Medina Rosa, Danielle; Pereira Nóbrega, Lúcia Helena; Piccolo de Lima, Gislaine; Mauli, Márcia Maria; Machado Coelho, Silvia Renata

Action of dwarf mucuna, pigeon pea and stylosanthes on weed under field and laboratory conditions

Interciencia, vol. 36, núm. 11, noviembre, 2011, pp. 841-847

Asociación Interciencia
Caracas, Venezuela

Available in: http://www.redalyc.org/articulo.oa?id=33921506007
ACTION OF DWARF MUCUNA, PIGEON PEA AND STYLOSANTHES ON WEED UNDER FIELD AND LABORATORY CONDITIONS

Danielle Medina Rosa, Lúcia Helena Pereira Nóbrega, Gislaine Piccolo de Lima, Márcia Maria Mauli and Silvia Renata Machado Coelho

SUMMARY

The quality and allelopathy properties of dwarf mucuna, dwarf pigeon pea and stylosanthes as cover crops on corn and weed species were evaluated. Seeds were sown in October 2007, with a control treatment, in 20 plots of 4x5m, with five replicates. Weed population was determined 30 and 60 days after sowing. At 90 days, plants were mowed and the residues left to remain on the plot. Fresh and dry mass of the cover crops were determined and the allelopathic potential of aqueous extract of their aerial part was tested. The extract was chemically characterized and applied on seeds of weeds and corn. The experimental design was completely randomized and averages compared by the Scott-Knott test at 5% significance. The cover crops showed to be effective in the control of weeds. The highest values in fresh and dry mass were obtained for dwarf pigeon pea, followed by dwarf mucuna; fresh mass increased 72 and 34%, respectively, compared to the control. The extract with dwarf mucuna affected arrowleaf sida germination. The use of green manure in the summer or between harvests ensures that crop rotation is carried out properly and warrants its benefits.

Introduction

Leguminous species and others used as vegetal mulching may result in the release and addition of chemical substances to the system. These substances, known as allelochemicals, may have a positive or harmful effect on other species. This phenomenon, termed allelopathy (Rice, 1984) is species-specific, and may inhibit the growth of weeds and cultivated plants. It must be observed when a new vegetal mulching is introduced in the handling of soil and crops. Allelopathy has been recognized as an important ecological and agricultural mechanism, acting in the succession, formation of communities and crop productivity (Yunes and Calixto, 2001).

The study of plants with allelopathic activity represents an alternative to the intensive use of pesticides in crops, decreasing environmental pollution. However, interactions between cover plants and cultures, mainly regarding weed control, both by allelopathic effects and physical effects of the mulching, have not been sufficiently studied. The acquired knowledge can help in adequate planning of crop rotation. Bhomwika and Inderyit (2003), Weih et al. (2008), and Mekasawat and Pornprom (2010) highlight the possibility of allelopathic activity as an alternative measure to the use of chemical control in order to suppress weeds in the agroecosystem or to reduce pesticide usage. Crop rotation can also be an efficient agricultural practice in the control of weed plants, due to changes in the selection pressure. Tillage sequences reduce the seed bank, providing different competition models, allelopathy and disturbances in the soil (Severino and Christofoleti, 2001b; Borkert et al., 2003).

The use of soil coverage plants has been a strategy capable of increasing the sustainability of agroecosystems, bringing benefits to the cultures of economic interest, to the soil and to the environment, showing itself as an economically viable and ecologically sustainable alternative (Gama-Rodrigues et al., 2007).

The species cultivated for mulching must be compatible with the demands of the agricultural system. According to Meschede (2006), a proper use of mulch can provide control of weed plants by allelopathy, the alteration of thermal regimes, incidence of light and physical barriers to emergence, and also increase rain water retention, soil humidity, organic matter content, microbial activity, predation and overcoming of seed dormancy.

