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ABSTRACT 

Vegetable oils are important compounds of the human diet and they should be 
refined before consumption. Consumers demand for healthier products as well as 
stiff environmental legislation are forcing refining industries towards changes and 
improvement of processes. In this context, this thesis has as main objective to 
investigate/improve the physical refining of vegetable oils, emphasizing the 
bleaching step. As first step, a HPLC methodology for simultaneous quantification 
of carotenes and tocols was developed and validated, and lately, it was used by 
our research groups. Then, bleaching step of palm oil, nowadays the most 
consumed oil in the world, was studied under different aspects: (1) determining 
kinetics, equilibrium and thermodynamic parameters of adsorptive removal of 
carotenes and phosphorus onto acid activated bleaching earth; (2) influence of 
different procedures on final color of palm oil; (3) influence of bleaching earth kind 
on final color of palm oil. These studies were important for a better understanding 
of bleaching process of palm oil, and some conclusions were obtained: adsorptive 
removal of carotenes and phosphorus onto acid activated bleaching earth occurs 
by chemisorption and it is endothermic; new procedures in the bleaching step can 
improve final color of palm oil when using the same amount of bleaching earth and 
deodorization time; a hypothesis was proposed to explain how the kind of 
bleaching earth can interfere in the final color of palm oil. Further studies are still 
necessary to optimize bleaching step and the new procedures suggested. Later, 
physical deacidification was studied by computer simulation and experimental data 
from literature. It was compared two mathematical approaches: differential and 
flash distillations. This last one presented better results regarding acidity and 
neutral oil loss profiles. In this approach, it was considered the heat transfer 
equations. In this way, this thesis presents an advance in refining process towards  
high quality products and less consumption of inputs. 
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RESUMO 

Os óleos vegetais são importantes componentes da dieta humana e devem ser 
refinados antes do consumo. A demanda dos consumidores por produtos mais 
saudáveis, assim como regulamentações ambientais cada vez mais rígidas têm 
forçado os processadores de óleos vegetais a buscarem mudanças e 
aperfeiçoamento dos processos. Neste contexto, este trabalho de tese tem como 
objetivo investigar e aperfeiçoar o refino físico de óleos vegetais, com ênfase na 
etapa de branqueamento. Numa primeira etapa, uma metodologia para quantificar 
simultaneamente carotenos e tocoferóis foi desenvolvida e validada, e 
posteriormente, utilizada pelo grupo de pesquisa. Então, a etapa de 
branqueamento de óleo de palma, atualmente o óleo mais consumido 
mundialmente, foi estudada sob diferentes aspectos: (1) determinação da cinética, 
equilíbrio e parâmetros termodinâmicos do processo de adsorção de carotenos e 
fósforo em terra clarificante acidamente ativada; (2) influência de diferentes 
procedimentos na cor do óleo de palma refinado; (3) influência do tipo de terra 
clarificante na cor do óleo de palma refinado. Estes estudos foram importantes 
para um melhor entendimento do processo de branqueamento de óleo de palma, e 
algumas conclusões foram obtidas: a adsorção de carotenos e fósforos pela terra 
clarificante acidamente ativada ocorre por via química, e é um processo 
endotérmico; a utilização de novos procedimentos na etapa de branqueamento do 
óleo de palma pode melhorar a coloração obtida ao final do processo; o refino em 
duas etapas utilizando duas desodorizações em condições moderadas de 
temperatura apresentou melhor coloração final quando comparado ao processo 
utilizando a mesma quantidade de terra clarificante e tempo de desodorização; 
uma hipótese foi sugerida para explicar como o tipo de terra clarificante (neutra ou 
acidamente ativada) pode interferir na coloração final do óleo de palma. Ainda são 
necessários mais estudos para otimizar a etapa de branqueamento e os novos 
procedimentos sugeridos. Por último, a etapa de desacidificação por via física foi 
estudada através de simulação computacional e dados experimentais disponíveis 
na literatura. Foram comparadas duas abordagens matemáticas: a diferencial e a 
flash. Esta última apresentou resultados mais realísticos quanto aos perfis de 
acidez e perda de óleo neutro. Foi ainda considerada na abordagem flash 
equações de transferência de calor. Dessa forma, pode-se concluir que este 
trabalho de tese apresentou avanços nos processos de refino físico de óleos 
vegetais para obtenção de produtos de maior qualidade final e menor consumo de 
insumos. 
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Chapter 1. Introduction 

Vegetable oils are important compounds of the human diet, providing 

energy, essential fatty acids and liposoluble vitamins. Additionally, they are 

responsible for the flavor and texture of foods as well as promote satiety. They are 

predominantly formed by triesters of glycerol and fatty acids, known as 

triacylglycerides, and continue to show, at lower levels, other constituents such as 

free fatty acids, partial acylglycerides, sterols, tocopherols, hydrocarbons, 

pigments, vitamins, heavy metals, glycolipids, fragments of proteins, resins, and 

mucilages.  Some of these compounds affect the quality of the oil and should be 

removed during the refining process, which can be chemical (adding sodium 

hydroxide) or physical (steam stripping). The refining process is of vital importance 

for the quality of the final product (odor, flavor, color), its function (fatty acids 

composition, vitamins and antioxidants) and cost (neutral oil loss). 

Chemical refining consists of removing free fatty acids by adding alkali and 

separating the soap by centrifugation (sludge). Differently, physical refining 

removes free fatty acids by steam stripping. Choosing the best process depends 

on the individual characteristics of each oil as well as economic and environmental 

issues. Low-quality oils should preferably be refined by the chemical process, since 

adding alkali is more efficient in removing undesirable compounds. For high-quality 

oils, physical refining should be chosen as it provides higher yield, use less 

chemical reagents and water, causing a lower environmental impact. 

Bleaching is the first step of the physical refining process whereby 

phospholipids, pigments, contaminants, soaps and peroxidation products are 

removed from the oil. It is the most expensive step in edible oils refining due to the 

large amounts of bleaching earth spent. Moreover, stiff environmental laws are 

forcing refining industries to minimize the amount of solid waste produced, as they 

are difficult to treat. 

After bleaching, the oil is ready for deacidification which involves extreme 

processing conditions, i.e. high temperatures and low pressure, as well as steam 
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injection. High temperature can lead to the formation of undesirable compounds, 

for instance, cis-trans isomerization of unsaturated fatty acids. The deacidification 

step can increase the trans fatty acid content from 0.3 % (crude oil) to 5 % (refined 

oil). This reaction must be avoided as high trans diets are related to the 

development of cancer, heart diseases and stunts in child growth. 

Such extreme conditions also promote removal/degradation of desirable 

compounds, such as tocopherol, tocotrienols and carotenes (provitamin A). The 

main factors affecting the loss of tocopherols are those that directly influence its 

volatility, i.e., the temperature of deodorization, temperature and pressure and the 

amount of steam injected. In the case of carotenes, thermal degradation is the 

most important. Therefore, it is notable that despite the refining processes already 

being consolidated in the edible oil industry, there is room for improvement towards 

environment-friendly practices and healthier products. In fact, the various 

perceptions of what is desirable in oil-based products can incite changes in the 

technology used. Thus, the refining process parameters (temperature, pressure, 

amount of carrier agent) should be adjusted to maintain the original quality of 

vegetable oils in their crude state. 

In this context, this thesis investigated experimentally or by simulation the 

improvement of processes involved in edible oils refining, including bleaching and 

deodorization steps. A new methodology for simultaneous quantification of 

carotenoids and tocopherols was developed and validated, and subsequently, it 

was applied by our research group to control the loss/degradation of minor 

compounds during refining. The bleaching step was studied using crude palm oil - 

the highest consumed oil in the world, currently. The deacidification by physical 

refining was investigated by computer simulation using experimental data present 

in scientific literature. This thesis was conducted under a joint supervision of Dr. 

Antonio José de Almeida Meirelles, Professor in the Faculty of Food Engineering of 

the University of Campinas and Prof. Christian Stevens, Professor in the Faculty of 

Bioscience Engineering of the University of Ghent according to the agreement 

signed by both Universities. Moreover, this thesis counted with the collaboration of 
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Dr. Wim De Greyt who kindly made the facilities of the R&D Center of Desmet 

Ballestra Company available for the experiments on adsorption and bleaching of 

vegetable oils. 

The present thesis is organized in the following chapters: 

Chapter 1 (Introduction) presents a brief description of the problems in the 

edible oil industries and the main objectives of this thesis work. 

Chapter 2 (Literature Review) contextualizes this thesis in relation to other 

works already published on the same topics studied. 

Chapter 3 presents the scientific article titled “Validation of a method for 

simultaneous quantification of β-Carotene and Tocopherols in vegetable oils by 

HPLC”, published in Food Chemistry. This work validates a new HPLC 

methodology used to simultaneously quantify three classes of compounds: β-

carotene, tocopherols and tocotrienols. The compounds were separated on a 

normal phase column (Lichrospher, Merck), using a mobile phase gradient 

consisting of hexane and isopropanol and a flow gradient ranging from 1 to 2 

mL/min-1. A diode array detector set at 292 nm (tocols) and 455 nm (β-carotene) 

and a fluorescence detector set at 290 nm excitation and 330 nm emission were 

used. A linear response was achieved over the concentration range  

2.5 - 37.5 mg/L-1 for the tocols and over 0.05-10 mg·L-1 for the β-carotene. The 

method has been applied to the quantification of these compounds in Amazon oils. 

This methodology was used to study the thermal degradation of these compounds 

in oil subjected to similar temperatures as those usually employed in steam 

stripping (“Thermal degradation Kinetics of Carotenoids in Palm Oil”, Journal of 

American Oil Chemists’ Society, DOI: 10.1007/s11746-012-2156-1). 

Chapter 4 presents the article, “Adsorption of Carotenes and Phosphorus 

from Palm Oil by Acid Activated Bleaching Earth: Equilibrium, kinetics and 

thermodynamics”, submitted to Journal of Food Engineering. In this study, the 

adsorption of carotenes and phosphorus from crude palm oil by acid activated 

bleaching earth was investigated under bleaching conditions, i.e. high temperature 

and low pressure. Kinetic models and isotherms were adjusted to experimental 



Chapter 1 – Introduction 

4 

data. Furthermore, thermodynamic parameters of adsorption as Gibbs free energy, 

enthalpy and entropy were calculated, demonstrating that the process is 

spontaneous, endothermic and entropy driven. It could be observed that increasing 

the bleaching temperature leads to an increase of the adsorption efficience. 

However, there are other factors which should be considered when establishing 

optimal bleaching temperature to obtain a light, fully-refined, palm oil. 

As a result, Chapter 5 presents the article, “Influence of Refining Practices 

on Palm Oil Color”, to be submitted to the European Journal of Lipid Science and 

Technology.  This article studied the effects of different refining procedures on 

refined palm oil, especially in regards to color. The effects of storing, addition of a 

maturation step with citric acid, addition of an extra-dry step, multi-stage bleaching 

and a new approach using two refining procedures (two bleaching and two mild 

deodorizations) were studied. This new approach proved to be promising with an 

improvement in the final color of the palm oil compared to that obtained using the 

same amount of bleaching earth and deodorization time, but refined by the 

traditional approaches. More studies about process parameters and the kind of 

bleaching earth are still necessary in order to optimize two-step refining. 

Chapter 6 presents the article “Effect of Type of Bleaching Earth on Final 

Color of Refined Palm Oil”, to be submitted to Food Chemistry.  In this paper, the 

effect of the kind of bleaching earth on the final color of palm oil was studied. An 

inverse correlation was found between p-anisidine value after bleaching and 

residual color after deodorization using acid activated bleaching earth, but not with 

the neutral earth. Moreover, heat bleaching was more efficient in oils refined with 

acid activated earth. Those results indicate that oxidation products are important to 

predict the final color of refined palm oil. In addition, a hypothesis was suggested to 

explain how the type of bleaching earth can define β-carotene oxidation pathway. 

After completing the bleaching steps, edible oil should be deodorized to 

remove free fatty acids. Computer simulation emerges as an alternative for the 

better understanding of the deodorization process. Chapter 7 discusses the article, 

“Comparison between Differential and Flash Distillation for Simulating the 
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Deodorization Process of Vegetable Oils” (originally in Portuguese), published and 

orally presented at the XVIII Brazilian Congress on Chemical Engineering, 

COBEQ. This work was important for understanding deodorization process by two 

different approaches. It was observed that the results obtained by differential 

distillation equation presented a linear trend for free fatty acid removal. However, 

experimental results have shown fatty acids removal presents an exponential 

behavior, like the one obtained by flash distillation equations. It was concluded that 

flash distillation provides more realistic results and it was chosen for further studies 

on computational simulation of deacidification of vegetable oils. 

Chapter 8 presents the article “Simulation of Batch Steam Deacidification of 

Coconut Oil”, published in the Proceedings of 11th International Congress on 

Engineering and Food, ICEF. In this work, the flash distillation approach was 

compared with experimental data of the deacidification of coconut oil presented in 

the literature. This approach presented good results in relation to the final oil 

acidity. Vaporization rate was not an input, and varied with time, according to the 

energy balance. The oil acidity showed an exponential decrease and the 

temperature presented small variation along the stripping period. These results are 

more realistic than those found in the literature on simulation of batch steam 

deacidification which considers the vaporization rate constant with time and so a 

linear acidity decrease. Simulation works presented in Chapter 8 and 9 of this 

thesis are necessary basis for better understanding and studying of vegetable oil 

deacidification under computer simulation. Such works should be improved in order 

to consider degradation/removal of desirable compounds and undesirable 

reactions. The necessary data for this study were simultaneously determined by 

the research group through hydrolysis studies which determined the fatty acids and 

thermal degradation of carotenoids in the deodorization process conditions, i.e. low 

temperature and high pressure. 

Chapter 9 (Conclusions) presents a summary of the results obtained in 

this thesis.  
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1.1 Objectives 

1.1.1 Overall Objective 

• To investigate and improve the physical refining of edible oils, with 

emphasis on the bleaching step. 

1.1.2 Specific Objectives 

• To develop and validate an analytical method for the simultaneous 

quantification of carotenoids and tocols; 

• To study kinetics, equilibrium and thermodynamic parameters of 

adsorption of carotenoids and phosphorus from palm oil onto 

bleaching earth; 

• To evaluate the effect of different bleaching procedures on the quality 

of refined palm oil; 

• To evaluate the effect of the type of bleaching earth on the color of 

fully refined palm oil; 

• To improve and validate simulation of batch deacidification of 

vegetable oils, using flash distillation equations. 
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Chapter 2. Literature Review 

2.1 Vegetable oils 

Vegetable oils are important ingredients in numerous industrial products, 

such as margarine, salad oils, mayonnaise, bread as well as home made products 

(O'BRIEN, 1998). Vegetable oils are popular due to their ability to provide lubricity, 

texture, and flavor to products. Furthermore, it provides an effective means of 

transferring heat by immersion for frying (STANTON, 1996). 

Fats and oils present compounds which can be divided into two major 

groups: glycerides and non-glycerides. Glycerides are the most important part of 

fats and oils, consisting of glyceryl esters of fatty acids (triacylglycerides, 

diacylglycerides and monoacylglycerides). Edible vegetable oils are composed 

mainly by triacylglycerols (more than 95 %) (MORETTO; FETT, 1998). All 

triacylglycerides have the same glycerin unit, so it is the fatty acids that contribute 

for their different properties. Usually, vegetable oils are liquid at room temperature, 

due to the presence of unsaturated fatty acids (WATKINS et al., 1996). The non-

glyceridic parts are formed by minor compounds such as phosphatydes, vitamins 

and hydrocarbons (MORETTO; FETT, 1998). 

In fact, physicochemical properties of vegetable oils are functions of the 

composition of their glyceridic part and depend on the fatty acids composition and 

their position in triacilglycerol molecule, i.e. if they are esterified to carbon 1, 2 or 3 

of the glycerol molecule. Fatty acids differ due to chain length, number and position 

of double bonds. Meanwhile, triacylglycerols differ in the type of fatty acid and the 

position in which they were esterified. Variations in these characteristics are 

responsible for the chemical and physical differences shown by edible fats and oils 

(O'BRIEN, 1998). 

Therefore, vegetable oils are classified according to the composition in 

terms of major fatty acids, as is shown in Table 2.1. The main three fatty acids are 
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palmitic, oleic and linoleic, and sometimes accompanied by stearic acid and by 

linolenic acid (GUNSTONE, 2005). 

Table 2.1. Vegetable oils by fatty acid type (GUNSTONE, 2005) 
Fatty acids Vegetable oils 

Lauric Coconut and palm kernel 

Palmitic Palm oil and cottonseed 

Oleic/Linoleic Sunflower, sesame, cottonseed, canola,  soybean 

High oleic Olive, sunflower, canola, soybean  

Linoleic Flax seed, canola, soybean 

 

Currently, demand for oils rich in unsaturated fatty acids has increased, 

instead of saturated fats. Even though it is convenient to classify oils by their fatty 

acid composition, this is not the only index of their nutritional value or of their 

oxidative stability. Attention must also be given to the minor components in the 

crude oil and to what remains after refining (GUNSTONE, 2005).  

Among desirable compounds with nutraceutical value, essential fatty acids 

and liposoluble vitamins, such as A, D, E and K, have remarkable importance 

(KITTS, 1996). Inevitably, the extraction step promotes the formation and/or 

removes undesirable compounds such as free fatty acids, hydrocarbons, heavy 

metals, glycolipids, fragments of proteins, resins, and mucilages from the oilseed. 

The refining steps are designed to remove these compounds, with the least 

possible damage to triacylglycerides and loss of nutritional compounds (DE 

GREYT; KELLENS, 2005). 

2.1.1 Fatty acid composition 

In this topic some features of triacylglycerols is discussed based on their 

fatty acid composition, but it should be kept in mind that in this case the fatty acids 

are those linked to the glycerol by ester bonds, not the free fatty acids. 

Fatty acids are chain aliphatic carboxylic acids, formed basically by a  

non-polar chain with a hydrophilic polar group in the end. The characteristics of this 

chain are responsible for different properties of fatty acids and their derivatives. 
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Saturated fatty acids have a straight hydrocarbon chain. One trans double bond 

can change the chain shape slightly, whilst a cis double bond introduces a 

pronounced bend in the chain (Figure 2.1), modifying the physical properties of the 

fatty acid (SCRIMGEOUR, 2005). 

 
Figure 2.1. Trans and cis fatty acids chemical structure 

 

Trans fatty acids can be mono or poly unsaturated, and contain one or more 

double bonds in this configuration. Their shape is similar to that of a saturated fatty 

acid, thus, their melting point is much higher than a cis isomer (DE GREYT; 

KELLENS, 2005). Several studies demonstrate that high trans diets are related to 

development of cancer and heart diseases (KITTS, 1996). 

The most abundant fatty acids have from 4 to 22 carbons, the most common 

of those having 16 and 18 carbons: the saturated, palmitic (C16:0) and stearic 

(C18:0) acids; and unsaturated, oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) 

acids (SCRIMGEOUR, 2005). 

In vegetable oils, most fatty acids are esterified into a glycerol molecule 

(triglyceride). Large amounts of non-esterified fatty acids (free fatty acids) indicate 

that the lipid was damaged permanently (CHRISTIE, 2003). 
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2.1.2 Minor Components 

2.1.2.1 Free Fatty Acids (FFA) 

Free fatty acids (FFA) virtually do not exist in vivo, however, they can be 

released by enzymatic action after the tissue death or harvest, when enzymatic 

deactivation does not occur (ARAÚJO, 2004). Fatty acids containing 14 - 22 

carbons are sensorially inactive, but those containing 4 - 10 provide typical off-

flavor in foods or act as precursors of other compounds which have active flavor. 

Moreover, the presence of free fatty acids lead to a fast oxidation (FRANKEL, 

2005) and reduce the smoke point of oil (ARAÚJO, 2004). 

Because they are more volatile than triacylglycerides and partial 

acylglycerides (mono-and di-acylglycerides), it is possible to remove the free fatty 

acids by physical separation using high temperatures (up to 260 °C) and low 

absolute pressure (up to 5 mbar). 

2.1.2.2 Carotenes 

Carotenes are pigments which are synthetized by vegetables, being 

precursors of vitamin A. They can be yellow, red or purple. They are basically 

tetraterpens, synthesized from eight isoprens. Carotenes are stable in their natural 

environment, but thermolabile if extracted or heated (NAWARR, 1996). Carotenes 

are minor components in several vegetable oils, including palm oil (GUNSTONE, 

2005) and buriti oil (ALBUQUERQUE et al., 2005; FRANÇA et al., 1999; MARIATH 

et al., 1989; SILVA et al., 2009). During refining steps, enormous amounts of 

carotenes are lost due to adsorption (TAYLOR, 2005) and thermal degradation 

during deacidification step (SAMPAIO et al., 2012). According to Mayamol et al. 

(2007) the amount of β-carotene destroyed in the refining process would be 

enough to meet the world’s Vitamin A requirements. 

 Some alternatives to traditional processing have been developed to retain 

or recovery carotenes lost during refining (GUNSTONE, 2005). 
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Vitamin A is essentially half of a β-carotene (Figure 2.2), with a water 

molecule added in its lateral chain. Therefore, β-carotene is a powerful pro-vitamin 

A, with 100 % activity (RODRIGUEZ-AMAYA, 1996). A study has shown that the 

ingestion of 50 000 IU of vitamin A by a newborn can reduce mortality by 15 % or 

more in developing countries (KLEMM et al., 2008). 

 

Figure 2.2. β-carotene chemical structure 

 

2.1.2.3 Tocopherols and Tocotrienols 

The tocopherols are found in the unsaponifiable part of vegetable oils. They 

consist of α-, β-, δ- and γ-tocopherols, with varied antioxidant activity (KITTS, 

1996). The most important antioxidants are those with a phenolic structure.  The 

composition is specific for each vegetable oil, and sometimes can be used for 

identification. Besides antioxidant activity, tocopherols also exhibit Vitamin E 

activity, especially the α-tocopherol (DE GREYT; KELLENS, 2005).  

Tocotrienols are known to have potent properties that protect the nervous 

system, decrease serum cholesterol and aid cancer prevention. However, such 

properties are not usually attributed to tocopherols (SEN et al., 2004).  

Figure 2.3 represents the structure of both tocopherols and tocotrienols. 

Studies show that the volatilization and thermal degradation of tocopherols 

during both deodorization and deacidification steps are responsible for about two 

thirds of the total losses of these compounds  (GOGOLEWSKI et al., 2000). 

The losses during the refining process as a whole may reach values of up to 

25 % of total tocopherols and up to 70 % of the γ-tocopherols present in the oil of 

sunflower seed (GOGOLEWSKI et al., 2000), and up to 25 % for canola oil 

(ALPASLAN et al., 2001). The main factors affecting the loss of tocopherols are 
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those that directly influence its volatility, i.e. the deodorization temperature, the 

vacuum intensity and the amount of steam injected (DE GREYT; KELLENS, 2005). 
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Figure 2.3. Chemical Structure of Tocopherols (a) and Tocotrienols (b). 

 

2.1.3 Palm Oil 

In the last years, palm oil has occupied a prominent position in the world 

production of fats and oils. According to the Food and Agriculture Organization of 

the United Nations, the production of palm oil in Brazil was 265 thousand tons in 

2009, being only the 10th producer in the world (FAO, 2011). However, Brazil is the 

country with the highest potential to produce this oil due to its 75 million hectares 

available for cultivating palm trees (UNEP, 2011). 

Palm oil is obtained from the mesocarp fruit of the Elaeis guineensis palm. 

The fruit consists of a seed (endosperm) which lies inside a shell and is covered 

with a fleshy mesocarp.  The mesocarp is comprised of approximately 49 % oil. 

The palm kernel oil is obtained from the seed, or nut (Figure 2.4) (LAI, 2005). 
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Figure 2.4. The palm fruit (POKU, 2002) 

 

Palm oil contains 42 - 47 % palmitic acid (C16: 0) and 37 – 41 % oleic acid 

(C18: 1), while palm kernel oil is comprised of approximately 50 % lauric acid, thus 

being more saturated than palm oil (BASIRON, 2005; LAI, 2005). 

The minor compounds of palm oil such as tocopherols, tocotrienols, 

carotenoids, phosphatides, sterols, triterpene alcohols and aliphatic constitute less 

than 1 % of the oil. Some of these compounds such as tocopherols, tocotrienols 

and carotenoids are nutritionally benefic (LAI, 2005). Apart from the nutritional 

aspect, these compounds also enhance the oxidative stability of the oil (QUIJANO, 

1999). 

According to Lai (2005), palm oil contains 350 - 450 mg/kg vitamin E in the 

form of tocopherol (30 %) and tocotrienol (70 %). It is the only edible oil that can be 

consumed in sufficient quantities in order to provide tocotrienols. According to 

Gibon et al. (2007), the tocopherol and tocotrienol content in palm oil can range 

from 600 to 1000 ppm, with the tocopherol:tocotrienol ratio approximately equal to 

20 %. 

As it is an oil derived from fruit, palm oil is produced by cooking, pressing 

and clarifying. The quality of the crude oil will affect the performance and efficiency 
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of the refining stage as well as the quality of the product after the end of its 

processing (GIBON  et al., 2007). 

Palm oil may contain up to 700 mg/kg of carotenoids, according to Lai 

(2005). According to Gibon et al. (2007), the carotenoid content in palm oil may 

vary from 500 to 2000 mg/kg. The carotenoids from palm oil are constituted mainly 

by α- and β-isomers (approximately 90 % of the total). Most carotenoids are 

destroyed during the refining steps, producing a light-colored oil when refined 

(GIBON  et al., 2007).  

Furthermore, palm oil may contain phospholipids in highly varied amounts 

(values are reported between 5 and 30 mg/kg) (GEE, 2007). Palm oils with low 

phosphatide content, high initial acidity and high carotene content should 

preferably be refined by means of the physical refining. 

2.2 Processing Vegetable Oils 

Crude oils and fats extracted from seeds and pulp oil may contain high 

levels of impurities and extremely unpleasant odors. Only some oils can be 

consumed without going through purification steps to remove gums, free fatty 

acids, metals and other impurities. These steps can also remove color, odor, and 

change the crystallization trend, making it adaptable for the means of its use 

(O'BRIEN, 2008). 

Both the extraction and processing of vegetable oils involve a series of steps 

in which chemical and physical changes occur in the crude material.  Choosing the 

processing technique depends on a number of factors, such as the quality and 

quantity of the raw material processed daily (O'BRIEN, 2008). The role of each of 

these steps will be briefly discussed. 

2.2.1 Extraction 

Vegetable oils and/or fats can be extracted from the oil seeds or fruit pulp by 

mechanical extraction or solvent extraction. In mechanical extraction, the 

oleaginous material undergoes a process that uses high temperature and high 
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pressure, forcing the oil out of the cells. This oil is usually of higher quality than 

those extracted with solvents, since mechanical extraction does not remove certain 

compounds such as phospholipids, which are considered harmful during the other 

processing stages. In fact, some vegetable oils extracted by pressing, like olive oil 

and evening primrose oil, require no additional processing, and can be directly 

used for consumption. The solid portion remaining from the pressing stage can still 

continue to a solvent extraction step (usually hexane) in a combined process which 

increases the product yield, or may even be destined for animal feed production 

(ANDERSON, 2005). 

