EFEITOS DO USO DE CARNE BOVINA PRÉ "RIGOR MORTIS" E FOSFATO NAS CARACTERÍSTICAS FÍSICAS, QUÍMICAS E SENSORIAIS DE EMBUTIDOS TIPO EMULSÃO
EFEITOS DO USO DE CARNE BOVINA PRÉ "RIGOR MORTIS" E FOSFATO NAS CARACTERÍSTICAS FÍSICAS, QUÍMICAS E SENSORIAIS DE EMBUTIDOS TIPO EMULSÃO

Jussara Carvalho de Moura Della Torre

Engenheiro de Alimentos

Orientador: Prof. Dr. Pedro Eduardo de Felício

Tese apresentada à Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas, para a obtenção do título de Mestre em Tecnologia de Alimentos

Campinas
Estado de São Paulo - Brasil
1991
BANCA EXAMINADORA

Prof. Dr. Pedro Eduardo de Felício
(Orientador)

Prof. Dr. Antônio de Melo Serrano
(membro)

Prof. Dr. Nelson José Beraque
(membro)

Prof. Dr. Olavo Rusig
(membro)

Campinas, 19 de agosto de 1991.
Ao meu marido

RICARDO

À minha filha

MARIANA

Aos meus pais

ABEL (em memória) e IDALINA

Aos meus irmãos

JUREMA, CEZARINO, UBIRAJARA e GUARACIABA

Dedico este trabalho
AGRADECIMENTOS

À Universidade Estadual de Campinas, Departamento de Tecnologia de Alimentos, por tornarem possível a realização deste Curso de Mestrado;

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelas bolsas de estudo concedidas.

Agradeço sinceramente ao Dr. Pedro Eduardo de Felício pela amizade, dedicação, orientação e acima de tudo, pelo fato de ter me introduzido na área de pesquisa e pelos anos de convivência em que não mediu esforços para me incentivar ajudando-me na condução do presente trabalho;

Aos professores, colegas e funcionários do Departamento de Tecnologia de Alimentos da Faculdade de Engenharia de Alimentos da Unicamp, particularmente Marcos Ferreira, Denise Marcll Bedin e Maria Teresa E. L. Galvão pela ajuda inestimável durante a fase experimental da pesquisa;

À Diretoria do Instituto de Tecnologia de Alimentos, da Secretaria da Agricultura e Abastecimento do Estado de São Paulo,
pelas facilidades outorgadas para a execução deste estudo. Particularmente agradeço ao Dr. Nelson Jôse Beraquet, coordenador do Centro de Tecnologia da Carne, pelo valioso auxílio e sugestões oferecidas; aos colegas pesquisadores Hana K. Arima, Expedito Tadeu F. da S. S. S. S. S. S. Silva e todo o pessoal do Centro de Tecnologia da Carne, que facilitou o meu trabalho; ao Dr. Issao Shirowe pela colaboração no planejamento e análise estatística dos experimentos; às pesquisadoras da Seção de Avaliação e Controle de Qualidade Emília E. M. Mori, Vera L. P. Ferreira e Sônia D. S. Campos pelo suporte técnico na sua especialidade e aos pesquisadores da Seção de Operações Unitárias Alfredo A. Vitali e Silvia P. M. Germer, pela mesma razão.

Ao Engenheiro Valmir V. Rocha do Frigorífico BON-BEEF (Vinhedo) e Sr. José J. de Moraes do Frigorífico BEIRA-RIO (Piracicaba) pela permissão de manuseio da carne no abatedouro;

A Associação Brasileira das indústrias de Alimentos (A-BIA), pela gentileza das cópias xerográficas deste trabalho.
EFETOS DO USO DE CARNE BOVINA PRÉ "RIGOR MORTIS" E FOSFATO NAS CARACTERÍSTICAS FÍSICAS, QUÍMICAS E SENSORIAIS DE EMBUTIDOS TIPO EMULSÃO

Candidata: Jussara Carvalho de Moura Della Torre
Orientador: Prof. Dr. Pedro Eduardo de Felício

RESUMO

A utilização da carne na fase pré "rigor mortis" traz benefícios econômicos como redução dos custos de transporte, mão de obra, instalações e energia de refrigeração. Adicionalmente, o uso de carne "pre-rigor" pode melhorar consideravelmente as propriedades de retenção de água e emulsificação de gordura de embutidos cárneos.

Com o objetivo de comprovar esses benefícios, conduziu-se um estudo para determinar-se os efeitos do uso de carne "pre-rigor" ("carne quente"), carne resfriada convencionalmente e de tripolifosfato de sódio (TPF) nos níveis de 0 e 0,3%, nas características físicas, químicas e sensoriais de embutidos tipo emulsão.

Utilizou-se formulação básica, contendo 39,4% de carne de dianteiro de vaca, 4,6% de bucho, 4,9% de carne suína, 9,5% de carne industrial bovina, 27,4% de toucinho, 2,35% de sal, 2,0% de amido, 0,78% de condimentos, 0,05% de eritrobato de sódio, 0,02% de nitrato de sódio e gelo em quantidade suficiente para se ter uma razão umidade: proteína igual a 4,5. A formulação foi balanceada de modo a conter entre 12 e 13% de proteína e entre 25 e 26% de gordura.
A carne de dianteiro de vaca foi moída uma hora após o abate e misturada com cloreto de sódio de forma a obter-se o efeito de carne "pre-rigor", ou moída após 24 horas de resfriamento, e conservada em câmara fria. Após 4 dias do abate elaborou-se a emulsão de salchicha com ou sem a adição do tripolifosfato de sódio.

Procedeu-se à análise estatística e as principais conclusões foram as seguintes:

Tanto a carne "pre-rigor", como o TPF, exerceram influência significativa (p<0,05) no pH da massa crua e do produto, na estabilidade da emulsão e nas perdas de peso no processamento. A utilização de carne "pre-rigor" aumentou o pH da massa em cerca de 4 décimos, e o TPF aumentou o pH em cerca de 3 décimos. Esses efeitos foram aditivos e, quando combinados, resultaram num aumento da ordem de 6 décimos no pH da emulsão. A mesma tendência foi verificada no pH do produto final.

O uso de carne "pre-rigor" reduziu a separação de gelatina em cerca de 3,0 unidades de porcentagem, e de gordura em 0,5. O TPF reduziu a separação de gelatina em cerca de 3,6 unidades e de gordura em 0,5. Combinados, reduziram a separação de gelatina na ordem de 4,0 unidades e a de gordura de 0,6.

O uso de carne "pre-rigor" e do TPF se equivaleram na redução das perdas no cozimento e foram da ordem de 2 unidades de percentagem. Combinados ou não, o resultado foi o mesmo.
Estudos da textura (força de cisalhamento) do produto final, mantendo-se a película protéica formada durante o cozimento ou retirando-a demonstraram que a carne "pre-rigor" não exerceu influência na textura do produto com película, porém, tornou o produto sem película menos firme. Já o TPF tornou o produto, com ou sem película, mais firme, independentemente da carne ser pré ou "post-rigor". A avaliação sensorial da maciez do produto com película protéica confirmou essa conclusão.

Os resultados da avaliação sensorial da suculência, sabor, homogeneidade da textura e qualidade global mostraram que esses parâmetros não foram influenciados pela carne "pre-rigor" ou pelo TPF.

Por último, pode-se afirmar que em formulações contendo 39% de carne de dianteiro de vaca, poder-se-ia prescindir do adi­tivo tripolifosfato, utilizando-se carne "pre-rigor", moída, salgada e resfriada, sem prejuízo da qualidade sensorial, com iguais rendimentos e cor. No entanto, obteve-se máxima estabilidade da emulsão com a adição de fosfato na formulação.
EFFECTS OF PRERIGOR BEEF AND PHOSPHATE ON THE PHYSICAL, CHEMICAL AND SENSORY CHARACTERISTICS OF EMULSION TYPE SAUSAGES

Candidate: Jussara Carvalho de Moura Della Torre
Adviser: Prof. Dr. Pedro Eduardo de Felício

SUMMARY

The processing of "pre-rigor" meat can result in benefits to the industry such as lower shipping costs, reduced expenditures with manpower, construction and refrigeration energy. In addition, the use of "pre-rigor" meat can significantly improve the properties of water and fat binding in sausages.

With the purpose of confirming these benefits, a study was conducted to determine the effects of using prerigor meat, conventionally chilled meat and triplyphosphates at 0 and 0.3% levels on physical, chemical and sensory properties of an emulsion type sausage.

A basic formulation was balanced in such a way that the final product would contain 12-13% protein, 25-26% fat and moisture : protein ratio of 4.5. This formulation had 39.4% cow forequarter meat, 4.6% beef tripe, 4.9% very lean pork, 9.5% cheek and diaphragm beef, 27.4% backfat, 2.35% salt, 2.0% cornstarch, 0.78% wiener seasonings, 0.05% sodium erythorbate and 0.02% sodium nitrite.
The forequarter cow meat was either ground one hour "post-mortem", salted and kept at 0-2°C, or ground after 24 hours of chilling, and stored. Sausages were processed 4 days after slaughtering, with or without TPP.

Statistical analysis consisted of two-way cross classification analysis of variance to detect the effects of meat ("rigor-state") and phosphate (with or without), and interaction considered as treatment combination \(n=4 \) of rigor-state and phosphate levels.

The main conclusions were as follows:

Both "pre-rigor" meat and TPP affected significantly \(p<0.05 \) the pH of batter and finished product, the emulsion stability, and the cooking yields.

"Pre-rigor" meat raised the pH of the batter by 4 tenths, while TPP raised pH by 3 tenths. The main effects were additive and combined caused a pH rise of 6 tenths. The same trend was true for the finished product pH.

"Pre-rigor" meat reduced gelatin separation as much as 3.0 percentage points, and fat separation by 0.5. TPP reduced gelatin separation by 3.6 percentage points, and fat by 0.5. "Pre-rigor" meat and TPP combined reduced gelatin separation by 4.0 percentage points and fat by 0.6.
The effects of "pre-rigor" meat and TPP were quite similar in processing yields, as measured in the finished product. Each caused a reduction of 2 percentage points in cooking losses. Combined or not, the effect was the same.

"Pre-rigor" meat did not affect the texture (shear force) of the protein skin-on sausage, but decreased shear force of the skinless product. The TPP increased shear force in skin-on or skinless sausage, regardless of "rigor-state". This conclusion was confirmed by the sensory measurement of tenderness of the skin-on sausages.

Sensory analysis showed that juiciness, flavor, connective tissue amount and overall quality were not affected by the "rigor-state", neither by the phosphate.

It can also be concluded that in emulsion type sausage formulation containing 35% of cow forequarter meat, was possible to eliminate the phosphate additive, by using chilled salted "pre-rigor" meat instead of "post-rigor" meat without losses in sensory quality, processing yields and color. However, maximum emulsion stability was obtained when phosphate was included in the formulation.
ÍNDICE DE QUADROS

1. Formulação da massa básica de salchicha sem fosfato 41
2. Formulação da massa básica de salchicha com fosfato 42
3. Condições do processamento térmico e resfriamento
 da salchicha 45
4. Médias e estimativas de erro padrão da média da
 percentagem de umidade da salchicha 60
5. Médias e estimativas de erro padrão da médias da
 percentagem de proteína da salchicha 62
6. Médias e estimativas de erro padrão da média da
 percentagem de gordura da salchicha 63
7. Médias e estimativas de erro padrão da média da
 percentagem de cinzas da salchicha 64
8. Médias e estimativas de erro padrão da média do pH da
 massa tipo emulsão crua 65
9. Médias e estimativas de erro padrão da média do pH da
 salchicha .. 67
10. Médias e estimativas de erro padrão da médias da
 percentagem de separação total de líquido em emulsões .. 69
11. Médias e estimativas de erro padrão da médias da
 percentagem de separação de gelatina em emulsões 71
12. Médias e estimativas de erro padrão da média da
 percentagem de separação de gordura em emulsões 72
13. Médias e estimativas de erro padrão da média da
 percentagem de perda de peso da salchicha com
 envoltório de celulose 74
14. Médias e estimativas de erro padrão da média da percentagem de perda de peso da salsicha sem envoitório de celulose ... 75
15. Médias e estimativas de erro padrão da média da força máxima de cisalhamento por peso da amostra 79
16. Médias e estimativas de erro padrão da média da força máxima de cisalhamento por peso da amostra 80
17. Médias e estimativas de erro padrão da média dos valores L-Hunter da cor da salsicha 83
18. Médias e estimativas de erro padrão da média dos valores a-Hunter da cor da salsicha 84
19. Médias e estimativas de erro padrão da média dos valores b-Hunter da cor da salsicha 85
20. Médias e estimativas de erro padrão da média da maciez da salsicha .. 87
21. Médias e estimativas de erro padrão da média da suculência da salsicha .. 89
22. Médias e estimativas de erro padrão da média do sabor da salsicha .. 90
23. Médias e estimativas de erro padrão da média da homogeneidade da textura da salsicha 91
24. Médias e estimativas de erro padrão da média da qualidade global da salsicha .. 92
ÍNDICE DE FIGURAS

1. Esquema das mudanças no músculo bovino durante as 24h "post-mortem" .. 7
2. Esquema das mudanças bioquímicas e estruturais em músculo bovino "post-mortem" a temperaturas ≥ 20°C 9
3. Influência da salga e resfriamento da carne bovina pré "rigor mortis" na capacidade de retenção de água (CRA) da emulsão .. 15
4. Influência do congelamento e descongelamento da carne bovina pré "rigor mortis" na capacidade de retenção de água (CRA) da emulsão .. 16
5. Efeito da salga, congelamento e liofilização da carne bovina pré "rigor mortis" na capacidade de retenção de água (CRA) da emulsão .. 17
6. Fluxograma de obtenção de carne pré "rigor mortis" sem adição de sal ou congelamento na capacidade de retenção de água (CRA) da emulsão .. 18
7. Desenho simplificado mostrando a relação entre a estrutura da proteína e a capacidade de intumescimento 21
8. Estrutura geral da cadeia linear de fosfatos 24
9. Polimerização e hidrólise dos fosfatos 24
10. Fluxograma do processo de obtenção e preparo da matéria-prima cárnea ... 37
11. Fluxograma básico do processo de obtenção de embutido do tipo salsicha ... 40
12. Homogeneizador de carne tipo cutter "Kraemer & Grebe" 43
13. Embutidora de pistão descontinua "Kraemer & Grebe" 43
14. Estufa de cozimento "BECKER" e registrador de temperatura "GRANT" 44
15. Boisas termoseláveis com as amostras cozidas e líquido já drenado 48
16. Massa tipo emulsão esterilizada, com separação de gelatina e gordura 49
17. Aparelho "TEXTURE TEST SYSTEM" - modelo TP-1 51
18. Curva de compressão-cisalhamento da amostra 52
19. Caixa metálica com nove pedaços de salsicha, após remoção da película protéica externa 52
20. Pratos codificados com amostras de salsicha para ordenação da mais à menos vermelha 53
21. Entrega das amostras aos quatro tratamentos aos provadores 54
22. Ficha de avaliação organoléptica 55
23. Carne moída do dianteiro de vaca dos procedimentos convencional e "a quente" 58
24. Salsicha do tratamento B ("carne quente" sem fosfato) do 2º processamento com pequena separação de gelatina e gordura 59
25. Salsicha do tratamento D ("carne fría" sem fosfato) do 2º processamento com alta percentagem de separação de gelatina e gordura 59
26. Interação significativa dos fatores carne x fosfato dos dados de pH da massa tipo emulsão crua 66
27. Interação significativa dos fatores carne x fosfato dos dados de pH da salsicha 68
28. Interação significativa dos fatores carne x fosfato dos dados de percentagem de separação total de líquido em emulsões .. 70
29. Interação significativa dos fatores carne x fosfato dos dados de percentagem de separação de gelatina em emulsões .. 73
30. Interação significativa dos fatores carne x fosfato dos dados de percentagem de separação de gordura em emulsões .. 73
31. Interação significativa dos fatores carne x fosfato dos dados de percentagem de perda de peso da salsicha com envoltório de celulose .. 76
32. Interação significativa dos fatores carne x fosfato dos dados da percentagem de perda de peso da salsicha sem envoltório de celulose 78
33. Interação significativa dos fatores carne x fosfato dos dados de força máxima de cisalhamento por peso do cilindro interno da amostra de salsicha 82
34. Interação significativa dos fatores carne x fosfato dos dados de maciez subjetiva da salsicha 88
35. Interação significativa dos fatores carne x fosfato dos dados de qualidade global da salsicha 93
ÍNDICE

Páginas

RESUMO ... 1
SUMMARY .. iv
ÍNDICE DE QUADROS .. vii
ÍNDICE DE FIGURAS ... ix

1. INTRODUÇÃO ... 1

2. REVISÃO DE LITERATURA .. 4

2.1. Modificações "post-mortem" do tecido muscular 6
2.2. Processamento do embutido tipo emulsão 10
2.3. Capacidade de retenção de água e gordura 12
2.4. Efeito do sal .. 19
2.5. Efeito do fosfato ... 23
2.6. Influência do pH ... 30
2.7. Influência da gordura e do tecido conjuntivo 32

3. MATERIAIS E MÉTODOS

3.1. Matéria-prima ... 35
3.2. Ingredientes ... 35
3.3. Equipamentos e instrumentos 36
3.4. Procedimento esquemático .. 36
3.5. Obtenção da matéria-prima e separação em tratamentos 38
3.6. Elaboração da salsicha ... 39
3.7. Análises químicas
 3.7.1. Umididade ... 46
 3.7.2. Proteína .. 46
 3.7.3. Gordura ... 46
 3.7.4. Cinzas .. 46
 3.7.5. pH .. 47
3.8. Análises físicas
 3.8.1. Estabilidade da emulsão 47
 3.8.2. Separação de gelatina e gordura 48
 3.8.3. Rendimentos ... 50
 3.8.4. Textura ... 50
 3.8.5. Cor .. 51
3.9. Avaliações subjetivas
 3.9.1. Avaliação da cor vermelha 53
 3.9.2. Avaliação sensorial 54
3.10. Análise estatística dos resultados 56
4. RESULTADOS .. 57
 4.1. Análises químicas
 4.1.1. Umididade ... 60
 4.1.2. Proteína ... 62
 4.1.3. Gordura ... 63
 4.1.4. Cinzas ... 64
 4.1.5. pH
 - pH da massa tipo emulsão crua 65
 - pH da salsicha 67
4.2. Análises físicas

4.2.1. Estabilidade das emulsões 69

4.2.2. Separação de gelatina e gordura

- Gelatina ... 71
- Gordura ... 72

4.2.3. Rendimentos

- Perda de peso da salsicha com
 envoltório de celulose 74
- Perda de peso da salsicha sem
 envoltório de celulose 75

4.2.4. Textura

- Firmeza objetiva da salsicha com
 película protetica externa 79
- Firmeza objetiva do interior da
 salsicha (d=15mm) 80

4.2.5. Cor

- Luminosidade (L-Hunter) 83
- Teor de vermelho (a-Hunter) 84
- Teor de amarelo (b-Hunter) 85
4.3. Avaliações subjetivas

4.3.1. Cor da salsicha ... 86
4.3.2. Maciez ... 87
4.3.3. Suculência .. 89
4.3.4. Sabor .. 90
4.3.5. Homogeneidade da textura 91
4.3.6. Qualidade global .. 92

5. DISCUSSÃO DOS RESULTADOS

5.1. Análises químicas .. 94
5.2. Análises físicas .. 96
5.3. Avaliações subjetivas ... 99

6. CONCLUSÕES .. 101

7. REFERÊNCIAS BIBLIOGRÁFICAS 103

8. ANEXO I - Dados experimentais

9. ANEXO II - Análise de variância
1. INTRODUÇÃO

Os músculos de um animal abatido permanecem vivos por várias horas, até que o "rigor mortis" finalmente se estabeleça. Nessa fase que antecede o "rigor mortis" ("pre-rigor"), quando as massas musculares são comumente denominadas de "carne quente", tem lugar uma série de transformações bioquímicas da maior complexidade.

O conhecimento atual dessas transformações bioquímicas teve origem nos estudos de BATE-SMITH & BENDALL (1949), BENDALL (1951), MARSH (1952), LAURIE (1953), HANSON & HUXLEY (1955). BENDALL (1979), HAMM (1978) e MARSH (1981) reuniram em artigos científicos as informações mais importantes sobre as transformações bioquímicas, que culminam com o desaparecimento do trifosfato de adenosina (ATP) do músculo, causando uma associação das proteínas actina e miosina, que caracteriza o "rigor mortis".

As reações do músculo na fase "pre-rigor", seu comportamento e, em particular, suas respostas a condições e provocações do ambiente externo são as mesmas de um músculo vivo, e muitos dos processos impostos, tais como aquecimento, resfriamento, congela-mento, excisão, adição de sal e estímulo elétrico, nessa fase, irão influenciar as propriedades da carne e a qualidade dos produ- tos elaborados. Entre as propriedades da carne mais afetadas pela natureza, extensão e velocidade das transformações bioquímicas, bem como pelos processos impostos à "carne quente", destacam-se as de retenção de água, de emulsificação, de desenvolvimento e esta-

Segundo HAMM (1978), os produtos de salischaria elaborados com "carne quente", isto é, enquanto o pH e o nível de ATP ainda são altos, entre duas e seis horas após o abate, apresentam uma qualidade melhor do que os produtos elaborados com "carne fria" ("post-rigor"), ainda que esses últimos contenham fosfatos. Isso se deve à maior capacidade de retenção de água e gordura da "carne quente", já que a quantidade de proteína miofibrilar extraída no processo é maior do que a quantidade extraída da carne "post-rigor", evitando a perda de umidade e quebra da emulsão (JOHNSON & HENRICKSON, 1970 cit. p. CUTHBERTSON, 1980). Ainda segundo HAMM (1978), a capacidade de retenção de água independe do nível de ATP presente no músculo, e é altamente dependente da queda de pH resultante da glicólise anaeróbica.

