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RESUMO 

Nanopartículas de base lipídica (NL) combinam algumas vantagens, como 

estabilidade fisica, facilidade de dissolução de compostos bioativos lipofílicos e permeabilidade 

através da parede do intestino. As NL podem ser compostas apenas de lipídios sólidos, 

chamadas de Nanopartículas Lipídicas Sólidas (NLS) ou por mistura de lipídios sólidos e 

líquidos, denominadas como Carreadores Lipídicos Nanoestruturados (CLN). Este trabalho 

teve como objetivo o desenvolvimento de NLS e CLN para aplicações em alimentos. As NL 

foram desenvolvidas com matérias-primas alimentícias, comumente empregadas no setor 

industrial. Para a composição das matrizes lipídicas (ML) foram utilizados óleos de soja e 

girassol alto oleico (fração líquida) e óleos totalmente hidrogenados a partir dos óleos de soja, 

canola e crambe, também chamados de hardfats (fração sólida). Adicionalmente, foram 

desenvolvidos CLN com a incorporação de fitoesteróis livres (FL). Os FL são considerados 

compostos bioativos, capazes de reduzir os níveis de colesterol no organismo, por meio de 

mecanismo competitivo de absorção, auxiliando na prevenção de doenças cardiovasculares. Os 

emulsificantes utilizados foram lecitina de soja, monooleato de sorbitano polietoxilado e 

monoestearato de sorbitano. As nanopartículas foram obtidas em dispersão aquosa através do 

processo de emulsificação, seguida de homogeneização de alta pressão (HAP) utilizando 3 e 5 

ciclos a 800 bar, com posterior cristalização e estabilização da fração lipídica. As NL obtidas 

foram caracterizadas quanto ao diâmetro médio, polidispersidade e potencial zeta usando 

espalhamento de luz dinâmico (DLS). As ML e as NL foram submetidas a estudos de 

comportamento térmico, utilizando calorímetria diferencial de varredura (DSC). Formas 

polimórficas e fenômenos de polimorfismo foram verificados através de difração de Raio-X 

(DRX). Microscopia de luz polarizada (MLP) foi empregada para estudar o grau de 

cristalinidade das ML. As NL apresentaram resultados diferenciados comparados aos materiais 

em macroescala, principalmente em termos de comportamento térmico. Mostraram-se 

promissoras para aplicação em produtos alimentícios, e com potencial de utilização em outros 

segmentos industriais. Cabe ressaltar, que as NL desenvolvidos nesta tese são inéditos, e este 

estudo encontra-se depositado como privilégio de invenção no INPI (BR 10 2017 006471 9). 

Palavras-chaves: Nanotecnologia; Alimentos; Lipídios; Óleos vegetais; Hardfats; 

Fitoesteróis.  



 

 
 

 

 

ABSTRACT 

Lipid nanoparticles (LN) combine some advantages such as chemical stability, easy 

dissolution of lipophilic bioactive compounds and permeability through the intestine wall. NLs 

can be composed only of solid lipids, called Solid Lipid Nanoparticles (SLN) or by mixing solid 

and liquid lipids, called Nanostructured Lipid Carriers (NLC). This work aimed the 

development of SLN and NLC for food applications. NLs were developed with raw materials 

commonly used in the food industry sector. For the composition of the lipid matrices (LM), 

soybean oils and high oleic sunflower (liquid fraction), and fully hydrogenated oils, also called 

hardfats, were used from the soya, canola, and crambe oils. In addition, CLN was developed 

with the incorporation of free phytosterols (FP) as a bioactive compound. FPs can reduce blood 

cholesterol levels, through a competitive mechanism of absorption, aiding in the prevention of 

cardiovascular diseases. The emulsifiers used were soybean lecithin, ethoxylated sorbitan 

monooleate, and sorbitan monostearate, individually employed. The nanoparticles were 

obtained in aqueous dispersion through the emulsification process, followed by high-pressure 

homogenization (HPH) using 3 and 5 cycles at 800 bar, with subsequent crystallization and 

stabilization of the lipid fraction. The obtained LN were characterized as the mean 

hydrodynamic diameter, polydispersity and zeta potential using dynamic light scattering (DLS). 

The LM and the LN were submitted to studies of the thermal behavior using differential 

scanning calorimetry (DSC). Polymorphic forms and polymorphism phenomena were verified 

by X-ray diffraction (XRD). Polarized light microscopy (MLP) was employed to study the 

degree of crystallinity of lipid matrices. The NL presented different results compared to the 

materials in macro scale, mainly in terms of thermal behavior. They have shown promise for 

application in food products, and potential for use in other industrial segments. It should be 

noted that the systems developed in this thesis are unpublished and present an innovative 

character, which is deposited as an invention privilege at INPI (BR 10 2017 006471 9). 

Keywords: Nanotechnology; Foods; Lipids; Vegetable oils; Hardfats; 

Phytosterols.  
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INTRODUÇÃO GERAL 

A nanotecnologia é considerada uma ciência recente, que está em constante 

desenvolvimento e aprimoramento nas mais diversas áreas de pesquisa e aplicação industrial. 

É uma tecnologia que compreende o desenvolvimento de processos e aplicações de materiais e 

sistemas em escala nanométrica, através do controle e exploração de fenômenos e propriedades, 

que se diferenciam do comportamento em micro e macroescala. Deste modo, o constante 

interesse nesta nova tecnologia motiva a busca por conhecimento em prol da modernização e 

aperfeiçoamento de processos e produtos.  

Na área de alimentos, o interesse da utilização de sistemas em nanoescala reside, 

principalmente, no carreamento, proteção e liberação controlada de compostos bioativos. Para 

tal, as nanopartículas lipídicas (NL) combinam algumas vantagens recentemente reportadas na 

literatura científica como maior facilidade de dissolução de compostos bioativos lipofílicos 

(ácidos graxos essenciais, tocoferóis, esteróis, carotenóides, etc.), estabilidade química e 

permeabilidade através da parede do intestino.  

As NL podem ser desenvolvidas com matrizes lipídicas (ML) totalmente saturadas 

denominadas de Nanopartículas Lipídicas Sólidas (NLS) e com misturas de lipídios saturados 

e insaturados, denominadas como Carreadores Lipídicos Nanoestruturados (CLN). No entanto, 

as NLS, geralmente apresentam baixa capacidade de incorporação de compostos ativos, devido 

ao alto grau de organização das moléculas de triacilgliceróis saturados durante a cristalização, 

formando uma estrutura altamente ordenada e compacta, resultando, consequentemente, em 

problemas de estabilidade e expulsão dos componentes de inclusão. Tendo em vista esta 

limitação, os CLN foram desenvolvidos por meio da substituição parcial de lipídios saturados 

por insaturados. Os lipídios insaturados apresentam comportamento de cristalização 

diferenciados em relação aos saturados, devido à presença de ligações duplas em suas 

moléculas. Nos CLN, estes lipídios promovem a formação de estruturas com maior 

espaçamento intermolecular, caracterizando partículas menos compactas e com maior 

capacidade de incorporação de compostos bioativos.  

Cabe ressaltar, que estas informações, reportadas na literatura científica até o 

momento, envolvem NL desenvolvidas com materiais de alto grau de pureza, direcionadas para 

aplicações farmacêuticas e cosméticas. Assim, estes sistemas tornam-se inviáveis para 

aplicações em alimentos, principalmente devido ao alto custo dos materiais purificados. 
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Neste contexto, tivemos como objetivo principal deste estudo o desenvolvimento e 

caracterização de NL a base de óleos e gorduras comestíveis e/ou comercialmente disponíveis 

no contexto da indústria de alimentos, visando tornar a tecnologia acessível para aplicações em 

escala industrial, principalmente em termos de custos e aspectos regulatórios e toxicológicos. 

Para a concretização desta tese, primeiramente, foi realizada uma revisão 

bibliográfica sobre NL, abordando desde os conceitos e definições até os materiais lipídicos 

para a composição da matriz, compostos lipofílicos de inclusão, emulsificantes, métodos de 

produção e caracterização, aspectos toxicológicos, regulatórios e perspectivas de aplicações da 

tecnologia na área de alimentos. Este artigo foi submetido para à Food Research International 

(ISSN: 0963-9969) no formato de Artigo de Revisão, denominado “Solid lipid nanoparticles 

as carriers for lipophilic compounds for applications in foods” e se encontra em fase de 

avaliação. 

A parte experimental foi divida entre quatro artigos, onde constam o estudo de 

caracterização das matérias-primas e o desenvolvimento e caracterização de NLS, CLN e CLN 

com incorporação de compostos bioativos, os fitoesteróis livres (CLN+FL), obtidas através de 

homogeneização a alta pressão (HAP). Foram utilizados óleos vegetais para composição da 

fração insaturada e óleos vegetais totalmente hidrogenados para a fração saturada das 

nanopartículas, ambos materiais comumente empregados na indústria de alimentos. Os óleos 

vegetais totalmente hidrogenados, também conhecidos como hardfats, são obtidos por meio da 

hidrogenação total de óleos líquidos, que transforma todas as duplas ligações dos ácidos graxos 

insaturados em saturadas. Os hardfats são materiais relativamente novos utilizados como 

matérias-primas para o desenvolvimento de gorduras interesterificadas low trans. Mais 

recentemente, os hardfats têm sido objeto de estudos voltados aos processos de estruturação 

lipídica, para obtenção de produtos “Zero Trans”, e também “Low Sat”, sendo uma abordagem 

totalmente inédita a utilização em NL. 

Os fitoesteróis livres (FL), foram selecionados como compostos bioativos para a 

incorporação nas matrizes lipídicas e nas nanopartículas, pois apresentam estruturas químicas 

muito semelhantes ao colesterol. Deste modo, a bioatividade dos FL reside na competição em 

absorção com o colesterol, com consequente redução dos seus níveis no organismo, auxiliando 

na prevenção de doenças cardiovasculares. Porém, com relação a aspectos tecnológicos, os FL 

apresentam insolubilidade em água, o que dificulta a aplicação destes compostos em alimentos. 
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Sendo assim, a solubilização de FL na matriz lipídica dos CLN uma opção para viabilizar a 

aplicação destes em alimentos.  

No contexto experimental da tese, conforme representado esquematicamente na 

Figura 1, foram realizados estudos preliminares para obtenção das NL realizados com o objetivo 

de avaliar diferentes condições de processamento e emulsificantes com diferentes balanços-

hidrofílicos-lipofílicos (BHL). Assim, foram desenvolvidos CLN e CLN+FL compostos por 

óleo de soja e hardfat de óleo de soja, utilizando 3 e 5 ciclos de HAP a 800 bar e os 

emulsificantes lecitina de soja desengordurada (BHL=7,0), monoestearato de sorbitano 

(BHL=4,7) e monooleato de sorbitano etoxilado (BHL=15,0). Os resultados deste estudo 

compõem o Artigo 1, que será submetido para Food Chemistry com o título “Crystallization, 

polymorphism and stability of nanostructured lipid carriers developed with soybean oil, fully 

hydrogenated soybean oil and free phytosterols for food applications.”. 

 
Figura 1. Representação esquemática da parte experimental dos estudos que compreendem 

os quatro artigos experimentais desta tese. 
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Para os demais estudos, a composição das ML das nanopartículas foi alterada, 

visando melhorar os aspectos tecnológicos e nutricionais. Para compor a fração insaturada, foi 

escolhido o óleo de girassol alto oleico, justificado, principalmente, pela maior estabilidade 

oxidativa em comparação ao óleo de soja. A fração saturada, composta previamente por hardfat 

do óleo de soja foi substituída pelo hardfat de óleo de canola, que também possui o ácido 

esteárico (C18:0), como principal ácido graxo. Esta substituição foi realizada a fim de reduzir 

os níveis de ácido palmítico (C16:0) nas formulações. Pois, o ácido palmítico tem sido 

considerado nutricionalmente inadequado, principalmente em relação a indução de resistência 

à insulina em casos de diabetes e atividade pró-inflamatória.  

Adicionalmente, a fim de estudar a influência do tamanho de cadeia dos ácidos 

graxos na cristalinidade das ML, foram incluídos no estudo, ácidos graxos de cadeia longa, 

através do uso de hardfat de óleo de crambe. Composto principalmente por ácido behênico 

(C22:0), que apresenta baixo índice de absorção no organismo (baixa biodisponibilidade). 

Deste modo, diferentes formulações compostas por óleo de girassol alto oleico e hardfats dos 

óleos de canola e crambe foram desenvolvidas e caracterizadas quanto ao comportamento 

térmico de cristalização e fusão, hábito polimórfico e cristalinidade, utilizando as técnicas de 

Calorimetria Diferencial de varredura (DSC), Difração de raios-X (DRX) e Microscopia de Luz 

Polarizada (MLP). A fim de verificar a influência da composição dos diferentes hardfats nos 

fenômenos de cristalização e polimorfismo das ML desenvolvidas. Os resultados obtidos 

compoem o Artigo 2 denominado “Comportamento térmico e cristalino de matrizes lipídicas 

com potencial de aplicação em nanopartículas lipídicas” será submetido à Química Nova.  

A partir dos resultados obtidos nos Artigos 1 e 2, foram selecionadas 9 ML e o 

emulsificante monooleato de sorbitano etoxilado para dar continuidade nos estudos. NLS e 

CLN foram produzidas por meio de HAP com 3 e 5 ciclos a 800 bar e avaliadas quanto ao 

diâmetro médio de partículas, índice de polidispersidade e potencial zeta.  Adicionalmente, foi 

aplicado o processo de secagem por liofilização, e foram avaliadas as propriedades térmicas e 

polimorfismo antes e após a secagem. Estes resultados serão submetidos à Food Chemistry, 

compondo o Artigo 3 “Thermal and crystalline properties of lipid nanoparticles developed 

with conventional vegetable fats and oils for food applications”. 

A última etapa do desenvolvimento das nanopartículas lipídicas consistiu da 

incorporação de fitoesteróis livres (FL) nas ML e nos CLN. Diferentes sistemas foram 
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formulados contendo óleo de girassol alto oleico e hardfats dos óleos de canola e crambe, com 

inclusão de 30 e 50% do composto bioativo. Os FL e as ML foram avaliadas quanto ao grau de 

cristalinidade, polimorfismo e comportamento térmico de fusão. Os CLN foram produzidos 

através de 3 ciclos de HAP à 800bar, utilizando o emulsificante monooleato de sorbitano 

etoxilado. Os CLN obtidos foram caracterizados quanto ao diâmetro médio das partículas, 

índice de polidispersidade, potencial zeta, comportamento térmico e polimorfismo. Os dados 

obtidos estão reunidos no Artigo 4, intitulado “• Development of nanostructured lipid 

carriers loaded with free phytosterol for food applications” que será submetido à Food 

Structure. 

Além disso, destaca-se que as nanopartículas desenvolvidas nesta Tese de 

doutorado são consideradas inéditas, principalmente em termos de composição de ML. Parte 

deste estudo encontra-se em fase de Pedido de Patente, no âmbito de Privilégio de Invenção, 

com INPI - BR 10 2017 006471 9, registrado como “Nanopartículas Lipídicas Sólidas (NLS) e 

Carreadores Lipídicos Nanoestruturados (CLN) para aplicação em alimentos, processo para 

obtenção de NLS e CLN e uso das NLS e dos CLN”.  

Adicionalmente, foi realizado um período de estudos no “Centre for Doctoral 

Training in Complex Particulate Products and Processes” da Faculdade de Engenharia 

Química e de Processos, da Universidade de Leeds, Reino Unido, através do Programa de 

Doutorado Sanduíche no Exterior (PDSE) da Coordenação de Aperfeiçoamento de Pessoal de 

Nível Superior (Capes). Este estudo teve a duração de quatro meses, onde foi possível 

acompanhar experimentos de cristalização de diferentes materiais e o uso do programa Habit98. 

Este programa é utilizado para fornecer informações de energias e interações envolvidas no 

processo de cristalização de materiais, assim como, para a predição da forma estrutural de 

cristais. Este programa foi desenvolvido pelo professor Kevin Roberts, que foi o supervisor das 

atividades no exterior.  
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OBJETIVO 

O objetivo deste trabalho foi o desenvolvimento de nanopartículas lipídicas para a 

incorporação de fitoesteróis livres, utilizando matérias-primas lipídicas usualmente empregadas 

na indústria de alimentos.  

 

As metas para alcançar este objetivo foram:  

• Estudo do comportamento térmico, hábito cristalino e transição 

polimórfica das matérias-primas lipídicas e do composto bioativo; 

• Desenvolvimento e caracterização de matrizes lipídicas para elaboração 

das nanopartículas lipídicas; 

• Emprego de homogeneização a alta pressão para produção das 

nanopartículas lipídicas; 

• Desenvolvimento de nanopartículas lipídicas com matérias-primas 

inétidas neste contexto, como óleos de soja e girassol alto oleico, hardfats dos óleos de 

soja, canola e crambe e fitoesteróis livres; 

• Avaliação da influência dos emulsificantes e condições de 

processamento nas características das nanopartículas; 

• Obtenção e caracterização das nanopartículas lipídicas sólidas (NLS), 

carreadores lipídicos nanoestruturados (CLN) e carreadores lipídicos nanoestruturados 

com fitoesteróis livres (CLN+FL). 
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“Solid lipid nanoparticles as carries for lipophilic compounds for 
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Abstract  

Nanotechnology is a new subject of interest in the food industry. Therefore, 

scientific and technological studies have been intensified in the last 10 years because of the 

promising results associated with the potential application of functional properties in food 

products, such as physical and chemical stability, protection and controlled release of bioactive 

compounds, facilitated solubility of lipophilic compounds and others. Lipids have been used as 

a raw material for the preparation of nanostructures, mainly due to the solubilization capacity 

of lipophilic bioactive compounds, and also because of the advantage of potentially using 

natural ingredients for production on an industrial scale. Thus, in this review we have gathered 

the information reported in scientific literature on the chemical, physical, crystallization 

behavior and polymorphisms of lipids used in the preparation of lipid nanoparticles (LN), also 
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known as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Additionally, 

we reviewed the production methods, properties, characterization, structural components, 

emulsifying systems and functional lipophilic compounds in SLN and NLC. Important methods 

for characterizing LN with regards to particle size, polydispersity index, zeta potential, 

morphology, crystallization behavior and polymorphism are discussed via examples, seeking 

to support studies that consider stability during the processing and storage. Furthermore, studies 

on the applications of LN in foods are only found for model systems, justifying the compilation 

of a series of studies on potential LN applications to encourage future works. In addition, 

aspects still under discussion are commented, related to the possible risks and regulatory aspects 

of nanotechnology in food. 

Keywords: Nanotechnology; Nanoparticles; Lipids; Crystallization; Bioactive 

Compounds; Foods. 

1. Introduction 

Nanotechnology has been a featured science in recent years, and has expanded to 

several areas of research. The great interest in nanostructured materials is related to different 

chemical, physical and biological properties that may be present on the nanoscale. This science 

involves the development, production and application of structures, devices and systems with 

nanometric dimensions. The basis of knowledge for development of these systems follows the 

principles of nanodevices found in nature, which have several functionalities, such as the 

organization of macromolecules including lipoproteins, deoxyribonucleic acid (DNA) and 

membranes. Nanotechnology materials are in constant development and have been applied in 

the textile industry, energy production, communication systems, medicine, pharmaceuticals, 

cosmetics, food industry and others. They include diverse materials and structures, such as 

nanotubes, nanosensors, nanoparticles, nanofibers and nanosystems carrying bioactive 

compounds (Cushena, Kerryb, Morrisc, Cruz-Romerob, & Cumminsa, 2012; Tamjidi, Shahedi, 

Varshosaz, & Nasirpour, 2013; Cerqueira, Pinheiro, Silva, Ramos, Azevedo, Flores-López, 

Rivera, Bourbon, Ramos, & Vicente, 2014; Beloqui, Solinís, Rodríguez-Gascón, Almeida, & 

Préat, 2016). 

Strategies for the use of nanotechnology in the food industry are differentiated, 

mainly in terms of preserving integrity and guaranteeing the functionality of bioactive 
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compounds, as well as biosafety requirements. In this context, it is possible to obtain great 

benefits from the use of nanotechnology in several areas, for example in food safety for the 

detection of pathogens, in the development of packaging materials with biodegradable, 

antimicrobial and barrier properties, as well as edible films for surface coatings, nanosensors, 

new ingredients, additions, additives, food supplements, foods with functional properties, 

systems for transporting bioactive compounds and others (Chaudhry & Castle, 2011; Durán & 

Marcato, 2013; Cerqueira, Pinheiro, Silva, Ramos, Azevedo, Flores-López, Rivera, Bourbon, 

Ramos, & Vicente, 2014; Wang, Chaudhry, Park, & Juneja, 2015). 

The transport of bioactive compounds has been considered an innovative subject in 

food technology, since it follows the principles of delivery and release of compounds in the 

body, highly utilized in orally administered drugs. In industrial processing, these carrier systems 

can also be employed for the protection of compounds of interest against degradation, i.e., 

preventing undesirable chemical reactions and loss of functional activity as a result of exposure 

to light and oxygen. Additionally, in foods the use of nanoscale materials with different 

physicochemical properties could solve some problems found in macro and microstructured 

systems, such as compatibility with the food matrix resulting from the effects of aggregation 

and phase separation (Weiss, Takhistov, & McClements, 2006; Aditya & Ko, 2015). It can be 

seen in scientific literature that studies on the application of nanostructured systems in food are 

still in the development phase, since knowledge is sought on the behavior of nanostructures to 

obtain stable and applicable systems. Therefore, this review seeks to gather and present the state 

of the art on nanostructured lipid systems, associating the subject with consolidated knowledge 

of lipids on a macroscale, in order to expand the scope on behavior of these systems and discuss 

their potential application in foods. 

2. Lipids and crystallization properties 

Lipids are essential nutrients of the human diet, playing a vital role by providing 

essential fatty acids and energy. Chemically, natural oils and fats consist of multi-component 

mixtures of triacylglycerols (TAGs), which are esters of glycerol and fatty acids. Each fatty 

acid can occupy different positions in the glycerol molecule (sn-1, sn-2 or sn-3), allowing a 

great diversity of combinations. However, the distribution of fatty acids in natural TAGs is not 

random. The taxonomic pattern of oils and fats obeys the 1,3-random-2-random distribution, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=26598848
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaudhry%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=26598848
http://www.ncbi.nlm.nih.gov/pubmed/?term=Park%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=26598848
http://www.ncbi.nlm.nih.gov/pubmed/?term=Juneja%20LR%5BAuthor%5D&cauthor=true&cauthor_uid=26598848
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with the saturated fatty acids located almost exclusively at the sn-1 and sn-3 positions and the 

unsaturated fatty acids preferably at the sn-2 position of the TAGs (O'Brien, 2009). 

Much of the behavior of lipids depends on the alkyl chain characteristics of the fatty 

acids present, for example: saturated or unsaturated fatty acids, cis or trans configuration, chain 

size, and even or odd carbon numbers. Saturated fatty acids are less reactive and have a higher 

melting point than the corresponding fatty acid of the same chain size with one or more double 

bonds. The presence of long and saturated chains increases the melting point of the TAGs due 

to their linear conformation, resulting in greater interaction of the molecules, and consequently 

allowing better packing of the fatty acid chains (Scrimgeour, 2005). 

The crystallization process refers to the spontaneous ordering of a lipid system, 

characterized by total or partial movement restriction caused by chemical or physical 

interactions between triacylglycerol molecules. Differences in the crystalline forms result from 

different molecular packings. Therefore, a crystal consists of molecules arranged in a fixed 

pattern known as reticulated. Its high degree of molecular complexity allows that the same set 

of TAGs be packaged in several different and relatively stable structures (Sato, 2001). Long 

chain compounds, such as fatty acids and their esters, may exist in differentiated crystalline 

forms, characterizing polymorphs. The polymorphism can be defined in terms of its ability to 

manifest different cell unit structures, resulting from various molecular packings (Lawler & 

Dimick, 2002). In TAGs three specific types of subcellular cells predominate, referring to the 

polymorphs , ’ and , according to the current polymorphic nomenclature. The  form is 

metastable, with hexagonal chain packing. The ’ form has intermediate stability and 

orthorhombic perpendicular packing, while the  form has greater stability and parallel triclinic 

packing. The melting temperature increases with increasing stability ( → ’ → ) as a result 

of the density differences of the molecular packing. TAGs initially crystallize into the  and ’ 

forms, although the  form is the most stable. This phenomenon is related to the fact that the  

form has higher activation free energy for nucleation. Polymorphic transformation is an 

irreversible process from the least stable to the most stable form (monotrope phase 

transformation), depending on the temperature and time involved. At constant temperature, the 

 and ’ forms can transform, as a function of time, into the  form via the liquid-solid or solid-
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solid mechanisms (Himavan, Starov, & Stapley, 2006). The transformation rate decreases as 

the degree of heterogeneity of the TAGs increases (Sato, 2001). 

The most important aspect of the physical properties of oils and fats is related to 

solid-liquid and liquid-solid phase changes, melting and crystallization, respectively. The 

various thermal phenomena related to oils and fats are verified by monitoring the enthalpy and 

phase transition changes of the various TAG mixtures. Evaluation of the thermal behavior 

provides direct measurements of the energy involved in the melting and crystallization 

processes of lipid systems. Crystallization results in volume contraction associated with an 

exothermic effect. Melting, contrarily, competes for volume expansion, characterizing an 

endothermic effect (Tan & Che Man, 2002). The polymorphic characteristics of TAGs 

complicate the study of the thermal and structural properties of fats. Thermal behavior therefore 

reflects the general properties of lipid functionality and applicability, and is dependent on TAGs 

profiles in edible oils and fats (Ribeiro, Basso, Grimaldi, Gioielli, & Gonçalves, 2009). 

3. Nanotechnology applied to lipids 

Nanoparticles developed from lipids are among the most promising encapsulation 

technologies in the field of nanotechnology. The initial concept for the development of LN is 

based on the principles of producing oil-in-water (O/W) emulsions on a nanometric scale, with 

the substitution of liquid lipids for solid lipids at room temperature. In the last decade, SLN 

have been developed as an alternative system to emulsions, liposomes and polymeric structures. 

However, many presented inadequate characteristics related to the unavailability of 

biocompatible polymers, emulsifiers and the use of organic solvents not approved for food 

systems (Weiss, Decker, McClements, Kristbergsson, Helgason, & Awad, 2008). 

The term “lipids”, which is quite general, refers to a wide variety of molecules, 

including TAGs, partial acylglycerides, fatty acids, steroids, cholesterol and waxes. Compared 

to conventional encapsulation systems, lipid systems have the advantage of using natural 

ingredients on an industrial scale, a great differentiation of physicochemical properties, as well 

as the retention capacity of compounds presenting variable solubility (Kamboj, Bala, & Nair, 

2010; Yoon, Park, & Yonn, 2013). In addition, lipids are naturally absorbed by the body, 

facilitating the transport of bioactive compounds via rapid absorption in the gastrointestinal 

tract (GIT). Thus, in the pharmaceutical field LN have gained prominence as vehicles for 
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transporting orally administered drugs, as well as via other methods (Severino, Andreani, 

Macedo, Fangueiro, Santana, Silva, & Souto, 2012). However, LN for food and drug 

applications should be produced from lipid materials with high thermal resistance (melting 

point higher than the body temperature of 37 °C) so that they remain solid during the digestive 

process in order to protect the bioactive compounds until the time of their absorption in the GIT 

(Sharma, Diwan, Sardana, & Dhall, 2011). 

Solid LN are considered complex systems, presenting spherical shape and 

dimensions on the nanoscale, although highly variable according to the materials and forms of 

acquisition. They present high bioavailability due to the use of physiological lipids throughout 

their composition (Robles, García, Garzón, Hernández, & Vázquez, 2008). They also present 

advantages including: carriers of bioactive compounds, controlled release and targeting of 

substances at the site of action, increased stability of the encapsulated compound, ability to 

include lipophilic substances and absence of toxicity. Besides these factors, they can be 

produced on a large scale without the use of organic solvents (Gasco, 2007; Lason & 

Ogonowski, 2011). 

Recently there has been a growing interest in studies focused on the development 

and application of these systems, supported by a large number of scientific publications directed 

towards production, physicochemical characterization, incorporation capacity of lipophilic 

compounds and release profile of the incorporated compound (Porter, Willians, & Trevaskis, 

2013; Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013; Choi, K., Aditya, & Ko, 2014; Joseph, 

Rappolt, Schoenitz, Huzhalska, Augustin, Scholl, & Bunjes, 2015; Zhu, Zhuang, Luan, Sun, & 

Cao, 2015). 

In light of this, the great potential of LN applications is a current focus of research 

in the food industry, driven by the enormous versatility of these systems since physical 

properties such as dimensions, structure, load, physical state and preferential crystalline habit 

can be modulated by means of selecting the specific lipid raw materials, associated with 

different acquisition parameters (Simovic, Barnes, Tan, & Prestidge, 2012). 

4. Solid lipid nanoparticles and nanostructured lipid carriers 

Solid LN are currently classified into two categories: solid lipid nanoparticles 

(SLN) and nanostructured lipid carriers (NLC) (Fig1). The first generation of LN was produced 
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with only solid lipids (saturated fatty acids) and emulsifiers for the incorporation of bioactive 

compounds, and denominated SLN. The SLN have a highly ordered crystalline structure and 

are stabilized by an outer layer consisting of emulsifiers, used alone or in combination (Lason 

& Ogonowski, 2011). For maintenance of the SLN structure after oral administration, for 

example, the melting point of the lipid materials used should exceed the body temperature (37 

°C), which justifies the use of lipid matrices with high thermal resistance (Sharma, Diwan, 

Sardana, & Dhall, 2011). In general, it is considered that the lipid phase should totally or 

partially crystallize at the final application temperature of the SLN. In this sense, SLNs can be 

produced from a single solid lipid species, such as high melting point TAGs, or by the use of a 

mixture of lipid classes, where mobility of the incorporated compound is controlled by the 

physical state of the lipid matrix used and the structure type (Tamjidi, Shahedi, Varshosaz, & 

Nasirpour, 2013). The structure of SLN allows the incorporation of different types of lipophilic 

compounds, which are protected against degradative processes by the lipid matrix. In general, 

the development of SLN requires the knowledge of interactions between the compound of 

interest and the lipids used as the matrix, the chemical and physical structure of the components, 

as well as its preferential polymorphic habit. In some cases, SLN produced from high purity 

lipid matrices can crystallize in a highly ordered manner, which permits less room for 

incorporation of bioactive compounds, resulting in problems of stability and expulsion of the 

incorporated component (Lason & Ogonowski, 2011; Weiss, Decker, McClements, 

Kristbergsson, Helgason, & Awad, 2008). 

In order to overcome possible limitations associated with SLN, a second generation 

of LN, referred to as NLC, appeared with the intent of producing less structured lipid matrices 

in relation to crystallinity, capable of obtaining better incorporation efficiency and avoiding the 

release/expulsion of bioactive compounds during storage (Müller, Runge, Ravelli, Mehnert, 

Thunemann, & Souto, 2006; Garzón, Hernández, Vázquez, Vázquez, & García, 2008; Pardeike, 

Hommoss, & Müller, 2009; Souto, Severino, Santana, & Pinho, 2011). 

The NLC were developed from blends of liquid lipids (unsaturated fatty acids) to 

solid lipids, which are spatially different, in order to create particles with “imperfect” 

crystallization characteristics. Therefore, acquiring NLC is accomplished through the combined 

use of solid and liquid lipid fractions; however, it is important that the blends used have a 

melting point higher than the body temperature to maintain the structural and stability 
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characteristics. As a result of imperfections in the crystalline structure of the NLC, the capacity 

for incorporation of bioactive compounds of the LN can be increased, minimizing expulsion of 

the compound of interest during the storage period (Yoon, Park, & Yonn, 2013). Müller, 

Radtke, & Wissing, (2002) stated that the combination of saturated and unsaturated fatty acids 

promotes less crystalline packing and rigidness of the NLC structure, with greater spacing 

between the fatty acid chains, facilitating the incorporation of bioactive compounds and 

minimizing expulsion during polymorphic transitions. Furthermore, according to Tamjidi, 

Shahedi, Varshosaz, & Nasirpour (2013) the structural organization of NLC is dependent on 

factors such as the types and concentrations of lipids used in the matrix, the compound 

incorporated, the interaction between them and the parameters used in production.  

TAGs consisting of a single type of fatty acid result in organized structures, with 

restrictions for accommodation of the incorporated compound, inducing expulsion of the solid 

lipid matrix compound. Lipid mixtures consisting of heterogeneous TAGs form crystals with a 

smaller degree of ordering, offering more space to accommodate the molecules of the 

incorporated compound (Garzón, Vázquez, Vázquez, García, & Hernández, 2009). In this 

sense, significant differences were verified between monoacid TAGs and complex lipid 

mixtures, whose polymorphic properties differ significantly (Hou, Xie, Huang, & Zhu, 2003). 
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Fig. 1 Schematic representation of the structures of lipid nanoparticles: SLN (solid lipid 

nanoparticles, composed by SFA - saturated fatty acids) and NLC (Nanostructured Lipid Carriers, composed by 

SFA-saturated fatty acids and UFA - unsaturated fatty acids). 

 

5. Methods for production of SLN and NLC  

The techniques for obtaining SLN and NLC are similar and in literature it is possible 

to find several production methods, such as homogenization using hot or cold high pressure, 

solvent emulsification and evaporation, solvent emulsification-diffusion, solvent injection (or 

solvent displacement, multiple emulsion, ultrasonication, microemulsion, spontaneous 
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emulsification, phase inversion and others (McClements & Rao, 2011; Tamjidi, Shahedi, 

Varshosaz, & Nasirpour, 2013). However, most of these methods present disadvantages 

including the need for high concentrations of emulsifiers and co-emulsifiers, and potentially the 

presence of organic solvent residues which can cause toxicity problems, complicating their 

application in the food industry (Wissing, Kayser, & Müller, 2004; Tamjidi, Shahedi, 

Varshosaz, & Nasirpour, 2013; McClements, 2013). 

Homogenization using hot or cold high pressure and ultrasonic homogenization are 

methods that present greater potential for application in the food industry on an industrial scale, 

with potential for isolated or integrated application, and are described below. 

5.1. High pressure homogenization 

High pressure homogenization (HPH) is the technique with greatest potential for 

the preparation of SLN and NLC, since homogenizers of different capacities are commercially 

available. In contrast to other production techniques, HPH presents no difficulties of scale 

transposition and allows for working under aseptic conditions, which characterizes the method 

as highly versatile and advantageous. The HPH is characterized by the use of a variable pressure 

from 100 to 2000 bar, in which shear and cavitation forces rupture the larger lipid aggregates 

to the nanometer scale (Mehnert & Mäder, 2012). In order to obtain LN with a homogeneous 

size distribution, the entire dispersion must be subjected to the same energy intensity. HPH is 

characterized by applying the same shear stress to the entire sample, due to the reduced 

dimensions of the homogenizer outlet orifice, generally less than 30μm (Souto, Severino, 

Santana, & Pinho, 2011). Two different HPH approaches, denominated hot homogenization 

and cold homogenization, can be used for the production of SLN and NLC. In both cases, a 

preparatory step involves mixing the bioactive compound in the lipid matrix, by dissolution or 

dispersion (Mehnert & Mäder, 2012). 

5.1.1. Hot high pressure homogenization 

Hot HPH is carried out at temperatures exceeding the melting point of the lipid 

phase, and may be understood as the homogenization of a pre-emulsion. To obtain this pre-

emulsion, the lipid matrix is completely melted, incorporating the active compound by 

dissolution or by dispersion. To increase the stability of the pre-emulsion, it is possible to 

incorporate an emulsifier into the liquid lipid phase. This phase is then emulsified in an aqueous 
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phase containing the emulsifier with the use of mechanical stirring, such as ultra-turrax (Souto, 

Severino, Santana, & Pinho, 2011). The quality of the pre-emulsion strongly affects the final 

quality of the LN, and in this step particles with dimensions of a few micrometers should be 

obtained (Mehnert & Mäder, 2012). Then, the pre-emulsion is subjected to HPH at a 

temperature dependent on the material, resulting in an O/W type nanoemulsion (Bunjes & 

Siekmann, 2006; Patel & Martin-Gonzalez, 2012). In general, for this stage two to five HPH 

cycles are used, with pressure varying between 500 and 1500 bar (Severino, Andreani, Macedo, 

Fangueiro, Santana, Silva, & Souto, 2012; Liu, Wang, & Xia, 2012). Higher temperatures result 

in lower particle sizes as a result of the viscosity decrease. In some cases, the increase in the 

homogenization pressure or the number of cycles can promote an increase in particle size, due 

to the coalescence phenomenon as a result of the high kinetic energy. The obtained 

nanoemulsion is then cooled to a temperature at or below room temperature, followed by 

solidification of the lipids and obtaining the aqueous LN dispersion (Reddy & Shariff, 2013). 

It is considered that the physico-chemical characteristics of the LN obtained by hot 

HPH are affected by a set of parameters, which include solubility of the incorporated 

component, polymorphism of the lipid matrix, nature and concentration of the lipid and 

emulsifying phase, process temperature, shear force and number of homogenization cycles 

performed (Severino, Andreani, Macedo, Fangueiro, Santana, Silva, & Souto, 2012). Cheong 

& Tan (2010) investigated the effect of pressure, number of cycles and temperature on the 

properties of the LN obtained with palm oil, verifying that all parameters resulted in a 

significant effect on the size distribution and morphology of the particles obtained. Several 

recent studies have been reported to obtain LN using this technique, with favorable results 

regarding the general physical properties (Attama & Muller-Goymann, 2008; Han, Li, Yin, Liu, 

& Xu, 2008; Mitri, Shegokar, Gohla, Anselmi, & Müller, 2011; Patel & Martin-Gonzalez, 2012; 

Liu, Wang, & Xia, 2012; Carvalho, Noronha, Floriani, Lino, Rocha, Bellettini, Ogliari, & 

Barreto, 2013; Zheng, Zou, Yang, Liu, Xia, Ye, & Mu, 2013). 

5.1.2. Cold high pressure homogenization 

Cold HPH is suitable for the incorporation of thermolabile or hydrophilic bioactive 

compounds (Garzón, Hernández, Vázquez, Vázquez, & García, 2008). It was developed in 

order to overcome problems related to the preservation of bioactive compounds. Among these, 
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highlighted are decomposition of the active substance subjected to high temperatures and 

contact with the aqueous phase during the homogenization process, as well as multiple 

modifications due to the complex crystallization behavior in nanoemulsions (Lason & 

Ogonowski, 2011; Mehnert & Mäder, 2012). 

The first phase of the cold HPH technique is identical to hot HPH and involves the 

solubilization or dispersion of the bioactive compound in the molten lipid matrix. However, the 

other phases are quite different. The lipid matrix containing the bioactive compound is rapidly 

cooled with liquid nitrogen or dry ice, and this high cooling rate favors the homogeneous 

distribution of the bioactive compound. This mixture is subjected to a fragmentation process 

and has its size reduced to microparticles (50-100 μm), which are dispersed in a cold solution 

containing the emulsifier, so as to form a pre-suspension. This is subjected to HPH at room 

temperature or lower, generally at 500 bar for 5 to 10 cycles, to obtain an aqueous dispersion 

of LN. However, the greater the number of cycles employed the higher the temperature control 

has to be, since in each cycle the dispersion increases by 10 to 20 °C. The cold HPH method 

minimizes exposure of the sample to elevated temperatures, with exception of the first phase, 

where it is necessary to use a temperature above the melting point of the lipid matrix to disperse 

the bioactive compound (Lason & Ogonowski, 2011; Mehnert & Mäder, 2012). Another 

interesting feature is that the use of low temperatures in crystallization of the lipid matrix 

increases the lipid fragility and favors the acquisition of LN with smaller dimensions (Garzón, 

Hernández, Vázquez, Vázquez, & García, 2008; Souto, Severino, Santana, & Pinho, 2011). 

However, the particles obtained by this method are larger in comparison to the hot 

homogenization process, requiring a greater number of homogenization cycles (Lason & 

Ogonowski, 2011). 

5.2. Ultrasonic Homogenization 

Techniques such as ultrasound are used in many industrial applications in the food 

industry, such as processing, preservation and food safety. This emerging technology has been 

used as an alternative to conventional food processing operations and has the advantage of ease 

of adaptation and scale up in several processes (Awad, Moharram, Shaltout, Asker, & Youssef, 

2012, Ramisetty, Pandit, & Gogate, 2015). 
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Ultrasound homogenates using constant or intermittent high intensity ultrasonic 

waves. The method basically consists of the preparation of a pre-emulsion in an ultra-turrax, 

followed by homogenization with ultrasound application to obtain a nanoemulsion and 

subsequent solidification of the lipid fraction. An ultrasound probe is inserted in the pre-

emulsion and during the sonication process longitudinal waves are created when a sound wave 

enters the liquid medium, thus creating alternating regions of compression and expansion which 

generates levels of intense mechanical turbulence. This favors the formation of gas bubbles 

which propagate within the liquid and lead to cavitation effects, i.e., formation, growth and 

collapse of small bubbles in the liquid (Leong, Man, Lai, Long, Misran, & Tan, 2009; 

McClements & Rao, 2011). 

A number of recent studies using ultrasound to produce LN composed of sunflower, 

canola, soybean, linseed, sesame, and olive oils from nanoemulsions are found in literature 

(Kentish, Wooster, Ashokkumar, Balachandran, Mawson, & Simons, 2008; Leong, Man, Lai, 

Long, Misran, & Tan, 2009; Wulff-Perez, Galvez-Ruiz, De Vicente, & Martin-Rodriguez, 

2009; Amani, York, Chrystyn, & Clark, 2010). These showed that parameters such as ultrasonic 

wave intensity, exposure time, type and quantity of emulsifiers and viscosity of the medium 

should be evaluated to improve LN production processes, in addition to evaluation of lipid 

oxidation due to the presence of air bubbles in the process. 

Leong, Man, Lai, Long, Misran, & Tan (2009) prepared O/W nanoemulsions with 

15 % sunflower oil and 5.6% emulsifiers both together and individually (polyoxyethylene 

sorbitan monooleate - PSM 80, sorbitan monooleate - SM 80 and sodium dodecyl sulfate - 

SDS). The pre-emulsions were prepared in an ultra-turrax for 1-2 min and then sonicated at the 

sonication amplitude of 30 μm by immersion of the ultrasound probe in 40 mL of sample for 

20 minutes, with temperature control by means of circulated cooling water at 21 - 23 °C. The 

authors demonstrated that ultrasound is a viable method for producing O/W type nanoemulsions 

using sunflower oil, with no lipid oxidation and average particle size below 40 nm. 

6. Structural components for LN 

The essential components for obtaining SLN and NLC are lipids, emulsifiers and 

water (Aditya & Ko, 2015). The nature and proportion of the lipid phases, emulsifiers, and co-

emulsifiers determine the general properties of the LN, such as loading capacity, incorporation 
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efficiency of bioactive compounds, stability and administration forms (Garzón, Vázquez, 

Vázquez, García, & Hernández, 2009). Among the materials for the composition of LN, many 

lipid components and emulsifiers are found within the category GRAS - Generally Recognized 

as Safe, or with approved regulatory status for the preparation of bioactive compound carrier 

systems for oral, parenteral or dermal administration (Garzón, Vázquez, Vázquez, García, & 

Hernández, 2009; Aditya & Ko, 2015). 

According to literature, in order to obtain the particulate matrix mixtures, solid 

lipids are mixed with liquid lipids, preferably in a ratio of 70:30 to 99.9:0.1. The SLN can be 

obtained in systems composed of 0.1 to 30% (w/w) lipids, with high melting lipid fractions 

dispersed in aqueous medium and stabilized by emulsifier contents between 0.5 and 5% (w/w); 

for NLC, the percentage of lipids in the formulation may be greater than 95% (w/w). In both 

systems, the percentage of the encapsulated compound, relative to the total formulation, is about 

5% (w/w). The higher the lipid content in the formulation, the greater the incorporation capacity 

in the LN obtained, with direct implications on the cost and feasibility for application in foods 

(Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). Different formulations are associated with 

incorporation efficiencies between 50 and 95% (Jannin, Musakhanian, & Marchaud, 2008). As 

the concentration of the lipid phase increases the LN size increases, making emulsification in 

the aqueous phase more difficult. In general, lipid phase percentages greater than 10% result in 

LN with larger dimensions and more heterogeneous size distribution (Souto, Severino, Santana, 

& Pinho, 2011). 

The lipid matrix represents a fundamental factor in the structure and properties of 

the LN, since it determines specific molecular configurations related to the functionalities of 

these structures. The nature of the lipid phase also has a great influence on the biodegradation 

of nanoparticles. TAGs with long-chain fatty acids present a slower degradation process 

compared to TAGs with short-chain fatty acids; more unsaturated TAGs are also more 

susceptible to oxidation than less unsaturated TAGs (Sharma, Diwan, Sardana, & Dhall, 2011). 

Furthermore, selection of the constituents of the lipid matrix determines the production 

conditions of the LN, such as the homogenization temperature and cooling rates (Weiss, 

Decker, McClements, Kristbergsson, Helgason, & Awad, 2008). 

Selection of the appropriate lipid matrices for development of SLN and NLC should 

consider the following aspects: i) the solubility of the bioactive compound in the lipid phase, 
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the efficiency of incorporation and feasibility of use in the LN obtained; ii) stability of the lipid 

phase for chemical and enzymatic oxidation processes; iii) use of biodegradable lipid 

components presenting an acceptable toxicological profile (Tamjidi, Shahedi, Varshosaz, & 

Nasirpour, 2013). 

Factors including crystallization velocity of the lipid phase and microstructural 

properties affect the general characteristics of the obtained LN, such as geometry and 

dimensions. The average particle size generally increases with increasing melting point of the 

lipid matrix, as a result of increasing the viscosity of the dispersed phase (Mehnert & Mäder, 

2012). 

Specifically, with regards to NLC production, the lipid constituents with high and 

low melting points must have a very different spatial configuration. This means that the liquid 

lipid phase should not be incorporated into the solid lipid phase, and that the crystals should not 

be dissolved by the liquid phase. Additionally, an essential condition to guarantee NLC stability 

is that the lipid constituents with high and low melting points present complete miscibility at 

the concentrations of use (Doktorovová, Araújo, Garcia, Rakovský, & Souto, 2010). 

The vast majority of the lipid components used to obtain LN consist of synthetic 

materials, generally of high cost and with varying chemical composition according to different 

manufacturers, in which small differences in the contents of acylglycerol components may 

represent difficulties in standardized acquisition and characterization (Garzón, Vázquez, 

Vázquez, García, & Hernández, 2009; Mehnert & Mäder, 2012). However, the use of TAGs in 

their purified form is generally economically unfeasible when considering the scale and 

possibility for application in food systems. Table 1 shows the synthetic lipid components found 

in literature, used for LN composition and applicable for foods. 

The combination of fatty acid characteristics found in common lipid sources in the 

food industry, such as vegetable oils and fats, is very promising for the development of 

nanostructured lipid systems with specific release properties. Different mixtures of natural fats 

represent compatible sources for this purpose, with crystallographic characteristics suitable for 

SLN and NLC formulation (Garzón, Vázquez, Vázquez, García, & Hernández, 2009). 

However, to date few studies have been directed at obtaining LN from conventional oils and 

fats. 
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Mandawgade & Patravale (2008) developed SLN with the use of different stearin 

fractions from palm kernel oil. The preparation of SLN from beeswax and animal fat was 

studied by Attama & Muller-Goymann (2008). The authors verified that the degree of 

crystallinity of the particles was maintained throughout storage. Joseph & Bunjes (2012) used 

mixtures of medium chain TAGs (MCT) and soybean oil to obtain LN. Yang, Corona, Schubert, 

Reeder, & Henson (2014) studied the effect of different synthetic and natural lipid matrices, in 

concentrations between 2.5 and 20%, on the crystallization properties of NLC. Natural lipid 

sources composed mainly of TAGs, such as olive oil and palm oil, favored the formation of 

more homogeneous and stable structures. 

