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“Life is not easy for any of us.  

But what of that?  

We must have perseverance and  

above all confidence in ourselves.  

We must believe that we are gifted for  

          something and that this thing must be attained.” 
Marie Curie  



 

RESUMO 

Este trabalho visou o uso de um sistema microfluídico de gotas para incorporar ácidos 

nucleicos em lipossomas catiônicos e outro para estudar o processo de transfecção em 

células de mamíferos. A primeira etapa do projeto utilizou um microdispositivo para 

incorporar pDNA em lipossomas catiônicos de modo a obter lipoplexos reprodutíveis e 

adequados para transfectar células dendríticas (DCs). Com esta finalidade, alguns 

parâmetros experimentais foram investigados, tais como vazões de entrada, 

manutenção das propriedades dos lipossomas após processamento no 

microdispositivo, características dos lipoplexos (tamanho, polidispersidade e carga) em 

função da razão molar de carga (R+/-) e do desenho do microdispositivo. Lipoplexos 

produzidos em microdispositivo com canal de serpentina largo e região de divisão de 

gotas que diminuem a polidispersidade dos lipoplexos, operando à razão de vazão 

água/óleo 0,25 e R+/- 1,5; 3; 5; 7 e 10 foram utilizados para transfectar DCs in vitro. 

Todos os lipoplexos foram capazes de transfectar as DCs e ao mesmo tempo 

proporciaonar a ativação das células. A segunda etapa do trabalho utilizou uma 

plataforma microfluídica de célula única para investigar e controlar as condições de 

transfecção, tendo em vista a otimização dos rendimentos de produção de proteínas 

recombinantes. Neste contexto, as células de ovário de hamster Chinês (CHO-S) foram 

transfectadas no microdispositivo com diferentes tipos de lipoplexos (R+/- 1,5; 3; 5) e 

monitoradas em relação à produção de proteína verde fluorescente (GFP) e viabilidade 

celular. A plataforma de célula única permite avaliar a heterogeneidade celular, 

revelando a presença de uma subpopulação que produz níveis elevados de GFP. Essas 

células com alta produção de GFP (HP) mostraram um aumento do tamanho celular em 

comparação à média da população. Além disso, a carga dos lipoplexes apresenta um 

importante papel na transfecção das células CHO-S, visto que os únicos lipoplexos com 

carga positiva R+/- 5 produziram mais HPs. A quantidade de pDNA entregue às células 

afeta a produção de proteína, já que os lipoplexos com mais pDNA R+/- 1,5 aumentaram 

a produtividade específica de GFP das HPs. Esta tese foi desenvolvida no âmbito de 

um programa de co-tutela entre a Universidade Estadual de Campinas, Brasil e a École 

Polytechnique, França. Em geral, este trabalho apresenta contribuições originais para 

as áreas da microfluídica e da entrega de genes. 

Palavras-chave: sistema microfluídico de gotas, liposomas catiônicos, transfecção, 

pDNA, entrega de genes, células dendríticas, células CHO.  



 

ABSTRACT 

This work aimed at using one droplet-based microfluidic systems to incorporate nucleic 

acids into cationic liposomes and another one to study the mammalian cell transfection 

process. In the first part of this study we used a droplet-based microfluidic system to 

complex cationic liposomes with pDNA in order to obtain reproducible and suitable 

lipoplexes to dendritic cells (DCs) transfection. For this purpose, some experimental 

parameters were investigated, such as inlet flow rates, the maintenance of liposomes’ 
properties after microfluidic processing, lipoplex characteristics (size, polydispersity and 

zeta potential) as function of molar charge ratio (R+/-) and microchip design. Lipoplexes 

produced in a microchip with large serpentine channel and split region, which decreases 

lipoplex polydispersity, operating at ratio aqueous/oil flow rate 0.25 and R+/- 1.5, 3, 5, 7 

and 10 were used to transfect DCs in vitro. All lipoplexes transfected DCs and resulted 

in cell activation. In the second part of this study we used a single-cell microfluidic 

platform to investigate and control transfection conditions, in view of optimizing the 

recombinant protein production by transfected cells. Chinese hamster ovary cells (CHO-

S) were transfected in microchip with different types of lipoplexes (R+/- 1.5, 3, 5) and 

monitored by green fluorescent protein (GFP) production and cell viability. The single-

cell platform enables to assess the heterogeneities of CHO-S population, revealing the 

presence of a subpopulation producing significantly high levels of GFP. These high 

producers (HP) showed increased cell size in comparison to the average population. 

Moreover, the charge of lipoplexes shows an important role to transfect CHO-S, since 

the unique positive charged lipoplex R+/- 5 produced more HPs. Additionally, the amount 

of pDNA delivered affects protein production, since R+/- 1.5 with more pDNA increased 

GFP specific productivity of HPs. This thesis was developed under the joint graduate 

program of the University of Campinas, Brazil and École Polytechnique, France. In 

general, this work presents original contributions in the areas of microfluidics and gene 

delivery.  

Keywords: droplet-based microfluidic system, cationic liposomes, transfection, pDNA, 

gene delivery, dendritic cells, CHO cells.   

 



 

RÉSUMÉ 

Ce travail consiste à utiliser deux systèmes microfluidiques de gouttes pour incorporer 

d'une part des acides nucléiques dans des liposomes cationiques et d'autre part étudier 

la dynamique de transfection dans des cellules mammifères. La première micropuce 

permet d'insérer de l'ADN dans des liposomes cationiques afin d'obtenir de manière 

reproductible des lipoplexes appropriés à la transfection de cellules dendritiques (DC). 

Plusieurs paramètres expérimentaux sont tout d'abord étudiés, tels que les débits 

d'entrée, l’entretien des propriétés des liposomes après leur traitement dans des micro-

gouttes, les caractéristiques des lipoplexes (taille, polydispersité et charge) en fonction 

du rapport molaire de charge (R+/-) et de la géométrie de la puce. Ensuite, les lipoplexes 

produits dans une micropuce avec un grand canal en serpentin et une région de division 

des gouttes qui diminuent la polydispersité des lipoplexes, fonctionnant à un rapport de 

débit eau/huile 0,25 et R+/- 1,5; 3; 5; 7 et 10; sont utilisés pour transfecter des DCs in 

vitro. Tous les lipoplexes transfectent les DCs, tout en offrant une activation des DCs. La 

seconde étape consiste à utiliser une micropuce à l'échelle de la cellule unique afin de 

contrôler les conditions de transfection et d'optimiser le rendement de production de 

protéines recombinantes. Ainsi, des cellules ovariennes de hamster Chinois (CHO-S) 

sont transfectées dans la micropuce avec différents types de lipoplexes (R+/- 1,5; 3; 5) 

dont la dynamique de transfection est suivie par la production de protéines vertes 

fluorescentes (GFP) et par la viabilité cellulaire. Cette micropuce a permis d'évaluer 

l’hétérogénéité des cellules transfectées, révélant la présence d'une sous-population 

produisant des niveaux particulièrement élevés de GFP. Ces hautes productrices (HP) 

ont une taille cellulaire plus importante que celle de la population moyenne. La charge 

des lipoplexes montre un rôle important pour transfecter CHO-S, puisque l’unique 

lipoplex chargé positif R+/- 5 produit plus de HPs. La quantité d’ADN délivrée influe sur la 

production de protéine, puisque R+/- 1,5 avec plus d’ADN augmente la productivité 

spécifique de GFP des HPs. Cette thèse est réalisée dans le cadre d'un programme de 

co-tutelle entre l'Université de Campinas, au Brésil, et l'École Polytechnique, en France. 

Ce travail a principalement présenté des contributions originales aux domaines de 

microfluidique et de délivrance de gènes. 

Mot-clés: microfluidique des gouttes, liposomes cationiques, transfection, ADN, 

délivrance de gènes, cellules dendritiques, cellules CHO. 
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Chapter I - Introduction 

_______________________________________________________________________________ 

1. Introduction   

Gene therapy refers to the transmission of nucleic acid encoding a gene of 

interest into the targeted cells or organs with consequent expression of the 

transgene (1). A key factor in the success of gene therapy is the development of 

delivery systems capable of efficient gene transfer (2). Nanovectors are usually 

classified as viral and non-viral, and within the current range of non-viral vectors, 

cationic liposomes are particularly promising (1,3). Cationic liposomes are mainly 

composed of cationic lipids to ensure their positive superficial charge, which leads 

them to interact electrostatically with negatively charged nucleic acids sequences 

to form complexes capable of entering a cell (3). Cationic liposomes are superior to 

viral vectors in terms of reproducibility, safety of use, in addition to being 

biocompatible and biodegradable; however, they are inferior to viral vectors in 

terms of transfection efficiency (4).  

Recent advances in microfluidics have created new and exciting prospects for 

gene delivery and therapy. The micro-scaled environment within microfluidic 

systems enables precise control and optimization of multiple processes and 

techniques used in gene transfection and the production of gene and drug 

transporters (5). In particular, water-in-oil microdroplets provide an alternative 

experimental format as the droplet defines a reaction compartment, leading to a 

reduction of many orders of magnitude in the reaction volumes required. It has also 

been shown that droplets generated by microfluidic devices are extremely uniform, 

which is seemingly adequate for encapsulation of single cells and synthesis of 

gene delivery systems (6,7).  

Droplet-based microfluidic systems structured as mixer devices provide a 

rapid mixing of reacttants (8). Microsystems working only with parallel streams 

have the fluid mixing mainly promoted by diffusion, whereas droplet-based 

microsystems can add a chaotic advection contribution that increases the mixing in 

the system (9). Micromixers have important applications such as control chemical 
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reactions (10), promote protein crystallization (11), improve biochemical analysis 

(12) and complex nanoparticles and nucleic acids (lipoplexes) (7).  

Conventional methods of obtaining lipoplexes involve just the mixing provided 

by hand shaking or vortexing to reach cationic liposomes complexation with nucleic 

acids. However, these conventional methods introduce variability in lipoplexes 

formation and, as a result, provide inconsistent transfection efficiencies (7). Some 

hard-to-transfect cells, like dendritic cells (DCs) (13), depends on transfection 

pathways that are extremely dependent of lipoplexes size and polydispersity (14). 

The importance to loaded DCs with tumor antigens for immunotherapeutic 

approaches has been pointed by others (15). Thus, the study of methodologies to 

form lipoplexes specific for different cells lines in a reproducible and controllable 

way is very important (16). Hsieh et al. (7) developed a picolitre incubator based 

microfluidic system to complex commercial liposomes with pDNA, showing the 

robusteness of the microsystem to produce reproducible lipoplexes and also to 

transfect cells, emerging as an alternative to conventional methods (7).  

Moreover, droplet-based microfluidic systems can be used for analyzing 

single cells, since droplets provide the rapid detection of molecules secreted by 

cells due to the low volume surrounding each encapsulated cell. The risk of cross-

contamination decreases and cells can be studied individually by fluorescence 

techniques (17). Droplet microchips linked to fluorescent equipment let adherent 

and non-adherent mammalian cells analysis, manipulation/investigation of the 

content from disrupted single cells (18). In addition, single-cells in droplets can be 

monitored over time instead of only few check points, which highlights the 

response of individual cells in short-times even if cell population signal appears 

relatively homogeneous during experience (19). However, to maintain cell viability 

inside droplets is a challenge, since there are risks of coalescence, nutrient 

depletion or the accumulation of toxic metabolites. Thus, these points should be 

considered before robust analysis over longer periods of time (17). Despite these 

drawbacks, one research group has shown that cell cultivation in single-cell 

platforms is possible (20).  
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The application of microfluidics platform to dynamically track individualized 

cell responses open up the possibility to better understand cell heterogeneity after 

transient gene expression (21). Biotechnology industry widely uses CHO cells to 

produce recombinant proteins by transient transfection, which is usually more 

suitable for fast and large protein production in the first steps of drug development 

(22). Consequently, in view of optimizing the production yields, a better 

understanding and control over the transfection conditions at single cell level using 

transition gene expression are critically required. 

In this context, the application of droplet-based microfluidic technology to 

synthesize lipoplexes and to transiently transfect mammalian cells in vitro can 

contribute to gene delivery advancements. For this purpose, in the first part of this 

work, we investigated some parameters that influence lipoplexes synthesis in 

droplet-based platform. The aim was to form lipoplexes in microfluidic conditions 

that provide them physico-chemical properties suitable to transfect DCs in vitro. 

Additionally, in single-cell analyze field, we transfected CHO-S cells in a universal 

microfluidic platform for bioassays. The transient transfection was performed by 

different types of lipoplexes (molar charge ratios between cationic lipids and 

nucleic acids), leading to conclude about the influence of lipoplexes in the 

heterogeneities of cell population. This thesis was developed under a co-

supervision program between University of Campinas - Brazil and École 

Polytechnique – France, and possible due to the collaboration headed by 

Professor Lucimara de la Torre specialized in gene delivery systems in Brazil and 

the one headed by Professor Charles Baroud with expertise in lab-on-a-chip 

devices for biological applications in France. 

2. Objectives 

The general-purpose of the project was to contribute in nanobiotechnology, 

microfluidics and gene delivery areas. In particularly, this work aimed to apply 

droplet-based microfluidic systems to produce lipoplexes with characteristics to 

transfect DCs and to investigate CHO-S cell transfection process by single-cell 

analysis during culture time. Thus, the first goal was to ensure the maintenance of 
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liposomes’ properties after droplet system processing and the lipoplex formation 

with the required characteristics to transfect DCs. Then, we investigated more 

deeply the influence of different types of lipoplexes in mammalian cell transfection. 

For this, a universal microfluidic platform was used to transient transfect CHO-S 

cells by different types of lipoplexes. With the single-cell analysis provided by the 

platform, we intended to associate the type of lipoplex with the heterogeneities in 

GFP production by CHO-S population.  

To achieve these aims, the research followed these goals:  

 Lipoplexes synthesis in droplet-based microfluidic device to transfect DCs:  

Investigate how experimental microfluidic parameters influence on lipoplex 

properties in order to obtain reproducible and suitable lipoplexes to DCs 

transfection. 

 CHO-S transfection in a single-cell microfluidic platform:   

Evaluate how different types of lipoplexes influence on transient transfection of 

CHO-S cells by single-cells analysis.   

3. Thesis organization 

The thesis is organized in chapters, as described below. The results were 

presented as original research papers (Chapter III and IV) that will be submitted to 

international journals, according to the content addressed. Therefore, the sections 

introduction, materials and methods, results and discussion and conclusion of each 

part of the thesis are included in the research paper of their respective chapter.     

 Chapter I – Introduction  

 Chapter II – Literature review  

This chapter shows an overview of gene therapy, cationic liposomes, 

microfluidics, droplet-based systems and their application in lipoplexes synthesis 

and to transfect mammalian cells in vitro in a single-cell approach. The text was 

adapted from a Book Chapter (“Trends on microfluidic liposome production through 
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hydrodynamic flow-focusing and microdroplet techniques for gene delivery 

applications”) and a Review Article (“Droplet-based microfluidic systems for 

production and transfection in vitro of non-viral vectors for gene delivery”) 

published during the thesis, having Micaela Tamara Vitor as co-author. 

 Chapter III – Droplet Microfluidic-Assisted Synthesis of Lipoplexes for DC 

Transfection 

This chapter shows the application of a droplet-based microfluidic system to 

investigate the complexation of EPC/DOTAP/DOPE liposomes with pDNA to obtain 

reproducible and suitable lipoplexes to DCs transfection. For this purpose, some 

experimental parameters were investigated, such as inlet flow rates and cationic 

liposomes physico-chemical properties after droplet processing. With the system 

operating with ratio aqueous/oil flow rate 0.25, droplets were formed with size 1.5 

times of the serpentine channel. Cationic liposomes maintain their properties after 

the processing, even with surfactant residual in the aqueous phase. Then, lipoplex 

characteristics were investigated as function of molar charge ratio (R+/-) and 

microchip design. An optimal condition of lipoplexes synthesis was obtained using 

the droplet-based microfluidic system with wide serpentine channel and split 

region, operating at ratio aqueous/oil flow rate 0.25 and in all R+/- tested (1.5, 3, 5, 

7 and 10). Then, these lipoplexes were evaluated in their capacity to transfect DCs 

in vitro while activating cells. The best transfection efficiency was achieved with 

lipoplexes R+/- 10 and they also activated DCs, important effect for immunological 

applications.  

 Chapter IV – Tracking the Heterogeneities of CHO Cells Transiently 

Transfected on a Chip 

This chapter shows the use of a universal droplet-based platform to transfect 

CHO-S cells using different types of lipoplexes (R+/- 1.5, 3, 5). Aiming to optimize 

the production yields in transient transfection, the heterogeneities of CHO-S 

population were explored through single-cell analysis provided by the platform. The 

GFP production kinetics revealed the presence of a subpopulation producing 
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significantly high levels of recombinant proteins. These high producers (HPs) 

showed increased cell size in comparison to the average population, suggesting 

that they are mainly distributed into cell-division cycle. Lipoplexes with positive 

charge and less pDNA (R+/- 5) produced more HPs and lipoplexes with negative 

charge and more pDNA (R+/- 1.5) increased GFP specific productivity of HPs. 

 Chapter V – Conclusions 

 Chapter VI – Future perspectives 

ANNEX I – Plasmid vectors 

ANNEX II – Preliminary studies in droplet microfluidic system to synthesize 

lipoplexes 

Investigation of flow rates to droplets formation in a water/oil emulsion using 

less expensive reagents and study of CL formation in different diluents in order to 

obtain nanoparticles with required physico-chemical characteristics to DC 

transfection. 

ANNEX III – Preliminary studies in droplet microfluidic system to transfect CHO-S 

cells 

Before reach the system presented in Chapter III to transfect CHO-S cells, 

others cells and microdevice were explored and leaved, because of low viability or 

transfection of cells. Even though, the device showed a potential to understand key 

parameters that influence in vitro mammalian cells transfection process and so 

were presented in this annex.  

4. References 

1.  Guang Liu W, De Yao K. Chitosan and its derivatives—a promising non-viral 
vector for gene transfection. J Control Release. 2002;83(1):1–11.  

2.  Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annu 
Rev Biochem. 2005/06/15. 2005;74:711–38.  

3.  Miller AD. Cationic liposomes for gene therapy. Angew Chemie Int Ed. 



27 

 

 

1998;37(13–14):1768–85.  

4.  Serikawa T, Kikuchi A, Sugaya S, Suzuki N, Kikuchi H, Tanaka K. In vitro and 
in vivo evaluation of novel cationic liposomes utilized for cancer gene therapy. 
J Control Release. 2006;113(3):255–60.  

5.  Kim J, Hwang I, Britain D, Chung TD, Sun Y, Kim D-H. Microfluidic 
approaches for gene delivery and gene therapy. Lab Chip. The Royal Society 
of Chemistry; 2011;11(23):3941–8.  

6.  Kintses B, van Vliet LD, Devenish SRA, Hollfelder F. Microfluidic droplets: 
new integrated workflows for biological experiments. Curr Opin Chem Biol. 
2010;14(5):548–55.  

7.  Hsieh AT-H, Hori N, Massoudi R, Pan PJ-H, Sasaki H, Lin YA, et al. Nonviral 
gene vector formation in monodispersed picolitre incubator for consistent 
gene delivery. Lab Chip. The Royal Society of Chemistry; 2009;9(18):2638–
43.  

8.  Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF. Microfluidic systems 
for chemical kinetics that rely on chaotic mixing in droplets. Philos Trans R 
Soc London A Math Phys Eng Sci. The Royal Society; 2004;362(1818):1087–
104.  

9.  Lin B. Microfluidics: technologies and applications. Springer; 2011.  

10.  Song H, Tice JD, Ismagilov RF. A Microfluidic System for Controlling 
Reaction Networks in Time. Angew Chemie Int Ed. WILEY-VCH Verlag; 
2003;42(7):768–72. 

