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Resumo
Neste trabalho de conclusão de doutorado exploramos aspectos locais e assintóticos da
teoria de estabilidade de Bridgeland. A primeira parte da tese está concentrada em dois
capítulos: o primeiro referente a notação da teoria de esquemas, categorias derivadas
e caracteres de Chern. O segundo estabelece os fundamentos da teoria de estabilidade
de Bridgeland que serão usados nos capítulos seguintes, com uma breve discussão sobre
coleções excepcionais ao final.

A seguir, apresentamos os principais resultados obtidos ao longo do doutorado. O capítulo
de estabilidade assintótica mostra resultados analogos aos obtidos por Jardim–Maciocia,
agora para objetos com caracter de Chern zero igual a zero. O último capítulo diz respeito
ao estudo local da estabilidade de Bridgeland, descrevendo as regiões de aljavas no semi-
plano superior de estabilidade H e com isso provando a estabilidade dos instantons nestas
regiões.

Além disso, a tese possui um apêndice e anexo a respeito de alguns resultados teoricos
e computacionais produzidos com o intuito de obter exemplos concretos de regiões de
aljavas e seus respectivos usos.

Palavras-chave: Estabilidade de Bridgeland. Classes excepcionais. Estabilidade assintó-
tica de Bridgeland. Regiões de aljavas.



Abstract
In this Ph.D. thesis, we explore local and asymptotic aspects of the theory of Bridgeland
stability. The first part of the thesis is concentrated in two chapters: the first one referring
to a brief discussion on the theory of schemes, derived categories and Chern characters.
The second one establishes the fundamental theory of Bridgeland stability necessary for
the following chapters, with a brief discussion of exceptional collections towards its end.

Next, we present the main results obtained during the Ph.D. The chapter on asymptotic
stability shows results analogous to the ones obtained by Jardim–Maciocia, now for objects
with zero Chern character equal to zero. The last chapter is concerned with the local
behavior of Bridgeland stability, describing the quiver regions on the upper-half plane
of stability conditions H and with that proving the stability of the instantons in these
regions.

The thesis has an appendix and annex that discuss some intermediate theoretical and
computational results obtained during the search for examples of quiver regions and their
uses.

Keywords: Bridgeland stability. Exceptional Classes. Asymptotic Bridgeland stability.
Quiver regions.
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Introduction

The classification problem in mathematics is as ancient as the subject in itself.
In modern algebraic geometry, it is mostly expressed through a moduli problem, that is,
determining if a given functor that describes the space of solutions of a given classifying
problem is representable or almost representable. The notion of stability comes to hand at
this point as a given functor may be non-representable but a restricted version of it is,
this situation is common when dealing with GIT problems.

Moreover, stability conditions can also be useful in understanding the whole
classification problem, as they can be used as building blocks of the non-stable objects
we were previously interested in, for example, via the Harder-Narasimhan filtration of
slope-stability. In that way, Bridgeland’s notion of stability can be used in both situations
and here we will focus more on the first approach, determining the stable objects of a
given stability condition to classify them.

Introduced in (BRIDGELAND, 2007) as a way of defining a stability condition
on triangulated categories, formalizing the notion of Π-stability of Douglas‘s, Bridgeland
proposed two definitions of this new stability condition, one using slices and one using
hearts of bounded t-structures. The former can be seen as a special case of Gorodentsev–
Kuleshov–Rudakov‘s (GORODENTSEV; KULESHOV; RUDAKOV, 2004) t-stability
considering only the partially ordered set R indexing the slope of the semistable objects,
and the latter can be seen as a generalization of Mumford‘s notion of µ-stability where we
associate a degree and a rank function to objects in a heart of a bounded t-structure.

One of the achievements of this first paper was establishing the existence of a
complex manifold structure of the space of Bridgeland stability conditions through the
application of the support property. This space can be seen as an avatar where the group of
automorphisms of the derived category acted on and was easier to study than the whole of
the derived category, as expressed by Prof. Bertram at a presentation in the Mathematical
Conference of the Americas.

In a subsequent paper, (BRIDGELAND, 2008), Bridgeland investigates this
relation of the space of stability conditions and the automorphism group of the derived
category in the case of the K3 surface, a two-dimensional Calabi–Yau variety. He also
proves the existence of a wall-and-chamber structure of the space of stability conditions
and a large volume limit theorem, that relates this new notion of stability to Gieseker’s
stability at infinity.

Research over their existence and a description of the space of stability condi-
tions is still active. Some notable contributions include:
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• (MACRì, 2007): Macrì’s paper on the space of stability of curves where he describes
the space of stability conditions over smooth curves of genus g ě 1 and relates
Bridgeland’s stability condition to exceptional collections;

• (ARCARA; BERTRAM, 2013): Arcara–Bertram explore Bridgeland’s approach
to providing examples of stability condition over the K3 surface and prove their
existence over any smooth projective surface;

• (BAYER; MACRÌ; TODA, 2014): In this paper, the authors introduce the second-tilt
to a heart of bounded t-structure in an attempt to conjecture the existence of a
Bridgeland stability condition over threefolds, while also discussing large-volume
limit results and a generalized version of the Bogomolov inequality;

• (MACRÌ, 2014; SCHMIDT, 2020): Both authors employ the same technique of using
exceptional collections to prove the existence of a Bridgeland stability condition
over a small portion of the upper-half plane of stability conditions and then extend
the result to the whole H, for the projective space P3 and the smooth quadric Q3,
respectively;

• (BAYER; MACRÌ; STELLARI, 2016; MACIOCIA; PIYARATNE, 2016): With
different techniques, the authors in these papers prove the existence of Bridgeland
stability conditions of abelian threefolds;

• (LI, 2019b; BERNARDARA et al., 2017): In these papers, the authors completely
prove the existence of Bridgeland stability conditions over Fano threefolds, with the
first applying a technique that was later going to be used for the quintic threefold;

• (LI, 2019a): In a more recent paper, Li proves the existence of a Bridgeland stability
condition over the quintic threefold, one of the first examples of a Bridgeland stability
condition on a Calabi–Yau threefold.

The theory then grown to include applications to many branches of algebraic
geometry including quiver stability, minimal model problem, Brill–Noether theory, and
others, see for example (ARCARA et al., 2013; MU, 2020),(BAYER; MACRì, 2014),
(BAYER; LI, 2017) and (BAYER et al., 2020) respectively.

Now, we discuss the structure of the thesis. It is divided into two parts: the first
is background material and the second one deals with the main results obtained during
the years of this Ph.D.

The first chapter Schemes has three different sections, the beginning deals with
notation and basic concepts related to schemes using mostly (EISENBUD; HARRIS, 2000).
This is then applied in the next section to the formalism of derived categories and functors,
where we give a brief overview of the theory, the main references here are (GELFAND;
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MANIN, 2003; HUYBRECHTS, 2006). To close this chapter, we discuss the theory of
λ-rings as in (FULTON; LANG, 1985) in an attempt to give a concise summary of the
concepts related to Chern characters and their properties, a tool used extensively in the
theory of Bridgeland stability conditions.

In the next chapter, we discuss the fundamentals of Bridgeland stability, with
a focus on the properties needed in our results later in this thesis. We start by giving some
necessary results on sheaf stability focusing on a variation of Gieseker-Simpson stability,
one of the prototypes for the definition of Bridgeland stability. The main references here
are (HUYBRECHTS, 2006) and for notation (JARDIM; MACIOCIA, 2019; SCHMIDT;
SUNG, 2018).

Continuing in this chapter we introduce the two main definitions of weak and
Bridgeland stability conditions and their general consequences, such as the existence of a
stability manifold StabpXq and a wall-and-chamber decomposition, both results obtained
by Bridgeland in consecutive papers (BRIDGELAND, 2007; BRIDGELAND, 2008). Then,
we give a more in-depth discussion on the known results about the stability conditions
defined over smooth projective varieties of dimension less or equal to 3, with a focus on
the threefold case where our results lie.

To close the first part, we define the exceptional collections and some of their
basic properties but most importantly we give a definition of the upper-half plane condition
for a given Bridgeland stability condition, the main reference here is (MACRì, 2007). This
condition is the necessary condition used in Chapter 4 to define the quiver regions and
therefore prove some of the main results in the thesis.

One of my main goals while writing the first part was to create a roadmap of
the main references that helped me understand Bridgeland’s stability, which can be used
later for other people interested in learning this rich subject.

The main results are divided into two independent chapters: The first deals
with the asymptotic behavior of Bridgeland stability following (JARDIM; MACIOCIA,
2019) and the second deals with quiver regions and the stability of instantons sheaves,
inspired by (MU, 2020).

In Chapter 3 we obtain our results complementing the results obtained in
(JARDIM; MACIOCIA, 2019) about the nature of the objects asymptotic (semi)stable,
where we consider only those with zero Chern character equal to zero. Our results
are analogous to the ones obtained by Jardim–Maciocia as we prove these objects are
either the Gieseker-(semi)stable objects or the derived dual of Gieseker-(semi)stable
objects, depending on either going to the left-hand infinity or the right-hand infinity in H,
respectively.

In their work, Jardim–Maciocia introduce the concept of Θ´-curves which in
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here we use a weaker condition on the curves γptq “ pβptq, αptqq by asking that

cγ :“ lim
tÑ`8

α2ptq

β2ptq
ă 1. (1)

This condition is important because it is the one that guarantees that whenever
E P CohpXq we have that lim

tÑ`8
νγptqpEq ą 0 (see equation (3.7)), in geometric terms it

means that for every E P CohpXq there is some t0 P R such that when t ą t0, γptq P Θ`
E

holds.

We start by proving the asymptotic tilt-stability of the objects with zero Chern
character equal to zero. Differently than in (JARDIM; MACIOCIA, 2019), we do not need
to consider the direction of the unbounded curve as there is curve µβ “ 0.

Proposition. Let E P Db
pXq be an object with ch0pEq “ 0 and ch1pEq ‰ 0. Then E is

asymptotic νγ-(semi)stable if and only if it is GS1-(semi)stable.

The version of this proposition related to the case ch0pEq “ ch1pEq “ 0 is
realized by knowing that =pZt

β,αpEqq “ chβ1 pEq “ 0 for all pβ, αq P H, so that E P Bβ,α for
all pβ, αq P H and νβ,αpF q “ `8 when F ãÑ E in Bβptq.

Next, we consider the asymptotic Bridgeland stability to the left-hand side of
the upper-half plane of stability conditions.

Main Theorem 1. Let lim
tÑ`8

βptq “ ´8 and cγ ă 1. Suppose that E P Db
pXq with

ch0pEq “ 0, for E to be asymptotic λγ,s-(semi)stable it is necessary and sufficient that
E P CohpXq is a Gieseker-(semi)stable sheaf.

In contrast to (JARDIM; MACIOCIA, 2019), we provide a more hands-on
approach to proving the right-hand side of the theorem by proving a series of lemmas and
proving directly the result. One key lemma in the proof is the reduction to the possibility
of only testing the stability of an object on its quotients that are derived duals of a given
pure sheaf, just as in the Gieseker-stability case with pure sheaves.

Main Theorem 2. Let lim
tÑ`8

βptq “ `8 and cγ ă 1. An object E P Db
pXq with

ch0pEq “ 0 is asymptotic λγ-(semi)stable if and only if it is the dual of a Gieseker-
(semi)stable sheaf.

In our next chapter, our approach to the study of quiver regions is to provide
a systematic framework on which we can make concrete calculations with them. This is
first expressed in the proposition used to determine the quiver regions.

Proposition. For a full Ext-exceptional collection E “ tE0, ..., E3u in Db
pXq such that

Ei P xAβ,α,Aβ,α
r1sy, for some pβ, αq P H and a positive s P R. Then E satisfies the
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upper-half plane condition with respect to pZβ,α,s,Aβ,α
q if and only if there exists a i such

that:

(˚q pβ, αq is inside the walls ΥEir´1s,Ejr´1s,s, for all j P tj|Ej P Aβ,α
r1su, and outside the

walls ΥEir´1s,Ek,s for k P tk|Ek P Aβ,α
u.

Once inside of a quiver region, we need tools for determining which are the
stable objects and which are not. These are given by the lemma defining the determinant
condition and the proposition determining the subobjects of a given linear complex, as
follows.

Lemma. Let K be an object in xSpEqy for an quiver region RE with respect to a strong
exceptional collection E and dimension vector chpKq “ p´1qia chpEiq ´ p´1qib chpEi`1q. If
there exists a λ-wall in Aβ,α, for some pβ, αq P RE , defined by

0 Ñ F Ñ K Ñ GÑ 0, (2)

then ΥF,K,s “ ΥEi,Ei`1,s. Furthermore, if every subobject F of K in xSpEqy with chpF q “
p´1qic chpEiq ´ p´1qid chpEi`1q satisfies pa ¨ d ´ b ¨ cqpěq ą 0 then K is Bridgeland
(semi)stable outside the curve determined by ΥspEi, Ei`1q and inside the region where
K P xSpEqy X Aβ,α. In this case, we will say that K satisfies the (semi)-determinant
condition.

We do not provide an example of the application of this proposition but it can
be used with concrete matrix examples to compute whether a 2-step complex is stable or
not.

Proposition. Let E “ tE0, ..., E3u be a strong exceptional collection of sheaves, SpEq its
shift. Let

K » pV b Ei
T
Ñ W b Ejq

be a 2-step complex in xSpEqy, tγ0, ..., γku a base for the k-vector space HompEi, Ejq. For
any subspace I ãÑ V , the subcomplexes of K of the form I bEi

S
Ñ J bEj satisfies J IT Ă J .

Furthermore, I b Ei
T |I
Ñ J IT b Ej is a subobject of K in xSpẼqy.

With these results at hand and by applying (ANCONA; OTTAVIANI, 1994,
Proposition 2.8) we can achieve the stability of the instanton sheaves shifted by r1s for
every charge c ą 0.

Proposition. Let

Ipcq “ tI P xSpẼqy| dimpIq “ r0, c, 2c` 2, cs, H´2
pIq “ 0 and H0

pIq “ 0u.

Then any object in Ipcq is λβ,α-stable, for every pβ, αq P R̃´ outside of Υ̃1.
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That brought into the setting of moduli spaces by (ARCARA et al., 2013,
Theorem 8.1) can be stated in a more interesting way as:

Main Theorem 3. For any pβ, αq P R̃´ outside and sufficiently close to the λ-wall Υ̃1,
inside the Bridgeland moduli space

Mβ,αpcq “ tE P Db
pP3
q|E is λβ,α,1{3-stable with chpEq “ p´2, 0, c, 0qu

we have the set

N pcq :“
ď

TPK
tF P Ext1

pOP3p´1qcr2s, T q| with HompOP3p´1qr2s, F q “ 0u

where K “ tT P xSpẼqy| dimpT q “ r0, 0, 2c` 2, cs and T is λβ,α,1{3-stable u.

If the charge c is odd then N pcq is equal to Mβ,αpcq and Mβ,αpcq is a projective
space. Otherwise, if c is even, Mβ,αpcq is a quasi-projective variety. In both cases Ipcq is a
subset of Mβ,αpcq.

The thesis ends with an Appendix regarding some computational observations
made during the course of researching the quiver regions, and their applications. The
important results obtained there are the algorithm, which is later given explicitly in
the Annex, for finding and testing exceptional collections satisfying the upper-half plane
condition and a proposition for geometrically determining the existence/or not of real
walls for a given object inside of a quiver region.
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1 Schemes

The first chapter deals with the standard theory of schemes, derived categories
and λ-rings. The goal here is to understand why we need the conditions necessary to
develop Bridgeland’s stability. To that extent, and to try to keep the text as self-contained
as possible, we will start with the definition of a scheme and walk through their basic
notions in the first section. Next, we define the derived category of coherent sheaves over
a scheme and some of their derived functors used in this thesis.

To close this chapter we discuss the λ-rings, an abstract notion introduced
in (BERTHELOT; GROTHENDIECK; ILLUSIE, 1971) that summarizes the necessary
conditions to defining a Chern class/character and, in the case of regular schemes, prove
a version of the Grothendieck–Riemann–Roch. In this thesis, the λ-ring formalism will
substitute the need to develop the Chow ring and their intersection theory.

We will not define the basic notions of category theory, sheaf theory and
triangulated category necessary for this project but it can be found in (GELFAND;
MANIN, 2003, Chp. 2) and (NEEMAN, 2001, Chp 1).

1.1 Geometry of schemes
We start by defining our most fundamental notion, the concept of a scheme. It

was first introduced by Grothendieck to generalize the classical notion of varieties in an
attempt to study more general behavior that the classical theory was not able to handle
well. One simple example of this is the study of nonreduced schemes, that is, schemes with
"fat" points, see (EISENBUD; HARRIS, 2000, Section II.3).

The construction is analogous to the construction of a differentiable manifold
with the euclidean coordinates as its local model. In this case, the local model of a scheme
is given by the affine scheme pSpecpRq,ORq where: R is a commutative ring, SpecpRq is
a topological space with the prime ideals of R as its points, and a sheaf over SpecpRq
OR such that if f P R and Dpfq “ trps P SpecpRq|f R pu then ORpDpfqq “ Rf , the
localization of R with respect to S “ tfkukPZě0 . The open subsets tDpfqufPR form a base
for the topology in SpecpRq, see (EISENBUD; HARRIS, 2000, Section I.1 and I.2)

Definition 1.1.1. (EISENBUD; HARRIS, 2000, Section I.3) A scheme X consists of two
data: a topological space |X| and sheaf OX called the sheaf of regular functions on X.
These objects are locally affine, that is, |X| can be covered by open sets Ui such that
Ui » SpecpRiq and OX |Ui » ORi .
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For any point x in a scheme X we can define the germ of the regular functions
on X over x by OX,x “ lim

ÝÑ
V Qx

OXpV q which has the same role as the germ of regular functions

over a smooth manifold, leading to the following notion of morphism between schemes.
The ring OX,x is a local ring with maximal ideal denoted by mX,x.

Definition 1.1.2. (EISENBUD; HARRIS, 2000, Definition I.39) A morphism between
schemes X and Y is a pair pψ, ψ7q where ψ : |X| Ñ |Y | is a continuous map of topologica
spaces and ψ7 : OY Ñ ψ˚OX is a morphism of sheaves in Y where ψ7y : OY,y Ñ OX,p takes
the maximal ideal mY,y into mX,p, with y “ ψppq and p P X.

To simplify the notation, we usually denote by ψ : X Ñ Y for the morphism
pψ, ψ7q of the schemes X and Y . This defines the category of schemes Sch. There is also a
relative notion of schemes to a given scheme S, the so-called S-schemes, where the objects
are all morphisms of schemes X Ñ S and the morphism in this category of the objects
X Ñ S and Y Ñ S is any scheme morphism X Ñ Y making the following diagram
commute

X

��

// Y

~~

S.

Denote by SchS the category of S-schemes with their respective morphisms.
When S “ SpecpRq for some ring R we say that an S-scheme is an R-scheme or a scheme
over R. In the scheme category SchS it is possible to glue schemes so that SchS has a
well-defined product, the fiber product X ˆS Y , see (EISENBUD; HARRIS, 2000, Sec.
I.2.4). An open subscheme of a scheme X is an open subset U of X with its sheaf of
regular function induced by the restriction of the regular functions over X.

From now we will always assume the schemes to be noetherian, these are the
ones that can be covered by a finite number of open SpecpRiq with Ri noetherian rings.
The next example is a resume of the Proj construction and can be found more explicitly
in (EISENBUD; HARRIS, 2000, Section III.2.1).

Example 1.1.3. [The affine space] If R “ Arx1, ..., xns for some commutative ring A
then SpecpRq is always denoted by An

A, which we sometimes denote by just An when
dealing with a fixed field k. It is also possible to define An

V with V being an A-scheme as
An
V “ An

A ˆA V .

Example 1.1.4. [The projective space] Let A be a ring and S a positively graded
A-algebra, that is S “

à

kPZě0

Sk such that SvSk Ă Sv`k and S0 “ A. Assume that S is

generated by S1 as an A-algebra. We can define a scheme called the ProjpSq over SpecpAq
by having its topological space |ProjpSq| as the set of all homogeneous prime ideals of
S not containing the irrelevant ideal S` “

à

kPZą0

Sk, and its structure sheaf OProjpSq is
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obtained by gluing OSrf´1s0 over the affine subsets D`pfq “ trps P |ProjpSq||f R pu for
each homogeneous element f of degree 1 in S, where Srf´1

s0 is the ring obtained from
S by localizing it by the powers of f and taking the elements with degree zero(with the
degree induced by the quotient degree).

Let A be a ring and S “ ArX0, ..., Xns the graded polynomial ring then
PnA “ ProjpSq and if V is any A-scheme we can define PnV “ PnA ˆ V , the fiber product in
the category of A-schemes.

Grothendieck‘s scheme theory can be seen as a way to generalize the objects in
commutative algebra to a geometric stage. With this, the general scheme behaves as the
rings in the theory and the quasi-coherent sheaves are the modules, they allow for us to
transport the notions of homological algebra and some other universal constructions in
this setting. To define them, we will need the OX-modules.

Definition 1.1.5. Let X be a scheme and F a sheaf over X. Then F is an OX-module
if for every open subset of X, FpUq is OXpUq-module and the restriction maps of F is
natural for the module operations.

Given a ring R and a R-module M , it is possible to construct a sheaf of
OR-modules

„

M over SpecpRq such that on each Dpfq,
„

MpDpfqq “Mf the localization of
M with respect to S “ tfkukPZě0 . For a general scheme we can consider the OX-modules
which can be expressed locally as

„

Mi, these OX-modules are known as the quasi-coherent
sheaves. If we can take the Mi to be finitely generated then these are coherent sheaves.

Remark 1.1.6. The quasi-coherent and coherent sheaves define abelian categories. That
is, if we consider QCohpXq and CohpXq the full subcategory of the category of sheaves
over X with objects as the quasi-coherent and coherent sheaves, respectively, then these
categories are abelian because their defining property of being locally modules induces
well-defined notions of the kernel, image, product and so on. This is one instance where
X being noetherian is important so that the submodule of a finitely generated module is
finitely generated.

One important class of quasi-coherent sheaves is the ideal sheaves associated
with a closed subscheme. Let X be a scheme, we will say that φ : Y Ñ X is a closed
subscheme of X if there exists a quasi-coherent sheaf IY {X such that φ˚pOY q can be
obtained by the exact sequence

0 Ñ IY {X Ñ OX Ñ φ˚pOY q Ñ 0.

The sheaf IY {X is called the sheaf of ideals determining Y .

Another important class of OX-modules are the locally free sheaves. A OX-
module F to be called locally free is necessary that we can cover X by open subsets Ui
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such that F |Ui is isomorphic to OX |Ui . We will sometimes call the locally free sheaves as
vector bundles, as there exists a 1 ´ 1 correspondence between them (HARTSHORNE,
1978, Ex. 5.18, Chp. 2).

To further develop this correspondence between rings/modules and schemes/quasi-
coherent sheaves we will overview the construction of the Global Proj, as in (EISENBUD;
HARRIS, 2000, Section III.2.3). Let F be a positively graded quasi-coherent OX-algebra,
these are quasi-coherent OX-module such that F “

à

kPZě0

Fk with FvFk Ă Fv`k and

F0 “ OX . Assume that F is generated by F1, we have a surjective morphism SympFq Ñ F .
Then we can define ProjpFq as the gluing of Proj FpUiq, where X “

ď

i

Ui with each Ui

being affine schemes and FpUiq “
„

Mi.

Inside the projective spaces, it is possible to construct a sheaf associated with
a graded module, just as in the construction we have done before, with the only difference
being that now we would have to take care of the gradings, as in the definition of the Proj.
These can be done on either the local or global Proj, wherein the latter we would need a
graded OX-module to do it. This construction is done properly in (EISENBUD; HARRIS,
2000, Section III.2.6). The notation for this is the same as in the non-projective case.

One special example of it is when, given a positively graded OX-algebra F we
define Fpkq as the shift by k of the grading of F and OProjpFqpkq “ F̃pkq. This collection
of sheaves are really important to the projective geometry of these spaces. One of their
properties is that they are always line bundles.

Example 1.1.7. If F is an OX-module we can construct its symmetric algebra SympFq
so that we define PpFq :“ ProjpSympFqq. When F is locally free, we will say that PpFq is
a projective vector bundle over X.

We are now ready to define a sequence of morphism properties that will allow
us to understand the regular maps, which are morphisms that can be factored in using
projective bundles.

Definition 1.1.8. A morphism f : X Ñ Y is called flat if for every x P X, the induced
morphism of local rings OY,y Ñ OX,x with fpxq “ y is a flat morphism of rings, that is,
OX,x can be seen as a flat OY,y-module.

Although this definition can be seen as a rather abstract notion in algebraic
geometry, it has a very concrete geometric consequence as it can be seen in (EISENBUD;
HARRIS, 2000, Lemma II-30, Chp 2), where the notion of flatness at a point p in An

Y over
a reduced scheme Y is proven to be equivalent to the uniqueness of the limit of the fibers
f´1

pgptqq whenever you consider g to be a morphism parametrizing a non-singular curve
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in Y passing through the point fppq. It is also a necessary condition imposed in many
moduli space definitions because of this property of making limits well-defined.

Definition 1.1.9. A morphism f : X Ñ Y is étale if it is flat and for every point y “ fpxq

the induced map f 7 : OY,y Ñ OX,x satisfies f 7pmY,yqOX,x “ mX,x and kpyq :“ OY,y{mY,y

is a finite separable extension of kpxq.

The étale morphisms are a class of morphisms analogous to the local diffeo-
morphisms when considering differentiable manifolds. There are several ways of defining
smooth morphisms, we choose to use (FULTON; LANG, 1985) as it was the one used to
learn the information in the section about Chern characters. Different approaches include
imposing the smooth map is flat and the cotangent bundle Ω1

X{Y is locally free when X is
integral, (HARTSHORNE, 1978, Section 10, Chp.3).

Definition 1.1.10. A morphism f : X Ñ Y is smooth if it can be decomposed as a
composition X Ñ An

Y Ñ Y , where X Ñ An
Y is an étale morphism and An

Y Ñ Y is the
natural projection.

In (FULTON; LANG, 1985, IV.2 and IV.3), the authors define a regular
sequence in a ring A to be any sequence pa1, ..., akq such that the ideal generated by this
sequence is non-trivial and ai is not a zero divisor in A{pa1, ..., ai´1q for all i.

Definition 1.1.11. A closed subscheme i : Y Ñ X is a regular imbedding if for every
point of X there exists an affine open subset SpecpAq of X where the ideal associated to
Y , IY {X , can be generated by a regular sequence of elements in A.

At last, the definition of the regular morphisms. From now on, a scheme X
over a field k is said to be ˚ if the structure morphism X Ñ Specpkq satisfies ˚, where
˚ “ smooth, étale, regular, flat, regular respectively.