Considerando-se que nem sempre será possível processar a carne logo após o abate, transformando-a de imediato em embutido tipo emulsão, pode-se conservar as propriedades de "carne quente" pela adição de sal. O que pode ser feito moendo-se a carne ainda quente, adicionando-se 2 a 4% de sal ou sal de cura (sal e nitrato de sódio), e conservando-a sob refrigeração por 2 a 3 dias (HAMM, 1978).

A alta capacidade de retenção de água da carne "pre-rigor" pode ser preservada por alguns meses se os músculos forem

RONIKEL & HAMM (1978) relataram que a adição de sal à carne "pre-rigor" antes do congelamento resulta em emulsões de salsicha melhores do que a adição de sal durante o processamento.

Os polifosfatos possuem fundamental importância na indústria de carnes. O seu efeito assemelha-se ao do ATP, rompendo as ligações cruzadas entre os miofilamentos de actina e miosina, e na presença de sal, ocorre o efeito de intumescimento (Hamm, 1982 b; RONIKEL, 1984; WIRTH, 1985). São conhecidos por aumentarem o pH de sistemas cárneos, aumentando a capacidade de retenção de água, o que resulta em maiores valores de suculência, textura e rendimento de coçção. Estabilizam emulsões e mantêm o sabor e aroma dos produtos cárneos (ELLINGER, 1972 cit.p. MATLOCK et ali, 1984).

Embora exista um consenso no acervo bibliográfico internacional sobre os méritos práticos e funcionais da utilização de fosfatos e da carne bovina na fase "pre-rigor", os diversos aspectos inerentes a estes assuntos têm sido pouco explorados no Brasil.

Este estudo teve por objetivo determinar os efeitos: 1) da carne de dianteiro de vacas, com adição de sal na fase pré "ri-gor mortis", e 2) da adição de 0,3% de tripolifosfato de sódio, nas características químicas, físicas e sensoriais de embutidos tipo emulsão (salsichas).
2. REVISÃO DE LITERATURA

Na literatura, os termos "desossar a quente" e "carne quente" são empregados para referirem-se, respectivamente, à excisão dos músculos logo após o abate, isto é, antes do estabelecimento do "rigor mortis", e à carne obtida dessa maneira.

A "desossar a quente" oferece as seguintes vantagens: (a) redução do espaço refrigerado (HENRICKSON, 1975; KASTNER, 1977; CUTHBERTSON, 1980; FERGUNSON & HENRICKSON, 1979 cit.p. REAGAN et alii, 1981; HAMM, 1982a; TAENDLER, 1982; COON et alii, 1983); (b) menor consumo de energia (EMSWILER & KOTULA, 1979; HENRICKSON, 1975; KOTULA, 1981; REAGAN et alii, 1981; TAENDLER, 1982; COON et alii, 1983; HAMM et alii, 1983); (c) redução do tempo de processo (LIN et alii, 1979); (d) minimização dos custos de investimento, transporte e mão-de-obra (EMSWILER & KOTULA, 1979); (e) maior rendimento (EMSWILER & KOTULA, 1979; LIN et alii, 1979; CUTHBERTSON, 1980; KOTULA, 1981; REAGAN et alii, 1981; TAENDLER, 1982; COON et alii, 1983).

Segundo KOTULA (1981), a "desossar a quente" pode minimizar os requerimentos de energia para refrigeração da carne, pois: (1) a transferência de calor é mais eficiente em objetos com maior superfície de contato em relação ao volume; (2) parte da gordura de cobertura é eliminada deixando de atuar como um isolante térmico da carne, e (3) os ossos e os retalhos de gordura não precisam ser resfriados.
2.1. Modificações "post-mortem" do tecido muscular

Com a sangria do animal, interrompe-se a circulação sanguínea e com isto o transporte de glicose e oxigênio para o tecido muscular. Mas, como o músculo ainda possui reservas de energia na forma de glicogênio, mantém-se, por algum tempo, um estado similar ao do músculo "in vivo". Por isto mesmo, após a morte do animal, os músculos conservam por um curto período a capacidade de contração. Devido à deficiência de oxigênio depois da morte, a degradação de glicogênio conduz à formação de lactato. Este processo é designado comumente como formador de ácido láctico, pois a cada lactato forma-se um íon hidrogênio. Isto produz um abaixamento de pH do músculo, que é de 7,0 logo depois do sacrifício, até um pH final de 5,5 a 5,6. Esta degradação de glicogênio possibilita a formação de trifosfato de adenosina (ATP), utilizado nos processos metabólicos "post-mortem" (Figura 1). Quando as reservas de glicogênio se esgotam, reduz-se também o nível de ATP (HONIKEL & HAMM, 1985). A diminuição da concentração de ATP permite uma forte ligação entre os miofilamentos de actina e miosina. Consequentemente o músculo passa por uma crescente perda da extensibilidade que conduz ao "rigor mortis" (HAMM, 1982b; WIRTH, 1985).

O tempo para a degradação total do glicogênio depende do seu conteúdo no músculo no momento do abate, do tipo de músculo, da espécie animal, e do tratamento dado aos animais antes do sacrifício. Tem-se ainda a influência da temperatura do músculo logo após o abate. Geralmente quanto maior é a temperatura, tanto mais rápido desenvolvem-se os processos bioquímicos. Assim, em um músculo bovino a 30°C, o pH abaixa de 7,0 a 5,5 depois de 15 horas, a 14°C o faz depois de 22 horas e a 5°C, depois de 36 a 40 horas.
A velocidade de consumo do ATP determina a velocidade da degradação do glicogênio e, como consequência, o aparecimento de ácido lático. Portanto, a forma mais rápida e simples de avaliar-se a velocidade de consumo de ATP é a medida da queda do pH (HONIKEL & HAMM, 1980).

![Diagrama](image)

Figura 1. Esquema das mudanças no músculo bovino durante as 24h "post-mortem".

O ATP esgota-se após a morte do animal, sendo degradado em poucas horas. O conteúdo de ATP na célula muscular é de 5 umol ATP/g de tecido. O limite de concentração mínima necessária para evitar o "rigor mortis" encontra-se entre 1,0 e 1,5 umol ATP/g de.
tecido. Este limite já é alcançado 4 horas após o abate de bovinos (WIRTH, 1985) a temperaturas de aproximadamente 20°C (HAMM, 1982a).

Até a queda de pH para aproximadamente 5,9, a CRA diminui pouco. A partir do pH 5,9, isto é, com o aparecimento do "rigor mortis", ocorre uma drástica diminuição da CRA (Figura 2). Portanto, para utilização de carne em embutidos tipo emulsão, o desenvolvimento do "rigor mortis" possui um efeito desvantajoso.

Pode-se concluir, que a pequena diminuição da CRA até o desenvolvimento do "rigor mortis" é devida ao abaixamento do pH produzido pela glicólise. A diminuição da concentração de ATP parece não ser relevante nesta fase anterior ao "rigor". A ação do ATP é do tipo indireto. Caindo a concentração de ATP, abaixo de 1 umol/g e o pH de 7 a 5,9, ocorre uma forte união entre os miofilamentos de miosina e actina o que, por sua vez, traz uma diminuição da CRA. Por outro lado, pode-se dizer que a alta CRA da carne antes do "rigor mortis" deve-se ao ATP que impede a união dos miofilamentos de actina e miosina. Tem-se ainda que, pelo menos 1/3 do decréscimo da retenção de água "post-mortem", deve-se ao estabelecimento do "rigor mortis" e o restante à queda do pH (HAMM et alii, 1983).

No que se refere à solubilidade das proteínas musculares, até o estabelecimento do "rigor mortis", é o valor do pH exclusivamente e não a concentração de ATP o fator com maior influência. Pelo menos 2/3 do decréscimo total da solubilidade deve-se ao desenvolvimento do "rigor mortis", o restante deve-se ao abaixamento do pH, que mede o acúmulo de ácido láctico. A modificação na estrutura muscular logo após o abate influí de forma análoga tanto na CRA como na solubilização protéica (HAMM et alii, 1983).
Vários estudos têm mostrado que o "rigor mortis" produz mudanças nas propriedades das proteínas musculares que resultam em um abaixamento da sua capacidade de emulsificação (TRAUTMANN, 1964; ACTON & SAFFLE, 1969). Por exemplo, em emulsões feitas em sistema modelo, tem sido observado que a proteína solúvel em sal de carne suína "pre-rigor" produz emulsões mais estáveis que a proteína solúvel em sal "post-rigor" (TRAUTMAN, 1964).

SAFFLE & GALBREATH (1964) relataram que 50% a mais de proteína solúvel em sal é extraída de carne bovina "pre-rigor" comparado à carne bovina com 48 horas "post-mortem". CUTHBERTSON (1980) também verificou que a proteína solúvel em sal de bovino e suíno é mais extraível de carne "pre-rigor" que "post-rigor".

2.2. Processamento do embutido tipo emulsão

Dentre as propriedades da carne importantes na elaboração de embutidos tipo emulsão, encontram-se a retenção da água, isto é, retenção da água própria dos tecidos e da água adicionada, e a fixação da gordura, isto é, inclusão de gordura na trama reticulada formada pela proteína muscular e a água estáveis aos efeitos do calor. A retenção de água e a fixação de gordura estão estreitamente relacionadas.

Segundo WIRTH (1985), o embutido de massa tipo emulsão é composto basicamente por uma mistura finamente emulsionada de tecido muscular, tecido gorduroso e água, a qual se adiciona sal, aditivos e condimentos para o desenvolvimento da cor, sabor e estabilização. Os componentes da massa básica são picados por facas que giram a alta velocidade, obtendo-se desta maneira, uma massa pastosa espessa que, submetida a tratamento térmico torna-se firme ao corte. O processo de corte no "cutter" (homogeneizador de facas e bacia rotativas) deve romper a parede celular e liberar o conteúdo das células. Somente desta maneira, os fragmentos da estrutura protéica, podem incorporar a água adicionada, intumescendo e formando um gel protéico reticulado que, posteriormente à incorporação de gordura, impede a sua coalescência durante o aquecimento. A respeito disso, mostra-se mais efetiva a coagulação a "seco", antes da adição da água ou gêlo, porque os feixes de fibras musculares são mais facilmente atingidas pelas facas.
WIRTH (1985) recomenda o seguinte procedimento para a elaboração da massa tipo emulsão: a carne magra congelada é triturada sem a adição da água, até que comece a descongelar no "cutter". Neste momento incorporam-se os sais (sal comum, nitrito de sódio e eventualmente o fosfato de sódio e o ascorbato de sódio) e faz-se a adição da água de forma paulatina. A massa "magra" deverá estar pronta ao atingir 2 a 4°C. Incorpora-se a esta a gordura, e o processo de trituração deve terminar quando a temperatura da massa atingir 10 a 15°C. A massa tipo emulsão deve estar ótima do ponto de vista de estrutura, bem como da retenção de água e gordura.

Do ponto de vista físico-químico a massa básica do embutido (comumente denominada "emulsão") é composta por diferentes sistemas, tais como: (1) solução de proteínas e sais; (2) suspensão de componentes do tecido na água existente ou adicionada; (3) gel de substâncias protéicas do tecido muscular, e (4) células adiposas e gordura livre fixadas no gel de proteínas musculares solúveis em água e sal. É de fundamental importância liberar as proteínas estruturais actina e miosina, mediante o processo de cominuição e levá-las posteriormente a um intensivo intumescimento e solubilização. O intumescimento e a solubilização são os principais responsáveis pela retenção de água e gordura (WIRTH, 1985).
2.3. Capacidade de retenção de água e gordura

As proteínas que compõem a estrutura das fibras musculares são responsáveis pela retenção de água. As proteínas solúveis ou sarcoplasmáticas possuem pequeno efeito na capacidade de retenção de água (CRA). As proteínas estruturais encontram-se nas chamadas miofibrilas, que são miofilamentos dos quais se faz distinções entre os delgados, compostos principalmente pela actina, e os grossos, que consistem sobretudo da proteína miosina. A principal responsável pela CRA é a miosina, já que esta contribui com aproximadamente a metade da proteína miofibrilar e, mais ou menos, um terço da proteína muscular (Hamm, 1982b).

O significado do conceito de retenção ou ligação de água depende do estado e tratamento da carne. No cozimento de embutidos emulsionados, falamos de perda por coção ou rendimento, e no caso de massa tipo emulsão enlatada, de separação de gelatina. Por retenção de água entende-se a propriedade da carne e sistemas cárneos, de reter a água contida ou adicionada, de tal forma que no produto não haja separação de gelatina. Entretanto, é quase impossível uma definição geral verdadeira para CRA e tampouco pode-se fixar um método de medição que seja aplicável em todos os casos (Hönikel, 1984).

A carne bovina possui, imediatamente após o abate, uma elevada CRA, que se mantém somente nas primeiras horas "post-mortem", diminuindo consideravelmente entre 12 e 24 horas pós-abate. Em geral, a CRA é uma importante característica da qualidade da carne. As perdas de peso durante a refrigeração e armazenamento, assim como as perdas de suco no descongelamento da carne, estão
relacionadas à CRA do tecido muscular do mesmo modo que a separação de água e gordura nos embutidos tipo emulsão ou a separação de gelatina nos enlatados (Hamm et alii, 1983).

Na carne intacta, a diminuição da CRA dentro das primeiras 24 horas "post-mortem" é determinada pela queda de pH (Hamm et alii, 1983; Honikel et alii, 1980) e não pela concentração de ATP. Isto também vale para homogeneizados com ou sem adição de sal (Hamm et alii, 1983). Depois da morte do animal, entre pH 7,0 e 5,5 a CRA diminui juntamente com o pH de forma quase paralela (Honikel, 1984).

Segundo Honikel et alii (1983), na transformação da carne bovina em produtos cárneos, a CRA depende não somente do pH da carne, mas sobretudo do aparecimento do "rigor mortis". Um rápido decréscimo da temperatura da carne antes do estabelecimento do "rigor mortis", não repercutem de maneira negativa na elaboração de embutidos emulsionados. Pelo contrário, através de um rápido abaixamento da temperatura pós-abate, pode-se retardar o aparecimento do "rigor mortis" e desta forma é facilitada na prática a manutenção das propriedades da "carne quente".

Hamm (1972, 1977) cit. p. Jolley et alii (1981) sugeriu que a CRA da "carne quente" com sal poderia ser devido à forte repulsão eletrostática entre as proteínas miofibrilares disociadas - miosina e actina - causada pela influência combinada do ATP, alto pH e aumento da força iônica resultante da adição do sal. É possível que, enquanto haja ATP presente no músculo, em quantidade suficiente para evitar a formação de actomiosina, a repulsão resultante do aumento da força iônica pela adição de sal, pode ser
suficiente para produzir uma maior CRA.

A combinação de altos teores de ATP, alto pH e sal adicionados causa um forte intumescimento e alguma solubilização das proteínas miofibrilares e não ocorre a associação da actina e mio-seia, consequentemente, o “rigor mortis” não pode ocorrer nos fragmentos de fibra nem mesmo após a perda total do ATP (Hamm, 1978).

Segundo Hamm (1972) cit. p. Hamm (1978), o descongelamento da carne “pre-rigor” congelada, resulta em intenso decréscimo na CRA, mesmo que a carne seja moída antes do congelamento. Após o aquecimento, a CRA da carne bovina “pre-rigor” congelada e descongelada é até mesmo mais baixa que a carne “post-rigor” não congelada. É possível pelo congelamento preservar a alta CRA da carne bovina “pre-rigor” para a produção de embutidos se a carne for processada no estado congelado. O autor indica ainda, o seguinte procedimento: a carne grosseiramente moída no estado de pré-rigidez é congelada em finas camadas a -40°C e estocada a temperatura não superior a -20°C. A carne congelada é então colocada no “cutter” e triturada com a adição simultânea de sal e água. O processamento restante segue o procedimento convencional. Embutidos de carne “pre-rigor” sem sal congelada, mostraram uma CRA muito maior e geralmente uma melhor qualidade do embutido. Mais efetiva ainda, com relação à qualidade do embutido, é a salga da carne bovina “pre-rigor” antes do congelamento, processando-se a carne congelada.

Hamm (1978) esquematizou estes procedimentos (Figura 3, 4, 5 e 6) e relatou que a CRA da carne bovina quente, pode ser
preservada por semanas ou até meses e a salchicha produzida com esta matéria-prima será de alta qualidade. Segundo o autor a alta CRA da carne bovina "pre-rigor" pode ser preservada pelo rápido congelamento da carne moída com ou sem sal antes do começo da hidrólise do ATP. É importante assegurar nestes procedimentos que a hidrólise do ATP durante o congelamento e estocagem congelada seja mantida ao mínimo.

(HAMM, 1978)

Figura 3. Influência da salga e resfriamento da carne bovina pré "rigor mortis" na capacidade de retenção de água (CRA) da emulsão.

Pode-se aumentar a CRA pela adição de sal na carne "pre-rigor" ou "post-rigor" (HAMM, 1981 cit. p. PUOLANNE & TERRELL, 1983b) e pela adição de fosfato (tripolifosfato de sódio) na for-

Figura 4. Influência do congelamento e descongelamento da carne bovina pré "rigor mortis" na capacidade de retenção de água (CRA) da emulsão.
Figura 5. Efeito da saíga, congelamento e liofilização da carne bovina pré "rigor mortis" na capacidade de retenção de água (CRA) da emulsão.
Figura 6. Fluxograma de obtenção de carne pré "rigor mortis" sem adição de sal ou congelamento na capacidade de retenção de água (CRA) da emulsão.
2.4. Efeito do sal

Por razões tecnológicas e econômicas o cloreto de sódio é essencial em carnes processadas. Como exemplo de seus benefícios tem-se: (1) ativação da proteína e aumento da hidratação; (2) decréscimo da perda de fluido em produtos processados termicamente e embalados a vácuo; (3) aumento das propriedades de ligação das proteínas, melhorando a textura; (4) aumento da viscosidade da massa "magra", facilitando a incorporação da gordura e formação de uma massa final estável; (5) aumento do pH do sistema cárnico; (6) essencial ao sabor e aroma; e (7) bacteriostático a teor relativamente alto (TERRELL, 1983).

O tecido muscular contém naturalmente sais em uma concentração de aproximadamente 0,17 Mol/Kg de carne. Isto equivale aproximadamente a uma solução de sal comum de 1%. Com esta concentração natural de sal e um pH de 7,0, logo depois da morte do animal, dois terços da proteína muscular encontram-se insolúveis - proteína miofibrilar e tecido conjuntivo - e um terço da proteína encontra-se na forma solúvel - proteína sarcoplasmática. A solubilidade das proteínas depende de fatores como a temperatura, o pH e a concentração de sal. Por isto pode-se obter, por exemplo, mediante a elevação da concentração de sal, a solubilização de uma parte das proteínas miofibrilares (HONIKEL, 1984).

A concentração total de sais na massa, isto é, os sais próprios da carne, e aqueles adicionados (sal comum, nitrito, fosfato), dão como resultado a denominada força iônica. A concentração de sais é importante para a capacidade de intumescimento da actina e miosina e na solubilização de diferentes proteínas cár-
ness. A actina e a miosina são solúveis somente em solução de sal e a solubilidade vai aumentando até uma concentração de 6%. Concentrações superiores a esta, podem resultar em desnaturação das proteínas. Portanto, a adição de sal à carne magra não deve superar 5% (WIRTH, 1985).

O efeito do sal sobre a proteína muscular depende da fase de rigidez da carne. Antes do "rigor mortis", no sarcômero, encontram-se os filamentos protécios separados entre si devido à concentração de ATP. Quando agrega-se sal e água logo após a ruptura parcial da estrutura muscular pela moagem, aumenta-se a concentração de sal originando um complexo processo de absorção de água e um forte intumescimento da carne moída, quando os filamentos se separam e tem-se o afrouxamento da estrutura. Uma parte dos filamentos protécios separam-se tanto, que as proteínas passam a solução. A solução apresenta o estado limite de intumescimento da estrutura muscular por adição de sal, que somente é possível enquanto não se tenha produzido nenhuma ligação cruzada entre os miofilamentos de actina e miosina (Figura 7), isto é, antes do estabelecimento do "rigor mortis".

O sal provoca um intumescimento das fibras musculares, e consequentemente um afrouxamento da malha protéica. Se este intumescimento se produz antes do "rigor mortis", então depois de degradado o ATP, os miofilamentos de actina e miosina não podem interagir entre si para formar um complexo de actomiosina, e o "rigor mortis" não ocorre. O resultado disto é que a elevada CRA da "carne quente" com sal, se mantém durante o armazenamento. A carne
que já tenha entrado em "rigor" (carne fria a pH 5,5) mostra, com a adição de sal, uma melhora da CRA, porém, ainda menor que a da "carne quente". O limite inferior de concentração de sal necessário para obter-se o denominado efeito de pré-salga na "carne quente" moída, encontra-se na adição de aproximadamente 1% de sal comum (HONIKEL, 1984).

