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Abstract

Sparse representation of signals using learned overcomplete dictionaries has proven to be a

powerful tool with applications in denoising, restoration, compression, reconstruction, and

more. The modern learned dictionaries stand in opposition to classic transforms usually

called analytical dictionaries (e.g DCT, wavelets). While the latter permit to capture the

global structure of a signal and allow a fast implementation, the former often perform

better in applications as the learning process allows them to adapt to the considered class

of signals. The drawback is a much higher computational load, since learned dictionaries

are a priori represented by unstructured matrices and, therefore, their use is limited to

signals of relatively small size.

In this work, we introduce some degree of structure on the trained dictionary in order to

obtain complexity gains on operations involving the dictionary matrix. To achieve this

goal, two different approaches are introduced. First, we propose to use the Displacement

Structure concept to quantify the dictionaryŠs structure. Alternatively, we may constrain

the dictionary to be a sum of Kronecker products of smaller sub-dictionaries. In addi-

tion to reduced matrix-vector multiplication costs, the obtained dictionaries also require

less training data and storage space than their unstructured counterpart. Some image

denoising experiments are provided to validate the proposed techniques.

Keywords: Dictionary Learning; Structured Matrices; Displacement Structure; Toeplitz-

like; Hankel-like; Separable dictionaries; Kronecker product; Nuclear Norm; ADMM; Prox-

imal algorithms; K-SVD; Image denoising.



Resumo

A representação esparsa de sinais usando dicionários sobrecompletos tem se mostrado

uma ferramenta poderosa com aplicações em remoção de ruído, restauração, compressão,

reconstrução e outras. Classicamente isto é feito com dicionários analíticos, como DCT

ou wavelets, que permitem capturar a estrutura global de um sinal e dão lugar a imple-

mentações rápidas. Em contrapartida, pode-se utilizar um dicionário dito aprendido, que

se adapta melhor à classe de sinais em questão. A desvantagem é uma carga computaci-

onal mais elevada, visto que os dicionários aprendidos são a princípio representados por

matrizes não estruturadas. Isto restringe sua aplicação a sinais de tamanho relativamente

reduzido.

Nesta dissertação, propomos a introdução de uma certo grau de estrutura nos dicionário

aprendidos, de forma reduzir a complexidade em operações envolvendo a matriz dicio-

nário. Duas abordagens distintas são introduzidas para atingir esse objetivo. Primeiro,

propomos a utilização do conceito de Displacement Structure para quantiĄcar o nível de

estrutura do dicionário. Segundo, nós restringimos o aprendizado a dicionários represen-

tados como uma soma de produtos de Kronecker de sub-dicionários menores. Além do

reduzido custo no produto matriz-vetor, os dicionários obtidos também requerem uma

menor quantidade de amostras no treinamento e um menor espaço de armazenamento

se comparado a dicionários sem estrutura. Alguns experimentos de remoção de ruído em

imagem são realizados de forma a validar as técnicas propostas.

Palavras-chaves: Aprendizado de dicionários; Matrizes estruturadas; Toeplitz; Hankel;

Dicionários Separáveis; Produto de Kronecker; Norma nuclear; ADMM; Algoritmos pro-

ximais; K-SVD; Processamento de imagens.
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1 Introduction

Signal transforms are a ubiquitous tool in signal processing. They change the

signalŠs basis of representation, and their relevance lies in the fact that the choice of

a suitable representation domain may unveil meaningful characteristics of a signal. A

transform may, for instance, provide a more compact representation for a given signal, by

concentrating a signiĄcant part of its energy in few coefficients. Indeed, this concept of

compaction corresponds to the signal sparsity on that speciĄc basis.

Sparse signals have revealed appealing properties on many applications and

attracted growing attention on the past few decades (BARANIUK et al., 2010). Besides

having direct impact in terms of compression, sparsity also leads to efficient denoising

capabilities. Additionally, the sparsity assumption enables the solution of ill-posed inverse

problems, such as under-determined linear systems. As an example, it allows the solution

of under-determined source separation problems where the number of measured signals

(number of sensors available) is smaller than the actual number of sources (BOFILL;

ZIBULEVSKY, 2001).

The search for representation domains that simultaneously provide sparse rep-

resentations to a collection of data samples can be interpreted as a variable selection

problem (GUYON; ELISSEEFF, 2003) concerned with Ąnding a relatively small number

of most representative variables in the dataset. This framework is particularly impor-

tant for improving the interpretability of the models, since it unveils underlying processes

generating the data.

Interestingly, a given transform might be capable of sparsifying a certain class

of signals, while not being as well adapted to other signal classes. Particularly, the discrete

Fourier transform is efficient at approximating uniformly smooth signals. However, a large

variety of signals Ű the ones containing discontinuities, for instance Ű will not result in

sparse representations in the Fourier domain.

Optimizing compaction was a major driving force for the continued develop-

ment of more efficient representations. During the 1970Šs and 1980Šs, a new and very

appealing source of compaction was brought to light: the data itself. The focus was on

a set of statistical tools developed during the Ąrst half of the century, known as the

Karhunen-Loève Transform (KLT) (JAIN, 1989), or Principal Component Analysis (PCA)

(JOLLIFFE, 2002). This technique Ąts a low-dimensional subspace to the data so as to

minimize the ℓ2 approximation error. SpeciĄcally, given the data covariance matrix Σ

(either known or empirical), the KLT basis vectors are the Ąrst K eigenvectors of the

eigenvalue decomposition of Σ.
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By the second half of the 1990Šs a conceptual change of a different sort was

gradually taking place. The drop of the completeness and orthogonality assumptions

initiated an extension of the classic transform concept to the dictionary mindset. In their

seminal work (MALLAT; ZHANG, 1993), the authors proposed a novel sparse signal

expansion scheme based on the selection of a small subset of functions from a general

over-complete dictionary of functions, allowing for even better representation efficiency.

We now present a simple example that illustrates the pursuit of a represen-

tation basis in which the input data can be sparsely represented. Consider a set of two-

dimensional points distributed on the plane as in Figure 1. The application of an orthogo-

nal transform corresponds basically to a rotation (and/or a reĆection) on the representa-

tion basis. By picking a proper rotation angle, the input data can be sparsely represented

on the new basis. In this context, sparse means that each data point can be represented

as a function of one single basis vector instead of a combination of both vectors.

⇒

Figure 1 Ű By rotating the basis vectors, via an orthogonal transformation, the data be-
comes sparse on the new representation domain.

Note that, in some cases, it might be useful to have non-orthogonal basis

vectors (Figure 2 shows an example). Furthermore, since the example is two-dimensional,

only two linearly independent vectors are necessary to form a basis and, consequently, to

be able to represent any point in the plane. Nevertheless, in Figure 3 we show a situation

where using more than two vectors allows for sparse representation of more data: in this

case, with three-element dictionary, all the observations may be described using a single

coefficient.

In summary, a different representation frame (i.e. a different set of represen-

tation vectors) might be better suited for each given input dataset. There are two main

strategies for picking a frame, called dictionary, that leads to a sparse representation of

the data. The classic one consists on analytically deriving a construction formula, which

leads to pre-deĄned Şover-the-shelfŤ transforms, such as the already mentioned Fourier

transform or the Discrete Cosine transform. We refer to those as analytic dictionaries.

The second and more contemporary strategy is to adopt a learning procedure (TOSIC;

FROSSARD, 2011), where the dictionary is constructed by a training process over the
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Figure 2 Ű Non-orthogonal frame Figure 3 Ű Overcomplete frame

database. This strategy, called Dictionary Learning, has been a subject of increasing in-

terest in recent years and is at the core of this thesis.

1.1 Motivation

Analytic dictionaries such as the DFT usually allow for a wide theoretical

analysis of their properties as well as algorithms for fast implementations based on the

operatorŠs underlying structure (e.g the FFT algorithm). The learned dictionaries, on the

other hand, are considerably more Ćexible as the learning process allows adapting to dif-

ferent classes of signals. The drawback is a considerably higher computational load, since

the learned dictionaries are a priori represented by unstructured over-complete matrices.

Part of the complexity of using an over-complete dictionary originates in the

determination of the sparse representation, which seeks the sparsest solution to an under-

determined linear system. This is known as the sparse coding problem, whose exact solution

demands exponential time. The iterative algorithms designed to sub-optimally solve this

problem heavily rely on matrix-vector multiplications between the dictionary matrix (or

its transpose) and each data vector. For a structure-less (n×m)-matrix, such operations

cost O(nm) Ćops, which becomes prohibitive as the dimensionality grows.

To obtain computationally efficient dictionaries, some of the most recent works

in the Ąeld employ parametric models in the training process, which produce structured

dictionaries. The idea is to Ąnd a good compromise between the computational efficiency

of the analytic dictionaries and the Ćexibility of the learned ones.

1.2 Objectives

The Ąrst goal of this master thesis is to provide a brief introduction to the

emerging Ąeld of dictionary learning for sparse representations. More speciĄcally, this

thesis reviews different ways to induce some degree of structure on the trained dictionary.
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Finally, we propose a novel paradigm for approaching this problem as well as

specifying a suitable training algorithm. To that end, we use a concept called Displacement

Structure, introduced in 1979 by (KAILATH et al., 1979), which provides a method for

measuring the degree of structure of a matrix. Integrating this concept to the dictionary

learning domain has not been previously proposed on the literature and constitutes the

core of this project.

We also propose a different structure class where the dictionary consists in a

sum of Kronecker products. This structure is unprecedented in the literature and can be

seen as a generalization of an existing and widespread structure: the separable dictionaries.

The main motivation for introducing structure is the complexity reduction on

operations involving the dictionary matrix. Therefore, a large part of the analysis will rely

on complexity comparisons between different types of structure. The performance of such

dictionaries Ű in the form of its signal representation capabilities Ű will also be evaluated.

Intuitively, a certain adaptivity loss is expected as the degree of structure increases, given

the increasing restrictions on the matrix content. This complexity-performance trade-off

is an important indicator that will be further assessed in this document.

Notation

Throughout this document, matrices are represented by bold uppercase letters

(e.g. X); vectors by bold lowercase letters (e.g. x). Then, X = [x1, ... ,xN ] is a matrix with

columns given by vectors x1, ... ,xN . The element on the i-th row and j-th column of a

matrix X is denoted xi,j. The elements of a vector are also referenced using standard-type

letters but with a single index, e.g. x = [x1, ... , xn]T . We denote vertical concatenation by

a semicolon, e.g x2 = [x; x] where the result x2 has twice the dimension of x.

The l0 pseudo-norm (loosely called l0-norm) which counts the total number of

non-zero elements in a vector is denoted by ‖ · ‖0. The lp-norm for any real number p ≥ 1

is denoted by ‖ · ‖p and deĄned as follows for an input vector x ∈ R
n:

‖x‖p :=

(
n∑

i=1

|xi|p
)1/p

The Frobenius matrix norm is denoted by ‖ · ‖F and is deĄned for an input

matrix X ∈ C
n×m:

‖X‖F :=

√√√√
n∑

i=1

m∑

j=1

|xij|2 =
√

Tr (XHX)

where XH denotes the conjugate transpose of the matrix X.
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The nuclear norm, denoted ‖ · ‖∗, is deĄned as the sum of the singular values

of a matrix. For an input matrix X ∈ C
n×m, it gives:

‖X‖∗ :=
min{m,n}∑

i=1

σi = Tr (
√

XHX)

where singular values are denoted by σi.

We denote by J the so-called reflection matrix, which is a square matrix con-

taining ones on its anti-diagonal and zeros elsewhere. When applied to a vector, it will

reverse the ordering of the vector elements. When multiplied to another matrix, say X, it

will reverse the row ordering of X if multiplied by the left, or reverse the column ordering

if multiplied by the right.