The higher efficiency of leguminous species as vegetal mulch (cover plants) is due to the fact that, in symbiosis with Rhizobium- and Bradyrhizobium-type bacteria, nitro-

KEYWORDS / Allelopathy / Cover Crops / Green Manure / No-Tillage / Weed /

A quality of mucuna anã, feijão guandu anão and estilosantes, as cobertura vegetal sobre milho e espécies invasoras foi avaliada. A semeadura foi em outubro de 2007, com uma testemunha, em 20 parcelas de 4x5m, cinco repetições. Aos 30 e 60 dias após a semeadura, foi levantada a população de plantas invasoras. Aos 90 dias, as plantas foram roçadas e os resíduos permaneceram sobre a parcela. Masa fresca e seca das coberturas foram determinadas e testadas quanto ao potencial alelopático do extrato aquoso da parte aérea, sendo este caracterizado quimicamente e aplicado sobre sementes de espécies invasoras e milho. O delineamento experimental desse ensaio foi inteiramente casualizado com médias comparadas por o Scott-Knott teste a 5% de probabilidade. As plantas de cobertura apresentaram eficiente controle de plantas invasoras. Os maiores valores encontrados de massa fresca e seca foram para a habichuela, seguida de mucuna anã, com uma diferença percentual em relação ao testemunho de 72 e 34% de aumento na quantidade de massa fresca, respectivamente. O extrato com mucuna anã afetou negativamente a germinação de guanxuma; feijão guandu anão e estilosantes não afetaram nenhuma das espécies. A opção de uso de adubo verde de verão ou na entresafra, pode garantir a rotação de culturas mais adequadas, trazendo vantagens ao sistema de cultivo.

The experiment was carried out in an agricultural field, in western Paraná, Brazil, in the municipality of Braganey, during the 2007/2008 agricultural year. The area is located at 24°49'03"S and 53°07'11"W, and 643masl. The local soil is classified as eutrophic Red Latosol. Average annual rainfall is 1600mm and an aver-
The control mass was the mass of spontaneous vegetation (weeds), and the variation of mass production in relation to the control was calculated as

\[
\%\Delta = \frac{Tn-100}{T0}
\]

where \( \%\Delta \): mass production variation in relation to the control, \( Tn \): mass production in the treatment, and \( T0 \): mass production in the control. The results were expressed as percentages.

The relation between fresh mass and dry mass was obtained from the equation

\[
\text{FM/DM} = \frac{FM}{DM}
\]

where \( \text{FM/DM} \): relation between fresh and dry mass, \( FM \): fresh mass obtained, and \( DM \): dry mass obtained.

Amount of weed

The amount of weeds was evaluated during the culture of the leguminous species, at 30 and 60 days after sowing. The gathering of data consisted of four random samplings, by plot, with a random throwing of metal frame boards as described above, totaling an internal area of 0.25m². The weed plants found within the board were counted and separated in long and broad leaves, apart from the count of specific identification of the Ipomoea sp., Sida rhombifolia L. and Bidens pilosa. The percent reduction in the treatments in relation to the control was calculated with the equation

\[
\text{%RED} = 100 - \frac{(Tn-100)}{T0}
\]

where \( \text{%RED} \): percent reduction, \( Tn \): number of weed plants found in treatment n, and \( T0 \): number of weed plants found in the control.

Aqueous extract of plants

The aqueous extract was prepared with fresh leaves of dwarf mucuna, pigeon pea and stylosanthes collected in the field, at blossom stage for the first two species and at vegetative stage for the third, since this last species entered the blossom stage at a different period. Fresh leaves, collected the same day as the test was performed, were milled in a blender until the mixture became homogeneous, in a 1/3 (weight/volume) proportion of leaves and distilled water, respectively. This solution was placed in a refrigerator for 48h and then filtered through filter paper. The pH, electrical conductivity, extract yield and refractive index of the extract solution were established according to the recommendation of the Adolfo Lutz Institute (2008), with one replicate for each treatment. The analyses were performed at the Seed and Plant Evaluation Laboratory (LASP), Technological and Exact Sciences Center (CCET), Universidade Estadual do Oeste do Paraná, campus Cascavel.

