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Fructose-Induced Hypothalamic AMPK Activation Stimulates Hepatic 
PEPCK and Gluconeogenesis due to Increased Corticosterone Levels

Andrezza Kinote, Juliana A. Faria, Erika A. Roman, Carina Solon, Daniela S. 
Razolli,  Letícia  M. Ignacio-Souza, Carolina S. Sollon, Lucas F. Nascimento,   Thiago 
M. de Araújo, Ana Paula L. Barbosa, Camilo Lellis-Santos, Licio A. Velloso, Silvana 
Bordin, and Gabriel F. Anhê 

Departments of Pharmacology (A.K., J.A.F., C.S.S., T.M.d.A., A.P.L.B., G.F.A.), and Internal Medicine 
(E.A.R., C.S., D.S.R., L.M.I.-S., L.F.N., L.A.V.), Faculty of Medical Sciences, State University of 
Campinas, 13084-971 Campinas, SP, Brazil; and Department of Physiology and Biophysics (C.L.-S., 
S.B.), Institute of Biomedical Sciences, University of Sao Paulo, 05508-900 Sao Paulo SP, Brazil

Fructose consumption causes insulin resistance and favors hepatic gluconeogenesis through 
mech- anisms that  are not completely  understood. Recent studies demonstrated that  the 
activation of hypothalamic 5 -AMP-activated protein kinase (AMPK) controls dynamic 
fluctuations in hepatic glucose production. Thus, the present study was designed to 
investigate  whether hypothalamic AMPK activation by fructose would  mediate  increased 
gluconeogenesis. Both ip and intracere- broventricular (icv) fructose treatment stimulated
hypothalamic AMPK and acetyl-CoA carboxylase phosphorylation, in parallel with increased 
hepatic phosphoenolpyruvate carboxy kinase (PEPCK) and gluconeogenesis. An increase in 
AMPK phosphorylation by icv fructose was observed in the lateral  hypothalamus as well  as 
in the paraventricular nucleus and the arcuate nucleus. These effects were mimicked by icv 
5-amino-imidazole-4-carboxamide-1-[3-D-ribofuranoside treatment. Hypothalamic AMPK 
inhibition with icv injection of compound C or with injection of a small interfering RNA targeted 
to AMPKa2 in the mediobasal hypothalamus (MBH) suppressed the hepatic effects of ip 
fructose. We also found  that  fructose increased corticosterone levels through a mechanism 
that  is dependent on hypothalamic AMPK activation. Concomitantly, fructose-stimulated 
gluconeogenesis, hepatic PEPCK expression, and glucocorticoid receptor binding to the PEPCK 
gene were suppressed by pharmacological glucocorticoid receptor blockage. Altogether the 
data presented herein support the hypothesis that fructose-induced hypothalamic AMPK 
activation stimulates hepatic gluconeogenesis by increasing corticosterone levels. 

ructose is a naturally occurring monosaccharide and is 

rarely present  in the human  diet as a single nutrient. 

Human exposure  to dietary  fructose results mainly from 

the consumption of sucrose (fructose-glucose)  and high- 

fructose  corn  syrup.  High-fructose corn  syrup  currently 

represents   the  most  popular  sweetener  in  the  United 

States, and its consumption, along with the incidence of 

obesity  and  diabetes,  is continuously increasing  (1). In

nonobese humans, fructose consumption was described as 

reducing insulin sensitivity and increasing fasting hepatic 

glucose  output (2).  In  rodents,   fructose-enriched  diets 

have been demonstrated to cause hepatic insulin resistance 

(3) and to increase gluconeogenesis  (4).

Gluconeogenesis  is an important component of the in- 

creased rate of hepatic glucose production, acting together

with peripheral insulin resistance to promote  hyperglyce-
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mia in diabetic patients (5). Although it has been suggested 

that diets containing  high amounts of fructose induce he- 

patic insulin resistance and increase glucose levels as a 

consequence of hepatic steatosis, the exact mechanism 

leading to increased gluconeogenesis  has not been clearly 

described (6 – 8).

Among  its several extrahepatic actions,  fructose  was 

recently demonstrated to stimulate food intake by increas-

ing the activation of hypothalamic 5 -AMP-activated pro-

tein kinase (AMPK) (9). AMPK is a major sensor of cel- 

lular energy status and is activated by increases in the AMP 

to ATP ratio  (10). Peripheral  AMPK activation switches 

on metabolic  processes that  increase ATP levels, such as 

free fatty acid oxidation by adipose  tissue and liver and 

glucose uptake  by skeletal muscle (11, 12). Some of these 

alterations are secondary  to acetyl-CoA carboxylase 

(ACC) phosphorylation that reduces the synthesis of ma- 

lonyl-CoA (12).

In addition to the importance of AMPK in peripheral 

organs,  Yang et al. (13) have recently demonstrated that 

the activation of hypothalamic AMPK increases hepatic 

gluconeogenesis,  placing this enzyme at the center of an 

interorgan communication system that favors hepatic glu- 

cose production during periods of low fuel availability.

We presently demonstrate the importance of fructose- 

stimulated hypothalamic AMPK activation for the up-reg- 

ulation of hepatic gluconeogenesis. In addition, our study 

collects  compelling  evidence  that  favors  the  hypothesis 

that fructose-induced AMPK activation in the mediobasal 

hypothalamus (MBH) signals the liver by modulating cor- 

ticosterone levels.

