Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de eventopt_BR
dc.titleHydroxyapatite Coating Deposited On Grade 4 Titanium By Plasma Electrolytic Oxidationpt_BR
dc.contributor.authorAntonio C.A.pt_BR
dc.contributor.authorCruz N.C.pt_BR
dc.contributor.authorRangel E.C.pt_BR
dc.contributor.authorDe Cassia Cipriano Rangel R.pt_BR
dc.contributor.authorDo Espirito Santo Araujo T.pt_BR
dc.contributor.authorDurrant S.F.pt_BR
dc.contributor.authorMas B.A.pt_BR
dc.contributor.authorDuek E.A.R.pt_BR
unicamp.authorMás, B.A., Department of Material Engineering, Faculty of Mechanical Engineering, Campinas State University - UNICAMPCampinas, SP, Brazilpt_BRônio, C.A., Technological Plasmas Laboratory, Paulista State University - UNESP, Experimental Campus of SorocabaSorocaba, SP, Brazilpt, N.C., Technological Plasmas Laboratory, Paulista State University - UNESP, Experimental Campus of SorocabaSorocaba, SP, Brazilpt, E.C., Technological Plasmas Laboratory, Paulista State University - UNESP, Experimental Campus of SorocabaSorocaba, SP, Brazilpt Cássia Cipriano Rangel, R., Technological Plasmas Laboratory, Paulista State University - UNESP, Experimental Campus of SorocabaSorocaba, SP, Brazilpt Espirito Santo Araujo, T., Technological Plasmas Laboratory, Paulista State University - UNESP, Experimental Campus of SorocabaSorocaba, SP, Brazilpt, S.F., Technological Plasmas Laboratory, Paulista State University - UNESP, Experimental Campus of SorocabaSorocaba, SP, Brazilpt, E.A.R., Laboratory of Biomaterials, Pontifícia Universidade Católica de São Paulo - PUC-SPSorocaba, SP, Brazilpt
dc.description.abstractThe present study reports the deposition of coating using Plasma Electrolytic Oxidation (PEO) onto grade 4 titanium to produce novel surface features. Samples were treated in an electrolytic solution of calcium acetate and sodium glycerolphosphate. The temporal evolution of hydroxyapatite coatings with high Ra roughness and a maximum thickness of 120 μm was obtained. X-ray spectra revealed the presence of hydroxyapatite, rutile and calcium phosphate. Cell growth measurement by MTT assay showed that the coatings were not toxic because cells grew on all samples.en
dc.relation.ispartofMaterials Researchpt_BR
dc.publisherUniversidade Federal de Sao Carlospt_BR
dc.identifier.citationMaterials Research. Universidade Federal De Sao Carlos, v. 17, n. 6, p. 1427 - 1433, 2014.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-25T17:52:40Z (GMT). No. of bitstreams: 1 2-s2.0-84922762468.pdf: 3592947 bytes, checksum: 1958f625539169288158379f6e0947d6 (MD5) Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:18:11Z (GMT). No. of bitstreams: 2 2-s2.0-84922762468.pdf: 3592947 bytes, checksum: 1958f625539169288158379f6e0947d6 (MD5) 2-s2.0-84922762468.pdf.txt: 28217 bytes, checksum: 79b5aa14f7b38e47b237439de57d5e6d (MD5) Previous issue date: 2014en
dc.description.referenceHanawa, T., Ota, M., Calcium phosphate naturally formed on titanium in electrolyte solution (1991) Biomaterials., 12 (8), pp. 767-774. ,, PMid:1799652pt_BR
dc.description.referenceLiu, X., Poon, R.W.Y., Kwok, S.C.H., Chu, P.K., Ding, C., Structure and properties of Ca-plasma-implanted titanium (2005) Surface and Coatings Technology., 191 (1), pp. 43-48. ,
dc.description.referenceHanawa, T., In vivo metallic biomaterials and surface modification (1999) Materials Science and Engineering A., 267 (2), pp. 260-266. ,
dc.description.referenceGhomi, H., Fathi, M.H., Edris, H., Preparation of nanostructure hydroxyapatite scaffold for tissue engineering applications (2011) Journal of Sol-Gel Science and Technology., 58 (3), pp. 642-650. ,
