Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/336751
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampFigallo Orellano, Aldo-
dc.typeArtigopt_BR
dc.titleOn monadic operators on modal pseudocomplemented de morgan algebras and tetravalent modal algebraspt_BR
dc.contributor.authorOrellano, Aldo Figallo-
dc.contributor.authorPascual, Inés-
dc.subjectÁlgebra booleanapt_BR
dc.subject.otherlanguageBoolean algebrapt_BR
dc.description.abstractIn our paper, monadic modal pseudocomplemented De Morgan algebras (or mmpM) are considered following Halmos’ studies on monadic Boolean algebras. Hence, their topological representation theory (Halmos–Priestley’s duality) is used successfully. Lattice congruences of an mmpM is characterized and the variety of mmpMs is proven semisimple via topological representation. Furthermore and among other things, the poset of principal congruences is investigated and proven to be a Boolean algebra; therefore, every principal congruence is a Boolean congruence. All these conclusions contrast sharply with known results for monadic De Morgan algebras. Finally, we show that the above results for mmpM are verified for monadic tetravalent modal algebraspt_BR
dc.relation.ispartofStudia Logicapt_BR
dc.publisher.cityDordrechtpt_BR
dc.publisher.countryPaíses Baixospt_BR
dc.publisherSpringerpt_BR
dc.date.issued2019-08-
dc.date.monthofcirculationAug.pt_BR
dc.language.isoengpt_BR
dc.description.volume107pt_BR
dc.description.issuenumber4pt_BR
dc.description.firstpage591pt_BR
dc.description.lastpage611pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0039-3215pt_BR
dc.identifier.eissn1572-8730pt_BR
dc.identifier.doi10.1007/s11225-018-9802-zpt_BR
dc.identifier.urlhttps://link.springer.com/article/10.1007/s11225-018-9802-zpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber2016/21928-0pt_BR
dc.date.available2020-03-17T21:15:45Z-
dc.date.accessioned2020-03-17T21:15:45Z-
dc.description.provenanceSubmitted by Susilene Barbosa da Silva (susilene@unicamp.br) on 2020-03-17T21:15:45Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-07-20T14:18:34Z : No. of bitstreams: 1 000475880700001.pdf: 576642 bytes, checksum: 2b87475e3971b1c8bc506bd9d5491a18 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-03-17T21:15:45Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-08en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/336751-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.unidadeCentro de Lógica, Epistemologia e História da Ciênciapt_BR
dc.subject.keywordTetravalent modal algebraspt_BR
dc.subject.keywordMonadic operatorspt_BR
dc.subject.keywordPseudocomplemented De Morgan álgebraspt_BR
dc.identifier.source000475880700001pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.type.formArtigo de Periódicopt_BR
Appears in Collections:CLE - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000475880700001.pdf563.13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.