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RESUMO GERAL 

A microencapsulação é uma técnica que vem sendo amplamente estudada para a proteção 

de compostos bioativos e controle de sua liberação. Neste contexto, o objetivo geral deste 

trabalho foi produzir micropartículas através da extrusão de emulsões estabilizadas por 

biopolímeros (caseinato de sódio e κ-carragena) em solução de cloreto de potássio para a 

encapsulação de compostos hidrofóbicos. Na primeira parte deste estudo, o processo de 

extrusão em um atomizador foi estudado através da produção de microgéis a partir de 

soluções aquosas de caseinato de sódio (Na-CN) e κ-carragena. Os efeitos da vazão de 

alimentação, vazão de ar comprimido no bico atomizador, viscosidade e tensão superficial 

das soluções foram avaliados experimentalmente e através da análise de parâmetros 

adimensionais. Os resultados mostraram que os menores microgéis foram obtidos com a 

menor vazão de alimentação, menor viscosidade da solução biopolimérica e maior vazão de 

ar comprimido. No entanto, a esfericidade dos microgéis foi principalmente influenciada 

pela tensão superficial das soluções. Na segunda etapa do trabalho, emulsões óleo-água 

(O/A) multicamadas estabilizadas por caseinato de sódio e κ-carragena foram estudadas 

com o intuito de determinar as condições de maior estabilidade em pH 7 e 3,5. Em pH 7, o 

fenômeno de floculação por depleção ocorreu em elevada concentração de κ-carragena, 

enquanto que em pH 3,5 foi observada a floculação por ponte (bridging flocculation) em 

menores concentrações de polissacarídeo. Emulsões estáveis foram produzidas na maior 

concentração de polissacarídeo (1% m/v) em ambos os valores de pH (7 e 3,5) devido ao 

aumento da viscosidade da fase contínua. Na terceira parte do estudo, microesferas com 

potencial para encapsulação de compostos hidrofóbicos foram produzidas a partir da 

gelificação iônica das emulsões multicamadas e avaliadas quanto à estabilidade em 

diferentes meios. As microesferas produzidas em pH 3,5 foram mais estáveis do que 

aquelas preparadas em pH 7, sendo que ambas foram altamente estáveis quando dispersas 
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em soluções de cloreto de potássio com concentrações superiores a 0,75% (m/v). Na última 

etapa do trabalho foi avaliado um exemplo de aplicação das microesferas para encapsulação 

de triptofano. Nesta etapa, as propriedades reológicas de suspensões de microgéis também 

foram estudadas com o intuito de verificar a sua influência na textura dos produtos. A 

eficiência de encapsulação do triptofano nas microesferas foi baixa (~30%), o que pode ser 

explicado pelo elevado tamanho dos poros do gel que não impediu a difusão desse 

composto de baixa massa molecular. No entanto, a liberação do bioativo foi bastante baixa 

quando as micropartículas foram diluídas em solução aquosa. Além disso, suspensões de 

microesferas com menores diâmetros e formatos mais esféricos apresentaram pouca 

influência na textura, mostrando sua potencial aplicação em produtos contendo elevada 

quantidade de água. 

Palavras chave: Caseinato de sódio, κ-carragena, emulsão, extrusão, microestrutura, 

reologia 
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ABSTRACT 

Microencapsulation is a technique widely used for the protection of bioactive compounds 

and for controlling their release. In this context, the general purpose of this work was to 

produce microbeads through the extrusion of biopolymer-stabilized emulsions (sodium 

caseinate and κ-carrageenan) in a potassium chloride solution, aiming the encapsulation of 

hydrophobic compounds. In the first part of this work, the extrusion process was studied in 

an atomizer, producing microgels from aqueous solution of sodium caseinate (Na-CN) and 

κ-carrageenan. The effect of feed flow rate and compressed air flow rate in the atomizer 

nozzle, viscosity and surface tension of solutions were evaluated experimentally and 

through the analysis of dimensionless parameters. The results showed that smaller 

microgels were produced using lower feed flow rate, lower viscosity and higher 

compressed air flow rate. Nevertheless, the sphericity of microgels was mainly influenced 

by the surface tension of solutions. In the second step of this work, oil-in-water (O/W) 

multilayered emulsions stabilized by sodium caseinate and κ-carrageenan were studied in 

order to determine the conditions of higher stability at pH 7 and 3.5. At pH 7, depletion 

flocculation occurred at high κ-carrageenan concentrations, while at pH 3.5, bridging 

flocculation was observed at lower polysaccharide concentrations. Stable emulsions were 

produced in the highest polysaccharide concentration (1% w/v) in both pH values (7 and 

3.5) due to the increase of viscosity of the continuous phase. In the third part of this study, 

microbeads potentially useful for encapsulation of hydrophobic compounds were produced 

by ionic gelation of multilayered emulsions and evaluated in relation to stability in different 

media. The microbeads produced at pH 3.5 were more stable than those prepared at pH 7 

and both were highly stable when dispersed in solutions with more than 0.75% (w/v) 

potassium chloride. In the last step of this study, an example of microbead application for 

encapsulating tryptophan was evaluated. In this step, the rheological properties of 
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suspensions of microgels were also studied in order to verify their influence on the texture 

of products. The encapsulation efficiency of tryptophan in the microbeads was low (~30%), 

which was attributed to the large pore size of the gel matrix that could not hinder the 

diffusion of this low molecular weight compound. However, the release of bioactive was 

very low when the particles were diluted in aqueous solution. Moreover, suspensions of 

microbeads with smaller diameters and more spherical shape showed little influence on the 

texture, exhibiting their potential application in products with high water content. 

Keywords: Sodium caseinate, κ-carrageenan, emulsion, extrusion, microstructure, 

rheology 
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1.1. INTRODUÇÃO 

A encapsulação de compostos hidrofóbicos desperta o interesse em diversas 

indústrias, tais como a alimentícia, farmacêutica e médica. Dentre esses compostos 

hidrofóbicos encontram-se substâncias como lipídeos bioativos, flavors, antimicrobianos, 

vitaminas e antioxidantes (MCCLEMENTS et al., 2007). Emulsões simples (O/A ou A/O) 

apresentam elevado potencial para encapsulação de compostos ativos, principalmente por 

apresentarem regiões polares e apolares em sua composição, baixo custo de produção e 

relativa facilidade de produção (MCCLEMENTS et al., 2007). Como as emulsões são 

sistemas altamente instáveis, agentes emulsificantes e/ou estabilizantes devem ser 

adicionados (DICKINSON, 1992) para aumentar a estabilidade cinética. Dentre estes 

ingredientes, as proteínas e polissacarídeos são particularmente atrativos, principalmente 

por serem geralmente reconhecidos como seguros (Generally recognized as safe – GRAS) 

(KEPPELER et al., 2009). Alguns estudos demonstraram que a estabilidade das emulsões 

pode ser melhorada pela formação de complexos eletrostáticos proteína – polissacarídeo na 

interface das emulsões, produzindo as chamadas emulsões multicamadas. Neste caso, as 

emulsões são produzidas pela adição de um polissacarídeo carregado em uma emulsão 

estabilizada por uma proteína carregada com carga oposta (GU et al., 2004; GU et al., 

2005; SURH et al., 2006; GUZEY & MCCLEMENTS, 2006; PALLANDRE et al., 2007). 

A presença de biopolímeros nos sistemas ainda permite a formação de géis, 

tornando as emulsões mais estáveis e com maior resistência mecânica. Esses géis podem 

ser formados em escala micrométrica, sendo chamados de microgéis, de modo a apresentar 

a mesma estabilidade e resistência das matrizes de gel, porém podendo ser incorporados a 

diversos tipos de produtos com pouca alteração de suas características de textura. Além 

disso, os microgéis podem ser utilizados como modificadores de textura (ELLIS & 
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JACQUIER, 2009), podendo apresentar diferentes comportamentos dependendo de suas 

características, tais como composição, tamanho e formato. Assim, o conhecimento da 

reologia de suspensões é um modo de controlar as propriedades de tais materiais (ADAMS 

et al., 2004). 

Diferentes métodos estão sendo estabelecidos para a produção de microgéis e a 

maioria deles combina a formação de gotas/partículas com o processo de gelificação, como 

o mecanismo de extrusão que envolve a formação de gotas pelo uso de uma seringa ou um 

bico atomizador, as quais são coletadas em uma solução contendo agente gelificante 

(HUNIK & TRAMPER, 1993; BLANDINO et al., 1999). O processo de gelificação 

geralmente utilizado para produzir microgéis de polissacarídeos a partir do método de 

extrusão é a gelificação ionotrópica (ZHANG et al., 2007; HERRERO et al., 2006; 

SMRDEL et al., 2008), a qual envolve a extrusão da solução de polissacarídeo em uma 

solução iônica, com difusão dos íons nas gotas de polissacarídeo. Ao escolher a utilização 

de tais métodos de produção, torna-se necessário levar em conta as propriedades das 

soluções de biopolímeros (viscosidade e tensão superficial) e condições de processo, como 

a vazão de solução no bico atomizador (RIZK & LEFEBVRE, 1980; BUREY et al., 2008; 

ALISEDA et al., 2008). 

 

1.2. OBJETIVOS 

O objetivo geral deste trabalho foi determinar os parâmetros de processo relevantes 

para produção de microgéis a partir da gelificação de emulsões contendo κ-carragena e 

caseinato de sódio para a encapsulação de compostos hidrofóbicos. Como exemplo de 

aplicação das micropartículas, a viabilidade de encapsular triptofano e/ou modificar a 

textura de produtos com elevado teor de água também foi avaliada. 
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Os objetivos específicos deste trabalho foram: 

A) Estudar as variáveis de processo para a formação de microgéis a partir da 

gelificação de soluções de goma κ-carragena e / ou caseinato de sódio com o uso de cloreto 

de potássio. Os parâmetros adimensionais envolvidos no processo de extrusão (vazão de 

alimentação e de ar comprimido) foram avaliados, bem como a morfologia e estabilidade 

dos microgéis produzidos, além da reologia das suspensões de microgéis biopoliméricos; 

B) Estudar a influência do pH e concentração de κ-carragena na estabilidade de 

emulsões O/A estabilizadas por caseinato de sódio em pH 7 e 3,5. Para isso, diâmetro 

médio de gotas, microestrutura, cobertura superficial das gotas, potencial zeta e 

propriedades reológicas foram avaliados; 

C) Avaliar as variáveis de processo envolvidas na produção de microesferas por 

extrusão de emulsões multicamadas (diâmetro de saída de líquido do bico atomizador e 

distância entre o bico atomizador e a solução salina). A estabilidade das microesferas em 

diferentes meios foi avaliada de modo a obter potenciais matrizes para a encapsulação de 

compostos hidrofóbicos; 

D) Estudar a viabilidade de encapsular triptofano nas microesferas produzidas a 

partir de emulsões multicamadas, avaliando a eficiência de encapsulação e a liberação dos 

compostos encapsulados, bem como a influência da incorporação dos mesmos na textura 

dos produtos. 

 

1.3. ORGANIZAÇÃO DA TESE EM CAPÍTULOS 

A apresentação deste trabalho foi organizada em 6 capítulos como descrito a seguir: 
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Capítulo 1: Introdução geral 

Capítulo 2: Revisão Bibliográfica 

Neste capítulo são abordados aspectos teóricos dos sistemas estudados, bem como 

uma revisão bibliográfica relatando a literatura recente e mais relevante sobre o tema deste 

trabalho. 

 

Capítulo 3: κκκκ-Carrageenan – sodium caseinate microgel production by atomization: 

Critical analysis of the experimental procedure 

Nesta parte foi realizado um estudo da produção de microgéis a partir das soluções 

de caseinato de sódio e κ-carragena utilizando-se o processo de extrusão em solução de 

cloreto de potássio. A partir deste estudo foi possível entender os fatores que afetam o 

processo de extrusão, a interação entre as soluções biopoliméricas durante o processo de 

formação de gel, a estabilidade dos microgéis e o comportamento reológico dos microgéis 

em suspensões. 

 

Capítulo 4: Stabilization of multilayered emulsions by sodium caseinate and κκκκ-

carrageenan 

Neste capítulo foi avaliada a influência do pH e da concentração de polissacarídeo 

na formação de complexos eletrostáticos entre caseinato de sódio - κ-carragena na interface 

das emulsões O/A. Foram utilizadas técnicas de microscopia, difração a laser, potencial 

zeta e reologia para a avaliação da interação entre proteína e polissacarídeo, bem como a 

determinação das condições necessárias para a formação de emulsões estáveis. 
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Capítulo 5: Development of Na-CN - κκκκ-carrageenan microbeads for encapsulation of 

lipophilic compounds 

Neste capítulo foi feito o estudo da produção de microesferas a partir da gelificação 

das emulsões multicamadas estudadas no Capítulo 4. A partir deste trabalho foi possível 

avaliar alguns fatores que afetam o processo de extrusão, a interação entre a proteína e 

polissacarídeo na formação das microesferas, o efeito do pH e a estabilidade das 

microesferas em diferentes meios. 

 

Capítulo 6: Encapsulation of tryptophan using microbeads of sodium caseinate and κκκκ-

carrageenan produced by atomization 

Este capítulo apresenta um exemplo de aplicação das microesferas estudadas no 

Capítulo 5. Nesse estudo foi avaliada a viabilidade da encapsulação de triptofano através da 

eficiência de encapsulação, a cinética de liberação de triptofano em solução aquosa e 

propriedades reológicas de suspensões de microesferas em solução salina. 

 

Capítulo 7: Conclusões gerais 

Neste capítulo são relatadas as principais conclusões sobre os resultados obtidos. 
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2.1. EMULSÕES 

Uma emulsão geralmente é composta por dois líquidos imiscíveis (usualmente óleo 

e água), com um dos líquidos disperso no outro na forma de gotas. A substância ou solução 

que compõe as gotas é chamada de fase dispersa, enquanto que aquela que compõe o meio 

é chamada de fase contínua. As emulsões podem ser classificadas de acordo com a 

distribuição relativa das diferentes fases. Um sistema que consiste de gotas de óleo 

dispersas em uma fase contínua aquosa é chamado emulsão óleo em água (O/A) como, por 

exemplo, leite, maionese, sopas e molhos. Já o sistema formado por gotas de água dispersas 

em uma fase oleosa é chamado emulsão água em óleo (A/O), tendo como exemplos a 

margarina e a manteiga (DICKINSON, 1992; MCCLEMENTS, 2005; MCCLEMENTS et 

al., 2007). 

As emulsões são comumente classificadas de acordo com o diâmetro das gotas em 

nanoemulsões (ou microemulsões) (10-100 nm), miniemulsões (100-1000 nm) e 

macroemulsões (0,5-100 µm) (WINDHAB et al., 2005). Enquanto as microemulsões são 

translúcidas e termodinamicamente estáveis, as miniemulsões e macroemulsões são 

sistemas termodinamicamente instáveis e tendem a se romper com o tempo através de 

diversos mecanismos físico-químicos, como cremeação, floculação e coalescência das 

gotas (DICKINSON, 1992; MCCLEMENTS, 2005). Para a formação das emulsões devem 

ser empregados ingredientes conhecidos como emulsificantes, que são espécies químicas 

(ou misturas de espécies) que são adsorvidas na superfície das gotas produzidas durante o 

processo de homogeneização, formando camadas protetoras que impedem a agregação da 

fase dispersa e reduzem a tensão interfacial (MCCLEMENTS et al., 2007). Existem duas 

grandes classes de emulsificantes: surfactantes de baixo peso molecular (monoglicerídeos, 

polissorbatos, lecitina, dentre outros) e emulsificantes macromoleculares (usualmente 



Capítulo 2 

13 

proteínas, principalmente do leite, da soja e do ovo) (DICKINSON, 2003). Além disso, a 

estabilidade das emulsões pode ser aumentada através de adição de espessantes, que são 

componentes que apresentam a propriedade de aumentar a viscosidade ou gelificar a fase 

contínua das emulsões, retardando ou impedindo o movimento das gotas (MCCLEMENTS 

et al., 2007). Dentre os principais espessantes utilizados estão os polissacarídeos, como as 

gomas carragena, xantana, gelana e jataí. 

Além dos ingredientes utilizados na formulação das emulsões, a estabilidade deste 

tipo de sistema depende do método de dispersão utilizado em seu preparo, o que vai 

influenciar diretamente o tamanho das gotas formadas. As emulsões podem ser preparadas 

a partir de dois diferentes tipos de metodologias denominadas de baixa energia 

(emulsificação espontânea e temperatura de inversão de fase) e alta energia (moinhos 

coloidais, homogeneizadores de alta pressão, sistemas de membranas, dentre outros). Nas 

metodologias de baixa energia, as gotas são formadas através da alteração das propriedades 

físico-químicas intrínsecas dos surfactantes, diferentemente das metodologias de alta 

energia, as quais utilizam uma elevada energia mecânica para a formação das gotas. Os 

métodos que utilizam alta pressão são atualmente os mais utilizados e apresentam a 

vantagem de dependerem apenas de parâmetros diretamente controláveis, tais como 

quantidade de energia, concentração de tensoativo e natureza dos componentes (ANTON et 

al., 2008). 

 

2.2. EMULSÕES MULTICAMADAS 

A formação de multicamadas na interface das emulsões O/A pode melhorar a 

qualidade e estabilidade de muitos produtos, bem como a capacidade de desenvolver novos 

sistemas de encapsulação e liberação controlada. Para a produção de emulsões 
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multicamadas, um emulsificante iônico é primeiramente adsorvido na superfície das gotas 

de óleo durante a homogeneização, produzindo uma emulsão primária (Figura 2.1A). Em 

uma segunda etapa, um polieletrólito contendo carga oposta é adicionado ao sistema, sendo 

adsorvido na superfície das gotas e produzindo uma emulsão secundária formada por gotas 

de óleo cobertas por uma interface composta por duas camadas (Figura 2.1B). Esse 

procedimento pode ser repetido de modo a formar três ou mais camadas (GUZEY & 

MCCLEMENTS, 2006). A primeira camada é geralmente produzida pela adsorção de uma 

proteína na interface da emulsão devido a suas propriedades interfaciais, enquanto que as 

demais camadas podem ser compostas por outros biopolímeros (proteínas ou 

polissacarídeos) que se associam à primeira camada devido a interações eletrostáticas 

(DICKINSON, 2008). 

 

 

 

 

 

 

 

 

 

 

Figura 2.1. Representação esquemática do processo de formação de emulsões óleo em água 

A) primárias e B) secundárias (Fonte: GUZEY & MCCLEMENTS, 2006). 

A B 
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Antes da formação de uma nova camada, é necessário garantir que existe uma 

pequena quantidade (ou nenhuma) de polieletrólito livre presente na solução aquosa. Caso 

contrário, pode ocorrer a formação de complexos eletrostáticos fora da interface (GUZEY 

& MCCLEMENTS, 2006). Para isso, diferentes estratégias podem ser adotadas: 

•  Método de saturação – apenas a quantidade de polieletrólito necessária para 

cobrir completamente todas as gotas do sistema é adicionada, resultando em pequena 

quantidade de polieletrólito livre na fase aquosa. A concentração de saturação pode ser 

determinada experimentalmente através de medidas de potencial zeta ou pela determinação 

da concentração superficial de polieletrólito; 

•  Método de centrifugação – o excesso de moléculas de polieletrólito não-

adsorvido é removido através de centrifugação da emulsão, seguido por suspensão em uma 

solução tampão apropriada; 

•  Método de filtração – o excesso de polieletrólitos não-adsorvido é removido 

através de filtração em membrana, de modo que as moléculas de polieletrólitos passem 

através da membrana e a emulsão filtrada é adicionada de solução tampão. 

As emulsões multicamadas tendem a ser mais estáveis que as emulsões simples com 

relação a diferentes condições do meio (pH, sal, aquecimento, desidratação, etc.). No 

entanto, estas emulsões podem apresentar agregação das gotas dependendo da concentração 

de polieletrólitos (C) na multicamada (CHO & MCCLEMENTS, 2009). 

•  C = 0 � as emulsões são estáveis a agregação devido à forte repulsão 

eletrostática entre as gotas de óleo cobertas por emulsificante iônico. 

•  0 < C < Csat � floculação por ponte (bridging flocculation) ocorre quando a 

concentração de polieletrólito é insuficiente para saturar completamente a superfície das 
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gotas (Csat). Neste caso, uma única molécula de polieletrólito se adsorve em duas gotas 

vizinhas, promovendo a floculação. 

•  Csat < C < Cads � a floculação por ponte também ocorre quando a concentração 

de polieletrólito é suficiente para saturar a superfície das gotas, porém é muito baixa para 

garantir que as gotas sejam saturadas (Cads) antes que ocorra colisão entre elas. 

•  Cads < C < Cdep � as emulsões são estáveis devido à completa e rápida 

saturação da superfície das gotas de óleo pelo polieletrólito, sendo a condição ideal para a 

produção de emulsões multicamadas estáveis. 

•  C > Cdep � a concentração de polieletrólito livre em solução excede um valor 

crítico (Cdep), promovendo floculação por depleção (depletion flocculation), onde as forças 

de depleção são elevadas o suficiente para superar as forças repulsivas entre as gotas. 

Assim, para a produção de emulsões multicamadas estáveis deve-se garantir que 

Cads < C < Cdep, ou seja, a concentração de polieletrólito deve ser suficientemente alta para 

saturar a superfície das gotas, porém não tão elevada de forma a evitar que o excesso de 

polieletrólitos livre em solução promova floculação por depleção. 

 

2.3. MICROGÉIS 

A estabilidade das emulsões que utilizam biopolímeros como estabilizantes pode 

ainda ser aumentada pela gelificação da fase aquosa. Isso é possível devido à capacidade 

gelificante e de retenção de água das proteínas e de alguns polissacarídeos (WALSTRA, 

2003). As matrizes biopoliméricas podem então ser utilizadas para incorporar e proteger 

compostos nutracêuticos (CHEN et al., 2006). No entanto, no caso de produtos semi-

sólidos, é essencial que o tamanho da matriz do gel seja reduzido, formando microgéis, de 
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modo que estes possam ser incorporados nos produtos sem afetar sua textura (AUGUSTIN, 

2003). Além disso, os microgéis podem ser utilizados para controle da textura ou reologia 

de alguns produtos (ELLIS & JACQUIER, 2009). 

