Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/334530
Type: TESE DIGITAL
Degree Level: Doutorado
Title: New strategies for pre-processing, feature extraction and classification in BCI systems : Novas estratégias para pré-processamento, extração de atributos e classificação em sistemas BCI
Title Alternative: Novas estratégias de pré-processamento, extração de atributos e classificação em sistemas BCI
Author: Suarez Uribe, Luisa Fernanda, 1985-
Advisor: Attux, Romis Ribeiro de Faissol, 1978-
Abstract: Resumo: As interfaces cérebro-computador (BCIs) visam controlar um dispositivo externo, utilizando diretamente os sinais cerebrais do usuário. Tais sistemas requerem uma série de etapas para processar e extrair atributos relevantes dos sinais observados para interpretar correta e eficientemente as intenções do usuário. Embora o campo tenha se desenvolvido continuamente e algumas dificuldades tenham sido superadas, ainda é necessário aumentar a capacidade de uso, melhorando sua capacidade de classificação e aumentando a confiabilidade de sua resposta. O objetivo clássico da pesquisa de BCI é apoiar a comunicação e o controle para usuários com comunicação prejudicada devido a doenças ou lesões. Aplicações típicas das BCI são a operação de cursores de interface, programas de escrita de texto ou dispositivos externos, como cadeiras de rodas, robôs e diferentes tipos de próteses. O usuário envia informações moduladas para a BCI, realizando tarefas mentais que produzem padrões cerebrais distintos. A BCI adquire sinais do cérebro do usuário e os traduz em comunicação adequada. Esta tese tem como objetivo desenvolver uma comunicação BCI não invasiva mais rápida e confiável baseada no estudo de diferentes técnicas que atuam nas etapas de processamento do sinal, considerando dois aspectos principais, a abordagem de aprendizado de máquina e a redução da complexidade na tarefa de aprendizado dos padrões mentais pelo usuário. A pesquisa foi focada em dois paradigmas de BCI, Imagética Motora (IM) e o potencial relacionado ao evento P300. Algoritmos de processamento de sinais para a detecção de ambos os padrões cerebrais foram aplicados e avaliados. O aspecto do pré-processamento foi a primeira perspectiva estudada, considerando como destacar a resposta dos fenômenos cerebrais, em relação ao ruído e a outras fontes de informação que talvez distorçam o sinal de EEG; isso em si é um passo que influenciará diretamente a resposta dos seguintes blocos de processamento e classificação. A Análise de Componente Independente (ICA) foi usada em conjunto com métodos de seleção de atributos e diferentes classificadores para separar as fontes originais relacionadas à dessincronização produzida pelo fenômeno de IM; esta foi uma tentativa de criar um tipo de filtro espacial que permitisse o sinal ser pré-processado, reduzindo a influência do ruído. Além disso, os resultados dos valores de classificação foram analisados considerando a comparação com métodos padrão de pré-processamento, como o filtro CAR. Os resultados mostraram que é possível separar os componentes relacionados à atividade motora. A proposta da ICA, em média, foi 4\% mais alta em porcentagem de precisão de classificação do que os resultados obtidos usando o CAR, ou quando nenhum filtro foi usado. O papel dos métodos que estudam a conectividade de diferentes áreas do cérebro foi avaliado como a segunda contribuição deste trabalho; Isso permitiu considerar aspectos que contemplam a complexidade da resposta cerebral de um usuário. A área da BCI precisa de uma interpretação mais profunda do que acontece no nível do cérebro em vários dos fenômenos estudados. A técnica utilizada para construir grafos de conectividade funcional foi a correntropia, esta medida foi utilizada para quantificar a similaridade; uma comparação foi feita usando também, as medidas de correlação de Spearman e Pearson. A conectividade funcional relaciona diferentes áreas do cérebro analisando sua atividade cerebral, de modo que o estudo do grafo foi avaliado utilizando três medidas de centralidade, onde a importância de um nó na rede é medida. Também, dois tipos de classificadores foram testados, comparando os resultados no nível de precisão de classificação. Em conclusão, a correntropia pode trazer mais informações para o estudo da conectividade do que o uso da correlação simples, o que trouxe melhorias nos resultados da classificação, especialmente quando ela foi utilizada com o classificador ELM. Finalmente, esta tese demonstra que os BCIs podem fornecer comunicação efetiva em uma aplicação onde a predição da resposta de classificação foi modelada, o que permitiu a otimização dos parâmetros do processamento de sinal realizado usando o filtro espacial xDAWN e um classificador FLDA para o problema do speller P300, buscando a melhor resposta para cada usuário. O modelo de predição utilizado foi Bayesiano e confirmou os resultados obtidos com a operação on-line do sistema, permitindo otimizar os parâmetros tanto do filtro quanto do classificador. Desta forma, foi visto que usando filtros com poucos canais de entrada, o modelo otimizado deu melhores resultados de acurácia de classificação do que os valores inicialmente obtidos ao treinar o filtro xDAWN para os mesmos casos. Os resultados obtidos mostraram que melhorias nos métodos do transdutor BCI, no pré-processamento, extração de características e classificação constituíram a base para alcançar uma comunicação BCI mais rápida e confiável. O avanço nos resultados da classificação foi obtido em todos os casos, comparado às técnicas que têm sido amplamente utilizadas e já mostraram eficácia para esse tipo de problema. No entanto, ainda há aspectos a considerar da resposta dos sujeitos para tipos específicos de paradigmas, lembrando que sua resposta pode variar ao longo de diferentes dias e as implicações reais disso na definição e no uso de diferentes métodos de processamento de sinal