Definition 1.1.12. A morphism f : Y Ñ X is called a regular morphism if it can be
factored by Y i

Ñ PpEq p
Ñ X, where i is a regular imbedding and p is a bundle projection.

1.2 Derived categories
The derived categories were first introduced by Verdier in his master’s disser-

tation as a way of extending Serre‘s duality to more general varieties. To achieve this
he used the construction of localization over the rings and applied it to the category
of complexes over an abelian category. As a consequence, he arrived at a category not
abelian but triangulated, a concept used throughout modern-day algebraic geometry. In
this subsection, we will look at what are the derived categories of an abelian category and
many tools that come with it.
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Given any abelian category A it is possible to construct a new abelian category
KompAq the category of complexes with objects in A and the morphisms are morphisms of
complexes, see (HUYBRECHTS, 2006, Proposition 2.3, Chp.2). We will use the superscript
notation to denote our complexes as in pA‚, d‚q, so that we can define a natural cohomology
functor Hi

A : KompAq Ñ A given by Hi
ApA

‚
q “ ker di{ Im di´1. Whenever clear from the

context, we will omit the subscript while expressing the cohomology functor.

A complex is called bounded below(resp. above) if Ai
“ 0 if i ăă 0(resp.

i ąą 0) and it is bounded if it is bounded above and below. There are variants of the
category KompAq where we change the types of complexes considered, we will express
them by Kom˚

pAq with ˚ being either one of b,`,´ or empty representing the bounded,
bounded below, bounded above or not necessarily bounded complexes, respectively.

It is also possible to define the homotopy category of complexes K˚
pAq, where

the objects are the same as in Kom˚
pAq but the morphisms are equivalent classes under

the homotopy equivalence, see (GELFAND; MANIN, 2003, Lemma 2, Sec. 1, Chp.3).
These will be important in the following subsection.

One important class of morphism of complexes is the quasi-isomorphism class,
the morphisms f ‚ : A‚

Ñ B‚ where Hi
pf ‚q : Hi

pA‚
q Ñ Hi

pB‚q is an isomoprhism for
every i. These will be the morphisms we are interested in localizing(e.g. inverting).

Theorem 1.2.1. (GELFAND; MANIN, 2003, Theorem 1, Sec.2 and Chp. 3) Let A be
an abelian category, Kom˚

pAq the category of ˚-complexes over A. Then there exists a
triangulated category D˚pAq and a functor Q : Kom˚

pAq Ñ D˚pAq such that:

• Q takes quasi-isomorphisms into isomorphisms.

• Any functor F : Kom˚
pAq Ñ D that takes quasi-isomorphisms to isomorphism can

be factored by Q.

The construction of D˚pAq is very similar to the construction of the localization
of a ring. Its objects are exactly the same as the objects in Kom˚

pAq and the morphisms
are determined by roofs. Given complexes A‚ and B‚, a roof is a collection of a complex
C‚ with two morphisms

C‚

q´iso

""}}

A‚ B‚.
satisfying the equivalence and composition conditions in (GELFAND; MANIN, 2003,
Lemma 8, Sec. 2 and Chp.3).

Remark 1.2.2. (HUYBRECHTS, 2006, Proposition 2.30, Chp. 2) The natural functor
D˚pAq Ñ DpAq is fully faithful and identifies the category D˚pAq with the subcategory
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of DpAq of complexes A‚ with Hi
pA‚q “ 0 for |i| ąą 0, i ąą 0, i ăă 0 if ˚ “ b,´,`

respectively. Furthermore, there exists a fully faithfull natural functor A Ñ D˚pAq.

When we consider the abelian category A to being equal to the coherent sheaves
over a scheme X we make a slight change of notation to Db

pXq :“ Db
pCohpXqq

Next, we focus on t-structures and their hearts, a notion first introduced in
(DELIGNE; BEILINSON; BERNSTEIN, 1983) in the context of perverse sheaves. These
are responsible for finding abelian categories inside a given derived category D˚pXq that
can generate it. In some sense, the t-structure can be seen as an alternative complex
structure for the objects in D˚pXq.

Definition 1.2.3. (BRIDGELAND, 2007, Definition 3.1) A t-structure in D˚pXq is
a full subcategory F of D˚pXq such that the objects Fr1s are in F and if we define
FK

“ tG P D˚pXq|HompF,Gq “ 0 for all F P Fu so that any object E P D˚pXq can be
written as

F Ñ E Ñ GÑ F r1s

with F P F and G P FK.

The category A “ F XFK
r1s is called the core or heart of this t-structure and

it defines an abelian category, see (GELFAND; MANIN, 2003, Theorem 4, Sec. 4 and
Chp.4). Furthermore, for every heart of a t-structure it is possible to define a cohomology
functor Hi : D˚pXq Ñ A, in the sense that it takes distinguished triangles into long exact
sequences, see (GELFAND; MANIN, 2003, IV.4).

One variant of the notion of a t-structure is that of a bounded t-structure,
where we assume the objects in F and FK have Hi

“ 0 for all but a finite number of i’s. An
equivalent characterization of this notion can be found in (BRIDGELAND, 2007, Lemma
3.2), which we are going to state here due to its connection with the theory developed by
Bridgeland.

Lemma 1.2.4. (BRIDGELAND, 2007, Lemma 3.2) Let A be a full additive subcategory
of D˚pXq. Then A is a heart of a bounded t-structure if and only if the following two
conditions hold:

• If k1 and k2 are integers with k1 ą k2 then HompArk1s, Brk2sq “ 0 for all A,B in A.

• For every object D P D˚pXq, there are a finite sequence of integer k1 ą ... ą kn

where the object D can be decomposed by the diagram:
0 “ D0 // D1 //

��

D2 //

��

... // Dn´1 //

��

Dn “ D

��

A1rk1s

ee

A2rk2s

dd

An´1rkn´1s

dd

Anrkns

gg

where each Ai P A and the triangles represent distinguished triangles in D˚pXq.
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The statement in Lemma 1.2.4 is responsible for the interpretation of the
bounded t-structure as a new complex structure for the objects in D˚pXq, where the
objects Airkis are the H´ki

A -cohomology of the object D.

In the theory of hearts of bounded t-structures there exists a construction
responsible for creating most of the examples of hearts that are used in this text, this
technique is called tilting. The idea behind it is to determine a torsion pair, with properties
analogous to torsion and torsion-free sheaves, inside of a heart of a bounded t-structure and
splitting the object by its torsion and torsion-free parts. This achieves an abelian category
that is also a heart of bounded t-structure. Moreover, by using the Harder-Narasimhan
filtration, it is possible to use this construction to create a family of hearts inside the
bounded derived category of coherent sheaves.

Definition 1.2.5. Let A be a heart of a bounded t-structure, a torsion pair in A is a pair
pT ,Fq of sub-additive categories of A satisfying:

• HompT, F q “ 0 for all T P T and F P F .

• Every object E in A can be decomposed in

0 Ñ T Ñ E Ñ F Ñ 0,

for some T P T and F P F .

The objects in T and F are said to be the torsion and torsion-free objects for
the torsion pair pT ,Fq, respectively.

Theorem 1.2.6. (HAPPEL; REITEN; SMALO, 1996, Theorem 2.1) For a given torsion
pair pT ,Fq in an abelian category then

A7
“

$

’

&

’

%

E P Db
pAq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Hi
pEq “ 0 for all i ‰ 0,´1

H0
pEq P T

H´1
pEq P F

,

/

.

/

-

.

defines a heart of a bounded t-structure in Db
pAq.

For every heart of a bounded t-structure A in D˚pXq we have a cohomology
functor Hi

A : D˚pXq Ñ A which, to the case of A7, can be used to describe the objects in
A7 by the exact sequencein A7

0 Ñ H´1
A pEqr1s Ñ E Ñ H0

ApEq Ñ 0

for every E P A7. This decomposition of the objects in a tilted category is of much use when
trying to find possible destabilizers when dealing with Bridgeland stability conditions.
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1.2.1 Derived functors

One of the goals of the formalism of derived categories defined by Verdier was
to properly study derived functors in algebraic geometry. They are a way of circumventing
the non-exactness of an almost-exact additive functor(i.e. left or right exact functors) F
by defining a new functor RF or LF that measures its non-exactness. This construction
has its limitations as it requires a special class of objects inside our category, known as
the F -adapted objects, which could be seen as the "control set" where the functor is exact.

The existence of F -adapted objects is one of the reasons why, in this context,
it is important to work with quasi-coherent sheaves even if we are only interested in the
coherent ones, as they always have F -adapted objects for left exact functors and the
coherent may not have, see (HUYBRECHTS, 2006, Section 3.1).

Definition 1.2.7. A functor F : A Ñ B between abelian categories is left exact if the
image of an exact sequence

0 Ñ AÑ B Ñ C Ñ 0

by F is exact to the left, that is,

0 Ñ F pAq Ñ F pBq Ñ F pCq

is exact.

There is also a notion of right exact functors, which assumes the image of
the functor takes exact sequence into right exact sequences. The results are completely
analogous and therefore we will only state the left exact versions. An important right
exact functor that is used later in the text is the derived tensor product. To see proof of
its existence see (HUYBRECHTS, 2006, Section 3.3).

Definition 1.2.8. Let F : A Ñ B be left exact functor. A class of objects IF in A is
called F -adapted if it satisfies

(a) If A‚ P K`
pAq is such that Hi

pA‚q “ 0 and Ai P IF then F pA‚q also satisfies
Hi
pF pA‚qq “ 0.

(b) Every object A‚ P K`
pAq can be monomorphically mapped into an object in IF .

Example 1.2.9. One of the most important classes of F -adapted objects for left exact
functors is the injective objects, they have their properties analogous to the injective
modules. Therefore, an object I of an abelian category A is said to be injective if the
contravariant functor Homp´, Iq takes exact sequences into exact sequences. These are
known as exact functors. The injective modules satisfy condition paq for any left exact
functor by (GELFAND; MANIN, 2003, Theorem 12, Sec. 6 and Chp.3), making it so that
we just have to check pbq.
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The abelian category QCohpXq is known to have the class of injective modules
satisfying pbq. Because for any given quasi-coherent F and we can inject the stalk of F at
any point x P X into an injective OX,x-module and then make a direct product of these
injective modules to obtain an injective quasi-coherent sheaf, see (GELFAND; MANIN,
2003, Proposition 1, Sect. 8 and Chp. 3).

Whenever the class of injective modules in an abelian category A satisfy
condition pbq, we will say that A has enough injectives. One other way of describing the
existence of enough injectives is expressed in the next proposition, where we have an
equivalence of the derived category with its morphisms defined as equivalence classes of
roofs and in the homotopic category the morphisms are equivalent classes of morphisms of
complexes, a much simpler description.

Proposition 1.2.10. (HUYBRECHTS, 2006, Proposition 2.40, Chp. 2) Let A be an
abelian category with enough injectives. Then i : K`

pIq ãÑ D`pAq is an equivalence of
categories.

Definition 1.2.11. Let F : A Ñ B be a left exact functor. The right derived functor
RF : D`pAq Ñ D`pBq is defined by RF :“ QB ˝KpF q ˝ i

´1. In this situation, RiF pA‚q :“
Hi
pRF pA‚qq.

The inverse of i : K`
pIq ãÑ D`pAq is not uniquely defined but Definition 1.2.11

is only one representation of the derived functor, instead we could define it by a universal
property as in (GELFAND; MANIN, 2003, Definition 6, Sec.6 and Chp. 3) and since the
functor defined in Definition 1.2.11 satisfies this universal property by (HUYBRECHTS,
2006, Proposition 2.47) it is therefore unique.

Remark 1.2.12. (HUYBRECHTS, 2006, Proposition 3.5) Let Db
CohpXqpQCohpXqq be the

full subcategory of Db
pQCohpXqq of the complexes A‚ with cohomology Hi

pA‚q in CohpXq
for all i. The natural inclusion

Db
pCohpXqq Ñ Db

CohpXqpQCohpXqq

is an equivalence. So when trying to define a derived functor in RF : Db
pCohpXqq Ñ

Db
pCohpY qq we first define it over RF : Db

pQCohpXqq Ñ Db
pQCohpY qq and then analyze

what conditions are necessary for the image of the objects in Db
CohpXqpQCohpXqq to be in

Db
CohpXqpQCohpY qq, descending the derived functor of F to the coherent sheaves.

Example 1.2.13. (HUYBRECHTS, 2006, Section 3.3) There is a great number of functors
in algebraic geometry where we apply this construction of derived functor, in here we will
present just a few that are used in this text. Suppose X is a scheme over Specpkq,
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• Let Γ : QCohpXq Ñ Vectpkq be the functor that takes quasi-coherent sheaves to
their respective k-vector space of global sections. It is known that Γ is left exact and
the cohomology of the derived functor RΓ, RiΓpFq, is usually denoted by H i

pX,Fq.

• There is a generalization of this functor to any pushforward, where a projective map
f : X Ñ Y is taken into a Rf˚ : Db

pCohpXqq Ñ Db
pCohpY qq.

• Given a (quasi-)coherent sheaf F , there exists HompF ,´q : QCohpXq Ñ QCohpXq
that takes coherent sheaves into coherent sheaves. This functor is left exact and the
i-cohomology of its derived functor is denoted by ExtipF ,´q.

• Its also possible to define the right derived functor of Homp´,Fq but for this we
need further conditions on X such as smoothness or regularity. These will be defined
in the next section.

• The sheaf pullback of a scheme map f : X Ñ Y is given by f˚pFq “ f´1
pFqbf´1pOXq

OY . This functor is easily seen as a composition of the functors f´1 and bf´1pOXqOY ,
where the former is an exact functor and the later is right exact. Therefore, the
derived functor of f˚ is a left derived functor and it is contained in the bounded
derived category when X is smooth.

1.3 Grothendick‘s group and Chern character
There are several ways of defining both the Grothendieck group and the Chern

characters, which can range from complete geometric construction such as a complex
version of Stiefel-Whitney classes or a more abstract version using λ-rings and γ-filtrations.
In this chapter, we will be following (FULTON; LANG, 1985) account of the λ-rings to
study the Grothendieck group of the coherent sheaves over a regular variety as this can be
readily applied to our case of interest and makes it a clear construction for these classes.

1.3.1 General λ-rings

To start, we will define the notion of λ-ring and a general Chern character for
it. The Grothendieck group for locally free sheaves and its λ-ring structure are defined to
provide concrete examples for these notions.

For a given collection of functions f i : K Ñ K over a ring K for every i P Zě0,
we can define the formal series ftpxq “ Σ

iPZě0
f ipxqti.

Definition 1.3.1. In a ring K, a structure of λ-ring on K is determined by a collection
of functions λi : K Ñ K, for every i P Zě0, and an augmentation function ε : K Ñ Z
satisfying:
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• λ0
pxq “ 1 and λ1

pxq “ x for every x P K.

• The map λt : K Ñ Krrtss given by x ÞÑ λtpxq is a homomorphism from the additive
structure of K to the multiplicative structure of Krrtss.

• ε is a surjective ring homomorphism.

The next example is the prototype for the previous definition.

Example 1.3.2. Let X be an integral scheme. We denote by K0pXq the Grothendieck
group of X as the quotient of the free abelian group generated by the formal objects rEs,
for each locally free sheaf E in X, by the subgroup generated by the elements

rEs ´ rFs ´ rGs,

where E is an extension of F and G. It has a multiplicative structure given by the tensor
product of sheaves. The λ-ring structure on K0pXq is determined by the external product,
that is

λipEq :“ rΛi
pEqs,

with the augmentation homomorphism ε : K0pXq Ñ Z given by the free abelian extension
of the rule εpEq “ rkpEq.

Example 1.3.3. We can also define the Grothendieck group of a triangulated category T .
To define it we use the same rule as in the case of K0pXq where we take its Grothendieck
group KpT q as the quotient of the free abelian group generated by the formal objects rEs,
for each object E in T , by the subgroup generated by the elements

rEs ´ rF s ´ rGs,

where E is an extension of F and G in T . It does not have a natural λ-ring structure.
Moreover, in the same it is possible to define the Grothendieck group of an abelian category
A and if A is the heart of a bounded t-structure in T then KpAq “ KpT q.

With this example in mind, we can define the notion of positive elements and
a subgroup of it of the line elements. As in the study of sheaf theory, understanding the
vector bundles and especially the line bundles can give information about the general
behavior of a non-locally free sheaf.

Definition 1.3.4. The set of positive elements E in a λ-ring K is defined by the following
conditions:

• E Y t0u is an additive subgroup;

• Z` is in E;
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• The product of elements in E is in E;

• Every object in K can be written as difference of elements in E;

• If e P E and εpeq “ r then λipeq “ 0 for i ą r and λrpeq is a unit in K.

Furthermore, the objects e in E with εpeq “ 1 are said to be the line elements.
They form a multiplicative subgroup of the semigroup Kzt0u.

One of the most important properties an λ-ring can possess is the splitting
principle, it is a useful tool when trying to define properties of the Chern characters and
other calculations.

Definition 1.3.5 (Splitting Principle). For any positive element e in a λ-ring K, there
exists a λ-ring extension K 1 of K such that e can be written as a finite sum of line elements
in K 1.

To obtain the splitting principle in K0pXq for a given vector bundle e “ rEs
we would need to apply the same procedure as the one employed to finding roots for a
polynomial over a non-algebraic closed field, that is, by extending the field of constants.
The details can be found in (FULTON; LANG, 1985, Theorem 2.3, Ch. 5; Theorem 2.1,
Ch. 1).

We use the Grothendieck group K0 of the projective bundle PpEq “ ProjpSympEqq,
which can be seen, just as in the polynomial case, as a quotient of K0pXq by the defining
polynomial λtpeq P K0pXqrts. Hence we obtain rOPpEqp1qs as one of the line elements in
the splitting decomposition of e in K0pPpEqq and we can proceed by induction due to the
universal exact sequence

0 Ñ H Ñ p˚E Ñ OPpEqp1q Ñ 0.

1.3.2 Chern class and character

In the setting of λ-rings, it is possible to define the properties a Chern class
and character have to satisfy, to be an honest representation of these concepts, that is,
an invariant measuring how much a vector bundle(or sheaf) is different from the trivial
bundle. The Chern class and character can be seen as a map from the chosen λ-ring to a
graded ring, which can be thought of as the analogous of the Chow ring with its usual

grading. In a given graded ring A “
`8
à

i“1
Ai we can construct the multiplicative group

ΛpAq “ t1` Σ
iPZě1

ait
i
|ai P Aiu.

Definition 1.3.6. Let K be a λ-ring so that the Chern class is a homomorphism of
abelian groups ct : K Ñ ΛpAq satisfying:
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• Normalization: For any linear element u in K, ctpuq “ 1` c1
puqt.

• Multiplication: Given two linear elements u, v in K, c1
puvq “ c1

puq ` c1
pvq.

• Finiteness: ctpvq is a polynomial, not only a power series.

By using the universal symmetric polynomials (FULTON; LANG, 1985, Section
1, Ch. 1) it is possible to define a λ-ring structure on ΛpAq such that the Chern class is
a λ-ring homomorphism, hence ctpλnpxqq “ λnpctpxqq for any x P K. Denote by cipxq the
coefficient of ti in ctpxq for any x P K.

The Chern character is more of a smart modification of the Chern class by an
appropriate function than a new invariant, in our case the exponential function. Let e be
a positive element in a λ-ring K, e “ u1 ` ... ` un be a splitting of e in some extension
K 1 of K and ai “ c1

puiq P Ai for some graded ring A where we have a Chern class. If we
assume that A is Q-algebra, we could also tensor an existing commutative algebra by Q,
then we can define

chpeq “
n

Σ
i“1

exppaiq.

This expression, while it seems to depend on the choice of the roots, it actually
is well-defined. This is a consequence that we can describe this sum by using the associated
Hirzebruch polynomials Hexp

j such as

chpeq “
n

Σ
j“1
Hexp
j pc1

peq, ..., cnpeqq.

To extend this definition to all elements in K we just have to remember that
every object in K can be written as a difference of positive elements so that we get a ring
homomorphism ch : K Ñ A, see (FULTON; LANG, 1985, Prop. 4.1, Ch. 1).

Now we approach the question of existence of a Chern class in a general λ-ring
K, which as an example proves the existence of a Chern class for the Grothendieck group.
We start by defining a new λ-ring structure on any given λ-ring by setting

γtpxq “ λ t
1´t
pxq “ Σ

iPZě0
γipxqti.

This defines a different λ-ring structure on any λ-ring K because the transfor-
mation s “ t

1´ t determines an isomorphism Krrsss “ Krrtss. In such a way that we can
define the γ-filtration of K with F 1K “ kerpεq and

F j
pKq “ xγi1px1q...γ

ikpxkq| xi P F
1
pKq and i1 ` ...` ik ě jy,

where we consider the objects as generated using a Z-additive structure. This defines a
decreasing filtration in K and we conveniently introduce the notation F lK “ K if l ď 0.
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The γ-filtration, as any ring filtration, can be used to define a graded ring
GrpKq “

à

iPZ
F iK{F i`1K so that we have a Chern class for any λ-ring determined by

cjpeq “ γipe ´ εpeqq P F i
pKq{F i´1

pKq, for any positive element e and extended to any
element in K by the homomorphism properties of the γ function. It comes directly from
the definition of the γ-filtration that the Chern class is well-defined if F i

pKq “ 0 for i
sufficiently large which will be the case in our examples.

In the same way, we can define the Chern character as a ring homomorphism
ch : K Ñ QbGrpKq. One important property is the λ-ring version to the relation between
Cartier and Weil’s divisor given in the next proposition.

Proposition 1.3.7. (FULTON; LANG, 1985, Theorem 1.7,Ch. 2) Let L be the multi-
plicative group of line elements in a given λ-ring K. Then the map c1 : LÑ F 1

pKq{F 2
pKq

is an isomorphism with inverse det : F 1
pKq{F 2

pKq Ñ L.

Throughout the text, we will call the objects in L » F 1
pKq{F 2

pKq as the
divisors of X. Now that we dealt with the general construction of the Chern class and
character for a given λ-ring, we will focus on how to link these notions with geometric
constructions. This is done by defining different types of filtration over the Grothendieck
group, now with a more geometric flavor to them. To start, we will have to enlarge the
Grothendieck group to include sheaves, that way we will be able to use it to describe lower
dimensional structures in a variety X.

Let K0
pXq be the quotient of the free abelian group generated by the formal

objects rEs, for each coherent sheaf E in X, moded out by the subgroup generated by the
elements rEs ´ rFs ´ rGs, where E is an extension of F and G.

Theorem 1.3.8. (FULTON; LANG, 1985, Proposition 3.1, Ch.6) If X is regular then
the inclusion i : K0pXq Ñ K0

pXq is an isomorphism.

When X is regular we will be able to define KpXq “ K0pXq “ K0
pXq. In KpXq

let FmKpXq be the descending filtration where x P KpXq is in FmKpXq if x “ rF1s´ rF2s

with dimpSupppFiqq ď m for both i “ 1, 2. Which can be described geometrically by the
following proposition:

Proposition 1.3.9. (FULTON; LANG, 1985, Proposition 5.1, Ch. 6) The subgroup
FmKpXq is generated by the classes rOV s of the structure sheaf of integral closed subschemes
of X with dimension less or equal to m.

The filtration FmKpXq is usually denoted as the contravariant topological
filtration and it can be seen as a link to the Chow ring. These filtrations do not correspond
to the same information but they do so when we consider them with rational coefficients,
as expressed in the next proposition.
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Proposition 1.3.10. (FULTON; LANG, 1985, Proposition 5.5, Ch. 6) When X is an
n-dimensional regular scheme then F jKpXq Ă Fn´jKpXq and these subsets are equal
when tensored by Q in QbKpXq.

With this, we conclude that our definition of Chern class satisfies the finiteness
condition in Definition 1.3.6 because F lKpXq “ 0 when l ą n and we can state one of the
versions of the Grothendieck-Riemann-Roch:

Theorem 1.3.11. (FULTON; LANG, 1985, Corollar 3.3 and Theorem 3.5, Ch. 3) For
each k P Zďn it is possible to define subspaces V pkq such that

Qb F lKpXq »
n
à

k“l

V pkq.

Moreover, The Chern character ch : QbKpXq Ñ QbGrKpXq is an isomorphism and it
is an isomorphism for each grade as in ch : V pmq Ñ QbGrmKpXq.

Another version of this theorem, which is referred to as the Hirzebruch–Riemann–
Roch theorem can also be obtained via the formalism of λ-rings. To achieve it, we would
have to describe many other tools, which is beyond the scope of this presentation. Moreover,
we will introduce some of the notation to state it, as this will be used throughout the text.
These notations and concepts can be found in the discussion before (FULTON; LANG,
1985, Corollary 7.4).

Let X be a smooth projective scheme over Specpkq and define the Euler
characteristic of a sheaf E by χpX, Eq “ ΣdimpXq

i“0 p´1qiH i
pX, Eq. Next we need the degree

function
ż

X

: QbGrpKpXqq Ñ QbGrpKpSpecpkqq “ Q,

which can be seen to have the expected geometric interpretation in the discussion after
(FULTON; LANG, 1985, Corollary 5.4, Chp. 6).

In the next theorem we will need the Todd class associated to an object in
KpXq. It is defined analogously as the Chern character but instead of using the exponential
and the summation, we use

Qpxq “
x

1´ expp´xq

and the product. Making the Todd class to be tdpEq “
ź

Qpαiq, where each αi “ c1
peiq

and E “ e1 ` ...` ek for some splitting of E in K 1. This construction is also independent
of the choice of the splitting.

Theorem 1.3.12. (Hizerbruch–Riemann–Roch Theorem) In the above situation,
χpX, Eq “

ż

X

chpEqtdpTXq, with tdpTXq the Todd class of the tangent bundle TX of X.
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This construction of Chern character could be done for the Chow ring CHpXq,
see (RYAN, 2015), and reach the same conclusion, implying that we have an isomorphism
Qb CHpXq » QbGrpKpXqq respecting the grading.

Definition 1.3.13. Let K be λ-ring. A line element u P L is said to be ample if given
x P K there exists an integer mpxq such that for all n ě mpxq, unx “ e ´m for some
positive element e and some integer m.

The ampleness condition in the theory of λ-ring is related to the ampleness
of a line bundle by (FULTON; LANG, 1985, Lemma 3.1, Chp. 5). Usually, when dealing
with concrete examples of Bridgeland stability conditions, we will be only concerned with
the degree of the variety, not the whole structure in the Chow ring. For that, we will be
applying the theorem by Nakai–Moishezon–Kleiman.

