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RESUMO 

A nanofiltração é um processo com membrana por diferença de pressão, enolvendo também 

mecanismos de sorção e difusão, que pode ser aplicado na etapa de concentração do caldo 

clarificado na produção de ácido clavulânico. No presente trabalho, o ácido clavulânico foi 

concentrado, avaliou-se a eficiência do processo e estudaram-se os parâmetros envolvidos na 

transferência de massa e aplicados ao modelo matemático SEDE-VCh, assim como avaliou-se a 

ampliação de escala do processo. Esse estudo foi dividido nas seguintes etapas: seleção e 

caracterização das membranas; aplicação do modelo matemático, nos quais foram realizados 

experimentos para avaliar o desempenho das membranas NF e NF90 (ambas da FilmtecTM), e 

NP010 e NP030 (ambas da Microdyn Nadir®); ampliação de escala do processo, na qual a 

membrana que apresentou os melhores resultados nas etapas anteriores foi utilizada. Quanto à 

seleção da membrana, as respostas avaliadas foram o coeficiente de retenção, a produtividade e o 

fator de purificação. Na etapa de caracterização da membrana, foi avaliada a morfologia de 

superfície das quatro membranas, obtendo-se o tamanho e a distribuição de poros, a rugosidade, a 

dimensão fractal e a permeabilidade das mesmas, além de estudos que forneceram dados referentes 

aos efeitos estéricos e elétricos sobre o transporte através das membranas, como suas densidades 

superficiais e volumétricas de carga, a concentração do soluto nas suas superfícies externas e o 

coeficiente de transferência de massa do processo. A partir desses dados foi gerado um modelo para 

explicar o transporte através das membranas. Por fim foram feitos experimentos para verificar o 

comportamento do processo em uma escala piloto. Os resultados obtidos demonstram que a 

membrana NF é a melhor para o processo de concentração de ácido clavulânico com coeficiente de 

retenção médio de 0,988 em escala de bancada e aproximadamente 1,0 em escala piloto. As quatro 

membranas apresentaram raios de poro inferiores a 1 nm e ponto isoelétrico em pH entre 5 e 6. A 

membrana NP010 apresentou maior permeabilidade à água, e as demais na seguinte ordem: NP010 

> NP030 > NF > NF90. Esse parâmetro se relaciona de forma linear com o diâmetro médio de 

poros e sua redução aumenta com a diferença entre a dimensão fractal antes e depois do uso das 

membranas. Foi possível verificar também que em altas adsorções a rugosidade das membranas 

tendem a ser similares. A membrana NF90 apresentou um maior coeficiente de transferência de 

massa, seguido da NF, NP010 e NP030, nessa ordem, sendo que a rejeição variou com o pH para as 

membranas NF e NF90. A constante dielétrica dentro dos poros aumenta inversamente ao tamanho 

médio dos poros das membranas até quando a mesma atinge o valor da água livre. A seletividade da 

membrana ao KCl e ácido clavulânico apresenta a mesma tendência da densidade volumétrica de 
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cargas: NF > NF90 > NP030  NP010. Com os estudos de ampliação de escala foi possível 

determinar que o sistema convencional que simula o processo de fluxo tangencial pode ser usado 

em outros estudos de avaliação de processos e de seleção de membranas visando à aplicação 

industrial, e que peptídeos e aminoácidos podem atuar melhorando o processo de concentração de 

ácido clavulânico por nanofiltração. A produtividade final obtida foi de até 6.4 [CA]RET/[CA]0.L.h. 



SUMMARY 
 

xix 
 

SUMMARY 

Nanofiltration is a pressure driven membrane process, with desorption and diffusion, which is also 

applied to the concentration of clavulanic acid from a clarified juice. In this study, clavulanic acid 

was concentrated, and the process had its efficiency evaluated and its mass transfer parameters 

studied and applied to the mathematical model SEDE-VCh, and in addition scale up was also 

evaluated. This study was divided into the following stages: selection and characterization of the 

membranes, and the application of the model, in which experiments were performed to evaluate the 

performance of the NF and NF90 membranes (both FilmtecTM), and NP010 and NP030 (both 

Microdyne Nadir®), and the scale up of the process, in which the membrane that showed the best 

results in the previous steps was used. Concerning the selection of the membrane, the evaluated 

responses were the retention coefficient, productivity and purification factor. In the characterization 

of the membrane step, we evaluated the surface morphology of the four membranes, targeting the 

pore size and pore size distribution, roughness, fractal dimension and permeability, in addition to 

studies that provided data on the electrical and steric effects over the transport through the 

membranes, as their surface and volumetric density charges, the concentration of solute in its 

external surfaces and the mass transfer coefficient of the process. From these data a model was 

created to explain the transport through the membranes. Finally experiments were carried out to 

verify the behavior of the process in a pilot scale. The results showed that the NF membrane is best 

for the process of concentration of clavulanic acid with retention coefficient average of 0.988 in 

bench scale and almost 1.0 in the pilot plant. All the four membranes had pore radii below 1 nm and 

an isoelectric point between pH 5 and 6. The NP010 membrane showed the higher water 

permeability, in the following order: NP010 > NP030 > NF > NF90. This parameter is related 

linearly with the average pore size and its reduction increases with the difference between the 

fractal dimension before and after the use of the membranes. It was also verified that at high 

adsorption the roughness of the membranes tends to be similar. The NF90 membrane showed a 

higher mass transfer coefficient, followed by NF, NP010 and NP030, in that order and the rejection 

varied with the pH for the NF and NF90 membranes. The dielectric constant inside the pores 

increases inversely with pore size of the membranes even when it reaches the value of free 

water. The selectivity of the membrane to KCl and clavulanic acid shows the same trend as the 

volumetric density charge: NF > NF90 > NP030  NP010. By means of the studies of scale up it 

was determined that the conventional system with a stirrer that promotes the convection movement 

in the process can be used in other studies of process evaluation and selection of membranes in 
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view of industrial application, and also that peptide and mino acid substances improve the 

process concentration of clavulanic acid by nanofiltration. The final productivity was about 6.4 

[CA]RET/[CA]0.L.h.  
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1. INTRODUÇÃO GERAL 

 

O ácido clavulânico (AC) é um inibidor da enzima β-lactamase, sua utilização combinada 

com penicilinas sensíveis à β-lactamase protege o anel β-lactâmico do antibiótico à hidrólise 

(Bersanetti et al., 2005; Cavaco Morão et al., 2006a). O ácido clavulânico é produzido 

industrialmente via fermentação por Streptomyces clavuligerus, e apresenta baixos rendimentos em 

seu processo de produção, particularmente na etapa de separação e purificação, devido à sua 

instabilidade térmica e sensibilidade a variações de pH (Almeida et al., 2003; Bersanetti et al., 

2005). Aliado a sua baixa concentração em meio fermentado, esta característica obriga a realização 

de estudos das etapas de extração e purificação, considerando-se a sua cinética de degradação. 

Atualmente diversos bioprodutos de alto valor agregado são produzidos por via fermentativa, 

trazendo novos desafios para os processos de recuperação e purificação industrial. A ultrafiltração 

(UF) tem se mostrado um processo eficiente na separação de biomassa e ácido clavulânico 

originários do caldo fermentado, através da qual um permeado livre de proteína contendo ácido 

clavulânico é obtido. Faz-se então a concentração desses permeados (caldo clarificado) por 

nanofiltração (Brites Alves et al., 2002; Cavaco Morão et al., 2006a). 

O transporte durante a nanofiltração é influenciado por diferentes mecanismos: convecção, 

devido à diferença de pressão aplicada sobre a membrana, difusão, devido ao gradiente de 

concentração através da membrana e, finalmente, efeitos de carga, devido à repulsão eletrostática 

entre a membrana carregada e um componente orgânico carregado (Szymczyk et al., 2003; Wang et 

al., 1997; Szymczyk & Fievet, 2005). Verificam-se, ainda, efeitos nas interfaces da membrana, 

como o equilíbrio de Donnan, a exclusão dielétrica e efeitos estéricos. A retenção de compostos 

orgânicos é então determinada pela diferença de propriedades da membrana, pela massa molecular 

de corte (MWCO) e pela carga da membrana, além das propriedades dos componentes, sua massa 

molecular, hidrofobicidade e constante de ionização (Braeken et al., 2006). 

Estudos sobre a morfologia da superfície da membrana podem explicar os processos de 

separação nessas membranas pelas características da estrutura do poro (diâmetro, densidade e 

distribuição de tamanho de poros) e determinar suas propriedades filtrantes. A microscopia de força 

atômica permite a obtenção de imagens topográficas da superfície da membrana em uma resolução 

de nível atômico, o que torna a técnica atrativa aos pesquisadores interessados nas propriedades 

superficiais da membrana nanofiltrante (Hilal et al., 2004). 
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O potencial zeta de materiais porosos é usualmente avaliado através de experimentos 

eletrocinéticos, como a medida do potencial elétrico, porque é uma técnica simples e muito sensível 

ao se variar a concentração de soluções diluídas (Martín et al., 2003). Entre os dois métodos de 

medida de potencial elétrico que podem ser usados, ao longo e através das membranas, as medidas 

ao longo da superfície da membrana transpassam as dificuldades de interpretação dos dados 

eletrocinéticos devido aos pequenos tamanhos de poro e à anisotropia dessas membranas (Cavaco 

Morão et al., 2006b). 

Dentre os modelos existentes utilizados em processos de nanofiltração, destaca-se o modelo 

homogêneo SEDE-VCh (estérico, elétrico e exclusão dielétrica, abreviação em inglês). Esse modelo 

apresenta uma boa descrição das propriedades de transporte em membranas carregadas, como 

proposto inicialmente por Bowen & Welfoot (2002) e recentemente modificado considerando as 

variações de cargas dentro das membranas por Silva (2010), pois leva em conta também a exclusão 

dielétrica nas interfaces (Szymczyk & Fievet, 2005; Szymczyk et al., 2006). 

No presente trabalho foi proposta uma discussão mais aprofundada dos fenômenos 

envolvidos no processo de purificação e concentração de ácido clavulânico por nanofiltração, com 

um estudo mais completo que o disponível na literatura sobre a caracterização das membranas 

utilizadas. Para tanto a tese foi dividida em cinco capítulos, uma revisão sobre o tema, dois 

capítulos sobre caracterização das membranas, um sobre a seleção da membrana mais apropriada e 

um sobre a ampliação da escala do processo. 
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2. OBJETIVO 

 

Desenvolver um protocolo que descreva a etapa de purificação e concentração de ácido 

clavulânico por nanofiltração. A solução resultante, contendo o ácido clavulânico, deverá ser 

suficientemente concentrada para permitir seu isolamento nas etapas posteriores do processo.  

 

2.1.  Objetivos específicos 

 

• Selecionar a melhor membrana para concentrar o ácido clavulânico (AC), dentre as quatro 

avaliadas nesse estudo. 

• Caracterizar as membranas morfologicamente antes e após seu uso em um microscópio de 

força atômica. 

• Estudar os efeitos estéricos e eletrostáticos no transporte através da membrana para a 

caracterização eletrocinética da mesma. 

• Definir os parâmetros envolvidos no modelo adequado ao processo e simular o processo a 

fim de ajustar o modelo e avaliar o desempenho deste. 

• Ampliar a escala de estudo do processo da bancada para uma planta piloto. 

• Otimizar o processo em relação à retenção de ácido clavulânico, sua produtividade e 

seletividade do ácido clavulânico em relação aos outros compostos obtidos durante a 

fermentação e etapas anteriores de separação. 
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Abstract 

 

In the present work is discussed the nanofiltration process, focusing its morphology, electrical and 

functional characterization, the use of the SEDE-VCh (steric, electric and dielectric exclusion) 

model to predict its performance, and the application to purify and concentrate clavulanic acid. The 

scale up of this process from a laboratorial scale to a pilot plant is also assessed. It is also the 

intention of this article to discuss the state-of-art of scientific research related to the nanofiltration 

process. 

 

Keywords: nanofiltration, membrane, characterization, clavulanic acid, scale up 
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1.  Introduction 

 

Currently, several high-value bioproducts are being produced by fermentation, bringing new 

challenges for the recovery and purification processes. Ultrafiltration (UF) processes are an efficient 

way of separating the biomass from the CA fermentation broth, producing a free protein permeate 

containing CA, which can be subsequently concentrated using nanofiltration membranes [2,4,5]. 

The transport in the nanofiltration process is influenced by different mechanisms, such as 

convection, due to the transmembrane pressure, diffusion, because of the concentration gradient 

through the membrane and finally the charge effects, due to the electrostatic repulsion between the 

charged membrane and a charged organic compound [6-8]. Some effects in the membranes 

interface are also noticed, as the Donnan equilibrium, the dielectric exclusion and steric effects. 

Retention of organic compounds is therefore determined by different membrane properties, e.g. 

molecular weight cut-off (MWCO) and membrane charge, and compound properties, e.g. molecular 

weight, hydrophobicity and ionization constant [9]. 

Between the existent models used in nanofiltration process, the SEDE-VCh (steric, electric 

and dielectric exclusion) model can be noteworthy. This model presents a good description of 

transport properties in charged membranes proposed initially by Bowen & Welfoot [10] and 

recently modified in order to include a more realistic situation that includes the variation of the 

charge inside the membrane Silva [11]. The model also includes the dielectric effects in the 

interfaces proposed by Szymczyk et al. [8,12]. 

Clavulanic acid (CA) is a β-lactamase inhibitor, used in combination with β-lactamase 

sensitive penicillins, to protect the β-lactam ring of the antibiotic against hydrolysis [1,2]. CA is 

produced industrially by fermentation using Streptomyces clavuligerus, and presents low yields in 

the production process, particularly in the separation and purification step, due to its thermal 

instability and sensitivity to changes in pH [1,3]. Associated with its low concentration in the 

fermented broth, studies on its extraction and purification have to consider the kinetic degradation 

of CA, in order to minimize losses and maximize recovery yields and productivity. 
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2.  ββββ-lactam antibiotics 

 

Nowadays, more and more high-value bioproducts are produced by fermentation bringing 

new challenges to industrial purification and recovery steps, which must count not only for the 

labile nature of most of these molecules but also for the economy of the process [13]. Some of these 

bioproducts of commercial interests are the antibiotics, such as the β-lactam antibiotics. 

The use of antibiotics to control infectious diseases is greatly hindered by this kind of 

resistance. A variety of Gram-positive and Gram-negative pathogenic bacteria exhibit an antibiotic 

resistance mechanism based on their ability to produce β-lactamases, which deactivate penicillins 

and cephalosporins by hydrolyzing their β-lactam ring [13]. 

Likely the first antibiotic resistance mechanism reported in the literature was the production 

of penicillinase by pathogenic Escherichia coli. Since then, the study of the β-lactamases has been 

intense, and there are numerous reviews and monographs that confer the details of this broad family 

of enzymes [14]. Therefore, such kind of inhibitors is of a great clinical importance. Some β-

lactams antibiotics are shown in the Table 1. 

Those inhibitors, which are also β-lactams antibiotics, are produced through fermentation as 

secondary metabolites; or semi-synthetic, produced naturally with some radicals modified through 

induced chemical reactions, and are concomitantly used to the antibiotics sensible to β-lactamase, 

protecting their β-lactam ring against the action of the β-lactamases produced by the bacteria. 
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Table 1 – β-lactams antibiotics, its structure and producers microorganisms 

Basic chemical structure Antibiotics Mainly producers microorganisms 

Penam 

N

S CH
3

CH
3

COOHO

CNH

O

R

 

Penicillins 

Penicillium chrysogenum 

Aspergillus nidulans 

Cephalosporium acremonium 

Streptomyces clavuligerus 

Ceph-3-em 

O

CNH

O

R

N

S

CH
2
R

COOH

R

 

Cephalosporins 
Cephalosporium acremonium 

Norcadia lactamdurans 

Clavam 

N

O R

RO  

Clavulanic acid 
Streptomyces clavuligerus 

Carbapenem 

N

O R
+

O COOH

R

 

Thienamycins 

Olivanic acids 

Streptomyces cattleya 

Streptomyces olivaceus 

Monolactam 

N
O

R

SO
3
H

CNH

O

R

 

M onobactams 

Glunobacter sp. 

Pseudomonas acidophila 

Acetobacter sp. 

CNH

O

R

N
O

COOHH

OH

 

Norcadicins Norcadia uniformis 

Source: Almeida et al. [15] 
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2.1.  Clavulanic acid 

 

Clavulanic acid (CA) is a compound produced by Streptomyces clavuligerus, and it consists 

of a β-lactam ring fused to an oxozilidine ring [16]. It shows weak antibacterial activity against 

most bacteria, but is a potent inhibitor of a wide range of β-lactamase and is able to potentiate the 

antibacterial activity of penicillins and cephalosporins against many β-lactamase-producing 

resistant bacteria [17]. It is currently used in combination with amoxicillin or other semi-synthetic 

penicillins for the treatment of infections caused by β-lactamase-producing bacteria, in that way it 

increases the resistance of these antibiotics to the action of the β-lactamase over the β-lactam ring. 

It is known that the CA in its natural presentation is chemically instable to large pH and temperature 

variations and that it does not present any strongly hydrophobic group. This instability sharpens at 

temperatures superior to 30 ºC and pH values higher than 7.5 and lower than 4.5 [1,18]. 

The combination CA/amoxicillin presents a broad antibacterial spectrum, which have been 

used over 20 years and it is still commonly used nowadays [19]. The CA separation and purification 

process involves several steps, such as centrifugation and filtration, with recovery of the cell mass 

and techniques of extraction and adsorption to posterior antibiotic purification. 

 

3.   Purification of biotechnology products 

 

The use of membranes in purification steps of biotechnological products surpasses the 

limitations of traditional techniques and their use in this field has shown a great increase in the last 

years [13]. This stage involves one, two or three operations in sequence, depending on the case. 

The first operation, directed towards the solid-liquid separation of fermented broths is the 

clarification, which could be made by centrifugation, microfiltration (MF) or UF. In all cases, a 

concentrate containing all the biomass of the broths and a permeate containing the antibiotic, salts 

and water are obtained. The quality of the permeate thus obtained determines the subsequent 

operation(s) and, in some applications, a second filtration is necessary [4]. 

In a general manner, the permeate obtained after this stage is presented much diluted, 

becoming necessary a stage of concentration after the purification steps. One path to achieve the 

concentrated interest solute is the nanofiltration. This step can be carried out after the initial steps of 
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purification as well as in the end of the process, depending on the conditions of the permeate 

reached. 

According to Cavaco Morão et al. [2], the isolation of CA through an integrated process 

involving UF and nanofiltration is economically and ecologically advantageous. After the 

bioproduct purification a refining stage is required that could be crystallization or dehydration, as, 

for instance, liofilization, used in the production of CA. In recent works the researches are 

concerned in evaluating the process of isolation and purification of CA obtained by fermentation of 

Streptomyces clavuligerus. Some routes are suggested by several authors. 

Cook et al. [20] suggested the use of the organic solvent tertiary-butylamine for the CA 

isolation and consequent purification. The solvent would react with the CA forming a salt, so this 

salt of tertiary-butylamine would be converted in another salt of clavulanate pharmacologically 

acceptable through successive chemical reactions. Other authors, such as Yang et al. [21], Capuder 

[22], Cardoso [23] and Mosbach [24], also used solvent extraction to purify CA from fermentation 

broths. 

An investigation about the use of the resin Amberlite XAD in the purification of CA was 

made by Mayer et al. [25]. Those authors achieved a better performance with the Amberlite XAD 

treated with quaternary ammonia than with Amberlite IRA 400. However, the system proposed by 

the authors unfeasible in an industrial scale. 

The adsorption by ionic exchange was also evaluated by Barboza et al. [26]. Those authors 

concluded that the purification process of CA with the ionic exchange resin Amberlite IRA 400 

pretreated with NaCl is a promising process, despite of the degradation of the former. The time 

needed to reach the adsorption equilibrium is small enough, allowing the use of this process.  

Liquid-liquid extraction was also used for purification. In this process, the CA, present in an 

organic solution, was transformed into a salt and then put in contact with an aqueous phase, where 

the resulting salt is more stable [27]. 