Part I

Fundamentals
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2 Dictionary Learning

In the context of sparse representations, a problem that has attracted increas-

ing attention is the choice of a dictionary to efficiently sparsify the training dataset. In

order to properly formulate the representation problem, let n be the dimension of each

data sample and N the number of samples. Let Y ∈ R
n×N be a training dataset matrix

containing the N training samples arranged in its columns and D ∈ R
n×m (with m ≥ n)

be a Ű possibly over-complete Ű dictionary. The sparse representation problem is then to

Ąnd an (m×N) sparse matrix X such that

Y ≈ DX , (2.1)

where each data sample in Y is approximated as a linear combination of only a few

columns of D, referred to as atoms. This matrix formulation is illustrated in Figure 4.

Figure 4 Ű Dictionary learning problem: matrix formulation.

The Ąrst dictionaries to be used were the existing transforms Ű such as the

Fourier, wavelet, STFT, and Gabor transforms, see e.g., (MALLAT; ZHANG, 1993),

(CHEN et al., 1998). The dictionaries of this sort are characterized by an analytic for-

mulation, and an important advantage of this approach is that the resulting dictionary

usually features a fast implementation which does not involve explicit multiplication by

the dictionary matrix. On the other hand, the dictionary can only be as successful as its

underlying model, and indeed, these models tend to be over-simplistic compared to the

complexity of natural phenomena. For example, not all signals can be sparsely approx-

imated as a sum of sinusoids, particularly the ones containing discontinuities. In such

cases, a Fourier dictionary would not lead to satisfactory results.

Data-driven techniques, on the other hand, can be used to learn dictionaries

that are better adapted to speciĄc instances of the data, replacing the use of generic mod-

els. As with machine learning techniques (BISHOP, 2006), the idea is that the structure
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of complex natural phenomena can be more accurately extracted from the data itself than

by using a prior mathematical description.

This new paradigm gives rise to the modern dictionary learning problem that

goes beyond the classic sparse representation problem by jointly estimating the coefficient

matrix X and the dictionary D with the goal to minimize the representation error, leading

to the following optimization problem

〈D,X〉 = argmin
D,X

‖DX−Y‖2
F subject to ∀i ‖xi‖0 ≤ t , ∀j ‖dj‖2 = 1, , (2.2)

where the ℓ0 pseudo norm, which counts the number of non-zero elements of a vector, has

been used as a sparsity inducing function. The dictionary columns are usually restricted

to unit Euclidean norm in order to avoid a scale ambiguity problem.

Since there are two variables to simultaneously estimate from the data, most of

the existing training methods adopt an alternating optimization strategy with two steps

(RUBINSTEIN et al., 2010a)

Sparse coding: For a Ąxed dictionary (D), Ąnd the best sparse approximation (X) for

the input data. This is the previously mentioned sparse representation problem.

Two different but closely related formulations can be used. The Ąrst one, called the

t-sparse problem, is a constrained optimization problem of the form

min
X
‖DX−Y‖2

F s.t. ∀i ‖xi‖0 ≤ t , (2.3)

where the number of non-zero coefficients is constrained to be below a certain value.

The other formulation is an ℓ0-regularized optimization problem deĄned as follows

min
X
‖DX−Y‖2

F + η
∑

i

‖xi‖0 . (2.4)

The two problems are related in that, for each sample yi, there exists η and t such

that the solution xi of the ℓ0-regularized problem is the same as that to the t-sparse

(BLUMENSATH; DAVIES, 2008). The higher the η, the smaller the corresponding

t.

In both cases, the resulting optimization problem is combinatorial and highly non-

convex, and its optimal solution would require exponential time. However, several

sub-optimal algorithms have been proposed in the literature, following two main

directions:

1. Greedy approaches such as the Matching Pursuit (MALLAT; ZHANG, 1993)

and the Orthogonal Matching Pursuit (PATI et al., 1993).
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2. Convex relaxation approaches that replace the ℓ0 by the ℓ1-norm. For example,

FISTA (BECK; TEBOULLE, 2009) and iterative thresholding (DAUBECHIES

et al., 2004) algorithms.

In this thesis, we use existing sparse-coding algorithms. Hence, this particular step

will not be further developed on the rest of this document.

Dictionary update: For a Ąxed sparse representation matrix (X), optimize the dictio-

nary atoms for better data approximation:

min
D
‖DX−Y‖2

F . (2.5)

Each of the several existing Dictionary learning algorithms proposes a different

approach to solve this problem. Some of these techniques will be revised in Sections

2.1 and 2.2.

The alternating optimization process does not necessarily Ąnd the global op-

timum solution of the considered problem (TOSIC; FROSSARD, 2011). Its high non-

convexity will generally lead to local minima or even saddle points solutions.

2.1 Unconstrained Dictionary Learning

The following dictionary learning algorithms employ the mentioned alternat-

ing minimization strategy. The sparse coding step can be performed by any standard

technique and is not detailed here.

2.1.1 Method of Optimal Directions (MOD)

The Method of Optimal Directions (MOD) was introduced by Engan et al.

(1999), and was one of the Ąrst proposed methods for dictionary learning. The dictionary

update step uses the well-known analytic solution for the linear least squares (LS) problem

D = YX† , (2.6)

where † denotes the Moore-Penrose pseudo-inverse (X† = XT (XXT )−1).

Despite its conceptual simplicity, the method suffers from the relatively high

complexity of the required matrix inversion. Several subsequent works have thus focused

on reducing this complexity.

2.1.2 K-SVD

In 2006, Aharon, Elad and Bruckstein introduced the K-SVD algorithm (AHARON

et al., 2006). The main contribution of the K-SVD is that the dictionary update, rather
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than using a matrix inversion, is performed atom-by-atom in a simple and efficient pro-

cess. Further acceleration is provided by updating both the current atom and its asso-

ciated sparse coefficients simultaneously. The K-SVD algorithm takes its name from the

Singular-Value-Decomposition (SVD) process that forms the core of the atom update

step.

The dictionary optimization step updates one column (atom) at a time, Ąxing

all columns in except one, dk, and Ąnding a new column dk and new values for its cor-

responding coefficients in the matrix X that best reduce the mean squared error. This is

markedly different from all previous methods, which freeze X while Ąnding a better D.

Fixing X and all columns of D except dk, and denoting xkT the k-th row of X,

which contains the coefficients related to the atom dk, the penalty term in the objective

function (2.5) can be rewritten as:

‖Y−DX‖2
F =

∥∥∥∥∥∥
Y−

m∑

j=1

djx
j
T

∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥


Y−

∑

j 6=k
djx

j
T


− dkx

k
T

∥∥∥∥∥∥

2

F

= ‖Ek − dkx
k
T‖2

F .

(2.7)

where the product DX has been decomposed as the sum of m rank-1 matrices. All terms

but the one associated with the k-th atom are grouped and Ek stands for the error for

each of the N samples when the k-th atom is removed.

The minimization of (2.7) for dk and xkT corresponds to a rank-1 approximation

of Ek, which is optimally solved by the SVD1. To avoid introduction of new non-zeros in

X, the update process is performed using only the examples whose current representations

use the atom dk. Currently, the K-SVD turns out to be the most widespread dictionary

learning technique.

The learning techniques mentioned so far lead to non-structured dictionaries

which are relatively costly to apply; therefore these methods remain limited for signals of

relatively small size. Thus, the most recent contributions to the Ąeld employ parametric

models in the training process, which produce structured dictionaries.

2.2 Structured Dictionaries

Although still in its early stages, some research has focused on imposing a

certain degree of structure to the learned dictionary. The idea is to preserve the best of

both scenarios: the computational efficiency of the analytic dictionaries and the Ćexibility

of the learned ones. Clearly, any kind of structure imposition corresponds to a restriction
1 This result is known as the Eckart-Young theorem (ECKART; YOUNG, 1936).
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on the search space, naturally leading to less adapted dictionaries. The challenge is ulti-

mately to better handle this compromise, providing a higher computational reduction by

paying as little performance penalty as possible.

Countless types of dictionary structures may be imagined. Learning a dictio-

nary as a union of orthonormal bases was proposed in (LESAGE et al., 2005). This type

of structure allows efficient sparse-coding via block coordinate relaxation (BCR). How-

ever, this model turns out to be overly restrictive. Another proposition is the signature

dictionary (AHARON; ELAD, 2008), in which the dictionary is described by a compact

image called signature. Each of its
√
n × √n sub-blocks constitute an atom of the dic-

tionary. The reduced number of parameters (only one per atom) also makes this model

more restrictive than other structures.

More recently, in (MAGOAROU; GRIBONVAL, 2015) the authors impose the

dictionary to be the product of several sparse matrices. The total complexity in this case

is determined by the sum of non-zero values on the factor matrices. Still on the sparsity

line, (RUBINSTEIN et al., 2010b) proposes to learn a dictionary in the form D = ΦA,

where Φ is a pre-speciĄed base dictionary that has a fast implementation (e.g. DCT)

and A is a column sparse matrix. In other words, the atoms in this dictionary are sparse

linear combinations of atoms from the base dictionary. In (SULAM et al., 2016) this

idea is taken further, replacing the Ąxed base dictionary by an adaptable multi-scale one

(cropped Wavelets are used). This brings more Ćexibility to the model, while keeping its

scalability. All these techniques obtain promising complexity-performance compromises,

but their approach is intrinsically different from the one proposed in this project.

A straightforward approach for complexity reduction is introducing a low-rank

restriction on the dictionary. This approach has recently been applied for face recognition

(MA et al., 2012; LI et al., 2013; ZHANG et al., 2013; ZHENG et al., 2016). Alternatively,

an algorithm for training separable dictionaries, which are formed as the Kronecker prod-

uct of several sub-dictionaries, has been proposed in (HAWE et al., 2013). In this case, the

direct and transpose operators can be obtained directly from the sub-dictionaries, which

have much smaller dimensions, thus leading to considerable complexity savings. As one

contribution of this thesis, we propose a structure class where the dictionary consists in a

sum of Kronecker products. This structure has the aforementioned separable dictionaries

as a special case.

The main contribution of this thesis is the use of the Displacement Structure

theory, introduced in (KAILATH et al., 1979), to impose some structure to the dictio-

nary. This theory will be reviewed in Section 3, but it essentially provides a measure of

the structure level in a given matrix. Unfortunately, this measure is difficult to use for

optimization, since it is based on the rank of a certain matrix. To circumvent this prob-

lem, we propose a relaxation of the displacement operator, based on the nuclear norm
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(RECHT et al., 2010). As we will show, the resulting optimization problem is tractable,

and leads to dictionaries with good performance-complexity tradeoff. To the best of our

knowledge, this is the Ąrst time that the Displacement Structure was used for a design

task.
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3 Displacement Structure

An (n ×m)-matrix is said to be structured when its entries have a formulaic

relationship that allows the matrix to be speciĄed by a number of latent parameters signif-

icantly lesser than n×m. The number of such latent parameters is inversely proportional

to the degree of structure. Generally, such matrices allow for low-complexity implemen-

tations of matrix-vector products (GOHBERG; OLSHEVSKY, 1994). Certain families of

structured matrices are commonly used in the literature, for instance: Toeplitz, Hankel,

Cauchy and Vandermonde. Table 1 describes succinctly these four families. The param-

eter vectors denoted t,h,v and s contain all the information necessary to completely

determine these matrices content.

Table 1 Ű Four widespread families of structured matrices

Toeplitz T(i, j) = ti−j

Hankel H(i, j) = hi+j

Vandermonde V(i, j) = vj−1
i

Cauchy C(i, j) = 1
si−tj

General matrices, on the other hand, may not be as neatly structured, but

still may have some structure. According to the displacement structure theory, this can

be measured by an appropriate linear operator called displacement operator. If a matrix

M is structured, this operator should turn M into a low-rank matrix.

Definition 1. For fixed matrices A and B, the Stein-type displacement operator, denoted

ΔA,B is defined by

ΔA,B(M) = M−AMB . (3.1)

The matrices A and B are known as the displacings or operator matrices, and

they determine the type of structure that the displacement operator will identify. The

image ΔA,B(M) is called displacement.

Definition 2. The displacement rank of M with respect to the operator ΔA,B is the rank

of the displacement matrix ΔA,B(M).
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Let us introduce the family of unit ϕ-variant matrices Zn,ϕ ∈ R
n×n, where

ϕ ∈ R:

Zn,ϕ =




0 0 ... ϕ

1 0
. . .