Theorem 1.3.14. (LAZARSFELD, 2004, Theorem 1.2.23) Let L be a line bundle in a
projective scheme X. Then L is ample if and only if

ż

V

c1pLq
dimpV q

ą 0 (1.1)

for every positive-dimensional irreducible subvariety V of X

To see how this is used in our case we just have to translate the inequality 1.1.
The Chern class c1pLq is the image of the map in 1.3.7 in the graded Grothendieck ring(or
Chow ring), the power pqdimpV q is to represent the multiplication of c1pLq to adjust the
codimension and the last piece is the integral with limit V , which is defined as the degree
of the product(i.e. intersection) of c1pLq

dimpV q with the class of the structure map of V in
X rOV s.

Lemma 1.3.15. (FULTON; LANG, 1985, Proposition 3.6, Ch.3) If chipxq “ 0 for all
i ă d then chdpxq “ x.

Example 1.3.16. Let F be a sheaf of codimension d ‰ 0 on a n-dimensional projective
regular scheme X. The first thing to note is that F P QbFn´dKpXq “ QbF dKpXq and

we can decompose QbF dKpXq into the direct sum
n
à

iěd

V piq and in each of these V pkq the

Chern character is an isomorphism taking an element in V pkq to chk of the said element,
by Theorem 1.3.11. Hence, we can conclude chipFq “ 0 for i ă d and by Lemma 1.3.15 we
know that chdpFq “ F P F dKpXq{F d`1KpXq which is non zero by Proposition 1.3.9.

The last part of this section is dedicated to introducing the twisted version of
the Chern characters, which is used when dealing with the geometric stability conditions.
Let B be a divisor, E an element of KpXq then we define the B-twisted Chern character
of E by the formula chBpEq “ chpEq ¨ e´B. Explicitly, this means for example:
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chB0 pEq “ ch0pEq

chB1 pEq “ ch1pEq ´B ch0pEq

chB2 pEq “ ch2pEq ´B ch1pEq `
1
2B

2 ch0pEq

chB3 pEq “ ch3pEq ´B ch2pEq `
1
2B

2 ch1pEq ´
1
6B

3 ch0pEq.
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2 Bridgeland stability

In this chapter, we will discuss the fundamentals of Bridgeland stability nec-
essary for the development of the main results obtained. Before going to the general
theory, we need a brief review of sheaf stability considering both Gieseker-Simpson‘s and
Mumford‘s stability, stating important definitions and theorems that we are going to use
throughout the thesis. These can be seen as models for the general theory.

Then we turn to the general definition of weak and Bridgeland stability condi-
tions, with a discussion of the support property and some of its consequences such as the
deformation theorem and the existence of a wall-and-chamber decomposition to the space
of stability conditions. Following this, we study the known cases of Bridgeland stability
conditions for smooth schemes with dimensions less or equal to 3 and their distinguished
curves.

To close the chapter we make the connection of the notion of exceptional
collections inside the derived category and Bridgeland stability conditions, characterized
by the definition of the quiver regions.

2.1 Sheaf stability
We start this section by establishing the notion of Gieseker-Simpson (semi)stability

and related variations as defined in both (SCHMIDT; SUNG, 2018) and
(JARDIM; MACIOCIA, 2019). These are going to be the base stability condition on
which we will model our later definitions.

We will be using the nomenclature found in pHUY BRECHTS;LEHN, 2010q
: let E P CohpXq with dimension d in a smooth projective scheme X of dimension n, E is
called a pure sheaf if dimpF q “ d for all subsheaves F of E, similarly a torsion subsheaf of
E is any subsheaf F with dimpF q ă d. In this situation, consider ED :“ Extn´dpE,OP3q

such that E is said to be reflexive if E » EDD.

Definition 2.1.1. Let E be a coherent sheaf over X of dimension d and k be an integer

1 ď k ď d. Let PEpnq “ χpE bOP3pnqq “
d
ÿ

i“0
αin

i be the Hilbert polynomial associated to

E with leading coefficient αd then define

pE,kptq “
d
ÿ

i“d´k

pαi{αdqt
i
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We say that E is GSk-(semi)stable if E is a pure sheaf and for every non
zero subsheaf A ãÑ E we have pE,kpmq ă pďqpE{A,kpmq for m " 0. If k “ dimpEq, a
GSk-(semi)stable E is called Gieseker-(semi)stable and denote pE,d by pE.

It was observed in (SCHMIDT; SUNG, 2018) GSk-stability implies GSk´1-
stability and also GSk-semistability implies GSk´1-semistability, for all k ď dimpEq. There
is another, more useful in our situation, way of seeing GSk-(semi)stability as a inequality
involving the notation introduced in (JARDIM; MACIOCIA, 2019) of the δi,jpE,F q. Let
E,F P KpXq then

δijpE,F q “ chipEq chjpF q ´ chjpEq chipF q.

When the objects are known from the context we will denote δijpE,F q by δij.

Remark 2.1.2. We can use a factorization of pEptq to establish an equivalent definition for
GSk-(semi)stability. By Grothendieck-Riemann-Roch we establish that for a 2-dimensional
pure sheaf E and F a subsheaf of E we have

pEptq ´ pF ptq “
1

ch1pF q ch1pEq
pδ21pE,F qx1ptq ` δ31pE,F qq,

for some x1ptq linear polynomial. This implies that a 2-dimensional pure sheaf E is Gieseker-
(semi)stable sheaf if and only if pδ21pE,F q, δ31pE,F qq ą pěqp0, 0q in the lexicographical
order. Similarly, E is GS1-(semi)stable if and only if δ21pE,F q ą pěq0.

Remark 2.1.3. One special case of stability is GS1 for sheaves with dimension d “ dimpXq,
which is usually known as Mumford‘s µ-stability. Moreover, using the same argument as
in Remark 2.1.2 we can describe this stability as δ10 ą 0. Another way to describe this
stability is by defining the µ-slope with respect to a divisor H of a d-dimensional sheaf E

µHpEq “
ch1pEqH

d´1

ch0pEqHn
.

When clear from the context, we will denote µHpEq by just µpEq.

Theorem 2.1.4. Let E be a coherent sheaf over a scheme X and k an integer less or
equal to dimpEq. There exists a filtration

0 “ E0 Ă E1 Ă ... Ă En “ E,

such that dimpE1q ă dimpEq, if E is not pure, and Fi “ Ei{Ei´1 are GSk-semistable
sheaves satisfying pFi,k ą pFi`1,k, for all i ą 1.

One example we will use in Chapter 3 is the structure sheaf of smooth subvari-
eties S of P3. Let i : S ãÑ P3 a smooth irreducible closed subscheme and i˚OS the image
of its structure sheaf in CohpXq. We will show that i˚OS is always Gieseker-stable. Before
we start proving this, we will need to do a few observations about i˚ and i˚. Through the
next remark define E_ “ RHompE,OP3qr2s for any E P Db

pCohpXqq.
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Remark 2.1.5. Since S is a closed subscheme, then i˚ is an exact functor satisfying
i˚pi˚pEqq “ E for all sheaves E in CohpSq. The functor i˚ is also exact as a consequence
of S being a smooth subscheme and, applying (HUYBRECHTS, 2006, Section 3.4), we
can define

i!pEq :“ i˚pEq b ωi,

where ωi “ ωS b i
˚ωP3r´cs, with c “ codimpSq, E P Db

pXq, ωS and ωP3 are the dualizing
bundles of S and P3, respectively. The last calculation we will need is

i˚pi
˚
pEqq “ i˚pi

!
pEq b ω_i r´2sq pωi b ω

_
i “ OSr2sq

“ i˚pi
!
pEq b i˚pi˚pω

_
i qqr´2sq pi˚i˚ “ Idq

“ i˚pi
!
pEqq b i˚pω

_
i qr´2s (Projection Formula)

“ E b i˚pωiq b i˚pω
_
i qr´2s (Def. i! and Proj. Formula)

“ E b i˚OS pi˚pωiq b i˚pω
_
i q “ i˚OSr2sq

Let F f
ãÑ i˚OS, L “ cokerpfq in CohpXq and consider the exact sequence, in

CohpSq,
0 Ñ i˚pF q Ñ OS Ñ i˚pLq Ñ 0.

We have that i˚pLq “ OC , for some subvariety C of S, and since S is irreducible
we can see that dimpCq ă dimpSq. Moreover, due to Remark 2.1.5, this implies that
chkpLq “ 0, for k “ codimpSq, concluding our reasoning, because this implies that every
subsheaf of i˚OS satisfy the inequality in Remark 2.1.2.

At last, let us remind a result proved in (HUYBRECHTS; LEHN, 2010, Lemma
1.7.9) and referenced as Grothendieck’s Theorem. It tells us about the boundedness of
families of pure quotients of a given sheaf, and this will be important when proving the
existence of certain limits in Chapter 3.

Theorem 2.1.6 (Grothendieck Theorem). Let E P CohpXq be a d-dimensional sheaf with
d ą 0 over a projective scheme X of dimension 3, Hilbert Polynomial P and Mumford–
Castelnuovo regularity regpEq “ p. There exists C, depending only on P and p, such that
for every purely d-dimensional quotient Q then chC4´dpQq ě 0. Moreover, the family of
purely d-dimensional quotients Q with chC4´dpQq bounded from above is a bounded family.

2.2 General theory
In his original paper (BRIDGELAND, 2007), Bridgeland proposed two defi-

nitions to this new stability condition, one using slices and one using hearts of bounded
t-structures. The former can be seen as a special case of Gorodentsev–Rudakov–Kuleshov‘s
(GORODENTSEV; KULESHOV; RUDAKOV, 2004) t-stability where we consider only
the partially ordered set R indexing the slope of the semistable objects, and the latter can
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be seen as a generalization of Mumford‘s notion of µ-stability where we associate a degree
and a rank function to objects in a heart of a bounded t-structure.

Throughout this section, let T be a triangulated category. The next definition
is inspired by the property of the hearts of bounded t-structure expressed in 1.2.4.

Definition 2.2.1. A slice P in T is a collection of subcategories Ppφq Ă T for every
φ P R satisfying:

• Ppφqr1s “ Ppφ` 1q,

• HompA,Bq “ 0 if A P Ppφ1q and B P Ppφ2q with φ1 ą φ2,

• For every object E P T we have a decomposition

0 “ E0 // E1 //

��

E2 //

��

... // En´1 //

��

En “ E

��

A1

cc

A2

``

An´1

aa

An

ee

such that Ai P Ppφiq and φi ą φi`1, for every i.

The slices encode the information on semistable objects concerning the following
notion of stability condition. The technical difficulty that comes from using the slices is
that defining a priori all the semistable objects for a stability condition can be hard so
that this definition is not the one usually employed when constructing examples. Next,
we describe the concept of weak stability conditions, one of the building blocks used to
construct a Bridgeland stability condition over a threefold.

Definition 2.2.2. [Slice version] A weak stability condition is a pair σ “ pZ,Pq of a
group homomorphism Z : KpT q Ñ C, known as the stability function or central charge,
and a slice P satisfying the following conditions:

• Weak-Positivity: For every E P Ppφq, ZpEq “ p.eiφπ for some p P Rě0.

• Finiteness: The homomorphism Z can be factored by a finite free Z-lattice surjective
map v : KpT q Ñ Λ.

For a given weak stability condition σ “ pZ,Pq, E is said to be σ-semistable if
it is in Ppφ̄σpEqq for some φ̄σpEq P R.

Definition 2.2.3. [Slice version] A Bridgeland stability condition is a weak stability
condition σ “ pZ,Pq such that

• Positivity: For every E P Ppφq, ZpEq “ p.eiφπ for some p P Rą0.

• Support Property: Let || ¨ ||R be a norm in Λb R. Then
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Cσ :“ inf
!

|ZpEq|

||vpEq||
: E P Ppφq and φ P R

)

ą 0.

In the same way, it is possible to define a weak/Bridgeland stability condition
using hearts of bounded t-structures.

Definition 2.2.4. [Heart version] A weak stability condition is a pair σ “ pZ,Aq, where
Z : KpXq Ñ C is a group homomorphism and A is a heart of a bounded t-structure
satisfying:

• Weak-Positivity: For every E P A we have ZpEq P Rě0 ¨ e
iπφ for some φ P r0, 1q.

The phase of E is defined as φσpEq :“ ´<pZpEqq{=pZpEqq and φσpEq “ `8 if
=pZpEqq “ 0.

An object A P A is called σ-(semi)stable if φσpAq ą pěqφσpF q for every non-zero
subobject F of A in A.

• Harder–Narasimhan filtration: Let E P A, then there exists n P Zą0 and
E0, ..., En P A such that

E0 “ 0 Ă E1 Ă E2 Ă ... Ă En´1 Ă E “ En

with Fi “ Ei{Ei´1 σ-semistable objects and φσpFiq ą φσpFi`1q for all 1 ď i ď n.

• Finiteness: The homomorphism Z can be factored by a finite free Z-lattice surjective
map v : KpT q Ñ Λ.

Furthermore, a notion of Bridgeland stability can also be translated into this
setup.

Definition 2.2.5. [Heart version] A weak stability condition σ “ pZ,Aq is a Bridgeland
stability condition if satisfies:

(a) Positivity: There is no non-zero object E in A such that ZpEq “ 0.

(b) Support Property: Let || ¨ ||R be a norm in ΓR. Then

Cσ :“ inf
!

|ZpEq|

||vpEq||
: E ‰ 0 and σ-semistable

)

ą 0.

Theorem 2.2.6. (BRIDGELAND, 2007, Proposition 5.3) The definitions 2.2.5 and 2.2.3
are equivalent.
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Sketch of Proof. Let σ “ pZ,Pq be a stability condition defined with a slice P, then we
obtain a stability condition pZ,Aq with a heart of a bounded t-structure A such as

A “ Pppψ, ψ ` 1sq :“ xE|E P Ppφq with φ P p0, 1sy.

For the reverse construction, given a stability condition σ “ pZ,Aq with a heart of a
bounded t-structure A we can obtain a slice by setting

Ppφq “ tE P Arks| k P Z such that φ´ k P p0, 1s and Er´ks is σ-semistable u.

As shown in (BRIDGELAND, 2007), it is possible to define a natural topology
in the space of stability conditions. This topology is given by generalized metric that
measures the difference in slope of all the objetcs in T with respect to two different stability
conditions. Let StabΛpT q be the space of stability conditions with respect to a given finite
rank lattice v : KpT q Ñ Λ, and a generalized metric d : StabpT q ˆ StabpT q Ñ r0,`8s
given by:

dpσ, σ1q “ sup
EPT
t|φ`σ pEq ´ φ

´
σ1pEq|, |φ

´
σ pEq ´ φ

´
σ1pEq|, ||Z ´ Z

1
||Λu,

where Z and Z 1 are the respective stability fuctions of σ and σ1, and we are taking the
norm to be in the finite dimensional vector space HompΛ,Cq.

Theorem 2.2.7. (BRIDGELAND, 2007, Theorem 1.2) The projection of the first coordi-
nate

StabΛpT q Ñ HompΛ, Cq

induces a complex manifold rkpΛq-dimensional structure on StabΛpT q.

The support property is a crucial ingredient in this proof, as it is the condition
that guarantees that small deformations of the stability condition still gives a stability
condition, see (BRIDGELAND, 2007, Theorem 7.1). This formulation of the support
property was later substituted by requiring the existence of a quadratic form, a first
instance of this new formulation can be found in (KONTSEVICH; SOIBELMAN, 2008,
Section 2.1). In their first remark, the authors in (KONTSEVICH; SOIBELMAN, 2008,
Section 1) suggest a motivation for the support property relating it to the large volume
limit inside the derived Fukaya category.

Theorem 2.2.8. (BAYER; MACRÌ; STELLARI, 2016, Lemma A.4, Appendix A) Let
σ “ pZ,Aq be a weak stability condition with respect to v : KpAq Ñ Λ, then σ satisfies the
support property if and only if there exists a quadractic form Q : Λb RÑ R satisfying:

• All semistable objects E P A satisfy QpvpEq, vpEqq ě 0,
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• All non-zero vectors v P Λb R with Zpvq “ 0 satisfy Qpv, vq ă 0.

Another direct application of the support property can be found in (BRIDGE-
LAND, 2008, Proposition 9.3). In the aforementioned proposition, Bridgeland proves
the wall and chamber structure of the space of stability conditions where, for a given
v P Λ, it is possible to decompose the space StabΛpDb

pCohpXqqq into chambers sepa-
rated by 2 rkpΛq ´ 1-real manifolds called the walls, on which the stability of any object
E P Db

pCohpXqq with vpEq “ v is preserved. Moreover, he proved that if we were to
take a compact subset of StabΛpDb

pCohpXqqq then the number of walls intersecting this
compact would be finite.

To close this subsection we will just briefly discuss the two natural actions
in StabΛpT q. The first is by the group of automorphisms that respect the morphism
v : KpT q Ñ Λ, AutΛpT q, where an automorphism φ : T Ñ T with its action φ˚

in KpT q can be seen to act on StabΛpT q by letting φ ¨ pZ,Pq “ pZ ˝ φ˚, φpPqq, and
φpPqpθq “ φpPpθqq.

The other action is done by the universal cover of the topological group Gl`2 pRq,
G̃l`2 pRq, which can be described as in (MACRÌ; SCHMIDT, 2019, Remark 5.4) by the
set of pairs pT, fq where T P Gl`pRq and f : R Ñ R satisfying fpφ ` 1q “ fpφq ` 1 and
f |R{2Z “ T |S1 . These pairs act on a stability function by pT, fq ¨ pZ,Pq “ pT´1

¨ Z,Ppfqq.
A way to see this action is by realizing T as a deformation of the image of the stability
function in the complex plane and the function f is what keeps track of the slope the
image of these deformations will have.

2.3 Curves and surfaces
The space of Bridgeland conditions was first studied in the case of curves by

Bridgeland in his first paper on the subject (BRIDGELAND, 2007). In that instance he
proved for an elliptic curve C that G̃l`2 pRq acts transitively over the space of stability
conditions and the canonical heart pZ,CohpCqq with ZpEq “ ´ degpEq ` i rkpEq is a
Bridgeland stability condition. Later, this result was extended to all smooth curves with
genus greater or equal than 1 by Macrì in (MACRÌ, 2014).

To complete the description of smooth curves it was only left to prove a
description of the space of stability conditions for C “ P1, which was done by Okada in
(OKADA, 2006) by proving that StabpDb

pP1
qq is isomorphic to C2 as a complex manifold.

This proof uses an action of CˆZ to simplify StabpDb
pP1
qq. Also in (MACRÌ, 2014), he is

not able to prove a full description of StabpP1
q but he introduces much of the techniques

used while relating Bridgeland stability conditions and exceptional objects.

The surface case on the other hand is much more complicated to describe. To
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start, the heart CohpSq for any smooth projective variety with dimpSq ě 2 cannot be a
heart of a Bridgeland stability condition, see (TODA, 2009a, Lemma 2.7). Also, differently
from the one-dimensional case, a complete description of the space of Bridgeland stability
conditions is much harder to achieve.

Although at the time was not yet a problem, in his article (BRIDGELAND,
2008) Bridgeland proposes a way of constructing hearts of bounded t-structures in a
stability condition by applying Theorem 1.2.6 to a torsion pair in CohpKq, where K is
a K3-surface. The stability function, in this particular situation, is defined by applying
the natural Mukai bilinear form defined over Λ “ H˚

pK,Zq to the Mukai vector of an
object E P Db

pKq and a numerical vector in N pKq “ Z‘NSpKq ‘ Z, where NSpKq is
defined as the Nerón-Severi group of K, that is, the group obtained by identifying any
two divisors whose intersection with any curve yield the same degree.

This construction of Bridgeland stability conditions over surfaces by using
Theorem 1.2.6 continued to be used by many authors, to cite some (ARCARA; BERTRAM,
2013; BAYER; MACRÌ, 2011; MACIOCIA, 2014), but the stability function needed to
follow an equivalent definition, also given in (BRIDGELAND, 2008), that uses the Euler
form and the Riemann-Roch theorem. In (MACRÌ; SCHMIDT, 2019), the authors provide
a systematic way of defining a Bridgeland stability condition for the surface case and we
will review some of the aspects of it here for completeness.

We start by the construction of the heart of a bounded t-structure. We will
fix S to be a smooth projective surface over an algebraic closed field k, an ample class
ω P KpSq and a divisor D P Rb F 1

pXq. For any pair ω,B it is possible to define the pair

Tω,B :“ tE P CohpSq| for every E � Q, µωpQq ą
ω ¨B

ω2 u,

Fω,B :“ tE P CohpSq| for every F ãÑ E, µωpF q ď
ω ¨B

ω2 u.

The pair pTω,B,Fω,Bq defines a torsion pair in CohpSq. To see why this is true
we just need to apply the Harder-Narasimhan filtration associated with µω-stability, 2.1.4.
Moreover, the heart obtained by applying Theorem 1.2.6 is denoted by Bω,B. The stability
function, in this case is defined by the simple formula

Zω,BpEq “

ż

eiω ¨ chBpEq,

which can be explicitly expressed by

Zω,B “ ´pchB2 pEq ´
ω2

2 ch0pEqq ` iωpch1pEq ´B ch0pEqq. (2.1)

For the pair pZω,B,Bω,B
q needs to satisfy certain conditions for it to be a Bridge-

land stability condition. The proof of positivity can be found in (ARCARA; BERTRAM,
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2013, Corollary 2.1), it depends heavily on arguments using 1.3.16, the Hodge index
theorem and the Bogomolov-inequality, only the latter is explicitly expressed here.

Theorem 2.3.1. (HUYBRECHTS; LEHN, 2010, Theorem 3.4.1) If F is a µ-semistable
torsion free sheaf over S then

∆ω,BpF q “ pω ch1pF qq
2
´ 2ω2 ch0pF q ch2pF q ě 0

To prove the existence of a Harder-Narasimhan filtration involves first proving
the existence of the Harder-Narasimhan filtration when B P Q b F 1

pSq because in this
situation the image of Zω,B is a discrete subset of H since the elements in its definition are
either in Z or 1

2Z and only products with ω can be in R. The other necessary condition
in this proof is that Bω,B be noetherian, proven in (PIYARATNE; TODA, 2019, Lemma
2.17). This is a consequence of (MACRÌ; SCHMIDT, 2019, Theorem 4.10).

To extend this result to real divisors in Rb F 1
pSq we would need to deform

the stability conditions obtained with B P Q b F 1
pSq using a small deformation of the

Bogomolov-inequality which is also the support property of these stability conditions, as
in (MACRÌ; SCHMIDT, 2019, Lemma 6.20), leading to the following theorem.

Theorem 2.3.2. (MACRÌ; SCHMIDT, 2019, Theorem 6.10) Let S be a smooth projective
surface. The pair σω,B “ pZω,B,Bω,B

q gives a Bridgeland stability condition on S. The
map AmppSq ˆ F 1

pSq b R Ñ StabΛpDb
pSqq that takes pω,Bq into σω,B is a continuos

embedding.

Example 2.3.3. When dealing with examples we usually make some restrictions that
make the calculations easier such as require that ω and B are linearly dependent, that
is, ω “ αH and B “ βH for some ample divisor H, β, α P R and α ą 0. In this case we
change the notation of σω,B “ pZω,B,Bω,B

q to σβ,α “ pZβ,α,Bβ
q, while it is important to

note that Bω,B may depend on ω but does not change for positive multiples of ω. Theorem
2.3.2 allows for us to define the upper-half plane of stability conditions H.

2.4 Threefolds
Since its introduction, one of the main goals of the theory of Bridgeland stability

conditions was to study the behavior of stable of objects over Calabi-Yau varieties and, for a
long time, in the case of threefolds, it was not known if they even had any stability function,
to begin with. This question leads to the search of the so-called generalized Bogomolov-type
inequalities, a quadratic form satisfying the conditions to be a support property for these
threefolds. The existence of a Bridgeland stability condition on a Calabi-Yau was first
proved by Li in (LI, 2019b) for the quintic threefold hypersurface in P4.
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In this section, we will not focus on the Calabi-Yau case, as the main results
obtained do not deal with them. Instead, we will focus on constructing what is known as the
geometric Bridgeland stability conditions as in (BAYER; MACRÌ; TODA, 2014) and see a
few examples of how they appear in the literature. Furthermore, the notation used is going
to be the same as in Example 2.3.3. For that fix the ample class H, chβpEq “ chβHpEq
and chipEq “ chipEq ¨H3´i.

The construction of the geometric Bridgeland stability conditions by the authors
in (BAYER; MACRÌ; TODA, 2014) uses the same approach as when we constructed a
Bridgeland stability for the surface case, by tilting a known heart of a bounded t-structure
and taking the stability function as a top degree function of the intersection of the exp iH
and the twisted Chern character. Only this time we have to do it twice! In this case, the
stability obtained with Zβ,α as in equation (2.1) is a weak stability, not a Bridgeland
stability because its stability function has non-trivial objects in the heart that have zero
image by Zα,β, namely the skyscraper sheaves.

To start, let X be a smooth projective threefold over an algebraically closed
field k and σβ,α “ pZα,β,Bβ

q be the weak stability obtained by tilting as in the construction
done in the previous Section. This is indeed a weak stability by a composition of results:
(BAYER; MACRÌ; STELLARI, 2016, Appendix B) proves the deformation of the Harder-
Narasimhan filtration for the weak stability condition; (BAYER; MACRÌ; TODA, 2014,
7.3.2) proves the Bogomolov-inequality for this situation, proving, therefore, the support
property, the weak-positivity is the same proof as in the surface case. This stability
condition is denoted by tilt stability.

The next step is defining a torsion pair in Bβ:

Tβ,α :“ tE P Bβ
| for every E � Q, νβ,αpQq ą 0u,

Fβ,α :“ tE P Bβ
| for every F ãÑ E, νβ,αpF q ď 0u.

Applying Theorem 1.2.6 to the torsion pair pTβ,α,Fβ,αq in Bβ we obtain the
heart of bounded t-structure Aβ,α. The stability function is defined in the same as in the
surface case, but this time there will be more terms because we are considering intersections
of dimension i and 3´ i, for all i ď 3.

Zβ,α,spEq “

ˆ

´ chβ3 pEq `
ˆ

s`
1
6

˙

chβ1 pEq
˙

` i

ˆ

chβ2 pEq ´
1
2α

2 ch0pEq

˙

, (2.2)

for E P Db
pXq so that σβ,α,s “ pZβ,α,s,Aβ,α

q is the geometric stability condition, for every
s P Rą0. The proof of the positivity of σβ,α,s is done in (BAYER; MACRÌ; TODA, 2014,
Lemma 3.2.1). The abelian categories Aβ,α are noetherian by (BAYER; MACRÌ; TODA,
2014, Theorem 5.2.2), so that we would just need a form of the support property to prove
the existence of a Harder-Narasimhan filtration.
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The support property in the threefold case is usually given by the generalized
Bogomolov inequality, as introduced in (BAYER; MACRÌ; TODA, 2014). Many authors
proved the existence of some kind of generalized Bogomolov inequality for threefolds, see
(PIYARATNE; TODA, 2019; MACRì, 2007; SCHMIDT, 2020; BAYER; MACRÌ; TODA,
2014; LI, 2019b; LI, 2019a; BERNARDARA et al., 2017; BAYER; MACRÌ; STELLARI,
2016). In this collection, the many authors prove the existence of Bridgeland stability
conditions over the abelian threefolds, the Fano threefolds and the quintic threefold. The
techniques employed in these papers are different from one another, some used exceptional
collections and extended the result outside of their quiver regions, some used Fourier–Mukai
transforms to achieve the expected result and others utilized a generalized version of the
geometric stability condition to change the setting and prove different, but equivalent,
version of the inequality.