11.  Zheng B, Tice JD, Ismagilov RF. Formation of droplets of alternating 
composition in microfluidic channels and applications to indexing of 
concentrations in droplet-based assays. Anal Chem. 2004;76(17):4977–82.  

12.  Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, 
et al. Droplet microfluidic technology for single-cell high-throughput screening. 
Proc Natl Acad Sci. 2009 Aug 25;106(34):14195–200.  

13.  Bowles R, Patil S, Pincas H, Sealfon SC. Optimized protocol for efficient 
transfection of dendritic cells without cell maturation. JoVE (Journal Vis Exp. 
2011;(53):e2766–e2766.  

14.  De Haes W, Van Mol G, Merlin C, De Smedt SC, Vanham G, Rejman J. 
Internalization of mRNA lipoplexes by dendritic cells. Mol Pharm. 
2012;9(10):2942–9.  

15.  Barbuto JAM, Ensina LFC, Neves AR, Bergami-Santos PC, Leite KRM, 
Marques R, et al. Dendritic cell–tumor cell hybrid vaccination for metastatic 



28 

 

 

cancer. Cancer Immunol Immunother. Springer Berlin / Heidelberg; 
2004;53(12):1111–8.  

16.  Hsieh AT-H, Pan PJ-H, Lee AP. Rapid label-free DNA analysis in picoliter 
microfluidic droplets using FRET probes. Microfluid Nanofluidics. 
2009;6(3):391–401.  

17.  Lindstrom S, Andersson-Svahn H. Overview of single-cell analyses: 
microdevices and applications. Lab Chip. The Royal Society of Chemistry; 
2010;10(24):3363–72. 

18.  Sims CE, Allbritton NL. Analysis of single mammalian cells on-chip. Lab Chip. 
The Royal Society of Chemistry; 2007;7(4):423–40.  

19.  Schaerli Y, Hollfelder F. The potential of microfluidic water-in-oil droplets in 
experimental biology. Mol Biosyst. The Royal Society of Chemistry; 
2009;5(12):1392–404.  

20.  Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller OJ, Frenz L, et al. 
Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of 
Mammalian Cells and Multicellular Organisms. Chem Biol. Cell Press; 
2008;15(5):427–37.  

21.  Subramanian S, Srienc F. Quantitative analysis of transient gene expression 
in mammalian cells using the green fluorescent protein. J Biotechnol. 
1996;49(1):137–51.  

22.  Derouazi M, Girard P, Van Tilborgh F, Iglesias K, Muller N, Bertschinger M, et 
al. Serum-free large-scale transient transfection of CHO cells. Biotechnol 
Bioeng. 2004;87(4):537–45.  

 



29 

 

 

Chapter II – Literature review 

_______________________________________________________________________________ 

 

 

The literature review text was adapted from the book 

chapter and the review article co-authored by  

Micaela Tamara Vitor  

 

 

 

De La Torre LG, Balbino TA, Sipoli CC, Vitor MT, Oliveira AF. Trends on 

Microfluidic Liposome Production through Hydrodynamic Flow-focusing and 

Microdroplet Techniques for Gene Delivery Applications. In: Finney L, Eds. 

Advances in Liposomes Research. New York: Nova Science Publishers; 2014. 

ISBN: 978-1-63117-074-4.  

Republished with permission from Nova Science Publishers, Inc. (confirmation # 

11628021) 

 

 

 

 

Vitor, M. T., Sipoli, C.C., & De La Torre, L.G. (2015). Droplet-based Microfluidic 

Systems for Production and Transfection In Vitro of Non-Viral Vectors for Gene 

Delivery. Journal of Pharmacy and Pharmaceutical Sciences, 4(4), 1-17.  

Republished with permission from Research & Reviews under the terms of the 

Creative Commons Attribution License. 



30 

 

 

1. Introduction   

Gene delivery is a promising technique that involves the insertion of nucleic 

acid inside target cells for curing a disease or at least improving the clinical status 

of a patient (1). One important step of gene therapy is the transfection process that 

introduces foreign nucleic acids into cells to produce genetically modified cells (2). 

In this context, the development of delivery systems capable of efficient and safe 

gene transfer (3), while protecting the genetic material from different barriers 

(extracellular matrix, cell membrane, cytosol, nuclear membrane) (4), is necessary.  

Among the delivery systems, cationic liposomes stand out due to their 

reproducibility, safety of use, biocompatibility and biodegradability (5). However, 

besides the promising results of cationic liposomes, the development of methods to 

insert nucleic acids into cationic liposomes in a control and reproducible way is still 

a challenge. Depending on cell lines, the production of lipoplexes with specific 

physico-chemical properties is required for transfection (6).  

On the other hand, microfluidics, technology that manipulates small amounts 

of reactants inside microchannels, appears as a powerful strategy to overcome 

these drawbacks (7). The microenvironment of microfluidic systems allows precise 

control and optimization of multiple processes and techniques used in gene 

therapy (8). Moreover, droplet-based microfluidic systems define microreactors that 

reduce of many orders the volume manipulated, being attractive for molecular 

biology assays (9). Droplets moving in some microfluidic systems with specific 

geometry become micromixers that provide a rapid mixing of reagents (10). 

Droplet-based microfluidic systems can be also used to transfect cells in vitro. 

Since microfluidics generates extremely uniform droplets, they are appropriate for 

single-cell encapsulation and/or for in vitro expression of single genes (11). 

Molecules secreted by cells are fast detected due to the low volume surrounding 

each cell, allowing investigation of transfection parameters in culture real time 

(9,12).  

In this literature review, first we present an overview about gene therapy and 

the role of non-viral vectors. Then, we show the state-of-the-art of current 

microengineering methods based in droplet microfluidic platforms for the 
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production of lipoplexes and mammalian cell transfection. The understanding of 

this technology and how fluid dynamics influences the microscale for the 

production of controllable and stable droplets give the insight to understand how to 

form complexes for gene delivery applications. At last, we show methods of 

transfection inside droplets comparing with the conventional transfection in wells.     

2. Nanoparticles as non-viral vectors for gene delivery  

Gene therapy refers to the transfer of genetic material encoding a therapeutic 

gene of interest into a cell, tissue, or whole organ with consequent expression of 

the transgene in order to treat a disease. However, for the success of gene 

therapy, the development of sophisticated and efficient delivery systems capable of 

transfering genes is a key factor (3,13). In brief, we can describe two classes of 

efficient nucleic acid carriers: viral and non-viral vectors. These delivery systems 

should protect nucleic acids from degradation, while providing a safe intracellular 

delivery (14). Over a decade ago, patients with immunodeficiency-X1 were treated 

with gene therapy assays based on the use of cDNA in a retrovirus (15,16). After 

that, gene therapy based on retrovirus vector was used to treat French patients 

with T cell leukemia, producing aberrant transcription and expression of LMO2 

(17). These facts opened an optimistic vision about gene therapy research. 

Nowadays, gene therapy clinical trials are present in worldwide, mainly in United 

States of America (62.6%), United Kingdom (10.3%) and Germany (4.1%). These 

therapies are usually used in the treatment of cancer (63.8%), monogenic diseases 

(8.9%) and infectious diseases (8.2%) (18). The most commonly vectors used in 

gene therapy are still virus vectors, highlighting adenovirus (22.5%) and retrovirus 

(18.8%), but also lipofection (5.2%) and naked pDNA (17.5%) are raising their use 

(18). Notwithstanding the high efficient transfection provided by viral vectors, they 

can invoke immune responses or proto-oncogene activations. In this context, the 

non-viral vectors, particularly cationic liposomes, have a promise and potential 

future, taking into account their reproducibility and safety of use (5).  

Cationic liposomes are non-viral vectors mainly composed of cationic lipids, 

which guarantee their positive superficial charge. Examples of synthetic cationic 
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lipids used in cationic liposome composition are DOTAP (1,2-dioleoyl-3-

trimethylammonium propane), DOTMA (2,3-bis(oleyl)oxypropyl-

trimethylammonium chloride), DDAB (dimethyl dioctadecyl ammonium bromide), 

DC-Chol (3 β [N-(N’,N’-dimethylaminoethane)-carbamoyl]cholesterol), DMRIE (N-

(2-hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide), 

DOGS (dioctadecyl amino glycyl spermine), DOSPA (2,3 dioleyloxy-N-[2(spermine 

carboxaminino)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate). However, 

the use of cationic lipids can generate cell toxicity, and so the inclusion of others 

lipids, e.g. egg phosphatidylcholine (EPC), in cationic liposome composition is 

required to decrease the cytotoxicity (19,20). On the other hand, the positive 

charge of cationic liposomes provides an electrostatic interaction with negatively 

charged nucleic acids, forming complexes with net positive charge (21). Hence, 

these positive charged complexes can enter easily inside cells, whose surface 

membrane is negatively charged (22). Once into cells, the complexes should 

release the nucleic acids in cytosol, in case of RNA for rapid synthesis of a target 

protein (23), or in cell nucleus, in case of DNA to control gene expression for a 

more long-term. The inclusion of helper lipids, e.g. phosphatidylethanolamines 

(DOPE), in cationic liposomes composition facilitates the nucleic acid to escape 

inside the cytosol (24). Felgner et al. (22) were pioneers in the development of 

cationic liposomes for gene delivery. They produced liposomes composed of 1:1 

ratio of DOTMA and DOPE, which were then commercialized as Lipofectin. For 

example, these cationic liposomes were used in vitro to carrier efficiently hepatitis 

C virus proteins into a human hepatocyte cell line (HUH7) (25) and in vivo to 

delivery linamarase gene for the treatment of brain tumors in animals or humans 

(26). Recently, other commercial cationic liposomes, such as Lipofectamine, 

DMRIE-C, Oligofectamine, Ambion, 293fectin, Optifecta, Invivofectamine, 

FuGENE, TransFast, TransFection and CLONfectin, are being used in gene 

therapy due to their well-established protocols and to provide high efficiency of 

transfection in some specific cells and with some specific nucleic acids. Our 

research group (27) also showed the feasibility of dehydrated-rehydrated 

liposomes composed of EPC, DOTAP and DOPE (50/25/25% molar, respectively) 



33 

 

 

carrying polynucleotides encoding HSP65, for prevention and treatment of 

tuberculosis. And more recently, we obtained the same cationic liposomes 

produced in a large scale by ethanol injection method to delivery nucleic acid into 

dendritic cells (DCs) as a potential tool for cancer immunotherapy (28).  

Dendritic cells are professional antigen-presenting cells widely used in 

immunotherapeutic approaches, particularly in immunotherapies against cancer. 

Since loaded with tumor antigens, mature DCs can induce an immune response 

against cancer by recruiting patients’ immune system (29). Different strategies are 

currently used to load DCs with antigens, e.g. peptide pulsing, pulsing with tumor 

cell lysates, infection with viral vectors, direct nucleic acid loading, or 

ingestion/fusion with tumor cells (30). Moreover, cationic liposomes stand out in 

this function as gene carriers, since besides to transfect DCs, they can also 

activated them (31). Particularly, our research group (32,33) showed that cationic 

liposomes EPC/DOTAP/DOPE were uptake by DCs, while providing cells 

stimulation/activation. However, dendritic cells require that these cationic 

liposomes have a very specific properties (size < 100 nm and polydispersity <0.2) 

to be internalized (32), due to the use of macropinocytosis and/or phagocytosis as 

transfection pathways (34). Thus, the study of methodologies that enable to form 

lipoplexes modulated to specific cells lines in a reproducible and controllable way is 

very important (35). Conventional methods of obtaining lipoplexes involve just the 

mixing provided by hand shaking or vortexing to reach cationic liposomes 

complexation with nucleic acids. However, these conventional methods introduce 

variability in lipoplexes formation and, as a result, provide inconsistent transfection 

efficiencies (6). To effectively transfect cells, the physico-chemical properties of 

lipoplexes should be suitable to the pathway used by the cell line to internalize 

nanoparticles (36).  

3. Microfluidic droplet technologies  

The general concept of microfluidics is in the manipulation of small amounts 

of reactants inside microchannels with the capability to control and manipulate 

molecules in space and time (37). In microfluidics it is possible to work with small 
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amounts of  reactants, the period of reactions is short, it is possible to work with 

parallel operations (38), large surface to volume ratio allows fast diffusion of 

compounds and fast mass/heat transfer (39). These advantages can be related to 

the flow in microfluidic devices, which is laminar and corresponds to a low 

Reynolds number (37,40). Another important consequence of this regime is that 

the mixture between two parallel flowing streams occurs mainly by diffusion (38).  

The origin in microfluidic is in the 90´s for MicroElectroMechanical Systems 

area (MEMS) (39). Nowadays microfluidics has been exploited in numerous areas 

as: 

 Biological analyses - detection of biomolecules (41,42), manipulation and 

amplification (43) and separation of DNA by capillary electrophoresis (44). 

Microbial growth - Screening of variables and kinetic parameters (45,46). 

Nanoparticles production – polymeric particles (47,48), liposomes and lipid 

vesicles (49–51), metallic nanoparticles (52). 

Gene Delivery/Transfection – electroporation (53), hydrodynamic force and 

optical energy (8). 

Different materials can be used for the construction of microchannels and, for 

biological application, glass and polymers are detached (54). Glass is considered 

to be biocompatible, impermeable to gases (54,55), has physic and chemical 

stability and it is hydrophilic (54).  The techniques to prepare microdevices in glass 

are laser ablation and wet etching (54). Microdevices can also be made by 

polymers which are not expensive, there is the possibility to change the chemical 

formulation (55), are stable (37) and hydrophobic (54). The elastomer which has 

been used extensively for microdevices construction is poly(dimethyl syloxane) 

well-known as PDMS , moreover the technique employed is soft lithography (56).  

In addition, it is important to consider the wettability related to the 

microchannel material and the droplet system. Since the continuous phase wets 

the walls faster than the disperse phase and forms a thin film between droplet and 

walls (57). The droplet breakup occurs when the continuous phase wets the device 

walls instead the disperse phase, thus the droplet morphology is a result of the 

interaction between the material which the devices is formed and the continuous 
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phase (57). Summarizing hydrophobic channels are required to prepare water in oil 

systems,  inversely hydrophilic channels are necessary for forming oil in in water 

emulsions (58). Considering the advantages of using PDMS for devices 

construction, in the literature different strategies are reported to change the 

wettability of the material, through chemical modifications (58,59).  

Microfluidic systems can be classified according to the interfaces created by 

the fluid flows in microchannel as: pinned interfaces, in which fluids flow in parallel 

creating vertical interfaces, and floating interfaces, in which immiscible fluids 

produce droplets of precise shape (60). The use of segmented flow which the 

reactants are separated in different picoliter/nanoliter droplets has been used in 

cases when miniaturized systems has to be achieved (61).  The segmented flow is 

the principle of emulsions which are a metastable colloidal systems (62) with two 

immiscible liquids. In this case there is one continuous phase and one disperse 

phase in droplets formats (57,61). Some advantages of droplet processes can be 

described in comparison with parallel flows processes. In parallel flows, in which 

solute are all distributed over the solvent,  the efficiency of chemical reactions and 

the detection of some molecules inside the channels can be decreased, this 

phenomenon is called Taylor-Aris dispersion (63,64). The use of droplets 

processes cut out the contact with solid wall,  reducing the probability of reagents 

adsorption into the channels walls (64). Droplets with samples inside can be seen 

as micro-reactors which allows the manipulation of small volumes (14,65). In 

addition,  in droplets microfluidics it is possible to carry out many reactions without 

increasing the number and the channels size (13). Furthermore, considering the 

relation between the surface area and volume, the reactions inside droplets are 

faster because the heat and mass transfer times and also diffusion distances are 

shorter (13,66).  

In order to form stable droplets, the use of appropriated surfactants is 

important. Surfactants are known as amphiphilic molecules with different groups 

and having affinity for different phases which are immiscible. Due to different 

groups in the structure, surfactant molecules go to interface and as a result the 

surface tension between the phases decreases (67). An essential requirement to 
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use droplets as microreactors is to avoid the coalescence of them. Thus the 

surfactant addition provides stabilization in the metastable state (62,67). 

Furthermore choose biocompatible surfactants is the rule for the success of droplet 

system application in biological fields (67). Fluorinated oils are promising to be 

used in biotechnology area; however few surfactants are available to stabilize 

water in oil interfaces emulsions (67). Different molecules are being studied and 

developed to microfluidic applications. Nowadays, block copolymer of 

perfluoropolyether and polyethylenoxide are the most interesting molecules 

existent. It is known that these molecules reduce protein adsorption or the 

interactions with cell membranes (67). Another important molecule is a triblock 

copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene 

glycol (PEG) blocks (68). However the problem is the limitation of surfactant 

modification which can be just by varying the molecular weight or chain-end 

functionalization. In this way, Wagner et al (68) proposed to synthetize  and 

characterize polyglycerol-based triblock surfactants, and exemplified in droplet-

based microfluidics their application in cell encapsulation and in vitro gene 

expression studies.  

The droplet compartments formed in microfluidic systems have many 

functions. The uniformity and the little volume of these droplets allow them to be 

used for quantitative assays requiring reduced volumes of reagents, and as a 

result, providing a low cost for this technique (69). Moreover, droplets compartment 

design can furnish combined information about molecules function (activity or 

inhibitory functions), molecules identity and molecules ability to carry out its 

function by measuring, for example, a fluorescence product. In addition, droplets 

give the possibility to make several unit operations in a device, like droplets can be 

divided, fused, incubated, analyzed, sorted and broken up (70). Moreover, the 

compartments formed by droplets can be used as micromixers, providing efficient 

and controlled mixing over the reactants inside microcontainers (66).  
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4. Droplet-based microfluidic platforms for lipoplexes formation  

The control and rapid mixing of reagents within droplet-based microfluidic 

systems (micromixers) can be used, for example, to make an effective 

complexation between nucleic acids and liposomes in order to form lipoplexes (35). 

Microsystems using parallel flows, the mixing is promoted mainly by the diffusion of 

reactants (31). In contrast to this, microdroplets devices can add a chaotic 

advection contribution to the system, increasing the promoted mixing. For example, 

serpentine channels can generate two recirculation flows within droplets due to the 

shear created between the droplets and channel wall (31) (Figure 2.1). For this, 

droplets should have a precise size to touch the inner surface channels and 

generate a fluid movement relative to the stationary walls of serpentine channel 

(10). On the whole, micromixers can be classified as passive and active. The 

passive micromixers require the use of different microchannel geometries and/or 

liquid flow rates to generate mixing (54). On the other hand, active micromixers 

demand an external energy to enhance the mixing, such as pneumatic or 

mechanical vibration (71). Active mixers require more complex fabrication 

processes and they are more difficult to integrate with other microfluidic 

components. The passive mixers usually adopt longer mixing channels without 

external agitation (72).  

Nevertheless, some parameters of the system have to be taken into account 

to provide an effective mixing within droplets. One of the most important parameter 

is capillary number (Ca), which should be low in order to form droplets in the 

system (73). The Ca is proportional to the average flow velocity (U) and inversely 

proportional to the interfacial velocity (γ/μC, where γ is the surface tension between 

two immiscible phases and μC is the dynamic viscosity of continuous phase). 

Hence, when the flow velocity is much lower, Ca is reduced and the surface 

tension controls the system. In high Ca, the shear force dominates (73). As 

consequence, the viscosity of fluids is another parameter that interferes in 

interfacial velocity and in droplets mixing (74). Tice et al. (74) concluded that 

combination of viscous and non-viscous fluids promotes a more efficiently mixing 

inside droplets than the use of only non-viscous fluids. Thus, the use of fluids with 
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approximated viscosities decreases the interfacial velocity of the system, inducing 

a decrease in droplets mixing (74). Moreover, the channel configuration is also 

fundamental in a good mixing within droplets. The channel width is often used to 

control the local flow velocity, when the channel depth and flow rate being kept 

constant (75). Furthermore, microsystems should be operate in a Peclet number 

between 1000 times and 100,000 times greater than Reynolds for a good mixing 

(76). According to the Peclet number, it is possible to determine if the convection 

mixing (UL, where L is a characteristic length scale) or the diffusion mixing (D, 

where D is a characteristic diffusion coefficient) dominates in the system (77).  

