionic strength varies from 

0.02 to 0.2 M. 

Sodium chloride (NaCl) is widely employed in food products, but the ingestion of 

great amounts of this salt can increase the risk of hypertension (Abernethy, 1979) and 

urinary calcium loss (Bell, Eldrid & Watson, 1992). To avoid this, the NaCl could be 
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partially substituted by KCl, although this change could have an effect on protein stability 

and, consequently, on the product texture and water holding capacity. The effect of partial 

or complete replacement of NaCl with KCl on protein and gel properties has been 

investigated for dairy systems (Katsiari, Voutsinas, Alichanidis & Roussis, 1997) and for 

different proteins from seed flour (Ogungbenle, Oshodi & Oladimeji, 2002; Arogundade, 

Akinfenwa & Salawu, 2004). 

Protein functionality can also be modified by interactions with other ingredients 

such as polysaccharides, present in many food systems (Tolstogusov, 1993). Xanthan is a 

high molecular weight anionic polysaccharide commonly used as a stabilizer and thickener 

in food products. This polymer consists of a linear (1-4)-β-D glucose backbone with a 

charged trisaccharide side chain on each second glucose residue (Jansson, Kenne & 

Lindberg, 1975). Hua, Cui and Wang (2003) observed in a soy protein–xanthan mixed gel, 

that the protein component was the supporting phase even at a xanthan concentration as 

high as 1%. Carp, Bartholomai and Pilosof (1999) studied the foaming and solubility 

properties of soy proteins as affected by xanthan gum. However, to our knowledge, there 

are no publications on the effect of KCl addition on the properties of soy protein-xanthan 

systems. 

The purpose of this work was to investigate soy protein/xanthan interactions as a 

function of KCl concentration in heat-induced gels, by evaluating water holding capacity 

and uniaxial compression measurements. The synergistic/antagonistic effect between 

proteins and polysaccharides was also studied from the structural characteristics of gels, as 

assessed by confocal laser microscopy and the electrophoretic pattern of the soluble 

proteins. Furthermore, the soy protein-KCl and xanthan-KCl binary systems were studied 
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according to their thermal and rheological properties, respectively, in order to clarify the 

molecular conformation of the biopolymers that participated in the network formation. 

2. Material and methods 

2.1. Material 

Soy protein isolate (SPI) was obtained from defatted soy flour (Bunge Alimentos 

S.A., Brazil). Xanthan gum was obtained from Sigma-Aldrich Co. (USA) and KCl from 

Merck KGaA. (Germany). 

2.2. Preparation of soy protein isolate 

Defatted soy flour was dispersed in distilled water (1:10 w/w) and the pH adjusted 

to pH 8.0 with 2N NaOH. The dispersion was gently stirred for 2h at room temperature and 

then centrifuged at 10,000 x g for 30 min at 4ºC in a Sorvall RC5 Plus centrifuge (GSA-

rotor, Dupont, UK). The supernatant was adjusted to pH 4.5 with 2N HCl and centrifuged 

at 5,000 x g (Sorvall GSA-rotor) for 15 min at 4ºC. The precipitate was then suspended in 

water and the pH adjusted to 8.0 with 2N NaOH, followed by freeze-drying of the 

suspension (Petruccelli & Añón, 1995a). The protein (N x 6.25), moisture and ash contents 

of the SPI powder were, respectively, 89.3 ± 0.3%, 6.7 ± 1.6% and 3.29 ± 0.02% (wet 

basis). 

2.3. Preparation of biopolymer solutions and gels 

A soy protein isolate solution was prepared at ambient temperature by magnetic 

stirring with or without KCl. The xanthan powder was dispersed in water (3% w/w) at pH 

3.0 with mechanical stirring for 1 h at 80ºC. This solution was subsequently cooled to 10ºC 

and diluted according to the concentrations of the two factorial designs (Table 1). The 

rheological properties of a 0.3% xanthan solution were also compared with those of a 
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solution with the same xanthan concentration, but prepared by a 10-fold dilution of a 3% 

solution. 

Table 1. Coded levels and real values for the SPI, xanthan and KCl concentrations used in 

at least one of the three factorial designs. 

Level SPI (% w/w) Xanthan (% w/w) KCl (M) 

-1 10 0.05 0.01 

0 12 0.175 0.14 

+1 14 0.3 0.27 

 

The xanthan and SPI (or SPI-KCl) solutions were mixed at different concentrations 

according to the factorial designs and the pH adjusted to 3.0. The mixed solutions were 

placed into glass tubes (30 mm diameter and 30 mm height) and closed tightly with 

stoppers. Gelation was carried out by heating the glass tubes in a water bath at 90ºC for 30 

min (Damodaran, 1988), followed by immediate cooling in an ice bath. The samples were 

kept at 10ºC for 20 h before analyzing the gel properties. 

2.4. Factorial designs 

The different model systems were chosen according to two factorial designs with 22 

trials (SPI-KCl and SPI-xanthan gels) and another factorial design with 23 trials (SPI-

xanthan-KCl gels). Table 1 shows the ranges of the SPI, xanthan and KCl concentrations 

used in the factorial designs. 

2.5. Differential scanning calorimetry (DSC) 

DSC studies were performed in a DSC 2920 Modulated DSC differential scanning 

calorimeter (TA Instruments, USA). Indium and water were used to calibrate the 

temperature scale and enthalpic response of the equipment. The measurements were done 
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with four different samples containing 20% (w/w) protein dispersed in water or in salt 

solution at pH 3.0 and 7.0. The amount of KCl used (0.54 M) was calculated based on the 

KCl/SPI ratio of 0.27, which was obtained considering the 22 experimental design (SPI-

KCl) sample with maximum salt and minimum protein contents. A DSC hermetic pan 

containing about 10-15 mg of sample was tightly sealed and placed in the DSC cell. An 

empty capsule was used as the reference. The samples were analyzed at 10 ºC/min from 10 

to 110ºC in triplicate. The temperature at which denaturation started, known as the onset 

denaturation temperature Tonset, was calculated by taking the intercept of the baseline and 

the extrapolated maximum slope of the peak. The peak denaturation temperature Tpeak was 

considered to be the temperature at maximum heat flow. The enthalpy of thermal 

denaturation was calculated from the area of the endothermic peak. 

2.6. Intrinsic Viscosity 

The viscosities of the xanthan solutions were measured using a size 100 Cannon-

Fenske semi-micro capillary viscometer (Cannon Instrument Co., USA). The viscometer 

was immersed in a water bath maintained at 10.0 ± 0.5ºC. Solvent runs (water and 0.4 M 

KCl solution) were performed frequently to calibrate the instrument. The relative viscosity 

of a given solution ηrel (defined as the ratio between the solution and solvent viscosities) 

was determined by measuring the relative efflux times in the capillary. Viscosity values 

were based on at least 3-4 efflux time readings taken for various concentrations of xanthan 

solution. All measurements were made in the concentration range from about 0.05 to 

0.004% (w/v). 
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2.7. Rheological oscillatory measurements 

A stress-controlled rheometer (Carri-Med CSL2500, TA Instruments, England) with 

an acrylic cone and plate geometry (diameter 60 mm) was used to make the oscillatory 

rheological measurements. Stock solutions were prepared at 0.3% (w/w) or at 3% (w/w) 

and diluted to 0.3% (w/w). Xanthan solutions (0.3% w/w) with or without KCl were poured 

directly onto the plate of the instrument at 10ºC. Frequency sweeps were done from 0.01 to 

10 Hz at 0.35 Pa and 10ºC. The Lissajous figures at each frequency were plotted to ensure 

that the measurements of G’ (storage modulus) and G” (loss modulus) were always 

obtained within the linear viscoelastic region. 

2.8. Mechanical properties of the gels 

Uniaxial compression experiments in triplicate were done using a TA-XT2i texture 

analyzer (Stable Microsystems Ltd., England) with an acrylic cylindrical plate (35 mm 

diameter). Gels were compressed to 80% of their original height using a crosshead speed of 

1 mm/s. All measurements were done at 10ºC after 20 h of gel formation. The force and 

height values obtained were transformed into true stress (σH) – true strain (εH) curves 

(Steffe, 1996). The rupture properties were associated with the maximum point of the 

stress-strain curve and the Young modulus (E) was the slope of the first linear interval of 

the stress-strain curve. 

2.9. Water holding capacity (WHC) of the gels 

A cylindrical gel (~1.0 g) was placed on a disc of Whatman # 1 filter paper 

(Whatman, U.K.) and positioned in the middle of a 50 mL centrifuge tube. The water loss 

was determined by weighing the gel before and after centrifugation at 4,000 g for 10 min at 

15ºC (Kocher & Foegeding, 1993) in a Sorvall RC5 Plus centrifuge using a SS-34 rotor 
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(Dupont, UK). The WHC values were expressed as the percent of the ratio of the amount of 

water remaining to the initial amount of water present in the gel. 

2.10. Protein solubility of the gels 

Samples were dispersed either in distilled water at pH 8.0 (DW), in a pH 8.0 buffer 

(0.086 M Tris, 0.09 M glycine and 4 mM Na2EDTA) (B), or in the same buffer containing 

other reagents, namely 1) 6 M urea (BU), 2) 1% β-mercaptoethanol (BM) and 3) 6 M urea 

plus 1% β-mercaptoethanol (BUM) (Shimada & Cheftel, 1988). Tris buffer disrupts the 

electrostatic interactions, urea acts by disrupting the H-bonding and hydrophobic 

interactions, while the SS bond is reduced when the solvent contains β-mercaptoethanol 

(Cheftel et al., 1996). Samples (8.5 mg protein/mL) were homogenized at room temperature 

with an Ultra Turrax model T18 basic homogenizer (IKA, Germany) for 2 min and then 

centrifuged at 20,000 x g for 15 min at 25°C in an AllegraTM 64R Beckman centrifuge with 

a F0850 rotor (Beckman, USA). The protein solubility was determined from the 

supernatants and expressed as 100 x protein content in the supernatant / total protein 

content. Three independent extractions were done with each solvent. The protein 

concentrations were determined at 280 nm in a Beckman Du-70 spectrophotometer 

(Beckman, USA) using an apparent extinction coefficient ( mLmg

cm
E

/1
1 ) of 1.141 for proteins 

dispersed in water and of 1.193 for the pH 8.0 buffer. The extinction coefficients were 

obtained by measuring the absorbance at 280 nm of a 1 mg/mL soy protein solution, the 

concentration being determined by the Kjeldhal method. 

2.11. Electrophoresis 

SDS-polyacrylamide gel electrophoresis (PAGE) was carried out following the 

method of Laemmli (1970). The samples containing soluble proteins from the gel, extracted 
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in different media, were diluted with an equal volume of a pH 6.8 buffer (62.5 mM Tris-

HCl, 20% glycerol, 2% SDS, 0.05% bromophenol blue) containing (reducing condition) or 

not containing (non-reducing condition) 5% β-mercaptoethanol. Commercial molecular 

weight markers covering the 6,000 to 181,500 Da molecular weight range were used 

(Sigma-Aldrich Co., USA). The gels were run at 120 V through the stacking (4% 

polyacrilamide) and separating (12% polyacrilamide) gels, in a Mini Cell Protean 

electrophoresis unit (Biorad Laboratories, USA). The gels were stained with 0.25% (v/v) 

Coomassie Brilliant Blue, in ethanol:acetic acid:water (45:10:45, v/v), followed by 

destaining with acetic acid:ethanol:water (5:10:85, v/v). The densitometric analyses of the 

bands were done using the Eagle Eye II system and the software Stratagene Eagle Sight 

(Stratagene, USA). 

2.12. Confocal scanning laser microscopy (CSLM) 

Protein dispersions were prepared using the fluorescent dye Rhodamine B (50 µL of 

a 0.4% rhodamine solution/100 mL protein solution), which stains the protein. Mixed gels 

with intermediate concentrations of each ingredient (12% SPI + 0.153% xanthan or 12% 

SPI + 0.153% xanthan + 0.14 M KCl) were observed. Samples of the mixed solution were 

placed on microscope slides, covered with a glass cover slip and sealed with nail polish to 

prevent evaporation. In order to obtain the mixed gels, the slides were transferred to a 

plastic box, covered with a thin layer of soy oil to enhance heat transfer and heated in a 

water bath at 90ºC for 30min. A dual-channel laser confocal system (MRC 1024 UV, 

Biorad, USA) mounted on an Axiovert 100 Zeiss inverted microscope and equipped with 

Ar-Kr lasers was used to observe the gels. A wavelength of 568 nm was used to excite the 

rhodamine-labeled proteins. The settings for contrast, brightness and iris diameter were 
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adjusted and kept constant throughout the observations. Images were taken using a water 

immersion objective at 40x. 

 

3. Results and discussion 

3.1. Rheology of the xanthan-KCl solutions 

Information on molecule characteristics, such as conformation, hydration and 

flexibility, can be obtained from the measurement of the intrinsic viscosity of a polymer 

(Harding, 1997). Figure 1 shows the concentration dependence of the reduced viscosity of 

xanthan at 10ºC in water and in a 0.4 M KCl solution (both at pH 3.0). The Huggins 

equation (Equation 1), which expresses the reduced viscosity (ηSP/C) of a polymer as a 

function of concentration (C), was found to be suitable for both xanthan solutions in the 

dilute region. 

[ ] [ ] CkC HSP

2
ηηη +=  (1) 

where [η] is the intrinsic viscosity, C is the xanthan concentration, ηSP/C is the reduced 

viscosity and kH is the Huggins parameter. 

 

Figure 1. Reduced viscosity of xanthan solutions at 10ºC. Solvents: ( ) deionized water, 

( ) 0.4 M KCl solution. 
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The intrinsic viscosities, [ηsp/C]c≅0, of xanthan dispersed in water and in a salt 

solution at pH 3.0, were 22 and 13.5 dL/g, respectively. The addition of salt decreased the 

intrinsic viscosity by approximately 35%, which indicates a reduction in the hydrodynamic 

size of the molecule (Rochefort & Middleman, 1987) since the charge screening reduces 

the influence of coulombic interactions on the polymer conformation. The value for 

intrinsic viscosity obtained in water was lower than that reported by Yevlampieva, Pavlov 

and Rjumtsev (1999), 41 dL/g, and Wang, Sun and Wang (2001), 44.9 dL/g at 25ºC. These 

differences can be attributed to the lower pH (3.0) and temperature (10ºC) of the present 

system, as well as to different xanthan sources. 

The Huggins parameter kH gives information about the solvent quality and a low 

Huggins constant (kH=0.478) was observed for the xanthan dispersion in water at pH 3.0 

and a value of 1.2 for the salt solution. Values between 0.3-0.7 have been suggested for 

perfect solutions, whereas values of kH≥1 would encourage aggregate formation (Millard, 

Dintzis, Willett & Klavons, 1997). This indicates that water at pH 3.0 is a good solvent, 

while the salt solution promoted self-association of the macromolecule. 

The rheological behavior of xanthan solutions can give information on the 

molecular conformation/aggregation of the polysaccharide. Figure 2 shows the frequency 

dependence of the elastic (G’) and viscous (G”) moduli of two xanthan solutions (0.3% 

w/w) prepared in different ways, to gain information about the effect of dilution on the 

molecular aggregates. A 3% solution was prepared at 80ºC and subsequently diluted to 

0.3% (referred to as X-1). The other solution analyzed was prepared directly at 0.3% and 

80ºC (referred to as X-2). The X-2 solution exhibited a typical dilute solution behavior with 

the crossover of the two moduli at the highest frequency tested. The X-1 solution showed a 



Chapter 4– 3rd part 
______________________________________________________________________________________________________________ 

 148

very different pattern although both solutions had the same concentration. The G’-G” 

crossover was shifted to a lower frequency (~0.02 Hz) and the elastic modulus was larger 

than that of the X-2 solution for the whole frequency range. This difference could be 

explained by the formation of hydrogels during the preparation of the 3% xanthan sample at 

80 oC (Iseki et al., 2001). It could be suggested that the dilution of the 3% xanthan hydrogel 

resulted in a solution with insoluble aggregates. The X-1 solution was used to prepare the 

mixed gels. 
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Figure 2. Frequency dependence of G’ (solid symbols) and G” (open symbols) at 10ºC for 

xanthan solutions prepared at 80ºC with different ways of preparation: 3% with subsequent 

dilution to 0.3% or X-1 (squares); and 0.3% or X-2 (triangles). 