Table 1. Commercial materials used in the composition of nanoemulsion and lipid 
nanoparticles found in the literature 

LIPID COMPOSITION a REFERENCE 

Solid Lipid   

Stearic acid purified 

Sharma, Ganta, Denny, & Garg (2009); 
Chakraborty, Shukla, Vuddanda, Mishra, & 
Singh (2010); Eltayeb, Bakhshi, Stride, & 

Edirisinghe (2013). 

TAG purified  

(trilaurin / trimyristin /  

tripalmitin / tristearin) 

 

Mühlen, Schwarz, & Mehnert (1998); 
Bunjes, Steiniger, & Richter (2007); Awad, 
Helgaso, Kristbergsson, Decker, Weiss, & 

McClements (2008); Awad, Helgason, Weiss, 
Decker, & McClements (2009); Severino, 
Andreani, Macedo, Fangueiro, Santana, 

Silva, & Souto (2012); Salminen, Helgason, 
Kristinsson, Kristbergsson, & Weiss (2013); 

Joseph, Rappolt, Schoenitz, Huzhalska, 
Augustin, Scholl, & Bunjes (2015). 

Mixtures of TAG (65-80%), 

DAG (10-35%) and MAG (1-5%) 

Jores, Haberland, Wartewig, Mäder, & 
Mehnert (2005). 

Glyceryl behenate  

(5% MAG, 50% DAG and 35% TAG of C22:0) 

Mühlen, Schwarz, & Mehnert (1998); Jores, 
Mehnert, & Mäder (2003); Jores, Mehnert, 

Drechsler, Bunjes, Johann, & Mäder (2004); 
Jores, Haberland, Wartewig, Mäder, & 

Mehnert (2005); Alex, Chacko, Jose, & Souto 
(2011). 
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Propylene glycol monostearate 

(70% mono and distearatoglycol 

29% mono and dipalmitatoglycerol and 1% fatty 
acids (C14:0 and C18:0)) 

Hentschel, Gramdorf, Müller, & Kurz (2008). 

Coconut oil Ramisetty, Pandit, & Gogate (2015). 

Liquid lipid  

49% PUFA, 28% EPA, 12% DHA, 24% MUFA, 
27% SFA, 0.25% FFA 

Awad, Helgason, Weiss, Decker, & 
McClements (2009); Lacatusu, Mitrea, 
Badea, Stan, Oprea, & Meghea (2013); 

Salminen, Helgason, Kristinsson, 
Kristbergsson, & Weiss (2013). 

Purified medium chain TAG 

(C8:0 e C10:0). 

Jores, Mehnert, & Mäder (2003); Jores, 
Mehnert, Drechsler, Bunjes, Johann, & 

Mäder (2004); Jores, Haberland, Wartewig, 
Mäder, & Mehnert (2005); Severino, 

Andreani, Macedo, Fangueiro, Santana, 
Silva, & Souto (2012). 

Sunflower oil 
Hentschel, Gramdorf, Müller, & Kurz (2008); 

Leong, Man, Lai, Long, Misran, & Tan 
(2009). 

Flaxseed oil 
Kentish, Wooster, Ashokkumar, 

Balachandran, Mawson, & Simons (2008). 

Purified oleic acid Sharma, Ganta, Denny, & Garg (2009). 

a TAG - Triacylglycerols; DAG – Diacylglycerols; MAG – Monoacylglycerols; C8:0 - Caprylic acid; C10:0 - 
Capryc acid; C14:0 - myristic acid; C18:0 - stearic acid; C22:0 - behenic acid; PUFA - polyunsaturated fatty acids; 
MUFA - monounsaturated fatty acids; SFA - saturated fatty acids; FFA - Free fatty acids; EPA - eicosapentaenoic 
acid; DHA - docosahexaenoic acid. 

 

6.1. Liquid lipids 

Low-melting point lipid components are usually employed in obtaining NLC. The 

medium-chain triacylglycerols (MCT) and oleic acid are the most common components in the 

development of this class of NLC (Jannin, Musakhanian, & Marchaud, 2008; Joseph & Bunjes, 

2012). 

Oleic acid - cis-9-octadecenoic acid - C18:1 (9) – is a constituent of most edible 

oils and fats. It exhibits crystallization at 4 °C and can be obtained by hydrolysis of vegetable 

https://en.wikipedia.org/wiki/Caprylic_acid
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwjyqIfv39bVAhWTDRoKHalNBfUQFgg3MAI&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCaprylic_acid&usg=AFQjCNGQsV2tgxE03aQcsU5IvF14wFEmLw
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oils. It has a well-documented and established health benefit, as well as less susceptibility to 

oxidation when compared to linoleic and linolenic acids (Scrimgeour, 2005). 

Edible vegetable oils such as canola, soybean and sunflower oil can be used for 

NLC production. The incorporation of these natural oils alters the crystallinity of the lipid 

matrix, and in general improves the solubility of the encapsulated components. These raw 

materials prove to be environmentally appropriate, are low cost, and as additional benefits may 

contain natural antioxidants that maximize the protection of inclusion compounds. However, 

the limited use of these oils results from their low oxidative stability (Liu & Wu, 2010; Nguyen, 

Hwang, Park, & Park, 2012). Therefore, the main liquid components used for the production of 

LN are oleic and triolein acid in the great majority of available studies (Aditya, Shim, Lee, Lee, 

Im, & Ko, 2013; Mojahedian, Daneshamouz, Samani, & Zargaran, 2013; Shangguan, Lu, Qi, 

Han, Tian, Xie, Hu, Yuan, & Wu, 2014), as well as soybean, corn and sunflower oil in LN 

specifically for application in foods (Liu & Wu, 2010; Hejri, Khosra, Gharanjig, & Hejazi, 

2013; Asumadu-Mensah, Smith, & Ribeiro, 2013). 

High oleic sunflower oil (HOSO) is considered a premium raw material, which was 

developed by Russian researchers from chemical mutagenesis and selective crosses of 

sunflower (Helianthus annus), seeking to obtain a stable seed variety for the climate conditions, 

and therefore with high oleic acid content (O’Brien, 2009). The typical HOSO composition is 

represented by 3-5% palmitic acid, 2-6% stearic acid, 75-88% oleic acid and less than 1% 

linolenic acid, which gives the oil ten times greater oxidative stability in relation to soybean oil 

and the regular sunflower oil itself. The HOSO has a neutral flavor and aroma, and has been 

used to obtain products of maximum toxicological safety and biodegradability in foods, 

cosmetics and pharmaceuticals (Gunstone, 2005; McKeon, 2005). These attributes indicate 

HOSO as a high-quality liquid lipid source to obtain NLC (Tamjidi, Shahedi, Varshosaz, & 

Nasirpour, 2013; Cerqueira, Pinheiro, Silva, Ramos, Azevedo, Flores-López, Rivera, Bourbon, 

Ramos, & Vicente, 2014). 

6.2. Solid lipids 

The solid lipid components employed in the preparation of LN consist mainly of 

TAGs, fatty acids, monoacylglycerols, diacylglycerols and waxes. The myristic, palmitic and 

stearic acids, in particular, are compatible with the lipid composition of animal tissues, and as 
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a consequence have been used as the preferred lipid matrix for the preparation of LN (Eltayeb, 

Bakhshi, Stride, & Edirisinghe, 2013). Stearic acid consists of an endogenous long-chain fatty 

acid, and represents a major component in natural oils and fats, with high biocompatibility and 

low toxicity. It has a melting point of approximately 70 °C and is considered neutral with 

respect to physiological fluids. From these aspects, both stearic acid and tristearin, or lipid 

mixtures rich in these components, are highly utilized raw materials for LN composition 

(Mensink, 2005; Severino, Pinho, Souto, & Santana, 2011; Eltayeb, Bakhshi, Stride, & 

Edirisinghe, 2013; Wang, Dong, Wei, Zhong, Liu, Yao, Yang, Zheng, Quek, & Chen, 2014). 

Natural waxes such as carnauba, candelilla and beeswax can also be used directly for the 

formulation of these structures. These materials are commercially available and are approved 

as GRAS for direct application in foods, in addition to being characterized by high stability 

against oxidation processes (Garzón, Vázquez, Vázquez, García, & Hernández, 2009). 

6.3. Emulsifiers and co-emulsifiers 

Emulsifiers are amphiphilic molecules that exhibit tensoactive properties, due to 

the presence of a polar (hydrophilic) moiety and an apolar (hydrophobic / lipophilic) moiety in 

the structure, allowing for actuation at the interface of immiscible substances. They are used in 

the production of nanoemulsions and LN, because they facilitate dispersion of the lipid matrices 

in water, reducing the surface tension between the aqueous phase and the oil phase 

(McClements & Rao, 2011). 

The solubility of emulsifiers is characterized by their hydrophilic-lipophilic balance 

(HLB), an index ranging from 0 to 20, which allows for estimating the hydrophilicity of the 

emulsifier. The higher the HLB value, greater is its solubility in polar solvents, and the lower 

the HLB value the greater its affinity with apolar compounds (O’Brien, 2009; Bastida-

Rodríguez, 2013). 

Most emulsifiers, with the exception of lecithins which are phospholipids, are 

derived from mono- and diacylglycerols or from alcohols, where the classes most used in foods 

are: mono- and diacylglycerols, acetylated mono- and diacylglycerols, phosphated mono- and 

diacylglycerols, propylene glycol esters, sorbitan esters, sucrose esters, polyglycerol esters and 

lactate esters (O’Brien, 2009).  
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The emulsifiers can be divided into 3 types: 

Ionic Emulsifiers: Most ionic food grade emulsifiers are negatively charged, for 

example, citric acid esters of monoglycerides (CITREM), diacetyl tartaric esters of fatty acids 

and glycerol (DATEM) and sodium lauryl sulfate (SLS). Only lauric alginate is positively 

charged and available for food application. Ionic emulsifiers can be used in the formation of 

nanoemulsions by low and high energy methods. However, in systems that depend on high 

concentrations of ionic emulsifiers, utilization may be limited because they may cause allergies 

(McClementes & Rao, 2011). 

Non-ionic Emulsifiers: These are characterized by having hydrophilic groups 

without charges associated to the fatty acid chains. Examples used for the production of LN can 

be seen in Table 2. Non-ionic emulsifiers have been widely used for the formation of 

nanoemulsions by high and low energy methods. They present advantages in food applications 

because of their low toxicity and irritability (McClementes & Rao, 2011). 

Zwitterionic emulsifiers: These have two or more ionizable groups of opposite 

charge in the molecule. The predominant behavior is dependent on the pH of the medium and 

may assume positive, negative or neutral charges. The major representatives of this class are 

phospholipids, substances considered GRAS, which allows for their wide use in foods (Table 

2). However, natural phospholipids are inefficient in the formation and stabilization of 

nanoemulsions when used alone, but may be effective when used in combination with co-

emulsifiers (McClementes & Rao, 2011). 

In order to improve the efficiency of some emulsifiers, studies reported in literature 

cite the use of co-emulsifiers, also called co-surfactants (Salminen, Helgason, Kristinsson, 

Kristbergsson, & Weiss, 2013). Co-emulsifiers are molecules with polar moieties in the 

structure, such as alcohols and short chain organic acids that alter the physico-chemical 

characteristics of the emulsifiers. They are generally used to improve the flexibility of the 

interface of the emulsified systems. They act by promoting the increase in entropy at the oil-

water interface, destabilizing the formation of crystalline structures, thus conferring higher 

viscosity to the systems (McClementes & Rao, 2011). 

In studies related to obtaining LN for potential food applications several emulsifiers 

have been studied, as exemplified in Table 2, where the name, composition and source 

consulted can be found. These present general characteristics of toxicological safety for use in 
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foods, obtained from renewable sources and with high stability conferred to lipid nanostructures 

(Liu, Wang, & Xia, 2012; Dora, Putaux, Pignot-Paintrand, Dubreuil, Soldi, Borsali, & Lemos-

Senna, 2012; Patel & Martin-Gonzalez, 2012; Lobato, Paese, Forgearini, Guterres, Jablonski, 

& Rios, 2013; Qian, Decker, Xiao, & McClements, 2013; Aditya, Shim, Lee, Lee, Im, & Ko, 

2013; Carvalho, Noronha, Floriani, Lino, Rocha, Bellettini, Ogliari, & Barreto, 2013; 

Shangguan, Lu, Qi, Han, Tian, Xie, Hu, Yuan, & Wu, 2014; Choi, Aditya, & Ko, 2014). 

Selection of the emulsifiers and their specific concentrations has a great impact on 

the quality of the LN. High emulsifier concentrations reduce surface tension and facilitate 

particle partitioning during the production process, promoting an important increase in surface 

area. The main characteristics affected are particle size and encapsulation efficiency (Awad, 

Helgaso, Kristbergsson, Decker, Weiss, & McClements, 2008; Souto, Severino, Santana, & 

Pinho, 2011). 

In conventional emulsions, the emulsifier predominantly influences the particle size 

that can be obtained during homogenization and the stability of the dispersions, providing 

sufficient repulsive forces to prevent flocculation or coalescence of the systems. However, in 

LN the emulsifiers present a fundamental additional function, which consists of controlling the 

crystallization process of the lipid phase. Due to the small dimensions of the nanoemulsions, 

the number of lipid molecules interacting with the different functional groups of the emulsifiers 

is large enough for them to act as lipid phase crystallization modulators. Furthermore, the 

emulsifier may modify the crystallization kinetics and the natural polymorphic habit of the raw 

lipid materials used, avoiding recrystallization and destabilization problems of LN during 

storage and application (Weiss, Decker, McClements, Kristbergsson, Helgason, & Awad, 

2008). 

The different processes for obtaining LN require specific mixtures and 

concentrations of emulsifiers, incorporated into the lipid or aqueous phase. The optimum 

concentration of emulsifiers in the formulation is dependent on the lipid matrix used for 

composition of the nanoparticles. In general, the higher the concentration of emulsifiers, the 

greater the crystalline structure complexity of the LN. Additionally, different emulsifier 

compositions require specific homogenization parameters to obtain the highest degree of 

dispersion, due to the different velocities required to cover the new lipid surfaces formed. 

Preliminary tests considering the lipid materials used to obtain the LN, emulsifier composition 
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and concentrations, as well as evaluation of the LN production method, are therefore 

fundamental for the functionality, quality and applicability characteristics of nanoparticulate 

lipid systems (Helgason, Awad, Kristbergsson, Decker, McClements, & Weiss, 2009; Mehnert 

& Mäder, 2012). 

There are few studies that address the use of emulsifiers as modifiers of the 

crystallization process, therefore its effects are still unclear and more studies are needed to 

elucidate the mechanisms of their actuation. Bunjes, Steiniger, & Richter (2007) reported that 

fully saturated long chain phospholipids (High Melting Point - HMP lecithins) delayed 

polymorphic transition from the metastable α form to the more stable β form in SLN composed 

of tristearin. The authors found that during the cooling process of the nanoemulsion containing 

SLN, lecithin which has a high melting point due to the presence of fully saturated TAGs chains, 

crystallized first, forming a solid monolayer around the lipid droplets. This layer served as a 

template for the crystallization of tristearin which occurred in the metastable α form, with the 

formation of concentric layers moving from the surface to the center of the SLN. It was 

observed that during the cold storage period (5-8 °C) the polymorphic transition to the β form 

occurred more slowly compared to SLN with HMP Lecithin. It is assumed that in this type of 

system the polymorphic transition is complicated because there is not enough space for 

molecular rearrangements. In this study, it was also observed that the β-form can be easily 

induced by increasing the storage temperature. Salminen, Helgason, Kristinsson, 

Kristbergsson, & Weiss (2013) also evaluated the influence of lecithins on the physical and 

chemical properties of NLC composed of tristearin with inclusion of omega 3 (ω-3) fatty acids. 

Oxidation of ω-3 was inhibited by 90% in NLC stabilized with high melting point lecithin 

compared to the use of low melting point lecithin. This effect was attributed to the induction of 

interfacial heterogeneous crystallization promoted by the high melting point lecithin, with 

consequent formation of a solid monolayer around the particles, avoiding expulsion and 

conferring protection to the encapsulated ω-3. The results showed that the fully saturated 

lecithin was the key component in control of the crystallization behavior, and thus allowed for 

the formation of nanoparticles stable to lipid oxidation. 
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Table 2. Emulsifiers and co-emulsifiers used in the production of Lipid 
Nanoparticles found in the literature 

EMULSIFIERS REFERENCE 

Nonionic Emulsifiers  

Sorbitan monooleate 

Bouchemal, Briançon, Perrier, & Fessi (2004); De 
Morais, Santos, Delicato, Goncalves, & Rocha 
(2006); Leong, Man, Lai, Long, Misran, & Tan 

(2009); Ramisetty, Pandit, & Gogate (2015). 

Sorbitan monoestearate  
De Morais, Santos, Delicato, Goncalves, & Rocha 

(2006); Robles, García, Garzón, Hernández, & 
Vázquez (2008). 

Sorbitan monolaurate  
De Morais, Santos, Delicato, Goncalves, & Rocha 
(2006); Pey, Maestro, Sole, Gonzalez, Solans, & 

Gutierrez, (2006). 

Polyoxyethylene sorbitan monooleate 

 

Bouchemal, Briançon, Perrier, & Fessi (2004); De 
Morais, Santos, Delicato, Goncalves, & Rocha 

(2006); Han, Li, Yin, Liu, & Xu (2008); 

Hentschel, Gramdorf, Müller, & Kurz (2008); Yuan, 
Chen, Du, Hu, Zeng, & Zhao (2007); 

Wooster, Golding, & Sanguansri (2008); Leong, 
Man, Lai, Long, Misran, & Tan (2009); Amani, 

York, Chrystyn, & Clark, (2010); Teo, Basri, 
Zakaria, Salleh, Rahman, & Rahman, (2010); Santos, 
Pereira, Bender, Colomé, & Guterres (2012); Zhang, 
Douglas, Guoxun, & Qixin (2013); Lacatusu, Mitrea, 

Badea, Stan, Oprea, & Meghea (2013); Ramisetty, 
Pandit, & Gogate (2015); Madureira, Campos, Fonte, 

Nunes, Reis, Gomes, Sarmento, & Pintado (2015). 

Polyoxyethylene sorbitan monostearate 

 

De Morais, Santos, Delicato, Goncalves, & Rocha 
(2006); Yuan, Chen, Du, Hu, Zeng, & Zhao (2007). 

Polyoxyethylene sorbitan monopalmitate  
Kentish, Wooster, Ashokkumar, Balachandran, 

Mawson, & Simons (2008). 

Polyoxyethylene sorbitan monolaurate  

Bouchemal, Briançon, Perrier, & Fessi (2004); 

Pey, Maestro, Sole, Gonzalez, Solans, & Gutierrez, 
(2006); De Morais, Santos, Delicato, Goncalves, & 

Rocha  (2006); Awad, Helgaso, Kristbergsson, 
Decker, Weiss, & McClements (2008); Yuan, Chen, 
Du, Hu, Zeng, & Zhao (2007); Wang, Jiang, Wang, 
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Huang, Ho, & Huang (2008); Awad, Helgason, 
Weiss, Decker, & McClements (2009); Mao, Xu, 

Yang, Yuan, Gao, & Zhao (2009); Yin, Chu, 
Kobayashi, & Nakajima (2009); Qian & McClements 

(2011); 

Badea, Lăcătus, Badea, Ott, & Meghea (2015). 

Zwitterionic Emulsifiersa  

Phospholipids (94% phosphatidylcholine; 
FAC: 12-17% C16:0, 2-5% C18:0, 11-15% 
C18:1, 59-70% C18:2 and 3-7% C18:3) 

Bunjes, Steiniger, & Richter (2007). 

 

 

Phospholipids (94% phosphatidylcholine; 
FAC: 12-16% C16:0, 85-88% C18:0, 2% 
C18:1 and 1 % C18:2) 

Bunjes, Steiniger, & Richter (2007); Joseph, Rappolt, 
Schoenitz, Huzhalska, Augustin, Scholl, & Bunjes 

(2015). 

Phospholipids (60% hydrogenated 
phosphatidylcholine; 10% hydrogenated 
lysophosphatidylcholine; FAC: 85% C18:0, 
15% C16:0) 

Salminen, Helgason, Kristinsson, Kristbergsson, & 
Weiss (2013). 

 

Phospholipids (70% phosphatidylcholine; 
8.5% phosphatidylethanolamine, 2.2% 
lysophosphatidylcholine;  

FAC: 17-20% C16:0, 2-5% C18:0, 8-12% 
C18:1, 58-65% C18:2, 4-6% C18:3, 0.1-
0.2% DL-α tocopeherol) 

Salminen, Helgason, Kristinsson, Kristbergsson, & 
Weiss (2013). 

 

Co-emulsifiers  

Sodium Taurodeoxycholate 
Chakraborty, Shukla, Vuddanda, Mishra, & Singh 

(2010); Salminen, Helgason, Kristinsson, 
Kristbergsson, & Weiss (2013). 

Sodium glycollate 

Bunjes, Steiniger, & Richter (2007); Han, Li, Yin, 
Liu, & Xu (2008); Sharma, Ganta, Denny, & Garg 

(2009); Joseph, Rappolt, Schoenitz, Huzhalska, 
Augustin, Scholl, & Bunjes (2015). 

Sodium Dodecylsulfate Leong, Man, Lai, Long, Misran, & Tan (2009). 

a FAC - Fatty acids composition; C16:0 - palmitic acid; C18:0 - stearic acid; C18:1 - oleic acid; C18:2 - linoleic 
acid; C18:3 - linolenic acid. 
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7. Properties of SLN and NLC  

7.1. Mean diameter and polydispersity index 

Mean diameter and particle size distribution, known as the polydispersity index 

(DPI), are important properties for LN characterization, reported in almost all studies involving 

the acquisition of these systems. Determination of the mean diameter is fundamental, mainly 

for scientific and technological reasons as in characterizing and confirming if the desired 

dimensions were obtained, and especially if they are maintained during storage or subsequent 

processing (Bunjes, 2005; McClements, 2013; Tamjidi, Shahedi, Varshosaz, & Nasirpour, 

2013). 

Control of the LN dimensions is essential since this parameter influences the 

physico-chemical and functional properties, as well as the potential application. Reduction of 

the mean diameter may promote increased translucency, viscosity, stability and bioavailability 

of the LN. Generally, this property is related to composition of the lipid matrix and the process 

used to obtain the LN. 

According to McClementes & Rao (2011), lipid systems obtained via 

emulsification can be considered nanometric materials when they have a mean particle radii ≤ 

100 nm. These authors use the mean diameter to characterize emulsions, nanoemulsions and 

microemulsions, due to several misunderstandings regarding the use of nomenclatures found in 

literature on these systems and application in LN. They clarified that the emulsion is a 

thermodynamically unstable system, with tendency for aggregation of particles over time. 

Characterized by mean radii of the particles in the range of 100 nm - 100 μm, they are cloudy 

and opaque, because they contain droplets similar in size to the wavelength of light. Systems 

containing particles with mean radii between 0.1 and 100 nm are considered nanoemulsions, 

often referred to as mini-emulsions in literature. The relatively low mean diameter, compared 

to the light wavelength, gives the nanoemulsions a tendency to be transparent or slightly cloudy. 

A very low mean diameter also indicates that these systems are much more stable to 

gravitational separation and aggregation of the particles. However, nanoemulsions are still 

considered thermodynamically unstable 

The PDI is another factor related to physical stability of the LN. According to 

Tamjidi, Shahedi, Varshosaz, & Nasirpour (2013), in order to obtain suspensions with long-
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term stability, the PDI values should be in the range of 0.1 - 0.25. Values above 0.5 indicate 

very broad particle size distribution, characterizing low physical stability. 

7.2. Zeta potential 

Colloidal particles generally exhibit surface charge, as a result of the availability of 

ionized groups or adsorption of ions from the dispersion medium. These surface charges and 

the force and extension of the electric field around the particles play a very important role in 

the mutual repulsion of the LN, and consequently in its electrostatic stability. Because the 

surface potential of the particles cannot be measured directly, the zeta potential - ZP (electric 

potential at the hydrodynamic shear surface around the colloidal particles) is generally 

determined as a characteristic parameter for the LN charge (Robles, García, Garzón, Hernández, 

& Vázquez, 2008). ZP values of approximately | 30 | mV characterizes colloidal systems with 

good stability, where ZP values are considered optimal when they are roughly | 60 | mV. The 

system is susceptible to destabilization between 5 and 30 mV and the occurrence of limited 

flocculation can be observed; and for ZP values smaller than 5 mV the system presents a great 

tendency for particle coagulation (Santos, Pereira, Bender, Colomé, & Guterres, 2012; Shah, 

Eldridge, Palombo, Harding, 2015; Badea, Lăcătus, Badea, Ott, & Meghea, 2015, Madureira, 

Campos, Fonte, Nunes, Reis, Gomes, Sarmento, & Pintado, 2015). 

In the study of LN, determination of the ZP has been mainly used to obtain 

information about its dispersion behavior. It can also represent an indication of stability of the 

system, permitting formulation adjustments, and allows for accompanying the interaction 

behavior with different incorporated compounds. Changes in the ZP can be observed over time, 

being indicators of system destabilization, with consequent expulsions of the incorporated 

compounds during the storage period (Bunjes, 2005; Shah, Eldridge, Palombo, Harding, 2015). 

Santos, Pereira, Bender, Colomé, & Guterres (2012) found that ZP values varied 

according to the emulsifying system used. The SLN were developed with an oil phase 

composed of cupuaçu butter and NLC composed of a mixture of cupuaçu butter and chestnut 

oil, using the emulsifiers soy lecithin and PSM 80. The ZP values for SLN and NLC in the 

presence of soy lecithin were - 50.6 ± 2.0 and - 66.4 ± 2.0 mV; when the emulsifiers were used 

together there was a change in ZP, with values of - 29.0 ± 1.5 and - 16.9 ± 1.0 mV, respectively. 

According to the authors, this reduction in ZP was expected, since the additional presence of 
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PSM 80, which is a non-ionic emulsifier and acts by steric stabilization, causes a reduction in 

the ZP conferred by soy lecithin due to modifications in the shear plane on the surface of the 

particles.  

Madureira, Campos, Fonte, Nunes, Reis, Gomes, Sarmento, & Pintado (2015) also 

used PSM 80 in their studies, in which they developed SLN with lipid matrix composed of 

carnauba wax for incorporation of rosmarinic acid. The authors obtained ZP values ranging 

from - 37.5 to - 40.7 mV, indicating that high electrical repulsion reduces the risk of particle 

aggregation. 

7.3. Crystallinity, polymorphism and stability 

Lipid crystallization represents a fundamental issue for the performance of LN. 

Lipid materials are highly polymorphic, even in the dispersed state. In LN, the crystallization 

behavior of the matrix can exhibit distinct characteristics in comparison to the continuous 

system with identical fatty acids and TAGs composition, and polymorphic transitions are 

usually accelerated in nanostructured complexes (Bunjes, 2005). The degree of crystallinity and 

polymorphic modifications of lipids comprising LN represent fundamental factors for their 

development, since these parameters are strongly related to the incorporation capacity of 

bioactive compounds and release rates. In general, a decline is observed in the carrying capacity 

of the incorporated bioactive compounds according to the sequence of polymorphic transitions 

to higher stability crystalline forms (Mehnert & Mäder, 2012; Tamjidi, Shahedi, Varshosaz, & 

Nasirpour, 2013; Joseph, Rappolt, Schoenitz, Huzhalska, Augustin, Scholl, & Bunjes, 2015). 

Stability of the LN should be considered based on two different perspectives related 

to the behavior of matrix crystallization and particle size distribution (Sharma, Diwan, Sardana, 

& Dhall, 2011). The relationship between crystalline modification and the incorporated 

compound exhibits additional influence of interactions between lipids and the emulsifiers used. 

Additionally, the crystalline structures may be subject to interference from other factors, such 

as heating and cooling rates, storage temperature and especially the materials used in the 

formulation, such as liquid and solid lipids, emulsifiers, dispersion medium and bioactive 

compound, as well as interactions among them (Bunjes & Unruh, 2007). 

During storage, rearrangement of the crystalline lattice may occur to the state of 

greatest stability, and these transitions are generally associated with expulsion of a fraction of 
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the incorporated active compound. In general, lipid crystals present greater mobility in 

thermodynamically unstable configurations. Therefore, these configurations show lower 

crystalline density, and as a result, greater capacity for incorporation of external molecules. The 

occurrence of polymorphic transformations is usually accompanied by changes in morphology 

of the LN, namely from spherical forms to the flattened forms, for example platelet forms. The 

efficacy of nanostructured lipid systems is therefore determined by modifications of the 

characteristic crystal lattice of a specific set of TAGs (Helgason, Awad, Kristbergsson, Decker, 

McClements, & Weiss, 2009). In this sense, maintaining the EE and CC parameters resides 

mainly in the development of strategies to prevent crystalline modifications during the storage 

of LN. In addition to control of the transitions between the forms , ’ and , several sub-forms 

and their interactions with the different emulsifiers should be considered in stability studies of 

the LN (Souto, Severino, Santana, & Pinho, 2011; Mehnert & Mäder, 2012, Joseph, Rappolt, 

Schoenitz, Huzhalska, Augustin, Scholl, & Bunjes, 2015). Additionally, in the LN post-

crystallization processes the phenomena recognized as agglutination of adjacent surfaces or 

sintering can be verified, as well as the spontaneous dissolution of specific TAGs, known as 

Ostwald ripening (Himavan, Starov, & Stapley, 2006; Wu, Zhang, & Watanabe, 2011). 

With respect to particle size distribution, the flocculation process, characterized by 

the association of nanoparticles that maintain their individual integrity, can cause a pronounced 

increase in the viscosity of the dispersions, which generally results in gelation of the LN (Weiss, 

Decker, McClements, Kristbergsson, Helgason, & Awad, 2008; Robles, García, Garzón, 

Hernández, & Vázquez, 2008; Sharma, Diwan, Sardana, & Dhall, 2011).  

Considering SLN composed of tripalmitin and polyoxyethylene sorbitan 

monolaurate (PSM), Awad, Helgaso, Kristbergsson, Decker, Weiss, & McClements (2008) 

studied the impact of the cooling and heating rates on polymorphic transformations, aggregation 

and gelatinization of the LN, and verified that increased magnitude of these parameters delayed 

the → transition, i.e., a shorter time for the metastable crystalline structure to rearrange in 

the most stable form, promoting greater SLN stability. The SLN characterized by the initial  

form were spherical and totally covered by the emulsifier; the transformation to the  form, 

however, modified the SLN morphology as well as the spatial distribution of the emulsifier, 

resulting in aggregation of the particles by hydrophobic interactions.  
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Attama & Muller-Goymann (2008) reported the preparation of SLN from beeswax 

and animal fat. No increase in the degree of crystallinity of the LN was observed during storage; 

however, the presence of animal fat decreased the crystalline organization. Nik, Langmaid, & 

Wright (2012) found that the polymorphic habit of SLN was affected by the emulsifier in the 

composition.  

Qian, Decker, Xiao, & McClements (2013) studied the impact of the lipid 

composition on the physical state and physical-chemical properties of nanostructures 

containing incorporated -carotene. An increase in the concentration of unsaturated fatty acids 

in the structures resulted in greater stability for aggregation and degradation of β-carotene. 

 Choi, Aditya, & Ko (2014) evaluated the effect of pH and electrolyte concentration 

of the medium in simulation of the properties of a food matrix, on evolution of the structure, 

polymorphism and stability of SLN produced with high melting point TAGs and with sorbitan 

monooleate as an emulsifier. The authors observed that development of the SLN structure was 

dependent on the polymorphic transition ’→ , and that the particle crystallinity decreased 

with increasing pH and with the electrolyte content in the medium, in the same way as the rate 

of recrystallization of the LN. 

7.4 Morphology and ultrastructure 

Morphology of the LN is highly variable. Spherical particles provide greater 

potential for controlled release and protection of bioactive compounds, with longer diffusion 

pathways and less contact with aqueous media. Additionally, they require smaller emulsifier 

quantities for stabilization, due to minimization of the specific surface area. However, 

anisometric particles may present advantages when the bioactive compounds are incorporated 

into the emulsifier layer. Emulsifiers that act with stabilizing function demonstrate the ability 

to form additional colloidal structures, such as vesicles or micelles, through a self-assembly 

process. These structures contain lipophilic domains that may represent alternative 

compartments for localization of the bioactive compound. As a consequence, their presence 

may affect the incorporation and release properties of bioactive compounds (Yoon, Park, & 

Yonn, 2013). Thus, knowledge on the morphology of the LN is of great importance for the 

characterization of these systems, since it can directly affect the PI of the particulate systems 

(Bunjes, 2005). 
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7.5. Encapsulation efficiency and charge capacity 

The encapsulation efficiency (EE) is defined as the ratio between the fraction of the 

bioactive compound in the LN and the total bioactive compound incorporated in the initial lipid 

phase (Liu & Wu, 2010; Sharma, Diwan, Sardana, & Dhall, 2011). The EE parameter can be 

determined after quantification of the free or incorporated fraction of the compound of interest 

in the LN (Nguyen, Hwang, Park, & Park, 2012). The EE value influences the release properties 

of the LN and depends on the formulation components and the production method used 

(Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). The EE values reported in literature are 

generally between 75 and 100% for different lipid materials evaluated, forms of obtaining the 

LN and bioactive compounds carried (Liu, Wang, & Xia, 2012; Lobato, Paese, Forgearini, 

Guterres, Jablonski, & Rios, 2013; Aditya, Shim, Lee, Lee, Im, & Ko, 2013; Carvalho, 

Noronha, Floriani, Lino, Rocha, Bellettini, Ogliari, & Barreto, 2013; Shangguan, Lu, Qi, Han, 

Tian, Xie, Hu, Yuan, & Wu, 2014). 

The charge capacity (CC) of LN can be defined as the ratio of the incorporated 

bioactive compound in relation to the initial lipid phase. This parameter is predominantly 

influenced by the preferential polymorphic habit of the lipid system used, by the solubility of 

the compound incorporated in the lipid matrix in the liquid state, and by the physical structure 

of the LN (Robles, García, Garzón, Hernández, & Vázquez, 2008; Nguyen, Hwang, Park, & 

Park, 2012). 

8. Characterization of LN 

8.1 Laser Diffraction and Photon Correlation Spectroscopy 

The analytical methods commonly used to determine the mean diameter and PDI 

are dynamic light scattering (DLS), also known as photon correlation spectroscopy (PCS), and 

laser diffraction (LD). DLS/PCS measures the fluctuation of intensity of the scattered light as 

a result of Brownian motion of the particles. LD is based on the diffraction angle of the focused 

laser, which is directly related to the mean diameter of the particles in the suspension. The 

combined use of light beams with different wavelengths allows for measurements ranging from 

nanometers up to a few millimeters, encompassing a larger spectrum of average particle sizes. 

It is recommended to use the two techniques for better characterization of the system and to 

avoid misunderstandings, since these methods do not directly measure the particle size but 



54 

 
 

 

 

rather the light scattering, which is used to calculate the mean diameter (Robles, García, Garzón, 

Hernández, & Vázquez, 2008; Wu, Zhang, & Watanabe, 2011; Yoon, Park, & Yonn, 2013). 

Ghosh, Saranya, Mukherjee, & Chandrasekaran (2013) developed nanoemulsions 

composed of oil extracted from basil leaf and PSM 80 obtained by ultrasound at the proportions 

of 1:1, 1:2, 1:3 and 1:4, and by LD obtained a mean diameter and PDI of 41.15nm and 0.09, 

31.65 nm and 0.2, 29.6 nm and 0.2, and 29.3 nm and 0.2, respectively. Leong, Man, Lai, Long, 

Misran, & Tan (2009) produced O/W emulsions by ultrasound for 20 minutes, composed of 15 

% sunflower oil and 5.6 % PSM 80, sorbitan monooleate (SM 80) and SDS as a co-emulsifier. 

They evaluated the average diameter by LD and obtained particles up to 40nm. 

8.2. Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is the thermoanalytical technique most 

used in the study of lipid materials and allows for evaluating the thermal behavior of lipid 

matrices used in the composition of LN, providing information on the crystallization and fusion 

pattern of lipid constituents of the LN (Jannin, Musakhanian, & Marchaud, 2008). It is used in 

evaluation of the thermal behavior when adding other compounds in the lipid phase, such as 

emulsifiers and bioactive compounds, and for study of the thermal behavior of suspended LN 

in the aqueous phase after the production and drying processes, and during storage and its 

application (Bunjes & Unruh, 2007). Moreover, with this technique it is possible to carry out 

the complementary investigation of the recrystallization behavior of the lipid materials, using 

the melting curves obtained in function of the LN storage time. Additionally, the degree of 

ordering of the lipid structures in the SLN and NLC can be directly associated with the enthalpy 

values obtained in the different fusion events (Bunjes & Unruh, 2007; Patel & Martin-Gonzalez, 

2012). It is recommended to study the specific melting and crystallization events of the raw 

materials in their isolated form, of the continuous lipid phase and the LN itself, which in general 

have different thermal behaviors in relation to the original lipid matrix, for example a lower 

melting point due to the extremely small dimensions (Mehnert & Mäder, 2012). 

Awad, Helgaso, Kristbergsson, Decker, Weiss, & McClements (2008) used this 

technique to evaluate the raw materials and SLN with regards to the crystallization behavior in 

heating and cooling cycles. The SLNs were made with 10% tripalmitin and 1.5%, obtained by 

emulsification in hot HPH. The SLNs were maintained in suspension at 37 °C and analyzed by 
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DSC. According to this method the authors could predict the polymorph formed and observe 

that the crystallization behavior of the lipid phase is different after the nanoscale emulsification 

process. The mixture of tripalmitin and PSM crystallized at higher temperatures (39 °C) than 

SLNs developed with these materials (19 °C). The authors suggested that in SLN, where the 

lipid phase is distributed as suspended droplets, more energy is necessary to promote nucleation 

and crystallization of the lipids compared to the bulk mixture. Thus, in the lipid matrix 

crystallization occurs via the heterogeneous nucleation process, where the presence of catalytic 

impurities is considered, favoring the quicker initial of crystallization. However, in SLN the 

lipids are in the form of droplets, distributed on the nanoscale in the emulsion. The authors 

considered that crystallization is made more difficult because the probability of finding 

impurities in the droplets is very low, and because this occurs only in individual droplets it is 

not propagated as occurs in the bulk blend, requiring the use of lower temperatures to promote 

nucleation and crystallization in LN. Additionally, from the thermal behavior the authors could 

infer about the polymorphic forms, and observed that for the LN the polymorphic form α was 

quickly transformed into β, which was not observed in the bulk blend, confirming that the 

crystallization behavior of the LN is differentiated. 

8.3. X-Ray Diffraction 

X-ray diffraction is used to determine the identity of crystalline solids based on their 

atomic structure. Due to the different geometric configurations, the polymorphs diffract X-rays 

at different angles. X-ray diffraction can be performed in wide-angle X-ray scattering (WAXS) 

and small-angle X-ray scattering (SAXS). In lipids, WAXS diffractions correspond to the short-

spacings of the subcells and allow for verifying the different polymorphs, and SAXS 

diffractions correspond to the long spacings, and are used to determine the structure of the 

asymmetric lipid bilayer in unilamellar vesicles (Campos, 2005; Ribeiro, Basso, Grimaldi, 

Gioielli, & Gonçalves, 2009). In addition, it is possible to obtain such information 

simultaneously and still use temperature variations over time to monitor polymorphic 

transitions at certain rates of cooling and heating, with the aid of a DSC coupled to the 

synchrotron light source via the synchrotron radiation X-ray diffraction (SR-XRD) technique 

known as DSC/XRDT (Takeuchi, Ueno, & Sato, 2003; Joseph, Rappolt, Schoenitz, Huzhalska, 

Augustin, Scholl, & Bunjes, 2015). 
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X-ray diffraction is a fundamental tool for the characterization of crystalline 

modifications in continuous or particulate lipid systems, and allows for differentiation of 

amorphous and crystalline LN as well as different polymorphic phases related to the stability 

study of nanostructured lipid systems (Bunjes & Unruh, 2007; Dion, Ruud, Saskia, & Hans, 

2008; Wu, Zhang, & Watanabe, 2011). 

8.4. Microscopic Techniques 

Analytical resources involving the use of microscopy are important tools for the 

investigation of morphology, mean size and size distribution of the LN. Polarized light 

microscopy (PLM), although not sensitive to nanometric dimensions, provides indications 

regarding the presence of possible microparticles or nanoparticle agglomerates with 

microdimensions. According to Klang, Matsko, Valenta, & Hofer (2012), scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) are essential tools for 

obtaining information about the basic structural properties of nanoscale systems. SEM, in 

contrast to methods for determining the particle size distribution, promotes direct identification 

of the LN morphology, with three-dimensional and surface information (Luykx, Peters, Ruth, 

& Bouwmeester, 2008). Transmission electron microscopy (TEM) can be used to study the 

size, shape and internal structure of LN, via two-dimensional images with resolution power 

close to 0.4 nm, allowing for the identification of colloidal domains that characterize the 

ultrastructure of the LN (Luykx, Peters, Ruth, & Bouwmeester, 2008; Klang, Matsko, Valenta, 

& Hofer, 2012). However, these techniques present some limitations related to the direct 

measurement with electron beams that can damage the LN structure, as well as preparation of 

the sample for analysis, where it must be dry in the form of powder or film (Domingo & Saurina, 

2012; Klang, Matsko, Valenta, & Hofer, 2012). Klang, Matsko, Valenta, & Hofer (2012) 

highlighted that in order to obtain representative images, both in SEM and in TEM, cryogenic 

methods (cryo) must be used for sample preparation. Furthermore, the analyses must be 

performed in equipment with specific conditions for Cryo-SEM and Cryo-TEM. Thus, it is 

possible to investigate lipid systems under conditions close to preparation and/or application, 

without the need for heat treatment which may compromise the structure of the LN or even 

induce undesired polymorphic transitions. Another method used in characterization of these 

systems is Atomic Force Microscopy (AFM), also recommended for the study of morphology, 



57 

 
 

 

 

size, stability and dynamic processes of LN (Luykx, Peters, Ruth, & Bouwmeester, 2008). Most 

AFM equipment does not require sample treatment and is compatible with liquid media and 

atmospheric conditions. Thus, it can provide real information of the lipid systems in three 

dimensions, with resolution close to 1 nm (Domingo & Saurina, 2012; Tamjidi, Shahedi, 

Varshosaz, & Nasirpour, 2013). 

8.5. Nuclear Magnetic Resonance 

Study of the coexistence of colloidal structures, such as typical micelles, inverses 

and liposomes, as well as super-cooled fusions constituted of liquid lipid domains, undesirable 

in LN, should be considered in the complete characterization of LN. The analytical techniques 

that meet these requirements include nuclear magnetic resonance (NMR), where active nuclei 

(1H, 13C, 9F and 31P) of interest are associated with the identification of specific molecules or 

their segments, as well as the distinction between physical states of lipid components, allowing 

for differentiation of lipid structures and detection of liquid nanocompartments. The other 

technique is electronic spin resonance (ESR), a spectroscopic technique that detects species 

containing unpaired electrons, i.e., paramagnetic species, providing important information 

regarding the microviscosity and micropolarity of the LN. This tool allows for monitoring the 

possible expulsion of the bioactive compounds from the LN, as well as measuring the 

distribution of these compounds between the LN and the non-particulate colloidal structures 

(Bunjes, 2005; Haskell, 2006; Dion, Ruud, Saskia, & Hans, 2008). It should be noted that both 

techniques are non-destructive and sensitive to the simultaneous detection of different colloidal 

species. In recent studies, Yucel, Elias & Coupland (2013) used the ESR technique to evaluate 

the performance of LN stabilized by sodium caseinate. Berton-Carabin, Coupland, & Elias 

(2013) investigated the distribution and chemical reactivity of molecules with different degrees 

of lipophilicity in SLN. 

8.6. Complementary techniques 

Characterization of the chemical stability of bioactive compounds represents an 

essential step for performance evaluation of the LN, for various applications. In addition, the 

quantification of these components is fundamental for determination of the EE and CC 

parameters. The instrumental techniques for these purposes are quite variable according to the 

incorporated bioactive compound. In general, high performance liquid chromatography 
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(HPLC), gas chromatography (GC) and ultraviolet/visible spectroscopy (UV/VIS) are very 

useful for the evaluation of compounds incorporated into LN (Jannin, Musakhanian, & 

Marchaud, 2008). 

9. Functional lipophilic compounds 

The incorporation of functional lipophilic components is highly relevant when the 

carrier systems can be obtained from LN, such as SLN and NLC, due to physicochemical 

interactions favorable to the acquisition of high stability nanostructured systems with important 

applications in the areas of food, medicine, cosmetics and pharmaceuticals. Bioactive lipids 

differ widely in their molecular properties (molecular weight, structure, functional groups, 

polarity and charge), which results in differences in their physico-chemical and physiological 

properties, such as solubility, physical state, rheological properties, chemical stability and 

bioactivity. Therefore, each carrier system for these compounds is characterized by specific 

properties (McClements, Decker, Park, & Weiss, 2009). In terms of bioactivity, the main 

functional lipophilic compounds are carotenoids, liposoluble antioxidants (tocopherols and 

polyphenols), liposoluble vitamins and phytosterols, which have been the focus of recent 

studies on nanotechnological applications (Mozafari, Flanagan, Matia-Merino, Awati, Omri, 

Suntres, & Singh, 2006; Huang, Yu, & Ru, 2010; Tamjidi, Shahedi, Varshosaz, & Nasirpour, 

2013; Nakajima, Wang, Chaudhry, Park, & Juneja, 2015; Badea, Lăcătus, Badea, Ott, & 

Meghea, 2015). 

9.1. Carotenoids 

Carotenoids comprise a diverse group of lipophilic compounds which impart a 

yellow and red coloration to many foods. They are also bioactive substances, with beneficial 

effects to health, and some present pro-vitamin A activity (Kamal-Eldin, 2005). Health benefits 

attributed to carotenoids include immunomodulation and reduced risk of contracting chronic 

degenerative diseases such as cancer, cardiovascular disease, cataracts and age-related macular 

degeneration. These physiological activities have been attributed to its antioxidant properties, 

specifically to the ability to sequester singlet oxygen and interact with free radicals. Endogenous 

carotenoids in foods are generally stable. However, as additives in food systems these 

components are relatively unstable as a result of susceptibility to light, oxygen and auto-

oxidation processes. They are further characterized by low solubility in water, which affects 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakajima%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26598848
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their bioavailability. Consequently, the dispersion of carotenoids in processed foods may result 

in their rapid degradation. An additional challenge for carotenoid incorporation in food results 

from its high melting point, associated with its crystalline state at body and storage temperatures 

(Ribeiro & Schubert, 2003; Qian, Decker, Xiao, & McClements, 2012). Thus, the use of 

nanostructures shows a promising and differentiated alternative for carotenoid carrying and 

protection in food systems (Mozafari, Flanagan, Matia-Merino, Awati, Omri, Suntres, & Singh, 

2006; Weiss, Takhistov, & McClements, 2006). 

In this context, several studies have focused on the development and application of 

nano-structured lipid systems containing carotenoids as bioactive compounds. Tan & Nakajima 

(2005) studied the preparation of β-carotene nanodispersions for food application, obtained by 

the emulsification-evaporation process, with stability evaluated at 4 °C. The mean diameter of 

the particles ranged from 60 to 140 nm, and showed great influence on the degradation of β-

carotene, evaluated by HPLC. Helgason, Awad, Kristbergsson, Decker, McClements, & Weiss 

(2009) evaluated the impact of emulsifier properties on the stability of β-carotene incorporated 

into SLN and NLC structures. Liu & Wu (2010) studied the development of NLC composed of 

tripalmitin and corn oil, for inclusion of lutein, using response surface methodology. Mitri, 

Shegokar, Gohla, Anselmi, & Müller (2011) obtained SLN and NLC for incorporation of lutein, 

with dimensions between 150 and 350 nm, and a formulation containing 9% lipids. The 

characteristic mean diameter decreased with increase of the proportion of liquid oil in the lipid 

matrices. The development of LN from bixin, composed of TAGs of capric and capric acids, 

was reported by Lobato, Paese, Forgearini, Guterres, Jablonski, & Rios (2013) who sought its 

application in low lipid content foods. The physical stability of the LN was evaluated for 120 

days at room temperature, and showed favorable results for incorporation in processed foods 

with long shelf life. In a study related to the impact of lipid composition on the physicochemical 

properties of SLN with β-carotene incorporation, Qian, Decker, Xiao, & McClements (2013) 

verified that higher levels of saturated fatty acids resulted in greater stability for aggregation 

and degradation of the incorporated component. Nik, Langmaid, & Wright (2012) studied the 

incorporation of β-carotene into SLN, produced with 10% lipid phase and observed chemical 

stability during 90 days. Zhang, Douglas, Guoxun, & Qixin (2013), with the objective of 

preparing NLC for application in functional beverages, used anhydrous milk fat to incorporate 

carotenoids. Hejri, Khosra, Gharanjig, & Hejazi (2013) optimized the LN formulation for 
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carrying of β-carotene by using the response surface methodology. The lipid phases were 

evaluated with concentrations of up to 40% in relation to the total formulation, consisting of 

palmitic acid and corn oil, which showed a significant effect on the mean diameter of the NLC 

obtained. 

