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Resumo

Simulações de alta fidelidade são realizadas com o intuito de estudar técnicas de
controle ativo para amenizar um vórtice de estol dinâmico em um aeorfólio SD7003 em
manobra de plunge com número de Reynolds Re = 60000 e número de Mach M = 0,1.
Simulações numéricas são realizadas utilizando uma ferramenta numérica que incorpora
métodos compactos de alta ordem para diferenciação, interpolação e filtragem numa malha
deslocada. Um estudo de convergência de malha é conduzido e os resultados obtidos
mostram boa concordância com dados disponíveis na literatura em termos de coeficientes
aerodinâmicos. Atuadores com diferentes arranjos na direção da envergadura foram
modelados afim de simular o assopramento e sucção do escoamento na região do bordo de
ataque. Foi observado que, numa faixa de frequências específica, a média e flutuação de
arrasto foram subtancialmente reduzidas enquanto a sustentação quase não foi afetada,
especialmente para um atuador bi-dimensional (2D). Nessa faixa de frequências, atuação
2D perturba a formação do vórtice de estol dinâmico, o que leva a uma redução do arrasto
devido ao aumento da pressão no extradorso do aerofólio na região de meia corda. Ao
mesmo tempo, a pressão é reduzida na proximidade do bordo de ataque, o que aumenta
sustentação e empuxo. Uma decomposição modal do escoamento também é realizada.
Com apenas 20 modos da decomposição, notou-se que a maior parte da dinâmica do
escoamento responsável pelos coeficientes aerodinâmicos é recuperada.

Palavras-chave: controle de escoamento, estol dinâmico, decomposição modal,
dinâmica dos fluidos computacional



Abstract

High-fidelity simulations are performed to study active flow control techniques for
alleviating deep dynamic stall of a SD7003 airfoil in a plunging motion at Reynolds number
Re = 60,000 and freestream Mach number M = 0.1. Numerical simulations are performed
with a finite difference based solver that incorporates high-order compact schemes for
differentiation, interpolation and filtering on a staggered grid. A mesh convergence study
is conducted and results show good agreement with available data in terms of aerodynamic
coefficients. Different spanwise arrangements of actuators are implemented to simulate
blowing and suction at the airfoil leading edge. It is observed that, for a specific frequency
range of actuation, mean drag and drag fluctuations are substantially reduced while mean
lift is maintained almost unaffected, especially for a 2D actuator setup. At this frequency
range, 2D flow actuation disrupts the formation of the dynamic stall vortex, what leads to
drag reduction due to a pressure increase along the airfoil suction side, towards the trailing
edge region. At the same time, pressure is reduced near the leading edge, increasing both
lift and thrust. Modal decomposition is then performed and it is found that, with only
20 modes, most of the flow dynamics responsible for the aerodynamic loads is recovered.

Keywords: flow control, dynamic stall, modal decomposition, computational fluid
dynamics
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1 Introduction

Aerodynamic bodies moving through steady and unsteady flows are found in several
engineering applications. Examples include helicopter rotor blades, wind turbine blades,
maneuvering aircraft, unmanned air vehicles (UAVs), to name a few. In general, airfoil
motion can be modeled by pitching and plunging, or combinations of both. The latter
can lead, for example, to the Knoller-Betz or Katzmayr effect (Jones et. al, 1998), where
a sinusoidally plunging airfoil can produce thrust depending on specific flow parameters
such as motion frequency and amplitude. Pitching is described by a pure rotation of
the airfoil, usually at quarter chord from the leading edge, while plunging is represented
its pure vertical translation. Despite not having rotation, an airfoil in plunging motion
experiences a change in effective angle of attack, which is that between the airfoil chord
and the effective disturbed flow velocity.

Figure 1.1: Schematic of airfoil pitching and plunging motions.

Unsteady flows over plunging and pitching airfoils with large excursions in effective
angle of attack exhibit the phenomenon of dynamic stall. This process is characterized by
unsteady separation and formation of a large leading-edge vortex, also called dynamic stall
vortex, that exerts high amplitude fluctuations in the aerodynamic loads. Comprehensive
reviews of this phenomenon in the context of helicopter rotor blades and pitching airfoils
are provided by McCroskey (1982); Carr (1988); Ekaterinaris and Platzer (1998) and
Corke and Thomas (2015).

A brief schematic showing how the dynamic stall phenomenon of a pitching airfoil
takes place can be seen in Fig. 1.2. At the start of the pitch-up motion in the cycle
(stage 1 in Fig. 1.2), the boundary layer is attached on the suction side of the airfoil
and lift increases linearly with pitch angle. This continues until the airfoil reaches its
static stall angle of attack. Lift then continues to increase beyond that angle as a result
of two mechanisms: i) a delay in the boundary layer separation owing to the pitching
motion and ii) formation of a separation bubble near the airfoil leading edge. Stage 2



18

of the flow corresponds to the first appearance and subsequent growth of the dynamic
stall vortex. This involves the spontaneous generation and ejection of vorticity from the
boundary layer into the inviscid outer flow, in a process detailed by Dommelen and Shen
(1980). The growth of the dynamic stall vortex results in additional aerodynamic loading
that exceeds that of the steady airfoil. In the same figure, one can see the advection of
the dynamic stall vortex at stage 3. At later stages, the flow becomes massively separated
and is later re-attached during the pitch-down motion.

For the case of flapping wings, as well as for severe impinging gusts, Eldredge and
Jones (2019) showed that highly unsteady forcing induces the formation of dynamic stall.
The evolution and interaction of such vortical structures with aerodynamic surfaces have
a significant impact on flight stability and performance. At certain conditions, dynamic
stall can lead to negative damping, which means that energy is being transferred from the
flow to the aerodynamic body, resulting in the growth of oscillations. This phenomenon
is referred to as stall flutter and can lead to catastrophic mechanical failure as showed by
Ham and Young (1966).

Although several studies have been conducted for pitching airfoils at high Reynolds
numbers, research on dynamic stall for plunging airfoils is more scarce, especially at
low and moderate Reynolds numbers. Studies of airfoils with plunging motion in these
conditions find application in design and operation of small unmanned air vehicles and
micro air vehicles. Therefore, we aim to extend our knowledge on the flow features present
in fully separated low Reynolds number flows involving deep dynamic stall.

High-fidelity simulations can provide an abundance of data with both high spatial
and temporal resolutions. For example, Ekaterinaris and Platzer (1998); Visbal and
Shang (1989); Visbal (1991); Choudhuri et. al (1994); Visbal (1990) and Radespiel
et. al (2007) performed two-dimensional simulations of dynamic stall under laminar,
transitional, and turbulent flow conditions. For high Reynolds number flows, numerical
simulations traditionally employ a hierarchy of turbulence models augmented in some
instances with empirical transition predictions. Over the last years, Visbal and co-authors
have employed implicit large eddy simulation (ILES) to investigate the phenomenon of
dynamic stall for different flow configurations including plunging and pitching motion, as
can be seen in Visbal (2011, 2014, 2015); Visbal and Garmann (2017); Benton and Visbal
(2018) and Visbal and Benton (2018).

In the present work, implicit large eddy simulations are performed to study the
flow physics of deep dynamic stall over a plunging SD7003 airfoil. The flow condition
investigated is selected based on the availability of results from other high fidelity
simulations by Visbal (2011) and particle image velocimetry (PIV) by Kang et. al (2009);
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Figure 1.2: Experiment showing how the flow is modified by a pitching airfoil at
different angles of attack. Extracted from Corke et. al (2011).

Baik et. al (2009); Ol et. al (2009). A compressible formulation is adopted since local
Mach numbers near the leading edge of a moving airfoil can be three to five times higher
than in static condition, as demonstrated by McCroskey (1981) and McCroskey (1982).
As a result, compressibility effects must be taken into consideration even for low Mach
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number flows.