The rheological properties of the X-1 solution after the addition of 0.4 M KCl were 

also investigated (Figure 3). The addition of salt resulted in a more structured solution with 

G’>G” throughout the entire frequency range analysed and with higher moduli values as 

compared to the water system. This positive effect of KCl on the xanthan solution 

properties was previously observed with NaCl (Rochefort & Middleman, 1987). Such 

behavior with salt solutions was explained by the salt-induced disorder-order transition and 

the tendency to strengthen the intermolecular associations between the xanthan molecules. 
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The addition of salt promotes screening of the electrostatic repulsion of the trisaccharide 

sidechains, allowing for the adoption of a helical backbone conformation (Rochefort & 

Middleman, 1987). Increases in the KCl concentration from 0.05 (data not shown) to 0.4 M 

did not influence the rheological behavior of the solution, showing that above 0.05 M KCl, 

the conformation and interactions of the xanthan molecule should be the same. 
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Figure 3. Frequency dependence of G’ (solid symbols) and G” (open symbols) at 10ºC for 

0.3% xanthan solutions obtained from a 3% solution. Solvents: (squares) deionized water, 

(circles) 0.4 M KCl solution. 

3.2. Thermal behavior 

DSC experiments were performed to determine the characteristics of SPI 

dispersions prior to mixture with xanthan and subsequent heat-induced gelation. Figure 4 

shows typical examples of DSC thermograms of soy protein isolate, the denaturation 

enthalpy and temperature for each sample treatment being obtained (Table 2). The DSC 

results revealed varying effects of pH and salt addition on the stability of soy protein 

isolate. SPI dispersions at pH 7.0 showed two endothermic transitions for both samples, 

which can be attributed to thermal denaturation of the 7S protein at the lower temperature 

and of the 11S proteins at the higher temperature (Hermansson, 1986). The high 
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temperature for the denaturation of glycinin (11S) could be attributed to the high stability of 

its structure and conformation due to hydrogen or disulfide bonds (Kim, Kim, Yang & 

Kwon, 2004). The addition of KCl increased the denaturation temperatures (Tonset and Tpeak) 

due to the stabilizing effects of salts. Table 2 shows an increase in denaturation temperature 

of about 8 ºC for β-conglycinin (7S) and 13 ºC for glycinin (11S). This effect could be 

attributed to two possible factors working either separately or concomitantly: (i) 

neutralization of charged side chains of the amino acid residues thus reducing inter and/or 

intra chain repulsion, and (ii) salt stabilized water structure (Damodaran, 1988). Table 2 

shows similar total enthalpies for SPI dispersions at pH 7.0 and the value of ∆HT found for 

SPI dispersion without salt addition agreed with that observed by Puppo et al. (2004). 

 

Figure 4. DSC thermograms of 20% (w/w) soy protein isolate dispersions with 0 M and 

0.54 M KCl at pH 7.0 and 3.0. The scanning rate was 10ºC/min. 
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Table 2. Effect of pH and KCl addition on total denaturation enthalpy (∆HT) and on the 

denaturation temperatures, onset (Tonset) and peak (Tpeak), of soy protein isolate. 

Tonset (ºC) Tpeak (ºC) Treatment ∆HT 

(J/g protein) 1st peak 2nd peak 1st peak 2nd peak 

0 M KCl - pH 
7.0 

10.80 ± 1.25 69.7 ± 0.2 83.5 ± 0.1 74.8 ± 0.0 90.3 ± 0.1 

0.54 M KCl –  
pH 7.0 

9.99 ± 0.14 78.3 ± 0.6 97.1 ± 0.0 82.8 ± 0.1 102.4 ± 0.1 

0 M KCl - pH 
3.0 

1.80 ± 0.26 59.8 ± 0.1 ------ 66.0 ± 0.5 ------ 

0.54 M KCl –  
pH 3.0 

3.21 ± 0.33 51.1 ± 0.7 67.1 ± 0.5 56.7  ± 0.2 71.8± 0.2 

 

The thermograms of SPI at pH 3.0 presented a unique endotherm peak for the 

sample without KCl and two endothermic transitions for the dispersion with salt (Figure 4). 

However, all peaks were localized in a low temperature region (~50-70ºC) as compared to 

the peaks observed for SPI at pH 7.0 (Table 2). At pH 3.0 the endothermic transition related 

to 11S denaturation was not observed, due to the acidic denaturation of glycinin, which 

starts at pH 3.75 and reaches a maximum at pH 2 (Koshiyama, 1972). At this low pH, the 

charge distribution differs from that at pH 7.0, and apparently leads to differences in the 

quaternary structure and protein stability (Renkema, Lakemond, de Jongh, Gruppen & van 

Vliet, 2000). At pH 3.0 and low ionic strength most of the glycinin is in a 3S (1AB) form 

and part of the glycinin in a 7S form (Wolf et al., 1958). The low Tonset value (59.81 ± 0.12 

ºC) observed for SPI at pH 3.0 was similar to that obtained by Puppo et al. (2004) for β-

conglycinin (63.00 ± 0.31 ºC) and glycinin (59 ± 0.23 ºC) at pH 3.0, and also by Renkema, 

Gruppen and van Vliet (2002) for β-conglycinin (55ºC) at pH 3.0. A comparison of these 
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values suggests that the single peak observed could indicate a superimposed transition of 

the dissociated 11S fraction and the β-conglycinin. The 3S form of glycinin does not give a 

cooperative transition (Danilenko et al., 1987), which implies that heat stability of the 7S 

glycinin is not very high and that it unfolds before β-conglycinin. All the transitions 

observed were irreversible since during the second heating scan, no transitions could be 

observed under any of the conditions studied. 

3.3. Properties of heat-induced soy protein-xanthan gels 

3.3.1. Protein solubility of gels and SDS-PAGE of gel extracts 

Figure 5 shows the solubility of SPI gels and SPI gels with xanthan and/or KCl in 

several extraction media. Intermediate concentrations of the ingredients in the 23- factorial 

design, were used to prepare the gels, and a gel with only SPI was used as the control. 

Regarding the gels containing xanthan, the amount of soluble protein in B (buffer pH 8.0) 

was slightly greater then in the gels without polysaccharide. This trend could be attributed 

to disruption of the electrostatic interactions between the negative sites of xanthan and the 

positive regions of SPI at pH 3.0. For the others buffers (BU and BM) it was not observed 

any effect on the solubility with the addition of xanthan in SPI or SPI-KCl gels. Thus, the 

analyses of soluble proteins in DW (deionized water) and in BUM (buffer + urea + β-

mercaptoethanol) were only carried out for the SPI and SPI-KCl gels, since xanthan could 

only interact via electrostatic forces.  
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Figure 5. Solubility of the protein constituents of different heat-induced gels at pH 3.0: SPI 

(12%), SPI (12%) – KCl (0.14 M), SPI (12%) – xanthan (0.135 %), SPI (12%) – xanthan 

(0.135 %) – KCl (0.14 M). Extraction solutions: (DW) deionised water; (B) buffer (pH 

8.0); (BU) buffer (pH 8.0) plus urea; (BM) buffer (pH 8.0) plus β-mercaptoethanol; (BUM) 

buffer (pH 8.0) plus urea and β-mercaptoethanol. *SPI-xanthan and SPI-xanthan-KCl gels 

were not evaluated due to the absence of samples. 

The amount of soluble protein in the gels prepared with KCl (SPI-KCl and SPI-

KCl-xanthan) in DW and BM media was different from that obtained for the gels without 

salt. The protein solubility in DW decreased from 19 to 8% when the gel was prepared with 

KCl, which could be attributed to the salting out effect (Hermansson, 1978). Protein 

constituents of the SPI-KCl gel were more soluble in B (∼25%) than in DW, but for the gel 

without KCl the solubility of the proteins in B (∼22%) was similar to that obtained in DW 

(∼19%). The above results could suggest that the addition of salt favors indirectly the 

hydrophobic interactions, due to electrostatic interactions between counterions of the salt 

and protein macroions. 

Figure 5 also shows that the amount of soluble protein constituents in gels without 

KCl was similar (∼60%) in BU and BM. However, in gels with KCl the amount of soluble 
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protein decreased to ∼30% in BM and remained the same in BU. It is interesting to note 

that the sum of the effect of each reagent on protein solubility was equal to 100% for gels 

without KCl, but when salt was present this sum was lower than 70%. Thus, two hypothesis 

can be suggested: 1) the salt could hinder the formation of SS bonds, in agreement with 

other studies with SPI gels under acidic conditions, in which little or no formation of SS 

bonds was found (Puppo, Lupano & Añón, 1995); 2) there could be equal amounts of SS 

bonds in gels with and without KCl, but the reducing agent was unable to reach all the SS 

bonds in the gels with salt. However, the solubility in BUM was almost 100% in all gels, 

indicating the presence of more disulfide bonds in gels with KCl than was revealed by 

extraction in BM, confirming hypothesis 2. The addition of urea unfolds the protein 

molecules, leading to greater exposure of SS bonds, which favors the reduction reaction by 

β-mercaptoethanol (Petruccelli & Añón, 1995b). The lower amount of soluble proteins 

observed in BM could result from the presence of large random aggregates formed by non-

covalent interactions (H-bonding and hydrophobic) and SS bonds that were somehow 

localized inside the core. In addition, these aggregates would be large (>0.2 µm according 

to Lakemond, de Jongh, Paques, van Vliet, Gruppen and Voragen (2003)) such that they 

precipitated when the system was centrifuged at 20,000 x g for 15 min at 25°C. The results 

indicated that SPI-xanthan gels prepared without KCl were mainly stabilized by non-

covalent (H-bonding and hydrophobic) and SS bond interactions, whereas in gels with KCl, 

electrostatic interactions were also involved in maintaining the gel structure. 

The effects of xanthan and KCl on the subunit composition of soluble proteins as 

well as on the formation of high molecular weight aggregates were evaluated from the 

electrophoretic patterns of the soluble proteins in the different buffers. Figure 6 shows the 
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electrophoretic patterns using non-reducing conditions for the DW and BU extracts. The 

results for the B extract were similar to those of the BU (not shown) one. The different 

components present in the SPI powder were identified by comparison with molecular 

weight markers and with the literature results (Petruccelli & Añón, 1995c). The bands 

found in the SPI powder under non-reducing conditions (with β-mercaptoethanol) were: α 

and α’ subunits of β-conglycinin (α− and α’-7S); β subunit of β-conglycinin (β−7S); acidic 

polypeptides of glycinin (A-11S) and basic polypeptides of glycinin (B-11S) and the AB 

subunit of glycinin (AB-11S). Low molecular weight fractions (**) and four bands of large 

soluble aggregates (*) with molecular weights above 115.5 kDa were also observed (Figure 

6). Petruccelli and Añón (1995c) previously suggested that the α and α’ subunits of the β-

conglycinin probably formed the aggregates present in the two first bands (greater 

intensity). The other two bands would contain the latter subunits plus the A polypeptide of 

11S. 

The DW extract (lane 3) showed two bands with high intensity corresponding to the 

AB subunit of glycinin and to the β-subunit of β-conglycinin. There were also small 

amounts of low molecular weight peptides (25.9-37.1 kDa) and traces of free α−7S, α’-7S, 

A-11S and B-11S subunits. The presence of soluble AB-11S revealed that the disulfide 

bridge between the A and B polypeptides was not broken, which was attributed to the low 

reactivity of the SS-SH interchange at this low pH (Shimada & Cheftel, 1988). The material 

dissolved in BU consisted of three major proteins that entered the gel and were associated 

with the A and B polypeptides of glycinin and the β subunit of β-conglycinin. In addition, a 

high molecular weight aggregate (1) was observed, that migrated into the stacking but not 

into the separating gel, and a second aggregate (2), that did not migrate into the stacking 
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gel. The aggregate-2 was probably 1) a new aggregate formed during the gelation process; 

2) the hexameric form of glycinin (300-380 kDa), since the A-11S and B-11S bands 

showed lower intensities, compared to those under reducing conditions (results not shown). 

 

 

 

 

 

 

 

 

Figure 6. SDS-PAGE under non-reducing conditions: Lane 1 = molecular weight markers; 

Lane 2 = SPI powder; Lane 3 = soluble proteins of SPI gels extracted with deionized water; 

and Lane 4 = soluble proteins of SPI gels extracted with buffer (pH 8.0) plus urea. 
*aggregates with MW higher than 115.5 kDa; **low MW fractions. 

The effects of xanthan or KCl on the linkages between protein fractions were 

obtained by analysing the optical density of the bands of the gels run under reducing 

conditions. Figure 7 shows the statistical comparison among different types of mixed 

biopolymer gels, of the amounts of soluble fractions dissolved in B or BM. In this Figure, 

the protein composition of the SPI gels (with or without KCl) extracted by BUM, was 

referred to as the standard composition, giving 12.2% α-7S, 12% α’-7S, 16.4% β-7S, 

32.8% A-11S, 26.6% B-11S. The soluble proteins of the gels in BU showed a similar 

composition (p<0.1). However, the subunit composition of the proteins soluble in B and 

BM were different from the standard (Figure 7). Figure 7A shows that the addition of KCl 
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to gels increased the proportion of α and α’-7S, while the B-11S soluble in buffer (pH 8.0) 

was reduced. Regarding the BM extracts (Figure 7B), an increase in the proportion of A-

11S and a decrease in B-11S polypeptides was observed, whilst the others did not change. 

This means that the addition of KCl resulted in a higher proportion of A-11S linked by SS 

bonds. One possible interpretation of these results is that the random aggregation of 

proteins promoted the self-association of A-11S or its linkage with the α and α’-7S 

polypeptide (Petruccelli & Añón, 1995c). The B-11S fraction could be self-associated due 

to its more hydrophobic character, showing a lower proportion of SS bond linkages. Figure 

7A also shows a decrease in the A-11S polypeptide and an increase in the β-7S subunit 

when xanthan was added to the SPI gels. This result suggests that electrostatic interactions 

between xanthan and soy conglycinin were mainly with the β-7S. 
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Figure 7. Effects of the addition of xanthan or KCl on the composition of the soluble 

protein subunits of SPI gels extracted in (A) buffer (pH 8.0) and (B) buffer (pH 8.0) plus β-

mercaptoethanol. Different letters indicate significant differences at p<0.10 (the variation 

was analyzed for each fraction). 

3.3.2. CSLM and macroscopic properties of gels 

An indication of the type of gel network formed is given by the appearance of the 

gels. The initial mixed solution was translucent and became opaque on acidification. Near 

the pI (pH ∼4.0-5.0) the solution was highly opaque with granular aggregates of different 

sizes. Beyond this point, these particles were re-dissolved, but the solution remained 

slightly opaque. At pH 3.0 the gels made with KCl were opaque and those prepared without 

the salt showed an appearance between a yellowish transparent and a slightly opaque gel. 

Opaque gels are formed when fluctuations in polymer density approach macroscopic size 

and effectively scatter light. On the other hand, transparent gels have an almost 

homogeneous network (Oakenfull, Pearce & Burley, 1997). The former are usually the 

result of random aggregation (coarse network), and the latter to the association of 
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molecules into strands in a more ordered way (fine-stranded) (Hermansson, 1986). 

However, depending on the ionic strength and pH, linear polymers and random aggregates 

could be mixed together in the same gel to form translucent or opaque gels (Doi, 1993). 

Structural observations of SPI-xanthan gels revealed a clear difference in network 

structure on addition of KCl (Figure 8). White and gray areas in the pictures represent 

protein, while black areas represent the pores of the network containing the continuous 

phase without protein. In the gel without salt, the fluorescent signal was uniform 

throughout the sample, indicating that the SPI particles were homogeneously distributed 

(Figure 8A). This gel could be categorized as fine-stranded (Foegeding, Bowland & 

Harding, 1995). 

The effect of increasing ionic strength on the microstructure of the gel matrix was 

observed when 0.14 M KCl was added (Figure 8B). Monovalent chloride ions induce the 

formation of a fine stranded matrix at ionic strength values below 0.1 M (Totosaus, 

Montejano, Salazar & Guerrero, 2002). Figure 8B shows a mixed structure predominantly 

formed by random bright aggregates with different sizes and shapes, but also showing 

regions resembling the fine structure of Figure 8A (below the line). Renkema (2004) 

reported a soy protein gel (pH 3.8) with coarse microstructure at a slightly higher ionic 

strength, but with smaller aggregates as compared to those obtained in SPI-xanthan-KCl 

gels (Figure 8B). At pH 3.0, the most likely interaction involving the two biopolymers was 

that between the positively charged regions on the proteins and the negatively charged 

carboxyl groups of the xanthan. The addition of salt (Figure 8B) resulted in screening of the 

exclusion volume effect and a coupled network with both biopolymers was probably 

formed. The SPI-xanthan gel also showed some regions nearly devoid of protein, which 

could be due to the presence of xanthan. 
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Figure 8. CSLM photos of heat-induced SPI-xanthan gels at pH 3.0 with intermediate 

concentrations (factorial design) of ingredients. A) 12% (w/w) SPI and 0.153% (w/w) 

xanthan, B) 12% (w/w) SPI, 0.153% (w/w) xanthan and 0.14 M KCl. Scale bars in µm. 