Brites Alves et al. [4] suggested UF as a first step of purification, followed by a nanofiltration 

step prior to the solvent extraction. Those authors reached high fluxes of permeate, a high antibiotic 

production as well as a good phase separation when the retentates were submitted to the solvent 

extraction. 

In their work, Cavaco Morão et at. [2] also used a step of nanofiltration between the UF and 

the solvent extraction. Commercial membranes Desal DK, Desal DL (both from Osmonics) and 

NFT50 (Alfa Laval) were used, achieving 99% - 100% of CA retention. However, a decline in the 
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flux of almost one order of magnitude was observed. This same process was proposed by Capuder 

[28]. 

Carvalho et al. [5,29] have found good results using nanofiltration to concentrate CA. They 

used four membranes NP010 and NP030 from Microdyn Nadir®, and NF and NF90 from FilmtecTM. 

The membranes NP010 and NP030 showed rejections of 70% and 82% of mean rejection, 

respectively, while the membranes NF and NF90 showed rejections of 98.8% and 99.9% of 

rejection, respectively. In another study, Carvalho et al. [30] evaluated the scale up process using 

the membrane NF, and found a rejection of almost 100%. 

Untill now few works were made about the use of nanofiltration to purify and concentrate 

CA, but some recent discoveries achieved with studies of membrane characteristics will contribute 

to the development of this process. 

 

4.  Nanofiltration 

 

Considering its molecular weight and structure (Figure 1), nanofiltration seems fully adequate 

for the purification of CA and the potassium clavulanate (KCA). This raises some problems due to 

the high fouling levels appearing. In order to design an adequate process, nanofiltration with 

membranes with pores in the nanometer range with low fouling should be found. 

 

 

Figure 1 – Molecular structures of clavulanic acid and potassium clavulanate. 

 

Nanofiltration is a relatively new pressure driven membrane process that has properties in 

between UF and reverse osmosis (RO). This process’ main advantages are: operation at low 

pressures when compared to RO, high fluxes, considerable retention of multivalent anionic salts and 
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low molecular weight organic molecules, relatively low investment and low cost of operation and 

maintenance with a low energy consumption [31]. 

The nanofiltration performance can be identified as a sum of the convective, diffusive, steric 

and electrostatic effects through the membrane. In particular, in the interfaces the Donnan 

equilibrium, dielectric exclusion and steric effects take place. According to Hilal et al. [31], 

membranes that present smallest rejections of dissolved compounds and high water permeability 

has been of great improvement in the nanofiltration process, comparing to RO. 

 

4.1.  Membrane characterization 

 

The characterization of nanofiltration membranes includes the use of predictive models, 

which help to understand the separation process. Because the morphological properties of the 

membranes have important consequences on performance and fouling, it is very important to 

characterize them by experimental techniques that could determine their structure and pore 

geometry [32-38].  

Despite the efforts to minimize the fouling caused by the membrane-solute affinity, it occurs 

in many instances [39] and it is perhaps the most critical parameter in membrane filtration [39-42].  

This is the reason why nanofiltration membranes, although having many applications [43-46], are 

still not totally implemented on an industrial scale. Fouling increases the operation and maintenance 

costs, it causes a decline in the permeate flux, and increments in the energy demands, turning down 

the membrane performance and ultimately reducing membranes life [40,47,48]. 

According to Yacubowicz & Yacubowicz [49] the crossflow nanofiltration process is 

characterized by a membrane pore size corresponding to Molecular Weight Cut-Off (MWCO) 

around 200-1000 Da, working at pressures of 150-500 psi (10-34 bar). Thus, retention of organic 

compounds is therefore determined by different membrane properties, such as MWCO, 

hydrophobicity and compound properties such as molecular weight and ionization constant [9]. In 

addition to these separation phenomena, in salt separation the membrane charge also causes an 

additional exclusion due to electric and dielectric effects. 

 

4.1.1.  Morphology characterization 

 

An understanding of the relationship between membrane surface properties and separation 

characteristics can determine the choice of a membrane for a particular separation and can also lead 
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to the development of membrane technology [34]. Some of the most important surface 

characteristics are the mean pore size and the pore size distribution, the pore density and the surface 

roughness. The pore size plays an important role in the transport through the membrane, because it 

determines rejection and selectivity along with flux or permeability [34,39,50,51].  

There are several well established techniques for the determination of the pore size 

distributions and porosity. They include the bubble point technique, mercury porosimetry, the 

microscopic technique, solute transport, permporometry and thermoporometry [34]. Many advances 

in the study of membrane structure have been made possible [52] by microscopy techniques such 

as: Scanning Electron Microscopy (SEM) [53], Transmission Electron Microscopy (TEM) [54], 

Atomic Force Microscopy (AFM) [33] and Scanning Tunneling Microscopy (STM) [55]. This is 

especially true for nanofiltration membranes that have nanopores in nature; i.e. they have pores in 

the nanometric range.  

Among the microscopic techniques, AFM is the most recent technique. It gives topographical 

images of the membrane surface by scanning with a sharp tip over the surface without any previous 

sample preparation (Figure 2). Since its invention, AFM has been applied to study MF and UF 

membranes [36,55-59], and more recently nanofiltration membranes [33,34,37,60-65]. This 

technique allows characterizing membrane surfaces, including non-conducting surfaces, with a 

nanometer (or even atomic) resolution in wet and dry environments. AFM also allows the study of 

the adhesion of particles and the properties of the subsequent deposit during fouling. 

 

 

Figure 2 – Tip action over the membrane surface [66]. 
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The pore size distribution alone does not describe completely the morphology of the 

membrane. In this sense, surface topology plays an important role in determining the fouling 

properties. Rough materials have more surface area and the fluid mechanics on them can also 

influence the resulting fouling rates. Very often, roughness is determined by using, for example, the 

average or the root-mean-square. Other complementary parameters are also interesting as skewness 

and kurtosis, which describe the peak asymmetry and flatness, respectively, of the height 

distribution on the surface. Moreover, most researchers appear to be unaware that several of these 

roughness measurements are scale dependent and dismiss the fractal dimension that is a key scale 

independent parameter reflecting the roughness [38,56]. 

 

4.1.2.  Electric characterization 

 

In electrokinetic characterization of solid-liquid interfaces the tangential streaming potential 

has been shown to be a reliable tool to obtain zeta potential and membrane charge [12]. 

The zeta potential of porous materials is usually evaluated from electrokinetic experiments, 

as streaming potential because it is a very simple technique and it is very sensitive to changes in 

concentration increase for low concentrations [67]. Between the two methods for measuring 

streaming potential that can be used, along and across the membrane, the first one is more 

appropriate for the nanofiltration membranes, once streaming potential measurements along the 

membrane bypass the hard interpretation of the electrokinetic data due to the small pore size and 

anisotropy of these membranes [68]. The system to measure the streaming potential in 

nanofiltration membranes is shown in the Figure 3. 

 

Membrane Electrode

Exit Entry

 

Figure 3 – Schematic representation of the streaming potential measurements cell. 

 

In contact with solutions, the pH has a significant effect in membrane charge and in 

characteristics of the molecules in solution, because it protonates and deprotonates the functional 
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groups of membranes and molecules in solution, modifying the membrane charge and pore size and 

affecting hence the performance of nanofiltration and UF membranes [69-73]. 

From the plot of electric potential versus applied pressure the membrane streaming potential 

for each pH value can be obtained from the slope. The zeta potential for each concentration and pH 

value can be calculated through the Smoluchowsky equation as indicated below: 

 

bεε

νηλ
ζ

0

0=            (1) 

where η is the streaming potential (V/Pa), λ0 the solution average conductivity (S/m), ν the solution 

dynamic viscosity (Pa.s), ε0 is the vacuum permittivity (F/m) and εb the dielectric constant of the 

bulk solution . With the zeta potential value (ζ) it is possible to calculate the surface charge density 

(σs) based on the Gouy-Chapman theory, as shown in Eq. 2: 

 

( ) ( ) −−= −

i

i
ibs

RT

Fz
cRTsign 1exp02 0 ζεεζσ      (2) 

R is the ideal constant of gases, T is the temperature (K), ci is the concentration of ion i (mol/m3), zi 

the charge of ion i and F is the Faraday constant (C). With the surface charge densities, it is finally 

possible, to calculate the membrane volume charge density (Eq. 3) considering a slit geometry: 

 

p

S

Fr
X

σ
=            (3) 

where rp is the average pore radius of the membrane (m). 

 

4.1.3.  Functional characterization 

 

In order to determine the concentration polarization effect for the nanofiltration experiments, 

the mass transfer coefficient should be determined using the relation of Colton et al. [74], the 

method takes into account the appearance of the osmotic limit of flux and depends on the system 

geometry and others characteristics such as stirrer diameter and length, and from the membrane 

surface as indicated by the Eq. (4) [75]: 
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where D is the KCl diffusivity at infinite dilution, r is the membrane effective radius and ω is the 

rotation frequency. 

Moreover, to find out the concentration at the external surface the gel layer theory can be 

used, which consider the volumetric flux by membrane area (JV), the mass transference coefficient 

(k), and the KCl concentration on feed phase (c0) and on the permeate (cp) (Eq. 5) [76-78]. 

 

( ) k

J

ppm

V

ecccc −+= 0           (5) 

where k is obtained by the Eq. 4. 

To predict the performance of the membranes it is necessary identify the different effects 

over the transport mechanisms. For that, several mathematical models has been developed. 

 

4.2.  SEDE model 

 

Among the existent models used in nanofiltration process, the SEDE-VCh model can be 

noteworthy. This model presents a good description of transport properties in charged membranes 

proposed initially by Bowen & Welfoot [10] and recently modified to include a more realistic 

situation that considers the variation of the charge inside the membrane [11]. The model also 

includes the dielectric effects at the interfaces proposed by Szymczyk et al. [8,12]. Therefore, to 

determine the parameters involved in the process, the solute transport inside and at membrane 

surface has to be studied, since the charge distribution has different values in those different 

regions, usually modeled by thermodynamic equilibrium. 

When the mean pore radius is obtained from an independent method [33] like AFM, the 

SEDE-VCh model is defined in terms of three independent parameters: the dielectric constant 

inside the pores ( p) and the two parameters of the Freundlich isotherm (a and b). The dielectric 

constant of the dry polymer of the membrane ( m) is usually taken from bibliography. The a and b 

parameters should be unique for a given solute and membrane system. The whole set of equations 

necessary to solve the system are summarized in Table 2 and a resolution algorithm can be found in 

Silva [11]. 
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Table 2 – SEDE-VCh equations summarized 
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Eqs. 2 and 4 can be numerically solved with the following boundary conditions, 

ci(x = 0) = ci,0   
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The K0, K1, I0, I1 are the modified Bessel functions. 
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4.3.  Scale up 

 

The mass transfer through the membrane depends on several factors, such as the adsorption 

in the pores causing pore blockage and fouling on the membrane surfaces during the process 

[36,39,80], and the concentration polarization layer of the solutes on the high-pressure side of the 

membrane such as cake and gel layer formation [36,39,81]. Therefore, even with a large 

nanofiltration applications suggested [5,43-46], only few were implemented on an industrial scale, 

showing the need to investigate the scale up in membrane process. 

Membrane test cells are extensively used for quality assurance, screening tests and in many 

research projects. However, many users will agree that test cell results may vary considerably and 

their accuracy can be inadequate for scale-up to larger membrane units [82]. The test cell (Figure 4) 

usually is carried out in dead-end process while the pilot plant (Figure 5) in a crossflow unit. In 

dead-end filtration the feed is presented to the membrane at right angles to its surface. As separation 

progress the retained solids builds up into a layer which causes resistance to the liquid flow. In 

crossflow, on the other hand, the mixture flows across the surface of the membrane. The liquid 

permeates through the membrane at right angles to the direction of flow of the feed and cake 

formation can be reduced by a transmembrane sheer stress [83,84]. In their work Lawrence et al. 

[85] have found that all results using the laboratory scale membrane unit under conditions of 

constant concentration gave flux curves indicative of fouling cake formation, with slight declines in 

value over the experimental period. 
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Figure 4 – Schematic representation of the bench-scale stirred cell. 
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Figure 5 – Schematic representation of the pilot plant. 

 

The cake structure otherwise has been predicted to vary as a function of particle transport and 

surface potential. Moreover, this structure may be modified as a function of the relative balance 

between applied pressure and surface forces. Thus, the propensity of membrane cakes for 

reorganization and collapse is determined by a balance of forces acting on the particles in the cake 

[48]. 

The crossflow configuration shows a better performance, since its characteristics allow the 

particles to remain in a suspended state above the outer surface instead of being deposited, due to 

the tangential flow to on the membrane surface, leading to higher permeate ratios, due to the 

enhanced control over the fouling and the membrane concentration polarization [83,86,87]. In their 

work Chun et al. [87] demonstrated that both the cake layer thickness and the particle concentration 

in the cake layer, for dead-end case, showed higher values than those of cross-flow one. The use of 

the best operational conditions such as temperature, pressure and tangential flow should also be 

considered. Those conditions should be sought to optimize the process, especially in the case of a 

large scale application [23,88].  

Carvalho et al. [30] concluded in their work that the variations predicted during the scale-up 

procedure can be bypassed and that the use of a stirred dead-end process, in which is promoted the 

convection movement in the process, can be used to evaluate other processes aiming their use in an 

industrial scale. 

In fact, moving from laboratory experiment to pilot plant operations and finally to a 

demonstration unit becomes progressively more complicated. Each step brings an increase in 

membrane area requirement, equipment, quantity of required feedstocks, time for execution, 

analytical facilities, technical issues, and operating personnel. Design advantages for the pilot plant 
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over lab-scale operations included continuous monitoring of process conditions with a data 

collection system [89]. Those steps, however, can work as an indication of the economical 

feasibility of the implementation on full industrial scale [90]. 

 

5.  Conclusions 

 

A comprehensive review is given on the β-lactam antibiotics, especially on the clavulanic 

acid, the purification of bioproducts, nanofiltration process, its characterization and scale up. It was 

shown that the use of nanofiltration of clavulanic acid aiming its purification and concentration has 

been studied in different manners trying to lead this process to an industrial application. To achieve 

this goal, studies about the membrane characteristics were made and also scale up investigations. 

The characterization of the membranes could provide information about their behavior, which 

can help to understand how the process works and predict its performance in the concentration and 

purification of the clavulanic acid. It is also useful to the process scale up, since the nanofiltration 

process act in different manners depending on the membrane presentation. 
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Abstract 

 

This study presents the structural characterization of the surface of four commercial nanofiltration 

membranes: NF90 (polyamide) and NF (polypiperazine amide) from FilmtecTM and NP010 and 

NP030 (polysulfone) from Microdyn Nadir®, by Atomic Force Microscopy (AFM). These 

membranes have been studied before and after undergoing a filtration process with potassium 

clavulanate. The fast Fourier filtering of AFM images with very high magnification (40 x 40 nm) 

has allowed identifying the pore size distribution and geometry of the pores on the surface of the 

membrane before their use. Images between 0.5 x 0.5 and 10 x 10 µm2 have allowed the study of 

the surface roughness of the samples before and after being used to filtrate potassium clavulanate 

solutions. The results of roughness and power spectral fractal dimension along with the skewness 

and kurtosis of the height distribution have been analyzed in terms of pore size, hydraulic 

permeability and the adsorption of clavulanate for the different samples. 

 

 

Keywords: Nanofiltration membranes, AFM, Roughness, Fractal dimension, Clavulanic acid.  
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1. Introduction 

 

Nanofiltration is a relatively new pressure driven membrane process that has properties in 

between ultrafiltration and reverse osmosis. The main advantages of this process are:  operation at 

low pressures when compared to reverse osmosis, high fluxes, considerable retention of multivalent 

anionic salts and low molecular weight organic molecules, relatively low investment and low cost 

of operation and maintenance with a low energy consumption [1]. It has applications in a wide 

range of fields that include fractionation and selective removal of solutes from complex process 

streams with rejection of ions and charged organic pollutants [2, 3]. In the food industry it has been 

used for the demineralization and the fractionation of whey [4], etc. It is considered the most 

important recent development in process engineering and environmental protection [2, 5, 6]. 

The characterization of nanofiltration membranes includes the use of predictive models, 

which help to understand the separation process. Because the morphological properties of the 

membranes have important consequences on performance and fouling, it is very important to 

characterize them by experimental techniques that could determine their structure and pore 

distribution [2, 6-11].  

Despite the efforts that could be made to minimize the fouling caused by the membrane-

solute affinity, it occurs in many instances [12] and it is perhaps the most critical parameter in 

membrane filtration [12-15].  This is the reason why nanofiltration membranes, although having 

many applications [16-19], did not still reach their potential on an industrial scale. Fouling increases 

the operation and maintenance costs, it causes a decline in the permeate flux, and increments in the 

energy demands, turning down the membrane performance and ultimately reducing membranes life 

[13, 20, 21]. 

An understanding of the relationship between membrane surface properties and separation 

characteristics can determine the choice of a membrane for a particular separation and can also lead 

to the development of membrane technology [7]. Some of the most important surface characteristics 

are the mean pore size and the pore size distribution, the pore density and the surface roughness. 

The pore size plays an important role in the transport through the membrane, because it determines 

rejection and selectivity along with flux or permeability [7, 12, 22, 23].  

There are several well established techniques for the determination of the pore size 

distributions and porosity.  They include the bubble point technique, mercury porosimetry, the 

microscopic technique, solute transport, permporometry and thermoporometry [7]. Many advances 
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in the study of membrane structure have been made possible [24] by microscopic techniques such 

as: Scanning Electron Microscopy, SEM, [25], Transmission Electron Microcopy, TEM, [26], 

Atomic Force Microscopy, AFM, [6] and Scanning Tunneling Microscopy, STM, [27]. This is 

especially true for nanofiltration membranes that are nanoporous in nature; i.e. they have pores in 

the nanometric range.  

Among the microscopic techniques, AFM is a relatively recent technique. It gives 

topographical images of the membrane surface by scanning with a sharp tip over the surface without 

any previous sample preparation. Since its invention, AFM has been applied to study 

microfiltration, ultrafiltration membranes [9, 27-31], and more recently nanofiltration membranes 

[3, 6, 7, 10, 32-36] and other nanoporous materials [37-40]. This technique allows characterizing 

membranes surfaces, including non-conducting surfaces, with a nanometer (or even atomic) 

resolution in wet and dry environments. AFM also allows the study of the adhesion of particles and 

the properties of the subsequent deposit during fouling. 

Most investigations have focused on the pore structure disregarding other important 

parameters that might be taken into account. Nevertheless, it is obvious that the pore size 

distribution alone do not describe completely the morphology of the membrane. In this the sense 

surface topography plays an important role in determining the fouling properties. Rough materials 

have more surface area and the fluid mechanics on them can also influence the resulting fouling 

rates. Very often, roughness is determined by using, for example, the average or the root-mean-

square. Other complementary parameters are also interesting as skewness and kurtosis which 

describe the peak asymmetry and flatness, respectively, of the height distribution on the surface. 

Moreover, most researchers appear to be unaware that several of these roughness measurements are 

scale dependent and dismiss the fractal dimension that is a key scale independent parameter 

reflecting the roughness [11, 28]. 

Clavulanic acid, CA, is a compound produced by Streptomyces clavuligerus, and it consists 

of a β-lactam ring fused to an oxozilidine ring [41]. It shows weak antibacterial activity against 

most bacteria, but is a potent inhibitor of a wide range of β-lactamase and is able to potentiate the 

antibacterial activity of penicillins and cephalosporins against many β-lactamase-producing 

resistant bacteria [42]. It is currently used in combination with amoxicillin or other semi-synthetic 

penicillins for the treatment of infections caused by β-lactamase-producing bacteria. Clavulanic 

acid is produced industrially by fermentation and is isolated and purified from the fermentation 

medium in several steps. The first step involves clarification of the medium by filtration or 
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centrifugation followed by either adsorption or liquid-liquid extraction with an organic solvent, 

normally butanol. Further purification is achieved by anion-exchange chromatography.  

It is known that the clavulanic acid is chemically unstable to temperatures over 30  ºC and pH 

over 7.5 or below 4.5 [43, 44]. Owing to this unstable nature of the free acid, clavulanic acid is 

isolated as the lithium, potassium or sodium salt. The molecular structures of both the clavulanic 

acid and the potassium clavulanate, KCA, are shown in Figure 1. 

