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Resumo

Neste presente trabalho nós definimos a famı́lia de grupos de diagrama de grafos a qual é

a generalização dos grupos de diagrama estudados em [1]. Nós seguimos ideias similares

para definir esta famı́lia mas demos nossa própria versão das noções de células, derivações,

diagramas e concatenações. Nós também provamos que nossa famı́lia é grande em dois

sentidos. Em primeiro lugar, mostrando que ela é fechada sob produto direto e em segundo

lugar, mostrando que algumas famı́lias de grupos conhecidos podem ser vistas como grupos

de diagrama de grafos. Por exemplo, nós estudamos a famı́lia dos grupos de rearranjos [2],

a qual contém vários grupos tipo Thompson.

Palavras-chave: Grupos de Diagramas de Grafos, grupos de rearranjos, grupos tipo

Thompson.



Abstract

In the present work we define the family of Graph Diagram Groups that is a generalization

of Diagram Groups studied in [1]. We follow similar ideas to define our family but give

our own version of the notions of cells, derivations, diagrams and concatenations. We also

show that our family is big in two ways. Firstly, by proving that it is closed under direct

product and secondly by showing that some known families of groups are contained in the

family of graph diagram groups. For instance, we study the family of the Rearrangement

Group of Fractals [2] that is a family containing many Thompson-like groups.

Keywords: Diagram groups. Rearrangement groups of fractals, Thompson-like groups.
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Introduction

In this thesis we define and study Graph Diagram Groups, a family of groups

generalizing Guba and Sapir’s diagram groups. We will show that this family contains

some important family of groups in geometric group theory. For instance, Thompson’s

groups F,T and V introduced by Richard Thompson in [3] are graph diagram groups.

Elements of these groups can be defined by piecewise-linear homeomorphisms and, in

particular. F acts on [0,1], T acts on S1 and V acts on the Cantor set. The groups T and

V are the first examples of infinite, finitely presented simple groups.

We wish to describe the groups in our family, so we are interested in finding

common properties in some groups of this family. For instance, Max Dehn in [4] defined

the following decision problems that are interesting in Geometric Group Theory.

• Word Problem: Given a group G generated by a finite generating set X, is there

an algorithm that decides if, given a word w in the alphabet X, it is the identity

element when viewed as an element of G?

• Conjugacy Problem: Given a group G with a given finite presentation ⟨X ∣ R⟩, is

there an algorithm that decides if, given two words w1 and w2 in the alphabet X,

they are conjugate when viewed as elements of G?

• Isomorphism Problem: Given two finitely presented groups G1 and G2, is there an

algorithm that decides whether or not they are isomorphic?

In general these problems are a useful tool to understand how a group works. It has

been shown that F,T and V have solvable conjugacy problem, see [5]. On the other hand,

the elements of the Thompson group F can be defined as rearrangements of [0,1] that

is, as piecewise linear homeomorphism between two dyadic partitions of [0,1] that map

a standard dyadic interval of [0,1] in the first partition into one in the second. Belk

and Forrest in [2] extend this idea to a more complicated class of groups and provide a

framework that covers Thompson’s groups. From their point of view F is the group of

rearrangements of the unit interval that preserves the self-similar structure defined by the

standard dyadic intervals. They define a family of groups that act by homeomorphisms on

a large family of self-similar topological spaces.

There have been many attempts to generalize the Thompson’s groups F,T,

and V into larger families. Among these we mention Higman’s groups [6], the piecewise-

linear groups of Bieri and Strebel [7] and Stein [8], the braided version studied by Brin
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[9] and Dehornoy [10], the two-dimensional version of V described by Brin [11] and the

rearrangement groups of fractals studied by Belk and Forrest [2].

In this doctoral thesis, we will study one more attempt to generalize Thompson’s

groups into a family of groups. We will define Graph Diagram Groups, a new family of

groups inspired by the family of diagram groups. Diagram groups are a family of groups

that was first suggested by Meakin and Sapir. The first theory about this family was

developed by Kilibarda in her thesis [12] and in [13]. This family was further studied by

Guba and Sapir in [1], [14], [15] and [16].

The importance of the study of such kind of families relies on the fact that they

provided a framework that allow to prove properties for many groups in the family. For

example, Guba and Sapir prove the solvability of the conjugacy problem for the elements

in the family of diagram groups with the restriction that the semigroup presentation

associated with the group has solvable word problem. In particular for Thompson’s group

F , they show new presentations for some groups that have definitions similar to F and

give characterizations for the centralizer of F .

The study of diagram groups was also followed for other authors, for instance

Farley [17] shows that if P is a finite semigroup presentations the diagram group associated

to this presentation and a single word w is of type F∞. Farley constructs a contractible,

free complex for each diagram group D(P,w) and shows that if P is a finite semigroup

presentation this complex is a proper CAT (0) cubical complex with respect to its natural

metric and D(P,w) act properly, freely, cellularly and by isometries.

James Belk and Bradley Forrest conceived of the idea of graph diagram groups

as part of their work on rearrangement groups [2], but did not explore the idea fully.

The goal of this thesis is to provide a solid foundation, finding examples and start the

investigation on their structure.

The family of graph diagram groups has already shown to be of importance.

For example, Belk and Forrest worked independently on generalizations of the Farley

complex and showed that every graph diagram group over finite graph rewriting system

acts properly by isometries on a CAT (0) cubical complex. They also use the graph diagram

group structure to show that the group of rearrangements for the airplane defined in

Example 1.55 has type F∞.

We divide this work as follows, in Chapter 1 we introduce some families related

to the graph diagram groups such as Thompson groups, right angled Artin groups, rear-

rangement groups of fractals, (see [2]), and diagram groups. In Chapter 2 we define Graph

diagrams and show that, under certain conditions, they are a group under concatenation.

Theorem. The set of D(R,Γ) of equivalence classes of Diag(R,Γ) forms a group under

concatenation.
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On the other hand, in Chapter 3 and Chapter 4 we show that the family of

graph diagram groups is large. In particular in Chapter 3 we show that all the groups in

Chapter 1 can be seen as Graph diagram groups. More precisely, we have the following

theorem,

Theorem. If the rewriting system R′ associated to a graph rewriting system R is reductive

and symmetric, the rearrangement group G(R′) is isomorphic to D(R,Γ).

Moreover, in Chapter 4 we see that the class of graph diagram groups is closed

under direct product and a direct consequence of the work realized for the graph diagram

groups is that the class of rearrangement group of fractals is also closed under direct

products.

We stress that the main contributions of this work are:

1. Each graph diagram is equivalent to a unique reduced graph diagram (Theorem

2.50);

2. D(R,Γ) is a group (Theorem 2.57);

3. Right angled Artin groups are graph diagram groups (Theorem 3.4);

4. Rearrangement groups of fractals are graph diagram groups (Theorems 3.13, 3.14

and 3.22).
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1 Some important groups

In this chapter we introduce all the groups that will be of interest throughout

this doctoral thesis. We define Thompson groups F,T and V in Section 1.1, while in

Section 1.2 we introduce another Thompson like group, the Basilica Thompson Group.

In Section 1.3 we discuss some preliminary theory to understand the family of Diagram

groups, defined in Section 1.4. Finally, we will define right angled Artin groups and the

rearrangement group of fractals in Sections 1.5 1.6, respectively. We will concentrate on

the principal properties of these groups, though we only prove some of them. Furthermore,

none of the results presented in this chapter are new.

1.1 Thompson groups F,T and V

Definition 1.1. A dyadic subdivision of the interval [0,1] is recursively defined by

taking some intervals of a dyadic subdivision and cutting them in half, starting from the

basic subdivision given by [0,1] itself. This means that the intervals of a dyadic subdivision

are all of the form [ k2m ,
k + 1
2m ].

Definition 1.2. Given two dyadic subdivisions with the same number of subintervals, the

corresponding dyadic rearrangement of [0,1] is the orientation-preserving piecewise-

linear homeomorphism obtained by mapping each interval of the first subdivision linearly

onto the corresponding interval of the second subdivision.

Example 1.3. Consider the following rearrangement of [0,1]
0 1

0 1

1
2

1
4

1
2

3
4

ϕ

The domain of ϕ is a dyadic subdivision of [0,1], since it can be constructed

by first cutting the interval [0,1] in half and then cutting the interval [0,1/2] in half.

Moreover ϕ is a dyadic rearrangement that maps [0,1/4] linearly onto [0,1/2],
maps [1/4,1/2] linearly onto [1/2,3/4], and maps [1/2,1] linearly onto [3/4,1].

Theorem 1.4. The set of all dyadic rearrangements of the interval [0,1] forms a group

under composition; this is called Thompson’s group F.
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Proof. See [18], p.2, Theorem 1.1.2 and Corollary 1.1.3.

One of the advantages of F is that we can have multiple interpretation of its

elements. This idea allows us to find more than one prove for some of its properties. There

are other definitions for F . One of these is the following,

Definition 1.5. We define Thompson’s group F as the group (under composition) of those

homeomorphisms of the interval [0,1], which satisfy the following conditions:

1. they are piecewise linear and orientation-preserving,

2. there are only finitely many breakpoints on the interval [0,1],

3. in the pieces where the maps are linear, the slope is always a power of 2, and

4. the breakpoints are dyadic.

Thompson’s group F is one of three groups discovered by Richard J. Thompson

in the 1960’s [3]. The others are T , which acts on the unit circle by suitable piecewise-linear

homeomorphisms, and V which acts on the standard Cantor set by suitable piecewise-linear

homeomorphisms. See [19] for a general introduction to these groups.

Thompson groups F,T, and V are considered interesting in geometric group

theory because of their unique properties. In particular:

1. F,T, and V are finitely generated and finitely presented. Indeed, Brown and Ge-

oghegan showed in [20] that F has type F∞ and Brown then showed in [21] that

all groups belonging to a large family of groups (containing the groups F,T and V )

have type F∞. A group has type F∞ if it can be realized as the fundamental group

of an aspherical CW-complex with finitely many cells in each dimension.

2. T and V are simple, and F has simple commutator subgroup.

3. T and V are the first known examples of infinite, finitely presented simple groups.

4. Each of F,T and V acts properly by isometries on a CAT (0) cubical complex.

5. F,T and V have exponential word growth.

1.2 The Basilica Thompson Group

In [22] Belk and Forrest define the Basilica Thompson group TB. The figure

below shows the invariant lamination for the Basilica fractal. This lamination consists

of a circle [0,1]/{0,1} together with a single hyperbolic arc between each pair of points
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Figure 1 – The Basilica Julia set and the lamination of the Basilica

that should be identified. Any homeomorphism of the circle that preserves this lamination

descends to a homeomorphism of the Basilica Julia set.

Then, topologically, the Basilica Julia set can be obtained from this lamination

by identifying the end point of each arc. Similarly to Thompson’s group F , we have

multiple definitions for this group, for example,

Definition 1.6. The Basilica Thompson group TB consists of all piecewise-linear

homeomorphisms h of the circle satisfying the following conditions:

1. All the slopes of h are powers of 2.

2. All of the breakpoints of h and h−1 are at angles of the form
kπ

2n3 , where k,n ∈ Z.

3. h preserves the invariant lamination for the Basilica.

In [2] the same authors see that this group is a Rearrangement Group of

Fractals. In fact, the rearrangement group TB for the Basilica replacement system from

Example 2.48 in the case n = 1 is the Basilica Thompson group.

Belk and Forrest proved the following facts about this group:

1. TB is generated by the four elements in Figure 2.

2. Thompson’s group T contains copies of TB, and TB contains T.

3. The commutator subgroup [TB ∶ TB] has index two in TB and is simple. It is not

isomorphic to T.

4. They also conjecture that TB is not finitely presented, which was proven by Witzel

and Zaremsky in [23].
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Figure 2 – The generators of the Basilica group

1.3 Rewriting Systems

The topics presented in this section will be of importance many times throughout

this thesis. Mainly, we will use them to define equivalence classes of elements that belong

to a graph diagram group, see Chapter 2.

Definition 1.7. A graph in the sense of Serre is a 5− tuple < V,E,−1 , ι, τ >. where

V and E are disjoint sets of vertices and edges respectively, and −1 is an involution

on E, and ι and τ are functions from E to V . Moreover, we must have:

1. e−1 /= e for every e ∈ E

2. ι(e−1) = τ(e), τ(e−1) = ι(e).

Here ι(e) is called the initial vertex of e and τ(e) is called the terminal vertex of e.

Definition 1.8. An (undirected) graph is a pair G = (V,E), where V is a set whose

elements are called vertices, and E is a set of 2-sets (sets with two distinct elements) of

vertices, whose elements are called edges. The vertices x and y of an edge {x, y} are called

the endpoints of the edge. The edge {x, y} is said to join x and y and to be incident

to x and y. A directed graph is a pair G = (V,E) where

• V a set of vertices;

• E is a set of ordered pairs E ⊆ {(x, y) ∣ (x, y) ∈ V 2 and x /= y} a set of edges called

directed edges.
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We also define a multigraph as a graph which is allowed to have multiple edges that

have the same initial and terminal vertices.

Remark 1.9. Notice that the definition of a graph in the sense of Serre (Definition 1.7)

is independent of (but related to) the notions of directed graph and undirected graph. In

general, one can turn a directed graph into a graph in the sense of Serre and viceversa. It

will be clear from the various contexts of this thesis which definition we will be using. More

precisely, we use the definition of graphs in the sense of Serre when we discuss rewriting

systems in Section 1.3, while we work with undirected/directed graphs in the context for

graphs of graph diagrams that we will now introduce.

Definition 1.10. A path on a graph in the sense of Serre is either a vertex or a non-

empty sequence of edges e1e2, . . . en where τ(ei) = ι(ei+1) for every i = 1,2, . . . n − 1. If

p = e1e2, . . . en then we call the path p−1 = e−1
n e

−1
n−1, . . . e

−1
1 inverse path. A path that is

formed by only one vertex is called empty path.

Definition 1.11. An orientation on a graph Γ in the sense of Serre is a subset E0 of

the set E of edges such that E0 ∪E−1
0 = E and E0 ∩E−1

0 = ∅. The edges of E0 are called

positive and the edges of E−1
0 are called negative. An oriented graph is a graph with

an orientation. A path in an oriented graph is called positive if all its edges are positive.

Definition 1.12. A rewriting system is an oriented graph in the sense of Serre. The

vertices of Γ are called objects and the positives edges are called moves.

If a = ι(e), b = τ(e) for some positive edge e then we write a Ð→Γ b and we

denote the reflexive, transitive closure of the relation Ð→Γ by
∗Ð→Γ.

Definition 1.13. A rewriting system is called terminating if every sequence a1 → a2,→
. . . an → . . . terminates, that is, it is finite. A rewriting system Γ is called confluent if for

every three objects a, b, c such that a
∗Ð→ b and a

∗Ð→ c there exists an object d such that b
∗Ð→ d

and c
∗Ð→ d. A rewriting system Γ is called locally confluent if for every three objects

a, b, c such that aÐ→ b and aÐ→ c there exists an object d such that b
∗Ð→ d and c

∗Ð→ d.

Lemma 1.14 (Diamond Lemma). Every terminating locally confluent rewriting system is

confluent.

Proof. See [24] and also [25].

Remark 1.15. Consider the equivalence relation generated by →Γ, that is the reflexive

symmetric closure of Ð→Γ, denoted by
∗←→Γ. Observe that each connected component C has a

unique element ν(C) such that the moves of Γ cannot be applied to ν(C). In fact, suppose

that x is an object that belong to C. Note that each sequence x → x1 → x2 → . . . must

terminate since Γ is terminating and the last element in each sequence must be ν(C) since

Γ is confluent.
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A special class of rewriting system is a the class of string rewriting system. To

define this class we need to set the following basic concepts.

Definition 1.16. An alphabet is an arbitrary nonempty set Σ, the elements in Σ are

called letters. The free semigroup Σ+ over Σ is the set of all nonempty strings of letters

from Σ with operation given by concatenation. The free monoid Σ∗ is obtained from Σ+

by adding the empty string denoted by 1.

Definition 1.17. A string rewriting system is a rewriting system where objects (ver-

tices) are elements of a free monoid Σ∗ and the moves (edges) are the applications of

relations from some fixed set of relations R where a relation is pair of words from Σ∗.

Formally, an edge of the string rewriting system ⟨Σ ∣ R⟩ is a triple (x,u → v, y) where

x, y ∈ Σ∗, (u, v) ∈ R. The initial vertex of this edge is xuv and the terminal vertex is xvy.

1.4 Diagram groups

Definition 1.18. Given a R a rewriting system, a derivation is a sequence of words

u1
r1Ô⇒ u2

r2Ô⇒ . . .
rnÔ⇒ un.

such that for every i = 0, . . . , n − 1 either ui → ui+1 or ui+1 → ui are in R. Here u1 is called

the initial word of the derivation and un is called the terminal word of the derivation.

Guba and Sapir associate to each derivation a geometrical object called diagram.

Each diagram consists of a top path, a bottom path together with a set of cells that are

between the top and the bottom of the diagram. We will motivate the definition of a

diagram with the following examples.

Example 1.19. Let P = ⟨a, b, c ∣ b = c, ac = a, ca = a⟩ be a semigroup presentation.We

denote the relations b = c, ac = a,and ca = a (read in this order) by the letters r1, r2 and r3

respectively, to denote directed edges of a graph. Consider the following derivations under

the semigroup presentation P.

abba
r1Ô⇒ acba

r2Ô⇒ aba
r−1
3Ô⇒ abca

r−1
1Ô⇒ abba

We associate the word

abba

to the linear diagram labeled with the letters of the word abba in each edge. We denote

this graph by ε(abba) and we say that this diagram has top and bottom ε(abba). In general,

given a diagram ∆ obtained from a derivation ρ, with initial word u and terminal word w

we define top(∆) = ε(u) and bot(∆) = ε(w).
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a
b

b

a

In the first move of the rewriting system, abba
r1Ô⇒ acba, we add a cell (b, c) with top b and

bottom c to ε(abba), then the derivation induces a diagram whose top is ε(abba) and the

bottom ε(acba).

a
b

b

a

c

abba
r1Ô⇒ acba

r2Ô⇒ aba

a
b

b

a

c

a

abba
r1Ô⇒ acba

r2Ô⇒ aba
r−1
3Ô⇒ abca

a
b

b

a

c

a a

c

abba
r1Ô⇒ acba

r2Ô⇒ aba
r−1
3Ô⇒ abca

r−1
1Ô⇒ abba

a
b

b

a

c

a a

c

b
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Finally, we obtain a diagram with the same top and bottom labeled with the word abba.

Example 1.20. Consider the semigroup presentation P = ⟨x, y, z, s1, s2, l1, l2 ∣ s1 = s2, l1 =
l2⟩. Consider the following derivations corresponding to the figure below.

xs1yl1z
r1Ô⇒ xs2yl1z

r2Ô⇒ xs2yl2z and xs1yl1z
r1Ô⇒ xs1yl2z

r2Ô⇒ xs2yl2z

Observe that we can write these derivations as sequences of graphs on the next

figure.

x

s1

y

l1

z

x

s2

y

l1

z x

s1
y

l2

z

x

s2

y

l2

z

Figure 3

Also note that we can add the cells following the same procedure of the last example and

produce the graph diagram in Figure 4.

x

s2

y

l2

z

s1 l1

Figure 4

From these examples we can understand a method to create a diagram: Given

a derivation we associate a labelled plane graph by taking ε(u) and attaching one by

one cells corresponding to the relations used in this derivation. Notice that following this

process we obtain a planar graph at every step, so a diagram is a planar graph.

Given a diagram ∆ we can define its initial vertex as the leftmost vertex denoted

ι(∆) and its terminal vertex as the rightmost vertex denoted τ(∆). This vertex together

with the cells induce oriented paths with initial vertex ι(∆) and terminal vertex τ(∆). For

example in Example 4 we have paths ε(xs1yl1z), ε(xs2yl1z), ε(xs1yl2z) and ε(xs2yl2z).
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Definition 1.21. A diagram whose top path is labelled by u and whose bottom path is

labelled by v is called a (u, v)-diagram. The closure of a bounded complementary region

of a diagram ∆ is a cell of ∆. A diagram is trivial if it has no cells. An atomic

diagram is one with at most one cell. Recall that an isotopy of a plane R2 is a continuous

function δ from R2 × [0,1] to R2 such that every function δt = δ(∗, t) from R2 to R2 is

a homeomorphism. Let Γ = (V,E) and Γ′ = (V ′,E′) be plane graphs. We say that these

graphs are isotopic if there exists an isotopy δ ∶ R2 × [0,1] → R2 of the plane into itself

which takes V to V ′, E to E′ and for every t ∈ [0,1] we have that (δ(V, t), δ(E, t)) is a

plane graph.

Therefore, two diagrams ∆1 and ∆2 are isotopic, denoted by ∆1 ≡ ∆2, if there

is an isotopy of the plane carrying ∆1 to ∆2 which takes vertices to vertices and edges to

edges, and matches orientations and labels on the edges.

If ∆1 is a (u, v)−diagram and ∆2 is a (v,w)−diagram, then the concatenation

∆1 ○∆2 is obtained by identifying the bottom path of ∆1 with the top path of ∆2, using

suitable representatives of the isotopy classes of ∆1 and ∆2. This operation is well-defined

on isotopy classes and it is associative.

A pair of cells C1 and C2 in a diagram forms a dipole if the bottom path

of C1 is identical to the top path of C2 and the label of the top path of C1 is equal

to the label of the bottom path of C2 in the free semigroup Σ+. To reduce a dipole

one removes the portion of the diagram lying between the top path of C1 and the

bottom path of C2, and identifies the top path of C1 with the bottom path of C2 (see

Figure 5). Reducing a dipole is also called an elementary reduction. The inverse

process is called inserting a dipole. A diagram without dipoles is called reduced.

u

u

v u

Figure 5 – A dipole reduction

We can define a rewriting system R(P). The objects of this rewriting system are diagrams

over P and the moves are elementary reductions.

Lemma 1.22. The diagram rewriting system R(P) is confluent and terminating.

If a diagram ∆1 can be obtained from ∆2 by repeatedly inserting and removing dipoles

(up to isotopy), then ∆1 and ∆2 are equivalent modulo dipoles, ∆1 = ∆2. Observe that

concatenation is well defined under the class of diagrams modulo dipoles.
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Notice that Lemma 1.22 and Remark 1.15 implies the following theorem that was proved

by Kilibarda in [12].

Theorem 1.23. Every equivalence class of diagrams over a semigroup presentation con-

tains exactly one reduced diagram.

Theorem 1.24. Let D(P,w) the set of (w,w)−diagrams modulo dipoles over the semigroup

presentation P. Then D(P,w) forms a group under concatenation and it is called the

diagram group over P with the base word w.

Diagram groups are important for several reasons. For example Guba and Sapir in [1]

show the following:

• The family of diagram groups contains Thompson’s group F ,

• Using the Squier complex for diagram groups, Guba and Sapir find new presentations

for the Generalized Thompson Groups Fn.

• Diagram groups over semigroup presentations with solvable word problems have

solvable conjugacy problems.

• Every diagram group is torsion free and has unique extraction roots, this is given

two elements ∆1,∆2 ∈ D(P,w), ∆2
1 = ∆2

2 implies ∆1 = ∆2.

• The centralizer of every diagram group is isomorphic to the product of other diagram

groups under the same presentation (but possibly different initial word) and a finite

direct product of cyclic groups.

• Moreover, Crisp, Sageev and Sapir show in [26] that surface groups are contained in

some diagram groups.