Gel properties, which depend on the pH and ionic strength of the system, are closely 

related to the type of protein structure (Foegeding, Bowland & Harding, 1995). Figure 9 

shows the water holding capacity (WHC), strain at fracture, Young modulus and stress at 

fracture of SPI-xanthan gels as a function of KCl content. The composition of the gels 

without KCl was chosen according to the 22-factorial design (SPI-xanthan). Gels with the 

same composition and containing the lowest (0.01 M) and highest (0.27 M) KCl 

concentrations were also investigated, corresponding to the negative (-1) and positive (+1) 

salt levels of the 23-factorial design (Table 1). The effects of these variables on the gel 

properties were statistically analyzed, these results being used to better understand the 

tendencies shown in Figure 9. Figure 9A shows that the xanthan and KCl concentrations 

were the main factors responsible for the changes in the WHC values. In the systems 

without salt, an increase in xanthan content changed the WHC from ~50% to ~70%, while 

at the highest KCl concentration, all the values were lower and closer, about 30-40%. The 

A 

0 50 

B 
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strain at fracture values (Figure 9B) were also greatly affected by the KCl concentration, 

with values >0.5 for systems with low KCl and small strain values (<0.5) at the highest salt 

content. Figure 9C shows that the xanthan concentration had a negative effect on the Young 

modulus values in gels without KCl, but at the highest salt concentration, the 

polysaccharide had a positive effect. The KCl concentration had a great effect on the 

Young modulus, especially at high xanthan concentrations. The values increased from ~4-5 

kPa to ~15-18 kPa with the addition of 0.27 M KCl. 

Figures 9A and 9B show that the WHC and strain at fracture first increased with the 

addition of 0.01 M KCl and then decreased when more KCl (0.27 M) was added to systems 

with low xanthan concentrations. However, at the higher xanthan concentrations, the WHC 

and strain values did not show such an initial increase, decreasing with the addition of any 

KCl concentration. This fact could be explained by an intensification of the solute effect, 

since there was less water available in the system due to the high capacity of xanthan to 

bind water. The behavior described above was probably due to salting-in and salting-out 

effects. For systems without KCl, it was observed a positive effect of xanthan on WHC, 

since polysaccharides are good water binders. This corroborates to the above hypothesis of 

intensification of the solute effect at high xanthan content. 
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Figure 9. Variation in the water holding capacity (A), strain at fracture (B), Young modulus 

(C) and stress at fracture (D) at three KCl concentrations. X is the xanthan concentration: 

0.05 wt% ( , ), 0.3 wt% ( , ). SPI: 10 wt% ( , ), 14 wt% ( , ). 

At low salt concentration or ionic strength values below 0.1 M (Hermansson, 1978), 

ions of neutral salts may increase the solubility of soy proteins (salting-in) by reacting with 

the charged sites, resulting in an increase in the water holding capacity of the gels. 

However, at higher salt concentrations, protein solubility decreases (salting-out) as a result 

of competition between the protein and the salt ions for the water molecules (Cheftel et al., 

1996). The latter effect results in random protein aggregation and a gel with low WHC, 

since gels with large pores inhibit the capacity to immobilize solvent via capillary forces 

(Ziegler & Foegeding, 1990). Such an event was better observed for systems with high 
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protein and polysaccharide concentrations. The strain at fracture showed exactly the same 

tendencies as the WHC as a function of KCl concentration, for all systems (Figure 9B). It is 

known that a more aggregated structure (salting out effect) leads to a less elastic network 

(Foegeding, Bowland & Harding, 1995). 

The Young modulus values rose with increasing salt content for systems with high 

xanthan contents, while showing a minimum value at 0.01 M KCl for gels with a low 

polysaccharide concentration (Figure 9C). This tendency was the opposite of that observed 

for strain at fracture. The great increase in the Young modulus values at high xanthan and 

KCl concentrations could be due to the more elastic character of xanthan solutions at low 

deformations (Figure 3), with the addition of salt. The stress at fracture values (Figure 9D) 

showed almost the same tendency observed for the Young modulus. The different 

behaviors at high salt content could be attributed to the deformation scale from which the 

properties were obtained. The Young modulus is a small deformation property and gives 

more information about the linkage of biopolymers. Stress at fracture is obtained at large 

deformations such that not only the strength of the strands is important but also the size of 

the holes. Figure 8B shows that even for 0.14 M KCl there are holes of about 90 x 40 µm. 

Above a certain size, the holes probably made the network more fragile, as observed by the 

drop in stress at fracture. 

For systems without salt, the stress at fracture decreased with the increase of 

xanthan concentration (Figure 9D). It was discussed above (Figure 7) that xanthan probably 

preferentially interacted with β-7S. In addition, the confocal microstructure of SPI-xanthan 

gel showed some regions nearly devoid of protein. Thus, it can be suggested that at least 
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part of xanthan and β-7S were not in the main protein network, which would induce the 

reduction of the gel hardness. 

 

4. Conclusions 

The increase in KCl content led to more elastic xanthan solutions, and such 

behavior can be attributed to the ordered conformation of this polysaccharide. At pH 3.0, 

all 7S and 11S subunits seemed to participate in the network, although they were associated 

in different ways depending on the composition of the gels (with or without KCl or 

xanthan). The β-7S subunit was probably the fraction electrostatically linked to the 

xanthan. It was suggested that at least part of xanthan and β-7S were not in the main protein 

network, which would induce the reduction of the gel hardness for gels without KCl. The 

addition of KCl to SPI gels affected the mechanical properties of the gels and their water 

holding capacity, which was explained by the salting in and salting out effects. Gels with 

low amounts of ingredients were more deformable and showed greater WHC, salting-in 

effects being observed. When the content of one of the ingredients (KCl or xanthan) was 

increased, the salting-out effect occurred. 
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Abstract 

Phase separation, rheological and confocal laser scanning microscopy (CLSM) experiments 

were performed to characterize different mixtures of proteins and polysaccharides. The 

results showed that SPI was more hydrophobic than the Na-caseinate, which induced the 

gelation of the protein rich phase after centrifugation of SPI – Na-alginate and SPI – κ-

carrageenan systems. However, gellan did not induce the gel formation, indicating that this 

polysaccharide could be used as thickening in soy products. The results indicated that κ-

carrageenan was more compatible with both soy protein and Na-caseinate than alginate. 

The confocal micrographs revealed different degree of separation for a fixed centrifugation 

condition (60000 x g during 1 h). This suggests that the centrifugation conditions should be 

carefully chose for each protein-polysaccharide mixture. The rheological behaviour of the 

systems varied from a diluted solution to a gel passing through the formation of water-in-

water emulsions. In addition, it was suggested that the storage modulus value of the protein 

rich-phase can be used as an indicator of the degree of phase separation. 

Keywords: proteins, polysaccharides, CLSM, rheology, phase separation. 

 

1. Introduction 

From the last two decades, the food industries are putting great effort on developing 

new products with attractive textures. Different types of polysaccharides and proteins have 

been added to milk products in order to partially replace the fat or sugar. Soy proteins have 

been applied in a wide range of food products especially because of their ability to form 

gels with good water holding capacity on heating, showing great potential in the 

substitution of meat and dairy proteins (Van Vliet et al., 2002). Carrageenans are the most 
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used polysaccharides in dairy products, altough the mechanism of compatibility of this 

seaweed, anionic and linear polysaccharide with milk proteins remains in discussion 

(Spagnuolo et al., 2005). Other seaweed, anionic and linear polysaccharides that have been 

receiving great attention from the industry are the alginates that show a good water-in-

water emulsion capacity (Capron et al., 2001, Antonov et al., 2004). Among the microbial 

polysaccharides, gellan is widely utilized in the industries due to its ability to form clear 

and heat- and acid-resistant thermoreversible gels with aqueous media. In addition, from a 

scientific point of view, it is often regarded as a model system for investigating gelation 

mechanisms of helix-forming polysaccharides such as agarose and carrageenans (Ikeda et 

al., 2004). 

Proteins and polysaccharides are usually incompatible showing segregative phase 

separation at pH 7.0. The conditions necessary for phase separation vary according to the 

biopolymers and the presence of co-solutes. They are dependent on specific structure and 

compositional features, as well as on the molecular weight and conformation of the 

biopolymers (Zeman and Patterson, 1972). The phase behaviour of proteins and 

polysaccharides has received attention in the last decade and the works have been 

especially done by Tolstogusov and others (Polyakov et al., 1980; Grinberg and 

Tolstoguzov, 1997; Tolstoguzov, 2003). The most studied mixtures in the last years has 

used gelatin or skim milk as protein source, but few works were done using soy proteins.  

The rheological behaviour of aqueous biopolymer mixtures is quite different from 

that of a pure biopolymer solution due to the hydrodynamic influence of the dispersed 

phase (Palierne, 1990, Simeone et al., 2002). The morphology of the system can add 

information to the rheological description of the biopolymers mixtures. The confocal 

microscopy is especially important to give information about the dispersed phase shape, 
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distribution and volume fraction. In addition, it can give support to the choices of the 

centrifugation parameters. 

The aim of this work was to understand the role of different biopolymers and its 

concentration on the phase behaviour of a protein-polysaccharide system. The 

polysaccharides investigated were gellan, κ-carrageenan and Na-alginate, while sodium 

caseinate and soy protein isolate were the proteins source. In addition, the rheological 

properties of the initial mixture and the separated phases were measured and the 

microstructures of those systems were observed under confocal laser scanning microscope.  

2. Material and methods 

2.1. Material 

The proteins used to prepare the model systems were casein (Sigma Chemical Co., 

USA) and soy protein isolate (SPI) obtained from defatted soy flour (Bunge Alimentos 

S.A., Brazil). The polysaccharides used were sodium (Na)-alginate, κ-carrageenan, and 

gellan, all of them obtained from CP Kelco (USA). Table 1 shows the chemical 

characterization of each biopolymer. The moisture and ash contents were determined using 

the gravimetric method, in which the initial and final samples were weighed. The ash was 

obtained by heating the powder at 550oC until it becomes a carbon-free sample (AOAC, 

1996). For moisture analysis the powder was dried in a vacuum-oven at 60 oC until the 

sample weight reached a constant value. The protein content was carried out using the 

Kjeldahl method (AOAC, 1996). 

The soy proteins isolation procedure followed the method described by Petruccelli 

and Añón (1995). Defatted soy flour was dispersed in distilled water (1:10 w/w) and the pH 
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was adjusted to 8.0 with 2N NaOH. The dispersion was gently stirred for 2h at room 

temperature and then centrifuged at 10,000 x g for 30 min at 4ºC in a Sorvall RC5 Plus 

centrifuge (GSA-rotor, Dupont, UK). The supernatant was adjusted to pH 4.5 with 2N HCl 

and centrifuged at 5,000 x g (Sorvall GSA-rotor) for 15 min at 4ºC. The precipitate was 

then suspended in water and the pH adjusted to 8.0 with 2N NaOH, followed by freeze-

drying of the suspension. 

Table 1. Characterization of the biopolymers used to prepare the model systems. 

Biopolymer Moisture [%] (wet basis) Protein [N% x 6.25] 

(wet basis) 

Ash [%] (wet basis) 

Casein 6.51 ± 0.10 89.64 ± 1.55 0.84 ± 0.08 

SPI 6.44 ± 0.07 91.25 ± 0.45 3.45 ± 0.04 

Na-alginate 5.75 ± 0.21 0.44 ± 0.01 21.52 ± 0.23 

κ-carrageenan 7.84 ± 0.07 0.44 ± 0.03 15.29 ± 0.16 

Gellan 6.42 ± 0.12 0.47 ± 0.02 9.85 ± 0.02 

2.2. Preparation of biopolymers stock solutions 

The Na-caseinate solution was prepared by dispersing casein powder in milli-Q 

water using magnetic stirring for 2 h at a maximum temperature of 50 oC. The pH was 

constantly adjusted to 7.0 with 10M NaOH. The soy protein isolate (SPI) solution (milli-Q 

water) was prepared at room temperature by magnetic stirring until the complete powder 

hydration and the pH was adjusted to 7.0 with 1M HCl. The polysaccharide solutions were 

prepared by first dispersing the powders in milli-Q water at room temperature by magnetic 

stirring and after heating in a water bath with a fixed temperature and time (Table 2). The 

prepared solutions were immediately cooled down to room temperature in an ice bath, and 

none of them gelified after this process. The insoluble particles of proteins and 

polysaccharides solutions were separated by centrifugation in an ultracentrifuge L8-80 M 
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(Beckman, USA) at 60,000 x g for 60 minutes at 25 °C (Antonov et al., 2004), except for κ-

carrageenan and gellan solutions that were already purified (without any insoluble 

particles). The pH of all solutions was adjusted to 7.0. The concentrations of proteins, 

seadweeds polysaccharides and gellan solutions were 8%, 4% and 1% (w/w), respectively. 

Table 2. Temperature and time used to prepare the polysaccharide solutions 

Polysaccharide Temperature (°C) Time (min) 

Gellan (Ikeda et al., 2004) 90 60 

κ-carrageenan (Hemar et al., 2002) 90 60 

Na-Alginate (Capron et al., 2001) 70 30 

2.3. Preparation of biopolymers mixtures and phase separation 

Biopolymer mixed solutions (MS) were obtained by mixing the purified solutions of 

protein and polysaccharide during 1 h at room temperature by magnetic stirring. These 

solutions were poured into polycarbonate tubes of 25 mL that were centrifuged in an 

ultracentrifuge L8-80M (Beckman, USA) at 60,000 x g during 60 minutes (Antonov et al., 

2004). Two meniscus were marked on the outside of the centrifuge tubes in order to 

determine the amount (volume) of the protein and polysaccharide rich phases The phases 

were then carefully withdrawn and stored in separate beakers for further analyses 

(rheology, CLSM and chemical analysis).  

Preliminary studies (Apendice) on different protein-polysaccharides MS were 

conducted in order to determine the concentration of biopolymers that would lead to 

incompatible mixtures that form two equilibrium phases after centrifugation. The selected 

systems are shown in Table 3. Almost all of the selected systems had similar zero shear 

viscosities of MS (estimated from the data obtained in Chapter 3-1st part). In addition, it 
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was studied two different compositions for SA and SC systems in order to understand the 

role of the viscosity on the phase separation behaviour. 

Table 3. Composition of the initial mixture at pH 7. 

Mixture Nomenclature Nominal protein 

amount* [%] 

Nominal polysaccharide 

amount* [%] 

Na-caseinate / Na-Alginate CA 3.0 2.3 

Na-caseinate / Carrageenan CC 3.0 2.3 

Na-caseinate / Gellan CG 5.0 0.4 

SPI / Na-Alginate SA1 3.0 1.5 

SPI / Na-Alginate SA2 3.0 2.3 

SPI / Carrageenan SC1 3.0 1.4 

SPI / Carrageenan SC2 3.0 2.3 

SPI / Gellan SG 5.0 0.4 

* The values of protein and polysaccharide concentration are based on the amount of powder added 
considering the moisture content. 

2.4. Chemical analyses 

The protein concentration was determined in triplicate by Kjeldahl method (AOAC, 

1996). The polysaccharide concentration was also determined in triplicate using the phenol-

sulphuric acid reaction followed by the measurement of the solution light absorption in the 

visible wavelength region (Dubois et al., 1956) using a Beckmann spectrophotometer 

DU/70 (Beckman, USA). The light absorption was made at three different wavelengths 

corresponding to the points P1, P2 and P3 of Figure 1, which depended on the 

polysaccharide type. These values were determined from a previous wavelength scan in the 

visible region. The calibration curves of the polysaccharides were obtained for 

concentrations in the range of 10-100 µg/mL.  
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Figure 1. Typical light absorption curve of a polysaccharide solution with the description of 

the wavelengths used for the polysaccharide quantification. 

The mass balances errors between the initial (MS) and final (PRrp plus PSrp) protein 

or polysaccharide content were calculated according to Equations 1 and 2. 