Several investigations of dynamic stall control by both active and passive means,
especially for pitching airfoils, are described in the survey by Lorber et. al (2000).
Different control strategies have been tested including leading-edge blowing by Greenblatt
and Wygnanski (2001); Sun and Sheikh (1999); Weaver et. al (2004), leading-edge plasma
actuation by Corke et. al (2011); Lombardi et. al (2013); Post and Corke (2006),
thermo-acoustic actuation by Benton and Visbal (2018), vortex generators by Heine et. al
(2013); Martin et. al (2008); Traub et. al (2004) and synthetic jets by Ekaterinaris (2002);
Florea and Wake (2003); Traub et. al (2004). In some cases, fixed-wing devices have been
used, such as slots used by Carr et. al (2001), leading-edge droops by Chandrasekhara
et. al (2004); Joo et. al (2006); Martin et. al (2008) and trailing-edge flaps by Feszty et.
al (2004); Gerontakos and Lee (2006).

In this work, blowing and suction actuation is modeled at the airfoil leading-edge
aiming to reduce overall drag through modification of the dynamic stall vortex. Active
flow control strategies by means of periodic forcing can have effects such as attaching
otherwise separated flows or avoiding separation, and increasing lift, as demonstrated by
Greenblatt et. al (2010). Previous works by Visbal (2014, 2015); Visbal and Garmann
(2017) show that small disturbances can have a considerable impact on the flow dynamics
for a pitching NACA0012 experiencing dynamic stall at high Reynolds numbers. In the
current investigation, it is shown that, for a specific frequency range of actuation, drag is
substantially reduced while lift is maintained almost unaffected. The physical mechanisms
responsible for the changes in the flow field achieved by actuation are then discussed.

Flow modal decomposition utilizing proper orthogonal decomposition (POD) and
spectral proper orthogonal decomposition (SPOD) is also performed to both non-actuated
and actuated flows. Those techniques extract modes based on optimizing the mean square
of the field variable being examined. The modes extracted can be used to identify coherent
structures in the turbulent flow field and, thus, aiding in the understanding of the fluid
dynamics taking place. It is found that with only 20 modes, most of the dynamics
impacting the aerodynamic coefficients is recovered. Also, from this latter study, it was
possible to identify coherent structures originated from actuation.

1.1 Objectives

The main objective of this work is to investigate the phenomenon of deep dynamic
stall of an airfoil under plunging motion. In order to perform this study, a tool
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capable of simulating turbulent flows past moving bodies was developed. Hence, a
computational fluid dynamics code available in the research group was extended to solve
the three-dimensional form of the Navier-Stokes equations in a non-inertial frame of
reference. This previous tool could already solve two-dimensional flows of aerodynamic
bodies in arbitrary motion. Another objective of the current work consisted in performing
implicit large eddy simulations of a plunging airfoil using high order methods. These
simulations require a considerable amount of computational resources including parallel
processing and storage, and improvements in the code structure and format of solution
files were made to optimize the numerical procedure. Once the previous objectives were
achieved, another main goal of the work consisted in the investigation of flow actuation
effects on mitigation of the dynamic stall vortex in the studied flow. The flow actuation
was performed through blowing and suction on the airfoil leading edge. Finally, another
goal of this work was related to understanding how different actuation parameters, such
as the amount of transferred momentum, actuator arrangement, and actuation frequency
could impact flow parameters as drag and lift, besides the aerodynamic damping.

1.2 Work Organization

The layout of this MSc dissertation is organized as follows: chapter 2 describes the
theoretical and numerical methodologies of the simulations conducted along this work. It
is explained how the Navier-Stokes equations are solved in non-inertial frame of reference,
and how differentiation, interpolation, filtering and time integration of the governing
equations are performed. Details of the blowing and suction actuator is also provided
including its modeling and implementation.

In chapter 3, details about overall flow configuration are given and a mesh convergence
study is performed to validate the present numerical framework. Flow features at various
instants of the plunging motion of a non-actuated flow are detailed. Also, a comparison
between airfoils under dynamic and static stall at similar effective angles of attack is
provided at the end of this chapter.

The impact of actuation is investigated in chapter 4. Effects of different actuation
frequencies, jet intensities and slot arrangements are compared and a detailed explanation
on how actuation can mitigate the dynamic stall vortex is given. The impact of flow
actuation is shown for aerodynamic coefficients and aerodynamic damping. Theoretical
aspects of flow modal decomposition is then discussed followed by results in chapter 5.
It is explained how the modal decomposition techniques are formulated, including their
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differences when applied to the present flow simulation data. At last, main conclusions
are drawn in chapter 6 together with suggestions for future work.
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2 Theoretical and Numerical Methodology

2.1 Governing Equations

To simulate the flow around a moving airfoil, we solve the weakly conservative form
of the Navier-Stokes equations in a non-inertial frame. In this form, source terms
emerge from grid curvature and frame movement as investigated by Warsi et. al (1978);
Yamamoto and Daiguji (2001); Orlandi (1989); Choi (1992), and Yang and Voke (2001).
Here, all terms are solved in contravariant form to allow the use of a curvilinear coordinate
system {ξ1, ξ2, ξ3}. All equations are non-dimensionalized by freestream quantities such as
density ρ∞ and freestream speed of sound c∞. Although the Navier-Stokes equations are
non-dimensionalized by speed of sound, displayed results and parameters are provided
non-dimensionalized with respect to freestream velocity U∞ in accordance with Visbal
(2011). All length scales are made non-dimensional by the airfoil chord L. For a frame of
reference with varying velocity in the Cartesian y-direction, continuity, momentum and
energy equations reduce to

∂

∂t
(√gρ) + ∂

∂ξi
(√gρui) = 0 , (2.1)

∂

∂t
(√gρui) + ∂

∂ξj
[√g (ρuiuj − τ ij + gijp)]

+{ i
jk

}√g(ρukuj + gjkp − τ kj) = √
gρḧi , (2.2)

and

∂

∂t
(√gE) + ∂

∂ξj
{√g[(E + p)uj − τ ijgikuk

− µM

RePr
gij
∂T

∂ξi
]} = ρ√g(hj + uj)gjpḧp . (2.3)

In order to close the above system of equations the following relations are employed

E = p

γ − 1 +
1
2ρu

igiju
j + 1

2ρḣ
igijḣ

i , (2.4)
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τ ij = µM
Re

(gjkui ∣k + giku
j
∣k −

2
3g

ijuk∣k) , (2.5)

and
h = ho sin(kt) , (2.6)

where, ρ represents the density, ui the i-th component of the contravariant velocity vector
and p is the pressure. The term h is the frame position (cross-stream motion of the
plunging airfoil), E is the total energy, µ is the dynamic viscosity, T is the temperature,
k = 2πfL

U∞
is the reduced frequency, Re = ρU∞L

µ is the chord-based Reynolds number, M =
U∞
c∞

is the freestream Mach number and Pr is the Prandtl number. The dots represent
temporal derivatives of the frame position, i.e., frame velocity and acceleration. In the
previous equations, covariant and contravariant metric tensors are defined, respectively,
as

gij ≜
∂xk

∂ξi
∂xk

∂ξj
, (2.7)

and
gij ≜ ∂ξi

∂xk
∂ξj

∂xk
, (2.8)

with
g = ∣gij ∣ = (∂x

i

∂ξj
)

2

. (2.9)

The terms { i
jk
} represent the Christoffel symbols of the second kind and details about the

present formulation can be found in Aris (1989).

2.2 Numerical Methods

2.2.1 Spatial Differentiation

A compact sixth-order finite-difference scheme constructed for a staggered grid is used
to calculate all spatial derivatives. To determine f ′ for a given f , a tridiagonal system is
solved as

αf ′i−1 + f ′i + αf ′i+1 = b
fi+3/2 − fi−3/2

3∆x + a
fi+1/2 − fi−1/2

∆x , (2.10)
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where α = 9/62, a = 3
8(3 − 2α) and b = 1

8(−1 + 22α). To minimize errors from unresolved
scales, a sixth-order compact low-pass filter is applied according to

ᾱf̄i−1 + f̄i + ᾱf̄i+1 = āfi +
b̄

2(fi+1 + fi−1) +
c̄

2(fi+2 + fi−2) +
d̄

2(fi+3 + fi−3) , (2.11)

where, ā = 1
16(11+10ᾱ), b̄ = 1

32(15+34ᾱ), c̄ = 1
16(−3+6ᾱ) and d̄ = 1

32(1−2ᾱ). In the current
implicit large eddy simulations, we use ᾱ = 0.46, which implies a filter that only acts on
poorly resolved high wavenumbers. Therefore, this filter provides a reliable alternative
to a SGS model as discussed by Visbal and Benton (2018). Due to the staggered grid,
interpolations are necessary to evaluate properties at specific grid locations. To maintain
schemes with high-order, a sixth-order interpolation based on finite differences is used
according to

α̃f̃i−1 + f̃i + α̃f̃i+1 =
b̃

2(fi+3/2 + fi−3/2) +
ã

2(fi+1/2 + fi−1/2) , (2.12)

where α̃ = 3/10, ã = 1
8(9+10α̃) and b̃ = 1

8(6α̃−1). Additional details on the finite-difference
schemes used for derivation, filtering and interpolation can be found in Lele (1992) and
Nagarajan (2004).