9.2. Tocopherols 

Vitamin E is chemically represented by eight different compounds that make up the 

tocol group, which includes tocopherols and tocotrienols (Wanasundara & Shahidi, 2005). 

These substances are nonpolar, basically existing in the lipid phase of foods. The action of 

vitamin E as an antioxidant for the human organism is of extreme importance, where 

tocopherols are naturally present in cell membranes, acting as a protection factor against 

endogenous and exogenous oxidation. Literature reports the protection of LDL (Low density 

lipoprotein) against oxidation by the action of vitamin E, which interferes in the occurrence of 

cardiovascular diseases. The potential of this vitamin is evaluated for various diseases related 

to oxidative stress, such as endometriosis, in addition to stimulating cells of the immune system 

(Mozafari, Flanagan, Matia-Merino, Awati, Omri, Suntres, & Singh, 2006). All tocopherols 

and tocotrienols are absorbed in the intestine and transported to the liver via chylomicrons. 

However, α-tocopherol is preferably used. This is due to the presence of specific proteins 

present in the liver, receptors of tocopherols, with affinity to -tocopherol and its stereoisomers. 

For recommendation in diets, only -tocopherol, including synthetic stereoisomers or natural 

mixtures containing this compound, are referred to as vitamin E (Kamal-Eldin, 2005). 

Because of the antioxidant function of tocopherols and tocotrienols, storage-

associated processing may promote significant changes in vitamin E levels in foods. 

Furthermore, insolubility in water, a characteristic of these compounds, makes it difficult to 

incorporate them into various food formulations. The use of LN may provide the food industry 

with significant potential for increasing the solubility, stability and bioavailability of 

tocopherols, mainly represented by -tocopherol (Mozafari, Flanagan, Matia-Merino, Awati, 

Omri, Suntres, & Singh, 2006; Weiss, Takhistov, & McClements, 2006). 

Recent studies have reported the incorporation of tocopherols into LN systems. The 

α-tocopherol can be used as a liquid lipid matrix in the production of NLC nanoparticles 

(Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). It may be present in the concentrated form 
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(isolated from vegetable oils) or via addition of the oil containing it, such as soybean, sunflower, 

canola and other oils (Oliveira, Valentim, Goulart, Silva, Bechara, & Trevisan, 2009). In 

addition to the use of α-tocopherol as liquid lipid constituent of the NLC matrix, it can be used 

to minimize deterioration of the bioactive lipid compound to be incorporated in the LN, since 

it is responsible for the inhibition of lipid autoxidation (Oliveira, Valentim, Goulart, Silva, 

Bechara, & Trevisan, 2009). 

Preparation of LN for β-tocopherol transport was evaluated by Relkin, Yung, 

Kalnin, & Ollivon (2008). The joint evaluation by DSC and X-ray diffraction indicated the 

formation of crystalline globular structures at 20 °C, with adequate protection against 

degradation. Encapsulation of tocopherols in nanostructured colloidal systems was evaluated 

by Ziani, Fang, & McClements (2012), who suggested that the extent of tocopherol protection 

is dependent on the nature of the liquid lipid phase of the formulation. SLN were employed by 

Abuasal, Lucas, Peyton, Alayoubi, Nazzal, Sylvester, & Kaddoumi (2012) in a model system 

to verify the increase in -tocotrienol bioavailability, for evaluation of possible anticarcinogenic 

potential. The authors concluded that the dose corresponding to 10mg.kg-1 of SLN showed an 

expressive increase in the oral bioavailability of this compound. Carvalho, Noronha, Floriani, 

Lino, Rocha, Bellettini, Ogliari, & Barreto (2013) reported the development of SLN composed 

of glyceryl behenate, using response surface methodology to maximize -tocopherol inclusion. 

The optimized condition for the study resulted in SLN with a mean diameter close to 215 nm 

and ZP value equal to – 41.9 mV, with EE greater than 75.5 %, corresponding to structures 

containing crystals with the  and ’ polymorphs. 

9.3. Omega-3 fatty acids 

Omega-3 fatty acids (ω-3) are considered bioactive compounds that can confer 

several health benefits, such as anti-inflammatory action directly related to the prevention of 

cardiovascular diseases. They belong to the groups of polyunsaturated essential fatty acids, such 

as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Rubio-Rodríguez, Jaime, 

Diego, Sanz, & Carballid, 2010). The ω-3 fatty acids are not metabolized by the body, requiring 

that they are ingested in the diet (Conto, Grosso, & Gonçalves, 2013). Consequently, there is 

great interest in the food industry to develop functional foods that contain ω-3, since its 

application in foods is quite limited by the high oxidative instability which gives unpleasant 
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flavours to the products (Cho, Shim, & Park, 2003). Therefore, effective strategies must be 

developed to encapsulate and protect ω-3 against oxidation during production, packaging, 

storage, transport and sale (Awad, Helgason, Weiss, Decker, & McClements, 2009). 

Studies reported in literature indicate that the use of ω-3 presents viable 

crystallization, polymorphism and stability characteristics for LN application. Salminen, 

Helgason, Kristinsson, Kristbergsson, & Weiss (2013) evaluated the influence of the 

emulsifying properties of low- and high-melting point soybean lecithin regarding the physical 

and chemical stability of NLC containing tristearin and fish oil ω-3. The results indicated that 

the presence of high melting point soybean lecithin delayed the oxidation of ω-3 by 90%, 

allowing the formation of physically stable and oxidation resistant NLC. Lacatusu, Mitrea, 

Badea, Stan, Oprea, & Meghea (2013) developed NLC with ω-3 from fish oil for lutein 

carrying. The NLC showed to efficiently retain lutein (88.5%) and provide antioxidant 

protection in vitro (98.0%), with a better sustained release profile of lutein compared to 

conventional nanoemulsions. Awad, Helgason, Weiss, Decker, & McClements (2009) 

evaluated the effect of ω-3 in tripalmitin SLN in suspension. The results demonstrated that ω-

3 was successfully incorporated into SLN in suspensions, in addition to increasing the stability 

against particle aggregation. Crystallization, melting and polymorphism were influenced by the 

presence of ω-3 30% incorporated in the lipid matrix, with acceleration in the polymorphic 

transition of lipid crystals from the forms α to β. Holser (2012) evaluated the incorporation of 

EPA and DHA into SLN composed of different purified TAGs, with favorable results regarding 

the inhibition of lipid oxidation and stability against degradation in aqueous systems. Salminen, 

Helgason, Kristinsson, Kristbergsson, & Weiss (2013) developed NLC based on tristearin and 

fish oil. The authors concluded that modulation of the crystallization behavior of nanostructures 

is fundamental for the protection of ω-3, and that rapid solidification of the outer lipid layer 

constituting the LN presents a limiting effect on the diffusion of these fatty acids to the surface, 

minimizing oxidative processes. 

9.4. Phytosterols 

Sterols are triterpenic monoalcohols that can be classified according to their origin, 

such as animal sterols (cholesterol) or vegetable sterols (phytosterols). Phytosterols comprise 

most of the unsaponifiable fraction of most edible oils and fats, and are present in greatest 
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quantity as β-sitosterol, campesterol and stigmasterol (Leong, Man, Lai, Long, Misran, & Tan, 

2009; Izadi, Nasirpour, & Garousi, 2012). 

Phytosterols are considered functional compounds, mainly because of the 

mechanism of action in reducing the absorption of cholesterol in the intestine. The bioactivity 

of phytosterols resides in the fact that they have molecular structures very similar to cholesterol, 

and compete with cholesterol absorption sites in the intestine, reducing its absorption (Nichols 

& Sanderson, 2003; Leong, Man, Lai, Long, Misran, & Tan, 2009). Several studies have shown 

that ingestion of 1.5 to 3g of phytosterols per day as an additive or food ingredient decreases 

cholesterol absorption and reduces LDL-cholesterol levels by approximately 8-15% in the 

blood (Fernandes & Cabral, 2007; Leong, Man, Lai, Long, Misran, & Tan, 2009). 

This functionality has led to great interest in the development of foods enriched 

with phytosterols. However, its insolubility in water and high melting point (120-140°C) make 

it difficult to incorporate free phytosterols into foods (Nichols & Sanderson, 2003). An 

alternative to increase the solubility of phytosterols is the esterification process with fatty acids. 

Studies have shown that esterified phytosterols exhibit lower absorption when compared to 

free-form phytosterols (McClements, Decker, & Weiss, 2007). Originally, esterified 

phytosterols have been added to high fat foods, for example margarines, where solubilization 

and dispersion are relatively simple. But for incorporation in foods with high water content, it 

is necessary to develop mechanisms capable of maintaining the phytosterols in suspension, 

submitting them to the emulsification process or transporting them in LN and/or liposomes.  

10. LN for food applications 

The application of LN in food must follow some fundamental requirements, such 

as compatibility with the food to which it will be incorporated, and absence of adverse effects 

on appearance, aroma, flavor, texture and shelf life. The incorporated bioactive compound must 

be protected by the LN against degradation during all stages of processing, storage, transport 

and use. The obtained nanostructures must then be able to control the rate of release of the 

functional agent at a specific site, and/or in response to a specific environmental stimulus, such 

as variations in pH, ionic strength and temperature (McClements, Decker, & Weiss, 2007). 

Hentschel, Gramdorf, Müller, & Kurz (2008) studied NLC composed of sunflower 

oil and propylene glycol monostearate (PGMS) for incorporation of β-carotene, to be applied 
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in functional beverages. The authors obtained LN in the crystalline form α and verified during 

30 weeks that the LN remained stable, because no polymorphic transitions occurred. Trujillo & 

Wright (2010) evaluated the stability and crystallization properties and melting behavior of 

SLN obtained when using canola stearin, with variable mean diameter in function of the 

emulsifier concentration and homogenization pressure during 240 days. Nik, Langmaid, & 

Wright (2012) studied this same lipid matrix for the incorporation of β-carotene into SLN. The 

authors verified that the polymorphic habit of the LN obtained was affected by the type of 

emulsifier, obtaining LN with all crystals in the β form and LN with mixtures of crystals in the 

β’ and β forms. Holser (2012) and Qian, Decker, Xiao, & McClements (2013) produced and 

evaluated LN obtained with palm oil and cocoa butter for incorporation of EPA/DHA and 

carotenes, respectively, with excellent results regarding stability and oxidative protection. 

Asumadu-Mensah, Smith, & Ribeiro (2013) used carnauba wax, candelilla wax and sunflower 

oil for high melting-point LN composition. Crystal structures were obtained in platelet and 

needle forms, with melting and crystallization temperatures lower than the corresponding initial 

mixtures, presenting good crystallinity characteristics for inclusion of lipophilic components. 

In order to evaluate different lipid matrices for NLC composition. Zheng, Zou, Yang, Liu, Xia, 

Ye, & Mu (2013) studied LN obtained from mixtures containing hydrogenated sunflower and 

rapeseed oils, palm oil and its stearin, as well as soybean oil. The mean diameter was 

significantly affected by the composition of the lipid mixture, for structured systems containing 

up to 20% of the lipid phase, with good stability properties for the incorporation of conjugated 

linoleic acid. Shilei, Rui, Guodong, & Qiang (2014) developed NLC with flavonoids 

(quercetin), using caprylic and capric acid, glyceryl monostearate and glyceryl monolaurate, 

and applied them in model beverages. They found that NLC showed high efficiency of 

flavanoid incorporation (93.5 %), remaining stable during 60 days of storage. The NLC were 

also evaluated after addition in a beverage formulation at pH 3.4, maintained at three different 

temperatures (4, 25 and 40 °C) for 60 days. An increase in the mean particle diameter was 

observed only during the first 15 days. Madureira, Campos, Fonte, Nunes, Reis, Gomes, 

Sarmento, & Pintado (2015) developed SLN using carnauba wax as a lipid matrix for carrying 

rosmarinic acid, a polyphenol with reported biological activities, including antioxidant, 

antimutagenic, anti-bacterial and anti-viral capacities. The efficiency of the emulsifier PSM 80 

on the system was evaluated, and the authors emphasized the lipid concentrations of 1.0 and 
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1.5% with 2% (w/w) of the emulsifier as those most effective for stability and rosmarinic acid 

release during 28 days of storage under refrigeration. Zhu, Zhuang, Luan, Sun, & Cao (2015) 

prepared an NLC composed of palm stearin and soy lecithin emulsifier to carry Antarctic Krill, 

an oil rich in EPA, DHA and the carotenoid astaxanthin. The NLC were added to model 

beverages with pH 3.4. The NLC and NLC-containing beverages were stored for 10 days at 

different temperatures (4, 25 and 40 °C) and evaluated with regards to mean particle diameter. 

The results obtained demonstrate that the NLC stored at 4 °C were more stable compared to 

those stored at room temperature. However, when evaluating the beverages containing the 

NLCs, it was observed that the mean particle diameter remained more stable in the beverages 

stored at room temperature. 

11. Toxicological and regulatory aspects 

Lipids are easily absorbed into the body at the nanoscale, promoting the uptake of 

active compounds through rapid absorption into the GIT. However, this rapid and efficient 

absorption of compounds at the nanoscale, due to the increase in surface area, generates some 

discussion points about undesirable effects in the organism. However, questions of this nature 

exist not only for LN but for all materials at the nanometric scale, mainly due to the fact that 

the behavior is differentiated in relation to materials on a macro scale (Sozer & Kokini 2009; 

Blasco & Picó, 2011; Severino, Andreani, Macedo, Fangueiro, Santana, Silva, & Souto, 2012). 

Concern with the use of these materials is associated with the fact that there is no information 

on biological fate, consumption risks and effects on human health and the environment. 

Therefore, studies on the physico-chemical properties and physiological processes that occur 

during digestion and absorption of nanosystems are extremely important (Cerqueira, Pinheiro, 

Silva, Ramos, Azevedo, Flores-López, Rivera, Bourbon, Ramos, & Vicente, 2014).  

Some studies in the field of medicine, using standard drugs, were carried out in 

order to obtain information regarding the behavior of these materials. Garnett & Kallinteri 

(2006) studied several nanometric material size ranges for potential uses as medicines in order 

to beneficially exploit these size ranges. They verified that at scales below 100 nm the physico-

chemical properties are altered and are accentuated at smaller particle sizes, resulting in 

increased interaction with the cells. Nanoparticles with a size between 50 and 70 nm can be 

deposited in lung tissues and trigger inflammatory processes, while at 50 nm they tend to 
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permeate through cell membranes via passive transport in cells of various tissues. Blood-brain 

permeability may occur with particles measuring 30 nm and at 10 nm and smaller strong 

interactions with extra or intracellular macromolecules may also occur. Hoet, Brüske-Hohlfeld, 

& Salata (2004) found that nanoparticles are generally admitted to the human body via the lungs 

and intestines, and the penetration of particles through these pathways depends on the size, 

surface properties and point of contact. However, nanomaterials may present particular 

characteristics that should be studied on a case-by-case basis. 

In foods, behavioral studies of nanosystems in the gastrointestinal tract both in vitro 

and in vivo are extremely necessary to elucidate several factors that may represent potential 

health risks (Cerqueira, Pinheiro, Silva, Ramos, Azevedo, Flores-López, Rivera, Bourbon, 

Ramos, & Vicente, 2014). For example, studies on the absorption, adsorption, enzymatic 

degradation and agglomeration processes of SLN and NLC, as well as interactions with lipid 

transport systems are important (Mehnert & Mäder, 2012), since a number of factors may affect 

the absorption/adsorption of these systems, including concentration, surface area, surface 

energy, morphology and others (Rashidi & Khosravi-Darani, 2011). 

Currently, the use of nanotechnology in food is not regulated for preparation and 

application. Efforts have been directed at identifying applications and food safety issues of 

nanotechnology in the food sector by the World Health Organization (WHO) and the Food and 

Agriculture Organization of the United Nations (FAO). In the European Union (EU), 

regulations for nutrition labeling entered into effect in 2014, where ingredients contained in the 

product in the form of artificial nanomaterials must be clearly indicated in the list of ingredients 

(Weiss, Takhistov, & McClements, 2006). The Food and Drug Administration (FDA) 

determined that nanotechnology is an emerging technology that can be used in a wide range of 

products that are part of regulated items. In 2014, the agency released a guide containing 

recommendations to evaluate the effects of changes in the manufacturing process with emerging 

technologies, including nanotechnology, with regards to the safety and regulatory status of 

foods and food ingredients. This guide does not establish regulatory definitions but is intended 

to assist industries and sectors in identifying when potential implications should be considered 

for regulatory, safety, efficacy or public health impact status issues that may arise with the 

application of nanotechnology to products regulated by the FDA. Therefore, the FDA will 

request information on its regulated products, including food substances which involve the 
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application of nanotechnology, where external, internal or surface structure dimensions are on 

the nanometer scale (about 1 nm to 100 nm), and if a product is designed to exhibit functional, 

physical, chemical or biological properties due to its size, even if exceeding the limits of the 

nanoscale, up to one micrometer (1,000 nm). These aspects are intended to provide an initial 

screening tool, with the understanding that they are subject to changes in the future as new 

information becomes available (FDA, 2014). 

12. Conclusions and perspectives 

The use of nanotechnology in the form of SLN and NLC, for improving both the 

physical and nutritional properties of foods, has shown to be an emerging technology with great 

potential for exploration and application. The development of these types of nanoparticles with 

different lipid materials can impart distinct characteristics to various products with properties 

that can be adapted and used in a wide range of applications due to the numerous materials that 

can be exploited. In this review, it was possible to find several studies reporting the elaboration 

and production of LN for application in drugs and foods, using high cost synthetic materials, 

and in smaller quantity with the use of alternative natural materials. Also observed is the need 

for adaptation and knowledge of processes seeking the use of materials utilized by food 

industries, in addition to environmental and health risk assessments, and mainly dissemination 

of knowledge to the population for insertion of nanotechnology in the market. However, in the 

food industry, nanotechnology that uses SLN and NLC is little explored and there are not yet 

any products on the market. 
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Abstract  

The aim of this work was the development of nanostructured lipid carriers (NLC) 
with free phytosterols (FP) using conventional fats and oils (soybean oil and fully hydrogenated 
soybean oil). The thermal and crystalline behavior of the lipid matrices, FP and NLCs were 
evaluated. NLCs were characterized in size and polydispersity. The FP presented high 
crystallization (126 °C) and melting (137 °C) temperatures, but this did not avoid its 
incorporation into NLC. The NLC presented size between 154 to 534 nm and polydispersity 
ranging from 0.1 to 0.5, the lower limits being obtained with the polyoxyethylenesorbitan 
monooleate emulsifier (T80). The NLCs were found to require lower temperatures to crystallize 
and the polymorphic transitions were accelerated. This study indicated that the conventional 
raw materials were compatible with the development of NLC with FP. In this way, innovative 
nanoparticles were obtained, mainly in terms of lipid composition, with high potential of food 
applications. 

Keywords: Nanotechnology; Foods; Nanostructured Lipid Carriers; Free 

phytosterols; High-pressure homogenization. 

Abbreviations 

DSC Differential Scanning Calorimetry 
FHSO Fully hydrogenated soybean oil 
FP Free Phytosterols 
GTI Gastrointestinal tract 
HLB Hydrophilic-lipophilic balance 
HPH High-pressure homogenization 
INPI National Institute of Industrial Property 
LN Lipid Nanoparticle 
NLC Nanostructured Lipid Carriers 
NLC+FP Nanostructured lipid carriers with free phytosterols 
NLCS60 Nanostructured lipid carriers developed with the sorbitan 

monostearate emulsifier 
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NLCSL Nanostructured lipid carriers developed with soybean lecithin 
emulsifier 

NLCT80 Nanostructured lipid carriers developed with the polyoxyethylene 
sorbitan monooleate emulsifier 

PDI Polydispersity index 
S60 Sorbitan monostearate 
SL Soybean Lecithin 
SO Soybean Oil 
T80 Polyoxyethylenesorbitan monooleate 
TAG Triacylglycerols 
XRD X-ray diffraction 
Z-ave  Z-Average size 

 

1. Introduction 

Nanotechnology is an extremely current topic, which has been constantly developed 

in several countries, in the most varied application sectors. This technology involves the 

development and application of materials and systems at the nanometric scale, through the 

exploration and control of its phenomena and properties. However, regulatory terms are still 

inexistent for processing and application of nanosystems in food (CUSHENA, 2012; 

CERQUEIRA et al.; 2014, TAMJIDI et al., 2013).  

In food, lipids have been used as raw material for the development of lipid 

nanoparticles (LN), mainly for the solubilization capacity of lipophilic bioactive compounds. 

In addition, LN may improve the chemical stability and permeability of bioactive compounds 

through the gastrointestinal tract (GIT) and may also facilitate its absorption (AWAD et al., 

2009). In this way, LN should preferably be produced by using lipid materials with high thermal 

resistance (melting point over than the body temperature, 37 ° C), in way that they remain solid 

during the digestive process, in order to protect the compounds incorporated until their 

absorption in TGI (SHARMA et al., 2011). 

There are currently two types of lipid nanoparticles, solid lipid nanoparticles (NLS), 

developed with saturated lipids, and nanostructured lipid carriers (NLC), composed of both 

saturated and unsaturated lipids. The NLCs were developed to overcome possible limitations 

associated with NLS. The insertion of unsaturated lipids was performed to produce less 

structured lipid matrices, in relation to crystallinity, obtaining a better incorporation efficiency 

and avoiding the release/expulsion of bioactive compounds during storage (MÜLLER et al., 
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2006; GÁRZON et al., 2008; PARDEIKE et al., 2009; SOUTO et al., 2011; SOUTO et al., 

2011).  

The lipid matrices of the NLCs are generally produced with high-cost lipids, such 

as purified triacylglycerols (TAGs) and/or synthetic lipid materials (GARZÓN et al., 2009; 

MEHNERT, MADER, 2012).  These matrices make NLCs economically unfeasible when 

considering the scale and possibility of application in food systems. Thus, the combination of 

the characteristics from the lipid sources commonly applied in the food industry, such as 

vegetable oils and fats, seems to be promising for the development of nanostructured lipid 

systems. Different mixtures of natural fats represent compatible sources for this purpose, with 

crystallographic characteristics suitable for NLC formulation (Garzon et al., 2009). However, 

up to date, few studies have been directed at obtaining LN from conventional oils and fats. 

A high potential and low-cost option for application as saturated lipid in LN are the 

fully hydrogenated vegetable oils, also known as hardfats. These materials have melting points 

between 40 and 72°C, compatible with the application as the solid material of NLC. Fully 

hydrogenated vegetable oils are obtained when all the double bonds of the fatty acids are 

saturated during the total catalytic hydrogenation process of unsaturated oils. Hardfats have 

been developed as a raw material to replace partially hydrogenated fat, contributing to the 

development of interesterified low-trans fats by means of the interesterification process. 

Although they are considered relatively new materials, they are low-cost industrial products. 

Currently, hardfats have been also the object of studies focused on the modification of fat 

physical properties, as well as the structuring of liquid oils (RIBEIRO, BASSO, 

KIECKBUSCH, 2013; HUANG, YU, RU, 2010; TAMJIDI et al., 2013).  

In this way, the use of fully hydrogenated vegetable oils combined with 

polyunsaturated oils such as soybean, canola, and sunflower oil is a promising option for the 

development of lipid matrices for the incorporation of lipophilic bioactive compounds, such as 

free phytosterols (FP) in NLC. 

The FP is considered a functional compound because it establishes a competitive 

mechanism during the absorption of cholesterol, reducing cholesterol blood levels, which is 

closely related to the prevention of cardiovascular diseases (VAIKOUSI et al., 2007). In the 

scientific literature, it is possible to find several studies demonstrating that regular consumption 

of FP is also related to the reduction of cancer risk (AWAD, CHINNAM, FINK, BRADFORD, 
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2007; LEONG et al., 2011a; LEONG et al., 2011b). However, FP has high crystallinity and low 

solubility in water (NICHOLS, Sanderson, 2003), so few FP products are available for 

consumption, mainly due to technological application issues. 

It's important to take into account that when the raw materials involved in the 

processing of nanoparticles are oils and fats, the main points of studies are related to the 

crystallization behavior and lipid polymorphism. These properties are influenced by intrinsic 

and extrinsic factors, such as chemical composition, production process, thermal 

recrystallization conditions, among others. Conventional lipids, unlike purified materials, are 

composed of a variety of TAG groups with different requirements for nucleation energy, 

molecular diffusion, and the crystal network establishment for each application (SATO 2001; 

RIBEIRO et al. al. 2009a). The crystallization behavior and the polymorphic transitions of lipid 

materials at the nanoscale, for the development of LN, is still unclear, but it is directly related 

to the physical stability of LN. 

The main objective of this work was to develop NLC with conventional raw 

materials from the fats and oils industry, such as soybean oil and fully hydrogenated soybean 

oil for the incorporation of FP. In addition, the crystallization and polymorphism of the lipid 

matrices and NLC were evaluated in order to verify the influence of these properties on the 

physical stability of LN. This NLC development approach, with vegetable oil and hardfats for 

incorporation of bioactive compounds, is totally unprecedented, giving the authors of this work 

a patent under the privilege of the invention under registration in the National Institute of 

Industrial Property - INPI (BR 10 2017 006471 9). 

 

2. Materials and methods 

2.1 Materials  

Refined soybean oil (SO) was locally purchased, fully hydrogenated soybean oil 

(FHSO) was supplied by SGS (Piracicaba, SP, Brazil) and free phytosterols (FP) was a courtesy 

of a local production initiative. The emulsifiers used were deoiled soybean lecithin (SL) 

composed of 68-73% phosphatidylcholine and a hydrophilic-lipophilic balance (HLB) of 7.0 

obtained from SolaeTM Company (St. Louis, MO, USA), sorbitan monostearate - Span®60 (S60) 
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of HLB 4.7, from Sigma-Aldrich® and ethoxylated sorbitan monooleate - Tween®80 (T80) of 

HLB 15.0, donated by Croda (Campinas, SP, Brazil). 

2.2 Methods 

2.2.1. Fatty acid composition 

The fatty acid composition of the lipid matrices was performed in triplicate by gas 

chromatography with capillary column according to the AOCS Ce 1f-96 method (AOCS, 

2009). After esterification using Hartman and Lago (1973) method the fatty acid methyl esters 

were separated on Agilent DB-23 (50% cyanopropyl-methyl polysiloxane) column, dimensions 

60 m, internal diameter: 0.25 mm, 0.25 μm film. Chromatographic conditions: oven 

temperature 110 C – 5 min, 110 C – 215 C (5 C/ min), 215 C – 24 min; detector 

temperature: 280 C; injector temperature 250 C; carrier gas: helium; split ratio 1:50; injected 

volume: 1.0 μL. The qualitative composition was determined by comparing the retention times 

of the peaks with those of the respective fatty acid standards, while the quantitative composition 

was performed by peak area normalization, according to the recommendation of the cited 

method. 

2.2.2. Triacylglycerol composition 

The determination of the TAG composition was performed in triplicate by 

dissolving the sample in tetrahydrofuran (THF, 20 mg/mL) and injecting into a gas 

chromatograph equipped with DB-17HT Agilent Catalog 122-1811 capillary column (50% -

phenylmethylpolysiloxane), with 15 meters length, 0.25 mm internal diameter and 0.15 μm 

film. Analysis conditions: split injection ratio 1:100; column temperature: 250 °C, programmed 

to 350 °C at 5 °C/min; carrier gas: helium, at a flow rate of 1.0 mL/min; injector temperature: 

360 °C; detector temperature: 375 °C; injected volume: 1.0 L. The identification of the TAG 

groups was performed by comparing the retention times, according to the procedures of 

Antoniosi Filho, Mendes, Lanças (1995) and the quantification of the groups was performed by 

peak area normalization as recommended by the authors.  
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2.2.3 Free phytosterols profile 

To obtain the FP profile, the unsaponifiable matter was first extracted by the Ca 6a-

40 method, and then, using the Ch 6-91 method, the sterol profile was determined, and the total 

sterol content was quantified by means of using internal standard α-cholestanol (1 mg/kg 

Sigma-Aldrich) (AOCS, 2009), procedures performed in triplicate. In summary: 5 g of FP 

sample was saponified under reflux with 50 ml of ethanolic 2 N KOH solution during 1h. The 

unsaponifiable compounds were then extracted with diethyl ether (3 x 80 mL) and the organic 

phase neutralized by washing with distilled water. The residue (unsaponifiable matter) was 

fractionated by silica thin layer chromatography (Si-TLC) using plates impregnated with 

potassium hydroxide. The plate was developed twice with a mixture of diethyl ether: hexane 

(65:35, v/v). The fraction of the sterols was scraped and extracted with hot chloroform and 

diethyl ether. The solution was evaporated, derivatized with 500 μL of the 1:3:9 (v / v / v) 

trimethylchloroxylan: hexamethyldisilazane: pyridine mixture and analyzed by GC. The gas 

chromatograph (Agilent 6890N, Agilent, Santa Clara, CA) was equipped with a low polar 

capillary column of fused silica ZB5 (poly (5% diphenyl-95% dimethyl) siloxane, of 30 m 

length, 0.25 mm i.d., and 0.25 μm film thickness, Zebron) and a flame ionization detector (FID). 

The oven program was adjusted isothermally at 265 ° C, with a 1:50 split ratio. Helium was 

used as the carrier gas at a flow rate of 1 mL.min -1. The injector and detector temperatures were 

300 °C. Quantitative determination was performed using the internal standard. Data were 

expressed as the total percentage of phytosterols in the sample, using the ratio of the internal 

standard peak area, and the total phytosterols peak area, according to the recommendation of 

the method. Peak identification was performed by calculation of the reaction time and 

comparison with the standard chromatogram. The FP profile was obtained by the ratio of each 

phytosterol peak area and the total phytosterols peak area. 

2.2.4 Formulation of lipid matrices and lipid nanoparticles  

The NLCs were prepared with 10% (m/m) of lipid phase and 90% (m/m) of the 

aqueous phase. The aqueous phase was composed of distilled water and 2% emulsifier 

according to Helgason et al. (2009), Qian et al. (2013) and Yang et al. (2014). Regarding the 

lipid phase, NLC was developed with lipid matrices composed of 50% of liquid lipid (SO) and 

50% of solid lipid (FHSO). For NLC with the incorporation of the bioactive compound, the 
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liquid lipid was partially replaced by 30% FP. The emulsifiers LS, S60 and T80 were used 

separately in each formulation for evaluation of their individual behavior (Table 1). 

 
 Table 1. Lipid fase of nanoparticles formulations (corresponding to 10% of the total 
suspension) and high-pressure homogenization parameters 
ID* Lipid matrix (%) Bioactive Compound 

(%) Emulsifier Pressure 
(bar) 

Number of HPH 
cycles 

NLCT80 50 SO + 50 FHSO - T80 800 3 
NLCS60 50 SO + 50 FHSO - S60 800 3 
NLCSL 50 SO + 50 FHSO  - SL 800 3 
NLC T80 50 SO + 50 FHSO - T80 800 5 
NLC S60 50 SO + 50 FHSO - S60 800 5 
NLCSL 50 SO + 50 FHSO - SL 800 5 
NLC +FPT80 20 SO + 50 FHSO 30 FP T80 800 3 
NLC +FPS60 20 SO + 50 FHSO 30 FP S60 800 3 
NLC +FPSL 20 SO + 50 FHSO 30 FP SL 800 3 
NLC +FPT80 20 SO + 50 FHSO 30 FP T80 800 5 
NLC +FPS60 20 SO + 50 FHSO 30 FP S60 800 5 
NLC +FPSL 20 SO + 50 FHSO 30 FP SL 800 5 

*NLC - Nanostructured Lipid Carriers; NLC + FP - Lipid Carriers Nanostructured with Free Phytosterols; T80 - Formulation 
containing 2% of emulsifier Tween®80; S60 - Formulation containing 2% of emulsifier Span®60; LS - Formulation containing 
2% of emulsifier soybean lecithin; HPH - high-pressure homogenization. 

 

2.2.5. Preparation of lipid matrices and lipid nanoparticles  

The preparation of the lipid matrices consisted of the mixture of the liquid lipids 

(SO), solids lipids (FHSO), and FP, according to each formulation, in Table 1. Each mixture 

was stirred, on a magnetic stirrer at 300 rpm for 2 minutes at 90 °C. Thereafter, they were 

conditioned under specific conditions, described in the sequence, for further characterization. 

To obtain the NLC and NLC+FP, the lipid matrices were prepared with the 

subsequent addition of the aqueous phase containing the emulsifier, at the same temperature 

(90ºC). The pre-emulsion was obtained in Ultra Turrax IKA T18 Basic (Germany) for 3 minutes 

at 20,000 rpm. Then, the pre-emulsions were subjected to hot homogenization in high-pressure 

homogenizer (HPH) (GEA Niro Soavi, model: NS 1001L PANDA 2K, Italy) at 90 °C under 

two different conditions: 3 and 5 cycles of 800 bar (Table 1), according to Zimmermann, 

Müller, Mäder, (2000), Bunjes, Steineiger, Richter (2007) and Severino, Santana, Souto (2012). 

After the HPH process the obtained nanoemulsions were cooled to 5 °C for 24 hours for 

crystallization of the lipid fraction and obtaining the dispersions containing the NLC and 

NLC+FP, which were subsequently stored at 25 °C (QIAN et al., 2013 KUMBHAR, 

POKHARKAR, 2013, YANG et al., 2014). In Table 1 the formulations of the NLC and the 
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NLC+FP are described according to the emulsifier used: NLC T80 and NLC + FP T80 (2% of 

Tween®80 emulsifier); NLCS60 and NLC+FPS60 (2% of Span®60 emulsifier); NLCSL and NLC+ 

FPSL (2% of SL emulsifier). 

2.2.6. Drying processes of lipid nanoparticles 

The nanoparticles obtained after HPH in aqueous suspension were submitted to two 

different drying processes: (a) Heating - the nanoparticles in aqueous dispersion were exposed 

for 24 h in a drying oven with air circulation at 40 °C (Q317M, Brazil); (b) Lyophilization - the 

aqueous dispersion containing the nanoparticles was first conditioning  in ultrafreezer (-80 °C) 

for 24 h in order to freezing the aqueous phase, followed by lyophilization in lyophilizer 

(Liobras L101, Brazil), according to the method described by Zimmermann, Müller , Mäder 

(2000). 

2.2.7. Thermal analysis of lipid matrices and lipid nanoparticles 

The thermal analyzes were performed in the lipid matrices and in the NLC in 

aqueous dispersion using Transmission Differential Calorimetry (DSC) TA Instruments, model 

Q2000, coupled to the RCS90 refrigeration system (TA Instruments, Waters LLC, New Castle). 

The data processing system used was Universal V4.7A (TA Instruments, Waters LLC, New 

Castle), and the analysis conditions are described in the sequence. 

Lipid matrices: The official method of AOCS Cj 1-94 (AOCS, 2009) was used, 

with a maximum the temperature changed from 80 ° C to 150 ° C due to the high melting point 

of FP. The conditions of analysis were: sample mass: ~ 10 mg; Crystallization events: 150 ° C 

for 10 min, 150 ° C to -40 ° C (10 °C /min); Melting events: - 40 °C for 30 min, - 40 ° C to 150 

°C (5 °C/min.). The following parameters were used to evaluate the results: initial 

crystallization and melting temperatures (Tic and Tim), peak crystallization and melting 

temperatures (Tpc and Tpm), enthalpies of crystallization and melting (Hc and Hm) and final 

temperature of crystallization and melting (Tfc and Tfm) (CAMPOS, 2005). 

Lipid nanoparticles in aqueous suspension: Cooling-heating-cooling cycles (37-5-

75-5 °C) adapted from AWAD et al. (2008), were used to study the crystallization behavior and 

stability. Approximately 10 mg of samples were packed in hermetic aluminum pans at 37 ° C 

shortly after HPH and were immediately analyzed under inert atmosphere (N2) under the 
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following conditions: start temperature 37 ºC cooling to 5 °C followed by heating to 75 °C and 

soon after being cooled again at 5 °C, using a constant rate of 10 ° C/min during all cycles. The 

following parameters were used to evaluate the results: initial crystallization and melting 

temperature (Tic and Tim), peak crystallization and melting temperatures (Tpc and Tpm), 

recrystallization temperature (Tprc), enthalpies of crystallization and melting (Hc and Hm), 

enthalpy of recrystallization (ΔHrc) and completion temperature of crystallization, melting and 

recrystallization (Tfc, Tfm, Tfrc) (CAMPOS, 2005). 

2.2.8. Particle size and Polydispersity Index (PDI) of the lipid nanoparticles  

 The particle size was obtained by means of the hydrodynamic diameter (Z-ave) in 

nanometers (d.nm) using dynamic light scattering (DLS) with a high-power laser in Zetasizer 

Nano NS equipment, Malvern, United Kingdom. The NLC and NLC+FP were evaluated in 

triplicate for the Z-ave and PDI after 24 hours and 15 days of the production process. The 

samples were diluted with distilled water to reduce the opalescence before the determinations. 

Data analyzes were performed using the software included in the equipment system. 

2.2.9 X-ray diffraction analysis of lipid matrices and lipid nanoparticles  

The X-ray diffraction (XRD) of matrices and the dried nanoparticles were 

determined according to the AOCS method Cj 2-95 (AOCS, 2009). Previously, the lipid 

matrices were melted at 130 °C, crystallized at 5 °C and stabilized at 25 °C for 24 hours in a 

temperature-controlled incubator. The measurements were carried out in a Philips 

diffractometer (PW 1710) using Bragg-Brentano (:2) geometry with Cu-k rad radiation (= 

1.54056 Å, 40 KV voltage and 30 mA current). The measurements were obtained at 25 °C with 

steps of 0.02° in 2° and acquisition time of 2 seconds, with scans of 1.8 to 40° (2° scale). The 

identification of the polymorphic forms of triacylglycerols was performed from the Short 

Spacing (SS) characteristic of the lipid crystals (AOCS, 2009). 

2.3. Statistical analysis 

Data were statistically analyzed by means of One-Way Analysis of Variance 

(ANOVA) with the Statistica (V.7) Software (Statsoft Inc., Tulsa, UK). The Tukey test was 

applied to determine the significant differences between the means, at a level of p≤0.05. 
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3. Results and discussion 

3.1. Chemical characterization of the lipid phase 

In the fatty acid composition of the SO, the predominant content of unsaturated 

fatty acids was 53.32% of linoleic acid (C18: 2), 23.38% of oleic acid (C18: 1) and 6.66% and 

linolenic acid (C18: 3). Regarding the saturated fatty acids, palmitic acid (C16: 0) and stearic 

acid (C18: 0), 10.70% and 4.26%, respectively (Table 2) were predominated. Similar values 

were reported by Ribeiro et al. (2009 b, c), but it is also possible to find SO with very broad 

ranges of unsaturated fatty acids, such as 48-59% linoleic acid, 17-30% oleic acid and 4,5-11% 

linolenic acid (REGITANO-D'ARCE, VIEIRA, 2009).  

Table 2. Fatty acid composition of soybean oil (SO) and fully hydrogenated 
soybean oil (FHSO). 

Fatty acids (%) SOa FHSO a 
C16:0 - Palmitic acid 10.70±1.12 11.22±0.50 
C16:1 - Palmitoleic Acid 0.09±0.02 - 
C18:0 - Stearic Acid 4.26±0.26 87.11±0.06 
C18:1 - Oleic Acid 23.38±0.96 - 
C18:2 - Linoleic Acid 53.32±0.58 - 
C18:3 - Linolenic Acid 6.66±0.10 - 
C20:0 - Arachidonic acid 0.41±0.03 0.60±0.18 
C22:0 - Behenic acid - 0.75±0.28 
Σ Saturated 15.83 100 
Σ Unsaturated 83.45 <1 

a Average of three replicates ± Standard Deviation. Values below 
of 0.2% were omitted from the table. 
 

During the process of total hydrogenation of oils, the unsaturated fatty acids are 

transformed into saturated fatty acids (WANG, 2002). Thus, the high content of stearic acid 

(C18:0) found as a major in FHSO is a consequence of the complete hydrogenation process of 

soybean oil, which naturally contains high concentrations of unsaturated fatty acids with 18 

carbons (O'BRIEN, 2009). The FHSO presented, therefore, 87.11% of stearic acid (C18:0), 

11.22% of palmitic acid (C16:0), with small proportions of arachidonic and behenic acids 

(Table 2). Metabolically, stearic acid is basically used as an energy source, with no influenced 

the metabolism of hormones, prostaglandins, and leukotrienes. In addition, it has no adverse 

effect on the risks of cardiovascular diseasesie, it has no atherogenic effect (MARANGONI, 

ROUSSEAU, 1995; O'BRIEN, 2009). The TAG composition consists of the arrangement of 

the fatty acids in the glycerol molecule. Table 3 shows the SO and FHSO TAG compositions. 

The TAG composition, from the technological point of view, is extremely important for the 
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understanding of the phenomena involved in the crystallization of fats and oils since different 

TAGs present different crystallization and fusion behavior (BUCHGRABER, ULBERTH, 

EMONS, & ANKLAN, 2004). 

Table 3. Triacylglycerols composition of soybean oil (SO) and fully hydrogenated 
soybean oil (FHSO). 

NC TAG  SO (%) FHSO (%) 
50 PPS - 3.19±0.35 
 POP 1.58±0.35 - 
 PLP 4.63±0.39 - 
52 PSS - 28.84±0.92 
 POS 1.03±0.10 - 
 POO 6.52±0.54 - 
 PLO 13.25±1.13 - 
 PLL 19.28±1.86 - 
 PLnL 2.39±0.69 - 
54 SSS - 66.21±1.46 
 SOO 1.30±0.77 - 
 SLO 2.25±0.28 - 
 OLO 2.51±0.50 - 
 OLL 11.55±0.91 - 
 LLL 17.35±1.10 - 
 LLnL 18.83±1.21 - 
 LLnLn 2.59±0.38 - 
56 SSA - 0.49±0.28 
58 SSBe - 1.28±0.09 
Total  100 100 

NC - Number of carbons; P = palmitic acid; S = stearic 
acid; O = oleic acid; L = acid linoleic; Ln = linolenic 
acid; A = acid arachidonic; Be = behenic acid 
-: not detected. 

 

The SO had 14 TAG species while in the FHSO only 5 were found. The 

predominant TAGs in the SO were PLO, PLL, OLL, LLL, and LLnL, corresponding to 80.26% 

of the total content, whereas in FHSO only PSS (28.84%) and SSS (66.21%) were found, as 

expected. In the literature, similar values are observed for the same TAGs in FHSO, varying 

between 90 and 95% of the total TAG content (HUMPHREY AND NARINE, 2004; RIBEIRO 

et al., 2009b). 

The FP composition was determined only in the lipophilic bioactive compound 

since in the other lipidic components this content is irrelevant, less than 1% (GÓMEZ-COCA, 

PÉREZ-CAMINO, MOREDA, 2015). Table 4 shows the FP profile of the bioactive compound 

incorporated in LN. FP is 98% pure and the components with the highest concentrations were 
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β-sitosterol, stigmasterol, and campesterol, with contents of 44.05, 26.77 and 23.53%, 

respectively. 

 Table 4. Sterols profile of the bioactive compounds loaded in the lipid 
nanoparticles 

Composition of free phytosterols (%)a 

Colesterol 0.60±0.02 
Brassicasterol 0.30±0.01 
Campesterol 23.56±0.23 
Campestanol 0.66±0.11 
Stigmasterol 26.77±0.22 
Δ-7-Campesterol 0.78±0.04 
Δ-5,23- Stigmastadienol 0.48±0.01 
β-Sitosterol 44.05±0.15 
Sitostanol 1.18±0.08 
Δ-5-Avenasterol 0.84±0.04 
Δ-5-24-Stigmastadienol 0.14±0.01 
Δ-Stigmastenol 0.47±0.02 
Δ-7-Avenasterol 0.68±0.01 
Total of phytosterols 98.00 

      aAverage of three replicates ± Standard Deviation. 

3.2. Thermal characterization of lipid matrices 

Crystallization curves were obtained by DSC for the lipid bases and their mixtures 

containing SO, FHSO, emulsifiers (LS, T80, and S60) and the bioactive compound (FP). In 

Figure 1, the exothermic heat flux is plotted as a function of temperature. The crystallization 

parameters obtained from the thermal curves are shown in Table 5. The selected parameters 

include: initial crystallization temperature (Tic), which refers to the beginning of the phase 

transition; peak crystallization temperature (Tpc), where the thermal effect is maximal; (ΔHc), 

measured by the area of the curve, and final crystallization temperature (Tfc), which indicates 

the conclusion of the thermal effect (RIBEIRO et al., 2009a). 
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Fig. 1. Crystallization behavior obtained from differential scanning calorimetry (DSC) of the lipid 
matrices composed by soybean oil (SO) and fully hydrogenated soybean oil (FHSO) and their mixtures 
containing the three different emulsifiers (soybean lecithin - SL, polyethoxylated sorbitan monooleate - 
T80 and sorbitan monostearate - S60) and free phytosterols (FP), by cooling from 150 to - 40 °C for 
samples with FP and by 80 to - 40 °C for others lipid matrices. 

 

Tabela 5. Crystallization behavior of the FHSO, FP and pure lipid matrices and in 
the presence of emulsifiers and FP, used in the production of NLC. Initial crystallization 
temperature (Tic), peak crystallization temperature (Tpc), enthalpy of crystallization (ΔHc) and 
final crystallization temperature (Tfc) 
Samples Tic (°C) Tpc (°C) ΔHc (J/g) Tfc (° C) 
  Peak 1 Peak 2 Peak 1 Peak 2  

FHSO 50.41 47.75 nd* 123.40 nd 25.91 

FP 126.41 126.37 nd 41.96 nd 119.72 

SO+ FHSO 44.83 43.09 nd 72.76 nd 19.70 

SO+ FHSOT80 45.47 43.03 nd 67.16 nd 19.89 

SO+ FHSOS60 43.48 41.68 nd 61.46 nd 17.29 

SO+ FHSOSL 43.69 42.09 nd 41.75 nd 18.36 

SO+ FHSO+FP 47.13 45.34 nd 94.93 nd 20.94 

SO+ FHSO+FPT80 65.06 59.06 43.48 44.42 52.12 49.13 

SO+ FHSO+FPS60 40.17 38.57 nd 56.28 nd 21.05 

SO+ FHSO+FPSL 81.25 75.13 45.06 31.29 44.27 70.52 
* nd, not detected. 
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3.2.1. Crystallization behavior of the lipid matrices 

The SO was liquid at room temperature and during NLC production, because it is 

composed mainly of the unsaturated fatty acids, linoleic and oleic, which present low melting 

points (RIBEIRO et al., 2009b). Therefore, the SO is a suitable raw material for use as liquid 

lipid in NLC and of great potential for application in these systems, replacing synthetic liquid 

lipid matrices in terms of cost and regulatory aspects in the food area.  