...
...

. . . . . . 0

0 ... 1 0




. (3.2)

For ϕ = 0, we obtain the lower-shift matrix Zn,0.

Since Toeplitz and Hankel matrices consist on repetitions of a set of coefficients

along the diagonals and anti-diagonals respectively, it is possible to obtain a low-rank

matrix by subtracting the given matrix by a shifted version of it. Consider, for instance,

a general (n× n)-Toeplitz matrix:

T =




t0 t−1 ... t1−n

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 ... t1 t0




. (3.3)

Then, the following holds:

ΔZn,0,ZT

n,0
(T) =




t0 t−1 ... t1−n

t1 t0
. . .

...

...
. . . . . . t−1

tn−1 ... t1 t0



−




0 0 ... 0

0 t0 ... t1−n
...

...
. . .

...

0 tn−1 t1 t0




=




t0 t−1 ... t1−n

t1 0 ... 0
...

...
. . .

...

tn−1 0 ... 0



.

(3.4)

The same result holds for rectangular Toeplitz matrices. A rectangular (n×m)-

Toeplitz matrix, with m > n, is deĄned as a cropped version of the square (m×m)-Toeplitz

matrix. Figure 5 illustrates the displacement operation for rectangular matrices using a

color map.

Figure 5 Ű Displacement operation on a rectangular Toeplitz matrix, with m = 5 and
n = 3.
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Figure 6 Ű Block diagram of the displacement structure approach in the Toeplitz case.

Figure 7 Ű Toeplitz-like matrices also lead to low displacement ranks.

We have seen that, with respect to the operator ΔZn,0,ZT

m,0
, a (n×m)-Toeplitz

matrix has a displacement rank at most equal to 2, no matter the values of n and m.

It can be veriĄed that the same result holds for any operator of the form ΔZn,ϕ,ZT

m,ψ
or

ΔZT
n,ϕ,Zm,ψ

for any ϕ, ψ ∈ R. Figure 6 summarizes the displacement structure methodology

for the Toeplitz case.

Likewise, a Hankel matrix, which is a mirrored version of a Toeplitz matrix,

has a displacement rank at most equal to 2 for any operators of the form ΔZn,ϕ,Zm,ψ
or

ΔZT
n,ϕ,Z

T

m,ψ
for any ϕ, ψ ∈ R.

However, even if the matrix does not exactly Ąt in one of the mentioned fam-

ilies, the displacement approach is still capable of identifying a degree of structure. For

example, a product of several Toeplitz matrices Ű and even some inverse Toeplitz Ű will

still lead to a low displacement rank, although showing no visually remarkable structure,

as shown in Figure 7. We call such matrices Toeplitz-like.
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As a general rule, the lowest the displacement rank, the more structured is the

input matrix with respect that speciĄc displacement operator.

For Vandermonde-like and Cauchy-like matrices we will use diagonal matrices

D(x) (containing the vector x on its diagonal and zeros elsewhere) as an operator ma-

trix. Table 2, extracted from (MOUILLERON, 2011) relates the operator matrices to the

structure families they allow to identify:

Table 2 Ű Structure families and associated operator matrices

Structure type A B

Toeplitz-like
Zn,ϕ ZT

m,ψ

ZT
n,ϕ Zm,ψ

Hankel-like
Zn,ϕ Zm,ψ

ZT
n,ϕ ZT

m,ψ

Vandermonde-like D(v) ZT
m,ψ

Vandermonde-transpose-like Zm,ψ D(v)

Cauchy-like D(s) D(t)

In this thesis we will focus on Toeplitz-like and Hankel-like structures only. The

reason for not using the other families is that they demand the choice of extra parameters

which are the vectors in the diagonal matrices. Arbitrarily Ąxing these vectors beforehand

would represent a too strong restriction on the matrix form.



Part II

Contributions
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4 Displacement-Structured Dictionaries

In this section, we show how the displacement rank can be used to obtain a

structured dictionary that can be employed with low computational complexity.

As in the the classic Dictionary Learning problem, we seek a sparse repre-

sentation X ∈ R
m×N of the data matrix Y ∈ R

n×N on an learned over-complete basis

D ∈ R
n×m. As seen before, mathematically speaking this task corresponds to the problem

in Equation (2.2). It is the third term in equation (4.1) that carries our contribution. We

introduce an extra regularization term that enforces the minimization of the dictionaryŠs

displacement rank:

min
D,X

‖DX−Y‖2
F + η

N∑

i=1

‖xi‖0 + λ rank(D−ADB) , (4.1)

where the parameter λ ∈ R
+ controls the rank penalty.

Following the literature (e.g. (ENGAN et al., 1999; AHARON et al., 2006;

SADEGHI et al., 2014; MAIRAL et al., 2009)), a two-step alternating optimization tech-

nique is adopted to solve this problem. This strategy, as explained in Chapter 2, alternates

minimizations on the variables D (dictionary update) and X (sparse coding).

On the sparse coding step, any existing algorithm could be used. In this thesis

we use the OMP algorithm (PATI et al., 1993), which is a suboptimal greedy approach

to solve the sparse approximation problem.

On the dictionary update step, since the rank term is not convex, we replace

it by the nuclear norm, which is deĄned as the sum of the singular values of a matrix and

is denoted ‖ · ‖∗. The nuclear norm is a convex relaxation of the rank and, as explained

in (RECHT et al., 2010), can be regarded as the matrix-space analogous of the l1-norm

relaxation for inducing sparsity on a vector (the rank function being analogous to the

non-convex l0-norm). This results in the following optimization problem:

Dictionary update: min
D
‖DX−Y‖2

F + λ‖D−ADB‖∗ . (4.2)

Although convex, the nuclear norm function is not differentiable (RECHT et

al., 2010). For this reason, the solution of the above optimization problem is not straight-

forward. One cannot, for instance, apply a basic gradient descent method. We now propose

a method to circumvent this problem. The proposed method is an adaptation of existing

optimization techniques for nuclear-norm regularized problems (MA et al., 2012; LI et al.,

2013) in which the nuclear norm acts directly on the optimization variable. In our case,

on the other hand, the nuclear norm is applied to a function of the optimization variable,

namely D−ADB.
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4.1 Optimization Framework

In this section we concentrate on solving the optimization problem on the

dictionary update step. Although there are numerous works on the literature involving

low-rank minimization via nuclear norm regularization (MA et al., 2012; LI et al., 2013;

ZHANG et al., 2013; ZHENG et al., 2016; TOH; YUN, 2010), to the best of our knowl-

edge, there is no previous work proposing an optimization framework for the displacement

rank minimization. Due to the non-differentiability of the nuclear norm, we will appeal

to a proximal algorithm (PARIKH et al., 2014) associated with the alternating method

of multipliers (ADMM) (BOYD et al., 2011) to solve this problem. Let us Ąrst introduce

some useful concepts.

Definition 3. The proximal operator(PARIKH et al., 2014) associated with a convex

function h is

proxλh(x) = argmin
u

(
h(u) +

1
2λ
‖u− x‖2

2

)
. (4.3)

Some proximal operators are well known, including the singular value soft-

thresholding operation (CAI et al., 2010), which is associated with the nuclear norm

h(X) = ‖X‖∗ ⇒ proxλ‖.‖∗

(X) = U shrink(Σ, λ)V† , (4.4)

where λ is any non-negative real constant, UΣV† is the singular value decomposition

of the matrix X and shrink(Σ, λ) is the soft-thresholding or shrinkage operator on each

element of the diagonal singular value matrix Σ deĄned as

shrink(x, λ) = sign(x)(|x| − λ) . (4.5)

4.1.1 Augmented Lagrangian and Alternating Direction Method of Multipliers

We now show how the proximal operator can be applied in the context of the

optimization problem (4.2). The nuclear norm proximal operator, as presented in Equation

(4.4), is only deĄned when the nuclear norm applies directly to the optimization variable.

To meet this condition, we reformulate (4.2) as the following equality-constrained problem

min
D,∆

‖DX−Y‖2
F + λ‖∆‖∗ (4.6)

s.t. ∆ = D−ADB .

The introduction of the auxiliary variable ∆ decouples the two terms in the

cost function. Each of them now applies exclusively to one of the optimization variables D
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or ∆. This new formulation may seem more complicated than the original unconstrained

one, but it is preferable when each of the decoupled problems can be easily solved. This

is the case here, since the Ąrst term on the cost function is differentiable, and hence can

be optimized via a simple gradient method. The nuclear norm term, which now applies

directly to an optimization variable, although not differentiable, has a known proximal

operator.

The equality constraint in problem (4.6) can be handled iteratively with the

augmented Lagrangian approach 1 (BERTSEKAS, 1982). The problemŠs augmented La-

grangian function consists of the classic Lagrangian with an additional quadratic term

that penalizes the non-fulĄllment of the equality constraint (the so-called augmentation):

L(D,∆,Λ) =‖DX−Y‖2
F + λ‖∆‖∗ (4.7)

− Tr(ΛT (∆−D + ADB)) +
µ

2
‖∆−D + ADB‖2

F ,

where Λ is a matrix of Lagrangian multipliers related to the equality constraint and µ is

a positive penalization coefficient.

For a sufficiently large µ, the solution of the original problem coincides with

Ąnding a saddle point of the Lagrangian L(D,∆,Λ) (NOCEDAL; WRIGHT, 2006). This

can be done by the iterative Augmented Lagrange Method (ALM) shown in Algorithm

4.1. As soon as the variation on the Lagrangian multiplier becomes sufficiently small, the

algorithm stops.

Algorithm 4.1 Augmented Lagrange method (ALM)

Initialize D, ∆, Λ
while stopping criterion is not met do

(Dk+1,∆k+1)=argminD,∆ L(D,∆,Λk)
Λk+1 = Λk − µ(∆k+1−Dk+1+ADk+1B)

end while

The minimization of the augmented Lagrangian for a Ąxed µ and Λ that

appears on the ALM loop can be shown to be equivalent to the unconstrained joint

minimization problem

min
D,∆
‖DX−Y‖2

F + λ‖∆‖∗ +
µ

2

∥∥∥∥∥∆−D + ADB− Λ

µ

∥∥∥∥∥

2

F

. (4.8)

Once again, we can resort to an alternate minimization strategy over the vari-

ables D and ∆. This idea is exploited by the alternating direction method of multipliers
1 The equality constrained problem (4.6) cannot be analytically solved with the classic method of

Lagrange multipliers since the Lagrangian is not differentiable. For this reason we call upon an iterative
penalty method which adds a quadratic penalization term.
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(ADMM) (BOYD et al., 2011) which, instead of alternating between D and ∆ until con-

vergence, performs a single iteration over each variable before updating the multiplier

matrix Λ. It can be seen as a variant of the augmented Lagrangian scheme that uses

partial updates of the involved variables.

The resulting ADMM approach is described in Algorithm 4.2, where we denote

Z = Λ/µ for simplicity.

Algorithm 4.2 Alternating direction method of multipliers (ADMM)

Initialize D, ∆, Z
while stopping criterion is not met do

Dk+1 =argminD ‖DX−Y‖2
F + µ

2
‖∆k−D+ADB−Zk‖2

F

∆k+1 =argmin∆ λ‖∆‖∗+ µ
2
‖∆−Dk+1+ADk+1B−Zk‖2

F

Zk+1 = Zk + (Dk+1−ADk+1B−∆k+1)
end while

Although in Algorithm 4.2 we denote the updates in D and ∆ as the solution

of a corresponding minimization problem, we have seen that only a partial solution is

required. Since the Ąrst minimization problem in the ADMM algorithm can be approached

by a regular gradient descent, a single gradient step can be performed instead of iterating

until convergence. Denoting

J1(D) = ‖DX−Y‖2
F and J2(D) =

1
2
‖∆k−D+ADB−Zk‖2

F , (4.9)

the partial update with respect to D becomes

Dk+1 = Dk − γ ( ∇J1(Dk) + µ∇J2(Dk) ) , (4.10)

where γ is the stepsize and the gradients (derived in Appendix B) are given by:

∇J1(Dk) = 2(DkX−Y)XT

∇J2(Dk) = Dk −ADkB−∆k + Zk (4.11)

−AT (Dk −ADkB−∆k + Zk)BT .

