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Resumo
O problema de distribuição de doses no processo de planejamento de radioterapia consiste
em otimizar a dosagem total de radiação para o tratamento de um paciente com câncer. O
objetivo principal é atacar o tumor enviando tanta radiação quanto seja possível, evitando
danos severos aos tecidos e órgãos que estão próximos do tumor. Para isso usamos a técnica
de radioterapia de intensidade modulada (IMRT) que nos permite emitir fluxo de radiação
não uniforme obtendo um melhor ajuste das doses de radiação para as células tumorais e
um modelo de programação linear para formular este problema, surgindo múltiplas opções
de escolha de funções objetivo como por exemplo maximizar a dose para o tumor, minimizar
as doses para os tecidos saudáveis ou ambas. Além disso, na prática, o oncologista pode
variar a dose de acordo com a sua experiência tornando difícil garantir uma quantidade
exata de radiação. Assim, neste trabalho, as doses são consideradas como números fuzzy
pois estes conjuntos descrevem melhor a imprecisão dos valores de doses atribuindo graus
de pertinência onde o grau de valor 1 representará uma dose completamente aceitável
para o oncologista. E, usamos a função surpresa, que pode ser entendida como uma
penalidade contra a violação de cada restrição (ou seja, quando o fluxo de radiação emitido
não é suficiente para o oncologista), para converter estas restrições fuzzy numa função
não-linear que deve ser minimizada. Nesta tese apresentamos um modelo matemático
com função objetivo, definida a partir da função surpresa para cada restrição, não-linear
e convexa e restrições lineares limitando a quantidade de fluxo de radiação. Devido às
caraterísticas da função objetivo, escolhemos os métodos de Pontos Interiores que, apesar
de ser desenvolvidos para problemas lineares, funcionam bem quando as restrições são
mantidas lineares. Definimos a função surpresa a partir da função de pertinência do número
fuzzy, porém existem, na literatura, uma grande variedade de números fuzzy, sendo os
números fuzzy triangulares e trapezoidais os mais clássicos. Intuitivamente pode-se pensar
que tratar as doses como números fuzzy trapezoidais é melhor que os números triangulares
devido a que a quantidade de valores que têm grau 1 é maior, isto é, o conjunto de valores
aceitáveis para o oncologista é maior, fazendo com que o algoritmo permaneça no mesmo
ponto. Levando em consideração estas situações indesejáveis, tomamos os valores de dose
como números fuzzy triangulares, e adicionamos restrições lineares a fim de obter boa
qualidade de soluções e bom desempenho do algoritmo proposto que foi desenvolvido
usando um método de Pontos-Interiores Primal-Dual especialmente adaptado para resolver
este problema. Nosso algoritmo foi implementado usando MATLAB, pois usamos algumas
das funções já definidas no software como a função de mínimos quadrados para obter o
ponto inicial baseado na dose do tumor e iterar buscando a dose mínima nos outros tecidos;
e testado em problemas reais de grande porte onde o tumor está localizado na área da
cabeça e pescoço, ressaltando que o planejamento das doses e valores mínimos aceitáveis
é de acordo à equipe médica. Apresentamos os resultados numéricos em tabelas onde



mostramos os valores das doses depositada em cada região, de cada paciente. Também
apresentamos os histogramas Dose ˆ Volume (%) que mostram a porcentagem de tecido que
recebe certa quantidade de radiação. Ao analizar as tabelas e os histogramas observamos
que a dose depositada no tumor é mais do que a suficiente de acordo com a equipe médica
que forneceu o conjunto de dados; e nas outras regiões do paciente está dentro dos níveis
permitidos para garantir a funcionalidade dos órgãos. De modo geral, podemos concluir
que a abordagem desenvolvida fornece soluções favoráveis, com o conjunto de dados usado,
para o problema de distribuição de dose.

Palavras-chave: Método de Pontos interiores. Radioterapia. Otimização Fuzzy.



Abstract
The dose distribution problem in the Radiation Therapy planning consists in optimize the
total radiation dosage delivered into the patient with cancer. Its main aim is to attack the
tumor delivering as much radiation as possible, while avoiding severe damage the nearby
tissues and organs. For that we use the intensity modulated radiation therapy (IMRT)
technique that allows us to deliver non-uniform radiation flow obtaining a best adjustment
of radiation doses to the tumor cells and a linear programming model to formulate this
problem, arising multiple options for choosing objective functions as to maximize the dose
delivered to the tumor, to minimize the dose delivered to the healthy tissue or both of
them. However, in practice, the oncologist can vary the dose according to his/her expertise
making it difficult to guarantee an exact quantity of radiation. Therefore in this work,
the doses are considered as fuzzy numbers since these sets have a best description on
an imprecision for the value dose attributing membership degrees where the degree 1
represents a dose totally acceptable by the oncologist. And, we use the surprise function,
that can be understood as a penalty for the violation of each constraint (that is, when
the delivered radiation flow is not enough for the oncologist), to translate these fuzzy
constraints in a non-linear function that must be minimized. In this thesis we present
a mathematical model with non-linear and convex objective function, defined from the
surprise function for each constraint, and linear constraints for bounding the radiation
flow. Due to the objective function characteristics, we choose the Interior-Point Method
that, despite being designed for linear problems, it works well when the constraints are
maintained linear. We define a surprise function from membership function of the fuzzy
number, but there exists, in the literature, a great variety of fuzzy numbers, being the
triangular and trapezoidal fuzzy numbers the most classical. Intuitively, one might think
that treating the dose as a trapezoidal fuzzy number is better than a triangular number
because the amount of values that have degree 1 is greater, that is, the set of values
acceptable for the oncologist is greater, making the algorithm staying in the same point.
Taking account these undesirable situations, we consider the dose values as triangular fuzzy
numbers, and we add linear constraints in order to obtain a good quality of solutions and
a good performance of the proposed algorithm that was designed using a specially tailored
Primal-Dual Interior-Point Method to solve this problem. Our algorithm is implemented
in MATLAB, because we use some of the functions already defined in this software as
the least-square method to compute the initial point based on the tumor dose and then
iterating to the minimal dose for the other tissues; and tested in real world large-scale
problems in which the tumor is localized in the Head and Neck area, highlighting the
planning of dose and acceptable minimal values is according to the medical time. We
present the numerical results in tables where we show that the values of the dose delivered
in each region, of each patient. Also, we present the histograms Dose ˆ Volume (%) that



show the percentage of tissue that received certain quantity of radiation. When analyzing
the tables and histograms we observed that the dose delivered in the tumor is more than
the enough value, according to the medical time that provides the dataset; and in the
other regions of the patients the dose is inside the allowed values in order to guarantee the
functionality of them. In general, we can conclude that the developed approach provides
favorable solutions, with the dataset used, for the dose distribution problem.

Keywords: Interior-Point Methods. Radiation Therapy. Fuzzy Optimization.
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Introduction

Linear Programming (LP) is an area of the applied mathematics that solves
real-world problems formulating mathematical models and using computational methods
to find solutions according to the goals and satisfying a set of constraints. In mathematical
terms, LP problems consist of finding solutions to satisfy a finite system of linear equations
and inequalities that minimize a linear objective function. One of the first uses of the LP was
during the World War II, when the American army realized that the traditional methods
and procedures of allocation and expense planning weren’t yielding much profit, then
decided create an office of operations research in order to formulate and implement models
that allow reduced costs and increase the enemy losses. This kind of research required
the collaboration of many scientists from various fields, for example: mathematicians,
economists, statisticians, engineering, etc. who used the Linear Programming as a tool
[15].

George B. Dantzig, in 1947 developed and presented a solution method to
solve LP problems, the Simplex method [11], the most used method. Despite the Simplex
method presented, in terms of computational performance, being superior to any other
known procedure for solving LP problems, mathematicians wanted to find a procedure
with the polynomial property. After many decades, in 1984, Karmarkar [17] was be able
to develop a polynomial and efficient method, called the Interior-point method.

There are, in the Interior-point method, exist different approaches to proceed
towards the solution: primal, dual and primal-dual methods. We will focus on the last one
since it has excellent theoretical properties and practical performance, Stephen J. Wright
(1997) [28]. Thanks to these characteristics, primal-dual interior-point methods have been
used over the years to solve a wide variety of complex real world problems. One of these
type of problems, that affects all countries, is to fight cancer.

The World Health Organization has stated that cancer is the second leading
cause of death globally, in 2018, with an estimated of 9.6 million deaths1 and due to life
style, financial situation, even health systems, among others, this number tends to increase.
However, when the cancer is identified early, it is possible to use effective treatment leading
to a high probability of surviving.

Nowadays there are several options of cancer treatment, many patients are
treated with the Radiation Therapy that basically consists of delivering radiation to kill
cancer cells and shrink tumors. Depending on the localization of the tumor the radiation
therapy can be internal or external.
1 Site: https://www.who.int/health-topics/cancer#tab=tab_1

https://www.who.int/health-topics/cancer##tab=tab_1
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The internal radiation therapy, also called brachytherapy, is a method in which
the radioactive sources are allocated inside the patient. It is generally used when a small
area of the patient needs a high dose of radiation. The external radiation therapy, the focus
of this work, also called external beam therapy or teletherapy, is a method for delivering
radiation to a patient’s tumor where no radioactive sources are placed inside the patient’s
body2. This radiation is generated outside the patient (usually by a linear accelerator, see
Figure 3) and are targeted at the tumor site.

The objective of the radiation therapy is to kill the tumor delivering as much
radiation as possible, avoiding damage to the nearby healthy organs and tissues. Thus.
plan for a treatment of distribution of radiation must be created. The problem arises
when the treatment distributes little radiation to the tumor or too much radiation to the
healthy organs compromising their functionality and reducing the quality of the patient’s
life. Therefore it becomes necessary to develop a radiation distribution plan focused on
shrinking the tumor (or in the best cases, removing it) and at the same time insuring
that the various organs and healthy tissues surrounding the tumor do not receive high
radiation.

This, the Intensity-modulated radiation therapy (IMRT), proposed by Brahme
in 1988 [4], a technique, which delivers non-uniform radiation flow (called intensity
modulated beams (IMB)) is used to achieve this allowing a best adjustment of radiation
doses to the tumor cells. Rehman et al. (2018) [26] presented a brief review of the advances
and limitations of the IMRT techniques, highlighting its ability of to model precise dose
to tumors of complex concave shapes which facilitates the sparing of surrounding organs.

There exists two ways of planning external radiation therapy. A forward plan-
ning, where the parameters of the beam are chosen by trial and error until an acceptable
treatment plan be found, that is, until achieve an acceptable distribution of dose. And
inverse planning, that uses computerized optimization methods to generate a suitable plan,
where the parameter or initial data is the absorbed dose and the compute of deliver dose
and selected beams (the most difficult part of the process) are determined with the help
of operational research techniques.

Fortunately, this kind of problems can be formulated as an optimisation problem
where the radiation delivered into the tumor and the surrounding structures, satisfies a
dosage provided by the radiation oncologist. That is, the linear programming can be used
to formulate the Radiation Therapy problem.

The first optimization model was proposed by Bahr et al. (1968) [1]. They used
the linear programming to formally express the mathematical problem, stating:

• A set of variables which will be non-negative in a feasible solution. The object is to
2 https://www.radiologyinfo.org/en/info.cfm?pg=ebt

https://www.radiologyinfo.org/en/info.cfm?pg=ebt
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find the values of each of these variables such that its values produce the optimum
solution.

• A set of constraints which bound the feasible solutions. These constraints must be
expressed as linear relationships among the variables.

• A specification of bounds which must be complete, i.e., any set of values which fall
within the limits of the constraint equations is a feasible acceptable solution.

• A definition of “optimum solution” which can be expressed as a linear relationship
among the variables.

Thenceforth, many researches developed and experimented new and innovative
techniques for treating cancer patients with radiation using linear models. Shepard et
al. (1999) [22] presented several approaches to optimize treatment plans in radiation
therapy, and explored the advantages and disadvantages of a number of formulations which
considered a variety of objective functions and constraints.

