Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/334550
Type: TESE DIGITAL
Degree Level: Doutorado
Title: Improving the performance of SJF/FIFO hybrid-scheduling systems through the management of Jobs Size : Melhoria do desempenho em sistemas de escalonamento-Híbrido SJF/FIFO através da gestão do tamanho de jobs
Title Alternative: Melhoria do desempenho em sistemas de escalonamento-Híbrido SJF/FIFO através da gestão do tamanho de jobs
Author: Santos, Vlademir Fazio, 1959-
Advisor: Yacoub, Michel Daoud, 1955-
Abstract: Resumo: Esta tese propõe um método de simulação discreta para planejar e gerenciar o desempenho de sistemas de filas M/G/1 de relativa complexidade. O sistema é formado por servidores em paralelo submetidos a mudanças dinâmicas entre as políticas de escalonamento SJF e FIFO. O tráfego de entrada de entidades é aleatório com oscilações até a sobrecarga do sistema. As entidades são formadas por multiplas classes de jobs e cada servidor processa uma única classe desses jobs. O método gerencia o desempenho das classes de jobs que provocam perda no desempenho do sistema por atrasos no tempo médio de residência. O modelo de simulação obtém o tempo médio de residência relativo de cada classe de job para calcular o atraso relativo dessas classes no atraso total do sistema. Os jobs que ultrapassam os limites dos requisitos podem ser gerenciados, e.g., direcionados para outros servidores, ou serem bloqueados temporária ou definitivamente. Como exemplo de um problema complexo, apresentamos um estudo de caso logístico de carregamento e movimentação de cargas dentro da área de produção industrial. As cargas são formadas por múltiplas classes de produtos simultaneamente carregados em diferentes servidores. A implementação desse modelo logístico é iniciada com um modelo reconhecido e validado e prossegue com pequenos incrementos validados até a representação de um modelo o mais próximo possível da realidade. A técnica de Escalonamento Híbrido de Sistemas com Gestão do Tamanho de Jobs permite a mudança dinâmica de políticas de escalonamento do sistema entre SJF e FIFO, ainda que sujeita a variações abruptas de tráfego de entrada. Essa técnica é efetiva para reduzir os tempos médios, conter os tempos máximos e habilitar a identificação dos jobs que provocam atrasos, permitindo dessa forma, ações de gestão para mitigar resultados indesejados

Abstract: This thesis proposes a discrete-event simulation method to plan and manage the performance of M/G/1 queuing systems of relative complexity. The system has parallel servers undergoing dynamic changes under system instabilities (e.g., spontaneous oscillations of the incoming traffic to the system overload). Entities have multi classes of jobs and each server performs a single class of this jobs. The method manages the size of jobs that may cause loss of performance, e.g. the delays in average residence time. Performance management is carried out via the monitoring of the impact of classes of job sizes on the total system delay. Jobs that exceed a certain threshold value may then be managed accordingly, e.g. by moving them to different servers or by (temporarily or permanently) blocking them. We present a case study of loading and moving cargoes within an industrial production area. Each cargo consists of multiple product classes which are simultaneously loaded on different servers. This logistic-model implementation begins with a well-known validated model extended by small validated increments to better be able to represent the real-world. The technique of Improving the Performance of SJF/FIFO Hybrid-Scheduling Systems through the Management of Job Size under dynamic conditions, i.e. when subject to toggling SJF and FIFO policies and fluctuations of inbound traffic, has shown to be effective in the reduction of the time average, in the decrease of the mean time maximum, and in the identification of jobs that cause delays to the system, and thus enable the management of these jobs to mitigate unwanted system performance
Subject: Análise e desempenho de tarefas
Sistemas aleatórios dinâmicos
Escalonamento de processos
Teoria das filas
Processo decisório - Métodos de simulação
Language: Inglês
Editor: [s.n.]
Citation: SANTOS, Vlademir Fazio. Improving the performance of SJF/FIFO hybrid-scheduling systems through the management of Jobs Size: Melhoria do desempenho em sistemas de escalonamento-Híbrido SJF/FIFO através da gestão do tamanho de jobs. 2019. 1 recurso online (139 p.). Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP.
Date Issue: 2019
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Santos_VlademirFazio_D.pdf5.5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.