Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de eventopt_BR
dc.titleAnalysis Of The Multifractal Nature Of Speech Signalspt_BR
dc.contributor.authorGonzalez D.C.pt_BR
dc.contributor.authorLuan Ling L.pt_BR
dc.contributor.authorViolaro F.pt_BR
unicamp.authorGonzález, D.C., DECOM - FEEC, Universidade Estadual de Campinas (UNICAMP), Brazilpt_BR
unicamp.authorLuan Ling, L., DECOM - FEEC, Universidade Estadual de Campinas (UNICAMP), Brazilpt_BR
unicamp.authorViolaro, F., DECOM - FEEC, Universidade Estadual de Campinas (UNICAMP), Brazilpt_BR
dc.description.abstractFrame duration is an essential parameter to ensure correct application of multifractal signal processing. This paper aims to identify the multifractal nature of speech signals through theoretical study and experimental verification. One important part of this pursuit is to select adequate ranges of frame duration that effectively display evidence of multifractal nature. An overview of multifractal theory is given, including definitions and methods for analyzing and estimating multifractal characteristics and behavior. Based on these methods, we evaluate the utterances from two different Portuguese speech databases by studying their singularity curves (τ(q) and f(α)).We conclude that the frame duration between 50 and 100 ms is more suitable and useful for multifractal speech signal processing in terms of speaker recognition performance [11]. © 2012 Springer-Verlag.en
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)pt_BR
dc.identifier.citationLecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 7441 LNCS, n. , p. 740 - 748, 2012.pt_BR
dc.description.volume7441 LNCSpt_BR
dc.description.provenanceMade available in DSpace on 2015-06-26T20:29:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2012en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:26:12Z (GMT). No. of bitstreams: 0 Previous issue date: 2012en
dc.description.referenceCampell, J., Speaker Recognition: A Tutorial (1998) Proceeding of the IEEE, 85 (9)pt_BR
dc.description.referenceReynolds, D.A., Rose, R.C., Robust Text-Independent Speaker Identification Using Mixture Speaker Model (1995) IEEE Trans. Speech Audio Processing, 3 (1), pp. 72-82pt_BR
dc.description.referenceLangi, A., Kinsner, W., Consonant Characterization Using Correlation Fractal Dimension for Speech Recognition (1995) Proc. on IEEE Western Canada Conference on Communications, Computer, and Power in the Modem Environment, Winnipeg, Canada, 1, pp. 208-213pt_BR
dc.description.referenceJayant, N., Noll, P., (1984) Digital Coding of Waveforms: Principles and Applications to Speech and Video, p. 688. , Prentice-Hall, Englewood Cliffspt_BR
dc.description.referenceSant'Ana, R., Coelho, R., Alcaim, A., Text-Independent Speaker Recognition Based on the Hurst Parameter and the Multidimensional Fractional Brownian Motion Model (2006) IEEE Trans. on Audio, Speech, and Language Processing, 14 (3), pp. 931-940pt_BR
dc.description.referenceZhou, Y., Wang, J., Zhang, X., Research on Speaker Recognition Based on Multifractal Spectrum Feature (2010) Second International Conference on Computer Modeling and Simulation, pp. 463-466pt_BR
dc.description.referenceMaragos, P., Fractal Aspects of Speech Signals: Dimension and Interpolation (1991) Proc. IEEE ICASSP, 1, pp. 417-420pt_BR
dc.description.referenceLangitt, A., Soemintapurat, K., Kinsners, W., Multifractal Processing of Speech Signals Information, Communications and Signal Processing (1997) LNCS, 1334, pp. 527-531. , Han, Y., Quing, S. (eds.) ICICS 1997. Springer, Heidelbergpt_BR
dc.description.referenceKinsner, W., Grieder, W., Speech Segmentation Using Multifractal Measures and Amplification of Signal Features (2008) Proc. 7th IEEE Int. Conf. on Cognitive Informatics (ICCI 2008), pp. 351-357pt_BR
dc.description.referenceAdeyemi, O.A., Multifractal Analysis of Unvoiced Speech Signals (1997) ETD Collection for University of Rhode Island. Paper AAI9805227pt_BR
dc.description.referenceGonzález, D.C., Lee, L.L., Violaro, F., (2011) Use of Multifractal Parameters for Speaker Recognition, , M. Eng. thesis, FEEC/UNCAMP, Campinas, Brazilpt_BR
dc.description.referenceSténico, J.W., Lee, L.L., (2009) Estimation of Loss Probability and An Admission Control Scheme for Multifractal Network Traffic, , M. Eng. thesis, FEEC/UNCAMP, Campinas, Brazilpt_BR
dc.description.referenceRiedi, R.H., Crouse, M.S., Ribeiro, V.J., Baraniuk, R.G., A Multifractal Wavelet Model with Application to Network Traffic (1999) IEEE Trans. on Information Theory, 45 (3), pp. 992-1018pt_BR
dc.description.referenceKrishna, M.P., Gadre, V.M., Dessay, U.B., (2003) Multifractal Based Network Traffic Modeling, , Kluwer Academic Publishers., Ed. Bombaypt_BR
dc.description.referenceYnoguti, C., Violaro, F., (1999) Continuous Speech Recognition Using Hidden Markov Models, , D. Eng. thesis, FEEC/UNCAMP, Campinas, Brazilpt_BR
dc.description.referenceHolmes, J., Holmes, W., (2001) Speech Synthesis and Recognition, , 2nd edn. Tayor & Francis, Londonpt_BR
dc.description.referenceResearch Center INRIA Saclay, ,
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.