We express the generalized Bogomolov inequality as it was presented in
(SCHMIDT, 2020; JARDIM; MACIOCIA, 2019), as a quadratic form involving the third
Chern character. In this work, we will only need the generalized Bogomolov inequality for
the threefolds X “ P3 and the smooth quadric X “ Q3, proved by (MACRì, 2007) and
(SCHMIDT, 2014) respectively.

Theorem 2.4.1. Let X being either the 3-dimensional projective space or the smooth
quadric threefold and E be νβ,α-semistable object in Bβ. Then E satisfy the generalized
Bogomolov inequality:

Qβ,αpEq :“ pch1pEq
2
´ 2 ¨ ch2pEq ch0pEqqα

2
` 4pchβ2 pEqq2 ´ 6 chβ1 pEq chβ3 pEq ě 0.

2.4.1 Distinguished curves

We will now discuss the natural curves that appear when trying to understand
the geometry of the walls inside the upper-half plane of stability conditions H. In the
surface case, these were characterized in (MACIOCIA, 2014) as non-intersecting semicircles
centered in the β-axis, which was later translated to the case of tilt stability in (SCHMIDT,
2020). In the threefold case, an extensive discussion can be found in (JARDIM; MACIOCIA,
2019). Here we will discuss the most important aspects of the theory of distinguished
curves that are going to be used in the later parts of the thesis.

The first definition is regarding the walls. These are important concepts in any
theory of stability as it is the structure determining when an object becomes stable or
unstable.

Definition 2.4.2. A numerical wall inside the space of (weak)Bridgeland stability condi-
tions with respect to an element w P Λ is the subset of stability conditions σ “ pZ,Aq
with non trivial solutions to the equation φ̄σpwq “ φ̄σpuq for some fixed u P Λ. Denote the
numerical with respect to w and u in Λ by (Σ̄w,u) Υw,u.
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A subset of a numerical wall is called an actual wall if, for each point σ “ pA, Zq
in this subset, there is a sequence of σ-semistable objects 0 Ñ AÑ B Ñ C Ñ 0 in A with
vpBq “ w and φ̄σpAq “ φ̄σpBq “ φ̄σpCq.

We can use that the stability function has image in the complex numbers to
show that a Bridgeland stability σ “ pZ,Pq is in Υw,u if and only if it satisfies the equation

fw,upβ, αq “ <pZpvpuqqq=pZpvpwqqq ´ <pZpvpwqqq=pZpvpuqqq “ 0.

The previous definition is for the whole space of stability conditions, we will be
mostly concerned with two types of numerical walls: the tilt walls or ν-walls ΣE,F and
the λ-walls ΥE,F,s, for given E,F P KpXq and s P Rą0. That is, let s P Rą0 then ΥE,F,s is
the H-section of the numerical wall for E P K0pXq with respect to F and the Bridgeland
stability conditions σβ,α,s. The points pβ, αq P ΥE,F,s satisfy

fE,F,spβ, αq :“ τβ,α,spEqρβ,αpF q ´ τβ,α,spF qρβ,αpEq “ 0, (2.3)

where τβ,α,spEq “ ´<pZβ,α,spEqq and ρβ,αpEq “ =pZβ,α,spEqq.

It will be useful to expand the expression in equation (2.3) so that we get the
following degree 4 polynomial:

fE,F,spβ, αq “
6s` 1

12 δ10α
4
`

ˆ

3s´ 1
6 δ10β

2
`

1´ 3s
3 δ20β `

6s` 1
6 δ21 ´

1
2δ30

˙

α2
`

ˆ

1
12δ10β

4
´

1
3δ20β

3
`
δ30 ` δ21

2 β2
´ δ31β ` δ32

˙

.

The tilt-wall is defined similarly but instead of using Bridgeland stability
condition, it is used the tilt stability function. The numerical and actual walls can be
tricky to work in the case of Bridgeland stability conditions σβ,α,s as they are plane curves
in degree 4 but they have nice behavior along some notable curves as proven in (JARDIM;
MACIOCIA, 2019, Section 4 and 6) and (SCHMIDT, 2020).

Definition 2.4.3. Let w, v P Λ and define the following curves:

• The numerical wall for v and w in H for σβ,α is denoted by Σv,w, known as the ν-wall
associated with v and w.

• Let s be a positive real number, the numerical wall for v and w in H for σβ,α,s is
denoted by Υv,w,s, known as the λ-wall associated with v and w.

• Lw :“ tpβ, αq P H| chβ1 pwq “ 0u. The space to the left of the line Lw will be denoted by
L`w :“ tchβ1 pwq ą 0u and respectively the right-hand side will be L´w :“ tchβ1 pwq ă 0u.
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• Θw :“ tpβ, αq P H|<pZt
β,αpwqq “ 0u. Theta may divide the plane in two regions

Θ`
w :“ t<pZβ,αpwqq ą 0u and Θ´

w :“ t<pZβ,αpwqq ă 0u.

• Γw :“ tpβ, αq P H|<pZβ,α,spwqq “ 0u.

Example 2.4.4. Let E be a µ-semistable sheaf and consider what is necessary for
pβ, αq P H to imply either that E P Bβ or E P Aβ,α. The first observation is that
E P Bβ whenever β ă µpEq, to the left of LE in H, and E P Bβ

r´1s otherwise. If E is
νβ,α-semistable then there are 3 possiblities:

• E P Aβ,α if pβ, αq P L`w XΘ`
w

• E P Aβ,α
r´1s if pβ, αq P pL´w XΘ´

wq Y pL
`
w XΘ´

wqzΘw or

• E P Aβ,α
r´2s if pβ, αq P L´w XΘ`

w .

Figure 2.4.4.1 – Distinguished curves related to w “ p2, 0,´2, 0q “ chpIq, where I is an
Instanton sheaf of charge 2.

Next, we describe the interaction of these curves with the ν-walls for an object
w in Λ. The interaction between the curve <pZpwqq “ 0 and the ν-walls will be analogous
in the Bridgeland stability case.

Theorem 2.4.5. (SCHMIDT, 2020; MACIOCIA, 2014) Fix a vector w “ pR,C,D,Eq P
Λ. The walls are with respect to w.

(a) Numerical ν-walls are of the form

xα2
` xβ2

` yβ ` z “ 0

for x “ Rc´ Cr, y “ 2pDr ´Rdq and z “ 2pCd´Dcq. In particular, they are all
semicircles with center at the β-axis or vertical rays.
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(b) Two numerical ν-walls intersect if and only if they are identical.

(c) If R ‰ 0, the curve Θw is given by the hyperbola

pβ ´ C{Rq2 ´ α2
“

∆pwq
R2

(d) If a numerical ν-wall is an actual ν-wall for some point then it is an actual ν-wall
at every point.

(e) If Σw,v is a numerical ν-wall then Σw,v XΘw “ Σw,v XΘv “ Θw XΘv “ tpu is the
only point in the semi-circle Σw,v with horizontal tangent space.

For the latter parts of the paper it will be important to keep track of the
orientation of the numerical walls. This means keeping track of which points in H an
object F destabilizes(numerically) another object E or if it does not affect its stability. We
will provide a general definition of orientation as it can provide an useful generalization.

Definition 2.4.6. Let w, u P Λ. We will define the inside of the numerical wall Υw,u as the
subset of stability conditions σ “ pZ,Pq in StabλpDb

pXqq such that fw,u ă 0. Moreover,
the outside of the numerical wall is the subset where fw,u ą 0.

This can be translated to the geometric stability conditions by saying that
if E,F are in Aβ,α then: pβ, αq is inside(outside) of ΥE,F,s if and only if λβ,α,spEq ă pą
qλβ,α,spF q.

Example 2.4.7. Let X be the smooth quadric Q3. This threefold was shown to satisfy
the generalized Bogomolov inequality by Schmidt (SCHMIDT, 2014). Lets fix an ample
generator for PicpQ3q as OQ3pHq such that H3

“ 2 in the Chow ring. In this situation we
will also use the notation Opkq for OQ3pkHq, whenever clear from the context.

Using the results as in (OTTAVIANI, 1988), we can define the spinor bundle
S over Q3 as the pullback of the universal bundle of the Grassmannian by the natural
map s : Q3 Ñ Grp23

´ 1, 24
´ 1q. This bundle is almost self-dual satisfying S˚ “ Sp1q.

Comparing this to (SCHMIDT, 2014) we can see that he is using S˚ as his
Spinor bundle when defining the exceptional region, so it is important to keep this in
mind when our results here and the ones cited. In (OTTAVIANI, 1988, Theorem 2.1), he
proves that spinor bundles are µ-stable and in (SCHMIDT, 2014, Lemma 4.6) he proves
that S˚p´1qr1s is tilt stable at the line β “ 0 of the upper-half plane H of tilt stability
conditions. To our use here, we will need to translate the upper half-plane by tensoring by
OQ3p´1q so that we will study the tilt stability of S˚p´2qr1s.

Moreover by applying the numerical conditions of Theorem 2.4.5 we can
see that every numerical tilt wall for the object S˚p´2qr1s has to cross the hyperbola
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ρβ,αpS
˚
p´2qr1sq “ 0 at their apex and can never cross the numerical wall β “ µpS˚p´2qr1sq.

So that we have the following Picture 2.4.7.1:

Figure 2.4.7.1 – An example of two numerical tilt-walls with respect to S˚p´2qr1s and the
region, in green, representing the points where S˚p´2qr2s P Aβ,α.

Since S˚p´2qr1s is tilt stable at β “ ´1, we can see that no numerical wall to
the right-hand side of β “ ´3{2 “ µpS˚p´2qq can be an actual destabilizing tiltd wall. So
that S˚p´2qr1s P Fβ,α if pβ, αq satisfies pβ,αpS˚p´2qr1sq ď 0, i.e. the light green region in
Picture 2.4.7.1.

In the last chapter, we will reduce to the case of s “ 1{3, we can do this because
of the following result about the non-existence of new walls when we increase s beyond
1{3. Hence, to study the existence of walls and therefore the stability of objects, we can
consider s “ 1{3.

Theorem 2.4.8. (JARDIM; MACIOCIA, 2019, Theorem 6.12) Let ΥE,F,s be the λ-wall
for two objects E,F P Λ and any s, s1 ě 1{3. Then ΥE,F,s ‰ H if and only if ΥE,F,s1 ‰ H.
If s ă 1{3 and ΥE,F,s ‰ 0 then ΥE,F,s1 ‰ H for every 0 ă s1 ă s.

2.5 Exceptional Collections
We will follow the notation used in (MACRì, 2007) for exceptional collections

and related concepts. We can define a structure of linear triangulated category in Db
pXq

by defining for any A,B P Db
pXq the Z-graded vector space

Hom‚
pA,Bq “

à

iPZ
Homi

pA,Bq “
à

iPZ
HompA,Brisq.

For any Z-graded vector space V ‚ and E P Db
pXq, let V ‚bE :“

à

iPZ
V i
bE, where V i

bE

is the direct sum of E dimpV i
q-times. The dual of a Z-graded vector space V ‚ is V ‚˚

defined as pV ‚˚qi :“ pV ´iq˚ so that the dual of an object V ‚bE P Db
pXq is pV ‚˚r2sqbE_,

with E_ “ RHompE,OXqr2s.



Chapter 2. Bridgeland stability 48

Definition 2.5.1. An object E in Db
pXq is called exceptional if Hom‚

pE,Eq “ C. A
collection E :“ tE0, ..., Enu of exceptional objects is called exceptional if they satisfy
Hom‚

pEi, Ejq “ 0 if i ą j. An exceptional collection can have other properties such as

• Strong: if Homk
pEi, Ejq “ 0 for all i, j and k ‰ 0,

• Ext: if Homď0
pEi, Ejq “ 0 for all i ‰ j,

• Full: if the category generated by E via shifts and extensions is Db
pXq.

It is easy to construct an Ext-exceptional collection from a strong exceptional col-
lection by doing a trick: If we start with a strong exceptional collection E “ tE0, E1, E2, E3u

then SpEq :“ tE0r3s, E1r2s, E2r1s, E3u is an Ext-exceptional collection. This allows us
to reduce the search for possible Ext-exceptional collections by using strong exceptional
collections.

Theorem 2.5.2. (MACRì, 2007, Lemma 3.4 and Lemma 3.6) Let tE0, ..., Enu be a full
Ext-exceptional collection in Db

pXq then the category generated by extensions xE0, ..., Eny

is a heart of a bounded t-structure. Assume that pZ,Pq is a stability condition and E0, ..., En

are all in Pppφ, φ` 1sq for some φ P R, then xE0, ..., Eny “ Pppφ, φ` 1sq and Ei are stable,
for all i.

Theorem 2.5.2 leads to the following definition used to determine the regions
of H we are interested in.

Definition 2.5.3. A full Ext-exceptional collection tE0, ..., Enu satisfies the upper-half
plane condition for a stability condition pZ,Pq if there exists a φ P R such that xE0, ..., Eny “

Pppφ, φ` 1sq.

As a consequence of Theorem 2.5.2, Definition 2.5.3 is equivalent to the notion
of σ-exceptional collection defined in (DIMITROV; KATZARKOV, 2016, Definition 3.19).

Example 2.5.4. Let E “ tE0, ..., E3u be a complete Ext-exceptional collection and
C “ xEy the heart of bounded t-structure generated by E . If σβ,α,s “ pZβ,α,s,Aβ,α

q is a
stability condition in X such that C Ă Dβ,α :“ xAβ,α,Aβ,α

r1sy then we can define the C-
slope of a semistable object E P Dβ,α as the unique ψ P p0, 2s such that Zβ,α,spEq “ r ¨ eπψi

with r P Rą0. Moreover, we can rephrase Definition 2.5.3 as the existence of a φ P p0, 1s
where the upper-half plane H rotated by pφπq-degrees contains all the complex numbers
Zβ,α,spEiq, for all i.

We will denote by Hφ the upper-half plane obtained from rotating H by pφπq-
degrees. In the previous example it is clear that if E is σβ,α,s-semistable with C-slope
φ P p0, 2s then either E or Er1s is in C.
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Figure 2.5.4.1 – The purple region determines the region determined by Hφ.

Remark 2.5.5. It is important to note that the choice of φ in Example 2.5.4 is not
usually canonical and we can have an interval of angles satisfying this condition. Even
more, assume E to be a complete Ext-exceptional collection satisfying the upper-half plane
condition for all φ P pψ, ψ1q Ă p0, 1s and fix pβ, αq P H, then there is no semistable object
E P Aβ,α such that Zβ,α,spEq “ rE ¨ e

iπγ with γ P pψ, ψ1q, because if it were to exist such
an E then E P Pβ,αppψ, ψ ` 1sq and not in Pβ,αppψ

1, ψ1 ` 1sq but both of these categories
are equal to C.

One way to produce numerical λ-walls for the objects F P xEy is by utilizing
truncation functors. Let E “ tE0r3s, E1r2s, E2r1s, E3u be a full Ext-exceptional collection
with Ei P CohpXq, for all i, satisfying the upper-half plane condition then every object F
is quasi-isomorphic to a complex

E‘a0
0 Ñ E‘a1

1 Ñ E‘a2
2 Ñ E‘a3

3

with ai uniquely determined so that we have the stupid truncation functors tďk and těl
with respect to the heart CohpXq of Db

pXq, leading to the functorial exact sequences for
E P xEy:

0 Ñ tąkE Ñ E Ñ tďkE Ñ 0 (2.4)
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3 Asymptotic stability

The study of asymptotic Bridgeland stability, or large volume limit, has been a
major topic of research inside the field of Bridgeland stability, as it is both of interest to
physicists and mathematicians. The advantage of this approach to stability is that usually,
the asymptotic behavior makes things simpler. It was first introduced in (BRIDGELAND,
2008) as a way of relating Bridgeland stability with slope stability for the case of the K3
surfaces.

Later, many authors approached the problem of determining the large volume
limit to the Bridgeland stability conditions, see (TODA, 2009b; BAYER, 2009; JARDIM;
MACIOCIA, 2019; BAYER; MACRÌ; TODA, 2014). We will focus on the approach defined
by Jardim–Maciocia, which studies an asymptotic stability condition using unbounded
curves in the upper-half plane of stability conditions H to simplify the limits to one
parameter spaces and then employ analysis techniques.

In this chapter, we examine the conditions that an object with zero Chern
character equal to zero has to satisfy for it to be asymptotically (semi)stable with respect
to weak or Bridgeland stability conditions. When considering weak stability, the objects
asymptotically weak (semi)stable does not depend on the curve chosen, as long as the
curve is not asymptotically vertical. This is due to the non-existence of a vertical tilt wall
associated with the µ-slope of sheaves with zero Chern character zero.

For curves γ going asymptotically to the left-hand side of the upper-half plane of
stability conditions H, the asymptotically Bridgeland (semi)stable objects are the Gieseker-
Simpson (semi)stable sheaves. On the other hand, if we focus on curves asymptotically
going to the right-hand side of H then the asymptotically Bridgeland (semi)stable are the
derived dual of Gieseker-Simpson (semi)stable sheaves.

The results in this chapter were first proven for the case of the threefold X “ P3

and after submitting the paper the referee pointed out that this restriction was unnecessary,
that the argument works just as well for any smooth projective threefold X whenever the
geometric stability conditions σβ,α,s “ pZβ,α,s,Aβ,α

q exist.

3.1 Definitions
Throughout the chapter we will fix that X is a smooth projective variety over

an algebraic closed field k having geometric stability conditions of the form σβ,α,s “

pZβ,α,s,Aβ,α
q for every pβ, αq P H and s ą 0, and the notation that γ is an unbounded
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curve in H parametrized by γptq :“ pβptq, αptqq satisfying

cγ :“ lim
tÑ`8

α2ptq

β2ptq
ă 1. (3.1)

This condition is important because it is the one that guarantees that whenever
E P CohpXq we have that lim

tÑ`8
νγptqpEq ą 0 (see equation (3.7)), in geometric terms it

means that for every E P CohpXq there is some t0 P R such that when t ą t0, γptq P Θ`
E

holds. In pJARDIM ;MACIOCIA, 2019q these curves are called Θ´-curves.

As seen in the previous subsection, the geometry and structure of the walls for
tilt stability in threefolds are described by Lemma 2.4.5, but not much is known about the
behavior of these walls for Bridgeland stability conditions. This is due to their definition,
is done so by zeros of a degree 4 polynomial, and also that Aβ,α is much more complicated
than Bβ, being a tilt of Bβ it may have 3-step object which does not occur in Bβ.

One way to study the stability of objects in Db
pXq, circumventing this difficulty,

is proposed in (JARDIM; MACIOCIA, 2019) by trying to understand how objects behave
asymptotically at infinity. It turned out to be closely related to sheaf Gieseker-stability.

Definition 3.1.1. Let σβ,α “ pZβ,α, C
β,α
q be a famility of weak stability condition

parametrized by pβ, αq P H and φβ,α its slope. For an object A P Db
pXq to be asymptotic

φγ-(semi)stable it has to satisfy the following conditions:

(a) There exists t0 P R such that A P Cγptq for t ą t0,

(b) Suppose that there exists t1 ě t0 P R such that F f
ãÑ A P Cγptq for some F P Db

pXq

and every t ą t1, then exists t2 P R with φγptqpF q ă pďqφγptqpAq whenever t ą t2.

The cases we will be applying this definition are when σβ,α are either tilt or
Bridgeland stability conditions obtained by the tilt algorithm we described in the previous
subsection, and φβ,α “ νβ,α or φβ,α “ λβ,α,s, for a fixed s, respectively.

It is important to note that this definition is equivalent to using quotients
instead of subobjects in item (b), because of the way exact sequences are defined in hearts
of t-structures. Using the notation of Definition 3.1.1, the short exact sequences in Cβ,α

correspond to distinguished triangles in Db
pXq. Therefore, since we are fixing the map

f , we know that f is monomorphic in Cβ,α if and only if its quotient in Cβ,α is the cone
Cpfq P Db

pXq.

One technique that we are going to use extensively in this chapter is to relate
the cohomologies Hi

Bβ and Hi
Aβ,α , which for simplicity are going to be denoted by Hi

β and
Hi
β,α respectively. This relation is discussed in (JARDIM; MACIOCIA, 2019, Section 2.3),

here we will use the following exact sequences for every object E P Aβ,α:

0 Ñ H´1
β pEqr1s Ñ E Ñ H0

βpEq Ñ 0 (3.2)
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0 Ñ H0
pH´1

β pEqq Ñ H´1
pEq Ñ H´1

pH0
βpEqq Ñ 0 (3.3)

with H´2
pEq “ H´1

pH´1
β pEqq, H0

pEq “ H0
pH0

βpEqq, sequence (3.2) being exact in Aβ,α

and sequence (3.3) being exact in CohpXq.

Remark 3.1.2. Let E be an object in Aβ,α and also in Aβ1,α1 , where β ‰ β1 then Hi
pEq

does not vary with β but Hi
βpEq is not necessarily equal to Hi

β1pEq, thus chkpHi
βpEqq may

vary whenever we change β. One of the technical difficulties we will have to address is to
prove that lim

tÑ`8
chipHi

βptqpEqq exists, whenever lim
tÑ`8

βptq “ ˘8 .

To exemplify this consider the sheaf OP3 . Since OP3 is a µ-stable sheaf we
can see that OP3 P Bβ when β ă 0 and OP3r1s P Bβ, otherwise. Therefore, for negative
β we have H´1

β pOP3r1sq “ OP3 and H0
βpOP3r1sq “ 0, conversely for positive β we have

H´1
β pOP3r1sq “ 0 and H0

βpOP3r1sq “ OP3r1s. It is important to note that if ´β ă α and
α ą β then OP3r1s P Aβ,α, for either case of β positive or negative.

Lemma 3.1.3. (JARDIM; MACIOCIA, 2019, Lemma 2.8) If A is an object in Aβ,α, then
H´2

pAq is a reflexive sheaf of dimension 3.

3.2 Asymptotic νγ-stability
Due to its construction, σβ,α “ pZβ,α,Bβ

q is much simpler than its Bridgeland
counterpart, making it a great starting point to the study of asymptotic (semi)stable
objects. For ch0pEq “ 0 objects we have to consider two cases: Either dimpSupppEqq “ 2
or dimpSupppEqq ď 1, in the first case νγ-stability will be equivalent to GS1-stability and
on the latter case, every sheaf is νγ-semistable. This is because νβ,α does not take into
account ch3, making it a bad stability condition to distinguish low-dimensional sheaves.

When we consider objects E with ch0pEq “ 0 we are avoiding the existence of
the canonical vertical wall tβ “ µpEqu, such wall is responsible for separating the regions
tE P Bβ,α

u and tE P Bβ1,α1
r´1su, if E is a µ-stable sheaf for example. This is the reason we

are able to prove the same theorem for unbounded curves going either to the right or the
left. We assume in this section that γ is an unbounded curve satisfying lim

tÑ`8
|βptq| “ `8.

Proposition 3.2.1. Let E P Db
pXq be an object with ch0pEq “ 0 and ch1pEq ‰ 0. Then

E is asymptotic νγ-(semi)stable if and only if it is GS1-(semi)stable.

The version of this proposition related to the case ch0pEq “ ch1pEq “ 0 is
realized by knowing that =pZβ,αpEqq “ chβ1 pEq “ 0 for all pβ, αq P H, so that E P Bβ,α for
all pβ, αq P H and νβ,αpF q “ `8 when F ãÑ E in Bβptq



Chapter 3. Asymptotic stability 53

Proof. To begin, assume that E is asymptotic νγ-(semi)stable. This implies a few properties
about E: E P Bβptq for all t greater than some t0; Hi

pEq “ 0 for all
i ‰ 0,´1; ch0pH´1

pEqq “ ch0pH0
pEqq and ch1pH´1

pEqq ă ch1pH0
pEqq. Let us prove

that ch0pH´1
pEqq “ ch0pH0

pEqq “ 0, if this was not the case then we would have that
H´1

pEqr1s and H0
pEq are both objects in Bβptq, for all t sufficiently large, with finite

µ-slope which is a contradiction to lim
tÑ`8

βptq “ ´8 and lim
tÑ`8

βptq “ `8, respectively.
Moreover, if non zero, then H´1

pEq is a torsion-free sheaf because E P Bβptq for some t
and this implies that H´1

pEq “ 0, in either direction of γ, concluding that E is a sheaf.

The next step is to prove its sheaf stability. Let

0 Ñ F Ñ E Ñ GÑ 0 (3.4)

be an exact sequence in CohpXq and we can see that ch0pF q “ ch0pEq “ ch0pGq “ 0,
implying that F,E,G P Bβptq and that sequence (3.4) is also an exact in Bβptq, for all t P R.
Therefore

νγptqpEq ´ νγptqpF q “
δ12pE,F q

ch1pF q ch1pEq
, (3.5)

which is not dependent of t, proving the GS1-(semi)stability of E.

Assume now that E is a 2-dimensional sheaf GS1-(semi)stable. Being a 2-
dimensional implies that E P Bβptq for all t, since every quotient of E in CohpXq is also
a 2-dimensional sheaf and therefore have infinite µ-slope. Assume now that we have a
sequence as (3.4) but in Bβptq such that F,E,G P Bβptq for all t greater than some t0, by
applying the argument we started the proof it is clear that both F and G are sheaves and
from (3.5) we conclude asymptotic νγ-(semi)stability.

3.3 Stability at ´8
We start the study of asymptotic Bridgeland stability by analyzing the left-hand

side of H. It turns out that asymptotic stability is much simpler at this side of the half-
plane because objects in Aγptq, for t sufficiently large, are coherent sheaves and asymptotic
stability is equivalent to GSk-stability. Throughout this section we will be studying the
unbounded curves established in (3.1) but with a new condition: lim

tÑ`8
βptq “ ´8.

The first result we prove is related to what kind of object can appear at infinity
when considering Aγptq, for t sufficiently large. Turns out the large volume limit objects
are exactly sheaves, and their (semi)stable objects are the Gieseker-(semi)stable ones.

Proposition 3.3.1. An object E P Db
pXq is in Aγptq for every t sufficiently large if and

only if E P CohpXq.
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Proof. Let us start assuming that E P Aγptq for t sufficiently large. We know that H´j
pEq “

0 for all j ‰ 0, 1, 2 and suppose that H´2
pEq ‰ 0, by Lemma 3.1.3 we know that

ch0pH´2
pEqq ą 0 but that would be impossible because H´2

pEq P Fβptq, whenever E P

Aγptq, an absurd because it implies that

0 ě lim
tÑ`8

chβptq1 pH´2
pEqq “ lim

tÑ`8
ch1pH´2

pEqq ´ βptq ¨ ch0pH´2
pEqq “ `8.