 

2.3.1. Encapsulação por microgéis 

Os microgéis são utilizados para reter compostos ativos, visando reduzir a 

reatividade do material encapsulado (recheio) em relação ao meio (luz, oxigênio, umidade, 

temperatura, etc), evitar a evaporação de compostos voláteis, preservar ou mascarar 

sabores, controlar a taxa e local de liberação do mesmo, facilitando o manuseio do material 

encapsulado (SHAHIDI & HAN, 1993). Além disso, o uso de encapsulação por microgéis é 

particularmente atrativo, pois pode auxiliar na incorporação de materiais com baixa 

solubilidade e ainda permite a incorporação dos microgéis em produtos com elevada 

quantidade de água, o que não ocorre com partículas secas, como aquelas produzidas em 

“spray dryer” (BUREY et al., 2008). Deve-se atentar para a particularidade de que um 

microgel desenvolvido para proteger um determinado composto em um produto de baixa 

atividade de água não terá o mesmo desempenho quando aplicado em outro produto com 

maior umidade. Ou seja, no desenvolvimento de microcápsulas um dos pontos 

fundamentais a ser considerado é o tipo de produto a ser enriquecido. 

Uma metodologia que vem mostrando grande eficácia no desenvolvimento de 

microcápsulas é a do “Retro-Design” (UBBINK & KRUEGER, 2006). A partir desta 

metodologia, o desenvolvimento de um ingrediente encapsulado é um resultado de uma 

pré-análise cuidadosa da aplicação desejada com relação a: 1) vida-de-prateleira do 

produto, 2) mercado consumidor alvo, 3) benefício esperado ao consumidor e 4) processo 

de produção e seus princípios físicos, incluindo a ciência dos materiais, físico-química e 
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biofísica. O conhecimento do mercado consumidor alvo permitirá a definição dos materiais 

a serem usados com relação à legislação local e, no caso de produtos alimentícios, com 

relação aos hábitos alimentares. O benefício esperado ao consumidor definirá onde e como 

o composto bioativo deverá ser liberado, por exemplo no produto ou no corpo humano, por 

difusão ou ruptura da microcápsula dentre outras possibilidades. No caso do benefício estar 

associado à nutrição, o composto ativo deve apresentar alta biodisponibilidade mesmo após 

encapsulado. O processo e o material a serem utilizados no preparo da microcápsula 

dependerão das características físico-químicas do produto a ser enriquecido e do composto 

bioativo, dos parâmetros do processo de produção, do local, do tempo e da forma como o 

composto será liberado. Após esta pré-análise, o pesquisador montará o “quebra-cabeça” 

entre possíveis processos e materiais a fim de identificar quais as tecnologias de 

encapsulação são as mais promissoras para obter sucesso na aplicação almejada. Além 

disto, na grande maioria dos casos, o pesquisador precisará desenvolver metodologias em 

sistemas modelo para avaliar as eficiências de encapsulação e de liberação do composto. 

Para este último, deve-se considerar todo o processo produtivo, condições de vida-de-

prateleira e onde/como o composto será liberado (BRAGA & UBBINK, 2012). 

É usual na indústria a encapsulação de ingredientes como aromas, vitaminas, 

minerais, enzimas, microrganismos, ácidos graxos e peptídeos. Alguns exemplos de 

aplicação em alimentos incluem a encapsulação de microrganismos probióticos em 

cápsulas produzidas a partir de gomas gelana e xantana (MCMASTER et al., 2005), 

partículas de κ-carragena e carboximetilcelulose para a encapsulação de beta-caroteno 

(MUHAMAD et al., 2011) e encapsulação de óleo essencial de eucalipto em cápsulas de 

alginato (CHANG & DOBASHI, 2003). 
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2.3.2. Controle de textura/reologia dos produtos 

Os microgéis podem atender a diferentes aplicações dependendo de suas 

características, como composição dos polímeros, densidade da rede e tamanho de partícula. 

Alguns microgéis podem ser aplicados para formar a estrutura dos produtos, como é o caso 

do amido, ou ainda para fornecer uma textura sólida flexível, podendo substituir a gordura 

sem alteração da textura dos produtos (BUREY et al., 2008). O entendimento da reologia 

de suspensões de microgéis é a chave para o controle das propriedades de processamento e 

de utilização desses materiais (ADAMS et al., 2004). 

 

2.4. MATERIAIS UTILIZADOS NO PREPARO DOS MICROGÉIS 

Dentre os materiais utilizados para o preparo dos microgéis estão os biopolímeros, 

como polissacarídeos e proteínas, principalmente devido a sua biocompatibilidade e por 

serem produzidos a partir de fontes naturais (BUREY et al., 2008). Além disso, microgéis 

produzidos a partir de biopolímeros apresentam a capacidade de se degradar a partir da 

ação de estímulos biológicos, tais como alteração de pH ou interações com enzimas e 

proteínas (ZHANG et al., 2007). Existem diversos biopolímeros gelificantes de diferentes 

origens bastante importantes, principalmente na indústria de alimentos, sendo alguns deles 

apresentados na Tabela 2.1. 
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Tabela 2.1. Fontes de biopolímeros gelificantes industrialmente importantes (adaptado de 

Williams & Phillips, 2000) 

Fonte Biopolímero Principal uso 

Botânica Amido, pectina, celulose, goma arábica Agente espessante e/ou gelificante 

Algas Agar, carragena, alginato Agente gelificante 

Microbiana Xantana, gelana, dextrana Agente espessante e/ou gelificante 

Animal Gelatina, caseinatos, proteínas do soro, quitosana Agente espessante e/ou gelificante 

 

Dentre esses ingredientes, os materiais de particular interesse para esse trabalho 

(carragena e caseinato de sódio) serão descritos detalhadamente a seguir. 

 

2.4.1. Carragena 

A carragena é um polissacarídeo natural extraído a partir de algas vermelhas da 

classe das Rhodophyceae. Sua estrutura primária linear é formada por unidades alternadas 

de D-galactose e 3,6-anidro-D-galactose (3,6AG) com diferentes graus de sulfatação, 

unidas por ligações glicosídicas alternadas α-(1,3) e β-(1,4) (DE RUITER & RUDOLPH, 

1997; IMESON, 2000). Os tipos mais comuns de carragena são chamados de kappa (κ), 

iota (ι ) e lambda (λ), os quais podem ser observados na Figura 2.2. A estrutura destas três 

principais formas de carragena difere apenas no número de grupos sulfatados por unidade 

repetida de dissacarídeo: κ tem um, ι  tem dois, e λ tem três (YUGUCHI et al., 2003). 
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Figura 2.2. Tipos estruturais da carragena. A) κ-carragena, B) ι -carragena e C) λ-carragena 

(Fonte: BUREY et al., 2008). 

 

Dentre as propriedades físicas deste polissacarídeo, destacam-se as capacidades 

gelificante e espessante, sendo que a propriedade gelificante é a mais importante para o 

desenvolvimento de microgéis. Diferentes propriedades podem ser observadas para cada 

tipo de carragena. Soluções quentes de κ e ι -carragena podem formar géis termicamente 

reversíveis quando resfriadas entre 40°C e 60°C, dependendo do cátion presente no 

sistema. A κ-carragena, por exemplo, seleciona íons potássio para estabilizar as zonas de 

junção formando géis caracteristicamente firmes, como apresentado na Figura 2.3A. Já a ι -

carragena utiliza íons cálcio para formar ligações entre cadeias adjacentes (Figura 2.3B), 

formando géis tipicamente elásticos (IMESON, 2000). 

A 

B 

C 
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Figura 2.3. Gelificação da A) κ-carragena e B) ι -carragena com íons (Fonte: IMESON, 

2000). 

A carragena possui a capacidade de interagir com outros ingredientes, como a goma 

jataí e goma konjac. No entanto, a interação sinergística da carragena mais conhecida é 

aquela que envolve as proteínas do leite. Existem duas teorias que explicam as interações 

da κ-carragena com a caseína. A primeira teoria propõe que a κ-carragena carregada 

negativamente interage com uma região predominantemente positiva da κ-caseína, sendo 

então adsorvida na superfície da micela de caseína (DALGLEISH & MORRIS, 1988; 

SNOEREN et al., 1975). Já a segunda teoria propõe a formação de um gel fraco de κ-

carragena, o qual mantém as micelas de caseína em suspensão (BOURRIOT et al., 1999), 

apesar das concentrações necessárias para a estabilidade serem inferiores à concentração 

crítica de gelificação. 

 

A B 
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2.4.2. Caseinato de sódio 

O leite bovino é um sistema altamente complexo que contém aproximadamente 

3,5% de proteína. As proteínas do leite são tradicionalmente divididas em duas principais 

frações: caseínas (~80%) e as proteínas do soro (~20%). A fração de caseína é composta 

por quatro principais proteínas chamadas αs1-, αs2-, β- e κ-caseínas, além da γ-caseína e 

diversas outras proteínas e peptídeos (ENNIS & MULVIHILL, 2000). Cerca de 95% da 

caseína existente no leite está na forma de micelas de caseína, que são associações coloidais 

com massa molecular de cerca de 108 Da e diâmetros médios na faixa de 100 nm. As 

micelas são compostas por sub-micelas esféricas contendo diferentes quantidades de 

caseínas e arranjadas de modo que a κ-caseína fique situada na superfície da micela (FOX 

& MULVIHILL, 1990). Fosfato de cálcio coloidal presente nas micelas de caseína 

promove interações hidrofóbicas entre proteínas e entre sub-micelas, contribuindo para a 

estabilidade da mesma. Além disso, os “cabelos” presentes na κ-caseína impedem a 

agregação das micelas de caseína através de repulsão eletrostática e estérica, mantendo o 

sistema estável. 

O caseinato de sódio é um ingrediente preparado a partir da precipitação da caseína 

pela adição de ácido até o ponto isoelétrico (pH ~ 4,6), seguida por uma lavagem e 

dissolução em água utilizando-se hidróxido de sódio até atingir a neutralidade. A elevada 

proporção de cadeias laterais contendo aminoácidos hidrofóbicos na estrutura primária da 

caseína promove a formação de agregados (ou “sub-micelas”) no caseinato de sódio quando 

este se encontra em solução aquosa (FARRELL et al., 1990). No entanto, as submicelas de 

caseína não conseguem se associar para a formação de micelas devido à ausência de cálcio. 

O caseinato de sódio é amplamente utilizado devido a suas propriedades funcionais que 
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incluem propriedades emulsificantes, espessantes, gelificantes e capacidade de retenção de 

água e de gordura (MULVIHILL, 1989). 

 

2.5. METODOLOGIAS PARA PREPARO DOS MICROGÉIS 

Existem dois principais mecanismos para a formação de microgéis: 1) formação da 

fase contínua (“top-down”) e 2) formação da fase dispersa (“bottom-up”). Esses métodos 

diferem principalmente na ordem das etapas do processo. Na formação da fase contínua 

(“top-down”) existe primeiramente a produção de um macrogel a partir da solução de 

biopolímeros, seguida pela quebra do mesmo para a formação das micropartículas (BUREY 

et al., 2008). Já para a formação da fase dispersa (“bottom-up”), primeiramente ocorre a 

etapa de formação das gotas a partir de uma solução de biopolímero, sendo a segunda etapa 

caracterizada pela gelificação das gotas (ZHANG et al., 2007) (Figura 2.4). Como o 

mecanismo de formação da fase dispersa (“bottom-up”) é de particular interesse para este 

trabalho, suas etapas de produção das gotas e gelificação serão detalhadas a seguir nos itens 

2.5.1 e 2.5.2. 



Capítulo 2 

25 

 

Figura 2.4. Esquema dos mecanismos de formação dos microgéis (Fonte: BUREY et al., 

2008). 

 

2.5.1. Produção das gotas 

A etapa de produção das gotas é um dos estágios críticos para a formação dos 

microgéis pelo mecanismo “bottom-up”, já que irá determinar o tamanho e a polidispersão 

das partículas produzidas. As gotas podem ser produzidas de forma simultânea através da 

agitação da solução de biopolímeros em uma fase dispersa oleosa, formando emulsões água 

em óleo (A/O), ou através de processos de gotejamento ou extrusão da solução 

biopolimérica (FREITAS et al., 2005; ZHANG et al., 2007). 

A produção de partículas pela técnica de emulsificação consiste na suspensão de 

“top-down” “bottom-up” 
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uma solução biopolimérica em um meio não aquoso, geralmente óleo vegetal, formando 

uma emulsão A/O, seguida pela adição desta emulsão a uma solução promotora de 

gelificação (Figura 2.5). Neste caso, o tamanho das gotas formadas é dependente da 

viscosidade do óleo, razão óleo/solução biopolimérica, tipo de emulsificante e quantidade 

de energia utilizada para o preparo da emulsão (REIS et al., 2006). 

 

 

 

 

 

 

Figura 2.5. Produção de gotas pela técnica de emulsificação (Fonte: BUREY et al., 2008). 

 

Já o processo de gotejamento / extrusão é bastante utilizado para a produção de 

partículas de gel. Nesse processo, uma solução de hidrocolóide é extrusada em uma solução 

promotora de gelificação (geralmente solução salina) através de uma seringa ou um bico 

atomizador (Figura 2.6) (BUREY et al., 2008). O mecanismo de formação de gotas através 

do uso de bicos atomizadores é bastante complexo, sendo influenciado por diversos 

parâmetros como a geometria do bico atomizador e as propriedades do fluido (ALISEDA et 

al., 2008). Dentre os diferentes bicos atomizadores que podem ser utilizados estão os 

atomizadores duplo fluido, cuja configuração apresenta um jato de líquido central que é 

atomizado por um fluxo de gás de alta velocidade anular co-corrente (VARGA et al., 

2003). Um modelo físico para o processo de atomização foi sugerido através de estudos 

experimentais (VARGA et al., 2003), indicando que a quebra do jato de líquido é causada 
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por mecanismos de instabilidade que ocorrem na interface gás-líquido. Após a saída do 

bico atomizador, a superfície do jato de líquido é submetida à instabilidade Kelvin-

Helmholtz, resultando na formação de ondas primárias (GOROKHOVSKI & 

HERRMANN, 2008). Essas ondas primárias são então expostas à corrente de gás em alta 

velocidade, o que leva à aceleração e desenvolvimento de instabilidades Rayleigh-Taylor 

(R-T) (VARGA et al., 2003; ALISEDA et al., 2008; GOROKHOVSKI & HERRMANN, 

2008). Quando suficientemente amplificada, a instabilidade Rayleigh-Taylor leva à quebra 

do líquido em pequenas gotas (JOSEPH et al., 1999). 

 

 

 

 

 

 

 

Figura 2.6. Produção de gotas pela técnica de extrusão. 

 

2.5.2. Gelificação dos biopolímeros 

A gelificação das gotas pode ocorrer através de processos químicos ou físicos do 

biopolímero. Ligações químicas são alcançadas através de reações de condensação ou 

polimerização do radical livre (ZHANG et al., 2007), enquanto que ligações físicas podem 

ser produzidas a partir de diversos mecanismos como a gelificação térmica ou a 

ionotrópica. A gelificação térmica requer a aplicação de calor à solução biopolimérica, o 

que leva à desnaturação / expansão das estruturas nativas e subsequente formação de uma 
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rede. Essa técnica é a menos utilizada para a formação de microgéis, sendo apenas utilizada 

quando aplicação de calor é requerida no processo produtivo. Já a gelificação ionotrópica 

ocorre através da ligação entre cadeias de biopolímeros pela adição de íons, geralmente 

cátions para a gelificação de polissacarídeos carregados negativamente. Existem duas 

principais técnicas cuja gelificação ionotrópica pode ocorrer: gelificação interna ou por 

difusão. A gelificação interna geralmente envolve a dispersão de sais insolúveis na solução 

biopolimérica, seguida pela solubilização dos íons através de alterações das propriedades da 

solução, como pH, por exemplo. Por outro lado, a difusão envolve a introdução da solução 

biopolimérica em uma solução iônica, com a gelificação ocorrendo pela difusão dos íons 

para a solução de biopolímeros (BUREY et al., 2008). Apesar da possibilidade de promover 

uma gelificação não homogênea das partículas de biopolímeros, a técnica de difusão é 

bastante simples e geralmente utilizada para o preparo de microgéis. 
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ABSTRACT 

The influence of atomization process to produce κ-carrageenan and κ-

carrageenan/sodium caseinate microgels was studied experimentally (aspect ratio and 

particle size distribution) and theoretically (dimensionless parameters). Moreover, 

rheological behavior of microgel suspensions was evaluated to examine their potential 

application in food products. Experimental results demonstrated that the size of microgels 

was influenced by feed flow rate, compressed air flow rate and composition of solutions, 

while their shape depended on the viscosity and surface tension of biopolymer solutions. 

Regarding the dimensionless numbers, higher values of Reynolds number of liquid layer 

(Reλl) and Weber number (Wel) led to smaller particles, while the decrease of Ohnesorge 

number (Oh) was related to lower sphericity of microgels. Rheological behavior of 

suspensions depended not only on the morphology and size of microgels, but also on their 
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composition. Incompatibility between κ-carrageenan and sodium caseinate in mixed 

microgels led to suspensions with more complex rheological behavior at determined 

biopolymer concentrations. 

Keywords: extrusion; ionic gelation; microscopy; rheology 

 

3.1. INTRODUCTION 

The development and preparation of microgels have attracted great interest in a 

number of areas, including the pharmaceutical, medical, cosmetics, agricultural and food 

industries. Specifically in the food industry, the microgels can be used for a variety of 

applications, for example as an encapsulation matrix to protect active compounds, or as a 

texture modifier (ELLIS & JACQUIER, 2009). Regarding the control of product 

texture/rheology, the microgels can be used for different applications depending on their 

characteristics, such as composition, size and shape. Thus the knowledge of the rheology of 

microgel suspensions is a way to control the properties of such materials (ADAMS et al., 

2004). 

Among the ingredients that can be used to produce microgels, the polysaccharides 

are particularly attractive, mainly due to their technological properties and because they are 

generally recognized as safe (GRAS) (KEPPELER et al., 2009). κ-Carrageenan is a 

polysaccharide with a structure composed of repeating D-galactose and 3,6-

anhydrogalactose (3,6 AG) units, both sulfated and non-sulfated, joined by alternating α-

(1,3) and β-(1,4) glycosidic links (DE RUITER & RUDOLPH, 1997; IMESON, 2000). 

Among the interesting technological properties of this polysaccharide, its gelling capacity is 

of special interest. The gelling process of κ-carrageenan involves a conformational 
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transition from the coil to the helix form (DE RUITER & RUDOLPH, 1997), which 

depends on the temperature, the ionic strength and the biopolymer concentration (MORRIS 

et al., 1980, MEUNIER et al., 2001). κ-Carrageenan can also interact with other 

ingredients, especially with milk proteins (IMESON, 2000). Even though it has long been 

known that κ-carrageenan can form complexes with casein micelles (DALGLEISH & 

MORRIS, 1988; LANGENDORFF et al., 1997; BOURRIOT et al., 1999; MARTIN et al., 

2006; ARLTOFT et al., 2007), few studies have evaluated the interaction between κ-

carrageenan and sodium caseinate (OAKENFULL et al., 1999; BELYAKOVA et al., 2003; 

RIBEIRO et al., 2004; SABADINI et al., 2010). 

Different methods have been established to produce microgels and most of them 

combine droplet/particle formation with the gelation process. Emulsion formation and 

extrusion mechanisms are some techniques in which droplet formation occurs prior to 

gelation (BUREY et al., 2008). In the emulsion formation mechanism, the droplets are 

formed by dispersion of the biopolymeric solution into an oil phase, followed by the 

addition of a gelling agent to promote gelation (PONCELET et al., 1992; REIS et al., 2006; 

ELLIS & JACQUIER, 2009). In a different way, extrusion involves the formation of 

droplets by the use of a syringe or atomizer nozzle, and the droplets are then collected in a 

hardening solution containing the gelling agent, forming the microgels (HUNIK & 

TRAMPER, 1993, BLANDINO et al., 1999). The gelation process commonly used to 

produce polysaccharide microgels via extrusion method is that of ionotropic gelation by 

diffusion setting (ZHANG et al., 2007; HERRERO et al., 2006; SMRDEL et al., 2008), 

which involves the atomization of the polysaccharide solution into an ionic solution, with 

diffusion of the ions into the polysaccharide droplet. Both techniques can produce 
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microgels in a large range of sizes, depending on the conditions employed in the process, 

but the methodology of emulsion formation requires an additional process step to remove 

the oil phase from the microgels (BUREY et al., 2008). 

Thus, the purpose of this work was to study the production of microgels composed 

of κ-carrageenan, with or without sodium caseinate, by extrusion into a salt solution, 

examining the influence of the process parameters on the morphology, the stability of 

microgels and rheological behavior of the microgel suspensions. 

 

3.2. MATERIAL AND METHODS 

3.2.1. Material 

The ingredients used to prepare the systems were κ-carrageenan, gently supplied by 

CPKelco (Atlanta, USA), casein (Sigma-Aldrich Co., St. Louis, USA) and analytical-grade 

potassium chloride (Labsynth, Diadema, Brazil). The κ-carrageenan powder was 

characterized by atomic absorption (AA) spectroscopy, and the following composition of 

ions was obtained: Na = 1.32%, Ca = 2.54% and K = 1.83% (w/w). 

 

3.2.2. Preparation of the stock solutions 

The polysaccharide stock solution (3% w/v) was prepared by dissolving κ-

carrageenan in deionized water, followed by heat treatment at 90°C for 60 minutes with 

magnetic stirring and subsequent cooling to 50°C. The pH was adjusted to 7.0 using HCl. 

Sodium caseinate (Na-CN) stock solution (6% w/v) was prepared by dispersing casein in 

deionized water using a magnetic stirrer, and maintaining the pH constantly adjusted to 7.0 

with a 10 mol/L NaOH solution. After this, the protein solution was heated to 50°C and the 
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two stock solutions were diluted and mixed to prepare the microgels. The temperature of 

the solutions was maintained at 50°C using a thermostatic bath filled with distilled water. 

Pure microgels were obtained from the κ-carrageenan solution, whilst the mixed microgels 

were produced from the mixture of the κ-carrageenan and sodium caseinate solutions. 

 

3.2.3. Visual phase diagrams 

Visual κ-carrageenan/KCl and κ-carrageenan/Na-CN/KCl phase diagrams were 

constructed in order to establish the appropriate concentrations of salt and biopolymers for 

gel formation. In order to construct the visual phase diagrams, the biopolymer stock 

solutions were diluted to the desired concentration at 50°C, and 4 mL of each solution was 

mixed with 4 mL of each KCl solution at room temperature. For the κ-carrageenan/KCl 

phase diagram, the polysaccharide concentration varied between 0.5 and 3% (w/v) and the 

KCl concentration from 0.1 to 3% (w/v). For the κ-carrageenan/Na-CN/KCl diagram, the 

same salt concentration was used and the κ-carrageenan/Na-CN ratio varied between 0.2 

and 5.0, with a total biopolymer concentration (protein + polysaccharide) of 3% (w/v). 

