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Resumo

Um autémato (ou um autémato de Mealy) A consiste numa quadrupla (Q, X, m, \),
em que Q é um conjunto de estados, X € um alfabeto finito, 7 : Q x X — Q é uma
funcdo de transicdo e A : Q x X — X € uma funcéo de saida. Dentre todos os tipos de
autdmatos, destacamos os autématos finitos inversiveis para, assim, podermos definir
um grupo de autdmatos. Uma familia especial de autdmatos que possui importancia
fundamental para o nosso trabalho é a familia de autématos de Bellaterra, estudados
inicialmente durante a escola de verao em grupos de autématos na Universidade de
Barcelona, em Bellaterra, no ano de 2004 (este é o motivo pelo qual tal familia de
autdmatos recebe este nome); tais autdmatos séo definidos por recursdo entrelagada.
Nesta dissertacao, construimos uma familia de autdmatos (os autdmatos de Bellaterra)
com n > 4 estados que agem numa arvore binaria enraizada e mostramos que 0s
grupos gerados por estes autdmatos (sob determinadas condi¢des) s&o isomorfos a
produtos livres de grupos ciclicos de ordem 2. Este estudo é baseado no artigo [18].

Palavras-chave: Autématos, Grupos de autdmatos, Autdmatos de Bellaterra, Produtos
livres de grupos, Recurséo entrelagada.



Abstract

An automaton (or a Mealy automaton) A consists of a tuple (Q, X, m, \), in which Q
is a set of states, X is a finite alphabet, 7 : Q x X — Q is a transition function and
A Qx X — Xis an output function. Among all the types of automata, we highlight finite
invertible automaton in order to define an automata group. A special family of automata
which has fundamental importance to our work is the Bellaterra automata family, first
studied during the summer school in automata groups at the University of Barcelona
in Bellaterra, in 2004 (this is why these automata receive this name); such automata
are defined by wreath recursion. In this dissertation, we construct a family of automata
(the Bellaterra automata) with n > 4 states acting on a rooted binary tree and we show
that the groups generated by these automata are isomorphic to free products of cyclic
groups of order 2 (under certain conditions). This study is based on the article [18].

Key words: Automata, Automata groups, Bellaterra automata, Free products of groups,
Wreath recursion.
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Introduction

Given a finite invertible automaton A, an automaton group is the group
generated by the functions defined by all states of .A. Such functions act on the set X*
of finite words over the alphabet X; the set X* can be regarded as a regular rooted tree.
Automata groups started to be mentioned in articles during the 1960s by M. Glushkov
(see [10]) and J. Horejs (see [13]). However, only in the 1980s these objects gained
more attention, after some mathematicians have shown that automata groups contain
counterexamples to the general Burnside problem (see [1], [11] and [12]). Automata
groups have also been used to produce other remarkable groups, including a group
without uniform exponential growth, and exotic amenable groups (see [23]). Moreover,
all the automata groups discussed in this dissertation are synchronous and so they are
residually finite (a large class of groups). Several well-known groups can be generated
by synchronous automata, including free groups (see [21]), GL,(Z) and its subgroups
(see [7]), the solvable Baumslag-Solitar groups BS(1, m) (see [3]), and the lamplighter
groups R Z with R a finite ring (see [19]). In this dissertation we study how construct
free products of the cyclic group C, as automata groups.

Around 2004, the Bellaterra automata emerged as good examples of bire-
versible automata (invertible automata whose dual and the dual of its inverse are
invertible) and they formed a good source for free groups and free products gener-
ated by automata. The first Bellaterra automaton was discovered while classifying all
bireversible 3-state automata over a 2-letter alphabet (see [6]), sO we consider such
automata acting on the set X* of finite words over X = {0, 1}. All preliminaries about
automata and actions on trees are introduced in Chapter 1.

In Chapter 2, we study in details the Bellaterra automaton B5,, the 4-state
automaton of the family, expliciting the wreath recursions and the Moore diagrams
of such automaton and its inverse. Those elements are used in the proofs of some
auxiliary propositions and lemmas which lead to the main theorem of this chapter that
summarizes the first important result proved in this dissertation: letting G be the group
generated by all 4 states of the automaton 5,4 given by the wreath recursion

and considering the notation C, for the cyclic group of order 2, then
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Theorem 0.0.1 (D. Savchuk, Y. Vorobets, [18]). The group G is isomorphic to the free
pl’OdUCt Cg * Cg * CQ * Cg.

We then prove that a 4-state Bellaterra automaton satisfying some conditions
about the permutations defined on its wreath recursion generates the free product of
4 groups of order 2. In Chapter 3 we show how to prove its generalization forn> 4
(with a few restrictions); in other words, considering the automaton B, the Bellaterra
automaton with n states, with transition and output functions defined by the wreath
recursion

(Cns bn),
(bn, Cn),
= (Qn1, Gnt )0,
Qni = (Qnit1, Qniv1)onis i=1, -, n=>5,
Qnn-a = (dn, An)onn-a,

= (@n, an)o,

then we establish that

Theorem 0.0.2 (D. Savchuk, Y. Vorobets, [18]). The group G\, generated by the
automaton B, is isomorphic to the free product of n copies of the cyclic group of order
2.

The proof is somehow similar to the case of n = 4; it starts by adapting the
definition of B, (n > 4) from the one of 5,. We then use an approach similar to the
one used in the proof of the first case due to a result (Lemma 3.2.4) that establishes
a relation between the actions of the groups I and '™ (dual groups to G and G\
respectively).

It is worth reminding that we will indeed follow the construction of the original
article [18].
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1 Preliminaries

“Mathematicians do not study
objects, but relations between
objects.”

Henri Poincaré, 1854—-1912

In this first chapter we will show the main introductory definitions and results
which are somehow necessary to get a better understanding of our work.

It was a preference of the author to start from the very beginning in order to
try to make this dissertation self-contained. Thus, before diving into the group theory
applied to world of automata, we will record some fundamentals about groups, graphs,
words and automata.

1.1 Basic tools

In the first part of this preliminary chapter, we explore three elementary
objects which are essential to our research: graphs, stabilizers and words.

Since we can say, in a rough way, that automata can be seen as graphs
with certain properties and those objects constitute the core of this work, we need to
understand well what they are. We begin this section defining graphs and some of their
important characteristics that turn out to be useful for this work.

Definition 1.1.1. A graph I consists of two sets: a set V() of vertices and a set E(IN)
of edges, which are unordered pairs of vertices. We say that an element e € E(I1) gives
a pair of adjacent vertices.

It is possible to have multiple distinct edges with the same associated pair of
vertices as well as having loops, which are edges which start in a vertex and end at the
same vertex. If a graph has neither loops nor multiple edges, it is called a simple graph.

Graphs are mainly visualized by drawing diagrams consisting of points, which
represent the vertices, and arcs connecting two vertices; such arcs represent the edges.
An example of such diagram is shown in Example 1.1.3.

Definition 1.1.2. The degree (or valence) of a vertex v is the number of edges incident
with v; in other words, it is the number of the edges containing v. If v is a vertex for a
loop, then this loop adds 2 to the degree of v.



Chapter 1. Preliminaries 14

Example 1.1.3. Consider the graph 1 shown below. According to the Definition 1.1.1,
we have that V() = {1,2,3,4} and E(IM) has 6 elements. Furthermore, I is simple
and every vertex of 1 has degree 3.

I'I:1 2

Figure 1 — A simple graph T1.

Definition 1.1.4. A path in a graph is an alternating sequence of vertices and edges

{vo, €1, V4, -+, Vn_1,€n Vu} such that vivi,y = e, € E(N) foralli =1,2, ---,n—1.
A cycle or a circuit is a path {vy, e1, vy, -+, Vo1, €n, Vp}(n = 3) along with the edge
oo and v; # vjforall i,j = 1, ---, n; that is, a non-trivial path in which first and last

vertices are the same but no other vertex is repeated. A graph is connected if for any
two vertices v and w, there is a path with v as the first vertex and w as the last one.

Definition 1.1.5. A tree is a connected graph with no cycles. A rooted tree is a tree with
a distinguished vertex singled out, called the root.

The vertices in a rooted tree form a hierarchy, with the root at the highest
level, and the level of every other vertex determined by its distance from the root. Some
familiar terms are often used to describe relationships between vertices in a rooted tree:
if v and w are adjacent vertices and v lies closer to the root than w, then v is the parent
of w, and w is a child of v. Furthermore, a vertex v of degree 1 in a tree is named a /eaf.

Definition 1.1.6. An n-ary tree is a rooted tree such that each vertex has n children,
except the leaves.

Definition 1.1.7. If an edge set E() of a graph I is constituted by ordered pairs of
vertices, then I is said to be a directed graph. In the diagram representation of a graph,
a directed edge is drawn with a directed arrow. A directed path is a path where each eg;
is the ordered pair (Vv;, Vii1).

The Definitions 1.1.5 and 1.1.7 are particularly simple; however, they play
an important role in this work since trees are somehow related to monoids, as we will
explain in a more detailed way in Subsection 1.2.2. An automaton, an important object
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described in Section 1.3, is actually a directed graph and the following Example 1.1.8
Works as a preview.

Example 1.1.8. For the time being, the figure below appears to us only as a directed
graph. In Section 1.3, we will notice that it is much more than this.

0|0

0|1 Q

W o ————— 1

U

11

Figure 2 — A directed graph.

Another primary concept is the one of a stabilizer which will appear in Chapter
2. In order to define a stabilizer, we first recall what a group action is.

Definition 1.1.9. Let X be a set. An action of a group G on X is a group homomorphism
p : G — Sym(X), in which Sym(X) denotes the symmetric group over the set X.
Equivalently, itis a map ¢ : G x X — X such that

1. p(e,x) = xforall x e X; and

2. p(gh,x) = ¢(g,¢(h,x)) forallg,he Gand x € X.

We write g - x in lieu of (g, x) to simplify the notation. Moreover, we use the
notation G —~ X to express that G acts on X.

Definition 1.1.10. Let X be a set and let G act on X. For all x € X, the stabilizer of x is
defined by the set

Stab(x) ={ge G| g - x = x}.

Proposition 1.1.11. Stab(x) is a subgroup of G, for any x € X and for whatever group
G such that G —~ X.

Definition 1.1.12. Let G act on X. Then, G — X is a free action if, for every x € X, we
have Stab(x) = {e}. An element x with the property that Stab(x) = {e} is moved freely
by the action of G.

Later on in this work we will study stabilizers in the context of group actions
on trees.
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To finish this section, we give some attention to words. The notion of word
that we adopt here is simple but powerful concerning to the main subject of this work:
automata that generate free products of groups. Also, words are important to the
construction of the topics covered in this preliminary chapter since they are related to
free groups and they are the first entry into formal language theory and its relation with
groups.

Definition 1.1.13. Let X be a non-empty set. In the context of this research, X is
called an alphabet and its elements are called letters. Then, a word consists on a finite
sequence of elements of X, possibly with repetition. It also includes the empty word,
that is the word consisting of a sequence of no elements of X (represented by ¢).

Definition 1.1.14. The collection of all words over the alphabet X, including the empty
word, is denoted by X*.

Definition 1.1.15. Given an alphabet X = {xq, --- , X,}, @ language L is meant to be
any subset £ < X*.

A non-empty word w on the alphabet X is represented, in general, with the
form w = xyx2 - - - X, with X1, X2, -+, X, € X. Proceeding along this way of thinking, we
say that the length of w is n while the length of the empty word is O.

Note that the set X* can be endowed with a structure of a n-ary tree. More
explicitly, we declare that:

e Any w e X* is adjacent to wx for any x € X;
e The word ¢ (empty word) corresponds to the root of the tree;

e X" corresponds to the n-th level of the tree.

All formal inverses to the elements of X make up a set, denoted by X~ ';
for example, if X = {xy,xo} then X~ = {x;',x;'}. Thus, we are able to construct
the set {X u X~ '}* whose elements are finite strings of elements from X and their
formal inverses. From those assumptions, it should be natural that (x')~" = x and if
a word w can be written in the form w = x; Xz - Xxk_1 X € {X U X~ '}* then we have
w = xxox Tx e (X u X

We can, also, define a product in the alphabet X, called concatenation.

Definition 1.1.16. Given two non-empty words wy = Xy --- X, and wo = y; - - - yp, with
wy, o € X*, we define the concatenation wyw, by

W1W2:(X1"'Xn)(y1"‘yn):X1"'Xny1"’yn-
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The empty word works as the identity element with respect to this product.
With the operation defined in Definition 1.1.16, X* becomes a monoid (called the free
monoid generated by X) that satisfies the universal property:

Proposition 1.1.17. Let ¢ : X — M be a function from X to a monoid M. Then, there
is a unique monoid homomorphism ¢ : X* — M that extends ¢. This means that the
diagram below commutes:

Proof. Define & : X* — M by ®(w) = &(x1--- X,) = ¢(X1) - - - p(Xp); moreover, consider
Wy = Xy -+ X,and We = yy - - - ¥, words on X*. Then,

S(Wiwo) = O(Xq - XpV1 - Vn)

X1) -+ (Xn)p(V1) - (¥n)
X1 Xn)®(Y1 - Yn)

(
(
(
(w1)®(w2)

and

which means that ®(¢) = ¢; therefore, ¢ is a monoid homomorphism. Uniqueness
follows easily as well. O

1.2 Free groups

In any group, one always has simplifications obtained by cancelling elements
with their inverses; in other words, considering a group G and an element a € G, the
equations aa~' = a 'a = ¢ hold. Informally, we would think of a free group as a group
in which there are no other simplifications.

Still informally, consider X = {xq, --- , X} as a set of elements of a group F.
We say that a word w e {X U X~ '}* is freely reduced if it does not contain a subword
(word contained on w and composed by a sequence of consecutive letters of X u X ')
consisting of an element adjacent to its formal inverse. Using such intuition, we can
define a free group as follows:
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Definition 1.2.1. A group F is a free group with basis X if X = {xy, --- , X,} is a set of
generators for F and the identity e can not be represented by a freely reduced word in
X1, -+, Xp and their inverses.

It can be proved that, equivalently, every nontrivial element w € X can be
uniquely represented as a product w = x; - - - X, in which x; € X U X~ and xix;. 1 # ¢
foralli=1, --- k.

Based on the Definition 1.2.1, one can define the rank of a free group.

Definition 1.2.2. The rank of a free group F with basis X = {xq, ---, X,} is the number
of elements in X. That is to say, the rank of F is the cardinality of its basis X.

More formally, we give the following definition for a free group:

Definition 1.2.3. A group F is freely generated by a subset X < F if, for any group G
and any map ¢ : X — G, there is a unigue homomorphism $ : F — G extending ¢; that
is, we have gg(w) =op(w)VweX.

Note that, by the definition above, the subset X, which makes part of the
characterization of a free group, does not need to be finite. Also, we can say that F
satisfies the universal property so it makes the following diagram commute:

X L G

[ 7
pa

F

Proposition 1.2.4. Definitions 1.2.1 and 1.2.3 of a free group are equivalent.
Proof. See [5], page 54. O

Given a subset X of a group F, there are two features of the free group
generated by X: it is unique and it always exists.

Theorem 1.2.5 (Uniqueness of free groups). Let X be a set. Then, up to canonical
isomorphism, there is at most one group freely generated by X.

Theorem 1.2.6 (Existence of free groups). Let X be a set. Then there exists a group
freely generated by X. (By Theorem 1.2.5, this group is unique up to isomorphism.)

A proof of Theorems 1.2.5 and 1.2.6 can be found in [14], pages 20-24.

Definition 1.2.7. Considering n € N and X = {x;, ---, X5} a finite set with n distinct
elements, the group F, freely generated by X, is "the" free group of rank n.
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1.2.1 Free products of groups

In this subsection we define the free product of two groups A and B. The
construction used in this product can be easily extended in order to provide a good
definition for the free product of n groups. By taking isomorphic copies of such groups,
we may assume that An B = {e}.