Therefore H´2
pEq “ 0. Moreover, consider H´1

pEq decomposed by the follow-
ing exact sequence in CohpXq

0 Ñ H0
pH´1

βptqpEqq Ñ H´1
pEq Ñ H´1

pH0
βptqpEqq Ñ 0, (3.6)

which can change for each value of t. Again, applying Grothendieck’s Theorem we have that
exists C P R such that chC1 pQq ą 0 for all quotients Q of H´1

pEq. If H´1
pH0

βptqpEqq ‰ 0,
because it is in Fβptq, it needed to satisfy chβptq1 pH´1

pH0
βptqpEqqq ď 0 for sufficiently large t,

which is impossible. Concluding that H´1
pH0

βptqpEqq “ 0.

It is clear now that H´j
βptqpEq are, eventually, constant with respect to t. Fixing

t0 as the value for which H´j
βptqpEq are constant and E P Aγptq for every t ą t0. In this ray,

if H´1
βptqpEq “ H0

pH´1
βptqpEqq is non zero we would have

lim
tÑ`8

1
p´βptqq

νγptqpH´1
βptqpEqq “

$

’

&

’

%

p1´ cγq if ch0pH´1
βptqpEqq ‰ 0,

1 if ch0pH´1
βptqpEqq “ 0, ch1 ‰ 0,

`8 otherwise.
(3.7)

and all possible results contradict H´1
βptqpEq P Fγptq for t ą t0, because cγ ă 1.

Now we turn to the case E P CohpXq. Using the Harder–Narasimhan filtration
for coherent sheaves we obtain a filtration

E0 Ă E1 Ă E2 Ă ... Ă En “ E

where E0 is the maximal torsion subsheaf of E, Ẽi :“ Ei{Ei´1 are Gieseker-semistable
sheaves with reduced Hilbert polynomial pi and they satisfy pi ą pi`1, for i ą 0. If
ch1pE0q ‰ 0 we can determine a Harder–Narasimhan filtration for E0 as pE0qi, satisfying
the same conditions with ˜pE0qi as its Gieseker-semistable sheaves, and in this case the
dimension for the maximal torsion sheaf pE0q0 is at most 1, therefore pE0q0 is in Aγptq for
all t. Using the equalities in (3.7) and Proposition 3.2.1 we can conclude that all ˜pE0qi are
in Aγptq for t ą t0 and i ą 0, for some t0.

Inductively, all pE0qi are in Aγptq as they are extensions of pE0qi´1 and ˜pE0qi.
Applying the same argument to Ẽi and Ei we conclude that E P Aγptq. If ch1pE0q “ 0 then
E0 P Aγptq and we can skip using its Harder–Narasimhan filtration to prove that E P Aγptq.
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As in the previous section, we can provide a characterization of asymptotic
stability but now in the case of φγ “ λγ . It is important to note that the proof only relies
on cγ ă 1 when we apply Proposition 3.3.1, implying that this condition is necessary for
controlling the structure of the objects and not their λ-slope.

Main Theorem 1. Suppose that E P Db
pXq with ch0pEq “ 0, for E to be asymptotic

λγ,s-(semi)stable it is necessary and sufficient that E P CohpXq is a Gieseker-(semi)stable
sheaf.

Proof. From Proposition 3.3.1 it is known that E P CohpXq is equivalent to E P Aγptq for
all t bigger than some t0. Therefore, F ãÑ E � G is an exact sequence in Aγptq for all t
sufficiently large if and only if it is an exact sequence in CohpXq. So, in either one of the
implications of the theorem we know that E P CohpXq and let t0 be such that E P Aγptq

for all t ą t0.

Suppose that E has a torsion subsheaf F , by the previous observation it is clear
that F is also a subobject of E in Aγptq for all t ą t1 ě t0, for some t1, and if ch2pF q ‰ 0
then

lim
tÑ`8

1
p´βptqq

pλγptq,spEq ´ λγptq,spF qq “ p´1q
ˆˆ

s`
1
6

˙

cγ `
1
2

˙

ă 0,

which would contradict asymptotic λγ,s-(semi)stability. The case where ch2pF q “ 0 would
also contradict because λγptq,spF q “ `8 for all t.

Now in both implications of the theorem, E P CohpXq and is a pure sheaf. We
just have to compare their stabilities. This is done by the following inequalities for the
case ch1pEq ‰ 0:

If δ21pE,F q ‰ 0:

lim
tÑ`8

pλγptq,spEq ´ λγptq,spF qq “ δ12

`

s` 1
6

˘

cγ `
1
2

ch1pEq ch1pF q
ě 0.

If δ21pE,F q “ 0 and δ31pE,F q ‰ 0:

lim
tÑ`8

p´βptqq ¨ pλγptq,spEq ´ λγptq,spF qq “
δ31

ch1pEq ch1pF q
ě 0.

If both δ21 and δ31 are zero then λγptq,spEq “ λγptq,spF q for all t.

For the case where ch1pEq “ 0 and ch2pEq ‰ 0 we have:

lim
tÑ`8

1
p´βptqq

pλγptq,spEq ´ λγptq,spF qq “
δ31

ch2pEq ch2pF q
ě 0.

The equivalence is proved using the above inequalities and Remark 2.1.2.
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Example 3.3.2. By the discussion after Remark 2.1.2, we know that i˚OS is Gieseker-
stable for any i : S Ñ P3 smooth subvariety of P3. Therefore, using Main Theorem 1, it
is clear that i˚OS is asymptotic λγ-stable. If S “ H is a hyperplane in P3 we have the
defining distinguished triangle

OP3 Ñ i˚OH Ñ OP3p´1qr1s Ñ OP3r1s (3.8)

and since Opkqris are both Tilt and Bridgeland stable by (SCHMIDT, 2020, Proposition
4.1) whenever they are in the correct space according to Example 2.4.4, we can determine
actual walls for i˚OH :

Figure 3.3.2.1 – Distinguished curves and walls related to i˚OH and triangle (3.8), in both
tilt and Bridgeland stability, for s “ 1{3.

From this we conclude that i˚OH is stable right after crossing ΓOP3 ,i˚OH ,s for
every s ą 0. This reasoning also works for any hypersurface of degree d. We do not know
if there are other actual walls destabilizing and stabilizing i˚OH , despite knowing that if
you go further left enough i˚OH will be stable because it is asymptotic λ-stable.

3.4 Stability at `8
We turn our attention to the right-hand side of the half-plane H, for that

assume the unbounded curve γ satisfies: cγ ă 1 and lim
tÑ`8

βptq “ `8.

This problem seems to be already solved by (BAYER; MACRÌ; TODA, 2014,
Section 4.4), where the authors state the existence of a duality between σβ,α,s and σ´β,α,s.
But, in that form, this is not possible to be true in our setting.

Take, for example, a µ-stable and νβ,α-stable self-dual vector bundle E (i.e.
OX), and a point pβ, αq P ΘE so that Er2s P Aβ,α. By dualizing this object, we would
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obtain E P A´β,α, which is not possible due to the difference in the inequalities defining
Fβ,α and Tβ,α, one being strict and the other being non-strict.

Applying the same techniques to the asymptotic λγ-stability as in the left-hand
side makes the argument more involved, because the objects E P Aγptq, for t " 0, are not
sheaves but can be factored by derived duals of sheaves in Aγptq. This will be enough to
prove a relation between asymptotic λγ-stability with Gieseker-stability.

We use spectral sequences to find conditions for when an object in Db
pXq

comes from the derived dual functor p´q_ :“ RHomp´,OXqr2s of a pure sheaf, making
the calculations more elaborate. The case where ch0pEq ‰ 0 was already described by
Jardim and Maciocia with conditions when this happens in (JARDIM; MACIOCIA, 2019,
Main Theorem 3).

We will provide these conditions for the case ch0pEq “ 0 and ch1pEq ‰ 0. If
both ch0pEq “ ch1pEq “ 0, the derived dual applied to a pure sheaf E satisfying these
conditions is equal to ED :“ ExtdpE,OXq, where d “ codimpEq, and as we will see
the left-hand and right-hand side of the upper half-plane, in this case, have the same
asymptotic λγ-(semi)stable objects.

Lemma 3.4.1. Let E P Db
pXq satisfying:

(a) Hi
pEq “ 0 if i ‰ 1, 0;

(b) F “ H´1
pEq is a reflexive sheaf of dimension 2;

(c) G “ H0
pEq is a dimension 0 sheaf;

(d) The natural map f : Ext1pF,OXq Ñ Ext3pG,OXq is an epimorphism.

if and only if E_ “ kerpfq is a pure sheaf of dimension 2.

Proof. As in (JARDIM; MACIOCIA, 2019, Lemma 2.14), assuming E satisfy the conditions
described, we can decompose E in the distinguished triangle

F r1s Ñ E Ñ GÑ F r2s. (3.9)

Applying the cohomological functor R0Homp´,OXq to (3.9) we find that
E_ “ kerpfq. To see that E_ “ kerpfq imply these properties for A we just have to dualize
kerpfq and see that Hi

pEq “ Hi
ppkerpfqq_q “ Exti`2

pkerpfq,OXq satisfy (a),(b) and (c)
because kerpfq is a pure 2-dimensional sheaf. To see property (d) we apply the spectral
sequence

Ep,q
2 “ ExtppH´q

pEq,OXq ùñ Hp`q´2
pkerpfqq

and for this convergence to happen we need the map f to be an epimorphism.
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Remark 3.4.2. The case where ch0pEq “ ch1pEq “ 0 is easier to see that E “ A_, for
some pure sheaf A with dimpAq ď 1, if and only if Hi

pEq “ 0 for i ‰ 0 and H0
pEq is a

pure sheaf with dimension less or equal to 1. This is because in dimension less or equal to
1, being a pure sheaf is the same as being reflexive, see (HUYBRECHTS; LEHN, 2010,
Proposition 1.1.10).

Next, we find conditions every object in Db
pXq has to satisfy to be in Aγptq

for every t " 0. We will need a "right-hand side" version of the equality in-display (3.7),
consider F P Db

pXq and we would have

lim
tÑ`8

1
βptq

νγptqpF q “

$

’

&

’

%

pcγ ´ 1q if ch0pF q ‰ 0,
´1 if ch0 “ 0, ch1pF q ‰ 0,
`8 otherwise.

(3.10)

This equation, for the case ch0 ‰ 0, is what justifies the need for the condition
cγ ă 1.

Lemma 3.4.3. Suppose E P Db
pXq is in Aγptq for all t sufficiently high. Therefore,

• H´2
pEq “ 0,

• H´1
pEq “ H0

pH´1
βptqpEqq is either a pure 2-dimensional sheaf or zero,

• H0
pEq “ H0

βptqpEq with dimpH0
pEqq ď 1 .

Proof. As in the case where ´8, we do not know a priori that Hi
βptqpEq eventually becomes

constant. To deal with this technical problem we start by considering that E P Aγptq implies
=pZγptq,spEqq “ ch2pEq ´ βptq ch1pEq ě 0, for t ą t0. This is equivalent to ch1pEq ď 0.

Also, it is known that H0
pEq P Tβptq for t ą t0 and therefore ch0pH0

pEqq “ 0,
implying also that ch0pH´1

pEqq “ ch0pH´2
pEqq. Suppose H´1

pH0
βptqpEqq ‰ 0 and examine

the exact sequence

0 Ñ H0
pH´1

βptqpEqq Ñ H´1
pEq Ñ H´1

pH0
βptqpEqq Ñ 0 (3.11)

and let K “ µpH´1
pEqq ă 8. We can apply Grothendieck’s theorem once again to show

that

S :“
#

ppQq|H´1
pEq� Q : Q is torsion free,

µpQq ď K

+

is a finite set, where ppQq is the Hilbert polynomial of the sheaf Q. Moreover,

S̃ “

#

ppF q|f : F ãÑ H´1
pEq : cokerpfq is torsion free,

µpF q ě K

+

.
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is also finite

Now, applying this to the fact H0
pH´1

β ptqpEqq P Tβptq for t ą t0, while using
that H´1

pH0
βptqpEqq P Fβptq, we can conclude that ch0pH0

pH´1
βptqpEqqq “ 0 for t sufficiently

large. Actually, we can also conclude that H0
pH´1

βptqpEqq is the maximal torsion subsheaf
in H´1

pEq because its quotient is torsion free and the maximal torsion subsheaf is unique.
This uniqueness implies that chkpHi

pH´j
βptqpEqqq is fixed for all i, j, k and t sufficiently large.

With this we can apply the equality in display (3.10) to H0
βptqpEq in order to

prove that ch0pH´1
pH0

βptqpEqqq “ 0. Since both H´1
pH0

βptqpEqq and H´2
pEq are torsion

free sheaves with the same ch0 character we can conclude that both are zero.

We only have to prove that H0
pEq is not 2-dimensional and that H´1

pEq is
either pure or zero. The first assertion comes from equality (3.10) applied to H0

pEq P Tγptq.
For the second one assume that H´1

pEq is a non-pure 2-dimensional sheaf then exist a
subsheaf T ãÑ H´1

pEq with dimpT q ď 1, but this is also a subobject of H´1
pEq in Bβptq

which is impossible because H´1
pEq “ H´1

βptqpEq P Fγptq for t " 0 and νβ,αpT q “ `8. From
this argument, if H´1

pEq had dimension less than 2 we would conclude that H´1
pEq “

0.

The last lemma is a reduction in the kind of object we need to test for asymptotic
stability.

Lemma 3.4.4. Suppose Q is an object in Aγptq for t " 0 with ch0pQq “ 0, ch1pQq ‰ 0
and dimpH0

pQqq “ 0. Then there is a 2-dimensional pure sheaf K and a 0-dimensional
sheaf L satisfying the exact sequence

0 Ñ LÑ QÑ K_
Ñ 0

in Aγptq for t " 0.

Proof. By Lemma 3.4.3 we know that H´2
pQq “ 0, Q1 :“ H´1

pQq is pure 2-dimensional
sheaf and Q0 “ H0

pQq a 0-dimensional sheaf. Suppose that Q1 is not reflexive and we can
use the exact sequence

0 Ñ Q1 Ñ QDD
1 Ñ LÑ 0,

where L is the 0-dimensional singularity sheaf associated with Q1. This is an exact sequence
in CohpXq and Bβptq for all t, we just have to consider the νγptq-slope of subobjects F of
QDD

1 in Bβptq. This is done via the following diagram
F 1 �
�

//� _

��

F // //� _

��

I � _

��

Q1
� � // QDD

1
// // L
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proving that QDD
1 P Fγptq whenever Q1 P Fγptq, because I ãÑ L is a 0-dimensional sheaf

and Zβ,αpIq “ 0 for all pβ, αq P H making ZγptqpF q “ ZγptqpF
1
q. Leaving us with the exact

sequence
0 Ñ LÑ Q1r1s Ñ QDD

1 r1s Ñ 0

in Aγptq. Let W be the cokernel of the composition L ãÑ Q1r1s and Q1r1s ãÑ Q in Aγptq.
By the construction of L we know that W satisfy conditions (a),(b),(c) in Lemma 3.4.1,
if W were to satisfy condition (d) we would conclude the proof. Fix W1 “ H´1

pW q and
W0 “ H0

pW q.

Assume instead that f : Ext1pW1,OXq Ñ Ext3pW0,OXq is not surjective and
let P̃ “ cokerpfq, L̃ “ kerpfq, Ĩ “ Impfq such that they are defined by the exact sequence

0 // L̃ //WD
1

f
//

��

WD
0

// P̃ // 0

Ĩ

??

Now, in Db
pXq, we can dualize the exact sequence defining P̃ as a cokernel in

CohpXq, keeping in mind that every 0-dimensional sheaf is reflexive, and compose with
the distinguished triangle defining W in Aγptq to obtain

P̃D

��

h

##

W1r1s //W //W0 //

��

W1r2s

ĨD.

After applying the dualization functor to the right part of the diagram we see that we
have the commutative diagramm:

P̃

WD
0

OO

WD
1f

oo

h_
bb

implying that h_ is the composition of f with its cokernel, making h_ “ 0. As a consequence,
the map P̃D

Ñ W0 lifts to g : P̃_ Ñ W

Moreover, due to P̃ being a 0-dimensional sheaf, it is clear that the cone of g in
Db
pXq, Cpgq, is also in Aγptq wheneverW P Aγptq, making P̃ a subobject ofW in Aγptq such

that Cpgq satisfy all conditions in Lemma 3.4.1 making it a dual of a pure 2-dimensional
sheaf K. Since the kernels of both maps QÑ W andW Ñ Cpgq are 0-dimensional sheaves,
it is clear that L :“ kerpQÑ Cpgqq is a 0-dimensional concluding the proof.

Remark 3.4.5. One application of the previous Lemma is that we can verify asymptotic
λγptq-(semi)stability only by considering quotients which are duals of 2-dimensional pure
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sheaves because

lim
tÑ`8

βlpλγptq,spQq ´ λγptq,spK
_
qq “

$

&

%

ch3pLq

ch1pKDq
ě 0 if l “ 1,

0 if l “ 0,
(3.12)

such that λγptq,spEq ď λγptq,spQq if and only if λγptq,spEq ď λγptq,spK
_
q for t sufficiently large.

This is the Bridgeland stability equivalent to (HUYBRECHTS; LEHN, 2010, Proposition
1.2.6), where it is shown that we can test Gieseker-(semi)stability only using pure quotients.

Main Theorem 2. An object E P Db
pXq with ch0pEq “ 0 is asymptotic λγ-(semi)stable

if and only if it is the dual of a Gieseker-(semi)stable sheaf.

Proof. Case ch1pEq ‰ 0: We start by assuming that E is asymptotic λγ-(semi)stable and
we already have information on the cohomology of E given by Lemma 3.4.3. Suppose that
H0
pEq is a 1-dimensional sheaf and observe that

lim
tÑ`8

1
βptq

λγptq,spH0
pEqq “ ´1.

Not only H0
pEq, in this case, is a quotient of E but also

lim
tÑ`8

1
βptq

pλγptq,spEq ´ λγptq,spH0
pEqqq “ cγ

ˆ

s`
1
6

˙

`
1
2 ą 0,

making this a contradiction to E’s asymptotic stability. Now we can apply Lemma 3.4.4
to find a 0-dimensional sheaf as a subobject of E and suppose E is not a dual of a sheaf,
this subobject would contradict the asymptotic λγ-(semi)stability of E, making K “ E_

a pure sheaf of dimension 2. Let Q be a pure 2-dimensional quotient of K with kernel
F P CohpXq. Dualizing the exact sequence in CohpXq determined by K, Q and F we
obtain the distinguished triangle

Q_ Ñ E Ñ F_ Ñ G_r1s (3.13)

in Db
pXq. Now, Q_ is in Aγptq whenever E is in Aγptq because

H´1
pQ_q ãÑ H´1

pEq P Fγptq. To see that F_ P Aγptq we just apply the cohomology
functor to (3.13) and study the subobjects V of FD in Bβptq using the diagram

U �
�

//� _

��

V // //� _

��

I � _

��

KD // FD // Ext2pQ,OXq

with dimpExt2pQ,OXqq “ 0 to conclude that FD
P Fγptq whenever KD

P Fγptq. To finish,
we just have to look at the limits

lim
tÑ`8

pλγptq,spEq ´ λγptq,spQ
_
qq “ p´1qδ21

`

s` 1
6

˘

cγ `
1
2

ch1pEq ch1pQDq
ď 0, (3.14)
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if δ1,2pE,F
_
q ‰ 0 and on the contrary we have

lim
tÑ`8

βptq ¨ pλγptq,spEq ´ λγptq,spQ
_
qq “ p´1q δ31

ch1pEq ch1pQDq
ď 0, (3.15)

concluding that K “ E_ is a Gieseker (semi)stable object.

Now let K “ E_ be Gieseker (semi)stable sheaf and remember that KD
“

H´1
pEq is a GS1-(semi)stable sheaf implying, by Proposition 3.2.1, that KD is asymptotic

νγ-(semi)stable. One consequence of this fact is that KD
P Fγptq for t " 0 because

lim
tÑ`8

νγptqpK
D
q “ ´8, therefore E P Aγptq for t sufficiently large. Consider now the

quotient Q “ Q̃_ of E in Aγptq for t " 0, such that Q̃ is a 2-dimensional pure sheaf, and
the exact sequence in Aγptq

0 Ñ F Ñ E Ñ Q̃_ Ñ 0. (3.16)

Since F P Aγptq whenever Q is a quotient of E, we see that F satisfies the properties
described in Lemma 3.4.3. Furthermore, we can dualize the sequence (3.16) to obtain that
H´i

pF_q “ 0 whenever i ‰ 1, 0, and by applying the dualizing functor to the sequence
decomposing F in Aγptq we can conclude that F_ “ F̃ is a sheaf. In this case, we have

0 Ñ Q̃Ñ K Ñ F̃ Ñ 0

and we only have to apply equations (3.14) and (3.15) to finish the proof.

Case ch1pEq “ 0: Considering ch2pEq ‰ 0 we first assume that E is λγ-
(semi)stable and use Lemma 3.4.3 to see that E P CohpXq and E is pure because a
0-dimensional sheaf would destabilize E. If F P CohpXq is a sheaf of dimension at most 1
then F P Aγptq for t " 0, consequence of µpF q “ `8 and chβ1 pF q “ 0. Now we just have
to consider the equality for a subsheaf F of E

λγptq,spEq ´ λγptq,spF q “
δ32pE,F q

ch2pF q ch2pEq
(3.17)

to see that E is Gieseker-(semi)stable. Conversely, if F ãÑ E in Aγptq for all t sufficiently
large then ch0pF q “ ch1pF q “ 0 because otherwise =pcokerpF ãÑ Eqq would be negative
for some t " 0. Therefore, by Lemma 3.4.3 again, F P CohpXq and the same is true for
its quotient in Aγptq, and applying the same equality in display (3.17) to prove that E is
λγ-(semi)stable.

If ch2pEq “ 0, by applying Lemma 3.4.3 we conclude that E is both a Gieseker-
semistable sheaf and λβ,α,s-semistable for all pβ, αq P H and s ą 0, in either case of the
theorem.

We finish this section with an example to illustrate our Main Theorem 2.
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Let i : S ãÑ P3 be a smooth subvariety of codimension c ď 2 with structure
sheaf i˚OS. As discussed in Remark 2.1.5, we know that i˚pOSq is Gieseker-stable and by
applying our Main Theorem 2 we can conclude that pi˚OSq

_ is asymptotic λγ-stable. This
sheaf is described splicitly in (HUYBRECHTS, 2006, Corollary 3.40) as

pi˚OSq
_
» i˚ωS b ω

˚
P3r2´ cs,

where ωS and ωP3 are the dualizing bundles of S and P3, respectively. The left-hand side
of this isomorphism is the i˚-image of the relative dualizing bundle with respect to i.

Example 3.4.6. If C is a curve over P3 then pi˚OCq
_
“ pi˚OCpdqq

D is asymptotic λγ-
stable. When C is complete intersection between hypersurfaces of degree f and g, then we
can find a resolution

0 Ñ O Ñ Opfq ‘Opgq Ñ Opf ` gq Ñ pi˚OCq
D
Ñ 0. (3.18)

Moreover, we know that i˚OC is a pure sheaf making pi˚OCq
_
“ pi˚OCq

D an asymptotic
λγ-stable sheaf. Using equation (3.18) we can determine the walls ΥO,Opfq‘Opgq,s and
ΥOpf`gq,pi˚OCq

D,s, for a fixed s ą 0, these can be described by Figure 3.

Figure 3.4.6.1 – Distinguished curves and walls related to pi˚OCq
D when f “ 1, g “ 2 and

s “ 1{3.

Let pβ̃, α̃q be the point in ΥO,Op1q‘Op2q, 1
3
X ΥOp3q,pi˚OCq

D, 1
3
with β̃ “ 1.5 and

K “ kerpOp3q Ñ pi˚OCq
D
q in CohpXq. We have the exact sequences

0 Ñ Op1q ‘Op2qr1s Ñ Kr1s Ñ Or2s Ñ 0

0 Ñ Op3q Ñ pi˚OCq
D
Ñ Kr1s Ñ 0

in Aβ̃,α̃ such that pi˚OCq
D is Bridgeland stable right after crossing the intersection of these

walls, towards β Ñ `8, but it is still not clear how to conclude that there is no other
wall destabilizing pi˚OCq

D going further from the origin.
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4 Quiver regions

The relation between quivers and Bridgeland stability is known to be of great
importance since the early days of Bridgleand stability. Some of the fundamental results
about these relations are proved in (MACRì, 2007), a paper where Macrì uses that some
stability conditions have exceptional collections associated with them to prove topological
properties of the space of Bridgeland stability conditions.

This relation was further explored by other authors since then, see for instance
(ARCARA et al., 2013; DIMITROV; KATZARKOV, 2016; RUAN S.AND WANG, 2021;
MU, 2020). It was also used in proving the existence of a generalized Bogomolov inequality
by (MACRÌ, 2014) and (SCHMIDT, 2020) for the projective space P3 and the smooth
quadric Q3, respectively.

The purpose of the chapter is to give a systematic way of calculating the quiver
regions inside the upper-half plane of Bridgeland stability conditions and use them to
prove the stability of the instanton sheaves(shifted by r1s). To do that we use the concept
of determinant conditions, where we further approximate Bridgeland stability to quiver
stability, by giving it an equivalent stability that defined by determinants.

The main results were obtained in the case of the projective space P3 and the
smooth quadric Q3 as it is needed an exceptional collection satisfying the upper-half plane
condition and a version of (ANCONA; OTTAVIANI, 1994, Theorem 2.8). Furthermore,
Section 4.2 does not rely on these results and can be seen to apply in greater generality.

4.1 Definitions
The goal of this section is to lay the ground floor on which we will work when

dealing with quiver regions. We start by defining what is meant to be and prove a result
that provides a simple way of calculating them. This allows for us to then define the
specific quiver regions on which we will work in this chapter.

In this section we assumeX to be a smooth projective variety where StabλpDb
pXqq

is non empty.

Definition 4.1.1. Fix s ą 0. A subset R̃E of Stab is called a quiver region of a full
Ext-exceptional collection E “ tE0, ..., Enu if E satisfies the upper-half plane condition
(see Definition 2.5.3 for every stability condition pZ,Pq P R̃E .

To simplify the notation for threefolds, we denote by RE the intersection of
quiver region associated to SpEq, ˜RSpEq P Stab, with the upper-half plane of stability
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condition H, where E is a strong exceptional collection of Db
pXq.