Besides setting operational parameters in the droplet microfluidic system, to 

achieve a chaotic mixing in passive micromixers, especial geometries, such as 

serpentine channels outlined in Figure 2.1, can be adopted (77). Chaotic advection 

provides an accelerated mixing within droplet-based microfluidic devices, 

stretching and folding the fluid into droplets as long as they pass in these channels 

(40). Droplets moving downstream and upstream in serpentine channels offer an 

alternating motion time periodically influenced by the walls, creating fluid vortexes 

(40). In brief, the mechanism can be explained as follows: the part of droplet in 

contact with the outside arc of the channel prompts greater contact between the 

interface of the droplet and the channel wall, leading to a longer recirculation flow; 

on the other side, part of droplet in contact with the inner arc of the channel 

prompts smaller shear, leading to a smaller recirculation flow (13). This process 

repeats along the channel, in such a way that recirculating flows vary alternately on 

each side of the drop, generating a chaos within it (13). Passive micromixers with 

chaotic advection have a promising future in microfluidic field, since they allow an 

effective mixing on a millisecond scale without requiring moving parts in devices 

(76). 

The chaotic mixing in droplet-based microfluidic devices have various 

applications such as: controlling chemical reactions (40), promoting protein 

crystallization (73) and improving biochemical analysis (78). Among the 

applications, we can emphasize the complex formation between nucleic acids and 

liposomes (Figure 2.1) as an essential step in gene delivery process. 
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(35) developed a picoliter incubator based on the microfluidic system, which was 

used to constantly and uniformly mix the cationic liposomes (Lipofectin composed 

of DOTMA and DOPE) with pEGFP-C1 DNA vector in a serpentine mixing region. 

The major part of the complex population generated in the microfluidic system 

presented size of approximately 200 nm and polydispersity index between 0.4 and 

0.45. On the other hand, hand-shaking generated a polydisperse complex 

exhibiting nearly three populations, one with approximately 300 nm in size, another 

with 700 nm and a third with 900 nm (35). Comparing the transfection efficiencies 

of the two complexes through GFP expression by U2OS cells, they concluded that 

complexes prepared in the microfluidic system provided more consistent gene 

transfection (coefficient of variation of 0.05) than complexes prepared by hand-

shaking (coefficient of variation of 0.30) (35). Therefore, the employment of a 

passive chaotic mixing in droplet-based microfluidic devices aiming at the nucleic 

acid incorporation in liposomes has a promising future. 

5. Droplet-based microfluidic platforms for in vitro transfection  

Besides the use for lipoplexes formation, droplet-based microfluidic platforms 

can be used to transfect cells in vitro. Transfection, the procedure to introduce 

nucleic acids into cells, can be used to study gene and protein function and 

regulation (2). Thus, cells are commonly transfected in culture systems on well 

plates for then be inserted in vivo (83,84) or only be analyzed in vitro (85). Briefly, 

there are three transfection methods: physical, biological and chemical, which are 

chosen according to cell type and purpose (2). Physical-mediated methods are 

comprised of microinjection (86), biolistic particles delivery (87), electroporation 

(88), optical gene transfection (89), sonoporation (90) and magnetic nanoparticles 

(91). Biological methods include those with virus as vector (92), chemical methods 

consist of lipid and polymeric vectors (93,94) and calcium phosphate (95). 

Transfection method is chosen in order to have high transfection efficiency, with 

safety, reproducibility, low cytotoxicity and should be easy to use (2).  

Although, when studying cellular uptake of nanoparticles for in vitro 

transfection, usually the physiologically relevant stimulus of fluid flow is overlooked 
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and internalization assays are carried out under static conditions. But, both in 

theory (96) and practice (97), it has been shown that the mechanical stimulus of 

fluid flow is an important factor to achieve an optimal transfection efficiency (98). In 

conventional transfection methods performed in wells, there is only diffusive 

transport of nanoparticles to the cellular targets surface. In microfluidic systems, a 

convective contribution can be added to the process, increasing the collision rate 

between nanoparticles and cell surface, and consequently, showing  more 

controllable and easier transfection (99).  

Thus, droplet-based microfluidic devices can be used for in vitro transfection, 

in which one droplet defines a picoliter compartment that allows single cell 

encapsulation and in vitro expression of genes, using fewer reagent than 

conventional methods (11). Microfluidic environment also offers unique possibility 

to mimic dynamic conditions, opening new possibilities to investigate. So, 

processes and techniques used in gene delivery, such as used in physical 

methods, can be better controlled and optimized in the micro-scaled environment 

(8). To summarize, we made a comparative table showing differences between 

both, conventional transfection in wells and in microfluidic systems (Table 2.1).  
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the higher sensibility for biomarker that amplify the detection of extremely low 

levels of biomarker molecules (12,104), the rapid mixing of reagents in case of 

droplets applied as micromixers in which a chaotic advection contribution can be 

added to the system (40,104), the compartmentalization that reduces the 

interaction of reagents from different droplets and let an easy parallelization of 

independent experiments (14). 

From the point of view of the in vitro transfection, droplets in microfluidic 

systems can be applied as single cells compartment. Some patents have been 

published about cells encapsulation one by one in droplets, independent of cells 

densities (105). Or also encapsulate cells in nested labeled matrices, which can be 

compared to cell tissues, enabling to track or identify different cell populations 

(106). Thus, in a similar way to molecule assays, single cells analysis in this type of 

system allows a rapid detection of cell-secreted molecules, due to the low volume 

surrounding each encapsulated cell. Moreover, as the risk of cross-contamination 

decreases, cells can be analyzed by various techniques mainly by fluorescence 

detection (12). Furthermore, fluorescence detection can be applied for both 

adherent and non-adherent single cells, enabling the manipulation of isolated 

single cells and also the investigation of contents from disrupted single cells (107). 

For example, Huebner et al. (108) described the preparation of microdroplets 

containing few or individual cells to detect fluorescent protein expression by cells 

while measure droplet size, fluorescence and cell occupancy. Equally important is 

the possibility to carry out spot-checks of single cells in the time courses, since the 

response of cell population at the end, not always describes the behavior of a 

single cell in certain times (9). This technology lets us to obtain more data about 

transfection characteristics, like the real point when transfection started, the ideal 

cell lines to be used in a transfection with a specific nucleic acid and delivery 

system. To verify the potential utility of this technique, Schmitz et al. (109) used 

drop spots devices to monitor the levels of β-galactosidase in a population of single 

yeasts using the reporter enzyme fluorescence technology and also to monitor 

yeast growth rates. Boedicker et al. (110) showed another important application for 

this technique: rapid detection and drug susceptibility screening of bacteria in 
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samples without pre-incubation, that can likely generate rapid and effective patient-

specific treatment of bacterial infections. They determined the antibiogram of 

methicillin-resistant Staphylococcus aureus (MRSA), an antibiotic sensitivity strain, 

against many antibiotics. They measured the minimal inhibitory concentration 

(MIC) of the drug cefoxitin against MRSA and also signalized sensitive and 

resistant strain of S. aureus in complex samples, like human blood plasma (110).  

On the other hand, hydrogel droplets can be used to mimic in vitro 

multicellular organisms providing a 3D microenvironment for adherent and non-

adherent mammalian cells. In contrast to vast majority of in vitro cell biology 

studies, which are performed using cell monolayers cultured on flat substrates, 3D 

microenvironment recapitulates the architecture of living tissues and involves a 

dynamic interplay between biochemical and mechanical signals provided by the 

extracellular matrix (ECM), cell–cell interactions and soluble factors (111,112). 

These hydrogel droplets, composed by natural or synthetic polymers, should 

provide cells attachment and proliferation (113). Adherent cells need relatively 

resistant substrates, like collagen, to anchor and pull on their surroundings, since 

they are dependent on myosin-based contractility and cellular adhesion (114). 

Moreover, hydrogels can be engineered to promote efficient gene transfer with 

non-viral vectors (115) and can be also used to investigate cellular pathways to 

internalize nanoparticles (116). Dhaliwal et al. (115) identified extracellular matrix 

(ECM) proteins and their combinations as a microenvironment that significantly 

enhance mouse mesenchymal stem cells (mMSCs) transgene expression. They 

showed that proteins that enhanced cell proliferation and spreading, increased cell 

gene expression as well (115). Additionally, studying transgene expression 

pathway,  Dhaliwal et al. (117) showed that RhoGTPases, which mediate the 

crosstalk between cell and fibronectin (structural component of ECM), regulate 

internalization and effective intracellular processing of nanovectors, resulting in 

efficient gene transfer.    

However, there are some drawbacks that have to be taken into account 

before encapsulate cells, particularly when using robust analysis over longer 

periods of time, like how to maintain viability of cells within the droplets, risks of 
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coalescence, nutrient depletion or the accumulation of toxic metabolites (12). Thus, 

to minimize these obstacles by preventing droplet coalescence, biocompatible 

surfactant-oil formulations that allow oxygen diffusion and prevent molecules 

leaking out into the oil phase have been developed (118–123). Clausell-Tormos et 

al. (118) demonstrated the feasibility of using this strategy for long periods by 

culturing adherent and non-adherent mammalian cells into aqueous microdroplets 

of water-in-oil emulsion systems for up to two weeks. They applied the technique of 

spot-checks to analyze cells viability in the device and they also broke the 

emulsions to recover cells after a couple of days. 

In the case of microfluidic droplets, that involves immiscible phases, other 

important topics to be considered are the dominant physical mechanisms related 

with microfluidic scales, such as surface tension and diffusion. Our research group 

(124) explored these parameters, coupled with quantitative measurements within 

droplets, for the purpose of advance biological science and technology. Hence, in 

order to keep a droplet stationary for long term observation and to provide 

combinatorial measurements on a single image, Fradet et al. (125) combined rails 

and anchors in microfluidic system with laser forcing, enabling the creation of 

highly controllable 2D droplet arrays. Additionally, in microfluidic droplet systems a 

more rapid mass transfer can be expected than in single-phase microfluidic 

systems, since the interfacial area ratio between different fluids per unit volume is 

larger (126). Then, Abbyad et al. (127) applied this rails and anchors design to 

control the transport oxygen for cell cultures or to induce a temporal or spatial 

variation of gas content in droplets, thus verifying the polymerization of intracellular 

hemoglobin by deoxygenating droplets that encapsulate red blood cells from 

patients suffering from sickle cell disease.  

Furthermore, with microfluidic systems we can investigate how the shear 

stress induced by flow can affect the transfection efficiency. Shin et al. (128) 

described a microfluidic device to investigate shear stress effect upon transfection 

efficiency of liposomes/DNA complexes in primary cultured neurons, achieving 

45% of transfection. Particularly in droplet-based systems, the phenomenon of 

mixing that accelerate mass transport inside droplets is highly studied by 
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computational (129–131) or experimental instruments (73,74,132). Kinoshita et al. 

(133) used a high-speed confocal micro-particle image velocimetry (PIV) to 

measure the droplet internal flow, concluding that a three-dimensional and complex 

circulating flow is formed inside the droplet. Therefore, to correlate the 

hydrodynamic effect of mixing inside droplets to the transfection efficiency is still a 

challenge, because of the complexity of circulating flow inside the droplets. 

Nevertheless, droplet-based tools for single-cell analysis draw attention of 

many researchers for in vitro cell transfection, mainly due to the potential of high-

throughput screening and the benefits of enclosed individual microchambers (12). 

Moreover, Chinese hamster ovary (CHO) cells are widely used as cell line model 

for this application. CHO cells are the most popular host to express stably or 

transiently recombinant therapeutic proteins (134). There are many advantages for 

using CHO cells as protein expression system (135,136). One is that regulatory 

agencies like the FDA tends to easier approve recombinant proteins produced from 

CHO cells, since this cell line showed to be safe hosts for the past two decades. 

Another advantage is that CHO cells are a powerful gene amplification system, 

which grows to high cell densities in suspension and can be easily transfected. 

This cell line has also the capacity to adapt to the growth in serum free media, 

suitable characteristic for transfection by nanovectors. At last, there are some CHO 

cell strains that produce recombinant proteins with glycoforms that are compatible 

with bioactive in humans (135,136). Additionally, to previously inquire cell lines in 

their ability to express recombinant proteins, the green fluorescent protein (GFP) is 

often used as a model assay. GFP with its small size, formidable stability and 

relative ease of use, can report great exploratory results before cell line use for a 

target protein production (137). In this context, we summarize in Table 2.2 different 

methods to transfect single cells using droplet-based microfluidic platforms. In 

these microsystems, cells are placed in contact with nucleic acids inside droplets 

and physic or chemical transfection methods can be used to provide nucleic acids 

insertion inside cells.   
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Table 2.2 - Description of different methods (electroporation, microinjection and 
nanoparticles) to provide single-cell transfection in droplet-based microfluidics 
platforms. 

Transfection 
methods 

Description References 

Electroporation 

Delivery genes into cells by applying an 
external electric field, with lower voltages 
compared to conventional electroporation. 
Advantage: Higher transfection efficiency  
Disadvantage: Lower cell viability 

(138), (139) 

Microinjection 

Microneedles are used to inject nucleic acids 
and others bioactive compounds into the 
same target single-cell.  
Advantage: Quantitative introduction of 

multiple components into the same cell 
Disadvantage: Technical skills are required 

to prevent cell damage 

(140) 

Nanoparticles 

Nanoparticles as non-viral vectors for safely 
and reproducible gene delivery into cells. 
Advantage: Higher cell viability 
Disadvantage: Lower transfection efficiency 

(141), (142), (143) 

 

The most commonly transfection in droplet-based microfluidic devices is the 

electrotransfection, which is a method for delivering genes into cells by applying an 

external electric field. Due to the compartmentalization, droplet systems require 

much lower voltages compared to conventional electroporation, thus enabling a 

higher cell viability (8). Zhan et al. (138) demonstrated a simple microfluidic device 

that encapsulated cells into aqueous droplets in oil flow and then electroporated 

the encapsulated cells. The results showed an enhancement in delivering green 

fluorescent protein (EGFP) plasmid into CHO-K1, reaching approximately 11% of 

transfected cells. Thus, to demonstrate the potentiality of this transfection method 

in other cells,  Luo et al. (139) showed that fluorescein could be introduced into 

yeast cells by applying a low alternating current voltage to a couple of Au 

microelectrodes.   

Additionally, microinjection can be used to transfect cells in air-liquid droplet 

systems, enabling the introduction of multiple bioactive compounds, including 

nucleic acids, into the same target single-cells, which are difficult to handle in 

conventional methods (144). Thus,  Lee et al. (140) showed the feasibility of a 
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microinjector by engaging a microvalve in a microfluidic device to form a droplet at 

the microneedle tip allowing, for example, gene delivery in single-cells.   

In a similar way, nanoparticles, generally composed by biopolymers or lipids, 

can be used as non-viral vectors for safely and reproducible gene delivery into 

cells. Chen and co-workers (141) transfected CHO-K1 cells with a plasmid 

encoding EGFP, by a chemical stimulus, PolyFect (activated-dendrimers) 

complexed with pDNA, reaching 25% of transfection efficiency. We highlighted two 

relevant points shown in the referred work, the first important point is the necessity 

to use fluorocarbon oils as continuous phase due to their biocompatibility with cells 

and smaller loss of nanoparticles from aqueous to oil phase. The second point is 

that smaller droplets provide an increase in efficiency transfection probably 

because of a better interaction between cell and complexes (141). Likewise, 

Hufnagel et al. (142) transfected CHO-K1 cells with the same reporter gene, 

pEGFP, but using polyplexes as nanovectors, achieving 20% of transfection 

efficiency. Even though, this work approaches a modular microfluidic system that 

allows several operations with cells inside it, such as seeding, cultivation, 

manipulation, detachment, collection, encapsulation and transfection (142). 

Therefore, microdroplets systems for cells transfection is a promising future, since 

many parameters can be investigate by them in order to approximate to in vivo 

transfection conditions and also to better understand the transfection process by 

single-cell analysis.  
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Abstract 

Dendritic cells (DCs), professional antigen-presenting cells, are widely used in 

immunotherapeutic approaches. When loaded with tumor antigens, mature DCs 

can induce an immune response against cancer. Particularly, cationic liposomes 

show as a promising gene carrier for DCs, since besides to be internalized, they 

can also activate them. However, DCs transfection dependence of lipoplexes size 

and polydispersity makes the process a challenge. In this context, droplet-based 

microfluidic system can be applied in order to obtain reproducible and suitable 

lipoplexes to DCs transfection. For this purpose, we investigated a droplet-based 

microfluidic system with serpentine and split regions to synthesize lipoplexes. We 

first investigated operational parameters that influence in droplets formation, like 

inlet flow rates. Thus, we chose to operate the system at ratio aqueous/oil flow rate 

0.25. Then, we ensured that cationic liposomes maintain their properties after 

droplet processing. We investigated the influence of molar charge ratio in 

lipoplexes formation and we also evaluated different microchip designs, exploring 

the effect of residence time and droplet size in lipoplexes physico-chemical 

properties. The droplet-based system allowed the incorporation of more amount of 

pDNA to CL while maintaining lipoplexes monodisperse and with positive charge. 

Mixing provided by small droplets flowing in the serpentine channel was more 

important than residence time to decrease lipoplexes polydispersity. Lipoplexes 

were able to transfect DCs, besides activating cells. However, lipoplexes loading 

lower amount of DNA were more efficient in transfect DCs. Thus, droplet-based 

microfluidic system showed to be a potential tool in lipoplexes properties 

modulation according to specific cell lines.  

 

Keywords: lipoplex, transfection, microfluidics, water fraction, capillary number, 

molar charge ratio  

1. Introduction 

Gene therapy is the insertion of genetic materials into cells or organs in order 

to treat genetic defects. For this, gene therapy requires safety and efficient gene 
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delivery systems, classified as viral and non-viral vectors. Viral vectors delivery 

efficiently the target gene into the host cell, but as consequence, immune and 

oncogenic responses can be activated. To overcome these drawbacks, non-viral 

vectors were developed reproducing viral gene delivery function, in a more secure 

and  reproducible way, even though without reaching the high transfection level 

verified by virus vectors (1). Within the current range of non-viral vectors, cationic 

liposomes are particularly promising (2). The electrostatic interaction between the 

positive charge of cationic lipids from liposomes and negative charges from 

phosphate groups from nucleic acids form complexes capable of entering cells, 

named lipoplexes (3). 

In the field of gene delivery, one specific challenge is the transfection of 

dendritic cells (DCs). DCs are professional antigen-presenting cells widely used in 

immunotherapeutic approaches, particularly in immunotherapies against cancer. 

Since loaded with tumor antigens, mature DCs can induce an immune response 

against cancer by recruiting patients’ immune system (4). Different strategies are 

currently used to load mature DCs in vitro with tumor antigens (5). Cationic 

liposomes stand out in this function as gene carriers, since besides to transfect 

DCs, they can also activated them (6). The cationic liposomes composed of Egg 

phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% 

molar) showed as a potential tool for DC-based immunotherapeutic approaches, 

since they were uptaken by DCs providing cell stimulation/activation (7,8). DCs 

uses preferentially macropinocytosis and/or phagocytosis as transfection pathway, 

and so, extremely dependent of lipoplexes size and polydispersity for transfection 

(9). Thus, the study of methodologies that enable to form lipoplexes modulated to 

specific cells lines in a reproducible and controllable way is very important (10).  

Conventional methods of obtaining lipoplexes involve just the mixing provided 

by hand shaking or vortexing to reach cationic liposomes complexation with nucleic 

acids. However, these conventional methods introduce variability in lipoplexes 

formation and, as a result, provide inconsistent transfection efficiencies (11). To 
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effectively transfect cells, the physico-chemical properties of lipoplexes should be 

suitable to the pathway used by the cell line to internalize nanoparticles (12).  