The laboratory experiment was set in germination boxes (Gerbox-type) with two sheets of filter paper. The filter paper was moistened with 13ml of extract solution (~2.5 times the paper weight), at concentrations of 0; 1; 2.5; 5; 10 and 20%, and constituted the substratum on which were placed for germination 10 corn seeds or 25 seeds each of Ipomoea sp., Sida rhombifolia L. and Bidens pilosa, in accordance with MAPA (2009) observations. The germinators were kept at 25°C and the permanence time differed depending on the species, with nine days for corn and the Ipomoea sp. seeds, 13 days for B. pilosa and 16 days for S. rhombifolia.

At the end of the experiment, the seedlings were rated as normal, abnormal, hard seeds and dead. The results were expressed in percentage, as in MAPA (2009).

Experimental design and data analysis

The experimental design was entirely randomized, with five replicates per treatment in the field and four replicates each at the laboratory. For the laboratory-based allelopathy tests, a flame ionization detector was used in the factorial scheme 4×6 (4 leguminous species × 6 concentrations). The results were subjected to variance analysis and the mean comparison was accomplished by the Scott–Knott test at 5% probability, with the support of the SISVAR software (Ferreira, 2000).

Results and Discussion

In the analysis of type and amounts of weeds during the development of leguminous plants, it was observed that for the narrow or long-leaved weeds, Ipomoea sp. and S. rhombifolia, there was no statistical difference, while among the large or broad-leaved species, B. pilosa stood out as the most common.

In the evaluation performed 30 days after sowing of the leguminous plants dwarf mucuna, pigeon pea and stylosanthes there was no statistical differences among the treatments. But in the evaluation at 60 days after sowing the control showed a significantly higher value for long-leaved species when compared to the other treatments, showing that this type of mulch indicating that cover crops controlled these species (Table I).

After 30 days from sowing, the highest reduction in relation to the control (42%), among invading species was found to be in the treatment with stylosanthes. Dwarf mucuna, on the other hand, led to the lowest reduction (20%) at 30 days after sowing and the highest reduction (55%) at 60 days. Pigeon pea showed values between intermediate treatments in both evaluations.

Fernandes et al. (1999) studied the phytomass of green manure and the control of weed plants as a response to population densi-
ties of leguminous species, and the largest inhibitions occurred in the plots of *Mucuna aterrima* and *Canavalia enigmatis*. Erasmo *et al.* (2004) evaluated at 15, 30, 45 and 60 days after the implantation of cover crops of pigeon pea and the mucunas *M. aterrima* and *M. pruriens*; they reported that the two later species significantly reduced the number and the dry mass of the population of weeds in all the evaluations, whereas *C. cajan* showed the highest interference over the 45 days after the implantation. Penteado (2007) also indicated mucuna and pigeon pea as mulch or cover crops for the soil, as a way to suppress weed plants.

According to Severino and Christoffoleti (2001a), the phytomass of green fertilizers incorporated to the soil or on the surface, reduces the populations of weeds; these same authors, in another paper, studying a seed bank of invading plants in a soil where manure had been spread, reached the conclusion that the use of the leguminous species *C. juncea*, *C. cajan* and *Arachis pintoi* significantly reduced the infestation of weed plants, mainly of *Brachiaria decubens*, *Panicum maximum* and *B. pilosa*. Concerning the weed *B. pilosa*, the leguminous species *C. cajan* and *C. juncea* stood out (Severino and Christoffoleti, 2001b).

As for the influence of cover crops over *B. pilosa*, Correia *et al.* (2006), studying the cover crops Sorgum bicolor × *S. sudanense*, Pennisetum americanum, *Eleusine caracana* and *Brachiaria brizantha* for the formation of straw at the emergence of weeds, observed that the specific composition and the population densities of the infesting communities were influenced by the dead coverage systems of production. The number of emerged plants of *B. Pilosa*, *Aramanthus spp.*, *Commelina benghalensis*, *Leucas martinicensis* and grass-like (narrow) leaves was inhibited by the covers, whereas for *Chamaesyce spp.* the residues contributed for an increase of emergence.

According to Erasmo *et al.* (2004) the interference of cover plants on weed species happens for two reasons: the allelochemical factor, available in a higher quantity in decomposing individuals and the volume of deposited vegetable material.