dc.description.referenceYang, C.Y., Wang, B.C., Lee, T.M., Chang, E., Chang, G.L., Intramedullary implant of plasma-sprayed hydroxyapatite coating: An interface study (1997) Journal of Biomedical Materials Research., 36 (1), pp. 39-48. ,;2-M, PMid:9212387pt_BR
dc.description.referenceOng, J.L., Carnes, D.L., Bessho, K., Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo (2004) Biomaterials., 25 (19), pp. 4601-4606. ,, PMid:15120505pt_BR
dc.description.referenceGarcia-Alonso, D., Parco, M., Stokes, J., Looney, L., Low-Energy Plasma Spray (LEPS) Deposition of Hydroxyapatite/Poly-?-Caprolactone Biocomposite Coatings (2012) Journal of Thermal Spray Technology., 21 (1), pp. 132-143. ,
dc.description.referenceSingh, G., Singh, S., Prakash, S., Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy (2011) Surface and Coatings Technology., 205 (20), pp. 4814-4820. ,
dc.description.referenceWang, C., Chen, Z., Guan, L., Liu, Z., Wang, P., Zheng, S., Structural characterization of ion beam sputter deposited calcium phosphate coatings (2000) Surface and Coatings Technology., 130 (1), pp. 39-45. ,
dc.description.referenceBagratashvili, V.N., Antonov, E.N., Sobol, E.N., Popov, V.K., Howdle, S.M., Macroparticle distribution and chemical composition of laser deposited apatite coatings (1995) Applied Physics Letters., 66 (19), p. 2451. ,
dc.description.referenceLee, J., Aoki, H., Hydroxyapatite coating on Ti plate by a dipping method (1995) Bio-Medical Materials and Engineering., 5 (2), pp. 49-58. , PMid:7655318pt_BR
dc.description.referenceLi, P., De Groot, K., Kokubo, T., Bioactive Ca10(PO4)6(OH)2? TiO2 composite coating prepared by sol-gel process (1996) Journal of Sol-Gel Science and Technology., 7 (1-2), pp. 27-34. ,
dc.description.referenceChoudhury, P., Agrawal, D.C., Sol-gel derived hydroxyapatite coatings on titanium substrates (2011) Surface and Coatings Technology., 206 (2-3), pp. 360-365. ,
dc.description.referenceThe examination of corrosion behaviors of hap coated Ti implant materials and 316L SS by sol-gel method (2011) Protection of Metals and Physical Chemistry of Surfaces, 47 (5), pp. 670-679. ,
dc.description.referenceAbdeltawab, A.A., Shoeib, M.A., Mohamed, S.G., Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions (2011) Surface and Coatings Technology., 206 (1), pp. 43-50. ,
dc.description.referenceWang, C., Ma, J., Cheng, W., Zhang, R., Thick hydroxyapatite coatings by electrophoretic deposition (2002) Materials Letters., 57 (1), pp. 99-105. ,
dc.description.referenceKokubo, T., Hata, K., Nakamura, T., Yamamuro, T., Apatite formation on ceramics metals and polymers induced by a CaO SiO2 based glass in a simulated body fluid. In: Bonfield W Hastings GW and Tanner KE editors (1991) Bioceramics: Proceedings of the 4th International Symposium on Ceramics in Medicine 1991, 4, pp. 113-120. , Oxford, London. Oxford: Butterworth-Heinemannpt_BR
dc.description.referencePaz, A., Martín, Y., Pazos, L.M., Parodi, M.B., Ybarra, G.O., González, J.E., Obtención de recubrimientos de hidroxiapatita sobre titanio mediante el método biomimético (2011) Revista de Metalurgia., 47 (2), pp. 138-145. ,
dc.description.referenceThair, L., Ismaeel, T., Ahmed, B., Swadi, A.K., Development of apatite coatings on Ti-6Al-7Nb dental implants by biomimetic process and EPD: In vivo studies (2011) Surface Engineering., 27 (1), pp. 11-18. ,
dc.description.referenceGarcía-Sanz, F.J., Mayor, M.B., Arias, J.L., Pou, J., León, B., Pérez-Amor, M., Hydroxyapatite coatings: A comparative study between plasma-spray and pulsed laser deposition techniques (1997) Journal of Materials Science. Materials in Medicine., 8 (12), pp. 861-865. ,, PMid:15348805pt_BR
dc.description.referenceSergo, V., Sbaizero, O., Clarke, D.R., Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings (1997) Biomaterial., 18 (6), pp. 477-482. ,