Materials and Methods

Surgical procedures and treatments
Male Wistar rats weighing approximately 180 g were 

obtained from the Animal Breeding Center at the Univer- 

sity of Campinas (Campinas, Brazil) and housed under a

12-h light, 12-h dark cycle (lights on at 0700 h and lights 

off at 1900 h) with free access to food and water. Rats were 

anesthetized  with diazepam and ketamine (respectively, 2 

mg/kg and 50 mg/kg) and stereotaxically cannulated using 

a stereotaxic apparatus to fix a stainless steel cannula into 

the lateral ventricle. Stereotaxic coordinates were 0.2 mm 

anteroposterior,1.5 mm lateral,  and 4.0 mm depth.  The 

localization of the cannula  was tested by evaluating  the 

drinking  response  to intracerebroventricular (icv) angio- 

tensin II injection 1 wk after surgery (14). Cannulas were 

also implanted in the MBH using the following the coor- 

dinates: 3.1 mm posterior of bregma, 0.4 mm lateral, and

9.6 mm depth. Localization of the cannula was confirmed

by  blue  staining  of  the  hypothalamic region  (bregma

3.0) after an injection with Bromophenol Blue (Supple-

mental Fig. 1, published on The Endocrine Society’s Jour- 

nals Online web site at http://endo.endojournals.org).

Intracerebroventricular glucose or fructose  injections 

and ip fructose  injections  were performed for 5 d, three 

times a day (at 0700, 1200, and 1700 h). Fructose and 

glucose were diluted to a final concentration of 200 mg/ml 

and injected (2 mg/kg of body weight) in a final volume of

2 fLl (daily dosage of 6 mg/kg). The control (CTL) animals 

received an equal volume of 0.9% NaCl. For ip injections, 

fructose was diluted  to a final concentration of 4 mg/ml 

and injected (2 mg/kg of body weight) in a final volume of

100 fLl (daily dosage of 6 mg/kg). The CTL animals re- 

ceived an  equal  volume  of a solution  containing  0.9% 

NaCl.

Treatment with 5-amino-1-[3-D-ribofuranosyl-imida- 

zole-4-carboxamide (AICAR) (catalog no. 2840;  Tocris, 

Bristol, UK) occurred for 5 d (2 fLl/d of a 16 mM solution). 

CTL animals received an equal volume of a solution con- 

taining 0.9%  NaCl. The AMPK activator A769662 (cat- 

alog no. 3336; Tocris) was diluted to a final concentration 

of 0.2 mM  using 2%  ethanol  as the vehicle; 2 fLl of this 

solution was injected daily for 5 d. Compound C (catalog 

no. 171260; EMD4 Biosciences, Gibbstown, NJ) was di- 

luted in 5% dimethylsulfoxide (DMSO) to a final concen- 

tration of 200 fLM. An equal volume (2 fLl) of either com- 

pound  C or its vehicle was injected daily for 5 d. RU486 

was diluted  in ethanol  99%  to a concentration of 62.5 

mg/ml. This solution  was diluted  1:5 in 0.9%  NaCl  and 

injected at a final dose of 20 mg/kg daily for 5 d. Twenty 

percent ethanol  was used as vehicle.

AICAR, compound C, A769662, or their vehicles were 

injected at 0800 h through the icv cannula. RU486 or its 

vehicle was injected at 0800 h sc. In all protocols, food was 

removed after the last injection (fifth day) to allow a 13-h 

fast before euthanasia.

The small interfering  RNA  (siRNA) targeted  to 

AMPKa2 (catalog no. 155985) and scrambled  siRNA 

(catalog  no.  37007)  (Santa  Cruz  Biotechnology, Santa 

Cruz, CA) were complexed  with jetSI/DOPE (catalog no.

403-05;  Polyplus Transfection SA, Ilkrich, France) ac- 

cording  to the manufacturer’s instructions. Briefly, 200 

pmol of the siRNA was diluted in 50 fLl of a solution 

containing 5% glucose, 0.2 mM jetSI, and 0.4 mM L-alpha- 

Phosphatidylethanolamine, Dioleoyl. Two microliters  of 

the mixtures containing either the siRNA to AMPKa2 

(siRNA-AMPKa2) or the scrambled siRNA (scrambled 

siRNA) were injected through the cannula  positioned in 

the MBH at the first, third, and fifth day of the ip fructose 

treatment. Western blot analysis of hypothalamic extracts

47



revealed the ability of the siRNA to knock down AMPKa2 

with no compensatory increase of AMPKa1.

All experiments were conducted in accordance with the 

guidelines of the Brazilian College for Animal Experimen- 

tation  and were approved by the State University of 

Campinas Committee for Ethics in Animal 

Experimentation.

Intraperitoneal pyruvate tolerance test (PTT)
Rats were fasted for 13 h, and a sodium  pyruvate  so- 

lution (250 mg/ml) was injected ip at a dosage of 2 g/kg. 

Glucose was determined in blood extracted from the tail 

before (0 min) and 15, 30, 90, and 120 min after pyruvate 

injection. The area under the curve (AUC) of glycemia vs. 

time was calculated  using each individual  baseline (basal 

glycemia) to estimate the total glucose synthesized from 

pyruvate.  We have previously  demonstrated that  gluco- 

neogenesis accounts for the increase in glucose levels using

3-mercaptopicolinic acid, an inhibitor of gluconeogenesis,

30 min before pyruvate  injection (15).

Protein extraction and immunoblotting
Anesthetized  rats were decapitated, and the hypothal- 

amus and a fragment of the liver (approximately 100 mg) 

were removed and processed for Western blotting as pre- 

viously described (15). The primary antibodies used were 

as follows: anti-pAMPKa1/2 (Thr 172) and anti-phos- 

phorylated (p) ACC (Ser 79) from  Cell Signaling Tech- 

nology (Danvers,  MA), anti-[3-actin from Abcam (Cam- 

bridge,  UK),  anti-AMPKa1,  anti-AMPKa2,  and  anti- 

ACC from Millipore  (Billerica, MA), and anti-glucose-6- 

phosphatase (G6Pase) and anti-phosphoenolpyruvate 

carboxy kinase (PEPCK) from Santa Cruz Biotechnolo- 

gies. Secondary  antibodies conjugated with  horseradish 

peroxidase (Bio-Rad Laboratories, Hercules, CA) were 

used,  followed   by  chemiluminescent  detection   of  the 

bands on x-ray-sensitive films. Optical densitometry of the 

films was performed using the Scion Image analysis soft- 

ware (Scion Corp.,  Frederick,  MD).