These mixtures were stirred at room temperature and placed into a temperature – controlled 

chamber (model TE-391, Tecnal, Brazil) at 10°C. After 24 hours of storage, the gel 

formation was visually evaluated. From these data it was possible to construct the sol-gel 

transition diagrams and to set up some of the conditions for microgel preparation. 

 

3.2.4. Microgel production 

The microgels were produced by the extrusion method using pure aqueous κ-

carrageenan solutions and mixtures of κ-carrageenan and sodium caseinate solutions (Table 
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3.1). The surface tension of these solutions was measured using Du Nouy ring method by 

Sigma 70 tensiometer (KSV Instruments, Finland) at 50°C and the values are shown in 

Table 3.1. The viscosity of the biopolymer solutions was determined according to section 

3.2.6.3. 

In order to produce the microgels, hot biopolymer solutions (50°C) at pH 7.0 were 

extruded from an atomizer nozzle (1.2 mm diameter) into a 0.5% (w/v) KCl solution 

(concentration determined from the visual phase diagrams) at room temperature. The height 

from the atomizer nozzle to the KCl solution (Figure 3.1A) was fixed at H = 200 mm, 

which is greater than the distance for the completion of atomization (~50 mm) (ALISEDA 

et al., 2008). The feed flow rate varied between 0.3 and 1.0 L/h, while the compressed air 

flow rate at the nozzle varied from 0.3 to 1.2 m3/h. The gelled particles were maintained in 

the salt solution for 30 minutes (CHAN et al., 2009) and then filtered through a sieve with 

opening of 0.053 mm. The microgels were stored at 10°C and the microstructure and 

rheology of their suspensions were evaluated. 

Figure 3.1. A) Extrusion formation of microgels and B) atomizer nozzle. H = height from 

the atomizer nozzle to the salt solution, Dl = diameter of the fluid nozzle exit and Dg = 

diameter of gas nozzle exit. 

Compressed air 

Feed (biopolymeric solution) 

Salt solution 

A B 
Dl 

Dg 

H
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Table 3.1. Biopolymer concentration and surface tension at 50°C of the fluids used to 

prepare the microgels 

PURE κκκκ-CARRAGEENAN SOLUTIONS 

 κ-Carrageenan (%) Na-CN (%) Surface tension (mN/m) 

 0.5 − 58.79 ± 0.63 

 1.0 − 56.98 ± 0.81 

 2.0 − 58.16 ± 1.26 

 3.0 − 63.02 ± 1.32 

MIXED κκκκ-CARRAGEENAN – Na-CN SOLUTIONS 

κ-Carrageenan / 

Na-CN ratio 
κ-Carrageenan (%) Na-CN (%) Surface tension (mN/m) 

0.2 0.5 2.5 43.32 ± 0.59 

0.5 1.0 2.0 44.73 ± 0.42 

1.0 1.5 1.5 47.48 ± 0.19 

2.0 2.0 1.0 46.99 ± 0.22 

5.0 2.5 0.5 47.50 ± 0.20 

 

3.2.5.  Dimensionless numbers of the atomization process 

The configuration of the atomizer nozzle used in this work is schematically shown 

in Figure 3.1B. It consists of a round liquid jet surrounded by a co-flowing annular gas 

stream. The diameter of the liquid jet was Dl = 1.2 mm and the gas nozzle exit diameter 

was Dg = 3.0 mm. The liquid and gas velocities (vl and vg) at the exit of the nozzle were 

calculated from the ratio between their respective volume flow rates (��� and ���) and exit 

section areas (Al and Ag). 

The Reynolds numbers of the gas (Reg) and liquid layers (Reλl) can be calculated 

from Equations 3.1 and 3.2, respectively. 
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where νl and νg are kinematic viscosities (ratio between the liquid dynamic viscosity and its 

density) of the liquid and gas (m2/s), respectively, vc is the velocity of the waves produced 

in the exit of nozzle (
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ggll

c

vv
v

ρ+ρ

ρ+ρ
= ) and λ l is the wavelength (

g

l

g

g
l

Re

Cb2

ρ
ρ

≈λ ), 

where C is the coefficient of proportionality that depends on the nozzle design, which was 

considered as 1.2 (VARGA et al., 2003), ρl is the liquid density (kg/m3), ρg is the gas 

density (kg/m3) and bg is the thickness of the gas layer (
2

DD
b lg

g

−
= ). 

Biopolymeric solutions can present non-Newtonian behavior depending on their 

concentration, which means that the viscosity values vary with the shear rate. The shear rate 

is a consequence of the hydrodynamics and in the atomization process it can be estimated 

using Equation 3.3 (ALISEDA et al., 2008). 

l

cv

λ
=γ�  (3.3) 

The Ohnesorge number (Oh), which relates the liquid viscosity to the surface 

tension, and the Weber number (Wel) that defines the ratio between the destabilizing 

dynamic pressure forces exerted by the gas on the liquid and the confining forces associated 

with the surface tension (VARGA et al., 2003), can be determined by Equations 3.4 and 

3.5, respectively. 
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where ηl is the liquid viscosity (Pa.s) at the process shear rate and σ is the surface tension 

(N/m). 

 

3.2.6. Microgel evaluation 

3.2.6.1. Optical microscopy and analysis of the microgel morphology 

The morphology of the microgels was evaluated by optical microscopy using a 

Scope.A1 microscope (Carl Zeiss, Germany) with a 10× objective lens. For this, the 

microgels were stained with methylene blue, poured onto microscope slides and carefully 

covered with glass cover slips. At least 10 images were obtained for each sample. 

The particle size distribution (PSD) and shape of the microgels were determined 

from image analysis using the public domain software Image J v1.36b 

(http://rsb.info.nih.gov/ij/). Measurements of the maximum (Fmax) and minimum (Fmin) 

Feret diameters were carried out for each particle, with a total of 400 particles per sample. 

The aspect ratio (AR) was obtained from the relation between Fmax and Fmin (Equation 3.6). 

The mean particle size ( d ) was determined from the equivalent sphere area (Equation 3.7), 

considering that the particles had an ellipsoidal shape (PABST et al., 2006), and the 

volume-surface mean diameter (d32) was calculated (Equation 3.8) in order to compare the 

size between different microgels. 

min

max

F

F
AR =  (3.6) 
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The particle size distribution of the microgels was determined from the mean 

equivalent diameter ( d ) and a log-normal frequency distribution function (Equation 3.9) 

(MCCLEMENTS, 2005). 
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where gd  and SD are the geometric mean and the standard deviation of the geometric 

mean, as given by Equations 3.10 and 3.11, respectively. 

N
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d ii
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2
gii∑ −

=  (3.11) 

where ni is the number of particles with diameter d i and N is the total number of particles. 

 

3.2.6.2. Evaluation of microgel stability in water and salt solutions 

Microgels composed only of 3% (w/v) κ-carrageenan were used to evaluate their 

stability in aqueous solutions. Suspensions were prepared by dispersing 10% (v/v) 

microgels in deionized water or in the different potassium chloride solutions at 

concentrations of 0.05%, 0.1%, 0.5%, 1%, 5% and 10% (w/v). The microgel suspensions 

were stored at room temperature and aliquots were collected after pre-determined time 

periods (5, 10, 20 and 60 minutes) and observed using an optical microscope. The stability 
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was determined by the modification of size and shape of microgels within the evaluated 

period. 

 

3.2.6.3. Rheological measurements of the suspensions 

The rheological properties of the microgel suspensions (20%, 40% and 60% 

particles (w/w) dispersed in 10% w/v KCl solutions were evaluated. A modular compact 

rheometer Physica MCR301 (Anton Paar, Austria) with a rough parallel plate geometry (50 

mm) and 2 mm gap was used for the measurements. Flow curves were obtained by an up-

down-up steps program with the shear rate varying between 0 and 300 s-1. All 

measurements were performed in triplicate at 25°C. Flow curves of biopolymeric solutions 

were obtained under the same conditions as the suspensions. 

 

3.2.7. Statistical analysis 

Significant differences were determined by the Tukey test. Statistical analyses were 

performed using the software STATISTICA 5.5 (Statsoft Inc., Tulsa, USA) and the level of 

confidence was 95%. 

 

3.3. RESULTS AND DISCUSSION 

3.3.1. Visual phase diagrams 

Figures 3.2A and 3.2B show the visual phase diagrams obtained for κ-carrageenan 

and κ-carrageenan/Na-CN, respectively, in the presence of KCl. The phase diagrams were 

divided into two regions (sol and gel) and an approximate boundary line was traced 

between them. It is evident from Figure 3.2 that κ-carrageenan gel formation occurred at a 
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critical value of KCl concentration of approximately 0.5% (w/v) or above, whilst below this 

value, a coil-helix transition could take place but without helix aggregation or gelation 

(NÚÑEZ-SANTIAGO & TECANTE, 2007). An exception was the 3% (w/v) κ-

carrageenan sample, which formed a gel without the need for salt addition. At 0.5% and 1% 

(w/v) KCl, the systems composed of pure κ-carrageenan (Figure 3.2A) gelled at all the 

biopolymer concentrations (between 0.5% and 3% w/v polysaccharide). However, the 

systems containing 0.5% (w/v) polysaccharide at higher salt concentrations (2 and 3% w/v) 

did not form gels. This result is consistent with the findings of Lai et al. (2000), who 

verified maximum elasticity during gelation (indicated by G’ and tan δ) at salt 

concentrations around 1% (w/w) KCl (0.1 to 0.2 M). 

 

Figure 3.2. Visual phase diagram of A) κ-carrageenan/KCl systems and B) κ-

carrageenan/Na-CN/KCl systems (total biopolymers concentration of 3% w/v). ( ) Gel 

points and ( ) sol points. 
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κ-Carrageenan/Na-CN/KCl (Figure 3.2B) mixed systems showed gel formation for 

salt concentrations between 0.5% and 2% (w/v) and κ-carrageenan/Na-CN ratios above 0.5, 

showing the relevance of the presence of κ-carrageenan in gel formation. In particular, for 

0.5% (w/v) KCl, all the mixed κ-carrageenan – sodium caseinate solutions showed gel 

formation. In contrast, the 3% (w/v) KCl solution did not promote gel formation for any of 

the systems studied. We can speculate that the elevated salt concentration could lead to a 

disordered aggregation of protein and polysaccharide molecules, with expulsion of water 

(syneresis) and without formation of a three-dimensional network. Comparing Figures 3.2A 

and 3.2B, it could be seen that both the pure and mixed systems formed gels when the κ-

carrageenan concentration was above 0.5% (w/v), which means that this was the minimum 

biopolymer concentration to be used. Similar result was reported by Şen and Erboz (2010), 

who observed formation of gel structure of κ-carrageenan at concentrations above 0.7% 

(w/v). Since most of the systems showed gel formation when mixed in the 0.5% (w/v) KCl 

solution, this salt concentration was chosen to prepare the microgels. 

 

3.3.2. Microgels 

The main factors determining the final diameter of the microgels are: 1) biopolymer 

flow rate, 2) compressed air flow rate at the atomizer nozzle and 3) microgel composition 

(HERRERO et al., 2006). The influence of each factor was studied and the results are 

detailed below. 
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3.3.2.1. Effect of the feed flow rate 

In order to evaluate the influence of feed flow rate on the final morphology of the 

microgels, the systems were produced at a fixed κ-carrageenan concentration of 2% (w/v), 

compressed air flow rate of 1.2 m3/h (maximum value), and with a feed flow rate ranging 

from 0.3 to 1 L/h. Figure 3.3 illustrates the particle size distribution and morphology of the 

microgels produced under these conditions. 

 

Figure 3.3. Microscopic images of 2% (w/v) κ-carrageenan microgels produced at a fixed 

compressed air flow rate and different feed flow rates: A) 0.3 L/h, B) 0.5 L/h and C) 1.0 

L/h. Scale bar = 100 µm. E) Particle size distribution of these microgels. 
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Figure 3.3 shows that the mean diameter of the microgels increased with increase in 

the feed flow rate between 0.3 and 0.5 L/h, becoming almost constant between 0.5 and 1.0 

L/h. The principle of atomization consists in the formation of a liquid film exiting the 

nozzle, which is exposed to an air flow moving at high velocity. The contact between liquid 

and air produces waves (primary instability) that disintegrate into fragments when the wave 

amplitude reaches a critical value. The fragments rapidly contract into unstable ligaments 

under the action of surface tension, which break up into droplets (HERRERO et al., 2006, 

RIZK & LEFEBVRE, 1980). An increase in feed flow rate leads to the formation of thicker 

films of liquid at the nozzle, which break down into bigger droplets (HERRERO et al., 

2006, RIZK & LEFEBVRE, 1980). There are many dimensionless parameters that 

influence the breakup process when using coaxial atomizer nozzles (VARGA et al., 2003). 

The evaluation of the dimensionless parameters (Reλl and We) involved in the atomization 

process showed little differences between the distinct conditions (results not shown), 

confirming the limited influence of this range of feed flow rate on the production of the 

microgels. The polidispersity of the microgels (SD) followed the same tendency as the 

mean diameter, and the aspect ratio of the microgels showed no significant differences with 

the change in feed flow rate. Thus, a feed flow rate of 0.3 L/h was chosen in order to 

produce microgels with smaller diameters and polidispersity. 

 

3.3.2.2. Effect of compressed air flow rate 

The effect of the air flow rate (0.3, 0.6, 0.9 and 1.2 m3/h) on the atomizer nozzle 

was evaluated using fixed values for the κ-carrageenan concentration (2% w/v) and feed 

flow rate (0.3 L/h). As shown in Figure 3.4A, the microgel produced at the lowest 
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compressed air flow rate (0.3 m3/h) showed a spherical shape and mean diameter (d32) of 

around 1.5 mm, which is larger than the atomizer nozzle diameter (1.2 mm). In this case, 

the force exerted by the compressed air was probably not sufficient to overcome the surface 

tension force, and thus the droplets were formed when the gravity force on the liquid 

exceeded the surface tension force (LEFEBVRE, 1989), hindering the breakup of the 

droplets into smaller ones. The increase in the compressed air flow rate from 0.3 to 1.2 

m3/h led to a gradual reduction in the mean diameter of the microgels (Figure 3.4E) and an 

increase in the aspect ratio (Figures 3.4B, 3.4C and 3.4D). The influence of the compressed 

air flow rate on the particle size can once more be explained by the mechanism of film 

disruption and droplet formation. With the increase in compressed air flow rate, the liquid 

film disintegrated earlier and the ligaments were formed nearer the nozzle. These ligaments 

tended to be thinner and shorter, disintegrating into smaller droplets (RIZK & LEFEBVRE, 

1980).  
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Figure 3.4. Micrographs of 2% (w/v) κ-carrageenan microgels produced at a fixed feed 

flow rate (0.3 L/h) and different compressed air flow rates: A) 0.3 m3/h, B) 0.6 m3/h, C) 0.9 

m3/h and D) 1.2 m3/h. Scale bar = 100 µm. E) Particle size distribution of these microgels. 
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equation (power law or Herschel Bulkley), and this value was used to calculate the 

dimensionless parameters. The Reynolds number of the gas was highly influenced by the 

air flow rate, showing an increase in the turbulence at higher values of flow rate. The 

Reynolds number of the liquid layer also increased with the air flow rate and was higher 

than ~10 in all situations, which is the condition necessary to develop the primary 

instability (ALISEDA et al., 2008) and consequently droplet breakup. However, the value 

of Reλl close to 10 in the lowest air flow rate reinforced the assumption that the compressed 

air was not efficient in the breakup of the droplets under this condition. The Ohnesorge 

number was only slightly influenced by the air flow rate, because the viscosity at the 

different shear rates was very similar. This dimensionless number can be related to the 

microgel sphericity (CHAN et al., 2009), which explains the tendency of aspect ratio to 

increase with the increment of compressed air flow rate (lower Oh). The Weber number 

increased at higher values of air flow rate (in the same way as the Reynolds number), 

indicating that the waves produced at the primary instability grew more quickly (ALISEDA 

et al., 2008), favoring the production of smaller droplets. 

 

Table 3.2. Shear rate, solution viscosity and dimensionless parameters of the experiments at 

different compressed air flow rates 

Air flow rate (m3/h) ��(s-1) ηl
* (mPa.s) Reg Reλl Oh Wel 

0.3 1311 36.0 ± 0.5 2637 15.2 0.14 15 

0.6 3563 32.8 ± 0.4 5275 23.6 0.12 62 

0.9 6456 31.0 ± 0.3 7912 30.6 0.12 139 

1.2 9872 29.8 ± 0.3 10549 36.8 0.11 247 

* Viscosity calculated at the shear rate of the extrusion process 
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From these results, a compressed air flow rate of 1.2 m3/h was chosen to produce 

the microgels in the following steps of this study. 

 

3.3.2.3. Evaluation of the microgel composition 

For the evaluation of the composition on the microgel morphology, extrusion was 

carried out at a constant feed flow rate (0.3 L/h) and compressed air flow rate (1.2 m3/h) as 

previously determined. Figure 3.5 shows the microstructure of the pure (0.5, 1, 2 and 3% κ-

carrageenan) and mixed (κ-carrageenan/Na-CN ratios of 0.2, 0.5, 1.0, 2.0 and 5.0, with 

total biopolymer concentration of 3% w/v) microgels, from which a considerable 

dependence of the particle morphology on the biopolymer composition can be verified. 

 

Figure 3.5. Microstructure of the microgels composed of κ-carrageenan (κ-car) and the 

mixture between κ-carrageenan and Na-CN (different ratios). Scale bar = 100 µm. 

 

ratio = 0.2 ratio = 0.5 ratio = 1.0 ratio = 2.0 ratio = 5.0 

κκκκ-car = 0.5% κκκκ-car = 1% κκκκ-car = 2% κκκκ-car = 3% 
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The results obtained for droplet diameter and aspect ratio (Table 3.3) indicated that 

an increase in the κ-carrageenan concentration and the κ-carrageenan/Na-CN ratio led to 

the formation of larger and more spherical particles. The increased size of the droplets 

could be related to the greater density of the biopolymers, which resulted in thicker films at 

the nozzle and consequently in an increase in droplet diameter (RIZK & LEFEBVRE, 

1980). On the other hand, the more spherical shape could be associated with the higher 

surface tension and viscosity of the biopolymeric solutions (Tables 3.1 and 3.3) (CHAN et 

al., 2009). 

The comparison between the pure and mixed microgels showed that the systems 

containing sodium caseinate presented higher values for the diameter and aspect ratio than 

the pure systems made with biopolymer solutions of similar viscosity i.e., the addition of 

protein led to the formation of larger and less spherical particles. This probably occurred 

because the addition of protein led to the formation of a more porous biopolymeric matrix 

due to the weak or even repulsive interactions between the protein and polysaccharide, 

especially for κ-carrageenan/Na-CN ratios of 2.0 and 5.0 (excess of polysaccharide), 

leading to an increase in particle diameter. Nono et al. (2011) also studied the interaction 

between κ-carrageenan and sodium caseinate and verified a process of phase separation 

above a critical concentration of either κ-carrageenan or Na-CN. The difference in 

morphology of the microgels probably occurred due to the slower gelation of mixed 

solutions. Thus, the droplets started to dilute into the salt bath before the complete gelation, 

resulting in particles with more irregular shapes. 

Table 3.3 shows the evaluation of the dimensionless parameters involved in the 

atomization process, as well as the estimated viscosity of the biopolymer solutions used to 
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calculate these parameters. The values for viscosity were estimated from the flow curves of 

the solutions, using a shear rate of 9872 s-1 as determined from Equation 3.3. These data 

showed that the Reynolds number of the liquid layer decreased by increasing the apparent 

viscosity, but in all cases the Reλl was higher than 10 (condition necessary for droplet 

breakup). On the other hand, the Ohnesorge number increased, demonstrating the greater 

influence of liquid viscosity in relation to surface tension (ALISEDA et al., 2008) and 

leading to the formation of more spherical particles (CHAN et al., 2009). As the process 

parameters (vg, vl and Dl) were maintained constant during the experiments, the Weber 

number was mainly related to the surface tension of the biopolymer solutions (Table 3.1), 

being lower for the pure polysaccharide solutions (higher σ values) and higher for the 

mixed solutions (lower σ values). The higher values for the We number should lead to the 

formation of smaller droplets (ALISEDA et al., 2008) as can be observed for the pure 

carrageenan beads. Nevertheless, the mixed solutions showed bigger particles than the pure 

ones. The incompatibility or repulsive interactions between the κ-carrageenan and the 

sodium caseinate associated to the slower gelation of systems containing protein, probably 

led to the production of larger microgels. 
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Table 3.3. Mean droplet diameter and aspect ratio of the microgels prepared from different 

biopolymer solutions and the dimensionless atomization process parameters 

κ-Carrageenan (%) d32 (µm) AR ηl
* (mPa.s) Reg Reλl Oh Wel 

0.5 83.7 ± 14.0 1.68 ±0.13 5.3 ± 0.1 10549 206 0.02 244 

1.0 89.9 ± 14.1 1.47 ± 0.04 10.9 ± 0.0 10549 100 0.04 252 

2.0 136.3 ± 25.0 1.36 ± 0.05 29.8 ± 0.3 10549 37 0.11 247 

3.0 159.6 ± 17.6 1.33 ± 0.05 61.8 ± 2.1 10549 18 0.23 228 

κ-Carrageenan / 

Na-CN ratio 
d32 (µm) AR ηl

* (mPa.s) Reg Reλl Oh We 

0.2 142.8 ± 29.04 1.90 ± 0.12 6.0 ± 0.1 10549 183 0.03 331 

0.5 161.7 ± 31.8 1.84 ± 0.10 14.2 ± 0.2 10549 77 0.06 321 

1.0 165.9 ± 40.4 1.86 ± 0.07 23.5 ± 0.2 10549 47 0.10 302 

2.0 224.1 ± 33.8 1.75 ± 0.16 32.0 ± 0.1 10549 34 0.14 305 

5.0 235.1 ± 46.0 1.64 ± 0.13 47.2 ± 0.3 10549 23 0.20 302 

* Viscosity calculated at the shear rate of the extrusion process 

 

3.3.3. Evaluation of microgel stability 

The systems composed of 3% (w/v) κ-carrageenan and κ-carrageenan/Na-CN ratio 

of 5.0 were used in the evaluation of particle stability in water and salt solutions, because of 

their more spherical shape as compared to the other pure and mixed microgels, 

respectively. The micrographs of the 3% (w/v) κ-carrageenan microgels dispersed in 

deionized water (Figure 3.6) showed that the particles were loosing their shape and seemed 

to swell during incubation. It was concluded that this type of microgel was not stable in 

deionized water because the leakage of the K+ ions causing the disintegration of the gel. 
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Figure 3.6. Evaluation of the stability of 3% (w/v) κ-carrageenan microgels dispersed in 

deionized water, where t is the time of incubation. Scale bar = 100 µm. 