On the other hand, to circumvent the above difficulties, the micro-scaled 

environment of microfluidic systems allows precise control and optimization of 

multiple processes and techniques used in gene therapy (1). Droplet-based 

microfluidic systems define microcontainers that reduce of many orders the 

volumes manipulated, making these systems attractive for performing experiments 

in molecular biology. Moreover, droplets moving in microfluidic systems become 

micromixers that provide a rapid mixing of reagents (13). Microsystems working 

only with parallel streams have the fluid mixing mainly promoted by diffusion, 

whereas droplet-based microsystems can have the addition of chaotic advection 

that increases the mixing in the system (14). The chaotic advection in serpentine 

channel is generated by two recirculation flows inside droplets due to the shear 

created between droplet and channel walls (15). Micromixers have important 

applications such as control chemical reactions (16), promote protein crystallization 

(17), improve biochemical analysis (18) and complex nanoparticles and nucleic 

acids (11). Hsieh et al. (11) developed a picolitre incubator based microfluidic 

system to complex commercial liposomes lipofectin with pDNA encoding GFP. 

They showed the robusteness of the microsystem to produce reproducible 

lipoplexes and also to transfect human osteosarcoma U2OS cells (11). Thus, 

droplet-based microfluidic platforms emerge as an alternative to conventional 

methods, which provide more controllable environment for direct synthesis of 

lipoplexes adequate for gene therapy applications (19). To produce lipoplexes 

according to the cell line requirements, some parameters, such as flow rates, 

viscosity of fluids and microchip design, which influence on mixing in droplet-based 

platforms, should take into account (20,21). 

Therefore, this work aimed to investigate the complexation of 

EPC/DOTAP/DOPE liposomes with plasmidial DNA (pDNA) by droplet-based 

microfluidic system, based on microchip already designed by Hsieh et al. (11) in 

order to obtain reproducible and suitable lipoplexes to DCs transfection. For this 

purpose, some experimental parameters were investigated, such as flow rates to 
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ensure droplets formation in the system, liposomes physico-chemical properties 

after droplet processing, lipoplex characteristics as function of molar charge ratio 

(R+/-) and microchip design. Then, lipoplexes produced in the microfluidic system 

operating in the chose parameters were evaluated in their capacity to transfect 

DCs in vitro while stimulating cells.  

2. Materials and Methods  

2.1. Microfabrication 

Cationic liposomes (CLs) and lipoplexes (CL/pDNA complexes) were 

synthesized in PDMS/glass microfluidic devices fabricated according to Moreira et 

al. (22). The designs of the devices were projected using the software AutoCAD 

2002. All microchannels had a rectangular cross section constructed using soft 

lithography methods in PDMS and irreversibly sealed to glass through O2 plasma 

surface activation (22). 

The cationic liposomes production was carried out in a cross-junction 

device, like used by Balbino et al. (23) and illustrated in Figure 3.1A. Channels had 

a rectangular cross section with a depth of 100 µm and a width of 140 µm. 

Otherwise, the devices designed for lipoplexes formation (Figure 3.1B) was based 

on Hsieh et al. (11), with slight modifications. The device had rectangular cross 

section with 50 µm of depth in all channel. The serpentine channel was classified 

as: (i) thin channel (TC) with 200 µm of width (D) and 9600 µm of linear length (L), 

and (ii) wide channel (WC) with 400 µm of width (D) and 19200 µm of linear length 

(L) (Figure 3.1B). Number of curves in serpentine channel was fixed in 13 for both 

WC and TC. Mix between pDNA and CL occurred in the serpentine channel due to 

a chaotic advection (11), and so this part of the chip was used to calculate the 

average flow velocity of the system. Furthermore, droplet microfluidic device can 

have or not a split region (Figure 3.1B) in the end of the design with 50 µm of width 

to accelerate the mixing efficiency of reagents inside microdroplets (10).  

PDMS microchips bonded with glass slide by plasma oxygen rendered 

surface hydrophilic. Thus, for the use of fluorinated oil as continuous phase of the 

emulsion system (Figure 3.1B), a treatment with Novec 1700 Electronic Grade 3M 
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Coating solution (MN, USA) was done, deposing a layer of fluoropolymer in the 

inner surfaces. For this, microdevices were filled with the electronic coating 

solution and heated at 150 °C for 30 minutes; this procedure was repeated three 

times. Then, microchips were cooled in room temperature and microchannels were 

filled with pure FC-40 oil, which remained in the system until the use. 

                                A 

 

B 

Figure 3.1 - Microfluidic devices. Cross-junction device for liposome production by 
a single hydrodynamic flow focusing (A) and droplet-based device for CL 
complexation with pDNA with serpentine channel and split regions (B). The droplet-
based devices designed varying the serpentine width (thin-TC and wide-WC 
channels). TC:  200 µm of width (D) and 9600 µm of linear length (L); WC: 400 µm 
of width (D) and 19200 µm of linear length (L). The channel in the split region have 
50 m of width (devices without split region were also investigated). 
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2.2. Cationic Liposome Production  

Cationic liposomes composed of egg phosphatidylcholine (EPC) (96% of 

purity), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) (99.8% of purity) 

and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (98% of purity) (Lipoid 

GmbH, Ludwigshafen, Germany) (50/25/25 % molar, respectively) were produced 

by single hydrodynamic flow focusing in a cross-junction device like Balbino et al. 

(23) (Figure 3.1A). Basically, the three lipids were dispersed in anhydrous ethanol 

to achieve 25 mM of total lipid concentration. To form cationic liposomes for gene 

delivery with this lipid composition is very important the order in which lipids are 

dispersed in the alcoholic solution, the grade purity of lipids, the method used to 

form liposomes and their concentration (24). The lipid dispersion was injected as 

center flow at 10.92 μL min−1 with a glass syringe (Hamilton, NV, USA) by syringe 

pump (KDScientific, model KDS-200, USA). Simultaneously, water (Samtec, SP, 

Brazil) were inserted at 54.6 μL min−1 by two sides of cross-junction chip. Liposome 

samples were collected and leaved for at least 2 hours at 4 °C. Then, samples 

were collected to physico-chemical characterization. Before choosing water as 

aqueous phase, others biocompatible solutions, like PBS buffer and OptiMEM 

culture medium were also tested. However, cationic liposomes in water had the 

best characteristics for the specific application of DCs transfection (see Annex II). 

2.3. Lipoplexes Synthesis and Recovery from A/O Emulsion 

Aqueous flows, cationic liposomes and pDNA, and the oil flow were injected 

in their respective inlets (Figure 3.1B) by syringe pumps Harvard (model 

HA3000W, MA, USA). The oil flow (FC40/Pico-Surf 1) was composed of 

perfluorocarbon oil Fluorinert Electronic Liquid FC-40 from 3M (Zwijndrecht, 

Belgium) with 5% v/v of Pico-Surf 1 from Sphere Fluidics (Cambridge, UK). The 

pDNA used was a plasmid pEGFP-N1 from Clontech (CA, USA) encoding green 

fluorescent protein (see Annex I) that was previously amplified using competent E. 

Coli bacteria and purified (kit Maxiprep PureLink from Invitrogen, CA, USA) (25). 

During complexation, the microchip was placed over a Peltier system (Watronix, 

CA, USA) to maintain temperature at 4 °C (23). After complexation process, the 
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obtained emulsion was centrifuged at 10,000 rpm for 4 minutes to separate 

phases. In the supernatant of emulsion lipoplexes were recovered, for then being 

characterized in terms of physico-chemical properties and/or applied for biological 

evaluation.  

It is important to highlight that this recovered procedure by centrifugation was 

used as the last step for all process that occurred in the droplet-based microfluidic 

device in order to obtain the aqueous phase from emulsion. 

2.4. Capillary (Ca) and Reynolds (Re) Numbers 

The capillary number (Ca) is a dimensionless number that relates viscous 

forces and surface tension between two immiscible phases, as demonstrated in 

Equation 3.1. 𝐶𝑎 =  𝜇𝐶𝑈𝛾             (Equation 3.1) 

where μC is the dynamic viscosity of continuous phase, U is the average flow 

velocity and γ is the surface tension between two immiscible phases. The dynamic 

viscosity of the continuous phase (μoil = 7.43 mPa s) was obtained by analyzing the 

material in Anton Paar rheometer (model Physica MCR301, Graz, Austria). The 

surface tension (γ = 15.82 mN m-1) was obtained by pendant drop method 

performed in Teclis tensiometer (model Tracker-S, Longessaigne, France). The 

average oil flow velocity (U) was determined in the serpentine region from 

measured area section. 

In microfluidic systems only laminar regime occurs (26). Thus, we used the 

Reynolds number obtained by Equation 3.2 to investigate mixing inside droplets 

provided by the serpentine geometry.   

Re = 𝜌𝐶𝑈𝑑ℎ𝜇𝐶            (Equation 3.2) 

where ρC is the density of continuous phase (ρoil = 1.85 kg m-3), U is the average 

flow velocity, dh is the hydraulic diameter (80 µm for TC or  89 µm for WC) and μC 

is the dynamic viscosity of continuous phase. 
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2.5. Physico-Chemical Characterization of Cationic Liposomes and Lipoplexes  

To characterize nanoparticles properties, the cationic liposomes and 

lipoplexes were diluted in water at 25 °C until 0.25 mM. The average hydrodynamic 

diameter, the size distribution, polydispersity index and zeta potential were 

measured by dynamic light scattering (Malvern Zetasizer Nano Series, model 

ZEN3600 - UK) using a Ne–He laser. The mean diameter and the distribution of 

particle sizes were calculated using CONTIN algorithm. Nanoparticles’ size was 

presented in number mean, number-weighted hydrodynamic mean diameter. 

Each experiment was conducted at least three times and statistical analysis 

performed with MS Excell 2007. The data was analyzed by ANOVA to compare the 

results in each group followed by Tukey's test at a p-value < 0.10. 

2.6. Biological Evaluation of Lipoplexes 

2.6.1. Generation of DCs from THP-1 Cell Line and Transfection With Lipoplexes 

THP-1 cells, derived from human monocytic leukemia cell line, were 

differentiated into dendritic cells as described by Berges et al. (27). THP-1 cells 

were cultivated in culture medium RPMI 1640 from Gibco-Invitrogen (NY, USA) 

supplemented with 0.1 M (2%) L-glutamine, fetal bovine serum (10%) and 

gentamycin (0.05%), at a concentration of 5 x 105 cells mL−1. To induce DC 

differentiation, the cytokines from Peprotech (NJ, USA) rhIL-4 (50 ng mL-1) and 

rhGM-CSF (50 ng mL-1) were added. Cells were cultured for 5 days to acquire the 

properties of immature dendritic cells (iDCs). Medium exchange was performed on 

the second day with fresh cytokine-supplemented medium. On the fifth day, iDCs 

were collected and seeded on 24-well plate in OptiMEM medium (reduced-serum 

medium from Gibco-Invitrogen, USA) for transfection. Cells were stimulated with 

cytokine rhTNF-α (50 ng mL-1) to induce mature dendritic cells (mDCs) as positive 

control, or with lipoplexes R+/- 1.5, 3, 5, 7 and 10 (2 μg pDNA / well) or cationic 

liposomes (1 mM) diluted in OptiMEM, or as negative control, no stimulant was 

added (iDC). Then, they were incubated for 3-4 hours at 37 °C and 5% CO2. 

Subsequently, liposome and lipoplexes were washed out and medium exchanged 
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by RPMI supplemented again. After this step, the DCs were incubated for more 2 

days to evaluate the transfection efficiency (TE).  

2.6.2. Flow Cytometry  

After 2 days post-transfection, dendritic cells were harvested and incubated 

for 20 min at 4°C with antibodies CD80, CD11c, CD86 and HLA-DR (Biolegend, 

CA, USA) conjugated to APC, PE-Cy5, PE and APC-Cy7, respectively. After 

incubation, cells were washed, fixed (2% paraformaldehyde) and the samples were 

acquired in a Flow Cytometer (FACScanto, BD Biosciences, CA, USA). At least 

10,000 events were acquired per sample. The data was analyzed using the FlowJo 

7.6 software (Tree Star, Inc., CA, USA). Cells were marked with anti-CD11c and 

anti-HLA-DR to identify dendritic cells in the population (see strategy of DCs 

analysis in Supplementary data, Figure S.2). The other antibodies, anti-CD80 and 

anti-CD86, were used in order to determinate DCs activation. Then, transfection 

efficiency was indirectly measured by quantification of GFP production through 

FITC fluorescence filter (see strategy of GFP analysis in Supplementary data, 

Figure S.3), procedure widely used for exploratory results of transfection (28).  

3. Results and Discussion  

3.1. Establishment of the best condition for droplet generation 

The first step was the establishment of processing conditions ensuring droplet 

formation with suitable performance and shape in the microfluidic device with 

serpentine (TC) and split regions. For this, we determined the capacity of droplet 

generation as function of aqueous flow rate (Qaqueous), containing only CLs, to 

reach the best inlet flow rates in which droplets were formed. The oil phase was 

composed by FC40/Pico-Surf 1 solution, with flow rate fixed at (Qoil) fixed at 2 μL 

min−1. In this situation, the assays were performed at 25 °C with Ca fixed at 3x10-3. 

Previous study determined Qaqueous range used in this work (see Annex II).  

Thus, Figure 3.2 illustrates some different flow regimes as function of Qaqueous. 

Considering the nondimensional drop size (λ), ratio of the droplet size to the 

serpentine channel width (20), in Qaqueous range between 0.22 and 0.47 μL min−1 
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was formed small droplets (Figure 3.2A) with λ = 0.82. Droplets formed in     

Qaqueous = 0.50 μL min−1 matched λ = 1.31, i.e. almost 1.5 times the width of the 

channel (Figure 3.2B). On the other hand, in Qaqueous between 0.53 and 1.33 μL 

min−1 (Figure 3.2C) were formed plugs (26) of λ = 2.10. At last, in Qaqueous above 

2.00 μL min−1 (Figure 3.2D) streams flowed in parallel. Thus, investigating the 

droplets size and shorter operating time, we chose the follow flow rates Qaqueous = 

0.50 μL min−1 and Qoil= 2 μL min−1 (Figure 3.2B) to form droplets in microchip with 

serpentine TC and split region. For further steps we fixed the volume fraction, ratio 

between Qaqueous and Qoil, at 0.25.   

     A                           B                           C                           D 

 

Figure 3.2 - Images of droplet formation in microfluidic system as function of 
aqueous flow rate (Qaqueous): (A) 0.22 - 0.47 μL min−1 with small droplets, (B) 0.50 
μL min−1 forms ideal droplets, (C) 0.53 - 1.33 μL min−1  forms plugs and (C) above 
2.00 μL min−1 produces parallel flow streams. The drop size (λ), ratio of the droplet 
size to the serpentine channel width, varies from λ = 0.82 (A), 1.31 (B) until 2.10 
(C). The assays were developed with fixed Ca = 3x10-3, Qoil = 2 μL min−1 and lipids 
from cationic liposomes at 2mM.  

3.2. Physico-Chemical properties of Cationic Liposome after droplet-based 

microfluidic processing 

The CL are formed by the self-assembly of two zwitterionic phospholipids, 

EPC and DOPE, and only one monocationic lipid, DOTAP. Since these lipids are 

amphiphilic molecules, one possibility is the interaction between the surfactant 

from the oil phase with liposomes, disrupting membranes or modifying the physico-

chemical properties, compromising lipoplex and transfection applications. To 

monitor possible changes in CL properties due to interaction between CL and Pico-

Surf 1surfactant, we measured the physico-chemical properties of CL before and 
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after being processed in the droplet system, as shown in Figure 3.3. In order to 

access CL properties after droplet-microfluidic processing, CL were injected at 0.67 

μL min−1 into the droplet-based microfluidic system (Figure 3.1B, serpentine-TC 

with split region), while the FC-40/Pico-Surf 1 was injected at 2 μL min−1 (device 

and flow rates similar to those used by Lee and Hsieh (29)). At the end, aqueous 

phase was recovered from w/o emulsion and characterized in terms of size, 

polydispersity and zeta potential. The size of cationic liposome before (95.54 ± 

15.38 nm) and after (86.85 ± 13.52 nm) droplet processing, the polydispersity 

index before (0.144 ± 0.016) and after (0.164 ± 0.022) and the zeta potential (60.50 

± 3.36 mV before and 57.60 ± 2.57 mV after) were similar (Supplementary data, 

Table S.1). Additionally, Figure 3.3 shows more clearly that there was no variation 

in liposome size distribution before and after processing in the droplet-based 

microfluidic device.  

 

Figure 3.3 - Number-weighted size distribution (diameter) of cationic liposomes 
before (solid line) and after (dashed line) being inserted in droplet-based 
microfluidic system. Each solid and dashed line represent mean of triplicate from 
independent experiments.  

Furthermore, following similar procedure, we replaced cationic liposomes by 

water as aqueous solution in order to verify a possible formation of surfactant 

micelles in the system. We verified the presence of colloidal structures close to 30 

nm in the water (data not shown) via dynamic light scattering. Thus, indicating that 

part of surfactant remained in the aqueous phase as micelles and it may be 

inserted in liposomes. However, observing results obtained with cationic liposomes 

(Figure 3.3), we confirmed that this residual surfactant was not appreciable to 
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change physico-chemical characteristics of the liposomes. In addition, oil FC-40 

and perfluoro-derived surfactants, like Pico-Surf 1, are biocompatible (30), so it is 

expected that the residual surfactant will not affect biological application of 

lipoplexes.  

3.3. Lipoplexes Synthesis: Influence of Molar Charge Ratio (R+/-) and Microchip 

Design  

The mainly factors that govern lipoplexes formation are cationic lipid/DNA 

charge ratio that affects the complexation kinetics (31) and the time and speed of 

mixing that influence the complex size distributions (32). Thus, we investigated the 

effect of molar charge ratio (ratio between cationic lipids from liposomes and 

nucleic acids) and microdevice design on the final physico-chemical properties of 

lipoplexes (Figure 3.4 and Supplementary data, Table S.2). First of all, we studied 

the operational parameter capillary number. For this, we used the microchip with 

serpentine-TC and split region (Figure 3.1B), fixed the R+/- at 3, the volume fraction 

at 0.25 and the capillary number ranged from 8x10-4 to 5x10-3 by varying the 

average flow velocity of the system (Supplementary data, Figure S.1). There was 

no tendency in lipoplexes properties according to Ca. Thus, we fixed the 

operational parameters volume fraction at 0.25 and capillary number at 3x10-3 

(average flow velocity 6x10-3 m s-1) for further steps investigation. 
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          A      

 

         B  

  

Figure 3.4 – Impact of experimental parameters R+/- (A) and microchip design (B) 
on lipoplexes characteristics in terms of average diameter (number mean), 
polydispersity (PdI) and zeta potential. Volume fraction was set at 0.25 and 
capillary number at 3x10-3. The droplet-based microfluidic system with serpentine-
TC and split region (Figure 3.1B) was used to investigate R+/- varying of 1.5, 3, 5, 7 
and 10. For microchip design evaluation, R+/- was fixed at 3.0 and tested droplet-
based platforms with serpentine region (thin-TC and wide-WC channels) and in the 
presence or absence of split region (Figure 3.1B). The error bars represent 
standard deviation of means (n = 3). Means statistically significant different by 
Tukey’s test (P<0.10) were flagged with an asterisk (*). 

The influence of droplet system method in lipoplex formation was studied by 

varying R+/- of 1.5, 3, 5, 7 and 10 in microchip serpentine-TC with split region 

(Figure 3.4A). Surprisingly, all lipoplexes produced showed monodisperse 

population around 100 nm and PdI 0.2 and zeta potential around 40 mV. 