As it was expected, linear programming models do not always find feasible
solutions. In order to aid in the design of radiotherapy plans, to solve the infeasibility
problems, Holder (2003) [14] introduced a new linear programming model that incorporates
elastic constraints. He presented two theorems that guaranteed the existence of feasible
primal and dual solution for his formulation and solved it with a path following interior-
point method.

Ehrgott et al. (2010) [13] presented a survey of the use of mathematical models
and optimization methods. They discussed the advantages and disadvantages of each
model classifying them in feasible problems, linear, non-linear, mixed-integer and multiple
objective models.

Breedveld et al. (2012) [8] constructed the i-Cycle algorithm to solve the dose
distribution problem using multi-criterial optimization of beam angles and IMRT profiles
resulting in significant improvements in treatment plan quality. In order to achieve highest
efficiency and different applications, designed an implementation with three extensions to
the standard interior-point method that describe a starting approach and, since the primal-
dual interior-point method is considered as the most robust method to solve large-scale
problems, Breedveld et al. (2017) [5], the use of non-convex cost-function and steplength
control.

There is no genral agreement in the literature on the objective function. This
function should minimize total radiation, maximize minimum tumor dosage, minimize
radiation to critical structures, etc.

It is difficult in practice to ensure that with an exact quantity of dose since the
oncologist can vary the dose distribution according to his/her expertise and tolerances
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of each region. Thus, Lodwick et al. (2001)[19] presented three approaches to use fuzzy
optimization in the radiation therapy problems where the fuzziness appears on the right-
hand side. One of these approaches considers the dosage values as fuzzy numbers and uses
the theory of surprise functions, developed by Neumaier (2003) [20], to translate the fuzzy
constraints into non-linear programming problem.

Lodwick and Bachman (2005)[18] presented three approaches to uncertainty
problems. They solved these problems using surprise methods developed by Tanaka et al.
(1974) [25] and Zimmermann (1976) [30], for formulations with fuzzy inequalities (called as
soft constraints); and Neumaier (2003) [20] compare the solutions with those formulations
with the right-hand side being a fuzzy number. Moreover, Jamison and Lodwick (2001)
[16], developed models when at least one parameter is a possibility distribution. They used
MATLAB’s optimization toolbox showing that is possible to solve efficiently large fuzzy
optimization problem. On their experiments they highlighted that the surprise approach
is robust for handling large problems but with memory restrictions.

Thus, unlike to Lodwick and Bachman [18], we propose to solve the large-scale
fuzzy optimization problem applying a tailored primal-dual interior-point method, with
the membership function defined from the fuzzy number of the right-side, because taking a
possibility measure (as [18]) small dose values delivered on the tumor voxels will be highly
possible moving away from the desired value. Due to the surprise function, the formulation
has non-linear and convex objective function. Since the numerical experience indicates
that interior-point methods, (despite being designing for linear problems, they work well
when the constraints are maintained linear) are strong on large-scale applications and have
been used successfully for non-linear optimization [21], we will develop an extension of the
method in order to design an algorithm that will solve the dose distribution problem where
the measure of violation of the dose constraints is translate using the surprise function
and minimizing it.

The Chapter 1 presents the basic concepts and theorems of the linear program-
ming, describes the interior-point methods and also its modifications when the objective
function is non-linear. The Chapter 2 presents a briefly review about the fuzzy theory
enunciating some definitions and properties of fuzzy numbers and the connection between
membership functions and surprise functions. These concepts helps us to understand the
fuzzy optimization formulation. In order to use the fuzzy approach on radiation therapy
problems, in the Chapter 3 we begin describing the process of radiation therapy planning
and then present a mathematical formulation of the problem. Next, in the Chapter 4 we
present the radiation therapy formulation with the surprise function, then we develop
the primal-dual interior-point method considering the properties of the problem, adding
suitable constraints and establishing parameters for the implementation of the proposed
method. We use the MATLAB software to implement our algorithm and in the Chapter 5
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we present the numerical experiments where we test our algorithm with the large-scale
dataset [6] of Head-and-Neck cancer patients. Finally, in the Chapter 6, we give the
conclusions concerning the work and the future proposals.
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1 Linear Programming

Linear programming arises as a proposal to solve (or analyze) real-world pro-
blems transforming these decision problems into mathematical models together with
suitable algorithms.

1.1 Basic concepts and theorems
A classical formulation of a linear programming (LP) problem is

$

’

&

’

%

min cTx

s.t Ax ď b

x ě 0,
(1.1)

where c P Rn is the vector of costs, A P Rmˆn is the matrix of constraints, b P Rm is the
vector of independent terms and x P Rn vector of variables.

The theory existing to describe and analyze linear optimization problems is
often developed for the standard formulation, which is easy to obtain adding non-negative
variables called slack variables to inequality constraints [2],

pP q

$

’

&

’

%

min cTx

s.t Ax “ b,
x ě 0.

(1.2)

with rankpAq “ m ă n.

Definition 1.1. x P Rn is said feasible point of (P) if satisfies all constraints, that is,
Ax “ b, x ě 0.

Definition 1.2. The set of feasible points S “ tx P Rn : Ax “ b, x ě 0u is called feasible
set (or feasible region). This set is convex [2].

Thus, solving a LP problem means to find x˚ feasible (x˚ P S) such that the
value of a preestablished objective function (fpxq “ cTx) be minimal, that is, fpx˚q ď fpxq,
for all x P S. This point, x˚, is called an optimal solution of (P).

Now, let us define the dual problem for (1.2),

max bTy

s.t ATy ď c,
y free.
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Adding the non-negative slack dual variable z P Rn, we get the standard dual
formulation

pDq

$

’

&

’

%

max bTy

s.t ATy ` z “ c,
z ě 0, y free.

(1.3)

Thus, formulation (1.2) is called primal problem. As any LP problem can be
written in the standard form, there exists the dual for all LP problems [2].

Analogously to the primal problem, the point py, zq is a feasible solution of (D)
if ATy ` z “ c and z ě 0. And, consequently py˚, z˚q is an optimal solution if is feasible
and bTy˚ ě bTy for all feasible py, zq.

The main properties and relations between (P) and (D) are [2], [28]:

Lemma 1.1. Weak duality property: If x and py, zq are feasible solutions for (1.2)
and (1.3), respectively, then cTx ě bTy.

Note that, from Lemma 1.1, a feasible dual point provides a lower bound for
the primal problem and a feasible primal point provides an upper bound for the dual one.

Corollary 1.1. Optimality property: If x˚ and py˚, z˚q are feasible solutions for (1.2)
and (1.3), respectively, and cTx˚ “ bTy˚, then x˚ and py˚, z˚q are optimal solutions for
(1.2) and (1.3), respectively.

Corollary 1.2. Unboundedness property: If the primal (dual) problem has an un-
bounded solution, then the dual (primal) problem is infeasible.

Corollary 1.3. Strong Duality Property: If the primal (dual) problem has a finite
optimal solution, x˚, then so does the dual (primal) problem, py˚, z˚q, and the objective
function values are equal, cTx˚ “ bTy˚.

Theorem 1.1. Complementary Slackness Property Let x and py, zq be feasible
solutions for (P) and (D), respectively. Thus, x and py, zq are optimal solutions if only if
for all i “ 1, . . . , n

1. xi ą 0 ñ zi “ 0,

2. zi ą 0 ñ xi “ 0.

Observe that, Lemma 1.1 leads us to an useful concept: the duality gap, also
known as gap, is defined as the difference between the primal-objective-function and the
dual-objective-function, that is gap “ cTx ´ bTy which is ě 0 for feasible primal and
dual points. It is easy to show that gap “ xT z for feasible points [2]. Therefore, from
Corollary 1.1, in the optimal solutions we have gap “ 0 [21].
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If x ą 0, x is called interior point for the primal problem; if z ą 0, py, zq is an
interior point for the dual problem.

1.1.1 Optimality Conditions

The optimality conditions for a LP problem are obtained as a particular case
of the Karush-Kuhn-Tucker conditions (also known as KKT-conditions).

Theorem 1.2. Primal Optimality Conditions The point x P Rn is a solution of (P)
if only if there exist vectors y P Rm and z P Rn such that

Ax “ b, Primal Feasibility (1.4a)

ATy ` z “ c, Dual Feasibility (1.4b)

xizi “ 0, Complementarity (1.4c)

px, zq ě 0. Non-negativity (1.4d)

Theorem 1.3. Dual Optimality Conditions The point py, zq P Rm`n is a solution of
(D) if only if there exist a point x P Rn such that the conditions (1.4) hold for px, y, zq.

In other words, Theorem 1.2 and Theorem 1.3 say the point px˚, y˚, z˚q solves
the system (1.4) if and only if x˚ solves the primal problem (P) and py˚, z˚q solves the
dual problem (D). Thus, the point px˚, y˚, z˚q is called a primal-dual solution. We say that
px, y, zq is an primal-dual interior point if px, zq ą 0.

A most useful and well-known methods to solve LP problems are Simplex
method and Interior-point method. Simplex method, roughly speaking, consists in to
search the solution through the vertices of the feasible region until attain the desirable
point that minimizes the objective function. On the other hand, interior-point method
searches for a solution in the interior of the feasible region, following a direction that
optimizes the objective function. However, since the solution approaches from the interior
it never lies on the boundary.

Several analyses and numerical tests show that, for real world and large scale
problems, interior-point method is often more efficient and it converges to a solution in
few iterations. Thus, we will present a brief review about this method.

1.2 Interior-point Methods
During the last decades the interior-point method has been one of the most used

solution methods to solve successfully mathematical programming problems. This method
belongs to the iterative class of methods and is characterized by the search for the optimal
solution in the interior of the feasible region. This search can be made iterating on the



Chapter 1. Linear Programming 24

primal variables, on the dual variables or on the primal-dual variables. The Primal-Dual
Methods are known as the most efficient practical approaches [28], therefore we will focus
on them along this section.

Consider the primal problem (1.2) and the dual problem (1.3). Define the
function F : R2n`m

Ñ R2n`m as

F px, y, zq “

¨

˚

˝

Ax´ b

ATy ` z ´ c

XZe

˛

‹

‚

,

where X “ diagpx1, . . . , xnq, Z “ diagpz1, . . . , znq and e the vector of all ones. From the
optimality conditions (1.4),

F px, y, zq “ 0 with px, zq ě 0. (1.5)

Primal-dual interior-point method finds solutions px, y, zq of the non-linear
system (1.5) applying a variant of the Newton method [3] generating on each iteration a
search direction and determining step lengths in order to guarantee that px, zq ą 0, that
is, the current solution px, y, zq be an interior-point.

On the kth-iteration, let pxk, yk, zkq be an interior-point, the Newton search
direction pdx dy dzqT is obtained solving the following linear system

Jpx, y, zq

¨

˚

˝

dx

dy

dz

˛

‹

‚

“ ´F px, y, zq,

where Jpx, y, zq is the Jacobian of F :

Jpx, y, zq “

¨

˚

˝

A 0 0
0 AT I

Z 0 X

˛

‹

‚

.

Considering that, for most problems, finding an initial feasible point is a difficult
task, the Newton system can be rewritten as

¨

˚

˝

A 0 0
0 AT I

Z 0 X

˛

‹

‚

¨

˚

˝

dx

dy

dz

˛

‹

‚

“

¨

˚

˝

rP

rD

´XZe

˛

‹

‚

,

where

rP “ ´pAxk ´ bq, (1.6a)

rD “ ´pATyk ` zk ´ cq, (1.6b)
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represent the residues of the conditions (1.4a) and (1.4b).

Taking a full step along this direction could generate a non-interior-point, thus
the next iteration is computed as

px, y, zq ` αpdx, dy, dzq, for some α P p0, 1s.