 

The evaluation of microgel stability in salt solutions was carried out using different 

concentrations of KCl (0.05%, 0.1%, 0.5%, 1%, 5% and 10%). Figure 3.7 shows the photos 

of pure (3% κ-carrageenan) and mixed (κ-carrageenan/Na-CN ratio of 5.0) microgels 

dispersed in the salt solutions after 1 hour of incubation, with the mean particle diameter 

(d32). At salt concentrations up to 0.5% KCl, the microgels lost their shape and merged into 

each other. An increase in salt concentration (> 1% KCl) avoided the fusion of the particles, 

but they were still quite swollen and with an irregular shape. Only from KCl concentrations 

above 5%, the microgels became more spherical and at 10% KCl they were similar to the 

microgels with no dilution. A comparison of the values obtained for mean diameter 

indicated that an increase in KCl concentration led to a significant reduction in diameter of 

the microgels. Covalently cross-linked microgels of κ-carrageenan (ELLIS et al., 2009), 

alginate (MOE et al., 1993) and gellan gum (ANNAKA et al., 2000) showed the same 

tendency to increase the particle size with reduction in salt concentration, but the covalent 

bonds of the cross-linked microgels favored maintenance of the spherical shape. Thus, the 

t = 5 min t = 10 min t = 20 min t = 60 min t = 0 
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microgels probably lost their shape due to the higher affinity of KCl for the water, i.e., the 

salt that composed the microgel tended to migrate to the water, destabilizing the particles. 

The difference in diameter of the microgels with salt concentration can be explained 

by the Donnan equilibrium, in which the difference in ionic concentration between the 

inside and outside of the microgel should be reduced when salt concentration in the 

surrounding medium is increased (ELLIS et al., 2009). At lower salt contents, the ion 

concentration inside the particles is higher than in the surrounding solution, so in order to 

minimize this disequilibrium, water penetrates into the microgels, making them swell. On 

the other hand, by increasing the salt concentration of the surrounding solution, the 

opposite effect occurs, leading to shrinkage of the particles (KEPPELER et al., 2009; 

ELLIS et al., 2009). Comparing the results obtained for the morphology and diameter of the 

microgels dispersed in different salt solutions, the 10% KCl solution was chosen as the 

dispersing medium for the study of suspension rheology (section 3.3.4). 
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Figure 3.7. Micrographs and mean particle diameter (d32) of the microgels dispersed in 

different salt solutions after 1 hour of incubation. Scale bar = 100 µm. Microgels of 3% κ-

carrageenan ( ) dispersed in KCl solutions and ( ) before dilution; microgels of κ-

carrageenan/Na-CN ratio of 5.0 ( ) dispersed in KCl solutions and ( ) before dilution. 
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were best fitted to the Herschel-Bulkley (HB) model (results not shown). The yield stress 

(σo) observed in the mixed suspensions indicated greater interaction between the microgels, 

probably leading to the formation of an interconnected structure (CHANNELL & 

ZUKOSKI, 1997). In addition, most of the samples did not show thixotropy, this behavior 

only being observed for the more concentrated suspensions (60%) of more irregular 

microgels (higher AR). Some curves could not be fitted to any rheological model (Figure 

3.8), even after three sweeps of stress-shear rate performed to eliminate time dependence, 

and presented an overshoot characteristic of more complex structures. A particle network 

probably formed and reformed during the application of shear, which only occurred for the 

more concentrated suspensions of mixed microgels, especially with intermediate κ-

carrageenan/Na-CN ratios. This can be explained by the morphology of the microgels 

(larger diameter and mainly irregular shape) (Table 3.3) and also by the interaction between 

protein and/or polysaccharide, favored at a ratio of 1.0. 

The values for apparent viscosity at 50 s-1 were evaluated (Figure 3.9) in order to 

compare the behavior of the suspensions at a shear rate typical of chewing (STEFFE, 

1996). In general, the suspensions of mixed microgels were more viscous than those 

composed of pure microgels, which could be mostly related to the shape of the particles, 

leading to a greater complexity of the interactions. Suspensions of irregular particles are 

frequently more viscous than those composed of spherical particles with the same volume 

fraction, which can be explained by the greater exclusion volume shown by non spherical 

particles, since they tend to rotate around an orbit when dispersed in solution 

(LINDSTRÖM & UESAKA, 2008). 
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Figure 3.8. Flow curves of κ-carrageenan and κ-carrageenan/Na-CN microgel suspensions 

after elimination of time dependence. Volume fraction: ( ) 20%, ( ) 40% and ( ) 60%. 
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An increase in volume fraction led to a reduction in the flow behavior index 

(increase in shear thinning behavior) (Figure 3.8) and an increase in suspension viscosity 

for all the systems studied (Figure 3.9). It is observed that the increase in shear rate in the 

dispersions with lower volume fraction led to greater interaction between the particles, 

causing an increase in dispersion viscosity or a shear-thickening behavior. As the volume 

fraction increased, higher shear rates led to orientation of the molecules in the direction of 

the flow and to breakage of the aggregates (BARNES et al., 1989) or a shear-thinning 

behavior. The influence of volume fraction on the rheological behavior of different 

suspensions was smaller for the systems containing 3% κ-carrageenan. This probably 

occurred because these microgels were more spherical (Table 3.3) than the others. On the 

other hand, the mixed microgel with a κ-carrageenan/Na-CN ratio of 1.0 was the system 

most influenced by the volume fraction (Figure 3.8), which can be explained by the 

combination of the irregular shape (aspect ratio >>1) (WOLF et al., 2001) and great 

diameter (Table 3.3), as well as by the electrostatic (repulsive or attractive) interactions 

between the caseinate and κ-carrageenan. 
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Figure 3.9. Apparent viscosity of κ-carrageenan and κ-carrageenan/Na-CN microgel 

suspensions at 50 s-1. A) Pure microgels: ( ) 0.5%, ( ) 1%, ( ) 2% and ( ) 3% κ-

carrageenan; and B) mixed microgels: ( ) 0.2, ( ) 0.5, ( ) 1.0, ( ) 2.0 and ( ) 5.0 κ-

carrageenan/Na-CN ratio. 
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protein and polysaccharide and the slower gelation of mixed solutions. The microgels were 

very unstable when dispersed in water, but they maintained their shape when diluted in 

solutions with a high salt content (10% KCl). The wide range in size (d32 between ~84 µm 

and ~235 µm) and shape (AR between 1.33 and 1.9) of the microgels led to different 

rheological behavior of their suspensions, from shear thinning to shear thickening with the 

presence (or not) of yield stress, depending on the volume fraction of the particles. 
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ABSTRACT 

The influence of κ-carrageenan concentration and pH on the stability, microstructure, 

droplet surface coverage, ζ-potential and rheological measurements of oil-in-water 

multilayered emulsions was studied. In a first step, the effect of concentration of sodium 

caseinate in the primary emulsion was evaluated. The emulsion composed by 20% (v/v) 

soybean oil and 0.5% (w/v) sodium caseinate was chosen to prepare the multilayered 

emulsions (or secondary emulsions) due to its high stability, good oil droplet coverage and 

low amount of free protein in solution. Secondary emulsions were then prepared by the 

mixture of primary emulsion with κ-carrageenan solutions with different concentrations. 

Emulsions were evaluated at pH 7 and 3.5. At pH 7, there was little adsorption of κ-

carrageenan onto the droplet surface and depletion flocculation was observed when 

polysaccharide concentration exceeded 0.5% (w/v). At pH 3.5, a mixed κ-carrageenan – 

Na-CN second layer was formed around the protein-covered droplets and emulsions 
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showed bridging flocculation at lower polysaccharide concentrations (0.05 – 0.25% w/v) 

and oil droplets were completely covered from 0.5% (w/v) κ-carrageenan. Stable 

multilayered emulsions could be formed the highest κ-carrageenan concentration (1% w/v) 

in both pH values (7.0 and 3.5), which was attributed to the increase of the continuous 

phase viscosity, maintaining the emulsions kinetically stable. Thus, stable emulsions were 

successfully produced by using protein-polysaccharide interfacial complexes and the oil 

droplet diameter, zeta potential and rheological properties of these emulsions were not 

affected by pH changes. 

Keywords: emulsion; protein; polysaccharide; bridging flocculation; depletion 

flocculation. 

 

4.1. INTRODUCTION 

Proteins extracted from a variety of natural sources have been extensively used due 

to their emulsifying properties (MCCLEMENTS, 2004) and because of the growing interest 

in the use natural emulsifiers (GARTI, 1999; GU et al., 2004; SURH et al., 2006). 

Nevertheless, the protein-stabilized emulsions are highly sensitive to environmental 

conditions, such as the pH, ionic strength and temperature (GU et al., 2004; PALLANDRE 

et al., 2007). For example, milk proteins provide good stability for emulsions at neutral pH 

due to a combination of electrostatic and steric stabilization mechanisms (DICKINSON et 

al., 1998). However, those emulsions become unstable when the pH is adjusted close to the 

isoelectric point of the adsorbed proteins because of the reduction in electrostatic repulsion 

between the droplets (MCCLEMENTS, 2005). 
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Many studies have demonstrated that the stability of emulsions to environmental 

conditions can be improved by the formation of protein-polysaccharide complexes through 

covalent bonding (KATO et al., 1992; OLIVER et al., 2006; O´REGAN & MULVIHILL, 

2010) or electrostatic interactions (GU et al., 2004; GU et al., 2005; SURH et al., 2006; 

GUZEY & MCCLEMENTS, 2006; PALLANDRE et al., 2007). In the latter, multilayered 

interfacial membranes are formed around the droplets by the addition of a polysaccharide to 

an emulsion stabilized by an oppositely charged protein, being called layer-by-layer 

electrostatic deposition technique (GU et al., 2004; GU et al., 2005; SURH et al., 2006; 

PALLANDRE et al., 2007; GUZEY & MCCLEMENTS, 2006). A number of 

investigations have been done to produce multilayered emulsions using several proteins and 

polysaccharides, but to our knowledge there are no studies about emulsions stabilized by 

multilayered membranes composed by sodium caseinate and κ-carrageenan. 

Sodium caseinate is an ingredient widely used due to its functional properties, 

which include emulsification, water and fat-binding, thickening and gelation (KINSELLA, 

1984). This ingredient is a mixture of four caseins (αs1-, αs2-, β-, and κ-) that in aqueous 

solutions forms complexes and aggregates with a wide range of molecular weights (SINGH 

et al., 2003). κ-Carrageenan is a polysaccharide with a structure composed of repeating D-

galactose and 3,6-anhydrogalactose (3,6 AG) units, both sulfated and non-sulfated, joined 

by alternating α-(1,3) and β-(1,4) glycosidic links (DE RUITER & RUDOLPH, 1997; 

IMESON, 2000). Even though it has long been known that κ-carrageenan can form 

complexes with casein micelles at neutral pH (LANGENDORFF et al., 1997; MARTIN et 

al., 2006; ARLTOFT et al., 2007), this phenomenon was not verified for κ-carrageenan and 
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sodium caseinate when the pH was just above the isoelectric point of protein (SINGH et al., 

2003; MENA-CASANOVA et al., 2011). 

Depending on the concentration of the ingredients in the emulsions, protein-coated 

droplets may be destabilized by bridging or depletion flocculation (GU et al., 2004). 

Bridging flocculation occurs when the polymer concentration is not enough to completely 

saturate the droplet surfaces, making the polymer chains able to adsorb onto the surfaces of 

two droplets (BERLI et al., 2002). On the other hand, in depletion flocculation, the 

presence of nonadsorbed molecules, such as the biopolymers, in the continuous phase of an 

emulsion causes an increase in the attractive forces between the droplets due to an osmotic 

effect associated with the exclusion of colloidal particles from a narrow region surrounding 

each droplet (MCCLEMENTS, 2005). 

Thus, the objective of this work was to investigate the influence of pH and κ-

carrageenan concentration on sodium caseinate-stabilized emulsions in order to improve the 

emulsion stability by interfacial complexation. For this purpose, mean droplet diameter, 

microstructure, droplet surface coverage, ζ-potential and rheological properties were 

evaluated. 

 

4.2. MATERIAL AND METHODS 

4.2.1. Materials 

The ingredients used to prepare the emulsions were casein (Sigma-Aldrich Co., 

USA), κ-carrageenan gently supplied by CP Kelco (USA) and soybean oil (Bunge 

Alimentos S.A., Brazil). 
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4.2.2. Preparation of stock solutions 

The sodium caseinate (Na-CN) stock solution (10% w/v) was prepared by 

dispersing casein in deionized water for 3 hours using a magnetic stirrer. The pH of the 

solution was constantly adjusted to 7.0 using 10 M NaOH. The polysaccharide stock 

solution (3% w/v) was prepared by dissolving κ-carrageenan powder in deionized water, 

followed by heat treatment at 90°C for 60 min under magnetic stirring and subsequent 

cooling to room temperature. The pH of κ-carrageenan solution was adjusted to 7.0 using 

HCl. The two solutions were then diluted at defined concentrations (section 4.2.3) in order 

to prepare the emulsions. 

 

4.2.3. Preparation of emulsions 

Primary oil-in-water (O/W) emulsions were prepared at 25°C by pre-mixing the 

soybean oil with a Na-CN aqueous solution using an Ultra Turrax model T18 (IKA, 

Germany) for 4 min at 14,000 rpm, followed by homogenization at 30 MPa / 5 MPa using a 

Panda 2K NS1001L double-stage homogenizer (Niro Soavi, Italy). The Na-CN 

concentration in the final emulsions varied between 0.25% and 3% (w/v), while the oil 

concentration was fixed at 20% (v/v). 

Secondary O/W emulsions were prepared by mixing the primary emulsion 

containing 0.5% (w/v) Na-CN into κ-carrageenan solutions with different concentrations 

using magnetic stirring for 1 hour. The multilayered emulsions showed final composition of 

10% (v/v) soybean oil, 0.25% (w/v) sodium caseinate and 0.05 – 1% (w/v) κ-carrageenan. 

The pH of part of these emulsions was adjusted to the value of 3.5 using 2 M HCl. Sodium 

azide (0.02% w/v) was added to all emulsions in order to prevent microbial growth. 
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4.2.4. Creaming stability measurements 

Immediately after emulsion preparation, each sample was transferred into a 50 mL 

graduate cylindrical glass tube (internal diameter = 25 mm, height = 200 mm), sealed with 

a plastic cap and stored at room temperature during 7 days. The emulsion stability during 

storage was measured by checking the height of the serum layer (H) at the bottom of tube. 

The creaming index (CI) was reported as CI (%) = (H/Ho) × 100, where Ho represents the 

initial height of the emulsion (KEOWMANEECHAI & MCCLEMENTS, 2002). 

 

4.2.5. Optical microscopy 

The microstructure of all emulsions was evaluated in the freshly prepared samples. 

For this, the emulsions were poured onto microscope slides, covered with glass cover slips 

and observed using a Scope.A1 microscope (Carl Zeiss, Germany) with a 100 × oil-

immersion objective lens. 

 

4.2.6. Confocal scanning laser microscopy (CSLM) 

Fluorescein-5-isothiocyanate (FITC) had been used for the covalent labeling of κ-

carrageenan, following the method described by Heilig et al. (2009). 20 mL dimethyl 

sulfoxide (DMSO) and 80 µL pyridine were mixed with 1 g κ-carrageenan and stirred at 

room temperature for 30 minutes. After the addition of 0.1 g FITC and 40 µL dibutyltin 

dilaurate, the mixture was incubated for 3 h in a 95°C water bath and, finally, cooled down 

to room temperature. The resulting gel was then minced, washed with ethanol 99.6% and 

dried at 65°C. The covalently labeled κ-carrageenan powder was dissolved and used to 

prepare the polysaccharide solution. Sodium caseinate solution was stained using a 
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fluorescent dye Rhodamine B. The protein and polysaccharide labeled solutions were then 

used to prepare the emulsions as described in the section 4.2.3. Samples were examined 

using a Zeiss LSM 780-NLO confocal on an Axio Observer Z.1 microscope (Carl Zeiss 

AG, Germany) with a 40 × objective. Images were collected using 488 and 543 nm laser 

lines for excitation of FITC and Rhodamine B fluorophores, respectively, with pinholes set 

to 1 airy unit for each channel, 1024×1024 image format. 

 

4.2.7. Particle size analysis 

Emulsions were diluted to a droplet concentration of approximately 0.005 wt % 

using deionized water and placed into the measurement chamber of the laser diffraction 

instrument (Mastersizer 2000, Malvern Instruments Ltd., UK). The size of oil droplets was 

determined as the volume-surface mean diameter (d32 = Σnidi
3/Σnidi

2), where ni is the 

number of droplets of diameter di. The particle size measurements were reported as the 

average and standard deviation of measurements made on freshly prepared samples, with 

three readings made per sample. 

 

4.2.8. Chemical analyses of separated phases 

The protein concentration of separated phases was determined by using the Kjeldahl 

method (AOAC, 1996), the water content was measured using gravimetric analysis and the 

polysaccharide concentration was measured using the phenol/sulfuric acid method 

(DUBOIS et al., 1956). The oil concentration was calculated by difference. 
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4.2.9. Determination of surface protein and polysaccharide concentrations 

The surface concentration of protein and polysaccharide in the oil-in-water 

emulsions were determined using the method of Tangsuphoom and Coupland (2009) 

slightly modified. Emulsions were centrifuged at 14,000 × g for 40 min at 20°C. The cream 

phase was removed, resuspended in deionized water and centrifuged again under the same 

conditions. The resulting cream phase was carefully collected and filtered through 

Whatman # 1 filter paper. The protein and polysaccharide concentrations were determined 

as described in the section 4.2.8. Surface concentration of sodium caseinate and κ-

carrageenan was calculated from the protein / polysaccharide content of the centrifuged 

cream phase (c) and the specific surface area of droplets (a) (Equation 4.1). 

Γ = �
�ϕ =

��	

�ϕ  (4.1) 

where Γ is the surface polysaccharide (or protein) concentration (mg.m-2), d32 is the 

volume-surface mean droplet diameter (µm), c is polysaccharide (or protein) concentration 

of the centrifuged cream phase (mg.mL-1 on wet basis), a is the specific surface area of the 

oil droplets (m2/mL) and φ is the droplet volume fraction. 

The concentration of non-adsorbed protein (Cfree) was calculated from a mass 

balance of the protein of emulsion after centrifugation (Equation 4.2). 

C
��� = ��∙����∙�
��

 (4.2) 

where CT is the protein concentration in the initial emulsion (%), VT is the volume of the 

initial emulsion (mL), V is the volume of the centrifuged cream phase (mL) and Vs is the 

volume of the serum phase after centrifugation (mL). 
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4.2.10. ζ-Potential measurements 

To determine the electrical charge on the surface of oil droplets, freshly prepared 

emulsions were diluted to a droplet concentration of approximately 0.01 wt % using buffer 

solution (with the same pH as the sample being analysed) and placed into the measurement 

chamber of a microelectrophoresis instrument (Nano ZS Zetasizer, Malvern Instruments, 

UK). The measurements were made in quintuplicate. 

The curve of ζ-potential versus polysaccharide concentration of the secondary 

emulsions can be fitted to a model (Equation 4.3) and used to determine the critical 

polysaccharide concentration to saturate the surface of droplets (PALLANDRE et al., 

2007). 

���������
�������

= �� !− #�
����

$  (4.3) 

where ζ(c) is the ζ-potential of the emulsion droplets covered with polysaccharide at 

concentration c (mV), ζ0 is the ζ-potential in the absence of polysaccharide (mV), ζsat is the 

ζ-potential when the droplets are saturated with polysaccharide (mV) and csat is minimum 

amount of polysaccharide required to completely cover the surface of droplets (%). 

In addition, the surface concentration at saturation (Γsat) can be calculated using 

Equation 4.4 (PALLANDRE et al., 2007). 

Γ&�' = ��()�	

�*  (4.4) 

 

4.2.11. Rheological measurements 

The rheological measurements were carried out using a Physica MCR301 modular 

compact rheometer (Anton Paar, Austria). A 4 cm rough plate-plate geometry was used to 

analyze the O/W emulsions. Flow curves were obtained by an up-down-up step program 
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using a different shear stress range for each sample, in which the maximum shear rate value 

was 300 s-1. Shear stress versus shear rate curves were fitted to power law model. All 

measurements were made in the freshly prepared emulsions in triplicate at 25°C. 

 

4.3. RESULTS AND DISCUSSION 

4.3.1. Primary Na-CN stabilized emulsions 

The influence of Na-CN concentration on the mean droplet diameter (d32) and the 

creaming index (CI) is shown in Figure 4.1. In a general way, the increase of protein 

concentration led a decrease of oil droplets up to 0.75% Na-CN and, above this protein 

concentration, the oil droplets maintained similar values of mean diameter. Similar results 

were reported by Srinivasan et al. (2000), that verified the decrease of d32 as the Na-CN 

concentration was increased from 0.5% to 1% and no further change in the droplet diameter 

with additional increase in caseinate concentration for a 30% (v/v) oil-in-water emulsions. 

Regarding the creaming index, emulsions containing lower amount of sodium caseinate 

(0.25 – 1% w/v) were very stable, with no phase separation after 7 days of storage (Figure 

4.1). At 1.5% (w/v) Na-CN, an important creaming process took place, resulting in a CI of 

75%. The instability of emulsions containing high concentrations of sodium caseinate has 

been attributed to depletion flocculation, which is mainly dependent on the amount of 

unadsorbed protein (DICKINSON & GOLDING, 1997). However, an additional increase 

of the protein concentration (2% until 3% w/v Na-CN) led to a reduction in the creaming 

index from 68.1 to 64.4%. This fact can be attributed to the formation of a network 

structure at higher Na-CN concentrations. The strength of the attractive depletion 

interaction is considerably stronger at these conditions, leading to a more restricted floc 

movement and the lower rate of reorganization (DICKINSON et al., 1997). 