BMBError −= 100(%)  (1) 

( )1
100

exp,

,exp,

+⋅

+⋅
⋅=
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CVRC
MB

MSB

PRrpBPSrpB

B  (2) 

where MB is the mass balance (%), C is the concentration (%) and VRexp is the 

experimental volume ratio (see Equation 3 below). The subscripts B, MS, PSrp and PRrp 

are, respectively, biopolymer (protein or polysaccharide), mixed solution, polysaccharide 

rich-phase and protein rich-phase. 

2.5. Volume ratio analysis 

The volume ratio method was developed to obtain the binodal line for a liquid-

liquid phase separation (Polyakov et al., 1980). However, some protein-polysaccharide 

mixtures resulted in a liquid-gel phase separation, such that the precision of the above 

method was checked (Results and Discussion section). The volume of each phase was 
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quantified by filling the centrifuge tube with water up to the meniscus marks and weighing 

the amount of water added. The Equation 3 was used for further analysis: 

VRexp =
VPSrp

Vtot

 (3) 

where VRexp is the volume ratio determined experimentally from the meniscus marks, VPSrp 

is the volume of the polysaccharide rich phase and Vtot is the total volume of the mixture 

SM1. 

The lever-arm rule (Antonov et al., 2004) was used to check the experimental 

volume data above (Equations 4, 5 and 6). The density of each phase was considered to be 

1 g/cm3 for the calculations since the density of the most concentrated phase was 1.06 

g/cm3 (Chapter 3-1st part). 

VRcalc =
VPSrp

V
tot

=
A

B
 (4) 

A = XPRrp − XSM 1  (5) 

B = XPRrp − XPSrp  (6) 

where VRcalc is the volume ratio calculated from chemical analysis and X is the protein 

concentration. 

2.6. Rheological tests 

A stress-controlled rheometer (Carri-Med CSL2500, TA Instruments, England) was 

used to accomplish the steady and oscillatory rheological measurements. The initial mixture 

(MS) and the protein and polysaccharide rich-phases were placed on the rheometer and the 

measurements were made in triplicate at 25 °C. Cone-plate, rough plate-plate or double 

concentric cylinder geometry (Table 4) were used depending on the sample. The double 

concentric cylinders were used for samples with zero shear viscosity (η0) lower than 0.8 
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Pa.s. The cone-plate geometry was chosen for the samples with η0 values in the range of 

0.8-10 Pa.s. The rough plate-plate was used for high viscous samples (η0 > 10 Pa.s) and for 

those systems that showed slippage due to syneresis. 

Table 4. Applied geometries for rheological measurements 

Geometry Diameter [mm] Gap [µm] Material 

Cone-plate 60 67 Stainless steel 

Rough plate-plate 40 53 Stainless steel 

Double concentric 

cylinders 

External rotating: 43.92 

Internal rotating: 40.76 

External stationary: 44.76 

Internal stationary:  40.00 

 Acrylic 

 

2.6.1. Steady shear flow curves 

Flow curves were obtained by applying an up-down-up steps program using 

different shear stress range to each sample. This range was determined from a shear rate-

control experiment, in which the maximum shear rate was 300 [s-1]. At each programmed 

step 150 points were measured. The last step (steady flow) was taken to plot the apparent 

viscosity (η) versus shear rate.  

2.6.2. Dynamic oscillatory measurements 

A stress sweep test was carried out at 25 ºC and constant frequency of 0.1 Hz, for 

every sample, in order to find out the limit of the linear viscoelastic zone. Frequency 

sweeps were done from 0.02 to 10 Hz at 25 ºC at a fixed stress within the linear viscoelastic 

range. The storage (G’(ω)) and loss (G”(ω)) moduli were plotted as a function of 

frequency. 



Chapter 5– 1st part 
______________________________________________________________________________________________________________ 

 180

2.7. Confocal laser scanning microscope (CLSM) 

The initial protein-polysaccharide mixture (MS) and the protein and polysaccharide 

rich-phases were observed under confocal laser scanning microscope (CSLM). Rhodamine 

B was added and mixed carefully with about 1 mL of sample. Such a fluorescent dye was 

used in order to stain the protein. The samples were placed in indentations of microscope 

slides, covered with a glass cover slip and sealed with nail polish to prevent evaporation. A 

dual-channel laser confocal system (MRC 1024 UV, Biorad, USA) mounted on an Axiovert 

100 Zeiss inverted microscope and equipped with Ar-Kr lasers was used for the trials. The 

Ar-Kr lasers emitted polarized light with a wavelength of 568 nm exciting the Rhodamine-

labeled proteins. Images were taken using a 40x water immersion objective and a 100x oil 

immersion objective. To obtain a representative structure 15 micrographs of each sample 

were taken. The sizes of the inclusions (highest length or area) were quantified using the 

software Image J. for Macintosh. 

 

3. Results and discussion 

3.1. Visual appearance and volume ratio of biopolymers mixed solution after 

centrifugation. 

The visual appearance of the mixtures (MS) after centrifugation in test tubes at 

60000 x g during 60 minutes at 25 °C can be observed in Figure 2. All mixed solutions 

(MS), excluding the CG mixture formed a transparent and liquid polysaccharide rich phase 

(PSrp) after centrifugation at the top of the tube. The CG-PSrp was a translucent gel (1.6% of 

polysaccharide) that easily broke releasing water. This could be explained by the gellan 

ability to form brittle gels at concentrations higher than 1%. The mixtures containing κ-
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carrageenan (CC, SC) and the SA mixture formed opaque and gelified protein rich-phases 

(PRrp) at the bottom of the tubes. Such gels were apparently harder for the SPI systems, 

while the CC-PRrp gel was a more deformable one. The mixed systems containing gellan 

(CG and SG) formed a liquid PRrp. The CA mixture formed a highly viscous and opaque 

PRrp. 

 

a) CA 

PSrp: liquid 

PRrp: liquid 

b) CC  

PSrp: liquid 

PRrp: gel 

c) CG  

PSrp: gel 

PRrp: liquid 

d) SA2  

PSrp: liquid 

PRrp: gel 

e) SC2  

PSrp: liquid 

PRrp: gel 

f) SG  

PSrp: liquid 

PRrp: liquid 

Figure 2. Visual appearance of the mixtures after centrifugation at 60000g during 60 min. 

The analysis of the volume ratio adds information for the determination of the tie-

lines of a phase diagram. The volume ratio method was developed for a liquid-liquid phase 

separation (Polyakov et al., 1980). However, some protein-polysaccharide mixtures 

resulted in a liquid-gel phase separation (Figure 2), being necessary to check the precision 

of the mentioned method. The experimental phase volume ratio (VRexp) was determined 

using the measured volumes of the phases (Table 5). The volume ratio was also calculated 

(VRcalc) based on the protein concentration of MS, PSrp and PRrp. A specific procedure to 
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withdraw the phases was done for each mixture, as the separated phases showed different 

properties (Figure 2). The top and bottom phases separated from CA and CC mixtures were 

withdrawn by means of a pipette. For SA and SC mixtures the top phase was taken out by 

means of a pipette and the gelified bottom phase was removed with a spatula. The gelified 

CG-PSrp was taken out before the liquid protein rich-phase. The SG mixture probably had 

very low interfacial tension as it was easily remixed. Thus, it was first withdrawn half of 

the PSrp, then the whole PRrp and finally the rest of the PSrp using pipettes. 

Table 5. Volume ratio obtained by measuring the phase volume (VRexp) and calculated 

from protein concentration in each phase (VRcalc). 

 CA CC CG SA2 SC2 SG 

VRexp [%] 81.70 ± 1.20 70.64 ± 0.41 17.42 ± 3.53 91.98 ± 0.32 86.93 ± 1.05 76.90 ± 0.51 

VRcalc [%] 79.93 68.17 5.37 91.59 86.10 84.93 

 
The systems of CA, CC, SA2 and SC2 exhibited differences between VRcalc and 

VRexp lower than 2.5%. The differences between VRcalc and VRexp for the systems 

containing gellan were 8% (SG) and 12% (CG). Such differences would be related to the 

difficult to withdraw the phases, which affected the determination of biopolymers 

concentration. In addition, the volume measurement of the CG system was not easy 

because the phase boundary showed some flat parts and others with an inclination (Figure 

2c). However, in spite of the experimental difficulties, it can be considered that the results 

showed a reasonable agreement. In this way, it can be concluded that the visual method for 

volume determination was very good and that in some cases it could be extended to gelified 

systems. It is also interesting to note that the range of VR as between 70-90%, except for 

CG mixture. This revealed that the volumes of the polysaccharide phase were usually much 

higher than the volume of PRrp due to the higher hydrophilic character of the 
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polysaccharides as compared with proteins. In the CG system this did not happen because 

of the gelling ability of gellan at high concentration, such that polymer-polymer 

interactions would prevail over the polymer-water one. 

3.2. Chemical analysis, rheology and microscopy of MS systems and their rich-phases 

In the following sections it will be discussed the rheological and phase behaviour of 

MS systems. The degree of separation achieved by centrifugation was evaluated by 

examining samples of the top and bottom phase under a confocal microscope and by 

chemical characterization of protein and polysaccharide content. 

3.2.1. SPI - Na-alginate mixtures 

Figure 3 shows the tie-line of the SA2 system obtained by chemical analyses of MS, 

PRrp and PSrp and the corresponding micrographs made with CSLM. The protein and 

polysaccharide concentrations were respectively 3.0% and 2.5% for MS, 1.2% and 2.6% 

for PSrp and 22.5% and 1.0% for PRrp, with a mass balance relative error smaller than 4%. 

The micrographs show white areas that contain fluorescent protein stained by Rhodamine 

B, while the dark areas indicate the absence of protein. The micrograph of MS sample 

showed a polysaccharide continuous phase containing several irregular shaped protein 

aggregates with sizes lower than 10 µm. Fluorescence was regularly distributed for PRrp 

sample indicating that the protein was homogenously distributed in the sample. Black 

regions devoid of protein can be pointing out to the presence of concentrated 

polysaccharide (the maximum region size of 6 µm). The PSrp contained spherical protein 

aggregates with diameters up to 4 µm  (Figure 3). The equilibrium between the phases is 

achieved when both phases are free of inclusions even when observed at high 
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magnification, such as 100x (Simeone et al., 2004). Thus, the previous structural 

observations of PRrp and PSrp indicated that complete separation was not reached with the 

centrifugation conditions used here. 

Figure 3. Confocal micrographs at 25 oC of the mixed solution, protein and polysaccharide 

rich phases of SA2 (SPI - Na-alginate) system. Squares are experimentally determined 

biopolymer concentrations of MS, PRrp and PSrp. The light regions in the micrographs 

indicate protein area, scale bar = 50µm. 

Dynamic (Figure 4a) and steady state (Figure 4b) rheological measurements were 

performed for the SA2 system. The mixed solution and the PSrp exhibited similar 

rheological properties at both small and high deformation measurements. The mechanical 

spectrum of these samples showed diluted solution behaviour with loss modulus (G’’) 

higher than storage modulus (G’) over the entire frequency range, but approaching each 

other at higher frequencies without moduli crossover (Steffe, 1996). Flow curves for these 

samples (Figure 4b) exhibited Newtonian behaviour up to 10 s-1, with a constant apparent 
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viscosity (η) value of 0.8 Pa.s. In addition, a slightly shear-thinning behaviour was 

developed at higher shear rate values. The protein rich phase behaved as gel-like materials 

(Figure 4a) with the G’ values higher than G’’ values, although at low frequencies G’ was 

only two times greater than G’’. This protein phase was shear-thinning and it was not 

possible to observe the zero shear viscosity value in the studied shear rate range (Figure 

4b). In addition, it was observed thixotropy in such systems (results not shown) probably 

due to the rupture or rearrangements of the gel network after shear. 

  

Figure 4. Frequency sweep (a) and flow curve (b) for SA2 system (SPI 3% – Na-alginate 

2.5%) mixed solution ( ) and the rich protein ( ) and polysaccharide ( ) phases after 

centrifugation at 60000g for 1h. Closed symbols correspond to G’(ω) and open symbols 

correspond to G”(ω) or η. 

A second SA mixture (SA1) containing lower amount of polysaccharide (1.5%) was 

examined through CLSM to check the effect of polysaccharide/protein ratio on the degree 

of phase separation. In addition, the rheological behaviour of this system before and after 

centrifugation was examined at small and high deformations. The structure of PRrp from 

SA1 (Figure 5) resembled to the micrograph observed for PRrp from SA2 (Figure 3). 
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However, less dark regions could be detected in the protein rich phase of SA1, indicating a 

better phase separation. The reduction of the polysaccharide content in MS did not have a 

strong effect on the dynamic rheological behaviour (Figure 6a). The G’ and G’’ curves for 

protein and the polysaccharide rich phases were shifted to lower values.  

 

Figure 5. CLSM micrograph of PRrp obtained from SA1 mixture 

  

Figure 6. Frequency sweep (a) and flow curves (b) for SA1 system (SPI 3% – Na-alginate 

1.5%), mixed solution ( ), protein ( ) and polysaccharide ( ) rich-phases after 

centrifugation at 60000g for 1h. Closed symbols correspond to G’(ω) and open symbols 

correspond to G”(ω) or η. 
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The zero shear viscosity values decreased by a factor of 2 for MS and ~4 for PSrp 

(Figure 6b). The lower viscosity of the MS probably assisted a higher degree of phase 

separation during centrifugation as noticed in Figure 5. The PRrp–SA1 showed a different 

behaviour, being observed two plateau regions. The first one at low shear rate corresponded 

to the zero shear viscosity, whereas the second one could be attributed to slippery effects 

(Pal, 2000) due to syneresis observed visually. In addition, the viscosity of PRrp of SA1 was 

greater than that of SA2 independent of the shear rate. This could be attributed to a more 

interconnected protein network, with less polysaccharide inclusions and is another 

indication of the greater degree of phase separation achieved in SA1 as compared to SA2. 

3.2.2. SPI - carrageenan mixtures 

The biopolymer concentrations of all SC1 and SC2 systems were measured and 

plotted (Figure 7). The content of protein (Cpr) and polysaccharide (Cps) of the SC2 system 

was respectively 3.1% and 2.2% in the mixed solution, 16.2% and 1.7% in the protein rich 

phase and 1.0% and 2.4% in the polysaccharide rich phase, with the mass balances error 

lower than 6%. The Cpr and Cps of the SC1-system were, respectively, 3.0% and 1.4% in 

MS, 14.3% and 1.0% in the protein rich phase and 1.3% and 1.4% in the polysaccharide 

rich phase, with the mass balances error lower than 4.5%.The position of the tie-lines 

indicated that the phase separation of the SC2-system was not complete, since the PRrp of 

SC2 and SC1 could never be onto the same binodal. Tolstoguzov (1995) described that the 

tie-lines for a ternary protein-polysaccharide-water system could be asymmetric. In 

addition, the tie-lines could converge into a single point for gelling systems. 
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Figure 7. Confocal micrographs at 25 oC of the mixed solution, protein- and 

polysaccharide-rich phases of SC1 and SC2 (SPI – Carrageenan) systems. Closed symbols 

are experimentally determined biopolymer concentrations of MS, PRrp and PSrp. The light 

regions in the micrographs indicate protein area, scale bar = 50µm. 

The mixed solution of SC2 showed both irregular shaped (< 10 µm) and spherical 

(diameter < 15 µm) aggregates of protein. In contrast, mixed solution of SC1 did not 

contain spherical aggregates but only irregular shaped ones, which formed bigger and 

elongated secondary structures with up to 30 µm length. The lower viscosity of SC1 

associated with the lower amount of polysaccharide in the mixed solution (see Figures 8 
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and 9 below) probably let to the formation of protein assemblies. In addition, Simeone et al. 

(2004) showed that the interfacial tension between the coexisting phases has a direct linear 

dependence with the length of the tie-line, which could explain the formation of spherical 

protein inclusion in the initial mixture of SC2. The micrograph of PSrp of SC2 showed 

inclusions of protein with a size up to 2 µm, whereas the micrograph of PSrp of SC1 was 

black and devoid of protein. That was another evidence for the lower level of phase 

separation for SC2. A gelified particulated structure could be observed for PRrp (Figures 2 

and 7) in contrast with the fine stranded gel observed for the PRrp of SA2 (Figures 2 and 3).  