Conventional lipoplex preparation by hand shaking or vortexing usually provides 

the large size distribution of lipoplexes with increasing amount of DNA added 

(31,33). Balbino et al. (34) investigated microfluidic synthesis of 

EPC/DOTAP/DOPE lipoplexes in only aqueous phase. The authors showed similar 

profiles of lipoplexes at the same R+/- range studied, with exception of R+/- 1.5 (with 
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more quantity of pDNA). In this R+/- they found lipoplexes, with negative charge, 

polydispersity 0.5 and size about 500 nm. As a result, the droplet microfluidic 

system presented in this work can load more amount of pDNA in CL while 

maintaining lipoplexes monodisperse and with positive charge, characteristics 

specially required for some therapeutic vaccines (35).  Moreover, in vitro studies 

demonstrated that nanoparticles of size between 100 and 200 nm and 

polydispersity less than 0.2 (homogeneous size distribution) are more easily 

internalized by mammalian cells, assuming that they would expend less energy in 

their capture (36,37). Cells usually have a negative surface charge, thus lipoplexes 

with positive charge were easier internalized (3), besides indicating storage 

stability of complexes over time. Therefore, it was expected that all lipoplexes 

investigated would be able to transfect dendritic cells. Moreover, the differences 

obtained from Balbino et al. (34) and this current work strongly suggest the 

superiority of droplet microfluidic systems in generate lipoplexes with high DNA 

loading, keeping the physico-chemical properties close to proper characteristics for 

transfection.  

Then, we investigated the influence of residence time and droplet mixing in 

complex properties by using different microdevice designs in lipoplexes formation 

(Figure 3.1B). For a given average flow velocity (U), the residence time of the liquid 

is increased by increasing the length of the channel so as to ensure complete 

mixing (39). In this work, we changed the residence time by modifying serpentine 

channel length and also the mixing by modifying serpentine channel width. The 

serpentine channel width interfere in the chaotic mixing inside droplets due to the 

fluid movement relative to the stationary walls (13). In some designs the mixing 

channel is branched into multiple narrower channels (split region) to ensure mixing 

in a shorter residence time (38). Thus, we used four different droplet-based 

microfluidic systems (Figure 3.1B), two types of serpentine widths (TC-200 μm and 

WC-400 μm) and in the presence or absence of split mixing region, to obtain 

lipoplexes with R+/- 3. Thus, the microchip with wide serpentine channel had the 

linear length 2 times the thin channel, leading to a residence time in WC (3.2 s) 2 

times greater than in TC (1.6 s), for a constant flow velocity (U = 6x10-3 m s-1). 
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Droplet-based microfluidic systems with thin and wide serpentine channels 

presented Re values of 1.3x10-4 and 1.2x10-4, respectively. The mixing contribution 

in this Re range is not dramatic (20).  

We can observe in Figure 3.4B that lipoplexes produced in all microchips 

presented average diameter next to 200 nm and PdI 0.2, exception of microfluidic 

system with wide serpentine channel without split region that showed higher PdI 

(0.392 ± 0.013). In this case, the use of serpentine-WC/without split presented 

negative influence on PdI index, suggesting poor mixture. The residence time in 

serpentine-WC/without split greater than in serpentine-TC/without split was not 

sufficient to decrease the lipoplexes PdI. However, the higher PdI value obtained in 

the serpentine-WC/without split is overcome with the addition of split region, 

favoring mixture. The serpentine-TC/without split showed that the mixing provided 

by the split region (10) it is not mandatory to control lipoplex PdI, since only 

generation of small droplets due to the constriction of serpentine channel width 

already lead to this result. Handique and Burns (39) modeled the mixing of solutes 

present in a drop moving in a slit-type microchannel. They showed that shorter 

plugs will mix in a shorter distance and therefore in a shorter time, considering a 

constant average flow velocity. Thus, to complex CL with pDNA the most important 

parameter in this droplet-microfluidic system is the mixing generated in the thin 

serpentine channel. Rakhmanov et al. (32) compared different methods of 

lipoplexes production, a slow preparation by magnetically stirred and a quick 

preparation by pipette shaking. As a result, for the low concentrated solutions, the 

most monodisperse lipoplex population was formed by magnetically stirred 

method, showing the relevance of a controlled mixing. Moreover, zeta potential of 

lipoplexes remained around 40 mV, independent of microdevice design used 

(Figure 3.4B). The choice between microchip with thin or wide serpentine channel 

should not be only related to the mixing provided by them, but also the ease of 

system handling. Wide serpentine channel is easier and faster to operate than thin 

channel, because of the higher flow used and less chance of clogging. Additionally, 

the connection of a split region to this serpentine-WC channel improves mixing 

inside droplets. Thus, we decided to use the droplet-based microfluidic systems 
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with wide serpentine channel and split region to produce lipoplexes for DCs 

transfection. 

3.4. Biological Evaluation of Lipoplexes to Transfect DCs  

Lipoplexes produced in the chosen microfluidic system parameters, droplet-

based microfluidic system with serpentine-WC with split region operating at fixed 

volume fraction 0.25, capillary number at 3x10-3 and R+/- varying in 1.5, 3, 5, 7 and 

10, were evaluated in their capacity to transfect DCs. For this, at first, lipoplexes 

were characterized in terms of average diameter, PdI and zeta potential as shown 

in Figure 3.5.  

   A                                           B                                             C 

      

Figure 3.5  – Physico-chemical properties of lipoplexes produced in microfluidic 
system in terms of average diameter (number mean) (A), polydispersity (PdI) (B) 
and zeta potential (C). The droplet-based microfluidic system with wide serpentine 
channel (WC) and split region was operated with volume fraction 0.25, Ca = 3x10-3, 
Qoil = 6.5 μL min−1 and R+/- varying in 1.5, 3, 5, 7 and 10. The error bars represent 
standard deviation of means (n = 4). Means statistically significant different by 
Tukey’s test (P<0.10) were flagged with an asterisk (*) and non-different means 
with “ns”. 

Similarly as lipoplexes synthesized in microchip with serpentine-TC with split 

region (Figure 3.1B), lipoplexes obtained in the chosen conditions (Figure 3.5) 

showed size around 100 nm and PdI 0.20. However, lipoplexes R+/- 5 and 7 

obtained in chosen conditions (Figure 3.5B) showed higher PdI (0.30 ± 0.03 and 

0.35 ± 0.10, respectively). This is probably due to irregular motion of the syringe 

pumps that induced fluctuations  in  relative  flow  rates (26); reflecting in the 

mixing for lipoplex formation kinetics. Charge of lipoplexes decreased from 40 mV 
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in thin serpentine channel (Figure 3.4B) to 30 mV when synthesized in wide 

channel (Figure 3.5C). The better mixing provided by thin channel lead a lower 

reduction in liposome charge with pDNA addition, than in wide channel. After 

characterized, these lipoplexes synthesized in microchip serpentine-WC with split 

were evaluated in terms of efficacy to transfect (TE) dendritic cells in vitro by 

analyzing cell GFP production (Figure 3.6).   

 

Figure 3.6 - In vitro transfection efficacy (TE) of dendritic cells using lipoplexes at 
different molar charge ratios (R+/- 1.5, 3, 5, 7 and 10) synthesized by microfluidics 
method. The droplet-based microfluidic system with wide serpentine channel (WC) 
and split region was operated with volume fraction 0.25, Ca = 3x10-3, Qoil = 6.5 μL 
min−1 and R+/- varying in 1.5, 3, 5, 7 and 10. The error bars represent standard 
deviation of means (n = 4). Means statistically significant different by Tukey’s test 
(P<0.10) were flagged with an asterisk (*).  

DCs showed higher transfection efficiency when using lipoplexes R+/- 10 

produced by microfluidic method (4.44 ± 0.35%) (Figure 3.6). The low transfection 

efficiency of DCs via lipofection is already known. VAN TENDELOO et al. (5) 

transfected monocyte-derived DCs with mRNA encoding GFP by lipofection 

achieving 4% of TE. DCs use phagocytosis and/or macropyocytosis as effective 

pathway for transfection (9), which requires more precise lipoplex size and PdI to 

transfect (42). Besides the statically analysis, lipoplexes R+/- 10 showed tendency 

to lower size (85.27 nm) and PdI (0.20) than the others. Moreover, transfected DC 

with lipoplexes containing less nucleic acid (R+/- 10) can be advantageous, since 

DCs exposed to high concentration of nucleic acids can significantly express less 

cytokines and activation markers (43).  
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 Besides transfecting, lipoplexes should activate DCs in order to allow 

antigen presenting cells to play their role as immunological response starter. For 

this, the increase of costimulatory molecules expression by dendritic cells was 

evaluated for lipoplexes synthetized by microfluidic method. Figure 3.7 showed DC 

expression of CD80 and CD86 when treated with lipoplexes R+/- 1.5, 3, 5, 7 and 10. 

         A 

 
        B 

        C 

 
Figure 3.7 - DCs activation after transfection with lipoplexes produced by 
microfluidics method. The droplet-based microfluidic system with wide serpentine 
channel (WC) and split region was operated with volume fraction 0.25, Ca = 3x10-3, 
Qoil = 6.5 μL min−1 and R+/- varying in 1.5, 3, 5, 7 and 10. Histograms of CD80 (A) 
and CD86 (B) (costimulatory molecules B7-1 and B7-2, respectively) expressed by 
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DCs is shown. Histograms of DC granulocyte (SSC – side scatter) (C) indicate 
lipoplex internalization by cells. Histograms are composed of iDC (immature 
dendritic cells) represented by solid dark lines overlaid by histogram of DCs treated 
with corresponding type of lipoplex represented by solid-filled background. 

 The median fluorescence intensity (MFI) of CD80 expressed by DCs 

transfected with lipoplexes R+/- 1.5 (MFI = 5.73), 3 (11.00), 5 (11.10), 7 (10.60) and 

10 (8.74) increased in relation to iDC (3.92), as shown by Figure 3.7A shifting the 

corresponding curve to right. In a similar way, the MFI of CD86 expression 

increased for all lipoplexes R+/- 1.5 (10.30), 3 (15.40), 5 (15.10), 7 (13.70) and 10 

(11.00) regarding to iDC (8.74) (Figure 3.7B). The positive control (mDC – mature 

dendritc cells) also increased the MFI of CD80 (4.49) and CD86 (9.56) expression. 

Beyond that, we verified, such as in previously studies (7,8), that empty cationic 

liposomes EPC/DOTAP/DOPE activated DCs (MFI of CD80 increased to 7.23 and 

for CD86 to 12.20). The lipofection action upon DCs activation was also showed by 

Denis-Mize et al. (42) by co-culturing transfected DCs via cationic microparticles 

with antigen-specific T cells. They verified an increase in IL-2 production by the 

culture in function of microparticle tested.  

Another parameter evaluate was the variation in DC granularity (SSC) 

according to lipoplexes used (Figure 3.7C). DCs showed to increase granularity 

(internal structure and complexity) when incorporating this cationic liposomes (7). 

Thus, median of SSC of DCs increased when transfected with all lipoplexes tested 

R+/- 1.5 (median of SSC = 258), 3 (410), 5 (415), 7 (422) and 10 (399) comparing 

to iDC (248) and mDC (217). Even though easier uptake by DCs, lipoplex R+/- 7 did 

not present the best TE since there is a specific pathway that lipoplexes should be 

internalized to effectively produce the recombinant protein (9).  

4. Conclusion 

The droplet-based microfluidic system was used to produce lipoplexes in 

reproducible and suitable strategy to transfect DCs. Droplet system operating at 

volume fraction, ratio between Qaqueous and Qoil, 0.25 ensure the droplet formation 

with size 1.5 times the serpentine channel. Cationic liposomes maintain their 

properties after processing, even if surfactant residual in the aqueous phase. Thus, 
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allowing the use of these cationic liposomes in other droplet devices. This droplet 

microfluidic system allow the incorporation of more amount of pDNA to CL (R+/- 

=1.5) than conventional method, while maintaining lipoplexes monodisperse and 

with positive charge. Mixing provided by droplets formed in thin serpentine channel 

(200 µm of width) lead to decrease lipoplexes polydispersity. Lipoplexes R+/- 10, 

exhibiting lower size and PdI tendency, provided the higher transfection efficiency 

in DCs, besides activating them. Therefore the droplet-based microfluidic system 

showed as a potential tool to modulate lipoplexes properties on demand.  
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7. Supplementary data 

7.1. Physico-Chemical properties of Cationic Liposome Stability after droplet-

based microfluidic processing 

Investigation of cationic liposomes stability in w/o emulsion by measuring 

physico-chemical properties of cationic liposomes before and after processing in 

droplet-based microfluidic device (Table S.1).  

Table S.1 - Physico-chemical properties of cationic liposomes before and after 
droplet-based microfluidic processing.  

Results represent means ± S.D., n = 3.  
(i) Number-weighted average diameter and distribution (N-distribution).  
(ii)PdI: Polydispersity index of samples vary in ascending order from 0 to 1. 

7.2. Investigation of experimental parameters: Capillary Number (Ca), Molar 

Charge Ratio (R+/-) and Microchip Design  

The effect of capillary number in lipoplexes physico-chemical properties was 

showed in Figure S.1. Comparing physico-chemical characteristics of lipoplexes 

formed in Ca ranging from 8x10-4 to 5x10-3 (Figure S.1), there was no difference in 

lipoplexes size around 100 nm, even the high standard deviation (144.03 ± 52.16 

nm) presented by lipoplexes produced at Ca 1x10-3. In general, lipoplexes 

polydispersity remained about 0.2, exception of lipoplexes obtained at Ca 1x10 -3 

that presented higher polydispersity (0.467 ± 0.005). Moreover, considering zeta 

potential analysis, lipoplexes had a positive charge around 45 mV, even with pDNA 

Cationic 
liposomes 

Mean diameter (± S.D.) nm 
and distribution (± S.D.) %(i) 

Pdl(ii) 
Zeta potential  
(± S.D.) mV 

Before droplet 
processing 

95.54 ± 15.38 (100 ± 0) 0.144 ± 0.016 60.50 ± 3.36 

After droplet 
processing 

86.85 ± 13.52 (100 ± 0) 0.164 ± 0.022 57.60 ± 2.57 
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addiction in cationic liposomes. However, when produced at Ca 1x10-4 and 1x10-3, 

their charge decreased achieving 25.03 ± 6.64 mV and 30.87 ± 4.10 mV, 

respectively.  

 A                                          B                                          C 

 

Figure S.1 – Impact of capillary number (Ca) on lipoplexes characteristics in terms 
of size (A), polydispersity (PdI) (B) and zeta potential (C). The droplet-based 
microfluidic system with serpentine-TC and split region (Figure 3.1B) was set at 
volume fraction 0.25, R+/- = 3 and varying Ca from 8x10-4 to 5x10-3. The error bars 
represent standard deviation of means (n = 3). Means statistically significant 
different by Tukey’s test (P<0.10) were flagged with an asterisk (*) and non-
different means with “ns”. 
 

Then, the effect of molar charge ratio and different microdevice designs on 
the final physico-chemical properties of lipoplexes synthesized in droplet-based 
microfluidic devices (Table S.2). 

Table S.2 - The effect of molar charge ratio (R+/-) and microchip design on physico-
chemical properties of lipoplexes.  

 Variable 
parameter 

Mean diameter (± S.D.) nm and 
distribution (± S.D.) %(iii) 

Pdl(iv) 
Zeta potential 
(± S.D.) mV 

R
+

/-
(i
)  

1.5 176.95 ± 35.71 (100.0 ± 0) 0.292 ± 0.152 39.50 ± 8.51 

3.0 161.10 ± 15.98 (100.0 ± 0) 0.202 ± 0.029 38.83 ± 9.42 

5.0 158.45 ± 14.50 (100.0 ± 0) 0.281 ± 0.111 51.73 ± 7.91 

7.0 138.05 ± 2.48 (100.0 ± 0) 0.217 ± 0.069 44.10 ± 6.32 

10.0 151.75 ± 2.05 (100.0 ± 0) 0.185 ± 0.057 49.73 ± 10.30 

D
es

ig
n(i

i)
 

TC without 
split 

249.35 ± 3.23 (56.2 ± 7.92) 
107.34 ± 17.62 (43.8 ± 7.92) 0.235 ± 0.057 41.50 ± 7.64 

TC with split 159.80 ± 17.82 (100.0 ± 0) 0.189 ± 0.024 44.20 ± 2.12 
WC without 

split 
249.4 ± 7.57 (58.3 ± 7.5) 

99.58 ± 12.76 (41.7 ± 7.5) 0.392 ± 0.013 27.90 ± 1.41 

WC with split 159.07 ± 13.06 (100.0 ± 0) 0.240 ± 0.016 36.80 ± 14.40 
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Then, to determinate the transfection efficiency, we used FITC histograms of 

DCs treated with liposomes and lipoplexes, like showed in Figure S.3, in order to 

detect the GFP production and, consequently, the ratio between GFP producer 

cells and total of DCs in Gate R1. For this, we plotted FITC histogram of DCs in 

Gate R1 treated with liposomes (filled graph with solid line in Figure S.3) to define 

the gate of negative FITC that is around 99% of this population. Then, we overlaid 

the graph with the FITC histogram of DCs in Gate R1 treated with lipoplexes 

(empty graph with dot line in Figure S.3) to define the TE provided by the 

lipoplexes analyzed.  

 

 

Figure S.3 – Strategy of transfection efficiency analysis. At first, we determined the 
negative gate of FITC that is around 99% of this population in the FITC histogram 
of DCs from Gate R1 treated with liposomes (filled graph with solid line). Then, we 
overlaid the graph with the FITC histogram of DCs from Gate R1 treated with 
lipoplexes (empty graph with dot line) in order to define the TE provided by the 
lipoplexes analyzed.  

The procedure to define Gate R1 was performed for all samples, such as 

mature dendritic cells stimulated by TNF-α (positive control - mDC), immature 

dendritic cells (iDC), DCs treated with liposomes and lipoplexes. In case of 

transfection efficiency, the strategy showed below was applied for all DCs in Gate 

R1 treated with liposome and lipoplexes.  
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Abstract  

Transient gene expression technology (TGE) enables the rapid production of 

large amount of recombinant proteins, without the need of fastidious screening of 

the producing cells required in conventional protocols using stable transfection 

(ST). However, several barriers require to be overcome before reaching the 

production yield achievable by ST. In view of optimizing the production yields in 

TGE, a better understanding and control over the transfection conditions at single 

cell level using are critically required. In this study, a universal droplet microfluidic 

platform was used to assess the heterogeneities of CHO-S population transiently 

transfected with different types of lipoplexes. A single cell analysis of GFP 

production kinetics revealed the presence of a subpopulation producing 

significantly high levels of recombinant proteins. The charge and the DNA content 

of the different lipoplexes regulated differentially HPs average size, their relative 

abundance and their specific productivity. These high producers showed increased 

cell size in comparison to the average population. Lipoplexes with positive charge 

produced more HPs. Lipoplexes loading more amount of pDNA showed the higher 

GFP specific productivity of HPs.  

 

Keywords: droplet microfluidics, transient gene expression, cationic liposomes, 

single-cell analysis. 

1. Introduction 

In the past decades, Chinese Ovary cells (CHO) have emerged as one of the 

most powerful tool for the production of recombinant therapeutic proteins. CHO 

cells can secrete very high recombinant product yields, which glycosilation profile 

promotes their efficient bioactivity. Moreover, CHO cells have been successfully 

adapted for expansion in serum free media and for large-scale culture in stirred 

tank bioreactors (1,2). Consequently, current bioprocess making use of CHO cells 

can effectively meet the clinical demand (3).  

