DENISE CAMPOS

PEQUENO PARA A IDADE GESTACIONAL:

comportamento motor nos primeiros meses de vida

CAMPINAS Unicamp 2010

DENISE CAMPOS

PEQUENO PARA A IDADE GESTACIONAL:

comportamento motor nos primeiros meses de vida

Tese de Doutorado Apresentada à Pós-Graduação da Faculdade de Ciências Médicas da Universidade Estadual de Campinas para Obtenção do Título de Doutor em Ciências Médicas, Área de Concentração Ciências Biomédicas

ORIENTADORA: PROFA. DRA. VANDA MARIA GIMENES GONÇALVES

CAMPINAS Unicamp 2010 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA FACULDADE DE CIÊNCIAS MÉDICAS DA UNICAMP

Bibliotecário: Sandra Lúcia Pereira - CRB-8ª / 6044

C15p	Campos, Denise Pequeno para a idade gestacional: comportamento motor nos primeiros meses de vida / Denise Campos. Campinas, SP : [s.n.], 2010.
	Orientador : Vanda Maria Gimenes Gonçalves Tese (Doutorado) Universidade Estadual de Campinas. Faculdade de Ciências Médicas.
	 Desenvolvimento infantil. 2. Lactente. 3. Retardo do crescimento fetal. 4. Atividade motora. 5. Desnutrição – complicações. I. Gonçalves, Vanda Maria Gimenes. II. Universidade Estadual de Campinas. Faculdade de Ciências Médicas. III. Título.

Título em inglês: Small for gestational age: motor behavior in the first months of age

Keywords: • Child development

- Infant
- Fetal growth retardation
- Motor activity
- Malnutrition complications

Titulação: Doutor em Ciências Médicas Área de concentração: Ciências Biomédicas

Banca examinadora:

Profa. Dra. Sylvia Maria Ciasca Profa. Dra. Rosana Macher Teodori Profa. Dra. Maria Augusta Santos Montenegro Profa. Dra. Regina Célia Turolla de Souza Profa. Dra. Eliane da Silva Mewes Gaetan

Data da defesa: 23-02-2010

Banca examinadora de Tese de Doutorado

Denise Campos

Orientador(a): Prof(a). Dr(a). Vanda Maria Gimenes Gonçalves

Membros:	
Professor (a) Doutor (a) Eliane da Silva Mewes Gaetan	Experim
Professor (a) Doutor (a) Rosana Macher Teodori	DMTeodori
Professor (a) Doutor (a) Maria Augusta Santos Montenegro	Maugure nosting
Professor (a) Doutor (a) Regina Célia Turolla de Souza	fun
Presidente: Professor (a) Doutor (a) Sylvia Maria Ciasca	SPLL

Curso de pós-graduação em Ciências Médicas da Faculdade de Ciências Médicas da Universidade Estadual de Campinas.

Data: 23/02/2010

DEDICATÓRIA

A meus pais, José Antônio e Terezinha, que por uma vida de dedicação, amor e trabalho sempre possibilitaram a seus filhos a oportunidade de realizar sonhos e conquistas.

Ao meu marido, Eduardo, pelo apoio e incentivo em todos os momentos. Nos méritos de minhas conquistas existe muito de sua presença.

A Dra.Vanda Maria Gimenes Gonçalves *(in memorium)*, que vive imortalizada pelas obras que realizou, e pelos exemplos de vida pessoal e profissional que nos deixou. Esta tese foi a melhor forma que encontrei para homenageá-la.

vi

À Profa. Dra. Denise Castilho Cabrera Santos, que me acompanha desde o mestrado, meu sincero agradecimento por sua imprescindível contribuição no papel de "co-orientadora" deste trabalho. Certamente sua presença foi fundamental para o meu crescimento acadêmico-científico e para a conquista de nossas publicações.

À equipe de profissionais do GIADI, pela importante colaboração na avaliação dos lactentes, pela troca de conhecimentos e pela amizade.

Ao Departamento de Neurologia da FCM/UNICAMP, em especial, a Profa. Dra. Sylvia Maria Ciasca (Coordenadora da Pós-Graduação), pela oportunidade e pelo apoio.

Aos Professores do Departamento de Neurologia, pelos ensinamentos essenciais à minha formação acadêmico-profissional.

À Profa. Dra. Maria de Fátima C. Françozo e sua equipe de Serviço Social, pelo agendamento das avaliações e acompanhamento das famílias dos lactentes.

À Dra. Iracema A. C. C. Muniz, pela seleção dos neonatos e coleta dos dados referentes às condições de nascimento utilizados neste trabalho.

À Comissão de Pesquisa – Estatística da FCM/UNICAMP, pela contribuição nas análises estatísticas.

À equipe de profissionais da Biblioteca da FCM/UNICAMP, aos funcionários das secretarias do Depto de Neurologia e da CPG/Ciências Médicas, pela presteza e competência em solucionar problemas pertinentes a cada setor.

Aos pais e lactentes que participaram do estudo, pela gentil contribuição.

Aos meus amigos e familiares, por toda força e torcida.

UM AGRADECIMENTO ESPECIAL

(In Memorium)

À Orientadora Profa. Dra. Vanda Gimenes Gonçalves,

Pelos valiosos ensinamentos acadêmicos e pela disponibilidade sem medida

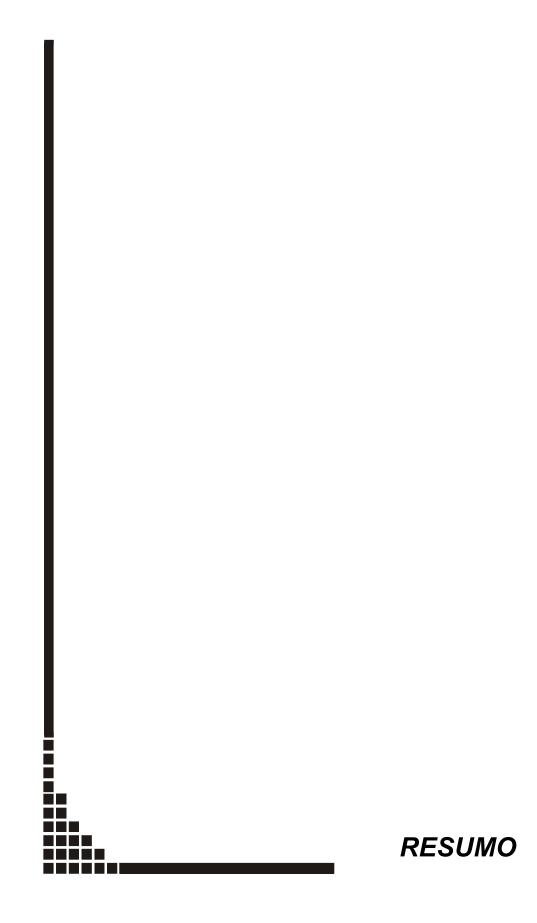
À Coordenadora do GIADI Dra.Vanda

Pela sabedoria e serenidade na condução de um grupo multidisciplinar

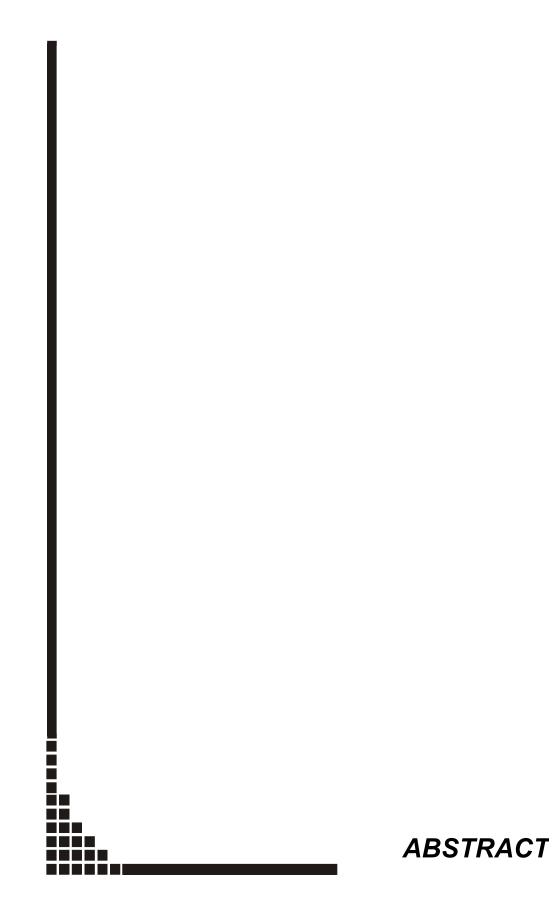
À Professora Dra.Vanda

Pelo exemplo profissional a ser seguido sem ressalvas

À Pessoa humana e amiga

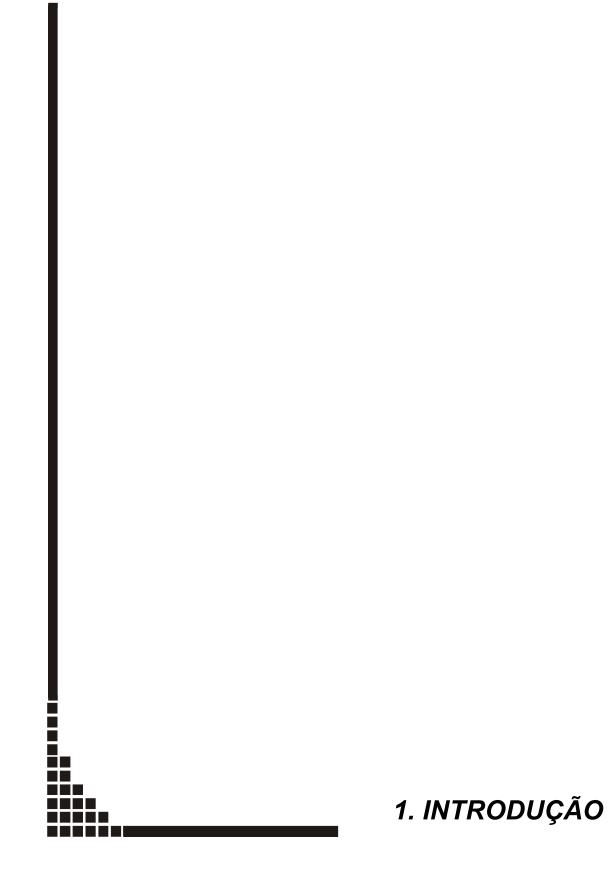

Pelo carinho e acolhimento em todos os momentos.

"Se eu vi mais longe foi por estar apoiado sobre ombros de gigantes".


(Isaac Newton, 1643-1727)

Este projeto foi financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP – (Processo 00/07234-7)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - Bolsa de Formação de Pesquisador de Doutorado. Nº do processo: 01P111832007


A desnutrição intra-uterina tem sido associada à morbidade neurológica em longo prazo. Tendo em vista que os lactentes nascidos pequenos para a idade gestacional (PIG) representam um modelo de estudo para essa situação e que a maioria dos trabalhos focaliza a idade escolar, o presente estudo teve como objetivo comparar o desempenho motor de lactentes nascidos a termo PIG com lactentes nascidos a termo adequados para a idade gestacional (AIG) no 1°, 2°, 3° e 6° meses. Tratou-se de um estudo prospectivo e seccional. Os neonatos foram selecionados na maternidade do Centro de Atenção Integral à Saúde da Mulher da Universidade Estadual de Campinas. no período de maio de 2000 a julho de 2003, obedecendo aos seguintes critérios de inclusão: recém-nascidos (RN) residentes na região de Campinas, que permaneceram no alojamento conjunto, resultantes de gestação de feto único, com idade gestacional entre 37 e 41 semanas, com peso ao nascimento classificado entre o percentil 10 e 90 da curva de crescimento fetal para o grupo AIG e, abaixo do percentil 10 para o grupo PIG. Foram excluídos: RN com síndromes genéticas, malformações e infecções congênitas. Para avaliação foi utilizada a Escala Motora das Bayley Scales of Infant Development-II. A partir da pontuação do Index Score (IS), com média 100 e desvio padrão de 15, os lactentes foram classificados com performance acelerada (IS≥115), performance dentro dos limites normais (IS=85-114), performance levemente atrasada (IS=70-84) ou performance significantemente atrasada (IS≤69). Para análise dos dados foi considerado o valor do IS obtido no 1°, 2°, 3° e 6° meses. Quando houve diferença significativa de IS entre os grupos PIG e AIG, as provas daguela idade e as características familiares que poderiam contribuir para as diferenças foram investigadas. A amostra compreendeu 63 lactentes (18 PIG; 45 AIG) no 1° mês, 68 lactentes (25 PIG; 43 AIG) no 2° mês, 68 lactentes (22 PIG; 46 AIG) no 3° mês e 66 lactentes (24 PIG; 42 AIG) no 6° mês. O grupo PIG apresentou média de IS significativamente menor que o grupo AIG no 2° e 6° meses. Nesses períodos, houve menor proporção de lactentes do grupo PIG que realizaram com sucesso as seguintes provas: "faz movimentos alternantes para arrastar em prono", "troca de decúbito lateral para dorsal", "equilibra a cabeça", "senta sozinho momentaneamente por 2 segundos" e "senta sozinho por 30 segundos". Considerando as características familiares, os grupos diferiram quanto a ocupação materna, escolaridade materna e renda per capita, de modo que no grupo PIG houve maior frequência de mães que não trabalhavam fora do lar, que apresentavam menos de 8 anos de estudo e com baixa renda familiar. Os resultados obtidos sugerem que os lactentes nascidos a termo PIG estão sob maior risco para apresentar alterações no desenvolvimento motor.

Intrauterine malnutrition has been associated with long-term neurological morbidity. Considering that infants born small for gestational age represent a study model for this condition and that most studies focus on school age children, the present study aimed to compare the motor performance of infants born small for gestational age (SGA) with those appropriate for gestational age (AGA) at 1, 2, 3, and 6 months. This was a cross-sectional and prospective study. The neonates were selected at the Neonatology Service of the Center for Integral Attention to Women's Health–University of Campinas, between May 2000 and July 2003, according to the following criteria: healthy newborns resident in the region of Campinas, resulting of single fetus pregnancies, with gestational age between 37 and 41 weeks, with birthweight between the 10th and 90th percentiles of fetal growth curves for the AGA group and under the 10th percentile for the SGA group. Newborns with genetic syndromes, congenital malformations and infections were excluded. The Motor Scale of Bayley Scales of Infant Development-II was used for evaluation. Using the index score (IS), with a mean of 100 and standard deviation of 15, the infants were classified as presenting accelerated performance (IS≥115), within normal performance limits (IS=85-114), mildly delayed performance (IS=70-84) or significantly delayed performance (IS≤69). The IS during the 1st, 2nd, 3rd and 6th months of life were considered in the analysis of the results obtained. When a significant difference in IS occurred between the SGA and AGA groups, the items at that age and the family characteristics that could contribute to these differences were investigated. The sample comprised 63 infants (18 SGA; 45 AGA) aged 1 month, 68 infants (25 SGA; 43 AGA) aged 2 months, 68 infants (22 SGA; 46 AGA) aged 3 months and 66 infants (24 SGA; 42 AGA) aged 6 months. The SGA group presented a mean motor IS lower than the AGA group at 2 and 6 months. For these periods, the SGA group presented a lower proportion of infants who successfully performed the following skills: "makes crawling movements", "turns from side to back", "balances head", "sits alone momentarily" and "sits alone for 30 seconds". Considering the family characteristics, the groups differed with respect to maternal occupation, maternal education and family income; therefore, the SGA group showed a large number of mothers who did not work outside the home, had less than 8 years of study and low family incomes. The results obtained suggest that the infants who are SGA present a greater risk for adverse motor outcomes.

PÁG.

RESUMO	xi
ABSTRACT	xiii
1- INTRODUÇÃO	16
2- OBJETIVO	23
3- ARTIGO	25
4- DISCUSSÃO	45
5- CONCLUSÃO	
6- CONSIDERAÇÕES FINAIS	
7- REFERÊNCIAS BIBLIOGRÁFICAS	60
8- ANEXOS	72

Os avanços tecnológicos, aprimoramento nos cuidados obstétricos e neonatais têm proporcionado maior sobrevivência de recém-nascidos (RN) com peso abaixo do normal (1). Sabe-se que o peso ao nascimento sofre interferência de dois fatores: duração da permanência do feto no útero (quantidade) e velocidade do crescimento fetal (qualidade). A redução de um desses dois fatores levará a formas distintas de alteração: no primeiro caso, ao nascimento antes do termo ou prematuridade; no segundo, a restrição de crescimento intra-uterino (RCIU). Essas duas condições coexistem com freqüência (2). Entretanto, é importante distinguir seus efeitos, uma vez que representam evoluções clínicas distintas e cada qual pode se associar à morbidade neurológica diferente. Geralmente, nos países desenvolvidos o baixo peso ao nascimento (BPN) ocorre devido a prematuridade. Em contrapartida, nos países em desenvolvimento, a maioria dos lactentes com BPN é considerado a termo e secundário a RCIU (3).

