Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Interactive Multiscale Classification of High-Resolution Remote Sensing Images
Author: dos Santos, JA
Gosselin, PH
Philipp-Foliguet, S
Torres, RD
Falcao, AX
Abstract: The use of remote sensing images (RSIs) as a source of information in agribusiness applications is very common. In those applications, it is fundamental to identify and understand trends and patterns in space occupation. However, the identification and recognition of crop regions in remote sensing images are not trivial tasks yet. In high-resolution image analysis and recognition, many of the problems are related to the representation scale of the data, and to both the size and the representativeness of the training set. In this paper, we propose a method for interactive classification of remote sensing images considering multiscale segmentation. Our aim is to improve the selection of training samples using the features from the most appropriate scales of representation. We use a boosting-based active learning strategy to select regions at various scales for user's relevance feedback. The idea is to select the regions that are closer to the border that separates both target classes: relevant and non-relevant regions. Experimental results showed that the combination of scales produces better results than isolated scales in a relevance feedback process. Furthermore, the interactive method achieved good results with few user interactions. The proposed method needs only a small portion of the training set to build classifiers that are as strong as the ones generated by a supervised method that uses the whole training set.
Subject: Active learning
interactive classification
multiscale classification
support vector machines
Country: EUA
Editor: Ieee-inst Electrical Electronics Engineers Inc
Citation: Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Ieee-inst Electrical Electronics Engineers Inc, v. 6, n. 4, n. 2020, n. 2034, 2013.
Rights: fechado
Identifier DOI: 10.1109/JSTARS.2012.2237013
Date Issue: 2013
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.