Immunofluorescent staining
The  central  nervous  system (CNS) from  rats  treated 

with icv fructose  and their CTL were removed  and pro- 

cessed for immunofluorescent staining  as previously  de- 

scribed (16). Antibodies used were anti-pAMPKa1/2 (Thr

172) (catalog no. 2535) or anti-pACC (Ser 79) (catalog no.

3661)  from  Cell Signaling Technology. Secondary  fluo- 

rescein isothiocyanate-conjugated antibody was used to 

visualize pAMPKa and pACC staining.  A separate  set of 

sections from were stained only with the secondary anti- 

body (omission of the primary  antibody) to assure speci- 

ficity of the fluorescent  signals (Supplemental  Fig. 2). Im-

ages  were  acquired   in  high  ( 400) and  low  ( 200)

magnification.

Hormone measurements
Trunk blood was collected, and the plasma was stored 

with heparin  for glucagon and corticosterone determina- 

tion and with EDTA for epinephrine and norepinephrine 

determination. Glucagon  (catalog no. 297-57101; Wako 

Pure Chemical Industries,  Osaka, Japan),  corticosterone 

(catalog  no. 402810; Neogen,  Lexington, KY), and cat- 

echolamines (catalog no. E-6500; Rocky Mountains, Col- 

orado  Springs, CO) were quantified by ELISA according 

to the manufacturer’s instructions.

Chromatin immunoprecipitation (ChIP) assay
Liver fragments  for the ChIP assay were processed  as 

previously described (17). After DNA shearing, samples 

were precleared  for 1 h at 4 C with protein  A-Sepharose 

saturated with salmon  sperm DNA. An aliquot  of 10 fLl 

was collected as input. The remaining  supernatants were 

immunoprecipitated with protein  A-Sepharose  and 2 fLg 

of anti-glucocorticoid receptor (GR) antibody (Santa Cruz 

Biotechnologies).  In parallel,  one sample was incubated 

only with protein A-Sepharose to generate the negative 

control.  DNA extracted from  the Sepharose  pellets was 

subjected to cross-linking  reversal and purification using 

phenol-chloroform. DNA samples were amplified for de- 

tection  of the PEPCK gene. A 179-bp  fragment  flanking 

bases 164 –342 of the rat PEPCK gene was amplified by 

real-time  PCR. The sequences of the primers  were sense

5 -TGGTCTGGACTTCTCTGCCAAG-3 and antisense

5 -GGATGACACCCTCCTCCTGC-3 (annealing  at 62

C). To check the primer specificity (by estimated  product 

length),  reaction  products were resolved in an ethidium 

bromide-agarose gel. The GR binding was calculated after 

normalization to the input of each sample.

Statistical analysis
The results are presented  as the means SE. Compar-

isons were performed using an unpaired Student’s t test or 

one-way  ANOVA,  followed  by Tukey-Kramer post hoc 

testing  when  appropriate (INStat;  GraphPad Software,

Inc., San Diego, CA). Values of P 0.05 indicate a signif-

icant difference.

Results

Intraperitoneal fructose treatment activates AMPK 
in the hypothalamus and increases hepatic PEPCK 
expression and gluconeogenesis

Intraperitoneal pyruvate load induced a higher increase 

in blood glucose in rats treated with ip fructose (Fructose-
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IP) when  compared with  CTL. This effect was best ob- 

served 90 min after pyruvate  injection  (1.23-fold  higher

than CTL; P 0.05) (Fig. 1A). The AUC for Fructose-IP

was 1.82-fold  higher than  CTL animals  (P 0.05) (Fig.

1B). The increase in glucose production induced by fruc- 

tose was not paralleled by changes in body weight gain or 

food intake (Supplemental  Fig. 3, A and B, respectively).

Figure 1C shows  that  levels of AMPKa1,  AMPKa2, 

and ACC proteins were unchanged by fructose treatment. 

Figure 1, D and E, shows that  Fructose-IP  treatment in- 

creased  levels of both  hypothalamic AMPKa and  ACC 

phosphorylation, respectively (2.05- and 1.59-fold higher

than  CTL,  respectively;  P 0.05).  We also  found  in-

creased PEPCK levels in liver of Fructose-IP-treated ani- 
mals (1.54-fold  higher than  CTL; P 

0.05) (Fig. 1G). G6Pase expression was 

not  altered  by  ip  fructose  treatment 

(data not shown). Hepatic ACC phos- 

phorylation was also unchanged in 

Fructose-IP animals (Supplemental Fig. 4).

FIG. 1.  Intraperitoneal fructose treatment increases gluconeogenesis,  hepatic PEPCK, and 
activates hypothalamic AMPK. Wistar rats were treated with ip fructose  (Fructose-IP) or 0.9% 
NaCl (CTL). Treated rats were fasted for 13 h and subjected to an ip pyruvate tolerance test. 
Glycemia was measured before and 15, 30, 90, and 120 min after pyruvate injection. The full 

line with open squares represents the CTL group, and the full line with closed triangles 

represents the Fructose-IP group (A). The AUC was calculated for each individual animal 
within the CTL and Fructose-IP groups (B). CTL and Fructose-IP rats were anesthetized, and 
the hypothalamus and a fragment of the liver were removed and processed for Western 
blotting. Membranes containing hypothalamic protein samples were probed with antibodies
against AMPKa1, AMPKa2, ACC, pAMPKa, pACC, and [3-actin (C). The data for pAMPKa (D) 
and pACC  (E) were normalized to [3-actin. Membranes containing liver protein extracts were 
probed with antibodies against PEPCK and [3-actin (F). The data for PEPCK (G) were
normalized to [3-actin. The results are shown as the mean SE. *, P 0.05 vs. CTL (n 5).