Definition 1.2.8. A normal form is an expression of the form x; - - - x,, in which we have
e (Au B)\{e}, withi =1, --- ,n, and every two adjacent factors x; and x;, belong to
distinct groups.

The length of a normal form is exactly the number n; moreover, the identity e
is identified with the normal form of length zero.

Consider the set of all normal forms and define a multiplication - on this set:
let x = x;---x,and y = y; - -- ¥, be normal forms such that n, m > 1; next, define

e-X=x-e=x, (1.1)
for all normal form x, and

Xt XnYi - Yom ifx,e A y;eB or x,eB,y;eA,
X Y=2 X Xp12ZVo-VYm X y1€A O Xpy;eBandz=xy; #e, (1.2)

X1 Xp_1Yo  Ym if Xp, yye A or X, yreBandx,y; = e.

The set of normal forms endowed with the multiplication defined above is a
group. Due to this construction, we can define the free product of two groups A and B.

Definition 1.2.9. The free product of two groups A and B is the group defined by all
normal forms in A and B along with the multiplication defined by relations (1.1) and (1.2).
It is denoted by A = B.

Notice that the groups A and B are embedded into the group A = B. The next
proposition formalizes how this happens; its proof is straightforward.

Proposition 1.2.10. Consider A and B subgroups of a group G. Given a nontrivial
element g € G such that g can be written uniquely as a product g = g; - - - gn, with
gie(AuB)\{e} (i=1, ---,n), and every two adjacent factors g; and g;.1 belong to
distinct groups, then G ~ A« B.

We recall that, for a set X and a subset R of the free group F(X) on X,
the notation (X | R) is called a group presentation and denotes the quotient group
F(X)/RF™ in which RF™) denotes the smallest normal group containing all products
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of elements the type frf~" with r € R and f € F(X). We will not go into details as it
is not used later in this dissertation, but we notice that elements of RFX) are called
relations or relators. The following theorem gives another important characterization of
free products of groups.

Theorem 1.2.11. Let A and B be groups such that A = (X | R), B =Y | S) and
XnY=x.Then,A=B=(XUY|RUS).

Proof. See [5], page 72. O

1.2.2 Groups and actions on trees

Groups and graphs appear together often in Geometric Group Theory. By
Cayley’s Theorem, we learn that every group G generated by a finite set X can be
represented as a symmetry group of a connected, directed and finite graph, namely the
Cayley graph of G with respect to X. R. Frucht also proved that all finitely generated
groups can be realized as label and orientation preserving symmetries of finite, directed
graphs (see [9]). Then, analyzing groups by their actions on graphs seems to be a very
interesting approach to the study of Geometric Group Theory. This is the approach used
in our work as well.

Recalling what was said in Section 1.1, the free monoid X* can be seen as
a vertex set of a rooted tree. Considering n the cardinality of X, X* can be naturally
endowed with a structure of a rooted n-ary tree by declaring that the empty word ¢ is
the root of such tree and that two arbitrary words wy and w, (wy, w, € X) are connected
by an edge if and only if the equation w, = w; x holds, for some x € X. Furthermore, a
vertex labelled by w (w € X*) has | X| children whose labels are wx; for each x; € X.

Example 1.2.12. The main alphabet used in this work is the set X = {0, 1} so we show
here, as an example of what was stated above, the set X* described as a rooted tree
with all words on this alphabet constituting the vertex set of that corresponding tree.

Figure 3 — The set X* = {0, 1}* viewed as a rooted binary tree.
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It is convenient not to distinguish between a vertex and its label so we can
refer to "the vertex w" instead of saying "the vertex labeled by w".

Definition 1.2.13. Amap f : X* — X* is an endomorphism of the tree X* if it preserves
the root and the adjacency of the vertices. Formally, given a word w € X, for any two
adjacent vertices w, wx € X*, the vertices f(w) and f(wx) are adjacent as well; this
means that there exist w' € X* and x’ € X such that f(w) = w’ and f(wx) = w'x’.

Denoting the n-th level of the tree X* by X" < X*, we establish the following
proposition:

Proposition 1.2.14. If f : X* — X* is an endomorphism then f(X") < X".

Proof. Use induction on n. ]

Definition 1.2.15. An automorphism is a bijective endomorphism.

Here are some important theorems related to actions of groups on trees:

Theorem 1.2.16. A group G is free if and only if it acts freely on a tree.

Proof. See [15], page 70. ]

Corollary 1.2.17 (Nielsen-Schreier Theorem). Every subgroup of a free group is itself
free.

Proof. See [15], page 73. O

Our interest in this work is to study the groups of automorphisms and the
semigroups of endomorphisms of a rooted tree X*. Such endormorphisms can be
defined by an initial automaton, which will be introduced on Section 1.3. We shall denote
by Aut X* the group of all automorphisms of the rooted tree X*.

Using the automorphisms defined before, one can adapt the Definition 1.1.9
for actions on trees.

Definition 1.2.18. Consider the tree (monoid) X* and let Aut X* be the group of all tree
automorphisms of X*. We say that a group G acts by automorphisms on X* if there
exists a group homomorphism p : G — Aut X*. The homomorphism p gives an action in
the same sense of Definition 1.1.9.

We recall that a group action G x X — X is transitive if it has only a single
group orbit; that is, given a pair of elements x;, X € X, there exists an element g e G
such that gx; = x.



Chapter 1. Preliminaries 22

Definition 1.2.19. A level transitive action of a group G by automorphisms of the tree
X* is a transitive action on every level X" of the tree X*.

Definition 1.2.20. An element g € Aut X* is spherically transitive if, for each n, (g) acts
transitively on all vertices at distance n from the root; in other words, g acts transitively
spherically if (g) acts transitively on the set of words of length n.

Definition 1.2.20 is somehow related to Definition 1.2.19 since it can be seen
as a "restriction” for level transitivity.

A group acting on a rooted tree has some important subgroups which we
introduce next.

Definition 1.2.21. Let G < Aut X* be an automorphism group of the rooted tree X*.
Then, we define that

1. The subgroup Gy, = {ge G| g(w) = w}, in which w € X* is a vertex, is called a
vertex stabilizer.

2. The subgroup Stabg(n) = ﬂ Gy is called the n-th level stabilizer.

weXn

1.3 Automata

Automata form the mathematical model that constitutes the core of the
article studied in this research. As stated in [16], one needs a nice way to define
automorphisms of rooted trees in order to be able to perform computations with them;
one of the approaches for this involves automata. In this section, some main definitions
and properties of automata are described.

Based on the book [15], we give the following definition.

Definition 1.3.1. An automaton consists of a directed graph .4, an associated alphabet
X, a subset of vertices called the start states and a subset of states called the accept
states. Also, the directed edges are labelled by elements of the alphabet X.

Definition 1.3.1 shows a somehow easy way to think of an automaton; how-
ever, this work requires a more formal approach of such an object. The following
definitions related to automata given in this subsection are based mainly on [2] and [18].
Now, we give an equivalent but more formal definition for an automaton.

Definition 1.3.2. An automaton (or a Mealy automaton) A consists of a tuple (Q, X, 7, \),
in which Q is a set of states, X is a finite alphabet, 7 : Q x X — Q is a transition function
and )\ : Q x X — X is an output function.
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Definition 1.3.3. If the set Q is finite, then the automaton A is said to be finite (finite-
state automaton - FSA). If a given state g € Q is selected to be an initial state, then A,
is an initial automaton (see the figure of Example 1.3.6). Furthermore, A is invertible if,
for every state g € Q, the output function A(g, x) induces a permutation on X.

If A is an invertible automaton, then its inverse is the automaton .A~' whose
states are in a bijective correspondence A~' — A with the set of states of A, given
by ' — q. If 7(g,ws) = g and (g1, ws) = w» in A, then 77 '(g; ', ws) = gy and
Mg, we) = wyin A,

Definition 1.3.4. The language L(.A) accepted by an automaton is the set of all words
w € X* corresponding to directed paths p, that begin at a start state and end at an
accept state of the automaton A.

Automata, also, can be represented by Moore diagrams.

Definition 1.3.5. Given an automaton A = (Q, X, 7, \), the Moore diagram of A is a
directed graph such that its vertices are the states from Q and its edges have form
x|A(g,x

q %, 1(q, x) for ge Qand x € X.

Example 1.3.6. Consider the following Moore diagram of an automaton:

X|x x|y
X

start —{ Qo 4 Qi
z|x

yly | z|z yly|zly

ylz

as | qz

0 "7

X|x x|z

D:

Figure 4 — Moore diagram of an initial automaton with initial state qp.

Then, the state set of the initial automaton D is given by Q = {qo, 91, G2, G5},
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the alphabet by X = {x, y, z} and functions = and \ are explicitly given by

(g, X) =q;, I =1,2,3,4,
7(Go, ¥) = (G0, 2) = G,
(g, y) = (G, 2) = @, (1.3)
m(Qe, y) = (2, 2) = G,
(G, ¥) = 7(Gs, 2) = Qo
and
MQo, ®) = X,
@1, 0) =, (1.4)
MG, o) = 2,
A(Qs, ®) = e.

According to [17], automata can be interpreted as devices transforming words
on the following manner: if an automaton .4 on an alphabet X is in a state g€ Aand it
gets a finite word as an input w = x; - - - x, € X* and then A reads the first letter x; of w
returning the letter q(x) = A\(q, x) as an output and going to the state q|x, = 7(q, x1).
Then it is finally ready to process the rest of the word w in a similar fashion, reading
letter by letter. At the end it will stop at some state of .4 and the output will be a word on
X*. In other words, given a word w = x; - - - X,, an initial automaton takes the letter x; as
an input and returns a letter A(x;) as an output; then the rest of the word is manipulated
in a similar way by the automaton A ().

We can rewrite the sentences above in a more formal way: the functions =
and \ can be extended naturally to the functions 7 : Q x X* — Qand A : Q x X* — X*,
as follows:

m(q, W) = 7(q, X1 - Xn) = w(7(q, X1 ), Xo - - - Xn) (1.5)
M@ w) =A@, X1 -+ Xn) = A(G, X1)A(7(q, X1), X2+ - Xn). (1.6)

Then, by construction, using the relations (1.5) e (1.6), we realize that any
initial automaton acts on X* as a rooted tree endomorphism. If the automaton is
invertible, then it acts as a rooted tree automorphism.

Moreover, notice that since the automaton outputs exactly one letter for
each letter that it reads, then, expressing by |w/| the length of the word w, we see that
A(q, w)| = |w.

Before going trough some theory related to automata groups, we show some
examples of calculations involving automata with the interest of clarifying our ideas.
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Example 1.3.7. Consider the initial automaton D given in the Example 1.3.6:

X|x x|y
y|x

start —{ Qo a1
z|x

yly|zlz yly|zly

z

a3 4 Q2

7 "0

X|x x|z

D:
Figure 5 — Moore diagram of the initial automaton of the Example 1.3.6.
Remember that, in this case, Q = {qo, g1, @2, g3} and X = {x, y, z}. Then, let

yyy be a word in X*; since qq is the initial state of the automaton D, we obtain, using
relations (1.3) and (1.4):

(o, yyy) = 7(7(Go, ¥), y¥)
(1, YY)

(

(

7T7T(q1, )! )
0. y)

| Il
3

I
S

and

A(Qo, yyY) = Mo, Y)M7(qo, ¥): YY)
= X\(q1, yy)
= XAq1, Y)A(7(q1, ¥), ¥)
= Xy (G2, ¥)
= XyZ.

Thus, the automaton D reads the word yyy starting at the initial state g, and
outputs the word xyz. The sequence of states visited during such computation (the
associated path of yyy) is qo, g1, 2, @3- Note that |yyy| = |xyz| = 3
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Example 1.3.8 (given in [8]). Consider the following automaton H = (Q, X, 7, \):
0|0

/\
111 a b _OO0|0
\_/

1y - 110

Figure 6 — Moore diagram of the automaton H.

From the figure above, we see that the automaton’s state set is Q = {a, b};
also, its alphabet X is the set {0, 1}. The transformations = and X of the Definition 1.3.5
are determined by

7(e,0)=b (1.7)
m(e,1)=a
and
A(b,e) = \(a,0) =0 (1.8)
AMa, 1) =1

Let w = 0011 € X* be a word on the alphabet X. Using relations (1.7) and
(1.8) we shall compute 7(a, w) and A(a, w). Then,

©(a,0011)

7(b,011)
(b, 11) (1.9)
m(a, 1)

I
QD

and

A(a,0011) = 0A(b,011)
— 00A(b, 11) (1.10)
— 000A(a, 1)
— 0001.

As a further example of calculations, denoting 1/ = 1--- 1 (length /) for any
i € N, still by relations (1.7) and (1.8) we get A(a,1") = 1" and A(b, 1') = 01"~" for any
i € N.

Doing similar computations like the ones done in (1.9) and (1.10), we obtain
7(b,0011) = aand A\(b,0011) = 0001 as well. However, keeping the same graph, but
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changing the initial state of an automaton can return a different action on an element of
X*. The following example show this.

Example 1.3.9 (given in [2]). Let A = (Q, X, 7, \) be the automaton with state set
= {0, 1} and alphabet X = {0, 1} given by

0(%)

1

U

A: 1)1

Figure 7 — Moore diagram of the automaton A.

o1
o o |

The transformation associated with the state 1 is the identity transformation,
since any path starting from 1 is a loop with same input and output. Also, in this case,
the transformations = and \ are given by

m(1,e) =7(0,0) =1, (1.11)

and

A1, o) = o, (1.12)
Ao,0) = A(o,1) = 1.

Notice that the transformation associated with the state ¢ always changes
the input by \. For example, considering the word 111001 € X* and o as an initial state,
using relations (1.11) and (1.12), one gets

m(,111001) = 7(0,11001)
(o, 1001)

(

(
7(c,001)

(

(1,

7(1,01)
1)

|
»ﬂﬂ
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and

Ao, 111001) = 0A(c, 11001)
— 00A(c, 1001)
— 000A(0, 001)

— 0001A(L,01)
— 00010A(1, 1)
— 000101.

This means that the associated path consists of three loops at o, the edge to
1 and two loops at 1. Further, the output to the word 111001 € X* by the automaton A
is the word 000101.

Observe that, while 7(1,111001) = 7(¢,111001) = 1, one obtains that
A(1,111001) = 111001 so A(1,111001) # A(c,111001). This indicates that choosing
the initial state of an automaton to do computations using functions = and A has crucial
importance with respect to the input and to the path associated to the action of Q on a
word w e X*.

1.3.1 Automata groups and semigroups

Automaton groups are groups of automorphisms of rooted trees generated
by actions of automata. They were introduced, firstly, by R. Grigor¢huk and his infinite
periodic group in [11]; it provided some inspiration to other authors like N. Gupta and
S. Sidki that, in the article [12], presented the Gupta-Sidki group. Such groups were
made known at first as some interesting examples with "special" properties; despite this
fact, a considerable theory has developed since then and nowadays it is clear that such
groups have much more than specific "fancy" properties. This theory, also, has being
generalized to semigroups, with relatively recent results.

The two following definitions are given in [18]:

Definition 1.3.10. An automaton group is the group generated by all states of an
automaton A. It is denoted by G(A).

Definition 1.3.11. An automaton semigroup is the semigroup generated by all states of
an automaton A. It is denoted by S(A).

Given w € X* and g € Q, we use the convention w - g = A\(qg, w) in order to
agree with the notations of the articles [8] and [18].
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Since Definition 1.3.10 and Definition 1.3.11 do matter to this study, inspired
by [8] we make some considerations that converge to similar definitions of automata
groups and automata semigroups.

Having in mind that X* can correspond to a rooted tree, we analyze the
action of A on X*, observing the action of a state g € Q: such functions can be wiewed,
thus, as transformations of such tree; the function A sends the vertex w to the vertex
A(g, w) and g can be visualized as an endomorphism X* — X*.