The first step to achieve the production of recombinant proteins by CHO cells 

requires their genetic engineering. While CHO cells can be easily transfected, 
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current protocols require transgene integration in the host genome, which usually 

followed by lengthy procedure of clonal selection and adaption to large-scale and 

animal protein free culture conditions (3). Contrasting with these labor-intensive 

procedures of stable transfection (ST), transient gene expression technology 

(TGE) enables the rapid production of large amount of recombinant, without the 

need of fastidious screening of the producing cells. Moreover, no adaption to new 

culture condition is required (4). However, several barriers require to be overcome 

before reaching the production yield achievable by ST. Among them, because of 

the episomal location of transgene, exogenous DNA is lost after several rounds of 

cell division. As a consequence, the production occurs for significantly shorter time 

period than ST. In addition, the limited control over DNA delivery induces a large 

heterogeneity in the production rate of individual cells (5). Consequently, in view of 

optimizing the production yields, a better understanding and control over the 

transfection conditions at single cell level using TGE are critically required. 

Several carrier systems, such as viral and nonviral vectors, are currently used 

for the delivery of recombinant nucleic acids into producing cells (6). While nonviral 

systems complexed with nucleic acids (e.g. lipoplexes and polyplexes) show 

significantly lower transfection efficiency, they demonstrate biological inertness, 

improved safety and they can be easily produced at large-scale, in contrast to viral 

systems. Consequently, current research efforts are directed to increase the 

efficiency of nonviral vectors for DNA delivery, by better understanding the 

mechanism of lipoplex uptake and internalization (7).  

On other hand, the recent advances in microfluidics have created exciting 

prospects for gene delivery and therapy. The controlled hydrodynamics within 

microfluidic systems enables precise control of parameters involved in gene 

transfection, together with a significant reduction of the volumes of reagents (8). 

More recently, droplets microfluidics has enabled the development of new tools for 

cell manipulation, such as the encapsulation of individual cells, the biological 

compartmentalization etc (9,10). More importantly, the rapid accumulation of 

secreted protein in droplets enables their detection within shorter time period than 

conventional culture systems (e.g. culture flask, bioreactors etc.). In addition, 
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single-cells in droplets can be monitored for long time periods, which enables to 

dynamically track individualized response to biological stimuli by optical imaging 

(11). However, while investigations demonstrated the capability of such devices to 

support non-viral transfection (12), the full capability droplets to support the long 

term tracking and, consequently, to better understand the cell production 

heterogeneity after TGE has not been exploited so far. 

Thus, this work aims at deeply investigating the response of a CHO-S 

(recombinant CHO cells suspension culture) population under different transient 

transfection conditions. For this purpose, the applications a droplets microfluidic 

platform will be extended to investigate, at the single cell level, the influence of 

different types of lipoplexes on production of recombinant GFP.  

2. Materials and methods 

2.1. Microfabrication 

Standard dry soft lithography was used for the fabrication of the single-cell 

microchip and the liposome production device, as previously described (13). 

Briefly, dry film photoresists (Eternal Laminar, Taiwan) were sequentially laminated 

with an office laminator (PEAK PS320, UK) at 100°C on a glass slide, then 

exposed to UV light (LightningCure LC8, Hamamatsu, Japan) with the photo-

masks. The molds were revealed using a 1% w/w K2CO3 (Sigma-Aldrich, USA). 

Polydimethylsiloxane (PDMS, Dow-Corning Sylgard 184, USA, 1/10 ratio of curing 

agent to bulk material) was poured on mold and cured 2 h at 70 °C. The replicate 

was covalently bonded to a glass slide using a plasma cleaner (Harrick, Ithaca, 

USA). In order to provide the manipulation of aqueous droplets in oil, the chips 

were filled 3 times with Novec Surface Modifer (3M, Paris, France), for 30 minutes 

at 110°C on a hot plate. In case of chip for liposome production, this surface 

treatment was not necessary.   

The microchip design consists in a 2D chamber with two inlets and one outlet 

(Figure 4.1A). Single-cell droplets were trapped in 1495 square anchors of             

d = 120 μm of side, spaced by δ = 240 μm (Figure 4.1A). The chamber has h1 = 35 

μm of height and the anchors h = 135 μm (Figure 4.1B). Cationic liposomes (CL) 
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were produced in a single hydrodynamic focusing microfluidic device like Balbino 

et al. (2013). The cross-junction design has a rectangular cross-section of depth 

100 μm and height 135 μm.  

 

Figure 4.1 - Design of microchip where CHO-S cells were cultivated. The microchip 
dimension is 0.5 × 4.8 cm with 1495 square anchors (115 × 13). The microchip 
have two inlets: 1 for oil phase (FC-40/RAN) and 2 for aqueous phase (cells + 
lipoplexes + agarose), and one exit (3). Microchip top view (A) shows that each 
square anchor has d = 120 μm of side, spaced by δ = 240 μm. Lateral section (B) 
shows that the chamber height is h1 = 35 μm and the anchor height h = 135 μm.  

2.2. Production and Characterization of CL and their Complexes 

Cationic liposomes were formed along the main channel of cross-junction 

microfluidic device. At first, EGG (egg phosphatidylcholine), DOTAP (1,2-dioleoyl-

3-trimethylammonium-propane) and DOPE (1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine) (50/25/25 % molar) all from Lipoid (Germany) were 

dispersed in anhydrous ethanol to achieve 25 mM of total lipid concentration, 

following the protocol established by Rigoletto et al. (15). The lipid dispersion was 

injected into the center flow at 10.92 μL min−1. Simultaneously, DEPC-treated water 

(Life Technologies, USA) were injected at 54.6 μL min−1 into two lateral sides. 
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Liposome samples were collected from the exit and leaved for at least 4 hours at   

4 °C. 

 For lipoplexes formation, the CL and pDNA (pMAX GFP, Lonza – see Annex 

I) were mixed by vortexing for 30 seconds. Several liposomes/pMAX GFP molar 

ratios were used to produce different types of lipoplexes, characterized by R+/-, the 

ratio between the positive charge from cationic liposomes and negative charge 

from pDNA. Cells were transfected setting pDNA at 0.07 µg and liposomes varying 

from 1.77 µL (R+/- = 5), 1.05 µL (R+/- = 3) and 0.53 µL (R+/- = 1.5).    

To characterize the nanoparticles properties, CL and their lipoplexes were 

diluted in DEPC water. The average hydrodynamic diameter, the size distribution, 

polydispersity index and zeta potential were measured by dynamic light scattering 

(the scattering angle was 173°, backscattering) (Malvern Zetasizer Nano Series, 

model ZEN3600 - UK) using a Ne–He laser. The mean diameter and the 

distribution of particle sizes were calculated using CONTIN algorithm. 

2.3. Cell Culture and Labeling 

FreeStyle CHO-S (Life Technologies, CA, USA) cells were cultivated at 37°C 

into 25 cm2 Ultra-Low Attachment flasks (Corning, USA) in a humidified incubation 

set up at 8% CO2. The culture medium was composed of FreeStyle CHO 

Expression Medium supplemented with 8 mM GlutaMAX (Gibco, USA). The cells 

were passaged every 48–72 hours, by reseeding at a concentration of 1 x 105 

cells.mL−1. 

To monitor the CHO-S behavior in culture, the cells were labeled with 

CellTracker Red CMTPX Dye (Thermo Scientific), following the manufacturer 

instructions. To measure the viability, the CHO-S were stained for ReadyProbes 

Cell Viability Imaging Kit Blue/Red (Thermo Scientific), according to the provided 

directions. 

2.4. Gels 

Type IX ultra-low-gelling Agarose (Sigma) was used to provide a mechanical 

support for the non-adherence cells to keep them stationary. The EEO 
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(electroendosmosis) of this specific type of agarose is low (i.e. <0.12), ensuring 

limited electrostatic interactions (either attractive or repulsive) between charged 

lipoplexes and the hydrogel. The average pore size of the agarose gels is of about 

500 nm, thus significantly larger than the lipoplexes size. For the experiments, a 70 

L solution containing 5 x 103 cells in culture medium was mixed with a 0.3% liquid 

agarose solution. The concentration of resulting agarose gels was of about 1%. At 

this concentration, the mechanical properties of the agarose gel enable the cells to 

be firmly retained in the anchors (16). However, it was expected to observe a 

limited cell growth of the agarose encapsulated CHO-S, due to the low metastatic 

potential and the low degree of transformation of CHO-S at low passage number 

(17).  

2.5. Chip Loading and In-Situ Transfection 

The chip loading with cells was performed using a three-step protocol, as 

previously described (16).  (1) The microchip is entirely filled with FC-40 (Fluorinert 

Electronic Liquid FC-40 from 3M, USA), a fluorinated oil, supplemented with 0.5% 

(w/v) a PEGylated surfactant (008-FluoroSurfactant, RAN Biotechnologies, USA); 

(2) the FC-40/surfactant flow is stopped and a solution containing 5 x 103 cells (70 

µL), 3 % w/v ultra-low gelling agarose (Sigma) (30 µL) and 4 µL of lipoplexes at 

different molar charge ratio (R+/- = 1.5, 3 and 5) in culture medium is flowed at 10 

µL min-1, we used 10-5 µg pDNA/cell and aprox. 105 lipoplexes (number of 

particles)/cell for all conditions (see supplementary data);  (3) once the chamber is 

filled the flow of cells/lipoplexes solution is stopped and FC-40/RAN inserted at a 

flow rate increasing from 5 to 50 µL min-1 to push the cells/lipoplexes solution 

towards the exit. This creates droplets containing the cells and the lipoplexes 

sample immobilized on each anchor (18). To promote the interaction between the 

cells and lipoplexes, the chip was placed for 1 hour in the CO2 incubator. After 

incubation, the chip was flushed with pure FC-40 at 20 µL min-1 to wash surfactant 

and the agarose was gelled by placing the chip at 4 °C for 15 minutes. The 

solidification of the gel droplets allowed us to replace the oil with culture medium, 

which was flushed into the chip at 20 µL min-1 for 10 minutes in order to wash away 
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the remaining not internalized lipoplexes. Finally, the microchip was filled again 

with FC-40/surfactant, which surrounded the agarose spheres, thus isolating the 

droplets from each other. The GFP production was tracked by time lapse 

microscopy for 62 hours using a fluorescents microscope (Nikon Eclipse Ti-U, 

Japan), equipped with a EM-CCD (Andor Technology, Northern Ireland). 

2.6. Image and Data Analysis 

To track recombinant protein production, images were taken every two hours 

in bright field and in fluorescence to detect CellTracker Red (red filter) and GFP 

(green filter). Recombinant GFP production was measured by quantifying the 

green filter intensity evolution of each detected cell. A custom-made MATLAB 

R2015b program was used to process the images. First, the images with 

CellTracker Red signal in anchors were thresholded and converted into masks. 

The objects with a diameter comprised between 10 and 25 µm were considered as 

cells. The green signal intensity (Icell) was then quantified for each mask derived 

from the red labeled objects. The green signal measured in rest of the anchors was 

considered as the background (Iback). The green signal per cell (I) was defined as 

the value of the green signal in the mask minus the green signal in the background: 

I=Icell-Iback. In further calculations, it was useful to measure the variation in I 

between each time and the initial value (I0). For this we define I =I-I0. 

To measure cell viability, single cells were identified as above from the DAPI 

signal (i.e. NucBlue™ - stained cells). The cells in the DAPI masks labeled for 

Propidum Iodide were considered as dead cells.   

2.7. Statistical Analysis  

Each experiment was conducted at least two times. To assess the statistical 

significance between three independent samples, we used the Kruskal-Wallis test 

and, to compare two related samples, we used Wilcoxon rank sum test. A p-value 

< 0.05 was considered statistically significant for both tests. 
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3. Results and Discussion 

TGE enables the production of high recombinant protein yields, whithout the 

need of lenghty procedures of clonal selection. However, there have been few 

investigations on the contribution of individual cells on the rate of recombinant 

protein production of the global population. This work investigates the 

heterogeneities of GFP expression in a CHO-S population transfected with 

differents types of lipoplexes. The cationic liposomes EPC/DOTAP/DOPE were 

produced on a chip and then complex with recombinant DNA in various molar 

charge ratios (R+/-). Lipoplexes were characterized based on their diameter, PdI 

and ζ. Then, CHO-S were individualized and in situ transfected using a universal 

droplet microfluidic chip (16). 

3.1. Characterization of the Physico-Chemical Properties of Liposomes and 

Lipoplexes  

Cationic liposomes (EPC/DOTAP/DOPE) and lipoplexes (R+/- = 1.5, 3, 5) had 

their properties (size; polydispersity, PdI; and zeta potential, ζ) analyzed and 

compared by dynamic light scattering (Figure 4.2).  
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Figure 4.2 - Physico-chemical properties of CL (cationic liposomes 
EPC/DOTAP/DOPE) and their lipoplexes R+/- = 5, 3 and 1.5. (A) Size represented 
by intensity-weighted distribution disposed in a way to show the increase in ratio 
pDNA / liposomes when getting down, like represented by arrow in the right. The 
dotted, dashed and solid lines in each graph represent one independent size 
distribution. (B) Zeta potential was no significantly different (ns) between cationic 
liposome and lipoplexes R+/ 5, and between lipoplexes R+/- 3 and 1.5, but different 
among groups by Wilcoxon rank sum test at 5% significance level. Measures were 
done in the same conditions as nanoparticles were mixed with cells, i.e., CL and its 
lipoplexes was diluted in DEPC water. Results represent means ± S.D., n = 3.  

The CL average diameter was of 113.56 ± 1.49 nm. The diameter of the 

liposome population presented a monomodal distribution, as shown by a single 

peak around 110 nm (Figure 2A). The PdI of the CL was of 0.193 ± 0.013. We can 

observe that increasing the pDNA content into the liposomes (i.e. decreasing R+/- 

values from 5 to 1.5), the intensity-weighted size distribution tend to increase its 

heterogeneity. This tendency has already been discussed by Balbino et al. (2012), 

demonstrating that the number of double bilayers increases as pDNA content 

increases and specially for R+/- close to 1.8 it can be detected the presence of a 

fraction of aggregates with multiple bilayers.The lipoplex average size was    

108.03 ± 1.20, 106.57 ± 1.36 and 157.67 ± 9.69 nm, for  R+/- 5,  3 and 1.5, 

respectively. Besides the differences in heterogeneity, lipoplexes presented PdIs 

ranging from 0.15 to 0.21.   
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The electric charge of liposomes and the different lipoplexes was analyzed by 

measuring their zeta potential (ζ). The cationic liposomes EPC/DOTAP/DOPE 

presented cationic characteristic and showed similar ζ (i.e. 48.7 ± 13.92 mV) 

(Figure 2B). The net charge of R+/- 5 lipoplex was similar to the empty liposomes (ζ 

= 45.10 ± 3.57 mV). Surprisingly, the complexation with more pDNA significantly 

increased the electronegativity of R+/- 3 and 1.5 lipoplexes (i.e. - 15.80 ± 4.24 mV 

and - 15.40 ± 3.06 mV, respectively) (Figure 2B), since previous studies 

demonstrated that these lipoplexes presented positive zeta potential (19,20). The 

differences can be related to the conditions for liposome synthesis and pDNA 

complexation; this present work used DEPC-treated water as diluent while other 

studies with this liposome system used PBS (19) or sterile water for injection (20). 

3.2. Single CHO-S Cell Trapping and Transfection on Chip 

The chip consisted in a high aspect ratio chamber equipped with 1495 

anchors. The protocol began with the entire chip filling with oil phase FC-40/RAN, 

which was then replaced by an aqueous phase containing CHO-S cells, liquid 

agarose and culture medium. The capillary anchors provided high confinement 

areas for the aqueous phase, contrasting with its lower confinement in the culture 

chamber. The oil flow in the chamber containing the aqueous phase induced a 

Rayleigh-Plateau instability around the anchors, a local minima of the surface 

energy of the aqueous–oil interfaces (21). Consequently, the procedure yielded to 

the formation of 1495 monodispersed aqueous droplets of a 2 nL volume, trapped 

in the anchors (Figure 4.3A). After trapping, the distribution of CHO-S cells inside 

the anchors follows a Poisson law (i.e. 33% of the anchors contained only one cell) 

(Figure 4.3B). In the following part of this study, only the anchors containing single 

CHO-S cell will be considered for the analysis. As the CHO-S cells were 

encapsulated in agarose, its gelation enabled to mechanically retain the cells in the 

anchors and to perform several rounds of phase change (i.e. oil-to-medium and 

medium-to-oil). This phase change was necessary to avoid cell nutrition depletion 

and toxic metabolites. Thus, the protocol resulted in the isolation of single CHO-S 

cells and it enabled long-term culture (at least up to 62h) with an individual cell 
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tracking. By the end to the culture period, the isolated single CHO-S remains highly 

viable on-chip (81.09 ± 13.39%), just as usually cells cultivated in conventional well 

plates (Figure 4.3C).  

Next, the platform was applied for studying the CHO-S productivity in GFP by 

transient transfection using the different types of lipoplexes. For this purpose, the 

aqueous phase containing CHO-S cells, liquid agarose and culture medium was 

supplemented with the CL complexed with pMAX-GFP. CHO-S cells were 

incubated with lipoplexes for 4 hours in the anchors to interact with pDNA. Then, 

phase change was performed to wash the excess of lipoplexes from the microchip. 

The potential toxicity of the lipoplexes was examined by Live/Dead staining and the 

production of GFP was kinetically monitored by time lapse, immediately after the 

washing of the excess of lipoplexes. Figure 4.3C demonstrated that CHO-S 

retained high viability after transfection and long-term culture, whatever the type of 

lipoplexes (74.69 ± 35.90% for R+/- 5, 70.78 ± 25.52% for R+/- 3 and 88.15 ± 1.32% 

for R+/- 1.5). In addition, the gradual increase in GFP signal indicated the efficacy of 

the transfection under the different conditions tested (Figure 4.3D).  
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Figure 4.3 – CHO-S cells transfection with lipoplexes at R+/- 5, 3, 1.5 in the 
microfluidic device. (A) Large scan at 4x magnification of the whole microchip with 
1495 anchored droplets. Scale bar: 200 µm. (B) Distribution of the number of cells 
per droplet (bars), and best fit to a Poisson distribution (dashed line). (C) View of a 
typical anchor at 10x magnification, showing an overlay of bright-field and DAPI 
(live) and TRITC (dead) signals. Images at first (0h) and final (62h) time of 
experiment are shown. Bar graphs show CHO-S viability for different conditions. 
There is no significant difference (ns) of cell viability between different conditions 
by Wilcoxon rank sum test at 5% significance level. Scale bars represent 50 µm. 
Results represent means ± S.D., n = 2. (D) For transfection analysis, FITC filter 
was used to quantify GFP production and TRITC to track all cells during the time-
lapse. Shown here are overlays of bright field and FITC images at time 0, 24, 48 
and 62 h. 

Others droplet-based microfluidic devices was explored in previous studies 

with different cell lines, showing their capacity to track cells for long culture period 

(Annex III), however cell viability and transfection efficiency was compromised.  

The platform contrasts with other conventional approaches in well-plates or in 

bioreactors, where cell productivity is usually assessed at the population level (e.g. 

ELISA or western blot etc.). Alternatively, the standard protocols for assessing 

single cell protein production make usually use of flow cytometry, which limits the 

possibility to obtain information of the cell history in culture and protein production 

kinetics.  
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Droplet microfluidics provide unique platform for cell encaspulation, biological 

isolation and tracking in culture. However, to date, the capability of droplet 

microfluidics to support the transfection and the culture of single genetically 

engineered animal cells has barely been investigated (22). For instance, while 

recent studies have demonstrated the electroporation (23) or chemical- based (12) 

genetic modification of single cells in droplets, the cells were cultivated off-chip 

after transfection. Consequently, it was not possible to correlate the initial cell 

properties to the GFP production efficiency.   

In contrast to other conventional tools, the integrated platform used in the 

present study enabled the individualization, the in situ transfection as well as to 

support the long term culture of GFP producing CHO-S population. It was thus 

possible to follow on line the recombinant protein production in individualized cells, 

starting from the time of their transfection to the end of the culture period (Figure 

4.3D).  