In the crystallization of FHSO, only one peak was observed, reaching maximum 

crystallization at 47 °C. This behavior was also reported by RIBEIRO and coworkers (2013), 

it's directly related to the chemical composition since FHSO is composed of approximately 87% 

of stearic acid. In this way, the FHSO proved to be a compatible lipid material for application 

in NLC as the solid lipid fraction. Several authors have reported that lipid mixtures rich in 

stearic acid represent raw materials of great importance for LN composition since they have a 

melting point higher than body temperature and also because stearic acid is considered 

metabolic neutral (MENSINK, et al., 2004). 

The mixture of these two lipid components, in the proportion of 50% of SO and 

50% of FHSO, showed Toc of 43.09 °C. This indicates it as a promising lipid matrix for the 

development of NLC, with also possibilities for the incorporation of bioactive compounds, 

providing protection during transport and delivery in the TGI. As Yoon, Park, Yoon (2013) 

reported, the combined use of solid and liquid lipid fractions in LN is important to maintain 

structural and stability characteristics, but this mixture should have a melting point higher than 

the body temperature. In addition, for incorporation of active compounds, the use of both liquid 

and solid lipid mixture is positive, since it allows the elaboration of a lipid matrix with a low 

crystallinity degree, offering more spaces to accommodate the bioactive compound (Garzon et 

al. al., 2009, TAMJIDI et al., 2013). Furthermore, Müller et al. (2002) have also cited that the 

low crystalline packing and stiffness of the particle structure minimize the undesired expulsion 

of the bioactive compound during possible polymorphic transitions.  
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3.2.2. Crystallization behavior of the active compound loaded in the lipid 

nanoparticles 

Knowledge of the crystallization and physical stability of bioactive compounds, 

such as FP, is extremely important to evaluate its potential for use as functional ingredients in 

food products. In Figure 2, the crystallization and melting curves of FP can be observed during 

cooling cycles up to -40 °C and heating up to 150 °C, and Table 5 shows the main parameters 

involved during the thermal phenomena.  

A peak crystallization was observed, with Tpc of approximately 126°C and a 

melting peak at 137.94 °C, indicating that the predominant fraction of the FP components have 

similar crystallization and melting properties (Table 5). However, between 50 and 60 °C, some 

exothermic and endothermic transitions were observed, but at low intensities (Figure 2). 

Vaikousi et al. (2007) observed similar events with peaks close to 60 °C and also 97 and 105 

°C. According to these authors, these thermal events may be related to the loss of hydration 

water from the crystals remained from the FP obtaining procePss, that undergoes repeated 

washes with aqueous solutions. Firstly, a part of the hydration water is lost and semi-hydrated 

crystals are formed (below 60 °C), while the remainder of the hydration water leaves the crystal 

at approximately 90 °C. 

 

Fig. 2. Crystallization and melting curves of the free phytosterols (A) and zoom of 
the region with peaks of lower intensities (B), obtained by differential scanning calorimetry 
(DSC). 
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As seen, FP has a high melting point, and, in addition, they present a water 

insolubility, characteristics that result in the great technological challenge for food applications. 

As reported by Vaikousi et al. (2007) in their studies, the direct delivery of FP in food is 

considered a technological challenge, since the high crystallinity/insolubility can often become 

a restrictive factor for the physical stability of several products.  

Thus, the incorporation of FP into NLC can be a viable alternative for the 

enrichment of several food products. In NLC the FP are solubilized in the lipid matrix and 

assume a different physical behavior, as can be observed in Figure 1 and Table 5, discussed 

below. 

3.2.3. Lipid matrix crystallization behavior in the presence of the active compound 

FP were incorporated in the proportion of 30% in the lipid matrix, composed of 

50% of FHSO and 20% of SO. Only one crystallization peak was observed, with Toc of 

45.34øC. Thus, it is affirmed that FP was incorporated by the Plipid matrix, with the 

crystallization peak not being observed at approximately 126 °C, confirming its complete co-

crystallization in the lipid matrix, as set forth in Table 5. Furthermore, evaluating the impact of 

the FP in the lipid matrix crystallization, it's possible to observe that the crystallization peak 

present in the thermogram varies in position, shape, and magnitude. Analyzing the parameters 

in Table 5, it can be seen that the addition of FP to the lipid matrix resulted in the acceleration 

of the crystallization start at approximately 2 °C and there was an increase of the enthalpy of 

crystallization from 72.76 to 94.93 J/g. Thus, it was observed that the inclusion of FP in the 

lipid matrix, can also contribute to the increase of the thermal resistance of the NLC. 

3.2.4. Influence of emulsifiers on the crystallization behavior of lipid matrices  

We analyzed the effects of adding 2% of emulsifiers in different lipid matrices used 

for the production of NLC and NLC+FP.  It was noted that the T80 did not interfere in the Tpc 

of the lipid matrix composed of SO and FHSO. While S60 and LS promoted a reduction of 

approximately 1 °C in the crystallization events, described in Table 5, which can be considered 

insignificant for process purposes. 

In adition, small influences of the emulsifiers were observed at the Toc of the 

mixtures containing SO and FHSO (44.83 °C), the presence of T80 delayed the initial 

crystallization to 45.47 °C, while S60 and LS have anticipated the crystallization event to 43.48 
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and 43.69 °C respectively (Table 5). More pronounced changes were observed in the 

crystallization enthalpies when comparing the lipid matrix composed by only the lipid matrices 

and the same samples in the presence of emulsifiers T80, S60 and LS; noticeable reductions 

can be noticed in crystallization enthalpies from 72.76 to 67.16, 61.46 and 41.65 J/g 

respectively. In the exothermic process, the energy released to occur the phase change in the 

lipid mixture was lower when in the presence of SL than in the presence of other emulsifiers.  

In lipid matrices containing FP, were also observed changes in the crystallization 

behavior with the addition of emulsifiers. In the lipid matrices containing T80 and SL, two 

crystallization peaks were observed, with different intensities, the second being more intense 

than the first (Figure 1). This effect may be related to the possible induction of FP 

crystallization, caused by the presence of emulsifiers. The acceleration of crystallization was 

observed through the Tpc for peak 1 of each sample, from 45.34 °C to 59.06 and 75.13 °C, for 

T80 and SL respectively. However, the higher phase transitions were observed in the second 

peaks, which presented higher values for the crystallization enthalpy (Table 5). A different 

behavior was verified in the presence of S60, in which the crystallization curve showed only 

one peak (Figure 1); the values obtained for Toc and Tpc indicate that this emulsifier has delayed 

the crystallization of the lipid matrix in the presence of FP and the enthalpy of crystallization 

was not affected (Table 5). 

Differentiated behaviors were observed during the crystallization of the lipid 

matrices evaluated in this study when in the presence of emulsifiers. The results are in 

agreement with those related in the literature, which indicates that the presence of certain 

emulsifiers interferes with the crystallization behavior of lipid materials, slowing or speeding 

up this process (MASUCHI et al, 2014; Oliveira et al, 2015; Domingues et al., 2016). In 

addition, it is important to note that all the lipid matrices evaluated have presented thermal 

characteristics that make feasible its use for the development of NLC and NLC+FP. 

3.3. Processing of lipid nanoparticles 

The pre-emulsification method followed by HPH, used for the production of NLC 

and NLC+FP, proved to be efficient for the systems developed in this study. It was possible to 

obtain NLC with desirable colloidal characteristics using 3 and 5 cycles of homogenization at 

800bar, according to results presented and discussed in the following topic. 
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It is important to highlight that, the emulsifiers used in the nanoparticle 

formulations combined with the production method, have a great influence on the obtention, 

viability, and stabilization of the aqueous dispersions. It was observed that the LS emulsifier 

was not compatible with the FP containing formulation since during the pre-emulsion stage the 

system showed high viscosity limiting processing in HPH. The other systems remained liquid 

and were submitted to HPH, with no viscosity increase during processing. 

3.4. Particle size and Polydispersity Index (PDI) of the lipid nanoparticles  

Z-ave and particle size distribution (PDI), are important properties for LN 

characterization. The determination of Z-ave is fundamental, mainly, for scientific and 

technological reasons, such as, to characterize and confirm if that the desired dimensions were 

obtained after the processing, and especially if they are maintained during storage 

(McClements, 2013, TAMJIDI et al., 2013). Table 6 shows the Z-ave and PDI of NLC and 

NLC+FP obtained through 3 and 5 cycles of HPH, evaluated after 24 hours and 15 days of 

production, developed with T80, S60 and SL.  

In Figure 3 and 4, it is possible to observe the particle size distribution expressed 

according to intensity (Iαd6) and number (Nαd), for the systems developed with 3 and 5 cycles 

of HPH. The results were expressed in terms of scattered light intensity, I distribution, the 

proportional diameter to the sixth power (Iαd6), and in terms of the number of particles, N 

distribution, proportional to the predominant diameter in the sample (Nαd).  

The NLC T80 and NLC+FPT80 obtained at 3 and 5 cycles, analyzed after 24 hours 

of production, had a Z-ave of approximately 164 nm, with no significant difference (at a 5%) 

between them. It was noted that the increase in the number of cycles (from 3 to 5 cycles) of 

homogenization did not interfere in the Z-ave. However, it was effective in reducing the PDI 

without the inclusion of the bioactive compound, ranging from 0.176 ± 0.009 to 0.165 ± 0.007, 

as can be observed in Table 6. Similar behavior was observed for the NLCSL evaluated during 

24 hours of processing, in which no significant differences were observed for both parameters 

in 3 and 5 cycles.  
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Table 6. Particle size in hydrodynamic diameter (d.nm) and polydispersity index 
of NLC and NLC+FP evaluated after 24 hours and 15 days of production using 3 and 5 cycles 
of high pressure homogenization 

Samples* Z-ave (d.nm)** PDI** 
3 Cycles de HPH – 24 h 

NLC T80 167.34±0.13j 0.176±0.009de 
NLC S60 283.30±5.31cd 0.424±0.056abcd 
NLC LS 250.20±3.21efg 0.346±0.006abcde 
NLC+FPT80 164.97±1.98j 0.235±0.006cde 
NLC+FPS60 437.60±22.54b 0.485±0.086ab 
NLC+FPSL - - 

3 Cycles de HPH - 15 days 
NLC T80 161.15±0.44j 0.170±0.002e 

NLC S60 215.47±7.41hi 0.212±0.012de 

NLC LS 271.80±2.32cde 0.373±0.005abcde 

NLC+FPT80 160.98±1.95j 0.254±0.019bcde 

NLC+FPS60 297.60±7.84c 0.481±0.071abc 

NLC+FPSL - - 
5 Cycles de HPH – 24 h 

NLCT80 160.79±0.74j 0.165±0.007e 

NLCS60 259.80±1.63def 0.304±0.020bcde 

NLCSL 228.47±0.38ghi 0.330±0.005bcde 

NLC+FPT80 163.69±2.80j 0.269±0.021bcde 

NLC+FPS60 681.70±15.11a 0.590±0.244a 

NLC+FPSL - - 
5 Cycles de HPH - 15 days 

NLCT80 155.38±1.00j 0.144±0.011e 
NLCS60 211.00±1.88i 0.170±0.004e 
NLCSL 241.00±2.24fgh 0.342±0.110bcde 
NLC+FPT80 154.82±1.20j 0.246±0.012bcde 
NLC+FPS60 288.30±5.14c 0.307±0.090bcde 
NLC+FPLS - - 

* NLC: nanostructured lipid carriers - containing 2% T80 emulsifier: 
Tween®80; S60: Span®60 and LS: Soy lecithin; ** Values represent 
the average of three replicates ± standard deviation. Different letters in 
the same column indicate significant differences by the Tukey test at 
the 5% probability level (p≤0.05).
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Fig. 3. Hydrodynamic particle size distribution (d.nm) of the NLC with different emulsifiers: T80; S60 and SL, submitted to 3 and 5 cycles of high-pressure 
homogenization (HPH), analyzed after 24 h and 15 days of production, expressed as (A) intensity (Iαd6) and (B) number (Nαd).
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Fig. 4. Hydrodynamic particle size distribution (d.nm) of the NLC+FP developed with different emulsifiers: T80; S60 and SL, submitted to 3 and 5 cycles of 

high-pressure homogenization (HPH), analyzed after 24 h and 15 days of production, expressed as (A) intensity (Iαd6) and (B) number (Nαd).
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The NLCS60 submitted to 3 and 5 cycles of HPH, evaluated after 24 hours of 

processing, was not different (p≥0.05), presenting approximately 321 and 254 nm Z-ave and 

PDI of 0.4 and 0.3, respectively. The use of S60 in NLC+FP produced from 3 and 5 cycles of 

HPH caused a significant increase (p≥0.05) of Z-ave, which varied between 392 and 534 nm, 

respectively, as well as the PDI that assumed values above 0.4 (Table 6). Therefore, it has been 

observed that the use of a greater number of HPH cycles for FP-containing system was not 

suitable. According to Tamjidi et al. (2013), the PDI is related to the physical stability of LN; 

PDI values should be in the range of 0.1 to 0.25 to provide dispersions with long-term stability, 

and values above 0.5 indicate very broad particle size distribution, characterizing low physical 

stability. 

Engel and Schubert (2005) evaluated three different systems with tristearin, triolein, 

and Miglyol®840 (decanoic acid) containing 2.0% SL as crystallization inhibitor and 2.5% FP, 

dispersed in the aqueous phase containing 1.0% Tween®20 in HAP at 1000 bar. The Z-ave 

obtained for each system was 131 nm, 100 nm, and 102 nm, respectively. The authors reported 

that FP had little influence on Z-ave while they are dispersed in the oil phase, however, when 

they come in contact with the aqueous phase, the crystallization of FP occurs and the Z-ave of 

the particles increases significantly, destabilizing the system (Table 6).  

In addition, in order to verify the physical stability of the lipid particles over time, 

particle size and PDI evaluations were performed after 15 days of storage at 25 ° C. The systems 

developed with the T80 emulsifier, both in the presence and absence of FP, remained stable 

without significant difference (p≥0.05) for Z-ave and PDI after 15 days. In the systems 

developed with S60 and LS, there were more pronounced differences (p≥0.05) can be noticed 

in Z-ave and PDI. In general, reductions in Z-ave of the particles were observed, with 

consequent reduction of PDI. It should be noted that this behavior was positive for the 

nanoparticles developed with S60, as can be observed in Figure 4, mainly in relation to the 

number distribution of particles (Nαd), presenting a more uniform behavior. The most relevant 

results were obtained for the NLC+FPS60 developed with 5 cycles of HAP, showing a reduction 

of Z-ave from 681.70 to 288.30 nm and PDI from 0.590 to 0.307, after 15 days. Even so, by the 

value of PDI above 0.25, this system is still susceptible to destabilization.  
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This behavior, related to reductions in Z-ave of the particles, has been already 

reported by other research groups. According to Salminen (2013) and coworkers, these Z-ave 

reductions commonly occur in nanostructured lipid systems developed with fully saturated 

TAGs, being closely related to polymorphic transitions. The authors have mentioned that the 

polymorphic transition tends to reach equilibrium and the transition to the more stable 

polymorphic form ends up occurring. In addition, the authors state that if the system is exposed 

to temperature changes during storage the polymorphic transition is can be easily induced.  

The distributions presented in Figure 3 show that for NLCT80 and NLCS60 the size 

differences between cycles occurred within 24 hours, with similar distributions in 15 days, as 

observed in I distributions. In both cases, there was a predominance of the population with 

diameters between 80-100nm, according to N distribution. For the NLCSL, the behavior of the 

I distribution was similar, but for both cycles the populations of 80-100 and 100-200nm 

predominated, indicating a higher polydispersity. The incorporation of the FP caused changes 

in the distributions in both cycles (Figure 4). In this case, the greatest difference was the 

predominance of a single population with diameters between 100 and 200nm, according to N 

distributions. Therefore, as observed from the results obtained, polymorphic transitions 

possibly occurred during the 15 days of storage for all developed systems. It should be noted 

that the emulsifier T80 provided the best results in the stabilization of developed nanoparticles.  

3.5 Thermal behavior of lipid nanoparticles 

In Figure 5A, can be found the thermograms of the lipid matrices used for the 

production of the NLC and NLC+FP with the emulsifier T80 obtained by crystallization (75 to 

5 °C) and melting (5 to 75 °C). In addition, in order to evaluate the thermal behavior of lipids 

at the nanoscale, the aqueous dispersions containing the NLC and NLC+FP were also evaluated 

in DSC, through cycles of crystallization, melting and recrystallization (37-5-75-5 °C), the 

thermograms are shown in Figure 5B.  
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Fig. 5. DSC thermograms of: A) Lipid matrix and B) Lipid matrix with free phytosterols using 
temperature cycles of 75-5-75 °C; C) NLCT80 and D) NLC+FPT80 using temperature cycles of 37-5-75-5 °C. All 
cycles with a crystallization and melting rates of 10 °C/min. Where: Tpc = Maximum crystallization temperature 
of the lipid matrices; Tpm = Maximum melting temperature of the lipid matrices; CLN TPC = Maximum 
crystallization temperature; CLN TPM = Maximum melting temperature; CLN TPR = Maximum recrystallization 
temperature; CLN TCO = Maximum lipid coalescence temperature. 

During the first NLC cooling cycle, an exothermic peak was observed at 20.09 °C 

(NLC Tpc), approximately 23 °C lower than the Tpc of the lipid matrix used for the production 

of the lipid nanoparticles (Tpc = 43.03 °C) (Figure 5A). Similar results were obtained by Awad 

et al. (2008) in a study with SLN in aqueous suspension, composed of tripalmitin and Tween®20 

as the emulsifier, using the same crystallization rate (10 °C/min). The authors have observed 

that the lipid matrix has crystallized at a higher temperature (Tpc = 39 °C) than the 

corresponding NLS (Tpc = 19 °C). Walstra (2003) explains that the conventional crystallization 

of macroscale materials generally occurs through the heterogeneous nucleation process, from 

the presence of catalytic impurities, such as monoacylglycerols in lipids. It is considered that 

the presence of these impurities favors the initial of crystallization. However, in emulsified 
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systems, such as SLN and NLC, crystallization becomes more difficult since the lipid material 

is finely divided into tiny droplets. Thus, the crystallization occurs into each droplet and the 

probability of being modulated by impurities is reduced. Thus, crystallization is not propagated 

as in a continuous lipid matrix, being necessary to use lower temperatures to initiate lipid 

crystallization in LN.  

In the NLC+FP no crystallization peak was observed during the first cooling cycle 

(Figure 5D). It has been noted that the crystallization behavior of this system is different, 

probably because of the presence of FP. As can be seen in Figure 5A, in the lipid matrix 

containing FP two crystallization peaks were observed, one of lower intensity at 59.06 °C and 

the other at 43.48 °C. This early crystallization of the components that crystallized at higher 

temperature, is represented by the FP and possibly trisaturated TAG of the lipid matrix. These 

components have may act as crystallization inducers inside the droplets, favoring the 

crystallization and concluding the NLC phase transition (liquid-solid) at temperatures above 37 

°C. During the NLC heating cycle, only one endothermic peak was observed at 61.39 ° C, as 

well as the corresponding lipid matrix. In the NLC+FP, also only one melting peak was 

observed, at approximately 63 °C. However, two endothermic peaks were observed in the lipid 

matrix, one at approximately 48 °C, followed by another crystallization peak at 60-70 °C. It 

was observed that this last peak had two maximum points, at 60 and 65 °C approximately, they 

probably are associated with the polymorphic transition in the lipid matrix from β'-form to the 

more stable β-form. Generally, endothermic peaks can be used to suggest about the 

polymorphic forms of TAGs, but these can be only confirmed by the XRD analysis discussed 

in the next topic. 

In the second cooling cycle, performed after the melting, the peaks observed in the 

NLC+FP maintained a similar behavior to the lipid matrix. In addition, it was also found that 

the phase transition occurred at lower temperatures during this recrystallization compared to 

the crystallization of the lipid matrix. For NLC a different bePhavior was noticed during the 

second cooling cycle. Two recrystallization peaks were observed, one of lower intensity at 

approximately 38 ° C, which may be related to the destabilization of some LN after the melting 

process. This phenomenon was also observed in the research developed by Awad et al. (2008). 

The authors reported that when the NLS composed of tripalmitin was cooled for the second 

time, two exothermic peaks were observed at approximately 19 and 39 °C. The peak at 19 °C 
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was attributed to crystallization of NLC, while the peak at 39 ° C was attributed to a system 

destabilization. Thus, the first peak (39 ºC) was attributed to the crystallization of tripalmitin, 

which may be contained in large (coalesced) droplets. 

Even though, it should be noted that the higher intensity recrystallization peak 

(NLC Tpr) observed in the NLC was very close to the peak observed in the first cycle (NLC 

Tpc = 20.23 °C and NLC Tpc = 20.09 °C, respectively), indicating a high stability of the NLC 

system. This NLC stability was confirmed in the evaluation of Z-ave and PDI after 15 days 

from processing, as already discussed. 

3.6. X-ray diffraction analyses of lipid matrices and lipid nanoparticles 

The X-ray diffraction (XRD) technique is widely used to determine the crystalline 

polymorphic forms of TAGs. These materials have the ability to exist under various crystalline 

forms. The most common types of TAG packaging are hexagonal, orthorhombic and triclinic, 

which are designated as the crystalline forms, α, β' and β, respectively. The lipids are considered 

monotropic, which is a transition process in different polymorphic forms until reaching the most 

stable (→ ’→ ) (SATO, 2001). 

In Table 7 can be found the SS and the polymorphic forms of the lipid matrices, 

NLC, and NLC+FP, after drying processes of lyophilization and in the oven and. In Figure 5 

the diffractograms obtained by XRD are presented. It should be noted that the soybean oil is 

liquid at the analysis temperature, making it impossible to characterize by XRD. In addition, 

the XRD analyzes were performed for the LN obtained with 5 cycles of HPH, since they were 

the ones that presented the best results of Z-ave and PDI, as previously discussed. 

In the results of the characterization of the raw materials through XRD, it was 

possible to observe FHSO a high-intensity peak for FHSO, with SS at 4.15 Å, which is 

characteristic of the α form (Figure 6A). For the FP, evaluating from the point of view of theta-

2theta system (:2) a series of peaks was identified: 5.20, 12.18, 12.80, 15.08, 15.80, 16.92, 

17.86, 18.64, 19.70, 20.88, 21.82, 22.96, 24.06 and 25.28 Å. Among these, the peaks of higher 

intensities were highlighted in Figure 5E and were similar to those found by Vaikousi et al. 

(2007). It should be noted that some diffraction peaks are very similar to those used for the 

identification of the TAG polymorphs. The atoms of the TAG molecules have regular distances 

between them, already established and well documented in the scientific literature, allowing the 
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identification of polymorphic forms α in 0.41 nm, β' in 0.42 and 0.38 nm and β with high peak 

intensity at 0.46 nm and lower intensity at 0.38 and 0.37 nm (SATO, 2001). For this reason, 

depending on the percentage of FP incorporated in lipid matrices and NLC, the FP can interfere 

in the identification of the polymorphic forms of the TAG.  

 Table 7. Triacylglycerols polymorphic forms, short spacings and peak intensities 
in the diffractogram from lipid matrices and NLC obtained through 5 cycles of HPH, heated 
(oven dried) and lyophilized 

 
Lipid matrix 

 Short spacing (nm) 

0.46 0.41 0.42 0.38 0.36 TAG 
Polymorphic form 

FHSO - 0.406 s - - - α 
SO+ FHSO 0.443 M - 0.412 M 0.370 M - β’ + β 
SO+ FHSO+FP 0.449 M - 0.414 S 0.371 M 0.362 VW β’ + β 
SO+ FHSOT80 0.445 M - 0.412 M 0.373 M 0.361 VW β’ + β 
SO+ FHSOS60 0.442 M - 0.411 M 0.372 M - β’ + β 
SO+ FHSOSL 0.447 F - 0.412 M 0.375 M 0.362 W β’ + β 
SO+ FHSO+FPT80 0.450 M - 0.414 S 0.377 M 0.365 VW β’ + β 
SO+ FHSO+FPS60 0.449 VW - - 0.380 M 0.366 W β 
SO+ FHSO+FPSL 0.451 S - 0.413 VW 0.379 M - β’ + β 

NLC heated 
  

NLCT80 0.456 VW - - 0.382 M 0.366 M β 

NLCS60 0.452 S - - 0.382 M 0.365 M β 

NLCSL 0.456 VW - - 0.382 M 0.366 M β 

NLC+FPT80 0.454 VS - - 0.382 VS 0.365 VS β 

NLC+FPS60 0.453 VS - - 0.383 M 0.367 M β 

NLC lyophilized 
  

NLCT80 0.457 M - - 0.384 M 0.368 M β 

NLCS60 0.460 VS - - 0.388 M 0.371 M β 

NLCSL 0.460 M - - 0.387 M 0.370 M β 

NLC+FPT80 0.459 M - - 0.386 M 0.369 M β 

NLC+FPS60 0.460 VS - - 0.389 W 0.371W β 
Peak intensity: V - very, W - weak, M - medium, S - strong.  
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Fig. 6. X-ray diffraction patterns obtained at 25 °C: A) Fully hydrogenated soybean oil - FHSO; B) 

Lipid matrices developed with different emulsifiers (SL, T80 and S60) used in the NLC production; C) NLC heated 
(oven dried); D) NLC lyophilized; E) Free phytosterols - FP; F) Lipid matrix with free phytosterols and different 
emulsifiers (SL, T80 and S60) used in the NLC+FP; G) NLC+FP heated (oven dried), and H) NLC+FP lyophilized. 

 

Evaluating the diffraction patterns of the lipid matrices, shown in Figure 5B and 

5F, it was possible to observe diffraction peaks at SS 4.2 and 3.8 Å characteristics of the β'-
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form and also in 4.6 Å, SS that characterizes the presence of crystals in the β-form. In this way, 

it was observed that in these lipid matrices there is a mixture of crystals in both β' and β forms, 

indicating that these materials are in polymorphic transition (α→ β’→ β). Zeitoun et al. (1993) 

and Ribeiro et al. (2009d) also characterize mixtures of SO with FHSO, in the same proportion 

used in our studies (50:50 mm) and observe the simultaneous presence of β' and β crystals. With 

the exception of the lipid matrix developed with FP and S60 (Figure 6F), where only the 

characteristic SS of the most stable polymorphic form, β, were observed. Probably, the 

polymorphic transitions were facilitated by the presence of the S60 emulsifier. 

In the diffractograms corresponding to the NLC and NLC+FP obtained after the 

oven drying (Figures 6C and G) and lyophilization (Figures 5D and H), it was possible to 

observe only SS characteristics of crystals in the β-form. Thus, it can be affirmed that the 

polymorphic transitions were facilitated in LN as compared to the corresponding LM. It is 

noteworthy that both lipid matrices, and LN, were subjected to the same crystallization 

conditions (5 °C/ 24h followed by stabilization at 25 °C) and XRD analysis. Thus, it is 

suggested that the stabilization in the β-form may be related to the additional processes of LN 

drying. Salminen and coworkers (2013) described that polymorphic transitions in LN are 

facilitated when temperature increases in the system. However, the results obtained here 

showed that after both drying treatments of LN, using heating (oven) and low temperatures 

(lyophilization), crystals were observed in the most stable form (β). Moreover, for the NLC+FP, 

similar diffractograms were obtained for both lyophilized and oven dried LN (Figures 5G and 

H). Being the SS at 4.6 nm, characterized as very strong intensity for the NLC+FP with S60 

and of medium intensity, for the NLC+FP containing T80, as described in Table 7. The drying 

process, heating or lyophilization, did not interfere in the NLC+FP polymorphism. However, 

the different emulsifiers were found to interfere in the NLC+FP crystallinity, the systems 

developed with the T80 emulsifier were less crystalline when compared to those containing S60 

(Figures 5H and 5G).  

On the other hand, polymorphic transitions of β' to β were hampered in the oven 

drying process of the NLC (Figures 6C and 5D). It was mainly observed in the systems 

developed with SL and T80, which presented very weak intensities of SS peaks at 4.6 Å, 

referring to the β polymorph (Table 7). Probably, a partial melting of some TAGs, of an 

intermediate melting point, may have occurred during the heating drying, hindering the mobility 
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of the crystalline structure to the most stable form (β). This was not observed in the 

nanoparticles developed with FP, because they presented higher thermal resistance due to the 

high melting point of FP. 

Finally, the obtaining of nanostructured systems in the β-form, which is the most 

stable form, guarantees that during the application of these systems in food, no more 

polymorphic transitions will occur, which could be associated to the destabilization of the 

product during storage. 

4. Conclusions 

Soybean oil and fully hydrogenated soybean oil were found to be compatible 

materials for the development of NLC and NLC+FP. The HPH process was effective to obtain 

the NLC and NLC+FP, mainly by maintaining the high temperature of the systems during 

processing, avoiding the crystallization of the solid lipids and FP. The number of HPH cycles 

did not interfere with the particle size and polydispersity of the LN, but it did contribute to the 

reduction of the PDI of the NLC+FP. The T80 emulsifier was more effective in the stabilization 

of the systems, providing the smallest values of size and polydispersity for LN. 

The LN in aqueous dispersion, compared to the lipid matrices, required lower 

temperatures for crystallization. The systems developed with FP presented higher thermal 

resistance. The polymorphic transitions were accelerated after the drying processes of the LN, 

with crystals predominating in the β-form, while in the lipid matrices mixtures of crystals in the 

β' and β forms were found. The drying method did not interfere in the polymorphism of carriers 

with phytosterols, but for those without phytosterols, the polymorphic transitions were 

hampered in the oven drying process. In addition, in both NLC and NLC+FP systems, the 

systems with T80 were less crystalline. Obtaining LN through HPH is easily scalable for 

industrial processes and NLs have high thermal resistance, which is compatible with the 

incorporation into different areas and food processes. Thus, it can be concluded that the systems 

developed in this study are innovative systems, mainly in terms of compositions of lipid 

matrices and present high potential for food application. We suggest the use of NLC+FP in 

aqueous based foods, where FP dispersion is hampered by their high melting point and limited 

solubility. In addition, it's possible to apply the oven dried or lyophilized NLC, as crystallization 

seeds in lipid-based foods, for the induction of β-form.  
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ABSTRACT 

THIS WORK AIMED TO EVALUATE THE THERMAL AND CRYSTALLINE 
BEHAVIOR OF LM OF FOOD GRADE WITH THE POSSIBILITY OF APPLICATION IN 
SOLID LIPID NANOPARTICLES (SLN) AND NANOSTRUCTURED LIPID CARRIERS 
(NLC). High oleic sunflower oil (HOSO) and the hardfats of canola (CA) and crambe (CR) oils 
were used. After characterized (fatty acid and triacylglycerols compositions) the LM were 
obtained by mixing and melting, with crystallization at 5 °C/24h and stabilization at 25 °C/24h. 
LMs were evaluated for solid fat content (SFC), the thermal behavior of crystallization and 
melting, polymorphism and microstructure. All LMs had a melting point over the body 
temperature and the incorporation of HOSO delayed the crystallization start. A eutectic effect 
was observed promoting the reduction of melt temperature mainly in the blends of CA and CR 
(50:50). In the LM of hardfats crystals found in the α-form, after the incorporation of HOSO, 
crystals were in β' and β forms. The lower crystal diameter was obtained for the LMs that 
presented crystals in the β-form. The results showed that the LM composed by HOSO, CA and 
CR are compatible with the application in SLN and NLC and of an innovative character. 

Keywords: Hardfats, Canola, Crambe, High Oleic Sunflower Oil, 
Nanotechnology, Foods. 

 

Abbreviations  

CLN  Carreadores lipídicos nanoestruturados 
CA  Hardfat do óleo de canola  
CR Hardfat do óleo de crambe 
CAG Composição em ácidos graxos 
DRX  Difração de raios-X 
DSC  Calorimetria Diferencial de Varredura 
INPI  Instituto Nacional da Propriedade Industrial 
ML Matrizes lipídicas 
MLP Microscopia de luz polarizada 
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NL  Nanopartículas lipídicas 
NLS Nanopartículas lipídicas sólidas 
OGAO Óleo de girassol alto oleico 
SFC Conteúdo de gordura sólida 
TAG  Triacilgliceróis 
TGI  Trato gastrointestinal 

 

INTRODUÇÃO 

A nanotecnologia é uma ciência emergente, com grande potencial de aplicação em 

alimentos. Nos últimos 15 anos, diversos estudos de sistemas em escala nanométrica vêm sendo 

publicados na área de alimentos, abordando componentes estruturais, métodos de produção e 

caracterização, propriedades químicas e físicas, carreamento, proteção e liberação de 

compostos bioativos, direcionados ao desenvolvimento de novos produtos alimentícios 1-4. 

Neste contexto, os sistemas lipídicos estão em destaque devido as propriedades 

físicas e químicas diferenciadas dos óleos e gorduras, muito promissoras para o 

desenvolvimento de nanopartículas lipídicas. As nanopartículas lipídicas (NL) combinam 

algumas vantagens, como, maior facilidade de dissolução de compostos bioativos lipofílicos 

(ácidos graxos essenciais, tocoferóis, esteróis, carotenóides, entre outros), estabilidade química, 

permeabilidade e solubilidade através da parede do intestino 5. 

As NL podem ser desenvolvidas com matrizes lipídicas (ML) totalmente saturadas 

denominadas de nanopartículas lipídicas sólidas (NLS) e com misturas de lipídios saturados e 

insaturados, conhecidas como carreadores lipídicos nanoestruturados (CLN) 1,6,7. 

Este trabalho tem como proposta central estudar a viabilidade de aplicação óleos e 

gorduras comestíveis e/ou comercialmente disponíveis no contexto da indústria de alimentos 

em substituição às ML sintéticas, compostas por triacilgliceróis (TAGs) puros e suas misturas, 

geralmente utilizadas em fármacos e cosméticos, que se mostram pouco viáveis para aplicações 

alimentícias, principalmente em termos de custo e aspectos regulatórios 3.  

Neste ponto de vista, uma fonte lipídica muito promissora para compor a fração 

líquida dos CLN é o óleo de girassol alto oleico (OGAO), pois geralmente é utilizado em 

aplicações alimentícias que requerem elevada estabilidade oxidativa. O OGAO é considerado 

uma matéria-prima premium, que foi desenvolvida por pesquisadores russos a partir da 

mutagênese química e cruzamentos seletivos do girassol (Helianthus annus), visando a 
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obtenção de uma variedade de semente estável às condições climáticas e com alto teor de ácido 

oleico 8. A composição típica do OGAO é representada por 3-5% de ácido palmítico, 2-6% de 

ácido esteárico, 75 a 88% de ácido oleico e menos de 1% de ácido linolênico, que confere a 

este óleo estabilidade oxidativa dez vezes superior em relação aos óleos de soja, canola e ao 

próprio óleo de girassol de composição regular. O OGAO possui sabor e aroma neutros, 

característica associada ao seu alto potencial de aplicação em alimentos, cosméticos e fármacos, 

e tem sido direcionado à obtenção de produtos de máxima segurança toxicológica e 

biodegradabilidade 9,10.  

Uma opção de alto potencial e totalmente inédita neste contexto, para o uso como 

lipídio sólido na obtenção de NL consiste na utilização de óleos vegetais totalmente 

hidrogenados, também conhecidos como hardfats. Estes materiais lipídicos são obtidos quando 

todas as duplas ligações dos ácidos graxos são saturadas no processo de hidrogenação catalítica 

de óleos líquidos. Os hardfats são considerados materiais relativamente novos, foram 

desenvolvidos como matéria-prima para substituição da gordura parcialmente hidrogenada, 

contribuindo para o desenvolvimento de gorduras low trans por meio do processo de 

interesterificação. Atualmente, os hardfats têm sido objeto de estudos voltados aos processos 

de modificação lipídica e na estruturação de óleos líquidos. Hardfats específicos, provenientes 

de uma determinada fonte oleosa, apresentam perfil triacilglicerólico único e diferenciado, 

embora sejam compostos, em sua totalidade, por TAG trissaturados. Sua composição em ácidos 

graxos e em TAG é um dos fatores mais importantes na determinação do efeito modulador dos 

processos de cristalização em fases lipídicas contínuas 11.  

O hardfat do óleo de crambe (CR) é obtido da hidrogenação total do óleo de crambe, 

rico em ácido erúcico (C22:1), que quando hidrogenado transforma-se em ácido behenico 

(C22:0). Portanto, o hardfat de carmbe é composto basicamente de ácido behênico (~60%), e 

ácido esteárico (30% de C18:0). Devido ao grande tamanho de cadeia, o ácido behênico possui 

baixo índice de absorção no organismo (baixa biodisponibilidade), fato pelo qual mostra-se 

favorável em termos de metabolismo, uma vez que, apesar de ser saturado não é totalmente 

absorvido. Enquanto que o ácido esteárico é considerado metabolicamente neutro, sendo 

basicamente utilizado como fonte energética, não influenciando, portanto, no metabolismo de 

hormônios, prostaglandinas e leucotrienos 12. Outro hardfat disponível na indústria de 

alimentos é o hardfat obtido pela hidrogenação do óleo de canola. O óleo de canola é rico em 
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ácido oleico (C18:1), portanto o hardfat do óleo de canola (CA) é composto de cerca de 90% 

de ácido esteárico. Além de serem ricos em compostos considerados neutros no ponto de vista 

metabólico, os hardfats do óleo de crambe e canola apresentam conteúdo de ácido palmítico 

(C16:0) reduzido. Alguns estudos associam o ácido palmítico com efeitos metabólicos 

negativos, principalmente quanto a indução de resistência à insulina em casos de diabetes e 

atividade pró-inflamatória 12,13. Desta maneira, estes hardfats são considerados de alto potencial 

como fração sólida de NLS e CLN para aplicação em alimentos. 

Cabe destacar que esta abordagem de utilização de hardfats como matérias-primas 

para desenvolvimento de NL ainda não foi verificada na literatura científica. Nosso grupo de 

pesquisa, recentemente adquiriu o Privilégio de Invenção (INPI - BR 10 2017 006471 9) para 

o desenvolvimento de NLS e CLN com estas matérias-primas. Até o presente momento, foram 

desenvolvidos CLN com óleo de soja e hardfat do óleo de soja para carreamento de fitoesteróis 

livres, onde foram otimizadas condições de processamento e sistemas emulsificantes, 

mostrando resultados promissores 14. Desta maneira, é fundamentalmente importante o 

conhecimento das características químicas e físicas de outras matérias-primas, como CA, CR e 

OGAO possibilitando a ampliação e disseminação desta tecnologia para obtenção de sistemas 

nanoestruturados compatíveis com aplicações em alimentos. Estas investigações podem 

fornecer informações valiosas sobre a viabilidade de utilização da nanotecnologia na indústria 

de alimentos, uma vez que, estas matérias-primas apresentam maior biocompatibilidade e 

disponibilidade em relação aos lipídios sintéticos. 

Por todo exposto, o objetivo deste trabalho foi avaliar o comportamento térmico e 

cristalino de matrizes lipídicas desenvolvidas com óleo de girassol alto oleico e hardfats dos 

óleos de canola e crambe para utilização em sistemas lipídicos nanoestruturados para aplicação 

em alimentos. 
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PARTE EXPERIMENTAL 

Material e métodos 

Materiais 

Para a realização dos experimentos foram utilizados os seguintes produtos: 

• Óleo de girassol alto oleico (OGAO) fornecido pela Cargill Agrícola S. A. 

(Mairinque – SP, Brasil); 

• Hardfats dos óleos de canola (CA) e crambe (CR), ambos obtidos a partir 

do processo de hidrogenação catalítica total dos óleos de canola e crambe, 

respectivamente, fornecidos pela SGS Agricultura e Indústria Ltda© (Ponta 

Grossa - PR, Brasil).  

Métodos 

Formulação e preparo das bases lipídicas 

Os CA e CR foram utilizados para desenvolver 5 ML totalmente saturadas e 21 ML 

contendo a mistura de ácidos graxos saturados e insaturadas, compostas pelos óleos totalmente 

hidrogenados (CA e/ou CR) e com substituição parcial por OGAO, nas proporções de 20, 40 e 

60%. Estas ML foram produzidas por mistura simples dos seus componentes, seguida da fusão 

à temperatura de 90°C sob agitação magnética (300 rpm) durante 2 minutos. Logo após as 

amostras foram acondicionadas conforme cada procedimento de análise para as caracterizações 

químicas e físicas, descritos na sequência.  

Composição em ácidos graxos (CAG) 

A composição em ácidos graxos das matérias-primas foi realizada em triplicata 

através de cromatografia gasosa com coluna capilar de acordo com o método AOCS Ce 1f-96 
15. Após esterificação utilizando método de Hartman and Lago 16 os ésteres metílicos de ácidos 

graxos foram separados em coluna DB – 23 Agilent (50% cianopropil-metilpolisiloxano), 

dimensões 60 m, diâmetro interno: 0,25 mm, 0,25 m filme. Condições cromatográficas: 

temperatura do forno de 110C – 5 min., 110C – 215C (5C/ min.), 215C – 24 min.; 

temperatura do detector: 280C; temperatura do injetor 250C; gás de arraste: hélio; razão split 

1:50; volume injetado: 1,0 µL. A composição qualitativa foi determinada por comparação dos 
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tempos de retenção dos picos com os dos respectivos padrões de ácidos graxos, enquanto que 

a composição quantitativa foi realizada por normalização de área, de acordo com a 

recomendação do método citado. 

Composição em Triacilgliceróis (TAG) 

A determinação da composição em TAG das matérias-primas foi realizada em 

triplicata, mediante a dissolução da amostra em tetrahidrofurano (THF, 20 mg/mL) e injeção 

em cromatógrafo gasoso equipado com coluna capilar DB-17HT Agilent Catalog 122-1811 

(50%-fenilmetilpolisiloxano), com 15 metros de comprimento, 0,25 mm de diâmetro interno e 

0,15 μm de filme. Condições de análise: injeção split, razão de 1:100; temperatura da coluna: 

250ºC, programada até 350ºC à razão de 5ºC/min.; gás de arraste: hélio, em vazão de 1,0 

mL/min.; temperatura do injetor: 360ºC; temperatura do detector: 375ºC; volume injetado: 1,0 

L. A identificação dos grupos de TAG foi realizada através da comparação dos tempos de 

retenção, segundo os procedimentos de Antoniosi, Mendes and Lanças 17, e a quantificação dos 

grupos foi realizada por normalização de área segundo recomendado pelos autores. 

Conteúdo de gordura sólida (SFC) 

O conteúdo de gordura sólida das matrizes lipídicas foi determinado utilizando 

Espectrômetro de Ressonância Magnética Nuclear (RMN) Bruker pc120 Minispec, com auxílio 

de banhos secos de alta precisão, Tcon 2000 (Duratech, EUA). O procedimento foi realizado 

de acordo com o método AOCS Cd 16b- 93: método direto, com leitura das amostras em série, 

a temperaturas de 10, 15, 20, 25; 30, 35, 40, 45, 50, 55, 60, 65 e 70°C 15. Para o CR foi necessário 

modificar a temperagem padrão, conforme prescrito pelo Método Cd 16b-93 para amostras não 

estabilizadas 15. Portanto, o CR foi mantido a 0°C durante 2h e as leituras foram realizadas após 

1h em cada temperatura, a fim de garantir a estabilização da cristalização, conforme descrito 

por Ribeiro, Grimaldi, Gioielli and Gonçalves 18. 

Comportamento Térmico 

 Foram realizadas 2 análises térmicas distintas nas ML, utilizando calorímetro 

diferencial de varredura (DSC), TA Q2000 acoplado ao RCS90 Refrigerated Cooling System 

(TA Instruments, Waters LLC, New Castle). O sistema de processamento de dados utilizado foi 

o Universal V4.7A (TA Instruments, Waters LLC, New Castle). As determinações foram: 
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Comportamento térmico na cristalização: foi realizado conforme o método AOCS 

Cj 1-94 15, com modificação da temperatura máxima de 80°C para 100°C. As condições de 

análise foram: massa da amostra: ~10 mg; Eventos de cristalização: 100ºC por 10 min, 100ºC 

a -40ºC (10ºC/min). Foram utilizados os seguintes parâmetros para avaliação dos resultados: 

temperatura inicial de cristalização (TOnC), temperatura máxima do pico de cristalização (Tpc), 

entalpia de cristalização (Hc) e temperatura de conclusão de cristalização (Tfc) 19. 

Comportamento Térmico na fusão: As amostras foram acondicionadas em cápsulas 

herméticas de alumínio, como massa de ~10 mg e submetidas a um tratamento prévio a 90°C 

durante 2 minutos para apagar o histórico cristalino. Logo após, foram armazenadas em câmara 

incubadora com controle de temperatura, a 5°C durante 24h seguidas de mais 24h a 25°C. Após 

este tratamento prévio as amostras foram avaliadas em DSC com atmosfera inerte (N2) 

utilizando as seguintes condições: manutenção de condição isotérmica: 25°C por 10 minutos; 

eventos de fusão avaliados entre 25 e 100°C sob a taxa de 10°C/min. 20. Foram utilizados os 

seguintes parâmetros para avaliação dos resultados: temperatura inicial de fusão (Tif), 

temperatura máxima do pico de fusão (Tpf), entalpia de fusão (Hf) e temperatura de conclusão 

da fusão (Tff) 19. 

Hábito Polimórfico 

As formas polimórficas das ML foram determinadas por difração de raios-X 

(DRX), segundo o método AOCS Cj 2-95 15. Previamente, as ML foram fundidas a 90°C para 

apagar a memória cristalina e foram cristalizadas a 5°C, seguida de estabilização a 25 °C 

durante 24 horas em incubadora com temperatura controlada. As determinações de DRX foram 

realizadas em difratômetro Philips (PW 1710), utilizando a geometria Bragg-Bretano (:2) 

com radiação de Cu-k ( = 1.54056Å, tensão de 40KV e corrente de 30mA). As medidas 

foram obtidas a 25C com passos de 0,02 em 2 e tempo de aquisição de 2s, com varreduras 

de 15 a 30 (escala 2). A identificação das formas polimórficas foi realizada a partir dos shorts 

spacings (distâncias entre os grupos acila paralelos dos TAG) característicos dos cristais 

lipídicos 15. 
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Microestrutura 

A determinação da microestrutura (morfologia e cristalinidade) das amostras foi 

realizada por microscopia sob luz polarizada (MLP). As amostras foram fundidas à temperatura 

de 90°C em estufa. Com o auxílio de um tubo capilar, uma gota de amostra foi colocada sobre 

uma lâmina de vidro pré-aquecida à temperatura de 90ºC, que foi coberta com uma lamínula. 

As lâminas foram acondicionadas a 5°C/24h seguidas de 24h à temperatura de análise (25°C). 

A morfologia dos cristais foi avaliada com o uso de microscópio biológico com ótica de 

correção infinita UIS, marca Olympus, modelo BX51, acoplado a câmera colorida de vídeo 

digital, marca Media Cybernetic, modelo Evolution MicroPublisher 5.0Mpixel. As imagens 

foram obtidas com luz polarizada e com ampliação de 200 vezes, e capturadas utilizando o 

software Image-Pro Plus versão 7.01, marca Media Cybernetic. Para cada lâmina foram 

focalizados três campos visuais que foram utilizados para as medidas dos cristais e apenas um 

foi escolhido para compor a figura presente neste trabalho representando os cristais observados. 

Os parâmetros de avaliação selecionados para a análise quantitativa das imagens foram o 

diâmetro médio dos cristais e a porcentagem de área cristalizada 19. 