O crescimento fetal adequado resulta do equilíbrio entre as informações genéticas contidas nas células, o aporte de substratos essenciais para o metabolismo energético e as influências hormonais. No entanto, a gestação pode ser acometida por diversas condições que prejudicam estes processos, culminando na RCIU (4,5). A RCIU é um processo patológico responsável pela limitação de crescimento e desenvolvimento do feto. Como consequência, o feto não é capaz de atingir seu potencial genético de crescimento esperado no útero. Esse conceito, apesar de lógico, é pouco utilizado na prática clínica devido a dificuldade para definir o potencial genético de cada lactente. Por outro lado, o termo pequeno para a idade gestacional (PIG) pode ser definido como lactente que apresenta peso ao nascimento abaixo de um limite de referência para determinada idade gestacional. Embora esses dois conceitos sejam diferentes, o mesmo limite estatístico é utilizado para identificar o lactente PIG ou com RCIU (6). Alguns autores descrevem esse limite como peso ao nascimento abaixo do percentil 10 ou 5 para uma determinada idade gestacional. Consequentemente clínicos e pesquisadores alternam a utilização desses termos, e consideram que o lactente PIG representa um modelo de estudo para os efeitos da RCIU sobre o neurodesenvolvimento (7).

Segundo Onis et al. (8) a RCIU acomete aproximadamente 30 milhões de RN por ano (23.8%) nos países em desenvolvimento. Dentre os afetados, cerca de 75% nascem na Ásia, 20% na África e 5% na América Latina; de modo que no Brasil essa taxa varia de 5.5% a 9.9%. Embora alguns desses lactentes sejam saudáveis, denominados "constitucionalmente pequenos", cujo potencial de crescimento determinado geneticamente encontra-se abaixo da média estatística (7); nos países em desenvolvimento uma grande proporção deles sofreram algum grau de RCIU (8).

Diversos fatores predispõem a RCIU: alguns indicadores de desnutrição materna, como, por exemplo, o baixo peso anterior à gestação e o pequeno ganho de peso durante a gestação (9); o hábito de fumar durante a gravidez, a baixa renda per capita (10); a baixa idade materna, os cuidados pré-natais inadequados, os problemas placentários, a hipertensão arterial (11), as gestações sucessivas com pequeno intervalo entre os partos e também o baixo nível de instrução materna (12). Para atingir resultados gestacionais melhores, reduzindo a frequência de RCIU, é necessário que os serviços de saúde melhorem o estado nutricional da mulher, incentivem acompanhamento médico adequado no pré-natal e orientem às gestantes a evitarem o fumo ativo e passivo (13).

A RCIU provoca carência de oxigênio, proteína e/ou ferro. Como esses elementos são vitais para o desenvolvimento normal do cérebro, frente a essas deficiências os fetos podem sofrer algumas alterações cerebrais (14). Mais especificamente, os prejuízos estão associados ao tipo de privação. Dessa forma, alguns autores demonstraram que os modelos animais com hipóxia intra-uterina crônica resultaram em fetos menores, com peso cerebral diminuído (15). A restrição protéica em animais vem sendo associada com redução no número de sinapse (16) e mudança na estrutura da junção sináptica (17). Por fim, verificou-se que a alteração na taxa de ácido graxo essencial afeta a mielinização, a composição lipídica do cérebro e a capacidade de aprendizado dos ratos (18). Com relação ao grau de acometimento, este irá depender do tempo, da duração e gravidade do insulto (19). Segundo Dobbing (20), as fases de maior vulnerabilidade para adquirir lesões irreversíveis situam-se entre 15 e 20 semanas de gestação, período relacionado com a divisão celular; e entre 30 semanas de gestação e 2 anos de idade, momento associado à divisão de células gliais, mielinização, crescimento axonal e dendrítico, e estabilização de conexões sinápticas.

Diante deste cenário, a RCIU representa um fator de risco importante para o neurodesenvolvimento, especialmente nos países em desenvolvimento (21). Os lactentes nascidos a termo PIG, comparados aos nascidos a termo adequados para a idade gestacional (AIG), apresentam risco seis vezes maior de morrer no período neonatal e cerca de três vezes maior para evoluir com morbidades (9). A maioria das anormalidade neurológicas e psicológicas, embora não sejam graves, são observadas nos lactentes que tiveram RCIU (22). Segundo Goldenberg et al. (23) os lactentes nascidos PIG raramente

apresentam paralisia cerebral, havendo maior ocorrência de disfunções neurológicas mínimas como: déficit de atenção, hiperatividade e pobre desempenho escolar.

Cabe ressaltar, entretanto, que não há consenso sobre o desenvolvimento desses lactentes (24). Alguns autores indicam que apesar do risco aumentado para déficits motor, intelectual, neurológico e comportamental, a maioria dos lactentes nascidos PIG apresentam desenvolvimento normal, na ausência de outras complicações, como, por exemplo, hipóxia e malformação (6,25-27). Em contrapartida, algumas pesquisas mostram que tais lactentes apresentam déficits durante a infância (28), adolescência (29,30) e fase adulta (31). Sommerfelt et al. (28) verificaram que as crianças nascidas a termo PIG, comparadas às nascidas a termo AIG, aos 5 anos de idade, apresentaram pontuação inferior nas habilidades visuo-espaciais, visuomotoras e atividades de destreza manual. Larroque et al. (29) constataram maior freqüência de atraso na admissão do segundo grau escolar entre os adolescentes nascidos a termo PIG do que entre os nascidos a termo AIG, havendo também maior proporção de adolescentes nascidos a termo PIG que fracassaram no exame para bacharel. Peng et al. (30) mostraram que os adolescentes chineses nascidos PIG tiveram capacidade cognitiva e desempenho escolar inferior aos adolescentes nascidos AIG. Além disso, Strauss (31) observou que os indivíduos de 26 anos nascidos a termo PIG, comparados aos nascidos a termo AIG, foram menos prováveis de ocupar cargos administrativos e mais prováveis de trabalhar como mão de obra não especializada, obtendo assim uma renda significativamente mais baixa.

Acredita-se que os déficits de desenvolvimento nos lactentes brasileiros nascidos PIG sejam maiores do que os relatados em estudos de outros países (32). Isso provavelmente ocorre porque ser PIG é somente um dentre muitos fatores que podem contribuir para alterações no neurodesenvolvimento (23). Em geral, os fatores de risco não ocorrem de maneira isolada, e os lactentes que passaram por condições desfavoráveis ao nascimento continuam sofrendo as adversidades durante a vida pósnatal (33). Segundo Eickmann et al. (34) os fatores biológicos podem ter profundos efeitos adversos no desenvolvimento da criança, mas esse risco tende a ser pequeno se comparado com os efeitos mais persuasivos dos fatores de risco ambientais.

A importância mútua do organismo e do ambiente para o desenvolvimento motor começou a ser enfatizada a partir de 1970, quando a Teoria de Sistemas Dinâmicos foi estabelecida (35). Acredita-se que existe inter-relação entre maturação neurológica e experiências ambientais, sendo que uma favorece o desenvolvimento da outra. Como resultado da experiência, profundas mudanças maturacionais podem ocorrer no tecido neural. Paralelamente, as mudanças maturacionais podem por sua vez, alterar a prontidão do organismo para assimilar os estímulos ambientais (36). Pesquisas realizadas durante os primeiros anos de vida de humanos têm mostrado que as rápidas mudanças ocorridas no desenvolvimento, durante os primeiros 24 meses após o nascimento, influenciam dramaticamente toda a vida (37). As mudanças evolutivas, que ocorrem durante este período, são resultado do complexo desenvolvimento neurológico, influenciado por fatores genéticos e ambientais (38).

Dentre as várias áreas do desenvolvimento, o *status* do sistema motor representa o de mais fácil observação e um dos melhores indicadores da maturidade e integridade do sistema nervoso central, bem como do bem-estar global da criança, principalmente durante o 1º ano de vida. As rápidas mudanças que acontecem nesse período, no qual o lactente evolui de uma atitude passiva em decúbito dorsal para a postura ortostática e marcha, evidenciam a importância e riqueza dos primeiros 24 meses de vida para o desenvolvimento motor. Nessa fase, multiplicam-se mês a mês as aquisições motoras, à medida que ocorrem intensas modificações no organismo e à medida que a criança se confronta com as oportunidades que o ambiente lhe oferece (39). Desta forma, considera-se fundamental a vigilância do desenvolvimento da criança nos 2 primeiros anos, pois é nesta etapa da vida que o tecido nervoso mais cresce e amadurece, estando mais sujeito aos agravos. Devido a sua grande plasticidade, é também nesta época que a criança melhor responde às intervenções e estímulos que recebe do meio ambiente (40).

O desenvolvimento é passível de diagnóstico, uma vez que a construção do sistema de ação da criança é um processo ordenado. Cabe salientar, no entanto, que o diagnóstico de desenvolvimento é altamente complexo, quando se trata de um organismo em pleno crescimento. Existe grande dificuldade para detectar alterações, especialmente nos primeiros meses de vida, período caracterizado pela variabilidade de comportamento, tono muscular, atividade postural e habilidades funcionais (36,41). Destaca-se então, a importância do uso de escalas de avaliação confiáveis, com comprovada sensibilidade para detectar os lactentes com alteração e comprovada especificidade para identificar os lactentes com desenvolvimento típico. Porém, no Brasil, o desafio do diagnóstico precoce de alterações motoras é agravado ainda pela escassez de instrumentos de avaliação padronizados ou validados para os lactentes. Sendo assim, quando há necessidade de

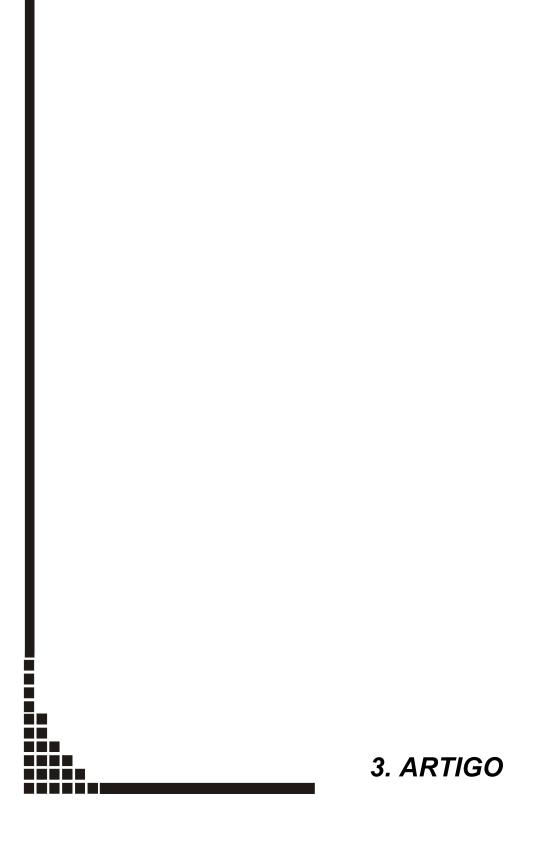
avaliar lactentes de risco geralmente são utilizados instrumentos estrangeiros, como as *Bayley Scales of Infant Development – II* (BSID-II), escala norte-americana, desenhada para avaliar uma grande variedade de habilidades na criança do 1º ao 42º mês de vida (42).

As BSID–II são compostas por três escalas: Escala Mental, Escala Motora e Escala de Classificação do Comportamento, as quais podem ser ministradas individualmente para fornecer o diagnóstico do desenvolvimento funcional da criança. Estão classificadas entre as melhores escalas existentes para avaliação do desenvolvimento infantil, fornecendo resultados confiáveis, válidos e precisos do estado de desenvolvimento da criança testada (43). Trata-se de uma avaliação que foi construída considerando a premissa de que uma habilidade pode ou não ter sido adquirida. À medida que a criança se desenvolve, um comportamento menos maduro pode ser substituído por outro mais maduro, qualitativamente diferente. Para avaliação do comportamento motor durante os primeiros seis meses de vida foram incluídas 48 provas, que a autora julgou provável estarem presentes nas diferentes idades (44). Considerando-se essas características, a Escala Motora das BSID-II foi eleita como instrumento de avaliação para o presente estudo.

A detecção precoce de alterações permite que a intervenção ocorra num momento oportuno, garantindo que o lactente afetado receba o tratamento necessário para atenuar os efeitos da disfunção (45). Está claro, a partir da literatura que um programa de estimulação psico-social, centrado na mãe e principalmente no ambiente domiciliar, pode ser associado com melhora significante do desenvolvimento motor e cognitivo de lactentes (34). Nesse sentido, estudos sobre intervenção precoce mostram benefícios imediatos no desenvolvimento da criança (46-48), e também benefícios a longo prazo no comportamento social e nas atividades escolares (49,50).

Tendo em vista que o lactente nascido PIG representa um modelo de estudo para os efeitos da RCIU sobre o neurodesenvolvimento (7); que a maioria dos trabalhos focaliza a idade escolar (28-31) e que a detecção precoce de alterações menores continua sendo um desafio para clínicos e pesquisadores, pois tais déficits apenas se tornam óbvios com o passar do tempo (51), formulou-se a hipótese de que avaliações padronizadas e detalhadas realizadas nos primeiros meses de vida poderiam proporcionar informações relevantes para identificação precoce de alterações motoras em lactentes nascidos PIG.

A principal questão colocada neste estudo foi: é possível detectar sinais precoces de alterações no desempenho motor de lactentes nascidos PIG? Para responder essa pergunta, o presente estudo comparou o desempenho motor de lactentes nascidos a termo PIG com lactentes nascidos a termo AIG no 1°, 2°, 3° e 6° meses de vida. Essas idades foram escolhidas com a finalidade de estudar o desempenho motor do lactente como uma continuação do repertório fetal (1°, 2° e 3° meses) submetido a um aumento das influências ambientais (6° mês) (52,53).


Este estudo faz parte de um projeto mais amplo que vem sendo desenvolvido na UNICAMP pelo Grupo Interdisciplinar de Avaliação do Desenvolvimento Infantil (GIADI). O GIADI foi registrado em 1993 no Diretório dos Grupos de Pesquisa do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e conta atualmente com o Acordo de Cooperação Internacional entre a Texas A & M University e a UNICAMP e com o convênio estabelecido com o Curso de Pós-graduação em Fisioterapia da Universidade Metodista de Piracicaba.

Considerando que existem poucos estudos sobre lactentes nascidos a termo PIG nos países em desenvolvimento, principalmente no Brasil, onde o problema é maior do que nos países desenvolvidos; este estudo contribui para aumentar o entendimento atual sobre o comportamento motor de um grupo pouco explorado e discute possíveis perspectivas clínicas de detecção precoce de alterações.

2. OBJETIVO

Comparar o desempenho motor de lactentes nascidos a termo PIG com lactentes nascidos a termo AIG no 1°, 2°, 3° e 6° meses de vida.

MOTOR PERFORMANCE OF INFANTS BORN SMALL OR APPROPRIATE FOR GESTATIONAL AGE: A COMPARATIVE STUDY

Denise Campos¹, PT, MSc, Denise C.C. Santos², PT, PhD, Vanda Maria G. Gonçalves¹, MD, PhD, Maura M.F. Goto¹, MD, MSc, and Thatiane M. Campos-Zanelli³, PT, MSc.

¹Department of Neurology, Faculty of Medical Sciences, State University of Campinas, São Paulo State, Brazil; ²Physical Therapy Graduate Program, Methodist University of Piracicaba, São Paulo State, Brazil; ³Physical Therapy Undergraduate Course, São Francisco University, São Paulo State, Brazil.

Pediatric Physical Therapy, v.20, p.340-346, 2008

ABSTRACT

Purpose: To compare the motor performance of infants born small for gestational age (SGA) with those appropriate for gestational age (AGA) at 1, 2, 3, and 6 months. **Methods:** A prospective cross-sectional study was conducted including infants born full-term, with birth weight under the 10th percentile for the SGA group and between the 10th and 90th percentiles for the AGA group. The Motor Scale of Bayley Scales of Infant Development-II was used to document motor performance. **Results:** The SGA group presented a mean motor index score lower than the AGA group at 2 and 6 months, with the SGA group presenting fewer infants that successfully accomplished "makes crawling movements," "turns from side to back," "balances head," "sits alone momentarily," and "sits alone for 30 seconds." **Conclusions:** Data analysis suggested that infants who are SGA present greater risk of adverse outcomes that are detectable in motor performance measures at 2 months.

