UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA DE ALIMENTOS DEPARTAMENTO DE ENGENHARIA DE ALIMENTOS

DETERMINAÇÃO EXPERIMENTAL E MODELAGEM TERMODINÂMICA DE DADOS DE EQUÍLIBRIO LÍQUIDO-VAPOR DE MISTURAS DE ÁLCOOIS SUPERIORES

Eng.ª de Alimentos Luciana Aparecida Andrade Previato Fonseca Autora

Orientador: Prof.Dr.Eduardo Augusto Caldas Batista Coorientador: Prof. Dr. Antonio José de Almeida Meirelles

Dissertação de Mestrado apresentada à Faculdade de Engenharia de Alimentos -UNICAMP como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia de Alimentos.

> Campinas – São Paulo 2011

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA FEA – UNICAMP

F733d	Fonseca, Luciana Aparecida Andrade Previato Determinação experimental e modelagem termodinâmica de dados de equilíbrio líquido-vapor de álcoois superiores / Luciana Aparecida Andrade Previato Fonseca Campinas, SP: [s.n], 2011.
	Orientador: Eduardo Augusto Caldas Batista Co-orientador: Antonio José de Almeida Meirelles Dissertação (mestrado) – Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos
	 Equilíbrio líquido-vapor. Ebuliometria. Álcoois superiores. 2-metil-1-butanol. 2-propanol. Batista, Eduardo Augusto Caldas. II. Meirelles, Antonio José de Almeida. III. Universidade Estadual de Campinas.Faculdade de Engenharia de Alimentos. III. Título.

Título em inglês: Experimental determination and thermodynamic modeling of vapor-liquid equilibrium data of mixtures of higher alcohols

Palavras-chave em inglês (Keywords): Vapor-liquid equilibrium. Ebulliometry, Higher alcohols, 2-methyl-1-butanol, 2-propanol Titulação: Mestre em Engenharia de Alimentos

Banca examinadora: Eduardo Augusto Caldas Batista

Fabiana Queiroz Ferrua

Mariana Conceição da Costa

Data da defesa: 25/02/2011

Programa de Pós Graduação: Programa em Engenharia de Alimentos

Este exemplar corresponde à redação final da dissertação defendida em _/_/_ por Luciana Aparecida Andrade Previato Fonseca, aprovada pela comissão julgadora em _/_/_.

Prof. Dr. Eduardo Augusto Caldas Batista (Orientador)

Profa. Dra. Fabiana Queiroz Ferrua (Membro Titular)

Dra. Mariana Conceição da Costa (Membro Titular)

Prof. Dr. Fernando Antonio Cabral (Membro Suplente)

Profa. Dra. Christianne Elisabete da Costa Rodrigues (Membro Suplente)

"A felicidade aparece para aqueles que reconhecem a importância das pessoas que passam em nossa vida." (Clarice Lispector)

Agradecimentos

Primeiramente, agradeço a Deus pela perseverança e força de vontade que não me deixou faltar ao longo desta jornada.

Em especial ao Professor Eduardo Augusto Caldas Batista, pela orientação brilhante, empenhada e paciente. Não tenho palavras para expressar minha gratidão.

Aos meus pais Domingas e Augusto, pelo amor, apoio, incentivo e esforço. A minha querida irmã Livia, por cada momento de companheirismo e amizade. Ao lado de vocês, mesmo com o sol encoberto, todos são belos dias.

Aos colegas Fábio, Rafael e Rodrigo pela ajuda imprescindível.

Aos amigos e colegas do EXTRAE, Maitê, Natália, Losi, Marina, Paulo, Camila, Marcela, Mariana, Simone, Thomás, pela convivência.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo financiamento deste trabalho de pesquisa.

Sumário

Agradecime	ntos	V			
RESUMO		xv			
ABSTRACT.		xvi			
1. INTRODU	IÇÃO	1			
1.1. Revisão	Bibliográfica	2			
1.1.1	O Produto Etanol	2			
1.1.2	Produção de Etanol Combustível	2			
1.1.3. Produção de Cachaça4					
1.1.4.	Álcoois Superiores	6			
2. OBJETIV	DS	7			
3. FUNDAMENTAÇÃO TEÓRICA8					
3.1.	Equilíbrio Líquido-Vapor (ELV)	8			
3.2.	Cálculo da Pressão de Vapor	11			
3.3.	Coeficiente de fugacidade	12			
3.4.	Cálculo do Coeficiente de Atividade	12			
	3.4.1. Equação de Wilson	15			
	3.4.2. Equação NRTL (non-random, two-liquid)	15			
	3.4.3. Equação UNIQUAC (Universal Quasichemical)	16			
3.5.	Testes de Consistência Termodinâmica	17			
	3.5.1. Teste de Área	18			
	3.5.2. Teste de van Ness-Fredenslund	21			
3.6.	Métodos experimentais para a determinação do Equilíbrio Líc	uido-			
	Vapor	23			
	3.6.1. Método da Recirculação	24			
4. MATERIA	IS E MÉTODOS	25			
4.1.	Ebuliômetro de Recirculação	26			
4.2.	Métodos	29			
	4.2.1. Ebuliometria	29			
	4.2.2. Cromatografia Gasosa	30			
	4.2.3.Teste do Equipamento	31			

4.3. Cálculo das Propriedades Termodinâmicas			
5. RESULTADOS E DISCUSSÃO			
5.1. Pressão de Vapor32			
5.2. Dados de Equilíbrio Líquido-Vapor43			
5.2.1. Sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760			
mmHg44			
5.2.2. Sistema 2-propanol (1) /2-metil-1-butanol (2) a 760 mmHg46			
5.2.3. Sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 mmHg48			
5.2.4. Sistema 2-propanol (1)/2-metil-1-butanol (2)/2-metil-1-propanol			
(3) a 760 mmHg50			
5.2.5. Sistema 2-propanol (1)/1-butanol (2)/3-metil-1-butanol (3) a			
760 mmHg54			
5.3. Modelagem e Consistência Termodinâmica60			
5.3.1. Sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760			
mmHg61			
5.3.2. Sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 e 760			
mmHg68			
5.3.3. Sistema 2-propanol (1)/2-metil-1-propanol (2)/2-metil-1-butanol			
(3) a 760 mmHg80			
5.3.4. Sistema 2-propanol (1)/1-butanol (2) /3-metil-1-butanol (3) a			
760 mmHg83			
6. CONCLUSÕES E SUGESTÕES PARA TABALHOS FUTUROS90			
7. REFERÊNCIAS BIBLIOGRÁFICAS91			
ANEXO I Propriedades dos componentes puros requeridas pelo <i>Thertest</i> 97			

Indice de Tabelas

Tabela 1 - Custo de Produção de Etanol (US\$ /litro)4
Tabela 2 - Modelos de coeficientes de atividade da fase líquida14
Tabela 3 - Comparação entre os métodos de obtenção de dados ELV24
Tabela 4 - Pressão de vapor (P ^{vp}) do 2-propanol: dados experimentais de
Timmermans (1965) e deste trabalho
Tabela 5 - Pressão de vapor (P ^{vp}) do 2-metil-1-propanol: dados experimentais de Ambrose e Sprake (1970), Smith e Srivastava (1986) e deste trabalho35
Tabela 6 - Pressão de vapor (P ^{vp}) do 2-metil-1-butanol: dados experimentais obtidos por Čenský et al. (2010)
Tabela 7- Constantes da Equação de Antoine37
Tabela 8 - Constantes da Equação de Antoine Estendida
Tabela 9 - Constantes da Equação de DIPPR37
Tabela 10 - Pressão de vapor (P ^{vp}) do 2-propanol: dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR, considerando os dados de Timmermans (1965) e deste trabalho
Tabela 11 - Pressão de vapor (P ^{vp}) do 2-metil-1-propanol: dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR, considerando os dados de Ambrose e Sprake (1970), Smith e Srivastava (1986) e deste trabalho
Tabela 12 - Pressão de Vapor (P ^{vp}) do 2-metil-1-butanol: dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR, considerando os dados de Čenský et al. (2010)42
Tabela 13 - Dados de Equilíbrio Líquido-Vapor para o sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg (RESA et al., 2006)45
Tabela 14 - Dados de Equilíbrio Líquido-Vapor obtidos nesse trabalho para o sistema 2-metil-1-propanol (1) /2-metil-1-butanol (2) a 760 mmHg45
Tabela 15 - Dados de Equilíbrio Líquido-Vapor para o sistema 2-propanol (1)/2- metil-1-butanol(2) a 760mmHg47
Tabela 16 - Dados de equilíbrio líquido-vapor para o sistema 2-propanol (1)/2- metil-1-butanol(2) a 560mmHg

Tabela 17- Dados de Equilíbrio Líquido-Vapor para o sistema 2-propanol (1)/ /2metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg......51

Tabela 18 – Constantes de equilíbrio e volatilidade relativa para o sistema 2propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg......53

Tabela 19 - Dados de Equilíbrio Líquido-Vapor para o sistema 2-propanol (1)/ /1butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg.......55

Tabela 20 – Constantes de equilíbrio e volatilidade relativa para o sistema 2propanol (1)/1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg......58

Tabela 32 - Relação de propriedades termodinâmicas fornecidas pelo programa *Thertest* para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 mmHg.......79

Tabela 33 - Parâmetros binários do banco de dados do *software Aspen Plus 12.1* para o sistema 2-propanol (1)/2-metil-1-propanol(2)......81

Tabela 34 - Modelagem do Equilíbrio Líquido-Vapor (ELV) do sistema ternário 2propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg para os modelos NRTL,Wilson e UNIQUAC considerando fase vapor não ideal.......82

Indice de Figuras

Figura 1A - Ebuliômetro de Recirculação26
Figura 1B – Ebuliômetro de Recirculação27
Figura 2 - Pressão de Vapor (P ^{vp}) do 2-propanol: dados experimentais de Timmermans (1965) e deste trabalho, dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR
Figura 3 - Pressão de Vapor (P ^{vp}) do 2metil-1-propanol: dados experimentais de Ambrose e Sprake (1970), Smith e Srivastava (1986) e deste trabalho, dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR
Figura 4 - Pressão de Vapor (P^{vp}) do 2-metil-1-butanol: dados experimentais de <i>Čenský</i> et al. (2010), dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR
Figura 5 - Equilíbrio Líquido-Vapor. Sistema 2-metil-1-propanol/2-metil-1-butanol a 760 mmHg: dados experimentais deste trabalho (•) e literatura (RESA et al., 2006) (x)
Figura 6 - Diagrama T-x,y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 760 mmHg47
Figura 7 - Diagrama x-y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 760mmHg48
Figura 8 - Diagrama T-x,y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 560mmHg
Figura 9 - Diagrama x-y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 560mmHg
Figura 10 - Diagrama x-y para o sistema ternário 2-propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg. ● fração molar da fase líquida, ○ fração molar da fase vapor
Figura 11 - Volatilidade Relativa para o sistema 2-propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg: $\bullet \alpha_{13} \equiv \alpha_{23} \triangleq \alpha_{33}$
Figura 12 - Diagrama x-y para o sistema ternário 2-propanol (1)/1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg. • fração molar da fase líquida, \circ fração molar da

Figura 16 - Coeficientes de atividade dos componentes 2-metil-1-propanol (1) e 2metil-1-butanol (2) em função da fração molar do 2-metil-1-propanol (1) para o sistema 2-metil-1-propanol (1)/ 2-metil-1-butanol (2) a 760 mmHg......67

Lista de Símbolos

Letras Latinas

A área no teste de área

Ai Constante de Antoine, Antoine estendida e DIPPR

A_{ij} e A_{ji} Parâmetro de interação binária dos modelos de Wilson, NRTL e

UNIQUAC

Bi Constante de Antoine, Antoine estendida e DIPPR

B_{ij} e B_{ji} Parâmetro de interação binária dos modelos de Wilson, NRTL e UNIQUAC

Ci Constante de: Antoine, Antoine estendida e DIPPR

C_{ij} Parâmetro de interação binária no modelo NRTL

- D Porcentagem de desvios no teste de Herington
- Di Constante de Antoine estendida e DIPPR

g^E Energia livre de Gibbs

g_{ij} e g_{ji} Parâmetro de interação do modelo NRTL

- G_i Constante de Antoine estendida
- Gij Parâmetro de interação do modelo NRTL

f Fugacidade

H Entalpia

n Número de componentes da mistura e número de fases em equilíbrio

- P pressão absoluta
- qi Parâmetro de área no modelo UNIQUAC
- R Constante universal dos gases
- ri Parâmetro volumétrico UNIQUAC
- T Temperatura absoluta
- V Volume
- x fração molar na fase líquida
- y fração molar na fase vapor

z número de coordenação

Subscritos

_ Propriedade intensiva ou molar c Crítico

i Componente i na mistura

j Componente j na mistura

Sobrescristos

- o Estado Padrão
- ^ Propriedade da mistura
- E grandeza excedente
- L liquido
- V vapor
- vp vapor

Letras Gregas

- γ Coeficiente de atividade
- ϕ Coeficiente de fugacidade
- µ Potencial químico

RESUMO

Dados de equilíbrio são úteis para o projeto e otimização de processos que envolvem separação de fases, como destilação e extração. Os álcoois superiores são subprodutos do processo de destilação relacionados com o aroma de bebidas alcoólicas e que, quando purificados podem agir como solvente. Esse estudo tem por objetivo a obtenção de dados isobáricos de Equilíbrio Líquido-Vapor (ELV) para sistemas binários e ternários envolvendo álcoois superiores. Dados de Equilíbrio Líquido-Vapor foram medidos para os sistemas binários compostos por 2-propanol/2-metil-1-butanol a 560 e 760 mmHg e para os sistemas ternários compostos por 2-propanol/1-butanol/3-metil-1-butanol e 2-propanol/2-metil-1propanol/2-metil-1butanol, ambos a 760 mmHg. As medidas experimentais foram realizadas em ebuliômetro Fischer (VLE 602) e as composições das fases foram determinadas por cromatografia gasosa. A consistência termodinâmica dos dados de ELV binário P-T-x-y foi avaliada pelo teste de área e teste de van Ness-Fredenslund e os resultados comprovaram a boa qualidade dos dados de ELV determinados nesse trabalho. Os parâmetros de interação binária dos modelos NRTL, Wilson e UNIQUAC foram ajustados aos dados experimentais dos sistemas binários utilizando-se o software comercial Aspen Plus 12.1. Os resultados mostram uma boa descrição do ELV por esses modelos. Esses parâmetros foram ainda utilizados para descrever ELV dos sistemas ternários. Esses últimos resultados mostram uma boa concordância entre os dados experimentais e os calculados.

Palavras - chave: Equilíbrio Líquido-Vapor, Ebuliometria, Álcoois superiores, 2-metil-1-butanol, 2-propanol

ABSTRACT

Equilibrium data are useful for design and optimization of processes involving phase separation, such as distillation and extraction. The higher alcohols are byproducts of the distillation process related to the flavor of alcoholic beverages and that when purified can act as a solvent. This study aims to obtain isobaric Vapor-Liquid Equilibrium (VLE) data for binary and ternary systems involving higher alcohols. Vapor Liquid Equilibrium were measured for the binary system composed by 2-propanol/2-methyl-1-butanol at 560 and 760 mmHg and for the ternary systems composed by 2-propanol/1-butanol/3-methyl-1-butanol and 2propanol/2-methyl-1-propanol/2-methyl-1butanol, both at 760 mmHg. The experimental measurements were performed in a Fischer ebulliometer (VLE 602) and the phase compositions were determined by gas chromatography. Thermodynamic consistency of the VLE binary data P-T-x-y was evaluate by area test and van Ness-Fredenslund test and the results proved the good quality of the VLE data determined in this work. The binary interaction parameters of the NRTL, Wilson and UNIQUAC models were fitted to the experimental binary VLE data in the commercial software Aspen Plus 12.1. The results show a good description of the VLE data. These parameters were used to describe the VLE data for the ternary systems and the results show a good agreement between experimental and calculated data.

Keywords: Vapor-liquid equilibrium. Ebulliometry, Higher alcohols, 2-methyl-1butanol, 2-propanol.

1. INTRODUÇÃO

O Brasil é hoje o maior produtor mundial de cana-de-açúcar. De acordo com o terceiro levantamento anual da Companhia Nacional de Abastecimento (CONAB, 2010), órgão ligado ao Ministério da Agricultura, Pecuária e Abastecimento, a previsão para a safra 2010/2011 é de 634,991 mil toneladas, 3,40 % superior à safra do ano anterior.

Para a produção de álcool, o estudo indica um crescimento de 7,52 %, devendo atingir 27,67 bilhões de litros.

Em matéria publicada no site FOLHAONLINE, em março de 2009, o ministro de Minas e Energia, Edison Lobão, prevê que a produção brasileira de álcool crescerá 150 % até 2017 passando de 25 bilhões de litros em 2008 a 64 bilhões de litros em 2017. Segundo ele, com isso o Brasil se consolidará como o maior exportador mundial do produto.

A técnica de obtenção do etanol é a destilação que sob o ponto de vista econômico é uma das mais importantes e dispendiosas para a indústria química. Durante a produção de etanol são formados contaminantes (aldeídos, cetonas, ésteres, éteres, metanol e alcoóis superiores) decorrentes do processo fermentativo. Para que a destilação seja conduzida com êxito é necessário que alguns desses contaminantes sejam retirados do processo, em especial os alcoóis superiores que dificultam a obtenção do etanol puro.

O aperfeiçoamento tecnológico do processo de destilação envolve o conhecimento das propriedades da mistura alcoólica multicomponente. Portanto, a obtenção de dados de Equilíbrio Líquido-Vapor (ELV) de sistemas que se assemelhem ao sistema multicomponente é uma área da termodinâmica de grande interesse industrial.

É nesse cenário de boas perspectivas para a produção de etanol e a necessidade de otimização do processo de destilação que o presente trabalho se propõe a estudar o Equilíbrio Líquido-Vapor (ELV) de sistemas formados por álcoois superiores gerando dados que ainda não são encontrados na literatura.

1.1. Revisão Bibliográfica

1.1.1. O Produto Etanol

O etanol, também chamado álcool etílico, é o mais comum dos álcoois. Caracteriza-se por ser um composto orgânico (CH₃CH₂OH), obtido por meio da fermentação de amido e outros açúcares, como a sacarose existente na cana-deaçúcar, nos açúcares da uva e cevada e também mediante processos sintéticos, a partir da hidratação do etileno ou redução a acetaldeído. É um líquido incolor, volátil, inflamável, solúvel em água, com cheiro e sabor característicos (MATOS, 2007).

Existem diversas aplicações para o álcool etílico: como solvente industrial, anti-séptico, conservante, componente de diversas bebidas, em desinfetantes domésticos e hospitalares, solvente de fármacos e na forma de combustível (MATOS, 2007).

Para Pamplona (1984), a utilização do álcool no Brasil se dá como combustível automotivo, na forma de álcool hidratado (mistura hidro-alcoólica com teor alcoólico mínimo de 92,6°GL) ou anidro (caracterizado pelo teor alcoólico mínimo de 99,3°GL, sendo composto apenas de etanol ou álcool etílico) e, em menores proporções, nas indústrias químicas, farmacêuticas e de bebidas, na forma de álcool neutro (álcool hidratado ou anidro, com baixos teores de impurezas). Esta informação permanece atual, uma vez que o grande objetivo da produção alcooleira no Brasil é a produção de álcool carburante, para substituição dos derivados do petróleo (BATISTA, 2008).

1.1.2. Produção de Etanol Combustível

A destilação é o processo pelo qual uma mistura hidro-alcoólica resultante da fermentação, contendo de 6 a 10 % em volume de etanol, é concentrada até teores alcoólicos elevados: 92,6 a 93,8 % em peso (°INPM) de álcool, no caso do Álcool Etílico Hidratado Combustível (AEHC), utilizado em carros a combustão

exclusiva a álcool ou teor maior que 99,3 % em peso (°INPM), no caso do Álcool Etílico Anidro Combustível (AEAC), que é adicionado à gasolina na proporção de 25%.

O Brasil é reconhecido mundialmente por seu pioneirismo na introdução do etanol (hidratado ou anidro), produzido a partir da cana-de-açúcar em sua matriz energética. Na década de 70, foi lançado no Brasil o Proálcool (Programa Nacional do Álcool), o maior programa de utilização de combustível renovável implantado no mundo (PETROBRAS, 2009).

A partir de 1986, o programa começou a entrar em colapso, devido principalmente à estabilização do preço do petróleo no mercado mundial, fazendo com que a produção de etanol ficasse esquecida na economia brasileira. Esse cenário começou a mudar em 2000, com a nova elevação dos preços do petróleo e com a grande preocupação com os efeitos dos combustíveis fósseis na degradação do meio-ambiente (ATALA, 2004).

Em 2003, com o advento dos veículos *flex-fuel*, e com a grande aceitação por parte dos consumidores, houve um reaquecimento do consumo de etanol hidratado no mercado interno abrindo um novo horizonte para a expansão da agroindústria da cana-de-açúcar no Brasil.