A adição de 2 a 4% de sal na carne quente moída grosseiramente e a refrigeração por 3 dias, resulta numa matéria-prima com capacidade de retenção de água e gordura semelhantes à da carne "pre-rigor" (HAMM, 1972 e 1973 cit.p. HAMM, 1978).
2.5. Efeito do fosfato

Os polifosfatos são aditivos que possuem extensa aplicação na indústria de alimentos e são de fundamental importância na elaboração de produtos cárneos. Todos os tipos utilizados em carnes possuem essencialmente a mesma estrutura. São sais de sódio ou potássio de diferentes ácidos fosfóricos compostos de uma ou mais unidades de fosfato (Figura 8). Os ortofosfatos contêm uma unidade de fosfato e têm 1, 2 ou 3 íons de hidrogênio do ácido fosfórico trocados por íons de sódio ou potássio. Esses fosfatos são chamados: fosfato de sódio (potássio), fosfato disódico (dipotásico) e fosfato trisódico (tripotássico), respectivamente. Os fosfatos condensados ou polimerizados contêm mais que uma unidade de ortofosfato. Os fosfatos condensados mais amplamente usados possuem os seguintes nomes comuns e comprimentos de cadeia: pirofosfato, 2; tripolifosfato, 3; tetrapolifosfato, 4-10; e hexametafosfato, 10-15 (ELLINGER, 1972 cit p. TROUT & SCHMIDT, 1987) - Figura 9. Todos os fosfatos condensados são sais de sódio ou potássio completamente neutralizados, exceto o pirofosfato ácido, o qual contém somente 2 dos 4 íons de hidrogênio originais neutralizados. Os fosfatos são classificados pelo tamanho da cadeia: entre quatro e cem, como fosfato de sódio ou potássio, e aqueles com um comprimento de cadeia maior que cem, como metafosfato de sódio (potássio), insolúveis (USDA, 1982 cit p. TROUT & SCHMIDT, 1987).
Figura 8. Estrutura geral da cadeia linear de fosfatos.

Nem todos os fosfatos podem ser utilizados em produtos cárneos. Dos já mencionados, o fosfato trisódico (tripotássico) é o único não permitido em produtos cárneos. O metafósforo insolúvel é permitido, mas raramente utilizado. Tanto os fosfatos de sódio ou potássio são permitidos, mas os de potássio são raramente usados por serem de custo elevado e de difícil manuseio devido a sua higroscopicidade (TROUT & SCHMIDT, 1987).

Os fosfatos não aumentam a funcionalidade das proteínas cárneas na mesma extensão. Em geral, a habilidade relativa dos fosfatos aumentarem a funcionalidade é como segue: pirofosfato > tripolifosfato > tetrapolifosfato > hexametafósforo > ortofosfato (BENDAL, 1954; SHULTS et alii, 1972; TROUT & SCHMIDT, 1984 cit p. TROUT & SCHMIDT, 1987). O fosfato menos efetivo aumenta mais a funcionalidade das proteínas que o cloreto de sódio e outros sais simples. Os fosfatos são usados por exemplo, em produtos cárneos reestruturados, a concentrações muito menores (tipicamente 0,2 - 0,5%) que o cloreto de sódio. Mesmo quando usado a baixas concentrações, os fosfatos aumentam mais a força da matriz proteica e a
coesão entre os pedaços de carne, que a maior concentração que se pode usar de cloreto de sódio (TROUT, 1984 cit p. TROUT & SCHMIDT, 1987).

Em adição ao seu efeito sobre a funcionalidade, os fosfatos também aumentam a vida de prateleira de produtos, pela redução da taxa de oxidação dos pigmentos que conferem cor (principalmente mioglobina) e redução da oxidação lipídica, que estão relacionados com a taxa de degeneração da cor e sabor nos produtos. Não é totalmente conhecido o mecanismo de ação dos fosfatos, mas, vários pesquisadores postularam que os fosfatos formam quelatos com o ferro e outros metais livres, que são pró-oxidantes lipídicos (PEARSON et al., 1977 cit p. TROUT & SCHMIDT, 1987). Assim, em cadeia, haverá redução da oxidação da mioglobina, uma vez que a mioglobina é oxidada pelos subprodutos da oxidação lipídica. Os fosfatos podem também, reduzir a taxa de oxidação lipídica e da mioglobina pelo aumento do pH dos produtos. Pesquisas com carne fresca indicam que, um aumento no pH acima de 6,0 reduz consideravelmente a taxa de oxidação lipídica e oxidação da mioglobina (YA-SOSKY et alii, 1984 cit p. TROUT & SCHMIDT, 1987).

Para AMBROSIADIS & WIRTH (1984), a adição de fosfato no processamento de salchicha levou a uma ligeira diminuição da quantidade de pigmentos de cor vermelha, provavelmente determinada em parte, pelo maior pH e, consequentemente, associado a uma menor
produção de óxido nítrico.

Os fosfatos em concentrações superiores a 0,3%, produzem sabor adstringente metálico, embora haja evidência que este efeito seja menos pronunciado com os fosfatos de potássio (KARMA, 1970 cit p. TROUT & SCHMIDT, 1987). Além disso, o consumo de produtos cárneos reestruturados contendo o nível máximo permitido de fosfatos pode resultar em aumento do consumo diário total de fósforo (RAINESBELL, 1977 cit p. TROUT & SCHMIDT, 1987). Muitos consumidores estão atentos aos produtos que contêm fosfato, porque altos teores diários de fósforo reduzem a absorção de cálcio, que pode resultar em osteoporose, uma doença predominante em mulheres pós-menopausa, que é caracterizada por ossos porosos e quebradiços. A concentração de fosfato na maioria dos produtos reestruturados pode ser reduzida a um nível aceitável (0,2 - 0,3%), sem afetar desfavoravelmente as suas propriedades funcionais (SCHWARTZ & MANDIGO, 1976; TROUT & SCHMIDT, 1984 cit p. TROUT & SCHMIDT, 1987).

A carne na qual já se tenha estabelecido o "rigor mortis" ("carne fria"), pode sofrer um intumescimento com o sal e a água, se forem rompidas as ligações cruzadas entre os miofilamentos de actina e miosina. Para isto, pode-se empregar o fosfato como coadjuvante da comunicação. O efeito assemelha-se ao do ATP, rompendo as ligações. Portanto, na presença de sal ocorre o efeito de intumescimento, quando da separação da actina e miosina pelo fosfato (HAMM, 1982b; HONIKEL, 1984; WIRTH, 1985). Ocorre também um pequeno aumento do pH, o qual provoca uma pequena melhora da CRA (HONIKEL, 1984).
Para HONIKEL (1984), é possível obter uma boa capacidade de intumescimento na "carne fria", com a adição simultânea de sal e fosfato (dipósforo) no teor máximo de 0,3% da quantidade de carne e gordura e com um pH não superior a 7,3 (em uma solução de 5%) como exigido pela legislação da República Federal da Alemanha.

O uso de tripolifosfato de sódio aumentou o rendimento na cocção e a suculência (SCHWARTZ & MANDIGO, 1976; MATLOCK et alii, 1984), aumentou o pH e diminuiu o desenvolvimento de rancidez e, consequentemente, o aparecimento de sabor e aroma indesejáveis (MATLOCK et alii, 1984). No estudo de PUOLANNE & TERRELL (1983a) a suculência não foi afetada pelo uso de tripolifosfato.

PUOLANNE & TURKKI (1983) evidenciaram que: o efeito da adição de sal à "carne quente" não é marcante quando na presença de fosfato, mas sem a adição de fosfato obteve-se um aumento significativo na CRA.

Para HAMM et alii (1983), a elaboração de embutidos com "carne quente" com sal, dispensa a adição de fosfatos, o que é positivo, pois na República Federal da Alemanha é preciso declarar o aditivo na embalagem, e a presença desse aditivo não agrada aos consumidores.

gundo PUOLANNE & TERRELL (1983a) a força de cisalhamento medida no aparelho INSTRON, foi menor para a salsicha de “carne quente” (suína) sem fosfato, quando comparada à salsicha de “carne quente” com fosfato.

A adição de fosfato leva, geralmente, a uma menor separação de gelatina em conserva de massa, tipo emulsão, esterilizada (AMBROSIADIS & WIRTH, 1984).

HEINZ (1975) relatou que o uso de fosfato (difosfato) na concentração de 0,3% em carne “pre-rigor” e carne “post-rigor” resultou numa menor separação de gelatina do que na carne “post-rigor” sem fosfato. E que a carne na fase “pre-rigor” mostrou-se equivalente à carne “post-rigor” adicionada de fosfato.

WIRTH (1985) considerou os fosfatos, dentre os possíveis aditivos, como o mais efetivo para melhorar a retenção de água e gordura de embutido emulsionado tipo salsicha.

SHIMP (1981) também concluiu que o tripolifosfato de sódio e o pirofosfato tetrasódico são superiores a todos os outros fosfatos usados para carnes, mas o tripolifosfato possui solubilidade maior em salmouras (15g/100cc a 10°C contra 4g/100cc para o pirofosfato). O tripolifosfato de sódio é menos propenso para formar precipitados insolúveis de cálcio e magnésio em água pesada comparado ao pirofosfato. Por estas razões, o tripolifosfato de sódio é o polifosfato preferido nas indústrias de produtos cárneos curados.
2.6. Influência do pH

O pH da carne no momento do abate é de aproximadamente 7,2, caindo "post mortem" para valores menores que 5,8. Esta queda de pH influi negativamente sobre a CRA da actomiosina. Com a diminuição do pH, a proteína repulsa a água de forma crescente e a retenção de água é mínima a um pH de 5,0 a 5,2, que corresponde ao ponto isoeletrico da actomiosina (WIRTH, 1985).

Para produtos curados cozidos, como o presunto, e embutidos tipo emulsão, uma alta capacidade de retenção de água é tecnologicamente favorável. Portanto, é interessante ter-se carnes com valores de pH tão altos quanto possível. As alternativas para aumentar-se o pH de embutidos tipo emulsão são: (1) uso de carne de animais recém abatidos com pH ao redor de 6,5 - "carne quente" e (2) adição de substâncias que tenham a elevar o pH: citratos, lactatos e fosfatos com valores de pH aproximadamente 7 (WIRTH, 1980).

CORNFORTH et alii (1985) relataram diferenças no pH do músculo L. dorsl de bovinos. Todas as amostras "post-rigor" tinham valores de pH abaixo de 6,0, enquanto todas as amostras "pre-rigor" tinham valores de pH acima de 6,0.

A adição de sal ao músculo moído antes do desenvolvimento do "rigor mortis" inibe a glicólise e a produção de ácido láctico, conferindo maiores valores de pH para as pré-misturas (HAMM, 1977 cit.p. ABU-BAKAR et alii, 1982; MONikel & HAMM, 1978; COHEN et alii, 1983). A salsicha preparada com carne moída misturada com sal ainda na fase "pre-rigor", tinha maior valor de pH do que

Segundo TROEGER & WOLTERSDORF (1986), existe uma estreita relação entre o pH e o conteúdo de ATP da carne crua antes da adição de sal. As carnes dos produtos que mostraram as qualidades de "carne quente", possuíam pH igual ou superior a 5,95.

No trabalho de DRERUP et alii (1981), a salsicha preparada a partir de carne moída na fase de pré-rigidizez e misturada com sal na fase de pós-rigidizez possuía menor valor de pH do que a salsicha de carne moída e misturada com sal na fase de pré-rigidizez, porém ligeiramente maior do que a salsicha de carne moída e misturada com sal na fase de pós-rigidizez. Os autores atribuíram a menor perda total na coçção e a maior suculência das salsichas de carne "pre-rigor" ao pH ligeiramente maior.

2.7. Influência da gordura e do tecido conjuntivo

Tradicionalmente, a emulsificação de gorduras tem sido considerada, o principal fator responsável pela estabilidade de produtos carneiros cominuídos, como sausicha tipo Frankfurt e mortadela tipo Bolonha (TERRELL, 1980 cit.p. PARK et alii, 1987).

A porção de gordura utilizada na elaboração de embutidos tipo emulsão deve ser toucinho, ou retalhos de toucinho, se possível, fresco e firme. O toucinho firme possui alto ponto de fusão. Assim, evita-se que a gordura se liquefaca demasiadamente rápido, o que traria como consequência um produto pronto que não retém totalmente a gordura (NEUHAUEUSER, 1983).

Para KLETTNER (1986), o grau de cominuição do toucinho no "cutter" não influenciou a consistência do embutido pronto. Uma trituração mais intensa produziu um clareamento da cor e uma diminuição da quantidade de pigmentos de cor vermelha.
A gordura homogeneamente distribuída na estrutura protéica intumescida, impede uma retração intensa dessa estrutura quando da desnaturação pelo calor. A condição para isto, é assegurar uma suficiente comunicação do tecido gorduroso (WIRTH, 1985).

Dado que a CRA e a emulsificação de gordura influem-se mutuamente, evidencia-se o fato já conhecido na prática, que um aumento da separação da gelatina (proteína colagênica) em embutidos tipo salsicha, é geralmente acompanhado por um aumento na separação de gordura (HONIKEL, 1984).

O conteúdo em tecido conjuntivo e o grau de comunicação da carne afetam consideravelmente os depósitos de gelatina e gordura, a cor e a consistência das salsichas. Quando o conteúdo em tecido conjuntivo aumenta, pode-se esperar que haverá maior quantidade em gelatina e gordura depositada e a cor será mais clara. A textura na mordida será mais firme, principalmente quando o embutido é consumido frio (AMBROSIADIS & WIRTH, 1984). A carne com alto conteúdo em tecido conjuntivo possui, no entanto, uma menor capacidade para ligar água e gordura, e confere uma perda da firmeza no produto, caso a trituração seja demasiadamente intensa (AMBROSIADIS & WIRTH, 1984; KLETTNER, 1986).

Testes sensoriais mostraram que, um maior conteúdo em tecido conjuntivo conferiu uma maior firmeza ao produto. A cor, sabor e aroma destes produtos foram negativamente afetados (AMBROSIADIS & WIRTH, 1984).
Os resultados da análise de separação de gelatina e gordura servem para a apreciação da capacidade de retenção de água e gordura da massa emulsionada. A salsicha de carne "pre-rigor" mostrou vantagens significativas quanto à separação de gelatina e gordura quando comparada ao produto de carne "post-rigor" (HEINZ, 1975).

O tecido conjuntivo é constituído basicamente de proteínas do tipo colágeno. Segundo DEWEGHE et al. (1986), o teor de colágeno em um produto cárneo é importante pelas seguintes razões: (1) o colágeno é considerado uma proteína de baixo valor nutricional já que o conteúdo em aminoácido essencial triptofano é significativamente menor quando comparado às proteínas miofibrilares, e (2) a Bélgica e a República Federal da Alemanha já estabeleceram valor máximo para a relação colágeno/proteína para uma série de produtos cárneos.

Para LAURIE (1981) e PRICE & SCHWEIGERT (1971), a quantidade de proteína tipo colágeno não deve exceder a 25% da formulação. Já a legislação da República Federal da Alemanha estabelece, por exemplo, para a salsicha tipo Viena o valor máximo de 25% de proteína colagênica em relação à proteína total, para um produto especial como "Bierschinken" 12% e, para um produto inferior tipo "Knacker einfach" 40%. Ao mesmo tempo, esta legislação exige um teor mínimo de proteína cárnea livre de proteína colagênica, isto é, a soma das proteínas miofibrilares e sarcoplasmáticas, que nos respectivos produtos são 8, 12 e 6,5% da composição total do produto.
3. MATERIAIS E MÉTODOS

3.1. Matéria-prima

A matéria-prima constituiu-se de:

a) carne de dianteiro de vaca, carne de cabeça, diafragma, e bucho;

b) carne suína e toucinho da porção costo-lombar.

3.2. Ingredientes

Utilizou-se como ingredientes:

- sal comercial
- condimentos para salsicha
- amido de milho
- tripolifosfato de sódio comercial
- nitrito de sódio comercial
- eritrobato de sódio comercial
3.3. Equipamentos e instrumentos

- conjunto para determinação de gordura, tipo Soxhlet
- conjunto para determinação de proteínas, tipo macro-Kjeldahl
- moedor de carne "HERMANN"
- potenciômetro medidor de pH "MICRONAL"
- homogeneizador de facas e bacia rotativas tipo cutter, "KRAEMER & GREBE"
- embutideira de pistão descontínua "KRAEMER & GREBE"
- estufa de cozimento "BECKER"
- registrador de temperatura "GRANT" e termopares
- registrador de temperatura "HONEYWELL" e termopares
- aparelho medidor de textura ou consistência "TEXTURE TEST SYSTEM"
- espectrocolorímetro "COMCOR 1500 Plus"
- cabine de luz "SUPER SKY-LIGHT"
- embaladora e seladora a vácuo "SCHAUSE"
- homogeneizador "SORVALL OMNI-MIXER"
- vidraria e outros equipamentos comuns de laboratório
- reagentes de laboratório de grau de pureza exigida pelos métodos

3.4. Procedimento esquemático

Na Figura 10 tem-se resumido um fluxograma de processo e preparo da matéria-prima cárnea (dianteiro) desde o recolhimento na sala de abate.
Figura 10. Fluxograma do processo de obtenção e preparo da matéria-prima carnes

(1) Amostragem para análise química

(2) Amostragem para determinação do pH
3.5. Obtenção da matéria-prima e separação em tratamentos

Após o abate, a carcaça de vaca foi dividida em duas meias carcaças, por um corte com serra no plano sagital mediano (ao longo da coluna vertebral). O quarto dianteiro de uma das meias carcaças (Figura 10) foi destacado e desossado entre 45 e 75 minutos "post-mortem" ("a quente"). O outro quarto dianteiro correspondente foi resfriado em câmara frigorífica a 2°C. Após 24 horas de resfriamento este quarto dianteiro foi destacado e desossado (procedimento convencional, "a frio").

Em ambos os procedimentos, a carne de dianteiro foi moída (disco 3mm), embalada em saco de polietileno e submetida à temperatura de -12°C por 72 horas, porém, no procedimento "a quente", a carne recém moída foi homogeneizada com adição de 3% de sal.

As carnes provenientes dos procedimentos convencional ("carne fria") e "a quente" ("carne quente") foram formuladas no homogeneizador tipo "cutter" juntamente com pequenas percentagens de carne de cabeça, diafragma, bucho e suína resfriadas convencionalmente, com e sem a adição de tripolifosfato de sódio (fosfato), resultando em quatro tratamentos de embutido de emulsão tipo salchicha:
A. Salsicha de "carne quente" com fosfato;
B. Salsicha de "carne quente" sem fosfato;
C. Salsicha de "carne fria" com fosfato;
D. Salsicha de "carne fria" sem fosfato.

Houve quatro repetições desse procedimento de obtenção da carne no frigorífico e produção dos tratamentos de salsicha.
3.6. **Elaboração da salsicha**

O processamento da massa emulsionada para a produção de salsicha seguiu o fluxograma apresentado na Figura 11. Utilizou-se a carne moída e resfriada dos procedimentos convencional e "a quente" para o processamento da massa tipo emulsão das formulações sem fosfato (Quadro 1) e com fosfato (Quadro 2). A formulação foi balanceada de modo a conter entre 25 e 26% de gordura e razão umidade: proteína igual a 4,5. Adicionou-se ainda 10% a mais de gelo, referente ao peso total da formulação (Quadros 1 e 2), para compensar as perdas na estufa.

Para o processamento da massa, cominuiu-se a carne e os demais ingredientes no homogeneizador de carne tipo "cutter" (Figura 12) seguindo-se a ordem de adição como mostra a Figura 11. No final da operação, a temperatura da massa devia ficar por volta de 15°C. O número de voltas desenvolvidas pela bacia rotativa do "cutter" foi controlado.

Transferiu-se a massa para a embutideira de pistão descontínua (Figura 13) e encheu-se por extrusão a tripia artificial de celulose calibre 21 mm. A um comprimento de 12 cm, amarraram-se manualmente os gomos de salsicha. As varas com as salsichas foram colocadas em carrinho e levadas para a estufa de cozimento (Figura 14). Procedeu-se então à coccção e resfriamento como mostra o Quadro 3.

Após a coccção na estufa e o resfriamento em chuveiro (15 minutos) e câmara fria (16 horas), as salsichas foram pesadas, descascadas e novamente pesadas para o cálculo do rendimento com
e sem o envoltório de celulose. Embalou-se a vácuo para subsequente armazenamento refrigerado (2°C). A avaliação sensorial realizou-se no 2º dia após o processamento e as determinações físicas, químicas e subjetiva da cor realizaram-se no prazo de 2 semanas.

Figura 11. Fluxograma básico do processo de obtenção de embutido do tipo salisiche
Quadro 1. Formulação da massa básica de salmoura sem fosfato (*)

<table>
<thead>
<tr>
<th>MAT-PRIMAS</th>
<th>QUANTIDADE (Kg)</th>
<th>UMIDADE (Kg)</th>
<th>GORDURA (Kg)</th>
<th>PROTEÍNA (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. diant. vaca</td>
<td>4,03</td>
<td>2,97</td>
<td>0,17</td>
<td>4,17</td>
</tr>
<tr>
<td>Bucho</td>
<td>0,47</td>
<td>0,35</td>
<td>0,02</td>
<td>4,25</td>
</tr>
<tr>
<td>Carne suína</td>
<td>0,50</td>
<td>0,37</td>
<td>0,04</td>
<td>3,00</td>
</tr>
<tr>
<td>C. cabeça bovino</td>
<td>0,50</td>
<td>0,37</td>
<td>0,01</td>
<td>2,75</td>
</tr>
<tr>
<td>Diafragma bovino</td>
<td>0,47</td>
<td>0,34</td>
<td>0,02</td>
<td>4,50</td>
</tr>
<tr>
<td>Toucinho</td>
<td>2,81</td>
<td>0,46</td>
<td>2,33</td>
<td>83,00</td>
</tr>
</tbody>
</table>

SUB-TOTAL

| | 8,78 | 4,84 | 2,60 | 29,62 | 1,28 | 14,59 |

| **SUBT** | 5,20% | 0,53 |
| **Agua** | 0,93 | 0,93 | 100,00 |

TOTAL

| | 10,24 | 5,77 | 56,31 | 25,39 | 1,28 | 12,51 |
| **Agua + 10%** | 1,14 |

(A) Os percentuais de umidade, gordura e proteína são estimativas.