Moreover, Farley builds in [17] a contractible, free D(P,w)-complex K̃(P,w) for each

diagram group D(P,w). Guba and Sapir define in [1] a 2− dimensional complex K(P),
called Squier Complex. The 2−skeleton of K̃(P,w) can be described as the universal cover

of the connected component of K(P) containing the base point w. (Vertices in K(P) are

words in the alphabet, and vice versa.) The complex K̃(P,w) is a natural extension of

K̃(P) into higher dimensions.

The following results are due to Daniel Farley in [17].

Theorem 1.25. If P is a finite semigroup presentation, then K̃(P,w) is a proper CAT (0)
cubical complex with respect to its natural metric and D(P,w) acts properly, freely, cellularly

and by isometrices.

Corollary 1.26. If P is a finite semigroup presentation, then D(P,w)satisfies the Baum-

Connes conjecture.
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We refer the reader to [27] and [28] for a proper introduction about the Baum-Connes

conjecture.

Corollary 1.27. If P is a finite semigroup presentation, then D(P,w) is of type F∞.

1.5 Right Angled Artin Groups

In this section we briefly discuss the class of right angled Artin groups. We recommend

the reader to see [29] for more details.

Definition 1.28. An Artin group A is a group with the following presentation

A = ⟨s1, s2, . . . , sn ∣ sisjsi . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mij

= sjsisj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mji

⟩.

where mij =mji ∈ N, mij ≥ 2 or mij = ∞ if there is no relation between si and sj.

Example 1.29. The Artin group

A1 = ⟨S ∣ ∅⟩

is the free group with basis S. In this case mst = ∞ for all s, t ∈ S. On the other hand, the

Artin group

A2 = ⟨S ∣ st = ts,∀s, t ∈ S⟩

is the free abelian group with basis S. In this case mst =mts = 2 for all s, t ∈ S.

We will study a particular case of the Artin groups called right angled Artin group in

which mij ∈ {2,∞} for all i, j so that, in this case, we have relations of the form sisj = sjsi.
The groups in Example 1.29 are right angled Artin groups. The most natural way to give

the presentation for a right-angled Artin group is by means of the defining graph Γ,

where Γ is the graph with vertices labeled by the generators S = {s1, ..., sn} and where

there is an edge between a pair of vertices si, sj if and only if mij = 2.

a b

c d

Figure 6 – AΓ = F{a,d} × F{b,c}

Example 1.30. • If Γ is a graph with no edges, then AΓ = Fn, the free group of n

generators,
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• If Γ is a complete graph, then AΓ = Zn,

• If Γ is a square (as in the figure 6), then AΓ decomposes as a direct product of two

free groups AΓ = F{a,d} × F{b,c},

• If Γ is an n-agon, for n ≥ 5, then AΓ cannot be decomposed as either a direct product

or a free product.

1.6 Rearrangement Groups of Fractals

The definitions of the three Thompson groups depend heavily on the self-similar structure

of the spaces on which these groups act. For example, each half of the unit interval is

similar to the whole interval, as is each quarter. For this reason, it is natural to study

Thompson-like groups associated with self-similar structures such as fractals. The results

and definitions presented in this section are from Belk and Forrest in [2]. We will prove

some of them to give some notion of the objects and techniques which are involved in the

future chapters of this thesis.

Definition 1.31. An edge replacement system is a pair (G0, e → R), where G0 is a

finite, directed graph, e is a (non loop) oriented edge with distinguished initial and terminal

vertices and R is a directed graph that contain the vertex v and w. We refer to the vertices

v and w respectively as the initial and terminal vertices of R. The vertices v,w are called

the boundary vertices of R. A simple expansion of an oriented graph G, denoted by

G ⊲ ε consists of replacing an edge ε of G by a copy of R by gluing the initial (terminal)

vertex of ε with the initial (terminal) vertex of R. The graph obtained by doing a simple

expansion in every edge of a graph G is called full expansion of G. We also denote Gi+1

the full expansion of the graph Gi.

Given a graph G obtained from applying cosecutive simple expansions to a graph G0 we

may refer to their edges by using finite sequences, ε0ε1 . . . εn where ε0 ∈ G0 and εi ∈ R for

0 < i ≤ n. Analogously, we may refer to the vertices of the simple expansions as a sequence

ε0ε1 . . . εnv where ε0 ∈ G0 and εi ∈ R for 0 < i ≤ n and v is a vertex in R. We refer to the

sequences ε0ε1 . . . εn and ε0ε1 . . . εnv as addresses of an edge and a vertex, respectively. To

illustrate this, observe the following example.

Example 1.32. Consider the replacement system in Figure 7.

Base Graph e→ R

E

0
v
1
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Figure 7

The graph E is a single directed edge and R is a graph with edges 0 and 1, in-

terior vertex v and initial vertice ι(R) = x and terminal vertex τ(R) = y. We

can obtain the graphs E ⊲ E, E ⊲ E ⊲ 0 and E ⊲ E ⊲ 0 by applying cosec-

utive simple expansions, see Figure 8 (for simplicity we omit arrows on the edges).

E E ⊲ E E ⊲ E ⊲ 1 E ⊲ E ⊲ 0

Figure 8

For instance the graph E ⊲ E ⊲ 1 has edges E0,E10 and E11 and vertices Ev and E1v,

see Figure 8. Notice that all the edges are sequences ε0ε1 . . . εn with ε0 in the base graph

and ε1 . . . εn edges in the graph R of the replacement system.

E ⊲ E ⊲ 1

E0 E10 E11

Figure 9

Example 1.33. Consider the replacement system given by (Γ, e → R) as in Figure 10

e R
Γ

A C

D

v

0

1
2

B

Figure 10

In Figure 11 we have the graph Γ ⊲ C with edges A,B,D,C0,C1,C2 and a new vertex Cv.

Γ ⊲ C

A

D

B

C0

C1

C2Cv

Figure 11

Let Ω be the set of symbols that consists of elements ε0ε1ε2 . . . with ε0 ∈ G0 and εi ∈ R for

i ≥ 1. The set Ω allows to refer to any edge in the limit space, but does not give information

about the adjacency relations between its edges.The adjacency is given by the following

relation,
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Definition 1.34. Let R = (G0, e→ R) be a replacement system with full expansion sequence

{Gn} and symbol space Ω. Consider the relation ∼ defined as follows: two sequences

ε0ε1ε2 . . . and ε′0ε
′
1ε
′
2 . . .

are equivalent if for all n the edges of Gn with addresses

ε0ε1ε2 . . . εn and ε′0ε
′
1ε
′
2 . . . ε

′
n

share at least one vertex. If ∼ is an equivalence relation, we call it the gluing relation

on Ω. In this case, we define the limit space X for R as the quotient
Ω
∼ .

Definition 1.35. A replacement system R = (G0, e → R) is expanding if the following

conditions are satisfied:

1. Neither G0 nor R has any isolated vertices.

2. The initial and terminal vertices of R are not connected by an edge.

3. R has at least three vertices and two edges.

We thus call a replacement system satisfying these conditions an expanding replacement

system.

Recall that the idea is to generalize Thompson’s groups to see them as rearrangement

groups acting on self-similar structures. Observe that in Definition 1.34 we require the

gluing relation to be an equivalence relation, however the relation ∼ does not always have

this property. In the case that it is not an equivalence relation, we may be tempted to

define the limit space using the transitive closure of the gluing relation. This approach

often produces a space X that is not Hausdorff and therefore it cannot be guaranteed that

the rearrangements of X are self-similar or conformal maps. On the other hand, when the

replacement system is expanding we can guarantee that X is Hausdorff and therefore that

is compact and metrizable. This is since Ω is compact and metrizable and X is a quotient

of Ω, so it is enough to prove that X is Hausdorff (see [30], Proposition IX.17).

Theorem 1.36. If R is an expanding replacement system, then the gluing relation ∼ is

an equivalence relation, and the limit space X = Ω
∼ is a compact metrizable space.

Hence, expanding replacement systems are important to ensure that X is compact and

metrizable. Therefore, given an expanding replacement system we can endow X with a

metric and we can prove that the canonical homeomorphism between any pair of cells in X

that have the same number of boundary vertices is a similitude, that is, having the same

shape but perhaps different size, so rearrangements are piecewise-similar homeomorphisms.

Convention 1.37. In this thesis all replacement systems are assumed to be expanding.
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Definition 1.38. Let π ∶ Ω→ Ω
∼ and Ω(e) the set of all the words in Ω with prefix e we

call a cell of the limit space as C(e) = π(Ω(e)).

Definition 1.39. Let C(e) and C(e′) be cells in X, where both e and e′ are loops or

both are not loops. There exists a homeomorphism Φ ∶ Ω(e) → Ω(e′) that Φ(eζ1ζ2 . . . ) =
e′ζ1ζ2 . . . for any edges ζ1ζ2 . . . in R and Φ descends to a canonical homeomorphism

φ ∶ C(e) → C(e′).

Definition 1.40. 1. A cellular partition of X is a cover of X by finitely many cells

whose interiors are disjoint.

2. A homeomorphism f , is a rearrangement if there exists a cellular partition P such

that f is a canonical homeomorphism in each cell of P .

Theorem 1.41. The set of rearrangements of X is a group under the composition.

Proof. The identity rearrangement is the rearrangement that sends any partition of the

limit space to itself. If f is a rearrangement that sends a partition P1 of X to another

partition P2, then f−1 is a homeomorphism that sends each cell of P2 canonically to the

corresponding cell of P1. Lastly, if f and g−1 are rearrangements that restrict to a canonical

homeomorphisms on each cell of P1 and P2 respectively. Consider the least common

refinement Q of P1 and P2, that is the set of all cells of P1 ∪ P2 that are not properly

contained in other cells of P1 ∪ P2. So, f and g−1 restricts to a canonical homeomorphism

in each cell of Q and f(g(g−1(Q))) is well defined.

Example 1.42. In Section 1.2 we introduced the Basilica Thompson group TB. In

[2] Belk and Forrest prove that the Basilica is homeomorphic to the limit space given

by Figure 12 and so the rearrangement group of that limit space is isomorphic to

the Basilica Thompson group. In Figure 2 we have some examples of elements of

the Basilica group. In general a rearrangement of the Basilica is any homeomor-

phism that maps conformally between corresponding pairs of cells in two cellular

partitions. The group of all such rearrangements is the Basilica Thompson group TB.

Base GraphLimit Space Replacement Rule

1

2

1

2

Basilica Julia Set

Figure 12
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The composition of elements in the rearrangement groups is analogous to that of the

Thompson groups. For instance, consider α,β ∈ TB as in Figure 13. Recall that these

elements are generators of TB the Basilica Thompson group, see Figure 2. Suppose that we

wish to calculate β ○ α.

Figure 13

Let P1 the domain of β, P2 the domain of α−1 and Q the least common refinement of

P1 ∪ P2, this is the set of all the cells in P1 ∪ P2 that are not properly contained in other

cells of P1 ∪ P2. In this case β ○ α is as in Figure 14.

Figure 14

Example 1.43. (The Family of Rabbits) This family correspond to the Julia

sets for functions of the form f(z) = z2 + c, where c lies in any interior com-

ponent of the Mandelbrot set that is adjacent to the main cardioid (see Figure

15). There is a rabbit replacement system for each natural number. For example
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Figure 15 – The main cardioid and in blue the components adjacent to the main cardioid

Figure 16 – The basilica, the Douady rabbit and a three eared rabbit

for n = 1 we have the basilica, n = 2 correspond to Douady rabbit, n=3 cor-

respond to a three eared rabbit, and so forth (see Figure 16 and Figure 17).

Base GraphIndex Rule

n = 1

n = 2

1

2

1

2

1 1

2 2

Basilica

Douady Rabbit
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Figure 18 – An element of the Basilica Thompson’s group

Figure 17

Definition 1.44. A graph pair diagram for the rearrangement f is a triple (E,E′, φ),

where E and E′ are expansions of G0 and φ is an isomorphism between these graphs. The

homeomorphism f maps the cell C(e) canonically into the cell C(φ(e)) for each e ∈ E.

Remark 1.45. Given a replacement system (R,Γ). There is a one to one correspondence

between partitions of the limit space and the graphs that can be obtained by applying

consecutive simple expansions beginning with the graph Γ. This relation implies that each

element in the rearrangement group of fractals can be interpreted by using a graph pair

diagram.

Example 1.46. Note that, by Remark 1.45, there is a one to one correspon-

dence between partitions of the Basilica and the graphs obtained by expand-

ing the base graph given in the replacement system defined in Figure 17. Also,

note the relation between the rearrangement between the two partitions of the

Basilica in Figure 18 and the graph pair diagram (G,H,ϕ) in Figure 19.

G H

ϕ

Figure 19

Example 1.47. Recall that Thompson’s groups F,T and V are groups of piecewise-linear,

preserving orientation homeomorphisms respectively acting over [0,1], S1 and a Cantor set.
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Base GraphGroup Replacement Rule

F

T

V

1

2

1

2

1 1

2 2

1

2 2

1

Figure 20

Theorem 1.48. The rearrangement groups corresponding to the replacement systems

shown in Figure 20 are isomorphic to Thompson’s groups F, T and V.

Proof. We will prove the result for the replacement system corresponding to T , the other

cases being similar. Let the base graph E for the replacement be the unit circle, and let 0
and 1 be the left and right edges in the replacement graph respectively.

Each graph Gn in the full expansion sequence for this replacement system is a directed

path of length 2n. The gluing relation on the symbol space E×{0,1}∞ is given by e01 ∼ e10
for any edge e ∈ Gn and E0 = E1. It follows that the limit space X is homeomorphic to S1

with each point in the symbol space mapping to the point in S1 whose binary expansion is

the given binary sequence.

Then the gluing vertices correspond to dyadic fractions in S1. The cells in X correspond

to intervals of the form [k − 1
2n ,

k

2n ] for n ∈ N and k ∈ {1, . . . ,2n}, with 1 identified with 0
and a cellular partition of X is a subdivision of S1 into standard dyadic intervals.

Hence a homeomorphism h ∶ S1 → S1 is a rearrangement if and only if there exist two

partitions of S1 into standard dyadic intervals such that h maps the first partition to

the second linearly and preserving the orientation. It is immediate that the group of

rearrangements is precisely Thompson’s group T .

Example 1.49. Another important rearrangement group of fractals is the re-

arrangement group of the Vicsek fractal. In Figure 21 we have an element

of this group. The replacement system to obtain this group is the following:
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Figure 21 – A rearrangement of the Vicsek fractal

Base Graph Replacemnt Rule

1

2 2

1

Limit Space

Vicsek Fractal

Figure 22

Theorem 1.50. Let G be the rearrangement group for the Vicsek fractal, and let H be a

finite group. Then H is isomorphic to a subgroup of G if and only if H is solvable of order

2j3k for some j, k ≥ 0

Theorem 1.50 implies that G is not isomorphic to any currently known Thompson-like

group. Recall that the basilica is a fractal in the rabbit family in Figure 17. Analogously,

the Vicsek fractal is part of a family the fractals called the Vicsek Family that can be

obtained for the following replacement systems
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Base GraphIndex Rule

n = 1

n = 2

1

2

1

2

2

1
2

1

Figure 23 – The Vicsek family of replacement systems.

In particular, the case n = 2 corresponds to the Vicsek replacement system.

Theorem 1.51. The rearrangement groups for the Vicsek family are all of type F∞.

1.6.1 Colored Replacement systems

Belk and Forrest also work with a wider class of replacement systems by allowing a different

replacement graph for each color. This generalization allows to construct rearrangement

groups for many different fractals. They provide the example of the airplane Julia set

Figure 26 with replacement system in Figure 25. Additionally, rearrangement groups of

this kind of replacement systems generalize a certain class of diagram group [2].

Definition 1.52. A colored replacement system R consists of the following:

1. A finite set C of colors.

2. A directed base graph G0, whose edges have been colored by the elements of C.

3. For each c ∈ C, a directed replacement graph Rc, whose edges have been colored by

elements of C.

Similar to the case without colors we can define a limit space, replacement rules, canonical

homeomorphism and graph pair diagram. In fact, given a colored edge e with the color c

and a graph Rc with an initial vertex and a terminal vertex, we can apply a replacement

rule (e→ Rc) to a graph by erasing e and gluing the initial (terminal) vertex of e with the

initial (terminal) vertex of Rc. For such a replacement system, the symbol space can be
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defined in an obvious way, and it endow of a topology as a closed subspace of the Cantor

space E(G0) × (⋃
c∈C

E(Rc))∞. Moreover, if the base graph G0 and each of the replacement

graphs Rc satisfy the requirements for an expanding replacement system, we have that the

gluing relation ∼, in Definition 1.34 is an equivalence relation, and the limit space X = Ω
∼

is compact and metrizable.

For a colored replacement system R, each cell C(e) in the corresponding limit space has a

color, and it only makes sense to talk about the canonical homeomorphism between cells of

the same color. Then we can define a rearrangement similar to that of the non-colored case.

Here each such rearrangement has a graph pair diagram of the form (E1,E2, ϕ), where E1

and E2 are colored expansions of the base graph G0, and ϕ ∶ E1 → E2 is a color-preserving

isomorphism.

Example 1.53. (Diagram groups) The case of the linear colored replacement system,

that is where the base graph G0 is a directed path, and the replacement graph Rc for each

color is a directed path of length two or greater from the initial vertex to the terminal

vertex, always has a limit space homeomorphic to a closed interval. For example, consider

the replacement system based on the rules in Figure 24. with two colors green and blue.

Base Graph Replacement Rules

1

2

1

2

1

2

1

2

Figure 24 – A linear colored replacement system

Then the corresponding rearrangement group R acts on a closed interval. Algebraically, R
is isomorphic to the restricted wreath product F ≀ F .

Theorem 1.54. The rearrangement group corresponding to a linear colored replacement

system is always isomorphic to a diagram group, where the replacement rules determine

the presentation of the corresponding semigroup.

The graph diagram group given by the graph rewriting system R in Figure 24 coincides

with the diagram group of the semigroup presentation

P = ⟨G,B ∣ G = G2,B = BGB⟩.
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Example 1.55. Let C = {green, blue}, and consider the replacement system given in

Figure 25.

Base Graph Replacement Rules

1

2

1

2

1

2

1

2

Figure 25 – The airplane replacement system

The limit space for this replacement system is a fractal homeomorphic to the Julia set for

z2 − 1.755, which is known as the airplane.

Figure 26 – The limit space for the airplane replacement system

Theorem 1.56. Every rearrangement group acts properly by isometries on a CAT (0)
cubical complex.
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2 Graph rewriting systems

In the present chapter we establish the necessary concepts to introduce graph diagram

groups. We will follow some of the ideas of Guba and Sapir, who work in diagrams groups

in [1]. Recall that a diagram is a geometrical object whose definition relies on that of

a rewriting system. Given a finite sequence of words (called derivation) obtained by

successively applying rules in the string rewriting system Guba and Sapir associate a

geometrical object (called diagram) by adding step by step cells that correspond to the

rules used in the derivation. In a rough way a diagram is a set of cells together with two

distinguished paths denoted top and bottom of the diagram. A product of two of these

objects by concatenation is defined by identifying the top of the first diagram with the

bottom of the second and giving some conditions to get a group structure. Among the

required conditions we must consider two isotopic diagrams as the same and define the

equivalence class of the diagram modulo some reductions called dipole reductions. One

must then prove that every diagram yields only one reduced diagram. In general, diagram

groups depend on a string rewriting system together with an initial word. In our case we

will follow the same strategy to generalize diagram groups, but with some differences, for

instance, we will use graph rewriting systems instead of a string rewriting system and

therefore we will have more difficulties to endow these objects with a group structure. For

example, in order to do this we will need to define a partial order on the cells of the graph

diagram that allows us to define an analogue of the dipole reduction and the concatenation

of two diagrams. Then we will consider two graph diagrams as equal if they are in the

same equivalence class modulo a dipole reduction. Graph diagram groups depend on a

graph rewriting system together with a fixed initial graph (that is the top of the diagram,

which plays the role of the initial word for diagram groups) and an isomorphism between

its top and its bottom. In this Chapter, we will introduce the necessary theory to define

graph rewriting systems and graph diagram groups.

2.1 Context for Graphs

We start by choosing a context for graphs, which can be

1. The graphs can be both directed and undirected, see Definition 1.8.

2. The edges or labels might be labeled with the elements of some alphabet or with

some set of colors.

Remark 2.1. Independently of the context of the graphs, we consider the graphs to be

multigraphs. From this Chapter onwards isomorphisms are graph isomorphisms that depend
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on the context for graphs in the sense that they preserve it. For instance, if the context

for graphs is given by directed graphs, then an isomorphism is a graph isomorphism that

preserves directions.

2.2 Boundaries and Portions

Definition 2.2. Consider a graph G with a subgraph X (denoted by BG), which we call

the boundary of G. Any vertex of BG is called a boundary vertex, and any edge of BG

is a boundary edge. The remaining edges and vertices are respectively called interior

edges and interior vertices. In particular, there can be interior edges with a vertex in

the boundary and a vertex in the interior of G. Note that an edge in the interior of G

cannot be in its boundary BG too.

Definition 2.3. 1. Let G a graph. A subgraph of G with boundary is a pair

(H, BH) where H is a subgraph of G and BH is a boundary of H.

2. Given (G, BG) and (G̃, BG̃) a boundary preserving isomorphism α ∶ G→ G̃ is

a graph isomorphism between G and G̃ that satisfies α(BG) = BG̃.

Definition 2.4. Let G = P ∪Q with P and Q subgraphs of G. We define a portion as a

pair (P,P ∩Q) where P ∩Q is the boundary of P.

Note that (Q, BP ) is also a portion where we endowed Q with the same boundary of

P. We usually denote (Q, BP ) by (P c, BP ) and call it the complementary portion of

(P, BP ) in G. Thus, when we say that (P, BP ) is a portion, we are also saying that its

complementary portion exists too.

Remark 2.5. We use the notion of portion to avoid the notion of pushout complement

used in [31], p.23, Definition 8. Given a graph G, it turns out that the pair of embeddings

i1 and i2 associated with a subgraph P with boundary BP in the diagram below

BP

!!

i1

}}
P

i2 !!

P c

}}
G

has a pushout complement in the category of graphs and graph morphisms if and only if

(P, BP ) is a portion, in which case the pushout complement is precisely the complement of

the portion, that is (P c, BP ).

Proposition 2.6 (Characterization of boundaries). Let G be a graph and let P be a

subgraph of G with boundary BP . Then (P, BP ) is a portion of G if and only if it satisfies
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the following condition: for every interior vertex v of P , every edge of G incident to v is

an (interior) edge of P .

Proof. We start proving that, if (P, BP ) is a portion of G and e is an edge of G that is

incident to a vertex v in the interior of P , then e is in the interior of P . By definition of

portion, there exists (Q, BP ) complementary portion of P in G. Since v is in the interior of

P , e cannot be in BP and v cannot be in Q, which implies that e cannot be in the interior

of Q. Therefore assuming that G = P ∪Q and BP = P ∩Q implies that e is in the in the

interior of P .

On the other hand, consider the set

W = {vertices of G that are not vertices in the interior of P}

and define the subgraph of G given by

Q = {W,{edges incident to W but not to the interior of P in G}}.

Note that BP is a subgraph of Q, so we can consider the graph with boundary (Q, BP )
and BP ⊆ P ∩ Q. Actually, we have that BP = P ∩ Q since, by hypothesis, each edge

with a vertex in the interior of P is an interior edge of P , so there are no edges with

an endpoint in the interior of P and other endpoint in the interior of Q. Moreover, by

construction of W (respectively, Q) all the vertices (respectively, edges) of G are in P ∪Q.