Chronic icv treatment with 
fructose, but not glucose, 
activates AMPK in the 
hypothalamus and increases 
hepatic PEPCK expression  and 
gluconeogenesis

To test whether the effects of ip fruc- 

tose resulted from its direct action in the 

hypothalamus, we next performed icv 

fructose injections (Fructose-ICV). An 

additional group received equimolar 

amounts of glucose to exclude the hy- 

perosmolarity effects (Glucose-ICV). 

Fructose-ICV but not Glucose-ICV dis- 

played increased mean glucose levels 60 

min after pyruvate injection (1.37-fold

higher  than  CTL,  P 0.05;  Fig. 2A)

and significantly increased AUC (1.90- 
fold higher than  CTL; P 0.05) (Fig.

2B). In addition, Fructose-ICV rats, but 

not Glucose-ICV, displayed increased 

levels of fasting glycemia (Supplemen- 

tal Fig. 5A). Fructose-ICV  rats showed 

no changes in body weight gain but in- 

creased values for food intake (Supple- 

mental  Fig. 5, B and  C, respectively). 

Fructose-ICV rats did not show a de- 

crease in whole-body insulin sensitivity. 

Glucose-ICV rats, instead, became insu- 

lin resistant, as revealed by the insulin tol- 

erance test (Supplemental  Fig. 5D).

Fructose-ICV and Glucose-ICV rats 

exhibited  no changes in their hypotha- 

lamic AMPKa1, AMPKa2, and ACC 

levels (Fig. 2C). Fructose-ICV  rats, but 

not Glucose-ICV, presented higher lev- 

els of both AMPKa and ACC phos- 

phorylation   (2.08-     and    1.87-fold
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FIG. 2.  Intracerebroventricular fructose but not glucose treatment increases gluconeogenesis 
and hepatic PEPCK and activates hypothalamic AMPK. Wistar rats were subjected to lateral 
ventricle cannulation. One week after surgery, rats received icv injections with fructose, 
glucose, or CTL (0.9% NaCl as vehicle). Treated rats were fasted for 13 h and subjected to an 
ip pyruvate tolerance test. Glycemia was measured before and 15, 30, 60, 90, and 120 min 
after pyruvate injection. The dashed line with open squares represents the CTL rats, the full 
line with open circles represents the glucose-treated rats, and the full line with closed

triangles represents the fructose-treated  rats (A). The AUC was calculated for each individual 
animal within the CTL, glucose, and fructose groups (B). the CTL, glucose, and fructose rats 
were anesthetized, and the hypothalamus and a fragment of the liver were removed and 
processed for Western blotting. Membranes containing the hypothalamus samples were 
probed with antibodies against AMPKa1, AMPKa2, ACC, pAMPKa, pACC, and [3-actin (C). 
The data for pAMPKa (D) and pACC  (E) were normalized to [3-actin. Membranes containing 
liver samples were probed with antibodies against PEPCK and [3-actin (F). The data for PEPCK
(G) were normalized to [3-actin. The results are shown as the mean SE. *, P 0.05 vs. CTL
(n 6).

higher  than   CTL,  respectively;  P  

0.05) (Fig. 2, D and E, respectively). We 

also found that hepatic PEPCK expres- 

sion was up-regulated exclusively in 

Fructose-ICV   rats   (1.33-fold   higher

than CTL; P 0.05) (Fig. 2G), whereas

G6Pase  levels  were  unchanged (data 

not shown). ACC phosphorylation was 

not altered in the liver of Fructose-ICV 

rats (Supplemental  Fig. 6).

Pharmacological hypothalamic 
AMPK activation increases hepatic 
PEPCK expression  and 
gluconeogenesis

Intracerebroventricular treatment 

with the AMPK activator A769662 in- 

creased glucose synthesis from pyru- 

vate, as evidenced by increased mean 

glycemic levels 30 min after pyruvate 

load  (1.48-fold   higher  than   ethanol

2%,  P 0.05; Fig. 3A) and increased

AUC  (1.57-fold   higher  than  ethanol

2%,   P  0.05;   Fig.  3B).  Similarly,

AMPK activation with icv AICAR re- 

sulted in higher mean glycemic values

90 min after  the pyruvate  load  (1.38- 
fold higher  than  CTL, P 0.05;  Fig.

3C) and an increased AUC (3.67-fold 
higher than CTL, P 0.05; Fig. 3D).

AICAR administered through icv in- 

jection did not change AMPKa1, 

AMPKa2,  or ACC levels (Fig. 3E) but 

increased hypothalamic AMPKa and 

ACC  phosphorylation  to  1.66-   and

2.82-fold  the values of the CTL (P 

0.05) (Fig. 3, F and G, respectively). 

Moreover, icv AICAR increased levels 

of  hepatic   PEPCK  (3.23-fold   higher

than  CTL, P 0.05;  Fig. 3I). Impor-

tantly, AMPK activation was not ubiq- 

uitous because icv AICAR had no effect 

on hepatic ACC phosphorylation (Sup- 

plemental  Fig. 7).

