Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/202608
Type: Artigo de periódico
Title: Mapeamento de semeaduras de soja (Glycine max (L.)Merr.) mediante dados MODIS/Terra E TM/Landsat 5: um comparativo
Title Alternative: Mapping of soybean (Glycine max (L.) Merr.) culture by MODIS/Terra and TM/Landsat 5: a comparative
Author: Lamparelli, Rubens A. C.
Carvalho, Waste M. O. de
Mercante, Erivelto
Abstract: The objective of this work was to compare the soybean crop mapping in the western of Parana State by MODIS/Terra and TM/Landsat 5 images. Firstly, it was generated a soybean crop mask using six TM images covering the crop season, which was used as a reference. The images were submitted to Parallelepiped and Maximum Likelihood digital classification algorithms, followed by visual inspection. Four MODIS images, covering the vegetative peak, were classified using the Parallelepiped method. The quality assessment of MODIS and TM classification was carried out through an Error Matrix, considering 100 sample points between soybean or not soybean, randomly allocated in each of the eight municipalities within the study area. The results showed that both the Overall Classification (OC) and the Kappa Index (KI) have produced values ranging from 0.55 to 0.80, considered good to very good performances, either in TM or MODIS images. When OC and KI, from both sensors were compared, it wasn't found no statistical difference between them. The soybean mapping, using MODIS, has produced 70% of reliance in terms of users. The main conclusion is that the mapping of soybean by MODIS is feasible, with the advantage to have better temporal resolution than Landsat, and to be available on the internet, free of charge.
O objetivo deste trabalho foi comparar mapeamentos de semeadura da cultura da soja na região oeste do Paraná, realizados com imagens MODIS/Terra e TM/Landsat 5. Primeiramente, construiu-se máscara de referência, considerando seis imagens TM ao longo do ciclo da cultura, utilizando-se dos algoritmos Paralelepípedo e MaxVer com posterior análise visual. As imagens MODIS foram classificadas com o algorítimo Paralelepípedo, em quatro passagens referentes ao pico vegetativo. O desempenho das classificações foi avaliado por meio de Matrizes de Erros, calculadas pela análise de 100 pontos amostrais (soja ou não-soja), aleatoriamente distribuídos em cada um dos oito municípios da área de estudo. Os principais resultados mostraram que a Exatidão Global (EG) e o Índice Kappa (IK), que variaram entre 0,55 e 0,80, em ambos os sensores, são considerados bons a muito bons. Quando EG e IK dos sensores TM e MODIS foram comparados, não se encontrou diferença significativa. O mapeamento da soja utilizando o sensor MODIS produziu 70% de confiabilidade sob o ponto de vista do usuário. A principal conclusão é a viabilidade de mapear a soja pelo sensor MODIS com as vantagens de que as imagens MODIS têm melhor resolução temporal e são disponibilizadas gratuitamente na Internet.
Subject: monitoramento
matriz de erros
previsão de safras
imagens orbitais
culturas agrícolas
monitoring
error matrix
yield estimate
orbital images
crops
Editor: Associação Brasileira de Engenharia Agrícola
Citation: Engenharia Agrícola. Associação Brasileira de Engenharia Agrícola, v. 28, n. 2, p. 334-344, 2008.
Rights: aberto
Identifier DOI: 10.1590/S0100-69162008000200014
Address: http://dx.doi.org/10.1590/S0100-69162008000200014
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162008000200014
Date Issue: 1-Jun-2008
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
S0100-69162008000200014.pdf403.93 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.