 

 

Figure 1 – Molecular structures of clavulanic acid and potassium clavulanate. 

 

Concerning its molecular weight, see Figure 1, nanofiltration seems fully adequate for the 

purification of KCA. This raises some problems due to the high fouling levels appearing. In order to 

design an adequate process, nanofiltration with membranes with pores in the nanometer range with 

low fouling should be sought. Furthermore, the characterization of some potentially appropriate 

membranes can be profited to test how AFM techniques can help in this process.  

By using AFM, the pore size of four commercially available membranes, with appropriate 

characteristics, will be studied. AFM is also uniquely qualified to investigate the dominant factors 

associated in the adsorption of solutes on surfaces, with variation of surface topography at 

nanoscale resolution [45, 46]. Thus the morphology of these membranes will be studied, before and 

after their use to concentrate KCA, by analysing their surface roughness and fractal dimension. This 

will be done in order to analyse how KCA is deposited on the membranes and trying to correlate 

these parameters with the reduction in flux.  
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2.  Methodology 

 

2.1. Membranes and chemicals 

 
Four commercial membranes have been selected and studied here. Two of them are made 

from polyamides: NF (polypiperazine amide) and NF90 (fully aromatic polyamide [15, 47]) 

membranes, from FilmtecTM. Another two membranes, NP010 and NP030, are made from 

polyethersulfone and manufactured by Microdyn Nadir®. Table 1 shows the main characteristics of 

these membranes according to their manufacturers. 

 

Table 1 – Characteristics of the membranes used here as given by their manufacturers 

Membrane NF90 NF NP030 NP010 

MWCO (Da) 180a >200 400 1000 

Max. pressure (bar) 41 41 40 40 

Max. temperature (ºC) 45 45 95 95 

pH range 2-11 3-10 0-14 0-14 

Rejection (%) >97b >99c 80-95d 25-55d 

a Molecular weight cut off according to Lopez Muñoz et al. [48] in Da (g/mol) 
b Rejection of MgSO4  (25ºC, 4.8 bar) 
c Rejection of MgSO4  (25ºC, 8.9 bar) 
d Rejection of Na2SO4 (20ºC, 40 bar) 

 

Milli-Q quality water has been used both for water permeability measurements and for the 

aqueous solution filtration experiments. These solutions were prepared with potassium clavulanate 

salt (KCA), from the medicine Clavulin® (revested pills with 125 mg of potassium clavulanate and 

500 mg of amoxicillin). They were vacuum filtered and micro-filtered in 14 µm and 0.45 µm pore 

membranes, respectively. The pH of the potassium clavulanate solutions was adjusted to 6.2 with 

HCl 0.2 M  and KOH 1M solutions prepared from analytical grade reagents from Probus and 

Panreac, respectively. 
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2.2. Nanofiltration experiments 

 

Nanofiltration of KCA has been performed in a stainless steel stirred dead-end process that 

simulates a crossflow process. The system consists in a cylindrical container with a membrane 

located at its bottom, whose area was 1.52 x 10-3 m2, and provided with a magnetic stirrer that 

simulates the convection in a crossflow process. Pressure differences have been applied by 

application of pressurized nitrogen, as shown in Figure 2. The operational conditions consisted in: a 

stirring frequency of 600 rpm, an applied transmembrane pressure of 2x106 Pa, a volume of the feed 

phase of 200 mL, a process temperature of 25 ºC, a pH of 6.2 and a potassium clavulanate 

concentration on the feed phase of 750 mg/L. The process was stopped when the volume permeated 

reached 100 mL. 
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Figure 2 – Schematic representation of a crossflow nanofiltration experimental setup at laboratory scale. 

 

The water permeability has been determined from the variation of the flux with increasing 

pressure differences up to 4x106 Pa across the membrane at 25 ºC. Water was permeateded under a 

2x106 Pa pressure gradient through each membrane before and after its use with clavulanate, KCA 

until the resulting pure water flux remained constant. 
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2.3. Atomic Force Microscopy 

 

With Atomic Force Microscopy, AFM, images, we can study the topography of the surface of 

clean membranes as well as of the fouled ones. Atomic Force Microscopy has been performed with 

a Nanoscope Multimode IIIa scanning probe microscope from Digital Instruments (Veeco 

Metrology Inc., Santa Barbara, CA). Two scanners have been used: the J scanner with a maximum 

lateral (x, y) scan range of 115 µm and a maximum vertical (z) range of 5.5 µm for the biggest 

images; and the E scanner for the smallest areas analyzed (horizontal and vertical ranges of 10 µm 

and 2.5 µm respectively). The scanned areas have gone from 40 × 40 nm to 100 × 100 µm. The 

smallest areas of 40 x 40 nm have only been used to get the optimal resolution allowing an accurate 

detection of the pore edges. For scanned areas over 10 x 10 µm scratches and other surface damages 

are shown. Roughness has been measured for images from 0.5 x 0.5 µm to 10 x 10 µm. 

For the images used to measure roughness the resolution in the x-y scale decreases for 

increasing scanned areas because the size of the detectable details is L /512, L being the length of 

each side of the scanned square, this means that it goes from 1 nm to 20 nm. Referring to the z 

resolution, the corresponding set range has been appropriately reduced depending on the surface 

roughness to increase the z resolution. As a result, this zeta resolution is approximately of 0.2 nm in 

the worst case. 

The contact mode of operation has been used for the most detailed pictures (40 x 40 nm 

images of clean membranes) while tapping (or intermittent contact) mode analysis has been used for 

the rest of the images. 

In the intermittent contact operation mode, the tip and the supporting cantilever are made to 

oscillate close to their resonance frequency. In this case, it is not the cantilever deflection which is 

measured (as in conventional AFM techniques: both contact and non-contact methods), but the root 

mean square of the oscillation amplitude of the cantilever once it has been excited into resonance 

with a piezo-electric driver. The phase shift appearing at the resonance can be detected to give the 

so called phase contrast images where the dominions with different viscoelastic properties can be 

easily detected. In any case the tapping mode is an especially useful technique because it limits the 

possibility to damage both tip and sample due to their contact because it is only intermittent.  

In both the techniques used here (tapping and contact mode), the measurements have been 

performed in open atmosphere conditions and in the repulsive mode. Moreover the tip always enters 

the condensation (contamination, humidity etc) layer because the required strength is set adequately 
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to overcome the capillary forces appearing in such a layer. The state of the tip has been tested 

before and after each kind of experiment, and no significant variations have been detected. The test 

has been done by measuring standard calibration samples. 

The tapping mode gives better-quality pictures than the non-contact mode but it is also free 

from the very typical artefacts obtained with the conventional contact method. Nevertheless, for the 

smallest images, used to determine the pore size distribution, the contact mode of operation has 

been used with a very low feed-back in order to measure heights by the cantilever deflection rather 

than by the vertical motion of the scanner that supports the sample. This method allows an increase 

in the scanning speed (without damages in tip and/or surface) that reduces noise and improves real 

resolution to reach even the atomic range [49]. This procedure can only be used for relatively flat 

surfaces. For larger scanned areas, due to the high roughness the feed-back system should act to 

avoid surface-tip crashing and consequently the tapping mode should be preferable due to the 

friction forces that would decrease resolution in the contact mode drastically.  

The tapping mode has been performed using the OlympusTM probes OMCL-AC160TS-W 

with a spring constant of 40 N/m. Drive frequency was determined by automatic tuning around 350 

kHz at a target amplitude of 2V. Tip velocities were adjusted according to the roughness of the 

sample and the size of the image. The curvature radius of this tip is below 10 nm. For the contact 

mode operation  Nanosensor® silicon tips of the CONTR#19809 type have been used. Their force 

constant is 0.12 N/m with a curvature radius below 10 nm. In both cases the state of the tip has been 

tested before and after each experiment and no significant variations have been detected. The test 

has been done by measuring the corresponding recommended standard calibration samples. 

Tapping mode pictures (topographical images and phase contrast ones) have been acquired 

for each sample and focusing in areas randomly distributed on them. All images have been acquired 

with 512 points per scan line and with 512 lines. Images of 40 nm × 40 nm have been analyzed by 

using the command Spectrum 2D, function which transforms images by applying a 2D fast Fourier 

transform (FFT), to pass or remove specific frequencies from the images. This modification is 

necessary to eliminate the electrical noise and some other parasite vibrations (that affect specially 

the high resolution images). The image acquisition and treatment has been done with Nanoscope 

Software, version 5.12 rev. B. 
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2.4. Surface analysis 

 

A quantitative analysis of the roughness of the membrane has been performed, by using the 

Nanoscope Software functions. The surface roughness has been studied by statistical analysis of 

images with areas between (0.05 × 0.05) µm2 to (10 × 10) µm2.  

A common quantification of surface roughness is the root-mean-square roughness RMS or Sq: 
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where zi is the deviation in height at the (xi ,yi) point from the mean after baseline subtraction, and 

Nt is the total number of data points in the surface (Nt= mN l
 being m the number of lines and Nl the 

number of points per line) where zi is collected. However this parameter strongly depends on the 

instrument and the tip used and on the measurement procedure. In this sense [50], there is another 

parameter less dependent and based on a Fourier transform: the Power Spectra Density which 

analyses the two dimensional roughness spectra of the surface [51]. This spectrum can be evaluated 

as [24, 52]: 
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L being the length of each side of the scanned square, N is the number of points along each side of 

the square, ∆x and ∆y are the distance between neighbour points along each direction on the 

scanned area. ẑ  is the discrete bi-dimensional Fourier transform of the height: 
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The bi-dimensional spectrum ( )γ σ , or even better its average on the polar angle ( )γ σ where 

σ σ= can be represented and allows to calculate the RMS roughness, Sq, as 
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The spatial pulsation σ has to be included in the interval: 
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This methodology provides valuable information not only on the height deviation of the 

roughness profile, but also on its lateral distribution [53].  

In a logarithmic scale, this spectrum has a linear behaviour in very large ranges, according 

with the equation: 

 

ασβγ =   (9) 

β  being a constant and α the spectrum slope. This power law is typical of fractal behaviour of 

roughness (self-affine behaviour). In this situation the corresponding fractal dimension D can be 

evaluated as a function of the spectrum slope [24, 52]: 

 

( ) 28 α−=D   (10) 

There are other useful parameters, two of them are especially significant and have been 

analyzed here: 
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• The surface skewness, Ssk, related to the third moment of the height of the distribution, 

which informs about the asymmetry relative to Gaussian distribution. For a set of discrete 

data can be calculated as [54]: 
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• The surface kurtosis, kuS , is a measure of how sharp the distribution is as compared to the 

Gaussian, and it is related to the fourth moment of the height of the distribution. It is 

calculated as: 
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The pores size distributions have been obtained by computered image analysis (CIA) from 

the same images. Image Analysis was carried out by means of Jandel® ScanPro software (version 

3.00.0030), in order to study the pore size distribution. Each photograph was digitized with a 

resolution of 1024 x 768 pixels, assigning to each one a grey level ranging from 0 (black) to 255 

(white). Then, a clear-field equalization was applied to each image field to eliminate parasite 

changes in grey levels due to uneven bending. Once the bending effects were eliminated, the image 

grey spectrum was spanned to get the maximum contrast and definition. Then the images were 

redefined according to an assigned grey threshold level under which every pixel was assigned to 1 

and the rest to 0. The resulting binary picture was improved by scraping isolated pixels, in such a 

way that all the remaining 1's in the matrix were assumed to belong to a pore. Finally the pore 

borders were smoothed in order to reduce the influence of the finite size of pixels and low 

definition. Of course a correct selection of threshold grey level is fundamental for correctly and 

accurately identifying pores. Customarily the grey spectrum is analyzed and the threshold centred in 

the peak to peak valley of the almost bimodal distributions obtained. Unfortunately sometimes the 

spectra are so flat that this technique is only of relative help in making a correct threshold selection. 

In any case, inspection by eye facilitates the process of selection of several reasonable threshold 

candidates whose outcomes are averaged. 
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3. Results and discussions 

 

3.1. Filtration processes 

 

The water permeability (Lp) of each membrane has been determined before and after their use 

with KCA. All membranes were conditioned at the highest pressure allowed for each one and the 

flows have been measured with time until becoming constant. This allows the hydration of the 

polymer material of the membrane and a correct measurement of the behaviour of the equilibrated 

membrane [27]. The permeabilities of each membrane are presented in Table 2. 

 

Table 2 – Water permeability for each membrane evaluated, before and after KCA permeation 

Lp (10-11m/Pa.s) NF90 NF NP030 NP010 

Before 1.53 3.39 4.36 6.47 

After 1.10 2.46 1.96 1.38 

Lp (used)/Lp (new) (%) 72% 73% 45% 21% 

 

It is worth to note that the polyamide membranes (NF and NF90) have low initial 

permeabilities, but a quite small reduction in the flow after the filtering process, possibly due to a 

low affinity of the solute to the membrane surface. Polyethersulfone membranes (NP030 and 

NP010) have high initial permeabilities, nevertheless they suffer a more significant flux reduction, 

ending at low Lp, This behaviour might be related to the chemical nature of the membrane materials, 

their electrical charge and the morphological aspects of the membranes (pore size, porosity and 

surface roughness) as well as to the operation conditions. 

 

3.2. AFM characterization 

 

3.2.1 Pore size distributions for clean membranes 

 

For the clean membranes, it has been possible to obtain images which processed by FFT to 

eliminate noise, allow a visualization of the pores on the surface of the membrane. Figures 3 (a-d) 

show representative images for sampled areas of 40 x 40 nm2. This results impossible for the KCA 
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fouled membranes because they appear as covered by an almost totally dense layer of deposited 

KCA.  

As Figure 3 reveals, the four membranes analyzed present clear differences at the nanometer 

scale. The membrane NF90 has pores with mostly circular surface sections, whereas for the other 

three membranes (NF, NP010 and NP030) it is impossible to detect a regular geometry of the 

surface sections for their pores. Referring to the z-axis range, it is clear that it is larger for the NF90 

(6 nm) and NF (4 nm) than for the polyethersulfone membranes (/1 nm). 

 

 

Figure 3 – Examples of the AFM images of the membranes with scanned areas of (40 × 40) nm2 used to 

obtain the pore size distribution for: (a) NF90 (b) NF, (c) NP030 and (d) NP010. 

 

The pore size distributions and the corresponding mean pore size for the membranes studied 

can be evaluated by computerized image analysis of the AFM images. Figures 4 (a-d) show the 

results obtained. It can be seen that the pore sizes follow Gaussian distributions. The mean pore size 



CAPÍTULO 2 
 

38 
 

refers to the diameter on the entrance of the pores where AFM generally gives a funnel structure 

due to the tip-sample convolution [27] what means that these pore sizes could be slightly 

overestimated [9]. All membranes present a mean pore size in the range of nanofiltration, with the 

sequence: NP010 > NP030 > NF > NF90, in the same order than their corresponding water 

permeability before being used with KCA and their nominal MWCO. The permeability-diameter 

relationship is not linear as shown in Figure 5. This behaviour is understandable, since the flow 

does not depend linearly on the pore size but on the squared diameter. The water permeability 

depends also on the density of pores per unit area according to the viscous flow regime.  

 

Figure 4 – Pore size distribution for the membranes NF90, NF, NP030 and NP010. They have been fitted to a 

Gaussian distribution showing the mean pore dimeter along with the standard deviation of the corresponding 

distribution. 
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Figure 5 – Experimental water permeability versus mean pore diameters as obtained from AFM images. 

 

To try to verify the validity of the distributions obtained, it is possible to compare the 

permeability obtained from the distribution (as predicted by the Hagen-Poisseuille law) with the 

experimental one. The Hagen-Poiseuille equation: 
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where ni is the number of pores per unit area of the membrane of the i-th class, ri is the radius of 

these pores, η  the water viscosity inside the pores, ∆x thickness of the selective layer and A is 8 if 

the pores are assumed to have a cylindrical geometry or 3 if they are assumed to be slit-like.  

Moreover, to evaluate Lp, with Eq. 13 we need to do a series of considerations: 

• It has been proved that the viscosity of aqueous solutions inside nanometric pores is 

increased due to confinement effects. It was calculated by Wesolowska et al. [55] and for 

these membranes the value used is 6.3x10-3 Pa.s. 

• It has to be taken into account that the active layer is the thickness that should be required. 

It is not always easy to detect, because very frequently there is a gradual transition from the 

tight active layer to the porous support layer. For some nanofiltration membranes this 

transition is sharp enough to be detected by using SEM images [56] giving values around 

100 nm. 

We compare the obtained results for the water permeability with the experimental values in 

Figure 6. The theoretical results for both the possible geometries (cylindrical or slit-like pores) are 

shown in this Figure. As mentioned, the NF90 membrane shows clear circular pore sections as 

shown in Figure 3. So we could assume that all of them contain actually cylindrical pores. Thus the 
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differences between the experimental permeabilities and those predicted on the basis of the 

measured pore size distributions could be attributed to the membrane thickness that could be 

slightly different from that assumed in the calculations (100 mm). When this is taken into account a 

fitted thickness could be evaluated to make coinciding experimental and theoretical values. This 

procedure gives the values shown in Table 3 for both the possible geometries. Note that these 

thicknesses are quite similar for the four membranes. This is why the lines in Fig. 6 resulted to be 

almost perfectly linear.  

 

Figure 6 – Experimental permeability versus that calculated from the distributions shown in Fig. 4 and the 

Hagen-Poiseuille equation. 

 

Table 3 – Membrane thickness in micrometer as obtained from the comparison of theoretical and 

experimental water permeabilities in Fig. 6 

 NF90 NF NP030 NP010 

Cylindrical pores 118.3 127.7 115.6 117.5 

Slit-like pores 44.4 47.8 34.4 42.4 

 

Comparing with the results on pure water permeability after KCA filtration, it can be noted 

that the membranes which seem to have the largest pores, before being used, do not present the 

highest flux. It can be due to the other factors that have also influenced in the filtration process, as 

for example, the roughness or the hydrophobicity of the surface.  

Comparing these results with those found in the literature, significant discrepancies are 

found. The NF membrane has only slightly larger pore sizes (between 3% and 13% depending on 

the conditions of measurement) than those found in the literature for neutral solute retention [4]. 

However, the NF90 presents pore sizes clearly larger than that found by Nghiem et al. [15] from 
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solute retention and Hilal et al. [32] from AFM, which showed a mean value of 0.68 nm and 0.55 

nm, respectively. A huge discrepancy was found for the NP010 membrane with a pore size of 0.33 

nm from AFM [32]. 

One of the sources of these discrepancies can be that the samples were coming from different 

batches, what should be caused by a poor reproducibility of the membrane. In any case, it is known 

the existence of differences in the results obtained by different techniques [6]. As mentioned, the 

AFM technique is strongly influenced by the convolution between the tip curvature and the pore 

borders. Other problems, such as white thermal noise, causing spurious unwanted oscillation of the 

cantilever, should have been overcome because Fast Fourier Transform filtering (FFT) [5, 32] has 

been used. 

This could justify the huge discrepancy between the value of pore diameter of the membrane 

NP010 found by us (1.5 nm) and by other authors (0.33 nm). However, the value of 0.33 nm for the 

pore size given in the literature for this membrane; NP010, which has a retention between 25-55% 

of Na2SO4 (see Table 1) does not seem very realistic. An ion of sulfate has a Stokes radius of 0.23 

nm, which one would expect to be almost totally retained (retentions over 90%) with a membrane 

with pore sizes of 0.33 nm. 

 

3.2.2 Surface analysis 

 

AFM has been used in order to study the morphology of the membranes and to evaluate the 

changes after the filtration of the synthetic solution of KCA described in the experimental section. 

In Figure 7, images of the membranes obtained before and after filtration can be compared. In all 

cases, phase contrast images have been taken (but not shown here) to confirm that the membranes 

are totally covered by the foulant. 

The NF90 membrane presents a similar structure before and after its use (Figures 7.a and b). 