AMPK activation in the MBH is 
essential for fructose-induced up- 
regulation of gluconeogenesis

In an attempt to better  discern  the 

regions of the CNS targeted by fructose, 

we next localized AMPKa phosphory- 

lation   within   the   hypothalamus  of
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FIG. 3.  Intracerebroventricular A769662 and AICAR treatments increase gluconeogenesis and hepatic PEPCK and activate hypothalamic AMPK. 
Wistar rats were subjected to lateral ventricle cannulation. One week after surgery, the rats received icv injections containing either A769662 or
2% ethanol as vehicle (CTL). Rats were also treated with icv AICAR and 0.9% NaCl as vehicle. Treated rats were fasted for 12 h and subjected to an
ip pyruvate tolerance test. Glycemia was measured before and 15, 30, 60, 90, and 120 min after pyruvate injection. The full line with closed circles 

represents A769662-treated rats, and the full line with open circles represents their CTL (A). The full line with closed triangles represents AICAR-
treated rats, and the full line with open squares represents their CTL (C). The AUC was calculated  for each individual animal within the group 
treated with A769662 and AICAR and their respective CTL (respectively,  B and D). CTL and AICAR rats were anesthetized, and the hypothalamus 
and a fragment of the liver were removed and processed for Western blotting. Membranes containing the hypothalamus samples were probed 
with antibodies against AMPKa1, AMPKa2, ACC, pAMPKa, pACC, and [3-actin (E). The data for pAMPKa (F) and pACC (G) were normalized to [3-
actin. Membranes containing the liver samples were probed with antibodies against PEPCK and [3-actin (H). The data for PEPCK (I)
were normalized to [3-actin. The results are shown as the mean SE. *, P 0.05 vs. CTL (n 4 for AICAR and n 5 for A769662).
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FIG. 4.  Fructose-induced AMPK activation in the MBH mediates the up-regulation of 
gluconeogenesis. Wistar rats were subjected to lateral ventricle cannulation. One week after 
surgery, the rats were treated with icv fructose. Treated rats were fasted for 13 h, and the 
hypothalamic tissue samples were removed and processed for immunofluorescence staining. 
Five-micrometer sections were stained using an anti-pAMPKa antibody followed by 
incubation with a fluorescein isothiocyanate-conjugated secondary antibody (green). Nuclear
structures were visualized by 4 ,6 -diamino-2-phenylindole probing (blue). Large
magnification ( 400) images are shown from the ARC (A), LH (B) and PVN (C). An
independent set of animals were subjected to cannula implantation in the MBH. After surgery,
the rats were divided into two groups receiving either scrambled siRNA or siRNA- AMPKa2 
through a cannula. Simultaneous ip treatment with saline or fructose was performed in half 
of the animals from both groups. After treatments, rats were anesthetized, and the 
hypothalamus was removed and processed for Western blotting. Membranes containing the 
hypothalamus samples were probed with antibodies against AMPKa1, AMPKa2, and [3-actin.
The data for pAMPKa were normalized to [3-actin (D). Treated rats were fasted for 12 h and 
subjected to an ip pyruvate tolerance test. Glycemia was measured before and 15, 30, 60, 
90, and 120 min after pyruvate injection. The dashed line with open circles represents the 
scrambled siRNA treated with ip saline, the full line with closed circles represents the 
scrambled siRNA treated with ip fructose, the full line with closed squares represents the 
siRNA-AMPKa2 treated with ip saline, and the dashed line with open squares represents the 
siRNA-AMPKa2 treated with ip fructose  (E). The AUC was calculated  for each
individual animal within the four groups (F). The results are shown as the mean SE. *, P 

0.05 vs. rats receiving scrambled siRNA in the MBH and ip saline; #, P 0.05 vs. rats receiving
scrambled siRNA in the MBH and ip fructose; &, P 0.05 vs. rats receiving scrambled siRNA
in the MBH and ip saline 60 min after pyruvate load (n 3 for immunofluorescence and n 
5 for PTT and Western blot).

Fructose-ICV rats. High-magnification 

images showed that fructose-ICV rats 

displayed increased levels of AMPKa 
phosphorylation in three regions of the 

MBH: the arcuate nucleus (ARC), the 

lateral hypothalamus (LH), and the 

paraventricular nucleus (PVN) (Fig. 4, 

A–C, respectively). The low-magnifica- 

tion images are shown in Supplemental 

Fig. 8. Sections posterior and anterior 

to the hypothalamus revealed no 

changes in pAMPKa induced by the 

fructose (Supplemental  Fig. 9). Similar 

results were found in immunofluores- 

cent staining for pACC (Supplemental 

Fig. 10). Next, we performed AMPKa2 

knockdown in the MBH in rats that si- 

multaneously received either  ip saline 

or ip fructose. Our siRNA protocol was 

able to reduce hypothalamic AMPKa2 

levels to 56 and 39%  in saline- and 

Fructose-IP  rats,  respectively,  com- 

pared  with  their  counterparts treated

with scrambled siRNA (P 0.05). No

changes were found in hypothalamic 

AMPKa1 (Fig. 4D). In rats receiving 

scrambled siRNA but not AMPKa2- 

siRNA, ip fructose was associated with 

an up-regulation of glucose levels 60 

min after pyruvate  load and AUC (re- 

spectively, 1.66- and 1.70-fold higher 

than  rats  receiving  scrambled  siRNA

and ip saline, P 0.05) (Fig. 4, E and F,

respectively).

We also performed an experimental 

protocol in which rats received simul- 

taneous  ip fructose and icv compound 

C. The ip fructose-induced increase in 

gluconeogenesis,  as  evidenced  by 

higher  blood  glucose levels at 90 and

120 min after pyruvate load (1.17- and

1.27-fold  higher than CTL, respective- 
ly; P 0.05)  was suppressed  by con-

comitant icv compound C treatment 

(Fig. 5A). Accordingly,  the increase in 

AUC of rats  treated  with  ip fructose

(2.31-fold  higher than CTL, P 0.05)

was  suppressed   by  icv  compound  C 

(Fig. 5B).

