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Summary  

Renewable energy plays a key role in the fight to reduce greenhouse gas emissions 

while providing for human well-being and economic development. However, 

despite environmental benefits in terms of carbon sequestration, largely 

promoted biorenewable resources such as sugarcane and corn starch, so-called 

1st generation (1G) feedstocks, are associated with other types of social and 

environmental issues that highly contradict the notion of sustainability, such as 

the food versus fuel conflict and the contribution to impacts such as deforestation, 

soil degradation, loss of biodiversity and contamination of water resources. As 

reaction to these issues, a lot of effort has been put into the development of 

technologies to extract and convert useful energy from non-food crops and agro-

industrial residues, such as sugarcane bagasse, corn stover, and wheat straw. 

These now called 2nd generation (2G) feedstocks offer an extra challenge since 

fermentable sugars are not readily available; nonetheless, myriad technologies 

have been (and are being) developed to convert 2G materials into fuels and 

chemicals, with perhaps the most representative product being ethanol, a widely 

employed engine fuel and gasoline additive.  

2G or cellulosic ethanol can be produced via biochemical pathways, 

thermochemical pathways, or a third option that combines aspects of the other 

two, commonly called the thermo-biochemical, or hybrid, pathway. The latter is 

the focus of this thesis, which explores this pathway via process modeling, 

simulations, (multi-objective) optimization, and other strategies applied in order 

to determine which process choices and conditions lead to the best performance 

in terms of main sustainability aspects. While the thermochemical process of 

gasification enables the nearly full conversion of biomass without the need for 

complex and expensive stages of pretreatment and hydrolysis, the subsequent 

biological conversion (fermentation) of syngas might offer several advantages 

when compared to the traditional catalytic conversion, e.g. higher flexibility of 

H2:CO ratios and tolerance to gas contaminants . Although certain challenges may 

drawback the commercial competitiveness of syngas fermentation, such as the 

low productivity when compared to heterotrophic fermentation, intelligent 
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choices of process integration and design parameters could substantially enhance 

the performance of the process. 

In Chapter 1, a general introduction is given about this pathway, and the 

motivation and specific goals of this research are laid out. The scope of the project 

is narrowed down to one specific configuration of this pathway, which comprises 

the indirectly-heated gasification of biomass residues to produce syngas, its 

further conversion to ethanol via autotrophic fermentation with acetogenic 

bacteria, and ethanol purification using distillation and molecular sieves when 

anhydrous ethanol is the desired product. The main goal of this thesis is to find 

out which design parameters and process conditions lead to the best performance 

in terms of simultaneous and often conflicting aspects related to sustainability, i.e. 

profitability, environmental impact (specifically, carbon footprint) and energy 

efficiency. For this the process had to be investigated as a whole and also 

individually for its main units. The specific goals included the process design, the 

construction of mathematical models and simulations, the evaluation of 

alternatives for energy recovery, impact analysis, the development of a multi-

objective sustainability optimization framework, and the implementation of 

strategies to reduce the complexity of the optimization problems. These goals are 

addressed in Chapters 2 through 5. 

Chapter 2 presents a preliminary economic assessment of this route, which is 

performed after developing the process design and simulation of one possible 

configuration tuned to be energy self-sufficient. Apart from the aforementioned 

process units, this configuration also includes heat recovery/integration and 

electricity production. To enable the simulation, several assumptions had to be 

made with regard to conversions, yields and product selectivity, which were 

based on data available in the literature. This chapter also gives a more detailed 

literature review of the process and current research gaps. Our analysis suggests 

a poor economic performance in comparison with 1G ethanol, but the results of 

minimum ethanol selling price (MESP), energy efficiency and product yield are 

comparable to other 2G technologies such as gasification followed by mixed 

alcohol synthesis, simultaneous saccharification & fermentation, and hydrolysis 

followed by fermentation.  

Syngas fermentation is further explored in Chapter 3, which presents a dynamic 

model for this process in a continuous stirred-tank reactor. The biological 
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conversion of syngas using acetogens is a fairly young technology with the 

potential to offer advantages such as gas composition flexibility, but it also 

presents challenges due to the low solubility of the gaseous substrates, the 

formation of undesired acetate and slow uptake of substrate by the cells. Although 

models for this process are still scarce in the literature, they are necessary to 

evaluate the effects of operating conditions, gain understanding of the process and 

ultimately optimize it. The model developed here takes into account the mass 

transfer of substrate and products between the gas and liquid phases, the 

consumption of CO, H2 and CO2 by the cells, inhibition by products and substrate, 

cell growth and death, and acetic acid re-assimilation occurring under low pH. The 

set of unknown parameters used in the system of differential-algebraic equations 

was estimated using experimental data from three articles available in the 

literature, encompassing distinct experimental conditions. The different types of 

parameters and input variables were discussed in this chapter, as well as their 

interactions and impacts on the outcomes of the bioreactor. Finally, the model was 

used to evaluate the effects of syngas composition and conduct an optimization of 

this unit. The main contributions of this chapter are the dynamic model itself and 

the estimation of the kinetic parameter set, but some of the model predictions can 

be highlighted: (i) it was observed that the sensitivity of the kinetic parameters on 

the outcomes of the reactor is dependent on the operating conditions; (ii) ethanol 

productivity and CO conversion are conflicting targets when CO-rich gas is used, 

but higher conversions can be maintained if the H2 content is increased; (iii) the 

maximum productivity with full CO conversion is predicted to occur with a feed 

gas containing approximately 55% CO and 45% H2. 

The biokinetic model developed in Chapter 3 was then incorporated into a fluid 

dynamic model of a bubble column reactor, which is presented in Chapter 4. This 

model considers spatial distribution of the state variables, instead of 

homogeneity. Therefore, the concentrations of CO, H2, CO2, ethanol and acetic acid 

vary with height in the gas and liquid phases, as well as the gas velocity, the 

volumetric gas-liquid mass transfer coefficient kLa and the gas hold-up. This 

model was then used to predict the reactor output at steady-state for a sub-system 

comprising the bioreactor fed with fresh syngas and recycled gas, distillation, 

ethanol dehydration, and water recycle from the distillation bottoms to the 

bioreactor. To facilitate the optimization of this sub-system, which involves a large 

number of computationally expensive objective function evaluations, surrogate 
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models were employed in the optimization framework, instead of the original 

models. These are artificial neural networks that were trained and validated with 

data produced with the original bubble column models and Aspen simulations of 

the distillation columns. The optimization was then conducted with multi-

objective genetic algorithm for three combinations of targets related to capital 

investment, minimum selling price, energy efficiency and productivity. Apart from 

an analysis of trade-offs and optimal values of distinct decision variables, this 

chapter also discusses the impacts of the mass transfer coefficient kLa and an 

overview of strategies to enhance it, as it was observed that higher kLa values can 

lead to a significant improvement  of the global performance. 

After starting this research with a view of the whole process (Chapter 2), then 

concentrating our efforts towards the development of models for one of its units 

(Chapters 3 and 4), and on the development of strategies for sustainability 

optimization (demonstrated in Chapter 4 for a sub-system of the process), 

Chapter 5 zooms out again to a view of the whole, now equipped with the tools 

developed in the previous chapters. In Chapter 5, the sub-system comprising the 

bioreactor and downstream stages is integrated into a framework for 

optimization of the whole process from biomass residues to ethanol. For this work 

a new model was also developed for the indirectly-heated gasifier. The models of 

different units were combined in one framework with embedded calculations of 

economic parameters, heat and power consumption and production, CO2 

equivalent emissions, water consumption and other performance indicators that 

are re-calculated as the input variables are changed. We discuss the effects of 

these variables on the global outcomes as well as their interactions and 

correlations between responses of different categories. Finally, the system was 

optimized with respect to three simultaneous objectives: minimum ethanol 

selling price, energy efficiency and carbon footprint. The optimal trade-offs were 

discussed for two cases (sugarcane bagasse and wood residues), along with an 

analysis about the trends of the decision variables at the Pareto-optimal solutions 

and an estimation of uncertainties. According to the results, the key variables 

defining the trade-offs are the temperature in the gasification bed, the fraction of 

biomass added to the combustion bed of the gasifier, and the ratio between the 

volumetric flow rate of fresh syngas at the inlet of the bioreactor and the volume 

of liquid in the bioreactor. 
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Finally, Chapter 6 presents an overview of the results and the strategies 

presented for sustainability optimization, which involve the use of techniques 

such as surrogate modeling with machine learning, principal component analysis 

for reduction of the objective function space, and multi-objective genetic 

algorithm. These strategies were applied specifically for one configuration of the 

thermo-biochemical route, but could be extended to other technological routes 

and different processes and products. The limitations of our work are also 

summarized in this chapter, along with our view on opportunities for future 

research in this field. The results of this thesis cannot be used to affirm that the 

thermo-biochemical route is economically viable or sustainable today, but they do 

indicate good performance in terms of energy efficiency and carbon footprint, 

which are expected to bring also economic revenues in the years to come.  
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Resumo 

As energias renováveis desempenham um papel fundamental nos esforços para 

reduzir as emissões de gases de efeito estufa e ao mesmo tempo prover recursos 

para o bem-estar humano e desenvolvimento econômico. Entretanto, apesar de 

benefícios ambientais quanto ao sequestro de carbono, certas fontes 

biorenováveis populares, como a cana-de-açúcar e o amido de milho, chamadas 

de matérias-primas de primeira geração (1G), estão também associadas a outros 

tipos de problemas sociais e ambientais que contradizem fortemente o conceito 

de sustentabilidade. Por exemplo, como o dilema combustíveis versus alimentos, 

e a contribuição a impactos como desflorestamento, degradação do solo, perda de 

biodiversidade e contaminação de recursos aquáticos. Como reação a esses 

problemas, muito se tem investido no desenvolvimento de tecnologias para 

extrair e converter energia útil de biomassas não-comestíveis e resíduos 

agroindustriais, como o bagaço de cana e a palha de milho e de trigo. O uso dessas 

matérias-primas, agora chamadas de 2ª geração (2G), oferece um desafio a mais 

pois os açúcares fermentescíveis são de difícil acesso; ainda assim, diversas 

tecnologias já foram ou estão sendo desenvolvidas para converter materiais 2G 

em combustíveis e produtos químicos, sendo um dos mais representativos o 

etanol, usado como combustível em carros de motor flex e aditivo para a gasolina. 

Etanol 2G, ou celulósico, pode ser produzido por rotas bioquímicas, 

termoquímicas, ou por uma terceira opção que combina aspectos das outras duas, 

comumente chamada de rota termo-bioquímica, ou rota híbrida. Esta última é o 

foco desta tese, que a explora por meio de modelagem, simulações, otimização 

(multi-objetivo), e outras estratégias aplicadas de forma a determinar quais 

escolhas e condições de processo levam ao melhor resultado em termos de 

sustentabilidade. Enquanto o processo termoquímico de gaseificação permite a 

conversão quase completa da biomassa sem a necessidade de etapas complexas e 

caras de pré-tratamento e hidrólise, a subsequente conversão biológica 

(fermentação) do syngas pode oferecer algumas vantagens quanto comparada à 

tradicional conversão catalítica, e.g. maior flexibilidade na proporção H2:CO e 

maior tolerância a contaminantes presentes no gás. Embora alguns desafios ainda 

atrapalhem a competitividade do processo de fermentação do syngas, como a 



10 

 

baixa produtividade em comparação à fermentação heterotrófica, escolhas 

inteligentes de integração, condições de processo e parâmetros de projeto 

poderiam melhorar significativamente o seu desempenho. 

O Capítulo 1 desta tese apresenta uma introdução geral a essa rota, assim como a 

motivação e os objetivos específicos desta pesquisa. O escopo do projeto é 

limitado a uma configuração específica da rota termo-bioquímica, 

compreendendo uma etapa de gaseificação indireta de resíduos de biomassa para 

produzir syngas, sua subsequente conversão a etanol via fermentação autotrófica 

com bactérias acetogênicas, e a purificação do etanol empregando destilação e 

peneiras moleculares quando etanol anidro é o produto desejado. O objetivo 

principal desta tese é determinar os parâmetros de projeto e condições de 

processo que levam ao melhor desempenho com relação a aspectos simultâneos 

e comumente conflitantes ligados a sustentabilidade, i.e. lucro, impacto ambiental 

(especificamente, pegada de carbono) e eficiência energética. Para isso o processo 

foi estudado como um todo e também individualmente para suas unidades 

principais. Os objetivos específicos incluíram o design do processo, a construção 

de modelos matemáticos e simulações computacionais, a avaliação de alternativas 

para recuperação de energia, análise de impactos, o desenvolvimento de uma 

framework para otimização multi-objetivo de sustentabilidade, e a 

implementação de estratégias para reduzir a complexidade dos problemas de 

otimização. Esses objetivos são abordados nos Capítulos 2 a 5. 

O Capítulo 2 apresenta uma análise econômica preliminar dessa rota, feita após 

o projeto conceitual do processo e a simulação de uma configuração possível 

ajustada para ser energeticamente auto-suficiente. Além das unidades de 

processo citadas previamente, essa configuração inclui também recuperação e 

integração energética, bem como produção de eletricidade. Diversas hipóteses 

foram feitas relacionadas a conversões, rendimentos e seletividade de produtos, 

sendo estas baseadas em informações disponíveis na literatura. Esse capítulo 

fornece também uma revisão mais detalhada sobre o processo e as lacunas de 

pesquisa. Nossa análise sugere um desempenho econômico baixo em comparação 

com o etanol 1G, mas os resultados de preço mínimo de venda (MESP -  minimum 

ethanol selling price), eficiência energética e rendimento de produto são 

comparáveis a outras tecnologias 2G como gaseificação seguida de síntese 

catalítica de álcoois, sacarificação e fermentação simultâneas, e hidrólise da 

biomassa seguida de fermentação. 
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A fermentação de syngas é explorada em maior detalhe no Capítulo 3, que 

apresenta um modelo dinâmico desse processo e um reator perfeitamente agitado 

(CSTR). A conversão biológica do syngas empregando bactérias acetogênicas é 

uma tecnologia nova com o potencial de oferecer vantagens como maior 

flexibilidade na composição do gás, mas apresenta também alguns desafios devido 

à baixa solubilidade do substrato gasoso, à formação paralela de acetato não-

desejado e ao uptake restrito de substrato pelas células. Embora ainda seja difícil 

encontrar modelos matemáticos desse processo, eles são necessários para avaliar 

os efeitos das condições operacionais, ganhar entendimento do processo, e por 

fim otimizá-lo. O modelo desenvolvido aqui considera a transferência de massa de 

substrato e produtos entre as fases gás e líquido, o consumo celular de CO, H2 e 

CO2, a inibição celular causada por produtos e substrato, crescimento e morte das 

células, e re-assimilação de ácido acético sob baixo pH. O conjunto de parâmetros 

desconhecidos utilizados no sistema de equações diferenciais e algébricas foi 

estimado a partir de dados experimentais retirados de três artigos científicos, que 

abrangem diferentes condições experimentais. Os tipos de parâmetros e variáveis 

de input são discutidos nesse capítulo, assim como as suas interações e impactos 

nos resultados do biorreator. Por fim, o modelo foi usado para avaliar os efeitos 

da composição do syngas e conduzir uma otimização dessa unidade. As principais 

contribuição desse capítulo são o próprio modelo dinâmico e a estimação do 

conjunto de parâmetros cinéticos, mas certas predições do modelo podem ser 

enfatizadas: (i) observou-se que a sensibilidade dos parâmetros cinéticos 

depende também das condições operacionais; (ii) a produtividade de etanol e a 

conversão de CO representam objetivos conflitantes quando o gás de alimentação 

é rico em CO, mas conversões maiores podem ser mantidas quando aumenta-se o 

teor de H2 no gás; (iii) a produtividade máxima com conversão total de CO é 

esperada com um gás de alimentação contendo aproximadamente 55% CO e 45% 

H2. 

O modelo bio-cinético desenvolvido no Capítulo 3 foi então incorporado no 

modelo dinâmico de uma reator de coluna de bolhas, apresentado no Capítulo 4. 

Este modelo considera distribuição espacial das variáveis de estado, em vez de 

homogeneidade. Portanto, as concentrações de CO, H2, CO2, etanol e ácido acético 

nas fases gás e líquido variam com a altura na coluna, assim como a velocidade 

superficial do gás, o coeficiente volumétrico de transferência de massa gás-líquido 

kLa, e hold-up de gás. O modelo foi usado então para calcular a saída do reator em 
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estado estacionário, dentro de um sub-sistema compreendendo o biorreator 

alimentado com syngas fresco e reciclado, destilação, desidratação do etanol, e 

reciclo de água do fundo das colunas de destilação para o biorreator. Para facilitar 

a otimização desse sub-sistema, que envolve calcular as funções objetivo 

repetidas vezes, um procedimento caro computacionalmente, modelos 

substitutos mais rápidos foram empregados no lugar dos modelos originais. Esses 

são, por exemplo, redes neurais que foram treinadas e validadas com dados 

gerados pelos modelos originais da coluna de bolhas e pelas simulações em Aspen 

das colunas de destilação. A otimização foi então programada com algoritmo 

genético multi-objetivo para três combinações de objetivos relacionados ao 

investimento, ao preço mínimo de venda MESP, à eficiência energética e à 

produtividade. Além da análise de trade-offs e dos valores ótimos das diversas 

variáveis de decisão, esse capítulo discute também os impactos do coeficiente de 

transferência de massa kLa e fornece uma visão geral das estratégias para 

melhorar esse número, já que se observou um aumento significativo do 

desempenho global do processo quando são considerados valores mais altos de 

kLa. 

Após começar esta pesquisa com uma visão do processo como um todo (Capítulo 

2), e depois concentrar nossos esforços no desenvolvimento de modelos para uma 

de suas unidades específicas (Capítulos 3 e 4), bem como no desenvolvimento de 

estratégias para a otimização de sustentabilidade (demonstrada no Capítulo 4 

para um sub-sistema do processo), no Capítulo 5 nós voltamos novamente a uma 

visão do todo, agora equipados com as ferramentas desenvolvidas nos capítulos 

anteriores. No Capítulo 5, o sub-sistema consistindo no biorreator e etapas 

downstream é integrado à framework de otimização do processo completo a 

partir de resíduos de biomassa até etanol. Para esse trabalho um novo modelo foi 

desenvolvido para o gaseificador indireto, sendo este detalhado no Capítulo 5. Os 

modelos referentes às diferentes unidades foram combinados em uma framework 

contendo os cálculos de parâmetros econômicos, consumo de energia (calor e 

eletricidade), emissões de CO2 equivalente, consumo de água e outros indicadores 

de desempenho relacionados a sustentabilidade, que são recalculados a cada 

mudança nas variáveis de entrada. São discutidos os efeitos dessas variáveis nos 

resultados globais assim como suas interações e correlações entre respostas de 

categorias distintas. Por fim, o sistema foi otimizado com relação a três objetivos 

simultâneos: preço mínimo de venda (MESP), eficiência energética e pegada de 
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carbono. Os trade-offs ótimos foram discutidos para dois casos (bagaço de cana e 

resíduos de madeira), junto com uma análise a respeito das tendências 

observadas para as variáveis de decisão nas soluções Pareto-ótimas, e uma 

discussão sobre as incertezas nos resultados. De acordo com os resultados, as 

principais variáveis que definem os trade-offs são a temperatura no leito de 

gaseificação, a fração de biomassa adicionada ao leito de combustão do 

gaseificador, e a razão entre a vazão volumétrica de syngas fresco na entrada do 

biorreator e o volume de líquido no mesmo. 

Para concluir, o Capítulo 6 apresenta uma visão geral dos resultados e das 

estratégias utilizadas para a otimização de sustentabilidade, que envolvem o uso 

de técnicas como machine learning para geração de modelos substitutos, análise 

de componentes principais para redução do espaço de funções objetivo, e 

algoritmo genético multi-objetivo. Essas estratégias foram aplicadas 

especificamente para uma configuração dentro da rota termo-bioquímica, mas 

poderiam também ser estendidas a outras rotas tecnológicas, processos e 

produtos. Nesse capítulo são discutidas também as limitações deste trabalho, 

assim como oportunidades para pesquisas futuras dentro deste campo. Os 

resultados desta tese não podem ser usados para afirmar que a rota termo-

bioquímica é economicamente viável ou ainda sustentável, porém eles indicam 

um desempenho favorável em termos de eficiência energética e pegada de 

carbono. 
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Samenvatting 

(Translated by Britte Bouchaut; Reviewed by Henk Noorman) 

 

Hernieuwbare energie speelt een sleutelrol in de strijd om de uitstoot van 

broeikasgassen te verminderen en zorgt tegelijkertijd voor menselijk welzijn en 

economische ontwikkeling. Ondanks milieuvoordelen van koolstofvastlegging 

worden breed aanbevolen biologisch hernieuwbare hulpbronnen zoals suikerriet 

en maïszetmeel, zogenaamde 1e generatie (1G) grondstoffen, geassocieerd met 

sociale- en milieukwesties die sterk in tegenspraak zijn met het begrip 

duurzaamheid, zoals het voedsel-brandstofconflict en de bijdrage aan effecten 

zoals ontbossing, bodemaantasting, verlies van biodiversiteit en vervuiling van 

watervoorraden. Als reactie op deze problemen is er veel energie gestoken in de 

ontwikkeling van technologieën om nuttige energie uit niet-voedingsgewassen en 

agro-industriële reststromen, zoals suikerrietbagasse, maïsstengels en tarwestro 

te halen en om te zetten. Deze zogenaamde 2e generatie (2G) grondstoffen bieden 

een extra uitdaging omdat fermenteerbare suikers niet direct beschikbaar zijn; 

desalniettemin zijn (en worden) talloze technologieën ontwikkeld om 2G-

grondstoffen om te zetten in brandstoffen en chemicaliën, met ethanol als het 

meest toegepaste product, een veelgebruikt motorbrandstof- en benzineadditief. 

2G- of cellulose-ethanol kan worden geproduceerd via biochemische- of 

thermochemische routes, of via een derde optie die de aspecten van de eerdere 

twee combineert - ook wel de thermo-biochemische of hybride route genoemd. 

Deze laatste is de focus van dit proefschrift, dat deze weg verkent via 

procesmodellering, simulaties, (multi-objectieve) optimalisatie en andere 

toegepaste strategieën om te bepalen welke proceskeuzes en voorwaarden leiden 

tot de beste prestaties van de belangrijkste duurzaamheidsaspecten. Terwijl het 

thermochemische vergassingsproces de bijna volledige omzetting van biomassa 

mogelijk maakt zonder de noodzaak van complexe en dure stadia van 

voorbehandeling en hydrolyse, zou de daaropvolgende biologische omzetting 

(fermentatie) van syngas verschillende voordelen kunnen bieden in vergelijking 

met de traditionele katalytische omzetting, b.v. hogere flexibiliteit van H2:CO-
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verhoudingen en tolerantie voor gasverontreinigingen. Hoewel bepaalde 

uitdagingen het commerciële concurrentievermogen van de syngasfermentatie 

kunnen aantasten, zoals een lagere productiviteit in vergelijking met heterotrofe 

fermentatie, zouden intelligente keuzes van procesintegratie en 

ontwerpparameters de prestatie van het proces aanzienlijk kunnen verbeteren. 

In Hoofdstuk 1 wordt een algemene inleiding gegeven over dit traject en worden 

de motivatie en specifieke doelen van dit onderzoek uiteengezet. Het 

toepassingsgebied van het project is beperkt tot één specifieke configuratie van 

deze route die bestaat uit de indirect verwarmde vergassing van 

biomassaresiduen om syngas te produceren, de verdere omzetting in ethanol via 

autotrofe fermentatie met acetogene bacteriën, en ethanolzuivering met behulp 

van destillatie en moleculaire zeven wanneer watervrije ethanol het gewenste 

product is. Het voornaamste doel van dit proefschrift is om erachter te komen 

welke ontwerpparameters en procescondities leiden tot de beste prestaties 

betreffende gelijktijdige en vaak tegenstrijdige aspecten qua duurzaamheid, d.w.z. 

winstgevendheid, milieu-impact (carbon footprint) en energie-efficiëntie. 

Hiervoor moest het proces als geheel worden onderzocht, en ook de 

hoofdeenheden afzonderlijk. De specifieke doelen omvatten het procesontwerp, 

de constructie van wiskundige modellen en simulaties, de evaluatie van 

alternatieven voor energieterugwinning, impactanalyse, de ontwikkeling van een 

multi-objectief duurzaamheidsoptimalisatiekader en de implementatie van 

strategieën om de complexiteit van de problemen omtrent optimalisatie te 

verminderen. Deze doelen komen aan de orde in de Hoofdstukken 2 tot en met 5.  

Hoofdstuk 2 presenteert een voorlopige economische beoordeling van deze 

route die wordt uitgevoerd na het ontwikkelen van het procesontwerp en de 

simulatie van één mogelijke configuratie die is afgestemd op energie-

onafhankelijkheid. Afgezien van de bovengenoemde proceseenheden omvat deze 

configuratie ook warmteterugwinning / integratie en elektriciteitsproductie. Om 

de simulatie mogelijk te maken moesten er verschillende aannames worden 

gedaan van conversies, opbrengsten en productselectiviteit die waren gebaseerd 

op in de literatuur beschikbare gegevens. Dit hoofdstuk geeft ook een meer 

gedetailleerd literatuuroverzicht van het proces en de huidige onderzoekshiaten. 

Onze analyse suggereert slechte economische prestaties in vergelijking met 1G-

ethanol, maar de resultaten van de minimale ethanolverkoopprijs (MESP), 

energie-efficiëntie en productopbrengst zijn vergelijkbaar met andere 2G-
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technologieën zoals vergassing gevolgd door gemengde alcoholsynthese, 

gelijktijdige versuikering en fermentatie, en hydrolyse gevolgd door fermentatie. 

De fermentatie van syngas wordt verder onderzocht in Hoofdstuk 3, dat een 

dynamisch model voor dit proces presenteert in een continu geroerde 

tankreactor. De biologische conversie van syngas met behulp van acetogenen is 

een vrij jonge technologie die voordelen kan bieden zoals flexibiliteit van de 

gassamenstelling. Maar het levert ook uitdagingen op vanwege de lage 

oplosbaarheid van de gasvormige substraten, de vorming van ongewenst acetaat 

en de langzame opname van substraat door de cellen. Hoewel modellen voor dit 

proces in de literatuur nog schaars zijn, zijn ze nodig om de effecten van 

bedrijfsomstandigheden te evalueren, inzicht te krijgen in het proces en 

uiteindelijk te optimaliseren. Het hier ontwikkelde model houdt rekening met de 

massaoverdracht van substraat en producten tussen de gas- en vloeistoffase, het 

verbruik van CO, H2 en CO2 door de cellen, remming door producten en substraat, 

celgroei en dood, en herassimilatie van azijnzuur wat optreedt bij een lage pH. De 

onbekende parameters in het systeem van differentiaal-algebraïsche 

vergelijkingen  zijn geschat met behulp van experimentele gegevens uit drie 

artikelen die beschikbaar zijn in de literatuur en die verschillende experimentele 

omstandigheden omvatten. In dit hoofdstuk worden de verschillende soorten 

parameters en inputvariabelen besproken, evenals hun interacties en effecten op 

de uitkomsten van de bioreactor. Ten slotte wordt het model gebruikt om de 

effecten van syngas-samenstelling te evalueren en een optimalisatie van deze 

eenheid uit te voeren. De belangrijkste bijdragen van dit hoofdstuk zijn het 

dynamische model zelf en de schatting van de kinetische parameterset, maar 

enkele van de modelvoorspellingen kunnen benadrukt worden: (i) er werd 

waargenomen dat de gevoeligheid van de kinetische parameters voor de 

uitkomsten van de reactor afhankelijk zijn van de bedrijfsomstandigheden; (ii) 

ethanolproductiviteit en CO-omzetting zijn tegenstrijdige doelen wanneer CO-rijk 

gas wordt gebruikt, maar hogere omzettingen kunnen worden gehandhaafd als 

het H2-gehalte wordt verhoogd; (iii) voorspeld wordt dat de maximale 

productiviteit bij volledige CO-omzetting optreedt met een voedingsgas dat 

ongeveer 55% CO en 45% H2 bevat. 

Het in Hoofdstuk 3 ontwikkelde biokinetische model wordt vervolgens 

opgenomen in een vloeistofdynamisch model van een bellenkolomreactor, dat in 

Hoofdstuk 4 wordt gepresenteerd. Dit model beschouwt de ruimtelijke verdeling 
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van de toestandsvariabelen in plaats van homogeniteit. Daarom variëren de 

concentraties CO, H2, CO2, ethanol en azijnzuur met de hoogte in de gas- en 

vloeistoffase, evenals de gassnelheid, de volumetrische gas-

vloeistofmassaoverdrachtscoëfficiënt kLa en de gasophoping. Dit model wordt 

vervolgens gebruikt om de reactoroutput bij steady-state te voorspellen voor een 

subsysteem bestaande uit de bioreactor die wordt gevoed met vers syngas en 

gerecycled gas, destillatie, dehydratatie van ethanol en recirculatie van water 

afkomstig van  de destillatiebodems naar de bioreactor. Om de optimalisatie van 

dit subsysteem, dat een groot aantal computationeel dure objectieve functie-

evaluaties omvat, te vergemakkelijken worden surrogaatmodellen gebruikt in het 

optimalisatiekader in plaats van de originele modellen. Dit zijn kunstmatige 

neurale netwerken die zijn getraind en gevalideerd met gegevens die zijn 

geproduceerd met de originele bellenkolommodellen en Aspen-simulaties van de 

destillatiekolommen. De optimalisatie wordt vervolgens uitgevoerd met een 

multi-objectief genetisch algoritme voor drie combinaties van doelen met 

betrekking tot kapitaalinvestering, minimale verkoopprijs, energie-efficiëntie en 

productiviteit. Afgezien van een analyse van afwegingen en optimale waarden van 

verschillende beslissingsvariabelen bespreekt dit hoofdstuk ook de effecten van 

de massaoverdrachtscoëfficiënt kLa en een overzicht van strategieën om deze te 

verbeteren, aangezien hogere kLa-waarden kunnen leiden tot een significante 

verbetering van de wereldwijde prestaties. 

Na het starten van dit onderzoek met het oog op het hele proces (Hoofdstuk 2), 

hebben we onze inspanningen geconcentreerd op de ontwikkeling van modellen 

voor een van zijn eenheden (Hoofdstukken 3 en 4) en op de ontwikkeling van 

strategieën voor optimalisatie van duurzaamheid (aangetoond in Hoofdstuk 4 

voor een subsysteem van het proces). Daarna zoomt Hoofdstuk 5 opnieuw uit 

naar een overzicht van het geheel, nu uitgerust met de gereedschappen die in de 

vorige hoofdstukken zijn ontwikkeld. In Hoofdstuk 5 is het subsysteem met de 

bioreactor en de stroomafwaartse stadia geïntegreerd in een raamwerk voor 

optimalisatie van het hele proces van biomassa-residuen tot ethanol. Voor dit 

hoofdstuk is ook een nieuw model ontwikkeld voor de indirect verwarmde 

vergasser. De modellen van verschillende units worden gecombineerd in één 

raamwerk met ingebedde berekeningen van economische parameters, warmte- 

en energieverbruik en productie, CO2-equivalente emissies, waterverbruik en 

andere prestatie-indicatoren die opnieuw worden berekend als de 
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inputvariabelen wijzigen. We bespreken de effecten van deze variabelen op de 

globale resultaten, evenals hun interacties en correlaties tussen reacties uit de 

verschillende categorieën. Ten slotte is het systeem geoptimaliseerd met  drie 

gelijktijdige doelstellingen: minimale verkoopprijs voor ethanol, energie-

efficiëntie en ecologische voetafdruk. De optimale afwegingen worden besproken 

voor twee gevallen (suikerrietbagasse en houtresten), samen met een analyse van 

de trends van de beslissingsvariabelen bij de Pareto-optimale oplossingen en een 

schatting van onzekerheden. Volgens de resultaten zijn de belangrijkste 

variabelen die de afwegingen bepalen de temperatuur in het vergassingsbed, de 

fractie biomassa die aan het verbrandingsbed van de vergasser wordt toegevoegd 

en de verhouding tussen het volumetrische debiet van vers syngas bij de inlaat 

van de bioreactor en het vloeistofvolume in de bioreactor. 

Ten slotte geeft Hoofdstuk 6 een overzicht van de resultaten en de strategieën 

die worden voorgesteld voor optimalisatie van duurzaamheid, waarbij technieken 

als surrogaatmodellering met machine learning, analyse van hoofdcomponenten 

voor het verminderen van de objectieve functieruimte en een multi-objectief 

genetisch algoritme worden gebruikt. Deze strategieën worden specifiek 

toegepast voor één configuratie van de thermo-biochemische route, maar kunnen 

worden uitgebreid tot andere technologische routes en verschillende processen 

en producten. De beperkingen van ons werk worden ook samengevat in dit 

hoofdstuk, samen met onze kijk op mogelijkheden voor toekomstig onderzoek op 

dit gebied. De resultaten van dit proefschrift kunnen niet worden gebruikt om te 

bevestigen dat de thermo-biochemische route tegenwoordig economisch 

levensvatbaar of duurzaam is, maar ze duiden wel op goede prestaties op het 

gebied van energie-efficiëntie en CO2-voetafdruk, die naar verwachting in de 

komende jaren ook economische inkomsten zullen opleveren. 



 

 

 

Chapter 1  

General Introduction
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 “Let man then contemplate the whole of nature in her full and grand majesty, and turn his 

vision from the low objects which surround him. Let him gaze on that brilliant light, set like 

an eternal lamp to illumine the universe; let the earth appear to him a point in comparison 

with the vast circle described by the sun; and let him wonder at the fact that this vast circle 

is itself but a very fine point in comparison with that described by the stars in their revolution 

round the firmament. But if our view be arrested there, let our imagination pass beyond; it 

will sooner exhaust the power of conception than nature that of supplying material for 

conception.” 