Key words: age factors, Brazil, child development/physiology, child rearing, fetal nutrition disorder, human movement system, humans, infant, infant/newborn, motor development, motor skills/physiology, small for gestational age

INTRODUCTION

Intrauterine growth retardation (IUGR) suggests that a pathological process during fetal life is responsible for retarding the growth and development of the fetus. As a consequence, the infant is not capable of achieving the expected genetic growth potential in utero. This concept is logical, but rarely used in current clinical practice because of the difficulty of defining genetic potential. On the other hand, small for gestational age (SGA) can be defined as an infant who presents a birth weight below a determined reference limit for a determined gestational age. Although the concepts are different, the same statistical limits are used to identify an infant as SGA or IUGR. Some authors describe this limit as the 10th or 5th percentile of the range of birth weight for a given gestational age. Consequently, clinicians and researchers use the terms interchangeably, considering infants who are SGA as representative of a study model for the effects of IUGR on developmental outcomes¹.

According to Onis et al.² IUGR involves approximately 30 million newborns per year (23.8%) in developing countries. Overall, nearly 75% of all affected newborns are born in Asia, mainly in Southern Central Asia, 20% in Africa, and about 5% in Latin America; ranging from 5.5% to 9.9% in Brazil. Some of these infants are small and healthy, merely representing the lower end of the natural fetal growth distribution. In most developing countries, a large proportion of newborns suffer from some degree of IUGR².

IUGR indicates constraints in fetal nutrition during a crucial period of brain development and represents potential risk factors concerning child development, especially in developing countries³. Most neurological and psychological abnormalities, although not severe, are observed in infants demonstrating IUGR⁴. Cerebral palsy rarely occurs in infants who are SGA, but minimal neurological dysfunction is more commonly seen in these children and is associated with attention deficits, hyperactivity, clumsiness and poor school performance⁵.

Some researchers have shown that newborns who are SGA present deficits during childhood⁶, adolescence^{7,8} and adulthood⁹. It has been speculated that developmental deficits in Brazilian babies who are SGA are generally greater than those reported in studies from elsewhere¹⁰. This probably occurs because being born SGA is only one of many factors that may contribute to neurodevelopment alterations⁵. Risk factors do not usually occur in isolation and infants who experience unfavorable birth conditions continue to suffer adversities during their post-term life¹¹. According to Eickmann et al.¹² biological factors can have profound adverse effects on child development, but this risk is small compared with the effect of more

pervasive environmental risk factors. Identifying children at risk during the first year of life provides the opportunity for early referral for intervention services¹³. A psychosocial stimulation program, mother-centered and mainly home-based, can be associated with significant improvements in cognitive and motor development of infants¹². Most well-conducted studies concerning early intervention have resulted in immediate benefits to children's development¹⁴⁻¹⁶ and some have shown long-term benefits regarding social behavior and school achievement^{17,18}.

Considering that infants born SGA currently represent a study model for the effects of IUGR on developmental outcomes¹, that most studies focus on school age children⁶⁻⁹ and identifying children with less obvious delays can be a challenge, because such disabilities only become obvious gradually over time¹⁹, we hypothesized that detailed assessment during the first months of life would provide important information for identifying early developmental disadvantages in infants who are SGA. The major question was whether it was possible to detect early signs of disadvantaged motor performance in infants born SGA.

In this study, we aimed to evaluate the motor performance of infants born small for gestational age (SGA) compared with infants born appropriate for gestational age (AGA) at 1, 2, 3 and 6 months of age. These ages were chosen to study infant motor performance as a continuation of the fetal repertoire (first 3 months) submitted to rising environmental influence (6 months)^{20,21}.

Considering that few studies exist related to infants born SGA in developing countries, particularly in Brazil, where the problem is larger than in developed countries, this report contributes to increasing current understanding regarding the motor development of an understudied group and discusses possible clinical implications of early detection and intervention.

METHODS

The research design was a prospective cross-sectional study at 1, 2, 3 and 6 months of age of infants born full-term who are SGA compared with infants born AGA. Ethical approval was obtained from the Research Ethics Committee of the School of Medical Sciences of UNICAMP (087/03) and the families provided full informed consent.

The sample comprised 63 infants (18 SGA; 45 AGA) aged 1 month, 68 infants (25 SGA; 43 AGA) aged 2 months, 68 infants (22 SGA; 46 AGA) aged 3 months and 66 infants (24 SGA; 42 AGA) aged 6 months. Although this is a cross-sectional study, a number of the infants were tested at two or more assessments. Table 1 presents the frequency of infants assessed across at different ages.

INSERT TABLE 1

All the neonates were born at the Neonatology Service of the Comprehensive Women's Healthcare Center of the State University of Campinas, between May 2000 and July 2003. The subjects were selected according to the following criteria: 1) they were residents in the Campinas metropolitan area; 2) newborns of single-fetus pregnancies, 3) in good health, allowing them to go home within 2 days of birth; 4) presented gestational age categorized as full-term (37-41 weeks) according to the Capurro method; and 5) showed expected birth weight categorized according to the Battaglia and Lubchenco method: birth weight under the 10th percentile for the SGA group and between the 10th and 90th percentiles for the AGA group. Neonates with genetic syndromes, multiple congenital malformations and verified congenital infections (syphilis, toxoplasmosis, rubella, cytomegalovirus and herpes) were excluded.

Motor development was assessed using the Motor Scale of Bayley Scales of Infant Development II (BSID-II), which includes 48 items for testing motor behavior during the first 6 months of life. Using a mean 100 and standard deviation of 15, the infants were classified as presenting accelerated performance (Index Score, IS≥115), within normal performance limits (IS 85 to 114), mildly delayed performance (IS 70 to 84) or significantly delayed performance (IS≤69), according to their IS²². The ISs at 1, 2, 3 and 6 months were considered in the analysis of the results. In addition, when a significant difference in IS occurred between the SGA and AGA groups, the items at that age and the family characteristics that could contribute to these differences were investigated. This procedure was adopted to further elucidate the discussion.

All the children were assessed in the presence of their mothers at 1, 2, 3 and 6 months of age during intervals between feeds, when the infants were alert and cooperative. The range permitted was 7 days before or after the respective assessment age. Assessments were performed by an examiner and simultaneously monitored by 2 observers. Responses were recorded after agreement had been reached among all 3 team members. The testers were a developmental neurologist, a pediatrician and a physical therapist. Before the assessments,

the testers participated in the reliability training for the BSID-II, consisting of a didactic session of approximately 20 hours; each tester observed 12 videotaped tests and scored independently. The intraclass correlation coefficient was 0.95 (p<0.001), with 95% confidence intervals ranging from 0.88 to 0.98.

Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS/PC 11.0). The probability level adopted for rejection of the null hypothesis was p<0.05. To compare 2 independent groups, the nonparametric Mann-Whitney test was used for abnormal distribution and the parametric t test was used when the values presented normal distribution. The relation between categorical variables was investigated using the Chi Square or Fisher Tests.

RESULTS

In comparisons between newborn characteristics, the SGA and AGA groups showed a significant difference regarding birth weight (p<0.001) (Table 2); however, other newborn variables (gestational age, first and fifth Apgar) presented no significant differences (p>0.05). The groups were homogeneous regarding gestational age, and presented no risk for asphyxia (fifth Apgar score was ≥ 8 in 100%). These results demonstrate the effectiveness of the method used for subject selection and classification into the specific groups.

INSERT TABLE 2

Table 3 displays the motor index score for the SGA and AGA groups at 1, 2, 3 and 6 months. Analysis of the results verified that the SGA and AGA groups were within the normality interval of development (100±15), except at month 3, when both groups presented a mean score below 85. Moreover, it is important to note that both groups scored below the Bayley II mean for the periods measured. Comparison between the SGA and AGA groups at 1 and 3 months showed no significant differences; in contrast, a significant difference occurred between the groups at 2 and 6 months. During the latter periods, the SGA group presented a lower mean motor index score than the AGA group.

INSERT TABLE 3

Among the items assessed at 2 months old, a lower proportion of infants who are SGA were observed to successfully accomplish the following items: "makes crawling movements" (Fisher Test p=0.047), "turns from side to back" (Fisher Test p=0.011) and "balances head" (χ^2 =8.104, p=0.004). Considering the items assessed at 6 months, a lower proportion of infants who are SGA were observed to successfully accomplish the following items: "sits alone momentarily" (χ^2 =9.573, p=0.002) and "sits alone for 30 seconds" (χ^2 =6.880, p=0.009).

The family characteristics of the SGA and AGA groups assessed at 2 and 6 months are presented in Tables 4 and 5, respectively. The groups only differed in month 2 with respect to maternal occupation; a greater frequency of SGA group mothers did not work outside of the home. At 6 months, the groups differed concerning maternal occupation, maternal education and family income; a greater frequency of mothers of infants in the SGA group did not work outside of the home, presented fewer than 8 years of education and low family incomes.

INSERT TABLES 4 AND 5

DISCUSSION

The present cross-sectional study compared the motor performance of infants born SGA and AGA at 1, 2, 3, and 6 months of age, with the intention of detecting early signs of disadvantage in infants who are SGA. Although a longitudinal design would be preferable, a cross-sectional study could assist in developing questions for further investigation. It is important to point out that the majority of infants were assessed at least 3 times throughout the study period. We believe that this fact strengthens the findings obtained.

A certain difficulty exists in comparing studies concerning the repercussions of IUGR on infant development. This difficulty is principally due to the heterogeneity of the groups from 1 study to another; the inclusion of newborns with several risk factors for developmental abnormalities, the inclusion of newborns who were both SGA and preterm, investigation of a variety of developmental characteristics and assessment at different ages²³. To avoid confusing factors, the present study only included newborns delivered full-term and excluded neonates with genetic syndromes, congenital malformations and infections.

Comparison between the SGA and AGA groups showed a significant difference at month 2. For this period, the SGA group presented a lower mean motor index score and a lower proportion of infants that successfully accomplished "makes crawling movements", "turns from side to back" and "balances head".

Early differences in motor performance of infants born SGA or AGA have been reported, mainly in qualitative studies, which could help to explain quantitative differences. Van Kranen-Mastenbroek et al.²⁴ investigated the quality of spontaneous movements in infants born SGA and AGA during the first 2 weeks of life. Five types of general movements were distinguished in the SGA group; in contrast, 2 of these movements were not shown by AGA infants: those which were monotonous, stereotyped with lack of variability and complexity. Gagliardo et al.²⁵ compared visual function and fine-motor control of infants born full-term who are SGA or AGA during the first 3 months using the BSID-II. The items "attempts to bring hands to mouth" in month 1, and "reaches for suspended ring", in month 3 were observed more frequently in the SGA group, probable due to a greater occurrence of movement in the arms that might indicate an attempt to compensate for the lack of proprioception and vision integration.

The quality of general movements was found to be impaired in fetuses and infants with IUGR. "Slow motion" and "chaotic" general movements are frequently observed; however, many infants with IUGR reveal transiently abnormal general movements, indicating the importance of obtaining multiple observations. Abnormalities at a young age are related to lesions in the neural subsystems whose role in motor control ceases after 2 to 3 months of age. Therefore, these abnormalities may disappear if the new, post-transformation set of neural functions is not impaired²⁰. The so-called major transformation of neural function that occurs around month 2 changes many neural functions into a more adaptative condition than during the first 2 months after birth at term^{26,27}. Accordingly, we conjectured that differences in the quality of specific general movements or in the transitional process from a "writhing character" into a "fidgety character" of movement could be responsible, at least in part, for the lower mean motor index score of the SGA group at 2 months.

In the present study, a significant difference occurred between the SGA and AGA groups at 6 months of age. For this period, the SGA group presented a lower mean motor index score and a lower proportion of infants successfully accomplished "sits alone momentarily" and "sits alone for 30 seconds". Similar results were observed in a previous study in which Grantham-McGregor et al.¹⁰ evaluated the mental and motor performance of infants

born at term with low birth weight (LBW-T) and those with appropriate birth weight (ABW) at 6 and 12 months. Infants born LBW-T showed poorer performances than infants with ABW during these months and they were more likely to be detrimentally affected by unfavorable environments.

One major difficulty in dealing with adverse neurological outcomes related to SGA is that the outcomes are not necessarily stable throughout the child's lifetime⁵. Fernandez-Carrocera et al.⁴ analyzed the frequency of neuromotor abnormalities in 77 infants who were IUGR and 77 infants serving as controls at 12 months. Bayley's test showed differences in the mental and psychomotor evaluations, with a higher frequency of abnormalities in the IUGR group. The authors believe that this psychomotor retardation is usually transient. In addition, a study by Low et al.²⁸ showed a significantly lower psychomotor development index for babies of the IUGR group in relation to the control group at 12 months and no significant difference at 24, 36, 42, 48 and 60 months. Although the psychomotor retardation found by those authors was transitory, given that in the literature most differences between infants born SGA or AGA are described during school age ⁶⁻⁹, further follow-up is required to investigate whether the infants who presented transitory psychomotor retardation showed worse academic achievement later on in life.

Motor instability probably occurs because child development is more strongly influenced by biological variables during early follow-up, whereas environmental variables gain more importance as the child gets older²¹. A wide range of factors can affect children's development, such as socioeconomic status, the quality of mother-child interaction, maternal occupation and education⁵. These environmental factors can exacerbate or ameliorate the influence of nonoptimal prenatal or perinatal events²¹. To achieve a clearer understanding of motor differences between the SGA and AGA groups at 2 and 6 months of age, the family characteristics were compared. The groups only differed regarding maternal occupation at 2 months, with a greater frequency of mothers of infants in the SGA group who did not work outside of the home. At 6 months, the groups differed in relation to maternal occupation, maternal education and family income, with a greater frequency of mothers of the SGA group who did not work outside of the home, presenting fewer than 8 years of education and low family incomes.

Considering that infants presenting some biological risk are more vulnerable to adverse social conditions¹⁰, that infants of mothers with a lower level of education are less likely to be stimulated¹⁰ and that infants of lower income families present a greater probability of

developmental delay²⁹, we believe that family characteristics may have contributed to motor differences between the SGA and AGA groups. Another aspect that could explain the lower motor index score of the SGA group in relation to the AGA group at 2 and 6 months of age refers to parental overprotection. Parents tend to be overprotective and cautious when their children present some biological risk, such as lower than expected birth weight²¹. In relation to motor development, observation has revealed that when a child is maintained for most of the day in conditions that prevent free movement (held by an adult, kept in a baby carriage, baby chair, etc), the child can suffer disruptions related to learning and the use of feedback and feedforward systems, which are essential for the acquisition of motor abilities³⁰. Taking into account that a greater frequency of SGA group mothers did not work outside of the home, parental overprotection may have influenced the motor performance of the SGA group, thus certain items related to gross motor skills ("makes crawling movements", "turns from side to back", "balances head", "sits alone momentarily" and "sits alone for 30 seconds") were more challenging for the SGA group than the AGA group.

In short, no consensus exists with regard to motor development of infants born SGA. It is believed that infants who are SGA that undergo the longest periods of IUGR experience worse developmental outcomes, including infants that present other complications, such as birth asphyxia, genetic syndromes, congenital malformations and infections³¹. On the other hand, it is possible that in the absence of other complications and being reared in a favorable environment, term infants who are SGA would present development similar to infants born AGA, since the environment would tend to reduce any initial developmental deficits³². In essence, infants exposed to periods of IUGR, other biological complications, and/or environmental disadvantages (common events in developing countries) would be considered priority for follow-up and early identification. In addition, we believe that qualitative assessments may help to identify infants with less obvious delays.

The results of the Bayley test for infants from Brazil showed that both groups scored below the Bayley II mean during 3 months of age, at least lower than would be expected for typical well-developing infants (the AGA group). This raises the question of what might account for this difference. The lack of validation of the developmental tests in developing countries may have contributed to the disadvantages observed in the groups studied. According to the Bayley test manual²², the items within each set at each month ranged in difficulty from approximately 90% to 15% in infants completing the task. It is likely that there were particular items that could be challenging for both (SGA and AGA) groups. Explanations for lower scores

of the groups in relation to the normative group may also be related to educational and cultural (child-rearing) variations between countries. Santos et al.³³ compared motor development among Brazilian infants with the normative group of Bayley Scales-II over the first year and verified significant differences between the groups during months 3, 4, and 5, where less than 15% of the Brazilian infants passed certain items related to grasping and sitting. Possible explanations for such differences focus on variations in child-rearing practices and the influence of biological maturation in early movement behaviors. Brazilian mothers are more protective, infants are usually held on the mother's lap, rarely during the first 6 months are they placed on the floor to play, limiting their gross motor development³³. Considering that the Bayley Scales-II has not been culturally adapted for normal values within the Brazilian population, caution should be exercised concerning inferences gleaned from the data obtained.