Now, solving the Newton system we obtain the next set of equations

pAZ´1XAT qdy “ rP ` AZ
´1XrD ´ AZ

´1ra, (1.7a)

dx “ Z´1XpATdy ´ rD `X
´1raq, (1.7b)

dz “ X´1
pra ´ Zdxq, (1.7c)

where ra “ ´XZe and the existence of X´1 and Z´1 are guaranteed since px, zq ą 0.

In order to maintain the non-negativity of the variables x and z, we take a
reduced step if necessary. These step lengths are computed as:

αp “ min

"

1; τmint´ xj
dxj

: dxj ă 0u
*

, τ P p0, 1q, (1.8)

αd “ min

"

1; τmint´ zj
dzj

: dzj ă 0u
*

, τ P p0, 1q. (1.9)

The Algorithm 1, called Affine Scaling Interior-Point algorithm, shows a sum-
mary of the method.

Observe that, α could take too small values to avoid violating of condition
px, zq ą 0, causing the method presents slow progress. Thus, a variation of the method
changes the function F , so that the new point is more centralized, introducing the parameter
µ ą 0 whose purpose is to keep the components px, zq from moving to close to the boundary
of the non-negative orthant, arising the concept of Central Path [28].

The central path is defined as the solution of

Fµpx, y, zq “

¨

˚

˝

Ax´ b

ATy ` z ´ c

XZe´ µe

˛

‹

‚

, for each µ ą 0. (1.10)

When µ ÝÑ 0, the central path converges to a primal-dual solution [28]. The
computing of the Newton direction is made solving the linear system

¨

˚

˝

A 0 0
0 AT I

Z 0 X

˛

‹

‚

¨

˚

˝

dx

dy

dz

˛

‹

‚

“

¨

˚

˝

rP

rD

´XZe` µe

˛

‹

‚

.
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Algorithm 1 – Affine Scaling Interior-Point Method.
Data: y0 and px0, z0

q ą 0, max: maximal iterations
begin

for k “ 0, 1, . . . ,max do
Passo 1: Compute the residues;
rP “ b´ Ax;
rD “ c´ ATy ´ z;
ra “ ´XZe;
Passo 2: Find the search directions;
Compute dy in pAZ´1XAT qdy “ rP ` AZ

´1XrD ´ AZ
´1ra;

Compute dx in dx “ Z´1XpATdy ´ rD `X
´1raq;

Compute dz in dz “ X´1
pra ´ Zdxq;

Passo 3: Compute the primal and dual step lengths, αp and αd;

αp “ min

"

1; τmint´ xj
dxj

: dxj ă 0u
*

, τ P p0, 1q;

αd “ min

"

1; τmint´ zj
dzj

: dzj ă 0u
*

, τ P p0, 1q;

Passo 4: Compute the next feasible point in;
xk`1

“ xk ` αpdx;
yk`1

“ yk ` αddy;
zk`1

“ zk ` αddz;
end

end

On the other hand, at any iteration the values of the pairwise product xizi may
be reduced to zero on the same rate. For that, the new system to be solved is

¨

˚

˝

A 0 0
0 AT I

Z 0 X

˛

‹

‚

¨

˚

˝

dx

dy

dz

˛

‹

‚

“

¨

˚

˝

rP

rD

´XZe` σµe

˛

‹

‚

, (1.11)

where σ P r0, 1s is called centering parameter (this name comes from the property: when
σ “ 1 the system (1.11) is the central path) and µ is called duality measure and is defined
by

µ “
1
n

n
ÿ

i“1
xizi “

xT z

n
. (1.12)

With these ideas, the Primal-Dual Path-Following method can be defined
[28] and the general framework is presented on the Algorithm 2.

1.2.1 Non-linear objective function

There exist problems which can not be formulated by a linear objective function.
In these cases it is possible adapt the previous analysis, and do little changes considering a
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Algorithm 2 – Primal-Dual Path-Following Interior-Point Method.
Data: y0 and px0, z0

q ą 0, max: maximal iterations
begin

for k “ 0, 1, . . . ,max do
Passo 1: Compute the residues;
rP “ b´ Ax;
rD “ c´ ATy ´ z;
Passo 2: Compute the search directions dx, dy and dz solving the system
¨

˝

A 0 0
0 AT I
Z 0 X

˛

‚

¨

˝

dx
dy
dz

˛

‚“

¨

˝

rP
rD

´XZe` σµe

˛

‚;

where σ P r0, 1s and µ computed from µ “
1
n

n
ÿ

i“1
xizi “

xT z

n
;

Passo 3: Compute the primal and dual step lengths, αp and αd;

αp “ min

"

1; τmint´ xj
dxj

: dxj ă 0u
*

, τ P p0, 1q;

αd “ min

"

1; τmint´ zj
dzj

: dzj ă 0u
*

, τ P p0, 1q;

Passo 4: Compute the next feasible point ;
xk`1

“ xk ` αpdx;
yk`1

“ yk ` αddy;
zk`1

“ zk ` αddz;
end

end

non-linear objective function f : Rn
Ñ R. The problem with non-linear objective function

and linear constraints is

pNLP q

$

’

&

’

%

min fpxq

s.t Ax “ b,
x ě 0.

The constraints x ě 0 could be replaced by the term
n
ÿ

i“1
lnpxiq, called loga-

rithmic barrier, because it prevents xi from being negative. Thus, introducing this term
on the formulation (NLP ) with a parameter µ ą 0, we obtain

$

’

&

’

%

min fpxq ´ µ
n
ÿ

i“1
lnpxiq

s.t Ax “ b.

Now, let us define the Lagrangean function of the above problem

Lpx; yq “ fpxq ´ µ
n
ÿ

i“1
lnpxiq ´ yT pAx´ bq, (1.13)
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where y P Rm is the Lagrangean multiplier. The use of the same variable y and parameter
µ is purposely named to notice the relation between the Primal-Dual methods and the
Logarithmic-barrier methods. Therefore, solving the (NLP) problem is equivalent tor
solving for each µ ą 0, the minimizing problem

min Lpx; yq.

Firstly, we have to find the stationary points of L, that is, px, yq such that
∇Lpx; yq “ 0, then

∇xLpx; yq “ ∇fpxq ´ µX´1e´ ATy “ 0, (1.14a)

∇yLpx; yq “ ´pAx´ bq “ 0. (1.14b)

Let z ě 0 be the complementary variable such that z “ µX´1e, then XZe “ µe. Thus,
the system (1.14) with the additional condition XZe´ µe “ 0, gives the KKT-conditions
for the Lagrangean problem:

∇fpxq ´ z ´ ATy “ 0,

Ax´ b “ 0,

XZe´ µe “ 0.

Defining Fµ : R2n`2m
Ñ R2n`2m as

Fµpx; y, zq “

¨

˚

˝

∇fpxq ´ z ´ ATy
Ax´ b

XZe´ µe

˛

‹

‚

. (1.15)

The search direction d is obtained applying the Newton method on the non-linear system
Fµpx; y, zq “ 0.

The Jacobian of Fµ is given by

Jµpx; y, zq “

¨

˚

˝

H ´AT ´I

A 0 0
Z 0 X

˛

‹

‚

,

where H P Rnˆn denotes the Hessian matrix of f . Then we have

¨

˚

˝

H ´AT ´I

A 0 0
Z 0 X

˛

‹

‚

¨

˚

˝

dx

dy

dz

˛

‹

‚

“

¨

˚

˝

r1

r2

r3

˛

‹

‚

,

where

r1 “ ATyk ` zk ´∇fpxq, (1.16a)

r2 “ b´ Axk, (1.16b)

r3 “ µe´ xze. (1.16c)
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Eliminating dz “ X´1
pr3 ´ Zdxq we obtain

˜

H `X´1Z AT

A 0

¸˜

dx

dy

¸

“

˜

r1 `X
´1r3

r2

¸

, (1.17)

called the augmented system. Generally, as H represents the Hessian and is a symmetric
matrix, the system is solved using iterative methods or direct methods, depending on the
additional characteristics of H.

We present, in Algorithm 3 the summary for the Primal-dual interior-point
method for (NLP) formulation. It is important to point out that the Hessian matrix must
be computed at each iteration for solving the system 1.17 and leads to higher computational
times.

Algorithm 3 – Primal-Dual Interior-Point Method with non-linear objective
function
Data: y0 and px0, z0

q ą 0
begin

for k “ 0, 1, . . . ,max do
Passo 1: Compute the residues;
r1 “ ATy ` z ´∇fpxq;
r2 “ b´ Ax;
r3 “ µe´XZe;
Passo 2: Compute de search directions;
dz “ X´1

pr3 ´ Zdxq;
dx and dy solving the system;
ˆ

H `X´1Z AT

A 0

˙ˆ

dx
dy

˙

“

ˆ

r1 `X
´1r3

r2

˙

with µ “ 1
n

n
ÿ

i“1
xizi “

xT z

n
;

Passo 3: Compute the primal and dual step lengths, αp and αd;

αp “ min

"

1; τmint´ xj
dxj

: dxj ă 0u
*

, τ P p0, 1q;

αd “ min

"

1; τmint´ zj
dzj

: dzj ă 0u
*

, τ P p0, 1q;

Passo 4: Compute the next feasible point;
xk`1

“ xk ` αpdx;
yk`1

“ yk ` αddy;
zk`1

“ zk ` αddz;
end

end
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2 Fuzzy Theory

Fuzzy theory, that has been proposed by Lofti A. Zadeh in 1965 [29] considers
human subjectivity and imprecision based on the intuitive reasoning, described in the
natural language.

This chapter introduces the basic definitions and properties concerning the fuzzy
sets necessary to understand the surprise function method, and, the fuzzy optimization
formulation.

2.1 Fuzzy Sets
A crisp set is defined by a function which only accepts the values 1, meaning

that an element fully belongs to a set, and 0, when it does not belongs to a set. Since
values between 0 and 1 are also accepted, a fuzzy set is an extension of crisp sets and is
defined, by Zadeh [29], as:

Definition 2.1. Let Ω be a given universal set. A fuzzy set F on Ω is characterized by a
membership function, µFpxq, which associates with each point in Ω a real number in r0, 1s.
The value of µFpxq at x represents the membership degree (or grade of membership) of an
element of Ω in F . Symbolically,

µF : Ω ÝÑ r0, 1s.

2.1.1 Some properties of fuzzy sets

We introduce definitions that are important to characterize another useful
concept of this work [27].

Definition 2.2. A fuzzy set F , defined on Ω, is said to be empty if

F “ H ðñ µFpxq “ 0, @x P Ω.

Definition 2.3. The support of a fuzzy set F , defined on Ω, is a crisp subset of Ω defined
by

supppFq “ tx P Ω : µFpxq ą 0u.

Definition 2.4. The height of a fuzzy set F , defined on a bounded set Ω, is defined by

HgtpFq “ max
xPΩ

tµFpxqu.

That is, it is the maximum membership degree of all the elements of Ω.
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Definition 2.5. A fuzzy set F , defined on Ω, is normalized if only if

Dx P F , µFpxq “ HgtpFq “ 1.

That is, F is said normalized (or normal fuzzy set) if at least one element of Ω has a
membership degree 1.

Definition 2.6. The α-cut of a fuzzy set F , defined on Ω, is a crisp subset of Ω that
satisfies

Fα “ tx P Ω : µFpxq ě α, α P r0, 1su.

Definition 2.7. A fuzzy set F , defined on Ω, is convex if

@x, y P Ω, @λ P r0, 1s : µFpλx` p1´ λqyq ě mintµFpxq, µFpyqu.

2.1.2 Fuzzy Numbers

A special type of fuzzy sets are those that are defined on R, that is, the
membership function is

µ : R ÝÑ r0, 1s.

Under certain conditions, as will be seen in the following definition, this function
can be viewed as fuzzy number or fuzzy interval [27].