Remark 4.1.2. The number φβ,α P p0, 1s such that E P Pβ,αppφβ,α, φβ,α ` 1sqq can vary
when choosing pβ, αq P RE . The quiver region we will work may not be maximal, in the
sense that we are not assuming that these are the only points in H where satisfying
E P Pβ,αppφβ,α, φβ,α ` 1sqq for some φβ,α P p0, 1s.

Moreover, due to the existence of translation by twists, that is, pZβ`1,α,s,Aβ`1,α
q “

pZβ,α,s,Aβ,α
bOXp1qq, we can define RErns “ tpβ ` n, αq|pβ, αq P REu “ REbOXpnq

Conceptually, the existence of non-empty quiver regions for a full Ext-exceptional
collection can be regarded as a discretization of the categories Aβ,α, which vary continuously.
Following Mu’s definition (MU, 2020), and the relation between the category generated
by exceptional collections and quivers expressed in (MACRì, 2007) and (ARCARA et al.,
2013), we define a dimension in the category generated by a strong exceptional collection
of sheaves.

Definition 4.1.3. Let E “ tE0, ..., Enu be a full strong exceptional collection of sheaves
in Db

pXq. A dimension vector for F P xSpEqy is dimEpF q “ ra0, ..., ans, where chpF q “
Σn
i“0p´1qn`1´iai chpEiq and ai P Z.

We will define a partial ordering in Db
pXq given by dimEpF q “ rb0, ..., bns ď

dimEpEq “ ra0, ..., ans if and only if bi ď ai, for each i. When clear from the context, we
will omit the subscript E .

Lemma 4.1.4. Let E “ tE0, ..., Enu be a strong exceptional collection of sheaves in Db
pXq

and SpEq its shift then for E P xSpEqy:

(a) dimEpEq “ ra0, ..., ans with ai ě 0 for all i,

(b) If
0 Ñ F Ñ E Ñ GÑ 0

is an exact sequence in xSpEqy then dimEpF q, dimEpGq ď dimEpEq.

Proof. The first item in the Lemma is clear from the definition, as objects in xSpEqy
are obtained by isomorphism classes of extensions of the objects in SpEq. Item pbq is a
consequence of the additivity of the Chern character in K0pXq and item paq.

The next proposition is responsible for calculating quiver regions when applied
to RE in H for a fixed s ą 0. We will describe the regions we will work within the following
examples.
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Proposition 4.1.5. For a full Ext-exceptional collection E “ tE0, ..., E3u in Db
pXq such

that Ei P Pppφ, φ` 2sq, for some φ P R for some slice P. Then E satisfies the upper-half
plane condition with respect to a Bridgeland stability condition σ “ pZ,Pq if and only if
there exists a i such that:

(˚q pZ,Pq is inside the walls ΥEir´1s,Ejr´1s, for all j P tj|Ej P Pppφ ` 1, φ ` 2squ, and
outside the walls ΥEir´1s,Ek for all k P tk|Ek P Pppφ, φ` 1squ.

In this proof, the notion of slope used is the C-slope defined in Example 2.5.4.

Proof. We start by assuming that E satisfies the upper half-plane condition for some
φ P r0, 1q. If φ “ 0 this would imply that Ei P Ppp0, 1sq for all i and we can always choose
k such that φσpEkq is the smallest slope within the set tφσpEiqu, this will satisfy condition
p˚q.

Assume now that φ ‰ 0 and that there exists Ei P Pppφ ` 1, φ ` 2sq, if this
was not the case then we could apply the previous case. Ordering the C-slopes of ZpEiq in
C we can choose k such that ZpEkq has a slope greater than or equal to all of the other
ZpEiq. Therefore, k must satisfy the condition p˚q in the theorem as the ZpEiq are all
constrained by a upper-plane rotated φ ¨ π-degrees.

For the reverse implication let k be such that satisfies condition p˚q for σ “
pZ,Pq. Then we can consider φ as the C-slope of ZpEkr´1sq and prove that E satisfies
the upper half-plane condition for φ. This is done by observing that we can place every
exceptional object in E into Pppφ, φ` 1sq, either it already is in
mathcalP ppφ, φ ` 1sq or it will be by shifting by r´1s, and divide the upper half-plane
H by the vector ZpEkr´1sq making it such that the right-hand side we have the vectors
ZpEkr´1sq with slope less than the slope of ZpEir´1sq, similarly for the vectors ZpEkq
the slope is greater than the slope of ZpEir´1sq. In other words, the vectors ZpEiq, for all
i, are bounded by the upper half-plane defined by ZpEkq.

ZpEkr´1sq with pZ,Pq inside the wall ΥEir´1s,Ejr´1s, similarly for the vectors
ZpEkq when pZ,Pq is outside the walls ΥEir´1s,Ek . In other words, the vectors ZpEiq, for
all i, are bounded by the upper half-plane defined by ZpEkq.

For the threefold case we can replace the numerical condition p˚q. It is equivalent,
assuming the conditions in Proposition 4.1.5, to assuming that there exists a k such that
pβ, αq is inside all the numerical walls ΥEk,Ei,s. This equivalence is important to produce
the numerical results we are about to present, because we do not even have to calculate
whether the objects are in Aβ,α or Aβ,α

r1s.

Example 4.1.6. Let X “ P3 and SpE1q “ tOP3p´2qr3s,OP3p´1qr2s,OP3r1s,OP3p1qu a
strip of the canonical helix of P3 shifted by the necessary degrees so that SpE1q is a full
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Ext-exceptional collection. We will fix s “ 1{3, since s ą 1{3 does not change the existence
of walls in H, it just dilates the wall in the α direction (JARDIM; MACIOCIA, 2019). The
region of the points pβ, αq P H where E is in xAβ,α,Aβ,α

r1sy is described in Image 4.1.6.1.

Figure 4.1.6.1 – Region of H where the exceptional objects E2´k “ OP3p´kqrk ` 1s satisfy
Ei P xAβ,α,Aβ,α

r1sy and θi “ θOP3 piq

To find a region where E satisfies the upper-half plane condition we will use
Proposition 4.1.5 to obtain Image 4.1.6.2.

Figure 4.1.6.2 – The wall Zi,j represents ΥOP3 piqr1´is,OP3 pjqri´js,
1
3
, with the yellow and green

walls representing the application of Proposition 4.1.5 to i “ ´2 and
i “ 0, respectively.

To conclude, we can determine the region R1 as the intersection of the regions
obtained by Images 4.1.6.1 and 4.1.6.2.

Example 4.1.7. Consider now X “ Q3 the smooth quadric. Combining images 4.1.6.1
and 2.4.7.1, we can see a region of H where the exceptional collection

SpE2q “ tS
˚
p´2qr3s,OQ3p´1qr2s,OQ3r1s,OQ3p1qu
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is contained in xAβ,α,Aβ,α
r1sy, denote it by P . To apply Proposition 4.1.5 we just need to

analyze the λ-walls defined by the exceptional objects, this is done in Image 4.1.7.1.

Figure 4.1.7.1 – Same notation as the one used in Image 4.1.6.2 and ZS,´1 “

ΥS˚p´2qr3s,OQ3 p´1qr2s, 1
3

We define the region R2 as the intersection of the regions P and the yellow
region in Image 4.1.7.1.

4.2 Technical results and some linear algebra
In this section we will explore a few technical results that will be used further

into the chapter, these are important tools to deal with semistable objects inside the quiver
region.

We will keep using that X is a projective smooth variety with non empty space
of Bridgeland stability conditions and we will fix E to be a full Ext-exceptional collection,
R̄E its quiver region in StabΛpDb

pXqq and RE “ R̄E X H, the section of the geometric
stability conditions with respect to some s ą 0.

The next lemma determines what are the walls for a 2-step complex and defines
the determinant condition. This condition is responsible for relating Mumford’s µ-stability
with Bridgeland stability and consequently proves the stability of the instanton sheaves in
the next sections.

Lemma 4.2.1. Let K be an object in xSpEqy and dimension vector chpKq “ p´1qia chpEiq´
p´1qib chpEi`1q. If there exists an actual Bridgeland wall with respect to σ “ pZ,Pq defined
by

0 Ñ F Ñ K Ñ GÑ 0, (4.1)

then ΥF,K “ ΥEi,Ei`1. Furthermore, if every subobject F of K in xSpEqy with chpF q “
p´1qic chpEiq ´ p´1qid chpEi`1q satisfies pa ¨ d ´ b ¨ cqpěq ą 0 then K is Bridgeland
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(semi)stable outside the curve determined by ΥEi,Ei`1 and inside of R̄E . In this case, we
will say that K satisfies the (semi)-determinant condition.

Proof. Assume that we have the actual determined by equation (4.1) so that F,K,G are
all objects of Ppφq, and by our hypothesis K P xSpEqy, therefore all of them are in xSpEqy.
Furthermore, since xSpEqy “ Ppψ, ψ ` 1sq because we are in the quiver region we can use
their C-slope to calculate their stability with respect to σ “ pZ,Pq. This also implies the
restrictions to the dimension vector of the subobject F by Lemma 4.1.4.

Now, in order to prove the uniqueness and establish the orientation of the
actual wall for K we have to consider the defining equation of the actual wall and use the
fact that the stability function is a group homomorphism Z in Λ. The defining equation
for the wall ΥF,K is

φσpF q “ φσpKq,

which is the same as

c ¨ p´<pZpvpEiqqqq ´ d ¨ p´<pZpvpEi`1qqqq

c ¨ =pZpvpEiqqq ´ d ¨ =pZpvpEi`1qqq
“
a ¨ p´<pZpvpEiqqqq ´ b ¨ p´<pZpvpEi`1qqqq

a ¨ p=pZpvpEiqqqq ´ b ¨ p=pZpvpEi`1qqqq

and this equation is the equivalent to

pa ¨ d´ b ¨ cqfEi,Ei`1pβ, αq “ 0. (4.2)

The positivity (negativity) of the determinant pa¨d´b¨cq provides the orientation
of the wall ΥF,K , whether it will make φσpF q ą φσpKq or φσpF q ă φσpKq.

Corollary 4.2.2. Inside an exceptional region RE with respect to a strong exceptional
collection E, there exists only one possible numerical λ-wall for a given 2-complex object
K P xSpEqy. This λ-wall either stabilizes K or destabilizes K depending on the sign of the
determinant.

Since we are mostly working with 3-step complexes, it will be useful to generalize
the calculations done in Lemma 4.2.1.

Lemma 4.2.3. For any 3-step complex, E P xSpEqy with dimension vector chpEq “
´p´1qia chpEi“1q`p´1qib chpEiq´p´1qic chpEi`1q, and every numerical wall for E defined
by an object in xSpEqy goes through the points where φσpEiq “ φσpEi´1q “ φσpEi`1q if it
exists.

Proof. The proof is just an observation that for any F P xSpEqy subobject of E with
chpF q “ ´p´1qia1 chpEi“1q`p´1qib1 chpEiq´p´1qic1 chpEi`1q, we have a linear description
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of the defining equation for the λ-wall as

fF,E “

∣∣∣∣∣∣∣∣∣
fE2,E1 fE2,E0 fE1,E0

a b c

a1 b1 c1

∣∣∣∣∣∣∣∣∣ (4.3)

Therefore if σ “ pZ,P satisfies φσpEiq “ φσpEi´1q “ φσpEi`1q then fF,Epβ, αq “ 0.

When clear, for the threefold case, we will suppress the notation fE,E1r2s,s, fE,E2r1s,s, fE,E3,s

by using f1, f2 and f3, respectively, for the equations defining the canonical λ-walls ob-
tained by comparing the slopes of a fixed object E in xSpEqy to the slope of the generating
objects of xSpEqy. The λ-walls will be denoted as Υ1, Υ2, Υ3 respectively.

Remark 4.2.4. Consider E “ tE0, ..., E3u to be a strong exceptional collection, SpEq its
shift and RE the quiver region associated to xSpEqy and F be an object in xSpEqy with
dimpF q “ r0, a, b, cs. The λ-walls obtained by the truncation functors τď´1 and τě´1 are
vanishing walls because every 3-step complex can be decomposed in these natural exact
sequences (2.4).

Proposition 4.2.5. Suppose that tE0, ..., Enu is a strong exceptional collection of µ-stable
sheaves. For a coherent sheaf K with an exact resolution 0 Ñ E‘ai Ñ E‘bi`1 Ñ K Ñ 0 for
some i P t0, ..., n´ 1u to satisfy the (semi) determinant condition it is sufficient that K is
a µ-(semi)stable sheaf.

Proof. By the definition of xSpEqy, it is clear that Kris P xSpEqy and suppose that F ris is
a subobject of Kris in xSpEqy. Using Lemma 4.1.4 we know that F ris is quasi-isomorphic
to pE‘ci Ñ E‘di`1qris and from applying the cohomology functor H0

CohpXq to

0 Ñ F ris Ñ Kris Ñ Qris Ñ 0 (4.4)

we conclude that F ris is a sheaf shifted by ris. Therefore, we can view the exact sequence
(4.4) as the following exact diagram in CohpXq:

H´1pQq� _

��

0 // E‘ci //
� _

��

E‘di`1
//

� _

��

F //

��

0

0 // E‘ai //

����

E‘bi`1
//

����

K //

����

0

H´1pQq �
�

// E‘a´ci
// E‘b´di`1

//H0pQq // 0

We have that µpH´1
pQqq ď µpEiq and µpF q ě µpEi`1q ą µpEiq, the latter

inequality is a consequence of Remark A.0.6. Hence the condition µpF q ă µpKq is equivalent
to pa ¨ d´ c ¨ dqδ01pEi, Ei`1q ą 0, that is, if the determinant condition is satisfied.



Chapter 4. Quiver regions 71

Remark 4.2.6. Analogously, one can prove the same result for sheaves that are a kernel of
a surjective morphism E‘ai`1 Ñ E‘bi . We will use both versions of the previous proposition
in the following sections.

Next, we find a numerical criterion to find regions where every 3-step complex
of dimension r0, a, b, cs is in Aβ,α. We will need this to prove the uniqueness of the λ-walls
for the instantons.

Lemma 4.2.7. Consider E “ tE0, ..., E3u to be a strong exceptional collection, SpEq its
shift and RE the quiver region associated to xSpEqy. Let Q P xSpEqy be an object with
dimEpQq “ ra0, a1, a2, a3s then Q P Aβ,α when pβ, αq P R̃ XRE , where R̃ “ tpβ, αq|Eirn´
is P Aβ,α for every i with ai ‰ 0u.

Proof. This Lemma is a consequence of Aβ,α being closed under extensions and that we
can decompose Q using the stupid truncation into the following, possibly trivial, exact
sequences:

0 Ñ E‘a3
3 Ñ QÑ τď´1QÑ 0

0 Ñ E‘a2
2 Ñ τď´1QÑ τď´2QÑ 0

0 Ñ E‘a1
1 Ñ τď´2QÑ E‘a0

0 Ñ 0.

Example 4.2.8. One example we will use throughout the chapter is that, for X “ P3 or
X “ Q3, any object with dimension r0, a, b, cs with respect to the exceptional collections in
Example 4.1.7 and 4.1.6 is in Aβ,α for pβ, αq in the intersection of the exceptional regions
obtained in the aforementioned examples and the region displayed in Image 4.2.8.1.

Figure 4.2.8.1

In the case of concrete examples of linear complexes it is possible to calculate
all of its linear subcomplexes. We start by an observation of the well established natural
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isomorphism for F,E P Db
pXq and V,W vector spaces

HompV b F,W b Eq “ HompV,W q b HompF,Eq.

So that when we fix a base tγ0, ..., γku for the vector space HompF,Eq we can describe
φ P HompV b F,W b Eq as

φ “ Σiγiφi,

where φi P HompV,W q are linear transformations. Define J Iφ “
k
à

l“0
Impφl|Iq, where I is

a subspace of V and Impφl|Iq is image of the linear transformation φl restricted to the
subspace I.

Proposition 4.2.9. Let E “ tE0, ..., Enu be a strong exceptional collection of sheaves,
SpEq its shift. Let

K » pV b Ei
T
Ñ W b Ei`1q

be a 2-step complex in xSpEqy, tγ0, ..., γlu a base for the k-vector space HompEi, Ei`1q. For
any subspace I ãÑ V , the subcomplexes of K of the form I b Ei

S
Ñ J b Ei`1 satisfies

J IT Ă J . Furthermore, I b Ei
T |I
Ñ J IT b Ej is a subobject of K in xSpẼqy.

Proof. As previously observed, given K » pV bEi
T
Ñ W bEi`1q and a base tγ0, ..., γlu for

HompEi, Ei`1q then T can be factored into ΣjTj b γj so that composing with I b Ei ãÑ

V b Ei, the morphism induced by the inclusion I ãÑ V , we obtain a natural commutative
diagram

I b Ei
T |I
//

� _

��

J IT b Ei`1� _

��

V b Ei
T //W b Ei`1.

The map T |I has a well-defined image in J IT bEi`1 due to the property that every Tl|I has
its image inside J IT . The same argument proves that every sub-object of K with I b Ei as
its Ei coordinate has to factorize

4.3 Instanton sheaves
We are ready to apply the notion of quiver regions to study the stability of

instanton sheaves of rank 2 over some Fano threefolds and the rank 0 instanton in P3. These
are really important objects inside the moduli space of Gieseker-semistable sheaves, being
linear sheaves and for their nice cohomological properties. Another reason to apply the
methods described in the previous section is that instantons can be defined as cohomology
of linear monads of exceptional objects, see (JARDIM; MAICAN; TIKHOMIROV, 2017;
FAENZI, 2013; KUZNETZOV, 2012; COSTA; MIRó-ROIG, 2009).
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Recall that a monad is a sequence of coherent sheaves

0 Ñ AÑ B Ñ C Ñ 0

such that AÑ B and B Ñ C are a monomorphism and an epimorphism, respectively. Let
X be either Q3 or P3, the rank 2 instantons we will work with are cohomology of monads
of the form

0 Ñ OXp´1q‘c f
Ñ O‘2c`2

X
g
Ñ OXp1q‘c Ñ 0. (4.5)

The positive integer c is called the charge of the instanton I “ Kerpgq{Impfq.
For the case X “ P3, there exists a notion of rank 0 instanton Q defined by the exact
resolution

0 Ñ Op´1q‘d Ñ O‘2d
Ñ Op1q‘d Ñ QÑ 0, (4.6)

as can be seen in (JARDIM; MAICAN; TIKHOMIROV, 2017, Proposition
3). Both of these notions are related by their cohomology conditions, as any instanton E
satisfies h0

pEp´1qq “ h1
pEp´2qq “ h2

pEp´2qq “ h3
pEp´3qq “ 0. The Chern characters

chpIq “ p2, 0,´c, 0q and chpQq “ p0, 0, d, 0q are associated to the rank 2 and 0 instanton
sheaves, respectively.

It is important to make a distinction between the instantons obtained in
(FAENZI, 2013) and (COSTA; MIRó-ROIG, 2009). Both papers treat the case of instantons
over smooth quadrics, but Faenzi’s definition deals with the case of odd instantons (i.e.
those instantons sheaves with c1pFnormq “ ´1) while Costa–Miro-Roig works with even
instantons, these can be defined as in Monad (4.5). The instantons defined by Faenzi can
also be defined as cohomology of a monad but involving more complex sheaves, in the case
of the smooth quadric we need the spinor bundle.

Now we define a few other notations that are going to be used in this chapter.

• Fix X to be equal to P3 or Q3.

• xSpẼqy means either SpE1q or SpE2q, as defined in Examples 4.1.7 and 4.1.6, this is
because we are mainly interested in the objects of these exceptional collections which
are OXpiq with i “ ´1, 0, 1.

• Let us denote by R̃ the region obtained by Lemma 4.2.7 with respect to xSpẼqy and
R̃`, R̃´ the points in R̃ with β ą 0 and β ď 0, respectively.

• The segments of Υ1,Υ2,Υ3 that can be actual λ-walls will be denoted by Υ̃1, Υ̃2, Υ̃3.
These are respectively Υ1 X R̃´, Υ2 X tp0, αq P R1|α

2
ě

1
3u, Υ3 X R̃`.
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• Fix s “ 1{3 for the rest of the chapter and suppress the subscript s from the
definitions of walls, stability function and etc. Also, fix k ě 2 and c ě 1 integers.

We start by proving a complement of (ANCONA; OTTAVIANI, 1994, Propo-
sition 2.8) to apply also to instanton sheaves, instead of only instanton bundles. When
X “ Q3, the analogous of (ANCONA; OTTAVIANI, 1994, Proposition 2.8) was proved in
(COSTA; MIRó-ROIG, 2009, Proposition 3.3). Combining these results with Proposition
4.2.5 will be responsible for the existence of the actual λ-walls for the instantons.

Lemma 4.3.1. Let

0 Ñ OXp´1q‘b Ñ O‘2b`2
X Ñ OXp1q‘b Ñ 0 (4.7)

be a monad over X with middle cohomology a torsion free sheaf E. Then we can decompose
(4.7) in two ways:

0 Ñ OXp´1q‘b Ñ O‘2b`2
X Ñ K1 Ñ 0 (4.8)

0 Ñ E Ñ K1 Ñ OXp1q‘b Ñ 0 (4.9)

and also,
0 Ñ K2 Ñ O‘2b`2

X Ñ OXp1q‘b Ñ 0 (4.10)

0 Ñ OXp´1q‘b Ñ K2 Ñ E Ñ 0 (4.11)

Such that K2 is always a µ-stable bundle and K1 is a µ-stable bundle if E is
also a vector bundle.

Proof. The case where E is a vector bundle is a direct application of (ANCONA; OTTA-
VIANI, 1994, Proposition 2.8) and (COSTA; MIRó-ROIG, 2009, Proposition 3.3) to the
exact sequence (4.8) and (4.9), and by dualizing (4.10) and (4.11). For the case where E
is not locally free, notice that K2 is a locally free sheaf by being a kernel of a map between
vector bundles, and one can dualize sequence (4.11) to obtain

0 Ñ E˚ Ñ K˚
Ñ OXp1q‘b Ñ Ext1pE,OXq Ñ 0. (4.12)

Let L be the kernel of OXp1q‘b Ñ Ext1pE,OXq and S “ SupppExt1pE,OXqq,
S is also the singular set of the instanton sheaf E. We know from (HUYBRECHTS; LEHN,
2010, Proposition 1.1.10) that dimpSq ď 2 because E is torsion free and therefore we can
consider the sequence (4.12) over the open subset U “ XzS.

In this situation, we obtain that L “ OXp1q‘b|U , hence we are in place to
apply the same argument as in (ANCONA; OTTAVIANI, 1994, Proposition 2.8) with
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the caveat that K being locally free K implies that ^qKplq is also normal for any q and
l, in the sense of (OKONEK; SPINDLER, 1986, Definition 1.1.11), making it so that
h0
p^

qKplq|Uq “ h0
p^

qKplqq.

Using this technique we are not able to prove that K1 is also µ-stable in the
non-locally free case because there is no way to establish that K1 is a vector bundle, being
a cokernel of a map between vector bundle and an extension of a torsion-free sheaf and a
vector bundle. Furthermore, if the cohomology of the monad is a non-locally free sheaf
then K1 will never be µ-stable, this will be clear in the following results.

Lemma 4.3.2. The τě´1pF q satisfies the (semi)determinant condition if and only if
the τď´1pF

_
q also satisfies the (semi)determinant condition, for any F P xSpẼqy with

dimpF q “ r0, a, b, cs.

Proof. This is a direct consequence of the exactness and involution property of the
derived dual. That is, exact sequences are kept exact after applying the derived dual
p´q

_ : Db
pXq Ñ Db

pXq and that p´q__ “ IdDbpXq. The fact that the sheaves Ei are
locally free and E_i “ En´i`1 establishes that the dual linear complex is still in xSpẼqy.

Proposition 4.3.3. Suppose pβ, αq P R1 X tp0, αq P H|α2
ě

1
3u then any object E with

dimpEq “ r0, c, 2c` k, cs and λ-semistable at both Υ̃1 and Υ̃3 is λβ,α-stable, unless there
exists an object F P xSpẼqy such that λβ,αpF q “ λβ,αpEq for every pβ, αq P R1.

Proof. Let E be an object with dimpEq “ r0, c, 2c`k, cs and F a destabilizer λ-semistable
subobject for E at α2

ą 1{3 . For any point p0, αq P R1, since E,F P A0,α with λ0,α,1{3pF q ě

λ0,α,1{3pEq for every α in then open interval p1{
?

3, 1{
?

3` εq for some small ε ą 0, then
F P xSpẼqy and dimpF q “ r0, f, g, hs for some f, g, h P Zě0. We can determine the following
commutative diagram

0

��

0

��

0

��

0 // T pF q

��

// F //

��

OXp´1q‘f //

��

0

0 // T pEq //

��

E //

��

OXp´1q‘c //

��

0

0 // T pQq //

��

Q //

��

OXp´1q‘c´f //

��

0

0 0 0

(4.13)

where Q is the quotient of F ãÑ E in xSpẼqy and T pF q, T pEq, T pQq is the stupid truncation
functor τě´1 applied to the respective objects of the exact sequence. Since the λ-wall Υ̃1 is
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actual, we can see that T pEq is λβ,α-semistable and by Lemma 4.2.1 we know that T pEq
satisfies the determinant condition. Now, applying said condition to the exact sequence
T pF q ãÑ T pEq we obtain the inequality pc` kqh ě cpg´ hq. Similarly, we can do the same
argument for the stupid truncation τď´1 applied to the exact sequence F ãÑ E � Q to
obtain the inequality pc` kqf ď cpg ´ fq.

Considering Lemma 4.2.3, we see that if both of these inequalities were an
equality then fE,F ” 0. If that is not the case then one of those inequalities is a strict
inequality

Now, analyze the λ-slope of F and E at the line β “ 0 using that λ0,α,1{3pEq “

τ0,α,1{3pEq “ 0 for all α ą 0 so that if F destabilizes E for α̃ P p1{
?

3, 1{
?

3` εq for some
small ε ą 0 then τ0,α̃,1{3pF q ą 0. Applying the linearity of the operator τ0,α̃,1{3 over the
Chern characters we arrive at

τ0,α̃,1{3pF q “ fτ0,α̃,1{3pOXp´1qq ´ gτ0,α̃,1{3pOXq ` hτ0,α̃,1{3pOXp1qq

“ ´fp
1
6 ´

α2

2 q ` hp
1
6 ´

α2

2 q “ ph´ fqp
1
6 ´

α2

2 q
(4.14)

which is non-negative above α2
“ 1{3 if and only if f ě h.

Combining these inequalities it is clear that we arrived at a contradiction.

Theorem 4.3.4. Let E P xSpẼqy be an object with dimpEq “ r0, c, 2c` k, cs and suppose
it has an actual λ-wall over any two of the three canonical walls Υ̃i, i “ 1, 2, 3. Then these
two walls are the only actual walls for the object E in R1. Moreover, E is λβ,α-semistable
outside the respective actual walls, with strict semistability if and only if there exists an
subobject with dimension vector a multiple of r0, c, 2c` k, cs.