A preocupação em diminuir a poluição com base no Protocolo de Kyoto tem estimulado a busca por formas alternativas de substituição ao combustível fóssil. Conjuntamente a isso, a alta do petróleo trouxe a tona novamente o debate da dependência energética. Assim, o mundo está propício ao consumo de outros combustíveis (renováveis), entre eles o etanol. O reflexo desta maior demanda mundial por etanol já é percebido pelo aumento da produção e exportações brasileiras.

O Brasil tem enorme potencial para se tornar líder do mercado mundial de etanol e biocombustíveis, podendo quase triplicar a sua produção nos próximos dez anos, agregando quatro milhões de hectares para o plantio de cana-de-açúcar à sua área plantada, que, atualmente é de aproximadamente cinco milhões de hectares (MICHELLON; SANTOS; RODRIGUES, 2008).

Pode-se dizer que a produção de etanol no Brasil atingiu um estágio maduro, com os menores custos do mundo, conforme a Tabela 1. No entanto é preciso continuar aprimorando as tecnologias de produção em uso para garantir cada vez mais um produto de melhor gualidade.

País	Custo de produção p/litro	Matéria Prima
Brasil	0,22	cana-de-açúcar
Estados Unidos	0,30	milho
Canadá	0,33	milho
União Européia	0,45	cereais
União Européia	0,53	melaço de beterraba

Tabela1 - Custo de Produção de Etanol (US\$ /litro)

Fonte: ICONE (2007)

1.1.3. Produção de Cachaça

De acordo com o Ministério da Agricultura, Pecuária e Abastecimento, através da Instrução Normativa nº 13, de 29 de Junho de 2005, a cachaça é uma bebida tipicamente brasileira, obtida através da destilação do mosto fermentado do caldo de cana-de-açúcar, podendo ter uma graduação alcoólica variável entre 38 °GL e 54 °GL em álcool a 20 °C.

O processo produtivo da cachaça pode ser resumido conforme os seguintes estágios: preparação da matéria-prima (corte, separação das folhagens, transporte e armazenamento), seguida da extração do caldo, para, logo após, ocorrer a fermentação. O resultado dessa fermentação é levado à destilação, da qual, por meio de uma coluna de destilação ou alambique, se extrai a cachaça. Essa pode ainda ser envelhecida em barril de madeira, antes de ser engarrafada e distribuída para a comercialização (FRANCO, 1994).

Além de etanol e água, a aguardente é composta também de diversas substâncias orgânicas voláteis secundárias. Cada um destes compostos secundários combinados propicia o aroma global da bebida. A variação qualitativa

destes componentes na cachaça é que determina a aceitação do produto no mercado (YOKOYA, 1995). A classe mais abundante destes compostos são os álcoois superiores, produzidos juntamente com o etanol, durante a fermentação. Mesmo presentes em pequenas quantidades, diversos componentes da aguardente desempenham um papel chave no sabor das bebidas. Como exemplo, pode-se citar o papel dos ácidos orgânicos no aroma e compostos carbonílicos (acetaldeído e diacetil) no sabor da bebida. Ácidos orgânicos podem contribuir diretamente no aroma ou indiretamente, por estarem envolvidos na formação de ésteres. Compostos carbonílicos, como acetaldeído e diacetil, estarão presentes em pequenas concentrações, mas tendo um limiar de detecção sensorial (*threshold*) muito baixo, podem desempenhar um papel chave no sabor das bebidas.

As variações na composição da aguardente de cana podem ser influenciadas por diversos fatores como: qualidade da matéria prima utilizada, técnicas de extração do caldo, fermentação e tipo de destilação e maturação (YOKOYA, 1995). Em diversos aspectos, a fermentação é o fator determinante na formação dos componentes que proporcionam sabor à aguardente (MAIA, 1994), pois estes componentes são produtos das funções metabólicas das leveduras. Estes microrganismos também podem estar envolvidos na produção ou modificação dos compostos sulfurados, que tem importância crítica no aroma e sabor das bebidas.

Os diversos componentes da aguardente podem ser agrupados de acordo com sua natureza química: álcoois superiores, ácidos graxos, ésteres e compostos carbonílicos. Os alcoóis superiores (óleo fúsel), ácidos graxos e ésteres formam quantitativa e qualitativamente o maior grupo na fração de aroma volátil das bebidas alcoólicas, sendo que os álcoois superiores são os mais abundantes (Lehtonen & Jounela-Eriksson, 1983, citados por OLIVEIRA, 2001).

1.1.4. Álcoois Superiores

O grupo dos álcoois superiores ou óleo fúsel é quantitativamente o maior grupo que compõe o sabor em bebidas alcoólicas (NYKÄNEN, 1986). Este grupo é composto de álcoois alifáticos e aromáticos, formados pela ação de leveduras sobre aminoácidos. Os principais álcoois superiores produzidos são os álcoois alifáticos 1-propanol, isobutanol (2-metil-1-propanol), álcool amílico ativo (2-metil-1-butanol), álcool isoamílico (3-metil-1-butanol), glicerol e os álcoois aromáticos, dentre os quais o feniletanol é o mais importante (NYKÄNEN, 1986; MAIA, 1994). O álcool isoamílico é o álcool fúsel de maior concentração nas bebidas. Seu conteúdo é aproximadamente metade do total da fração de óleo fúsel na bebidas (OLIVEIRA, 2001).

Devido ao aroma característico, os álcoois superiores têm uma forte influência no sabor das bebidas destiladas. Segundo Nykänen & Nykänen (1991), o termo fúsel refere-se justamente ao sabor e cheiro de "queimado" destes álcoois. Os álcoois superiores, com três a cinco carbonos, apresentam odores característicos, tradicionalmente associados a bebidas destiladas. Acima de cinco carbonos, os álcoois tornam-se oleosos, sendo que alguns deles lembram o aroma de flores (MAIA, 1994).

Almeida e Barreto (1971) analisaram por cromatografia gasosa 60 amostras de aguardente de diversas regiões do Brasil e determinaram, quantitativa e qualitativamente, os álcoois superiores presentes nas amostras. Os autores verificaram que as aguardentes consideradas de boa qualidade apresentavam somente n-propanol, isobutanol e álcool isoamílico. As amostras de qualidade inferior apresentavam sempre um elevado teor de n-propanol, segundo Almeida e Barreto (1971). O mesmo tipo de observação com relação ao n-propanol foi relatado por Boza e Horii (1998).

2. OBJETIVOS

Geral

Esse estudo tem por objetivo a obtenção de dados isobáricos de Equilíbrio Líquido-Vapor (ELV) de sistemas binários e ternários envolvendo álcoois superiores pelo método dinâmico usando ebuliômetro de recirculação Fischer e o ajuste dos parâmetros de interação binária dos modelos de coeficiente de atividade de Wilson, NRTL e UNIQUAC.

Específicos

Desenvolver uma metodologia analítica por cromatografia gasosa para quantificação de álcoois superiores nos experimentos de Equilíbrio Líquido-Vapor;

Validar metodologia de determinação do Equilíbrio Líquido-Vapor (ELV) usando Ebuliômetro de Recirculação Fischer (VLE 602);

Medir pressão de vapor para os álcoois superiores de interesse nesse trabalho com o uso do Ebuliômetro de Recirculação Fischer (VLE 602);

Determinar experimentalmente dados de Equilíbrio Líquido-Vapor para o sistema binário composto por 2-propanol/2-metil-1-butanol a 560 e 760 mmHg;

Determinar experimentalmente dados de Equilíbrio Líquido-Vapor para os sistemas ternários compostos por 2-propanol/1-butanol/3-metil-1-butanol e 2-propanol/2-metil-1-propanol/2-metil-1-butanol, ambos a 760 mmHg;

Testar a consistência termodinâmica dos dados binários de Equilíbrio Líquido-Vapor pelos teste de área e de van Ness-Fredenslund;

Ajustar os parâmetros de interação binária dos modelos de coeficiente de atividade NRTL, Wilson e UNIQUAC aos dados binários de Equilíbrio Líquido-Vapor;

Testar a capacidade de descrição do Equilíbrio Líquido-Vapor dos sistemas ternários com o uso dos parâmetros de interação binárias ajustados nesse trabalho.

3. FUNDAMENTAÇÃO TEÓRICA

3.1. Equilíbrio Líquido-Vapor (ELV)

A fase líquida de uma mistura está em equilíbrio com a sua fase vapor se (i) a temperatura (T) e a pressão (P) de ambas as fases são iguais (equilíbrio térmico e mecânico) e (ii) os potenciais químicos (μ_i) de cada componente da mistura nas fases vapor e líquida são iguais (equilíbrio químico). Sendo que o equilíbrio entre a fase vapor e líquida para o sistema com n componentes é dado por:

$$\begin{aligned} \mathbf{T}^{\mathrm{V}} &= \mathbf{T}^{\mathrm{L}} \\ \mathbf{P}^{\mathrm{V}} &= \mathbf{P}^{\mathrm{L}} \\ \boldsymbol{\mu}_{i}^{\mathrm{V}} &= \boldsymbol{\mu}_{i}^{\mathrm{L}} \quad (i = 1, 2, ..., n) \end{aligned}$$

Este conjunto de equações estabelece o critério básico para o Equilíbrio de Líquido-Vapor.

Como o potencial químico do componente i (μ_i) não é uma variável mensurável no mundo físico, então, é desejável expressá-lo em termos de funções auxiliares tais como a fugacidade.

De forma geral, o equilíbrio de fases é representado pela condição de isofugacidade, quer dizer, as fugacidades de cada um dos componentes na mistura devem ser iguais ao longo de todas as fases.

Então, para as fases líquida e vapor em equilíbrio, tem-se:

$$\hat{f}_i^V = \hat{f}_i^L \tag{1}$$

 $\hat{f_i}^V$: Fugacidade do componente i na fase vapor $\hat{f_i}^L$: Fugacidade do componente i na fase líquida

As fugacidades são geralmente representadas pelo coeficiente de fugacidade quando há uma fase vapor envolvida, e pelo coeficiente de atividade,

quando há uma fase líquida envolvida na chamada abordagem assimétrica ou γ - φ . No entanto, é possível representar as fugacidades em ambas as fases usando apenas o coeficiente de fugacidade, na abordagem simétrica ou φ - φ .

Ambas as abordagens são utilizadas atualmente, dependendo dos modelos disponíveis e das condições de pressão existentes no equilíbrio. A abordagem assimétrica é utilizada no equilíbrio líquido-vapor a baixas pressões, já que não precisa correção do coeficiente de fugacidade.

Assim, segundo Prausnitz et al. (1980), seguindo a abordagem γ - ϕ :

$$\hat{f}_i^V = \hat{\varphi}_i^V \mathbf{y}_i P \qquad (i = 1, 2, \dots, n)$$
⁽²⁾

$$\hat{f}_{i}^{\ L} = \gamma_{i} x_{i} f_{i}^{\ o} \qquad (i = 1, 2, ..., n)$$
(3)

Sendo,

 $\hat{\varphi}_i^V$: Coeficiente de fugacidade do componente i na fase vapor

 y_i : Fração molar do componente *i* na fase vapor

- *P*: Pressão total do sistema
- x_i : Fração molar do componente i na fase líquida
- γ_i : Coeficiente de atividade do componente i na fase liquida
- f_i^0 : Fugacidade do componente *i* no estado padrão, geralmente igual à fugacidade do componente *i* a pressão e temperatura do sistema

A fugacidade do estado padrão pode ser calculada da seguinte forma:

$$\hat{f_i}^o = P_i^{vp} \varphi_i^{vp} exp\left[\frac{\underline{V}_i^{\mathrm{L}}(\mathbf{P} - \mathbf{P}_i^{\mathrm{vp}})}{\mathrm{RT}}\right] \quad (i = 1, 2, \dots, n)$$
(4)

Sendo,

 P_i^{vp} : Pressão de vapor do componente *i*

 φ_i^{vp} :Coeficiente de fugacidade do componente i puro na P_i^{vp}

 V_i^L : Volume molar do componente i

R: Constante universal dos gases

T: Temperatura absoluta

Substituindo as equações (2), (3) e (4) em (1) tem-se a equação do equilíbrio líquido-vapor:

$$y_i \hat{\varphi}_i^{\ V} P = x_i \gamma_i P_i^{\ vp} \varphi_i^{\ vp} exp\left[\frac{\underline{V}_i^L \left(P - P_i^{\ vp}\right)}{RT}\right] \qquad (i = 1, 2, \dots, n)$$
(5)

O termo exponencial da equação (5) é conhecido como Fator de Poynting e, em geral para sistemas estudados a baixas e médias pressões é uma correção desprezível. O termo $\varphi_i^{\nu p}$ leva em conta os desvios do vapor saturado em relação ao comportamento de gás ideal. Se a temperatura é tal que a pressão de vapor $P_i^{\nu p}$ é baixa, então $\varphi_i^{\nu p}$ é muito próximo da unidade. Exceções são observadas em substâncias que têm uma forte tendência a associar-se. Levando em conta essas considerações, a equação que representa o ELV a baixas e médias pressões torna-se:

$$\mathbf{y}_{i}\widehat{\varphi}_{i}^{V}P = x_{i}\gamma_{i}P_{i}^{\nu p} \qquad (i = 1, 2, \dots, n)$$
(6)

3.2. Cálculo da Pressão de Vapor

Existem na literatura várias correlações para cálculo de pressão de saturação em função da temperatura, como pode ser visto em Reid, Prausnitz e Poling (1987). Algumas correlações são a do DIPPR (The Desing Institute for Physical Property Data), de Antoine e de Antoine estendida.

A equação de Antoine é uma expressão simples sendo o tipo mais comum na utilização de sub-rotinas de programas para o cálculo ELV, embora não seja tão precisa fora das faixas de operação para as quais foram ajustados os parâmetros. Possui a seguinte forma:

$$\ln P_i^{vp} = A_i - \frac{B_i}{T_{vp} + C_i} \tag{7}$$

Sendo,

 P_i^{vp} : Pressão de vapor do componente *i*

 T_{vp} : Temperatura na P_i^{vp}

 A_i, B_i, C_i : Constantes ajustadas a dados experimentais de pressão de vapor do componente *i*

A equação de Antoine Estendida possui a seguinte forma:

$$\ln P_i^{sat} = A_i + \frac{B_i}{(T_{vp} + C_i)} + D_i T_{vp} + E_i \ln(T_{vp}) + F_i T_{vp}^{G_i}$$
(8)

Sendo,

 $A_i, B_i, C_i, D_i, E_i, F_i, G_i$: Constantes ajustadas a dados experimentais de pressão de vapor do componente *i*.

A equação DIPPR permite representar faixas de temperatura maiores, bem como extrapolações mais seguras. Possui a forma:

$$\ln P_i^{sat} = A_i + \frac{B_i}{(T_{vp})} + C_i ln(T_{vp}) + D_i T_{vp}^{E_i}$$
(9)

 A_i, B_i, C_i, D_i, E_i : Constantes ajustadas a dados experimentais de pressão de vapor do componente i.

3.3. Coeficiente de Fugacidade

A médias e baixas pressões (menores ou igual a 1 atm) e baixas densidades é comum atribuir à fase vapor o comportamento de gás ideal.. Assim, o coeficiente de fugacidade da fase vapor de cada componente ($\hat{\varphi}_i^V$) pode ser igualado à unidade e o desvio da idealidade é atribuído ao coeficiente de atividade de cada componente na fase líquida. Exceções são observadas em substâncias que têm uma forte tendência a associar-se na fase vapor como os ácidos carboxílicos. Em geral, o coeficiente de fugacidade é calculado pela equação do Virial truncada após o segundo termo, mas para componentes que se associam fortemente, ele deve ser estimado através da teoria química. Nesse caso, a correlação de Hayden e O'Connel (HAYDEN e O'CONNEL, 1975) permite o cálculo do segundo coeficiente do Virial e a predição da constante do equilíbrio químico de dimerização.

3.4. Cálculo do Coeficiente de Atividade

Os coeficientes de atividade que descrevem o desvio do comportamento de uma mistura ideal na fase líquida podem ser expressos a partir dos dados experimentais, segundo procedimento adotado por Prausnitz, Lichtenthaler e Azevedo (1986), isolando o termo γ_i na equação (5) obtendo dessa forma um coeficiente experimental:

$$\gamma_i = \frac{y_i P}{x_i P_i^{vp}} \frac{\varphi_i^{V}}{\varphi_i^{vp}} exp\left[-\frac{\underline{V}_i^L \left(P - P_i^{vp}\right)}{RT}\right]$$
(10)

Esses valores de coeficiente de atividade são utilizados para auxiliar na estimativa de parâmetros de modelos que os descrevem.

O coeficiente de atividade pode ser calculado usando modelos derivados da equação da energia livre de Gibbs em excesso (g^E), que relacionam-se com a composição e temperatura através da expressão:

$$ln \gamma_i = \frac{1}{RT} \left(\frac{\partial g^E}{\partial n_i} \right)_{T,P,n_i \neq 1} \qquad (i = 1, 2, ..., n)$$
(11)

Modelos para a energia livre de Gibbs podem ser encontrados na literatura (REID; PRAUSNITZ; POLING, 1987). Muitos deles são empíricos, alguns com certo embasamento teórico. A uma dada temperatura, a energia livre de Gibbs em excesso de uma mistura é dependente da composição e, em um menor grau, da pressão do sistema. A baixas e médias pressões é aceitável desprezar a dependência da energia de Gibbs em relação à pressão, já que o efeito é suficientemente pequeno. Dessa forma, os modelos adotados para a representação do coeficiente de atividade da fase líquida, também ficam como função da temperatura e composição. Estes modelos levam em consideração a energia de interação entre as moléculas, expressa na forma de parâmetros de interação binários.

No presente trabalho, adotaram-se três modelos para a representação dos coeficientes de atividade da fase líquida nos cálculos do equilíbrio líquidovapor: os modelos de Wilson, UNIQUAC e NRTL. Suas expressões derivadas foram retiradas de Gmehling e Oken (1977) e são mostradas na Tabela 2.

Modelo	Parâmetro	$\ln \gamma_i =$
Wilson	A ₁₂	$ln\gamma_1 = -ln(x_1 + A_{12}x_2) + x_2 \left(\frac{A_{12}}{x_1 + A_{12}x_2} - \frac{A_{21}}{A_{21}x_1 + x_2}\right)$
	$B_{12} \\ B_{21}$	$ln\gamma_2 = -ln(x_2 + A_{21}x_1) - x_1\left(\frac{A_{12}}{x_1 + A_{12}x_2} - \frac{A_{21}}{A_{21}x_1 + x_2}\right)$
		$A_{12} = \frac{v_2^L}{v_1^L} \exp\left(-\frac{\lambda_{12} - \lambda_{11}}{RT}\right) A_{21} = \frac{v_1^L}{v_2^L} \exp\left(-\frac{\lambda_{12} - \lambda_{22}}{RT}\right)$
NRTL	$\begin{array}{c}A_{12}\\A_{21}\\P\end{array}$	$\ln \gamma_1 = x_2^2 \left[\tau_{21} \left(\frac{G_{21}}{x_1 + x_2 G_{21}} \right)^2 + \left(\frac{\tau_{12} G_{12}}{(x_2 + x_1 G_{12})^2} \right) \right]$
	$B_{21}^{12} \\ B_{21}^{21} \\ C_{12} = \alpha_{12} = \alpha_{21}$	$\ln \gamma_2 = x_1^2 \left[\tau_{12} \left(\frac{G_{12}}{x_2 + x_1 G_{12}} \right)^2 + \left(\frac{\tau_{21} G_{21}}{(x_1 + x_2 G_{21})^2} \right) \right]$
		$\tau_{12} = \frac{g_{12} - g_{22}}{RT} = A_{12} + B_{12}/T \qquad \tau_{21} = \frac{g_{21} - g_{11}}{RT} = A_{21} + B_{21}/T$
		$G_{12} = \exp(-\alpha_{12}\tau_{12})$ $G_{21} = \exp(-\alpha_{21}\tau_{21})$
UNIQUAC	AC $ \begin{array}{c} A_{12} \\ A_{21} \\ B_{12} \\ B_{21} \end{array} $ $ \begin{array}{c} In \gamma_{1}^{C} = In \gamma_{1}^{C} + In \gamma_{1}^{R} \\ In \gamma_{1}^{C} = In \frac{\phi_{1}}{x_{1}} + \frac{z}{2} q_{1} In \frac{\theta_{1}}{\phi_{1}} + \phi_{2} \left(l_{1} - \frac{r_{1}}{r_{2}} l_{2} \right) \\ In \gamma_{1}^{R} = -q_{1} In \left(\theta_{1} + \theta_{2} \tau_{21} \right) + \theta_{2} q_{1} \left(\frac{\tau_{21}}{\theta_{1} + \theta_{2} \tau_{21}} - \frac{\tau_{12}}{\theta_{1} \tau_{12} + \theta_{2}} \right) $	$\ln \gamma_1 = \ln \gamma_1^C + \ln \gamma_1^R$
		$\ln \gamma_{1}^{\circ} = \ln \frac{1}{x_{1}} + \frac{1}{2} q_{1} \ln \frac{1}{\phi_{1}} + \phi_{2} \left(l_{1} - \frac{1}{r_{2}} l_{2} \right)$
		$\ln \gamma_1^R = -q_1 \ln \left(\theta_1 + \theta_2 \tau_{21} \right) + \theta_2 q_1 \left(\frac{\tau_{21}}{\theta_1 + \theta_2 \tau_{21}} - \frac{\tau_{12}}{\theta_1 \tau_{12} + \theta_2} \right)$
		$\ln\gamma_2 = \ln\gamma_{2_1}^C + \ln\gamma_2^R$
		$\ln \gamma_{2}^{C} = \ln \frac{\phi_{2}}{x_{2}} + \frac{z}{2} q_{2} \ln \frac{\theta_{2}}{\phi_{2}} + \phi_{1} \left(l_{2} - \frac{r_{2}}{r_{1}} l_{1} \right)$
		$\ln \gamma_{2}^{R} = -q_{2} \ln(\theta_{1}\tau_{12} + \theta_{2}) + \theta_{1}q_{2} \left(\frac{\tau_{12}}{\theta_{1}\tau_{12} + \theta_{2}} - \frac{\tau_{21}}{\theta_{1} + \theta_{2}\tau_{21}}\right)$
		$l_i = \frac{z}{2}(r_i - q_i) - (r_i - 1)$ $z = 10$
		$\theta_i = \frac{q_i x_i}{\sum_j q_j x_j} \qquad \phi_i = \frac{r_i x_i}{\sum_j r_j x_j}$
		$\tau_{12} = \exp[A_{12} + B_{12}/T]$ $\tau_{21} = \exp[A_{21} + B_{21}/T]$

Tabela 2 - Modelos de coeficientes de atividade da fase líquida

3.4.1. Equação de Wilson

No ano de 1964, Wilson apresentou um modelo relacionando g^E com as frações molares, baseado parcialmente em considerações moleculares, usando o conceito de composição local. Basicamente, o conceito de composição local estabelece que a composição do sistema nas vizinhanças de uma molécula dada não é igual à composição global, por causa das forças intermoleculares.