The  rats  that  received  ip  fructose

with   or   without  icv  compound  C

showed no differences in AMPKa1, AMPKa2, and ACC
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FIG. 5.  Intracerebroventricular compound C treatment suppresses fructose-induced increase 
of gluconeogenesis and hepatic  PEPCK. Wistar  rats were subjected to lateral ventricle 
cannulation. One week after surgery, the rats were divided into two groups that were treated 
with ip fructose or 0.9% NaCl as vehicle. In addition, the rats were further divided into two 
additional groups that received either icv compound C or 5% DMSO as vehicle. After 
treatment, the rats were fasted for 13 h and subjected to an ip PTT. Glycemia  was measured 
before and 15, 30, 90, and 120 min after pyruvate injection. The full line with open squares 

represents data from the ip saline and icv vehicle, the full line with closed triangles represents 
data from the ip fructose and icv vehicle, the dashed line with closed circles represents data 
from the ip saline and icv compound C, and the dashed line with open circles represents data 
from the ip fructose and icv compound C (A). The AUC was calculated for each individual 
animal within the four groups (B). A different set of rats arranged in these four experimental 
groups were anesthetized, and the hypothalamus and a fragment of the liver were removed 
and processed for Western blotting. Membranes containing hypothalamus samples were 
probed with antibodies against AMPKa1, AMPKa2, ACC, pAMPKa, pACC, and [3-actin (C). 
The data for pAMPKa (D) and pACC  (E) were normalized to [3-actin. Membranes containing 
liver samples were probed with antibodies against PEPCK and [3-actin (F). The data for PEPCK
(G) were normalized using [3-actin. The results are shown as the mean SE. *, P 0.05 vs.

rats receiving vehicle ip and icv (n 5).

content (Fig. 5C). The ip fructose-in- 

duced increases in both AMPKa and 

ACC phosphorylation (2.53- and 4.21-

fold higher than CTL, respectively; P 

0.05)   were  suppressed   by  icv  com- 

pound  C treatment (Fig. 5, D and  E, 

respectively). The increase in hepatic 

PEPCK induced  by ip fructose  (2.04-

fold higher  than  CTL; P 0.05)  was

also suppressed  by icv compound C 

treatment (Fig. 5G).  As evidence that 

our  experimental protocol did not 

cause a systemic inhibition of AMPK, 

ACC phosphorylation was not altered 

in rats that received icv compound C 

(Supplemental  Fig. 11).

Fructose increases corticosterone 
levels through a mechanism that 
is dependent on hypothalamic 
AMPK activation

We next assessed whether  hypotha- 

lamic AMPK activation by AICAR or 

fructose would modulate circulating 

levels  of  glucagon,   catecholamines 

and corticosterone. Chronic AICAR 

administration through icv injection 

increased corticosterone (2.46-fold), 

epinephrine (1.28-fold), and norepi- 

nephrine  (1.27-fold) compared with

rats   that   received  icv  saline  (P  

0.05). No changes in glucagon levels 

were induced by icv AICAR. Rats receiv- 

ing ip fructose injections exhibited an in- 

crease in corticosterone (2.48-fold higher 

than  rats that  received ip saline and icv

DMSO  5%;  P 0.05)  that  was  sup-

pressed by concomitant icv treatment 

with compound C. Epinephrine, norepi- 

nephrine,  and glucagon were not modu- 

lated by ip fructose treatment (Table 1).

Fructose-induced increase in 
hepatic PEPCK and 
gluconeogenesis depends on GR 
activation in the liver

Pharmacological blockage of the GR 

receptor  with sc injection of RU486 

suppressed  the icv AICAR-induced in-

crease  in gluconeogenesis.  This  effect

was observed 90 and 120 min after pyruvate injection (Fig.

6A) and in the AUC values (Fig. 6B). Similarly, treatment
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TABLE  1. Modulation of counter-regulatory hormonal response by hypothalamic AMPK activation after AICAR or 
fructose injection

Corticosterone
(ng/ml)

Glucagon
(pg/ml)

Epinephrine
(nM)

Norepinephrine
(nM)

Saline, icv
AICAR, icv

76.59 18.20
187.5 17.48a

315.0 13.64
254.4 33.98

11.35 0.38
14.64 0.21a

4.97 0.17
6.33 0.23a

Vehicle/ip saline, icv
Vehicle/ip fructose, icv

99.61 13.92
190.20 31.48b

152.8 3.80
150.8 10.88

8.63 1.69
10.27 0.81

3.66 0.29
3.55 0.23

Comp. C/ip saline, icv 89.26 39.36 134.8 10.65 11.31 0.82 4.26 0.06
Comp. C/ip, fructose icv 108.60 35.35 136.4 8.26 9.83 1.14 4.31 0.18

Comp. C, compound C.
a P 0.05 vs. icv saline.
b  P 0.05 vs. icv vehicle/ip saline.

with RU486 abolished the effect of the ip fructose over 

gluconeogenesis  (Fig. 6, C and D).

Subcutaneous RU486  treatment had  no  effect on  ip 

fructose-induced  AMPKa  and   ACC   phosphorylation 

(Fig. 6, F and G). However,  the combination of the GR 

antagonist with fructose reduced the levels of hepatic 

PEPCK to 0.65-fold the values of the animals receiving 

fructose only (Fig. 6I).

We next measured  the binding  of GR to the PEPCK

gene. Fructose-IP efficiently stimulated  GR binding to the

PEPCK  gene in liver (2.42-fold  higher  than  CTL;  P 

0.05). Cotreatment with fructose and RU486, in turn, re- 

duced GR binding  activity to 0.67-fold  the values of the 

animals receiving only fructose (Fig. 6J).

Discussion

In the past few years, great attention has been paid to the 

increase  in fructose  consumption due  to  its correlation 

with  an abrupt surge in the  incidence  of the  metabolic 

syndrome  (8). Fructose  is classically known  as a gluco- 

neogenic precursor because of its hepatic conversion  into 

pyruvate (18, 19). The data presented here show that a 5-d 

fructose  treatment increases  the hepatic  PEPCK expres- 

sion and  the synthesis  of glucose after  a pyruvate  load. 