The present study has certain limitations that should be taken into account when considering the study and possible contributions. First, the cohort design does not permit analysis of changes over time; the variation in the number of infants assessed during each month could limit the observation of motor development evolution. Second, the sample size could have influence the results, at least in part. A larger sample should be considered in future research; however, Walker et al.³ clarified that sample sizes for infants of LBW with IUGR were small to moderate in the cohort studies they reviewed. Third, conflicting results exist regarding the neurodevelopment of infants possibly exposed to IUGR, because of the heterogeneity of the groups studied (inclusion of premature newborns and other factors), the assessment instruments and the duration of the follow-up period. Future studies regarding the subject of neurodevelopment of infants who are SGA should be designed to consider these limitations.

CONCLUSIONS

This study concluded that the SGA group presented a lower motor performance than the AGA group at 2 and 6 months of age. The results suggest that the infants who are SGA present a greater risk to adverse results, which could be detected at 2 months of age. This study indicates the need of greater attention concerning the development of infants who are SGA during the first months of life. Although this study provides relevant information for identifying early developmental disadvantage in an understudied group, future studies should be conducted to clarify the early signs of intrauterine growth restriction on motor development.

REFERENCES

1. Mamelle N, Cochet V, Claris O. Definition of fetal growth restriction according to constitutional growth potential. Biol Neonate 2001; 80 (4): 277-285.

2. Onis M, Blossner M, Villar J. Levels and patterns of intrauterine growth retardation in developing countries. Eur J Clin Nutr 1998; 52 Suppl 1: 5-15.

3. Walker SP, Wachs TD, Gardner JM, et al. Child development: risk factors for adverse outcomes in developing countries. Lancet 2007; 369: 145–157.

4. Fernandez-Carrocera LA, Chavez-Torres R, Casanueva E, et al. Intrauterine growth retardation and neurodevelopment at one year of age in Mexican children. Nutr Res 2003; 23: 1-8.

5. Goldenberg RL, Hoffman HJ, Cliver SP. Neurodevelopmental outcome of small-forgestational-age infants. Eur J Clin Nutr 1998; 52 Suppl 1: 54-58.

6. Sommerfelt K, Sonnander K, Skranes J, et al. Neuropsychologic and motor function in smallfor-gestational age preschoolers. Pediatr Neurol 2002; 26 (3): 186-191.

7. Larroque B, Bertrais S, Czernichow P, et al. School difficulties in 20-year-olds who were born small for gestational age at term in a regional cohort study. Pediatrics 2001; 108: 111-115.

8. Peng Y, Huang B, Biro F, et al. Outcome of low birth weight in China: a 16-year longitudinal study. Acta Paediatr 2005; 94 (7): 843-849.

9. Strauss RS. Adult functional outcome of those born small for gestational age: twenty-sixyears follow-up of the 1970 British Birth Cohort. JAMA 2000; 283 (5): 625-632.

10. Grantham-McGregor SM, Lira PIC, Ashworth A, et al. The development of low birth weight term infants and the effects of the environment in northeast Brazil. J Pediatr 1998; 32: 661-666.

11. De Vries MW. Babies, brains and culture: optimizing neurodevelopment on the savanna. Acta Paediatr Suppl 1999; 429: 43-48.

12. Eickmann SH, Lima ACV, Guerra MQ, et al. Improved cognitive and motor development in a community-based intervention of psychosocial stimulation in northeast Brazil. Dev Med Child Neurol 2003; 45: 536-541.

13. Salokorpi T, Rajantie I, Kivikko I, et al. Predicting neurological disorders in infants with extremely low birth weight using the Movement Assessment of Infants. Pediatr Phys Ther 2001; 13 (3): 106-109.

14. Lekskulchai R, Cole J. Effect of a developmental program on motor performance in infants born preterm. Aust J Physiother 2001; 47 (3): 169-176.

15. Ohgi S, Fukuda M, Akivama T, Gima H. Effect of an early intervention programme on low birthweight infants with cerebral injuries. J Paediatr Child Health 2004; 40 (12): 689-695.

16. MacManus BM, Kotelchuck M. The effect of aquatic therapy on functional mobility of infants and toddlers in early intervention. Pediatr Phys Ther 2007; 19 (4): 275-282.

17. Grantham-McGregor SM, Powell C, Walker S, Chang S, Fletcher P. The long-term followup of severely malnourished children who participated in an intervention program. Child Dev 1994; 65: 428-439.

18. Achenbach TM, Howell CT, Aoki MF, Rauh VA. Nine-year outcome of the Vermont Intervention Program for low birth weight infants. Pediatrics 1995; 91: 45-55.

19. Bailey DB, Skinner D, Hatton D, et al. Family experiences and factors associated with the diagnosis of fragile X syndrome. J Dev Behav Pediatr 2000; 2: 315-321.

20. Prechtl HFR, Einspieler C, Cioni G, Bos AF, Ferrari F, Sontheimer D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997; 349: 1361-1363.

21. Aylward GP, Pfeiffer SI, Wright A, et al. Outcome studies of low birth weight infants published in the last decade: a meta-analysis. J Pediatr 1989; 115 (4): 515-520.

22. Bayley N. Bayley scales of infant development. II. San Antonio: Harcourt Brace; 1993.

23. Bos AF, Einspieler C, Prechtl HFR. Intrauterine growth retardation, general movements, and neurodevelopmental outcome: a review. Dev Med Child Neurol 2001; 43: 61-68.

24. Van Kranen-Mastenbroek VHJM, Kingma H, Caberg HB, et al. Quality of spontaneous general movements in full-term small for gestational age and appropriate for gestational age newborn infants. Neuropediatrics 1994; 25: 145-153.

25. Gagliardo HG, Gonçalves VMG, Lima MC, et al. Visual function and fine-motor control in small-for-gestational age infants. Arq Neuropsiquiatr 2004; 62 (4): 955-962.

26. Wolff PH. Discontinuous changes in human wakefulness around the end of the second month of life: a developmental perspective. In: Prechtl HFR. Continuity of neural functions from prenatal to postnatal life. Clin Dev Med n° 94. London: Spastics International Medical Publications; 1984.

27. Prechtl HFR. New perspectives in early human development. Eur J Obstet Gyneco Reprod Biol 1986; 21: 347-55.

28. Low JA, Galbraith RS, Muir D, et al. Intrauterine growth retardation: a study of long-term morbidity. Am J Obstet Gynecol 1982; 142 (6): 670-677.

29. Halpern R, Giugliani ERJ, Victora CG, et al. Fatores de risco para suspeita de atraso no desenvolvimento neuropsicomotor aos 12 meses de vida. Rev Chil Pediatr 2002; 73 (5): 529-539.

30. Bly L. What is the role of sensation in motor learning? What is the role of feedback and feedforward? NDTA Network 1996; Sep-Oct: 3-8.

31. Roth S, Chang TC, Robson S, et al. The neurodevelopmental outcome of term infants with different intrauterine growth characteristics. Early Hum Dev 1999; 55: 39-50.

32. Sonnander K. Early identification of children with development disabilities. Acta Paediatr Suppl 2000; 434: 17-23.

33. Santos DCC, Gabbard C, Gonçalves VMG. Motor development during the first year: a comparative study. J Genet Psychol 2001; 162 (2): 143-153.

	Group	n	Total
4 0000	SGA	11	32
4 ages	AGA	21	52
2 0000	SGA	09	20
3 ages	AGA	20	29
2	SGA	06	17
2 ages	AGA	11	17
	SGA	06	
1 age	AGA	10	16

Table 1- Frequency of infants assessed across ages

SGA= small for gestational age

AGA= appropriate for gestational age

n= number of infants

Period	Group	n	Minimum	Maximum	Median	Mean	SD	p-value ^a
1 st month	SGA	18	2045	2620	2420	2380	158.3	<0.001
i monun	AGA	45	2635	3850	3215	3200	287.8	<0.001
2 nd month	SGA	25	2045	2620	2440	2385	165.1	-0.001
2 ^{na} month	AGA	43	2635	3850	3135	3160	294.2	<0.001
ord	SGA	22	2125	2620	2372	2378	150.4	-0.001
3 rd month	AGA	46	2345	3850	3137	3138	305.0	<0.001
6 th month	SGA	24	1860	2620	2410	2380	184.4	-0.001
	AGA	42	2635	3850	2955	2899	468.9	<0.001

Table 2- Birth weight of SGA and AGA groups

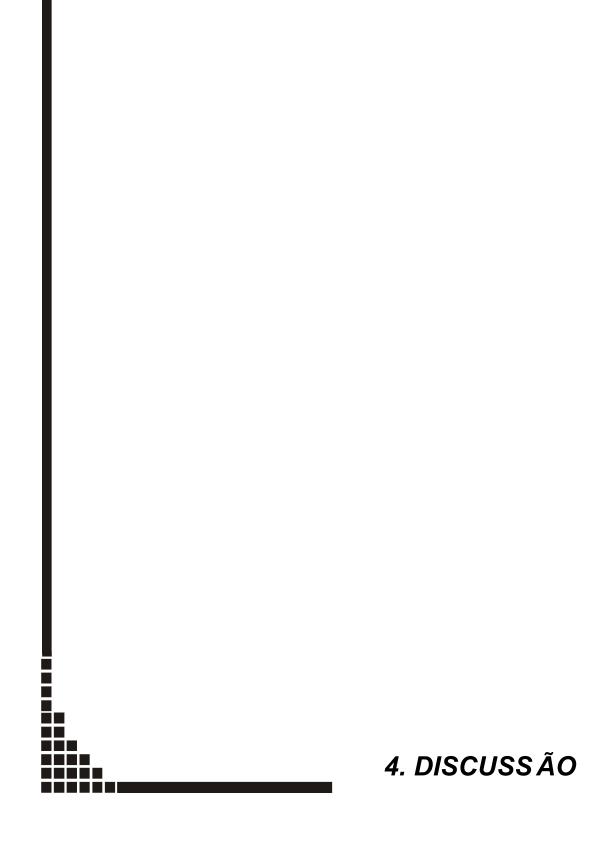
Birth weight is in grams, SGA=small for gestational age, AGA=appropriate for gestational age, n=number of infants, SD=standard deviation, a=Mann-Whitney Test

Period	Group	n	Minimum	Maximum	Median	Mean	SD	p-value
1 st month	SGA	18	76	101	97.00	93.50	7.89	0.994 ^a
i monun	AGA	45	76	107	92.00	93.96	7.39	0.994
2 nd month	SGA	25	78	108	90.00	89.76	6.12	0.008 ª
2 nd month	AGA	43	72	114	93.00	93.49	7.58	0.000
3 rd month	SGA	22	67	91	82.00	81.45	7.27	0.147 ^b
3 rd month	AGA	46	61	103	85.00	84.74	9.20	0.147
6 th month	SGA	24	73	104	85.00	88.54	8.22	0.038 ^b
o monun	AGA	42	76	114	92.50	93.31	9.11	0.030

Table 3- Motor index score for the SGA and AGA groups

SGA=small for gestational age, AGA=appropriate for gestational age, n=number of infants, SD=standard deviation, a=Mann-Whitney Test, b=t-Test

·		-		
Equily Variables		SGA	AGA	p-value
Family Variables		f (%)	f (%)	p-value
Maternal Age (years)				
≤ 20		8 (32)	11 (25.6)	o o ²
> 20		17 (68)	32 (74.4)	0.570 ^a
	Total	25	43	
Maternal Education (years of study) *				
< 8		18 (72)	22 (52.4)	0.440 ^b
≥ 8		7 (28)	20 (47.6)	0.113 ^b
	Total	25	42	
Maternal Occupation*				
Mothers with work out of the home		3 (12.5)	18 (42.9)	0.0446
Mothers without work out of the home		21 (87.5)	24 (57.1)	0.011 [°]
	Total	24	42	
Mother's Marital Status*				
Not married		3 (13.6)	4 (10.8)	1 000 ^d
Married		19 (86.4)	33 (89.2)	1.000 ^d
	Total	22	37	
Family income/per capita (MW)*				
≤ 0.50		12 (75)	22 (55)	0.4008
> 0.50		4 (25)	18 (45)	0.166 ^e
	Total	16	40	


Table 4 - Family characteristics of the SGA and AGA groups in the 2nd month

(a) $\chi^2=0.32$; (b) $\chi^2=2.5$; (c) $\chi^2=6.48$; (d) Fisher Test; (e) $\chi^2=1.91$; SGA=small for gestational age; AGA=appropriate for gestational age; *f*=absolute frequency; %=relative frequency; MW=minimum wage (1MW=US\$ 72 approximately); *=unavailable information, one case about maternal education and two cases about maternal occupation, 9 cases about marital status and 12 cases about family income per capita.

Family Variables		SGA	AGA	n voluo
Family Variables		f (%)	f (%)	p-value
Maternal Age (years)				
≤ 20		6 (25)	9 (21.4)	0 7008
> 20		18 (75)	33 (78.6)	0.739 ^a
	Total	24	42	
Maternal Education (years of study) *				
< 8		20 (83.3)	23 (57.5)	o coch
≥ 8		4 (16.7)	17 (42.5)	0.033 ^b
	Total	24	40	
Maternal Occupation*				
Mothers with work out of the home		4 (17.4)	19 (46.3)	0.0040
Mothers without work out of the home		19 (82.6)	22 (53.7)	0.021 [°]
	Total	23	41	
Mother's Marital Status*				
Not married		3 (14.3)	5 (13.5)	4.000
Married		18 (85.7)	32 (86.5)	1.000 ^d
	Total	21	37	
Family income/per capita (MW)*				
≤ 0.50		13 (76.5)	18 (47.4)	0 0 4 4 9
> 0.50		4 (23.5)	20 (52.6)	0.044 ^e
	Total	17	38	

Table 5 - Family characteristics of the SGA and AGA groups in the 6th month

(a) $\chi^2=0.11$; (b) $\chi^2=4.54$; (c) $\chi^2=5.36$; (d) Fisher Test; (e) $\chi^2=4.04$; SGA=small for gestational age; AGA=appropriate for gestational age; *f*=absolute frequency; %=relative frequency; MW=minimum wage (1MW=US\$ 72 approximately); *=unavailable information, two cases about maternal education and maternal occupation, 8 cases about marital status and 11 cases about family income per capita.

O presente estudo seccional comparou o desempenho motor de lactentes nascidos a termo PIG com lactentes nascidos a termo AIG no 1°, 2°, 3° e 6° meses de vida, com a intenção de detectar sinais precoces de alterações motoras nos lactentes nascidos PIG. Embora um desenho longitudinal seja preferível, o estudo seccional pode ajudar em questões do desenvolvimento para investigações posteriores. É importante destacar que a maioria dos lactentes foram avaliados pelo menos três vezes durante o período de estudo. Tal fato fortalece os achados encontrados.

Quando se avalia a criança exposta a agressões potenciais do sistema nervoso devem ser consideradas as interações entre o desenvolvimento, a recuperação de função e as influências ambientais. Os resultados inadequados (ou anormais) na avaliação do desenvolvimento podem ser relacionados a alterações na maturação do sistema nervoso, a disfunções neurais, a deficiências motoras ou a influências de variáveis externas à criança (como por exemplo, o comportamento, o temperamento, as influências ambientais ou até as limitações do próprio instrumento de avaliação). Ao contrário, a diversidade dos resultados após agressão do SNC pode ser relacionada à ausência de danos residuais, à reorganização neural, à compensação do comportamento, ao não surgimento das conseqüências do dano ou à combinação desses fatores (54). Assim, é referida a maior dificuldade de diagnóstico do desenvolvimento e a maior complexidade desse processo no lactente do que em outras idades, uma vez que, nesse período de vida, ocorre mudança contínua nas características do sujeito (55).

Existe grande dificuldade para comparar os estudos relativos a repercussão da RCIU sobre o desenvolvimento da criança. Essa dificuldade se deve principalmente a heterogeneidade dos grupos investigados. Diversos trabalhos não excluíram os RN que apresentavam outros fatores de risco para anormalidades no desenvolvimento, diferentes pontos de corte são utilizados para classificar o lactente como PIG, vários aspectos do desenvolvimento são investigados (tono muscular, reflexos primitivos, comportamento, motricidade, desempenho escolar), muitos instrumentos de avaliação são utilizados e crianças de diferentes idades são acompanhadas (56). Para evitar fatores de confundimento, o presente estudo incluiu somente RN a termo e excluiu neonatos com síndromes genéticas, malformações e infecções congênitas.