Nesta equação (Tabela 2) $A_{12} e A_{21} são$ os dois parâmetros ajustáveis, que estão relacionados aos volumes molares dos líquidos puros ($v_1^L e v_2^L$) e às diferenças de energia características. Os λ_{ij} 's são energias de interação entre as moléculas, sendo $\lambda_{12} = \lambda_{21}$.

Em um sentido estrito, as diferenças entre as energias devem ser consideradas como dependentes da temperatura, mas em muitos casos esta dependência pode ser desprezada sem introduzir erros muito significativos. Se essas diferenças são consideradas independentes da temperatura, pelo menos ao longo de pequenos intervalos, a equação de Wilson proporciona não apenas uma expressão para os coeficientes de atividade em função da composição, mas também uma estimativa da variação dos coeficientes de atividade com a temperatura. Isto é uma grande vantagem em cálculos isobáricos, onde a temperatura varia com a composição (Prausnitz et al.,1999).

3.4.2. Equação NRTL (non-random, two-liquid)

Renon e Prausnitz (1968) desenvolveram a equação NRTL baseados também no conceito de composição local, entretanto este modelo é aplicável a sistemas de miscibilidade parcial.

Nesta equação (Tabela 2), o significado dos g_{ij} é similar aos λ_{ij} da equação de Wilson, ou seja, são parâmetros de energia característicos das interações *i-j*. O parâmetro α *ij* está relacionado com a não-randomicidade (ou não aleatoriedade) da mistura. Isto quer dizer que os componentes na mistura não se distribuem uniformemente, mas que seguem um padrão ditado pela composição local. Este

parâmetro está relacionado com o número de moléculas que tocam a molécula de referência. O intervalo de valores numéricos encontrados experimentalmente mostra que é um fator estritamente empírico e que não está claramente relacionado a qualquer mecanismo, sendo que se sugere utilizar α_{ij} no intervalo de 0,20-0,47, dependendo da natureza química dos constituíntes (Renon e Prausnitz, 1968).

Este modelo fornece uma boa representação dos dados experimentais para sistemas fortemente não ideais.

3.4.3. Equação UNIQUAC (Universal Quasichemical)

Abrams e Prausnitz (1975) desenvolveram uma equação para moléculas não-randômicas e misturas contendo componentes de diferentes tamanhos. Esta extensão foi chamada de Teoria Quase-química Universal, ou, pelas siglas em inglês, UNIQUAC. Este modelo para g^E consiste em duas partes: uma parte combinatorial, que descreve as contribuições entrópicas dos componentes, e uma parte residual, que expressa as forças intermoleculares que são responsáveis pela entalpia de mistura. A parte combinatorial depende apenas da composição, do tamanho e da forma das moléculas, já que depende apenas do componente puro. No entanto, a parte residual depende das forças intermoleculares, de onde aparecem os dois parâmetros ajustáveis.

Na Tabela 2, z, o número de coordenação (vizinhos dentro de uma região), é igual a 10. Os parâmetros r e q são constantes da estrutura molecular dos componentes puros e dependem do tamanho da molécula e da área superficial externa da mesma, $\Phi_i e \theta_i$ são as frações de segmento e área respectivamente.

Para uma mistura binária os dois parâmetros ajustáveis são $\tau_{12} e \tau_{21}$.

O modelo UNIQUAC é aplicável a uma variedade de misturas líquidas nãoeletrolíticas,contendo componentes polares e não polares, incluindo sistemas de miscibilidade parcial.

3.5. Testes de Consistência Termodinâmica

As medidas experimentais de Equilíbrio Líquido-Vapor, por mais precisas que sejam sempre estarão sujeitas a desvios, isto é, erros inerentes ao equipamento, à precisão dos instrumentos, a técnicas de medidas, entre outros. Felizmente a termodinâmica oferece relações exatas que podem ser empregadas em testes para se verificar a consistência dos dados.

A relação termodinâmica que é usada freqüentemente para analisar a consistência termodinâmica de dados experimentais do equilíbrio de fases é a equação fundamental de Gibbs-Duhem. A equação de Gibbs-Duhem relaciona os coeficientes da atividade, a energia livre parcial de Gibbs e os coeficientes de fugacidade de todos os componentes em uma dada mistura. Dependendo da maneira em que a equação de Gibbs-Duhem é utilizada, diferentes testes de consistência foram derivados.

Partindo da equação de Gibbs-Duhem a T e P constantes:

$$\sum_{i=1}^{n} x_i \left(\frac{\partial \ln \gamma_i}{\partial x_i} \right) \Big|_{T, P, x_{i \neq 1}} = 0 \qquad (i = 1, 2, \dots, n)$$
(12)

No caso de um sistema binário, a equação fica reduzida a:

$$x_1 \left(\frac{\partial \ln \gamma_1}{\partial x_1} \right) \Big|_{T,P} = -x_2 \left(\frac{\partial \ln \gamma_2}{\partial x_1} \right) \Big|_{T,P}$$
(13)

Seguindo a definição de energia livre de Gibbs relacionada com o coeficiente de atividade, pode-se manipular matematicamente a equação (13) até chegar a:

$$\int_{0}^{1} \ln \frac{\gamma_{1}}{\gamma_{2}} dx_{1} = 0 \tag{14}$$

Os testes abordados neste trabalho serão o teste de Área (HERINGTON,1947) e o teste de van Ness modificado por Fredenslund, Jones e Prausnitz (1975).

3.5.1. Teste de Área

Herington (1947), apoiado nas relações de Gibbs-Duhem, propôs o teste integral para a verificação da consistência de dados de equilíbrio líquido-vapor. Supondo que o vapor possa ser tratado como gás ideal e o volume molar do líquido seja negligenciável, observou que a seguinte condição é satisfeita:

$$\left[\ln\alpha_{12} - \ln\left(\frac{P_1^{sat}}{P_2^{sat}}\right)\right] \equiv \ln\left(\frac{\gamma_1}{\gamma_2}\right) \tag{15}$$

Assim, a equação (13) pode ser expressa pela forma:

$$\int_{0}^{1} \left[\ln \alpha_{12} - \ln \left(\frac{P_{1}^{sat}}{P_{2}^{sat}} \right) \right] dx_{1} = 0$$
(16)

Sendo, α_{12} a volatilidade relativa, dada por:

$$\alpha_{12} = \frac{y_1 x_2}{x_1 y_2}$$

De maneira análoga, Redlich e Kister (1948), sugeriram a integração da equação (14) para a representação dos coeficientes de atividade. Os autores desenvolveram modelos baseados em série de potências, cujos parâmetros podem ser estimados a partir da regressão dos coeficientes de atividade

experimentais, como os calculados pela equação (10). O valor do módulo da integral é dado pela área sob a curva $\ln(\gamma_1/\gamma_2)$ contra x_1 .

O cálculo da área dado pela equação (16), embora não seja uma condição, é sugerido por Prausnitz, Lichtenthaler e Azevedo (1986), como critério para considerar dados consistentes:

$$D = \left[\frac{A_1 - A_2}{A_1 + A_2}\right] \cdot 100 < 2\% \tag{17}$$

Sendo,

 A_1 e A_2 : a área acima e a área abaixo da curva $\ln(\gamma_1/\gamma_2)$ contra x_1 , respectivamente.

Devido às simplificações necessárias para o desenvolvimento dos testes, estes ficaram restritos a dados obtidos em condições isotérmicas. Pensando nisso, Herington (1951) generalizou este procedimento para incluir dados isobáricos, propondo uma técnica semi-empírica para estimar a integral do termo entálpico, negligenciado na integração simplificada da equação de Gibbs-Duhem. O autor definiu a seguinte grandeza para compensar o cálculo da entalpia:

$$J = 150 \frac{\Delta T_{max}}{T_{min}} \tag{18}$$

Sendo,

 ΔT_{max} : Diferença entre a maior e a menor temperatura de ebulição observada no sistema, em K, à pressão de operação do sistema.

 T_{min} : Menor temperatura de ebulição observada no sistema, em K, à pressão de operação.

Baseado na análise de um certo número de dados experimentais, Herington (1951) estipulou um critério de consistência baseada na diferença entre o valor de D calculado pelo teste da área e o valor de J, observadas as seguintes condições:

(D – J) < 10 os dados podem ser consistentes
 (D – J) > 10 os dados possivelmente são inconsistentes

Entretanto Wisniak (1994), revalidando o método de Herington (1951), para uma gama maior de sistemas binários, encontrou desvios além dos anunciados como esperados no desenvolvimento da técnica. O autor argumentou, como ponto mais relevante, dentre outros, que nos sistemas estudados o valor da constante empírica, pode sofrer grandes distorções. Como solução são abordadas duas propostas: (a) alteração do valor da constante, originalmente definida como sendo 150 para o valor de 96, dependendo do sistema em análise; (b) pode-se utilizar um modelo de coeficiente de atividade, como Wilson (1964), através da relação termodinâmica entre energia de Gibbs em excesso e entalpia de mistura, o que resulta:

$$\Delta H = x_1 x_2 \left[\frac{\Lambda_{12}(\lambda_{12} - \lambda_{11})}{x_1 + x_2 \lambda_{12}} + \frac{\Lambda_{21}(\lambda_{12} - \lambda_{22})}{x_2 + x_1 \lambda_{21}} \right]$$
(19)

Emprega-se a equação (13) diretamente na relação obtida por Herington (1951), representada pela equação abaixo, dispensando o uso da constante empírica:

$$\int_{0}^{1} \ln \frac{\gamma_{1}}{\gamma_{2}} dx_{1} < \frac{\Delta H_{m} |T_{1}^{0} - T_{2}^{0}|}{R T_{min}^{2}}$$
(20)

Sendo,

 T_1^{0} : temperatura de ebulição do componente 1 à pressão do sistema T_2^{0} : temperatura de ebulição do componente 2 à pressão do sistema ΔH_m : entalpia da mistura

Caso os resultados encontrados obedeçam a equação (19) os dados podem ser considerados consistentes.

Testes como os mostrados são conhecidos como "globais" por analisarem toda uma faixa de composição, de x = 0 até x = 1. Bourne (1964), analisando esse tipo de teste, verificou que nessa integração pode haver compensação de erros ao longo de todo o caminho, o que poderia fornecer resultados falsos.
3.5.2. Teste de van Ness-Fredenslund

van Ness (1959), ao desenvolver as formas exatas da equação de Gibbs-Duhen, mostrou que a integração poderia ser efetivada ao longo de um caminho especifico para o qual os dados fossem disponíveis. Essa premissa serviu de base para os testes "locais" de área, nos quais a integração pode ser feita em faixas restritas, detectando-se inconsistências locais.

van Ness, Byer e Gibbs (1973) observaram que nem todas as variáveis medidas são necessariamente utilizadas. Devido à relação entre os coeficientes de atividade, o termo de pressão total, P, é negligenciado. Um fato também notado é que regiões próximas a altas diluições, isto é, $x_i \rightarrow 0$ influenciam grandemente os coeficientes de atividade, γ_i , podendo alterar os resultados finais. Os autores analisam ainda o uso da pressão de vapor nos testes que, em grande parte, não são obtidos juntamente com os dados de ELV, podendo influenciar fortemente os resultados. O que se avalia é se a razão entre as pressões de vapor é compatível com os dados $x_1 - y_1$.

Procurando fazer uso de todas as variáveis medidas, P-T-*x*-*y*, e baseado no fato de que a termodinâmica fornece relações exatas entre essas variáveis, van Ness, Byer e Gibbs (1973) propõem seis maneiras diferentes de se testar a consistência termodinâmica de dados isotérmicos utilizando resultados P— x_1 , P— y_1 e x_1 — y_1 . Valores de y_1 , x_1 ou P são calculados, as suas diferenças em relação aos valores medidos são graficadas em função de x_1 e o espalhamento dos resultados em torno do zero é utilizado como parâmetro para avaliação da consistência. Dados espalhados aleatoriamente podem ser consistentes, enquanto que se observada uma tendência há a indicação de inconsistência. Devido à maior incerteza experimental da variável y_1 , é recomendado que o teste se baseie na análise dessa variável. Um dos procedimentos propostos pelos autores é bastante

21

utilizado em trabalhos publicados, e consiste na integração da equação de Gibbs-Duhem, considerando a fase vapor ideal, na forma:

$$P = x_1 P_1^{sat} exp\left(g + x_2 \frac{dg}{dx_1}\right) + x_2 P_2^{sat} exp\left(g - x_1 \frac{dg}{dx_1}\right)$$
(21)

sendo, $g \equiv \frac{g^E}{RT}$. A relação entre $g \in x_I$ é estabelecida numericamente pelo procedimento proposto por Mixon e Carpenter (1965). Os *y*'s são estimados ou calculados pelas relações de equilíbrio, tomando a pressão total, P, calculada pela equação (21).

Fredenslund, Jones e Prausnitz (1975) estenderam o método de van Ness et al. (1973) a sistemas isobáricos, considerando a fase vapor não ideal. A equação desenvolvida é praticamente a mesma que a equação (20). O termo g foi representado por polinômios de Legendre de até 6^a ordem e seus coeficientes são calculados por regressão de mínimos quadrados, cuja soma das diferenças ao quadrado das pressões experimentais e calculadas é minimizada, o que equivale ao método de Barker (1953). Os autores adotam como critério de consistência, o valor médio da diferenças entre os *y* experimentais e os *y* calculados sob a seguinte forma:

$$\left|y_{i(cal)} - y_{i(exp)}\right| \le \delta x_i + \delta y_i \tag{22}$$

sendo $\delta x_i \in \delta y_i$ as incertezas experimentais nas frações molares do liquido e vapor, Fredenslund, Jones e Prausnitz (1975), estabeleceram 0,01 como valor aceitável para $\delta x_i + \delta y_i$, não sendo o mesmo utilizado de forma absoluta, podendo variar dependo o sistema. Os resultados que obedecem a equação (22) podem ser considerados consistentes. Caso contrário duas observações podem ser feitas: os dados são inconsistentes ou os métodos para o cálculo das fugacidades, entalpias ou volumes molares são inadequados.

Wilsak e Philip (1995) avaliaram quatro tipos de testes de consistência para sistemas isotérmicos, entre eles o da área segundo Herington (1951) e o de van

Ness, Byer e Gibbs (1973) e chegaram a conclusões semelhantes às apresentadas.

Basicamente, os autores avaliam as aproximações e simplificações nas relações termodinâmicas que os diversos métodos aplicam para os cálculos dos coeficientes de atividade experimentais, como as relações PVT para o cálculo dos coeficientes de fugacidade da fase vapor e os desvios inerentes dos termos volumétricos.

Wilsak e Philip (1995) ilustraram suas análises, comparando a eficiência da aplicação de modelos de coeficiente de fugacidade da fase vapor e de atividade da fase líquida adequados e não adequados a determinados sistemas, além da influência do emprego de dados obtidos em regiões próximas à de diluição infinita. Os autores revelam que:

- O uso de pontos próximos à região diluída influencia de modo apreciável, e nem sempre favorável, os testes de consistência.
- Deve-se levar em consideração a não-idealidade das fases, evitando simplificações e adotando sempre modelos apropriados aos sistemas em estudo.
- O teste da área, por si só, não garante a consistência de dados, sendo uma condição necessária, mas não suficiente.

3.6. Métodos experimentais para a determinação do Equilíbrio Líquido-Vapor

A determinação de curvas de equilíbrio líquido-vapor pode ser feita tanto isobaricamente quanto isotermicamente. Existem vários métodos, qual deles deverá ser usado irá depender do sistema a ser estudado.

Segundo Hála et al. (1967), citado por Rolemberg (1998) os métodos são divididos de acordo com suas técnicas experimentais, em cinco grupos principais:

- método da destilação;
- método estático;

- método do ponto de bolha e orvalho;

método de fluxo;

- método de recirculação.

A Tabela 3 mostra as características e faixas de aplicabilidade dos diversos métodos para a obtenção de dados de equilíbrio líquido-vapor.

	Faixa de	Faixa de		
Método	Pressão	Temperatura	Vantagens	Desvantagens
	1	Baixas	Simplicidade de	
Destilação	Pequena	temperaturas	construçao	Baixa Exatidao
Estático	Ampla	Ampla	Grande exatidão	Dificuldade na retirada de amostras e medida da pressão total
Ponto de bolha e orvalho	Ampla	Baixas temperaturas	Pequena quantidade de amostra; não requer análise química das fases	Construção e alimentação difíceis
Fluxo	Ampla	Baixas temperaturas	Tempo reduzido para estabelecimento do equilíbrio	Exige grande controle do processo
Recirculação	Pequena (baixas e médias)	Adequado a baixas temperaturas	Tempo reduzido	Uso de soluções homogêneas e não reativas

Tabela 3 - Comparação entre os métodos de obtenção de dados ELV

Neste trabalho será empregado o método da recirculação detalhado a seguir.

3.6.1. Método da Recirculação

Este método é amplamente utilizado sendo conveniente para regiões de baixas e médias pressões. Consiste na recirculação continua de uma ou duas fases até que se atinja o estado de equilíbrio, e a concentração de ambas as fases é determinada analiticamente. De acordo com a fase de recirculação, este método pode ser classificado em:

- ✓ método de recirculação da fase vapor
- ✓ método de recirculação das fases líquida e vapor

4. MATERIAIS E MÉTODOS

O experimento foi conduzido no Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio (EXTRAE) do Departamento de Engenharia de Alimentos da UNICAMP.

Todas as substâncias empregadas nesse trabalho eram designadas pelo fabricante como tipo para análise (p.a.) e foram utilizadas sem tratamento de purificação adicional. O teor mínimo de pureza é o fornecido pelo fabricante para cada composto. Uma análise foi feita em laboratório com todas as substâncias através de cromatografia gasosa não se encontrando nenhum pico extra nos cromatogramas.

Os reagentes utilizados nas misturas binárias e ternárias foram: 2-propanol (CAS: 67-63-0), Sigma Aldrich, \geq 99,8 % de pureza 1-butanol (CAS: 71-36-3), Sigma Aldrich, \geq 99,5 % de pureza 2-metil-1-propanol (CAS: 78-83-1) Sigma Aldrich, \geq 99 % de pureza 2-metil,-1-butanol (CAS: 137-32-6), Sigma Aldrich, \geq 99 % de pureza 3-metil,-1-butanol (CAS: 123-51-3), Sigma Aldrich, \geq 99 % de pureza

Os sistemas estudados foram o binário 2-metil-1-propanol/2-metil-1-butanol para validação da metodologia empregada, os binários 2-propanol/ 2-metil-1butanol a 560 e 760 mmHg e os sistemas ternários 2-porpanol/2-metil-1-butanol/2metil-1-propanol e 2-propanol/1-butanol/3-metil-1-butanol, ambos a 760 mmHg.

As pressões de operação foram 760 e 560 mmHg. A escolha dos valores da pressão foi determinada com o intuito de simular a realidade do processo industrial de destilação que ocorre à pressão atmosférica. Já a pressão abaixo da atmosférica foi sugerida porque um leve vácuo é capaz de minimizar os custos de produção uma vez que diminui a temperatura na destilação.

As técnicas experimentais empregadas foram ebuliometria e cromatografia gasosa.