Regarding the second minimization problem in the ADMM algorithm, the

exact solution, by deĄnition of the proximal operator, is given by:

∆k+1 = prox λ
µ

‖.‖∗

(Dk+1−ADk+1B+Zk) . (4.12)

4.1.2 Ensuring column normalization

The described optimization approach, despite effectively promoting the reduc-

tion of the displacement rank, will generally not lead to a column-normalized dictionary.

Therefore, a column normalization must be performed as a post-processing step.
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Although it seems harmless, this operation does not preserve the displacement

rank. In short, it will revert the displacement rank minimization previously performed. To

solve this issue, one should view the Ąnal dictionary as a product of a low displacement

rank matrix with a diagonal normalization matrix N:

D = DstructuredN . (4.13)

This means that a regular column normalization is performed at the Ąnal stage, so that

only the dictionary content prior to the normalization, Dstructured, is kept in the optimiza-

tion procedure.

Both terms should be stored separately in order to allow fast implementa-

tions based on the dictionary structure, since it is the matrix Dstructured that has a low

displacement rank and can beneĄt from the fast implementations derived in Chapter 6.

This entails an additional step when multiplying the dictionary by a vector, which is the

product between the diagonal matrix N and the vector itself. In terms of complexity, this

corresponds to an overhead of only m operations.

4.2 Proposed Algorithm

Algorithm 4.3 shows a high-level view of the alternating minimization strategy

adopted for learning both the sparse representation matrix and a low displacement rank

dictionary. An initial dictionary Dinit must be set Ű usually, a simple analytic dictionary

is chosen, such as the DCT for image processing applications.

Algorithm 4.3 Training algorithm overview

Input: Data matrix Y ∈ R
n×N

Operator matrices A ∈ R
n×n , B ∈ R

m×m

Output: Dictionary D ∈ R
n×m

Sparse representation matrix X ∈ R
m×N

D0 = Dinit

for j ← 0 to Niter − 1 do
⊲ Sparse coding via OMP
Xj+1 = argminX ‖DjX−Y‖2

F + η
∑
i
‖xi‖0

⊲ Dictionary update via Algorithm 4.4
Dstructured,j+1 = argminD ‖DXj+1 −Y‖2

F + λ‖D−ADB‖∗
⊲ Normalize dictionary columns as in Eq. 4.13
Dj+1 = Dstructured,j+1N

end for
return DNiter , XNiter

The resulting dictionary update step is described in Algorithm 4.4, where we

denote γ the gradient step-size and tol the convergence tolerance. The initialization of



Chapter 4. Displacement-Structured Dictionaries 37

the matrix Z may be random. Good convergence behaviour has been observed by setting,

on the Ąrst execution of the dictionary update (i.e. j= 0 on Alg. 4.3), Z as the all zeros

matrix.

Algorithm 4.4 Dictionary Update

Input: Data matrix Y ∈ R
n×N

Sparse representation matrix X ∈ R
m×N

Current dictionary Dcurrent ∈ R
n×m

Converge tolerance (tol) and step-size (γ)
Output: Updated dictionary Dupdated ∈ R

n×m

Initialize D0 = Dcurrent, Z0

while not converged do
Dk+1 = Dk − γ(∇DJ1 + µ∇DJ2) ⊲ by using Eq. (4.11)
∆k+1 = prox λ

µ
‖.‖∗

(Dk+1−ADk+1B+Zk)

Zk+1 = Zk + (Dk+1−ADk+1B−∆k+1)
⊲ Stopping criterion
if ‖Zk+1 − Zk‖2

F < tol then
converged = true

end if
end while
return Dupdated = Dk+1

4.3 Expected benefits

A structured dictionary under the displacement rank criterion provides com-

putational cost reductions in different aspects of their manipulation:

• Storage cost: Only the low-rank transformed version of the dictionary ∆A,B(D)

needs to be stored, since all operations with the dictionary can be derived from it.

For a (n×m)-dictionary with displacement rank α, the matrix ∆A,B(D) which rank

is α can be represented as the product of two smaller matrices of sizes (m×α) and

(α× n). Therefore, the total storage cost will be α(m+ n) instead of mn.

• Multiplication cost: As will be shown in Chapter 6, the multiplication of a dis-

placement structured dictionary by a vector can be performed in O((αn+m) log n)

compared to O(mn) for unstructured dictionaries.

• Sample complexity: A dictionary with displacement structure can be determined

by smaller set of parameters than its actual number of elements. Combining this

with the fact that the dictionary is estimated from a training database, leads to

an advantage in terms of statistical signiĄcance. For a given amount of training

data, there are fewer parameters to estimate. In other words, the sample complexity
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is reduced (GRIBONVAL et al., 2015). Better estimation accuracy is expected or,

alternatively, less training data is required for the same accuracy when compared

to the unstructured counterpart.
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5 Dictionaries as Sums of Kronecker Prod-

ucts

The displacement structure framework presented in Chapter 4 is only one of

the many possible types of structure for a matrix Ű in our speciĄc case, the dictionary

matrix. An alternative structure class arises from the concept of Kronecker product (here

denoted by ⊗).

The Kronecker product of two matrices B ∈ R
n1×m1 and C ∈ R

n2×m2 is an

(n1n2 ×m1m2)-matrix given by

B⊗C =




b1,1C b1,2C ... b1,m1
C

b2,1C b2,2C ... b2,m1
C

...
...

. . .
...

bn1,1C bn1,2C ... n1,m1
C




. (5.1)

The resulting matrix can be considered structured in the sense that all its n1×n2×m1×m2

elements are completely determined by a smaller set of parameters, which are actually

the elements of the matrices B and C, with a total of n1×m1 + n2×m2.

The Kronecker product is closely related to multi-dimensional signal process-

ing, in the sense that it generates multi-dimensional operators from one-dimensional ones

(MALLAT, 2008). In the case of two-dimensional signals, such as images, given two one-

dimensional operator matrices B and C, then B⊗C is a two-dimensional operator where

each of the composing operators acts separately in one signal dimension. In other words,

as will be seen in Chapter 6, applying the composite operator B ⊗ C in a vectorized

version of an image is equivalent to applying the operator B in each of the image rows

and the operator C in each of the image columns (see Equation (6.6)). Such operators

are commonly called separable operators. A widespread example is the 2D-DCT, which is

deĄned as a composition (via Kronecker product) of two 1D-DCTs.

The separable structure is an appealing possibility for dictionaries, specially

for applications involving multi-dimensional signals. This particular structure is explored

in (HAWE et al., 2013), where the authors propose an algorithm for learning a dictionary

that can be represented as the Kronecker product of two sub-dictionaries, i.e. D = B⊗C.

In this chapter, we propose a broader structure class from which the separable

structure is a special case. It consists in a sum of α separable dictionaries, where the

number of components, α, serves as a Ąne tuner for the complexity-adaptability tradeoff:

D =
α∑

r=1

B(r) ⊗C(r) . (5.2)
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To design the dictionary, we use a mathematical result (LOAN; PITSIANIS,

1993) that establishes a relation between a separable matrix and a rank-1 matrix. This

result has not been previously used for separable dictionary design. As is well-known and

as discussed in Section 5.2, optimization problems involving a rank constraint are hard

to solve, but good solutions can be obtained by relaxing this constraint using the nuclear

norm (RECHT et al., 2010). The proposed technique is hereby named SuKro (Sum of

Kronekers).

With respect to the Separable Dictionary Learning (SeDiL) technique proposed

in (HAWE et al., 2013) for learning separable dictionaries, the algorithm proposed in the

following, besides presenting a more general structure form, also introduces a different

formulation and optimization strategy.

5.1 Theoretical Background

We begin by introducing a useful result that provides a way of transforming a

Kronecker product into a rank-1 matrix (LOAN; PITSIANIS, 1993). Consider a matrix

D ∈ R
n1n2×m1m2 which is the Kronecker product of two sub-matrices B ∈ R

n1×m1 and

C∈Rn2×m2 . In other words,

D = B⊗C . (5.3)

We deĄne a rearrangement operator, denoted R(·), that reorganizes the ele-

ments di,j of D in such a way that the elements d̃i,j of the rearranged matrix R(D) ∈
R
m1n1×m2n2 are given by

d̃i1+(j1−1)n1,i2+(j2−1)n2
= di2+(i1−1)n2,j2+(j1−1)m2

(5.4)

with




i1∈{1, 2, ... , n1}, j1∈{1, 2, ... ,m1}
i2∈{1, 2, ... , n2}, j2∈{1, 2, ... ,m2}

.

As shown in (LOAN; PITSIANIS, 1993), this rearrangement maps a matrix D of the form

in (5.3) into a rank-1 matrix, which can be written as an outer product of the vectorized

versions of B and C:

R(D) = vec(B) vec(C)T . (5.5)

Example. We illustrate this result with a simple example, with n1 = n2 = m1 =

m2 = 2. Consider the (2× 2) matrices

B =


 1 3

2 4


 , C =


 a c

b d


 . (5.6)
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The resulting Kronecker product is given by

D = B⊗C =


 b1,1C b1,2C

b2,1C b2,2C


 =




1a 1c 3a 3c

1b 1d 3b 3d

2a 2c 4a 4c

2b 2d 4b 4d




(5.7)

and its rearranged version becomes

R(D) =




1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d




=




1

2

3

4




[
a b c d

]
, (5.8)

which is a rank-1 matrix.

Now, let us consider a sum of α Kronecker products

D =
α∑

r=1

B(r) ⊗C(r) =
α∑

r=1

D(r) . (5.9)

After rearrangement, we obtain a rank-α matrix, since each term D(r) leads to a rank-1

matrix 1. In other words,

R(D) =
α∑

r=1

R(D(r)) =
α∑

r=1

vec
(
B(r)

)
vec

(
C(r)

)T
. (5.10)

Therefore, using (5.10), we can introduce a low-rank regularization term to

the original optimization problem in order to learn a dictionary as a sum of Kronecker

products:

min
D,X
‖DX−Y‖2

F + λ rank(R(D)) (5.11)

s.t. ∀i ‖xi‖0 ≤ t , ∀j ‖dj‖2 = 1 ,

where the parameter λ ∈ R
+ controls the rank penalty.

Note that we do not explicitly impose the structure deĄned in Equation (5.9).

Instead, we try to limit the rank of the rearranged matrix R(D) through a rank penal-

ization on the cost function. This strategy relies on the assumption that the dictionaries

obtained by solving the minimization problem (5.11) will have a low-rank rearranged

matrix R(D). This assumption is empirically conĄrmed with the optimization algorithm
1 We assume here that the vectors vec

(
B

(r)
)

are linearly independent (and the same for the vectors

vec
(
C

(r)
)
). Otherwise, the summation in equation 5.10 would lead to matrix of rank smaller than α.
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presented in Section 5.2. Therefore, even though the structure (5.9) is not explicitly im-

posed via an equality constraint, we still converge to solutions that actually have the

proposed structure.

Interestingly, despite coming from a completely different premise, the obtained

optimization problem is closely related to the one obtained in Chapter 4. Both contain

an additional regularization term on the rank of a transformed version of the dictionary.

This allows us to employ some of the optimization tools already detailed in Chapter 4

and, for this reason, we provide a briefer description of the optimization procedure that

follows the same structure of Chapter 4.

5.2 Optimization framework

As done in Chapter 4, we solve the problem in (5.11) by alternately minimizing

on the variables D and X, as typically done in the literature (ENGAN et al., 1999;

AHARON et al., 2006; MAIRAL et al., 2009). The minimization on X is called the sparse

coding step and the minimization on D is the dictionary update step. We use the existing

Orthogonal Matching Pursuit (OMP) algorithm (PATI et al., 1993) for sub-optimally

solving the NP-hard sparse coding problem.