Abstract: Brain-computer interfaces (BCIs) aim to control an external device by directly employing user's brain signals. Such systems require a series of steps to process and extract relevant features from the observed signals to correctly and efficiently interpret the user's intentions. Although the field has been continuously developing and some difficulties have been overcome, it is still necessary to increase usability by enhancing their classification capacity and increasing the reliability of their response. The classical objective of BCI research is to support communication and control for users with impaired communication due to illness or injury. Typical BCI applications are the operation of interface cursors, spelling programs or external devices, such as wheelchairs, robots and different types of prostheses. The user sends modulated information to the BCI by engaging in mental tasks that produce distinct brain patterns. The BCI acquires signals from the user¿s brain and translates them into suitable communication. This thesis aims to develop faster and more reliable non-invasive BCI communication based on the study of different techniques that serve in the signal processing stages, considering two principal aspects, the machine learning approach, and the reduction of the complexity in the task of learning the mental patterns by the user. Research was focused on two BCI paradigms, Motor Imagery (MI) and the P300 event related potential (ERP). Signal processing algorithms for the detection of both brain patterns were applied and evaluated. The aspect of the pre-processing was the first perspective studied to consider how to highlight the response of brain phenomena, in relation to noise and other sources of information that maybe distorting the EEG signal; this in itself is a step that will directly influence the response of the following blocks of processing and classification. The Independent Component Analysis (ICA) was used in conjunction with feature selection methods and different classifiers to separate the original sources that are related to the desynchronization produced by MI phenomenon; an attempt was made to create a type of spatial filter that pre-processed the signal, reducing the influence of the noise. Furthermore, some of the classifications values were analyzed considering comparison when used other standard pre-processing methods, as the CAR filter. The results showed that it is possible to separate the components related to motor activity. The ICA proposal on average were 4\% higher in percent of classification accuracy than those obtained using CAR, or when no filter was used. The role of methods that study the connectivity of different brain areas were evaluated as the second contribution of this work; this allowed to consider aspects that contemplate the complexity of the brain response of a user. The area of BCI needs a deeper interpretation of what happens at the brain level in several of the studied phenomena. The technique used to build functional connectivity graphs was correntropy, this quantity was used to measure similarity, a comparison was made using also, the Spearman and Pearson correlation. Functional connectivity relates different brain areas activity, so the study of the graph was evaluated using three measures of centrality of graph, where the importance of a node in the network is measured. In addition, two types of classifiers were tested, comparing the results at the level of classification precision. In conclusion, the correntropy can bring more information for the study of connectivity than the use of the simple correlation, which brought improvements in the classification results especially when it was used with the ELM classifier. Finally, this thesis demonstrates that BCIs can provide effective communication in an application where the prediction of the classification response was modeled, which allowed the optimization of the parameters of the signal processing performed using the xDAWN spatial filter and a FLDA classifier for the problem of the P300 speller, seeking the best response for each user. The prediction model used was Bayesian and confirmed the results obtained with the on-line operation of the system, thus allowing to optimize the parameters of both the filter and the classifier. In this way it was seen that using filters with few inputs the optimized model gave better results of acuraccy classification than the values initially obtained when the training ofthe xDAWN filter was made for the same cases. The obtained results showed that improvements in the BCI transducer, pre-processing, feature extraction and classification methods constituted the basis to achieve faster and more reliable BCI communication. The advance in the classification results were obtained in all cases, compared to techniques that have been widely used and had already shown effectiveness for this type of problems
Subject: Interfaces cérebro-computador
Aprendizado de máquina
Processamento de sinais
Language: Inglês
Editor: [s.n.]
Citation: SUAREZ URIBE, Luisa Fernanda. New strategies for pre-processing, feature extraction and classification in BCI systems: Novas estratégias para pré-processamento, extração de atributos e classificação em sistemas BCI. 2018. 1 recurso online (157 p.). Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP.
Date Issue: 2018
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
SuarezUribe_LuisaFernanda_D.pdf11.44 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.