25

4.1. Ebuliômetro de Recirculação

Para a determinação dos dados de equilíbrio líquido-vapor dos sistemas estudados, foi utilizado um ebuliômetro de recirculação da marca comercial Fischer modelo 602 (Figuras 1A e 1B). Acoplados a unidade de operação, existem ainda um controlador de pressão, uma bomba de vácuo e um banho termostático.

Figura 1A - Ebuliômetro de Recirculação

Figura 1B – Ebuliômetro de Recirculação

Legenda:

- 1) Câmara de Ebulição
- 2) Tubo de Cotrell
- 3) Câmara de separação
- 4) Condensador
- 5) Refrigerador de segurança da fase vapor
- 6) Refrigerador de segurança da fase líquida
- 7) Frasco de mistura com agitador magnético
- 8) Termopar tipo PT 100: fase vapor
- 9) Termopar tipo PT 100: fase líquida
- 10) Septo para coleta de amostra líquida
- 11) Septo para coleta de amostra de vapor condensado
- 12) Septo para coleta de vapor
- 13) Válvula solenóide: amostra da fase líquida
- 14) Válvula solenóide: amostra de fase vapor condensado
- 15) Tubo de coleta de amostra da fase líquida
- 16) Tubo de coleta de amostra da fase vapor condensado
- 17) Válvula: pressão de equilíbrio no tubo de amostragem (15)
- 18) Válvula: pressão de equilíbrio no tubo de amostragem (16)
- 19) Válvula de ventilação fase líquida
- 20) Válvula de ventilação fase vapor
- 21) Válvula para coleta de amostra da fase líquida
- 22) Válvula para coleta de amostra da fase vapor condensado
- 23) Válvula de descarte
- 24) Termopar tipo PT 100: controle de temperatura no frasco de ebulição
- 25) Termopar tipo PT 100: controle de temperatura na manta de aquecimento isolada.

O ebuliômetro Fischer tem como princípio a recirculação das fases líquida e vapor em contato, até que se atinja o estado de equilíbrio (estacionário). A mistura líquida é colocada no frasco de mistura (7). Ela é aquecida até entrar em ebulição na câmara de ebulição (1). O vapor desprendido e as gotículas que são carreadas da fase líquida sobem através do tubo (2), denominado "bomba de Cotrell". Durante o percurso pelo tubo ocorrem trocas de massa e energia entre o vapor e as gotículas do líquido necessárias para caracterizar o estado de equilíbrio. A mistura, ao final da "bomba de Cotrell", entra em contato com um termopar (8) para registrar a temperatura de equilíbrio naquele ponto. O vapor continua a subir, passa por um condensador (4) e retorna ao frasco de mistura. As gotículas do líquido também retornam ao frasco de mistura.

Após algum tempo, quando ambas as fases estão recirculando continuamente e não há mais variação sensível na temperatura de equilíbrio são retiradas amostras da fase vapor e da fase líquida simultaneamente através do acionamento das válvulas (13 e 14) ou por meio de seringas nos pontos (10 e 11). Essas amostras serão analisadas por cromatografia gasosa. Dessa maneira são obtidas as propriedades necessárias para a caracterização do sistema: pressão e temperatura de equilíbrio e composição das fases líquida e vapor. O agitador magnético é útil para garantir a perfeita mistura entre as fases que retornarão ao frasco de ebulição evitando gradientes de temperatura e composição, bem como formar bolhas de vapor que impedem o superaquecimento do líquido.

4.2. Métodos

4.2.1. Ebuliometria

As medidas do equilíbrio líquido-vapor para os sistemas foram realizados à pressão constante. Inicialmente, aproximadamente 100 mL da mistura a ser estudada foi introduzida no frasco de mistura e a pressão ajustada com auxílio de um controlador. As pressões abaixo da ambiente foram conseguidas com uma

29

bomba de vácuo e as pressões acima da ambiente foram obtidas através de pressurização do sistema com N₂.

A seguir, iniciou-se a agitação, o aquecimento, a ebulição da mistura, a formação da fase vapor com arraste de líquido para a recirculação das fases passando pela bomba Cotrell.

Para cada ponto experimental, esperou-se cerca de 30 minutos para que o sistema estabilizasse, observando temperatura e pressão constantes de forma a assegurar que o sistema havia atingido o equilíbrio, mais duas leituras com intervalos de 20 minutos foram tomadas.

As amostras das fases líquida e vapor em equilíbrio foram coletadas através do acionamento simultâneo de válvulas. Essas amostras foram diluídas em metanol, acondicionadas em frascos adequados e submetidos à refrigeração para evitar a perda desses compostos voláteis. Posteriormente, as amostras foram quantificadas com auxílio de um cromatógrafo gasoso.

4.2.2. Cromatografia Gasosa

Para cada sistema foram feitas curvas de calibração dos compostos constituintes das misturas para quantificação das amostras por padronização externa.

As amostras das fases líquida e vapor foram quantificadas no cromatógrafo Shimadzu, modelo GC-17A, detector de ionização de chama (FID) e injeção automática. A coluna DB-624 da Agilent Technologies foi utilizada. Esta coluna tem comprimento 60 m, diâmetro interno 0,250 mm e espessura 1,40 µm, fase estacionária de polietileno glicol. A temperatura de injeção foi de 250°C e detecção 320°C. Foi utilizada uma rampa de temperatura de 40°C por 5 minutos, depois a uma taxa de 40°C min⁻¹ chegando a 150°C permanecendo nessa temperatura por 7 minutos, subindo a 200°C a uma taxa de 40°C min⁻¹, permanecendo nessa temperatura por 3 minutos. O volume de amostra injetado foi 1µL. Os gases utilizados foram: hélio para arraste, ar sintético e hidrogênio para formação da chama. O fluxo de gás da coluna foi 1mL min⁻¹, a pressão 100 psi e velocidade linear 24 cm.s⁻¹.

4.2.3. Teste do Equipamento

Com intuito de se verificar a qualidade dos dados obtidos nas medidas do Equilíbrio Líquido-Vapor, e também como treinamento para operar o equipamento foram determinados os dados de Equilíbrio Líquido-Vapor de um sistema binário já descrito na literatura (2-metil-1-propanol/2-metil-1-butanol, RESA et al., 2006) para verificar a reprodutibilidade dos dados.

4.3. Cálculo das Propriedades Termodinâmicas

A equação de Antoine foi empregada na determinação das propriedades termodinâmicas necessárias à avaliação da consistência termodinâmica dos dados experimentais, segundo o teste de van Ness Fredenslund realizado no programa *Thertest* disponível no Laboratório de Propriedades Termodinâmicas da Faculdade de Engenharia Química (UNICAMP). Para o teste de área, foi empregada a equação de Antoine estendida encontrada no bando de dados do *software* Aspen Plus 12.1.

A equação do DIPPR também foi utilizada no cálculo das pressões de vapor dos componentes dos sistemas binários estudados neste trabalho.

Os parâmetros de interação binária dos modelos Wilson, NRTL e UNIQUAC foram ajustados aos dados experimentais dos sistemas binários usando o *software* Aspen Plus 12.1.

31

5. RESULTADOS E DISCUSSÃO

Nesta seção são apresentados os resultados dos experimentos realizados neste trabalho. Primeiramente, curvas de pressão de vapor dos compostos 2-propanol e 2-metil-1-propanol foram determinadas. A seguir, são apresentados os dados de Equilíbrio Líquido-Vapor (ELV), modelagem e consistência termodinâmica para o sistemas binários 2-metil-1-propanol/2-metil-1-butanol a 760 mmHg e 2-propanol/2-metil-1-butanol a 560 e 760 mmHg. Também são apresentados os dados de Equilíbrio Líquido-Vapor e modelagem termodinâmica para os sistemas ternários 2-propanol/1-butanol/3-metil-1-butanol e 2-propanol/2-metil-1-butanol/2-metil-1-butanol e 2-propanol/2-metil-1-butanol/3-metil-1-butanol e 2-propanol/2-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/2-metil-1-butanol/3-metil-1-butanol/2-metil-1-butanol/2-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/2-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/3-metil-1-butanol/2-metil-1-butanol/2-metil-1-butanol/3-metil-1-butano

A determinação dos dados ELV e consistência termodinâmica para o sistema binário 2-metil-1-propanol/2-metil-1-butanol a 760 mmHg já descrito na literatura (RESA et al., 2006) serviu como treinamento para uso dos equipamentos envolvidos nas medidas experimentais.

5.1. Pressão de Vapor

As curvas de pressão de vapor dos compostos 2-propanol e 2-metil-1propanol foram determinadas experimentalmente (Tabelas 4 e 5) usando o ebuliômetro de Fischer. Para contemplar toda a faixa de temperatura empregada neste trabalho, foram usados dados dos trabalhos de Timmermans (1965) (Tabela 4) para a curva de pressão de vapor do 2-propanol e Ambrose e Sprake (1970) e Smith e Srivastava (1986) (Tabela 5) para construção da curva de pressão de vapor do 2-metil-1-propanol.

Os experimentos consistiram na aplicação do método dinâmico no qual a curva de pressão de vapor é obtida a partir de medidas da temperatura de ebulição em várias pressões.

32

A curva de pressão de vapor do composto 2-metil-1-butanol não foi determinada neste trabalho por falta de tempo hábil. Os dados utilizados foram retirados do trabalho de Čenský et al. (2010) (Tabela 6).

Os componentes 1-butanol e 3-metil-1-butanol foram usados somente nos dados de Equilíbrio Líquido-Vapor das misturas ternárias, portanto não houve a necessidade de ajuste de suas pressões de vapor pela equação de Antoine para uso no programa de consistência termodinâmica *Thertest*. Para modelagem do ELV, foi usada a equação de Antoine estendida do banco de dados do *software* Aspen Plus 12.1.

Tabela 4 - Pressão de vapor (P^{vp}) do 2-propanol: dados experimentais de Timmermans (1965) e deste trabalho

Dados exp		Dad	los exp	Dados ex	p Timmer	mans (1965)
Immerr	P ^{vp}	aeste	P ^{vp}	+	este trab	P ^{vp} ovn
T(°C)	(mbar)	T(°C)	(mbar)	T(°C)	T(K)	(mbar)
0,00	11,8700	52,05	262,1000	0,00	273,15	11,8700
10,00	22,6700	54,85	301,9500	10,00	283,15	22,6700
20,00	43,2000	62,58	436,5500	20,00	293,15	43,2000
25,00	58,6600	65,73	504,3400	25,00	298,15	58,6600
30,00	78,7900	70,84	632,3900	30,00	303,15	78,7900
40,00	140,7900	74,1	727,3700	40,00	313,15	140,7900
50,00	235,7100	74,71	746,5400	50,00	323,15	235,7100
60,00	384,6300	76,83	815,8900	52,05	325,20	262,1000
70,00	606,3500	79,69	918,0200	54,85	328,00	301,9500
80,00	922,3200	82,22	1013,0300	60,00	333,15	384,6300
81,61	989,7800	83,41	1065,1600	62,58	335,73	436,5500
90,00	1361,0000			65,73	338,88	504,3400
91,79	1470,0000			70,00	343,15	606,3500
100,94	2049,0000			70,84	343,99	632,3900
113,33	3083,0000			74,10	347,25	727,3700
122,71	4116,0000			74,84	347,99	746,5400
130,46	5161,0000			76,83	349,98	815,8900
142,64	7065,0000			79,69	352,84	918,0200
147,63	8264,0000			80,00	353,15	922,3200
				81,61	354,76	989,7800
				82,26	355,41	1013,0300
				83,41	356,56	1065,1600
				90,00	363,15	1361,0000
				91,79	364,94	1470,0000
				100,94	374,09	2049,0000
				113,33	386,48	3083,0000
				122,71	395,86	4116,0000
				130,46	403,61	5161,0000
				142,64	415,79	7065,0000
				147,63	420,78	8264,0000

Dados exp Ambrose e Sprake(1970)		Dad deste	los exp trabalho	Dados exp Ambrose e Sprake (1970) + Smith e Srivastava (1986) + este trabalho			
T(°C)	P ^{vp} _{exp} (mbar)	T(°C)	P ^{vp} _{exp} (mbar)	T(°C)	T(K)	P ^{vp} _{exp} (mbar)	
69,90 75,40 80,20 84,50 88,10 91,40 94,20 96,80 99,30 101,50 103,70 105,60 107,60 109,30 111,00 112,60 114,10 115,60	204,6600 265,6000 330,6600 400,0000 465,4600 534,5300 599,7300 665,5900 733,4600 799,9900 867,8600 931,4600 1002,0000 1068,0000 1134,0000 1201,0000 1265,0000 1333,0000	74,69 77,92 86,39 89,84 95,41 98,94 101,91 105,04 107,58 109,10	262,0000 301,8900 436,6500 504,4700 632,5200 727,3300 815,8100 917,9800 1013,2100 1065,0300	26,85 69,90 74,69 75,40 77,92 80,20 84,50 86,39 88,10 89,84 91,40 94,20 95,41 96,80 98,94 99,30 101,50 101,50 101,91 103,70 105,04 105,60 105,85	300,00 343,05 347,84 348,55 351,07 353,35 357,65 359,54 361,25 362,99 364,55 367,35 368,56 369,95 372,09 372,45 374,65 375,06 376,85 375,06 376,85 378,19 378,75 379,00	17,4500 204,6600 262,0000 265,6000 301,8900 330,6600 400,0000 436,6500 465,4600 504,4700 534,5300 599,7300 632,5200 665,5900 727,3300 733,4600 799,9900 815,8100 867,8600 917,9800 931,4600 942,6000	
				107,58 107,60 109,10	380,73 380,75 382,25	1013,2100 1002,0000 1065,0300	
Dados e Srivast	Dados exp Smith e Srivastava (1986)			109,30 111,00	382,45 384,15	1068,0000 1134,0000	
26,85 105,85 148,85 226,85	17,4500 942,6000 3713,0000 20220.0000			112,60 114,10 115,60 148,85 226,85	385,75 387,25 388,75 422,00 500.00	1201,0000 1265,0000 1333,0000 3713,0000 20220.0000	
269,85	40090,0000			269,85	543,00	40090,0000	

Tabela 5 - Pressão de vapor (P^{vp}) do 2-metil-1-propanol: dados experimentais de Ambrose e Sprake (1970), Smith e Srivastava (1986) e deste trabalho

Dados exp Čenský et al.								
T(°C)	(2010) T (K)	P ^{vp} _{Exp}						
		(mbar)						
72 36	345 51	93 3300						
77,29	350,44	119,9900						
81,36	354,51	146,6500						
84,87	358,02	173,3200						
88,65	361,80	206,6500						
91,97	365,12	239,9800						
95,48	368,63	279,9800						
98,59	371,74	319,9700						
101,41	374,56	359,9700						
103,98	377,13	399,9700						
106,35	379,50	439,9600						
108,90	382,05	486,6300						
111,26	384,41	533,2900						
113,77	386,92	586,6200						
116,08	389,23	639,9500						
118,25	391,40	693,2800						
120,28	393,43	746,6100						
122,20	395,35	799,9300						
124,02	397,17	853,2600						
125,75	398,90	906,5900						
127,81	400,96	973,2500						

Tabela 6 - Pressão de vapor (P^{vp}) do 2-metil-1-butanol: dados experimentais obtidos por Čenský et al. (2010)

As constantes da equação de Antoine (7) foram ajustadas aos dados experimentais com auxílio do programa Regress, disponível no Laboratório de Propriedades Termodinâmicas, da Faculdade de Engenharia Química (UNICAMP) e as constantes da equação de Antoine Estendida (8) ajustadas aos dados experimentais no *software Aspen Plus 12.1*. As constantes da equação do DIPPR (9) foram retiradas do banco de dados do programa DIPPR. Estas constantes estão apresentadas nas Tabelas 7, 8 e 9.

	_	<u> </u>		_	~		
Inholo		(`onctontoc	d o		n - n - n	do	Antoino
	/ -	CONSIGNES	114	FUILE	11.40		ALIUTIE
i abola		001101011100	au	Laac	içu o	00	/ 11101110
					3		

	Constantes *							
Componente	Ai	Bi	Ci	Validade (°C)				
2-propanol	7,51142	1.244,06	186,490	0,00 a 147,63				
2-metil-1-propanol	7,22177	1.208,47	170,605	26,85 a 269,85				
2-metil-1-butanol	7,24595	1.289,15	166,342	72,36 a 127,81				

*Constantes ajustadas a dados experimentais Equação de Antoine: $log P^{vp}(mmHg) = A_i - \frac{B_i}{(T+C_i)}$; T(°C)

	Constantes										
Componente	Ai	Bi	Ci	Di	Ei	Fi	Gi	Validade(K)			
2-propanol	64,9171	-7.607	0	0	-7,4086	0,43986 x 10 ⁻¹⁷	6	185,28 a 508,30			
2-metil-1propanol	110,267	-10.504	0	0	-13,9219	0,16898 x 10 ⁻¹⁶	6	165,15 a 547,89			
2-metil-1-butanol	84,6831	-9.658,90	0	0	-10,112	0,8477 x 10 ⁻¹⁸	6	195,00 a 575.40			
*Constante	*Constantos ajustadas a dados experimentais										

Constantes ajustadas a dados experimentais

$$lnP^{vp}(bar) = A_i + \frac{B_i}{(T+C_i)} + D_iT + E_i ln(T) + F_iT^{G_i}; T(K)$$

Tabela 9 - Constantes	s da	Equação	de	DIPPR
-----------------------	------	---------	----	-------

	Constantes								
Componente	Ai	Bi	Ci	Di	Ei	Validade(K)			
2-propanol	76,43	-7.607	-7,4086	4,3986 x 10 ⁻¹⁸	6	185,28 a 508,3			
2-metil-1-propanol	121,78	-10.504	-13,921	1,6898 x 10 ⁻¹⁷	6	165,15 a 547,80			
2-metil-1-butanol	96,196	-9658,9	-10,112	8,4773 x 10 ⁻¹⁹	6	195,0 a 575,4			
		m / m)	BLUER	(m) , n m . m . m . m					

Equação de DIPPR: $lnP^{vp}(Pa) = A_i + \frac{b_i}{T} + C_i ln(T) + D_i T^{E_i}; T(K)$

Nas Tabelas 10,11 e 12 e nas Figuras 2, 3 e 4, estão apresentados os valores das pressões de vapor (P^{vp}) em função da temperatura para os compostos 2-propanol, 2-metil-1-propanol e 2-metil-1-butanol, respectivamente, considerando as equações de Antoine, Antoine Estendida e DIPPR. O desvio médio relativo foi calculado pela equação:

$$\delta m\acute{e}dio\% = \sum_{i}^{n} \left(\frac{100 |\nu_{i,exp} - \nu_{i,calc}|}{\nu_{i,exp}} \right) / n \tag{23}$$

sendo,

v: propriedade, os sobrescritos

i: número da observação

n: número total de observações do banco de dados, respectivamente.

exp: dado experimental; calc: dado calculado

Tabela 10 - Pressão de vapor (P^{vp}) do 2-propanol: dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR, considerando os dados de Timmermans (1965) e deste trabalho

T(°C)	Т(К)	Anto P ^{vp} _{exp} (mmHg)	oine P ^{vp} _{exp} (mbar)	Antoine P ^{vp} _{exp} (bar)	e Estendida P ^{vp} _{exp} (mbar)	DIPF P ^{vp} _{exp} (Pa)	PR P ^{vp} _{exp} (mbar)
0.00	273,15	6,9263	9,2343	0.0112	11,1910	1119,0748	11,1907
10,00	283,15	15,1357	20,1793	0,0229	22,9363	2293,5686	22,9357
20,00	293,15	30,6637	40,8816	0,0444	44,3696	4436,8512	44,3685
25,00	298,15	42,5659	56,7498	0,0605	60,5051	6050,3518	60,5035
30,00	303,15	58,1995	77,5929	0,0815	81,5041	8150,2037	81,5020
40,00	313,15	104,3852	139,1688	0,1429	142,9164	14291,2744	142,9127
50,00	323,15	178,1975	237,5771	0,2403	240,3167	24031,0616	240,3106
52,05	325,20	197,7471	263,6412	0,2661	266,0526	26604,5802	266,0458
54,85	328,00	227,3095	303,0545	0,3049	304,9472	30493,9443	304,9394
60,00	333,15	291,2854	388,3486	0,3891	389,0741	38906,4177	389,0642
62,58	335,73	328,5483	438,0284	0,4381	438,0669	43805,5768	438,0558
65,73	338,88	379,2976	505,6885	0,5048	504,7996	50478,6789	504,7868
70,00	343,15	458,2415	610,9385	0,6086	608,6478	60863,2315	608,6323
70,84	343,99	475,2557	633,6221	0,6310	631,0377	63102,1629	631,0216
74,10	347,25	546,2698	728,2998	0,7245	724,5252	72450,6761	724,5068
74,84	347,99	563,5411	751,3264	0,7473	747,2714	74725,2397	747,2524
76,83	349,98	612,2127	816,2164	0,8114	811,3912	81137,0575	811,3706
79,69	352,84	688,1219	917,4205	0,9115	911,4524	91142,9141	911,4291
80,00	353,15	696,7905	928,9776	0,9229	922,8835	92286,0015	922,8600
81,61	354,76	743,2527	990,9222	0,9842	984,1681	98414,3048	984,1430
82,26	355,41	762,7102	1016,8633	1,0098	1009,8405	100981,4798	1009,8148
83,41	356,56	798,1476	1064,1093	1,0566	1056,6086	105658,1735	1056,5817
90,00	363,15	1027,8848	1370,4003	1,3601	1360,1405	136010,5883	1360,1059
91,79	364,94	1098,7192	1464,8385	1,4538	1453,8376	145380,0598	1453,8006
100,94	374,09	1524,7581	2032,8436	2,0183	2018,2932	201824,1761	2018,2418
113,33	386,48	2301,7795	3068,7870	3,0507	3050,6552	305057,7532	3050,5775
122,71	395,86	3075,6722	4100,5591	4,0810	4081,0369	408093,2948	4080,9229
130,46	403,61	3857,6374	5143,0936	5,1232	5123,2316	512310,1115	5123,1011
142,64	415,79	5389,8437	7185,8672	7,1659	7165,9498	716576,7331	7165,7673
147,63	420,78	6138,0046	8183,3331	8,1630	8162,9572	816274,9286	8162,7493
		δmédio %	1,8882	δ médio	% 1,1930	δ médio %	1,1930

Figura 2 - Pressão de Vapor (P^{vp}) do 2-propanol: dados experimentais de Timmermans (1965) e deste trabalho, dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR.