Thus, G = P ∪Q.

Definition 2.7. A partial isomorphism between G and H is a boundary preserving

isomorphism ϕ ∶ P → Q where (P, BP ) is a portion of G and (Q, BQ) is a portion of H.

The partial isomorphism can be used to amalgamate graphs as follows,

Definition 2.8. If ϕ ∶ G → H is a partial isomorphism, the amalgamation G ∪ϕ H is

the graph obtained from the disjoint union G ∪H by identifying each vertex and edge in

the domain of ϕ with its image in the range of ϕ.

Definition 2.9. A replacement rule is a triple t = (R,S, ν) where R,S are graphs with

boundaries and non-empty interior, and ν ∶ BR → BS is an isomorphism.

Given G graph, there is a match for t in G if there exists a boundary preserving isomor-

phism α ∶ R → P where (P, BP ) is a portion of G and we can apply the replacement rule

by removing the interior of P and attaching a copy of the interior of S. The resulting

graph is G̃ = P c ∪ν○α−1 S.

Note that the isomorphic portion between G and G̃ is (P c, BP ). Then we have a partial

isomorphism ϕ ∶ G = P c ∪ P → G̃ = P c ∪ν○α−1 S that identifies the graph P c in the domain

with its copy in the image. So the domain of the partial isomorphism is the complement

of the portion (P, BP ). The support of a replacement is the complement of its domain,
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i.e. the portion of G isomorphic to R. Similarly, the cosupport of a replacement is the

complement of its range, i.e. the portion of G̃ isomorphic to S.

Definition 2.10. Two replacement rules (R,S, ν) and (R′, S′, ν′) are isomorphic if there

exist boundary-preserving isomorphism ρ ∶ R → R′ and γ ∶ S → S′ making the following

diagram commute.

BR

ν
��

ρ // BR′

ν′
��

BS
γ // BS′

Definition 2.11. Let t be a replacement rule, and let ϕ ∶ G→ G̃ be a partial isomorphism

of graphs. We say that ϕ is a replacement of type t denoted

G
ϕ,tÔ⇒ G̃,

if there exists a pair of boundary preserving isomorphisms α ∶ R → dom(ϕ)c and β ∶ S →
range(ϕ)c making the following diagram commute.

BR

α
��

ν // BS

β
��

B dom(ϕ) ϕ // B range(ϕ)

That is, G
ϕ,tÔ⇒ G̃ is a replacement if G̃ ≅ P c ∪ S

2.3 Independence

Following [31] we consider two types of independence for replacements.

Definition 2.12. • Two subgraphs H and K of G with boundary are said to overlap

if H intersects the interior of K, or if K intersects the interior of H.

• Two replacements

H
ϕ,s⇐Ô G

ψ,rÔ⇒H ′

with initial graph G are parallel independent if their supports do not overlap.

• Two consecutive replacements

G
ϕ,sÔ⇒H

ψ,rÔ⇒K

are sequentially independent if the cosupport of the first does not overlap with

the support of the second.
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Proposition 2.13. Given a parallel (respectively, sequential) independent replacements,

it is possible to find suitable sequential (respectively, parallel) independent replacements

that form the following diamond

G
π,r

�%

ϕ,s

z�
H

ψ,r �$

H ′

ρ,sy�
K

which commutes in the sense that ψ ○ ϕ = ρ ○ π.

Proof. Let G
ϕ,sÔ⇒H

ψ,rÔ⇒K be such that the two replacements are sequentially independent,

then

G = supp(ϕ)c ∪ supp(ϕ) and H = supp(ϕ)c ∪ cosupp(ϕ) (2.1)

and, by definition, cosupp(ϕ) does not overlap supp(ψ), thus

1. cosupp(ϕ) does not intersect the interior of supp(ψ).

2. supp(ψ) does not intersect the interior of cosupp(ϕ).

By item 1 and by (2.1) we have that supp(ψ) ⊂ supp(ϕ)c, so we can apply the replacement

r over G and obtain a graph H ′ = supp(π)∪ supp(π)c where supp(π) = supp(ψ). Moreover

supp(ψ) ⊂ supp(ϕ)c implies that supp(ϕ) ⊂ supp(ψ)c = supp(π)c and we can apply the

rule s over the graph H ′, then we obtain

G
π,rÔ⇒H ′ ρ,sÔ⇒K

On the other hand, let H
ϕ,s⇐Ô G

ρ,rÔ⇒H ′ be two parallel independent replacements, then

G = supp(ϕ)c ∪ supp(ϕ) = supp(ρ)c ∪ supp(ρ), (2.2)

H = supp(ϕ)c ∪ cosupp(ϕ) and H ′ = supp(ρ)c ∪ supp(ρ) (2.3)

and, by definition, supp(ϕ) does not overlap supp(ρ), thus

1. supp(ϕ) does not intersect the interior of supp(ρ).

2. supp(ρ) does not intersect the interior of supp(ϕ).

By item 2 and by (2.2) we have that supp(ρ) ⊂ supp(ϕ)c, so we can apply the replacement

r over H and obtain a graph K. Analogously supp(ϕ) ⊂ supp(ρ)c and we can apply the

replacement s over H ′ and obtain the graph K. Therefore, we have derivations

G
ϕ,sÔ⇒H

ψ,rÔ⇒K and G
π,rÔ⇒H ′ ρ,sÔ⇒K.
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2.4 Graph rewriting systems

In Section 1.3 we introduced rewriting systems (see Definition 1.12) and we presented a

type of rewriting systems called string rewriting system (see Definition 1.17). Specifically,

string rewriting systems were fundamental to define the Guba and Sapir diagrams in

Section 1.4. Analogously, in this Section we will introduce the graph rewriting systems

that will be important to define a general class of diagrams called the graph diagrams.

Definition 2.14. A graph rewriting system R consists of the following data:

1. A context for graphs.

2. A set of replacement rules in the given context.

Convention 2.15. We assume that no two replacement rules for the same graph rewriting

system R are isomorphic. Thus, given a partial isomorphism ϕ ∶ G → G̃ between graphs,

there is at most one replacement rule t in R. In this case we can denote the replacement

of type t, G
ϕÔ⇒ G̃ without specifying the replacement rule.

Definition 2.16. If R is a graph rewriting system, a derivation over R is a finite

sequence

G0
ϕ1Ô⇒ G1

ϕ2Ô⇒ G2 . . .
ϕnÔ⇒ Gn

of replacements from R. The graphs G0 and Gn are called initial and terminal graph of

the derivation respectively.

Given two derivations G0
ϕ1Ô⇒ G1

ϕ2Ô⇒ G2 . . .
ϕnÔ⇒ Gn and H0

ψ1Ô⇒ H1
ψ2Ô⇒ H2 . . .

ψnÔ⇒ Hn

we say that they are isomorphic if there exist isomorphisms τ0, τ1, . . . , τn that satisfy

τi(supp(ϕi+1)) = supp(ψi+1) for 0 ≤ i < n and make the following diagram commute

G0

τ0
��

ϕ1 +3 G1

τ1
��

ϕ2 +3 . . .
ϕn +3 Gn

τn
��

H0
ψ1 +3 H1

ψ2 +3 . . .
ψn +3 Hn

Two replacement rules (R1, S1, ν1) and (R2, S2, ν2) are called inverse if there exists

boundary-preserving isomorphisms α1 ∶ R1 → S2 and α2 ∶ S1 → R2 making the follow-

ing diagram commute

BR1

α1
��

ν1 // BS1

α2
��

BS2 BR2ν2
oo

Later on in Proposition 2.41 we will better see the meaning of this definition
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Example 2.17. Consider the graph rewriting system with initial graph Γ and replacement

rules r and r−1.

Γ

1

2

1

2
r

In this case the derivations below are isomorphic if we take τi as the rotation by π.

1

2

1

2 2

33

1

2 2

1

2

3 3

τ0 τ1 τ2

ϕ1 ϕ2

ψ1 ψ2

Example 2.18. Consider the following rule with initial graph Γ, and directed edges in

the context for graphs. Note that the numbers are giving us the information about how the

boundary of the graphs, in this case the end vertices of the graphs, are identified by the

boundary preserving isomorphism.

∆ = ∆̃ =

Γ

1

2

1

2
r1

1

The definition of replacement rule says that a replacement rule is a triple (R,S, ν) where

(R, BR) and (S, BS) are graphs with boundary, non-empty interiors and ν(BR) = BS. In this

case BP is given by the vertices labelled by 1 and 2. On the other hand the characterization

of a boundary says that there are no edges between the interior of P and the interior of

P c, then P c = BP and R is isomorphic to the directed edge Γ.
The following derivations are not isomorphic. In fact, the isomorphism in the derivation

fixes the edges labels with 1 and 2 and there is no isomorphism between the last graphs of

the derivation that fixes the end vertices and changes the direction of the edges.
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∆ = ∆̃ =

ϕ1

ϕ−1
1

ϕ1

ϕ2

Γ r2

1

2

1

2

1

2

1

2
r1

1 2

1 2

1 2

1 2

1 2

1 2

2.5 Graph Diagrams

In this Section we fix a set of replacement rules R. Every graph will be a graph over R,

this is a graph which we can apply rules from R. We say that replacements from R are

valid replacements.

2.5.1 Cells and Diagrams

Definition 2.19. Let ∆ be a graph. A cell in ∆ is a subgraph C together with a pair

(T,B) of complementary portions of C such that

T
iÔ⇒ B

is a valid replacement and where i ∶ BT → BB denotes the identity isomorphism. Here we

call the portion T as the top of the cell and B as the bottom of it and we denote them

top(C) and bot(C).

Definition 2.20. An ordered graph diagram is a graph ∆ with a finite collection of

cells in ∆ such that there exists an ordering C1,C2, . . . ,Cn of the cells and a sequence

G0,G1, . . . ,Gn of subgraphs of ∆ satisfying the following conditions:

1. G0 ∪G1 ∪ ⋅ ⋅ ⋅ ∪Gn = ∆

2. Gi ∩Gk ⊆ Gj for i < j < k

3. top(Ci) is a portion of Gi−1, bot(Ci) is a portion of Gi, and the complement of

top(Ci) in Gi−1 is equal to the complement of bot(Ci) in Gi.

Definition 2.21. Given a derivation

ρ ∶= G0
ϕ1Ô⇒ G1

ϕ2Ô⇒ G2 . . .
ϕnÔ⇒ Gn

a graph diagram associated with this derivation, denoted,

∆ =Diag(G0
ϕ1Ô⇒ G1

ϕ2Ô⇒ G2 . . .
ϕnÔ⇒ Gn) =Diag(ρ)

is defined as follows:
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1. A graph ∆ = G0 ∪ϕ1 G1 ∪ϕ2 ⋅ ⋅ ⋅ ∪ϕn Gn

2. The cells {C1,C2, . . .Cn} are defined by

Ci = supp(ϕi) ∪ cosupp(ϕi)

where top(Ci) = supp(ϕi) and bot(Ci) = cosupp(ϕi). We call {C1, . . . ,Cn} the cells

induced by the derivation.

Example 2.22. In Example 2.17 we consider two derivations. We will see how to produce

the graph diagrams of one of these derivations.

Consider
1

2

1

2

3 3

2

ϕ1 ϕ2

Here the partial isomorphism ϕ1 identifies the directed edges with initial vertex labeled

with 1 and terminal vertex labeled with 2 and joins the disjoint union of the other edges as

follows:

∆ϕ =

Finally, ϕ2 identifies the labeled edges with initial vertex 2 and terminal vertex 3 and joins

the disjoint union of the other edges to obtain the following graph diagram:

∆ϕ =

This notion is similar to the construction of a Guba and Sapir diagram where for each

derivation we add a cell to the diagram.

Remember that each time that we apply a replacement rule ((R, BR), (S, BS), ν) we have a

portion (P, BP ) of G isomorphic to (R, BR), then we identify the border of S with BP and

replace the interior of P by the interior of S to obtain a graph G′, that is G
ϕÔ⇒ G′. The

graph obtained by this process is G ∪ϕ G′ = G ∪ϕ cosupp(ϕ), which means that cosupp(ϕ)
does not overlap with G.
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Definition 2.23. If ∆ is an ordered graph diagram, the top of ∆ (denoted by top(∆))

is the subgraph consisting of all the edges and vertices that are not in the interior of the

bottom of any cell. Analogously, the bottom of ∆ (denoted by bot(∆)) is the subgraph

consisting of all the edges and vertices that are not in the interior of the top of any cell.

Definition 2.24. An ordering on the set of cells C1, . . . ,Cn of a diagram that satisfies the

conditions of Definition 2.21 is called a valid ordering.

Remark 2.25. Observe that Definition 2.21 says that, given a derivation, we can obtain

a valid order of its cells given by its partial isomorphisms and that also, given a valid

ordering for the cells of a graph diagram, we can obtain a derivation for this graph diagram.

This means that each ordered graph diagram arises from a derivation, in the sense that any

valid ordering C1,C2, . . . ,Cn with subgraphs G0,G1, . . . ,Gn is a derivation corresponding

to a derivation

G0
i1Ô⇒ G1

i2Ô⇒ G2 . . .
inÔ⇒ Gn

where each ik denotes the identity isomorphism on Gk−1 ∩Gk. This means that the cells of

a valid order for a graph diagram induce replacement rules (supp(ij), cosupp(ij), ij) that

consist of the partial isomorphism of the derivation above.

Denote top(Ci) ≡ Ri, bottom(Ci) ≡ Si, for every Gi we have

G0 = P c
1 ∪R1,

G1 = P c
1 ∪ S1 = P c

2 ∪R2,

Gi = P c
i ∪ Si = P c

i+1 ∪Ri+1, 0 < i ≤ n − 1

where P c
i ⊆ Gi−1 and Gi−1 ∩ Si ⊆ BP c

i .

Proposition 2.26. ∆ =Diag(G0
ϕ1Ô⇒ G1

ϕ2Ô⇒ G2 . . .
ϕnÔ⇒ Gn) is an ordered graph diagram.

Proof. We must verify the items of Definition 2.20.

1. By definition, we have ∆ = G0 ∪ϕ1 G1 ∪ϕ2 ⋅ ⋅ ⋅ ∪ϕn Gn

2. We will show that

Gi ∩Gk ⊆ Gj, for 0 ≤ i < j < k ≤ n

Let ∆(l,m) = Gl ∪ϕl+1 Gl+1 ∪ϕl+2 ⋅ ⋅ ⋅ ∪ϕm Gm for l <m.

Consider ∆(i,j) ∪ϕj+1 ∆(j+1,k) where, by definition, the amalgamation by ϕj+1 of these

diagrams consists of identifying the domain of ϕj+1 with its range and make the

disjoint union of the rest of the graph diagram. Thus an edge or vertex in Gi ∩Gk

must be in Gj. Indeed, it must be in (supp(ϕj+1))c and in (cosupp(ϕj+1))c otherwise

they would be disjoint (again by the definition of amalgamation).
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3. By construction Ri ⊆ Gi−1, Si ⊆ Gi. Note that Gi = P c
i ∪ Si and Gi−1 = P c

i ∪ Ri

implies that the complement of Ri in Gi−1 coincides with the complement of Si in

Gi. (Ri, BRi) is a portion of Gi.

Definition 2.27. Given ∆ and ∆′ graph diagrams, we say that these graph diagrams are

isomorphic if there exists a graph isomorphism ρ ∶ ∆→∆′ which maps the cells of ∆ to

the cells of ∆′ in a way that preserves their tops and bottoms.

Proposition 2.28. Given two isomorphic derivations, their respective graph diagrams are

isomorphic.

Proof. It is enough to see it for derivations with n = 1. Suppose that the derivations are

isomorphic,

G0

τ0
��

ϕ1 +3 G1

τ1
��

H0
ψ1 +3 H1

By Definition 2.21 it is enough to observe that

1. the first cell in the derivation C1, is isomorphic to the first cell of the second derivation

C ′
1, and this isomorphism preserves tops and bottoms of the cells and

2. G0 ∪ϕ1 G1 is isomorphic to H0 ∪ψ1 H1.

To show point 1, we observe that, by definition

τ0(top(C1)) = τ0(supp(ϕ1)) = supp(ψ1) = top(C ′
1), so that

ψ1(τ0(supp(ϕ1))) = cosupp(ψ1) and

τ1(bottom(C1)) = τ1(cosupp(ϕ1)) = cosupp(ψ1) = bottom(C ′
1)

since the square diagram commutes. On the other hand, point 2 follows from point 1 and

the isomorphism of the graphs in the derivations.

Example 2.29. In example 2.17 we have two isomorphic derivations whose amalgamation

produce the graph diagrams below.

∆ϕ = ∆′
ψ =

Note that ∆ϕ is isomorphic to ∆′
ψ.
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2.5.2 The Partial Order

Given a graph ∆ and a set of cells C in ∆, we can define a partial order over these cells. Let

C and D cells in ∆, we say that C directly precedes D, denoted C ⋖D if the bottom

of C overlaps with the top of D. More generally, we say that C precedes D, denoted

C ≺D, if there exist cells C0, . . . ,Cn in C so that C = C0 ⋖ C1 ⋖ C2 ⋅ ⋅ ⋅ ⋖ Cn.

Lemma 2.30. Let ∆ be an ordered graph diagram. Let C1,C2. . . .Cn be a valid order of

its cells,and let G0,G1, . . . ,Gn be the corresponding sequence of subgraphs. Then

1. top(Ci) and top(Cj) have disjoint interiors for i < j.

2. bot(Ci) and bot(Cj) have disjoint interiors for i < j.

3. top(Ci) and bot(Cj) are non-overlapping for i < j.

4. Ci ∩Gi−1 = top(Ci) and Ci ∩Gi = bot(Ci).

Proof. 1. We start by observing that top(Ci)∩ top(Cj) ⊆ Gi−1 ∩Gj−1 ⊆ Gi. On the other

hand, by definition top(Ci) is a portion of Gi−1, therefore there exists a complementary

portion K that satisfies Gi−1 =K∪top(Ci), Gi =K∪bot(Ci), Btop(Ci) =K∩top(Ci),
and Bbot(Ci) =K ∩ bot(Ci).

Then top(Ci) ∩ top(Cj) ⊆ top(Ci) ∩Gi = top(Ci) ∩ (K ∪ bot(Ci)) ⊆ Btop(Ci), since by

definition bot(Ci) and top(Ci) are complementary portions of Ci.

2. We start by observing that bot(Ci) ∩ bot(Cj) ⊆ Gi ∩Gj ⊆ Gj−1. On the other hand,

by definition bot(Cj) is a portion of Gj, so there exists a complementary portion K

in Gj−1 such that Gj−1 =K ∪ top(Cj), Gj =K ∪ bot(Cj), Btop(Cj) =K ∩ top(Cj) and

Bbot(Cj) =K ∩ bot(Cj).

So bot(Ci) ∩ bot(Cj) ⊆ bot(Cj) ∩Gj−1 ⊆ bot(Cj) ∩ (K ∪ top(Cj)) = Bbot(Cj).

3. top(Ci) ∩ bot(Cj) ⊆ Gi−1 ∩Gj ⊆ Gi ∩Gj−1. Then, as in the previous cases we have

top(Ci) ∩Gi = Btop(Ci) and bot(Cj) ∩Gj−1 = Bbot(Cj). Thus

top(Ci)∩bot(Cj) ⊆ Btop(Ci)∩Bbot(Cj). Therefore top(Ci) and bot(Cj) intersect only

in their boundaries.

4. top(Ci) is a portion of Gi−1, so there exists K a complementary portion in Gi−1

and it satisfies K ∩ top(Ci) = Btop(Ci), K ∪ top(Ci) = Gi−1, K ∪ bot(Ci) = Gi and

K ∩ bot(Ci) = Bbot(Ci). Then, K ∩Ci = Btop(Ci) = Bbot(Ci), so Ci ∩Gi−1 = Ci ∩ (K ∪
top(Ci)) = (Ci ∩K) ∪ (Ci ∩ top(Ci)) = top(Ci).

On the other hand, Ci ∩Gi = Ci ∩(K ∪ bot(Ci)) = (Ci ∩K)∪(Ci ∩ bot(Ci)) = bot(Ci),
then Ci ∩Gi = bot(Ci).
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The following result relates valid orderings introduced in Definition 2.24 together with the

partial order introduced at the beginning of Subsection 2.5.2.

Lemma 2.31. Let be ∆ an ordered graph diagram and C1, . . . ,Cn a valid order-

ing for ∆. Suppose that Ck /≺ Ck+1 for some k ∈ {1, . . . , n − 1}. Then the ordering

C1, . . . ,Ck+1,Ck, . . . ,Cn is also valid for ∆.

Proof. Let G0, . . . ,Gn the graphs corresponding to C1, . . . ,Cn. Note that bot(Ck) and

top(Ck+1) are portions of Gk,, so there exist portions H1 and H2 such that

bot(Ck) ∪H1 = top(Ck+1) ∪H2 = Gk.

In particular, H =H1 ∩H2 satisfies

top(Ck+1) ∪ bot(Ck) ∪H = top(Ck+1) ∪ bot(Ck) ∪ (H1 ∩H2) =
(top(Ck+1) ∪ bot(Ck) ∪H1)) ∩ (bot(Ck) ∪H2 ∪ top(Ck+1)) = Gk

We claim that top(Ck), bot(Ck), top(Ck+1) and bot(Ck+1) are pairwise non-overlapping,

with

top(Ck) ∩H = Btop(Ck) = Bbot(Ck) = bot(Ck) ∩H and

top(Ck+1) ∩H = Btop(Ck+1) = Bbot(Ck+1) = bot(Ck+1) ∩H

Since bot(Ck) and top(Ck+1) do not overlap, we know that bot(Ck) ∩H = Bbot(Ck) and

top(Ck+1) ∩H = Btop(Ck+1).
Note that H ∪ top(Ck+1) is the complement of bot(Ck) in Gk and by definition of graph

diagram H ∪ top(Ck+1) is also the complement of top(Ck) in Gk−1. Thus,

(H ∪ top(Ck+1)) ∩ top(Ck) = (H ∪ top(Ck+1)) ∩ bot(Ck) = Btop(Ck) = Bbot(Ck) ⊆H

Moreover, Btop(Ck) = Bbot(Ck) ⊆H implies top(Ck) ∩H = Btop(Ck) = Bbot(Ck).
Finally, note that Ck /≺ Ck+1, imply that top(Ck+1) and bot(Ck) are non-overlapping

and the pairs top(Ck), bot(Ck) and top(Ck+1), bot(Ck+1) are non overlapping by the

definition of a cell. On the other hand, by Lemma 2.30 we have that the pairs

top(Ck), top(Ck+1), bot(Ck), bot(Ck+1) and top(Ck), bot(Ck+1) have disjoint interiors. More

than that, as the interiors of all these are contained in H, it follows that these pairs are

non-overlapping.

Observe that, given the graphs Gk−1 =H ∪ top(Ck) ∪ top(Ck+1) and Gk+1 =H ∪ bot(Ck) ∪
bot(Ck+1) we can consider the graph G̃k = H ∪ top(Ck) ∪ bot(Ck+1). We will prove that

G0, . . . G̃k, . . . ,Gn satisfy the required properties.

