Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/346292
Type: TESE DIGITAL
Degree Level: Doutorado
Title: A new quadratic relaxation for binary variables with applications to the reliability of electrical distribution networks, segmentation of nerve root images, and distance geometry problems : Uma nova relaxação quadrática para variáveis binárias com aplicações a confiabilidade de redes de energia elétrica, a segmentação de imagens médicas de nervos e a problemas de geometria de distâncias
Title Alternative: Uma nova relaxação quadrática para variáveis binárias com aplicações a confiabilidade de redes de energia elétrica, a segmentação de imagens médicas de nervos e a problemas de geometria de distâncias
Author: Bartmeyer, Petra Maria, 1990-
Advisor: Lyra Filho, Christiano, 1951-
Abstract: Resumo: Como o título sugere, o foco desta pesquisa é o desenvolvimento de uma nova relaxação quadrática para problemas binários, sua formalização em resultados teóricos, e a aplicação dos novos conceitos em aplicações à confiabilidade de redes de energia elétrica, à segmentação de imagens médicas de nervos e à problemas de geometria de distâncias. Modelos matemáticos contendo va-riáveis de decisões binárias podem ser usados para encontrar as melhores soluções em processos de tomada de decisões, normalmente caracterizando problemas de otimização combinatória difíceis. A solução desses problemas em aplicações de interesse prático requer um grande esforço computacional; por isso, ao longo dos últimos anos, têm sido objeto de pesquisas na área de metaheurísticas. As ideias aqui desenvolvidas abrem novas perspectivas para a abordagem desses problemas apoiando-se em métodos de otimização não-lineares, área que vem sendo povoada por "solvers" muito eficientes. Inicialmente, explorando aspectos formais, a relaxação desenvolvida é parti-cularizada para um problema de otimização quadrática binária irrestrita. O relaxamento permite o desenvolvimento de três estruturas para abordar esta classe de problemas, e explora a convexidade da função objetivo para obter melhorias computacionais. Estudos de casos compararam o relaxamento proposto com os relaxamentos similares apresentados na literatura. Foram desenvolvidas três aplicações para os desenvolvimentos teóricos da pesquisa. A primeira aplicação envolve a melhoria da confiabilidade de redes de energia elétrica. Especificamente, aborda o problema de definir a melhor alternativa para a alocação de sensores na rede, o que permite reduzir os efeitos de ocorrências indesejáveis e ampliar a resiliência das redes. A segunda aplicação envolve o problema de segmentação de imagens médicas associadas a estruturas de nervos. A abordagem proposta interpreta o problema de segmentação como um problema de otimização binária, onde medir cada axônio significa encontrar um ciclo Hamiltoniano, um caso do problema do caixeiro viajante; a solução desses problemas fornece a estatística descritiva para um conjunto de axônios, incluindo o número (de axônios), os diâmetros e as áreas ocupadas. A última aplicação elabora um modelo matemático para o problema de geometria de distâncias sem designação, área ainda pouco estudada e com muitos aspectos em aberto. A relaxação desenvolvida na pesquisa permitiu resolver instâncias com mais de vinte mil variáveis binárias. Esses resultados são bons indicadores dos benefícios alcançáveis com os aspectos teóricos da pesquisa, e abrem novas perspectivas para as aplicações, que incluem inovações em nanotecnologia e bioengenharia

Abstract: As the title suggests, the focus this research is the development of a new quadratic relaxation for binary problems, its formalization in theoretical results, and the application of the new concepts in applications to the reliability of electric power networks, segmentation of nerve root images, and distance geometry problems. Mathematical models with binary decision variables can be used to find the best solutions for decision-making process, usually leading to difficult combinatorial optimization problems. The solution to these problems in practical applications requires a high computational effort; therefore, over the past years it has been the subject of research in the area of metaheuristics. The ideas developed in this thesis open new perspectives for addressing these problems using nonlinear optimization approaches, an area that has been populated by very efficient solvers. The initial developments explore the formal aspects of the relaxation in the context of a quadratic unconstrained binary optimization problem. The use of the proposed relaxation allows to create three structures to deal with this class of problems, and explores the objective function convexity to improve the computational performance. Case studies compare the proposed relaxation with the previous relaxations proposed in the literature. Three new applications were developed to explore the theoretical developments of this research. The first application concerns the improvement of the reliability of electric power distribution networks. Specifically, it deals with the problem of defining the best allocation for remote fault sensor, allowing to reduce the consequence of the faults and to improve the resilience of the networks. The second application explores the segmentation of medical images related to nerve root structures. The proposed approach regards the segmentation problem as a binary optimization problem, where measuring each axon is equivalent to finding a Hamiltonian cycle for a variant of the traveling salesman problem; the solution to these problems provides the descriptive statistics of the axon set, including the number of axons, their diameters, and the area used by each axon. The last application designs a mathematical model for the unassigned distance geometry problem, an incipient research area with many open problems. The relaxation developed in this research allowed to solve instances with more than twenty thousand binary variables. These results can be seen as good indicators of the benefits attainable with the theoretical aspects of the research, and opens new perspectives for applications, which include innovations in nanotechnology and bio-engineering
Subject: Otimização
Redes elétricas
Interpretação de imagens
Geometria de distâncias
Language: Inglês
Editor: [s.n.]
Citation: BARTMEYER, Petra Maria. A new quadratic relaxation for binary variables with applications to the reliability of electrical distribution networks, segmentation of nerve root images, and distance geometry problems: Uma nova relaxação quadrática para variáveis binárias com aplicações a confiabilidade de redes de energia elétrica, a segmentação de imagens médicas de nervos e a problemas de geometria de distâncias. 2020. 1 recurso online (102 p.) Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP.
Date Issue: 2020
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Bartmeyer_PetraMaria_D.pdf9.29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.