We affirm that if wyx; - g = woxe (with wy, wo € X* and xy, X2 € X), then
w; - q = We. In fact, we have

WoXo = WiX1 - Qq
= )\(q, W1X1) (113)
= )‘(q! W1))‘(7T(q= W1)! X1)'

Analyzing the last equality of (1.13), since x; € X then A(7(q, wy), X;) must
be a letter of X; thus, by the order of the letters of wox, we have that A(7(q, wy), X1) = X2
necessarily. Therefore, A(q, wy) = w», which means that w; - g = ws.

The previous assertion indicates that, concerning the transformation A on
the tree, if a vertex w; is the parent of a vertex wy xy, then their images under the action
of A (w» and wox, regarding the assertion) are also parent and child vertices. In other
words, the action of A on the tree corresponding to X* preserves adjacency; therefore,
it is an endomorphism of such tree. Besides, the function )\ preserves lengths of words
on X* and, more generally, it preserves levels of the tree.

Remark 1.3.12. Let Q" be the free monoid such that all its words are of the form
a=Qq g withg e Qforalli =1, ---,n. Observe that each state g of Q determines
a function g : X* — X* arising from the function \; thus, a word o € Q" induces
an endomorphism X* — X* which is a composition of functions determined by each
element of a.

Here we introduce an important notation for the endomorphism discussed in
the above paragraph that will be used throughout this subsection: we denote by a(w)
or a - w the operation corresponding to the endomorphism which is a composition of
functions determined by «, with o € Q" and w € X*. Using this notation, o € Q* acts on
w e X* by a(w) = gn(gn_1(--- (g2(g1(w))))). Note, also, that if « = q; - - - g, With g; € Q,
then a(w) = a - w = A(Gn, A(Gn-1, A(- -, A(G2, A(g1, W))))).

If End X* denotes the endomorphism semigroup of the tree X*, then, since

Q" is also a semigroup, there exists, by the explanation given on Remark 1.3.12, a
natural semigroup endomorphism ¢ : Q* — End X* given by ¢(a) = a(w).
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Seeing that ¢ is a semigroup endomorphism, its image is necessarily a
semigroup; such image is denoted ¥ (.A). This helps us to define that

Definition 1.3.13. A semigroup S(.A) is called an automaton semigroup if there exists
an automaton A such that S(A) ~ £(A).

Definition 1.3.13 is strictly related to Definition 1.3.11 in the sense that the
semigroup X (.A) matches with the one described on the definition given before, since the
elements of End X*, by the previous discussion, can be seen as states of an automaton.

Recalling the Definition 1.3.3, an automaton A is invertible if its associated
function X\ : Q x X* — X* induces a permutation on X*; this means, also, that each state
g induces an automorphism X* — X*. In order to construct a definition for automata
groups, we think of a similar approach to the states/applications q being bijections by
looking for automata that produce invertible transformations of the set X*. In some
articles, like [8], the definition of invertible automaton says that an automaton is invertible
if its states induce invertible transformations of X*.

Consider an invertible automaton A = (Q, X, 7, \). Since the map q (the
endomorphism X* — X* associated to q) is invertible, given g € Q and v € X*, there
exists a unique w € X* such that w - g = ~. For each state g € Q, define the state g~
by its action on X*: v - g~ ' = wif and only if w - g = ~. Note that, for any g € Q and
w e X*, one has the following relation:

w-qq '=w-q 'g=w. (1.14)

Denoteby Q"' theset @' = {g~' | g € Q} and denote by (QUQ")* the free
monoid which its elements are words o = gy --- g, With ;e QU Q™ ', Vi=1,---,n.
By the construction above, one obtains that there exists a natural homomorphism
¢ (Qu @ " - End X*. Note that, by relation (1.14), we verify that the Im ¢ is a
subgroup of Aut X*, the automorphism group of X*; this image is denoted A(.A). Notice
that A(A) is well defined only when the automaton A is invertible. By this construction,
we are able to define that

Definition 1.3.14. A group G(A) is said to be an automaton group if there exists an
automaton A such that G(A) ~ A(A).

Definitions 1.3.14 and 1.3.10 are related in the same way as it was explained
before that definitions 1.3.13 and 1.3.11 are connected to each other.



Chapter 1. Preliminaries 31

Example 1.3.15. Consider the automaton H given in the Example 1.3.8. In this example
our aim is to find what the semigroup generated by H is.

0[0

/\
11 a b 00
\_/

1y - 110

Figure 8 — Moore diagram of the automaton of the Example 1.3.8.

Observe that # is not invertible so it does not generate a group. Further, in
this case, Q = {a, b} and X = {0, 1}.

We have that the automaton # acts on the set X*; it means that the semi-
group S(H) = X(H) generated by H is a subsemigroup of End X* generated by the
states a and b.

Now, one needs information about how the automaton works in order to get
information regarding S(#). Such data can be obtained by studying the actions of a and
b on words. Before going through this study, we introduce some useful notation to this
example: X“ represents the set of infinite sequences over X.

Also, we denote by 1 the infinite word expressed in countably many repeti-
tions of the finite word ~ € X*.

Consider v* € X¥, an infinite word on X. The first and important clue related
to the action of the states of the automaton # is that - b must begin with a 0, regardless
of whether its first letter is 0 or 1. This happens because, by the definition of H, 0 is the
output of all elements of X by the state b. Thus, we can write v - b = 03, with 5 € X“.
Using the definition of H, mind that

(08)-a=0(5-b) (1.15)
and
(08) - b=0(5-b). (1.16)
So, by relations (1.15) and (1.16), we realize that

(08)-a=(08)-b<==~y-b-a=~v-b-b
—y-ba=r- b

This holds for all v € X“; hence, ba = b® in the semigroup S(#). Due to
this relation, all the occurences of ba in words of S(#) can be replaced by b® so every
element of this semigroup can be written as a product of the form a't/, with i,j € N.
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At this moment, our intention is to show that every element of S(?) can be uniquely
expressed in this way. In the first place, observe that, for k,n e N, i,j € N u {0} and
n > j, the following relations hold:

01« . a=0(0%""1v. b)
= 00" '(1¥ - b) (1.17)
= 00(1“ - a)
_ Ok+11w;

01« . b = 0K(1“ - b)
— 0k0(1¥ - @) (1.18)
_ 0k+11w;

170 -a=1"(0"- a)
=1"0(0% - b) (1.19)
= 1"00%
=1"0%;

1"0¥. b =0(1"""0“ - a)
=01"1(0% - a) (1.20)
= 01" 10~.

Looking at the automaton #, we note that an input 0 never becomes an
output 1; then, the language accepted by #H consists on words which have no more
than one occurrence of 01. This means that, to find the result we want, it is enough to
analyze the action of &b/ on words of the form 01« and 1"0~.

Using relations (1.17) and (1.18), we find
01v.4ab = (01¥.a)-a b
— 021 . g p/ (1.21)
_ Oi+11w . b[

_ Oi+j+1 {w

The last two equalities of the relation above come from the fact that, by
induction, 01“ - & = 0""'1“ and 01« . b/ = O/**1“ for ke Nand i, j e N U {0}.
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On the other hand, using relations (1.19) and (1.20), we get

170¥ . &b = (1"0% - a)-a~'v
—1"0%. & 'v/
=1"0% - b/ (1.22)
= (170 - b) - /!
=01""0¥ - b/
= 01770,

As in the previous case, we used two equalities which are also proved by
induction: 170* - & = 1"0“ and 1"0* - b/ = 0/1"/0~,

Then, suppose that a'b/ = &b/, with i, j, k,/ € N. By (1.21) and (1.22), one
obtains 0'*/*11« = ok+/+11« and 0/1" /0~ = 0'1"~/0“, which implies that i+j+1 = k-+/+1
and j = [; consequently, i = k. This guarantees the uniqueness of the product expressing
every element of S(H). Since we have been able to express all elements in a unique
normal form, we have that the semigroup S(H) generated by the automaton # is
presented by Sg (a, b | ba = b?) (this notation means the semigroup generated by the
letters a, b and with the single relation ba = b?).

Automaton groups and automaton semigroups are also known as self-similar
groups and self-similar semigroups, respectively (see [16]).

1.3.2 Wreath product and wreath recursion

Here we introduce wreath recursions and show how they are important for
some calculations and for defining automata by such relations. In order to understand
what wreath recursions are, we remind the definition of wreath product since this concept
is crucial to us. The notion of wreath recursion gives a convenient language and notation
for automorphisms of the tree X*.

Then, before defining the wreath product, one needs to define the concept of
a semidirect product of groups.

Definition 1.3.16. A group G is called a split extension of a group H by a group F if
H < G and G contains a subgroup F; suchthat F; ~ F, Hn F; = {e} and HF; = G.
Alternatively, by this construction, one says that G is a semidirect product of H by F.
The notationis G=H x F.

Definition 1.3.17. Let H be a group and let X be a finite set such that H — X (right
action) by permutations; further, let G be an arbitrary group. The (permutational) wreath
product between G and H, denoted by G H, is the semi-direct product GX x H, in
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which H acts on the direct power G = G x --- x G (| X| times) by permuting the direct
factors.

Each element of the wreath product G : H can be written in the form gh, with
g € G¥ and h € H. Fixing some indexing {xi, ---, X4} of the set X provides a more
suitable notation for g: we write g = (g4, -+ ,gqg) forgie Gforalli=1, --- ,d; we say
that g; is the coordinate of g, corresponding to x;.

Two elements (g1, -+ ,94), (fi, -+, fy)3 € G H are multiplied according
to the following rule:

(91, - Ga)alt, - 19)B = (91farys -+ s Gafara)) 3, (1.23)

with g;, fi € G and «, 8 € H; furthermore, a(i) is the image of i under the action of « (the
index satisfying a(Xx;) = Xa(j))-

In the previous pages we learned that an automaton can generate a group or
a semigroup by its states which, in turn, generate endomorphisms of the tree X*. Now
we explain that, conversely, given a rooted endomorphism of the tree X*, it is possible
to create an initial automaton whose action on X* matches exactly that of a given
endomorphism. First, we need to define the section of a rooted tree endomorphism at a
vertex of X*; this is done based on the upcoming construction.

Consider g : X* — X*, an endomorphism of the tree X*, let x € X be a letter
and let w € X* be a word. Then, the equality

glxw) = g(x)w' (1.24)
holds, for some w' € X*. The application g|, : X* — X*, defined by
glx(w) = w', (1.25)
with w’ as in (1.24), is also a rooted tree endomorphism of X*.

Definition 1.3.18. A section of a tree endomorphism g : X* — X* at vertex x is the
endomorphism gl : X* — X* defined by (1.25).

Definition 1.3.18 can be extended to words x; - - - x, € X* in the following
manner: we define

g‘Xr“Xn = g|X1 o .g‘xn'

Now, given g : X* — X* rooted tree endomorphism of X*, we construct
an initial automaton .A(g) whose action coincides with the one defined by g. The set
Q of states of the automaton A(g) is defined by Q = {g|, | w € X*}, in which g|,
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represent different sections of g at the vertices w of the tree X*. The transition function
m: Q x X — Q and the transition function A : Q x X — X are defined by

T(9lws X) = glux
A(Glws X) = glw(X).

Notice that the initial automaton .A(g) has infinitely many states, since there
is a state for each word w e X*.

From now on, we will use the following convention: if g and h are elements of
some (semi)group acting on the set X and x € X, then

gh(x) = h(g(x)). (1.26)

Taking into consideration the convention (1.26), we can compute sections of
any element g of an automaton semigroup: in case that g = g; - - - g, and w € X*, then
we have

g|W = 01 ‘W ’ gz|g1(W) T gn|g1---g,,,1(w)- (1.27)

Definition 1.3.19. Let g be an automorphism of the tree X*. Then, its portrait is the
tree X* in which every vertex w € X* is labeled by 0, € Sym(X) that represents the
action of g|, on X. The depth of a portrait is the number of the drawn levels of it.

Note that if [X| = 2 then we just need to distinguish the vertices whose
action g|, is non-trivial. Also, we observe that the portrait determines uniquely the
automorphism g because, given a word w = X; - - - X, we have

gw) = g(x - Xn) = g(X1)glx; (X2)Ilxixe (X3) - - - Glxy-xpy (Xi)-

In terms of sections, V. Nekrashevych gives in [16] an equivalent and conve-
nient definition of automaton groups:

Definition 1.3.20. For X finite set, an automorphism group G of the rooted tree X* is
an automaton group (self-similar group) if for every g € G and w € X* we have g|, € G.

Proposition 1.3.21. Let G be an automaton group. Then, for any G there exists a
natural embedding V : G — G Sym(X) defined by

V(g) = (g1, -+, Ga)Ag, (1.28)

inwhichge G, (g1, -+ ,9a)\g € G Sym(X) = G x --- x GxSym(X), g1, --- ,gq are
the sections of g at the vertices of the first level (the cardinality of X is d) and, finally, A\q
is a permutation of X induced by the action of g on the first level of the tree X* (note
that Ag = (Ag(1), -+, Ag(d))).
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In general, the embedding defined by (1.28) exists also for automaton semi-
groups; however, since we will work only with groups throughout this study, it is not
necessary to cover the general case. In Section 1.3.5 we will show why the embedding
(1.28) is useful to define automaton groups. We will use the same notation as [18]: if

V(g) = (g1, -+ ,9d)\g, then we write g = (g1, -+ , Gd) Ag-

Definition 1.3.22. The description of the action of each g in an automaton group G,
denoted by g = (g1, - -+, ga)Ag, is called a wreath recursion defining G.

One relevant comment concerning a wreath recursion consists of saying that
it is a reasonable mechanism used to compute sections of products of automorphisms.
Letg = (g1, --- ,9a) g and h= (hy, ---, hg)\s be two rooted automorphisms defined
by wreath recursion. By the relation given in (1.23), we obtain

gh = (g'la ,gd)/\g(hh o 1hd))\h
= (G1hy,1)s = s Gahrg(d)) (AgAn)- (1.29)

Then, using (1.29) and the notation of [18], we will be able to prove the
Proposition 1.3.21.

Proof of Proposition 1.3.21. Let g and h be automorphisms of the automaton group G.
We want to prove that V, as defined before, is an injective homomorphism.

In fact, ¥ is an homomorphism, since

V(g)W(h) = (g1, -, Ga)Ag(h1, -, hg)An
= (91hrg(1)s =+ s 9ahag(a)) (AgAn)
= ((gh)1, ..., (gh)a) Agn
= V(gh).

Also, remembering convention (1.26), since the permutation Ay, is clearly
given by applying first Ay and then \,, and similarly, we have that the automorphism
(gh); is computed by first applying g; and then applying h,, ;. Also, W is injective, since

if we have V(g) = (e, ---, €q)esym(x) (We denoted by e, the identities appearing in
this relation), then g itself is the identity automorphism, since its sections and the
permutation are trivial. O

As V. Nekrashevych defines automaton groups by sections of automorphisms
(see Definition 1.3.20), in [16] he gives a definition for automaton groups based on the
elements of Proposition 1.3.21.
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Definition 1.3.23. An automorphism group G # Aut X* is self-similar if it satisfies
G < G Sym(X). (Recall that G < G Sym(X) means that V(G) < G Sym(X), in which
V is an application ¥ : Aut X* — Aut X* ! Sym(X).)

Example 1.3.24. Consider the automaton # explored in Example 1.3.8 and Example

1.3.15 whose Moore diagram is given by

0|0

T
111 a b 00
~_

H: 110

Figure 9 — Moore diagram of the automaton of the Example 1.3.8 and Example 1.3.15.

By virtue of the latter considerations, we get that the wreath recursions
corresponding to the states of the automaton 4 are

a=(b,a)l = (b,a)
b= (b,a)\,
in which 1 is the identity map 1 : X — X (X = {0,1}) and A : X — X is defined

by A(0) = A(1) = 0. Notice that X is not a bijection, but we are now dealing with an
automaton semigroup in the current example.