3.3. Kinetics of GFP Production at Single CHO-S Level Revealed Distinct 

Populations 

 The unique capability of the integrated culture platform for dynamically 

tracking individual CHO-S enabled to obtain a more complete view of the evolution 

of GFP production during the culture period. At first, we find the cell distribution 

according to GFP production for each loop of time lapse (each 2h) (Figure 4.4A, 

boxplot graphs). Then, since the culture platform let tracking of each cell, we can 

obtain the evolution of GFP production for each cell during all time lapse (Figure 

4.4B, line graphs). The kinetics of GFP production by cells transfected with 

lipoplexes R+/- 5, 3 and 1.5 (Figure 4.4) showed similar conditions and trends. The 

broad distribution of the kinetics of GFP production suggests that distinct 

populations produced different levels of GFP. In addition, since all individual curves 

followed a first order kinetic (r2>0.9), the rate of GFP production was not dependant 

of its relative intensity at the beginning of the culture period (Supplementary Figure 

S.1).  
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Figure 4.4 - Kinetics of GFP production during the culture period of CHO-S cell in 
single-cell platform. (A) Boxplots presenting the signal intensity for cells transfected 
with the lipoplex R+/- 5, 3 and 1.5 at each time step (each 2h). This is how flow 
cytometry would present the data. (B) The same data where the signal for each cell 
at the beginning of the experiment is subtracted from the signal as a function of 
time. The bold red line represents the evolution of the mean GFP production of the 
population. 

To compare the mean of GFP production by CHO-S cell population 

transfected with lipoplexes R+/- 5, 3 and 1.5, it was plotted in the same graph the 

three means in Figure 4.5. As a result, it was found the average rate of GFP 

production by the population transfected with R+/- 5 was significantly higher (1.5 

fold) in comparison to the other types of lipoplexes (i.e. R+/- 3 and R+/- 1.5) (Figure 

4.5).  
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Figure 4.5 – The comparison of GFP mean production by cells transfected with 
lipoplexes R+/- 1.5, 3 and 5, during the culture period in single-chip platform. The 
error bars represent the difference between replicas from each lipoplex condition 
(n=2).   

The formation of lipoplexes involves the electrostatic interaction between the 

positive charge of cationic lipids and the negative charge of the recombinant DNA 

(24). Consequently, the net charge of the liposome is significantly decreased after 

DNA complexation, leading to a decrease association with the cell membrane ( i.e. 

negatively charged) (25). Consistently, it was found that lipoplexes R+/- 5, which 

presented positive charge, transfected better the cells than R+/- 3 and 1.5 with 

negative charge. 

Then, in order to better distinguish the different subtypes within the whole 

CHO-S population, the evolution of the GFP signal distribution was more deeply 

analyzed. First, it was found that the spreading of the GFP intensity per cell 

followed a Poisson law, which median slightly shifted to higher values during time 

in culture (Figure 4.6A). To qualitatively measure this shift to right, we calculated 

the skweness of GFP intensity distribution over culture time (Figure 4.5B). 

Skewness is a measure of the asymmetry of the data around the sample mean. 

Thus, if the skewness is positive, the data are spread out more to the right of the 

mean than to the left. The skewness of a distribution is defined as (Equation 4.1): s = 𝐸 (x − μ )3𝜎3       (Equation 4.1) 
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where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the 

expected value of the quantity t. Therefore, Figure 4.6B showed a positive skew, 

which Pearson's moment coefficient of skewness increased linearly with the time in 

culture. A threshold was determined in the mean of the GFP signal distribution, in 

which the right side is composed by the high producer cells (HPs) and the left side 

is composed by the low producers cells (LPs) (Figure 4.6C). Thus, the results 

demonstrated that a part of the CHO-S population produced GFP at a significantly 

higher level than other cells (LPS) (Figure 4.6D). Of note, the HPs were evenly 

distributed within the chip (Supplementary Figure S.2). 

The analysis of the GFP production at single cell level revealed that CHO-S 

contained a distinct sub-population producing higher level of GFP (HPs), whatever 

the type of lipoplexes used to recombinant DNA delivery (Figure 4.6D). Several 

cellular parameters can contribute to the heterogeneous level of recombinant GFP 

production rate, which include 1) the amount of internalized plasmids 2) the rate of 

RNA transcription, 3) the rate of RNA translation (5). In this study, the contribution 

of the rate of recombinant protein formation and the cell growth inducing plasmid 

dilution are considered minimal (5). Moreover, considering identical DNA delivery 

conditions in droplets containing the same lipoplex, the rate of GFP 

transcription/translation emerges as a potent parameter promoting the 

heterogeneity in the level of GFP production (5). 
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Figure 4.6 - Distribution of GFP production on the single-cell level (A) Histograms 
of the increase in GFP signal (Δl) for cells transfected with lipoplexes R+/- 5 at 
culture-times t = 12h (red curve), t = 32h (green curve) and t = 62 h (blue curve). 
(B) The asymmetry towards the high values is quantified through the Skewness 
parameter, which is found to increase linearly in time.  (C) The skewness of GFP 
intensity distribution at the final instant (t=62 h) could be used to define a threshold 
that divides the population into low-producing and high-producing cells. (D) Time 
evolution of the signal due to the high producers and other cells. Data for other 
conditions (R+/- 3 and 1.5) are similar. Results represent means ± S.D., n = 3.   
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3.4. Characterization and Recovery of the High GFP Producers  

To characterize the high GFP producers (HP), the influence of the different 

types of lipoplexes was investigated on the relative abundance of HPs and their 

specific productivity. Figure 4.7A showed that a higher percentage of HPs was 

found using lipoplexes R+/- 5 (15.27% ± 1.77), in comparisons of R+/- 3 and R+/- 1.5 

(8.72% ± 1.55 and 4.88% ± 0.12, respectively). Next, we compared the specific 

GFP productivity of HPs for each lipoplex used R+/- 5, 3 and 1.5 (Figure 4.7B). It 

was found that the GFP productivity was about 1.5 higher for R+/- 1.5 than R+/- 5 

and R+/- 3, after 30h of cell culture (Figure 4.7B). The results suggest that the 

higher productivity of CHO-S population transfected with R+/- 5 (Figure 4.5) was 

mainly due to higher percentage of HPs within the whole population. Despite 

higher productivity, the contribution of the HPs in R+/- 1.5 condition (Figure 4.7B) 

was not sufficient to reach the same total level of GFP production than for R+/- 5 

(Figure 4.5).  

 

Figure 4.7 - Characterizing high GFP producers. (A) Percentage of total cells 
characterized as HP for each of the lipoplex conditions indicate a decreasing 
number of high producing cells with increased DNA charge. (B) The specific 
productivity for the three conditions shows that the GFP production per transfected 
cell increases with increased DNA charge. (C) Size difference between high 
producers and low producers for different conditions. Means statistically significant 
different by Kruskal-Wallis (B) or by Wilcoxon rank sum test (A and C) at 5% 
significance level were flagged with an asterisk (*). Error bars represent the values 
for the two independent experiments. 
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To better prove the properties distinguishing HPs from the other cells of the 

population (low producers, LPs), their initial size distribution was first compared 

(Supplementary Figure S.3). Figure 4.7C showed that the average HPs area was 

at least 15% higher than LPs whatever the type of lipoplexe tested. In turn, the 

cells transfected with R+/- 1.5 and 3 lipoplexes had HPs significantly bigger than 

LPs. In addition, it was found that the initial area of HPs transfected with R+/- 1.5 

was significantly larger than those with R+/- 5 and 3 (Figure 4.7C). Thus, the cell 

size emerged as an important parameter leading to the emergence of HPs in the 

transfected CHO-S population. Thus, in the present work, it was found that the 

initial cell size of HPs correlated high GFP production (Figure 4.6C), which suggest 

that HPs are in a distinct cell cycle phase than the other cells of the population 

(5,26). Indeed, the specific productivity of CHO is usually found greater in G2/M 

(i.e. early-mid exponential phase) (26). During this cell cycle phase, the cells are 

found larger and more rRNA are available for recombinant protein translation (27). 

Moreover, G2/M is associated with a loss of nuclear membrane integrity, facilitating 

the plasmid internalization through the endosomal pathway (28). Furthermore, as 

the cytoplasmic membrane is extending prior to mitosis, the decrease of its tension 

facilitates the endocytosis of nanoparticles (29). 

Lipofection provokes a distortion in the cell cycle, which show lower oscillation 

than non-transfectd cells (30). Moreover, liposome transfection increased the 

percentage of cells in S and G2/M phase (i.e. the phases were the cells displayed 

the highest diameter), at the expense of cells in G1 (30). In this study, it was found 

that the different types of lipoplexes differently affected the properties of HPs 

contained in the bulk of CHO-S. Indeed, a significantly higher percentage of HPs 

were found in R+/- 5 than R+/- 3 and 1.5 (Figure 4.7A). On the other hand, the GFP 

production by HPs was higher in cells transfected with lipoplex R+/- 1.5 than R+/- 5 

and 3 (Figure 4.7B). Because R+/- 5 displayed higher ζ, it favored increased 

lipoplexes/cell membrane interactions and, as a consequence, an increase 

percentage of HPs whitin the population. However, R+/- 1.5 showed higher GFP 

productivity despite lesser amount of lipoplexes interacting with CHO-S (i.e. due to 

lower ζ), since they enable the delivery of higher amount of plasmid to CHO-S 
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nucleus. In case of lipoplex R+/- 3, ζ and pDNA content is comprised between R+/- 5 

and R+/- 1.5, and so, CHO-S transfected under this conditions showed amount of 

HPs in cell population and specific productitvity comprised between the two other 

lipoplexes conditions. 

         Finally, in view of future functional analysis (transpritomic and proteomic 

investigations), protocol of a selective recovery from platform was used for the 

isolation of HPs off-chip. The procedure enabled to non-invasively recover 

fluorescent cells. Moreover, after one day in culture, the intensity of GFP within the 

isolated CHO-S was in a similar range as before the extraction, suggesting that 

cells retain viability and their GFP production capability. 

4. Conclusions  

A universal droplet microfluidic placed was used to assess the 

heterogeneities of CHO-S population transiently transfected with different types of 

lipoplexes. The devise enabled the combined single cell isolation, in situ 

transfection and culture for long time periods. A single cell analysis of GFP 

production kinetics revealed the presences of a subpopulation producing 

significantly high levels of recombinant proteins, whatever the properties on 

lipoplexes. The high producers showed increased cell size in comparison to the 

average population. The charge and the pDNA content of the different lipoplexes 

regulated differentially relative abundance of HPs in cell population (higher in 

lipoplexes with positive charge and less pDNA content) and GFP specific 

productivity of HPs (higher in lipoplexes with negative charge and more pDNA 

content).  
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7.  Supplementary data  

7.1. Lipoplexes per cell estimation  

To estimate the number of lipoplexes per cell, at first we estimated the 

number of liposomes synthesized for each condition: 1.85 µL (R+/- = 5), 1.11 µL 

(R+/- = 3) and 0.55 µL (R+/- = 1.5). Considering lipossomes with a spherical 

geometry and unimodal size distribution, the aggregation number is (31):  𝑁 ≈ 4𝜋[𝑅𝐶2 +  (𝑅𝐶 − 𝑡)2] 𝑎0⁄  

where 𝑅𝐶 is the critical radius assumed here as the average hydrodynamic radii of 

50 nm, t is the bilayer hydrocarbon thickness of 4 nm (32) and 𝑎0 is the optimal 

value of surface headgroup area. In this case of mixed bilayer, 𝑎0 corresponded  
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the lipid cross-sectional area for DOTAP, DOPE and EPC are 0.7, 0.55 and 0.71 

nm2, respectively (31,32). The final lipid concentration of liposome was 2.27 mM. 

Thus, we used approximate 9.7 x 109 liposomes for R+/- = 5, 5.8 x 109 liposomes 

for R+/- = 3 and 2.9 x 109 liposomes for R+/- = 1.5.  

 In terms of lipoplexes, the system can generate a ternary phase system with 

single, double, and multiple bilayers, depending on the molar charge ratio (19). 

Analyzing the extreme conditions, R+/- = 5 formed around 20% of double bilayers 

and 80% “empty” liposomes, R+/- = 1.5 formed around 20% of multiple bilayers, 

66% of double and 14% “empty” liposomes. Thus, effectively R+/- = 5 and R+/- = 1.5 

contained about 6 x 105 lipoplexes / cell and 2 x 105 lipoplexes / cell, respectively.  

7.2. Graphics of GFP production by CHO-S cells  

 

Figure S.1 – GFP production kinetics characterization. An example of linear 
coefficient correlation distribution (r2) of GFP produced by CHO-S cells transfected 
with lipoplexes R+/- 5 for all single cells (blue columns) and for high GFP producers 
(red line) is exhibited. 

 

Figure S.2 - High GFP producers evenly distributed within the microchip. HPs are 
represented as red points on the microchip's map.    
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Figure S.3 - High GFP producers characterization in terms of cell-size. An example 
of graphs comparing size of HPs (red line) and all cell population (blue columns) 
for CHO-S cells transfected with lipoplexes R+/- 5 is shown. 
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Chapter V – Conclusions  

________________________________________________________________________________ 

In the first part of this work, droplet-based microfluidic system was applied to 

synthesize lipoplexes. In the second part, a single-cell platform was used to 

investigate transient transfection of CHO-S cells. We conclude that liposomes 

maintain their properties after processing in droplet system, allowing more 

advanced applications. Microchip design with thin serpentine channel or wide 

serpentine channel with a split region increase lipoplex homogeneity. This system 

allows the loading of larger amounts of pDNA in liposomes (R+/- 1.5) without 

changing lipoplexes properties (size, PdI and zeta potential), specially desired for 

gene therapy applications. Lipoplexes synthesized in droplet system with wide 

serpentine channel and split region, operating at ratio aqueous/oil flow rate 0.25 

and R+/- 1.5, 3, 5, 7, and 10, transfect DCs showing the transfection efficiency 

equivalent to that presented by lipoplexes produced by bulk method. In addition to 

transfecting, lipoplexes synthesized in droplet system also activate DCs. Therefore, 

the droplet-based microfluidic system shows as a potential tool to synthesize 

lipoplexes for cell lines transfection. The single-cell platform was shown to be 

efficient to transfect CHO-S cells by lipoplexes, while maintaining cells viability. 

With the single-cell analysis, it is possible to study the heterogeneities of CHO-S 

population, during transient transfection. The GFP production kinetics is tracked for 

each cell during culture time, allowing to determinate two different subtypes of cell 

population, high and low GFP producers. High producers increase cell size in 

comparison to the average population. The charge of lipoplexes shows an 

important role to transfect CHO-S, since the unique positive charged lipoplex R+/- 5 

produces more HPs. The amount of pDNA delivered affects the protein production, 

since R+/- 1.5 with more pDNA, increase GFP specific productivity of HPs. The 

universal platform shows as a powerful tool to investigate mammalian cell 

transfection and to identify / characterize high protein producer cells.  
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Chapter VI - Perspectives  

________________________________________________________________________________ 

 

Lipoplexes synthesized in the droplet-based microfluidic system were suitable 

to transfect dendritic cells. Moreover, the universal platform can be used to 

investigate mammalian cell transfection and heterogeneities in cell population. In 

this context, one future perspective envisaged for this work is to use the universal 

platform to transfect dendritic cells. The aim would be to investigate DCs 

transfection, characterize the transfected DCs and high-producer screening, in 

order to find the way to increase the DC transfection efficiency while providing cells 

activation. In general, this universal platform opens good perspectives to 

investigate the transfection of immune system cells, which frequently present a 

heterogeneous behavior and are hard-to-transfect cells, since they are usually 

provided by primary cell cultures. Another possible future work is to use the 

droplet-based microfluidic system to complex other nanoparticles with nucleic 

acids, which require more controllable environment. For example, chitosan 

nanoparticles are very sensible to changes in the solvent and in amount of nucleic 

acids, leading to precipitations in different complexation conditions. Thus, the 

controlled microenvironment generate in the droplet system could favor the 

synthesis of these complexes, even if in adverse conditions.      
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ANNEX I – Plasmid vectors 

_________________________________________________________________________ 

Positive control vector pEGFP-N1 from Clontech (Figure 1) is a plasmid with 

florescent tag for mammalian cell expression presenting bacterial resistance for 

kanamycin. This vector was used in Chapter III to quantify DC transfection 

efficiency.  

 

Figure 1 - Plasmid map of pEGFP-N1 Vector from Clontech.  

Positive control vector pmaxGFP from Lonza (Figure 2) is ideal positive 

control protein especially for fluorescence microscopy. The plasmid encodes the 
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green fluorescent protein from Pontellina sp. This vector was used in Chapter IV to 

obtain the kinetics of recombinant protein production by CHO-S cells.   

 

Figure 2 - Plasmid map of pmaxGFP Vector from Lonza.  
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ANNEX II –Preliminary studies in droplet microfluidic 
system to synthesize lipoplexes 

_________________________________________________________________________ 

Before investigating the lipoplexes synthesis in droplet-based microfluidic 

system, previous studies were carried out, such as investigation of flow rates to 

droplets formation in a water/oil emulsion using less expensive reagents and study 

of CL formation in different diluents in order to obtain nanoparticles with required 

physico-chemical characteristics to DC transfection.  

1. Study of flow rates for droplets formation  

For investigation of droplet formation in microfluidic system (Figure 3.1B, TC), 

two aqueous solutions were prepared with water added with green and red dyes in 

order to facilitate visualization of droplets and the mixing inside them. The oil phase 

of emulsion was composed of mineral oil from Vetec Química Fina (RJ, Brazil) with 

2% v/v of surfactant sorbitan monooleate (Span 80) from Sigma Aldrich (MO, 

USA). We should highlight that this oil phase was not chosen for complexation 

process due to the low biocompatibility of mineral oil. However, we decided to use 

it to estimate flow rates for droplets formation in microfluidic device because of the 

lower cost of these reagents than FC-40 oil and Pico-Surf 1.    

Thus, we studied several inlet flow rates for aqueous phase (Qaqueous) and for 

oil phase (Qoil) in the droplet-based microfluidic system thin serpentine channel 

(200 μm) and split region and (Figure 1 and Table 1). The solutions were 

introduced in each respective inlet by syringe pump, in which as aqueous phase 

was introduced the green and the red dye solution and as oil phase the mineral oil 

with Span 80. The following strategy was used to investigate the flow rates: at first 

the oil phase flow was fixed at 2 μL min−1 while aqueous flow rate varied from 0.1 

to 4 μL min−1. Then, the inverse was made, the aqueous flow rate remained 

constant at 0.67 μL min−1 and the oil phase flow varied from 0.1 to 19.2 μL min−1, 

as described in Table 1. The fixed flow rates of aqueous and oil phases and the 

microfluidic device were chosen based on the previous study realized by (1), which 
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used Qoil = 2 μL min−1 and Qaqueous = 0.67 μL min−1 to produce droplets in a similar 

droplet-based microfluidic system.  

Table 1 - Variation in flow rates Qaqueous (aqueous phase composed of green and 
red dye in water) and Qoil (oil phase composed of mineral oil with 2% v/v of 
surfactant Span 80) for droplet formation in the droplet-based microfluidic system 
with serpentine-TC and split region (Figure 3.1B).  

Flow rates study 

Fixed Qoil = 2 μL min−1 Qaqueous = 0.67 μL min−1 

Variant Qaqueous (μL min−1) Qoil (μL min−1) 

 0.1 0.1 
 0.29 0.67 
 0.48 1.4 
 0.67 2 
 1.11 4 
 1.55 8 
 2 19.2 
 3   
 4 

Flow rate combinations were observed and images were taken by using the 

trinocular stereo microscope from Bel Photonics (STMPRO-T model, Monza, Italy). 