Definition 2.8. A fuzzy number F is a fuzzy subset of the real numbers R if satisfies:

• F is a normal set,

• Fα is a closed interval for every α P p0, 1s,

• The support of F , supppFq, is bounded.

Some classical fuzzy numbers are defined by particular membership functions:

Example 2.1. Triangular fuzzy number F “ pa, b, cq

µpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

x´ a

b´ a
, if x P ra, bs,

1 , if x “ b,
c´ x

c´ b
, if x P rb, cs,

0 , otherwise.

(2.1)
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Figure 1 – Representation of triangular fuzzy number.

Example 2.2. Trapezoidal fuzzy number F “ pa, b, c, dq

µpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x´ a

b´ a
, if x P ra, bs,

1 , if x P rb, cs,
d´ x

d´ c
, if x P rc, ds,

0 , otherwise.

(2.2)

Figure 2 – Representation of trapezoidal fuzzy number.

2.2 Fuzzy sets in terms of Surprise functions
Fuzzy set theory consists in catch imprecise information of the real world and

transform it in a numerical value between 0 and 1. If a statement E is true for a particular
value x then there is no surprise

Spx|Eq “ 0, if Epxq is true.

If E is false, then the occurrence of x, being impossible, would be infinitely surprising,

Spx|Eq “ 8, if Epxq is false.

Thus surprise is understood as an amount of falseness of the statement E after knowing x.
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To connect the fuzzy set approach with the surprise, Neumaier [20] quantifies
the evidence for a value x given E by a degree of consistency dpx|Eq P r0, 1s, with
dpx|Eq “ 0 if x is impossible given E, and dpx|Eq “ 1 if x is fully consistent with E. It
translates any surprise value S into a degree of consistency d by the strictly monotone
decreasing transformation, from r0,8s onto r0, 1s,

d “
1

Se ` 1 , for some e ą 0. (2.3)

Conversely, from (2.3),

S “
ˆ

1
d
´ 1

˙1{e

, (2.4)

where the most useful and recommended exponent is e “ 1{2 [20].

Therefore, since each statement E is a fuzzy set with membership function
µEpxq “ dpx|Eq, the surprise function on x given E is

SEpxq “
ˆ

1
µEpxq

´ 1
˙2

. (2.5)

2.3 Fuzzy Optimization Problems
In this section, we introduce a type of fuzzy representation for the classical

formulation of optimization linear problems (1.1).

Optimization under uncertainty is used to mean optimization when at least
one element of the input data, in formulation (1.1), is a real-valued interval, a real-valued
random variable, a real-valued fuzzy number, or a real-valued number described by a
possibility distribution. The fuzziness can be considered in different ways, for example: the
matrix of constraints A, right-hand vector b or vector of costs c as being fuzzy numbers,
“ď” as fuzzy sets. Another type of fuzziness, in which more general cases are considered,
can be seen in [16], [23], [24], [31], [32].

This work focuses on the special case when b is a fuzzy number. It means that
the set of constraints belongs to a “real-valued interval”.

A mathematical representation correspondent to fuzzy linear optimization is:

min cTx

s.t Ax ď b̃,
x ě 0,

(2.6)

where b̃ is a vector in Rm whose components are fuzzy numbers, A P Rmˆn is the matrix
of constraints. Fuzzy numbers are fuzzy sets, each component of Ax (P Rm) has a degree
of belonging to a subset of R. This type of formulation, in which the right-hand side is a
fuzzy number will be treated below using the theory of surprise functions [18], [20].
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2.3.1 Fuzzy optimization using surprise functions

The surprise function approach searches for the best solution in the constraints
and maximizes it on all combined α-levels applying a dynamical penalty to the violations
of constraints by surprise functions as follows [20]:

Let A “ raijsj“1,...,n
i“1,...,m be, for each i “ 1, . . . ,m

n
ÿ

j“1
aijxj ď b̃i ðñ

n
ÿ

j“1
aijxj “ ξ̃i, (2.7)

where
µipξiq “ pospb̃i ě ξ̃iq.

and the membership function µipq is defined using the possibility distribution pospq.

Once the membership function known, by (2.5), we are able to formulate the
surprise function optimization:

min
m
ÿ

i“1
Si

˜

n
ÿ

j“1
aijxj

¸

s.t. 0 ď x ď U .

(2.8)

with U P Rn is the upper limit value for variable x. The objective function minimizes the
sum of the surprise function evaluated on each restriction. The single constraint provides
the domain of the variable. We will adapt this formulation, for the particular case in which
b̃i is triangular fuzzy number (see Example 2.1), for solving the dose distribution problem
in radiation therapy planning. And since µ represents the membership function associated
with the fuzzy-number b̃, we have (see subsection 2.1.1) for all x, y P R and for all λ P r0, 1s

µpλx` p1´ λqyq ě mintµpxq, µpyqu,

thus

µpxq ď µpλx` p1´ λqyq ñ

ˆ

1
µpxq

´ 1
˙2

ě

ˆ

1
µpλx` p1´ λqyq ´ 1

˙2

(2.9)

µpyq ď µipλx` p1´ λqyq ñ

ˆ

1
µipyq

´ 1
˙2

ě

ˆ

1
µpλx` p1´ λqyq ´ 1

˙2

(2.10)

multiplying (2.9) by λ and (2.10) by p1´ λq, and then summing both inequalities, we get

λSpxq ` p1´ λqSpyq ě Spλx` p1´ λqyq.

Therefore, the surprise function defined from the membership function of a fuzzy number
is a convex function.
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3 Radiation Therapy

The objective of radiation therapy is to deliver a dose of radiation in order to
eliminate tumor cells avoiding, as much as possible, the nearby healthy organs and tissues.

3.1 General Description
Radiation therapy is a technique used for treating cancer patients with ionic

radiation. We consider a machine called linear accelerator (see Figure 31) for the external
radiation therapy method. The goal of this machine consists in delivering radiation from
the collimator in different forms and intensities, this radiation is shaped by beams, whose
discretisation is called beamlets.

Figure 3 – Linear Accelerator.

As the head of the linear accelerator can be rotated around the patient, the
treatment provides radiation in a wide range of directions. The amount of radiation
absorbed by the tissue is called dose and its unit is Gray (Gy), where 1Gy “ 1J{Kg.

Therefore, is important to create a plan of distribution of radiation such that
cancer cells receive the highest radiation concentration so that they can be eliminated,
taking into account that healthy tissue as well as the organs, which can be close to the
1 Font: RADIOLOGY ONCOLOGY SYSTEMS. https://www.oncologysystems.com/

medical-equipment/radiation-therapy. Access date: 24-08-2020.

https://www.oncologysystems.com/medical-equipment/radiation-therapy
https://www.oncologysystems.com/medical-equipment/radiation-therapy
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tumor or in the direction of the beams, should have no severe damage or induce future
complications.

Figure 4 – Example of CT-scan.

A good treatment plan consist of, firstly, images of the patient focusing on the
tumor and the surrounding tissues. To achieve this, a CT-scan (Computed Tomography)
is made to delineate and locate the tumor, the organs-at-risk and other structures (see
Figure 42). Then, these images are discretized and each element is called pixel.

Note that, when a set of CT-scans (of the same region) is considered, a volu-
metric representation of the patient is obtained and the pixels take on a 3D-interpretation:
voxels. With the localization of the volume of tumor just known, the radiation oncologist
determines how much radiation deliver to the tumor and the tolerance values for the other
tissues. This planning will be performed with the inverse planning, whose essence is an
optimization model that find the best solution satisfying the minimal requirements for
tumor and tolerance for the other tissues.

2 Font: Sebastiaan Breedveld assistant professor at the unit Medical Physics, department of Radia-
tion Oncology Erasmus MC Cancer Institute (Erasmus University Medical Center) Rotterdam, The
Netherlands. https://sebastiaanbreedveld.nl/radiotherapy.html.

https://sebastiaanbreedveld.nl/radiotherapy.html
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3.2 Radiotherapy Optimization
Radiation therapy planning is designed to we take advantage of mathematical

tools such as optimization modeling to formulate the goals of the treatment, in which the
problem is to find the best dose distribution. That is, given the number of beams and
direction of each beam, we have to find the intensity that is optimal for each beam.

Figure 5 expands Breedveld S. et al. [5] decomposition of the radiotherapy
problem:

Figure 5 – Picturing of the radiotherapy decomposition

Ionising radiation originates from the beam source point and falls onto a
collimator. The collimation device allows shaping the beam in different
forms and intensities, and is discretised in beamlets. The longer a beamlet
is “open”, the higher the intensity through that beamlet, and the higher
the resulting dose in the patient. As soon as the beam enters the patient,
the ionising radiation interact with the tissue, leading to dose (cell
damage). The patient is discretised in voxels.

The value of the radiation dose received by the voxel j from the beamlet i is
stored in a matrix A called pencil-beam matrix or attenuation matrix. This matrix relates
the dose distribution and the beamlet intensity. In order to optimize the radiation, the
decision variable x is represented the beamlet intensity.

As each region of the patient needs different doses, the matrix A and the dose
vector are separated according to the region of interest.
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One linear programming formulation is to minimize the total integral dose
subject to a lower bound on the dose to the tumor. The integral dose is the total dose
summed over all of the pixels.

Thus, a typical formulation is Censor et al. (1988) [9] and Cormack and Quinto
(1990) [10]:

min fpxq “ cTx

s.t Bx ď bbody,
Cix ď ci, @i “ 1, . . . , N ,
Tx ě tmin,
Tx ď tmax,
0 ď x ď U .

(3.1)

where

• the rows of B represent the body voxels, Ci represent the critical organs voxels and
T represent the tumor voxels,

• the vectors bbody and ci for i “ 1, . . . , N are the maximum value allowed for the dose
of the healthy tissue and the critical organs, respectively,

• tmin is the minimum dose expected for cause damage on the tumor cells and tmax is
the maximum dose that avoiding several consequences on the surrounding tissues,

• since it is no possible to deliver negative radiation, x ě 0 and it is limited by U .

Taking

b “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

bbody

c1
...
cN

´tmin

tmax

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B

C1
...
CN

´T

T

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

A simplified linear programming formulation is

min cTx

s.t Ax ď b,
0 ď x ď U .

(3.2)

where A P Rmˆn is the pencil-beam matrix such that if the beamlet i intersects a voxel
j, aij is the positive fraction of the area of the intersection, that is aij P r0, 1s, for all
i “ 1, . . . ,m, j “ 1, . . . , n.
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4 Problem Formulation

The problem we will solve in this work is the fuzzy formulation (2.8) of the
radiotherapy problem optimization (3.2). That is, we are going to minimize the surprise
value of the radiation dose delivered on each cell of the patient.

min
TP
ÿ

i“1
Si

˜

N
ÿ

j“1
aijxj

¸

s.t. 0 ď x ď U ,

where A :“ raijsi“1,...TP, j“1,...N represents the pencil-beam matrix, TP is the
total of voxels and N the total of beamlets and

Sipξiq “
ˆ

1
µipξiq

´ 1
˙2

, with ξi “
N
ÿ

j“1
aijxj. (4.1)

and, for each i “ 1, ¨ ¨ ¨ , TP , Si is a convex function, then for all x, y P R, and @λ P r0, 1s

TP
ÿ

i“1
Sipλx` p1´ λqyq ď

TP
ÿ

i“1
rλSipxq ` p1´ λqSipyqs

“

TP
ÿ

i“1
λSipxq `

TP
ÿ

i“1
p1´ λqSipyq

“ λ
TP
ÿ

i“1
Sipxq ` p1´ λq

TP
ÿ

i“1
Sipyq.

ñ

TP
ÿ

i“1
Sipλx` p1´ λqyq ď λ

TP
ÿ

i“1
Sipxq ` p1´ λq

TP
ÿ

i“1
Sipyq.

Therefore, we obtain a convex function.

This problem has linear constraints and nonlinear convex objective function
[20], therefore we will apply the method described in subsection 1.2.1.