In Figure 8a the elastic and loss moduli of the SC1 system are shown as a function 

of frequency. The mechanical spectrum of the protein rich phase showed a gel-like 

structure with G’(ω) greater than G’’(ω) and slightly dependent on frequency. The mixed 

solution and the polysaccharide rich phase exhibited diluted solution behaviour with an 

estimated cross-over point (at 1000 s-1) far away from the highest examined frequency. The 

flow behaviour of the SC1 system shown in Figure 8b was similar to the one of the SA1 

system (Figure 6). The protein rich phase showed shear-thinning behaviour (Figure 8b) and 

exhibited slippage at low shear rates. The mixed solution and the polysaccharide rich phase 

showed both zero shear viscosity of 0.2 Pa.s. 
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Figure 8. Frequency sweeps (a) and flow curves (b) for SC1-system (SPI 3% – carrageenan 

1.4%) mixture ( ), protein ( ) and polysaccharide ( ) rich-phases after centrifugation at 

60000g for 1h. Closed symbols correspond to G’(ω) and open symbols correspond to 

G”(ω) or η. 

The oscillatory and steady state rheological behaviour of the SC2 system are shown 

in Figure 9. The protein rich phase of SC2 was highly shear-thinning (Figure 9b). In 

contrast to SC1, the zero shear viscosity of the mixed solution was greater than the one of 

PSrp, both exhibiting a first Newtonian plateau up to around 10 s-1. In addition, the SC2 

initial mixture showed a Newtonian viscosity 10-fold greater than that found for SC1 

mixture. It is interesting to note that the flow characteristics of PRrp of SPI-polysaccharide 

systems containing the same amount of biopolymers (SA1 and SC1 / SA2 and SC2) were 

very similar. 
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Figure 9. Frequency sweeps (a) and flow curves (b) for SC2-system (SPI 3.1% – 

carrageenan 2.2%) mixture ( ), protein ( ) and polysaccharide ( ) rich-phases after 

centrifuging at 60000g for 1h. Closed symbols correspond to G’(ω) and open symbols 

correspond to G”(ω) or η. 

The protein rich phase exhibited weak gel-like properties. The mixed solution and 

the polysaccharide rich phase exhibited similar mechanical spectrum. A “shoulder” in the 

G’(ω) curves was observed indicating an increase in the elasticity at low frequencies. 

Capron et al. (2001) and Simeone et al. (2002) also observed a “shoulder” in the G’(ω) 

curve, which was associated to a terminal relaxation time of the blend of viscoelastic 

liquids and attributed to the relaxation of shape of the droplets. The increase of the 

elasticity at lower frequencies was more pronounced for MS than for PSrp. In addition, this 

phenomenon was not observed in SC1 system. For the latter system, there were not any 

spherical protein aggregates for MS (Figure 10) and any protein inclusions could be 

observed in PSrp micrograph. The above results indicated that the “shoulder” phenomenon 

was related to the morphological characteristics and to the degree of interfacial tension of 

the system, while its intensity was also influenced by the volume fraction.  
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3.2.3. SPI - gellan mixture 

The biopolymer concentrations of the SG system were measured, plotted and put 

together with the corresponding micrographs (Figure 10). The protein and the 

polysaccharide concentrations of the SG system were respectively 4.8% and 0.39% for 

the mixed solution, 7.6% and 0.25% for the protein rich phase and 4.3% and 0.48% for 

the polysaccharide rich phase, with mass balances error lower than 10%.  

 

Figure 10. Confocal micrographs at 25 oC of the mixed solution, protein and polysaccharide 

rich phases of SG (SPI - Gellan) system. Squares are experimentally determined 

biopolymer concentration of MS, PRrp and PSrp. The light regions in the micrographs 

indicate protein area, scale bar = 50µm. 

In the micrograph of MS and PRrp the fluorescence was regularly distributed 

indicating that the SPI particles were homogenously distributed in all the samples. 

However, the PSrp micrograph was similar to the above ones, which could be due to some 
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protein dissolved in the polysaccharide rich phase. It was not possible to determine the 

degree of phase separation from the micrographs of the rich phases, since it was not 

observed any inclusions and the polysaccharide molecule was not stained. The 

homogeneity of all micrographs could be attributed to the low interfacial tension between 

the coexisting phases. In addition those coexisting phases were unstable, which means that 

they could easily be remixed to form a homogeneous solution.  

The mechanical spectra (Figure 11a) of SG systems indicated that G’’ was greater 

than the corresponding G’ over all frequency range for all samples. The protein rich phase 

exhibited the lowest G’ and G’’ values. The PSrp and MS samples showed a semi-diluted 

solution behaviour as the G’ and G” cross-over point was estimated to be at a frequency 

near 10 s-1.  

  

Figure 11. Frequency sweeps (a) and flow curves (b) for SG (SPI 4.8% - Gellan 0.4%) 

mixture ( ), protein ( ) and polysaccharide ( ) rich-phases after centrifugation at 

60000g for 1h. Closed symbols correspond to G’(ω) and open symbols correspond to 

G”(ω) or η. 
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The flow curves of the SG system are shown in Figure 11b. The polysaccharide rich 

phase exhibited shear thinning behaviour with a first Newtonian plateau at viscosity of 0.8 

Pa.s until a shear rate close to 1 s-1. The slippage phenomenon was observed for the mixed 

solution, making not possible to determine the first Newtonian plateau. The viscosity values 

of this flow curve were significantly lower than that of the polysaccharide rich phase up to 

50 s-1, but the curves fell on a single curve from this value. The protein rich phase exhibited 

Newtonian flow behaviour with a viscosity of 0.01 Pa.s. 

3.2.4. Na-caseinate - gellan mixture 

Figure 12 shows the tie-line and the corresponding micrographs of the CG system. 

The tie-line data were obtained by measuring the protein and polysaccharide concentrations 

of the mixed solution (CPR = 5.0 %, CPS = 0.37 %), protein rich phase (CPR = 5.2 %, CPS = 

0.18 %) and polysaccharide rich phase (CPR = 3.0 %, CPS = 1.6 %). The mass balances for 

the protein showed an error of 6%, while the polysaccharide exhibited an error of 20 %. 

These values confirm the above discussion about the difficulties associated with the phase 

collection for such system.  

The CLSM micrograph of the mixed solution exhibited regularly distributed 

fluorescence indicating that the proteins and polysaccharide were completely homogenized 

(Figure 12). The micrograph of the protein rich phase was similar to the one of the mixed 

solution, and it was not possible to optically determine the degree of phase separation. The 

micrograph of the polysaccharide rich phase exhibited a black background with spherical 

and ellipsoidal white aggregates of proteins with diameters up to 10 µm. The shape of those 

inclusions could be attributed to the high interfacial tension between the gelified 

polysaccharide phase and the liquid protein one. In addition, when dealing with a gelling 
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polysaccharide, the structure of the inclusions is mainly determined by the gelling process 

rate. 

 

Figure 12. Confocal micrographs at 25 oC of the mixed solution, protein and polysaccharide 

rich phases of CG (Na-caseinte - Gellan) system. Squares are experimentally determined 

biopolymer concentration of MS, PRrp and PSrp. The light regions in the micrographs 

indicate protein area, scale bar = 50µm. 

Figure 13a shows the mechanical spectra of the CG system, which exhibited three 

different types of rheological behaviour as described by Steffe (1996). The mixed solution 

presented properties of a concentrated solution with an estimated cross-over point between 

storage (G’) and loss modulus G” at around 3 s-1. The liquid protein rich phase showed 
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properties of a diluted solution, since G’ values were lower than G” over the entire 

frequency range. The G’ values of the PSrp was greater than G’’ indicating the gel-like 

behaviour.  

  
Figure 13. Frequency sweeps (a) and flow curves (b) for CG (Na-caseinate 5% – gellan 

0.4%) mixture ( ), protein ( ) and polysaccharide ( ) rich-phases after centrifugation at 

60000g for 1h. Closed symbols correspond to G’(ω) and open symbols correspond to 

G”(ω) or η. 

The flow curves of the CG system (Figure 13b) confirmed the different 

characteristics of MS, PRrp and PSrp. The PSrp system showed shear thinning character from 

the very low shear rate. The mixed solution could also be characterized as shear thinning 

fluid but with a first Newtonian plateau up to 0.5 s-1 and a Newtonian viscosity of 0.6 Pa.s. 

At high shear rates (>100 s-1) it could be observed a viscosity tendency to attain the second 

Newtonian plateau. The protein rich phase was Newtonian, being the viscosity value equal 

to 0.012 s-1.  

3.2.5. Na-caseinate – Na-alginate mixture 
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The measured biopolymer concentrations of the CA system (Figure 14) were 

CPR = 2.9% and CPS = 2.3% in the mixed solution, CPR = 14.7% and CPS = 0.4% in the 

protein rich phase and CPR = 0.3% and CPS = 2.7% in the polysaccharide rich phase, with 

mass balances error lower than 5%. The tie-line presented in Figure 14 is in quantitative 

agreement with previous results available in the literature (Simeone et al., 2004, Antonov et 

al., 2004). However, the work done by Capron et al. (2001) showed a greater protein 

concentration in PSrp than the present work. Studies about phase separation of CA mixture 

are done with different centrifugation conditions, varying from 15000 x g / 3 h (Capron et 

al., 2001) up to 100000 x g / 15 h (Simeone et al., 2004). In the present work, it was used 

the mild condition of 60000 x g / 1h, as that used by Antonov et al. (2004). Thus, the 

differences found in the phase composition could be attributed to incomplete phase 

separation, since a centrifugation at 15000 x g / 3 h is equivalent of 60000 g / 30 min that is 

half of the time used in the present work. This is supported by the fact that Simeone et al. 

(2004) observed an incomplete phase separation for a high viscous CA mixture even at 

100000 x g / 15h. 

The micrograph of the mixed solution (Figure 14) showed spherical protein 

aggregates of different sizes with diameters up to 20 µm. The protein in the PRrp 

micrograph was regularly distributed without black areas. In the polysaccharide rich phase 

no aggregated protein could be noticed as the micrograph showed a continuous black 

colour without any white region. These micrographs indicated that complete phase 

separation was reached during the process of centrifugation. High interfacial forces were 

assumed to cause the spherical shape of the protein aggregates in the mixed solution, since 
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the obtained tie-line was localized far from the critical point (Capron et al., 2001, Antonov 

et al., 2004). 

 

 

Figure 14. Confocal micrographs at 25oC of the mixed solution, protein and polysaccharide 

rich phases of CA (Na-caseinte – Na-alginate) system. Squares are experimentally 

determined biopolymer concentration of MS, PRrp and PSrp. The light regions in the 

micrographs indicate protein area, scale bar = 50µm. 

The mixed solution, the protein rich phase and the polysaccharide rich phase of the 

CA system were liquid and the storage moduli were smaller than the loss moduli (Figure 

15). The mixed solution and the polysaccharide rich-phase exhibited diluted solution 

behaviour with similar G”(ω) values. The storage modulus of the mixed solution formed a 

slight “shoulder” exhibiting increased G’ values in the frequency range of 0.05-0.26 s-1. 

Capron et al. (2001) and Simeone et. al. (2002) also observed this kind of shoulder for CA 
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mixtures. In both cases the Palierne equation (Palierne, 1990) was well fitted to the data. 

This phenomenon indicated the existence of dispersed particles in a continuous phase and 

confirmed the observations done for MS micrograph (Figure 14). The protein rich phase 

exhibited the greatest G’ and G’’ values of the CA system, with a estimated cross-over 

point close to 10 s-1, indicating the properties of a semi-diluted solution.  

The flow curves for all the samples of the CA system (Figure 15b) exhibited a 

Newtonian plateau at low shear rates, shear thinning behaviour at higher deformations and 

no slippage was noticed. The flow curve of the mixed solution (η0 = 2 Pa.s) was closed to 

that of the polysaccharide rich phase (η0 = 1 Pa.s) and both Newtonian plateau ended at a 

shear rate of about 10 s-1. The protein rich phase (η0 = 19 Pa.s) exhibited constant viscosity 

values until a shear rate of 1 s-1, being all viscosities values about 10-fold greater than those 

obtained for MS. 

 

Figure 15. Frequency sweeps (a) and flow curves (b) for CA (Na-caseinate 2.9 % – Na-

alginate 2.3 %) mixture ( ), protein ( ) and polysaccharide ( ) rich-phases after 

centrifugation at 60000g for 1h. Closed symbols correspond to G’(ω) and open symbols 

correspond to G”(ω) or η. 
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3.2.6. Na-caseinate – carrageenan mixture 

Figure 16 shows the experimental values of biopolymer concentrations in the mixed 

solution (CPR = 2.9%, CPS = 2.0%), protein rich phase (CPR = 8.4%, CPS = 0.8%) and 

polysaccharide rich phase (CPR = 0.3%, CPS = 2.5%) together with their corresponding 

micrographs, with mass balances error lower than 5%.  

 

Figure 16. Confocal micrographs at 25oC of the mixed solution, protein and polysaccharide 

rich phases of CC (Na-caseinate – κ-carrageenan) system. Squares are experimentally 

determined biopolymer concentrations of MS, PRrp and PSrp. The light regions in the 

micrographs indicate protein area, scale bar = 50µm. 
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The micrograph of the protein rich phase showed a background with regularly 

distributed fluorescence indicating prevalent protein presence. Round and irregular shaped 

regions devoid of protein, with a wide range of size up to 35 µm, indicated inclusions of 

polysaccharide. The micrograph of the polysaccharide rich phase exhibited sprinkled 

aggregates of protein smaller than 1.5 µm. A phase inversion was noticed between the 

protein rich phase and the polysaccharide rich phase. In a phase diagram if one moves 

along the tie-line, the composition of the two phases stay the same but their relative 

volumes change according to the relative length of the tie-line to the binodal (Norton and 

Frith, 2001). The mixed solution exhibited irregular shaped protein aggregates in a 

continuous polysaccharide rich phase, being the highest inclusion size up to 35 µm. This 

sample looked like an emulsion during the coalescence step as can be seen some regions 

with elongated structures made of attached droplets, which was interpreted as the initial 

step of the phase inversion.  

The mechanical spectra of the CC system are shown in Figure 17. The protein rich 

phase behaved like a gel, being G’ greater than G’’ over the entire frequency range (Figure 

17a). This result agrees with the observed CLSM micrographs (Figure 16) since the round 

shape of the polysaccharide inclusions could be attributed to the high interfacial tension 

between a liquid and a gel. The polysaccharide rich phase showed a semi-diluted solution 

behaviour with estimated cross-over points between G’ and G’’ near to the highest 

frequency evaluated, 10 s-1 (Figure 17b). The mixed solution exhibited a “shoulder” in the 

storage modulus curve at the low frequency region (Capron et al., 2001; Simeone et al., 

2002, Palierne, 1990). In addition, a second overlapping “shoulder” could be observed 

increasing the frequency. From the MS micrograph (Figure 16) it can be supposed that the 
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second “shoulder” is somehow associated to the coalescence process of the dispersed 

phase. 

At high shear rate region MS, PRrp and PSrp samples exhibited similar viscosity, 

whereas at low shear rate their flow behaviours were quite different (Figure 18). The 

viscosity value of PRrp was 44 Pa.s at low shear rate and decreased sharply as the shear rate 

was increased, which is typical of a shear-thinning behaviour. The MS showed similar zero 

shear viscosity but a shorter Newtonian plateau than PSrp. However, the similar behaviour 

of MS and PSrp at large deformation was not observed in small deformation experiments 

(Figure 17). This suggests that the characteristics, such as shape and size, of the dispersed 

phase can not be quantified by large deformation rheological properties. 

  

Figure 17. Frequency sweeps for CC (Na-caseinate – carrageenan). A) Mixture ( ) and the 

protein rich phase ( ), B) polysaccharide rich phase ( ). Closed symbols correspond to 

G’(ω) and open symbols correspond to G”(ω).  

 

 



Chapter 5– 1st part 
______________________________________________________________________________________________________________ 

 204

 

Figure 18. Flow curves for CC (Na-caseinate – carrageenan) mixture ( ), protein ( ) and 

polysaccharide ( ) rich-phases after centrifugation at 60000g for 1h. 

 

3.3. Comparison of the characteristics of MS, PRrp and PSrp systems 

The tie-lines of the studied systems are shown in Figure 19. The systems containing 

SPI exhibited tie-lines with greater slope than the systems containing Na-caseinate 

independent on the investigated polysaccharide. The tie-line slope gives information about 

the hidrophilicity of the used biopolymers and the solvent quality. A decrease of the tie-line 

declination indicates an increase of both the polysaccharide hydrophilicity and the protein 

hidrophobicity. Thus, the results shown in Figure 19 indicated that SPI was more 

hydrophobic than Na-caseinate. Grinberg and Tolstoguzov (1997) observed that the 

soybean globulin was more hydrophobic than casein from the phase diagram asymmetry. 