Tabela 11 - Pressão de vapor (P^{vp}) do 2-metil-1-propanol: dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR, considerando os dados de Ambrose e Sprake (1970), Smith e Srivastava (1986) e deste trabalho

		Ante	oine	Antoine	Estendida	DIPF	PR
T(°C)	T(K)	P ^{vp} _{exp}	P ^{vp} _{exp}	Ρ ^{vp} _{exp}	Ρ ^{vp} _{exp}	Ρ ^{vp} _{exp}	Ρ ^{vp} _{exp}
		(mmHg)	(mbar)	(bar)	(mbar)	(Pa)	(mbar)
26,85	300,00	12,6340	16,8439	0,0160	15,9807	1598,1939	15,9819
69,90	343,05	157,4168	209,8719	0,2031	203,1162	20313,1365	203,1314
74,69	347,84	197,3201	263,0719	0,2559	255,8995	25591,8576	255,9186
75,40	348,55	203,8873	271,8274	0,2646	264,6162	26463,5879	264,6359
77,92	351,07	228,6656	304,8624	0,2976	297,5709	29759,3063	297,5931
80,20	353,35	253,1659	337,5267	0,3302	330,2494	33027,4002	330,2740
84,50	357,65	305,2267	406,9355	0,4000	399,9513	39998,1087	399,9811
86,39	359,54	330,7201	440,9239	0,4342	434,1953	43422,7625	434,2276
88,10	361,25	355,2566	473,6365	0,4672	467,2141	46724,8937	467,2489
89,84	362,99	381,7245	508,9241	0,5029	502,8920	50292,9477	502,9295
91,40	364,55	406,7964	542,3506	0,5367	536,7402	53678,0204	536,7802
94,20	367,35	455,1428	606,8072	0,6021	602,1369	60218,1758	602,1818
95,41	368,56	477,4258	636,5154	0,6323	632,3286	63237,5716	632,3757
96,80	369,95	504,1040	672,0834	0,6685	668,5129	66856,2734	668,5627
98,94	372,09	547,5199	729,9664	0,7275	727,4774	72753,1635	727,5316
99,30	372,45	555,1110	740,0871	0,7378	737,7963	73785,1339	737,8513
101,50	374,65	603,3649	804,4203	0,8034	803,4477	80350,7546	803,5075
101,91	375,06	612,7196	816,8923	0,8162	816,1860	81624,6806	816,2468
103,70	376,85	654,9370	873,1776	0,8737	873,7122	87377,7317	873,7773
105,04	378,19	688,0444	917,3171	0,9189	918,8661	91893,4623	918,9346
105,60	378,75	702,2718	936,2854	0,9383	938,2806	93835,0508	938,3505
105,85	379,00	708,6990	944,8543	0,9471	947,0529	94712,3452	947,1235
107,58	380,73	754,4778	1005,8877	1,0096	1009,5671	100964,2329	1009,6423
107,60	380,75	755,0206	1006,6113	1,0103	1010,3085	101038,3842	1010,3838
109,10	382,25	796,6247	1062,0789	1,0672	1067,1666	106724,6139	1067,2461
109,30	382,45	802,3075	1069,6554	1,0749	1074,9361	107501,6177	1075,0162
111,00	384,15	851,9310	1135,8146	1,1428	1142,8071	114289,2327	1142,8923
112,60	385,75	900,8428	1201,0250	1,2097	1209,7481	120983,8292	1209,8383
114,10	387,25	948,7042	1264,8349	1,2753	1275,2872	127538,2250	1275,3823
115,60	388,75	998,5664	1331,3124	1,3436	1343,5981	134369,8295	1343,6983
148,85	422,00	2746,9989	3662,3639	3,7394	3739,3854	373966,4160	3739,6642
226,85	500,00	15179,2282	20237,3065	20,2767	20276,6892	2027820,0598	20278,2006
269,85	543,00	30066,6120	40085,5192	40,1935	40193,4511	4019644,7070	40196,4471
		δmédio %	0,8548	δ médio %	% 0,7710	δ médio %	0,7735

Figura 3 - Pressão de Vapor (P^{vp}) do 2metil-1-propanol: dados experimentais de Ambrose e Sprake (1970), Smith e Srivastava (1986) e deste trabalho, dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR.

Tabela 12 - Pressão de Vapor (P^{vp}) do 2-metil-1-butanol: dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR, considerando os dados de Čenský et al. (2010)

		Antoine		Antoine I	Estendida	DIPPR	
T(°C)	Т(К)	P ^{vp} _{Calc} (mmHg)	P ^{vp} _{Calc} (mbar)	P ^{vp} _{Calc} (bar)	P ^{vp} _{Calc} (mbar)	P ^{vp} _{Calc} (Pa)	P ^{vp} _{Calc} (mbar)
72,36	345,51	70,0276	93,3625	0,0930	92,9540	9295,19	92,9519
77,29	350,44	90,0647	120,0764	0,1193	119,3420	11933,90	119,3390
81,36	354,51	110,027	146,6906	0,1458	145,7750	14577,18	145,7718
84,87	358,02	130,081	173,4271	0,1723	172,3150	17231,06	172,3106
88,65	361,80	154,984	206,6283	0,2055	205,4960	20549,11	205,4911
91,97	365,12	179,998	239,9776	0,2388	238,8150	23880,92	238,8092
95,48	368,63	209,977	279,9463	0,2789	278,8790	27887,22	278,8722
98,59	371,74	239,868	319,7977	0,3191	319,1090	31910,12	319,1012
101,41	374,56	269,911	359,8517	0,3595	359,4684	35945,92	359,4592
103,98	377,13	299,913	399,8511	0,3999	399,9384	39992,83	399,9283
106,35	379,50	329,946	439,8918	0,4405	440,4693	44045,81	440,4581
108,90	382,05	364,957	486,5693	0,4879	487,9175	48790,51	487,9051
111,26	384,41	399,999	533,2881	0,5356	535,5980	53558,43	535,5843
113,77	386,92	440,222	586,9144	0,5902	590,1928	59017,77	590,1777
116,08	389,23	480,082	640,0567	0,6447	644,7227	64470,63	644,7063
118,25	391,40	520,140	693,4630	0,6993	699,2585	69924,07	699,2407
120,28	393,43	560,019	746,6306	0,7539	753,9202	75390,10	753,9010
122,20	395,35	599,972	799,8969	0,8086	808,5730	80855,26	808,5526
124,02	397,17	639,935	853,1765	0,8634	863,4269	86340,49	863,4049
125,75	398,90	679,879	906,4308	0,9184	918,3925	91836,91	918,3691
127,81	400,96	730,029	973,2920	0,9874	987,3733	98734,82	987,3482
		δmédio%	0,0236	δmédio%	0,6194	δmédio%	0,6192

Figura 4 - Pressão de Vapor (P^{vp}) do 2-metil-1-butanol: dados experimentais de Čenský et al. (2010), dados ajustados pela equação de Antoine e calculados pelas equações de Antoine Estendida e DIPPR.

5.2. Dados de Equilíbrio Líquido-Vapor

A validação da metodologia experimental iniciou-se com a determinação dos dados de Equilíbrio Líquido-Vapor para o sistema binário 2-metil-1-propanol/2metil-1-butanol a 760 mmHg, já descritos por Resa et al. (2006). Os dados obtidos experimentalmente neste trabalho foram comparados aos da literatura.

Concluídos os testes preliminares, dados de Equilíbrio Líquido-Vapor foram medidos experimentalmente para a mistura binária composta por 2-propanol/2metil-1-butanol a 560 e 760 mmHg e para as misturas ternárias compostas por 2propanol/1-butanol/3-metil-1-butanol e 2-propanol/2-metil-1-butanol/2-metil-1propanol, ambas a 760 mmHg.

Determinou-se a composição das fases líquida e vapor por cromatografia gasosa.

5.2.1. Sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg

Este sistema, como dito anteriormente, já foi descrito na literatura (RESA et al., 2006) (vide Tabela 13) e, portanto, foi usado como sistema teste para a validação e treinamento da metodologia experimental.

Os dados experimentais para o sistema 2-metil-propanol (1)/2-metil-1butanol (2) a 760 mmHg obtidos nesse trabalho (Tabela 14) foram comparados aos dados da literatura. Como pode ser observado na Figura 5, existe uma concordância na descrição das linhas de ponto de bolha e orvalho.

T(°C)	X 1	y 1
128,78	0,0000	0,0000
127,03	0,0600	0,1190
125,59	0,1110	0,2040
124,08	0,1550	0,2840
122,48	0,2010	0,3500
121,11	0,2510	0,4160
120,28	0,2760	0,4510
119,96	0,2970	0,4610
119,51	0,3220	0,5030
119,03	0,3520	0,5250
118,20	0,3940	0,5790
116,27	0,5110	0,6860
115,50	0,5430	0,7080
114,29	0,6060	0,7560
113,46	0,6530	0,7930
112,60	0,6970	0,8230
111,92	0,7350	0,8520
110,92	0,7930	0,8910
110,15	0,8420	0,9250
109,4	0,8970	0,9510
108,37	0,9620	0,9830
108,08	0,9760	0,9890
107,85	1,0000	1,0000

Tabela 13 - Dados de Equilíbrio Líquido-Vapor para o sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg (RESA et al., 2006)

Tabela 14 - Dados de Equilíbrio Líquido-Vapor obtidos nesse trabalho para o sistema 2-metil-1-propanol (1) /2-metil-1-butanol (2) a 760 mmHg

T(°C)	X 1	y 1
128,78	0,0000	0,0000
125,76	0,0660	0,1613
123,79	0,1347	0,2785
122,42	0,1882	0,3603
120,90	0,2540	0,4328
119,37	0,3224	0,5237
118,03	0,3888	0,5945
116,73	0,4532	0,6403
115,25	0,5276	0,7151
111,88	0,7150	0,8373
107,66	1,0000	1,0000

Figura 5 - Equilíbrio Líquido-Vapor. Sistema 2-metil-1-propanol/2-metil-1-butanol a 760 mmHg: dados experimentais deste trabalho (•) e literatura (RESA et al., 2006) (x).

5.2.2. Sistema 2-propanol (1) /2-metil-1-butanol (2) a 760 mmHg

As medidas do Equilíbrio Líquido-Vapor para o sistema 2-propanol (1)/2metil-1-butanol (2) foram realizadas à pressão constante de 760 mmHg. Os dados experimentais estão na Tabela 15. Nas Figuras 6 e 7, é apresentado o comportamento dos dados experimentais.

Tabela 15 - Dados de Equilíbrio Líquido-Vapor para o sistema 2-propanol (1)/2-metil-1butanol(2) a 760mmHg

T (°C)	X 1	y 1
82,26	1,0000	1,0000
84,01	0,9113	0,9875
89,39	0,7596	0,9559
95,19	0,5988	0,9005
100,09	0,4880	0,8399
103,11	0,4243	0,7945
106,47	0,3544	0,7299
109,82	0,2739	0,6493
112,74	0,2122	0,5409
115,00	0,1820	0,4900
118,49	0,1262	0,3726
120,86	0,0897	0,2800
125,99	0,0291	0,1029
128,78	0,0000	0,0000

Figura 6 - Diagrama T-x,y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 760 mmHg

Figura 7 - Diagrama x-y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 760 mmHg.

5.2.3. Sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 mmHg

As medidas do equilíbrio líquido-vapor para o sistema 2-propanol (1)/2metil-1-butanol (2) foram realizadas à pressão constante de 560 mmHg. Os dados experimentais estão na Tabela 16. Nas Figuras 8 e 9, é apresentado o comportamento dos dados experimentais.

T(°C)	X 1	y 1
74,84	1,0000	1,0000
78,59	0,8620	0,9791
80,42	0,7971	0,9640
81,54	0,7568	0,9551
89,89	0,5271	0,8786
92,92	0,4522	0,8300
99,52	0,3036	0,6913
102,89	0,2300	0,5955
105,05	0,1909	0,5278
108,56	0,1318	0,4089
113,94	0,0448	0,1676
119,89	0,0000	0,0000

Tabela 16 - Dados de equilíbrio líquido-vapor para o sistema 2-propanol (1)/2-metil-1butanol(2) a 560mmHg

Figura 8 - Diagrama T-x,y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 560 mmHg.

Figura 9 - Diagrama x-y. Sistema 2-propanol (1)/2-metil-1-butanol(2) a 560 mmHg.

5.2.4. Sistema 2-propanol (1)/2-metil-1-butanol (2)/2-metil-1propanol (3) a 760 mmHg

As composições globais das misturas ternárias foram determinadas de forma a distribuir uniformemente as possíveis combinações dos componentes.

Os dados experimentais para o sistema ternário 2-propanol (1)/2-metil-1propanol (2)/2-metil-1-butanol (3) a 760 mmHg encontram-se na Tabela 17.

A Figura 10 apresenta o diagrama x-y para o sistema ternário 2-propanol (1)/ 2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg.

	4	•		4		•
I (°C)	X1	x2	x3	y1	y2	y3
82,26	1,0000	0,0000	0,0000	1,0000	0,0000	0,0000
90,42	0,6689	0,1657	0,1655	0,9150	0,0582	0,0268
91,44	0,6169	0,3717	0,0114	0,8275	0,1709	0,0017
93,73	0,5468	0,3320	0,1212	0,7979	0,1808	0,0213
93,89	0,5584	0,2226	0,2190	0,8586	0,0990	0,0424
98,28	0,4259	0,2560	0,3180	0,7665	0,1502	0,0833
100,15	0,3827	0,2952	0,3221	0,7246	0,1864	0,0890
101,19	0,3225	0,3692	0,3083	0,6466	0,2656	0,0878
101,95	0,2835	0,4653	0,2512	0,5764	0,3571	0,0665
101,97	0,3535	0,3015	0,3450	0,6864	0,2147	0,0989
103,81	0,2670	0,3554	0,3776	0,6294	0,2473	0,1233
104,25	0,2221	0,3944	0,3835	0,5604	0,3075	0,1321
104,58	0,1826	0,6102	0,2073	0,4144	0,5231	0,0625
105,37	0,2898	0,2407	0,4695	0,6448	0,1977	0,1575
105,73	0,1372	0,6990	0,1638	0,3312	0,6229	0,0459
107,86	0,0000	1,0000	0,0000	0,0000	1,0000	0,0000
108,81	0,1213	0,4389	0,4398	0,4057	0,4101	0,1842
108,94	0,0036	0,8050	0,1915	0,0184	0,9030	0,0786
109,29	0,2021	0,1854	0,6124	0,5773	0,1326	0,2901
112,42	0,0062	0,6088	0,3849	0,0365	0,7580	0,2055
128,78	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000

Tabela 17- Dados de Equilíbrio Líquido-Vapor para o sistema 2-propanol (1)/ /2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg

Figura 10 - Diagrama x-y para o sistema ternário 2-propanol (1)/2-metil-1-propanol (2)/ 2metil-1-butanol (3) a 760 mmHg. ● fração molar da fase líquida, ○ fração molar da fase vapor.

O composto 2-propanol (1) sempre apresenta concentrações mais elevadas na fase vapor do que as correspondentes na fase líquida, uma vez que esse é o componente de maior volatilidade no sistema (vide Tabela 17). O composto 2-metil-1-butanol (3), composto de menor volatilidade no sistema, apresenta concentrações na fase líquida maiores que as correspondentes na fase vapor. Já o composto 2-metil-1-propanol (2), de volatilidade intermediária, apresenta casos

em que a concentração na fase vapor é mais elevada quando esse componente está em alta concentração no sistema (região superior da Figura 10).

Na Tabela 18 estão os valores das constantes de equilíbrio e volatilidade relativa para os compostos do sistema 2-propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg.

T(°C)	k 1	k 2	k ₃	α ₁₃	α ₂₃	α ₃₃
82,26	1,0000	-	-	-	-	-
90,42	1,3679	0,3516	0,1620	8,4465	2,1709	1,0000
91,44	1,3413	0,4597	0,1443	9,2926	3,1850	1,0000
93,73	1,4593	0,5446	0,1757	8,3047	3,0992	1,0000
93,89	1,5375	0,4447	0,1937	7,9396	2,2963	1,0000
98,28	1,7996	0,5866	0,2619	6,8707	2,2398	1,0000
100,15	1,8934	0,6314	0,2763	6,8520	2,2850	1,0000
101,19	2,0051	0,7194	0,2848	7,0409	2,5261	1,0000
101,95	2,0332	0,7674	0,2648	7,6793	2,8983	1,0000
101,97	1,9417	0,7122	0,2866	6,7740	2,4848	1,0000
103,81	2,3576	0,6957	0,3265	7,2199	2,1305	1,0000
104,25	2,5230	0,7797	0,3445	7,3242	2,2635	1,0000
104,58	2,2697	0,8573	0,3016	7,5268	2,8430	1,0000
105,37	2,2249	0,8212	0,3355	6,6318	2,4477	1,0000
105,73	2,4141	0,8911	0,2802	8,6141	3,1799	1,0000
107,86	-	1,0000	-	-	-	-
108,81	3,3445	0,9344	0,4188	7,9849	2,2308	1,0000
108,94	5,1587	1,1217	0,4105	12,5656	2,7323	1,0000
109,29	2,8560	0,7152	0,4737	6,0294	1,5098	1,0000
112,42	5,8464	1,2450	0,5338	10,9516	2,3322	1,0000
128,78	-	-	1,0000	-	-	1,0000

Tabela 18 – Constantes de equilíbrio e volatilidade relativa para o sistema 2-propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg

Sendo:

$$k_i = \frac{y_i}{x_i}$$
$$\alpha_{ij} = \frac{y_i x_j}{x_i y_j}$$

(24)

(25)

Na figura 11 está representada a volatilidade relativa para o sistema 2propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg.

Figura 11 – Volatilidade Relativa para o sistema 2-propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg: $\bullet \alpha_{13} \equiv \alpha_{23} \triangleq \alpha_{33}$.

A figura 11 confirma que o componente 2-propanol (1) é o mais volátil do sistema, e o composto 2-metil-1-propanol apresenta volatilidade intermediária.

5.2.5. Sistema 2-propanol (1)/1-butanol (2)/3-metil-1-butanol (3) a 760 mmHg

Os dados experimentais para o sistema ternário 2-propanol (1)/1-butanol (2)/3-metil-1-butanol (3) a 760 mmHg encontram-se na Tabela 19.