Throughout this chapter we compute the gradient vector and Hessian matrix
of the objective function defined by the surprise function and, considering b in (3.2) as a
vector of triangular fuzzy numbers, we use its respective membership function to express
the gradient and Hessian matrix on a matricial form. Then we add constraints in order to
ensure a good quality of solutions and a good performance for the developed algorithm
based on Algorithm 3.
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4.1 Computing the gradient and Hessian Matrix of the objective
function

The objective function is defined as:

fpxq “
TP
ÿ

i“1
Si

˜

N
ÿ

j“1
aijxj

¸

, (4.2)

First, we compute the partial derivates of f . For each k “ 1, . . . , N ,

Bfpxq

Bxk
“

TP
ÿ

i“1

BSipξiq
Bxk

.

For each i “ 1, . . . , TP and using the rule chain, we have

BSipξiq
Bxk

“
BSipξiq
Bξi

Bξi
Bxk

, (4.3)

where

BSipξiq
Bξi

“
B

Bξi

ˆ

1
µipξiq

´ 1
˙2

“ 2
ˆ

1
µipξiq

´ 1
˙ˆ

´µipξiq
´2 Bµipξiq

Bξi

˙

“ ´2Sipξiq
1{2

µipξiq2
Bµipξiq

Bξi
.

Replacing it in (4.3) we obtain

BSipξiq
Bxk

“

„

´2Sipξiq
1{2

µipξiq2
Bµipξiq

Bξi



Bξi
Bxk

“ ´2Sipξiq
1{2

µipξiq2
Bµipξiq

Bxk
. (4.4)

Then
Bfpxq

Bxk
“ ´2

TP
ÿ

i“1

Sipξiq1{2

µipξiq2
Bµipξiq

Bxk
. (4.5)

Now, we compute the second-order partial derivate of f . For each p “ 1, . . . , N ,

B2fpxq

BxpBxk
“

TP
ÿ

i“1

B

Bxp

ˆ

BSipξiq
Bxk

˙

.

From (4.4) and, in order to simplify the calculations, using the following equality

Sipξiq1{2

µipξiq2
“ µipξiq

´3
´ µipξiq

´2,



Chapter 4. Problem Formulation 41

we obtain

B2fpxq

BxpBxk
“ ´2

TP
ÿ

i“1

B

Bxp

„

Sipξiq1{2

µipξiq2
Bµipξiq

Bxk



“ ´2
TP
ÿ

i“1

„

B

Bxp

`

µipξiq
´3
´ µipξiq

´2˘ Bµipξiq

Bxk
`
Sipξiq1{2

µipξiq2
B2µipξiq

BxpBxk



“ 2
TP
ÿ

i“1

„

Mipξiq
Bµipξiq

Bxp

Bµipξiq

Bxk
´
Sipξiq1{2

µipξiq2
B2µipξiq

BxpBxk



, (4.6)

where
Mipξiq “ 3µipξiq´4

´ 2µipξiq´3
ą 0, for each i “ 1, . . . , TP. (4.7)

Therefore, the gradient vector and Hessian matrix of f are, respectively,

∇fpxq “ ´2
«

TP
ÿ

i“1

Sipξiq1{2

µipξiq2
Bµipξiq

Bxk

ff

k“1,...,N

, (4.8)

and

Hpxq “ 2
«

TP
ÿ

i“1

ˆ

Mipξiq
Bµipξiq

Bxp

Bµipξiq

Bxk
´
Sipξiq1{2

µipξiq2
B2µipξiq

BxpBxk

˙

ff

p,k“1...,N

. (4.9)

4.2 Fuzzy Optimization applied to Radiotherapy
The objective function (4.2) is minimize the sum of surprise functions and they

assume small values when the membership functions are closed to 1, that is, the variables ξ
have a high membership degree in b̃. There exist a great variety of membership functions, µ
for the radiotherapy problem (see chapter 1), an attractive option is taking b̃ a trapezoidal
fuzzy number since would be exist a larger set of values for ξ that have a high membership
degree in b̃ than when b̃ is a triangular fuzzy number (see Example 2.1 and Example 2.2).
However, in the compute of the derivates, the set in which the trapezoidal fuzzy number is
zero is larger than the triangular fuzzy number, increasing the possibility of maintaining
the current feasible solution in same position (see Algorithm 3). Therefore we considering
b̃ as a vector of TP -triangular fuzzy numbers, ie, b̃ “ pb̃iqi“1,...,TP with b̃i “ pb1

i bi b
2
i q, the

membership function for the i-th constraint of the problem is

µipξiq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ξi ´ b
1
i

bi ´ b1
i

, if ξi P rb1
i , biq,

1 , if ξi “ bi,
b2
i ´ ξi
b2
i ´ bi

, if ξi P pbi, b2
i s,

0 , otherwise.

(4.10)
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We will take the partial derivates on the open-intervals

Bµipξiq

Bxk
“

$

’

&

’

%

aik
bi ´ b1

i

, if ξi P pb1
i , biq,

´aik
b2
i ´ bi

, if ξi P pbi, b3
i q.

(4.11)

With these considerations, (4.8) and (4.9) become

∇fpxq “ ´2

»

–

ÿ

ξiPpb1
i ,biq

Sipξiq1{2

µipξiq2
aik

bi ´ b1
i

`
ÿ

ξiPpbi,b2
i q

Sipξiq1{2

µipξiq2
´aik
b2
i ´ bi

fi

fl

k“1,...,N

“

»

–

ÿ

ξiPpb1
i ,biq

´2Sipξiq1{2
µipξiq2pbi ´ b1

i q
aik `

ÿ

ξiPpbi,b2
i q

2Sipξiq1{2
µipξiq2pb2

i ´ biq
aik

fi

fl

k“1,...,N

, (4.12)

and, as B
2µipξiq

BxpBxk
“ 0, for all p, k “ 1, . . . , N ,

Hpxq “ 2

»

–

ÿ

ξiPpb1
i ,biq

Mipξiq
aikaip

pbi ´ b1
i q

2 `
ÿ

ξiPpbi,b2
i q

Mipξiq
aikaip

pb2
i ´ biq

2

fi

fl

p,k“1...,N

“

»

–

ÿ

ξiPpb1
i ,biq

aik
2Mipξiq

pbi ´ b1
i q

2aip `
ÿ

ξiPpbi,b2
i q

aik
2Mipξiq

pb2
i ´ biq

2aip

fi

fl

p,k“1...,N

. (4.13)

However, (4.12) and (4.13) can be written on a matrix form that helps us to view
the relation, of the gradient and Hessian, with A. For that, we define the TP -dimensional
vectors d∇f and dH as

d∇fi
“

$

’

’

’

’

’

&

’

’

’

’

’

%

´2Sipξiq1{2
µipξiq2pbi ´ b1

i q
, if ξi P pb1

i , biq,

2Sipξiq1{2
µipξiq2pb2

i ´ biq
, if ξi P pbi, b2

i q,

0 , otherwise.

(4.14)

dHi
“

$

’

’

’

’

&

’

’

’

’

%

2Mi

pbi ´ b1
i q

2 , if ξi P pb1
i , biq,

2Mi

pb2
i ´ biq

2 , if ξi P pbi, b2
i q,

0 , otherwise.

(4.15)

for each i “ 1, . . . , TP .

Then,
∇fpxq “ ATd∇f , (4.16)

Hpxq “ ATDHA, (4.17)
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where DH is a TP ˆ TP -matrix such that DH “ diagonalpdHq and dHi
ě 0, from (4.7),

then for any w P RN

wTHw “ wTATDHAw “ pAwq
T
pD

1{2
H D

1{2
H qpAwq “ }D

1{2
H pAwq}

2
ě 0,

therefore, Hpxq is semi-positive definite matrix.

4.3 Adding constraints and developing the interior-point method
The surprise model (2.8) can be modified in order to ensure a good quality of

solutions and a good performance of the algorithm. We will add the following constraints:

• Taking into account relation (2.7), and considering (4.1), ξ will be considered as a
variable that must satisfy:

Ax “ ξ.

• Since ξ is a variable, that must satisfy ξ ď b̃ “ pb1 b b2q(triangular fuzzy number).
Outside of the interval pb1, b2q the surprise function takes on large values. On the
other hand for

b1 ď ξ ď b2,

the surprise function value be will be smaller and, therefore, fpxq to be minimized.

The previous analysis allows us to define an improved formulation of the
problem:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

min fpxq

s.t x ď U ,
Ax “ ξ,
ξ ě b1,
ξ ď b2,
x ě 0.

(4.18)

The interior-point method will be developed with this formulation. Adding the
slack variables v, z1, z2 ě 0 and the logarithmic-barrier-terms (4.18) becomes

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

min fpxq

s.t x` v “ U ,
Ax “ ξ,

ξ ´ z1 “ b1,
ξ ` z2 “ b2,

x, v, z1, z2 ě 0.

ðñ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min f̃pxq

s.t x` v “ U ,
Ax “ ξ,

ξ ´ z1 “ b1,
ξ ` z2 “ b2.
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where

f̃pxq “ fpxq ´ γx

N
ÿ

i“1
ln xi ´ γv

N
ÿ

i“1
ln vi ´ γz1

TP
ÿ

i“1
ln z1

i ´ γz2

TP
ÿ

i“1
ln z2

i ,

with x “ px, v, z1, z2q
T .

Consider the Lagrangean function of f̃ as follows

Lpx; yq “ f̃pxq ´ yT px` v´Uq ´wT1 pξ ´ z1´ b1q ´w
T
2 pξ ` z2´ b2q ´ q

T
pAx´ ξq, (4.19)

where y “ py, w1, w2, qq
T is the non-negative dual variable of the formulation (4.18).

Computing the gradient of L gives raise to:

∇xLpx; yq “ ∇fpxq ´ γxX´1e´ y ´ AT q, (4.20a)

∇ξLpx; yq “ ´w1 ´ w2 ` q, (4.20b)

∇vLpx; yq “ ´γvV
´1e´ y, (4.20c)

∇z1Lpx; yq “ ´γz1Z
´1
2 e` w1, (4.20d)

∇z2Lpx; yq “ ´γz2Z
´1
2 e´ w2, (4.20e)

∇yLpx; yq “ ´px` v ´ Uq, (4.20f)

∇w1Lpx; yq “ ´pξ ´ z1 ´ b1q, (4.20g)

∇w2Lpx; yq “ ´pξ ` z2 ´ b2q, (4.20h)

∇qLpx; yq “ ´pAx´ ξq, (4.20i)

where X, V , Z1 and Z2 are diagonal matrix formed by the components of x, v, z1 and
z2, respectively, and e is the vector of 11s. Let p, s, t1 and t2 be the complementary
(non-negative) variables such that

p “ γxX
´1e ðñ XPe “ γxe, (4.21a)

s “ γvV
´1e ðñ V Se “ γve, (4.21b)

t1 “ γz1Z
´1
1 e ðñ Z1T1e “ γz1e, (4.21c)

t2 “ γz2Z
´1
2 e ðñ Z2T2e “ γz2e. (4.21d)

Replacing on the system (4.20), ∇Lpx; yq “ 0 and the additional conditions
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(4.21) which are the KKT-conditions of the problem. Thus, let us define the function F

F px; yq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

∇fpxq ´ p´ y ´ AT q
´w1 ´ w2 ` q

y ` s

´t1 ` w1

t2 ` w2

x` v ´ U

ξ ´ z1 ´ b1

ξ ` z2 ´ b2

Ax´ ξ

XPe´ γxe

V Se´ γve

T1Z1e´ γz1e

T2Z2e´ γz2e

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4.22)

Applying Newton’s method to the equation F px; yq “ 0 gives
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

H 0 0 0 0 ´I 0 0 ´AT ´I 0 0 0
0 0 0 0 0 0 ´I ´I I 0 0 0 0
0 0 0 0 0 I 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0 0 0 0 ´I 0
0 0 0 0 0 0 0 I 0 0 0 0 I

I 0 I 0 0 0 0 0 0 0 0 0 0
0 I 0 ´I 0 0 0 0 0 0 0 0 0
0 I 0 0 I 0 0 0 0 0 0 0 0
A ´I 0 0 0 0 0 0 0 0 0 0 0
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0 0 S 0 0 0 0 0 0 0 V 0 0
0 0 0 T1 0 0 0 0 0 0 0 Z1 0
0 0 0 0 T2 0 0 0 0 0 0 0 Z2
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‚

¨ d “ r, (4.23)

where:

• H is the N ˆ N - Hessian matrix of f , defined in (4.17). It is symmetric and
semi-positive definite,
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• d “

¨
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dp
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and r “

¨
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p` y ` AT q ´∇fpxq
w1 ` w2 ´ q

´y ´ s

t1 ´ w1

´t2 ´ w2

U ´ x´ v

z1 ` b1 ´ ξ

b2 ´ z2 ´ ξ

ξ ´ Ax

γxe´XPe

V Se´ γve

γz1e´ T1Z1e

γz2e´ T2Z2e

˛
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‹

‹

‚

.