Capítulo 4 

80 

 

Figure 4.1. Influence of sodium caseinate concentration on the mean droplet diameter (d32) 

and creaming index (CI) of oil-in-water emulsions. 

 

In order to evaluate the depletion flocculation process in these emulsions, the 

protein surface concentration (Γ) and the concentration of unadsorbed protein (Cfree) were 

quantified (Figure 4.2A). Protein surface concentration increased gradually with caseinate 

concentration up to 3% (w/v), as previously reported in other studies (SRINIVASAN et al., 

1996; DICKINSON & GOLDING, 1997; SRINIVASAN et al., 1999). A surface 

concentration plateau at about 1 mg.m-2 was observed for emulsions containing 0.5-1% 

(w/v) Na-CN. Srinivasan et al. (1996) attributed the plateau in their data to the saturated 

monolayer coverage of adsorbed casein molecules. The further increase in the protein 

surface concentration was attributed to the formation of a protein secondary layer at the 

interface. 
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The increase of the sodium caseinate content in the emulsions also led to an increase 

of the unadsorbed protein concentration (Figure 4.2A). Stable emulsions (Na-CN 

concentration up to 1% w/v) showed Cfree between ~0.25 and 1.3% (Figure 4.2A), while 

higher concentrations of protein led to Cfree > ~2%, which was probably a concentration 

high enough to promote the depletion flocculation. The evaluation of Γ/Cfree ratio (Figure 

4.2B) showed three regions: 1) a plateau from 0.25% to 0.5% (w/v) Na-CN, 2) a region 

from 0.5% (w/v) to 1% (w/v) Na-CN of decrease of the Γ/Cfree ratio and 3) a second plateau 

from 1.5% (w/v) Na-CN. The first region was attributed to the formation of protein 

monolayer around the droplets, the second one represented the saturation of monolayer and 

the third region can be related to the formation of the protein secondary layer at the 

interface. These data confirmed that the oil droplets were completely covered from 0.5% 

w/v Na-CN. 
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Figure 4.2. A) ( ) Protein surface concentration (Γ) and ( ) unadsorbed protein 

concentration (Cfree) of O/W emulsions stabilized by sodium caseinate and B) ratio between 

Γ and Cfree. 
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its oil droplet surface was completely covered with protein and there was a rather low 

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Γ 
(m

g/
m

2 )
 /

 C
fr

ee
(%

)

Na-CN (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Γ
(m

g/
m

2 )

C
fr

ee
(%

)

Na-CN (%)

B 

A 



Capítulo 4 

83 

amount of sodium caseinate free in the aqueous phase (Figure 4.2). Based on these results, 

this sample was chosen to produce the secondary emulsions containing κ-carrageenan. 

 

4.3.2. Secondary Na-CN - κ-carrageenan emulsions 

Figure 4.3 shows the visual appearance of secondary emulsions containing 0.25% 

(w/v) Na-CN and different amounts of κ-carrageenan at pH 7 and 3.5, produced from the 

mixture between the primary emulsion containing 0.5% (w/v) Na-CN and the κ-

carrageenan solutions. At pH 7, the addition of low κ-carrageenan concentrations (0.05% 

and 0.1% w/v) caused the destabilization of the primary emulsion and generation of a 

cream top phase and a turbid serum bottom phase. Further increase of κ-carrageenan 

concentration to 0.25% (w/v) led to the formation of a translucent serum layer, indicating 

the increase of the instability of this emulsion (CHO & MCCLEMENTS, 2009). The 

translucent phase was attributed to the fast creaming of flocculated droplets (GU et al., 

2004), resulting in a serum phase depleted of oil. These results were confirmed by the 

chemical composition of the separated phases (Table 4.1). In this case, the strength of the 

depletion attraction between the droplets increases with higher amount of polysaccharide in 

solution. In addition, κ-carrageenan and sodium caseinate tends to phase separate at neutral 

pH due to repulsive interactions between them (SINGH et al., 2003), especially at higher 

biopolymer concentrations. Nevertheless, stable emulsions were produced above 0.5% 

(w/v) κ-carrageenan, which can be attributed to the increase of viscosity of the continuous 

phase at higher κ-carrageenan concentrations, maintaining the emulsions kinetically stable. 

At lower κ-carrageenan concentrations (0.05% - 0.25% w/v), the viscosity of continuous 

phase was not sufficient to slow down the droplet movement, resulting in phase separation. 
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At pH 3.5, the addition of low amount of κ-carrageenan (0.05% and 0.1% w/v) also 

led to the destabilization of emulsions. However, the further addition of polysaccharide led 

to a decrease of the phase separation, resulting in a kinetically stable system at 1% (w/v) κ-

carrageenan. The evaluation of chemical composition (Table 4.1) showed that the serum 

phase of unstable emulsions was oil free, indicating that the oil droplets were extensively 

flocculated at these conditions. In this case, probably there were insufficient polysaccharide 

molecules to completely cover the caseinate-coated droplets at low κ-carrageenan 

concentration, resulting in a bridging flocculation (PALLANDRE et al., 2007). With the 

increase of κ-carrageenan concentration, the flocculation was reduced due to the increased 

amount of polysaccharide adsorbed onto the droplet surfaces and the molecules free in 

solution caused an increase of viscosity. 
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Figure 4.3. Visual appearance and creaming index (CI) of secondary oil-in-water emulsions 

containing 0.25% (w/v) Na-CN and different concentrations of κ-carrageenan after 7 days 

of storage. A) pH 7 and B) pH 3.5. 
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Table 4.1. Chemical composition of the separated phases of emulsions containing 0.25% 

(w/v) Na-CN, 10% (v/v) oil and different κ-carrageenan concentrations at pH 7 and 3.5 

  Cream phase Serum phase 

 
κ-carrageenan 

(%) 

PR          

(% w/w) 

PS           

(% w/w) 

Oil     

(% w/w) 

PR           

(% w/w) 

PS          

(% w/w) 

Oil     

(% w/w) 

pH 7 

0.05% 0.56 ± 0.02 0.03 ± 0.00 42.3 0.22 ± 0.04 0.13 ± 0.01 2.4 

0.1% 0.58 ± 0.09 0.02 ± 0.00 41.8 0.18 ± 0.04 0.14 ± 0.02 0.8 

0.25% 0.60 ± 0.03 0.63 ± 0.02 33.3 0.16 ± 0.01 0.27 ± 0.01 0.06 

pH 3.5 

0.05% 0.29 ± 0.01 0.07 ± 0.01 15.6 0.07 ± 0.01 0.01 ±0.00 0.0 

0.1% 0.29 ± 0.03 0.13±0.01 15.2 0.11 ±0.01 0.05 ±0.01 0.0 

0.25% 0.31 ± 0.09 0.23 ±0.00 14.4 0.19 ±0.02 0.30 ± 0.02 0.0 

0.5% 0.36 ± 0.11 0.51 ±0.02 10.5 0.20 ±0.06 0.41 ± 0.03 0.0 

PR = protein and PS = polysaccharide. 

 

The evaluation of mean droplet diameter showed d32 around 1.6 µm for all 

emulsions produced at pH 7 (Figure 4.4A). On the other hand, the emulsions at pH 3.5 

showed a marked reduction of d32 (from ~160 µm to 1.6 µm) with the increase of κ-

carrageenan concentration (Figure 4.4B) due to the dissolution of droplet aggregates. The 

comparison of the mean droplet diameters at both pH values showed that d32 at pH 3.5 was 

greater than the one at pH 7 for most polysaccharide concentrations. However, d32 was very 

similar for samples with 1% (w/v) κ-carrageenan, which were stable emulsions. 
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Figure 4.4. Mean droplet diameter (d32) of O/W secondary emulsions containing 0.25% Na-

CN and different concentration of κ-carrageenan (0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 

1%) at pH A) 7 and B) 3.5. 

 

Figure 4.5 shows the confocal microscopy of emulsions containing 1% (w/v) κ-

carrageenan at pH 7 (Figure 4.5A) and 3.5 (Figure 4.5B). In these images, the red areas 

indicate the presence of protein, while the green areas represent the polysaccharide. Sodium 

caseinate remained around the oil droplets for both emulsions, but it seemed to be more 

aggregated for emulsions at pH 3.5, which can be explained by the zeta potential of the 

pure protein at different pH values (ζ-potential at pH 7 = -39.1 mV and ζ-potential at pH 

3.5 = + 25.8 mV). κ-Carrageenan was also concentrated around some droplets and the 

excess was homogeneously distributed in the continuous phase. 
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Figure 4.5. Confocal image of emulsions composed by 10% (v/v) soybean oil, 0.25% (w/v) 

Na-CN stained using Rhodamine B and 1% (w/v) κ-carrageenan stained by FITC at A) pH 

7 and B) pH 3.5. Scale bar = 20 µm. 

 

In order to evaluate the effect of κ-carrageenan on the coverage of oil droplet 

surfaces, the protein (Γprot) and polysaccharide (Γpolys) surface concentrations were 

determined (Table 4.2). At pH 7, the addition of 0.05% (w/v) polysaccharide did not affect 

the value of Γprot (compare to Figure 4.2A). The further increase of κ-carrageenan 

concentration up to 0.5% (w/v) promoted the increase of Γprot, which can be explained by 

the incompatibility between the biopolymers, i.e., the protein in solution tended to migrate 

towards the oil surface. The decrease of Γprot above 0.5% (w/v) κ-carrageenan probably 

occurred due to the experimental difficulties that can be demonstrated by the standard 

deviation values (Table 4.2). Thus, there was a tendency to decrease the polysaccharide 

surface concentration in relation to protein surface concentration (Γpolys/ Γprot), indicating 

the increase of free polysaccharide in solution favoring the depletion flocculation. At pH 

A B 
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3.5, the increase of κ-carrageenan concentration led to an increase of Γpolys and Γpolys/ Γprot 

(Table 4.2), indicating the increase of droplet coverage and the decrease of bridging 

flocculation. However, a direct comparison of the results obtained at the two different pH 

values (Table 4.2) reveals a significant increase of Γprot and Γpolys for emulsions at pH 3.5 

and low polysaccharide content. This behaviour suggests that a mixed protein-

polysaccharide second layer was formed. This is typically the case of interfaces formed by 

complex coacervates or charged soluble complexes. The formation of soluble complexes 

was previously reported between whey proteins and λ-carrageenan (WEINBRECK et al., 

2004) and between Na-CN and arabic gum (YE et al., 2006). Figure 4.6 shows that the 

emulsions containing polysaccharides had a negative zeta potential. Therefore, the soluble 

aggregates formed in the aqueous phase would be interacting with the Na-CN monolayer 

resulting in a mixed second layer. The proposed mechanism was based on the following 

thoughts. Carrrageenan is one of the most negatively charged polysaccharide and, due to its 

high molecular weight, has a rather low diffusion coefficient. By adding the primary 

emulsion to the carrageenan solution one can infer that carrageenan molecules would first 

complex with the free Na-CN in solution rather than with the protein adsorbed at interface. 

Fewer patches may be available for complexation on the absorbed CN molecules due to 

restriction in their conformations at the interface when anchored to the droplet surface 

(JOURDAIN et al., 2008). 
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Table 4.2. Protein (Γprot) and polysaccharide (Γpolys) surface concentration of multilayered 

emulsions containing sodium caseinate and κ-carrageenan 

 pH 7 pH 3.5 

κ-Carrageenan 

(%) 

Γprot 

(mg/m2) 

Γpolys 

(mg/m2) 

Γpolys/ Γprot Γprot 

(mg/m2) 

Γpolys 

(mg/m2) 

Γpolys/ Γprot 

0.05 0.96 ± 0.01 1.60 ±0.52 1.68 4.48 ± 0.05 5.52 ± 0.47 1.23 

0.1 1.34 ± 0.31 1.95 ± 0.15 1.45 3.38 ± 0.69 4.78 ± 0.05 1.41 

0.25 3.20 ± 0.33 1.89 ± 0.34 0.59 2.19 ± 0.25 4.40 ± 0.06 2.01 

0.5 7.05 ± 1.52 2.95 ± 0.19 0.42 3.39 ± 0.28 7.33 ± 0.11 2.16 

0.75 5.74 ± 1.63 1.99 ± 0.29 0.35 2.82 ± 0.78 7.24 ± 0.24 2.57 

1.0 2.25 ± 0.10 3.49 ± 1.18 1.55 2.79 ± 0.09 7.11 ± 0.34 2.55 

 

The adsorption of κ-carrageenan to the Na-CN-coated droplets was also monitored 

using ζ-potential measurements (Figure 4.6). In the absence of κ-carrageenan, the ζ-

potential of the droplets at pH 7 and 3.5 was -21.0 mV and +25.8 mV, respectively. That 

occurred because the sodium caseinate used to stabilize the droplets had a net positive 

charge below the isoelectric point (pI ~4.6) and a negative charge above the pI (SURH et 

al., 2006). Emulsions containing κ-carrageenan showed negatively charged droplets at both 

pH conditions. The increase of κ-carrageenan content led to even greater overall negative 

electrical charge. This change in the ζ-potential suggests the adsorption of polysaccharide 

to the oil droplets primarily coated by protein (CHO & MCCLEMENTS, 2009), especially 

at pH 3.5, when the sodium caseinate and κ-carrageenan have opposite charges. 

Values of ζsat = -32.8 mV, csat = 0.39 % κ-carrageenan and Γsat = 10.7 mg/m2 were 

obtained through Equations 4.3 and 4.4 for emulsions at pH 3.5. Comparing ζsat with ζ-

potential obtained experimentally it is possible to conclude that the oil surfaces were 
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completely covered from ~0.5% (w/v) κ-carrageenan, when Γpolys was approximately 

constant, although Γsat was little higher than Γpolys experimentally obtained. The model 

proposed by Pallandre et al. (2007) could not be employed for emulsions at pH 7 because 

there was a small adsorption of polysaccharide to the protein-coated droplets since both are 

negatively charged. Thus, the ζ-potential values showed little variation with addition of 

polysaccharide because most of the κ-carrageenan added to the emulsion remained free in 

the continuous phase, confirming the assumption of depletion flocculation at higher 

polysaccharide concentrations. 

 

 

 

 

 

 

 

 

Figure 4.6. Influence of κ-carrageenan concentration on the ζ-potential of O/W emulsions 

stabilized by sodium caseinate at pH 7 and pH 3.5. 

 

Figure 4.7 shows the effect of κ-carrageenan concentration on the rheological 

properties of O/W emulsions stabilized by sodium caseinate. Emulsion with low 

polysaccharide concentration (0.05% w/v) at pH 7 showed behavior close to the Newtonian 

(n = 0.92) and the increase of κ-carrageenan concentration turned the emulsions more 
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pseudoplastic (Figure 4.7A). On the other hand, emulsions at pH 3.5 with low κ-

carrageenan concentration (0.05 and 0.1% w/v) could not be fitted to any rheological model 

and showed an overshoot characteristic of more complex structures (results not shown). 

This can be explained by the high attraction of protein-coated droplets at pH close to pI 

resulting in a droplet network similar to emulsions without κ-carrageenan at pH 3.7 

(PERRECHIL & CUNHA, 2010). The increase of polysaccharide concentration at pH 3.5 

led to an increase in the flow behavior index (n) from ~0.6 (0.25% w/v κ-carrageenan) to 

~0.8 (0.5-1% w/v κ-carrageenan) (Figure 4.7A). Apparent viscosity at 100 s-1 of emulsions 

at pH 7 increased with κ-carrageenan concentration due to the higher polysaccharide free in 

solution and depletion flocculation. On the other hand, emulsions became less viscous at 

pH 3.5 up to 0.5% (w/v) κ-carrageenan, which can be explained by the dissolution of 

droplet aggregates, followed by a slight increase of η 100s
-1 from 0.5% to 1% (w/v) κ-

carrageenan due to the presence of free polysaccharide in solution, since the droplet surface 

was saturated at 0.5% (w/v) κ-carrageenan. Emulsions containing 0.5, 0.75 and 1% (w/v) 

κ-carrageenan showed the same flow behavior index and apparent viscosity independently 

on the pH value. 

In summary, sodium caseinate and κ-carrageenan were both negatively charged and 

incompatible at pH 7, resulting in weak adsorption of polysaccharide onto the protein-

coated oil droplets. Thus, polysaccharide remained in the continuous phase, promoting the 

depletion flocculation process and the increase of emulsion viscosity. The competition 

between these two processes determined the degree of emulsion stability. On the other 

hand, sodium caseinate and κ-carrageenan were oppositely charged at pH 3.5, which 

favored the adsorption of κ-carrageenan onto the Na-CN-coated oil droplets. At low 
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polysaccharide content, the interfaces were not saturated and the emulsions were unstable 

due to bridging flocculation. As the content of κ-carrageenan increased, the oil droplets 

became completely coated resulting in electrostatic and steric repulsion between them. The 

further addition of polysaccharide increased the amount of κ-carrageenan free in the 

aqueous phase, promoting the increase of emulsion viscosity. 

 

Figure 4.7. Rheological behavior of O/W emulsions stabilized by sodium caseinate and κ-

carrageenan at pH 7 and pH 3.5. A) Flow behavior index (n) and B) apparent viscosity at 

100 s-1 (η100s
-1). 
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4.4. CONCLUSIONS 

The addition of low amount of κ-carrageenan led to unstable emulsions, 

independent on the pH of system. Nevertheless, the increase of κ-carrageenan 

concentration promoted the stabilization of emulsions at both pH values 7 and 3.5 due to 

the increase of the viscosity of the continuous phase that slowed down the movement of 

flocs and droplets. However, the κ-carrageenan was weakly adsorbed onto the droplet 

surfaces at pH 7 and the increase of polysaccharide content promoted the depletion 

flocculation. On the other hand, a strong adsorption of κ-carrageenan and protein was 

verified at pH 3.5. At this condition, emulsions showed bridging flocculation at lower 

polysaccharide concentration and the formation of a mixed protein-polysaccharide layer 

around the Na-CN-coated droplets with further addition of κ-carrageenan, which 

collaborated to improve the stability of these systems. In addition, the aggregation of 

protein at pH 3.5 probably contributed to the destabilization of emulsions when compared 

to those at pH 7. Multilayered emulsion containing 1% (w/v) κ-carrageenan was highly 

stable and showed similar values of d32, ζ-potential and rheological properties for both pH 

values. Thus, it can be concluded that the production of sodium caseinate:κ-carrageenan 

electrostatic complexes can improve the stability of emulsions against the environmental 

stresses, like pH values around the isoelectric point of protein. 
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ABSTRACT 

Ionotropic gelation of emulsions composed by sodium caseinate and κ-carrageenan at pH 7 

and 3.5 was evaluated to encapsulate soybean oil. The influence of some process variables 

of extrusion process (nozzle diameter of fluid exit and collecting distance) on the 

production of microbeads was studied, as well as the stability of these microbeads. The 

fluid nozzle diameter showed little influence on the shape of microbeads, with a slight 

tendency to decrease the microbead diameter with the increase of fluid nozzle diameter. On 

the other hand, the collecting distance strongly influenced the shape of microbeads and they 

became more spherical (aspect ratio was reduced from ~2.0 to ~1.4) as the collecting 

distance was increased from 10 cm to 50 cm. The pH of emulsions did not affect the aspect 

ratio of microbeads, but the diameter was greater for microbeads produced at pH 3.5. This 

difference was attributed to the kind of interactions between κ-carrageenan and sodium 

caseinate at these distinct pHs. While the protein was predominant at the external surface 
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and the gelled polysaccharide in the internal region of microbeads at pH 7, a thicker 

double-layer of protein-polysaccharide was observed at pH 3.5. The microbeads were 

highly unstable when dispersed in deionized water, sugar solutions and low concentrations 

of salt, releasing the encapsulated oil. However, no release of oil from microbeads was 

observed when they were dispersed in ethanol or potassium chloride solutions with 

concentration above 0.75%, although they have modified their shape when dispersed in 

ethanol. In general, the obtained results demonstrated the viability of the extrusion process 

to produce biopolymers-based microbeads and the potential application of these systems. 

Keywords: extrusion; ionic gelation; microscopy; particle size distribution; emulsion 

 

5.1. INTRODUCTION 

Microbeads have been largely employed for the encapsulation of hydrophilic and 

amphiphilic compounds such as peptides (CHANDY et al., 1998), enzymes (AZARNIA et 

al., 2008), proteins (VANDENBERG et al., 2001) and probiotics (ALBERTINI et al., 2010; 

CORBO et al., 2011). Polysaccharides are the ingredients commonly used to prepare the 

microbeads due to their good biocompatibility, biodegradability, low toxicity, abundance in 

nature and low cost (KAIHARA et al., 2011; KAREWICZ et al., 2011). There has been 

growing interest in the development of delivery systems to encapsulate lipophilic 

components, such as vitamins, oils, flavors, colors and nutraceuticals, for high moisture 

applications (MATALANIS et al., 2011). For this purpose, encapsulation systems with 

amphiphilic properties should be employed (COLINET et al., 2010). 

Oils are generally encapsulated by the spray-drying method, using carbohydrates, 

proteins and gums as wall materials (CHAN, 2011). However, most of products show high 

water activity, which would cause the dissolution of the dried microcapsules. In this 
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context, the gelled beads have the advantage of being used in hydrated media without 

breaking down (BUREY et al., 2008). Among the methods used to prepare the microbeads, 

the extrusion technique followed by an ionotropic gelation is extensively used, since it is 

considered simple (CORBO et al., 2011). In this case, droplets are formed by the use of a 

syringe or an atomizer (pressure nozzle) and collected in a hardening solution containing a 

gelling agent (HUNIK & TRAMPER, 1993, BLANDINO et al., 1999). 

The first step of oil encapsulation process normally includes the emulsification of 

the oil into the encapsulation material and the emulsion stability has a significant influence 

on the encapsulation efficiency (CHAN, 2011). The stability of emulsions can be improved 

by the addition of emulsifiers, such as the proteins, or by the application of high-pressure 

homogenization. In addition, the high pressure homogenization can produce emulsions with 

smaller oil droplets (JAFARI et al., 2008), which can also increase the retention of the 

encapsulated oil (SOOTTITANTAWAT et al., 2003). 