In both cases the surface is similarly highly rough. The lack of changes in this high roughness after 

filtration seems to indicate the appearance of a very thin layer of adsorption. In the case of NF 

membrane, (Figures 7.c and d), the surface is smoother than in the previous membrane, although it 

shows similar granular structures before and after the filtration of KCA. In this case, nothing can be 

concluded on the adsorption as far as it could be high but uniform, so it should lead to very slight 

changes in the morphology of the surface. 
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Figure 7 – 3D-AFM images corresponding to scanned areas of (5 × 5) µm2 for: (a) NF90 clean and (b) used, 

(c) NF clean and (d) used, (e) NP030 clean and (f) used, and (g) NP010 clean and (h) used. 
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The NP030 membrane changed its structure from extremely smooth before the filtration to 

highly rough after its use, what indicates a high adsorption. This can be visualized in the Figures 7.e 

and f. Finally, the NP010 membrane presents a quite different structure after its use with a 

disappearance of the original topometry and the formation of a smooth morphology, as shown in the 

Figures 7.g and h. 

From these results, it seems that the NF90 and possibly the NF membranes are less fouled by 

KCA. Probably the potassium clavulanate should interact less with the amide groups than with the 

sulfonic groups. 

From the AFM images, the surface roughness was also analyzed. Figures 8 (a and b) show 

the variation of Sq with the length scale L for the membranes before and after KCA use, 

respectively. For non used membranes, Sq increases with L until reaching a pseudo-plateau as 

frequently happens in most surfaces [54, 57]. As was clearly seen in Figure 7, the NF90 membrane 

has an outstanding high roughness. 

 

 

(a)           (b) 

Figure 8 – Roughness, Sq, as a function of the length scale, L, (side of the square scanned area) for all the 

membranes studied before (a) and after (b) fouling with KCA. The insert shows a detail of the three 

membranes with low and very similar roughness (NF90, NP030 and NP010). 

  

After being used to filter KCA, the tendency is similar for the NF, NP030 and NP010, but 

this behaviour does not occur in the case of the NF90 membrane which in principle should have this 

plateau for higher values of L. This may be due to its high initial roughness. The three membranes 

with low roughness have different changes in their original roughness. While NP030 and the NF 
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increase their roughness, the NP010 one decreases as a result of the KCA adsorption. However, the 

three membranes tend to a similar roughness value which should correspond to a compact surface of 

potassium clavulanate. In these conditions, their roughness is between 15 and 20 nm after KCA use 

(amplified insert in Figure 8b). 

The results reported on the roughness of fouled membranes are complicated to compare to 

each other due to the complex nature of foulants and particular interactions with each membrane 

type and composition that leads to a diversity of interpretations of the changes detected [57]. 

It seems clear that the NF90 membrane has a small adsorption of KCA, which can be 

confirmed by the small change in its high roughness and by the slight reduction of its permeability. 

According to Yangali-Quintanilla et al. [58] the NF90 membrane presents a quite different 

behaviour because they observed a reduction in the surface roughness which should be attributed to 

a higher adsorption of the fouling agent, sodium alginate, used by these authors. The value found 

for the NF90 roughness is very similar to that found by Xu et al. [59]. In their work they give for 

the NF90 surface roughness the value of 63.9 nm. On the other hand the value found by Nghiem et 

al. [15], 76.8 nm, is quite different. For the NP010 membrane the roughness found is very different 

from that found by Boussu et al. [36], which was of 2.4 nm for a 3 x 3 mm scanned area. On the 

other hand, the NP030 membrane presents a similar roughness to that also found in Boussu et al. 

[36], which was of 3.4 nm, also for the same scanned area. Nevertheless these values refer to 

membranes treated at pH 6.  

It seems clear that rough surfaces present more adsorption surface area, than smooth surfaces 

[11, 13, 25, 34] made from the same material, especially when fouling is high as for the 

polyethersulfone membranes (NP030 and NP010). Therefore, in this case, particles are accumulated 

preferentially in the “valleys” than in the peaks, resulting in “valley clogging” that for membranes 

showing low affinity for the KAC (NF90 and NF) is avoided due to the sweeping effect of the 

retentate agitation. In Figure 9 we suggest a scheme that could explain how the roughness is 

modified after KCA filtration by taking into account the corresponding changes in permeability too. 

The gray lines represent the profile of a cross section of the membrane surface and the black balls 

the molecules or molecular aggregates of KCA. The polyamide membranes, NF90 and NF, have a 

lower reduction in permeability after contacting KCA and the roughness of the used membranes 

increases slightly as compared with those of the clean membrane. This behaviour is consistent with 

the scheme of Figure 9, where only a small amount of molecules are adsorbed on the surface. In 

contrast, the polyethersulfone membranes, NP030 and NP010, have a high reduction of 
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permeability while their roughness tends to a similar value. This suggests that there is a high 

affinity between the polyethersufone surface and the KCA molecules or aggregates and the high 

flows produce a multilayer of KCA which gives a roughness value mainly due to clavulanate, which 

mask the initial topography of the membrane surface. 

 

 

Figure 9 – Scheme of the cross section for the deposition of KCA (black balls) according to the fouling 

mechanism assumed on the surface (gray line) of each  membrane studied. 

 

The analysis of the roughness of these membranes shows that the NF90 membrane has a far 

greater roughness than the others, up to almost an order of magnitude. A high roughness in a 

nanofiltration membrane may be intentional to reduce the fouling process by creating micro or 

nanoturbulences on the membrane surface, thus increasing the coefficient of mass transfer [60]. For 

this reason when trying to correlate surface parameters of these membranes with flow and structural 

parameters, the NF90 membrane is out of the trend. As mentioned in the introduction, Hirose et al. 

[61] have found a linear relationship with positive slope between the roughness and the 

permeability for several reverse osmosis membranes made from the same crosslinked aromatic 

polyamide. These authors attributed the linear relationship they found to surface unevenness of the 

membranes, which should result in an enlargement of the effective membrane area. In our case NF, 

NP030 and NP010 membranes follow this tendency before their use with KCA as shown in Figure 

10, for images of 2.5 x 2.5 µm in size. The NF90 membrane is placed far away from the trend with 
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the highest value of roughness and the lowest permeability. As expected the membranes used with 

KCA lost totally this correlation. 

 

 

Figure 10 – Experimental water permeability versus roughness, Sq, as obtained from images with scanned 

areas of (2.5 x 2.5) µm2 of the clean membranes. 

 

All correlations of roughness with other functional parameters suffer the lack of definition of 

roughness that, as clearly shown in Figure 8, changes with the scanned area.  One way to avoid this 

problem is to use the PSD of the surface according to Eq. 6 as discussed in section 2.4. Figure 11 

shows an example of the spectrum for the clean NF membrane for three different scan sizes. One 

can see that in the central part of the spectrum, the slope is very similar for all scan sizes. This 

makes this technique clearly more powerful than the simple analysis of the roughness at given 

scanned areas. As mentioned, the slope of the spectrum allows evaluating the fractal dimension 

according to Eq. 10. When the slope decreases the fractal dimension increases, which corresponds 

to a surface that fills more the space, thus looking denser [24]. Table 4 shows the fractal dimension 

of the membranes studied before and after filtration of the KCA. 

 

Table 4 – Fractal dimension for the clean and fouled membranes 

Fractal dimension NF90 NF NP030 NP010 

Clean 2.10 ± 0.02 2.14 ± 0.03 2.40 ± 0.04 2.50 ± 0.04 

Fouled 2.45 ± 0.08 2.26 ± 0.05 2.72 ± 0.07 2.63 ± 0.05 
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Figure 11 – 2D Power Spectra Density of NF clean membrane with several scan sizes. The fitted line (which 

slope determines the fractal dimension) corresponds to the best fitting to the three length scales (side of the 

square scanned area) shown. 

 

It is noted that in this case there is always an increase in fractal dimension of the membrane 

(denser surface) due to the fouling process. This increase appears also for the NP010 membrane that 

shows a decrease in its surface roughness after being used (see Figure 8b). This difference in trend 

may be due to the highest error implicit in the method of analysis of the simple roughness. On the 

other hand, the fractal dimension is also connected with the lateral distribution of height deviations 

so is a more robust way to characterize the rough or flat nature of the surface. As a result, it can be 

concluded that the vertical profile of the surface of the NP010 membrane is flattened after 

interaction with KCA but the new surfaces fills more the space horizontally. 

If the variation in fractal dimension, D, is related to the adsorption of KCA, which is 

correlated with variations in permeability, these two magnitudes should be correlated as well. 

Figure 12 shows the percentage of the initial (new membrane) permeability that remains after KCA 

filtration versus the difference in fractal dimension between the fouled membrane, Df and the clean 

(unused one), Di. It is noted that the membranes that have similar values of roughness before KCA 

use (NF, NP030 and NP010) can be fitted to an exponential decay. The NF90 membrane is clearly 

out of this relationship because, as mentioned above, it has a roughness three times greater than the 

other membranes. 
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Figure 12 – Percent reduction of the permeability due to the KCA adsorption versus the difference of the 

fractal dimension of the clean membrane, Di and the used one Df. 

 

Finally we have calculated the skewness of the height distribution on the surface of the 

membranes using Eq. 11. The values are positive in all cases, which indicate that these surfaces 

have high spikes that protrude over a flatter average [54]. Comparing the results of the membranes 

before and after filtration with KCA is observed that for the polyamide membranes, (NF and NF90) 

the value of the skewness increases, whereas those of polyethersulfone this trend is not so clear. 

Possibly, in this case, the highly coating layer of KCA molecules (on an initial relatively flat 

surface) does not follow a trend. The kurtosis has been computed using Eq. 12. For all membranes, 

except for NP010, it is observed an increase in kurtosis, indicating that the protuberances on the 

surface have more similar sizes after adsorption of the KCA. In contrast, for the NP010 it is 

observed a decreasing kurtosis, indicating a wider distribution of the heights of the surface. This 

must be the result of high accumulation of aggregates of KCA, such as all data have indicated. 

 

4. Conclusions 

 

The AFM technique allows a determination of the pore size distribution of membranes with 

pore sizes in the order of the nanometer when the surface roughness of the samples is low. 

The results have been correlated with the permeability of the clean membrane and indicate 

that at least a proportion of the pores have slit type geometry. 
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The analysis of height difference in the surface images before and after the filtering process 

of potassium clavulanate has been studied by using: Root Mean Square roughness, Sq , Power 

Spectra Density, PSD, Fractal dimension, D, Skewness, Ssk, and Kurtosis, Sku. 

These parameters have been related to the permeability, the type of material, the amount of 

adsorbed solute on the surface and the pore size. 

It is noted that for membranes with similar (here low) values of the initial roughness: 

• The initial experimental permeability is linearly related to that evaluated from the pore 

size distributions. 

• If the adsorption layers of potassium clavulanate are enough, the roughness tends to a 

similar value for all membranes. 

• The fractal dimension increases in every case after the adsorption process, which is in 

agreement with the densification of the surface. 

• The permeability reduction is higher the greater is the difference between the fractal 

dimension before and after the adsorption. 
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Abstract 

 

In this work, four commercial membranes were evaluated, NF and NF90 (FilmtecTM), and NP010 

and NP030 (Microdyn Nadir). The membranes were electrical and functional characterized by 

means of Tangential Streaming Potential (TSP) and rejection using different concentrations of KCl 

and pH values. Also, the concentration polarization effect was evaluated through the calculation of 

the mass transfer coefficient. The isoelectric point of the membranes was found to be between pH 

5.0 and pH 6.0 and charges for the NF90 and NF membranes were negatives, whereas for the 

NP030, neutral and NP010 slightly negative. It was also detected that the NF90 membrane 

presented the highest KCl rejection among the evaluated membranes, followed by NF, NP030 and 

NP010 in sequence and they were considerably high retentive for clavulanic acid. The SEDE-VCh 

model satisfactorily modeled all the membranes for KCl rejection using dielectric constant inside 

the pores, εp, as fitting parameter. Finally, in order to determine the most suitable membrane for CA 

purification, the KCl/CA selectivity was evaluated and the NF membrane shows the best results. 

 

Keywords: nanofiltration, characterization, zeta potential, membrane, SEDE model  
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1.  Introduction 

Clavulanic acid (CA) is a β-lactamase inhibitor, used in combination with β-lactamase 

sensitive penicillins, to protect the β-lactam ring of the antibiotic against hydrolysis [1,2]. CA is 

produced industrially by fermentation using Streptomyces clavuligerus, and presents low yields in 

the production process, particularly in the separation and purification step, due to its thermal 

instability and sensitivity to changes in pH [1,3]. Associated with its low concentration in the 

fermented broth, studies on its extraction and purification have to consider the kinetic degradation 

of CA, in order to minimize losses and maximize recovery yields and productivity. 

Recent studies on the purification of CA were focused on the evaluation of procedures for its 

isolation and purification when produced by fermentation with Streptomyces clavuligerus. Some 

separation studies have used Amberlite XAD resin, Amberlite IRA 400 ion exchange resin pre-

treated with NaCl, ultrafiltration (UF) followed by nanofiltration, and nanofiltration processes with 

different membranes and conditions [2,4-7]. Currently, several high-value bio-products are 

produced by fermentation, bringing new challenges for the recovery and purification processes. UF 

processes are an efficient way of separating the biomass from the CA fermentation broth, producing 

a protein free permeate containing CA, which can be subsequently concentrated using nanofiltration 

membranes [2,6]. 

Nanofiltration is a process that has as driving force the pressure difference through the 

membrane. This process offers as main advantages, the operation at low pressures when compared 

to reverse osmosis, high flow, considerable retention of multivalent anionic salts and organic 

molecules of molecular weight greater than 300 Da, relatively low investment and low cost of 

operation and maintenance [8]. According to Hilal et al. [8], membranes that present smallest 

rejections of dissolved compounds and high water permeability have been of great improvement in 

the nanofiltration process, comparing reverse osmosis. 

According to Yacubowicz & Yacubowicz [9], a crossflow nanofiltration process is 

characterized by a membrane pore size corresponding to Molecular Weight Cut-Off (MWCO) 

around 200-1000Da, working at pressures of 150-500 psi (10-34 bar). Thus, retention of organic 

compounds is therefore determined by different membrane properties, such as MWCO, 

hydrophobicity and compounds properties such as molecular weight and ionization constant [10]. In 

addition to these separation phenomena, in salt separation the membrane charge also causes an 

additional exclusion due to electric and dielectric effects. 
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Summarizing, the nanofiltration performance can be identified as a sum of the convective, 

diffusive, steric and electrostatic effects through the membrane. In particular, in the interfaces the 

Donnan equilibrium, dielectric exclusion and steric effects take place. In electrokinetic 

characterization of solid-liquid interfaces, the tangential streaming potential has been shown to be a 

reliable tool to obtain zeta potential and membrane charge [11]. 

The zeta potential of porous materials is usually evaluated from electrokinetic experiments, 

as streaming potential because is a very simple technique and is very sensitive to changes in 

concentration increasing for low concentrations [12]. Between the two methods for measuring 

streaming potential that can be used, along and across the membrane, the first one is more 

appropriate for the nanofiltration membranes, once streaming potential measurements along the 

membrane bypass the hard interpretation of the electrokinetic data due to the small pore size and 

anisotropy of these membranes [13]. 

In contact with solutions, the pH has a significant effect in membrane charge and in 

characteristics of the molecules in solution, because it protonates and deprotonates the functional 

groups of membranes and molecules in solution, modifying the membrane charge and pore size and 

affecting hence the performance of nanofiltration and UF membranes [14-18]. 

Between the existent models used in nanofiltration process, the SEDE-VCh (steric, electric 

and dielectric exclusion) model can be noteworthy. This model presents a good description of 

transport properties in charged membranes proposed initially by Bowen & Welfoot [19] and 

recently modified in order to include a more realistic situation that includes the variation of the 

charge inside the membrane [20]. The model also includes the dielectric effects in the interfaces 

proposed by Szymczyk et al. [11,21]. Therefore, to determine the parameters involved in the 

process the solute transport inside and at membrane surface has to be studied, once the charge 

distribution has different values in those different regions, usually modeled by thermodynamic 

equilibrium. 

The goal of this work is the selection of an appropriate membrane for separation of CA from 

a mixed salt solution based on the functionality of several membranes selected. To achieve this 

purpose, electrical and structural membrane characterization was carried on. 
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2.  Methodology 

 

2.1.  Material 

 

Four commercial membranes have been selected and studied here. Two of them are made 

from polyamides: NF (polypiperazine amide) and NF90 (fully aromatic polyamide [22,23]) 

membranes, from FilmtecTM. Another two membranes, NP010 and NP030, are made from 

polyethersulfone and manufactured by Microdyn Nadir®. Table 1 shows the main characteristics of 

these membranes according to their manufacturers. 

 

Table 1 – Characteristics of the membranes used. 

Membrane NF90 NF NP030 NP010 

MWCO (Da) 180a >200 400 1000 

Max. pressure (bar) 41 41 40 40 

Max. temperature (ºC) 45 45 95 95 

pH range 2-11 3-10 0-14 0-14 

Pore size (nm)b 0.99 1.39 1.48 1.49 

Lp (10-11m/Pa.s)b 1.53 3.39 4.36 6.47 

Rejection (%) >97c >99d 80-95e 25-55e 
a Lopez Muñoz et al. [24] 
b Carvalho et al. [25] 

c Rejection of MgSO4  (25ºC, 4.8 bar) 
d Rejection of MgSO4  (25ºC, 8.9 bar) 
e Rejection of Na2SO4 (20ºC, 40 bar) 

 

The determination of zeta potential and surface charge density was carried out through the 

measurement of electric potential produced when an electrolyte solution passes between two 

membranes facing their active layers at a given pressure gradient (Figure 1). The solution 

conductivities were measured in a GLP 32 condutimeter, from Crison. 
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Membrane Electrode

Exit Entry

 

Figure 1 – Schematic representation of the streaming potential measurements cell. 

 

To study the nanofiltration process a stainless steel stirred dead-end cell was used. The 

system consists of a cylindrical container jacketed, with a membrane located at the base, whose area 

was 1.52 x 10-3 m2, and a magnetic stirrer that promotes the convection movement in the process. 

The pressure difference was applied by a change in the internal atmosphere with application of 

nitrogen gas, as shown in Figure 2. 
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Figure 2 – Schematic representation of the bench-scale stirred dead-end cell. 

 

The pH of the CA solutions was adjusted using 0.2 M hydrochloric acid and 1 M potassium 

hydroxide, prepared using analytical grade reagents. The solutions of KCl were prepared from KCl 

36.5-38 % of purity. The concentrations of KCl in feed phase and in permeate were measured by a 

standard curve that correlates the solution conductivity with the salt concentration in solution. 

The CA solutions were prepared from the medicine Clavulin® (revested pills with 125 mg of 

potassium clavulanate and 500 mg of amoxicilin, besides some salts, such as KCl [26]), from 

GlaxoSmithKline Brasil Ltda, which were vacuum filtered and microfiltered through 14 µm and 
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0.45 µm pore membranes, respectively. The concentration of CA was determined according to Bird 

et al. [27], using a Beckman CoulterTM model DU®640 spectrophotometer. The antibiotic was 

reacted with imidazole (60 g/L, pH 6.8) and the absorbance of the reaction product measured at 312 

nm. The product of this reaction is more stable than CA and its formation is directly proportional to 

the CA concentration present in the reaction mixture. Potassium clavulanate, also from the medicine 

Clavulin®, was used as the standard.  

 

2.2. Experimental procedure 

 
For the electrical characterization, the TSP technique was evaluated and also the isoelectric 

point was determined. The measurements were carried out with KCl solutions at different 

concentrations, ranging from 10-5 to 2.10-3 M. Moreover experiments with KCl 1x10-4 M solutions 

were carried out, at pH values from 4.0 to 8.0. 

The functional characterization was made by measurements of the rejection of KCl solution 

with the same concentrations and pH than in the electrical characterization. Different flow rates for 

each pH value were also performed, according to a change in the pressure applied to solution 

transport, from 1.106 to 4.106 Pa (or the maximum pressure suggested by the membrane 

manufacturer). The CA nanofiltrations were performed at concentrations between 250-750 mg/l, 

batch volume of 100 mL, agitation speed of 600 rpm, temperature of 25 ºC and at the same applied 

pressure than for KCl experiments. 