The higher hydrophobicity of SPI enhanced the association of the protein molecules during 

the centrifugation of systems containing Na-alginate and κ-carrageenan, which resulted in 

the gelation of the PRrp. 
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Figure 22. Phase composition for different protein-polysaccharide mixtures. CG ( ), CA 

( ), CC ( ), SG ( ), SA2 ( ), SC2 ( ),SC1 ( ). Continuous line is the tie-line for SPI 

systems, dashed line is the tie-line for Na-caseinate systems. 

The density difference for all kind of studied systems was calculated (Table 6) in 

order to have more information on the properties of phase behaviour. The density values 

were calculated from the mixing rule (Equation 7) and the density relations as a function of 

concentration for each biopolymer (Chapter 3 – 1st part). 

ρrp = ρPR ⋅φ + ρPS ⋅ (1− φ)  (7) 

where ρ (g/L) is the density φ is the protein mass fraction in the coexisting phase. The 

subscripts PR, PS, rp correspond, respectively, to protein, polysaccharide and rich phase. 

The tie-line slope (Figure 19) was inversely proportional to the density differences 

(∆ρ) of the coexisting phases (Table 6) for MS of CA, CC, SA2 and SC2. Antonov et al. 

(2004) investigated the relation between ∆ρ and the interfacial tension for different tie-lines 

of CA systems. These authors observed a non-linear (power) dependency of interfacial 

tension on ∆ρ with a power equal to 3.1. Therefore, the magnitude order of the interfacial 

tension was estimated using a power of 3 predicted by the mean-field theory (Rowlinson 
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and Widon, 1984) and such values are shown in Table 6. The calculated ∆ρ as well as the 

estimated order of the interfacial tension for CA system were in agreement with other 

works (Simeone et al., 2004, Antonov et al., 2004, Capron et al., 2001, Guido et al., 2002), 

such that this method was extended to the other systems studied here. 

The systems containing gellan exhibited very low ∆ρ (up to 8 g/L) indicating an 

extremely low interfacial tension of the order 10-10 and 10-8 N/m. These interfacial tension 

orders usually are found for systems located on the phase diagram closed to the critical 

point (Antonov et al., 2004). Such results explain the difficulties associated to the 

withdrawing of the phases and the homogeneous microstructure observed for PRrp and MS 

of CG and for PRrp, PSrp and MS of SG. The systems containing κ-carrageenan and alginate 

showed higher interfacial tension than gellan samples with values orders up to 10-5 N/m. 

The meaning of these data could be better understood by analyzing the density difference 

values. Comparing ∆ρ values of those systems it was noticed three distinct groups, being 

∆ρ of CC equal to 12.7 g/L, around 35 g/L for CA and SC, while the ∆ρ of SA2 was 56.9 

g/L. From all these systems, CA was the only one that formed two liquid rich-phases. In 

spite of that, the rich phases of CA exhibited a high ∆ρ value comparable to the values of 

SC, which formed a visual strong gel protein rich phase and a liquid polysaccharide rich 

phase explaining its high interfacial tension. These particular properties of the CA systems 

made the phase separation and withdrawing less difficult, which probably led to a great 

number of works to use such system as a model. 
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Table 6. Density difference and magnitude order of interfacial tension of coexisting phases 

of different protein-polysaccharide mixtures 

System Density difference (g/L) Order of int. tension (N/m) 

SG 1.7 10-10 

CG 7.4 10-8 

CC 12.7 10-7 

CA 31.9 10-6 

SC1 36.2 10-6 

SC2 36.8 10-6 

SA2 56.9 10-5 

 
In the present study, the SC1 system showed a complete phase separation as 

revealed from the absence of protein inclusions in the PSrp micrograph (result not shown). 

However, the phase separation was not complete for SC2 system, which could be partially 

attributed to the highest apparent viscosity of MS. Few works in the literature showed that 

the mixture viscosity affects the degree of phase separation (Clark, 2000, Simeone et al., 

2004, Cavallieri, 2003). Thus, the time and/or velocity of centrifugation should be adapted 

considering the mixture viscosity, in order to obtain a complete phase separation. 

Moreover, the centrifugation conditions shown in the literature are completely different for 

the same system (Section 3.2.5), indicating that there is not unanimity on that task. 

Figure 20 shows the storage modulus (G’) at 0.1 Hz, the zero shear viscosity for 

PRrp of CA, SA2, SC2 and CC as well as the maximum area of each single inclusion (Ai) 

observed in micrographs. The G’ and Ai values increased according to the following order 

of the systems CA<SA2<SC2<CC. The storage modulus reflects the elasticity of the sample 

and the higher values found for SA2, SC2 and CC were related to the formation of a protein 

network. When comparing the gelling systems, the differences of G’ values could be 
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ascribed to the amount of polysaccharide present in the inclusions as observed by Ai values. 

Thus, the storage modulus value of PRrp can be used as an indicator of the degree of phase 

contamination. Figure 20 shows that η0 and G’ values of the SA2-PRrp were similar to those 

obtained for the SC2-PRrp. However, the area of the inclusions increased for SC2 and the 

polysaccharide mass fraction was 2.5 fold greater indicating that the repulsive forces in this 

situation were smaller than for SA2. 

 
Figure 20. Rheological and morphological properties for the PRrp of different systems. 

The alginate was easily separated from Na-caseinate resulting in two liquid phases 

exhibiting low G’ at 0.1 Hz and any inclusions (Ai = 0 µm2). This was in accordance with 

the high non-gelling character of Na-caseinate in a pure system. In contrast, the PRrp of CC 

was a gel even with a lower protein concentration than the one found for CA-PRrp (Figure 

19). This fact indicated that the carrageenan contributed to the formation of the protein gel 

(Figure 17) by protein-polysaccharide and polysaccharide-polysaccharide interactions 

(Spagnuolo et al., 2005). The zero shear viscosity of PRrp of CC was quite the same to the 

one found for CA. This indicates that the protein network of CC-PRrp was the most elastic 

but exhibited a great capacity of rearrange due to the low viscosity. Those results suggested 



Chapter 5– 1st part 
______________________________________________________________________________________________________________ 

 209

that κ-carrageenan was more compatible with both soy protein and Na-caseinate than Na-

alginate. 

4. Conclusion 

The results showed that SPI was more hydrophobic than the Na-caseinate, which 

induced the gelation of the protein rich phase of systems containing Na-alginate and κ-

carrageenan. However, SPI-gellan sytems did not resut in gelified rich-phases, suggesting 

that gellan could be used as a thickner agent in soy products. In the presence of Na-alginate 

the SPI showed lower amount of polysaccharide inclusions as compared to the mixture of 

SPI with κ-carrageenan. κ-Carrageenan contributed to the formation of a gelified protein 

rich-phase by interaction with Na-caseinate. In the other hand, this polysaccharide was 

easily separated from Na-caseinate. The results indicated that κ-carrageenan was more 

compatible with SPI and Na-caseinate than Na-alginate.  

The confocal micrographs revealed different degree of separation for a fixed 

centrifugation condition (60000 g during 1 h). Thus, the type of biopolymer and its 

concentration affected the degree of phase separation, which was attributed to the delaying 

effect of the viscosity on the separation process. Therefore, the time and/or velocity of 

centrifugation should be adapted considering the mixture viscosity in order to obtain a 

complete phase separation. The rheological behaviour of the systems varied from a diluted 

solution to a gel. An increase of system elasticity was observed for systems that showed 

round shape inclusions, which is typical of water-in-water emulsions. 
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Abstract 

Rheo-SALS and CLSM experiments were performed to characterize different mixtures of 

proteins and polysaccharides at rest and under shear. The results indicated that Na-caseinate 

– Na-alginate mixture showed a greater capacity to form water-in-water emulsions than Na-

caseinate - carrageenan system. In addition, the system with SPI and Na-alginate also 

formed emulsions but with a gelified protein dispersed phase. The interfacial tension of 

systems containing gellan was very low resulting in homogeneous mixtures and no 

scattered light was observed by SALS. 

Keywords: proteins, polysaccharides, rheo-SALS, CLSM, rheology. 

 

1. Introduction 

Aqueous mixtures of proteins and polysaccharides are commonly found in food 

products. However, these two kinds of biopolymers are usually incompatible showing 

segregative phase separation at pH 7.0. Sometimes microscopically phase separation can 

arise with interesting morphology, which can vary from elongated to droplet-like structures. 

In that kind of systems, each phase is highly enriched with one of the two biopolymers. 

When droplet-like morphology is formed the system can be regarded as emulsion of the 

water-in-water type (Tolstoguzov, 1986). The presence of biphasic morphology is essential 

for the mixture be able to mimic the properties of fat in food products (Capron et al., 2001). 

In addition, some studies have been carried out on the gelation of the dispersed phase (Wolf 

et al., 2000; Lundell et al., 2004) in order to produce new attractive textures. 

The rheological behaviour of aqueous biopolymer mixtures is quite different from 

that of a pure biopolymer solution due to the hydrodynamic influence of the dispersed 
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phase (Simeone et al., 2002). The interfacial tension is considered as the most important 

property to maintain an emulsion-type structure (Van Puyvelde et al., 2002). However, an 

interesting feature of these systems is the extremely low interfacial tension that is around 

0.1-100 µN/m. This fact adds a greater complexity when dealing with such systems.  

Nowadays, big effort has been paid to elucidate the interfacial tension of biphasic 

systems as well as their behaviour under shear. For that purpose the technique of drop 

shape analysis (Guido et al., 2002) or rheo-optical methods (Mewis et al. 1998 and Van 

Puyvelde et al., 1998) based on small angle light scattering (SALS) patterns have been 

used. The most studied systems in the last years have been sodium alginate - sodium 

caseinate (Capron et al., 2001; Guido et al., 2002; Antonov et al., 2004), κ-carrageenan – 

gellan (Wolf et al., 2000), gelatin – dextran (Ding et al., 2002; Scholten et al., 2002), 

gelatin – arabic gum (Scholten et al., 2004) and gelatin – maltodextrin (Lundell et al., 

2004). However, the morphology of some important aqueous mixtures for the food industry 

has not been studied yet, such as mixtures containing xanthan, galactomannans and soy 

proteins. 

The objectives of this work were 1) to characterize morphologically at rest and 

under shear different mixtures of proteins and polysaccharides prepared after phase 

separation in order to discuss the formation of water-in-water emulsions, 2) to demonstrate 

that complementary techniques like CLSM and rheo-SALS should be used together to get 

complete information about the morphology of these systems. The morphology at rest was 

observed by confocal microscopy. Such measurements were supplemented with qualitative 

observations of SALS patterns under shear. The polysaccharides investigated were xanthan, 
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locust bean gum, gellan, κ-carrageenan and sodium alginate, while sodium caseinate and 

soy protein isolate (SPI) were used as protein source.  

2. Material and methods 

2.1. Material 

The proteins used to prepare the model systems were casein (Sigma Chemical Co., 

USA) and soy protein isolate (SPI) obtained from defatted soy flour (Bunge Alimentos 

S.A., Brazil). The polysaccharides used were sodium (Na)-alginate, κ-carrageenan and 

gellan, all of them obtained from CP Kelco (USA). Table 1 shows the chemical 

characterization of each biopolymer. The moisture and ash contents were determined using 

the gravimetric method, in which the initial and final samples were weighed. The ash was 

obtained by heating the powder at 550oC until it becomes a carbon-free sample (AOAC, 

1996). For moisture analysis the powder was dried in a vacuum-oven at 60 oC until the 

sample weight reached a constant value. The protein content was carried out using the 

Kjeldahl method (AOAC, 1996). 

Table 1. Characterization of the biopolymers used to prepare the model systems. 

Biopolymer Moisture [%] (wet basis) Protein [N% x 6.25] 

(wet basis) 

Ash [%] (wet basis) 

Casein 6.51 ± 0.10 89.64 ± 1.55 0.84 ± 0.08 

SPI 6.44 ± 0.07 91.25 ± 0.45 3.45 ± 0.04 

Na-alginate 5.75 ± 0.21 0.44 ± 0.01 21.52 ± 0.23 

κ-carrageenan 7.84 ± 0.07 0.44 ± 0.03 15.29 ± 0.16 

Gellan 6.42 ± 0.12 0.47 ± 0.02 9.85 ± 0.02 

 
The soy proteins isolation procedure followed the method described by Petruccelli 

and Añón (1995). Defatted soy flour was dispersed in distilled water (1:10 w/w) and the pH 
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was adjusted to 8.0 with 2N NaOH. The dispersion was gently stirred for 2h at room 

temperature and then centrifuged at 10,000 x g for 30 min at 4ºC in a Sorvall RC5 Plus 

centrifuge (GSA-rotor, Dupont, UK). The supernatant was adjusted to pH 4.5 with 2N HCl 

and centrifuged at 5,000 x g (Sorvall GSA-rotor) for 15 min at 4ºC. The precipitate was 

then suspended in water and the pH adjusted to 8.0 with 2N NaOH, followed by freeze-

drying of the suspension. 

2.2. Preparation of biopolymers stock solutions 

The Na-caseinate solution was prepared by dispersing casein powder in milli-Q 

water using magnetic stirring for 2 h at a maximum temperature of 50 oC. The pH was 

constantly adjusted to 7.0 with 10M NaOH. The soy protein isolate (SPI) solution (milli-Q 

water) was prepared at room temperature by magnetic stirring until the complete powder 

hydration and the pH was adjusted to 7.0 with 1M HCl. The polysaccharide solutions were 

prepared by first dispersing the powders in milli-Q water at room temperature by magnetic 

stirring and after heating in a water bath with a fixed temperature and time (Table 2). The 

prepared solutions were immediately cooled down to room temperature in an ice bath, and 

none of them gelified after this process. The insoluble particles of proteins and Na-alginate 

solutions were separated by centrifugation in a Sigma centrifuge 3K30 (rotor no 33310 – 

Sigma Laborzentrifugen GmbH, Germany) at 60,000 x g for 60 minutes at 25°C (Antonov 

et al., 2004). The κ-carrageenan and gellan solutions did not show any insoluble particles. 

The pH of all solutions was adjusted to 7.0. The concentrations of proteins, seadweeds 

polysaccharides and gellan solutions were 8%, 4% and 1% (w/w), respectively. 

Table 2. Temperature and time used to prepare the polysaccharide solutions 

Polysaccharide Temperature (°C) Time (min) 
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Gellan (Ikeda et al., 2004) 90 60 

κ-carrageenan (Hemar et al., 2002) 90 60 

Na-Alginate (Capron et al., 2001) 70 30 

2.3. Preparation of biopolymers mixtures 

Figure 1 shows the procedure to prepare the protein-polysaccharide mixtures (MS2) 

that were morphologically characterized. A initial biopolymer mixture (MS1) was obtained 

by mixing the purified solutions of protein and polysaccharide during 1 h at room 

temperature by magnetic stirring. These solutions were poured into polycarbonate tubes of 

25 mL that were centrifuged in a Sigma centrifuge 3K30 (rotor no 33310 – Sigma 

Laborzentrifugen GmbH, Germany) at 60,000 x g for 1 h at 25°C (Antonov et al., 2004). 

The phases were then carefully withdrawn. An aliquote of 0.1 g of the protein-rich phase 

(PRrp) and of 9.9 g of the polysaccharide-rich phase (PSrp) were mixed to obtain a second 

mixture (MS2), which was analysed by confocal microscopy and rheo-SALS.  

Table 3 shows the composition (protein and polysaccharide concentrations) of the 

initial mixture (MS1) and the protein and polysaccharide rich-phases obtained after phase 

separation for different protein-polysaccharide systems. The composition of the studied 

MS2 mixtures was determined based on PSrp and PRrp composition. The system containing 

sodium alginate – sodium caseinate was taken as a reference because of the extensive 

studies already done with that system. 
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Figure 1. Procedure to prepare the protein-polysaccharide mixtures. 

Table 3. Protein (CPR) and polysaccharide (CPS) concentrations of MS1, PRrp and PSrp used 
to prepare the mixture MS2. 

