Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/344799
Type: Artigo
Title: Numerical insight into the dual radiation action theory
Author: Tello, J. J.
Incerti, S.
Francis, Z.
Tran, H.
Bernal, M. A.
Abstract: This work studies the first and second order mechanisms for the induction of lethal lesions in DNA after irradiation with protons and alpha-particles. The purpose is to numerically study the mechanisms behind the Dual Radiation Action Theory (DRAT) for these heavy particles. A genetic material geometrical model with atomic resolution is used. It accounts for the explicit position of 5.47x10(9) base pairs, organized up to the chromatin level. The GEANT4-DNA Monte Carlo code was employed to simulate the interaction of these ions with the genetic material model. The number of lethal lesions induced by one-and two-track mechanisms was determined as a function of dose. Values of the alpha/beta ratio were estimated as well as corresponding relative biological effectiveness (RBE). The number of lethal lesions produced by one-track and two-track mechanisms depends on the dose and squared dose, respectively, as predicted by the DRAT. RBE values consistent with experimental results were found, at least for LET below similar to 100 keV/mu m. Double strand break spatial distributions are qualitatively analyzed. According to this work, the alpha parameter determined from cellular surviving curves depends on both the physical alpha and beta parameters introduced here, and on the specific energy deposited by a single track into the region of interest. We found an increment of the beta parameter with LET, yet at a slower rate than alpha so that the alpha/beta ratio increases with LET. In addition, we observed and explained the saturation of the alpha parameter as the dose increases above similar to 6 Gy.
Subject: Método de Monte Carlo
Radiobiologia
Prótons
Raios alfa
Monte Carlo method
Radiobiology
Protons
Alpha rays
Country: Reino Unido
Editor: Elsevier
Rights: fechado
Identifier DOI: 10.1016/j.ejmp.2017.10.022
Address: https://www.sciencedirect.com/science/article/pii/S1120179717304945
Date Issue: 2017
Appears in Collections:IFGW - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000417655800015.pdf721.77 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.