 

3.  Mathematical considerations 

 

3.1. Electric Characterization 

 

From the plot of electric potential versus applied pressure the membrane streaming potential 

for each pH value can be obtained from the slope. The zeta potential for each concentration and pH 

value was calculated through the Smoluchowsky equation as indicated below: 

 

bεε

νηλ
ζ

0

0=             (1) 
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where η is the streaming potential (V/Pa), λ0 the solution average conductivity (S/m), ν the solution 

dynamic viscosity (Pa.s), ε0 is the vacuum permittivity (F/m) and εb the dielectric constant of the 

bulk solution . With the zeta potential value (ζ) it was possible to calculate the surface charge 

density (σs) based on the Gouy-Chapman theory, as shown in Eq. 2: 

 

( ) ( ) −−= −

i

i
ibs

RT

Fz
cRTsign 1exp02 0 ζεεζσ       (2) 

R is the ideal constant of gases, T is the temperature (K), ci is the concentration of ion i (mol/m3), zi 

the charge of ion i and F is the Faraday constant (C). With the surface charge densities, it was 

finally possible to calculate the membrane volume charge density (Eq. 3) considering a slit 

geometry: 

 

p

S

Fr
X

σ
=            (3) 

where rp is the average pore radius of the membrane (m). 

 

3.2. Structural and Functional Characterization 

 

The pore size distribution of the membranes studied was obtained by Atomic Force 

Microscopy (AFM) in a previous work [25] and from these results the mean pore radius was 

determined from the maximum of the distribution been 0.494, 0.697, 0.741 and 0.743 nm for NF90, 

NF, NP030 and NP010, respectively. 

In order to determine the concentration polarization effect for the nanofiltration experiments, 

the mass transfer coefficient was determined using the relation of Colton et al. [28], the method take 

in account the appearance of the osmotic limit of flux and depends on the system geometry and 

others characteristics such as stirrer diameter and length, and from the membrane surface as 

indicated by the Eq. (4) [29]: 
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where D is the KCl diffusivity at infinite dilution, r is the membrane effective radius and ω is the 

rotation frequency. 

Moreover, to find out the concentration at the external surface the gel layer theory was used, 

which consider the volumetric flux per membrane area (JV), the mass transfer coefficient (k), and 

the KCl concentration on feed phase (c0) and on the permeate (cp) (Eq. 5) [30-32]. 

 

( ) k

J

ppm

V

ecccc −+= 0           (5) 

where k is the mass transfer coefficient obtained by the Eq. 4. 

 

3.3 Model Resolution 

 

 When the mean pore radius is obtained from an independent method [33] like in this work 

from AFM, the SEDE-VCh model is defined in terms of three independent parameters: the 

dielectric constant inside the pores ( p) and the two parameters of the Freundlich isotherm (a and b). 

The dielectric constant of the dry polymer of the membrane ( m) is usually taken from bibliography. 

The a and b parameters should be unique for a given solute and membrane system. The whole set of 

equations necessary to solve the system are summarized in Table 2 and a resolution algorithm can 

be found in Silva [20]. 

 

Table 2 – SEDE-VCh equations summarized 
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Eqs. 2 and 4 can be numerically solved with the following boundary conditions, 

ci(x = 0) = ci,0   
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ci(x = x) = ci, x                                                                                                                                  (I-4) 
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Partitioning equations 
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Where  the dielectric effects are, Born energy: 
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And the images force effect:  
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The K0, K1, I0, I1 are the modified Bessel functions. 

 

4.  Results and discussions 

4.1. Membrane charge results  

Regarding the charge effects, membrane electric potential (∆E) was carried out at pressures 

(P) in the module entrance ranging from 1x105 to 5x105 Pa. The solution conductivity was 

measured and used at the zeta potential calculations by the Smoluchowski equation (Eq. 1), which 

is suitable in situations where there is no overlap of electric double layer (high solute 

concentrations). The zeta potential should be equal in the surface and inside the membrane pores if 

the material is the same in all their faces. However, as the membranes have a multilayer structure, 
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and one of them is the support, none of the conventional techniques can provide direct information 

on charges density in the active layer of the pores, due to the contribution of the support in that [11]. 

The slope of the linearized data plotted on a graph of electric potential versus pressure 

difference between the entrance and exit of the cell is the membrane streaming potential in the 

respective pH. Along with data of the solution average conductivities, the concentration and average 

pore radius of the membranes, it was possible to obtain the zeta potential (ζ) (Eq. 1), the surface 

charge density (Eq. 2) and, finally, the volume charge density (X) (Eq. 3) of the four membranes, 

which is shown in the graph of the Figure 3. The results obtained also give the Freundlich isotherm 

for each membrane, which were represented by the continuous lines in the Figure 3 and by their 

corresponding equations in Eq. 6 to 9. 

 

69.0
90 4.11 cX NF −=    (6) 

56.07.10 cX NF −=     (7) 

51.0
030 7.6 cX NP −=    (8) 

38.0
010 7.5 cX NP −=     (9) 

 

 

Figure 3 – Membrane charge versus KCl concentration for all evaluated membranes. 
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The charge density is a characteristic of the functional group of the membrane polymer and 

depends on the electrolyte concentration in solution. According to Bowen et al. [35], in some cases 

in which an increase in the charge density occurs it could be due to the co-ion adsorption. Thus, in 

low solute concentrations, the membrane would present more available adsorption sites than solutes 

in solution, so, all molecules would be adsorbed, which could explain the deep variation on the 

charge density in those conditions. Increasing the solution concentration, the co-ion adsorption 

would diminish due to the steric hindrance, leading to an ion concentration at the membrane surface 

and this would preserve the charge previously adsorbed by the membrane surface, and then 

retarding the increase in the membrane charge and facilitating the ion transport through the 

membrane. 

 

 4.2 pH characterization 

 

The same evaluation was carried out varying the pH value and keeping the concentration 

constant. The representation of zeta potential versus the pH is shown in Figure 4 and 5. It can be 

observed that the volume charge densities change its signal with a change in pH, indicating that the 

membranes isoelectric points (IP) are among the values analyzed. The plots show that the IPs are 

between pH 5.0 and 6.0 for all membranes evaluated (5.7 for NF90, 5.3 for NF and NP010, and 5.5 

for NP030). With charged membranes, as the case of membranes used in this work, the influence of 

charged solutions to be purified is noticeable in the process efficiency. 

According to Ribau Teixeira et al. [18], if the overall membrane behavior is neutral, it 

presents a plateau in the region of their IP, being slightly positive charged before reaching the IP 

and slightly negative charged in values just above the IP. That behavior occurs with the NP030 

membrane, as it can be observed in Figure 5, which shows the membranes charges in relation to pH 

values. In this plateau the membrane shows no net charge, behaving like a not charged membrane. 
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Figure 4 - Chart of zeta potential versus pH solution for the four membranes. 

 

Figure 5 - Chart of membranes charges versus pH solution to the four membranes studied. 

 

Also according to Ribau Teixeira et al. [18], if the overall behavior is acid, the membrane 

presents a positive charge at pH values very acidic, neutral in pH values acids, negative in pH 

values neutral to acids and very negative in basic pH values, as in the case of NF and NF90 

membranes, thus the charge reduces in an acidic medium and increases, in module, from neutral to 
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basic medium. The NP010 membrane did not present the plateau as seen with the NP030 

membrane, as well as with NF90 and NF membranes, nevertheless, the NP010 membrane is also 

considered neutral. 

Bellona & Drewes [36] found that the zeta potential for the NF90 membrane did not present 

IP in the range of pH assessed (pH 3–9) by measures taken by electrophoresis neither an IP at pH 

4.0 in measures of streaming potential, which differs from those found in this work. In that case, 

measurements of electrophoresis were performed in NaCl 10 mM solution and streaming potential 

in KCl 10 mM solution, whereas in this work a KCl 0.1 mM solution was used. Probably this 

variation in the IP is due to the differences in the solution ion concentration, as observed in the 

work of Cavaco Morão et al. [13]. 

 

4.3. Concentration polarization effect 

 

Equally important is the study of the polarization effect, which allows determining mass 

transfer coefficient for each membrane, and also checking if the suggested model represents the 

process behavior. Besides, it helps to calculate the solute concentration in the external surface of the 

membranes, a necessary information to obtain the real rejection of the membrane and also to solve 

the SEDE-VCh model. 

 

4.3.1.  Mass transfer coefficient determination 

 

To empirically determine the mass transfer coefficient the Velocity Variation Method (VVM) 

was used. In this method the solute concentration and transmembrane pressure (TMP) are kept 

constant in the higher values used during the permeation experiments, which were 2.5 MPa for the 

membrane NP010, 3 MPa for the membrane NP030, 3.5 MPa for the membrane NF and 4 MPa for 

the membrane NF90. It was also considered a correlation between the dimensionless number of 

Reynolds, Schmidt and Sherwood for stirred tanks, which provides the mass transfer coefficient 

through the Eq. 4.  

For the VVM, the mass transfer coefficient can be considered as a function of Reynolds 

number, as shown the Eq.10. 
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( ) 8.0Rebk =                       (10) 

where b is the inverse of the slope of the Eq. 11 plotted in a graph. 

 

+
−

=
−

8.0
0

0

Re

11
ln

1
ln V

r

r J

bR

R

R

R
                   (11) 

where R0 is the observed rejection (Eq. 12), Rr is the real rejection that take in account the permeate 

flux and the Reynolds number, JV is the flux, and Re is the Reynolds number for each velocity 

evaluated [29,37]. 
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Comparing the coefficients obtained experimentally with those obtained by the dimensionless 

numbers method (Eq. 4), was noticed the necessity of a better fit of the data to the model, since the 

membrane behavior is correlated with suction effects and membrane charges, and the membranes 

presented distinct permeability [25], related to mass transfer on the adjacent cover of the 

membranes. Thus, the equation for the membranes NF90, NF, NP030 and NP010 became, 

respectively: 
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With those equations is possible to determine the mass transfer coefficient for the 

nanofiltration process using these membranes in different agitation velocities. As expected, as 

higher the permeability smaller the correction factor, mainly in charged membranes in the 

concentration evaluated, which were the larger used during the charge effects studies. Figure 6 

presents the mass transfer coefficients (k) for each velocity for all membranes studied. The results 

for NP030 and NP010 were practically the same. The NF90 membrane showed the higher value, 

with a mass transfer coefficient three times higher than those obtained for NP030 and NP010 

membranes. 

 

Figure 6 – Mass transfer coefficient for all membranes evaluated. 

 

4.4. KCl and CA rejection results 

 

 The KCl rejections were obtained for all membranes using the same concentrations and pH 

values used in the electric characterization, in a crossflow system varying the TMP and keeping the 

initial concentration constant. Then, through the observed rejections, the real rejections were 

determined and used to build the graph in the Figure 7 which shows the real retention versus the 

permeate flux per unit area of membrane (JV) for the membranes NF90, NF, NP030 and NP010, 

respectively. The KCl rejection for all concentration evaluated, in the highest TMP used for each 
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membrane (2.5 MPa for NP010, 3 MPa for NP030, 3.5 MPa for NF and 4 MPa for NF90), is also 

showed in the Table 3. 

  

(a)          (b) 

Figure 7 – Real rejection versus permeate flux for all of the membrane at (a) 1x10-4 M and (b) 1x10-3 M KCl 

concentration. 

 

Each permeate flux in the Figure 7 correspond to a TMP applied in the cell. Even with the 

membranes NP030 and NP010 working in the smaller TMP they presented the higher fluxes, due to 

their higher pore size. Analyzing the results of the NF90 membrane, it seems that it presented the 

highest rejections. For the NF membrane, as well as for the NF90, the rejection did not vary much 

with the permeate flux. This small variation with the permeate flux can be attributed to the smaller 

pore size of those membranes. Concerning the NP030 and NP010 membranes, the results show that 

the rejection is influenced by the initial KCl concentration (see Table 3), and that it vary with the 

permeate flux. These membranes are more succeptible to the effect of the membrane charge over 

the rejection at high permeate fluxes due its smaller volume density charge, which have the Cl- 

rejection improved by an enhancing in their electrostatic repulsion with the permeate flux.  

 

Table 3 – KCl real rejection for all membranes studied at the maximum TMP applied for each one 

KCl Concentration (10-3 M) NF NP010 NP030 KCl Concentration (10-3 M) NF90 

0.01 0.83 0.89 0.92 0.01 0.78 

0.1 0.88 0.89 0.93 0.1 0.96 

1 0.85 0.68 0.58 0.5 0.96 

2 0.84 0.48 0.74 1 0.93 
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The results in Table 3 show that the polyamide membranes had not a high variability in the 

rejections with the initial concentration used, whereas the polyethersulfone membranes presented a 

higher rejection in lower concentrations. According to Afonso [38] the rejection decreases when the 

salt concentration is increased, due to the shield effect of the cations on the membrane negatively 

charged groups, which became progressively stronger, leading to the decrease of the membrane 

forces on the anions. The same behavior was observed by Bowen & Welfoot [39] in a thin film 

composite membrane with an average pore size of 1.6 nm for permeation of NaCl. Likewise, the 

KCl rejections were also determined as a function of the pH of the solution, as shown in Figure 8. 

 

 

Figure 8 – KCl real rejection versus pH value for all membranes evaluated. 

 

Alternatively, the real rejection varied more with the pH value for the membranes NF90 and 

NF, passing from 0.50 in pH 4.0 to 0.95 in pH 8.0. This behavior was not noticed for the 

membranes NP030 and NP010, which presented a rejection around 0.80. It occurred due to the 

difference in charge densities, which varied more for the NF90 and NF membranes, than for the 

NP030 and NP010 membranes. Moreover, the smaller rejections in the NF and NF90 membranes 

were at the pH’s in which the membranes were positively charged and the KCl is dissociated, when 

the low electrostatic repulsion results in an improvement in the mass transfer. 

Also, according to Ribau Teixeira et al. [18], the pore size of the membranes is reduced at 

high pH value because the negatively charged groups on the membrane pore surface adopt an 
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extended conformation due to electrostatic repulsion, causing a reduction on the pore size and, 

consequently, a decrease in flux and an increase in retention. For the membranes NP010 and NP030 

the rejection did not change near the IP, confirming their neutral behavior, since nanofiltration 

selectivity is mainly controlled by electrostatic mechanisms and the IP corresponds to null electrical 

charge on the membrane, the rejection should bear a minimum at the IP indeed [38]. 

Using the same procedure the CA rejection was measured and for all concentrations the 

rejection values were considerably high, with mean observed rejection values of 99.9, 98.8, 82, 70 

% for the NF90, NF, NP030 and NP010 membranes, respectively. The CA has a molecular radius 

of 0.28 nm [26], which is considerably higher than Cl- (0.12 nm). These differences can explain the 

higher observed rejection. 

 

4.4.1.  SEDE-VCh model results 

 

Through the real rejection it was possible to use the SEDE-VCh to fit the dielectric constant 

inside the pores (εp) considering a slit-like pore geometry. In Table 4, the εp values are presented for 

the different concentrations evaluated. They have a strong dependency on both the pore diameter 

and the solute concentration. Comparing the εp values, it is possible behold that the average values 

increased with the membranes pore size, as expected. 

 

Table 4 – Dielectric constant inside the pores for all membranes studied 

KCl Concentration (10-3 M) NF NP010 NP030 KCl Concentration (10-3 M) NF90 

0.01 90.6 76.4 84.9 0.01 80.9 

0.1 58.4 57.0 53.9 0.1 48.4 

1 50.9 67.6 61.0 0.5 44.9 

2 52.3 67.4 54.3 1 42.4 

 

The dielectric constants inside the pores and at solution are different, since the equilibrium 

and dynamic properties of a solvent inside the pores and in solution are also different, due to the 

smaller degree of spatial and orientation order in the bulk. Thus, the solvent molecules inside the 

pores respond to an external electric field in a different way, leading to a reduction in the dielectric 

constant [11]. 
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4.4.2.  Membrane selectivity for clavulanic acid 

 

Since one of the aims of this work is the evaluation/selection a proper membrane for 

separation of CA from the salt concentration, a selectivity analysis based on observed rejection was 

made. Then, the selectivity of the salt in relation to the CA was obtained as: 
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=          (17) 

In order to represent the closer situation compared with the fermentation broth, the 750 mg/L 

of CA rejection results were chosen and Eq. 17 was evaluated for KCl 1x10-3 M. These results are 

represented in Figure 9 for all membrane with a concentration ratio of CKCl/CCA  0.1 as function of 

the applied pressure. 

 

 

Figure 9 – KCl/CA selectivity as function of applied pressure, for CKCl/CCA  0.1 

 

In this figure it clear represented that the NF membrane are considerably more selective than 

NP030 and NP010 membranes. The higher the selectivity is, easier the separation of KCl from the 

CA should be. And according to that, NF membrane shows the best results. 
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5.  Conclusions 

 

The isoelectric point of the membranes studied was between the pH 5.0 and pH 6.0, with the 

NF90 and NF membranes presenting a negative behavior, and the NP030 and the NP010 

membranes a neutral behavior. 

The mass transfer coefficient of the membranes NP030 and NP010 are practically the same. 

The NF90 and NF membranes showed the highest mass transfer coefficient, especially the NF90 

that presented a mass transfer coefficient three times higher than the NP030 and NP010 membranes. 

It was also detected that the NF90 membrane presented the biggest KCl and CA rejection 

among the evaluated membranes, followed by NF, NP030 and NP010 in sequence, when the data 

for the higher KCl concentrations were compared. 

The real rejection varied more with the pH value for the membranes NF90 and NF, increasing 

from 0.50 at pH 4.0 to 0.95 at pH 8.0. This behavior was not noticed for the membranes NP030 and 

NP010, which presented a rejection around 0.80. 

An interesting comparison between the structural and electric parameters and the 

corresponding modeling result can be done if the sequence of membranes is compared: 

• The and dielectric constant inside the pores decreases as the pore radius increases in the same 

membrane sequence than the mean pore radius obtained by AFM: NF90 < NF < NP030 < 

NP010 until the εp reaches the free water value when the pore radius is big enough.  The 

experimental membrane permeability also shows the same trend. 

• The membrane selectivity for KCl to CA shows a similar tendency than the volumetric charge 

density: NF > NF90 > NP030  NP010. 
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Nomenclature 

TSP – Tangential Streaming Potential 

KCl – Potassium chloride 

CA – Clavulanic acid 

KCA – Potassium clavulanate 

UF – Ultrafiltration 

MWCO – Molecular Weight Cut-Off 

SEDE-VCh – Steric, Electric and Dielectric Exclusion 

η – Streaming potential 

λ0 – Solution conductivity 

ν – Solution dynamic viscosity 

ε0 – Vacuum permittivity 

εb – Dielectric constant of the bulk solution 

ζ – Zeta potential value 

σs – Surface charge density based on the Gouy-Chapman theory 



CAPÍTULO 3 
 

76 
 

R – Ideal constant of gases 

T – Temperature 

ci – Concentration of ion i 

zi – Charge of ion i 

F – Faraday constant 

rp – Average pore radius of the membrane 

AFM – Atomic Force Microscopy 

D – KCl diffusivity at infinite dilution 

r – Membrane effective radius 

ω – Rotation frequency 

JV – Volumetric flux by membrane area  

k – Mass transference coefficient  

c0 – KCl concentration on feed phase 

cp – KCl concentration on the permeate 

p – Dielectric constant inside the pores  

a and b – Parameters of the Freundlich isotherm 

K0, K1, I0, I1 – Modified Bessel functions 

m – Dielectric constant of the dry polymer of the membrane 

∆E – Membrane electric potential 

P – Pressures 

X – Volume charge density 

IP – Isoelectric points 

NaCl – Sodium chloride 

VVM – Velocity Variation Method 

R0 – Observed rejection 

Rr – Real rejection 

JV – Flux 

Re – Reynolds number 

TMP – Transmembrane pressure 
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Abstract 

 

In the present work, studies on the nanofiltration of clavulanic acid are presented, aiming to select 

the most appropriate membrane and process conditions for the concentration and purification of the 

product. According to an evaluation of the results, the clavulanic acid retention depends on the 

membrane pore size. The trials were carried out taking into account the stability of clavulanic acid 

at different pH values and temperatures, as well as with different clavulanic acid concentrations in 

the feed phase. The permeability was decisive to determine the best membrane for this process and 

the NF membrane was chosen as the more appropriate one. 