This finding suggests that a mechanism other than the 

metabolism of fructose  by itself might  contribute to in- 

creased  gluconeogenesis   after  fructose  treatment. Our 

findings also show that fructose, administered through an 

icv or ip injections, induces an up-regulation of gluconeo- 

genesis. Thus, we hypothesize that fructose is able to trig- 

ger an interorgan communication between  the CNS and 

the liver to increase gluconeogenesis.

In opposition to our hypothesis, several studies support 

the view that fructose increases gluconeogenesis due to its 

lipogenic action in the liver (8). Fructose-enriched diets 

increase circulating  triglycerides and de novo lipogenesis 

in obese patients (20) and stimulate  intrahepatic lipid ac-

cumulation in healthy humans  (2). Hepatic  steatosis was 

also reported in rats receiving fructose-enriched diets (6,

7). Fat accumulation in the liver is therefore  believed to 

generate hepatic insulin resistance, thus inhibiting the sup- 

pressive action of insulin over hepatic glucose production 

(8). As we understand it, the limits for this interpretation 

depend  on the amount of fructose  administered. For in- 

stance, Lê et al. (2)used 3.5 g of fructose per kilogram  of 

body weight daily in human  patients, which results in a 

daily intake of fructose that is far beyond that of the nor-

mal human diet ( 700 mg/kg of body weight) (1). Rodents

usually receive diets that are enriched with fructose at con- 

centration ranges of 20 – 63%  (wt/wt) (21, 22). It is note- 

worthy that the lower dose of fructose used in our exper- 

iments (6 mg/kg daily) efficiently up-regulated 

gluconeogenesis  and  hepatic  PEPCK, whether  icv or ip, 

suggesting that this metabolic  alteration induced by fruc- 

tose possibly precedes hepatic steatosis.

Direct action of ingested fructose in the CNS is far from 

being a consensus opinion,  but many experimental find- 

ings favor this hypothesis. Fructose-metabolizing enzymes 

and  the fructose  transporter glucose transporter-5 have 

been described in distinct regions of the CNS (23–26) and 

in cells of the blood-brain barrier  (27). Fructose  is also 

transported by glucose transporter-2, a glucose trans- 

porter  expressed  in several hypothalamic areas  (28).  In 

addition, unmetabolized fructose is found in the urine af- 

ter ingestion  of a high-fructose meal, evidence that some 

fructose bypasses liver metabolism (29) and possibly could 

reach the CNS. Functionally, ip fructose was suggested to 

cross the blood-brain barrier  and to be rapidly  metabo- 

lized to lactate in the hypothalamus (30).

Fructose-induced decrease in hypothalamic ATP levels 

and subsequent activation of AMPK has been reported to 

stimulate  food intake (9). Our data,  showing that icv in- 

jections with AICAR or A769662 mimicked the effects of 

fructose ip or icv on gluconeogenesis  and hepatic PEPCK 

expression, support the proposition that fructose-induced
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FIG. 6.  AICAR- and fructose-induced increase of gluconeogenesis depends on hepatic GR activation. Wistar rats were subjected to lateral ventricle 
cannulation. One week after surgery, the rats were treated with icv AICAR and simultaneous  sc injections containing RU486 or vehicle (20% 
ethanol). Treated rats were fasted for 13 h and subjected to an ip pyruvate tolerance test. Glycemia was measured before and 15, 30, 90, and 120 
min after pyruvate injection. The full line with open circles represents data from the icv saline and sc vehicle, the full line with closed squares 

represents data from the icv AICAR and sc vehicle, the full line with closed circles represents data from the icv saline and sc RU486, and the
dashed line represents data from the icv AICAR and sc RU486 (A). The AUC was calculated for each individual animal within the four groups (B). 
Wistar rats were treated with ip fructose during 5 d with one daily simultaneous  sc injection containing RU486 or vehicle. After treatment, the rats 
were fasted for 13 h and subjected to an ip PTT. Glycemia was measured before and 15, 30, 90, and 120 min after pyruvate injection. The full line with 

open triangles represents data from the ip saline and sc vehicle, the full line with closed triangles represents data from the ip fructose and sc vehicle, the 
full line with open circles represents data from the ip saline sc RU486, and the dashed line with open squares represents data from the ip fructose and sc 
RU486 (C). The AUC was calculated for each individual animal within the four groups (D). A different set of rats was anesthetized, and the hypothalamus 
and a fragment of the liver were removed and processed for Western blotting. Membranes containing the hypothalamus samples were probed with 
antibodies against AMPKa1, AMPKa2, ACC, pAMPKa, pACC, and [3-actin (E). The data for pAMPKa (F) and pACC (G) were normalized to [3-actin. 
Membranes containing liver samples were probed with antibodies against PEPCK and [3-actin (H). The data for PEPCK (I) were normalized to [3-actin. 
Fragments of liver were also used for ChIP using an anti-GR antibody. The PEPCK gene was amplified from the ChIP samples and normalized to the
respective input (J). The results are shown as the mean SE. *, P 0.05 vs. CTL; #, P 0.05 vs. Fructose-IP (n 6).
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AMPK activation in the CNS might also regulates of glu- 

coneogenesis.  In addition, our  data  demonstrating that 

pharmacological AMPK inhibition in the CNS suppresses 

the stimulation of gluconeogenesis induced by ip fructose 

further  support this hypothesis.

To investigate the participation of hypothalamus in the 

fructose-mediated CNS-liver communication, we local- 

ized AMPKa phosphorylation using immunofluorescent 

staining.  Fructose  given through icv injection  increased 

phosphorylated AMPKa in the ARC, PVN, and LH. The 

functional relevance  for fructose-induced hypothalamic 

AMPKa phosphorylation was  further  demonstrated by 

the inability of ip fructose to increase gluconeogenesis  in 

rats exposed to AMPKa2 knockdown in the MBH.