The dictionary update step, in its turn, has been modiĄed by the addition of

the rank regularization term. Given the non-convexity of the rank operator, we use the

nuclear norm (denoted ‖·‖∗) as its convex relaxation (RECHT et al., 2010), which yields

Dict. update: min
D
‖DX−Y‖2

F + λ‖R(D)‖∗ . (5.12)

The above problem cannot be addressed by a regular gradient descent, since the

nuclear norm operator is not differentiable. However, the following variable introduction

turns it into an approachable equality constrained problem:

min
D,D̃
‖DX−Y‖2

F + λ‖D̃‖∗ (5.13)

s.t. D̃ = R(D) .

As before, the motivation for introducing a new variable in (5.13) is that, in this new

problem, the nuclear norm applies directly to an optimization variable, which enables the

use of the nuclear norm proximal operator as deĄned in Equation (4.4).

The Augmented Lagrangian Multipliers (ALM) method can be employed to

solve such problem (BERTSEKAS, 1982). It replaces the constrained optimization prob-

lem (5.13) by a series of unconstrained problems of the form

min
D,D̃
‖DX−Y‖2

F + λ‖D̃‖∗ +
µ

2

∥∥∥D̃−R(D)− Z
∥∥∥

2

F
, (5.14)
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where µZ is the Lagrangian multiplier matrix and µ is a positive scalar controlling the

quadratic penalization on the non-fulĄlment of the equality constraint. This unconstrained

problem is repeatedly solved as the the Lagrangian multiplier gets updated, until conver-

gence.

More precisely, we use a variant of the standard Augmented Lagrangian Method

known as the Alternating Direction Method of Multipliers (ADMM) (BOYD et al., 2011)

that performs partial updates on the minimization variables D and D̃ before updating

the Lagrangian multiplier, as shown in Algorithm 5.1.

Algorithm 5.1 Alternating direction method of multipliers

Initialize D0, D̃0, Z0

while stopping criterion is not met do

Dk+1 =argminD ‖DX−Y‖2
F + µ

2

∥∥∥D̃k −R(D)− Zk

∥∥∥
2

F

D̃k+1 =argmin
D̃
λ‖D̃‖∗+ µ

2

∥∥∥D̃−R(Dk+1)− Zk

∥∥∥
2

F

Zk+1 = Zk −
(
D̃k+1 −R(Dk+1)

)

end while

In Algorithm 5.1 we loosely denote the updates in D and D̃ as the solution of

a corresponding minimization problem (Ąrst and second steps on the ADMM loop), but

we have seen that only a partial solution is required.

The partial update with respect to the variable D (Ąrst step in Alg. 5.1)

corresponds to a single gradient step

Dk+1 = Dk − γ∇J(Dk) , (5.15)

where J(Dk) = ‖DkX−Y‖2
F + µ

2

∥∥∥D̃k −R(Dk)− Zk

∥∥∥
2

F
and γ is the stepsize.

In order to calculate ∇J(Dk) we use the fact that the Frobenius norm is indif-

ferent to the elements ordering on a matrix. So, by applying the inverse of the rearrange-

ment operation R denoted R−1, the second term in J can be rewritten in an equivalent

way as
∥∥∥R−1(D̃k)−Dk −R−1(Zk)

∥∥∥
2

F
.

The gradient is therefore given by:

∇J(Dk)= 2(DkX−Y)XT + µ
(
Dk−R−1(D̃k−Zk)

)
. (5.16)

The partial update with respect to the variable D̃ (second step in Alg. 5.1) is

the proximal operator associated with the nuclear norm (denoted prox λ
µ

‖.‖∗

). It consists

on the singular value soft-thresholding operation, see (CAI et al., 2010) for details.

D̃k+1 = prox λ
µ

‖.‖∗

(R(Dk+1) + Zk) . (5.17)

The variation on the multiplier matrix Z was used as a convergence criterion:

‖Zk+1 − Zk‖F < tol .
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5.3 Proposed Algorithm

The resulting dictionary update step is described in Algorithm 5.2. The ini-

tialization of D0, D̃0 and Z0 may be random, the algorithm consistently converged in

all tested cases. As we mentioned before, the algorithm does not require the dictionary

structure to be imposed beforehand. Instead, the structure is gradually induced during

the optimization process.

Algorithm 5.2 Dictionary Update

Input: Data matrix Y ∈ R
n×N

Sparse representation matrix X ∈ R
m×N

Output: Dictionary D ∈ R
n×m

Initialize D0, D̃0, Z0, tol, γ
while not converged do

Dk+1 = Dk − γ
[
2(DkX−Y)XT + µ

(
Dk−R−1(D̃k−Zk)

)]

D̃k+1 = prox λ
µ

‖.‖∗

(R(Dk+1) + Zk)

Zk+1 = Zk −
(
D̃k+1 −R(Dk+1)

)

⊲ Stopping criterion
if ‖Zk+1 − Zk‖2

F < tol then
converged = true

end if
end while
return D

Algorithm 5.3 shows a high-level view of the alternating minimization strategy

adopted for learning both the sparse representation matrix and a dictionary as a sum

separable terms.

Algorithm 5.3 SuKro algorithm overview

Input: Data matrix Y ∈ R
n×N

Output: Dictionary D ∈ R
n×m

Sparse representation matrix X ∈ R
m×N

for j ← 0 to Niter − 1 do
⊲ Sparsecoding via OMP
Xj+1 = argminX ‖DjX−Y‖2

F + η
∑
i
‖xi‖0

⊲ Dictionary update via Algorithm 5.2
Dj+1 = argminD ‖DXj+1 −Y‖2

F + λ‖R(D)‖∗
Normalize columns of Dj+1

end for
return DNiter , XNiter
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6 Complexity analysis

Complexity savings are expected when operating with structured matrices.

In the following sections, we derive expressions for the computational complexity of the

matrix-vector multiplication when the matrix has some type of structure. We treat in

more details the structures proposed in Chapters 4 and 5 respectively in Sections 6.1 and

6.2.

6.1 Low displacement rank dictionaries

Operating with low-rank matrices leads to complexity savings because the

total number of parameters required to represent such matrices is actually smaller than

its total number of elements. In fact, a (n×m)-matrix with rank α can be represented as

a product of two smaller matrices of sizes (n× α) and (α×m) (MARSAGLIA; STYAN,

1974).

Now, consider a matrix M with displacement rank α with respect to the op-

erator matrices A and B. Then, the displacement matrix, which has rank α, admits the

following low-rank representation:

ΔA,B(M) = GHT =
α∑

k=1

gkh
T
k , (6.1)

where the pair (G,H), of sizes (n× α) and (m× α), is called a generator of length α.

The fact that a transformed version of the matrix is low-rank enforces the

intuition that the matrix itself may beneĄt from complexity gains. However, it is not

evident how to exploit such property. To make it possible, one needs to be able to recover

the original matrix from its generators.

Extensive studies on the invertibility of the displacement operator are available

on the literature (PAN; WANG, 2003). In the following we present two cases where the

invertibility holds and where we have explicit recovery formulas.

1. Let M be a Toeplitz-like (n×m)-matrix, which has a generator of length α with

respect to the operator ΔZn,0,ZTm,0
. Then

M =
α∑

k=1

L(gk)Ū(hTk ) , (6.2)

where L(g) denotes a (n×n) lower-triangular Toeplitz matrix whose Ąrst column is

g, and Ū(hT ) denotes a truncated (n×m) upper-triangular Toeplitz matrix whose
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Ąrst row is hT Ű it contains the Ąrst n rows of the complete (m×m) upper-triangular

matrix U(hT ). The following example illustrates the matrices L, U and Ū for clar-

ity.

Example. Let n = 3, m = 5 and the vectors

g = [1, 2, 3]T , h = [1, 2, 3, 4, 5]T .

The matrices L(g), U(hT ) and Ū(hT ) are given by

L(g) =




1 0 0

2 1 0

3 2 1


 , U(hT ) =




1 2 3 4 5

0 1 2 3 4

0 0 1 2 3

0 0 0 1 2

0 0 0 0 1




, Ū(hT ) =




1 2 3 4 5

0 1 2 3 4

0 0 1 2 3


 .

The corresponding Toeplitz-like matrix M is

M = L(g)Ū(hT ) =




1 2 3 4 5

2 5 8 11 14

3 8 14 20 26


 .

2. Let M be a Hankel-like (n×m)-matrix, which has a generator of length α with

respect to the operator ΔZn,0,Zm,0 . Then

M =

(
α∑

k=1

L(gk)Ū((Jhk)T )

)
J , (6.3)

where L and Ū are deĄned as before, and J is a reĆection matrix having the appro-

priate size.

It is important to note that the recovery formula is not unique. Other recovery

formulas are available at (PAN; WANG, 2003) and lead to similar results in terms of

complexity.

We have intentionally factored out the rightmost term J in (6.3). On a matrix-

vector multiplication, this particular term can be multiplied by the vector beforehand,

and the problem can be reinterpreted as the multiplication of a mirrored version of the

Hankel-like matrix M Ű which is Toeplitz-like Ű by a reversed version of the original

vector. We can take advantage of the fact that both lower and upper triangular Toeplitz

matrices have known fast implementations for matrix-vector multiplication (KAILATH;

SAYED, 1999). The result can be achieved by performing a product of two polynomial

or, equivalently, the convolution of two vectors, both of which can be calculated by using

the FFT algorithm in sub-quadratic time O(n log n) for a square (n× n) matrix.
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Lower/Upper triangular Toeplitz matrix-vector product: Let g,v ∈ R
n and h,

w ∈ R
m. Introduce the polynomials

g(x) =
∑n
i=1 gix

i−1 v(x) =
∑n
i=1 vix

i−1, (6.4)

h̃(x) =
∑m
i=1 hm+1−ix

i−1 w(x) =
∑m
i=1 wix

i−1 .

Then the following holds (KAILATH; SAYED, 1999):

• the ith entry of the vector L(g)v is the coefficient of xi−1 in the polynomial

product u(x)v(x), or, equivalently, the ith output of the convolution u ∗ v.

• the ith entry of the vector U(hT )w is the coefficient of xm−2+i in the polynomial

product h̃(x)w(x), or, equivalently, the (m−1+i)th output of the convolution

(Jh) ∗ w, where Jh is simply the vector h in reverse ordering. The product

Ū(hT )w is merely a truncation of the previous result.

The convolution (or the polynomial product) can be performed by taking the

FFT of both vectors (or coefficient vectors), performing a simple point-wise product be-

tween the transformed vectors, and then taking the inverse transform (IFFT). Based on

this, the complexity of multiplying a structured (n×m)-matrix M (or its transpose MT )

that admits the representation (6.2) or (6.3) by an m-dimensional vector can be shown

to be of the order O((αn+m) log n).

The arithmetic complexity of the matrix-vector operation, in total number of

real multiplication and real additions, is given by

TDisp = 4[n(2α+ 1) +m] log(2n) + 4m(α− 2)− 4n(3α+ 2) + 6(2α+
m

n
+ 1) . (6.5)

Refer to Appendix A for a detailed derivation of this result.

The developed framework for matrix-vector multiplication leading to the com-

putational complexity in Equation (6.5) is only valid for the Toeplitz-like and Hankel-like

cases. Naturally, different structure types would lead to different reconstruction formulas

than Equations (6.2) or (6.3) and, consequently, to different algorithms for fast imple-

mentation.

6.2 Sum of Kronecker products

When it comes to a matrix-vector multiplication, the separable structure can

be exploited by using the following Kronecker product property:

(B⊗C)x = vec(C unvec(x)BT) . (6.6)
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The right-hand side expression contains a product of three matrices with sizes (n2 ×
m2), (m2 ×m1) and (m1 × n1) respectively. If no particular structure is imposed to the

sub-matrices B and C, we obtain a complexity (in total number of multiplications and

additions) of

2m1n2(n1 +m2) . (6.7)

For instance, if we assume n1 = n2 =
√
n and m1 =m2 =

√
m the complexity

becomes:

2(
√
mn+m

√
n) , (6.8)

which is a considerable reduction when compared to the 2mn operations in the case of a

unstructured matrix.