 

Keywords: nanofiltration, membrane, clavulanic acid, purification, permeability 
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1.  Introduction 

Clavulanic acid (CA) is a β-lactamase inhibitor, used in combination with β-lactamase 

sensitive penicillins, to protect the β-lactam ring of the antibiotic against hydrolysis [1,2]. CA is 

produced industrially by fermentation using Streptomyces clavuligerus, and presents low yields in 

the production process, particularly in the separation and purification step, due to its thermal 

instability and sensitivity to changes in pH [1,3]. Associated with its low concentration in the 

fermented broth, studies on its extraction and purification have to consider the kinetic degradation 

of CA, in order to minimize losses and maximize recovery yields and productivity. 

Recent studies on the purification of CA were focused on the evaluation of procedures for its 

isolation and purification when produced by fermentation with Streptomyces clavuligerus. Some 

separation studies have used Amberlite XAD resin, Amberlite IRA 400 ion exchange resin pre-

treated with NaCl, and ultrafiltration (UF) followed by nanofiltration [2,4-6]. Currently, several 

high-value bio-products are being produced by fermentation, bringing new challenges for the 

recovery and purification processes. UF processes are an efficient way of separating the biomass 

from the CA fermentation broth, producing a free protein permeate containing CA, which can be 

subsequently concentrated using nanofiltration membranes [2,6]. 

Nanofiltration is a process in which the driving force is the pressure difference between the 

two sides of the membrane. The main advantages of this process are the operation at low pressures 

when compared to reverse osmosis, high flow rate, considerable retention of multivalent anionic 

salts and organic molecules of molecular weight higher than 300 Da, and involves relatively low 

investment and low operational and maintenance costs [7]. The performance of nanofiltration 

depends on the sum of steric and electrostatic effects through the membrane, the Donnan 

equilibrium, dielectric exclusion, and a further steric effect at the membrane surface.  

The mass transfer in the membrane depends on several factors, such as the adsorption in the 

inner of the pores causing pore blockage, and fouling on the membrane surfaces during the process 

[8-10], as the concentration polarization layer of the solutes on the high-pressure side of the 

membrane such as cake and gel layer formation [9-11], leading to an increase in the operation and 

maintenance costs, permeate flux decline, and energy demands, turning down the membrane 

performance and ultimately reducing membranes life [12-14]. 

Despite the efforts to minimize the fouling it occurs in many instances [10], becoming the 

mainly challenge for the nanofiltration process, since the extent of rejection of solutes by 

membranes is perhaps the most critical parameter in membrane filtration [10,12,15]. For a clean 
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(unfouled) membrane, the extent of rejection is influenced largely by the pore size or molecular 

weight cut-off (MWCO) [10].  

Since the particles are accumulated preferentially in the “valleys” than in the peaks, a 

structural conformation that appears in rough membranes, it results in “valley clogging” and hence 

in a more severe flux decline in rough membranes in comparison with smooth membranes [16-18]. 

Hirose et al. [19] suggested an approximately linear relationship between membrane surface 

roughness and permeate flux for crosslinked aromatic polyamide RO membranes, where 

permeability increased with increasing surface roughness. However, for others researchers the 

hydrophobicity appears to be of fundamental importance to the cake formation, likewise the 

adsorption of hydrophobic compounds is major onto hydrophobic membranes [14, 17, 20, 21]. 

Another important membrane property is the permeability [17], since higher flux can bring 

more colloids to the membrane surface in a given time period, resulting in a faster growth of the 

cake layer [17]. However, reported results are complicated to follow due to the composite nature of 

foulants and particular interactions with each membrane type and composition that leads to a 

diversity of explanations for observed rejections [22]. 

Therefore, even with a large nanofiltration applications suggested [21,23-25], only few were 

implemented on an industrial scale. So, the main goals of this work were the selection of the most 

appropriate membrane and the optimization of the filtration conditions, taking into account the 

process conditions, the stability of the CA at different temperature and pH values, and different 

solute concentrations in the feed, evaluating the effect of the pore size and permeability over the 

process. 

 

2.  Methodology  

 

2.1. Material 

 

A stainless steel stirred dead-end cell was used to study the nanofiltration process. The 

system consists of a cylindrical container jacketed, with a membrane located at the base, whose area 

was 1.52 x 10-3 m2, and a magnetic stirrer that promotes the convection movement in the process. 

The pressure difference was applied by a change in the internal atmosphere with the application of 

nitrogen gas, as shown in Figure 1. 
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Figure 1 – Schematic representation of the bench-scale stirred dead-end cell. 

 

The assays were performed with the NF (polypiperazine amide)  and NF90 (fully aromatic 

polyamide [15,26]) membranes from FilmtecTM, and the NP010 and NP030 membranes made from 

polyethersulfone and manufactured by Microdyn Nadir. Table 1 shows the characteristics of the 

membranes studied according to the manufacturers. The CA solutions were prepared from the 

medicine Clavulin® (revested pills with 125 mg of potassium clavulanate and 500 mg of 

amoxicilin), from GlaxoSmithKline Brasil Ltda. The pH of the CA solutions was adjusted using 0.2 

M hydrochloric acid and 1 M potassium hydroxide, prepared using analytical grade reagents. The 

hydrochloric acid solutions were prepared using 36.5-38 % pure hydrochloric acid. 

 

Table 1 – Characteristics of the membranes used 

Membrane NF90 NF NP030 NP010 

MWCO (Da) 180a >200 400 1000 

Max. pressure (bar) 41 41 40 40 

Max. temperature (ºC) 45 45 95 95 

pH range 2-11 3-10 0-14 0-14 

Pore size (nm)b 0.99 1.39 1.48 1.49 

Lp (10-11m/Pa.s)b 1.53 3.39 4.36 6.47 

Rejection (%) >97c >99d 80-95e 25-55e 
a Lopez Muñoz et al. [27] 
b Carvalho et al. [28] 

c Rejection of MgSO4  (25ºC, 4.8 bar) 
d Rejection of MgSO4  (25ºC, 8.9 bar) 
e Rejection of Na2SO4 (20ºC, 40 bar) 
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The imidazole used in the analysis of the concentration of CA in the feed, permeate and 

rejection phases, was ultrapure. The results were analyzed using the statistical software Statistica 

7.0® from StatSoft®. 

 

2.2. Experimental procedure 

 
The membrane selection step was carried out using a 23 rotational central composite 

experimental design, with 6 axial points and 3 central points, giving a total of 17 experiments for 

each membrane evaluated. It was expected that the applied pressure and the agitation speed 

influenced the process, so, to diminish the number of experiments they were kept constant during 

these experiments. Their values were: tangential flow velocity of 600 rpm and transmembrane 

pressure applied of 2x106 Pa. The volume of the feed phase was also kept constant in 100 mL. 

Table 2 shows the levels of the independent variables (real and coded values). 

 

Table 2 – Independent variables and their levels for membrane selection 

Levels 
Variable 

-1.68 -1 0 1 1.68 

Temperature [°C] 5 10 17.5 25 30 

pH 4.5 5.11 6 6.89 7.5 

CCA [mg/L] 250 437.5 750 1062.5 1250 

 

In these experiments, aqueous solutions of potassium clavulanate were used, which were 

vacuum filtered and microfiltered through 14 µm and 0.45 µm pore membranes, respectively. The 

retention coefficient and productivity were evaluated as responses.  

The process was validated using experiments in triplicate under the optimal operating 

conditions as obtained for each membrane, and the Tukey test was applied to determine the best 

membrane for this process. 

For the purification assays, an ultrafiltered fermentation broth was used, in which the 

concentration of CA varied according to the fermentation process. Only the NF and NF90 

membranes were used in these assays, since they provided the best results in the first membrane 

selection step. In this case, two 24-1 fractional factorial experimental designs were used, one for each 

membrane, each with 3 central points, as shown in Table 3. 
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Table 3 – Independent variables and levels for the purification assays 

Levels 

NF NF90 Variable 

-1 0 1 -1 0 1 

Pressure applied [MPa] 1 2 3 1 2.5 4 

Tangencial flow velocity [rpm] 260 600 930 260 600 930 

Temperature [°C] 5 17.5 30 5 17.5 30 

pH 4.5 6.0 7.5 4.5 6.0 7.5 

 

2.3. Mathematical considerations 

 
The retention coefficients were calculated from the CA mass found in the retentate and 

permeate phases of the process, since the concentration factor was kept constant for all experiments. 

The productivities were calculated according to the CA concentration in the retentate and feed 

phases, the feed tank volume and the time elapsed at the end of the process. The purification factor 

was determined by comparing the concentrations of CA and of the contaminants. Equations (1), (2) 

and (3) show these relationships. 
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where RC  is the retention coefficient, MREJ is the CA mass in the retentate, MPER is the CA mass in 

the permeate, [CA]REJ is the clavulanic acid concentration in the retentate, [CA]0 is the clavulanic 

acid concentration in the feed phase, V0 is the initial volume in the feed phase, t is the process time 
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(h), [Cont]REJ is the concentration of contaminants in the retentate and [Cont]0 is the concentration 

of contaminants in the feed phase. 

 

2.4. Analytical methodology 

 
The concentration of CA was determined according to Bird et al. [29], using a Beckman 

CoulterTM model DU®640 spectrophotometer. The antibiotic was reacted with imidazole (60 g/L, 

pH 6.8) and the absorbance of the reaction product measured at 312 nm. The product of this 

reaction is more stable than CA and its formation is directly proportional to the CA concentration 

present in the reaction mixture. Potassium clavulanate, also from the medicine Clavulin®,  was used 

as the standard. 

Additionally, in order to evaluate the contaminants, the reaction product was assayed at 280 

nm, wavelength at which part of the amino acids can be detected, mainly the aromatic ones, since 

the contaminants are mainly amino acids [30].  

 

3.  Results and discussion 

 

3.1. Membrane selection and process optimization 

 
In the membrane selection assays the stability of the clavulanic acid was considered with 

respect to how it was affected by variations in the pH and temperature (T), and also the 

concentration at which it came from the previous phases of the process (C0). The responses were the 

retention coefficient and process productivity ([CA]RET/[CA]0.L.h). Table 4 shows the data obtained 

in this preliminary phase. 
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Table 4 – Template for the planning and results obtained in the membrane selection experiments 

    NP010 NP030 NF NF90 

Exp. T (°C) pH C0 (mg/L) RC Productivity 

([CA]RET/[CA]0.L.h) 

RC Productivity 

([CA]RET/[CA]0.L.h) 

RC Productivity 

([CA]RET/[CA]0.L.h) 

RC Productivity 

([CA]RET/[CA]0.L.h) 

1 -1 (10) -1 (5.11) -1 (437.5) 0.7361 48.85 0.8738 25.29 0.9675 40.98 0.9982 32.37 

2 1 (25) -1 (5.11) -1 (437.5) 0.7492 68.24 0.8755 43.15 0.9860 65.12 0.9996 52.26 

3 -1 (10) 1 (6.89) -1 (437.5) 0.7319 46.24 0.8529 30.76 0.9730 49.11 0.9980 30.16 

4 1 (25) 1 (6.89) -1 (437.5) 0.7541 68.56 0.8481 49.08 0.9659 81.84 0.9981 47.37 

5 -1 (10) -1 (5.11) 1 (1062.5) 0.7055 34.01 0.8639 22.07 0.9873 38.61 0.9991 24.97 

6 1 (25) -1 (5.11) 1 (1062.5) 0.7623 44.88 0.8665 28.59 0.9853 51.80 0.9990 25.67 

7 -1 (10) 1 (6.89) 1 (1062.5) 0.7027 34.25 0.8318 23.13 0.9886 32.46 0.9991 12.83 

8 1 (25) 1 (6.89) 1 (1062.5) 0.7674 40.68 0.8498 29.41 0.9785 50.81 0.9992 29.47 

9 -1.68 0 (6.0) 0 (750) 0.7522 29.36 0.8256 26.93 0.9911 20.61 0.9966 27.38 

10 1.68 0 (6.0) 0 (750) 0.7982 60.58 0.8799 42.47 0.9892 57.37 0.9961 35.05 

11 0 (17.5) -1.68 0 (750) 0.7725 39.08 0.8743 24.10 0.9830 54.82 0.9985 37.71 

12 0 (17.5) 1.68 (7.5) 0 (750) 0.6842 43.57 0.8193 30.81 0.9748 42.30 0.9974 39.78 

13 0 (17.5) 0 (6.0) -1.68 (250) 0.6904 66.18 0.8031 39.38 0.9866 74.22 0.9995 45.26 

14 0 (17.5) 0 (6.0) 1.68 (1250) 0.7510 34.93 0.8529 24.34 0.9355 47.67 0.9991 26.89 

15 0 (17.5) 0 (6.0) 0 (750) 0.7329 43.94 0.8849 28.44 0.9882 29.71 0.9987 17.85 

16 0 (17.5) 0 (6.0) 0 (750) 0.6977 37.32 0.8410 38.20 0.9894 38.39 0.9994 32.74 

17 0 (17.5) 0 (6.0) 0 (750) 0.7228 47.65 0.8611 32.50 0.9914 158.32 0.9984 40.44 

Average ± standard deviation 

of central points 

0.718a 

± 0.018 

42.97a 

± 5.23 

0.862b 

± 0.022 

33.05b 

± 4.91 

0.990c 

± 0.002 

34.05b 

± 6.14 

0.999c 

± 0.001 

30.34c 

± 11.48 
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The results were statistically analyzed using the Tukey test at the central point, showing that 

the NF and NF90 membranes had  higher average retention coefficients (RC), with values of 0.990 

and 0.999, respectively, as compared to the NP010 and NP030 membranes, with retention 

coefficients of 0.718 and 0.862, respectively, at a 10% significance level. Those results were 

expected when you compare the retention with the membranes pore size, which were NF90 < NF < 

NP030 < NP010, allied to their adsorption degree. According Carvalho et al. [28], the membranes 

NF and NF90 did not adsorb CA as the membranes NP010 and NP030, since the adsorption is 

related to the atraction of the CA molecules to the membrane surface, which is higher for the 

polyethersulfone membranes (NP010 and NP030) than for the polyamide membranes (NF and 

NF90).This smaller adsorption improves the rejection ability of the second two. 

As the productivity is an important parameter when denaturing bioproducts are concerned, 

since the higher the productivity, the higher the chances of good product recovering. The average 

productivities for NF and NP030 membranes showed no significant differences, according to the 

test applied to the central point data, also at a 10% significance level, as can be seen in Table 4, 

where the same letters indicate that the responses are not statistically different for that parameter. 

The membranes NF90 and NP010 present different productivities by feed tank volume. This result 

is in accordance with the permeabilities found for these membranes by Carvalho et al. [28], 

including the similarity in the permeability of the membranes NF and NP030, as shown in the Table 

1. For these Tukey test the last value for the productivity of the membrane NF and the first one for 

the membrane NF90 were discarded, since they were too much different than the other two and, 

probably, were an experimental error. 

Since the NF and NF90 membranes presented the best results, for the retention coefficient, 

they were subjected to a more detailed treatment using the effect estimate analysis. This study was 

carried out considering both the responses and the results obtained for the retention coefficient 

showed that the determination coefficients of the statistical analysis were below 70%.  This was 

certainly due to the low variability of the data for both membranes, as can be seen in Figure 2. In 

this figure, the membrane NF90 provided the best results for the retention coefficient with a small 

variability, with all results above 0.99. It can also be seen that the membrane NF presented a 

meaningful result, with a retention coefficient higher than 0.93. Again, the membrane with small 

pore showed better retention, reinforcing the idea that the CA retention strongly depends on the 

membrane pore size. 
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Figure 2 – Retention coefficients (RC) for the NF and NF90 membranes. 

 

For the membrane NF90 the determination coefficient was 84,13 % and for the membrane 

NF it was 95,91 %, at 10% significance, nevertheless, it is better to compare the results for both 

membranes using all the experiments results, since the overall behavior can show a general idea of 

the discrepancies between them. Therefore, it is possible to determine which membrane presented 

better productivity during the concentration of clavulanic acid in a given feed volume, as shown in 

Figure 3. 

As can be seen above, the NF membrane showed the highest productivities, higher than those 

of the NF90 membrane, although the latter also presented good productivities, typically above 25 

[CA]RET/[CA]0.L.h. When only these two membranes are analyzed it is possible to notice a greater 

difference in their productivities, which leads to a deeper study on their permeabilities. In our 

previous work [28] it was found that the permeability of the NF90 and NF membranes decreases 

after their use to concentrate CA in similar degrees, around 28%. However, when the absolute 

values are considered, they mean that the NF permeability is twice the NF90 permeability for both 

clean and used membranes, leading to a best productivity for the NF one. 
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Figure 3 – Productivity ([CA]RET/[CA]0.L.h) for the NF and NF90 membranes. 

 

According to the statistical analysis, it is evident that the higher the temperature and the 

higher the pH, the better the results. The CA concentration presented a negative effect over the 

productivity, however, it is interesting to produce a high quantity of CA, leading to the best 

operational conditions for the NF membrane being those of experiment 10: temperature of 30 ºC, 

pH 6.0, and a clavulanic acid concentration in the feed phase of 750 mg/L, since the production of 

CA improved. 

On the other hand, for the NF90 membrane, it seems that the temperature is the limiting 

factor for the definition of the best operational conditions, even with the negative effect of the CA 

concentration over the productivity. Thus, the conditions at the central point were adopted for the 

system operation, which were temperature 17.5 ºC, pH 6.0 and a clavulanic acid concentration in 

the feed phase of 750 mg/L. 

 

3.2. Validation 

 
The validations of the best operational conditions were carried out for the NF and NF90 

membranes using the following values: for NF90 - T = 17.5 ºC, pH = 6.0 and C0 = 750 mg/L, and 

for NF - T = 30 ºC, pH = 5.11 and C0 = 750 mg/L. A comparison between the average values for 
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both membranes was also carried out using a statistical test, to determine which of the two was 

more suitable for this process. The results are shown in Figure 4. 
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(b) 

Figure 4 – Responses for NF and NF90 membranes, with their respective repetitions and averages: (a) 

retention coefficient and (b) productivity ([CA]RET/[CA]0.L.h). 

 

As shown in Figure 4a, the average retention coefficient was higher than 0.98 for both 

membranes, showing good reproducibility as well when considering the best operational conditions. 
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It can be seen in Figure 4b that the NF membrane showed productivity higher than 65 

[CA]RET/[CA]0.L.h, whereas that for the NF90 membrane was around 37 [CA]RET/[CA]0.L.h. It can also 

be concluded that the process allowed for good reproduction of these results, especially for the NF 

membrane, which showed the best performance. 

A Tukey test was carried out to compare the averages for each response, in order to better 

compare the membranes.  The results can be seen in Table 5, where the averages for all the 

responses and the relationship between them are shown, at a 10% level of significance. The 

averages denoted with different letters differ statistically, whereas those denoted with the same 

letters are statistically equivalent. 

 

Table 5 – Results of the Tukey test for both membranes 

 RC Productivity ([CA]RET/[CA]0.L.h) 

NF 0.992a ± 0.0015 67.10a ± 1.33 

NF90 0.999b ± 0.0004 36.59b ± 5.45 

 

The results in Table 5 show that the retention coefficients and the productivity, for the NF 

and NF90 membranes,  differed statistically at a 10% level of significance. The NF membrane 

showed the best performance concerning the productivity. 

When these results are compared with those found in the literature, the recoveries of 

clavulanic acid obtained with both these membranes, working under the optimized conditions, were 

better than those found by Barboza et al. [5] and Hirata et al. [31], who obtained a maximum 

recovery of 70%, and similar to those found by Cavaco Morão et al. [32], with values of 99.1%, 

92.8% and 98.1% of rejection for the membranes NFT50, Desal DL and Desal DK, respectively. 

 

3.3. Membrane selectivity 

 
The selectivity studies for both NF and NF90 membranes were carried out according to a 24-1 

fractional experimental design. The selectivity was evaluated with respect to the contaminants, 

represented here in a general way by amino acids, especially those that absorb at a wavelength of 

280 nm, such as the aromatic ones. The retention coefficients, productivities and purification factors 

were evaluated against the following variables: pH, applied pressure, tangential velocity (agitation 

speed) and temperature. In addition, fermentation broths were used instead of the synthetic 

solutions used in previous experiments, allowing for a better evaluation of the process, so that the 
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best membrane could be chosen. Table 6 shows the variables and the results obtained. For the 

retention coefficient response, there was small variability in the results and no variables were 

significant at a10% level of significance. Figure 5 shows the performance of both membranes with 

respect to this response. 