We will divide the proof in two situations: Either the walls to be considered
are Υ̃1 and Υ̃3 or one of them is Υ̃2. The former case is a combination of the latter ones
and Proposition 4.3.3. The proof of the case (Υ̃1, Υ̃2) is the same argument as the case
pΥ̃2, Υ̃3q, so that we will only show one.

Proof. Case (Υ̃1, Υ̃2): Assume that F is an object with dimpF q “ r0, f, g, hs that deter-
mines an actual wall for E. Because E is λβ,α-semistable at Υ̃2, we know that h ě f by
(4.14) . By the functoriality of the truncation functor we know that τě´1pF q is a subobject
of τě´1pEq, and by Lemma 4.2.1 we have with detpAq :“ hp2c` kq ´ cg ě 0. Now we can
apply Lemma 4.2.3 to determine the equation for the λ-wall determined by F as

fE,F “

∣∣∣∣∣∣∣∣∣
fOXp1q,OX

fOXp1q,OXp´1q fOX ,OXp´1q

c 2c` k c

f g h

∣∣∣∣∣∣∣∣∣ . (4.15)
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The fact that its given by a determinant is useful to reduce the wall equation
to

fE,F “

∣∣∣∣∣∣∣∣∣∣
fOXp1q,OX

fOXp1q,OXp´1q fOX ,OXp´1q

c 2c` k c

f ´ h
´ detpAq

c
0

∣∣∣∣∣∣∣∣∣∣
. (4.16)

So that we can describe fE,F as

fE,F “
detpAq
c

1
6p´β

3
q ` pf ´ hqfE,OXp´1qr2s. (4.17)

Moreover, if a point in R̃´ is outside the numerical λ-wall defined by OXp´1qr2s then
fE,OXp´1qr2s is strictly negative, making fE,F “ 0 if and only if F defines either the λ-wall
Υ2, Υ3 or dimpF q is proportional to dimpEq. To conclude we just have to prove that it
does not have any λ-wall in R̃`, but that is just a consequence of it having the wall Υ̃2 as
actual λ-wall and from observing that the outside of this wall is exactly β ă 0, making it
that any object defining the wall Υ̃2 should destabilize E for β ą 0.

Case (Υ̃1, Υ̃3): For that, we just need to apply Proposition 4.3.3 because in
this case we have that E will λβ,α-semistable at Υ̃2 and therefore, from cases i “ 1, 2 and
i “ 2, 3, we can conclude that E does not have any other wall beyond Υ̃1 and Υ̃3

Remark 4.3.5. The statement in Theorem 4.3.4 can be regarded in another, less geometric,
manner, where instead of demanding that the canonical walls are actual we assumed the
respective truncation functor applied to E satisfies the determinant condition. For that
we would just need to adjust the notion of the determinant condition to the case of Υ̃2

to which we would say E satisfies the middle determinant condition if every for every
subobject F with dimpF q “ r0, f, g, hs it satisfied f ą h.

Remark 4.3.6. Another way to generalize this result is by considering other exceptional
collections. It is clear that in the cases i “ 1 and i “ 2 or i “ 2 and i “ 3 the same result
applies to other varieties. The case i “ 1 and i “ 3 would require an analogous result to
Proposition 4.3.3, which would require the curve determined by fE3,E1 ´ fE1,E2 to be the
same as a component of the curve ΓE,s.

As a direct consequence of Theorem 4.3.4, locally free instanton sheaves shifted
by 1 are λβ,α-stable at every point of R1, outside the walls Υ̃1 and Υ̃3.

Corollary 4.3.7. For any locally free instanton I with charge c, Ir1s is λβ,α-stable for
every pβ, αq P R1 outside of both λ-walls Υ̃1 and Υ̃3.

The description of any wall by equation (4.17) gives us a corollary about the
intersection of the numerical λ-walls with Υ̃i.
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Corollary 4.3.8. No other numerical λ-wall for an object E with dimpEq “ r0, c, 2c`k, cs
destabilized by F P xSpẼqy and dimpF q “ r0, a, b, cs can cross Υ̃i at a point different then
p0, 1{

?
3q, unless this numerical λ-wall determines the same λ-wall as the respective Υ̃i.

We will prove this result only for i “ 1, as the other ones are analogous.

Proof. First, observe that Υ̃1 is only an actual λ-wall for the points pβ, αq where β ď 0. The
point β “ 0 in Υ̃1 has α2

“ 1{3. Now, we assume there exists a point P at the intersection
Υ̃1 X ΥE,F so that fE,F pP q “ 0, but we know from P P Υ̃1 that fE,OXp´1qr2spP q “ 0
and τě´1pEq satisfies the determinant condition. Moreover, using equation (4.17) and
its notation, we also can conclude that detpAq “ 0. This implies that either Υ̃1 “ ΥE,F ,
without taking in to account the orientation, or dimpF q is proportional to dimpEq and in
that case E has the same λ-slope as F at every point.

Next, we analyze the stability of the rank 0 instanton sheaves. This will be
important in determining the uniqueness of the walls for the non-locally free instantons
sheaf.

Lemma 4.3.9. Rank 0 instanton sheaves are Bridgeland semistable for every point in the
intersection R1 X tp0, αq P H|α2

ě
1
3u.

Proof. From Lemma 4.2.7 we conclude that Q P A0, 1?
3 and that Q is an extension of

OXp´1q‘dr2s, O‘2d
X r1s and OXp1q‘d in xSpẼqy but all of these objects have the same

λ-slope in p0, 1{
?

3q. Therefore Q is λ-semistable at that point.

Suppose that F is a destabilizing object for Q at α P p1{
?

3, 1{
?

3` εq for some
ε ą 0. Then F is λ-semistable and F P xSpẼqy with dimpF q “ r0, f, g, hs. As in equation
(4.14), we know that λ0,αpQq “ 0 for every α and if F destabilizes Q then f ą h.

But now we can study the following exact sequence in A0,1{
?

3

0 Ñ F Ñ QÑ GÑ 0. (4.18)

Applying the cohomology functor H0
CohpXq and H0

β for β “ 0 to this sequence we
obtain that H´2

pF q “ 0, H´2
pGq “ H´1

pF q, H´1
0 pF q “ 0. But ch0

1pF q “ ch0
1pH0

0pF qq “

h´ f should be positive because F P B0, which is impossible due to F destabilizing Q.

Corollary 4.3.10. At the intersection R1 X tp0, αq P H|α2
ě

1
3u the instanton sheaves

are Bridgeland semistable.

Proof. Notice that the double dual of an instanton sheaf is a locally free instanton sheaf,
see (JARDIM; MAICAN; TIKHOMIROV, 2017), and the existence of the shifted double
dual sequence

0 Ñ QÑ Ir1s Ñ I˚˚r1s Ñ 0
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in A0,α.

Remark 4.3.11. The above results could be generalized for higher rank instanton sheaves,
that is, sheaves obtained by monads of dimension r0, c, 2c` k, cs if an analogous result as
(ANCONA; OTTAVIANI, 1994, Proposition 2.8) is found to be true.

Figure 4.3.12.1 – For X “ P3: the yellow region represents R̃, the purple curve is Υ̃1, the
blue curve is Υ̃2, the red curve is Υ̃3 and the doted curves represent
the non-necessarily actual parts of these walls. The green curves, either
doted or not, represent the curves determining the quiver region.

Example 4.3.12. Image 4.3.12.1 represents the actual λ-walls discussed in this section
for the instantons with charge c “ 2 in P3. For different c the picture does not change
much, at least in this restricted region.

4.4 Moduli spaces
To close the thesis, we relate the results of the previous sections to a description

of the space of Bridgeland stable objects close to the β-axis in H with Chern character
p´2, 0, c, 0q. The first result is a theorem in (ARCARA et al., 2013) proving that Bridgeland
stability over these quiver regions behave exactly like quivers and therefore the moduli
problem is given by a GIT problem.

Theorem 4.4.1. (ARCARA et al., 2013, Theorem 8.1) Let E be a full Ext-exceptional
collection of a smooth projective threefold X, pβ, αq a point in the quiver region RE in H.
Then the moduli space M̄ra, b, c, ds of Bridgeland semistable objects with dimension vector
ra, b, c, ds is a projective variety. Furthermore, if we consider only the stable objects in
M̄ra, b, c, ds then this space is a quasi-projective variety.
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Proposition 4.4.2. Let

Ipcq “ tI P xSpẼqy| dimpIq “ r0, c, 2c` 2, cs, H´2
pIq “ 0 and H0

pIq “ 0u.

Then any object in Ipcq is λβ,α-stable, for every pβ, αq P R̃´ outside of Υ̃1.

Proof. Let c ě 1 be an integer and pβ, αq P R̃´ outside of Υ̃1. Firstly, observe that the
objects in Ipcq are cohomology of the linear monad (4.5) and so are a shift by r1s of the
instanton sheaves. Let Ir1s be one of these objects. By a combination of Lemmas 4.3.10,
4.3.1 and Theorem 4.3.4 we can conclude that Ir1s is λβ,α-semistable at the walls Υ̃1, Υ̃2

and it does not have any other wall in R̃´, unless it is semistable at every point of R̃´.

To see how the later is impossible, assume that there exists a F ãÑ Ir1s in xSpẼqy
such that λβ,αpF q “ λβ,αpIr1sq for every point in R̃´ and outside of Υ̃1. We know from
Lemma 4.2.3 that an object F has the same λβ,α-slope as Ir1s for a 2-dimensional region if
and only if its dimension vector is a multiple of r0, c, 2c` 2, cs. But this impossible because
τě´1pIr1sq would have a subobject with dimension vector a multiple of its dimension,
which is impossible because τě´1pIr1sq is λβ,α-stable by Proposition 4.2.5.

For c odd we are able to provide a stratification of the moduli of λβ,α-stable
objects with dimension vector r0, c, 2c` 2, cs in terms of the moduli of λβ,α-stable 2-step
complexes with dimension vector r0, 0, 2c ` 2, cs. For c “ 2k, the same description only
deals with a subset of the moduli space of λβ,α-stable objects because it is possible for a
2-step complex with dimension vector r0, 0, 4k ` 2, 2ks to be strictly λβ,α-semistable.

Main Theorem 3. For any pβ, αq P R̃´ outside and sufficiently close to the λ-wall Υ̃1,
inside the Bridgeland moduli space

Mβ,αpcq “ tE P Db
pP3
q|E is λβ,α,1{3-stable with chpEq “ p´2, 0, c, 0qu

we have the set

N pcq :“
ď

TPK
tF P Ext1

pOP3p´1q‘cr2s, T q| with HompOP3p´1qr2s, F q “ 0u

where K “ tT P xSpẼqy| dimpT q “ r0, 0, 2c` 2, cs and T is λβ,α,1{3-stable u.

If the charge c is odd then N pcq is equal to Mβ,αpcq and Mβ,αpcq is a projective
space. Otherwise, if c is even, Mβ,αpcq is a quasi-projective variety. In both cases Ipcq is
a subset of Mβ,αpcq.

Proof. Applying Corollary 4.3.8 it is clear that there exists a region in R̃´ outside Υ̃1 where
no other numerical λ-wall go through. Let W be this open neighborhood. Since the wall



Chapter 4. Quiver regions 81

Υ̃1 is a vanishing wall for the dimension vector r0, c, 2c` 2, cs then every λβ,α-stable object
for pβ, αq P W is of the form F P Ext1

pOP3p´1q‘cr2s, T q with T satisfying the determinant
condition. Now we just have to prove that the necessary and sufficient condition for F to
be λβ,α-stable.

Suppose that F is unstable after crossing Υ̃1 to its outside and assume that L
is a subobject destabilizing F in pβ, αq P W . Then by Corollary 4.3.8 L determines the
same wall as Υ̃1 and by equation (4.17) we have detpAq “ 0. If T were in K we would
have either τě´1pLq with dimension r0, 0, 2c` 2, cs or equal to zero, in the former case L
would never destabilize F due to Equation (4.17) and in the later case L “ OXp´1qr2sk

for some k ą 0.

Now, if c is odd then every two step complex with dimension r0, 0, 2c ` 2, cs
satisfies the determinant condition if and only if it is -stable after crossing its λ-wall. Even
more, an object F is λβ,α-semistable for pβ, αq P W if and only if it is λβ,α-stable.

Remark 4.4.3. The condition HompOP3p´1qr2s, F q “ 0 for an object F to be λβ,α-stable
is a necessary condition for all pβ, αq outside of Υ̃1. This condition is equivalent to the
vector space of global sections of H´2

pF qp1q being zero.

The analogous occurs to the right-hand side of Υ̃2, but now we have the locally
free and perverse instanton sheaves instead of the instanton sheaves. For that we will need
the following definition present in (HENNI; JARDIM; MARTINS, 2015, Definition 5.6).

Definition 4.4.4. An object E P Db
pXq is a perverse instanton sheaf if it is isomorphic

to a linear complex of the form

OXp´1q‘c f
Ñ O‘a

X
g
Ñ OXp1q‘c

such that the left derived dual of the restriction to a line, Lj˚pEq, is a sheaf object, where
j : l ãÑ X is a line inside of X.

As noted in (JARDIM; SILVA, 2020), every derived dual of an instanton sheaf
is a perverse instanton sheaf but the converse is not true.

Example 4.4.5. We can take, for example, E P Db
pP3
q to be the linear complex

0 Ñ OP3

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´y

x

0
w

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÝÑ OP3
‘4

ˆ

x y z 0
˙

ÝÑ OP3

which has its last-step cohomology equal to Op, for the point p P P3 satisfying the equation
x “ y “ z “ 0. Therefore, we can choose a line that does not go through the point p in
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order to conclude that Lj˚pEq is a sheaf element, making E into a perverse instanton
sheaf.

Moreover, it is not the derived dual of any instanton sheaf as its last-step
cohomology would nescessarily need to be pure of dimension 1, (JARDIM; MAICAN;
TIKHOMIROV, 2017). Even more, we can calculate E_ to determine that its last-step
cohomology would be Oq, for the point q determined by x “ y “ w “ 0, and in that way it
cannot be the derived dual of an instanton sheaf because the derived dual is an involution.

Proposition 4.4.6. Let Lpcq Ă Ipcq be the subset of shifted locally free instanton sheaves
of charge c and Ppcq “ tE P xSpẼqy| E_ P Ipcqu the subset of perverse instanton sheaves
that are dual of instanton sheaves of charge c. Then, for every pβ, αq P R̃` outside of Υ̃3,
every object in Lpcq and Ppcq is λβ,α-stable.

Proof. This statement is a direct consequence of Lemmas 4.4.2,4.3.2 and 4.3.1.

Main Theorem 4. For any pβ, αq P R̃` outside and sufficiently close to the λ-wall Υ̃3,
inside the moduli space

Mβ,αpcq “ tE P Db
pP3
q|E is λβ,α,1{3-stable with chpEq “ p´2, 0, c, 0qu

we have the set

Ñ pcq :“
ď

TPK̃

tF P Ext1
pT,OXp1q‘cq| with HompE,OXp1qq “ 0u

where K̃ “ tT P xSpẼqy| dimpT q “ r0, c, 2c` 2, 0s and T is λβ,α,1{3-stable u.

If the charge c is odd then Ñ pcq is equal to Mβ,αpcq and Mβ,αpcq is a projective
space. Otherwise, if c is even, Mβ,αpcq is a quasi-projective variety. In both cases Lpcq
and Ppcq are subsets of Mβ,αpcq.

Remark 4.4.7. In the case of X “ Q3 we can only obtain that the objects in Lpcq are
inside the moduli space of stable objects Mβ,αpcq, due to the fact that we do not have
a well-stablished notion of non-locally free instanton sheaves in Q3 to obtain both our
version of Main Theorem 3 and, consequently, the stability of the objects in Ppcq.

The above construction can be made more explicit in the case of c “ 1. The
quiver approach to the study of the moduli space of objects with dimension vector r0, 1, 4, 1s
was done by Jardim–daSilva, see (JARDIM; SILVA, 2020). In the next example, we will
show how to obtain the same description of the walls by using this different method.

Example 4.4.8. Let c “ 1 and E an object in xSpẼqy with dimpEq “ r0, 1, 4, 1s. Firstly,
observe that τě´1pEq or τď´1pEq satisfies the determinant condition if and only if E is
λβ,α-semistable at Υ̃2. This is a consequence of Lemma 4.2.3, by observing that an object
destabilizes E at Υ̃2 if and only if it λ-destabilizes both τě´1pEq and τď´1pEq.



Chapter 4. Quiver regions 83

Applying Theorem 4.3.4 we note that the only possible actual λ-walls for an
object with dimension vector r0, 1, 4, 1s are Υ̃i. Hence, we can apply the Theorem 4.3.4
to prove that instanton sheaves are stable at R̃´, outside of Υ̃1, while locally free and
perverse instanton sheaves which are duals of instanton sheaves are stable at R̃`, outside
of Υ̃3.

To prove that these are the only stable objects in their respective spaces, we
just have to show that if an object E is stable at R̃´ outside Υ̃1 then H´2

pEq “ 0 and
H0
pEq “ 0.

H´2
pEq “ 0: If H´2

pEq “ OP3p´1q then OP3p´1q is a direct summand of E
and therefore E is nowhere stable, outside the wall Υ̃1. Otherwise, suppose 0 ‰ H´2

pEq ‰

OP3p´1q then we would have Q “ OP3p´1q{H´2
pEq as a subsheaf of OP3

‘4, which is
absurd because Q is a torsion sheaf.

H0
pEq “ 0: Suppose that H0

pEq ‰ 0. Then H0
pEq “ OSp1q with S ãÑ P3 a

subvariety due to H0
pEq being a quotient of Op1q. Its twisted ideal Jp1q is the image of

the map f : O‘4
Ñ Op1q defining τě´1pEq and we can see that its space of global sections

has dimension h0
pJp1qq ď 3, making it so that h0

pkerpfqq ‰ 0.

Moreover, this implies that h0
pH´1

pEqq ‰ 0 because it is a quotient of kerpfq
by Op´1q, and therefore there exists a non zero map Or1s Ñ H´1

pEqr1s Ñ E. Hence,
there exists a destabilizer for E in R̃´ by Lemma 4.2.3, an absurd.



84

Bibliography

ANCONA, V.; OTTAVIANI, G. Stability of special instanton bundles on P2n`1.
Transactions of the American Mathematical Society, v. 341, p. 677–693, 1994. Citado 4
vezes nas páginas 13, 64, 74, and 79.

ARCARA, D.; BERTRAM, A. Bridgeland-stable moduli spaces for K-trivial surfaces.
Journal of the European Mathematical Society, v. 15, p. 1–38, 2013. Citado 3 vezes nas
páginas 10, 40, and 41.

ARCARA, D.; BERTRAM, A.; COSKUN, I.; HUIZENG, J. The minimal model program
for the Hilbert scheme of points on P2 and Bridgeland stability. Advances in Mathematics,
v. 235, p. 580–626, 2013. Citado 5 vezes nas páginas 10, 14, 64, 65, and 79.

BAYER, A. Polynomial Bridgeland stability conditions and the large volume limit.
Geometry and Topology, p. 2389–2425, 2009. Citado na página 50.

BAYER, A.; BEENTJES, S.; FEYZBAKHSH, S.; HEIN, G.; MARTINELLI, D.; REZAEE,
F.; SCHMIDT, B. The desingularization of the theta divisor of a cubic threefold as a
moduli space. <https://arxiv.org/abs/2011.12240>, 2020. Citado na página 10.

BAYER, A.; LI, C. Brill–Noether theory for curves on generic abelian surfaces. Pure and
Applied Mathematics Quarterly, v. 13, p. 49–76, 2017. Citado na página 10.

BAYER, A.; MACRÌ, E. The space of stability conditions on the local projective plane.
Duke Mathematical Journal, v. 160, p. 263–302, 2011. Citado 2 vezes nas páginas 40
and 89.

BAYER, A.; MACRì, E. Projectivity and birational geometry of Bridgeland stability
conditions. Journal of the American Mathematical Society, v. 27, p. 707–752, 2014.
Citado na página 10.

BAYER, A.; MACRÌ, E.; STELLARI, P. The space of stability conditions on abelian
threefolds, and on some Calabi–Yau threefolds. Inventiones Mathematicae, v. 206, p. 869,
2016. Citado 4 vezes nas páginas 10, 38, 42, and 43.

BAYER, A.; MACRÌ, E.; TODA, Y. Bridgeland stability conditions on threefolds
i: Bogomolov–Geiseker type inequalities. Journal of Algebraic Geometry, v. 23(1), p.
117–163, 2014. Citado 5 vezes nas páginas 10, 42, 43, 50, and 56.

BEILINSON, A. Coherent sheaves on Pn and problems in linear algebra. Functional
Analysis and its applications, v. 12, p. 214–216, 1978. Citado na página 88.

BERNARDARA, M.; MACRÌ, E.; SCHMIDT, B.; ZHAO, X. Bridgeland stability
conditions on Fano threefolds. Èpijournal de Géométrie Algébrique, v. 1, 2017. Citado 2
vezes nas páginas 10 and 43.

BERTHELOT, P.; GROTHENDIECK, A.; ILLUSIE, L. Séminaire de Géométrie
Algébrique du Bois Marie – 1966-1967 – Théorie des intersections et théorìome de
Riemann–Roch. [S.l.]: Springer-Verlag, New York, 1971. 700 p. Citado na página 15.

https://arxiv.org/abs/2011.12240


Bibliography 85

BONDAL, A. Representations of associative algebras of coherent sheaves. Izvestiya
Akademii Nauk SSSR Seriya Matematicheskaya, v. 53, p. 25–44, 1989. Citado na página
89.

BONDAL, A.; POLISHCHUK, A. Homological properties of associative algebras: the
methods of helices. Izvestiya: Mathematics, v. 42, p. 219, 1994. Citado na página 88.

BRIDGELAND, T. Stability conditions on triangulated categories. Annals of Mathematics,
v. 166, p. 317–345, 2007. Citado 7 vezes nas páginas 9, 11, 21, 35, 37, 38, and 39.

. Stability conditions on K3 surfaces. Duke Mathematical Journal, v. 141(2), p.
241–291, 2008. Citado 5 vezes nas páginas 9, 11, 39, 40, and 50.

COSTA, L.; MIRó-ROIG, R. Monads and instanton bundles on smooth quadrics.
Mathematische Nachrichten, v. 282, p. 169–179, 2009. Citado 3 vezes nas páginas 72, 73,
and 74.

DELIGNE, P.; BEILINSON, A.; BERNSTEIN, J. Faisceaux pervers. Astérisque, v. 100,
1983. Citado na página 21.

DIMITROV, G.; KATZARKOV, L. Non-semistable exceptional objects in hereditary
categories. International Mathematics Research Notices, v. 2016, p. 6293–6377, 2016.
Citado 2 vezes nas páginas 48 and 64.

EISENBUD, D.; HARRIS, J. The geometry of schemes. [S.l.]: Springer-Verlag New York,
2000. 300 p. Citado 4 vezes nas páginas 10, 15, 16, and 18.

FAENZI, D. Even and odd instanton bundles on Fano threefolds of picard number one.
Manuscripta Mathematica, v. 144, p. 199–239, 2013. Citado 2 vezes nas páginas 72
and 73.

FULTON, W.; LANG, S. Riemann-Roch algebra. [S.l.]: Springer, New York, NY, 1985.
206 p. Citado 8 vezes nas páginas 11, 19, 25, 27, 28, 29, 30, and 31.

GELFAND, S.; MANIN, Y. Methods of Homological Algebra. [S.l.]: Springer-Verlag Berlin
Heidelberg, 2003. 372 p. Citado 6 vezes nas páginas 11, 15, 20, 21, 23, and 24.

GORODENTSEV, A.; KULESHOV, S.; RUDAKOV, A. t-stabilities and t-structures on
triangulated categories. Izvestiya: Mathematics, v. 68:4, p. 749–781, 2004. Citado 2 vezes
nas páginas 9 and 35.

HAPPEL, D.; REITEN, I.; SMALO, S. Tilting in Abelian categories and quasitilted
algebras. [S.l.]: American Mathematical Society, 1996. 88 p. Citado na página 22.

HARTSHORNE, R. Stable vector bundles and instantons. Communications in
Mathematical Physics, v. 59, p. 1–15, 1978. Citado 2 vezes nas páginas 18 and 19.

HENNI, A.; JARDIM, M.; MARTINS, R. Adhm construction of perverse instanton
sheaves. Glasgow Mathematical Journal, v. 57, p. 285–321, 2015. Citado na página 81.

HUYBRECHTS, D. Fourier–Mukai Transforms in Algebraic Geometry. [S.l.]: Clarendon
Press, 2006. Citado 6 vezes nas páginas 11, 20, 23, 24, 35, and 63.

HUYBRECHTS, D.; LEHN, M. The geometry of moduli spaces. [S.l.]: Cambridge
University Press, 2010. Citado 6 vezes nas páginas 33, 35, 41, 58, 61, and 74.



Bibliography 86

JARDIM, M.; MACIOCIA, A. Walls and asymptotics for Bridgeland stability conditions
on 3-folds. arXiv:1907.12578, 2019. Citado 12 vezes nas páginas 11, 12, 33, 34, 43, 44, 47,
50, 51, 52, 57, and 67.

JARDIM, M.; MAICAN, M.; TIKHOMIROV, A. Moduli space of rank 2 instanton
sheaves on the projective space. Pacific Journal of Mathematics, v. 291, p. 399–424, 2017.
Citado 4 vezes nas páginas 72, 73, 78, and 82.

JARDIM, M.; SILVA, D. Instanton sheaves and representation of quivers. Proceedings of
the Edinburgh Mathematical Society, v. 63, p. 984–1004, 2020. Citado 2 vezes nas páginas
81 and 82.

KONTSEVICH, M.; SOIBELMAN, Y. Stability structures, motivic Donaldson–Thomas
invatiants and cluster transformations. <https://arxiv.org/pdf/0811.2435.pdf>, 2008.
Citado na página 38.

KUZNETZOV, A. Instanton bundles on Fano threefolds. Central European Journal of
Mathematics, v. 10, p. 1198–1231, 2012. Citado na página 72.

LAZARSFELD, R. Positivity in Algebraic Geometry I. [S.l.]: Springer, Berlin, Heidelberg,
2004. 387 p. Citado na página 31.

LI, C. On stability conditions for the quintic threefold. Inventiones Mathematicae, v. 218,
p. 301–340, 2019. Citado 2 vezes nas páginas 10 and 43.

. Stability conditions on Fano threefolds of Picard number one. Journal of the
European Mathematical Society, v. 21, p. 709–726, 2019. Citado 3 vezes nas páginas 10,
41, and 43.