A formulação foi recalculada para cada processamento, após a realização das análises das matérias-primas carnées.
Quadro 2. Formulação da massa básica de salsicha com fosfato (*)

<table>
<thead>
<tr>
<th>MAT-PRIMAS</th>
<th>QUANTIDADE (Kg)</th>
<th>UNIDADE (Kg)</th>
<th>GORDURA (%)</th>
<th>PROTEÍNA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. diant. vaca</td>
<td>4,03</td>
<td>2,97</td>
<td>73,75</td>
<td>0,17</td>
</tr>
<tr>
<td>Bucho</td>
<td>0,47</td>
<td>0,35</td>
<td>74,40</td>
<td>0,02</td>
</tr>
<tr>
<td>Cane suína</td>
<td>0,50</td>
<td>0,35</td>
<td>69,47</td>
<td>0,04</td>
</tr>
<tr>
<td>C. cabeça bovino</td>
<td>0,50</td>
<td>0,37</td>
<td>74,04</td>
<td>0,01</td>
</tr>
<tr>
<td>Diáfragma bovino</td>
<td>0,47</td>
<td>0,34</td>
<td>72,40</td>
<td>0,02</td>
</tr>
<tr>
<td>Toucinho</td>
<td>2,83</td>
<td>0,46</td>
<td>16,32</td>
<td>2,35</td>
</tr>
<tr>
<td>SUB-TOTAL</td>
<td>8,90</td>
<td>4,84</td>
<td>55,02</td>
<td>2,62</td>
</tr>
</tbody>
</table>

Sal	2,35% 0,24			
Condimentos	0,78% 0,08			
Fosfato	0,30% 0,03			
Eritorbato	0,05% 0,01			
Nitrito	0,02% 0,00			
SUBT	**5,50% 0,57**			
Agua	0,33	0,93	100,00	

| TOTAL | **10,29** | **5,77** | **56,04** | **2,62** | **25,43** | **1,28** | **12,45** |
| Agua + 10% | 1,14 | | | | | | |

(*): Os percentuais de umidade, gordura e proteína são estimativas.

A formulação foi recalculada para cada processamento, após a realização das análises das matérias-primas cárneas.
Figura 12. Homogeneizador de carne tipo cutter "KRAEMER & GREBE"

Figura 13. Embutideira de pistão descontínua "KRAEMER & GREBE"
Figura 14. Estufa de cozimento "BECKER" e registrador de temperatura "GRANT"
Quadro 3. Condições do processamento térmico e resfriamento da salsicha

<table>
<thead>
<tr>
<th>PROCESSO</th>
<th>TEMPERATURA (°C)</th>
<th>UR (%)</th>
<th>CHAMINÉ</th>
<th>DURAÇÃO (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECAGEM</td>
<td>50</td>
<td>-</td>
<td>aberto</td>
<td>15</td>
</tr>
<tr>
<td>AVERMELHAMENTO I</td>
<td>60</td>
<td>-</td>
<td>fechado</td>
<td>20</td>
</tr>
<tr>
<td>AVERMELHAMENTO II</td>
<td>70</td>
<td>-</td>
<td>fechado</td>
<td>20</td>
</tr>
<tr>
<td>COCÇÃO I</td>
<td>70</td>
<td>100%</td>
<td>fechado</td>
<td>10</td>
</tr>
<tr>
<td>COCÇÃO II</td>
<td>77</td>
<td>100%</td>
<td>fechado</td>
<td>**</td>
</tr>
<tr>
<td>CHUVEIRO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>CAMARA FRIA</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>16 horas</td>
</tr>
</tbody>
</table>

* Injeção direta de vapor.

** Tempo necessário para que o produto atinja a temperatura interna de 72°C (cerca de 10 minutos).
3.7. Análises químicas

As amostras (200g) foram coletadas em recipientes de vidro vedáveis e examinadas dentro de 1 dia (carnes) ou 2 dias (sal-sicha), conforme método recomendado pela A.O.A.C. (1984), procedendo-se em triplicata para cada uma das análises a seguir:

3.7.1. Umidade

3.7.2. Proteína

3.7.3. Gordura

Na determinação de gordura utilizou-se a técnica de extração com éter em aparelho Soxhlet, segundo A.O.A.C. (1984), item 24.005.

3.7.4. Cinzas

3.7.5. pH

Pesaram-se dez gramas de massa crua tipo emulsão ou amostra de salchicha dos tratamentos, adicionou-se 50 ml de água destilada, homogeneizou-se durante 1 minuto no aparelho "SORVALL OMNI-MIXER" e procedeu-se à leitura em potenciômetro "MICRONAL" devidamente calibrado.

3.8. Análises físicas

3.8.1. Estabilidade da emulsão

A análise de estabilidade da emulsão baseou-se no trabalho de PARKS & CARPENTER (1987), no qual se utilizou o funil da embutideira para transferir 45 a 50g da amostra da massa tipo emulsão pronta, em bolsas de poliamida (nylon) e polietileno. As amostras foram pesadas e a extremidade aberta foi termicamente selada (Figura 15). Procedeu-se a cocção em água a 70°C por 60min. As amostras cozidas foram então novamente pesadas. O líquido de cocção desprendido foi despejado em cilíndros graduados de 10 ml. Foi anotado o volume total de líquido e gordura separados. Avaliou-se a estabilidade da emulsão em 5 bolsas por tratamento.
Figura 15. Bolsas termoseláveis com as amostras cozidas, e líquido já drenado

3.8.2. Separação de gelatina e gordura

Método gravimétrico de conservas esterilizadas segundo MUELLER & WAGNER (1985). Conhecido o peso da amostra da massa emulsionada de uma lata, fez-se a recravação e procedeu-se a uma esterilização que atingiu um Fo de 4,0 a 5,5 a uma temperatura de 121°C, controlando-se a evolução do processo por meio de termopares e registrador "HONEYWELL" (mod. Eletronik-15). As latas foram deixadas sob refrigeração pelo período mínimo de 1 dia e pesou-se a quantidade de gordura e gelatina separados (Figura 16). O resultado foi calculado como segue:

\[
\text{pct Gordura separada} = \frac{\text{peso gordura}}{\text{peso amostra}} \times 100
\]

48
peso "gelatina"

\[\text{% Gelatina separada} = \frac{\text{peso gelatina}}{\text{peso amostra}} \times 100 \]

Avaliaram-se 8 latas (60,4 x 58 mm) por tratamento, com peso médio de aproximadamente 130g cada.

Esta esterilização foi além do Fo (2,5) para segurança contra *Cl. botulinum*, assegurando também a destruição de *Cl. sporogenes* resistentes ao calor. A temperatura ambiente (25°C) pode-se ter uma conservabilidade de quatro anos (STIEBING, 1986).

Figura 16. Massa tipo emulsão esterilizada com separação de gelatina e gordura.
3.8.3. Rendimentos

Os rendimentos na produção de salsichas foram determinados com base nos pesos dos produtos do lote antes da cocção em estufa, após o resfriamento em câmara fria e após a remoção da tripa de celulose (MITTAL & USBORNE, 1986).

3.8.4. Textura

A medição objetiva da resistência à compressão e cisalhamento das salsichas foi feita com o aparelho "TEXTURE TEST SYSTEM" modelo TP-1 (Figura 17) acoplado com a célula de compressão e cisalhamento, seguindo as recomendações de SILVA (1976). O equipamento consiste basicamente em um sistema hidráulico para a movimentação de um pistão a uma velocidade pré-determinada e ao qual foi conectada a célula-teste, que é formada de uma caixa metálica retangular cujo fundo e tampa possuem uma série de barras paralelas através das quais passam lâminas. Medi-se a resistência ao cisalhamento como força máxima, através de um gráfico de força x distância (Figura 18), obtido por um registrador (modelo TR-1) acoplado ao equipamento.

Cisalharam-se simultaneamente a uma velocidade constante de 12 cm/min quatro pedaços cilíndricos (diâmetro 21 mm, altura 20 mm) de uma salsicha, ou nove cilindros (diâmetro 15 mm, altura 20 mm) removidos da parte interna da salsicha (Figura 19). O valor máximo obtido representa a resistência ao cisalhamento, medida em lbf/g. As medições em amostras com a película externa formada durante a secagem na estufa está relacionada com a maciez subjetiva detectada por painel de provadores. De outra forma, utilizando somente o centro, desprezando-se a película externa tenta-se verifi-
car se existe uma influência dos fatores estudados na formação desta película superficial na salsicha. Realizou-se a leitura à temperatura ambiente em 5 amostras de salsicha por tratamento, escolhidas ao acaso.

3.8.5. Cor

Cinco salsichas de cada tratamento foram cortadas transversalmente em três pedaços de comprimento que conferia opacidade comprovada as amostras. Foi feita a leitura da cor de cada lado do pedaço em duas posições, obtendo-se dessa maneira o resultado médio de 6 leituras para cada salsicha. Utilizou-se o espectrocolorímetro "COMCOR 1500 PLUS" com o sistema de média ativa, configuração CODIN, ângulo de 10° e abertura reduzida. As leituras de cor foram feitas no sistema Lab Hunter, onde L-Hunter corresponde à luminosidade, a-Hunter ao vermelho e b-Hunter ao amarelo.

Figura 17. Aparelho "TEXTURE TEST SYSTEM"- modelo TP-1
Figura 18. Curva de compressão-cisalhamento da amostra

Figura 19. Caixa metálica com nove pedaços de salsicha, após remoção da película protéica externa.
3.9. Avaliações subjetivas

3.9.1. Avaliação da cor vermelha

Foi feita em cabine de luz "SUPER SKYLIGHT" com o iluminante Luz do Dia (7500±K). As amostras foram cortadas transversalmente em cilindros de cerca de 2 cm de comprimento e 4 pedaços foram colocados em pratinhos brancos codificados com números de 3 dígitos. As amostras foram arranjadas ao acaso e solicitou-se à equipe, formada por 5 julgadores com discriminação superior ou normal para cores (até 36 anos), que as ordenassem da mais a menos vermelha (Figura 20).

Figura 20. Pratos codificados com amostras de salsicha para ordenação da mais à menos vermelha
3.9.2. Avaliação sensorial

A avaliação sensorial realizou-se conforme recomendações de LARMOND (1977) em cabines individuais, longe de ruídos e odores, iluminadas apenas com lâmpada vermelha, a fim de evitar a influência da cor no julgamento da maciez, suculência, homogeneidade da textura, sabor e nível de qualidade global da salsicha. As amostras foram servidas quentes, em pratinhos codificados com 3 dígitos sorteados ao acaso (Figura 21). Os horários dos testes foram previamente estabelecidos, excluindo-se uma hora antes e duas após o almoço.

Uma equipe de 12 provadores, experientes na avaliação sensorial de carne e treinados no julgamento do tipo de produto elaborado nesta pesquisa, realizaram a avaliação de amostras dos 4 tratamentos quanto aos atributos, maciez, suculência, homogeneidade de textura, sabor e qualidade global (Figura 22).

Figura 21. Entrega das amostras dos quatro tratamentos aos provadores

54
Figura 22. Ficha de avaliação organoléptica (*

<table>
<thead>
<tr>
<th>ITEM:</th>
<th>DATA: / /</th>
</tr>
</thead>
<tbody>
<tr>
<td>SÉRIE:</td>
<td></td>
</tr>
</tbody>
</table>

Avaliação da Salsicha

Marque em cada linha a posição que melhor expresse sua descrição de cada aspecto.

<table>
<thead>
<tr>
<th>MACIEZ</th>
<th>muito mole</th>
<th>muito firme (borrachenta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCULENCIA</td>
<td>muito suculenta</td>
<td>muito seca</td>
</tr>
<tr>
<td>HOMOGENIEDADE</td>
<td>partículas homogêneas</td>
<td>partículas grosseiras (cartilagens e ossos)</td>
</tr>
<tr>
<td>SABOR</td>
<td>característico</td>
<td>não característico (presença de sabor estranho)</td>
</tr>
<tr>
<td>QUALIDADE GLOBAL</td>
<td>excelente</td>
<td>muito ruim</td>
</tr>
</tbody>
</table>

COMENTÁRIOS:

(*) Na ficha original cada linha mede 100 mm, o valor medido pode variar entre 0 (muito firme, muito seca, partículas grosseiras, sabor não característico e qualidade muito ruim) e 100 (muito mole, muito suculenta, partículas homogêneas, sabor característico e qualidade excelente). Para os atributos maciez e suculência a caracterização "ideal" se encontra no meio da escala.
3.10. Análise estatística dos resultados

Os dados de análises químicas e físicas foram submetidos à análise de variância a dois critérios de classificação com interação. A avaliação subjetiva da cor seguiu a análise de Friedman para ordenação. Os resultados da avaliação organoléptica foram analisados seguindo o esquema hierárquico cruzado.

O estudo consistiu de quatro processamentos (repetições) dos tratamentos.

Os tratamentos são uma combinação de fatores e níveis. Como fatores tem-se a carne e o fosfato e para os níveis "carne quente", "carne fria", 0 e 0,3% de fosfato.

Para os testes estatísticos fixou-se o nível de erro em 5%.
4. RESULTADOS

Na matéria-prima carnea moída dos tratamentos "a quente" e "a frio" (Figura 23), podia-se observar que, a carne embalada em sacos de polietileno do tratamento "a quente" apresentava-se externamente com uma coloração acinzentada, embora o seu interior estivesse com coloração vermelha característica. Ainda, a "carne quente" apresentava-se grudenta ao toque, devido a extração das proteínas solúveis em sal pela pré-mistura.

Dos quatro processamentos (repetições) dos tratamentos, o segundo resultou em "quebra da emulsão", isto é, separação de gelatina e gordura após coção na estufa, para os tratamentos A ("carne quente" sem fosfato) e D ("carne fria" sem fosfato), ambas formulações sem fosfato, sendo a primeira uma quebra reduzida e a segunda abundante nas extremidades (Figuras 24 e 25). Isto ocorreu, possivelmente, pelo fato da temperatura final da massa no cutter, para todos os tratamentos, ter ultrapassado o limite máximo recomendado de 15°C.

Assim, todas as análises químicas, avaliações subjetivas e parte das análises físicas (textura e cor) dos tratamentos do 2° processamento deixaram de ser feitas devido à não integridade da composição da amostra.
Figura 23. Carne moída do dianteiro de vaca dos procedimentos convencional e "a quente"
Figura 24. Salsicha do tratamento B ("carne quente" sem fosfato) do 2º processamento com pequena separação de gelatina e gordura

Figura 25. Salsicha do tratamento D ("carne fria" sem fosfato) do 2º processamento com alta separação de gelatina e gordura
4.1 Análises químicas

4.1.1. Umidade

Quadro 4. Médias e estimativas de erro padrão da média da percentagem de umidade da salsicha

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Carne quente | 18 | 53,56 b
| Carne fria | 18 | 54,05 a
| Fosfato | | |
| Com fosfato | 18 | 53,15 b
| Sem fosfato | 18 | 54,45 a

Erro padrão da média 0,06

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Quente com fosfato</td>
<td>9</td>
<td>53,11 c</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>9</td>
<td>54,01 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>9</td>
<td>53,20 c</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>9</td>
<td>54,89 a</td>
</tr>
</tbody>
</table>

Erro padrão da média 0,08

A análise de variância dos resultados acusou efeitos significativos dos fatores carne e fosfato e da interação dos fatores (tratamentos) no teor de umidade final da salsicha, tendo-se
obtido as maiores médias para os tratamentos com "carne fria" e sem fosfato (Quadro 4). Esses resultados, aparentemente contraditórios, pois era de se esperar maior umidade nos tratamentos com "carne quente" e com fosfato, que teriam maior capacidade de retenção de água, podem ser explicados pelo fato desses tratamentos com maior umidade terem perdido mais gordura e gelatina no processo de coccção, que ficaram retidas entre o produto e o envoltório de celulose.

Como se observa nos contrastes das médias das combinações, tanto nos tratamentos com "carne quente" (A e B) como nos de "carne fria" (C e D), a percentagem de umidade foi significativamente maior quando sem fosfato. Na presença de fosfato (A e C), não houve diferença significativa entre os tratamentos com "carne quente" e "carne fria". E ainda, na ausência de fosfato (B e D), a percentagem de umidade do tratamento com "carne fria" foi significativamente maior que o de "carne quente". Portanto, a maior média foi para "carne fria sem fosfato" seguida por "carne quente sem fosfato", que apresentaram pequena separação de gordura retida no envoltório.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td>Carne quente</td>
<td>18</td>
<td>13,06 a</td>
</tr>
<tr>
<td></td>
<td>Carne fria</td>
<td>18</td>
<td>13,32 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td>Com fosfato</td>
<td>18</td>
<td>13,27 a</td>
</tr>
<tr>
<td></td>
<td>Sem fosfato</td>
<td>18</td>
<td>13,12 a</td>
</tr>
<tr>
<td></td>
<td>Erro padrão da média</td>
<td></td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>A=Quente com fosfato</td>
<td>9</td>
<td>13,13 a</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>B=Quente sem fosfato</td>
<td>9</td>
<td>12,99 a</td>
</tr>
<tr>
<td></td>
<td>C=Fria com fosfato</td>
<td>9</td>
<td>13,40 a</td>
</tr>
<tr>
<td></td>
<td>D=Fria sem fosfato</td>
<td>9</td>
<td>13,24 a</td>
</tr>
<tr>
<td></td>
<td>Erro padrão da média</td>
<td></td>
<td>0,11</td>
</tr>
</tbody>
</table>

A análise de variância da percentagem de proteína da saisica detectou efeito significativo do fator carne, sendo que a utilização da carne "pre-rigor" resultou em pequena diminuição do teor de proteína. Não foram detectados efeitos significativos do fator fosfato e da interação carne x fosfato (tratamentos). Assim, independentemente da adição ou não de fosfato, o teor médio de proteína da saisica não variou (Quadro 5).
4.1.3. Gordura

Quadro 6. Médias e estimativas de erro padrão da média da percentagem de gordura da salsicha

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>12</td>
<td>25,75 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>12</td>
<td>25,38 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>12</td>
<td>25,96 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>12</td>
<td>25,18 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,14</td>
</tr>
</tbody>
</table>

A análise de variância da percentagem de gordura do em butido detectou efeito significativo (p<0,05) do fator fosfato e da interação dos fatores. A adição de fosfato resultou em maior teor de gordura, uma vez que esse teor está intimamente relacionado à estabilidade da emulsão cárnea, isto é, quanto menor a separação de gelatina e gordura da emulsão durante a cocção em estufa, maior o teor de gordura no produto acabado (Quadro 6).

Peio contraste das médias pode-se verificar que, nos tratamentos com "carne quente" (A e B) não houve diferença signi-
ficativa nos resultados do teor de gordura devido a utilização de fosfato de sódio. Mas com a "carne fria" (C e D), a percentagem de gordura foi significativamente maior com a adição de fosfato.

Quando se adiciona fosfato (A e C), não foi observado diferença significativa devido ao tipo de carne, mas sem o fosfato (B e D) a percentagem de gordura foi significativamente maior quando utilizado a "carne quente". Portanto, a única combinação discrepante foi a de "carne fria sem fosfato", a mesma que apresentou a maior média de umidade (Quadro 4).

4.1.4. Cinzas

Quadro 7. Médias e estimativas de erro padrão da média da percentagem de cinzas da salsicha

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>18</td>
<td>2,98 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>18</td>
<td>2,99 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>18</td>
<td>3,09 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>18</td>
<td>2,88 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,03</td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>9</td>
<td>3,08 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>9</td>
<td>2,89 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>9</td>
<td>3,11 a</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>9</td>
<td>2,86 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,04</td>
</tr>
</tbody>
</table>
A análise de variância da percentagem de cinzas detectou efeito não significativo (p>0,05) do fator carne e da interação dos fatores carne x fosfato. Houve significância (p<0,05) do efeito do fator fosfato, que se explica pela adição de 0,3% de tripolífosfato de sódio. Devido a análise não ter detectado diferença significativa da interação, pode-se observar nas médias dos tratamentos, que a adição de fosfato eleva o teor de cinzas independentemente da carne ser "quente" ou "fria" (Quadro 7).

4.1.5. pH
- pH da massa tipo emulsão crua

Quadro 8. Médias e estimativas de erro padrão da média do pH da massa tipo emulsão crua

<table>
<thead>
<tr>
<th>Variação</th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>16</td>
<td>6,38 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>16</td>
<td>6,04 b</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>16</td>
<td>6,33 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>16</td>
<td>6,09 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>8</td>
<td>6,48 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>8</td>
<td>6,28 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>8</td>
<td>6,19 c</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>8</td>
<td>5,90 d</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,01</td>
<td></td>
</tr>
</tbody>
</table>
A análise de variância dos resultados de pH da massa crua, cujas médias são apresentadas no Quadro 8, acumou efeitos significativos (p<0,05) dos fatores carne e fosfato e da interação dos fatores carne x fosfato (Figura 26), tendo-se obtido maiores valores médios de pH pelo uso de "carne quente" e pela adição do fosfato. A análise da interação mostra que, tanto nos tratamentos com "carne quente" (A e B) como de "carne fria" (C e D), o pH foi significativamente maior com a adição de fosfato. Nos tratamentos com a presença de fosfato (A e C) ou ausência (B e D), o pH foi significativamente maior devido a utilização da carne "pre-rigor".

Observando-se ainda, os contrastes de médias das combinações, verifica-se que os efeitos foram aditivos, pois a diferença de 0,6 entre "quente com fosfato" e "fria sem fosfato" é igual a soma das diferenças dos efeitos principais. Verificou-se ainda que, a "carne quente" influenciou mais o pH da massa crua do que o fosfato.