Solving (4.23) and denoting X´1P ` V ´1S and Z´1
1 T1 ` Z

´1
2 T2 as Dx and Dz,

respectively, we obtain

rH `Dx ` A
TDzAsdx “ rx, (4.24a)

dξ “ Adx´ r9, (4.24b)

dv “ r6 ´ dx, (4.24c)

dz1 “ dξ ´ r7, (4.24d)

dz2 “ r8 ´ dξ, (4.24e)

dp “ X´1
pr10 ´ Pdxq, (4.24f)

ds “ V ´1
pr11 ´ Sdxq, (4.24g)

dt1 “ Z´1
1 pr12 ´ T1dz1q, (4.24h)

dt2 “ Z´1
2 pr13 ´ T2dz2q, (4.24i)

dq “ r2 ` dw1 ` dw2, (4.24j)

dy “ r3 ´ ds, (4.24k)

dw1 “ r4 ` dt1, (4.24l)

dw2 “ r5 ´ dt2, (4.24m)

where

rx :“ r1 ` A
T
pr2 ` rw1 ` rw2q ` r3 ` V

´1
pSr6 ´ r11q `X

´1r10,

rw1 :“ r4 ` Z
´1
1 rr12 ` T1pr7 ` r9qs,

rw2 :“ r5 ´ Z
´1
2 rr13 ´ T2pr8 ` r9qs.

The linear system (4.24) allows us to compute the search directions. The main
difficult is to find dx since a method for solving a system of N -linear equations must be
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used. However, from (4.17), H “ ATDHA, therefore, let D “ DH `Dz. To compute dx
we have to solve the linear system:

pATDA`Dxqdx “ rx. (4.26)

When the dataset is obtained from a real data medical, these type of problems
are large problems with sparse and full-rank matrices. The matrix C “ ATDA `Dx is
symmetric, positive definite (because x ą 0 and z ą 0) and thus we can solve the system
(4.26) applying the Cholesky decomposition. As this system changes at each iteration, we
have to solve a new N ˆN linear system where the quality of the solution obtained will
depend on the matrix A. This step takes a considerable processing time and computational
effort, therefore we will use the following strategy

C “ ĈT Ĉ `Dx, where Ĉ “ D
1{2
A,

and will decompose C using the Cholesky-function of MATLAB.

4.4 Developing the Algorithm
In this section we will present the algorithm implemented. First we explain

how determine the step lengths and stopping criterian.

4.4.1 Determining the step lengths

The step length is next computed as (1.8) and (1.9) for the non-negative
variables. On the other hand, despite ξ being free, we must to have special control on it
when it is close of b (for the triangular fuzzy number b̃ “ pb1 b b2q) because the derivate
of µ will be zero (4.11). For that, we define

β “ mint1, τβL, τβRu, (4.27)

where βL and βR represent the length step when ξ approaches b from the left and from
the right side, respectively, and are computed as

βL “ min
"

b´ ξ

dξ
: b1 ă ξ ă b, dξ ą 0

*

and βR “ min
"

b´ ξ

dξ
: b ă ξ ă b2, dξ ă 0

*

.

Let αx, αz1 , αz2 , αv denote the step lengths of x, z1, z2, v, respectively, where

αp “ mintαx, αz1 , αz2 , αv, βu, (4.28)

is the step length for the primal variables, and αt1 , αt2 , αs, αp the step lengths of t1, t2, s, p,
respectively,

αd “ mintαt1 , αt2 , αs, αpu, (4.29)

is the step length for the dual variables.
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4.4.2 Stopping Criterian

Besides having control in not violating the non-negative conditions on the
variables, we need that the residues and the gap to be reduced to maintain the feasibility
of the solution. For that, we will take the relative errors of the main constraints:

CP1 “
}U ´ x´ v}

}U} ` 1 , (4.30a)

CP2 “
}ξ ´ Ax}

}x} ` }ξ} ` 1 , (4.30b)

CP3 “
}b1 ` z1 ´ ξ}

}b1} ` 1 , (4.30c)

CP4 “
}b2 ´ z2 ´ ξ}

}b2} ` 1 , (4.30d)

CP5 “
}∇f ´ p´ y ´ AT q}

}∇f} ` 1 , (4.30e)

CP6 “
gap

2fpxq ` 1 , (4.30f)

where the addition of 1 in the denominators is to avoid division by small values. Thus, we
define the stopping criterian as the maximum value:

CP “ maxtCP1, CP2, CP3, CP4, CP5, CP6u, (4.31)

and ask it to satisfy a given tolerance.

The resulting algorithm after the previous analysis is summarized in the
Algorithm 4, where are used the following parameters:

maxit “ 1000,

tol “ 10´4,

τ “ 0.99995, (4.32)

gap “ xTp` vT s` tT1 z1 ` t
T
2 z2,

γ “ σ
gap

2pN ` TP q , σ “
1

2
?
N ` TP

.
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Algorithm 4 – Primal-Dual Interior-Point Algorithm to solve the radiother-
apy problem (4.18)
Data: Variables: x0, ξ0, v0, z1

0, z2
0, t1

0, t2
0, w1

0, w2
0

Parameters: A, b̃, U, τ, σ, tol
begin

while CP ą tol && k ă maxit do
Compute µpξq and spξq;
Compute ∇f and H;
Compute gap and γ;
Compute the residues:;
r1 “ AT q ` p` y ´∇fpxq;
r2 “ w1 ` w2 ´ q;
r3 “ ´y ´ s;
r4 “ t1 ´ w1;
r5 “ ´t2 ´ w2;
r6 “ U ´ x´ v;
r7 “ b1 ` z1 ´ ξ;
r8 “ b2 ´ z2 ´ ξ;
r9 “ ξ ´ Ax;
r10 “ γe´XPe;
r11 “ γe´ V Se;
r12 “ γe´ T1Z1e;
r13 “ γe´ T2Z2e;
Compute the directions: dx in (4.26) and the other from system (4.24);
Determinate αp and αd using (4.28) and (4.29), respectively;
Update the variables;
xk`1

“ xk ` αpdx;
ξk`1

“ ξk ` αpdξ;
vk`1

“ vk ` αpdv;
zk`1

1 “ zk1 ` αpdz1;
zk`1

2 “ zk2 ` αpdz2;

pk`1
“ pk ` αddp;

sk`1
“ sk ` αdds;

tk`1
1 “ tk1 ` αddt1;
tk`1
2 “ tk2 ` αddt2;
yk`1

“ yk ` αddy;
qk`1

“ qk ` αddq;
wk`1

1 “ wk1 ` αddw1;
wk`1

2 “ wk2 ` αddw2;
Compute CP from (4.31)

end
end
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5 Computational Results

Algorithm 4 is implemented in MATLAB Version 7.10.0.499 (R2010a) on a
computer with characteristics: Windows 10 Pro Education, Intel(R) Core(TM) i7-4790
CPU, 3.60GHz and 16GB of RAM. In this chapter we present the results obtained using
the set of instances Head-and-Neck (6.5GiB), from the TROTS dataset1, that consists of
15 patients with cancer in the head-and-neck region. More details and explanation about
the contents and how to access to these data are in [6].

5.1 Matrix Properties
The set of instances Head-and-Neck (6.5GiB), from the TROTS dataset [6],

provides the numerical data parameters as the quantity of beamlets used on each patient;
pencil-beam dose matrices for each clinical structures where the number of rows indicates
the number of voxels for each structure; dose values and a sufficient value indicating that
the dose value not need to become lower than the given sufficient value (we will use these
values for limiting the tumor dose values). All these parameters and data are summarized
in the following tables.

Table 1 presents the quantity of voxels (columns TP ) used to represent each
structure and the sparsity of them (columns SP ) being the percentage of elements non-
zero. For our experiments we took the matrix of the tumor (T ), AT , and just 3 critical
organs near to the tumor region: Spinal Cord (C1), AC1 ; Brain-stem (C2), AC2 , and Larynx
(C3), AC3 .

It can be seen that AC2 is much more sparse than the other structures, where
it is null for the Patient 5. AT and AC3 are a little dense, except for the Patient 5 which
are considered full matrices. AC3 is slightly less sparse than AT , except for the Patient 7.

Table 2 describe the properties of the general matrix constituted by the tumor
and critical organs matrices, that is, A “ pAT AC1 AC2 AC3q

T .The column 2 provides
the total of beamlets used N , representing the total number of variables (the number of
columns). Column 3 has the total number of voxels TP , and column 4, the sparsity of
the resulting matrix A. We using the rank function of MATLAB to compute the rank of
A and highlight that A has full rank, for all patients.

The expected values of doses (in Gray - Gy) for the structures considered are
the same for all the patients [7], and are presented in Table 3. For the critical organs, these
1 Link access: https://www.erasmusmc.nl/en/cancer-institute/research/projects/

radiotherapy-trots. (Last access date: 16-08-2020)

https://www.erasmusmc.nl/en/cancer-institute/research/projects/radiotherapy-trots
https://www.erasmusmc.nl/en/cancer-institute/research/projects/radiotherapy-trots
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Table 1 – Properties of the pencil-beam matrix of each structure: quantity of voxels TP
and sparsity SP . AT matrix of the Tumor, AC1 matrix of the Spinal cord, AC2

matrix of the Brain-stem and AC3 matrix of the Larynx.

Patient AT AC1 AC2 AC3

TP SP (%) TP SP (%) TP SP (%) TP SP (%)
1 5 096 17.98 3 529 13.30 3 757 4.92 5 263 19.72
2 5 167 26.87 3 181 18.85 3 126 1.80 5 075 30.58
3 5 176 24.93 3 065 15.87 3 397 1.19 5 127 29.07
4 5 120 17.63 3 775 12.94 3 137 3.14 5 339 19.73
5 5 208 70.59 2 068 18.84 2 101 0.00 3 615 76.33
6 5 154 25.98 2 891 17.24 3 046 2.99 5 011 30.16
7 5 110 17.30 3 603 12.19 3 500 2.20 5 134 16.85
8 5 110 17.28 3 429 12.02 4 133 6.41 5 142 18.66
9 5 126 19.97 3 906 12.82 3 920 1.20 5 131 21.43
10 5 127 17.15 3 406 12.42 3 674 6.03 5 105 18.44
11 5 128 18.98 3 660 11.70 3 567 1.29 5 159 20.63
12 5 162 22.75 3 290 14.94 3 853 1.70 5 247 25.18
13 5 107 18.36 3 279 11.70 3 669 4.92 5 101 20.17
14 5 108 20.05 3 993 12.78 3 309 5.56 3 970 22.19
15 5 113 21.17 3 213 14.68 3 580 1.17 5 238 24.06

doses are the maximum allowed value.