1. Recall that Gk = H ∪ bot(Ck) ∪ top(Ck+1), so Gk−1 ∪ G̃k ∪Gk+1 = Gk−1 ∪Gk ∪Gk+1,

and

G1 ∪ ⋅ ⋅ ⋅ ∪ G̃k ∪ . . .Gn = G1 ∪ ⋅ ⋅ ⋅ ∪Gk ∪ . . .Gn = ∆.
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2. If i < k < j, then i ≤ k − 1 < j and i < k + 1 ≤ j, so

Gi ∩Gj ⊆ Gk−1 ∩Gk+1 =H ⊆ G̃k.

If k < i < j, then since G̃k ⊆ Gk−1 ∪Gk+1, we have

G̃k ∩Gj ⊆ (Gk−1 ∩Gj) ∪ (Gk+1 ∩Gj) ⊆ Gi ∪Gi = Gi.

Analogously, if i < j < k, then G̃k ⊆ Gk−1 ∪Gk+1 implies

Gi ∩ G̃k ⊆ (Gi ∩Gk−1) ∪ (Gi ∩Gk+1) ⊆ Gj ∪Gj = Gj.

3. top(Ck+1) is a portion of Gk−1 and bot(Ck+1) is a portion of G̃k, where the complement

is H ∪ top(Ck) in each of these two cases. Similarly, top(Ck) is a portion of G̃k and

bot(Ck) is a portion of Gk+1, where the complement is H ∪ bot(Ck+1) in each these

two cases.

Therefore the ordering C1, . . . ,Ck+1,Ck, . . .Cn is valid.

Definition 2.32. A strict partial order < is a binary relation on a set X that satisfies,

for every a, b, c ∈X

• a /< a

• if a < b and b < c, then a < c.

Theorem 2.33. Let ∆ be an ordered graph diagram. Then, ≺ is a strict partial order on

the cells of ∆. Furthermore, an ordering C1, . . . ,Cn of the cells of ∆ is valid if and only if

Ci ≺ Cj ⇒ i < j (2.4)

for all i, j ∈ 1, . . . , n.

Proof. Suppose that C1, . . . ,Cn is a valid order for ∆ and G0, . . . ,Gn are its corresponding

graph diagrams. Observe that, by Lemma 2.30, the interior of top(Ci) can only intersect

G1, . . . ,Gi−1 while the interior of bot(Ci) can only intersect Gi, . . . ,Gn. Therefore the

hypothesis (2.4) is satisfied. Moreover, since ≺ is a transitive subrelation of < the linear

ordering given by the numbering of the cells, that is C1 < C2 < ⋅ ⋅ ⋅ < Cn then ≺ is a strict

partial order.

On the other hand, let C1, . . . ,Cn be an ordering of the cells of ∆ that satisfies the hypothesis

(2.4). Consider C ′
1, . . . ,C

′
n a valid order for ∆ where {C1, . . . ,Cn} = {C ′

1, . . . ,C
′
n}. Note

that this order exists since ∆ is an ordered graph diagram. We will show that C1, . . . ,Cn

is a valid order.
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Note that Ck /≺ C1 for k ∈ {2, . . . , n}, otherwise Ck ≺ C1 ⇒ k < 1 by hypothesis (2.4) and

we would have a contradiction. Let j ∈ {1, . . . , n} such that C1 = C ′
j and observe that

C ′
k /≺ C ′

j = C1 for k ∈ {1, . . . , j − 1}. Then, by Lemma 2.31, the ordering of the cells given

by C1 = C ′
j,C

′
1,C

′
2, . . . ,C

′
j−1,C

′
j+1, . . . ,C

′
n is valid.

Analogously, note that Ck /≺ C2 for k ∈ {3, . . . , n}, otherwise Ck ≺ C2 ⇒ k < 2 by hypothesis

(2.4) and we would have a contradiction. Let s ∈ {1, . . . , n} such that C2 = C ′
s and observe

that C ′
k /≺ C ′

s = C2 for k /∈ {j, s}. By Lemma 2.31, the ordering of the cells given by

C1 = C ′
j,C2 = C ′

s,C
′
1, . . . ,C

′
s−1,C

′
s+1, . . . ,C

′
j−1,C

′
j+1, . . . ,C

′
n is valid.

Following this process we can reorganize the valid ordering C ′
1, . . . ,C

′
n using Lemma 2.31

until we get C1, . . . ,Cn implying that this ordering is also valid.

Definition 2.34. Consider the derivation

G
ϕ,sÔ⇒H

ψ,rÔ⇒K

and suppose that r and s are sequentially independent, and let

G
π,r

�%

ϕ,s

z�
H

ψ,r �$

H ′

ρ,sy�
K

be the corresponding replacement square. Then the derivation

G
π,rÔ⇒H ′ ρ,sÔ⇒K

is called a transposition of the original, we also say that we move to the left the

replacement r in the derivation. We can transpose any two consecutive, sequentially

independent replacements in a derivation.

A permutation of a derivation is obtained by any sequence of transpositions.

Remark 2.35. Consider the derivations ρ with graphs G0,G1, . . . ,Gi,Gi+1, . . .Gn and the

derivation ρ′ with graphs G0,G1, . . . ,Gi−1,G
′
i,Gi+1, . . .Gn such that they are a transposition

of one another,

G0
ϕ1,r1 +3 G1

ϕ2,r2 +3 . . .
ϕi−1,ri−1+3 Gi−1

ϕ′i,ri+1 �%

ϕi,ri +3 Gi
ϕi+1ri+1+3 Gi+1

ϕi+2,ri+2+3 . . .
ϕn,rn +3 Gn

G′
i

ϕ′i+1,ri

9A

These derivations give us a valid ordering for its cells. In fact, we have a graph dia-

gram ∆ with graphs G0,G1, . . . ,Gi−1,Gi,Gi+1, . . .Gn and cells C1, . . . ,Ci−1,Ci,Ci+1, . . .Cn
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where Ck = supp(ϕk) ∪ cosupp(ϕk) and a graph diagram ∆′ with graphs

G0,G1, . . . ,Gi−1,G
′
i,Gi+1, . . .Gn and cells C1, . . . ,Ci−1,Ci+1,Ci, . . .Cn with Ci+1 =

supp(ϕ′i) ∪ cosupp(ϕ′i) and Ci = supp(ϕ′i+1) ∪ cosupp(ϕ′i+1). On the other hand, if we

have this structure in the cells of the graph diagrams we have that the replacement rules ri

and ri+1 are sequentially independent and the two derivations induced by these orders a

transposition of one another. In Lemma 2.38, we will prove that ∆ = ∆′.

Example 2.36. Consider the following graph rewriting system,

1 2 1 2

1 2 1 2

r1

r2

Figure 27 – A graph rewriting system

In Figure 28 the replacements r1 and r2 are sequentially independent, so we can move the

replacement r2 to the left.

r1

r2

r2

r1

Figure 28

Example 2.37. Let P = ⟨a, b, c ∣ b = c, ac = a, ca = a⟩ be a semigroup presentation. Denote

the relations b = c, ac = a,and ca = a by the replacement rules r1, r2 and r3 respectively.

Consider the following derivations under the presentation P:

abba
r1Ô⇒ acba

r2Ô⇒ aba
r−1
3Ô⇒ abca

r−1
1Ô⇒ abba

abba
r−1
3Ô⇒ abbca

r−1
1Ô⇒ abbba

r1Ô⇒ acbba
r2Ô⇒ abba

Note that the two derivations are a permutation of one another. In Example 1.19 we show

how to obtain the diagram of the first derivation (we can do something analogous to get

the same graph diagram). We can follow a similar process to realize that the graph diagram

of both derivations corresponds to the diagram in Figure 29.
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a
b

b

a

c

a a

c

b

Figure 29

Lemma 2.38. Suppose that (ϕi, ri) and (ϕi+1, ri+1) are sequentially independent replace-

ment rules, then the derivation ρ with graphs G0,G1, . . . ,Gi−1,Gi,Gi+1, . . . ,Gn and ρ′ with

graphs G0,G1, . . . ,Gi−1,G
′
i,Gi+1, . . . ,Gn have isomorphic graph diagrams.

G0
ϕ1,r1 +3 G1

ϕ2,r2 +3 . . .
ϕi−1,ri−1+3 Gi−1

ϕ′i,ri+1 �%

ϕi,ri +3 Gi
ϕi+1ri+1+3 Gi+1

ϕi+2,ri+2+3 . . .
ϕn,rn +3 Gn

G′
i

ϕ′i+1,ri

9A

Proof. Let C1, . . . ,Ci−1,Ci,Ci+1, . . .Cn be a valid ordering for the cells of ∆ = Diag(ρ),
and C1, . . . ,Ci−1,Ci+1,Ci, . . .Cn be a valid ordering of the cells of ∆′ =Diag(ρ′).
It is enough to show that Ci /≺ Ci+1, since in this case Lemma 2.31 says that both orders

are valid orders for the same graph diagram.

Suppose that Ci ≺ Ci+1. By hypothesis (ϕi, ri) and (ϕi+1, ri+1) are sequentially independent

replacement rules, so bot(Ci) and top(Ci+1) are non overlapping which implies that Ci /⋖
Ci+1. Moreover Ci ≺ Ci+1 and Ci /⋖ Ci+1 implies that there exists a sequence

Ci1 = Ci ⋖ Ci2 ⋖ ⋅ ⋅ ⋅ ⋖ Cij ⋖ Cij+1 = Ci+1, for suitable ik ∈ {1, . . . , n}, Ci+1 /= Ci2 and Ci /= Cij ,
which means that i + 1 /= i2 and i /= ij.
Note that i2 ∈ {i + 2, . . . , n}, since Ci ≺ Ci2 ⇒ i < i2 (by Theorem 2.33) and the fact that

i + 1 /= i2. Similarly we have ij ∈ {1, . . . , i − 1}, since Cij ≺ Ci+1 ⇒ ij < i + 1 (by Theorem

2.33) and the fact that i /= ij.
Since Ci2 ≺ Cij , Theorem 2.33 implies i < i2 < ij < i, a contradiction. Therefore Ci /≺ Ci+1.

Theorem 2.39. Two derivations correspond to isomorphic graph diagrams if and only if

the second derivation is isomorphic to a permutation of the first.

Proof. (⇒) Let

ρ ∶= G0
r1,ϕ1ÔÔ⇒ G1

r2,ϕ2ÔÔ⇒ G2 . . .
rn,ϕnÔÔ⇒ Gn

ρ′ ∶= G′
0
r′1,ϕ

′
1ÔÔ⇒ G′

1
r′2,ϕ

′
2ÔÔ⇒ G′

2 . . .
r′n,ϕ′nÔÔ⇒ G′

n

such that

∆ =Diag(ρ) ≅Diag(ρ′) = ∆′
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Recall that Ci = supp(ϕi) ∪ cosupp(ϕi) for i ∈ {1, . . . , n} and C ′
i = supp(ϕ′i) ∪ cosupp(ϕ′i)

for i ∈ {1, . . . , n}
Having isomorphic graph diagrams means that there is a graph isomorphism that maps

the cells of ∆ in the cells of ∆′ preserving the tops and bottoms.

Moreover, the graph diagram isomorphism guarantees that the rules applied in the first

derivation are isomorphic to the rules applied in the second. In particular, there exists j1

such that r1 ≅ r′j1 with cells satisfying the same relations in the partial order. Recall that a

valid order of the cells of a graph diagram has the same information of a derivation in the

sense that given a derivation we can recognize a valid order for the graph diagram of the

derivation and given an order in the cells we can obtain the associated permutation.

Furthermore, note that as r1 is a rule applied over the graph G0, we have that r′j1 can be

applied over the graph G′
0. In fact, rule r1 corresponds to the cell C1 in the valid order of

∆, while rule r′j1 corresponds to the cell C ′
j1 in the valid order of ∆′ and C1 ≅ C ′

j1 .

Thus Ci /≺ C1 for i ∈ {2, . . . , n}, since Ci ≺ C1 would imply i < 1 by Theorem 2.33, a

contradiction. The same relation must be satisfied for Cj1 , that is C ′
i /≺ C ′

j1 for i /= j1. Then

Lemma 2.31 implies that C ′
j1 ,C

′
1, . . . ,C

′
j1−1,C

′
j1+1, . . . ,C

′
n is also a valid order for ∆′ and

these orders are obtained from derivations that are a permutation of one another. Indeed,

recall that in Remark 2.35 we explain that each time that we use Lemma 2.31 we are

transposing two replacements in a derivation.

Similarly, there exists j2 such that r2 ≅ r′j2 and r′j2 is sequentially independent of r′k for

k /= j1. In fact, in this case C2 ≅ C ′
j2 and we have that Ck /≺ C2 for k /= 1, since Ck ≺ C2

implies 1 /= k < 2 by Theorem 2.33, a contradiction. Then we have that C ′
k /≺ C ′

j2 and Lemma

2.31 implies that C ′
j1 ,C

′
j2 ,C

′
1, . . . ,C

′
j1−1,C

′
j1+1, . . . ,C

′
j2−1,C

′
j2+1, . . .C

′
n is a valid order for ∆′

and the derivation associated with this valid order is a permutation of ρ′.

Following this process we can reorganize the cells of ∆′ until get a new order C ′
j1 ,C

′
j2 , . . . ,C

′
jn

for this graph diagram that satisfies C ′
jk
≅ Ck for k ∈ {1, . . . , n} and the permutation of

this new order of ∆′ is a permutation of ρ′.

(⇐) It is enough to prove the statement in the case when the derivation ρ is isomorphic to

a transposition of ρ′. Let C1, . . . ,Cn be the valid order induced by ρ and let C ′
1, . . . ,C

′
n be

the valid order induced by ρ′. Since ρ is a transposition of ρ′ there exists i ∈ {1, . . . , n − 1}
such that Ci ≅ C ′

i+1 and Ci+1 ≅ C ′
i and Ck ≅ C ′

k for k /∈ {i, i+1} preserving tops and bottoms.

Let ρ1 be the derivation that is isomorphic to ρ′ and is a transposition of ρ. Note that, by

Lemma 2.38, the derivation ρ1 is obtained from the valid order C1,C2, . . . ,Ci+1,Ci, . . . ,Cn

satisfying Diag(ρ1) =Diag(ρ). We claim that Diag(ρ1) ≅Diag(ρ′).
In fact, by hypothesis, ρ1 and ρ′ have isomorphic derivations. Thus, by Lemma 2.28, we

have

Diag(ρ′) ≅Diag(ρ1) =Diag(ρ).
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2.5.3 Reductions of diagrams

In what follows, we will paint in red the boundary of the rules in the graph rewriting

system, in black the interior edges, and in blue the interior vertices. We also will use

black to represent the base graph of the graph rewriting system. We will use numbers to

underline how to identify the boundaries.

Definition 2.40. Let ∆ be a graph diagram. A dipole in ∆ is a pair (C,D) of cells

satisfying the following conditions

1. bot(C) = top(D),

2. No other cell E of ∆ satisfies C ≺ E ≺D, and

3. There exists an isomorphism bot(D) → top(C) that restricts to the identity on

Bbot(D).

If (C,D) is a dipole we can reduce it by removing the interior of bot(C), and identifying

bot(D) to top(C) via a boundary-fixing isomorphism ϕ.

Recall that two replacement rules (R1, S1, ν1) and (R2, S2, ν2) are inverse if there exist

boundary-preserving isomorphisms α1 ∶ R1 → S2 and α2 ∶ S1 → R2 making the following

diagram commute

BR1

α1
��

ν1 // BS1

α2
��

BS2 BR2ν2
oo

We will prove that the graph diagram ∆ = R1 ∪ν1 S1 ∪ν2○α2 S2 is a dipole.

Proposition 2.41. Following the notation above, let r1 = (R1, S1, ν1) and r2 = (R2, S2, ν2)
be inverse replacement rules. Consider the derivation

ρ ∶= R1
ϕ1,r1ÔÔ⇒ S1

ϕ2,r2ÔÔ⇒ S2,

then Diag(ρ) can be reduced to R1.

Proof. The valid order given by ρ has cells C1 = (R1 ∪ν1 S1) and C2 = (S1 ∪ν2○α2 S2)
and defining graphs G0 = R1,G1 = S1 and G2 = S2. Thus bot(C1) = S1 = top(C2) by the

commutativity of the diagram after Definition 2.40 we have α1(BR1) = ν1 ○α2 ○ν2(B(R1)) =
α2 ○ ν2(BS1) = ν2(BR2) = BS2, implying that α−1

1 (BS2) = BR1, that is, α1 is a boundary

fixing isomorphism and (C1,C2) is a dipole. We can reduce such dipole by eliminating G1,

C1 and C2 from the valid order and identifying G0 with G2.

Proposition 2.42. Let ∆ be a graph diagram, and let C be its collection of cells. Let

(C,D) be a dipole in ∆, and let ∆̃ be a graph obtained by reducing this dipole, with cells

C − {C,D}. Then ∆̃ is a graph diagram.
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Proof. By condition (2) in the dipole definition and the Theorem 2.33 there exists a valid

ordering in C as follows:

C1, . . . ,Ck = C,Ck+1 =D, . . . ,Cn
for some 1 ≤ k ≤ n. Let G0,G1, . . . ,Gn the corresponding graphs of ∆.
Let ϕ the isomorphism that identifies top(C) to bot(D). Given a cell Cj in the valid order,

we can apply the reduction of the dipole by applying ϕ. Observe that top(C) and top(Cj)
have disjoint interior by Lemma 2.30, so that for each edge in Cj and Gj we apply ϕ on

the edges that are in bot(Ck+1). After applying this process to each cell and corresponding

graph in ∆, we obtain a graph diagram ∆̃ with cells C̃1, C̃2, . . . , C̃n−2 and corresponding

graphs G̃0, G̃1, . . . , G̃n−2, where Ck,Ck+1,Gk and Gk+1 were removed from this list. We will

check that ∆̃ is a graph diagram.

1. The same edges were removed from ∆ and G0,G1, . . . ,Gn to obtain ∆̃ and its

corresponding graphs G̃0, G̃1, . . . , G̃n−2. The valid order on the cells of ∆ induces a

valid order on the cells of ∆̃ = G̃0 ∪ G̃1 ∪ ⋅ ⋅ ⋅ ∪ G̃n−2.

2. We will show that G̃a ∩ G̃c ⊆ G̃b. We will analyze the different positions (with respect

to the partial order of the cells) where the dipole might be.

We will use constantly the fact that the dipole reduction does not affect edges and

vertices in Gj for j < k.

Suppose that a < b < k ≤ c.

Notice that Ga∩Gc+2 ⊆ Gb implies that the relation it is true for the edges in G̃a∩ G̃c

that are not modified by the dipole. We will prove that the edges (vertices) modified

by the dipole also satisfy the required relation. Observe that, once we reduce the

dipole, the edges and vertices in bot(Ck+1) and top(Ck) are identified. Moreover, since

Gk+1 = bot(Ck+1)∪bot(Ck+1)c where bot(Ck+1)c = top(Ck)c ⊆ Gk−1 and Ga∩Gc+2 ⊆ Gb,

then we have G̃a ∩ (G̃c ∩ bot(Ck+1)c) ⊆ G̃b. Furthermore, the image of bot(Ck+1) in

G̃c is contained in G̃k−1 = Gk−1. Thus Ga ∩ Gk−1 ⊆ Gb implies G̃a ∩ G̃k−1 ⊆ G̃b, so

G̃a ∩ G̃c ⊆ G̃b.

Suppose that a < k ≤ b ≤ c.

In a fashion similar to the previous case, note that Ga ∩Gc+2 ⊆ Gb+2 implies that the

relation it is true for the edges (vertices) in G̃a ∩ G̃c that are not modified by the

dipole.

Moreover Gk−1 = top(Ck)∪ top(Ck)c, together with Ga∩Gc+2 ⊆ Gb+2 and the fact that

the dipole reduction does not affect Gj for j < k implies that (G̃a∩top(Ck)c)∩G̃c ⊆ G̃b.

Note also that top(Ck) ⊆ Gk−1 = G̃k−1 and G̃k−1 ∩ G̃c ⊆ G̃b. Hence, G̃a ∩ G̃c ⊆ G̃b.

Similarly, if a < b < c ≤ k, then Ga ∩Gc ⊆ Gb immediately implies that G̃a ∩ G̃c ⊆ G̃b

and likewise if k < a < b < c, then Ga+2 ∩ Gc+2 ⊆ Gb+2 immediately implies that

G̃a ∩ G̃c ⊆ G̃b.
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3. The only edges affected by ϕ are those in bot(Ck+1), and such edges in Gj and Cj

for j ≥ k + 1 were subjected to the same mapping. So, since ∆ is a graph diagram,

the top of each C̃i is a portion of G̃i−1, the bottom of each C̃i is a portion of G̃i, and

the complement of top(C̃i) in G̃i−1 is equal to the complement of bot(C̃i) in G̃i.

In particular, note that when the dipole is reduced Gk−1 and Gk+1 are identified,

so Gk−1 = G̃k−1 and C̃k and G̃k are obtained by applying the reduction to Ck+2 and

Gk+2 respectively making the claim true for C̃k and G̃k−1.

We say that ∆̃ in Proposition 2.42 is obtained from a reduction of ∆.

Definition 2.43. A graph diagram is reduced if it contains no dipoles.

Given a dipole (C,D) there may be more than one isomorphism between bot(D) and

top(C), and therefore there may be more than one way to reduce a dipole. This implies

that, in some occasions, two different graph diagrams can be obtained from reducing the

same dipole. We wish to avoid such situation as we look for conditions helping us prove

that each graph diagram only has one reduced element under the dipole reduction. This

motivates the following definition.

Definition 2.44. A replacement rule t = (R,S, ν) is said to be reductive if the only

automorphism of R that fixes BR pointwise is the identity automorphism, and similarly

for S. A graph rewriting system is reductive if each of its replacement rules is.

Remark 2.45. 1. Note that in a reductive graph rewriting system if ϕ1, ϕ2 are isomor-

phisms from the bottom of the graph diagram to the top of it, we have that ϕ1 ○ ϕ−1
2

is an automorphism of the bottom of the graph diagram, then ϕ1 ○ϕ−1
2 is the identity

automorphism and ϕ1 = ϕ2.

2. Given a dipole (C,D) in a graph diagram ∆ we have boundary fixing isomorphisms

ϕ ∶ top(C) → bot(D), ι ∶ bot(C) → top(D) making the following diagram commute

Btop(C)
ϕ

��

ι // Bbot(C)
ι

��
Bbot(D) Btop(D)ι

oo

where ι is the identity map. Therefore the replacement rule used to obtain the cell C

is the inverse that the replacement rule used to obtain the cell D and by Convention

2.15 we have that ϕ must be the identity map.

Definition 2.46. A graph diagram ∆ is equivalent to a graph diagram ∆̃ if there is a

sequence

∆ = ∆0,∆1, . . . ,∆n = ∆̃
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where, for all i, the diagram ∆i is obtained by a reduction of ∆i−1 or ∆i−1 is obtained by a

reduction of ∆i.

The rearrangement group of fractals provides several rules that induce graph rewriting

systems, some of these rules are reductive and some of them are not.

Example 2.47. In the next sections we will explain how we can obtain a graph rewriting

system from a replacement system of a rearrangement group of fractals. For example,

in Figure 30 we have graph rewriting systems for the Thompson groups F and V . Note

that each rule in this system is reductive since the only automorphism of the graphs in

the replacement rules that fixes pointwise the boundary is the identity. Recall that these

automorphisms must preserve the context of the graphs, in this case directed graphs.