In solvent extraction, the oil from the oleaginous material is leached with a 

solvent, usually hexane. Elevated temperatures reduce the oil viscosity and 

increase diffusion; however, in the case of using hexane as solvent the 

temperatures should be limited up to 50 °C because of its high volatility (vapor 

pressure). The oil and the solvent are distilled until the oil is completely solvent-

free, and the solvent can be recovered for next extraction (O'BRIEN, 1998).  

Although the hexane solvent is currently considered the most efficient, there 

is concern about its flammability and environmental impacts. Because of this, other 

solvents that perform well and show improved safety are being studied; such as 

ethanol, for example (ANDERSON, 2005). 

In the case of vegetable oils that are rich in phospholipids (soybean, corn 

and sunflower oils, for example), the next step is degumming, which must be 

performed prior to refining to avoid a dark color in the final product. In this process, 

crude oil is degummed by adding water or phosphoric acid to separate hydratable 

and non-hydratable phospholipids by precipitation (SOUZA, 2004). 

2.2.2 Physical Refining 

After extraction, vegetable oils proceed to the refining steps, which are 

either chemical or physical (Figure 2.5). Chemical refining consists of removing 

free fatty acids by adding alkali and separating the soap by centrifugation (sludge)  

(O'BRIEN, 1998). Physical refining removes free fatty acids and other compounds 
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present in the air, as well as emulsion formation during chemical refining, causing a 

great loss in neutral oil. Some phospholipids have a pro-oxidant action, which 

contributes to an occurrence of off-flavor and the formation of unwanted color 

during physical deacidification. 

 

Table 2.2. Phospholipid content in vegetable oils (XU; DIOSADY, 2004) 
Oil Phospholipids content (%) 

Soybean Up to 3.2 % 

Canola 0.1 

Cottonseed 1.5 – 1.8 

Corn 0.04 (pressed); 0.5 (solvent) 

Sunflower Up to 1.5 

Flaxseed 0.3 

 

Phospholipids can be classified into hydratable and non-hydratable (NHP - 

non-hydratable phospholipids) according to their affinity for water. When 

phosphatides are complexed with metal ions such as Ca+2 and Mg+2, its 

hydratability is greatly reduced. The NHP content is also influenced by the quality 

of oilseed, affected by the growth and storage conditions. Phosphatil choline (PC) 

is the phospholipid with the highest hydration capacity, while phosphatidic acid 

(PA) has the smallest. PA is largely produced as a phospholipid degradation 

product with phospholipase D, endogenous enzyme of oilseeds.  This enzyme is 

activated by high temperatures and humidity in the places where the oilseed is 

stored.  If phospholipase D is activated, the NHP content will increase, hindering 

the degumming process (WÜRTZ CHRISTENSEN; PEARCE, 2004). 

The two main techniques used for degumming in the industry today are the 

degumming with water or acid. When degumming with water, hydratable 

phospholipids are removed. A quantity of water ranging from 50 % to 100 % of the 

mass content of gums present is added to the oil. The water content must be 

enough so that all the hydratable phosphatides are hydrated and precipitate; yet it 

should not be in excess so as to avoid formation of three phases during the 
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process. This technique was developed for soybean oil and cannot be applied to 

oils from different oil sources (XU; DIOSADY, 2004) and generates a large oil loss 

(approximately 35 % of the lecithin stream generated during refining is oil) 

(DIJKSTRA, 2010). 

When degumming with acid, concentrated phosphoric acid (0.02 % to 1 % 

by weight of oil) is added to hot oil (70 – 90 °C). The gums are removed by 

centrifugation and the oil proceeds to chemical refining, when it is necessary to add 

a sufficient amount of caustic substances in order to neutralize the phosphoric acid 

and residual free fatty acids. This technique has a few disadvantages: the high 

corrosiveness of phosphoric acid, which requires use of very expensive materials 

for constructing the equipment; high consumption of NaOH to neutralize the excess 

acid, and produces very dark lecithin (mixture obtained from the degumming oil 

soybean). Dark lecithin has no commercial value (XU; DIOSADY, 2004). 

2.2.4 Bleaching 

The function of bleaching is to prepare the oil for subsequent refining steps, 

and in the case of physical refining, preparing oil for physical deacidification. This 

step removes impurities such as pigments, soaps, gums, pro-oxidant metals and 

the products of decomposition of peroxides which are either dissolved or in 

colloidal suspension (O'BRIEN, 2008). 

Bleaching is an adsorptive process involving the mass transfer of the 

adsorbate (solute) from solution onto the surface of the adsorbent.  When the 

thermodynamic equilibrium between the solution and the adsorbent is reached, the 

mass transfer ceases. Equilibrium is governed by the temperature and pH of the 

system and the properties of the adsorbent and adsorbate. There are several 

mathematical models that describe the equilibrium (Langmuir, Brunauer-Emmett-

Teller, and Freundlich) (NEUMAN; TURGUT DUNFORD, 2004). The vegetable oil 

industry uses mainly three types of adsorbents in the bleaching process: clay, 

activated carbon and silica (DIJKSTRA; SEGERS, 2007).  
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Bleaching generally occurs under vacuum pressure to reduce the quantity of 

oxidizing agents and moisture, and under elevated temperatures to decrease the 

oil’s viscosity. The process takes 15 to 30 minutes under a temperature of 80 to 

120 °C. Although the use of high temperatures improves the kinetics of adsorption, 

it  can also lead to unwanted reactions (NEUMAN; TURGUT DUNFORD, 2004). 

This step is the more expensive in oil refining due to large amounts of 

bleached land used. Moreover, strong environmental regulations are forcing 

refining industries to minimize the amount of solid waste generated, as it is very 

difficult to treat (GIBON  et al., 2007). Therefore, one objective of this study will be 

to optimize the bleaching step of vegetable oils. 

2.2.5 Physical deacidification 

The deacidification, either physical or via deodorization, is the final step in 

refining of edible oils. During stripping, a carrier gas is mixed with the oil, facilitating 

the mass transfer of the impurities to the gas phase, which is withdrawn 

continuously so as to avoid the volatile impurities from condensing on the liquid 

(BALCHEN  et al., 1999). 

The amount of stripping reducing agent necessary is also an important 

parameter and that cost is greatly influenced by the size of deodorizer and the 

vacuum system. Almost all commercial applications use water vapor as a stripping 

agent due to its ability to condense under mild conditions, reducing the cost of the 

vacuum system (BALCHEN  et al., 1999). 

The optimum parameters for this refining step (temperature, retention time, 

operating pressure and amount of carrier gas) must be defined according to the 

initial oil, with the specifications of the final product, the limitations of the 

equipment, and the need to minimize costs. Fatty acids should be removed to 

quantities that range from 0.03 to 0.05 %, in accordance with standard industry 

practices (DE GREYT; KELLENS, 2005). Brazilian legislation and Codex 

Alimentarius specify a maximum of 0.3 % of acidity (expressed as oleic acid) 

(ANVISA, 2005; CODEX ALIMENTARIUS, 1981). 
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Deacidification by physical processes is performed with the same type of 

equipment used for deodorization. Therefore, this study will use the trade name 

"deodorizer" to refer to the type of equipment being investigated in this work.  

Since free fatty acids are relatively less volatile, removing them also efficiently 

removes other more volatile compounds such as odors (DE GREYT; KELLENS, 

2005). Therefore, it can be said that the oil that was physically deacidified was also 

deodorized. 

Deodorization or deacidification by physical processes can occur in different 

forms: continuous, semi-continuous or batch. The batch process is suitable for 

small-scale production, its major advantages being simple construction and low 

cost. However, the operation cost is high, has low capacity and it requires a 

relatively long process time. Although deacidification by physical processes in a 

batch way is less used in the industry, it does include the main phenomena that 

occur in the continuous equipment, in addition it is simpler to investigate in a lab 

scale. For this reason, it has been an object of study in several research works 

(DECAP et al., 2004; MANUELA PRIETO et al., 2008; PETRAUSKAITE et al., 

2000; SAMPAIO et al., 2011). 

In the batch process, the crude oil is slowly heated under vacuum until the 

deodorization temperature is reached when the carrier gas starts to be injected. 

When the final product specifications are achieved, the oil is cooled under vacuum 

and stocked (ANDERSON, 2005). 

However, the use of high temperatures is also related to the loss of oil 

quality. In fact, besides increasing the loss of neutral oil, high temperatures favor 

the hydrolysis of triacylglycerols and the isomerization of unsaturated fatty 

compounds to their trans forms. 

 

Neutral Oil Loss (NOL) 

In addition to volatile components such as free fatty acids, oxidation 

products, tocopherols and sterols, the distillate originating from deodorizers may 
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also have a portion of tri-, di-and mono-acylglycerides (neutral oil) (VERLEYEN et 

al., 2001). 

The presence of neutral oil in the distillate mainly occurs by mechanical 

entrainment of oil drops by the vapor phase (DE GREYT; KELLENS, 2005)  and, to 

a lesser extent, by the volatilization of lower molecular weight acylglycerides. In 

general, the loss of neutral oil is relevant to the processes carried out at high 

temperatures, high vacuum and high amounts of stripping agent.  In most oils 

(such as soybean and palm), the loss of neutral oil is caused mainly by mechanical 

drag. In this case, installation of baffles significantly reduces losses. However, in 

the case of lauric oils, some loss occurs due to evaporation of short chain mono-

and di-acylglycerides. This loss is inherent to the process conditions and is not 

affected by the design of the deodorizer (DE GREYT; KELLENS, 2005). 

Hydrolysis 

Hydrolysis is the reaction that occurs when oils and fats mix with water. 

Moisture causes triacylglycerols (TAG) to decompose into free fatty acids (FFA), 

monoacylglycerides (MAG) and diacylglycerides (DAG) what increases neutral oil 

losses during refining. This is essentially a reverse reaction of the fatty molecule 

synthesis and requires high temperatures (higher than 100 °C) and usually a long 

time (several hours) (Equation 2.1). Hydrolysis occurs in part due to the improper 

handling and storage of seeds, such as high humidity, high temperature and 

mechanical damage  (LIST et al., 2005). 

 TAG � H
O ������������ DAG  � RCOOH 

DAG � H
O ������������ MAG  � RCOOH 

MAG � H
O ������������ GLYCEROL  � RCOOH 

 

 

 

(2.1) 

 

Hence, during vegetable oil deodorization, this is an important reaction as it 

involves the use of very high temperatures and steam injection. According to De 



Chapter 2 – Literature Review 

23 

Greyt and Kellens (2005), the acidity of the final deodorized oil is usually not less 

than 0.005% due to hydrolysis. 

Sarkadi (1959) studied the hydrolysis of peanut oil at 180 °C, 400 mmHg 

and 4.5 hours, concluding that up to 1.1 % of acidity can be generated. It was also 

observed that the rate of hydrolysis is directly proportional to pressure. 

Cis-trans Isomerization 

High temperatures together with the residence time of the vegetable oil are 

the factors that affect the isomerization reaction of unsaturated fatty acids. 

Generally, the formation of trans fatty acids is insignificant at temperatures below 

220 °C. However, it becomes significant at temperatures between 220 °C and  

240 °C, and grows exponentially at temperatures above 240 °C (DE GREYT; 

KELLENS, 2005). 

According to Schwarz (2000a; 2000b) the initial trans fatty acid content of 

0.1 and 0.3 % in the crude oil may reach up to 5 % in refined oils, formed 

exclusively during the deodorizing or physical deacidification stages 

2.3 High Performance Liquid Chromatography 

High Performance Liquid Chromatography (HPLC) is the technique 

recommended by the American Oil Chemists’ Society (AOCS) for identification and 

quantification of tocopherols and tocotrienols. Several studies are also found using 

HPLC for identifying classes of carotenes (KANDLAKUNTA et al., 2008; 

MARINOVA; RIBAROVA, 2007; MELENDEZ-MARTINEZ et al., 2007; VALLS et 

al., 2007). 

Chromatography is based on a property called molecular polarity. It is very 

sensitive, and the adequate separation of the components of a mixture depends on 

choosing the correct mobile phase of the chromatographic column (stationary 

phase) and detection system (MCMASTER, 1994). 

The mobile phase solvent is pumped through the chromatography column to 

elute the sample. When the composition of the mobile phase is constant, it is called 



Chapter 2 – Literature Review 

24 

isocratic elution. In the case of a binary mobile phase, gradient elution can be used 

to increase the resolution of peaks. In this case, the composition of the mobile 

phase changes during the chromatographic run, modifying the separation obtained 

in the column (MCMASTER, 1994). This type of elution consists of using a "weak" 

solvent at the beginning of the run and to increase proportionally the “strong” 

solvent during the separation. This elution can increase the resolution and 

separation of compounds with a low affinity column, just as it can decrease the 

retention time of compounds with high affinity (ROBARDS et al., 1994). 

After separating the components of the mixture, it is important that a 

detection system is capable of transforming the components, and only the 

components, in an electronic signal proportional to its concentration (ARAÚJO, 

2004). Therefore, the detector used in chromatographic analysis must be sensitive 

and specific to the components analyzed. 

Among the most frequently used detectors for tocopherols, the fluorescence 

detector is considered by the official method (AOCS, 1998) to be one of the most 

selective used in liquid chromatography. This selectivity is due to the fact that few 

molecules possess enough fluorescence to enable fluorescence detection, as well 

as the high degree of adjustability for each type of molecular spectra due to 

specific excitation and emission, thereby improving both the identification and the 

quantification of the examined compounds (YEUNG, 1986). Because, tocopherols 

are naturally fluorescent substances, this type of detector is extremely specific to 

analyze these compounds. 

An even more versatile type of detector is the diode array detector (DAD) 

that can detect substances having absorption in a wide wavelength range varying 

from 190 nm to 800 nm, and is very useful for analysis of β-carotene which has 

maximum absorption at 455 nm (HUBER; GEORGE, 1993).  

Recently, the appeal of foods rich in nutritionally beneficial compounds 

makes it necessary that such compounds are analytically determined (ASENSIO-

RAMOS et al., 2009). Also, there is a tendency to seek analytical methods that can 

quantify different compounds simultaneously in order to save time and reactants. 
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Prates et al.  (2006) propose a few methods in which it is possible to 

simultaneously quantify β-carotene, tocopherols and cholesterol in meat by HPCL 

as well as suggest the method of Tasioula-Daisy and Okogeri (2001) for the 

simultaneous determination of tocopherols and phenols in olive oil. 

This work completed the development and validated a method that allows 

the simultaneous analysis of tocopherols and tocotrienols with β-carotene, using a 

gradient elution.  A preview of this method was published in the “Characterization 

of Oil Extracted from Buriti Fruit (Mauritia flexuosa) Grown in the Brazilian Amazon 

Region”, in the Journal of the American Oil Chemists’ Society (SILVA et al., 2009). 

However, this study was not conducted to validate the analytical method. It should 

be recognized that for a consistent interpretation of analytical results, it is essential 

to assess the reliability of the method, measured by the accuracy and precision 

(DIAS et al., 2008). 

2.4 Adsorption 

Adsorption is the phenomenon that selectively segregates atoms or 

molecules from a fluid onto the exposed surface of a solid (KENT, 2008). It is used 

to separate mixtures whose components present similar physical properties 

(volatility, solubility, etc.) or whose concentration is very low. Furthermore, 

adsorption can perform several separations which are impossible or impractical by 

conventional techniques, such as distillation, absorption (gas – liquid), and even 

membrane-based systems (KENT, 2008). The temperatures of adsorption are 

usually much lower, so the energetic costs are reduced when compared to other 

conventional methods. For this reason, adsorption is one of the most used 

alternatives to eliminate contaminants in gas and liquid streams, the drying of air 

and organic liquids, and the purification of biochemicals (COCERO; CALVO, 

2008). In the food industry, it is mainly used to remove colors and other impurities. 

For instance, adsorption occurs in the bleaching of vegetable oils to remove 

compounds such as phospholipids, colorants, soaps, and contaminants; lipid 
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peroxidation products are also removed to obtain the desirable characteristics of 

edible oils (ZSCHAU, 2001). 

2.4.1 Adsorption phenomena 

Adsorption is the preferential partitioning of substances from a gaseous or 

liquid phase onto the surface of a solid substrate. The solid phase has active sites 

that take up specific compounds from the fluid phase and is called adsorbent. The 

fluid phase, a liquid or a gas, has a compound to be taken up, which is called the 

adsorbate (KENT, 2008). 

Adsorbent and adsorbate can interact through chemisorption or 

physisorption. During physisorption, or physical adsorption, the interaction between 

the adsorbent and the adsorbate is through physical attraction, i.e. Van der Waals 

and eletrostatic forces. Thus, the magnitude of the interaction is affected by the 

size, polarity, polarizability, and quadrupolarity of sorbate atoms or molecules, as 

well as the electric field strength and the local field gradient of the solid surface 

(KENT, 2008). On the other hand, chemisorption, or chemical adsorption, involves 

the formation of chemical bonds and/or an electron transfer between the adsorbent 

and the adsorbate. 

One way to distinguish between physisorption and chemisorption is by the 

effects of heat and temperature. For example, physisorption is always exothermic, 

i.e., �Hads < 0. Furthermore, the adsorbed state is more ordered than the fluid 

state, so �S < 0. To be thermodynamically feasible, �Gads < 0, so �Hads < T�S. In 

contrast, endothermic adsorption is possible for dissociative chemisorption even if 

the entropy of the adsorbate decreases, because the entropy of the adsorbent may 

increase to more than offset (KENT, 2008). 

Adsorption separation is based on three distinct mechanisms: steric, 

equilibrium, and kinetic. In the steric separation mechanism, the porous solid has 

pores with dimensions that permit small molecules to enter while excluding large 

molecules from entering. The equilibrium mechanism is based on the solid having 

different abilities to accommodate different species, that is, the stronger adsorbing 



Chapter 2 – Literature Review 

27 

species is preferentially removed by the solid. The kinetic mechanism is based on 

the different rates of diffusion of different species into the porous structure of the 

solid phase. Thus, by controlling the exposure time, the faster diffusing species is 

preferentially removed by the solid (DO, 1998). 

2.4.2 Adsorbents 

Adsorbent selection is an important step and it can determine whether or not 

a process will succeed or fail (DO, 1998). To be a good adsorbent, the solid needs 

to have good adsorptive capacity and selectivity. 

Adsorption capacity refers to the amount of adsorbate taken up by the 

adsorbent per unit of mass (or volume), and it is probably the most important 

characteristic of an adsorbent. Adsorption capacity depends on the fluid-phase 

concentration, the temperature, as well as other conditions (especially the initial 

condition of the adsorbent). It has vital importance to capital cost, as it will define 

the amount of adsorbent, for instance bleaching earth required by a process 

(KENT, 2008). 

Selectivity, on the other hand, can be defined as the ratio of “what is 

adsorbed” to “what remains in the fluid phase” at equilibrium (KENT, 2008). It is 

defined by the chemical nature of the material and will determine the components 

to be adsorbed (COCERO; CALVO, 2008). In the vegetable oil industry, the most 

common adsorbents are neutral and acid activated bleaching clays. Besides those 

adsorbents, activated carbon and silica gel have been proposed (ZSCHAU, 2001). 

Naturally activated clays present some bleaching activity due to a number of 

layered silicates such as bentonites, hectorite and sepiolite. Differently, acid 

activated clays, are obtained by activating bentonite using elevated temperatures 

and some mineral acids (sulphuric or hydrochloric acids). The essential difference 

between both natural and acid activated bleaching clays is that in aqueous 

suspension, natural bleaching clays is slightly acid or neutral, whereas acid 

activated bleaching earth is highly acidic. This treatment greatly increases the 

specific surface from 40 – 60 m2/g to about 300 m2/g. Moreover, acid activation 
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ascribes other characteristics to the adsorbent, so that it can act as acidic catalyst, 

solid acid, cation exchanger and filter aid (ZSCHAU, 2001). 

2.5 Computer Simulation 

Computer simulation has become an important tool for the study and 

optimization of complex processes, involving a large number of variables, and is 

widely used in the development of industrial processes and equipment. In this 

research group, computer simulated steps by physical deacidification and 

deodorization of vegetable oils have been as widely studied in batch equipment 

(CERIANI; MEIRELLES, 2004b; CERIANI; MEIRELLES, 2007) as in continuous 

equipment (CERIANI; MEIRELLES, 2004c; CERIANI; MEIRELLES, 2007). The 

isomerization of fatty acids to the trans conformation (CERIANI; MEIRELLES, 

2007) and its content after deodorization were also studied (CERIANI et al., 2008). 

In this work, computer simulation was used to study the deacidification step using 

experimental results found in the literature in terms of the final acidity and neutral 

oil loss. 

To model the physical deacidification process in a batch process, Ceriani e 

Meirelles (2004b) used the vapor pressure equations and thermodynamic 

approach proposed by Ceriani e Meirelles (2004a) to predict the vapor-liquid 

equilibrium (VLE) of fatty compounds involved. Akterian (2009) used the vapor 

pressure equations proposed by Ceriani e Meirelles (2004c) to measure the 

temperature of sunflower oil with high oleic acid content during batch 

deodorization. 

2.5.1 Differencial Distillation 

In a study performed by Ceriani and Meirelles (2004b), physical 

deacidification was treated as a differential distillation, in which the tank is fed with 

oil and then heated. The superheated steam was then bubbled continuously into 

the oil, acting as a depletion agent carrying the most volatile fatty compounds in 

the vapor phase, which was then condensed and collected in a container. The oil 
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composition in the tank and the deodorizer distillate varied with time. It is important 

to note that this is a dynamic process that can not be modeled in steady state. The 

authors treated the process as a sequence of numerous, successive evaporation 

steps in equilibrium (CERIANI; MEIRELLES, 2004b).  

Ceriani e Meirelles (2004b) developed three alternative approaches to 

modeling the process and compared their results with experimental data from 

Petrauskaitè et al. (2000) for coconut oil. The first and simplest approach, called 

Model 1, does not rely on steam injection. Model 2 employed steam injection, but 

steam was considered as an inert gas. In this case, it is assumed to be completely 

immiscible in the oil phase. Model 3 considered that small amounts of water 

originating from the injected steam dissolved in the oil, increasing the volatility of 

fatty acids and decreasing the boiling point of the mixture. In fact, the third model 

was more close to the experimental data from Petrauskaitè et al. (2000) and has 

been detailed in the equations that follows. 

The ELV model is described in equations 2.2 and 2.3 (CERIANI; 

MEIRELLES, 2004b). 

 

 � ! "�#� ! $� · &�'( · )�  
(2.2) 

&�' ! (�*+ · )�,�� · -#. /0�1 · 2( 3 (�*+45 · 6 7 
(2.3) 

 

where  � is the coefficient of distribution of compound i between liquid and vapor 

phases, &�' is the fugacity in the reference state; xi and yi represent the mole 

fraction of the component i in the liquid and vapor stages, respectively; P is the 

total pressure; R is the universal gas constant; T is the absolute temperature of the 

system (�*+ and )�,�� , respectively, the vapor pressure and the fugacity of pure 

component i; $� the activity coefficient; )�,� the fugacity coefficient; 0�1 is the molar 

volume of component i in the liquid state. The exponential term of Equation 2.3 is 
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the Poynting factor. The vapor pressure of fatty compounds was estimated 

according to the method proposed by Ceriani and Meirelles (2004a). 

The total and component mass balances around the batch still are 

presented by Equations 2.4 and 2.5. 

 898� ! 3: 
(2.4) 

8;9 · #�<8� ! 3: · "� (2.5) 

 

where L is the number of moles of the liquid in the tank; :the molar vaporization 

rate in moles / time; xi and yi are molar fractions of the component  i in the liquid 

and vapor phases, respectively. 

The total and component mass balances and components for the distillate 

container are presented in Equations 2.6 e 2.7: 

 8=8� ! : 
(2.6) 

8;=�<8� ! : · "� (2.7) 

 

where D is the total number of moles in the distillate; and Di the number of moles of 

component i in the distillate container. 

The work of Taham (2009) and Silva (2009) used this differential approach 

to simulate experiments in batch deacidification of fatty systems models and Buriti 

oil, respectively, utilizing equipment jointly developed by the Laboratory of 

Extraction, Applied Thermodynamics and Equilibrium (Extrae) and the company 

MARCONI. The results demonstrate that the simulation was an efficient way to 

describe the final oil acidity, however, when the removal of acidity was analyzed 

over time, the differences became significant. The curve of decreasing acidity 

obtained with the differential approach was linear while the experimental curves 
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obtained by Taham (2009) and Silva (2009) showed an exponential decay of 

acidity. 

2.5.2 Flash Distillation 

A batch deacidification process can also be analyzed according to the flash 

approach. The process is performed in batches in which steam is continuously fed 

into a specified quantity of oil, a single equilibrium stage and without the use of 

reflux, according to the operation of a ordinary industrial equipment. 

The approach used in the present work corresponds to an adaptation of the 

prior work of Ceriani and Meirelles (2006) for crossflow deodorizers. In the present 

case each stage of a crossflow equipment is assumed to be a different and small 

time interval along the total residence time of the amount of oil in the unique stage 

of the batch deodorizer. 

The work of Ceriani and Meirelles (2006) described the ongoing process in a 

crossflow continuous deodorizer using equations of mass and enthalpy balances 

and equilibrium relationships for each stage, as described in Equations 2.8 to 2.10. 

 

>?;�,�< ! @�,� 3 @�A?,� � 0� · -� · @�,�9� 3 @�B?,� 3 &�,� 3 >�,� ! 0 
(2.8) 

>
;�< ! D� � �� � -� · 0� · D�9� 3 D�B? 3 DE,� 3 �E,� ! 0 
(2.9) 

>F;�,�< ! G�,� ·  �,� · 0� · @�,�9� 3 :�,� � 21 3 G�,�4 · 0� · >�,�∑ >�,�� ! 0 
(2.10) 

 

where n is the stage number, the subscript i is the component, H is the 

enthalpy of the vapor phase (J/hour), h is the enthalpy of the liquid phase (J/h), hf 

is the enthalpy of the feed (J/hour), V total flow of vapor (mol/hour), : is the 

component vapor flow, L is the total flow of liquid, l is the flux of the component i in 

the liquid phase (mol/hour), f is the feed stream in the liquid phase, F is the feed 

stream in the vapor phase, e is the entrainment term, G is the Murphree plate 

efficiency. 



Chapter 2 – Literature Review 

32 

In this thesis, this approach will be adapted to describe the process of 

physical batch deacidification. In this case, each stage of the column is understood 

as a small time interval along the total residence time of the oil in the batch 

deodorizer. 

2.5.3 Triacylglycerols composition 

The probable fatty acid composition needed for a data entry program can be 

estimated by the statistical method developed by Antoniosi et al. (1995), which has 

been successfully used in several studies from the research group. This requires 

the weight composition of the vegetable oils in fatty acids, which should be 

determined by gas chromatography and the trisaturated fat content, which is 

available in studies for certain oils. This method is based on the theory of casual 

1,3-random-2-random distribution and, wherein the fatty acids are randomly 

distributed, statistically, among the three positions of the glycerol molecule 

(ANTONIOSI et al., 1995). 