Tabela 19 - Dados de Equilíbrio Líquido-Vapor para o sistema 2-propanol (1)/ /1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg

T(°C)	X 1	X 2	X 3	y 1	y ₂	y 3
82,26	1,0000	0,0000	0,0000	1,0000	0,0000	0,0000
82,81	0,9752	0,0122	0,0126	0,9975	0,0019	0,0006
83,91	0,9353	0,0313	0,0334	0,9925	0,0053	0,0022
85,87	0,8691	0,0643	0,0666	0,9831	0,0120	0,0050
87,74	0,8008	0,0975	0,1017	0,9703	0,0208	0,0089
89,61	0,7398	0,1308	0,1294	0,9562	0,0313	0,0125
91,24	0,6803	0,1612	0,1585	0,9430	0,0411	0,0159
92,85	0,6345	0,0215	0,3440	0,9512	0,0080	0,0407
93,25	0,6068	0,3498	0,0434	0,8953	0,0998	0,0048
94,66	0,5768	0,1041	0,3191	0,9096	0,0455	0,0449
94,78	0,5990	0,0534	0,3476	0,9321	0,0217	0,0462
96,01	0,5257	0,3258	0,1485	0,8582	0,1157	0,0261
97,16	0,5508	0,2236	0,2256	0,8734	0,0856	0,0411
98,65	0,4870	0,2632	0,2498	0,8506	0,1030	0,0464
99,66	0,4483	0,3156	0,2361	0,8153	0,1331	0,0516
101,10	0,4242	0,2293	0,3465	0,8204	0,1094	0,0702
102,27	0,4029	0,3076	0,2894	0,7947	0,1405	0,0648
102,81	0,3738	0,2905	0,3357	0,7707	0,1411	0,0883
103,60	0,3635	0,3420	0,2945	0,7601	0,1736	0,0664
104,51	0,2894	0,5225	0,1881	0,6519	0,3063	0,0418
106,15	0,3114	0,2552	0,4334	0,7228	0,1431	0,1341
107,17	0,2801	0,3732	0,3467	0,7009	0,2040	0,0951
108,10	0,2711	0,2315	0,4974	0,6865	0,1418	0,1718
109,54	0,1792	0,6654	0,1554	0,4998	0,4513	0,0489
110,01	0,2388	0,2040	0,5572	0,6399	0,1352	0,2249
112,20	0,1040	0,7965	0,0994	0,3386	0,6261	0,0354
113,43	0,1662	0,1575	0,6763	0,5715	0,1282	0,3003
114,87	0,0410	0,9052	0,0538	0,1688	0,8074	0,0237
115,49	0,1236	0,4798	0,3966	0,4625	0,3669	0,1706
115,76	0,0158	0,9673	0,0169	0,0742	0,9184	0,0074
117,89	0,0000	1,0000	0,0000	0,0000	1,0000	0,0000
121,59	0,0755	0,1078	0,8167	0,3473	0,1186	0,5340
125,10	0,0442	0,0691	0,8867	0,2466	0,0897	0,6637
125,75	0,0328	0,0453	0,9219	0,1614	0,0499	0,7887
131,58	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000

A Figura 12 apresenta o diagrama x-y para o sistema ternário 2-propanol (1)/ 1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg.

Figura 12 - Diagrama x-y para o sistema ternário 2-propanol (1)/1-butanol (2)/ 3-metil-1butanol (3) a 760 mmHg. ● fração molar da fase líquida, ○ fração molar da fase vapor.

O composto 2-propanol (1) sempre apresenta concentrações mais elevadas na fase vapor do que as correspondentes na fase líquida, uma vez que esse é o componente de maior volatilidade no sistema (vide Tabela 19). O composto 3metil-1-butanol (3), composto de menor volatilidade no sistema, apresenta
concentrações na fase líquida maiores que as correspondentes na fase vapor. Já o composto 1-butanol (2), de volatilidade intermediária, apresenta casos em que a concentração na fase vapor é mais elevada quando o composto 3-metil-1-butanol, mais pesado, está em alta concentração no sistema (região inferior esquerda da Figura 12).

Na Tabela 20 estão os valores das constantes de equilíbrio e volatilidade relativa para os compostos do sistema 2-propanol (1)/ 1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg.

T(°C)	k1	k ₂	k3	α ₁₃	α ₂₃	α ₃₃
82,26	1,0000	-	-	-	-	-
82,81	1,0229	0,1520	0,0508	20,1416	2,9928	1,0000
83,91	1,0613	0,1693	0,0645	16,4632	2,6270	1,0000
85,87	1,1311	0,1860	0,0748	15,1255	2,4868	1,0000
87,74	1,2116	0,2137	0,0873	13,8815	2,4487	1,0000
89,61	1,2926	0,2392	0,0964	13,4156	2,4828	1,0000
91,24	1,3862	0,2548	0,1004	13,8056	2,5378	1,0000
92,85	1,4993	0,3723	0,1184	12,6589	3,1431	1,0000
93,25	1,4754	0,2854	0,1111	13,2831	2,5695	1,0000
94,66	1,5770	0,4365	0,1409	11,1964	3,0987	1,0000
94,78	1,5562	0,4057	0,1329	11,7083	3,0523	1,0000
96,01	1,6326	0,3552	0,1754	9,3062	2,0250	1,0000
97,16	1,5857	0,3826	0,1820	8,7105	2,1016	1,0000
98,65	1,7465	0,3914	0,1859	9,3972	2,1059	1,0000
99,66	1,8185	0,4217	0,2186	8,3199	1,9292	1,0000
101,1	1,9341	0,4772	0,2025	9,5523	2,3568	1,0000
102,27	1,9723	0,4568	0,2238	8,8142	2,0415	1,0000
102,81	2,0619	0,4855	0,2630	7,8394	1,8458	1,0000
103,6	2,0909	0,5075	0,2253	9,2795	2,2523	1,0000
104,51	2,2530	0,5862	0,2220	10,1485	2,6405	1,0000
106,15	2,3215	0,5608	0,3093	7,5044	1,8129	1,0000
107,17	2,5026	0,5465	0,2744	9,1210	1,9918	1,0000
108,1	2,5323	0,6123	0,3453	7,3331	1,7732	1,0000
109,54	2,7899	0,6782	0,3146	8,8682	2,1557	1,0000
110,01	2,6793	0,6627	0,4037	6,6373	1,6416	1,0000
112,2	3,2545	0,7860	0,3555	9,1551	2,2111	1,0000
113,43	3,4380	0,8141	0,4440	7,7426	1,8334	1,0000
114,87	4,1181	0,8920	0,4414	9,3304	2,0209	1,0000
115,49	3,7428	0,7647	0,4301	8,7025	1,7780	1,0000
115,76	4,7008	0,9494	0,4394	10,6987	2,1607	1,0000
117,89	-	1,0000	-	-	-	-
121,59	4,5988	1,1006	0,6539	7,0325	1,6830	1,0000
125,1	5,5769	1,2984	0,7485	7,4508	1,7347	1,0000
125,75	4,9277	1,1020	0,8554	5,7606	1,2883	1,0000
131,58	-	-	1,0000	-	-	1,0000

Tabela 20 – Constantes de equilíbrio e volatilidade relativa para o sistema 2-propanol (1)/1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg

Na figura 13 está representada a volatilidade relativa para o sistema 2propanol (1)/1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg.

Figura 13 – Volatilidade Relativa para o sistema 2-propanol (1)/1-butanol (2)/ 3-metil-1butanol (3) a 760 mmHg: $\bullet \alpha_{13} \equiv \alpha_{23} \triangleq \alpha_{33}$.

A figura 13 confirma que o componente 2-propanol (1) é o mais volátil do sistema, e o composto 1-butanol apresenta volatilidade intermediária.

5.3. Modelagem e Consistência Termodinâmica

A seguir, será apresentada a modelagem termodinâmica para os sistemas binários e ternários. Os parâmetros de interação binária dos modelos NRTL, Wilson e UNIQUAC serão ajustados aos dados de Equilíbrio Líquido-Vapor dos sistemas binários. Esses parâmetros também serão utilizados para a descrição do Equilíbrio Líquido-Vapor dos sistemas ternários. Como será observado a seguir (Tabelas 22, 28 e 30), os coeficientes de fugacidade para os sistemas binários estudados apresentaram valores diferentes da unidade e a fase vapor foi considerada não ideal, portanto será usada a simbologia NRTL-HOC, Wilson-HOC e UNIQUAC-HOC para designar que o método de Hayden e O'Connell foi utilizado para o cálculo dos coeficientes de fugacidade.

A consistência termodinâmica dos dados de Equilíbrio Líquido-Vapor das misturas binárias foi avaliada empregando-se o teste de área (item 3.5.1.) com auxílio do simulador comercial *Aspen Plus 12.1*, os dados foram considerados consistentes para valores menores que 10 %. A consistência termodinâmica dos dados também foi avaliada pelo teste de van Ness-Fredenslund (item 3.5.2.) através do programa *Thertest*, disponível no Laboratório de Propriedades Termodinâmicas da Faculdade de Engenharia Química (UNICAMP), no qual os dados são considerados consistentes para valores para valores para valores de $\overline{\Delta y} \leq 0,01$.

Os valores das constantes de Antoine para os álcoois estudados, as temperaturas, a pressão e as composições da fase líquida foram inseridos como dados de entrada no programa *Thertest* juntamente com os parâmetros de solvatação, associação, temperatura crítica (Tc), pressão crítica (Pc), fator de compressibilidade crítica (Zc), raio de giração (Rd) e momento dipolar (µ) de cada componente da mistura (ANEXO I). No *software Aspen Plus 12.1*, os dados de entrada foram as temperaturas, a pressão e as composições das fases líquida e vapor.

5.3.1. Sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg

Os parâmetros binários gerados pelo *software Aspen Plus 12.1* para o sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg. estão apresentados na Tabela 21.

		-		- ~
Modelo		Parametros	Desvio	Pressão (mmHa)
NRTI -HOC*	A ₄₀	6.3178	+0.0221	(mining)
	Λ	1 8355	+0.0216	
	A 21	1,0000	10,0210	
	B ₁₂	-2611,0493	±8,6914	760
	B_{21}	-527,1476	±8,5066	
	C ₁₂	0,3**		
Wilson-HOC	A ₁₂	-8,0602	±0,0182	
	A ₂₁	0,2655	±0,0406	760
	B ₁₂	3354,0494	±7,1383	
	B ₂₁	-261,2103	±15,9410	
UNIQUAC-HOC	A ₁₂	0,6950	±0,0094	
	A ₂₁	-3,0581	±0,0059	760
	B ₁₂	-472,5571	±3,6898	
	B ₂₁	1339,3541	±2,3262	

Tabela 21 - Parâmetros binários gerados pelo simulador *Aspen Plus 12.1* para o sistema 2-metil-1-propanol(1)/2-metil-1-butanol(2) a 760 mmHg a partir dos dados experimentais

*HOC coeficiente de fugacidade calculado por Hayden e O'Connell ** parâmetro fixo

A Tabela 22 apresenta os valores dos desvios na temperatura e na fração molar da fase vapor para o sistema 2-metil-1-propanol (1)/ 2-metil-1-butanol (2) a 760 mmHg quando utilizados os modelos NRTL, Wilson e UNIQUAC para o cálculo do coeficiente de atividade, respectivamente, considerando fase vapor não ideal.

Tabela 22 - Modelagem do Equilíbrio Líquido-Vapor (ELV) do sistema binário 2metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg para os modelos NRTL,Wilson e UNIQUAC considerando fase vapor não ideal

Experimental			NRTL	-HOC	Wilso	n-HOC	UNIQUAC-HOC	
T(°C)	X 1	y 1	T(°C)	y 1	T(°C)	y 1	T(°C)	y 1
128,78	0,0000	0,0000	128,57	0,0000	128,57	0,0000	128,57	0,0000
125,76	0,0660	0,1613	125,70	0,1517	125,77	0,1500	125,77	0,1501
123,79	0,1347	0,2785	123,48	0,2707	123,54	0,2707	123,54	0,2708
122,42	0,1882	0,3603	122,05	0,3477	122,08	0,3497	122,07	0,3497
120,9	0,2540	0,4328	120,51	0,4305	120,50	0,4344	120,50	0,4343
119,37	0,3224	0,5237	119,09	0,5068	119,04	0,5123	119,04	0,5119
118,03	0,3888	0,5945	117,82	0,5740	117,75	0,5802	117,76	0,5797
116,73	0,4532	0,6403	116,67	0,6342	116,59	0,6404	116,60	0,6398
115,25	0,5276	0,7151	115,38	0,6990	115,31	0,7047	115,32	0,7041
111,88	0,7150	0,8373	112,30	0,8407	112,31	0,8442	112,31	0,8437
107,66	1,0000	1,0000	107,68	1,0000	107,68	1,0000	107,68	1,0000
		δmédio (%)	0,19	2,5626	0,19	2,2219	0,19	2,2365

Os três modelos de g^E utilizados neste trabalho se ajustaram bem aos dados experimentais. Na tabela 22, pode-se observar que os três modelos apresentaram a mesma ordem de grandeza nos desvios em T, e os modelos de Wilson e UNIQUAC apresentaram os menores desvios na composição da fase vapor (y₁).

Analisando as Figuras 14 e 15, pode-se observar que os dados experimentais para o sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg tiveram uma boa concordância com os dados calculados pelos modelos de g^{E} adotados neste trabalho.

62

Figura 14 - Diagrama T-x,y. Sistema 2-metil-1-propanol(1)/ 2-metil-1-propanol(2). Dados experimentais deste trabalho e calculados pelos modelos UNIQUAC, Wilson e NRTL a 760 mmHg.

Figura 15 - Diagrama x-y. Sistema 2-metil-1-propanol(1)/2-metil-1-butanol(2). Dados experimentais deste trabalho e calculados pelos modelos UNIQUAC, Wilson e NRTL a 760 mmHg.

A Tabela 23 apresenta os resultados dos testes de consistência termodinâmica de área e van Ness-Fredenslund obtidos com auxílio do *software Aspen Plus 12.1* e pelo programa *Thertest*, respectivamente, para os dados obtidos neste trabalho e para os dados de Resa et al. (2006). No teste de área do *software Aspen Plus 12.1*, é possível escolher fase vapor ideal ou não ideal. Por se tratar de um sistema a 760 mmHg com dois alcoóis, considerou-se fase vapor ideal. No programa *Thertest*, o coeficiente de fugacidade é calculado pelo método de Hayden O'Connell.

Tabela 23 - Resultados dos testes de consistência gerados pelo *software Aspen Plus 12.1* considerando fase vapor ideal e pelo programa *Thertest* para os dados obtidos nesse trabalho e para os dados de Resa et al. (2006)

Dados	Método	Valor	Tolerância	Resultado
	Teste de área	-4,6265 %	≤ 10 %	consistente
Este Trabalho	Teste de van Ness-			
	Fredenslund	$\overline{\Delta y} = 0,0086$	≤ 0,01	consistente
	Teste de área	91,7769 %	≤ 10 %	inconsistente
Resa et al. (2006)	Teste de van Ness-			
	Fredenslund	$\overline{\Delta y} = 0,0039$	≤ 0,01	consistente

Resa et al. (2006) analisaram a consistência termodinâmica dos dados pelo teste do Dechema para o qual a tolerância é $\overline{\Delta y} \le 0,01$ e obteve $\overline{\Delta y} = 0,007$, portanto os dados foram considerados consistentes. Aplicando o teste de área no *software Aspen Plus 12.1* o valor foi 91,7769 %, portanto os dados não foram considerados consistentes segundo este teste. Para o teste de van Ness-Fredenslund, obteve-se $\overline{\Delta y} = 0,0039$ e os dados foram considerados consistentes.

Para os dados do sistema 2-metil-1-propanol(1)/2-metil-1-butanol(2) obtidos neste trabalho, o valor para os teste de área e de van Ness-Fredenslund foram respectivamente, -4,6265 % e $\overline{\Delta y}$ = 0,0086 e os dados foram considerados consistentes segundo os dois testes.

T(°C)	X 1	y 1	y ^{est}	γ1	Y 2	G/RT	f_{1}^{0}	f_{2}^{0}	$\widehat{\varphi}_1$	$\widehat{\varphi}_2$
107,66	1,0000	1,0000	1,0000	1,0000	1,1648	0,0000	0,9594	0,4369	0,9637	0,9646
111,88	0,7150	0,8373	0,8351	1,0125	1,0811	0,0311	1,1161	0,5165	0,9661	0,9637
115,25	0,5276	0,7151	0,7017	1,0346	1,0434	0,0380	1,2551	0,5882	0,9681	0,9637
116,73	0,4532	0,6403	0,6396	1,0467	1,0318	0,0378	1,3203	0,6222	0,9691	0,9638
118,03	0,3888	0,5945	0,5801	1,0587	1,0233	0,0363	1,3797	0,6533	0,9699	0,9640
119,37	0,3224	0,5237	0,5119	1,0726	1,0160	0,0333	1,4432	0,6866	0,9708	0,9642
120,90	0,2540	0,4328	0,4323	1,0886	1,0099	0,0289	1,5184	0,7264	0,9718	0,9645
122,42	0,1882	0,3603	0,3446	1,1058	1,0054	0,0233	1,5961	0,7676	0,9729	0,9649
123,79	0,1347	0,2785	0,2630	1,1210	1,0028	0,0178	1,6688	0,8065	0,9739	0,9653
125,76	0,0660	0,1613	0,1410	1,1424	1,0007	0,0094	1,7778	0,8650	0,9753	0,966
128,78	0,0000	0,0000	0,0000	1,1648	1,0000	0,0000	1,9556	0,9614	0,9771	0,9673

Tabela 24 - Relação de propriedades termodinâmicas fornecidas pelo programa *Thertest* para o sistema 2-metil-1-propanol (1)/2-metil-1-butanol (2) a 760 mmHg

Sendo:

y^{est}: fração molar da fase vapor estimada

Na Figura 16 está representado o coeficiente de atividade dos componentes 2-metil-1-propanol (1) e 2-metil-1-butanol (2) em função da fração molar do 2metil-1-propanol (1).

Figura 16 - Coeficientes de atividade dos componentes 2-metil-1-propanol (1) e 2metil-1-butanol (2) em função da fração molar do 2-metil-1-propanol (1) para o sistema 2metil-1-propanol (1)/ 2-metil-1-butanol (2) a 760 mmHg.

A princípio, por se tratar de misturas de álcoois estudadas a baixas pressões, a fase vapor usualmente pode ser considerada ideal. No entanto, ao se avaliar os coeficientes de fugacidade obtidos através do programa *Thertest* (Tabela 24), valores diferentes da unidade foram encontrados e, portanto passouse a considerar fase vapor não ideal. Adotou-se o método de Hayden e O' Connell na determinação do coeficiente de fugacidade da fase vapor. Na Tabela 25, estão apresentados os resultados do teste de área para os dados deste trabalho e também para os dados obtidos por Resa et al. (2006) considerando fase vapor não ideal.

Tabela 25 - Resultados do teste de consistência gerados pelo *software Aspen Plus 12.1* para os dados obtidos nesse trabalho e para os dados de Resa et al. (2006), considerando fase vapor não ideal

Dados	Método	Valor	Tolerância	Resultado
Esse Trabalho	Teste de	-8,2073 %	≤ 10 %	consistente
	área			
Resa et al. (2006)		91,7769 %	≤ 10 %	inconsistente

5.3.2. Sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 e 760 mmHg

Os parâmetros binários gerados pelo *software Aspen Plus 12.1* para o sistema 2-propanol (1)/2-metil-1-butanol(2) a 560 e 760 mmHg estão apresentados na Tabela 26.

A Tabela 27 apresenta os valores dos desvios na temperatura e na fração molar da fase vapor para o sistema 2-propanol (1)/ 2-metil-1-butanol (2) a 760 mmHg quando utilizados os modelos NRTL, Wilson e UNIQUAC para o cálculo do coeficiente de atividade, respectivamente, considerando fase vapor não ideal.

Os dados experimentais obtidos para o sistema 2-propanol (1)/2-metil-1butanol (2) a 760 mmHg foram ajustados aos modelos NRTL, Wilson e UNIQUAC, considerando fase vapor não ideal e estão ilustrados nas Figuras 17 e 18.

Modelo	P	arâmetros	Desvio Padrão	Pressão (mmHg)
NRTL-HOC	A ₁₂	- 1,9876	±0,0138	
	A_{21}	0,8972	±0,0250	
	B_{12}	- 635,6084	±5,2528	560 e 760
	B_{21}	1461,5744	±9,5399	
	C_{12}	0,3**		
Wilson-HOC	A_{12}	11,1647	±0,0559	
	A_{21}	-0,6552	±0,0116	560 e 760
	B_{12}	- 5068,8849	±21,9068	
	B_{21}	643,5411	±4,4366	
UNIQUAC-HOC	A_{12}	0,3906	±0,0042	
	A_{21}	0,0134	±0,0100	560 e 760
	B_{12}	117,8108	±1,5874	
	B_{21}	- 401,3289	±3,8433	

Tabela 26 - Parâmetros binários gerados pelo *software Aspen Plus 12.1* para o sistema 2metil-1-propanol(1)/2-metil-1-butanol(2) a 760 mmHg a partir dos dados experimentais

**parâmetro fixo

Tabela 27 - Modelagem do Equilíbrio Líquido-Vapor (ELV) do sistema binário 2-propanol (1)/2-metil-1-butanol (2) a 760 mmHg para os modelos NRTL,Wilson e UNIQUAC considerando fase vapor não ideal

Ex	perimen	tal	NRTL	NRTL-HOC		n-HOC	UNIQUA	AC-HOC
T(°C)	X 1	y 1	T(°C)	y 1	T(°C)	y 1	T(°C)	y 1
82,26	1,0000	1,0000	82,34	1,0000	82,34	1,0000	82,34	1,0000
84,01	0,9113	0,9875	84,54	0,9877	84,48	0,9872	84,53	0,9874
89,39	0,7596	0,9559	89,15	0,9545	88,88	0,9546	89,11	0,9538
95,19	0,5988	0,9005	94,98	0,8945	94,53	0,8963	94,87	0,8939
100,09	0,4880	0,8399	99,65	0,8306	99,14	0,8334	99,47	0,8307
103,11	0,4243	0,7945	102,55	0,7829	102,05	0,7857	102,33	0,7838
106,47	0,3544	0,7299	105,92	0,7189	105,46	0,7212	105,66	0,7210
109,82	0,2739	0,6493	110,00	0,6269	109,62	0,6282	109,72	0,6305
112,74	0,2122	0,5409	113,41	0,5379	113,11	0,5388	113,14	0,5426
115,00	0,1820	0,4900	115,25	0,4867	114,98	0,4877	114,99	0,4918
118,49	0,1262	0,3726	118,81	0,3760	118,62	0,3773	118,58	0,3813
120,86	0,0897	0,2800	121,33	0,2888	121,23	0,2896	121,15	0,2937
125,99	0,0291	0,1029	126,04	0,1081	126,10	0,1061	125,97	0,1104
128,78	0,0000	0,0000	128,57	0,0000	128,57	0,0000	128,57	0,0000
	δ	médio%	0,33	1,5574	0,43	1,3053	0,32	1,8967

Os três modelos de g^E utilizados neste trabalho se ajustaram bem aos dados experimentais obtidos para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 760 mmHg. Na tabela 27, pode-se observar que os modelos NRTL e UNIQUAC apresentaram a mesma ordem de grandeza nos desvios em T. O modelo de Wilson apresentou o menor desvio na composição da fase vapor (y₁).