A análise dos dados neonatais (peso ao nascimento, idade gestacional, índice de Apgar de 1° e 5° minuto) revelou a eficácia do método utilizado para seleção e classificação dos grupos (PIG e AIG), visto que estes diferiram apenas no peso de nascimento. O critério de seleção dos RN a termo, utilizando a coerência entre a data da última menstruação e/ou a idade estimada pela ultra-sonografia realizada antes da 24° semana de gravidez, comparados com a avaliação clínica pós-natal da idade gestacional pelo método de Capurro et al. (57), diminuiu o risco de erro para eventual inclusão de RN pré-termo na casuística e contribuiu para homogeneidade dos grupos quanto a idade gestacional. Tendo em vista que, durante o período fetal a velocidade de maturação do sistema nervoso é muito alta, essa homogeneidade entre os grupos semelhante quanto ao índice de Apgar também é relevante, pois mostra a vitalidade dos RN do grupo PIG e AIG, os quais não apresentaram anóxia neonatal. O sofrimento perinatal é fator relevante na determinação de risco de morbidade neurológica relacionada ao desenvolvimento da criança (58) e, portanto uma variável cujo controle é fundamental.

A comparação entre os grupos PIG e AIG mostrou diferença significativa no 2° mês. Neste período, o grupo PIG apresentou menor média de IS e menor proporção de lactentes que realizaram com sucesso as provas, "faz movimentos alternantes para arrastar em prono", "troca de decúbito lateral para dorsal" e "equilibra a cabeça". Tendo em vista que, as variáveis biológicas exercem maior influência sobre o desenvolvimento nos primeiros meses de vida (53); e que a desnutrição intra-uterina pode causar retardo no crescimento e desenvolvimento da função cerebral (59), acredita-se que as diferenças encontradas entre os grupos PIG e AIG no início da vida pós-natal estejam relacionadas a disfunções em partes específicas do cérebro, responsáveis pelo controle das habilidades testadas.

A desnutrição materna (principalmente em relação aos ácidos graxos essenciais e vitamina E) pode causar várias alterações no desenvolvimento fetal, tais como, redução no número total de neurônios, redução na formação de sinapses, além de falhas no processo de migração neuronal. Entre 26 e 34 semanas de gestação, ocorre o processo normal de perda de neurônio e retração de axônio, de modo que a atividade metabólica encontra-se aumentada, e algumas áreas, tais como, gânglios da base e cerebelo estão mais vulneráveis a lesão. Como estas áreas estão implicadas em aspectos críticos do

controle motor (60), os lactentes que passaram por períodos de RCIU podem apresentar alterações relativas ao comportamento motor.

A formação do sistema nervoso tem início na segunda semana embrionária, quando ocorre indução dorsal. A partir daí, a maturação prossegue, havendo variação do ritmo de acordo com as regiões cerebrais envolvidas e modificação da velocidade conforme a idade (61). Segundo Volpe (62) os principais eventos no desenvolvimento do cérebro humano são:

Neurulação primária - entre a 3ª e a 4ª semana de gestação Desenvolvimento do prosencéfalo - entre o 2º e o 3º mês de gestação Proliferação neuronal - entre o 3º e o 4º mês de gestação Migração neuronal - entre o 3º e o 5º mês de gestação Organização - do 5º mês de gestação a anos pós-natais Mielinização - do nascimento a anos pós-natais

Ao se considerar a vulnerabilidade do cérebro em desenvolvimento, consequente à restrição do crescimento de causa nutricional, três fatores principais devem ser ressaltados: a gravidade da restrição, o tempo (momento) e a duração do evento (63, 64). Acredita-se que, a desnutrição durante o período de divisão celular (hiperplasia), entre o 2º mês e a 24ª semana de gestação, ocasiona redução permanente no número de células; enquanto que a desnutrição tardia, relacionada ao período em que há predomínio do fenômeno de hipertrofia celular, determina redução no tamanho das células, fato reversível com a recuperação da nutrição adequada (65, 66). No presente estudo esses parâmetros (tempo, duração e gravidade da RCIU) não foram controlados. Porém, pressupõe-se que a RCIU ocorreu numa fase mais tardia da gestação, não afetando gravemente esses lactentes.

O sistema nervoso central do feto humano gera atividade espontânea coordenada desde os primeiros meses de gestação, desenvolvendo assim um repertório rico de movimentos gerados endogenamente (67). Alguns comportamentos podem existir como continuidade da atividade motora intra-uterina, e diminuir no período pós-natal sem nenhuma implicação para o desenvolvimento futuro; enquanto outros comportamentos podem se desenvolver a partir do nascimento, estando ausentes no ambiente intra-uterino (68). Cabe destacar, entretanto, que inicialmente o repertório do lactente é basicamente

uma continuidade do repertório fetal, sendo que por volta do 2º mês ocorre a transformação maior das funções neurais, modificando muitas funções para condições mais adaptativas do que durante os primeiros 2 meses de vida pós-natal (69,70). Dessa forma, a diferença encontrada no 2º mês possivelmente pode ser explicada considerandose que o lactente nascido PIG passe por essa transformação maior das funções neurais mais tardiamente em relação aos lactentes nascidos AIG, por apresentar demandas diferentes nos primeiros meses, como por exemplo, padrão de crescimento distinto após a retirada dos fatores limitantes do crescimento intra-uterino.

Durante a chamada transformação maior das funções neurais, os movimentos gerais de lactentes com desenvolvimento típico, comumente chamados de "writhing" são substituídos por movimentos "fidgety". Trata-se de movimentos circulares de pequena amplitude, velocidade moderada e aceleração variável de pescoço, tronco e membros em todas as direções. Lactentes com desenvolvimento típico apresentam movimentos graciosos de braços e pernas (52). Os movimentos "fidgety" anormais nessa idade se assemelham aos movimentos normais, porém com amplitude e velocidade aumentados. Muitos lactentes com RCIU apresentam movimentos gerais anormais transitoriamente, indicando assim a importância de se realizar várias avaliações. As anormalidades em idade precoce podem estar relacionadas a lesões de subsistemas neurais, cujas funções no controle motor cessam entre 2 e 3 meses de vida pós-natal. Portanto, essas anormalidades podem desaparecer se a nova transformação das funções neurais não estiver prejudicada (52). Nesse sentido, a diferença entre os grupos PIG e AIG no 2° mês pode estar relacionada a diferenças na qualidade dos movimentos gerais ou no processo de transição do movimento "writhing" para "fidgety".

Diferenças no desempenho motor de lactentes nascidos PIG e AIG tem sido relatadas em estudos qualitativos, os quais podem ajudar a explicar as diferenças quantitativas. Van Kranen-Mastenbroek et al. (71) investigaram a qualidade dos movimentos espontâneos em lactentes nascidos PIG e AIG durante as primeiras duas semanas de vida. Cinco tipos de movimentos gerais foram encontrados no grupo PIG; de modo que dois desses movimentos, os quais eram monótonos, estereotipados e com falta de variabilidade e complexidade, não estavam presentes no repertório dos lactentes nascidos AIG. Além disso, Gagliardo et al. (72) compararam a função visual e o controle motor apendicular de lactentes nascidos a termo PIG e AIG durante os primeiros três meses utilizando as Escalas Bayley-II. As provas "tenta levar mão a boca" no 1° mês, e

"alcança aro suspenso" no 3° mês foram observadas com maior frequência no grupo PIG, provavelmente devido a maior ocorrência de movimentos dos braços nos primeiros meses de vida. Apesar de parecerem normais, esses movimentos foram exagerados quanto a velocidade e amplitude. Tal padrão de movimento vem sendo mencionado de várias maneiras na literatura, "windmill motions of the arms" (73), "wind-milling arms movement" (74), "cicling movements" (75) ou "arm movements in circles" (76).

No presente estudo, houve ainda uma diferença significativa entre os grupos PIG e AIG no 6° mês. Neste período, o grupo PIG apresentou menor média de IS e menor proporção de lactentes que realizaram com sucesso as provas "senta sozinho momentaneamente por 2 segundos" e "senta sozinho por 30 segundos". Resultados semelhantes foram observados em estudo anterior no qual Grantham-McGregor et al. (32) avaliaram o desempenho motor e mental de lactentes nascidos a termo com baixo peso e com peso adequado no 6° e 12° meses. Verificou-se que os lactentes nascidos com baixo peso apresentaram desempenho motor e mental inferiores e foram mais prováveis de serem afetados por condições ambientais desfavoráveis em relação aos lactentes nascidos com peso adequado.

Uma das dificuldades de lidar com os resultados neurológicos adversos do lactente nascido PIG é que tais resultados não necessariamente se mantém estáveis ao longo do tempo (23). Fernandez-Carrocera et al. (22) analisaram a freqüência de alteração no desenvolvimento psicomotor de 77 lactentes do grupo com RCIU e 77 lactentes do grupo controle no 12º mês de vida. A avaliação, realizada com as Escalas Bayley-II, mostrou diferença significativa do desempenho mental e motor dos grupos, havendo maior freqüência de anormalidade no grupo de lactentes com RCIU. Os autores acreditam que esse atraso psicomotor seja transitório. Além disso, no estudo de Low et al. (77) os lactentes do grupo com RCIU apresentaram menor IS motor em relação ao grupo controle no 12º mês de vida. No entanto, não houve diferença estatisticamente significativa entre os grupos aos 24, 36, 42, 48 e 60 meses. Embora o atraso psicomotor encontrado por esses autores seja transitório, como a literatura descreve diferenças entre os grupos PIG e AIG na idade escolar (28-31), é importante realizar o acompanhamento para investigar se os lactentes que apresentaram atraso psicomotor transitório evoluem com pior desempenho escolar.

A instabilidade motora provavelmente ocorre pois o desenvolvimento infantil tende a ser mais influenciado por fatores biológicos nos primeiros meses de vida, de modo que as variáveis ambientais adquirem maior importância conforme a criança cresce (53). Uma grande variedade de fatores pode influenciar o desenvolvimento da criança, tais como, condições sócio-econômicas, qualidade de interação mãe-bebê, educação materna e ocupação materna (23). Esses fatores ambientais podem agravar ou amenizar a influência de eventos pré ou perinatais adversos (53,78), de modo que as condições ambientais desfavoráveis representam alto risco para o comprometimento do desenvolvimento infantil; e o ambiente adequado favorece o desenvolvimento de crianças de risco (79).

Para alcançar maior entendimento das diferenças motoras entre os grupos PIG e AIG no 2º e 6º meses de vida, as características familiares foram comparadas. Os grupos diferiram quanto a ocupação materna no 2º mês, havendo maior frequência de mães do grupo PIG que não trabalhavam fora do lar. No 6º mês, os grupos diferiram em relação a ocupação materna, escolaridade materna e renda per capita, havendo maior frequência de mães do grupo PIG que não trabalhavam fora do lar, que apresentavam menos de 8 anos de estudo e com baixa renda familiar. Muitos trabalhos têm demonstrado que o desenvolvimento motor está fortemente relacionado ao nível de estimulação no ambiente familiar (80-82). Tendo em vista que os lactentes com algum risco biológico são mais vulneráveis as condições sócio-econômicas e ambientais adversas (32,78,83,84), que os lactentes cujas mães possuem menor grau de escolaridade são menos prováveis de serem estimulados (32), e que os lactentes provenientes de famílias com baixa renda apresentam maior probabilidade de atraso no desenvolvimento (85), acredita-se que as características familiares tenham contribuído para as diferenças motoras encontradas entre os grupos PIG e AIG.

Um estudo realizado na América Latina avaliando determinantes de morbidade infantil e sua correlação com a educação dos pais e condições sócio-econômicas, demonstrou que o aumento da educação materna teve efeito mais protetor para as crianças provenientes de classes sociais melhores do que para aquelas de classes mais pobres. Melhorias nas condições econômicas reduziram os riscos relacionados à saúde primordialmente para as crianças cujas mães tinham melhor escolaridade. A educação do pai teve ação protetora e operou independentemente das condições econômicas da família. Esses autores sugerem que, diante dos resultados obtidos, os esforços para alívio

da pobreza em conjunto com os programas de educação para mulheres e meninas serão mais efetivos em prover melhores condições de saúde infantil do que cada ação separadamente (86).

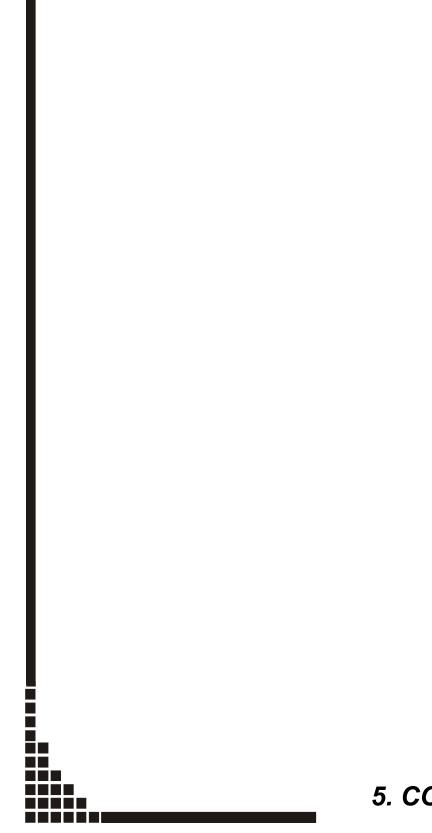
Outro aspecto que poderia explicar a menor média de IS do grupo PIG em relação ao grupo AIG no 2° e 6° meses diz respeito a superproteção dos pais. Sabe-se que os pais tendem a ser superprotetores e cautelosos quando seus filhos apresentam algum risco biológico, como por exemplo, peso ao nascimento abaixo do esperado (53,87). Em relação ao desenvolvimento motor, estudos mostram que quando uma criança é mantida a maior parte do dia em condições de restrição motora (contidas no colo, em bebêconforto, carrinho de bebê ou cadeirão, etc), pode ocorrer prejuízos na aprendizagem e utilização dos sistemas de *feedback* e *feedforward*, essenciais para aquisição das habilidades motoras (88, 89). Tendo em vista que no grupo PIG houve maior frequência de mães que não trabalhavam fora do lar, a superproteção dos pais pode ter inflenciado o desempenho motor dos lactentes, de modo que certas provas relativas a habilidade motora axial ("faz movimentos alternantes para arrastar em prono", "troca de decúbito lateral para dorsal", "equilibra a cabeça", "senta sozinho momentaneamente por 2 segundos" e "senta sozinho por 30 segundos") foram mais desafiadoras para o grupo PIG em relação ao AIG.

Devido à natureza multifatorial do problema e à complexidade dos diversos fatores neubiológicos e sociais envolvidos no desenvolvimento infantil, é praticamente impossível estabelecer relação causal direta da desnutrição intra-uterina com as alterações do desenvolvimento da criança, baseado no pressuposto dos efeitos permanentes da desnutrição em idade precoce sobre o crescimento do cérebro. Portanto, é relevante que na avaliação do desenvolvimento todos os aspectos biológicos e ambientais sejam ponderados antes do diagnóstico final; dessa forma, talvez, a vigilância do desenvolvimento da criança e seu seguimento clínico façam mais sentido do que avaliações isoladas com finalidade diagnóstica (90).

Na vigilância do desenvolvimento um aspecto relevante a ser considerado diz respeito à gravidade da desnutrição intra-uterina. Os efeitos biológicos deletérios da desnutrição intra-uterina sobre o cérebro em desenvolvimento estão comprovadamente demonstrados na situação de desnutrição de maior gravidade. Evidências de associação do comprometimento do cérebro humano com o desenvolvimento futuro da criança também se encontram fortemente estabelecidas. A extensão desses resultados para os lactentes nascidos PIG, que supostamente sofreram RCIU, deve considerar em que grau esse processo ocorreu. Em casos de menor gravidade o impacto da RCIU pode ser atenuado por condições ambientais favoráveis pós-natais e o lactente apresentar apenas sinais neurológicos menores, dificilmente detectados quando não monitorados (90).