The composition of monoacylglycerols (MAG) and diacylglycerols (DAG) 

can be obtained stoichiometrically, since each tag may be broken at one 1.3 - and 

1.2 - DAG and each DAG, in turn, can be divided into MAGs. The concentration of 

each class of acylglycerides can be obtained in the research of some oils, and also 

determined by size exclusion chromatography (AOCS, 1998). 
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Abstract 

A normal-phase HPLC method for analysis of carotenes, tocopherols and 

tocotrienols has been developed and validated. In this work we present a 

modification to the official AOCS method for analysis of tocols which allowed 

simultaneous quantification of the three groups of compounds, including carotenes. 

Analytes were separated using a gradient mobile phase (hexane and isopropanol) 

and with a gradient flow rate (1 to 2 mL·min-1). The column effluent was monitored 

by Photo Diode Array detector (PDA) set at 292 nm (tocols) and 455 nm  

(β-carotene) and by fluorescence detector set at an excitation wavelength of 290 

nm and 330 nm emission. Inter- and intra-run accuracies and precision of the 

analytical method were better than ± 15%. The lower limit of quantification was  

5.0 mg·L-1 for the tocols and 0.1 mg·L-1 for carotenes. The method has been 

applied for the quantification of these compounds in Amazon oils. 

 

3.1 Introduction 

Vegetable oils are important compounds of human nourishment, providing 

energy, essential fatty acids and fat-soluble vitamins. Among these vitamins, 

provitamin A and vitamin E are highlighted. Tocopherols are natural antioxidants 

that also present Vitamin E activity, especially the α-tocopherols (De Greyt, & 

Kellens, 2005) which are frequently found in serum (Krčmová et al., 2009). 

Tocotrienols possess powerful neuroprotective, anti-cancer and cholesterol 

lowering properties that are often not exhibited by tocopherols (Sen, Khana, & Roy, 

2005). During deodorization, it was observed that tocopherol losses exceeded 

30%, two thirds of which resulted from their distillation (Gogolewsky, Nogala-

Kalucka, & Szeliga, 2000). Both analytes, tocopherols and tocotrienols, present a 
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maximum UV absorption between 280 and 300 nm with minimum absorption 

between 250 and 260 nm. Tocopherols and tocotrienols have also intense native 

fluorescence when excited at 210 or 290 to 292 nm. Excitation of the chroman ring 

at these wavelengths produces a maximal emission at 320 nm or slightly higher 

wavelengths. Fluorescence detection provides sensitivity, specificity, and cleaner 

chromatograms compared to UV detection. Fluorescence detection is essential for 

the successful assay of vitamin E in complex food matrices. UV detection can be 

used for concentrated supplements or fortification premixes (Eitenmiller, Landen, 

1999). In this work we study the uses of both Fluorescence and PDA (based on 

UV-vis spectrophotometry) detector to provide flexibility to this methodology, so it 

can be applied in laboratories that have only one of these detectors. 

Many methods for determining tocopherol composition in oils have been 

published using normal phase or reversed-phase HPLC (RP-HPLC). Rodrigues, 

Darnet, & Silva (2010) quantified tocopherols in several Amazon fruits using 

reversed-phase HPLC according to the methodology of Brubacher, Müller-Mulot, & 

Southgate (1986). This method only quantifies tocopherols in saponified samples 

and cannot distinguish between β- and γ- fractions. Costa, Ballus, Teixeira-Filho, & 

Godoy (2010) quantified tocopherols in some Brazilian fruits according to the 

official AOCS Ce 8-89 method (1998), with the mobile phase modified by Sadler, 

Davis, & Dezman (1990). The mobile phase composition consisted in a mixture of 

67:27:6 (v/v) methanol:tetrahydrofuran:water. This method could not quantify β-

tocopherol and all tocotrienol homologues.  

Carotenes are pigments synthesized by plants from eight isoprene units. 

Vitamin A makes up essentially half of the β-carotene molecule, with a water 

molecule added to its side chain (Rodriguez-Amaya, 1996). These molecules are 

thermolabile if extracted and heated (Nawar, 1996). They are found in high 

concentration in red oils, like crude palm oil (Gunstone, 2005) and Buriti oil (Silva, 

Sampaio, Taham, Rocco, Ceriani, Meirelles, & 2009; Albuquerque et al., 2005; 

França, Reber, Meireles, Machado, & Brunner, 1999; Mariath, Lima, & Santos, 

1989). The amount of carotenes destroyed daily by the high temperatures 
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employed during the refining process of these oils is sufficient to meet the vitamin 

A requirement of the world population (Mayamol, Balachandran, Samuel, 

Sundaresan, & Arumughan, 2007). The total carotene quantification in oils may be 

done by UV-vis spectrophotometry, as suggested by PORIM (1990). 

Recently, the potential occurrence of nutraceutical components in food has 

increased the presence of products on the market claiming to contain these 

substances, requiring analytical methods (Asensio-Ramos, Hernández-Borges, 

Rocco, & Fanali, 2009). There is a tendency to search analytical methods that can 

simultaneously quantify different components, saving reagents and time. Some 

recent examples are the method of Prates, Quaresma, Bessa, Fontes, & Alfaia 

(2006), in which a simultaneous quantification of β-carotene, cholesterol and 

tocopherols using HPLC in meat is presented, and the method of Tasioula-Margari, 

& Okogeri (2001) to determine simultaneously tocopherols and phenols in olive 

oils. 

More recently, our research group presented a detailed characterization of 

Buriti oil, including tocopherols, tocotrienols and total carotenes in its composition 

(Silva et al., 2009). In this work, a new HPLC methodology for simultaneous 

quantification of these analytes was developed. However, no validation was 

included in this previous work. It is recognized that for a consistent interpretation of 

the results of an analytical method it is essential to evaluate the inherent 

confidence, which is calculated by the quantification of its accuracy, i.e., trueness 

and precision (Dias, Camões, & Oliveira, 2008). This was, in fact, one of the goals 

of the present article: to validate the HPLC method previously developed by our 

research group to quantify simultaneously total carotenes, tocopherols and 

tocotrienols. Furthermore, the method was used to quantify the presence of 

compounds in some Amazon oils. 
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3.2 Material and Methods 

3.2.1 Chemical and reagents 

All solvents and reagents used in this study were of HPLC grade. The 

mobile phase used in the HPLC system was vacuum-filtered through a 0.45 µm 

filter (USA). Hexane was purchased from Mallinckrodt (USA) and isopropanol from 

Tedia (Brazil). α-, β-, δ- and γ-tocopherol standards were purchased from 

Calbiochem (USA) and the β-carotene standard from Fluka (Germany). 

 

3.2.2 Chromatography 

Chromatographic analyses were carried out using a Shimadzu HPLC, series 

LC-20AT (Japan), equipped with a quaternary pump, an autosampler (SIL-20A), a 

degasser, and a SPD-M20A spectrophotometric detector (Photo Diode Array 

detector - PDA), which was set at 292 nm and 455 nm, and a RF-10AXL 

fluorescence detector, which was set at 290 nm for excitation and 330 nm for 

emission. Chromatographic separation of the compounds was achieved at 30 ºC, 

using a normal-phase Lichrospher column (Merck, 250 × 4.6 mm i.d.; 5 �m particle 

size) with a guard column (10 × 4.6 mm) purchased from Merck (Germany). The 

concentration gradient used was as follows: 0 – 7 min 99.5 % hexane and 0.5 % 

isopropanol; 7 – 9 min linear gradient of 0.5 – 1 % isopropanol; 9 – 20 min 99.0 % 

hexane and 1.0 % isopropanol; 20 – 25 min reconditioning of the column with  

0.5 % isopropanol isocratic for 10 min. The flow gradient was: 0 - 4 min  

1.0 mL·min-1, 4 - 7 min linear gradient of 1 - 1.5 mL·min-1, 7 - 9 min 1.0 mL·min-1,  

9 - 15 min linear gradient of 1.5 - 2.0 mL·min-1, 15 - 17 min linear gradient of 2.0 -

1.0 mL·min-1, 17 - 35 min 1.0 mL·min-1. 

The total chromatographic run time was 35 min, being the time required for 

the analysis of tocopherols. Although the analyses of carotenes and tocopherols 

were carried out simultaneously, calibration curves were performed separately due 

to the ease of preparing the standards separately. For the calibration curve of  
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β-carotene, a 5 minute run was used with a mobile phase composed of 99.5 % 

hexane and 0.5 % isopropanol, and a flow rate of 1.0 mL min-1. 

System control, data acquisition and processing were performed with an 

Intel-Celeron D PC, operated with Microsoft Windows XP Professional version 

2002 and LC Solutions® version 2002 chromatography software with the system 

suitability option installed. Calibration curves were calculated by linear regression 

analysis of the peak area versus the concentration of the nominal standard for 

each compound. The goodness-of-fit of various calibration models were evaluated 

by visual inspection, the correlation coefficient and by intra- and inter-run accuracy 

and precision values. 

3.2.3 Preparation of stock solutions, calibration standards and quality 

control samples 

Stock solutions of α-, β-, δ- and γ-tocopherol were prepared by dissolving 

about 50 mg of each tocopherol fraction in 25 mL of hexane. Note that these stock 

solutions have the four tocopherol fractions in the same concentration. Serial 

dilution (37.50, 25.00, 17.50, 10.00, 5.00 and 2.50 mg·L-1) of a 2 mg·mL-1 

tocopherol solution was carried out. Tocotrienols were quantified based on the 

area of tocopherol homologues. In the same way, stock solutions of β-carotene 

were prepared by dissolving 5 mg in 25 mL of hexane. Serial dilution (10.00, 5.00, 

2.50, 1.00, 0.50, 0.25, 0.10 and 0.05 mg·L-1) of the 0.2 mg·mL-1 β-carotene solution 

was then performed. Total carotenes were quantified based on the area of β-

carotene. These calibration standards were freshly prepared in triplicate for each 

analytical run. 

Triplicates of quality control samples were prepared in hexane using the 

concentrations of 5.00 (LOQ), 15.00 and 35.00 mg·L-1 for the tocopherol system 

and in concentrations of 0.10, 0.35 and 9.00 mg·L-1 for β-carotene, as described 

above for the calibration standards. These quality control samples were used to 

investigate intra- and inter-run variations. 
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3.2.4 Validation Procedures 

A chromatographic validation run included a set of calibration samples 

assayed in triplicate and quality control samples at three levels in triplicate, which 

was carried out on six separate occasions. The validation method was performed 

in accordance with the previously reported procedures (USDHHS, 2001; Shah et 

al., 2000; Marin, Franchini, & Rocco, 2007). 

Calibration curves in the range of 2.5 to 37.5 mg·L-1 for each tocopherol in 

hexane and in the range of 0.05 to 10.00 mg·L-1 for β-carotene were plotted based 

on the peak-areas of each compound (axis y) against the respective nominal 

concentrations (axis x). All calibration curves were required to have a correlation 

coefficient of at least 0.9800. 

The intra- and inter-run accuracy and precision of the assays were assessed 

by the average relative percentage deviation (DEV %) from the nominal 

concentrations and the coefficient of variance (CV %) values, respectively, based 

on reported guidelines (USDHHS, 2001; Shah et al., 2000; Marin et al., 2007). 

Precision (CV %) and accuracy (DEV %) were calculated from Equations 3.1 and 

3.2: 

CV ;%< ! L SDAverage calculated concentration[ \ 100 
(3.1) 

DEV ;%< ! L1 3 Average calculated concentrationNominal concentration [ \ 100 
(3.2) 

 

where SD stands for standard deviation. 

Intra-run precision and accuracy measurements were performed on the 

same day using tocopherol concentrations (n=3) of 5.00, 15.00 and 35.00 mg·L-1 in 

hexane and β-carotene concentrations (n=3) of 0.10, 0.350 and 9.000 mg·L-1. Inter-

run precision and accuracy of the analytical method were determined 

simultaneously from the results of the calibration curve and quality control samples 

run on six days. Each set of quality control samples containing tocopherols or β-

carotene was evaluated from recently obtained calibration curves. 
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3.2.4.1 Limit of quantification (LOQ) and limit of detection (LOD) 

The limit of quantification (LOQ) was determined by considering the signal-

to-noise ratio larger than 10 and the lowest concentration at which precision 

expressed by the coefficient of variance is lower than 20 %, and accuracy 

expressed by relative difference of the measured and true values is also lower than 

20 %. The Limit of detection (LOD) was defined as the lowest concentration to be 

detected, taking into consideration a signal-to-baseline noise ratio larger than 3 

(USDHHS, 2001; Shah et al., 2000; Marin et al., 2007). 

3.2.4.2  Stability 

According to the FDA Guidance (USDHHS, 2001), solvent evaporation 

stability during storage in the autosampler for a 24 hour period was established at 

five concentrations of 37.50, 25.00, 17.50, 10.00 and 5.00 mg·L-1 in triplicate and 

was tested only for tocopherols. Considering that solvent evaporation would affect 

the concentrations of tocopherols and carotenes in the same proportion, no 

specific stability test was required for carotenes. 

3.2.5 Application of the method 

3.2.5.1  Amazon Oils Tocopherols and Tocotrienols Quantification 

Three Amazon oils were selected: Buriti (Mauritia flexuosa), Patawa 

(Oenocarpus bataua) and Tucuma (Astrocaryum aculeatum). Samples were 

dissolved in hexane and aliquots of 20 �L were injected in the HPLC system. 

The following fruits pulps were purchased at local markets in the Amazon 

Region: Buriti pulp was acquired in Abaetuba (Pará, Brazil), and Patawa and 

Tucuma pulps in Belém (Pará, Brazil), during harvest time. Thirty fruits of each 

species were gathered in three different places which were separated by a 

distance of at least two kilometers from each other, adding up to 90 fruits from 

each species. The Bligh and Dyer (1959) method was used to extract oils from the 

dried pulps. The total lipid fraction was extracted by exhaustive maceration with 

chloroform and methanol, followed by filtration of solids and separation of the 
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solvent/fat layer. Dried samples (10% moisture) were used to facilitate extraction 

with organic solvents. 

All data are presented as mean values ± SD and the mean values were 

analyzed by one-way ANOVA and Tukey-HSD at p<0.05 with SAS. 

3.3 Results and Discussion 

3.3.1 Chromatography 

Reproducible separation of β-carotene was obtained in the same silica 

normal-phase column used for tocopherol analysis. Retention time of β-carotene 

was 1.9 min, showing that this compound has lower affinity with the column. Peaks 

were sharp, symmetrical and all homologues were efficiently separated (Figure 

3.1). Tocopherols were analyzed using both PDA and fluorescence detectors. 

Retention times for tocopherols using the fluorescence detector were respectively, 

7.6, 16.6, 19.9 and 29.1 min for the α-, β-, γ- and δ-tocopherol homologues. For the 

PDA detector, retention times were 7.2, 16.4, 19.3 and 28.5 min, respectively, for 

the α-, β-, γ- and δ-tocopherol homologues. Note that retention times for PDA were 

lower than for fluorescence. This difference is due to the system configuration: the 

samples pass through the PDA detector and then the fluorescence detector. It is 

also important to highlight that retention times can vary slightly on different days 

and analysis. In all chromatograms, we can note an interfering peak which does 

not disturb the analyses as its retention time is different of all other analyzed 

compounds. Furthermore, this specific peak is not symmetrical and not well 

resolved. These data confirm the efficiency of the specified flow and composition 

gradients of the mobile phase to separate carotenes and tocopherols. Previous 

studies performed by Rodrigues et al. (2010) and Costa et al. (2010) were not able 

to quantify tocotrienols, nor distinguish β- and γ-tocopherols. 
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3.3.2 Validation of the method 

3.3.2.1 Linearity, accuracy, precision and sensitivity assays 

 

Samples with standard concentrations of α-, β-, γ- and δ-tocopherols in 

hexane ranging from 2.50 to 37.50 mg·L-1 and samples of β-carotene in hexane 

ranging from 0.05 to 10.00 mg·L-1 were used to construct the calibration curves. 

Results for the six different sequences of tocopherols standard samples performed 

in triplicate on different days using the fluorescence detector are shown in Table 

3.1. The relationship between tocopherol concentrations and the peak areas was 

described by the linear regression equations, and in all equations x is the 

tocopherol homologue concentration in mg·L-1 and y is the chromatogram peak 

area divided by 1x105. All R2 obtained were higher than 0.9810. At the upper limit 

of quantification (i.e. 37.50 mg·L-1) the percentage deviation and the inter-run 

variability values were less than 4.10 %, an appropriate value according to the 

literature (USDHHS, 2001; Shah et al., 2000; Marin et al., 2007). For all the other 

tocopherol concentrations, excluding the LOQ (2.5 mg·L-1), the percent deviation 

and the inter run variability values were less than 13.30 %. 

Data of the same six sequences of tocopherol standard samples run in 

triplicate on different days, obtained using the PDA detector set at 292 nm, are also 

shown in Table 3.1. The relationship between each tocopherol concentration and 

peak area (divided by 1x105) was described by linear regressions in the same way 

as for the fluorescence detector. All R2 values obtained were higher than 0.9970. 

At the upper limit of quantification (i.e. 37.50 mg·L-1) the percent deviation and the 

inter-run variability values were less than 4.60 %. For all the other concentrations 

of tocopherols, excluding the LOQ (2.5 mg·L-1), the percent deviation and the inter 

run variability values were also less than 13.50 %. 



 

 

 

 

 

Table 3.1. Inter-run variation – accuracy, precision and linearity of standard curve samples of tocopherols from six separate assays.a 
 Nominal 

Conc. 
(mg/L) 

 

ALFA BETA GAMA DELTA 

  Calculated 
Conc. 
(mg/L) 

CVb 
(%) 

DEVc 
(%) 

Calculated 
Conc. 
(mg/L) 

CV 
(%) 

DEV 
(%) 

Calculated 
Conc. 
(mg/L) 

CV 
(%) 

DEV 
(%) 

Calculated 
Conc. 
(mg/L) 

CV 
(%) 

DEV 
(%) 

1d 2.50 (LOD) 3.43±0.21 6.22 -
37.06 

3.76±1.07 28.32 -
50.43 

4.36±1.00 23.01 -
74.46 

3.04±0.79 26.17 -
21.44 

5.00 (LOQ) 5.23±0.12 2.32 -4.66 5.29±0.58 10.96 -5.72 5.63±0.36 6.48 -
12.52 

5.05±0.67 13.23 -0.81 

10.00 9.52±0.23 2.42 4.79 9.18±0.65 7.08 8.18 9.07±0.54 5.94 9.25 9.38±0.76 8.08 6.24 
17.50 16.81±0.22 1.28 3.96 16.64±0.99 5.92 4.89 15.88±0.90 5.68 9.24 16.62±0.82 4.92 5.02 
25.00 24.49±0.29 1.19 2.04 24.33±1.00 4.09 2.70 23.84±0.77 3.21 4.62 24.17±0.99 4.08 3.32 
37.50 37.73±0.61 1.62 -0.60 38.36±1.56 4.06 -2.30 38.73±0.74 1.92 -3.28 37.26±1.40 3.75 0.63 

R2 0.9975±0.0016 0.16 0.25 0.9929±0.0031 0.31 0.71 0.9819±0.0073 0.74 1.81 0.9979±0.0011 0.11 0.21 
              

2e 2.50 (LOD) 3.12±0.22 7.18 -
25.29 

2.71±0.79 29.13 -8.34 2.81±0.56 20.02 -
12.21 

2.67±0.23 8.74 -6.91 

5.00 (LOQ) 5.23±0.10 1.90 -4.55 4.97±0.67 13.46 0.69 5.28±0.21 4.03 -5.54 5.02±0.21 4.24 -0.48 
10.00 9.72±0.14 1.43 2.80 9.72±0.76 7.80 2.82 9.82±0.41 4.19 1.81 9.77±0.17 1.75 2.29 
17.50 19.87±0.15 0.92 3.59 17.50±0.96 5.51 0.00 17.09±0.31 1.84 2.33 17.18±0.27 1.57 1.82 
25.00 24.63±0.30 1.22 1.48 24.91±0.95 3.81 0.35 24.65±0.22 0.91 1.40 24.96±0.28 1.13 0.17 
37.50 37.70±0.48 1.26 -0.54 38.25±1.74 4.55 -2.00 97.78±0.46 1.22 -0.75 38.13±0.39 1.02 -1.69 

R2 0.9987±0.0008 0.08 0.13 0.9974±0.0038 0.38 0.26 0.9988±0.0011 0.11 0.12 0.9993±0.0004 0.04 0.07 
a A linear curve was fitted to the data for response of tocopherol versus theoretical concentration as described in the Experimental section. 
The calculated concentration was derived from reading the response for the standard sample against calibration curve. Each entry 
corresponds to the average value of 6 assay analyses. 
b CV (coefficient of variation, precision) = Calculation according to Equation 3.1. 
c Accuracy (DEV %) = the deviation of the calculated concentration from the nominal value. Calculation according to Equation 3.2. 
d Fluorescence detector data; e PDA data 

  



 

 

 

 

 

Table 3.2. Inter-run variation - accuracy, precision and linearity of standard curve samples of β-carotene from six separate assaysa and intra- 
and inter-run precision and accuracy for β-carotene in quality control samples.b 

 β-CAROTENE QUALITY CONTROL 

Nominal 
Concentration 

(mg/L) 

Calculated 
Concentration 

(mg/L) 

CV 
(%) 

DEV 
(%) 

 Nominal 
Concentration 

(mg/L) 

Calculated 
Concentration 

(mg/L) 

CV 
(%) 

DEV 
(%) 

0.05 (LOD) 0.05±0.02 33.74 -6.28 Inter-run 
(n=24) 

0.100 (LOQ) 0.09±0.01 9.35 12.97 

0.10 (LOQ) 0.10±0.02 18.40 -3.32 0.350 0.31±0.02 7.28 12.04 
0.25 0.28±0.03 9.87 -

10.15 
9.000 8.80±0.98 11.16 2.24 

0.50 0.56±0.05 9.26 -
11.09 

     

1.00 1.01±0.06 6.40 -0.80      
2.50 2.33±0.16 6.68 6.82 Intra-run (n=3) 0.100 (LOQ) 0.09±0.00 1.42 5.70 
5.00 4.59±0.41 9.03 8.27 0.350 0.31±0.03 10.59 10.14 
10.00 10.19±0.16 1.59 -1.91 9.000 7.95±0.27 3.45 11.71 

R2 0.9942±0.0091 0.92 0.58      
a A linear curve was fitted to the data for response of β-carotene versus theoretical concentration as described in the Experimental section. 
The calculated concentration was derived from reading the response for the standard sample against calibration curve. Each entry 
corresponds to the average value of six assay analyses. 
b The data are shown as averages, SD (standard deviation), accuracy (percent deviation, DEV%) and CV (coefficient of variation, precision). 
Accuracy and precision calculations were carried out using Equations 3.1 and 3.2, respectively. 
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Data of the six different sequences of β-carotene standard samples 

performed in triplicate on different days, using the PDA detector set at 455 nm, are 

show in Table 3.2. R2 value was higher than 0.9940. At the upper limit of 

quantification (i.e. 10.00 mg·L-1) the percent deviation and the inter-run variability 

values were less than 2.00 %. For all the other concentrations of β-carotene, 

excluding the LOQ (0.10 mg·L-1), the percent deviation and the inter run variability 

values were less than 11.10 %. 

Reproducibility of the method was evaluated by analyzing replicates of 

tocopherol quality control samples at concentrations of 5.00 (LOQ), 15.00 and 

35.00 mg L-1, using both fluorescence and PDA detectors. The intra- and inter-run 

average results are reported in Table 3.3. Accuracy and precision of the assays 

are demonstrated by DEV values ≤ 14.92 and C.V. values ≤ 13.64%, respectively 

(Table 3.3). Reproducibility of the method was also evaluated by analyzing 

replicates of β-carotene quality control samples of 0.10 (LOQ), 0.35 and  

9.00 mg L-1, using the PDA detector. The intra- and inter-run average results are 

reported in Table 3.2. Accuracy and precision of the assays are demonstrated by 

DEV values ≤ 12.97 % and by C.V. values ≤ 11.16 %, respectively. 

3.3.2.2 Limit of detection (LOD) and limit of quantification (LOQ) 

The limit of detection (LOD) was determined as the sample whose signal-to-

noise ratio (S/N) was slightly greater than 3 and corresponded to 2.50 mg·L-1 of 

each tocopherol. For tocopherols, the lower limit of quantification (LOQ), estimated 

at 5.00 mg·L-1 of each tocopherol, displayed a S/N ratio equal to 10. Furthermore, 

accuracy values (DEV %) were found ranging within ± 15.00% of the nominal 

concentration values (Table 3.1). The intra- and inter-run variabilities (quality 

controls) were demonstrated by CV ≤ 14.70% (Table 3.3). Note that tocopherols 

and tocotrienols can be quantified in very small amounts due to their natural 

fluorescence. 



 

 

 

 

 

Table 3.3. Intra- and inter-run precision and accuracy for tocopherols in quality control samples.a 
  Nominal Conc. 

(mg/L) 
ALFA BETA GAMA DELTA 

 Calculated 
Conc 

(mg/L) 

CV 
(%) 

DEV 
(%) 

Calculated 
Conc 

(mg/L) 

CV 
(%) 

DEV 
(%) 

Calculated 
Conc 

(mg/L) 

CV 
(%) 

DEV 
(%) 

Calculated 
Conc 

(mg/L) 

CV 
(%) 

DEV 
(%) 

1b Inter-run  
(n= 24) 

5.000 (LOQ) 5.23±0.28 5.25 -4.72 5.67±0.77 13.64 -13.47 4.97±0.67 13.53 0.53 4.26±0.17 3.97 14.70 
15.000 14.01±0.77 5.51 6.59 14.27±1.46 10.24 4.84 15.78±1.33 8.44 -5.20 13.02±1.06 8.14 13.20 
35.000 32.56±1.51 4.65 6.98 34.59±2.37 6.84 1.18 35.24±2.17 6.16 -0.68 31.27±1.82 5.81 10.66 

              
Intra-run  

(n=3) 
5.000 (LOQ) 5.47±0.52 9.53 -9.35 5.72±0.41 7.17 -14.37 4.95±0.29 5.90 0.92 4.306±0.18 4.11 14.00 

15.000 14.64±1.80 12.31 2.39 13.36±0.18 1.38 10.96 15.31±0.34 2.19 -2.08 14.25±1.75 12.28 4.98 
35.000 33.49±3.14 9.38 4.31 33.38±0.97 2.30 4.62 32.55±2.38 7.31 7.01 33.22±2.04 6.14 5.07 

2c Inter-run  
(n= 24) 

5.000 (LOQ) 4.66±0.45 9.57 6.7898 4.86±0.41 8.34 2.70 5.26±0.54 10.33 -5.22 5.07±0.34 6.76 -1.34 
15.000 12.82±0.81 6.33 14.55 13.19±1.50 11.35 12.04 16.48±1.34 8.10 -9.87 12.76±0.95 7.43 14.92 
35.000 31.27±1.64 5.24 10.67 37.40±3.78 10.12 -6.86 34.29±3.87 11.29 2.01 29.92±1.77 5.90 14.50 

              
Intra-run  

(n=3) 
5.000 (LOQ) 5.01±0.30 6.04 -0.29 5.67±0.16 2.86 -13.36 5.32±0.28 5.30 -6.31 4.82±0.41 8.46 3.69 

15.000 12.99±0.22 1.73 13.36 13.36±0.18 1.38 10.96 13.36±0.18 1.38 10.96 12.75±0.66 5.15 14.96 
35.000 31.56±0.56 1.77 9.89 33.38±0.97 2.30 4.62 33.38±0.97 2.90 4.62 30.78±1.62 5.25 12.04 

a The data are shown as averages, SD (standard deviation), accuracy (percent deviation, DEV%) and CV (coefficient of variation, precision). 