Analisando as Figuras 17 e 18, pode-se observar que os dados experimentais para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 760 mmHg tiveram uma boa concordância com os dados calculados pelos modelos de g^{E} adotados neste trabalho.

Figura 17 - Diagrama T-x,y. Sistema 2-propanol(1)/ 2-metil-1-butanol(2). Dados experimentais deste trabalho e calculados pelos modelos UNIQUAC, Wilson e NRTL a 760 mmHg.

Figura 18 - Diagrama x-y. Sistema 2-propanol(1)/ 2-metil-1-butanol(2). Dados experimentais deste trabalho e calculados pelos modelos UNIQUAC, Wilson e NRTL a 760 mmHg.

A Tabela 28 apresenta os resultados dos testes de consistência termodinâmica, de área e van Ness-Fredenslund, para o sistema 2-propanol (1)/ 2metil-1-butanol (2) a 760 mmHg obtidos com auxílio do simulador *Aspen Plus 12.1* e pelo programa *Thertest*, respectivamente. Tabela 28 - Resultados dos testes de consistência gerados pelo *software Aspen Plus 12.1* e pelo programa *Thertest* para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 760 mmHg

Método	Valor	Tolerância	Resultado
	Fase vapor não ideal:		
Teste de área	-1,8990 %	≤ 10 %	consistente
Teste de van Ness-Fredenslund	$\overline{\Delta y} = 0,0039$	≤ 0,01	consistente

Os dados experimentais obtidos neste trabalho para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 760 mmHg foram considerados consistentes segundo o teste de área para o qual a tolerância é 10 % e também pelo teste de van Ness-Fredenslund, segundo o qual $\overline{\Delta y} \leq 0,01$.

Na Tabela 29, estão algumas relações termodinâmicas para o sistema 2propanol (1)/ 2-metil-butanol (2) a 760 mmHg geradas pelo programa *Thertest*.

T(°C)	X 1	y 1	y ^{est}	γ1	γ2	G/RT	f_1^0	f_2^0	$\widehat{\boldsymbol{\varphi}}_{1}$	$\widehat{oldsymbol{arphi}}_2$
82,26	1,0000	1,0000	1,0000	1,0000	0,7629	0,0000	0,9614	0,1406	0,958	0,9421
84,01	0,9113	0,9875	0,9884	0,9979	0,7987	-0,0219	1,0309	0,1532	0,959	0,9434
89,39	0,7596	0,9559	0,9583	0,9845	0,8554	-0,0494	1,2702	0,198	0,9619	0,9474
95,19	0,5988	0,9005	0,9046	0,9574	0,9075	-0,0650	1,5761	0,2579	0,9647	0,9511
100,09	0,4880	0,8399	0,8460	0,9315	0,9376	-0,0676	1,8778	0,3194	0,9669	0,9539
103,11	0,4243	0,7945	0,8005	0,9142	0,9524	-0,0661	2,0855	0,3629	0,9682	0,9555
106,47	0,3544	0,7299	0,7374	0,8933	0,9666	-0,0619	2,3374	0,4168	0,9696	0,9572
109,82	0,2739	0,6493	0,6434	0,8670	0,9799	-0,0538	2,6117	0,477	0,971	0,9586
112,74	0,2122	0,5409	0,5498	0,8454	0,9879	-0,0452	2,8709	0,5349	0,9723	0,9599
115,00	0,1820	0,4900	0,4944	0,8343	0,9911	-0,0403	3,0849	0,5836	0,9732	0,961
118,49	0,1262	0,3726	0,3758	0,8133	0,9957	-0,0298	3,4395	0,6658	0,9746	0,9626
120,86	0,0897	0,2800	0,2840	0,7991	0,9978	-0,0221	3,6978	0,7267	0,9756	0,9637
125,99	0,0291	0,1029	0,1016	0,7748	0,9998	-0,0076	4,3079	0,8741	0,9775	0,966
128,78	0,0000	0,0000	1,0000	0,7629	1,0000	0,0000	4,6705	0,9639	0,9762	0,9696

Tabela 29 - Relação de propriedades termodinâmicas fornecidas pelo programa *Thertest.* para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 760 mmHg

Na Figura 19 está representado o coeficiente de atividade dos componentes 2-propanol (1) e 2-metil-1-butanol (2) em função da fração molar do 2-propanol (1).

Figura 19 - Coeficientes de atividade dos componentes 2-propanol (1) e 2-metil-1-butanol (2) em função da fração molar do 2-propanol (1) para o sistema 2-propanol (1)/ 2-metil-2butanol (2) a 760 mmHg.

A Tabela 30 apresenta os valores dos desvios na temperatura e na fração molar da fase vapor para o sistema 2-propanol (1)/ 2-metil-1-butanol (2) a 560 mmHg quando utilizados os modelos NRTL, Wilson e UNIQUAC para o cálculo do coeficiente de atividade, respectivamente, considerando fase vapor não ideal.

Os dados experimentais obtidos para o sistema 2-propanol (1)/2-metil-1butanol (2) a 560 mmHg foram ajustados aos modelos NRTL, Wilson e UNIQUAC, considerando fase vapor não ideal e estão ilustrados nas Figuras 20 e 21.

Tabela 30 - Modelagem do Equilíbrio Líquido-Vapor (ELV) do sistema binário 2-propanol (1)/2-metil-1-butanol (2) a 560 mmHg para os modelos NRTL,Wilson e UNIQUAC considerando fase vapor não ideal

Ex	perimen	tal	NRTL	-HOC	Wilson-HOC		UNIQUAC-HOC	
T(°C)	X 1	y 1	T(°C)	y 1	T(°C)	y 1	T(°C)	y 1
74,84	1,0000	1,0000	74,82	1,0000	74,82	1,0000	74,82	1,0000
78,59	0,8620	0,9791	78,22	0,9792	78,18	0,9801	78,26	0,9797
80,42	0,7971	0,9640	80,06	0,9653	79,98	0,9671	80,12	0,9660
81,54	0,7568	0,9551	81,26	0,9550	81,17	0,9574	81,35	0,9558
89,89	0,5271	0,8786	89,31	0,8637	89,32	0,8671	89,51	0,8640
92,92	0,4522	0,8300	92,39	0,8168	92,52	0,8180	92,63	0,8164
99,52	0,3036	0,6913	99,20	0,6860	99,61	0,6769	99,53	0,6828
102,89	0,2300	0,5955	103,04	0,5937	103,47	0,5795	103,39	0,5886
105,05	0,1909	0,5278	105,30	0,5332	105,66	0,5184	105,64	0,5271
108,56	0,1318	0,4089	109,05	0,4206	109,20	0,4098	109,36	0,4135
113,94	0,0448	0,1676	115,66	0,1809	115,50	0,1843	115,81	0,1759
119,89	0,0000	0,0000	120,01	0,0000	120,01	0,0000	120,01	0,0000
	δrr	rédio(%)	0,44	1,6324	0,49	2,0168	0,44	1,2231

Os três modelos de g^E utilizados neste trabalho se ajustaram bem aos dados experimentais obtidos para o sistema 2-propanol(1)/2-metil-1-butanol(2) a 560 mmHg. Na tabela 30, pode-se observar que os modelos NRTL e UNIQUAC apresentaram a mesma ordem de grandeza nos desvios em T. O modelo UNIQUAC apresentou o menor desvio na composição da fase vapor (y₁).

Analisando as Figuras 20 e 21, pode-se observar que os dados experimentais para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 mmHg

tiveram uma boa concordância com os dados calculados pelos modelos de g^{E} adotados neste trabalho.

Figura 20 - Diagrama T-x,y. Sistema 2-propanol(1)/ 2-metil-1-butanol(2). Dados experimentais deste trabalho e calculados pelos modelos UNIQUAC, Wilson e NRTL a 560 mmHg.

Figura 21 - Diagrama x-y. Sistema 2-propanol(1)/ 2-metil-1-butanol(2). Dados experimentais deste trabalho e calculados pelos modelos UNIQUAC, Wilson e NRTL a 560 mmHg.

A Tabela 31 apresenta os resultados dos testes de consistência termodinâmica, de área e van Ness-Fredenslund, para o sistema 2-propanol (1)/ 2metil-1-butanol (2) a 560 mmHg obtidos com auxílio do simulador *Aspen Plus 12.1* e pelo programa *Thertest*, respectivamente. Tabela 31 - Resultado dos testes de consistência gerados pelo software *Aspen Plus 12.1* e pelo programa *Thertest*

Método	Valor	Tolerância	Resultado
	Fase vapor não ideal:		
Teste de área	-5,7128 %	≤ 10 %	consistente
Teste de van Ness-Fredenslund	$\overline{\Delta y} = 0,0046$	≤ 0,01	consistente

Os dados de Equilíbrio Líquido-Vapor obtidos neste trabalho para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 mmHg foram considerados consistentes segundo o teste de área para o qual a tolerância é 10 % e também pelo teste de van Ness-Fredenslund, segundo o qual $\overline{\Delta y} \leq 0,01$.

Na Tabela 32 estão algumas relações termodinâmicas para o sistema 2propanol (1)/ 2-metil-butanol (2) a 560 mmHg geradas pelo programa *Thertest*.

T(°C)	X 1	y 1	y ^{est}	γ1	γ2	G/RT	f_1°	f_2°	\widehat{arphi}_1	\widehat{arphi}_2
74,84	1,0000	1,0000	1,0000	1,0000	0,8277	0,0000	0,7159	0,0983	0,9655	0,9514
78,59	0,8620	0,9791	0,9802	0,9964	0,8689	-0,0225	0,8372	0,1193	0,9673	0,9539
80,42	0,7971	0,9640	0,9676	0,9922	0,8868	-0,0306	0,9022	0,1308	0,9681	0,9551
81,54	0,7568	0,9551	0,9585	0,9889	0,8973	-0,0348	0,9439	0,1383	0,9686	0,9557
89,89	0,5271	0,8786	0,8758	0,9586	0,9488	-0,0471	1,3067	0,2061	0,9720	0,9602
92,92	0,4522	0,8300	0,8320	0,9448	0,9621	-0,0468	1,4632	0,2366	0,9732	0,9616
99,52	0,3036	0,6913	0,7014	0,9124	0,9827	-0,0400	1,8557	0,3161	0,9757	0,9644
102,89	0,2300	0,5955	0,6042	0,8939	0,9900	-0,0335	2,0860	0,3644	0,9769	0,9657
105,05	0,1909	0,5278	0,5391	0,8835	0,9931	-0,0292	2,2451	0,3984	0,9777	0,9665
108,56	0,1318	0,4089	0,4179	0,8671	0,9967	-0,0216	2,5240	0,4591	0,9790	0,9679
113,94	0,0448	0,1676	0,1714	0,8415	0,9996	-0,0081	3,0032	0,5666	0,9790	0,9700
119,89	0,0000	0,0000	1,0000	1,0000	0,8277	0,0000	3,6129	0,7085	0,9790	0,9749

Tabela 32 - Relação de propriedades termodinâmicas fornecidas pelo programa *Thertest* para o sistema 2-propanol (1)/2-metil-1-butanol (2) a 560 mmHg

Na Figura 22 está representado o coeficiente de atividade dos componentes 2-propanol (1) e 2-metil-1-butanol (2) em função da fração molar do 2-propanol (1).

Figura 22 - Coeficientes de atividade dos componentes 2-propanol (1) e 2-metil-1-butanol (2) em função da fração molar do 2-propanol (1) para o sistema 2-propanol (1)/ 2-metil-1butanol (2) a 560 mmHg.

5.3.3. Sistema 2-propanol (1)/2-metil-1-propanol (2)/2-metil-1butanol (3) a 760 mmHg

Os parâmetros binários ajustados nesse trabalho (Tabelas 21 e 26) e os parâmetros do banco de dados do *software Aspen Plus 12.1* para o binário 2-propanol (1)/2-metil-1-propanol (2) (Tabela 33) foram usados para a descrição do Equilíbrio Líquido-Vapor do sistema ternário 2-propanol (1)/2-metil-1-propanol (2)/2-metil-1-butanol (3) a 760 mmHg.

Modelo	Parâr	netros Aspen
NRTL-HOC	B ₁₂	79,3347
	B ₂₁	-88,8638
	C ₁₂	0,3
Wilson-HOC	B ₁₂	78,5205
	B ₂₁	-76,7891
UNIQUAC-HOC	B ₁₂	-28,5567
	B ₂₁	- 29,05354

Tabela 33 - Parâmetros binários do banco de dados do *software Aspen Plus 12.1* para o sistema 2-propanol (1)/2-metil-1-propanol(2)

A Tabela 34 apresenta os valores dos desvios na temperatura e na fração molar da fase vapor para o sistema 2-propanol (1)/ 2-metil- 1-propanol (2)/2-metil- 1-butanol (3) a 760 mmHg, quando utilizados os modelos NRTL, Wilson e UNIQUAC para o cálculo do coeficiente de atividade, respectivamente, considerando fase vapor não ideal.

Experimental								NRTL-HOC				Wilso	n-HOC		UNIQUAC-HOC			
T(°C)	X 1	X 2	X 3	y 1	y 2	y 3	T(°C)	y 1	y 2	y 3	T(°C)	y 1	y ₂	y 3	T(°C)	y 1	y 2	y 3
82,26	1,0000	0,0000	0,0000	1,0000	0,0000	0,0000	82,34	1,0000	0,0000	0,0000	82,34	1,0000	0,0000	0,0000	82,34	1,0000	0,0000	0,0000
90,42	0,6689	0,1657	0,1655	0,9150	0,0582	0,0268	90,89	0,9131	0,0604	0,0266	90,86	0,9128	0,0612	0,0260	91,14	0,9127	0,0601	0,0272
91,44	0,6169	0,3717	0,0114	0,8275	0,1709	0,0017	91,80	0,8233	0,1752	0,0016	91,66	0,8307	0,1677	0,0016	91,91	0,8257	0,1728	0,0015
93,73	0,5468	0,3320	0,1212	0,7979	0,1808	0,0213	94,06	0,8126	0,1664	0,0210	93,92	0,8165	0,1624	0,0212	94,15	0,8130	0,1659	0,0211
93,89	0,5584	0,2226	0,2190	0,8586	0,0990	0,0424	94,24	0,8567	0,1004	0,0430	94,16	0,8563	0,1012	0,0425	94,43	0,8548	0,1011	0,0440
98,28	0,4259	0,2560	0,3180	0,7665	0,1502	0,0833	98,80	0,7702	0,1456	0,0842	98,66	0,7700	0,1471	0,0830	98,88	0,7670	0,1467	0,0862
100,15	0,3827	0,2952	0,3221	0,7246	0,1864	0,0890	100,09	0,7264	0,1837	0,0900	99,94	0,7265	0,1844	0,0891	100,10	0,7242	0,1842	0,0916
101,19	0,3225	0,3692	0,3083	0,6466	0,2656	0,0878	101,54	0,6524	0,2584	0,0893	101,43	0,6525	0,2582	0,0893	101,47	0,6524	0,2575	0,0901
101,95	0,2835	0,4653	0,2512	0,5764	0,3571	0,0665	101,96	0,5805	0,3504	0,0691	101,93	0,5801	0,3496	0,0703	101,83	0,5833	0,3476	0,0691
101,97	0,3535	0,3015	0,3450	0,6864	0,2147	0,0989	101,18	0,6999	0,1973	0,1028	101,04	0,7000	0,1982	0,1018	101,16	0,6982	0,1975	0,1043
103,81	0,2670	0,3554	0,3776	0,6294	0,2473	0,1233	103,81	0,6033	0,2688	0,1278	103,75	0,6022	0,2704	0,1273	103,73	0,6035	0,2679	0,1286
104,25	0,2221	0,3944	0,3835	0,5604	0,3075	0,1321	105,05	0,5430	0,3206	0,1363	105,05	0,5401	0,3234	0,1365	104,97	0,5438	0,3193	0,1369
104,58	0,1826	0,6102	0,2073	0,4144	0,5231	0,0625	103,97	0,4223	0,5197	0,0580	104,10	0,4155	0,5243	0,0601	103,81	0,4271	0,5153	0,0576
105,37	0,2898	0,2407	0,4695	0,6448	0,1977	0,1575	104,36	0,6519	0,1716	0,1765	104,24	0,6533	0,1735	0,1733	104,30	0,6507	0,1717	0,1775
105,73	0,1372	0,6990	0,1638	0,3312	0,6229	0,0459	104,60	0,3369	0,6185	0,0446	104,76	0,3279	0,6257	0,0465	104,46	0,3418	0,6141	0,0441
107,86	0,0000	1,0000	0,0000	0,0000	1,0000	0,0000	107,69	0,0000	1,0000	0,0000	107,69	0,0000	1,0000	0,0000	107,69	0,0000	1,0000	0,0000
108,81	0,1213	0,4389	0,4398	0,4057	0,4101	0,1842	108,79	0,3911	0,4196	0,1893	108,97	0,3851	0,4253	0,1895	108,84	0,3890	0,4206	0,1904
108,94	0,0036	0,8050	0,1915	0,0184	0,9030	0,0786	111,00	0,0183	0,9004	0,0813	111,01	0,0186	0,9016	0,0798	111,04	0,0185	0,9000	0,0815
109,29	0,2021	0,1854	0,6124	0,5773	0,1326	0,2901	108,51	0,5539	0,1534	0,2927	108,53	0,5576	0,1530	0,2893	108,47	0,5546	0,1543	0,2911
112,42	0,0062	0,6088	0,3849	0,0365	0,7580	0,2055	114,07	0,0367	0,7471	0,2161	114,36	0,0369	0,7517	0,2114	114,19	0,0354	0,7480	0,2166
128,78	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000	128,57	0,0000	0,0000	1,000	128,57	0,0000	0,0000	1,0000	128,57	0,0000	0,0000	1,0000
δmédio%						0,53	1,5576	4,4450	3,1950	0,53	1,5827	4,5876	2,4568	0,60	1,8145	4,4796	4,1290	

Tabela 34 - Modelagem do Equilíbrio Líquido-Vapor (ELV) do sistema ternário 2-propanol (1)/2-metil-1-propanol (2)/ 2-metil-1butanol (3) a 760 mmHg para os modelos NRTL, Wilson e UNIQUAC considerando fase vapor não ideal Os três modelos de g^E utilizados nesse trabalho descreveram bem os dados experimentais de Equilíbrio Líquido-Vapor obtidos para o sistema 2-propanol (1)/2metil-1-propano I(2)/2-metil-1-butanol (3) a 760 mmHg. Isso evidencia que o uso de parâmetros binários pode descrever o Equilíbrio Líquido-Vapor de sistemas ternários ou multicomponentes.

Na tabela 34, pode-se observar que o modelo NRTL apresentou os menores desvios em T e na composição das fases vapor ($y_1 e y_2$).

5.3.4. Sistema 2-propanol (1)/1-butanol (2) /3-metil-1-butanol (3) a 760 mmHg

Parâmetros binários do banco de dados do *software Aspen Plus 12.1* e parâmetros binários estimados por UNIFAC também no *software Aspen Plus 12.1* para os binários 2-propanol(1)/1-butanol(2), 2-propanol (1)/3-metil-1-butanol (3) e 1-butanol(2)/3-metil-1-butanol(3) (Tabela 35) foram usados para a descrição do Equilíbrio Líquido-Vapor do sistema ternário 2-propanol (1)/1-butanol (2) /3-metil-1-butanol (3) a 760 mmHg.

Tabela 35 - Parâmetros binários do banco de dados do *software Aspen Plus 12.1* e estimados por UNIFAC para os binários 2-propanol (1)/1-butanol (2), 1-butanol (2)/3-metil-1-butanol(3) e 2-propanol(1)/3-metil-1-butanol(3)

modelo	NRTL-HOC	Wilson-	UNIQUAC-		
		НОС	HOC		
sistema	2-prop	anol(1)/1-but	anol(2)		
B12	230.7296	183.3645	-151.9991		
B21	-208.906	-223.5825	127.8416		
C21	0.3	-	-		
sistema	1-butanol	2)/3-metil-1-	butanol(3)		
B23	327.2983	211.645	-196.4368		
B32	-242.9873	-326.791	149.7047		
C23	0.3	-	-		
sistema	2-propanol	(1)/3-metil-1	-butanol(3)		
B13	UNIFAC	UNIFAC	-34.401		
B31	UNIFAC	UNIFAC	145.45		

A Tabela 36 apresenta os valores dos desvios na temperatura e na fração molar da fase vapor para o sistema 2-propanol (1)/ 1-butanol (2)/3-metil-1-butanol (3) a 760 mmHg, quando utilizados os modelos NRTL, Wilson e UNIQUAC para o cálculo do coeficiente de atividade, respectivamente, considerando fase vapor não ideal.