Figura 26. Interação significativa dos fatores carne x fosfato dos dados de pH da massa tipo emulsão crua.
Quadro 9. Médias e estimativas de erro padrão da média do pH da salsicha

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>18</td>
<td>6,55 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>18</td>
<td>6,32 b</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>18</td>
<td>6,51 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>18</td>
<td>6,36 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>9</td>
<td>6,60 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>9</td>
<td>6,50 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>9</td>
<td>6,42 c</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>9</td>
<td>6,22 d</td>
</tr>
</tbody>
</table>

Os resultados da análise de variância do pH da salsicha seguiram a mesma tendência observada no pH da massa crua (Quadro 8). Isto é, foram significativos os efeitos dos fatores carne e fosfato e da interação dos fatores (Quadro 9). A análise da interação mostra que, nos tratamentos com a utilização da "carne quente" (A e B) ou "carne fria" (C e D), o pH foi significativamente maior com a adição de fosfato. Nos tratamentos com a utilização de...
fosfato (A e C) ou sem a sua utilização (B e D), o pH foi signifi-
cativamente maior com a "carne quente". Verificou-se também que, a
adição da "carne quente" influenciou mais o pH da salsicha do que
o uso do fosfato (Figura 27).

Comparando-se as médias dos Quadros 8 e 9, pode-se ob-
servar que o processo de cocção causou uma elevação dos valores de
pH da ordem de 0,2 unidades. Mesmo assim, a aditividade dos efei-
tos persistiu após o processo de cocção.

![Graph showing pH changes with addition of hot meat and phosphate.](image)

Figura 27. Interacção significativa dos fatores carne x fosfato
dos dados de pH da salsicha.
4.2. Análises físicas

4.2.1. Estabilidade das emulsões

Quadro 10. Médias e estimativas de erro padrão da média de
percentagens de separação total de líquido em emulsões

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>40</td>
<td>7,89 b</td>
</tr>
<tr>
<td>Carne fria</td>
<td>40</td>
<td>10,89 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>40</td>
<td>6,14 b</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>40</td>
<td>12,64 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Quente com fosfato</td>
<td>20</td>
<td>5,56 d</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>20</td>
<td>10,22 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>20</td>
<td>6,71 c</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>20</td>
<td>15,06 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,20</td>
</tr>
</tbody>
</table>

Os resultados apresentados no Quadro 10 referem-se ao
teste de estabilidade da emulsão e expressam a perda total de lí-
quido na coceção de 50g de emulsão em bolsas poliamida-poliétileno.

A análise de variância dos resultados detectou significância (p<0,05) para os efeitos dos fatores carne e fosfato e da
Interação dos fatores (Figura 28). O uso de "carne quente" e a adição de fosfato na formulação resultaram em menor separação de líquido, ou seja maior estabilidade da emulsão. Entretanto, como não se observou separação de gordura no líquido drenado, o teste funcionou mais como um indicador da capacidade de retenção de água do que da estabilidade da emulsão.

Nos contrastes das médias das combinações verifica-se que todos os tratamentos diferem entre si (p<0,05). A maior perda de líquido ocorreu na "carne fria sem fosfato", a segunda maior foi na "carne quente sem fosfato", e a menor para "carne quente com fosfato". A "carne quente" exerceu uma influência menor do que o fosfato e a aditividade dos efeitos foi pequena.

![Figura 28. Interação significativa dos fatores carne x fosfato nos dados de percentagem de separação total de líquido em emulsões](image-url)
4.2.2. Separação de gelatina e gordura

- Gelatina

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>56</td>
<td>1,65 b</td>
</tr>
<tr>
<td>Carne fria</td>
<td>56</td>
<td>3,31 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>56</td>
<td>1,34 b</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>56</td>
<td>3,63 a</td>
</tr>
</tbody>
</table>

Erro padrão da média 0,08

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Quente com fosfato</td>
<td>28</td>
<td>1,16 d</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>28</td>
<td>2,15 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>28</td>
<td>1,51 c</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>28</td>
<td>5,11 a</td>
</tr>
</tbody>
</table>

Erro padrão da média 0,12

Os resultados apresentados nos Quadros 11 e 12 referem-se a análise de variância dos dados do teste de separação de gelatina e gordura. Os efeitos de ambos os fatores e da interação (Figuras 29 e 30) foram significativos na percentagem de separação de gelatina (Quadro 11) e gordura (Quadro 12).
Quadro 12. Médias e estimativas de erro padrão da média da percentagem de separação de gordura em emulsões

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>48</td>
<td>0,03 b</td>
</tr>
<tr>
<td>Carne fria</td>
<td>48</td>
<td>0,18 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>48</td>
<td>0,03 b</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>48</td>
<td>0,18 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,02</td>
</tr>
</tbody>
</table>

Os efeitos da "carne quente" e da adição de fosfato resultaram em menores valores de separação de gelatina e gordura. Na comparação das médias dos fatores principais para a separação de gelatina, verificou-se que o efeito do fosfato foi maior (2,29) do que o da "carne quente" (1,66), porém, como já foi dito ambos foram significativos.

Pelo contraste de médias das combinações para separação de gelatina, verificou-se que estatisticamente todos os tratamentos diferiram entre si (p<0,05). Entretanto, para a separação de
gordura somente a combinação "carne fria sem fosfato" diferiu das demais.

Figura 29. Interação significativa dos fatores carne x fosfato dos dados de percentagem de separação de gelatina em emulsões

Figura 30. Interação significativa dos fatores carne x fosfato dos dados de percentagem de separação de gordura em emulsões
4.2.3. Rendimentos

- Perda de peso da salsicha com envoltório de celulose

Quadro 13. Médias e estimativas de erro padrão da média da
percentagem de perda de peso da salsicha com
envoltório de celulose

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>40</td>
<td>11,00 b</td>
</tr>
<tr>
<td>Carne fria</td>
<td>40</td>
<td>11,31 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>40</td>
<td>11,13 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>40</td>
<td>11,18 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>20</td>
<td>11,13 ab</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>20</td>
<td>10,88 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>20</td>
<td>11,30 ab</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>20</td>
<td>11,48 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>40</td>
<td>13,26 b</td>
</tr>
<tr>
<td>Carne fria</td>
<td>40</td>
<td>14,36 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>40</td>
<td>13,28 b</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>40</td>
<td>14,34 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,09</td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>20</td>
<td>13,19 b</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>20</td>
<td>13,33 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>20</td>
<td>13,36 b</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>20</td>
<td>15,35 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,12</td>
</tr>
</tbody>
</table>

A análise de variância dos resultados resumidos no Quadro 13 acusou efeito significativo do fator carne e da interação dos fatores (Figura 31) na percentagem de perda de peso da salsicha após o resfriamento, porém antes da remoção da tripa de celulose. O uso da "carne quente" resultou em menor perda de peso e portanto, maior rendimento da salsicha cozida.
Com relação ao efeito de interação dos fatores, o efeito do fosfato não foi significativo tanto nos tratamentos de "carne quente" (A e B) como de "carne fria" (C e D). Na presença de fosfato (A e C), não foi significativo a carne ser "quente" ou "fria", e na ausência de fosfato (B e D), a percentagem de perda de peso foi significativamente maior para o tratamento com "carne fria". Portanto, houve diferença (p<0,05) entre as médias das combinações B e D, onde a "carne quente sem fosfato" se mostrou com uma maior capacidade de retenção de água que a "carne fria sem fosfato".

Figura 31. Interação significativa dos fatores carne x fosfato dos dados da percentagem de perda de peso da salsicha com envoltório de celulose.

Como não houve diferença entre as médias das combinações dos três primeiros tratamentos (A, B e C), pode-se dizer que com
ou sem fosfato, a "carne quente" teve o mesmo efeito na redução das perdas que a adição de fosfato na "carne fria", assim, não se verificou efeito aditivo da adição de "carne quente" e fosfato no rendimento do produto.

A análise de variância dos resultados resumidos no Quadro 14 acusou efeito significativo dos fatores carne e fosfato e da interação dos fatores. Os efeitos de "carne quente" e da adição de fosfato resultaram em menores perdas de peso da salsicha. Esses resultados tornaram ainda mais evidente os efeitos da "carne quente" e do fosfato, pois com a remoção do envoltório, removia-se também quantidades variáveis de gordura e gelatina acumuladas entre a salsicha e o envoltório.

Comparando-se as combinações carne x fosfato, tem-se que nos tratamentos de "carne quente" (A e B) a adição de fosfato não chegou a influenciar (p>0,05) as perdas (13,19% contra 13,33%). Mas, nos tratamentos de "carne fria" (C e D), a percentagem de perda foi significativamente maior na ausência do fosfato. Nos tratamentos com a adição de 0,3% de fosfato (A e C), não houve diferença significativa da carne ser "quente" ou "fria", mas sem a adição do mesmo (B e D) a perda foi maior para a "carne fria", e a adição de fosfato à "carne fria" foi fundamental para diminuir as perdas após remoção do envoltório de celulose. Portanto, na ausência do fosfato a "carne quente" mostrou-se com menores propriedades de CRA e estabilidade da emulsão comparado a "carne fria" (13,33% contra 15,35%), melhorando significativamente a CRA e gordura (Figura 32).
Figura 32. Interação significativa dos fatores carne x fosfato dos dados da percentagem de perda de peso da salchicha sem o envoltório de celulose.
4.2.4. Textura

- Firmeza objetiva da salsicha com película protéica externa

Quadro 15. Médias e estimativas de erro padrão da média da força máxima de cisalhamento por peso da amostra

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média (lbf/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>30</td>
<td>1,87 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>30</td>
<td>1,88 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>30</td>
<td>1,98 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>30</td>
<td>1,77 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Quente com fosfato</td>
<td>15</td>
<td>1,97 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>15</td>
<td>1,76 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>15</td>
<td>1,99 a</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>15</td>
<td>1,78 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,02</td>
<td></td>
</tr>
</tbody>
</table>

A análise de variância dos resultados apresentados nos Quadros 15 e 16, referem-se ao teste de medição objetiva da resistência ao cisalhamento das amostras à temperatura ambiente.
Quadro 16. Médias e estimativas de erro padrão da média da força máxima de cisalhamento por peso da amostra

<table>
<thead>
<tr>
<th>Carne</th>
<th>N</th>
<th>Média (lbf/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne quente</td>
<td>30</td>
<td>1,29 b</td>
</tr>
<tr>
<td>Carne fria</td>
<td>30</td>
<td>1,45 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>30</td>
<td>1,49 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>30</td>
<td>1,25 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,01</td>
<td></td>
</tr>
</tbody>
</table>

No primeiro teste (Quadro 15), amostras com película externa, a análise de variância não identificou efeito significativo do fator carne e da interação dos fatores. O único efeito significativo foi do fosfato, cuja adição causou um aumento na força.
máxima de cisalhamento.

No segundo teste (cen tro da amostra), a análise de variância detectou significância (p<0,05) dos fatores carne e fosfato e da interação carne x fosfato (Quadro 16). A adição de "carne quente" influenciou para menor e a adição de fosfato influenciou para maior a força necessária para cisalhar as amostras de salga-cha, da qual foi removida a película protéica. Comparando-se as combinações carne x fosfato, tem-se que tanto nos tratamentos de "carne quente" (A e B) como de carne fria (C e D), a firmeza foi maior com a adição de fosfato. É nos tratamentos que tiveram a adição de fosfato (A e C) ou não tiveram (B e D), a firmeza foi menor devido a "carne quente" (Figura 33).

Tais comparações de textura da salga-cha com ou sem película (Quadros 15 e 16) são interessantes pois permitem identificar onde se deu o efeito que influenciou a firmeza do produto. No caso, as médias permitem inferir que a adição de fosfato tornou mais firme o produto, enquanto a "carne quente" tornou mais firme a película protéica, pois quando essa foi removida, o produto com "carne quente" ficou menos firme do que o produto com "carne fria".
Figura 33. Interacção significativa dos fatores carne x fósforo dos dados de força máxima de cisalhamento por peso do cilindro interno da amostra de salsicha.
4.2.5. Cor

- Luminosidade (L-Hunter)

Quadro 17. Médias e estimativas de erro padrão da média dos valores L-Hunter da cor da salsicha

<table>
<thead>
<tr>
<th>Carne</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne quente</td>
<td>N=30 53,43 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>N=30 53,29 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>N=30 53,02 b</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>N=30 53,71 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,06</td>
</tr>
</tbody>
</table>

Tratamentos

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Quente com fosfato</td>
<td>N=15 53,11 b</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>N=15 53,76 a</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>N=15 52,92 b</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>N=15 53,66 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,09</td>
</tr>
</tbody>
</table>

A análise de variância dos resultados apresentados no Quadro 17, não acusou efeito significativo (p>0,05) do fator carne e da interação dos fatores carne x fosfato nos valores de luminosidade (L-Hunter). O efeito do fator fosfato mostrou-se significativo (p<0,05) e a adição de tripolifosfato de sódio diminuiu o valor de luminosidade em menos de sete décimos de unidade. De maneira geral, constatou-se pouca variabilidade dos valores de luminosidade...
sidade entre as diversas amostras.

- Teor de vermelho (a-Hunter)

Quadro 18. Médias e estimativas de erro padrão da média dos valores a-Hunter da cor da salsicha

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>30</td>
<td>9,69 b</td>
</tr>
<tr>
<td>Carne fria</td>
<td>30</td>
<td>9,78 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>30</td>
<td>9,70 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>30</td>
<td>9,76 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,02</td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quente com fosfato</td>
<td>15</td>
<td>9,63 b</td>
</tr>
<tr>
<td>Quente sem fosfato</td>
<td>15</td>
<td>9,75 ab</td>
</tr>
<tr>
<td>Fria com fosfato</td>
<td>15</td>
<td>9,78 a</td>
</tr>
<tr>
<td>Fria sem fosfato</td>
<td>15</td>
<td>9,77 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>0,03</td>
</tr>
</tbody>
</table>

Como se observa no Quadro 18, as médias do fator fosfato e da interação não interferiram (p>0,05). Isto é, a adição de fosfato não exerceu influência no teor de vermelho do produto. A análise detectou significância do fator carne, onde o uso de "carne quente" reduziu o teor de vermelho em menos de um décimo de unidade.
Quadro 19. Médias e estimativas de erro padrão da média dos valores b-Hunter da cor da salsicha

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>30</td>
<td>10,72 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>30</td>
<td>10,62 b</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>30</td>
<td>10,63 b</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>30</td>
<td>10,71 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>15</td>
<td>10,69 ab</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>15</td>
<td>10,75 a</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>15</td>
<td>10,57 c</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>15</td>
<td>10,66 b</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>0,02</td>
<td></td>
</tr>
</tbody>
</table>

A análise de variância dos resultados para o teor de amarelo da salsicha acusou efeitos significativos (p<0,05) dos fatores carne e fosfato e não significativo da interação. O uso da "carne quente" conferiu ao produto um maior teor de amarelo na salsicha, e a adição de fosfato reduziu este mesmo teor. Entretanto, como se vê no Quadro 19, a diferença das médias foi menor ou igual a dois décimos de unidade.
4.3. Avaliações subjetivas

4.3.1. Cor da salchicha

A avaliação da cor foi feita com 5 julgadores com discriminação superior ou normal para cores, ordenando as amostras da mais para a menos vermelha.

As médias apresentadas na Tabela 20 - Anexo 1, constituem o resultado da soma dos valores de 15 repetições. A amostra mais vermelha era ordenada em primeiro lugar (1) e a menos vermelha em último (4), assim, se uma amostra fosse ordenada 15 vezes no primeiro lugar obtinha-se uma soma acumulada igual a 15 e a média seria igual a 1,0.

Os resultados da análise de Friedman para esta ordenação, não evidenciaram diferença significativa (p>0,05) na cor vermelha para os tratamentos.

86
Quadro 20. Médias e estimativas de erro padrão da média da maciez da salsicha (A)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>72</td>
<td>45,50 a</td>
</tr>
<tr>
<td>Carne frita</td>
<td>72</td>
<td>47,06 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>72</td>
<td>43,74</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>72</td>
<td>48,82 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>1,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>36</td>
<td>45,39 b</td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>36</td>
<td>45,61 b</td>
</tr>
<tr>
<td>C=Frita com fosfato</td>
<td>36</td>
<td>42,08 b</td>
</tr>
<tr>
<td>D=Frita sem fosfato</td>
<td>36</td>
<td>52,03 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>1,78</td>
</tr>
</tbody>
</table>

(A) valor 0 = muito firme 50 = ideal 100 = muito mole

A análise de variância dos resultados, cujas médias são apresentadas no Quadro 20, acusou efeitos significativos do fator fosfato e da interação dos fatores na maciez subjetiva da salsicha. Estes resultados a respeito do efeito do fosfato aumentando a firmeza estão de acordo com os obtidos na análise da firmeza obje-
ativa da salsicha com película (Quadro 15). Na comparação da média das quatro combinações dos fatores, verificou-se que a melhor média foi obtida para "carne fria sem fosfato". Essa média diferiu (p<0,05) das combinações "carne fria com fosfato" e "carne quente sem fosfato", que deram o produto mais firme na avaliação organoléptica. Tem-se ainda que, não houve diferença entre as médias das combinações dos três primeiros tratamentos (A, B e C), e portanto, com ou sem fosfato, a "carne quente" teve a mesma maciez que o tratamento com a adição de fosfato na "carne fria" (Figura 34).

Na escala de "muito firme" a "muito mole" os tratamentos mostraram-se sempre perto de uma firmeza "ideal" de salsicha.

![Gráfico da maciez do salsicha em função do fosfato]

Figura 34. Interação significativa dos fatores carne x fosfato dos dados de maciez subjetiva da salsicha.

(*) valor 0 = muito firme 100 = muito mole
4.3.3. Suculência

Quadro 21. Médias e estimativas de erro padrão da média da suculência da salsicha (*)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>72</td>
<td>50,51 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>72</td>
<td>49,74 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>72</td>
<td>49,29 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>72</td>
<td>50,96 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>1,23</td>
<td></td>
</tr>
</tbody>
</table>

Tratamentos

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Quente com fosfato</td>
<td>36</td>
<td>51,06 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>36</td>
<td>49,97 a</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>36</td>
<td>47,53 a</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>36</td>
<td>51,94 a</td>
</tr>
</tbody>
</table>

| **Erro padrão da média** | **1,74** |

(*) valor 0 = muito seca 50 = ideal 100 = muito suculenta

A análise de variância dos resultados, cujas médias são apresentadas no Quadro 21, não detectou efeitos significativos dos fatores carne e fosfato e da interação carne x fosfato na suculência da salsicha. Na escala de 0 a 100 tem-se os resultados próximos ao ideal de suculência de uma salsicha.
Quadro 22. Médias e estimativas de erro padrão da média do sabor da salsicha (*)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>72</td>
<td>80,86 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>72</td>
<td>79,22 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>72</td>
<td>80,85 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>72</td>
<td>79,24 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>1,20</td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>36</td>
<td>83,14 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>36</td>
<td>78,58 a</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>36</td>
<td>78,56 a</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>36</td>
<td>79,89 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td></td>
<td>1,70</td>
</tr>
</tbody>
</table>

(*) valor 0 = não característico 100 = característico

A análise de variância dos resultados, cujas médias são apresentadas no Quadro 22, não acusou efeitos significativos (p>0,05) dos fatores carne e fosfato e da interação na avaliação do sabor da salsicha. Na escala de sabor variando de "não característico" a "característico" pode-se classificar as salsichas como de sabor normal.
4.3.5. Homogeneidade da textura

Quadro 23. Médias e estimativas de erro padrão da média da homogeneidade da textura da salisicha (*)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>72</td>
<td>80,00 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>72</td>
<td>79,92 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>72</td>
<td>80,47 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>72</td>
<td>79,44 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>1,44</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>36</td>
<td>82,06 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>36</td>
<td>77,94 a</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>36</td>
<td>76,89 a</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>36</td>
<td>80,94 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>2,04</td>
<td></td>
</tr>
</tbody>
</table>

(*) valor 0 = partículas grosseiras (cartilagens e ossos)
100 = partículas homogêneas

A análise de variância dos resultados, cujas médias são apresentadas no Quadro 23, não acusou efeitos significativos (p>0,05) dos fatores carne e fosfato e da interação carne x fosfa-
to na avaliação da homogeneidade da textura da salsicha. Não houve a presença de cartilagens, tendões ou ossos nos tratamentos analisados e na escala de 0 a 100 pode-se classificar as salsichas como de boa homogeneidade da textura.

4.3.6. Qualidade global

Quadro 24. Médias e estimativas de erro padrão da média da qualidade global da salsicha (*)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne quente</td>
<td>72</td>
<td>73,74 a</td>
</tr>
<tr>
<td>Carne fria</td>
<td>72</td>
<td>74,57 a</td>
</tr>
<tr>
<td>Fosfato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com fosfato</td>
<td>72</td>
<td>75,04 a</td>
</tr>
<tr>
<td>Sem fosfato</td>
<td>72</td>
<td>73,26 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>1,12</td>
<td></td>
</tr>
<tr>
<td>A=Quente com fosfato</td>
<td>36</td>
<td>76,75 a</td>
</tr>
<tr>
<td>B=Quente sem fosfato</td>
<td>36</td>
<td>70,72 b</td>
</tr>
<tr>
<td>C=Fria com fosfato</td>
<td>36</td>
<td>73,33 ab</td>
</tr>
<tr>
<td>D=Fria sem fosfato</td>
<td>36</td>
<td>75,81 a</td>
</tr>
<tr>
<td>Erro padrão da média</td>
<td>1,58</td>
<td></td>
</tr>
</tbody>
</table>

(*) valor 0 = muito ruim 100 = excelente

A análise de variância dos resultados não detectou sig-
nificância (p>0,05) para os efeitos dos fatores carne e fosfato mas a interação desses fatores foi significativa (Quadro 24). Comparando-se as médias das combinações tem-se que a qualidade do embutido de "carne quente com fosfato" (A) foi significativamente melhor que o sem fosfato (B). Os tratamentos com "carne fria" com e sem fosfato (C e D), não diferiram na qualidade. Os tratamentos com "carne quente" e "carne fria" com fosfato (A e C) não apresentaram diferenças significativas (p>0,05). A combinação "carne fria sem fosfato" apresentou-se com melhor qualidade global do que a "carne quente sem fosfato" (Figura 35). Mesmo tendo-se a interação dos fatores significativa, na escala de "muito ruim" a "excelente", as salsichas foram classificadas como de boa qualidade global.