Accuracy and precision calculations were carried out using Equations 3.1 and 3.2, respectively. 
b Fluorescence detector data; c PDA detector data  
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The lower limit of quantification (LOQ) of β-carotene, estimated as 0.10 

mg·L-1, showed accuracy values (DEV%) lower than 3.32 % and precision values 

lower than 18.40 %. The intra- and inter-run variabilities (quality controls) were 

demonstrated by CV ≤ 11.16 % (Table 3.2). 

3.3.2.3 Stability 

Stability of samples was tested only for solvent evaporation. Even after 24 

hours in the autosampler, the precision and the accuracy of the analysis indicated 

satisfactory values (CV and DEV lower than 15.0 %) (Table 3.4). Autosampler 

stability testing showed that tocopherols can remain 24 h without solvent 

evaporation, allowing the solubilisation of a large number of oil samples for each 

analytical run and use of the autosampler for injection. Considering that no solvent 

evaporation was detected, the concentration of carotenes was not affected by 

storage in the autosampler. 

3.3.3 Application of the HPLC method 

3.3.3.1 Quantification of Tocopherols, Tocotrienols and β-carotene in Amazon Oils 

Applicability of this method was tested by quantifying tocopherols, 

tocotrienols and total carotenes in three Amazon oils: Buriti, Patawa and Tucuma 

oils. Table 3.5 presents the results for the tocopherol, tocotrienol and carotenes 

analyses and Figure 3.1 shows the chromatograms. Buriti oil presented all 

tocopherols, detected by both PDA and fluorescence means. β-tocopherol was 

encountered in the highest concentration (759 mg·L-1 and 711 mg·L-1, by PDA and 

Fluorescence, respectively), followed by γ-tocopherol (319 mg·L-1 and 310 mg·L-1), 

α-tocopherol (306 mg·L-1 and 299 mg·L-1) and δ-tocopherol (87 mg·L-1 and  

89 mg·L-1). Buriti oil also presented tocotrienols. γ-Tocotrienol was detected by 

Fluorescence, however in concentrations below the LOQ, and was not detected by 

PDA. δ-Tocotrienol was encountered in the concentration of 20 mg·L-1 and  

26 mg·L-1. Total tocol content was 1488 mg·L-1 and 1435 mg·L-1, by PDA and 

fluorescence, respectively.                                                   . 



 

 

 

 

Table 3.4. Stability evaluation (average ± SD) of tocopherols in hexane (n=3).a 

  Nominal Concentration (mg/L) 
  5.00 (LOQ) 10.00 17.50 25.00 37.50 

ALFA Fresh Samples 5.03 ± 0.03 9.76 ± 0.07 17.00 ± 0.06 24.61 ± 0.14 37.99 ± 0.12 
Autosampler (24 h) 5.32 ± 0.04 9.34 ± 0.20 16.84 ± 0.08 24.41 ± 0.07 38.21 ± 0.18 
Average 5.18 ± 0.16 9.55 ± 0.27 16.92 ± 0.11 24.51 ± 0.15 38.10 ± 0.18 
CV(%) 3.13 2.82 0.63 0.61 0.48 
DEV(%) -3.58 4.50 3.30 1.98 -1.60 

       
BETA Fresh Samples 5.32 ± 0.33 9.03 ± 0.04 16.22 ± 0.41 24.40 ± 0.76 38.44 ± 2.36 

Autosampler (24 h) 5.62 ± 0.26 8.58 ± 0.29 16.15 ± 0.03 23.88 ± 0.82 38.74 ± 0.72 
Average 5.47 ± 0.32 8.80 ± 0.31 16.18 ± 0.26 24.14 ± 0.76 38.59 ± 1.57 
CV(%) 5.78 3.52 1.62 3.16 4.07 
DEV(%) -9.36 11.97 7.53 3.43 -2.90 

       
GAMA Fresh Samples 5.60 ± 0.02 8.83 ± 0.23 15.35 ± 0.54 24.00 ± 0.05 38.85 ± 0.63 

Autosampler (24 h) 5.58 ± 0.20 8.63 ± 0.17 15.92 ± 1.40 23.77 ± 0.09 38.84 ± 0.11 
Average 5.59 ± 0.13 8.73 ± 0.21 15.64 ± 0.99 23.89 ± 0.14 38.84 ± 0.40 
CV(%) 2.29 2.42 6.38 0.59 1.04 
DEV(%) -11.81 12.73 10.65 4.45 -3.58 

       
DELTA Fresh Samples 5.17 ± 0.06 9.71 ± 0.07 17.07 ± 0.16 24.50 ± 0.05 38.02 ± 0.29 

Autosampler (24 h) 5.35 ± 0.11 9.53 ± 0.06 16.81 ± 0.18 24.19 ± 0.06 38.32 ± 0.09 
Average 5.26 ± 0.13 9.62 ± 0.12 16.94 ± 0.21 24.34 ± 0.18 38.17 ± 0.25 
CV(%) 2.38 1.20 1.24 0.72 0.65 
DEV(%) -5.12 3.83 3.22 2.63 -1.79 

a The data are shown as averages, SD (standard deviation), accuracy (percent deviation, DEV%) and CV (coefficient of variation, precision). 

Accuracy and precision calculations were carried out using Equations 3.1 and 3.2, respectively. 
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The concentration of carotenes was 1576 mg·L-1. These results are similar 

to those found in studies performed by Silva et al. (2009) where Buriti oil was 

analyzed, presenting 1517 mg·L-1 of total tocols in which β-tocopherol was the 

most important homologue. However, it was followed by α-tocopherol and γ-

tocopherol respectively, probably due to the different post-harvest treatments of the 

oil (Silva et al., 2009). 

Patawa oil contained only α-homologues in both analyses: 38 mg·L-1 and  

41 mg·L-1, by PDA and fluorescence, respectively of α-tocopherol and 35 mg·L-1 

and 33 mg·L-1 of α-tocotrienol (Table 3.5). The α-tocopherol content obtained was 

similar to that found by Rodrigues et al. (2010), however they did not analyze 

tocotrienols. The same authors also found β- + γ-tocopherols (7.8 mg·L-1) and δ-

tocopherol (7.7 mg·L-1) in very low concentrations that were not detected during the 

analyses of Patawa oil done in this work (Table 3.5). The total tocol content was  

73 mg·L-1, by both PDA and fluorescence, respectively. Carotenes were not 

detected in Patawa oil. In Patawa chromatogram (Figure 1-D) the interfering peak 

(retention time approximately 26 minutes) is higher than peaks of the tocols. 

Comparing it with Buriti chromatogram it can be noted that the interfering 

compound has a different retention time compared to all other analyzed 

compounds, so it do not disturb the analysis. 

The Tucuma oil contained all tocopherol homologues in both analyses. The 

most important was α-tocopherol (241 mg·L-1 and 234 mg·L-1, by PDA and 

fluorescence, respectively), followed by γ-tocopherol (68 mg·L-1 and 65 mg·L-1),  

β-tocopherol (37 mg·L-1 and 40 mg·L-1) and δ-tocopherol (19 mg·L-1 and 22 mg·L-1). 

The oil also presented δ-tocotrienol (25 mg·L-1). Rodrigues et al. (2010) found only 

α-tocopherol and β- + δ-tocopherols. The total tocol content was 399 mg·L-1 and 

385 mg·L-1, by PDA and fluorescence, respectively. The carotenes content was 

1934 mg·L-1, a result in accordance with those found by Rodriguez-Amaya (1996). 

Note that tucuma oil contains more carotenes than Buriti oil (Silva et al., 2009). 



 

 

Table 3.5. Tocopherols, Tocotrienols and total carotenes concentration (mg·L-1) in three Amazon Oils 
Measured Concentration 

(mg/L) 
Buriti Patawa Tucumã 

 FLUORO PDA FLUORO PDA FLUORO PDA 
α-tocopherol 306 ± 7 299 ± 11 38 ± 1  41 ± 7 241 ± 4 234 ± 33 
β-tocopherol 759 ± 17 711 ± 31 ND ND 37 ± 5 40 ± 0 
γ-tocopherol 319 ± 17 310 ± 27 ND ND 68 ± 1 65 ± 4 
δ-tocopherol 87 ± 1 89 ± 3 ND ND 19 ± 0 22 ± 3 
α-tocotrienol NDa ND 35 ± 1 33 ± 7 ND ND 
γ-tocotrienol LLOQb ND ND ND ND ND 
δ-tocotrienol 20 ± 1 26 ± 9 ND ND 25 ± 0 25 ± 1 

TOTAL TOCOLS 1488 ± 23 1435 ± 54 73 ± 1 73 ± 26 390 ± 3 385 ± 6 
Total Carotenes 1576 ± 30 ND 1934 ± 131 

a Not detected 
b Detected, but in a concentration lower than LOQ 
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Mean concentration values obtained by PDA and fluorescence were 

compared using the Tukey test. There was no significant difference between mean 

values of each tocopherol/tocotrienol (0.95 confidence level) measured by both 

detectors. From that, it can be concluded that there is no interfering compound in 

the samples that is detected with tocols and both detectors can be used to quantify 

tocopherols and tocotrienols in these oils. Although, it can be noted in Table 3.5 

that the fluorescence detector has in general lower values of CV%, so its use may 

be preferred. 

The analytical procedure used by Rodrigues et al. (2010) required several 

sample preparation steps, including saponification. Besides being time consuming, 

the sequence of several preparation steps may increase the uncertainty of the 

results. Despite the fact that the samples used in this work and those analysed by 

Rodrigues et al. (2010) were obtained at different times and/or places, and also 

submitted to different post-harvesting processing, both works show similar results 

in regards to the content of tocopherols. As emphasized by Sampaio, Ceriani, 

Silva, Taham, & Meirelles (2010), crop seasonality and fruit ripeness are 

responsible for fluctuations in the composition of vegetable oils. 

3.4 Concluding remarks 

We have developed a simple, sensitive and reproducible HPLC method for 

simultaneously quantification of tocols and total carotenes. The lower limit of 

quantification (LOQ) was 5.0 mg	L-1 for the tocols and 0.1 mg	L-1 for carotenes, 

whereas the lower limit of detection (LOD) was 2.50 mg	L-1 for tocols and 0.05 

mg	L-1 for carotenes. There was no significant solvent evaporation during samples 

storage in the autosampler, allowing the solubilisation of a large number of oil 

samples for each analytical run. The methodology was applied for the 

quantification of the mentioned compounds in Amazon oils, concluding that both 

PDA and fluorescence detection can be used to quantify tocopherols and 

tocotrienols in these vegetable oils. 
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Abstract 

In this work, the adsorption of carotenes and phosphorus from Crude Palm 

Oil onto acid activated bleaching earth was investigated under bleaching 

conditions, i.e. high temperature (90, 105 and 115 °C) and low pressure (less than 

50 mbar). Bleaching earth was added to palm oil in a range of 0.5-3.0 wt%. Results 

suggest that adsorption of β-carotene increases with temperature, while 

phosphorus adsorption was not affected. Both the pseudo-first-order and the 

pseudo-second-order kinetic model describe efficiently the β-carotene 

experimental data. Intra-particle diffusion is involved in β-carotene adsorption 

mechanism, although it is not the sole rate limiting step in the adsorption onto acid 

activated bleaching earth. Phosphorus adsorption was too fast, resulting in a lack 

of kinetic data. The equilibrium data were described better by Langmuir and 

Freundlich models, for β-carotene and phosphorus, respectively. A multi-

component Freundlich type isotherm was tested. Its competition coefficients were 

too low, and it assumed the same form as the monocomponent Freundlich. A 

thermodynamic study demonstrated that β-carotene and phosphorus adsorption is 

spontaneous, endothermic and an entropy-driven process. Isosteric heat values 

suggest that the interactions between adsorbate and adsorbent are 

heterogeneous.  

4.1 Introduction 

Adsorption is a complex chemical process employed in the refining of 

vegetable oils during which oil impurities are removed by adsorbent materials after 

alkali or before physical refining (Proctor and Brooks, 2005). During bleaching, 

compounds such as phospholipids, colorants, soaps, contaminants and lipid 

peroxidation products are removed to obtain desirable characteristics in edible oils 
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(Zschau, 2001). Adsorptive bleaching is mostly affected by temperature and 

humidity, but structure and type of bleaching earth also plays a role (Gibon et al., 

2007). Activated bleaching earth is the most common adsorbent used in edible oil 

bleaching. It adsorbs preferentially those components which are cationic or polar in 

nature (Zschau, 2001). Furthermore, adsorptive processes can also be used in 

vegetable oil industry for the removal of free fatty acids (Cren et al., 2009; Cren 

and Meirelles, 2005, 2012). 

Crude Palm Oil (CPO) is purified by physical refining, meaning that the free 

fatty acids (FFA) are removed in the last refining step at high temperature  

(240 - 260 °C) and low pressure (less than 5 mbar), avoiding excessive loss of 

neutral oil during alkali neutralization (chemical refining) (Rossi et al., 2001; 

Sampaio et al., 2011).  

To avoid color fixation during the deodorization step, bleaching needs to 

reduce phosphorus and iron to sufficiently low levels and minimize oxidation 

products (Gibon et al., 2007). In the case of carotenes, full reduction by bleaching 

is not necessary, as they can be thermally decomposed during the subsequent 

deacidification (so-called heat bleaching) (Gibon et al., 2007). In fact, in some 

refining processes, only 20 % of the carotenoid-related color is removed during 

bleaching. Remaining carotenoids are then destroyed during heat bleaching: after 

20 min at 240 °C, more than 98 % of the total carotenoids are destroyed 

(Maclellan, 1983). 

Usually, work on bleaching is dealing with color/pigments removal by 

physical adsorption on the bleaching earth surface. Some authors have suggested 

that pigments and phospholipids removal is performed through chemisorption and 

that bleaching earth acidity is related with its adsorption capacity for pigments 

(Taylor, 2005). β-carotene adsorption was studied for different types of oil such as 

soya (Ma and Lin, 2004), palm oil (Low et al., 1998), rapeseed oil (Sabah et al., 

2007), maize and sunflower (Christidis and Kosiari, 2003). None of these studies 

looked at the adsorption under bleaching conditions, i.e. high temperature, low 

pressure and without solvent addition. 
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Besides pigments removal, the bleaching process is responsible for 

removing trace amounts of metals, adsorption of phosphorus, soaps and for 

decomposing primary oxidation products (Taylor, 2005). 

There is a lack of scientific knowledge on phosphorus adsorption onto 

bleaching clays. Gutfinger and Letan (1978) studied phospholipids removal from 

soybean oil onto various adsorbents and proposed the Freundlich model to 

describe the equilibrium isotherm. However, they did not determine 

thermodynamics parameters. Brown and Snyder (1985) studied the removal of 

phospholipids from miscellas by adsorption onto silica. 

Although adsorption is used on industrial scale for bleaching of edible oils, 

the understanding of its thermodynamic basis is still very restricted. One of the 

reasons for this lack of understanding is that the proposed adsorption is 

multicomponent, involving at least carotenes, phospholipids and, eventually, 

metals removal. Furthermore, the use of model systems able to correctly mimetize 

the studied vegetable oil is difficult due to the unavailability of pure compounds 

and/or the difficult solubilization of the compounds in solvent-free systems. For 

these reasons, the use of model systems can not properly represent all events that 

occur in the real system. 

In this context, the objective of this work was to evaluate the adsorption of 

carotenes and phosphorus from Crude Palm Oil (CPO) onto acid activated 

bleaching earth under industrially applied conditions, i.e. high temperature, low 

pressure and without solvent. Acid activated bleaching earth was chosen as it is 

the most common adsorptive agent used industrially (Taylor, 2005). Through batch 

adsorption experiments, the kinetics (pseudo-first-order and pseudo-second order) 

and mechanism (intra-particle diffusion) of removal were evaluated. The effect of 

temperature on the adsorption process was also studied. Moreover, 

thermodynamic parameters as Gibbs free energy, enthalpy and entropy were 

calculated. Those results are important to better understand and to improve palm 

oil refining. 
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4.2 Material and Methods 

4.2.1 Adsorbent 

Tonsil OPT 210 FF (Süd Chemie, Germany), a commercial bleaching earth, 

was used for the adsorption experiments. It is a highly acid activated bleaching 

earth manufactured by acid activation of calcium bentonite with a surface area 

(B.E.T.) of 200 m2/g. Particle size was characterized by a sieve analysis of the dry 

powder, presenting the following average values: 60 % >25 �m, 40 % >45 �m, 29 

% >63 �m, 17 % >100 �m and 5 % >150 �m.(Süd-Chemie). Table 4.1 presents the 

bleaching earth physical chemical characterization. 

 

Table 4.1 Physical Chemical Characterization of Tonsil OPT 210 FF (Süd-Chemie) 
Apparent bulk density g/l 550  
Free moisture (2 h, 110 °C) % ~ 10  
Loss on ignition (predried, 2 h, 1000 °C) % 8.0 
pH (10% suspension, filtered) 2.2 – 4.8 
Acidity mg KOH/g 4.5 
Chloride content mg Cl/g 0.5 
Surface area (B.E.T.) m²/g 200 
Micropore volume  
0 - 80 nm ml/g 
0 - 25 nm ml/g 
0 - 14 nm ml/g 

 
0.29  
0.25 
0.23 

 

4.2.2 Oil Characterization 

Crude palm oil was obtained from a local processor in Belgium and it was 

characterized in terms of free fatty acids (FFA) (4.6 wt%, expressed as palmitic 

acid) and phosphorus content (19.1 ± 0.02 mg/kg). Carotenes, which are 

susceptible to degradation due to oxidation, were determined before each 

experimental set. The initial carotenes concentration was 454 ± 5.5 mg/kg, but this 

initial value decreased along the storage time to 399 ± 3.3 mg/kg. 
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4.2.3 Batch Adsorption 

Batch adsorption experiments were carried out in a rotary evaporator at a 

constant speed, reproducing the bleaching process of palm oil. In each test,  

0.400 kg of crude palm oil was placed into 500 mL flasks and the following 

procedure was performed: heating the crude palm oil to 85 °C (Rotavapor, BUCHI, 

B-480, Switzerland); adding 0.09 % citric acid, as 30 % aqueous solution (Sigma-

Aldrich ACS reagent, >99 %, Germany); high shear mixing at 16000 rpm during 1 

minute (mixer, IKA-WERKE Digital, EURO-ST D, Germany); adding adsorbent 

(bleaching earth); 15 minutes of maturation at 85 °C and atmospheric pressure; 

applying vacuum (50 mbar) and maintaining the bleaching for 30 minutes at the 

selected temperature (Rotavap, BUCHI, R-124, Switzerland); removing the 

bleaching earth by filtration over a Buchner funnel and a paper filter (pore size 11 

�m, Whatman). In this way, the bleaching earth contact time with palm oil sums 45 

minutes. For adsorption kinetics, time zero was considered immediately after the 

bleaching earth (BE) addition, before the 15min maturation step. Sampaio et al. 

(2012) found that carotene loss during dry pretreatment with silica gel under 85 °C 

was lesser than 5 %. Moreover, a blank run was made to evaluate the thermal 

degradation during this procedure. The experiment was performed in triplicate 

according to the procedure previously described and using 105 °C of bleaching 

temperature. The initial and final concentrations of carotenes were measured. It 

was obtained a loss in carotenes of 6.3 ± 1.3 wt%. Based on the small amounts of 

carotenes lost by thermal degradation, it is assumed that almost all carotene 

removal is due to the adsorption process. 

The kinetics of adsorption was determined at 105 °C and using 3.0 wt% of 

bleaching earth. To determine this value, preliminary experiments were performed 

using bleaching earth in a range of 0.5 to 3.0 wt%. The bleached oil was 

deodorized afterwards, and Lovibond color was analyzed. The experiment using 

3.0 wt% of acid activated bleaching earth resulted in a fully refined oil with a light 

color (3.4 R) as specified by PORAM (Palm Oils Refiners Association of Malaysia) 
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for processed palm oil (Taylor, 2005). To obtain the adsorption isotherms, different 

concentrations of bleaching earth were added (ranging from 0.5 and 3.0 wt%) and 

agitated at 90, 105 and 115 °C. The adsorbate concentrations in solid phase  

qt (mg/kg) at time t, and at equilibrium, qe (mg/kg), were obtained by mass balance, 

according to Equations 4.1 and 4.2: 

 

_� ! à�b · ;c' 3 c�<
d̀e  

(4.1) 

_� ! à�b · ;ca 3 c�<
d̀e  

(4.2) 

 

Where Woil is the weight of crude palm oil treated in kg, WBE is the weight of 

bleaching earth in kg, C0 is the initial concentration of adsorbate (carotenes or 

phosphorus) in (mg/kg), Ct and Ce are the liquid phase concentration of adsorbate 

at time t (min) and at equilibrium, respectively.  

4.2.4 Analytical Measurements 

Palm oil has a high carotenoid content, β-carotene being the most abundant 

(Gee, 2007). Total carotene content, expressed as β-carotene, was determined 

measuring the absorbance at 446 nm of samples homogenized and diluted in iso-

octane (Spectrophotometer UV-240, Shimadzu Graphicord, Japan). In the same 

way, phosphorus in palm oil mostly occurs as inorganic phosphates (Goh et al., 

1984a) and about 10 - 30 % occurs as phosphatides (Gibon  et al., 2007). In this 

work, phosphorus content was expressed as total phosphorus, measured using an 

Inductively Coupled Plasma (ICP) (Thermo Scientific, iCAP 6000 series, USA) 

method according to the AOCS Official Method Ca 20–99 (AOCS, 1998). 

4.2.5 Modeling 

Adsorption models were fitted to experimental data using nonlinear 

regression analysis performed using Origin™ 8 and Levenberg-Marquardt 
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interactive method (OriginLab, 2007). The parameters and coefficients of 

determination (R2) were obtained at 95 % confidence interval. 

4.3 Results  

4.3.1 Adsorption mechanism and kinetics 

There are several mathematical models proposed to describe the kinetics of 

adsorption. They can be classified in two types: adsorption reaction models and 

adsorption diffusion models. Adsorption diffusion models are based on three 

consecutive steps, being (1) diffusion across the liquid film surrounding the 

adsorbent particle; (2) diffusion in the liquid contained in the pores and/or along 

pore walls, so called intra-particle diffusion; and (3) adsorption and desorption 

between adsorbate and active sites. The latter is a very rapid step in a physical 

process and can be negligible for kinetic studies (Qiu et al., 2009). Therefore, film 

liquid diffusion and/or intra-particle diffusion are always the limiting steps for the 

adsorption process and adsorption diffusion models are mostly constructed to 

describe one or both of those phenomena. Adsorption reaction models are based 

on the whole process of adsorption, without considering these steps mentioned 

above. In this work, we studied two reaction models and one diffusion model. 

4.3.1.1 Pseudo-first-order rate equation 

The pseudo-first-order equation can be expressed in a non-linear form 

(Equation 4.3) (Ho and McKay, 1998; Yousef et al., 2011). 

 _� ! _�21 3 -#.;3f?�<4 (4.3) 

 

Where qt and qe are sorption capacities at time t and at equilibrium e, 

respectively, i.e. the amount of adsorbate per unit of adsorbent (mg/kg); k1 is the 

pseudo-first-order constant t-1. This model basically differs from first-order model of 

Lagergren as it is based on adsorption capacity instead of solution concentration. 
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Mostly, this model is suitable to describe the initial 20 - 30 minutes of the 

adsorption process (Ho and McKay, 1998). 

4.3.1.2 Pseudo-second-order rate equation 

The pseudo-second-order equation can be expressed in a non-linear 

equation (Equation 4.4) (Ho and McKay, 1998; Yousef et al., 2011). 

 

_� ! _�
f
�1 � _�f
� 
(4.4) 

where k2 is the pseudo-second-order constant t-1. The pseudo-second-order 

equation is based on the sorption capacity of the solid phase and it is in agreement 

with chemisorption being the rate controlling step (Ho and McKay, 1998). In the 

same way, Ho’s second order-equation has been a so-called pseudo-second-order 

rate equation to distinguish from the one based on the solution concentration. 

4.3.1.3 Intra-particle diffusion 

The Weber-Morris intra-particle diffusion model is expressed as (Equation 

4.5); 

 _� ! f�g�'.i � c� (4.5) 

 

where kid (mg/kg min0.5) is the intra-particle diffusion rate constant and Ci (mg/kg) is 

associated to the boundary layer thickness. If intra-particle diffusion is the limiting 

step of adsorption process, the plot qt against t0.5 provides a straight line. 

According to the Weber-Morris model, it is essential that the plot goes through the 

origin if intra-particle diffusion is the only rate-limiting step (Alkan et al., 2007). 

The concentration plot of adsorbed carotene and phosphorus versus contact 

time is shown in Figure 4.1. For carotenes, the coefficient of determination were 

high for both pseudo-first-order and pseudo-second-order models (R2 = 0.9992 and 

0.9948, respectively, Table 4.2). The T-test shows a high accuracy in parameter 
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prediction for both kinetic models. The qe values calculated by the pseudo-first-

order model (14.25 × 103 mg/kg) and the pseudo-second-order model  

(q e= 14.10 × 103 mg/kg) presented a good agreement with experimental data  

(14.40 × 103 mg/kg). These data suggests that both kinetic models are suitable to 

describe carotene adsorption data. The curve-fitting plot of intra-particle model 

presented high R2, (qt = 478.82	t0.5+11243, R2 = 0.9837), for carotenes, but it did 

not pass through the origin (Figure 4.2). This result indicates that, even though 

intra-particle diffusion is involved in the adsorption process, it is not the sole rate 

limiting step (Alkan et al., 2007). Liquid film resistance may be also involved in the 

process. Phosphorus adsorption was faster than carotene adsorption and it 

reached equilibrium in less than 25 minutes of contact time. For this reason, a lack 

of concentration data occurred to calculate the kinetic parameters. In fact, 

bleaching earth adsorbs preferentially cationic and polar molecules, such as 

phospholipids (Zschau and Grp, 2001). 

 

Table 4.2 Fitting kinetics and mechanism parameters of adsorption of carotene onto acid activated 
bleaching earth according to pseudo-first-order, pseudo-second-order and intra-particle diffusion at 
105 °C (Initial concentration: carotenes 454 ±  5.5 mg/kg and phosphorus 19.1 ± 0.02 mg/kg) 

  Carotenes  
 qexp × 10-3 (mg/kg) 14.40  
   t-value 
Pseudo-First-Order qe× 10-3 (mg/kg) 14.25±0.06 113 
 K1 (min-1) 0.16±0.01 20 
 R2 0.9992  
 F-test 11187  
 P-value <0.0001  
Pseudo-Second-Order qe × 10-3 (mg/kg) 14.10±0.27 205 
 K2 × 103 (kg/mg min-1) 0.08±0.01 17 
 R2 0.9948  
 F-test 4587  
 P-value <0.0001  
Intra-particle  Kid × 10-3 (mg/kg min0.5) 478.82±4.40 47 
Diffusion Ci 11243±23 11 
 R2 0.9837  
 F-test 120  
 P-value 0.0083  
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Figure 4.1. Adsorption kinetics of Carotenes (A) and phosphorus (B) onto acid activated bleaching 

earth at 105 °C and using 3.0 wt% of bleaching earth. (Initial concentration: carotenes  
454 ±  5.5 mg/kg and phosphorus 19.1 ± 0.02 mg/kg) 
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Figure 4.2. Intra-particle diffusion plots for the adsorption of β-carotenes onto acid activated 

bleaching earth at 105 °C and using 3.0 wt% of bleaching earth 

4.3.2 Isotherm studies 

Adsorption equilibria information is important to understand, to design and to 

implement the process. The temperature affects adsorption capacity of adsorbents. 