Near the far-field boundaries, a numerical sponge is used to damp acoustic waves.
At the inlet and outlet boundaries, a Riemann invariant transformation is implemented
as the far-field condition. The airfoil surface is modeled by a no-slip adiabatic wall.
Derivatives of inviscid fluxes are obtained by forming fluxes between the grid nodes, on
the staggered grid, and differentiating each component. Viscous terms are obtained by
first computing the derivatives of primitive variables at their respective locations (see
Nagarajan (2004) for details). Components of the viscous fluxes are then constructed
at each node and differentiated by a second application of the compact scheme. Airfoil
movement is added through source terms shown in the formulation section. All schemes
discussed are implemented with periodic boundary conditions in the spanwise ξ3 direction.
Since we employ an O-grid, periodic conditions are also enforced along the ξ1 direction,
along the mesh branch cut, where grid points are coincident.
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2.2.2 Time Integration

After the spatial discretization, the Navier-Stokes equations become a set of ordinary
differential equations that can be expressed in the form

dQ

dt
= F (Q, t) , (2.13)

where Q is the vector of flow variables. At flow regions far away from solid boundaries, an
explicit third-order Runge-Kutta scheme is used for the equations time marching. This
scheme is given by

Qn+1/3 = Qn + 8
15∆tF (Qn, tn)

Qn+2/3 = Qn + 1
4∆tF (Qn, tn) + 5

12∆tF (Qn+1/3, tn+1/3) (2.14)

Qn+1 = Qn + 1
4∆tF (Qn, tn) + 3

4∆tF (Qn+2/3, tn+2/3) ,

where the intermediate time levels are tn+1/3 = tn + (8/15)∆t and tn+2/3 = tn + (2/3)∆t.

Time integration is carried out by the fully implicit second-order scheme of Beam and
Warming (1978) in the near-wall region in order to overcome the time step restriction
due to the usual near-wall fine-grid numerical stiffness. An overlap layer is applied at the
interface between explicit and implicit time marching schemes so that information can
travel between them. The implicit method is given by

3Qn+1 − 4Qn +Qn−1

2∆t = F (Qn+1, tn+1) . (2.15)

The right hand side is solved through approximate factorization followed by diagonal-
ization of the implicit matrix in the x and z directions. More details about the
approximate factorization are presented by Nagarajan (2004). After each time-step of
both schemes, the previously explained low-pass compact filter is applied.

2.3 Actuator Setup

In the current work, flow control is performed using blowing and suction on the leading
edge of the airfoil. To simulate an actuator of length s ≈ 0.01L, as shown in Fig. 2.1a, a
normal velocity is imposed at the actuator location, which is centered around the airfoil
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leading edge and is imposed with Eqs. (2.16) – (2.18) as

Ujet
U∞

= Ujet max
U∞

F (s)G(t)P (z) with (2.16)

F (s) = exp( − (s∗ − 0.01)2

4.5 ), s∗ = 5(s − 0.005) and (2.17)

G(t) = sin(St 2πt) , (2.18)

where the Strouhal number is St = fL
U∞

.

(a) (b)
Figure 2.1: (a) Actuator location in the x-y plane. (b) 3D view of 2D actuator.

The jet actuation is a sinusoidal temporal function G(t) given by a Gaussian profile
F (s) along the wall-tangential direction s and a profile P (z) along the airfoil span with
maximum jet velocity set as Ujet max. The spanwise actuation functions are chosen with
the intent of approximating the format of real slots on the airfoil surface. This would
allow comparisons to experiments. We defined the actuator chordwise location after
analyzing how efficiently the shear layer and overall flow are disturbed with different
actuator positions. For a pitching airfoil, Benton and Visbal (2018) showed that an
actuator placed near the leading edge effectively modifies the flow with minimum input.

To assess the influence of spanwise arrangement of actuation, different spanwise jet
configurations are tested through modifications of function P (z). A 2D actuator is
analyzed setting P (z) = 1 (see Fig. 2.1b). Other configurations are obtained appending
points according to

Pactuator(z) = tanh
⎛
⎝

2(β − α)
∆zactuator

z + α
⎞
⎠

1
2 +

1
2 , 0 ≤ z ≤ ∆zactuator

2 (2.19)



28

Figure 2.2: Profiles of function P (z) that specifies the spanwise arrangement of
actuation.

with their mirrored values. The profiles are then appended until the whole span is covered
as can be seen in Fig. 2.2. All investigated actuator arrangements are displayed in Fig.
2.3.

In total, four configurations are tested being two consisting of two slots, one with
three slots and one two-dimensional actuator. The configurations with two slots have
either narrow (A) or wide (B) spanwise jets. The same narrow jets from configuration
(A) are tested in the setup with three slots along the airfoil span. Further details about
the 3D actuators used in this work are summarized in Table 2.1.

Table 2.1: Parameters of the 3D actuators from Eq. (2.19). Coefficients α and β are
numerical parameters which control the smoothness and stretching of Pactuator(z).

2 slots (A) 2 slots (B) 3 slots (C)

∆zactuator ≈ 0.08L ≈ 0.16L ≈ 0.08L
α -10.62 -3.58 -6.01
β 2.31 2.31 2.31

Simulations with actuation frequencies of St ∈ [0.5,25] are first performed for the 2D
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Figure 2.3: Contours showing where Ujet is imposed for different actuator arrangements.

actuator with the objective of understanding flow response with respect to this parameter.
In order to quantify jet actuation efforts, the coefficient of momentum is calculated
according to

Cµ =
1
Tg ∫

Tg

0 ∫
sn

s0 ∫
zspan

0 ρ∞Ujet(s, z, t)2 dsdzdt

0.5ρ∞U2
∞Lzspan

, (2.20)

where Tg is the period of G(t). Different values of Cµ are tested to assess the effectiveness
of flow control. Table 2.2 displays all configurations investigated in terms of Cµ for all
actuator setups. For clarity, we will refer to simulations with a specific Cµ as “Case 1,2
or 3”. In what follows, results are obtained for Case 2 at St = 5, unless otherwise stated.

Table 2.2: Parameters of control setups investigated. Simulations with the same Cµ are
grouped under the same Case category.

Case Cµ

Ujet max

U∞

2D Act. 2 slots (A) 2 slots (B) 3 slots (C)

1 1.78e−01% 0.8 - - -
2 4.46e−02% 0.4 0.90 0.67 0.74
3 1.12e−02% 0.2 - - -
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3 Non-actuated Flow

3.1 Flow Configuration and Mesh Convergence
Study

Large eddy simulations are performed for a SD7003 airfoil in a plunging motion
described by Eq. (2.6) at Reynolds number Re = 60,000, freestream Mach numberM = 0.1
and static angle of attack α0 = 8○. The plunging motion has a reduced frequency k = 0.5
and the plunge amplitude is set as ho = 0.5L. This specific flow condition was selected
based on the availability of results from similar high fidelity simulations from Visbal
(2011). In this reference, simulations were performed for different spanwidths. It was
concluded that the main flow features were fairly insensitive to spanwidth variations due
to the energetic forcing of the plunging motion. Therefore, a span length zspan = 0.4L is
employed in our calculations similarly to the baseline case from Visbal (2011).

A mesh convergence study is conducted to assess influence of grid resolution on the
simulated flows. Figure 3.1 shows detail views of the two grids which are generated with
approximately 70% of the surface points located along the suction side of the airfoil. This
setup is employed since turbulence appears in this region at various stages of the plunging
motion and, hence, finer scales need to be resolved. At the pressure side, however, the flow
does not become turbulent at any moment during the plunging motion. The trailing edge
of the SD7003 airfoil is rounded in current simulations with an arc of radius r/L = 0.0008.
This procedure is required for maintaining the metric terms employed in the structured
grid smooth.