Table I shows the averages for fresh and dry mass (kg·ha⁻¹) of the aerial part of plants in the cases of control, dwarf mucuna, pigeon pea and stylosanthes treatments. The variation of fresh mass produced under the different treatments can be appreciated. The highest value (8.1 kg·ha⁻¹) was that of pigeon pea, followed by dwarf mucuna. The difference in relation to the control for these two species represents an increase of 72 and 34% in the quantity of fresh mass. In turn, stylosanthes had the lowest value, even lower than the control.

When dry mass is analyzed, it can be seen that the pigeon pea, just as for the fresh mass, showed the highest value, whereas the dwarf mucuna showed a reduction, being equivalent to the control. Alcântara *et al.* (2000) studied the *C. Cajan*, *Crotalaria juncea* and pasture in the recovery of soil fertility, and also found that the biggest production of dry mass by the aerial part, as well as the biggest contribution in nutrient supplies, was that of *C. Cajan*.

Stylosanthes presented the lowest quantity of dry mass among the treatments employed, well below the control. Heinrichs *et al.* (2005) reported a reduced development for *C. Cajan*, *Crotalaria spectabilis* and *M. deeringiana*, with a production of green phytomass lower than that generated in the control treatment, made up of spontaneous plants. Among the studies on green manures by these authors, *Canavalia eniformis* stood out, reaching values of up to 290% higher than the control.

Borkert *et al.* (2003) claimed that the pigeon pea is an option for covering the soil in summer/fall, and that it is able to produce, in consortium with corn, amounts of dry mass higher than 2 Mg·ha⁻¹. In some cases, it produced even more than 10 Mg·ha⁻¹, when cultivated in isolation in fertile soils and with good climate conditions. In the present study the species reached around 8 Mg·ha⁻¹. Favero *et al.* (2001) found around 5.5 Mg·ha⁻¹ for pigeon pea; these same authors found values ~6 Mg·ha⁻¹ for black mucuna, similar as found for dwarf mucuna in this work.

Stylosanthes was unable to establish a good soil cover, possibly because the edaphoclimatic conditions that predominated in the study area may have influenced the capacity for phytomass production, and also because the species did not

**Table I**

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Fresh mass</th>
<th>Dry mass</th>
<th>FM/DM</th>
<th>%DM Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>(kg·ha⁻¹)</td>
<td>(kg·ha⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>4.702</td>
<td>100</td>
<td>452 b</td>
<td>100</td>
</tr>
<tr>
<td>Dwarf mucuna</td>
<td>6.307</td>
<td>134</td>
<td>488 b</td>
<td>108</td>
</tr>
<tr>
<td>Pigeon pea</td>
<td>8.083</td>
<td>172</td>
<td>1.131 a</td>
<td>251</td>
</tr>
<tr>
<td>Stylosanthes</td>
<td>1.975</td>
<td>42</td>
<td>272 c</td>
<td>60</td>
</tr>
<tr>
<td>Variation coeff.</td>
<td>11.88</td>
<td>-</td>
<td>3.63</td>
<td>-</td>
</tr>
<tr>
<td>General mean</td>
<td>52.67</td>
<td>-</td>
<td>585</td>
<td>-</td>
</tr>
<tr>
<td>F values</td>
<td>68.65</td>
<td>-</td>
<td>69.19</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% reduction (%)</th>
<th>11.88</th>
<th>-3.63</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation coeff.</td>
<td>11.88</td>
<td>-</td>
<td>3.63</td>
<td>-</td>
</tr>
<tr>
<td>General mean</td>
<td>52.67</td>
<td>-</td>
<td>585</td>
<td>-</td>
</tr>
</tbody>
</table>

**Table II**

Mean fresh and dry mass, difference (%) between treatments and control, and fresh mass / dry mass ratio of the aerial parts of dwarf mucuna, pigeon pea and stylosanthes and the spontaneous plants in the control (fallow)

Averages followed by the same letter, in the column, do not differ from each other by the Scott-Knot test at 5% probability. The dry mass data presented were gathered from the original observations, followed by the letters obtained in the mean comparison with the Box-Cox transformation.
reach the blossom stage on the field.