Em resumo, não existe consenso sobre o desenvolvimento motor de lactentes nascidos PIG. Acredita-se que os lactentes nascidos PIG que sofreram períodos mais longos de RCIU estejam associados a piores resultados de desenvolvimento, assim como aqueles que apresentaram outras complicações, tais como anóxia ao nascimento, síndromes genéticas, malformações e infecções congênitas (91). Por outro lado, é possível que na ausência de outras complicações e sendo criado num ambiente favorável, os lactentes nascidos a termo PIG apresentem desenvolvimento similar aos lactentes nascidos AIG, pois neste caso o ambiente ajudaria a reduzir os déficits iniciais de desenvolvimento (79) Portanto, lactentes expostos a períodos de RCIU, com outras complicações biológicas associadas e/ou condições ambientais desfavoráveis (eventos comuns nos países em desenvolvimento) devereriam ser considerados prioridades para acompanhamento e detecção precoce de alterações. Além disso, acredita-se que as avaliações qualitativas podem auxiliar na identificação de lactentes com atrasos menores.

Os resultados do teste Bayley para lactentes brasileiros mostraram que ambos os grupos (PIG e AIG) pontuaram abaixo da média de escore do grupo normativo no 3° mês, pelo menos mais baixo do que seria esperado para lactentes com desenvolvimento típico. Como os lactentes do grupo PIG e AIG não apresentaram nenhum distúrbio neurológico que pudesse justificar a baixa pontuação no 3° mês, essa diferença transitória pode ter ocorrido em virtude da variabilidade na taxa de aquisição das habilidades motoras. Atualmente, a evolução do organismo é vista como uma série de estados de estabilidade e instabilidade. Nesse sentido, os lactentes em desenvolvimento não apresentam surgimento estável das habilidades motoras, havendo períodos em que poucas habilidades são adquiridas e outros marcados por grande quantidade de aquisições acontecendo simultaneamente (36,92-94). Seguindo essa linha de pensamento, é possível que, durante o 3º mês de vida, os lactentes do grupo PIG e AIG tenham passado por um período de estabilidade, no qual poucas habilidades foram adquiridas e por isso apresentaram pontuação mais baixa na avaliação. De acordo com Darrah et al. (92), durante os períodos de estabilidade, os lactentes não aprendem


muitas habilidades novas, portanto, a classificação na faixa de percentil diminui. Para os autores essa diminuição na faixa de percentil não significa que as habilidades motoras foram perdidas, mas que a taxa de aquisição de novas habilidades não ocorreu de maneira uniforme.

Outro fator que pode justificar a diferença entre os grupos (PIG e AIG) e o grupo normativo refere-se a falta de validação das Escalas Bayley-II para a população brasileira. De acordo com Bayley (44), o grau de dificuldade das provas incluídas em cada mês de avaliação varia em torno de 90% a 15% dos lactentes realizando a tarefa. É possível que algumas provas específicas do 3° mês foram mais desafiadoras para ambos os grupos (PIG e AIG). Para confirmar essa hipótese, é necessário que sejam realizadas novas pesquisas, considerando um exame cuidadoso de cada prova aplicada nesse mês, e observando pelo menos três aspectos: primeiro, se foi uma característica casual desse grupo; segundo, se houve dificuldade do lactente frente ao instrumento de avaliação ou; finalmente, se houve influência cultural quanto às práticas maternas de cuidado do lactente brasileiro.

Distintas práticas maternas são utilizadas no cuidado diário de lactentes pertencentes a diferentes grupos culturais. Nesse sentido, vários estudos mostram que o padrão de desenvolvimento motor não é universal, pois comportamentos característicos sempre são evidenciados (95-98). No estudo de Lopes et al. (97), a comparação entre lactentes brasileiros e canadenses, a partir dos dados de normalidade da Alberta Infant Motor Scale, demonstrou diferença no desenvolvimento motor dos dois grupos, principalmente nas posições prono e em pé. Acredita-se que os lactentes brasileiros vivenciam poucas experiências nessas posições. Além disso, Santos et al. (98) compararam o desenvolvimento motor de lactentes brasileiros com o grupo normativo das Escalas Bayley-II no primeiro ano de vida e verificaram diferença significativa entre os grupos no 3°, 4° e 5° meses. Nesses períodos, menos de 15% dos lactentes brasileiros passaram nas provas que envolviam habilidades de sentar e preensão. Possíveis explicações para tais diferenças foram justificadas a partir das práticas maternas. Os autores acreditam que as mães brasileiras sejam mais protetoras, de modo que os lactentes geralmente são mantidos no colo e raramente são colocados no chão para brincar durante os primeiros seis meses de vida, limitando assim o desenvolvimento das habilidades motoras axiais nesse período (98). Tendo em vista que as Escalas Bayley-II

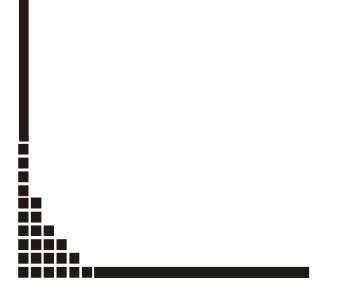
não foram culturalmente adaptadas para a população brasileira, os resultados obtidos devem ser interpretados com muita cautela.

O presente estudo possui algumas limitações a serem levadas em conta guando se considera suas contribuições. Primeiro, em conseqüência do número reduzido de lactentes que compareceram em todas as avaliações, ficou impossibilitado o estudo longitudinal. O desenho de estudo seccional não permite a observação da evolução do desenvolvimento motor e suas mudanças ao longo do tempo. Segundo, mesmo nas avaliações em cortes seccionais, a casuística pequena pode representar características particulares desse grupo de lactentes, não se podendo generalizar para o lactente PIG de forma mais ampla. Uma amostra maior deve ser considerada em estudos futuros. Cabe destacar, entretanto, que essa é uma limitação comum dos estudos com lactentes que apresentaram RCIU. Uma revisão de literatura realizada por Walker et al. (21) mostrou que em geral o tamanho das amostras varia de pequeno a moderado. Terceiro, as informações a respeito dos fatores causais da RCIU não foram suficientemente abordadas, dificultando o diagnóstico etiológico. Estudos futuros com maior controle das variáveis fetais, maternas e ambientais poderiam trazer maior certeza de que todos esses lactentes PIG de fato sofreram RCIU. Nesse sentido, reduzir o ponto de corte para o percentil 5 da curva de crescimento fetal talvez aumente a probabilidade de maior número de lactentes nascidos PIG que tenham sofrido RCIU. Estudos futuros sobre o neurodesenvolvimento de lactentes nascidos PIG deveriam considerar essas limitações ao traçarem sua metodologia.

5. CONCLUSÕES

Concluiu-se que os lactentes do grupo PIG apresentaram desempenho motor significativamente inferior aos lactentes do grupo AIG no 2° e 6° meses.

Nesses períodos houve menor proporção de lactentes do grupo PIG que realizaram com sucesso as seguintes provas: "faz movimentos alternantes para arrastar em prono", "troca de decúbito lateral para dorsal", "equilibra a cabeça", "senta sozinho momentaneamente por 2 segundos" e "senta sozinho por 30 segundos".


Considerando as características familiares, os grupos diferiram quanto a ocupação materna, escolaridade materna e renda per capita, de modo que no grupo PIG houve maior frequência de mães que não trabalhavam fora do lar, que apresentavam menos de 8 anos de estudo, e com baixa renda.

Esses achados sugerem que os lactentes nascidos a termo PIG estão sob maior risco para apresentar alterações no desenvolvimento motor; e indicam a necessidade de acompanhamento de tais lactentes nos primeiros meses de vida, especialmente aqueles expostos a condições ambientais adversas.

6. CONSIDERAÇÕES FINAIS Os resultados deste estudo mostraram diferença significativa entre o desempenho motor do grupo PIG e AIG no 2° e 6° meses de vida. Acredita-se que os lactentes nascidos a termo PIG, especialmente aqueles expostos a condições ambientais desfavoráveis, apresentam maior risco para desenvolver alterações motoras. Tendo em vista que os primeiros anos de vida representam um período de grande importância para o desenvolvimento motor, e que as práticas diárias no cuidado com o lactente têm sido identificadas como um dos principais fatores influenciadores deste processo, torna-se necessário a criação de políticas públicas para orientação dos pais e divulgação de estratégias para otimizar/estimular o desenvolvimento motor desde o nascimento, a fim de prevenir ou minimizar alterações motoras futuras.

Cabe ainda ressaltar que os lactentes do grupo PIG e AIG pontuaram abaixo da média de escore do grupo normativo das Escalas Bayley no 3º mês. Nesse período, ambos os grupos (PIG e AIG) apresentaram média de IS abaixo de 85. Como muitos estudos têm demonstrado que o padrão de desenvolvimento motor não é universal, acredita-se que as distintas práticas culturais, utilizadas no cuidado diário de lactentes, contribuíram para a diferença encontrada entre os grupos. Portanto, deve ser considerada a necessidade de desenvolvimento de estudos para validar instrumentos estrangeiros de avaliação, como as *Bayley Scales of Infant Development*-II, para os lactentes brasileiros.

1. Avchen RN, Scott KG, Mason CA. Birth weight and school age disabilities: a populationbased study. Am J Epidemiol 2001; 154 (10): 895-901.

2. Alberman E, Evans SJW. A epidemiologia da Prematuridade: Etiologia, freqüência e prognóstico. Anais Nestlé 1992; 44: 5-24.

3. Villar J, Belizan JM. The relative contribution of prematurity and fetal growth retardation to low birth weight in developing and developed societies. Am J Obstet Gynecol 1982; 143: 793-8.

4. Bittar RE. Crescimento intra-uterino retardado. In: Zugaid M, Pedreira DAL, Brizot ML, Bunduki V. Medicina fetal. 2.ed. São Paulo: Atheneu; 1997. p.358-76.

5. Crouse DT e Cassady G. O recém-nascido pequeno para a idade gestacional. In: Alves filho N, Alves Júnior JMS, Trindade Filho O. Neonatologia: fisiopatologia e tratamento do recém-nascido. 4.ed. Rio de Janeiro: Editora Médica e Científica Ltda; 1999. p.371-400.

6. Chard T, Yoong A, Macintosh M. The myth of fetal growth retardation at term. Br J Obstet Gynaecol 1993; 100: 1076-81

7. Mamelle N, Cochet V, Claris O. Definition of fetal growth restriction according to constitutional growth potential. Biol Neonate 2001; 80 (4): 277-85.

8. Onis M, Blossner M, Villar J. Levels and patterns of intrauterine growth retardation in developing countries. Eur J Clin Nutr 1998; 52 (Suppl 1): 5-15.

9. Benedict BA, O' Riordan MA, Kirchner HL, Shah D, Hack M. Perinatal correlates and neonatal outcomes of small for gestational age infants born at term gestation. Am J Obstet Gynecol 2001; 185 (3): 652-9.

10. Phung H, Bauman A, Nguyen TV, Young L, Tran M, Hillman K. Risk factors for low birth weight in a socio-economically disadvantaged population: parity, marital status, ethnicity and cigarette smoking. Eur J Epidemiol 2003; 18 (3): 235-43.

11. Bertagnon JRD, Pedrosa RG. Desnutrição intra-uterina: recém-nascido pequeno para a idade gestacional. In: Segre CAM, Armellini PA, Marino WT. RN. São Paulo: Sarvier; 1995. p.115-22.

12. Almeida MF, Mello Jorge MHP. Pequenos para a idade gestacional: fator de risco para mortalidade neonatal. Rev Saúde Públ 1998; 32 (3): 217-24.

13. Mariotoni GGB. Estudo caso-controle de fatores de risco para o baixo peso ao nascer [dissertação de mestrado]. Campinas (SP): Universidade Estadual de Campinas; 1995.

14. Georgieff MK. Intrauterine growth retardation and subsequent somatic growth and neurodevelopment. J Pediatr 1998; 133: 3-5.

15. Winnick M, Rosso P. The effect of severe early malnutrition on cellular growth of the human brain. Pediatr Res 1969; 3: 181-4.

16. Bass NH, Netsky MG, Young E. Effect of neonatal malnutrition on the developing cerebrum. Arch Neurol 1970; 23: 289-302.

17. Cragg BH. The development of cortical synapses during starvation in the rat. Brain 1972; 95: 143-50.

18. Yamamamoto N, Saitoh M, Moriuchi A, Nomura M, Okuyama H. Effect of dietary linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J Lipid Res 1987; 28: 144-51.

19. Pryor J. The identification and long term effects of fetal growth restriction. Br J Obstet Gynaecol 1997; 103: 1116-22.

20. Dobbing J, Path MRC. Undernutrition and the developing brain: the relevance of animal models to the human problem. Am J Dis Child 1970; 120: 411-5.

21. Walker SP, Wachs TD, Gardner JM, Lozoff B, Wasserman GA, Pollitt E, et al. Child development: risk factors for adverse outcomes in developing countries. Lancet 2007; 369: 145–57.

22. Fernandez-Carrocera LA, Chavez-Torres R, Casanueva E, Barrera-Reyes RH, Ibarra-Reyes MD, Martinez-Cruz C. Intrauterine growth retardation and neurodevelopment at one year of age in Mexican children. Nutr Res 2003; 23: 1-8.

23. Goldenberg RL, Hoffman HJ, Cliver SP. Neurodevelopmental outcome of small-forgestational-age infants. Eur J Clin Nutr 1998; 52 (Suppl.1): 54-8.

24. Campos D, Santos DCC, Gonçalves VMG. Retardo de Crescimento Intra-Uterino: Repercussões no Sistema Nervoso Central e no Desenvolvimento de Lactentes. Temas Desenvolv 2004; 13 (75): 37-43.

25. Westwood M, Kramer MS, Munz D, Lovett JM, Watters GV. Growth and development of full-term nonasphyxiated small-for-gestational-age newborns: follow-up through adolescence. Pediatrics 1983; 71 (3): 376-82.

26. Nilsen ST, Finne PH, Bergsjø P, Stamnes O. Males with low birth weight examined at 18 years of age. Acta Paediatr Scand 1984; 73 (2): 168-75.

27. Berg AT. Indices of fetal growth-retardation, perinatal hypoxia-related factors and childhood neurological morbidity. Early Hum Dev 1989; 19: 271-83.

28. Sommerfelt K, Sonnander K, Skranes J, Andersson HW, Ahlsten G, Ellertsen B, et al. Neuropsychologic and motor function in small-for-gestational age preschoolers. Pediatr Neurol 2002; 26 (3): 186-91.

29. Larroque B, Bertrais S, Czernichow P, Léger J. School difficulties in 20-year-olds who were born small for gestational age at term in a regional cohort study. Pediatrics 2001; 108: 111-5.

30. Peng Y, Huang B, Biro F, Feng L, Guo Z, Slap G. Outcome of low birth weight in China: a 16-year longitudinal study. Acta Paediatr 2005; 94 (7): 843-9.

31. Strauss RS. Adult functional outcome of those born small for gestational age: twentysix-years follow-up of the 1970 British Birth Cohort. JAMA 2000; 283 (5): 625-32.

32. Grantham-McGregor SM, Lira PI, Ashworth A, Morris SS, Assunçao AM. The development of low birth weight term infants and the effects of the environment in northeast Brazil. J Pediatr 1998; 32: 661-6.

33. De Vries MW. Babies, brains and culture: optimizing neurodevelopment on the savanna. Acta Paediatr Suppl 1999; 429: 43-8.

34. Eickmann SH, Lima AC, Guerra MQ, Lima MC, Lira PI, Huttly SR, et al. Improved cognitive and motor development in a community-based intervention of psychosocial stimulation in northeast Brazil. Dev Med Child Neurol 2003; 45: 536-41.

35. Piek JP. Infant motor development. Curtin University of Technology Perth, Australia: Human Kinetics; 2006. 323p.

36. Campos D, Santos DCC, Gonçalves VM. Importância da variabilidade na aquisição de habilidades motoras. Rev Neurocienc 2005; 13 (3): 152-7.

37. Wyly VM. Infant assessment. Boulder: Westview Press; 1997. 218p.

38. Campos D, Santos DCC. Controle postural e motricidade apendicular nos primeiros anos de vida. Fisioter Mov 2005; 18 (3): 71-7.

39. Santos DCC, Campos D. Desenvolvimento motor – Fundamentos para diagnóstico e intervenção. In: Moura-Ribeiro MVL, Gonçalves VMG. Neurologia do desenvolvimento da criança. 2.ed. Rio de Janeiro: Revinter; 2010. p.288-307.

40. Figueiras AC, Souza ICN, Rios VG, Benguigui Y. Manual para vigilância do desenvolvimento infantil no contexto da AIDPI (Atenção Integrada às Doenças Prevalentes na Infância). Organização Pan Americana de Saúde; 2005.

41. Souza RCT. Vigilância neuromotora no primeiro trimestre de vida em lactentes com asfixia neonatal [dissertação de mestrado]. Campinas (SP): Universidade Estadual de Campinas; 1998.