Thus, the purpose of this work was to study the process parameters involved in the 

production of microbeads by the extrusion of emulsions composed by soybean oil, sodium 

caseinate and κ-carrageenan at pH 7 and 3.5 into potassium chloride solution, in order to 

obtain potential encapsulation matrices for hydrophobic components. The morphology and 

stability of microbeads in different media were examined, evaluating the possible 

application of these particles. 
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5.2. MATERIAL AND METHODS 

5.2.1. Material 

The ingredients used to prepare the systems were κ-carrageenan, gently supplied by 

CPKelco (Atlanta, USA), casein (Sigma-Aldrich Co., St. Louis, USA), soybean oil (Bunge 

Alimentos S.A., Brazil) and potassium chloride P.A. (Labsynth, Diadema, Brazil). All other 

reagents were of analytical grade. 

 

5.2.2. Preparation of stock solutions 

The sodium caseinate (Na-CN) stock solution (10% w/v) was prepared by 

dispersing casein in deionized water for 3 hours using a magnetic stirrer. The pH of the 

solution was constantly adjusted to 7 using 10 M NaOH. Polysaccharide stock solution (3% 

w/v) was prepared by dissolving the κ-carrageenan powder in deionized water, followed by 

heat treatment at 90°C for 60 min with magnetic stirring and subsequent cooling to room 

temperature. The pH of κ-carrageenan solution was adjusted to 7 using HCl. The two 

solutions were then diluted in order to prepare the emulsions. 

 

5.2.3. Preparation of emulsions 

A primary oil-in-water (O/W) emulsion was prepared at 25°C by pre-mixing the 

soybean oil with a Na-CN aqueous solution using an Ultra Turrax model T18 (IKA, 

Germany) for 4 min at 14,000 rpm, followed by homogenization at 30 MPa / 5 MPa using a 

Panda 2K NS1001L double-stage homogenizer (Niro Soavi, Italy). The Na-CN and oil 

concentrations in the final emulsions were fixed at 0.5% (w/v) and 20% (v/v), respectively. 

Secondary O/W emulsions were prepared at room temperature by mixing the primary 
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emulsion into κ-carrageenan solutions using magnetic stirring for 1 hour. The final 

composition of secondary emulsions was 10% (v/v) soybean oil, 0.25% (w/v) sodium 

caseinate and 0.05 – 1.5% (w/v) κ-carrageenan. These emulsions were maintained at pH 7 

and part of them was adjusted to pH 3.5 using HCl. 

 

5.2.4. Visual phase diagrams 

Visual phase diagrams of emulsions with different κ-carrageenan concentration 

versus KCl were made to establish the appropriate concentrations of salt and 

polysaccharide for gel formation. The mixtures were prepared by mixing 4 mL of each 

emulsion with 4 mL of each KCl solution. These mixtures were stirred at room temperature 

and the gel formation was evaluated after 24 hours of storage based on visual examinations. 

From these data it was possible to construct the sol-gel transition diagrams and to set up 

some of the conditions for microbead preparation. 

 

5.2.5. Microbeads 

5.2.5.1. Production of microbeads 

Microbeads were prepared by the extrusion of secondary emulsions through an 

atomizer nozzle (0.7, 1.0 or 1.2 mm diameter) into a KCl solution (concentration 

determined from the visual phase diagrams) at room temperature. The height from the 

atomizer nozzle to the KCl solution (H) (Figure 5.1A) varied between 10 and 50 cm. The 

feed flow rate was fixed at the minimum capacity of the peristaltic pump (0.2 L/h), while 

the compressed air flow rate at the nozzle was fixed at the maximum value possible (0.12 

m3/h) avoiding the splash of the salt solution out of the container (the parameters were 
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based on the study presented in Chapter 3). The gelled particles were maintained in the salt 

solution for 30 minutes (CHAN et al., 2009) and then filtered through a sieve with opening 

of 0.053 mm. The microbeads were stored at 10°C and their microstructure and stability 

were evaluated. 

 

Figure 5.1. A) Extrusion formation of microgels and B) atomizer nozzle. H = height from 

the atomizer nozzle to the salt solution, Dl = diameter of the fluid nozzle exit and Dg = 

diameter of gas nozzle exit. 

 

Compresor 

Atomizer nozzle 

KCl solution 

Peristaltic pump Fluid 

A 

H 

B 
Dl 

Dg 

Fluid 
gas gas 



Capítulo 5 

108 

The configuration of the atomizer nozzle used in this work is schematically shown 

in Figure 5.1B. It consists of a round liquid jet surrounded by a co-flowing annular gas 

stream. The diameter of the liquid jet was Dl = 0.7, 1.0 or 1.2 mm and the gas nozzle exit 

diameter was Dg = 2.5, 3.08 or 3.35 mm, respectively. 

The atomization process can be evaluated by some dimensionless parameters, such 

as the Reynolds numbers of the gas (Reg) and the liquid layers (Reλl), Weber number (We) 

and Ohnesorge number (Oh), described in the Equations 5.1, 5.2, 5.3 and 5.4, respectively. 

g
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where νl and νg are kinematic viscosities (ratio between the liquid dynamic viscosity and its 

density) of the liquid and gas (m2/s), respectively, vl and vg are the liquid and gas velocities 
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(
gl

ggll

c

vv
v

ρ+ρ

ρ+ρ
= ) and λ l is the wavelength (

g

l

g

g
l

Re

Cb2

ρ
ρ

≈λ ), where C is the 

coefficient of proportionality that depends on the nozzle design, ρl is the liquid density 

(kg/m3), ρg is the gas density (kg/m3) and bg is the thickness of the gas layer (bg = (Dg-

Dl)/2). 

( )
σ
−ρ

= l
2

lgg
l

Dvv
We  (5.3) 

where σ is the surface tension (N/m). 

ll

l

D
Oh

σρ
η=  (5.4) 



Capítulo 5 

109 

The Weber number defines the ratio between the destabilizing dynamic pressure 

forces exerted by the gas on the liquid and the confining forces associated with the surface 

tension (VARGA et al., 2003). Thus, the increase of We tends favor the disruption of 

liquid, leading to smaller droplets. The Ohnesorge number relates the liquid viscosity and 

the surface tension and can be associated to the sphericity of particles. 

 

5.2.6. Microbead evaluation 

5.2.6.1. Optical microscopy 

The morphology of the microbeads was evaluated by optical microscopy using a 

Scope.A1 microscope (Carl Zeiss, Germany) with a 10× objective lens. For this, the 

microgels were poured onto microscope slides and carefully covered with glass cover slips. 

At least 10 images were obtained for each sample. 

The shape of the microbeads was determined from image analysis. Measurements of 

the maximum (Fmax) and minimum (Fmin) Feret diameters were carried out for each particle, 

with a total of 400 particles per sample. The aspect ratio (AR) was obtained from the 

relation between Fmax and Fmin (Equation 5.5). 

AR= Fmax
Fmin

 (5.5) 

 

5.2.6.2. Confocal scanning laser microscopy (CSLM) 

Fluorescein-5-isothiocyanate (FITC) was used for the covalent labeling of κ-

carrageenan, following the method described by Heilig et al. (2009). 20 mL DMSO and 80 

µL pyridine were mixed with 1 g κ-carrageenan and stirred at room temperature for 30 

minutes. After the addition of 0.1 g FITC and 40 µL dibutyltin dilaurate, the mixture was 
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incubated for 3 h in a 95°C water bath and, finally, cooled down to room temperature. The 

resulting gel was then minced, washed with ethanol 99.6% and dried at 65°C. The 

covalently labeled κ-carrageenan powder was then dissolved as described in the section 

5.2.2 to prepare the polysaccharide solution. Sodium caseinate solution was labeled with 

Rhodamine B by the addition of the fluorescent dye directly to the protein solution. The 

protein and polysaccharide labeled solutions were used to prepare the emulsions and 

microbeads for confocal analysis as detailed in sections 5.2.3 and 5.2.5.1. 

Samples were examined using a Zeiss LSM 780-NLO confocal on an Axio 

Observer Z.1 microscope (Carl Zeiss AG, Germany) using a 40 × objective. Images were 

collected using 488 and 543 nm laser lines for excitation of FITC and Rhodamine B 

fluorophores, respectively, with pinholes set to 1 airy unit for each channel, 1024×1024 

image format. Images were taken along the height of the samples. 

 

5.2.6.3.Particle size analysis 

Particle size analysis was carried out in 0.4% (w/v) KCl solution (particle 

concentration of ~0.005% wt) using a Malvern Mastersizer 2000 (Malvern Instruments 

Ltd., UK). The size of particles was determined as the volume-surface mean diameter (d32 = 

Σnidi
3/Σnidi

2), where ni is the number of microbeads of diameter di. The particle size 

measurements were reported as the average and standard deviation of measurements made 

on microbeads, with three readings made per sample. 
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5.2.6.4. Evaluation of microbead stability 

Microbeads composed by 1.5% (w/v) κ-carrageenan were used to evaluate their 

stability in different media. Suspensions were prepared by dispersing the microbeads 

directly in the measurement chamber of the laser diffraction instrument (Mastersizer 2000, 

Malvern Instruments Ltd., UK) in the concentration of approximately of 0.005% (w/w). 

Deionized water, ethanol, sucrose solutions (0.5 – 15% w/v) and potassium chloride 

solutions (concentrations between 0.2% and 7.5% w/v) were used as suspension media. In 

addition, the microstructure of the microbeads in these different media was monitored 

through observation of suspensions in the optical Scope.A1 microscope (Carl Zeiss, 

Germany) with a 10× objective lens. 

 

5.3. RESULTS AND DISCUSSION 

5.3.1. Visual phase diagrams 

Visual phase diagrams were constructed from the mixture between KCl solutions 

with double-layer emulsions composed by 10% (v/v) soybean oil, 0.25% (w/v) Na-CN and 

different κ-carrageenan concentrations at pH 7 and 3.5 (Figures 5.2A and 5.2B). The phase 

diagrams were separated into three regions (liquid, weak gel and strong gel) based on visual 

examinations. In both diagrams, the gel formation occurred from a critical value of κ-

carrageenan of 0.25% (w/v) and a KCl concentration above 0.1% (w/v). The exception was 

the emulsion containing 1.5% (w/v) κ-carrageenan at pH 3.5, which formed gel already at 

0.1% (w/v) KCl. Below the critical salt concentration, κ-carrageenan was in the disordered 

state (random coil conformation) and above this KCl concentration, κ-carrageenan was in 

the ordered conformation (helix) and the helical chains were aggregated into a three-
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dimensional network (NÚÑEZ-SANTIAGO et al., 2011). At 1.5% κ-carrageenan and pH 

3.5, the cations presented in the polysaccharide were probably sufficient to promote the coil 

to helix transition at room temperature. 

Stronger gels were only produced using κ-carrageenan concentration above 0.5% 

(w/v) and KCl concentrations between 0.2 and 0.5%. In such conditions the polysaccharide 

junction zones were probably saturated with potassium ions. Pure κ-carrageenan aqueous 

systems also showed strong gel formation at concentration above 0.5% (w/v) (Chapter 3). 

However, the systems without oil formed three-dimensional networks at higher KCl 

concentrations (Chapter 3), probably because the addition of oil decreased the number of 

junction zones that can be formed between the polysaccharide chains. At higher KCl 

concentrations (> 0.6% w/v), weak gels or liquid systems were produced depending on the 

κ-carrageenan concentration (Figure 5.2), which can be explained by the disordered 

aggregation of polysaccharide molecules with expulsion of water (syneresis), preventing 

the formation of a three-dimensional network (Chapter 3). 

The comparison between the phase diagrams constructed at different pH values 

showed that stronger gels were formed for lower κ-carrageenan concentrations at pH 3.5 

(Figure 5.2B) when compared to the systems at pH 7, which can be explained by the higher 

interaction between the positive protein and the negative charged polysaccharide below the 

isoelectric point. KCl concentration of 0.4% (w/v) was chosen for the production of 

microbeads, since strong gels were produced for majority of the systems at this salt level. 
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Figure 5.2. Visual phase diagram of O/W emulsions containing 0.25% (w/v) Na-CN and 

different κ-carrageenan concentration / KCl systems at room temperature and (A) pH 7 and 

(B) pH 3.5. ( ) Strong gels, ( ) weak gels and ( ) liquid. 

 

5.3.2. Effect of process variables on the microbead production 

5.3.2.1. Effect of nozzle diameter 

In order to evaluate the influence of the diameter of fluid nozzle exit on the final 

morphology of microbeads, emulsions composed by 0.25% (w/v) Na-CN, 1% (w/v) κ-

carrageenan and 10% (v/v) soybean oil at pH 7 and 3.5 were atomized in 0.4% (w/v) KCl 

solution at fixed compressed air flow rate (0.12 m3/h), feed flow rate (0.2 L/h) and 

collecting distance (50 cm). Figure 5.3 shows the particle size distribution and microscopic 

images of the microbeads produced using different fluid nozzle diameters (Dl = 0.7, 1.0 or 

1.2 mm). The microscopic images show that microbeads were produced for all fluid nozzle 

diameters, with the oil encapsulated in the gelled matrix and some free oil droplets in 

solution. The free oil droplets were mainly observed at the smaller fluid nozzles (0.7 and 
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1.0 mm), probably because the shear rate was greater at these conditions (Table 5.1), 

leading to a destabilization of emulsions during the atomization process. 

These results also showed that the morphology of microbeads was not very sensitive 

to the fluid nozzle diameter, showing little difference between the aspect ratios. At each 

pH, all microbeads showed very similar particle size distribution. The evaluation of d32 

showed the tendency that bigger nozzles produced smaller microbeads (Figure 5.3). 

Comparing the microbeads produced at pH 7 and 3.5 it was verified that the microbeads 

produced at pH 3.5 were greater than those produced at pH 7, which can be explained by 

the interactions between the protein and polysaccharide under these different pH values that 

will be discussed in the section 5.3.3. Nevertheless, the aspect ratio was not influenced by 

the pH of emulsion. 
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Figure 5.3. Particle size distribution and microstructure of microbeads composed by 10% 

(v/v) soybean oil, 0.25% (w/v) Na-CN and 1% (w/v) κ-carrageenan at pH 7 and 3.5 

produced using collecting distance of 50 cm and different fluid nozzle diameters (Dl):         

( ) 0.7 mm, ( ) 1.0 mm and ( ) 1.2 mm. Scale bar = 100 µm. 
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The production of microbeads using different nozzle diameters could be evaluated 

using dimensionless parameters (Table 5.1), which are mainly dependent on the gas 

boundary layer thickness at the nozzle exit (ALISEDA et al., 2008). The increase of fluid 

nozzle diameter was accompanied by the increase of gas exit area (gas boundary layer) due 

to the increase of nozzle diameter of gas exit (Dg) (Table 5.1). Thus, there was a decrease of 

the Reynolds number of the gas (Reg) and, consequently, of the Reynolds number of liquid 

layer (Reλl) and Weber number (Wel). Reλl was higher than 10 in all experiments, which 

was the condition necessary to the droplet breakup (ALISEDA et al., 2008). The reduction 

of Wel with the increase of nozzle diameter (Table 5.1) indicated the tendency to produce 

larger particles (ALISEDA et al., 2008). Nevertheless, the experimental results showed an 

opposite tendency, which could be attributed to the destabilization of the emulsions during 

the atomization at smaller nozzles (0.7 and 1.0 mm). Unstable emulsions with large oil 

droplets difficult the formation of very reduced particles. The Ohnesorge number did not 

vary with the fluid nozzle diameter and with the pH value (Table 5.1), confirming that the 

aspect ratio was not affected by these variables. 

Based on these results, the fluid nozzle exit with 1.2 mm of diameter was chosen to 

produce the microbeads in the next steps of this work. 
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Table 5.1. Shear rate and dimensionless parameters of the experiments at different nozzle 

diameters 

 Nozzle 

diameter (mm) 

Gas exit 

area (mm2) 

��  (s-1) Reg Reλl Oh Wel 

pH 7 

0.7 3.02 7646 9373 182.6 0.09 329.4 

1.0 3.85 4551 6576 129.7 0.09 236.8 

1.2 4.98 2625 5897 103.2 0.10 155.3 

pH 3.5 

0.7 3.02 7646 9373 185.7 0.09 329.4 

1.0 3.85 4551 6576 138.2 0.09 236.8 

1.2 4.98 2625 5897 115.4 0.09 155.3 

 

5.3.2.2. Effect of collecting distance 

The effect of the distance between the atomizer nozzle and the salt solution (H) was 

evaluated by varying H from 10 to 50 cm and using fixed fluid nozzle diameter (Dl = 1.2 

mm) and κ-carrageenan concentration (1% w/v) at pH 7 and 3.5 (Figure 5.4). The particles 

produced at lower height (10 cm) showed a non-spherical shape and a lot of surface oil 

droplets dispersed in the gelling medium. The microbeads became more spherical as the 

collecting distance increased from 10 to 50 cm, as can be observed by their microstructures 

and by the reduction of aspect ratio from ~2.0 to ~1.4 for both pH values (Figure 5.4). The 

size of microbeads also tended to decrease with the increase of collecting distance, 

especially for emulsions at pH 3.5, whose d32 decreased from 138.7 µm to 107.4 µm. 

During the extrusion process, a minimum distance between the nozzle and the salt solution 

is necessary to promote the complete break up process and the rearrangement of the shape 

of the liquid drop (ALISEDA et al., 2008; CHAN et al., 2009). Chan et al. (2009) observed 

that spherical beads of alginate were produced at collecting distances between 10 and 100 
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cm using dripping method, but below this range, beads were tear-shaped. In addition, 

Aliseda et al. (2008) verified a decrease of mean droplet diameter with the increase of 

distance for extrusion of different fluids (water and mixtures containing glycerol and 

water), with completion atomization from 5 cm. A higher distance was necessary to 

complete the atomization in the present work (50 cm), probably because the emulsions had 

a lower surface tension (~ 57 mN/m) than the water or glycerol solutions (72 mN/m and 65 

mN/m, respectively), needing more time for the droplet to achieve the spherical shape. 

At short distance, the irregular shape and larger d32 of microbeads were associated 

to the incomplete break up process and the presence of free oil droplets was a consequence 

of the strong impact between droplets and salt solution, promoting the destabilization of the 

emulsions. Since the droplet velocity decreased during falling due to the thrust and friction 

force, the impact with salt solution tended to decrease at higher collecting distances. 

However, at distances higher than 50 cm, droplets could be deformed due to the 

coalescence of droplets during their falling (ALISEDA et al., 2008). 
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Figure 5.4. Microstructure and particle size distribution of microbeads composed by 10% 

(v/v) soybean oil, 0.25% (w/v) Na-CN and 1% (w/v) κ-carrageenan at pH 7 and 3.5 

produced using fluid nozzle diameter of 1.2 mm and different collecting distances: ( ) 

10 cm, ( ) 30 cm and ( ) 50 cm. Scale bar = 100 µm. 
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The comparison between microbeads produced at different pH showed again that 

particles produced at pH 3.5 were larger but had similar aspect ratio. From these results, the 

collecting distance of 50 cm was chosen to produce the microbeads in the following steps 

of this study. 

 

5.3.3. Interaction between Na-CN and κ-carrageenan in the microbeads 

Figure 5.5 shows the confocal microscopy of microbeads composed by 10% (v/v) 

soybean oil, 0.25% (w/v) Na-CN and 1.5% (w/v) κ-carrageenan at pH 7 and 3.5 produced 

at the conditions chosen in the section 5.3.2 (fluid nozzle diameter of 1.2 mm and collecting 

distance of 50 cm). In these images, sodium caseinate appears as red color, while the green 

areas indicate the presence of κ-carrageenan. The pictures revealed that different structures 

of microbeads were produced at distinct pH values. While the microbead at pH 3.5 showed 

the external surface composed by polysaccharide (Figure 5.5B), the confocal microscopy at 

pH 7 indicated the predominant presence of protein at the external surface of microbeads 

(Figure 5.5A). 

At pH 7, protein and polysaccharide were both negatively charged (Figure 5.6A), 

resulting in an electrostatic repulsion between them. Thus, the protein was concentrated at 

the surface of oil droplets, while the polysaccharide was mainly free in the aqueous phase. 

During the atomization process, the Na-CN-coated oil droplets probably migrated to the 

air-liquid interface due to the lower surface tension of protein (Figure 5.6C). As the 

particles come into contact with the salt solution, part of protein was dissolved, releasing 

the oil and, simultaneously, potassium ions entered into the particles, promoting the 

gelation of polysaccharide (Figure 5.6E). On the other hand, when the pH was reduced 
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below the isoelectric point (pI ~4.6), the protein became positively charged (ζ-potential ~ 

+25 mV at pH 3.5) favoring its electrostatic interaction with the polysaccharide (ζ-potential 

= -55 mV) (Figure 5.6B). In this case, κ-carrageenan was adsorbed onto the Na-CN coated 

oil droplets, resulting in the formation of a double layer (Figure 5.6D). When the particles 

came into contact with the salt, the potassium ions promoted the gelation of polysaccharide, 

producing the microbeads (Figure 5.6F). However, as the κ-carrageenan was linked to the 

sodium caseinate at the oil surface, there was lower amount of free polysaccharide in 

solution and the gelation of polysaccharide tended to be slower when compared to the 

microbeads at pH 7. Thus, there was a higher dissolution of microbeads before gelation, 

which was responsible for their larger diameter at pH 3.5 when compared to the particle at 

pH 7 (sections 5.3.2.1. and 5.3.2.2.). 

 

Figure 5.5. Confocal microscopy of microbeads composed by 10% (v/v) soybean oil, 

0.25% (w/v) sodium caseinate and 1.5% (w/v) κ-carrageenan produced at A) pH 7 and B) 

pH 3.5. Scale bar = 20 µm. 

 

A B 
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Figure 5.6. Charge distribution (A and B) and schematic representation of κ-carrageenan 

and sodium caseinate at droplets before gelation (C and D) and microbeads after gelation (E 

and F) at pH 7 and 3.5. 
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5.3.4. Stability of microbeads 

The stability of microbeads was evaluated in different media (ethanol, deionized 

water, sucrose solution and salt solutions) in order to determine their potential 

incorporation in products without releasing the encapsulated oil during the storage of the 

products. The dielectric constant (ε) and water activity (aw) of these media are shown in 

Table 5.2. 