Blaise Pascal, Pensées 
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1.1. Introduction and Motivation 

In 2019, the word of the year chosen by Collins Dictionary was, not surprisingly, 

climate strike, in reference to the numerous protests and demonstrations about 

climate change that swept the globe throughout the year. A similar message of 

concern had been conveyed the year before with the word choice single-use, 

referring to disposable plastic that quickly turns into trash. These two issues, 

climate change and waste, are behind another buzzword that is certain to make 

word of the year anytime soon: bioeconomy. (If not bioeconomy, then certainly 

circular economy or green economy will.) “The art of bringing value to the valueless”, as well defined in the Biofuels Digest (Lane, 2019), bioeconomy tackles 

not only CO2 emissions, but also pollution, waste management and energy 

security. Put simply, bioeconomy promotes the use of biomass as the main raw 

material for the production of energy, transportation fuels, chemicals and plastics, 

thus replacing fossil resources and giving rise to biorefineries, as opposed to oil 

refineries.  

Within the vast domain of bioeconomy, this thesis is focused on one of its staples: 

bioethanol, a renewable, clean-burning and high-octane liquid fuel commonly 

used as additive for gasoline or as pure fuel in flexible-fuel cars. Fuel blends of 

different ethanol levels are widely used in the world and perceived as a way to 

reduce dependency on petrol and cut carbon emissions in the transportation 

sector. As of 2020, nearly all of the commercialized ethanol is produced from 1st-

generation (1G) feedstocks, i.e. food crops such as sugarcane in Brazil and corn in 

the US. However, despite the reduction of fossil-derived CO2 emissions, the rapid 

expansion of biofuels since the early 2000’s has raised not only the ethical food-

versus-fuel debate, but other environmental concerns related to issues such as soil 

degradation, biodiversity loss, and the increased use of fertilizers contributing to 

eutrophication and emissions of nitrous oxide, a strong greenhouse gas (GHG) 

(Goldemberg et al, 2008). In order to extenuate these impacts and increase the 

sustainability of biofuels, research efforts from both academia and industry have 

been put into the development and implementation of technologies based on the 

use of non-food resources, also called 2nd-generation (2G) feedstocks, e.g. 

agricultural waste such as sugarcane bagasse and corn stover, and non-food crops 

such as switchgrass. Lignocellulosic biomass (such as the abovementioned 

examples) is often used as synonym for 2G feedstocks, although 2G refers more 

broadly to any carbonaceous material that is not a food crop, thus also 
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encompassing other types of waste such as municipal solid waste (MSW) and 

industrial off-gas (e.g. basic oxygen furnace (BOF) gas from steel mills).   

Pathways for the production of fuels from lignocellulosic biomass are essentially 
two: the biochemical pathway comprising pretreatment and enzymatic or acid 
hydrolysis of biomass followed by fermentation of sugars to ethanol; and the 
thermochemical pathway comprising biomass gasification and the following 
conversion of the produced synthesis gas (syngas) to ethanol and other products. 
The conversion of syngas to liquid fuels and chemicals can proceed with chemical 
catalysts (catalytic route) or microbial catalysts (fermentation). Research and 
development on the production of fuels and chemicals from lignocellulosic 
biomass have been concentrated on the fully-biochemical route (i.e. pretreatment 
and enzymatic and/or acid hydrolysis followed by fermentation of sugars), a fact 
associated with a long familiarity of the fermentation industry with hydrolysis of 
starch to obtain glucose (Brown, 2010). Like starch, cellulose is also a polymer of 
glucose; however, it is not only more recalcitrant than the former, but the fact that 
it is entrenched in a matrix of lignin makes such process even more complex and 
difficult to manage. In this aspect, thermochemical routes offer a significant 
advantage since gasification is able to convert nearly all biomass components, 
including recalcitrant lignin, to syngas. Furthermore, other non-lignocellulosic 
residues, such as non-recycled plastics that are present in MSW, might also be 
converted via gasification (GBB, 2013). Syngas is a mixture consisting primarily of 
CO and H2 and has long been considered an important building block in the 
catalytic conversion to liquid fuels and chemicals such as methanol, formaldehyde, 
acetic acid and olefins (Subramani and Gangwal, 2008).  

The so-called thermo-biochemical, or hybrid, pathway couples the 
thermochemical conversion of biomass to syngas with the biological conversion 
of syngas to fuels and chemicals using acetogenic bacteria. The pathway has 
attracted companies and scientists due to the potential advantages its constituent 
steps offer when compared to the other pathways. In more specific terms, while 
the first step (thermochemical conversion) dismisses the complex stage of 
obtaining sugars from lignocellulosic biomass, besides admitting a wide variety of 
feedstocks, the second step (biochemical conversion) is believed to offer several 
advantages over catalytic conversion of syngas, such as higher specificity, higher 
yields, lower energy costs due to operation under mild conditions, and higher 
resistance to poisoning (Klasson et al., 1991). Nonetheless, this is still a new route 
that has not been fully explored. For example, not only is there a need for research 
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on the biological conversion of syngas (e.g. with the design of reactors that 
enhance the mass transfer coefficient), but the integrated process must be 
improved as a whole, starting with appropriate gasification conditions to produce 
syngas with favorable composition for the fermentation, to the design of energy-
efficient separation processes and the evaluation of power cycles using syngas 
that is generated in the process. It is also worth noting that despite high 
expectations and promising results of ethanol yield and selectivity announced by 
the leading gas fermentation company, LanzaTech, the scientific publications 
regarding this technology indicate a number of research gaps: limited 
understanding of microbial physiology aspects related to product selectivity (i.e. 
acid or alcohol formation) and cell inhibition by products, substrate and other 
components (e.g. syngas contaminants); inconsistent reports of growth rate, 
selectivity and yields; few papers about nutrient medium optimization; limited 
modeling, simulation and optimization studies. The latter were the targets of this 
research project.  

Only a few works have investigated the performance of this route with regard to 
sustainability goals (for example, through techno-economic assessment and Life 
Cycle Assessment), such as Benalcázar et al. (2017), Pardo-Planas et al. (2017) and 
Roy et al. (2015). However, although they contribute meaningful results to the 
field, process conditions are mostly fixed or evaluated through univariate 
sensitivity analysis, and optimizations studies have not been conducted. Though 
the original goal of our research was to perform a classic early stage sustainability 
assessment (i.e. techno-economic assessment plus life cycle analysis), the project 
evolved instead into the pursuit, development and application of strategies to 
optimize sustainability within this route. This being a novel, not fully understood 
and commercialized technology, one of our goals was to find out which actions, 
process improvements and process conditions lead to the best performance in 
terms of the specific aspects of sustainability considered here, namely: economic 
viability, environmental impact (specifically, carbon footprint) and energy 
efficiency. Efficient methodologies for sustainability optimization are still scarce 
in the literature, as the integration of processes and the evaluation and 
optimization of multiple (and conflicting) objectives entail a high computational 
cost (Gonzalez-Garay and Guillen-Gosalbez, 2018), therefore in this work we also 
aimed at identifying, developing and implementing strategies in this domain. 

Chapters 2 through 5 of this thesis are presented in the structure of research 
articles, the first three of which have already been published in peer-review 
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journals. To avoid redundancy and repetition, a deeper literature review is left for 
the introduction sections of these articles. 

1.2. Objectives and Structure of this Thesis 

This thesis started as an investigation into the sustainability of the gasification-
fermentation route for ethanol production from biomass waste. The question was 
not exactly “is this commercially viable?” and “is this sustainable?”, but instead: 
how can this process be designed to optimize its performance in terms of three 
values: profitability, energy efficiency, and environmental impact? A disclaimer 
must be made: throughout this thesis we take the liberty of referring to this goal 
as sustainability optimization, although a few simplifications are made: first, the 
social domain (one of the pillars of sustainability) is excluded from our models 
and assessments, as this work focuses on the industrial stage of the production 
chain and not on upstream stages where social impacts mostly occur; moreover, 
the only environmental impacts addressed here are CO2 emissions and water 
footprint. Although many other indicators exist to account for environmental 
impacts, such as abiotic depletion potential, acidification and eutrophication 
potential, human and environmental toxicity potential, among others, we must 
keep in mind that each added indicator increases the dimension of the multi-
objective optimization problem that is the ultimate goal of this work. The choice 
of carbon and water footprint was due to two main reasons: first, these are direct 
results from our models, dismissing therefore the use of multiplication factors 
that are dependent on the different LCA methods available and that would bring 
an extra layer of uncertainty to our results; secondly, results from LCA studies in 
the literature suggest a significant degree of correlation between indicators, with 
several of them being directly related to CO2 emissions or fossil fuel consumption. 
For example, in the work by Capaz et al. (2020), which evaluated distinct 
technological routes with regard to 8 environmental indicators, a tendency can be 
observed in the ranking of these technologies according to different indicators, 
although trade-offs were also observed among these environmental impacts. 
Another example is the work by Lasvaux et al. (2016), who conducted a detailed 
statistical analysis on the correlations between LCA environmental indicators and 
concluded that the set of indicators can be simplified to ease the decision making 
process without causing any loss of information. To summarize, this thesis does 
not tackle the whole concept of sustainability, but this term is used throughout the 
text when referring to the combination of economic, environmental and energetic 
indicators explored in this work. 
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It’s also important to clarify that we do not intend to compare the “sustainability score” of this pathway with other technological routes, since such “score” is highly 
dependent on the process design, operating conditions and, just as relevant, the 
assumptions considered for the models and assessments.  

In order to achieve the aforementioned main goal, the objectives below were 
defined, motivated by the identified knowledge gaps, and are addressed in the 
chapters of this thesis. 

1.2.1. Preliminary assessment of economic viability for a possible 

configuration of the thermo-biochemical route  

The literature review on syngas fermentation revealed a limited number of 
studies about techno-economic assessment, modeling and optimization of 
thermo-biochemical routes, as well as divergent results among the existing 
publications and often incomplete or unclear presentation of the assumptions 
considered. As starting point for this research project, we aimed at identifying the 
challenges, prospects and literature gaps surrounding this technology, and 
developing the process design and simulation for a energy self-sufficient plant 
comprising biomass gasification, syngas fermentation, heat recovery, power 
production and ethanol distillation. With this we also intended to deliver a first 
estimate of economic viability and energy efficiency for this process. This goal was 
fulfilled with our publication de Medeiros et al. (2017), presented in Chapter 2 of 
this thesis. 

1.2.2. Modeling of syngas fermentation in a continuous stirred-tank reactor 

In order to predict the outcomes of the syngas bioreactor as function of its design 

and operating parameters, a mathematical model was needed to describe this 

process. Our next goal was therefore to build a dynamic model of a continuous 

stirred-tank reactor (CSTR) taking into account multiple input variables and the 

simultaneous phenomena of gas-liquid mass transfer, cell growth and death, and 

chemical reactions. We aimed at estimating the kinetic parameters needed in the 

model using experimental data from publications, obtained under different 

conditions and modes of operation, and it was also our goal to investigate the 

effects of these parameters and the model input variables (e.g. reactor dilution 

rate) on the main response variables (e.g. ethanol concentration and selectivity, 

syngas conversion). Since there were no previous studies in the field of syngas 

fermentation contemplating parameter estimation, statistical treatment and 
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sensitivity analysis of both process conditions and kinetic parameters, our 

publication de Medeiros et al. (2019a), presented in Chapter 3, was designed to 

fulfill this gap. 

1.2.3. Modeling of syngas fermentation in a bubble column reactor 

Following the development of the CSTR model, our goal was to expand this model 

to that of a bubble column reactor (BCR), which would also account for the 

concentration gradients of substrate and products along the column. Ultimately 

this is the model to be used in our sustainability optimization framework. Our 

publications de Medeiros et al. (2020), presented in Chapter 4, and de Medeiros 

et al. (2019b) lay out this model and represent our contribution to the field of 

syngas fermentation modeling.  

1.2.4. Modeling of indirectly-heated gasification of biomass 

For the preliminary assessment mentioned in Sec. 1.2.1, the gasifier was simulated 

with an equilibrium model; the rationale behind this choice, as well as its 

limitations, are laid out in Chapter 2. However, to increase the accuracy of our 

results, one of our goals was to develop a robust model for this process without 

neglecting the deviations from equilibrium that occur in real operation. 

Theoretical and experimental articles about different gasification technologies are 

not hard to find, but while many optimization works involving this process make 

use of equilibrium models, published kinetic models are often difficult to 

reproduce or unsuitable due to their high degree of complexity, very limited range 

of values for the input variables and high specificity with regard to the 

experimental set-up and conditions used. Although a detailed kinetic model was 

not part of our research scope, we wished to build a new model for a dual-fluidized 

bed gasifier which incorporates previously reported correlations for syngas and 

char yields in an optimization routine to regulate the amounts of excess air and 

additional fuel needed to maintain the desired temperatures. This model is 

thoroughly explained in Chapter 5. 

1.2.5. Development of surrogate models (artificial neural networks) 

Additionally to the investigation of technologies and construction of models, one 

of our goals was to develop and implement strategies to support the sustainability 

optimization framework. Multi-objective optimization problems are more 

challenging to solve than one objective, especially when highly non-linear 
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functions are present – as is the case here and in a variety of real-world problems. 

Many works about optimization make use of short-cut models to enable the use of 

linear or non-linear programming methods, and when multiple objectives are 

involved these are often reduced to one through some type of weighting method. 

Metaheuristic methods, such as the genetic algorithm (GA) employed in our work, 

are convenient for this kind of complex problem but also entail a high 

computational cost due to the large number of objective function evaluations per 

iteration. Therefore we looked for an alternative to the approach of connecting 

the Aspen simulation to the metaheuristic optimization solver, which not only can 

be very slow but is also subjected to issues with non-convergence of the 

simulation. Our proposition is not to use short-cut models, but instead to gather 

sets of data obtained with detailed models (as mentioned in Sections 1.2.2-4) and 

use these to fit surrogate models that will be used to speed-up the optimization 

procedure. For these surrogate or reduced models we chose the application of 

artificial neural networks (ANN’s) due to their capability to handle highly non-

linear data. One of the goals of our project was therefore to generate data for these ANN’s, train them and implement them in the sustainability optimization 
framework. This is demonstrated in Chapter 4 (de Medeiros et al., 2020) and Chapter 5, where the ANN’s were applied for two types of intricate models: the 
BCR model (differential-algebraic equation system) and Aspen simulations 

(nonlinear system of MESH equations – material-equilibrium-summation-

enthalpy – that define the distillation process).  

1.2.6. Evaluation of energy recovery and energy self-sufficiency within 

thermo-biochemical routes 

Energy efficiency is a pivotal indicator of the performance of a process, therefore 

one of our goals was to explore the possibilities of energy recovery through heat 

integration and power production. While in our preliminary assessment (see Sec. 

1.2.1 and Chapter 2) the process design targeted an energy self-sufficient plant 

configuration, we also wished to analyze the trade-off between energy self-

sufficiency and product (ethanol) yield. This is investigated and discussed in 

Chapter 5. 
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1.2.7. Computation of capital and operating costs, energy efficiency and 

carbon footprint 

As mentioned previously, these are the main sustainability indicators considered 

in this work. The implementation of calculations for these responses in the 

optimization framework was therefore an essential goal of this project. The 

methods used, assumptions and results are presented in Chapters 2, 4 and 5. 

1.2.8. Development of multi-objective optimization frameworks for 

optimization of sustainability goals and evaluation of Pareto-optimal 

solutions 

The last goal is a combination of previous goals: the developed models and 

algorithms are incorporated in the final framework where optimization methods 

are applied to minimize the defined objective functions. This is done separately 

for a sub-system comprising the steps of fermentation and distillation and later 

for the whole process. The idea was to first test and demonstrate the proposed 

strategies with a smaller system. As there were no previous publications of the 

kind in the field of syngas fermentation, our publication de Medeiros et al. (2020), 

presented in Chapter 4, filled this literature gap. Subsequently the stages of 

gasification and energy recovery were added to the framework, thereby making it 

complete for the achievement of our main goal. As part of the sustainability 

optimization we also include the analysis of effects and correlations between 

distinct input variables, as well as between the objective functions, and an 

interpretation of the Pareto-optimal solutions. This goal is addressed in Chapter 5 

of this thesis. 
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 “Ylla: Yll...do you ever wonder if there are beings living on the third planet? 

Yll: The third planet is incapable of supporting life. Our scientists have said there is far too 

much oxygen… 

Ylla: … oxygen… 

Yll: oxygen in the atmosphere. 

Ylla: But wouldn’t it be fascinating if there were people?” 

 
Ray Bradbury, The Martian Chronicles 
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2.1. Introduction 

Hydrous bioethanol (E100), a solution of ethanol and water near the azeotrope 

composition (93 – 95 wt% ethanol), is largely used in Brazil as a biofuel in flexible-

fuel light vehicles. Due to its cost competitiveness with gasoline and growing 

public concern over issues of environmental and energy security, E100 

production and sales have increased at fast rates, a trend which is expected to 

continue. In 2015, for example, E100 consumption saw a 37.5% increase 

compared to the previous year, accounting for more than 17.8 billion liters 

consumed nationwide (UNICA, 2016). In Brazil, the widespread 

commercialization of E100 reflects the well-established industry built on mature 

1st-generation technology for sugarcane production, extraction, fermentation and 

ethanol distillation. However, while the use of bioethanol as substitute (or 

additive) for gasoline may effectively reduce the emissions of fossil-originated 

carbon dioxide, the massive expansion of sugarcane and other crops may result in 

significant environmental impacts, such as soil degradation, contamination of 

aquatic systems and eutrophication due to use of fertilizers and herbicides, and 

emissions of nitrous oxide (a strong greenhouse gas), also associated to the use of 

fertilizers (Souza et al., 2015). In this context, efforts to minimize environmental 

damage and increase sustainability indices in biofuels and biobased products 

sectors have boosted scientific research on 2nd-generation technology, i.e. the 

conversion of lignocellulosic biomass (Cheali et al., 2015) or wastes (Férnandez-

Dacosta et al., 2015) to biofuels and biochemicals.  

Traditionally, two main platforms are considered for the conversion of 

lignocellulose to ethanol, namely: i) a biochemical platform comprising biomass 

pre-treatment, hydrolysis and sugars fermentation; and ii) a thermochemical 

platform comprising biomass gasification and syngas conversion to ethanol. The 

latter conversion can be accomplished via two distinct pathways: a high-pressure, 

metal-based catalytic conversion, which characterizes a thermochemical-catalytic 

process (usually called simply the thermochemical route); and a biological 

conversion (i.e. fermentation), characterizing a thermochemical-biochemical 

(hybrid) process. Although less popular than the other pathways, the so-called 

hybrid pathway has received growing attention in the past years, both inside and 

outside academic circles. For example, Lanzatech, one of the companies seeking 

to commercialize the fermentation of syngas or waste gas from steel production, 

has been attracting special media attention (Lane, 2015). 
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Ethanol can be produced by strictly anaerobic, mostly mesophilic, bacteria that 

are capable of autotrophically converting CO, CO2 and H2 according to Eqs. (2.1) 

and (2.2) as result of the Wood-Ljungdahl metabolic pathway (Vega et al., 1989). 

This process has been reported to offer several advantages over catalytic 

conversion, such as higher yields, higher reaction specificity, lower energy 

requirements, syngas composition flexibility and higher resistance to 

contaminants (Klasson et al., 1992). Furthermore, gasification of biomass is 

feedstock-flexible and capable of utilizing all biomass components, including 

lignin, while dismissing complex pre-treatment and avoiding the use of expensive 

enzyme cocktails (Shen et al., 2015). Notwithstanding these potential advantages, 

syngas fermentation is still at an early stage of technological development 

compared to other conversion routes and therefore requires improvements and 

better understanding of several processing aspects. For example, there are several 

open issues regarding unsettled parameters, such as: (i) threshold resistance of 

microorganisms to syngas contaminants; (ii) optimal conditions and bioreactor 

design for ethanol production; and (iii) optimal integration between gasification, 

syngas fermentation and distillation; among others.  

+ → +2 2 5 26CO 3H C H OH 4CO       (2.1) 

2 2 2 5 22CO 6H C H OH 3H O+ → +       (2.2) 

Despite the increasing number of publications regarding syngas fermentation, 

only a few articles have presented techno-economic or environmental 

assessments of integrated processes based on this technology. Piccolo and Bezzo 

(2009) performed process design, heat integration and economic assessment to 

evaluate the feasibility of a hybrid route in comparison with enzymatic hydrolysis 

followed by fermentation, finding the latter to be more financially attractive. Wei 

et al. (2009), using a black-box system model based on literature data, concluded 

that, from a process engineering perspective, the hybrid gasification-fermentation 

route would be less feasible than both hydrolysis followed by sugars fermentation 

and gasification followed by chemical synthesis. Moreover, an optimization study 

delivered by Martín and Grossmann (2011) regarding technological routes for 

lignocellulosic ethanol production via gasification demonstrated chemical 

synthesis to be a better choice for syngas conversion than syngas fermentation, 

although the authors also reported promising results of production costs. In 

contrast, Wagner and Kaltschmitt (2012), using process simulation in Aspen Plus 
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to compare the three types of pathway, found gasification followed by syngas 

fermentation to be the most energy efficient process. More recently, Roy et al. 

(2015) evaluated the production cost and greenhouse gas emissions for four 

scenarios using the hybrid route for ethanol production and arrived at promising 

results, especially if untreated feedstock is used. Besides these examples, the 

production of other products through syngas fermentation has also been assessed 

by Choi et al. (2010), who demonstrated the viability of producing 

polyhydroxyalkanoate (PHA) and H2 through this route.  

In this study, a process design has been proposed for the production of hydrous 

ethanol (E100) from sugarcane bagasse using gasification and syngas 

fermentation in an energy self-sufficient plant. For this purpose, literature data 

and engineering skills have been combined in the development of a predictive 

model for further assessments. Unsettled issues, e.g. concerning effects of syngas 

contaminants on biological productivity, have been simplified but are explicitly 

addressed in the text. Important issues such as water consumption, carbon 

conversion, energy production and efficient concentration of highly dilute ethanol 

were addressed. A complete and integrated process flowsheet – from biomass 

residues to syngas, and from syngas to E100 and power –was designed and 

simulated in Aspen Plus using Hierarchy blocks to separate the different units in 

the process. Furthermore, a financial model was built to estimate the capital 

expenditure (CAPEX) and the operating expenditures (OPEX), and to 

probabilistically estimate the minimum ethanol selling price (MESP) via Monte 

Carlo simulation. 

2.2. Methodology 

The approach is based on quantitative results generated by professional process 

simulators using up-to-date literature information on biomass gasification and 

syngas fermentation with acetogenic bacteria. The separation flowsheet adopts 

rigorously modeled multiple-effect distillation to cut heat consumption. 

2.2.1. Process Design and Simulation 

The commercial software Aspen Plus was used to simulate the conceptual 

integrated process for E100 production from sugarcane bagasse via the hybrid 

route: biomass gasification and syngas fermentation. The plant capacity is 

assumed to be 624 dry metric tons of bagasse per day, which is a compatible figure 
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considering a medium scale sugarcane processing plant of roughly 1.7 million 

metric tons of sugarcane per harvest.  

Material and energy balances were calculated for the proposed process flow 

diagram (PFD) in Aspen Plus environment from user-specified inlet streams, unit 

operations and additional subroutines. Aspen PFDs are available in Appendix A in 

the Supplementary Material. A simplified block flow diagram of the process is 

depicted in Fig. 2.1, with the respective Aspen PFD in Fig. A1-1 (Appendix A1). The 

following sections (2.2.1.1 to 2.2.1.5) provide specific details on the simulation 

methodology applied for each unit. When relevant, block models and 

stream/block names are parenthesized to facilitate their identification in the 

Aspen PFDs. It is recommended that the reader follows the text with the 

flowsheets at hand for easier comprehension.  

 
Figure 2.1. Simplified block flow Diagram of E100 production from sugarcane bagasse via 

gasification and syngas fermentation. 

2.2.1.1. Gasification Unit (A100) 

The Gasification Unit (Fig. A1-2, Appendix A1) comprises the following unit 

operations: biomass feed handling and drying; indirectly-heated gasification in 

dual circulating fluidized bed; and cyclone removal of particulates. This type of 

gasifier consists of two separate, interconnected, beds, through which hot bed 

material circulates and transfers heat between different zones. In the gasification 
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zone (GZ) bed, steam is added as sole gasifying agent, while in the combustion 

zone (CZ) bed, air is added as combustion agent. With this configuration, high 

quality syngas, with higher concentration of H2 and no dilution in N2, can be 

produced. The simulation assumes no energy losses and achievement of 

equilibrium conditions, and thermodynamic properties are calculated using the 

Redlich-Kwong-Soave equation of state (RKS-EOS).  

In this unit, wet sugarcane bagasse (stream LCM-IN) is fed with a mass flow rate 

of 52,000 kg/h and a moisture content of 50 wt%, which is then reduced to 10 

wt% in a rotary dryer using hot flue gases from the combustion of a fraction of the 

char that is formed during the pyrolysis reactions that take place in the gasifier. 

The RYield block RD simulates drying of moisture with hot gases, while the 

cyclone separator RD-CYC separates gas and solid phases after drying. Biomass is 

modeled in Aspen Plus as a non-conventional component characterized by the 

component attributes specified in Table 2.1. Proximate and ultimate analyses 

were obtained from the simulation of a sugarcane processing plant as described 

by Bonomi et al. (2011). The higher heating value (HHV) was calculated using the 

correlation formulated by Parikh et al. (2005). Since non-conventional 

components do not participate in phase and chemical equilibrium calculations, an 

RYield reactor model (block DCMP) is firstly used to decompose biomass into its 

constituent elements (C, H2, O2, N2, Cl, S, H2O) to enable the subsequent 

calculations. Although this stage of decomposition (not to be confused with 

pyrolysis) is not observed in reality, it configures an effective resource to 

quantitatively simulate operations with heterogeneous solids (Aspen Technology, 

2011) such as biomass gasification (Ramzan et al., 2011), and its enthalpy change 

must be accounted for in the heat balance. 

The gasifier itself consists of two fluidized beds with circulation of bed material 

(olivine) which is responsible for heat transfer between the CZ and the GZ. Pre-

heated air at 130°C is fed into the CZ (RStoic model), where char is burned to 

provide heat for the endothermic gasification reactions. The separator S-1 

represents the separation of the char fraction that is used for combustion. The GZ 

(RGibbs model) is fed with biomass and saturated steam (STM-GSF) which acts as 

gasifying agent at 2.5 bar (127.5 °C). The steam-to-biomass ratio (STBR), defined 

here as the mass ratio of steam plus biomass moisture to dry biomass, is 0.34, a 

value which was chosen inside the typical range of 0.2 – 2, with a preference for 

lower values due to lower energy consumption (Silva and Rouboa, 2014). The 
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temperatures in the GZ and the CZ are assumed to be 950°C and 1000°C, 

respectively, which is consistent with operating ranges reported for this type of 

gasifier (Brown, 2011; Worley and Yale, 2012). The gas then passes through a 

cyclone (CYC) to remove particulates. Although the simulation neglects tar 

formation, the economic evaluation assumes that the gasifier module represents 

both a gasifier and a tar reformer which catalytically converts hydrocarbons into 

CO and H2, thereby approaching equilibrium conditions. As a matter of fact, it is a 

reasonable approximation to assume equilibrium composition at the tar reformer 

outlet since the catalyst shows significant water-gas-shift (WGS) activity (Dutta et 

al., 2011).  

Syngas compositions and yields are strongly affected by a number of parameters, 

such as biomass composition and size, gasifier temperature and STBR (Puig-

Arnavat et al., 2010). In order to avoid modeling unnecessary complex kinetics 

related to the large number of reactions taking place during gasification and 

reforming in this preliminary conceptual design, the gasifier model adopts a multi-

reaction equilibrium approach with considerations of operating conditions that 

would in fact favor the achievement of equilibrium (i.e. very high temperature and 

use of tar reforming catalysts). This is a common approach for gasifier models 

reported in the literature (Baratieri et al., 2008; Esmaili et al., 2016; Van der 

Heijden and Ptasinski, 2012). Although complete equilibrium conditions are 

unlikely in real operations, equilibrium models are very important to the design 

of chemical processes, as they set limiting operation performances. As a notable 

example, distillation columns and sour gas absorbers with aqueous 

ethanolamines are commonly sized using equilibrium approach models, but 

rarely operate at strict equilibrium conditions. In the same way, it is evident that 

the equilibrium approach simplifies the gasifier model, but it does not undermine 

significantly the integrated process, given the high temperature conditions which 

accelerate kinetics driving the real reactor performance to near equilibrium. 

Taking into account that the final goal of this work is an overall assessment that 

considers several concomitant sources of uncertainty within a Monte Carlo 

framework, it is reasonable to consider that the relaxation brought by modeling 

the gasification step with multi-reaction chemical equilibrium is not sufficient to 

compromise the final results and/or our conclusions. 
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Table 2.1. Sugarcane Bagasse Component Attributes 

Ultimate Analysis (wt%, daf) Proximate Analysis (wt%, db) HHV (db) 
(MJ.kg-1) C H O N Cl S FC VM Ash Moisture 

46.96 5.72 44.05 0.27 0.02 0.04 18.00 79.06 2.94 50.00 18.5 
daf: dry-ash-free basis; db: dry basis; FC: fixed carbon; VM: volatile material 

 

2.2.1.2. Steam Generation Unit (A200) 

The heat exchanger network in A200 (Fig. A1-3, Appendix A1) consists of five heat 

exchangers (E-1 to E-5) producing process steam by cooling of hot gases. Two 

categories of steam are produced in this unit: (i) 2.5 bar saturated steam, used as 

utility and gasifying agent; and (ii) 10 bar saturated steam, used as utility. The hot 

inlet gases are: (i) syngas from A100 (H-SYNGAS); (ii) hot flue gas from the CZ in 

A100 (H-GAS-1); and (iii) hot exhaust from the gas turbine in A500 (H-GAS-3). The 

liquid streams W2B-1 and W10B-1 are the steam utilities return as saturated 

liquid, while WGSF-1 is a fresh water stream directed for the production of steam 

for the gasification unit.  

Heat from syngas is recovered until it reaches a temperature of 73°C. The cooling 

water (CW) then continues with heat removal until 60°C, which is assumed to be 

the syngas inlet temperature at the Venturi scrubber (VS). The scrubbing water 

(W-VS) is specified with a flow rate to provide a liquid to gas volumetric ratio 

(L/G) of 1 L/m3, according to Dutta et al. (2011). The W-VS is maintained inside a 

closed loop with makeup and purge of approximately 8% of the recirculating flow 

rate. The liquid purge (WW-1) is sent to off-site wastewater treatment. The cold 

syngas, leaving the scrubber at a temperature of 54°C, is sent to fermentation in 

A300. 

2.2.1.3. Syngas Fermentation Unit (A300) 

A300 (Fig. A1-4, Appendix A1) consists essentially of a bioreactor, a 

microfiltration system for cell separation and a CO2 scrubber for recovery of 

ethanol vapors from the fermenter off-gas. In this unit, A300, the property method 

NRTL-HOC was used due to the highly non-ideal mixture containing ethanol, 

water and acetic acid, which dimerizes in the vapor phase. Henry’s Law was used 
as ideality model for reference state calculations of the light gases CO, CO2 and H2 

in the aqueous phase.  
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Several types of bioreactor have been reported for syngas fermentation with 

different operating modes (continuous, batch or semibatch), for example: stirred 

tank (Klasson et al., 1991), bubble column (Rajagopalan et al., 2002), trickle bed 

(Klasson et al., 1991), hollow fiber membrane (Shen et al., 2014a) and monolithic 

biofilm reactors (Shen et al., 2014b).  The process herein represented is based on 

a model that considers the experimental data reported by Gaddy et al. (2007) for 

syngas fermentation in a continuous agitated tank with water and cell recycle. 

Vapor-Liquid Equilibrium between the contacting phases in the fermenter is 

described by two blocks: (i) a stoichiometric reactor (FM) which simulates the 

fermentation reactions; and (ii) a flash separator (S-1) which properly separates 

the off-gas (OGAS-1) and the liquid phase broth (BRTH-1). The bioreactor is kept 

at 37°C by chilled water entering at 15°C and leaving at 25°C. Two heat exchangers 

(E-1 and E-2) are used to cool the reactor liquid inlet which is composed mostly 

of recycle water from distillation.  

Experimental results of continuous and steady state syngas fermentation using 

the strain Clostridium ljungdahlii with water and cell recycle were retrieved from 

the US Patent 7,285,402 B2, Example 15 (Gaddy et al., 2007). Although other 

authors have reported low ratios of ethanol to acetate in the broth (Richter et al., 

2013; Younesi et al., 2005), Gaddy et al. (2007) reported high productivities of 

ethanol with nearly zero acetate production when using water and cell recycle. 

According to the authors, recycling the water from distillation which contains 

small amounts of acetate is an effective measure to enhance ethanol production, 

as acetate inhibition is promoted after it reaches concentration levels between 3 

g/L and 5 g/L, hence leading to zero net acetate production and more carbon 

conversion to ethanol. 