RESULTADOS E DISCUSSÃO 

Composição em ácidos graxos  

Os ácidos graxos predominantes na composição do OGAO foram os ácidos graxos 

insaturados, oleico (C18:1, ~78%) e linoleico (C18:2, ~11%) e em menores quantidades os 

ácidos graxos saturados, palmítico (C16:0, ~4,31%), esteárico (C18:0, ~3,16%) e behênico 

(C22:0, ~0,88%), conforme pode ser observado na Tabela 1. O elevado valor de C18:1, confere 

ao OGAO, alta estabilidade oxidativa em comparação com outros óleos vegetais comumente 

utilizados na indústria alimentícia, como por exemplo, soja e canola 21. O OGAO, devido a 

elevada estabilidade oxidativa, pode ser considerado como fonte de ácidos graxos insaturados 

ideal para o desenvolvimento de ML estáveis quimicamente, para obtenção de nanopartículas 

lipídicas.  
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Tabela 1. Composição em ácidos graxos do óleo de girassol alto oléico (OGAO) 
e dos hardfats dos óleos de canola (CA) e crambe (CR) 

Ácidos Graxos (%) OGAOa CAa CRa 
C16:0 - Ácido Palmítico 4,31 ± 0,71 5,24 ± 0,04 3,20 ± 0,10 
C18:0 - Ácido Esteárico 3,16 ± 0,42 93,82 ± 0,15 31,70 ± 0,34 
C18:1- Ácido Oleico 78,60 ± 2,94 - - 
C18:2 - Ácido Linoleico 11,41 ± 1,06 - - 
C20:0 - Ácido Araquidônico - 0,94 ± 0,01 6,70 ± 0,06 
C22:0 - Ácido Behênico 0,88 ± 0,03 - 56,30 ± 0,44 
C24:0 – Ácido Lignocérico - - 2,10 ± 0,03 
Σ saturados 9,32 100,00 100,00 
Σ insaturados 90,68 - - 

aMédia de três repetições ± Desvio Padrão. Médias inferiores a 0,5% foram omitidas da tabela.  

 

Os CA e CR apresentaram 100% de ácidos graxos saturados provenientes do 

processo de hidrogenação catalítica total dos óleos de canola e crambe, respectivamente. O 

ácido graxo predominante no CA foi o ácido graxo esteárico (C18:0, ~93%), apresentando 

também, em menores proporções, os ácidos graxos palmítico (C16:0, ~5%) e araquidônico 

(C20:0, <1%). Enquanto que, no CR os ácidos graxos majoritários foram o ácido graxo 

behênico (C22:0, ~56%) e ácido graxo esteárico (C18:0, ~31%), seguidos dos ácidos graxos 

araquidônico (C20:0, ~6%), palmítico (C16:0, ~3%) e lignocérico (C24:0, ~2%) (Tabela 1), 

estando estes valores de acordo com a literatura consultada 11,22,23. 

Como visto na composição em ácidos graxos do CA e CR (Tabela 1), através do 

processo de hidrogenação total, todas as ligações insaturadas presentes nos óleos vegetais foram 

convertidas em saturadas, conferindo propriedades diferenciadas aos materiais obtidos 11. Por 

este motivo, estas matérias-primas (hardftats) se apresentam totalmente sólidas a temperatura 

ambiente, podendo ser empregadas como fração saturada de ML para desenvolvimento de 

sistemas lipídicos nanopartículados.  

Além disto, destaca-se, do ponto de vista metabólico os efeitos nutricionais dos 

principais ácidos graxos de cada hardfat utilizado neste estudo. O ácido esteárico, apresenta 

efeito neutro sobre o perfil de lipoproteínas plasmáticas 23. E o ácido graxo behênico é 

considerado um lipídio de baixo valor calórico. Uma vez que, apresenta em sua estrutura 

molecular cadeia carbônica longa, composta por 22 carbonos e totalmente saturada, com 

consequente baixa biodisponibilidade no organismo. Deste modo, o ácido graxo behênico atua 

promovendo o aumento de excreção e redução da absorção de TAG no intestino. 
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Adicionalmente, este efeito benéfico do ácido graxo behênico vem sendo relacionado à 

prevenção de obesidade e doenças cardiovasculares 23,24.  

Composição em triacilgliceróis (TAG) 

TAG são constituídos por três ácidos graxos combinados a três carbonos de uma 

molécula de glicerol por meio de ligações ésteres 25. Na composição em TAG do OGAO foi 

possível verificar a predominância de trioleína (OOO), representando aproximadamente 65% 

do total, seguidos de OLO (~15%), POO (~10%) e OLL/PLO (~3%). O CA apresentou 4 TAG 

distintos em sua composição, sendo majoritários o SSS (~80%) e PSS (~13%). No CR foram 

encontrados 9 diferentes TAG, entres estes os predominantes foram SBeBe (~38%), SSBe 

(~17%), SABe (~17%), conforme descrito na Tabela 2. Os valores obtidos estão muito 

próximos aos resultados encontrados por outros autores em seus estudos utilizando as mesmas 

matérias-primas 11,26,27. 

Os principais TAG do OGAO são triinsaturados com cadeias carbônicas compostas 

por 54 carbonos e os TAG constituintes do CA e CR são trissaturados compostos por 56 a 69 

carbonos, todos considerados TAG de cadeias longas (Tabela 2). No caso dos CA e CR, estas 

características dos TAG trissaturados, conferem alta resistência térmica relacionada ao elevado 

ponto de fusão dos ácidos graxos constituintes das moléculas. De acordo com  O’Brien 8, o 

ponto de fusão aumenta com o aumento da cadeia carbônica dos ácidos graxos e diminui com 

a presença de insaturações, sendo de 16°C para o ácido graxo oleico, 69,6°C para o ácido graxo 

esteárico e de 79,9°C para o ácido graxo behênico, os quais são os principais constituintes do 

OGAO, CA e CR, respectivamente, como visto anteriormente na Tabela 1. Cabe destacar que 

estes valores de ponto de fusão são referentes a compostos purificados. Neste trabalho, 

utilizamos óleos e gorduras vegetais que apresentam misturas destes componentes em suas 

composições, logo, espera-se comportamentos térmicos diferenciados dos materiais isolados, 

que serão discutidos na sequência deste estudo. 
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Tabela 2. Composição em triacilgliceróis (TAG) do óleo de girassol alto oléico (OGAO) 

e dos hardfats dos óleos de canola (CA) e crambe (CR) 

NC TAG  OGAO CAa CRa 
52 PSS - 13,05±1,06 0,52±0,03 
 POS 0,84±0,40 - - 
 POO 10,04±0,40 - - 
 PLO 2,93±0,44 - - 
50 PPS - 3,65±0,23 - 
54 SSS - 80,33±1,40 1,12±0,05 
 SOO 2,03±1,23 - - 
 OOO 65,95±1,74 - - 
 OLO 15,34±0,59 - - 
 OLL 2,87±0,23 - - 
56 SSA - 2,98±0,12 - 
 PSBe - - 2,14±0,37 
58 SSBe - - 17,65±0,06 
60 SABe - - 16,92±0,61 
62 SBeBe - - 38,64±1,04 
64 ABeBe - - 6,00±0,81 
66 BeBeBe - - 8,93±0,65 
69 BeBeLg - - 8,08±0,90 

aMédia de três repetições ± Desvio Padrão; NC – Número de 
carbonos; P = ácido palmítico; S = ácido esteárico; O = ácido oleico; 
L = ácido linoleico; A = ácido araquidônico; B = ácido behênico; 
Lg = ácido lignocérico -: não detectado. 

Conteúdo de gordura sólida (SFC) 

Os resultados obtidos através das curvas do conteúdo de gordura sólida permitem a 

observação do comportamento global de materiais lipídicos para a formulação e 

desenvolvimento de novos produtos. Valores de SFC abaixo de 25ºC caracterizam a dureza da 

gordura, entre 20 e 25 °C podem indicar a resistência térmica do produto à temperatura 

ambiente, em 37°C estão relacionados ao comportamento da gordura na temperatura corporal 

e valores acima de 40°C podem fornecer informações sobre o perfil de derretimento das 

gorduras 8.  

Para o desenvolvimento de nanopartículas lipídicas deseja-se que as ML 

apresentem resistência térmica à temperatura corporal. Assim, as nanoestruturas são 

preservadas durante todo o processo digestório, favorecendo o carreamento dos compostos 

bioativos até o trato gastrointestinal, onde os lipídios são emulsionados pelos sais biliares, 

absorvidos e metabolizados 7. Além disto, do ponto de vista tecnológico de aplicação, a 

resistência térmica das nanopartículas lipídicas também é desejável, podendo ser inseridas em 

alimentos processados termicamente, mantendo as propriedades estruturais e funcionais. 
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Figura 1. Curvas do conteúdo de gordura sólida em função (SFC) da temperatura: A) hardfats dos óleos de 
canola (CA) e crambe (CR) e matrizes lipídicas com misturas de CA e CR; B) Matrizes lipídicas de CA e CR com 
incorporação de óleo de girassol alto oleico (OGAO) na proporção de 20%; C) Matrizes lipídicas de CA e CR 
com incorporação de óleo de girassol alto oleico (OGAO) na proporção de 40%; D) Matrizes lipídicas de CA e 
CR com incorporação de óleo de girassol alto oleico (OGAO) na proporção de 60%. 

 
As ML desenvolvidas neste estudo, conforme exposto na Figura 1, apresentaram 

elevado conteúdo de gordura sólida até atingir a temperatura de 60°C. As ML desenvolvidas 

apenas com os lipídios totalmente saturados (Fig. 1A), apresentaram conteúdo de gordura sólida 

acima de 90%, decaindo apenas na faixa de 60 a 80°C. Este comportamento está relacionado 

ao elevado ponto de fusão dos TAG trissaturados constituintes dos CA e CR, como visto 

anteriormente na Tabela 2.  

A presença de OGAO, nas matrizes lipídicas reduziu o SFC proporcionalmente a 

sua incorporação de 20, 40 e 60%, devido a inclusão de ácidos graxos insaturados de baixo 



133 

 
 

 

 

ponto de fusão. Mas, mesmo assim estas ML apresentaram alta resistência térmica, compatível 

com o desenvolvimento de CLN, apresentando-se sólidas a temperatura corpórea (37°C). 

Deste modo, verificamos que o uso dos CA e CR é viável para o desenvolvimento 

de ML com alto ponto de fusão, pois esta característica física é extremamente importante para 

o desenvolvimento dos sistemas nanoestruturados, tanto de NLS quanto CLN. Além disso, o 

emprego de ácidos graxos saturados e insaturados, provenientes de óleos e gorduras vegetais 

de grau alimentício, conferiu características diferenciadas quanto ao perfil de derretimento das 

ML desenvolvidas, mostrando-se resistentes à altas temperaturas. Assim, estas ML apresentam 

potencial de utilização na formulação de NLS e CLN, em substituição de ML purificadas para 

aplicação em produtos alimentícios, além disso com grande potencialidade de utilização em 

alimentos processados termicamente. 

Comportamento térmico na cristalização 

O processo de cristalização lipídica é iniciado pela nucleação cristalina seguida do 

crescimento dos cristais, até a formação de uma rede cristalina autossustentada 28. Os 

parâmetros avaliados para discutir o comportamento de cristalização do CA e CR e suas 

misturas com OGAO obtidos através de DSC foram: Temperatura inicial de cristalização inicial 

(Tic) que se refere ao início da transição de fase líquido-sólido; temperatura máxima do pico de 

cristalização (Tpc) ponto onde ocorre o efeito térmico máximo; entalpia de cristalização (ΔHc) 

energia necessária para que ocorra a mudança de fase, mensurada através da área da curva; e 

temperatura final de cristalização (Tfc) que indica a conclusão dos efeitos térmicos 29, estes 

resultados encontram-se descritos na Tabela 3.  

Notou-se que o incremento de 20, 40 e 50% de OGAO nas ML retardou o início da 

cristalização do CA de 50,90°C para 48,72; 46,53 e 43,07°C e do CR de 57,32°C para 55,04; 

52,68 e 49,81°C, respectivamente. Além disso, como pode ser observado na Tabela 3, também 

ocorreram reduções nas Tpc, devido a inclusão dos TAG triinsaturados predominantes no 

OGAO, conforme discutido anteriormente na Tabela 2. A incorporação de TAG triinsaturados 

influenciou diretamente as características de cristalização dos sistemas, pois, provavelmente, 

promoveu o espaçamento entre as moléculas de TAG saturadas, pela presença das insaturações, 

reduzindo o ponto de fusão e a cristalinidade. Ainda, como consequência, promovendo a 

formação de redes cristalinas menos compactas 30, que será discutido na sequência. De acordo 
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com Tamjidi, Shahedi, Varshosaz and Nasirpour 1, para o desenvolvimento de CLN estas 

características menos compactas das ML são desejáveis, principalmente, pelo favorecimento da 

incorporação de compostos bioativos, e também, por evitar a expulsão indesejável dos 

compostos de inclusão durante o armazenamento. 

As diferenças observadas nos valores de entalpia de cristalização dos CA e CR e o 

efeito de aceleração da cristalização promovido pela presença de CR nas ML, como pode ser 

observado na Figura 2, através das curvas de cristalização, estão diretamente relacionados aos 

TAG trissaturados presentes na composição de cada hardfat. Como visto anteriormente na 

Tabela 2, o CR apresentou uma mistura de diferentes TAG, com predominância de TAG 

compostos pelo ácido graxo behênico (C22:0), como o SBeBe (~39%), SSBe (~18%), SABe 

(~17%) e em menores quantidades ABeBe, BeBeBe e BeBeLg, que apresentam maior ponto 

de fusão que os TAG compostos pelo ácido graxo esteárico (C18:0, ~80% de SSS), 

predominante no CA. Deste modo, favorecendo a cristalização e aumentando o efeito térmico 

de transição de fase nas ML desenvolvidas com CR.  
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Tabela 3. Comportamento térmico de cristalização das ML desenvolvidas com os hardfats dos 
óleos de canola (CA) e crambe (CR) e suas misturas com incorporação de 20, 40 e 60% de óleo 
de girassol alto oleico (OGAO) a taxa de 10°C/min. Temperatura inicial de cristalização (Tic), 
temperatura máxima do pico de cristalização (Tpc), entalpia de cristalização (ΔHc) e temperatura 
final de cristalização (Tfc)  

Matrizes lipídicas Tic (°C) Tpc (°C) Tfc (°C) ΔHc (J/g) 

CA e CR 

CA (100) 50,90±0,09 49,39±0,14 16,84±3,00 135,97±0,74 
CA:CR (90:10) 50,41±0,05 49,30±0,03 18,07±1,43 129,90±1,35 
CA:CR (70:30) 51,44±0,08 50,53±0,38 17,98±0,99 133,60±1,71 
CA:CR (50:50) 53,08±0,03 51,23±1,07 19,65±0,36 135,23±3,93 
CA:CR (30:70) 54,63±0,03 53,61±0,15 14,46±1,29 136,97±0,65 
CA:CR (10:90) 56,40±0,00 55,42±0,03 17,18±0,59 132,45±0,25 
CR (100) 57,32±0,02 56,44±0,07 21,27±1,75 141,60±1,71 

Incorporação de 20% de OGAO 

80 CA: 20 OGAO 48,72±0,03 46,91±0,03 9,98±0,80 103,20±0,38 
[90 CA:10 CR]:20 OGAO 48,59±0,02 47,68±0,09 10,75±0,44 109,13±0,25 
[70 CA:30 CR]:20 OGAO 49,48±0,08 48,71±0,10 12,04±1,48 108,73±1,86 
[50 CA:50 CR]:20 OGAO 51,06±0,03 50,19±0,15 11,56±0,88 107,17±0,29 
[30 CA:70 CR]:20 OGAO 52,73±0,07 51,97±0,01 10,94±1,49 106,43±4,83 
[10 CA:90 CR]:20 OGAO 54,30±0,06 53,43±0,09 12,56±1,10 115,63±1,68 
80 CR: 20 OGAO 55,04±0,00 54,25±0,02 13,98±0,58 103,90±0,12 

Incorporação de 40% de OGAO 

60 CA: 40 OGAO 46,53±0,00 45,13±0,03 6,46±1,67 84,41±1,15 
[90 CA:10 CR]:40 OGAO 46,07±0,01 45,22±0,12 7,70±1,12 88,92±0,98 
[70 CA:30 CR]:40 OGAO 47,07±0,01 46,46±0,14 7,65±1,19 87,31±0,65 
[50 CA:50 CR]:40 OGAO 48,73±0,04 48,40±0,17 7,61±2,37 89,88±1,74 
[30 CA:70 CR]:40 OGAO 50,29±0,05 49,84±0,02 6,89±0,13 91,66±1,79 
[10 CA:90 CR]:40 OGAO 51,91±0,01 51,25±0,04 9,95±0,60 89,10±0,29 
60 CR: 40 OGAO 52,68±0,04 52,00±0,15 11,70±1,02 84,11±0,19 

Incorporação de 60% de OGAO 

40 CA: 60 OGAO 43,07±0,21 41,62±0,23 4,08±0,57 63,46±0,97 
[90 CA:10 CR]:60 OGAO 42,67±0,08 41,88±0,15 4,74±0,85 59,54±0,89 
[70 CA:30 CR]:60 OGAO 44,01±0,07 43,95±0,05 5,65±1,23 64,75±0,54 
[50 CA:50 CR]:60 OGAO 45,88±0,03 45,82±0,02 4,65±0,84 67,28±0,98 
[30 CA:70 CR]:60 OGAO 47,68±0,00 47,57±0,01 6,32±1,18 70,12±0,64 
[10 CA:90 CR]:60 OGAO 49,09±0,09 48,94±0,10 7,93±0,39 64,24±0,05 
40 CR: 60 OGAO 49,81±0,03 49,29±0,05 8,89±0,33 59,82±0,35 
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Figura 2. Curvas de cristalização à taxa de 10°C/min.: A) hardfats dos óleos de canola (CA) e 
crambe (CR) e matrizes lipídicas com misturas de CA e CR; B) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 20%; C) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 40%; D) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 60%. 

 

Comportamento térmico na fusão  

O conhecimento das propriedades de fusão das ML é extremamente importante para 

o desenvolvimento de NL com alta resistência térmica com possibilidade de aplicação em 

produtos alimentícios processados termicamente. Assim, estas características são 

imprescindíveis para o direcionamento de aplicação. Somado a isto, as estruturas cristalinas das 

NL precisam ser mantidas para que possam proteger e carrear os compostos bioativos ao longo 

de todo o sistema digestório, até absorção no intestino 31. Na Tabela 4 é possível observar os 

resultados obtidos para o comportamento térmico de fusão do CA e CR e das ML desenvolvidas 

com suas misturas e incorporação de 20, 40 e 60% de OGAO, avaliados a taxa de 10°C/min. 
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após tratamento térmico de cristalização a 5°C/24h, seguidos de estabilização cristalina a 

25°C/24h. Os parâmetros selecionados para avaliação foram: Temperatura inicial de fusão (TIf), 

temperatura máxima do pico de fusão (Tpf), entalpia de fusão (ΔHf) e temperatura final de fusão 

(Tff). 

O CR apresentou um único pico de fusão à 62,04°C, indicando que a mistura dos 

TAG presentes em sua composição, apresentaram comportamento térmico de fusão 

semelhantes. Enquanto que, no CA foi possível observar dois picos de fusão, um a 55,24°C e o 

outro em 69,20°C (Figura 3). Provavelmente, o primeiro pico que apresentou maior valor de 

ΔHf (-88,96 J/g) está relacionado a fusão da triestearina (SSS) que representa aproximadamente 

80% da composição do CA e o segundo pico com ΔHf (-30,82 J/g) refere-se a fusão dos demais 

TAG, presentes em quantidades reduzidas (SSA, PSS e PPS). Estes resultados estão abaixo dos 

valores informados por O’Brien 8 para TAG purificados, sendo de aproximadamente, 73°C o 

ponto de fusão da SSS e dos demais TAG constituintes do CA, o ponto de fusão varia entre 62 

a 65°C. Segundo Sato 28 esta diferença nos valores entre os materiais puros e os encontrados 

em óleos e gorduras vegetais convencionais, ocorre porque os óleos e gorduras vegetais são 

compostos por misturas de TAG, com consequente redução do ponto de fusão.  
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Tabela 4. Comportamento térmico de fusão dos óleos totalmente hidrogenados de canola 
(CA) e crambe (CR) e das matrizes lipídicas desenvolvidas com suas misturas e incorporação de 20, 40 
e 60% de óleo de girassol alto oleico (OGAO) a taxa de 10 °C/min. Temperatura inicial de fusão (TIf), 
temperatura máxima do pico de fusão (Tpf), entalpia de fusão (ΔHf) e temperatura final de fusão (Tff)  

Matrizes lipídicas Pico TIF (°C) Tpf (°C) Tff (°C) ΔHf (J/g) 

CA (100) 1 52,55±0,05 55,24±0,02 62,00±0,50 -88,96±1,62 
 2 65,81±0,09 69,20±0,09 78,03±0,29 -30,82±1,45 
CA:CR (90:10) 1 52,54±0,04 55,66±0,09 75,01±0,72 -111,23±2,78 
CA:CR (70:30) 1 52,88±0,14 56,59±0,54 75,33±1,83 -114,25±0,65 
CA:CR (50:50) 1 53,41±0,02 58,46±0,23 73,79±1,73 -112,10±2,80 
CA:CR (30:70) 1 55,42±0,09 60,19±0,18 76,34±0,61 -112,25±3,25 
CA:CR (10:90) 1 58,00±0,24 62,03±0,18 78,75±3,53 -115,15±10,45 
CR (100) 1 58,66±0,04 62,04±0,17 73,89±2,12 -113,20±1,10 
Incorporação de 20% de OGAO 

80 CA: 20 OGAO 1 62,16±0,00 70,22±0,13 82,27±0,36 -120,10±5,20 
[90 CA: 10 CR]: 20 OGAO 1 57,86±0,11 66,20±0,07 79,97±2,16 -117,80±1,10 
[70 CA: 30 CR]: 20 OGAO 1 56,79±0,06 63,65±0,01 80,26±0,35 -115,10±0,00 
[50 CA: 50 CR]: 20 OGAO 1 54,92±0,03 62,57±0,25 76,38±1,44 -113,00±1,40 
[30 CA: 70 CR]: 20 OGAO 1 54,56±0,05 63,22±0,01 80,37±0,82 -107,75±3,85 
[10 CA: 90 CR]: 20 OGAO 1 55,46±0,02 65,09±0,09 80,80±1,55 -113,90±3,70 
80 CR: 20 OGAO 1 56,20±0,05 65,38±0,02 81,62±0,29 -102,33±3,77 
Incorporação de 40% de OGAO 

60 CA: 40 OGAO 1 60,02±0,10 68,66±0,02 83,53±1,98 -88,63±0,91 
[90 CA: 10 CR]: 40 OGAO 1 56,09±0,06 64,42±0,07 79,07±0,32 -91,15±2,51 
[70 CA: 30 CR]: 40 OGAO 1 54,56±0,66 61,93±0,46 78,38±1,37 -86,20±3,54 
[50 CA: 50 CR]: 40 OGAO 1 54,18±0,04 61,70±0,23 78,46±1,36 -85,80±3,48 
[30 CA: 70 CR]: 40 OGAO 1 53,05±0,05 62,46±0,01 78,85±1,4 -83,53±0,25 
[10 CA: 90 CR]: 40 OGAO 1 53,66±0,03 64,44±0,03 78,86±0,33 -84,04±1,14 
60 CR: 40 OGAO 1 55,32±0,05 65,45±0,03 82,45±1,04 -83,15±1,67 
Incorporação de 60% de OGAO 

40 CA: 60 OGAO 1 57,62±0,07 66,27±0,10 81,01±0,32 -55,82±0,78 
[90 CA: 10 CR]: 60 OGAO 1 45,53±2,68 61,61±0,42 76,49±0,39 -57,09±3,85 
[70 CA: 30 CR]: 60 OGAO 1 52,68±0,42 59,96±0,44 76,70±1,33 -54,89±2,43 
[50 CA: 50 CR]: 60 OGAO 1 51,59±0,04 58,94±0,03 74,04±1,05 -56,21±0,90 
[30 CA: 70 CR]: 60 OGAO 1 50,60±0,25 60,10±0,02 76,92±0,32 -53,42±3,26 
[10 CA: 90 CR]: 60 OGAO 1 52,85±0,37 62,74±0,03 76,56±0,46 -52,15±0,15 
40 CR: 60 OGAO 1 55,27±0,09 64,17±0,18 80,51±0,54 -52,97±0,44 

 

Na Figura 3 estão expostas as curvas de fusão das ML, onde é possível visualizar 

as diferenças entre os comportamentos térmicos de fusão das amostras. Na Figura 3A 

correspondente as ML desenvolvidas apenas com as misturas dos hardfats, é visualmente 

perceptível que ocorreu o aumento da temperatura de fusão com o incremento do CR nas 
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misturas, comportamento esperado, pois o ponto de fusão do CR foi mais elevado do que o do 

CA. As temperaturas dos picos de fusão dessas ML variaram entre 52 e 58°C, 

aproximadamente. Mostrando-se viáveis para utilização em NLS, que são compostas apenas 

por lipídios saturados. Adicionalmente, como discutido anteriormente, a temperatura de fusão 

acima da temperatura corpórea (±37°C) possibilita o emprego destas ML para proteção e 

carreamento de compostos bioativos, ao longo do trata gastrointestinal até absorção no 

intestino, pois provavelmente a integridade estrutural não será comprometida.  

Na Figura 3 estão expostas graficamente as curvas do comportamento térmico de 

fusão das ML desenvolvidas com a mistura de CA, CR e com incorporação de 20, 40 e 60% de 

OGAO. As Tpf para estas ML variaram entre, aproximadamente, 62 e 70°C, 61 e 69°C e 59 e 

66°C, e para a ΔHf os valores ficaram na faixa de -102 e -120 J/g, -83 a -91J/g e -52 a -56 J/g, 

respectivamente. Notou-se que o incremento de OGAO nas ML reduziu, de maneira geral a Tpf 

dos sistemas, devido a presença dos TAG triinsaturados, que apresentam ponto de fusão inferior 

em comparação aos TAG saturados dos hardfats. A ΔHf também foi influência pela presença 

dos TAG triinsaturados, deste modo, reduzindo a cristalinidade da ML e possivelmente 

facilitando a transição de fases, que será discutida no decorrer do estudo. Porém, foi possível 

verificar que ocorreu um efeito eutético entre os componentes das ML e este efeito foi mais 

pronunciado nas ML contendo 50% de CA e 50% de CR, em todos os níveis de incorporação 

de OGAO (Figura 3B, C e D). O efeito eutético está diretamente relacionado a 

incompatibilidades entre os constituintes dos sistemas, podendo estar associado a diferenças 

entre os volumes moleculares, formas e/ou polimorfos preferenciais, com consequente redução 

da temperatura de fusão em comparação com os componentes isolados 32.  

Avaliando a composição em TAG dos constituintes das ML, pode-se verificar que a 

OOO é o principal TAG do OGAO (~66%), apresentando em sua composição 54 carbonos e 

peso molecular de 885,45 g/mol. Valores muito semelhantes ao principal TAG do CA (~80% 

de SSS) que apresenta forma molecular composta por 54 carbonos e peso molecular de 891,50 

g/mol, decorrentes das diferenças das insaturações das moléculas dos ácidos graxos oleico 

(C18:1) e esteárico (C18:0).  Enquanto que, o CR é composto, aproximadamente, por 56% de 

do ácido graxo behênico e 31% de ácido graxo esteárico, distribuídos em diferentes TAG 

trissaturados (SSBe, SABe, SBeBe, ABeBe, BeBeBe e BeBeLg), compostos ainda pelos ácidos 

graxos araquidônico e lignocérico em menores quantidades, mas que apresentam maior 
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tamanho de cadeia carbônica que o ácido graxo behênico. Portanto, mesmo a BeBeBe não sendo 

majoritária, utilizamos suas informações a título de comparação com a SSS, ou seja, a BeBeBe 

apresenta formula molecular composta por 66 carbonos e peso molecular de 1059,83 g/mol. 

Deste modo, sugerimos que neste estudo o efeito eutético ocorreu devido as diferenças entre os 

tamanhos das cadeias carbônicas das moléculas dos componentes sólidos do sistema, os 

hardfats. E ainda, pela presença de TAG triinsaturados que possuem organização espacial 

diferente dos TAG trissaturados, devido a presença de insaturações.  

Contudo, este comportamento pode ser positivo para o desenvolvimento de CLN, 

uma vez que, está incompatibilidade entre os componentes, favoreceu a redução da 

cristalinidade das ML. Assim, possivelmente, este efeito pode aumentar a capacidade de carga 

dos CLN e estabilidade ao longo do armazenamento, em relação a sistemas lipídicos mais 

cristalinos, como as ML desenvolvidas apenas com o CA ou CR.  

 

Figura 3. Curvas de fusão a taxa de 10°C/min.: A) óleos totalmente hidrogenados de canola (CA) 
e crambe (CR) e matrizes lipídicas com misturas de CA e CR; B) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 20%; C) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 40%; D) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 60%, respectivamente. 
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Hábito Polimórfico 

A identificação das formas polimórficas é realizada com base no short spacings dos 

cristais lipídicos, obtidos através de DRX de alto ângulo. Os tipos mais comuns de 

empacotamento de TAG são hexagonal, ortorrômbico e triclínico, os quais são designados 

como as formas cristalinas, α, β’ e β, respectivamente 28,33. A transformação polimórfica das 

gorduras é monotrópica, ou seja, sempre ocorrendo na direção da forma mais estável 

(α→β’→β), podendo passar ou não através da forma (β’) 34.  

Na Tabela 6 estão descritos os short spacings, intensidades dos picos e as formas 

polimórficas obtidos após tratamento térmico de cristalização a 5°C/24h seguidos de 25°C/24h 

para estabilização cristalina dos CA e CR e das ML desenvolvidas com as suas misturas e 

incorporação de 20, 40 e 60% de OGAO. Adicionalmente, na Figura 2 constam os respectivos 

difratogramas.  

Verificou-se que as matérias-primas (CA e CR) e suas misturas apresentaram 

apenas uma linha de difração em 4,15 Å, que é referente a cristais na forma α (Figura 4A). Os 

cristais α são considerados instáveis, indicando que estes sistemas ainda passarão por transições 

polimórficas durante o armazenamento 28. 

Observou-se que a incorporação de OGAO em todos os sistemas (Figura 4B, C e 

D) promoveu a transição polimórfica de α para as formas β’ e β, sendo possível verificar picos 

de difração em 4,2 e 3,8 Å, que correspondem a presença de cristais na forma intermediária β’ 

e em 4,6 Å referente a forma β. Além disso, o incremento de OGAO favoreceu a redução da 

cristalinidade dos sistemas desenvolvidos, sendo possível verificar através da redução da 

intensidade dos picos. Cabe destacar que as ML com incorporação de 20% de OGAO, contendo 

80% de CA e composta pela mistura de CA (90%) e CR (10%) apresentaram maior intensidade 

de difração em 4,6 Å, podendo indicar a predominância de cristais na forma mais estável (β). 

Segundo Oliveira, Stahl, Ribeiro, Grimaldi, Cardoso and Kieckbusch 22 estes sistemas tendem 

a atingir o equilíbrio termodinâmico na forma β, pois o habito polimórfico do CA é a forma 

mais estável. Enquanto que, nos demais sistemas compostos por 20% de OGAO a intensidade 

em 4,2 Å foi aumentando com o incremento de CR nas formulações (β’>>β). Estes resultados, 

estão de acordo com os obtidos por Ribeiro, Basso and Kieckbusch 11, que após estudo de 

estabilização polimórfica do CR, verificaram que o habito polimórfico deste hardfat é a mistura 

de cristais nas formas β’ e β. Comportamento semelhante foi verificado para a incorporação de 
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40 e 60% de OGAO, onde a maior parte dos sistemas desenvolvidos apresentam misturas de 

cristais nas formas β’ e β. Com exceção das ML compostas por 60% de CA (Figura 4C); 40% 

de CA; e com a mistura de CA e CR (90:10) (Figura 4D), onde foi possível verificar apenas 

cristais na forma β. 

Sato 28 afirma que as formas polimórficas apresentam características distintas de 

grande importância tecnológica para o direcionamento de aplicação de ML. Uma vez que, cada 

forma polimórfica apresenta propriedades físicas particulares, podendo influenciar, tanto nos 

aspectos físicos de um produto, como consistência, estabilidade e espalhabilidade, quanto nas 

características sensoriais. De acordo com Sato 28 os cristais α são instáveis e de vida curta, os 

cristais na forma β’ são metaestáveis, com tamanho relativamente pequeno e geralmente 

incorporam grande quantidade de óleo líquido na rede cristalina, contribuindo para a formação 

de gorduras mais macias, com boa aeração e propriedades de cremosidade. Ao contrário da 

forma polimórfica β, que é densamente empacotada e mais estável, o que implica em maior 

consistência e baixo potencial de aeração. Além disso, inicialmente, os cristais β são pequenos, 

mas tendem a crescer em grandes aglomerados em forma de agulhas, promovendo uma 

sensação de arenosidade quando consumidos. Cabe destacar que todas as características 

descritas por Sato 28 são consideradas para sistemas lipídicos com cristalização em escala 

macroscópica, podendo apresentar comportamento diferenciado quando nanoestruturados.  
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Tabela 5. Formas polimórficas, short spacings e intensidades dos picos nos difratogramas 
referentes aos óleos totalmente hidrogenados de canola (CA) e crambe (CR) e das matrizes lipídicas 
desenvolvidas com as suas misturas e incorporação de 20, 40 e 60% de óleo de girassol alto oleico 
(OGAO) 

 
 
Matrizes lipídicas 

Short spacings (Å) 

 
4,6* 

 
4,1 

 
4,2 

 
3,8 

 
3,7 

Forma 
polimórfica 

CA (100) - 4,15mF - - - α 

CA:CR (90:10) - 4,16mF - - - α 

CA:CR (70:30) - 4,14mF - - - α 

CA:CR (50:50) - 4,16mF - - - α 

CA:CR (30:70) - 4,13mF - - - α 

CA:CR (10:90) - 4,16mF - - - α 

CR (100) - 4,16mF - - - α 

Incorporação de 20% de OGAO 

80 CA: 20 OGAO 4,58mF - 4,23mf 3,88M 3,74 M β’+ β 

[90 CA:10 CR]:20 OGAO 4,59mF - 4,24mf 3,88M 3,75 M β’+ β 

[70 CA:30 CR]:20 OGAO 4,67M - 4,24M 3,85M - β’+ β 

[50 CA:50 CR]:20 OGAO 4,54M - 4,21M  3,81M - β’+ β 

[30 CA:70 CR]:20 OGAO 4,69M  4,21 F  3,88M - β’+ β 

[10 CA:90 CR]:20 OGAO 4,65M  4,23mF 3,85M - β’+ β 

80 CR: 20 OGAO 4,57 mf - 4,20 mF  3,81M  - β’+ β 

Incorporação de 40% de OGAO 

60 CA: 40 OGAO 4,55mF - - 3,84M 3,69M β 

[90 CA:10 CR]:40 OGAO 4,59mF - 4,21mf 3,87M 3,71M β’+ β 

[70 CA:30 CR]:40 OGAO 4,65M - 4,24mF 3,88M - β’+ β 

[50 CA:50 CR]:40 OGAO 4,58mF - 4,21 M 3,84M  - β’+ β 

[30 CA:70 CR]:40 OGAO 4,63mF - 4,22mF 3,90mf 3,82mf β’+ β 

[10 CA:90 CR]:40 OGAO 4,60f - 4,22mF 3,83M - β’+ β 

60 CR: 40 OGAO 4,58mf - 4,20 mF 3,82M - β’+ β 

Incorporação de 60% de OGAO 

40 CA: 60 OGAO 4,58mF - - 3,77M 3,62M β 

[90 CA:10 CR]:60 OGAO 4,53 mF - - 3,85M 3,69M β 

[70 CA:30 CR]:60 OGAO 4,57mF - 4,23 mf 3,85M 3,70M β’+ β 

[50 CA:50 CR]:60 OGAO 4,68mF - 4,24mf 3,86M 3,72M β’+ β 

[30 CA:70 CR]:60 OGAO 4,60M - 4,22 M 3,84f  - β’+ β 

[10 CA:90 CR]:60 OGAO 4,64mf - 4,22mF 3,81M  - β’+ β 

40 CR: 60 OGAO 4,60mf - 4,21mF 3,82M - β’+ β 

* Intensidade dos picos: m – muito; f – fraco; M – médio; F- forte. 

 



144 

 
 

 

 

 

Figura 4. Padrões de difração de: A) óleos totalmente hidrogenados de canola (CA) e crambe (CR) 
e das matrizes lipídicas desenvolvidas com suas misturas; B) Matrizes lipídicas de CA e CR com incorporação de 
óleo de girassol alto oleico (OGAO) na proporção de 20%; C) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 40%; D) Matrizes lipídicas de CA e CR com incorporação 
de óleo de girassol alto oleico (OGAO) na proporção de 60%. 
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Assim, sugere-se neste estudo que as ML desenvolvidas apenas com lipídios sólidos 

(CA e CR) apresentaram-se muito promissoras para o desenvolvimento de NLS, mesmo que os 

cristais na forma α sejam considerados instáveis. Estudos recentes afirmam que nanopartículas 

que se mantem na forma α apresentam-se esféricas, com menor susceptibilidade a agregação 

quando estão em suspensão aquosa. Porém, pela elevada cristalinidade, conferida pela 

composição totalmente saturada, estes sistemas apresentam pouca capacidade de incorporação 

de compostos bioativos 5,6. Deste modo, os sistemas que apresentaram misturas de cristais na 

forma β’ e β, com predominância de cristais na β’ mostraram-se mais promissores para o 

carreamento de compostos bioativos. Principalmente do ponto de vista de incorporação de 

lipídio líquido na rede cristalina, o que pode favorecer a inclusão de compostos bioativos. Além 

disso, as ML que apresentaram cristais na forma β podem ser empregadas no desenvolvimento 

de CLN para aplicação como sementes de cristalização em gorduras, visando o 

desenvolvimento de produtos com redução de saturados. Possivelmente, a redução de escala 

macro para manométrica pode reduzir os efeitos sensoriais indesejáveis nos produtos.  

Microestrutura 

A estrutura de uma rede de cristalina formada por gorduras é caracterizada 

principalmente pela morfologia (tamanho e forma) dos cristais. A morfologia pode ser 

diretamente observada usando MLP, porque os cristais lipídicos são birrefringentes. Deste 

modo, sob o MLP, os cristais de gordura aparecem brilhantes, enquanto que o óleo líquido é 

referente a parte escura da imagem, podendo-se assim, obter também informações referente a 

cristalinidade do sistema 33 . O nível microestrutural de uma rede cristalina de gordura pode ser 

definido como estruturas com dimensões variando entre 0,5 e 200 mm 35,36. As diferenças na 

formação destas redes cristalinas influenciam diretamente nas propriedades físicas dos produtos 

onde são adicionadas as ML em macroescala. Assim, a MLP vem sendo muito utilizada para 

elucidar diferenças na textura de misturas de gorduras e para detectar tipos cristalinos ou 

alterações morfológicas durante o crescimento de cristais 36.  

Na Figura 5 estão expostas as MLP obtidas a partir das ML desenvolvidas neste 

estudo, onde é possível verificar as redes cristalinas formadas e o formato dos cristais. Valores 

do diâmetro médio dos cristais e as porcentagens de áreas cristalizadas são apresentados na 

Tabela 6. O CA e de CR apresentaram cristais com DM de 1,79 e 3,19µm, com 
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aproximadamente 14 e 27% de área cristalizada, respectivamente. As misturas destes hardfats, 

apresentaram DM dos cristais variando entre 2,00 a 3,28µm e a presença do CR aumentou a 

porcentagem de área cristalizada (variando entre 23 e 28%). Como pode ser observado na 

Figura 5, a partir da incorporação de 30% de CR os cristais mudaram de tamanho e formato, 

adquirindo características mais próximas aos cristais do CR. Notou-se também que as redes 

cristalinas se tornaram mais densas com o aumento do CR nos sistemas. Segundo, Tang and 

Marangoni 37 a cristalização de TAG trissaturados ocorre através de eventos de nucleação, onde 

pequenos cristais crescem e interagem entre si através de forças não covalentes, de modo a 

formar uma rede cristalina contínua. Após a conclusão da cristalização, os TAG trissaturados 

agregam-se para formar os cristais de gordura, que entram em contato e formam aglomerados 

denominados de clusters. Estes clusters formam agregados maiores, em flocos, a partir de 

ligações fracas, e dão origem a uma rede macroscópica cristalina altamente organizada. 

Geralmente, apresentam cristais na forma α, e a alta densidade e organização da rede cristalina 

dificulta a mobilidade dos cristais para formas cristalinas mais estáveis. Como visto no tópico 

anterior, através da DRX, o CA e CR e as ML compostas por suas misturas apresentaram cristais 

na forma α, provavelmente a transição polimórfica destes sistemas foi dificultada pela formação 

de estruturas altamente compactas e organizadas pela presença de TAG totalmente saturados. 

A incorporação de OGAO, de maneira geral favoreceu a redução do DM dos cristais 

e da cristalinidade de algumas ML, sendo visível a redução da cristalinidade pelos maiores 

espaçamentos entre os cristais na Figura 5. Além disso, notou-se que para a maioria das ML os 

cristais apresentaram um núcleo com ramificações alongadas. Esta característica, segundo 

Rousseau and Marangoni 38, ocorre geralmente para TAG que cristalizam inicialmente em 

cristais do tipo esferulitos e que crescem radialmente a partir dos mesmos núcleos centrais, 

decorrentes da agregação de lamelas cristalinas, e podem desenvolver ramificações durante o 

armazenamento. 

 Cabe ressaltar que os menores DM dos cristais foram de 1,85 e 1,26 µm paras as 

ML compostas por CA com incorporação de 40 e 60% de OGAO, respectivamente, e para a 

ML desenvolvida com a mistura de CA e CR, na proporção de 90:10 (m/m) e incorporação de 

60% de OGAO, apresentando DM dos cristais de 1,86µm.  



147 

 
 

 

 

 

Figura 5. Imagens das matrizes lipídicas desenvolvidas com óleos totalmente hidrogenados de 
canola (CA) e crambe (CR) e das matrizes lipídicas desenvolvidas com incorporação de óleo de girassol alto 
oleico (OGAO) na proporção de 20, 40 e 60%, obtidas através de cristalização estática a 25°C com aumento de 
200X, após tratamento térmico de cristalização a 5°C/24h seguido de estabilização cristalina à 25°C/24h. A barra 
indica 100 micrometros. 
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Estes menores diâmetros, podem estar relacionados a presença de TAG 

triinsaturados provenientes do OGAO, que aumentou o espaçamento entre os cristais, reduzindo 

a cristalinidade e favorecendo a transição polimórfica para a forma mais estável β. 

Além disso, apresentando redes cristalinas mais homogêneas. Destaca-se que a ML 

que apresentou a menor cristalinidade (10%) e o menor DM de cristais (0,91 µm) foi a ML 

composta por CA e CR, na proporção de 10:90m/m, com 60% de OGAO. Está ML apresentou 

segundo a DRX uma mistura de cristais nas formas β’ e β, assim como os demais sistemas 

desenvolvidos.  

Tabela 6. Diâmetro médio dos cristais e porcentagem de área cristalizada das matrizes 
lipídicas desenvolvidas com os óleos totalmente hidrogenados de canola (CA) e crambe (CR) e das 
matrizes lipídicas (ML) desenvolvidas com as suas misturas e incorporação de 20, 40 e 60% de óleo de 
girassol alto oleico (OGAO)  

Matrizes Lipídicas Diâmetro médio dos cristais (µm) Área Cristalizada (%) 
CA (100) 1,79±1,82 13,69±0,54 
CA:CR (90:10) 2,00±1,52 24,40±3,71 
CA:CR (70:30) 3,28±4,64 27,63±2,48 
CA:CR (50:50) 2,88±3,68 23,62±0,42 
CA:CR (30:70) 2,91±3,74 27,58±0,43 
CA:CR (10:90) 2,78±3,20 23,26±0,79 
CR (100) 3,19±4,24 26,77±3,06 
Incorporação de 20% de OGAO   
80 CA: 20 OGAO 2,70±2,94 26,75±0,37 
[90 CA:10 CR]:20 OGAO 5,19±7,41 20,00±1,69 
[70 CA:30 CR]:20 OGAO 2,20±2,62 14,30±0,54 
[50 CA:50 CR]:20 OGAO 2,74±3,03 17,41±0,92 
[30 CA:70 CR]:20 OGAO 3,89±6,51 15,51±1,36 
[10 CA:90 CR]:20 OGAO 6,95±7,74 20,94±1,24 
80 CR: 20 OGAO 2,34±2,47 17,81±0,54 
Incorporação de 40% de OGAO   
60 CA: 40 OGAO 1,85±1,60 16,25±0,69 
[90 CA:10 CR]:40 OGAO 2,60±4,65 14,01±0,26 
[70 CA:30 CR]:40 OGAO 3,23±4,67 14,66±0,61 
[50 CA:50 CR]:40 OGAO 2,85±3,25 25,03±0,65 
[30 CA:70 CR]:40 OGAO 4,05±5,66 13,68±1,42 
[10 CA:90 CR]:40 OGAO 6,73±8,46 20,33±2,60 
60 CR: 40 OGAO 2,06±2,14 12,46±1,32 
Incorporação de 60% de OGAO   
40 CA: 60 OGAO 1,26±1,23 12,88±1,10 
[90 CA:10 CR]:60 OGAO 1,86±3,27 15,83±0,60 
[70 CA:30 CR]:60 OGAO 3,07±4,15 13,49±0,90 
[50 CA:50 CR]:60 OGAO 2,05±2,21 12,49±0,91 
[30 CA:70 CR]:60 OGAO 6,27±7,37 11,91±1,19 
[10 CA:90 CR]:60 OGAO 0,91±1,21 10,90±0,45 
40 CR: 60 OGAO 2,19±2,17 13,19±0,58 
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CONCLUSÃO 

Neste estudo foi comprovado que o OGAO, CA e CR, que são óleos e gorduras 

vegetais presentes no cenário industrial apresentaram comportamento térmico e cristalino com 

grande potencial para desenvolvimento de nanopartículas lipídicas. A utilização destas 

matérias-primas lipídicas conferiu as ML desenvolvidas características diferenciadas em termos 

de cristalização e fusão. Destaca-se o efeito eutético, que pode ser benéfico para o 

desenvolvimento de NLS e CLN com nanoestruturas cristalinas menos compactas, o que pode 

favorecer a incorporação de compostos bioativos. Além disso, a incorporação de compostos 

bioativos também pode ser potencializada pela presença de óleos vegetais, como o OGAO, que 

também colaborou para a redução da cristalinidade das ML. A exploração das hardfats e óleos 

de outras fontes vegetais, pode contribuir para expandir a nanotecnologia na área de alimentos, 

possibilitando o desenvolvimento de ML com propriedades diferenciadas. Assim, pode-se 

concluir que o uso de óleos e gorduras vegetais tem potencial de aplicação em sistemas 

cristalinos nanoestruturados, principalmente pelas misturas de TAG presentes em suas 

composições, o que confere características de cristalização e fusão diferenciadas de matérias-

primas purificadas. 
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Abstract 

In this work, solid lipid nanoparticles (SLN) and nanostructured lipid carriers 
(NLC) with conventional vegetable oils and fats (high oleic sunflower oil and fully 
hydrogenated canola and crambe oils) were developed. NLS and CLN were characterized for 
size, polydispersity (PDI) and zeta potential (ZP) during 60 days. The thermal and crystalline 
properties were evaluated. The NLS presented gelation characteristics, associated with lipid 
polymorphic transitions to the -form. The CLN remained liquid during the evaluations, 
presenting size from 156.33 to 208.10nm, PDI from 0.099 to 0199, and PZ from -13,23 to -
25,10mV. They exhibited high thermal resistance, melting between 64 and 72°C and 
polymorphic habit in the ’ and  forms. Besides that, an eutectic effect was observed indicating 
lipid materials incompatibility. However, this effect was beneficial, with consequent reduction 
of crystallinity and size. The NLS and CLN obtained with conventional oils and fats presented 
thermal and crystalline characteristics compatible with different food applications and high 
potential for bioactive compounds incorporation. 

Keywords: Nanotechnology; Foods; Lipids, SLN; NLC; High-Pressure 

Homogenization. 