Protein/polysaccharide mixture 

(nomenclature) 

Initial mixture 

(MS1) 

Protein rich-

phase 

Polysaccharide 

rich-phase 

Na-caseinate / Na-Alginate (CA) CPR = 2.9%, 

CPS = 2.3% 

CPR = 14.7%, 

CPS = 0.4% 

CPR = 0.3%, 

CPS = 2.7% 

Na-caseinate / Carrageenan (CC) CPR = 2.9%, 

CPS = 2.0% 

CPR = 8.4%, 

CPS = 0.8% 

CPR = 0.3%, 

CPS = 2.5% 

Na-caseinate / Gellan (CG) CPR = 5.0%, 

CPS = 0.4% 

CPR = 5.2%, 

CPS = 0.2% 

CPR = 3.0%, 

CPS = 1.6% 

SPI / Na-Alginate (SA) CPR = 3.0%, 

CPS = 2.5% 

CPR = 22.5%, 

CPS = 1.0% 

CPR = 1.2%, 

CPS = 2.6% 

SPI / Carrageenan (SC) CPR = 3.1%, 

CPS = 2.2% 

CPR = 16.2%, 

CPS = 1.7% 

CPR = 1.0%, 

CPS = 2.4% 

SPI / Gellan (SG) CPR = 4.8%, 

CPS = 0.4% 

CPR = 7.6%, 

CPS = 0.3% 

CPR = 4.3%, 

CPS = 0.5% 
*The values of protein and polysaccharide concentration were determined, respectively, by Kjeldhal 
(AOAC, 1996) and Phenol-sulphuric acid methods (Dubois, 1956). 

Mixed solution (MS1) 

Mixing (magnetic stirrer) 
1h, 25 °C 

Centrifugation 
60000 x g, 1 h, 25 °C (Antonov et al., 2004) 

Polysaccharide rich-phase (PSrp) 

Protein rich-phase (PRrp) 

Rheo-SALS and CLSM 
characterization of 

mixtures PRrp PSrp 

+

Mixed solution after 
phase separation (MS2) 

0,1 g 

9,9 g 

Protein 
solution 

Polysaccharide 
solution 

Phase separation procedure 
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2.4. Rheo-Small Angle Light Scattering (rheo-SALS) 

Light scattering measurements under shear were performed using a home built 

SALS set up designed for the stress controlled Rheometrics® DSR rheometer (USA). Creep 

tests in the stress range of 0.1-1000 Pa were performed during 30 s. The steady state laser 

scattering profile and apparent viscosity were obtained. Apparent viscosity versus shear rate 

data were ploted and the Cross model (Equation 1) was used to fit those data.  

γηη

ηη

k+
=

−

−

∞

∞

1

1

0
 (1) 

where η is the apparent viscosity and the subscripts 0 and , respectively, indicate the zero 

shear viscosity and the infinite Newtonian viscosity. The shear rate is referred as γ , k is a 

parameter with the dimensions of time and n is a fitting parameter that gives information 

about the degree of pseudoplasticity at η << η0 and η >> η . 

The schematic of the set up and the top view of a typical scattering profile are 

shown in Figure 2. A 5 mW He-Ne laser (Melles Griot) provided a monochromatic light of 

wavelength 632.8 nm. Using three prisms the laser beam was deflected and sent through the 

sample placed between transparent quartz parallel plates (gap = 0.5 mm). The light 

propagated through the velocity gradient direction thus probing the structure in the plane of 

flow and vorticity (Figure 2). The scattered light at small angles was intercepted on a screen 

under the sample that consists of a semi-transparent plastic. The scattering images were 

captured using a Sony CCD camera (DFW-V 500, Japan), which was mounted under the 

screen. Regarding the camera position, it was necessary to add a main beam stop in the 

plastic screen, such that the camera could record only the scattered light. 
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Figure 2. Schematic of rheo-small angle light scattering constructed for the stress controlled 

Rheometrics® DSR rheometer (a) and the top view of a typical scattering profile (b). 

2.5. Confocal laser scanning microscope (CLSM) 

The protein-polysaccharide mixtures (MS2) (Table 3) were observed under confocal 

laser scanning microscope (CSLM). Rhodamine B was added and mixed carefully with 

about 1 mL of sample. Such a fluorescent dye was used in order to stain the protein. The 

samples were placed in indentations of microscope slides, covered with a glass cover slip 

and sealed with nail polish to prevent evaporation. A dual-channel laser confocal system 

(MRC 1024 UV, Biorad, USA) mounted on an Axiovert 100 Zeiss inverted microscope and 

equipped with Ar-Kr lasers was used for the trials. The Ar-Kr lasers emitted polarized light 

with a wavelength of 568 nm exciting the Rhodamine-labeled proteins. Images were taken 

using a 100x oil immersion objective. To obtain a representative structure 15 micrographs 

of each sample were taken. 
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3. Results and discussion 

Some authors mentioned the existence of a water-in-water emulsion at biopolymer 

concentrations near the binodal curve. This emulsion could be obtained by mixing two 

complete separated phases in a PRrp/PSrp ratio of 1/99 or vice-versa. In the present work, 

this ratio was kept to form the MS2 systems (Figure 1), although the equilibrium of the 

phases was not reached for all systems (Chapter 5 - 1st part). Table 4 shows the visual 

characterization of the protein and polysaccharide rich-phases. Almost all systems showed 

one of the phases gelified, except for CA and SG where two liquid phases were observed. 

Thus, when preparing the liquid MS2 samples the systems were stirred until any visible gel 

particle could be observed by eye. 

Table 4. Visual characterization of protein and polysaccharide rich-phases. 

Mixture Protein rich-phase Polysaccharide rich-phase 

CA Opaque-liquid Transparent-yellowish-liquid 

CC Opaque-white-gel Transparent-liquid 

CG Transparent-liquid Translucent-gel 

SA Opaque-yellowish-gel Transparent-yellowish-liquid 

SC Opaque-yellowish-gel Transparent-liquid 

SG Translucent-yellowish-liquid Transparent-yellowish-liquid 

Figure 3 shows the confocal micrograph at rest (Figure 3a) for CA-MS2 as well the 

variation of the apparent viscosity and SALS patterns as a function of different shear rates 

(Figure 3b). The CA-MS2 mixture at rest showed spherical protein aggregates (white 

regions in the micrograph) with diameters up to 5 µm indicating a microstructure typical of 

water-in-water emulsion (Capron et al., 2001). The SALS pattern was isotropic at rest and 

low shear rates for CA system, but it showed a strong anisotropy perpendicular to the flow 
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direction increasing shear rate, which reflects the deformation of the droplets. At higher 

shear rates, the anisotropy gradually relaxes (440 s-1) and finally, an isotropic pattern was 

again obtained (6300 s-1). It has been demonstrated (Van Puyvelde et al., 2003) that while 

the droplets are continuously stretched, their cross-section becomes smaller and 

consequently the interfacial stress increases. As a result, interfacial instabilities will start to 

develop and will eventually disintegrate the droplets. During this process, the anisotropy of 

the structure decreases, as seen in Figure 3. Thus, this evolution from anisotropy, relaxation 

and steady-state elliptic pattern could be explained on the basis of deformation, breakup, 

and coalescence of the dispersed droplets. Hence, under these conditions, the biopolymer 

emulsion behaves according to the theoretical relations for conventional emulsions and 

similar to synthetic blends (Van Puyvelde et al., 2003). 

 

  
Figure 3. Rheological and optical characterization of the MS2 system (1% PRrp + 99% 
PSrp) containing 0.44% Na-caseinate and 2.68% Na-alginate. A) Confocal microstructure; 
B) Apparent viscosity and 2D-SALS pattern as a function of the shear rate, the line 
represent the fit of Cross equation to the data. The light regions in the CLSM micrograph 
(a) indicate protein area, scale bar = 50µm. 
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The MS2 of the SA2 (Figures 4a, 4b) system, was formed from a visual hard gel of 

the protein rich phase and a liquid polysaccharide rich phase (Table 4). The CLSM results 

(Figure 4a) exhibited square-edged irregular protein aggregates measuring up to 8 µm in 

highest size. The shapes of the aggregates suggest that the dispersion was a gel.  

  
 

 
Figure 4. CLSM microstructural (a) and rheo-optical (b, c) characterization of the MS2 
system (1% PRrp + 99% PSrp) containing 1.4% SPI and 2.6% Na-alginate (a, b) and of SA2-
PSrp system with 1.2% protein plus 2.6% polysaccharide (c). The light regions in the 
CLSM micrograph (a) indicate protein area, scale bar = 50µm. The lines in rheological 
graphs (b, c) represent the fit of Cross equation to the data. 

This system behaved as a shear-thinning fluid (Figure 4b). From the inserts Figure4, 

it can be observed that the light was scattered in high angles in a great intensity. In addition, 
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the scattering profile was isotropic at low shear rates showing that the dispersed gels were 

homogeneously distributed in the continuous phase. In contrast to CA system, it was not 

observed an anisotropic evolution perpendicular to the flow direction. Instead, a slight 

anisotropy in the flow direction was checked in the beginning of the non-Newtonian region. 

As discussed in chapter 5 – 1st part the phase separation of SA was not complete. 

The CLSM microstructure of its PSrp looked like a water-in-water emulsion, with droplets 

dispersed in a continuous phase (Figure 3). Hence, the SALS pattern under shear of this 

system (PSrp-SA containing 1.2% protein and 2.6% polysaccharide) was evaluated in order 

to compare the properties of two emulsions containing one protein (SPI or Na-caseinate) 

and Na-alginate. In addition, the amount of Na-alginate in both systems was quite the same 

(2.6-2.7%). The SALS pattern of PSrp-SA (Figure 4c) was isotropic at rest, as expected 

from the homogeneous distributed dispersed phase. Once more, it was observed an 

anisotropic structure in the flow direction at the beginning of the non-Newtonian region. 

Only at high shear rates (3500 s-1) a slight deformation perpendicular to the flow direction 

was developed, even though the CLSM micrographs showed a water-in-water emulsion. 

These results corroborate with the above suggestion that the dispersed protein droplets were 

indeed gels, such that it was difficult to deform the droplets under shear. 

The SC system showed a shear-thinning behaviour and the shape of the inclusions 

varied from droplet-like to irregular square-edged. Those inclusions measured up to 6 µm 

in highest size. The anisotropic SALS pattern (Figure 5b) perpendicular to the flow 

direction was developed only at very high shear rates, 4000s-1. In addition, it was observed 

a slight anisotropy shape in the flow direction at the beginning of the non-newtonian region 

(data not shown), as previously mentioned for SA system. The micrograph of the CC 
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system exhibited small inclusions of protein with sizes up to 3 µm (Figure 6a). Figure 6b 

shows that this system behaved as shear-thinning fluid and showed an isotropic SALS 

pattern at low and very high shear rates. However, for intermediate shear rates it was not 

observed a similar pattern of CA, as expected due to the formation of an emulsion at rest. 

Instead, an anisotropic pattern in the flow direction was observed in the shear thinning 

region.  

  
Figure 5. Rheological and optical characterization of the MS2 system (1% PRrp + 99% PSrp) 
containing 1.2% SPI and 2.4% κ-carrageenan. A) Confocal microstructure; B) Apparent viscosity 
and 2D-SALS pattern as a function of the shear rate, the line represent the fit of Cross equation to 
the data. The light regions in the CLSM micrograph (a) indicate protein area, scale bar = 50µm. 

  
Figure 6. Rheological and optical characterization of the MS2 system (1% PRrp + 99% PSrp) 
containing 0.4% Na-caseinate and 2.5% κ-carrageenan. A) Confocal microstructure; B) Apparent 
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viscosity and 2D-SALS pattern as a function of the shear rate, the line represents the fit of Cross 
equation to the data. The light regions in the CLSM micrograph (a) indicate protein area, scale bar = 
50µm. 

In contrast to the other examined systems, the CG sample formed a gelified PSrp and 

a liquid PRrp. The confocal microstructure (Figure 7a) of MS2-CG system showed big and 

round protein inclusions with diameters up to 30 µm. However, it was not possible to 

perform the rheo-SALS experiments of such system due to its fragile characteristic with a 

great release of water during shearing. Thus, a system containing 1% PSrp and 99% PRrp (in 

the other end of the tie-line) was investigated, since some works reported the formation of 

an emulsion with a protein continuous phase (Antonov et al., 2004, Schorsch et al., 1999). 

The CLSM microstructure of such system is shown in Figure 7b and it was not observed 

the formation of an emulsion. Instead, the proteins were homogeneously distributed, which 

resulted in absence of scattered light in rheo-optics experiments (Figure 7c) over the entire 

shear rate range. This indicates that the sample was homogenized on the length scales 

probed by light scattering. The same trend was observed for MS2-SG system (Figure 7d). 

Those behaviours could be explained by the low interfacial forces acting in such systems 

(Chapter 5 – 1st part). This indicates that soy proteins can not be gelled using gellan, in 

contrast to what happened with Na-alginate and κ-carrageenan. Hence, gellan would be 

used as a good thickener for soy products. 
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Figure 7. CLSM microstructural (a, b, d) and rheo-optical (c) characterization of systems 
containing gellan. A) MS2 (1% PRrp + 99% PSrp) system containing 3% Na-caseinate – 
gellan 1.6%; B, C) MS2 modified (1% PSrp + 99% PRrp) system containing 5.2% Na-
caseinate – gellan 0.2%; D) MS2 (1% PRrp + 99% PSrp) system containing 4.3% SPI – 
gellan 0.5%. The light regions in the CLSM micrographs (a, b, d) indicate protein area, 
scale bar = 50µm. The line in rheological graph (c) represents the fit of Cross equation to 
the data. 

The above results revealed that systems containing SPI and Na-alginate or κ-

carrgeenan resulted in gelified dispersed phase, since they could only be deformed at very 

high shear rates. However, the CLSM micrograph of PSrp-SA showed droplet-like 

inclusions as observed for CA system. These indicate that CLSM and rheo-SALS 

techniques should be used complementary to each other to completely explain the 
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morphology of protein-polysaccharide systems. In addition, the systems with a gelified 

dispersed phase (SA, SC and CC) showed an unexpected anisotropy in the flow direction at 

the beginning of the non-Newtonian region. The increase of the anisotropic pattern follows 

the order: MS2-SA < PSrp-SA < MS2-CC; suggesting that the amount of droplets in the 

system is related with the development of such anisotropic behaviour. It is also interesting 

to note that mixtures containing SPI - Na-alginate and SPI - κ-carrageenan (Figures 4 and 

5) scattered the light in higher angles as compared to the systems containing Na-caseinate 

(Figures 3 and 6). 

The mixing of the protein- and the polysaccharide-rich phase in a ratio of 1/99 

formed a mixture lying on the tie-lines near to the polysaccharide rich phase. Comparing 

the MS2 micrographs of CA and CC with the corresponding micrographs of the 

polysaccharide rich phases (Chapter 5 – 1st part) an increase of the protein volume fraction 

was observed for MS2. The microstructure of PSrp of CA (Chapter 5 – 1st part) did not have 

any droplets, while MS2-CA showed a great amount of relatively big droplets. In the other 

hand, the morphology of PSrp-CC (Chapter 5 – 1st part) showed small droplets inclusions, 

while MS2-CC had a similar microstructure but the droplets have slightly higher diameter 

(Figure 6). Those results indicated that the CA system showed a greater capacity to form 

emulsions than CC system. It is interesting to note that SG system would never form 

emulsion as well as the CG systems with protein continuous phase. These suggest that the 

PSrp/PRrp ratio of 1/99 or vice-versa can not be used as a general criterion for emulsion 

formation. 

The differences in the dispersed phase, gel or liquid-like, droplet or square shape as 

well the capacity of a system to form emulsions did not changed significantly the relaxation 
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time (k) or the flow behaviour index (n) of the system. The latter parameters were obtained 

by fitting the Cross model (R2>0.999) to the data and a value between 0.01-0.03 s was 

found for k, while n was ~0.7 for all systems. These results indicate that the rheological 

behaviour under large deformations did not give information about the emulsions structure, 

as occurred by analyzing the small deformation behaviour (Capron et al., 2001, Palierne, 

1990). 