Using the product given in (1.29), one gets the following relations:
a& = (b,a)l(b,a)l
= (bby, aa;)11
= (b%. &);

ab = (b,a)l(b,a)\
= (bby, aa; )1\
= (b?, &)\

ba = (b,a)\(b,a)l
= (bby, aa)) A\ 1 (1.30)
= (b, ab)\;

b? = (b, a)\(b, a)\
= (bby, aay) A\ (1.31)
= (b?, ab) ),
in which a, and b, denote the endomorphisms induced by the action of A. Note that
(1.30) and (1.31) corroborate the deduction of ba = b?, done in the Example 1.3.15.
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1.3.3 Dual automata

The definition of an automaton is symmetric because, given any finite au-
tomaton, one can construct a new automaton by interchanging the state set with the
alphabet as well as interchanging the output function with the transition function. Such
construction determines a dual automaton.

Definition 1.3.25. Let A = (Q, X, w, \) be a finite automaton. The dual automaton of
the automaton A is a finite automaton A = (X, Q, A, 7) such that, for any x € X and
q € Q, we have

Notice that, by the definition above, the dual of the dual of an automaton A
is exactly A. If the alphabet X is larger than the set of states Q, then it may be more
convenient to draw the dual Moore diagram, which is the Moore diagram of the dual
automaton A, instead of the usual Moore diagram of A.

Since the alphabet X and the state set Q are switched in the automaton A,
the arrows of the dual Moore diagram of A show the actions of elements of the alphabet
X while the labels show the transitions between letters of the the states of Q. More
accurately, for every (x, q) € X x Q there exists an arrow starting from x, ending on
7(x, q) and labeled by q|X(x, q).

Despite the fact that it may sometimes be more useful to work with the dual
Moore diagram (rather than working with the Moore diagram itself), we need to be a
little careful because some properties are not carried over from the automaton to its
dual. For example, it is possible to find an automaton that is invertible while its dual is
not and vice versa. The next example shows that there exists the possibility of having a
dual automaton that is invertible while the original automaton is not.
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Example 1.3.26. Consider the automaton D analyzed in Examples 1.3.6 and 1.3.7.

X|x x|y
ylx

start — Qo ai
z|x

yly|zlz yly|zly

b4

as 4 o))

VIR

X|x x|z

D:

Figure 10 — Moore diagram of the initial automaton of Examples 1.3.6 and 1.3.7.

Then, applying Definition 1.3.25, one obtains the dual automaton D whose
Moore diagram is given by

Qo|Qo
Q3|3

f

X

Qo| a1 Q2| Q2

a1a; Qo a1

Q1\CI2C y 92|95 ~ DCIz’Cls

folYe \/ 33|90

G119z

o))

Figure 11 — Dual Moore diagram of the automaton D.

Note that the states of the automaton D do not induce permutations while
the states of the automaton D do and so the automaton D is invertible even though the
automaton D is not invertible.
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Example 1.3.27. Consider again the automaton ‘H of Examples 1.3.8, 1.3.15and 1.3.24
whose Moore diagram is given by

0/0
T
1M1 C a b _ 0|0
\/
2 1]0
Figure 12 — Moore diagram of the automaton of Examples 1.3.8, 1.3.15 and 1.3.24.

Hence, the dual automaton of % is the automaton % whose Moore diagram

alb

1 _Dala

7i: blb

Figure 13 — Dual Moore diagram of the automaton H.

Since the states of an automaton A generate a semigroup, the states of the
dual automaton A of A generate a new semigroup as well; these two semigroups are
related to each other, as the next definition shows.

Definition 1.3.28. Let G be an automaton semigroup generated by the states of an
automaton A. The dual semigroup of G, denoted by é, is a semigroup generated by the
states of the dual automaton A.

A relevant class of automata which involves dual automata is the class of
bireversible automata.

Definition 1.3.29. A is a bireversible automaton if A itself, its dual A and the dual of
A~" are all invertible.

Concerning the next proposition, we denote by the same symbol both the
element of a free monoid and its image under canonical epimorphism onto its corre-
spondent semigroup.
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Proposition 1.3.30. Consider G, an automaton semigroup generated by a finite set S
such that G —~ X* and consider G, a dual semigroup to G acting on S*. Then,

1. Foranyge Gand w e X*, g|lw = w(g) in G.

2. Foranyge S*and w e G, W|g = g(w)in G.

Proof. See article [21]. O

1.3.4 Automata generating C, and C, = Co

In the introduction of this dissertation we asserted the theorems that will be
proved in the next chapters, all of them related to automata generating free products of
groups of order 2. One should note, however, that such theorems do give the answers
to the question related to automata generating free products of n copies of C, forn > 4
only. What about the cases C,, C, = C, and C, + Co = Co?

The first automaton which opened ways to the study of automata generating
a free product of groups of order 2 was the Bellaterra automaton B; that generates the
free product C, = C, = C,. Such automaton, along with the others from the Bellaterra
family, will be introduced in Section 1.3.5.

The groups C, and G, = C, are also automata groups. It can be easily seen
that the automaton with one state only in which such state acts as o on the alphabet
{0, 1} generates the group C, and so the Moore diagram of such automaton is given by

01 o D10

Figure 14 — Moore diagram of the automaton that generates C..

We have that C, = C, is isomorphic to the dihedral group D... In the article
[23], it is cited that the automaton which generates C, = C, ~ D,, has the following
Moore diagram:

0|1

1]0

Figure 15 — Moore diagram of the automaton generating C, =« Co ~ D,..
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Another interesting group generated by the states of a 2-state automaton
is the infinite cyclic group Z; this group is isomorphic to the group generated by the
automaton whose Moore diagram is exactly

0[0

()

01
1

102 o

1)1

Figure 16 — Moore diagram of the automaton generating the infinite cyclic group Z.

The automata groups described above are some of the few ones that are
generated by automata on two states over an alphabet of two letters, as the next theorem
shows:

Theorem 1.3.31. The only groups generated by automata on two states over an alpha-
bet of two letters are

¢ the trivial group;

the group GC;

the Klein group Z, (P Z»;

the infinite cyclic group Z;

the infinite dihedral group D, (~ C; = Cy);

the lamplighter group (P Z» x Z.
Z

Proof. See [23], page 7. O

1.3.5 Bellaterra automata

One family of automata which deserves our attention, since it composes
the answer to the main problem of this study, is the Bellaterra automata family. The
first Bellaterra automaton (Bs) was discovered while classifying all bireversible 3-state
automata over a 2-letter alphabet so this automaton is a component of the class of
bireversible automata, which appears to be a natural source for automata generating
free products and free groups. Also, the automaton B; is a nice and seemingly simple
self-similar example; that is, all states of such automaton generate a group.
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The first important result about the Bellaterra automata family was proved by
Y. Muntyan and D. Savchuk; it was about the group generated by Bs.

ool 1  o]1|1]0 0/0

g

c

Figure 17 — Moore diagram of the Bellaterra automaton B5s.

Theorem 1.3.32 (Muntyan, Y. and Savchuk, D.). The automaton B; generates a group
isomorphic to C; = Cs = Co.

Proof. See [6] or [16] (Nekrashevych’s book gives a more detailed proof, on page
24). O

Considering the alphabet X = {0, 1}, we have that the functions a, b and ¢
defined by the states of the Bellaterra automaton B3 act on the set X* of finite words
over X. Those transformations are uniquely determined by wreath recursion, namely:

a=(c,b),
b= (b,c), (1.32)
c=(a, a)o.

Remark 1.3.33. { = (&, t;) means that, according to the relation (1.32), for any w € X*,
we have t(0w) = Ofy(w) and t(1w) = 1t;(w); furthermore, for any w e X*, t = (f, t)o
means that {(0w) = 1f{(w) and t(1w) = 0t;(w).

Notice that the convention (1.26) works fine with the notation of the wreath
recursion defined previously. In fact, writing t = (&, t)o, for example, corresponds to
first acting on X* by (), ;) and then permuting the first letter of a word w € X* by the
permutation o, regarded as a permutation of X*.
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Starting from the Bellaterra automaton B3, it is possible to produce a family of
bireversible automata such that all of their states define involutions (applications which
are their own inverses); this setup is relatively simple: looking at the automaton B3, we
insert new states on the path from the state c to the state a.

Now we introduce the Bellaterra automaton 5,4, which has 4 states. Such
automaton has great importance to this study since one of the main results is related to
it (see Theorem 2.1.1). The Moore diagram of B, is given by

a
1
1] 01
b 1] d
0o0C {1 0/0 o
01
1| 0
o
c

Figure 18 — Moore diagram of the Bellaterra automaton B,.

The states of B4, also, are defined by the following wreath recursion:

a=(c,b),

b= (b,c), (1.33)
c=(d,d)o,

d=(aa)o

It is worth reminding that Remark 1.3.33 also works for the relation (1.33).

Still having in mind the idea of inserting new states on the path from the state
c to the state a of the automaton B3, we can give rise to the family of the Bellaterra
automata, establishing the wreath recursion that defines each Bellaterra automaton
denoted by B, n > 4.

Then, B (n > 4) is an n-state automaton whose Moore diagram represent-
ing this Bellaterra automaton is the following:
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qn—S Qn-4
01 0|1
'1|o"1|o‘
A
111 o[1]1]0
b
0|0 0|0 _
A
0[1]J1/0
v
01 0]1 O
‘—}‘—} 02
10 110
Cc Q4 gz

Figure 19 — Moore diagram of the Bellaterra automaton B (courtesy of Altair Santos).

Also, the automaton B is defined by the wreath recursion

g1, G1)0o, (1.34)
qf: ql'+11qi+1)0-l'7 i:1a"'sn_41

All the ; € Sym({0, 1}) are chosen arbitrarily. As well as in the cases of
B3 and By, the assertions of Remark 1.3.33 are valid for the equalities of the wreath
recursion (1.34) defining B".

Remark 1.3.34. Note that, in the previous figure representing the Moore diagram of
the automaton B™, we chose conveniently the permutations ¢; € Sym({0, 1}), with
i =1, ---,n—4,in order to show a better representation of such automaton. We
emphasize, again, that in the Bellaterra automaton B all the permutations o, are
chosen arbitrarily.

Researchers believe that the Bellaterra automata family has a significant
property related to free product of groups: for them, each automaton B, n > 3, having
at least one of the o; nontrivial, generates the free product of groups of order 2. M.
Vorobets and Y. Vorobets, in [22], found the first result endorsing such conjecture: they
showed that if the number of the states of the automaton is odd and o; = (0 1) for all
i =0, ---,n—3, then the conjecture holds. If the automata has an even number of
states and the number of nontrivial ¢; is odd, then the supposition is also true; it was
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proved in a subsequent paper submitted by the same authors and B. Steinberg (see
[20]).

We intend, in this dissertation, to prove that any n-state Bellaterra automaton
(n = 4) satisfying 0o = (0 1) and o,_3 = (0 1) generates the free product of groups of
order 2. The next two chapters are devoted to the proof of the case n = 4 (see Chapter
2) and to the proof of the general case n > 4 (see Chapter 3).
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2 Automaton generating Co « Co = Co = Co

“The art of doing mathematics
consists in finding that special
case which contains all the
germs of generality.”

David Hilbert, 1862—1943

This chapter is dedicated to the particular case of the Bellaterra automaton
B4 and to the proof that it generates a free product of four groups of order 2. Such case
plays an important role in our work since the steps used in the construction of the main
proof serve as a way to the next chapter’s main proof which gives a "generalization"
for the case of the automata B'™. First, we give some information about the automaton
B, itself and then we establish some results converging to the proof that the group
generated by the states of B, is isomorphic to C, = C, = C, = Co. We follow the exposition
from [18].

2.1 Considerations about the automaton B4

First of all, we shall recall the 4-state Bellaterra automaton B,4. In Section
1.3.5 it was shown that its Moore diagram is given by

a
1
1] 01
b 1] d
ool 1 0[0 o
01
1 0
o
(o

Figure 20 — Moore diagram of the Bellaterra automaton B,.
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We recall, also, that its transition and output functions are given by the wreath
recursion defined on (1.33).

Let G be the group generated by the states of the Bellaterra automaton B,.
The following theorem is the main result of this chapter.

Theorem 2.1.1 (D. Savchuk, Y. Vorobets, [18]). The group G is isomorphic to the free
product Cg * Cg * Cz ® Cg.

However, before proving Theorem 2.1.1, we need to prove several preliminary
facts in order to obtain a structure for the main proof. All of them are proved in the next
section.

2.2 Construction of the proof of the Theorem 2.1.1

In the first place, observe that the inverse of the Bellaterra automaton B,
is the automaton itself; that is, we have that B, = B,. In fact, to create the inverse
automaton of an invertible automaton .4 by using the Moore diagram of 4, we simply
switch the input and the output of each edge; however, in the case of By, switching input
and output of each edge does not change any information contained on it, since all
states of such automaton induce involutions (applications which are thir own inverses).

The fact that B;' = B, helps us to show that the automaton B, is bire-
versible: it suffices to show that the dual automaton E is invertible. Indeed, the Moore
representation of B, is given by

alc alb
cld
& "9
~_cd -~
U aa U
By blb b|c

Figure 21 — Moore diagram of the dual automaton of ;.

Since states 0 and 1 induce permutations on the set {a, b, ¢, d}, the dual
automaton B, is invertible. By switching inputs and outputs of all edges of the Moore
— —~—1
diagram of B4, we find the Moore diagram of its inverse automaton B,  which is given
by
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cla bla
() dd (]
—1 —1 /d_|0\‘ —1 —1
0 0 —_dd 1 1
U de U
[3:*1: b|b clb

Figure 22 — Moore diagram of the inverse automaton of I/S’Z

Therefore, the Bellaterra automaton B, is bireversible.

The dual automaton B, can be represented by a wreath recursion; in such
case, it is given by
0=(0,0,1,1)(acd),
1=(1,1,0,0)(abcd). (2.1)

Let I be the dual group to the group G (defined in Section 2.1); in other words,
I is the group generated by the recursions of (2.1). This group acts on a rooted 4-ary
tree, denoted by T, whose vertices are labeled by words over the alphabet {a, b, c, d}.
Using the product described on (1.29), we get

32

(c,b)l(c,b)l
(c,b)(c,b)11 (2.2)
(¢?, b?);

b® = (b, c)1(b, )1
— (b, c)(b, c)11 (2.3)
_ (b2, C2);

¢? = (d,d)o(d, d)o
= (d,d)(d,d)oo (2.4)
= (&%, d%);

d? = (a,a)o(a, a)o
= (a,a)(a,a)oo (2.5)

= (&, &).
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Due to relations (2.2), (2.3), (2.4) and (2.5), we have
E=br=c*=d’°=e (2.6)

in G, which means that, in fact, a, b, ¢ and d are involutions. One explanation for this fact
is that the permutation of &2, b, ¢ and d? on the first level corresponds to the identity
and by the wreath recursion defining each of these squares, on the subsequent levels
they act as the identity as well, as can be seen by checking the entries on the right
hand sides of equations (2.2), (2.3), (2.4) and (2.5). Furthermore, recalling that I acts
on the words over {a, b, ¢, d}, we get that the image under any element of I of any word
containing &2, b?, ¢ or d? as subwords will also contain &, b?, ¢® or d? as subwords.
Then, by excluding all words over {a, b, ¢, d} which have &, b?, ¢?, d? as subwords, we
create a subtree T of T that is invariant under the action of I and which contains the
words on {a, b, ¢, d} not having subwords of the form &2, b?, ¢® or d°. Note that ¢, root of
T, has four children while all other vertices in T have three; one visualizes this on the
next figure, in which tree T and subtree T (represented in red) are drawn.

PYANN
WA

& ab ac ad ba b®> bc ca cb 2 cd da db dc d?