Base GraphGroup Graph rewriting system

F

V

1

2

1

2

1

2 2

1 1

2

1

11

2 2

2

Figure 30 – The graph rewriting system for the groups F and V .

The Generalized Thompson’s Groups Fn,k, Tn,k and Vn,k where n, k are positive integers are

also graph diagram groups. The groups F3,2, T3,2 and V3,2 correspond to the graph rewriting

systems in Figure 31. When n = 2 and k = 1 we have the case of the Thompson’s groups

F,T and V respectively.
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Base GraphGroup Graph rewriting system

F3,2

T3,2

V3,2

1

2

1

2

1 1

2 2

1

2 2

1

1

1

2
1

2 2

1

2

1

2

1

2

Figure 31 – The graph rewriting system for the groups F3,2, T3,2 and V3,2.

Example 2.48. We can turn some non-reductive rules into reductive ones. Observe that

in Figure 17 and Figure 23 we have replacement rules for the rabbit and Vicsek families.

In particular for n = 2 the limit spaces are the basilica and the Vicsek fractal. Note that in

both figures the rule for n = 1 is reductive, but for n ≥ 2 we have an automorphism that

fix pointwise the boundaries but maps an edge (loop) to another. We can turn all these

non-reductive rules (such as the one in Figure 32) into reductive ones by changing the

context to allow edge labels. For example for n = 2 in the rabbit family we can add labels

“A” and “B” and then replace the non-reductive rule into the three rules in Figure 32.

1 1

2 2

A

B

A

B

Non reductive rule Reductive rules

1

2 2

1
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Figure 32 – From non-reductive rule to auxiliary reductive ones.

Remember that when we apply a reduction of graph diagrams, given a dipole (C,D) such

that ϕ(bot(D)) = top(C) we construct the graph diagram by applying ϕ to each cell Cj

and subgraph Gj where j > k+1. That is, for each edge in Cj and Gj we apply ϕ if the edge

is in interior of bot(Ck+1). We obtain cells C̃1, C̃2, . . . , C̃n−2 and graphs G̃0, G̃1, . . . , G̃n−2.

Note that Ck,Ck+1,Gk and Gk+1 have been removed from this list.

Observe that if C,D,E,F are pairwise distinct we can reduce two dipoles from a diagram

without caring about the order in which we do it. Indeed, given two dipoles (C,D) and

(E,F ), we can reduce the dipoles using the isomorphism ϕ1 and ϕ2 respectively.

Lemma 2.49. Let ∆ be a graph diagram over a reductive graph rewriting system with

dipoles (C,D), (E,F ) such that C,D,E,F are pairwise distinct. Then, once we reduce

one of these dipoles we still can reduce the other.

Proof. It is enough to see that we can reduce the dipole (C,D) and after the dipole

(E,F ). Observe that by definition of dipole we have that there exists a valid order with

cells C1,C2, . . . ,Ck = C,Ck+1 = D, . . . ,Cl = E,Cl+1 = F, . . . ,Cn. If we reduce (C,D) we

identify bot(D) with top(C) using ϕ1. Note that as the graph rewriting system is reductive

by Remark 2.45, then ϕ1 is the identity map on bot(D). Moreover, by Lemma 2.30,

bot(C) = top(D) does not intersect the interior of top(E) and bot(F ), so there are no

erased edges or vertices from the interior of top(E) and bot(F ) when the dipole (C,D) is

reduced and no edges or vertices of (E,F ) have been affected. Therefore, we can still use

ϕ2 to reduce the dipole (E,F ).

Theorem 2.50. Every graph diagram over a reductive graph rewriting system is equivalent

to a unique reduced diagram.

Proof. Under the graph reduction and the equivalence class of diagrams, we will prove

that the rewriting system is confluent, so we can use Lemma 1.14. Note that with every

reduction the number of cells is reduced by two, so the system is terminating. It suffices to

show that the system is locally confluent. We consider first some cases where cells coincide

in some way and after that we will consider the case when the cells in the dipoles are

pairwise distinct.

Let (C,D) and (E,F ) be dipoles in a graph diagram ∆.

• Suppose that C = E. Then the definition of dipole implies bot(C) = top(D) = bot(E) =
top(F ) and by Lemma 2.30 we have that D = F.

• Let ∆(1) and ∆(2) be the graph diagrams obtained by reducing from ∆ the dipoles

(C,D) and (E,F ), respectively. Suppose D = E. Note that since the rewriting system

is reductive, the only boundary preserving graph isomorphism from bot(D) to top(C)
is the identity map, and so removing the dipole (C,D) identifies top(F ) with top(C).
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Analogously, the identity map is the only boundary preserving graph isomorphism

from top(E) to bot(F ), and so removing the dipole (E,F ) identifies bot(C) and

bot(F ). Therefore, if we reduce both dipoles from ∆ we obtain the following relations,

bot(E) ≅ top(C) ≅ top(F ), and top(E) = bot(F ) = bot(C), Thus

C = top(C) ∪ bot(C) ≅ bot(E) ∪ top(E),

F = top(F ) ∪ bot(F ) ≅ bot(E) ∪ top(E)

This means that the replacement rules that induce C and F are the inverses of the

replacement rules that induce E. Observe that the graph diagrams ∆(1) and ∆(2)

have the same cells with the exception of the cell Ck that is C in ∆(1) and F in ∆(2),
therefore ∆(1) and ∆(2) are isomorphic graph diagrams.

• Let (C,D) and (E,F ) be dipoles in ∆ with isomorphisms ϕ1 and ϕ2 respectively

to identify their tops and bottoms and so that C,D,E,F are pairwise distinct.

Consider the graph diagrams ∆,∆12,∆21 where ∆ij is the graph diagram obtained

from reducing the dipoles applying ϕiϕj with i + j = 3 and 1 ≤ i, j ≤ 2.

We will show that ∆12 ≅ ∆21.

∆ is a graph diagram with dipoles (C,D) and (E,F ). Then, by definition of dipole we

have that there exists a valid order with cells C1,C2, . . . ,Ck = C,Ck+1 =D, . . . ,Cl =
E,Cl+1 = F, . . . ,Cn. We will denote C12

i and C21
i the cells of ∆12 and ∆21 respectively

and G12
i and G21

i the defining graphs of ∆12 and ∆21, respectively.

We must show that the cells and defining graphs of both graph diagrams are

isomorphic. In general, the defining graphs of a graph diagram are determined by

the cells and the top of the diagram. This is because the other defining graphs are

obtained successively from G0 by taking complements using the third property in the

definition of graph diagram. Thus, it is enough to show that the cells of both graphs are

isomorphic (and preserving tops and bottoms) and top(∆12) = G12
0 ≅ G21

0 = top(∆21).

The second statement that we need to show is true. Indeed, observe that the top

of a diagram is invariant under reductions since, by definition, it consists of the

edges and vertices of ∆ that are not in the interior of the bottom of any cell, in

fact top(∆) = G0, and when we eliminate the dipoles (C,D) and (E,F ) we erase

bot(C) and bot(E) from ∆, then no edges and vertices of G0 are erased when we

apply such reductions. Moreover, no edges and vertices of G0 are affected by the

dipole reduction since R is reductive and this implies that the map that identifies the

bottom and the top of each dipole is the identity. Therefore, to reduce the dipoles

do not move edges in top(∆) and

top(∆12) = G12
0 ≅ G21

0 = top(∆21) ≅ top(∆).
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On the other hand, to prove that the cells of both diagrams are isomorphic, we must

note that independently of the order of the reductions the edges and vertices in the

interior of bot(C) and bot(E) are erased from the new graph diagrams when both

reductions are made. Observe that, by Lemma 2.49, we can do these reductions in

any order we prefer.

We will prove that each cell of ∆ that is not in the dipole remains the same once a

dipole reduction is made.

Note that if Ci ≺ C in the valid order given in ∆, then the dipole reduction does not

affect the cell Ci.

On the contrary, if D ≺ Ci, again we have by Lemma 2.30 that, given a cell Ci of ∆
and so top(D) and bot(Ci) are non-overlapping. This means that the intersection

of the interior of top(D) and bot(Ci) is empty, so the reduction of the dipole does

not eliminate any vertex or edge in bot(Ci). In particular, it does not eliminate

vertices and edges in Bbot(Ci) = Btop(Ci). Similarly, bot(C) and bot(Ci) have disjoint

interiors, thus the dipole reduction does not eliminate edges or vertices in Ci.

Now we can prove that when a dipole is reduced, the new cell ϕj(Ci) is equal to Ci.

Indeed, suppose that we reduced the dipole (C,D). Thus,

– If Ci doe not intersect the interior bot(D),Ci = ϕ1(Ci).

– If Ci intersects the interior of bot(D), we call such intersection W . Observe

that since the graph rewriting system is reductive, ϕ1 is the only boundary

preserving graph isomorphism from bot(D) to top(C) and it is the identity map.

Then, ϕ1(W ) ≅W and ϕ1(W ) ∪ (Ci ∖W ) ≅ Ci.

We have a analogous situation each time that we reduce a dipole, therefore we can

conclude that ϕ1(ϕ2(Ci)) ≅ ϕ2(ϕ1(Ci)) ≅ Ci.

So we have that the graph diagrams ∆12 and ∆21 have isomorphic initial graphs and

set of cells, therefore ∆12 ≅ ∆21.

2.5.4 Graph Diagram Groups

Definition 2.51. Let ∆ and ∆̃ be two ordered graph diagrams where C1,C2, . . .Cn and

G0,G1, . . .Gn are the cells and the corresponding subgraphs of ∆ and C̃1, C̃2, . . . C̃n and

G̃0, G̃1, . . . , G̃m are the cells and the corresponding subgraphs of ∆̃. Suppose that ϕ ∶ Gn → G̃0

is a graph isomorphism. The concatenation ∆̃ ○∆ is a graph diagram given by ∆ ∪ϕ ∆̃
with cell set C1,C2, . . .Cn, C̃1, C̃2, . . . , C̃m and corresponding subgraphs G0,G1, . . .Gn =
G̃0, G̃1, . . . , G̃m.
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Proposition 2.52. ∆̃ ○∆ is an ordered graph diagram.

Proof. 1. We have ∆ ∪ϕ ∆̃ = G0 ∪G1 ∪ ⋅ ⋅ ⋅ ∪ (ϕ(Gn) = G̃0) ∪ G̃1 ∪ ⋅ ⋅ ⋅ ∪ G̃m.

2. Observe that Gi ∩Gk ⊆ Gj for i < j < k and G̃i ∩ G̃k ⊆ G̃j for i < j < k are satisfied.

Remember that ∆ ∪ϕ ∆̃ is the amalgamated union of ∆ and ∆̃ that is obtained by

doing the disjoint union of ∆ and ∆̃ but identifying Gn and G̃0 using ϕ.

We need to check,

• Gi ∩ G̃k ⊆ Gj for i < j and for any 0 ≤ k ≤m
In fact, note that if k = 0

Gi ∩ G̃0 = Gi ∩Gn ⊆ Gj for i < j < n

If k /= 0 then, by definition of ∆ ∪ϕ ∆̃, then G̃k in this new diagram has edges

(and vertices) that are either disjoint from Gi or that belong to Gn ≅ G̃0 and so

they are not disjoint from Gi. In this last case,

Gi ∩ G̃k ⊆ Gi ∩Gn ⊆ Gj for i < j < n.

• Gi ∩ G̃k ⊆ G̃j for j < k.

Indeed, if i = n,
Gn ∩ G̃k = G̃0 ∩ G̃k ⊆ G̃j for 0 < j < k.

If i /= n by definition of ∆ ∪ϕ ∆̃, the graph Gi in this new diagram has edges

(vertices) that are either disjoint from G̃k, or edges (vertices) that belong to

Gn ≅ G̃0 and so they are not disjoint from G̃k. Then,

Gi ∩ G̃k ⊆ G̃0 ∩ G̃k ⊆ G̃j for i < j <m.

3. Since ∆ and ∆̃ satisfy property 3 of Definition of 2.20, then clearly ∆̃ ○∆ satisfies it

too, by construction.

Let be ρ1 ∶= G0
ϕ1Ô⇒ G1

ϕ2Ô⇒ . . .
ϕnÔ⇒ Gn and ρ2 ∶= G̃0

ϕ̃1Ô⇒ G̃1
ϕ̃2Ô⇒ . . .

ϕ̃mÔ⇒ G̃m with

cells C1,C2, . . .Cn and C̃1, C̃2, . . . C̃n respectively where Ci = supp(ϕi) ∪ cosupp(ϕi)
C̃i = sup(ϕ̃i) ∪ cosupp(ϕ̃i).
Observe that the graph diagram ∆̃○∆ coincides with the graph diagram of the concatenation

of the derivations,

ρ ∶= G0
ϕ1Ô⇒ G1

ϕ2Ô⇒ G2 . . .
ϕnÔ⇒ Gn

ϕ̃1Ô⇒ G̃1
ϕ̃2Ô⇒ G̃2 . . .

ϕ̃mÔ⇒ G̃m.

Indeed, note that the defining grahs of Diag(ρ) are G0,G1, . . .Gn = G̃0, G̃1, . . . , G̃m. and

the cells are C1,C2, . . .Cn, C̃1, C̃2, . . . C̃n.
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Example 2.53. In the example 2.18 and the upcoming example 3.10 we have a graph

rewriting system for F ⋊Z2 and derivations using this graph rewriting system. Consider

the element in Figure 33,

∆ = ϕ

Figure 33 – On the left side a graph diagram ∆ and in the right the isomorphism between

its top and bottom.

We can calculate the square of this element ∆2 by using the isomorphism ϕ, that is, ϕ tells

us how to concatenate ∆ with itself.

∆2 =ϕ = =

Figure 34 – Concatenation of an element with itself

In Figure 34 the map ϕ tells us how to identify the bottom of the first copy of ∆, that we

call ∆1 with the top of the second that we call ∆2. This means that, when we perform this

identification, all the edges of ∆2 are affected, that is, when we rotate the top of ∆2 to

identify it with bot(∆1), we also rotate the whole graph diagram ∆2 and obtain the graph

∆2.

Remark 2.54. For simplicity we restrict the replacement rules of our graph rewriting

system to those that are not their own inverse. For example the following rule called

diagonal flip is forbidden,

1

3

2

4

1 2

3 4
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Definition 2.55. A graph rewriting system is called symmetric if for each replacement

rule in it, we have the inverse rule in it.

We wish to capture in the same equivalence class those graphs that produce isomorphic

graph diagrams and the same top. In Theorem 2.28 we prove that the graph diagrams of

isomorphic derivations are isomorphic, see also Examples 2.17 and Example 2.29. This

motivates the following definition.

Definition 2.56. Given a symmetric reductive graph rewriting system R, consider the

set Diag(R,Γ) of pairs (∆, ϕ) where ∆ is a reduced graph diagram with top graph Γ and

graph isomorphism ϕ ∶ bot(∆) → Γ. Two elements (∆1, ϕ1) and (∆2, ϕ2) of this set are

equivalent if there exist isomorphic derivations for ∆1 and ∆2 that are the identity on Γ
(this is the top of both diagrams is Γ and the map τ0 in Definition 2.16 is the identity)

and ϕ1 = ϕ2 ○ ϕ where ϕ is the isomorphism from bot(∆1) to bot(∆2).

Let (∆, ϕ) with cells C1, . . . ,Cn. Suppose that Ci corresponds to an application of the

replacement rule (R, R̃, ν) and let C−1
i be the cell given by applying (R̃,R, ν−1) with

bot(Ci) = top(C−1
i ) and top(C) = bot(C−1

i ). The inverse of (∆, ϕ), (∆−1, ϕ−1), is the diagram

(∆ ∪ϕ Γ, ϕ−1) with cells C−1
n , . . . ,C

−1
1 where the Γ in the amalgamated union is disjoint

from ∆.

Theorem 2.57. The set of D(R,Γ) of equivalence classes of D(R,Γ) forms a group under

concatenation.

Proof. We denote ∆ϕ a representative of the equivalence class of (∆, ϕ) in D(R,Γ).
Suppose ∆ϕ ∈ D(R,Γ) with defining graphs G0 = Γ, . . . ,Gn and cells C1,C2, . . . ,Cn. Note

that given (∆1, ϕ1), (∆2, ϕ2) ∈ D(R,Γ) we have that the composition in the group is given

by (∆2, ϕ2) ○ (∆1, ϕ1) = (∆1 ∪ϕ1 ∆2)ϕ2○τ−1
n

where τn is given by an isomorphic derivation

as in the diagram below and ϕ2 ○ τ−1
n (G′

n) = Γ.

Go = Γ

∆1

$$

ι

��

+3 . . . +3 Gl =ϕ1 Γ

∆2

&&

τl=ϕ−1
1

��

+3 Gl+1 +3

τl+1
��

. . . +3 Gn
ϕ2 //

τn

��

Γ
ι

��
G0 = Γ

(∆1∪ϕ2∆2)ϕ2○τ−1
n

44+3 . . . +3 Gl =ι G′
l

+3 G′
l+1

+3 . . . +3 G′
n

ϕ2○τ−1
n // Γ

Note that given ∆ϕ1 ,∆′
ϕ2 ∈ D(R,Γ) we have ∆ϕ1 ○∆′

ϕ2 = (∆′ ∪ϕ2 ∆)ϕ2○ϕ1 ∈ D(R,Γ), this

is τn = ϕ−1
1 and therefore is satisfied that

τ−1
n (bot(∆ϕ1 ○∆′

ϕ2)) = ϕ1(bot(∆ϕ1 ○∆′
ϕ2)) = ϕ1(G′

n) = bot(∆2). (2.5)
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• The equivalence class of the concatenated and reduced graph diagram does not depend

on the representative of the class. Let (∆1, ϕ1) and (∆′
1, ϕ

′
1) be respectively equivalent

to (∆2, ϕ2) and (∆′
2, ϕ

′
2) with ϕ1 = ϕ2 ○ ϕ and ϕ′1 = ϕ′2 ○ ϕ′. Then Π1 = (∆′

1, ϕ
′
1) ○

(∆1, ϕ1) = (∆1 ∪ϕ1 ∆′
1, ϕ

′
1 ○ ϕ1) and Π2 = (∆′

2, ϕ
′
2) ○ (∆2, ϕ2) = (∆2 ∪ϕ2 ∆′

2, ϕ
′
2 ○ ϕ2)

are equivalent. Indeed, by hypothesis there exist isomorphic derivations for the

graph diagrams (∆1, ϕ1) and (∆2, ϕ2) and for the graph diagrams (∆′
1, ϕ

′
1) and

(∆′
2, ϕ

′
2) then the composition of these derivations produce isomorphic derivations

for (∆1 ∪ϕ1 ∆′
1) and (∆2 ∪ϕ2 ∆′

2), see diagram below.

top(∆1) = G0

τ0=ι
��

+3 G1

τ1

��

+3 . . .Gk = bot(∆1) = top(∆′
1) +3

∆1

vv

τk=ϕ
��

. . . +3 Gn = bot(∆′
1)

τn=ϕ′
��

∆′
1

vv

top(∆2) =H0 +3 H1 +3 . . .Hk = bot(∆2) = top(∆′
2) +3

∆2

hh
. . . +3 Hn = bot(∆′

2)

∆′
2

hh

On the other hand, by 2.5 we have that ϕ′1 ○ ϕ1 ∶ bot(Π1) → Γ, ϕ′2 ○ ϕ2 ∶ bot(Π2) → Γ
and ϕ1 = ϕ2 ○ ϕ and ϕ′1 = ϕ′2 ○ ϕ′ implies that exist ψ ∶ bot(Π1) → bot(Π2) such that

ϕ′1 ○ ϕ1 = ϕ′2 ○ ϕ2 ○ ψ. In fact, it is enough to consider ψ = ϕ−1
2 ○ ϕ′ ○ ϕ1 and see that

ϕ−1
2 (ϕ′(ϕ1(bot(Π1))) = ϕ−1

2 (ϕ′(bot(∆′
1)) = ϕ−1

2 (bot(∆′
2)) = bot(Π2).

• Let be Γι a graph diagram with ι ∶ Γ→ Γ the identity map and top(Γι) = bot(Γι) = Γ.

Note that ∆ϕ ○ Γι = (Γ ∪ι ∆)ϕ = (Γ ∪ιG0 ∪ ⋅ ⋅ ⋅ ∪Gn)ϕ = ∆ϕ and Γι ○∆ϕ = (∆ ∪ϕ Γ)ι =
(G0 ∪ ⋅ ⋅ ⋅ ∪Gn ∪ϕ Γ)ι = ∆ϕ. Furthermore ∆ϕ ○Γι and Γι ○∆ϕ have cells C1,C2, . . . ,Cn

and defining graphs G0 = Γ, . . . ,Gn. Therefore Γι is the identity in D(R,Γ).

• Consider ∆ϕ,∆−1
ϕ−1 = (∆∪ϕΓ)ϕ−1 , and ∆−1

ϕ−1 ○∆ϕ = (∆∪ϕ∆−1)ϕ−1○ϕ. The last diagram

results from the amalgamation of the bottom of ∆ (that is, the edges that are not in

the top of any cell) with the top of ∆−1(that is, the bottom of ∆). We can have a

better view of ∆−1
ϕ−1 ○∆ϕ = (∆ ∪ϕ ∆−1)ϕ−1○ϕ from the following diagrams. In the first

diagram we calculate ∆−1
ϕ−1 = (∆ ∪ϕ Γ)ϕ−1

Γ =ϕ−1 Gn

∆−1

%%

ϕ

��

+3 Gn−1 . . .

τ1

��

+3 G0
ι //

τn

��

Γ
ι

��
Γ = ϕ(Gn)

(∆∪ϕΓ)ϕ−1

99
+3 G′

n−1 . . .
+3 G′

0
ι // Γ

In the second diagram we use the same notation as in the previous one to calculate
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∆−1
ϕ−1 ○∆ϕ = (∆ ∪ϕ ∆−1)ϕ−1○ϕ

G0 = Γ

∆

%%

ι

��

+3 . . . +3 Gn =ϕ ϕ(Gn)

∆−1

''

τ−1
0 =ϕ−1

��

+3 G′
n−1

+3

τ−1
1
��

. . . +3 G′
0

ϕ−1
//

τ−1
n =ϕ−1

��

Γ
ι

��
G0 = Γ1

(∆∪ϕ∆−1)ϕ−1○ϕ

44+3 . . . +3 Gn
+3 Gn−1 +3 . . . +3 G0

ι // Γ

Note that when the graphs are amalgamated each cell will eventually end up in a

dipole that can be reduced leaving only the top of ∆. In fact, recall that ∆ has cells

C1,C2, . . .Cn and ∆−1 has cells C−1
n , . . . ,C

−1
1 . Notice that when we identify bot(∆)

with top(∆−1) = bot(∆) we also identify bot(Cn) with top(C ′
1) = top(C−1

n ) = bot(Cn)
therefore the diagram ∆−1

ϕ−1 ○∆ϕ has cells {C ′
i}

C ′
1 = C1,C

′
2 = C2, . . .C

′
n = Cn,C ′

n+1 = C−1
n , . . . ,C

′
2n+2 = C−1

1

and defining graphs {G′
i}, defined as follows

G′
0 = G0 = Γ,G′

1 = G1, . . .G
′
n = Gn,G

′
n+1 = Gn,G

′
n+2 = Gn−1, . . .G

′
2n+2 = G0 = Γ

and a dipole (Cn,C−1
n ). We can reduce this dipole by erasing these cells and the graph

G′
n from these lists and identifying the graph G′

n+1 with the graph G′
n−1. Similarly to

the previous case, bot(Cn−1) is identified with top(C ′
n+1) = top(C−1

n−1) = bot(Cn−1) and

we have again a dipole (Cn−1,C
−1
n−1). We can repeat this argument until we identify

the graph G′
0 = Γ with the graph G′

2n+2 = Γ.