 

Table 6 – 24-1 fractional factorial design for the membrane selectivity studies 

     NF NF90 

Exp. P (MPa) ω (rpm) T 

(°C) 

pH RC Productivity 

([CA]RET/[CA]0.L.h) 
PF 

RC Productivity 

([CA]RET/[CA]0.L.h) 
PF 

1 -1 -1 -1 -1 0.9761 38.99 1.092 0.9963 9.25 1.005 

2 1 -1 -1 1 0.9705 36.94 0.958 1.0019 30.22 0.889 

3 -1 1 -1 1 0.9866 31.94 0.933 0.9990 17.86 0.945 

4 1 1 -1 -1 0.9867 180.24 1.086 0.9993 62.77 1.108 

5 -1 -1 1  1 0.9902 41.72 0.944 0.9982 25.28 0.924 

6 1 -1 1 -1 0.9567 179.10 1.133 0.9936 69.85 1.031 

7 -1 1 1 -1 0.9854 78.22 1.159 0.9970 29.09 1.096 

8 1 1 1 1 0.9246 64.39 0.952 0.9943 34.25 0.936 

9 0 0 0 0 0.9999 119.44 1.034 1.0000 61.08 1.129 

10 0 0 0 0 0.9919 124.59 0.986 0.9946 63.82 1.003 

11 0 0 0 0 0.9968 120.73 1.062 0.9988 65.03 0.985 

Average ± standard deviation 

of central points 

0.996 

± 0.004 

121.59 

± 2.68 

1.03   

± 0.04 

0.998 

± 0.003 

63.31 

± 2.02 

1.04   

± 0.08 
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Figure 5 – Retention coefficients for both membranes. 

 

As shown in Figure 5, the NF90 membrane showed greater retention than the NF one, which 

can be explained by the smaller pore size of the former, as previously explained. When comparing 

the results obtained from the fermentation broth with those obtained from the synthetic solution of 

clavulanic acid, it was found that the results for the NF90 membrane did not differ, however, the NF 

membrane showed lower retention rates than those found using a synthetic solution of CA. This 

apparent inconsistency may be explained by the presence of other substances in the fermented 

broth, which may have interacted with the NF membrane, changing the CA adsorption in its surface 

and altering its ability to retain the CA. The results concerning the influence of agitation speed and 

applied pressure on the separation and concentration of CA by nanofiltration, as reported in this 

work, have not been reported elsewhere, and it is also important to mention that the CA 

concentration in the fermented medium depended on the fermentation batch, which varied from 435 

mg/L to 698 mg/L, and can obviously affect the filtration process. 

Concerning the productivity of both membranes, the effect estimate analysis showed that the 

NF90 was affected positively by the applied pressure, whereas the NF membrane was also affected 

positively by the applied pressure and negatively by the pH of the solution, at a10% level of 

significance. However, the determination coefficients for these responses were relatively low (R2 
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bellow 70 %), so the productivity was evaluated in the same way as the retention coefficient, as 

shown in Figure 6. 

 

Figure 6 – Productivities ([CA]RET/[CA]0.L.h) for both membranes. 

 

It is evident from Figure 6 that the productivity of the NF membrane was much higher than 

that of the NF90 membrane, suggesting that the former is more appropriate for this process. It can 

also be noted that both membranes showed greater productivity when using the fermented broth 

instead of the synthetic solution of clavulanic acid. It probably happened due to the increase in the 

applied pressure, which increased the water permeability of the membranes, leading to a higher 

discrepancy between the membranes productivities. However, it is imperative to evaluate the CA 

purification factor in order to choose the correct membrane. 

Concerning the purification factor, the effect estimate analysis showed that both membranes 

were negatively affected by the pH of the solution at a 10 % level of significance. Although the 

determination coefficient for the NF membrane was representative for this response (R2 = 92.06 %), 

the same cannot be said for the NF90 membrane (R2 = 63.09 %). This pH effect can be attributed to 

the change in the molecules charge in the solution, since in the smaller pH used here (pH =  4.5) the 

CA is protonated, but some amino acids present in the solution may not be protonated, improving 

the purification factor. The response of purification factor can be evaluated for both membranes 

from Figure 7. 
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Figure 7 – Purification factor for both membranes. 

 

According to Figure 7, both membranes showed similar results for the purification factor, 

since they are made from the same material, thus, presenting the same chemical behavior associated 

to the molecules adsorption by their surfaces. Therefore, since the retention coefficients and 

purification factors of both membranes were similar, as shown in Figures 5 and 7, and Table 6, the 

more appropriate membrane was determined according to the productivity, indicating that the NF 

membrane can be considered the more appropriate for the concentration and separation of CA. 

 

4.  Conclusions 

According to the assays carried out for the selection of a membrane to separate clavulanic 

acid, both the NF and NF90 membranes could be indicated for the proposed objectives of this study, 

since they present the smallest pores and the clavulanic acid retention depends on the membrane 

pore size. 

The optimal operational conditions for the NF and NF90 membranes were determined with 

respect to the pH value, clavulanic acid concentration in the feed phase and the process temperature, 

obtaining the following results: temperature of 30 °C and pH of 5.1 for NF; temperature of 17.5 °C 

and pH of 6.0 for NF90, and a CA concentration of 750 mg/L for both membranes. 
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In addition the results were validated under the selected conditions for each membrane. The 

average results for the NF and NF90 membranes were: retention coefficient above 0.99 for both 

membranes and productivities up to 121.59 [CA]RET/[CA]0.L.h and 63.31 [CA]RET/[CA]0.L.h for the NF 

and NF90 membranes, respectively. 

The clavulanic acid rejection also depends on its adsorption on the membrane surface, which 

influences the membrane permeability. Therefore, under the best operational conditions, it was 

clearly demonstrated the effect of the permeability over the nanofiltration process, which was 

decisive to determine the best membrane for this process. Concluding, the NF membrane from 

FilmtecTM was more appropriate for the process under study. 

 

Acknowledgements 

The authors acknowledge the financial support from the State of São Paulo Research Foundation 

(FAPESP) and from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). 

The authors are also grateful for the membranes donated by Mycrodin Nadir® and Dow FilmtecTM. 

 

References 

[1] Bersanetti, P.A.; Almeida, R.M.R.G.; Barboza, M.; Araújo, M.L.G.C.; Hokka, C.O. (2005) Kinetic studies 

on clavulanic acid degradation. Bioch. Eng. J., 23: 31-36. 

[2] Cavaco Morão, A.I.; Brites Alves, A.M.; Costa, M.C.; Cardoso, J.P. (2006) Nanofiltration of a clarified 

fermentation broth. Chem. Eng. Sci., 61: 2418-2427. 

[3] Almeida, R.M.R.G.; Barboza, M.; Hokka, C.O. (2003) Continuous clavulanic acid adsorption process. 

Applied Bioch. and Biotechnol., 108: 867-879. 

[4] Mayer, A.F.; Anspach, F.B.; Deckwer, W.D. (1996) Purification of clavulanic acid by ion-pairing 

systems. Bioseparation, 15: 25-39. 

[5] Barboza, M.; Almeida, R.M.R.G.; Hokka, C.O. (2002) Kinetic studies of clavulanic acid recovery by ion 

exchange chromatography. Bioseparation, 10: 221-227. 

[6] Brites Alves, A.M.; Morão, A.; Cardoso, J.P. (2002) Isolation of antibiotics from industrial fermentation 

broths using membrane technology. Desalination, 148: 181-186. 



CAPÍTULO 4 
 

95 
 

[7] Hilal, N.; Al-Zoubi, H.; Darwish, N.A.; Mohammad, A.W.; Abu Arabi, M. (2004) A comprehensive 

review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. 

Desalination, 170: 281-308.  

[8] Matthiason, E. (1983) The role of macromolecular adsorption in fouling of ultrafiltration membranes. J. 

Membr. Sci., 16: 23-36. 

[9] Ochoa, N.A.; Prádanos, P.; Palacio, L.; Pagliero, C.; Marchese, J.; Hernández, A. (2001) Pore size 

distributions based on AFM imaging and retention of multidisperse polymer solutes: Characterisation of 

polyethersulfone UF membranes with dopes containing different PVP. J. Membr. Sci., 187: 227-237. 

[10] Schäfer, A.I.; Fane, A.G.; Waite, T.D. (2000) Fouling effects on rejection in the membrane filtration of 

natural waters. Desalination, 131: 215-224. 

[11] Gekas, V. & Hallström, B. (1987) Mass transfer in the membrane concentration polarization layer under 

turbulent cross flow: I. Critical literature review and adaptation of existing sherwood correlations to 

membrane operations. J. Membr. Sci., 30: 153-170. 

[12] Vrijenhoek, E.M.; Hong, S.; Elimelech, M. (2001) Influence of membrane surface properties on initial 

rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci., 188: 115-128. 

[13] Vrouwenvelder, J.S.; Kappelhof, J.W.N.M.; Heijman, S.G.J.; Schippers, J.C.; Van der Kooij, D. (2003) 

Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed 

water. Desalination, 157: 361-365. 

[14] Tarabara, V.V.; Koyuncu, I.; Wiesner, M.R. (2004) Effect of hydrodynamics and solution ionic strength 

on permeate flux in cross-flow filtration: direct experimental observation of filter cake cross-sections. J. 

Membr. Sci., 241: 65-78. 

[15] Nghiem, L.D.; Vogel, D.; Khan, S. (2008) Characterizing humic acid fouling of nanofiltration 

membranes using bisphenol A as a molecular indicator. Water Research, 42: 4049-4058. 

[16] Boussu, K.; Van der Bruggen, B.; Volodin, A.; Van Haesendonck, C.; Delcour, J.A.; Van der Meeren, P.; 

Vandecasteele, C. (2006) Characterization of commercial nanofiltration membranes and comparison with 

self-made polyethersulfone membranes. Desalination, 191: 245-253. 

[17] Boussu, K.; Belpaire, A.; Volodin, A.; Van Haesendonck, C.; Van der Meeren, P.; Vandecasteele, C.; 

Van der Bruggen, B. (2007) Influence of membrane and colloid characteristics on fouling of 

nanofiltration membranes. J. Membr. Sci., 289: 220-230. 

[18] Wong, P.C.Y.; Kwon, Y.-N.; Criddle, C.S. (2009) Use of atomic force microscopy and fractal geometry 

to characterize the roughness of nano-, micro-, and ultrafiltration membranes. J. Memb. Sci., 340: 117-

132. 

[19] Hirose, M.; Ito, H.; Kamiyama, Y. (1996) Effect of skin layer surface structures on the flux behavior of 

RO membranes. J. Membr. Sci., 121: 209-215. 

[20] Mänttäri, M.; Puro, L.; Nuortila-Jokinen, J.; Nyström, M. (2000) Fouling effects of polysaccharides and 

humic acid in nanofiltration. J. Membr. Sci., 165: 1-17. 



CAPÍTULO 4 
 

96 
 

[21] Van der Bruggen, B.; Kim, J.H.; DiGiano, F.A.; Geens, J.; Vandecasteele, C. (2004) Influence of MF 

pretreatment on NF performance for aqueous solutions containing particles and an organic foulant. Sep. 

Purif. Technol., 36: 203-213. 

[22] Yagali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G. (2009) Rejection of 

pharmaceuticlally active compounds and endocrine disrupting by clean and fouled nanafiltration 

membranes. Water Research, 43: 2349-2362. 

[23] Bhattacharyya, D.; Hestekin, J.; Shan, D.; Ritchie, S. (2002) An overview of selected membrane 

techniques for environmental applications, J. Chin. Inst. Chem. Eng., 33: 61-66. 

[24] Van der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. (2003) A review of 

pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. 

Progress, 22: 46-56. 

[25] Koyuncu, I.; Turan, M.; Topacik, D.; Ates, A. (2000) Application of low pressure nanofiltration 

membranes for the recovery and reuse of dairy industry effluents. Water Sci. Technol., 41: 213-221. 

[26] Nghiem, L. D.; Shafer, A. I.; Elimelech, M. (2005) Nanofiltration of hormone mimicking trace organic 

contaminants. Sep. Sci. Technol., 40:2633–2649. 

[27] López-Muñoz, M.J.; Sotto, A.; Arsuaga, J.M.; Van der Bruggen, B. (2009) Influence of membrane, 

solute and solution properties on the retention of phenolic compounds in aqueous solution by 

nanofiltration membranes. Sep. Purif. Technol., 66: 194–201. 

[28] Carvalho, A.L.; Maugeri, F.; Silva, V.; Hernández, A.; Palacio, L.; Pradános, P. (2010) AFM analysis of 

the surface of nanoporous membranes: aplication to the nanofiltration of potasium clavulanate. J. 

Material Sci., Accepted. 

[29] Bird, A.E.; Bellis, J.M.; Basson, B.C. (1982) Spectrophotometric assay of clavulanic acid in aqueous 

solution. Analyst, 107: 1241-1245. 

[30] Almeida, R.M.R.G. (2003) Estudo da purificação do ácido clavulânico utilizando processo contínuo de 

adsorção, PhD Thesis; Federal University of São Carlos: São Carlos, BR. 

[31] Hirata, D.B.; Oliveira, J.H.H.L.; Leão, K.V.; Rodrigues, M.I.; Ferreira, A.G.; Giulietti, M.; Barboza, 

M.; Hokka, C.O. (2009) Precipitation of clavulanic acid from fermentation broth with potassium 2-ethyl 

hexanoate salt. Sep. Purif. Technol., 66: 598-605. 

[32] Cavaco Morão, A.I.; Brites Alves, A.M.; Afonso, M.D. (2006) Concentration of clavulanic acid broths: 

Influence of the membrane surface charge density on NF operation. J. Membr. Sci., 281: 417-428. 



CAPÍTULO 5 
 

97 
 

NANOFILTRATION PROCESS SCALE-UP: PURIFICATION OF CLAVULANIC 

ACID 

 

A. L. Carvalho*; F. Maugeri 

 

Departament of Food Engineering, Faculty of Food Engineering, Rua Monteiro Lobato 80, Barão Geraldo, 

University of Campinas – UNICAMP, CEP: 13083-862, Campinas, SP, Brazil 
*e-mail: limoeiro@fea.unicamp.br, telephone: +551935214052, fax: +551935214027 

 

Abstract 

 

In this work, the concentration of clavulanic acid using both a conventional bench-scale and a 

crossflow pilot plant nanofiltration systems, were studied. These processes were compared in order 

to evaluate the effectiveness of using a conventional system with a stirrer, in which is promoted the 

convection movement common at crossflow processes, and at what extension its results can be 

reproduced in a pilot scaled-up process. Therefore, data obtained in bench-scale in previous work 

were compared to data arising from pilot plant assays in which different transmembrane pressure 

and tangential velocity on the membrane surface were used. The results of high productivity and 

retention coefficient were reproduced in both systems, with equivalent operational conditions. 

Based on these results, it can be stated that the system in a bench-scale can be the basis for a reliable 

scale up to a crossflow pilot plant. 

 

Keywords: nanofiltration, membrane, clavulanic acid, scale up 
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1.  Introduction 

 

Clavulanic acid (CA) is a -lactamase inhibitor, used in combination with β-lactamase 

sensitive penicillins, to protect the -lactam ring of the antibiotic against hydrolysis [1,2]. CA is 

produced industrially by fermentation using Streptomyces clavuligerus, and presents low yields in 

the production process, particularly in the separation and purification step, due to its thermal 

instability and sensitivity to changes in pH [1,3]. Associated with its low concentration in the 

fermented broth, studies on its extraction and purification have to consider the kinetic degradation 

of CA, in order to minimize losses and maximize recovery yields and productivity. 

Recent studies on the purification of CA were focused on the evaluation of procedures for its 

isolation and purification when produced by fermentation with Streptomyces clavuligerus. Some 

separation studies have used Amberlite XAD resin, Amberlite IRA 400 ion exchange resin pre-

treated with NaCl, ultrafiltration (UF) followed by nanofiltration, and nanofiltration processes with 

different membranes and conditions [2,4-7]. Currently, several high-value bio-products have been 

produced by fermentation, bringing new challenges for the recovery and purification processes. UF 

processes are an efficient way of separating the biomass from the CA fermentation broth, producing 

a free protein permeate containing CA, which can be subsequently concentrated using nanofiltration 

membranes [2,6]. 

Nanofiltration is a process in which the driving force is the pressure difference between the 

two sides of the membrane. The main advantages of this process are the operation at low pressures 

when compared to reverse osmosis, high flow rate, considerable retention of multivalent anionic 

salts and organic molecules of molecular weight higher than 300 Da, and relatively low investment 

and low operational and maintenance costs [8]. The performance of nanofiltration is affected by 

steric and electrostatic effects through the membrane, the Donnan equilibrium, dielectric exclusion, 

and a steric effect at the membrane surface.  

Membrane test cells are extensively used for quality assurance, screening tests and in many 

research projects. However, many practitioners will agree that test cell results may vary 

considerably and their accuracy can be inadequate for scale-up to larger membrane units [9]. The 

test cell usually is carried out in dead-end process while the pilot plant in a crossflow unit. In dead-

end filtration, the feed is perpendicular to the membrane surface. As separation occurs the retained 

solids build up into a layer, which causes resistance to the liquid flow. In crossflow, on the other 

hand, the mixture flows across the surface of the membrane. The liquid permeates through the 
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membrane at right angles to the direction of flow of the feed and cake formation can be reduced by 

a transmembrane sheer stress [10,11]. In their work Lawrence et al. [12] have found that all results 

using the laboratory scale membrane unit under conditions of constant concentration gave flux 

curves indicative of fouling cake formation, with slight declines in value over the experimental 

period. 

Taking into account the mass transfer on the membrane, it depends on several factors; one of 

them is the adsorption in the inner of the pores, which causes pore blockage and fouling on the 

membrane surfaces during the process [13-15]. Another factor is the concentration polarization of 

the solutes on the high-pressure side of the membrane forming a cake or a gel layer [14-16], leading 

to an increase in the operation and maintenance costs, permeate flux decline, and energy demands, 

turning down the membrane performance and eventually reducing membranes life [17-19]. 

The cake structure otherwise has been predicted to vary as a function of particle transport and 

surface potential. Moreover, this structure may be modified as a function of the relative balance 

between applied pressure and surface forces. Thus, the propensity of membrane cakes for 

reorganization and collapse is determined by a balance of forces acting on the particles in the cake 

[19]. 

In the comparison between the dead-end and crossflow processes, the second one shows a 

better performance, since its characteristics allow the particles to stay in a suspended state above the 

outer surface instead of being deposited, enhancing control over the fouling and the membrane 

concentration polarization [10,20,21]. Chun et al. [21] also demonstrated that both the cake layer 

thickness and the particle concentration in the cake layer, for the dead-end case, show higher values 

than those for cross-flow one. Becht et al. [22], conversely, have noticed a higher concentration 

polarization layer in the crossflow system than in the dead-end cell, since it was used a stirred dead-

end cell.The use of the best operational conditions such as temperature, pressure and tangential flow 

should also be considered. Those conditions should be sought in order to optimize the process, 

especially in the case of a large scale application [23]. 

Accordingly, the moving from laboratory experiment to pilot plant operations and finally to a 

demonstration unit becomes progressively more complicated. Each step brings an increase in 

membrane area requirement, equipment, quantity of required feedstocks, time for execution, 

analytical facilities, technical issues, and operating personnel. Design advantages for the pilot plant 

over lab-scale operations included continuous monitoring of process conditions with a data 

collection system [24]. Those steps, however, can work as an indication of the economical 

feasibility of the implementation on full industrial scale in the following days [25]. 
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Therefore, even with a large number of nanofiltration applications suggested [7,26-29], only 

few were implemented on an industrial scale, showing the necessity of investigate the scale up in 

membrane process. So, the aims of this work are the scale-up study of a nanofiltration process for 

clavulanic acid purification, from a lab scale to a pilot plant, and the optimization of the filtration 

conditions taking into account the transmembrane pressure and the tangential flow velocity. 