Figure 23 — Tree T and its subtree T.
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Proposition 2.2.1 (Sunié, Z., [18]). Let G be any semigroup generated by a finite
automaton and G be its dual semigroup. Then, G is finite if and only if G is finite.

Proof. Remember that the dual of the dual of an automaton A is the automaton A
itself and so the dual of the dual of group G coincides with G. Then, assuming one
direction true (for example, "G finite implies in G finite"), then thegther one follows (in
our example, replacing G by G assures that "G finite implies in G=G finite") so it is
enough to show the implication in only one direction.

Indeed, suppose G is a finite semigroup. Let v € G be an element of the dual
semigroup and let g be a vertex of the tree the semigroup G acts on. By Proposition
1.3.30 we have v|; = g(v) in G; this implies that the number of different sections of
v depends on the number of elements of G, and this number is bounded since G is
finite. As there are only finitely many different automata with a fixed number of states
(elements of G), we conclude that the possibilities for v € G are limited and so the dual
semigroup G is finite. O

Lemma 2.2.2. Let H be the subgroup of the group G (generated by the states of the
Bellaterra automaton B,) defined by H = {(ab, bc, cd, da). Then, the quotient group
H / Staby(2) is cyclic of order 4 and the portrait of depth 2 of every element (see
Definition 1.3.19 for the definition of portrait) of H must coincide with one of the following
portraits:

AL A A

Figure 24 — Possible portraits of elements of H of order 2.

Proof. In order to prove this lemma, we establish how the elements of H / Staby(2) act
on the two first levels of the tree {0, 1}* by showing how the elements of the generator
set of H ab, bc, cd, da act; further, we show the portraits of depth 2 of each element of
such set in order to guarantee that they match with the ones of the statement of the
lemma.
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First of all, we represent the elements ab, bc, cd and da by wreath recursions,
using the ones of (1.33). Then, we obtain

ab = (c,b)1(b,c)1
= (c,b)(b,c)11 (2.7)
(cb, bc);

bc = (b,c)l(d,d)o
= (b,c)(d,d)1o (2.8)
= (bd, cd)o;

cd = (d,d)o(a, a)o
= (d,d)(a,a)oo (2.9)
= (da, da);

da= (a,a)o(c,b)l
= (a,a)(b,c)ol (2.10)

= (ab, ac)o.

Summarizing the results found in (2.7), (2.8), (2.9) and (2.10), we have

ab = (cb, bc),

bc = (bd, cd)o, (2.11)
cd = (da, da),

da = (ab, ac)o.

Let us construct the portrait of depth 2 of the element ab: by relation (2.11),
ab acts as 1 on the first level of the tree {0, 1}*. On the second level, its sections are cb
and bc. Since cb = cd da ab (product of generators of H), we obtain that the wreath
recursion defining cb is given by

cb

(da, da)(ab, ac)o(chb, bc)
(da, da)(ab, ac)(bc, cb)o
da’b®c, da’c?b)o

de, db)o

~(
~(

so it acts as o on the first level (here it corresponds to the second level of ab); also, still
by (2.11), bc acts as o on the first level. Having in mind that the first level of cb and bc
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correspond to the second level of ab, we conclude that the portrait of depth 2 of ab is
given by

The construction of the portraits of bc, cd and da is similar to the one of the
element ab. In the case of bc, using (2.11) we get that bc acts as o on the first level of
{0, 1}*. Because the sections of bc are bd and cd and using the fact that the wreath
recursion defining bd is

bd = bc cd
= (bd, cd)o(da, da)
= (bd, cd)(da, da)o

= (ba, ca)o

and cd = (da, da), we conclude that bd acts as ¢ and cd acts as 1 on the first level
which means that bc acts as o on the first half of the second level while it acts as 1 on
its second half. Thus, the portrait of depth 2 corresponding to the action of bc on the
first two levels of the tree is

The element cd = (da, da), by (2.11), acts on the first level as 1 and acts
on the entire second level as ¢ since da = (ab, ac)c so the portrait of depth 2 of cd is
essentially the same as the one of ab.

Finally, the element da = (ab, ac)c acts as ¢ on the first level. Due to the
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relations on (2.11), we get ab = (cb, bc) and

ac = ab bc
= (cb, bc)(bd, cd)o
= (cd, bd)o;

then, ab acts as 1 on the left half while ac acts as ¢ on the right half of the second level
of the tree. This implies that the portrait of depth 2 of da is given by

\

It can be shown that the product of any two of the portraits of the statement
yields another such portrait, showing that H / Staby(2) is a group of order 4, so we get
that these portraits are all of the possible ones. Instead, remembering that we have,
by definition, H / Staby(2) = {ab, bc, cd, da) / Staby(2), we will show that the quotient
group H / Staby(2) = (bc) / Staby(2) is cyclic and has order 4. Then, we analyze the
actions of the powers of the element bc.

Note that bc = (bd, cd)o; then, we obtain
(bc)? = (bd, cd)o(bd, cd)o

— (bd, cd)(cd, bd)oo (2.12)
— (bdcd, cdbd),

(bc)® = (bdcd, cdbd)(bd, cd)o (2.13)
— (bdcdbd, cdbdcd)o

and

(be)* = (bdcdbd, cdbded)a(bd, cd)o
— (bdcdbd, cdbded)(cd, bd)oo (2.14)
((bdcd)?, (cdbd)?).

Analyzing the actions of these powers of bc on the first two levels of {0, 1}*
by constructing the portraits of depth 2 of those elements, we get the following results:
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(bc)? acts as 1 on the first level (see (2.12)) and since its sections are bdcd and cdbd,
with wreath recursions respectively given by

bdcd = (ba, ca)o(da, da)
= (ba, ca)(da, da)o

= (bada, cada)o
and

cdbd = (da, da)(ba, ca)o

= (daba, daca)o,

then (bc)? acts as o on the second level of the tree so the portrait of depth 2 correspond-
ing to the action of such element on the first and second levels of {0, 1}* coincides with
the portrait of ab. Also, (bc)® acts as o on the first level (see (2.13)) and, since bdcdbd
and cdbdcd are the sections of (bc)® defined by

bdcdbd = (bada, cada)o(ba, ca)o
= (bada, cada)(ca, ba)oo

= (badaca, cadaba)

and

cdbdcd = (daba, daca)o(da, da)
= (daba, daca)(da, da)o
= (dabada, dacada)o,

respectively, we infer that the action of (bc)® on the two first levels of the tree {0, 1}* is
the same as the action of the element da on the considered levels; therefore, its portraits
of depth 2 are the same. Lastly, (bc)* acts as 1 on the first level (by (2.14)) and on the
second level as well, because

(bdcd)? = (bada, cada)o(bada, cada)o
= (bada, cada)(cada, bada)oo
= (badacada, cadabada)

and

(cdbd)? = (daba, daca)o(daba, daca)o
= (daba, daca)(daca, daba)oo
= (dabadaca, dacadaba);
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thus, its portrait of depth 2 corresponds to the identity portrait that is given by

As a result, the powers of bc restricted to the two first levels of {0, 1}* coincide
with the restrictions of the elements of the generator set of H; then, be, (bc)?, (be)® and
(bc)* generate H / Staby(2). Furthermore, since (bc)* acts on the two first levels of the
tree as the identity, we conclude that H / Staby(2) is cyclic and has order 4. O

We recall the following result without proof.

Proposition 2.2.3. An automorphism g of a rooted binary tree acts transitively on levels
if and only if on each level the number of sections of g at the vertices of this level acting
nontrivially on the first level below is odd.

Proof. See [4], page 118. O

Lemma 2.2.4. The group G is infinite.

Proof. The goal of this proof is to show that G acts transitively on each level of the tree
{0,1}*. By proving this and by definition of a transitive group action we will have that for
every two elements wy and w; in a level of the tree {0, 1}*, which is infinite, we find an
element g € G such that g - wy = w, so we get infinite elements g in G.

Consider the subgroup H = (ab, bc, cd, da) of G, introduced in Lemma
2.2.2; such subgroup has other important features. First, we note that H consists of
all elements of G represented as words of even length in a, b, ¢ and d: this happens
because the generators of G are involutions by (2.6) so every product of an even number
of generators of G has possible cancellations of pairs of equal letters and can thus be
written as a word of even length where every letter has exponent 1 and so can be written
as a product of generators of H and, conversely, every product of generators of H has
even length. Moreover, H is a subgroup of index 2 in G by the previous consideration:
since all words of even length belong to H, we get exactly two cosets of H in G (one
containing all words on {a, b, ¢, d} of even length and other one containing all words of
odd length).
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We claim that H is a self-similar group. By (2.11), ab, bc, cd and da are
described in a wreath recursion; observing each one of those elements and using the
fact that cb = cd da ab, bd = bc cd and ac = ab bc, which implies that ¢cb, bd, ac € H,
we have that all sections of generators of H belong to such group, for all w € X*.
Moreover, by performing calculations similar to those seen in Lemma 2.2.2, we see that
the sections of any element belong to H. Thus, by Definition 1.3.20, H is self-similar.

By Proposition 2.2.3 an automorphism g € H of the rooted binary tree acts
level transitively if and only if on each level the number of sections of g at the vertices
of this level acting nontrivially below the first level of the section is odd. The proof that
the number of sections of g at the vertices of this level acting nontrivially below the first
level of the section is odd happens by induction of levels: first, by induction we have
that each element g € H acting nontrivially on the first level acts spherically transitively,
so the result is trivially true. Now, suppose that the number of sections of the level k
acting nontrivially on the first level (below the k-th level) is odd. It follows that, using
the fact that H is self-similar, we get that all sections of g are also elements of H; this
means that, from level k onwards, the tree has same behavior as the one of first levels
so each of the sections will produce exactly one switch on the (k + 1) — th level while
the sections acting trivially on the first level produce either none or two switches on the
level k + 1.

Then, the total of switches on the level k + 1 is an odd number and, thus,
g € H acts transitively on {0, 1}*. Therefore, since H is a self-similar subgroup of G, the
group G itself acts level transitively on the tree. The result follows. O

Corollary 2.2.5. The group ', dual of G, is infinite.

Proof. This Corollary follows immediately from Lemma 2.2.4 and Proposition 2.2.1. By
Lemma 2.2.4, the group G is infinite; then, by a contrapositive argument applied to
Proposition 2.2.1, we obtain that the dual group T is infinite. O

Corollary 2.2.6. The stabilizers of levels of T in I are pairwise different.

Proof. We have that all stabilizers have infinite order; this happens because T is infinite
(see Corollary 2.2.5) and all stabilizers of levels are finite index subgroups of I'. Consider
g € Stabr(n), a nontrivial stabilizer and let m > n + 1 be the smallest level on which g
acts nontrivially (its existance is guaranteed due to the nontriviality of g). Then, there
exists a vertex v = x1x2 - - - X1 Of the tree {0, 1}* such that g|, acts nontrivially on the
first level below the (m — 1)-th level. This implies that g fixes all elements until the level
m — 1 and then g/, fixes all elements until the level (m—1) —1 = m — 2, g|x,x, fixes all
elements until the level (m — 1) — 2 = m — 3 and so on, until we reach that the element
lxixxn_,_, Tixes all elements until the level (m—-1) — (m—-n—1) = nand it acts
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nontrivially on the first level below the level n. This means that g|x,x,..x,_,_, € Stabr(n);
however, this element does not belong to Stabr(n + 1). Consequently, we get that
Stabr(n + 1) < Stabr(n) so such stabilizers are different for all n € N. O

Lemma 2.2.7. Let T, be the subtree of the tree T consisting of its first n levels. Then,
Stabr(n) = Stabr(Ty).

A~

Proof. Note that Stab,(n) < Stabr(T,) since the n-th level of the tree T contains all
elements of the n-th level of T,. We are left to prove, then, that Stab,(n) 2 Stabr(?n).

Suppose that there exists v € Stab,(?,,)\ Stabr(n). Then, we can consider
a vertex g of the n-th level of T which does not belong to T and is not fixed under v.
Using the fact that v fixes every element of T, and writing g = ftth (since g € T\?’), with
f,he Gandte {a,b,c,d}, we obtain v(g) = ftth’, with ' € G. Then,

v(fh) = v(f)v|¢(h)
= F- (vlf)la(h) (2.19)
= fv|m(h)
= fH.

The second equality in (2.15) holds because t* = e for any t € {a, b, ¢, d}
and so, for any w € I, by Proposition 1.3.30 we get w|y = (tfH)w = w in T and
w|q(h) = (tt)w(h) = w(h), for any word he T.

We can repeat this procedure until we get an element of T,, not fixed under

the action of v, obtaining a contradiction. Therefore, Stab,(n) = Stabr(T,) and, then,
we get that Stab,(n) = Stabr(?,,). O

Corollary 2.2.8. For any n > 1 there exists an element of I' that fixes T, but moves
some vertex in ?’,,H.

Proof. In the proof of Corollary 2.2.6 we constructed an element which makes part of
Stabr(n) = Stabr(?'n), but does not belong to Stabr(n+ 1) = Stabr(?’n+1). O

Lemma 2.2.9. The sections of any element of Stabr(n) at the vertices of the n-th level
act on the first level below the n-th level by even permutations.

Proof. The first part of this proof is dedicated to show that if v e I fixes a given vertex
d = xq - - - Xp, then the parities of the actions of v and v/|y on the first level coincide. In
order to do this, we construct a new generating set for I' as follows: consider an element
x € Sym{(a, b, c,d)} and let x be the automorphism of T defined by

X = (X, X, X, X)X. (2.16)
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By its definition, the portrait of X has x at each vertex of its tree.
We claim that
012 =0 "1)2=e (2.17)

First of all, based on the automaton 1/3171 (described at the beginning of this
chapter), we are able to describe 0~' and 1~ by wreath recursions, finding that

0'=@1""0"0" 1" (adc) (2.18)
17 =0 ",17",17",07") (adeb).

Before proving the equality (2.17), we verify that 0~' and 1~ are the inverses
of 0 and 1, respectively. Using the wreath recursions defining each one of these elements
(givenin (2.18) and (2.1)), we get

00" =(0,0,1,1)(acd)(17',07",07",1 ") (adc)
—(0,0,1,1)(0°",07",17",17")(acd)(adc) (2.19)
— (007,00 ", 117", 117 ");
0°'0=(1"0",0",1")(adc)(0,0,1,1)(acd)
—(17,07",07",17(1,0,0,1)(adc)(acd) (2.20)
— (17'1,07'0,07'0,17"1);
117 = (1,1,0,0)(abcd)(0",17",171,07")(adch)
— (1,1,0,0)17",17",07",07")(abcd)(adcb) (2.21)
— (117",117",007",007");
171 =0"17",17",0")(adeb)(1,1,0,0)(abcd)

0-",17",17",07")(0,1,1,0)(adcb)(abcd) (2.22)
(07'0,17'1,171,07'0).

Notice that, by relations (2.19), (2.20), (2.21) and (2.22), the elements 00",
0’0, 117" and 171 act as 1 on their first levels; further, all of their sections are
constituted of elelents belonging to the same set {00~',07'0,11~",17 "1} so on the
subsequent levels they also act as the identity. Thus, 00" =00 =11"=1""1 = e.

Now, we verify the equality (2.17). Using (2.1) and (2.18) again, we obtain

01" =(0,0,1,1)(acd)(0~",17",17",07 ") (adeb)
(0,0,1,1)(17",171,07",07")(acd)(adcb) (2.23)

0171,017",107",10 ")(ab),
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which implies that
01712 =(017",017",107",10")(ab)(017',01",10"",10 ") (ab)
—(017",017",107",107 ") (01,017,107 7,10 ")(ab)(ab) (2.24)
= ((0171)%,(0171)2,(1077)2, (107 1)?);
also,
00"1=01"0"0"1")(adc)(1,1,0,0)(abcd)
—(17,07",07",17")(0,1,1,0)(adc)(abcd) (2.25)
— (17'0,07'1,07"1,17'0)(bo);
which implies that
(07'1)2=(17"0,07"1,07"1,17'0)(bc)(17'0,07'1,07'1,1770)(bc)
—(17'0,0'1,07"1,17'0)(17'0,0°'1,07'1,17'0)(bc)(bc) (2.26)

(1770)%,(07"1)%,(07'1)%, (1770)%).