• Let ∆ϕ1 ,Ωϕ2 and Λϕ3 ∈ D(R,Γ). Consider ((∆ϕ1○Ωϕ2)○Λϕ3) and (∆ϕ1○(Ωϕ2○Λϕ3)) ∈
D(R,Γ). Observe that, by definition

(∆ϕ1 ○Ωϕ2) ○Λϕ3 = (Ω ∪ϕ2 ∆)ϕ1○ϕ2 ○Λϕ3 = (Λ ∪ϕ3 Ω ∪ϕ2 ∆)ϕ1○ϕ2○ϕ3

On the other hand,

∆ϕ1 ○ (Ωϕ2 ○Λϕ3) = ∆ϕ1 ○ (Λ ∪ϕ3 Ω)ϕ2○ϕ3 = (Λ ∪ϕ3 Ω ∪ϕ2 ∆)ϕ1○ϕ2○ϕ3

By definition of composition we have that both diagrams have the same cells (respec-

tively, defining graphs), that is the union of the set of cells (respectively, defining

graphs) in each graph diagram is the same. Therefore (∆ϕ1 ○Ωϕ2) ○Λϕ3 and ∆ϕ1 ○
(Ωϕ2 ○Λϕ3), are equal in D(R,Γ).
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Example 2.58. Consider the following derivation

1

2

1

2

3 3

2

Observe that there are two isomorphisms between the terminal graph and the initial graph

of the derivation. These isomorphisms determine two different graph diagrams. First ϕ1

corresponds to the isomorphism ϕ1(3) = 1, ϕ1(2) = 2, while the second corresponds to the

isomorphism ϕ2(3) = 2, ϕ2(2) = 1.

In Example 3.10 we give a graph rewriting system for the Thompson group T . The graph

diagrams in Figure 35 belong to this group. In fact, these elements have the same valid

order, but different isomorphism between its bottom and top. In Figure 35 we use colors to

indicate the isomorphism between the top (the circle inside the figure) and the bottom of

the graph diagram (colored edges in the outside of the diagram).

Figure 35

Remark 2.59. We can define the product of two graphs diagrams under certain conditions.

In fact, let Πϕ be a graph diagram with top(Πϕ) = Γ0 and bot(Πϕ) = Γ1, ϕ ∶ Γ1 → Γ1

an automorphism and Π′
ϕ be a graph diagram with top(Π′

ϕ′) = Γ1 and bot(Π′
ϕ′) = Γ2,

ϕ′ ∶ Γ2 → Γ2 and automorphism. We can find the concatenation ∆π = Π′
ϕ′ ○Πϕ and to do

this we wish to know how change the graph diagram Π′
ϕ′ when we identified bot(Πϕ) with

top(Π′
ϕ′) in Π′

ϕ′ ○Πϕ. So, we will construct a derivation ρ with initial graph bot(Πϕ) and

isomorphic to the one that is associated with the graph diagram Π′
ϕ′. Consider the diagram

below where the first n coordinates of the first line correspond to a derivation and the map

ϕ′ correspond to the isomorphism between bot(Π′
ϕ′) and Γ2. We can obtain the second line

of this diagram by identifying bot(Πϕ) with top(Π′
ϕ′) and applying the same replacements

that in the first line successively from bot(Πϕ) and defining ψ = ϕ′ ○ τ−1
n . Notice that the

derivation ρ in the diagram below, tell us how the defining graphs and cells of Π′
ϕ′ change

when we identified top(Π′
ϕ′) and bot(Πϕ). Therefore the graph diagram of the derivation,

∆′
ψ is by construction the graph diagram obtained when we identify bot(Πϕ) and top(Π′

ϕ′).
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In the diagrams below the map ι correspond to the identity isomorphism of a graph.

top(Π′
ϕ′)

Π′
ϕ′

((

τ0=ϕ
��

ϕ1 +3 G1

τ1

��

ϕ2 +3 . . .
ϕn+3 bot(Π′

ϕ′)
τn

��

ϕ′ // Γ2

ι

��
ρ ∶= bot(Πϕ)

∆′
ψ

77
ψ1 +3 H1

ψ2 +3 . . .
ψn +3 Hn

ψ // Γ2

So,

∆ψ = Π′
ϕ′ ○Πϕ = (Π ∪ι ∆′)ψ = (Π ∪ϕ Π′)ψ. (2.6)

Observe that this operation is associative. In fact, let be ∆i an element of the groupoid

such that top(∆i) = Γi−1, bot(∆i) ≅ϕi Γi for i = 1,2,3. Consider also the derivations,

ρ1 ∶= Γ0
ψ1Ô⇒ G1

ψ2Ô⇒ G2 . . .
ψkÔ⇒ Gk →ϕ1 Γ1

ρ2 ∶= Γ1
ψk+1Ô⇒ Gk+1

ψ2Ô⇒ Gk+2 . . .
ψlÔ⇒ Gl →ϕ2 Γ2

ρ3 ∶= Γ2
ψl+1Ô⇒ Gl+1

ψ2Ô⇒ Gl+2 . . .
ψkÔ⇒ Gn →ϕ3 Γ3

such that Diag(ρi) = ∆i. We will prove that ∆3 ○ (∆2 ○∆1) = (∆3 ○∆2) ○∆1. Consider the

derivation associated to ∆3 ○∆2 ○∆1,

Γ0 Ô⇒ G1 Ô⇒ . . .Ô⇒ Gk =ϕ1 Γ1 Ô⇒ Gk+1 Ô⇒ . . .Ô⇒ Gl =ϕ2 Γ2 Ô⇒ Gl+1 Ô⇒ . . .Ô⇒ Gn →ϕ3 Γ3.

We will use 2.6 to obtain (∆3 ○∆2) ○∆1. This is, we first do the amalgamated union of ∆3

and ∆2,∆2∪ϕ2 ∆3, by identifying Gl =ϕ2 Γ2 as Gl =ι ϕ−1
2 (Γ2) = G′

l and after we amalgamate

this union to ∆3. Observe that in the second derivation of the diagram below we obtain

∆3 ○∆2 = (∆2 ∪ϕ2 ∆3)ϕ3○τ−1
n
.

Γ0

∆1

##

ι

��

+3 . . . +3 Gk =ϕ1 Γ1

∆2

%%

ι

��

+3 . . . +3 Gl =ϕ2 Γ2

∆3

&&

τl=ϕ−1
2

��

+3 Gl+1 +3

τl+1
��

. . . +3 Gn
ϕ3 //

τn

��

Γ3

ι

��
Γ0 +3 . . . +3 Gk =ϕ1 Γ1

(∆2∪ϕ2∆3)ϕ3○τ−1
n

44+3 . . . +3 Gl =ι G′
l

+3 G′
l+1

+3 . . . +3 G′
n

ϕ3○τ−1
n // Γ3

Moreover we can identify Gk =ϕ1 Γ1 as Gk =ι ϕ−1
1 (Γ1) ∶= G̃k.

Γ0

ι

��

+3 . . .Gk =ϕ1 Γ1

(∆2∪ϕ2∆3)ϕ3○τ−1
n

))

τk=ϕ−1
1

��

+3 Gk+1 . . .

τk+1
��

+3 G′
l

τ ′l
��

+3 G′
l+1 . . .

τ ′l+1
��

+3 G′
n

ϕ3○τ−1
n //

τ ′n
��

Γ3

ι

��
Γ0

(∆1∪ϕ1∆2∪ϕ2∆3)ϕ3○τ−1
n ○(τ ′n)−1

44+3 . . .Gk =ι G̃k
+3 G̃k+1 . . . +3 G̃l

+3 G̃l+1 . . . +3 G̃n
γ // Γ3
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where γ = ϕ3 ○ τ−1
n ○ (τ ′n)−1. We proceed in a similar way to calculate (∆3 ○∆2) ○∆1,

Γ0

∆1

��

ι

��

+3 . . .Gk =ϕ1 Γ1

∆2

''

τk=ϕ−1
1

��

+3 Gk+1 . . .

τk+1
��

+3 Gl =ϕ2 Γ2

∆3

%%

τ̂l
��

+3 Gl+1 . . .

ι

��

+3 Gn
ϕ3 //

ι

��

Γ3

ι

��
Γ0

(∆1∪ϕ1∆2)ϕ2○τ̂−1
l

44
+3 . . .Gk =ϕ1 G̃k

+3 G̃k+1 . . . +3 G̃l =ϕ2○τ̂−1
l

Γ2 +3 Gl+1 . . . +3 Gn
ϕ3 // Γ3

Finally by the following diagram establish through equivalent derivations with identity

isomorphism ι between its initial graphs that ∆3○(∆1∪ϕ1∆2)ϕ2○τ−1
l
= (∆1∪ϕ1∆2∪ϕ2∆3)ϕ3○τ̃−1

n
.

Γ0

(∆1∪ϕ1∆2)ϕ2○τ̂−1
l

**

ι

��

+3 . . .Gk =ι G̃k

ι
��

+3 G̃k+1 . . .

ι
��

+3 G̃l =ϕ2○τ̂−1
l

Γ2

∆3

%%

τ̃l=τ̂l○ϕ−1
2

��

+3 Gl+1 . . .

τ̃l+1
��

+3 Gn
ϕ3 //

τ̃n
��

Γ3

ι

��
Γ0

(∆1∪ϕ1∆2∪ϕ2∆3)ϕ3○τ̃−1
n

33+3 . . .Gk =ι G̃k
+3 G̃k+1 . . . +3 G̃l

+3 G̃l+1 . . . +3 G̃n
ϕ3 // Γ3

Notice that the graph G̃l+1 is the same in the derivations for ∆3○(∆2○∆1) and (∆3○∆2)○∆1

since the amalgamation of graphs is associative, so we can relate the maps τi, τ
′
i with the

map τ̃ . This is, τ̃l+1(Gl+1) = G̃l+1 = τ ′l+1(τl+1(Gl+1)) implies that τ ′l+1 ○ τl+1 = τ̃l+1. Moreover,

τ ′l+1○τi = τ̃i for l < i ≤ n since we apply the same rules in each step. In particular, τ ′n○τn = τ̃n,

therefore ∆3 ○ (∆2 ○ ∆1) = (∆1 ∪ϕ1 ∆2 ∪ϕ2 ∆3)ϕ3○τ̃−1
n

= (∆1 ∪ϕ1 ∆2 ∪ϕ2 ∆3)ϕ3○τ−1
n ○(τ ′n)−1 =

(∆3 ○∆2) ○∆1.
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3 Families of Graph Diagram Groups

In this Chapter we see some examples of graph diagram groups. Our principal results in

this chapter are that right angled Artin groups, the Guba and Sapir diagram groups and

rearrangement groups of fractals are all graph diagram groups.

3.1 Free Groups

Free groups are a fundamental example of diagram groups. The proof of the next theorem

gives a blueprint for the proof that right angled Artin groups and diagram groups are

graph diagram groups (which we will see later in this chapter).

Theorem 3.1. Free groups are graph diagram groups.

Proof. We will first prove that FS with free generating set S = {a, b} is a graph

diagram group. Let the context for graphs be given by labeled graphs in the

vocabulary Σ = {x, a1, a2, b1, b2} and consider the following graph rewriting sys-

tem R with base graph Γ given by a single segment labeled with the letter x.

Graph rewriting system

x a1 a1 x

a1 a2 a2
a1

a2 a2 xx

x b1 b1 x

b1 b2 b2 b1

x b2 b2 x

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
1

2

1

2

1

2

1

2
1 1

2 2

1

2

1 1 1 1

2 2 2 2
1

2

1

2

1

2

1

2

1

2

Figure 36

First note also that in Remark 2.54 we forbid rearrangement rules that are its own inverse,

so a1 ≠ a2 and b1 ≠ b2. Also observe that R is reductive and symmetric, so by Theorem 2.57

D(R,Γ) is a group. Moreover, the graph diagram group arising from R coincides with the

diagram group (in the sense of Guba and Sapir) for the semigroup presentation given by

P = ⟨x, a1, b1, a2, b2 ∣ x = a1, a1 = a2, x = a2, x = b1, b1 = b2, b2 = x⟩

, see [1], Example 6.3.
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Notice that an element in D(R,Γ) is a graph diagram with top and bottom Γ and cells

induced by R and graph isomorphism the identity between the bottom and the top of

each graph diagram.

Consider the following graph diagrams in D(R,Γ),

a1

a2

x

x

A = A−1 =

B =

x

b1

b2

x

x

a2

a1

x

x

b2

b1

x

B−1 =

Consider the graph A and note that we are using the auxiliary edges labeled with a1, a2 to

avoid a dipole reduction each time that appear consecutive copies of A in a graph diagram.

In particular A2 is reduced. On the other hand, we have that AB ≠ BA.

We denote a cell as a pair C = (a, b) where the top(C) is an edge labeled with a and the

bot(C) is an edge labeled with the letter b.

Let α ∶ FS → D(R,Γ) be a group homomorphism naturally defined by α(a) = A,α(b) =
B,α(a−1) = A−1 and α(b−1) = B−1 and extend it naturally over words in FS.

A =

x

a2

a1

x

a1

a2

AA−1 = =

x

a2

a1

a2

x

= =

x

x

a2

x

x

Figure 37

Observe that α(1) = α(a)α(a−1) = α(b)α(b−1) = Γ and α(ab) = α(a)α(b) = AB.

On the other hand, α is an isomorphism.

First, note that ker(α) = Γ. Indeed, let x1x2 . . . xn ∈ FS with xi ∈ {a, b, a−1, b−1} for 1 ≤ i ≤ n.

We define α(xi) =Dxi = A±1 if xi = a±1 and α(xi) =Dxi = B±1 if xi = b±1. We will proceed
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by induction over n. For n = 2, then α(x1x2) =Dx1Dx2 = Γ, this is x2 = x−1
1 . Now assume

the induction hypothesis for k < n. Suppose that ∆ = α(x1x2 . . . xn) = Dx1Dx2 . . .Dxn = Γ
where Dxi ∈ D(R,Γ) for 1 ≤ i ≤ n. This implies that we can reduce ∆ until get the identity

in D(R,Γ). We claim that there exists a j such that DxjDxj+1 = Γ. First, note that each

Dxi is reduced and this implies that Dx1Dx2 . . .Dxn cannot have a dipole (C,D) such that

bot(C) = top(D) = y with y ∈ {a1, a2, b1, b2}. Indeed, suppose that bot(C) = top(D) = a1

and observe that, by construction, the only possibilities for top(C) and bot(D) are a2 or x

with bot(D) /= top(C) and neither of these cases is a dipole. On the other hand, suppose

that we have a dipole (C,D) such that bot(C) = top(D) = x so the only possibilities for

top(C) and bot(D) are a1, a2, b1 and b2. In each case we obtain a graph diagram Dxj

with bot(C) = bot(Dxj) = x and a graph diagram Dxj+1 with top(D) = top(Dxj+1) that

satisfies DxjDxj+1 = Γ. To clarify, suppose that top(C) = a1, so as (C,D) is a dipole, then

bot(D) = a1. Since the elements of the groups are graph diagrams with top and bottom

edge labeled with x, ∆ must have cells E and F such that bot(E) = top(C) = a1 and

top(F ) = bot(D) = a1, so top(E) = bot(F ) = a2. The result follows from doing one more

time the same argument to finally obtain A−1 with bot(A−1) = bot(C) = x and A with

top(A) = top(D) = x (see Figure 37).

Hence,

Dx1Dx2 . . .Dxn =Dx1Dx2 . . .DxjDxj+1 . . .Dxn =Dx1Dx2 . . .Dxj−1Dxj+2 . . .Dxn = Γ

Therefore,

α(x1x2 . . . xn) = α(x1x2 . . . xjxj+1 . . . xn) = α(x1x2 . . . xj−1xj+2 . . . xn) = Γ

Observe that the last term of the last equality has less than n factors, so we have

that by inductive hypothesis 1 = x1x2 . . . xj−1xj+2 . . . xn = x1x2 . . . xn, since we know that

DxjDxj+1 = Γ, then xjxj+1 = 1.

Let us now show that α is surjective. Consider a non-trivial reduced graph diagram

∆ϕ ∈ D(R,Γ). It is enough to see that this diagram can be decomposed as a concatenation

of copies of A,A−1,B and B−1. First, note that as ∆ϕ is a diagram with top a segment

labeled with the letter x, then its bottom must be also an edge labeled with the letter x,

since ϕ in this case is the identity isomorphism. Note also that each time that a segment

labeled with the letter x appears in ∆ϕ, we can find a copy of either A,A−1,B or B−1 after

x in a reduced graph diagram.

In fact, suppose that we have a cell with top an edge labeled with x and bottom an edge

labeled with b1, denote this cell by Ci−1 = (x, b1), then as ∆ϕ is reduced the next cell with

top b1 must be Ci = (b1, b2) and analogously the next cell must be Ci+1 = (b2, x). Then

after x we have a copy of B.

So, by the First Isomorphism Theorem, we have that FS is isomorphic to D(R,Γ).
Now we will argue why the result is true when n > 2. Let be

S = {a, b, c} and consider the graph rewriting system given by
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the rules in Figure 36 together with the following additional rules

Extra Rules

x c1 c1 x

c1 c2 c2
c1

c2 c2 xx

1

2

1

2

1

2

1

2
1

2

1

2

1

2

1

2
1 1

2 2

1

2

1

Figure 38

Notice that we can use the same technique used in the case when the free generating set

has 2 elements to prove that FS is isomorphic to D(R,Γ) when S = {a, b, c}. Moreover,

observe that, for each element in the free generating set, we are using a modified copy

of the rule in Figure 38. In fact, the rules in Figure 36 are two sets of rules similar to

those rules in Figure 38. The general case where S is the free group generated by a free

generating set of n elements follows from adding n copies of the rules in Figure 38 to

the graph rewriting system and then use the same strategy followed when S had two

generators.

3.2 Right Angled Artin Groups

Recall that given a right angled Artin group A we can express a presentation for this group

using a defining graph X with vertices the generators of the group and edges indicating

that two elements commute in A. Consider the graph Γ̃ with the same set of vertices as g

and set of edges determined by the following rule: for each pair of vertices g1, g2 ∈X that

are not connected in X, we add an edge labeled by ag1g2 , but we do not add any more

edges in Γ̃. We call Γ the graph obtained from Γ̃ by changing each isolated vertex g by a

new edge agg with vertices labeled by g and g. Observe that the new edges are disjoint

from the other edges in Γ (see Example 3.3). Note also that if Γ̃ has no isolated vertices

Γ = Γ̃ (see Example 3.2). Throughout this section Γ will be the base graph for our graph

diagram groups.

Given g a generator of Γ we consider the set of edges {agy1 , agy2 , . . . , agyn} that are adjacent
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to g in Γ. We call ag the graph consisting of all these edges. Observe that Γ = ⋃
g∈V

ag

where V is the set of vertices of Γ. Note also that if g is an isolated vertex, we have that

ag = {agg}. Given a graph ag denote bg the graph that results from changing to b’s all the

a’s that appear in the graph ag as in Figure 40. Analogously, given a graph bg denote cg

the graph that results from changing to c’s all the b’s that appear in the graph bg. We

assume that

agy1 = ay1g, . . . , agyn = ayng but all the other labels are different. (3.1)

This means for example that byng /= bgyn and cyng /= byng. Consider the graph rewriting

system R with replacement rules given by r1 = (ag → bg), r2 = (bg → cg) and r3 = (cg → ag)
together with the inverse rules bg → ag, cg → bg and ag → cg where the vertices are the

boundaries and the isomorphism consists in identifying the vertices with the same label.

Similarly to what we did for the free groups we will denote the cells as (tg,mg) with top

tg and bottom mg where t,m ∈ {a, b, c} and g is a generator of A. For example in Figure

41 we have a cell (ax, bx).
Let Ax be the diagram of the derivation

ρ ∶= G0 = Γ ϕ1,r1ÔÔ⇒ G1
ϕ2,r2ÔÔ⇒ G2

ϕ3,r3ÔÔ⇒ G3

that is, the graph diagram with initial graph Γ and cells C1 = (ag, bg),C2 = (bg, cg) and

C1 = (cg, ag). See Figure 42 and Figure 46.

In this case we also use some extra labeled edges as in the case of the free groups.

Example 3.2. Consider the presentation A = ⟨x, y, z,w ∣ xy = yx, yz = zy, zw = wz⟩.
Notice that in this case Γ = Γ̃.

x y

z w

axz axw ayw

Defining graph X Γ

x y

z w

Figure 39

As in 3.1, we assume that axz = azx, axw = awx and ayw = awy but for example bxz /= bzx, bxw /=
bwx and byw /= bwy and cxz /= czx, cxw /= cwx and cyw /= cwy.We have these conditions to avoid

forbidden relations as in Remark 2.54 and to avoid reductions when we do the product of
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some of Ag’s with g a generator of A. In this case ax and bx are as follows:

axz axw

ax bx

bxz bxw

z

x

w

x

z w

Figure 40

In this case the amalgamation of ax ∪ϕ bx is the graph,

axz

axw

bxz

bxw

z

x

w

Figure 41

Therefore, given

ρ ∶= G0 = Γ ϕ1,r1ÔÔ⇒ G1
ϕ2,r2ÔÔ⇒ G2

ϕ3,r3ÔÔ⇒ G3

and Ax =Diag(ρ) is the following graph diagram,

x
y

z w

axz

bxz

cxz

axz
axw

bxw

cxw
axw

ayw

Ax =

Figure 42
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the graph Ax has top and bottom the graph diagram Γ. On the other hand consider

axz axw ayw

x y

z w

byw cyw aywAy =

Figure 43

Notice that ax and by do not have common edges, implying that AxAy = AyAx (see Figure

44).

x y

z w

axz

bxz

cxz

axz
axw

bxw

cxw
axw

ayw

AxAy =
byw cyw ayw

Figure 44

Example 3.3. Let be A = ⟨x, y, z ∣ xy = yx, xz = zx, yz = zy⟩. In this case we define Γ in

the following way: for each element g that commutes with all the other elements in A we

create an edge agg in Γ.

x

z

axx

ayy azz

Defining graph Γ

x x

z zy y y

Figure 45
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In this case we define ax as a single edge labeled with axx and Ax is the

graph diagram of the derivation ρ defined in a way analogous to Example 3.2.

ayy azz

x x

z zy y

x x

x x

x x

axx

bxx

cxx

Ax

axx
bxx
cxx

axx

Rules

Figure 46

Note also that similarly to Theorem 3.1 the graph diagram formed by the initial graph

Γ and cells (ax, bx), (bx, cx) and (cx, ax) generate a free group and that Ax has top and

bottom the diagram Γ. Observe that a similar analysis can be done for each Ag with g a

generator of A.

Guba and Sapir find that many right angled Artin groups were already diagram groups

[16]. In the next results we manage to prove that the whole family of right angled Artin

groups are graph diagram groups.

Theorem 3.4. Every right angled Artin group A can be seen as a graph diagram group.