 

2.  Methodology  

 

2.1. Material 

 

A stainless steel stirred dead-end cell was used in the first studies of CA nanofiltration. The 

system consists of a cylindrical container jacketed, with a membrane located at the base, whose area 

was 1.52 x 10-3 m2, and a magnetic stirrer that promotes the convection movement in the process. 

The pressure difference was applied by a change in the internal atmosphere with the application of 

nitrogen gas, as shown in Figure 1. In this step CA from microfiltered and ultrafiltered fermentation 

broth was used. 
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Figure 1 – Schematic representation of the bench-scale stirred dead-end cell. 
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The pilot plant used is a nanofiltration system which works recirculating the solution at the 

tank feed to improve the efficiency of filtration and to allow the continuous flow on the membrane 

surface, as presented in Figure 2. Is this step, a solution of CA prepared from the medicine 

Clavulin® (revested pills with 125 mg of potassium clavulanate and 500 mg of amoxicilin), from 

GlaxoSmithKline Brasil Ltda, was used. In some of those experiments a solution of peptone 5.5 g/L 

was added. 

 

 

Figure 2 – Schematic representation of the pilot plant. 

 

It was used a spiral module of the membrane NF-2540 (polypiperazine amide), from 

FilmtecTM. The Table 1 shows its characteristics, according to the manufacturer. The pH of the CA 

solutions was adjusted using 0.2 M hydrochloric acid and 1 M potassium hydroxide, prepared using 

analytical grade reagents. The hydrochloric acid solutions were prepared using 36.5-38 % pure 

hydrochloric acid. 

 

Table 1 – Characteristics of the membrane NF 

MWCO (Da) >200 

Active area (m2) 2.6 

Max. pressure (bar) 41 

Max. temperature (ºC) 45 

pH range 3-10 

Pore size (nm)a 1.39 

Lp (10-11m/Pa.s)a 3.39 

Rejection of MgSO4 (%) >99 
a Carvalho et al. [30] 
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The imidazole used in the analysis of the concentration of CA in the feed, permeate and 

rejection phases, was ultrapure. The results were analyzed using the statistical software Statistica 

7.0® from StatSoft®. 

 

2.2. Experimental procedure 

 

The stirred dead-end cell was carried out using an ultrafiltered fermentation broth, in which 

the concentration of CA varied according to the fermentation process between 435 mg/L and 698 

mg/L. In this case the initial volume was 100 mL, the applied pressure varied from 1 MPa to 3 MPa 

and the surface flow velocity from 0.76 m/s to 2.72 m/s. In the pilot plant experiments, aqueous 

solutions of potassium clavulanate were used, instead of fermentation broth, due to the elevated 

quantity of solution needed to carry out the experiment, which was around 10 L. These solutions 

were vacuum filtered and microfiltered through 14 µm and 0.45 µm pore membranes, respectively. 

Different from the former, the transmembrane pressure varied between 1 MPa and 2 MPa and the 

tangential flow velocity varied between 0.016 m/s and 0.11 m/s. The maximum pressure (3 MPa) 

was not used in pilot scale because it could damage the membrane due to the strong pulsations 

performed by the lobular pump used. 

In some of the pilot plant assays a peptone solution was used in order to simulate amino acids 

and small peptides as contaminants in fermentation broth, since they can hinder the process as a 

whole. For these experiments four different conditions were used (1.5 MPa and 2 MPa, in two 

different permeate fluxes for each pressure). 

In all cases the retention coefficient (RC), the process productivity and the volumetric flux by 

membrane area (JV) were evaluated. Since previous results showed that both temperature and pH 

were not relevant to the performance of the dead-end cell, they were not evaluated in the larger 

scale experiments [7]. 

 

2.3. Mathematical considerations 

 

The retention coefficients were calculated from the CA mass found in the retentate and 

permeate phases, since the concentration factor was kept constant for all experiments. The 

productivities were calculated according to the CA concentration in the retentate and feed phases, 



CAPÍTULO 5 
 

103 
 

the feed tank volume and the time elapsed at the end of the process. Equations (1) and (2) show 

these relationships. 
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where RC  is the retention coefficient, MPER is the CA mass in the permeate, MREJ is the CA mass in 

the retentate, [CA]REJ is the CA concentration in the retentate, [CA]0 is the CA concentration in the 

feed phase, V0 is the volume in the feed phase, t is the process time (h). 

 

2.4. Analytical methodology 

 

The concentration of CA was determined according to Bird et al. [31], using a Beckman 

CoulterTM model DU®640 spectrophotometer. The antibiotic was reacted with imidazole (60 g/L, 

pH 6.8) and the absorbance of the reaction product measured at 312 nm. The product of this 

reaction is more stable than CA and its formation is directly proportional to the CA concentration 

present in the reaction mixture. Potassium clavulanate, also from the medicine Clavulin®, was used 

as standard. 

 

3.  Results and discussion 

 

3.1. Experiments in the stirred dead-end cell and the pilot plant 

 

In the experiments carried out in the stirred dead-end cell, in bench-scale, Carvalho et al. [7] 

have studied some nanomembranes considering their effectiveness at concentrating clavulanic acid, 

as well as their selectivity concerning peptides and amino acids, especially the aromatic ones. 

According to these the authors, the NF membrane was the best one for this process. Threfore, this 

membrane was selected to be used in this work, for the process of scaling up and parameter 

optimization.  
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The results of both works were assembled and shown in the following figures. In Figure 3, it 

can be seen that the NF membrane is effective in retaining over 97%, practically 100% for some 

conditions, of the clavulanic acid in the feeding solution, when suitable operational conditions are 

applied, either in bench or pilot scale.  

 

  

Figure 3 – Retention coefficient (RC) as a function of permeate flux (JV) for the different processes. 

 

Particularly, when the experiments were carried out in the pilot plant, the retention coefficient 

was over 98.6%, at any tangential velocity or transmembrane pressure and a lower variability in the 

results was observed, which seems related to enhanced stability of the pilot plant, compared to the 

bench scale, allowing a better reproducibility. 

According to Lawrence et al. [12], systems of dead-end cells have demonstrated the 

formation of a cake over the membrane surface with time of use due to the occurrence of a high 

concentration polarization in this kind of process. Thus, to reduce this effect, higher agitation 

speeds than those used in pilot scale were used, since the higher the speed the higher the mass 

transfer coefficient [32]. Therefore, this precaution enables a similar, or even higher, permeate flux 

for the stirred dead.end cell to those obtained at the pilot plant, as shown in Figure 3. However, 

even with agitation being promoted on the membrane surface the solutes accumulated on it, since 

the shear stress does not affect the CA molecule, which has a molecular mass of 199.16 g/mol, 



CAPÍTULO 5 
 

105 
 

leading to an increase in clavulanic acid permeability through the membrane, hampering the 

effectiveness of process, as seen through the lower retention coefficient in bench-scale when 

compared with that obtained in the pilot plant. 

Furthermore, the addition of peptone did not hamper the retention behavior; on the contrary, 

it improved it, as shown in the inserted graphic, probably due to an increase in the concentration 

polarization layer with the formation of a gel layer of peptone, which decreased the transport of 

clavulanic acid through the membrane. This should have happened since the peptone is rich in polar 

substances, such as amino acids, which were preferably attracted to the membrane surface. 

Comparing the results from both scales, it can be noticed that there is a small change in the 

retention coefficient from the bench-scale to the pilot plant process, as shown in the Figure 3, but 

high enough to suppose that this causes increments in productivity, as shown in the Figure 4. It has 

been suggested that in pilot plant experiments the retention coefficient is improved due to the 

reduction of the concentration polarization, though this is less evident in spiral membranes, such as 

those used in the pilot plant experiments, due to the induction of turbulent flows in between the 

layers of the membrane, caused by a polymer mesh filamentous interlaced comprising its structure 

[12]. 

  

Figure 4 – Productivity for both processes as a function of permeate flux (JV). 

 



CAPÍTULO 5 
 

106 
 

The productivity, as defined by Eq. 2, is an important parameter when denaturing bioproducts 

are concerned, since it relates the concentrating effect, the feed tank volume and the process time 

elapsed, so that higher the productivity, higher the chances of good product recovering. 

It is relevant to point out that in the bench-scale process the productivity was extremely 

higher than in the crossflow process, achieving up to 180 [CA]RET/[CA]0.L.h, probably due to the 

smaller volume used in those assays, since the productivity is defined as the concentration factor by 

feed volume per hour and in the bench-scale processes were used volumes 100 times smaller than in 

the crossflow processes. In both processes it was noticed an increase in the productivity with the 

permeate flux. This phenomena was more accentuated in the bench-scale process, due to the larger 

transmembrane pressure used in some experiments in this step, which are those that corresponds to 

the higher permeate fluxes in the Fig. 4. 

Additionally, it was observed that the presence of amino acids and peptide contaminants in 

the crossflow process, represented here by the peptone, improved the productivity, in concordance 

with the increase in the retention coefficient, reaching up to 6.4 [CA]RET/[CA]0.L.h. This behaviour 

can be better observed in Fig. 5 for transmembrane pressures from 1.5 MPa to 2 MPa used in the 

pilot plant experiments, with and without peptone, in which the same permeate flux corresponds to 

the same assay. It is also noticed that the permeate flux decreased with the presence of peptone, 

probably due to the higher viscosity of the CA solution, and that the transmembrane pressure affect 

more the productivity than the RC, probably due to the increment in the permeate flux observed. 

On the other hand, the permeate flux in the bench-scale was equal or superior to that obtained 

in the pilot plant, as shown in the Fig. 3 and 4. This result is consistent with that obtained by 

Lawrence et al. [12]. These authors suggested that this difference can be attributed to mechanical 

distinctions between the two systems and how the transmembrane pressure is applied, as in the case 

of the pilot plant, in which the pressure adjacent to the membrane surface on the permeate side is 

relatively higher than the ambient pressure, which suits as reference for calculating the 

transmembrane pressure, due to the high permeate flux in this type of process, which restricts the 

flow that could be obtained. Also, when the permeate flux is plotted against the transmembrane 

pressure an increase is observed in the former, which is predictable, since the higher the 

transmembrane pressure the higher the driving force to push water through the membrane, leading 

to the best results at a pressure of 2 MPa, as shown in the Fig. 6. 
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Figure 5 – Retention coefficient and productivity as a function of the permeate flow (JV) for the pilot plant 

with and without the addition of peptone in the CA solution, in applied pressure of 1.5MPa and 2 MPa. 

 

  

Figure 6 – Flow of permeate (JV) for the pilot plant as a function of transmembrane pressure. 
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3.2. Scale-up procedure  

 

The process scale-up from the bench-scale to the pilot plant needed some precautions, for 

instance the choice of a more adequate superficial velocity for the spiral membrane, in order to 

preserve its structure and assuring a longer life. Thus, velocities from 2 cm/s to 11 cm/s were used. 

The most convenient would be the use of a velocity around 6 cm/s, however this was exceeded in 

some cases when a larger pump rotation and small transmembrane pressure were used. Additional 

precaution was taken concerning the system pressures, which should not be higher than 2 MPa, in 

order to avoid any damage to the system, since the pump normally promoted strong pulsations. 

These pulsations made pressure oscillate, so that working pressure above 2 MPa led to pulses that 

exceeded the pump maximum operation pressure, which was 3 MPa. 

The results of such measures were positive since the pilot plant reproduced consistent data 

when compared to those found in bench-scale. The differences found in retention coefficient, 

permeate flux and productivity can be attributed to the differences between the two process, mainly 

considering how the transmembrane pressure is applied, as explained before.  

Therefore, even with the differences between bench and pilot plant scales, it is possible to 

predict the behaviour of a membrane process in the pilot plant with data from bench-scale, since the 

changes are predictable and can be circumvented. As a result, it is reasonable to affirm that the 

studies made in a stirred dead-end system in a bench-scale can be used reliably in the scale-up 

process from bench-scale to a pilot plant, targeting an industrial application of the process. 

 

4.  Conclusions 

 

Based on the studies of scale-up of a clavulanic acid nanofiltration process from bench-scale 

to a pilot plant, it can be concluded that data from bench scale can be used to design the scale-up to 

a pilot plant nanofiltration process, even though some variations can occur, which can be 

circumvented, allowing the use of the bench-scale operational conditions to predict the pilot plant 

behaviour. 

The peptone, used as peptide and amino acid contaminant source, possibly improved the 

process productivity, which indicates that peptide molecules could enhance the clavulanic acid 

concentration process by nanofiltration. 
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The NF membrane was extremely effective in this process, achieving retention coefficients of 

almost 100%. The pilot plant process was advantageous concerning the productivity, reaching up to 

6.4 [CA]RET/[CA]0.L.h, meaning that the recovery of clavulanic acid by this kind of membrane can 

be very efficient and allows the prediction of a successful application in industrial scale. 
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4. CONCLUSÕES GERAIS 

 

Na etapa de seleção das membranas em células agitadas do tipo dead-end (escala de 

bancada), foram encontradas as melhores condições operacionais para as membranas NP010, 

NP030, NF e NF90, considerando-se o pH e a concentração de ácido clavulânico na fase 

alimentação, e a temperatura de processo. Nessas condições o pH não afetou o processo, permitindo 

o uso de qualquer dos valores contidos na faixa de estudo. Entretanto, devido à degradação do ácido 

clavulânico, recomenda-se trabalhar em pH 6,2. Assim, as melhores condições operacionais obtidas 

são as apresentadas na Tabela 1. 

 

Tabela 1 – Melhores condições operacionais para as membranas estudadas 

 NP010 NP030 NF NF90 

Temperatura (ºC) 30 30 30 17,5 

C0 (mg/L) 750 750 750 750 

 

Os resultados nessas condições foram validados e suas respostas comparadas. As médias 

obtidas para cada membrana se encontram na Tabela 2. 

 

Tabela 2 – Melhores resultados obtidos para as membranas estudadas. 

 NP010 NP030 NF NF90 

CR 0,718 0,862 0,990 0,999 

Produtividade 

([CA]RET/[CA]0.L.h) 
42,97 33,05 34,05 30,34 

 

A partir do teste de Tukey de comparação de médias, verificou-se que as membranas NF e 

NF90 apresentaram os melhores resultados para os objetivos propostos por este trabalho. Ambas 

foram avaliadas na etapa de estudo de seletividade das membranas, com o qual verficou-se que a 

membrana NF é melhor para esse processo por permitir uma maior produtividade, 121,59 

[CA]RET/[CA]0.L.h, duas vezes a obtida pela membrana NF90, mantendo a mesma retenção de 0,99. 

As quatro membranas foram caracterizadas através da morfologia de suas superfícies e das 

suas densidades volumétricas de carga através de visualização em microscópio de força atômica e 

de medidas do potencial elétrico. Foi também avaliada a retenção de KCl em variadas 

concentrações e valores de pH para determinar, em uma etapa posterior a constante dielétrica dentro 

dos poros e assim finalizar a etapa de caracterização das membranas. 
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Das análises microscópicas, tem-se que o diâmetro dos poros de cada membrana são, para as 

membranas NF90, NF, NP030 e NP010, 0,99 nm, 1,39 nm, 1,48 nm, 1,49 nm, respectivamente. O 

que já era esperado devido aos rendimentos de processo de concentração de ácido clavulânico 

obtidos na etapa anterior de seleção de membranas, que indicaram melhores resultados para a 

membrana NF90 e piores para a NP010, uma vez que o ácido clavulânico tem massa molar de 

199,16 g/mol. Os resultados mostraram também que os poros têm o formato elíptico. Notou-se 

ainda que para as membranas com valores de rugosidade similares quando limpas: 

• A permeabilidade se relaciona linerarmente com o tamanho dos poros. 

• Em elevada adsorção de ácido clavulânico, a rugosidade tende ao mesmo valor para todas 

as membranas. 

• A dimensão fractal aumenta com a adsorção, em acordo com o aumento da densidade 

superficial. 

• A redução da permeabilidade é alta quanto maior é a diferença na dimensão fractal antes e 

depois de ocorrer a adsorção. 

Verificou-se ainda que o ponto isoelétrico das membranas estudadas se encontram entre o pH 

5,0 e pH 6,0 em todas elas, e que as membranas NF90 e NF apresentam comportamento negativo, e 

que as membranas NP030 e NP010 apresentam um comportamento neutro. 

Observou-se também que a permeabilidade à água das membranas segue a seguinte ordem: 

NP010 > NP030 > NF > NF90, como apresentado na Tabela 3:  

 

Tabela 3 – Permeabilidade a água para cada membrana avaliada, antes e depois do seu uso para permear 

clavulanato de potássio 

Lp (10-11m/Pa.s) NF90 NF NP030 NP010 

Antes 1,53 3,39 4,36 6,47 

Depois 1,10 2,46 1,96 1,38 

Lp (usada)/Lp (nova) (%) 72% 73% 45% 21% 

 

Os coeficientes de transferência de massa para as membranas NP030 e NP010 não diferem 

entre si e as membranas NF e NF90 mostraram valores maiores, especialmente a NF90 com valores 

até três vezes superiores às membranas NP030 e NP010. Têm-se ainda que a rejeição de ácido 

clavulânico variou com o pH para as membranas NF e NF90, passando de 0,5 em pH 4 para 0,95 

em pH 8. 
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Quanto à seletividade das membranas, as mesmas apresentaram seletividade ao KCl e ao 

ácido clavulânico na mesma tendência da densidade volumétrica de cargas: NF > NF90 > NP030  

NP010. 

A partir da resolução do modelo SEDE-VCh foi possível determinar a constante dielétrica 

dentro dos poros e, assim como a permeabilidade, a constante dielétrica dentro dos poros é 

diretamente proporcional ao diâmetro médio dos poros até a mesma atingir o valor da água livre. 

Com base nos estudos feitos para avaliar a ampliação de escala de um processo de 

nanofiltração de ácido clavulânico de um sistema de bancada para uma planta piloto, conclui-se que 

as variações previstas podem ser contornadas e que os resultados da ampliação foram satisfatórios, 

uma vez que as condições de processo utilizadas na escala de bancada puderam servir de base para 

os estudos em escala piloto, permitindo o uso desse sistema convencional que simula o sistema de 

fluxo tangencial em outros estudos de avaliação de processos e de seleção de membranas. 

A peptona adicionada para atuar como contaminante, em substituição aos peptídeos e 

aminoácidos presentes nos caldos fermentados, agiu de forma a melhorar a produtividade do 

processo, o que indica que substâncias protéicas podem operar melhorando o processo de 

concentração de ácido clavulânico por nanofiltração. 

O processo de concentração de ácido clavulânico por nanofiltração com a membrana NF foi 

bastante eficaz com coeficientes de retenção de quase 1,0. O processo em escala piloto também se 

mostrou bastante vantajoso, como se verifica através da produtividade que foi de até 6.4 

[CA]RET/[CA]0.L.h. A partir desses resultados pode-se concluir que o processo é promissor para 

implantação industrial, podendo seguir para as próximas etapas de ampliação de escala. 

Considerando a purificação de uma solução de ácido clavulânico em relação aos 

aminoácidos, nas condições estudadas não foi possível purificar o produto de interesse, entretanto 

ao se considerar sais monovalentes, como o cloreto de potássio, como contaminantes, os resultados 

foram positivos, com uma seletividade em torno de 30. 

 



SUGESTÕES PARA TRABALHOS FUTUROS 
 

114 
 

5. SUGESTÕES PARA TRABALHOS FUTUROS 

 

 Para o futuro sugere-se que sejam feitos trabalhos para averiguar com mais atenção o efeito 

dos compostos protéicos sobre o transporte de ácido clavulânico através da membrana NF, 

considerando-se a adsorção de ambos na superfície da mesma e estudos eletrocinéticos. 

 Testar o efeito da presença de outros compostos sobre o processo, como alguns sais mono e 

divalentes, e averiguar se ocorre melhora na purificação do ácido clavulânico. 

 Efetuar mais experimentos na planta piloto com o intuito de avaliar a polarização da 

concentração na superfície da membrana com o tempo de uso da mesma. 

 Testar outras condições de processo, como a diafiltração, para avaliar se ocorre alguma 

melhora na purificação do ácido clavulânico. 

 Trabalhar o modelo matemático SEDE-VCh com os dados obtidos com os experimentos 

feitos na planta piloto visando a uma futura ampliação de escala para uma planta de demonstração. 

 