Looking at the sections of the wreath recursions defining (017")2 (see (2.24))

and (07'1)2 (see (2.26)), we calculate (10~ ")2 and (17'0)?, finding that

(1072 =10""10""
- (1,1,0,0)(abed)(171,071,07",1" ") (adc)

(1,1,0,0)(abcd)(17,0° 1,077, 1"
1,1,0,0)0',07",17",1 ") (ab)(1,1,0,0)(abcd)(17',07",07 ", 1"

107'1,107'1,017'0,01'0)(07',07 ', 17", 1 ") (acd)(adc)
(1071)%,(1071)%,(0177)2,(0177)?);

(
(1071,107",017",017")(1,1,0,0)(acd)(1~",0",07",17")(adc)
(
(

(17'02=1""01""0
—(07",17",17",07")(adcb)(0,0,1,1)(acd)

)(adc)
)(adc)

(2.27)

0~',17",17",07")(adeb)(0,0,1,1)(acd)

(0
(07'1,17'0,17'0,0°"1)(0°",17",177,07")(adc)(0,0,1, 1)(acd)
010,101 ",17'017',07'107")(1,0,0, 1)(adc)(acd)
((07'1)%,(17'0)%,(1770)2,(07"1)?).

171,17,071(1,0,0,1)(be) (071,177,171 07" (adeb)(0,0,1,1)(acd)

(2.28)

By (2.27) and (2.28) we have that the sections of (017")? and (07'1)? act as
1 and their subsequent sections have the same behavior. Then, by a similar argument
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than the one given in the affirmation 00" = 07'0 = 117" = 171 = ¢, we conclude that
01 "2 =0 ")2=¢

We will use the now proved equality (2.17) to verify two important equalities:
107" =01""and17'0 =0""1. In fact,

10-'=00""10""11""
—0(0"1)21"" (2.29)
=01""

and

1-'0=0""01""01""1
— 0 (017" (2.30)
=0 1.

Then, by (2.23), (2.29) and (2.16),

— (017,017",107",107")(ab)
017',017',017",01 ")(ab) (2.31)

= (ab).

—~

Also, by (2.25), (2.30) and (2.16),

0—1

(17'0,071,07'1,1770)(bc)
(07'1,07'1,07'1,07 1) (bc) (2.32)
(be).

Observe that (ac) € I'. Indeed, by using the results of (2.31) and (2.32),

(ab)-(bc)=01"'0""1 = (017",017",017",017")(ab)(0"'1,07'1,07'1,0""1)(bc)
017',017',017",017")(07"1,07'1,07'1,07'1)(ab)(bc)
01-'07'1,017'07'1,01°'07"1,017'0""1)(ac) (2.33)

(ac).

Because (ab) = 017" and (bc) = 07'1 (by (2.31) and (2.32)), we have
(ab), (bc) e T'. Thus, (ab) - (b ) (ac) eT.
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Define o« = 1(ac) and g = 0(ac). Then, using (2.33), one gets

=1(ac)
= (1,1,0,0)(abcd)((ac), (ac), (ac), (ac))(ac)
=(1,1,0,0)((ac), (ac), (ac), (ac))(abcd)(ac) (2.34)
= (1(ac), 1(ac), 0(ac), 0(ac))(ab)(cd)
= (o, o, B, B)(ab)(cd)
and
= 0(ac) )
=(0,0,1,1)(acd)((ac), (ac), (ac), (ac))(ac)
= (0,0,1,1)((ac), (ac), (ac), (ac))(acd)(ac) (2.39)
= (0(ac),0(ac), 1(ac), 1(ac))(cd)
= (8, 8, o, a)(cd).
Note that o® = 52 = e. In fact, due to (2.34) and (2.35),
a® = (o, a, B, B)(ab)(cd)(a, a, B, B)(ab)(cd)
= (@, o, 3, B)(a, @, B, B)(ab)(cd)(ab)(cd) (2.36)
_ (042,@2,52,52)
and

ﬁz = (6aﬁ=a’ Oé)(Cd)(ﬂ,ﬁ,Oz, Oé)(Cd)
= (ﬁsﬁsa! O‘)(ﬁaﬁaa’a)((;d)(Cd) (237)
_ (6256250525052)-

Relations (2.36) and (2.37) lead us to say that all the sections of the wreath
recursions defining o and 32 correspond to the action of 1 not only at the first level but
in all the levels, since the sections of o? and 32 have only such elements. Therefore,

2 2
o =p°=e.

We also claim that o' = (ab). In order to do this, we determine the element
~1 by using the definition of .. Due to (2.34) and (2.35) we have

a = (a,a, B, 8)(ab)(cd)
— (1017'07'1,101°'07"1,001-'07"1,001-'0""1)(ab)(cd) (2.38)

so a~ ' is given by

a'=(17'0107"1"",17'010""1"",17'0107 70", 17701010 ") (ab)(cd).  (2.39)
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In fact,

aa”'=(1017'07"1,1017'07"1,0017'07'1,001'0 1) (ab)(cd)
(17'0107'"17",17 0107171701070 ",17'010 0 ") (ab)(cd)
— (101707117 '0107 17,1010 110107 "17', 0010110100,
001-'07'117'0107'0"")(ab)(cd)(ab)(cd)
=(1,1,1,1)

and

o la=(17"010""1"",17'0107"1"",17 01070, 177010 "0 ") (ab)(cd)
(1017'07'1,1017'07'1,001°'07"1,001"'0""1)(ab)(cd)
= (17'0107'1-"1017'0""1,17'010 17101 '0"1,1"'010 0 '001 01,
17'0107'07'001'07"1)(ab)(cd)(ab)(cd)
=(1,1,1,1),

which give the equality aa™' = o 'a = e.

Then, by (2.35), (2.38), (2.39) and (2.29) we find that

pa = (8,5, a,a)(cd)
— (0017'07'1,001°'07'1,1017'07'1,101°'0 1) (cd)
(17'0107"17",17'010° 17", 17010707 ",17 701070 ")(ab)(cd)
— (0017071170107 '17",001"'0""11"'010" "1 ;101" "0 "11"'010 0",
1010711770100 ")(cd)(ab)(cd)

— (017,017 ",107",10 ") (ab) (2.40)
— (017,017 ",017",017 ") (ab)
_ (ab).

Consider the set {a, 3, (bc)). By the definition of each one of the generators

a, B and (bc) (see (2.34), (2.35) and (2.32)), we have «, 3, (bc) € I so {«, 3, (bc)) = T.

Since fa~' = (ab) (by relation (2.40)) then (ab), (bc) € (o, 3, (bc)); consequently,

we have that (ab) - (bc) = (ac) € {a, 3, (bc)). Further, because a = 1(ac), one has

that 1 = a(ac) € {a,f,(bc)) as well as the fact that 5 = 0(ac) implies that one

has 0 = 6@_1 e {a, 3, (bc)) so we learn that I = (0,1) < (a, 3, (bc)). Therefore,

[ =<{a,p,(bc)).

Let v e T be an arbitrary element fixing vertex d. Using the fact proved above

that I = {«, 5, (bc)), we represent v as a word over {«, 3, (bc)}, obtaining v = vy - - - vg.
By (1.27), we have

Vg = Vila - Velu(a) - - Vklvs-vi s (a)-
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We claim that the parity of the action of v; on the first level is different from
the one of vj|,,..,, , ) only if one of the four following cases happens:

1. vi=aand vive-- v, 1(d) = ¢;
2. vi=aand vivo---v,_¢(d) = d;
3. V,‘IBand V1V2---V,',1(d)=C;

4. vi=pand vivo--- v, ¢(d) =d.

Recall that
a = (a,a, 8, 8)(ab)(cd);
6 = (6!5’055 Oé)(Cd), (241)
(be) = ((be), (be), (be), (be))(be).

Observing the sections of the definition of (bc) as part of the wreath re-
cursion (2.41) defining I = (o, 3, (bc)), which are all (bc)’s, we note that there is
no chance of changing parities by the action of such element since all permutations
of the sections of (bc) are equal to (bc) and then there is no way of getting new
parities by this action. Thus, the parities of v; and vj|,,..,, ,@) can be distinct only
if v; is not (bc). When this happens, if vijvz---vi_1(d) = ¢ then vivp---vi(d) = d
as well as if vivo---vi_1(d) = d then vyvz---v;(d) = c (by definition of « and 5 in
(2.41)). The converse is also true in the following sense: if one has viv» - - - v;_1(d) # d
and viv2---vi(d) = dthen vivz---vi_4(d) = ¢ and v; is either « or 5 as well as if
Vive -+ Viq(d) =dand vivy---vi(d) # d then viv, - - - vi_1(d) = c and v; is either « or
S. This means that the parity of the action of v; on the first level is different from the
action of the action of vj|,,,..., ,) When there is a change from d to anything else or
from something to d in the sequence {d, vi(d), ---,viva--- v(d)}. Further, note that
the parity of the action of « is even while the parity of the action of 5 is odd so the parity
of v; changes in relation to the one of vj|y,,..,, ,(4) When it changes from the action of o
to the action of 5 and vice-versa. Observing the sections of « and 3, we verify that such
change happens when v, = cand vivo---vi_1(d) =corvi=aand vivo--- v, ¢(d) = d
orvi=pgand viva---vi_¢(d)=corv;=pand vyva---vi_1(d) = d.

We are considering v = vy, - - - V¢ € I such that v fixes d so we have that
vive .- v (d) = v(d) = d; then, since we start with d and end with d, there must
be an even number of changes in the sequence {d, vi(d), - -, viva--- v,(d)}. By the
considerations about the parities of v; and vj|,,v,..v,_,(a) given above, we conclude that
the parity is different in an even number of places of the sequences and thus the parities
of the actions of v and v|4 on the first level (below the first convenient level) coincide.
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Let 9 = (9la; 9lp, 9lc» 9la) € Stabr(1) be an element stabilizing all elements
of the first level. By the considerations above, in the case of g we have that, since
g € Stabr(1) then the permutation on the definition of g is the identity, which is even.
Thus, the action of g|y on the first level is also even.

Define the conjugation
g =9"9ge,

with e € I'. Because conjugation of a permutation preserves its parity, the parities of g
and g° coincide.

Computing g” and using the fact that 5~' = 5 and ™' = « (we proved
previously that a? = 32 = e), by (2.35) one gets
=67"gp

= (8,8, a,a)(cd)(9la, 9lbs Gle, 9la) (B, B, o, ) (cd)

= (8, 8, @, a)(glas Glbs Gla, 9le) (cA) (B, B, i, ) (ed)

= (8, 8, a, a)(glas Glbs Gla, 9le) (B, B, v, )1 (2.42)

= (B9laB, BglvB; aglaa, aglea)

= (877918, 57'glbB, @ glo, @ glea)

= ((gla)”, (g16)?, (gla)*, (g1e)),
which belongs to Stabr(1). Observing equation (2.42), note that g°|s = (g|c)* so
by the past considerations about parities of actions on sections, we have that (g|;)®

and, consequently, g|. act on the first level by an even permutation (since conjugation
preserves parity).

In order to establish some concerns about g|, and g|,, we compute g@ and
g%, obtaining

9 = (ac) 'g(ac)
~ ({ac) ', {ac) ', (ac) ', (ac) ')(ac)(gla gle» gle: 9la)((ac), (ac), (ac), (ac))(ac)
- ((ac) 1,<ac> < ¢) ", (@) )(gle 9l 9las 9la) ((a0), (ac), (ac), (ac))1
= ((910)®., (g1s)®, (g]a)®, (gla)®) (2.43)
and

( ' (b)) (bC)(gla Glb» Gle 1) ((BC), (BC), (bC), (be)) (be)
(bc) ', (bc) ( c) (7) ")(9las Gles 9lb» 9la) (), (be), (be), (be))1
(912)®, (91)®9, (915) ), (g]a) ©). (2.44)
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Since g@| = (9|a ) (see (2.43)) and g'» ]c = (g|b) (see (2.44)), due
to the fact that g|. acts on the first level by an even permutation, we infer that (g|a)@
and, consequently, g|, also act by an even permutation on the first level; the same
happens with (g|,)*® and, therefore, with g|,. This implies that all sections of g at the
vertices of the first level act on the first level by even permutations.

By self-similarity it is enough to prove the case n = 1, which we just did, and
so the result follows. O

Lemma 2.2.10. The group I acts transitively on the levels of T.

Proof. We use induction on levels to prove this lemma. Since G is generated by a,
b, ¢ and d, the transitivity on the first level is guaranteed. Now, assume that I acts
transitively on the n-th level of T. By Corollary 2.2.8, there exists an element v € I
such that v fixes ?’,, but it acts nontrivially on 7’,,+1; in other words, there exists a vertex
ge T, such that v(g) = g and v|4 acts nontrivially on the first level below the n-th level.
Since v € Stabr(?,,), by Lemma 2.2.9 the section v|4 acts on the first level by an even
permutation; since v|4 on the first level is even, it must be a cycle of length 3 (only option
for a nontrivial even permutation of four elements a, b, ¢ and d). Since the vertex g has
three children in the tree T, then v|g is transitive on the first level.

Without loss of generality, assume that g € 7',, ends with c. By the hypothesis
of induction, I' acts transitively on the n-th level of T which indicates that, letting the word
hihs - hyhyq € 7',,“ be a vertex, there is an element w € I moving g to hyh; - - - hy,.
Pick vkw e I with k € {0, 1,2}; then, due to the fact that the permutation induced by
v|y is a 3-cycle, we obtain that there exists k such that viw(gn) = hyhy - - - hphy, 4, with
ne {a, b,d}. Therefore, I' acts transitively on Thit. O

All lemmas, propositions and corollaries of this chapter build to the proof
of Theorem 2.1.1, which turns out to be relatively elementary after using all that was
proved on this subsection.

Proof of Theorem 2.1.1. First, we claim that there exists h e G, h # e, with the property
that h lies in the n-th level of T, with n > 1. Indeed, just consider an element h given by

. (ab)"z ¢ if nis odd,
(ab)2~'ac  if nis even.
Recalling Lemma 2.2.10, we have that the group I acts transitively on each
level of T. Let g be an arbitrary word belonging to the n-th level of T. Then, g has length
n and does not contain &, b?, ¢? or d?.
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Now, suppose g =¢ e; that is, suppose that g is equivalent to the identity
word in G. Since g is a word from the level n of 7’, by Lemma 2.2.10 and Proposition
1.3.30 there is v € T satisfying

e=g|,=v(g) =h+#e,

that gives a contradiction. Hence, there are no relations in the group G except the
relation & = b? = ¢® = d? = e (via (2.6)) which implies that G is isomorphic to a free
product of four groups of order 2. O
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3 A family of automata generating free
products of Co

“Mathematicians are like
managers - they want
improvement without change.”

Edsger Dijkstra, 1930—2002

The last chapter of this dissertation is structured so as to provide a "gener-
alization" of what was shown in Chapter 2. We make a connection with the previous
chapter in order to prove that the group generated by the Bellaterra automaton B,
for any n € Z,n > 4, with some declared permutations of some states, generates a
free product of n groups of order 2. As well as in the last chapter, after showing a few
observations about B, we verify several results that lead to the main proof. We follow,
as in Chapter 2, the exposition from [18].

3.1 Considerations about the automaton B

We invoke, one more time, the Subsection 1.3.5 before providing more spe-
cific commentaries related to the Bellaterra automata family. We recall that, concerning
its Moore diagram, a Bellaterra automaton B can be created by the insertion of new
states on the path from state ¢ to state a of the automaton B;. Given such Moore
diagram, we are able to give explicitly the wreath recursion defining the automaton B(™.