For a matrix with α separable terms in the form of eq. (5.2), the total com-

plexity becomes:

2α(
√
mn+m

√
n) . (6.9)

6.3 Other matrix-vector multiplication complexities – comparison

1. Explicit Dictionaries: If the dictionary is represented by an explicit structure-less

(n×m)-matrix, then its total complexity is

TExplicit = 2mn . (6.10)

2. Unstructured Low-rank Dictionaries: Assuming that the dictionary can be repre-

sented by a (n×m)-matrix of rank β, its complexity is

TLow−rank = 2β(m+ n) . (6.11)

3. Separable Dictionaries: A dictionary is called separable when it is the Kronecker

product of two or more sub-dictionaries (MALLAT, 2008). Consider two sub-dictionaries

Φ0,Φ1 ∈ R
√
n×√

m, we can construct a dictionary Φ ∈ R
n×m in the form Φ =

Φ0 ⊗Φ1. It is worth noting that the dictionary transpose is separable as well and

given by ΦT = ΦT
0 ⊗ΦT

1 . One such dictionary leads to efficient direct and transpose

operator, with a total complexity of

TΦ = 2n
√
m+ 2m

√
n , (6.12)

assuming Φ0 and Φ1 have no particular structure and are applied via explicit matrix

multiplication. This result has been derived in Section 6.2 with more details. The

2D-DCT dictionary is an example of separable dictionary as well as the ones learned

via the SeDiL algorithm (HAWE et al., 2013).



Chapter 6. Complexity analysis 49

4. Sparse Dictionaries: The complexity of the matrix-vector product is proportional

to the number of non-zero entries in the matrix. Denoting nnz(D) the number of

non-zero entries in a sparse matrix D, the complexity is given by

Tsparse = 2 nnz(D) . (6.13)

So, for a (n×m)-matrix containing sm non-zero entries instead of the nm of a dense

matrix, with s≪ n, the matrix-vector product complexity becomes1 Tsparse = 2sm,

and s may be seen as the average column sparsity.

Now, if the dictionary is a product of several sparse matrices, say J factors, D =
∏J
j=1 Sj as is the case in (MAGOAROU; GRIBONVAL, 2016), the complexity be-

comes

Tsparse−factors = 2
J∑

j=1

nnz(Sj) . (6.14)

It is also important to mention the complexity related to the Sparse K-SVD

dictionaries proposed in (RUBINSTEIN et al., 2010b), which are given by a product of

a base dictionary and a sparse matrix, D = ΦA. Since the adopted base dictionary is a

2-D overcomplete DCT 2, which is separable, and assuming a column sparsity p for the

matrix A ∈ R
m×m, the matrix-vector operator complexity becomes 3

TS−KSV D = TΦ + 2pm . (6.15)

To conclude, we illustrate in Figure 8 how some of the mentioned structures

scale as the data dimensionality grows. We have supposed an over-completeness factor of

four on the dictionary (i.e. m = 4n), which is the same ratio m/n used on the simulations

reported in Chapter 7. As we can see, the structures leading to sub-quadratic complexities

for matrix-vector multiplication present much better scalability properties.

Note that if we consider an overcompleteness factor proportional to n, as is

usually the case, for example m/n =
√
n, the advantage of our structured matrices is even

more pronounced as shown in Figure 9.

1 In (RUBINSTEIN et al., 2010b), the authors include a multiplicative factor α = 7 to simulate the
several implementation issues related to sparse matrices operations (see (IM; YELICK, 2000) for a
in-depth analysis). However, to simplify the analysis, we will not take such practical complications
into account, as done in (MAGOAROU; GRIBONVAL, 2016).

2 The 1-D n×m overcomplete DCT dictionary, as defined in (RUBINSTEIN et al., 2010b), is a cropped
and renormalized version of the orthogonal m ×m DCT dictionary matrix. The 2-D ODCT is the
Kronecker product of two 1-D ODCT dictionaries of size

√
n×√m.

3 Note that the complexity TΦ of a general separable matrix is used. If the regular 2D-DCT was used
as a base dictionary, then this complexity would be smaller since both sub-matrices Φ0 and Φ1 would
be 1D-DCTs, which have fast implementations. Such advantage is lost when an overcomplete version
of the DCT is used, since the DCT matrix is truncated and renormalized, losing its original structure.
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7 Results and Discussion

To illustrate the performance of the two proposed algorithms on real data, we

have chosen an image denoising application, which is commonly used on the literature

for evaluating dictionary learning algorithms. We have also established comparisons with

some related techniques.

7.1 Simulation Set-up

We reproduce the same simulation set-up used in (ELAD; AHARON, 2006).

The chosen grey-scale images (barbara, boats, house, lena and peppers) are corrupted

with additive white Gaussian noise (AWGN) with different standard deviations σ.

The training data is composed by (8×8)-pixel patches extracted from the noisy

image. According to the number of training data used, uniformly spaced Ű potentially

overlapping Ű patches are extracted. The patches are then vectorized (by stacking its

columns) leading to 64-dimensional training samples, which are used on the dictionary

learning process. Figure 10 illustrates how a training sample is extracted from the noisy

image.

The obtained dictionary D and sparse representation matrix X provide a re-

Figure 10 Ű Training data: patch extraction from the noisy image.
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construction of the input data which is expected to reject part of the noise. The recov-

ered image is constructed by averaging the overlapping pixel values on the reconstructed

patches.

To quantify the reconstruction quality we use the peak signal-to-noise ratio

(PSNR) between the original image and the recovered one, computed by

PSNR = 10 log

(
2552Npixel

∑Npixel
i=1 (yi − ŷi)2

)
, (7.1)

where 255 is the maximum pixel value, Npixel is the total number of pixels on the input

image (256 × 256 or 512 × 512 ), yi and ŷi are respectively the i-th pixel value on the

input and reconstructed image.

The optimization parameters were empirically set to µ = 107 and γ = 6×10−9.

The convergence tolerance was set to tol = ‖D‖F ×10−4 at all iterations but the last1,

when tol = ‖D‖F×10−7. The dictionary has been initialized with the 2-D overcomplete

DCT dictionary2 and Niter = 100 iterations were used.

The reported results are averaged over 10 experiments with different noise

realizations. Table 3 summarizes the simulation parameters (unless explicitly stated oth-

erwise).

Table 3 Ű Simulation parameters

Signal dimension (n) 64

Number of atoms (m) 256

Training samples (N) 40000

Step-size (γ) 6× 10−9

Lagrangian penalty (µ) 107

Convergence tolerance (tol) ‖D‖F×10−4

Iterations (Niter) 100

Dictionary initialization (Dinit) ODCT

For the SuKro simulations we have used n1 = n2 =
√
n and m1 = m2 =

√
m

as the sub-matrices dimensions.

The adopted simulation set-up supposes an application where only a noisy

version of an image is available and it is desired to improve its quality. Applications ranging
1 Due to column normalization we always have that ‖D‖F =

√
m. The tolerance is smaller at the

last iteration in order to guarantee a more accurate final result (the same accuracy is unnecessary in
intermediate iterations).

2 The 1-D n×m overcomplete DCT dictionary, as defined in (RUBINSTEIN et al., 2010b), is a cropped
and renormalized version of the orthogonal m ×m DCT dictionary matrix. The 2-D ODCT is the
Kronecker product of two 1-D ODCT dictionaries of size

√
n×√m.
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from ordinary digital camera image denoising to bio-medical, seismic and astronomical

image treatment Ąt this scenario. All the training data is extracted from this one available

noisy image. A dictionary speciĄc for that image is trained, and then used on the denoising

process.

Another possibility would be to use a database of noiseless images of a certain

type (eg. astronomical, seismic, bio-medical) as training data for the dictionary learning.

The obtained dictionary would be a kind of general dictionary that could be used to

denoise images other images of that same type. The term general is employed in opposi-

tion to the image-specific dictionary obtained in the Ąrst scenario. Actually, this second

scenario is more suited to the use of structured dictionaries, since the motivation for ob-

taining a more economic dictionary lies on the assumption that, after trained, it will be

repeatedly used on a certain application. However, since the experiments performed here

have the primary goal to justify the relevance of the proposed algorithm and provide a

maximum of comparisons with similar existing methods, we have decided to use a more

typical simulation set-up.

7.2 Benchmarks

We have chosen two techniques as the main benchmarks for the proposed

algorithms: the K-SVD (AHARON et al., 2006) method, which is a state-of-the-art algo-

rithm for learning unstructured dictionaries, and the ODCT analytic dictionary. These

two benchmarks represent opposite extremes on the complexity-Ćexibility tradeoff. The

former representing the Ű Ćexible but complex Ű learned dictionaries and the latter rep-

resenting the Ű fast but rigid Ű analytic counterpart. The structured dictionaries are

expected to be in-between in terms of complexity and Ćexibility.

We also provide comparisons with other structured dictionary learning tech-

niques: the SeDiL (Separable Dictionary Learning)(HAWE et al., 2013) algorithm for

learning separable dictionaries, the FAµST (Flexible Approximate Multi-layer Sparse

Transforms) (MAGOAROU; GRIBONVAL, 2016) dictionaries, which are the product

of sparse matrices, and the Sparse K-SVD (RUBINSTEIN et al., 2010b) algorithm that

constrains the dictionary to be a product of a fast base dictionary with a sparse matrix. In

all cases, we use the implementation provided by the authors. In the following, we present

a brief description and some details on the parameter setting for each of these methods.

7.2.1 Separable Dicionary Learning (SeDiL)

The SeDiL algorithm, proposed in (HAWE et al., 2013), learns a separable

dictionary, i.e. D = A⊗B. The ODCT analytic dictionary is an example of the separa-

ble structure. Other examples include the classic two dimensional orthogonal DCT and
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Fourier transforms, as well as some Wavelet dictionaries (MALLAT, 2008). This structure

can also be seen as a special case of the structure we propose in Chapter 5, when a single

separable term is used.

In our simulations, to allow for a fair comparison, the training patches are

extracted from the noisy image itself, which ensures that the same simulation set-up

is used for all techniques. This is in contrast to the original work, which extracted the

training data from noiseless images. In addition, we use the OMP algorithm for the sparse

coding step while the SeDiL technique originally used the FISTA (BECK; TEBOULLE,

2009) algorithm. We initialize the dictionary as an ODCT and maintain the default value

of all remaining simulation parameters.

As will be seen on the simulation results, the SeDiL algorithm performance

is considerably reduced on this new conĄguration. It may even underperform the ODCT

occasionally.

7.2.2 Flexible Approximate Multi-layer Sparse Transforms (FAµST)

In the FAµST technique, proposed in (MAGOAROU; GRIBONVAL, 2016),

the dictionary (D) is constrained to be the product of a small number (J) of sparse

matrices (Sj),

D =
J∏

j=1

Sj . (7.2)

In order to completely specify this structure, several parameters need to be

set. Besides the number of sparse factors (J), it is necessary to specify the size3 as well

as the number of non-zero elements in each factor Sj.

The algorithm takes a pre-established dictionary (trained by the K-SVD al-

gorithm, for instance) and Ąnds an approximation in the form of Equation (7.2). The

dictionary factorization is performed in a hierarchical way, i.e. by computing successive

two-factor factorizations. The dictionary is Ąrst decomposed into two matrices D = T1S1

with S1 sparse and T1 containing fewer non-zero elements than D. Then, the process is

repeated with T1, yielding T1 = T2S2 with T2 sparser than T1, and so on, until there are

J factors. The resulting decomposition is thus D = TJ−1SJ−1 ...S1, with TJ−1 potentially

less sparse than the other terms, depending on the parameter setting.

The sparsity of the factors Sj is controlled by the parameter s, which deter-

mines the average column sparsity. The sparsity of the ŞresidualŤ matrix Tℓ is chosen to

decrease geometrically with the step ℓ and is controlled by two parameters ρ and P . The

number of non-zero elements in Tℓ is given by Pρℓ, with ρ < 1.
3 As long as the final product has the same size of D, i.e. the number of columns of the rightmost factor

SJ and the number of lines of the leftmost factor S1 are determined by the dictionary dimensions.
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In our simulations, we have used a subset of the conĄgurations tested in

(MAGOAROU; GRIBONVAL, 2016). The size of the factors are: TJ−1,SJ−1, ... ,S2 ∈
R
n×n, S1 ∈ R

n×m. The number of factors is J = 4. When it comes to the sparsity level

of the factors, we have tested several conĄgurations, with s ∈ {3, 6, 12, 24}, ρ ∈ {0.7, 0.9}
and P = n2. The K-SVD dictionary, trained under the conditions described in Section

7.1, is used as an initialization.