In order to simplify the model and enable its construction in Aspen environment, 

the following assumptions are considered:  (i) by recycling aqueous broth with 

dilute acetic acid after distillation, there is no net acetic acid production due to the 

establishment of equilibrium between ethanol and acetic acid, hence acetic acid 

concentration in the reactor remains constant and the only reactions occurring 

are represented by Eqs. (2.1) and (2.2); (ii) concentration of cells remains 

approximately constant at 3 g/L with 100% cell recycle after separation by 

microfiltration (MF), therefore it is assumed that carbon consumed for cell 

production and maintenance is negligible; (iii) conversions of 90% of CO and 60% 

of H2 are achieved; (iv) Liquid Retention Time (LRT) ≈ 23 h (volume of liquid in 
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the reactor divided by liquid volumetric flow rate); and (v) Gas Retention Time (GRT) ≈ 12 min (volume of liquid in the reactor divided by inlet gas volumetric 

flow rate).  

Applying these assumptions, broth concentrations around 23 g/L of ethanol, 6 g/L 

of acetic acid and 3 g/L of cells should be achieved (Gaddy et al., 2007). The total 

volume required for fermentation is directly obtained from the choice of GRT and 

the syngas flow rate, which is a known result from the upstream flowsheet. The 

assumption of negligible biomass production is supported by the fact that ethanol 

formation is usually not associated with growth in the Wood/Ljungdahl pathway 

(Richter et al., 2013). The CO2 scrubber (block S) is modeled in Aspen as an 

absorption (RadFrac) column using sufficient water feed to recover roughly 95% 

of ethanol vapors. The scrubber gas outlet, containing unreacted CO and H2, is 

sent to the gas turbine in the Power Generation Unit (A500). 

2.2.1.4. Ethanol Distillation Unit (A400) 

With approximately 2 wt% of ethanol, the broth obtained from syngas 

fermentation is highly diluted compared to the broth from sugars fermentation, 

leading to an even more energy intensive recovery by distillation. Nevertheless, 

given the state of the art of separation technologies, distillation remains as the 

best alternative at hand and this evaluation can serve as baseline for future 

investigations on other separation processes. The Aspen PFD of A400 is shown in 

Fig. A1-5 (Appendix A1), while Fig. 2.2 illustrates the distillation configuration 

considered. 

In order to reduce energy consumption, heat integration is proposed in a pre-

concentration step (Fig. 2.2) where three similar towers, T-1, T-2 and T-3, 

operating at different pressures are used in an arrangement of multiple-effect 

distillation (MED) to concentrate ethanol up to about 15 wt%, after which it is sent 

to a fourth atmospheric column (T-4) where hydrous ethanol at 93 wt% is 

obtained as distillate.  

Heat integration of distillation columns using multiple-effect technique seeks to 

reduce energy consumption by linking the condenser of a higher pressure column 

to the reboiler of a lower pressure column (Linnhoff et al., 1983). Many 

configurations of MED systems have been studied based on different 

combinations of number of effects, column pressures and feed-splitting, among 
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other factors (Chiang and Luyben, 1983; Henley and Seader, 1981; Wankat, 1993). 

As Chiang and Luyben (1983) remarked, such MED systems and other energy-

saving configurations were seldom used in the past when energy costs were low, 

since savings would easily be offset by higher capital costs. However, in the past 

decades, the increase in energy costs at a much faster rate than equipment costs 

has drawn attention to energy-saving schemes such as MED, especially for 

application in large-scale processes. Recently, for example, Dias et al. (2011) and 

Palacios-Bereche et al. (2015) evaluated the use of double-effect distillation in the 

production process of 1st -generation ethanol from sugarcane, with one of the 

columns operating under vacuum. Similarly, Martín and Grossmann (2011), 

studying routes for the production of lignocellulosic ethanol, proposed a triple-

effect distillation arrangement with the first two columns under vacuum. 

In the present study, vacuum distillation columns were avoided due to higher 

costs and more complex control of cascaded vacuum systems, besides the need for 

larger column diameters. Therefore, the proposed MED scheme uses distillation 

columns operating at 6 bar, 3 bar and 1 bar, with respective reflux ratios of 0.20, 

0.26 and 0.05 in molar basis. The three MED columns have 20 stages each, while 

T-4 has 45 stages and a reflux ratio of 4.6. In the MED, the split fractions and reflux 

ratios were adjusted so as to match the condenser duty of T-1 with the reboiler 

duty of T-2, and the condenser duty of T-2 with the reboiler duty of T-3. In order 

to spare CW and reduce heat demand in T-4, tower T-3 has a partial condenser 

with vapor distillate only, while T-1 and T-2 produce saturated liquid distillates. 

The three distillates are mixed and fed to T-4. Any ethanol dragged with CO2 in 

the vapor streams from the partial condensers in T-1, T-2 and T-4 is recovered 

and recycled after cooling of vapors to 35°C.  

Pinch Analysis was done inside Hierarchy block A400 in order to design an 

effective heat exchanger network (E-1 to E-9 in Fig. A1-5, Appendix A1) capable 

of recovering heat from hot streams and minimizing utility usage to pre-heat feed 

streams. Distillation bottoms consist mainly of water with small amounts (<1 

wt.%) of acetic acid, which are recycled to the bioreactor. RadFrac model was used 

for all columns, with VLE modeling via method NRTL-HOC.  
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Figure 2.2. Configuration of distillation columns for recovery of E100. 

2.2.1.5. Power Generation Unit (A500) 

A500 (Fig. A1-6, Appendix A1) was designed as a combined Brayton/Rankine 

cycle due to the high efficiency associated with this cycle, reaching up to 60% 

(Bass et al., 2011). The gas turbine fuel is the off-gas from the bioreactor 

containing unconverted CO and H2. CO2 produced in fermentation reactions is also 

present at high concentration, but its separation would be too costly and therefore 

it is not considered here. Although the presence of CO2 in the gas fuel will decrease 

its heating value, hence the power output, it has been reported that the dilution of 

syngas with nonflammable gases such as N2 and CO2 does not affect significantly 

the combustion efficiency, the temperature at the nozzle, or the combustion 

stability (Lee et al., 2012). On the other hand, adding diluents is an effective way 

of controlling and adjusting NOx emissions, due to the observed logarithmic 

relation between diluent heat capacity (mass flow rate multiplied by constant 

pressure heat capacity) and NOx reduction per unit power (Lee et al., 2012). The 

simulation of the gas turbine was based on the SGT-300 gas turbine by Siemens 

(Siemens AG, 2009). A pressure ratio of 14 was set in the stage of air compression 
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(C-2) and a slightly higher ratio, i.e. 14.2, was used in the compression of fuel gas 

(C-1). The air flow rate was set so that the exhaust gas would achieve a 

temperature of 545°C at the turbine outlet, implying a temperature at the 

expander inlet, after combustion, of around 1050°C. This is in agreement with 

other reports of gas turbine temperature profiles (e.g. Wärtsilä (2016) reports 

temperatures between 1200°C and 1400°C at the expander inlet). The hot flue gas 

from the gas turbine is split in two streams: (i) H-GAS-3 is sent to A200 for steam 

generation; and (ii) FG-E1 is sent to the boiler E-1 in the Rankine Cycle. All 

machines – compressors, gas turbine, steam turbine and pump – operate with 

adiabatic efficiency of 85%. The total output power generated in A500 is 

represented by the dotted line stream EE-T.  

2.2.2. Financial Analysis 

The simulation results were used to create a financial model capable of predicting 

the Net Present Value (NPV) according to ethanol selling price. The model was 

then used to estimate the minimum ethanol selling price (MESP) for the 

production profile obtained in the designed process, that is, the ethanol selling 

price for NPV break-even (NPV = 0), assuming an Internal Rate of Return IRR = 

10% (Aden et al., 2002). 

The platform used for model construction was the MS Excel program CAPCOST, 

conceived and made available by Turton et al. (2008). CAPCOST estimates capital 

cost through a module costing technique and uses programmed functions to 

perform Cash Flow Analysis and Monte Carlo simulations. In this study the 

investment assumptions are based on the grassroots cost, i.e. the cost of building 

a completely new plant on a new land. Main assumptions for the financial analysis 

are summarized in Table 2. The base year is 2015, therefore the prices were 

adjusted to a CEPCI (Chemical Engineering Plant Cost Index) of 542.8, as 

published for November 2015 (Chemical Engineering, 2016). 

CAPEX, or the total capital investment, is obtained by summing up the grassroots 

cost, the land cost and the working capital. OPEX includes: (i) direct (variable) 

production costs (DPC), such as raw materials, labor and maintenance; (ii) fixed 

production costs (FPC), such as property taxes and insurance; and (iii) general 

expenses (GE), such as R&D and distribution. The assumptions considered for 

OPEX calculation were based on the common ranges reported by Peter and 

Timmerhaus (1991) and are presented in Table A1-1 (Appendix A1). 
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Table 2.2. Main Assumptions for Financial Evaluation 

Project life 20 years 
Construction period 2 years 
Hours per operating year 8328 
Taxation rate 35% 
Annual interest rate 10% 
Salvage value 0 
Depreciation method Straight line 
Cost of land US$1,250,000 
Working capital (Turton et al., 2008)  0.1(𝐶𝑅𝑀 + 𝐹𝐶𝐼𝐿 + 𝐶𝑂𝐿) 
Cost of operating labor  10% OPEX 

  CRM: Cost of raw materials; FCIL: fixed capital investment excluding land purchase;  
  COL: cost of operating labor. 

 

2.2.2.1. Purchase Cost of Equipment (PCE) Estimation 

CAPCOST has a set of built-in equations to estimate PCE inside given ranges of 

operation (Turton et al., 2008). When operational capacity is found to be outside 

the allowed range for equations, one can consider extrapolation by the six-tenths-

factor rule in Eq. 3 (Peters and Timmerhaus, 1991). PCE for the following types of 

equipment were calculated directly on CAPCOST: compressors, steam turbine, 

electric drives, heat exchangers, blowers, pumps (with drives), distillation and 

absorption towers, fermenters, and gas turbine. Sizes (or capacities) for the 

equipment were obtained from results of material and energy balances calculated 

in Aspen.  

To estimate the capital cost of the bioreactors, the vessels were assumed to have 

975 m3, with 80% of working capacity and operation under atmospheric pressure 

at the top of the vessel. The total volume of fermentation, calculated as explained 

in Sec. 2.1.3, was then used to find the required number of vessels. It is worth 

mentioning that, although fermentation stirred-tanks in the industry today have 

between 100 – 500 m3 of capacity, the maximum practical volume is expected to 

be in the range of 800 – 1500 m3 (Moulijn et al., 2013). According to Humbird and 

Fei (2016), who simulated the oxygen transfer rate for different liquid volumes, 

increasing the vessel size up to 1000 m3 would not affect significantly the cost of 

gas supply, as the power required for a given gas transfer rate would increase 

approximately linearly with the liquid volume. However, the authors do point out 

a practical and economic limit of 1000 m3 per vessel. 
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For equipment costs that were not available in the CAPCOST database, other 

references were consulted and prices were adjusted to proper year and capacity. 

For such cases, the sources and results are detailed in Tables A1-4 (gasification 

unit), A1-5 (microfiltration) and A1-6 (cooling tower) of Appendix A1. 

Assumptions considered for the water chiller are also listed in Appendix A1 (Table 

A1-3). 

( ) .
cos cos

0 6
t at capacity A t at capacity B capacity A capacity B=    (2.3) 

2.2.2.2. Costs of Raw Materials (CRM), Wastewater Treatment (CWT) and 

Utilities (CUT) 

Sugarcane bagasse is the most relevant raw material, accounting for nearly 90% 

of total CRM. For the base evaluation, it is assumed that its delivered cost is 38 US$ 

per dry metric ton (Jacques, 2016). Other raw materials costs were retrieved from 

elsewhere and adjusted to the year 2015 (see Table A1-7, Appendix A1): gasifier 

bed material (Dutta et al., 2011), tar reformer catalyst (Dutta et al., 2011), CW 

tower antifouling chemicals (Turton et al., 2008) and process water (Dutta et al., 

2011). Wastewater treatment, required for liquid purges, is assumed to cost 0.06 

US$/m3 of wastewater based on the cost of tertiary treatment suggested in 

(Turton et al., 2008) updated to 2015 price. Waste disposal of gasifier ashes is 

assumed to cost 36 US$ per metric ton (Turton et al., 2008). 

The utilities used in the process include: 2.5 bar steam, 10 bar steam, electricity, 

cooling water (30°C – 40°C) and chilled water (15°C – 25°C). All utilities are 

produced inside the plant, i.e. CUT = 0, and the consumption rates (including 

electricity from pumps and compressors, cooling water, and heating) were 

calculated directly in Aspen simulations, excepting the fermenter stirring, which 

was assumed to demand 0.45 kW per cubic meter of liquid (Heinzle et al., 2006). 

2.2.2.3. Monte Carlo Simulation (MCS) 

After building the base financial model, Monte Carlo simulations were performed 

to account for uncertainties in the economic evaluation. MCS works by repeatedly 

calculating an objective function after randomly sampling input parameter values 

out of specified probability distributions. In this study, the Net Present Value 

(NPV) was selected as the objective function and the uncertain input parameters 

were chosen to be the fixed capital investment FCIL (excluding land purchase 
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cost) and the cost of raw materials (CRM). Since the factorial estimate of capital 

cost used in this study is usually associated with an accuracy of ±30% (Peters and 

Timmerhaus, 1991), FCIL was put to vary within this range. The cost of raw 

materials, as defined in Sec. 2.2.2, was chosen to vary within a range of ±70%. MCS 

was specifically used to find the probability of obtaining non-negative NPV, 

assuming the aforementioned uncertainties, under different ethanol selling 

prices.  

2.3. Results and Discussion 

2.3.1. Simulation 

Design choices presented in Sec. 2.2 resulted in a production capacity of 71,000 

m3/year of E100, corresponding to approximately 0.33 m3 per dry metric ton of 

feedstock. Table 2.3 presents a comparison with other studies regarding ethanol 

yield and LHV-based energy efficiency (ηLHV) , i.e. the ratio between LHV in ethanol 

product and LHV in the dry feedstock. Given that the process was designed to 

achieve energy self-sufficiency, electricity production in the Combined Cycle 

(A500) was only slightly above the total requirement of the plant, reaching 1,280 

kWh/ m3, or 50 kWh/ m3 of electricity surplus.  

Table 2.3. Comparison of main results with other works 

 This study 
Dutta et al., 
2011 

Porzio et al., 
2012 

Wei et al., 
2009 

Wei et al., 
2009 

Route TB TC B (SSCF) B (HF) TB 

Feedstock 
Sugarcane 
bagasse 

Pine chips Poplar 
Hardwood 
chips 

Hardwood 
chips 

Ethanol yield 
(m3 per dry 
metric ton) 

0.330 0.318 0.303-0.316 0.205 0.324 ηLHV (%) 38 40 35-37 24 37 
      

TB: thermochemical-biochemical; TC: thermochemical-catalytic; B: biochemical; SSCF: simultaneous 

saccharification co-fermentation; HF: hydrolysis and fermentation. 

Carbon conversion from biomass to ethanol was found to be just below 30%, a 

similar result to the one reported by Humbird et al. (2011) for the conceptual 

design of biochemical conversion of corn stover to ethanol. Although the 

feedstocks and other parameters are different, this result is an example refuting 

the common argument that thermochemical routes are inherently more carbon 

efficient due to full utilization of biomass components in the gasifier. Although 
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carbon from biomass can be fully consumed in gasification, it is not necessarily all 

converted to syngas, as part of it might be sacrificed for energy generation in 

combustion reactions. While high carbon to syngas conversions of 95 – 99% can 

be achieved in directly-heated (partial-oxidation) fluidized gasifiers, indirectly-

heated systems like the one considered here usually achieve lower conversions of 

60 – 75%, in return of producing better quality syngas (Brown, 2011). Indeed, in 

the present study, only about 60% of carbon conversion to syngas was achieved, 

with the remaining carbon leaving as CO2. Nonetheless, there is indisputable 

advantage in indirect heating systems in comparison with direct systems that 

would require air or pure oxygen. If air is used, then the syngas will be highly 

diluted with N2, causing the fugacities of CO and H2 in the gas phase to be lower 

and therefore seriously hindering the fermentation step due to the reduction of 

the mass transfer rates of these compounds. On the other hand, using O2 would 

require the insertion of an Air Separation Unit (ASU), which is an expensive 

process in terms of energy and cost, both capital and operating types 

(Bhattacharya et al., 2012). 

Table 2.4 shows the syngas composition at the fermenter inlet, as well as the broth 

and the gas composition at the outlet. As explained in Sec. 2.1.1, a generic model 

of gasifier using the equilibrium approach under equilibrium-favoring conditions 

was preferred instead of adopting the results of a specific gasification plant. 

Nevertheless, the results herein presented are comparable to empirical results of 

steam gasification obtained elsewhere under similar temperature conditions: for 

example, Nipattummakul et al. (2011) reported the following syngas approximate 

(molar) composition for steam gasification of oil palm empty fruit branches 

between 900°C and 1000°C: 50% H2, 25-30% CO, 14-19% CO2. Moreover, the 

results are similar to those presented by NREL (Dutta et al., 2011) via simulation: 

40.3% H2, 9.4% CO2, 32.3% CO, 16.2% H2O, 1.5% CH4.  

The syngas composition calculated in the present study also contains small 

amounts of contaminants: 2 ppm NH3, 196 ppm H2S, 91 ppm HCl, 5 ppm COS. 

However, the model does not take into account the influence of these compounds 

on process variables such as pH and osmolarity or on the metabolism of the 

microorganisms. It is assumed that such levels of impurities are not enough to 

affect fermentation performance, damage the equipment or significantly alter the 

process in general. Although there is still a need for further research regarding 

tolerance limits to contaminants, there is evidence that syngas impurities such as 
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HCN could achieve levels at which the process is potentially burdened (Lane, 

2014). Other contaminants, such as H2S and COS, were found insignificant unless 

at much higher concentrations (Vega et al., 1990).  

Syngas fermentation does not require a specific H2/CO ratio or the absence of CO2 

(Spath and Dayton, 2003), therefore the gas is assumed to be fed to the fermenter 

without any prior step of water-gas shift or CO2 abatement for adjustment of 

composition. Yet, it is clear from Eqs. (2.1)-(2.2) that the gas composition is an 

important project parameter as it affects the availability of carbon (provided by 

CO or CO2) and electrons (provided by H2 or CO) for the microbial metabolism. For 

example, in the absence of H2, the theoretical (i.e. maximum) carbon yield to 

ethanol (Yth) will be 1/3, with the remaining carbon being oxidized to CO2, 

according to Eq. (2.4) (Phillips et al., 1994). In the presence of H2 and with H2:CO ≤ 2, Yth is predicted from Eq. (2.5), which is easily deduced from Eqs. (2.1)-(2.2). 

Furthermore, the presence of CO2 in the substrate has been reported to increase 

product formation, although CO is consumed preferably (Heiskanen et al., 2007). 

In this case, it can be shown from Eqs. (2.1)-(2.2) that Yth is calculated from Eq. 

(2.6). In all cases, it is evident from the equations that higher yields are obtainable 

when H2 is provided with the gas. For the present design, the syngas composition 

presented in Table 2.4 would lead to a theoretical carbon yield of 0.68, while the 

actual carbon yield was obtained as 0.48. For comparison, other authors have 

reported carbon yields for different syngas molar compositions, such as: 0.24 for 

substrate containing 20% CO, 5% H2, 15% CO2 and 60% N2 (Shen et al., 2014a); 

0.28 for substrate containing 60% CO, 35% H2 and 5% CO2 (Richter et al., 2013).  

 𝐶𝑂 + 𝐻2𝑂 𝐶𝑂𝐷𝐻→    𝐶𝑂2 + 2𝐻+ + 2𝑒−     (2.4) 

Where CODH ≡ carbon monoxide dehydrogenase. 
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With concern to broth composition, simulation results are consistent with the 

experimental values reported in the reference used here as base for modeling, i.e. 
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23 g/L ethanol, 6 g/L acetate, 3 g/L cells (Gaddy et al., 2007), which is a good 

indication that the present model has performed well.  The total volume required 

for fermentation would imply the use of nine fermentation vessels of 975 m3 for 

the assumptions considered in this study. 

Table 2.4. Composition of Syngas Substrate, Fermenter Off-Gas and Broth Outlet 

(wet basis) 

 
Syngas  
(mol %) 

Off-gas  
(mol %) 

 
Broth  
(wt%) 

CO 26.3 6.4 C2H5OH 2.0 
H2 48.5 46.9 H3CCOOH 0.5 
CO2 10.4 39.5 cells 0.3 
H2O 14.6 6.3 H2O 97.2 

 

Regarding water consumption, the process would require a freshwater usage of 

11.6 m3/m3 E100, of which 82% are due to blowdown, windage and evaporative 

losses in the CW tower. An estimated range of 1.9 – 6 m3/m3 has been reported 

for lignocellulosic ethanol production (Aden, 2007). Since the present design 

considers water to be the main carrier of cooling, a first attempt on process 

improvement would be to include air-cooled heat exchangers whenever possible, 

for example in the condenser of the distillation tower. This could significantly 

reduce freshwater consumption, as shown by Martín et al. (2011). One should 

keep in mind, however, that air-cooling efficiency would be fairly compromised in 

tropical climate regions such as Brazil. 

Energy requirements in the distillation unit (A400) were found to be 8,700 MJ/m3 

with the use of multiple-effect distillation as pre-concentration step. This is lower 

than the estimated 10,500 MJ/m3 by Piccolo and Bezzo (2007) for a 2.4 wt% broth 

obtained via the thermochemical-biochemical route, and higher than the range of 

4,400 – 6,400 MJ/m3 estimated in the same reference for three types of fully-

biochemical routes, where the ethanol concentration in the broth is also higher, 

expected to be around 5 wt% (Hamelinck et al., 2005).  

The requirements for the distillation towers, i.e. heating (Qr) and cooling (Qc), are 

depicted in Fig. 2.3, as a temperature-enthalpy flow diagram.  The shaded areas 

indicate the distillation towers, of which T-1, T-2 and T-3 are heat integrated in 

the multiple-effect stack, and T-4 delivers the hydrous ethanol product. Fig. 2.3 

evidences the reduction of external heat requirements accomplished with the 
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MED system, which is effectively close to 1/3 of the total reboiler duty of the three 

pre-concentration columns. Vertical dotted lines indicate clearly the perfect 

matching of the reboiler with condenser duties between T-1 (6 bar) and T-2 (3 

bar), and between T-2 and T-3 (1 bar). Fig. 2.3 also suggests the possibility of 

improving heat integration in the pre-concentration step by including in the MED 

stack a fourth column that could be positioned between T-2 and T-3, reducing the 

pre-concentration heat load by roughly 25%. It is also observable that T-4 has a 

low energy requirement, which is to some extent due to the fact that one of the 

feed streams, the distillate from T-3, is provided in the vapor phase. On the other 

hand, T-4 has a high requirement of CW due to the same reason.  

 

 
Figure 2.3. Temperature enthalpy diagram for the distillation columns. The x-axis represents 

enthalpy flow changes. 
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2.3.2. Financial Analysis 

Table 2.5 summarizes the main economic results of the base model. CAPEX or the 

total capital investment, is consistent with other estimates for 2nd generation 

plants when considering the annual capacity, as presented in Fig. 2.4. An 

equivalent annual cost associated with CAPEX is also presented in Table 2.5. The 

OPEX is an important fraction of the MESP, as it makes up about 59% of costs and 

accounts to roughly twice the costs related to CAPEX (i.e. the return on investment 

(ROI) and depreciation). The minimum net profit represents the ROI associated 

with the MESP.  

 
Figure 2.4. Comparison of CAPEX estimate with other studies. CAPEX results from other 

works were adjusted to 2015 prices. 

The overall contributions to MESP are depicted in Fig. 2.5 and a comparison with 

other works is presented in Fig. 2.6. Sugarcane bagasse is responsible for about 

16% of the MESP, which is relatively low when compared to the feedstock 

contributions presented in Fig. 2.6 for other studies. However, it is worth noting 

that these results consider other feedstocks, namely woody biomass and corn 

stover. Another report for 2nd-generation biochemical plants using sugarcane 

residues has shown that, similar to the present study, feedstock costs are 
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estimated to make up about 20% of costs (Jacques, 2016). Cheali et al. (2016) have 

shown that biomass conversion to ethanol through thermochemical-catalytic 

routes can indeed be advantageous over biochemical conversion depending on 

the characteristics of the feedstock (lignin and overall carbon content), despite the 

usually higher investments. For the assessment of four different scenarios varying 

the types of feedstock (poplar wood or corn stover) and conversion pathways 

(biochemical or thermochemical-catalytic), they found that feedstock costs 

contributed from 59 to 62.4%, with MESP ranging from $500/m3 to $560/m3 , 

which is considerably lower than the result presented here. In a study on 

thermochemical-biochemical routes for bioethanol production from miscanthus, 

Roy et al. (2015) predicted ethanol production costs ranging from $780/m3 to 

$900/m3, however the results presented are not sufficient for further 

comparisons. An attractive picture was estimated by Martín and Grossmann 

(2011), with production costs ranging between $0.84/gal ($222/m3) and 

$1.07/gal ($283/m3), however, besides significant differences in their process 

flowsheet, their model makes several optimistic assumptions, particularly 

affecting separation costs, such as broth composition of 5 wt% of ethanol (or even 

15 wt% in some scenarios), constant ethanol-water relative volatility of 2.2 and 

Fenske equation design in the distillation columns. 

Table 2.5. Main Economic Results (2016) 

Grassroots cost US$111.5 million 
Plant CAPEX US$125.15 million (US$14.7 million per year) 
Plant OPEX 2 US$29.6 million per year (417 US$/m3) 
Minimum net profit US$9.7 million per year (136 US$/m3) 
Minimum ethanol selling price 706 US$/m3  

1 Includes: costs of raw materials and waste treatment; labor costs; maintenance and repair; 

operating supplies; laboratory charges; patents and royalties; property taxes and insurance; plant 

overheads; administration; distribution and selling; and R&D.  

The current market price of E100, around $450/m3 (UNICA, 2016), is 

considerably lower than the predicted MESP in Table 2.5. Nevertheless, the results 

are comparable to predictions for other lignocellulosic ethanol processes, such as 

the ones presented in Fig. 2.6, and to the MESP estimated for existing biochemical-

based plants:  $2.2/gal $580/ m3) for Raizen, $3.3/gal ($870/ m3) for DuPont and 

$4.6/gal ($1220/ m3) for Abengoa (Jacques, 2016). Since those studies consider 

anhydrous ethanol, the results are expected to be slightly lower in the present 
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study, which considers hydrous ethanol (dehydration by molecular sieves should 

contribute to operating costs with roughly $0.05/kg (Cardona et al., 2010)).  

 

 
Figure 2.5. Composition of MESP. 

Fig. 2.7 depicts the NPV cumulative probability curves obtained from MCS. The 

curves – from left to right – are relative to the values of the ethanol selling price 

for which the probability of achieving non-negative NPV is 20%, 40%, 60%, 80% 

and 100%. Non-negative NPV means the project has greater chances of being 

profitable than non-profitable. One could affirm, then, that the current process 

design would very likely attain profit for E100 selling prices above US$780/ m3, 

even if the grassroots cost were found to be 30% higher than the base case and 

the raw materials were 70% more costly. At the other extreme, selling prices 

below US$680/ m3 are less likely to provide positive results, but would still be 

feasible if optimistic conditions were to be achieved, with low values of feedstock 

price and capital investment. 
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Figure 2.6. Comparison of MESP composition with other studies. Feedstock cost is presented 

separately from other OPEX costs. 

 
Figure 2.7. NPV cumulative frequency distribution according to ethanol selling price. Curves 

show the probabilities of achieving non-negative NPV: 20% (dotted line); 40% (filled dashed 

line); 60% (unfilled dashed line); 80% (unfilled solid line); 100% (filled solid line).   
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2.4. Conclusions 

This study presented a conceptual process design for the production of hydrous 

ethanol from sugarcane bagasse employing the so-called hybrid route based on 

gasification and syngas fermentation technology. The model is comprised of five 

distinct units that are integrated in a self-sufficient process in terms of energy 

(heat and power) and environment. Several steps of the process model are 

simplified due to a lack of reliable empirical data, for example, the model does not 

describe the effects of syngas contaminants on fermentation performance. In the 

same context, it is noteworthy that results of conversion, titer and yields in 

fermentation could vary significantly as observed with the high level of 

discrepancy among results reported in the literature. Hence, financial results 

could be substantially different if fermentation conditions diverged from the 

considerations made in this study. Nevertheless, the presented model has 

demonstrated to be a useful resource for the evaluation of technological potential 

of this route in comparison with other second generation technologies. 

Simulation results indicate the potential to achieve energy self-sufficiency with an 

ethanol yield of 0.33 m3 per metric ton of dry sugarcane bagasse, considering a 

production plant with annual capacity of 71,000 m3. The financial analysis 

predicted the base case MESP to be 706 US$/m3. When considering uncertainties 

in the fixed capital investment and in the total cost of raw materials, the MESP 

ranges from 633 US$/m3 to 933 US$/m3, from low (20%) to high (100%) 

probability of achieving non-negative NPV.  Even though the predicted ethanol 

selling prices are higher than the current market price of hydrous ethanol, the 

results demonstrate comparative potential for competitiveness in relation to 

other lignocellulosic ethanol technologies. Nonetheless, additional research is 

needed at different stages of the process to better understand and improve the 

technology, especially with regard to optimal conditions and reactor design for 

syngas fermentation, syngas cleaning requirements and efficient energy 

integration.  
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“The point of making models is to be able to bring a measure of order to our experience 
and observations, as well as to make specific predictions about certain aspects of the 

world we experience.” 

John Casti, Reality Rules 
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3.1. Introduction 

Gas fermentation is a promising biotechnological process that has gained 

attention due to its potential as a versatile waste-to-fuels route. It employs 

anaerobic bacteria called acetogens, that are capable of autotrophically 

metabolizing CO, H2 and CO2 into cell mass, acids (e.g. acetate) and solvents (e.g. 

ethanol and butanediol). The microbial substrate is therefore a gas with various 

possible origins; it may be, for example: (i) syngas produced via gasification of a 

wide range of feedstocks, including municipal solid waste and lignocellulosic 

biomass; (ii) off-gases from steel production and cement industries; (iii) CO2 

captured from power plants blended with H2 from renewable electricity, 

generated via electrolysis, and (iv) reformed biogas (Liew et al., 2016). There has 

been a great expansion of gas fermentation technology over the last years: at least 

three commercial-scale ethanol plants are currently under construction 

(LanzaTech, 2018) or have started operation (China News Service, 2018), and 

many pilot plants have already operated for long periods of time (Liew et al., 

2016). Different studies indicate that the process can play an important role in the 

development of a sustainable bio-economy, being comparable to other 

lignocellulosic processes in terms of cost, energy efficiency and environmental 

impact, while also permitting feedstock flexibility (de Medeiros, Posada, 

Noorman, Osseweijer, & Filho, 2017; Liew et al., 2016; Pardo-Planas, Atiyeh, 

Phillips, Aichele, & Mohammad, 2017; Roy, Dutta, & Deen, 2015). From the point 

of view of process systems engineering, however, there is still vast room for 

improvement, from strain enhancement and efficient product separation, to the 

integrated optimization of process parameters. With that in mind, in this article 

we address specifically the syngas fermentation bioreactor, coveting the 

presentation and analysis of a model that can be useful in optimization 

frameworks.  

Models to describe syngas fermentation are still scarce in the literature, and only 

a few authors have attempted to adjust kinetic expressions to experimental data. 

Younesi, Najafpour, and Mohamed (2005) and Mohammadi, Mohamed, Najafpour, 

Younesi, and Uzir (2014) adjusted logistic curves to the growth of Clostridium 

ljungdahlii on artificial syngas using experimental data from batch fermentation 

essays in serum bottles. Mohammadi et al. (2014) were also able to fit Gompertz 

equations to their experimental profiles of product formation, and uptake rate 

equations for CO, presenting estimations of kinetic parameters that were later 
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adopted by Chen, Gomez, Höffner, Barton, and Henson (2015) in their dynamic 

Flux Balance Analysis (dFBA) model of a syngas fermentation bubble column. The 

latter was the first application of FBA in a dynamic model for syngas fermentation 

and the first spatiotemporal model of this process, but it was not compared with 

experimental data. The same group also published an improved version of their 

model, applied for CO fermentation with Clostridium autoethanogenum and 

considering uptake parameters obtained and protected by Lanzatech (Chen, 

Daniell, Griffin, Li, & Henson, 2018). Furthermore, Jang, Yasin, Park, Lovitt, and 

Chang (2017) simulated CO fermentation in a batch culture of Eubacterium 

limosum KIST612 using a dynamic model with kinetic parameters previously 

estimated by Chang, Kim, Lovitt, and Bang (2001), but this process results in the 

formation of acetic acid as only product, which has lower a value than ethanol.  

In the present study, a dynamic model was constructed for syngas fermentation 

with ethanol production in a continuous stirred tank reactor (CSTR). The 

unknown model parameters were estimated with a multi-response minimization 

framework using experimental culture data from the literature and the 

significance of parameters was assessed with statistical analysis and generation 

of confidence intervals. The model was then used to study the effects of different 

process conditions (i.e. gas composition, dilution rate, gas residence time and cell 

recycle), as well as the sensitivity of the kinetic parameters, and a multi-objective 

optimization was conducted for maximization of productivity and conversion. 

Although similar studies exist for other process, such as ABE fermentation (see for 

example Buehler and Mesbah, 2006), to our knowledge there are no previous 

studies contemplating parameter estimation, statistical treatment, sensitivity 

analysis and multi-objective optimization of syngas fermentation, therefore this 

work was devised to fill this lacuna.  