 
 

 

4. Conclusion 

The MS2 systems could be divided into three groups, namely, 1) water-in-water 

emulsions; 2) gelified dispersed phase in a continuous liquid phase or vice-versa; 3) 

homogenous protein-polysaccharide solution. Regarding the type 1 systems, the Na-

caseinate – Na-alginate mixture showed a greater capacity to form emulsions than Na-

caseinate - carrageenan system, although both systems could be used in dairy products as 

fat replacers. Among the systems with gelified dispersed phase, the PSrp-SA could also be 

considered a water-in-water emulsion. However, the typical emulsion SALS pattern was 

observed only for CA sample. The delays in the anisotropic development in the 

perpendicular flow direction as well as the appearance of an anisotropic pattern in the flow 

direction were attributed to the presence of a gelified dispersed phase. Therefore, the 

CLSM and SALS techniques should be used complementary to each other to completely 

explain the morphology of protein-polysaccharide systems. 
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As interações complexas entre proteínas e polissacarídeos são resultado das 

propriedades físicas de cada biopolímero puro em solução. No presente estudo observou-se 

que dentro do intervalo de concentrações estudado (1-12%), que é o comumente utilizado 

em produtos alimentícios, soluções de proteína seguem um comportamento Newtoniano, 

enquanto que os polissacarídeos apresentam comportamento Newtoniano à baixa 

concentração e pseudoplástico com o aumento desta. Os valores de viscosidade aparente e 

densidade das soluções puras foram função do tipo de biopolímero (polissacarídeo ou 

proteína) e da fonte de obtenção dos polissacarídeos. O aumento da viscosidade aparente e 

redução da densidade seguiu a seguinte ordem para uma dada concentração e taxa de 

deformação: 1) proteínas, 2) polissacarídeos de origem microbiana (xantana e gelana), 3) 

polissacarídeo extraído de plantas (jataí ou LBG) e 4) polissacarídeos obtidos a partir de 

algas (Na-alginato e κ-carragena). Os maiores valores de densidade foram explicados por 

uma maior capacidade de estruturação dos polissacarídeos obtidos de algas e plantas em 

solução, nas concentrações estudadas, o que resultou em maior retenção de solvente em um 

menor volume.  

No estudo do comportamento reológico de soluções de xantana tratadas 

térmicamente e adicionadas de sacarose, foram observadas três transições da solução, 

dependentes da temperatura e concentração do sistema. Estas foram associadas às regiões 

com anisotropia e/ou isotropia e à mudança da conformação molecular de um estado 

ordenado (hélice) para um desordenado. O aumento da temperatura de tratamento térmico e 

a adição de sacarose reduziram a elasticidade da solução de xantana, sendo que a adição de 

sacarose afetou as propriedades reológicas apenas de soluções anisotrópicas ou bifásicas 

(mistas). Assim, foi sugerido que soluções contendo sacarose são menos interconectadas do 
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que soluções puras de xantana provavelmente devido aos efeitos cosmotrópicos deste co-

soluto. Quando KCl foi adicionado às soluções deste polissacarídeo, observou-se um 

aumento da elasticidade do sistema. Assim, as propriedades físicas das soluções puras de 

biopolímeros pareceram ser altamente dependentes da presença de um co-soluto e do 

processamento térmico, sendo relacionadas à conformação molecular apresentada em 

solução, como formação de duplas hélices, de ultra-agregados e desordenamento molecular. 

De forma geral, os três tipos de interações entre proteínas e polissacarídeos, 

miscibilidade, incompatibilidade ou coacervação complexa, foram observados nos géis e 

em soluções mistas considerando os biopolímeros estudados. As misturas contendo LBG e 

uma proteína foram miscíveis, visto que não separaram de fases após centrifugação a 60000 

x g durante 1h, o que caracteriza uma grande compatibilidade deste polissacarídeo com 

ambas proteínas avaliadas. O comportamento de misturas com goma xantana foi 

dependente do tipo de proteína adicionada, sendo observada miscibilidade na presença de 

Na-caseinato e de incompatibilidade em concentrações de SPI maiores do que 5%. As 

demais soluções mistas apresentaram incompatibilidade entre a proteína e o polissacarídeo 

nas condições de temperatura, força iônica, pH e concentração de ingredientes estudadas.  

As soluções aquosas incompatíveis foram caracterizadas por rheo-SALS (“rheo-

small angle light scattering”) e CLSM (microscopia confocal de varredura laser) a fim de 

entender o papel de diferentes biopolímeros sobre o comportamento das fases e sobre a 

formação de emulsão tipo água-água sendo observado que estas duas técnicas devem ser 

utilizadas conjuntamente a fim de obter-se uma completa descrição morfológica de tais 

sistemas. A alta hidrofobicidade das proteínas da soja intensificou as associações entre as 

moléculas de proteína durante a centrifugação resultando na gelificação da fase protéica em 

misturas com κ-carragena e Na-alginato. No entanto, isto não foi observado para sistemas 
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contendo gelana ou xantana, sendo que as fases ricas em cada biopolímero eram facilmente 

remisturadas provavelmente devido a uma baixa tensão interfacial do sistema. Assim, estes 

dois polissacarídeos seriam mais indicados para serem utilizados em produtos líquidos à 

base de soja, enquanto a κ-carragena e o Na-alginato seriam interessantes em produtos onde 

a agregação protéica fosse desejada ou não interferisse na aceitabilidade do produto. 

Comparando-se os dois polissacarídeos de origem de algas, observou-se que a κ-carragena 

apresentou maior compatibilidade com o Na-caseinato e com SPI do que o Na-alginato. É 

interessante notar que a carragena já vem sendo utilizada acertadamente pela a indústria de 

alimentos em sorvetes a base de soja, e em uma grande variedade de produtos lácteos, 

apesar do seu uso ter sido ditado pela experiência prática da carragena em produtos lácteos. 

No entanto, os resultados mostraram que misturas de Na-caseinato e Na-alginato 

apresentaram melhor capacidade de formar emulsões do tipo água-água quando comparada 

com todos os sistemas estudados, o que é interessante industrialmente pela possibilidade de 

substituição das gotas de gordura por gotas de soluções de biopolímeros (fase dispersa). O 

sistema SPI - Na-alginato e Na-caseinato – κ-carragena também formaram emulsões, mas 

com a fase dispersa de proteína gelificada. Este último resultado é bastante interessante do 

ponto de vista de desenvolvimento de novos produtos com texturas diferentes. Em especial, 

poderia ser aplicado na fabricação de chocolates com teor de gordura reduzido, visto que a 

fase dispersa de Na-caseinato apresentou a particularidade de ser um gel à temperatura 

ambiente e liquefazer-se com um pequeno aumento da temperatura, o que ocorreria durante 

a degustação do produto. 

Nos sistemas gelificados não foi observada a formação de géis ácidos 

incompatíveis. Estudos prévios mostraram que sistemas-modelo contendo Na-caseinato e 
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xantana apresentaram coacervação complexa, mesmo quando adicionados de um co-soluto, 

como a sacarose. Assim, a xantana não pareceu ser um polissacarídeo muito indicado na 

formulação de iogurtes. No entanto, géis formados por xantana e SPI apresentaram uma 

única fase e não foi observada sinerese, o que classifica estes géis como miscíveis sendo 

estes biopolímeros compatíveis em pH ácido. Mesmo a adição de um sal, KCl, não alterou 

este comportamento, apesar de ter influenciado todas as propriedades dos géis mistos 

devido aos efeitos de salting-in e salting-out da proteína. O uso de microscopia confocal, no 

último tipo de sistema, permitiu classificar os géis mistos sem sal como de estrutura 

organizada enquanto que os géis com sal apresentaram uma estrutura particulada aleatória. 

Os géis térmicos de SPI-xantana foram estabilizados por interações não-covalentes 

(hidrofóbicas e ponte de H) e pontes S-S, enquanto que géis adicionados de KCl foram 

também estabilizados por interações eletrostáticas.  

A adição de xantana enfraqueceu os géis térmicos de SPI, provavelmente devido a 

ligação deste polissacarídeo com a sub-unidade β-7S da SPI. Por outro lado, a adição de 

xantana aumentou a tensão e a deformação de ruptura em géis de SPI acidificados 

lentamente pela ação do GDL. De uma forma geral, em géis formados com GDL, a redução 

da tensão e deformação de ruptura foi obtida pela diminuição da concentração de proteína 

em géis puros de SPI e Na-caseinato ou pelo aumento do conteúdo de proteína em géis 

contendo xantana. Neste último caso, foi verificada a formação de uma estrutura esponjosa 

com o aumento do conteúdo de proteína. Além disto, a adição de xantana resultou em 

grande aumento da capacidade de retenção de água de géis de SPI independente do 

processo de formação da rede protéica, por tratamento térmico e por ação de GDL. Assim, 

o uso de xantana em produtos à base de soja seria indicado por exemplo para aumentar a 
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retenção de água em GDL-tofu, o que é de grande valia econômica para os produtores deste 

queijo. Outra interessante aplicação desta goma seria para a manutenção da rede protéica 

em produtos aerados contendo mais de 6% de proteína. No entanto, a xantana não melhora 

as propriedades de produtos com alta quantidade de sal (em torno de 2%). 

A taxa de acidificação (variação na quantidade de GDL) não afetou as propriedades 

reológicas em cisalhamento de géis puros de Na-caseinato, mas teve um efeito significativo 

sobre as propriedades em compressão. A acidificação lenta promoveu uma rede protéica 

mais interconectada e, portanto, mais forte. A velocidade de acidificação também afetou as 

propriedades reológicas de géis de SPI e SPI-xantana, sendo obtidos géis mais duros e 

elásticos quando a acidificação foi mais lenta devido à baixa temperatura do processo. Por 

fim, um novo modelo baseado na equação de BST foi proposto para predizer um maior 

número de propriedades mecânicas dos géis biopoliméricos, tendo sido observado um bom 

ajuste dos dados e uma ótima predição das propriedades de géis de SPI acidificados com 

GDL. 
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APENDICE: Preliminary studies on the phase separation of 

biopolymers mixtures.
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1. Importance of the phase separation procedure. 

The existence of a water-in-water emulsion at biopolymer concentrations near the 

binodal curve is reported and it can be obtained by mixing two complete separated phases 

in a PRrp-PSrp ratio of 1/99 or vice-versa (Capron et al., 2001; Guido et al., 2002; Antonov 

et al., 2004). However, preliminary studies showed that the thermodynamic equilibrium 

between the phases as well as the procedure to withdraw the rich-phases are not always a 

simple task. Thus, two protein-polysaccharide mixtures with similar compositions but 

prepared according to two different procedures were evaluated under rheo-optics 

experiments (Figure 1) in order to evaluate the effect of phase separation step on the optical 

properties of the systems. For that purpose, the Na-caseinate – Na-alginate system was 

chosen, since this is the most studied water-in-water emulsion system in the literature 

(Capron et al., 2001; Guido et al., 2002; Antonov et al., 2004).  

  

Figure 1. Typical 2D-SALS patterns for systems containing Na-alginate. A) Pure 2.8% Na-

alginate solution at rest; B) 0.13% Na-caseinate – Na-alginate 2.8% system mixed without 

the phase separation step independent of shear rate; C) Polysaccharide rich-phase (0.3% 

protein + 2.7% polysaccharide) of CA system as a function of shear rate. 
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Figure 1a shows the SALS pattern at rest for a pure Na-alginate solution and it was 

not observed any scattered light in the flow-vorticity plane, which is typical of a 

homogeneous system. Similar pattern was observed for the optical properties of the 

polysaccharide rich phase obtained after phase separation of Na-caseinate – Na-alginate 

sample (Figure 1c). The low intensity scattering of the light observed at very low angles 

was in accordance with the CLSM micrograph at rest, in which was not observed any 

protein at the highest (100x) magnification (Chapter 5 – 1st part). At higher shear rates it 

was not observed light scattering any more, characterizing that the system was completely 

mixed at least on the length scales probed by light scattering. The chemical characterization 

of PSrp indicated the following composition: 0.3% of protein and 2.7% of polysaccharide, 

revealing that even 0.3% of protein did not contributed to scatter the light. However, a 

system with similar composition but mixed without the phase separation step shows a high 

intensity scattering profile at large angles independent of the shear rate/shear stress applied 

(Figure 1b). This indicates the formation of very small dispersed phase (small droplets 

scatter at high angles) that was not elongated under shear as observed typically for water-

in-water emulsions (Chapter 5- 2nd part and Antonov et al., 2004). The above results 

showed that (1) systems with similar composition (and also extended to the same 

composition) but prepared in different manners (with or without phase separation) did not 

have the same optical and consequently rheological behaviour at rest and under shear; (2) a 

previous phase separation process before the preparation of biopolymer mixture is 

necessary to form water-in-water emulsions.  
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2. Visual characterization of different protein-polysaccharide mixtures after 

centrifugation. 

Different biopolymer1-biopolymer2 systems were centrifuged at 60000 x g during 

1h (Antonov et al., 2004) and the compatibility/incompatibility (checked by the 

macroscopic phase separation) of the systems are shown in Table 1. All combinations of 

one protein and one polysaccharide (considering the biopolymers studied in the present 

Ph.D. thesis) were studied as well as protein1-protein2 and LBG - Na-alginate, since the 

latter polysaccharides are the two most hydrophobic ones (preliminary studies not shown). 

The concentration of each ingredient was chosen taking in consideration the following 

factors: 1) the incompatible region for Na-caseinate – Na-alginate systems reported in 

literature; 2) a high total biopolymer content to ensure that the sample would be in the 

incompatible region of the phase diagram; 3) a zero shear viscosity of the mixture lower 

than 1 Pa.s (value similar to the pure polysaccharide solution shown in Chapter 3) was used 

to avoid the influence of the viscosity on a complete phase separation (Clark, 2000, 

Cavallieri, 2003). 

The systems protein-LBG or Na-caseinte - xanthan revealed to be compatible with a 

single phase after centrifugation. The same trend was found for the protein-protein and 

polysaccharide-polysaccharide mixtures studied, even when an unfolded SPI (denaturation 

at 80 oC during 30 min) was present. 
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Table 1. Visual characterization of protein-polysaccharide MS1 systems after 

centrifugation. 

Mixture (biopolymer 1 – 

biopolymer 2) 

Biopolymer 1 

Concentration (%) 

Biopolymer 2 

Concentration (%) 

Visual 

appearance 

Na-caseinate - Na-alginate 3.0 2.0 2-phases 

Na-caseinate - Na-alginate 3.0 2.5 2-phases 

Na-caseinate - Na-alginate 7.5 1.0 2-phases 

Na-caseinate - κ-carrageenan 3.0 2.5 2-phases 

Na-caseinate - Gellan 5.6 0.4 2-phases 

SPI - Na-alginate 3.0 2.0 2-phases 

Denaturated SPI – Na-alginate* 2.5 2.0 2-phases 

SPI - κ-carrageenan 3.0 2.5 2-phases 

SPI – Xanthan 7.0 0.05 2-phases 

SPI – Gellan 4.8 0.4 2-phases 

Denaturated SPI – Gellan* 3.5 0.3 2-phases 

Na-caseinate – Xanthan 5.0 0.1 1-phase 

Na-caseinate – LBG 7.5 0.8 1-phase 

Denaturated SPI – LBG* 4.5 0.2 1-phase 

Na-caseinate – Denaturated SPI* 10.3 1.5 1-phase 

Na-caseinate – SPI 2.9 9.6 1-phase 

Na-caseinate – SPI 7.3 6.0 1-phase 

Na-caseinate – SPI 11.7 2.4 1-phase 

LBG – Na-alginate 0.3 3.2 1-phase 

LBG – Na-alginate 0.8 2.0 1-phase 

LBG – Na-alginate 1.3 0.8 1-phase 

*Denaturation at 80 oC during 30 min 

Among the incompatible systems, it was very difficult to withdraw the rich phases 

of SPI-xanthan systems, since the polysaccharide rich-phase looked-like a cloudy making 

difficult to determine the interface. Thus, the incompatibility of SPI-xanthan was also 
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checked for a greater number of samples with different concentrations and without 

centrifugation (at rest). Figure 2 shows a phase diagram for SPI-xanthan mixtures obtained 

according to the guided by eye method at rest after 2 days of the mixture preparation at 25 

oC. Systems with more than 5% of protein were incompatible even in the presence of a very 

low polysaccharide concentration (0.02% w/w). However, it was observed the same 

difficulties to withdraw the rich-phases, such that SPI-xanthan mixture was not selected for 

further phase behaviour studies.  
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Figure 2. Compatible, one-phase, ( ) and incompatible, two-phases ( ) regions of SPI-

xanthan mixtures, pH 7.0. 

From the above results, the systems studied in Chapter 5 were selected, taking in 

consideration the systems that were incompatible. When possible, the protein or 

polysaccharide concentrations were kept the same in order to compare the effect of 

different biopolymers on phase behaviour. The concentration of gellan (Chapter 5) was 

much lower than the others polysaccharides concentrations, since gellan gelified at 

concentrations greater than 1%. 
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