However, for our problem, we suggest to use triangular-fuzzy-numbers. Thus,
we be inclined to think that the tumor cells can receive a little more radiation and need
a minimal radiation to be damaged, according to the sufficient value from the dataset
[7], we take the fuzzy target as b̃T “ p0.5dT dT 1.1dT q. In other words, a dose bT “ 48.3
kills the tumor cells and the values bT1 “ 24.15 is sufficient lower bound and bT2 “ 53.13
are reasonable upper bound. These values are reasonable limits when taking account the
sufficient dose value and increasing the upper bounds can make an increasing in the dose
values for the surrounding structures.

Unlike the tumor, critical organs can not receive more radiation than their
limits dCi

, i “ 1, 2, 3; and the lower the radiation the lower damage for these organs. Thus,
after having tested with different percentages of dCi

, the fuzzy target for each i “ 1, 2, 3 is
b̃Ci
“ p0 0.3dCi

dCi
q, where 30%dCi

allows us to have a good performance of the algorithm.
The values of this analyze are summarized in Table 4.

5.2 Computing the Initial Point
The main goal of the radiotherapy problem is to eliminate the tumor cells

since without the requirement of a minimal dose to kill tumor cells, the optimal delivered
radiation for the another cells will be zero. For this reason, the choice of the initial delivered
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Table 2 – Properties of the resulting matrix A “ pAT AC1 AC2 AC3q
T : dimension TPˆN

and sparsity.

Patient Total of Total of Total
Voxels(TP ) Beamlets(N) sparsity(%)

1 17 645 9 977 14.78
2 16 549 6 331 21.73
3 16 765 6 939 19.73
4 17 371 10 125 14.64
5 12 992 1 815 52.53
6 16 102 6 690 21.36
7 17 347 9 646 13.06
8 17 814 10 299 14.14
9 18 083 8 563 14.77
10 17 312 10 579 14.24
11 17 514 9 184 14.34
12 17 552 7 233 17.39
13 17 156 9 784 14.75
14 16 380 8 940 15.87
15 17 144 8 431 16.66

Table 3 – Dose values for the Tumor (T ), Spinal cord (C1), Brain-stem (C2) and Larynx
(C3).

Structure Dose d (Gy)
T 48.30
C1 38.00
C2 38.00
C3 48.30

Table 4 – Triangular-fuzzy-number dose b̃ “ pb1 b b2q for each structure: Tumor (T ),
Spinal cord (C1), Brain-stem (C2) and Larynx (C3).

Structure b1 (Gy) b (Gy) b2 (Gy)
T 24.15 48.30 53.13
C1 0.00 11.40 38.00
C2 0.00 11.40 38.00
C3 0.00 14.49 48.30

radiation, x0, will be based on the desired dose of the tumor.

Only pencil-beams that hit at least one tumor voxel is considered, that is, the
matrix to the tumor. Then the algorithm starts the process of minimizing the delivered
radiation to the other organs and tissues considering that the tumor cells have a minimal
dose that must be satisfied.
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The data set [7] also suggests use an InitialiseMatrix, matrix required for
initialising the problem, in this case is tumor matrix AT ; an InitialiseReferenceDose,
the reference dose d, which is the right-hand side for the least-square ATx “ d; and
furthermore a InitialiseRegularisatioMatrix, is a smoothing matrix B [6] (symmetric
and positive definite) that helps to regulate the least-square problem (the use of this
matrix is justifying in [5]). Therefore, we compute x0 by solving the following least-square
problem:

˜

AT

B

¸

x0
“

˜

d

0

¸

. (5.1)

We used the lsqr-function from MATLAB and the solutions obtained have relative residual
« 0.01.

The radiation delivered inside each structure with x0 is presented in the Table 5.
As it can be seen, the tumor receives high radiation dose and, at the same time, the
Larynx C3 is receiving almost the limiting value causing potential damage to this structure.
Although the other structures, C1 and C2, are not receiving high dose, these values can be
improved by Algorithm 4.

5.3 Numerical experiments
Table 6 presents the results obtained using the parameters 4.32. Furthermore,

analysing the radiation flow from the solution provides by [7], we establishing an upper
bound for the variable x as U “ 1000. All the instances stopped after the maximum number
of iteration was attained without achieving the desirable precision, namely CP ă tol. In
the objective-function values (4.2), in column FO, the minimum value was for Patient
7 due to the percentage of sparsity and, as A is a full matrix for Patient 5 the objective
function has a high value.

It was difficult to obtain a large decrease in the amount of radiation in this
region, since both of the tumor and larynx matrices (AT and AC3) have similar percentage
of sparsity. This can be seen by looking at the large the surprise value (4.1), see Table 7.
For this reason, the objective function values are high. However, this does not mean that
the solution obtained, xsol, is not good since, despite not receiving the “ideal value” bC3

for the fuzzy number, the radiation deposited inside the larynx region was, in the best
case, for Patient 12, of 0.333%, and for the worst case, Patient 5, of 0.598%, of the allowed
maximum value dC3 . That is, instead of the variable ξ taking on values around of 14.49
(and thus spξq « 0), ξ is, on average, approximately 25. This dose will not significantly
harm the larynx, according to the radiation oncologist [6], Table 3.

The value of the delivered radiation of each beamlet, xsol, is such that the
average of radiation dose received by the spinal cord and the brain-stem, Axsol, is better
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Table 5 – Radiation delivered inside each structure with the initial solution x0

Patient S Ax0 (Gy) Patient S Axsol (Gy)

1

T 47.1905 T 47.0945
C1 37.3800 9 C1 18.8092
C2 6.8536 C2 0.3779
C3 47.1290 C3 43.1636

2

T 47.2073 T 47.1416
C1 22.8167 10 C1 23.5529
C2 0.5606 C2 10.0669
C3 47.2424 C3 46.6737

3

T 47.0911 T 47.1418
C1 20.5297 11 C1 19.7682
C2 0.2476 C2 0.5949
C3 47.0412 C3 43.4228

4

T 47.1437 T 47.1442
C1 23.8770 12 C1 20.1333
C2 4.3842 C2 0.4682
C3 46.6533 C3 42.9688

5

T 47.1443 T 47.1918
C1 7.5957 13 C1 20.8242
C2 0.0000 C2 7.1040
C3 47.1289 C3 44.2318

6

T 47.1053 T 47.2034
C1 22.9271 14 C1 20.6710
C2 1.3798 C2 7.0418
C3 47.0482 C3 45.1990

7

T 47.1439 T 47.1382
C1 19.8742 15 C1 24.6830
C2 1.9662 C2 0.4257
C3 39.4022 C3 47.1687

8

T 47.1451
C1 22.2247
C2 11.1697
C3 43.0122

than ξ (see columns Axsol in Table 8 and ξ in Table 7), where for most of them close to
zero. On these structures the difference Axsolution ´ ξ increases the value of the residue r9

and then according to (4.30b), also increases the value of gap.

It is not possible to make direct comparisons between the solution obtained
by our algorithm, xsol, and the optimal solution provided in [6], x˚ (obtained by the
Erasmus-iCycle solver developed in [8]), because they consider all the critical organs and
healthy tissue in the objective function and it is optimized taking into account different
levels of priority to attack each region. However, we are able to compare the radiation
delivered, by xsol and x˚, inside each structure computing the radiation dose received,
Axsol and Ax˚. In the Table 8 we present the average of these values for each region
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Table 6 – Results for all patients considering the tumor, spinal cord, brain-stem and larynx
structures, with FO value of the objective function (4.2) and the time is in
seconds.

Patient FO gap time(s)
1 774.115 64.87 196750.5
2 828.610 1439.80 141215.7
3 810.823 1172.70 167628.8
4 628.447 123.57 197510.1
5 3931.616 4929.10 48124.2
6 858.412 1514.70 152091.8
7 76.881 667.62 152252.9
8 287.457 623.23 190976.3
9 281.043 1268.80 164535.6
10 621.642 279.46 199699.8
11 193.020 979.80 170051.7
12 81.178 827.04 153251.8
13 231.003 446.75 186811.9
14 260.587 539.78 172100.6
15 825.580 648.42 167732.3

(Tumor T , Spinal cord C1, Brain-stem C2 and Larynx C3) and patient.

The radiation dose received by the tumor with the solution xsol, in the worst
case, represents 69.58% of the expected dose and it is 39.16% higher than the desired
minimal dose. For all patients, the radiation delivered by xsol is lower than x˚. However, it
is still higher than the sufficient value given by the oncologist in order to shrink the tumor
[7]. Moreover, the radiation delivered by xsol inside the Spinal-cord is smaller than 29% of
the maximum tolerance dose; for the Brain-stem, it is smaller than 18% of the tolerance;
and, since the Larynx-matrix is less sparse than the other structures, the radiation is lower
than 59.77% of the tolerance. Thus, on the critical structures, unlike x˚, our solution xsol
delivers a little amount of radiation for most of the patients, helping to maintain theses
structures healthy.



Chapter 5. Computational Results 56

Table 7 – Average for each structure (Tumor T , Spinal cord C1, Brain-stem C2 and Larynx
C3) of the radiation ξ received, membership function µ (4.10) and surprise
function Spξq (4.1).

Patient S ξ µ Spξq Patient S ξ µ Spξq

1

T 47.9725 0.9854 0.0003 T 48.0595 0.9901 0.0001
C1 12.6161 0.9727 0.0026 9 C1 11.7636 0.9810 0.0009
C2 11.7039 0.9886 0.0012 C2 11.4018 0.9999 0.0000
C3 23.3933 0.7368 0.1379 C3 18.3844 0.8849 0.0503

2

T 48.0508 0.9877 0.0002 T 47.9379 0.9846 0.0004
C1 12.5338 0.9575 0.0049 10 C1 13.1878 0.9329 0.0135
C2 11.4036 0.9999 0.0000 C2 11.9342 0.9800 0.0027
C3 24.0058 0.7187 0.1556 C3 21.9280 0.7801 0.1061

3

T 48.0879 0.9905 0.0001 T 48.0842 0.9912 0.0001
C1 11.9898 0.9779 0.0014 11 C1 11.7014 0.9865 0.0005
C2 11.4016 0.9999 0.0000 C2 11.4013 0.9999 0.0000
C3 23.9330 0.7280 0.1530 C3 17.4034 0.9139 0.0333

4

T 47.9584 0.9842 0.004 T 48.0395 0.9893 0.0002
C1 12.7778 0.9483 0.0059 12 C1 11.4802 0.9885 0.0003
C2 11.4490 0.9982 0.0000 C2 11.4016 0.9999 0.0000
C3 22.1117 0.7747 0.1090 C3 16.0917 0.9527 0.0115

5

T 45.9931 0.9042 0.1423 T 47.9883 0.9868 0.0002
C1 11.7435 0.9871 0.0011 13 C1 12.2714 0.9673 0.0028
C2 11.4004 1.0000 0.0000 C2 11.5688 0.9937 0.0004
C3 28.5401 0.5845 0.8325 C3 18.1496 0.8919 0.0389

6

T 48.0548 0.9881 0.0002 T 47.9710 0.9861 0.0002
C1 12.6037 0.9548 0.0056 14 C1 12.4373 0.9611 0.0040
C2 11.4111 0.9996 0.0000 C2 11.5685 0.9937 0.0004
C3 24.2069 0.7127 0.1633 C3 19.2540 0.8592 0.0557

7

T 47.9169 0.9842 0.0003 T 48.0470 0.9887 0.0002
C1 12.0071 0.9773 0.0014 15 C1 11.9510 0.9794 0.0009
C2 11.4039 0.9999 0.0000 C2 11.4028 0.9999 0.0000
C3 16.3250 0.9458 0.0098 C3 23.9703 0.7197 0.1529