 

Table 5.2. Dielectric constant (ε) and water activity (aw) of the dispersion media  

Solution Dielectric constant (ε) Water activity (aw) 

Ethanol 24.3 − 

Deionized water 78.5 1 

Sucrose solution   

1% 78.3 0.999 

5% 77.4 0.996 

7.5% 76.8 0.994 

10% 76.2 0.992 

15% 74.9 0.988 

KCl solution   

0.2% 78.3 0.999 

0.75% 77.5 0.996 

1.9% 76.0 0.992 

3.7% 73.5 0.984 

7.5% 68.5 0.968 

 

5.3.4.1. Stability in ethanol 

The stability of microbeads at pH 7 and 3.5 was evaluated in ethanol as shown in 

Figure 5.7. Microbeads at the gelling bath (standard) showed spherical shape and a 
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monomodal particle size distribution for both pH values. The particle size distribution of 

standard microbeads was determined using 0.4% KCl (0.05 M) solution as dispersion 

medium. The comparison between particle size distribution of microbeads dispersed in 

ethanol and the standard microbeads showed small differences, with a tendency to decrease 

the mean particle diameter with dispersion in ethanol. The evaluation of mean particle 

diameter (d32) confirmed the collapse of particles when dispersed in ethanol, since they 

were significantly smaller than the standard ones. The evaluation of microscopic images 

showed that the oil droplets were not released from microbeads, which had significant 

change of shape that could modify significantly the rheological behavior of the microbeads 

suspensions (ELLIS et al., 2009). In addition, the microscopy also showed that the particles 

tended to aggregate when they were at rest, which could not be observed in the particle size 

distribution due to the agitation during the laser diffraction analysis. The effect of ethanol 

on the microbeads can be explained by the lower dielectric constant of alcohol when 

compared to the other solvents (Table 5.2), which decrease the solvent polarity 

(RAGHAVAN et al., 2000). With this, there was an increase of particle-particle 

electrostatic interaction and a decrease in the particle-solvent interaction, resulting in their 

precipitation. 



Capítulo 5 

125 

 

Figure 5.7. Microstructure and particle size distribution of microbeads composed by 10% 

(v/v) soybean oil, 0.25% (w/v) Na-CN and 1.5% κ-carrageenan at pH 7 and 3.5 dispersed 

in ethanol. ( ) pH 7 standard, ( ) pH 7 in ethanol, ( ) pH 3.5 standard and ( ) pH 

3.5 in ethanol. Scale bar = 100 µm. 
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dissolved. The particle size distribution showed a bimodal distribution for microbeads 

dispersed in deionized water, differently from the standard microbeads. The values of the 

modes of bimodal distribution (Figure 5.8) indicated that the first peak (lower diameter 

range) corresponded to the free oil droplets (~1.9 µm), while the second peak referred to 

the remaining microbeads. In this case, the second peak was shifted to lower values of 

particle diameter in relation to the standard, indicating that microbeads were partially 

dissolved in the water. Microbeads produced at pH 3.5 seemed to be less unstable when 

dispersed in deionized water than those at pH 7, which was verified through the particle 

size distribution. The first peak was smaller (25% volume) than the second one (75% 

volume) for pH 3.5, while an opposite tendency was verified for pH 7 (60% volume in the 

first peak and 40% in the second one). In addition, the modes at pH 3.5 were higher than at 

pH 7, with the second mode closer to the mean diameter of standard particle. A possible 

explanation for this behavior relies on the position of the oil droplets, which were at the 

microbead surface for the pH 7 emulsions (Figure 5.5A) and, thus more prone to leak out 

by the dissolution of κ-carrageenan network in the core of the particle. 

The high instability of microbeads in water can be explained by the migration of 

KCl to deionized water due to the difference in ion concentration, destabilizing the junction 

zones of κ-carrageenan and disintegrating the microbeads. This destabilization was 

different than that observed in microgels composed by κ-carrageenan and sodium caseinate 

without oil, in which their dispersion in deionized water led to a swelling and loss the shape 

(Chapter 3). It probably occurred because in the microbeads containing oil, the κ-

carrageenan network was formed between the oil droplets, resulting in lower amount of 
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junction zones. Thus, the destabilization of junction zones led to disintegration of 

microbeads into small pieces. 

 

Figure 5.8. Microstructure and particle size distribution of microbeads composed by 10% 

(v/v) soybean oil, 0.25% (w/v) Na-CN and 1.5% κ-carrageenan at pH 7 and 3.5 dispersed 

in deionized water. ( ) pH 7 standard, ( ) pH 7 in deionized water, ( ) pH 3.5 

standard and ( ) pH 3.5 in deionized water. Scale bar = 100 µm. 
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properties. The microstructures showed that the microbeads were destabilized in all sucrose 

concentrations, losing their shape and releasing the encapsulated oil. The particle size 

distribution showed that microbeads dispersed in sucrose solutions showed a bimodal 

distribution, which once more could be related to the free oil droplets (first peak) and the 

remaining microbeads (second peak). 

For microbeads produced at pH 7, the importance of the first peak (mode = 2.51 

µm) tended to decrease as the sucrose concentration was increased (volume from ~57% to 

~41%), while the second one (mode = 60.2 µm) tended to increase (volume from ~43% to 

~54%), indicating the improvement of the stability. Microbeads at pH 3.5 were less 

sensitive to the sucrose concentration, showing no differences in the first peak (mode = 3.3 

µm and volume ~28%) and a small difference in the second peak (mode = 120.2 µm and 

volume between 71 and 72%). The sucrose stabilization effect could not be explained by 

the reduction of the water activity (aw), since aw was reduced from ~ 1 to ~0.988 by 

increasing sucrose concentration up to 15% (w/v) (Table 5.2). This result can be attributed 

to the capacity of sucrose to modify the structure of water surrounding the proteins, leading 

to the formation of Na-CN aggregates by hydrophobic interactions and, consequently, 

resulting in the protein stabilization (RIBEIRO et al., 2004). 
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Figure 5.9. Microstructure and particle size distribution of microbeads composed by 10% 

(v/v) soybean oil, 0.25% (w/v) Na-CN and 1.5% κ-carrageenan at pH 7 and 3.5 dispersed 

in different sucrose solutions: ( ) 1%, ( ) 5%, ( ) 7.5%, ( ) 10% and ( ) 15%. 

Standard: ( ) pH 7 and ( ) pH 3.5. Scale bar = 100 µm. 
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similar microstructures than those with no dilution (standard). However, despite these 

differences in the microstructure, the microbeads dispersed in all KCl solutions showed 

very similar particle size distribution (Figure 5.10). 

The comparison between the mean particle diameters (d32) indicated that the 

increase in KCl concentration from 0.2% to 0.75% (w/v) led to a slight increase in the 

diameter of the microbeads (Figure 5.11). This behavior was opposite than that verified for 

microgels composed by κ-carrageenan and sodium caseinate without oil (Chapter 3), where 

microgels swelled after dispersion in solutions with low KCl concentrations. In the case of 

particles containing the encapsulated oil, the κ-carrageenan network tended to disintegrate 

at the lowest KCl concentration (0.2% w/v) by the migration of salt to the water resulting in 

the release of oil droplets, as can be seen in Figure 5.10. Nevertheless, between 0.75% and 

3.7% (w/v) KCl, the mean diameter of the microbeads was very similar to the standard, 

indicating that the KCl at these concentrations tended to stabilize the junctions zones of the 

κ-carrageenan chains because the microbeads were in osmotic equilibrium with the 

surrounding medium. At 7.5% (w/v) KCl, the microbeads tended to show a smaller 

diameter, probably because the water inside the microbeads tended to migrate to the 

medium containing high salt concentration in order to restore the osmotic equilibrium 

(ELLIS et al., 2009). Lower salt concentration was necessary to stabilize the microbeads 

(0.75% KCl) when compared to the microgels without oil that were stable only if dispersed 

in solutions containing 10% KCl (Chapter 3). As discussed earlier, this probably occurred 

due to the lower amount of junction zones present in the structure of microbeads. 
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Evaluating these results it is possible to conclude that the microbeads were very 

stable if dispersed in KCl solutions with concentration higher than 0.75%, maintaining their 

size and shape without release of the encapsulated oil. 

 

Figure 5.10. Microstructure and particle size distribution of microbeads composed by 10% 

(v/v) soybean oil, 0.25% (w/v) Na-CN and 1.5% (w/v) κ-carrageenan at pH 7 and 3.5 

dispersed in KCl solutions with different concentrations: ( ) 0.2%, ( ) 0.75%, ( ) 1.9%, 

( ) 3.7% and ( ) 7.5%. 
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Figure 5.11. Mean particle diameter (d32) of microbeads composed by 10% (v/v) soybean 

oil, 0.25% (w/v) Na-CN and 1.5% (w/v) κ-carrageenan at pH 7 and 3.5 in relation to the 

concentration of KCl solutions. ( ) pH 7 standard, ( ) pH 7 in KCl solution, ( ) pH 

3.5 standard and ( ) pH 3.5 in KCl solution. 
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microbeads seemed to collapse losing their shape. Thus, the microbeads developed in this 

work can be applied in products containing high potassium chloride and alcoholic solutions 

without release the encapsulated oil. 
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ABSTRACT 

Tryptophan was encapsulated in microbeads formed by ionotropic gelation of multilayered 

emulsion. Microbeads were produced from the extrusion of emulsions composed by 

soybean oil, sodium caseinate and κ-carrageenan at pH 7 and 3.5 into potassium chloride 

solution. The influence of κ-carrageenan concentration on the size and morphology of 

microbeads was studied. In addition, confocal microscopy, encapsulation efficiency, 

tryptophan release and rheological properties of microbeads suspensions in salt solution 

were evaluated. The morphology of microbeads was very influenced by the increase of κ-

carrageenan concentration, tending to be greater and more spherical. The confocal 

microscopy illustrated the structural differences between microbeads produced at different 

pH (7 and 3.5) due to the electrostatic interactions between protein and polysaccharide. 

Despite these structural differences, microbeads with different pH showed similar results 

for encapsulation efficiency, tryptophan release and rheological properties of the 
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suspensions of microbeads in salt solution. Encapsulation efficiency was very low (~30%), 

but the encapsulated tryptophan showed low release in the salt solution (~0.01%). In 

addition, the rheological measurements indicated that the incorporation of microbeads 

exerted slight influence on the viscosity of aqueous solutions, mainly up to 40% volume 

fraction. Thus, these microbeads could be added to products as a delivery system without 

compromising their texture. 

Keywords: ionic gelation; emulsion; confocal microscopy; rheology; encapsulation 

efficiency 

 

6.1. INTRODUCTION 

There has been a growing interest within the food industry in the development of 

food products that provide health benefits. Among the interesting components to 

incorporate in the products, tryptophan can be attractive because it is an essential amino 

acid that may act in the central nervous system as serotonin precursor. Studies revealed that 

a significant increase in brain tryptophan and brain serotonin (5-HT) can be accomplished 

by the intake of pure tryptophan from dietary, leading to the regulation of several 

physiological functions, such as mood, sleep and appetite (MARKUS et al., 2008). 

However, tryptophan can provide a bitter taste due to their hydrophobic side chains in the 

same way as other amino acids, such as valine, isoleucine, phenylalanine, leucine and 

tyrosine (NILSANG et al., 2005). One way to mask the bitter off-taste is through the 

encapsulation of these components. Delivery systems in the form of hydrogels that trap the 

molecules of interest within networks can be employed to protect and transport the 

bioactive compounds (CHEN et al., 2006) without modifying the sensorial and 

physicochemical properties of food products. 
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Recent advances in hydrogel microparticles have focused on finding more 

biocompatible, non-toxic material intended for pharmaceutical, biomedical or food 

applications (MUHAMAD et al., 2011). Hydrogels formed from polysaccharides, such as 

carrageenan, are good candidates for drug or bioactive delivery systems due to their 

nontoxicity and good gelling ability, thermo reversibility of the gel network and appropriate 

viscoelastic properties. The encapsulation of oil with bioactives can be an alternative for 

protecting hydrophobic compounds (CHAN, 2011), and an amphiphilic molecule or 

surfactant should be added to stabilize the oil-water interface. 

The first step of this encapsulation process normally includes the emulsification of 

the oil into the encapsulation matrix material. In this case, the encapsulation efficiency is 

dependent on the emulsion stability (CHAN, 2011) and the partition coefficient of the 

bioactive compound. In addition, the biopolymeric matrices must be in the size of few 

micrometers and have a spherical shape in order to be incorporated in food systems without 

influencing their texture to do not compromise the consumer satisfaction (ELLIS & 

JACQUIER, 2009). 

Thus, the purpose of this work was to evaluate the feasibility to encapsulate 

tryptophan in sodium caseinate - κ-carrageenan microbeads produced at pH 7 and 3.5 for 

application in products with high water content. The microbeads were produced by the 

extrusion of multilayered emulsions into a KCl solution. The influence of κ-carrageenan 

concentration on the microbead morphology, as well was the encapsulation efficiency, the 

tryptophan release in an aqueous solution and the rheology of microbead suspensions were 

studied. 
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6.2. MATERIAL AND METHODS 

6.2.1. Material 

The ingredients used to prepare the systems were κ-carrageenan, gently supplied by 

CPKelco (Atlanta, USA), casein (Sigma-Aldrich Co., St. Louis, USA), soybean oil (Bunge 

Alimentos S.A., Brazil), potassium chloride P.A. (Labsynth, Diadema, Brazil) and L-

tryptophan (Sigma-Aldrich Co., St. Louis, USA). All other reagents were of analytical 

grade. 

 

6.2.2. Preparation of stock solutions 

The sodium caseinate (Na-CN) stock solution (10% w/v) was prepared by 

dispersing casein in deionized water for 3 hours using a magnetic stirrer. The pH of the 

solution was constantly adjusted to 7 using 10 M NaOH. κ-Carrageenan stock solution (3% 

w/v) was prepared by dissolving the powder in deionized water, followed by heat treatment 

at 90°C for 60 min with magnetic stirring and subsequent cooling to room temperature. The 

pH of κ-carrageenan solution was adjusted to 7 using HCl. The two solutions were then 

diluted in order to prepare the emulsions. 

 

6.2.3. Preparation of primary emulsion 

A primary oil-in-water (O/W) emulsion was prepared at 25°C by pre-mixing the 

soybean oil containing or not (unloaded) tryptophan with a Na-CN aqueous solution using 

an Ultra Turrax model T18 (IKA, Germany) for 4 min at 14,000 rpm, followed by 

homogenization at 30 MPa / 5 MPa using a Panda 2K NS1001L double-stage homogenizer 
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(Niro Soavi, Italy). The oil, Na-CN e tryptophan concentrations in the primary emulsions 

were fixed in 20% (v/v), 0.25% (w/v) and 0.5% (w/v), respectively. 

 

6.2.4. Microbeads 

6.2.4.1. Production of unloaded microbeads 

Secondary (or multilayered) O/W emulsions were prepared by mixing the primary 

emulsion without tryptophan to solutions containing different concentrations of κ-

carrageenan using magnetic stirring for 1 hour. The multilayered emulsions showed final 

composition of 10% (v/v) soybean oil, 0.25% (w/v) sodium caseinate and 0.5 – 1.5% (w/v) 

κ-carrageenan. Part of these emulsions was adjusted to pH 3.5 using HCl. 

Unloaded (without tryptophan) microbeads were prepared by external gelation. 

Multilayered emulsions were extruded from an atomizer nozzle (1.2 mm diameter) into a 

0.4% (w/v) KCl solution at room temperature. For the atomization process, the height from 

the atomizer nozzle to the KCl solution was fixed at 50 cm, the feed flow rate was fixed as 

the minimum (0.2 L/h), while the compressed air flow rate at the nozzle was fixed at the 

maximum as possible (0.12 m3/h), avoiding the splash of the salt solution out of the 

container. The gelled particles were maintained in the salt solution for 30 minutes (CHAN 

et al., 2009) and then filtered through a sieve with opening of 0.053 mm. The microbeads 

were stored at 10°C and the microstructure and particle size distribution were evaluated. 

 

6.2.4.2. Production of microbeads containing tryptophan 

κ-Carrageenan solution (3% w/v) was mixed to the primary emulsion containing 

tryptophan (section 6.2.3) using magnetic stirring for 1 hour and the pH was kept at 7.0 or 
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adjusted to pH 3.5. The final composition of the secondary emulsions was 0.25% (w/v) 

tryptophan, 10% (w/v) soybean oil, 0.25% (w/v) Na-CN and 1.5% (w/v) κ-carrageenan. 

Such emulsions were extruded according to section 6.2.4.1, resulting in the microbeads 

containing the encapsulated tryptophan. 

 

6.2.5.  Evaluation of microbeads 

6.2.5.1. Optical microscopy 

The morphology of the microbeads was evaluated by optical microscopy using a 

Scope.A1 microscope (Carl Zeiss, Germany) with a 10× objective lens. For this, the 

microgels were poured onto microscope slides and carefully covered with glass cover slips. 

At least 10 images were obtained for each sample. 

The shape of the microgels was determined from image analysis. Measurements of 

the maximum (Fmax) and minimum (Fmin) Feret diameters were carried out for each particle, 

with a total of 400 particles per sample. The aspect ratio (AR) was obtained from the 

relation between Fmax and Fmin (Equation 6.1). 

34 = 56�7
5689

 (6.1) 

 

6.2.5.2. Particle size analysis 

Particle size analysis was carried out using 0.4% (w/v) KCl solution as dispersion 

medium (particle concentration of ~0.005% wt) using a Malvern Mastersizer 2000 

(Malvern Instruments Ltd., UK). The size of particles was determined as the volume-

surface mean diameter (d32 = Σnidi
3/Σnidi

2), where ni is the number of microgel of diameter 

di. The particle size measurements were reported as the average and standard deviation of 
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measurements made on microbeads, with three readings made per sample. Particle size 

distribution was displayed in terms of volume fraction versus particle size. 

 

6.2.5.3. Confocal scanning laser microscopy (CSLM) 

Fluorescein-5-isothiocyanate (FITC) was used for the covalent labeling of κ-

carrageenan, following the method described by Heilig et al. (2009). 20 mL DMSO and 80 

µL pyridine were mixed with 1 g κ-carrageenan and stirred at room temperature for 30 

minutes. After the addition of 0.1 g FITC and 40 µL dibutyltin dilaurate, the mixture was 

incubated for 3 h in a 95°C water bath and, finally, cooled down to room temperature. The 

resulting gel was then minced, washed with ethanol 99.6% and dried at 65°C. The 

covalently labeled κ-carrageenan powder was dissolved and used to prepare the 

polysaccharide solution. Sodium caseinate solution was stained using a fluorescent dye 

Rhodamine B. The protein and polysaccharide labeled solutions were then used to prepare 

the emulsions and microbeads for confocal analysis as described in the sections 6.2.3 and 

6.2.4.2, respectively. 

Samples were examined in a Zeiss LSM 780-NLO confocal on an Axio Observer 

Z.1 microscope (Carl Zeiss AG, Germany) using a 40 × objective. Images were collected 

using 488 and 543 nm laser lines for excitation of FITC and Rhodamine B fluorophores, 

respectively, with pinholes set to 1 airy unit for each channel, 1024×1024 image format. 

Images were taken in the middle of the height of the samples. 
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6.2.5.4. Determination of tryptophan solubility 

The solubility of tryptophan in soybean oil was determined. For this, different 

concentrations of tryptophan (between 0.5 and 10% w/v) were dispersed in soybean oil 

using magnetic stirring and application of ultrasound during 30 minutes. After this, the 

solution were visually examined and the presence or not of a precipitate was checked. 

 

6.2.5.5. Quantification of tryptophan 

The tryptophan content was spectrophotometrically determined using the 

methodology described by Spies (1967). 9 mL of 21.2 N surfuric acid was mixed to 30 mg 

of p-dimethylaminobenzaldehyde and 1 mL of sample and placed in the dark at 25°C for 6 

hours. Then, 0.1 mL of 0.045 % (w/v) sodium nitrite was added. After 30 minutes, 

absorbance was read at 590 nm using the spectrophotometer SQ-2800 (UNICO, USA). In 

order to quantify the amount of tryptophan, a calibration curve was constructed using 

solutions with known tryptophan concentrations between 10 and 80 µg/mL. 

 

6.2.5.6. Encapsulation efficiency and release of tryptophan from microbeads 

Encapsulation efficiency (EE%) was calculated from the relation between the 

encapsulated tryptophan and tryptophan initially added to the microbeads. The amount of 

encapsulated tryptophan was determined by the dissolution of 1g microbeads in 25 g 

deionized water using magnetic stirring during 1 h, followed by the quantification of 

tryptophan as described in the section 6.2.5.5. 

The release measurements were carried out according to methodology described by 

Alvim and Grosso (2010), with modifications. For this, 0.4 g microbeads were dispersed in 

5 mL of 0.75% KCl solution in several glass tubes. This dispersing medium was used to 
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maintain the microbeads stable in order to simulate the application of microbeads in a 

product with high water content. The tubes were covered and placed on a shaker at 

approximately 90 rpm and 20°C. After 5, 10, 20, 30, 60, 120, 180, 240 and 360 minutes, 

one tube of each sample was filtered and the liquid containing the released tryptophan was 

evaluated as described in the section 6.2.5.5. The release was expressed as a percentage of 

the released tryptophan determined in the filtrate by the total amount of tryptophan in the 

microbead. 

 

6.2.5.7. Rheological measurements of the suspensions 

The rheological properties of the suspensions (10%, 20%, 40% and 60% microbeads 

(w/w) dispersed in 0.75% (w/v) KCl solution were evaluated. A modular compact 

rheometer Physica MCR301 (Anton Paar, Austria) with a parallel plate geometry (50 mm) 

and 2 mm gap was used for the measurements. Flow curves were obtained by an up-down-

up steps program with the shear rate varying between 0 and 300 s-1. All measurements were 

performed in triplicate at 25°C. 

 

6.3. RESULTS AND DISCUSSION 

6.3.1. Characterization of unloaded microbeads 

The effect of κ-carrageenan concentration on the microstructure and particle size 

distribution of microbeads containing 10% (v/v) soybean oil and 0.25% (w/v) Na-CN at pH 

7.0 and 3.5 is shown in Figure 6.1. The microscopic images show that microbeads produced 

from extrusion of multilayered emulsions were composed by small oil droplets recovered 

by the gelled biopolymers. The increase of κ-carrageenan in the microbeads from 0.5% to 
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1.5% promoted the formation of bigger and more spherical microbeads for both pH values 

(Figure 6.1). The evaluation of particle size distribution showed a monomodal distribution 

for most of the systems, with exception of microbeads containing low κ-carrageenan 

concentrations (0.5% and 0.75% for pH 7 and 0.5% for pH 3.5) that showed bimodal 

distribution (Figure 6.1). For these samples, the mode of first peak was around 1 µm, which 

was correspondent to the mean diameter of oil droplets, indicating the destabilization of 

emulsions during the atomization process. For microbeads that showed monomodal 

distribution, the peak was shifted to lower values as the polysaccharide concentration was 

decreased for microbeads at pH 7.0 and were very similar distribution curves for systems at 

pH 3.5 (Figure 6.1). 
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Figure 6.1. Microstructure of microbeads composed by 10% (v/v) soybean oil, 0.25% (w/v) 

Na-CN and different κ-carrageenan concentrations at pH 7 and 3.5. ( ) 0.5%, ( ) 

0.75%, ( ) 1.0%, ( ) 1.25% and ( ) 1.5% κ-carrageenan. Scale bar = 100 µm. 