Figura 35. Interação significativa dos fatores carne x fosfato dos dados de qualidade global da salsicha.

(*) valor 0 = qualidade muito ruim
100 = qualidade excelente
5. DISCUSSÃO DOS RESULTADOS

5.1. Análises químicas

Na análise da composição centesimal, o teor de umidade foi maior para os efeitos "carne fria" e "sem fosfato". Estes resultados, podem ser explicados pelo fato desses tratamentos terem perdido mais gordura e gelatina no processo de cocção. Das possíveis comparações das combinações, somente os tratamentos "carne quente com fosfato" (A) e "carne fria com fosfato" (C) não diferiram entre si no teor de umidade final da salsicha. A maior média foi para "carne fria sem fosfato" seguida por "carne quente sem fosfato", que apresentaram menor estabilidade da emulsão.

A percentagem de proteína resultou significativa para o fator carne e não significativo para os fatores fosfato e interação dos fatores. Portanto, a pequena perda de umidade e gordura não interferiu nos resultados das médias dos tratamentos. O uso de "carne quente" reduziu a percentagem de proteína em menos de três décimos de unidade.

Para os teores de gordura, o efeito significativo foi para o fosfato e para a interação dos fatores carne e fosfato. A adição de fosfato resultou em maiores teores de gordura. No contraste das médias das combinações, pode-se verificar que, nos tratamentos com "carne quente" (A e B) não houve diferença significativa devido a adição de fosfato, mas com "carne fria" (C e D), o teor de gordura foi significativamente maior com a adição de fosfato e ainda, nos tratamentos sem a adição de fosfato (B e D), o uso de "carne quente" resultou em maior teor de gordura. Não houve diferença significativa entre os tratamentos "quente com fosfato" e "fria com fosfato". Portanto, sem a adição de fosfato, a "carne
quente” mostrou-se mais efetiva na estabilidade da emulsão que a "carne fria”, e com a utilização de carne "post-rigor” a adição de fosfato foi fundamental para reter a gordura no produto.

Com relação ao teor final de cinzas do embutido tipo salsicha, houve significância somente devido ao efeito do fator fosfato, que se explica pela adição de 0,3% de tripoli fosfato de sódio na fórmulação.

O pH da massa tipo emulsão crua e da salsicha resultaram em significância dos efeitos dos fatores carne, fosfato e da interação desses fatores. Os maiores valores médios foram obtidos pelo uso de "carne quente” e pela adição de fosfato.

A análise da interação mostrou que, tanto nos tratamentos de "carne quente" como de "carne fria”, o pH foi maior com a adição de fosfato e nos tratamentos com a presença ou não de fosfato, o pH resultou maior com a utilização da "carne quente”.

Os efeitos foram aditivos e carne "pre-rigor” influenciou mais o pH da massa e da salsicha pronta do que o fosfato. O processo de cocção causou uma elevação dos valores da ordem de 0,2 unidades. Esta aditividade dos efeitos está de acordo com o trabalho de PUOLANNE & TERRELL (1983a).

5.2. Análises físicas

O teste de estabilidade da emulsão onde se expressa a perda total de líquido e gordura na coção da massa tipo emulsão em bolsas termoseláveis, resultou em significância para o efeito dos fatores carne e fosfato e da interação desses fatores. O uso de “carne quente” e a adição de tripolifosfato resultaram em maior estabilidade da emulsão. As combinações verifica-se que todos os tratamentos diferiram entre si, ficando a maior perda para o tratamento “carne fria sem fosfato” (15,1%) e a menor para “carne quente com fosfato” (5,6%). Neste caso, a “carne quente” exerceu influência menor do que o fosfato (3,0% contra 6,5%). Não houve separação visível de gordura para os tratamentos analisados.

O teste de separação de gelatina e gordura de conservas esterilizadas, seguiu a mesma tendência nos resultados que o teste de estabilidade da emulsão já mencionado. Os efeitos “carne quente” e adição de fosfato resultaram em uma maior capacidade de retenção de água e estabilidade da emulsão. Para a separação de gelatina, verificou-se novamente que o efeito adição de fosfato foi maior (2,3%) do que o da “carne quente” (1,7%). Todos os tratamentos diferiram entre si quanto à separação de gelatina, porém quanto à gordura, somente a combinação “carne fria sem fosfato” diferiu das demais devido a uma menor estabilidade da emulsão. ACTON & SAFFLE (1969); JOHNSON & HENRICKSON (1970) e HAMM et alli (1983) também referiram-se à carne “pre-rigor” como estabilizadora de emulsões cárneas, prevenindo a separação de gordura ou a quebra da emulsão.

A perda de peso do embutido após a coccção, porém, antes de se retirar o envoltório de celulose, resultou em efeito não significativo do fator fosfato que está de acordo com o trabalho de Ladwig et alii (1989) e significativo do fator carne e da interação dos fatores carne e fosfato. O uso de "carne quente" resultou em menor perda de peso e portanto maior rendimento. Nos tratamentos sem a adição de fosfato (B e D), a percentagem de perda foi significativamente maior para a "carne fria". Portanto, a "carne quente sem fosfato" se mostrou com uma maior capacidade de retenção de água que a "carne fria sem fosfato". Tem-se ainda que, a "carne quente", teve o mesmo efeito na redução das perdas que o fosfato.

Com a remoção do envoltório de celulose pelo descascamento, podia-se observar quantidades variadas de separação de gelatina e gordura. Desta forma, ficou mais evidente os efeitos da "carne quente" e da adição de fosfato na estabilização de emulsões. Nos tratamentos com "carne fria" (C e D) a percentagem de perda foi maior quando não se utilizou fosfato (15,4% contra 13,4% - Quadro 14). Sem a adição de fosfato (B e D), a perda foi maior para a "carne fria" comparada à "carne quente" (15,4% contra 13,3%). Portanto, a carne "pre-rigor" mostrou-se com melhores propriedades de capacidade de retenção de água e estabilidade da emulsão que a carne "post-rigor" e ainda, a adição de fosfato foi fundamental para a redução das perdas na carne "post-rigor". Não foi observado o efeito aditivo dos efeitos "carne quente" e adição
de fosfato, que está de acordo com os resultados de PUOLANNE & TURKKI (1983) para embutido emulsionado de carne suína.

O teste de medição objetiva da resistência das amostras com película protética externa, identificou efeito significativo somente do fator fosfato, cuja adição aumentou a força máxima de cisalhamento.

Com a remoção da película o efeito significativo ficou para os fatores carne, fosfato e interação dos fatores. A “carne quente” diminuiu e a adição de fosfato aumentou a força necessária para cisalhar as amostras, que está de acordo com PUOLANNE & TERRELL (1983a). A interação mostra que tanto nos tratamentos de “carne quente” (A e B), quanto de “carne fria” (C e D), a firmeza foi maior com a adição de fosfato (Quadro 16). E nos tratamentos com fosfato (A e C) ou sem (B e D), a firmeza foi menor devido a “carne quente”. Portanto, pode-se inferir que a adição de fosfato tornou mais firme o produto, enquanto a “carne quente” tornou mais firme a película protética, pois quando a mesma foi retirada o produto ficou menos firme.

A análise de variância dos resultados da cor objetiva, acusou efeito significativo do fator fosfato na luminosidade (L-Hunter) da salsicha, contudo, a adição de tripolifosfato de sódio alterou o valor de L-Hunter em menos de sete décimos de unidade.

A influência do fator carne no teor de vermelho (a-Hunter) mostrou-se significativo, onde a “carne quente” apresentou o teor de vermelho reduzido em menos de um décimo de unidade. Já no trabalho de AMBROSIADIS & WIRTH (1984) a adição de fosfato em sal- sichas levou a uma ligeira diminuição da quantidade de pigmentos de cor vermelha.

A análise de variância dos resultados para o teor de amarelo (b-Hunter), acusou efeitos significativos dos fatores carne e fosfato. A “carne quente” aumentou o teor de amarelo enquanto a adição de fosfato reduziu este mesmo teor, no entanto, a diferença das médias em ambos os casos foi menor ou igual a dois décimos de unidade.

5.3. Avaliações subjetivas

A avaliação subjetiva da cor vermelha no teste de ordenação das amostras, não detectou diferenças significativas para os tratamentos, mostrando que, as diferenças objetivas obtidas no teor de vermelho podem não possuir importância prática.

A avaliação sensorial da maciez da salsicha acusou efeito significativo do fator fosfato e da interação dos fatores. A utilização de fosfato resultou em aumento da firmeza que está de acordo com os resultados objetivos e com o trabalho de PUOLANNE & TERRELL (1983a). Na comparação das médias das combinações, somente
"carne fria sem fosfato" diferiu das demais, apresentando valor próximo ao "ideal". Os outros tratamentos mostraram-se um pouco mais firmes. Portanto, a adição de fosfato na "carne fria" aumentou a firmeza e o tratamento "carne quente sem fosfato" mostrou-se significativamente mais firme que a "carne fria sem fosfato". Todos os tratamentos obtiveram valores de maciez próximos do valor "ideal".

Não houve influência (p>0,05) dos efeitos dos fatores carne e fosfato e da interação dos fatores nos resultados de algumas avaliações sensoriais dos tratamentos. Na escala de 0 (muito seca, sabor não característico e partículas grosseiras) a 100 (muito suculenta, sabor característico e partículas homogêneas) obteve-se "suculência ideal", "sabor normal" e "boa homogeneidade da textura". Embora os resultados de umidade tenham diferido significativamente entre os fatores carne e fosfato, estes não foram importantes do ponto de vista prático uma vez que não foram detectados no atributo suculência. PUOLANNE & TERRELL (1983 a) também não verificaram influência significativa na suculência pela adição de 0,375% de tripolifosfato de sódio ou utilização da carne "pre-rigor".

A qualidade global apresentou diferença significativa na interação dos fatores carne x fosfato, onde a média do tratamento "carne quente com fosfato" mostrou-se melhor que a "carne quente sem fosfato" e nos tratamentos sem fosfato a "carne fria" resultou em maior valor que a "carne quente". Mas na prática todas as combinações foram classificadas de "boa qualidade global".
6. CONCLUSÕES

Nessa pesquisa chegou-se às conclusões que se seguem, as quais são válidas nas condições descritas nesse trabalho.

1. Tanto a carne "pre-rigor", como o tripolifosfato de sódio (TPF), exerceram influência significativa (p<0,05) no pH da massa crua e do produto, na estabilidade da emulsão e nas perdas de peso no processamento.

2. O uso de carne "pre-rigor" aumentou o pH da massa em cerca de 4 décimos e o TPF aumentou o pH em 3 décimos. Os efeitos foram aditivos e, quando combinados, resultaram num aumento de cerca de 6 décimos no pH da emulsão. A mesma tendência foi verificada no pH do produto final.

3. O uso de carne "pre-rigor" reduziu a separação de gelatina em cerca de 3,0 unidades de porcentagem, e de gordura em 0,5. O TPF reduziu a separação de gelatina em cerca de 3,6 unidades e de gordura em 0,5. Combinados, reduziram a separação de gelatina em 4,0 unidades e de gordura em 0,6.

4. Os efeitos da carne "pre-rigor" e do TPF na redução das perdas no cozimento, medidas no produto resfriado, com o envoltório de celulose removido, se equivaleram e foram da ordem de 2 unidades de percentagem. Combinados ou não, o resultado foi o mesmo.
5. A carne "pre-rigor" não exerceu influência na textura (força de cисalhamento) do produto com película protéica, porém, tornou menos firme o produto sem película. Já o TPF tornou o produto com ou sem película, mais firme, independentemente da carne ser pré ou "post-rigor". A avaliação sensorial da maciez do produto com película protéica confirmou essa conclusão.

6. O TPF exerceu influência significativa na luminosidade (L-Hunter) e no teor de amarelo (b-Hunter), enquanto a "carne quente" influenciou no teor de vermelho (a-Hunter) da cor interna do produto. Porém, a magnitude de tais efeitos foi tão pequena que não foi detectável pela avaliação subjetiva da cor.

7. Os resultados da avaliação sensorial da suculência, sabor, homogeneidade da textura e qualidade global não foram influenciados pelo uso da "carne quente" ou pelo TPF.

8. Por último, pode-se afirmar que em formulações de embutidos tipo emulsão contendo 39% de carne de dianteiro de vaca, pode-se prescindir do aditivo tripolifosfato, utilizando-se carne "pre-rigor", moída, salgada e resfriada, sem prejuízo da qualidade sensorial, com iguais rendimentos e cor. Contudo, obtém-se maior estabilidade da emulsão com a adição do fosfato.
7. REFERÊNCIAS BIBLIOGRÁFICAS

103

104

KLETTNER, P.G. Técnica de picado para embutido escaldado. Fleischwirtsch. esp. 1, 4-12, 1986.

Puolanne, E.J. & Terrell, R.N. Effects of salt levels in prerigor

STILWELL, D.E.; MANDIGO, R.W.; WEISS, G.M.; CAMPBELL, J.F. Accele-

TAENDLER, K. Es rentable el despiece "en caliente de matanza" (hot boning)? Fleischrei., 33(9):578,580,583-585, V-VI, IX, 1982.

WIRTH, F. Embutido escaldado. Fijación de agua, fijación de grasa, formación de la estructura. Fleischwirtsch. esp., 2,4-14, 1985.
ANEXO I

Dados experimentais
TABELA 1. Temperatura média de saída da massa no cutter.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>13,0</td>
<td>11,0</td>
<td>10,0</td>
<td>12,0</td>
</tr>
<tr>
<td>2</td>
<td>18,8</td>
<td>19,0</td>
<td>17,4</td>
<td>17,9</td>
</tr>
<tr>
<td>3</td>
<td>14,0</td>
<td>15,0</td>
<td>12,5</td>
<td>14,0</td>
</tr>
<tr>
<td>4</td>
<td>12,0</td>
<td>14,5</td>
<td>14,5</td>
<td>13,0</td>
</tr>
</tbody>
</table>

TABELA 2. Valores médios de triplicata da composição centesimal e pH das matérias-primas cárneas para o 1º processamento.

<table>
<thead>
<tr>
<th>Matéria-prima</th>
<th>Unidade (%)</th>
<th>Gordura (%)</th>
<th>Proteína (%)</th>
<th>Cinzas (%)</th>
<th>Total (%)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. quente</td>
<td>75,64</td>
<td>4,20</td>
<td>18,89</td>
<td>1,15</td>
<td>99,88</td>
<td>6,24</td>
</tr>
<tr>
<td>C. fria</td>
<td>74,50</td>
<td>4,21</td>
<td>18,28</td>
<td>1,15</td>
<td>98,14</td>
<td>5,58</td>
</tr>
<tr>
<td>C. cabeça</td>
<td>74,16</td>
<td>4,82</td>
<td>19,39</td>
<td>1,23</td>
<td>99,55</td>
<td>6,14</td>
</tr>
<tr>
<td>Diafragma</td>
<td>72,50</td>
<td>8,10</td>
<td>16,47</td>
<td>1,35</td>
<td>98,42</td>
<td>5,68</td>
</tr>
<tr>
<td>Bucho</td>
<td>75,02</td>
<td>5,68</td>
<td>16,86</td>
<td>0,66</td>
<td>98,23</td>
<td>7,28</td>
</tr>
<tr>
<td>C. suína</td>
<td>68,61</td>
<td>11,73</td>
<td>16,80</td>
<td>1,20</td>
<td>98,34</td>
<td>6,42</td>
</tr>
<tr>
<td>Toucinho</td>
<td>16,04</td>
<td>78,07</td>
<td>3,63</td>
<td>0,38</td>
<td>98,12</td>
<td>6,69</td>
</tr>
</tbody>
</table>
TABELA 3. Valores médios de triplicata da composição centesimal e pH das matérias-primas cárneas para o 2º processamento.

<table>
<thead>
<tr>
<th>Matéria-prima</th>
<th>Unidade (%)</th>
<th>Gordura (%)</th>
<th>Proteína (%)</th>
<th>Cinzas (%)</th>
<th>Total (%)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. quente</td>
<td>75,26</td>
<td>4,09</td>
<td>18,62</td>
<td>1,36</td>
<td>99,32</td>
<td>6,12</td>
</tr>
<tr>
<td>C. fria</td>
<td>74,61</td>
<td>4,46</td>
<td>19,08</td>
<td>1,72</td>
<td>99,87</td>
<td>5,70</td>
</tr>
<tr>
<td>C. cabeça*</td>
<td>74,16</td>
<td>4,82</td>
<td>19,39</td>
<td>1,23</td>
<td>99,59</td>
<td>6,14</td>
</tr>
<tr>
<td>Diafragma*</td>
<td>72,50</td>
<td>8,10</td>
<td>16,47</td>
<td>1,35</td>
<td>98,42</td>
<td>5,68</td>
</tr>
<tr>
<td>Bucho*</td>
<td>75,02</td>
<td>5,68</td>
<td>16,86</td>
<td>0,66</td>
<td>98,23</td>
<td>7,28</td>
</tr>
<tr>
<td>C. suína</td>
<td>72,38</td>
<td>6,25</td>
<td>18,78</td>
<td>1,18</td>
<td>98,59</td>
<td>5,94</td>
</tr>
<tr>
<td>Toucinho</td>
<td>9,66</td>
<td>87,55</td>
<td>2,26</td>
<td>0,19</td>
<td>99,66</td>
<td>6,50</td>
</tr>
</tbody>
</table>

(*) A mesma carne do 1º processamento.

TABELA 4. Valores médios de triplicata da composição centesimal e pH das matérias-primas cárneas para o 3º processamento.

<table>
<thead>
<tr>
<th>Matéria-prima</th>
<th>Unidade (%)</th>
<th>Gordura (%)</th>
<th>Proteína (%)</th>
<th>Cinzas (%)</th>
<th>Total (%)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. quente</td>
<td>71,46</td>
<td>7,44</td>
<td>18,62</td>
<td>1,02</td>
<td>98,53</td>
<td>6,29</td>
</tr>
<tr>
<td>C. fria</td>
<td>72,51</td>
<td>6,67</td>
<td>18,81</td>
<td>1,00</td>
<td>98,98</td>
<td>5,70</td>
</tr>
<tr>
<td>C. cabeça*</td>
<td>74,16</td>
<td>4,82</td>
<td>19,39</td>
<td>1,23</td>
<td>99,59</td>
<td>6,14</td>
</tr>
<tr>
<td>Diafragma*</td>
<td>72,50</td>
<td>8,10</td>
<td>16,47</td>
<td>1,35</td>
<td>98,42</td>
<td>5,68</td>
</tr>
<tr>
<td>Bucho*</td>
<td>75,02</td>
<td>5,68</td>
<td>16,86</td>
<td>0,66</td>
<td>98,23</td>
<td>7,28</td>
</tr>
<tr>
<td>C. suína**</td>
<td>72,38</td>
<td>6,25</td>
<td>18,78</td>
<td>1,18</td>
<td>98,59</td>
<td>5,94</td>
</tr>
<tr>
<td>Toucinho</td>
<td>8,88</td>
<td>88,43</td>
<td>3,23</td>
<td>0,18</td>
<td>100,72</td>
<td>6,44</td>
</tr>
</tbody>
</table>

(*) Mesma carne do 1º processamento.

(**) Mesma carne do 2º processamento.
TABELA 5. Valores médios de triplicata da composição centesimal e pH das matérias-primas carnes para o 4º processamento.