The grids parameters are listed in Table 3.1. In this study, we employ resolutions
similar to those from Visbal (2011). It is important to mention that a similar numerical
approach was used by Visbal (2011) and, therefore, the current investigation follows
the best practices needed to properly simulate the current flow. From grid 1 to 2,
we mainly improved the spanwise resolution and the concentration of points in the
wall-normal direction in the region comprised by a chord length to the airfoil surface.
This latter refinement was achieved by changing the stretching function that defines the
grid generation.

Simulations of five cycles of plunging motion are performed, but only the last four are
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Figure 3.1: Grids considered in the mesh refinement study (only every other grid point
in the x-y plane is shown here).

Table 3.1: Grids Parameters.
Grid ξ1 ξ2 ξ3 ∆ξ2

wall ∆ξ2∗

1 441 300 60 0.00005 0.01
2 481 350 96 0.00005 0.005

∆ξ2
wall: distance between airfoil surface and first grid point in the normal direction

∆ξ2∗: distance between points in the normal direction one chord away from the airfoil

used to calculate the phase-averaged statistics. Figure 3.2 shows the phase-averaged lift,
drag and quarter-chord pitching moment coefficients, CL, CD and CM , respectively, with
respect to the effective angle of attack α = α0 + tan−1 (kh0

L cos(kt)). Results obtained
using both grids exhibit good agreement with Visbal (2011), especially considering the
variations that occur from cycle to cycle. Such variations can be seen in Fig. 3.3, in which
aerodynamic coefficients obtained by the first cycle are already discarded and only the last
four are employed in computations. From current results, we consider that the coarser
mesh shown in Fig. 3.1 has sufficient resolution to capture the flow physics. Hence, this
mesh is chosen to perform the simulations presented in this work. For each cycle, 23,040
computational hours are needed when using the SDUMONT-LNCC cluster.

3.2 Flow Features of Baseline Configuration

This section presents results of the current ILES for the baseline uncontrolled
configuration, in which the main physical mechanisms associated with the dynamic stall
vortex are described. The current plunge motion undergoes an effective angle of attack in
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Figure 3.2: Aerodynamic coefficients obtained using grids 1 and 2 and from Visbal
(2011) as function of the effective angle of attack α.

Figure 3.3: Cycle to cycle variations in aerodynamic coefficients (grid 1).

the range of −6○ ≤ α ≤ 22○. Due to transients originated from the start of the simulations,
only the last four plunging cycles from all five available are used to calculate statistics.
For visualization purposes, a phase angle φ is used to describe the airfoil position. A
schematic of the airfoil motion is shown in Fig. 3.4. At φ = 0○, the airfoil has no vertical
velocity and is at the top-most position of the plunging motion. At φ = 90○, it has the
highest downward velocity in the y-direction and, at φ = 180○, it has zero vertical velocity
being at the bottom-most position of the plunging motion. Finally, at φ = 270○ it has the
highest velocity in the y-direction (upward).

y

φ = 0◦

φ = 90◦

φ = 180◦

φ = 270◦

Figure 3.4: Airfoil position for different phase angles φ.
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Figure 3.5: Spanwise-averaged z-vorticity contours at different phases of the plunging
motion without actuation (see also the Supplemental Material (Ramos, 2019e)).

Fig. 3.5 and Supplemental Material (Ramos, 2019e) presents spanwise-averaged
z-vorticity contours at different phases of the plunging cycle. During the downstroke, flow
instabilities begin to grow in the shear layer formed along the suction side of the airfoil
with vortex shedding occurring at the airfoil wake when φ = 37.1○. As the downward
motion continues, instabilities on the suction side grow and eventually break the large
spanwise-correlated structures into finer ones, leading to a transitional flow. While this
takes place, the main leading-edge vortex (LEV) begins to form (φ = 65.9○). The LEV
grows over the suction side (φ = 112.1○), increasing lift and creating a nose-down pitching
moment.

As the LEV covers the entirety of the chord, a trailing-edge vortex (TEV) forms and
“lifts” the LEV away from the airfoil surface at φ = 151.6○. As the LEV lifts off, an
oscillation in the pitching moment can be observed. As the airfoil motion continues, the
TEV is ejected from the suction side (φ = 179.5○). When the airfoil moves upwards,
re-laminarization starts from the leading edge (φ = 221.9○) and keeps going until the
entire boundary layer is relaminarized (φ = 279.6○). Subsequently, the Kelvin–Helmholtz
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instability can be observed again, leading to periodic shedding of vortices from the trailing
edge.

Figure 3.6: Iso-surfaces of Q criterion colored by CP at different phases of the plunge
motion without actuation.

In order to further characterize the current flow, iso-surfaces of Q-criterion are shown
in Fig. 3.6 for all cycles. The turbulent structures are colored by pressure coefficient
contours. Despite subtle cycle to cycle variations, the main features of the dynamic stall
process remain unchanged. Namely, the formation of the LEV, its transport over the
airfoil, the formation of the TEV and the departure of both vortices. Although fine
turbulent structures can be observed, it is clear that large-scale coherent structures are
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the most prominent in the dynamic stall process. We expect such energetic structures to
play a key role in the dynamics of the present flow, severely impacting the aerodynamic
loads. For example, the leading-edge vortex is characterized by a low pressure region
which is advected along the suction side, dynamically affecting flight stability through
changes in lift and drag forces during the plunging motion.

Simulations of a static SD7003 airfoil were also conducted using the present numerical
methodology to expose the different flow features for the same effective angles of attack.
Figure 3.7 shows the aerodynamic coefficients obtained for the airfoil under downstroke
motion and simulations of the static airfoil at different angles of attack. The orange
lines represent the aerodynamic coefficients computed only during downstroke while the
corresponding values computed for the static case are depicted by vertical bars. These bars
indicate the amplitude variations of lift, drag and pitching moment coefficient experienced
for the static case. The ranges of minimum and maximum values of all aerodynamic
coefficients for the static airfoil cases are clearly different when compared to those obtained
for dynamic stall, with exception of CM at α = 22○. When looking only at the simulations
with the static airfoil, it can be seen that the differences between maximum and minimum
values, indicated by vertical bars, grow as α increases due to intensification of vortex
shedding in a stalled condition. From this figure, one can see that drag continuously
increases with the angle of attack. Mean lift decreases from α = 8○ to 15○ as expected
for static stall. However, it increases again as the incidence changes to α = 22○, probably
because of the intense pressure fluctuations observed for this configuration.

Figure 3.7: Aerodynamic coefficients of phase averaged data from simulation of plunging
airfoil versus effective angles of attack. From left to right, the angles of attack are
α = 8○, 15○ and 22○, respectively. Bars representing maximum and minimum values

found in simulations of a static airfoil.

The differences among simulations with and without motion becomes even clearer in
Fig. 3.8. It is important to notice that since the airfoil has downstroke and upstroke
motions and, hence, all angles of attack in the range −6○ < α < 22○ occur for two separate
moments. The contours appearing in the middle column are those which happen first
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in the plunging motion, when starting from φ = 0○. For the static case at α = 8○,
the flow is turbulent and attached, while during downstroke in the plunging motion
(middle column) there is no sign of three-dimensional effects on the airfoil suction side.
On the other hand, during upstroke, when this effective angle of attack is reached, the
flow exhibits three-dimensional structures ejecting from the suction side besides a large
coherent structure which is shed.

At α = 15○, static stall has taken place and a considerable recirculation region
can be identified in blue colors in Fig. 3.8. On the other hand, during downstroke,
Kelvin-Helmholtz instabilities arise originated from the shear layer for the first time at
α = 15○. During the upstroke, turbulent structures are present and the flow is massively
separated because of the dynamic stall vortex. At α = 22○, the static airfoil has far
exceeded the stall sngle and the flow is completely separated. Intense vortex shedding is
present, which explains the high variance of aerodynamic coefficients observed in Fig. 3.7.
When the airfoil is moving, it reaches this angle of attack in the middle of the downstroke
motion. At this moment, the dynamic stall vortex is being formed and vorticity starts
to accumulate near the leading edge, forming an attached flow region in the mid-chord
region of the airfoil and a mildly separated region at the trailing edge.