MACIOCIA, A. Computing the walls associated to Bridgeland stability conditions on
projective surfaces. Asian Journal of Mathematics, v. 2, p. 263–279, 2014. Citado 3 vezes
nas páginas 40, 43, and 45.

MACIOCIA, A.; PIYARATNE, D. Fourier–Mukai transforms and Bridgeland stability
conditions on abelian threefolds ii. International journal of Mathematics, v. 27, 2016.
Citado na página 10.

MACRì, E. Stability conditions on curves. Mathematical Reserach Letters, v. 14, p.
657–672, 2007. Citado 7 vezes nas páginas 10, 11, 43, 47, 48, 64, and 65.

MACRÌ, E. A generalized Bogomolov–Geiseker inequality for the three-dimensional
projective space. Algebra and Number Theory, v. 8(1), p. 173–190, 2014. Citado 3 vezes
nas páginas 10, 39, and 64.

MACRÌ, E.; SCHMIDT, B. Lectures on Bridgeland stability.
https://arxiv.org/abs/1607.01262, 2019. Citado 3 vezes nas páginas 39, 40,
and 41.

MU, D. New moduli spaces of one dimensional sheaves in P3. arxiv.org/abs/2002.00442,
2020. Citado 4 vezes nas páginas 10, 11, 64, and 65.

NEEMAN, A. Triangulated Categories. [S.l.]: Princeton University Press, 2001. 449 p.
Citado na página 15.

https://arxiv.org/pdf/0811.2435.pdf


Bibliography 87

OKADA, S. Stability manifold of P1. Journal of Algebraic Geometry, v. 15, p. 487–505,
2006. Citado na página 39.

OKONEK, C.; SPINDLER, H. Mathematical instanton bundles on P2n`1. Journal für die
Reine und Angewandt Mathematik, v. 364, p. 35–50, 1986. Citado na página 75.

OTTAVIANI, G. Spinor bundles on quadrics. Transactions of the American Mathematical
Society, v. 307, p. 301–316, 1988. Citado na página 46.

PIYARATNE, D.; TODA, Y. Moduli on Bridgeland semistable objects on 3-folds and
donald–thomas invariants. Journal für die reine und angewandt mathematik, v. 747, p.
175–219, 2019. Citado 2 vezes nas páginas 41 and 43.

POSITSELSKI, L. All strictly exceptional collections in Db
cohpPnq consists of vector

bundles. <arxiv.org/abs/alg-geom/9507014v2>, 2013. Citado na página 89.

RUAN S.AND WANG, X. t-stabilities for a wighted projective line. Mathematische
Zeitscrift, v. 297, p. 1119–1160, 2021. Citado na página 64.

RUDAKOV, A. The Markov numbers and exceptional bundles on P2. Izvestiya Akademii
Nauk SSSR Seriya Matematicheskaya, v. 52, p. 100–112, 1988. Citado na página 88.

RYAN, P. The Grothendieck–Riemann–Roch theorem. [S.l.]: Harvard University, 2015.
57 p. Citado na página 31.

SCHMIDT, B. A generalized Bogomolov–Geiseker inequality for the smooth quadric
threefold. Bulletin of the London Mathematical Society, v. 46(5), p. 915–923, 2014.
Citado 2 vezes nas páginas 43 and 46.

. Stability conditions on threefolds - First wall crossings. Journal of Algebraic
Geometry, v. 29, p. 247–283, 2020. Citado 6 vezes nas páginas 10, 43, 44, 45, 56, and 64.

SCHMIDT, B.; SUNG, B. Discriminants of stable rank two sheaves on some general type
surfaces. arXiv: 1812.02735, 2018. Citado 3 vezes nas páginas 11, 33, and 34.

TODA, Y. Limit stable objects on Calabi–Yau 3-folds. Duke Mathematical Journal, v. 149,
p. 157–208, 2009. Citado na página 40.

. Limit stable objects on Calabi-Yau 3-folds. Duke Mathematical Journal, v. 1, p.
157–208, 2009. Citado na página 50.

arxiv.org/abs/alg-geom/9507014v2


88

APPENDIX A – Computational
Observations

As seen in the paper, the construction of examples of Ext-exceptional collections
is very important to establishing exceptional regions. One way of constructing these
collections is by shifting the objects in a strong exceptional collection by the appropriate
degree. For P2, it is a known result by Rudakov (RUDAKOV, 1988) that the only strong
exceptional collections we can create are mutations of the canonical exceptional collection
, proved to be strong by Beilinson (BEILINSON, 1978).

Question A.0.1. Is there an Ext-exceptional collection in P3 satisfying the upper-half
plane for any point in H with α ą 2 and s “ 1

3?

In this appendix we describe a computational approach that lead to Question 1.
There is no known list of all full exceptional collections in P3 but there exists a conjecture
about the transitivity of the action of the group BnoZn over the space of strong exceptional
collections, where Bn is the n-braid group acting by mutations and Zn is the action by
shifts, see (BONDAL; POLISHCHUK, 1994). Our idea was to use mutations to inductively
define strong exceptional collections, with easy to compute Chern characters due to their
additive property, and test for the upper-half plane condition using a parametrization of
lines going through the origin.

We start by defining the notion of mutation of an exceptional collection and
their computational properties.

Definition A.0.2. Let tE0, E1u be a exceptional pair in Db
pXq, a left (resp. right)

mutation of the exceptional pair is the object LE0E1 (resp. RE1E0) defined by the following
distinguished triangles

LE0E1 Ñ Hom‚
pE0, E1q b E0 Ñ E1

pE0 Ñ Hom‚
pE0, E1q

˚
b E1 Ñ RE1E0q.

Definition A.0.3. For an exceptional collection E “ tE0, ..., Eku in Db
pXq we can define

the Left and Right mutations of E by

LiE “ tE0, ..., Ei´1,LEiEi`1, Ei, Ei`2, ..., Eku

RiE “ tE0, ..., Ei`1,REi`1Ei, Ei`2, ..., Eku
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It is known that a mutation of an exceptional collection is also an exceptional
collection, they also preserve fullness. That is not true for strong exceptional collections,
in general, but in our case this is actually true.

The following theorem describe what happens when mutating a strong excep-
tional collection and the nature of the objects in a strong exceptional collection.

Theorem A.0.4. (BONDAL, 1989, Section 9) Suppose that E “ xE0, ..., Eny is a full
exceptional collection of sheaves in Db

pXq for a n-dimensional manifold X. Then E is a
strong exceptional collection and any mutation of E is a full strong exceptional collection.

Theorem A.0.5. (POSITSELSKI, 2013) Let X be a smooth projective variety for which
n “ dim K0pXq ´ 1 “ dimpXq. Then for any full strong exceptional collection E0, ..., En

in Db
pXq, the objects Ei are shifts of locally free sheaves by the same number a P Z.

Remark A.0.6. For a smooth n dimensional projective variety X, the Theorems A.0.4
and A.0.5 can be applied in conjunction so that Hom‚

pEi, Ei`1q “ Hom0
pEi, Ei`1q ‰ 0 if

E “ tEiui is a strong exceptional collection, because otherwise LEiEi`1 “ Ei`1r1s and that
would be a contradiction due to every strong exceptional collection, in this case LipEq,
consisting of sheaves shifted by the same number in Z. Another consequence of this is that
if the Ei are all µ-stable then µpEiq ă µpEi`1q.

With this in hand we can describe a algorithm to produce candidates of full
Ext-exceptional collections capable of generating a heart of a bounded t-structure satisfying
the upper-half plane condition. As a consequence, we were not able to find a point pβ, αq
for s “ 1{3 in the upper-half plane of stability conditions H with α ą 2 where a single
example of full Ext-exceptional collection was capable of satisfying the conditions imposed
by the algorithm(a numerical version of the upper-half plane condition).

Algorithm A.0.7. We start with a set pre-determined of Chern characters of a given
strong exceptional collection of locally free sheaves E “ tE0, ..., E3u that is the strings

cris “ pch0pEiq, ch1pEiq, ch2pEiq, ch3pEiqq “ pchjpEiqq0ďjďn.

With this string at hand we can calculate the Chern character of the mutations LiE and
RjE by realizing that in a strong exceptional collection of locally free sheaves we have
Hom‚

pEi, Ejq “ HompEi, Ejq and

dimpHompEi, Ejqq “ χpEi, Ejq “ χpEi b E
_
j ,OP3q,

where χpEibE_j ,OP3q can be calculated by the Hirzebruch-Riemann-Roch, as in (BAYER;
MACRÌ, 2011, Theorem 9.3), and chpEi b E_j q “ chpEiq ¨ chpEjq_ with pchpEjq_qi “
p´1qi chipEjq.
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Once we know c̃rjs “ pchjpLkEqq0ďjď3 or c̄rjs “ pchjpRkEqq0ďjď3, for all k “
0, 1, 2, we can calculate if this string satisfy the numerical conditions to which any object
Qj with chpQjq “ c̃rjs or chpQjq “ c̄rjs and Qj Pă A,Ar1s ą is subject to, for all j, such
as

(i) νβ,αpQ0q ą 0 and µpQ0q ą β (if Q0r3s P Ar1s)

(ii) Either:

νβ,αpQ1q ą 0 and µpQ1q ą β (if Q1r2s P A),

νβ,αpQ1q ď 0 and µpQ1q ą β (if Q1r2s P Ar1s) or

νβ,αpQ1q ą 0 and µpQ1q ď β (if Q1r2s P Ar1s)

(iii) Either:

νβ,αpQ2q ă 0 and µpQ2q ą β (if Q2r1s P A),

νβ,αpQ2q ď 0 and µpQ2q ď β (if Q2r1s P A) or

νβ,αpQ2q ą 0 and µpQ2q ď β (if Q2r1s P Ar1s)

(iv) νβ,αpQ3q ą 0 and µpQ3q ą β (if Q3 P A)

If any of the conditions piq, piiq, piiiq, pivq is not satisfid the algorithm returns 0
with respect to this mutation LkE or RkE , otherwise we continue the algorithm to see if LiE
or RiE satisfy the upper-half plane condition. This is done by testing if all the images of
Zβ,α,1{3pc̃rjsq or Zβ,α,1{3pc̄rjsq are above a given line with slope φ, with φ varying from 0 to
π with increments of 0.01π. In the end, if the collection mutated satisfies piq, piiq, piiiq, pivq
and the upper-half plane condition then the algorithm returns 1. This can be iterated further
for any of the mutated collections.

One other computational approach to the problem of finding real λ-walls in an
exceptional region R for a fixed dimension vector ra, b, c, ds is to determine its numerical
walls, these will be a finite set due to Lemma 4.1.4, and apply the numerical conditions

(i) (Positivity) ρβ,αpvq ě 0,

(ii) (Generalized Bogomolov inequality) Qβ,αpvq ě 0

to any possible destabilizing dimension vector v “ ra1, b1, c1, d1s. These necessary
conditions restrict the numerical walls to a finer set which can be studied using Proposition
A.0.10.

Definition A.0.8. We call a region C of the Upper-half plane H to be λ-bounded with
respect to E P Db

pXq if there exists a, b P R such that, for every pβ, αq P H and a fixed
s P Rą0, the C-slope of E is in ra, bs Ă p0, 1q.
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Example A.0.9. For any object E P Db
pXq, one clear example of a C is a compact

subset of the upper-half plane not intersecting ΘE,

Proposition A.0.10. Let E P Db
pXq and P,Q be points in a λ-bounded region C such

that exists γ : r0, 1s Ñ C a continuous curve with endpoints in P and Q respectively. Also,
suppose that E R AP and E P PpλQ,spEqq Ă AQ, there exists w P p0, 1s such that for every
t P rw, 1s, E P Aγptq and E is λγpwq,s-unstable.

Proof. We start by noting that φ`β,αpEq and φ´β,αpEq are continuous functions on H and
therefore fptq : r0, 1s Ñ R

fptq “ φ`γptqpEq ´ φ
´
γptqpEq

is a non-negative continuous function. By the condition in P we know that f is not a
trivial function with image t0u and since it is a continuous image of a connected set, we
know that fpr0, 1sq “ r0, cs for some c P Rą0.

Now let ε ą 0 be a real number which makes ra´ ε, b` εs Ă p0, 1q. It is clear
that for every t P f´1

pr0, εsq we have E P Aγptq, we just have to choose the connected
component W of f´1

pr0, εsq containing 1 and this set will be W “ rw, 1s for some w P Rą0.

The consequence of this theorem is that for an object to be in a real λ-wall,
that is for it to became semistable, it has to first be unstable in Aγpwq. This allows for
an inductive approach in this exceptional regions, where we use the fact that twisting by
Op´1q the exceptional region R1 intersect the original region R1 at the line t´1uˆp0, 0.7q,
and if we can prove that an object is semistable at region R1 then we can draw curves
through the twisted region that don’t go inside the regions "numerically possible" to prove
that none of this numerical λ-walls are real.
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ANNEX A – Code

1 # include <stdio.h>
2 # include <stdlib.h>
3 # include <math.h>
4

5 struct Object{ // Fixed information about object
6

7 int ch [4]; // Chern Character
8 double Z[2]; // Stability Function
9 };

10

11 struct ExcpSet { // Exceptional Collection
12

13 struct Object E[4];
14

15 };
16

17 int max_of_four (int a, int b, int c, int d);
18 int CondA(struct ExcpSet C, double beta , double alpha);
19 int ConUpp(struct ExcpSet C);
20 void StaZ(struct Object * E,double beta , double alpha , double

s);
21 int EulerChar (int a[4], int b[4]);
22 struct Object LMut(struct Object E, struct Object F);
23 struct Object RMut(struct Object E, struct Object F);
24

25 int main ()
26 {
27 struct ExcpSet C [2][7][7]; // Exceptional Sets
28 int i=0,j=0,k=0,p,l=0,f=0,g=0, u=0; // Counter
29 double alpha ,beta ,s; // Parameters
30 int L [2][7][7][2]; // Number of Mutations to the Left and

to the Right , respectively
31 FILE * fpointer = fopen(" Results .txt", "w");
32

33 /* O(-3),O(-2),O(-1),O */



ANNEX A. Code 93

34

35 C [0][0][0]. E[0]. ch [0]=1; // Chern characters of Base
Exceptional Object 0

36 C [0][0][0]. E[0]. ch [1]= -3;
37 C [0][0][0]. E[0]. ch [2]=9;
38 C [0][0][0]. E[0]. ch [3]= -27;
39

40 C [0][0][0]. E[1]. ch [0]=1; // Chern Character of Base
Exceptional Object 1

41 C [0][0][0]. E[1]. ch [1]= -2;
42 C [0][0][0]. E[1]. ch [2]=4;
43 C [0][0][0]. E[1]. ch [3]= -8;
44

45

46 C [0][0][0]. E[2]. ch [0]=1; // Chern character of Base
Exceptional Object 2

47 C [0][0][0]. E[2]. ch [1]= -1;
48 C [0][0][0]. E[2]. ch [2]=1;
49 C [0][0][0]. E[2]. ch [3]= -1;
50

51 C [0][0][0]. E[3]. ch [0]=1; // Chern Character of Base
Exceptional Object 3

52 C [0][0][0]. E[3]. ch [1]=0;
53 C [0][0][0]. E[3]. ch [2]=0;
54 C [0][0][0]. E[3]. ch [3]=0;
55

56 /* O(-2),O(-1),O,O(1) */
57

58 C [1][0][0]. E[0]. ch [0]=1;
59 C [1][0][0]. E[0]. ch [1]= -2;
60 C [1][0][0]. E[0]. ch [2]=4;
61 C [1][0][0]. E[0]. ch [3]= -8;
62

63 C [1][0][0]. E[1]. ch [0]=1;
64 C [1][0][0]. E[1]. ch [1]= -1;
65 C [1][0][0]. E[1]. ch [2]=1;
66 C [1][0][0]. E[1]. ch [3]= -1;
67

68 C [1][0][0]. E[2]. ch [0]=1;
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69 C [1][0][0]. E[2]. ch [1]=0;
70 C [1][0][0]. E[2]. ch [2]=0;
71 C [1][0][0]. E[2]. ch [3]=0;
72

73 C [1][0][0]. E[3]. ch [0]=1;
74 C [1][0][0]. E[3]. ch [1]=1;
75 C [1][0][0]. E[3]. ch [2]=1;
76 C [1][0][0]. E[3]. ch [3]=1;
77

78

79

80

81 printf("Insert beta: \n" );
82 scanf("%lf", &beta);
83 printf("Insert alpha: \n");
84 scanf("%lf", &alpha);
85 printf("insert s: \n");
86 scanf("%lf", &s);
87 fprintf (fpointer , "Test for (beta ,alpha ,s)=( %lf , %lf

, %lf) \n", beta , alpha ,s);
88

89 for(u=0 ; u <=1 ; u++){
90

91 L[u ][0][0][0]= CondA(C[u][0][0] , beta ,alpha);
92

93 for(i=0; i <=3 ; i++){ // Calculating their stability
vectors

94 StaZ (&C[u ][0][0]. E[i],beta ,alpha ,s);
95 }
96

97 L[u ][0][0][1]= ConUpp(C[u ][0][0]) ;
98

99

100

101 for(f=0; f <=6 ; f++){
102

103 for(g=0 ; g <=3 ; g++){
104

105 C[u][f][0].E[g]=C[u][0][f].E[g]; //
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Fixing the Exceptional class from
where the mutations are coming |
Second iteration .

106 }
107

108 L[u][f ][0][0]= CondA(C[u][f][0] , beta ,alpha);
109

110 for(i=0; i <=3 ; i++){ // Calculating their
stability vectors

111 StaZ (&C[u][f][0].E[i],beta ,alpha ,s);
112 }
113

114 L[u][f ][0][1]= ConUpp(C[u][f][0]);
115

116

117 /* Mutation to the Left */
118

119 for(j=0; j <=2 ; j++){
120

121 p=j+1;
122

123 for(k=0; k <=3; k++){ // Constructing the
Exceptional Sequence

124 if(k!=j && k!=j+1){
125 C[u][f][p].E[k]= C[u][f

][0].E[k];
126 }else if(k==j){
127 C[u][f][p].E[k]= LMut(C[u

][f][0].E[k],C[u][f
][0].E[k+1]);

128 }else{
129 C[u][f][p].E[k]= C[u][f

][0].E[k -1];
130 }
131 }
132

133 L[u][f][p][0]= CondA(C[u][f][p],beta ,alpha
);

134
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135 for(i=0; i <=3 ; i++){ // Calculating
their stability vectors

136 StaZ (&C[u][f][p].E[i],beta ,alpha ,
s);

137 }
138

139 L[u][f][p][1]= ConUpp(C[u][f][p]);
140

141 }
142

143 /* Mutation to the Right */
144 j=0;
145 k=0;
146

147 for(j=0; j <=2 ; j++){
148

149 p=j+4;
150

151 for(k=0; k <=3; k++){ // Constructing the
Exceptional Sequence

152 if(k!=j && k!=j+1){
153 C[u][f][p].E[k]=C[u][f

][0].E[k];
154

155 }else if(k==j+1){
156

157 C[u][f][p].E[j+1]= RMut(C
[u][f][0].E[j+1],C[u][
f][0].E[j]);

158 }
159 else{
160 C[u][f][p].E[k]=C[u][f

][0].E[j+1];
161 }
162 }
163

164 L[u][f][p][0]= CondA(C[u][f][p],beta ,alpha
);

165
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166

167 for(i=0; i <=3 ; i++){ // Calculating
their stability vectors

168 StaZ (&C[u][f][p].E[i],beta ,alpha ,
s);

169 }
170

171 L[u][f][p][1]= ConUpp(C[u][f][p]);
172 }
173

174 /* Printing the Results */
175 j=1;
176 k=0;
177 for(j=0; j <=6; j++){
178 fprintf (fpointer , "\n Set %d |

Mutation %d , %d \n", u, j,f);
179

180 for(k=0; k <=3; k++){
181 fprintf (fpointer ,"(%d,%d,%d,%d),

", C[u][f][j].E[k].ch[0],C[u
][f][j].E[k].ch[1],C[u][f][j].
E[k].ch[2],C[u][f][j].E[k].ch
[3]);

182 }
183

184 fprintf (fpointer , " %d, %d" , L[u][f
][j][0] ,L[u][f][j][1]);

185

186

187 }
188

189 }
190

191 fprintf (fpointer , "\n \n \n \n");
192

193 }
194 fclose( fpointer );
195

196
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197 return 0;
198 };
199

200

201 int CondA(struct ExcpSet C, double beta , double alpha){ //
Verifying if the objects satisfy the condition for <C> to
be contained in <A,A[1]>

202 int i = 0;
203 double mu; // mu -slope
204 double nu; // nu -slope
205

206

207 for(i=0; i <=3 ; i++ ){
208

209 mu = (double) C.E[i].ch [1]/C.E[i].ch [0];
210 if(mu== beta){
211 nu =50;
212 }else{
213 nu = (double)(C.E[i].ch [2] - 2*C.E[i].ch [1]* beta + (C

.E[i].ch [0]* beta*beta) -(C.E[i].ch [0]* alpha*alpha))
/2*(C.E[i].ch[1]- beta*C.E[i].ch [0]);

214 }
215

216 switch(i){
217

218 case 0: // E_0 [3] \in A
219 if(nu >0 || mu >beta){
220 return 1;
221 };
222 break;
223

224 case 1: // E_1 [2] \in A
225 if((nu >0 || mu >beta) && (nu >0 || mu <= beta) && (nu <=0

|| mu >beta)){
226 return 2;
227 };
228 break;
229

230 case 2: // E_2 [1] \in A
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231 if((nu >0 || mu <= beta) && (nu <0 || mu >beta) && (nu <=0
|| mu <= beta)){

232 return 3;
233 };
234 break;
235

236 case 3: // E_3 \in A
237 if(nu <=0 || mu <= beta){
238 return 4;
239 };
240 break;
241 };
242

243 };
244

245 return 0;
246

247

248

249

250 };
251

252 int max_of_four (int a, int b, int c, int d){
253 int max;
254 if((a>b) && (a>c) && (a>d))
255 max = a;
256 if((b>a) && (b>c) && (b>d))
257 max = b;
258 if((c>a) && (c>b) && (c>d))
259 max = c;
260 if((d>a) && (d>b) && (d>c))
261 max = d;
262 return max;
263 }
264

265 int ConUpp(struct ExcpSet C){ // Verifying the Upper -half
plane condition for the objects in a giver Exceptional
Collection

266
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267 double k; // Slope of the line
268 double s; // Increment on the slope of the line
269 int r[4]={0 ,0 ,0 ,0}; // For a fixed line , if r[i]=r[j]

then Z(E_i) and Z(E_j) are on the same side of the
Upper -Half plane

270 int i; // Counter
271

272 k=-1;
273 s =0.001;
274

275 /* One side of the lines */
276

277 while(k <=1 && (r[0]==0 || r[1]==0 || r[2]==0 || r [3]==0) )
{ // Lines bounded on the sides by x=y and x=-y

278 for(i=0; i <=3; i++){
279 if(i==0 || i==2){
280 if(-C.E[i].Z[0] >= -k*C.E[i].Z[1]){
281 r[i]=1;
282

283 }else{r[i]=0;}
284 }else{
285 if(C.E[i].Z[0] >= k*C.E[i].Z[1]){
286 r[i]=1;
287

288 }else{r[i]=0;}
289

290 }
291 }
292 if(r[0]==0 && r[1]==0 && r[2]==0 && r [3]==0) {
293 return 0;
294 }
295 k=k+s;
296 }
297 k=-1;
298 if((r[0]==0 || r[1]==0 || r[2]==0 || r [3]==0) ){ // To see

if it is finished
299 if(r[0]==0 && r[1]==0 && r[2]==0 && r [3]==0) {
300 return 0;
301 }
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302 while(k <=1 && (r[0]==0 || r[1]==0 || r[2]==0 || r
[3]==0) ){ // Lines bounded above by x=y and below
by x=-y

303 for(i=0 ; i <=3; i++){
304 if(i==0 || i==2){
305 if(-k*C.E[i].Z[0] <= -C.E[i].Z[1]){
306 r[i]=1;
307

308 }else{r[i]=0;}
309 }else{
310 if(k*C.E[i].Z[0] <= C.E[i].Z[1]){
311 r[i]=1;
312

313 }else{r[i]=0;}
314 }
315 }
316 if(r[0]==0 && r[1]==0 && r[2]==0 && r [3]==0) {
317 return 0;
318 }
319 k=k+s;
320 }
321

322 }else{return 0;}
323

324

325 if(r[0]==1 && r[1]==1 && r[2]==1 && r [3]==1) {
326 return 0;
327 }else{return 3;};
328

329

330

331 };
332

333 void StaZ(struct Object * E,double beta , double alpha , double
s){ // Calculating the stability function for an object E

334

335 E->Z[0]= (double)(-E->ch [3]+(E->ch [2]* beta *3) -(E->ch [1]*
beta*beta *3) +(E->ch [0]* beta*beta*beta)+(6*s+1) *(E->ch
[1]-E->ch [0]* beta)*( alpha*alpha))/6;
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336

337 E->Z[1]= (double)(E->ch [2] -(( double)2*E->ch [1]* beta)+((
double)E->ch [0]* beta*beta) -(( double)E->ch [0]* alpha*
alpha))/2;

338

339 return;
340

341

342 }
343

344 int EulerChar (int a[4], int b[4]){ // Calculation of the Euler
Characteristic of two Vector bundles with ch(E_1)=a[4]

and ch(E_2)=b[4]
345

346 float Chi; // Euler Characteristic of (E_1 ,E_2)
347 float C[4]; // Chern Character of E_1* X E_2
348

349 C[0]=a[0]*b[0];
350 C[1]=b[1]*a[0]-a[1]*b[0];
351 C[2]=b[2]*a[0] -2*a[1]*b[1]+a[2]*b[0];
352 C[3]=b[3]*a[0] -3*a[1]*b[2]+3*a[2]*b[1]-a[3]*b[0];
353

354 Chi =(C[3]+6*C [2]+11* C[1]+6*C[0]) /6; // Theorem 9.3
Schmidt and Macri Lectures on Bridgeland Stability

355

356 return Chi;
357 }
358

359 struct Object LMut(struct Object E, struct Object F){ // Left
Mutation Object L_E(F)

360

361 struct Object L;
362 int Chi;
363 int j=0;
364

365 Chi= EulerChar (E.ch ,F.ch);
366

367 for(j=0; j <=3; j++){
368 L.ch[j]= Chi*E.ch[j]- F.ch[j];
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369 }
370

371 return L;
372

373 };
374

375 struct Object RMut(struct Object E, struct Object F){ //
Right Mutation Object R_E(F)

376

377 struct Object R;
378 int Chi;
379 int j=0;
380

381 Chi= EulerChar (F.ch ,E.ch);
382

383 for(j=0 ; j <=3; j++){
384 R.ch[j]= Chi*E.ch[j] - F.ch[j];
385 }
386

387 return R;
388

389 };
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