<table>
<thead>
<tr>
<th>Matéria-prima</th>
<th>Umidade (%)</th>
<th>Gordura (%)</th>
<th>Proteína (%)</th>
<th>Cinzas (%)</th>
<th>Total (%)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. quente</td>
<td>71,64</td>
<td>8,07</td>
<td>18,76</td>
<td>1,00</td>
<td>99,47</td>
<td>6,20</td>
</tr>
<tr>
<td>C. fria</td>
<td>73,30</td>
<td>6,26</td>
<td>18,47</td>
<td>0,96</td>
<td>98,99</td>
<td>5,54</td>
</tr>
<tr>
<td>C. cabeça*</td>
<td>74,16</td>
<td>4,82</td>
<td>19,39</td>
<td>1,23</td>
<td>99,59</td>
<td>6,14</td>
</tr>
<tr>
<td>Diafragma*</td>
<td>72,50</td>
<td>8,10</td>
<td>16,47</td>
<td>1,35</td>
<td>98,42</td>
<td>5,68</td>
</tr>
<tr>
<td>Bucho*</td>
<td>75,02</td>
<td>5,68</td>
<td>16,86</td>
<td>0,66</td>
<td>98,23</td>
<td>7,28</td>
</tr>
<tr>
<td>C. suína</td>
<td>74,90</td>
<td>4,30</td>
<td>18,58</td>
<td>1,10</td>
<td>98,88</td>
<td>6,25</td>
</tr>
<tr>
<td>Toucinho**</td>
<td>8,88</td>
<td>88,43</td>
<td>3,23</td>
<td>0,18</td>
<td>100,72</td>
<td>6,44</td>
</tr>
</tbody>
</table>

(*) Mesma carne do 1º processamento.
(**) Mesmo toucinho do 3º processamento.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>52,82</td>
</tr>
<tr>
<td></td>
<td>53,33</td>
</tr>
<tr>
<td></td>
<td>53,24</td>
</tr>
<tr>
<td>3</td>
<td>53,13</td>
</tr>
<tr>
<td></td>
<td>53,11</td>
</tr>
<tr>
<td></td>
<td>53,20</td>
</tr>
<tr>
<td>4</td>
<td>52,99</td>
</tr>
<tr>
<td></td>
<td>53,06</td>
</tr>
<tr>
<td></td>
<td>53,09</td>
</tr>
<tr>
<td>Processamentos</td>
<td>Tratamentos</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>12,92</td>
</tr>
<tr>
<td></td>
<td>12,43</td>
</tr>
<tr>
<td></td>
<td>12,52</td>
</tr>
<tr>
<td>3</td>
<td>12,58</td>
</tr>
<tr>
<td></td>
<td>13,02</td>
</tr>
<tr>
<td></td>
<td>13,14</td>
</tr>
<tr>
<td>4</td>
<td>13,41</td>
</tr>
<tr>
<td></td>
<td>14,01</td>
</tr>
<tr>
<td></td>
<td>14,17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26,28</td>
<td>25,59</td>
<td>26,24</td>
<td>25,80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25,21</td>
<td>25,35</td>
<td>26,25</td>
<td>24,39</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26,25</td>
<td>25,34</td>
<td>25,54</td>
<td>24,69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26,45</td>
<td>25,80</td>
<td>25,40</td>
<td>23,77</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24,94</td>
<td>26,01</td>
<td>26,64</td>
<td>24,79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26,04</td>
<td>25,77</td>
<td>26,25</td>
<td>24,86</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>3.29</td>
</tr>
<tr>
<td></td>
<td>3.13</td>
</tr>
<tr>
<td>3</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>3.18</td>
</tr>
<tr>
<td></td>
<td>3.10</td>
</tr>
<tr>
<td>4</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>2.94</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>Processamentos</td>
<td>Tratamentos</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>6,5</td>
</tr>
<tr>
<td></td>
<td>6,5</td>
</tr>
<tr>
<td>2</td>
<td>6,4</td>
</tr>
<tr>
<td></td>
<td>6,4</td>
</tr>
<tr>
<td>3</td>
<td>6,5</td>
</tr>
<tr>
<td></td>
<td>6,5</td>
</tr>
<tr>
<td>4</td>
<td>6,5</td>
</tr>
<tr>
<td></td>
<td>6,5</td>
</tr>
<tr>
<td>Processamentos</td>
<td>A</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
</tr>
<tr>
<td>1</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
</tr>
<tr>
<td>3</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
</tr>
<tr>
<td>4</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
</tr>
</tbody>
</table>
TABELA 12. Dados da percentagem de separação total de líquido dos tratamentos.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,96</td>
</tr>
<tr>
<td></td>
<td>5,69</td>
</tr>
<tr>
<td></td>
<td>6,85</td>
</tr>
<tr>
<td></td>
<td>5,54</td>
</tr>
<tr>
<td></td>
<td>6,61</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,14</td>
</tr>
<tr>
<td></td>
<td>5,16</td>
</tr>
<tr>
<td></td>
<td>5,86</td>
</tr>
<tr>
<td></td>
<td>4,99</td>
</tr>
<tr>
<td></td>
<td>5,27</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,84</td>
</tr>
<tr>
<td></td>
<td>8,23</td>
</tr>
<tr>
<td></td>
<td>8,99</td>
</tr>
<tr>
<td></td>
<td>9,40</td>
</tr>
<tr>
<td></td>
<td>8,59</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td>2,27</td>
</tr>
<tr>
<td></td>
<td>1,57</td>
</tr>
<tr>
<td></td>
<td>1,70</td>
</tr>
<tr>
<td></td>
<td>2,17</td>
</tr>
</tbody>
</table>
TABELA 13. Dados de percentagem de separação de gelatina dos tratamentos.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,53</td>
<td>1,40</td>
<td>3,14</td>
<td>2,30</td>
<td></td>
</tr>
<tr>
<td>0,96</td>
<td>1,76</td>
<td>3,01</td>
<td>2,69</td>
<td></td>
</tr>
<tr>
<td>1,01</td>
<td>2,38</td>
<td>2,72</td>
<td>3,12</td>
<td></td>
</tr>
<tr>
<td>1,54</td>
<td>2,48</td>
<td>2,15</td>
<td>4,78</td>
<td></td>
</tr>
<tr>
<td>1,66</td>
<td>3,20</td>
<td>1,70</td>
<td>3,67</td>
<td></td>
</tr>
<tr>
<td>0,94</td>
<td>1,69</td>
<td>1,72</td>
<td>4,52</td>
<td></td>
</tr>
<tr>
<td>1,75</td>
<td>1,96</td>
<td>1,90</td>
<td>3,32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,17</td>
<td>3,03</td>
<td>1,72</td>
<td>11,02</td>
<td></td>
</tr>
<tr>
<td>1,20</td>
<td>2,45</td>
<td>2,01</td>
<td>10,16</td>
<td></td>
</tr>
<tr>
<td>1,10</td>
<td>3,25</td>
<td>1,28</td>
<td>10,26</td>
<td></td>
</tr>
<tr>
<td>0,97</td>
<td>2,41</td>
<td>1,50</td>
<td>11,85</td>
<td></td>
</tr>
<tr>
<td>1,42</td>
<td>3,77</td>
<td>0,88</td>
<td>11,39</td>
<td></td>
</tr>
<tr>
<td>0,50</td>
<td>2,52</td>
<td>0,95</td>
<td>10,12</td>
<td></td>
</tr>
<tr>
<td>0,57</td>
<td>3,82</td>
<td>1,81</td>
<td>10,78</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,87</td>
<td>3,73</td>
<td>1,65</td>
<td>2,63</td>
<td></td>
</tr>
<tr>
<td>1,20</td>
<td>2,05</td>
<td>2,13</td>
<td>2,11</td>
<td></td>
</tr>
<tr>
<td>1,07</td>
<td>2,33</td>
<td>1,50</td>
<td>2,15</td>
<td></td>
</tr>
<tr>
<td>2,11</td>
<td>3,04</td>
<td>1,67</td>
<td>3,33</td>
<td></td>
</tr>
<tr>
<td>0,55</td>
<td>2,76</td>
<td>1,99</td>
<td>3,22</td>
<td></td>
</tr>
<tr>
<td>1,61</td>
<td>3,39</td>
<td>1,64</td>
<td>3,72</td>
<td></td>
</tr>
<tr>
<td>1,58</td>
<td>2,31</td>
<td>1,84</td>
<td>2,87</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,24</td>
<td>0,90</td>
<td>0,28</td>
<td>3,48</td>
<td></td>
</tr>
<tr>
<td>0,38</td>
<td>0,60</td>
<td>0,71</td>
<td>2,06</td>
<td></td>
</tr>
<tr>
<td>0,43</td>
<td>0,43</td>
<td>0,71</td>
<td>2,24</td>
<td></td>
</tr>
<tr>
<td>0,64</td>
<td>0,80</td>
<td>0,67</td>
<td>3,63</td>
<td></td>
</tr>
<tr>
<td>0,32</td>
<td>0,69</td>
<td>0,32</td>
<td>3,87</td>
<td></td>
</tr>
<tr>
<td>1,49</td>
<td>0,67</td>
<td>0,42</td>
<td>1,80</td>
<td></td>
</tr>
<tr>
<td>1,59</td>
<td>0,32</td>
<td>0,34</td>
<td>5,95</td>
<td></td>
</tr>
</tbody>
</table>
TABELA 14. Dados de percentagem de separação de gordura dos tratamentos.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
</tr>
</tbody>
</table>
TABELA 15. Dados da percentagem de perda de peso da salsicha com tripia de celulose.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11,48</td>
<td>10,11</td>
</tr>
<tr>
<td>11,37</td>
<td>11,65</td>
</tr>
<tr>
<td>11,39</td>
<td>11,22</td>
</tr>
<tr>
<td>10,11</td>
<td>10,94</td>
</tr>
<tr>
<td>12,03</td>
<td>10,96</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12,38</td>
<td>11,90</td>
</tr>
<tr>
<td>12,41</td>
<td>14,08</td>
</tr>
<tr>
<td>12,32</td>
<td>14,01</td>
</tr>
<tr>
<td>13,33</td>
<td>11,88</td>
</tr>
<tr>
<td>13,31</td>
<td>11,29</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11,20</td>
<td>10,88</td>
</tr>
<tr>
<td>11,34</td>
<td>10,62</td>
</tr>
<tr>
<td>10,97</td>
<td>10,44</td>
</tr>
<tr>
<td>10,85</td>
<td>10,49</td>
</tr>
<tr>
<td>10,52</td>
<td>10,46</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9,36</td>
<td>9,20</td>
</tr>
<tr>
<td>9,94</td>
<td>9,51</td>
</tr>
<tr>
<td>9,42</td>
<td>9,24</td>
</tr>
<tr>
<td>9,43</td>
<td>9,24</td>
</tr>
<tr>
<td>9,42</td>
<td>9,48</td>
</tr>
</tbody>
</table>
TABELA 16. Dados da percentagem de perda de peso da salsicha sem tripa de celulose.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>13,64</td>
<td>13,63</td>
<td>13,02</td>
<td>13,61</td>
</tr>
<tr>
<td></td>
<td>13,49</td>
<td>13,67</td>
<td>14,51</td>
<td>13,96</td>
</tr>
<tr>
<td></td>
<td>13,53</td>
<td>13,38</td>
<td>13,38</td>
<td>14,57</td>
</tr>
<tr>
<td></td>
<td>13,41</td>
<td>13,03</td>
<td>14,13</td>
<td>15,83</td>
</tr>
<tr>
<td></td>
<td>14,28</td>
<td>12,94</td>
<td>13,34</td>
<td>14,08</td>
</tr>
<tr>
<td>2</td>
<td>14,46</td>
<td>14,86</td>
<td>15,46</td>
<td>22,73</td>
</tr>
<tr>
<td></td>
<td>14,63</td>
<td>16,88</td>
<td>15,69</td>
<td>22,51</td>
</tr>
<tr>
<td></td>
<td>14,70</td>
<td>16,96</td>
<td>15,74</td>
<td>23,28</td>
</tr>
<tr>
<td></td>
<td>14,70</td>
<td>16,29</td>
<td>15,62</td>
<td>22,34</td>
</tr>
<tr>
<td></td>
<td>15,28</td>
<td>14,40</td>
<td>15,39</td>
<td>22,81</td>
</tr>
<tr>
<td>3</td>
<td>13,15</td>
<td>12,41</td>
<td>12,23</td>
<td>12,26</td>
</tr>
<tr>
<td></td>
<td>13,13</td>
<td>13,31</td>
<td>13,04</td>
<td>12,99</td>
</tr>
<tr>
<td></td>
<td>13,07</td>
<td>13,08</td>
<td>12,10</td>
<td>12,16</td>
</tr>
<tr>
<td></td>
<td>12,55</td>
<td>13,11</td>
<td>13,04</td>
<td>12,47</td>
</tr>
<tr>
<td></td>
<td>12,96</td>
<td>12,47</td>
<td>13,39</td>
<td>12,50</td>
</tr>
<tr>
<td>4</td>
<td>10,84</td>
<td>11,10</td>
<td>11,36</td>
<td>11,22</td>
</tr>
<tr>
<td></td>
<td>11,12</td>
<td>11,04</td>
<td>11,60</td>
<td>13,05</td>
</tr>
<tr>
<td></td>
<td>11,56</td>
<td>11,00</td>
<td>10,98</td>
<td>11,16</td>
</tr>
<tr>
<td></td>
<td>11,46</td>
<td>11,44</td>
<td>11,80</td>
<td>10,93</td>
</tr>
<tr>
<td></td>
<td>11,88</td>
<td>11,57</td>
<td>11,43</td>
<td>11,60</td>
</tr>
</tbody>
</table>
TABELA 17. Dados de força máxima de cisalhamento por peso (lbf/g) da salsicha.

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>1,54</td>
<td>1,59</td>
<td>1,61</td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td>1,75</td>
<td>1,74</td>
<td>1,55</td>
<td>1,46</td>
</tr>
<tr>
<td></td>
<td>1,75</td>
<td>1,47</td>
<td>1,44</td>
<td>1,43</td>
</tr>
<tr>
<td></td>
<td>1,65</td>
<td>1,57</td>
<td>1,47</td>
<td>1,39</td>
</tr>
<tr>
<td></td>
<td>1,75</td>
<td>1,64</td>
<td>1,49</td>
<td>1,35</td>
</tr>
<tr>
<td>3</td>
<td>2,22</td>
<td>1,70</td>
<td>2,33</td>
<td>1,93</td>
</tr>
<tr>
<td></td>
<td>2,19</td>
<td>1,96</td>
<td>2,13</td>
<td>2,02</td>
</tr>
<tr>
<td></td>
<td>2,12</td>
<td>1,83</td>
<td>2,17</td>
<td>1,92</td>
</tr>
<tr>
<td></td>
<td>2,11</td>
<td>1,89</td>
<td>2,08</td>
<td>2,03</td>
</tr>
<tr>
<td></td>
<td>2,13</td>
<td>1,83</td>
<td>2,33</td>
<td>1,83</td>
</tr>
<tr>
<td>4</td>
<td>2,13</td>
<td>1,76</td>
<td>2,26</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>2,13</td>
<td>1,72</td>
<td>2,26</td>
<td>1,82</td>
</tr>
<tr>
<td></td>
<td>2,13</td>
<td>1,88</td>
<td>2,25</td>
<td>1,93</td>
</tr>
<tr>
<td></td>
<td>2,05</td>
<td>1,84</td>
<td>2,23</td>
<td>2,02</td>
</tr>
<tr>
<td></td>
<td>2,13</td>
<td>1,98</td>
<td>2,26</td>
<td>2,08</td>
</tr>
</tbody>
</table>
TABELA 18. Dados da força máxima de cisalhamento por peso (lbf/g) do interior da salischa (Ø 15mm).

<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>1,33</td>
</tr>
<tr>
<td></td>
<td>1,32</td>
</tr>
<tr>
<td></td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td>1,33</td>
</tr>
<tr>
<td></td>
<td>1,24</td>
</tr>
<tr>
<td>3</td>
<td>1,41</td>
</tr>
<tr>
<td></td>
<td>1,42</td>
</tr>
<tr>
<td></td>
<td>1,37</td>
</tr>
<tr>
<td></td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td>1,46</td>
</tr>
<tr>
<td>4</td>
<td>1,41</td>
</tr>
<tr>
<td></td>
<td>1,40</td>
</tr>
<tr>
<td></td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td>1,40</td>
</tr>
<tr>
<td></td>
<td>1,36</td>
</tr>
<tr>
<td>Valores Hunter</td>
<td>Processamento</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>L<sub>H</sub></td>
<td></td>
</tr>
<tr>
<td>52,58</td>
<td>52,59</td>
</tr>
<tr>
<td>52,55</td>
<td>52,64</td>
</tr>
<tr>
<td>52,67</td>
<td>52,81</td>
</tr>
<tr>
<td>52,75</td>
<td>52,90</td>
</tr>
<tr>
<td>52,74</td>
<td>52,96</td>
</tr>
<tr>
<td>53,12</td>
<td>53,69</td>
</tr>
<tr>
<td>53,82</td>
<td>54,39</td>
</tr>
<tr>
<td>53,48</td>
<td>53,47</td>
</tr>
<tr>
<td>53,30</td>
<td>53,23</td>
</tr>
<tr>
<td>53,12</td>
<td>53,26</td>
</tr>
<tr>
<td>53,32</td>
<td>54,79</td>
</tr>
<tr>
<td>53,73</td>
<td>54,57</td>
</tr>
<tr>
<td>53,15</td>
<td>55,00</td>
</tr>
<tr>
<td>53,21</td>
<td>55,14</td>
</tr>
<tr>
<td>53,10</td>
<td>54,93</td>
</tr>
<tr>
<td>a<sub>H</sub></td>
<td></td>
</tr>
<tr>
<td>8,17</td>
<td>8,48</td>
</tr>
<tr>
<td>8,03</td>
<td>8,64</td>
</tr>
<tr>
<td>8,10</td>
<td>8,70</td>
</tr>
<tr>
<td>8,06</td>
<td>8,66</td>
</tr>
<tr>
<td>8,19</td>
<td>8,62</td>
</tr>
<tr>
<td>10,72</td>
<td>10,88</td>
</tr>
<tr>
<td>10,81</td>
<td>10,85</td>
</tr>
<tr>
<td>10,74</td>
<td>10,50</td>
</tr>
<tr>
<td>10,54</td>
<td>10,61</td>
</tr>
<tr>
<td>10,54</td>
<td>10,45</td>
</tr>
<tr>
<td>10,15</td>
<td>10,00</td>
</tr>
<tr>
<td>10,01</td>
<td>9,89</td>
</tr>
<tr>
<td>10,33</td>
<td>9,96</td>
</tr>
<tr>
<td>9,94</td>
<td>10,03</td>
</tr>
<tr>
<td>10,18</td>
<td>10,01</td>
</tr>
<tr>
<td>b<sub>H</sub></td>
<td></td>
</tr>
<tr>
<td>9,48</td>
<td>9,56</td>
</tr>
<tr>
<td>9,42</td>
<td>9,69</td>
</tr>
<tr>
<td>9,61</td>
<td>9,70</td>
</tr>
<tr>
<td>9,60</td>
<td>9,72</td>
</tr>
<tr>
<td>9,72</td>
<td>9,70</td>
</tr>
<tr>
<td>11,58</td>
<td>11,47</td>
</tr>
<tr>
<td>11,34</td>
<td>11,42</td>
</tr>
<tr>
<td>11,35</td>
<td>11,47</td>
</tr>
<tr>
<td>11,45</td>
<td>11,47</td>
</tr>
<tr>
<td>11,48</td>
<td>11,13</td>
</tr>
<tr>
<td>11,00</td>
<td>11,15</td>
</tr>
<tr>
<td>11,14</td>
<td>11,22</td>
</tr>
<tr>
<td>11,10</td>
<td>11,18</td>
</tr>
<tr>
<td>10,99</td>
<td>11,25</td>
</tr>
<tr>
<td>11,10</td>
<td>11,15</td>
</tr>
<tr>
<td>Processamentos</td>
<td>Provadores</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Soma de ordem para provadores 1 - 5</td>
<td>14</td>
</tr>
<tr>
<td>Média de ordem para provadores 1 - 5</td>
<td>2,8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Soma de ordem para provadores 1 - 5</td>
<td>18</td>
</tr>
<tr>
<td>Média de ordem para provadores 1 - 5</td>
<td>3,6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Soma de ordem para provadores 1 - 5</td>
<td>14</td>
</tr>
<tr>
<td>Média de ordem para provadores 1 - 5</td>
<td>2,8</td>
</tr>
<tr>
<td>Soma acumulativa de ordem para provadores 1 - 5</td>
<td>46</td>
</tr>
<tr>
<td>Média acumulativa de ordem para provadores 1 - 5</td>
<td>3,1</td>
</tr>
</tbody>
</table>

TABELA 20. Resultados da ordenação de mais vermelho a menos vermelho para cor da salsicha.
<table>
<thead>
<tr>
<th>Processamentos</th>
<th>Provedores</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>Renato</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Josiane</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Marghot</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Valéria</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Emilia</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Raquel</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Jorge José</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Vera</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Jane</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Hana</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>Renato</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Gina</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Nelson</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Raquel</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Dionir</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Lenice</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Emilia</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Vera</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Teresa</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Eunice</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Alexandre</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Eunice</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Jane</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Ana Elisa</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Jorge José</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Jojiane</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Eliane</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Renata</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Valéria</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Nely</td>
<td>56</td>
</tr>
<tr>
<td>Processamentos</td>
<td>Provadores</td>
<td>Tratamentos</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>Renato</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Josiane</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Marghot</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Valéria</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Emilia</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Raquel</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Jorge José</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Vera</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Jane</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Hana</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Renato</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Gina</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Nelson</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Raquel</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Dionir</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Lenice</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Emilia</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Vera</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Teresa</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Eunice</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Alexandre</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Eunice</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Jane</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Ana Elisa</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Jorge José</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Josiane</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Eliane</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Renata</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Valéria</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Rely</td>
<td>71</td>
</tr>
<tr>
<td>Processamentos</td>
<td>Provadores</td>
<td>Tratamentos</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>Renato</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Josiane</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Marghot</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Valéria</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Emília</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Raquel</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Jorge José</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Vera</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Jane</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Hans</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Renato</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Gine</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Nelson</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Raquel</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Dionir</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Lenice</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Emilia</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Vera</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Teresa</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Eunice</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Alexandre</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Eunice</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Expedito</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Jané</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Ana Elisa</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Rosires</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Jorge José</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Josiane</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Eliane</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Renata</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Valéria</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Nely</td>
<td>74</td>
</tr>
<tr>
<td>Processamentos</td>
<td>Provadores</td>
<td>Tratamentos</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Renato</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Josiane</td>
<td>92</td>
<td>60</td>
</tr>
<tr>
<td>Marghot</td>
<td>91</td>
<td>31</td>
</tr>
<tr>
<td>Valéria</td>
<td>92</td>
<td>41</td>
</tr>
<tr>
<td>Rosires</td>
<td>75</td>
<td>95</td>
</tr>
<tr>
<td>Emília</td>
<td>91</td>
<td>77</td>
</tr>
<tr>
<td>Raquel</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>Jorge José</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>Vera</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Jane</td>
<td>98</td>
<td>76</td>
</tr>
<tr>
<td>Hanna</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Expedito</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td>Renato</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Gina</td>
<td>73</td>
<td>76</td>
</tr>
<tr>
<td>Nelson</td>
<td>83</td>
<td>68</td>
</tr>
<tr>
<td>Raquel</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dionir</td>
<td>87</td>
<td>50</td>
</tr>
<tr>
<td>Lenice</td>
<td>96</td>
<td>82</td>
</tr>
<tr>
<td>Emília</td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td>Rosires</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Expedito</td>
<td>81</td>
<td>55</td>
</tr>
<tr>
<td>Vera</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Teresa</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>Eunice</td>
<td>42</td>
<td>77</td>
</tr>
<tr>
<td>Alexandre</td>
<td>84</td>
<td>97</td>
</tr>
<tr>
<td>Eunice</td>
<td>86</td>
<td>78</td>
</tr>
<tr>
<td>Expedito</td>
<td>76</td>
<td>91</td>
</tr>
<tr>
<td>Jane</td>
<td>55</td>
<td>46</td>
</tr>
<tr>
<td>Ana Elisa</td>
<td>42</td>
<td>74</td>
</tr>
<tr>
<td>Rosires</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Jorge José</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>Josiane</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>Eliane</td>
<td>90</td>
<td>78</td>
</tr>
<tr>
<td>Renata</td>
<td>81</td>
<td>88</td>
</tr>
<tr>
<td>Valéria</td>
<td>92</td>
<td>91</td>
</tr>
<tr>
<td>Nely</td>
<td>68</td>
<td>61</td>
</tr>
<tr>
<td>Processamentos</td>
<td>Provedores</td>
<td>Tratamentos</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Renato</td>
<td>99</td>
<td>71</td>
</tr>
<tr>
<td>Josiane</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>Marghot</td>
<td>73</td>
<td>64</td>
</tr>
<tr>
<td>Valério</td>
<td>84</td>
<td>71</td>
</tr>
<tr>
<td>Rosires</td>
<td>58</td>
<td>68</td>
</tr>
<tr>
<td>Emília</td>
<td>82</td>
<td>48</td>
</tr>
<tr>
<td>Raquel</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Jorge José</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>Vera</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Jané</td>
<td>96</td>
<td>43</td>
</tr>
<tr>
<td>Hana</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>Expedito</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>Renato</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Gina</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>Nelson</td>
<td>75</td>
<td>61</td>
</tr>
<tr>
<td>Raquel</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dionir</td>
<td>66</td>
<td>38</td>
</tr>
<tr>
<td>Lenice</td>
<td>85</td>
<td>55</td>
</tr>
<tr>
<td>Emília</td>
<td>87</td>
<td>83</td>
</tr>
<tr>
<td>Rosires</td>
<td>74</td>
<td>84</td>
</tr>
<tr>
<td>Expedito</td>
<td>58</td>
<td>68</td>
</tr>
<tr>
<td>Vera</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>Teresa</td>
<td>92</td>
<td>74</td>
</tr>
<tr>
<td>Eunice</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>Alexandre</td>
<td>61</td>
<td>67</td>
</tr>
<tr>
<td>Eunice</td>
<td>90</td>
<td>86</td>
</tr>
<tr>
<td>Expedito</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>Jané</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Ana Elisa</td>
<td>52</td>
<td>65</td>
</tr>
<tr>
<td>Rosires</td>
<td>78</td>
<td>58</td>
</tr>
<tr>
<td>Jorge José</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Josiane</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Eliane</td>
<td>61</td>
<td>47</td>
</tr>
<tr>
<td>Renata</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td>Valéria</td>
<td>66</td>
<td>59</td>
</tr>
<tr>
<td>Nely</td>
<td>72</td>
<td>68</td>
</tr>
</tbody>
</table>
ANEXO II