dc.description.referenceNagase, M., Nishiya, H., Abe, Y., The effect of crystallinity on hydroxyapatite-induced production of reactive oxygen metabolites by polymorphonuclear leukocytes (1993) FEBS Letters., 325 (3), pp. 247-250. ,, PMid:8391480pt_BR
dc.description.referenceDunleavy, C.S., Golosnoy, I.O., Curran, J.A., Clyne, T.W., Characterisation of discharge events during plasma electrolytic oxidation (2009) Surface and Coatings Technology., 203 (22), pp. 3410-3419. ,
dc.description.referenceTsui, Y.C., Doyle, C., Clyne, T.W., Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels (1998) Biomaterials., 19 (22), pp. 2015-2029. ,, PMid:9870753pt_BR
dc.description.referenceTsui, Y.C., Doyle, C., Clyne, T.W., Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: Optimisation of coating properties (1998) Biomaterials., 19 (22), pp. 2031-2043. ,, PMid:9870754pt_BR
dc.description.referenceCurran, J.A., Clyne, T.W., Porosity in plasma electrolytic oxide coatings (2006) Acta Materialia., 54 (7), pp. 1985-1993. ,
dc.description.referenceMontazeri, M., Dehghanian, C., Shokouhfar, M., Baradaran, A., Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti-6Al-4V alloy and its corrosion behavior (2011) Applied Surface Science., 257 (16), pp. 7268-7275. ,
dc.description.referenceRudnev, V.S., Morozova, V.P., Lukiyanchuk, I.V., Adigamova, M.V., Calcium-containing biocompatible oxide-phosphate coatings on titanium (2010) Russian Journal of Applied Chemistry., 83 (4), pp. 671-679. ,
dc.description.referenceRudnev, V.S., Medkov, M.A., Yarovaya, T.P., Nedozorov, P.M., Calcium and strontium phosphates coatings on titanium formed by the plasma electrolytic oxidation (2012) Russian Journal of Applied Chemistry., 85 (12), pp. 1856-1860. ,
dc.description.referenceDurdu, S., Deniz Ö., F., Kutbay, I., Usta, M., Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation (2013) Journal of Alloys and Compounds., 551, pp. 422-429. ,
dc.description.referenceCheng, T., Chen, Y., Nie, X., Surface morphology manipulation and wear property of bioceramic oxide coatings on titanium alloy (2013) Surface and Coatings Technology., 215, pp. 253-259. ,
dc.description.referenceSun, J., Han, Y., Huang, X., Hydroxyapatite coatings prepared by micro-arc oxidation in Ca-and P-containing electrolyte (2007) Surface and Coatings Technology., 201 (9-11), pp. 5655-5658. ,
dc.description.referenceDeclercq, H., Van Den Vreken, N., De Maeyer, E., Verbeeck, R., Schacht, E., De Ridder, L., Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: Comparison of different isolation techniques and source (2004) Biomaterials., 25 (5), pp. 757-768. ,, PMid:14609664pt_BR
dc.description.referenceWhiteside, P., Matykina, E., Gough, J.E., Skeldon, P., Thompson, G.E., Vitro Evaluation of Cell Proliferation and Collagen Synthesis on Titanium Following Plasma Electrolytic Oxidation (2010) Journal of Biomedical Materials Research, 94 (1), pp. 38-46. ,, PMid:20091708pt_BR
dc.description.referenceRobinson, H.J., Markaki, A.E., Collier, C.A., Clyne, T.W., Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique (2011) Journal of the Mechanical Behavior of Biomedical Materials., 4 (8), pp. 2103-2112. ,, PMid:22098910pt_BR
dc.description.referenceYeung, W.K., Reilly, G.C., Matthews, A., Yerokhin, A., In vitro biological response of plasma electrolytically oxidized and plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V alloy (2013) Journal of Biomedical Materials Research. Part B, Applied Biomaterials., 101 (6), pp. 939-949. ,, PMid:23529912pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84922762468.pdf3.51 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.