In studies about the accumulation of nutrients in the foliar limbo of guandu and stylosanthes, Silveira et al. (2005) reported that the pigeon pea produced more dry mass and, in general, showed more accumulation of nutrients than stylosanthes, up to about 100 days of age. In this work, the leguminous species were tilled 90 days after sowing, and stylosanthes might need some more time to reveal its potential.

Braz et al. (2006), studying plants for mulching in wheat crops, reported productions of dry mass of 3494 kg ha⁻¹ for stylosanthes, and of 5507 kg ha⁻¹ for pigeon pea, values that are lower than those encountered in this work for pigeon pea, but higher than that for stylosanthes, which are of 8083 and 1975 kg ha⁻¹, respectively.

The difference found in the percentage yield in relation to the control for the dry mass of pigeon pea is higher than the results for fresh mass, with an increase of 151% in the amount of fresh mass, whereas dwarf mucuna showed a less evident increase for the fresh mass, corresponding to 8%. Stylosanthes showed a 40% reduction in dry mass, lower than the reduction of fresh mass, which was 58% in relation to the control (Table II).

As for the percentage of dry mass found in the vegetal tissues (% DM) and the relation fresh/dry mass (FM/DM) showed in Table II, it can be seen that the dwarf pigeon pea and stylosanthes showed similar values, around 14% for the DM percentage, and a 7.1% FM/DM relation, respectively, even though both species presented an accentuated difference in the previously analyzed aspects. The dwarf mucuna showed a lower percentage of dry mass, even in relation to the control. However, this species led to the highest FM/DM relation among the treatments, followed by the control. This fact indicates that the species has a smaller amount of solids in the tissues and, possibly, a faster decomposition.

Calegari (2008), studying the percentage of nutrients in the dry mass, reported that dwarf mucuna is composed of 2.85-3.35% of nitrogen in the dry mass, and pigeon pea of 1.02-2.04%. The data presented herein compensates the fact that dwarf mucuna shows a lower percentage of dry mass in relation to pigeon pea, which happens because it contains less nitrogen in its tissues.

Menezes and Leandro (2004), studying the mucuna rajada (Stizolobium dietrighianum) and the gray mucuna (Stizolobium muriens), found final productions of phytomass higher than 5.0 Mg ha⁻¹. These values are higher than those found in this work. It is worth mentioning that the differences in dry mass yield among the leguminous plants, no matter where they are, may be related to the edaphoclimatic conditions.

The dry mass of the control, in which the plants indigenous to the area were planted, was quantified, because it also plays the role of a soil mulch. Favero et al. (2001) claimed that these species can promote the same effects of soil mulching, biomass production and nutrients cycling as that of the species introduced or cultivated for green manure.

Table III shows the values corresponding to the physico-chemical characteristics of the aerial part aqueous extracts of the three leguminous plants studied. The characterization of the vegetal extracts utilized in allelopathy bioessays is important to reach a conclusion about the biological effects observed (Carmo et al., 2007). Among the physico-chemical characteristics, the evaluation of pH and osmotic potential is fundamental when one does not know the composition in sugars, amino acids, organic acids, ions and other molecules, as extreme values of both pH and osmotic potential can act on the seeds and/or the seedlings and thus mask the allelopathic effect (Ferreira and Aquila, 2000). In the present work, the osmotic potential of the extract solution was not measured, but the amount of soluble solids (°Brix) is related to the content of sugars and amino acids.

As for the pH values, it can be seen that the aqueous extract of dwarf mucuna aerial parts showed an acid pH, whereas pigeon pea showed a moderately acid pH. Lower pH values can mean lower microbial development, which warrants a higher stability of the extract.

According to Ferreira and Borgueiti (2004), controlling the pH of the extracts concentration is important because substances such as sugars, amino acids and organic acids may remain in the extracts, and they interfere with the ionic concentration and are osmotically active. Both the germination and development of plants are affected in a negative way only in conditions in which the environment is either extremely acid or extremely alkaline (Souza Filho et al. 1997).