Consider the following construction of B for n € Z, n > 4: for any permuta-
tion o, € Sym({0,1}),i =1, ---,n—4, let B be the automaton with n states (namely
an, bn, Cn, Qni,s Qr2s -, Qn.n—a, dn) Whose transition and output functions are given by
the wreath recursion

(
(
(
Qni = (Qnit1s Qniv1)onis =1, ---,n=3, (3.1)
(
(
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The Moore diagram of B, in this case, is

dn dn On.n-4
0|1< ) 0|1
1 4_‘
110 110
111 o[1]1]0
bn
0|0 0|0
0[1]11/0
v
0]1 01 @
10 110
Cn Qn1 On2

Figure 25 — Moore diagram of the Bellaterra automaton B (courtesy of Altair Santos).

Note that, although the graph structure of such automaton is the same as
the one of the automaton B shown in the Subsection 1.3.5, the wreath recursions
defining the two automata (see (1.34) and (3.1)) are slightly different in the sense that
now we have chosen the permutation of the state ¢, and the state d, (which corresponds
to the state g,_3 in the wreath recursion (1.34)); o = (0 1) is the permutation picked
to figure in the definition of both states, matching with what was said in the end of
the Subsection 1.3.5. Being aware of the choice of permutations o,; and of the slight
abuse of notation implied by this decision, we follow the article [18] and still consider
the automaton defined on this Section as the Bellaterra automaton B”. The Remark
1.3.34 is also valid for the Moore diagram of B introduced above.

Let G be the group generated by all states of the Bellaterra automaton
B™ with wreath recursion given in (3.1). This chapter is dedicated to the proof of the
following theorem:

Theorem 3.1.1 (D. Savchuk, Y. Vorobets, [18]). The group G\”, generated by the
automaton B is isomorphic to the free product of n copies of the cyclic group of order
2.

As stated at the end of the Section 2.1, in order to prove this theorem it is
necessary to prove some results which open ways to the main proof. The approach
is very similar to the one used on Chapter 2 and then it turns out that the proof of the
main theorem of this chapter relies on the conclusions given in Section 2.2. The lemmas
needed to prove Theorem 3.1.1 along with the theorem itself are proved in the next
section.
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3.2 Construction of the proof of the Theorem 3.1.1

The arrangement made in Section 2.1 is the basis for the outline to the proof
of Theorem 3.1.1. We prove that the dual automaton of B acts transitively on the
invariant subtree consisting of words with no double letters. All considerations contribute
to the construction of the group G\ and its characterization.

In the same manner as we treated the case of the automaton B4, we make
some observations about the Bellaterra automaton B". In the first place, observe that
the inverse of B\ is the automaton itself; the reason why this happens is the same as
the one given in the case of B,.

We also want to show that B\ is bireversible: since (B™)~" = B, we are
left to verify that the dual automaton B0 is invertible; then, our first step towards the
proof of this assertion consists on finding such dual automaton, based on the wreath
recursion (3.1) and its consequent Moore diagram. Using those data, one gets that B
has the following Moore diagram:

an|Cn Cnlqm Qn/|in+1 an 4|dn anlb

OmO
U\%/U

B(n) bn|bn Cn|qm qn/|in+1 - Qnn— 4|dn bn|Cn

Figure 26 — Moore diagram of the dual automaton of 5"

Because the states 0, and 1, induce permutations on our new alphabet
Y™ — {a,, by, Cny Gnt, -+ » Gnn—as Ao}, the Bellaterra automaton B(™ is invertible; thus,
B™ is bireversible and the dual group '™ is well defined.

By the Moore diagram given above, the wreath recursion defining B0 is

given by

0 (on: on: 1n: Kn1, T Kn,n—4: 1n)(ancnqm C7n2 o qn,n—4dn), (32)
1 (1n: 1n: on: Ln1: Ty I—n,n—4a On)(ananan qn2 e C7n,n—4dn):
with K,;=0,andL,;=1,ifo,; =1 and K,; =1, and L,,; = 0, otherwise.

Again, from the Moore diagram of l% we obtain the one describing the
inverse automaton (B(M)~"
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bn|bp Qn,n-4lQnn—5 - Qnix1]Gni - - nt|Cn bnlan

O m
X o
() anldh hlGnn s ()

(g(\n))q . C”|a’7 qn,nf4|qn,n75 T Qn,i+1 |qn,i - dm |Cn C”|b’7

Figure 27 — Moore diagram of the inverse automaton of 5(7)

Then, the wreath recursion defining E(F) is

0;1 (1 ;1 ’ 0;1 y 0;1, 1;15 Mlﬂs Ty Mn,n74)(andnqn,nf4Qn,n75 T anqm Cn)s (33)
1;1 = (0;1 ’ 1;1 y 1;1 y 0;1, Nn1, Ty Nn,n—4)(andnqn,n—4qn,n—5 T ClnzCIm Cnbn>:

withM,; =0,"andN,;=1,"ifs,; =1 andM,; =1, and N,,; = 0, otherwise.

Let T be the subtree of the tree T consisting of all words over the
alphabet Y = {a,, by, €1, Gnt, Gn2> -~ - » Gn.n—a, dn} With no double letters. Such subtree
is represented in red in the figure below:

o]

WA A

a2 anbnanCn- -+ andn bnan b2 bnCn* * - bndn Cnancpbn ¢2 -+ Cnlh dnandnbndncn - -+ d?

L

Figure 28 — Tree T and its subtree T(.

a
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Notice that the empty word &, root of T( has n descendants while all other
vertices have n — 1 descendants; in addition, T is invariant under the action of ™.

Many results from Chapter 2 will be generalized to the case of B". First,
note that all generators of G are involutions; that is,

R R R T 3.4)
In fact, by the wreath recursion (3.1) of B, one obtains that

&,

(Cny bn)(Cn, bn)
(c3, b3),

b = (bn, Cn)(bn, Cn)
= (b}, ¢b),

¢z = (Qnt, Gm )0 (Qni, Gn1)o
= (Clm, Qm)(Qm, ant )UU
= (q/%w Q§1)a

G = (nists Onic1)Tni(Aniscts Qnict)Oni
= (Qn,i-H ) qn,i+1>(qn,i+1 » Qn,it1 )O'n,ian,i

= (qg,i-s-h qr27,i+1)=

CI%,n_4 = (dn: dn)Un,n—4(dna dn)an,n—4
= (dna dn)(dns dn)Un,n—4Un,n—4
= (d7, d3),

02 = (an, an)o(an, an)o
= (an, an)(an, an)oo

= (ah &)

Note that, since o,; € Sym({0,1}) then o,;0,; = 1 for all o,;. Also, all
sections of all squares of elements of Y act as the identity on the first level and,
because such sections are still squares of elements of Y™, in all sections the action is
the identity one. Therefore, (3.4) holds.

Now, we settle some results equivalent to the ones found in the Section 2.2.
First, we have that

0,1," = (anby) (3.5)
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and
We follow the same steps as we did in Section 2.2 and verify that
0,0,'=0,'0,=1,1,"=1,"1,=¢, (3.7)
(0,1,7)2 = (0,1, = e (3.8)
and
1,0.' =0,1,"and1,'0,=0,"1, (3.9)

in order to prove (3.5) and (3.6).
By using relations (3.2) and (3.3) we obtain

0,0," = (00,00, 15, Knt, -+, Knn_a,10)(8nCoGni Gz - - - Gnp—adl)
(1,7,0,7,0,", 1, My, -+, My 5_4)(@n0nGnn—aGnn-5 - Gr2Gni Cn)
= (05,00, 15, Ky, -+, Knpa, 10)(0,7,05 7,151, My, . Mg, 1)1 (3.10)
(0,0,1,0,0,", 1,1, KniMnt, -+, KppoaMpns, 101,7),

0;10n = (1 ;1 ’ 0;1 y 0;15 1r_)15 Mfﬂs Ty Mn,n74)<andnqn,nf4qn,n75 e anqm Cn)
(Ons Om 1na Kn1, T Kn,n—4a 1n)(ancnqn1 Qn2 T qn,n—4dn)
(1;1 3 0;1 ’ 0;1: 1;15 Mn1: ' Mn,n—4)(1n, on, on, 1[7: Kn1: T Kn,n—4)]l (31 1)

= (1 ;111’15 0;10n, 0;101’75 1;11n: Mn1 KI’I1 y Ty Mn,n—4Kn,n—4)s

1n1,;1 = (1 ns 1f75 0!71 I-n1 s Ty I-n,n—4a On)(ananan C7n2 o qn,n—4dn)
(0;1 ’ 1;1 ’ 1;1 3 0;15 Nn1a Ty Nn,n74)(anann,nf4qn,n75 e CIn2Qn1 c:nbn)
= (1 ns 1n5 ofh LITIJ Ty Ln,n74a on)(1;1 ) 1;1 ) 0;1 ) Nn11 T Nn,n—4, of_71>]1 (31 2)

= (1n1f_]1! 1n1r_;1 y 0n0;1, I-n1 Nlﬂs Ty I-n,n—4Nn,n—4; 0n0;1 ),
and

1,",=(0,",1,",1,",0," Ny, - ,Npy 4)(80nGnn_4Gnn_5 " - Gr2Gn1 Cnbn)

(1, 10,00, L1, -+, Lnn-4,00)(8nbnCnQn1Qnz - - - Qn,n—a0h)
(0,,1,,1,,0, ", N, -+ ,Nnpa)(0n, 15,10, 0n, Loy, -+, Lppa)l  (3.13)
(0;10m 1;11n: 1;11n,0;10na NniLnt, - ,Npn_abnn_a).

Inspecting (3.10), (3.11), (3.12) and (3.13), we note that all sections of 0,0,
0.'0,, 1,1," and 1,1, contain only these same elements; this is true even with the
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elements of the form K,;M,;, M, ;K,;, L,iN,; or N,;L,; due to the way that K,;, L,;,
M, and N, ; were defined. Since all such elements act as the identity at the first level,
the action of the identity happens in all levels of 0,0,,', 0,70, 1,1," and 1,'1,.. Hence,
(8.7) holds.

In order to get the equality (3.8), we calculate 0,1," and 0,'1, and then we

determine their squares. Still by (3.2) and (3.3), one obtains

0,1," = (0,001, K1, -, Knna,10)(@1CnGn1 Gz - - - Gnn—aCh)
(0,",1,",1,7,0," Ny, -+, Non_4)(@n0GnGnn—4Gnn-s5 - * Gr2Qni Cabp)
=(0,,00,1,, Kpni, -+, Kpna, 1n)(1;1,1;110;15 Npi, - an,n—450;1)(anbn)
= (0n1,",0,1,",1,0,", KniNpi, -+, KnnaNnpos, 1,0, ) (@nbn) (3.14)

and, thus,

<0n1;1)2 = (0n1 ;1 ’ 0n1;1: 1n0;1 ’ Kn1 Nm y T Kn,n—4Nn,n—4: 1n0;1)(anbn>

(0n1 ;1 3 0n1 ;1 3 1n0;1 3 Kn1 Nn1 3 Ty Kn,n—4Nn,n—4, 1n0;1)(anbn)
= ((0n1 ;1)2: (0n1 ;1)2: (1n0;1)2: (Kn1 Nn1)2, Ty (Kn,n—4Nn,n—4)25 (1n0;1)2)
(3.15)

Further, one gets that

0,"1,=(1,",0,,0,",1,", My, -~ , My _4)(80nGnn-4Gnn-5 - Gr2Gmi Cn)

(19,10, 0n, L1, -+, Lnn-4,0n)(@nbnCrQn1Qn2 - - - Gn,n-40h)
(157,057,071, Mg, - Mo a)(0n, 10, 10,00, Loy -+, Lnna)  (3.16)
(1,70,,0,"1,,0,"1,,1,70, MLy, --- ,Mpn_alnna)(bnCh)

and, thus,

(0;11n)2 = (1;10na 0;111’75 0;11n: 1;10ns Mn1 I-n1a Ty Mn,n—4Ln,n—4)(ann)
(1 ;1 ona 0;1 1 ns 0;1 1 ns 1;1 ofh Mn1 I-n1a Tty Mn,n74|—n,n74)(bncn)

= ((1;10n)2= (0;11n)2a (0;11n)2a (1;10n)2a (Mm Ln1)2’ B (Mn,n74|-n,nf4)2)-
(3.17)

Remark 3.2.1. The elements K,,;N,,; in (3.14) and (3.15) are either 0,1, " or 1,0, " while
the elements M,,;L,,; in (3.16) and (3.17) are either 0,1, or 1,0, by definition of K, ,
Ln,is Mn,i and Nn,i-

With respect to proving (3.15) and (3.17) we see that, by an argument similar
to the one given previously (in the proof of the equality (3.7)) and by Remark 3.2.1, all
actions on all sections of (0,1,")2 and (0,,"1,,)2 in all levels correspond to the identity.
Therefore, (3.8) holds.
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Now, for the sake of proving (3.9), we use (3.8) to obtain

1,0, =0,0,'1,0,"1,1."
= 0,(0,"1,)%1," (3.18)
—0,1,"

and

1;10n = 0;10n1;10n1;11n
- 0,"0,1,"21, (3.19)
= 0,"1,.

Then, by (3.14), (3.18) and by the definition in (2.16),

1 . ‘lnoi1 Kn1Nn1, ,Kn,n—4Nn,n—4:1n0;1)(anbn>
1n1,o 1.1.0,1.7,0,1.", ---,0,1.",0,1.")(a,b,) (3.20)
anbn).

(0n
(0

I
—~

Remark 3.2.2. Having in mind Remark 3.2.1 and using (3.18), we are able to switch all
occurences of K,,;N,; = 1,0." by 0,1, leading to the second equality in (3.20).

Also, by (3.16), (3.19) and by the definition in (2.16), one gets

( 10n,0 1n=0 1na1n10n;Mn1Ln1a sMn,n74Ln,n74)(ann)
=( "1,,0."1,,0."1,,0.'1,,0."1,, ---,0."1,)(b,cp) (3.21)
== (ann).

Similarly to the case explored in Remark 3.2.2, using Remark 3.2.1 and
(3.19), all occurrences of M,,;L,; = 1,70, are switched by 0,1, and then the second
equality in (3.21) holds.

By (3.20) and (8.21), the relations (3.5) and (3.6) are verified Furthermore,
by calculations analogous to the ones in (2.33), we get that (a,c,) € I'"™. Indeed,

(anbn> . (ann) - 0n1 ;10 . 0 1;1)<anbn)(0;11n, et ,0;11n)(ann)
1o 1, -,0,1.70-"1,)(anc,) (3.22)

= (ancn)a

(0n
(On

which implies that (a,c,) € '™, since (anby,), (b,cn) € T'™ (by (3.20) and (3.21)).
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Also similarly to (2.34) and (2.35), we define the elements o, = 1, - (a,cy)

and 5, = 0, - (ascy), finding that

an=1p" m
= (19,11, 0n, Ln1, -+, Lnn-4,00)(8nbnCnGn1 - - - Qnn-a0hn)
((@ntn), (@nCn), (@nCn), (@ncCn))(@nCn)
= (1n(@ncn), 1n(@nCn), 0n(@nCn), Lt (@nCn), - -+, Lnn-a(anCn), 0n(anCn))(anbn)
(CnQn1 -+ * Qn,n—a0h)
= (ns Qs Bps Yoty = s Ynin—4s Bn)(@nbn) (CnQm - - - Qnn—4Ch) (3.23)

and

Bn = On - (@nCn)
= (00,00, 15, Kn1, -+, Knn-a,10)(@nCnGnt - - - Gn,n—a0h)
((@ntn), (@nCn), (@nCn), (@ncCn))(@nCn)
= (0n(ancn), 0n(ancn), 1n(ancn), Knt(@ncn), -+, Knn-4(anCn), 1n(anCn))
(CnGmt + * Gn,n—a0h)
= (Bns Bny ny Onts =+, On.n—a, &n)(CnQm - - - Qn,n—4a0h), (3.24)

in which v,; = apand é,; = B, if Ly =1, 0r v,; = B, and d,,; = o, otherwise.