Thus, isotherms can provide the relation between the amount of a solute adsorbed 

at a constant temperature and its concentration in the equilibrium solution (Yousef 

et al., 2011). In this work, four adsorption isotherms were applied to evaluate 

adsorption of carotenes and phosphorus onto bleaching earth: Langmuir, 

Freundlich, Temkin and Multi-component Freundlich. 

4.3.2.1 Langmuir 

The Langmuir model was the first model presenting a coherent theory of 

adsorption. It assumes that the adsorbent surface is homogenous, adsorption is 

localized in specific sites, which can adsorb only one adsorbate molecule (Do, 

1998). It is generally expressed as (Equation 4.6): 



Chapter 4 

77 

_� ! _j�kl1c�1 � l1c�  
(4.6) 

 

where qe (mg/kg) is the amount of adsorbate per unit mass of adsorbent, Ce 

(mg/kg) is the equilibrium concentration of adsorbate in solution, qmax (mg/kg) and 

KL (mg/kg)-1 are Langmuir constants related to the adsorption capacity and rate of 

adsorption, respectively.  

4.3.2.2 Freundlich 

The Freundlich model is empirical (Do, 1998), assuming a heterogeneous 

surface energy, i.e. stronger binding sites are occupied first and the binding 

strength decreases with an increasing degree of site occupation (Yousef et al., 

2011). It is described as in Equation 4.7: 

 _� ! lmc�� (4.7) 

 

where KF [(mg/kg)	(mg/kg)-n] is defined as the adsorption capacity of the adsorbent. 

The n values range from zero to one, reflecting the adsorption intensity or surface 

heterogeneity. 

4.3.2.3 Temkin 

The Temkin model is also an empirical one and does not assume a 

saturation limit. It takes into account indirect interactions between adsorbate and 

adsorbent and is expressed as follow (Equation 4.8 and 4.9): 

 

_� ! 65n @o;lpc�< (4.8) 

q ! 65n  
(4.9) 
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where R is the ideal gas constant (8.134 J/mol K), T is the absolute temperature, 

KT (mg/kg)-1 is the equilibrium binding constant corresponding to the maximum 

binding energy and B (mg/kg) is related to the heat of adsorption (Do, 1998; 

Yousef et al., 2011).  

4.3.2.4 Multi component isotherms 

A Freundlich based isotherm was chosen to study multi component 

adsorption of carotenes and phosphorus onto acid activated bleaching earth, as 

Freundlich model correlated well both monocomponent experimental data. It is 

written in the form (Equation 4.10) (Sheindorf et al., 1982): 

 

_� ! l�c� rs ��tct
u

tv? w
�A?

 

(4.10) 

 

where aij (kg/mg) describes the inhibition to the adsorption of component i by 

component j, and can be determined from thermodynamic data, or more likely, 

from experimental data of bicomponent systems. The equation is based on the 

assumption that each component individually obeys the Freundlich isotherm and 

that for each component in a multicomponent adsorption there is an exponential 

distribution of adsorption energy sites (Sheindorf et al., 1982). 

Table 4.3 presents the carotenes and phosphorus removal from crude palm 

oil by acid activated bleaching earth. For both adsorbents, there is a greater 

removal when using more bleaching earth, as expected. Concerning to the 

temperature influence, Table 4.3 shows that for carotenes there is a clear trend of 

improving removal with higher temperatures. In case of phosphorus adsorption, the 

influence of temperature on the percentage of removal seems to be negligible, with 

practically the same removal values in the entire range of temperatures 

investigated. In the conditions tested, it was possible to reach a removal up to 99 

% of both compounds. 
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Table 4.3. Removal of carotenes and phosphorus from Crude Palm oil onto acid activated bleaching 
earth at 90, 105 and 115 °C 

 90 °C  105 °C  115 °C  
BE (%) Ce 

mg/kg 
qe×10-3

mg/kg 
% 

removal 
Ce 

mg/kg 
qe×10-3 
mg/kg 

% 
removal 

Ce 
mg/kg 

qe×10-3 

mg/kg 
% 

removal 
Carotene          

0 399   454   399   
0.5 233 33 42 258 42 43 96 43 76 
0.7 177 32 56 178 41 61 52 39 87 
0.9 135 29 66 128 38 72 47 35 88 
1.0 121 28 70 93 37 80 21 25 95 
2.0 74 16 81 40 21 91 15 19 96 
3.0 44 12 89 16 15 96 10 13 97 

Phosphorus          
0 19.1 3.3  19.1   19.1   

0.5 2.9 2.4 85 2.7 3.3 86 3.4 3.2 82 
0.7 2.3 1.9 88 2.3 2.4 88 2.5 2.4 87 
0.9 1.8 1.8 91 1.8 1.9 91 1.9 1.9 90 
1.0 1.3 1.2 93 1.3 1.8 93 1.5 1.8 92 
2.0 0.4 0.6 98 0.4 0.9 98 0.3 0.9 98 
3.0 0.3 0.6 98 0.2 0.6 99 0.1 0.6 99 

 

Langmuir, Freundlich and Temkin parameters were determined from non-

linear fitting for both carotenes and phosphorus and results are presented in  

Table 4.4. For carotenes adsorption at 90 °C, the Temkin model presented the 

highest R2 (0.9524). At 105 °C and 115 °C, the Langmuir model described the 

experimental data in a better way (R2 = 0.9691 and R2 = 0.9917, respectively). Our 

results are in accordance to previous works found in the literature. Low et al. 

(1998) studied the decolorization of CPO using acid activated spent bleaching clay, 

presenting Langmuir a better adjustment to experimental data, but Freundlich still 

presenting a good description. The same results were observed by Ahmad et al. 

(2009) in the adsorption of β-carotene from a n-hexane solution onto a silica-based 

adsorbent. On the other hand, in the study perfomed by Boki et al. (1992), 

Freundlich isotherm presented a better agreement with pigments adsorption. 

However, it should be highlighted that, this study used different kinds of oil 

(rapessed, soybean, wheatgerm, safflower, corn, cottonseed and sunflower) in 

which β-carotene is not the most important pigment. The calculated isotherms are 

plotted in Figure 4.3.  

 



 

 

Table 4.4 Isotherms constants for carotenes and phosphorus adsorption onto Tonsil OPT 210 FF at 90, 105 and 115 °C. 

Carotenes 
 

Phosphorus 

Model Parameters 90 °C t- 105 °C t- 115 °C t-  90 °C t- 105 °C t- 115 °C t- 

Langmuir qmax × 10-3 (mg/kg) 59.21±11.15 5.3 50.53±2.73 18.5 57.05±2.99 19.3  5.23±1.39 3.8 5.18±1.70 3.1 3.93±1.05 3.7 

KL (mg/kg)-1 0.01 ± 0.00 2.8 0.03±0.00 5.7 0.04±0.01 7.4  0.43±0.14 3.1 0.45±0.17 2.7 0.70±0.28 2.5 

R2 0.9453  0.9691  0.9917   0.9267  0.9019  0.8532  

F-test 388  878  1428   179  132  92  

P-value (95 %) <0.0001  <0.0001  <0.0001   <0.0001  <0.0001  0.0002  

          

Freundlich 
KF × 103 [;mg/kg<	;mg/kg<-n] 1.57±0.86 1.8 6.84±1.86 3.7 5.98±1.49 4.0  1.53±0.10 15.3 1.57±0.12 13.5 1.59±0.10 15.1 

n 0.58±0.11 5.3 0.34±0.06 6.1 0.45±0.06 7.1  0.64±0.08 8.2 0.62±0.10 6.7 0.48±0.07 7.0 

R2 0.9048  0.9106  0.9260   0.9533  0.9390  0.9469  

F-test 222  312  272   283  213  258  

P-value (95 %) <0.0001  <0.0001  <0.0001   <0.0001  <0.0001  <0.0001  

          

Temkin KT (mg/kg)-1 0.051±0.011 8.9 0.24±0.08 9.7 0.28±0.04 7.7  6.01±1.65 3.6 8.88±3.73 2.38 
25.25±16.

92 1.5 

B × 10-3(mg/kg) 14.23±1.59 4.8 10.77±1.10 3.1 13.72±0.79 17.3  0.97±0.13 7.2 0.83±0.15 5.48 0.57±0.12 4.9 

  R2 0.9524  0.9523  0.9830   0.9121  0.8571  0.8297  

F-test 446  577  1252     89  79  

P-value (95 %) <0.0001  <0.0001  <0.0001     0.0002  0.0003  

          
Freundlich  
 

Ki × 103 
[;mg/kg<	;mg/kg<-n]  1.57±0.70 2.2 6.90±1.47 4.7 5.98±1.22 4.9  1.56±1.30 1.2 1.57±1.04 1.2 1.53±1.61 0.9 

Type aij (mg/kg)-1 <0.0001  <0.0001  <0.0001   <0.0001  <0.0001  <0.0001  

Multi ni 0.57±0.09 6.5 0.34±0.04 7.8 0.45±0.05 8.7  0.61±1.00 0.6 0.62±1.04 0.6 0.53±1.04 0.5 

 R2 0.9607  0.9738  0.9735   0.9607  0.9738  0.9735  



 

Figure 4.3. Adsorption isotherm 
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(A) 

(B) 

(C) 

 plots for carotenes onto acid activated bleaching ear
(B) 105 °C and (C) 115 °C. 

rth at (A) 90 °C, 
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It is interesting to note that better agreements between experimental and 

theoretical data were observed at higher temperatures, according to the higher R2 

values. The T-test shows a low accuracy in parameter estimation by Langmuir 

model at 90 °C. For all other models and temperatures, T-test shows a high 

accuracy, i.e. t-values > than standard deviation. The lowest qmax, i.e. maximum 

adsorption capacity and the complete coverage of adsorbent surface by adsorbate, 

was obtained at 105 °C. The highest value was obtained at 90 °C, however, as 

previously discussed, Langmuir model did not present a good accuracy at this 

temperature. 

The Langmuir parameter KL presented a positive correlation with 

temperature, i.e. increasing the temperature the affinity between adsorbent and 

adsorbate also increases.  

Phosphorus adsorption was described more accurately by the Freundlich 

model, presenting R2 higher for all tested temperatures (R2 = 0.9533, 0.9390 and 

0.9469 for 90 °C, 105 °C and 115 °C, respectively, Table 4.4). The T-test shows a 

high accuracy in parameter estimation of all models tested for phosphorus. KF 

values, a measure of adsorption capacity, increases with temperature for 

phosphorus adsorption. Gutfinger and Letan (1978) observed that the Freundlich 

isotherm described the adsorption of phospholipids from soybean oil onto silica gel, 

which is an empirical model that takes into account different energy of interactions 

between adsorbent and adsorbate. The same result was observed by Brown and 

Snyder (1985). In both studies, n values were lower than 1, as in our work. 

Considering that Langmuir model was the best to describe the carotenes 

adsorption, it can be inferred that heterogeneity is due to the adsorbate. In fact, 

phosphorus occurs in vegetable oils as phospholipids, a lipid class which can have 

different properties depending on its organic chain. 

Calculated isotherms for phosphorus are plotted in Figure 4.4. The fit 

accuracy of Freundlich models can be observed for the entire concentration range. 

The Temkin model presented the highest deviations from experimental data at 

lower concentration, which is confirmed by low R2 values. 



Chapter 4 

83 

(A) 

(B) 

(C)  
Figure 4.4. Adsorption isotherm plots for phosphorus onto acid activated bleaching earth at  

(A) 90 °C, (B) 105 °C and (C) 115 °C.  
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Parameters for multi component Freundlich type isotherm are shown in 

Table 4.4. The competition coefficients aij presented low values, lower than  

0.0001 kg/mg, so that the multi component Freundlich type isotherm assumes the 

same form as the monocomponent Freundlich model. It is interesting to highlight 

that the coefficients Ki and ni obtained for the mono and multi component 

Freundlich equations are quite similar, differing, in the worst case, in the magnitude 

of the second decimal. For that reason, it can be concluded that under the tested 

conditions, i.e. bleaching conditions and initial adsorbates’ concentrations, the 

competitive effects of carotenes on phosphorus adsorption and vice-versa are not 

important. 

4.3.2.5 Estimation of thermodynamic parameters 

Thermodynamic parameters can provide useful information to design an 

adsorption process. For instance, they indicate if the process is spontaneous or not 

and if it is exo- or endothermic. Thermodynamic parameters are calculated using 

the variation of equilibrium constants K0 (or the solute coefficient of distribution 

between the solid and liquid phases at equilibrium) which changes with 

temperature (Khan and Singh, 1987; Zuim et al., 2011) (Equation 4.11). 

 

l' ! lim}~�'
_�c� (4.11) 

 

The standard Free energy (∆��g,' ) was calculated by Equations 4.12 and 

4.13 (Calvet, 1989; Khan and Singh, 1987; Zuim et al., 2011). The standard 

Enthalpy (∆��g,' ) and standard entropy (∆��g,' ) were calculated by Van’t Hoff 

equation (Equation 4.13). 

 ∆��g,' ! 356@o;l'< (4.12) 
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@o;l'< ! 3 ∆��g,'56 ! ∆��g,'5 3 ∆��g,'56  
(4.13) 

 

where R (8.134 J/mol K) is the universal gas constant, and T (K) is the absolute 

bulk temperature. The thermodynamic parameters are presented in Table 4.5. Both 

carotenes and phosphorus presented negative values for Gibbs Free Energy, 

indicating that the adsorption process of the studied compounds onto Tonsil OPT 

210 FF is feasible and spontaneous (Srivastava et al., 2006). The magnitude of the 

Gibbs free energy increases with temperature, showing that adsorption is more 

spontaneous at higher temperatures. The phosphorus adsorption presented higher 

absolute values for Gibbs free energy, suggesting that this process is more 

spontaneous than β-carotene adsorption, which is in accordance with the kinetic 

results found in this work (section 4.4.3.1). 

 

Table 4.5 Equilibrium constants, standard Gibbs free energy, enthalpy and entropy of carotenes 
and phosphorus adsorption from Crude Palm Oil onto Tonsil OPT 210 FF at 90 °C, 105 °C and  
115 °C 

Carotenes Phosphorus 

°C  K0 
∆��g,'  

(kJ/mol) 
∆��g,'  

(kJ/mol) 
∆��g,'  

(kJ/mol K)  K0 
∆��g,'  

(kJ/mol) 
∆��g,'  

(kJ/mol) 
∆��g,'  

(kJ/mol K) 

90 333 -17.15 126.65 0.40 2731 -23.37 46.17 0.19 

105 1944 -23.29 3516 -25.11 

115 5210 -27.02       7947 -28.35     
 

On the other hand, ∆��g,'  was positive for both compounds at all 

temperatures, indicating an endothermic process, i.e. an increase in temperature 

improves adsorption. It is also indicative for a chemical adsorption process, as 

physisorption is always exothermic (Erbil, 2006). Those results are in agreement 

with Sarier and Guler (1988) stating that β-carotenes are chemisorbed onto acid 

activated bleaching earth. Ahmad et al. (2009) also found that β-carotene 

adsorption from hexane solutions onto silica gel was an endothermic process. 
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∆��g,'  was positive indicating that the randomness at solid/liquid interface 

increased during the adsorption process (Srivastava et al., 2006; Zuim et al., 

2011), i.e. the molecules are in a less ordered state than in solution, as a result of 

redistribution of energy between the adsorbate and the adsorbent (Ahmad et al., 

2009). Positive values for entropy during β-carotene adsorption onto silica gel 

(Ahmad et al., 2009) and sepiolite (Sabah et al., 2007) were also observed in 

previous studies. 

The positive values of ∆��g,'  and ∆��g,'   indicate that both carotene and 

phosphorus adsorption onto acid activated bleaching earth is entropy-driven rather 

than energy driven. The reason of this gain in entropy may be related to a release 

of compounds and other species originally presented in the adsorbent surface 

(Bouhamed et al., 2007; de Reese and Plank, 2011). For instance, in the present 

case it is possible that water molecules originally present in the adsorbent due to 

its natural humidity be released as a consequence of the adsorption process. 

Moreover, knowing the relative portion of enthalpic and entropic contribution allows 

the adsorption optimization by modifying the process conditions, for instance, the 

adsorption temperature. 

4.3.2.6 Isosteric Heat 

The heat of adsorption depends on the adsorbent fraction covered. The heat 

of adsorption at a constant surface area, denominated isosteric heat of adsorption, 

can be calculated by the following equations (Equations 4.12 and 4.13) (Do, 1998; 

Erto et al., 2010): 8;@oc�<8� ! 3 ∆�,�,�56
  
(4.12) 

∆�,�,� ! 5 �8;@oc�<8;1 6⁄ <�}~
 

(4.13) 

Carotenes and phosphorus equilibrium concentrations at a constant amount 

of adsorbed compounds were determined through Langmuir isotherms. The 

isosteric heat of adsorption was obtained from the slope of the plot of ln(Ce) versus 
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(1/T) for different amounts of adsorbed adsorbates (Figure 4.5). The ∆�,�,� vary 

with surface loading for both carotenes and phosphorus (Figure 4.6), indicating that 

interaction between Tonsil OPT 210 FF and the studied compounds are 

energetically heterogeneous. In fact, when the adsorbent surface has different 

energetic sites, molecules will adsorb preferentially at sites with the highest energy 

of adsorption and progressively go to lower energetic ones, resulting in a decrease 

of the heat of adsorption with the loading (Do, 1998). This can be due to 

differences in adsorbent surface or difference in adsorbed molecules. In fact, crude 

palm oil has different carotenoids, mostly α- and β-, (Gee, 2007) and phospholipids 

(Goh et al., 1984b), which in this work are all expressed as β-carotenes and 

phosphorus, respectively. Positive values of ∆�,�,� confirm that the adsorption is 

endothermic (Do, 1998; Srivastava et al., 2006). 
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(A) 

(B) 

Figure 4.5. Adsorption isosters used to determine the isoteric heat of carotenes (A) and  
phosphorus (B) 
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(A) 

(B) 

Figure 4.6. ∆�,�,�  as a function of the amount adsorbed of carotenes (A) and phosphorus (B) 

 

4.4 Conclusion  

Results presented in this work suggest that adsorption of carotenes and 

phosphorus onto acid activated bleaching earth increases with temperature. It was 

possible to reach a removal up to 99 % of both compounds at tested conditions. 

The pseudo-second-order kinetic model describes the β-carotene experimental 

data accurately. Intra-particle diffusion is involved in β-carotene adsorption 

process, although it is not the sole rate limiting step in the adsorption onto Tonsil 
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OPT 210 FF. The equilibrium data are described more accurately by Langmuir and 

Freundlich models, for β-carotene and phosphorus, respectively. A thermodynamic 

study demonstrated that β-carotene and phosphorus adsorption is spontaneous, 

endothermic and an entropy-driven process. Isosteric heat values suggest that 

interaction between adsorbate and adsorbent are heterogeneous. High 

temperatures are better for adsorptive removal of carotenes and phosphorus. 

However, industrially it should be taken into account other factors, as unwanted 

side reactions, to establish the optimum bleaching temperature. 
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Abstract 

In this work the effect of different bleaching procedures on the final color of 

palm oil final color, i.e. after bleaching and deodorization, was tested using both 

neutral and acid activated bleaching earth. Firstly, the effect was evaluated on the 

final color of storage between bleaching and deodorization. Deodorization 

procedures were performed immediately after and after 3 and 7 days of storage 

time. The best color was obtained after storing the oil for 3 days under a nitrogen at 

deep-freezing (-18 °C). Secondly, the effect was evaluated on final color after a 

maturation step with citric acid before bleaching earth addition and an extra-drying 

step. The maturation step was advantageous in case of the process using neutral 

bleaching earth, whereas a reference procedure gave the best result with an acid 

activated bleaching earth. Lastly, a new refining approach in two-steps was 

suggested, leading to a color improvement in comparison to the reference 

procedure using the same amount of bleaching earth and deodorization residence 

time. The two-step refining has to be further optimized concerning the process 

parameters and the kind of adsorbent used. 

 

Nomenclature: 

ABE: Acid Activated Bleaching Earth 

BE: Bleaching Earth 

FFA: Free Fatty Acid 

NBE: Neutral Bleaching Earth 

P1, P2, P3: Procedure 1, 2 and 3, respectively 

p-AnV: p-anisidine value 

PV: Peroxide Value 

Taddition: temperature of the oil before bleaching earth addition 
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TBE: temperature of the oil during adsorption process 

WCA: amount of added citric acid, expressed in % 

Wwater: amount of added water, expressed in % 

 

5.1 Introduction 

Prior to human consumption, crude palm oil (CPO) has to be refined to 

remove minor compounds as phospholipids, free fatty acids, oxidation products 

and other undesirable compounds. Phospholipids, for instance, should be removed 

for several reasons: they have emulsifying properties, which can increase neutral 

oil losses; they are usually connected to metals that are the main cause of 

oxidative stability reduction; and further, they can cause color inversion [3]. 

Especially in oils submitted to physical refining, phospholipids must be removed to 

avoid color fixation that can occur due to the high temperatures employed during 

the deodorization step. In the case of palm oil, physical refining is usually preferred 

[4], including a degumming pretreatment, a bleaching step and a high-temperature, 

low pressure step [8]. 

For palm oil, dry degumming is usually chosen [4]. It is integrated into the 

bleaching operation and involves introduction of acid, usually phosphoric acid, with 

the combination of either a brief retention time, high temperature and high shear 

retention, or a longer retention time, lower temperature, and a less vigorous 

agitation system. The acid and the precipitated phosphatides are removed in the 

subsequent bleaching operation [1]. The phosphoric acid dosage is a critical point: 

under- or over-dosage can promote darkening during deodorization. Also, it is 

possible that some phosphorus containing compounds originating from the acid is 

retained by the oil [3]. An alternative is citric acid addition, but for economical 

reasons phosphoric acid is mainly used by Malaysian refiners [4]. 

After a dry-pretreatment, palm oil is bleached at 95 – 110 °C and <50 mbar. 

Refining cannot be done without bleaching even for oils with a very low 

phospholipid content, except in raw material of excellent quality and with low 
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content of oxidation products [10]. Bleaching can be performed in batch or 

continuous units. The batch procedure has as advantages simplicity of operation 

and flexibility [3], and is usually conducted in multi-purpose units in which 

neutralization and bleaching are conduced, as well as the pretreatment for physical 

refining [10]. Continuous and semi-continuous processes are used to treat large 

quantities of the same type of oil and they have as advantages reduced energy 

consumption and simple process control [10]. More recently, a multi-step process 

has been developed in order to reduce bleaching earth consumption, and it can be 

co-current or counter-current. In the co-current process bleaching earth is added in 

two consecutive steps, with a filtration after each addition. The counter-current 

procedure re-uses bleaching earth from the first one in the second step, resulting in 

saving up to 15 % [4]. All those processes should be optimized in each industrial 

plant according to the quality of the oil to be processed and to the empirical 

experience of engineering companies and processors. 

Bleaching is by far the most expensive process in edible oil refining [4], due 

to the relative high cost of bleaching clays as well as neutral oil losses in the earth 

and the disposal costs of bleaching adsorbents [3]. The bleaching step is the most 

delicate step of the refining procedure. In general, it has been insufficiently 

exposed to proper engineering and it is open to developments mainly in the 

fundamentals of the process. In that way, it is clear that an optimization of the 

process can reduce significantly the costs of refining. Some studies have been 

reported in the literature to optimize bleaching. Langmaack and Eggers [5] studied 

the optimization of bleaching of rapeseed oil by improving mass transfer between 

oil and adsorbent. Skevin et al. [9] studied the effect of bleaching parameters, i.e. 

temperature, duration and clay content on oxidative stability, bleaching efficiency 

and concentration of bioactive compounds. Rossi et al. [8] studied the effect of 

bleaching and physical refining on palm oil color and its content of carotenoids and 

tocopherols. It is interesting to note that those studies do not evaluate different or 

new procedures during refining. 
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In this context, the objective of this work was to evaluate the effect of 

different procedures on the quality of fully refined (RBD) palm oil, especially the 

color. The study was divided in several steps to cover different aspects of palm oil 

refining. Firstly, the effect of storage time between the bleaching and deodorization 

steps, especially its effect on the final oil color obtained after deodorization. This 

procedure was important for establishing a appropriate lab methodology for 

deodorizing all dry pre-treated oil samples. Secondly, the effect of a maturation 

step with citric acid before adding bleaching earth was tested. Here, the effect of 

bleaching temperature was evaluated. Finally, multi-step procedures were tested. 

All trials were performed using an acid activated bleaching earth (here, so-called 

ABE) and a neutral bleaching earth (here, so-called, NBE).  

5.2 Material and Methods 

5.2.1 Reagents 

5.2.1.1 Palm oil 

Crude palm oil was obtained from a local processor in Belgium (Fuji Oil, 

Ghent, Belgium). Crude, bleached and full refined palm oil were characterized in 

terms of free fatty acids (FFA), color, carotenes and elements content, p-Anisidine 

(p-AnV) and Peroxide (PV) Values. The deterioration of the bleachability index 

(DOBI) was determined for crude palm oil. 

5.2.1.2 Bleaching Earth 

Batch trials were performed using two types of bleaching earth: non-

activated bleaching earth (Pure Flo B80, provided by Oil-Dri) and acid activated 

bleaching earth (Tonsil Opt. 210 FF, provided by Süd-Chemie AG). 
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5.2.2 Analytical 

5.2.2.1 Color:  

Sample color was determined according to AOCS Official Method Cc 13e-

92, using a Lovibond Tintometer Color Scale at 70 °C, ensuring that color was 

determined in a completely melted sample. Analyses were carried out using 5” ¼ 

(133.4 mm) glass cells. In the cases of crude palm oil samples, color was 

determined using a 1” (25.4 mm) glass cell [2].  

5.2.2.2 Free Fatty Acids (FFA) 

Free Fatty Acids content (FFA) was determined according to AOCS Official 

Method Ca 5-40, by titration. Results were expressed as percentage of palmitic 

acid (C16:0, MW = 256 g/mol) [2]. 

5.2.2.3 Deterioration of the bleachability index (DOBI) 

The deterioration of the bleachability index (DOBI) was measured using a 

UV-vis spectrophotometer. It is a numerical value of the ratio of the 

spectrophotometric absorbance at 446 nm (non-oxidized carotenes maximum) to 

the absorbance at 268 nm (oxidized carotenes maximum) [4]. 

About 0.1 mg of completely molten and homogenized oil is diluted in 25 mL 

of iso-octane. Absorbances are measured at 268 nm and 446 nm. The DOBI value 

is obtained by Equation 5.1. 