It is clear that, for the plunging airfoil, the emergence of the dynamic stall vortex
changes the flow quite drastically when compared to its static stall counterpart. Next
section describes the efforts towards controlling the formation of this large-scale structure
aiming to reduce the overall drag and its fluctuations, while trying to maintain mean lift
unaltered.
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Figure 3.8: Q-criterion colored by X Velocity for different flows undergoing static stall
and the plunging airfoil at similar effective angles of attack.



38

4 Active Flow Control

4.1 2D Actuation

An assessment of 2D actuation on the flow dynamics performed only in one cycle
is presented in this section. Flow actuation is turned on at φ = 0○ after five plunging
cycles. Figure 4.1 shows the averaged values of CL, CD and CM represented by black
dots for different actuation frequencies St. The maximum and minimum values of the
aerodynamic coefficients computed during the cycle are given by the top and bottom
values of each bar. Results obtained for the baseline configuration are depicted by orange
bars while green, blue and red bars represent solutions computed for cases 1, 2 and 3,
respectively, as described in Table 2.2. It is important to remind that the coefficient of
momentum Cµ for case 1 is the highest investigated while that for case 3 is the lowest.
Hence, this figure allows an assessment of the effects of 2D actuation in terms of both
actuation frequency and its intensity on the aerodynamic coefficients.

From Fig. 4.1, it can be noticed that CL do not exhibit large variations for the
actuation frequencies and Cµ considered. However, significant changes in CD and CM

are observed depending on the actuation frequency. For example, large reductions in CD
appear in the range 2.5 < St < 15 compared to the baseline case for all values of Cµ
investigated. Frequencies higher than St = 15 or lower than St = 2.5 do not promote
a significant impact on drag and pitching moment, both in terms of mean values and
maximum and minimum amplitudes. The coefficient of momentum also has a significant
impact on the results. In general, for the flows with stronger actuation disturbances (cases
1 and 2), reductions in maximum drag are more evident. In some occasions, better results
in terms of drag reduction are observed for Case 2.

Averaged values of CL and CD normalized by their respective baseline values are
displayed in Fig. 4.2. This figure also shows a drag polar plot relating CL

CD
. Again,

results are presented as a function of Strouhal number and coefficient of momentum. The
behavior observed for the maximum and minimum values of aerodynamic coefficients is
similar to their averaged values. For example, with St = 3.75 and Cµ from case 1, the
airfoil drag coefficient CD is reduced to 30% of the baseline. For the same case, the lift
coefficient CL only drops to 86% of the baseline. In summary, for cases 1 and 2 and
Strouhal numbers in the range 2.5 ≤ St ≤ 15, flow actuation is able to considerably reduce
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Figure 4.1: Variations in aerodynamic coefficients for different actuation frequencies (St)
and coefficient of momentum (Cµ) for 2D actuated flows. We refer to simulations with

different Cµ as “Case 1,2 or 3”.

mean values of drag coefficient without severely impacting lift. From the figure, one can
conclude that the best results in terms of mean lift to mean drag ratio are obtained for
frequencies given by St = 3.75 and 5.0.

Figure 4.2 also shows the impact of actuation in the aerodynamic damping Ξ, which
is calculated as

Ξ = − 1
αmax − α0

∮ CMdα . (4.1)

It can be seen that the baseline flow has negative damping, implying that energy is
transferred from the flow to the airfoil, leading to oscillations and even flutter. While
some actuation frequencies, e.g. cases 2 and 3 at St = 0.5, lead to even more negative
values of aerodynamic damping, frequencies around St = 3.75 successfully revert the issue,
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Figure 4.2: Mean aerodynamic loads compared to the baseline flow, mean lift to mean
drag ratio, and aerodynamic damping using 2D actuation.
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leading to a positive damping and a stabilizing effect on the airfoil dynamics.

In what follows, results will be discussed based only on “Case 2” flow actuation. Figure
4.3 shows plots of aerodynamic coefficients as functions of the effective angle of attack.
Results of the baseline flow are compared to those with actuation for St = 1, 5 and 25.
Hence, it is possible to evaluate the effects of low, moderate and high frequencies of
actuation on the aerodynamic loads during any instant of the motion. It is clear that
the actuation frequency has a large impact in the flow response, especially for instants of
downward velocity.

Figure 4.3: Aerodynamic coefficients versus effective angle of attack for 2D actuated
flows with different frequencies (Case 2).

Different moments of the plunging motion are also highlighted by circles at φ = 32.3○,
90.0○, 131.4○ and 153.5○. One should be reminded from Fig. 3.4 that φ ∈ [0○,180○]
represents the downstroke motion which includes the formation, transport and ejection
of the leading-edge vortex. These specific values of φ are shown due to important flow
features that occur at such instants and that will be used to compare the actuation setups
next.

Contours of spanwise-averaged pressure coefficient CP with iso-contours of z-vorticity
are shown in Fig. 4.4 and the Supplemental Material (Ramos, 2019a) for the same
actuation frequencies as in Fig. 4.3 and for the baseline case. It is observed that actuation
does not delay the formation of the dynamic stall vortex but disrupts it. At φ = 32.3○,
all flows have roughly the same aerodynamic loads (notice that the blue circles lie on top
of each other in Fig. 4.3). However, the shear layer is clearly disrupted by actuation,
especially in the St = 5 case. When compared to the baseline case, it can be seen that
Kelvin-Helmholtz instabilities appear and grow earlier in the plunging motion for the
St = 5 setup. Actuation at other frequencies also modify the shear-layer but instabilities
do not get amplified as much. At φ = 90.0○ (maximum downward velocity), the formation
of the leading-edge vortex does not occur as prominently in the St = 5 case when compared
to other actuation frequencies. For this case, vortices created by actuation successfully
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Figure 4.4: CP contours with iso-lines of z-vorticity for spanwise-averaged flows with 2D
actuation (Case 2).

break the large-scale coherent structure formed at the leading edge. On the other hand,
for St = 1 and 25, the vortices created by the actuation do not effectively disrupt the
formation of the LEV. In the latter case, small vortical structures end up coalescing and
forming the LEV in a similar fashion compared to the baseline flow.

At φ = 131.4○ we observe in Fig. 4.3 the highest value of CD for the baseline flow.
Actuated flows exhibit similar aerodynamic coefficients, except for St = 5. At this
frequency, Fig. 4.4 shows a coherent structure with higher (less negative) values of CP
compared to other cases. This effect is a consequence of the formation of smaller vortical
structures by the actuation that do not coalesce into a single dynamic stall vortex at
first. This weaker LEV also induces the formation of a less intense TEV at φ = 153.5○.
This latter instant is represented in Fig. 4.3 by a second peak in drag coefficient for the
baseline flow. It is worth noting that the amount of energy used by the actuators is very
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small. For example, when the actuation frequency St = 5 is considered, the energy used
by the actuator is only 0.015% of the total amount of saved energy due to drag reduction.

Figure 4.5 shows CP distributions (spanwise-averaged) in order to better quantify
pressure differences among the various flows previously analyzed. Results are presented
at φ = 131.4○ and 153.5○ as a function of the airfoil chord location. A vertical dashed line
marks the position where the surface normal on the airfoil wall (on the suction side) is
vertical, as shown in Fig. 4.6. This position is given by xvsn = 0.12L and it is important
to differentiate how the regions over the airfoil suction side contribute to drag reduction.
We consider the surface normal pointing inward the airfoil. Lift and drag generated
from pressure distributions along the airfoil surface are calculated by L = ∮ pny dS and
D = ∮ pnx dS, respectively. Here nx is the component of surface normal in the x direction
while ny is that in the y direction. Thus, a force applied in the normal direction on the
airfoil suction side, to the left of the vertical dashed line, leads to lift reduction and drag
increase. On the other hand, a normal force applied to the right of such line result in
both lift and drag reductions. Pressure forces applied on the bottom side of the airfoil
will always lead to lift increase.

Figure 4.5: Comparison between span-averaged values of CP for 2D actuators with
different frequencies (Case 2). The vertical dashed line indicates the location of xvsn.