3.2. Model Description 

The dynamic model developed in this study describes a stirred tank with 

continuous supply of syngas and batch or continuous flow of liquid, with or 

without cell recycle. It accounts for two phases (G/L) and seven species – CO, H2, 

CO2, ethanol (C2H6O or EtOH), acetic acid (C2H4O2 or HAc), water, and biomass; 

therefore comprising 13 state variables which are the concentrations of the six 

chemical compounds in the gas CG,j [mmol.L-1] and in the liquid CL,j [mmol.L-1] 

(where j = CO, H2, CO2, EtOH, HAc, H2O), as well as the concentration of biomass in 
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the liquid CX [g.L-1]. Two types of input are provided to the modeling framework: 

(i) kinetic parameters, which define the relations between biochemical reaction 

rates and concentrations of chemical species and cells – these parameters are 

estimated in this study; and (ii) operating conditions, such as gas flow rate, 

dilution rate, agitation rate and syngas composition – these are specified for each 

of the cases analyzed in this work and their effects are further evaluated.  

Fitting the model parameters with literature data turned out to be a challenge due 

to several reasons: first, the number of experimental papers on syngas 

fermentation is relatively small compared to other types of fermentation; and an 

even smaller number provides data without co-production of other chemicals 

such as butanol and butanediol. Among these, some provide exploratory data of 

very long cultures in which several accidents or interventions occur, and others 

fail to provide clear information about the process conditions (e.g. often the gas 

flow rates are omitted from the text, probably because they were not fixed during 

the experiment). In the present work the model parameters were estimated for 

five different case studies from three different papers: (C1) (Phillips, Klasson, 

Ackerson, Clausen, & Gaddy, 1993); (C2) (Gaddy et al., 2007); (C3-A,B,C) 

(Maddipati, Atiyeh, Bellmer, & Huhnke, 2011). These case studies have in common 

the use of continuous supply of syngas mixtures in stirred tanks and the formation 

of acetic acid and ethanol as only products. Table 3.1 presents the main differences 

between the five scenarios, apart from the liquid medium composition which is 

omitted due to space limitations. It is worth noting that C2 actually consists of 35 

steady-state points obtained under different conditions of gas composition, 

flowrates and agitation, while C1 and C3(A,B,C) comprise dynamic data. C3 is one 

case study subdivided in three, i.e. all of the process conditions are the same, 

except for the concentration of yeast extract or corn steep liquor.  

The next three sub-sections present the modeling approach for the specific 

production/consumption rates of species due to cell fermentation (Sec 3.2.1); the 

mass balance equations considering in/out flows, gas-liquid mass transfer, 

fermentation and cell recycle (Sec. 3.2.2); and the calculation of special terms that 

appear in the mass balance equations (Sec. 3.2.3).  
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Table 3.1. Case studies used for the estimation of kinetic parameters.  

Case C1 † C2 C3 (A,B,C) ‡ 

Microbe C.ljungdahlii C. ljungdahlii Clostridium strain P11 

Number of experiments under 

different conditions 
1 35 3 

Number of points per experiment (NE) 24 1 17 

Number of types of responses (NR) 5 5 3 

Type of data 

dynamic liquid 

concentrations and gas 

conversions 

steady-state liquid 

concentrations and gas 

conversions 

dynamic liquid 

concentrations 

Gas composition [H2:CO:CO2:inert] 20:55:10:15 

20:65:10:5 

16:27:6:51 

50:45:0:5 

5:20:15:60 

Gas residence time § (GRT) [min] 33 – 100  4.25 – 30  20 

Dilution rate  (Drate) [h-1] 0.0035 – 0.012 0.018 – 0.083  0 

Agitation [rpm] 300 – 450  750 – 900  150 

Cell purge fraction ¶ (XP) 0.1 0.3 – 1  1 

Reference Phillips et al. (1993) Gaddy et al. (2007) Maddipati et al. (2011) 
† 

The gas and liquid flow rates, and the agitation rate in C1 change with time within the specified ranges as shown in Supp. Mat. (Fig. A2-1). 
‡ 

Cases C3-A to C3-C differ in the amount of yeast extract (YE) or corn steep liquor (CSE), respectively: 1 g/L YE, 10 g/L CSE, 20 g/L CSE. 
§  Liquid volume divided by inlet gas flow rate. 
¶ Fraction of cells that are not recycled to the reactor vessel (i.e. XP = 1 when there is no cell recycle). 
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3.2.1. Reaction Rates 

Clostridium ljungdahlii and other acetogens assimilate CO, H2 and CO2 through the 

Wood-Ljungdahl (WL) pathway to produce acetyl-CoA, which is then used to 

produce cell biomass and products, as schematized in Fig. 3.1. 

 

Figure 3.1. Schematic representation of syngas fermentation metabolism in Clostridium 

ljungdahlii under acidic pH, including acetic acid diffusion through the cell membrane. AOR: 

aldehyde:ferredoxin oxidoreductase. ALDH: aldehyde dehydrogenase. In this study, ethanol 

formation is considered possible only via the AOR pathway. 

In theory, acetyl-CoA reduction towards ethanol is possible with aldehyde 

dehydrogenase (ALDH), but this route is always thermodynamically less favorable 

and actually infeasible if H2 is the electron donor (Bertsch and Muller, 2015). 

Indeed, Richter et al. (2016) found with proteome analysis of C. ljungdahlii that 

ethanol was produced exclusively through the AOR route. Ethanol production is 

favored when acetate accumulates inside the cell due to growth limiting 

conditions (i.e. biomass cannot be produced) or due to low extracellular pH 

(Richter et al., 2016). In the latter case, undissociated acetic acid, which is 

prevalent under pH lower than 4.76 (acetic acid pKa), diffuses freely through the 

cell membrane due to its neutral charge; however it dissociates again in the 

cytosol where the pH is close to neutrality and it cannot be exported through the 

cell membrane without active transport processes (i.e. using cellular energy), thus 
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leading to the accumulation of acetate and protons inside the cell. In C. ljungdahlii, 

Richter et al. (2016) reported that the enzymes needed for the synthesis of ethanol 

were always available in excess and, as reducing equivalents are constantly being 

provided by the oxidation of CO and H2 (see Eqs. (3.1)-(3.2) catalyzed by carbon 

monoxide dehydrogenase and hydrogenase, respectively), the authors suggest 

that ethanol is formed as soon as undissociated acetic acid and reducing 

equivalents reach a threshold concentration required to make the reduction of 

acetic acid thermodynamically feasible.  

2 2
CO H O CO 2H 2e

+ −+ → + +        (3.1) 

2
H 2H 2e

+ −→ +         (3.2) 

With that in mind, we propose a kinetic model following the stoichiometry of the 

reactions presented in Eqs. (3.3)-(3.6), which intend to generally represent the 

chemical reactions catalyzed by the cell. The model accounts for the following 

assumptions: (i) the uptake rates of CO and H2 follow Monod kinetics with 

inhibition by substrate and product (Eq. (3.7)); (ii) acetic acid and ethanol inhibit 

substrate uptake with standard inhibition kinetics (Eq. (3.7b)), but ethanol 

inhibition is only activated after a threshold concentration is achieved; (iii) CO 

inhibits the uptake of H2 but not CO (Eq. (3.7c)) – this was decided after 

preliminary estimation routines showed that a CO inhibition constant for CO 

uptake could not be estimated with the experimental data used here; (iv) biomass 

growth  is a function of the uptake rates of CO and H2 (Eq. (3.8)) and cell death (Eq. 

(3.9)), and its composition is assumed constant; (v) acetic acid is produced from 

CO (Eq. (3.3)) and H2/CO2 (Eq. (3.4)); (vi) ethanol is produced exclusively through 

reduction of acetic acid (Eqs. (3.5)-(3.6)), with reaction rates that are hyperbolic 

functions of the acetic acid concentration, also mimicking Michaelis-Menten 

kinetics (Eq. (3.10)); (vii) the effects of pH are not directly included in the model, 

but it is assumed that the estimated values of the kinetic parameters associated 

with acetic acid uptake and reduction will reflect the pH conditions adopted in the 

experiments used for the parameter estimation. With these assumptions, we may 

calculate the specific reaction rates 
R

k [mmol.g-1.h-1] (where k indicates the reaction’s equation number, i.e. Eqs. (3.3)-(3.6)), and the specific 

consumption/production rates of species j, j [mmol.g-1.h-1] , where a negative 
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sign in the value of j  indicates that the species is consumed otherwise it is 

produced.  

2 2 4 2 24CO 2H O C H O 2CO+ → +      (3.3) 

2 2 2 4 2 24H 2CO C H O 2H O+ → +      (3.4) 

2 4 2 2 2 6 2C H O 2CO H O C H O 2CO+ + → +     (3.5) 

2 4 2 2 2 6 2C H O 2H C H O H O+ → +      (3.6) 

Ethanol inhibition in acetogens is still a research gap in the literature, but there 

are evidences that it occurs in a similar fashion to what is observed in the ABE 

fermentation: for example, Ramió-Pujol, Ganigué, Bañeras, and Colprim (2018) 

observed that ethanol had inhibitory effects on C. ljungdahlii, though much milder 

than butanol, but the authors were not capable of achieving the critical 

concentration for full inhibition. The experimental data from case study C1 show 

an immediate decrease in gas conversion after the ethanol concentration 

surpasses 35 g.L-1, after which the concentrations of cells and products continue 

to increase for a while but eventually drop as a result of low substrate conversion. 

To express this behavior, the standard noncompetitive enzyme inhibition model 

used for ethanol inhibition is only activated after CL,EtOH reaches this threshold 

concentration.  
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The specific biomass growth rate μ [h-1] is then calculated from these uptake rates 

via yield coefficients YX,j [g.mol-1] for both substrates as shown in Eq. (3.8). 
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Although H2 is not a source of carbon, it is coupled with the consumption of CO2 

and it has also been shown to be associated with the growth rate (Mohammadi et 

al., 2014). The death rate rd is a function of cell concentration as shown in Eq. (3.9), 

where kd is the death constant estimated in this study. It is worth noting that, with 

this equation, the growth rate is also affected by the concentration of inhibitors 

(ethanol, acetic acid and CO), and the effects of other nutrients and maintenance 

issues are expressed in the yield coefficients and the death constant.   

2 2, ,CO X CO H X HY Y  = −  −         (3.8) 

d dr k X=           (3.9) 

The reaction rates of acetic acid reduction (AcR), i.e. R

k for k = 5 and 6, are 

calculated with Eqs. (3.10a-b), where the parameters 
max,

AcR

j  and 
,

AcR

s jK  (j = CO, H2) 

are estimated in this study. The condition in Eq. (3.10a) should be read as “for j = 
CO and k = 5, or for j = H2 and k = 6”. The expressions FAcR,j are only used to make 

the equations clearer; they are not model parameters. The idea behind this set of 

equations is that acetic acid is reduced with hyperbolic kinetics limited by its 

concentration (Eq. (3.10b)), and the consumption rate of CO or H2 necessary to 

provide reducing equivalents to these reactions are bounded by the total uptake 

rates previously calculated from Eq. (3.7); thus it can be easily verified that 

( , )R

k
k 5 6 =  tends to the expression FAcR,j when the uptake of CO or H2 is 

significantly larger than FAcR,j, whereas it tends to −νj/2  when |νj/2| is smaller than 

FAcR,j (the division by 2 is due to the stoichiometric coefficient of CO and H2 in Eqs. 

(3.5)-(3.6)).  

,

,

, ( , ) ( , ), ( , )
AcR jR

k j 2

AcR j j

2F1
j k CO 5 H 6

2 2F
 



   =  =  +  
   (3.10a) 

max, ,

, 2

, ,

, ,

j

AcR L HAc

AcR j j

S AcR L HAc

C
F j CO H

K C

 
= =

+
      (3.10b) 

The remaining substrate that is consumed can then be assumed to be used in Eqs. 

(3.3)-(3.4), and the corresponding reaction rates are calculated from Eq. (3.11), 

where ,AcR j  is the reaction rate of acetic acid reduction (Eq. (3.5) or (3.6)) using 
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substrate j (i.e. CO or H2), for example 
,AcR CO  in Eq. (3.11) corresponds to R

5  as 

calculated from Eq. (3.10). The total consumption/production rates of other 

components then follow the stoichiometry of Eqs. (3.3)-(3.6) as calculated with 

Eqs. (3.12)-(3.15). 

( ),
, ( , ) ( , ),( , )

j AcR jR

k 2

2
j k CO 3 H 4

4

 


+
= − =      (3.11) 

2

R R R

CO 3 4 52 2 2   = − +        (3.12) 

R R

EtOH 5 6  = +         (3.13) 

R R R R

HAc 3 4 5 6    = + − −        (3.14) 

2

R R R R

H O 3 4 5 62 2    = − + − +        (3.15) 

3.2.2. Mass Balance Equations 

The mass balance equations are presented in the following manner: the 

concentration fields, excepting biomass concentration, are divided into four 

categories regarding their phase (gas, G, or liquid, L) and species type (non-

condensable, NC, or condensable, C). The governing differential equations, Eqs. 

(3.16)-(3.20), assume isothermal and isobaric operation, as well as homogeneity 

and constant liquid and gas volumes in the reactor.  

For non-condensable (NC) species j in the gas phase, { , , }2 2j CO H CO : 

( ), ,

, , , , , ,

G j G j L

G in G j in G out G j L j L j

G j NC G

dC C V1
Q C Q C k a C

dt V m V

    
=  − − −         

   (3.16) 

For condensable (C) species j in the gas phase, { , , }2j EtOH HAc H O : 

( ), ,

, , , , , ,

G j L j L

G in G j in G out G j L j G j

G j C G

dC C V1
Q C Q C k a C

dt V m V

    
=  − + −         

   (3.17) 

For non-condensable (NC) species j in the liquid phase, { , , }2 2j CO H CO : 



76 

 

( ), ,

, , , ,

L j G jL

L j in L j L j L j j X

L j NC

dC CQ
C C k a C C

dt V m




  
=  − + − +       

    (3.18) 

For condensable (C) species j in the liquid phase { , , }2j EtOH HAc H O : 

( ), ,

, , , ,

L j L jL

L j in L j L j G j j X

L j C

dC CQ
C C k a C C

dt V m




  
=  − − − +       

    (3.19) 

For the biomass concentration (in the liquid phase):  

( )X L

X X d

L

dC Q
C XP C r

dt V


 
=  −  + − 
 

      (3.20) 

The gas-liquid equilibrium factors 
j NCm  , 

j Cm  in Eqs. (3.16)-(3.20) are described 

in Eqs. (3.21)-(3.22), where R=8.314 Pa.m3/mol.K is the ideal gas constant; MML and ρL refer to liquid phase molar mass [kg.mol-1] and density [kg.m-3] assumed 

pure water at 36 oC; and the respective physical parameters – Henry’s law 
constants Hj [Pa], saturation pressures Psat,j [Pa] and infinite-dilution activity 

coefficients j
 – can be found in the Supp. Mat. (Table A2-1). VL and VG are the 

volumes [L] of liquid and gas inside the reactor; QG,in and QG,out are the gas 

volumetric flow rates [L.h-1] in/out the vessel, with the latter calculated as 

described in Sec. 3.2.3; kLaj are mass transfer coefficients calculated as described 

in Sec. 3.2.3; QL is the liquid volumetric flow rate [L.h-1]. The specific rates νj, μ and 
rd were presented in Sec. 3.2.1 and are calculated accordingly at each time point; 

subscript in refer to inlet gas and liquid concentrations; and XP is the cell purge 

fraction, i.e. the fraction of cells that are not recycled to the vessel.  

j L

j NC

L

H MM
m

RT =         (3.21) 

,

L

j C

L j sat j

RT
m

MM P


 =         (3.22) 

3.2.3. Calculation of Special Terms 

Certain terms that appear in the right-hand side of the ODEs, but which are not 

state variables, are calculated as explained in the following.  
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3.2.3.1. Outlet volumetric gas flow rate QG,out 

QG,out is calculated from a mole balance in the gas phase considering isobaric 

conditions inside the vessel. Taking into account the mass transfer of non-

condensable species (j NC) from gas to liquid and the mass transfer of 

condensable species (j  C) from liquid to gas, the total gas mole flow rate leaving 

the reactor is calculated at each time with Eq. (3.23). QG,out is then calculated with 

the assumption of ideal gas in Eq. (3.24). 

, ,

, , , , , ,

G j L j

G out G in G j in L j L j L L j G j L

j j NC j Cj NC j C

C Cmol
N Q C k a C V k a C V

h m m  

           = − − + −                   
  

         (3.23) 

3
,

,

G out

G out

N RTm
Q

h P

 
= 

 
        (3.24) 

3.2.3.2. Mass transfer coefficients  

The mass transfer coefficient kLa for air in water at T = 36 °C is calculated via Eqs. 

(3.25)-(3.27). It considers a weighted average between the values of kLa estimated 

at 20 °C for non-coalescing ( ( )20

L 0
k a ) and coalescing ( ( )20

L 1
k a ) broth according to the 

correlations proposed by Van ’t Riet (1979) for air in water (Eq. (3.25c-d)), where 

Pg/VL is the impeller power per unit volume, which is estimated from the impeller 

un-gassed power Pug (Eq. (3.26)) and the correlation for the ratio Pg/Pug in Eqs. 

(3.27) (Cui, Van der Lans, & Luyben, 1996). The weighting factor f0 is an unknown 

parameter which is estimated in this study. In Eqs. (3.25)-(3.27) all variables are 

in SI units, except for the temperature which is in °C. The ungassed power number 

is assumed to be Np = 12.4 for two impellers (cases C1 and C2) or Np = 16.5 (case 

C3) for three impellers based on the equation available in the New Brunswick 

Bioflo manual; N is the agitation rate in s-1; us is the gas superficial velocity 

(volumetric gas flow at the inlet divided by the reactor cross sectional area). In all 

cases, the reactor is assumed to have a height/diameter ratio of 2 and an impeller 

diameter of 40% the reactor diameter, as standard in New Brunswick Bioflo 

bioreactors.  

( )

( )

( )
. ,

20

20 TL

T

L

k a
1 024 T 36

k a

−= =        (3.25a) 
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( ) ( ) ( )[ ] ( )20 1 20 20

L 0 L 0 0 L 1k a h f k a 1 f k a
− =  + −       (3.25b) 

( )
.

.( ) .

0 7

0 2g20 1

L 0 s

L

P
k a h 3600 0 002 u

V

−
  
   =        

    (3.25c) 

( )
.

.( ) .

0 4

0 5g20 1

L 1 s

L

P
k a h 3600 0 026 u

V

−
  
   =        

    (3.25d) 

3 5

ug p L i
P N N d=         (3.26) 

. .

, ,
. , .

0 25 0 25

gG in G in

2 2

ugi i

PQ N Q N
0 055 1 9 9

Pd d

    
 − =        

     (3.27a) 

. .

, ,
. , . .

0 25 0 25

gG in G in

2 2

ugi i

PQ N Q N
0 055 1 0 52 0 62

Pd d

    
 − = +        

    (3.27b) 

The individual kLaj for each species is then obtained from the reference air-water 

kLa by applying the Penetration Theory as in Eq. (3.28) (Talbot, Gortares, Lencki, 

& de La Noüe, 1991), where Dfj is the mass diffusivity of species j in water (Supp. 

Mat., Table A2-1). 

1/2

j

L j L

air

Df
k a k a

Df

 
=  

 
        (3.28) 

3.3. Numerical Methods 

The dynamic fermentation model described by the ODEs, Eqs. (3.16)-(3.20), and 

its supplemental algebraic equations in Sec. 3.2, represents a non-linear algebraic-

differential system which demands specialized numerical solvers for stiff 

problems. In the present case, the ode15s variable-order method from MATLAB 

was used for time integration from a feasible initial condition, given the 

appropriate value of the vector of model parameters in Eq. (3.29). The β vector of 

parameters (NP x 1,NP=15) comprises the 14 kinetic parameters explained in Sec. 

3.2.1, as well as the kLa weighting factor f0. 
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max, max, , , , , , max, , max, ,2 2 2 2 2

T AcR AcR AcR AcR

CO H S CO S H IE IA I CO X CO X H CO S CO H S H d 0K K K K K Y Y K K k f         

         (3.29) 

3.3.1. Estimation of model parameters  

The unknown model parameters β were estimated as ̂ using the Maximum 

Likelihood Principle - MLP (Himmelblau, 1970) - with the experimental data from 

the case studies presented in Table 3.1, which are structured into five categories of response (for C1 and C2, j = 1…NR with NR = 5) or three categories of response 

(for C3, j = 1…NR with NR = 3): ethanol (CL,EtOH), acetic acid (CL,HAc) and biomass (CX) 

liquid phase concentrations [g.L-1], as well as CO and H2 conversions (XCO and 
2H

X  

[%]), which indirectly provide information about the concentrations of these 

species. For C3(A,B,C) the gas conversions were not available, so only the liquid 

concentrations were used. The MLP is built with three assumptions: (A1) 

independency of NE experiments (i = 1…NE); (A2) the model is correct; and (A3) 

experimental responses (yj,i) are uncorrelated and follow normal probability density functions (PDF) around unknown correct responses (ηj,i) according to the 

variance model in Eq. (30), where rj,i are known response-experiment factors and
2

  is the unknown fundamental variance (Himmelblau, 1970).  

( ), , , , ,, ,2 2 2

j i j i j i j i j i
y N r    → =        (3.30) 

With Eq. (3.30) and assumptions (A1) and (A3), it can be shown that the identities 

in Eqs. (3.31) result for 
j

y , the NE x 1 vector of experimental values of response j at all points, where Ε(.), (.)Cov ,
j

W and
j

 represent, respectively, the expectancy 

operator, the variance-covariance matrix operator, the NE x NE diagonal weight 

matrix for response j and the NE  x 1 vector of correct values for response j.  

( )
jj

y  =          (3.31a) 

( )
12

j j
Cov y W

−=         (3.31b) 

, , ,( , ,..., )
E

1

j 1 j 2 j Nj
W Diag r r r

− =        (3.31c) 
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It can also be shown (Himmelblau, 1970) with assumptions (A1), (A2) and (A3), 

and Eqs. (3.30)-(3.31) that the application of the MLP to this multi-response (NR = 

5 or 3) estimation problem results in the minimization of the weighted sums of 

squares of residuals written in Eq. (3.32), where ̂  is the NP x 1 vector of 

estimated parameters and ( )ˆˆ
j

y   is the corresponding NE x 1 vector of model 

predicted responses. Due to its high non-linearity and likely multi-modal nature, 

the objective function was minimized using the meta-heuristic method Genetic 

Algorithm (ga MATLAB function), but a bounded Simplex Algorithm (fminsearch 

MATLAB function) was also applied to deepen a candidate optimum when a good 

estimate of initial point was known. In both cases, sensible lower and upper 

bounds were stipulated for ̂ . These bounds are displayed in Table A2-2 of the 

Supplementary Materials, jointly with ad hoc variable transformations to convert 

the original unrestricted Simplex Algorithm into a bounded Simplex Algorithm.  

 
( ) ( ) ( ) ( )
ˆ

ˆ ˆ ˆ, , ...

ˆ{ }

RN

T
j

j 1 j Rj j j jj

Min
y y W y y j 1 N

 
 


= = − − =


  (3.32) 

The factors 
,j i

r  (j=1…NR, i=1…NE) of the variance model of experimental responses 

in Eqs. (3.30) and (3.31), were chosen considering plausible variances of 

experimental values – e.g. (10% of value)2 – as well as the interests of the modeling 

framework, which can privilege more adherence onto some experimental 

responses (e.g. ethanol concentration) in detriment of others (e.g. acetic acid 

concentration). The underlying fact is seen in Eq. (3.31c): as 
,j i

r  decrease the 

respective elements of the weight matrix 
j

W rise, increasing the “pressure” for 
adherence of ˆ

j
y  onto 

j
y . In this regard, the following choices were made after 

multiple estimation test runs: (i) for ethanol liquid concentrations (j=1) 

, ,( . )2

j i j ir 0 025 y=  ; (ii) for acetic acid liquid concentrations (j=2) 

, ,( . )2

j i j ir 0 05 y=  ; (iii) for biomass concentrations (j=3) , ,( . )2

j i j ir 0 05 y=  ; (iv) 

for CO conversions (j=4)  , ,( . )2

j i j ir 0 1 y=  ; and (v) for H2 conversions (j=5)  

, ,( . )2

j i j ir 0 1 y=  .  
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3.3.3. Steady-state sensitivity and multi-objective optimization 

After the estimation of kinetic parameters, the model was used to study the effects 

of several process conditions on the steady-state productivity of ethanol (i.e. 

CL,EtOH∙Drate). The steady states were obtained by integrating the ODE system until 

all the state variables showed absolute gradients smaller than 10-6. This procedure 

was found to be faster than solving the system of nonlinear algebraic equations, 

as this required the initial guesses to be very close to the actual solutions. It can 

also be shown that, for a wide range of initial conditions, the steady state was 

stable and independent of such specifications (phase-portraits depicting the 

dynamic trajectories are presented in the Supp. Mat., Fig. A2-2), therefore an 

arbitrary set of initial conditions equal to those of case study C1 was used. With 

this framework, the sensitivity was analyzed with respect to the gas composition 

(varying the molar fractions of CO and H2), the gas residence time (GRT), the 

dilution rate (Drate), and also to the kinetic parameters under different conditions 

of GRT and Drate. Based on these results, the process was optimized using multi-

objective genetic algorithm for the maximization of two conflicting objectives: 

ethanol productivity and CO conversion. The decision variables were three 

operating conditions (GRT, Drate and XP – cell purge fraction) and nine kinetic 

parameters which could possibly be tuned with the design of the nutrient 

medium, the choice of strain and/or genetic engineering. In a last study, the H2:CO 

ratio was also included as a decision variable. For this optimization routine, the 

bounds were specified based on the ranges of kinetic parameters estimated for 

the five case studies (see Supp. Mat., Table A2-3).  

3.4. Results and Discussion 

3.4.1. Parameter estimation and confidence intervals 

The full parameter vector   in Eq. (3.29) was first estimated with the data from C1. Since C2 employed the same strain, the maximum uptake rates (νmax), 

saturation constants (Ks) and inhibition constants (KI) were fixed and the 

remaining eight parameters were re-estimated with the steady-state data from 

C2. It should also be said that the ethanol inhibition term was excluded from this 

case study since the reported data did not achieve the threshold concentration 

considered in the model. Similarly, for the three case studies C3(A,B,C) it was 

considered that the difference in nutritional supplement would affect the cell 



83 

 

yield, product selectivity, death/maintenance and the degree of coalescence of the 

liquid; therefore  was estimated for C3-A (without ethanol inhibition) and for 

C3-B and C3-C all parameters were fixed except for 
,CO X

Y , max,

CO

AcR , ,

CO

S AcRK , d
k and 

f0, which were re-estimated. The results are presented in Table 3.2 along with 

their 95% confidence intervals. Results of F-test score for significance of 

parameters can be found in Supp. Mat., Table A2-4. 

The estimated values of the maximum CO and H2 uptake rates  and  

are comparable to CO uptake rates reported by other authors: Chen et al. (2018) 

obtained CO uptake rates from 41 – 43 mmol.g-1.h-1 in continuous cultures of C. 

autoethanogenum in a bubble column; Mohammadi et al. (2014) estimated a 

maximum rate of 34 mmol.g-1.h-1 for C. ljungdahlii; and Gaddy et al. (2007) 

reported a large range of 14 – 100 mmol.g-1.h-1 for different operating conditions 

with C. ljungdahlii. The saturation constants Ks, which are inversely related to the microbe’s affinity to the substrate, reflect the disparity observed between the 

conversions of CO and H2 in cases C1 and C2: KS,CO is around 2% the value of  

in C1 and C2, and 6% in C3, while the pure component solubility of CO is only 

about 13% higher that of H2 at the culture temperature. With regard to the 

inhibition constants, it can be concluded that the effect of CO on H2 uptake was 

higher in cases C1 and C2 given the lower value of KI,CO for these cases, although it 

should also be noted that cases C3 use a small percentage of only 5% H2 in the feed 

gas. Acetic acid inhibition was also found to be statistically significant although its 

large value in all cases (> 850 mmol.L-1) indicate small inhibitory effects under the 

conditions of the experiments considered here. For case C2, the uncertainty 

associated with this parameter is also notably high, reaching around 60% of its 

nominal value while in the other case studies this percentage is less than 20%. In 

fact, for most of the estimated parameters, C2 presents the highest uncertainties 

among the cases, which is also due to the large variety of experimental conditions 

adopted in this case and relatively small number of samples. It should be noted 

that as more experiments are performed, new data can be incorporated into the 

modeling framework presented here and the parameters can be re-estimated with 

higher accuracy.  

max,
ˆ

CO
 max,

ˆ
2H



, 2S H
K
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Table 3.2. Parameter estimates with their 95% confidence intervals.  

Parameter Unit C1 C2 C3-A C3-B C3-C 

max,CO
  mmol.g-1.h-1 46.3 ± 5.33 46.3 ± 6.79 37.5 ± 5.28 37.5 ± 6.99 37.5 ± 2.70 

max, 2H
  mmol.g-1.h-1 31.6 ± 5.30 31.6 ± 8.47 29.5 ± 3.81 29.5 ± 4.02 29.5 ± 2.27 

,S CO
K  mmol.L-1 

0.0115 ± 

0.000637 

0.0115 ± 

0.00631 

0.0454 ± 

0.00670 
0.0454 ± 0.0112 

0.0454 ± 

0.00525 

, 2S H
K  mmol.L-1 0.675 ± 0.0853 0.675 ± 0.235 0.718 ± 0.0732 0.718 ± 0.197 0.718 ± 0.0427 

,I EtOH
K  mmol.L-1 217 ± 38.9 - - - - 

,I HAc
K  mmol.L-1 962 ± 127 962 ± 594 869 ± 117 869 ± 85.2 869 ± 183 

,I CO
K  mmol.L-1 0.136 ± 0.0224 0.136 ± 0.110 0.827 ± 0.110 0.827 ± 0.179 0.827 ± 0.110 

,X CO
Y   g.mol-1 0.754 ± 0.133 1.34 ± 0.226 1.69 ± 0.365 1.92 ± 0.463 2.41 ± 0.301 

, 2X H
Y  g.mol-1 0.201 ± 0.0233 0.156 ± 0.0623 0.248 ± 0.0399 0.248 ± 0.0369 0.248 ± 0.0121 

max,

AcR

CO
   mmol.g-1.h-1 24.2 ± 2.85 37.6 ± 17.6 13.0 ± 1.27 20.2 ± 1.98 8.581 ± 0.620 

,

AcR

S CO
K  mmol.L-1 388 ± 20.3 303 ± 163 223 ± 16.1 557 ± 169 483 ± 57.2 

max, 2

AcR

H
  mmol.g-1.h-1 1.76 ± 0.166 22.2 ± 7.62 15.9 ± 1.73 15.9 ± 3.39 15.9 ± 1.16 

, 2

AcR

S H
K  mmol.L-1 464 ± 37.1 586 ± 287 72.7 ± 6.68 72.7 ± 12.6 72.7 ± 7.87 

d
k   h-1 

0.00697 ± 

0.000297 

0.00862 ± 

0.00453 

0.0119 ± 

0.00135 

0.0112 ± 

0.00271 

0.00959 ± 

0.00163 

0
f   - 0.988 ± 0.0464 0.958 ± 0.339 0.700 ± 0.0699 0.973 ± 0.243 0.988 ± 0.123 
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The cell yields, specifically YX,CO, showed a wide variation among the five case 

studies, being the highest for C3-C (the experiment with high concentration of 

corn steep liquor) at 2.41 g.mol-1 (nominal value). As expected the value of YX,CO 

increases from C3-A to C3-C as a result of increasing concentrations of nutritional 

supplement. Clearly this parameter is specific to the culture conditions and 

microbial strain, and this can be verified by looking at the diversified results of 

cell yield in syngas fermentation reported by different authors, some of which are 

in good agreement with this study: 0.25 g.mol-1 for clostridial bacteria P7 

(Rajagopalan, Datar, & Lewis, 2002); 1.4 g.mol-1 for C. ljungdahlii (Phillips, 

Clausen, & Gaddy, 1994); 2.1 – 3.2 g.mol-1 for C. ljungdahlii (Mohammadi, 

Mohamed, Najafpour, Younesi, & Uzir, 2016); 2 g.mol-1 for Rhodospirillum rubrum 

(Kerby, Ludden, & Roberts, 1995); 7.2 g.mol-1 for Eubacterium limosum KIST612 

(Chang, Kim, Lovitt, & Bang, 2001). 

The results generated by the model with the different parameter vectors are 

shown in Figs. 3.2-4 along with the respective experimental points. The model 

showed overall reasonable predictive power for ethanol, acetic acid and biomass 

concentrations, although certain dynamic features were only roughly captured. 

For example, in cases C3 the acetic acid peak around 75 h was flattened and 

slightly displaced to the right (this was also the tendency of the experimental data 

going from case C3-A to C). In case C1, the model was able to predict the 

conversion decrease after 500 h, but the experimental data also suggest a 

recovery which could not be predicted by the model. In the modeling framework, 

this decrease is a consequence of joint inhibitory effects of ethanol and CO, the 

latter which accumulates in the liquid phase due to impaired uptake as a 

consequence of the former, and acetic acid to a smaller extent. Since this is the 

only experiment with such high concentrations of ethanol, it is unclear whether 

this behavior is due to product inhibition or if other external factors could be the 

cause of this perturbation. Although it is likely that ethanol exhibits inhibitory 

effects, as demonstrated by Ramió-Pujol et al. (2018) and Férnandez-Naveira, 

Abubackar, Veiga, and Kennes (2016), a final conclusion cannot be drawn from 

the current set of experiments with regard to this matter, and further 

experimental investigation is needed to evaluate critical product concentration 

and inhibition constants.   