DOBI ! absorbance at 446 nmabsorbance at 268 nm 
Eq. 5.1 

 

The higher the DOBI value, the lower the amount of oxidized carotenes, the 

easier the palm oil will be heat bleached, as color due oxidized carotenes is difficult 

to remove. DOBI values between 2.5 and 4.0 indicate average to good crude oil 

quality. Values below 2.0 indicate a poor quality crude palm oil which is difficult to 

bleach [4]. 
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5.2.2.4 Carotene Content 

The carotene content, expressed as β-carotene, was determined measuring 

the absorbances at 446 nm of homogenized samples and diluted in iso-octane, 

according to the PORIM official method [7]. 

5.2.2.5 p-Anisidine and Peroxide values 

The peroxide (PV) and p-anisidine (p-AnV) values were determined 

according to the AOCS Official Method Cd 8-53 and Cd 18-90, respectively [2]. 

5.2.2.6 Elements Content 

The Phosphorus (P) and Iron (Fe) content was measured using an 

Inductively Coupled Plasma (ICP) method, according to the AOCS official method 

Ca 20-99, using kerosene as solvent [2]. 

5.2.3 Refining Procedure 

Batch adsorption experiments were carried out in a rotary evaporator at a 

constant speed, reproducing the bleaching process of palm oil. In each test, crude 

palm oil was placed into a flask and a reference procedure, established according 

to usual dry pre-treatment practices, was performed. This reference procedure, 

here so-called P1, is described as follows: heating the crude palm oil; adding citric 

acid; high shear mixing (16000 rpm during 1 minute); adding adsorbent (bleaching 

earth); 15 minutes of maturation at 85 °C and atmospheric pressure; applying 

vacuum (50 mbar) and maintaining the bleaching for 30 minutes at the selected 

temperature; removing the bleaching earth by filtration over a Buchner funnel and a 

paper filter (pore size 11 �m, Whatman). The bleaching parameters varied in each 

trial. 

After bleaching, the oil was submitted to a deodorization step since some 

color effects can only be observed after heat bleaching. The deodorization was 

always carried out one day after the bleaching to avoid differences due to storage 

effects. The deodorization was performed in a lab-scale equipment described by 
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Petrauskaité et al. [6]. Deodorization parameters were fixed and set as 260 °C of 

deodorization temperature, 3.0 mbar, 1.5 % sparge steam injection and 60 minutes 

of residence time. 

Some changes in P1 (Reference Procedure) were implemented to evaluate 

the final color, i.e. the color after bleaching and deodorization step. The first 

change consisted in the addition of a maturation step before addition of the 

bleaching earth, and the procedure P2 becomes as follows: heating the crude palm 

oil; adding citric acid; high shear mixing; 15 minutes of maturation at 85 °C and 

atmospheric pressure; adding adsorbent; applying vacuum (50 mbar) and 

maintaining the bleaching for 30 minutes at the selected temperature; removing the 

bleaching earth by filtration over a Buchner funnel and a paper filter. 

The second change consisted in the addition of an extra drying step after 

maturation at atmospheric pressure before the addition of the bleaching earth. 

Note that this change was done based in P2. The hypothesis is that drying after 

acid maturation would lead the phospholipids to precipitate, which should 

facilitate/improve the subsequent adsorption by the bleaching earth. The procedure 

P3 becomes as follows: heating the crude palm oil; adding citric acid; high shear 

mixing; 15 minutes of maturation at 85 °C and atmospheric pressure; extra drying 

step: 15 minutes under vacuum and at 105-110 °C; adding adsorbent; applying 

vacuum (50 mbar) and maintaining the bleaching for 30 minutes at the selected 

temperature; removing the bleaching earth by filtration over a Buchner funnel and a 

paper filter. 

5.3 Results 

5.3.1 Characterization of Crude Palm Oil 

Crude palm oil was characterized regarding FFA, DOBI, OSI, color, 

carotene and elements content (mg/kg) (Table 5.1). The DOBI values are slightly 

higher than 2.0, indicating that final color is difficult to predict after complete 
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refining of the oil [4]. The phosphorus and iron content is on average, i.e. content 

between 10 and 20 mg/kg for phosphorus and between 5 and 10 mg/kg for iron.  

 

Table 5.1. Characterization of Crude Palm Oil 
FFA (%,  as palmitic acid) 4.61 
DOBI 2.06 
Carotenes (mg/kg) 467 
OSI (97.8 °C) 37.50 
Elements content (mg/kg) 

P 
Fe 

 
19.1±0.2 
7.4±0.9 

Color (1 in) 
Red (R) 

 
28.1 

 

5.3.2 Effect of storage of bleached oil on the heat bleaching during 

deodorization 

The effect of storage time on the final color was evaluated to determine if 

bleached oils can be stored before deodorization. Even though this practice is not 

commonly used in the edible oils industry, it has fundamental importance in lab-

scale trials, as sometimes it is not possible to deodorize oils immediately after 

bleaching. 

Firstly, the color deviation after deodorization was evaluated to determine 

the color difference expected due to experimental variation on this step. For this 

purpose, three batches of 900 g of CPO were bleached according to the reference 

procedure using ABE. Each batch was divided in two equal parts and they were 

immediately deodorized at 250, 260 and 270 °C, respectively. Average color 

values were 4.4, 4.5 and 5.5, for 250, 260 and 270 °C, respectively. The amplitude 

was equal or lower than 0.10 R in each tested temperature. From those results, it 

can be concluded that temperatures of 250 and 260 °C do not cause significant 

differences in the final color, and thus, temperatures oscillations in the range of  

250 – 260 °C during deodorization process will not affect the final color. Therefore, 

differences higher than 0.2 R in palm oil final color obtained from the same 

bleached oil are considered significant. This value can be considered as the 
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estimated uncertainty associated mainly with the deodorization step, since the 

same batch of bleached oil was deodorized at each temperature. 

Secondly, a storage effect was evaluated in duplicate: 900 g of CPO was 

bleached and deodorized according to P1 in two separated tests. Each batch of 

900 g was divided in 3 parts: the first one was immediately deodorized; the second 

and the third were stored under deep-freezing (-18 °C) and under a nitrogen 

atmosphere. The results are presented in Table 5.2. In both tests performed, the 

lowest color was obtained after 3 days of storage time. A long storage time 

resulted in the highest value of R color. It is clear in this way, that in order to 

evaluate and compare color differences in fully refined palm oils, the period 

between the bleaching process and deodorization must be the same for the 

different samples. It is worth to mention that for the results obtained in case of 3 

and 7 days of storage time, the differences in color observed in tests 1 and 2 were 

higher than the prior value of 0.2. In the present case the uncertainty was high 

because it also reflects the errors in the bleaching step, since tests 1 and 2 involve 

two bleaching experiments performed independently. It seems also that the value 

of this combined uncertainty increases with storage time. 

 

Table 5.2. Effect of storage period on color of final color of refined palm oil (Bleaching parameters 
P1: Taddition: 85 °C; TBE: 105 °C; WCA: 0.09 %; Ww: 0.21 %) 

 Test 1 Test 2 
 pAn Color (R) pAn Color (R) 
Non-stored 8.8 4.5 10.2 4.5 
3 days 8.8 3.4 10.2 4.1 
7 days 2.4 5.1 3.2 4.6 

 

5.3.3 Effects of a maturation time at atmospheric pressure and of extra 

dry step  

The effects of a maturation time at atmospheric pressure and of an extra dry 

step were evaluated in CPO refining using 0.5 % ABE and NBE (Table 5.3). All the 

trials were efficient to reduce the free fatty acids (FFA) content to satisfactory 
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levels after bleaching and deodorization. When ABE was used, P1 presented the 

best reduction of phosphorus, followed by P2 and P3 (Table 5.3). Note that only P1 

reached the desired value of 3 mg/kg. No trial was capable to reduce the iron 

content to a satisfactory level (bellow 0.2 mg/kg) and it is not possible to observe a 

significant difference in terms of this element reduction. 

 

Table 5.3. Effects of maturation time at atmospheric pressure (P2) and of an extra dry step (P3) on 
palm oil refining after bleaching using 0.5 % BE and Deodorization. (Bleaching parameters: Taddition: 
85 °C; TBE: 105 °C; WCA: 0.09 %; Wwater: 0.21 %) 

 ABE NBE 
 P1 P2 P3 P1 P2 P3 

After Bleaching       
FFA (%) 4.8 4.8 4.8 4.8 4.9 4.8 
Elements content (mg/kg) 

P 
Fe 

 
 

2.7±0.1 
0.7±0.1 

 
 

3.3±0.1 
0.6±0.0 

 
 

3.9±0.1 
0.6±0.0 

 
 

3.1±0.1 
0.5±0.0 

 
 

3.4±0.0 
0.5±0.0 

 
 

3.9±0.0 
0.5±0.0 

Carotenes (mg/kg) 258 274 274 280 296 274 
Color (5 ¼ in) Red (R) 68.0 70.0 70.0 68.0 68.0 70.0 
After deodorization       
FFA (%) 0.04 0.03 0.03 0.07 0.06 0.06 
Color (5 ¼ in) Red (R) 8.2 8.9 8.5 9.1 8.1 7.7 

 

Still using ABE, P1 presented the lowest carotene content after bleaching 

(258 mg/kg) and also the lighter oil after bleaching (68.0 R) and deodorization (8.2 

R). P2 and P3 presented the same carotene content after bleaching (274 mg/kg) 

and the same red color (70.0 R). It was not possible to quantify the carotene 

content after deodorization due the absence of a peak at 450 nm in RBD oil 

spectrum [8]. 

Despite of the bigger phosphorus content, P3 presented a lighter color after 

the deodorization than P2 (8.5 R and 8.9 R, respectively). So, in this step, it was 

not possible to observe any relation between P and Fe content and the color after 

deodorization process neither to reach the desired color, i.e. bellow 3.0 R.  

When using NBE, P1 gave a better phosphorus removal, followed by P2 and 

P3, respectively. Concerning the carotenes, P3 presented the best reduction. 

There was no significant difference between the procedures related to the iron 
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reduction. As for the refining using ABE, no correlation between P, Fe or carotenes 

content and final color was observed. 

There is an indication that, when using 0.5 % of bleaching earth, non-

activated bleaching earth was less efficient in removing carotenes. Note that, 

despite the higher carotenes content, the red color after deodorization was lighter 

when using non-activated bleaching earth. P1 seems to be the most efficient 

procedure for decolorization with ABE and P3 with NBE. 

5.3.4 Effects of bleaching temperature  

Three bleaching temperatures (TBE = 85, 105 and 115 °C) were evaluated 

using ABE (Table 5.4) and P1. The carotenes and phosphorus removals are more 

efficient at higher temperatures. The best color after deodorization was obtained 

when bleaching was performed at 105 °C. In fact, bleaching with acid activated BE 

involves catalytic reactions next to an adsorption process and there is an optimum 

temperature to increase the adsorption process and avoid unwanted side 

reactions. Note that, all bleached oil achieved the recommended phosphorus and 

iron content (lower than 3.0 mg/kg and 0.2 mg/kg, respectively) to avoid color 

fixation during heat bleaching. Thus, the oil bleached at the highest temperature 

(115 °C) had the darkest final color, probably due to unwanted side reactions. 

 

Table 5.4. Effects of bleaching temperature (TBE) on palm oil refining after Bleaching (P1) using 3.0 
% ABE and Deodorization. (Bleaching parameters: Taddition: 85 °C; WCA: 0.09 %; Wwater: 0.21 %) 

 ABE 
 85 105 115 

After Bleaching    
FFA (%) 4.8 4.8 4.9 
Elements content (mg/kg) 
P 
Fe 

 
0.3 ± 0.0 
0.2 ± 0 

 
0.22 ± 0.0 
0.2 ± 0.0 

 
0.14 ± 0.0 
0.3 ± 0.0 

Carotenes (mg/kg) 44 16 10 
After deodorization    
FFA (%) 0.03 0.03 0.04 
Color (5 ¼ in) Red (R) 4.3 3.4 4.8 
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compounds that cannot be removed by adsorption and generate the color fixation. 

Indeed, previous studies by our research group, suggest that the type of BE used 

defines the oxidation pathways of β-carotene: in non-polar environments β-

carotene oxidizes through radical addition, meanwhile in polar ones radical cations 

are formed. 

5.3.6 Two-step refining 

The last step of this work was to evaluate the effect of color in reprocessing 

fully refined palm oil. CPO was fully refined two times, i.e. a fully refined palm oil 

was used as feedstock in subsequent refining trials. As a prospective test, 

procedures were done according to the reference methodology: (1) bleaching P2; 

(2) reference deodorization (260 °C, 3.0 mbar, 1.5 % sparge steam injection, 60 

minutes); (3) bleaching P2; (4) reference deodorization. 

The first refining procedure was responsible for a great color reduction using 

both kinds of BE (Figure 5.2). The second bleaching promoted color reduction to a 

level that could not be reduced anymore by heat bleaching. Regarding p-AnV, 

values present different behavior depending on the kind of BE. ABE leads to a 

constant reduction through all refining steps, being most significant in its first part. 

On the other hand, bleaching with NBE does not reduce p-AnV and the secondary 

oxidation products are removed exclusively during the deodorization step, probably 

by volatilization. 
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Figure 5.2. Color (bars) and p-Anisidine (lines) value of two times refined palm oil with two 

deodorization steps (Bleaching Parameters: Taddition: 85 °C; TBE: 105 °C; WCA: 0.09 %; Wwater: 0.21 
%; Deodorization: 260 °C, 3mbar, 1.5 % sparge steam injection, 60 minutes) 

 

After those results, mild deodorization was tested. The hypothesis here is, 

that the first deodorization should reduce the FFA content just enough to avoid 

adsorption competition among adsorbates. Then, the second one should finish the 

FFA reduction to the desired levels. The procedure is as follows: (1) bleaching P2 

with 1.5 % BE; (2) mild deodorization (220 °C, 3 mbar, 3.75 % sparge steam 

injection, 15 minutes); (3) bleaching P2 with 1.5 % BE; (4) final deodorization (260 

°C, 3 mbar, 1.5 % sparge steam injection, 45 minutes). Both kind of BE were used 

in four tests: (1) addition of ABE followed by NBE; (2) addition of NBE followed by 

ABE; (3) adding two times ABE; and (4) adding two times NBE. 

The Lovibond color after each step is plotted on Figure 5.3. All double 

refining tests lead to an improvement in final color of the refined palm oil when 

compared with reference procedures. The best result was obtained using two times 

ABE (3.0 R). Note that BE added in both bleaching steps together amounts up to 

3.0 % and both deodorization steps together takes 60 minutes of residence time, 
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same as the reference procedures. Thus, it was possible to obtain in lab-scale 

experiments a lighter palm oil using the same amount of BE and with 

approximately the same energy consumption. 

 
Figure 5.3. Color of two times refined palm oil (Bleaching Parameters: Taddition: 85 °C; TBE: 105 °C; 
WCA: 0.09 %; Ww: 0.21 %; Mild Deodorization: 220 °C, 3 mbar, 3.75 % sparge steam injection, 15 

minutes; Final Deodorization: 260 °C, 3mbar, 1.5 % sparge steam injection, 45 minutes) 

 

5.4 Conclusion  

Bleaching is a delicate and important step of edible oil processing, involving 

high BE consumption. However, this step was not sufficiently studied from the point 

of view of process development. Results obtained in this work show that different 

bleaching procedures can improve the palm oil final color, and that this procedures 

should be optimized according to the kind of BE used. Furthermore, a new 

processing approach was suggested, consisting of a two-step refining, i.e. two 

mild-deodorization steps, instead of one extreme, as normally used in industrial 

practice. The new approach may present a higher initial investment, however it 

may be paid back by lower BE consumption. The optimization of this approach and 

the utilization of different adsorbents, as silica and activated carbon, should be 

performed in the future. 
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Abstract 

Despite the fact that some studies indicate chemical changes are probably 

responsible for the color fixation of palm oil, this mechanism is not clear. The 

objective of this work was to study the effect of the type of bleaching earth on the 

refined palm oil color. Two types of bleaching earth were tested, one neutral (NBE) 

and one acid-activated (ABE), being Pure Flo B80 and Tonsil Optimum 210 FF, 

respectively, in a range of 0.5 - 3.0 % (w/w). An inverse correlation between p-

anisidine value after bleaching and residual color after deodorization was found 

with acid activated bleaching earth, but not with the neutral earth. Moreover, heat 

bleaching was more efficient in oils refined with acid activated earth. Those results 

indicate that oxidation products are important to predict the final color of refined 

palm oil. The type of bleaching earth (acid activated or neutral) can define possible 

oxidations pathways, so that a better explanation for, palm oil final color was 

obtained.  

6.1 Introduction 

Crude palm oil is produced from palm fruits and contains about 1 % of minor 

components, such as phospholipids, metals, phytosterols, carotenes, tocopherols 

and tocotrienols (Gee, 2007). It has to be refined to achieve desirable 

characteristics, such as a light color, bland taste and a good oxidative stability 

(Gibon , De Greyt, & Kellens, 2007; Sampaio, Ceriani, Silva, Taham, & Meirelles, 

2011). Physical refining is generally preferred to avoid a too high neutral oil loss 

(Rossi, Gianazza, Alamprese, & Stanga, 2001), and usually consists of a bleaching 

and a deodorization/deacidification step (Gibon , De Greyt, & Kellens, 2007). Both 

steps are important for the removal of coloring components. Part of the color 

pigments are removed during bleaching by adsorption on a suitable bleaching 
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earth. The remaining color components are then thermally degraded during 

deodorization at high temperature.  

In the case of palm oil refining, bleaching is integrated in a so-called dry 

pretreatment step which aims at simultaneous bleaching and element removal with 

minimal formation of oxidation products (Gibon , De Greyt, & Kellens, 2007). 

Complete removal of carotenes during bleaching is not possible and also not 

necessary since these components are not heat stabile and can be degraded 

during high temperature deodorization (Gibon , De Greyt, & Kellens, 2007). In fact, 

some refineries only remove 20% of the color of the carotenoid content of the 

crude palm oil at the bleaching step, and after 20 min at 240 °C more than 98 % of 

the total carotenoids has been destroyed (Maclellan, 1983). Part of the color 

pigments are physically adsorbed by bleaching earth. Other components are 

chemically bound to bleaching clay via covalent or ionic bonds (Gibon , De Greyt, 

& Kellens, 2007; Taylor, 2005). Moreover, bleaching earth acidity is related with 

pigment adsorption capacity (Taylor, 2005). Acid activated bleaching earth work 

simultaneously as a solid, acidic catalyst, adsorptive agent, cation exchanger and 

filter aid (Zschau & Grp, 2001), whereas neutral bleaching earth acts basically only 

as a adsorptive material (Taylor, 2005). In fact, there is no consensus on the 

adsorption mechanisms of β-carotene onto bleaching earth. Boki, Kubo et al. 

(1992) found that pigment adsorption onto clay minerals occurs through 

physisorption. Sabah, Cinar et al. (2007) suggested β-carotene adsorption onto 

sepiolite is also physical. On the other hand, according to Khoo, Morsingh et al. 

(1979), β-carotene adsorption onto different commercial bleaching earths is not 

purely physical. Later, other works found that β-carotene adsorption onto acid 

activated bleaching earth (Sarier e Guler, 1988) and onto silica gel (Ahmad, Chan 

et al., 2009) was controlled by chemisorption.  

The crude palm oil dark orange color is due to the high carotenoid content 

(500 - 700 mg/kg) (Gee, 2007), nonetheless it is not completely understood which 

compounds are responsible for its final color, i.e. the color after the deodorization 

step (Fraser & Frankl, 1981; Gibon , De Greyt, & Kellens, 2007). It is well accepted 
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that there is no correlation between the β-carotene content after bleaching and the 

palm oil final color (A. Dijkstra & Segers, 2007; Fraser & Frankl, 1981; Maclellan, 

1983). Some studies suggest that in the finished oil, the color is mostly due to high 

molecular weight (HMW) compounds derived from oxidation reactions, especially 

in the case of carotenoids (Fraser & Frankl, 1981). Also, aggressive bleaching 

conditions, as excessive temperatures or time process or both, lead to darker final 

colors (Maclellan, 1983). 

Sarier and Güler (1988) observed that, besides adsorption of carotenes 

during bleaching, acid activated clay can also catalyze chemical changes in the 

carotene molecule probably leading to oxidized forms. Conjugated double bonds 

are responsible for carotenes color (Kamal-Eldin, 2003; Zollinger, 1991) and 

antioxidant activity (Kamal-Eldin, 2003), so the bleaching process consists 

basically in the interruption of this system either by cleavage or by radical addition 

to one of the double bonds (Krinsky & Yeum, 2003). There are at least three 

mechanisms for these reactions, being (1) radical addition, (2) electron transfer to 

the radical and (3) allylic hydrogen abstraction. Which mechanism will take place 

depends on the reaction conditions. For instance, increasing the oxygen 

concentration, the formation of secondary peroxyl radicals becomes important, 

resulting in the loss of antioxidant behavior. With sufficiently high oxygen partial 

pressures (above 150 mmHg) (Burton & Ingold, 1984), β-carotene reactions have a 

pro-oxidant effect since they could generate more radicals than they consume 

(Krinsky & Yeum, 2003). Electron transfer reactions have been reported either in 

formation of a carotenoid cation CAR+, anion CAR- or in the formation of an alkyl 

radical (Krinsky & Yeum, 2003), stable because of its resonance structure (Kamal-

Eldin, 2003). Finally, allylic hydrogen abstraction by peroxyl radical occurs at an 

oxygen pressure of less than 760 mmHg, producing a carotene radical. Those 

radicals undergo addition of oxygen producing dicarbonyls (Kamal-Eldin, 2003). It 

is clear, that allylic hydrogen abstraction does not occurs in bleaching conditions 

due to its moderate temperature and pressures, being always lower than 50 mbar. 
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Carotenoids oxidation during bleaching can occur through radical addition or 

electron transfer. 

6.2 Material and Methods 

6.2.1 Oil characterization 

Standard quality parameters, including free fatty acids (FFA) content, color, 

carotene content, deterioration of bleachability index (DOBI) and element content, 

were analyzed for crude, bleached and full refined palm oil samples.  

6.2.2 Color 

Sample color was determined according to AOCS Official Method Cc 13e-

92, using a Lovibond Tintometer Color Scale at 70 °C, ensuring that color was 

determined in a completely melted sample. Analyses were carried out using 5” ¼ 

(133.4 mm) glass cells. In the cases of crude palm oil samples, color was darker 

than scale in a 5” ¼ glass cell and a 1” (25.4 mm) was used (AOCS, 1998).  

6.2.3 Free Fatty Acids (FFA) 

Free Fatty Acids content (FFA) was determined according to AOCS Official 

Method Ca 5-40, by titration. Results were expressed as percentage of palmitic 

acid (C16:0, MW = 256 g/mol) (AOCS, 1998). 

6.2.4 Deterioration of the bleachability index (DOBI) 

The deterioration of bleachability index (DOBI) was measured using a UV-

vis spectrophotometer. This index corresponds to the ratio of the 

spectrophotometric absorbance at 446 nm (non-oxidized carotenes maximum) to 

the absorbance at 268 nm (oxidized carotenes maximum). 

About 0.1 mg of completely molten and homogenized oil is diluted in 25 mL 

of iso-octane. Absorbencies are measured at 268 nm and 446 nm. The DOBI value 

is obtained by Equation 5.1. 
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DOBI! absorbance at 446 nmabsorbance at 268 nm 
(5.1) 

 

The higher the DOBI value, the lower the amount of oxidized carotenes, the 

easier it will be to heat bleaching, as color due to oxidized carotenes is difficult to 

remove. DOBI values between 2.5 and 4.0 indicate average to good crude oil 

quality. Values below 2.0 indicate a poor quality crude palm oil which is difficult to 

bleach. 

6.2.5 Carotenes Content 

Carotenes content, expressed as β-carotene, was determined measuring 

the absorbances at 446 nm of samples homogenized and diluted in iso-octane, 

according to PORIM (1990). 

6.2.6 p-Anisidine and Peroxide values 

Peroxide (PV) and p-anisidine (p-AnV) values were determined according to 

AOCS Official Method Cd 8-53 and Cd 18-90, respectively (AOCS, 1998). 

6.2.7 Elements Content 

The content of Phosphorus (P) and Iron (Fe) were measured using an 

Inductively Coupled Plasma (ICP) method, according to AOCS official method Ca 

20-99, using kerosene as solvent (AOCS, 1998).  

6.2.8 Refining Procedure 

Bleaching trials were performed according to the following steps: heating the 

crude palm oil to 85 ºC; adding of citric acid (0.3 % of a 30 % solution); high shear 

mixing (16000 rpm during 1 minute); addition of Bleaching Earth; 15 minutes of 

maturation time at 85 ºC and atmospheric pressure; applying vacuum (50 mbar) 

and maintaining bleaching for 30 minutes at 105-110 °C; removing bleaching earth 

by filtration over a Buchner filter (pore size 11 �m, Whatman). 
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Experiments were performed using two kinds of bleaching earth: non-

activated bleaching earth (Pure Flo B80, purchased from Oil-Dri, here so-called 

NBE) and acid activated bleaching earth (Tonsil OPT. 210 FF, purchased from 

Süd-Chemie AG, here so-called ABE).  

After bleaching, the oil was submitted to a deodorization step since some 

color effects can just be observed after heat bleaching. To avoid differences due to 

storage effects, the deodorization was always carried out one day after the 

bleaching. The deodorization was performed in a lab-scale equipment described by 

Petrauskaite, De Greyt, & Kellens, 2000. Deodorization parameters were fixed to 

all experiments and set as 260 °C of deodorization temperature, 3.0 mbar, 1.5 % 

steam and 60 minutes of residence time. 

6.3 Results  

Crude palm oil (obtained from a local processor) was characterized 

regarding FFA, DOBI, color, carotenes and elements content (mg/kg). The DOBI 

value was 2.06 ± 0.01, indicating that the final color is difficult to predict after 

complete refining of the oil (Gibon , De Greyt, & Kellens, 2007). The initial content 

(mg/kg) of phosphorus, iron and carotenes was 19.1 ± 0.2, 7.4 ± 0.9 and 467 ± 2, 

respectively. The crude palm oil presented a initial FFA of 4.61 %, expressed in 

palmitic acid, and 37.8 hour OSI. 

A bleaching procedure was tested using both kinds of bleaching earth at 

three different concentrations: 0.5, 1.5 and 3.0 % (Table 6.1). Phosphorus and iron 

contents lower than 3.0 and 0.3 mg/kg, respectively, were achieved by both 

bleaching earths when using 3.0 %. ABE leads to a better reduction of phosphorus 

especially when small amounts of bleaching earth are used. However, increasing 

the amount, this effect becomes less important, and the phosphorus content 

obtained using each bleaching earth is quite similar. The opposite behavior was 

observed for iron adsorption. 

Concerning the carotenes analysis, it can be noted that for the lower 

concentration level tested, ABE resulted in a higher adsorption of carotene than 
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NBE. Using larger quantities, NBE gives higher adsorption. It was not possible to 

observe a relation between the carotene content after bleaching and the color after 

deodorization (Table 6.1), as suggested by Taylor (2005).  