Proof. Let A be a right angled Artin group, Γ be the base graph and R be the graph

rewriting system given by the rules rg = (ag → bg), sg = (bg → cg) and tg = (cg → ag)
together with the inverse rules (bg → ag), (cg → bg) and (ag → cg) for each g ∈ A. Note that,

by construction, R is reductive and symmetric and so, by Theorem 2.57, we have that

D(R,Γ) is a group. Given S a set of generators of A we define α̃ that maps a generator

g of A to the graph Ag and g−1 to the graph A−1
g , so we set Ag−1 ∶= A−1

g if g ∈ S. We can

extend this to α̃ ∶ FS → D(R,Γ) group homomorphism from the free group FS and such

that α̃(g1g2 . . . gn) = Ag1Ag2 . . .Agn .

First we will prove the following statement.

Suppose that g1 /= g2. Then g1 commutes with g2 if and only if Ag1 commute with Ag2 .

Assume g1g2 = g2g1 and recall that Γ is a graph that has edges between the non commuting

elements of A (except for the edges with initial and final vertex with the same label). Then

g1g2 = g2g1 if and only if ag1 and ag2 do not have edges in common in Γ. Note that the

last statement is equivalent to say that the relations that produce Ag1 are sequentially

independent of those that produce Ag2 which means that Ag1 commute with Ag2 .

Moreover, if g1 /= g2 and g1g2 /= g2g1, we have that Ag1 does not commute with Ag2 . Indeed,

observe that Ag1Ag2 and Ag2Ag1 are reduced graph diagrams with different sets of cells.

By Von Dyck’s Theorem, the map α̃ induces a group homomorphism α ∶ A→ D(R,Γ).
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We will see that ker(α) = 1. We proceed by induction over the number of generators in the

factorization of g ∈ A. If g = g1g2 and α(g1g2) = Ag1Ag2 = Γ we have that Ag2 = Ag−1
1

which

means that g2 = g−1
1 .

Suppose that α(g1g2 . . . gn) = Ag1Ag2 . . .Agn = Γ where Agj ∈ D(R,Γ) for j ∈ {1, . . . , n}.

Note that if g−1
i /= gj then AgiAgj is reduced. In fact the cells of Agi and Agj can not

produce dipoles by condition 3.1. Therefore a dipole (C,D) for Ag1Ag2 . . .Agn must have

bot(Agj) = bot(C) = top(D) = top(Agk).
∆ϕ = Ag1Ag2 . . .Agn = Γ implies that we can reduce ∆ϕ until get the identity of D(R,Γ).
In particular at the beginning of such reduction we can reduce Agj with Agk for some

1 ≤ j < k ≤ n, this is AgjAgk = Γ. We will prove first that, given cells C,D of a of ∆ϕ

such that bot(C) = top(D), then we can find a valid order in which these cells appear

at consecutive positions. In fact, note that the boundaries in each cell of the valid order

are given by vertices since all the rules in the graph rewriting system has vertices as its

boundaries satisfy that condition while the interior of all cells are given by the edges. In fact,

note that all the vertices of a cell C are generators of A (or auxiliary vertices g) and that,

by construction, they are boundary points of top(C) and bot(C). On the other hand, by

Definition 2.19, the interiors of top(C) and bot(C) cannot be empty and therefore must be

given by the edges. Thus, in this case for a graph to overlap with another, they must share

at least one edge. We claim that given a valid order C1, . . .Cj = C, . . .Cl, . . . ,Ck =D, . . . ,Cn
for ∆ϕ such that bot(C) = top(D), then bot(Cl) and top(D) are non- overlapping. Note that

by Lemma 2.5.2 bot(Cl) and bot(D) have disjoint interior, moreover Bbot(C) = Btop(D)
can not intersect the interior of bot(Cl) since Btop(D) is formed by a set of vertices while

the interior of bot(Cl) is formed by edges. By the same argument Bbot(Cl) can not intersect

the interior of bot(D), that is, bot(Cl) and top(D) are not overlapping. Notice that by

Lemma 2.38 we can permute D with all the cells Cl such that j < l < k, therefore we can

find a valid order for ∆ϕ such that C and D are consecutive cells.

Hence, given a valid order for Ag1Ag2 . . .Agn we can first obtain another valid order where

the dipole (C,D) appears in consecutive cells and bot(C) = bot(Agj) = top(Agk) = top(D).
Then we can apply the same strategy again until we obtain a valid order where the cells of

Agj and Agk appear in consecutive positions. This implies that AgjAgk = Γ. In fact suppose

that the last cell of Agj is (bg, ag), then the first dipole of Agk is (ag, bg) and the only Ag’s

that have that cell in its top and bottom are A−1
g and Ag respectively.

Then we can find a valid order for ∆ϕ such that

Ag1Ag2 . . .Agn = Ag1Ag2 . . .AgjAgkAgj+1 . . .Agk−1Agk+1 . . .Agn

= Ag1Ag2 . . .Agj−1Agj+1 . . .Agk−1Agk+1 . . .Agn = Γ

So we have that,

α(g1g2 . . . gn) = α(g1g2 . . . gjgkgj+1 . . . gk−1gk+1 . . . gn)
= α(g1g2 . . . gj−1gj+1 . . . gk−1gk+1 . . . gn) = Γ
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The last equation has less than n factors, so by inductive hypothesis this implies that

g1g2 . . . gn = 1.

We will prove that α is surjective. Consider a reduced element ∆ϕ ∈ D(R,Γ) and note that

∆ϕ = Ag1Ag2 . . .Agn where g1, g2 . . . , gn are either generators of A or their inverses.

In fact, since Γ can be written as union of agi ’s where gi are generators of A, it is enough

to show that each time that we have a copy of ag in D(R,Γ), then either ag is not the top

of a cell, or there is a copy of Ag or A−1
g in ∆ϕ.

Note first that similarly to the argument that we did for the free groups, a graph diagram

has bottom diagram isomorphic to Γ and this isomorphism must preserve the context for

graphs (in this case labeled graphs).

Secondly, in a reduced graph diagram it holds that each time that there is a copy of ag in

∆ϕ that is the top of a non-trivial cell we must have bg, cg and ag as the tops and bottoms

of the subsequent cells. For example, if we have a cell C = (ag, cg) in ∆ϕ, then immediately

after such cell we will have cells D = (cg, bg), and E = (bg, ag) that satisfying C ≺ D ≺ E
any without any other cell between them, because no other relations with support cg and

bg can be applied. Therefore in this case we have a copy of A−1
g after ag.

Thus, by the First Isomorphim Theorem, we have that A is isomorphic to D(R,Γ).

3.3 Diagram Groups

We already worked with several diagram groups. For instance free groups, Thompson’s

group F and Example 3.2 are part of this family. These examples allow us to provide a

graph rewriting system R and a base graph Γ for D(R,Γ) from the classical rewriting

system G arising from the semigroup presentation P and the initial word w of the diagram

group D(P,w). Indeed, given a word v let l(v) be the linear graph with all the edges

directed from left to right and labeled with the letters of v. Moreover, if v = x1x2 . . . xn we

say that the initial vertex of l(v) is the leftmost vertex of l(x1) and the final vertex of

l(v) is the rightmost vertex of l(xn). Then, given a diagram group D(P,w), we define the

initial graph Γ as l(w) and for each rule r = s in G we will add to R the rules l(r) → l(s)
and l(s) → l(r) where the boundaries of these rules map the initial (final) point of l(r) to

the initial (final) point of l(s). Therefore is straightforward the following result

Theorem 3.5. Consider the semigroup presentation P = ⟨Σ ∣ R′⟩ and the graph rewriting

system R obtained from R′ as in the paragraph above. Then D(P,w) ≅ D(R,Γ).

3.4 The Rearrangement Group of Fractals

In the current section we will show that the family of the rearrangement group of fractals

is contained in the family of the graph diagram groups. In order to do that we will follow
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the next steps:

1. We will show how each element in a rearrangement group of fractals that we denote

by G(R′,G0) can be used to obtain a graph diagram D(R,G0).

2. We show how a replacement system of the rearrangement group of fractals can be

used to obtain a graph rewriting system such that the groups generated by these are

isomorphic.

To explain the first point recall that given an element in a rearrangement group G(R′,G0)
we can describe this element using a graph pair diagram, see Definition 1.44 and Remark

1.45. Therefore, this element can be obtained by applying simple expansions to the initial

graph G0 until we get the domain and rank of the rearrangement. Notice that each

application of the replacement rule to a graph Gi produces a new graph Gi+1. On the other

hand, each replacement rule of the rearrangement group of fractals (e→ R) (where u, v

are the vertices of e and u, v are distinguished vertices in R) also induces a replacement

rule for the graph rewriting system given by r = (e,R, ν) and r−1 = (R, e, ν−1) where e,R

are graphs with boundary {u, v} and {u, v} respectively, and ν identifies the vertex u

with the vertex u and the vertex v with the vertex v. A rule ri = (ei,Ri, νi) induces a cell

Ci = (ei,Ri) and a rule r−1
i = (Ri, ei, ν

−1
i ) induces a cell C−1

i = (Ri, ei). This motivates the

following definition:

Definition 3.6. Consider a graph pair diagram (Gk, G̃k, ϕ) for the rearrangement f

and diagrams ∆(Gk) and ∆(G̃k) given by G0,G1, . . .Gk and G0 = G̃0, G̃1, . . . G̃k and

C1,C2, . . .Ck and C̃1, C̃2, . . . C̃k as their respective cells. Here each Gi+1 and G̃i+1 is ob-

tained from Gi and G̃i, respectively by applying a replacement rule in R′. We define a

graph diagram ∆(f) for f as ∆−1(G̃k) ○ϕ ∆(Gk).

Observe that, by definition of concatenation, we have that ∆(f) has defining graphs

G0,G1, . . .Gk = G̃k, G̃k−1, . . .G0 and cells C1,C2, . . .Ck, C̃
−1
k , C̃

−1
k−1, . . . C̃

−1
1 . Recall that in

Remark 2.59 we explain how to make the product of ∆−1(Gk)ι and ∆(Gk)ϕ.

Example 3.7. To illustrate this construction suppose that the replacement system

for G(R′,G0) is determined by the initial graph Γ = G0 and the rule r as follows:

Γ
r
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We want to see which diagram is produced by the following rearrangement ϕ.

ϕ

ϕ

In order to create a derivation for this rearrangement, first we produce the domain and the

range using the replacement rules induced by the cells as follows:

ϕ

Domain of ϕ Range of ϕ

Then, we use ϕ−1 to identify the domain and the range of ϕ and we get the following

derivation

G0 G1 G2

In the next picture we obtain the graph diagram induced by this derivation and the one

induced by its square.

≅

Note that ∆2, and ϕ2 are the identity elements of their respective groups.

Given a replacement system (R′,G0) of the rearrangement group of fractals, we will

produce a graph rewriting system R. In order to do that, it is necessary to understand

the differences between the rules in R′ and rules in R. For example, in the case of R′ we

can apply a replacement over any edge (including a loop) while in R we need a boundary

preserving isomorphism that by definition is a graph isomorphism.

Remark 3.8. How to produce a graph rewriting system R from a replacement

system R′: The replacement system of the rearrangement group induces a graph rewriting
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system with simple expansions playing the role of partial isomorphisms. Sometimes we need

to add a finite number of extra rules to produce the same graphs with R and R′. Indeed, in

general, it is enough to consider rules that can be obtained from applying the replacement

(e→ R) to the edges of R and to the edges of the initial graph Γ as in Example 3.11. We

also need to add the inverse of each of these rules to produce a symmetric graph rewriting

system. In fact, this makes sense since all the edges in the limit space are obtained by

successively applying replacement rules on the initial graph or in copies of the graph R.

Definition 3.9. Given a replacement system R′ of the rearrangement group of fractals,

we call R the graph rewriting system induced by R′ described in Remark 3.8.

We will clarify this in the following examples.

Example 3.10. Consider the graph rewriting system given in [2] Belk and Forrest gave a

replacement system for F ⋊Z2, this replacement consist of the base graph Γ and the rule r1

in Figure 47. Notice that the replacement system is reductive since the only automorphism

of e and S that fix Be and BS pointwise is the identity automorphism and following Remark

3.8 we add the inverse replacement to obtain a graph rewriting system for F ⋊Z2.

e S

Replacement rules

r1

S e

r−1
1

Γ

Base graph

Figure 47 – A graph rewriting system for F ⋊Z2

Example 3.11. Consider the rules r1, r2 in Figure 49 and the graphs Γ and Γ1 in Figure

48. Observe that given a graph rewriting system R′ = {r1} we cannot apply the rule r1 to the

graph Γ and obtain Γ1, since we need a boundary preserving isomorphism to apply this rule

and there is not even a graph isomorphism. However seen as a rule from a rearrangement

group we can apply the rule to Γ and obtain the graph Γ1.

Γ1Γ

Figure 48

Moreover, observe that the replacement system given by R′ = {r1} and the initial graph

Γ is enough to produce the Thompson group T as a rearrangement group of fractals and



Chapter 3. Families of Graph Diagram Groups 84

we need R = {r1, r2, r
−1
1 , r−1

2 } and the initial graph Γ to produce the same group as graph

diagram group.

r1 r2

Figure 49

If the graph rewriting system induced by the replacement rule of a rearrangement group is

reductive and symmetric, then we have that by Theorem 2.57 that we can consider the

graph diagram group it generates.

Note that the associated derivation does not depend on the order of how we construct

the graph pair diagram. In fact, suppose that we have two constructions of the graph pair

diagram using the same number of simple expansions to get (Gk,G
′
k, ϕ). In this case we

obtain the graph pair diagram applying the same rules in a different order, this means that

both derivations are transpositions of each other and, by Theorem 2.39. their diagrams

are isomorphic.

The graph pair diagram obtained from a rearrangement is not unique. In fact, given

(Gi,G
′
i, ϕ) and e is an edge of Gi, then (Gi ⊲ e,G′

i ⊲ ϕ(e), ϕ′) is another graph pair

diagram for the same rearrangement, where ϕ′ coincide with ϕ in Gi − {e} and maps eε to

ϕ(e)ε for every ε in R. However, the next proposition proved by Belk and Forrest in [2]

guarantees that each graph diagram has a unique reduced element. We will show that two

rearrangements with the same reduced graph pair diagram have equivalent graph diagram.

Proposition 3.12. Every rearrangement has a unique reduced graph pair diagram.

We will prove that rearrangement groups of fractals are contained in the family of the

graph diagram groups. For clarity, we will see the following cases and in all of them R will

be a symmetric graph rewriting system

1. first show the result in Theorem 3.13 in the case when the graph rewriting system R
induced by R′ is reductive,

2. then in Theorem 3.14 we explain that almost the same proof works for colored

rewriting systems, and

3. finally we explain how to modify the proof in the case when R is not reductive.

Theorem 3.13. If the graph rewriting system R induced by R′ is reductive and symmetric,

then the rearrangement group G(R′,Γ) is isomorphic to D(R,Γ).
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Proof. First off, note that, by construction, we can obtain the same graphs from the

replacement system (R′,Γ) and with the graph rewriting system (R,Γ). Also note that

by Theorem 2.57 D(R,Γ) is a group since R is a reductive and symmetric graph rewriting

system.

Consider a map α ∶ G(R′,Γ) → D(R,Γ) that maps each rearrangement f to the graph

diagram ∆(f). We will prove that this application is well defined, bijective and preserves

the product of G(R′,Γ).

1. The map α does not depend on the valid orders used to obtain the reduced graph

pair diagram. In fact, given two valid orders for ∆(f) associated to the same reduced

graph pair diagram, we know that these produce isomorphic graph diagrams by

Theorem 2.39.

2. Two equivalent elements in G(R′,Γ) produce equivalent graph diagrams. It is enough

to prove that given f, g ∈ G(R′,Γ) such that, if the graph pair diagram of f is

obtained from the graph pair diagram of g by applying one single reduction, then

their diagrams are equivalent. Suppose that f has a graph pair diagram (Gk, G̃k, ϕ)
and g has graph pair diagram (Gk+1, G̃k+1, ϕ

′) where Gk+1 is obtained from Gk by

applying a simple expansion (e→ R) in an edge f of Gk and G̃k+1 is obtained from

G̃k by applying the same rule on the edge ϕ(e) of G̃k.

In this case ∆(f) has defining graphs and cells given as follow

G0 = Γ,G1, . . . ,Gk = G̃k, . . . , G̃0 = Γ and cells C1, . . . ,Ck, C̃
−1
k , . . . C̃

−1
1

and ∆(g) has defining graphs and cells given by

G0,G1, . . . ,Gk,Gk+1 = G̃k+1, G̃k, . . . , G̃0 and C1, . . . ,Ck,Ck+1, C̃
−1
k+1, . . . , C̃

−1
1

Observe that, when Gk+1 and G̃k+1 are identified, also R = bot(Ck+1) and R =
top(C̃−1

k+1) = bot(C̃−1
k+1) are identified. Then (Ck+1,C

−1
k+1) is a dipole and when we

reduce it, we eliminate Gk,Gk+1 and Ck,Ck+1 from the list of ∆(g) and we obtain

the list of defining graphs and cells of ∆(f). Thus ∆(f) is equivalent to ∆(g).

3. Observe that α is a homomorphism that satisfies ker(α) = Γ. In fact, let f and

g be elements in G(R′,Γ) and suppose that g ○ f is well defined. Then, we can

write the graph pair diagrams for f and g as (E1,E2, ϕ), (E2,E3, ϕ
′) respectively.

By Definition 3.6, ∆(f) = ∆(E2)−1 ○ϕ ∆(E1) and ∆(g) = ∆(E3)−1 ○ϕ′ ∆(E2). Then

∆(g) ○ι ∆(f) = ∆(E2)−1 ○ϕ ∆(E1) ∪ι ∆(E3)−1 ○ϕ′ ∆(E2)
= ∆(E1) ∪ϕ (∆(E2)−1 ∪ι ∆(E2)) ∪ϕ′ ∆(E3)−1

= ∆(E1) ∪ϕ Γ ∪ϕ′ ∆−1(E3)
= ∆(E1) ∪ϕ′○ϕ ∆−1(E3) = ∆(g ○ f)
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On the other hand, assume that α(f) = Γ with (Gk, G̃k, ϕ) a graph pair diagram for

f . So,

α(f) = Γ⇒∆(G̃k) ○ϕ ∆−1(Gk) = Γ⇔ Gk = G̃k,

thus f is the identity rearrangement.

4. On the other hand, α is surjective. Indeed, let ∆ϕ ∈ D(R,Γ) and let R = {R+ ∪R−}
where R+ is the set of replacement rules associated with simple expansions, (e →
R) and R− is the set of replacement rules associated with the inverses of simple

expansions. We will use the replacements in R+ to produce a graph diagram ∆(Gk)
and the replacements in R− to produce a graph diagram ∆(G̃j) in such a way that

(Gk, G̃j, τ) will be a graph pair diagram for f that satisfies α(f) = ∆ϕ.

∆ϕ arises from a valid order with cells C1,C2, . . . ,Cn, and defining graphs

G0,G1, . . . ,Gn.

We will show that we can find a valid order for ∆ϕ such that we have first all

of the cells (e,R) induced by r ∈ R+ and, after, all of the cells (R, e) obtained

from rules r ∈ R−. It is enough to show that we can transpose two consecutive

cells Cj = (R1, e1) and Cj+1 = (e2,R2) in this order, where e1, e2 are isomorphic to

e and R1,R2 are isomorphic to R. Indeed, let Cj = (R1, e1) and Cj+1 = (e2,R2),
by hypothesis ∆ϕ is reduced, so e1 /= e2 and the replacements that induce these

cells are sequentially independent. In fact note that bot(C1) = e1 does not intersect

the interior of top(C2) = e2 and top(C2) = e2 does not intersect the interior of

bot(C1) = e1, so top(C2) and bot(C1) are non overlapping by Lemma 2.38 the order

C1,C2, . . . ,Cj+1,Cj, . . .Cn is a valid order for ∆ϕ.

We proceed now to define ∆(Gk) and ∆(G̃j) and therefore the graph pair diagram

(Gk, G̃j, τ). Notice that we wish that both graph diagrams have top given by the

graph G0. Firstly suppose that the Ci’s are the cells induced by ri ∈ R and that

r1, . . . , rk ∈ R+ and rk+1, . . . , rn ∈ R−. Then we can produce a sequence of graphs Gi

applying the rule ri over the graph Gi−1. Moreover, note that G0 = ϕ(Gn) and that

we can apply the rule r−1
n to the graph ϕ(Gn) and obtain a graph G̃1 in such a way

that Gn−1 ≅ G̃1, then we apply the rule rn−1 to the graph G̃1 in such a way that we

obtain a graph G̃2 that satisfies Gn−2 ≅ G̃2 and we follow this process until we get

Gn

τn
��

r−1
n +3 Gn−1

τn−1
��

r−1
n−1 +3 . . .

r−1
k+1 +3 Gk

τk
��

ϕ(Gn)
r−1
n +3 G̃1

r−1
n−1 +3 . . .

r−1
k+1 +3 G̃j

where the τi’s are isomorphisms. Hence, the two derivations are isomorphic and

therefore they produce the same graph diagram.

Note that the rearrangement f with graph pair diagram (Gk, G̃j, τk) belongs to

G(R,Γ) and satisfies α(f) = ∆ϕ. In fact, the graphs Gk and G̃j are obtained
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by applying replacements from R′ and ∆(Gk) is given by the defining graphs

G0,G1, . . .Gk and cells C1,C2, . . .Ck and ∆(G̃j) is given by the defining graphs

G0 = ϕ(Gn) = G̃0, G̃1, . . . G̃j and cells Cn,Cn−1, . . . ,Ck+1.

On the other hand, ∆−1(G̃j) ○τk ∆(Gk) = ∆(Gk) ∪τk ∆−1(G̃j) ≅ ∆ϕ.

Theorem 3.14. Let R be the graph rewriting system induced by a colored graph rewriting

system (R′,Γ). Then G(R′,Γ) is isomorphic to D(R,Γ).

Proof. Observe that the proofs of items 1, 2 and 3 are analogous to the same items of the

proof of Theorem 3.13.

We will prove item 4, that is, that α is surjective.

In this case we have an initial graph Γ with edges colored by a finite set of colors C and

cells of the form (ec,Rc) where ec is colored by an element of C and Rc have edges colored

with some colors of C. Each replacement graph Rc has distinguished initial and terminal

vertices. In fact, let ∆ϕ ∈ D(R,Γ) and let R = {R+∪R−} where R+ is the set of replacement

rules associated with simple expansions (ec,Rc), and R− is the set of replacement rules

associated with the inverse of simple expansions (Rc, ec), where c ∈ C.
We notice that ∆ϕ arises from a valid order with cells C1,C2, . . . ,Cn, and defining graphs

G0,G1, . . . ,Gn We will show that we can find a valid order for ∆ϕ such that the cells

appearing first are of the form (ec,Rc) induced by r ∈ R+ and those appearing afterwards

are those of the form (Rc, ec) obtained from rules r ∈ R−. To prove this, it is enough to

show that we can transpose two consecutive cells Cj = (Rcj , ecj) and Cj+1 = (ecj+1 ,Rcj+1).
Indeed, let Cj = (Rcj , ecj) and Cj+1 = (ecj+1 ,Rcj+1). Now, if ecj has different color than

ecj+1 , then the result follows as in Theorem 3.13 while, on the other hand, cj /= cj+1 implies

that the replacements that induce the cells are sequentially independent since bot(Cj) and

top(Cj+1) have different colors in their edges, so they are non-overlapping and, by Lemma

2.38 the order C1,C2, . . . ,Cj+1,Cj, . . .Cn is a valid order for ∆ϕ.

The proof now follows as in Theorem 3.13.