Abbreviations  

CA Fully hydrogenated canola oil  
CR Fully hydrogenated Crambe oil 
DLS  Dynamic light scattering 
DSC Differential Scanning Calorimetry 
FAC Fatty acids composition  
GTI Gastrointestinal tract 
HLB Hydrophilic-lipophilic balance 
HOSO High oleic sunflower oil 
HPH High-pressure homogenizer 
INPI National Institute of Industrial Property 
LM Lipid matrix 
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LN Lipid Nanoparticles 
NLC Nanostructured Lipid Carriers 
PDI Polydispersity index 
T80 Polyoxyethylene sorbitan monooleate 
TAG Triacylglycerols 
XRD X-ray diffraction 
Z-ave Average diameter 
ZP Zeta Potential 

 

1. Introduction 

Lipids are essential nutrients of the human diet by providing essential fatty acids 

and energy. Chemically, natural fats and oils are a multi-component triacylglycerol (TAG) 

blends, which are esters of glycerol and fatty acids. Conventional vegetable fats and oils are 

composed of a mixture of about 20 fatty acids in different proportions. Each fatty acid can 

occupy different positions in the glycerol molecule (sn-1, sn-2 or sn-3), allowing a big diversity 

of TAG combinations with different thermal and crystalline behaviors (Marangoni, Acevedo, 

Maleky, Co, Peyronel, Mazzanti, et al., 2012).  

The crystalline lipid behavior on macroscale depends directly on the fatty acid chain 

characteristics, such as the presence of saturated or unsaturated fatty acids, cis or trans 

configuration, and chain size. Saturated fatty acids have a higher melting point than the 

corresponding unsaturated fatty acid with one or more double bonds. The presence of long and 

saturated chains of fatty acids increases the melting point of TAGs, due to their linear 

conformation, resulting in a higher interaction of the molecules and, consequently, a highly 

ordered crystalline packaging (Scrimgeour, 2005). 

The crystallization process refers to the spontaneous ordering of the lipid system 

characterized by total or partial movement restriction caused by physical interactions between 

TAG molecules in different temperatures. Differences in crystalline forms result from different 

molecular packaging. A crystal, therefore, consists of molecules arranged in a fixed pattern, 

known as reticulate. Its high degree of molecular complexity allows the same set of TAGs to 

be packaged and crystallized in different structures, and also be able to transit in different 

polymorphic forms, characterizing the polymorphism  (Sato, 2001). 
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The polymorphism can be defined in terms of the ability to manifest different cell 

unit structures resulting from various molecular packaging. In TAGs three specific types of 

sub-cells predominate, referring to the polymorphs α, β 'and β, according to the current 

polymorphic nomenclature for lipids. The polymorphic transformation in TAGs is monotropic, 

that is, it is an irreversible process from the least stable to the most stable ( → ’ → ), 

depending on the temperature and time involved in the crystallization and stabilization of the 

crystals (Martini, Awad, & Marangoni, 2006). 

It is possible to determine the general properties of lipid functionality and 

applicability, which are therefore dependent on the TAG profiles of the fats and oils used. In 

the scientific literature, it is possible to find several studies on the crystallization behavior and 

polymorphism, for both purified TAGs and of edible fats and oils in micro and macro-scale 

(Basso, Ribeiro, Masuchi, Gioielli, Gonçalves, Santos, et al., 2010; Sato, 2001). 

Currently, there is a great interest in studying the lipid properties at the nanoscale, 

due to the great discoveries of differentiated behaviors of nanostructured materials, such as 

nanotubes, nanosensors, nanoparticles, nanofibers, drug delivery nanosystems, among others. 

These systems can be applied in a wide range of industrial areas, for instance, in the textile, 

energy production, communication, medicine, pharmaceuticals and cosmetics (Cerqueira, 

Pinheiro, Silva, Ramos, Azevedo, Flores-López, et al., 2014; Tamjidi, Shahedi, Varshosaz, & 

Nasirpour, 2013). 

Regarding nanoscale lipids for food application, solid lipid nanoparticles (SLN) and 

nanostructured lipid carriers (NLC) are the most promising nanostructured systems in terms of 

viability for industrial application. SLN are developed only with saturated lipids and NLC with 

the mixture of saturated and unsaturated lipids. This difference of chemical composition 

provides to these systems, different thermal and crystalline properties (Muller, Runge, Ravelli, 

Mehnert, Thunemann, & Souto, 2011). The main technological characteristic of SLN and NLC 

is the physical stability of nanostructures. They are developed with lipid materials that have a 

melting point above body temperature (37 °C), maintaining structural integrity throughout the 

digestive system, where they will be absorbed and can be used to protect, transport and deliver 

bioactive compounds in food products. In addition, the high thermal resistance of the SLN and 

NLC may be an interesting feature from the point of view of applicability in thermally 

processed products. This technology has already been used in the pharmaceutical and 
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biomedical areas, through the oral administration of SLN and NLC, presenting positive results 

for the sustained delivery and release of drugs in the organism (Severino, Andreani, Macedo, 

Fangueiro, Santana, Silva, et al., 2012). 

Recently, we have unprecedented proposed the SLN and NLC production using raw 

materials, commonly used in food products, generally recognized as safe (GRAS), such as 

natural and modified fats and oils, which gave to our research group the Invention Privilege 

(INPI-BR 10 2017 006471 9). NLC developed with soybean oil and soybean oil hardfat, were 

used as carriers of free phytosterols, where processing conditions and emulsifying systems were 

optimized (V. S. Santos, Ribeiro, Cardoso, & Santana, 2018). This work made possible the 

dissemination of the application of lipid nanoparticles in food in terms of volume and costs 

since it eliminated the need for purified materials for the production of SLN and NLC. 

The aim of this work was to develop SLN and NLC using a new range of vegetable 

oils and fats available in the industrial scenario. As well as, to study the thermal and crystalline 

behavior of these lipids in nanostructured systems, still little explored in food science and 

technology.  

2. Materials and methods 

2.1. Materials 

The solid lipid raw materials used for the development of the SLN and NLC were the fully 

hydrogenated canola (CA) and crambe (CR) oils provided by SGS Agricultura e Indústria Ltda© 

(Ponta Grossa - PR, Brazil), obtained from total catalytic hydrogenation process of the canola 

and crambe oils, respectively. High oleic sunflower oil (HOSO), supplied by Cargill Agrícola 

S.A (Mairinque - SP, Brazil), was used as liquid lipid in the NLC composition. The HOSO and 

both, CA and CR, were characterized according to the fatty acid (FAC) and triacylglycerols 

(TAG) compositions in a previous study(V. S.  Santos, Santana, Braz, Silva, Cardoso, & 

Ribeiro, 2018). The HOSO have 90.68% of unsaturated fatty acids (78,60% of oleic acid, O, 

C18:1, and 11,41% of linoleic acid, L, C18:2). The CA and CR presented 100% of saturated 

fatty acids. CA has 93.82% of stearic acid (S, C18:0), 5.24% of palmitic acid (P, C16:0) and 

0.94 % arachidonic acid (A, C20:0). While CR has 56.30% behenic acid (Be, C22:0), 31.70% 

stearic acid (S, C18:0), 6.70 % of arachidonic acid (A, C20:0), 3.20% of palmitic acid (P, 

C16:0) and 2.10% of lignoceric acid (Lg, C24:0). The TAGs present in the HOSO were: OOO 
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65%, followed by OLO (~15%), OOP (~10%) and OLL/PLO (~3%). The CA presented 4 

different TAGs in its composition, with the majority being SSS (~80%) and PSS (~13%). In 

the CR, 9 different TAGs were found, among which the predominant ones were SBeBe (~38%), 

SSBe (~17%), SABe (~17%) and in smaller proportions ABeBe (~6%), BeBeBe (~9%), 

BeBeLg (~8%), PSBe (~2%) and PSS (~0.5%). The polyoxyethylene sorbitan monooleate 

P1754 (Tween®80, T80), with hydrophilic-lipophilic balance (HLB) of 14.0, was purchased 

from Sigma-Aldrich (St. Louis, Missouri, USA). 

2.2. Methods 

2.2.1. Formulation of lipid nanoparticles 

Two distinct nanoparticle systems were developed, the SLN developed only with 

saturated lipids and the NLC composed by the mixture of saturated and unsaturated lipids. The 

general formulation of these nanoparticles was composed of 10% (m/m) of lipid phase and 90% 

(m/m) of the aqueous phase. The aqueous phase was composed of distilled water and 2% 

emulsifier, according to recommendations of (Qian & McClements, 2011; Yang, Corona, 

Schubert, Reeder, & Henson, 2014). The emulsifier used was the T80. 

The lipid fraction was selected from an earlier study conducted by our research 

group. In this work, we have shown that different lipid matrices (LM) have been developed and 

evaluated for thermal and crystalline behavior and are compatible with the SLN and NLC 

application (V. S.  Santos, Santana, Braz, Silva, Cardoso, & Ribeiro, 2018). Thus, 3 LM 

composed of only saturated lipids (CA and/or CR) for the development of SLN and 9 LM 

containing the mixture of saturated (CA and/or CR) and unsaturated lipids (20, 40 and 60% of 

HOSO) for application in NLC. In Figure 1, the SLN and NLC formulations developed in this 

study are illustratively set forth. 



160 

 
 

 

 

 

Fig. 1. Schematic representation of Solid Lipid Nanoparticle (SLN) and Nanostructured Lipid 
Carriers (NLC) formulation with their respective lipid matrices: A) LM/SLN composed only of solid lipids (CA 
and CR); B) LM/ NLC compounds with mixtures of solid and liquid lipids (20% of the HOSO and CA and/or CR); 
C) LM/NLC compounds with mixtures of solid and liquid lipids (40% of the HOSO and CA and/or CR); D) 
LM/NLC compounds with mixtures of solid and liquid lipids (60% of the HOSO and CA and/or CR). 

2.2.2. Production process of lipid nanoparticles 

Obtaining the lipid nanoparticles involved basically four steps: i) LM fusion, ii) 

emulsification, iii) nanoemulsification, and iii) crystallization and lipid stabilization. The LM 

were melted and homogenized on magnetic stirrer at 300 rpm for 2 minutes. Subsequently, the 

aqueous phase containing the emulsifier was added at 90øC and the pre-emulsion was obtained 

in Ultra Turrax IKA T18 Basic (Germany) at 20,000rpm for 3 minutes homogenization. Then, 

the pre-emulsion was subjected to different homogenization cycles (3 and 5 cycles) at 800bar 

in a high-pressure homogenizer (HPH) (GEA Niro Soavi, model: NS 1001L PANDA 2K, Italy), 

according to Zimmermann, Müller, and Mäder (2000) and Severino, Santana, and Souto (2012). 

After the HPH process, the obtained nanoemulsions were stored at 5 °C for 24 hours for the 
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crystallization of the lipid fraction and obtaining the dispersions containing the SLN and NLC 

followed by 24 h of crystalline stabilization at 25 °C (Qian & McClements, 2011; Yang, 

Corona, Schubert, Reeder, & Henson, 2014). 

 
Fig. 2. Illustrative image of the solid lipid nanoparticles (SLN) and Nanostructured Lipid Carriers 

(NLC) production by high-pressure homogenization (HPH). 

2.2.3. Additional drying process of lipid nanoparticles 

The nanoparticles in aqueous suspension, shortly after step 4 of crystallization and 

crystalline stabilization, were subjected to lyophilization. The drying process involved the 

conditioning of the aqueous dispersion containing the nanoparticles in ultrafreezer (-80 °C) for 

24 hours, for freezing the aqueous phase, followed by lyophilization in lyophilizer (Liobras 

L101, Brazil), according to the method described by Zimmermann, Müller, and Mäder (2000). 

3.4. Size, Polydispersity Index and Zeta Potential 

The LNs in aqueous dispersion produced by 3 and 5 cycles of HPH were evaluated 

for particle size by means of the hydrodynamic diameter (Z-ave) in nanometers (d.nm) using 

dynamic light scattering (DLS) with a high-power laser in Zetasizer Nano NS equipment, 

Malvern, United Kingdom. Besides that, the LNs were evaluated for the polydispersity index 

(PDI) and zeta potential (ZP) after 24 hours, 15, 30 and 60 days of the production process. The 

samples were diluted in distilled water to reduce the opalescence before measurements. Data 

analysis was performed using the software included in the equipment system. 
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2.2.4. Melting thermal behavior  

The evaluation of the thermal behavior in the melting of the SLN and the 

lyophilized NLC was performed by means of the Differential Scanning Calorimetry (DSC) TA 

Instruments, model Q2000, coupled to the RCS90 Refrigerated Cooling System (TA 

Instruments, Waters LLC, New Castle). The samples (~10 mg) were packed in hermetic 

aluminum capsules and evaluated in DSC with an inert atmosphere (N2) using the following 

conditions: isothermal condition at 25 °C for 10 minutes; the melting events were evaluated 

from 25 to 100 °C at a rate of 10 °C/min. The data processing system used was Universal V4.7A 

(TA Instruments, Waters LLC, New Castle) and the following parameters were used for 

evaluation of the results: initial melt temperature (Tim), maximum melt peak temperature (Tmax), 

final melting temperature (Toff) and melt enthalpy (ΔHm) (Campos, 2005). Only the particles 

obtained through 3 cycles of HPH were analyzed, the reasons for the exclusion of particles 

obtained with 5 cycles of HPH will be further discussed based on particle sizes in the topic of 

results and discussion.  

2.2.5. X-ray diffraction  

The polymorphic forms of SLN and lyophilized NLC, obtained through 3 cycles of 

HPH, were determined by X-ray diffraction (XRD), according to the AOCS method Cj 2-95 

(AOCS, 2009). The analyzes were carried out using a Philips diffractometer (PW 1710) using 

Bragg-Brentano (:2) geometry radiation with Cu-K (= 1.54056Å, 40 KV voltage and 30 

mA current). The measurements were obtained at 25 °C, with steps of 0.02° in 2° and 

acquisition time of 2 seconds, with scans of 15 to 40° (2 scale). The identification of the 

polymorphic forms was performed from the short spacings characteristic of the lipid crystals 

(AOCS, 2009). 

2.2.6. Statistical analysis 

Z-ave, PDI, and ZP data were statistically analyzed by means of One-Way Analysis 

of Variance (ANOVA) with Statistica (V.12) Software (Statsoft Inc., Tulsa, UK). The Tukey 

test was applied to determine the significant differences between the means, at a level of p≤0.05. 
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3. Results and discussion 

3.1. Processing and obtaining nanoparticles 

The choice of the emulsifying system and the lipid raw materials associated with 

the production process are extremely important for obtaining stable and potential applications 

for nanostructured systems. The T80 emulsifier was selected from preliminary studies 

conducted by our research group, where different NLC formulations were developed with 

soybean oil (53.32% linoleic, C18:2 and 23.38% oleic, C18:1) and soybean oil hardfat (87.11% 

stearic, C18:0 and 11.22% palmitic, C16:0). By using T80, NLC were obtained with lower Z-

ave  and PDI (167nm and 0.176 with 3 cycles of HPH and 160nm and 0.165 with 5 cycles of 

HPH, respectively), compared to other emulsifiers with lower HLB, such as lecithin of (HLB 

= 7.0) and sorbitan monostearate - Span®60 (HLB = 4.7), remaining stable for 15 days of 

evaluation (V. S. Santos, Ribeiro, Cardoso, & Santana, 2018). These results demonstrated that 

the particle size and distribution profile are dependent on the type of emulsifying system 

employed, as well as on the conditions of the homogenization process. 

As for the method used, we can say that it was possible to obtain the nanoparticles 

proposed in this study using HPH with 3 cycles and 5 cycles of HPH at 800 bar. Regarding the 

efficiency of the method, related to the particle size characteristics, dispersion and stability of 

the systems, the results will be discussed in the following topic according to Z-ave, PDI and ZP 

parameters as a function of the number of cycles of HPH and stability to over 60 days of storage.  

Through visual evaluation, as shown in Figure 1, it can be affirmed that through 

systems with saturated lipids (SLN) and saturated and unsaturated lipid systems (NLC) systems, 

they have shown different visual physical characteristics. The NLC were completely fluid 

(liquid) after the HPH process, followed by static crystallization at 5 °C/24h and crystalline 

stabilization at 25 °C/24h. This behavior was not verified for the nanoparticles developed only 

with saturated lipids, the SLN. It was verified that the SLNs systems were totally solid, it was 

possible to invert the storage flask without changing the characteristics. This solid behavior of 

SLN has been reported in the literature as a gelation process, which can be caused by the effect 

of emulsifying systems, processing conditions, and lipid polymorphism.  

Westesen and Siekmann (1997) also observed this effect on phospholipid stabilized 

tripalmitin (PPP) SLN. According to the authors, this behavior was attributed to possible 
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coalescence and aggregation of crystals in the form of platelets, which were not completely 

coated by the emulsifier (Awad, Helgason, Weiss, Decker, & McClements, 2009), also verified 

the gelation mechanism in LN composed of PPP. For this reason, they performed studies 

evaluating different storage temperatures and associated the SLN gelation to the polymorphic 

transition of LM. Thus, the authors suggested that the surface area of the nanoparticles increased 

during the change from a spherical to the platelet form, reducing the efficiency of the 

emulsifying system in terms of nanoparticle coating and surface tension maintenance. Thus, 

favouring the attraction between the nanoparticles, causing the coalescence, with consequent 

formation of a three-dimensional lipid network with water imprisonment, giving the system a 

gel appearance. Other research has shown that lipid nanoparticles are spherical soon after the 

process of production, related to the crystallization of TAGs in α polymorphic formα. However, 

during storage, these spherical particles become elongated, platelet-shaped, due to the 

polymorphic transition to the more stable form of the lipid crystals, β-form (Awad, Helgason, 

Weiss, Decker, & McClements, 2009; Bunjes & Unruh, 2007; Salminen, Helgason, 

Kristinsson, Kristbergsson, & Weiss, 2013). 

From this information, we can affirm that the gelation of nanostructured systems, 

reported for SLN developed with purified TAGs, such as PPP, also occurs with SLN produced 

with conventional LM. Since the three different SLNs developed in this study (Figure 1), from 

a mixture of TAGs in their characteristic compositions of natural vegetable oils and fats, 

showed the similar gelling effect to the SLN produced with purified TAGs. 

3.2. Mean diameter, Polydispersity index, and Zeta potential  

The determination of the mean hydrodynamic diameter Z-ave through the DLS 

technique is based on the Stokes-Einstein equation, which considers the hydrodynamic motion 

of spherical particles in a fluid at a given viscosity, depending on the temperature of the system 

(Bunjes, Steiniger, & Richter, 2007; Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). Thus, 

as seen in the previous topic, in the SLN, which presented the gelling effect, it was not possible 

to perform the determination of Z-ave, PDI and ZP, since these results would not represent the 

behaviour of nanoparticles systems, for comparison purposes with NLC, showing erroneous 

values of Z-ave, related to crystalline aggregates and not nanoparticles. 
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The determinations of Z-ave, PDI and ZP were performed to characterize and 

monitor the physical stability of the NLC after the crystallization step and stabilization of the 

lipid fraction. In other words, after maintaining for 24h at 5 ° C, followed by 24h at 25 ° C, and 

after 15, 30 and 60 days of processing. The results are shown in Table 1 and the distribution of 

the particles (d.nm) expressed in intensity (Iαd6) and number (Nαd) are shown in Figures 3 and 

4, for the NLCs obtained through 3 and 5 cycles of HPH. After 24 hours of processing, the 

NLCs obtained with 3 cycles of HPH presented particles populations range from 150 to 190nm, 

whereas with 5 cycles particles populations between 160-210nm. The lowest values of Z-ave 

found for 3 and 5 cycles of HPH referred to NLC 11 and the highest values to NLC 6 (Table 

1). In addition, as can be seen in Figures 3 and 4, the NLCs showed a very similar population 

particles as a function of intensity after 24 hours of processing for both 3 and 5 cycles of HPH, 

presenting low polydispersity. Only a few systems were bimodal in number distribution (Nαd), 

but all the results very close to the Z-ave, showing neither very small nor very large particles, 

which could cause instability to these systems. 

This behavior is directly related to the PDI values, a parameter also obtained 

through DLS, which provides information about the physical stability of systems. PDI values 

range from 0 to 1, PDI close to 1 indicates a large variation in particle size, while values close 

to 0 indicate a monodisperse population of particles. In addition, according to Tamjidi, Shahedi, 

Varshosaz, and Nasirpour (2013), for nanoparticle systems such as NLC, to obtain suspensions 

with long-term stability, PDI values should be in the range of 0.10 to 0.25. Thus, ECP results 

for NLC obtained through 3 cycles of HPH ranged from 0.105 to 0.181 and from 0.099 to 0.199 

to 5C of HPH, conferring high stability for systems developed with 3 and 5 cycles of HPH.
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Table 1. Mean hydrodynamic diameter, polydispersity index and zeta potential of nanostructured lipid carriers (CLN) obtained by 3 
and 5 cycles of high-pressure homogenization (HPH) at 800bar, evaluated after 24h, 15, 30 and 60 days of the production 
Amostra Z-ave (d.nm) PDI ZP (mV) Z-ave (d.nm) PDI ZP (mV) Z-ave (d.nm) PDI ZP (mV) Z-ave (d.nm) PDI ZP (mV) 

HPH 3C 24h 15 days 30 days 60 days 

NLC 4 167.83±0.81hA 0.158±0.013bcdeA -14.07±0.45abA 164.00±1.73ghB 0.154±0.006bcA -25.10±0.61gB 168.10±0.60ghA 0.154±0.021cdefA -33.77±0.67jD 159.23±1.16hiC 0.159±0.032bcA -27.30±0.79ghC 

NLC 5 18617±1.01cdA 0.181±0.019abcA -21.00±0.78hA 181.40±1.95dB 0.147±0.023bcA -22.43±0.25fB 186.37±1.65cdA 0.207±0.023aA -25.13±0.75ghC 181.83±1.29cdB 0.165±0.032bcA -28.37±0.49hiD 

NLC 6 188.57±0.40cB 0.162±0.012bcdeB -23.53±0.32iC 184.40±1.21cdC 0.161±0.018bB -22.47±0.29fB 183.73±0.65deC 0.179±0.015abcdB -22.37±0.40defB 204.73±1.00aA 0.223±0.027aA -16.23±0.55aA 

NLC 7 161.23±1.76iA 0.133±0.012defgA -13.23±0.55aA 155.07±0.90iB 0.119±0.001bcA -14.90±0.40aB 157.57±0.55jAB 0.139±0.012defgA -24.30±0.56gC 155.27±2.47iB 0.120±0.005cdA -23.63±0.12eC 

NLC 8 180.07±1.18fB 0.133±0.007defgAB -19.97±0.25ghA 185.87±1.68cdA 0.155±0.017bcA -21.40±0.66efB 185.33±0.76cdA 0.124±0.006fgB -27.33±0.12iC 183.57±1.30cA 0.139±0.004bcdAB -29.37±0.25iD 

NLC 9 170.67±1.19hA 0.151±0.009cdeA -17.40±0.52deA 169.27±1.29efA 0.145±0.018bA -21.97±0.25efA 170.80±0.95gA 0.118±0.011fgA -23.60±0.78fgA 170.23±2.29efA 0.140±0.024bcdA -27.93±0.83hiC 

NLC 10 166.87±1.11hA 0.132±0.011defgA -15.30±0.35bcA 166.03±0.47fgAB 0.110±0.017cA -18.70±0.40cdB 164.70±0.95hiBC 0.133±0.013efgA -20.70±0.62bcdC 163.73±0.45ghC 0.117±0.018cdA -26.07±0.15fgD 

NLC 11 156.33±1.23jB 0.105±0.024efgA -19.13±0.78fgA 159.73±1.89hiAB 0.125±0.009bcA -20.87±0.35eB 162.47±1.19iA 0.102±0.010gA -26.20±0.72hiC 159.90±2.00hiAB 0.090±0.014dA -21.10±0.46dB 

NLC 12 171.10±1.10ghA 0.118±0.009fgA -12.77±0.25aA 172.42±1.68eA 0.120±0.006bcA -18.90±0.61cdB 174.63±0.64fA 0.137±0.014defgA -19.47±0.23abB 173.00±1.83eA 0.144±0.025bcd -25.30±0.72fC 

HPH 5C 24h 15 days 30 days 60 days 

NLC 4 175.13±1.72gA 0.175±0.010abcdA -16.73±0.15cdA 169.97±1.96efB 0.140±0.017bcB -19.43±0.55dB 167.77±0.38ghBC 0.135±0.007efgB -20.93±0.29bcdC 165.10±1.13gC 0.149±0.012bcAB -16.50±0.78aA 

NLC 5 200.33±1.86bA 0.213±0.010aA -20.53±0.15gh 194.57±1.00bB 0.206±0.011aAB -21.60±0.30ef 198.70±1.15bA 0.186±0.009abcBC -21.83±0.67def 190.13±1.12bC 0.176±0.005b -20.07±0.25cdC 

NLC 6 208.10±1.25aA 0.199±0.018abA -25.10±0.46jC 206.93±2.4aA 0.223±0.027aA -21.43±0.46efB 206.93±1.19aA 0.196±0.023abA -21.77±1.19cdeB 181.33±1.72cdB 0.179±0.002abA -17.47±0.31abA 

NLC 7 162.47±1.21iA 0.149±0.010cdefA -15.63±0.70cA 153.03±1.00iB 0.147±0.012bcA -16.97±0.50bB 157.90±0.30jB 0.148±0.001cdefA -20.00±0.35abcC 155.70±1.73iB 0.141±0.006bcdA -22.87±0.29eD 

NLC 8 185.37±1.75cdeA 0.160±0.012bcdeA -18.40±0.53efA 186.93±1.63cA 0.155±0.017bA -21.63±0.15efB 188.20±1.39cA 0.138±0.022defgA -24.97±0.12gh 185.53±1.15bcA 0.131±0.018bcdA -20.97±0.06dB 

NLC 9 181.60±2.82efA 0.164±0.011bcdA -19.37±0.65fgA 181.50±1.30dA 0.156±0.080bcA -20.87±0.60eB 180.53±0.85eA 0.167±0.007abcdeA -21.93±0.12defB 178.37±1.05dA 0.163±0.011bcA -18.83±0.67bcA 

NLC 10 169.23±1.07hA 0.131±0.031defgA -14.13±0.38abA 167.40±0.85fgA 0.144±0.017bcA -17.83±0.21bcB 170.00±1.67gA 0.123±0.001fgA -19.80±0.80abC 167.27±2.15fgA 0.136±0.006bcdA -28.43±0.12hiD 

NLC 11 161.90±0.44iB 0.099±0.014gB -19.43±0.25fg 165.57±2.37fgAB 0.133±0.005bcA -22.57±0.31f 167.97±2.18ghA 0.126±0.007efgAB -23.40±0.60efg 165.27±2.02gAB 0.111±0.016cdAB -23.17±0.78e 

NLC 12 183.13±1.12defA 0.145±0.012cdefA -13.70±0.17aA 183.20±0.53cdA 0.151±0.015bcA -17.30±0.72bB 186.03±1.85cdA 0.157±0.010bcdefA -18.83±0.51aC 183.17±1.72cdA 0.133±0.019bcdA -20.30±0.26cdD 

Z-ave: hydrodynamic diameter; PDI: Polydispersity index; ZP: Zeta Potential; HP: High-Pressure Homogenization; 3C: three cycles of HPH; 5C: five cycles of cycles of HPH; Mean of three 
replicates ± Standard Deviation; Different upper-case letters on the same line indicate a significant difference related to the evaluation of each parameter (Z-ave, PDI and ZP) in 24h, 15, 30 and 
60 days after prodution of each CLN evaluated at the probability level (p≤0.05) according to the Tukey Test; Lowercase letters in the same column indicate significant difference in probability 
(p≤0.05) according to the Tukey test related to the comparison between CLNs produced with 3 and 5 cycles of HPH for each parameter (Z-ave, PDI and ZP).
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Along with Z-ave and PDI, another important parameter for the characterization of 

nanoparticles is the zeta potential. Although, the NLC developed in this study are based on 

natural fats and oils (neutral systems), the evaluation of ZP represents a valuable prerequisite, 

both in terms of characterization and in the evaluation of stability over the storage. ZP values 

above |30| mV characterize colloidal systems with good stability, considered to be close to |60| 

mV. The system is susceptible to destabilization and the occurrence of limited flocculation can 

be observed between 5 and 30mV; whereas for ZP values lower than 5mV, the system presents 

a great tendency for the coagulation of particles (Lacatusu, Mitrea, Badea, Stan, Oprea, & 

Meghea, 2013; Madureira, Campos, Gullon, Marques, Rodriguez-Alcala, Calhau, et al., 2016). 

The positive or negative charges of the values obtained for the ZP depending on the type of 

emulsifier applied. T80 is a non-ionic emulsifier, it is neutral, the sum of those charged in the 

molecule is close to zero. However, the negative charges observed in all ZP results (Table 1), 

are related to the type of emulsion obtained (oil-in-water). In the case of NLC, the nonpolar 

portion of the molecule, which is lipophilic, is positive and the polar portion, having a 

hydrophilic character, is negative. This negative portion is exposed on the surface of the 

particles, resulting in the negative ZP values to the systems. The results verified for the ZP 

varied between -13.23 to -23.53mV and -13.70 to -25.10mV, for the NLC obtained with 3 and 

5 cycles of HPH, after processing, respectively (time of 24h, Table 1). These results indicated 

that NLC showed a possible susceptibility to destabilization soon after processing. But most of 

the systems proved to be stable over 60 days of evaluation, which will be further discussed. 

Based on this information, we found that NLC developed with 5 cycles of HPH presented the 

highest ranges of Z-ave and PDI values. It should be noted that there were few observed 

differences between 3 and 5 cycles. Thus, considering the application of this technology in 

industrial scale, we consider the use of 3 cycles of HPH the most appropriate in terms of 

economic viability. That is, the lower the number of homogenization cycles, the shorter the 

processing time and the equipment wear, thus increasing productivity and prolonging the 

equipment life. In this way, the discussion of the results in terms of LM composition and the 

other thermal and polymorphism evaluations were performed only for the systems developed 

with 3 cycles of HPH, since the use of 5 cycles was not considered feasible for industrial 

application.Evaluating the NLC developed with 3 cycles of HPH, it was observed that the NLCs 
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composed by CA had the lowest values of Z-ave (NLC 4: 167.83nm, NLC 7: 161.23nm and 

NLC 10: 166.87nm), while NLCs developed with CR presented higher values (NLC 6: 

188.57nm, NLC 8: 170.67nm and NLC 12: 171.10nm) (Table 1). It was observed that the 

increase of HOSO (20, 40 and 60%) favored the reduction of the Z-ave composed by the 

mixture of CA and CR (NLC 5: 186.17nm, NLC 8: 180.07nm and NLC 11: 156.33nm), being 

statistically different at a 5% probability. It should be noted that NLC 11, which presented the 

lowest Z-ave among all the evaluated systems, presents in its composition the most 

heterogeneous mixture in relation to LM composition, being composed by the mixture of CA, 

CR and HOSO (20:20:60 m/m).  

In relation to the stability of the systems evaluated with 3 cycles of HPH, it can be 

seen that NLC 6, composed of the lowest levels of unsaturated fatty acids, presented a ZP value 

closer to 30mV (-23.53mV), indicating that this nanoparticle system composed of 80% CR and 

20% HOSO, has the best physical stability compared to other systems, even with the highest Z-

ave (188.57nm) (Table 1). During the evaluation of the systems along the storage, looking at 

the intensity graphs shown in Figure 3, it is possible to verify that only NLC 4 and NLC 5 

presented a second peak, referring to larger particles near 10.000nm for 30 and 60 days, 

respectively. However, the PDI did not show significant differences for both systems 

throughout the evaluation time (Table 1). 

Significant reductions in the Z-ave of NLC 4, 5, 6 and 7 were observed after 15 

days of processing, at NLC 10 after 30 days and at NLC 11 after 60 days. These reductions 

were not observed in NLC 8, 9 and 12. It should be noted that changes in the NLC 6 Z-ave 

continued to occur throughout storage, with a significant increase (p<0.05) in Z-ave after 60 

days, from 184.40nm (15 days) to 204.73nm (60 days). Associated with the Z-ave increase, 

occurs the increase of PDI (0.161 to 0.223) and ZP reduction from -23.53 to -16.23mV, showing 

the most unstable and susceptible to destabilization system. Furthermore, it was generally 

observed that the ZP values were closer to 30mV over the 60 days of storage. These values can 

indicate that the systems were organizing in the conditions of lower energy, that is, reaching 

the kinetic stability (Table 1). 
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Fig. 3. Particle size distribution as a function of the intensity (A) and number (B) obtained 

from the dynamic light scattering (DLS) of the NLC obtained by 3 cycles of HPH after 24 hours (24 h), 
15 days (15d), 30 days (30d) and 60 days (60d) of production. 
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Fig. 4. Particle size distribution as a function of the intensity (A) and number (B) obtained 

from the dynamic light scattering (DLS) of the NLC obtained by 5 cycles of HPH after 24 hours (24 h), 
15 days (15d), 30 days (30d) and 60 days (60d) of production. 
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Changes in Z-ave have been associated with changes in particle shape. Thus, the 

diffusion velocity of the particles is altered, and consequently changes the hydrodynamic values 

perceptible through the DLS technique  (Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). The 

change in the shape of lipid nanoparticles is directly related to the polymorphic transitions, to 

the more stable form (→’→), as discussed above. It should be pointed out that for some 

systems the Z-ave changes occurred with 15 days of storage and for others, it occurs only after 

30 or 60 days. These changes are very dependent on the lipid composition and physical 

properties, as will be further discussed NLC. 

3.3. Melting behavior  

The most important aspects of the physical properties of oils and fats are related to 

phase changes, such as crystallization and melting. These thermal phenomena are generally 

verified by the monitoring of enthalpy and phase transition through DSC. A very sensitive and 

widely used technique for evaluating materials. In this study, we used the DSC to evaluate the 

melting behavior of lyophilized nanoparticles, obtained through 3 cycles of HPH. The obtained 

results are shown in Table 2. Additionally, in Figure 5, the thermograms are arranged, 

graphically representing the heat flow as a function of temperature. The parameters selected 

were: initial melt temperature (Tim), which refers to the beginning of the phase transition; 

maximum peak temperature of the melt (Tmax), maximum thermal effect; final melting 

temperature (Toff) indicating the completion of the thermal effect; and the enthalpy of fusion 

(ΔHm) or enthalpy of phase transition, measured by the area of the curve in relation to the 

baseline (Campos, 2005). 

The results of the melting behavior of LM used in the development of nanoparticles 

were carried out by our research group in a previous study, under the same conditions of 

crystallization and stabilization used for the nanoparticles (V. S.  Santos, Santana, Braz, Silva, 

Cardoso, & Ribeiro, 2018). Thus, for the comparison between macro and nanoscale fusion 

events, the LM results were recovered and included in Table 2 and Figure 5. Thus, the 

visualization of differences and similarities between both systems was facilitated.  
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Table 2. Melting behavior of solid lipid nanoparticles and nanostructured lipid 
carriers according to the parameters of initial melting temperature (Tim), maximum melting 
peak temperature (Tmax), final melting temperature (Toff) and the melting enthalpy (Hm) 
LN  Tim (°C) Tmax (°C) Toff (°C) Hm(J/g) LM* Tim (°C) Tmax (°C) Toff (°C) Hm (J/g) 

  SLNs lyophilized  Lipid Matrices of SLNs 

NLS 1 P 1 67.75±0.01 71.35±0.00 81.46±0.55 -128.70±0.17 LM 1 52.55±0.05 55.24±0.02 62.00±0.50 -88.96±1.62 

 P 2 -- -- -- --  65.81±0.09 69.20±0.09 78.03±0.29 -30.82±1.45 

NLS 2 P 1 62.74±0.01 65.76±0.00 75.47±0.43 -110.33±0.21 LM 2 53.41±0.02 58.46±0.23 73.79±1.73 -112.10±2.80 

NLS 3 P 1 66.30±0.02 70.03±0.00 77.97±0.41 -115.10±0.36 LM 3 58.66±0.04 62.04±0.17 73.89±2.12 -113.20±1.10 

  NLCs lyophilized      Lipid Matrices of NLCs 

NLC 4 P 1 70.01±0.00 71.18±0.00 81.23±0.85 -107.73±0.61 LM 4 62.16±0.00 70.22±0.13 82.27±0.36 -120.10±5.20 

NLC 5 P 1 61.85±0.00 64.32±0.00 72.74±1.10 -107.87±0.93 LM 5 54.92±0.03 62.57±0.25 76.38±1.44 -113.00±1.40 

NLC 6 P 1 65.68±0.01 70.17±0.00 80.53±1.27 -111.37±0.78 LM 6 56.20±0.05 65.38±0.02 81.62±0.29 -102.33±3.77 

NLC 7 P 1 66.35±0.01 69.35±0.00 84.24±1.05 -68.34±0.54 LM 7 60.02±0.10 68.66±0.02 83.53±1.98 -88.63±0.91 

NLC 8 P 1 59.76±0.02 64.10±0.00 83.07±2.45 -72.96±1.43 LM 8 54.18±0.04 61.70±0.23 78.46±1.36 -85.80±3.48 

NLC 9 P 1 66.73±0.01 68.52±0.00 83.26±2.04 -68.66±1.48 LM 9 55.32±0.05 65.45±0.03 82.45±1.04 -83.15±1.67 

NLC 10 P 1 70.01±0.00 71.18±0.00 81.23±0.85 -107.73±0.61 LM 10 57.62±0.07 66.27±0.10 81.01±0.32 -55.82±0.78 

NLC 11 P 1 61.85±0.00 64.32±0.00 72.74±1.10 -107.87±0.93 LM 4 62.16±0.00 70.22±0.13 82.27±0.36 -120.10±5.20 

NLC 12 P 1 65.68±0.01 70.17±0.00 80.53±1.27 -111.37±0.78 LM 5 54.92±0.03 62.57±0.25 76.38±1.44 -113.00±1.40 

Mean of three replicates ± Standard Deviation. LN: Lipid nanoparticles; --: not detected; * Data of the lipid matrices (LM) 
used in these study to develop the solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), from an earlier study 
conducted by our research group (V. S.  Santos, Santana, Braz, Silva, Cardoso, & Ribeiro, 2018). 
 

In general, as can be seen in Figure 5, the thermal behavior of the nanoparticles was 

different from LM, mainly in terms of Tmax. Indicating that nanoparticle lipid systems present 

higher thermal resistance than lipid systems in macroscale. Probably, because the TAG 

molecules were organized in a more compact crystalline structure. In other words, with very 

small dimensions the Van Der Waals interactions are more intense between the TAG molecules, 

unlike the macroscale, where TAGs have larger spaces to organize and form the less compacted 

crystalline structures. Furthermore, the higher thermal resistance may be related to the 

polymorphic form of the lipid fraction in the nanoparticles. Some authors reported that the 

polymorphic transition, to the most stable form, is accelerated in nanostructured systems  

(Mehnert & Mäder, 2012; Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). It was also 

verified that the nanostructures composed of the mixtures of saturated and unsaturated fatty 

lipids (NLC) presented lower values of enthalpy (ΔHm) than their respective LM. Possibly, the 
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change in physical state (solid to liquid) is facilitated due to the reduced size and consequent 

higher surface contact area of the nanoparticles compared to lipid systems crystallized macro 

scale. 

 
Figure 5. DSC melting curves of: A) Lipid matrices (LMs) composed by solid lipids (100% CA; 

mixture of CA and CR (50:50); 100% CR); B) LMs composed by mixtures of 80% of solid lipids (CA; mixture of 
CA and CR; CR) and 20% of the liquid lipid (HOSO); C) LM composed by mixtures of 60% of solid lipids (CA; 
mixture of CA and CR; CR) and 40% of the liquid lipid (HOSO); D) LMs composed of mixtures of 40% of solid 
lipids (CA; mixture of CA and CR; CR) and 60% of the liquid lipid (HOSO); E) NLSs developed with the LMs 
described in "A"; F) CLNs developed with LMs described in "B"; G) CLNs developed with the LMs described in 
"C"; and H) CLNs developed with the LMs described in "D". The data referring to MLs come from an earlier 
study conducted by our research group (V. S.  Santos, Santana, Braz, Silva, Cardoso, & Ribeiro, 2018). 

 
By evaluating the results obtained for the nanoparticles more critically and 

comparing them with the LM, it was observed that LM developed only with CA (LM 1) 

presented a wide melting range, starting at 52.55 °C and ending at 62.00 °C. In this range was 

possible to verify the presence of two melting peaks with Tmax at 55.24 °C and 69.20 °C (Figure 
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5A). These two peaks may be related to the differentiated fusion of non-purified lipid materials 

of plant origin, since they present mixtures of different TAGs in their compositions (shown in 

the description of the materials used in this study). It is possible to relate the fatty acids chain 

size to the melting point, so the higher the number of carbons, the higher the melting point. 

According to  Himawan, Starov, and Stapley (2006) this DSC behavior is generally observed 

for saturated monoacid TAGs, such as SSS, present in higher concentration in CA. The SLN 1 

developed with LM 1 showed only a single melting peak (Tmax of 71.35 °C), which may indicate 

that the fusion of the components at the nanoscale was uniform, or even that the TAGs after the 

nanostructure process were organized in the most stable polymorphic form. However, the DSC 

technique can only be used to infer about polymorphic transition and crystalline forms, the 

confirmation only happens through XRD, which will be further presented.  

The SLN 3 composed of 100% CR showed a narrower melting peak than the SLN 

1, indicating a more uniform melting of the TAGs in its formulation, presenting T max at 70,03 

°C and lower energy to the phase transition (-115,10W/g) (Table 2). The SLN 2 composed of 

the mixture of CA and CR (50: 50m/m) presented an intermediate Tmax value (65.76 °C) to the 

values found for SLN 1 and SLN 3. According to Himawan, Starov, and Stapley (2006) this 

effect tends to occur when the components of the systems differ in molecular volume, shape 

and/or polymorph, characterizing a eutectic behaviour, reducing the melting temperature when 

there is a mixture of CA and CR, compared to the use of the pure hardfats. 

As can be seen in Figure 2, in all systems developed with the mixtures of CA and 

CR, for both the SLN and the NLC as for the correspondent LM, it is possible to verify the 

eutectic effect. In these systems, the eutectic effect is more related to the molecular volume of 

the constituents, since the AC presents 80% of SSS in its composition that has 54 carbons, 

whereas the CR presents a mixture of approximately 80% of TAG with carbonic chains ranging 

from 58 to 64 carbons (SBeBe, SSBe, SABe, and ABeBe). In addition, it should be noted that 

the eutectic effect increased with increasing HOSO in the systems (Figure 5B, C, and D), and 

was even more pronounced for NLC 11 and its LM 11 (Figure 5D). Therefore, it can be affirmed 

that the inclusion of HOSO increased the incompatibility between the components of the 

systems, a fact that can be explained by the HOSO composition, which presents approximately 

66% of triolein (OOO), a triunsaturated TAG of 54 carbons. In this case, the eutectic effect is 
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more related to the structural form of the molecule, which has spatial organization different 

from the trisaturated TAGs, due to the presence of unsaturation.  

It should be noted that the observed eutectic effect, related to the incompatibility 

between chain size of the saturated TAG molecules and accentuated by the presence of 

unsaturated molecules in the systems, contributed positively to the development of NLC 

reducing crystallinity and favouring the reduction of Z-ave of the particles. Confirmed by the 

results obtained in the previous topic regarding Z-ave and particle stability. The NLC 6, 

developed with 80% CR and 20% HOSO, showed the highest value of Z-ave (188.57nm) 

shortly after processing, and after 60 days of evaluation, it was the most unstable system, with 

a significant increase of Z-ave and PDI and undesirable ZP reduction after possible 

polymorphic transitions. While the NLC 11, which has the greatest heterogeneity in relation to 

the composition in TAG, composed by the mixture of 20% of CA, 20% and of 60% of HOSO, 

was the nanoparticle system that presented the lowest value of Z-ave (156.33nm) after 

processing, showing to be stable over 60 days of storage, even after possible polymorphic 

transition at 30 days storage. 

Through these evaluations via DSC it was possible to observe that the LM 

composition used for the development of the nanoparticles had a direct influence on the thermal 

behavior of the nanostructures. Moreover, through the results obtained, it can be verified that 

the nanoparticles have different fusion behaviour of lipid systems in macroscale. 

3.4. Polymorphic habit 

X-ray diffraction is a consolidated technique for the crystalline characterization of 

continuous lipid systems as well as particulates (Bunjes & Unruh, 2007; Wu, Zhang, & 

Watanabe, 2011). Due to its different geometric configurations, the polymorphs diffract the x-

rays at different angles. In this study the wide-angle X-ray scattering (WAXS) technique was 

used to provide information regarding the short spacings of the crystalline sub-cells in a way to 

obtains the polymorphic forms in the systems (Campos, 2005). In lipids, the most common 

polymorphs are in the α-form, which has a diffraction peak at 4.15Å, in the β 'form, 

characterized by two lines of diffraction at 3.8 and 4.2Å, and in the β form that is related to a 

line of higher intensity at 4.6 Å and peaks of lower intensities at 3.7 and 3.8Å (Rousseau & 

Marangoni, 2002). 
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The results concerning the crystalline forms of the nanoparticles developed in this 

work, after lyophilization process are shown in Table 3, where it is possible to verify also the 

shorts spacings presented for each sample. In addition, the results from the LM used in the 

development of nanoparticles, which were obtained in a previous study by our research group, 

are also described (V. S.  Santos, Santana, Braz, Silva, Cardoso, & Ribeiro, 2018). 

Table 3. Polymorphic forms, short spacings and peak intensities for solid lipid 
nanoparticles (SLN) and nanostructured lipid carriers (NLC) lyophilized. 
Samples Short spacings (Å) Santos et al., 2018 

LN 4.6 4.1 4.2 3.8 3.7 
Polymorphic 

Form 
LM* 

Polymorphic  

Form 

 SLNs lyophilized LM of SLNs* 

SLN 1 4.60VS - - 3.87M 3.73M β LM 1 α 

SLN 2 4.61VS - - 3.80M 3.74M β LM 2 α 

SLN 3 - - 4.23VS 3.80M - β’ LM 3 α 

 NLCs lyophilized LM of NLCs* 

NLC 4 4.63M - - 3.89M 3.72M β LM 4 β’+ β 

NLC 5 4.63VS - - 3.82M 3.76M β LM 5 β 

NLC 6 - - 4.20VS 3.81M - β’ LM 6 β 

NLC 7 4.60M - - 3.88M 3.71M β LM 7 β 

NLC 8 4.63M - - 3.81M 3.71M β LM 8 β’+ β 

NLC 9 - - 4.22VS 3.80w - β’ LM 9 β’+ β 

NLC 10 4.57VW - - 3.86M 3.69M β LM 10 β 

NLC 11 4.55VW - - 3.88VW 3.74VW β LM 11 β’+ β 

NLC 12 - - 4.23W 3.79VW - β’ LM 12 β’+ β 

Peak intensity: V - very, W - weak, M - medium, S - strong. *Data refering to lipid matrices (LM) came from an earlier study 
conducted by our research group (V. S.  Santos, Santana, Braz, Silva, Cardoso, & Ribeiro, 2018). 

As shown in Table 3, the LM used in the development of SLN, even after 

crystallization and crystalline stabilization, under the same conditions of processing of the 

nanoparticles showed diffraction peaks at 4.1Å, referring to crystals in the α-form (Figure 6A). 

According to the literature, the CA due to the high amount of SSS in its composition has the 

tendency to crystallize in β form, whereas the polymorphic habit of CR is the mixture of crystals 

in forms β 'and β. According to the authors, for the polymorphic transition to the more stable 

form, these systems required a specific temperature treatment or storage at 25 °C for 180 days 

(Oliveira, Stahl, Ribeiro, Grimaldi, Cardoso, & Kieckbusch, 2015; Ribeiro, Basso, & 

Kieckbusch, 2013). In the present study, it can be verified that the polymorphic transition was 

accelerated after the process of obtaining the nanoparticles developed with these LM (Figure 
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6A and 6E). The SLN 1 and SLN 2 showed diffraction peaks at 4.6 Å for crystallization in the 

most stable form , and SLN 3 showed diffraction peaks at 4.2 and 3.8 Å for the intermediate 

polymorphic form ’. These results confirm that the SLN gelation process occurred due to the 

polymorphic transition of the lipid content (→’→) during the crystallization and 

stabilization steps performed shortly after the HPH production process, as previously described. 