 

Table 6.1. Palm Oil Color, β-carotenes and elements content (mg/kg) after Bleaching and 
deodorization process 

 ABE NBE 
 0.5 1.0 3.0 0.5 1.0 3.0 

After Bleaching       
Elements content (mg/kg) 

P 
Fe 

 
2.7±0.1 
0.7±0.1 

 
0.5±0.1 
0.2±0.0 

 
0.2±0.1 
0.2±0.0 

 
3.1±0.1 
0.5±0.0 

 
0.6±0.1 
0.1±0.0 

 
0.2±0.0 
0.2±0.0 

Carotenes (mg/kg) b 258 83 10 280 87 NDa 
Color (5 ¼ in) Red (R) 68.0 42.0 15.8 68.0 39 12.5 
After deodorization       
Color (5 ¼ in) Red (R) 8.2 7.3 3.4 9.1 8.4 6.1 

NDa: Not detected, b: Carotenes were not detected in any sample after deodorization 
 

Regarding the color, it can be noted that after bleaching using 0.5 % lead to 

68.0 R for both BE. When a higher amount of BE was used, differences in color 

could be observed; NBE leads to oil about 3.0 R lighter then ABE after bleaching. 

After deodorization the oil bleached with ABE presents a lighter color, even though 

it was darker after bleaching. It is interesting to highlight that the carotene content 

and Lovibond color obtained after bleaching with ABE were higher than that 

obtained with NBE, however, it gave instead a lighter color after deodorization. 

The oxidative state of the oils after bleaching using ABE and NBE are 

presented in Figure 6.1. For both bleaching earths, peroxides value decrease with 

BE concentration. Note that, amounts slightly higher than 1.0 % ABE reduces the 

PV to zero, while for NBE about 2.0 % is necessary. Small amounts of BE 

increases p-AnV. In the case of ABE, p-AnV increases and then starts to decrease 

until the initial value. In the case of NBE, p-AnV shows an increasing trend up to an 

approximately constant value. It is interesting to note that maximum p-AnV values 

coincide with the point the peroxides value reaches zero for the first time, 

suggesting that the peroxides are being converted into secondary oxidation 

products. 
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Figure 6.1. Oxidative State of Bleached Oils: Peroxide value, (■ ABE and □ NBE) and p-Anisidine 

value (♦ ABE and ◊ NBE) 

 

Different p-AnV values were obtained by adjusting the bleaching earth 

amount and by repeating the bleaching procedure in fully refined oils. A correlation 

between p-AnV after bleaching and palm oil color after deodorization was observed 

when ABE was used (Figure 6.2). The same correlation was not observed for NBE. 

As a second part of this work, the effect of the amount of citric acid added 

during bleaching was evaluated. Citric acid can act in two ways during oil 

degumming: firstly, displacing phosphatidic acid (PA) in its salts; secondly, forming 

a chelating agent capable to form a stronger bond with alkaline earth than PA does 

(A. J. Dijkstra, 2010). Here, we assume that adding more citric acid, more elements 

species can be chelated, reducing their concentration in the oil. Moreover, citric 

acid reduces the pH of the solution and competes with compounds to be adsorbed. 

The effect of citric acid amount (added as 30 % solution) was tested using 2.0 % of 

bleaching earth (Table 6.2). Note that this represents an increase in citric acid and 

water addition. 
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 0.
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After Bleaching 
FFA (%) 
Elements content (mg/kg) 

P 
Fe 

Carotenes (mg/kg) a 
Color (5 ¼ in) Red (R) 
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a: Carotenes were not de
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p-Anisidine value vs Colour (■ ABE and □ NBE) 

d water amount in bleaching using 2.0 % of bleachin
ABE NBE

.09 % CA 
21 % water 

0.27 % CA 
0.63 % water 

0.09 % CA 
0.21 % water 

   
5.0 5.0 4.7 

 
0.4±0.1 
0.2±0.0 

 
0.5±0.1 
0.2±0.0 

 
0.6±0.0 
0.3±0.0 

40 21 13 
29.0 25.0 19.2 

   
6.1 7.3 8.9 

etected in any sample after deodorization 

 

ng earth 
E 

0.27 % CA 
0.63 % water 

 
4.8 

 
0.8±0.1 
0.3±0.0 

19 
22.0 

 
8.2 
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Oils showed a higher FFA after bleaching with ABE than those bleached 

with NBE. It can be due to the inherent acidity of ABE or due to a catalytic effect 

forming FFA. Phosphorus adsorption decreases with the amount of added citric 

acid for both bleaching earths, but the decrease is more significant with NBE. 

There is no difference between final iron content using the same bleaching earth.  

Concerning carotenes content, increasing the citric acid concentration 

resulted in different behaviors for each bleaching earth. In the case of ABE, adding 

more citric acid caused that more carotenes were adsorbed. On the other hand, 

when NBE was used as bleaching earth, the increasing amount of citric acid 

resulted in a lower adsorption of carotenes. It was not possible to observe any 

relation between the color after bleaching and after deodorization, as suggested by 

Fraser and Frankl (1981). In the case of ABE, the use of more citric acid leads to a 

lower color after bleaching but a higher color after deodorization. In the other hand, 

when NBE was used, more citric acid leads to a higher color after bleaching and a 

lower color after deodorization. From those results, it can be inferred that chelating 

power is not the factor affecting the palm oil final color. A possible explanation is 

that the pH interferes in β-carotenes oxidation pathways, and this will be further 

discussed in the following section. 

6.4 Discussion  

In this work, no correlation was found between the β-carotene concentration 

of crude oil and the palm oil final color, as it has been suggested by Fraser (1981). 

On the other hand, a high correlation was found between p-AnV after bleaching 

with ABE and the palm oil color after deodorization/heat bleaching. The same 

correlation was not observed when the bleaching was done with NBE.  It is also 

interesting to highlight that heat bleaching was more efficient after bleaching with 

ABE, even though NBE was capable of removing more efficiently the color during 

bleaching. Oxidation of compounds such as β-carotenes may be an explanation for 

those results as described hereafter. 
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Tonsil OPT 210 FF is an acid activated bleaching earth manufacturated by 

acid activation of calcium bentonite. It has acidic and catalytic activity, leading most 

importantly hydroperoxide decomposition, forming sub-products such as 

aldehydes, ketones and conjugated polyenes (Zschau & Grp, 2001). Pure Flo B 80 

is a neutral bleaching earth with no catalytic activity. These properties can be 

confirmed through oxidative state data (Figure 6.1). Note, for instance, less amount 

of ABE is needed to reach zero peroxides compared to NBE. Furthermore, the first 

point presenting a maximum p-AnV value (secondary oxidation products) is 

correlated to the minimum PV value. Note that ABE decreases p-AnV until a 

constant value and NBE keeps it constant at the maximum. Indeed, as suggested 

by Sarier and Güler (1988), β-carotene which remains in solution with acid 

activated bleaching earth is rapidly oxidized later on, even more than those 

submitted to oxygen for 48 hours. Consequently, it may be said that acid activated 

bleaching earth initiates the oxidation of unadsorbed β-carotene. 

Carotenoids can react with radical species in three different ways, including 

(1) radical addition, (2) electron transfer to the radical or (3) allylic hydrogen 

abstraction. Burton and Ingold (1984) suggested that β-carotene reacts with 

peroxyl groups by addition, rather than by hydrogen abstraction. Liebler and 

McClure (1996) identified radical adducts formed during β-carotene oxidation, 

which then combines with a second radical to form an addition product. The 

formation of alkyl- and alkoxyl-containing addition products indicates that both may 

add directly to β-carotene. In contrast, peroxyl radical addition yields an unstable 

intermediate radical adduct that collapses to an epoxide and releases an alkoxyl 

radical.  

The polarity of the medium determines the pathways that β-carotene 

oxidation undergoes: in nonpolar solvents, only addition radicals are formed, 

meanwhile in polar ones carotenoid radical cations are formed (El-Agamey & 

McGarvey, 2003). For both solvents, the first product is an addition radical formed 

between the acylperoxyl radical and the carotenoid (Eq.6.2, Figure 6.3) (El-

Agamey & McGarvey, 2002). In fact, the Gibbs free energy presents similar 
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negative values for both system polarities, thus, the exergonicity of reactions 

depends mostly on the nature of the free radical, being •OH radical the most 

exergonic and peroxyl radicals the least one (Martinez, Vargas, & Galano, 2010). 

Those radicals have no reactivity toward oxygen, even at high oxygen pressures 

as 760 mmHg (Eq. 6.3) (El-Agamey & McGarvey, 2003). 

 

BC + •ROO→ROOBC• (6.2) 

ROOBC•+O2→ (6.3) 

 

 

 
Figure 6.3. First Addition 

 

Subsequent steps of β-carotene oxidation follow different pathways for polar 

and non-polar solvents (Figure 6.4). In non-polar solvents, the radicals decompose 

in epoxides and cyclic ethers, therefore, with an acyloxyl radical elimination (Eq. 

6.4) (El-Agamey & McGarvey, 2003), leading to volatiles products such as 

apocarotenals (Krinsky & Yeum, 2003). Note that this reaction releases a radical, 
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layer close to its surface, supporting reactions associated with polar environments. 

Negative charged sites of ABE can readily adsorb those cations. Indeed, cationic 

compounds are preferentially adsorbed by acidic centers of bleaching earth, as 

suggested by Zschau (2001), due to a chemisorption mechanism instead of 

physisorption (Kent, 2008). 

During the deodorization step, β-carotene degradation progress follows 

different mechanisms. Heat excited carotenoids undergo cis-trans isomerization or 

react with oxygen to form diradicals (Kamal-Eldin, 2003). β-carotene can undergo 

autoxidation much easier than compounds containing fewer conjugated double 

bonds, as β-apo-8´-carotenal and retinal, due to trans-cis thermal isomerization. 

During twisting of the β-carotene backbone unpaired spin density will develop in 

each half of the molecule, reaching a maximum in the perpendicular transition state 

and forming cyclic peroxides which may self-initiate autoxidation reactions (Mordi, 

Walton, Burton, Hughes, Ingold, Lindsay, et al., 1993). The main stable products to 

thermal degradation are higher molecular weight components, epoxy-β-carotenes, 

apo-carotenals and apo-carotenones, other low molecular weight di- and tri-

oxygenated compounds, probably including carboxylic and/or peracids, and carbon 

dioxide (Mordi, et al., 1993) (Figure 6.5). Marty and Berset (1990) suggested β-

carotene degrades by progressive shortening of the polyene chain by two carbon 

atoms at a time. So, oxidative break of a double bond in the β-carotene molecule 

leads to the formation of two carbonyl fragments of which one may be colorless. 

The effect of citric acid addition on the palm oil final color reinforces this 

hypothesis. The citric acid can induce an increasing competition among 

compounds to be adsorbed and reducing the solution pH. The increase of 

competition among compounds to be adsorbed has a negative effect, as it reduces 

the adsorption of P and Fe. This phenomenon is observed in processes using both 

BE, and the concentrations of those elements after processing with more citric acid 

are higher. The reduction of pH can change the β-carotene pathways, as explained 

previously. In the case of process using NBE, the use of more citric acid leads to a 

more polar environment and makes the formation of cations more favorable. The 
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process using ABE shows an already sufficient low pH, so that even with less citric 

acid addition those reactions were promoted. 

 

 

 

 
Figure 6.5. Products formed during β-carotene oxidation through radical addition 
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In this way, the positive effect of pH is more pronounced with NBE, whilst 

the negative effect of competition with ABE. Processing with NBE tends to have 

the same behavior as processing with ABE when more citric acid is added: lower 

carotenes adsorption, darker color after bleaching and lighter color after 

deodorization. 

Although the results presented in this work are not conclusive, they are 

important to improve the understanding of palm oil refining and some concluding 

remarks can be drawn so far: The type of bleaching earth can define oxidation 

pathways in two different manners. At the first moment, ABE decomposes 

peroxides in alkoxyl and alkyl radicals, which can react faster with β-carotene. 

Later, ABE makes the environment more polar, supporting radical cation formation 

which absorbs near infra-red. Furthermore, acid activation enhances adsorptive 

power due to an increasing surface area (Taylor, 2005). 
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Summary 

In batch physical refining of vegetable oils, the batch of oil is continuously 

injected with steam under high vacuum pressure. This process has been studied 

and treated as differential distillation process, showing good results for predicting 

the acidity at the end of the process. However, when analyzed over time, the 

differences regarding the experimental data become more significant. Flash 

distillation already considers that a batch of oil achieves single-stage equilibirum 

without the use of reflux, when the oil batch achieves steam distillation under high 

vacuum pressure. This study aims to compare the two approaches in computer 

simulation programs. It was observed that differential distillation has a linear acidity 

reduction while in flash distillation the acidity reduces exponentially. 

7.1 Introduction 

The deacidification by physical means (deodorization) is the final stage of 

the refining process of edible oils. A stripping operation, whose objective is to 

reduce undesirable volatile components, may also be considered.  Here, a carrier 

agent is mixed into the oil, facilitating the mass transfer of volatile impurities into 

the vapor phase, which are then removed in order to avoid the impurities from 

condensing onto the liquid (BALCHEN et al., 1999). This process may also result in 

neutral oil loss in the distillate, mainly in part by the vapor entrainment of oil drops 

(DE GREYT e KELLENS, 2005) and, on a lesser scale by the volatization of lower 

molecular weigh acylglycerides. 

The optimal parameters for the refining step (temperature, retention time, 

operating pressure and quantity of carrier gas) must be defined according to the 

crude oil, with the specifications of the final product, the limitations of the 

equipment and the need to minimize costs (DE GREYT and KELLENS, 2005). 

Therefore, simulating physical deacidification is promising for improving the quality 
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of the refined oil as it defines the process parameters in accordance to the raw 

material and the final product specifications. 

Ceriani and Meirelles (2004) already studied this process considering it as a 

process of differential distillation, wherein the still is fed with oil and then heated. 

The superheated steam is bubbled continuously into the oil, acting as a depletion 

agent by carrying the most volatile fatty compounds to the vapor phase, which are 

then condensed and collected in a flask. The oil compositions within the reactor 

and the distillate vary with time. The authors regard the process as a sequence of 

numerous, successive evaporation steps in equilibrium (CERIANI and 

MEIRELLES, 2004). This approach proved to be acceptable for predicting acidity 

at the end of the experiment, however, when acidity removal is analyzed over time; 

the differences become significant (SILVA, 2009; TAHAM; 2009). However, for the 

batch deacidification process can be analyzed according to the flash approach, 

steam must be continuously fed into oil until it reaches a single equilibrium stage, 

without the use of reflux, specific to the operation of a ordinary industrial 

equipment. 

Thus, the objective of this study is to compare the differential and flash 

distillation approaches for simulating deacidification process. 

7.2 Methodology 

7.2.1 Vegetable Oil Composition 

Simulations were performed for an oil constituted mainly of oleic, palmitic 

and linoleic acid (about 75 %, 15 % and 5 %, respectively) with 3.1 % of acidity, 

expressed as oleic acid modeled according to Buriti oil composition as determined 

by Silva et al. (2009). Thus, following the methodology developed by Antoniosi 

(1995) it was possible to determine the composition of triacylglycerols (TAG). Only 

the 4 main TAGs and 12 fatty acids were considered, as shown in Table 7.1. 
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Table 7.1. Oil composition studied. 

Component Molar Fraction Mass Fraction 

POP 6.4291x10-2 0.07539 

OOP 3.0089 x10-1 0.36385 

OOO 3.5428 x10-1 0.44140 

OOLi 7.1419 x10-2 0.08878 

C12:0 3.5036 x10-5 0.00001 

C14:0 8.1953 x10-5 0.00002 

C16:0 1.5309 x10-2 0.00513 

C16:1 2.9426 x10-4 0.00010 

C18:0 1.4556 x10-3 0.00054 

C18:1 6.1463 x10-2 0.02269 

C18:2 4.1209 x10-3 0.00151 

C18:3 8.7384 x10-4 0.00032 

C20:0 8.9826 x10-5 0.00004 

C20:1 3.9931 x10-4 0.00016 

C22:0 6.1820 x10-5 0.00002 

C24:0 5.7116 x10-5 0.00003 

 

7.2.2 Modeling 

For the computer simulations in this study, the vapor pressure equations 

and the thermodynamic approach proposed by Ceriani and Meirelles (2004) were 

used to describe the vapor-liquid equilibrium (VLE) of fatty compounds (Equations 

7.1 and 7.2).  

 

f� ! "�#� ! $� · &�( · )� 
(7.1) 
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&�' ! (�*+ · )�,�� · -#. /0�1 · 2( 3 (�*+45 · 6 7 
(7.2) 

 

where ki is the distribution coefficient of component i between the liquid and vapor 

phases, the fi is the fugacity in the reference state, xi and yi represent the mole 

fraction of component i in the liquid and vapor phases, respectively; P is the total 

pressure, R is the gas constant, T is the absolute system temperature, vp

iP and sat

iφ

respectively, the vapor pressure and fugacity coefficient of pure component i1, i
γ is 

the activity coefficient, i
φ  the fugacity coefficient of component i, L

iV  the molar 

volume of component i in the liquid state. The exponential term in Equation 7.2 is 

the Poynting factor. Vaporization efficiencies were considered equal to unity. The 

equations were compiled using the Matlab software. 

7.2.2.1 Differential distillation: 

The equations used to differential distillation are presented below. The mass 

balances for all components and the still are given by Equations 7.3 and 7.4. 

 898� ! 3:� (7.3) 

8@�8� ! 3��� (7.4) 

 

where L is the oil moles in the still; and li the mole charge of component i, :�� is the 

rate of total vaporization in moles/min. 

The balances for the total mass and for the distillate components are given 

by Equations 7.5 and 7.6. 

                                            
1 Ceriani and Meirelles (2004) considered the non-ideality in both vapour and liquid phases. The 

activity coefficients were calculated according to the predictive UNIFAC model, modified by Fornari 

et al. (1994). The fugacity coefficients were calculated by the Virial equation. The Poyting factor was 

considered equal to 1. 



Chapter 7 

136 

8=8� ! �� (7.5) 

8;8�<8� ! ��� (7.6) 

 

where D is the total number of moles of the distillate; and di the number of moles of 

component i in the distillate balloon.  

Ceriani and Meirelles (2004b) developed three alternative approaches to 

process modeling and compared their results with experimental data from 

Petrauskaitè et al. (2000) for coconut oil. The first and simplest approach, called 

Model 1, does not rely on steam injection. Model 2 employed steam injection, but 

as an inert gas. In this case, the steam is considered to be completely immiscible 

in the oil phase. Model 3 studied small amounts of water originating from the 

injected steam dissolved in the oil, increasing the volatility of fatty acids and 

decreasing the boiling point of the mixture. In fact, the third model was closest to 

the experimental data from Petrauskaitè et al. (2000) and for this reason was 

chosen to be addressed in this study. Thus, the concentration of water in liquid oil 

at a given pressure and temperature has been determined by Equation 7.7. 

 

& ! ( 3 s �$� · #� · (�*+ · )�,��)� � · �-#. /0�1 · 2( 3 (�*+45 · 6 7��B?
�v?  

(7.7) 

 

7.2.2.2 Flash distillation: 

The following present the equations used to model flash distillation. The 

balances of mass and enthalpy for each component are shown in Equations 7.8 

and 7.9. Equation 7.10 presents the equilibrium used. 
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>?;�,�< ! @�,� 3 @�A?,� � ���,� 3 ���,� ! 0 (7.8) 

>
;�< ! D� 3 D�A? � ��,* 3 ��,, ! 0 (7.9) 

>F;�,�< ! ��� · f�,� · @�,�9� 3 ���,� ! 0 
(7.10) 

Where lt,i and lt-1,i represents the charge mol of component i in the oil at 

points t and t-1, respectively, :��,� corresponds to the vapor phase formed in the 

flash in moles/min and ���,� represents the vapor injection of component i in 

moles/min. Note that in this case, the flow rate of injected steam per minute is 

equal to 1 when compound i is water and for all other compounds in the system ���,� 
is equal zero. 

In each interval of time between t-1 and t, Equations 7.8 and 7.10 generate 

(2NC +1) system of relations, where NC is the number of system components.  

The function discrepancies represented by Fj(t) were resolved by the Newton-

Raphson method, generating the values lt,i, :��,� and T (CERIANI and MEIRELLES, 

2006). 

Thus, one can achieve variations in the composition of the oil batch and the 

distillate over time by means of equations 7.11 and 7.12 below: 

 

#�,� ! @�,�∑ @�,����v?  
(7.11) 

"�,� ! ���,�∑ ���,����v?  
(7.12) 

 

Note that in the case of differential distillation, the amount of water dissolved 

in the oil corresponds to the solubility of the compound under the specified 

conditions of temperature and pressure; and that through this balance of 

components; the water exerts its influence on the equilibrium phases of the 

system.  In flash distillation, equilibrium is also affected by the ratio between the 
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amount of oil and the amount of steam injected in a small time interval. In fact the 

latter simulation strategy represents more correctly what happens in the batch 

distillation of vegetable oils, which corresponds to an evaporation batch with steam 

injection. 

The main objective of this paper is to compare these two simulation 

strategies for future in order to evaluate them in comparison with experimental data 

in the future. 

7.3 Results and Discussion 

The following are the results obtained for the flash and differential distillation 

simulations performed under similar conditions as used in the industry 

(temperature: 230 to 250 °C, pressure: 5 to 10 mmHg and steam injection: 0.5 to 

2.5 %, the latter represents the total mass of steam as a percentage of the initial oil 

cargo and this vapor mass should be distributed over the 60 minutes of stripping 

used in the process). 

Figures 7.1A and 7.1B show the profiles for acidity and neutral oil loss 

(NOL) obtained from the two simulations. Note that the acidity obtained with the 

two approaches is approximately equal at the end of 60 minutes, however, the 

profiles obtained over time are different (Fig. 7.1A). 
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Figure 7.1. Comparison of FFA (A) and NOL (B) obtained from the differential and flash approaches 

and (250 °C, 2.5 mmHg and 5% steam). 

 

The differential approach generates a linear reduction in acidity. This occurs 

because in this approach, the vaporization rate as well as process temperature is 

fixed over time. In this case, there is the variation of the amount of water dissolved 
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in the oil, and thus the concentrations of the other components are calculated. In 

the flash approach, temperature, together with the compositions of the vapor and 

liquid phases, is one of the responses of the program and varies with time.  Thus, 

one can observe that the vaporization rate is not constant and the acidity reduces 

exponentially. In fact, experiments have proved that in the physical refining of 

vegetable oils, the acidity reduces exponentially (SILVA, 2009; TAHAM, 2009). 

In the case of NOL (Figure 7.1B), the tendencies reverse with an 

exponential increase in differential distillation and a linear increase in flash 

distillation. It is also interesting to note that the opposite happens with acidity: the 

values obtained with NOL flash distillation are higher during the entire process 

time. Therefore, the amount of water vaporized at each instant is approximately 

equal in the two approaches. 

It is believed that flash distillation represents a more adequate 

deacidification of vegetable oils in batches by simultaneously keeping the transient 

character of the vaporization of fatty compounds present in the oil batch, and the 

continuous injection of sparge steam, taking into account both the effect of water 

on system phase equilibrium of the system and its influence on mass balances and 

enthalpy of the process. Therefore, the effects of temperature, pressure and steam 

flow rate will be discussed below based on this approach. 

Figure 7.2A shows the temperature profile obtained with the flash approach. 

Note that the temperature remains very close to that determined for means of the 

process, however with a slight tendency to decrease. Model 3 proposed by [15], 

which regards that the temperature is constant throughout the stripping process, 

despite being a good approximation, it is not the best way to describe the process. 
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Figure 7.2. Temperature profiles (A), FFA (B) and NOL (C) obtained from the flash approach 2.5 to 
5 mmHg and steam. 

 

Figures 7.2B and 7.2C show the profiles of NOL and acidity observed at  5 

mmHg and with an steam injection of 2.5% vapor, with varied process 

temperatures (230, 240 and 250 °C). Under such experimental conditions, the 

increased temperature causes a slight decrease in the acidity of the final oil. Note 

that the differences in final acidity obtained with the highest and lowest 

temperature did not exceed 0.2 %. NOL is more sensitive to temperature, 

increasing up to four times the heat. 

Figure 7.3A shows the temperature profiles obtained by setting the initial 

temperature of the oil batch at 250 °C and the pressure at 5 mmHg, with the steam 

flow variation rate (0.5, 1.5 and 2.5 %). Note that the greater the flow of steam 

used, the greater the decrease in temperature with time. This occurs because the 
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supply of heat to the system is disregarded. Thus, the greater the flow of steam, 

the greater the rate of vaporization, and therefore the greater the amount of energy 

removed from the oil to guarantee the volatilization of the compounds. 

Figures 7.3B and 7.3C show the acidity and NOL profiles obtained at 250 °C 

and 5 mmHg, with variation of steam flow rate (0.5, 1.5 and 2.5%). Interestingly, 

the acidity values obtained after 60 minutes are very close when compared with 

the steam injections of 1.5 and 2.5 %. However, the FFA reduction was 

significantly lower when using 0.5 % steam. In the case of NOL, significant 

differences occurred when comparing all steam flows. 

 

Figure 7.3. Temperature profiles (A), acidity (B) and NOL (C) obtained from the flash approach at 
250 °C and 5 mmHg. 
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Figure 7.4A shows temperature profiles obtained by setting the process 

temperature to 250 °C and the steam flow rate at 2.5 %, and varying the pressure 

(5, 7, and 10 mmHg).  One may note that the lower the pressure, the greater the 

decrease in temperature. As in the case of increased steam flow rate, the decrease 

in pressure increases the rate of vaporization of the compounds and thus a greater 

amount of energy must be removed from the oil by reducing its temperature. 

The NOL is more sensitive to variations in system pressure, increasing up to 

two times compared to those with the highest and lowest pressures. 

The results presented in Figures 7.2 to 7.4 show a lower sensitivity of the 

final acidity of the oil, compared to the neutral oil loss with changes in temperature, 

pressure and flow rate of steam injected directly.  Such findings may provide a 

better choice of operating conditions that ensure that acidity of the final product lies 

within the amount required by law (0.3 %) as well as low neutral oil loss. 

Figure 7.4. Temperature profiles (A), FFA (B) and NOL (C) obtained from the flash approach at 250 
°C and 2.5% steam. 
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Figure 7.5 shows a comparison of the values of NOL obtained at 250 °C and 

5 mmHg, with a range of steam flow rates. Interestingly, the values obtained with 

differential distillation are equal in the three flow rates tested, and therefore, its 

graph lines are overlapped, making it difficult to view the three curves. This result 

had been anticipated because in the differential approach the injected water is 

regarded only in the liquid phase, and its mole fraction corresponds to its solubility 

in oil at a given pressure and temperature.  Note that in the three situations tested, 

the temperature and pressure are equal and therefore have the same water 

solubility in oil. The remaining water in the vapor phase does not interfere with 

NOLs. In the case of the flash approach, the greater the flow of steam, the higher 

the NOL- a result that better describes the actual process. 