There are cases where the graph rewriting system R induced by the rewriting system R′

is not reductive. In these cases we need to modify the map α defined in Theorem 3.14 a

little bit.

Example 3.15. We will work in the case n = 2 of the Basilica family.

In Figure 32 we constructed a reductive replacement system for the element n = 2 of

the basilica set family. We will add to that graph rewriting system the inverse rules and
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consider the same initial graph seen in Figure 17.

A

B

A

B

1

2 2

1

A

B

Reductive and symmetric graph rewriting system R̃

1 1

2 2
r−1

1

r−1
2

r−1
3

r1

r2

r3

A

B

Figure 50

Recall that the initial graph and top of the diagram in the rabbit family for n = 2 is an

unlabeled graph and that a graph diagram is a diagram that has a set of cells and defining

graphs together with an isomorphism between its top and its bottom. This isomorphism

must preserve the context for graphs and so the bottom of the graph diagram must be also

an unlabeled graph.

Once we use the rule r1 in Figure 50 we will eventually either use the rule r−1
1 (in this case

we have a dipole in the graph diagram) or we must use the rules r2 and r3 to eliminate

the labels in the graph since the bottom of the diagram has no labels. Apart of the cases

mentioned above, there are no other ways of removing the labels in a derivation.

Observe that in a valid order for a graph diagram the rules r−1
1 , r−1

2 and r−1
3 are sequentially

independent from the other rules and the same statement is also true for their inverse

rules r1, r2 and r3. So, by Lemma 2.38 we can transpose the cells in the valid order until

put them in consecutive positions as in Figure 51.
A

B

A

Figure 51

We will show in Lemma 3.21 that we can move to the left the replacement un-

til obtains all the auxiliary rules one after the other as in the figure below,
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A

B

A

r

Figure 52 – Replacing the rule r = (e,R, ν) by a sequence of auxiliary reductive rules.

Therefore, having the auxiliary rules can be seen as having a unique rule r.

In the following we will define a graph rewriting system R̃ obtained from R′ where G(R′,Γ)
is a rearrangement group of fractals. We will show the relation between these objects later

on in Theorem 3.22.

We will focus our attention to the case when (R′,Γ) is a colored replacement system (see

Definition 1.52). In particular, in this case we can have more than one replacement rule

where the color of the edge tells us which rules we can apply over that edge. So, in this

case we can also have more than one non-reductive rule in R′.

Remark 3.16. Given a non-reductive rule, we wish to replace it by some reductive rules

as in Example 3.15. Consider ri = (e,R, ν), note that e in the rule ri is already reductive

since the only automorphism of e that fixes Be pointwise is the identity. However, (e,R)
is not reductive if R admits automorphisms different from the identity. In these cases, to

make ri reductive, we must replace the rule (e,R) by some other rules. In order to do this,

first we change R by the graph R̃ that consists in assigning a different label to each edge

(loop) that is identified with some other edge (loop) in an automorphism of R. After that,

for each labeled edge (loop) eA in R̃ we add a rule (eA, e, ν) where e is the edge (loop)

obtained from erasing the label of eA. Then these rules correspond to cells (eA, e), where

eA is an edge (loop) with label A and e is an edge (loop) without label. Observe that in

Example 3.10 we obtain the rules r1, r2 and r3 by applying the former process to the rule r

in Figure 50.

Proposition 3.17. Given a rearrangement group of fractals G(R′,Γ).Then the graph

rewriting system R̃ obtained from R′ as in Remark 3.16 is reductive.

Proof. Note that the rules from R̃ are all reductive. In fact, we have rules of two forms.

• (e, R̃, ν) where R̃ is a graph with different labels in each edge that can be identified

with a different edge through a boundary fixing automorphism of R. Thus, in R̃

the only boundary fixing automorphism that preserves the labels is the identity

automorphism. The same happens with e and therefore (e, R̃, ν) is a reductive rule.
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• (eA, e, ν) where e is an edge (loop) and eA is an edge (loop) labeled by the letter A.

Thus, the only boundary fixing automorphism that preserves eA and e is the identity

automorphism, so that (eA, e, ν) is reductive.

Remark 3.18. In virtue of Proposition 3.17 given a rearrangement group of fractals with

replacement system R′ we can obtain a symmetric and reductive graph rewriting system R̃

by applying the process described in Remark 3.16 to each rule in R′ and adding the inverse

rules of each rule that we obtain in this process.

Definition 3.19. Let ri be a non-reductive rule in R, then we call auxiliary rules the

set of reductive rules Si = {ri1, ri2, . . . , rin} in R̃ constructed as in Remark 3.18. In this case,

we say that, if r ∈ R+, then ri1, ri2, . . . , rin ∈ R̃+ and, if r ∈ R−, then ri1, ri2, . . . , rin ∈ R̃−.

We denote Cij the cell associated with the auxiliary replacement rij.

Remark 3.20. Note that all the rules in this graph rewriting system have vertices as

boundaries. Thus, given cells C = (R, e) and D = (f,S), where e and f are edges, we have

that they only can overlap if bot(C) and top(D) have a common edge, this means in this

case that e = f .

Lemma 3.21. Let ∆ϕ ∈ D(R̃,Γ) be a reduced graph diagram. Then there exists a valid

order where appear first all the rules r ∈ R̃+ and after all the rules r ∈ R̃−.

Proof. Note that, by construction, the cells induced by replacements in R̃+ have two

forms, say (e, R̃0) and (eA, e), and consequently the cells induced by rules in R̃− have

forms (R̃1, e) and (e, eB) for some labels A and B. We will study the cases in which

two consecutive cells C and D appear in a valid order and such that C is induced by a

replacement in R̃− and D is induced by a replacement in R̃+ and we will prove that in all

these cases, we can transpose these cells and obtain a valid order where cell D comes before

cell C. Before analyzing the cases we will establish some notation. Let e, f be edges labeled

with a certain color such that the cells (e, R̃1) and (f, R̃2) are induced by replacement in

R̃.

1. C = (R̃1, f) and D = (e, R̃0) Note that each replacement is applied to a different

color. So, if e = f , then R̃1 = R̃0 and we would have a dipole in ∆ϕ, but this graph

diagram is reduced. On the other hand, if e ≠ f then, by Remark 3.20, bot(C) and

top(D) are non-overlapping and, by Lemma 2.38, we can transpose C and D in a

valid order.

2. C = (R̃1, f) and D = (eA, e).

3. C = (f, fB) and D = (e, R̃0).
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4. C = (f, fB) and D = (eA, e).

Observe that the cases 2. 3. and 4. can be analyzed all at the same time. Indeed,

either bot(C) or top(D) are labeled vertices, therefore by Remark 3.20 these graphs

can not be overlapping. Again, by Lemma 2.38, we can transpose C and D in each

of these cases, obtaining a valid order for ∆ϕ.

We have seen in Proposition 3.10 that, if the rearrangement system of G(R′,Γ) contains

rules that are not reductive, we can replace them by some reductive rules that we called

auxiliary rules and get a symmetric and reductive graph rewriting system R̃ as in Example

3.15. In this case, for each element in G(R,Γ), we can do something similar to Definition

3.6, but using rules from R̃ instead of the rules from R′. Hence, given a rearrangement

f , we define ∆̃(f) in the same way that we defined ∆(f). Observe that this graph can

be obtained from ∆(f) by taking {Gi} as its collection of graphs and that, if Gk+1 were

obtained from Gk using a non-reductive rule, we change it to a sequence of graphs obtained

by using rules in R̃ as in the Figure 52.

Theorem 3.22. Consider the rearrangement group given by G(R′,Γ). Let R̃ be a reductive

and symmetric graph rewriting system obtained from R′ by adding some auxiliary rules.

Then G(R′,Γ) is isomorphic to D(R̃,Γ).

Proof. Consider α ∶ G(R′,Γ) → D(R̃,Γ) that maps each rearrangement f to the graph

diagram ∆(f).
Observe that the proofs of items 1, 2 and 3 are analogous to the same items of the proof

of Theorem 3.13. We will prove that α is surjective.

Let ∆ϕ ∈ G(R̃,Γ) be a reduced graph diagram with a valid order given by cells

C1,C2, . . . ,Cn, and defining graphs G0,G1, . . . ,Gn.

By Lemma 3.21 we can assume that the valid order that we have is given by taking first

all of the cells induced by r ∈ R̃+ and, after, all of the cells obtained from rules r ∈ R̃−.

On the other hand, analogously to the proof of Theorem 3.13, we can find a graph pair

diagram (Gk, G̃j, τk) for the rearrangement f . Observe first that the graphs Gk and G̃j

can be obtained by applying replacements from R̃. Indeed, by Lemma 3.21, once we apply

an auxiliary rule r1 = (e → R1), we must apply replacements r2 = (R1 → R2), r3 = (R2 →
R3), . . . , rn = (Rn−1 → R) that are the reductive rules associated with a replacement rule

r = (e→ R) ∈ R′. Notice that r1, r2, . . . rn ∈ R̃+. So Gk is the graph obtained from applying

successively and beginning from G0 all the rules in R+. A similar analysis happens with G̃j .

On the other hand α(f) = ∆ϕ. In fact, the graph diagram ∆(Gk) is given by the defining

graphs G0,G1, . . .Gk and cells C1,C2, . . .Ck and ∆(G̃j) is given by the defining graphs

G0 = ϕ(Gn) = G̃0, G̃1, . . . G̃j and cells Cn,Cn−1, . . . ,Ck+1.

On the other hand, ∆−1(G̃j) ○τk ∆(Gk) = ∆(Gk) ∪τk ∆−1(G̃j) ≅ ∆ϕ.
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In conclusion, we can use Remark 3.8 to find a symmetric and reductive graph rewriting

system R̃ from a replacement system of a rearrangement group of fractals. In particular,

we use this strategy in examples 3.10, 3.11, 3.15 and in Figure 30 to get symmetric and

reductive graph rewriting systems for the following groups

• Thompson groups F,T and V.

• The rearrangement group F ⋊Z2.

• The Generalized Thompson groups Fn,k, Tn,k and Vn,k.

• The Basilica family of rearrangement groups.

and we can use the same technique to find R̃ for

• The Vicsek family of rearrangement groups.

• The rearrangement group the colored replacement system (for example The Airplane).

Then, in virtue of the Theorems 3.13, 3.14 and 3.22, these groups can all be seen as Graph

Diagram Groups.
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4 Equivalent graph rewriting systems and

groups

Definition 4.1. We say that a graph Γ0 is equivalent to a graph Γ1 in a graph rewriting

system R (and write Γ0 ≅R Γ1) if there exists a derivation

G0 = Γ0
ϕ1,r1ÔÔ⇒ G1

ϕ2,r2ÔÔ⇒ G2 . . .
ϕn,rnÔÔ⇒ Gn = Γ1

where r1, r2, . . . , rn ∈ R.

Theorem 4.2. Let R be a reductive and symmetric graph rewriting system. Let Γ0 and

Γ1 graphs over R. If Γ0 ≅R Γ1, then D(R,Γ0) ≅ D(R,Γ1).

Proof. Observe that Γ0 ≅R Γ1 implies that exist a graph diagram with top Γ1, bottom Γ0

and cells induced by relations in R. We call this graph diagram Πι0 where ι0 ∶ Γ0 → Γ0

is the identity isomorphism in Γ0. Analogously Π−1
ι1 is the inverse graph diagram of

Πι0 where ι1 ∶ Γ1 → Γ1 is the identity isomorphism in Γ1. This is, Πι0 ○ Π−1
ι1 = Γι1 and

Π−1
ι1 ○Πι0 = Γι0 We define a map Θ ∶ D(R,Γ0) → D(R,Γ1) where Θ(∆ϕ) = Π−1

ι0 ○∆ϕ ○Πι1 .

Notice that top(Θ(∆ϕ)) = Γ1 and bot(Θ(∆ϕ)) ≅ Γ1. Θ is a homomorphism, in fact, given

∆ϕ,∆′
ϕ′ ∈ D(R,Γ0) by the associative property explained in Remark 2.59, we have that

Θ(∆ϕ) ○Θ(∆′
ϕ′) = Π−1

ι1 ○∆ϕ ○ (Πι0 ○Π−1
ι1 ) ○∆′

ϕ′ ○Πι0

= Π−1
ι1 ○∆ϕ ○∆′

ϕ′ ○Πι0

= Θ(∆ϕ ○∆′
ϕ′).

Θ is injective, indeed,

Θ(∆ϕ) = (Γ1)ι1 ⇔ Π−1
ι1 ○∆ϕ ○Πι0 = (Γ1)ι1 ⇔

∆ϕ = Πι0 ○ (Γ1)ι1 ○Π−1
ι1 = Π−1 ∪ι (Πι0 ○ (Γ1)ι1)

= (Π−1 ∪ι (Γ1)ι ∪ι Π)ι0 = (Γ0)ι0 .

Moreover, Θ is surjective since if ∆ϕ ∈ D(R,Γ1), Πι0 ○∆ϕ ○Π−1
ι1 ∈ D(R,Γ0) and Θ(Πι0 ○

∆ϕ ○Π−1
ι1 ) = ∆ϕ.
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Example 4.3. Consider the graph rewriting system R′ given by the rules r1, r2, r3 in

Figure 53 together with the inverse rules r−1
1 , r−1

2 , r−1
3 .

ax

ax

x
1 1

2 1

2

1

2

1

2

1

2
Graph rewriting system

r1 r2 r3

Figure 53

Note that R = {r1, r2, r
−1
1 , r−1

2 } with base graph Γ given in Figure 54, is a graph

rewriting system for Thompson’s group T , see Example 3.11. We wish to com-

pare T ≅ D(R,Γ) with D(R′,E) where E is an edge label with the letter x.

Base graphs

xax ax

Γ Γ̃ E

Figure 54

First, note that D(R,Γ) ≅ D(R, Γ̃). In fact, it is enough to define the α1 ∶ D(R,Γ) →
D(R, Γ̃) that map each diagram ∆ϕ with top Γ to a diagram with two dangling edges labeled

with the letter ax in the only vertex of Γ. This is, α map the top of ∆ϕ, says Γ to Γ̃ and the

other cells ∆ϕ to themselves. Note that α1 is an isomorphism. On the other hand, E ≡R′ Γ̃,
so by the last theorem D(R′,E) ≅ D(R′, Γ̃). We will prove that D(R,Γ) ≅ D(R′,E)
by proving that D(R, Γ̃) ≅ D(R′, Γ̃). In fact, let be α2 ∶ D(R, Γ̃) → D(R′, Γ̃) such that

α2(∆ϕ) = ∆ϕ. Note that α2 is a homomorphism injective. We will show that it is surjective.

In fact, note that a reduced element in D(R′,Γ) can not have a cell induced by the relation

r−1
3 , on the contrary, this cell would have a labeled edge x but bot(∆ϕ) have not edges

labeled with the letter x, so this cell must be in a dipole, which is a contradiction since ∆ϕ

is reduced. In resume we prove that D(R′,E) ≅ D(R′, Γ̃) ≅ D(R, Γ̃) ≅ D(R,Γ).
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ax ax

x

x

Figure 55 – An element of D(R′,E)

4.1 Graph Diagram Groups and Group Theoretic Constructions

All the graph rewriting systems in this section are assumed to be symmetric and reductive.

Lemma 4.4. Let Rc0 and Rc1 graph rewriting systems with disjoint sets of colors C0 and

C1. Let Γ0 and Γ1 respectively be disjoint graphs over the sets of colors C0 and C1. Let

R = Rc0 ∪ Rc1 and Γ be the disjoint union Γ0⊍Γ1. Then D(R,Γ) is isomorphic to the

direct product D(Rc0 ,Γ0) × D(Rc1 ,Γ1).

Proof. Define α ∶ D(Rc0 ,Γ0) × D(Rc1 ,Γ1) → D(R,Γ) that maps (∆ϕ0 ,Πϕ1) to the graph

diagram ∆ϕ0 ⊍Πϕ1 defined as follows: if ∆ϕ0 is the graph diagram given by the valid order

G0,G1, . . . ,Gn and cells C1,C2, . . . ,Cn and Πϕ1 given by the valid order G̃0, G̃1, . . . , G̃m

and cells C̃1, . . . , C̃m then we define α(∆ϕ0 ,Πϕ1) as the graph diagram with defining graphs

G0 ∪ Γ1,G1 ∪ Γ1, . . . ,Gn ∪ Γ1,Gn ∪ G̃1, . . . ,Gn ∪ G̃m

and cells

C1,C2, . . . ,Cn, C̃1, . . . , C̃m

where ϕ(bot(∆ϕ0)⊍ bot(Πϕ1)) = ϕ0(bot(∆ϕ0))⊍ϕ1(bot(Πϕ1)) = Γ0⊍Γ1 = Γ.

• Suppose that (∆ϕ0 ,Πϕ1) is equivalent to (∆′
ϕ′0
,Π′

ϕ′1
). Then ∆ϕ0 is equivalent to

∆′
ϕ′0

and Πϕ1 is equivalent to Π′
ϕ′1

, so this implies that the derivations given by the

following orderings are also equivalent

G0 ∪ Γ1,G1 ∪ Γ1, . . . ,Gn ∪ Γ1,Gn ∪ G̃1, . . . ,Gn ∪ G̃m

and

G0 ∪ Γ1 = G′
0 ∪ Γ1,G

′
1 ∪ Γ1, . . . ,G

′
n ∪ Γ1,G

′
n ∪ G̃′

1, . . . ,G
′
n ∪ G̃′

m

Moreover, these equivalences also imply that exist ψ0 and ψ1 such that ϕ0 = ϕ′0 ○ ψ0

and ϕ1 = ϕ′1 ○ ψ1 which, in turn, imply the existence of ψ satisfying ϕ = ϕ′ ○ ψ.
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• α is a homomorphism. In fact, the product works in the same way on both sides and

this homomorphism is injective since, if ∆ϕ0 ⊍Πϕ1 are equivalent, then ∆ϕ0 and Πϕ1

are also equivalent.

• α is surjective. Let ∆ϕ ∈ D(R,Γ), then we have a valid order for this graph diagram.

In particular, we have that the cells inducing replacement rules of color C0 are

sequentially independent of those of color c1 since they belong to a different connected

component in ∆ϕ. Hence, we can consider a valid order for Γ where the first cells

(graphs) are induced by the replacement rules of color C0 and the other cells (graphs)

correspond to the replacement rules of color C1. Thus, the defining graphs are

G0 ∪ Γ1,G1 ∪ Γ1, . . . ,Gn ∪ Γ1,Gn ∪ G̃1, . . . ,Gn ∪ G̃m

Then the graph diagrams ∆ϕ0 and Πϕ1 with ordering G0,G1, . . . ,Gn and cells

C1,C2, . . . ,Cn and G̃0, G̃1, . . . , G̃m and cells C̃1, . . . , C̃m respectively satisfy that

α(∆ϕ∣Γ0
,Πϕ∣Γ1

) = ∆ϕ by construction of α.

Theorem 4.5. The class of the graph diagram groups over a graph rewriting system is

closed under taking finite direct products.

Proof. It is a consequence of Lemma 4.4.

Corollary 4.6. Given rearrangement groups of fractals G(R′
i,Γi) such that each R′

i for

1 ≤ i ≤ n induces a symmetric and reductive graph rewriting system Ri, then the finite

direct product of these rearrangement groups of fractals is a rearrangement group of fractal.

Proof. We will prove the case when we have two replacement systems since the other cases

are analogous.Given (R′
0,Γ0) and (R′

1,Γ1) we define the replacement systems (R′
c0 ,Γc0)

and (R′
c1 ,Γc1) by respectively coloring the edges in their rules and their initial graphs with

disjoint color sets c0 and c1, that is, we consider the rewriting systems (R′
0,Γ0) and (R′

1,Γ1),
but using disjoint sets of colors for each of them. In particular, if (R′

0,Γ0) and (R′
1,Γ1)

are uncolored rewriting systems, then we use only two colors c0 and c1, where we use ci on

every replacement rule in (R′
i,Γi).Note that, by construction, G(R′

0,Γ0) ≅ G(R′
c0 ,Γc0) and

G(R′
1,Γ1) ≅ G(R′

c1 ,Γc1). Let R′ = R′
c0 ∪R′

c1 then, by Theorems 3.14 and 4.5, we have that

G(R′,Γ) ≅ D(R,Γ) ≅ D(Rc0 ,Γ0) × D(Rc1 ,Γc1) ≅ G(R′
c0 ,Γc0) × G(R′

c1 ,Γc1)

where R,Rc0 and Rc1 are, respectively, the reductive and symmetric graph rewriting

systems induced by R′,R′
c0 and R′

c1 and Γ = Γc0 ⊍Γc1 .
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Final Remarks

In this doctoral thesis, we define a family of groups called Graph Diagram Groups. This

family was inspired by other families containing Thompson-like groups such as diagram

groups [1] and rearrangement group of fractals [2].Let us recall the topics presented in the

chapters.

In Chapter 2 we follow a structure similar to the work of Guba and Sapir [1] to define this

family. For instance, we use a graph rewriting system instead of a rewriting system or a

semigroup presentation to capture a larger variety of groups in our family. To do this, we

use the notion of portion of a graph that allows us to define cells and apply replacement

rules in a wider sense than in rearrangement groups of fractals [2]. This abstract concept

of cell requires a more precise concept of dipole that depends on a strict partial order on

the cells of the graph diagram (see Lemma 2.30 and Definition 2.40). Furthermore, we

also need to restrict the dipole reduction to be reductive (Definition 2.44) to prove that

each graph diagram is equivalent to a unique reduced element. Finally, we define some

conditions to give group structure to D(R,Γ).
In Chapter 3 we show that the families of right angled Artin groups, diagram groups and

rearrangement groups of fractals are contained in the family of graph diagram groups.

For each such family, we give concrete graph rewriting systems R and find isomorphisms

between D(R,Γ) and groups in these families. An important characteristic between the

graph rewriting systems that we use to prove these isomorphisms is that all the rules in

the graph rewriting system that we define have vertices as boundary. Therefore, it is easier

to prove that two cells are non-overlapping and so when two valid orders represent the

same graph diagrams.

Finally, in Chapter 4, we prove that our family is closed under direct products by adapting

ideas from [1] and, as a corollary, we obtain the same result for the family of rearrangement

group of fractals in its colored version (see Subsection 1.6.1).

The work in the family of graph diagram groups is still in progress, and we have many

possible options to continue it. For example the fundamental group of the groupoid

associated with the groups in this family is a useful tool to find presentations for some

groups using standards techniques from algebraic topology. Therefore, we will continue

looking for more elements in the family and we will try to give alternative presentations for

these elements taking this approach. In particular Belk and Forrest prove independently

that every graph diagram group over finite graph rewriting systems acts properly by

isometries on a CAT (0) cubical complex and, therefore, we can study first groups that

act properly on a CAT (0) cubical complex.

Another direction consists in using the group structure to look for solutions of the conjugacy

problem. Note that the techniques used by Guba and Sapir for diagram groups do not
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seem to lead us to a solution of the conjugacy problem in most of the groups in our family.

This happens since in their case all the groups are torsion-free while the new interesting

examples of graph diagram groups are groups with torsion. However, in [5] James Belk

and Francesco Matucci give a solution of the conjugacy problem for F,T and V using a

geometrical object called strand diagram that can be induced by the dipole reductions of

the Thompson group F when this is seen as a diagram group. Following the same approach

we are trying to solve conjugacy in the Basilica group TB, that is we define an abstract

strand diagram that preserves the information about the cells, edges and vertices in the

graph diagram and have partial results towards a solution of the conjugacy problem.
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