Case C2 (steady-state) showed the highest deviations from the experimental data 

as well as parameter uncertainties, which is probably due to the large range of 
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process conditions encompassed by the data. It should also be noted that it is 

unclear whether the medium composition was kept fixed or not during these 

experiments. Nonetheless, the model was still good at capturing the tendency of 

the data, especially the concentrations of products and cells. In comparison with 

C1, which used the same strain, the AcR parameters (acetic acid reduction) were 

more favorable to ethanol production, i.e. with higher 
max, ( , )AcR

j 2
j CO H = . The 

saturation constants 
, ( , )AcR

S j 2
K j CO H= were similar if we consider the confidence 

intervals. 

The last parameter, f0, indicates the level of coalescence in the liquid, with higher 

f0 (as in cases C1 and C2) meaning the liquid is highly non-coalescing and thus 

enables higher gas-liquid mass transfer coefficients. It is worth noting that f0 

increased from case C3-A to C3-C and specially from C3-A to C3-B (when 1 g/L 

yeast extract was replaced with 10 g/L corn steep liquor).  

 

Figure 3.2. Predicted dynamic profiles (solid lines) and experimental points (circles) for case 

study C1: (A) concentration of products and cells in the liquid; (B) conversions of CO and H2. 
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Figure 3.3. Predicted steady-state responses (solid lines) and experimental points for case 

study C2: (A) concentration of products and cells in the liquid; (B) conversions of CO and H2. 
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Figure 3.4. Predicted dynamic profiles (solid lines) of products and cells, and experimental 

points (circles) for case studies C3: (A) case C3-A; (B) case C3-B; (C) case C3-C. 
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3.4.2. Sensitivity of process conditions and kinetic parameters 

With the fitted models, the performance of the bioreactor was evaluated for 

different conditions of gas composition, dilution rate and gas flow rates. For these 

sensitivity analyses, the parameter vector estimated in C2 was used as basis. The 

effects of syngas composition are depicted in Fig. 3.5 for ethanol productivity and 

CO conversion. It can be seen that both responses are enhanced with the CO 

content, but there is a maximum outcome at H2:CO close to 1 and the peak is 

slightly dislocated to the left (higher H2:CO) for CO conversion. This result 

suggests that the syngas composition can be tuned to improve the performance of 

the bioreactor, but the optimal composition would, of course, depend on the 

balance between extra productivity/conversion in the bioreactor and extra 

energy costs in upstream operations (gasification and gas conditioning). It was 

also observed that cell mass concentration always increased with the fraction of 

CO, going from near 1 g.L-1 at low values up to 11 g.L-1 with pure CO (figure shown 

in Supp. Mat., Fig. A2-5).  

Assuming fixed gas composition of a CO-rich gas, the response surfaces shown in 

Fig. 3.6 were generated to illustrate the effects of dilution rate (Drate) and gas 

residence time (GRT) with cell recycle (10% purge) and without. Both cases 

demonstrate how lower values of GRT (i.e. higher gas flow rates) enhance the 

productivity due to higher supply of substrate as well as higher gas-liquid mass 

transfer coefficient, although at the expense of the CO conversion. Moreover, as 

typically observed in chemostat cultures, the productivity is a concave function of 

the dilution rate with a clear maximum – in this case also dependent on the gas 

flow rate. From Fig. 3.6, it is also clear that cell recycle enhances the ethanol 

productivity (the maximum increases from around 1.13 g.L-1.h-1 to 1.44 g.L-1.h-1) 

and broadens the region of operation without cell wash-out. Moreover, the 

maximum cell mass concentration increases from 4.5 g.L-1 to around 16 g.L-1 when 

cell recycle is used (response surfaces shown in Supp. Mat., Fig. A2-6). The effects 

of agitation are not shown here, but response surfaces with this variable can be 

found in the Supp. Mat. (Fig. A2-3). Evidently, increasing the agitation rate also 

enhances the mass transfer of CO and H2 between the gas and the liquid, which 

allows for higher conversions and ethanol productivity; however at the price of 

higher energy consumption. 
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Figure 3.5. Steady-state ethanol productivity achieved with different gas compositions (

2 2CO CO H
y 1 y y= − − ) with fixed conditions: GRT = 20 min, Drate = 0.025 h-1, N = 500 rpm, cell 

recycle = 90%.   

The same response surfaces were constructed for H2-rich gas (see Supp. Mat., Fig. 

A2-4), which had overall the same shape and tendencies as Fig. 3.6. In accordance 

with Fig. 3.5, it was also observed that increasing the content of H2 by adopting a 

gas composition of [H2:CO:CO2] = [50:45:5] increased the maximum productivity 

to around 1.6 g.L-1.h-1 when cell recycle was used. However the maximum 

productivity under no cell recycle actually decreased from 1.13 to 0.93 g.L-1.h-1.  
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Figure 3.6. Steady-state ethanol productivity and CO conversion as function of gas residence 

time (GRT) and liquid dilution rate (Drate): (A, B) with 90% cell recycle; (C, D) without cell 

recycle. Fixed conditions: CO
y = 0.65, 

2H
y = 0.2, 

2CO
y = 0.15, N = 500 rpm. Note: the axes are 

rotated in (A) and (C).  

With regard to the effects of kinetic parameters, it was observed that the operating 

conditions contributed significantly to the sensitivity of this type of variable. Two 

illustrative examples are given in Fig. 3.7, where the parameters vary from 0.05 to 

2 times their nominal value (as obtained in C2), and 6 combinations of low/high 

gas flow rate and dilution rate are employed. It can be seen that not only do lower 

values of GRT improve the productivity, but they also enhance the effects of 

changing the kinetic parameters (see the inclination of solid lines in Fig. 3.7 in 

comparison with the dashed lines). Fig. 3.7a also suggests that increasing YX,CO will 

eventually lead to the same outcome of productivity for different values of Drate 

under the same GRT (see green and blue lines). Very low values of Drate, however, 

showcase the opposite trend: the two orange lines (Drate = 0.005 h-1) are coincident 

until a bifurcation occurs at ˆ/ .
k k

0 75   . These and other kinetic parameters 

showed considerable variation between the five estimations as presented in Sec. 

3.4.1., indicating that such microbial properties can be customized with the 
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selection of strain and medium composition, besides of course genetic 

engineering which would be a natural extrapolation of this conclusion. The 

performance of the bioreactor can therefore be improved with integrated design 

considering the simultaneous effects of bio-kinetic parameters and process 

conditions.  

 
Figure 3.7. Sensitivity of steady-state ethanol productivity to kinetic parameters under 

different conditions of gas residence time (GRT) and liquid dilution rate (Drate): (A) cell yield 

on CO (YX,CO) ; (B) cell death rate constant (kd). Fixed conditions: CO
y = 0.65, 

2H
y = 0.2, 

2CO
y = 

0.15, N = 500 rpm. The corresponding profiles of cell mass concentration are shown in Fig. 

A2-7 of the Supplementary Material.  

3.4.3. Optimization of ethanol productivity and CO conversion 

The solutions to three optimization runs are shown in Fig. 3.8. The multi-objective 

optimization was first solved for three operating conditions (GRT, Drate and XP) 

and nine kinetic parameters (all excepting the saturation and inhibition constants, 

which were fixed at the values obtained for C2). The lower and upper bounds were 
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chosen based on the intervals of the parameters estimated in Table 3.2 (see Supp. 

Mat., Table A2-3); for the operating conditions, the GRT was free to vary in the 

range 5 – 50 min, Drate in the range 0.005 – 0.2 h-1 and XP in the range 0.1 – 1 (this 

meaning no cell recycle). In the first run, the gas composition was fixed for a CO-

rich gas , i.e. [H2:CO:CO2] = [20:65:15]. For this case, the Pareto-optimal points 

reflected the classical problem of two conflicting objectives (Fig. 3.8a): higher gas 

flow rates (lower GRT) can enhance the productivity at the expense of CO 

conversion, as a higher fraction of the gas is also wasted. The Pareto front in Fig. 

3.8a is projected on the x-y axis, with the highest productivity (1.5 g.L-1.h-1) 

corresponding to 55% CO conversion. These points are the so-called non-

dominated solutions, at which none of the objective functions can be improved 

without harming the other. The decision variables GRT and Drate tied to these 

points are plotted along the Pareto curve with their normalized values on the z-

axis. The other decision variables (including kinetic parameters) are not shown 

because their variation along the Pareto curve was considerably smaller, but 

maximum and minimum values of all decision variables from the set of Pareto-

optimal points are presented in Table A2-5 (Appendix A2.).  In a second run (Fig. 

3.8b), the gas composition was changed to a H2-rich gas, i.e. [H2:CO:CO2] = 

[50:45:5]. Unexpectedly, for this case the CO conversion could be maximized to 

100% over a wide range of productivities, therefore instead of depicting a Pareto 

front, Fig. 3.8b presents the solutions of ethanol productivity obtained under 

100% CO conversion, with the corresponding normalized GRT and Drate plotted on 

the y-axis. It’s also worth noting that, with a high content of H2, even a relatively 

small GRT of 8.2 min enabled full conversion of CO while also achieving a high 

productivity of 1.92 g.L.h-1 – this point can thus be selected as the optimal solution 

in terms of both productivity and conversion.  

By analyzing the results of the kinetic parameters in both runs, it is clear that 

employing a H2-rich gas also boosts the sensitivity of H2-related parameters, in 

special the parameter max, 2

AcR

H
  which is related to the reduction of acetic acid – the 

average value of this parameter in the optimal solutions increased from 1.4 to 

nearly 20 mmol.g-1.h-1 from the CO-rich to the H2-rich optimization run. 

Interestingly, the parameter 
max,

AcR

CO
 was on average 20% smaller in the second 

case, while the other parameters remained more or less constant. It was also 

noted that the parameters of cell yield on CO and death constant were close to 

their specified bounds in both cases, with YX,CO being close to 2.4 g.mol-1 (the value 
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estimated with the data from C3-C) and kd being close to 0.007 h-1 (the value 

estimated with the data from C1). While this result demonstrates the efficacy of 

manipulating kinetic parameters to improve bioreactor performance, it also 

raises the question as to whether it would be feasible in real operation to use 

medium formulation and genetic engineering to change the parameters 

independently from each other.  

Finally, a third optimization was conducted adopting the H2:CO ratio in the feed 

gas as a new decision variable, which was allowed to vary between 0 (pure CO) 

and 3 (25% CO and 75% H2). Also for this case, shown in Fig. 3.8c, the solutions 

did not form a Pareto front, as 100% CO conversion was attainable for a wide 

range of productivities. Fig. 3.8c is hence analogous to Fig. 3.8b but H2:CO is 

included, although it is basically constant for all solutions at around 0.78 – 0.86. 

The maximum productivity that can be obtained with 100% CO conversion is just 

over 2.0 g.L-1.h-1, which is achieved with GRT = 8.6 min, Drate = 0.06 h-1, XP = 0.11 

and H2:CO = 0.85 (i.e. 54% CO and 46% H2). The kinetic parameters at this solution 

are: 
max,CO

  = 40.3 mmol.g-1.h-1, 
max, 2H

 = 34.8 mmol.g-1.h-1, 
,X CO

Y  = 2.37 g.mol-1, 
, 2X H

Y  

= 0.223 g.mol-1, 
max,

AcR

CO
  = 34.2 mmol.g-1.h-1, max, 2

AcR

H
  = 16.6 mmol.g-1.h-1, 

,

AcR

S CO
K  = 398 

mmol.L-1,  , 2

AcR

S H
K  = 396 mmol.L-1, and kd = 0.00546 h-1. It’s noteworthy that all of 

these parameters, with the exception of the yield coefficients, remain relatively 

close to the nominal parameters estimated for C2, in fact inside their confidence 

intervals, which suggests that efforts should be concentrated on enhancing the cell 

yields and not, for example, the maximum uptake rates (at least for the conditions 

of gas-liquid mass transfer encompassed by this study). Even though νmax is directly associated with the cell’s capacity to take up substrate, the uptake rate 

might just be limited by the mass transfer, such that after a certain point there would be no actual gain with increasing νmax. 

Another result from the optimization studies is that high productivities would be 

attained with very large cell concentrations reaching up to 30 g.L-1 (results shown 

in Fig. A2-8 of the Supp. Mat.), although this depends on the gas composition. For 

example, 1 g.L-1.h-1 of ethanol productivity would be attainable with H2-rich gas 

with operating conditions and kinetic parameters that result in 10 g.L-1 of cell 

mass, while for CO-rich gas the cell concentration would be a little over 20 g.L-1 for 

the same ethanol productivity.  
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Figure 3.8. Pareto-optimal solutions for maximization of steady-state ethanol productivity 

and CO conversion: (A) fixed gas composition at 65% CO, 20% H2 and 15% CO2 with 

normalized decision variables GRT and Drate plotted in the z-axis; (B) fixed gas composition at 

45% CO, 50% H2 and 5% CO2, all points correspond to 100% CO conversion; (C) H2:CO ratio 

free to vary between 0 and 3, all points correspond to 100% CO conversion. In all cases the 

decision variables are normalized with respect to their lower and upper bounds, i.e. GRT 

between 5 – 50 min and Drate between 0.005 – 0.2 h-1. The values of the most relevant decision 

variables at the solutions are shown in the Supp. Mat., Tables (A2-6)-(A2-8).  
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Agitation rate and gas recycle rate are also important operating variables which 

were not included in this study, but should be evaluated in the future with the 

inclusion of power consumption as a third objective function. It is possible, for 

example, that under certain conditions the gains in productivity and conversion 

might compensate for any extra spending with electricity. Other reactor designs 

should also be evaluated, such as bubble column, gas-lift, and membrane reactors. 

Ultimately, however, the bioreactor should be optimized simultaneously with 

other unit operations, such as gasification and distillation, since optimal 

conditions in one unit might lead to worse outcomes in other units with respect 

to economic and/or environmental issues.   

3.5. Conclusions 

A dynamic model was presented for the production of ethanol via syngas 

fermentation in a continuous stirred tank reactor, and unknown kinetic 

parameters were estimated with literature data employing different conditions of 

gas flow rate, dilution rate, syngas composition and medium composition. The 

modeling framework was then used to evaluate the effects of different input 

variables on the outcomes of ethanol productivity and gas conversion, and it was 

observed that cell recycle rate, gas flow rate and H2 content had clear positive 

effects on the productivity, while the dilution rate gives a different maximum 

depending on the other variables. Moreover, the kinetic parameters were found 

to have different sensitivity patterns depending on the process conditions, for 

example some of them having larger effects on the productivity when higher gas 

flow rates are used. Since these parameters are specific to the type of strain and 

composition of the liquid medium, we conducted an optimization of productivity 

and conversion using operating conditions and kinetic parameters as decision 

variables, thereby showing the possibility of attaining higher values of both 

responses at the same time. Implementation of the results predicted in this work 

would require further studies connecting the kinetic parameters to the exact 

aspects of the liquid medium and strain capabilities, as well as more experiments 

investigating the inhibitory effects of products and CO. Therefore, as more 

experimental data becomes available the modeling framework presented here can 

be used to re-estimate parameters, generate more accurate results and provide 

new insights for integrated process optimization.  
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“Nothing takes place in the world whose meaning is not that of some maximum or 

minimum.” 

Leonhard Euler 
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4.1. Introduction 

Biofuels are one of the possible means to reduce CO2 emissions in transportation, 

a sector responsible for roughly 25% of global greenhouse gas (GHG) emissions 

in 2016 (IEA, 2019). However, the rapid expansion of 1st generation biofuels (i.e. 

those produced from food crops) has also been associated with impacts that were 

initially neglected or unforeseen, such as deforestation, indirect land use change, 

and significant GHG emissions during agricultural stages (Goldemberg et al., 

2008). Lignocellulosic or 2nd generation biofuels have the potential to minimize 

these impacts by using waste carbon materials such as agricultural residues, 

forestry waste and marginal land (energy) crops. Yet, despite large efforts 

towards commercialization, most of these production pathways face technical 

challenges that are inherent to emerging technologies. An alternative path to 

biofuels and the object of this work is syngas fermentation, the microbial 

conversion of CO/H2/CO2 to ethanol and potentially other chemicals using 

facultative autotrophic bacteria called acetogens. Since syngas can be produced 

via gasification of multiple types of feedstocks – including even municipal solid 

waste –, this process is considered a promising and flexible alternative to 

biochemical routes that rely on the liberation of sugars from lignocellulosic 

biomass. Moreover, it also constitutes a valorization pathway for works arising 

gases (WAG) from steel production containing large amounts of CO, as 

demonstrated by the increasing number of commercial projects led by LanzaTech 

and partners in the past years (ArcelorMittal, 2019; Biofuels Digest, 2019; 

Renewables Now, 2018). 

In order to upgrade the technology readiness level (TRL) and achieve full 

commercialization, not only scaling-up technical issues need to be resolved, but 

the process also needs to be boosted at different levels, for example: improving 

gas-liquid mass transfer through better reactor design; genetically engineering 

bacteria; adjusting the gasification process to deliver syngas with favorable 

composition; reducing energy use in the product recovery unit; and tuning the 

process conditions at all units simultaneously to approach overall optimal 

operation. Most published research about syngas fermentation has focused on 

running experiments to test the capabilities of different strains and reactor 

configurations, and to study the effects of changing nutritional composition of the 

liquid medium as well as the pH, such as done by Abubackar et al. (2015). Many 

studies have also tried to elucidate the metabolism of these microbes so that yield 
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and selectivity of the desired product (usually ethanol) can be improved (Richter 

et al., 2016). On the other hand, studies about modeling, simulation and 

optimization are still limited, despite being of paramount importance for the 

evaluation of feasibility and comprehension of these systems. A few recent works 

have discussed results obtained with simulations using Aspen plus, such as de 

Medeiros et al. (2017), Benalcázar et al. (2017), Pardo-Planas et al. (2017) and 

Roy et al. (2015). Though these studies look at the whole process from feedstock 

(biomass) to ethanol and provide meaningful estimates of process performance 

in different domains (technical, economic and environmental), the process 

conditions were mostly fixed or in some cases changed through univariate 

sensitivity analysis, and simulation of the bioreactor was based on strong 

assumptions and simplifications with limited connection to the operating 

conditions. In a previous study (de Medeiros et al., 2019), we discussed the 

contributions of more elaborate bioreactor models developed by other authors 

and presented the model of a dynamic continuous stirred tank (CSTR), 

demonstrating its application for sensitivity analysis and technical optimization. 

In the present work, we extended the CSTR model to a bubble column reactor 

model (BCR) with distribution of key process variables in time and space, and 

employed it in the optimization of operating (e.g. dilution rate) and design (e.g. 

reactor size) variables considering different objectives in parallel, both technical 

and economic. The BCR model was first considered standalone and subsequently 

integrated with the distillation unit, whose input was concurrently optimized. The 

contributions of this paper can be summarized as follows: 

(i) Development of a spatial dynamic model of a bubble column reactor (BCR) for 

syngas fermentation considering kinetics of cell growth and death, mixed product 

formation and acetic acid re-assimilation. 

(ii) Application of artificial neural networks as surrogate models for two types of 

intricate models: BCR model and distillation model (nonlinear system of MESH 

equations – material-equilibrium-summation-enthalpy – solved in Aspen Plus). 

(iii) Development of a multi-objective optimization framework for the integrated 

process of anhydrous ethanol production from syngas via fermentation and 

distillation. 
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(iv) Evaluation of Pareto-optimal solutions for the most important input variables 

of the system, in terms of economic performance, thermodynamic efficiency and 

productivity. 

4.2. Methodology  

4.2.1. Process overview 

Fig. 4.1 presents the conceptual process flowsheet to produce anhydrous ethanol 

from syngas, which consists of three main unit operations: (i) the syngas 

bioreactor (R-01); ethanol distillation (T-01 and T-02) to achieve azeotropic 

composition (also called hydrous ethanol); (iii) ethanol dehydration in molecular 

sieves (T-04 and T-05) to achieve 99.5% ethanol. There is also a vent scrubber (T-

03) to recover any ethanol present in CO2 off-gases. Three main types of stream 

are recycled to the bioreactor: (i) water from the distillation bottoms and the 

scrubber; (ii) unconverted syngas; and (iii) microbial cells. Sections 4.2.2 and 4.2.3 

lay out the methodology for process design and modeling of the two main blocks 

of the process: fermentation and product recovery.  

4.2.2. Model of syngas fermentation in bubble column reactor (BCR) 

The syngas bioreactor consists of a bubble column where syngas enters at the 

bottom and off-gas leaves from the top, a fraction of it being recycled back to the 

bottom after compression and cooling. Liquid flows continually in and out of the 

reactor and a fraction of bacterial cells are recycled after separation from the 

products in a microfiltration membrane.  In the reactor, cells are dispersed in the 

liquid phase, where they consume CO, H2 and CO2 and produce ethanol, acetic acid 

and CO2. The latter is both a product from the oxidation of CO and a source of 

carbon in the reaction with H2, therefore its consumption or production rate will 

depend on the availability of the other two molecules. 
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Figure 4.1. PFD of anhydrous ethanol production from syngas. C-01: gas compressor; E-01 to E-08: heat exchangers; R-01: syngas bubble 

column reactor; T-01 and T-02: distillation columns; T-03: vent scrubber; T-04 and T-05: adsorption and regeneration columns.  
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Similar models for this process with spatiotemporal distribution have been 

presented by Chen et al. (2018) and Li et al. (2019), the main difference being the 

method to calculate the consumption/production rates of components which in 

their works was done via Flux Balance Analysis (FBA) while in the present study 

we employ the microbial kinetics developed in our previous work (de Medeiros et 

al., 2019). Moreover, the procedure to estimate the gas velocity profile and 

hydrodynamic parameters (assumed constant by Chen et al. [2018]) is different. 

FBA is a powerful tool for the comprehension of cell metabolism, enabling for 

example in silico simulations about the effects of gene deletion and knockout; 

however, it also adds a significant amount of complexity to the model with the 

inclusion of a linear programming problem that must be solved during the 

integration of the ODEs. Furthermore, it requires the definition of an objective 

function (e.g. maximizing the biomass growth rate) and flux bounds which are not 

always known and might not be constant during the process. The kinetic model 

used in this work, on the other hand, is based on global reactions for the 

consumption of gases and formation of products, embedding parameters that 

were previously estimated with experimental data. 

The BCR was described here with the axial dispersion model of Deckwer (1992), 

considering the following assumptions: (i) isothermal operation at T = 37 °C; (ii) 

axial dispersion considered in the liquid phase but neglected in the gas phase; (iii) 

the pressure profile is calculated from the liquid head; (iv) biochemical reactions 

occur in the liquid phase with rates depending on the concentrations of the 

components; (v) gas velocity changes along the column as the gas shrinks due to 

microbial conversion or expands due to pressure reduction; (vi) hydrodynamic 

parameters are a function of the gas superficial velocity assuming heterogeneous 

flow in air-water systems. In total 13 state variables are distributed in space: the 

concentrations [mol.m-3] of six chemical species in the gas and in the liquid, i.e. CG,i 

and CL,i where i = CO, H2, CO2, ethanol (EtOH), acid acid (HAc), and H2O; and the 

concentration of cells in the liquid CL,X [g.m-3]. Eqs. (4.1)-(4.3) summarize the 

governing partial differential equations (PDEs) which are completed by the 

algebraic equations for the calculation of mass transfer rates (Eq. (4.4)) and cell kinetics. For the latter, the variables νi (production/consumption rates), μ (cell 
growth rate) and kd (cell death rate) are calculated or specified as explained in de 

Medeiros et al. (2019), at each discrete point of the system. The physical 

properties Hi, Psat,i and γi can also be found in de Medeiros et al. (2019). In Eqs. 
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the bottom (x = 0) and at the top (x = L), considering counter-current operation, 

are shown in Eqs. (4.8) and (4.9).  
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The gas velocity uG was calculated along the reactor by applying a mole balance in 

the gas phase of each compartment starting from the bottom. If the gas recycle 

ratio (GRR) is greater than zero (where GRR is the ratio between the gas flow rate 

recycled to the bottom of the bioreactor and the total gas flow rate at the top), 

then the flow rate and composition of the inlet are different from those of the fresh 

syngas.  In these cases an iterative procedure was applied to find the correct 

properties of the inlet stream and the gas velocity profile: first an initial guess is 

assumed at the bottom and used for the calculation of the velocity along the 

column, the new properties calculated at the top are then used to re-calculate the 

properties at the bottom, which replace the initial guess in the next iteration; the 

velocity profile is calculated again and this procedure is repeated until the 

differences are negligible between two consecutive iterations.  Though this 

subroutine makes the model more intricate, neglecting the change in gas velocity 

is an unrealistic assumption (Deckwer, 1976) and substantial differences (>50%) 

between the velocity at the inlet and outlet have been observed not only with the 

model developed here but also by Li et al. (2018).  

4.2.3. Product recovery unit  

Anhydrous ethanol is recovered using distillation and molecular sieve adsorption. 

In the present work, the design of these operations was based on the flowsheet 

described by Humbird et al. (2011) for purification of ethanol produced via 2nd-

generation biochemical route (dilute-acid pretreatment and enzymatic 

hydrolysis). First, the dilute broth (1 – 4% w/w ethanol) is fed to a beer column 

(T-01), from which water is removed at the bottom and CO2 at the top, while 

concentrated ethanol  is removed as a vapor-side stream and fed to the 

rectification column (T-02). The design choices adopted by Humbird et al. (2011) 

were considered as starting point and a preliminary analysis was done to evaluate 

the effects of different parameters (results not shown here). In the first column it 
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was observed that the mass ratio of side stream to feed stream (S:F) had 

significantly stronger effects on the outcome (reboiler duty, ethanol recovery and 

concentration) than other parameters, therefore this was chosen as the only 

decision variable in this column. The other parameters were fixed in accordance 

with the abovementioned design, though with minor modifications: 25 stages, 

feed stream on the 5th stage from the top, vapor-side stream removed from the 7th 

stage, top pressure of 2 bar, and molar reflux ratio (RR) of 3:1. Though in the 

design presented by Humbird et al. (2011) the fermentation broth had a higher 

ethanol concentration (5.4 % w/w), increasing RR beyond 3:1, even for lower 

ethanol concentrations, was found to have marginal effects on the separation 

performance, especially if considering the increased reboiler duty. The mass flow 

rate of the top stream, which is rich in CO2, was defined so as to ensure that most 

of the dissolved CO2 is removed, therefore it was fixed at 1.1 times the mass flow 

rate of CO2 present in the feed stream. 

The hot bottom stream from T-01, which contains most of the acetic acid from the 

feed, is used to pre-heat the latter (in E-02), whereas the CO2 stream, together with 

off-gas from the BCR, is fed to the vent scrubber (T-03) to recover any ethanol that 

is present in these streams. The outlet liquid stream from T-03 is then mixed with 

bottoms from both distillation columns and part of the resulting stream is 

recycled to the bioreactor while the rest is sent to wastewater treatment. The 

concentrated ethanol stream from T-01, which contains between 20 – 40% w/w 

depending on the case, is sent to the rectification column (T-02) where it is further 

concentrated to near-azeotropic composition (92.5% w/w). The only fixed 

parameter in T-02 is the pressure (atmospheric); all the other inputs are decision 

variables, as explained further in Sec. 4.2.5. The distillate from T-02 is removed as 

saturated vapor and superheated to 116 ºC before being sent to dehydration with 

molecular sieves (columns T-04 and T-05). This unit was not modelled but instead 

the outcomes were fixed considering two output streams: (i) the product 

(anhydrous ethanol, 99.5% w/w) which is then cooled to 38 ºC (E-08); and (ii) a 

low-purity ethanol stream (72% w/w) produced during the regeneration step, 

which is recycled back to the rectifier.  

The distillation columns were simulated in Aspen plus using the RadFrac model 

which solves the system of MESH equations with the Inside-Out algorithm. Four 

components were considered: water, ethanol, acetic acid and CO2. The property 

methods were: for the liquid phase, the activity coefficient model NRTL, due to the 
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non-ideal ethanol-water mixture; and for the gas phase, Hayden-O’Connell 
equation-of-state with Henry’s law, due to low pressure, presence of acetic acid 
which may cause vapor phase association, and presence of dissolved gases (CO2).  

4.2.4. Artificial Neural Network (ANN) surrogate models 

Surrogate modeling techniques have been applied by many authors in the past 

years with the goal of reducing the complexity of computationally expensive models. Throughout this paper we refer to the latter as “rigorous” models, 
although they also incorporate some level of simplification (e.g. equilibrium 

equations in the calculation of distillation columns).  

Recent works, such as Ibrahim et al. (2018) and Ye et al. (2019) have 

demonstrated the efficacy of this methodology for separation processes, 

specifically for distillation and adsorption. In the present work, ANNs were 

trained with input from the two types of models laid out in Sec. 4.2.2 and 4.2.3: (i) 

the PDAE system describing the BCR; and (ii) the RadFrac models in Aspen plus 

describing the distillation columns. In both cases, multi-layer feedforward 

networks were trained with Bayesian regularization backpropagation using the 

ANN Toolbox in MATLAB R2015b. The networks contained one input layer, one 

output layer and two hidden layers, with the number of neurons per hidden layer 

being chosen after a few tests (in all cases between 5 and 25). For some responses, 

an ensemble of networks was used to reduce the error of a single network by 

averaging the predictions of the individual networks and removing outliers. For 

all trained ANNs the correlation coefficient (R value) between network output and 

original response was higher than 0.99.   

4.2.4.1. Bubble column reactor ANNs 

Data was generated with the BCR model by varying the input vector and exporting 

the steady-state responses obtained after integration of the ODE system over a 

sufficiently long time span. Around 2,000 points were used to train the ANNs. The 

input vector comprises in total 12 variables which are needed to define the DAE 

system, though not all of them are used as decision variables in the optimization: 

(i) dilution rate (Drate), defined as the liquid volumetric flow rate (QL) divided by 

the liquid volume (VL) in the bioreactor; (ii) the volume of liquid divided by the 

gas volumetric flowrate at the bottom of the reactor (VL/Qg,bot) which we refer to 

here as gas residence time (GRT) ; (iii) gas recycle ratio (GRR) defined in Sec. 4.2.2; 
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(iv) cell purge fraction (XP), which is the fraction of biomass cells that are not 

recycled to the bioreactor; (v) vessel length (L); (vi) vessel aspect ratio (AR); (vii) 

and (viii) concentrations of acetic acid and ethanol in the inlet liquid stream; (ix) 

to (xii) molar fractions of CO, H2, CO2 and H2O in the fresh syngas (note: for the 

optimization studies the syngas composition was fixed at 50% CO and 50% H2). It 

should be noted that although the liquid inlet composition (items vii and viii) is an 

input of the bioreactor, it is not an input of the integrated process (and even less 

a decision variable in the optimization), because it depends on the properties of 

the recycle streams from the distillation unit. 

The input matrix was generated using Latin hypercube sampling (LHS) to ensure 

good coverage of the input domain, which considers realistic ranges of these 

variables (presented together with optimization results in Tables 4.1 and 4.2). 

ANNs were trained to predict ten responses that are needed in the calculation of 

the objective functions or as input for the distillation unit. These responses belong 

to five categories: (i) concentrations of ethanol, acetic acid, cell biomass and 

dissolved CO2 at the liquid outlet; (ii) gas superficial velocities at the bottom and 

at the top; (iii) gas conversions of CO and H2; (iv) pressure at the bottom (this 

response is not straightforward because it depends on the gas hold-up which is 

not fixed); (v) total cooling duty to keep the reactor isothermal.  

4.2.4.2. Distillation columns 

Data for the distillation columns was generated using Aspen plus and Aspen 

Simulation Workbook, which was used to launch the simulations automatically 

(roughly 2,000 points for each column). The main aspects of the simulations were 

detailed in Sec. 4.2.3; and the following variables were considered inputs for the 

ANNs, some of them being outputs of the bioreactor and others being key 

parameters related to the design and operation of the distillation column: (i) inlet 

mass fractions of ethanol, acetic acid and CO2; (ii) number of stages (NST); (iii) feed 

stages (FST); (iv) molar reflux ratio (RR); (v) mass ratio of side to feed stream (S:F), 

only for T-01; (vi) mass ratio of distillate to feed stream (D:F), only for T-02; (vii) 

pressure at the top; (viii) feed stream mass flow rate. It should be noted that NST 

and FST are continuous variables when provided to the ANNs and for their training, 

but they are transformed to integer values before running the Aspen simulations. 

FST is written as a fraction of the number of stages, such that FST = 0 when the feed 
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2
OF = − ; and (ii) 

1
OF MESP= , 

2
OF = − . All the optimizations were 

performed for two case studies regarding mass transfer capacity: a base case and 

a high mass transfer case (HMT) in which the kLa calculated with Eq. (4.6) was 

multiplied by a factor of 3, representing thus a hypothetical case where process 

intensification methods are employed to increase mass transfer (this is further 

discussed in Sec. 4.3.3). A summary of the steps required to compute the objective 

functions is given next, along with the definition of the decision variables (DVs) 

(note that for the standalone BCR, the procedure stops after the 1st step): 

1. DVs related to the BCR (Drate, GRT, GRR, XP, L, VR) and fixed inputs (e.g. gas 

composition) are provided to the BCR model, which employs ANNs to calculate 

multiple responses (broth composition, gas conversions, cooling requirements). 

The design variables and some of the responses are also used to calculate 

economic variables (investment, cost of raw materials and utilities), as explained 

in Sec. 4.2.5.1. Pure water is considered as initial guess for the liquid feed of the 

bioreactor (this is later adjusted as explained in step 4). Power consumption and 

cooling requirements associated with the gas compressor (C-01) are also 

calculated in this step.  

2. Applicable responses from step 1 (e.g. broth composition), DVs related to T-01 

(S:F) and fixed inputs are provided to the ANNs that calculate the outputs of T-01 

(compositions of the streams, reboiler and condenser duties, column diameter). 