Correia et al. (2005), studying the extract from leaves, stems and roots of hybrids of Sorghum bicolor, deduced that the pH and electrical conductivity values reported can be considered to be out of the damaging limits to germination and seedlings’ development. The values found by these authors for pH 4.5-6.0 are similar to those found in the present study. Carmo et al. (2007), in tests about the allelopathy of Oco-

### Table III

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Dwarf mucuna</th>
<th>Pigeon pea</th>
<th>Stylosanthes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical conductivity (µS·cm⁻¹)</td>
<td>1.980</td>
<td>1.884</td>
<td>1.937</td>
</tr>
<tr>
<td>°Brix</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Refraction index</td>
<td>1.3345</td>
<td>1.3345</td>
<td>1.333</td>
</tr>
<tr>
<td>pH</td>
<td>4.94</td>
<td>6.09</td>
<td>5.37</td>
</tr>
<tr>
<td>Extract yield (mg·ml⁻¹)</td>
<td>0.23</td>
<td>0.32</td>
<td>0.21</td>
</tr>
</tbody>
</table>

* Significant, ns: Non-significant

### Table IV

<table>
<thead>
<tr>
<th>Species</th>
<th>Parameters</th>
<th>Coef. of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zea mays</td>
<td>Leguminous Concentrations</td>
<td>1.43 ns</td>
</tr>
<tr>
<td></td>
<td>Leg. x Conc.</td>
<td>0.91 ns</td>
</tr>
<tr>
<td>Ipomoea purpurea L.</td>
<td>Leguminous Concentrations</td>
<td>0.70 ns</td>
</tr>
<tr>
<td></td>
<td>Leg. x Conc.</td>
<td>0.27 ns</td>
</tr>
<tr>
<td>Sida rhombifolia</td>
<td>Leguminous Concentrations</td>
<td>2.13 ns</td>
</tr>
<tr>
<td></td>
<td>Leg. x Conc.</td>
<td>0.25 ns</td>
</tr>
<tr>
<td>Bidens pilosa L.</td>
<td>Leguminous Concentrations</td>
<td>46.18</td>
</tr>
<tr>
<td></td>
<td>Leg. x Conc.</td>
<td>13.05</td>
</tr>
</tbody>
</table>

* Significant, ns: Non-significant
Periotto (1985) studied the allelopathic effect of Andira humilis Mart ex Benth over lettuce and radish, also measured the solution pH; they found pH values ~5 and claimed that germination is not affected at this pH.

The highest yield of extracts was obtained from the pigeon pea, therefore corresponding to the results of electric conductivity, in which the pigeon pea showed the lowest value (Table III). That happens because the yield of the extracts can be related to a higher concentration of active ingredients in the extract, and the electrical conductivity is diminished in the presence of solutes in the solution. Dwarf mucuna and stylosanthes showed similar values for extract yield. Analyzing the electric conductivity of the extracts, it can be seen that dwarf mucuna showed the highest value, followed by the stylosanthes. The physicochemical characteristics generally present similar values, mainly for Brix and refractive index. This is probably due to the fact that the plant extracts of dwarf mucuna, pigeon pea and stylosanthes are similar, as these three species belong to the Fabaceae family.

Table IV shows the variance analysis data related to the percentage of germination of corn, Ipomoea sp., S. rhombifolia and B. pilosa seeds, subjected to aqueous extracts of the aerial part of dwarf mucuna, pigeon pea and stylosanthes, at concentrations of 0; 1; 2.5; 5; 10 and 20%. According to the F values, the data of germination percentage is significant only for the leguminous factor, the Sida rhombifolia seeds.

Table V shows the means for germination percentage of corn, Ipomoea sp., S. rhombifolia and B. pilosa seeds for the leguminous and extract concentration factors. There was a statistical difference among the studied leguminous species for the S. rhombifolia seeds, and the dwarf mucuna extract showed the lowest invader germination percentage.

The extract concentrations utilized did not result in statistical differences among the species studied. There were no significant differences between the legume species for the corn, B. pilosa and S. rhombifolia, and neither among the concentrations of aqueous extracts of these plants on the allelopathic potential. That may be due to the low concentrations of the extracts applied in this experiment, or even to the inexistence of allelopathic effects among these species, apart from other factors. The effect was also verified in the result of natural products, the chemical compounds of which may have been rapidly degraded. However, care must be applied in interpreting the data of this experiment, as it may not match the reality of the cultivated areas.