 

Table 6.1 shows the mean particle diameter (d32) and the aspect ratio (AR) of the 

microbeads at pH 7 and 3.5. These results confirmed the tendency of microbeads to 

increase the particle diameter, especially at pH 7, and to reduce the aspect ratio with the 

0

2

4

6

8

10

12

0.01 0.1 1 10 100 1000 10000

V
ol

um
e 

(%
)

Diameter (µm)

0

1

2

3

4

5

6

7

8

9

0.01 0.1 1 10 100 1000 10000

V
ol

um
e 

 (
%

)

Diameter (µm)

0

0.1

0.2

0.3

0.4

0.5

0.01 1 100

V
ol

um
e 

(%
)

Diameter (µm)

0

0.1

0.2

0.3

0.4

0.5

0.01 1 100

V
ol

um
e 

 (
%

)

Diameter (µm)

pH 7 pH 3.5 

pH 7.0 

pH 3.5 

0.5% 0.75% 1.0% 1.25% 1.5% 



Capítulo 6 

149 

increase of polysaccharide concentration in both pH values. Systems with low κ-

carrageenan concentration showed very reduced d32 due to the bimodal distribution 

(presence of free oil droplets). On the other hand, the increased size of microbeads at high 

polysaccharide concentrations could be related to the higher biopolymer density, which 

resulted in thicker films at the atomizer nozzle and consequently an increase in the particle 

diameter. The same effect was verified for microgels composed by κ-carrageenan and 

sodium caseinate without oil produced by the same process (Chapter 3). On the other hand, 

the more spherical shape could be associated with the higher surface tension (results not 

shown) and viscosity of the emulsions containing higher κ-carrageenan concentrations 

(Table 6.1). The comparison between the pH values showed that microbeads produced at 

pH 3.5 presented similar aspect ratio than those produced at pH 7 but, at pH 3.5, the 

microbeads showed higher particle diameters. 

 

Table 6.1. Apparent viscosity at 300 s-1 (η 300) of emulsions used to prepare the microbeads, 

mean particle diameter (d32) and aspect ratio of microbeads containing different κ-

carrageenan concentrations at pH 7.0 and 3.5. 

 η 300 (mPa.s) d32 (µm) AR (-) 

κ-Carrageenan (%) pH 7.0 pH 3.5 pH 7.0 pH 3.5 pH 7.0 pH 3.5 

0.5 14.8 ± 0.2 10.7 ± 0.1 30.7 ± 0.2 25.3 ± 2.7 1.98 ± 0.17 1.54 ± 0.13 

0.75 28.4 ± 1.1 14.0 ± 9.4 34.7 ± 0.1 159.9 ± 8.1 1.55 ± 0.08 1.42 ± 0.19 

1.0 50.1 ± 1.2 37.5 ± 1.3 106.5 ± 2.8 176.1 ± 8.1 1.56 ± 0.12 1.50 ± 0.13 

1.25 74.9 ± 1.6 52.5 ± 3.0 121.6 ± 2.9 157.5 ± 5.3 1.39 ± 0.04 1.33 ± 0.17 

1.5 115.7 ± 2.1 123.5 ± 6.1 130.4 ± 2.9 160.9 ± 6.1 1.28 ± 0.12 1.24 ± 0.08 
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From these results, the microbeads composed by 1.5% (w/v) κ-carrageenan at pH 7 

and pH 3.5 were chosen to the following steps of this work due to their more spherical 

shape (Figure 6.1 and Table 6.1), which would affect less the rheological properties of food 

products. 

 

6.3.2. Microbeads containing tryptophan 

6.3.2.1. Confocal microscopy 

In order to evaluate the interactions between Na-CN and κ-carrageenan in the 

microbeads, particles containing 10% (v/v) soybean oil, 0.25% (w/v) Na-CN, 1.5% (w/v) 

κ-carrageenan and 0.25% (w/v) tryptophan were evaluated using confocal scanning laser 

microscopy (CSLM) (Figure 6.2). As Rhodamine B and FITC are specific dyes, Na-CN 

linked to Rhodamine B appear as red regions in the micrographs, while the green areas 

indicate the presence of κ-carrageenan. Figures 6.2A and 6.2D shows only the labeled 

polysaccharide (FITC-channel), Figures 6.2B and 6.2E illustrated the labeled protein 

(Rhodamine B-channel) and Figures 6.2C and 6.2F shows the overlapping images. These 

pictures revealed that the protein was mainly concentrated around the oil droplets for 

microbeads produced in both pH 7 and 3.5 (Figures 6.4B and 6.4E, respectively). However, 

the protein (Na-CN and probably tryptophan) were more concentrated at the external 

surface of microbeads at pH 7 (Figure 6.4C), while the κ-carrageenan was predominant in 

the microbead surface at pH 3.5 (Figure 6.4F). The position of biopolymers into the 

microbeads can be explained by the electrostatic interactions between Na-CN and κ-

carrageenan (Chapter 5). 
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At pH 7, both protein and polysaccharide are negatively charged, resulting in an 

electrostatic repulsion and consequently a micro-phase separation. On the other hand, the 

negatively charged κ-carrageenan is attracted by the positively charged sodium caseinate at 

pH 3.5, resulting in a double layer around the oil droplets (GUZEY & MCCLEMENTS, 

2006). During the atomization process of emulsion at pH 7, the Na-CN-coated oil droplets 

probably migrated to the air-liquid interface and, as the particles come into contact with the 

salt solution, part of protein was dissolved while the potassium ions promoted the gelation 

of polysaccharide simultaneously. On the other hand, when the particles at pH 3.5 came 

into contact with the salt, the potassium ions promoted the gelation of polysaccharide, 

producing the microbeads. As the κ-carrageenan was linked to the sodium caseinate at the 

oil surface, there was lower amount of free polysaccharide in solution and the gelation of 

polysaccharide tended to be slower when compared to the microbeads at pH 7. Thus, there 

was a higher dissolution of microbeads before gelation, which could be related to the higher 

microbead diameter at pH 3.5 when compared to that at pH 7. 
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Figure 6.2. CSLM micrographs of microbeads composed by 10% (v/v) soybean oil, 0.25% 

(w/v) Na-CN and 1.5% (w/v) κ-carrageenan at pH 7: A) FITC-channel, B) Rhodamine B-

channel and C) dual-channel (FITC + Rhodamine B); and at pH 3.5: D) FITC-channel, E) 

Rhodamine B-channel and F) dual-channel (FITC + Rhodamine B). Scale bar = 20 µm. 

 

6.3.2.2. Encapsulation efficiency and release measurements of tryptophan 

The solubility of tryptophan in soybean oil was determined in order to establish the 

affinity of this amino acid to the apolar phase. The dispersion of several tryptophan 

concentrations in oil (Figure 6.3) showed that this amino acid was completely dissolved 

only up to 0.5%, above this concentration it precipitated. During the production of 

emulsions, 2.5% (w/v) tryptophan was added to the oil phase. Thus, it can be considered 

that only 20% of initial amount of tryptophan was solubilized in the oil phase, while the 

others 80% were situated in the aqueous phase or the interface. 
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Figure 6.3. Dispersion of different concentrations of tryptophan in soybean oil 

 

The tryptophan concentrations on the emulsions and microbeads composed by 1.5% 

(w/v) κ-carrageenan at pH 7 and 3.5 were determined using a calibration curve. The 

multilayered emulsions produced at both pH values showed very similar tryptophan 

concentration (~0.33 %) (Table 6.2). In the same way, the pH value did not affect the 

tryptophan concentration in the microbeads and both samples showed ~0.1% tryptophan in 

their composition (Table 6.2). Comparing the initial amount of tryptophan in the emulsions 

with that encapsulated in the microbeads it is possible to verify that a large amount of 

tryptophan was lost during the bead formation and the encapsulation efficiency was very 

low (EE ~29%). This low encapsulation efficiency can be explained by the large pore size 

of the gel matrix, which could not hinder the diffusion of low molecular weight 

compounds, such as the tryptophan, from microbeads during the hardening process with 

potassium chloride. During the production of microbeads, the tryptophan situated in the 

continuous aqueous phase probably leaked out to the hardening solution, while the 

remained was kept dispersed in the oil phase and oil-water interface, protected by the 

protein. Considering the partitioning coefficient (octanol versus water) of tryptophan, the 

encapsulation efficiency should have been even lower due to the higher affinity of this 

molecule to the water phase. Probably, the biopolymer layers at the interface contributed 
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for retaining the tryptophan in the oil phase. As the oil droplets were covered by the protein 

independent on the pH (Figure 6.2), it can explain the similar encapsulation efficiency of 

microbeads produced in different pH values. Azarnia et al. (2008) verified similar 

encapsulation efficiency (EE ~30%) for the encapsulation of recombinant aminopeptidase 

(PepN) in alginate beads produced by extrusion in CaCl2 solution. This EE was improved 

(EE = 79 – 88%) by the addition of 0.1 – 0.2% chitosan to the salt solution, resulting in 

chitosan-coated alginate beads with smaller pores on the bead surface. Other works showed 

that the encapsulation efficiency can be improved by the complexation between two 

different polysaccharides, such as complexes alginate – guar gum (GEORGE & 

ABRAHAM, 2007) and tamarind seed polysaccharide – alginate (NAYAK & PAL, 2011). 

The combination of two polysaccharides probably led to the formation of a network with 

smaller pores that prevented the release of the encapsulated bioactive, which did not occur 

for the protein-polysaccharide complex. 

 

Table 6.2. Concentration of tryptophan on the samples and encapsulation efficiency  

 Sample Tryptophan (%) EE (%) 

pH 7.0 
Emulsion 0.328 ± 0.003 − 

Microbead 0.096 ± 0.004 29.13 

pH 3.5 
Emulsion 0.338 ± 0.018 − 

Microbead 0.100 ± 0.005 29.47 

 

The release measurements of tryptophan from the microbeads were carried out as a 

function of time in a potassium chloride solution (0.75% w/v) in order to simulate their 

application in products with high water content (Figure 6.4). At this salt solution, the 

microbeads were very stable and maintained their size and shape during the storage. The 
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amount of tryptophan released in the salt solution was very small, with maximum of 0.01% 

tryptophan contained in the microbeads. This result reinforced the assumption that the most 

of retained tryptophan was encapsulated in the oil phase and oil-protein interface, while that 

placed in the carrageenan layer was released to the salt solution. Once again the value of 

pH did not influence the tryptophan release from microbeads, showing very similar 

behaviors for both pH (Figure 6.2) since the main difference between the microbeads with 

different pH was in the position of polysaccharide (Figure 6.2). After the storage, almost 

100% of the encapsulated tryptophan remained in the microbeads, which is equivalent to 

100 mg tryptophan per 100 g of microbeads. 

 

6.3.2.3. Rheological properties 

The rheological properties of microbead suspensions were evaluated in order to 

determine the influence of the incorporation of microbeads on the texture of food products 

(Figure 6.4). The flow curves showed different behaviors depending on the volume fraction 

of suspensions. No suspension showed yield stress (σo) or time dependence (thixotropy or 

rheopexy), as verified for κ-carrageenan – sodium caseinate microgels at the highest 

volume fraction (60%) (Chapter 3). These differences could be attributed to the lower 

aspect ratio (higher sphericity) of microbeads containing oil and the lubrication of particle 

motion due to the presence of oil in the microbead surface. With the increase of volume 

fraction, the suspensions tended to show shear thinning behavior and a greater viscosity 

(Figure 6.4). The flow curves were well fitted to power law model and the flow behavior 

index (n), as well as the apparent viscosity at 50 s-1 are shown in Figure 6.5. 
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Figure 6.4. Flow curves of suspensions of microbeads composed by 10% (v/v) soybean oil, 

0.25% (w/v) sodium caseinate and 1.5% (w/v) κ-carrageenan at pH 7.0 and 3.5 in KCl 

solution. Volume fraction: ( ) 10%, ( ) 20%, ( ) 40% and ( ) 60%. 

 

The flow behavior index (n) decreased from ~1.2 (shear thickening behavior) to 

~0.4 (shear thinning behavior) as the volume fraction of suspension was increased from 10 

to 60% (Figure 6.5A). The shear thickening behavior occurred for lower volume fractions 

because the increase in shear rate in these samples led to a greater interaction between the 

particles, causing the increase in dispersion viscosity. This behavior is expected to occur in 

all suspensions (BROWN et al., 2010). However, the increase of volume fraction can result 

in a confinement or flocculation of particles in the suspensions, resulting in a shear thinning 

behavior that hides the shear thickening (BROWN et al., 2010). The values of apparent 

viscosity at 50 s-1 (η50 s
-1) were evaluated (Figure 6.5B) in order to compare the behavior of 

the suspensions at a shear rate typical of chewing (STEFFE, 1996). The evaluation of 

apparent viscosity confirmed the tendency of suspension to become more viscous with the 

increase of volume fraction. Nevertheless, the apparent viscosity of microbead suspensions 
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was very low, indicating that the addition of microbeads exerted small influence on the 

rheological behavior of food products. It occurred due to the reduced size and high 

sphericity of microbeads (Figure 6.1). The maximum apparent viscosity at 50 s-1 (volume 

fraction = 60%) was around 0.030 and 0.025 Pa.s, which is still relatively low when 

compared to some food products. This range of apparent viscosity can be compared to 

some fruit juices, such as mango (η50 s
-1 = 0.03 Pa.s) (DAK et al., 2007) and pineapple juice 

(η50 s
-1 = 0.024 Pa.s) (SHAMSUDIN et al., 2009). However, Krasaekoopt and Kitsawad 

(2010) observed that the addition of 10% (w/w) alginate beads containing encapsulated 

probiotic into orange and grape juices affected their turbidity and the swallow ability of 

potential consumers. These beads showed mean diameter around 100-200 µm, which was 

similar than the microbeads containing 1.5% (w/v) κ-carrageenan in the present work. 

Thus, it can be concluded that although the addition of 60% microbeads exert small 

influence on the viscosity of solution, the sensorial properties are affected with only 10% 

beads. It is also interesting to note that the influence of beads on sensory attributed is lower 

for products with higher viscosity or thicker texture, such as yoghurt (KRASAEKOOPT & 

KITSAWAD, 2010). 
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Figure 6.5. Flow behavior index and relative viscosity at 50 s-1 as a function of volume 

fraction of microbead suspensions. 

 

6.4. CONCLUSIONS 

The viability to encapsulate tryptophan in Na-CN - κ-carrageenan microbeads for 

application in high moisture products was assessed. The encapsulation efficiency of 

tryptophan was quite low (~30%). This was attributed to the high porosity of the gels, 

which resulted in tryptophan leakage during the beads production. Nevertheless, the 

biopolymer layer at the interface contributed for retaining the tryptophan in the oil phase, 

since the leakage of this compound in aqueous solution (0.75% KCl) was negligible 

(0.01%) over 1 day. Therefore, gelled microbeads are not the suitable technology for 

encapsulating tryptophan. In fact, we can conclude that the best technology to encapsulate 

tryptophan should be designed considering the Retrodesign approach as described by Braga 

and Ubbink (2012). Following this approach we would probably have predicted the low 

encapsulation efficiency. One should also think ahead about the characteristics of the final 

product, since we have seen during this work that the beads made of carrageenan are only 
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stable in solutions with minimum 0.75% KCl. Considering future applications, we can 

imagine the Na-CN - κ-carrageenan microbeads system being used to encapsulate 

nutraceuticals with higher molecular weight and showing higher oil solubility and affinity. 

Nevertheless, if the nutraceutical needs to be stabilized, e.g. oxidation, one should still 

investigate if the biopolymer interfacial layer is adequate for the requirements.  

Our rheological data have shown a slight increase of overall viscosity up to 40% 

particles in KCl solution. Nevertheless, not only the rheological data should be considered 

for evaluating the feasibility of particles addition in food products. The particles produced 

had a mean size between 100-200 micrometers, which in principle could be perceived in 

mouth. Previous study done by Krasaekoopt and Kitsawad (2010) has shown that the 

addition of 10% of 200 µm probiotics beads to fruit juices affects its turbidity and the 

swallow ability of potential consumers. Therefore, we can suggest applying up to 10% of 

the Na-CN - κ-carrageenan microbeads with other hydrophobic nutraceutical in salty, 

turbid and viscous products. 
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O presente trabalho mostrou que microgéis puderam ser produzidos com sucesso a 

partir de soluções ou emulsões multicamadas contendo caseinato de sódio e κ-carragena 

através da extrusão em solução salina. As principais conclusões obtidas neste trabalho estão 

enumeradas a seguir: 

1) Emulsões multicamadas 

A partir do estudo das emulsões multicamadas foi possível avaliar a interação 

proteína – polissacarídeo na interface óleo-água. Em pH 7, a κ-carragena foi fracamente 

adsorvida na superfície das gotas, já que tanto a proteína quanto o polissacarídeo estavam 

carregados negativamente. Assim, o aumento na concentração de κ-carragena levou ao 

aumento na concentração de polissacarídeo livre na fase aquosa, o que promoveu a 

floculação por depleção. Por outro lado, a κ-carragena carregada negativamente foi 

fortemente adsorvida na superfície das gotas cobertas pela proteína carregada positivamente 

em pH 3,5. Neste caso, as emulsões apresentaram floculação por ponte (bridging 

flocculation) nas menores concentrações de polissacarídeo e completa cobertura das gotas 

em elevadas concentrações de κ-carragena. Na maior concentração de κ-carragena (1% 

m/v), as emulsões foram estáveis em ambos os valores de pH devido ao aumento da 

viscosidade da fase contínua. A partir desses resultados, concluiu-se que os complexos 

eletrostáticos proteína-polissacarídeo produzidos nessa concentração de κ-carragena foram 

eficientes na estabilização das emulsões, inclusive em valores de pH próximos ao ponto 

isoelétrico da proteína. Estas emulsões estáveis puderam ser utilizadas para a produção de 

sistemas de encapsulação. 

2) Produção dos microgéis / microesferas 

Com relação ao processo de extrusão, a morfologia e o tamanho das partículas 
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formadas foram influenciados por: 1) vazão de alimentação, 2) vazão de ar comprimido, 3) 

diâmetro de saída de fluido do bico atomizador, 4) distância entre o bico atomizador e a 

solução salina e 5) viscosidade, tensão superficial, composição e pH das soluções 

biopoliméricas. Os resultados mostraram que o aumento na vazão de ar comprimido e a 

redução na vazão de alimentação, diâmetro de saída de fluido e viscosidade da solução 

polimérica promoveram a formação de microgéis menores. Entretanto, o aspect ratio das 

partículas foi principalmente influenciado pela tensão superficial das soluções e pela 

distância entre o bico atomizador e a solução salina, sendo que maiores tensões superficiais 

e maiores distâncias levaram à formação de partículas mais esféricas. A composição de 

biopolímeros também afetou a morfologia dos microgéis devido à interação entre proteína e 

polissacarídeo. No caso das soluções aquosas, microgéis mistos (κ-carragena / Na-CN) 

foram maiores do que os puros (κ-carragena) provavelmente devido à incompatibilidade 

entre proteína e polissacarídeo. Já para as emulsões, microesferas foram maiores quando 

produzidas em pH 3,5, o que pode ser atribuído ao aumento da espessura da membrana 

interfacial durante a gelificação das partículas, o que não ocorreu para as microesferas 

produzidas em pH 7. 

Com relação à estabilidade, os microgéis / microesferas foram altamente instáveis 

quando dispersos em água, porém mantiveram seu formato quando diluídos em soluções 

salinas (> 0,75% KCl para as microesferas e > 10% KCl para os microgéis). Além disso, as 

microesferas preparadas em pH 3,5 foram mais estáveis do que aquelas preparadas em pH 7 

quando diluídas em água e soluções de sacarose, o que pode ser atribuído à maior interação 

eletrostática entre os biopolímeros nessa condição. A avaliação da reologia das suspensões 

de microgéis em solução salina mostrou que diferentes comportamentos reológicos podem 
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ser obtidos dependendo da fração volumétrica e do tamanho e formato das partículas. 

Suspensões contendo microgéis grandes e com formato irregular apresentaram 

comportamento de fluidos complexos com a presença de tensão residual quando utilizadas 

as maiores frações volumétricas (40 e 60%). Já as suspensões contendo partículas menores 

e mais esféricas apresentaram comportamento variando desde dilatante até pseudoplástico 

com o aumento na fração volumétrica. As suspensões de microesferas, em especial, 

apresentaram relativamente baixas viscosidades mesmo nas maiores frações volumétricas. 

3) Aplicação das microesferas para encapsulação do triptofano 

Após o estudo do processo de fabricação dos microgéis / microesferas, estes foram 

testados com relação à encapsulação de triptofano. A eficiência de encapsulação do 

triptofano nas microesferas foi baixa (~30%), o que pode ser atribuído ao elevado tamanho 

dos poros da rede de gel que não impediu a difusão deste aminoácido. O triptofano que 

permaneceu encapsulado provavelmente estava localizado no óleo e na interface óleo-água, 

o que explica o mesmo valor de eficiência de encapsulação obtido para as microesferas 

produzidas nos diferentes valores de pH. Apesar da baixa eficiência de encapsulação, a 

quantidade de triptofano liberada durante a estocagem em solução aquosa (0,75% KCl) foi 

muito baixa (~0,01%), o que indica a elevada estabilidade das microesferas nessas 

condições. 

Neste exemplo de aplicação, observou-se que o processo de encapsulação utilizado 

não foi o mais adequado para encapsulação do triptofano. O processo apropriado para a 

encapsulação do triptofano poderia ser definido através da metodologia do “Retro-Design”. 

Nesta metodologia primeiramente define-se o produto que se deseja adicionar as 

microcápsulas e o local de liberação do composto encapsulado, para depois decidir os 

materiais e o processo de encapsulação a serem empregados, sendo um método pensado de 
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forma oposta àquela utilizada neste trabalho. No entanto, as microesferas produzidas a 

partir da gelificação iônica de emulsões multicamadas podem ser uma alternativa 

promissora para a encapsulação de outros compostos bioativos hidrofóbicos. 