Similarly, some of the outputs (e.g. reboiler duty) and inputs (e.g. number of 

stages) are used to calculate economic responses.  

3. Applicable responses from step 2, DVs related to T-02 (NST, FST,V, FST,L and RR) 

and fixed inputs are provided to the model of T-02. In this step, the distillate to 

feed ratio (D:F) in T-02 is determined through a minor optimization routine to 

guarantee an ethanol mass fraction of 0.925 in the distillate. The ANNs are 

employed again with the complete input vector (including D:F) to generate the 

relevant responses; other outputs and inputs are used to compute economic 

results, and heating/cooling requirements are also calculated for the adsorption 

unit. 

4. With the outputs from steps 2 and 3, the composition of the liquid recycle 

stream is calculated and compared with the initial guess. If required, an iterative 

procedure is followed to match both streams.  
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5. If the ethanol mass fraction in the distillate from T-02 is 0.925 and other 

requirements are met (no negative mass flows, ANN inputs inside their training 

ranges, equipment capacities inside feasible ranges), then the outputs from steps 

1–4 are combined to generate the objective functions, as further explained in Sec. 

4.2.5.1 and 4.2.5.2. 

4.2.5.1. Computation of economic performance 

Economic performance was evaluated in terms of total capital investment 

(CAPEX) and minimum ethanol selling price (MESP). The total investment was 

estimated using the module costing technique described by Turton et al. (2009), 

in which all the costs derive from the individual purchase cost of equipment at 

base conditions (
0

pC ), estimated for each equipment of capacity A using Eq. (4.10). 

The total module cost (CTM), which considers total direct and indirect costs, as well 

as contingencies and fees, is calculated as shown in Eq. (4.11). In the present work, 

CAPEX is considered the same as CTM. The bare module cost of equipment i, CBM,i, 

is calculated from ,

0

p iC  applying bare module cost factors FBM,i which account for 

pressure, materials and other items such as installation and engineering. The 

coefficients K1 and K2 and the procedures to calculate FBM for each type of 

equipment can be consulted in Turton et al. (2009).  

( ) ( )log log log
20

10 p 1 2 10 2 10
C K K A K A= + +         (4.10) 

, , , ,. , 0

TM BM i BM i p i BM i

i

C 1 18 C C C F=  =        (4.11) 

The manufacturing costs COMd (also called operating expenses or OPEX) comprise 

direct costs (e.g. raw materials [CRM], utilities [CUT], waste treatment [CWT], 

maintenance, operating labor [COL]), fixed costs (e.g. overhead, depreciation, 

insurance) and general expenses (e.g. administration, R&D). The different 

components of the manufacturing costs can be estimated using multiplication 

factors based on historical data; adding up all these costs leads to an expression 

such as Eq. (4.12), used in the present work, which considers midpoint values 

from the ranges reported in Turton et al. (2009). 

( ). . .
d TM OL UT WT RM

COM 0 18 C 2 73 C 1 23 C C C=  +  +  + +     (4.12) 
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4.3. Results and Discussion 

4.3.1. Techno-economic optimization of the bubble column reactor (BCR) 

Fig. 4.2 presents the main results of the optimization conducted for maximization 

of ethanol productivity and minimization of capital cost considering the 

standalone BCR. The goal of this study was to analyze the trends in Pareto-optimal 

points before connecting the BCR to the purification unit. Firstly, there is a clear 

trade-off between the two objectives, as shown with the Pareto fronts depicted in 

Fig. 4.2a for both case studies (normal and high mass transfer – HMT), meaning 

that, as expected, higher productivities can be achieved at the cost of higher 

investments. The Pareto fronts also seem to comprise at least two convex sub-sets 

of solutions. For example, for the base case, one subset lies in the region with productivities ≤ 3.15, after which there is a clear change of pattern in the Pareto front, which nonetheless continues to be convex. It’s worth recalling that the 1st 

objective function is the minimization of –productivity, so it is not the objective 

function itself that is plotted in the x-axis, but its opposite value. For both cases 

there is a threshold after which the capital costs continue to increase without 

significant improvement in the productivity (e.g. after 4.5 g.L-1.h-1 for the base 

case, as seen in Fig. 4.2a). These optimal solutions are associated with larger 

reactor volumes (hence higher capital costs) obtained by decreasing the vessel 

aspect ratio (the length remains constant, as seen in Fig. 4.2c); but since the gains 

in productivity are only marginal, these are solutions without interest to the 

decision-making process. It is also verified that increasing the mass transfer 

coefficient leads to higher productivities with the same investment, at some points 

being almost twice the value of the base case.  
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Figure 4.2. Bi-objective optimization of the BCR for maximization of ethanol productivity and 

minimization of capital costs: Pareto fronts (a); selected decision variables at the Pareto-

optimal solutions (dilution rate (b), reactor length (c), and gas residence time (d)); selected 

process outcomes at the Pareto-optimal solutions (ethanol concentration (e), gas 

conversions (f)). 

The different Pareto subsets are produced by different combinations of the 

decision variables, as shown in Figs. 4.2b-d. Both case studies show one subset of 
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solutions characterized by large and nearly constant values of dilution rate and 

reactor length. In this subset, the productivity continues to increase due to 

decreasing GRT (Fig. 4.2d) and increasing gas recycle ratio (not shown). In the 

preceding subset, the increase in productivity is not only due to decreasing GRT 

but also to increasing reactor length, in combination with changes in Drate and GRR. 

These variations, of course, also have effects on the capital costs (as seen in Fig. 

4..2a): for example, increasing the reactor length has a direct effect on the 

bioreactor cost; on the other hand, decreasing GRT implies increasing the gas flow 

rate, which brings higher costs associated with larger gas compressor capacities.  

As presented in Table 4.1, the decision variables at the optimal solutions are 

constrained to similar ranges for both study cases (e.g. optimal vessel volumes are 

close to the lower bound of the stipulated search space), but the process outcomes 

are mostly improved when mass transfer is enhanced. Higher conversions are 

achieved for both CO and H2 (shown in Fig. 4.2f), as well as higher ethanol 

concentrations (Fig. 4.2e), though in this case the HMT results also show lower 

concentrations for a wide range of productivities.  

Table 4.1. Multi-objective optimization of the bubble column reactor: ranges of decision 

variables and process outcomes at the Pareto-optimal solutions. 

 Search space base HMT 
Drate [h-1] 0.01 – 0.15  0.088 – 0.14 0.11 – 0.15 
GRT [min] 5 – 50  6.41 – 36.9 5.15 – 35.8 
GRR  0 – 0.5 0.032 – 0.43 0.017 – 0.32 
XP  0.05 – 0.2 0.035 – 0.049 0.025 – 0.056 
L [m] 25 – 50  35.6 – 47.3 35.5 – 42.5 
VR [m3] 500 – 900  502 – 572 500 – 548 
CL,EtOH [g.L-1] - 6.21 – 34.1 12.5 – 39.5 
CL,HAc [g.L-1] - 1.35 – 2.75 2.17 – 2.98 

CO
X   - 0.56 – 0.74 0.81 – 0.93 

2H
X   - 0.42 – 0.66 0.56 – 0.87 

 

  



120 

 

4.3.2. Thermo-economic optimization of the integrated process 

Integrating the BCR to the purification unit brought several difficulties due to the 

high non-linearity of the MESH equations, which often leads to infeasible 

solutions, and the inclusion of a recycle stream of distillate bottoms containing 

traces of ethanol and acetic acid. This was observed by the much longer time 

required to run the optimization (from 5 minutes to over 3 hours), despite the use 

of reduced (surrogate) models. Another reason for the higher complexity of the 

integrated model is that the input variables of the distillation columns must be set 

to guarantee an ethanol mass fraction of 0.925 in the distillate stream of the 

second column.  

The generated Pareto fronts are depicted in Fig. 4.3, where again the opposite of 

an objective function is shown: for all fronts in Fig. 4.3, the 2nd objective function 

was to minimize –η, but η itself is plotted in the y-axis. As explained in Sec. 4.2.5, 

the optimization was performed for two mass transfer cases (base and HMT) and 

two pairs of objective functions. The difference between these pairs is the 

formulation of the 1st objective function, which is either to minimize CAPEX/ṁAE 

(Fig. 4.3a-b) or MESP (Fig. 4.3c-d). It’s worth mentioning that the results 

presented here are the best found approximations of the Pareto fronts, which 

were selected after multiple runs of the multi-objective genetic algorithm.  
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Figure 4.3. Bi-objective optimization of the integrated units: optimization A with base (a) and 

high mass transfer model (b); optimization B with base (c) and high mass transfer model (d).  

 

The first observation is that the thermodynamic efficiency was bounded to around 

0.42 in the base model and 0.72 in the HMT case, also with lower CAPEX and MESP 

achieved in the latter. The trade-off is visible for all cases, although the optimization of the η-MESP pair with HMT (Fig. 4.3d) led to a small set of non-

dominated solutions distributed between 0.707 ≤ MESP (US$/L) ≤ 0.713. As 
explained by Goh and Tan (2009), finding a diverse set of solutions is specially 

challenging in the presence of multi-modality (i.e. multiple local Pareto fronts), 

discontinuity and non-uniformity. Moreover, balancing diversity of solutions and 

proximity to the true Pareto front is a multi-objective problem in itself, since these 

two qualities are both desirable and conflicting (Bosman and Thierens, 2003). 

Despite the lack of diversity in the solutions presented in Fig. 4.3d, the results are 

deemed sufficient for the purposes of the present work, and testing different 

algorithms to improve this aspect is left as recommendation for a future work.  
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To support the interpretation of the Pareto fronts, the Pareto-optimal values of 

two selected decision variables are shown in Fig. 4 along with process outcomes. 

In this figure, optimization A (OptA, circles) refers to the objective pair (CAPEX,η) 
and B (OptB, diamonds) to the pair (MESP,η). For both mass transfer cases, the increase in η (accompanied by increase in CAPEX and MESP) was associated with 

a decrease in Drate (Fig. 4a) and increase in GRT (Fig. 4b), though in the HMT case 

the range spanned by these variables was very narrow. Other DVs (not shown 

here) that had predominant increasing trends with η were the gas recycle ratio 
(GRR), the number of stages in T-02 and its reflux ratio. Fig. 4 also suggests that in 

the base case the OptB Pareto front (MESPxη) constitutes a subset of OptA (CAPEXxη), with decision variables and process outcomes following similar 

trends and ranges. This also happens to a lesser extent with HMT. 

The minimum and maximum values of the optimal DVs are presented in Table 4.2, 

where it can be observed that for all case studies and optimization pairs the ranges 

were significantly reduced from the search space. For comparison, the ranges 

obtained by minimizing MESP as a single objective are also shown. The minimum 

values of MESP in this case were 0.958 US$/L (base) and 0.705 US$/L  (HMT), but 

the energy efficiencies at these points were far from their highest values, at 0.31 

and 0.50 respectively, indicating that inefficiencies are compensated by low price 

of resources. An intriguing outcome is that when optimizing a single objective 

many DVs had optimal values outside the ranges of the Pareto-optimal solutions; 

in fact, this was observed for all the DVs in the HMT case. For the gas recycle ratio 

(GRR) specially, the single-objective optimum was close to zero while being 

almost at the search space upper bound for Pareto-optimal points with higher η. 
This illustrates the importance of using multi-objective as opposed to single-

objective optimization: as technology progress is driven by multiple values other 

than economic profit, it is inevitable that industries will seek to optimize 

conflicting objectives; and not only bi-objective but many-objective problems will 

need to be tackled. In fact, even if the goals are kept within the economic sphere, 

it is still challenging to reduce them to a single variable, since different indicators 

can be used to evaluate the profitability of a process: CAPEX, MESP, OPEX, NPV, 

payback time, ROI (return on investment), etc.  
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Figure 4.4. Bi-objective optimization of the integrated units: selected decision variables at 

the Pareto-optimal solutions (dilution rate (a) and gas residence time (b)); selected process 

outcomes at the Pareto-optimal solutions (CO conversion (c), H2 conversion (d), production 

rate (e), and energy consumption (f)). 
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Table 4.2. Multi-objective and single-objective optimization of the integrated process: ranges of decision variables at the 

Pareto-optimal or optimal solutions. 

 
Search 
space 

CAPEX x η 
CAPEX x η 
(HMT) 

MESP x η MESP x η (HMT) 
MESP 

 
MESP 

(HMT) 

Drate (BCR) [h-1] 0.01 – 0.15 0.044 – 0.092 0.1022 – 0.1025 0.050 – 0.087 0.101 – 0.103 0.099 0.106 

GRT (BCR) 
[min] 

5 – 50 8.95 – 44.4 15.7 – 17.7 15.9 – 39.1 18.3 – 18.9 14.5 21.3 

GRR (BCR) 0 – 0.5 0.062 – 0.43 0.489 – 0.493 0.092 – 0.45 0.478 – 0.496 0.0086 0.061 

XP (BCR) 0.05 – 0.2 0.084 – 0.19 0.0553 – 0.0639 0.12 – 0.17 0.044 – 0.054 0.198 0.0902 

L (BCR) [m] 25 – 50 44.9 – 49.9 41.3 – 43.4 48.3 – 49.9 42.6 – 42.8 49.9 47.2 
VR (BCR) [m3] 500 – 900 710 – 853 630 – 645  713 – 811 645 – 654  633 595  

S:F (T-01) 0.04 – 0.3 0.094 – 0.106 0.0796 – 0.0818 0.096 – 0.10 0.079 – 0.080 0.0963 0.0824 

NST (T-02) 40 – 50 40 – 46 43 – 45 43 – 47  44 41 40 

FST,V (T-02) 0.6 – 0.9 0.62 – 0.76 0.755 – 0.773 0.61– 0.80 0.76 – 0.78 0.67 0.724 

FST,L (T-02) 0.2 – 0.5 0.26 – 0.47 0.336 – 0.359 0.297 – 0.496 0.34 – 0.36 0.22 0.456 

RR (T-02) 3 – 6 4.4 – 5.80 3.78 – 3.89 5.14 – 5.83 3.95 – 4.02 5.25 4.17 
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It’s worth noting that the optimization of the BCR alone is not enough for 

meaningful decision-making, since the operating and design variables of the 

purification unit must be adapted to the outcomes of the bioreactor and optimized 

accordingly. When analyzing the whole process, the possible choices for the 

operating conditions and design variables were optimized to give a range of 

solutions from which a single one can be picked. If both energy efficiency and 

MESP are considered equally important, an illustrative example for the base case 

is to take the solution at η ≈ 0.4 following the notably steep increase in Fig. 4.3c, 

since after this point the gains in efficiency are relatively slow with respect to 

MESP. This solution gives the following decision variables: Drate = 0.052 h-1, GRT = 

34.1 min, GRR = 0.37, XP = 0.13, L = 49.5 m, VR = 772 m3, S:F = 0.10, NST = 45, FST,V 

= 0.65, FST,L = 0.4, and RR = 5.55. For the high mass transfer case, a similar solution can be drawn out at η ≈ 0.714: Drate = 0.10 h-1, GRT = 18.6 min, GRR = 0.49, XP = 

0.05, L = 42.7 m, VR = 652 m3, S:F = 0.08, NST = 44, FST,V = 0.76, FST,L = 0.34, and RR 

= 3.95.  

Relevant process outcomes are presented in Table 4.3. The average ethanol 

concentration in the broth was around 29 g.L-1 for the base case and 36 g.L-1 for 

the HMT case, with the acetic acid concentration staying under 4 g.L-1. As 

consequence, lower energy consumption in the distillation unit (roughly 7.2 MJ/L 

ethanol) could be obtained with HMT, while the base case spans a range from 7.4 to 9.4 MJ/L, mostly increasing with η. The results also show that high CO 

conversions (Fig. 4.4c) of up to 97% can be achieved with increased mass transfer 

and 83% for the base case, while the H2 conversions (Fig. 4d) were bounded to 

lower values (74%) in both cases, due to the CO inhibition as considered in the 

kinetic model. For comparison purposes, LanzaTech’s process is able to achieve 
high and stable CO conversions above 90% and ethanol selectivity of 95% 

(LanzaTech, 2018). Though their process configuration might be similar to the 

one considered here, employing gas-liquid column reactors, distillation to purify 

ethanol, and water recycle, the exact design and conditions of their process are 

not reported. Another point worth mentioning is that in the present work the gas 

composition was fixed at 50% CO and 50% H2, but the proportions of CO/H2/CO2 

are also expected to have significant impacts on the gas conversion and ethanol 

productivity in the bioreactor (de Medeiros et al., 2019).  Since the syngas 

composition is a result of design choices in upstream stages, which in turn also 

affect prices and energy efficiency, another study is currently under development 
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for the impact analysis and optimization of the whole process including syngas 

production via gasification. 

The Pareto-optimal solutions of the integrated process span smaller ranges of 

ethanol productivity in the bioreactor than the BCR optimization, indicating that 

higher productivities are not necessarily advantageous when taking into account 

the whole process, due to much higher capital costs (also corroborated by the 

steep increase in the Pareto fronts from Fig. 4.2a) and losses in gas conversion 

(thus lower energy efficiency). With regard to the annual production of anhydrous 

ethanol (Fig. 4.4e), in the base case the trends are opposite to the energy 

efficiency, but with HMT there doesn’t seem to be a correlation between the two, 
with the optimal production rate in this case being between 121–133 MML/year. 

However, if MESP is used as single objective both cases lead to similar production 

rates of around 121–124 MML/year (Table 4.3). 

Table 4.3. Multi-objective optimization of the integrated process: ranges of process 

outcomes at the Pareto-optimal solutions.  

 CAPEX x η 
CAPEX x η 
(HMT) 

MESP x η 
MESP x η 
(HMT) 

MESP 
MESP 
(HMT) 

CL,EtOH (BCR) [g.L-1] 26.3 – 34.7 36.6 – 38.3 26.0 – 30.1 35.5 – 36.7 28.4 34.6 
CL,HAc (BCR) [g.L-1] 1.61 – 3.74 2.33 – 2.43 1.97 – 3.44 2.33 – 2.46  4.20 3.0 
Heat consumption  
[MJ.L-1 AE] 

7.42 – 9.35 6.93 – 7.11 8.41 – 9.41 7.18 – 7.30 8.71 7.45 

Electricity 
consumption 
[kWh.L-1 AE] 

0.40 – 0.58 0.37 – 0.41 0.40 – 0.53 0.36 – 0.37 0.43 0.25 

CO
X (BCR) 0.63 – 0.82 0.95 – 0.96 0.71 – 0.83 0.97 0.68 0.97 

2H
X (BCR)  0.40 – 0.74 0.52 – 0.69 0.50 – 0.71 0.70 – 0.74 0.40 0.78 

ṁAE [MML.year-1] 63.5 – 158  123 – 133  68.8 – 146  125 – 127  124 121 
EtOH Productivity 
(BCR) [g.L-1.h-1] 

1.17 – 3.19 3.74 – 3.93 1.33 – 2.63 3.66 – 3.73 2.81 3.67 

 

4.3.3. Effects and prospects of mass transfer enhancement 

It can also be observed in Fig. 4.4 and Table 4.2 that the optimal values of the 

decision variables differ significantly between the base case and the HMT case, 

demonstrating the importance of accurate kLa estimations for the effective 

application of model-based optimization results. Several factors could compel the 

real kLa to deviate from the predictions of empirical correlations such as Eq. (4.6), 
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for example the presence of salts and alcohols in low concentration, which have 

been shown to increase kLa by factors up to 2 (van de Donk, 1981). Heijnen and van’t Riet (1984) have also noted that, in non-coalescing media, fine bubble 

systems can present a six-fold increase in kLa as compared to coarse bubble 

systems measured at the same gas superficial velocity, although in strongly 

coalescing media the difference is modest. Therefore the results presented here 

suggest that great improvements can be achieved with ingenious tuning of kLa via enhancement techniques. Ultimately, such “mass transfer enhancement” can be 
included as a factor in the optimization framework in order to find the optimal 

amount of efforts and costs that should be spent into increasing mass transfer 

capacity in the bioreactor. Examples of process intensification (PI) strategies for 

this purpose are given next.  

Groen et al. (2005) presented a method to increase the oxygen transfer capacity 

in aerobic fermentation which consisted of injecting a second gas stream (pure 

oxygen) via a special nozzle configuration to achieve supersonic velocities and a 

non-uniform bubble size distribution. With a ratio of 6:1 between the two gas 

flows (air/pure oxygen) the authors were able to increase the mass transfer rate 

3.6 times. Along the lines of reducing bubble size to increase the surface to volume 

ratio, the generation of micron size (< 1 mm) bubbles is generally considered an 

efficient way of enhancing gas-liquid mass transfer while requiring low power 

inputs: Bredwell and Worden (1998), for example, obtained a six-times higher kLa 

using a spinning-disk microbubble generator as compared to the conventional 

sparging system in a stirred tank for syngas fermentation. Moreover, while micro-

porous diffusers can be used to generate microbubbles in a passing gas stream, 

several works have demonstrated even further size reduction by oscillating this 

stream, with the oscillation frequency in this case being a central optimization 

variable (Brittle et al., 2015). A myriad of other methods have also been reported 

for the formation of microbubbles, relying on different aspects: with or without 

accompanying liquid flows, using polymers or with very low power consumption 

such as microchannel techniques and ultrasonic systems (Parmar et al., 2013).  

Finally, nanoparticles have also been shown to improve mass transfer, though 

only limited work has been developed for syngas fermentation. Kim et al. (2016), 

for example, observed substantial increase in the dissolved concentrations of CO, 

H2 and CO2 when using functionalized nanoparticles, and they also reported that 
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adding a magnetic layer to the particles enabled their reuse up to five times, 

thereby improving their economic feasibility. 

4.3.4. Sensitivity of MESP 

The Pareto-optimal MESP was in the range 1.0–1.3 US$/L (base) and 0.707–0.713 

US$/L (HMT), while in a previous work by our group the estimated MESP for a 

process including biomass gasification and heat/power generation was in the 

range 0.63–0.93 US$/L hydrous ethanol (i.e. before dehydration) (de Medeiros et 

al., 2017). In another study about syngas fermentation, even higher values 

between 1.58–1.93 US$/L were found (Benalcázar et al., 2017). Not only technical 

considerations and process modeling methods lead to these disparities, but also 

economic considerations such as the prices of utilities and raw materials. With 

that in mind, Fig. 4.5 shows the sensitivity of MESP to several economic 

parameters, where the midpoint is one of the Pareto-optimal solutions from Figs. 

4.3c and 4.3d. In this analysis the parameters were varied each at a time, with the 

other parameters being fixed at the values used in the optimization. For both cases 

the highest impacts on MESP (around 15% of its original value) were caused by a 

30% change in the capital investment, which might also explain why the 

optimizations with CAPEX and MESP have similar results. A forthcoming work by our group suggests that in other cases MESP can decrease with higher η, probably 
because the contributions of raw materials and utilities are more significant than 

in the present study. 

 
Figure 4.5. Sensitivity of MESP to economic parameters: base (a) and high mass transfer 

model (b). 
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4.4. Conclusions  

Different process systems engineering (PSE) tools (modeling, simulation, neural 

networks, genetic algorithm) were applied in this work to develop an 

optimization framework through which ranges of operating conditions and design 

variables can be selected for optimal production of ethanol fuel from syngas via 

fermentation, taking into account objectives of distinct natures. When optimizing 

a standalone bioreactor (BCR) in terms of ethanol productivity and capital costs, 

it was observed that Pareto-optimal values of productivity ranged between 0.75 – 

4.5 g.L.h-1 for the base model and 1.5 – 5.4 g.L1.h-1 for an optimistic case with 

higher mass transfer capacity (HMT), with the productivity increasing at the cost 

of higher investment due to larger reactor vessel and gas compressor. In the 

second part of this work, the BCR model was coupled to the purification unit 

including water recycle, and the integrated process was optimized in terms of 

economic variables (CAPEX and MESP) and energy efficiency (η). It was observed 
that, with the assumptions used here, MESP and CAPEX increase with η, which 
nonetheless was restricted to maximum values of 0.42 (base case) and 0.72 

(HMT). The trends of the decision variables along the Pareto fronts were 

discussed and it was seen that optimization results are greatly affected by the 

mass transfer calculations, thus corroborating that kLa enhancement is a 

promising strategy for global process improvement. The results presented here 

provide information about key process conditions and design variables, as well as 

sustainability targets and limitations in syngas fermentation.  This work can be 

further extended to evaluate and optimize the whole process from biomass waste 

to ethanol or other chemicals, and its reliability can be increased with the 

development of new models for syngas fermentation.  
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“Two roads diverged in a yellow wood, 

And sorry I could not travel both 

And be one traveler, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth;” 

 

 

Robert Frost, The Road Not Taken 
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5.1. Introduction 

In the last years a lot of progress has been achieved in the field of biobased 

production, especially with regard to ethanol production from lignocellulosic 

materials such as sugarcane bagasse, corn stover and wood residues – the so-

called 2nd-generation (2G) ethanol. However, 2G ethanol is still hardly competitive 

with conventional ethanol, and despite the existence of several commercial size 

plants employing 2G technologies, the actual production remains mostly below 

the installed capacity (Padella et al., 2019). Most of these technologies employ 

conversion pathways based on hydrolysis and sugar fermentation, but 

gasification-based pathways are also considered promising due to the alleged 

feedstock flexibility and potential to convert all parts of biomass (including 

lignin). 

Gasification has a long history of applications with different purposes (heat, 

electricity, chemicals or fuels), but most large-scale gasifiers operate with coal, 

while biomass gasification has been applied in a far more limited scale and mostly 

for heat and power generation as an alternative to natural gas and biomass 

combustion (Kirkels and Verbong, 2011). Regarding biomass-to-fuel via 

gasification, currently only eight facilities with technology readiness level (TRL) 

above 6 are operational or under construction/commissioning, with five of them 

targeting ethanol production (two operational) and only one at commercial scale: 

the Enerkem plant in Alberta, Canada, which converts municipal solid waste 

(MSW) to syngas, with its further chemical conversion to ethanol and other 

chemicals (Hrbek, 2019). Syngas produced via gasification can also be converted 

to ethanol via fermentation (i.e. using microbes instead of chemical catalysts), but, 

among the abovementioned projects, only one of them (by LanzaTech/Aemetis) 

is following this route. This plant, which is still expected to begin construction, will 

first convert agricultural waste to syngas via plasma gasification (Hrbek, 2019), a 

relatively new technology with the ability to convert nearly any type of material 

but with high costs and limited process understanding (Munir et al., 2019). Gas 

fermentation technology is by itself a challenge, despite the significant 

development in the past years which include the construction and operation of 

several demonstration plants to convert basic oxygen furnace (BOF) gas, a CO-rich 

gas generated in steel production, into ethanol.  
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The integration of these two conversion processes, namely, biomass gasification 

and syngas fermentation (i.e. thermo-biochemical route), has been advocated as a 

promising and versatile contribution to the biobased economy, but little research 

has been conducted to explore the simultaneous effects of process conditions and 

design choices of different units on the performance of the whole process, or to 

optimize it in terms of multiple objectives. At the same time, integrated 

optimization will be indispensable for the commercialization of thermo-

biochemical processes. As highlighted by Ramachandriya et al. (2016), different 

challenges arise when integrating both conversion steps (e.g. low product yield, 

energy requirements in the gasifier and inhibition caused by syngas impurities), 

but most studies in this field have focused on the microbial physiology of syngas 

fermenting bacteria. On the other hand, research on biomass gasification has 

unveiled a complicated relationship between the performance of different gasifier 

systems and multiple process conditions (steam to biomass ratio, temperature, air 

equivalence ratio, feedstock moisture content, etc).  

In this context, the main goals of this work are: (i) development of a framework 

for modeling and optimization of the integrated process for ethanol production 

from biomass via the thermo-biochemical route, considering two types of 

feedstock (sugarcane bagasse and wood residues); (ii) holistic impact analysis of 

operating conditions and design parameters; (iii) analysis of optimal trade-offs 

between economic, energy and environmental performance; (iv) analysis of 

Pareto-optimal conditions of multiple units in the process taking into account 

their interactions.  

5.2. Methodology 

5.2.1. Modeling framework 

The process is divided in five main units as presented in Fig. 5.1. In A100, the 

biomass feed is dried and gasified, after which the syngas is sent to a reformer. 

Hot streams from this unit are then cooled in A200 with heat recovery for steam 

and power generation, after which the cold syngas (~60 ºC) is passed through a 

scrubber to remove contaminants. In A300 the syngas is compressed to the 

pressure at the bottom of the bioreactor, cooled to 37 ºC and mixed with recycled 

gas before being fed to the bioreactor. Cells are separated in a microfiltration 

membrane and recycled with a small purge, and the product stream (dilute 

ethanol with traces of acetic acid) is sent to A400 for ethanol purification using 
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distillation and molecular sieves. In A500 cooling water and chilled water are 

produced for the whole plant. This section provides details about areas A100 and 

A200, while information about A300 and A400 can be found in de Medeiros et al. 

(2020). 

Modeling of syngas fermentation has been described in detail in our previous 

works (de Medeiros et al., 2019, 2020), the former focusing on microbial kinetics 

and the latter expanding the stirred tank model to a spatially distributed bubble 

column model. Previously (de Medeiros et al., 2020) we also demonstrated the 

application of surrogate modeling and machine learning (specifically, artificial 

neural networks) as tools to simplify the evaluation of responses originally 

obtained with rigorous models of the bioreactor and distillation columns. This 

strategy is repeated in the present work and applied to the gasification model, 

which is described next. 

5.2.1.1. Drying, gasification and tar reformer (A100) 

As in de Medeiros et al. (2017), the gasification process consists of a dual fluidized 

bed gasifier with circulation of char and bed material between the two beds as 

schematized in Fig. 5.2. Hot flue gas from the combustion zone (CZ) is used in the 

air pre-heater and biomass dryer. Since char formation is regulated by the 

temperature in the gasification zone (TGZ), and char is the main fuel in the 

combustion zone, the system in Fig. 5.2 will reach an equilibrium point for TGZ and 

TCZ (temperature in the combustion zone), therefore making TGZ an output of the 

process instead of input. In order to transform TGZ into an independent variable, 

we propose that other variables (namely, air flow rate and additional fuel fed to 

CZ) can be tuned to satisfy the energy balance for a desired TGZ that is not 

necessarily at the equilibrium point aforementioned. Therefore, the gasification 

model proposed here comprises an optimization routine in which, for a given TGZ, 

we wish to minimize the square difference of the heat duty between GZ and CZ, 

named here Qdiff,  by finding the corresponding values of three variables: AE (air 

excess fed to CZ), DT (temperature difference, TCZ – TGZ), and f (split fraction of 

biomass that is diverted to CZ instead of GZ). The energy difference Qdiff also 

considers a loss of 2% the lower heating value (LHV) of biomass. Since for the 

whole process we also wish to minimize resources, the objective function then 

becomes, for a given TGZ: 
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( ) ( ) ( ) ( ) ( )min , , ,
2

diff GZ
Q AE f DT f T AE f DT + + + =  

   (5.1) 

The calculation of the energy difference Qdiff starts by calculating the outcomes of 

the gasification zone (syngas and char yields and compositions), for which we use 

temperature-dependent correlations adopted by NREL (Dutta et al, 2011). These 

correlations are second-degree polynomial functions of TGZ that predict the yield 

of syngas (scf/lb maf biomass) and the mass fractions (dry basis) of its main 

components (i.e. CO, CO2, H2, CH4, C2H4, C2H6, C2H6, C2H2, C6H6). Although there is a correlation for the char yield, we follow NREL’s recommendation of using instead 

the following algorithm based on elemental balances: (i) for carbon, determine the 

total amount of C in syngas from the results of the correlations and consider any 

remaining C to be in the form of char; (ii) for oxygen, assume that at least 4% of 

biomass O ends up in the char, then if the O balance results in a deficit of this 

element, water decomposition is assumed to provide for the missing amount; if 

there is an excess of O then the exceeding amount is assumed to also be present in 

the char; (iii) for sulfur, assume that at least 8.3% of biomass S is in the char, the 

remainder is converted to H2S in syngas; (iv) for nitrogen, assume that at least 

6.6% of biomass N goes to char, the remainder is converted to NH3 in the syngas; 

(v) for hydrogen, determine the total amount of H in all components of syngas, and 

consider the remaining H to be present in the char. To be consistent with the 

correlations, other conditions were assumed fixed and equal to the experiments 

described by the correlations, i.e. biomass moisture entering the GZ equals 10% 

and steam to biomass ratio SBR = 0.4 kg/kg dry biomass. 



141 

 

 

 

Figure 5.1. Block flow diagram of thermo-biochemical route for ethanol production from biomass. Dashed lines: electricity streams; blue 

lines: cooling or chilled water; red lines: steam.
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Figure 5.2. Schematic representation of dual fluidized bed reactor in A100. 