 

 
Figure 7.5. NOL profiles obtained at 250 °C and 5 mmHg with the flash approach (open symbols) 

and differential (filled symbols) with different steam flow rates. 
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7.4 Conclusion 

The flash approach represented a better example of the actual process 

when compared to differential distillation simulation. Therefore, this approach will 

be further studied in future experiments where the heat supply system, and 

hydrolysis reactions of cis-trans isomerization occurring in the oil due to high 

temperatures and mechanical drag of the liquid phase will be considered. Thus, 

future simulation data may be compared to data obtained experimentally. 

This study indicates that NOL is more sensitive to variations in process than 

acidity. This fact enables the study of optimal parameters, which generate the 

desired final acidity (as established by law), with less neutral oil loss and the lowest 

cost process to produce steam and vacuum. 

Nomenclature 

8� - number of moles for component i in the distillate container. = - Total number of moles of the distillate 

VLE - Vapor -Liquid Equilibrium &� - fugacity of component i &�' - fugacity of component i in the reference state D� - enthalpy of the compounds in the liquid phase at timet ��,* - enthalpy of fatty compounds in the vapor phase at time t ��,, - enthalpy of live steam at time t f� -  distribution coefficient of component i between the liquid and vapor phases 9 - number of moles of liquid in the tank @� - quantity of component i in the liquid phase (mole) ( - total pressure 

NOL – Neutral Oil Loss (�*+ - vapor pressure of pure component i  

5 - gas constant ���,� - steam injection of compound i in moles / min 
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6 - absolute system temperature; #� - molar fraction of component i in the liquid state "�- molar fraction of component i in the vapor state ��  - molar vaporization rate in moles / time :��,� - vaporization rate of component i in moles / min 

0�1 - molar volume of component i in the liquid state 

TAG – triacylglycerol $� - activity coefficient )� - fugacity coefficient )�,�� - fugacity of pure component i 
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Abstract 

A new approach that considers mass and enthalpy balances, equilibrium 

relationships and heat transfer was tested to simulate a steam deacidification 

process of coconut oil. These equations had already been used successfully to 

describe a continuous crosscurrent cascade process in a trayed column. In this 

work, this approach was adapted to a steam deacidification process in which oil is 

supplied only at the beginning of the process (batch) while steam is continuously 

injected into the still, improving the mass transfer of compounds into vapour phase, 

which is also removed continuously. The equations were partitioned by Naphtali-

Sandholm method and then solved by the Newton-Raphson method using Matlab 

software. Group contribution methods were selected to calculate all the physical 

properties needed in the equilibrium relationships and energy balances. This 

approach presented good results in relation to the oil final acidity. The oil acidity 

profile showed an exponential decrease and the temperature presented small 

variation along the stripping period, which is in accordance with experimental 

results. In this way, the suggested procedure can be considered as a valuable tool 

to deeply investigate common processes of the oil and fat industry. 

8.1 Introduction 

The steam deacidification is the final step in edible oils processing. It can be 

considered as a stripping process with as main objective reduction of undesirable 

volatile compounds [1]. Steam deacidification can occur in different ways: 

continuous, semi-continuous and batch. The latter is suitable for small scale 

processes and has as advantages the low cost and easy construction [2]. Although 

a batch process is not commonly used on industrial scale, it includes the most 

important phenomena that occur during the continuous process. For that reason, 

the batch processing was studied in several works reported in literature [3-5]. 
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In the batch process, oil is supplied only at the process beginning while 

steam is continuously injected into the oil, improving the mass transfer of 

compounds into the vapour phase, which is also removed continuously. During this 

process, undesirable removal also occurs, like the loss of triacylglycerols (TAG), 

diacylglicerols (DAG) and monoacylglycerols (MAG) [2]. Therefore, the process 

parameters (temperature, retention time, pressure and amount of stripping agent) 

have to be optimized to ensure final product specification and to avoid neutral oil 

losses and high costs. In this context, the computational simulation emerges as a 

tool that allows the process analyses and optimisation without doing experiments 

leading to additional costs.  

The batch process was already studied using the computational simulation 

as a differential distillation [5]: a tank (still) is charged with feed and then heated, 

vapour flows overhead, is condensed, and is collected in a receiver. In this study, 

oil and distillate composition varies with time. The authors considered the process 

as a sequence of numerous and successive vaporisations [5]. This approach was 

satisfactory to estimate the final oil acidity but presents significant differences when 

this response is analysed throughout the process [6]. 

Continuous steam deacidification was also studied by computational 

simulation presenting good results [7]. Both counter current and cross flow were 

modelled using mass and enthalpy balance equations and vapour-liquid equilibria 

(VLE) relations. These equations were adapted in our work to describe a batch 

steam deacidification. 

Thus, the goal of this work was to simulate the batch physical refining of 

coconut oil, using a realistic approach that considers mass and enthalpy balances, 

equilibrium relations and heat transfer. 

8.2 Materials & Methods 

Ceriani & Meirelles described the crossflow steam deacidification process by 

mass and enthalpy balances and VLE relations [7] for each stage. In this work, the 

same equations are used to describe the batch steam deacidification as a flash 
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distillation, however time is used instead of stages. The batch process is divided in 

t times that are considered as stages of Ceriani & Meirelles column, receiving a 

certain amount of steam that is removed in the same stage/time (Figure 8.1). 

 
Figure 8.1. Steam deacidification design: (A) Ceriani & Meirelles Crossflow and (B) Batch 

 

To simulate deacidification experiments, vapour pressure equations and 

thermodynamic approach proposed by Ceriani & Meirelles [8] was used to describe 

Vapour-Liquid Equilibria (VLE) of fatty compounds (Equations 8.1 and 8.2). 

 

f� ! "�#� ! $� · &�( · )� 
(8.1) 

&�' ! (�*+ · )�,�� · -#. /0�1 · 2( 3 (�*+45 · 6 7 
(8.2) 

 

where ki is the distribution coefficient of i in both liquid and vapour phases; &�' is 

the fugacity of component i in reference; xi and yi are molar fractions of component 

i in both liquid and vapour phases, respectively; P is the total pressure; R is the gas 

constant; T is the absolute system temperature; (�*+ and )�,�� are respectively, 



Chapter 8 

153 

vapour pressure and fugacity coefficient of the pure component i; $� is the activity 

coefficient2 of component i; )� is the fugacity coefficient of component i; 0�1 is the 

liquid molar volume of component i. The exponential term in Equation 8.2 is called 

the Poynting factor (POY). 

Mass and enthalpy balances (Equations 8.3 and 8.4) and equilibria relations 

(Equation 5.5) were adapted from Ceriani & Meirelles [7] to this work. 

 

>?;�,�< ! @�,� 3 @�A?,� � ���,� 3 ���,� ! 0 (8.3) 

>
;�< ! D� 3 D�A? � ��,* 3 ��,, 3 �� ! 0 (8.4) 

>F;�,�< ! ��� · f�,� · @�,�9� 3 ���,� ! 0 
(8.5) 

 

where lt,i and lt-1,i is total moles of liquid in the still at instant t and t-1, respectively; ���,� is the vapour phase formed during the flash in mols/min and ���,� is the vapour 

injection of component i in mols/min. Note that, ���,� is equal to the injected steam 

flow per minute when i is water and for all the other components, ���,�is equal to 

zero. ht is liquid phase enthalpy in time t; Ht,v is vapour enthalpy of fatty 

components in time t; Ht,s is vapour phase enthalpy of steam in time t. UA is the 

overall heat transfer coefficient times heat exchange surface area in J/K	min 

(estimated according to literature [9]). f�,� is distribution coefficient of component i 

in time t. 
This approach generates for each time interval NC mass balances, 1 

enthalpy balance and NC equilibrium relations where NC is equal to the number of 

                                            
2 Ceriani and Meirelles (2004) considered the non-ideality in both vapour and liquid phases. The 
activity coefficients were calculated according to the predictive UNIFAC model, modified by Fornari 
et al. (1994) [15]. The fugacity coefficients were calculated by the Virial equation. The Poyting factor 
was considered equal to 1. 
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components that constitute the oil. All the equations were partitioned using the 

Naphtali and Sandholm [10] calculation method of multicomponent separation. The 

equations are related only to times t and t-1, so, the Jacobian matrix formed is very 

sparsed and it was solved using the Newton-Raphson method giving as responses lt,i, ���,� and T. Variations in composition in liquid and vapour phase can be obtained 

throughout the time using Equations 8.6 and 8.7. 

#�,� ! @�,�� @�,����v?
 

(8.6) 

"�,� ! ���,�� ���,����v?
 

(8.7) 

 
The vaporisation efficiency was considered equal to one. All equations were 

compiled using Matlab software. Heat capacities and vapour pressure of fatty 

compounds were predicted using group contribution method. Necessary input data 

are retention time, pressure and temperature of the process, percentage of steam 

and oil composition.  

This work used the coconut oil deacidification data obtained by Petrauskaitè 

et al. [3] to run the simulations. The authors have done the experiments in a batch 

scale equipment containing 250 g of bleached coconut oil. The experiments were 

conducted for 60 minutes under temperatures and pressures between 190 °C and 

230 °C and 1.6 and 3.0 mbar, respectively. Steam percentage varied from 0.6 % to 

1.2 %. Since Petrauskaitè et al. [3] have not described the coconut oil composition 

in terms of partial acylglycerols, this work performed computational simulations 

considering a coconut oil with the composition used by Ceriani & Meirelles [5] to 

simulate these experiments. The composition that presented the best results in the 

differential distillation was choosen: 0.89 % of diacylglycerols (DAG) and 0.27 % of 

monoacylglycerols (MAG). 
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8.3 Results & Discussion 

This work simulated the experiments of coconut oil deacidification done by 

Petrauskaitè et al. [3], using an flash distillation in which VLE is affected by the 

system pressure, the quantity of oil in the still and the quantity of steam injected in 

a short period of time. In a first step, simulations were done without considering the 

heat transfer between the equipment and the oil, i.e. UA equals zero. Then, the 

same simulations were done considering that UA equals 29.50 J/K·min3 (according 

to the literature [9]). 

Table 8.1 presents the results for the final acidity, expressed in lauric acid 

percentage. Calculated final acidity presents satisfactory values for all process 

conditions. Note that, all experiments have as intermediate response to those 

obtained in computational simulation. Considering UA equals zero tends to 

overestimate acidity responses. On the other hand, considering a UA equals  

29.50 J/K·min tends to slightly underestimate the responses. In this last case, 

absolute deviations were lower. Thus, it can be noted that is important to add a 

heat transfer term in the enthalpy balance to obtain more realistic results. As 

expected, our results were more approximated than that found by Ceriani & 

Meirelles [5]. 

 

Table 8.1. Comparison of Refined final acidity by Petrauskaitè et al. (2000) and this work.* 

  Process conditions FFA oil out (%, lauric) 

Exp Temp (°C) Steam (%) Pressure (mbar) Petrauskait è et al. 
UA = 
0 J/K·min 

UA = 
29.5 J/K·min 

1 190 0.6 1.6 0.235 0.403 0.232 
2 210 0.8 1.6 0.070 0.135 0.058 
3 230 0.7 1.6 0.019 0.045 0.011 
4 230 0.6 2.3 0.033 0.091 0.034 
5 230 0.6 3.0 0.035 0.126 0.005 
6 230 1.2 3.0 0.017 0.058 0.016 

*Experiments numbers correspond exactly to those reported by Petrauskaitè et al. (2000) 

 

                                            
3
 This value was experimentally determined in a previous work, as described in Appendix 2. 
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Figure 8.2 shows acidity profiles for Experiment 6 (230 °C, 3 mbar and 1.2 

% steam) considering both UA values. It can be noted that acidity presents a non-

linear behaviour: free fatty acids removal is larger in the first minutes and then 

there is only a slightly decrease in acidity. This behaviour is due to different 

vaporisation rates calculated throughout the process in our approach. Ceriani & 

Meirelles [5] obtained a linear decrease of acidity once in their approach the 

vaporisation rate is constant. In fact, experimental acidity profiles shows that acidity 

removal is not constant with time [13][14]. It can also be noted that acidity values 

were lower for larger UA during all the process. 

 

 
Figure 8.2. Simulated acidity profile for Exp 6: UA equals 0 (empty square) and UA equals 29.5 

J/K·min (full square) 

 

The flash distillation approach can predict satisfactorily the neutral oil loss 

(NOL) results with low absolute deviation values (Table 8.2). If the heat transfer is 

considered, NOL tends to approximate to the experimental values. The simulated 

values are lower than the experimental for both UA cases. One probable 
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explanation is the entrainment of partial acylglycerols. During the experiments, 

small quantities of neutral oil can be mechanically carried by the steam used 

improve fatty acids transfer to the vapour phase. This is not predicted in our 

equation. 

 

Table 8.2. Comparison of Neutral Oil Loss by Petrauskaitè et al.(2000) and this work. 
  Process conditions Neutral Oil Loss (%) 

Exp Temp (°C)  Steam (%) Pressure (mbar) Petrauskaitè et al. 
UA = 

0 J/K·min 
UA = 

29.5 J/K·min 
1 190 0.6 1.6 0.28 0.12 0.18 
2 210 0.8 1.6 0.57 0.26 0.41 
3 230 0.7 1.6 1.28 0.47 0.85 
4 230 0.6 2.3 1.21 0.35 0.60 
5 230 0.6 3.0 0.89 0.30 0.55 
6 230 1.2 3.0 0.93 0.43 0.77 

 
Figure 8.3 presents the NOL profile for Experiment 6 considering both UA 

values. NOL increases with time: in the first minutes a considerable loss occurs 

and then it tends to increase linearly. It can be seen that a higher UA value 

provides a higher loss. It is in agreement with the acidity results: when the heat 

transfer is considered, the system achieves higher temperatures, and thus, it has 

more energy to volatilise fatty compounds, increasing the acidity removal and the 

oil loss. It was not found in the literature NOL profiles to compare with the 

simulations carried out in this work. 

The last response analysed by this simulations was the temperature profile. 

Figure 8.4 presents profiles for Experiments 5 and 6 considering both UA values. It 

can be noted that when UA value is equal to zero, the oil temperature decreases 

due to the energy reduction of the system, i.e. the energy to volatilise the fatty 

compounds is removed from the oil resulting in a temperature reduction. When UA 

value is different from zero, so that, the necessary energy to volatilise the fatty 

compounds is obtained from the heat source, the temperature maintain quite 

constant. It is important to highlight that both experiments were done at 230 °C, 

and so, the temperature at time zero is equal to 230 °C for all profiles. 
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Figure 8.3. Simulated Neutral Oil Loss for Exp 6: UA equals 0 (empty square) and UA equals 29.5 

J/K·min (full square) 

 

It is also interesting to note in the temperature profiles considering the heat 

transfer that the Experiment 5 profile tends to slightly increase while the 

Experiment 6 profile tends to slightly decrease. As these experiments were 

performed using the same temperature and pressure; the difference is only the 

steam percentage (0.6 % and 1.2 %, for Experiments 5 and 6, respectively). The 

use of higher amounts of steam entails more fatty compounds. As the same UA 

was used in all experiments, it can be noted that in Experiment 5, the heat given to 

the system is larger than the necessary to volatilize the compounds with 0.6 % 

steam and lower than the necessary to volatilize the compounds with 1.2 % steam. 

In fact, it was observed in experimental works that the system temperature tends to 

decrease during stripping if not enough heat is given to the process [13][14]. 
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Figure 8.4. Simulated Temperature Profiles for Exp 5 (circles) and Exp 6 (squares): UA equals 0 

(empty symbols) and UA equals 29.5 J/K·min (full symbols) 

 

8.4 Conclusion 

In this work, a batch steam deacidification was simulated using a new 

approach. It presented satisfactory results to describe the final acidity and the 

neutral oil loss. This approach was also efficient to describe the process 

parameters profile. In future work, cis-trans isomerisation and hydrolysis reactions 

and mechanical entrainment may be included. Thus, this computational simulation 

is a valuable tool to deeply investigate common processes of the vegetable oil 

industry.  
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D� - enthalpy of the compounds in the liquid phase at time t ��,* - enthalpy of fatty compounds in the vapor phase at time t ��,, - enthalpy of live steam at time t f� - distribution coefficient of component i between the liquid and vapor phases @�,� - quantity of component i in the liquid phase (mole) at instant t 9 - number of moles of liquid in the tank ( - total pressure (�� – Poynting Factor 

NOL – Neutral Oil Loss (�*+ - vapor pressure of pure component i  

5 - gas constant ���,� - steam injection of compound i in moles / min 6 - absolute system temperature; #�- molar fraction of component i in the liquid phase "�- molar fraction of component i in the vapor phase ��  - molar vaporization rate in moles / time :��,� - vaporization rate of component i in moles / min 

0�1 - molar volume of component i in the liquid state 

TAG – triacylglycerol $� - activity coefficient of component i )� - fugacity coefficient of component i )�,�� - fugacity of pure component i 
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Chapter 9. Conclusion 

This thesis provides a better understanding on physical refining of vegetable 

oils as well as some advances towards high quality products and process 

improvement by consuming fewer inputs. The bleaching process was deeply 

studied concerning adsorption phenomena and the effect of different procedures 

and kinds of bleaching earth on the final color. The deacidification process was 

investigated by computer simulation, providing the basis for a better understanding 

of vegetable oils deacidification. 

Chapter 3 presented the development and validation of a HPLC 

methodology for simultaneous quantification of carotenes and tocols. This method 

using normal phase is simple, sensitive and reproducible. The lower limit of 

quantification (LOQ) and the lower limit of detection (LOD) were established. The 

methodology was successfully applied for quantification of those compounds in 

Amazon oils, concluding that both photo diode array (PDA) and fluorescence 

detectors can be used to quantify tocopherols and tocotrienols in vegetable oils. 

Later, it was used by our research group for determining thermal degradation of 

carotenes (Thermal Degradation Kinetics of Carotenes in Palm Oil, Journal of 

American Oils Chemists’ Society, DOI: 10.1007/s11746-012-2156-1) and liquid-

liquid equilibrium of fatty systems (Experimental data for liquid–liquid equilibrium of 

fatty systems with emphasis on the distribution of tocopherols and tocotrienols, 

Fluid Phase Equilibria, DOI: 10.1016/j.fluid.2012.09.033). 

Chapter 4 presents a study on the adsorption phenomena of carotenes and 

phosphorus during bleaching processes. Two kinetic models were tested for 

carotenes, being the pseudo-second-order model which is better to describe 

carotene adsorption. Phosphorus adsorption was too fast, resulting in a lack of 

data for analyzing its kinetics. The equilibrium data are described more accurately 

by Langmuir and Freundlich models, for β-carotenes and phosphorus, respectively. 

A thermodynamic study demonstrated that β-carotenes and phosphorus adsorption 

is spontaneous, endothermic and an entropy-driven process. High temperatures 



Conclusion 9 

164 

should be preferred to increase adsorption of carotenes and phosphorus. However, 

other factors as undesirable side reactions should be taken into account when 

defining the best bleaching temperature to obtain a light color oil. 

Chapter 5 presents the effect of new bleaching procedures, showing that 

this step can still be optimized concerning final color and the kind of bleaching 

earth. A two step refining, i.e. a procedure based on two mild deodorization steps 

was suggested and presented an improvement in color although the same total 

amount of bleaching earth and total deodorization residence time were used. In 

case of keeping the same quality of the final product, i.e. the same color obtained 

in the traditional approach, the new method would make it possible to decrease the 

amount of bleaching earth or the deodorization time. The optimization of this 

approach and the utilization of different adsorbents, as silica and activated carbon, 

should be investigated as future work. 

Chapter 6 presented work on the effect of the kind of bleaching earth on the 

palm oil final color. An inverse correlation between p-anisidine values after 

bleaching and the final color after deodorization was observed. Moreover, a 

hypothesis to explain how the kind of bleaching earth (neutral or acid activated) 

can interfere on the palm oil final color was presented and discussed; this 

hypothesis suggested that the reduction of pH can change β-carotene oxidative 

pathways and the kind of products formed along the refining steps. 

Chapter 7 compared two different mathematical approaches to simulate the 

steam stripping (physical refining) of vegetable oils: differential and flash 

distillations. The flash approach represented a more reliable simulation procedure 

when compared to differential distillation. Differential distillation presented a linear 

trend for free fatty acids removal. However, experimental results have shown that 

fatty acids removal has an exponential behavior, like the one obtained by flash 

distillation equations. Furthermore, this study indicated that neutral oil loss is more 

sensitive to variations in process than acidity. It was concluded that flash distillation 

equations provide more realistic results and this procedure was chosen for further 

studies on computer simulation of vegetable oils. 
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Chapter 8 adapted successfully an algorithm used to describe a continuous 

crosscurrent deodorizer for simulating a batch deodorization versus time. The 

algorithm took into account the continuous feed of sparge steam as well as the 

heat transfer to the oil in batch, features that are able to properly reproduce the 

operation of batch deodorizers. This approach, the so-called flash distillation 

procedure, presented satisfactory results concerning the final oil acidity. The oil 

acidity profile showed an exponential decrease and the temperature presented a 

small variation along the stripping period, which is in accordance to the 

experimental results. In this way, the suggested procedure can be considered as a 

valuable tool to deeply investigate common processes of the oil and fat industry. 

9.1 Suggestions for further works 

• To study the adsorption process (kinetics, equilibrium and 

thermodynamics parameters) of carotenes and phosphorus 

removal by neutral bleaching earth; 

• To study the competitive effect of different components 

(carotenes, phosphorus and other elements, free fatty acids) on 

adsorption; 

• To analyze by HPLC, mass spectrophotometry or other advanced 

techniques, the oxidation products formed during bleaching with 

different types of bleaching earth; 

• To simulate deacidification processes considering reactions, such 

as hydrolysis of triacylglycerols and thermal degradation of 

carotenes. 
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Appendix 1 

Table A1 - Experimental Data from β-carotene adsorption at 105 °C onto Tonsil OPT 210 FF 
Time (min) C (mg/kg) 
0 454±5.5 
15 63±0.0 
25 42±0.6 
35 31±0.0 
45 22±14.33 
65 25±1.0 
85 23±0.6 
105 28±0.0 
 

Table A2- Experimental Data from phosphorus adsorption at 105 °C onto Tonsil OPT 210 FF 
Time (min) C (mg/kg) 
0 19.11±0.02 
15 0.34±0.09 
25 0.05±0.00 
35 0.03±0.04 
45 0.02±0.00 
65 ND* 
85 ND 
105 ND 
*Not Detected 
 

Table A3- Experimental Data from β-carotene isotherm adsorption at 90 °C, 105 °C and 115 °C 
onto Tonsil OPT 210 FF 

 90 °C 105 °C 115 °C 
BE (%) Ce 

(mg/kg) 
qe (mg/g) Ce 

(mg/kg) 
qe (mg/g) Ce 

(mg/kg) 
qe (mg/g) 

0 399  467  399  
0.5 233 33 258 42 96 43 
0.7 177 32 178 41 52 39 
0.9 135 29 128 38 47 35 
1.0 121 28 93 37 21 25 
1.5   54 28 15 19 
2.0 74 16 40 21 10 13 
3.0 44 12 16 15 96 43 
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Table A4- Experimental Data from phosphorus isotherm adsorption at 90 °C, 105 °C and 115 °C 
onto Tonsil OPT 210 FF 

    
BE (%) Ce 

(mg/kg) 
qe (mg/g) Ce 

(mg/kg) 
qe (mg/g) Ce 

(mg/kg) 
qe (mg/g) 

0 19.1  19.1  19.1  
0.5 2.9 3.3 2.7 3.3 3.4 3.2 
0.7 2.3 2.4 2.3 2.4 2.5 2.4 
0.9 1.8 1.9 1.8 1.9 1.9 1.9 
1.0 1.3 1.8 1.3 1.8 1.5 1.8 
1.5 0.6 1.2 0.6 1.2 0.6 1.2 
2.0 0.4 0.9 0.4 0.9 0.3 0.9 
3.0 0.3 0.6 0.2 0.6 0.1 0.6 

 

 

Table A5 – Linear adjusts for K0 calculation - β-carotenes adsorption onto Tonsil OPT 210 FF 

Temperature (°C) Equation Ko 

90 @o L_�c�[ ! 310343_� � 5.8074 333 

105 @o L_�c�[ ! 327661_� � 7.5725 1944 

115 @o L_�c�[ ! 330805_� � 8.5583 5210 

 

 

Table A6 – Linear adjusts for K0 calculation - phosphorus adsorption onto Tonsil OPT 210 FF 

Temperature (°C) Equation Ko 
90 @o L_�c�[ ! 310282_� � 7.9123 2731 

105 @o L_�c�[ ! 313242_� � 8.1650 3516 

115 @o L_�c�[ ! 326120_� � 8.9805 7947 
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Figure A1 – Van’t Hoff graph for β-carotene adsorption onto Tonsil OPT 210 FF 

 

 
Figure A2 – Van’t Hoff graph for phosphorus adsorption onto Tonsil OPT 210 FF 
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Appendix 2 

UA was experimentally determined in a lab-scale deodorizer, the same 

described by Sampaio et al. (2011). This work was performed as part of the 

undergraduate research of Pedro Menchik, conducted under the supervision of Dr. 

Roberta Ceriani. This work was published in the Proceedings of the 8th Latin 

American Symposium of Food Science, 2009 (Calculation of the Overall Heat 

Transfer Coefficient for a Lab-Scale Vegetable Oils Deodorizer – in 

Portuguese, Pedro Menchik, Simone Monteiro e Silva, Thiago Taham, Antonio J. 

A. Meirelles and Roberta Ceriani). 

The determination was done in duplicate, using 900 g of fully refined 

soybean oil (Cargill). It was considered a typical fatty acid composition for soybean 

oil: 10.82 % palmitic, 4.89 % stearic, 25.21 % oleic, 51.61 % linoleic and 7.47 % 

linolenic. The amount of sparge steam injection and the heat source temperature 

were 5.0 % and 290 °C, respectively. The temperatures of heat source and of the 

oil were measured every two minutes. 

The heat capacity was considered as a function of temperature and of 

composition in fatty acids. It was calculated according to the Equation proposed by 

Wang and Briggs (2002): 

 c+ ! 1.8146 � 0.0021 6 (A2.1) 

 

where Cp is the heat capacity (J/g	°C) and T is the oil temperature (°C). 

Then, the overall heat transfer coefficient was determined by the following 

equations, assuming a constant heat source temperature and a well mixed liquid 

phase: 

�� ! £¤+ 26t�¥u�� 3 6a�b,
426t�¥u�� 3 6a�b,?4 
(A2.2) 

6�g ! 26t�¥u�� 3 6a�b,
426t�¥u�� 3 6a�b,?4 
(A2.3) 
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where UA is the overall heat transfer coefficient (J/K), m is the oil mass (g), Tjacket is 

the temperature of the heating source, Toil,1 and Toil,2 are the temperature of the oil 

at time 1 and 2, respectively and Tad is the adimensional temperature. 

The UA was determined only for the step in which the heat source 

temperature was constant, i.e. Tjacket equal to 290 °C. It was not considered in the 

calculation the heating-up step. The Figure A3 presents the plot of the 

adimensional temperature against time. A linear correlation was obtained  

(R2 = 0.95). From the slope of linear equation, it was calculated UA (29.5 J/min). 

This results is in accordance to the values reported for overall heat transfer 

coefficient between steam and vegetable oils (PERRY; D.W, 1984). 

 
Figure A3 - Adimensional temperature versus time 
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