Tabela 36 - Modelagem do Equilíbrio Líquido-Vapor (ELV) do sistema binário 2-propanol (1)/1-butanol (2)/3-metil-1-butanol(3) a 760 mmHg para os modelos NRTL, Wilson e UNIQUAC considerando fase vapor não ideal

Experimental								NRTL-HOC				Wilso	n-HOC		UNIQUAC-HOC				
T(°C)	X 1	X ₂	X 3	y 1	y 2	y 3	T(°C)	y 1	y 2	y 3	T(°C)	y 1	y 2	y 3	T(°C)	y 1	y 2	y ₃	
82,26	1,0000	0,0000	0,0000	1,0000	0,0000	0,0000	82,34	1,0000	0,0000	0,0000	82,34	1,0000	0,0000	0,0000	82,34	1,0000	0,0000	0,0000	
82,81	0,9752	0,0122	0,0126	0,9975	0,0019	0,0006	82,92	0,9975	0,0018	0,0007	82,91	0,9975	0,0019	0,0007	82,93	0,9975	0,0019	0,0006	
83,91	0,9353	0,0313	0,0334	0,9925	0,0053	0,0022	83,98	0,9929	0,0052	0,0020	83,98	0,9928	0,0052	0,0020	84,01	0,9928	0,0053	0,0019	
85,87	0,8691	0,0643	0,0666	0,9831	0,0120	0,0050	85,76	0,9832	0,0122	0,0046	85,74	0,9831	0,0123	0,0046	85,80	0,9829	0,0126	0,0046	
87,74	0,8008	0,0975	0,1017	0,9703	0,0208	0,0089	87,73	0,9702	0,0214	0,0084	87,70	0,9701	0,0216	0,0083	87,80	0,9693	0,0222	0,0085	
89,61	0,7398	0,1308	0,1294	0,9562	0,0313	0,0125	89,58	0,9547	0,0328	0,0125	89,54	0,9548	0,0329	0,0123	89,67	0,9532	0,0340	0,0128	
91,24	0,6803	0,1612	0,1585	0,9430	0,0411	0,0159	91,44	0,9365	0,0457	0,0178	91,40	0,9367	0,0459	0,0174	91,55	0,9343	0,0474	0,0184	
92,85	0,6345	0,0215	0,3440	0,9512	0,0080	0,0407	94,54	0,9373	0,0065	0,0562	94,40	0,9402	0,0067	0,0532	94,89	0,9318	0,0066	0,0615	
93,25	0,6068	0,3498	0,0434	0,8953	0,0998	0,0048	93,16	0,8752	0,1200	0,0048	93,13	0,8761	0,1191	0,0048	93,06	0,8718	0,1236	0,0046	
94,66	0,5768	0,1041	0,3191	0,9096	0,0455	0,0449	96,17	0,9058	0,0384	0,0558	95,88	0,9110	0,0365	0,0525	96,12	0,9054	0,0366	0,0580	
94,78	0,5990	0,0534	0,3476	0,9321	0,0217	0,0462	95,84	0,9189	0,0198	0,0612	95,51	0,9251	0,0178	0,0571	95,83	0,9180	0,0177	0,0643	
96,01	0,5257	0,3258	0,1485	0,8582	0,1157	0,0261	96,23	0,8494	0,1285	0,0221	96,35	0,8480	0,1293	0,0228	96,28	0,8453	0,1317	0,0230	
97,16	0,5508	0,2236	0,2256	0,8734	0,0856	0,0411	96,19	0,8796	0,0842	0,0362	96,25	0,8792	0,0844	0,0363	96,31	0,8762	0,0855	0,0382	
98,65	0,4870	0,2632	0,2498	0,8506	0,1030	0,0464	98,31	0,8432	0,1105	0,0463	98,34	0,8424	0,1121	0,0456	98,34	0,8397	0,1126	0,0477	
99,66	0,4483	0,3156	0,2361	0,8153	0,1331	0,0516	99,48	0,8106	0,1434	0,0460	99,56	0,8090	0,1449	0,0461	99,48	0,8075	0,1450	0,0475	
101,10	0,4242	0,2293	0,3465	0,8204	0,1094	0,0702	101,37	0,8091	0,1083	0,0826	101,34	0,8095	0,1103	0,0802	101,35	0,8060	0,1087	0,0853	
102,27	0,4029	0,3076	0,2894	0,7947	0,1405	0,0648	101,53	0,7823	0,1517	0,0661	101,58	0,7807	0,1539	0,0653	101,50	0,7797	0,1524	0,0679	
102,81	0,3738	0,2905	0,3357	0,7707	0,1411	0,0883	102,98	0,7634	0,1503	0,0863	103,04	0,7614	0,1536	0,0851	102,96	0,7603	0,1508	0,0889	
103,60	0,3635	0,3420	0,2945	0,7601	0,1736	0,0664	102,92	0,7462	0,1814	0,0724	102,96	0,7445	0,1840	0,0716	102,82	0,7450	0,1813	0,0737	
104,51	0,2894	0,5225	0,1881	0,6519	0,3063	0,0418	104,45	0,6413	0,3133	0,0454	104,47	0,6390	0,3159	0,0452	104,17	0,6443	0,3113	0,0444	
106,15	0,3114	0,2552	0,4334	0,7228	0,1431	0,1341	106,33	0,7105	0,1476	0,1419	106,42	0,7080	0,1520	0,1400	106,29	0,7070	0,1471	0,1459	
107,17	0,2801	0,3732	0,3467	0,7009	0,2040	0,0951	106,46	0,6648	0,2289	0,1063	106,53	0,6613	0,2331	0,1056	106,36	0,6642	0,2276	0,1082	
108,10	0,2711	0,2315	0,4974	0,6865	0,1418	0,1718	108,57	0,6674	0,1439	0,1887	108,70	0,6643	0,1487	0,1870	108,51	0,6637	0,1429	0,1933	
109,54	0,1792	0,6654	0,1554	0,4998	0,4513	0,0489	108,45	0,4814	0,4735	0,0452	108,46	0,4790	0,4753	0,0457	108,18	0,4872	0,4685	0,0443	

Cont.																		
110,01	0,2388	0,2040	0,5572	0,6399	0,1352	0,2249	110,54	0,6267	0,1343	0,2390	110,71	0,6228	0,1392	0,2381	110,46	0,6229	0,1334	0,2438
112,20	0,1040	0,7965	0,0994	0,3386	0,6261	0,0354	111,36	0,3313	0,6360	0,0327	111,33	0,3306	0,6362	0,0332	111,18	0,3366	0,6313	0,0321
113,43	0,1662	0,1575	0,6763	0,5715	0,1282	0,3003	114,83	0,5156	0,1183	0,3661	115,08	0,5090	0,1232	0,3678	114,77	0,5113	0,1193	0,3694
114,87	0,0410	0,9052	0,0538	0,1688	0,8074	0,0237	114,72	0,1629	0,8160	0,0211	114,65	0,1642	0,8144	0,0214	114,66	0,1649	0,8142	0,0210
115,49	0,1236	0,4798	0,3966	0,4625	0,3669	0,1706	113,82	0,4264	0,3947	0,1789	113,83	0,4228	0,3980	0,1792	113,84	0,4241	0,3928	0,1832
115,76	0,0158	0,9673	0,0169	0,0742	0,9184	0,0074	116,28	0,0702	0,9226	0,0072	116,23	0,0714	0,9213	0,0073	116,26	0,0708	0,9221	0,0072
117,89	0,0000	1,0000	0,0000	0,0000	1,0000	0,0000	117,70	0,0000	1,0000	0,0000	117,70	0,0000	1,0000	0,0000	117,70	0,0000	1,0000	0,0000
121,59	0,0755	0,1078	0,8167	0,3473	0,1186	0,5340	121,07	0,3204	0,1033	0,5763	121,21	0,3153	0,1059	0,5788	121,15	0,3133	0,1074	0,5793
125,10	0,0442	0,0691	0,8867	0,2466	0,0897	0,6637	124,08	0,2237	0,0769	0,6994	124,13	0,2212	0,0779	0,7009	124,25	0,2151	0,0807	0,7042
125,75	0,0328	0,0453	0,9219	0,1614	0,0499	0,7887	125,39	0,1807	0,0543	0,7650	125,42	0,1794	0,0549	0,7658	125,60	0,1720	0,0573	0,7708
131,58	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000	130,97	0,0000	0,0000	1,0000	130,97	0,0000	0,0000	1,0000	130,97	0,0000	0,0000	1,0000
					δr	nédio%	0,51	2,8139	6,6115	10,1924	0,50	2,9298	7,5285	8,7611	0,53	2,8639	7,5282	11,2819

Como neste trabalho os desvios calculados são relativos, quanto menor o valor experimental maior será o seu desvio relativo o que pode ser observado na Tabela 36. Para o componente mais volátil (2-propanol (1)), o desvio médio relativo é pouco maior que o observado no sistema ternário anterior. Já para os outros componentes, seus valores na composição da fase vapor são bastante pequenos, o que confere valores elevados em seus desvios médios relativos.

6. CONCLUSÕES E SUGESTÕES PARA TABALHOS FUTUROS

Dados inéditos de equilíbrio líquido-vapor para o sistema binário 2-propanol (1)/ 2-metil-1-butanol (2) a 560 e 760 mmHg e para os sistemas ternários 2propanol (1)/2-metil-1-propanol (2)/ 2-metil-1-butanol (3) a 760 mmHg e 2propanol (1)/ 1-butanol (2)/ 3-metil-1-butanol (3) a 760 mmHg foram medidos. Os sistemas binários apresentaram consistência termodinâmica, o que evidencia a boa qualidade dos dados experimentais de Equilíbrio Líquido-Vapor. Os modelos ajustados aos dados binários experimentais conseguiram descrever com boa qualidade o Equilíbrio Líquido-Vapor. O uso desses parâmetros juntamente com os obtidos no software Aspen Plus 12.1 na descrição de ELV de sistemas ternários geraram resultados satisfatórios.

Neste trabalho foram obtidos dados experimentais de ELV e modelagem termodinâmica que poderão ser usados em simulação de processos para obtenção de etanol e óleo fúsel, levando em consideração maior número de componentes na mistura.

Sugere-se também medidas de dados experimentais de Equilíbrio Líquido-Líquido (ELL) e modelagem termodinâmica para o estudo de misturas ternárias compostas por 1 álcool superior, etanol e água que são inexistentes na literatura.

90

7. REFERÊNCIAS BIBLIOGRÁFICAS

AMBROSE, D.; SPRAKE, C.H.S. **Vapor Pressure of Alcohols.** Journal of Chemical Thermodynamics, n.2, p. 631, 1970.

ALMEIDA, M. E. W.; BARRETO, H. H. C. Álcoois Superiores em aguardente de cana por cromatografia gasosa. Revista do Instituto Adolfo Lutz, v. 31, p. 117-123, 1971.

ATALA, D. P. Montagem, Instrumentação, Controle e Desenvolvimento Experimental de um Processo Fermentativo Extrativo de Produção de Etanol. 172 f. Tese (Doutorado em Engenharia de Alimentos) – Instituto de Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2004.

BARKER, J. A. Determination of ativity coefficients from total pressure measurements. Journal of Chemical Crystallography, Austria, n. 6, p. 207-210, 1953.

BATISTA, F. R. M. Estudo do processo de destilação alcoólica contínua: Simulação de Plantas Industriais de Produção de Álcool Hidratado, Álcool Neutro e Cachaça. 180 f, Tese (Mestrado em Engenharia de Alimentos) - Instituto de Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2008.

BOURNE, J. R. **Possible Errors in the application of the area test to vapourliquid equilibria.** Chemical and Engineering Science, n.19, p.508-509, 1964.

BOZA, Y.; HORII, J. Influência da destilação sobre a composição e a qualidade sensorial da aguardente de cana-de-açúcar. Ciência e Tecnologia de Alimentos, v.18, n.4, p. 391-396, 1998.

91

BRASIL, Instrução Normativa n°13, de 30 de junho de 2005. Aprova o Regulamento Técnico para Fixação dos Padrões de Identidade e Qualidade para Aguardente de Cana e para Cachaça, Ministério da Agricultura, Pecuária e Abastecimento. **Diário Oficial da União,** DF, 30 de junho de 2005, Seção 1.

ČENSKÝ,M.; VRBKA, P.; RŮŽIČKA, K.; FULEM, M. Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2. Fluid Phase Equilibria, n. 298, p.199–205, 2010.

CONAB – Companhia Nacional de Abastecimento. **Acompanhamento da Safra Brasileira: cana-de-açúcar, terceiro levantamento de 2010. Janeiro de 2011.** Disponível em:

<http://:www.conab.gov.br/conabweb/download/safra/2cana_de_acucar.pdf> Acesso em: 10 de janeiro de 2011.

DDBST - Dortmund Data Bank Software Package - Educational version - 2003, Disponível em: http://:www.ddbst.de.>

DIPPR, **DIPPR (The Desing Institute for Physical Property Data) Data Compilation of Pure Compound Properties, version 6.0**, Gaithersburs: Standard Reference Data, 1985.

FOLHAONLINE, **Brasil quer aumentar produção de álcool em 150% até 2017, diz ministro**.Disponível em:

<http://:www.folha.uol.com.br/dinheiro/ult91u537219.shtml> Acesso em 10 de novembro de 2009.

FRANCO, D. W. O Envelhecimento de Aguardente de Cana-de-Açúcar em Tonéis de Madeira. Engarrafador Moderno, n.4, v.33, p. 30-33, 1994.

FREDENSLUND, A., GMEHLING, J.; RASMUSSEN, P., Vapor-liquid equilibria using UNIFAC a group-contribution method. Elsevier Scientific Publishing Company, 1977.

FREDENSLUND, A.; JONES, R. L.; PRAUSNITZ, J. M. Group-Contribuition Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE Journal, v. 21, p. 1086, 1975.

GMEHLING, J.; ONKEN, U. Vapour-Liquid equilibrium data collection chemistry data series. Frankfurt: Dechema, v. 1-7, a partir de 1977.

HAYDEN, J.; O'CONNELL, J. P. A generalizaed method for predicting second Virial coefficients. Industrial and Engineering Chemistry Process Design and Development, v. 14, n. 3, p. 209-216, 1975.

HERINGTON, E. F. G. Tests for consistency of experimental isobaric vaporliquid equilibrium data. Journal of Institute of Petroleum, v.37, p. 457-470, 1951.

HERINGTON, E. F. G. A thermodynamic test for the internal consistency of experimental data on volatility ratios. Nature, v.160, p.610-611, 1947.

ICONE, Instituto de Estudos do Comércio e Negociações Internacionais. **Perspectivas do etanol no Brasil e no mundo.** Disponível em: < http://www.iconebrasil.com.br/pt/> Acesso em 15 outubro de 2009.

MAIA, A. B. R. **Componentes Secundários da Aguardente**. STAB, Açúcar, Álcool e Subprodutos, Piracicaba, v.12, n.6, p. 29-34, 1994.

MATOS, E.H.S.F. **Dôssie Técnico: Etanol**. Serviço Brasileiro de Respostas Técnicas. CDT/UNB, 2007.

MICHELLON, E.; SANTOS, A. A. L.; RODRIGUES, J. R. A. **Breve Descrição do Proálcool e Perspectivas Futuras para o Etanol Produzido no Brasil.** In: XLVI Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural, 2008, Acre. Anais do XLVI Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural, Acre, 2008.

93

MIXON, F. O.; CARPENTER, B. G. B. H. Computation of Vapor-Liquid Equilibrium Data from Solution Vapor Pressure Measurements. Industrial & Engineering Chemistry Fundamentals, v. 4, n.4, november, 1965.

NIST Chemical WebBook: Database. The National Institute of Standards and Technology, USA. Disponível em: http://webbook.nist.gov/chemistry/name-ser.html

NYKÄNEN, L. Formation and occurrence of flavor compounds in wine and distillated alcoholic beverages. American Journal of Enology and Viticulture, Davis, v. 37, n.1, p. 84-86, 1986.

NYKÄNEN, L.; NYKÄNEN, I. **Distilled beverages. In: MAARSE, H. (Ed.)**. Volatile Compounds in food and beverages. New York: Marcel Dekker, INC., p. 548-580, 1991.

OLIVEIRA, E. S. Características Fermentativas, Formação de Compostos Voláteis e Qualidade da Aguardente de Cana obtida por Linhagens de Leveduras Isoladas de Destilarias Artesanais. Tese (Doutorado em Tecnologia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2001.

PAMPLONA, C. **PROÁLCOOL:** Impacto em termos técnico-econômicos e sociais do programa no Brasil. Ministério da Indústria e do Comércio, Instituto do Açúcar e do Álcool. 2ª ed., Belo Horizonte: Sopral, p.93, 1984.

PRAUSNITZ, J, M.; ANDERSON, T. F.; et al, **Computer calculation for multicomponent vapour-liquid and liquid-liquid equilibria.** New Jersey: Prentice Hall, p.353, 1980.

PRAUSNITZ, J. M.; LICHTENTHALER, R. M.; AZEVEDO, E. G. **Molecular thermodynamics of fluid phase equilibria,** 2nd ed., New Jersey: Prentice Hall, p. 600, 1986.
PETROBRAS. **Brasil**, Disponível em: http://www.petrobras.com.br/pt/energia-etecnologia/fontes-de-energia/biocombustiveis/default.asp> Acesso em 15 de outubro de 2009.

REDLICH, O.; KISTER, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. Industrial & Engineering Chemistry Research, v.40, n.2, p.345-348, 1948.

REID, R. C.; PRAUSNITZ, J. M.; POLING, B. E. The properties of gases and liquids. 4ed. New York: McGraw-Hill, p. 741, 1987.

RESA, J. M.; GOENAGA, M. I.; IGLESIAS, M. Vapor–Liquid Equilibria at 101.3 kPa for Binary Mixtures Containing 2-Methyl-1-propanol + 2-Methyl-1-butanol, 2-Methyl-1-propanol + 3-Methyl-1-butanol, and 2-Methyl-1-propanol + 1-Pentanol. Journal of Chemical & Engineering Data, v.5, p. 1892-1895, 2006.

ROLEMBERG, M. P. Determinação Experimental de Dados de Equilíbrio Líquido-Vapor de Misturas de Solventes e Pesticidas. 118 f. Tese (Mestrado em Engenharia Química)-Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, 1998.

SMITH, B.D.; SRIVASTAVA, R. Data for Pure Compounds. Part B. Halogenated Hydrocarbons and Alcohols. Elsevier, Amsterdam, 1986.

TIMMERMANS, J. **Physico-Chemical Constants of Pure Organic Substances.** 2nd ed., 2 vols., Elsevier, New York, 1965.

vAN NESS, H. C. Exact forms of the unrestricted Gibbs-Duhen Equation, Chemical and Engineering Science, v.10, p.225-228, 1959.

vAN NESS, H. C.; BYER, S. M.; GIBBS, R. E. Vapour-liquid Equilibrium: Part I. An Appraisal of data Reduction Methods. AIChE Journal, v. 19, p. 238,1973.

WILSAK, R. A.; PHILIP, L. J. Thermodynamic consistency tests based on the Gibbs-Duhen equation applied to isothermal, binary vapor-líquid equilibrium

data: data evaluation and model testing. Fluid Phase Equilibria, v.103, p.155-197, 1995.

WILSON, G. M. Vapour-liquid equilibrium, XI: A new expression for the excess free energy of mixing. Journal of American Chemical Society, v.86, p.127-130, 1964.

WISNIAK, J. **The Herington test for thermodynamic consistency**. Industrial & Engineering Chemistry Research, v. 33, n.1, p.177-180, 1994.

YOKOYA, F. Fabricação de Aguardente de Cana. Série Fermentações Industriais. Campinas, n. 2, p. 92, 1995.

Nome:	2-propanol	2-metil-1-		2-metil-1-butanol
		propanol		
T _c (K)	508,4 ^a	547,7 ^a		575,4 ^b
P _c (bar)	47,0 ^ª	42,4 ^a		39,3 ^b
Rd x 10 ⁻¹⁰ (m)	2,726 ^a	3,140 ^a		3,612 ^b
η _{associação}	1,32 ^a	1,90 ^a		2,20 °
μ	1,66 ^a	1,64 ^a		1,88 ^b
Zc	0,248 ^a	0,257 ^a		0,574 ^b
η _{solvatação}	(2-metil-1-propanol +2-		(2-propanol+2-metil-1-	
	metil-1-butanol) ^a		butanol) ^a	
	1,55		1,55	

ANEXO I Propriedades dos componentes puros requeridas pelo Thertest:

^a Fredenslund et al. (1977) ^bDDBST (2003) ^cNIST