7.2.3 Sparse K-SVD (S-KSVD)

In this algorithm, introduced in (RUBINSTEIN et al., 2010b), the resulting

atoms are sparse linear combinations of the atoms in a Ąxed base dictionary. The dictio-

nary takes the form

D = ΦA ,

where Φ is the base dictionary and A has sparse columns.

Following (RUBINSTEIN et al., 2010b), we use the ODCT as the base dic-

tionary. In this case, we have Φ ∈ R
n×m and A ∈ R

m×m. The column sparsity of A is

controlled by the parameter p. In our simulations, we have tested the following conĄgu-

rations: p ∈ {3, 6, 12, 18, 24, 32}.

7.3 Simulation results

7.3.1 Displacement Rank and Number of Separable Terms

In Figures 11 and 12 we show the reconstruction PSNR as a function of the

dictionary displacement rank for each of the Ąve tested images under different noise levels

(respectively σ = {20, 50}). The various displacement ranks were obtained by sweeping

the parameter λ inside the interval λ ∈ [0, 6000].

Two different structure types have been used: Toeplitz-like and Hankel-like.

Naturally, the recovered PSNR decreases as the dictionary displacement rank is reduced.

This is due to a lack of adaptability implied by the increased level of constraint on

the matrix structure. It can be seen as the price to pay for a complexity reduction.

Nevertheless, the obtained dictionaries still lead to very competitive results, being close

to the KSVD for a large range of displacement ranks and overcoming the ODCT dictionary

even for very low displacement ranks. The unconstrained dictionary has some advantage

on very textured images (ŞbarbaraŤ for instance) as it has the required Ćexibility to Ąt

such complex patterns, while in smoother images like ŞboatŤ, ŞhouseŤ and ŞpeppersŤ the

displacement rank reduction entails a less pronounced performance degradation.

Also note that the proposed technique becomes more competitive as the noise

level increases, until a certain point. In such cases, the Ćexibility of the KSVD dictionary
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turns into a disadvantage as it allows for Ątting the noise (overĄtting), whereas imposing

a degree of structure seems to prevent it by acting as a regularization. This argument will

be further explored in section 7.3.2.

Most of the presented remarks also apply for the SuKro (sum of Kronecker

products) structure, introduced in Chapter 5. In Ągures 13 and 14 the denoised images

PSNR is plotted as a function of the number of separable terms forming the dictionary,

with σ = {20, 50} respectively. The resulting number of separable terms is controlled via

the parameter λ, which is swept inside the interval λ ∈ [100, 2200].

Note that even with very few separable terms, SuKro achieves similar results

(or even better for higher noise scenarios) when compared to K-SVD, besides consis-

tently outperforming the ODCT dictionary. We also show the performance of the SeDiL

dictionary, which has exactly the same structure as a one-term SuKro dictionary. The su-

periority of the SuKro dictionary is exclusively due to the different problem formulation

and learning algorithm. Naturally, as the number of separable terms increases, so does

the denoising performance, since the dictionary becomes more Ćexible. The drawback is

the increase on the complexity.
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Figure 11 Ű PSNR vs. Displacement Rank, with σ=20. The higher the better.
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Figure 13 Ű PSNR vs. rank(D̃) (i.e. the number of separable terms), with σ = 20. The
higher the better.

0 2 4 6 8

24.6

24.8

25

25.2

25.4

25.6

barbara

P
S

N
R

 [
d
B

]

0 2 4 6 8

25.6

25.7

25.8

25.9

26

boat

# separable terms
0 2 4 6 8

27.4

27.6

27.8

28

28.2

house

0 2 4 6 8

27.4

27.6

27.8

lena

P
S

N
R

 [
d
B

]

0 2 4 6 8
27.6

27.8

28

28.2

peppers

# separable terms

 

 

KSVD

ODCT

SeDiL

SuKro

σ = 50

(input PSNR = 14.15)

Figure 14 Ű PSNR vs. rank(D̃) (i.e. the number of separable terms), with σ=50.



Chapter 7. Results and Discussion 59

7.3.2 Varying Input Noise Power

In Section 7.3.1 we have analyzed the dictionary denoising capabilities as the

constraints on the dictionary structure are gradually loosened. In this section we analyze

the effect of the input noise power on the dictionary performance.

In Figures 15 and 16 we compare the reconstruction PSNR of the simulated

techniques at different input noise levels. The ODCT PSNR results are taken as a reference

and subtracted from the results of all other techniques to highlight the differences between

them and isolate the impact of the techniques from the input noise. Just as in the previous

graphs, higher is better. Besides comparing with the K-SVD and the ODCT dictionaries,

we also include in the graph the results of other structured dictionary learning algorithms.

We split the results in two graphs to provide a better visualization. The Sparse K-SVD

technique results are displayed in Figure 15 along with the proposed low displacement

rank dictionaries, while the SeDiL and FAuST techniques are displayed in Figure 16 along

with the SuKro results.

The two proposed methods proved to be more robust to noise as its perfor-

mance degradation is less pronounced as the noise increases when compared to the uncon-

strained K-SVD dictionary, to the point of nearing its performance in high-noise scenarios

(even for the very low displacement rank and number of separable terms displayed). The

reason is that, by reducing the Ćexibility of the dictionary, we end up preventing the

learned dictionary from Ątting the noise present in the input data. For the same reason,

the Sparse K-SVD technique is capable of outperforming the KSVD at noise standard

deviations above σ=50.

Comparing the Ąve tested structured dictionary techniques, the Sparse KSVD

and SuKro techniques obtained the best results, with quite similar performance (except

for σ = 20 where S-KSVD achieved a slightly better result). Low displacement rank and

FAuST dictionaries achieved very close results, while SeDiL lagged behind.
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like dictionariesŠ displacement ranks are shown in brackets.
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7.3.3 Varying Training Dataset Size

In this section, we analyze the sample complexity of several dictionary learning

methods, that is, the impact of reducing the training dataset size on the quality of the

learned dictionary. Structured dictionaries are expected to be more robust to reduced

training datasets, due to the decreased number of free parameters to estimate compared

to unstructured dictionaries. In Figures 17 and 18 we show the reconstruction results on

varying training dataset sizes. As expected, the performance of the structured dictionaries

is much less affected by the reduction on the number of training samples. It is important

to mention that 40000 training samples were used in all the previously presented results.

As seen in Figures 17 and 18, if fewer training samples were used, the results would be

even more favourable to our method.

Compared to the other structured dictionaries, the two proposed techniques

proved to be more robust to reduced training datasets. Although the S-KSVD and SuKro

techniques achieve very close results with large training datasets, as the number of training

samples gets smaller, the SuKro dictionaries stand out. Both proposed techniques obtain

better results than the FAuST and SeDiL algorithms with smaller training datasets.
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7.3.4 Complexity-performance Trade-off

It is important to clarify that the computational complexity of the training

algorithm is not evaluated here. Following the literature, we suppose a scenario where the

training process is performed beforehand, in an offline fashion, and the trained dictionary

is then to be repeatedly used in a certain application. Therefore, it is the complexity of

operating with the trained dictionary (measured through the matrix-vector multiplication

cost) that interests us. Indeed, if the whole training process was to be embedded, the

training complexity would be critical too. Nevertheless, it is important to mention that

the reduced multiplication costs obtained by the structured dictionaries proposed here

could also be exploited to accelerate the numerous sparse coding steps performed during

the training process. This possibility has not been explored on this thesis.

Substituting the dictionary dimensions in the complexity expressions derived

in Chapter 6 we obtain the total number of operations required for operating with it4.

The main trade-off here is between complexity reduction and reconstruction capabilities.

This compromise is illustrated in Figures 19, 20, 21 and 22, where each conĄguration

corresponds to a point on the plane PSNR vs. Complexity. In this graph, the higher

and/or the more to the left the points are located, the better compromises they represent.

A given point dominates another if it has the same or a smaller x coordinate (complexity)

while having the same or a greater y coordinate (PSNR)Ű supposing, of course, that the

points are distinct.

The merit of our methodology is providing a range of options on this trade-off

curve. The displacement rank and the number of separable terms, respectively on the

Ąrst and second proposed methods, may be adjusted to provide faster operators at the

expense of some performance reduction. In this way, we offer dictionaries that are both less

complex than the unconstrained ones (e.g. KSVD) and more Ćexible than the analytic

ones (e.g. ODCT). Naturally, the less complex dictionaries will most probably achieve

weaker denoising results.

Other techniques also offer similar tradeoffs. For instance, different complex-

ities can be obtained with the S-KSVD by varying the parameter p (column sparsity of

matrix A), and with FAuST by varying both parameters s (column sparsity of the fac-

tor matrices Si) and ρ (related to the sparsity of the remainder matrix T ). The SeDiL

technique, in turn, does not offer such Ćexibility.

Note in Figures 21 and 22 that the SuKro dictionaries containing a single

separable term, obtain a considerably better performance than the ODCT while having
4 We recall that the ODCT is a separable dictionary. Note that we use the complexity of a general

separable matrix, given in Equation (6.12), for the ODCT. If the regular 2D-DCT was used as a
base dictionary, then this complexity would be smaller since both sub-matrices Φ0 and Φ1 would be
1D-DCTs, which have fast implementations. Such advantage is lost when an overcomplete version of
the DCT is used, since the DCT matrix is truncated and renormalized, losing its original structure.
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exactly the same computational complexity for matrix-vector multiplication. On this spe-

ciĄc application, the S-KSVD technique obtained better results with σ = 20, while the

SuKro and FAuST dictionaries obtained similar results. With a higher noise (σ=50), the

SuKro technique catches up with S-KSVD, while FAuST lags behind.

As we can see in Figures 19 and 20, although achieving similar results to

the FAuST dictionaries at σ = 50, the displacement rank dictionaries are notably less

competitive at σ = 20. However, we cannot imply that a certain method is superior to

another from the presented simulations, since the results may vary with the application

or even with the simulation set-up. The low displacement rank method, for instance,

is severely disfavored by the relatively small size of the dictionary used (that is, the

sample dimensionality n = 64 and number of atoms m = 256), due to some constant

multiplication factors on the matrix-vector complexity expression Ű see Equation (6.5).

Such complexity overhead is supposed to become less signiĄcant as the dimensionality

grows making the technique much more competitive.

The chosen application may also affect the performance of the different dictio-

nary structure types. As explained in Chapter 5, the separable structure is particularly

suited to multidimensional signals such as images (two-dimensional signals). The S-KSVD,

in turn, uses as the base dictionary a Discrete Cosine Transform5, which is widely rec-

ognized for being well adapted to natural images. These observations help explaining

some superior results obtained by SuKro and S-KSVD with respect to FAuST and low

displacement rank dictionaries.

5 In the proposed techniques the ODCT is used only as an initialization.



Chapter 7. Results and Discussion 65

0 2 4

x 10
4

29

29.5

30

30.5

31
barbara

P
S

N
R

 [
d
B

]

0 2 4

x 10
4

29.8

30

30.2

30.4

30.6

30.8
boat

Arithmetic complexity

0 2 4

x 10
4

32

32.5

33

33.5
house

0 2 4

x 10
4

31.6

31.8

32

32.2

32.4

32.6
lena

P
S

N
R

 [
d
B

]

0 2 4

x 10
4

31.6

31.8

32

32.2

32.4
peppers

Arithmetic complexity

 

 

KSVD

ODCT

S−KSVD

Toeplitz

Hankel

σ = 20

(input PSNR = 22.11)

Figure 19 Ű Complexity-performance (PSNR) compromise, with σ = 20. Displacement
ranks 1 to 6 (left to right) and S-KSVD with p = {3, 6, 12, 18, 24, 32} (left to
right).
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Figure 20 Ű Complexity-performance (PSNR) compromise, with σ = 50. Displacement
ranks 1 to 6 (left to right) and S-KSVD with p = {3, 6, 12, 18, 24, 32} (left to
right).
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Figure 21 Ű Complexity-performance (PSNR) compromise, σ= 20. FAuST with (s, ρ) =
{(3, 0.7), (6, 0.7), (3, 0.9), (6, 0.9), (12, 0.7), (12, 0.9), (24, 0.7), (24, 0.9)} (left to
right), Sukro with 1 to 6 separable terms (left to right) and SeDiL.
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Figure 22 Ű Complexity-performance (PSNR) compromise, with σ=50.