For the baseline case, at φ = 131.4○, the bump in the CP distribution appears due
to the advection of the LEV over the suction side of the airfoil. This negative value of
pressure coefficient indicates that a strong suction occurs on the top surface of the airfoil,
leading to a lift and drag increase. Similar trends are observed for the cases with St = 1
and 25. At φ = 153.5○, a strong suction peak is observed at the trailing edge due to
the formation of the TEV and such feature also increases both lift and drag. Again, the
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solution obtained for St = 25 is very similar to that from the baseline flow. On the other
hand, for the St = 5 setup, one observes that a mild bump forms at φ = 131.4○, reducing
both lift and drag for this case. However, a strong suction peak is present at the leading
edge of the airfoil, increasing both lift and further reducing drag. When the airfoil is at
φ = 153.5○, a suction peak is still present at the airfoil leading edge and a minor suction
effect is observed at the trailing edge due to a less intense TEV. In summary, lower (more
negative) values of CP to the left of the vertical dashed line in Fig. 4.5 would result in
lower pressure drag. In the same context, higher (less negative) values of CP to the right
of the vertical dashed line also lead to lower pressure drag. Both conditions are met when
flow actuation is applied at St = 5.

Figure 4.6: Position xvsn where the inward pointing surface normal at the suction side is
vertical.

The full history of spanwise-averaged CP computed on the airfoil suction side is
displayed in Fig. 4.7 as a function of φ. In this figure, a comparison is shown for the
baseline and St = 5 cases. The dark blue colors in the plots represent the low pressure
signatures from the LEV and TEV and one can see that they are less severe in the case
with control. Figure 4.8 shows similar maps but colored by friction coefficient Cf instead.
For lower φ angles, it is possible to notice the oscillatory behavior of Cf due to the initial
shear layer instabilities. The dark blue contours mark the separation region caused by the
transport of the LEV while the dark red contours in the trailing edge are due to formation
of the TEV. In the case with actuation, the LEV is weaker so the blue trace is thinner
and less intense than that computed for the baseline configuration. From this figure, it is
also possible to see that the separation near the leading edge has an oscillatory behavior
due to flow actuation during the downstroke motion.

The St = 5 actuation leads to a disruption of the LEV which sheds small pockets of
vorticity instead of accumulating it. This effect can be observed in Fig. 4.9 and it avoids
the formation of a large-scale coherent structure at the leading edge, in contrast to the
baseline configuration (see also the Supplemental Material (Ramos, 2019e)). In summary,
a significant reduction in CD and CM occurs as a result of the features observed due
to flow actuation: mitigation of the dynamic stall vortex, strong negative values of CP
upstream of xvsn, and mild values of CP downstream of xvsn for 2.5 < St < 15. Although
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Figure 4.7: Comparison of CP between baseline and 2D actuated flow with St = 5.

the flow actuation leads to a small reduction in terms of CL, it is not as prominent as
the reductions observed in CD and CM . Since a lower actuation disturbance is employed
for Case 2, and the best result in terms of CL

CD
for this case is obtained for St = 5, we will

further investigate this specific flow configuration. Therefore, we can reduce the energy
expenditure in the actuation while maintaining the mean lift to mean drag ratio above
20.

4.2 3D Actuation

In the previous section, results of 2D flow actuation for the present plunging airfoil
were presented. However, 3D actuation can enhance performance when it comes to drag
reduction of an airfoil in static stall condition, as shown by Yeh and Taira (2019) and
Munday and Taira (2018). Therefore, we present a study of different configurations of 3D
actuation to assess their impact on drag reduction. Results are shown for St = 5 and Cµ

Figure 4.8: Comparison of Cf between baseline and 2D actuated flow with St = 5.
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Figure 4.9: Spanwise-averaged z-vorticity contours at different phase angles for the 2D
St = 5 controlled case with 2D actuation (Case 2).

from Case 2 for the actuation configurations discussed in Section 2.3.

Figure 4.10: Comparison of aerodynamic coefficients obtained by 2D and 3D actuation
with St = 5 (Case 2).

In Fig. 4.10, results are shown for the aerodynamic coefficients and it can be seen that
all cases with 3D actuation exhibit higher values of CL for high effective angles of attack
α when compared to the 2D actuated flow. However, the values of CD are considerably
lower for the 2D actuation at the same angles of attack. The same can be said for CM ,
except for the case with two larger slots (configuration B), which has comparable values
of moment coefficient to those obtained for the 2D actuation.

Iso-surfaces of Q-criterion colored by pressure coefficient are shown in Fig. 4.11 at
various moments of the plunge motion. A movie with the same features is presented
as Supplementa Material (Ramos, 2019c). Due to its inherent three-dimensionality, 3D
actuation exhibits earlier transitional features at φ = 32.3○ when compared to the baseline
and 2D actuation cases. All actuated flows exhibit weaker LEVs compared to the baseline,
noting that 2D actuation is the most efficient since it is able to efficiently disrupt the LEV
formation at φ = 90.0○. At φ = 131.4○, we can notice that both 2D actuation and that
with two wider slots (B) produce dynamic stall vortices with higher values (less negative)
of pressure coefficient. With weaker LEVs, these cases also show TEVs which are less
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intense, avoiding the secondary drag peak that appears for the baseline configuration in
Fig. 4.10 at φ = 153.5○.

The impact of different types of actuation on CP distribution along the airfoil suction
side can be seen in Fig. 4.12 and in the Supplemental Material (Ramos, 2019b). At
φ = 32.3○, despite similar values of aerodynamic loads observed in Fig. 4.10, CP contours
are fairly distinct. Two-dimensional coherent structures are present in the baseline and
2D actuation cases, while all 3D actuated flows exhibit more complex 3D structures which
promote transition to turbulence earlier in the plunging motion. When CD reaches its
peak at φ = 131.4○, a dark region of low pressure created by the LEV is present in the
baseline flow, while milder values of CP are observed in the actuated cases. In general,
the 2D actuated flow has less negative values of CP downstream of xvsn when compared to
the other cases and the CP values are more negative upstream xvsn. Similar observations
can be made at φ = 153.5○ regarding the TEV.

Fig. 4.13 and the Supplemental Material (Ramos, 2019d) shows how the flow
separation changes due to actuation. While the flow is fully two-dimensional in the
baseline and 2D actuated cases at φ = 32.3○, the same cannot be said for the cases with 3D
actuation. After transition takes place, regions of separation and reattachment upstream
of xvsn show higher spanwise coherence in the 2D actuated flow. Nevertheless, as can be
seen at φ = 131.4○, the separation created by the LEV is attenuated in all control cases. At
φ = 153.5○, all the actuated flows are able to form the TEV further downstream compared
to the baseline case, reducing its overall impact on the aerodynamic coefficients.

Finally, Fig. 4.14 presents a comparison of spanwise-averaged values of CP for different
configurations of actuation. One can see that the 2D actuation leads to lower values of
CP at the leading edge, increasing lift and reducing drag. At the same time, the suction
effects towards the trailing edge are milder for this case, further reducing drag. Values
of mean lift to mean drag ratio, as well as aerodynamic damping, are displayed in Table
4.1 for different actuation setups. The best results of CL

CD
are found for the 2D actuation

followed by that with two wider slots (B). The same trend is observed when analyzing
values of aerodynamic damping. In summary, it can be observed that when a larger region
on the leading edge is covered by the slots, making it more similar to a 2D configuration,
the better the results are in terms of drag reduction and aerodynamic damping increase.
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Table 4.1: Mean lift to mean drag ratios and aerodynamic damping for different
actuation configurations with St = 5 (Case 2).

2D Act. 2 Slots (A) 2 Slots (B) 3 slots (C)
CL

CD
20.48 12.03 19.13 14.73

Ξ 0.0122 -0.0318 0.0066 -0.0146

Figure 4.11: Q-criterion colored by CP comparing 2D and 3D actuation with St = 5
(Case 2) at various phases of the plunge motion.
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Figure 4.12: Distribution of CP over the airfoil suction side (flow is directed from left to
right) for 2D and 3D actuation with St = 5 (Case 2).