To calculate Qdiff, the gasification unit was simulated in Aspen Plus following the 

simplified flowsheet presented in Fig. 5.3. The full Aspen flowsheet is presented 

in Fig. A3-1 of the Appendix. Biomass was specified as a non-conventional 

component described by its heating value and composition given by proximate 

and ultimate analyses. These can be found in de Medeiros et al. (2017) and Capaz 

et al. (2020), for bagasse and wood residues, respectively. For each temperature, 

results of the GZ algorithm explained above are used as input in the yield reactor 

that represents the GZ (R-01). The combustion reactor (R-02) is a stoichiometric 

reactor that is fed with char generated in GZ as well as biomass that might be 

diverted for this use in the splitter (SP-01). In the simulation, there is also a yield 

reactor (not depicted in Fig. 5.3) to transform the non-conventional component 

biomass into conventional components that can participate in combustion 

reactions. The dryer (D-01) is modelled in Aspen with a stoichiometric reactor 

and a flash operation: the former converts the non-conventional biomass stream 

into a stream containing biomass and H2O, which is later separated in the flash 

operation. The amount of H2O generated in this stage is the difference between 

the initial moisture of the wet biomass and the final desired moisture of 10%.  The 

output Qdiff is then the sum of three heat streams related to these operations: the 

decomposition of nonconventional biomass, the gasification reactions R-01 and 

the combustion reactions R-02. The tar reformer was simulated as a 

stoichiometric reactor for the conversion of CH4, C2H6, C2H4 and tars into CO and 

H2. For this reactor the conversions were assumed the same as adopted by NREL 

(Dutta et al. 2011), i.e. 80%, 99%, 90% and 99% respectively. The heat duty was 
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calculated in Aspen and it is assumed to be provided by the combustion of 

unconverted syngas from A300 as well as a fraction of unreformed syngas from 

the gasifier. The latter can be adjusted not only to meet the requirements of the 

tar reformer, but also to increase the amount of energy available for 

steam/electricity production in A200. 

The minimization problem (Eq. 5.1) was solved in MATLAB for a range of TGZ. 

Since the calculation of Qdiff and other outputs requires the Aspen simulation, one 

possible approach is to link both software programs and run the simulation every 

time the objective function needs to be evaluated. However, to make the 

framework more robust and reduce the number of simulation runs, we decided 

instead to train artificial neural networks (ANN’s) with data generated in Aspen 
for multiple combinations of inputs (TGZ, AE, f, DT). This procedure was previously 

explained in for a different case (de Medeiros et al., 2020). These surrogate models 

were then used in the optimization problem, which was solved with fmincon in 

MATLAB. The ranges used to obtain the data were: TGZ between 700 – 1000 °C; AE 

between 10 – 150 %; f between 0 – 0.5; DT between 30 – 100 °C. 

5.2.1.2. Heat recovery and power generation (A200) 

Energy is recovered from three streams of hot gases: syngas from the tar reformer, 

flue gas from the char combustor, and flue gas from the tar reformer combustor 

(catalyst regenerator). These hot gases are used as energy source in a Rankine 

cycle with reheat (Fig. 5.4) to produce electricity. In this cycle there are two 

expansion stages (ST-01 and ST-02) with an intermediate re-heat operation (E-

02) to increase the energy efficiency. In the 2nd stage a slip stream is extracted to 

provide steam for gasification and process heat (distillation). The specifications of 

inlet/outlet pressure and temperature at the turbine were considered the same 

as reported by NREL (Dutta et al., 2011). Since the properties (mass and 

temperature) of the hot streams are not fixed (i.e. they depend on the conditions 

of the process), the heat exchanger network (represented in the flowsheet by the 

exchangers E-01, E-02 and E-05) is designed with an algorithm that roughly 

maximizes the sensible heat that can be transferred from hot to cold streams. In 

this unit, the mass flow rate of water/steam circulating in the Rankine cycle is set 

to meet the plant targets of electricity and steam consumption, but if heat is still 

available then more water is provided to increase electricity production. This is 
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done with a short optimization routine to maximize the amount of water while 

respecting the 1st and 2nd law of thermodynamics.  

Electricity generated in this unit is used to supply the gas compressors, air 

blowers and pumps in the whole plant, as well as the water chiller (which 

produces chilled water for the bioreactor that must be kept at 37 °C). After heat 

recovery, the reformed syngas stream is further cooled to 60 °C using cooling 

water and fed to a scrubbing system following the same specifications as adopted 

by Dutta et al. (2011), i.e. comprising a venturi scrubber, cyclone separator and a 

quench water circulation system with a small purge and fresh water makeup.   

5.2.2. Evaluation of model outputs and multi-objective optimization 

The modeling framework considers 9 decision variables for the optimization: in 

A100, (i) TGZ (temperature in the gasification zone of the gasifier), and (2) fs 

(fraction of unreformed syngas sent to combustion); in A300, (iii) Drate (dilution 

rate in the bioreactor), (iv) GRT (gas residence time, defined as volume of liquid 

divided by fresh gas volumetric flow), (v) GRR (gas recycle ratio), (vi) L (column 

height), (vii) VR (volume of bioreactor); in A400, (viii) SFC1 (mass ratio of side 

stream to feed stream in the first distillation column) and (ix) RRC2 (molar reflux 

ratio in the second distillation column). The sustainability performance is 

measured by four types of responses: (i) economic; (ii) energetic; (iii) carbon 

footprint; and (iv) water footprint. The variable fs is used to regulate the amount 

of energy (electricity and heat) that is produced inside the plant: if fs is too high, 

the process exports energy and produces less ethanol; if it is too low, energy must 

be imported which therefore increases the carbon footprint of the process and 

utility cost. There is of course a point at which the process becomes exactly self-

sufficient, but it does not necessarily correspond to the optimum of the process in 

terms of all sustainability criteria. The optimization was conducted for two 

feedstocks: sugarcane bagasse and wood (eucalyptus) residues. 
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Figure 5.3. Simplified process flow diagram of A100: drying, gasification and tar reformer. D-01: biomass dryer; SP-01 to SP-03: stream 

splitters; R-01 and R-02: gasification (GZ) and combustion (CZ) zones of dual bed gasifier; S-01 to S-04: cyclones; R-03 and R-04: tar reformer 

and catalyst regenerator; C-01: air blower; E-01: air pre-heater.
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Figure 5.4. Rankine cycle with reheat. E-01 to E-05: heat exchangers (units represent series 

of exchangers); ST-01 and ST-02: steam turbine, 1st and 2nd stages; P-01 and P-02: water 

pumps. 

Capital costs are calculated following the bare module costing technique detailed 

in Turton et al. (2009). For the gasification unit and steam turbine, the base costs 

were taken from NREL (Dutta et al., 2011) and adapted to the year 2019. The 

capacity was considered the same for both case studies: 2,000 tonnes of dry 

biomass per day. Costs of heat exchangers, pumps, air blowers and towers were 

calculated with purchase cost correlations available in Turton et al. (2009). For all 

types of equipment, capacity ranges are respected by dividing the equipment in 

more units if that is necessary (for example, if the calculated heat exchanger area 

is greater than 1000 m2). The economic performance indicator used for the 

optimization is the minimum ethanol selling price (MESP), i.e. the price to achieve 

NPV = 0. Economic assumptions were considered the same as those in de 

Medeiros et al. (2020).  

Table 5.1 presents the considerations of prices and carbon footprint (emission 

factors) associated with raw materials and utilities used in the process. Costs of 

other raw materials, such as olivine and tar reformer catalyst, were taken from 

NREL (Dutta et al., 2011), and were assumed to have negligible carbon footprint contribution. It’s worth mentioning that fermentation nutrients were excluded 
from the analysis since they cannot be calculated with our model, but they are not 

expected to have a significant impact on either MESP or CO2 emissions. In a LCA 
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study using data from LanzaTech, Handler et al. (2016) reported that inputs such 

as nutrients, water and chemicals amounted together to 9-20% of CO2eqq 

emissions related to feedstock procurement (corn stover, switchgrass or forest 

residue). Regarding the carbon footprint of lignocellulosic feedstocks (sugarcane 

bagasse or eucalyptus residues), these are considered here as co-product instead 

of waste, i.e. a fraction of the impacts associated with the production of 

sugarcane/ethanol or eucalyptus are allocated to the residual biomass according 

to their economic value (Capaz et al., 2020).  

The energy efficiency considered here reflects how much of the energy input from 

biomass and heat/power (if these are not produced inside the plant) is available 

in the final product (anhydrous ethanol). If there is an excess of electricity 

production, for example, the carbon footprint of the process will be lower but so 

will the energy efficiency. Finally, the water footprint is the total water consumed 

in the process divided by the production rate of ethanol. Cooling water make-up 

due to losses from evaporation, drift and blowdown are assumed to be 0.4% of 

the total cooling water consumption.  

Table 5.1. Prices and carbon footprint considered in this study 

Raw 

material 

Price Carbon footprint 

Sugarcane 

bagasse  
$ 45/t (db) (Bonomi et al., 2016) 

0.042 kg CO2eq/kg (db) (Capaz et 

al., 2020) 

Wood 

residues  
$ 11.3/t (db) (SEAB, 2019) 

0.0189 kg CO2eq/kg (db) (Capaz et 

al., 2020) 

Electricity 
$ 0.14/kWh (CPFL Energia, 

2019) 

0.17 kg CO2eq/kWh (Capaz et al., 

2020) 

Steam 
variable (Ulrich and Vasudevan, 

2006) 
70 kg CO2eq/GJ (Ecoinvent) 

Natural gas  $ 0.274/kg  2.63 kg CO2eq/kg (Ecoinvent) 

Prior to the multi-objective optimization, a sensitivity analysis was conducted to 

determine the correlations between input and output variables, as well as the 

correlations between different responses. For the latter, Principal Component 

Analysis was applied to a set of responses obtained under different combinations 

of input variables (4,000 points) and the values of the principal component 

coefficients (also called loadings) were used to interpret correlations between the 

responses and thus reduce the number of objectives. With the final set of 
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objectives, the multi-objective optimization was then conducted in MATLAB using 

genetic algorithm. The search ranges of the decision variables are shown in the 

Results section together with the ranges of Pareto optimal results in Table 5.2 

(Sec. 5.3.4). 

5.3. Results and discussion 

5.3.1. Gasification 

As explained in Sec. 5.2.1.1, the gasification model expands the NREL algorithm 

(Dutta et al., 2011) by tuning other process conditions in order to maintain a 

desired temperature in the gasification zone. Main results are presented in Fig. 5.5 

and Fig. 5.6. In Fig. 5.5 the compositions are shown for bagasse only, but since the 

model uses temperature-dependent correlations for the dry molar fractions in the 

gas phase, there are virtually no differences between the dry composition 

obtained for the two feedstocks. This is of course a limitation of the model, 

because it means the feedstock composition has no effects on the dry gas 

composition; however since the differences are small (e.g. bagasse has lower 

carbon content, 46.96% against 50.89%, as shown in Table A3-1 in Appendix A3), 

we can assume that in view of the whole process, and recalling that the moisture 

at the entrance of the gasifier is the same (i.e. 10%), the main distinctive aspects 

of the feedstocks will be the initial moisture (50% for bagasse and 12% for wood), 

price and carbon footprint. It’s worth mentioning that the composition correlations were developed for different types of wood, hence it’s safe to affirm 
that the gasifier model is more accurate for eucalyptus residues than for bagasse. 

Differences in feedstock composition are compensated in the char yield, which is 

therefore lower for bagasse (Fig. 5.6a). Another difference is the fraction of 

biomass that must be diverted to the combustion zone in order to maintain the 

desired temperature at the gasification zone (Fig. 5.6b): in this case, this fraction 

is higher for bagasse and begins to be greater than zero at a lower temperature; 

this is due not only to the feedstock composition but also to the heating value 

which is lower for bagasse (16.05 MJ/kg against 18.61 MJ/kg, dry basis).  
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Figure 5.5. Molar composition of syngas (dry basis): (a) after gasifier; (b) after tar reformer 

(other species are not shown due to negligible concentrations). 

Another limitation of the model is the inability to predict the formation of toxic 

HCN. Although it is produced in much lower amounts than NH3 (Wilk and 

Hofbauer, 2013), HCN has been reported to be the main reason behind the 

shutdown of the INEOS Bio gasification-fermentation plant in Florida (Lane, 

2014). On the other hand, recent studies have suggested that the syngas-

fermenting microbe Clostridium ljungdahlii can adapt to the presence of cyanide 

and achieve similar growth performance as without the contaminant (Oswald et 

al, 2018). Moreover, HCN removal from syngas can be accomplished through 

different cleaning processes, such as absorption into aqueous solution followed 

by alkaline chlorination or oxidation, or even direct decomposition using 

heterogeneous catalysts during the gasification process (Kumagai et al., 2017). It 

can be hypothesized that INEOS Bio underestimated the amount of HCN that 

would be produced in the gasifier and then, with the plant already constructed, it 

might have been too problematic to include further cleaning stages.  



150 

 

 
Figure 5.6. Main differences between the predictions of the gasifier model for bagasse and 

wood residues: (a) char yield; (b) required fraction of biomass sent to the combustion zone. 

5.3.2. Bubble column bioreactor 

The bubble column bioreactor is affected by several variables. For the 

optimization study five variables are direct inputs of this unit (Drate, GRT, GRR, L, 

VR), but other variables are fixed (e.g. cell recycle ratio, at 0.85) or they are 

outcomes from other units (e.g. syngas composition). In a previous study (de 

Medeiros et al., 2019) we showed how the syngas composition affects the gas 

conversion and ethanol productivity as predicted by the biokinetic model. Fig. 5.7 

presents main performance indicators of the bubble column reactor for different 

values of Drate and GRT, with the syngas molar composition fixed at [CO:H2:CO2] = 

[0.4:0.5:0.1], column height L [m] = 40, volume VR [m3] = 500, and no gas recycle 

(GRR = 0). Clearly the responses presented in Fig. 5.7 are conflicting and cannot 

be optimized simultaneously: for example, the highest ethanol titers are achieved 

under very low Drate (< 0.075 h-1) and GRT, while the highest CO conversions are achieved with high GRT. The energy efficiency ηLHV is also favored under high GRT 

(due to higher conversion), but the productivity is favored at low GRT, achieving 

a maximum close to Drate = 0.1. 

5.3.3. Global effects of input variables and correlations between responses 

With the framework of the whole process, the model was first used to predict 

relevant responses for a set of combinations of decision variables. The results 

were then used to calculate the correlation coefficients between the decision 

variables and each of the responses, which are presented in Fig. 5.8. Firstly, it’s 
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worth noting that all the decision variables have absolute correlation coefficients 

greater than 0.1 for at least one of the responses; for this reason, all of them are 

kept in the optimization problem. Secondly, TGZ, fs and GRT dominate with the 

highest correlation coefficients with all the responses. Moreover, a few 

interpretations can be highlighted: 

GRT is a measure of the amount of fresh syngas fed to the bioreactor: for a fixed 

reactor volume, the higher the value of GRT, the lower the fresh gas volumetric 

flow rate fed to each vessel, which means that for the same syngas production rate 

(an outcome of the gasification unit), the number of reactor vessels must be 

increased, hence the large positive effect on CAPEX. The effect on OPEX is not 

straightforward, because as seen in Fig. 5.7, increasing GRT increases the gas 

conversion but also decreases the ethanol titer (which means more resources are used downstream). MESP and ηLHV show similar correlation coefficients but with 

opposite sign, meaning also that lower values of MESP are an indication of higher 

energy efficiency. The effect on the water use is approximately opposite to the 

energy efficiency, corroborating that a higher energy use per liter of product also 

prompts a higher requirement of cooling water and, therefore, make-up water.  

The split fraction of unreformed syngas diverted to combustion (fs) has large 

negative effects on both OPEX and carbon footprint, since increasing fs implies 

decreasing the input of external energy to the plant, hence lower costs and CO2eq 

emissions. However, as seen in Fig. 5.8c, it turns out to also have a small positive 

effect on MESP, meaning that the abovementioned gains are overshadowed by the 

reduced ethanol production.   

Although increasing the temperature in the gasification zone (TGZ) means 

sacrificing more biomass to combustion (Fig. 5.6b), this loss is apparently 

compensated by the reduced formation of char (Fig. 5.6a), thus higher syngas 

yield, and by the higher production of H2 (Fig. 5.5), which favors ethanol 

production during fermentation. The small increase in CAPEX (probably due to 

higher gas flow rates) is therefore repaid by these gains, as observed with the 

correlation coefficients of this variable with other responses. 

To conduct the sustainability optimization, MESP was elected as the main 

economic indicator, and the other responses shown in Fig. 5.8, apart from CAPEX 

and OPEX, were initially considered as objectives. The results of the correlation 

analysis described above also indicate existing correlations between the 
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responses (e.g. between MESP, ηLHV and water), and this was verified using 

Principal Component Analysis (PCA). PCA takes a set of multidimensional data 

and reduces the dimension by creating new variables (principal components) that 

are linear combinations of the original variables. The values of these linear 

coefficients (sometimes called loadings) can then be compared in order to find 

correlations among the variables. In the present case, two principal components 

were found to explain more than 90% of the variance in the original data set, 

therefore the coefficients of the first two components provide an accurate 

overview of these correlations, as depicted in Fig. 5.9. As expected, MESP, -η and 
water use are clustered in the same region with similar coordinates. Based on 

these results, we decided to exclude the water footprint from the multi-objective 

optimization and proceed with three minimization objectives only: (i) MESP, (ii) –η (because one of the goals is to maximize the energy efficiency), and (iii) carbon 
footprint.  

5.3.4. Multi-objective sustainability optimization 

Fig. 5.10 presents the Pareto fronts and their respective interpolant surfaces 

obtained for the two feedstocks. Significantly lower values of carbon footprint and 

MESP can be obtained with wood residues (0.93 $/L against 1 $/L, and 3g 

CO2eq/MJ against 10 g CO2eq/MJ), the main reasons behind this being the much 

lower feedstock price, feedstock-related emissions and initial moisture of the 

wood residues. The energy efficiency was however bound to 32% in both cases, a result that is lower than a first estimation (η = 38%)  given in our previous work 
(de Medeiros et al., 2017), which considered a much more simplistic bioreactor 

model. Indeed, as demonstrated in de Medeiros et al. (2020), an optimistic 

estimation of the gas-liquid mass transfer coefficient (kLa) can lead to substantial 

improvement in energy efficiency and reduction of MESP. Considering the high 

values of MESP, even under optimal conditions, and its dependence on the energy 

efficiency, the results presented here and in de Medeiros et al. (2020) corroborate 

the need for improvement in the bioreactor, be it with novel reactor designs that 

facilitate gas-liquid mass transfer while keeping low cost, or with genetic 

improvement of the microorganisms. These changes must, however, be followed 

by new optimization studies to re-evaluate the optimal process conditions.    
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Figure 5.7. Bubble column reactor, sensitivity of Drate and GRT on model outcomes: (a) 

ethanol concentration [g.L-1] in the liquid phase; (b) ethanol productivity [g.L-1.h-1]; (c) 

energy efficiency ηLHV; (d) CO conversion.  
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Figure 5.8. Correlation coefficients between decision variables and responses: sugarcane 

bagasse (results for wood residues are presented in Fig. A3-2 of Appendix A3). 
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Figure 5.9. PCA of model responses showing the principal component coefficients (loadings) 

of the first two principal components: (a) sugarcane bagasse; (b) wood residues. 

For both feedstocks, the optimal MESP can be decreased at the cost of higher GHG 

emissions, however, even at the lowest values of MESP, the process still 

represents a significant emission reduction in comparison with gasoline (94 

gCO2eq/MJ) (Elgowainy et al., 2014) and 1st-generation ethanol (38.5 – 44.9 g 

CO2eq/MJ) (Mekonnen et al., 2018), although it should be mentioned that our 

calculations do not take into account the emissions related to the distribution of 

ethanol. The results are comparable to other combinations of 2G technology and 

feedstock, for example the biochemical route using wheat straw (16 g CO2eq/MJ) 

(Padella et al., 2019) or sugarcane residues (17.5 gCO2eq/MJ) (Junqueira et al., 

2017). Similarly, Handler et al. (2015) reported GHG emissions from gas 

fermentation to be between 8.0 gCO2eq/MJ for corn stover and 31.4 for basic 

oxygen furnace gas; but an even better result of 1.5 gCO2eq/MJ was reported for 

this technology using forest residues.  

There are different sources of uncertainty in the framework. Firstly, those 

associated with the process models: for example, in the correlations used to 

predict syngas composition as function of temperature; or in the equations and 

parameters used for the calculation of gas-liquid mass transfer coefficient (kLa) 

and reaction rates in the bioreactor model. These are uncertainties that can be 

attenuated with research to deliver more experimental data, either laboratorial or 

industrial, to validate and improve the models. The other type of uncertainty is 

related to economic and environmental parameters and assumptions that are 

unrelated to the process models, such as price of raw materials, capital cost 
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correlations and emission factors. For example, biomass residues are not 

traditional materials with established market prices, but they acquire a so-called 

opportunity price as second-generation technologies or other types of biomass 

valorization processes gain popularity. Similarly, one can expect that values of 

CO2eq emissions due to feedstock procurement depend not only on the location 

and type of biomass, but also on the impact assessment methodology and 

database used for the calculation of these emission factors. In this context, Fig. 

5.11 presents the 2-d projections of the Pareto fronts from Fig. 5.10 along with 

uncertainty intervals obtained when four economic and environmental 

assumptions are varied within ± 30% ranges: (i) feedstock price; (ii) CAPEX 

calculation; (iii) feedstock emission factor; (iv) electricity emission factor. The 

points A, B, C and D were selected as most desirable candidates as discussed 

further in this Sec. 5.3.4. 

 
 

Figure 5.10. Pareto surfaces obtained with 3-objective optimization of thermo-biochemical 

route (Pareto-optimal solutions represented by red spheres): (a) sugarcane bagasse; (b) 

wood residues. 

The large uncertainty intervals demonstrate the importance of being transparent 

about the assumptions and limitations of techno-economic-environmental 

assessment studies. Nevertheless, the main contribution of this paper is not the 

calculation of MESP, energy efficiency and carbon footprint, but rather the 

strategies presented for sustainability optimization and the insights about the 

effects of interconnected input variables and their behavior at the optimal 

solutions. This is illustrated in Fig. 5.12 for the most relevant variables: TGZ, fs, Drate 

and GRT. As seen in Sec. 5.3.3, these variables showed the strongest correlations 

with the responses, which is why they are also more dispersed along the Pareto 



157 

 

fronts. Other variables, however, were limited to more narrow ranges of optimal 

values when compared to their original search space. Ranges of Pareto-optimal 

values obtained for all the decision variables are shown in Table 5.2, together with 

their original search space. 

Figure 5.11. Projections of 3-objective Pareto fronts in pairs, including intervals of ± 30% 

uncertainty in economic and environmental assumptions: (a) MESP; (b) Carbon footprint. 

The optimal trends presented in Fig. 5.12 reinforce, to some extent, the 

correlations discussed in Sec. 5.3.3 (Fig. 5.8). For example, lower MESP (and 

higher efficiency) can be achieved with higher gasification temperature, while the 

opposite is observed for the variable fs (fraction of unreformed syngas that is sent 

to combustion). The optimal values of Drate are constrained to the range 0.055 – 

0.08 h-1, similarly as observed in de Medeiros et al. (2020). Finally, GRT is spread 

over the range 22 – 32 min, but although its patterns are not as evident as seen for 

TGZ and fs, there seems to be a rough tendency of higher GRT leading to higher MESP (and lower η), which is at first sight conflicting with the results presented 

in Fig. 5.8. However, when considering the whole search space of GRT (see Table 

5.2), the optimal values are clearly closer to the upper bound than the lower 

bound, therefore confirming that higher GRT is better for both MESP and η. It is 
when the data set is limited to the Pareto fronts that this pattern is not clear 

anymore, demonstrating that other input variables also exert strong effects on the 

optimal results. 

Although the Pareto-optimal solutions are, by definition, equally optimal, the 

points A, B, C and D from Fig. 5.11 can be selected as the best candidates according 

to the following criteria: first, given the current context, in which profitability is 

still the prevailing standard, points A and B are those for which both profitability 
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and energy efficiency are maximized. It should be noted that it is not always the 

case that these two targets can be optimized at the same time (for an example, see 

de Medeiros et al. (2020)). Points C and D take into account the carbon footprint 

but do not consider it the most crucial target: beyond these points the minor 

improvements in the energy efficiency are followed by proportionally larger 

increase of the carbon emissions. Table 5.3 presents the values of the decision 

variables at these four solutions, along with the corresponding values of the three 

targets. The main differences between the two types of solutions (A and B against 

C and D) are related to the gasification temperature (slightly lower in the second 

case), the bioreactor volume (also lower in the second case), and, more notably, 

the syngas fraction fs, which is much higher when carbon footprint is taken into 

account.  

 
 

Figure 5.12. Pareto-optimal values of most relevant decision variables: (a) TGZ; (b) fs; (c) Drate; 

(d) GRT. 

 



159 

 

Table 5.2. Multi-objective optimization of thermo-biochemical route: ranges of at the Pareto-

optimal solutions. 

 search space bagasse wood residues 
TGZ [ºC] 700 – 1000 839 – 989  909 – 983  
fs 0 – 0.35 0.00182 – 0.280 0.111 – 0.330 
Drate [h-1] 0.05 – 0.15 0.0568 – 0.080 0.0560 – 0.0644 
GRT [min] 5 – 40  21.6 – 32.1 21.7 – 33.0 
GRR 0 – 0.5  0.0990 – 0.293 0.124 – 0.304 
L [m] 30 – 50  43.1 – 47.2 40.4 – 48.9 
VR [m3] 400 – 900  455 – 600  418 – 596  
SFC1 0.06 – 0.13 0.0894 – 0.0940 0.0886 – 0.0950 
RRC2 3 – 6  4.84 – 5.95 4.75 – 5.87 

 

Table 5.3. Multi-objective optimization of thermo-biochemical route: selected optimal points. 

 A (wood) B (bagasse) C (wood) D (bagasse) 
MESP [$.L-1] 0.934 1.09 0.958 1.14 η 0.319 0.310 0.305 0.304 
g CO2eq/MJ 8.60 34.1 4.11 19.4 
TGZ [ºC] 974 974 961 962 
fs 0.119 0.00182 0.186 0.119 
Drate [h-1] 0.0572 0.060 0.058 0.058 
GRT [min] 30.3 28.9 31.8 29.8 
GRR 0.245 0.248 0.247 0.283 
L [m] 45.8 46.0 47.4 45.1 
VR [m3] 503 554 485 551 
SFC1 0.0940 0.0920 0.0930 0.0921 
RRC2 5.11 5.13 5.10 5.00 

 

Water footprint was also included in the analysis as a measure of direct water use 

(i.e. excluding the water footprint to produce the feedstock and raw materials), 

but as explained in Sec. 5.3.3, it was excluded from the multi-objective optimization due to its high correlation with both MESP and η. In Fig. 5.13a the 

water footprint of Pareto-optimal points are plotted against the corresponding 

results of MESP, with minimum values being around 5 kg water per liter of ethanol 

for bagasse and wood residues. As comparison, Dutta et al. (2011) reported 2.0 

kg/L for ethanol production from wood via gasification and mixed alcohol 

synthesis, but the LanzaTech process is expected to consume around 8.5 kg/L 

(Handler et al., 2016). Ethanol yields (Fig. 5.13b) are also comparable to other 2G 

processes found to be in the range 205 – 330 L/ton dry biomass (de Medeiros et 

al., 2017; Dutta et al., 2011; Wei et al., 2009). 
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Figure 5.13. Pareto-optimal values of other performance indicators: (a) water footprint; (b) 

ethanol yield. 

At last, Fig. 5.14 illustrates the trade-off between energy efficiency and self-

sufficiency. The results indicate that energy self-sufficiency is not necessarily 

beneficial, as higher values of efficiency can be achieved when energy is purchased 

(in the form of steam and electricity) instead of produced entirely inside the plant, 

which sacrifices syngas that could  be converted to ethanol. Though this 

conclusion may seem counterintuitive, it can be clarified by comparing Fig. 5.14 

with Fig. 5.13b: as the energy demand increases with η, so does the ethanol yield, with gains that clearly outweigh the extra energy requirement (MESP and η go in 
different directions, as seen in Figs. 5.10 and 5.11a).  

 
Figure 5.14. Pareto-optimal values of global energy balance (consumed minus produced in 

the plant): (a) power; and (b) heat (steam). 
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5.4. Conclusions 

In this work we showed how the sustainability of a gasification-fermentation 

route can be improved (or optimized) by tuning process conditions and design 

parameters related to different units of the process. We present and discuss the 

construction of a gasification model and a modeling framework for the whole 

process from biomass to ethanol fuel, and we show that the input variables have 

interconnected effects on the outcomes. Multi-objective optimization was then 

applied as a tool for sustainability optimization that does not rely on assigning 

weights to goals of different natures (e.g. economic and environmental), but we 

also discuss the underlined uncertainties in economic-environmental 

calculations. 
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“Knowledge is like a sphere: the greater the volume the higher the contact with the 
unknown.”  

Blaise Pascal, Pensées 
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We started this thesis quoting an informal definition of bioeconomy [the art of 

bringing value to the valueless] and after exploring one possible technological 

route through modeling, simulation and optimization, we are again convinced of 

its accurateness. Although the second law of thermodynamics naturally limits the 

reutilization of resources, such that we cannot reuse our waste forever, we are 

still at a point at which what we call waste contains a significant amount of 

underutilized resources: it is just a matter of having the right technologies to 

enable such extraction and conversion of useful resources in an efficient and 

commercially viable way.  

This thesis focused on the thermo-biochemical route, where the process of 

gasification is used to convert biomass residues to syngas, which is then 

biochemically converted to ethanol via autotrophic fermentation by acetogenic 

bacteria. As mentioned in Chapter 1, this route bypasses certain issues 

encountered in other conversion pathways, such as the complex pretreatment and 

hydrolysis of biomass prior to sugar fermentation, or the high temperature and 

pressure conditions needed to convert syngas to ethanol via chemical routes. 

However, it also faces its own drawbacks and challenges that cannot be ignored. 

Firstly, there is still a lack of consistent experimental data about yields, 

conversions and product selectivity for both syngas fermentation and gasification. 

Although this work did not contribute to filling this gap, we hope that on-going 

and future research can bring more clarifying information about these two 

processes, enabling models such as the ones developed in this research to be  

improved, validated and used in the advancement of this route.   

The main goal of this project was laid out in Chapter 1: to find the design and 

operating conditions that optimize sustainability, therefore a set of targets related 

to economic performance, environmental impact (carbon footprint) and energy 

efficiency. The research presented here was fully conducted in dry lab, making use 

of mathematical models, programming, simulations and numerical methods. A lot 

of assumptions were made, as needed in every model, and these were disclosed 

throughout the thesis. We started with a preliminary economic assessment 

presented in Chapter 2. In this article we developed a simulation of the whole 

process from feedstock, in this case sugarcane bagasse, to hydrous ethanol, a fuel 

largely produced from sugarcane in Brazil. For this simulation, the gasification 

reactor was represented by an equilibrium model, a generic yet effective way of 

analyzing the thermodynamic limitations of this process. The syngas bioreactor 
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was initially simulated as a black-box model considering values of conversion and 

residence time reported in a patent. Ethanol separation, as done in all stages of 

this research, was simulated rigorously in Aspen with the Inside-Out algorithm to 

solve the MESH equations. Finally, in this first simulation, some of the process 

conditions were roughly tuned to achieve energy self-sufficiency by burning 

unconverted syngas and recovering heat from hot gases. The results of this 

simulation and preliminary economic assessment revealed a poor economic 

performance when compared to 1st-generation ethanol, but also demonstrated 

competitiveness with other 2nd-generation technological routes. 

In view of the large research gap in syngas fermentation modeling, the work 

presented in Chapter 3 followed with the development of a continuous stirred 

tank model for syngas fermentation considering microbial kinetics and gas-liquid 

mass transfer. The biokinetic model was conceived to take into account biomass 

growth and death, product selectivity, acetic acid re-assimilation by the cell, as 

well as growth inhibition by substrate and product. The unknown parameters 

used in this model were then estimated using dynamic and steady-state data from 

five sets of experimental data published in scientific journals. Some of these 

parameters were assumed to account for specific aspects related to the conditions 

of the experiments, such as the composition of the nutritional media, and it was 

observed that fluctuations in these parameters led to different degrees of impact 

on the results depending on the choice of operating conditions (i.e. dilution rate 

and gas flow rate). We then discussed how these parameters could potentially be 

adjusted, along with operating conditions, to improve the results. Finally, the 

model was used to optimize the input variables with respect to ethanol 

productivity and gas conversion. We must however reinforce the need for model 

validation and improvement with more experimental data, especially with regard 

to expanding the range of input variables and the combinations of variables at 

different levels. 

Continuing the work with modeling of syngas fermentation, the parameters 

estimated in Chapter 3 were used in the model of a bubble column reactor, which 

was presented in Chapter 4. The main difference between the two models is the 

consideration of gradients along the column height, which are neglected in the 

CSTR model. Because the reactor operates under low pressure (atmospheric), 

there is a significant pressure drop from the bottom to the top of the column, 

causing the gas solubility to also decrease. The effects are very nonlinear: the 
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solubility affects the gas-liquid mass transfer rate and the dissolved 

concentrations, which in turn affect the reaction kinetics and again the dissolved 

concentrations. Moreover, the gas expands as the pressure decreases and shrinks 

due to consumption by the microbial cells, leading to changes in the gas-liquid 

volumetric mass transfer coefficient (kLa) and the gas hold-up. The model 

attempts to address all these issues in the system of differential algebraic 

equations presented in Chapter 4. The other main contribution of this article was 

the development of an optimization framework for the sub-system consisting of 

the syngas bioreactor and the separation and purification of anhydrous ethanol, 

considering also water recycle from the distillation columns to the bioreactor. To 

enable the large number of objective function evaluations, we applied a technique 

of surrogate modeling using artificial neural networks (ANNs), where we define 

and train ANNs with data sets predicted with our models. After validation, these 

ANNs are then used in the computation of the objective functions considered in 

the optimization. In this work, multi-objective genetic algorithm was applied to 

maximize economic performance (measured in terms of the minimum ethanol 

selling price) simultaneously with the energy efficiency of the process, delivering 

as result a set of Pareto-optimal solutions representing the optimal trade-offs 

between these two outcomes. In the article we discussed the behavior of the input 

(decision) variables along the Pareto fronts and the impact of mass transfer 

enhancement (increasing kLa), which could be accomplished with process 

intensification strategies such as microbubble formation methods and the 

addition of nanoparticles to the reactor. It was also observed that the estimation 

of kLa has a large impact not only on the outputs of the model but also on the 

optimal values of the input variables, therefore it is recommended that future 

works should also contemplate the validation of kLa correlations for the specific 

cases considered. 