67

Conclusion

This master degree thesis is the result of studies on dictionary learning for

sparse representations. In this project we introduce two algorithms for learning structured

dictionaries. In the Ąrst one, the concept of displacement structure is used as a structure

measure. The second one uses some existing Kronecker product results to learn dictionaries

as a sum of separable terms. The two proposed structures give rise to similar optimization

problems, both involving a rank minimization term. Some recent optimization concepts

had to be called upon to solve such problems. We have used a convex relaxation for the

rank operator which is the nuclear norm as well as a proximal algorithm.

Various image denoising experiments were shown as a proof of concept for the

proposed methodologies. Competitive results have been obtained, proving the interest

of the proposed ideas. In high noise scenarios and in presence of less training data, the

structured dictionaries can even surpass the performance of an unstructured one. More

importantly, the proposed techniques have the merit of providing a range of options on the

complexity-adaptability trade-off. They lead to fast operators while keeping a considerable

degree of Ćexibility and this trade-off can be controlled through the displacement rank (on

the Ąrst method) and the number of separable terms (on the second method). Another

important advantage of the proposed dictionaries is a higher robustness to small training

datasets.

The obtained complexity gains may be even more pronounced if the signal

dimension is increased along with the dictionary size. The main interest is exactly to

improve the scalability properties of the dictionary learning algorithms.

Perspectives

On the displacement rank framework, other structure families are still to be

explored, since in this thesis we have only covered the Toeplitz-like and Hankel-like cases.

Other possibilities include classic families like Vandermonde and Cauchy as well as any

other type of structure for which the displacement operator is known.

In addition, the proposed algorithms are not restricted to image denoising ap-

plications and could be applied the wide range of applications in which dictionary learning

techniques are being employed. It would be interesting to try and identify applications

that are better suited to each of the proposed structure types.

It is even possible to go beyond the dictionary learning context. In a broader

sense, the proposed methods are actually matrix factorization techniques. Instead of struc-
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tured dictionaries, they could be used to approximate any matrix (or any linear operator,

represented by a matrix) by a structured version of it. Furthermore, the motivation need

not be restricted to increasing the scalability. After some adaptations, the very same idea

could be explored in many other domains where a certain matrix structure is desired. An

example is the deconvolution problem, where the sought convolution matrix is expected

to be Toeplitz. In other applications, a different structure family (Hankel, Vandermonde,

Cauchy) may as well arise.
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APPENDIX A – Complexity of Forward and

Transpose Operators

In this appendix we derive the complexity of multiplying an (n×m)-matrix M

in the form of equation (6.2) Ű Toeplitz-like Ű or equation (6.3) Ű Hankel-like Ű by a vector

w ∈ R
m. Throughout this appendix we denote ⊙ the element-wise vector multiplication.

Forward Operator

As derived in Section 6.1, the forward operator Mw leads to the following, for

the Toeplitz-like and Hankel-like case respectively:

(
α∑

k=1

L(gk)Ū(hTk )

)
w (A.1)

(
α∑

k=1

L(gk)Ū((Jhk)T )

)
Jw (A.2)

Let us take the Toeplitz-like case (equation (A.1)), since the Hankel-like case

is equivalent upon the inversion of the vector w. Denoting FFT (x,m) the m-point fast

Fourier transform of the vector x (zero-padded if it has fewer than m elements), the

forward operator can be implemented by Algorithm A.1.

Considering that the vectors ĝk and ĥk are pre-calculated and stored in mem-

ory and denoting Φ(n) the arithmetic complexity of an n-point FFT, the total cost of

Algorithm A.1 is given by:

Φ(2m) + α (2m+ Φ(2m) + Φ(2n) + 4n) + Φ(2n) (A.3)

However, the complexity of the product v = Ū(hTk )w can be further reduced

when m is an integer multiple of n, i.e m/n ∈ Z. In this case, we can use a block

representation for Ū and w:

Ū = [Ū1 | Ū2 | ... | Ūm/n] with each Ūi ∈ R
n×n,

w = [wT
1 | wT

2 | ... | wT
m/n]T with each wi ∈ R

n.

Then Ūw =
∑m/n
i=1 Ūiwi.

The fact that Ū(hTk ) is a truncated upper triangular Toeplitz matrix implies

that Ū1 is upper triangular Toeplitz and all other Ūi are Toeplitz. So, it comes to m
n
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Algorithm A.1 Forward Operator - fast implementation

Input: vector w ∈ R
m,

matrices G and H, s.t. ΔZn,0,ZTm,0
(M) = GHT

Output: vector xf ∈ R
n, s.t. xf = Mw

⊲ Pre-calculations
for k ← 1 to α do

ĝk ← FFT (gk, 2n)
ĥk ← FFT (Jhk, 2m)

end for
xf = 0

⊲ Multiplication
ŵ← FFT (w, 2m)
for k ← 1 to α do

⊲ Compute v = Ū(hTk )w
v̂← ĥk ⊙ ŵ ⊲ Element-wise multiplication
v← IFFT (v̂, 2m)
v← v(m : m+ n+ 1) ⊲ Result of Ū(hTk )w

⊲ Compute x = L(gk)v
v̂← FFT (v, 2n)
x̂← ĝk ⊙ v̂

⊲ Accumulate results
x̂f ← x̂f + x̂

end for
xf ← IFFT (x̂f , 2n)

return xf (1 : n)

Toeplitz (n × n)-matrix-vector multiplications (one of them being upper triangular). It

turns out that the Toeplitz matrix proĄts from a similar convolution-like implementation.

Consider T a (n×n) Toeplitz matrix determined by the vector t = (t1−n, ... , t0, ... , tn−1)T

as in Ągure 3.3. We introduce the polynomials

t(x) =
∑2n−1
i=1 ti−nx

i−1 w(x) =
∑n
i=1 wix

i−1

Then the following holds:

• the ith entry of the vector Tw is the coefficient of xn−2+i in the polynomial product

t(x)w(x).

Or, equivalently, the (n− 1 + i)th output of the convolution t ∗w.

This leads to a less complex forward operator described in Algorithm A.2.
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Algorithm A.2 Forward Operator - improved implementation

Input: vector w ∈ R
m,

matrices G and H, s.t. ΔZn,0,ZTm,0
(M) = GHT

Output: vector xf ∈ R
n, s.t. xf = Mw

⊲ Pre-calculations
for k ← 1 to α do

ĝk ← FFT (gk, 2n)
ĥk,1 ← FFT (Jhk(1 : n), 2n)
for l← 2,m/n do

ĥk,l ← FFT (Jhk((l − 2)n+ 2 : ln), 2n)
end for

end for
xf = 0

⊲ Multiplication
for l← 1 to m/n do

ŵl ← FFT (w((l − 1)n+ 1 : ln), 2n)
end for

for k ← 1 to α do
⊲ Compute v = Ū(hTk )w
v̂ = 0
for l← 1 to m/n do

v̂← v̂ + ĥk,l ⊙ ŵl

end for
v← IFFT (v̂, 2n)
v← v(n : 2n− 1) ⊲ Result of Ū(hTk )w

⊲ Compute x = L(gk)v
v̂← FFT (v, 2n)
x̂← ĝk ⊙ v̂

⊲ Accumulate results
x̂f ← x̂f + x̂

end for
xf ← IFFT (x̂f , 2n)

return xf (1 : n)
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Its complexity in terms of the FFT cost is given by:

m

n
Φ(2n) + α (4m+ 2Φ(2n) + 4n) + Φ(2n) (A.4)

The exact arithmetic complexity of the classic split-radix implementation of

the FFT in total number of real additions and real multiplications is (DUHAMEL, 1986):

Φ(n) = 2n log n− 4n+ 6 (A.5)

To obtain the arithmetic complexity of Algorithm A.2 we substitute A.5 in

A.4, which gives:

4[n(2α+ 1) +m] log(2n) + 4m(α− 2)− 4n(3α+ 2)

+6(2α+
m

n
+ 1)

(A.6)

Transpose Operator

The implementation of the transpose operator MTv, with MT ∈ R
m,n and

v ∈ R
n is quite similar from the previous one. Just consider that

MT =

(
α∑

k=1

Ū(hTk )TL(gk)T
)

(A.7)

Keeping in mind that L(gk)T becomes an upper triangular Toeplitz matrix

and Ū(hTk )T a truncated (in the columns) lower triangular Toeplitz matrix, we can still

apply the same multiplication strategy.

The block strategy previously presented becomes:

ŪTw =




ŪT
1

w

ŪT
2

w

...
ŪT
m/n

w


 (A.8)

with w ∈ R
n

Algorithm A.3 shows the resulting implementation. Its total count of real mul-

tiplications and real additions is:

4[n(2α+ 1) +m] log(2n) + 4m(α− 2)− 2n(7α+ 4)

+6(2α+
m

n
+ 1)

(A.9)
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Algorithm A.3 Transpose Operator - improved implementation

Input: vector v ∈ R
n,

matrices G and H, s.t. ΔZn,0,ZTm,0
(M) = GHT

Output: vector xf ∈ R
m, s.t. xf = MTv

⊲ Pre-calculations
for k ← 1 to α do

ĝk ← FFT (Jgk, 2n)
ĥk,1 ← FFT (hk(1 : n), 2n)
for l← 2 to m/n do

ĥk,l ← FFT (hk((l − 2)n+ 2 : ln), 2n)
end for

end for
xf = 0

⊲ Multiplication
v̂← FFT (v, 2n)

for k ← 1 to α do
⊲ Compute w = L(gk)Tv
ŵ← ĝk ⊙ v̂
w← IFFT (ŵ, 2n)
w← w(n : 2n− 1)

⊲ Compute x = Ū(hTk )Tw
ŵ← FFT (w, 2n)
for l← 1 to m/n do

x̂l ← x̂l + ĥk,l ⊙ ŵ
end for

end for

for l← 1 to m/n do
xl ← IFFT (x̂l, 2n)

end for
⊲ Construct xf by vertical concatenation
xf = [x1(1 : n) ; x2(n :2n−1) ; ... ; xm/n(n :2n−1)]
return xf
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APPENDIX B – Gradients Calculation

We will use the following facts valid for any matrices M, N:

‖M‖2
F = Tr(MTM)

Tr(M + N) = Tr(M) + Tr(N)

Tr(M) = Tr(MT )

Allied to the following rules for matrix derivatives (PETERSEN; PEDERSEN, 2012).

∂

∂M
Tr(BMC) = BTCT ,

∂

∂M
Tr(BMTC) = CB (B.1)

∂

∂M
Tr(ATMTCMB) = CTMABT + CMBAT (B.2)

Now we can easily derive the gradients:

∇D‖DX−Y‖2
F =

∂

∂D
Tr
(
(DX−Y)T (DX−Y)

)
(B.3)

=
∂

∂D

[
Tr(XTDTDX)− 2 Tr(XTDTY)

]
(B.4)

= 2(DX−Y)XT (B.5)

(B.6)

∇D‖∆−D + ADB− Z‖2
F =

∂

∂D
Tr
(
(∆−D + ADB− Z)T (∆−D + ADB− Z)

)

(B.7)

=
∂

∂D

[
−2 Tr((∆T − ZT )D) + 2 Tr((∆T − ZT )ADB)

(B.8)

+ Tr(DTD)− 2 Tr(DTADB)− Tr(BTDTATADB)
]

(B.9)

= 2
[
D−ADB−∆+Z−AT (D−ADB−∆+Z)BT

]

(B.10)
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