Carvalho et al. (2002) studied the allelopathic potential of the jack bean (Canavalia ensiformes) and of the black mucuna (Stizolobium aterrimum) in controlling nutseed (Cyperus rotundus) in a greenhouse. They concluded that the aqueous extract of the black mucuna reduced the amount of green mass and dry matter of the aerial part, of the root, and the emergence velocity index, besides establishing the number of nutseed tubercles, characterizing a possible allelopathic effect. But the aqueous extract of jack beans stimulated growth of the nutseed aerial part and increased the emergence velocity index, making also evident a possible allelopathic effect that is beneficial for the nutseed. This further shows that the allelopathic effect may vary according to the studied species.

In studies carried out on the allelopathic potential and the control of weed plants by the use of perennial herbal leguminous species, the extract of the pinto peanut (Arachis pintoi), tropical kudzu (Pueraria phaseoloides), the purple bush bean (Macropitilium atropurpureum) and of the spontaneous vegetation (with predominance of Pani cum maximum) over the seeds of lettuce, carrot and cucumber test plants, the purple bush bean extract stood out from the others by significantly reducing the germination of the seeds of all of the test plants (Embapa, 2000).

**Conclusion**

Leguminous plants had a higher influence on weed community, and the control showed the highest infestation values, offering an alternative for the integrated handling of the species in a no-till farming system. Moreover, in the field they showed adequate mulching of the soil. However, in the laboratory, the extract of the plants did not have effect over the corn, but only over Sida rhombifolia (a weed), guaranteeing the advantages in using this plant for soil cover.

**ACKNOWLEDGEMENTS**

The authors thank Unioeste and CNPq for their support and financing.

**REFERENCES**


Braz AJA, Silveira PM, Kliemann HJ, Zimmermann FJP (2006) Adubação nitrogenada em cobertura na cultura do trigo em...


Carvalho GJ, Fontanetti A, Caçado CT (2002) Potencial alelopático do feijão de porco (Ca
davalia ensiformes) e mucuna-preta (Silcaebidium aterrimum) no controle da trítera (Cype


Embrapa (2000) Potencial Alelopático e Controle de Plantas Invasoras por Leguminosas Her
báceas Perenes Consorciadas com Bananeira. Comunicado Técnico 47. Empresa Brasileira de Pesquisa Agropecuária. Se
ropédica, Rio de Janeiro, Brasil. 8 pp.

Erasmo EAL, Azevedo WR, Sarmen
to RA, Cunha AM, Garcia SLR (2004) Potencial de espé

Espíndola JAA, Guerra JGM, Al-
mentos N° 42. Embrapa

-CNPAB. Seropédica: Brasil. 20 pp.


Ferreira DF (2000) Análise estatís
tica por meio do SISVAR (Sis

tema para Análise de Variânc

ia) para Windows versão 4.0. Em Anais 45 Reunião Anual da Região Brasileira da Socie
dade Internacional de Biome

tria. USFCar. São Carlos, Bra


Ferreira A, Aquila MA (2000) Ale


gre, Brazil. 323 pp.

Gama-Rodriguês EF, Gama-Rodri

guês EC (2007) Decomposição e liberação de nu


ticas químicas de solo e rendi

mento de fitomassa de adubos verdes e de grãos de milho, decorrente do cultivo consor

Instituto Adolfo Lutz (2008) Proce
dimentos e determinações ge


grass (Rottboellia cochinchini


Meschede DK (2006) Relações entre o Uso de Herbicidas e Sus


nas, Brazil. 164 pp.

Periotto F, Pérez SCJGA, Lima 
NR, Tigлеoa P (Coords.) Méto


Takaki M (2007) Alelopatia na população de plantas espon

Weih AUME, Didon AAC, Rönn

berg-Wästljung BC, Björkman 
M (2008) Integrated agricul
tural research and crop breed

ing: Allelopathic weed control in cereals and long-term pro


Yunes RA, Calixto JB (2001) Plantas Medicinais sob a Óti

ca da Moderna Química Me

dicinal. Argos. Chapeçoc, Bra

zil. 524 pp.