For each moment in which system operating conditions changed, it was waited five 

minutes for system stabilization. General behaviors observed in the droplet-based 

microfluidic system were illustrated in Figure 1 and described as follow:  

(i) If the flow rate is considered good, droplet formation will be well defined and 

similar to that seen in Figure 1A; 

(ii) If the ratio between Qaqueous and Qoil increases, droplet size tends to increase 

(Figure 1B) until reach a parallel flow streams (Figure 1C).  

(iii) However, if this ratio decreases (Qaqueous/Qoil), droplet size tends to decrease 

(Figure 1D) until the oil phase invades aqueous phase inlet channels (Figure 

1E). We also observed an intermediate stage between Figures 1D and E not 

shown, in which system was unstable altering in droplet formation and in oil 

phase entering into aqueous phase inlets. 

As a result, the range of Qaqueous between 0.48 to 2 μL min−1 and Qoil fixed at 2 

μL min−1 was chosen for further assays of water fraction estimation with FC-40 oil 

with 5% v/v of surfactant Pico-Surf 1 as oil phase in droplet-based microfluidic 

system.  
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Figure 1 – Images of droplet formation with aqueous phase composed of green 
and red dye in water and oil phase composed of mineral oil with 2% v/v of 
surfactant Span 80 in the droplet-based microfluidic system with serpentine-TC 
and split region (Figure 3.1B). Following droplet behaviors were observed in the 
microfluidic system: (A) ideal droplets when flow rates were Qoil = 2 μL min−1 and 
Qaqueous = 0.67 μL min−1, large droplets when Qoil = 2 μL min−1 and Qaqueous = 2 μL 
min−1 (B), until reached a parallel flow when Qoil = 2 μL min−1 and Qaqueous = 3 μL 
min−1 (C), and small droplets were formed decreasing Qaqueous to 0.29 μL min−1 with 
Qoil = 2 μL min−1 (D), until the oil phase invaded aqueous phase inlet in Qoil = 2 μL 
min−1 and Qaqueous = 0.10 μL min−1(E).  

2. Cationic liposome diluent 

Cationic liposomes composed of EPC/DOTAP/DOPE (50/25/25 % molar, 

respectively) were produced in a cross-junction microfluidic device by a single 

hydrodynamic focusing, like BALBINO et al. (2) (Figure 3.1A). Lipid dispersion was 

inserted in the central entrance and in the two lateral inlets were introduced the 

aqueous phase, which could be water, PBS buffer solution or OptiMEM culture 

medium (Figure 3.1A). The three lipids were dispersed in anhydrous ethanol to 

achieve 25 mM of total lipid concentration, following the protocol established by 

Rigoletto et al. (3). The lipid dispersion was injected into the system at 10.92 μL 

min−1 in a glass syringe (Hamilton, NV, USA, 1 mL) via syringe pump (KDScientific, 

model KDS-200, USA). Simultaneously, two glass syringes (Hamilton, NV, USA, 

2.5 mL) with aqueous phase (water, PBS buffer or OptiMEM) were injected at 54.6 

μL min−1 into two sides of T-chip. Liposome samples were collected from the exit 

and leaved for at least 2 hours at 4 °C. Then, samples were collected to physico-
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chemical characterization of size, polydispersity and zeta potential in Zetasizer 

equipment, as shown in Table 2 and Figure 2. 

The cationic liposomes obtained using water as aqueous solution had small 

polydispersity (0.202), positive zeta potential (59.9 mV) and small size (76.6 nm), 

like showed in Table 2. On the other hand, liposomes obtained using PBS buffer as 

aqueous solution had higher polydispersity (0.322), larger size (approximately 85% 

of the population at 135.8 nm and the other 15% at 376.4 nm) and zeta potential 

slightly smaller (41.8 mV) than those obtained in water (Table 2). Similarly to PBS 

buffer solution, cationic liposomes formed in OptiMEM had higher polydispersity 

(0.257), larger size (approximately 99% of the population at 88.1 nm and the other 

1% at 532.2 nm) and smaller zeta potential (38.6 mV) than those obtained in water 

(Table 2). In addition, Figure 2 showed the size distribution graphs of cationic 

liposomes in intensity and number for all conditions. Graphs demonstrated more 

clearly the polydispersity of liposomes formed in PBS and in OptiMEM that had two 

populations, and liposomes synthesized in water had only one homogeneous 

population. Because of these characteristics, water indicated to be more suitable 

as aqueous solution than PBS and culture medium for cationic liposomes formation 

in the cross-junction microfluidic device. Moreover, complexing process, 

incorporation of DNA into liposomes, tends to increase more nanoparticles size 

and polydispersity, leading to decrease internalization by DCs, and consequently, 

in transfection efficiency (4).  
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ANNEX III – Preliminary studies in droplet microfluidic 
system to transfect CHO-S cells 

_________________________________________________________________________ 

Before reach the system presented in Chapter III to transfect CHO-S cells, 

others cells and microdevices were explored, as showed in this annex. However, 

the low viability or transfection of cells lead us to leave them. Even though, the 

device showed a potential to understand key parameters that influence in vitro 

mammalian cells transfection process. Thus, a droplet-based microfluidic system 

was used to transfect in vitro mammalian cells (smooth muscle cells (SMCs), 

mesenchymal stem cells (MSCs) and lymphoma cells (S49.1)) under a 3D 

microenvironment provided by hydrogels (collagen and agarose) as extracellular 

matrices. Additionally, this system also provided a study of cells morphology by 

changing cells concentration (from 0.1 to 0.5 x 106 cells/mL), using Rho–ROCK–

myosin inhibitors (like blebbistatin and Y27632) and modifying hydrogel stiffness 

(1.2 and 6 mg/mL collagen concentration); being a potential tool to signalize 

transfection pathways. 

1. Objectives 

The general purpose of this part of work was to develop a microchip to 

transfect mammalian cells in vitro within soft 3D droplets hydrogel, using cationic 

liposomes incorporated with nucleic acids as nanovectors. Thus, with this system, 

we are able to investigate and compare transfection parameters in different types 

of mammalian cells, like transfection kinetics and pathways, optimum molar ratio 

between nanoparticles/nucleic acids and nanoparticles/cell.  

2. Materials and methods  

2.1. Materials 

Collagen rat tail type I to make hydrogel droplets for adherent mammalian 

cells and agarose (1% w/v) as an extracellular matrix for non-adherent mammalian 

cells. Oil phase was composed by Fluorinert Eletronic Liquid FC-40 from 3M with 

surfactant poly(ethylene glycol-ran-propylene glycol) (PEG-ran-PPG) at 1 % (w/v). 
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Cationic liposomes consisted of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-

trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine 

(DOPE)  from Lipoid (Germany), were complexed with DNA (Clontech pGFP 

Vector) encoding green fluorescent protein (GFP). Cells were marked with 

CellTrackerTM red CMTPX or  Live/Dead® Viability/Cytotoxicity Assay Kit both from 

Life Technologies. 

2.2. Microfluidic device fabrication 

The microfluidic device (Figure 1) was fabricated following protocols 

established at Professor Charles’ laboratory. We used dry film photo-lithography, 

which allows the simple fabrication of complex geometries (1). Briefly, a solid film 

of photo-resist is laminated on a glass slide, using an office laminator. It is then 

exposed to UV light through a specially designed mask that corresponds to the 

desired channel shape. This then serves as a mold for patterning the channels 

themselves, which corresponds to the top part of the chip made with 

poly(dimethylsiloxane) (PDMS) (see e.g. SQUIRES e QUAKE (2)). The bottom part 

was a thin film of PDMS with five hundred droplet traps, obtained from a metal 

model designed in a Micro Engraving Machine, in which the polymer dried bonded 

over a glass slide. The top and bottom part of PDMS are then bonded and the 

inner surfaces are functionalized with silane groups that provide a hydrophobic 

environment that is suitable for the generation and manipulation of aqueous 

droplets in oil (1). 

 

Figure 1 - Droplet-based microfluidic system. 

2.3. Adherent mammalian cells transfection in the droplet-based microfluidic 

system 
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Smooth muscle cells (SMCs) and mesenchymal stem cells (MSCs) were 

cultivated until be in confluence and then inserted in microchip with collagen. 

SMCs and MSCs were mixed with collagen in 1:3 ratio and then inserted in the 

microdevice shown in Figure 1. Cell concentration varied from 0.1 to 0.5 x 106 

cells/mL and collagen concentration 1.2 and 6 mg/mL. In this step, the system was 

kept at -4 ºC to avoid collagen gelation before droplets formation. The cells 

suspension was pumped in the system by the first entrance (Figure 1) at 5 µl/min, 

while two oil flows were incorporated by second entrance at 5.8 µl/min to form 

droplets in a flow-focusing design, and by third entrance at 35 µl/min to pull 

droplets to be trapped in the chamber and to increase their covering with 

surfactant, avoiding coalescence. After fill all traps with hydrogel droplets, the 

system was incubated at 37 ºC to collagen gelation, and then we changed the 

continuous phase from oil to aqueous phase. For this, about 2 ml of FC40 oil pure 

(without surfactant) was passed through the system at 40 µl/min to wash droplets 

covered with surfactant, and then, at least 100 µl culture medium was inserted at 1 

µl/min. Depending on what we wanted to investigate, lipoplexes or culture inhibitors 

might be diluted in this medium. Then, images from the cells inside hydrogel 

droplets were taken by a motorized microscope (Nikon, Eclipse Ti-E) to study cell 

behavior over time.  

2.4. Non-adherent mammalian cells transfection in the droplet-based microfluidic 

system 

Likewise, 0.25 x 106 lymphoma cells (S49.1)/ml were inserted in the system, 

but in this case, because of involving non-adherent cells, agarose was used as 

hydrogel. Thus, the system was kept on 37 ºC during droplets formation, and then 

put at 4 ºC for agarose gelation. After that, phases were changed from oil to 

aqueous composed by medium with or without lipoplexes. Cells were also marked 

with live/dead staining to study cells viability, besides transfection kinetics. Images 

were taken by the motorized microscope to investigate these behaviors of S49.1 

over time. 
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3. Results and discussion 

3.1. Smooth muscle cells and mesenchymal stem cells in collagen microdroplets 

At a first moment, we started to work with adherent mammalian cells looking 

for more complex cells transfection applications, like induced pluripotent stem (iPS) 

cells reprogramming (3). However, adherent mammalian cells need a growth matrix 

like collagen to regulate integrin-mediated adhesion to the extracellular matrix, to 

bind growth factors to their receptors (4) and to mediate cells spreading (5), among 

other things. Additionally, cellular morphology is closely linked to transfection 

efficiency. Cellular microenvironment can modulate non-viral gene delivery, since 

proteins that promoted well spread cells resulted in complexes being trafficked to 

the nucleus and enhanced gene transfer (6). And also the act of integrin 

engagement and spreading itself may have an effect on cells uptake of non-viral 

vectors (7). Thus, as preliminary results (data not shown), we cultivated DC3F cells 

(Chinese hamster lung fibroblasts) inside and on the top of collagen, in and off 

chip, aiming to investigate cell morphology. Then, we started to work with Smooth 

Muscle cells (SMCs) in chip to investigate the behavior of a high contraction cell 

model according to matrix stiffness. For this, we filled the microchamber like 

showed in Figure 2 with five hundred collagen droplets containing cells inside, 

providing a huge number of experimental repetitions to be analyzed. In this first 

moment, we analyzed the results only in few droplets (n=10 to 20), but in the future 

the purpose is to use computational tools for image analysis, like MATLAB, to 

analyze more samples and increase the experimental accuracy of results.   
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Figure 2 – Microchamber with 500 cylindrical traps with 250 µm of diameter by 250 
µm of height. 

The first aspect tested was to change the matrix stiffness by changing 

hydrogel concentration. Thus, we fixed SMCs concentration at 4x106 cells/ml and 

compared their mechanism in the early hours of incubation in 1.2 mg/ml and 6 

mg/ml of collagen in the matrix (Figure 3). As we can see in the images, when 

SMCs were cultured in a softer matrix (1.2 mg/ml) in 5 hours they spread (Figure 3 

B), in 16 hours of incubation they shrink the hydrogel with their strong force traction 

(Figure 3 C) and, in 1 day, almost 90% of droplets are like an agglomeration ball of 

cells and collagen (Figure 3 D). On the other hand, when SMCs were cultured in a 

more rigid matrix (6 mg/ml), they spend more time to start to spread (around 16 

hours incubation, Figure 3 G) and, consequently, to make these typical cell 

agglomerations showed in Figure 3 H. About 60% of cells are in these cluster 

structures after 1 day in culture.     
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A B C D 

    

    

Figure 4 – Images of smooth muscle cells (Ccell = 4x106 cells/ml) cultivated in 
collagen at 6 mg/ml and transfected with lipoplexes (DNA/cationic liposomes at a 
molar charge ratio of R+/-=5 for 0 day (A), 1 day (B), 2 days (C) and 3 days (D).  

After, in such a way to avoid these cluster structures, we decreased SMCs 

concentration from 4 to 1x106 cells/ml, but study cell behavior also in the two 

collagen concentration, 1.2 mg/ml (Figure 5 A and B) and 6 mg/ml (Figure 5 C and 

D) for 1 day. As a result, almost 70% of droplets did not form an agglomeration 

after 1 day incubation (Figure 5 B and D), i.e. fewer cells in droplets, in both 

collagen concentrations, slowed down hydrogel shrink. Nevertheless, cell 

distribution on microdroplets follows Poisson distribution (8), which makes that 

many droplets in the chamber do not have cells inside hydrogel, decreasing results 

accuracy. 

 

 

 

 

 

 

 

 



131 

 

 

A B 

  

C D 

  

Figure 5 – Images from 0 and 1 day incubation of smooth muscle cells 1x106 
cells/ml cultivated in collagen hydrogel droplets at 1.2 mg/ml (A and B) and 6 
mg/ml (C and D).   

Thus, to maintain hydrogel droplets without shrinking but assuring the 

majority of 500 droplets in the chamber with SMCs, we inserted 2.5x106 cells/ml 

mixed with 6 mg/ml of collagen in microdevice, reaching around 10 cells/droplet 

(Figure 6). About 95% of hydrogel droplets stayed attached to the trap surface for 1 

day incubation even with cells spreaded, like showed in Figure 6 A. Even though, 

when cells are stained with cell tracker to facilitate cell localization and added with 

lipoplexes to transfect, they did not spread as we can verify in Figure 6 B. 

Continuous exposure of cells to fluorescent probes, such as rhodamine, can lead 

to be cytotoxic for some type of cells (9); and also cationic liposomes, more 

specifically cationic lipids (10,11). Therefore, cells maybe react against cytotoxic 

from these reagents, not spreading.   
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Cells inside 3D microenvironment interact with cell-surface receptors, 

extracellular matrix and cell-cell adhesions, stimulating to generate changes in the 

actin cytoskeleton at primarily through engagement of clathrin endocytosis 

pathways, more specifically, RhoGTPases proteins (12). So, as a first step, we 

investigate few parameters, like hydrogel and cell concentration, to modify matrix 

stiffness and, consequently, activate molecular pathways related to actin 

cytoskeleton, which can regulate internalization and effective intracellular 

processing of nanoparticles resulting in an efficient gene transfer (6). But after, as a 

second step, we started to use few cell inhibitors to study cell behavior with regard 

to specific pathways related to matrix stiffness (13).  

Cell spreading increase with cell traction force, RhoA activity and is also 

controlled by extracellular matrix stiffness. So, when grown in soft matrices, many 

cell types exhibit less spreading, as well as, reductions in proliferation, traction 

forces, stress fibers, and focal adhesions (14). However, Mih et al. (13) showed that 

putting some Rho ROCK inhibitors (like blebbistatin and Y27632) in fibroblasts 

cultivated in soft matrices generate an “excessive” contractile force that switches 

actomyosin from suppression to promote cell proliferation in soft matrices. We 

remarked by time-lapse images (Figure 3) with high SMCs concentration (4x106 

cells/ml) in a very soft matrices (Ccollagen = 1.2 mg/ml) that collagen hydrogel is so 

soft that cells cannot stay a long time spreaded. Thus, we put 100 µM of Y27632 

inhibitor in this cell culture conditions to promote cell proliferation and spreading 

even in soft matrix (Figure 8) and, maybe in future steps, we can use the same 

strategy to determinate the transfection pathways.  
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In addition, for mesenchymal stem cells microenvironments appears to be an 

important for reprogramming them, for example, soft matrices that mimic brain 

provide neurogenic phenotypes, stiffer matrices that mimic muscles providing 

myogenic and comparatively rigid matrices that mimic collagenous bone prove 

osteogenic (17). Thus, we cultivated MSCs at 4x106 cells/ml inside collagen 

microdroplets at 1.2 mg/ml for 1 day, without inhibitors (Figure 9 A and B), with 10 

µM of Y27632 (Figure 9 C and D) and with 33 µM of blebbistatin (Figure 9 E and 

F). As a result, the positive control, i.e. without adding inhibitors, 40% of cell 

microdroplets maintained spreaded and without shrink for 1 day like showed in 

Figure 9 B. When added Y27632, 65% of MSCs microdroplets were spreaded like 

in Figure 9 D, and when added blebbistatin, 90% of hydrogel droplets with MSCs 

are like showed in Figure 9 F. Thus, blebbistain seems to be the most efficacy 

inhibitor for MSCs to not shrink, but differently from the other Rho ROCK inhibitor 

(Y27632), cells with blebbistain do not spread well in soft matrix (Figure 9 D and 

F). ENGLER et al.  (17) also added blebbistain in naïve MSCs cultured in matrices 

with different elasticity, concluding that blebbistain blocks cell spreading in every 

matrix tested. 

In addition, for mesenchymal stem cells microenvironments appears to be an 

important for reprogramming them, for example, soft matrices that mimic brain 

provide neurogenic phenotypes, stiffer matrices that mimic muscles providing 

myogenic and comparatively rigid matrices that mimic collagenous bone prove 

osteogenic (17). Thus, we cultivated MSCs at 4x106 cells/ml inside collagen 

microdroplets at 1.2 mg/ml for 1 day, without inhibitors (Figure 9 A and B), with 10 

µM of Y27632 (Figure 9 C and D) and with 33 µM of blebbistatin (Figure 9 E and 

F). As a result, the positive control, i.e. without adding inhibitors, 40% of cell 

microdroplets maintained spreaded and without shrink for 1 day like showed in 

Figure 9 B. When added Y27632, 65% of MSCs microdroplets were spreaded like 

in Figure 9 D, and when added blebbistatin, 90% of hydrogel droplets with MSCs 

are like showed in Figure 9 F. Thus, blebbistain seems to be the most efficacy 

inhibitor for MSCs to not shrink, but differently from the other Rho ROCK inhibitor 

(Y27632), cells with blebbistain do not spread well in soft matrix (Figure 9 D and 
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4. Conclusions 

We develop a microchip which with we were able to transfect adherent 

(SMCs and MSCs) and non-adherent (S49.1) mammalian cells spending little 

quantities of reagents and obtaining many replicates and data in only one 

experiment. High SMCs concentration (4x106 cells/ml) in collagen at 1.2 mg/ml and 

6 mg/ml make cluster structures after 1 day in culture, being difficult to identify 

number of cells transfected. But, decreasing cell concentration to 2.5x106 cells/ml 

in collagen at 6 mg/ml, SMCs stayed spreaded after 1 day, however if we marked 

cells with cell tracker, they did not do the cluster structure, but they do not spread 

as well. SMCs transfected in this condition achieve almost 35% of transfection in 7 

days incubation. Using Rho ROCK inhibitors, like Y27632 and blebbistatin, in soft 

matrices (Ccell = 4x106 cells/ml and Ccollagen=1.2 mg/ml) seems to be a good 

strategy to maintain SMCs and MSCs spreaded and without shrinking, and also a 

potential tool to investigate the pathway used by cells for transfection. In the case 

of lymphoma cells, we showed that transfection was better in microchip with 

hexagonal traps to drain better the oil around droplets, reaching about 20% of 

transfection in 7 days incubation, however with cells viability very low.  
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