Figure 4.13: Distribution of Cf over the airfoil suction side (flow is directed from left to
right) for baseline and 2D and 3D actuation with St = 5 (Case 2).
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Figure 4.14: Spanwise-averaged values of CP for different configurations of actuation
with St = 5 (Case 2). The vertical dashed line indicates the location of xvsn.
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5 Flow Modal Decomposition

5.1 Formulation

5.1.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) has been used in nearly every field of fluid
dynamics since its introduction by Lumley (1970) and Sirovich (1987). For a review of
POD and other flow modal decomposition techniques, work by Taira et. al (2017) is
recommended. In other fields, this method is also known as principal component analysis
or Karhunen–Loève expansion (Berkooz et. al (2003)) and it relies on singular value
decomposition (SVD). The basic idea behind POD is to build an optimal set of bases that
represents most of the data variance with as few basis functions as possible. To accomplish
this, an SVD is performed to a covariance matrix, which is usually constructed using a
kinetic energy norm. However, in this work, a pressure norm will be used instead for
construction of the POD covariance matrix. Therefore, since POD searches for the most
energetic modes, POD basis functions are likely to represent coherent structures with high
energy content based on pressure fluctuations, as described by Holmes et. al (1996).

A function y represented on m grid points at locations x and time t for n snapshots
can be expressed as

y(x, t) = ȳ(x) + y′(x, t) = ȳ(x) +
n

∑
i=1
ai(t)Ψi(x) , (5.1)

with ȳ(x) and y′(x, t) being the temporal average and fluctuations of y(x, t), respectively,
Ψ being orthogonal basis eigenfunctions (spatial modes) and a(t) a vector that inserts
temporal dynamics into the system (temporal modes). Therefore, if all modes are used
after performing a proper orthogonal decomposition, all flow features are recovered.

For fluid flow simulations, spatial data (grid points) is much more abundant than
temporal data (snapshots). Thus, the more memory efficient snapshot POD method
Sirovich (1987) will be used. The temporal covariance between snapshots can be expressed
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as

⟨y′(x, ti),y′(x, tj)⟩ = ∫
V

y′(x, ti),y′(x, tj)dV , (5.2)

where V indicates the volume over which the covariance is integrated. The elements of
the covariance matrix R then are given by

Ri,j =
1
n
⟨y′(x, ti),y′(x, tj)⟩ . (5.3)

As previously stated, pressure will be used to build the covariance matrix because it
allowed to recover the main behavior of aerodynamic loads with fewer modes compared
to a kinetic energy norm. Performing an SVD in R provides the temporal coefficients ai =
[ai(t1), ..., ai(tn)] and the singular values λi, which are already sorted in descending order
of magnitude so that the first modes are those representing most of the flow information.

To obtain the spatial modes Ψ, a projection of snapshots onto the temporal coefficients
is performed according to

Ψi(x) = 1
n

n

∑
j=1
ai(tj)y′(x, tj) . (5.4)

5.1.2 Spectral Proper Orthogonal Decomposition

The idea behind the spectral proper orthogonal decomposition (SPOD) proposed by
Sieber et. al (2016) is to filter the correlation matrix R with a simple low-pass filter.
The main impact of this procedure is the “cleaning” of frequency spectrum of temporal
modes, what reduces noise transferring high-frequency content from lower POD modes to
higher POD modes. This procedure results in a filtered correlation matrix S that can be
calculated by

Si,j =
nf

∑
k=−nf

qkRi+k,j+k , (5.5)

where nf is the filter bandwidth and qk are the filter coefficients. In this work, a Gaussian
filter with periodic boundaries was used because of its smooth response features in time
and frequency domain (Ribeiro and Wolf, 2017), being calculated according to

qk = e
−8( k

nf
)2

. (5.6)
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All other steps follow the same procedure described in the POD formulation. The
only introduced variable in this approach, when compared to the snapshot POD, is nf
which results in a classical POD when set to 0 and a discrete Fourier transform (DFT)
when set to n/2. This property is very useful since nf can be tuned to provide less noisy
spatial and temporal bases while still keeping the main features of POD. However, one
drawback is that spatial bases provided by an SPOD are not orthogonal, which can be
a problem for contruction of reduced order models via Galerkin project (Carlberg et. al,
2011, 2013, 2017).

5.2 Results

The spectral proper orthogonal decomposition (SPOD) previously explained is
performed for 3 plunging cycles (n = 1120 snapshots) of the baseline spanwise averaged
data. The correlation matrix is built with pressure values at grid points and only the
first 20 modes are used in reconstructions in order to investigate the fidelity for which
flow features can be recovered with few modes. The domain used to perform the modal
decomposition is shown in Fig. 5.1. We verified that this region provided converged
results when compared to larger spatial domains.

Figure 5.1: Domain used to perform flow modal decomposition. Farfield is at
approximately 4.5 chords away from the airfoil.

As explained in the previous section, the size of nf needs to be chosen by the user
when decomposing the flow with SPOD. To assess the influence of this parameter, several
decompositions are performed with different values of nf as identified in Table 5.1. Figure
5.2 shows how well the flow is reconstructed using SPOD (B) with the filter bandwidth
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nf ≈ 0.25n ≈ 280. It can be seen that the main flow features are recovered at various
moments, with the exception of small disturbances.

Table 5.1: Size of filter bandwidth nf used in each modal decomposition case.

POD SPOD (A) SPOD (B) SPOD (C)

nf 0 112 ≈ 0.1n 280 ≈ 0.25n 449 ≈ 0.4n

Figure 5.2: CP contours with iso-lines of z-vorticity of spanwise-averaged baseline and
SPOD (B) reconstructed flows. Decompositions performed on non-actuated flow.

Figure 5.3 shows the influence of this parameter in the calculation of aerodynamic
coefficients, obtained from the (S)POD reconstructed flows. Both POD and SPOD
computed with different values of nf are able to recover fairly well the main features
of the baseline flow with only 20 modes (1.79% of modes). As nf increases, a smother,
more accurate, reconstruction is obtained, especially when looking at CD in between
300○ < φ < 10○. That is because the flow is laminar at this stage of the plunging motion,
so there are not strong pressure correlations as, for example, when the dynamic stall
vortex is being transported at later moments of the plunging cycle. Therefore, a simple
POD analysis is not enough to capture the flow behavior accurately for these moments.

Also, SPOD reconstructions have information of weaker modes despite having less
overall information of the baseline flow. Figure 5.4a shows the normalized singular values
λ̄Mode = λMode

∑λ and since ∑λ represents the total amount of information in the flow, it is
possible to calculate how much information is contained in the first 20 modes, as shown
in Fig. 5.4b.
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Figure 5.3: Aerodynamic coefficients from (S)POD reconstructions with different values
of nf . Here, the decompositions are performed on the non-actuated flow.

(a) (b)
Figure 5.4: Left: singular value distribution according to nf ; Right: recovered

information using a certain percentage of modes. Decompositions shown are performed
on the non-actuated flow.
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It is clear that larger values of nf lead to better pairing of POD the modes. Notice that
the first (most energetic) modes have less information as nf increases. When nf = 0, the
first 20 modes have 56.1% of the all flow information while when nf ≈ 0.4n it has 40.9%.
However, despite having less information, SPOD reconstructions are able to properly
recover the flow as well, or even better, than POD.

Another effect of SPOD is the removal of signal noise in temporal modes as can be seen
in Fig. 5.5. If nf is too large, the shape of temporal bases is distorted and starts to become
a sinusoidal signal. This effect is better seen in Fig. 5.6, which displays the dominant
frequencies of each temporal mode found after performing a fast Fourier transform (FFT).
It is clear that the most energetic modes are predominantly in the low frequency range
and, as energy decreases, temporal bases start to have more high frequency components.

Figure 5.5: Temporal modes 1 (top row) and 5 (bottom row) for various modal
decompositions performed on non-actuated flow.

Figure 5.6: Main frequencies of temporal bases of modal decompositions performed on
non-actuated flow.

Figure 5.7 shows spatial modes 1, 5 and 20 of the SPOD (B) reconstruction. The
first mode is clearly associated to the dynamic stall vortex when it is at the mid-chord of
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the airfoil. On the other hand, modes 5 and 20 are associated with the transport of the
dynamic stall and trailing edge vortices away from the airfoil.

Figure 5.7: Spatial modes 1 (top), 5 (middle) and 20 (bottom) of SPOD (B) performed
on non-actuated flow data.