42. Campos D, Santos DCC, Gonçalves VMG, Goto MMF, Arias AV, Brianeze ACGS, et al. Agreement between scales for screening and diagnosis of motor development at 6 months. J Pediatr (Rio J) 2006; 82 (6): 470–4.

43. Gabbard C, Rodrigues LP. Testes contemporâneos de avaliação do comportamento motor infantil. In: Moura-Ribeiro MVL, Gonçalves VMG. Neurologia do desenvolvimento da criança. 2.ed. Rio de Janeiro: Revinter; 2010. p.270-87.

44. Bayley N. Bayley scales of infant development. II Manual. San Antonio: Harcourt Brace; 1993.

45. Salokorpi T, Rajantie I, Kivikko I, Haajanen R, Rajantie J. Predicting neurological disorders in infants with extremely low birth weight using the Movement Assessment of Infants. Pediatr Phys Ther 2001; 13 (3): 106-9.

46. Lekskulchai R, Cole J. Effect of a developmental program on motor performance in infants born preterm. Aust J Physiother 2001; 47 (3): 169-76.

47. Ohgi S, Fukuda M, Akivama T, Gima H. Effect of an early intervention programme on low birthweight infants with cerebral injuries. J Paediatr Child Health 2004; 40 (12): 689-95.

48. MacManus BM, Kotelchuck M. The effect of aquatic therapy on functional mobility of infants and toddlers in early intervention. Pediatr Phys Ther 2007; 19 (4): 275-82.

49. Grantham-McGregor SM, Powell C, Walker S, Chang S, Fletcher P. The long-term follow-up of severely malnourished children who participated in an intervention program. Child Dev 1994; 65: 428-39.

50. Achenbach TM, Howell CT, Aoki MF, Rauh VA. Nine-year outcome of the Vermont Intervention Program for low birth weight infants. Pediatrics 1995; 91: 45-55.

51. Bailey DB, Skinner D, Hatton D, Roberts J. Family experiences and factors associated with the diagnosis of fragile X syndrome. J Dev Behav Pediatr 2000; 2: 315-21.

52. Prechtl HFR, Einspieler C, Cioni G, Bos AF, Ferrari F, Sontheimer D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997; 349: 1361-3.

53. Aylward GP, Pfeiffer SI, Wright A, Verhulst SJ. Outcome studies of low birth weight infants published in the last decade: a meta-analysis. J Pediatr 1989; 115 (4): 515-20.

54. Aylward GP. Infant and early chilhood neuropsychology. London: Plenum Press; 1997. 125p.

55. Assumpção Junior FB, Kuczynski E, Rego MGS, Rocca CCA. Escala de avaliação da reação de retração no bebê: um estudo de validade. Arq Neuropsiquiatr 2002; 60: 56-60.

56. Bos AF, Einspieler C, Prechtl HFR. Intrauterine growth retardation, general movements, and neurodevelopmental outcome: a review. Dev Med Child Neurol 2001; 43: 61-8.

57. Capurro H, Konichezky S, Fonseca D Caldeyro-Baccia R. A simplified method for diagnosis of gestational age in the newborn infant. J Pediatr 1978; 93 (1): 120-2.

58. Gonçalves VMG. Neurodesenvolvimento e indicadores de risco: do neonato ao escolar [Tese de Livre-Docência]. Campinas (SP): Universidade Estadual de Campinas; 2003.

59. Winick M. Nutrition, growth and mental development. Biological correlation. Am J Dis Child 1970; 120: 416-8.

60. Mutch L, Leyland A, McGee A. Patterns of neuropsychological function in a lowbirthweight population. Dev Med Child Neurol 1993; 35: 943-56.

61. Oliveira KF. O exame neurológico de recém-nascidos, pequenos para a idade gestacional, comparado ao de recém-nascidos adequados. Neurobiol 1997; 60 (3): 75-90.

62. Volpe J. Neuronal proliferation, migration, organization and myelination. In: Volpe J. Neurology of the newborn. Philadelphia: WB Saunders Company, 2001, p. 45-99.

63. Dobbing J, Sands J. Head circunference, biparietal diameter and brain growth in fetal and postnatal life. Early Hum Develop 1978; 2 (1): 81-7.

64. Pryor J. The identification and long-term effects of fetal growth restriction. Br. J. Obstet. Gynaecol 1996; 103: 1116-22.

65. Winick M, Noble A. Cellular response in rats during malnutrition at various ages. J Nutr 1966; 89: 300-6

66. Winick M. ManInutrition and brain development. Pediatrics 1969; 74: 667-79.

67. Hadders-Algra M. The assessment of general moviments is a valuable technique for the detection of brain dysfunction in young infants. A review. Acta Paediatr Suppl 1996; 416: 39-43.

68. Takaya R, Yukuo K, Bos AF, Einspieler C. Preterm to early posterm changes in the development of hand-mouth contact and other motor patterns. Early Hum Dev 2003; 75: 193-202.

69. Wolff PH. Discontinuous changes in human wakefulness around the end of the second month of life: a developmental perspective. In: Prechtl HFR. Continuity of neural functions from prenatal to postnatal life. Clin Dev Med nº 94. London: Spastics International Medical Publications; 1984.

70. Prechtl HFR. New perspectives in early human development. Eur J Obstet Gyneco Reprod Biol 1986; 21: 347-55.

71. Van Kranen-Mastenbroek VH, Kingma H, Caberg HB, Ghys A, Blanco CE, Hasaart TH, et al. Quality of spontaneous general movements in full-term small for gestational age and appropriate for gestational age newborn infants. Neuropediatrics 1994; 25: 145-153.

72. Gagliardo HG, Gonçalves VM, Lima MC, Francozo Mde F, Aranha Netto A. Visual function and fine-motor control in small-for-gestational age infants. Arq Neuropsiquiatr 2004; 62 (4): 955-962.

73. Michaelis R, Schulte FJ, Nolte R. Motor behavior of small for gestational age newborn infants. Pediatrics 1970; 76 (2): 208-13.

74. Amiel-Tison C, Grenier A. Neurological assessment during the first year of life. New York: Oxford University Press; 1986.

75. Dubowitz LMS, Dubowitz V, Mercury E. The neurological assessment of the preterm and full-term newborn infant. 2.ed. Cambridge: University Press; 1999.

76. Einspieler C, Cioni G, Paolicelli PB, Bos AF, Dressler A, Ferrari F, et al. The early markers for later dyskinetic cerebral palsy are different from those for spastic cerebral palsy. Neuropediatrics 2002; 33: 73-8.

77. Low JA, Galbraith RS, Muir D, Killen H, Pater B, Karchmar J. Intrauterine growth retardation: a study of long-term morbidity. Am J Obstet Gynecol 1982; 142 (6): 670-7.

78. Campos D, Santos DCC, Gonçalves VMG, Montebelo MIL, Goto MMF, Gabbard C.Postural control of small for gestational age infants born at term. Rev Bras Fisioter 2007;11: 1-6.

79. Sonnander K. Early identification of children with development disabilities. Acta Paediatr Suppl 2000; 434: 17-23.

80. Poresky RH, Henderson ML. Infant's mental and motor development: effects of home environment, maternal attitudes, marital adjustment and socioeconomic status. Percept Mot Skills 1982; 53: 695-702.

81. Andraca I, Pino P, La Parra A, Marcela RF. Factores de riesgo para el desarrollo psicomotor en lactentes nacidos en optimas condiciones biológicas. Rev Saúde Públ 1998;
32 (2): 134-47.

82. Vazir S, Naidu NA, Vidyasagar P. Nutritional status, psychosocial development and home environment of Indian rural children. J Indian Acad Pediatr 1998; 35: 959-66.

83. Morris SS, Grantham-McGregor SM, Lira PI, Assunção AM, Ashworth A. Effects of breastfeeding and morbidity on development of low birth weight term babies in Brazil. Acta Paediatr 1999; 88: 1101-6.

84. Eickmann SH, Lira PIC, Lima MC. Desenvolvimento mental e motor aos 24 meses de crianças nascidas a termo com baixo peso. Arq Neuropsiquiatr 2002; 60 (3b): 748-54.

85. Halpern R, Giugliani E, Victora C, Barros F, Horta B. Fatores de risco para suspeita de atraso no desenvolvimento neuropsicomotor aos 12 meses de vida. Rev Chil Pediatr 2002; 73 (5): 529-39.

86. Hatt JE, Waters HR. Determinants of child morbidity in Latin America: a pooled analysis of interactions between parenteral education and economic status. Soc Sci Med 2006; 62: 375-86.

87. Bjerre I, Hanson E. Psicomotor Development and school adjustment of 7-year-old children with low birth weight. Acta Paediatr Scand 1976; 65: 88-96.

88. Bly L. What is the role of sensation in motor learning? What is the role of feedback and feedforward? NDTA Network 1996; Sep-Oct: 3-8.

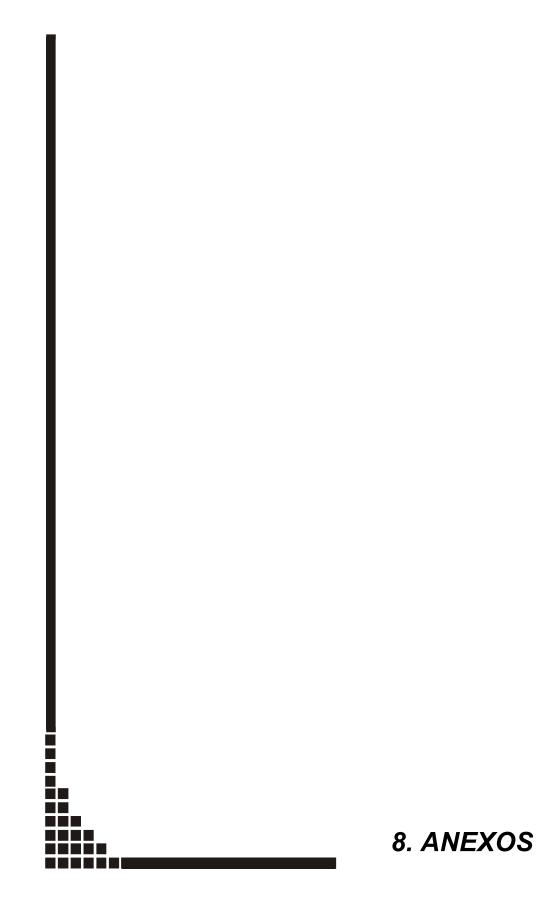
89. Barros KMFT, Fragoso AGC, Oliveira ALB, Cabral Filho JE, Castro RM. Do environmental influences alter motor abilities acquisition? A comparison among children from day-care centers and private schools. Arquivos de Neuro-Psiquiatria 2003; 61(2-A), 170-5.

90. Goto MMF. Pequeno para a idade gestacional: neurodesenvolvimento no primeiro ano de vida [dissertação de doutorado]. Campinas (SP): Universidade Estadual de Campinas; 2009.

91. Roth S, Chang TC, Robson S, Spencer JA, Wyatt JS, Stewart AL. The neurodevelopmental outcome of term infants with different intrauterine growth characteristics. Early Hum Dev 1999; 55: 39-50.

92. Darrah J, Redfern L, Maguire TO, Beaulne AP, Watt J. Intra-individual stability of rate of gross motor development in full-term infants. Early Hum Dev 1998; 52: 169-79.

93. Darrah J, Hodge M, Magill-Evans J, Kembhavi G. Stability of serial assessment of motor and communication abilities in typically developing infants -implications for screening. Early Hum Dev 2003; 72: 97-110.


94. Darrah J, Senthilselvan A, Magill-Evans J. Trajectories of serial motor scores of typically developing children: implications for clinical decision making. Infant Behav Dev 2009; 32: 72–8.

95. Solomons G, Solomons HC. Motor development in Yucatecan infants. Dev Med Child Neurol 1975; 17: 41-6.

96. Hopkins B, Westra T. Maternal expectations of their infant's development: some cultural differences. Dev Med Child Neurol 1989; 31: 384-90.

97. Lopes VB, Lima CD, Tudella E. Motor acquisition rate in Brazilian infants. Infant Child Dev 2009; 18:122-32.

98. Santos DCC, Gabbard C, Gonçalves VMG. Motor development during the first year: a comparative study. J Genet Psychol 2001; 162 (2): 143-153.

 FACULDADE DE CIÊNCIAS MÉDICAS COMITÊ DE ÉTICA EM PESQUISA
 ⊠ Caixa Postal 6111, 13083-970 Campinas, SP.
 ☎ (0_19) 3788-8936
 FAX (0_19) 3788-7187
 ♥ www.fcm.unicamp.br/pesquisa/etica/index.html
 □ cep@fcm.unicamp.br

CEP, 20/12/05. (PARECER PROJETO 087/2003)

PARECER

I-IDENTIFICAÇÃO:

PROJETO: "VELOCIMETRIA DOPPLER CEREBRAL EM RECÉM-NASCIDOS DESNUTRIDOS E NEURODESENVOLVIMENTO INFANTIL NO PRIMEIRO ANO DE VIDA"

PESQUISADOR RESPONSÁVEL: Vanda Maria Gimenes Gonçalves

II - PARECER DO CEP

O Comitê de Ética em Pesquisa da Faculdade de Ciências Médicas da UNICAMP tomou ciência e aprovou o adendo que acrescenta o projeto intitulado "DESEPENHO MOTOR AXIAL DE LACTENTES NASCIDOS PEQUENOS PARA IDADE GESTACIONAL NO PRIMEIRO ANO DE VIDA", a ser desenvolvido com a finalidade de Tese de Doutorado da aluna Denise Campos, referente ao protocolo de pesquisa supracitado.

O conteúdo e as conclusões aqui apresentados são de responsabilidade exclusiva do CEP/FCM/UNICAMP e não representam a opinião da Universidade Estadual de Campinas nem a comprometem.

Profa Dra. Carmen Silvia Bertuzzo PRESIDENTE DO COMITÉ DE ÉTICA EM PESQUISA FCM / UNICAMP

ANEXO 2

TERMO DE CONSENTIMENTO INFORMADO

"PEQUENO PARA A IDADE GESTACIONAL: COMPORTAMENTO MOTOR NOS PRIMEIROS MESES DE VIDA"

Responsável pela pesquisa: Denise Campos Orientadora: Prof. Dra. Vanda Maria Gimenes Gonçalves

A equipe do Grupo Interdisciplinar de Avaliação do Desenvolvimento Infantil (GIADI) está realizando uma pesquisa para acompanhar, durante os primeiros seis meses de vida, o desenvolvimento motor de bebês nacidos a termo na maternidade do CAISM/UNICAMP.

Os profissionais que realizam esse trabalho são pediatra, neurologista infantil e fisioterapeuta com experiência no acompanhamento de bebês. Você e seu filho estão sendo convidados para participar desta pesquisa. Seu (sua) filho(a) será avaliado quanto ao desenvolvimento motor no 1°, 2°, 3° e 6° mês. As avaliações demoram cerca de 40 minutos, para observar a maneira como seu filho manipula alguns objetos padronizados do tipo de brinquedos. Utilizaremos para as avaliações as *Bayley Scales of Infant and Toddler Development*-II (Bayley, 1993), utilizadas mundialmente, sem qualquer risco para o bebê.

A escolha foi criteriosa, de maneira que pedimos que nos comunique a impossibilidade de retorno ou se ocorrer mudança de endereço.

Sua participação não é obrigatória e você poderá sair da pesquisa a qualquer momento, sem prejudicar o atendimento que seu (sua) filho(a) está recebendo.

Caso aceite, para que continuem fazendo parte da pesquisa, é importante que voltem para as consultas agendadas. Estas avaliações são gratuitas.

As informações serão mantidas em segredo e os dados obtidos serão utilizados apenas com fins acadêmicos. O resultado lhe será comunicado, com o que pensamos retribuir, em parte, a colaboração que estão prestando.

Caso seja encontrado qualquer problema no desenvolvimento de seu (sua) filho(a), nós lhe comunicaremos e ele(a) será encaminhado(a) para tratamento em serviços do seu município.

Eu,		,RG	
responsável pe	la criança		, residente
na rua			
cidade	, CEP	, fone ()	, concordo com
as colocações a	acima e quero participa	ar deste Programa.	