8

T 47.4940 0.9667 0.0024
C1 13.5550 0.9192 0.0199
C2 12.1525 0.9718 0.0062
C3 18.8855 0.8701 0.0311

Finally, in order to compare radiation dose received in the structures by the
obtained plan, we compute the percentage of absorbed dose for each structure volume and
show graphically in Histograms Dose - Volume2. Ideally, the entire tumor region must be
receive 100% of the prescribe dose (Table 3) and the other structure 0% of radiation, but
it is impossible. For the developed algorithm we have the next representation of absorbed
dose.
2 A dose-volume histogram (DVH) summarizes the simulated radiation distribution within a volume of

interest of a patient which would result from a proposed radiation treatment plan [12]
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Table 8 – Comparing of the radiation delivered inside each structure with our solution xsol
and the solution x˚ provided in [7] (obtained by the Erasmus-iCycle solver [8])

Patient S Axsol (Gy) Ax˚ (Gy) Patient S Axsol (Gy) Ax˚ (Gy)

1

T 41.0216 47.4951 T 40.6694 47.5346
C1 10.4115 34.9725 9 C1 8.7181 13.0790
C2 3.5683 4.7520 C2 0.6271 0.2205
C3 23.5570 47.1370 C3 18.3803 14.5001

2

T 40.5938 47.5038 T 41.9435 47.5415
C1 9.6054 17.0301 10 C1 10.7642 15.8300
C2 0.7316 0.4131 C2 5.1489 6.7971
C3 24.1365 47.6418 C3 22.1383 43.0029

3

T 39.7145 47.4923 T 41.3433 47.5292
C1 8.6460 13.5169 11 C1 9.0392 14.0455
C2 0.2965 0.2001 C2 0.5194 0.4483
C3 24.0148 47.4134 C3 17.4055 34.5001

4

T 41.6663 47.4868 T 41.5919 47.4920
C1 10.8820 18.2829 12 C1 8.6512 14.0062
C2 3.1957 2.6366 C2 0.4630 0.2833
C3 22.3461 41.6452 C3 16.0901 34.5001

5

T 33.6077 47.4181 T 42.2915 47.5369
C1 4.9491 8.2195 13 C1 8.6080 13.6462
C2 0.0000 0.0000 C2 4.0750 6.5379
C3 28.8702 47.9382 C3 18.2525 34.5000

6

T 40.7933 47.5048 T 42.2790 47.5085
C1 10.5641 17.6712 14 C1 8.6806 14.3514
C2 1.1941 0.9897 C2 4.2887 6.3614
C3 24.4033 47.9296 C3 19.3913 34.5000

7

T 42.3733 47.5196 T 39.9717 47.5815
C1 9.5406 15.1842 15 C1 9.9673 17.0237
C2 2.2035 1.6192 C2 0.5934 0.2875
C3 16.4151 33.3597 C3 24.0366 47.8879

8

T 42.2304 47.5468
C1 10.8487 14.3067
C2 6.5405 9.0553
C3 19.2812 34.5001

Patient 1 Figure 6, 75% of the tumor volume receives 40 Gy equivalent to
almost 83% of the ideal value for the oncologist and 25% between 93% ´ 103% of the
ideal value. Less than 20% of the Spinal cord C1 volume receives between 39% ´ 52%
of maximal prescribe dose; less than 25% of the Brain-stem C2 volume receives between
13%´ 39% of maximal prescribe dose; and less than 10% of the Larynx C3 volume receives
between 51%´ 62% of maximal prescribe dose.
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Figure 6 – Patient 1

Figure 7 – Patient 2

Patient 2 Figure 7, 75% of the tumor volume receives 40 Gy equivalent to
almost 83% of the ideal value for the oncologist and 25% between 93% ´ 103% of the
ideal value. Less than 20% of the Spinal cord C1 volume receives between 39% ´ 52%
of maximal prescribe dose; less than 10% of the Brain-stem C2 volume receives between
13%´ 39% of maximal prescribe dose; and less than 10% of the Larynx C3 volume receives
between 51%´ 62% of maximal prescribe dose.
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Figure 8 – Patient 3

Patient 3 Figure 8, approximately 75% of the tumor volume receives 40 Gy
equivalent to almost 83% of the ideal value for the oncologist and 25% between 93%´103%
of the ideal value. Less than 50% of the Spinal cord C1 volume receives less than 39% of
maximal prescribe dose; less than 25% of the Brain-stem C2 volume receives less than 13%
of maximal prescribe dose; and less than 25% of the Larynx C3 volume receives less than
51% of maximal prescribe dose.

Figure 9 – Patient 4
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Patient 4 Figure 9, 75% of the tumor volume receives 40 Gy equivalent to
almost 83% of the ideal value for the oncologist and 25% between 93%´ 103% of the ideal
value. Less than 10% of the Spinal cord C1 volume receives less than 52% of maximal
prescribe dose; less than 20% of the Brain-stem C2 volume receives less than 39% of
maximal prescribe dose; and less than 20% of the Larynx C3 volume receives between 62%
of maximal prescribe dose.

Figure 10 – Patient 5

Patient 5 Figure 10, 75% of the tumor volume receives 30 Gy equivalent to
almost 62% of the ideal value for the oncologist and 25% between 82%´ 103% of the ideal
value. Less than 25% of the Spinal cord C1 volume receives less than 39% of maximal
prescribe dose; less than 25% of the Brain-stem C2 volume receives between 13% of
maximal prescribe dose; and almost 100% of the Larynx C3 volume receives 51% of
maximal prescribe dose.

Patient 6 Figure 11, 75% of the tumor volume receives 40 Gy equivalent to
almost 83% of the ideal value for the oncologist and 25% between 93%´ 103% of the ideal
value. Less than 20% of the Spinal cord C1 volume receives less than 52% of maximal
prescribe dose; less than 10% of the Brain-stem C2 volume receives between 13%´ 39%
of maximal prescribe dose; and less than 10% of the Larynx C3 volume receives between
51%´ 62% of maximal prescribe dose.

Patient 7 Figure 12, more than 75% of the tumor volume receives 40 Gy

equivalent to almost 83% of the ideal value for the oncologist and 25% between 93%´103%
of the ideal value. Less than 25% of the Spinal cord C1 volume receives less than 39% of
maximal prescribe dose; less than 10% of the Brain-stem C2 volume receives less than 39%
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Figure 11 – Patient 6

Figure 12 – Patient 7

of maximal prescribe dose; and less than 15% of the Larynx C3 volume receives less than
51% of maximal prescribe dose.

Patient 8 Figure 13, more than 75% of the tumor volume receives more than
40 Gy equivalent to almost 83% of the ideal value for the oncologist and 25% between
93% ´ 103% of the ideal value. Less than 25% of the Spinal cord C1 volume receives
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Figure 13 – Patient 8

between 39%´ 52% of maximal prescribe dose; less than 20% of the Brain-stem C2 volume
receives between 39%´ 52% of maximal prescribe dose; and less than 15% of the Larynx
C3 volume receives between 51%´ 62% of maximal prescribe dose.

Figure 14 – Patient 9

Patient 9 Figure 14, 80% of the tumor volume receives more than 40 Gy

equivalent to almost 83% of the ideal value for the oncologist and 25% approximately 93%
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of the ideal value. Less than 25% of the Spinal cord C1 volume receives less than 39% of
maximal prescribe dose; less than 10% of the Brain-stem C2 volume receives less than 26%
of maximal prescribe dose; and less than 10% of the Larynx C3 volume receives between
51%´ 62% of maximal prescribe dose.

Figure 15 – Patient 10

Patient 10 Figure 15, more than 80% of the tumor volume receives more than
40 Gy equivalent to almost 83% of the ideal value for the oncologist and 25% between
93% ´ 103% of the ideal value. Less than 25% of the Spinal cord C1 volume receives
between 39%´ 52% of maximal prescribe dose; less than 10% of the Brain-stem C2 volume
receives between 39%´ 52% of maximal prescribe dose; and less than 10% of the Larynx
C3 volume receives between 51%´ 62% of maximal prescribe dose.

Patient 11 Figure 16, more than 80% of the tumor volume receives more than
40 Gy equivalent to almost 83% of the ideal value for the oncologist and 25% between
93%´ 103% of the ideal value. Less than 25% of the Spinal cord C1 volume receives less
than 39% of maximal prescribe dose; less than 10% of the Brain-stem C2 volume receives
between 13%´26% of maximal prescribe dose; and less than 25% of the Larynx C3 volume
receives between 40%´ 51% of maximal prescribe dose.

Patient 12 Figure 17, more than 80% of the tumor volume receives more than
40 Gy equivalent to almost 83% of the ideal value for the oncologist and 25% between
93%´ 103% of the ideal value. Less than 25% of the Spinal cord C1 volume receives less
than 39% of maximal prescribe dose; less than 10% of the Brain-stem C2 volume receives
between 13%´26% of maximal prescribe dose; and less than 20% of the Larynx C3 volume
receives between 40%´ 51% of maximal prescribe dose.
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Figure 16 – Patient 11

Figure 17 – Patient 12

Patient 13 Figure 18, 80% of the tumor volume receives more than 40 Gy
equivalent to almost 83% of the ideal value for the oncologist and 25% between 93%´103%
of the ideal value. Less than 25% of the Spinal cord C1 and the Brain-stem C2 volume
receives between 26%´ 39% of maximal prescribe dose; and less than 25% of the Larynx
C3 volume receives between 40%´ 51% of maximal prescribe dose.
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Figure 18 – Patient 13

Figure 19 – Patient 14

Patient 14 Figure 19, 80% of the tumor volume receives more than 40 Gy
equivalent to almost 83% of the ideal value for the oncologist and 25% between 93%´103%
of the ideal value. Less than 25% of the Spinal cord C1 volume receives less than 39%
of maximal prescribe dose; less than 25% of the Brain-stem C2 volume receives between
26%´ 39% of maximal prescribe dose; and less than 25% of the Larynx C3 volume receives
between 40%´ 51% of maximal prescribe dose.
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Figure 20 – Patient 15

Patient 15 Figure 20, more than 70% of the tumor volume receives more than
40 Gy equivalent to almost 83% of the ideal value for the oncologist and approximately
25% between 93%´ 103% of the ideal value. Less than 10% of the Spinal cord C1 volume
receives between 13%´ 26% of maximal prescribe dose; less than 25% of the Brain-stem
C2 volume receives less than 39% of maximal prescribe dose; and less than 10% of the
Larynx C3 volume receives between 51%´ 62% of maximal prescribe dose.

Also, less than 25% critical structures volume receive less than 40% of allowed
tolerance dose, and in the worst case, approximately 10% of Larynx volume receive
between 51%´ 62% of allowed tolerance dose, thus these solutions meet the expectations
of maintaining their functionality. In most of patients approximately 100% of the tumor
volume receives the sufficient value [6], and more than 80% of the tumor volume receives
more than 80% of the ideal value for the oncologist [6].
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6 Conclusions and Future Proposals

This research developed a primal-dual interior-point algorithm to solve the dose
distribution problem of the radiation therapy treatment planning using the surprise function
approach as a measure of violation of the linear constraints, whose dose bounds were
triangular fuzzy numbers, leading to a non-linear objective function. Then we tested the
algorithm on the Head-and-Neck dataset (provided by [6]). The analyse of the numerical
experiments allows us to conclude that the proposed algorithm is able to solve large-
scale problems finding satisfactory solutions. These solutions allow the tumor to receive
a radiation higher than the value given by the oncologist to shrink it. The proposed
treatment plans are good attacking the tumor, since they deliver radiation very close to
the oncologist prescribed doses. Furthermore, by delivering doses within the acceptable
limits they preserve the healthy tissues and organs at risk, avoiding unacceptable damage
to such tissues. Furthermore, when we compare with the solution obtained by iCycle [6],
our solution in addition to attacking the tumor and shrinking it, delivers less amount of
radiation to the critical structures, guaranteeing a good treatment plan.

Future proposal is to enhance the algorithm and its implementation in order to
obtain solution in less computational time, and thus test it with other large datasets. With
respect to the implementation it will be useful to do it in languages as C or FORTRAN.
Furthermore, it will be interesting to study and compare situations considering another
types of membership functions and fuzzy numbers.
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