In Section 2.2, by showing that sa~' = (ab) we described a new generating

set for the dual group I, that is {«, /3, (bc)}. Related to this, our aim in this section is to
show that '™ = (a,, ., (byc,)) by showing that

5n04r_;1 = (anbn). (3.25)

In fact, using (3.23) and (3.22), we obtain explicitly

Qp = (Qns &p, ﬂna Yn1s * s Yn,n—4, ﬁn)(anbn)(cnqm s qn,nf4dn)
= (1 n0n1 ;1 0;1 1 ns 1n0n-I ;1 0;1 1 ns 0n0n1 ;10;1 1 ns
Pn1 0n1r_;10;11n; Ty Pn,n—40n-I ;10;11na 0n0n1r_710;1 1 n)(anbn)(cnqm t Qn,n—4dn)a
(3.26)
with Pn,,' = 1n if Yn,i = Qn and Pn!,' = On if Yn,i = ﬂn-

Whence, o, is given by

ay = (1,70,1,0,"1,7,1,70,1,0,71,7,1,70,1,0,70,7,1,70,1,0,70, ",

1;10n1 n0;1Qn1s Tty 1;10n1 n0;1Qn,n74)(anbn)(cnann,nf4 e Clm),
(3.27)
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with Q; =1, if Pp; =1,and Q,; =0, if P,; = 0,

It is easily verified that a,a,' = a,"'a, = e by equations (3.26) and (3.27).
The computation is straightforward; however, this verification becomes very cumbersome
and is therefore omitted.

Using the definition of 3, given in (3.24) together with (3.22) and defining
R, =1,"ifK, =1,andR,; = 0," ifK,;, = 0,, we see that

Bno, ' = (0,0,1,70."1,,0,0,1,70."1,,1,0,1,'0."1,,R10,1,'0, "1, ---,
Rnn40,1,70-"1,,1,0,1.70-"1,)(CaGnt - - - Gnn_adn)(1,'0,1,0, 71"
1.'0,1,0,'1.",1.'0,1,0,'0,",1,70,1,0,70,",1,70,1,0,'Q, ---,

1,'0,1,0,"'Qpn-4)(@nbn) (CnnGnn-a - - - Q1)
— (0,0,1,'0,"1,,0,0,1,'0."1,,1,0,1.,'0."1,,R,,0,1,70. "1, -- -,
R,n_40,1,'0."'1,,1,0,1,'0,"1,)(1,70,1,0,'1,",1.70,1,0,'1. ",
1.70,1,0,'0,",1,70,1,0.,'Qp, ---,1,70,1,0,'Q,. s,
1.70,1,0,"1. ") (a.b,)
= (0,1,7,0,1,",1,0,",Rn1Qn1, -+ ,Rnn-4Qnp4a,1,0,7)
(0n 0n1,,1,0 1,°,0,1,%, ---,0,1,",0,1,")(a:b) (3.28)

= (anbn).

Remark 3.2.3. Due to the way that R,; and Q,; were defined, we have that either
R.; = 0,1." or R,; = 1,0, If this last equality occurs, equation (3.18) makes the
fourth equality in (3.28) become true.

In conclusion, equality (3.25) holds. This implies that, by similar arguments to
those given in Section 2.2, we get a new generating set for '™ which can be described,
then, as

" = <04na 5na (bncn)>-

The importance of the following lemma to this work comes from the fact
that such result establishes a relation between the actions of the groups I and "
so it promotes a link between the results of this chapter and all results shown in the
previous chapter. Considering that the tree T naturally embeds in the tree 7 via an
homomorphism of monoids induced by a — a,, b — b,, ¢ — ¢,, d — d, and knowing
that the action on the letters not in the image of T is defined to be trivial, then we get
that I' also acts on "
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Lemma 3.2.4. For any v € T, there exists v/ € '™ with the following property: for
any word g over {a,, by, ¢,} such that v(g) is also a word over {a, by, c,}, we have

v(g) = V'(9).

Proof. Based on the homomorphism of monoids cited above we can build a correspon-
dence a — ap, b — by, ¢ — ¢,, d — dp, SO we can consider x; X, - - - X, € {a, 3, (byCp)),
a word over {a, 3, (bsc,)}, representing the vertex v. We also determine a word
Y1¥o -+ Yn € {ap, Bn, (bnCn)) in which each y; is related to x; and it is defined by the
following rule:

1. If x; = (bpCn), then define y; = x;;

2. If x; = o (respectively x; = 3), then compute the total number of « and 5 among
X1 X2 - - Xj_y. If such number is even, then define y; = a, (resp. y; = ,); if this
number is odd, put y; = o, (resp. yi = 5, ).

Now, let g € {ap, by, ¢,) be the arbitrary word matching with the word given in
the statement of this lemma. Our intention is to show by induction on i that y1y» - - - yi(9)
can be obtained from x; xz - - - x;(g) by replacing all occurrences of d, by g, when the
total number of a and g among xi x. - - - x;_1 is odd and it coincides with xixz - - - x;(g) if
this number is even.

If i = 0, the assertion is true so we are left to prove the induction step.
Suppose, then, that the considerations of the last paragraph hold for y;y» - - - yi(g) and
x1X2 - xi(g). Note that, if ;.1 = yi.1 = (byc,) then, since (b,c,) fixes letters d, and
gn1, the relation between y 1y --- yi.1(g) and x1 X2 - - - Xi11(g) is the same as between
yiy2---yi(g) and x1x2 - - - x;(g) so in this case we already have the result. Thus, we can
assume x4 = « or Xj 1 = 3.

Agreeing with we want to show, we divide the total number of occurrences of «
and 5 among X Xo - - - X; in two cases: first, suppose that this number is odd. By induction
assumption, y1y>--- yi(g) is obtained from x;x. - - - x;(g) by replacing all occurrences
of d, by gn1 SO yiya---yi(g) € {@n, b, Cny Gt ). If Xip1 =  (Xip1 = B), then y 4 = a
(Vis1 = B, 1) by construction. We claim that the following relations hold for o, and 3,

a;1 :( 1 ﬁn :Bn 5’7n1 y T 57;;7 4)(anbn)<cnannn_4'"qn1): (329)
ﬂn (/Bn =ﬁn sO‘n =an1’5n1= nn 4)(Cﬂdf7qnn 4° Qm),

with v,; and d,,; defined in (3.23) and (3.24), respectively.
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Indeed,
O‘ﬂa;1 = (aﬂa Qny By Ynts * s Ynn—as Bn)(anbnxcnqm s qn,n_4d,-,)
(05; ) 04;1 ) 5/7_1 ) 5;1 ) ')/,1_11 y ’7,1_,2774)(anbn)(cnann,n—4 ce CIm)
= (ana X, 6/’1; Ynls * s Yn,n—4 5n>(04;1 3 @;1 ’ 6;1 ’ '7[;]15 Ty 7;}7_4, 5;1 )]l
= (O‘na;1 ) OénOé;1 ) 6n5;1 » V1 ’7,711 s T ’Yn,nf47r7,r11_4a 6[7/8;1)a
aptan = (a0, B, By o !7r7,r17—4>(anbn)(cndnqnnf4 “ Q1)
(Oén, X, Bn, Ynts * s Vn,n—4, Bn)(anbn)(cnqm t C7n,n—4dn)
= (CV; y (){;1 ’ 6;1 y /6;1 ’ 7;11 s Ty 7;);7-4)(007: Op, Bn: Bn, Ynts - ,’Yn,n—4)]l
= (05;1a/n: a;104m 6;1Bﬂa 6;1Bﬂa '7;11 Ynts - ,'7;,:7747n,n—4),

5n5;1 = (ﬁna By Cny Oty -+, 5n,n—4: Ozn)(Can T Qn,n—4dn)

(6;1aﬁ;1504;1,04;15(5;11a T, ;,2774)(Cnann,n—4"'qm)
= (6”56n5ana5n15 a5n,n74a@n)(6;155;1a05;175;11, 55;})_45&51)1
= (6”6;1!6176;15ana;‘laén'l(srj‘]‘la e !6n,n745;,:7_45 ana;1),

5;16n = (5;1 ) 5;1 ) 04;1 ) 04;1 ) 5;11, S 5;,,17_4>(Cnann,nf4 co Clm)
(Bn, 6[75 &p, 5!715 Tt ,5n,n—4, Oén)(cnqm te C7n,n—4dn)
= (/8;1 ’ 5;1 ’ O{;1 ’ a;1 ’ 5[711 sy Ty 5;:7-4)(5!% 5”5 CVn, an: 6!71 y Ty 5!7,[7—4>]l

= (5515n: B;15n: a;104n, 04;104n: 5;11 5n1: Tty 6;,;,745n,n—4)

and, since all sections of apa, ', o, 'an, B3, and B, 3, act by the identity and so on,
we conclude that oo’ = oo, = Ba8," = 5,8, = e; therefore, the equalities for o,
and 3, in (3.29) hold.

Remark 3.2.5. Note that o' was already defined in (3.27); however, the simpler defini-
tion of such element given in (3.29) fits better in this proof.

Back to the current case of the induction proof, by (3.29) the images of
y1y2 - -- yi(g) under the actions of a;" and 3, coincide with the images of x;xz - - - x;(9)
under the actions of « and g3, respectively. This happens because, by induction hypothe-
sis, all d,’s are switched by g, and both actions of o' and 3, take g1 to c,, mirroring
the actions of a and j3 (see (2.41)), since ¢, is taken to d, by the actions of a;" and 3.
Thus, we have that y1y» - - yit1(9) = X1 X2 - - - Xi+1(g) which agrees with what we wanted
to prove, considering that the total number of o and g among xi, X2, - -, Xj+1 IS even
(odd total of « and 5 among xi, X2, -+, X; and Xj.1 = « Of Xj.1 = [3).

Suppose now, that the number of the occurrences of a and 5 among
X1, X2, -+, X; IS even. By inductive hypothesis, yi1y»---yi(g9) = xix2---Xx;(g) and by
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such equality we have that y;y» - - - yi(g) is a word over {a,, by, Cy, d,}. Furthermore, by
construction, yi.1 = a, or yi.1 = [, Observing the definitions of o, and 3, in (3.23)
and (3.24), one gets that the action of y;, 1 on the letters of y1y> - - yi(g) € {an, bn, Cn, dpn)
coincides with the action of x;.; except that both «, and g, move ¢, to g, instead
of moving it to d,; the argument for this is similar to the given in the previous case:
the actions of a and g match with the actions of o, and b, except in the case of ¢,
as explained above. Therefore, all instances of a,, b, and ¢, are kept and, then, the
resulting word y; > - - - yi1(g) can be obtained from x;x. - - - X;1(g) by switching all d,’s
in y1y2--- yi(g) by gni’s. Note that this agrees with what we need since the total number
of o and 3 among x4, X», - -+, X; turns to be odd.

To finish the main proof by using the induction proved above, define a word
v = y1¥2--- ¥k and notice that, if v(g) is a word over {a,, by, c,}, then we have that
V'(9) = y1¥2 - - yk(g) must coincide with v(g) regardless the total number of o and /3 in
the word representing v because of the relation between y; and x; and the arguments
given in the induction assertion proved previously in this lemma. O

Lemma 3.2.6. The group '™ acts transitively on the levels of 7(.

Proof. This lemma is also proved by induction on levels. We have that I'" acts tran-
sitively on the first level of T since this level is composed by all letters of Y™ (see
the beginning of this subsection for the definition of Y™) and the generators of "
induce permutations on such set. Hence, suppose that ' acts transitively on the level
m. In order to prove that such transitivity happens by using the previous lemmas, we
will show that an arbitrary vertex of the (m + 1)-th level can be moved to the vertex
anbpanby - - - bpa, or apbhanb, - - - anb, depending on the parity of m.

Let g be an arbitrary vertex of the level m + 1 of T(. Then, we can write
g = ht, in which his a vertex of the m-th level and t e Y. Without loss of generality,
assume that m is even. By the induction hypothesis, I'" acts transitively on the level m
of T( which means that there exists v € I'™ such that v(h) = a,bpanby - - - anb,. Thus,

V(g) = V(ht) - V(h)t, - anbnanbn st anbnt,,

with t' € Y7,

Recall that 8, = (6n, Bny @ns On1, =+ 5 0nn—a, @n)(CnQn1 - - - Gn.n—adn). Whence,
by definition of the permutation in the definition of 5,, we have that 5, fixes the ver-
tex apbhanby - - - anby,; further, one obtains that 3,|a.p,a,6,-a.6, = Bn Dy the sections
of g,. It implies that there exists a power k of 8,, kK = 1, ---,n — 1, satisfying
B5(9) = anbpanby - - - @anbpt”, with t” € {ay, bn, ¢,}, S0 we can assume that t' € {a,, by, ¢}.
Considering the correspondence a — a,, b — b,, ¢ — ¢,, d — d, described right
before Lemma 3.2.4 and by Lemma 2.2.10 we get that I acts transitively on the tree
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T so there exists w e I such that w(apbnanby - - - @pbpt’) = @nbnanby - - - @nbnan. Since
anbpanbn - - - anbn € {an, by, cn), by Lemma 3.2.4 we obtain that there is w’ e I'™ satisfy-
ing

W' (@nbnanby - - - a@nbpt’) = w(anbnanby, - - - anbpt’) = anbpanby - - - anbpan.

In the case that mis odd, by similar arguments as above we are able to find
w” e T satisfying w”(@,bnanby - - - @1bn@ns’) = @nbp@nbn - - - anb, in the level m+ 1, with
s' e Y. Then, this proves our assertion so every word on the (m + 1)-th level of T
can be taken to the word a,b,a,b, - - - a,bnra, if mis even, and it can be taken to the
word a,b,a,b, - - - anb, if mis odd.

Finally, suppose that g; and g. are arbitrary vertices of the tree T(" belonging
to the level m + 1. By what we proved above, there exist wy, w» € I'" such that the
equality wy(g1) = Wa(g2) = apbpanbn - - - anbpan or apbpanby, - - - anb, holds (depending on
the parity of m), which implies that wyw; '(gy) = go. Since wyw; ' € T\ the transitivity

of '™ on the levels of T(" is guaranteed. O

This last lemma implies that the Theorem 3.1.1 is proved by using Lemma
3.2.4 exactly in the same manner that Theorem 2.1.1 was proved by using Lemma
2.2.10, since the essence of Lemma 3.2.4 and Lemma 2.2.10 is the same: it is sufficient
to replace I and T by '™ and T, respectively, and conveniently replace the elements
of such groups.
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Final remarks

The first chapter of this dissertation, devoted to the preliminaries of our work,
is longer in comparison to the subsequent chapters; however, we thought it was better to
present all the theory needed to completely understand the connection between groups
and automata. Many examples were given in order to figure out how an automaton
works and how its states are related to transformations that, in turn, are related to some
specific groups. The intention behind this long introduction was to show nothing but a
few important considerations about the Bellaterra automata and the main proofs in the
subsequent chapters.

Chapters 2 and 3, which showed that the states from automata belonging
to the Bellaterra automata family generate groups isomorphic to the free products of
cyclic groups of order 2, were based on [18]. We followed the thoughts used in the
proofs of the lemmas, corollaries, propositions and theorems of such article with the
purpose of expanding and explaining all computations and techniques used in order to
clarify completely the ideas behind them. Even the simplest relations were illustrated
and explained.

The hope of the author is that this dissertation serves as a simple but good
reference to beginners in Group Theory applied to automata like the author was, not
a long time ago. Besides all the construction done concerning automata groups, the
Bellaterra automata family example of groups generated by automata, introduced in the
Savchuk and Vorobets’ article and explored in details in this work, provided a meaningful
contribution to the comprehension of the relation between automata and Geometric
Group Theory.
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