The NLC 6, NLC 9 and NLC 12 composed of CR with 20, 40 and 60% HOSO 

incorporation, respectively, presented diffraction peaks in 4.2 and 3.8Å, referring to the 

intermediate polymorphic form ’, characteristic of the CR. It is noteworthy that in the results 

obtained for Z-ave of the nanoparticles referring to these systems, no changes in Z-ave were 

observed during the 60 days of evaluation. Indicating that there were no polymorphic transitions 

from the ’ to -form in the time and conditions studied. It is noteworthy that the x-ray 

diffraction was performed on the nanoparticles after the lyophilization process, which could 

have influenced the acceleration of the polymorphism of these nanoparticles. However, it does 

not occur for these systems, remaining in the intermediate ’-form , indicating that it really is 

the polymorphic habit of these systems. The other nanoparticles presented diffraction peaks at 

4.6 Å for crystallization in the most stable -form. 

In addition, it was observed in the diffractograms shown in Figure 6 that the 

intensity of the peaks related to the crystalline forms was reduced with the increase of HOSO. 

It is an effect directly related to the reduction of the crystallinity of the systems by the 

incorporation of the unsaturated fraction. 

In macroscale lipid systems, in terms of technological application, it is reported in 

the literature that crystals in the β'-form present intermediate stability, relatively small size and 

incorporate a large amount of liquid oil in the crystalline network, contributing to the formation 

of softer fats, with good aeration and creaminess properties. In contrast, crystals in the 

polymorphic form β are more stable and show dense packaging, which implies a higher 

consistency and melting point. In addition, they are initially small, but tend to grow into large, 

needle-shaped clusters, promoting in the mouth a sensation of undesirable sandiness (Sato, 

2001; Timms, 1995). 
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Fig. 6. Diffraction patterns of: A) Lipid matrices (LM) composed by solid lipids (100% CA; mixture of CA 

and CR (50:50); 100% CR); B) LM composed by mixtures of 80% of solid lipids (CA; mixture of CA and CR; CR) and 20% 
of liquid lipid (HOSO); C) LM composed by mixtures of 60% of solid lipids (CA; mixture of CA and CR; CR) and 40% of 
liquid lipid (HOSO); D) LM composed by mixtures of 40% solid lipids (CA; mixture of CA and CR; CR) and 60% of liquid 
lipid (HOSO); E) SLNs developed with the LMs described in "A"; F) NLCs developed with LMs described in "B"; G) NLCs 
developed with the LM described in "C"; and H) NLCs developed with the LM described in "D". The data referring to LMs 
come from an earlier study conducted by our research group (Santos, Santana, Braz, Silva, Cardoso, & Ribeiro, 2018). 
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Currently, there are no applications of lipid nanoparticles in foods reported in the 

literature, only indications about their efficiency in the transport of bioactive compounds, as 

well as medicines in the medical field, to facilitate absorption in the body. Thus, in this study, 

we can say that the developed NLC present potential application for the delivery of lipophilic 

bioactive compounds in foods, with consequent, delivery of these compounds in the body, 

mainly due to the high thermal resistance. In addition, the particles in the β'-form may have a 

higher incorporation capacity of bioactive compounds, due to the crystallinity characteristics 

related to less compact crystalline networks. Also, due to the reduced size, the nanoparticles 

can reduce the undesirable effects of technological application such as the sandiness 

characteristic of crystallized fats in the β-form, reported in the macroscale systems. 

5. Conclusion 

The use of other LM from plant origins, such as CA, CR, and HOSO, was positive 

for the production of lipid nanoparticles, with a clear viability of food application. The use of 3 

cycles of PAH was sufficient to obtain systems with desirable characteristics. The NLC with 

mixed compositions of conventional oils and fats remained stable over 60 days, with few 

changes in Z-ave of the particles, PDI and ZP. The SLN composed only of the hardfats, 

presented gelation behavior very similar to the SLN developed with purified lipids, as reported 

in the literature. The thermal study allowed to identify differences between nanometric scale 

particles when compared to LM. The results show that the nanostructured lipid materials exhibit 

higher thermal resistance than the macroscale lipids. In addition, it was possible to detect an 

eutectic effect due to the heterogeneity of the constituent components of LM, which favoured 

the development of less crystalline nanoparticles in structural terms, with a consequent 

reduction in size and greater physical stability. Additionally, through the characterization of the 

polymorphic habit of the nanoparticles, it was verified that when in nanoscale polymorphic 

transitions are facilitated and the more stable form is reached more quickly. Therefore, the 

nanoparticles developed in this study have an economic and operational viability of food 

application. Mainly because they are composed of conventional fats and oils, in addition to the 

easy scaling of the production method to industrial scale. In terms of application, the developed 

systems presented a high potential for incorporation of bioactive compounds for application as 

delivery systems in food. 
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Abstract 

The objective of this study was the development of nanostructured lipid carriers 
(NLC) with 30 and 50% of the free phytosterols (FP) using conventional fat and oils. Lipid 
matrices (LM) and NLC were produced with high oleic sunflower oil and fully hydrogenated 
canola (CA) and crambe (CR) oils by high-pressure homogenization (HPH) using 
Polyoxyethylene sorbitan monooleate as the emulsifier. The NLCs were evaluated for the 
physical stability during 60 days, by means of the verification of the hydrodynamic diameter 
(Z-ave), polydispersity index (PDI) and zeta potential (ZP). The LMs were characterized in 
terms of crystallinity and morphological characteristics. The melting behavior and polymorphic 
habit were investigated for both LM and NLC. The NLC presented particle sizes ranging from 
148.23 to 342.10 nm, PDI from 0.275 to 0.481 and ZP between -22.27 and -29.70 mV. The best 
results were obtained for NLC with 30% of FP. The NLC presented higher thermal resistance 
than their LM, requiring more energy for the phase transition. The use of CA and CR separately 
in the NLC formulations favored the incorporation of FP. The FP showed a diffraction pattern 
with 14 peaks which has difficulted the triacylglycerols (TAG) peaks identification. Thus, 
possibly, both LM and NLC have presented crystals in β-form and also mixtures of β' and β 
forms, depending on CA and CR presence. When comparing to LM, the obtained NLC showed 
a different thermal and crystalline characteristics, whit high versatility for food applications. In 
this way, NLCs can be used for food enrichment, such as spreads, margarine, mayonnaise, 
beverages, among others.  

 

Keywords 

Nanotechnology; Lipids; Thermal properties; Crystallinity; Bioactive compounds; 
Functional Foods. 
 

Abbreviations 

CA Fully hydrogenated canola oil  
CR Fully hydrogenated and crambe oil 
DSC Differential Scanning Calorimetry 
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FP Free Phytosterols 
GRAS Generally recognized as safe 
GTI Gastrointestinal tract 
HLB Hydrophilic-lipophilic balance 
HOSO High oleic sunflower oil 
HPH High-pressure homogenization 
INPI National Institute of Industrial Property 
LM Lipid matrix 
LN Lipid Nanoparticles 
NLC Nanostructured Lipid Carriers 
PDI Polydispersity index 
T80 Polyoxyethylene sorbitan monooleate 
TAG Triacylglycerols 
XRD X-ray diffraction 
Z-ave Average diameter 
ZP Zeta Potential 

1. Introduction 

The benefits of nanotechnology have already been recognized by many industries 

and some products have already been manufactured and marketed. However, the study of 

nanotechnology in the food area very recent, considered non-existent in terms of industrial 

application, even recognizing the great potential of use. Up to date, the number of scientific 

studies focused on the development of nano-systems and its applications in food is still limited, 

but this number has been growing with a great potential for commercially viable applications 

in a close future (Beloqui, Solinis, Rodriguez-Gascon, Almeida, & Preat, 2016; Cerqueira, 

Pinheiro, Silva, Ramos, Azevedo, Flores-López, et al., 2014; I. Lacatusu, Badea, Stan, & 

Meghea, 2012; Rashidi & Khosravi-Darani, 2011).  

Most of the developments in nanotechnology in the food area occurred after 2005, 

where researchers started reporting on several findings on nanoscale systems with potential for 

food application. The main highlighted topic in this field was the use of nanotechnology for the 

development of bioactive compound carriers for foods (Aditya, Aditya, Yang, Kim, Park, & 

Ko, 2015; Weiss, Takhistov, & McClements, 2006). These discoveries were initially 

encouraged by the use of carrier systems in pharmaceutical and cosmetic fields, where 

nanotechnology has been widely explored and applied for the delivery of many drugs and 

bioactive compounds. Even after the successful development of these nano-systems in the 

biomedical sectors, many challenges must be overcome for food uses such as the choice of raw 
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materials, since foods require compounds generally recognized as safe (GRAS) and/or under 

law limitations.  

In this context, lipid nano-systems present a great potential for food applications, 

since a great variety of natural and modified fats and oils are already available for the food 

industry. In the scientific literature, it is possible to find a range of studies suggesting the 

development of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the 

transport and protection of bioactive compounds for food applications (WEISS, TAKHISTOV, 

& McCLEMENTS, 2006; ADITYA & KO, 2015). The main interest in carrying bioactive 

compounds in food lies in the development of enriched or functional food products, in order to 

provide healthier food for consumers.  

Bioactive compounds are commonly known for their functional properties related 

to disease prevention (McClements, Decker, & Weiss, 2007). However, many of these 

compounds are naturally present in foods, in very low amounts or with limited bioavailability. 

Currently, some of these compounds have been extracting from plant and animal sources to be 

directly incorporated in foods. However, this direct incorporation generally provides a low 

chemical stability and bioavailability which may reduce the functional effects of these 

compounds. In addition, bioactive compounds often have low solubility, which makes difficult 

their applications in foods (Hariklia Vaikousi, Athina Lazaridou, Costas G. Biliaderis, & 

Zawistowski, 2007).  

Lipid nanoparticles are promising to deliver lipid-soluble bioactive compounds 

with low water solubility, such as carotenoids, tocopherols, omega-3, phytosterols, among 

others, widely used as ingredients in various food products. In addition, lipid nanoparticles can 

be used to protect these bioactive compounds from chemical degradation during food 

processing and storage. For instance, Awad (2008) evaluated the thermal and polymorphic 

behavior of NLS developed with tripalmitin loaded with ω-3. Ioana Lacatusu, Mitrea, Badea, 

Stan, Oprea, and Meghea (2013) studied NLC developed with fish oil, ω-3 rich, and tristearin 

for lutein carrying. Y. Liu and Wu (2010) developed NLC with tripalmitin and corn oil for the 

incorporation of lutein. I. Lacatusu, Badea, Stan, and Meghea (2012) developed NLC with 

grape seed and fish oils, and squalene to carry β-sitosterol. Additionally, authors report that due 

to the higher contact surface area of lipid nanoparticles, they may improve the bioavailability 



188 

 
 

 

 

and absorption of bioactive compounds during the gastrointestinal tract (Weiss, Decker, 

McClements, Kristbergsson, Helgason, & Awad, 2008).  

As already cited, up to date the studies have been carried out using purified lipid as 

raw materials, such as isolated fatty acids and triacylglycerols (TAGs) as well as bioactive 

compounds of analytical grade. These compounds make it difficult, especially in terms of cost, 

the application of these systems in food products at industrial scale. For this reason, during the 

last 4 years, our research group has been working with the development of nanoscale systems 

based on the use of food grade vegetable fats and oils, widely used in the food industry. Thus, 

we have developed SLN with hardfats of canola and cambre oils, as well as NLC with high 

oleic sunflower oil and the hardfats of canola and cambre oils (V. S. Santos, Braz, Silva, 

Cardoso, A., & Ribeiro, 2018). In addition to these nanosystems, NLCs were also developed 

with soybean oils and soybean hardfat to carry food grade free phytosterols (FL) (V. S. Santos, 

Ribeiro, Cardoso, & Santana, 2018).  

The hardfats are fully hydrogenated vegetable oils, with a melting point ranging 

from 40-72 ° C. They are obtained when all the double bonds of the fatty acids are saturated 

during the full catalytic hydrogenation of unsaturated oils. Hardfats are relative new industrial 

materials and affordable for use in food. They were initially developed as a raw material to 

interesterified low trans fats. Nowadays, besides the use as solid material for the development 

of NLS and NLC (V. S.  Santos, Santana, Braz, Silva, Cardoso, & Ribeiro, 2018), hardfats have 

also been used as structuring agents of liquid oils (A. P. B. Ribeiro, Basso, & Kieckbusch, 2013; 

Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). 

It should be noted that our research group is a pioneer in the use of hardfats for the 

development of both NLS (alone) and NLC (combined to vegetable oils) for the transport of 

food grade lipophilic bioactive compounds, such as FL. The interest in carrying phytosterols 

into particles in foods is related, mainly to its health benefits. 

 Phytosterols, also known as plant sterols, are the main sterol fraction in plant 

extracts and vegetable oils. More than 10 types of phytosterols molecules can be naturally 

found, being β-sitosterol, Δ5-avenasterol, campesterol and stigmasterol the main species. The 

proportion of each sterol in the total content varies according to the plant source (Fernandes & 

Cabral, 2007; Goméz-Coca, Perez-Camino, & Moreda, 2015; Moreau, Whitaker, & Hicks, 

2002). 
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Regarding the bioactivity and consumption of phytosterols by humans, many 

studies have been carried to demonstrate the good effects of phytosterols on the metabolism 

(Kritchevsky & Chen, 2005; Ostlund, 2002). The first reported effect was the prevention of 

coronary disease. Because of their similarity to cholesterol, phytosterols are known to compete 

with cholesterol for absorption, leading to lower blood cholesterol levels (Ling WH & PJ., 

1995; Ntanios FY, MacDougall DE, & PJ., 1998). Studies indicate that the consumption of 2 g 

of phytosterols per day has a significant effect on the reduction of cholesterol levels and, 

consequently, the prevention of coronary heart disease (Moruisi, Oosthuizen, & Opperman, 

2013; Wu, Fu, Yang, Zhang, & Han, 2009). In addition, the ingestion of phytosterols has been 

associated with cancer prevention. Recent studies indicate that the prevention of cancer by the 

consumption of phytosterols is related to the modulation of sterol biosynthesis, improvement 

of the immune response, and induction of tumor metastases (Shahzad, Khan, Md, Ali, Saluja, 

Sharma, et al., 2017). 

From the technological point of view, our research group recently related that that 

food grade FL (composed of a mixture of phytosterols) have thermal and crystalline behavior 

very similar to isolated phytosterols such as β-sitosterol and stigmasterol (Gomes Silva et al., 

2018). In addition, we have previously developed NLCs composed of soybean oil and fully 

hydrogenated soybean oil with the incorporation of 30% FP, being these systems promising for 

food application (V. S. Santos, Ribeiro, Cardoso, & Santana, 2018). 

Thus, the central objective of this work was the development of NLC with other 

conventional raw materials, such as high oleic sunflower oil, and fully hydrogenated canola and 

crambe oils for food grade FL carriage. In addition, we aimed to extend the use of other 

vegetable oils and fats to obtain nanostructured systems with different crystalline characteristics 

and thermal stability for applications in different food products.  

2. Materials & method 

2.1. Materials 

The solid lipid raw materials used for the development of lipid matrices (LM) and 

NlC were the fully hydrogenated canola (CA) and crambe (CR) oils provided by SGS 

Agricultura e Indústria Ltda©(Ponta Grossa - PR, Brazil). High oleic sunflower oil (HOSO), 

supplied by Cargill Agrícola S.A (Mairinque - SP, Brazil), was used as liquid lipid in the NLC 
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composition. The HOSO and both CA and CR were previous characterized according to the 

fatty acid (CAG) and triacylglycerols (TAG) compositions (V. S.  Santos, Santana, Braz, Silva, 

Cardoso, & Ribeiro, 2018). HOSO presented 90.68% of unsaturated fatty acids, of which 

78,60% was of oleic acid (O, C18:1) and 11,41% of linoleic acid (L, C18:2). The CA and CR 

presented 100% of saturated fatty acids. For the CA: 93.82% was of stearic acid (S, C18:0), 

5.24% of palmitic acid (P, C16:0), and 0.94 % arachidonic acid (A, C20:0). For CR: 56.30% 

was of behenic acid (Be, C22:0), 31.70% of stearic acid (S, C18:0), 6.70 % of arachidonic acid 

(A, C20:0), 3.20% of palmitic acid (P, C16:0) and 2.10% of lignoceric acid (Lg, C24: 0). The 

TAGs present in the HOSO were: OOO representing approximately 65% of the total, followed 

by OLO (~ 15%), OOP (~ 10%) and OSL/PLO (~ 3%). CA presented 4 distinct TAGs, with the 

majority being SSS (~ 80%) and PSS (~ 13%) and in smaller proportions PPS (~ 4%) and SSA 

(~ 3%). In CR, 9 different TAGs were found, among which the predominant ones were SBeBe 

(~ 38%), SSBe (~ 17%), SABe (~ 17%) and in smaller proportions ABeBe (~6%), BeBeBe 

(~9%), BeBeLg (~8%), PSBe (~2%) and PSS (~ 0.5%). The ethoxylated sorbitan monooleate 

P1754 (Tween®80, T80), with a hydrophilic-lipophilic balance (HLB) of 14.0, was purchased 

from Sigma-Aldrich (St. Louis, Missouri, USA). The bioactive compounds were free 

phytosterols (FP), kindly provided by a national production initiative (still under development). 

FPs were 98% purity, composed of a mixture of sterols, being the main sterols β-sitosterol (~ 

44%), stigmasterol (~ 27%) and campesterol (~ 23%). 

2.2 Methods  

2.2.1. Formulation of lipid matrix and lipid nanoparticles 

The NLCs were developed with 10% (m/m) of total lipid phase and 90% (m/m) of 

the aqueous phase. The aqueous phase was composed of distilled water and 2% of the T80 as 

the emulsifier, as recommended by Aditya, Aditya, Yang, Kim, Park, and Ko (2015). For the 

composition of the lipid phase, 14 lipid matrices were formulated with liquid lipid (HOSO in 

proportions of 20, 40, 50 and 70%), solid lipids (30 and 50% of CA and CR and their mixtures) 

and the bioactive compound (30 and 50% FP), as shown in Figure 1. Each LM was used for the 

development of the NLC.  
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Fig. 1. Schematic representation of lipid matrices (LM) composition, used in the nanostructured 
lipid carriers (NLC) with free phytosterols (FP). A) LM and NLC, both developed with 30% FL, 20, 40 and 70% 
high oleic sunflower oil (HOSO), 15, 25, 30 and 50% of fully hydrogenated canola oil (CA) and crambe oil (CR); 
B) LM and NLC, both developed with 50% FL 20, 40 and 50% HOSO, 5, 10, 15 and 30% of CA and CR. 

 

2.2.2. Production of lipid matrix and lipid nanoparticles 

LMs were melted at 130 °C over magnetic stirring for 3 minutes, conditioned at 

5°C for 24 h for lipid crystallization, followed by a further 24 h at 25 °C for crystalline 

stabilization and subsequent physical evaluations. The NLC preparation was performed 
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according to 4 steps: i) fusion of the lipid fraction; ii) formation of the emulsion; iii) 

nanoemulsification, and iiii) crystallization of the lipid phase. The lipid fraction (10%) was 

melted and homogenized on a magnetic stirrer at 300 rpm for 3 minutes. Subsequently, the 

aqueous phase (90%) was added at 90°C and the pre-emulsion was obtained in Ultra Turrax 

IKA T18 Basic (Germany) at 20,000rpm for 3 minutes. Then the pre-emulsion was subjected 

to 3 cycles of homogenization at 800 bar in a high pressure homogenizer (HPH, GEA Niro 

Soavi, model: NS 1001L PANDA 2K, Italy) as recommended by Zimmermann, Müller, and 

Mäder (2000), Bunjes, Steiniger, and Richter (2007) and Severino Patrícia Severino, Pinho, 

Souto, and Santana (2012). After the HPH process, the obtained nanoemulsions were stored at 

5 °C/24 hours for lipid crystallization and obtaining the dispersions containing the NLC, which 

were subsequently stored at 25 °C/24h for crystalline stabilization (Qian & McClements, 2011; 

Yang, Corona, Schubert, Reeder, & Henson, 2014). A portion of the samples in aqueous 

suspension was maintained at 25°C for initial characterization and stability evaluation over 60 

days storage and another part was dried by lyophilization, as described in the sequence.  

2.2.3. Additional drying process of lipid nanoparticles 

The NLCs in aqueous suspension, shortly after the crystallization and stabilization 

process described in the previous item, were frozen in ultra-freezer (-86 °C) for 2 hours and 

immediately afterward were subjected to lyophilization for 24h at -25 ° C under a vacuum of 

0.370 mbar using lyophilizer (Liobras L101, Brazil). The NLCs were stored at 25 °C for further 

characterization.  

2.2.4. Characterization of lipid matrix and lipid nanoparticles 

2.2.4.1. Size, polydispersity index and zeta potential of lipid nanoparticles 

The NLCs in aqueous dispersions were evaluated in triplicate for particle size by 

means of the hydrodynamic diameter (Z-ave) in nanometers (d.nm), polydispersity index (PDI) 

and zeta potential (ZP) after 24 hours, 15, 30 and 60 days of the production process by dynamic 

light scattering (DLS, Zetasizer Nano NS, Malvern, UK). The samples were diluted with 

distilled water to reduce the opalescence before the measurements. Data analysis was performed 

using the software included in the equipment system. 
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2.2.4.2.Thermal behavior in the melting of lipid matrix and lipid nanoparticles  

The melting thermal behavior of the LM and the bioactive compound used to 

produce NLC, as well as lyophilized NLCs, were analyzed using the TA Instruments, model 

Q2000, attached to the RCS90 Refrigerated Cooling System (TA Instruments, Waters LLC, 

New Castle). Data were processed in the Universal V4.7A software (TA Instruments, Waters 

LLC, New Castle). LM used for the production of NLC were packed in aluminum hermetical 

capsules (~10mg) and melted at 150 °C to erase the crystalline history. Afterward, they were 

submitted to the same thermal treatment performed in the NLC after processing in HPH, 

referring to the crystallization and stabilization stages (5 °C/ 24h and 25 °C/24h), thus making 

it possible to compare the results during melting. The melting events were evaluated under 

isothermal condition at 25 °C for 10 minutes, followed by heating at 25°C to 10°C/min (Wang, 

Dong, Wei, Zhong, Liu, Yao, et al., 2014). To evaluate the NLC for the melting thermal 

behavior, the lyophilized samples (mass of ~10mg) were packed in hermetic aluminum capsules 

and submitted to the same DSC program, mentioned before. For all melting analysis were 

obtained the following parameters: initial melting temperature (Tin), peak melting temperature 

(Tmax), final melting temperature (Toff) and melting enthalpy (Hm). 

 2.2.4.3. The microstructure of lipid matrices 

The determination of the microstructure (morphology and crystalline dimensions) 

of ML was performed by polarized light microscopy (PLM). The samples were previously 

melted at 150 °C in an oven and a droplet was placed on a glass sheet (also preheated at 150 ° 

C), which was covered with a coverslip. The slides were then conditioned at 5 °C/24h followed 

by 24h at the analysis temperature (25 °C), according to the crystallization and stabilization 

treatment performed for LM and NLC. The morphology of the crystals was evaluated using the 

Microscope Microscope Olympus BX-51 (Olympus, Japan), with infinite correction optics UIS, 

coupled to the Evolt E-300 digital color video camera 5.0 Mpixel (Olympus, Japan). The images 

were captured using Image-Pro Plus software version 7.01 (Media Cybernetic, USA) under 

polarized light and magnification of 200 times. For each slide, three visual fields were analyzed, 

of which only one was chosen to represent the observed crystals. The evaluation parameters 

selected for the quantitative analysis of the images were the mean diameter of the crystals and 

the percentage of crystallized area (Campos, 2005).  
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2.2.4.4. X-ray diffraction analyses of lipid matrix and lipid nanoparticles  

X-ray diffraction (XRD) analysis was performed on LMs used in nanoparticles 

production, lyophilized NLC and bioactive compound (FP) according to AOCS method Cj 2-

95 (AOCS, 2009). FP and LM were subjected to a previous thermal treatment under the same 

conditions of the crystallization and stabilization of NLC, after the production process in HPH. 

Thus, the LM and the FP were melted at 150°C and conditioned at 5°C for 24 h, followed by a 

further 24 h at 25°C. The NLCs were subjected to XRD analysis after lyophilization. All XRD 

analyzes were performed on a Philips diffractometer (PW 1710) using Bragg-Brentano (:2) 

geometry with Cu-k rad radiation (= 1.54056 Å, 40 KV voltage and 30 mA current). The 

measurements were obtained with steps of 0.02 ° in 2 ° and acquisition time of 2 seconds, with 

scans of 1.8 to 40° (2° scale) at 25 °C. The identification of the polymorphic forms of the LM 

and the lipid NLC were performed according to the typical short spacings of the lipid crystals 

(AOCS, 2009) and the diffraction peaks of the FP were enumerated and compared with results 

found in the literature.  

2.2.5. Statistical analysis 

Z-ave, PDI and ZP data were statistically analyzed by means of One-Way Analysis 

of Variance (ANOVA) with Statistica (V.12) Software (Statsoft Inc., Tulsa, UK). The Tukey 

test was applied to determine the significant differences between the means, at a probability 

level of 5% (p≤0.05). 

3. Materials & method 

3.1 Size, polydispersity index and zeta potential of lipid nanoparticles 

The Z-ave, PDI and ZP are fundamental parameters for the characterization of 

nanostructured systems. These parameters can be used to verify the stability of the systems 

along of time. PDI values vary between 0 (monodisperse) and 1 (polydisperse) (T. S. Awad, 

Helgason, Weiss, Decker, & McClements, 2009). ZP over |30| mV characterizes colloidal 

systems with good stability, being |60| mV an optimum pint. The system is considered 

susceptible to destabilization and the occurrence of limited flocculation between 5 and 30mV 

(Madureira, Campos, Gullon, Marques, Rodriguez-Alcala, Calhau, et al., 2016). The results 
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obtained for Z-ave, PDI and ZP for the NLCs developed with 30 and 50% FP are described in 

Table 1 and plotted in Figure 2.  

The NLCs with 30% of FP (Figure 2A) presented lower values of Z-ave in relation 

to NLC developed with 50% FP (Figure 2B), statistically different (p≤0.05). Z-ave values of 

particles obtained shortly after processing (24h), for NLCs with 30 and 50% FP, ranged from 

148.23 to 250.00 nm and 205.97 to 342.10 nm, respectively. The values for PDI were also lower 

for NLCs with 30% FP, ranging from 0.275 to 0.410 and 0.343 to 0.481 for NLCs with 50% 

FP (Figures 2C and D). As for the ZP results, the values closer to 30mV were found for NLCs 

with 30% FP ranging from -24.40 to -29.70 mV, whereas for 50% FP incorporation these values 

were -22.27 at -26.47 mV. Similar values were found in NLC composed of solid lipids (palmitic 

and stearic fatty acids) and liquid lipids (squalene, grape seed oil, and fish oil) by I. Lacatusu, 

Badea, Stan, and Meghea (2012) with the incorporation of 1% β-sitosterol, using T80. These 

NLCs had Z-ave varying between 177 to 236 nm, PDI from 0.225 to 0.380 and ZP between -

38 and -52 mV. It should be noted that the NLCs developed by these authors contained only 

1% of β-sitosterol. In the present work, one of the challenges was the high incorporation of FP 

(30 and 50%) into the NLC, which may allow the development of enriched food products with 

functional properties.  

In general, observing Figures 3A and 4A were the particle size distribution were 

expressed in terms of scattered light intensity, I distribution, the proportional diameter to the 

sixth power (Iαd6). It is possible to verify that the NLCs with 30% of FP, had greater stability 

over time when compared to systems with 50% FP, even with a bimodal distribution. The 

differences between the two systems can be better understood by observing Figures 3B and 4B 

that showed the particle size distribution in terms of the number of particles, N distribution, 

proportional to the predominant diameter in the sample (Nαd). 

Thus, it was possible to verify that the NLC with 30% of FP presented more 

homogeneous particle sizes, whereas, with 50% of FP, a greater polydispersity between the 

particles was noticed. In addition, it should be noted that the polydispersity of the particles with 

50% FP increased over the time. It was observed that during the 60 days of evaluation the Z-

ave of NLCs with 30% of FP remained very similar. In addition, it was found that the increase 

of HOSO in the NLC with 30% FP, favored the reduction of the particle size, being visible in 

Figure 2A. All NLCs developed with 40% HOSO showed Z-ave below 200 nm (NLC 4, 5 and 
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6). It should be noted that the NLC with the lowest values of particle size was NLC 7, composed 

only of liquid lipid and the bioactive compound (70% of HOSO and 30% of FP). 

 In a previous study, with NLC, soybean oil (20%) and fully hydrogenated soybean 

oil (50%) with 30% FP incorporation, Z-ave and PDI obtained were 164.97 nm and 0.235, 

respectively (V. S. Santos, Ribeiro, Cardoso, & Santana, 2018). The results obtained in the 

present work for NLC 1 with the same oil: fully hydrogenated oil ratio and bioactive compound 

(20% HOSO, 50% CA and 30% FP), but from different sources, Z-ave was 204.97 nm and PDI 

of 0.410. The differences between the values showed that the TAG composition of LM directly 

interferes in the characteristics of the NLC system. In this way, we can verify that it is very 

important to explore LMs composed of different vegetable fats and oils, to extend the range of 

raw materials compatible with the use in NLC and SLN, as well as to verify the best options 

for the incorporation of each bioactive compounds. 

It was found that NLC 2 composed of the mixture of CA and CR (25:25m/m), 20% 

of HOSO and 30% of FP showed particles with 250 nm after 24h and this value was reduced 

to 219.23 nm after 15 days, and after 30 days of storage it was verified a reduction of to 212.77 

nm, all changes with statistical differences at 5% probability level. Other reductions of Z-ave 

were detected in NLC with 30% of FP, but were not so intense as in NLC 2, and were not 

statistically different. 

 The NLCs with 50% FP showed many changes of Z-ave and PDI during 60 days 

of storage, and it was not possible to evaluate the influence of the increment of HOSO, as well 

as the chemical composition of the hardfats of the systems. It was observed that the 

incorporation of 50% FP influenced negatively the stability of the developed systems. With the 

exception of NLC 13 that presented size between 200 and 300 nm without many variations over 

the time. The ZP of this system increased from -26 to -31 mV approximately, indicating that 

this system presents greater stability in relation to the others, also developed with 50% FP. The 

behavior of this system can be observed in Figure 4B, in the results concerning the particle 

number distribution as a function of diameter (Nαd). It is possible to verify only one peak, 

indicating that the system is monodisperse, with less tendency to phenomena of destabilization. 

The variations in the Z-ave of nanostructured particles, as seen for NLCs developed 

with 30% FP, have been related to TAG polymorphic changes during storage. In a previous 

study, founded that systems composed of more heterogeneous LMs, due to the TAG 
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composition, presented lower Z-ave and the reductions of the Z-ave were verified after 30 days 

of storage (V. S. Santos, Braz, Silva, Cardoso, A., & Ribeiro, 2018). 

 

Table 1  

Mean hydrodynamic diameter (Z-ave), polydispersity index (PDI) and zeta 
potential (ZP) of the nanostructured lipid carriers (NLC) with 30 and 50% of free phytosterols 
(FP) evaluated after 24 h, 15 days, 30 days and 60 days of production 
NLC/ 
Time  
 

Z-ave 
(d.nm) 

PDI 
ZP 

(mV) 

NLC/ 
Time  
 

z-ave 
(d.nm) 

PDI 
ZP 

(mV) 

24 h 30% FP 24 h 50% FP 
NLC 1 204.97±3.45cdefB 0.410±0.026abcA -28.30±0.95hijklmB NLC 8 342.10±30.00abdcA 0.406±0.055bA -23.57±0.72bcdefA 

NLC 2 250.00±7.30aA 0.358±0.027abA -24.40±0.56cdeB NLC 9 217.10±10.70hiB 0.481±0.086abA -22.27±0.92abA 

NLC 3 214.40±6.91bcdB 0.310±0.062ghijA -27.70±0.98ghijklmB NLC 10 254.53±05.49efghiA 0.362±0.071bA -23.07±0.93abcdA 

NLC 4 179.77±3.74jkB 0.321±0.025efghijA -29.17±0.21jklmnB NLC 11 282.95±23.35bcdefghiA 0.378±0.052bA -25.57±0.32fghA 

NLC 5 184.70±3.01ijkB 0.315±0.031fghijB -28.37±0.49ijklmB NLC 12 265.55±18.15defghiA 0.384±0.006bA -26.37±0.85hijA 

NLC 6 177.33±4.29kB 0.275±0.028ijB -29.70±1.35lmnB NLC 13 205.97±03.79iA 0.392±0.028bA -26.47±0.42hijA 

NLC 7 148.23±0.55mB 0.276±0.025ijA -26.13±0.46efgB NLC 14 246.00±26.30efghiA 0.343±0.059bA -24.73±0.55cdefghA 

15 days  15 days  
NLC 1 202.27±4.42defgB 0.411±0.004abA -27.83±0.15ghijklmB NLC 8 482.75±18.88aA 0.478±0.055abA -26.60±0.62hijA 

NLC 2 219.23±2.46bB 0.384±0.031abcdefgA -29.27±0.49klmnA NLC 9 385.29±34.29abcdA 0.359±0.039bA -29.60±0.57klmA 

NLC 3 212.87±2.10bcdeB 0.399±0.011abcdeA -27.27±0.71ghijkA NLC 10 281.60±10.18cdefghiA 0.473±0.126abA -28.00±0.36ijkA 

NLC 4 184.77±2.65ijkB 0.348±0.200abcdefghiB -28.00±0.44ghijklmA NLC 11 382.50±18.95bcdefA 0.404±0.007bA -31.55±0.92nB 

NLC 5 190.10±3.90hijB 0.360±0.007abcdefghA -27.10±0.75ghijA NLC 12 368.20±00.99bcdefA 0.438±0.089abA -29.37±0.95klmB 

NLC 6 182.27±1.21ijkB 0.305±0.016ghijB -26.17±0.47efghA NLC 13 230.20±03.47ghiA 0.439±0.030abA -28.97±0.49klB 

NLC 7 152.77±2.66lmB 0.268±0.010jB -30.60±0.35noA NLC 14 308.13±42.93bcdefghA 0.397±0.075bA -31.13±1.31lmnA 

30 days  30 days  
NLC 1 201.83±1.86efghB 0.411±0.006abA -24.53±0.49defA NLC 8 366.50±25.70abcA 0.390±0.028bA -23.83±0.59bcdefgA 

NLC 2 208.03±3.40cdeB 0.347±0.029abcdefghijA -22.37±0.71abcA NLC 9 326.05±23.12bcdefgA 0.387±0.025bA -24.80±0.57cdefghB 

NLC 3 212.77±1.23bcdeB 0.390±0.010abcdefB -21.50±0.20abB NLC 10 328.87±02.75bcdefgA 0.444±0.005abA -25.73±0.59fghA 

NLC 4 191.40±8.39ghijB 0.301±0.032hijB -29.90±1.35mnB NLC 11 245.60±21.92efghiA 0.466±0.031abA -22.65±0.35abcA 

NLC 5 190.47±4.80ghijB 0.338±0.008bcdefghijB -20.30±1.04aA NLC 12 251.00±00.89efghiA 0.612±0.096aA -24.47±0.74cdefghB 

NLC 6 187.43±2.53ijkB 0.345±0.020abcdefghijB -27.27±0.67ghijkA NLC 13 236.57±02.80ghiA 0.448±0.300abA -29.97±0.35klmnB 

NLC 7 161.47±1.00lB 0.330±0.014defghijA -35.60±0.10pB NLC 14 286.67±27.45bcdefghiA 0.354±0.041bA -28.33±0.46jkA 

60 days  60 days  
NLC 1 208.93±4.23bcdeB 0.423±0.006aA -21.87±0.35abA NLC 8 337.75±05.35bcdeA 0.419±0.057bA -24.70±0.70cdefghB 

NLC 2 206.93±4.81cdeB 0.375±0.048abcdefghA -21.43±0.55abA NLC 9 375.65±25.10abA 0.456±0.095abA -25.27±0.29efghB 

NLC 3 214.87±2.32bcB 0.408±0.016abcdA -32.50±0.70oB NLC 10 294.85±29.75bcdefghiA 0.460±0.052abA -21.07±0.75aA 

NLC 4 186.77±3.36ijkB 0.331±0.023cdefghijB -26.67±0.40fghiB NLC 11 273.27±32.00cdefghiA 0.429±0.055abA -25.10±0.52defghA 

NLC 5 193.17±3.61fghiB 0.345±0.032abcdefghijA -24.93±0.40defB NLC 12 258.67±20.90efghiA 0.382±0.045bA -23.27±0.64bcdeA 

NLC 6 188.03±1.14ijkB 0.368±0.005abcdefghB -23.27±0.67bcdA NLC 13 239.07±04.27fghiA 0.485±0.050abA -31.37±0.71mnB 

NLC 7 160.60±0.95lB 0.341±0.020bcdefghijA -26.37±0.61efghiA NLC 14 270.10±32.57cdefghiA 0.355±0.021bA -25.83±1.10ghiA 

*Average of three replicates ± Standard Deviation; Different lowercase letters in the same column indicate significant difference related to the 
evaluation of each parameter (Z-ave, PDI and ZP) in comparison to the time of production of NLC (24h, 15, 30 and 60 days after processing), 
at the probability level ( p≤0.05) according to the Tukey Test; Capital letters on the same line indicate a significant difference in probability 
(p≤0.05) according to the Tukey Test related to the comparison between the NLC produced with different levels of incorporation of the 
bioactive compound (30 and 50% of FP) for each parameter (Z-ave, PDI and ZP). 
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Fig. 2. Results represented graphically referring to the characterization of NLC 
obtained through DLS, evaluated after 24h, 15 days, 30 days and 60 days of processing, as: A) 
Mean hydrodynamic diameter, Z-ave (d.nm) of NLC with 30% of FP; B) Mean hydrodynamic 
diameter, Z-ave (d.nm) of NLC with 50% of FP; C) Polydispersity index of NLC with 30% of 
FP; D) Polydispersity index of NLC with 50% of FP; E) Zeta potential (mV) of NLC with 30% 
of FP; F) Zeta potential (mV) of NLC with 50% of FP. 
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Fig. 3. Particle size distribution as a function of the intensity (A) and number (B) 
obtained from the dynamic light scattering (DLS) of the NLC with 30% of free phytosterols 
(FP) evaluated after 24 hours (24 h), 15 days (15d), 30 days (30d) and 60 days (60d) of 
production. 
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Fig. 4. Particle size distribution as a function of the intensity (A) and number (B) 
obtained from the dynamic light scattering (DLS) of the NLC with 50% of free phytosterols 
(FP) evaluated after 24 hours (24 h), 15 days (15d), 30 days (30d) and 60 days (60d) of 
production. 
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The authors reported that Z-ave reductions occur because of changes in the shape 

of lipid nanoparticles and correlated these reductions to polymorphic transitions of the lipid 

content to a more stable form (→’→). Thus, after the emulsification process, the lipids are 

dispersed in the water in droplets form surrounded by the emulsifier. After the crystallization 

of the lipid fraction, solid and spherical nanoparticles are obtained, nanostructured by TAGs in 

the most unstable polymorphic form (α-form). However, during storage, due to the polymorphic 

transitions of TAGs to the more stable form (β-form), the spherical nanoparticles become 

elongated, in platelets forms (Bunjes & Unruh, 2007; Salminen, Helgason, Kristinsson, 

Kristbergsson, & Weiss, 2013). The ability of the lipids to crystallize in different forms will be 

better elucidated in the topic related to XRD. 

 Additionally, according to Kuntsche, Horst, and Bunjes (2011), the NLC can 

present different forms, due to the polarity or differentiated solubility of the loaded compound. 

Nanoparticles of ubiquinone (vitamin Q10) consisting of tripalmitin presented a "spoon" 

format. This format was associated with the polymorphic transition of tripalmitin to the β-form, 

becoming elongated in the platelet form causing expulsion of vitamin Q10. However, vitamin 

Q10 was retained at one end of the structure, protected by the emulsifier layer, conferring this 

differentiated "spoon" shape to the nanosystems. 

Thus, the large variations observed for NLC with 50% FP, may be related to the 

expulsion of the bioactive compound, with consequent contact of FP with the aqueous fraction. 

No detailed studies in the literature have been found elucidating the crystalline behavior of FP 

in nanostructured systems, being necessary the use of microscopic techniques to adequate 

elucidate this behavior. A recent study states that FPs dispersed in an aqueous phase in colloidal 

form can act as emulsion stabilizers through a mechanism known as Pickering, ie, FP crystals 

act on the coating of emulsified lipid droplets avoiding flocculation, through formation of 

fibrillary crystalline networks, providing gell-like properties to this  systems (F. Liu & Tang, 

2014). 
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3.2. Melting behavior of free phytosterols, lipid matrix, and Lipid nanoparticles 

The evaluation of the melting thermal behavior was performed in the lyophilized 

NLC. For the FP and LM, the same thermal treatments of crystallization (5 °C/24h) and 

stabilization (25 °C/24h) of the NLC were carried out allowing the comparison between the 

systems in macro-scale and the nanostructured ones. The results obtained for the melting 

thermal behavior of FL, LM, and NLC are shown in Table 2 and the respective thermograms 

are shown in Figure 5. The parameters obtained were initial melting temperature (Tim), 

maximum peak temperature (Tmax), final melting temperature (Toff), and the melting enthalpy 

(Hm). 

The FP showed only one melting peak at 130.29 °C Tmax and melting range from 

126.12 °C (Tim) to 136.14 °C (Toff), indicating that all FP components have similar melting 

properties (Figure 3C). As described in the materials topic, the FP used in this study are food 

grade and have a mixture of phytosterols in their composition. When comparing the thermal 

behavior of the FP mixture with the components in the purified form, we can verify that the 

melting point of the pure components is higher, being 141.60 °C for β-sitosterol (Villaseñor, 

Angelada, Canlas, & Echegoyen, 2002), 169.20°C for stigmasterol  (Gomes Silva, Santos, 

Fernandes, Calligaris, Santana, Cardoso, et al., 2018) and 140.50 °C for campesterol (LI, HO, 

LI, TAO, & TAO, 2000).  

Even though, the FP melting temperature is still high in relation to the melting 

properties of fats and oils, commonly used in food production, a characteristic that supports the 

great technological challenge of application of FP in food. In addition to this, FLs are lipophilic 

compounds with high water insolubility, which is another limiting factor in food use. As 

reported by Hariklia Vaikousi, Athina Lazaridou, Costas G. Biliaderis, and Zawistowski (2007) 

in their studies, the direct delivery of FP in food is considered a technological challenge, since 

the high crystallinity/insolubility can often become restrictive factors for the stability of several 

products. The great interest in using phytosterols in the free form is related to its higher 

nutritional functionality in reducing blood levels of cholesterol when compared to esterified 

ones (Hayes, Pronczuk, Wijendran, & Beer, 2002).  



203 

 
 

 

 

Table 2.  
Melting behavior of the lipid matrices (LM) and NLC with 30 and 50% free phytosterols (FP), evaluated according to the parameters of initial 
melting temperature (Tim), maximum melting peak temperature (Tmax), final melting temperature (Toff) and melting enthalpy (Hm) 
Parameters Peak Tim (°C) Tmax (°C) Toff (°C) ΔHm(J/g)  TOn (°C) TMáx (°C) Toff (°C) ΔHm(J/g) 
FP 1 126.12±0.03 130.29±0.02 136.14±0.25 -16.61±0.32  - - - - 
  30% FP  30% FP 
LM 1 1 58.46±0.11 66.74±0.02 79.15±1.00 -70.03±3.18 NLC 1 65.13±0.03 70.08±0.00 89.73±0.43 -71.64±0.05 
LM 2 1 50.97±0.04 59.57±0.00 75.72±0.94 -89.50±1.26 NLC 2 61.66±0.02 65.92±0.00 76.12±0.66 -40.11±0.13 
 2 - - - -  91.86±0.08 94.87±0.07 107.83±1.72 -4.24±0.49 
LM 3 1 52.34±0.06 63.75±0.00 78.02±1.07 -79.78±0.52 NLC 3 64.89±0.03 68.68±0.00 80.68±1.12 -60.29±0.55 
 2 - - - -  88.56±0.01 93.55±0.00 117.93±1.36 -11.11±0.36 
LM 4 1 55.59±0.02 64.19±0.00 76.59±0.24 -52.44±0.53 NLC 4 60.41±0.01 66.35±0.00 81.39±1.24 -37.34±0.37 
 2 - - - -  98.18±0.01 99.09±0.00 115.95±1.13 -5.67±0.45 
LM 5 1 49.43±0.06 57.69±0.00 72.89±0.33 -43.87±0.82 NLC 5 55.91±0.06 60.71±0.00 88.56±0.63 -42.03±0.64 
 2 - - - -  127.33±0.01 127.73±0.00 143.59±0.56 -10.71±0.38 
LM 6 1 52.85±0.06 62.23±0.00 77.41±0.53 -51.42±1.64 NLC 6 56.11±0.06 62.65±0.00 86.57±1.19 -15.47±0.51 
LM 7 1 103.28±0.00 103.37±0.00 139.03±0.25 -16.67±0.57 NLC 7 44.73±0.56 50.06±0.64 59.51±0.31 -1.22±0.79 
 2 - - - -  66.43±0.06 77.10±0.02 95.48±0.56 -0.49±0.01 
 3 - - - -  106.54±0.04 126.87±0.04 144.75±0.25 -1.89±0.09 
  50% FP  50% FP 
LM 8 1 57.39±0.06 65.37±0.00 81.76±0.56 -45.57±0.82 NLC 8 65.64±0.02 67.98±0.00 91.37±1.47 -44.9±1.19 
  94.54±0.16 108.00±0.02 126.23±0.24 -5.27±0.46  - - - - 
LM 9 1 49.72±0.14 58.37±0.04 74.38±0.25 -50.17±0.16 NLC 9 56.84±0.02 62.31±0.00 79.06±0.64 -29.75±0.32 
 2 91.23±0.62 108.15±0.02 126.31±1.56 -6.84±0.53  126.66±0.00 126.85±0.00 139.78±0.38 -11.77±0.17 
LM 10 1 51.01±0.07 62.79±0.00 77.41±0.14 -48.30±0.78 NLC 10 60.63±0.10 65.23±0.00 91.91±1.59 -38.43±1.02 
 2 93.97±0.20 109.03±0.04 127.43±3.1 -7.31±0.6  - - - - 
LM 11 1 51.01±0.09 59.99±0.00 73.30±0.32 -9.69±0.26 NLC 11 59.73±0.10 65.36±0.00 81.76±0.80 -35.66±0.77 
 2 87.71±0.14 110.51±0.02 134.8±0.25 -14.06±0.35  102.01±0.01 102.44±0.00 116.90±0.75 -7.15±0.37 
LM 12 1 47.05±0.09 53.76±0.02 68.21±0.07 -14.87±0.48 NLC 12 55.44±0.06 57.72±0.00 76.29±0.81 -8.79±0.28 
 2 87.70±0.10 107.57±0.00 129.50±1.18 -8.29±0.09  104.39±0.00 105.34±0.00 126.80±0.85 -14.89±0.65 
LM 13 1 51.80±0.03 58.40±0.00 71.69±0.26 -11.22±0.15 NLC 13 57.64±0.02 62.65±0.00 80.35±0.50 -10.72±0.16 
 2 93.05±0.12 112.77±0.02 137.08±2.11 -13.13±0.5  - - - - 
LM 14 1 49.34±0.16 55.11±0.02 75.88±1.35 -7.22±0.57 NLC 14 48.05±0.06 55.20±0.00 71.03±0.63 -3.03±0.02 
 2 89.81±0.04 108.36±0.02 129.46±0.49 -6.79±0.12  79.73±0.15 102.03±0.04 115.95±1.04 -4.07±0.29 
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Fig. 5. Curves of the melting behavior of: A) Lipid matrices (LM) containing 30% 

of free phytosterols; B) Lipid matrices (LM) containing 50% of FP; C) Free Phytosterols (FP); 
D) NLC containing 30% of FP; E) NLC containing 50% of FP; F) Zoom of the melting curves 
of the NLC 7 and NLC 14. 
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The authors state that FPs compete directly with cholesterol in intestinal micelles, 

although the phytosterols esters are more dispersed in oils and fats and to be absorbed need to 

be first the hydrolyzed. Thus, aiming at the greater functionality of FP, the incorporation into 

NLC may be an alternative to allow the application of FP in food. 