Análise de variância
UMIDADE

QUADRO 1. Análise da variância dos dados relativos a percentagem de umidade da salsicha.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>2,9182</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>18,7485</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>3,9275</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>24</td>
<td>1,3778</td>
<td>0,05741</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>26,9724</td>
<td></td>
</tr>
<tr>
<td>c.v. = 0,45%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUADRO 2. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>2,1122</td>
<td>2,1122</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>15,2360</td>
<td>15,2360</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>1,4003</td>
<td>1,4003</td>
<td>24,39 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(18,7485)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

QUADRO 3. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>3,6992</td>
<td>3,6992</td>
<td>64,43 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>12,9371</td>
<td>12,9371</td>
<td>225,35 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>0,0364</td>
<td>0,0364</td>
<td>0,63 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>3,4760</td>
<td>3,4760</td>
<td>60,55 (p<0,05)</td>
</tr>
</tbody>
</table>
QUADRO 4. Análise da variância dos dados relativos a percentagem de proteína da salsicha.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>8,87345</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>0,82160</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>6,30348</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>24</td>
<td>2,77127</td>
<td>0,11547</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>18,76980</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 2,58%

QUADRO 5. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,6084</td>
<td>0,6084</td>
<td>5,27 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,2116</td>
<td>0,2116</td>
<td>1,83 (p>0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,0016</td>
<td>0,0016</td>
<td>0,01 (p>0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(0,8216)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.
GORDURA

QUADRO 6. Análise da variância dos dados relativos a percentagem de gordura da salsicha.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>0,32402</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>6,31338</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>2,49321</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>12</td>
<td>2,86645</td>
<td>0,23887</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>11,99706</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 1,91%

QUADRO 7. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,81034</td>
<td>0,81034</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>3,62704</td>
<td>3,62704</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>1,87600</td>
<td>1,87600</td>
<td>7,85 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(6,31338)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
p = nível mínimo de significância.

QUADRO 8. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0,14301</td>
<td>0,14301</td>
<td>0,60 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>5,36003</td>
<td>5,36003</td>
<td>22,44 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>0,11021</td>
<td>0,11021</td>
<td>0,46 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>2,57613</td>
<td>2,57613</td>
<td>10,78 (p<0,05)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>0,18807</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>0,43647</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>0,23982</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>24</td>
<td>0,32873</td>
<td>0,01370</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>1,19309</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 3,92%

QUADRO 10. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,00028</td>
<td>0,00028</td>
<td>0,02 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,42684</td>
<td>0,42684</td>
<td>31,16 (p<0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,00935</td>
<td>0,00935</td>
<td>0,68 (p>0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(0,43647)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.
QUADRO 11. Análise da variância dos dados de pH da massa tipo emulsão crua dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>3</td>
<td>0,0134</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>1,36844</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>9</td>
<td>0,02031</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>16</td>
<td>0,00500</td>
<td>0,0003125</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>1,40719</td>
<td></td>
</tr>
<tr>
<td>c.v. = 0,28%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUADRO 12. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,87781</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,47531</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,01532</td>
<td>49,02 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(1,36844)</td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

QUADRO 13. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0,16000</td>
<td>0,16000</td>
<td>512,00 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>0,33062</td>
<td>0,33062</td>
<td>1.057,98 (p<0,05)</td>
</tr>
<tr>
<td>Carne dentro de "com fosfato"</td>
<td>1</td>
<td>0,33062</td>
<td>0,33062</td>
<td>1.057,98 (p<0,05)</td>
</tr>
<tr>
<td>Carne dentro de "sem fosfato"</td>
<td>1</td>
<td>0,56250</td>
<td>0,56250</td>
<td>1.800,00 (p<0,05)</td>
</tr>
</tbody>
</table>
PH SALSICHA

QUADRO 14. Análise da variância dos dados de pH da salsicha dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>0,00889</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>0,69194</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>0,00889</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>24</td>
<td>0,01334</td>
<td>0,000556</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>0,72306</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 0,37%

QUADRO 15. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,46694</td>
<td>0,46694</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,20250</td>
<td>0,20250</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,02250</td>
<td>0,02250</td>
<td>40,47 (p<0,05)</td>
</tr>
</tbody>
</table>

(Tratamentos) (3) (0,69194)

p = nível mínimo de significância.

QUADRO 16. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0,04500</td>
<td>0,04500</td>
<td>80,94 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>0,18000</td>
<td>0,18000</td>
<td>323,74 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>0,14222</td>
<td>0,14222</td>
<td>255,79 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>0,34722</td>
<td>0,34722</td>
<td>624,50 (p<0,05)</td>
</tr>
</tbody>
</table>
ESTABILIDADE DA EMULSÃO

QUADRO 17. Análise da variância dos dados relativos a percentagem de separação total de líquido dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>3</td>
<td>454,3932</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>1,094,0046</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>9</td>
<td>180,5292</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>64</td>
<td>53,8374</td>
<td>0,84121</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>1,782,7644</td>
<td></td>
</tr>
<tr>
<td>c.v. = 9,77%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUADRO 18. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>179,6702</td>
<td>179,6702</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>846,2355</td>
<td>846,2355</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>68,0989</td>
<td>68,0989</td>
<td>80,95 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(1,094,0046)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P = nível mínimo de significância.

QUADRO 19. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>217,1094</td>
<td>217,1094</td>
<td>258,09 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>697,2250</td>
<td>697,2250</td>
<td>828,84 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>13,2710</td>
<td>13,2710</td>
<td>15,78 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>234,4981</td>
<td>234,4981</td>
<td>278,76 (p<0,05)</td>
</tr>
</tbody>
</table>
SEPARAÇÃO DE GELATINA E GORDURA

GELATINA

QUADRO 20. Análise da variância dos dados relativos a percentagem de separação de gelatina dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>3</td>
<td>112,7746</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>271,7404</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>9</td>
<td>230,7500</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>96</td>
<td>38,3259</td>
<td>0,39923</td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
<td>653,5909</td>
<td></td>
</tr>
<tr>
<td>c.v. = 25,46%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUADRO 21. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>76,9909</td>
<td>76,9909</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>147,2473</td>
<td>147,2473</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>47,5022</td>
<td>47,5022</td>
<td>118,98 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(271,7404)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

QUADRO 22. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>13,7412</td>
<td>13,7412</td>
<td>34,43 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>181,0083</td>
<td>181,0083</td>
<td>453,39 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>1,7715</td>
<td>1,7715</td>
<td>4,44 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>122,7216</td>
<td>122,7216</td>
<td>307,40 (p<0,05)</td>
</tr>
</tbody>
</table>
SEPARAÇÃO DE GELATINA E GORDURA

- GORDURA

QUADRO 23. Análise da variância dos dados de percentagem de separação de gordura dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>2,11504</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>5,70588</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>8,68666</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>84</td>
<td>2,19042</td>
<td>0,02608</td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
<td>18,9000</td>
<td></td>
</tr>
<tr>
<td>c.v. = 78,18%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUADRO 24. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>2,28475</td>
<td>2,28475</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>2,16300</td>
<td>2,16300</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>1,25813</td>
<td>1,25813</td>
<td>48,24 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos) (3)</td>
<td></td>
<td>(5,70588)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

QUADRO 25. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0,06092</td>
<td>0,06092</td>
<td>2,34 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>3,36021</td>
<td>3,36021</td>
<td>128,84 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>0,07600</td>
<td>0,07600</td>
<td>2,91 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>3,46688</td>
<td>3,46688</td>
<td>132,93 (p<0,05)</td>
</tr>
</tbody>
</table>

RENDIMENTO

- COM ENVOLTÔRIO

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>3</td>
<td>164,4794</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>3,6831</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>9</td>
<td>17,1888</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>64</td>
<td>26,5653</td>
<td>0,41508</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>211,9166</td>
<td></td>
</tr>
<tr>
<td>c.v. = 5,78%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUADRO 27. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>F0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>1,8241</td>
<td>1,8241</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,0530</td>
<td>0,0530</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>1,8060</td>
<td>1,8060</td>
<td>4,35 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(3,6831)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = nível mínimo de significância.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUADRO 28. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>F0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0,6200</td>
<td>0,6200</td>
<td>1,49 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>1,2390</td>
<td>1,2390</td>
<td>2,98 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>0,0000225</td>
<td>0,0000225</td>
<td>0,00 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>3,6301</td>
<td>3,6301</td>
<td>8,75 (p<0,05)</td>
</tr>
</tbody>
</table>
RENDIMENTO

- **SEM ENVOLTÓRIO**

QUADRO 29. Análise da variância dos dados da percentagem de perda de peso da salsicha sem envoltório de celulose.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>3</td>
<td>378,8292</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>63,8974</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>9</td>
<td>156,2623</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>64</td>
<td>19,5776</td>
<td>0,3059</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>618,5665</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 4,00%

QUADRO 30. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>24,0901</td>
<td>24,0901</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>22,6206</td>
<td>22,6206</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>17,1867</td>
<td>17,1867</td>
<td>56,18 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>**(3)</td>
<td>(63,8974)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

QUADRO 31. Desdobramento da análise devida a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0,1863</td>
<td>0,1863</td>
<td>0,61 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>39,6209</td>
<td>39,6209</td>
<td>129,52 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>0,2907</td>
<td>0,2907</td>
<td>0,95 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>40,9860</td>
<td>40,9860</td>
<td>133,98 (p<0,05)</td>
</tr>
</tbody>
</table>
TEXTURA
- COM PELÍCULA PROTÉICA EXTERNA

QUADRO 32. Análise da variância dos dados de força máxima de cisalhamento por peso da amostra.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>3,28382</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>0,68134</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>0,40522</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>48</td>
<td>0,32392</td>
<td>0,00675</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>4,69430</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 0,36%

QUADRO 33. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,00504</td>
<td>0,00504</td>
<td>0,75 (p > 0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,67628</td>
<td>0,67628</td>
<td>100,19 (p < 0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,00002</td>
<td>0,00002</td>
<td>0,00 (p > 0,05)</td>
</tr>
</tbody>
</table>

(Tratamentos) (3) (0,68134)

p = nível mínimo de significância.
TEXTURA

- **SEM PELÍCULA PROTÉICA EXTERNA**

QUADRO 34. Análise da variância dos dados da força máxima de cisalhamento por peso do cilindro interno da amostra.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>0.03600</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>1.21196</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>0.37902</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>48</td>
<td>0.17012</td>
<td>0.00354</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>1.79710</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 4,35%

QUADRO 35. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0.36348</td>
<td>0.36348</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0.81900</td>
<td>0.81900</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0.02948</td>
<td>0.02948</td>
<td>6.32</td>
</tr>
</tbody>
</table>

(Tratamentos) (3) (1,21196)

p = nível mínimo de significância.

QUADRO 36. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0.26885</td>
<td>0.26885</td>
<td>75.86</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>0.57963</td>
<td>0.57963</td>
<td>163.55</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>0.30000</td>
<td>0.30000</td>
<td>84.65</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>0.09296</td>
<td>0.09296</td>
<td>26.23</td>
</tr>
</tbody>
</table>
COR

- LUMINOSIDADE

QUADRO 37. Análise da variância dos valores de luminosidade da salsicha.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>25,7675</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>7,5956</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>8,4111</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>48</td>
<td>5,4414</td>
<td>0,1134</td>
</tr>
<tr>
<td>Total *</td>
<td>59</td>
<td>47,2156</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 3,46%

QUADRO 38. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,2958</td>
<td>0,2958</td>
<td>2,61 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>7,2624</td>
<td>7,2624</td>
<td>64,04 (p<0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,0374</td>
<td>0,0374</td>
<td>0,33 (p>0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(7,5956)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>71,67244</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>0,20537</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>1,71363</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>48</td>
<td>0,85576</td>
<td>0,01782</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>74,44720</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 1,37%

QUADRO 40. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,10086</td>
<td>0,10086</td>
<td>5,66 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,04931</td>
<td>0,04931</td>
<td>2,77 (p>0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,05521</td>
<td>0,05521</td>
<td>3,10 (p>0,05)</td>
</tr>
</tbody>
</table>

(Tratamentos) (3) (0,20537)

p = nível mínimo de significância.
COR

- AMARELO

QUADRO 41. Análise da variância dos valores de teor de amarelo da salsicha.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos (P)</td>
<td>2</td>
<td>38,31067</td>
<td></td>
</tr>
<tr>
<td>Tratamentos (T)</td>
<td>3</td>
<td>0,25286</td>
<td></td>
</tr>
<tr>
<td>Interação P x T</td>
<td>6</td>
<td>1,03903</td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>48</td>
<td>0,40620</td>
<td>0,00846</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>40,00876</td>
<td></td>
</tr>
</tbody>
</table>

c.v. = 0,86%

QUADRO 42. Decomposição dos 3 graus de liberdade para tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>F0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,16752</td>
<td>0,16752</td>
<td>19,80 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>0,08292</td>
<td>0,08292</td>
<td>9,80 (p<0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>0,00243</td>
<td>0,00243</td>
<td>0,29 (p>0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(0,25286)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.
COR SUBJETIVA

- VERMELHO

QUADRO 43. Tabulação cruzada dos dados de ordenação de mais vermelho a menos vermelho, para cor da salsicha.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>60</td>
</tr>
</tbody>
</table>

QUADRO 44. Análise de Friedman para ordenação da cor vermelha.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Contagem</th>
<th>Total</th>
<th>Total Quadrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>46</td>
<td>2116</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>42</td>
<td>1764</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>28</td>
<td>784</td>
</tr>
<tr>
<td>D</td>
<td>15</td>
<td>34</td>
<td>1156</td>
</tr>
<tr>
<td>Total</td>
<td>5820</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qui-quadrado tabelado = 7,81
Qui-quadrado calculado = 7,80 (p>0,05)
AVALIAÇÃO ORGANOLÉPTICA

- MACIEZ

QUADRO 45. Análise da variância dos dados de maciez subjetiva dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>F<sub>o</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos</td>
<td>2</td>
<td>18,5972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provador dentro de processamento</td>
<td>33</td>
<td>8,287,7917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>87,1111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>930,2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>850,6945</td>
<td>860,6945</td>
<td>7,47 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(1,868,0556)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Proc. x Trat.</td>
<td>6</td>
<td>1,31/2,1361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>99</td>
<td>11,279,2083</td>
<td>113,9314</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>22,770,8889</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.
c.v. = 23,06%

QUADRO 46. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>F<sub>o</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carne quente</td>
<td>1</td>
<td>0,8889</td>
<td>0,8889</td>
<td>0,01 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carne fria</td>
<td>1</td>
<td>1780,0556</td>
<td>1780,0556</td>
<td>15,62 (p<0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>196,6806</td>
<td>196,6806</td>
<td>1,73 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>741,1250</td>
<td>741,1250</td>
<td>6,51 (p<0,05)</td>
</tr>
</tbody>
</table>
AVALIAÇÃO ORGANOLÉPTICA

- SUCULÊNCIA

QUADRO 47. Análise da variância dos dados de suculência subjetiva dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos</td>
<td>2</td>
<td>399,0417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provadores dentro de processamento</td>
<td>33</td>
<td>16.104,2083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>21,7778</td>
<td>21,7778</td>
<td>0,20 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>100,0000</td>
<td>100,0000</td>
<td>0,92 (p>0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>272,2500</td>
<td>272,2500</td>
<td>2,51 (p>0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(394,0278)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Proc. x Trat.</td>
<td>6</td>
<td>822,6805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>99</td>
<td>10,737,7917</td>
<td>108,4625</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>28,457,7500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

c.v. = 20,78%
AVALIAÇÃO ORGANOLÉPTICA

- SABOR

QUADRO 49. Análise da variância dos dados de sabor dos tratamentos.

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos</td>
<td>2</td>
<td></td>
<td>747,3750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provadores dentro de processamento</td>
<td>33</td>
<td></td>
<td>38.162,3750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td></td>
<td>96,6944</td>
<td>96,6944</td>
<td>0,93 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td></td>
<td>93,4444</td>
<td>93,4444</td>
<td>0,90 (p>0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td></td>
<td>312,1112</td>
<td>312,1112</td>
<td>3,01 (p>0,05)</td>
</tr>
</tbody>
</table>

(Tratamentos) (3) (502,2500)
Int. Proc. x Trat. 6 442,4583
Resíduo 99 10.279,2917 103,8312

Total 143 50.133,7500

p = nível mínimo de significância.

c.v. = 12,73%
AVALIAÇÃO ORGANOLÉPTICA

- **HOMogeneidade da Textura**

QUADRO 50. Análise da variância dos dados de homogeneidade da textura dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>Po</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos</td>
<td>2</td>
<td>697,8750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provedores dentro de processamento</td>
<td>33</td>
<td>35.041,3750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>0,2500</td>
<td>0,2500</td>
<td>0,00 (p>0,05)</td>
</tr>
<tr>
<td>Fosfatos (F)</td>
<td>1</td>
<td>38,0278</td>
<td>38,0278</td>
<td>0,25 (p>0,05)</td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>342,2500</td>
<td>342,2500</td>
<td>2,29 (p>0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(380,5278)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Proc. x Trat.</td>
<td>6</td>
<td>1,692,3472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>99</td>
<td>14,797,7500</td>
<td>149,4710</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>52,609,7500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.

C.V. = 15,29%
AVALIAÇÃO ORGANOLÉPTICA

- QUALIDADE GLOBAL

QUADRO 51. Análise da variância dos dados de qualidade global dos tratamentos.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>F o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processamentos</td>
<td>2</td>
<td>3.146,5139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provadores dentro de processamento</td>
<td>33</td>
<td>33.976,6250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnes (C)</td>
<td>1</td>
<td>25,0000</td>
<td>25,0000</td>
<td></td>
</tr>
<tr>
<td>Fosfatos (P)</td>
<td>1</td>
<td>113,7778</td>
<td>113,7778</td>
<td></td>
</tr>
<tr>
<td>Interação C x F</td>
<td>1</td>
<td>650,2500</td>
<td>650,2500</td>
<td>7,23 (p<0,05)</td>
</tr>
<tr>
<td>(Tratamentos)</td>
<td>(3)</td>
<td>(789,0278)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Proc. x Trat.</td>
<td>6</td>
<td>885,2639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>99</td>
<td>8.899,2093</td>
<td>89,8910</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>47.698,6389</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = nível mínimo de significância.
c.v. = 12,79%

QUADRO 52. Desdobramento da análise devido a significância da interação C x F.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>SQ</th>
<th>QM</th>
<th>F o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos dentro de carnes quente</td>
<td>1</td>
<td>654,0139</td>
<td>654,0139</td>
<td>7,28 (p<0,05)</td>
</tr>
<tr>
<td>Fosfatos dentro de carnes fria</td>
<td>1</td>
<td>110,0139</td>
<td>110,0139</td>
<td>1,22 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "com fosfato"</td>
<td>1</td>
<td>210,1250</td>
<td>210,1250</td>
<td>2,34 (p>0,05)</td>
</tr>
<tr>
<td>Carnes dentro de "sem fosfato"</td>
<td>1</td>
<td>465,1250</td>
<td>465,1250</td>
<td>5,17 (p<0,05)</td>
</tr>
</tbody>
</table>