Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/54297
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUniversidade Estadual de Campinaspt_BR
dc.typeArtigo de periódicopt_BR
dc.titleAN AMBROSETTI-PRODI-TYPE RESULT FOR A QUASILINEAR NEUMANN PROBLEMpt_BR
dc.contributor.authorde Paiva, FOpt_BR
dc.contributor.authorMontenegro, Mpt_BR
unicamp.author.emailodair@dm.ufscar.brpt_BR
unicamp.author.emailmsm@ime.unicamp.brpt_BR
unicamp.authorde Paiva, Francisco Odair Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazilpt_BR
unicamp.authorMontenegro, Marcelo Univ Estadual Campinas, Dept Matemat, IMECC, BR-13083859 Campinas, SP, Brazilpt_BR
dc.subjecta priori estimatespt_BR
dc.subjectdegree theorypt_BR
dc.subjectsub-supersolutionspt_BR
dc.subject.wosDirichlet Problempt_BR
dc.description.abstractWe study the problem -Delta(p)u - f(x, u) + t in Omega with Neumann boundary condition vertical bar del u|(p-2)(partial derivative u/partial derivative nu) = 0 on partial derivative Omega. There exists a t(0) is an element of R such that for t > t(0) there is no solution. If t <= t(0), there is at least a minimal solution, and for t < t(0) there are at least two distinct solutions. We use the sub-supersolution method, a priori estimates and degree theory.pt
dc.description.noteo TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.pt
dc.relation.ispartofProceedings Of The Edinburgh Mathematical Societypt_BR
dc.relation.ispartofabbreviationProc. Edinb. Math. Soc.pt_BR
dc.publisher.cityNew Yorkpt_BR
dc.publisher.countryEUApt_BR
dc.publisherCambridge Univ Presspt_BR
dc.date.issued2012pt_BR
dc.date.monthofcirculationOCTpt_BR
dc.identifier.citationProceedings Of The Edinburgh Mathematical Society. Cambridge Univ Press, v. 55, n. 771, n. 780, 2012.pt_BR
dc.language.isoenpt_BR
dc.description.volume55pt_BR
dc.description.issuepart3pt_BR
dc.description.firstpage771pt_BR
dc.description.lastpage780pt_BR
dc.rightsembargopt_BR
dc.rights.licensehttp://journals.cambridge.org/action/displaySpecialPage?pageId=4676pt_BR
dc.sourceWeb of Sciencept_BR
dc.identifier.issn0013-0915pt_BR
dc.identifier.wosidWOS:000308715700012pt_BR
dc.identifier.doi10.1017/S0013091512000041pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorship1Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorship1Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.date.available2014-07-30T13:48:30Z
dc.date.available2015-11-26T16:34:03Z-
dc.date.accessioned2014-07-30T13:48:30Z
dc.date.accessioned2015-11-26T16:34:03Z-
dc.description.provenanceMade available in DSpace on 2014-07-30T13:48:30Z (GMT). No. of bitstreams: 0 Previous issue date: 2012en
dc.description.provenanceMade available in DSpace on 2015-11-26T16:34:03Z (GMT). No. of bitstreams: 2 WOS000308715700012.pdf: 170646 bytes, checksum: 228a3f3297414b1114dd512611b0c15e (MD5) WOS000308715700012.pdf.txt: 19181 bytes, checksum: 0fa3345f3460dc758cbdef8cace88dd6 (MD5) Previous issue date: 2012en
dc.identifier.urihttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54297
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54297-
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000308715700012.pdf166.65 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.