LMs developed with 30% FP presented only one melting peak, with Tmax. ranging 

between ~57 and ~67 °C, as can be seen in Figure 5A. This behavior indicated the complete 

incorporation and solubilization of FP in these LM. Thus, it can be affirmed that the crystallinity 

of FP was reduced, being more pronounced in LM composed by the mixture of hardfats and 

HOSO. For the LM 7 formulated only with liquid lipid (70% HOSO) the T max was much 

higher than in the other LM (T max = 103.37 ° C) (Table 2). 

Two melting peaks were observed for all LMs containing 50% FP, the first was 

found in the region of 47 to 82 °C, probably referring to the melting of the hardfat, HOSO and 

FL mixtures. While the second peak was found between 87 and 127 ° C, with a less intensity 

than the first, as can be observed in Figure 5. This second peak can be related to the melting of 

the fraction of FP that was not incorporated in LM, probably due to solubility (Figure 5B). 

 In addition, changes in peak intensities were observed with the increasing of HOSO 

from 20 to 40%, in both LM with 30 and with 50% FP incorporation. This effect can be 

observed through the ΔHm of LM, systems containing 20% HOSO since they required higher 

energies for the phase transition. For LMs with 30 and 50% FP, were found values of 

approximately -70 to -89 J/g and -45 to -50 J/g for incorporation of 20% HOSO and -43 to -53 

and -9 to -14 J/g to 40% HOSO, respectively. This effect was even higher for LM developed 

with 70% (LM 7) and 50% (LM 14) of HOSO with ΔHm of -16.67 and -7.22 J/g, respectively. 

It was verified that the HOSO contributed to the reduction of the crystallinity of these LMs, 

developed with components of high melting points, like FP. Also, it should be noted that all the 

developed systems showed a melting temperature over to the body temperature, allowing the 

use of all LM for NLC application. This indication is based on their ability to maintain the 

structural integrity of the particles during the course of the gastrointestinal tract, according to 

recommendations found in the literature (P. Severino, Andreani, Macedo, Fangueiro, Santana, 

Silva, et al., 2012; Sharma, Diwan, Sardana, & Dhall, 2011; Tamjidi, Shahedi, Varshosaz, & 

Nasirpour, 2013). Additionally, as seen in the thermal behavior of LM 7 and 14, the lipophilic 

bioactive compound, such as FP, which have a high melting point, can also be used as solid 



206 

 
 

 

 

lipid to compose LM of NLC (Table 2). It presents differentiated properties of fusion, such as 

the high thermal resistance (above 100 °C), allowing the use of these LM for the development 

of NLC for application in food which will be thermally processed at high temperatures. 

Comparing the melting behavior of the NLCs with those of the correspondent LMs, 

it was possible to verify that all the NLCs had higher Tmax than the LMs. This behavior was 

also observed in our previous studies (V. S. Santos, Braz, Silva, Cardoso, A., & Ribeiro, 2018; 

V. S. Santos, Ribeiro, Cardoso, & Santana, 2018) and also by other authors (Tamjidi, Shahedi, 

Varshosaz, & Nasirpour, 2013). In this way, we can affirm that the developed NLC presented 

higher thermal resistance than their respective LM. In other words, the nanostructured systems 

required more energy to the phases transition (solid-liquid) than the lipid systems in macroscale. 

It is suggested that in NLC the TAGs constituents of the lipid fraction were organized in a more 

compact crystalline structure conferring greater thermal resistance to the nanoparticles. In 

contrast, in the macroscale, TAGs have larger spaces for their organization and formation of 

less compact crystalline networks. 

In Figure 5D it is possible to visualize the melting thermal behavior of NLCs 

developed with 30% FP. It was noted that NLC 1 and NLC 6 showed only one melting peak (T 

max of 70.08 °C and 62.65 °C, respectively), indicating that all components of these 

nanoparticles exhibited similar melting behavior. However, in the other NLCs developed with 

30% FP, a further melting peak was verified. It is suggested that in NLC 2, 3 and 4 the second 

peak is related to the melting of nanoparticles formed only by the FP covered by the emulsifier. 

Another suggestion related to the second peak would be the fusion of nanoparticles of smaller 

sizes present in the system, which require higher temperatures for the phase transition. 

However, in NLC5 it is suggested that undesired expulsion of the bioactive compound occurred, 

since the T max of this peak (127.73 °C) is very close to the FP T max (130.29 °C). In NL C7 

developed only with FP and HOSO, 3 melting peaks with low ΔHm values were verified, as can 

be seen in Figure 5F. These peaks indicate that formation of FP particles with different thermal 

melting behaviors occurred, which may be related to the Z-ave of the particles and not the 

expulsion of the FP, since neither a pronounced peak in the region of 130 °C was found.  

In this way, it can confirm the possible formation of nanoparticles composed only 

by FP, suggested in the first hypothesis, or even the presence of FP in suspension, in the case 

of NLC 5. However, these behaviors did not compromise the physical stability of the systems 
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during 60 days of storage as previously discussed. It should be noted that the best Z-ave, PDI 

and ZP were obtained for NLC with 30% FP (Figure 2). Thus, NLCs developed with CA, CR 

and HOSO showed very promisingly for the delivery of 30% FP in food. 

 Another point to highlight in this study was the eutectic effect observed in LM and 

NLC developed with the mixture of CA and CR in both incorporation levels of 30% and 50% 

of FP. This behavior was also verified in our previous studies, where LM (V. S.  Santos, 

Santana, Braz, Silva, Cardoso, & Ribeiro, 2018)and NLC (V. S. Santos, Braz, Silva, Cardoso, 

A., & Ribeiro, 2018) were developed with CA, CR, and HOSO, but without the incorporation 

of the bioactive compound. The eutectic effect was related to incompatibility between the chain 

sizes of the saturated TAG molecules, that was strengthened by the presence of unsaturated 

molecules in the systems. The results obtained in these studies showed that the eutectic effect 

has positively contributed to the development of NLC, reducing crystallinity and favoring the 

reduction of Z-ave (V. S. Santos, Braz, Silva, Cardoso, A., & Ribeiro, 2018). 

 In the present study, the eutectic effect observed for the solid lipids mixture in the 

formulations did not contribute to the incorporation of FP into the NLC. As can be observed in 

Figure 5E, NLC 9 with 50% FP, by the presence of two melting peaks, with the second peak 

being quite evident and related to the expulsion of the bioactive compound, with the Tmax of 

126.85 °C, very close to the value obtained for the Tmax of the FP of 130.29 °C. In the NLCs 

developed with 50% FP with the isolated use of the CA or CR (NLC 8, NLC 10 and NLC 13) 

only one melting peak was verified. Proving that the use of these hardfats isolated is more 

effective for the development of NLC with 30 and 50 % FP. However, in general, NLCs 

developed with 50% FP presented many changes of Z-ave, PDI, and ZP, as previously seen in 

the results obtained through DLS. However, it is worth mentioning that the thermal behavior of 

the NLC 13, composed of 10% CR and 40% of HOSO, evidenced the best system to carry 50% 

FP even after 60 days of the physical stability evaluation.  

3.3. Microstructure of lipid matrices 

The evaluation of the microstructure of LM contributes to the understanding of the 

crystallinity of the systems since the images can show in detail the distribution of the crystals, 

including morphological and structural characteristics (Ana Paula B. Ribeiro, Grimaldi, 

Gioielli, & Gonçalves, 2009). In Table 3 are the mean diameter (D) of the crystals and 
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crystallized area of LM used in the development of NLC and in Figure 6 it is possible to 

visualize the images obtained through PLM. The D of the LM crystals developed with 30 and 

50% FP varied between 1.29 and 2.45μm and 1.35 and 2.05μm, respectively. Larger crystals 

were observed in LM 7 developed only with FP and HOSO, where it is possible to verify the 

characteristic crystals of FP in the form of platelets and needles. 

The percentage of crystallized LMs ranged from 2.42 to 15.47% for LMs developed 

with 30% FP and 2.08 to 14.04% for LMs composed of 50% FP (Table 3). As can be seen, the 

presence of the FP collaborated to increase the crystallinity of the LMs and the difference 

between the crystallinity of the LMs with 30 and 50% of FP is higher than 10%, being visually 

perceptible that the formation of the crystals is different in these LMs. The LM with the highest 

amount of HOSO (70%), as said before, presented more spaces between the FP, being possible 

to observe crystals in the form of platelets and needles, whereas with the reduction of HOSO in 

LM to 50%, the crystalline network formed is totally different, and it is possible to verify the 

formation of a continuous crystalline network with smaller and more uniform crystals. It was 

observed that the crystalline networks formed in LM 1, 2 and 3 developed with 20% of HOSO, 

were homogeneous and dense. It was observed that the increase of HOSO (40%) reduced the 

crystallized area and it was possible to verify the presence of needle-shaped crystals 

characteristic of FP in LM 4, developed with CA only. In addition, it was possible to verify that 

the increment of CR increased the crystallized area in both systems (Figure 6). 

Table 3 
Mean diameter and the crystallized area of the lipid matrices (LM) developed with 

free phytosterols (FP), composed by fully hydrogenated canola (CA) and/or crambe (CR) oils, 
and/or high oleic sunflower oil (HOSO) 

LM 
Diameter of crystals 

(µm) 

Crystallized Area 

(%) 
LM 

Diameter of crystals 

(µm) 

Crystallized Area 

(%) 

30% FP 50% FP 

LM 1 1.63±1.26 10.54±0.50 LM 8 1.37±1.13 7.76±1.11 

LM 2 1.97±1.53 13.49±1.61 LM 9 1.90±1.59 12.13±1.40 

LM 3 1.93±1.50 15.47±0.90 LM 10 1.35±1.05 9.06±0.34 

LM 4 1.29±1.29 6.34±2.04 LM 11 1.59±1.67 2.08±0.60 

LM 5 1.38±1.02 9.50±1.08 LM 12 1.96±1.69 13.88±0.60 

LM 6 1.86±1.56 11.10±0.13 LM 13 2.05±2.15 12.98±0.88 

LM 7 2.45±2.60 2.42±0.45 LM 14 1.86±1.85 14.04±3.46 
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Fig. 6. Polarized light microscopy images of lipid matrices (LM) composed of high oleic sunflower 

oil (HOSO) and fully hydrogenated canola (CA) and/or crambe (CR) oils, with incorporation of: A) 30% of free 
phytosterols (FP) and B) 50% of free phytosterols (FP), obtained after thermal treatment (crystallization at 5 °C/24 
h followed by crystalline stabilization at 25 °C/24 h) with increase of 200X. 

In LMs formulated with 50% FP, the images revealed well differentiated crystalline 

formations in all systems. It was not possible to establish a relationship between the components 

and the crystalline forms observed. It only can be said that in the presence of 50% FP the use 

of the mixture of CA and CR favored the development of more crystalline LM than when used 

separately. More homogeneous Z-ave and crystalline networks were obtained in the presence 

of 20 and 40% HOSO, of 1.90 and 1.96 μm, respectively. This strong crystalline behavior of 

the LM developed with the hardfat mixture, is directly related to the expulsion of the FP, as 

verified in the thermal behavior melting curves discussed in the previous topic. It can be stated 

A) 30% FP                                                            B) 50% FP   
 

       
                 LM 1                                     LM 4                                      LM 8                                   LM 11 

       
                  LM 2                                    LM 5                                      LM 9                                    LM 12 

       
                 LM 3                                    LM 6                                       LM 10                                 LM 13                            

                                                                         
                                         LM 7                                                                                   LM 14 
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that the use of CA and CR separately in NLC formulations for incorporation of 30 and 50% FP 

favored the incorporation of the bioactive compounds. 

3.4. X-Rays Diffraction 

Lipids have the ability to crystallize in different crystalline structures, resulting in 

different molecular packagings. According to the current polymorphic nomenclature for TAGs, 

there are three specific types of sub-cells referring to polymorphs α, β' and β, denominated 

according to the classification of Brava Networks as hexagonal, perpendicular orthorhombic, 

and triclinic crystals, respectively. In addition, lipids exhibit monotropic polymorphic 

transitions, which is a process of irreversible transition from less stable polymorphic form to 

the more stable (→’→) (Martini, Awad, & Marangoni, 2006; Sato, 2001). These forms 

exhibit characteristic diffraction peaks, with the α-form having a single diffraction peak at 

4.15Å, the β'-form is characterized by two diffraction lines at 3.8 and 4.2Å, and the β-form is 

related with a higher intensity line at 4.6Å, and lower intensity peaks at 3.7 and 3.8Å (Rousseau 

& Marangoni, 2002).  

In this study, in order to verify the crystalline behavior of LM, NLC and the 

incorporated bioactive compound (FP), the XRD analysis was applied to obtain the diffraction 

patterns of each sample. For the FP, a series of peaks was identified, with theta-2theta (:2) 

of: 5.20, 12.18, 12.80, 15.08, 15.80, 16.92, 17.86, 18.64, 19.70, 20.88, 21.82, 22.96, 24.06 and 

25.28. In addition, in a recent study conducted by our research group, it was found that FP had 

a very similar diffraction pattern to the pure sterols (Gomes Silva, et al., 2018). In this way, it 

was verified that β-sitosterol, the main sterol of the FP mixture, crystallizes in the simple 

orthorhombic form, according to the crystallographic information verified through the 

Structural Database-CSD, with registration in CCDC 933712. 



211 

 
 

 

 

 

Fig. 7. Schematic representation of: (a) X-ray diffraction patterns (XRD) for 
triacylglycerols (TAG) in the most commonly polymorphic forms α, β' and β; B) Experimental 
XRD patterns and peak identification of the free phytosterols (FP) with the peaks overlaping 
each TAG polymorphic form. 
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The crystalline structure of FP is very similar to the β'-form of TAG, which is 

classified as perpendicular orthorhombic, differing only in the angles of crystallization and in 

the deformations of the unit cell, where the simple orthorhombic form is deformed on one side 

of the square and the orthorhombic perpendicularly shows deformation along the diagonal of 

the base square. For this reason, some FP peaks showed a very similar diffraction pattern to 

those used for the identification of the polymorphs in the TAG. It is possible to observe in 

Figure 7 a schematic representation of the 3 most common polymorphs of the TAG (Figure 7A) 

and the peaks of XRD of the FP with the identification of each peak and their respective values 

of 2 and d-spacing (Figure 7B). Thus, it was possible to visualize the overlapping of the FP 

diffractograms with each of the α, β' and β forms characteristic of the TAGs. The diffraction 

peaks of FP that showed overlap with the TAG peaks were peaks 9, 11, 12 and 13 with d-

spacing of 4.62, 4.15, 3.97 and 3.79Å, respectively (Figure 7).  

In this way, the possible identifications of the crystalline forms of the TAGs with 

the respective overlapping peaks of the FP were performed, as described in Table 4. 

It was observed that in the diffraction patterns of LM and NLC the peaks related to 

FP had lower intensities, as shown in Figure 8. It is suggested that the intensity of the FP 

diffraction peaks was reduced by the incorporation, solubilization and co-crystallization effects 

of the FP with the lipid materials. Moreover, no diffraction lines were observed at 4.15Å, 

referring to the α form of the TAG and the FP peak 11. 

The results showed that both LM and NLC presented possible crystalline forms of 

intermediate crystallization form (β'), in the most stable form (β) and the mixture of β' and β 

forms, as can be seen in Table 4. Furthermore, LM developed only with HOSO and 30 and 50% 

FP, with LM 7 and LM 14, respectively, presented similar diffraction patterns. It was observed 

that, when compared to the respective NLC, it is possible to observe a greater distance from the 

baseline, which may indicate a lower crystallinity when nanostructured (Figure 8). 
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Table 4  
Short spacings and peak intensities of the diffractograms obtained for lipid matrices 

(LM) and nanostructured lipid carriers (NLC), developed with free phytosterols (FP), and 
polymorphic forms related to the TAG crystalline behavior 

 

Samples 

Short spacings (Å) Polymorphic form of 

 4.6 4.2 3.8 3.7 TAG 

Lipid matrix - 30% FP 

LM 1 4.60(TAG*)/4.62(FP**) - 3.89(TAG)/3.97(FP) 3.73(TAG)/3.79(FP) β 

LM 2 4.63(TAG)/4.62(FP) 4.22(TAG) 3.81(TAG)/3.97(FP) 3.73(TAG)/3.79(FP) β’+β 

LM 3 4.68(TAG)/4.62(FP) 4.21(TAG) 3.81(TAG)/3.97(FP) - β’+β 

LM 4 4.60(TAG)/4.62(FP) - 3.86(TAG)/3.97(FP) 3.71(TAG)/3.79(FP) β 

LM 5 4.61(TAG)/4.62(FP) 4.20(TAG) 3.89(TAG)/3.97(FP) 3.70(TAG)/3.79(FP) β’+β 

LM 6 4.64(TAG)/4.62(FP) 4.20(TAG) 3.80(TAG)/3.97(FP) - β’+β 

LM 7*** - - - - - 

Lipid matrix - 50% FP 

LM 8 4.61(TAG)/4.62(FP) - 3.87(TAG)/3.97(FP) 3.73(TAG)/3.79(FP) β 

LM 9 4.66(TAG)/4.62(FP) 4.20(TAG) 3.84(TAG)/3.97(FP) - β’+β 

LM 10 4.66(TAG)/4.62(FP) 4.20(TAG) 3.81(TAG)/3.97(FP) - β’+β 

LM 11 4.61(TAG)/4.62(FP) - 3.88(TAG)/3.97(FP) 3.71(TAG)/3.79(FP) β 

LM 12 4.60(TAG)/4.62(FP) - 3.87(TAG)/3.97(FP) 3.70(TAG)/3.79(FP) β 

LM 13 4.65(TAG)/4.62(FP) 4.20(TAG) 3.80(TAG)/3.97(FP) - β’+β 

LM 14*** - - - - - 

Lyophilized nanostructured lipid carriers - 30% FP 

NLC 1 4.63(TAG)/4.62(FP) - 3.89(TAG)/3.97(FP) 3.73(TAG)/3.79(FP) β 

NLC 2 4.64(TAG)/4.62(FP) - 3.89(TAG)/3.97(FP) 3.73(TAG)/3.79(FP) β 

NLC 3 - 4.21(TAG) 3.80(TAG)/3.97(FP) - β’ 

NLC 4 4.64(TAG)/4.62(FP) - 3.88(TAG)/3.97(FP) 3.74(TAG)/3.79(FP) β 

NLC 5 4.63(TAG)/4.62(FP) - 3.86(TAG)/3.97(FP) 3.72(TAG)/3.79(FP) β 

NLC 6 - 4.20(TAG) 3.80(TAG)/3.97(FP) - β’ 

NLC 7*** - - - - - 

Lyophilized nanostructured lipid carriers - 50% FP 

NLC 8 4.66(TAG)/4.62(FP) - 3.89(TAG)/3.97(FP) 3.73(TAG)/3.79(FP) β 

NLC 9 4.62(TAG)/4.62(FP) - 3.88(TAG)/3.97(FP) 3.72(TAG)/3.79(FP) β 

NLC 10 4.66(TAG)/4.62(FP) 4.20(TAG) 3.81(TAG)/3.97(FP) - β’+β 

NLC 11 4.62(TAG)/4.62(FP) - 3.88(TAG)/3.97(FP) 3.72(TAG)/3.79(FP) β 

NLC 12 4.66(TAG)/4.62(FP) 4.20(TAG) 3.81(TAG)/3.97(FP) - β’+β 

NLC 13 4.66(TAG)/4.62(FP) 4.20(TAG) 3.81(TAG)/3.97(FP) - β’+β 

NLC 14*** - - - - - 

*Short spacings characteristic of the triacylglycerols; **Short spacings characteristic of the free phytosterols; ***Sample does 
without solid lipids, with only HOSO and FP. 
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Fig. 8. X-ray diffraction patterns from: A) Lipid matrices (LM) developed with the 

fully hydrogenated canola (CA) and/or crambe (CR) oils, and/or high oleic sunflower oil 
(HOSO) containing 30% of free phytosterols (FP); B) LM developed with CA and/or CR, 
and/or HOSO containing 50% of FP; C) Nanostructured lipid carriers (NLC) with 30% of FP; 
D) NLC with 50% of FP. 

 
LMs with the incorporation of FP in the proportions of 30 and 50% were found to 

have the same crystalline forms. Differing only LM 5 and LM 12, composed of the mixture of 

CA and CR, where the presence of 50% FP favored the polymorphic transition from β' + β to β 

(Table 4). Comparing the NLCs with 30% FP with the respective LM, varying only in the 

composition of the solid lipids, it was observed that in the NLC 1 and NLC 4 compounds only 

by CA the β-form was maintained in NLC 3 and NLC 6 composed only with CR the 

polymorphic transitions were delayed from β'+ β to β'. In the NLC 2 and NLC 5 composed by 

the mixture of CA and CR, the polymorphic transition was accelerated to β. According to 

Oliveira et al. (2015) the polymorphic habit of CA is the β form and according to A. P. B. 
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Ribeiro, Basso, and Kieckbusch (2013) the polymorphic habit of CR is the mixture of crystals 

in forms β' and β. Thus, it can be affirmed that these results, even with the interference of the 

FP peaks, have agreed with the crystallization behavior of the lipid raw materials used in the 

formulation of LM and NLC. It should be noted that NLC 3 and NLC 6 will probably undergo 

polymorphic transition, presenting the mixture of β' + β forms, according to the polymorphic 

habit of CR.  

Similar results regarding the composition of the hardfat were found for NLC 

containing 50% FP, NLC 10, NLC 12 and NLC 13, composed of CR, CA + CR and CR 

presented a mixture of crystals in the β' + β forms, whereas the NLC 8, NLC 9 and NLC 11 

composed of CA, CA + CR and CA showed crystals in the most stable β-form. The use of CR 

enabled the development of NLC with the β-form and the mixture of polymorphic forms β' and 

β, a feature not found in our previous studies with soy-based raw materials. In this way, it can 

extend the applications in foods, as for example in margarines or spreads, where the form β' is 

desirable. According to Sato (2001), the crystals in the form β' contribute to the formation of 

softer fats, with good aeration and properties of creaminess. 

 

4. Conclusion 

The LMs developed with the CA and CR and with HOSO presented promising for 

the development of NLC for the incorporation of bioactive compounds. For the development 

of NLC with FP, the LM composed by CA and CR separately in the formulations showed 

adequate thermal behavior, where it was possible to verify the complete incorporation of FP. 

The incorporation of FP promoted the increase of the thermal resistance of LM, increasing also 

the crystallinity of the developed systems. In addition, the proportions of 30 and 50% of FP 

promoted the formation of different crystalline networks, with crystals in needle and platelet 

forms, with crystals characteristic of FP in LM with greater increase of HOSO. Its important to 

emphasize that in this study the incorporation of high levels of PF in the lipid nanoparticles was 

effective. NLCs developed with 30% FP incorporation presented the best results regarding Z-

ave, PDI and ZP when compared to NLC with 50% FP during 60 days of evaluation. It should 

be noted that the NLC developed in this study presented very different thermal and crystalline 

behavior than the systems developed in our previous study with soybean based raw materials. 

Thus, it was found that the use of natural raw materials, such as vegetable oils and fats, confer 
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different characteristics depending on the vegetable source. Note the NLC obtained with the 

polymorphic β'-form, for applications in food products, where the characteristics of soft and 

creamy are desirable.  
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Resumo 

 

A presente invenção refere-se à nanopartículas lipídicas sólidas (NLS) e carreadores lipídicos 

nanoestruturados (CLN) obtidos a partir de óleos e gorduras comestíveis e compostos bioativos, 

tais como fitoesteróis, para aplicação em alimentos. Ainda, os óleos e gorduras comestíveis 

consistem em óleos de soja, girassol, linhaça, girassol alto oléico, canola, algodão, palma, 

milho, gergelim, coco e os azeites de oliva, abacate e dendê, hardfats dos óleos de soja, algodão, 

palma, palmiste, canola e crambe, e suas misturas. Adicionalmente, a invenção refere-se ao 

processo de obtenção de NLS e CLN utilizando homogeneização a alta pressão a quente (HAP); 

e seu uso em alimentos, produtos de grau alimentício, fármacos e cosméticos, principalmente, 

para melhorar as propriedades estruturais, reduzir o teor de ácidos graxos saturados, e 

enriquecer produtos ou alimentos com compostos bioativos como carreador dos mesmos. 
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DISCUSSÃO GERAL 

No cenário atual, a nanotecnologia ainda se encontra em fase exploratória na área 

de alimentos e inexistente em termos de aplicações em indústrias e produtos alimentícios. O 

estímulo para a utilização desta tecnologia na área de alimentos se deu pelo conhecimento das 

propriedades diferenciadas de partículas lipídicas em escala nanométrica muito utilizadas na 

área médica, farmacêutica e de cosméticos. Sendo que, as propriedades mais interessantes 

destes materiais são a proteção, o carreamento e liberação de compostos ativos, em 

medicamentos e cosméticos. Deste modo, foi possível visualizar o potencial destes sistemas 

nanométricos para aplicação em alimentos. Porém, nos deparamos com o elevado custo das 

matérias-primas, uma vez que, até o presente momento se utilizam apenas materiais purificados, 

como por exemplo, triestearina, trioleína, ácido graxo esteárico, ácido graxo oleico, entre 

outros, sendo, portanto, um impasse para a viabilização desta tecnologia para aplicação em 

escala industrial alimentícia.  

Assim, o grande desafio deste estudo residiu na utilização de matérias-primas 

comumente empregadas na indústria alimentícia para a produção de nano partículas lipídicas. 

Estes materiais já estão presentes nas formulações alimentícias em geral, sem restrições de uso 

quanto aos aspectos regulatórios das legislações em alimentos. Foram utilizados neste estudo 

hardfats dos óleos de soja, canola e crambe e os óleos de soja e girassol alto oleico. Estas 

matérias-primas são óleos e gorduras vegetais que apresentam misturas de TAGs em suas 

composições, diferente das matérias-primas purificadas, utilizadas em fármacos e cosméticos. 

Deste modo, pela elevada complexidade química e fisica dos lipídios e falta de conhecimento 

do comportamento destes materiais em escala nanométrica, foram realizados diferentes estudos 

de comportamente. Buscou-se, principalmente, elucidar o comportamento térmico e cristalino 

de nanopartículas lipídicas com ML compostas por diferentes hardfats e óleos. Além disso, 

considerando a possibilidade de carreamento de compostos biotivos em NLS e CLN, foram 

incorporados FL nas ML das nanopartículas. Os FL, foram escolhidos como compostos de 

inclusão nestes sistemas pelos efeitos benéficos a saúde, como a redução comprovada dos níveis 

de colesterol no sangue. Além disso, por questões tecnológicas de aplicação, uma vez que, estes 

compostos bioativos lipofílicos são pouco explorados na área alimentícia, principalmente por 

questões de elevada hidrofobicidade e cristalinidade, o que dificulta a incorporação em produtos 

alimentícios, pois ocasionam problemas de estabilidade física. Sendo as NLS e CLN 
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desenvolvidas ao longo deste trabalho uma opção de veiculação de fitoesteróis livres para 

enriquecimento nutricional e funcional de alimentos. 

Os FL utilizados como compostos bioativos nas nanoparticulas foram 

caracterizados química e fisicamente, apresentando em sua composição uma mistura de 

esteróis, com predominância do β-sitosterol (~44%), estigmasterol (~27%) e campesterol 

(~23%). Cabe destacar que, mesmo sendo uma mistura de esteróis, apresentaram 

comportamento térmico homogêneo, com elevadas temperaturas de cristalização (126,37°C) e 

fusão (137,94°C), mas isto não impediu a incorporação de FL nas ML e CLN, como será 

discutido na sequência.  

No inicio do estudo, foram desenvolvidos CLN compostos por óleo de soja e 

hardfat do óleo de soja com e sem a inclusão de 30% de FL. Foram avaliados três diferentes 

emulsificantes (monooleato de sorbitano - S60, BLH = 4,7, lecitina de soja - LS, BHL = 7,0 e 

monoestearato de sorbitano etoxilado - T80, BHL = 15,0). Foram empregados dois métodos de 

produção das nanopartículaculas: i) Homogeneização a alta pressão (HAP), com avaliação de 

3 e 5 ciclos de homogeneização a 800 bar e ii) Ultrasson (US), com ponta de titânio 13 mm, 

potência de 60W e exposição as ondas de ultrassom por 5 e 10 minutos. Os resultados de Z-ave 

de partículas não foram promissores para os CLN com FL desenvolvidos com US, apresentando 

valores de aproximadamente 700 nm, assim como para os resultados de PDI, que ficaram 

próximos de 0,7 indicando distribuição de tamanho de partículas muito amplo, caracterizando 

baixa estabilidade física. Deste modo, apenas a HAP foi utilizada para dar sequência nos 

estudos e os resultados obtidos foram descritos no “Artigo 1”.  

Verificou-se que a HAP se mostrou muito eficaz no desenvolvimento de CLN, 

principalmente nos CLN desenvolvidos com FL. Pois, a elevada temperatura durante o 

processamento de HAP evitou a recristalização dos FL, favorecendo a obtenção de sistemas 

estáveis e com reduzidos tamanhos de partículas. O número de ciclos utilizados na HAP, de 

maneira geral, não interferiu no Z-ave e PDI das nanopartículas, mas colaborou para a redução 

do PDI dos CLN desenvolvidos com os FL. Contudo, estes resultados não são apenas 

dependentes do número de ciclos e pressão utilizados, sendo extremamente importante 

considerar o efeito do sistema emulsificante empregado, para garantir a manutenção e 

estabilidade após a cristalização da fração lipídica. Assim, com este estudo, também foi possível 

acompanhar a eficiência dos diferentes emulsificantes em conjunto com as condições de 
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processamento, como pressão e número de ciclos da HAP. De maneira geral, os melhores 

resultados obtidos para os CLN compostos de óleo de soja e hardfats de óleo de soja com e sem 

a incorporação de FL, em relação a Z-ave de partículas e PDI foram através do emprego do 

emulsificante T80, sendo de aproximadamente 167 e 164 nm (3 ciclos de HAP) e 161 e 164 nm 

(5 ciclos de HAP) com PDI variando entre 0,1 e 0,3. Por questões de problemas no equipamento 

utilizado para fazer a medida de PZ, estas medidas não foram realizadas nas nanopartículas 

obtidas neste estudo. 

Foi possível verificar que a incorporação do composto bioativo nas ML modificou 

as suas propriedades térmicas e cristalinas, devido a elavada cristalinidade dos FL. Além disso, 

verificou-se que as nanopartículas apresentaram comportamento térmico diferenciado das ML. 

Este fato possibilita afirmar que os lipídios quando estão nanoestruturados em forma de 

partículas, necessitam de maiores energias para que ocorra a transição de fase. Todos os CLN 

compostos por óleo de soja e hardfat do óleo de soja apresentaram partículas com hábito 

polimórfico em β, enquanto que nas ML correspondentes foram predominantes a mistura das 

formas polimórficas β’+β. O que indicou que as transições polimórficas são aceleradas em 

materiais nanoestruturados. 

Afim de verificar o comportamento de ML e nanopartículas desenvolvidas com 

outros óleos e hardfats, podendo ampliar a gama de aplicações de NLS e CLN, o restante do 

estudo foi realizado com óleo de girassol alto oleico e com os hardfats dos óleos de canola e 

crambe. Varios fatores foram considerados para a utilização destas outras fontes vegetais, 

como: i) características físico-químicas diferenciadas, como por exemplo, maior estabilidade 

química do óleo de girassol alto oleico em relação ao óleo de soja; ii) tamanho da cadeia 

carbônica dos ácidos graxos majoritários dos hardfats, para verificar a influência na 

cristalinidade dos sistemas; iii) efeito nutricional no organismo dos ácidos graxos, como citado 

na “Introdução Geral”.  

No “Artigo 2”, foi realizado um estudo detalhado das propriedades térmicas e 

cristalinas das matérias-primas e misturas desenvolvidas com o óleo de girassol alto oleico e os 

hardfats do óleo de canola e crambe. Neste caso, o principal objetivo foi caracterizar o 

comportamento de cada componente e suas misturas para aplicação como ML de sistemas 

nanoestruturados. Com os resultados obtidos verificou-se que as ML desenvolvidas com estas 

matérias-primas apresentaram comportamento térmico e cristalino diferenciado de compostos 
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purificados. Além disso, foi observado um efeito eutético nas ML desenvolvidas com misturas 

destas materias-primas. Este eveito provavelmente está relacionado à grande diferença entre os 

tamanhos das cadeias carbônicas dos ácidos graxos esteárico e behênico, predominantes nos 

hardfats de canola e crambe, respectivamente, e também à presença de insaturações 

provenientes das moléculas dos ácidos graxos oleico predominantes no OGAO. Contudo, este 

comportamento foi considerado benéfico para a produção de NLS e CLN, podendo colaborar 

na redução da cristalidade dos sistemas, favorecendo a incorporação de compostos bioativos.  

No “Artigo 3”, algumas destas hipóteses foram confirmadas com o 

desenvolvimento de NLS e CLN através da aplicação das ML descritas no Artigo 2. A utilização 

do hardfat do óleo de crambe nas ML aumentou a resistência térmica dos sistemas, em 

comparação as nanopartículas desenvolvidas apenas com o hardfat do óleo de canola. Portanto, 

o tamanho da cadeia carbônica, no caso do crambe, composta por 22 carbonos, realmente 

interferiu nas características físicas das ML e dos CLN. Além disso, o efeito eutetico verificado 

no Artigo 2 para as ML se repetiu nas nanopartículas, e favoreceu o desenvolvimento de 

nanopartículas menos cristalinas em termos estruturais, com consequente redução do tamanho 

das partículas e maior estabilidade física, durante 60 dias de avaliação. Em termos de 

processamento, verificou-se que o emprego de 3 ciclos de HAP foi suficiente para se obter 

sistemas com características desejáveis, assim como foi verificado para os CLN desenvolvidos 

com óleo de soja e hardfat do óleo de soja no Artigo 1.  

Cabe destacar, no Artigo 3 o comportamento diferenciado das NLS compostas 

apenas pelos hardfats de canola e crambe, separados e em mistura (50:50m/m). Estas NLS 

gelificaram durante o processo de cristalização e estabilização cristalina, etapas realizadas logo 

após o processamento em HAP, permanecendo sólidas durante todo o período de avaliação (60 

dias). Este comportamento é muito relatado na literatura para NLS desenvolvidas com matérias-

primas purificadas. No entanto, este comportamento foi verificado apenas para as NLS, não 

sendo observados para os demais sistemas obtidos. Os CLN obtidos com os hardfats de canola 

e crambe e com OGAO apresentaram Z-ave de partículas variando entre 156 a 189 nm (3 ciclos 

de HAP) e 162 a 208 nm (5 ciclos de HAP), com PDI variando entre 0,1 e 0,2. Adicionalmente, 

foi verificado o PZ destes sistemas e os valores encontrados variaram entre -13 a -24 mV e -13 

a -25 mV, para os CLN obtidos com 3 e 5 ciclos de HAP, respectivamente. Os CLN 

desenvolvidos com os hardfats de canola e crambe e com o OGAO, apresentaram maior 
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resistência térmica do que suas ML avaliadas em macroescala no Artigo 2. Fato que também 

foi verificado no Artigo 1, reforçando ainda mais que materiais lipídicos nanoestruturados 

necessitam de maiores energias para que ocorra transição de fase. Comportamento muito 

favorável para aplicação de CLN em alimentos processados termicamente, podendo-se manter 

a integridade estrutural das nanopartículas. As NLS e CLN obtidas neste estudo apresentaram-

se na forma β’ ou β, diferentemente das nanopartículas compostas pelo óleo de soja e hardfat 

do óleo de soja obtidas no Artigo 1, que apenas foram encontradas nanopartículas na forma 

mais estável (forma β). Estes resultados confirmaram também que as transições polimórficas 

são aceleradas em sistemas lipídicos em escala nanométrica, mas que estas transições são 

dependentes do hábito polimórfico das materias-primas utilizadas para a composição das ML. 

Assim, foi possível afirmar que foram obtidas nanopartículas com propriedades térmicas e 

cristalinas diferentes das obtidas no Artigo 1, principalmente pela composição química 

diferenciada das matérias-primas utilizadas. 

No Artigo 4, foram desenvolvidas ML e CLN compostos por OGAO e os hardfats 

dos óleos de canola e crambe, com a incorporação de 30 e 50% de FL. O maior desafio neste 

estudo foi a incorporação de grandes quantidades de FL nas ML e nos CLN. Pois, nos trabalhos 

relatados na literatura, geralmente os autores trabalham com contrações muito baixas de 

compostos bioativos, em torno de 1%. Como visto no Artigo 1, foram obtidos resultados 

promissores para a incorporação de 30% de FL nos CLN a base de óleo de soja e hardfat do 

óleo de soja. Neste artigo 4, com outras matérias-primas, os resultados obtidos para os CLN 

com incorporação de 30 e 50% de FL foram de partículas com tamanho variando entre, 148 a 

250 nm e 206 a 342 nm aproximadamente; PDI de 0,2 a 0,4 e de 0,3 a 0,4; com PZ entre -24 a 

-30 mV e -22 a -27 mV, respectivamente. De maneira geral, os CLN desenvolvidos com 30% 

de FL mantiveram-se mais estáveis do que os CLN com 50% de FL durante 60 dias de 

avaliação. De qualquer maneira, pode-se afirmar que foi possível desenvolver CLN com altos 

teores de FL, fato inédito para o desenvolvimento de NL.  

O efeito eutético também foi observado nas ML e CLN desenvolvidos com FL. 

Vale ressaltar que nos artigos anteriores este efeito se mostrou efetivo na redução da 

cristalinidade dos sistemas desenvolvidos, com consequente redução do tamanho das partículas. 

No entanto, na presença dos FL este efeito de incompatibilidade proveniente das diferenças de 

tamanho dos ácidos graxos não foi positivo, e pode estar relacionado a expulsão dos compostos 
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bioativos das nanoparticulas. Sendo os melhores resultados obtidos para os CLN desenvolvidos 

com os hardfats em separado nas formulações.  

Assim como no Artigo 1, no Artigo 4 nos deparamos com a dificuldade de 

identificação do hábito polimórfico das ML e CLN desenvolvidos com FL, devido a alguns 

picos de difração dos FL serem muito próximos aos picos que caracterizam as formas 

polimórficas de TAG. Deste modo, não foi possivel afirmar a forma cristalina destes sistemas, 

e sim supor quais são as possíveis formas. Além disso, nestes sistemas desenvolvidos com FL 

verificou-se que as ML apresentaram cristais na forma mais estável (forma β), comportamento 

diferente das ML desenvolvidas no Artigo 1, que se encontravam na forma inicial (forma α) ou 

misturas da forma intermediaria com a mais estavel (formas β’+ β). Portanto, inferiu-se que os 

FL promoveram a estabilização das ML e CLN desenvolvidos com OGAO e os hardfats dos 

óleos de canola e crambe, no hábito preferencial, não sendo notado efeitos de aceleração de 

transição polimórfica, causado pela nanoestruturação.  

De maneira geral, as nanopartículas obtidas neste estudo apresentaram diâmetro 

médio de partículas e PDI muito semelhantes, confirmando a efetividade do sistema 

emulsficante e do método de produção. Deste modo, foi possível considerar a HAP muito 

promissora para o desenvolvimento de NLS e CLN. Além disso, outros fatores tornam essa 

técnica muito vantajosa para aplicação a nível industrial. Sendo, a HAP um processo muito 

rápido, podendo-se obter as nanopartículas em poucos minutos e com quantidades reduzidas de 

emulsificantes. Outro ponto a ressaltar é a versatilidade do uso de temperaturas, podendo ser 

utilizadas altas temperaturas para facilitar a solubilização dos compostos bioativos com elevado 

ponto de fusão, como os fitoesteróis livres, ou temperaturas intermediárias à brandas se for de 

interesse incorpor comportos bioativos termolábeis. Destaca-se que a transposição de escala do 

processo é facilitada pela disponibilidade comercial da HAP, usado na principal etapa do 

processo, e além disso é uma tecnologia que não utiliza solventes orgânicos no processo, sendo 

considerado um fator muito importante para as indutrias, por questões ambientais. 

Além disso, com a compilação de todos os resultados obtidos neste estudo, foi 

possivel verificar os benéficios da utilização de sistemas nanoestruturados desenvolvidos com 

lipídios, como as NLS e os CLN, para aplicação em alimentos. Destaca-se a questão estrutural 

sólida das nanopartículas, que foram desenvolvidas com materiais lipidícos de alta resistência 

térmica e também com óleos liquidos, em proporções que mantiveram estes sistemas com ponto 
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de fusão acima da temperatura corporea. Deste modo, garantindo a integridade fisica destas 

nanopartículas durante todo o processo digestório, para a entrega dos compostos bioativos de 

interesse até o momento de absorção dos lipídios no trato gastrointestinal. Além disso, parte 

das nanoparticulas desenvolvidas apresentaram ponto de fusão mais elevado, em torno de 60 a 

70°C, possibilitando a inclusão direta destas partículas em alguns alimentos processados 

termicamente, sem a necessidade de alteração do processo de obtenção.    

Do ponto de vista de utilização de óleos e gorduras vegetais disponíveis no cenário 

industrial alimentício, as materias-primas propostas neste estudo podem possibilitar a utilização 

destes nanosistemas e suas propriedades diferenciadas em alimentos, principalmente, através 

da redução de custos desta tencnologia, pela utilização de matérias-primas comuns e não 

purificadas. Deste modo, para fins de comparação de custos foi realizado um levantamento de 

preços dos materiais purificados mais relatados na literatura científica, tanto para emprego em 

nanopartículas para aplicação em fármacos e cosméticos quanto para aplicação em alimentos, 

comparando-os com as matérias-primas utilizadas neste estudo. Verificou-se que a triestearina 

e o ácido graxo esteárico, ambos purificados de grau técnico, com 95% de pureza, utilizados 

como material sólido nas nanopartículas lipidícas apresentaram valores de R$ 1.596,00/Kg e 

169,00/Kg, respectivamente. Os contituintes lipídicos líquidos purificados, trioleato de glicerila 

com 65% de pureza e o ácido graxo oleico de grau técnico com 90% de pureza, os valores 

encontrados foram de R$ 934,00/L e R$ 273,00/L, respectivamente. Enquanto que, para os 

hardfats utilizados neste estudo como material sólido das nanopartículas, os valores variam 

entre R$ 3 a 5,00/Kg, dependente da fonte de óleo, e os óleos de soja e girassol alto oléico, 

utilizados como material liquido das nanopartículas, os valores encontrados foram de R$ 3,00 

e 10,00/L, respectivamente. Portanto, o uso de materiais lipídicos puros para o desenvolvimento 

de nanopartículas lipídicas é economicamente inviável na área de alimentos, devido aos 

volumes de produção e escalabilidade característicos da indústria de alimentos. Deste modo, os 

hardfats e óleos vegetais foram considerados matérias-primas de baixo custo, quanto 

comparado com os materiais que vêm sendo utilizados para o desenvolvimento de 

nanopartículas lipidícas, e de alto potencial para o uso como lipídios saturados e insaturados na 

produção de NLS e CLN. Além disso, os lipídios são considerados sistemas promissores para 

carreamento de compostos bioativos lipofílicos, pois possuem polaridade semelhante o que 

facilita a sua solubilização. Adicionalmente, o carreamento e proteção de compostos bioativos 
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em NLS e CLN podem ser uma alternativa viável para resolver alguns problemas de 

enriquecimento nutricional em alguns produtos. Contudo, estes sistemas possuem grande 

potencial de aplicação em diferentes produtos, podem ser empregados tanto em alimentos de 

base lipídica quanto aquosa. Como sugestões de aplicação, seria interessante utilizar as 

nanoparticulas para veicular FL em alimentos de base aquosa, onde a dispersão dos FL 

geralmente é dificultada pelo alto ponto de fusão e solubilidade limitada. Além disso, pode-se 

sugerir o emprego das nanoparticulas secas em estufa ou liofilizados, como sementes de 

cristalização em alimentos de base lipídica, para a indução das formas polimórficas β’ e β. Por 

outro lado, estes sistemas podem também serem expandidos para outros setores industriais, 

principalmente visando redução de custos, como nas áreas farmacêuticas e de cosmético para 

carreamento de compostos bioativos e fármacos. Porém, ressalta-se que ainda não existe 

legislação para regulamentação de sistemas nanoestrutrados, apenas um incentivo internacional 

para inclusão no rótulo que o produto foi obtido utilizando-se nanotecnologia.  
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CONCLUSÕES GERAIS 

Foi possível desenvolver diferentes nanopartículas lipídicas, utilizando matérias-

primas lipídicas comumente utilizadas na indústria de alimentos para a incorporação de altos 

teoreos de fitoesteróis livres (30 e 50%), com potencial para de incorporação de outros 

compostos bioativos lipofílicos.  

As diferentes fontes lipídicas vegetaisutilizadas neste estudo conferiram 

características diferenciadas aos sistemas nanoestruturados, principalmente em termos de 

propriedades térmicas e cristalinas.  

Dentre os emulsificantes utilizados, o emuslficiante monooleato de sorbinata 

etoxilado, mostrou-se o mais promissor, favorecendo a obtenção de nanopartítculas com 

menores diâmetros médios e com tamanhos de partículas mais homogêneos, em relação aos 

demais emulsficantes utilizados.   

A homogeneização a alta pressão foi muito efeitiva para a obtenção de NLS e CLN 

com 3 ciclos de homogeneização a 800bar, mostrando grande potencial de escalonamento para 

produção em escala indústrial.  

Através do estudo térmico foi possivel identificar diferenças entre partículas em 

escala nanométrica quando comparadas as ML, comprovando que os materiais lipídicos 

nanoestruturados apresentam maior resistência térmica do que em macroescala. 

A partir da caracterização do hábito polimórfico das nanopartículas, verificou-se 

que nos lipídios nanoestruturados, de maneira geral, as transições polimórficas são facilitadas 

e a forma mais estável é atingida mais rapidamente. 

As nanopartículas desenvolvidas neste estudo têm viabilidade econômica e 

operacional para aplicação em alimentos em escala industrial. 

Os sistemas desenvolvidos neste estudo são de caracter inovador, em termos de 

composições das matrizes lipídicas e apresentam alto potencial para a aplicação em alimentos, 

com possibilidade de utilização em fármacos e cosméticos.  
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SUGESTÕES PARA TRABALHOS FUTUROS 

• Utilização de outros emulsificantes para o desenvolvimento destes sistemas, 

principalmente, os emulsificantes naturais; 

• Explorar outros tipos de lecitinas, com diferentes BHL e composições químicas; 

• Verificar a eficiencia da utilização de co-emulsificantes, na estabilização dos 

sistemas desenvolvidos neste estudo; 

• Desenvolver nanopartículas lipídicas com outros óleos e gorduras vegetais, para 

ampliar a gama de aplicações; 

• Utilizar outros compostos bioativos nestas matrizes lipídicas e caracterizar os 

sistemas em macro e nanoescala;  

• Desenvolver nanopartículas com hábito polimórfico em α, para verificar a 

estabilidade física quanto a expulsão do composto bioativo; 

• Aplicar estes nanosistemas em alimentos e verificar as suas estabilidades; 

• Desenvolver produtos com nanopartículas lipídicas e validar as propriedades 

diferenciadas promovidas pela inclusão destes nanosistemas; 

• Avaliar estes sistemas in vitro e in vivo, para verificar a absorção das nanopartículas 

e dos compostos bioativos carreados.  
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ANEXO 1 

Comprovante de submissão do Artigo de Revisão 
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ANEXO 2 

Deposito de Pedido de Patente
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ANEXO 3 

Parecer do orientador no exterior. 

 

 