Decomposing the flow using SPOD and a bandwidth filter with an appropriate size
removes noise and does not distort temporal and spatial modes, what facilitates the
construction of reduced order models. As stated before, one drawback of SPOD is the
lost of orthogonality among spatial basis functions, which is a problem for reduced order
models based on projection of Navier-Stokes equations. However, much progress is being
made in machine learning techniques that do not require orthogonality. A recent work by
Lui and Wolf (2019) used machine learning to successfully learn the behavior of temporal
bases of the flow data computed in this work. This latter approach could also extrapolate
the flow prediction, being able to recover all main features of the flow at later time instants.

The same flow modal decomposition methodology was also applied to data from
actuated flows. Figure 5.8 shows the frequency spectrum of temporal modes of a 2D
actuated flow with St = 5 (Case 2). One can see in this figure, specially in the map from
SPOD (A), that some modes have a clear dominant frequency at St = 5, such as modes
9 and 10 for SPOD (A). The correspondent spatial and temporal bases of mode 9 from
SPOD (A) are shown in Fig. 5.9. Since no structure similar to this was found when
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decomposing the non-actuated flow, and since the dominant mode frequency is exactly
that from actuation, it is safe to affirm that this structure results from flow actuation.

Figure 5.8: Main frequencies of POD temporal modes from a 2D actuated flow with
St = 5 (Case 2).

Figure 5.9: Spatial eigenfunctions (left) and temporal mode (right) 9 of SPOD (A)
recovered from a 2D actuated flow with St = 5 (Case 2).

Despite only having data for one cycle (n = 373 snapshots), SPOD (A) (nf ≈ 0.1n)
was also conducted on the data from 2D actuated flows with St = 10 and St = 1 (Case 2).
To make a fair comparison, another SPOD (A) was conducted on only one cycle of the
2D actuated flow with St = 5 (Case 2) and for the non-actuated flow. Figure 5.10 shows
that when an actuation frequency of St = 1 is used, there is no considerable change in
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the frequency spectrum. However, for actuation frequencies of St = 5 and St = 10, these
frequencies emerge in temporal modes 9 and 13, respectively, as shown in Fig. 5.11.

Figure 5.10: Main frequencies of temporal bases of SPOD (A) on non-actuated and 2D
actuated flows with different frequencies (Case 2).

These modes have the same basic layout, despite the frequency difference, with the
main part of the coherent structure being at the leading edge region. Hence, it is likely
that such structures are created by actuation at this region. However, in the St = 10
case, the structure does not maintain its coherence until more than quarter-chord. On
the other hand, for the St = 5 setup, coherence is maintained for a longer distance along
the airfoil suction side.

Figure 5.11: Spatial modes 9 and 13 taken from SPOD (A) of 2D actuated flow (Case 2)
with St = 5 (left) and St = 10 (right).



60

6 Conclusions, Contributions and Recommendations

Large eddy simulations are conducted to study the flow over a SD7003 airfoil in
a plunging motion. Results from the simulations are compared to data available in
the literature for similar conditions and exhibit good agreement. In the current flow,
instabilities arise after the beginning of the downstroke motion and a leading-edge vortex
(LEV) is formed. Vorticity accumulates in the LEV, which reaches a given size, and is
advected along the suction side of the airfoil increasing both lift and drag while reducing
the pitching moment that induces a nose-down motion. Close to the trailing edge, the
LEV is “lifted” away from the airfoil surface by a trailing-edge vortex (TEV) that forms
and is also advected. As the airfoil moves upward, the flow relaminarizes. Inherent
variations from cycle to cycle occur due to turbulence that develops on the airfoil suction
side and, thus, four from a total of five simulated cycles are phase-averaged to calculate
aerodynamic loads. In general, good agreement is found between the phase-averaged
quantities and those obtained from individual cycles.

Simulations with 2D and 3D blowing and suction actuation are conducted for different
frequencies which are characterized by Strouhal numbers St = 0.5 to 25. We also
perform an assessment of flow actuation in terms of coefficient of momentum Cµ. Results
demonstrate that actuation around St = 5 is effective in reducing both drag (CD) and
quarter-chord pitching moment coefficients (CM) with only a mild loss in lift. For this
specific frequency, it is shown that the dynamic stall vortex is broken into smaller coherent
structures, leading to a pressure increase along the airfoil suction side, towards the trailing
edge region. At the same time, pressure values on the suction side near the leading edge
are considerably reduced, leading to a less severe lift loss and a further reduction in drag.
Therefore, significant reduction in CD and CM are achieved as a result of mitigation of
the dynamic stall vortex.

Flow configurations with 3D actuation showed that, despite being able to mitigate
some of the dynamic stall vortex effects, they are not as efficient in providing a high
mean lift to mean drag ratio when compared to 2D actuation. In the 3D actuated cases,
transition to turbulence occurs earlier compared to 2D actuation. This effect is due to
formation of three-dimensional structures which do not severely impact the disruption of
the LEV, differently than the 2D actuated flow. Nevertheless, all types of 3D actuation
are able to modify the LEV sufficiently such that the TEV forms farther away from the
trailing edge, diminishing its impact in the overall aerodynamic loads. The present study
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reveals that higher mean lift to mean drag ratios and aerodynamic damping are achieved
when the actuator covers the whole airfoil span (2D actuation). Even when considering
only actuators with variable spanwise widths and distribution, the most effective ones are
those that cover the largest spanwise surface.

Flow modal decomposition via POD and SPOD revealed that, despite the complexity
of the fluid dynamics involved in dynamic stall, 20 POD modes are sufficient to reconstruct
the main flow properties fairly accurately. SPOD showed to be a great technique because
of its capabilities of reducing noise in temporal modes while keeping their overall dynamics,
which is a desirable feature for construction of some reduced order models. Also, POD
could show coherent structures not present in the non-actuated flows but that were
identified in those with actuation. The frequencies of these coherent structures had a
match with the actuation frequencies. Hence, it can be concluded that they are related
to actuation.

6.1 Main Accomplishments

During the course of this work, the following accomplishments were achieved:

• Implementation and validation of a 3D Navier-Stokes high order solver with the
capability of simulating dynamic stall;

• Development of multiple post processing codes for statistical calculations and
visualization;

• Collaboration with research group of Professor Sam Taira, including his
post-doctoral researcher Dr. Chi-An Yeh (Prof. Taira is currently at University
of California Los Angeles but, at the time of the research internship, his group was
based at Florida State University);

• Publication and presentation of conference paper at ENCIT 2018, held in Águas de
Lindóia, 2018;

• Publication and presentation of conference Paper at the AIAA SciTech, held in San
Diego, 2019;

• Publication of paper on Physics Review Fluids, 2019.
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6.2 Recommendations for Future Work

Due to the complexity of the dynamic stall phenomenon, there are still several
remaining questions. When considering a plunging airfoil, there is still the need to have
a better understanding on the impact of flow parameters such as Reynolds and Mach
numbers. For example, in pitching configurations at higher Reynolds numbers, there is
the appearance of a small laminar separation bubble that is responsible for triggering the
dynamic stall vortex. The author is not aware of such phenomenon for plunging airfoils.
For the present low Reynolds number case, the bubble does not have time to form and,
this being the case, the exact mechanism that triggers the formation of the dynamic stall
is not known for the current configuration. Higher Reynolds numbers may present this
mechanism.

In terms of compressibility effects, transonic flows over the airfoil suction side can be
reached at moderate freestreamMach numbers. In these cases, the presence of shock waves
will severely impact the dynamics of the leading edge stall vortex. The present numerical
tool has been tested for transonic flows and showed excellent comparisons against other
tools that have high-order shock-capturing schemes implemented.

Also, for the particular flow configuration studied, 3D actuation is not as effective as
2D actuation. This was not expected, since other works show that 3D actuation often have
improved effectiveness. The unknown details of the dynamic stall mechanism previously
mentioned probably have something to do with such differences in actuation effectiveness.
From the modal decomposition side, work still needs to me done in development of reduced
order models so that less expensive simulations will be needed to search for optimal control
parameters. Also, POD and SPOD are able to capture coherent structures originated
from actuation that are not present in non-actuated flow data but how this can be used
to design control strategies still needs to be addressed. Techniques such as dynamic
mode decomposition (DMD) can be applied for the present flows to verify if the most
unstable frequencies can be found for actuation. Resolvent analysis is also a promising
technique that can be used for flow control and its development for airfoils undergoing
prescribed motion is a challenge. Other methods of flow control can also be thought such
as extremum seeking control and the OGY method.
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