Responsável pela criança

Responsável pela pesquisa

Telefone para contato: Denise Campos (19) 3521-7478 Secretaria do Comitê de Ética em Pesquisa: (19) 3521-8936

ANEXO 3

ROTEIRO DE EXAME DO 1º MÊS DA ESCALA BAYLEY

Nome da criança:	№ PROJ HC
Nome da mãe:	
Data de nascimento: / / / Data: / / Id	cronld corrig
ESCALA MENTAL	
 1- Olha por 2 segundos para o examinador 14- Sorri ou vocaliza quando o examinador acena a cabeça, sorri 19- Sorri ou vocaliza quando o examinador acena a cabeça e sor 21- Vocaliza quando o examinador acena a cabeça, sorri ou fala 13- Reconhece visualmente o responsável (sorri, olha intensame 20- Reage ao desaparecimento de face 7- Habitua-se ao chocalho 8- Discrimina entre sino e chocalho (choro, mudança de atividade 3- Responde à voz 6- Observa o aro por 3 segundos 	rri nte)
15- Olhos seguem o aro, excursão horizontal 16- Olhos seguem o aro, excursão vertical	MENTAL
 17- Olhos seguem o aro, excursão circular 18- Olhos seguem o aro, em arcos de 30° 9- Procura som com olhar ou cabeça 	RAW SCORE
5- Segue com o olhar pessoa em movimento	INDEX SCORE
11- Torna-se excitado antecipadamente 12- Antecipadamente, ajusta o corpo ao ser apanhado	IC 95% -
OBSERVÁÇÃO ACIDENTAL 2- Acalma-se quando é apanhado no colo	CLASSIFICAÇÃO
 4- Explora visualmente o ambiente 10- Vocaliza 4 vezes (ah, uh, grito, bolhas, guturais) 22- Vocaliza 2 vogais diferentes 	
ESCALA MOTORA	
 3- Eleva cabeça intermitente quando colocado no ombro 4- Segura cabeça ereta por 3 segundos 5- Ajusta postura quando colocado no ombro 7- Sustenta cabeça ereta e estável por 15 segundos 15- Segura cabeça estavelmente enquanto é movido 	
 8- Levanta parcialmente a cabeça na suspensão dorsal 14- Ajusta cabeça na suspensão ventral 	MOTORA
11- Troca de decúbito lateral para dorsal 13- Segura aro por 2 segundos	RAW SCORE
OBSERVAÇÃO ACIDENTAL 1- Movimenta braços	INDEX SCORE
 2- Movimenta pernas 6- Mãos cerradas a maior parte do tempo 	IC 95% -
0 Eleve persee per 2 acquindes em aunins	

9- Eleva pernas por 2 segundos, em supino 10- Faz movimentos alternantes para arrastar em prono

12- Tenta levar mãos à boca

16- Manifesta movimentos simétricos de membros

17- Cabeça na linha média a maior parte do tempo

MOTORA						
RAW SCORE						
INDEX SCORE						
IC 95%	-					
CLASSIFICAÇÃO						

ROTEIRO DE EXAME DO 2º MÊS DA ESCALA BAYLEY

	Nº PROJ					
Nome da criança:						
Nome da mãe:						
Data de nascimento: / / / Data: /	_/ Id cronId corrig					
ESCALA MENTA	L					
 14- Sorri ou vocaliza quando o examinador acena a ca 19- Sorri ou vocaliza quando o examinador acena a ca 21- Vocaliza quando o examinador acena a cabeça, so 33- Vocaliza quando o examinador acena a cabeça e s 13- Reconhece visualmente o responsável (sorri, olha 20- Reage ao desaparecimento de face 23- Desvia o olhar do sino para o chocalho 	beça e sorri orri ou fala sorri					
35- Brinca com o chocalho	MENTAL					
30- Vira cabeça para som 15- Olhos seguem o aro, excursão horizontal						
16- Olhos seguem o aro, excursão vertical 17- Olhos seguem o aro, excursão circular	RAW SCORE					
18- Olhos seguem o aro, em arcos de 30° 37- Manipula o aro	INDEX SCORE					
36- Olhos seguem bastão 24- Cabeça segue o aro	IC 95% -					
Cabeça segue o aro Fabitua-se ao estímulo visual CLASSIFICAÇÃO CLASSIFICAÇÃO						
28- Manifesta preferência visual29- Prefere novidade25- Observa cubo por 3 segundos						
32- Olhos seguem bolinha rolando sobre a mesa						

OBSERVAÇÃO ACIDENTAL

- 22- Vocaliza 2 vogais diferentes
- 31- Vocalizações expressivas
- 34- Inspeciona a própria mão(s)

ESCALA MOTORA

- 7- Sustenta cabeça ereta e estável por 15 segundos
- 15- Segura cabeça estavelmente enquanto é movido
- 19- Equilibra a cabeça (no plano vertical)
- 8- Levanta parcialmente a cabeça na suspensão dorsal
- _____ 14- Ajusta cabeça na suspensão ventral
- 11- Troca de decúbito lateral para dorsal
- 13- Segura aro por 2 segundos
 - 20- Eleva cabeça aos 45º por 2 segundos, e abaixa com controle
 - 21- Senta com suporte dado no quadril
- OBSERVAÇÃO ACIDENTAL
 - 9- Eleva pernas por 2 segundos, em supino
- 10- Faz movimentos alternantes para arrastar em prono
- 12- Tenta levar mãos à boca
- 16- Manifesta movimentos simétricos de membros
- 17- Cabeça na linha média a maior parte do tempo
- 18- Eleva cabeça e tronco superior com apoio nos braços, em prono

MOTORA						
RAW SCORE						
INDEX SCORE						
IC 95%	-					
CLASSIFICAÇÃO						

ROTEIRO DE EXAME DO 3º MÊS DA ESCALA BAYLEY

						Nº PRO	J.
Nome da criança:							HC
Nome da mãe:							
Data de nascimento:	_/_	/	Data:	_/	_/	Id cron:	Id corrig

ESCALA MENTAL

- 21- Vocaliza quando o examinador acena a cabeça, sorri ou fala
- 33- Vocaliza quando o examinador acena a cabeça e sorri
- 20- Reage ao desaparecimento de face
- 23- Deixa o olha do sino para o chocalho
- _____ 35- Brinca com o chocalho
- 36- Olhos seguem bastão
 - ____ 37- Manipula o aro
 - 38- Estende a mão em direção ao aro suspenso
- _____ 39- Agarra o aro suspenso
- 40- Leva o aro à boca propositalmente
- 24- Cabeça segue o aro
- 26- Habitua-se ao estímulo visual
- 27- Discrimina um novo padrão visual
- _____ 28- Manifesta preferência visual
 - 29- Prefere novidade
- 25- Observa cubo por 3 segundos
- 30- Vira cabeça para som
- 32- Olhos seguem bolinha de açúcar rolando sobre a mesa
- OBSERVAÇÃO ACIDENTAL
- ____ 22- Vocaliza duas vogais diferentes
- 31- Vocalizações expressivas
- 34- Inspeciona a própria mão(s)

ESCALA MOTORA

- 15- Segura cabeça estavelmente enquanto é movido
- 19- Equilibra cabeça (no plano vertical)
- 14- Ajusta cabeça na suspensão ventral
- 11- Troca de decúbito lateral para dorsal
- 26- Troca de decúbito dorsal para lateral
- 13- Segura aro por 2 segundos
- 20- Eleva cabeça aos 45º por 2 segundos, e abaixa com controle
- 24- Eleva cabeça aos 90º por 2 segundos, e abaixa com controle
- 25- Transfere peso sobre os braços
- 21- Senta com suporte dado no quadril
- 22- Senta com leve suporte, dado no quadril, por 10 segundos
- 28- Senta sozinho momentaneamente, por 2 segundos
- 29- Apanha o bastão com toda a mão

OBSERVAÇÃO ACIDENTAL

- 12- Tenta levar mão(s) à boca
- 16- Manifesta movimentos simétricos de membros
- _____17- Cabeça na linha média a maior parte do tempo
- 18- Eleva cabeça e tronco superior com apoio nos braços, em prono
- 23- Mantém mãos abertas a maior parte do tempo
- 27- Rotação de punho ao manipular objetos

MOTORA						
RAW SCORE						
INDEX SCORE						
IC 95%	-					
CLASSIFICAÇÃO						

MENTAL

RAW SCORE

INDEX SCORE

IC 95%

CLASSIFICAÇÃO

ROTEIRO DE EXAME DO 4º MÊS DA ESCALA BAYLEY

					№ PROJ.				
Nome da criança:								HC	_
Nome da mãe:									
Data de nascimento:	/	/	Da	ata:	_/	_/	Id cron	Id corrig	

ESCALA MENTAL

- 33- Vocaliza quando o examinador acena a cabeça e sorri
- 35- Brinca com o chocalho
- 36- Olhos seguem bastão
- 46- Fixa o olhar no desaparecimento da bola por 2 segundos
- 37- Manipula o aro
- 38- Estende a mão em direção ao aro suspenso
- 39- Agarra o aro suspenso
- 40- Leva aro à boca propositalmente
- 48- Brinca com o barbante
- 41- Aproxima-se da imagem do espelho
- 49- Sorri para sua imagem no espelho
- 50- Responde brincando com sua imagem no espelho
- ____ 42- Alcança o cubo
- 44- Usa coordenação olho-mão para apanhar o cubo
- 45- Apanha o cubo
- 43- Vai em direção do brinquedo, persistentemente
- 32- Olhos seguem bolinha rolando sobre a mesa
- 30- Vira cabeça para som
- 51- Observa bolinha de açúcar
- 52- Bate o objeto (colher) propositalmente, fazendo barulho
- OBSERVAÇÃO ACIDENTAL
 - 31- Vocalizações expressivas
 - 34- Inspeciona a própria mão(s)
- 47- Manifesta susto, olha ao redor amplamente para o novo ambiente

ESCALA MOTORA

- ____ 19- Equilibra a cabeça (plano vertical)
- 26- Troca de decúbito dorsal para lateral
- 33- Puxa-se para a posição sentada (apoiando-se em nossos polegares)
- 20- Eleva a cabeça aos 45º por 2 segundos, e abaixa com controle
- 24- Eleva a cabeça aos 90º por 2 segundos, e abaixa com controle
- 25- Transfere peso sobre os braços
- 21- Senta com suporte dado no quadril
- 22- Senta com leve suporte por 10 segundos
- 28- Senta sozinho momentaneamente, por 2 segundos
- 34- Senta sozinho por 30 segundos
- 35- Senta sozinho enquanto manipula um brinquedo
- 29- Apanha o bastão com toda a mão
- 31- Usa parcial oponência do polegar para apanhar o cubo
- 32- Tenta obter a bolinha de açúcar

OBSERVAÇÃO ACIDENTAL

- ____ 17- Cabeça na linha média a maior parte do tempo
- 18- Eleva cabeça e tronco superior com apoio nos braços, em prono
- 23- Mantém mãos abertas a maior parte do tempo
- 27- Roda punho ao manipular objetos
- 30- Preferência manual

MOTORA						
RAW SCORE						
INDEX SCORE						
IC 95%	-					
CLASSIFICAÇÃO						

MENIAL						
RAW SCORE						
INDEX SCORE						
IC 95%	-					
CLASSIFICAÇÃO						

ROTEIRO DE EXAME DO 5º MÊS DA ESCALA BAYLEY

			Nº PROJ				
Nome da criança: Nome da mãe:							_HC
Data de nascimento:	_/	/	Data:	_/	_/	_ Id cron	Id corrig

ESCALA MENTAL

- 46- Fixa o olhar no desaparecimento da bola por 2 segundos 42- Tenta alcancar o cubo 44- Usa coordenação olho-mão para apanhar o cubo 45- Apanha o cubo 53- Tenta alcancar um segundo cubo 57- Apanha o cubo agilmente MENTAL 58- Segura 2 cubos por 3 segundos 65- Segura 2 dos 3 cubos por 3 segundos e atenta para o 3º cubo 43- Vai em direção do bringuedo, persistentemente RAW SCORE 51- Observa a bolinha de açúcar 52- Bate o objeto (colher) propositalmente, fazendo barulho INDEX SCORE 55- Levanta a xícara invertida em 2 segundos 56- Olha para a colher que cai no chão, fazendo barulho IC 95% 60- Presta atenção nos rabiscos 63- Imita vocalização CLASSIFICAÇÃO 64- Coopera no iogo 48- Brinca com o barbante
- 62- Puxa o barbante para segurar o aro
- 49- Sorri para sua imagem no espelho
- 50- Responde brincando com sua imagem no espelho
- 59- Manipula o sino, com interesse nos detalhes
- 66- Toca o sino propositalmente

OBSERVAÇÃO ACIDENTAL

- 47- Manifesta susto, olha ao redor amplamente para o novo ambiente
- 54- Transfere objeto de uma mão para outra
- 61- Vocaliza 3 vogais diferentes

ESCALA MOTORA

- 26- Troca de decúbito dorsal para lateral
- 38- Troca de decúbito dorsal para ventral
- 25- Transfere peso sobre os braços
- 39- Apanha o pé(s) com as mãos
- 33- Puxa-se para a posição sentado (apoiando-se em nossos polegares)
- 28- Senta sozinho momentaneamente, por 2 segundos
- _____ 34- Senta sozinho por 30 segundos
- 36- Senta sozinho estavelmente
- _____ 35- Senta sozinho enquanto manipula um brinquedo
- 29- Apanha o bastão com toda a mão
- 31- Usa parcial oponência do polegar para apanhar o cubo
- 37- Usa polpa das pontas dos dedos para apanha o cubo
- 32- Tenta obter a bolinha de açúcar
- 41- Usa toda a mão para apanhar bolinha de açúcar
- 40- Faz movimentos de trocar passos

OBSERVAÇÃO ACIDENTAL

- 27- Rotação de punho ao manipular objetos
- 30- Preferência manual

MOTORA						
RAW SCORE						
INDEX SCORE						
IC 95%	-					
CLASSIFICAÇÃO						

ROTEIRO DE EXAME DO 6° MÊS DA ESCALA BAYLEY

				Nº PROJ				
Nome da criança:							HC	
Nome da mãe:								
Data de nascimento:	1	1	Data:	1	1	Id cron	Id corrig	

ESCALA MENTAL		
53 - Alcança um segundo cubo		
57 - Apanha o cubo agilmente		
58 - Segura 2 cubos por 3 segundos		
65 - Segura 2 ou 3 cubos por 3 segundos	MENTA	L
55 - Levanta a xícara invertida em 2 segundos		
67 - Levanta a xícara pela asa	RAW SCORE	
59 - Manipula o sino, com interesse nos detalhes		
66 - Toca o sino propositalmente	INDEX SCORE	
49 - Sorri para sua imagem no espelho		
50 - Responde brincando com sua imagem no espelho	IC 95%	_
51 - Observa bolinha de açúcar		
52 - Bate o objeto (colher) propositalmente, fazendo barulho	CLASSIFICAÇÃO	
56 - Olha para a colher que cai no chão, fazendo barulho		
60 - Presta atenção nos rabiscos		
62 - Puxa o barbante para segurar o aro		
63 - Imita vocalização		
64 - Coopera no jogo		
70 - Responde diferencialmente para duas palavras familiares		
69 - Olha para os desenhos do livro		
73 - Vira páginas do livro		
72 - Olha para o conteúdo da caixa OBSERVAÇÃO ACIDENTAL:		
54 - Transfere objeto de uma mão para outra		
61 - Vocaliza 3 vogais diferentes		
68 - Usa gesto para comunicar-se		
71 - Repete uma combinação vogal-consoante		
ESCALA MOTORA		
38 - Troca de decúbito dorsal para ventral		
39 - Apanha pé(s) com as mãos		
42 - Tenta elevar-se sozinho para sentar		
33 - Puxa-se para a posição sentada (apoiando-se em nossos polegare		
45 - Puxa-se para a posição em pé (apoiando-se em nossos polegares)	МОТО	RA
28 - Senta sozinho momentaneamente por 2 segundos		
34 - Senta sozinho por 30 segundos		
36 - Senta sozinho estavelmente	RAW SCORE	
35 - Senta sozinho enquanto manipula um brinquedo		
29 - Apanha o bastão com toda a mão	INDEX SCORE	
31 - Usa parcial oponência do polegar para apanhar o cubo	10.05%	
37 - Usa polpa das pontas dos dedos para apanhar o cubo	IC 95%	
32 - Tenta obter bolinha de açúcar		
 41 - Usa toda a mão para apanhar bolinha de açúcar 48 - Leva colheres ou cubos para a linha média 	CLASSIFICAÇÃO	
46 - Leva conteres ou cubos para a linha media 47 - Eleva-se sozinho para a posição sentada (puxando-se por uma cad	deira)	•
43 - Move-se para frente usando métodos antecedentes à marcha		
40 - Faz movimentos de trocar passos		

- 44 Suporta o peso em pé momentaneamente (por 2 segundos)
 46 Transfere peso enquanto de pé
 OBSERVAÇÃO ACIDENTAL:
- - __ 30 Preferência manual