Finally, in Chapter 5, the efforts of previous chapters were combined to develop a 

multi-objective optimization framework for the thermo-biochemical route. The 

sub-system addressed in Chapter 4 was incorporated in the model of the whole 

process following a similar arrangement as the flowsheet presented in Chapter 2. 

We developed a new model for the indirectly-heated dual bed gasifier, thoroughly 

explained in Chapter 5, which solves the heat balance of the gasification unit by 

adjusting the amount of air fed to the combustion bed, the temperature difference 

between the two beds, and the fraction of the inlet biomass that must be burned 
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instead of gasified, while the temperature of the gasification bed is the 

independent variable. We included calculations of CAPEX, OPEX, MESP (minimum 

ethanol selling price), carbon and water footprint, and energy efficiency, and we 

discussed the simultaneous interactions between these outputs and distinct input 

variables related to process design choices and operating conditions. For the 

sustainability optimization, we elected MESP as the main economic indicator, and 

applied Principal Component Analysis (PCA) to analyze correlations between the 

responses and reduce the number of objective functions. Energy efficiency and 

CO2-equivalent emissions were considered the two other sustainability indicators 

used as objective functions. This optimization framework was employed for two 

feedstocks, sugarcane bagasse and wood residues, with the main differences 

between the two being the composition (e.g. much higher moisture considered for 

bagasse), the purchase price, and the amount of CO2eq emissions associated with 

cultivation/transportation stages. The optimization results were displayed as 

Pareto surfaces representing the optimal trade-offs between the three objectives, 

as well as 2-D projections with estimated uncertainty intervals related to the 

uncertainty of various assumptions used in the model, and we also discussed the 

trends and ranges of the main decision variables along the Pareto-optimal 

solutions. According to our results, the key variables that define the trade-offs, i.e. 

those with the widest optimal ranges, would be the temperature in the gasification 

bed, the fraction of biomass added to the combustion bed of the gasifier, and the 

ratio between the volumetric flow rate of fresh syngas at the inlet of the bioreactor 

and the volume of liquid in the bioreactor. Different solutions were obtained for 

the two feedstocks, although most decision variables spanned similar ranges of 

optimal values. Due to lower price, moisture and emission factor, wood residues 

were found to perform better at all sustainability indicators, at least when 

comparing optimal results. Since economic and environmental predictions 

involve a number of assumptions, we also addressed the uncertainties of the 

optimization results with regard to these factors. Eliminating uncertainties at this 

stage of technology assessment is virtually impossible, nonetheless, the results 

provide a useful indication of paths towards process improvement/optimization, 

the relevance of different types of input variables, and the expected performance 

of the process. Optimization frameworks like the one developed in this research 

can provide meaningful insights and guidance not only as an early-stage tool, but 

also during more advanced stages of the development and implementation of a 

new technology, when concrete data are more readily available and can be fed 



171 

 

back to the models or used to narrow down the search space during the multi-

objective optimization. 

To wrap up, this thesis has demonstrated that gasification coupled with syngas 

fermentation can be a competitive technological route for the production of 2nd-

generation ethanol. Although our results do not suggest an economic advantage 

at first, it performs well in terms of energy efficiency and carbon footprint, values 

which are consistently gaining more weight for the ranking of new technologies. 

Clearly, the predictions will be more accurate when more data is available to 

validate the models and make necessary adjustments. Nonetheless, we have 

demonstrated how different process systems engineering (PSE) concepts and 

tools can be combined to aid in the design and optimization of sustainable 

processes, most notably: the use of artificial neural networks as surrogate models 

to enable the use of predictions from rigorous instead of short-cut models; 

correlation analysis and Principal Component Analysis to evaluate the relevance 

of distinct input variables and to reduce the number of objective functions; the use 

of global optimization methods such as genetic algorithm; and the generation of 

approximate Pareto fronts for the evaluation of optimal trade-offs among 

responses. When it comes to biological processes, such as syngas fermentation, 

we can also add that multi-level optimization frameworks will be a powerful tool 

for process enhancement, i.e. combining genetic engineering efforts with the 

simultaneous optimization of design and operating parameters, since we have 

noticed a different sensitivity of the kinetic parameters depending on the 

operating conditions in the bioreactor (dilution rate, gas flow rate, gas recycle 

rate, cell recycle). 

Moreover, other reactor designs could bring significant improvement in terms of 

gas-liquid mass transfer, which was shown to have a great impact on the overall 

performance of the process. For example, gas-lift, trickle bed and membrane 

reactors are all candidates that should be tested in future optimization studies. In 

downstream stages, this thesis focused on distillation as the most feasible 

technology, but alternative process configurations could include gas stripping in 

the bioreactor as a way to extract ethanol from the broth via the gas phase, leading 

to a higher concentration in the feed stream of the first distillation column. 

However, future research projects should investigate the trade-offs between 

lower energy requirements in the distillation columns and higher electricity 

consumption in the recycle gas compressor (due to very large gas flow rates 
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needed in the stripping process) as well as in the production of chilled water 

needed to condense the ethanol/water mixture from the overhead vapors. In this 

case, the energy consumption might be reduced with the use of thermophilic 

strains (which still need to be engineered for syngas fermentation), thereby 

allowing the fermentation to occur under  higher temperatures (e.g. around 70 °C) 

and more ethanol to be stripped from the liquid, although this would also lower 

the solubility of gases in the liquid phase. 

A critical issue, which was addressed superficially in this thesis, is the presence of 

contaminants in the syngas and the actual level of gas cleaning that will be 

required to avoid complications in real applications of this process. Based on the 

literature and due to lack of data and time limitations, we have assumed from the 

beginning that an acceptable amount of contaminants remains in the gas after a 

mild cleaning step in a water scrubber, but more research is needed to fully 

comprehend the effects  of different components – including tars and even 

methane – on the microbial metabolism governing the chemical reactions. Though 

not a contaminant per se, CO2 can also be removed from syngas for a price that 

may or may not justify an increased productivity of ethanol, this being a trade-off 

that should be investigated. Another point that needs further investigation is 

microbial inhibition caused not only by contaminants, but also by products (i.e. 

ethanol and acetic acid) and substrate (CO, H2 and CO2), which we have tried to 

address with our syngas fermentation model.  

This research project has ended with more questions than answers regarding the 

thermo-biochemical route, but we hope it also gives a contribution beyond this 

field, with the collection and presentation of methods and strategies that can be 

applied to any technology, not only the emerging and “promising” ones, but also 
consolidated technologies that might need to adapt to pressing sustainability 

goals. Finally, this thesis illustrates a prevailing aspect of real-world problems: 

even when focusing on a single technology, we encountered not one, but many 

(equally optimal) solutions, determined here by different combinations of 

relevant input variables. In a similar fashion, but on a much larger scale, this is 

how the solutions to sustainable development will look like: different resource 

materials, different technologies, different products will be a part of it; and they 

will interact and affect each other in often unexpected ways.   
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Appendix A. Supplementary Materials 

A1. Supplementary Materials for Chapter 2: Hydrous bioethanol 

production from sugarcane bagasse via energy self-sufficient gasification-

fermentation hybrid route: simulation and financial analysis 

 

A2. Supplementary Materials for Chapter 3: Dynamic modeling of 

syngas fermentation in a continuous stirred tank reactor: multi-response 

parameter estimation and process optimization 

 

A3. Supplementary Materials for Chapter 5: Multi-objective 

sustainability optimization of biomass residues to ethanol via gasification 

and syngas fermentation: trade-offs between profitability, energy 

efficiency and carbon emissions 
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A1. Supplementary Materials for Chapter 2: Hydrous bioethanol production 

from sugarcane bagasse via energy self-sufficient gasification-fermentation 

hybrid route: simulation and financial analysis 

Financial Model Supplementary Data: Tables A1-1 to A1-7   

Aspen Flowsheets: Figures A1-1 to A1-6 

 

Table A1-1. OPEX Estimation Assumptions (adapted from Peters and Timmerhaus, 

1991) 

OPEX Component Value   
Operating labor (DPC) 10% OPEX  
Direct supervisory and clerical labor (DPC) 15% COL  
Maintenance and repair (DPC) 5% FCIL  
Operating supplies (DPC) 0.5% FCIL  
Laboratory charges (DPC) 10% COL  
Patents and royalties (DPC) 1% OPEX  
Local taxes and insurance (FPC) 2% FCIL  
Plant overhead (FPC) 10% OPEX  
Administrative expenses (GE) 2% OPEX  
Distribution and selling (GE) 5% OPEX  
Research and Development (GE) 3% OPEX  

DPC: Direct production costs; FPC: Fixed production costs; GE: General expenses; COL: Cost of 

operating labor; FCIL: Fixed capital investment excluding land purchase cost. OPEX = DPC + FPC + 

GE. DPC also includes costs of raw materials, utilities and waste treatment/disposal. Assumptions 

are based on ranges in agreement with Peters and Timmerhaus (1991). 
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Table A1-2. Syngas Fermenter Sizing Assumptions 

Reactor type Jacketed agitated vessel 

Working volume per vessel 80% of vessel volume 

Total working volume (m3)  𝑉𝐿 = 𝑄𝑔𝐺𝑅𝑇 = 𝑄𝑙𝐿𝑅𝑇 

Volume per reactor vessel  975 m3 

Number of reactor vessels 𝑁 = 𝑉𝐿(80%)975 𝑚3 

VL: Total working volume of reactor vessels; Qg: Gas volumetric flow; Ql: Liquid volumetric flow; GRT: 

Gas retention time; LRT: Liquid retention time; N: Number of reactor vessels. 

 

Table A1-3. Water Chillera,b Sizing Assumptions 

Refrigeration fluid Propane  

Tcold side 10 °C 

Thot side 45 °C 

Coefficient of Performance 

 (𝐶𝑂𝑃 = 𝑄𝐸𝑉𝐴𝑃𝑂𝑅𝐴𝑇𝑂𝑅 𝑊𝐶𝑂𝑀𝑃𝑅𝐸𝑆𝑆𝑂𝑅⁄ ) 
4.5 

UEvaporator 600 W/m2K 

UAir-Cooled Condenser 500 W/m2K 
a Chilled water is sent to the process at 15°C and returns at 25°C.  
b Chiller is a refrigeration machine comprising a compressor and two heat exchangers (evaporator 

and condenser), whose capacities can be calculated using the assumptions above. 

 

Table A1-4. Cost Estimation of Installed Gasification Reactor 

 Taylor Biomass 

Energy b 

(Aug 2010)  

Present study 

capacity  

(Aug 2010) 

Present study 

capacity  

 (Nov 2015) 

Capacity (MTPD)a 500 624 624 

Purchase Cost (US$) 9,700,000 11,080,000 10,940,000 

Installation Factor  2.31 2.31 2.31 

Total Installed Cost 

(US$) 
22,410,000 25,590,000 25,280,000 

a Metric tons per day 
b Retrieved from Dutta et al. (2011) 
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Table A1-5. Cost Estimation of Installed Microfiltration System  

 
Han and Cheryan 

(1996) 

Present study 

capacity 

(1996) 

Present study 

capacity 

(Nov 2015) 

Membrane module 

area (m2) a 
2,513 929.8 929.8 

Total Installed Cost 

($) 
5,402,950 b 2,842,923 4,231,345 

a Membrane module area assumes the same flux rate (m3/m2h); permeate volumetric flow rate is 

known in both cases. 
b Calculated using the published value of specific installed cost = $2,150/m2 

 

 

Table A1-6. Cost Estimation of Installed Tower for Cooling Water (CW)   

Base year 1985 

Total installed cost (1000US$) a  𝐶 = 135𝑓𝑄0.61 𝑓 (∆𝑡 = 10°𝐶) 1.0 

CW volumetric flow rate range 1 < 𝑄 < 60 𝑘𝑔𝑎𝑙/𝑚𝑖𝑛 

C: Total installed cost; Q: CW volumetric flow rate. 
a Retrieved from: Walas (1990) 

 

 

Table A1-7. Assumptions of purchase cost of other raw materials (2015) 

 Price (US$/t) Source for base price 

Olivine  238.65  Dutta et al. (2011) 

MgO  503.78  Dutta et al. (2011) 

Tar reformer catalyst 44.63  Dutta et al. (2011) 

CW makeup antifouling chemicals 0.17  Turton et al. (2008) 

Fresh water 0.074  Turton et al. (2008) 
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Fig. A1-1. Main Process Flowsheet Diagram 
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Fig. A1-2. Gasification Unit (A100 in Fig. A1-1). RD: Rotary dryer; RD-CYC: Rotary dryer cyclone; DCMP: Biomass decomposition block; S-1: 

Carbon splitter; GZ: Gasification zone (bed); CZ: Combustion zone (bed); CYC: Cyclone; E-1: Air preheater; C-1: Air compressor. 
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Fig. A1-3. Steam Generation Unit (A200 in Fig. A1-1). VS: Venturi scrubber; E-1 to E-6: Heat exchangers. 

  

S-2

P-1

P-2
M-1

E-4

E-1

M-3

E-3

S-1

P-3

E-2

E-5

M-2

C-1

VS

S-3

E-6

H-SYNGAS(IN)

STM-GSF STM-GSF(OUT)

C-SYNGAS(OUT)

STM-2B(OUT)

H-GAS-3(IN)

H-GAS-1(IN)

W2B-1

WSAT-2B

STM-2B

SG-2A

WGSF-1

GAS-E5

W10B-1

WGSF-3

SG-1A

SG-1B

STM-10B(OUT)

H-GAS-2(OUT)

W-VS

WW-1(OUT)



180 

 

 

 

Fig. A1-4. Syngas Fermentation Unit (A300 in Fig. A1-1). FM: Fermenter; S-1: Gas-liquid flash separator; MF: Microfiltration system; S: CO2 

scrubber; E-1 and E-3: heat exchanger with cooling water; E-2 and E-4: heat exchangers with chilled water; C-1: Gas compressor. 
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Fig. A1-5. Ethanol Distillation Unit (A400 in Fig. A1-1). T-1 to T-4: Distillation towers; E-1 to E-16: Heat exchangers; S-5: Flash separator. 
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Fig. A1-6. Power Generation Unit (A500 in Fig. A1-1). C-1: fuel gas compression; C-2: air compression; CB: Combustion chamber; J-1: Gas 

turbine expansion; E-1: steam generation; J-2: Steam turbine expansion; E-2: steam condensation; P-1: water pump
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A2. Supplementary Materials for Chapter 3: Dynamic modeling of syngas 

fermentation in a continuous stirred tank reactor: multi-response parameter 

estimation and process optimization 

 

Lag-phase  

The uptake rates of CO and H2 were multiplied by a lag-phase term when the 

experimental data suggested such behavior.  This was done only for the dynamic 

case study C1, in which the uptake rates νj (j = CO, H2) were multiplied by Ilag as 

described in Eq. (S1), to simulate lag-phase behavior during the first 150 hours of 

fermentation.  

( )( )( )exp .
1

lag
I 1 0 15 t 150

−
= + −  −        (A2-1) 

 

Table A2-1. Species properties for gas-liquid equilibrium and mass transfer 

coefficients. 

 CO H2 CO2 EtOH HAc H2O 

Hj †  4.972×109 6.692×109 1.205×108 - - - 

Psat,j ‡ - - - 1.523×104 4.047×103 6.260×103 

j


 § - - - 7.6 3.5 - 

Dfj ¶ 2.03×10-5 4.50×10-5 1.92×10-5 0.84×10-5 0.99×10-5 - † Henry constants (Pa) in water at 36°C calculated with the correlations reported in Sander (1999). ‡ Vapor pressure (Pa) at 36°C calculated with Antoine equation.  
§ Activity coefficients at infinite dilution in water predicted with UNIFAC model using Aspen Plus.  
¶ Mass diffusivity (cm2.s-1) in liquid water at 25°C from Cussler (1997). Since for a species i the relationship 

/
2i H O

Df T is constant (Perry and Green, 1999), it can be shown that the relationship /
i air

Df Df  is also constant with temperature. The mass diffusivity of air in water at 25°C is 2∙10-5 cm2.s-1.  
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Table A2-2. Bounds used in parameter estimation. 

Parameter βk Unit Lower Bound Upper Bound 

max,CO
  mmol.g-1.h-1 15 60 

max, 2H
  mmol.g-1.h-1 15 60 

,S CO
K  mmol.L-1 0.001 0.9 

, 2S H
K  mmol.L-1 0.001 0.9 

,I EtOH
K  mmol.L-1 100 1000 

,I HAc
K  mmol.L-1 100 1000 

,I CO
K  mmol.L-1 0.1 1 

,CO X
Y   g.mol-1 0.1 3 

,2H X
Y   g.mol-1 0.1 3 

max,

CO

AcR   mmol.g-1.h-1 1 50 

,

CO

S AcRK   mmol.L-1 20 600 

max,
2H

AcR  mmol.g-1.h-1 1 50 

,
2H

S AcRK  mmol.L-1 20 600 

d
k  h-1 0.001 0.05 

0
f  - 0.1 1 
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Table A2-3. Bounds used in the optimization of ethanol productivity and CO 

conversion. 

Parameter βk Unit Lower Bound Upper Bound 
GRT min 5 50 
Drate h-1 0.005 0.2 
XP - 0.1 1 
H2:CO - 0 3 

max,CO
  mmol.g-1.h-1 35 50 

max, 2H
  mmol.g-1.h-1 25 40 

,X CO
Y   g.mol-1 0.6 2.5 

, 2X H
Y   g.mol-1 0.1 0.3 

max,

CO

AcR   mmol.g-1.h-1 20 50 

,

CO

S AcRK   mmol.L-1 300 500 

max,
2H

AcR  mmol.g-1.h-1 1 30 

,
2H

S AcRK  mmol.L-1 300 600 

d
k  h-1 0.005 0.01 

 

Bounded Simplex Algorithm 

As explained in the main text (Chapter 3), the estimated parameters presented in 

this study were obtained using Genetic Algorithm, but the derivative-free method 

Simplex was also used for deepening . The MATLAB function fminsearch applies 

Simplex Algorithm for unconstrained multi-variable problems, but in the present 

study the parameters are constrained as shown in Table S2. In order to use this 

method with constraints on the optimization variables, the vector of constrained 

parameters being estimated ̂  must be transformed into a new vector of 

unconstrained parameters  , whose individual elements ωk are computed with 

Eq. (A2-2) from a given initial estimate ̂ , where LBk and UBk are the lower and 

upper bounds pre-established for parameter ˆk .  
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Then, during the Simplex search, the subroutine that receives the unconstrained 

parameters and generates the responses ˆ
j

y in each iteration, receives the new 

unconstrained vector   and converts it back to ˆLB UB  via Eq. (A2-3) 

so that the right-hand side of the ODE system may be computed with ̂  in the 

appropriate range of values, allowing to obtain ˆ
j

y .  

/ˆ
ˆ

1 2

k k

k

k k

LB

UB






 −
=   − 

        (A2-2) 

ˆ ˆ ( )
2 2

k k k k

k k k k k2 2

k k k k

LB
LB UB LB

UB LB 1 1

  
 

 
 −

=  = + −  −   + − + + 
  

         (A2-3) 

 

Statistical Analysis 

With assumptions (A1), (A2), (A3) and Eqs. (3.30)-(3.31) from the main text, as 

well as the numerically estimated parameters ̂  from the single-objective 

minimization (Eq. (3.32) from the main text), several statistical entities were 

calculated to check the goodness of the estimation and evaluate significance of 

parameters. The necessary statistical formulas are presented here with limited 

explanation (see Himmelblau, 1970). The main building block is the NE x NP 

Jacobian matrix 
j

X of responses j relative to parameters, from which the NP x NP 

matrix XWX    is constructed as in Eq. (A2-4). Then the variance-covariance 

matrices of estimated parameters and predicted responses follow, respectively, in 

Eq. (A2-5).  

( )
1

RN
T

j jj
j

XWX X W X
=

  =         (A2-4) 

( ) ( )1 1
2 2ˆ ˆ,

T

j j j
Cov XWX Cov y X XWX X   

− −
   = =       (A2-5) 
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Table A2-4. F-test score ˆ
k

R
  for the parameter estimates ˆ

k
  with 95% probability. 

Parameter C1 C2 C3-A C3-B C3-C 

1  −
†  3.93 3.90 4.10 4.10 4.10 

max,CO
  297 181 208 118 793 

max, 2H
  140 54.3 247 222 696 

,S CO
K  1293 13.0 188 67.8 306 

, 2S H
K  246 32.3 396 54.1 1163 

,I EtOH
K  123 - - - - 

,I HAc
K  226 10.3 228 427 92.6 

,I CO
K  145 5.98 230 87.4 232 

,X CO
Y   126 137 88.3 70.6 265 

, 2X H
Y  293 24.5 158 185 1733 

max,

AcR

CO
   285 17.7 431 424 788 

,

AcR

S CO
K  1428 13.5 790 44.3 293 

max, 2

AcR

H
  

444 
33.2 

352 90.8 780 

, 2

AcR

S H
K  

613 
16.3 

487 137 351 

d
k   2169 14.1 323 69.3 143 

0
f   1786 31.1 414 65.5 263 

† ˆ
k

1
R 

 −  for parameter significance where 
1  − is the Fischer abscissa at 95% probability (α = 0.05) for 

degrees of freedom 1 and NR∙NE – NP. 

 

 

Additional variables with time profile 

Fig. A2-1 presents the profiles of variables that are model inputs but also change 

with time, for case study C1. The agitation rate (N), inlet volumetric gas flow rate 

(QG,in) and volumetric liquid flow rate (QL,in) were obtained assuming linear 

profiles with time given the information provided in the article used as reference; 

and the mass transfer coefficient kLaref was calculated as explained in the main 

text. The liquid volume is 1000 mL.  
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Optimization of process conditions and kinetic parameters 

 

Table A2-5. Minimum and maximum values of the decision variables at the Pareto-

optimal solutions 

Decision 
Variable 

1st run 
(65% CO, 20% H2, 15% 

CO2) 

2nd run † 

(45% CO, 50% H2, 5% 
CO2) 

3rd run † 

 

min max min max min max 
GRT 5.45 49.8 8.22 32.7 7.79 29.9 
Drate 0.0396 0.173 0.0456 0.0607 0.0465 0.0605 
XP 0.130 0.150 0.122 0.189 0.105 0.351 
H2:CO - - - - 0.778 0.855 

max,CO
  42.8 45.3 43.7 45.0 38.5 43.2 

max, 2H
  34.3 36.6 33.3 36.1 32.4 36.1 

,X CO
Y  2.15 2.49 2.12 2.40 2.02 2.40 

, 2X H
Y  0.200 0.299 0.209 0.267 0.196 0.289 

max,

AcR

CO
  39.0 42.1 31.8 33.3 33.9 35.4 

max, 2

AcR

H
  1.16 2.26 16.2 23.5 12.1 17.5 

,

AcR

S CO
K  362 365 398 428 397 404 

, 2

AcR

S H
K  471 488 403 485 358 449 

d
k  0.00637 0.00742 0.00564 0.00870 0.00518 0.00878 † All points achieved 100% CO conversion.   
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Table A2-6. Selected solutions from the multi-objective optimization: 1st run (CO-rich gas) 

GRT Drate XP max,CO
  max, 2H

  
,X CO

Y  , 2X H
Y  

max, 2

AcR

H
  d

k  EtOH 
Productivity 

CO conversion 

49.8 0.173 0.130 45.3 36.6 2.44 0.273 1.54 0.00742 0.180 0.949 
45.8 0.0505 0.133 44.4 35.7 2.43 0.259 1.49 0.00722 0.281 0.935 
33.6 0.0574 0.133 43.9 35.8 2.42 0.239 1.51 0.00669 0.376 0.912 
25.2 0.0407 0.133 43.6 35.9 2.38 0.232 1.45 0.00675 0.506 0.883 
20.9 0.0404 0.133 43.6 35.7 2.40 0.258 1.40 0.00644 0.598 0.860 
16.5 0.0404 0.137 43.6 35.5 2.41 0.226 1.21 0.00652 0.730 0.824 
14.1 0.0438 0.134 43.8 35.0 2.39 0.220 1.20 0.00644 0.821 0.797 
11.5 0.0401 0.134 43.4 35.4 2.41 0.219 1.31 0.00642 0.963 0.754 
9.75 0.0397 0.134 43.6 35.5 2.40 0.239 1.24 0.00648 1.08 0.716 
7.80 0.0417 0.133 43.7 34.4 2.38 0.223 1.82 0.00643 1.23 0.655 
6.69 0.0411 0.134 43.4 34.8 2.41 0.211 1.31 0.00644 1.35 0.613 
5.71 0.0490 0.134 43.7 35.5 2.30 0.205 1.45 0.00650 1.45 0.564 

 

Table A2-7. Selected solutions from the multi-objective optimization: 2nd run (H2-rich gas) 

GRT Drate XP max,CO
  max, 2H

  
,X CO

Y  , 2X H
Y  

max, 2

AcR

H
  d

k  EtOH 
Productivity 

CO conversion 

32.7 0.0519 0.165 44.4 33.9 2.30 0.236 22.4 0.00770 0.481 1.00 
29.6 0.0505 0.149 44.4 33.9 2.29 0.230 21.7 0.00766 0.543 1.00 
24.8 0.0535 0.154 44.3 34.0 2.28 0.228 21.4 0.00833 0.639 1.00 
22.7 0.0534 0.154 44.3 34.5 2.29 0.227 21.1 0.00823 0.704 1.00 
19.0 0.0527 0.153 44.1 34.0 2.30 0.232 21.3 0.00779 0.849 1.00 
17.1 0.0537 0.161 44.2 34.0 2.30 0.231 20.3 0.00802 0.948 1.00 
14.6 0.0607 0.151 44.2 34.1 2.22 0.231 23.5 0.00734 1.11 1.00 
10.1 0.0534 0.125 43.8 34.2 2.26 0.215 19.7 0.00684 1.64 1.00 
9.32 0.0566 0.123 44.1 34.6 2.32 0.236 18.2 0.00670 1.77 1.00 
9.05 0.0562 0.124 44.4 35.9 2.35 0.249 18.7 0.00670 1.83 1.00 
8.75 0.0559 0.123 44.3 35.3 2.39 0.251 17.3 0.00657 1.88 1.00 
8.52 0.0570 0.123 44.7 35.8 2.39 0.258 17.1 0.00575 1.93 0.997 
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Table A2-8. Selected solutions from the multi-objective optimization: 3nd run  

GRT Drate XP H2:CO max,CO
  max, 2H

  
,X CO

Y  , 2X H
Y  

max, 2

AcR

H
  d

k  EtOH 
Productivity 

CO 
conversion 

29.9 0.0465 0.351 0.822 41.0 34.2 2.02 0.208 17.5 0.00711 0.543 1.00 
15.7 0.0517 0.217 0.833 40.8 32.4 2.18 0.210 16.1 0.00668 1.09 1.00 
13.2 0.0497 0.218 0.855 39.4 35.8 2.36 0.225 17.3 0.00831 1.31 1.00 
10.4 0.0542 0.160 0.842 40.2 34.2 2.11 0.223 17.2 0.00799 1.67 1.00 
9.86 0.0528 0.174 0.840 40.0 34.2 2.30 0.210 16.8 0.00692 1.78 1.00 
9.54 0.0572 0.136 0.836 40.5 33.8 2.20 0.220 16.5 0.00553 1.83 1.00 
9.25 0.0568 0.139 0.844 40.9 34.0 2.20 0.223 16.5 0.00559 1.89 1.00 
9.07 0.0580 0.137 0.847 40.4 34.1 2.21 0.221 16.3 0.00529 1.92 1.00 
8.92 0.0584 0.127 0.850 40.2 34.6 2.26 0.219 16.4 0.00555 1.95 1.00 
8.76 0.0591 0.118 0.849 40.3 35.0 2.36 0.223 16.8 0.00542 2.00 1.00 
8.18 0.0603 0.118 0.850 40.4 34.8 2.36 0.246 16.7 0.00546 2.03 0.952 
7.79 0.0605 0.116 0.852 40.3 35.5 2.21 0.288 16.6 0.00546 2.04 0.915 
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Cell mass concentration 

Figures (A2-5)-(A2-8) show the ranges of cell mass concentration that correspond 

to the conditions presented in Figs. 3.5-3.8  from the main text.  

 

 
Figure A2-5. Predicted steady-state cell concentration achieved with different gas 

compositions ( )
2 2CO CO Hy 1 y y= − − , with fixed conditions: GRT = 20 min, Drate = 0.025 h-1, 

N = 500 rpm, cell recycle = 90%.
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A3. Supplementary Materials for Chapter 5: Multi-objective sustainability 

optimization of biomass residues to ethanol via gasification and syngas 

fermentation: trade-offs between profitability, energy efficiency and carbon 

emissions 

 

Table A3-1. Elemental analysis (% dry basis) and moisture (%) of sugarcane bagasse and 

wood residues 

 Moisture C H O N Cl S ash 
Bagassea 50 46.96 5.72 44.05 0.28 0.03 0.05 2.94 
Woodb  11.6 48.55 5.72 45.22 0.26 0.21 0.04 3.52 

a Bagasse composition is the same as considered in de Medeiros et al. (2017) 
b Wood residues from eucalyptus are considered the same as in Capaz et al. (2020) 
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Figure A3-1. Aspen flowsheet of the gasification unit. DRY-RCT and DRY-FLSH: biomass dryer; SPLT-BIO: splitter of biomass between GZ 

and CZ; DECOMP: RYield reactor to break nonconventional component biomass into conventional components; CZ: combustion zone; 

RYIELD: gasification zone; SEP-CHAR: gasification bed cyclone to separate char from syngas; ASH-SEP: cyclone to separate ashes; TR: tar 

reformer; AIR-BLWR: air blower; HT-AIR: air pre-heater; Q-MIX: mixer to sum up heat streams Q1 and Q2 (note: Q-DCMP, heat input of 

DECOMP reactor, is transferred to CZ, thereby being accounted for in Q2).  
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Figure A3-2. Correlation coefficients between decision variables and responses: wood 

residues. 
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Appendix B. List of Symbols 

Greek Symbols 

ˆ,    vector of parameters: correct, estimated εG gas hold-up 

j
    activity coefficient at infinite dilution of component j in water at 36 °C η thermodynamic efficiency 

j
   vector of correct responses j 

μ biomass specific growth rate [h-1] 

j
   specific production/consumption rate of component j [mmol.g-1.h-1 or 

mol.g-1.h-1] 
R

k
  specific rate of reaction number k [mmol.g-1.h-1] 

ρL mass density of water or liquid phase at 36 °C [kg/m3] 
2

   unknown fundamental variance 

̂   estimated standard deviation 

 

 

Roman Symbols 

a bubble column operation mode (1 for concurrent, -1 countercurrent) 

AE anhydrous ethanol 

ANN artificial neural network 

AR vessel aspect ratio (BCR) 

BCR bubble column reactor 

CBM Bare module cost [$] 

CG,i, CL,j concentration of component j in the gas (G) or liquid (L) phase 

[mmol.L-1 or g.L-1] 

C*G,i, C*L,i Saturation concentration of component i (gas or liquid phase) 

[mol.m-3] 

CL,X or CX Concentration of biomass in the liquid [g.L-1] 

COL Costs of operating labor [$/year] 
0

pC   Purchase cost of equipment at base conditions [$] 

CRM Costs of raw materials 

CTM Total module cost [$] 
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LHV lower heating value [MJ.kg-1 or MJ.kmol-1] 

LRT liquid retention time ṁ mass flow rate [kg.h-1 or kg.year-1] 

MCS Monte Carlo simulation 

MED multiple-effect distillation 

MESP minimum ethanol selling price [$.L-1] 

MML molar mass of water or liquid phase [kg.mol-1] 

MML million liters  

MOGA multi-objective genetic algorithm 

N agitation rate [rpm or s-1] 

NE  number of experimental points  ṅMT mass transfer rate [mol.m-3.h-1] 

NP number of unknown parameters 

Np ungassed power number 

NR number of response variables used for parameter estimation 

NST number of stages (T-01 or T-02) 

NPV Net Present Value 

NRTL non-random two-liquid model 

NRTL-HOC non-random two-liquid model with Hayden O’Connell equation-of-

state 

OF objective function 

OPEX operating expenditures [$/year] 

P pressure inside reactor [Pa] 

Pg, Pug gassed power and ungassed power [W] 

Psat,j vapor pressure of component j at 36 °C [Pa] 

PCE purchase cost of equipment [$] 

PFD process flow diagram 

Qc cooling requirement in distillation tower condenser [MW] 

QG, QL gas and liquid volumetric flowrates [m3/s, m3/h, mL/h or mL/min] 

Qr heating requirement  in distillation tower reboiler [MW} 

R universal gas constant [J/mol.K] 

RKS-EOS Redlich-Kwong-Soave equation-of-state 

RR molar reflux ratio (T-01 or T-02) 

rj,i stipulated response-experiment factors 

S:F mass ratio of side stream to feed stream (distillation column) 

STBR steam to biomass ratio 

T temperature [°C or K] 

uG, uL gas or liquid superficial velocity [m.h-1] 

us superficial gas velocity [m/s] 
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VG ,VL volume of gas and volume of liquid inside the reactor [mL, L or m3] 

VR volume of reactor vessel (BCR) [m3] 

VM volatile material 

j
W   weight matrix of response j 

WGS water-gas shift reaction 

Xi gas conversion (BCR), i = CO, H2 

XP cell purge fraction (bioreactor) 

ˆ,
j j

y y   vector of responses [g.L-1]: experimental, predicted 
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