The present data are in accordance with a recent inves- 

tigation demonstrating that the expression of a dominant- 

negative form of AMPKa2 in the MBH decreases glucose 

production  (13).  Neuronal pathways downstream to 

AMPK that may result in increased hepatic glucose output 

are not yet identified,  but the stimulation of carnitine 

palmitoyltransferase-1 (CPT1) is likely to be involved. 

AMPK activation is classically known  to target the phos- 

phorylation and  inhibition of ACC, resulting  in the re- 

duced  conversion  of acetyl-CoA  to  malonyl-CoA (12). 

Malonyl-CoA functions  as an endogenous inhibitor of 

CPT1.  Reducing  malonyl-CoA levels  allows  CPT1  to 

shunt long-chain acyl-CoA to the [3-oxidation cycle in mi- 

tochondria. Pharmacological inhibition and  genetic 

knockdown of hypothalamic CPT1 have been described 

to reduce hepatic gluconeogenesis (31). Of note, our data 

demonstrate that both ip and icv fructose stimulate hypo- 

thalamic  ACC phosphorylation.

Although  the description of the precise mechanism  by 

which fructose  activates  hypothalamic AMPK is not the 

main focus of the present investigation, some hypotheses 

can be taken  into  account. First, direct  icv injections  of 

fructose can stimulate  AMPK activation through mecha- 

nisms other than the simple increase in AMP to ATP ratio. 

Phosphofructose, a metabolite of fructose,  was  already 

described to inhibit protein  phosphatase 2A activity, a 

phosphatase known to dephosphorylate AMPK (32). Im- 

portantly, although not  precisely localized  in the hypo- 

thalamus,  the  CNS  is  a  territory  that   contains   high 

amounts of ketohexokinase, the enzyme responsible  for 

converting  fructose into phospho-fructose (33).

Regarding our present experiments using ip fructose, 

some peripheral signal generated  by fructose  might also 

contribute to AMPK activation in the CNS in addition to 

its direct  metabolism in the  hypothalamus. TNFa  pro- 

duced by the liver due to direct action of fructose can 

activate  AMPK in the hypothalamus through a mecha- 

nism  dependent  on  TGF[3-activated  kinase  activation

(34 –37). Alternatively, fructose has been described to ab- 

rogate postprandial drop in ghrelin levels (38). Ghrelin is 

known  to elicit an orexigenic  response that is dependent 

on hypothalamic AMPK activation (39). These putative 

additional mechanisms  might also explain the similar in- 

tensity of AMPK activation when fructose was given either 

through ip or through icv injections.

Having established  the importance of hypothalamic 

AMPK for fructose-induced gluconeogenesis, we next ex- 

plored how this information was transmitted from the 

MBH to the liver. Several studies reported that hypogly- 

cemia-induced  AMPK activation in the ventromedial hy- 

pothalamus, ARC, and PVN mediates a hormonal coun- 

terregulatory response,  which  is  characterized  by 

increased circulating  levels of corticosterone, glucagon, 

epinephrine, and  norepinephrine (40 – 42).  These coun- 

terregulatory hormones are classically recognized  as po- 

tent stimulators of hepatic gluconeogenesis.  AMPKa2 

phosphorylation in the PVN seems to be particularly im- 

portant for the stimulation of corticosterone secretion 

(41), whereas  AMPKa2  phosphorylation in the ventro- 

medial  hypothalamus mediates  an increase  in glucagon 

and catecholamines (40, 41). In accordance with these 

studies, we have found that fructose treatment efficiently 

increased  AMPKa phosphorylation in the PVN and the 

circulating  levels of corticosterone.

The ability of fructose to increase glucocorticoid levels 

is connected  to hypothalamic AMPK activation because 

icv compound C abrogated the surge in corticosterone 

induced by ip fructose. Singularly, we found that chronic 

activation of hypothalamic AMPK by AICAR resulted in 

a specific increase  in corticosterone and  catecholamines 

but not in circulating glucagon. This finding is in contrast 

with previous  reports  showing  that  acute AMPK activa- 

tion by AICAR was able to increase glucagon  levels (41,

43). It is possible that the glucagon response is not as 

sustained  as that of corticosterone because no increase in 

the levels of that hormone are detected after repeated  ac- 

tivation  of hypothalamic AMPK, as occurred  in our ex- 

perimental  protocols.

Corticosterone-mediated up-regulation of hepatic glu- 

coneogenesis involves a direct stimulation of hepatic 

PEPCK expression,  which is caused by the binding of GR 

to  the  regulatory regions  within  the  PEPCK  promoter 

(44). GR antagonism by RU486 was described to inhibit 

gluconeogenesis and PEPCK expression in obese but not in 

nonobese  mice (45). We found that fructose is unable to 

increase gluconeogenesis and hepatic PEPCK levels when 

combined with RU486. In addition, fructose-induced GR 

binding to the PEPCK gene demonstrates the interdepen- 

dence between  the fructose-mediated increase  in gluco- 

neogenesis and the hepatic action of corticosterone.
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FIG. 7.  Proposed interorgan mechanism for fructose-induced  increase 
of gluconeogenesis. Fructose activates AMPK in the hypothalamus, 
resulting in corticosterone (GC) secretion. Corticosterone acts in the 
liver to increase  PEPCK expression and gluconeogenesis.

In summary, the present study reveals a new mechanism 

by  which  fructose  up-regulates   gluconeogenesis   (illus- 

trated  in Fig. 7). This mechanism  is triggered by the acti- 

vation of the fuel sensor AMPK within the hypothalamus. 

Hypothalamic AMPK activation leads to increased corti- 

costerone  levels that  ultimately  activate  GR in the liver. 

Finally, increased GR binding activity to the PEPCK gene 

favors PEPCK expression and thus fructose-induced 

gluconeogenesis.
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